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Abstract

In order to properly design new structures or assess the safety and reliability of
existing structures and their mechanical components, it is important to study the
way in which structures respond to external loads. The vast majority of the
external loads that a structure can experience is of dynamic nature: for example
earthquakes, external impacts, explosions, vibrations induced by vehicles or
machine equipment inside or nearby the structure, etc. The development of
efficient dynamic analysis methods over the last decades has stimulated the
interest for considering also dynamic response in the formulation of structural
design optimization problems. In order to account for these issues, accurate and
computationally affordable computational techniques, which include dynamic
analysis methods and optimization techniques, are needed.

The goal of the thesis is to develop new computational techniques for the
optimum design of structures based on their dynamic response, with emphasis
on seismic design, and provide the necessary numerical tools for their
implementation. This goal is addressed by developing algorithms for (a) solving
the dynamic equilibrium differential equations in the time domain, (b)
processing of strong ground motion data for the generation of various elastic and
inelastic spectra, (c) optimizing the distribution of the seismic energy absorbed
by MDOF shear buildings and (d) optimizing the ground motion acceleration
time histories used for the dynamic analysis of structures in the framework of
their seismic design. In order to deal with these problems efficiently, various
algorithms and methodologies have to be used, such as efficient deterministic
and stochastic optimizers, constitutive model formulations for the estimation of
the nonlinear dynamic response, and a novel spectra-matching framework which
employs a linear combination of raw ground motion records to generate artificial
acceleration time histories taking into account both acceleration and seismic
input energy equivalent velocity spectra.

The dissertation consists of seven chapters in total, plus Appendix A. It is
organized as follows: following the introduction of Chapter 1, Chapter 2
introduces a generalized dynamic time - integration algorithm framework for
non-linear structural dynamics. Chapter 3 presents the development of
OpenSeismoMatlab, which is an innovative open-source software for strong
ground motion data processing, written in MATLAB, and is based on the family
of the dynamic time integration algorithms presented in Chapter 2. In Chapter 4
a new optimization concept is introduced which involves the optimization of
nonlinear planar shear buildings by using a gradient method based on equivalent
linear structures, instead of the traditional practice of calculating the gradients
from the nonlinear objective function. Chapter 5 introduces a novel spectra-
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matching framework, which employs a linear combination of raw ground motion
records to generate artificial acceleration time histories perfectly matched a
target spectrum, taking into account not only the acceleration but also the
seismic input energy equivalent velocity. The optimization procedures employed
in Chapter 5 use solvers that involve the use of OpenSeismoMatlab, among
others. Chapter 6 introduces a new integrated optimization framework for
engineering applications, Abaqus2Matlab. This is a tool which connects Abaqus,
a sophisticated finite element package, with Matlab, the most comprehensive
program for mathematical analysis. Using AbaquszMatlab, an Abaqus analysis
can be conducted through Matlab, without interacting with Abaqus/CAE
interface, or even Abaqus/Command. Abaqus2Matlab transfers data between
Abaqus and Matlab in a form that enables the user to easily manipulate it for
further postprocessing, and also in a way that enables the performance of
complex types of analyses (e.g. inverse optimization, training artificial neural
networks, etc.). Chapter 7 contains the conclusions, the original contribution of
the thesis, and directions for future research. Finally, Appendix A is presented,
which contains a listing of publications by the author. Each Chapter is
accompanied by conclusions and the corresponding bibliography and notation.



Ektevng MepiAnyn

o.1. Ewaywyn

O oxediopog omolxodnmote  KATAOKEVNG  emBEAAel TNV TAUTOYPOVN
gAa(1oTOMOINoT TOU KOOTOUG KATHOKEUNG KOl AELTOUPYING TNG, HE TOUPAAANAN
BeAtiotomoinon g cupmepipopdg TG Evovtt Sladdpwv eEWTEPIKWY TUPAYOVTWV.
Ta avwtépw emtuyydvovtol pécw xpnong aAyopiBuwv PeAtiotomoinong eite
VTETEPUIVIOTIKWY, ¢eite otoyaotikwv. H mapovoa Swxtpifry omookomei otnv
avdatuél] KOWVOTOHWY UTOAOYIOTIKWV TEXVIKWV Yl TO PEATIOTO OXeSIOHO TWV
KOTOAOKEVWYV OL 0Ttoieg umdkelvtal o Suvapikn Goption, KaBwe Kot Twv epycAgiwy
OV QUTEG aroutovv. Autod emtuyydveton pe: (o) ovamrruén pebododoyiwv yioe tnv
dpeon Pripa mpog Pripa ev xpdvw oAokANpwon Twv Sldopikwv e€loMOEWY
Suvopkng ooppomiag, (B) v avdmtuén €vog uTOAOYIOTIKOU £pydAgiou yia TV
emegePyNoiol CEIOPIKWY EMTAYUVOLOYPADTHATWY Yt TNV ToHpoywy] SUpPotwv
OUAOPATWY EAAOTIKIG KOl OVEAXCTIKNG OTOKPIONG HETATOMIONG, TOUTNTOG Kol
emtayvvong, kabwg kal paocpdtwv Fourier kou ouviBwv deiktwv yx T péTpnon
OUYKEKPLUEVWV XUPOKTIPLOTIKWV TWV CECHIKWV Kotaypadwy, (y) ovamtuén evog
VEOU emavVaANTTIKOU aAyopiBpou BeAtiotomoinong timov Newton pe Suvatotnteg
EMMALOV YPOUPWIKNG ovalT|TNONG, €I8IKE OYXESIOHEVO VIO YPOIKA EAXCTIKA Kol
€AAOTOMAQOTIKA SlaTUNTIKE KTipl, 0 omoiog PBpiokel tn) BEATIOT) KOTAVOUT TNG
Svokopbiag ko tng oavroxng kb vPog tou ktipiov yix dedopévn BepeAwdn
(eAcotikn)) 1Somepiodo TOU KTIpiou, OUTWG (DOTE 1| OCEICHIKI] EVEPYEIX TOU
amtoofBévvetarl v givou otabepr] ka® vPog tou ktipiov, (8) v avdartuén evog
HIKTOU YEVETIKOU OAYOPIOHOU pHE KOTAAANAOUG TEAECTEG YIL TNV OVEUPEOT)
BeATiwpeVwV emITOUVOLOYPADTHATWY Yia T1 SUVAHIKT] 0VEAUGT] KOTAOKEVWY GTO
TAQGLO TOVU KVTICELGHIKOU OXESIATHOU TOUG, KABIOTWVTHG e OUTO TOV TPOTO TTLO
PEUALOTIKS TOV avTIoEIoHIKS oxeSloopd Toug Ko TéAog (g) Tnv avdartuén evdg véou
Aoylopikov, tov Abaqus2Matlab, to omoio ypnoipomoteitan yioe Tnv gvomoinomn tov
KwoK memepaopévwy atotyeiwv Abaqus pe ) yAwooo mpoypoappatiopoy Matlab,
oe Siddpopeg Sadikaoieg PeAtiotomoinong ocupmeplapfavopevwy, aAA&L Oxt
meplopl{OpevwV o€, PEATIOTO OYESIOOHO TWV KATAOKEVWV HE Bdorn TIg Suvapikeg
Ootnteg kot TN Suvopikn omdkpior] toug. To ouykekpipévo UTOAOYLOTIKO
nepfdArov peta€l twv duo yvwotwv mpoavadepBeviwv AoylopKOV Oxt pdvo
ouvduddel to e€eAtypévo ypadiko mepIBEAAOV Ko XOPAKTNPLOTIKA TOPOVCINGn
d8edopévwv  tou Matlab, oAAd ovoiyer véoug Spdpoug otov  tpdmo
peteme€epynoing, OTATIOTIKNG XVAAUONG KAl BEATIOTOMOINONG TWV ATOTEAEGUATWY
NG avdAvong memepaopévwy ototyeiwv tou Abaqus, kou mopéyel emiong moAAEg
dAAeg SuvatdTnTeg.



0.2. 'Evag yevikevpevog oAyoplOpog pn ypoppiking SUVOMIKIG TwV
KOTOXGKEVWYV

0.2.1. O YpOMUIKOG YEVIKEUPUEVOG aAYOplOpog €v ypovw oAlokAnpwong
artAoV Brjpatog amrAng AVong

H e€iowon kivnong evog ypoppikov povoBdduiov todovtwtr divetow ommd
oxeon:

Mii(t)+Cu(t)+Ku(t)=f(t) (0.1)
HE apXLKEG ouVONKEG:

u(O):uo, U(O)ZUO (0.2)

H e€iowon (2.10) pmopel va epappootei kou og moAUPBAOpI ouoTHpaTa, e TNV
npourtdOeon OTL T TeEAEUTAUX HITOPOUV va avoyBoUv o€ €va TEMeEPATHEVO aplOUO
povofBdBuiwv cvotnudtwy, xpnotpomowwvtag JSiadopeg peddSoug ypoppKNG
gmoAAnAiag. Ot Zhou & Tamma (2004) mTopousicocoy Hio OIKOYEVEIX dAYopiBpwY
EV XPOVW OAOKANPWOTNG Aoy Pripatog amAng AVong, fjtol aAyopibpwv mou Sev
TEPIAAPEVOUV TOAAXNTAAGIHOHS HNTPWWV, GAA& POVO it €TIAVCT] YPOPUIKOU
ovothipatog eélowoewv ya kabe ypovikd Pripa. o toug aAyopiBpovg autolg
toxvet to Bewpnpa Dahlquist (Dahlquist, 1963) to omoio avadéper otL evag
aAYOplOpog amAol Prjparto¢ amAng Avong o omoiog eival amoAvta guotodng
(unconditionally stable) pmopei va €xet akpifela to moAV Sevtepag té€ng (second
order accurate).

Yopdwva pe tn Bewpio mov mapovsiccay ot Zhou & Tamma, (2004), n e€iocwon
(2.10) pmopei va avartapaotadei wg xpovikd otadpiopévo vtdAouro wg e&Ng:

J.:n”+1W(MU+Cu+Ku—f)dt (0.3)
omov 1 otadpion Tov xpdvou vrotifetou 6Tt eiva TNG popdrng
W =1+w,I+w,I* +w,I* (0.4)
KoL
=t/At, t=t-t, At=t , -t (0.5)

Ot e€aptdpeveg petafintég mediov (U, U, U) pmopolv va mpoceyylotolv artd ta
aKOAOUOX AVATTTUY AT ACUUTITWTIKWY GELPWV:

e i, —
U=U, +AU,T+A,U T°+A, %rs (0.6)
U=0,+A,0 1+A, L —11 (0.7)
At
- u,.,—u
UZ“#%%,[”T (0.8)

Kot To Stavuopa tng GOPTIONG aVAmTUCOETAL O CEPA TPWTNG TAENG HECW
avamtuypatog Taylor:
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f ., —f
f=f +0L g 0.
A (0.9)
Ot Tipég NG PETATOMIONG Ko TNG TAXUTNTAG OTO €mOpevo Pripa Sivovron amd Tig
akdAovbeg oyéoelg:
Uy, = U, + 2,0, AL+, AL + 2, (U, — U, ) A (0.10)
Un+1=un+7x4UnAt+7u5(Un+1—Un)At (o.1)
H tpn g emwdyuvong oto emdpevo Pripa mPOKUTTEL HE AVIIKATAOTHOT) TWV
gllowoewv o (2.13) ewg (2.20) otnv e€iowon (2.12) wg €&rg:
(MsM +u;CAt + ],L3KAt2)Un+l =
-M (un - HBUn )
—C(U, +p i, At —pli At) (0.12)
—K (U, + U, AL+, AL — i AL
+(1-W,)f, + Wi
1 o€ aAomotnpévn popodn:

n+l

~ ~

I\/Iun+l: n (0'13)
omov
IEn (K’C’f)Z -M (Un _Meun)_c(un +H4unAt—H5UnAt)
_K(Un +ulunAt+M2(jnAt2 _“3UnAt2)+(1—Wl)fn AW (0.14)
Kot
M(K, C) = pgM -+ 1, CAt + p,KAL? (015)

~

O Seixtng ¢ moodtnrag F,  vmodnAdver to xpoviké Pripx oto omoio
xpnotpomolovvrou ot tocotnteg U, U, U yia tov vmoAoyiopd tov. Ot otabepég W,

divovtau amd T oxéon:
3 W
1.+Z L
Wi=1+| J-;ll+l+j
W;

14>

T 1+]

, 1=1,2,3 (0.16)

Ymdpyouv 12 ave€dptnreg otafepéq 0AOKANPWONG TOU aToUTOUVTOU TTPOKEIHEVOU
va yiver edpoppoyn twv eflowoewv (2.21), (2.19) ko (2.20) TPOKeIPEVOU O
oAyépiOpog va mpoxwprioet oto emopevo Prpa. Avtég eivar ot W, 1y, W, Hs, My,
Mg, Mg, Ay Ay, Ag, Ay, Ag. KaBe ocuvOUOOpHOG TWV TOXPATTEVW TOUPAUETPWV
avTIoToL el Ko o€ v HOVaSIKO aAYOpLOHO €V XPOVW OAOKATpWONG Kot HTopei va
BewpnBei kot kAmolo TPOMO WG 1 TowTOTNTA TOU aAyopiBpou awtov. [MoAroi
yvwotol oAyopilOpol ev xpévw OAOKANPwWONG, TOU mapouctalovtal €vtog TNng
STpPr)g, TPOKUMTOUV QO KATEAANAN €mAoyr Twv ovwtépw otabepiv
oAokAnpwong. Xtnv epyocia twv Zhou & Tamma (2004), ot otabepég
oAokANpwong vmoAoyilovtoaw pe emPBoAn SladOpETIKWY TEPLOPICUWY GTOV
aAyoplOpo, oyxetik&d pe TV TA&n TG okpifeldg ToOu, TNV UTEPAKOVTION
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(overshooting), 181&{ovoeg pileq oTH KATWTEPX KA XVAOTEPA GUXVOTIKE OpLat, TIG
1816tNTEG OKESATHOU Kol SlAOTOPAG, SIHKAGSWOT TWV TPWTEVOUCWV PL{WV, KAT.
Me tov tpomo autod e€dyovrou evvea Siabopetikoi arydpipor.

0.2.2. Tpomomoinon tov ypappixkov aiyopiBpov yix vmoioylopd tmg pn
YPOHMIKN G SUVAIKIIG oTOKpLon ¢

H owoyéveir twv aAyopiOpwv ev xpovw OAOKANPWONG TOU TAPOUCIACTNKE
TAPUTTEVW TPOTOTOLEITAL Yt Vo AdPel vmoYn TG T M YPOUUMIKE SUVOHIKT
omdKPLOT TTOU TTPOEPXETAUL OO I YPOUUIKOTNTX UAIKOV. TN YeVIKN] Tepimtwon,
yloe va Tpoywproetl o cdydptbpog amd to tpéxov Prjpa (U, , U, U, ) oto emdpevo (

U, U, U.,,), awoutolvtan ta pntpwa g tépvovoong Suvokapdiog kot tng

amdoPeong, Ta omoia cuvBwg e€xptwvratl amod ta U, ., ko U, . Aedopévou 0Tt T

n+l°
TeAevtaio gival AyvwoTa, T €V A0Yyw HNTPpWa umoAoyiovton pe emavaAnmtikd
TPOMO OUTWG WOTE O OAYyOplOpog va ouykAivet otnp Avon. H ouykAion
EMITUYYXAVETAL HECW Mia emovoAnmTikng Stadikaciog tumov Newton-Raphson. Xe
HepKOUG aAyopiBpoug eV XpOVw OAOKANPWONG T QVWTEPW EMOVOANTTIKN
Sdikaoion amopevyeto pHe TN XProN TwWV apXIKWV €DATTOUEVIKWY HNTPWWV
Svokopbiag ko amdofeong, wotdoo n mpootyylon ovth dev eivau omdAvTA
Bewpntikd cwotr. To Sxypappo porg Tov pn YPoppkoy adyopiBpov v xpdvw
0AOKAT}pwoNG ammAol Prjpatog amAng Avong mou oavoartuxBnke otnv mopoloa
SraTpiPr) mopovstdletou otV EIKOVA O.1.

0.2.3. ATTOTEALOHATA OYETIKA HE TNV OMMOTEAECUATIKOTITA TWV 1)
YPOUHHUIK®OV aAyopiOpwV XpoviKi)¢ 0A0KAT} pwong

Yvykpivovtau dekatpeic Stadopetikoi aAyoplBpol ev xpdvw O0AOKANPWONG HECW
epapoyng Toug yia TV emAvon €€ mpoPAnpdtwy avadopdg. Ot adyopiBpol mou
ouykpivovtat eivat ot €€1¢:

e Newmark Average Constant Acceleration (Newmark, 1959) <1>

e Newmark Linear Acceleration (Newmark, 1959) <2>

e Newmark Backward Acceleration (Ascher & Petzold, 1998) <3>

e Fox-Goodwin (Fox & Goodwin, 1949) <4>

e Uo-Vi1-Opt <5>

e Uo-Vi-CA <6>

e Uo-Vi-DA <7>

e Uo-Vo-Opt <8>

e Uo-Vo-CA <9>

e Uo-Vo-DA <10>

e U1-Vo-Opt <11>

e Ui-Vo-CA <12>

e Ui-Vo-DA <13>
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O Seixtng mov vmdpyel katw oo ta oOpPfoAa U (petaromion) ko V (toyitnTo)
Sivel tnv té€n vrepakdvtiong tou kabe ocAyopiBpov wg mPog TN HETATOTION Kol
NV ToyUTNTA avtioTola, evw 1 KatdAnén «-Opt» vtodnAwvel 6tL o cAyopipog
SloBétel PeAtioto aplBuntikd okedaopd kot Siaomopd, ko ot kKataAnéelg «-CA»
Kot «-DA»  umodnAdvVouv QVTIOTOLYX OUVEXT) Kol QoUveXT) HETHPOAN TNg
EMITAYUVOTG o€ KoBE Xpoviko Pripa.

To €81 mpoPAnpota avadopdg meptdapPdvouv TN SUVOIKE  avdAuon
YPOHHIKOV HovoPBaBpwy cuoTtnpdtwy pe Siddopa KATHOTATIKA TPOCOUOLDHAT
Kot Timoug atdoPeong ko eivat ta €81 G:

e  MovofdBpiog todavtwthg xwpic amtdoPeotn pe okAnpuvon

e  MovofdaBpiog todavtwtig xwpic amdoPeon pe kpdtuvon

e  MovoPaBpiog YPOPHIKE EAXCTIKOG TOAAVTWTAG Xwpig amdoPeon

o MovofdaBpiog ypoppik& €AXOTIKOG TOAavTwTAG HE  1€WS0EAAOTIKY)
amdoPeon

e  MovoPaBuiog ypappik& eAXOTIKOG TaAavTwTnig pe amdoPeon Coulomb

o  Movofd&Bpiog ypopHIKE EAXCTIKOG TAANVTWTIG E UOTEPTTIKT amOceo

Ytoxo¢ twv mopamdvew edoppoywv eivor 1 afloAdynon g omoddoong Twv
Spopwv aAyopiBpwv ev xpovw 0AoKATpwonG.



XX

Set w,w,.w,. WA, WAL WA, WA, WA WAL L. L.k
Find W, from eq. (z.25) for i=1

Initialize u_ =1u,, U, =1,

sahg

Find Ky =K(ug. 1), Cy=Clup.11 ), py=7(up.1, )
Find ti,=(f,—p, |/M
Set K. =K., C.=C,,p,=p,,u, =1, i, =1, i, =i,
for n = vlengthi(f)
Initialize k=1
Initialize tol = tolmasx
Find ﬁl.—l =M K_.C EI(K,.C.p,) fromeq. (2.22)
while tolztol & k<k
Iteration k of increment n+1:
Set ti,, :ﬁ:"'ﬁ}z-l
Find u;f_l and 1-'12_1 according to (z.1g9) and (z.20) respectively
Find Ki—l = K | ui_l: .llll;f_l | Bl C;f_]_ = {_: | ui-]_: .I‘i;f—]_ | ¥ p;f—]_ = ﬁ | u;’:—]; .I'Il;f—l |
Find the residual R = iy (K. Cy vy |- M( KL, CF Jifny
Set dﬁi_l = 1'.'1:._—|_ ﬁi.__l—da |, where da is a constant infinitesimal variation of
acceleration
Find dl:_l and d'l:_l from (z2.19) and (z.20) respectively
Find dK7, =K (dug,;.dig, ), dC7, = C(duy dug, ), dpy, =F(duy,. dir, )
Find the residual dR.,; =dF., (dKE,,.dCL . dpi, |-dM(dKE . dCL, |diil,
Find qda=[R.. fi.., ] /[ (R} -R%.)./da]
Update ii,; =(1-qda ii;,,
Update k=k +1

end

Set 1~ =ii_+ii.

Find 11:_1 and 1.'1:_1 according to (2.19) and (2.20) respectively

Find Koy =K (g0 )y Coo=Clugsting ), poa =B( Vo in )

Assign for next increment: K ; =K;f_1, C. =':i_1, Doa =IJ:.E_1, o, =11;.’f_1,
L :‘-Ili-lr L =ﬁ§—1

end

Eikdva 0.1: WeuSokwSikag Tou aAyopiBpou pn ypoptkiig eV xpOvw OAOKAT} pwong
IOV avamtuOnKe otnVv apovoa dtatptPH.

H pdla 6Awv twv povoBddpiwyv tadavtwtwy mov Bewpolvtot oto mapdv kedaAalo
Bewpeitan ion pe tn povdda, xwpic PAAPN g yevikotnrag. To xpoviko Prjpo
woovton pe At=0.01 (emapkdg peyddo yix v mpoximrtel VTOAOYIGIHO GHEApX
KOTO TN XPOVIKT] 0OAOKANpwoT)) kot 1 Stdpkela Tng SUVOIKIG otokpLong givau iom
pe 100 Pripota (1 sec) yioo OAa toe TpofAnpata avadbopds. Evag amoteAeopatikdg
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AAYOPIOHOG XPOVIKNG 0AOKAT)pwonG B Tpemel var kKdvel akpifry vtoAoylopd tng
EVEPYELNG TwV HOVOPB&OHIwY cuotnpdtwy. Q¢ «akpIBrig» TN TNG EVEPYELNG TOU
KdBe ToAovtwtn, Oswpeital N evépyelr mOU UTOAOYI(eTAL pHE TOV E€KAOTOTE
AAYOPLOHO XPOVIKIIG OAOKANPWAOTG XPTOLHOTIOLOVTNG €VA TTOAU HIKPOTEPO Y POVIKO
Bripa (kou dpa MOAU okpiféotepo vmodoyopd). To ev Adyw xpovikd Pripa
AapBévetar ico pe At=0.0001, mov avriotoryei oe 10000 Pripora yioo Suvapiky
amokplon Siapkelag 1 sec. Aedopévou OTL TO Xpovikd PriHa | XPOVIKT SApKeL, 1)
Suokopio (oe pikpeg mapapopdwoelg) oL apyikeg ouvBnkeg ko ol otabepég
0AoKANpwonG eivat Bteg yioo dAa ta mpoPAnpata avadopdg, ot Siupopég mou
epdovilovrtoanr oToug evePYELRKOUG UTOAOYLOHOUG OdEIAOVTAL KTOKAEIOTIKA OTIC
S1abopeTIKEG TOLOTNTEG TWV EUTAEKOUEVWY XAYOPIOPWV XpOVIKNG 0AOKAT)pwONG.
Ymv Ewova 0.2 mapovoialovron omoteAéopata yir Tn Ypovikn €&€AiEn tou
OXETIKOU ODAAUATOG OTN OUVOAIKN evépyela kabe toAavtwth, Yyl TPELg
aAyopiBpoug pe BéAtioto aplOuntikd okedaopd kot dtaomopd. [Napatnpeitan éti o
aAyopOpog Uo-Vo-Opt divel to pikpdtepo opAAPx o€ 0X€OT) HE TOUG UTTOAOLTOUG
aAyopiOpoug, yio dAda to mpoPAnpata avadopds. Me dedopévo OtL dAol ot
OUYKPLVOpEVOL 0AyopLOpol givat katnyopiog BéAtiotov aplOpuntikol okedaopol kot
dlaomopds, ta amoteAéopoata deiyvouv OtL eivau emBupntn n xprion aAyopiOpwv
oAokANpwong pe undevikn té€n vmepaKOVTIoNG TOCO WG TPOG TNV HETATOTIOT OGO
KoL WG TPOG TNV ToXUTNTAL, Yo cv€npévn akpifelo ot amoteAéopara.
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generalized a-method <5>
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Eikdva 0.2: XpovoloTopia Tou oYeTIKOU OPAAPATOG TNG OALKTG EVEPYELAG TWV
HovVoBABULWY TOAQVTWTWY TwV TIPOoBANHATWY avadopds 1-5, Pe xpriomn aAyopiBuwy
XPOVIKT|G 0OAOKANpwong katnyopiag BEATIoTOU aplBNTIKOU OKESAOHOU KalL
Staomopag (-Opt).

To péyloTo OXETIKO OOAAPA TNG XPOVOLOTOPING TNG OAIKNG EVEPYELNG YO OAX TXL
Celyn aAyopiBuwv - mpofAnpdrtwy avadopdg mapovaidlovtal oTnV €KOVA 0.3,
OOV OTOV KATAKOPUDOo Géova MUPOUCIALETAL TO HEYIOTO OXETIKO OPAApN TNG
OALKT|G eVEPYELXG Kot aToV opt{dvtio d€ova mapouatalovtal Ta {euyn aAyopiBpov -
npofAnpatog avadopds. To eldyloto obdApa  mapotnpeiton  yix  TOug
aAyopiBpoug ouvexolg emitdyuvong (cupmepAopPovopgvou kat Tou odyopibpou
Hilber-Hughes-Taylor - HHT) ywx tov ypoappiKd €AQOTIKO TOAXVIWTI WHE
andéoPeon Coulomb, tov toAavtwt) xwpic oamdoPeon pHe KpATUVOHEVN
oupmepPLPOPd, TOV YPAUUIKA €AXOTIKO TOAAVTWTH Xwpi¢ kot pe 1EwS0eAAoTIKT)
andoPeon. Amd tnv GAAN pHePLE, OTNV TEPITTWON TOU TOAAVTWTH Xwpi¢ amdcPeon
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pe okAnpuvon omov ebappolovton aAydplOpoL XPOVIKNG 0AOKATpwOTG douvEXOUS
EMITAYVVOTG, THPATNPEITAL TO HEYXAUTEPO THAAU.
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Newm:
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Newmark-L,

Eikdva 0.3: MEyLoTo oXETIKO OPAAUA TNG CUVOALKTG EVEPYELNG TWV TOAAVTWTWY TWV
TipoBANpaTWY avadopdg 1-5 UTIOAOYLLOPEVNG UE TOUG aAyopiBOUG XPOVIKTG
O0AOKAT}pwoNG TIou avamtUxOnkav oto Tapdv kedpaAalo.

0.2.4. I'pappikd eAaotikd cvotnpa 3 BaOpwv eAevdepiog ywpic andoPeon

[Tépav twv mpoavadepBévtwy mpofAnpdrwv avadopdg, to TpoBAnua twv Bathe
& Noh (2012) emAUOnke pe toug oAyopiBpoug YPOVIKNG OAOKANPWONG TOU
nmapovotalovran oto kepdAato auto. To mpofAnua adopd éva cvotnpa 3 Babpwv
eAevfepioag mou daivetow otnv Ewxdva 0.4, kal ovTITpoowmeVel HOVIEAX
memePAEVWY oTol eiwv mou meplAapPavouv ototyei TOo0o Kavovikng, 6co Kot
oxetikd peydAng OSvokoppiog. Ta otoiyeiox peyaAng Suokappiog pmopel va
QVTUTPOOWTEVOUV TL.Y. AKOUTTEG CUVOETELS, OTNPIEELS, TAKTWOELS, KAT, 1] aKOpX
Kot ovvteAeoteg mowviig (penalty factors) yx Siddopoug tumoug meplopiopwv. Ot
aAyopLOpot mov mapovoidlovtal oto kKehdAalo oautd €Avcay TO €V A0yw TPOPAN
axplBéotepa o€ OYECN HE TOUG OTOLXEIWIEIS YVWOTOUG aAyopiBuoug xpovikng
O0AOKATpwOTG.

ky k,
m, m, m,
e e e
u, = sinw,t u, U,

Eikéva 0.4: Mpooopoiwpa avadopds 3 Babuwv eAeuBepiag (Bathe & Noh, 2012).
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0.2.5. OAOVTWOT) XTTAOVU EKKPEHUOV wWPLC XTTOOCPEC € LEYN oTpO
5. Tadd T aAOU EKKPEROVG Xwpig amdoPeon pe peydin otpodr

‘Evae gupéwg dtadedopévo mpofAnpa avadopdg mTou XpnoLHOTOLEiTAL YIX TNV
EKTIUNGOT TNG AMOTEAECHATIKOTNTAG AAYOpiOpwY XpovIKNG 0AOKANpwong eivou
TAAGVTWOT] ATAOU  €KKPEROUG Xwpi¢ amdéoPeon pe peydAn otpodr). Avtd
ammoteAeitou amd pua onpelkn pado ouvdedepévn oe o offapry kat dkopmen paBdo,
evtog Poputikov mediov. H axpifric Avon g pn  ypoappikng eAevBepng
TAAGVIWOTG TOU €KKPEHOUG ypnolpomoleital wg Avon avadopag. To amAd
eKKpepES elkovioetat otnv Ekova o.5.

Eikdva 0.5: ATIAG eKKPEUES xwplg amtdoBeon HeE peYdAn oTpod.

Onwg xoat oto mponyovpevo mpoPANpa ovadopag, amodeikvietar OtL oL
aAyopiOpot mov mapovctadovron oto Topov kedhdAaio Sivovv akpiféatepeq AVoelg
O€ 00T L€ TOUG OTOLYEIWIELG AAYyOpiOpOUG.

0.2.6. JUPTEPACHAT

H owoyévela twv aAyopiOpwv Xpovikng 0AOKANpwonG ommAol PBrjpHatog ommANg
AVong mov mepAapBdvel TOUG TLO YVWoToUg aAyopiBpoug Xpovikig 0AOKANpwaong
WG €181kéq mePIMTWOELS, pmopel vo emektabel yloo TNV emiAuvon pn YPOUUIKWOV
TPOPANUETWY SUVAHIKTG ATOKPLONG AGYW [N YPOUUIKOTNTHG TTEPOEPYOUEVNC TOGO
amd TO VAIKO 000 KOl QIO TN YEWHETPIA, HECW HIXG EMAVOANTTIKNG Stodikaciog
tomouv Newton - Raphson. Aképo kou pe oxetikd peydro péyebog xpovikol
Bripatog, ot avwtépw aAyoplOpol eivon amtoteAecpatikoi, pe mapadektn oxpifeia
Kol €voTdBeln, evw eivar TOAU ovTepol atd TOug oTOLXEWWSELS aAyopiBpoug, ot
0TIO[0L ATTOTUYY&VOUV VXL UTOAOYIGOUV T SUVALIKT] tdKPLOT) XPTOLHOTOLOVTHGS TO
010 péyeBog ypovikou PBrpartog.

Emonpaiveton 0ti, améAvta gvotabeic aAyoplOpot yiao ypoppikd mpoPAnpota,
pmopei v ydoouv tnv euotddeld Toug otn pn ypappikn meploxn. o cvénpévo
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XPOVIKO Pripat (ko ouvenmwg HIKPOTEPO UTOAOYIOTIKO POpTO) ol aAyOpiOpol
otafepriq emitdyvvong, otoug omoioug mepAapfdveton o aAydpiOpo¢ HHT wg
eld1k1) mepintwor, Sivouv To o aKpIPEG AMTOTEAEGUX UTTOAOYIOHOU TG SUVOIKTG
AmOKPLOTG YIX TIG TEPLOTOTEPES ATTA TIC TEPITTWOELG TTOU HEAETHONKY. ATTOTEAOUY
yl To A0yo autd TNV PeATIOTN €MAOYT, WG TPOG TN YEVIKI TOUG AOd00T] Ylot TOV
umoAoylopd G Suvopikng amokpiong. Ilepav autol, o peydAog aplBpdg twv
otafepwV 0AOKANPWOTNG TwV aAyoplBpwy amAoy PBripatog amAng Avong, divel tnv
gveAi€ia TG emMAOYNG TWV TIHWV TOUG AapPdvovtag udyn Tig IBLTEPOTNTES TOU
TPOPANHATOG 1}/KaL TG KATAOKEUTNG TTOU TPOKELTAL VX ETULAVOEL

0.3. OpenSeismoMatlab: 'Eva véo A0yiopikO avoiktol KWKo yw Ttnv
eneepyacio Sedopevwv Ioxupwv edadkwv KIvijcewv

0.3.1. XapaKTNpPLoTIKE, Suvatdtntes Ko epopUoyEg

‘Evae véo Aoyiopikd ovolktol kwdika elodyetan otnv mopovoa diatpiPr) to omoio
pmopei va emegepyaletan dedopéva 1IOXUPWY CEICHIKWV KATaypodwv, Kol €ival
ypoppevo oe yAwooo mpoypoppotiopov MATLAB. To ev Adyw Aoylopikd
XPNOLLOTOLEl €V EAACTOMAXOTIKO SIYpAHHIKO KATOOTATIKO TPOCOUOIWHA [E
KPATUVOHEV] oUUTEPLPOPA KIVIIHKTIKOU TUTOU, TO OTOI0 EVOWHATWVEL OF €VX
AAYOpIOHO €V XPOVWw OAOKANPpwONG, amAoy Brjpatog, ommAng Avong, o omoiog
napovotdleton oto kKepdAawo 2 tng mapovoag SwatpiPrg. To OpenSeismoMatlab
pmopel v umoAoyilel ypovolotopieg, péyloteg TiEG, €vtaon Arias kol TN
Xpovolotopiat ouTrg, TNV €vepyo OSldpKela €vOG OEIOPOV, Siddopa YpappKA
elaotika dpaopata kot Pevdodpaopata amdkpiong, diadopa aveAlaotikd GAopHATH
amdkplong otafepric mMAACTIHOTNTAG, Kot emiong daopata mAatovg Fourier kot tn
peon mepiodo evdg oelopoypadnpatog. Aedopévng g avolktig ¢pvong tov, To
OpenSeismoMatlab pmopei va emektabel 1/kat vo tpomomonOei evkoAa, mparypLo
OV TO KOOLOTA €Vt AOYIOWIKO HEYAANG EKTEIGEVTIKNG 1/KOL EPEVVITIKNG a&iog yia
TNV EMAYYEALKTIKT] KO EPEVVITIKT] KOLVOTITA.

Y10 3° kedpdAauo tng mapovoag datpPrig mapovoldlovtal Aemtopepws 1 Sopr, ot
aAyoplOpol kKaBwe Ko oL KUPLEG UTTOPOUTIVEG TOU avwTépw Aoylopikov. Emiong,
yivetow edoppoyn] TOU OF I YKAUX LOXUPWY CEICHIKWOV €8adIKWV KIVIOEWV Kol
vmoAoyilovtan  Sidpopa  pdopata, T omoiot ouykpivovtow pe  avtioTola
UTOTEAECUATO ATTO AAAX KATOXUPWHEVA AOYIOHIKAL.

H onpovtikétnra touv Aoywopikol kobwe ko Twv  avénpevng oxpiPeiog
AMOTEAEOUATWY TOV SloaiveTon amd To YEYOvOG OTL oxeSOV OAOL Ol AVTICEITUIKOL
KWOIKEG Ko Kavoviopol Stebvidg ommoutolv TV €mMAOYH OVTITPOCWTTEUTIKWOV
LOXUPWYV CELCUIKWY KATOypoPwV OL OTOIEG XPT|CIHOTTOLOUVTHL WG oPXIKE deSOHEVA
Yl To oYeSIOHO TWV KATAOKEVWY, HE oo TNV omOKPLOT) TwV TEAEVTAIWY OTIG
kotoypadég owteg. Eivou emopévig onpavtiko vo yivetou peaAloTikn emAoyn Kol
eme€ePYNOIN TWV AKATEPYNOTWY LOXUPWV KATAYPUDWV, HE OKOTO TOV UTTOAOYIOUO
EKEIVWV TWV CEICHIKWV TOPAPETPWY TOU YPTOLHEVOUV GTOV UTOAOYIOHO TNG
SuVapIKNG atdkplong TG Kotaokeung mou oxedidletal. Alddopa AOYIoHIKA £x0ouv
avantuyBel yix TNV emAoyn] OXUPWYV CECHIKWV €3XPIKWOV KIVIOEWY, TOU
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XPNOIHLOTOLOUVTOU YIX TT) SUVAHIKT] VHAUOT) KL TOV QVTICEICHIKO OXESIAOHO TV
katookevwv (Katsanos & Sextos, 2013; Macedo & Castro, 2017). Meta&l twv mio
ONUAVTIKWV CEICHIKWV TAPUUETPWY HIG oyupns edadiknig kivnong eivor ot
Stdpopot timol paopdtwv (edactikd bdopata amdkpiong, ddopoata otabepnqg
nAaotipdTnTeg, bdopata otabeprig avroyng Siuppong, dbdopata Fourier, kAmT) to
omoiat mpokUMTOUV amd TNV eAefepynciat TWV OKATEPYNOTWV CELCHUIKWOV
Kotaypadwyv katl To omoio ypnotpomnolovvtat o€ Siddopeg peBOdoug avTioEIGHIKOU
oxedlaopov, 6mwg N Suvapikn Gaopatikny avdAvon, 1 ocvlevktn WLOHOoPdIKT
avdAvon xpovolotopiag (Uncoupled Modal Response History Analysis, UMRHA),
n Wwopopdikry avdivon pushover (MPA), kAm (Chopra, 2012). Emiong, pe
KOATOAANAN mpooappoyn tou daopatog Fourier pog oxupng oelopIKig
kotaypadng, eivar Suvatog o €AeyX0oG TOU GUXVOTIKOU Teplexopévou tng. ‘OAa ta
mapamdvw Oeiyvouv OTL €va Aoylopiko okpilfeiag yioo v emegepyacia Twv
Kotoypadwyv eivol  oamopaitnTto Yl TOV OWOTO OVIICEICHIKO OXESIAOUO TwV
KOTOOKEVWYV, CUUTEPLIAXUPAVOUEVWY GTPATNYIK®WV Yia StaohdAion tng vyeing kat
MG doPAAElNG TWV EVOIKWY KOl TWV TEPIOUCIOKWV TOUG OTOLYEiwV Kot TN
dudpkelr (WG TG KATKOKEUNG. Xto 5° kebdAoo tng mapovon Sxtpifrig
avantiooeton peBodoAoyia yloo TNV €MAOYT CEICUIKOV KATXYPAPWOV HE GKOTO TN
SUVOIKT) OVEAUGOT] KOl TOV QVTICEIGHIKO OXESIAONO TWV KATHOKEVWYV, 1| OToia
xpnotpomotei pe emitvyio to OpenSeismoMatlab, émw¢ dpaiveton amtd tnv moldtnTa
KOl QVTITTPOCWTEVTIKOTI T TWV TTAPAYOUEVWY TEXVNTWYV CELCUIKWV KAXTOXYpoPwV
To OpenSeismoMatlab éyet ta oaxdAovBa mAgovekTpato kot pHOVUSIKAE
XOUPOKTIPLOTIKA, €VOVTL TWV UTOAOIMWY AOYIOUIKWV €mMegepyacioag 1oxupwv
OEIOPIKWV €50DIKWV KIVIIOEWV:

o Xpnoipomotel aAyoplOpoug ev XpOvw 0AOKANpwOoNG TEAEUTAING TEXVOAOYiOG
(omAoV Brjporog, oatAng Avong) ot omoiot givou o gvpwotol Kot akpiPeic,
omw¢g amodeiyfnke oto kepdAowo 2 TG mapovoag  Sotpifrig
(Papazafeiropoulos et al., 2017a; Papazafeiropoulos et al., 2017b) o€ oxéon
pe toug oupfatikolg odyopiBpoug ev xpoévw oAokAnpwong (Newmark,
KATT.) TTOU XPNOIHOTOIOUVTHL €UPEWS otd Tt GAAa Aoylopikd. Ot mpwtot
QVI|KOUV O€ HIX OIKOYEVELX 0AYopiBpwy amAov Pripatog amAng AVong Ko,
peow TwWV 14 aveldptntwv otafbepwv oAokANpwong mou SiadeTouy,
MTTOPOUV VI TPOCHPHOCTOUV €UKOAX Yl TOV €Agyx0o NG oplOUNTIKNG
amdéoPeong ko SlKOTTOPAG, TNG OUVEXEING TNG EMITA(UVONG €VTOG TOU
Xpovikou Prijpartog, kabd¢ kot ™G TAENG TG umepakdVTIoNG OTN
petakivion kot tnv toyvtnta. EmAéyovtag Ti¢ TIHEG Twv otabepwyv
OAOKANPWONG, O XPNOTNG Hmopel Vo SIAEEEL QMO LKt HEYAAT] TOLKIALX
aAyopiOpwv ev xpdvw oAokAnpwong, cupdwva pe toug Papazafeiropoulos
et al. (2017a) ko qUTO emiTpénel TNV PEATIOTN) TOOTNTA TWV THPAYOHEVWV
ATOTEAETHATWYV (XPOVOLOTOPLWV, PAOHETWY, KATT).

e Eivoau tedeiwg OSwpedv kou moapexeton oe popdry ovolkTol KWK,
XOUPOKTIPLOTIKA TTOVU TO KXOIOTOUV HEYAANG EKTTOUSEVTIKNG KO EPEVVITIKIG
o&iog. Tepiexet kwdikae MATLAB ypoppévo pe otAd TpoOmo, GUVOSEVUOUEVO
oo oYOAl KOl CUVETWG €iva €UKOAX Katovonolpo omd to xpnotn. H
AOYIKI] TwV XpNolpomolovpevwy HeBddwv e&nyeital Aemtopepws e popdn
0OAlwV €vtog Tou KWwdika. [Tepav auTwv, 0 AVOIKTOC KWOIKAG TOPEXEL TNV
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dvvatdtnTa emekTaong, ovoaOuong 1 oucLdoUG TPOTOTOINGT)G TOU HE
kaBe emBupuntd TPO™O.

e EmmAéov, T0 glactomAaotikd SypappiKO KATHOTATIKO TPOCOHOIWHN E
KPOTUVOUEV] oKAnpuvon mou mepldapfdavel to OpenSeismoMatlab, to
omoio amoteAel Pacikd KOUUAETL Yt TOV UTOAOYIOHO TWV I YPOIKWV
daopdrwy, givon Siatutwpévo pe tpdmo towtdypova atAd kot oxpifry. To
OpenSeismoMatlab 8ev meptAouPavel amAoikeg popdég tou €v AOyw
KOTOOTATIKOU TPOCOHOLUATOG VAIKOU, Omw¢ oupPaivel cuyxvd otn
BiBAoypadio (Newmark & Hall, 1982; Krawinkler & Nassar, 1992; Miranda
& Bertero, 1994).

O mAnpng kwdikag tou OpenSeismoMatlab éxet avéPBer oe Svo diadopetikeg
Stadiktvokég mAatdhdppeg Stavopnq: (i) tnv vnnpeoio File Exchange tou MATLAB
central (Papazafeiropoulos, 2018) xau (ii) oto ResearchGate (Papazafeiropoulos &
Plevris, 2018), oUtw¢ wote va givan Snpdoia Siodéoipo.

0.3.2. Aopn kot kwdikag tov OpenSeismoMatlab

Ymv Ewxéva 0.6 daivetar to Sidypoppo e€dptnong petadl twv daddpwv
umopoutivwy mou xpnotpgomotovvtat and to OpenSeismoMatlab Ot téooepig
KUpleg ouvvaptnoelg gival ot LEReSp yio tov umoAoyiopd tov pAopatoq ypopLpkd
gAlaotikng amokpiong, CDReSp ywx tov umodoyopd touv ddoparog otobeprg
mAaotipotnrag, FASp yie tov vumoAoywopd twv daopdtwv Fourier, xou
baselineCorr yix tn 816pOwon ¢ ypopuig Pdong (baseline correction) tng
kotaypadng eoodov. Ou vmopoutiveg DRHA, NLIDABLKIN xou HalfStep
Kodovvtat dpeca omd T ovvdptnon CDReSp kot xpnowpomololvrar yix T
SUVOLIKT] AVAAUOT] XPOVOLOTOPING, TO HOVTEAD N YPOHUIKHG SUVOHIKNG otvEAUGT|§
HE SypopKO  KIVIHOTIKNAG KPATUVOTG UAIKG, kot Slaipeon WG CEOUIKNG
Katoypadrng oto pHiod tou apyikol xpovikol Prpatog, avtiotoyo. H cuvdptnon
LIDA xpnotpomoteitar yi tn YpPOHUK SUVOHIKT ovAAUoT Kol KOAEITaL oo Tig
ouvaptiioelg LEReSp ko DRHA, 6mou 1 vmopovtivae BLKIN kaAgiton oo
ouvaptnon NLIDABLKIN.

—[OpenSeismoMatlab}
(baselineCorr.mJ [ FASp.m ]
LEReSp.m CDReSp.m
/ \

[ DRHA.m ] [NLIDABLKIN.m] [ HalfStep.m J

—{ LIDA.m ) ( BLKIN.m )

Elkdva 0.6: ZxnpaTikd Stdypappa eEdptnong HETa&Y TwVv SLadOpwVv UTIOPOUTIVWY
Tou epAapBavovtal 6to Aoytopiké OpenSeismoMatlab.
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Ot oxetikoi KWOIKEG TWV AVWTEPW CUVHPTIOEWV TAUPOUCIA{OVTHL AVHAVUTIKK OTO
kepdAawo 3 g SrpPrig. o mopdderypo, €vo Sidypappo porjg yle Tov
UTTOAOYIOUO TOU PACHATOC €AAOTIKNG QmOKPLONG MG  LOXUPNG  OELOUIKNG
katoypadng paivetar otnv Eikéva 0.7

Input: i, ®, §

Initialize SD,SV SA
Set U, and U,

for each SDOF i with eigenfrequency o,
if oAt/(2m)>0.02
Reproduce U with half time step (from At to At/2)
Set At=At/2

end
Perform dynamic analysis of SDOF with input (U,&,U,,U,)

Assign max (|u(t)]) to SD(i)
Assign max(|u(t)|) to SV(i)
Assign max([u(t)|) to SA(i)

end
Calculate PSV = ®SD and PSA = »’SD
Output: SD, SV, SA, PSV, PSA

Eikdva 0.7: Aldypoppa porig yLa Tov uTtoAoyLopd Tou GpAoHATOg EAACTIKIG
amdkpLong, Tou ypnotpotoleital oto OpenSeismoMatlab.

Evdektikd mapovotdleton otnv Ekdva 0.8 (kau oty Ekdva 0.9, wg ouvexela tng
0.8) 0 kWdikag tng ouvvdptnong LEReSp.m, n omoia ypnopomnoleiton yr tov
UTTOAOYIOHO TOU PACHATOC YPAULILKA EAACTIKTG AITOKPLOTG.
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function [PSa,PSv,Sd,Sv,Sal=LEReSp (dt,xgtt,T,varargin)
% set defaults for optional inputs

optargs = {0.05,0.01,'0U0-VO-CA",0};

% skip any new inputs if they are empty

newVals = cellfun(@(x) ~isempty(x), varargin);

% overwrite the default values by those specified in varargin
optargs (newVals) = varargin (newVals);

% place optional args in memorable variable names
[ksi,dtTol,AlgID,rinf] = optargs{:};

% initialize

NumSDOF=length (T) ;

Sd=zeros (NumSDOF, 1) ;

Sv=zeros (NumSDOF, 1) ;

Sa=zeros (NumSDOF, 1) ;

% Set the eigenfrequencies of the SDOF population
omega=2*pi./T;

% Flip eigenfrequency vector in order for the half-stepping algorithm
% (HalfStep function) to work from large to small eigenperiods
omega=omega (end:-1:1) ;

% set initial conditions

u0=0;

ut0=0;

[

% zero-order displacement & velocity overshooting behavior and
% optimal numerical dissipation and dispersion
rinf=1; % mid-point rule a-form algorithm
for j=1l:1length(T)
omegaj=omega (J) ;
% Check if dt/T>dtTol. If yes, then reproduce the time history
% with the half step
if dt*omegaj/ (2*pi)>dtTol
xgtt=HalfStep(xgtt);
dt=dt/2;
end
[u,ut,utt] = LIDA(dt,xgtt,omegaj, ksi,ul,ut0,AlgID,rinf);
% output
Sd (j)=max (abs (u)) ;
Sv (j)=max (abs (ut) ) ;
Sa(j)=max (abs (utt));

end

Eikéva 0.8: Mnyaiog kwdikag tng ouvdptnong LEReSp.
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% Flip output quantities to be compatible with omega
omega=omega (end:-1:1) ;

Sd=Sd(end:-1:1);

Sv=Sv (end:-1:1) ;

Sa=Sa(end:-1:1);

% Calculate pseudovelocity and pseudoacceleration
PSv=Sd. *omega;

PSa=Sd.*omega.”"2;

end

Eikdva 0.9: Mnyaiog kwdikag tng ouvdptnong LEReSp (ouvéyeia tng Eikdvag 0.8).

0.3.3. ATOTEALOHATA - GUYKPIOELS

Me otoxo tnv emaAnBevon g 0pBOTNTAC TWV OIMOTEAECUATWY TOU
OpenSeismoMatlab, oautd ovykpivovtar pe ovTIOTOLXX QUTOTEAECHATH €VOG
gUTOPLKOV AOYIOpIKOU emeepynoiag SESOUEVWY IOXUPWY CELCUIKOV KOTAYpAdWV,
tou SeismoSignal. Aemtopepnic meprypadn tov Aoylopikov ovtol Jdivetar otnv
napdypado 3.1 g mapovoug dxtpiPrig. To SeismoSignal emiAéyOnke Adyw tov OtL
elvau elkoAo otn xprion, €xel oxetikd Aemtopepn PipAoypadio vPnAng motdTnTHG
KoL €ival YEVIKE amodekTd w¢ éva a€lomioto epyoieio maykoopiwg, dedopévou ott
XPNOLHOTOLEITAL €50 KO HLEPIKA XPOVIX OTTO EPEVVITEG KO ETTAYYEAUNTIEG.

Qotdoo, to SeismoSignal ypnowpomotei ocupPatikols aiyopiBpouvg ev xpovw
OAOKAN|PWONG, KOl OFf OPLOHEVEC TEPLTTWOEL] UMOpel v elvol emppeméC o€
obdApata, 18lwg Otov amouteital Xprion oAyopiOpwv HE avwTePNG TOLOTNTOG
1010tNTeg aplOunTIKAG omdoPecng Kol UTEPAKOVTIOHOU O OYECT) HE QUTEC TWV
aAyopiBpwv Newmark. To OpenSeismoMatlab epyetot yio v BeAticvoet autrv tnv
aduvapio. T Adyoug olykplong, emiAéxOnke €vag aplOpdg OYUPWV CEICHUIKWY
Kotaypapwv o€ OpoOUG YPOVOLOTOPIOG EMITAYUVONG TA OTOL(EIX TWV OTOlwV
daivovrou otov IMivoko 0.1

Earthquake Year | Station

) El Centro Array Sta 8, CA, 95 E
Imperial Valley 1979 | cruickshank Rd
[zmit-Kocaeli 1999 | Yarimca Petkim

il A A
Loma Prieta 1989 Gilroy Array Sta 3, CA, Sewage
Plant

Northridge 1994 | 0ogo CDMG Station 24278
San Fernando 1971 | Castaic, CA, Old Ridge Route
Spitak 1988 | Gukasyan
Cape Mendocino 1992 | Cape Mendocino, CA, Petrolia
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Chi-Chi 1999 | Nantou - Hsinjie School, WNT

E] Centro 1940 El 'Céntro Terminal Substation
Building

Hollister 1961 | USGS Station 1028

Kobe 1995 | Takarazuka

Mivakag 0.1: Zelopol LoxupEg KaTaypadEg TwV OToiwv ypnoLpoTo|nkay yio
oUYKPLOT) TWV OTOTEAECHATWY TwV SeismoSignal kat OpenSeismoMatlab.

YV eikova 0.10 daivetat 1) GAOPATIKT HETATOTION TWV XVEAACTIKWOV GACHATWY
otadepn)¢ TAAOCTIHOTNTHG TWV €VIEKA LOXUPWYV OCEICHIKWOV KAToypodpwyv Tmov
TOPOUCIAfOVTAlL OTOV TIVOKX 0.1, Yl OTOXEUOHEVT] TAxoTIpotnTa ion pe 2. Ot
Sdpopég petody twv kopmuAwv tou OpenSeismoMatlab kot SeismoSignal
amodidovtar otoug SladopeTikolg oAYOpIOHOUG €V XpOVW OAOKANPWOTNG TTOU
xpnotpomolovvton omd tae Suo mpoavadEPOPEVH AOYIGHIKA, TNV OVWTEPOTNTA TOU
aAyopiBpou ev xpovw oAokAnpwong mov xpnotponotei to OpenSeismoMatlab kot
GAAOUG TToPAyOVTEG OYETI(OPEVOUG HE TNV QAMOTEAECUATIKOTNTH TNG VAOTOINGONG
Twv Stoddpwv aryoplBpikwv Siadikaciwv otov kwdika Twv dvo Aoylopikwyv. [Tapd
T TOPATAVW, YEVIKA TX OVTIOTOL(O XTMOTEAECHATA TWV OUO AOYIOHIKWV €ival
AOYIKG KOVTA HETAEY TOUG TOCO OTN YPOULIKT] 000 Kol 0TN K YPappkn meployn. H
ovpdwvia peta Twv SUo AOYIOHIKWV €ivol TOAU HEYRAUTEPT OTI YPOLMIKT)
TIEPLOYT|, OE OXEOT HE TN {1] YPOUUIKT.
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Etkdva 0.10: AVEAXOTIKA PAOHATA PETATOTILOTG OTAOEPT|G TTAACTIHOTNTAG YLal TLG 11
LOXUPEG OELOPLKEG KaTaypadEg urtodoylopéva pe OpenSeismoMatlab kat
SeismoSignal.

0.3.4. Emidpaon tov xpovikov Brijpatog otnv akpielo Twv amoteAeopUATWV

Oewpeitou to daopa g Pevdoemitdyvvong (PSa) tng xpovolotoping emitdyuvong
mou avtiototyei otn ouvdptnon U, =Sin(20nt) HE TOo00TO Kpioiung amdoPeong &
ico pe 5%. H Siéyepon eivou pioe appovikn (nptovoetdng) xivion He KUKALKT
ouyvotnta ion pe 20 (dnA. ouyvotnta 10 Hz xau mepiodo 0.1 sec) kot GUVOAIKT)
Sidpkelx 2 sec, evid €xet YndomomBei og emapkdg pkp& xpovikd Prpota (
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At=0.0001s ). To ¢pdopa PSa vmodoyiletar Eexwpiotd pe to OpenSeismoMatlab
kot to SeismoSignal kot apyikd yivetaw ovykplon petadl twv duvo Avcswv. H
ovykplon outr] daivetau otnv Ewkdva 0.1 6mov o Sexadikog AoydplOpog tou
daopatog PSa mapiotdvetar ypadikd ooy cuvaptnon tng domeptodou.

Eivou mpodavég 0Tt oL Suo KapmiAeg oxedOV CUUTIMTOUV KAL EMICT) CUUTITTOUV LLE
v akpiPn Avon, dedopévou OtL TO XpovikO Brjpo eivor opkolvvtwg pikpo. Ot
Sdopég petadl twv KoapmuAwv eivon tg té€ng tov 5% dexodikov Yndiov.
OpiQoupe tn AVon owth wg Avomn avadopdg yio kabe Aoyopkd, PSa,, n onoio and
edw kot edpelng Bewpeitan wg N akpPrig AVomn. ‘Oco to péyebog tou ypovikou
Bripatog av€dvel, to paopa PSa epdavider aplOpuntikd odbdApo. Eva pétpo oawtov
Tov opaApatog pmopel v eivar 1 TETpoywvikn pila Tou péoou Opou TwV
TETPAYWVWV TWV otokAicewv petal tov ¢pacparog PSa yux puo avBaipetn tipn
tou At kot Tov akpifoug pdoparog PSa, mov mapovoidletoun otny eikdva o.11. To

odpdApa vtoAoyiletou o6 v e€iowon (3.22) wg akoAoVOwWG:
" (Psa), —PSa; )2

RMSD = {[2 - (0.17)

omov PSa,, eivat to dpaopa PSa mov vmoAoyietau yio xpovikd Pripa ico pe At kot n

givar 0 aplBpdg twv TIpwV 1810mEPLOSoU TOU TEPLEXOVTAL OTNV KAUTUAN TOU
ddoparog PSa (n=400 otnv mapovoa Siepevivijon). Ot Siadopetikég Tipeg Tou At
mov Bewpouvtal eivau 3x10-4 S, 1X10-3 s Ko 3x10-3 S. [l kéBe pa oamd owteég TIg
TIéG vmoAoyilovtat dvo dpaopata PSa,,, éva amd to OpenSeismoMatlab kot éva

a6 to SeismoSignal. Metd, ebappdletou n e€icwon (3.22) ya ta Suo Aoylopikd
Eexwplotd, Omov vumoAoyilovtou Svo Eexwplotég kapmiAe¢ RMSD ko
maplotdvovtar otnv Ewdva 0.2 yx Adyoug olykpiong. Eivou mpodavég otL ot
AVoelg mov mapgyovron and to OpenSeismoMatlab €youvv pikpdtepo odpdApa amd
TI¢ avtiotolyeg AVoelg Tov mapexovar oo to SeismoSignal, yio ta Sidpopa peyedn
TOUu XpovikoU [rUoTog. ZUVEMWG, 1 TOOTNTA TWV OKITOTEAECHATWY TOU
OpenSeismoMatlab eivau avwtepn omd oIV TWV  CITOTEAECPEATWY TOU
SeismoSignal, touAdylotov umd ouykekpipéveg ouvOrikeg. To yeyovdg autod
amodiSeToU 0TO OTL TO TPWTO XPNOLLOTOLEL TPOXWPTHEVOUG aAyopiBoug ev xpovw
O0AOKAT}pWOTG, OL OTIOIOL TAPOUCLACTNKAY EKTEVWGS OTO 2° KeEDAAALO TNG Topovoag
SraTpPrg.
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PSa spectrum (for time step 10'4)

log, (PSa) (m/s”)

SeismoSignal
OpenSeismoMatlab

2 ) | . . ) | | )
0 0.5 1 1.5 2 2.5 3 3.5 4
Period (s)

Eikdva 0.11: ZUykplon Tou Pdopatog Pevdoemitdyuvvong PSa yla oXETIKA pikpd
HéyeBog xpovikoU Bripatog (At=10"s) peta&l tou OpenSeismoMatlab kat Tou
SeismoSignal.

Error in PSa spectra with respect to PS:al0

0.06 -
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0.04 |-
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»
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<
L 0.03
=
53]
0.02 -
0.01 -
OpenSeismoMatlab
SeismoSignal
ol L L L L L 1
0 0.5 1 1.5 2 2.5 3
Time step size (s) %1073

Eikdva 0.12: 2Uykplon Tou odpdApatog tou pdopatog Pevdoemitdyuvong (PSa) o€
oxéon pe 1o PSa,, peta&v tou OpenSeismoMatlab kat Tou SeismoSignal.
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0.4. M véx Srodixkaoio BeATIOTOU GYESIHOHOV TWV KATAOCKEVWV EVAVTL
CEICHIKWV POpTIcEWV PE BOOT) TN CEIGHIKI) EVEPYELX

0.4.1. Ewcaywyn

Yto kedp&Aalo owtd elodyeton pua Sodikaoia yioo To PEATIOTO oYeSIOUS TWV N
YPOUUK®WY eTimedwV SITUNTIKWV KTipiwv pe TN xpnon pHiag pebodov kAiong
Boolopévng o 1I60SUVUES YPOUUHUIKEG KATAOKEVES, avTi yio Tr) ouvnOiopévn pebodo
UTTOAOYIOHOU TNG KAIOTG OO TNV OVTIKEIHEVIKI] CUVEPTNOT TOU OOUTEL TNV
emilvon twv un ypappkwv ktipiwv. To mpoPAnpa thg PeAtiotomoinong
dxtumwveton pe TN popdn €vog 10odUVAHOU YPOUIIKOU CUCTHHATOS €6l0WOEWY
OTO OTOI0 Ol CUVICTWOEG TNG QVTIKELUEVIKI)G CUVAPTIONG EIVAL LXK CTOYXEVOUEVT
Bepedwd 1doouyvoTnTA KAl i OHOLOHOPdT KOTAVOUT] TNG EVEPYELNG amdOceonq
ko Uog tou ktipiov. H wg dvw Soadikacio epoppdletan pe t pébodo Newton
Raphson ywx tnv elpeon tng BéAtiotng katavoung Svokapdiog kad’ vpog yia dvo
QVTITPOOWTEVTIKA TOAVPBAO StTpunTIKd KTiple, TO00 YpoppIKd OG0 Kot i
YPOUUIKE, ®OTE 1) AmocPeVVUHEVT] €VEPYEIL KOTA Tr OSIAPKELN NG OCEIGHIKNG
Siéyepong (tooo Ewdoedaotikig popdhrig 600 Kau voTePNTIKNG Hopd1Q) Vo givat
opoldpopdn kata to VPog tng katookeung. Eéetaletou n emippor) TG GEIOUIKNG
diéyepong, tou moocooTol TNG KPIoIUNG otdoPecng Kol TOU KOVOVIKOTOLHEVOU
opiov Sippong tng oxetikng petokivnong petaéy Sadoxikwv opddwv ot
amoteAgopota TG dadikaoiog PeAtioromoinong. O oxediopog pe Poon tnv
mpotewvopevn pébodo  PeAtiotomoinong eivou  meplocdtepo  AoylkoOG Ko
KOTOOKEVAOTIKE  ebappdoigo¢  oe  olykplon HE  GAAEG  OTPATNYLKES
BeAtotomoinong (m.y. PeAtiotog oxedlopog pe Poon v opotopopdn
mAcoTIpdTNTA KO 0Pog), evw avopévetan vo odnyroel o ow€npévn mpootacio
TNG KOTKOKEUT €VOVTL OAIKNG KATAPPEUCTIG KL TNG OUVETOYOWEVIG OTTWAELNG
é¢upuyov ko dpuyou UAIKOU KOTX TN SIAPKEIN LOXUPWV CEICHIKWV €5adIKwV
kwioewv. Télog, mepov TwWV avwtépw, omodelkvieton Ot 11 véa peBodog
BeAtiotomoinong Ot HOVO HEWDVEL TOV ATOUTOUHEVO XPOVO €TIAVOTG €W Kal 91%
o€ ovykplon pe tnv kAaooikn pefodo Newton Raphson, aAAd pmopei emiong va
epappootei ko og dAAx mpofAnpata BeAtioTomOINONG, OTOU 1| TPOYXWPTON OF
kB¢ Pripa yivetat pe UTOAOYIOUO TNG KAIOTG TNG OVTIKELPEVIKTG CUVAPTIONG.

Kata to alyxpovo oxeSlaopd TwV KATAOKEVWY €VAVTL OTATIKNG 1)/Kat SUVapIKNG
doptiong eivo emBupunth N TOKPLOT TG KATAOKEUNG OTNV TAAOCTIKI TEPLOXT,
kaBotL 1 Bewpnon ovtr odnyel oe MO oKOVOpIKO oxedloopo. Edikodtepa otov
QVTIOEIOPIKO OXESIOOHO, 1) oVEAAOTIKT] oupmeplbopd eivor mapadektr] €vtog
OUYKEKPLUEVWYV 0piwv, Tovu kaBopilovtat amd pia icoppotmio petal aoddAelng kat
owovopiag. Xto mapeABOV TOAAEC KATHOKEVEG €xouv  avtéfel  OSuVAELS
peyoAUTepeG atd ekeiveg mou umoAoyilovton pe mMopoSoxn YPOUUHIKA EAACTIKNG
amokpilong. H mAaotipdrnra eivou exeivn n moosdtnta mouv pubpilet to mpwto Kot
dikaoAoyei to devtepo. Qotdoo, 1 Xpovolotopia TNG POPTIONG HIKG KATHOKEUNG
maidel onUovVTIKO pOA0, TEPXV TNG TAACTIHOTNTAC TG, Ko Oa mpémel vo
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AopBéveton voyn. Yrdpyouv diadopeg moodtnteg mov avédvouv afpoloTikd otV
KOTOOKEUT]  KOTot Tr  SIAPKEI  JIKG OEICHIKNG  OSIEYEPONG, KOl TOPEYOUV
nAnpodopieq yl To mwG cupmepLPEpONKe N KATHOKELT), OTWG T.X. 1| TAAOTIKY)
gvepyela Tov atoppodaton atd Tt Sopikd ototyeio. H teAevtaio eivou éva yprioipo
HETpo TNG PBAGPNG mOU vdioTaTal MK KATHOKEUT], KOl EISIKA YIX TI§ KATXOKEVES
ATO WTALGHEVO OKUPOSEUN. ZUPTEPATHATIKE, O Tpémel va yivel katovonto 4Tl o
QVTIOEIOPUIKOG OxXeSIOPNOG Tipemel va e&aptatar Oxt poOvo omd pEyloTA Of
OUYKEKPIHEVEG XPOVIKEG OTIYHEG KATX TN SdpKel TNG Oelopkng doptiong (m.y.
HEYLoTn emitdyuvon) aAAd Ba tpémel emiong v e€aptdTan Ko otd T xpovolotopia
™mGg $optiong. Xt avwtépw Pooileton 0 oxedloopnog Paot{dpevog otnv evépyela
antooPeong (Energy Based Design, EBD). ZUudwva pe owtodv, pIdt KATUOKEUT
TPEMEL Vo oXeSIA(ETAL WOTE VAL €XEL TNV KAVOTNTA VX ATOPPOodd HEYXAUTEPEG
TOCOTNTEG CEICWIKNG EVEPYELXG amO owteg mou Ba elonyBolv o€ auty péow Tou
OELoHOV, WOTE VX PIopel va amokplOel AmoTeEAETHATIKA O€ OEIOUIKES PopTIoELG.
Exté¢ ammd tnv MAXOGTIHOTNTA TOU VAIKOU KOTXOKEUNG, 1| OELOHIKT] oTOKPLOT) HLXG
Kotookeun|g ennpeddeton kot omtd tn popdoAoyia tng koBwe Kot amd TNV KATHVoU
¢ Svokopiog kat TG avroxng ot ovthl. OL meplocdTepeg KATAPPEVOELS
KOTOOKEVWV 0TO TapeABOv €xouv cupfei ewg éva BabBpo e€outioag eodaipévng
KOTookKevao Tk Stapdpdwong. O oxNUATIOHOC  HoAokwv  opodwv  gival
XOPOKTNPLOTIKO TOPASELYHA QVETOPKOUG QTOKPLONG TNG KOTAOKELUNG, OMOU oOf
évoy Opodo mopatnpolvrot utepPOAIKT) TAXCTIHOTNTA KAl OXETIKT| pETaKivion, oL
omoie¢ odnyovv oe tomikn koatdppevon. To mepiocodtepa Ktiplaw oyedid{ovro
olpdwva  pe TNV €vvold TV  LOOSUVOHWY  OTATIKWV  SUVAHEWV  TOU
podioypadovTat oo avTIGEIGHIKOUG Kovoviopoug. H ka®’ Uog katavopr] autihv
Twv duvapewv TpokUTTeEL amd TtV umdbeon OtL ot 18opopdEC THAGVTWONG TG
KOTOOKEUNG €ival YPOUUIKE gAaotikés. Adetépou, olpdwva pe to oxeSloaopd
Baowldpevo otnv  evépyelr amdoPeong (EBD) vmotiBetou O6tL 11 Kotaokeun
QUTOKPIVETOU U YPAUIKA, CUVETTWE O UTOAOYIOHAG TwV 18topopdwv mov Baciletal
o€ YPOUUIKE €AooTikO dopéx dev odnyel oe peNAIOTIKO UTOAOYIOHO TwV
100SUVOUWY OTATIKWV OEIOHIKWV SUVApEwY, Kol ouvenwg dev StaodoAifel T
BéAtiotn oelopIKT) ATOKPLOT), OUTE KAV TOAAEG hOpEG TNV aodpdAela.

Yto kepdAoo 4 mapouctaleToal  €voG  VEOG  EMAVOANTTIKOG  oAyOplOpog
BeAtiotomoinong pe duvatotnta Ypappikig avadlntnong, eidikd oxediaopévog yi
BeAtiotomoinon oxedlopOU KATHOKEUWV, O OTOI0¢ XPNOILOTOLEITHL Yt TO
BéAtioto oxedlaopd pe Opoug amoppobwWHEVNG EVEPYELNG QIO TNV KATHOKEUT YIX
évoy aplBpo emtayuvooypadnudtwy. O ev Adyw arydpiBpog Bpiokel tn BéAtiotn
kotovopr] g  Suokopdiog ko®  uvPog evog ktipiov oltwg wote  va
elaylotomoleitou 1 Stakvpoven tng evépyelog amocPeong ko vog tou ktipiov
(fTot auth va givaa opotdpopdn pe tipn ion pe to péoo dpo tg). H Siadikaoia
BeAtiotomoinong epoppoletat TG00 o€ YPAUUIKE OGO KoL O [I) YPOUHIKE KTiplo.
Atgpevvdartou i emppon] tng BepeAwdovg 8omepiddov, touv aplBpol twv opddwv
Kot TG katovopng €wdoeAaotikng amocfeong otnv PEATIOTN KOXTOVOU] TNG
avtoyng ko’ tog tou ktipiov.
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0.4.2. IIpotetvopevog adyoptOpog BeAtiotov oediacpov

O mpotewvopevog oAyoplOpog PeAtiotomoinong ebappolel pia TPOTOTOLNHEVT)
péBodo ylo TV gvpecn TOU BEATIOTOU GTHEIOV TTOU EAC(IOTOTOLEL UL OVTIKELPEVIKT
ouvdptnon (gv MPOKEIUEVW TNV TUTIKIY QTOKALOT TNG KOATAVOUTNG TNG EVEPYELNG
amtdoPBeong kad® vPog tou ktipiov). Ot pebodot BeAtiotonoinong mov Pacilovrou
o€ katevBuvon pe Paon TIG TOPAYWYOUS TNG KVTIKELHEVIKNG GUVEPTNONG ot KdOe
Bripa, mpooeyyilouv TO PéATioTo onueio emovoAnmrikd. Xe kabe  Prpo,
TIPOKEIHEVOU Va Yivel 1 petdPoaon oto emdpevo onpeio amd to TPEYOV onpeio,
Xpewleto vau vmoAoylotel tOco 1 karevBuvon mpog tnv omoin Ppioketal to
EMOMEVO OTEIO, OCO KAL 1| KTOCTACT] TOU XMO TO TPEYOV. LTV TEPIMTWOT TOU
aAyopiBpouv NR, n xatevBuvon vrodoyiletau pe Bdon TIg HEPIKES TOUPAYWYOUS TNG
OVTIKEILLEVIKI)G OUVAPTNONG OTO TPEXOV onpeio, w¢ mpog T HeTofAnteég
oX€SIOOV. XTI EMPITTWOEL] PEATIOTOMOIMNONG U YPAUHIK®OV KOTHOKEUWY, O
UTTOAOYIOHOG TWV TTOPOYWYWV OTTOUTEL TNV €KTEAEOT) MOAAATAWY HN YPXUUKDV
avaAUoEWY, TOU €ival YEVIKA UTOAOYIOTIK& amoutntikés. [ to Adyo owtd
TIPOTEIVETUL O UTTOAOYIONOG TWV TAPUyWYWV VO YIVEToU e BAon TNV AVTIKEIHEVIKT)
ouvaptnon epappolOpevn o€ piot LGOSUVOT YPOUUIKE EAACTIKT] KATAOKEUT], TTOU
amoutel MOAU AtydteEPO UTOAOYIOTIKO HOPTO o€ Ox€on Me TN Hn ypoppukn. H
LoOJUVOUN YPOUUIKE EAQOTIKY KATHOKEUN TpokUTTeL av TeBel To Oplo Sioppon|g
MG M YPOUHUUIKNG KOTHOKEUNG (00 HE A TOAU peYdAn tTipr (fTol mpoKTIKA
drtelpn), KO v GTOV UTOAOYIOHO TNG OVTIKEWMEVIKNG OUVEPTNONG avti yl tnv
votepnTikn evépyela oamdoPeong AndOei uvmdPn n  wdosdaotikn evépyelx
amdoPeonG MOV TPOKUTTEL KTTO TOV LIoOSUVAHA YPXUUIKE eAaoTikd dopéa. [Tapdin
TN WKPN amwAelr o€ okpifela mou umApyEL HE TOV KVWTEPW TPOTELVOUEVO
aAYOpLOpHO, amodelkVUETAL OTL 1| CUYKEKPLEVT TPAKTIKY EMTOYUVEL KATX TTOAU TN
Sadikaoio feAtiotomoinong kat teivel oto (510 PEATIoTO onpeio.

0.4.3. Tumikég katavopeg andoPectg VOTEPNTIKIIG EVEPYELXG GE SLHTHUNTIKE
KTipla

Tumikég koatavopeg tng evépyelng mou amoofévveton gfoutiog voTepNTIKNG
oupmepidpopds evdg 5-0podou kot evog 10-Opodou KtTipiov kota Tn StdpKela
eAaoTomAQOTIKNG  amdkplong, daivovtar otnv  ekove 0.13. Ymotibetou Oti
apdotepa T KTipla €xouv opotopopdeg katovopég Suokappioag ka® UvPog, ot
omoleq elvat Kovovikomompéveg wote Tt duo KTiplw va €xouv BepeAiwdelg
8loouyvétnteg loeg pe 2 Hz kau 1 Hz avtiotorya. ‘Onwg mapatnpeitor kot tnv
mpdén, ot peyoAutepeg moodTnTeG evépyelag amoofeong gpdovifovron otoug
KATWTEPOUG 0pODPOUC TV KTIPIWV, YL OAEC TI( TEPUTTWOELS OCELCUIKWOV
kotaypadwv. Ot ev Adyw kotavopeg vmodeikviouy cadws Toug AGyoug mou oL
BAdPeg kot TN SldpKEIX €VOG CEICHOU OUCOWPEVOVTAL OTOUG KUTWTEPOUG
opodoug, kot e€nyovv To AGyo ToU oL PNYoVIoHOL podakov opddou avartiooovtal
TIG L0 TOAAEG dopég ae auteég Tig meploxéS. To dpauvdpevo autd eivou avemBupnto,
KO WG €K TOUTOU UTTEPYEL T) AVAYKT) YIO LOOKATOVOT) TNG evépyelag amdoPeong oe
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O0Aoug TOUg 0pOPOUG, OUTWG WOTE VA UTEPYXeEL 000 TO Suvatdv TepLocOTEPN
EKUETAAAEUOT] TOU KOTOOKEUQOTIKOU UAIKOU KOl VO EYIOTOTOLEITAL £TOL T
aoPAAEL TOU EKAOTOTE KTIpiov.

5-DOF building 10-DOF building

—©— Imperial Valley
—6— Kobe
Kocaeli
—6— Cape Mendocino
—©— Loma Prieta
ChiChi
—6— El Centro
Spitak

\ —&— San Femando

2 3 4 5 0 0.5 1 1.5 2 25 3 35 4
Energy (J) x 10" Energy (J) x10°

Storey

Elkdva 0.13: Katavouég tng evEpyeLag TTOU amtooBEvveTal AOyw VOTEPNONG YL TO 5-
Kol 10-6podo KTipLo pe opoldpopdn katavour Suckappiog kab’ vog, E=5%,
Uy=0.01 KoL OepeALWISELG LOloouxvOTNTEG 2HZ Kat 1HZ avtioTtoiya, yia dtddopeg

OELOMLKEG KATay padES.

0.4.4. BéAtioteg katovopég Suokappiog yio ypoppHiKa EAXGTIKE KTipLa

Ot BeAtioteg katavopég Suokapbiag yia TI¢ TEPITTWOELS TOV 5-0podou KTIpiov Ko
10-0podou emimedov SaTuntikol Ktipiov daivovtat otig €kdveg 0.14 Kol 0.15.
Avtéq avadépovran otig emBupuntéc Oepedwdelg dloocuxvotnteg TOU €YOUV
npoadioplotel ylo k&Oe ktiplo (2 Hz xou 1 Hz avtiotoyo) kou Siddpopeg oelopikeg
dieyépoelg. Eivou  epdoavég oOtt ot katavopés Suokappiog eival  opoAd
petaPoAropeveg ko 1Pog Kot €(ouv TN HEYLOTN TLU TOUG oToV 1° 6podo KAl TNV
gAdylotn otov teAevtado Opodo kobe xtipiov. Emiong, 1 xotavopn ng
Svokopiag eivar oxedov aveldptntn amd TNV €KAOTOTE CEIOWUIKT SL€yepaorn, Kol
€xEL LEYAAUTEPEG TIHES YIa TO 5-Opodo KTiplo o€ oxéon e To 10-0podo.

Stiffness Damping energy
DOO [

—©— Imperial Valley
—©— Kobe
4 PP Kocaeli
—©— Cape Mendocino
| —&— Loma Prieta
39 69 chichi
—6&— El Centro
Spitak
—O— San Femando

o 1 2 s 4 5 & 1 s 0 1 2 s . 5

Stiffness (N/m) %107 Energy (J) x 10"
Elkdva 0.14: BEATIOTEG KATAVOPEG SUOKOUWIAG OE YPAUMIKA EAXOTIKO 5-0podo
KT{pLO KoL AVT{OTOLYEG KATAVOUEG EVEPYELAG ATTOOBEONG UE E=5% yLa Stddopeg
OELOMLKEG SLEYEPOELS.
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Stiffness Damping energy

9 q =—6— Imperial Valley
=——©— Kobe

8 Kocaeli

7 =—©— Cape Mendocino
==O—Loma Prieta

6 q ChiChi
—©—El Centro

5 Spitak
4

3

2

1

Storey
Storey

=——8— San Fernando

0 1 2 3 4 5 6 7 8 0 0.5 1 1.5 2 25 3 35
Stiffness (N/m) 107 Energy (J) %104

Eikdva 0.15: BEATIOTEG KATAVOPES SUOKAUWYIOG O YPAUMLIKE EA0OTIKS 10-0podo
KT{plo kot avtioToL eg KATAVOUEG EVEPYELAG aTtOoBEONG HE §=5% yia Stddopeg
OELOMLKEG SLEYEPOEL.

0.4.5. BéAtioteg katavopég Suokappiog ylo EAXCTOTANCTIKE KTipLo

TNV mMEPIMTWON EAXCTOMANCTIK®WY KTIpiwv, AapPavetar vodyn pua emimpdobetn
TAPAETPOG, TIOU EIVAL TO KOVOVIKOTIONHEVO OpLo SLppOTig 0€ OPOUG HETATOTIONG
petol Svo Sadoy kv opddwyv, mov opiletan oty eéicwon (4.16). Znpeldveton 6Tt
1 oeopikn SUvapn yx tnv omoia oxedtaleton 1 KATAOKEVT vmoAoyileton ommd T
BéAtiotn katovopn tng Suokappiag TOAAATANCIHCNEV HE TNV opoldpopdn
KOTavopr Tou ouvtedeotn Stappong petall Sixdoyikwv opodwv. Ot OepeAtwdelg
18100UYVOTNTEG HIKPWV TUPAHOPPOTEWY TwV SU0 KTIpiwv eivat (Sleg pe auTEQ TwV
avtioTo(wv ypappikd eAaotikwv. Ot BéAtioteq katovopég SuokopPiog HKp®VY
TOPAOPDWOCEWY KL Ol AVTICTOL(EG KATAVOUEG EVEPYELNG VOTEPNTIKNG atdoBeong
daivovtan oTIG €lkOvVeEG 0.16 KAl 0.17 Yl TO 5-0podo kKol To 10-0podo KTiplo
avtiototya. ITapatnpeiton dt1 yevika ot katavopés Suokapdiog peiwvovtal 660
avédvel to UPog TOU KTIpiou, MpAypHa TOU Tapotnpndnke emiong ko otnv
MEPIMTWOT) TWV YPAUIKA eAaoTikwV KTipiwv. Eivan aloonpeiwto dtL vmdpyet pua
yevikny popdn otovel ypappkng kotovopur duokapliog, tnv omoia akoAovbouv
O0Ag¢ ot koatovopeg OSuvokappiag yie TIGC SlAdOpeS TEPIMTTWOEL] OCECUIKWY
Koty padwyv, yix apdotepa T U0 KTLPLX TTOU HEAETWVTAL.

Pre-yield stiffness Hysteretic energy

—©— Imperial Valley
—&— Kobe
499 Kocaeli
—6— Cape Mendocino
—©— Loma Prieta
319 1 chichi
—©— El Centro

Spitak
—©&— san Femando

o 1 2 3 4 5 & 1 8 0 os 1 15 2 25
Stiffness (N/m) x 10" Energy (J) x 10°
Elkdva 0.16: BEATIOTEG KATAVOUEG SUOKAPWPING UKPWV TIAPAUOPDWOEWY Kal
EVEPYELX UOTEPNTIKNG aTIOCBEONG YL TO 5-0podo StatunTiko KTiplo pe §=5%, Oy=0.1
ylo S1apopeG OLOULKES KaTaypadES.
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Stiffness Damping energy
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Elkdva 0.17: BEATIOTEG KOTAVOUEG SUOKAPYPIOG UIKPWV TIAPAUOPDWOEWV KalL
EVEPYELO UOTEPTTIKNG ATTOOBEONG YLot TO 10-0p0odo SLaTUNTLIKO KTipLo pe §=5%,
Uy=0.04 yL0 S1AdOPEG OLOULKEG KOTAY PAPES.

0.4.6. Amddoon ¢ véag pedddov BeAtiotov oxediaocpov

lNo k&Be kavovplo ocdydpiBpo BeAtiotomoinong, tibetou to Bgpa tng otdd0om|g
TOV, TNG T UTNTAG TOU KAT, € 0X£€0N [E TOUG UTOAOLTOUG YVWwoToUg aAyopiBpoug
TOU  XPNOLHOTOOUVTNL Yl €V OUYKEKPLPEVO TPOPANHa  PeAtiotomoinong.
Emonpaiveton 6tt n vea pebdoog PeAtiotomoinong pmopei vo edappootel ylo
omolodNmote PN YPoppkd mPOPANHa, oAA& yio to dedopéva g mopolong
SratpiPrg B meplopiotovpe oto mPOPANpa tou PéATioTov oxedlaopov emimedwv
SLTUNTIKWV  KTIPIwY, ouTwv Tov e€eTaotnKoy mapamdvw. Xtnv Ewkdéva 0.8
daivetou 1 €€€ALEN TG TUTIKNG TOKALOTG TNG KATAVOWUNG EVEPYELNG UGTEPTTIKIG
andoPeon WG GCUVEPTNOT TOU KOVOVIKOTIOUHEVOU YPOVOU €KTEAEOT( TOU
aAyopiBpov yx to 5-6podo kot To 10-6podo SIATUNTIKO KTiplo Tov peAethOnkoy
mapardvw, pe fo=2Hz, &=o0.05, tiy=0.1 xou fo=1Hz, £=0.05, iy=0.04 avtiotoiya, ta
omoia Sieyeipovtat amd kataypoadn tov oeiopov El Centro. [Tapatnpeital ott ot
XpOvol extéAeong twv aAyopibpwv Newton Raphson (NR) pe ypoappikég
TAPOyWYoUG eiva TOAU pkpOTEPOL otd aUTOUG HE U YPAUUIKEG Topaywyoug. H
KOVOVIKOTIOIN O TwV XpOvwVv €KTEEAONC €ylve He PAom TO XPOVO €KTEAEOTG TOU
QVTIOTOLYOU OAYOpPIOpOU pE HN YPHOHIKEG TOHPOYWYOUS, Kol WG €K TOUTOU Ol
KOVOVIKOTIONEVOL XpOVOL TWV OAYOPIOUWY HE PN YPOIKES TXPAYWYOUS €ivat
apdotepot ioot pe 100%.

Daivetou Eexabopo OTL 0 TPOTEVOUEVOS AAYOPLONOC eivau €wg Ko 11 POopEG TTLo
ypnyopog ortd tov mopadooioko aAyoptfpo NR yix to 10-0podo ktiplo kot €wg kot
7 $opég o ypryopog yix to 5-6podo ktiplo. ' peyodvtepo apBpd opddwv, o
TIPOTEIVOUEVOG AAYOPLOHOC OIVOHEVETOU VX ElVO KKOUQ TTLO YPT)YOPOG OE GYECT) HE
tov ouvnBwopévo NR, «kdvovtag €tol  owovopiat vmoAoylotikov ddptou.
Inuewnvetal 8w OTL yl vo atopovwBei 1 emppor] Tov apyLtkol onHEOV KATK TN
oUykplon twv duo aAyopiBpwv, to opxikd onpeio eivoau ico pe t BéAtiotn
Kkatovopr) Suokopbiag yioe To ypappIKE eAaotikd KTiplo yia &=0.05. Me tov tpdmo
autd, dedopévou OTL oL aAyoplBpol ekkivouv ammd To (010 apylkod onpeio yia vo



xli

gmAVoOUV TO (810 TPSPANpa (o8 dpoug oelopIKNG KaToryporyig Tou e€etdleTon Ko
TV Sldpdpwv IBIOTHTWY TNG KATAOKEUNG), N Sladopd TOU XpOVOU €KTEALOTG
odeidetou povov amd ™ ¢dvon tou aAyopiBpouv kou TG 186tnTEG Tou. Tt
amoteAéopata twv Sdikacwwy PeAtiotomoinong mou cuykpibnkav daivovral
otnv Ewova 0.18 kat otov Iivaka o.2.

[Mapatnpeiton 6tL 0 Mpotevdpevog adyopiBpog NR, evw ypeldleton oxeddv tov
i0lo aplBpd emovaApewv pe tov kAaoowikd NR, pmopei va pewvoer to xpovo
ektédeong kata 85% otnv mepintwon tov 5-6podou KTipiov kal kot 91% otV
mepimtworn tov 10-6podou ktipiov. H peiwon oto xpovo ekteAeons avapéveTal Vo
elvau peyoditepn yl ktiplo pe peyoaAivtepo aplOpd opodwv, 1) KATAOKEVEG HE
peyaAUtepo aplOpd Pabpwmv eAeuBepiog yevikd. Q¢ amotéAeopa owTOV, YIX
TOAUTAOKOTEPEG KATHOKEVEG, T XPNOT TOU pProTeVOHEVOU aAyopiBuov O
odnynoel o€ HeEyoAUTEPT] OLKOVOIot XpOVOu. Znpewdvetal ovodopiKE HE TIG
TAPUTTAVW OUYKPICELS, OTL Ol TEAKEG PeATIoTEG KaTovopés Suokappiog pikpwv
mapapopdwoewv givat idleg T000 ylx Tov kKAaooikd aAyopiBpo NR, dco kot yia tov
TpoTEWVOHEVO aAyopiOpo NR.

5-storey building 10-storey building
25 3.5
Proposed Newton-Raphson algorithm
Classic Newton-Raphson algorithm 3

Proposed Newton-Raphson algorithm
Classic Newton-Raphson algorithm

Residual
Residual

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Running time fraction Running time fraction

Eikdva 0.18: EEEAEN TNG TUTILKT]G ATIOKALOTG TNG KATOVOUTIG EVEPYELNG UOTEPTTIKTIG
anoofeong yla Stddopeg Stadikaoieg BeATioTomoinong yLa Tov KAAoGLkd olydpLBpuo
NR kal Tov TpoTeVOpEVO adyoptBpo NR, yla 5- kot 10-0poda SIATUNATIKA KTipLa pe
fo=2 Hz, £&=5%, Oy=0.1 ka1 fo=1 Hz, §=5%, Uy=0.04 avtiotowya, SlEyElpOpEVA ATIO
OELoULKT) kaTaypadr] Tou oelopov El Centro.

Kavovikomoinpévog
[lepintwon XPOVOG EKTEAEOTC Meiwon EmavaAneig
5-6podo, Newton-Raphson 100% - 136
5-6podo, proposed algorithm 14.9% 85.1% 135
10-6podo, Newton-Raphson 100% - 153
10-6podo, proposed algorithm | 8.8% 91.2% 143

Mivakag o0.2: Numerical results of the optimization processes the evolution of which is

presented in Figure 4-14
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0.4.7. LUUTEPAOUAT

Ta kupldTepa cupTEpATHATA Eival Tt akOAoUO:

e Amodeikvieta OTL UMAPYOUV HOVOSIKEC KATAVOPES Ouokappiog mou
QVTIOTOLYOUV O€ OMHOLOHOphA  KATOVEUNHEVT evEpYeElX EWSOAENOTIKNG KAl
UOTEPNTIKIG OTOOPBECTC Yt YPOUPMIKA EANOCTIKA KOl €AXOTOMANOTIKG emimeda
SLTUNTIKA KTipla avtioToLya.

e H PéAtiotn xoatavopn OSvokopdiog TOCO Ylot €AAOTIKA OGO KoL Yyl
gAlaotomAaotikd  ktipla  epdavifetoanr  wg  owovel  ypappikn (pe  eAdyiotn
KOUTUAOGTNTA), pe TN HEYLoTn T oTov mpwto dpodo Kal TNV EAGKLOTN T OTOV
tedevtaio 0podo tou ekdotote Ktipiov. To oxfpa aUTO TWV PEATIOTWV KATAVOUWDV
elvat yevika aveédptnto tng CEIopIKNG S1Eyepong Kot TpoodEpeL TN SUVATOTNTX
UTTOAOYIOHOU TNG pe ammAgg pefddoug.

e O oxediopdg Twv Kataokevwv pe Pacn tnv mpotewvopevn pebodoAoyia

elvat o Aoytkdg Ko TEXVIKA ePIKTOG 0€ GUYKPLOT] LE TO OYESLXOO IOV €XEL GTOXO
NV OpOLOHOPdT KOTAVOUT] TAXCTIHOTNTAG, €VW OVOUEVETAL Vo OONyNoEL OF
KOTOOKEVEG HE HEYOAUTEPT] XODEAEIN Kl TTPOOTHGIA EVOVTL OAIKIG KATAPPEVOTG
KO QATWAELDV KT TN SIAPKELX LOYUPWV TELTHWV.
Tédog, amodeikvietal 6Tl 0 VEOG TPOTEWVOUEVOG OAYOplOpog mou akoAouBei
KoteVOUVOELS Yo TNV TTPOGEyyLon Tov BéATIoTou onpeiov e Baon T TOPAyWYOUg
NG L0OSUVOUNG YPOHUIKNG KATAOKEUNG, £Dodlacpévog pe eva otafepomonTr| pe
OKOTO TN PeATioTomoinon Hn YPXUUIKOV TPOPANUATWY EMITUYXAVEL OUCLOOTIKO
képdog oe umoAoyloTtikd HOpto, poAovott amautei tov i8lo oxedov oplOpo
emovoAnPewv mpokelpévou va ouykAivel. H véa peBodoAoyia feAtiotomoinong mov
mapovotaleta otV  mapovoa  SlxtplPry pmopel va  edoppootel  yix TN
BeAtioTomoinon omoladNTOTE U1 YPAUWIKIG KATAOKEUNG, KaBmG kot va glooryOel
oav €vvol o€ GAAOUG Yvwotoug oAyopiBpoug, mépav tou NR, dmwg my.
aAyopiOpoug ypappikig avadlntnong, meployng EUTIOTOoUVNG, HeBASoUg amOTOUNG
kotdPaong, ouluywv kAicewv, Broyden, kAm.

0.5. Avortudn — PBeEATIWHEVWV — EVEPYEINKA  OCUUPATOV — TEXVNTWV
kataypodpwv pe pedodoug BEAtioTov Ypappixol cuvduacpov

0.5.1. Ewoaywyn

[Tpoteivetou pia véa peBodoroyio yio TRV mopaywyr| TEXVNTWY CGELGHOYPAUbTHATWY
ta omoioe cupPadilovv e SeSopeva pACHATA EAACTIKNG QTOKPLONG KoL EVEPYELOG
andéoPeong. Me 1 pebodoloyi owtr) XpnolHOTOLEITAL  €VHG  YPOUIKOG
OUVOUOOHOG  aKATEPYAOTWY  Kataypadwv  oelopikng  edadikng  kivnong,
TpoKeIHEVOU v moapoyOel €va TEXVNTO emitayuvoloypadnpuo to omoio Ou
ouppopdwveTal pe évav aplBpd otoyxevdpeVLWV GAOHATWY, TOU AapBdvouy umoyn
OxL HOVO TN GACUATIKT] ETITEYUVOT], XAAA Kot T GUOHATIKT 160dUVapT ToiTnTd
oelopkng evepyelag. H Bewpnon tov Gpdopatog 1coduvapung tayvtntag oeIoHIKNG
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eVEpYELXG odnyel otV avamtuén TEXVNTWY EMTAYUVOLOYPADNHATWY OV €ival TLo
PEAAIOTIKA O€ OX€0T ME QUTA TOU AxpPdvouv umoyn toug povo to ddopa
gAaotikng amokpilong. H Siadikaoia ypop kol cuvduacpol kataypodov oo pio
dedopevn Se€aev) TTPOKEIHEVOU T TUPAYOUEVT) KATorypodT) va SUPHOPPOVETAL HE
dedopéva  otoyevdpeva  pdopata  SlATUTWVETHL  O€  OpouG  TPOPANHaTOg
BeAtiotomoinong. ' tnv emaAifgvon g AMOTEAEGHATIKOTNTAG TOU aAyopiBpov,
EMAEXONKAY YXPAKTNPLOTIKEG eSAPIKEG KIVIOELG HE SLadOPETIKA XOXPAKTNPLOTIKA
Ko 1816tnteg, T Ppdopata Twv omoiwv BewpnBnkav wg otoxevdpeva Ppdopata.
[Tépov outol, n Olepeliviion TNG OITOTEAECHATIKOTNTAG TNG TPOTELVOUEVNC
pebodoroyiog €ytve kol avadoplkd pHe TN CEICWUIKT KTOKPLoT HovoBdOpiwy Kot
TOAUBAOUIWY CUCTNUATWY, HECW TOU TOCOCTOU TNG OEICWIKNG EVEPYELNG TTOU
amooPévvetal evtog TG KOTaokeung. AToSelkvieToL OTL UTTEPXEL dPpLoTh cupdwvio
petadl adevdg Twv GACHATWY TWV TEXVNTWV KATAypadwV TOU TPOKUTTOUV oItd
BEATIOTO YpOpHIKO OUVOUAOUO Oveme€épyooTwV OCEIOUIKWOV Kataypadov Kot
ADETEPOU TWV OTOYEVOHEVWV DACUATWY, TPEypx mou emaAnBevel tnv alomiotia
NG mpotevdpevng pebodoAoyiag.

[Tapadooiokd, 0 OVTIOEIOUIKOG OYESIOUOC TwV KoTaokevwv Pooiletan o€
pefodoug Suvdapewv 1/Kal HETATOMIOEWY, OTIC OTOIEG T) EMPPOTN) TNG CELCHIKNG
dOPTIONG  TOCOTIKOTOLEITAL ~ YPTOLHOTOLWVTRG TN MEYLOT)  EMITAYUVOT
Xpovolotopiag 1 TN HEYLOTN PACHATIKI) EMTEYUVOT] TNG €KAOTOTE OELCHIKNG
kotoypadng. Me v emAoyny autr 8ev Aopfdveton vmoyn n emidpoon tng
xpovolotopiog POpTIonNG TG KOTAOKEUNG, Tapa HOVO €vo onpeio autng, mou
avtiototyei oto péyloto. Etol onpavtikd pépog tng mAnpodopiog tng OEIOWIKNG
QUTOKPLOTG TNG KOTAOKEVTNG XAVETAL KOTA TNV oavwTépw Sladikaoio oxedioopov. H
WVWTEPW ATTWAELX TAPOPOPING AVTOUVUKAKTHL 6TO ODEAUA TTOU EVUTTAPYEL GUYVEL
KOTO TNV TOpXywyn TEXVNTWV OEIOPOYPAINUATWY Ta omoi Tapadootokd
ovppopdbwvovtar  pévo  pe  dpaopata emrdyuvong. H o moapoywyn
oelopoypadnuatwy T  omola, TEPAV  TWV ovwTépw  PAopATWY, O
ouppopdwvovtal emmAéov  pe  PEAOpOTA  GOSUVOUNG  TOYUTNTOG OELOUIKNG
gvepyetag Oo AopPavel vmoyn tng tnv empporn tng xpovolotopiag hboptiong HECW
TwV TeEAeuTaiwY, Kot 08NYEl £TOL GE TTO PEAALIOTIKA GEIGHOYPAbTHOTO.

0.5.2. AAyoplOpog Snpioupyiag TEYXVITWV EMTOHYUVGLOYPAPHETWV
0.5.2.1. Ene€epyacio akatépyaotwv ceIGHIKWV £80PIKOV KIVI|GEWV

'Evag YpOopHIKOG GUVSUXOHAG TTPOYHOTIKWY EMITOYNUVOLOYPAPTHATWY amoutel HOvo
TNV emAoyn Kal oTtadpion Twv TeAeuTaiwy, eV JeV XAAOLWVEL T ECWTEPIKA TOUG
XOPOKTNPLOTIKE, OMw Y. Ul OTACIHOTNTY, UoTEPOUOES KUpartooelpeg (coda),
dookd mepleyopevo, kAT. Tt omoia Oa mpémel v Statnpovvron 660 To SuvaTOV
KoAUTEPX pE oTO)0 TN Onpuovpyict 660 To SUVATOV TO PENAICTIKWV TEXVITWV
Kotoypabwyv, ¢ omotéAsopa  ypappkol ouvvduacpov. Agdopévou dtL ot
TPAYHATIKEG KoTorypadég dev €xouv mavta tnv Ol Sidpkela, n Sadikaciot Tov
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YPOpHkOU ouvduaopoU dev pmopel va edpappootel qpeca o€ autég. 20TO0O,
pmopel va edappootei ota dpaopoata Fourier mov mpoxkvmtov amd tov OPHWVUHO
HETHOYNUOTIONS TOUG, T omoia €xovv to Sto pnkog (Sidpkewx). H ypoppixd
ouvdvaopevn Texvnt katoypadn pmopel vo AndOei omd tov avtictpodo
petaoynpoatiopd Fourier tou ypappikov cuvdvaopol twv dpacpdtwv Fourier twv
eMPEPOUG TpaypaTiKwV Kotaypadwv (ot omoieq Aapfavovron amd Sedopévn
«de&apevi»). Eivauw mpodpaveg o6tt évag avtiotpodog petaocynpoatiopds Fourier
QUTOUTEL TNV TLUT TOU XPOVIKOU PriHatog He oot TO 0moio €ytve O HETATYNUATIOHOG
Fourier twv mpaypatik®v katoypadwv mpLv To YPAHUHUIKO cUVSUACHO TOUG, OTwG
mapovotdletou mopamavw. To péyefog outd Tou ¥povikou PriHaTog TPETeL Vo elval
(010 pe owTO MOV YproLpomoleital Yo To petaoynpatiopnd Fourier twv katoypadwv
OV ETAEYOVTUL YO TO YPOHPHIKO cuvduaoo. o to Adyo awutd, kdbe kotoypodn
vdiotaton eme€epyaocioa kata TNV omoia yivetat emavadelypatiopdg Tng, HE TO
XPOVIKO Prita Tou xpnotpomoleital yio Toug petaoynpatiopovs Fourier. Yuvenwg,
TPV TO YPUMPMIKO GUVSUAOHO TOUG, ol Kotaypadeg emavadetypatifovron kol v
ouvvexeio petooynuatilovron kota Fourier, mpokepévov va géaobaAiotel 1)
OLOLOYEVELX TOUG KATK TO YPOPHIKO GUVOUATHO TOUG.

0.5.2.2. [Ipocdiopiopdg Béitiotov Ypappuixol cuvSuaGpoU yia Topaywyn
TELVNTWV EMTOYUVOLOYPADTUATWV

To mpéPANpa TG Topaywyrng €vOG TEXVNTOU EMITOYUVOLOYPAPTHATOG TTOU
ouppopdwvetan pe dedopéva oTtoXeVOpEVH DAOHATA, SIXTUTWVETOUL WG TTPOBANH
BeAtioTOMOINGTG, GTO OTOIO 1] AVTIKELHEVIKT] GUVAPTIOT IOV AXLoTOTOLEITOU Elvau
T0 ohaApo peTad) TWV OTOXEVOUEVWY DACUATWV KAl TWV ovTIOTOLXWV GATUATWV
TO OTIOIX EMUTUYYAVEL £VAG OTTOLOGONTTOTE YPAUUUIKOG cUVOUAOHOG Kataypadwv. H
OVTLKELPEVIKT] CUVAPTNOT] IOV XpToLHoToLeiTot eival TnG popdnq:

T,
fSa—Siev = I[

T

Sa,(T)-Sa,(T)|
Sa,(T)

SievA®(T) —SievaS(T)|+ SievFe- (T) - SievFe-(T)|
Siev"®(T) | Sievfe(T)

p(T)dT

Kol amoteAeitar amd €va abpolopa g emibdavelag HeEToél TWV KOUUTUAWDV TOU

otoxeuopevou (Sa,) ko emituyyovopevou (Sa,) Gpoopatog eAASTIKNG ATOKPIOTG
emTdyuvong, otoxevopevou (Sievi®) ko emituyyavépevou (Sievi™) dacparog
oodvvopung omdAUTNG  ToUTNTHG TNG OEIOUIKNG  evépyelag €l0ddov, Kol

otoyxevopevou (Sievir) ko emituyyavépevou (Sievist) daoparog 1608Uvapng
OXETIKNG To(UTNTAC TNG OELOULKNG evepyelag eloddov. H moodtnta p(T) eivat évag
YPOUHIKOG GUVTEAESTNG TTOWVNG, He owEnpévn BapliTtnTa TNV TELPOYT) TWV HKPOV
18lomeplodwv. Me autd tov tpomo Sivetan épdoon otnv avwtépw mePLoxN, OTou
eVOLPEPEL 1] PEAAICTIKOTITA TWV TAPAYOHEVWV TEXVITOV KXTAYPAPWDV.
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Ot petafAntég oxediaopov tov mpoPAnpatog BeAtiotomoinong eival 2m, dmov m
givat 0 aplOPOC TWV TPAYHATIKWV KAToypodwy Tou umdpyouvv ot dedolevr Kot
ouvdvddovtot ypoppikd. Ot mpoteg m peta3AnTtég eivou ot ouvteAeotéq otdBpong
TWV EMAEYOPEVWV KoTaypad®V, VK Ol TeAeutaie¢ m PeTAPANTEG eivat aképauot
aplOpoi ToU SNAWVOUV TIG «ETIKETEC» TwV KoTtaypadwv mou cuvdvalovtal, Omwg
auTéG givan amoBnkevpéveg péoa ot deopevn.

['ia v emiAvon tov mpoPArpatog PeAtiotomoinong emAexOnke €vag yeveTIKOG
ocAYOpIOHOG KATEAANAOG Yl peKTd mpoPAnpata (mpoypatik®v — akepainv),
dedopévng g dvong twv petafAntiv oxediaopov. O yevetikdg oadydpiOpog
epappolel oe évov mANOUoPO umoUndwy AVoewv TV apyn ™G €EEAIKTIKNG
Bewpiag, TPOKELUEVOU VA TTAPAYEL KAAUTEPEG TTPOCEYYITELS TPOG TN PEATIOTN AVoT).
Ye kabe yevid, évag véog mMANOUGHOG dnpovpyeitan otd Tov TPEYXOVTA, HECH OO
™V emAoy Twv voyndiwv anoyévwy cUpdwva pe To emimeda KATAAANAGTNTAG
TOUG, KOl €V OUVEXEIX TNV VOTOPXYwyl] TOUG XPTNOLUOTOLWVTOS TEAEOTEQ
gumveVopEVoug amd TG avtiotolyeg duoikeg Sidikaoieg g e€eAing (emAoyn,
Saotapwon kot petdAraln). H Swdikooioc ovty odnysi otnv €£éAi€n tou
TANOuopHOU OUTWG WOTE TA ATOHA VX YIVOVTO OAO KOl «KOXAUTEPO» TPOG TNV
koatevBuvon tou BéAtiotou onpeiov tou mpofAnpatog. O aAydpiOpog tepportiet
OTOV IKOVOTIOLE(TOU €VAl KATAAANAO TTPOG TO oKOTO autd KPIThPLO, T.X. HEYLOTOG
apBpdg yevewv, MAXGEN. 'Evag Peudokwdikag tou yevetikol aAyopifpov mou
xpnotpomomfnke otnv tapovoa SiatpiPr) teprypadeton otnv Eikdva 0.19.

Pseudocode of the GA
Set parameters
Generate the initial population
while GEN < MAXGEN do
Fitness calculation

1
2
3
4
5 Selection
6 Crossover
7 Mutation
8 end while
9 Obtain the individual with maximum fitness
10  return the best solution
Elkdva 0.19: O YPeudokwdikag evOg yeVETIKOU aAyopiBpou

0.5.3. ZUyKAlon TPOTEVOHEVOU aAyopiBpouv

H amoteAeopatikotnta tou mpotevopevou oaAyoplOpov efetaleton peow TNG
TXPAYWYNG TEXVINTWV EMTOYUVOLOYpaPUATWwY Ta omoiat cuppopdwvovtal o€
Sadopeg €181kég mepimTwoelg 6oov abopd tn PUoT TwV CTOYXEVOHEVWY GATHATWY
ko N Staopaion g aveaptnoiag tng amddoong tou aAyopibpov amod to €idog
Tou otoxevdpevov daopatog. Tpeig Siadopetikée oelopkEG  KaTorypodég
emAEXONKkav yiao tnv mpodiaypadr) otoxevdpevwy doopdrwv: a) katoypadr El
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Centro Terminal Substation Building tov oeiopot oto Imperial Valley (1940), B)
kotoypodr} Rinaldi tov ogiopot tov Northridge (1994) kou y) kotaypadry Sakarya
- SKR tou oeiopot tou Kocaeli (1999). Ta tpia maportdvw emitoyuvetoypadrpoco
ekdpafouv pia katoypadn pakpvol mediov, pio koraypodr) kovrikov mediov mov
nepiexel bauvopeva epmpoobioag karevbuvtikotntag (forward directivity) ko pio
Katoypodn kovrivoy mediov mou mepiexel  BAUVOPEVH HOVIUNG  OTOTIKNG
napoapopodwong (fling step) avtiotoyo. EEetdlovron dvo oevdpio: i) Zevdpio 1,
OTIOVU TO TEYVNTO EMITA(UVOLOYPAPNHX CUHHOPDWVETHL HOVO HE TO GTOXEVUOUEVO
baopa EAXCTIKNG otdKpLONG €MTAYVOVNG, Kot ii) Xevdplo 2, Omov To TeEXVNTO
EMITOUVOLOYPAPNHX CUPHOpPWVETHL, OXL HOVO HE TO OTOYEVOUEVO (ATHX
€AQOTIKNG omMOKPLOTG  EMITA(UVONG, OAAQ Kol HE TO OTOXEVOHEVO HACHX
1608UVAUNG TOUTNTOG OEIOUIKNG EVEPYELG (XTOAUTNG KL OYETIKTG).

Ta amoteAéopata yio To oevéplo 1 ¢aivovtal otnv €Kova 0.20. Avtiotoo
AUMOTEAECUATA Yl TO OEVApPLO 2 daivovtal otnv eikova 0.21. ['a k&Be otoxevopEVO
daopo  (pe  popn  ypopun) epdavidovrar, petad twv 30 aveEdptnrwv
OUTOTEAEGHATWY TOU YEVETIKOU 0AyopiBpou (o adyopiBpog étpee 30 popég yla va
Sodoriotel 6Tl TO amotédecpa eival avedpTnNTo otd TI( TAPAPETPOUG TOU
aAyopiBpov, amd tig omoieg moaprxOnoav 30 kaumlAeg mou daivovral pE yKpL
XPWHO), TO ATOTEAECHA HE TO EAGYLOTO OPEApX (KOKKIVI YPOUUT)) KoL TO HEYLOTO
opdApa (umAe ypopur). Me mpdowvn ypoapp omelkoviletoat 0 GUVTEAEOTIG
HETABANTOTNTHG TwV 30 KAUTUAWY KdBe otoxevoepvou ddopatog. [Mapatnpeito
OTL uTtdpyel TOAV koAl cupdwvio petadl TG KUUTUANG HE TO EA(IOTO TDAAP
KO(L TOU OTOXEVOHEVOU PACHATOG O OAEG TIG TTEPLTTWOELS.

1014 e bt 05 = 0.5
- 0.4 -0.4
—~ - 103 :
s 0oy b i
© 02 ® ] L0.2
» ; » 1|—Target i
1091 i 1 |—Best i
] ; 0.1 — Worst :—0.1
1|—CoV r o 10° 4 —CoV Y
107" 10° 107" 100
Period (s) Period (s)

()

(B)
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Elkéva 0.20: ArtoteAéopata BeATioTomoinong yla To oevdplo 1, yio K&Oe
otoxevopevo paopa: (o) El Centro, (B) Northridge kau (y) Sakarya.
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Eikdva 0.21: ATtoteAéopata BEATIOTOTIOMNONG YLO TO GEVAPLO 2, YLO TO OTOXEVOUEVO
bAdopa eAaoTIKNG aTtOKPLON G ETILTAYUVONG Yla k&Be otoxevdpevo pdopa: (a) El
Centro, (B) Northridge and (y) Sakarya.
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0.5.4. LEICHIKI) eVEPYELX amtOoBeonq

Mo v o€loAdynon tng euvpwotiag kot TG oxpifelag g mpotevopuevng
pebodoroyiog e€etdotnke 1 oelOUKT) amokplon povoPBadpwy kot moAVBAOuIwY
ouoTNUATWYV. ‘Eytvav pun ypappIKeg ev xpovw oavaAUOELG TwV €V AOYWw GUCTIHATWY
ylx T fEATIOTRL TEXVITA ETTITOUVOLOYpodTjpaTa Tov €édwoav T SUo CEVAPLX Kol
€ylve ouykplon pHetal TOUG, KOl HE TO QVTIOTOL(O OUTOTEAECHN TNG €V XPOVW
OAOKANIPWONG TWV OVWTEPW OUCTNUATWY HE TH EMITAYUVOLOYPADTIHATH TOU
xpnotpomom|Onkoay yix tov kafoplopd twv otoyxevopevwyv doopdtwv. [Ma
oUYKPLOT) XPT|OLLOTIOLEITAL T) GELGIKT] EVEPYELN TTOU AUTOCBEVVETUL OTIG KATAOKEVES
Aoyw Ewdoedaotikng andoPeong. Ztnv Ewdva 0.22 daivetal n xpovikr| petaBoAn
NG evépyelag IEWI0EANCTIKIG ATOOBECTG OTNV KATAOKELT] ovat HovEaSa Haldog yio
K&Be mepimtwon otoyevdpevou PpACHATOG, OTNV TEPIMTwon €vag povoBddpiov
tadavtwtr. [Mapoatnpeitoan koA ocvpdwvia petadl tng evépyelag amdoPeong tou
TAAQVTWTI 0TV SlEYEIPETAL [LE TO TEXVNTO EMITOYUVOLOYypAdTpo OV TaprxOn amod
TOV TPOTEWVOHEVO 0AYOplOpo (kOKKIV) ypoppr) ko Otav Sieyeipetanl pe to
gmitoyuvoloypadnua pe Boaon to omoio maprxOn to otoyxevopevo ddopa (podpn
ypoppry). H cupdwvia auth) mapatnpeitat yioo OAEG TIG TEPUTTWOEL] GTOYXEVOHEVV
doopdTwy kot eivat o OAEG TIG TEPITTWOEL] KAAUTEPT) YL TO CEVAPLO 2 GE GYEOT)
HE QUTH YIX TO GEVAPLO 1. AuTO onpaivel 6tt n pebodoroyia Tou oevapiov 2 (fjTot
OUHHOpdWOT TOGO pE TO PACHA EAXNCTIKIG QUTOKPLOT|G EMITAYUVONG OG0 KL E TX
baopota 10o8Uvapung ToUTNTAG OCEICUIKNG €vEPYELNG) Sivel TO PEAAIOTIKG
TEVITA emitayuvoloypadnpata o oxéon pe t pebodoAoyia Tou oevapiov 1 (tot
OUPPOpPwoT HOVO pE TO PAOHN EAXCTIKNG ATOKPLOTG ETITAYUVOTG)

| | | | | |
0.8
1.5 7
& 0'6__ R
(2] w i
NE | NE 1 |
= 0.4 = ]
© - ©
L w |
024 —Target 0.5 —Target
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()
Elkdva 0.22: Xpovikr €§€ALEN TG evEpyeLag LEwdoeAaOTIKN G amtdofeong ava povada
Ma&Cog yla ta TeEXVNTA eTtayuvoloypadripata twv duo oevapiwy Kat yla kdBe
Tiep{mTwon otoxevdpevou pdopatog (o) El Centro, (B) Northridge kau (y) Sakarya.

0.5.5. YUHTEPACHATX

AvamtoyOnke puo vea pebodoAoyior mopoywyng TEXVNTWY EMTAYUVOLOYPADTUATWY
HE YPOUUIKO ouvduaopd akoatépyootwv kataypoudhwv amd pia Poon dedopévwv.
Koto ™ dnpiovpyia tTwv texvnTwv emitoyuvoloypadbnudtwy AapBdvetal vtddn oxt
pévo 1n ocuppdpdwor) Toug pe To GACHA EAACTIKNG ATOKPLONG EMITAYUVOTG TTOU
TPASLypADETAUL OUTO TOUG KOVOVIOHOUG KATK TO ouviidn avTIoelopikO oxeSloopo,
AAG Kot T GACHATH TG LOOSUVOpNG ToXUTNTOG oelopKNG evépyetog. H Bewpnon
ouTr] 0dnyel otV Tapoywyn PEATIWHEVWY TEXVNTWV KATAypodWV TOU €Vt apKETE
Mo pecAlotikés To MPOPANUA TOPAYWYNG TEXVNTWV EMITAXUVCLOYPADT|HLATWV
avdyetow o€  mPOPANHa  PeAtiotomoinong, ywa tnv emilvon Tou omoiov
XPNOLHOTOLEITOL YEVETIKOG 0AYOpIOpHOG pekTG GUOTC (TPAYUATIKWV — aKepaiwY).
Amodewkvietat OTL oL TeXVNTEG Koatoypadég mou mopdyovton pe Poon TV
mpotevopevn pebodoAoyiat odnyouv oe axpiéotepn €KTIPNGON TG OEIOUIKNG
EVEPYELNG XTOOPBECTG OTIC KATKOKEVEG, OF Ox€on He TI§ oupPotikeég peddSoug
TOPAYWYNG TEXVITWOV KoTaypadwV, Kl CUVETWG O OKPLBECTEPT EKTIUNOT TNG
KATAMOVNOTG TWV KATHOKEVWYV KOTAK T OLpKELN OEIoPIKWV dleyépyoewy. Emiong,
amodelkvieTal 1 gupwoTio kot  okpifeld tou yevetikol aAyopiBpov mou
xpnotpomofnke otnv avwtépw pebodoAoyio.

0.6. AbaquszMatlab: 'Eva OAoxkAnpwpévo Aoyiocpiké  Béedtiotovu
Yxediaopot yia Epappoyeg Mnyoavikov

0.6.1. Elcaywyn
Ot mpoktikég edoppoyég tng pebddov twv memepacpévwy otolyeiwv ouvhBwg

evtaocoovtal o€ éva mAaiclo PeAtiotomoinong, omov emidiwketal kobe bopd pHecw
NG peBdSov TwV TEMEPATHEVWYV GTOLYEIWV 1) €TiTEVEN €VOG PEATIOTOU O)XESIGHOV.



KUplog Adyog eivo 1 HEYAAN TOAUTAOKOTITA TWV OVTIKEIUEVIKWV OTOXWV TOU
BEATIOTOU KATAOKEVXOTIKOU OXeSIAGHOU, TTOU S€V EMITPEMEL TNV EVOWUATWOT| TOUG
otnv pebfodo twv memepacpévwy otoyeiwv. Tig TeplocoTepEG Popeg aumaluteital pia
avtiotpodn avdAvon, Omou eival YVWOTK Ta amoteAéopata Tng pefddov twv
TEMEPAOUEVWV OTOLYEIWV KAl Vol AYVWOTEG OL TXPAUETPOL TOU TTPOCTOUOLWHATOG.
2uvnwg avtiotpodeg avaAvoelg tétolou gidoug edappolovral yioo TNV €KTIUNON
TOPAUETPWY OF KOTKOTOATIKK TPOCOHUOLWHATA, Kol Ol HOVO, KOl HTOpPOUV VX
dwoovv amoteAéopata mov eivat oxeddv aduvato va oavaktnBouv pe dAio tpodmo.
'l Toug Mopamavw AGyoug, Kot Yo TNV €MAUCT) TWV avwTépw TPoPANpdTwy émou
yto T péfodo twv memePACHEVWY oTOL EliwV YpnoLpomoleitan To Abaqus kot yio TN
ddikaoio feAtiotonoinong xpnotpomnoteitat n yYAwooo mpoypoppatiopoy Matlab,
avamrtuyOnke éva véo Aoylopikd, to Abaqus2Matlab (Papazafeiropoulos et al.,
2017), TO OToi0 €€l Tot akOAOUOA KUPLX XAPAKTNPLOTIKA:

o Tlapéxel g ovvdeon pe tnv omoia pmopei va yivel petacdopa dedopévwv
and Abaqus oe Matlab kot avtiotpédwg. H avdAvon oe Abaqus pmopei va
extedeotel péow Matlab, ywpic va amouteiton n ekdAwon evepyelwv ek peéPoug
Tou Xprjoth, eite oto Ypadikd mepiPdAiov gite otn ypapur evtoAwv tou Abaqus
(Abaqus/CAE koau Abaqus /Command avtiototya).

o Metadépel amoteAeopatikd ta amoteAéopata amd to Abaqus oto Matlab,
pe Swadikooieq amoaAAoypéveg omd obaipata, dedopévou kot OTL OAgg oL
UTTOPOUTIVEG TOU OVWTEPW AOYIOMIKOU €xouv emoAnbevtel péow ovdAoywv
avodvoewy. Ta amotedéopoata twv emoAnbeloewv outwv kabwg kot OAo To
ouvodeuTikd apyeia mapovotalovron otn PipAoypadioc tov AbaquszMatlab, ko
glvau AN pwg avortopaéipa amd tov evliadepopevo xpriotn.

o Tlapeyel ta amoteAéopara tov Abaqus oto Matlab w¢ petaBAntég étoipeg
TPOG XEPIOUO ot TO XprjoTn peéoa oto mepiBdArov g Matlab, divovrag étot
gUKOA{ yloe TNV epoutépw petemeepyaoio Toug.

e  Mmopsi va Staffdoel moAAd Stadopetikd €idn amotedeopdtwy (o kOpPoug,
0€ Ol OAOKANPWONG TEMEPATHEVWYV CTOLYEIWV KO YEVIKA ATTOTEAETHATA, OTIWG
T.X. OUVSECIHOTITA SIKTUOU TTEMEPATUEVWY OTOLYXEIWV, ISIOTIHEG, KATT).

o Tlapeyetou mAnpng odnyds xprong tov AbaquszMatlab kaBwg kat avoiktdg
Kw3Kag.

o YuumeplapfBdveton emapkng aplOpog vropoutivwv otig BifAodrkeg tou
VWTépw  AoylopkoU  yio  tnv  emefepyocia twv  ouvvnBéotepwv  TUMWV
atoteAecpdtwy touv Abaqus.

e To Aoylopkd, n PiBAoypadio tov kabwg kot dAAo cuvodeutikd VALK eival
nmpooPaoipa pecw tng totooeAidag www.abaqus2matlab.com.

To Abaqus2Matlab Siavépeton mpog toug Xproteq wg avolkTdg MNyaiog Kwdkag
pe otoxo tn SIEUKOAUVON KOl EMITEYUVOTN TNG EMOTHUNG Tou pnyovikol. To
amoteAéopota tou Abaqus Sifdlovrat amd to Abaqus2Matlab péow apyeiwv tng
popodng ASCII, mov Aéyovtau results files. Ta ev Adyw apyeio popovv va ivoau gite
oe Svadikr] popodn (binary) siote og avayvwoiun popdn (ASCII). O yeplopdg ko
ene€epyacio twv apyeiwv oe popdn ASCII eivou gukoAdtepog oe oxéon pe TO


http://www.abaqus2matlab.com/
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XEPLOHO TwV apxeiwv Svadikng popdng, adov ta apyeio popdrng ASCII propoiv
va StBactovy amd SiadopeTikoUg UTOAOYIOTEG, pe StadopeTiky) KwdKomoinon, He
Xp1ion SladopeTIKOV AOYIOUIK®OV HETEMEEEPYATING, XWPIG TNV aVAyKN €KWV
puBpicewv mov amautovv Xpovo Kot TMOAUTIHOUG TOpoug. Kuplo pelovéktnua twv
apyeiwv ASCII eivor 6Tt gival peyadUtepa oe péyebog amd ta apyeioe Tomov binary.
Téoo otnv mapovoa SwatpiPr) dco kal oto €yXeEPISO YXPTIONG TOU AOYLOHIKOU
(BABloypadio) avadépeton Aemtopepws 0 TPOTOG eXywYNG TWV AMOTEAECUATWY
amd To €V A0yw opyeia, T omolo Snpovpyouvtal peETd amd kabe avdAvon Tou
Abaqus, Votepa otd KOTAAANAN TOPAUETPOTIOINGCT TWV OVTIOTOLXWV OPXEIWV
el0080v (Abaqus input files). ' mepiocdtepeg mAnpodopieg dooav adopd to
AOYIOHIKO, O QVOyVWOTNG TOPOTTERTETAL 0TO OXeTIKOG apBpo (Papazafeiropoulos
et al., 2017).

0.6.2. Opydvwon tov kwdika tov Abaqus2Matlab

To Abaqus2Matlab amoteAgitou amd T €€n¢ vmopoutiveg MOV KaTavEpovTAL OF
vmodakéAoug:

e Mix ouvapTnoNn TOU  HETATPEMEL TK TEPLEXOUEVH TOU  XPYELOU
amoteAecpdtwy (1 wooduvapa, * .fil), oe éva Slavuopa XapakT)pwy mov ekteiveTal
O€ MLt YPOLUT], OO TO OTOI0 OVOKTWVTAL To moTeEAéTpaT Yot v hopTtwholv ev
ouvvexeio oto mepiBdArov tov Matlab.

e 'Evag vmoddxerog pe to dvopa «OutputAnalysis» mov mepiéyel OAeg TIg
UTTOPOUTIVEG YL TNV €E0yWYT) TWV ATOTEAEGUATWY TUTTOU «OVAAUGTIG» (1)TOL QUTWV
mou 8ev avadépovtau og kKOUPoug 1§ otolxeia), OTwg Y TAPESEIPYR OpLGHOUG
KOpPwv, otoiyeiwv, ouvdeoipotnta Siktvou, kAm. Ot oxetikéq peTofAntég
daivovrou otov mivaka 0.3. H mpwtn otAn (pe titdo “record type”) meprypddet
petafAnT Tt aroteAéoporta TG omoiag Kataypddovror oto apyeio *.fil, ya to
avtiototyo kAedi eyypadrng mov avaypddetar otn devtepn othAn. ZTnv TpiTn
othAn avaypddetar to kAedi g petaAntg €€6dov, mou xpnoipomoleital oto
apyeio €1008ov oto Abaqus, TPOKEIHEVOU VX EKTUTTWOOUV TA OUTOTEAEOUTA TNG
OUYKEKPLUEVNG eptaBAntig oto apyeio *.fil kato tn Sidpkelx tng avdAvong.
Tédog, otnv tétaptn othAn dbaivetal 1 vropoutiva tov AbaquszMatlab mov eivou
urtevOuvn y TNy e€eywyr| TwV ATOTEAEOUATWY TNG €EKAOTOTE HETAPANTNG.

e 'Evag vmoddkerog pe to Ovopa «OutputNodes» mouv mepiexel tTig
umopoutiveg yloe tnv eneéepyocioa amoteAeopudTwy moU avadEpovtal og KOUBoug.
Ot SBeoipeg petaBANTéQ yio To okomd autd daivovtal 6Tov TivaKdo 0.4.

e 'Evag vmoddkerog pe to ovopa «OutputElements» mou mepiéyel tig
UTTOPOUTIVEG Yylt TNV €emedepyaciot QMOTEAECUATWV TOU  ovopEpovtol o€
TEMEPACUEVA oTOLYElX (giTe OTA OTpEit OAOKAT)PWOTG AUTWV €iTeE 0TO GUVOAO TOU
otoiyeiov). Ot SiBéoipeg petaffAnteg yioo to okomd autd dpaivovron otov Tivaka
0.5.

e 'Evag vmoddxeArog pe to ovopa «Verification», mou mepiéyel KOSIKeG o€
Matlab yix tnv emaAifgvon twv Stapopwv vtopoutivwv.
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e 'Evag vmoddkerog pe to dvopa «KABAQUSInputFiles» mou mepiéyet dAa ta
apyeio e1068ov Tou Abaqus mou ypnoipomoloUvTal yix TV emaAn0gvon.

e 'Evag vmoddkedog pe to ovopa «help» mou mepiéyel OAa to apyeia GYeTIKA
pe t BpAoypadia tov Abaqus2Matlab.

OUTPUT VARIABLE
IANALYSIS RECORD TYPE RECORD KEY IDENTIFIER FUNCTION
Element definitions 1900 - Recigoo.m
Node definitions 1901 - Reciqoi.m
Modal 1980 - Rec1080.m

Mivakag 0.3: Alota peTaBANTWV yla atoTEAESHATA TUTIOU «OVAAUOT|G» TTIOU
e€dyovtal pe to Abaqus2Matlab.

NODAL RECORD TYPE | RECORD KEY | OUTPUT VARIABLE | FUNCTION
IDENTIFIER

Nodal Acceleration 103 A Rec103.m

Concentrated  Electrical

Nodal Charge 120 CECHG Reci20.m

Concentrated  Electrical

Nodal Current 139 CECUR Rec139.m

Nodal Point Load 106 CF Rec106.m

Concentrated Flux 206 CFL Rec206.m

Nodal Coordinate 107 COORD Recio7.m

Fluid Cavity Volume 137 CVOL Reci37.m

Electrical Potential 105 EPOT Recio5.m

Motions  (in  Cavity

Radiation Analysis) 237 MOT Rec237.m

Normalized

Concentration (Mass 221 NNC Rec221.m

Diffusion Analysis)

Temperature 201 NT Rec201.m

Fluid Cavity Pressure 136 PCAV Rec136.m

Pore or Acoustic Pressure 108 POR Rec108.m

Electrical Reaction

Charge 119 RCHG Reciig.m

Electrical Reaction 138 RECUR Reci38.m

Current

Nodal Reaction Force 104 RF Reci04.m

Residual Flux 204 RFL Rec204.m

Internal Flux 214 RFLE Rec214.m

Eﬁfxctlve Fluid Volume 109 RVE Rec109.m

Reactive  Fluid Total 1o RVT Rectio.m

Volume

Total Force 146 TF Reci46.m
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Nodal Displacement 101 U Recio1.m
Nodal Velocity 102 \% Recio2.m
Vi F D

iscous Forces Due to 145 VE Reci45.m

Static Stabilization

Mivakag 0.4: Aloto HETAUBANTWV yLa aTtoTEAEGUATA TUTIOU «KOpBOoU» TTou e§dyovTal

pe To Abaqus2Matlab.

ELEMENT RECORD TYPE | RECORD OUTPUT VARIABLE | FUNCTION

KEY IDENTIFIER
Creep Strain (Including
Swelling) 23 CE Rec23.m
Mass Concentration (Mass
Diffusion Analysis) 38 CONC Rec38.m
Concrete Failure 31 CONF Rec31.m
Coordinates 8 COORD Rec8.m
Unit Normal to Crack in 56 CRACK Rec26.m
Concrete
Total Strain 21 E Rec21.m
Total Elastic Strain 25 EE Rec25.m
Energy (Summed over
Element) 19 ELEN Recig.m
Energy Density 14 ENER Reci4.m
Mechanical Strain Rate o1 ER Recgi.m
Whole element volume 78 EVOL Rec78.m
Film 33 FILM Rec33.m
Total Fluid Volume Ratio 43 FLUVR Rec43.m
Pore Fluid Effective
Velocity Vector 97 FLVEL Recg7.m
Gel (Pore Pressure
Analysis) 40 GELVR Recqo.m
Heat Flux Vector 28 HFL Rec28.m
Total Inelastic Strain 24 IE Rec24.m
Logarithmic Strain 89 LE Rec89.m
Nominal Strain Q0 NE Recgo.m
Nodal Flux Caused by Heat 10 NFLUX Recio.m
Plastic Strain 22 PE Rec22.m
Pore or Acoustic Pressure 18 POR Reci8.m
Radiation 34 RAD Rec34.m
Stress 1 S Recii.m
Saturation (Pore Pressure
Analysis) 35 SAT Rec35.m
Section Strain and
Curvature 29 SE Rec29.m
Section Force and Moment 13 SF Reci3.m
Stress Invariant 12 SINV Reci2.m
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Strain Jump at Nodes 32 SJp Rec32.m

Principal stresses 401 SP Recqo1.m
Average  Shell  Section 83 SSAVG Rec83.m
Stress

Element Status 61 STATUS Rec61.m
Section Thickness 27 STH Rec27.m
Thermal Strain 88 THE Rec88.m

Mivakag 0.5: AloTo HETOBANTWV YLX ATIOTEAETUATA TUTIOU «OTOLYEIOU» TIOU
g&ayovtal pe to Abaqus2Matlab.

0.6.3. EmaAn0gvon tov mpoPAnpoarog BeAtiotov oxedlacpuol SikTvwpATOC
10 KOpPwv

[a tnv emaAnbevon tou Abaqus2Matlab ypnowomomOnke pia oepa amo
mpoPAnpoata  PeAtiotomoinong, Omou cuykpivovtal TA OTMOTEAECHOTA  TNG
BiBAoypadiag pe auta mou Sivet to Abaqus2Matlab. Gewpeitar éva emimedo
SiktOwpa 10 kKOPPwv to omoio daivetau otnv Ewova 0.23, pe ta akdAovba Sopukda
XOPOKTNPLOTIKA:

e  Métpo eAaotikdtnrog E = 10,000 ksi
e [lukvotntarho = 0.11b/in3

e Mnxkog L =360in

e  ®oprio P =100 kip

Ot paPBdot tou diktvwpatog Sioxywpilovtor o€ 10 opddeg. Or petafAntég
oxedaopov eivan ta gpPfadd Siatopng twv pdPdwv mou avrkouv oe kdbe opdda.
Ko ta omoiat avrjkouv oto Stdotnua [0.1, 35] (in?). Ot meplopiopoi emPdArovrou
TOOO0 OTIC TAOELG OGO Kal 0TI ToPAHopPwoel Twv Jopik®V ototyeiwv. H péylotn
EMITPEMONEVT) peTaTomion otig StevBivoelg +x kot +y yio kéBe kOppo eivon d_max=
2 in, evw 1 péylotn emtpenopevn tdon (ourdAvtn tipn) eivou sigma_allow= 25 ksi
600 ot edpeAkvopd 600 kot og AT, Ko 1] AVTIKELPEVIKT] ouvaptnon eivon va
gAaylotoomonfei to fApog TOU SIKTUWHATOG, UTTO TOUG AVWTEPW TEPLOPLOHOVG, HE
QTTWTEPO GTOXO TNV OLKOVOUIKOTEPT) KATAGTKEUT).

"’ 360in. B 360in. B
A4_(5) I(3) Iy

’ 3 4 3 (o)
© \lﬂ(P ) 1Pn

V
\

Elkdva 0.23: Mewpetpia kat pOPTLON TOU SIKTUWHATOG 10 KOUBwWV.
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O IMivakag 0.6 mapovctddlel Tow PEATIOTA ATOTEAETHATA TX OTOIQ UTTOAOYIOTIKOV
pe tnv mpotewvopevn Siadikaoia BeAtiotonoinong kot emiong Tov avtioTolo
aplOpd  UTOAOYIOHWV  aVTIKEIHEVIKG  ouvdptnong. To amoteAéopata  Tng
TPOTEWVOHEVIG SadIKATING CUYKPIVOVTOL HE VTIOTOL(X ATTOTEAEGHATH OPLOHEVWV
peAetwyv mov vmapyouvv otn PipAoypadio. [Tpatnpeitar 6t to BéATioTo Bdpog ko
TIpEG Twv petaPAntwv oxedlaopol mou umoAoyiotnkav pe to AbaquszMatlab
Bpiokovto TOAU KOVT& e T QVTIOTO(X QUTOTEAECHATH TOU UTEPYOUV OTN
BiBAoypadia. Qotdoo, eivar mpodoveg dtL 1 mpotevopevn Sadikaoia amoutel
TOAU HIKPOTEPO PLOUO OTATIKWV OVHAUCEWV O OY€on Me GAAeg peBodoug,
TIPOKELHEVOU O aAYyOpLOpoG va dtdoel Toug BEAatioToug oxedlacoUg.

Variables Optimal cross section area (in?)

Design M. Wu & Li et al. Degertekin Degertekin Kaveh et Present

name Sonmez  Tseng (2007) &Hayalioglu (2012) al. (2014)  thesis
(201m) (2010) (2013)

A1 30.548 30.378 30.704 30.429 30.394 30.208 30.5218

Az 0.1 0.1 0.1 0.1 0.1 0.1 0.1

A3 23.18 23.468 23.167 23.244 23.098 22.698 23.1999

A4 15.218 15.196 15.183 15.368 15.491 15.275 15.2229

As 0.1 0.1 0.1 0.1 0.1 0.1 0.1

A6 0.551 0.533 0.551 0.575 0.529 0.529 0.5514

A7 7.463 7-437 746 7-440 7-488 7.558 7-4572

A8 21.058 21.084 20.978 20.967 21189 21.559 21.0364

Ag 21.501 21.433 21.508 21.533 21.342 21.491 21.5284

Ao 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Weight (Ib) 5060.88  5060.45 5060.92 5060.96 5061.42 5062.39 5060.9

Number of
function 500,000 32,100 125,000 16,872 7,081 9,791 347

evaluations

Mivakag 0.6: ATtoteAéopata BEATIOTOU OXESIAOUOU TOU SIKTUWHATOG 10 KOUPWV.

0.6.4. BéAtiotoq oxedlaocpog mpofoiwv Toiywv avtioTpEng YpPORPIKA
eAaotikoV £5adoug e XP1)OT) YEVETIKOU 0AyopiOpov

Yy evotnta autr] g€etdletoan 0 PeAtiotoq oxeSlopog mpOPoAwv  Toiywv
avTIoTpLENG TOU UTOKELVTAL O GEIOUIKT] POPTION KAl ATOKPIVOVTOL [E YPOPLIIKA
gAaotik ovpmepidbopd. H avtikelpevikr) cuvaptnor mou eAXYLOTOTOLEITAL EivaL TO
B&pog tou toixou avtiotipi€ng. Autd eivou mepimou ovAAoyo TOU KOOTOUG
KOTOOKEVT|G TOU, €hO0OV TO TEAEUTAHO €ival YEVIKA Hiot av§ouoo oUVAPTNOT TOU
Bdpoug tou vAkoU kataokeung. H avtikelpevikn ovvdaptnon eloylotomoteitot
UTtoKeipev] og  oxedlaoTIKOUG  TEPLOPIOPOUG.  Ektd¢ amd  toug  ouvnrBelg
TEPLOPLOHOVG IOV EMIPAAAOVTUL OTI( TTEPLOCOTEPEG MEPUTTWOELS PeATIOTOMOINONG
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mapdpolov TUMoU, emiBdAleton évog TPAcOETOC TEPLOPIOHOG TOU apopd TV
neplotpodikny amdkpion tov toiyov. H PeAtiotomoinon mpoyporomoleitan peow
€VOQ  yevetikoU oAyopiBpou, o omoioug €xet 1O xpnoipomomnBel  yio
BeAtiotomoinon mpoPAnpdtwy opootatikol oxedlacol TOAAWDY pHeTaBANTOV Kot
noAUmAokwv meplopopdv (Pei & Xia, 2012). [Napovoidlovroan dvo mepUTTMOEeLg
Sddikaociong PéAtiotouv oxedlaopol, TOU avTICTOKOUV o€ SU0 TIHEG TNG
vopetpikng dtadopdg tou edadikol CTPWHATOG TOU TTPOKELTAL VX VTIOTHPLYOEL:
8m (mepintwon 1) xou 12m (mepintwon 2). To yevikd mpooopoiwpa yi Tig dvo
mepTTWoel; ovtiotnpilewv daivetoaw onv Ewxdva 0.24. AmoteAeiton amd éva
€dadIKO OTPWHX TTOU EKTEIVETAL OTO AMELPO TPOG XPPOTEPESG TIG U0 OPL{OVTIES
kotevOBuvoelg, €xel opilovtat Bdon, kot eivar YnAdtepo oTA AVAVTN TPOG TNV
Betikn katevBuvon, oe oxéon pe v apvntikn katevBuvon. To «okodomdT» Tou
dnuovpyeito avtiotnpileton omd €vav toixo avtiotriping, mov BepeAiwveton oe
SN0, TOTEAOVHEVO ouTO TN «pHUTN» (THAHK KOTAVTN) KL TO «TaKOUVD (THApX
avévtn). H amtdotaon amd tov toixo péxpt to pokpvo medio (kotdven) eivou ion pe
10 $popég To avtiotnp{dpevo Upog. Opoiwg Tpog TV avdvtn katevBuvor.

To amotedéopata twv dvo dadikaowwv PeAtiotonoinong daivovtat otov ITivoxa
0.6. IMopatnpeitoau yevikd 6t1 to Pdbog ko to mAdrog tng Oepediwong tov toiyou
eiva auénpéva otny meEPIMTWOoN 2 o€ oxeon He TNV mepintwon 1. Emiong to idlo
loyVel yix tn PEATioTn TR TG ovTIKELHEVIKNG ouvaptnong. Ot mopoatnprioelg
ouTég oupdwvouv pe t ouvvhnOn SiaioBnomn. To prkog¢ tou Takouvioy Tou ToiXOU
(heel) givou ioo pe to eAdyioTo GpLo o€ ApUdOTEPES TIC TEPIMTTWOELS.

y
tWa”
H
Es v s
X
hemb 0
ttoe theel
& >
d d

toe heel Cu
1.5H

Eikdva 0.24: NMpooopoiwpa Tolyou avtiotrpténg amnd WTALCHEVO OKUPOSEUQ.
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| Case1(H=8m) | Case 2 (H=12m)
Design variables
hemp (m) 7.76 7.16
droe (M) 4.57 6.57
dheel (M) 2.00 2.00
twal (M) 0.20 0.22
ttoe (M) 0.20 0.22
theet (M) 0.20 0.20
Constraint quantities
0 0.328% 0.246%
maxt (kPa) 78.42 88.46
mint (kPa) -131.96 -135.73
minoy, (kPa) -505.98 -592.45
maxoay, (kPa) -122.07 -124.53
Ob,s,max (kPa) 22570.73 21476.85
Ob,t,max (kPa) 4265.33 183.35
Ob,hmax (kPa) 2029.97 2180.68
Ob,s,min (kPa) -23795.84 -23385.15
Ob,t,min (kPa) -7336.37 -8128.82
Ob,hmin (kPa) -2176.36 -2501.06
Algorithm details
Min. value of obj. fun. (m?) 4.47 6.12
Number of generations 73 64
Number of fun.
. 1480 1300
evaluations

Mivakag 0.6: ATtoteAéopata BEATIOTOU OXESLAOHOU YL TIG SUO TIEPLTITWOELG
avTiotnpi§ewy.

0.6.5. BaOpovopnon twv KoTooToTikKwV SI0THTWV TOU UAIKOU €VOG
eAaoctikoV peocw Jadikaciog BerticTtonoinong

Oewpovvtat oL IBopophEc Kot I8I0CUYVOTNTEG OTNV TEPLOXT TWV XAHUNAWV
OUYVOTNTWV TPOKEIPEVOU VO oavamtuyBel €va peaAloTIKO HOVIEAO €AAOTIKOU
QUTOKIVITOU, e Bdon avtiotoyo opBuntikd dedopéva amd tm BifAoypadia.
Avutd emituyydvetou peow piog dadikaoiog feAtiotomoinong, n omoio Tpocoppolet
Sladpopeg KATAOTATIKEG TOPAUETPOUG TOU VAIKOU KOTOOKEUNG TOU E€ANCTIKOU,
oUtw¢g Wote ol 1opopdeg Tou €AXOTIKOU oto PéAtioto onueio va Bpiokovtal
KOVTd oTi¢ mepapatikég (Sedopeveg amo tm PifAoypadia) to meplocdtepo
duvato. Agdopévou Ttou  pikpoU  aplBpov  twv  petaPAntwv  oxedlopo,
xpnotpomomfnkoy amAég pébodol paBnPATIKOU TPOYPAUHATIOHOV YLK TNV EMLAUCT
oV v Tépw TpoPANpatog PeAtiotomoinong. MéBodol mov avrkouv oe awtn TNV
Kotnyopia eivat oL oelplokég peBodol TETPAYWVIKOU TPOYPAUHATIOHOU YLO N
ypoppikég Sdikaoieg BeAtiotomoinong (mou xpnoipomombnkoy oe owtr TV
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gvotnta), ko GAAeg. Tleplocotepeq Aemropépeleq yio outeg tig peBOSoug
napovaotddovrot oo toug Nocedal & Wright (2006).

H Siatopn tov eAaotikov, P235/75R17, daivetan otnv Ewdva 0.25. To edaotiko
amoteAgitor amd ) {Wvr, TO TEAHA, KOl TO TAEUPIKA TOLXWHATK, T OTOio
TPOCOLOLWVOVTAL [E UTEPEANCTIKO UAIKO, QVTITPOCWTEVTIKO TOU Kaoutoouk. To
UTTEPEANOTIKO UAIKO povTeAomoleito pe SUVAIKO evépyelag Tapopdpdwaong
atoteAoUpeEVO amd évav mOAVwVUHIKO 6po (Mooney - Rivlin model). pe oeipd
Prony povadikol 6pou, ylo TV Tpocopoiwaon TG ev Xpovw 1EwS0eAAoTIKOTNTHG
(Bekakos et al., 2016). H {wvn mepiéyel omAIopO U0 OTPWOEWV KX TOV OTTAIOHO
TOU OKEAETOU, OTIOV O TEAEUTNIOG EKTEIVETAU TTAVW KT TNV TEPLOXT TNG {WVNG Kot
KOAUTTEL Toe TAEUpIKE Totywpata. Ot dvo oTpwoelg TG {WVNG Kot 0 OKEAETOG
SlakpiromooUvron  pe  emidpovelokd otolxeior pe  duvarotnTa mapopdpdwaong
otpéBAwong. To xeidog Siokpiromoteiton pe ypoppikd ototyeie cuvdéopou Suo
KOPPWV yiot 0§OVOGUUETPIKEG €TITESEG YEWUETPIESG, KO TO UTOAOLTTO THI AT TG
Saxtopnig Stakpiromolovvtat pe TETPAKOUPIKE Stypaplplikd oTOLXEIX HELWUEVNG
0AoKApwonG pe eAeyydpevo hourglassing.

Belt Region

o

Belt Layer 2

Belt Layer 1

Carcass

Side Walls

Eikdva 0.25: MewpeTpia NULOLATOUTIG TOU EAACTIKOU.

To amoteAéopara tng Siadikaoiag feAtiotonoinong baivovrau otov [Mivaka 0.7.
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.. Wheeler . .
Initial model Optimised et al. Deviation
model (%)
(2005)

Design Variables
Abelt (m?) 2.11868*107 3.64826%107 |N/A -
Acarcass (m?) 4.20835%107 8.01133*10% |N/A -
Cw (Pa) 10° 10° +0.01489 |N/A -

Eigenfrequencies
f, [0,0] (Hz) 36.85 30.86 317 2.66
f, [0,0] (Hz) 37.17 35.85 35 2.43
f5 [1,1] (Hz) 43.85 36.92 37.8 2.33
fy [1,1] (Hz) 43.85 36.92 37.8 2.33
fs [1,0] (Hz) 65.07 58.75 58.5 0.43
fe [1,0] (Hz) 65.07 58.75 58.5 0.43
f, [2,1] (Hz) 76.33 68.41 66.1 3.49
fs [2,1] (Hz) 76.33 68.41 66.1 3.49
fy [2,0] (Hz) 86.65 78.67 79.5 1.04
fo [2,0] (Hz) 86.65 78.67 79.5 1.04
fu [3,0] (Hz) 104.36 06.42 97.6 1.21
f. [3,0] (Hz) 104.36 06.42 97.6 1.21
fi; [3,1] (Hz) 117.07 107.9 102.7 5.06
fi4 [3,1] (Hz) 117.07 107.9 102.7 5.06
fis [4,0] (Hz) 122.65 114.9 115.9 0.83
fi6 [4,0] (Hz) 122.65 114.9 115.9 0.83

Algorithm Details
Min. value of 3
obj. function i 59 i i
Number of obj.
function - 25 - -
evaluations

MNivakag 0.7: AmoteAéopata g Stadikaoiog BEATIOTOTOMONG TWV LOLOTLUWY TOU
geAaoTtikov Tou e€eTdleTOL OTNV TTAPOVOA EVOTNTA.

AMeg edpappoyéc tou AbaquszMatlab mou mapovcidlovron otnv mapolvoo
SratpiPr) eivou o1 €€ng:

BéAtiotog oxediaopdg evavtt Auytopol oKWV pe TOAAXTAEG SIAUNKELS EVIOYUTELG
oTn SLTOWT), UTTOKEIHEVT) 08 oUVOVATHEVT) KApPn Kot SidTunon

[TpéPAedn tou cuvtedeotr) AUylopHOU EVIOCXUHEVWV SOKWV pe xprion oAyopiBpwv
PaBidg pnxavikng pddnong

M vmoAoylotikn) péfodog yir ™ Sie€orywyr] pn YPOUPHIKWV TPOCKPHOCTIKWOV
avoAvoewv pushover kataokevwv pecw mposopoiwong Abaqus
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0.7.

SUpTEPAC AT

To kUplo cupmepdopata tng mopovoag SlTplfng eivat Ta akdAovBo:

H owoyévelr aAyopiOpwv pn  YPOWPIKAG  YEVIKEUHEVIG €V XPOVW
0AOKANpwONG, amAoU PBriHatog oatAng Avong mou avamrtuxOnkov mepiéyet
aAyopiOpoug moAU amoteAsopatikoi akpiPeic katl gvotabdeig, aKOPX Kol pe
avénuevo péyefog ypovikol PriHatog OAOKANpwONG, €V oL aAyopilOpot
ouvexoug emitdyuvong, mou meplthapPavouvv t pébodo HHT-a wg edikn
nepintworn, divouv ta mo okpiPr] TOTEALCHATA YIX TI( TEPLOCOTEPES
TEPUTTWOELS TTOU PEAETHONKV.

AvarttoyOnke véo Aoylopiko eneéeyooiag Lloxupwv edadIKWY KIVIIOEWY, TO
omoio umeployVel o aKPIPelt 0 OPIOUEVEG TEPITTWOEL], AOYw XPNONG
TPOXWPTHEVWY  OAYOPIOHWY  TOPAETPOTOCIHWY  (DOTE VX €XOUV
eleyyopeveg 1810tnteg  oplOunTikng  amooPeong, Siaokedaopol kot
urtepakovtiopov. Exel 8e to peydAo mAgovéktnpa tov dwpedv mpoosPaoipou
QVOIKTOU  KWOIKA, TOU TO KOVEL OKVAPTAOTO YL EPEVUVITIKOUG KOl
d18axktikolg oKOTOUG.

Amodekvietou dtL umtdpyouv povadikég PeAtioteg katavopeg dvokoppiog
OLOVEL YPOPIKOU GYIHATOG, Yiot TNV Opotopopdn Kotoavour ko’ vog tng
evepyelag EWO0EANOTIKIG KOl UOTEPNTIKNG otdoPecng o €ANOTIKA Kol
eAaotomAaotika emimeda SatpunTikd ktipi. H opotdpopdn karavoun g
EVEPYEIG amOcPeonG  TapExel  qUENMEVI)  AOPAAEl  €vavTL  OAIKNG
KOTAPPEVONG KUTA TN SIAPKELN LOXUPWY CELTHIKWV YEYOVOTWV.

Elodyetar 1 kouvotopa €vvola Tng YPOXHHIKNG KoatevBuvong evog pn
YPOHHIKOU  aAyopiBpou  PBeAtiotomoinong mou  odnyel oe  Paociki
gfolkovopnon UmoAoyloTikov  GOpTou  ylot TR AUCT)  HI YPOHUIKOV
poPAnpdtwy BeAtiotomoinong.

AmodelkvieTo OTL OL TEXVNTEG CEICHIKES KATOYPOADES TTOU THUPAYOVTAL LE TN
peBodoroyi tou kedbaAwiov 5 g mopovoag SwxTpPrig eivon MO
PEAALOTIKEG VIO TOV OVTICEIGHIKO OYESIOPO TWV KATOOKEVWY, OE OXE0T) LE
TIG TEXVNTEG KaTaypod€g TOU TopAyovTal [E TIG UTtdpyovoes HeBddoug.

Amodewkvietou 6tL to Abaqus2Matlab, éva véo Aoylopiko mov avamtiyOnke
Koo TN SLdpKelx eEKTOVNONG TG Tapovoog Stpifrig, (e KUPLO oKOTO TNV
emilvon  mpoPAnudtwv  PeAtiotomoinong,  eivan  epwoto Ko
AMOTEAECUATIKO, €DUPUOCIHO OF M HEYOAN TOKIAIQ TpoBAnpdTwy
HIXOVIKOU.

O «xUplog okomdg TG mopovoag dxTpPrig eivor va OeleADOEL KOUUVOTONES

peBodoAoyieg yl TO OYeSIHOUO TWV KATACKEVWYV PBACIOHEVO OTIG SUVAHLIKEG TOUG
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(1010TNTEG KL TN OELOUIKT] TOUG AITOKPLOT] HE TN XP1IOT) TPONYHEVWY UTTOAOYLOTIKWV
pefodwv.
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Chapter 1

1 Introduction

1.1 Motivation

The design of any structural system aims to minimize its construction and
operational costs and improve its structural performance. In this regard,
engineers use either simple design rules based on experience, or structural
optimization procedures in order to improve or optimize the design. It is obvious
that this task is often difficult, given the large number of parameters that affect
the design and the overall complexity of structural response.

Direct time integration (or time stepping, or step by step) methods are a widely
used approach to solve dynamic linear or nonlinear response analysis problems.
In these methods the equilibrium equations are satisfied at discrete time points
(or steps) of the loading and the response history. The response during each step
is calculated from the displacement and velocity at the beginning of the step and
from the history of loading during the step. Thus the response for each step is an
independent analysis problem. The dynamic direct time integration methods
have to satisfy certain criteria in order to be suitable for the integration of the
differential equation of motion in the linear or nonlinear regime. In linear
dynamic response, emphasis is given in accuracy, whereas in nonlinear dynamic
response numerical stability is of primary interest. The large number of criteria
that have to be satisfied has led to the development of dynamic time integration
algorithms the results of which depend highly on the nature of the problem
considered, i.e. while any algorithm may be suitable for dynamic analysis
involving a specific time stepping and/or constitutive model, it may be
inappropriate for dynamic analysis involving different characteristics of the two
aforementioned factors. The classification of the various direct time integration
algorithms into categories highlights this fact. From the aforementioned points,
it is obvious that there is the need for the development of a direct time
integration algorithm that will be able to be universally applied to any dynamic
structural analysis problem. Among the goals of this thesis, is to cover this need.
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The optimization methodologies can be widely classified in the following two
generic formulations:
i. Deterministic Optimization;

ii. Stochastic Optimization.

Algorithms of the first category proceed towards the optimum solution by
following a specific path. Apart from the value of the objective function, they
need additional information at each point to determine the direction in which
they will proceed. On the contrary, algorithms of the second category use only
the objective value and are able to find the global optimum in a stochastic way. In
Chapter 4 of this thesis a new algorithm of the first category is developed which
involves an innovative way to obtain additional information in each evaluation
point of the path towards the optimum, whereas in Chapter 5 a new algorithm of
the second category is presented which is able to handle the optimization
problem considered.

1.2 Objectives and scope

The goal of the thesis is the development of innovative computational techniques
for the optimum design of structures which respond due to dynamic (seismic)
loading. Also, the necessary numerical tools for the implementation of the new
computational techniques are provided. This is achieved by (a) developing
methodologies for the direct step by step integration of the differential equations
of dynamic equilibrium in the time domain, (b) the development of a
computational tool for processing of raw strong-motion acceleration time series
to produce compatible acceleration, velocity and displacement time series,
acceleration, velocity and displacement elastic and inelastic response spectra,
Fourier amplitude spectra, and standard earthquake-engineering intensity
measures, (c) development of a novel iterative optimization algorithm of Newton
type with line search capabilities, especially designed for linear elastic and
elastoplastic shear buildings, which finds the optimum distribution of storey
stiffness and strength for a prescribed fundamental (small strain) eigenperiod of
the building, so that the distribution of dissipated energy along the height of the
building becomes uniform, (d) development of a mixed real - integer genetic
algorithm with appropriately customized genetic operators for the optimization
of the ground motion acceleration time histories used for the dynamic analysis of
structures in the framework of their seismic design, enabling in this way the more
realistic seismic design of structures, and (e) the development of a new software,
Abaqus2Matlab, which serves to integrate Abaqus and Matlab for various
optimization procedures including, but not limited to, optimum structural design
based on the dynamic properties and dynamic response of a structure. This
interface between these well-known codes not only benefits from the image
processing and the integrated graph-plotting features of Matlab, but opens up
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new opportunities in results post-processing, statistical analysis and
mathematical optimization, among many other possibilities.

For the efficient solution of the aforementioned problems, efforts have been
made for maximizing accuracy while retaining the computational effort as low as
possible, through the optimized implementation of the various algorithms and
their associated codes.

All the issues described above have been addressed in the thesis, as will be
described in detail in the following chapters. Furthermore, via numerical
applications of realistic design problems the proposed computational framework
is evaluated and tested. The original contribution of the thesis is presented in
detail in Section 7.1 of the Conclusions (Chapter 7).

1.3 Organization and outline

The thesis consists of six chapters in total, plus the bibliography and three
appendices at the end of it. Its structure is organized as follows:

Chapter 1 is the introduction of the dissertation which provides a general
description of the motivation, the goals pursued, as well as a brief description of
the contents of each chapter.

Chapter 2 introduces a generalized dynamic time - integration algorithm
framework for non-linear structural dynamics. The nonlinear versions of the
General Single Step Single Solve time integration algorithms’ family are
formulated and outlined in an explicit flowchart which describes the nonlinear
integration procedure in detail. Afterwards the various algorithms are applied to
some benchmark dynamic analysis problems.

Chapter 3 presents the development of OpenSeismoMatlab, which is an
innovative open-source software for strong ground motion data processing,
written in MATLAB, and is based on the family of the dynamic time integration
algorithms presented in Chapter 2. This software is capable of processing of raw
strong-motion acceleration time series to produce compatible acceleration,
velocity and displacement time series, acceleration, velocity and displacement
elastic and inelastic response spectra, Fourier amplitude spectra, and standard
earthquake-engineering intensity measures.

In Chapter 4 a new optimization concept is introduced which involves the
uniform distribution of the dissipated seismic input energy among the various
storeys of an arbitrary planar shear building. This is achieved by appropriately
adjusting the stiffnesses and strengths of the various storeys of the building. The
optimization technique uses a gradient method based on equivalent linear
structures, instead of the traditional practice of calculating the gradients from the
nonlinear objective function. The family of the direct time integration algorithms
presented in Chapter 2 is used for the dynamic analysis required for the
estimation of the dissipated seismic input energy.



4 Chapter 1

Chapter 5 introduces a novel spectra-matching framework, which employs a
linear combination of raw ground motion records to generate artificial
acceleration time histories perfectly matching a target spectrum, taking into
account not only the acceleration but also the seismic input energy equivalent
velocity. The optimization procedures employed in Chapter 5 use solvers that
involve the use of OpenSeismoMatlab, among others.

Chapter 6 presents a novel software, Abaqus2Matlab, that connects Abaqus, a
sophisticated finite element package, with Matlab, the most comprehensive
program for mathematical analysis. Abaqus2Matlab is used for various
applications, including the optimum design of a retaining wall based on its
seismic response, and the inverse analysis for the calibration of the constitutive
properties of a tyre based on its dynamic properties.

Chapter 7 contains the conclusions, the original contribution of the thesis, and
directions for future research.

Finally, the bibliography is presented followed by Appendix A which contains a
listing of publications by the author. Each Chapter is accompanied by its
corresponding references and notation.
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2 A Generalized Algorithm Framework
for Non-Linear Structural Dynamics

2.1 Introduction

In this chapter a generalized time integration algorithm that incorporates several
well-known algorithms as special cases is extended into the nonlinear regime.
The behavior of the algorithm during the time integration of the equation of
motion of nonlinear dynamic structural problems is studied. After a literature
review of the available time integration schemes used for problems of nonlinear
structural dynamics and of the family of linear GSSSS algorithms, the nonlinear
schemes are formulated and outlined in an explicit flowchart which describes the
nonlinear integration procedure in detail. Afterwards, the nonlinear family of
algorithms is applied to six elementary benchmark SDOF problems involving the
dynamic response of SDOF systems with various stiffness and damping
properties, as well as to two advanced benchmark problems, which involve a 3dof
structure representing finite element systems containing rigid connections,
penalty factors and other such types of constraints and a simple undamped
pendulum with large rotations.

The dynamic analysis of engineering structures under dynamic loading
(earthquake, impact, etc.) with the finite element method results in a set of
ordinary differential equations as follows:

Mi+p(u,u)=f(t) (21)
where M is the mass matrix, p is the internal force vector, which is in general a
nonlinear function of the displacements U and velocities U and is equal to the

sum of the forces in the structure due to stiffness and damping, and f is the
external force vector which is a function of time t. In the case of a linear elastic

structure with viscous damping p(u, U) is equal to:

p(u,u)=Ku+Cu (2.2)
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Where K is the stiffness matrix and C is the damping matrix, both of them
independent of the displacement and velocity. Linear equations of dynamic

equilibrium of the form of (2.1) in which p(u, U) is given by (2.2) can be solved

using various superposition methods in the time or frequency domain, which
greatly simplify the problem. However, in dynamic analysis of nonlinear
response, superposition cannot be used and one has to resort to step-by-step
methods.

Direct time integration (or time stepping, or step by step) methods are a widely
used approach to solve dynamic linear or nonlinear response analysis problems.
In these methods the equilibrium equations are satisfied at discrete time points
(or steps) of the loading and the response history. The response during each step
is calculated from the displacement and velocity at the beginning of the step and
from the history of loading during the step. Thus the response for each step is an
independent analysis problem.

The most common characteristics of time integration schemes are the following:
. Stability. An integration scheme is said to be stable if the numerical
solution, under any initial conditions, does not grow without bound. An
algorithm is unconditionally stable for linear problems if the convergence of the
solution is independent of the size of the time step, that is, the errors are not
amplified from one step to the next no matter how long a time step is. In
mathematical terms, numerical stability is provided, when the spectral radius p

of the amplification matrix A defined by:

S S
UAt UAt

UAt? | = Al UAL? (2.3)
TRV R TN

is not more than unity throughout the dynamic analysis, i.e.
p=max(|kl|,|k1|,...,|la|)Sl (2.4)
where d denotes the order of the derivative of U and A,A,,..,A, are the

eigenvalues of the amplification matrix A.

. Convergence. An integration scheme is convergent if the numerical
solution approaches the exact solution as the size of the time step tends to zero.
Suppose that the error is defined as follows:

E= HuAt _ et (25)

where u” is an approximation of U depending on the time stepAt, and “ H

denotes an arbitrary norm. If the following relation holds:
ImE=0 (2.6)

At—0
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and there is a convergence trend shown as a straight line with positive integer
slope in the Iog(E) versus Iog(At) plot, as shown in Figure 2-1, then the
integration scheme is said to be properly convergent, whereas the slope q is the
order of accuracy of the integration scheme. If there is not any piece of the
log (E) versus |09(At) curve which is linear with positive integer slope, then the

integration scheme is said not to be properly convergent.

log(E) 4 L

q is integer
L>o: proper convergence
L=o0: improper convergence

—00 log(At)

Figure 2-1: Typical variation of error with time step size for converging approximate
time integration algorithms.

. Accuracy. The order of accuracy of a time integration scheme is the largest
positive integer q for which the following relation holds:

i i —uiy]

lim-———=0 (2.7)

At—0 Atl_l q ~
At

where At; is the time step size at iteration i of the equation limit (2.7). Two

numerical errors are associated with the accuracy of any algorithm: (a) numerical
dispersion (often expressed in terms of period elongation) and (b) numerical
dissipation (often expressed in terms of either the amplitude decay or the
algorithmic damping ratio). Although the order of accuracy is conceptually
independent from the numerical stability, there is some relationship between the
two, in the form of various restrictions, e.g. Dalquist Barriers (Wood, 1990).

. Algorithmic dissipation. It is a kind of filtering of the higher frequency
oscillations, necessary to eliminate the spurious high frequency modes inherent
in a finite element mesh. For a SDOF system, the plot of the amplitude of the
spectral radius p of the amplification matrix A, with respect to wAt (or
equivalently At/T), represents the capability of the time integration scheme to
damp out the higher modes of a finite element model, which are sometimes
introducing considerable error in the response. If p <1, smaller values of p entail
larger degree of elimination of the higher frequency oscillations. p=0means
complete elimination (see Figure 2-2).

. Self-starting. This type of algorithms requires data from two time steps to
proceed the solution. If data from more than two time steps are needed, the
algorithm must be implemented with a starting procedure.
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Pinf = 0: complete elimination of
p (b) higher modes
(a): unconditionally stable
(b): stable for At<At,,

(a)

Ping [T

At At

T T

Figure 2-2: Typical variation of spectral radius with At/ T for conditionally and
unconditionally stable time integration algorithms.

. Overshooting. It is the tendency of an algorithm to exceed heavily the
exact solution in the first few time steps, but eventually to converge to the exact
solution.
Taking into account the above characteristics, a time integration scheme should
have the following desirable features (Zhou & Tamma, 2004):
e Unconditional stability.
e At least second-order accuracy in time.
e No more than zero-order displacement and velocity overshooting behavior
with minimal numerical dissipation and dispersion.
e Self-starting features with no more than one set of single-field system of
implicit equations to be solved at each time step to include ease of

implementation and computational simplicity.

Regarding linear dynamic response, accuracy is the main concern, since many
time integration algorithms are unconditionally stable. However, algorithms
which are unconditionally stable for linear dynamics, often lose this stability for
nonlinear dynamics, and therefore numerical stability is of primary interest in
such cases.

In this chapter, after a concise literature review about the numerical direct time
integration algorithms applicable to the dynamic equilibrium equations of
structural analysis of the form (2.1), a modification of the group of general single
step single solve algorithms is presented, which can account for nonlinear
dynamic response. This group of algorithms has already been published in the
literature (Zhou & Tamma, 2004), but only for the case of linear dynamic
response. The modification consists of introducing a Newton-Raphson iterative
procedure inside each increment (or time step). Afterwards, the modified
algorithm is applied for the direct time integration of the equation of motion (in
the form of eq. (2.1)) of nonlinear dynamic systems the details of which can be
found in section 2.2. The effect of all the characteristics of the various integration
schemes used, as presented above, on the resulting dynamic response is studied
and the relative performances of the various time integration schemes used are
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compared. Apart from its robustness in solving nonlinear problems, it is proved
that the algorithm can be designed to cope with cases with any degree of
nonlinearity.

The simplest direct time integration method for dynamic analysis is the
piecewise exact method in which the equation of motion is solved exactly for
linear loading during each time step, in which it is assumed that the actual
loading history has constant slope (Clough & Penzien, 2003). Although the
equation of motion is solved rigorously during each time step, the linear
interpolation of the excitation function introduces some error into the calculated
response; this can be eliminated either by reducing the length of the time step, or
adjusting it so that the introduced loading history fits best the actual one.

The numerical direct time integration schemes can be classified as either
explicit or implicit. An explicit scheme is one in which the response values for the
next step are calculated only from quantities belonging to the current step. On
the other hand, an implicit scheme is one in which the expressions giving the
values for the next step include one or more values of the next step, and therefore
successive iterations are needed to arrive to the solution for the next step.
Implicit methods lead in general to increased computational effort, although it is
possible for some of them to be converted into an explicit formulation.

Algorithms that require two or more implicit systems to be solved

simultaneously at each time step have improved properties (Argyris et al., 1973),
but they require twice or more the computational effort of the simple implicit
systems.
Another classification that can be made is according to the formulation used to
ensure conservation (or decay) of energy within a time step which is a sufficient
condition for algorithmic stability (Kuhl & Crisfield, 1999). This energy criterion
is summarized in the following inequality:

(Un+1+Kn+1)_(Un +Kn)SWext (2-8)
where U and U, represent the strain energy at the beginning and at the end of

the time step respectively, K, and K, are the corresponding kinetic energies
and W,

|« Tepresents the work done by external forces within the time step. This
classification results in the following three categories of algorithms which satisfy
inequality (2.8):

e Algorithms which employ numerical dissipation. The algorithms considered
in the present chapter fall in this category.

e Algorithms extending others by using constraints of energy conservation
imposed via Lagrange multipliers (Constraint Energy Method), the first of
which was presented in (Hughes & Caughey, 1978).

e Algorithms which enforce energy conservation algorithmically such as the
energy-momentum method presented in (Kuhl & Ramm, 1996). One of the

first algorithms of this category was presented in (Simo & Tarnow, 1992). In
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the absence of external loading these algorithms are designed to obey the
following laws:

dL, =0, %20, %SO (2.9)
dt dt dt

. . . tot .
where L, is the linear momentum, J, is the angular momentum and E; is the

total energy. Combinations of algorithms of different categories from the above
have also been made, such as combinations of numerical dissipation algorithms
and algorithms ensuring energy conservation algorithmically presented in (Kuhl
& Crisfield, 1999; Armero & Petbcz, 1996).

Due to the lack of a general time integration algorithm suitable for various
complex nonlinear dynamic structural systems, attempts have been made to
combine two or more known algorithms into new more efficient ones. This
concept of composition is another alternative for the construction of time
integration schemes which possess desired properties, depending on the
properties of the parent algorithms being combined. Algorithm composition can
be done in two main ways:

e Each time step is divided into two or more substeps, at which different
independent integration schemes are applied. Equilibrium is satisfied at
each time substep. The final solution depends on the algorithms used as
well as on the way of partition of the time steps. The most representative
method is presented by Bathe and his collaborators (Bathe, 2007; Bathe &
Baig, 2005; Bathe & Noh, 2012) in which the trapezoidal rule is combined
with a three-point backward difference method in two equal substeps.
Generally, different ways of segmentation of the integration steps into
substeps require additional parameters to be introduced (Matias Silva &
Mendes Bezerra, 2008).

e Different difference formulae are combined in one whole time step to
inherit their advantages. Representative algorithms of this category have
been presented in (Liu et al., 2012; Rezaiee-Pajand et al., 2011; Fung, 1998).
For example, Liu et al. (2012) have proposed an efficient backward Euler
time integration algorithm by composing the two point and three-point
backward Euler formulae, which is a self-starting, two-step, second-order
accurate algorithm with the same computational effort as the trapezoidal
rule. However, with the increase of ratio At/ T, this method results in the
largest amplitude decay and period elongation, compared to Newmark,
Bathe and Alpha methods.

An additional category of methods to solve time dependent problems is the
family of temporal discretization techniques, adopted by approximation of a
continuous time interval with temporal finite elements. The Whole Element
Method (WEM) in which time is incorporated along with the other spatial
variables into a direct variational method is outlined in (Rosales & Filipich, 2002).
A time-discontinuous Galerkin (TDG) method was presented by Li & Wiberg
(1996) whereas a mixed finite element method was developed by Fung et al.
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(1998). Similar time integration algorithms have been developed by Argyris &
Scharpf, 1969; Gellert, 1978; Riff & Baruch, 1984a, 1984b; Golley, 1996; Chien &
Wau, 2000; Bar-Yoseph, 2000.

2.2 Modified nonlinear time integration algorithm

2.21 The linear generalized single step single solve algorithm

The equation of motion of a Single Degree of Freedom (SDOF) linear structure
is given by the combination of the linear SDOF counterparts of (2.1) and (2.2):
M (t)+Cu(t)+Ku(t)=F(t) (2.10)
with initial conditions:
U(0)=UO, U(O):UO (2.11)
Equation (2.10) can be applied to MDOF structures, given that the latter can be
decomposed into a finite number of SDOF structures using various superposition
methods. In (Zhou & Tamma, 2004) a family of general single step single solve
(GSSSS) algorithms, namely algorithms which do not involve matrix
multiplications and involve only one single system solve in a single time step is
studied. A single size of the system refers to the number of degrees-of-freedom
resulting from its spatial discretization. It is shown that the Dahlquist theorem
(Dahlquist, 1963) holds not only for the linear multistep methods (LMS), but also
for the general single step single solve (GSSSS) time integration algorithms,
which are spectrally identical to the former. This theorem states that a GSSSS
algorithm which is unconditionally stable, can be at most second order accurate.

According to the theory presented by Zhou & Tamma, (2004), equation (2.10)
can be represented as a time weighted residual as follows:

:AW(MU+CU+Ku—f)dt (2.12)
where the weighted time field is assumed to be of the form
W =1+w,I+w, I +w,I? (2.13)
and:
=t/At, t=t-t, At=t , -t (2.14)

The dependent field variables (U, U, i) can be approximated by the following
asymptotic series expansions:

u=u, +AU, t+AU T°+A, 22— (2.15)
At
W N u,,—u
U=u, +A,0 t+A, —L—"1? (2.16)
At
U=U,+A, —"1 (2.17)

At
and the load vector is expanded to first order via a Taylor series:
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f=f, +Mr (2.18)
At
The updates of displacement and velocity are given by the equations:
Uy = Uy +A,0, AL+ A,U, AL 44, (U, — U, ) AL (2.19)
Uy, =0, +A,U A+ (U, — U, ) AL (2.20)
The update of acceleration is given by substitution of equations (2.13) to (2.20)
into (2.12) as follows:

(psM + p CAt + p, KAt )

-M (un _MSUn)
—C (U, +p,U, At —pgli At) (2.21)

ndl T

—K (U + py0, At + G AL — i, AL
+(1_ Wl)fn + Wlfn+1

or in a simplified form:

~ ~

MUM ~n (2.22)
where
F, (K,Cf)=-M(t, —peli, ) =C (0, +p,U,At - pgli At)
_K(un + 1,0, At +p, i At _HsunAt2)+(1—Wl)fn WS (2.23)
and
M (K, C)= ;M +p,CAL+ KA (2.24)

The subscript of F, denotes the time step at which the quantities U, U, U are

evaluated for its calculation. The time step at which K, C and f are evaluated is
denoted by a separate subscript placed at these quantities. The constants W, are

given by:

3
W, = 1+| 11+I+j1 i=123 (2.25)

1+Z

There are 12 independent integratlon constants that are needed in order to apply
equations(2.21), (2.19) and (2.20) to proceed to the next step. These are W,, n,,

1+j

Wy, Mg, Mg» Us, Mg, Ay, Ay, Ay, Ay, Ag. Each combination of these parameters

defines a unique algorithm, and can be considered in some way as the algorithm’s
signature. Many known time integration algorithms, which will be presented
later, result from suitable selection of these parameters. In the study by Zhou &
Tamma (2004), the integration parameters are calculated by imposing several
different constraints to the algorithm, regarding order of accuracy, overshooting
behavior (in terms of displacement and velocity orders), spurious roots at the
high and low frequency limits, dissipation and dispersion properties, bifurcation
of the principal roots, etc, which results in the derivation of ¢ different
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algorithms belonging to the above family. In this chapter, W, is calculated

directly from (2.25), after specifying the parameters w,, W,, W,, so the number

of integration constants needed is 14.

2.2.2 Design of the linear generalized single step single solve algorithm -
special cases

An algorithm is termed to have the property of continuous acceleration, if the
acceleration U, , calculated at t=t, satisfies the equation of motion (strong

form) at t=t_ . Otherwise, the algorithm is termed to have the property of

discontinuous acceleration (Zhou & Tamma, 2004).

The procedure for designing the algorithm presented in the previous section to
apply it to time integration problems (i.e. setting its 14 integration constants), is
presented by Zhou & Tamma (2004). The algorithms of the generalized single
step family are shown in Table 2-1.

The values of the integration constants are shown for various known integration
schemes in tables. In Table 2 the parameters of the central difference method, the
general family of Newmark methods (Newmark, 1959), the Average Constant
Acceleration method (Newmark, 1959), the Linear Acceleration method
(Newmark, 1959), the Backward Acceleration Method (Ascher & Petzold, 1998),
and the Fox-Goodwin formula (Fox & Goodwin, 1949) are shown. In the case of
the general family of Newmark methods, B and y are the well-known Newmark
constants. In Table 2-3 the parameters are given for the zero-order displacement,
first-order velocity overshooting algorithms, presented by Zhou & Tamma (2004).
It has to be mentioned that the formulas presented in Table 2-3 correspond to
three special cases of these zero-order displacement, first-order velocity
overshooting algorithms, namely the generalized a-method, the HHT-a method
and the WBZ a-method, presented in Chung & Hulbert, 1993; Hilber et al., 1977;
Wood et al., 1980) respectively. In order to evaluate the integration constants, the
spectral radius p_, which is the minimum absolute value of the principal roots of

the amplification matrix at the high-frequency limit, has to be first assigned a
desired value, which must lie in the range given at the first row of Table 2-3,
Table 2-4 and Table 2-5. If p, =1, the resulting algorithm is non-dissipative. In

Table 2-4 the parameters of the zero-order displacement and zero-order velocity
overshooting algorithms are presented (Zhou & Tamma, 2004). Table 2-5 shows
the parameters of the first-order displacement and zero-order velocity
overshooting algorithms. If p_ =1, the first-order displacement, zero-order

velocity, optimal numerical dissipation and dispersion, the first-order
displacement, zero-order velocity, continuous acceleration and the first-order
displacement, zero-order velocity, discontinuous acceleration algorithms recover,
the first the mid-point rule a-form algorithm, and the two last the Newmark
average acceleration a-form algorithm. In Table 2-2, Table 2-3, Table 2-4 and
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Table 2-5, the number inside the angle brackets after the name of each algorithm
is the number with which the algorithm is referred to in this chapter. This is done
merely for easy identification of each algorithm throughout this chapter.

2.2.3 Modification of the linear algorithm for nonlinear dynamic response

In this section the family of generalized linear algorithms presented above is
modified to account for materially nonlinear dynamic response. In general, to
proceed from the current step (U U, ) to the next time step (U ! u

u u

n> “n> n+l> ~n+l> “n+l
), the secant stiffness and damping matrices are needed, which usually depend on

u,,, and U, ,. Since the latter are unknown, the tangent stiffness and damping

matrices are calculated and iterations are performed to arrive to a converged
solution. Convergence is attained via a Newton-Raphson iterative procedure. In
some time integration algorithms, this iteration is avoided by using the initial
tangent matrices instead of updating them, even though this approximation is
not correct in principle.

The outline of the modified nonlinear time integration algorithm used in this
chapter is shown in Figure 2-3. The given data are the mass, stiffness and
damping properties of the SDOF oscillator and the imposed external force,
denoted by M, K, C, f respectively. Note that the various quantities
correspond to a MDOF system in general; this means that U, U, U, f are column
vectors, and M, K, C are square matrices. The symbol ./ denotes right array
division, namely the division of two vectors of the same size in an element by
element fashion.

Before the application of the algorithm, the necessary integration constants are
calculated and the maximum tolerance tol ., and the maximum number of

iterations until convergence Kk . are set.
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Displacement | Velocit
Method P ) ¥ .
overshooting | overshooting | Type
name
order order
optimal numerical
Uo-Vo-Opt | o ) dissipation and
dispersion
continuous
Uo-Vo-CA | o o) )
acceleration
discontinuous
Uo-Vo-DA | o o] )
acceleration
optimal numerical
Uo-V1-Opt | o 1 dissipation and
dispersion
continuous
Uo-Vi-CA o) 1 )
acceleration
discontinuous
Uo-Vi-DA | o 1 .
acceleration
optimal numerical
Ui-Vo-Opt |1 0 dissipation and
dispersion
continuous
Ui-Vo-CA 1 o) )
acceleration
discontinuous
Ui-Vo-DA |1 o) .
acceleration

Table 2-1: Algorithms of the generalized single step single solve (GSSSS) family.
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. Newmark Newmark Fox-
Family of Newmark )
Average . Backward | Goodwin
Central Newmark Linear .
) Constant ) Acceleration | formula
Difference | Methods ) Acceleration
Method | (Newmark Acceleration (Newmark (Ascher & (Fox &
1050) | (Newmark, 1950) ’ Petzold, Goodwin,
1959) 1998) 1949)

Wi -15 -15 -15 -15 -15 -15

wa 45 45 45 45 45 45

W3 -35 -35 -35 -35 -35 -35
|.l1 1 1 1 1 1 1

1 1 1
Ha 0 p 4 6 2 o
1

Hs 0 B % % A %2
1 1 1 1 1

Ha 2 Y A A A A
1 1 1 1 1

| Y % % % %
He 1 1 1 1 1 1
A 1 1 1 1 1 1
1 1 1

1 7 % % : %

A o B % % % %2
A4 1 1 1 1 1 1
1 1 1 1 1

N Y % % % 7

Table 2-2: Integration parameters for various known time integration schemes.
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Uo-Vi-Opt (Chung | U,-V,-CA (Hilber et | U,-V,-DA (Wood et
& Hulbert, 1993) al,, 1977) al., 1980)
P, |[o 1] [1/2 1] [o 1]
W, _15l=2p. _q5i=2p. 5
1-4p, 2-3p,
W, 153=4P. 152=°P: 45
1-4p, 2-3p,
1-p 1-3p
~35—P= 35— i
W 1-4p, 2(2-3p,) 35
1 2p,,
H 1+p, 1+p, !
1 P, 1
B 2@p,) l+p, 2
1 2p, 1
3 2
B (1+p,) (1+p.) (1+p.)
1 2p,,
Ha 1+p, 1+p, !
3-p, p.(3-p.) 3-p,
s | 2(1+p, ) (1+p.) 2(1+p..)
2-p., 2
Ho 1+p, ! 1+p,
A 1 1 1
1 1 1
A= = =
2 2 2
1 1 1
A e,y (L+p, ) (L+p, )
A |1 1 1
3-p, 3-p, 3-p,
A | 2(+p,) 2(1+p,) 2(1+p,)

Table 2-3: Integration parameters for zero-order displacement, first order velocity
overshooting algorithms.
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Uo-V,o-Opt <8> Uo-Vo-CA <9> U,-Vo-DA <10>
P, |[o 1] [1/3 1] [0 1]
1-2p 1-5p
-15———= -15——= _
Wi 1-4p, 3-7p, 15
3-4p 1-13p
15 ® 15 ®
1-p P
-35—= 140 —=— _
W 1-4p, 3-7p, 35
1 1+3p,
Mo 14p 2(1+p,) !
1 1+3p, 1
K 2(14p,) 4(1+p,) 2
1 1+3p,, 1
B 1 2(14p, ) 4(1+p, ) 2(1+p,)
1 1+3p,,
Ha ) 14p 2(1+p,) 1
1 1+3p,, 1
s 2 o V2
(1+p.) 2(1+p,) 1+p,
3-p, 3+p,,
He 2(1+pm) 1 2(l+pm)
A1 1 1
1 1 1
12 2 2
1 1 1
A | 2(1ep,) 2(1+p, ) 2(1+p, )
Ay |1 1 1
1 1 1
As 1+p, 1+p, 1+p,

Table 2-4: Integration parameters for zero-order displacement, zero order velocity

overshooting algorithms.
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U,-V,-Opt <11> U,-Vo-CA <12> U,-Vo-DA <13>
P. | [o 1] [1/2 1] [0 1]
— : - 2 3-4
wi | =30 3-8p, + 6po02 60 2-8p, +7p., : 30 P,
9-22p. +19p2 11-48p_ +41p> 9-1lp,
25-74p, +53p> 37-140p, +127p° 25-37p,
w, | 15 | 15 = | 15
2(9-22p,+19p2) | 2(11-48p, +41p%) | 2(9-1lp,)
~ : - ’ 3-5
w, | 35 3-10p,, +7p002 35 5-18p_ +l7pm2 35 P,
9—22p, +19p2 11-48p, +41p’ 9-11p,
-p. 1+3p,, 3+p.,
Hs 2(1+p,) 2(1+p,) 2(1+p,)
1 2p,, 1
o (14p, ) (1+p,) 1+p,
1 2p,, 1
Bl @ep, ) (1+p,) (L+p, )
3-p.. 1+3p, 3+p.,
Ha 2(1+p,) 2(1+p,) 2(1+p,)
2 4p, 2
Hs (1+p, )3 (1+p, )3 (1+p, )2
2-p, 2
Ho 1+ P 1 1+ P,
A1 1 1
1 1 1
) 2 2
1 1 1
As 2(1+p,) 2(1+p,) (1+p,)
Ay |1 1 1
1 1 3-p,
As 1+p, 1+p, 2(1+p.)

Table 2-5: Integration parameters for first-order displacement, zero order velocity
overshooting algorithms.

2.3 Benchmark SDOF systems for evaluation of algorithms’ performance

In this section, 13 different time integration schemes presented in Table 2-2,
Table 2-3, Table 2-4 and Table 2-5 are compared through their application for
solving a number of elementary (benchmark) problems. The schemes compared
are the Newmark Average Constant Acceleration method (Newmark, 1959),
denoted by <1>, the Newmark Linear Acceleration method (Newmark, 1959),
denoted by <2>, the Newmark Backward Acceleration method (Ascher & Petzold,
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1998), denoted by <3>, the Fox-Goodwin formula (Fox & Goodwin, 1949), denoted
by <4>, the Uo-V1-Opt, denoted by <5>, the Uo-V1-CA, denoted by <6>, the Uo-
Vi1-DA, denoted by <7>, the Uo-Vo-Opt, denoted by <8>, the Uo-Vo-CA, denoted
by <9>, the Uo-Vo-DA, denoted by <10>, the U1-Vo-Opt, denoted by <11>, the Ui-
Vo-CA, denoted by <12>, and the Ui-Vo-DA, denoted by <13>, algorithms. The
last g integration schemes are presented by Zhou & Tamma (2004) and details
about their notation can be seen in Table 2-3, Table 2-4 and Table 2-5.

In this section, 6 benchmark dynamic analyses of nonlinear SDOF systems have
been considered which have various constitutive relations, damping types, and
the dynamic response of which occurs purely due to nonzero initial conditions
(unforced). These applications have been studied in order to assess the
performance of the various time integration schemes. Their description will be
made in the following sections. In each problem, the p, parameter is selected to

be equal to zero, or the lowest possible value for all integration algorithms used.
Concerning the Newton-Raphson iterative procedure used, the maximum
convergence tolerance and the maximum number of iterations are tol , =0.01

and K, =200 respectively. All units involved in the calculations belong to the SI

system. For simplification of the calculations, the mass of all the SDOF systems
considered is set to unity, without loss of generality. The time step used is
At=0.01 and the duration of the dynamic analysis is equal to 100 time steps (1
sec) for all problems.

23.1  Undamped SDOF oscillator with hardening spring

The first benchmark problem studied is a SDOF oscillator with hardening
spring, for which the equation of motion is:

mii +S,u(1+S,u’) =0 (2.26)

This type of oscillator represents the well-known unforced and undamped
Duffing oscillator (Duffing, 1918). The system is conservative and its total energy
is constant and given by analytical integration of (2.26):

1

E Emu2 +%Slu2 +%8182u4 (2.27)

tot —

In this example S =1000, S,=0.1 and the initial conditions are u,=15 and
u,=0.
2.3.2 Undamped SDOF oscillator with softening spring

The second benchmark problem studied is a SDOF oscillator with softening
spring, for which the equation of motion is:

mii+Stanh(u)=0 (2.28)
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Set w,,w,,W,, WA, WA, WA, WA, W,A_, WA, XA,k \
Find W, from eq. (2.25) for i=1
Initialize u, =u,, U, =U,
Find K, =K (Uy,0,), Cy=C(ug,Uy), Py =P(Ug,Uy)
Fil’ld UO :(fo _po)/M
Set K. =K,, C,=C,, p, =p,, U
for n = u:length(f)-1
Initialize k =1
Initialize qda=tol,

Find U7, = M~ (Kn ,C, ) |~:n (Kn ,C., pn) from eq. (2.22)
while max(abs(qda))>tol,,, & K<k

Iteration k of increment n+1:

Set U: = U + un+1

n O’n

Find Un 4 and Un 41 according to (2.19) and (2.20) respectively

Flnd Kﬁ+1 K( n+l? n+1) CE+1 C( n+1? n+1) pn+1 p( E+1'UE+1)
Find the residual R%,, =F¢, (KF,,, Ck,,. pk, ) - M(KE,,,Ck

-1
n+1 n+1? n+1? n+1) n+l

Set diik,, =1, +(i,,
acceleration
Find dUE 4 and dUE 41 from (2.19) and (2.20) respectively

n+l

Find the residual dR¥,, =dF", (dK';H,d Cr... dps,, ) —dM(dKF,,,dCk
Find qda =|R¥,,./u},, | /[ drR*, —RX, /da}
Update (', (1 qda) "
Update k=k+1
end
Set UF, =l +0t
Find Un .1 and Un 41 according to (2.19) and (2.20) respectively
Find K&, =K(u,,,0%,), C5, =C(u,,us,), pk, =p(uk, uk,)
Assign for next increment: K, KE+1, C, _CEH, P =|OE+1, U=

u“—u“ U“—u“

+da) where da is a constant infinitesimal variation of

Fll’ld de - K(dun+l'dun+l) dCE+1 _C(dun+l'dun+l) dpE+l :ﬁ(d n+l'dun+1)

n+l)dun+l

Flgure 2-3: Pseudocode of the implementation of the nonlinear time integration
algorithms used in this chapter.

The system is conservative and its total energy is constant and given by analytical
integration of (2.28):
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= :%mu2 +SIn(cosh(u)) (2.29)

In this example S=1000 and the initial conditions are U, =0.3 and U, =0.

2.3.3 Undamped SDOF oscillator with linear elastic spring

The third benchmark problem studied is a SDOF oscillator with linear elastic
spring, for which the equation of motion is:
mi+ku=0 (2.30)
The system is conservative and its total energy is constant and given by analytical
integration of (2.30):

E

tot —

1 ., 1

—mu“+=ku .

5 5 (2.31)
In this example k=1000 and the initial conditions are U, =4 and U, =0.

2.3.4 SDOF oscillator with linear elastic spring and viscous damping

The fourth benchmark problem studied is a SDOF oscillator with linear elastic
spring and viscous damping, for which the equation of motion is:
mi+cu+ku=0 (2.32)
The damping coefficient is given by the equation:

c= 2§\/% (2.33)

where ¢ is the critical viscous damping ratio equal to 2%. The system is not

conservative; its total energy gradually decreases due to the damping force
according to the equation:

E. :(% mu; +%ku§jexp[% “k&/zmtJ (2.34)

In this example k=1000 and the initial conditions are U, =4 and U, =0.

2.3.5 SDOF oscillator with linear elastic spring and Coulomb damping

The fifth benchmark problem studied is a SDOF oscillator with linear elastic
spring and Coulomb damping, for which the equation of motion is:

u

mij+ku+F|U| =0 (2.35)

The system is not conservative; its total energy gradually decreases due to the
Coulomb friction according to the equation:
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E %k(uo —-2u, Jk/m t] (2.36)

tot —
7T

and U =F/K is a constant which may be interpreted as the static deformation of
the system due to friction force F. In this example k=1000, u. =0.05 and the

initial conditions are U, =4 and U, =0.

2.3.6 SDOF oscillator with linear elastic spring and hysteretic damping

The sixth benchmark problem studied is a SDOF oscillator with linear elastic
spring and hysteretic damping, for which the equation of motion is:

mii+cl+ku=0 (2:37)
The damping coefficient is given by the equation:

C:T]\/% (2‘38)

where n is the critical hysteretic damping ratio equal to 5%. The system is not

conservative; its total energy gradually decreases due to the hysteretic damping
force. Analytical equation for the estimation of the energy loss does not exist; the
comparison is made with reference to the energy loss associated with the same
benchmark problem, calculated for a much smaller time step. In this example
k=1000 and the initial conditions are U, =4 and U, =0. The time step used for

the reference energy loss is equal to At=0.0001 and the duration of the dynamic
analysis in this case is equal to 10000 time steps.

2.3.7 Results of benchmark problems in terms of total energy

Since no energy considerations were made for the formulation of the linear
version of the time integration algorithm family assessed in this chapter, the
evaluation of the various algorithms can be made in terms of energy measures,
for the benchmark problems of the previous section. An efficient nonlinear time
integration scheme should result in an accurate calculation of the energy of these
systems. In cases that the analytical calculation of the energy is possible, the
numerically calculated energy is compared to the former; in cases that this
calculation is not possible (only for problem 6), the comparison is made with the
energy calculated for a much smaller time step, a result which is practically the
same for all algorithms involved. All the numerical analyses involved in this
chapter were performed using MATLAB programming language.

In the diagrams of Figure 2-4 - Figure 2-9, the vertical axis represents the
natural logarithm of the total energy of the vibrating system (E,,) and the

horizontal axis represents time. To avoid confusion due to the large number of
algorithms being studied here, a separate graph has been constructed for each
algorithm, and incorporated as a subplot in each Figure. The various subplots of
these figures have the same scaling in their axes, to enable numerical
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comparisons by simple observation of the deviation of the various curves from
the dashed curve which gives the accurate value of the total energy of each
system. The first four graphs in each figure from Figure 2-4 - Figure 2-9,
distributed in the two first horizontal rows present results of the elementary time
integration schemes considered in this chapter (i.e. the Newmark ACA, Newmark
LA, Newmark BA and Fox-Goodwin methods), and the last nine graphs in each
figure, distributed in the last three rows, present results of the advanced
integration schemes (i.e. those belonging to the family of the GSSSS algorithms).
Another point to be highlighted is that, since the size of the time step and the
duration of the dynamic analysis is the same for all the benchmark problems, and
the small-strain stiffness and mass of the SDOF systems analyzed is the same,
these factors which affect the performance of the time integration schemes are
isolated from the results, and the differences observed are solely due to the
differences in the quality of the algorithms (i.e. the magnitude of the numerical
error introduced by them). This fact enables the easier understanding of the
numerical performance of the time integration schemes considered in this
chapter.
In Figure 2-4 the natural logarithm of the total energy of the undamped SDOF
system with hardening spring (benchmark problem described in section 2.3.1) is
presented for each algorithm. The exact value of the total energy is calculated at
the onset of the vibration and should remain constant throughout the dynamic
response, since there is no energy loss due to damping or other sources, and is
plotted in all subplots with a dashed line. It is noted that the Continuous
acceleration (CA) algorithms, along with the Newmark Average Acceleration
Method perform generally better than the others in this problem. The least
energy error is observed for the HHT-a method (or Uo-Vi-CA method), i.e. the
zero order displacement-first order velocity-continuous acceleration method.
Furthermore, the Uo-Vo-Opt and Uo-Vo-DA algorithms seem to perform better
than their Uo-V1 or Ui-Vo counterparts. It was checked that if the size of the time
step is sufficiently reduced, all the algorithms of the GSSSS family produce the
exact response. The largest numerical error is observed in the case of Ui-Vo-DA
algorithm. Finally, it is observed that numerical errors associated with the time
integration schemes may result in increase of the total energy in some cases.
In Figure 2-5 the natural logarithm of the total energy of the undamped SDOF
system with softening spring (benchmark problem described in section 2.3.2) is
presented for each algorithm. Again the most accurate method is the HHT-a
method, in the graph of which the difference between the numerically calculated
total energy and the analytical reference energy is hard to discern. A difference is
noted in the performance of the Newmark Average Constant Acceleration
algorithm between the cases of the undamped SDOF system with hardening
spring and the undamped SDOF system with softening spring. As it is easily seen,
this algorithm loses its accuracy in the latter case, which is comparable to that of
the other elementary integration schemes. The superiority of the Continuous
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Acceleration advanced algorithms is remarkable. The largest error is observed for
the case of U1-Vo-DA algorithm, as in the case of the undamped SDOF system
with hardening spring. In general, undulations are exhibited in the energy curves
of the less accurate algorithms, either advanced or elementary. The total energy
calculated may decrease or increase with respect to the reference energy curve,
depending on the numerical error introduced by each algorithm.

8Newmark ACA <1> 8 Newmark LA <2> 8 Newmark BA <3>

IBEEESE o B .

0 0.5 1 0 0.5 1 0 0.5 1
Fox-Goodwin <4>

0 0.5 1
geréeralized a-method <5§HHT a-method <6> 8 WBZ <7>

3
W 7 K TET—— 7 K
o
S
6 6 6
0 05 1 0 05 1 0 0.5 1
U0-V0-Opt <8> 8 U0-V0-CA <9> 8 U0-V0-DA <10>
PRSI T 7Tmes=ss pRRo T
6 6 6
0 05 1 0 05 1 0 0.5 1
g UIV0-Opt<11>  U1VO-CA<12>  U1-VO-DA<13>
7R =" TS 7 \ ------
6 6 6
0 05 1 0 05 1 0 05 1
Time (sec)

Figure 2-4: Natural logarithm of the total energy for problem 1 (undamped SDOF
system with hardening spring).
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Newmark ACA <1> Newmark LA <2> Newmark BA <3>

I s RIS e el B S

3.5 3.5 3.5

3 3 3
0 0.5 1 0 0.5 1 0 0.5 1

Fox-Goodwin <4>

et

35
3
0 0.5 1
generalized a-method <53HHT a-method <6> WBZ <7>
~ 4 4 4
= e | Sy [ S —————
S
o 3.5 3.5 3.5
K]
3 3 3
0 0.5 1 0 0.5 1 0 0.5 1
U0-V0-Opt <8> U0-V0-CA <9> Uo0-V0-DA <10>
4 4 4
3.5 3.5 3.5
3 3 3
0 0.5 1 0 0.5 1 0 0.5 1
U1-V0-Opt <11> U1-V0-CA <12> U1-V0-DA <13>
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35
3
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Figure 2-5: Natural logarithm of the total energy for problem 2 (undamped SDOF

system with softening spring).
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Figure 2-6: Natural logarithm of the total energy for problem 3 (undamped SDOF

In Figure 2-6, the natural logarithm of the total energy of the undamped SDOF
system with linear elastic spring (benchmark problem described in section 2.3.3)
is presented. It is seen that the HHT-a method is the most accurate, and among
the elementary methods, the Newmark Backward Acceleration method is of
comparable accuracy with the HHT-a method. Apart from the Continuous
Acceleration and the Newmark BA methods, the remaining algorithms give less
accurate results, of various orders of error. The least accurate method is the Ui-

Vo-DA method.

system with linear elastic spring).
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In Figure 2-7, the natural logarithm of the total energy of the linear elastic SDOF
system with viscous damping (benchmark problem described in section 2.3.4) is
presented. Similarly to the undamped linear elastic SDOF case, the HHT-a and
Newmark BA methods are the most accurate among the advanced and the
elementary methods respectively. It has to be pointed out that the total energy of
the system decreases with time due to the presence of viscous damping; therefore
the reference energy curves in the subplots have negative slope and are straight
because the energy decrease is exponential and its natural logarithm linear.

In Figure 2-8, the natural logarithm of the total energy of the linear elastic SDOF
system with damping due to Coulomb friction (benchmark problem described in
section 2.3.5) is presented. The most accurate estimation of energy is provided by
the Continuous acceleration algorithms and the Newmark Backward Acceleration
method. The performance of the Ui-Vo-DA is the poorest as in the previous
examples. The reference energy curves are not straight lines, because the rate of
energy dissipation is quadratic and not exponential, as can be seen from eq.(2.36)

In Figure 2-9 the natural logarithm of the total energy of the linear elastic

SDOF system with hysteretic damping (benchmark problem described in section
2.3.6) is presented. Similarly to the results of the other problems, the most
accurate algorithms prove to be the Continuous Acceleration algorithms. The
most accurate scheme appears to be the HHT-a method among the advanced
algorithms, and the Newmark Backward Acceleration scheme among the
elementary algorithms. Generally, the energy plots show periodic fluctuations
and the Uo-Vo-Opt and Uo-Vo-DA algorithms seem to perform better than their
Uo-V1 or Ui-Vo counterparts, a general trend observed in Figure 2-4 - Figure 2-9.
Analytical calculation of the reference total energy is not possible in this
benchmark problem and for this reason it is computed by setting a much smaller
time step, as outlined in section 2.3.6. The linear configuration of the various
curves implies that the energy dissipation during the free vibration of a
hysteretically damped SDOF oscillator varies exponentially with time; this type of
variation was previously observed also for the viscously damped SDOF oscillator
presented in Figure 2-7 and described in section 2.3.4.
It is generally observed in the numerical results in terms of energy presented
above that the most accurate scheme in the linear and nonlinear regimes is the
HHT-a method. The time integration algorithms considered in this chapter
(either advanced or elementary) do not always ensure that the variation of energy
is as expected (e.g. conserved for undamped and unforced systems). However,
any degree of accuracy can be achieved for all types of oscillators considered in
this chapter, if the time step is sufficiently reduced.
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log (Etot)
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Figure 2-7: Natural logarithm of the total energy for problem 4 (linear elastic SDOF
system with viscous damping).
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Figure 2-8: Natural logarithm of the total energy for problem 5 (linear ela
system with damping due to Coulomb friction).
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Figure 2-9: Natural logarithm of the total energy for problem 6 (linear elastic SDOF
system with hysteretic damping).

It is generally observed in the numerical results in terms of energy presented
above that the most accurate scheme in the linear and nonlinear regimes is the
HHT-a method. The time integration algorithms considered in this chapter
(either advanced or elementary) do not always ensure that the variation of energy
is as expected (e.g. conserved for undamped and unforced systems). However,
any degree of accuracy can be achieved for all types of oscillators considered in
this chapter, if the time step is sufficiently reduced.
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2.3.8 Comparison of algorithm performance in linear and nonlinear regime

In this section the performance of the various time integration schemes is
evaluated for linear and nonlinear problems. Comparisons are made between
these two categories of analysis. Since the time step, the time duration, and the
algorithmic constants are the same for all benchmark problems analyzed, and the
stiffness of the various oscillators in their small-strain region is the same, the
comparisons in this section are made with reference to the quality of the time
integration schemes and their associated numerical error.

In Figure 2-10, a dimensionless quantity equal to the relative error of the total
energy of the various systems is plotted against integration time. Three schemes
are used for the integration of the SDOF systems involved: the Newmark Average
Constant Acceleration (ACA), Newmark Linear Acceleration (LA) and Newmark
Backward Acceleration (BA) methods. The various curves include linear as well as
nonlinear energy error. It is seen that, depending on the algorithm used, the
various SDOF systems yield different integration errors. In the case of Newmark
ACA algorithm, the largest error is observed for the viscoelastic and elastic
system with Coulomb damping, whereas the lowest energy error is observed for
softening and linear elastic undamped systems. In the case of Newmark LA
algorithm, the hardening system shows the maximum relative error, whereas the
softening and linear elastic undamped systems show the minimum relative error.
Finally, Newmark BA algorithm yields the most accurate results for linear elastic
undamped system, whereas the maximum error is observed for the hardening
and viscoelastic systems.

Similar to Figure 2-10, Figure 2-11 compares the relative error of the total energy
of the various systems, plotted against integration time, where the continuous
acceleration (CA) algorithms are used. It is apparent that the hardening system
yields relatively large energy numerical error for all three CA members of the
GSSSS family. The maximum error is generally observed for the Ui-Vo-CA (<12>)
algorithm, for all problems considered in this chapter. Compared to the error of
the hardening system, the error of the remaining systems is considerably lower.
The error is much lower if Continuous Acceleration algorithms are used,
compared to the elementary time integration algorithms the results of which are
shown in Figure 2-10.

Corresponding results with those of the previous paragraph are observed in
Figure 2-12 and Figure 2-13, for the optimal numerical dissipation and dispersion
(Opt) algorithms and the discontinuous acceleration (DA) algorithms
respectively. The hardening system exhibits the maximum total energy error for
all these types of algorithms, as can be seen in both figures. The lowest energy
error is observed for the linear viscoelastic system for all optimum numerical
dissipation and dispersion algorithms, as well as discontinuous acceleration
algorithms. Finally, the error associated with the optimal numerical dissipation
and dispersion algorithms and the discontinuous acceleration algorithms is
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certainly higher in general than that of the continuous acceleration methods, for
the same SDOF benchmark problems studied.

The main conclusion from this figure is that the linear and nonlinear versions of
the GSSSS algorithm family yield comparable percentages of total energy error,
and in many instances, the error of the total energy of nonlinear systems is lower
than the error in the total energy of linear systems. Given that in each subplot the
problems considered have the same initial conditions, time step, integration
algorithm, nonlinear convergence parameters, etc., the differences between the
various curves in each subplot originate mainly from the differences between the
constitutive properties of the oscillators. It is a fact that the existence of iterations
within a time step is a source of additional error. The linear integration
algorithms do not require any iterations within a time step. The opposite is the
case with the nonlinear time integration algorithms. Consequently, it is expected
that the error accumulated in the nonlinear response will be higher than the
error of the linear response. However, from the results presented in this chapter,
it is concluded that this does not happen in a regular basis; there are cases in
which the error of a nonlinear problem is lower than that of a linear problem,
while the same integration scheme is used. From this observation, the conclusion
is drawn that the extension of the linear versions of the GSSSS algorithms into
the nonlinear regime with incorporation of Newton-Raphson iterations results in
nonlinear time integration algorithms which possess a similar (and sometimes
higher) level of accuracy with their linear counterparts.

The results presented in Figure 2-10 -Figure 2-13 are summarized in Figure 2-14,
where the maximum relative error of the total energy for each SDOF system -
integration algorithm pair and for the duration of the oscillation is shown in the
form of bar chart. In the horizontal axis each label refers to the type of SDOF
system and the time integration algorithm with which its response is calculated,
whereas in the vertical axis, the percentage of relative energy error is shown. The
lowest error is observed for the Continuous Acceleration algorithms (including
HHT algorithm) for the linear elastic with Coulomb damping, undamped
softening, undamped linear elastic and viscoelastic oscillators and the Newmark
Backward Acceleration algorithm for the undamped linear elastic oscillator. On
the other hand, the error associated with the Discontinuous Acceleration
algorithms and the undamped hardening oscillator is the largest among all cases
and algorithms considered in this chapter.
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Figure 2-10: Time history of the relative error of the total energy of the SDOF
oscillators of problems 15 integrated by the Newmark ACA, Newmark LA and
Newmark BA algorithms of the GSSSS family.
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2.4 Benchmark problem of undamped linear elastic system with 3 DOFs
for evaluation of algorithms’ performance

In this section, the problem studied by Bathe & Noh (2012) is considered, which is
a 3-degree-of-freedom spring system shown in Figure 2-15. This problem is used
as a benchmark problem mainly due to the fact that it represents finite element
models which include high stiffness elements, as well as flexible elements. High
stiffness elements can involve, for example, rigid connections or penalty factors
or various types of constraints of the model. Such high stiffness values used in
finite element models have rarely any physical meaning; they are almost always
used to provide constraints. This system is studied here in order to compare the
dynamic response produced by the various time integration algorithms with the

“exact” presented by Bathe & Noh (2012). The numerical data k1 =1e7, k,=1,
m, =0, m,=1, m,=1 are used for the system properties. Also, node 1 has

prescribed displacement equal to:
u, =3in (Dpt (2,39)

where ©, = 1.2 The governing equation of motion is the following:

m 0 0] k, -k, 0 {{u | |R,
0 m, O U, |+|-k k+k, —k,|u,|=0 (2.40)
0 0 m,j i, 0 -k, Kk, |lu, 0

which can be rewritten for the unknown displacements U, and U, as follows:

U1-V0-DA-Coulomb
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m, O U, | [k+k, —k,|lu,| [k
LI il e o

The initial conditions are considered to be zero for both the displacements and
the velocities. The response of the system is estimated for a time duration of 10
sec, and the time step used is At =0.2618sec.

T\Wﬁ%ﬁ

Figure 2-15: Model of three degrees of freedom spring system (Bathe & Noh, 2012).

The displacement, velocity and acceleration at degree of freedom 2 of the 3dof
system are calculated and compared to the corresponding results presented by
Bathe & Noh (2012). The displacement response of the degree of freedom 2 of the
3DOF oscillator is illustrated in Figure 2-16. The exact solution, as presented by
Bathe & Noh (2012) is plotted with a dashed curve. It is evident that for all
advanced algorithms, except for the Ui-Vo-DA algorithm, the numerically
calculated displacement time history practically coincides with the exact
solution. Among the elementary time integration schemes, only the Newmark
Backward Acceleration method manages to trace the response, whereas all others
fail. It is concluded that the majority of the advanced algorithms reproduce the
exact displacement result of the time integration procedure regarding the
structural system studied by Bathe & Noh (2012). Things become different in the
case of the velocity at dof 2 of the 3DOF undamped linear elastic system, as the
response is computed accurately only by the Uo-V1 and Ui-Vo algorithms except
for the U1-Vo-DA algorithm, as seen in Figure 2-17. Spurious oscillations around
the exact solution are observed in the response produced by the Uo-Vo
algorithms. All the elementary integration schemes fail to reproduce the exact
velocity response; the erroneous behavior of the Newmark BA algorithm has been
already shown by Bathe & Noh (2012). It seems that the generalized-a and the
WBZ methods are more accurate than the HHT-a method in the first steps of the
response, without this meaning that the latter is generally subordinate with
respect to the others.

The acceleration time history at dof 2 of the 3DOF undamped linear elastic
system is shown in Figure 2-18. The exact solution, as presented by Bathe & Noh
(2012), is most accurately reproduced by the generalized-a, WBZ and Ui-Vo-Opt
methods. All the elementary time integration methods fail to accurately calculate
the dynamic response. The spurious undulations which are present in certain
subplots have already been pointed out (Bathe & Noh, 2012). In the velocity and
acceleration time histories some overshooting behaviour is observed in the
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beginning of the response, especially in the cases of Uo-V1 and Ui-Vo algorithms.
This is expected due to the way these algorithms are formulated. However,
despite this overshooting behaviour, it is observed that they are generally more
accurate (with an exception for the DA version U1-Vo algorithm category) than
their optimal numerical dissipation and dispersion (Opt) counterparts.
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Figure 2-16: Time history of the displacement at the dof 2 of the 3DOF undamped
linear elastic system.
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Figure 2-17: Time history of the velocity at the dof 2 of the 3DOF undamped linear
elastic system.
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Figure 2-18: Time history of the acceleration at the dof 2 of the 3DOF undamped linear
elastic system.

2.5 Benchmark problem of large angular oscillation of a simple
undamped pendulum

A fundamental benchmark problem which is widely used for testing the
nonlinear performance of various time integration algorithms is the nonlinear
oscillation of a pendulum with large rotations. Consider an undamped pendulum
in the gravity field which is comprised of a point mass m and a weightless rigid
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rod of length L . Here, g is the acceleration of gravity. In this example, as is done
in the previous benchmark SDOF problems, in order to verify the accuracy of the
family of the GSSSS algorithms the exact solution of the nonlinear free vibration
of the pendulum will be employed. The simple pendulum system is shown
graphically in Figure 2-19.

Figure 2-19: Simple undamped penduIL;m system with large rotations.

Assume the pendulum to be initially at its lower equilibrium point with initial
angular velocity 60. The differential equation of the nonlinear pendulum is
(Bornemann et al., 2002):

mLO+mgsin(0)=0 (2.42)
with the following initial conditions:

9(0)=0,9(0)=60 (2.43)

where 0 is the angular displacement. After some manipulations, eq. (2.42) can be
written in nondimensional form as:

0_ +sin (9) =0, 9(0) =0,0. (0) =0, (2.44)
where T=wm,t and ®,=+/0/L and the subscript T denotes differentiation with

respect to T. Among the various special characteristics of the simple undamped
pendulum problem, is that the degree of nonlinearity can be adjusted by setting

appropriate values to the initial conditions, i.e. if the values of 9(0),97 (0)

T
increase, nonlinearity increases as well. It is of interest to examine the total
energy of this nonlinear system which, given that it is undamped, has to remain

constant throughout the time history of its response:

E, = %(et Y +[1-cos(0) ] = %[er (O)F +[1-cos(0(0))]  (245)

Assuming that the pendulum oscillates in the plane instead of rotating, the
maximum angle 0, can be calculated by setting 6. =0 in eq.(2.45):
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0,, =Cos" {cos[e(o)] - %[er (O)]Z} (2.46)

It is apparent that —n<0,_, <7 in order for the pendulum to oscillate. In this

chapter, 9(0)=0 and the initial angular velocity is specified so that oscillation

instead of rotation is ensured. Therefore, from eq. (2.46) it is obvious that:
0.(0) =2 (2.47)

Two different cases are studied here. In the first case, ©. (0)=\/§ which

T

corresponds to 0, =7n/2 and in the second case , 6. (0)~2 which corresponds

to 0, ~T.

In Figure 2-20 the natural logarithm of the total energy of the simple undamped
pendulum with large rotation is presented. The time step is At=0.15sec, the

duration of the motion is 20sec and the initial velocity is Gf(O):\/E which
corresponds to the first case examined. The spectral radius p, parameter is

selected to be equal to zero, or the lowest possible value for all integration
algorithms used. Concerning the Newton-Raphson iterative procedure used, the
maximum convergence tolerance and the maximum number of iterations are
tol ,, =0.01 and Kk, =200 respectively. It is obvious that the most accurate

algorithms are the Continuous Acceleration (CA) algorithms, in which the mean
value of the total energy of the system is more flat than that of the elementary,
Opt and DA algorithms. It seems that the lowest error occurs for the Ui-Vo-CA
algorithm. The total energy of the system that is calculated analytically according
to the relation (2.45) is shown with dashed lines and the limits in the various
subplots are set to be the same for all algorithms to make visual comparisons of
the error easier.

The plots that are shown in Figure 2-21 refer to the second case, in which the

initial angular velocity is 6. (0)=1.99999. This value is intentionally selected to
avoid rotation of the pendulum which happens for 6. (0) > 2, meaning that 2 is a

limiting value for 0; (0) which can be approached, but not reached. The values of

all the remaining parameters are identical to those which were used for in the
results presented in Figure 2-20. Regarding the energy error, in Figure 2-21 the
trends observed are similar as in Figure 2-20. The main difference here is that
there exist “oscillations” in the evolution of the total energy that are more
pronounced than those that exist in Figure 2-20. One reason for this is that the
degree of nonlinearity is larger in case 2, since the initial velocity is larger.
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Figure 2-20: Natural logarithm of the total energy for simple undamped pendulum
with initial angular velocity 6. (0) =2
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Figure 2-21: Natural logarithm of the total energy for simple undamped pendulum
with initial angular velocity 0. (0) =1.99999.

2.6 Conclusions

The family of linear generalized single step single solve (GSSSS) algorithms,
which includes the most commonly used time integration algorithms as special
cases, can be extended to solve materially and geometrically nonlinear dynamic
response via a Newton-Raphson iterative procedure. In the nonlinear regime, the
extended nonlinear generalized algorithms are very efficient, with acceptable
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accuracy and stability, even with increased size of the time step. They perform
much better in some cases illustrated in this study, contrary to the elementary
algorithms which in practice fail to trace the dynamic response.

It is pointed out that unconditionally stable algorithms for linear problems, may
lose their stability in the presence of nonlinearities. For increased time step (and
thus lower computational effort), the Continuous Acceleration methods, which
include the HHT-a method (<6>) as a special case, exhibit the most accurate
response for most of the cases studied. They appear to be the best option,
regarding their general performance at the benchmark problems studied
compared to the other integration schemes. For sufficiently small time step, all
algorithms converge to the exact dynamic response. Further research has to be
made to investigate the relation between the stable time increment of the
generalized single step single solve algorithms applied in nonlinear problems and
various other problem-dependent input data. Apart from this, the numerous
integration constants of the algorithms belonging to the GSSSS family, allows for
optimization of the values of the integration constants, so that certain difficult
dynamic nonlinear problems can be efficiently time-integrated.

2.7 Notation

A : amplification matrix

a: order of the derivative of U

C : damping matrix

C : damping coefficient of SDOF oscillator

E : error between numerical and exact solutions of dynamic response

E,. : total energy

F: friction force

~

F, : effective force matrix at time step n

f : external force vector
f, : external force vector at time step n

g : acceleration of gravity
J, : angular momentum
K, : kinetic energy at time step n

K : stiffness matrix
k : stiffness of SDOF oscillator
K,ex : maximum number of iterations until convergence

K. : stiffness at degree of freedom i
L : length of pendulum

L,: linear momentum

M : mass matrix

M : effective mass matrix
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m: mass of SDOF oscillator
m, : lumped mass at degree of freedom i

p : internal force

q : order of accuracy of the integration scheme

S : parameter of SDOF oscillator with hardening spring
S, : parameter of SDOF oscillator with softening spring
S, : parameter of SDOF oscillator with softening spring
T : period

t:time

t,: time at step n

tol,, : maximum tolerance for convergence of the GSSSS algorithm
U, : strain energy at time step n

U: displacement

U, : static deformation of SDOF oscillator due to friction force
U, : displacement at degree of freedom i

U : velocity

U, : velocity at degree of freedom i

U : acceleration

U, : acceleration at degree of freedom i

u, : displacement at time step n

u, : velocity at time step n

U, : acceleration at time step n

u

4t: approximation of U depending on the time step At

U, : initial displacement
U, : initial velocity
W, . : work done by external forces

ext *

W : weighted time field

W, : time integration constant given by eq. (1.25) for i=1

W, : integration constants (i=1...3)

I : parameter given by eq. (1.14)

At : step of direct time integration scheme

At : time step size at iteration i of the equation limit (1.7)

n: critical hysteretic damping ratio

0 : angular displacement

0, : maximum angular displacement
6 : angular velocity

6 : angular acceleration

90 : initial angular velocity

A, : eigenvalue of the amplification matrix of order a
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A,...Aq: time integration constants

A,..As: time integration constants

L. : time integration constants

g : critical viscous damping ratio

p : spectral radius of the amplification matrix

p, : minimum absolute value of the principal roots of the amplification matrix at
the high-frequency limit

T : parameter given by eq. (1.14)

7: dimensionless time, given by T = m,t

O : cyclic frequency

o, : cyclic eigenfrequency of simple undamped pendulum oscillator

O, : cyclic frequency of prescribed load






Chapter

3 OpenSeismoMatlab: A New Open-
source Software for Strong Ground
Motion Data Processing

3.1 Introduction

In this chapter a new open source software is introduced which can process
strong ground motion data. OpenSeismoMatlab is an innovative open-source
software for strong ground motion data processing, written in MATLAB. The
software implements an elastoplastic bilinear kinematic hardening constitutive
model and uses a state-of-the-art single step single solve time integration
algorithm  featuring exceptional speed, robustness and accuracy.
OpenSeismoMatlab can calculate various time histories and corresponding peak
values, Arias intensity and its time history, significant duration, various linear
elastic response spectra and constant ductility inelastic response spectra, as well
as the Fourier amplitude spectrum and the mean period. Due to its open-source
nature, the software can be easily extended or modified, having high research and
educational value for the professional engineering and research community. In
the present chapter, the structure, algorithms and main routines of the program
are explained in detail and the results for various types of spectra of 11 earthquake
strong ground motions are calculated and compared to corresponding results
from other proprietary software.

Earthquake resistant building codes require earthquake engineering studies
which, in order to be performed, need strong motion records as original input
data. It is therefore important to make realistic selections and processing of the
raw input strong motion records in order to calculate the seismic parameters
which will help in the estimation of the dynamic response of the structure(s) to
be designed. Various software programs have been developed for the selection of
the strong ground motions which are used for the dynamic analysis and design of
structure(s) (Katsanos & Sextos, 2013; Macedo & Castro, 2017). Among the most
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important seismic parameters of a strong ground motion are the various types of
spectra (i.e. elastic response spectrum, constant ductility spectrum, constant-
damage yield strength spectrum, Fourier spectrum, etc.) which result from the
processing of the ground motion and which are used in various seismic design
procedures, such as the Dynamic Response Spectrum Analysis (DRSA), the
Uncoupled Modal Response History Analysis (UMRHA), the Modal Pushover
Analysis (MPA) procedures for dynamic analysis (Chopra, 2012). Furthermore, by
adjusting the Fourier spectrum of a strong ground motion, it is possible to
control its frequency content. Therefore, the use of a robust and accurate strong
motion processing software is critical for the proper seismic design of structures,
including strategies for designing earthquake-resistant buildings to ensure the
health, safety, and security of building occupants and assets during the
structure’s lifetime.

The concept of the elastic response spectrum was introduced by G.W. Housner
(1959), whereas Newmark & Hall (1969) presented a fundamental work on linear
elastic response spectra. Since then a large research effort has been made for the
evaluation of the seismic response of linear SDOF systems with particular
attention to the effect of input motion and site conditions. Most studies on
inelastic response spectra have focused on the selection of the elastic-perfectly
plastic material behavior, on taking into account the effects of the duration of the
motion and on scaling methods (Newmark et al., 1973; Veletsos & Newmark,
1960; Veletsos et al., 1965; Ziang et al., 2016). In addition, Veletsos & Vann (1971)
published among the first studies that systematically investigated the elastic and
inelastic structural response to pulse-like excitations (typically not caused by
earthquakes).

Many software programs, either free or commercial, have been developed for the
processing of strong ground motion data. Some characteristic cases are presented
below:

e SMA (Strong Motion Analyst Processing Software) is a commercial
Windows-based tool designed to interactively process strong motion
accelerograms, featuring instrument correction, data editing, filtering,
ground motion integrations, Fourier and Response Spectra calculations,
and Vi, V2, V3 file format output. It has been developed by the
Kinemetrics company.

e EQ-TOOLS (latest version is 3.0) is a free closed source software for
earthquake engineering education which allows the user to select, analyze,
scale, and modify ground motions. The capabilities of selection and
analysis as well as scaling of ground motion records against several types
of target spectra, including the ASCE 7 spectrum, spectra from attenuation
relationships, and conditional mean spectra are included. Ground motion
history analysis, linear response spectrum analysis and Fourier amplitude
analysis and a module that enables the modification of ground motions for
consideration of site effects are provided. It has been developed by the
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George E. Brown, Jr. Network for Earthquake Engineering Simulation
(NEES).

e PRISM (Processing and Review Interface for Strong Motion data) is a free
open-source software used for processing strong-motion records (Jones et
al., 2017a; Jones et al., 2017b; Jones et al., 2017c; Kalkan & Stephens, 2017;
Jones et al., 2018). It can be installed and run as a stand-alone system on
common operating systems such as Linux, Mac and Windows and is
flexible and extensible to incorporate new strong motion processing
techniques.

e PRISM for Earthquake Engineering (Jeong et al., 2016) includes capabilities
for modification, correction, scaling, truncation and baseline correction of
earthquake records and it can calculate a variety of strong motion
parameters (Arias intensity, elastic and inelastic response spectra,
acceleration, velocity, displacement and force-displacement response
histories). Various hysteresis models are provided (linear elastic, bi-linear,
tri-linear, modified Takeda, Bouc-Wen, and Al-Bermani)

e SEISMOSIGNAL is an interesting, user-friendly and efficient commercial
software for processing of strong motion data (Antoniou et al., 2012).
Among others, it can calculate the elastic, constant ductility, Fourier
amplitude and power spectra and it provides for filtering of high and low
frequency record content and estimation of other important seismological
parameters, such as the Arias Intensity and the significant and effective
durations.

e OPENSIGNAL is a free closed-source software platform for the processing
and selection of seismic records, signal processing, response spectra
analysis, soil spectra analysis and more (Cimellaro & Marasco, 2014;
Cimellaro & Marasco, 2015). It provides filtering uncorrected ground
motion records and calculation of the main parameters of a record (Arias
Intensity, duration, PGA, PGV, elastic response spectra, etc.).

e USDP (Utility Software for Data Processing) is a computer program that
can be used for strong ground-motion data processing by various filtering
and baseline adjustment techniques and spectral calculations (Linear
spectral analysis, Fourier spectral analysis, Constant strength, ductility and
base-shear coefficient nonlinear spectral analysis) for a variety of stiffness
and/or strength degrading hysteretic models (Akkar, 2008). It has been
developed by the METU-Earthquake Engineering Research Center team
and uses public-open Fortran source codes.

e TSPP (Time Series Processing Programs) is a collection of FORTRAN
programs that have been developed for processing and manipulating
strong-motion accelerograms in terms of displacement, velocity and
acceleration time-histories, response and Fourier spectra and filtering
(Boore, 2001).

e VIEWWAVE (v2.2.0) is a free closed source software for processing and
viewing strong motion records. It can read a large variety of files in many
formats and can calculate various waveforms, Fourier and power
spectrum, as well as acceleration, velocity and displacement response
spectra (Kashima, 2016).



54

Chapter 3

Apart from the above software, some other rather elementary programs have
been developed in MATLAB programming language (Kalkan, 2016; Kalkan, 2017a;

Kalkan, 2017b; Tazarn, 20u; Carlton, 2015; all submitted to the File Exchange
service of the Mathworks official website). However, none of these MATLAB
implementations contains advanced time integration algorithms for the

extraction of the displacement, velocity and acceleration time histories and the
various response spectra. In the present chapter, a new MATLAB open-source
software, called OpenSeismoMatlab, is presented which, compared to other

similar software, has the following advantages and unique characteristics:

It uses state-of-the-art time integration algorithms which are more robust
and accurate (Papazafeiropoulos et al., 2017a; Papazafeiropoulos et al.,
2017b) compared to conventional integration techniques (Newmark, etc.)
that are widely used by other software for strong motion data processing.
The former algorithms belong to a general single step single solve family
and can be adjusted through the specification of 14 independent
integration constants to control numerical dissipation and dispersion,
continuity of acceleration, and the order of overshooting in displacement
and velocity. By adjusting a number of parameters, the user can select
from a large family of time integration algorithms, according to
Papazafeiropoulos et al. (2017a) and this permits the manual configuration
and optimization of the quality of the desired results (time histories,
spectra, etc.).

It is completely free and provided together with its source code (open
source). OpenSeismoMatlab is of high educational value, since it contains
simply written MATLAB code with comments and is generally easy to be
understood by the user. The rationale of the implemented methods is
explained in detailed comments within the code. Apart from this, the
open-source code format provides the opportunity of extending/upgrading
or integrating the software in all possible ways.

Furthermore, the elastoplastic bilinear kinematic hardening constitutive
model which is fundamental for the computation of the nonlinear spectra
is accurately formulated and programmed in the software. No simplified
versions of the elastoplastic bilinear kinematic hardening constitutive
model (Newmark & Hall, 1982; Krawinkler & Nassar, 1992; Miranda &
Bertero, 1994) are used, as is usually the case in the literature.

In the following sections, OpenSeismoMatlab is presented, and then it is applied

in a number of earthquake records for the calculation of the various response
spectra and other quantities.
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3.2 Structure and source code of OpenSeismoMatlab

In this section the design of the various algorithms used by OpenSeismoMatlab
for the computation of the strong motion data processing results (spectra, time
histories, etc.) are given. For each algorithm the structure of the main MATLAB
function and its subroutines (if present) are provided and the architecture of the
various MATLAB codes within the OpenSeismoMatlab software is presented.
Finally, the capabilities and restrictions of OpenSeismoMatlab are discussed.
OpenSeismoMatlab can calculate the following strong motion data processing
output:

e Time history of velocity

e Time history of displacement

e Peak ground acceleration (PGA)

e Peak ground velocity (PGV)

e Peak ground displacement (PGD)

e Time history of normalized Arias intensity

e Total Arias intensity

e Time interval between 5% and 95% of Arias intensity has occurred
(significant duration D, o)

e Linear elastic pseudo-acceleration response spectrum

e Linear elastic pseudo-velocity response spectrum

e Linear elastic displacement response spectrum

e Linear elastic velocity response spectrum

e Linear elastic acceleration response spectrum

e (Constant ductility inelastic displacement response spectrum
¢ Constant ductility inelastic velocity response spectrum

e Constant ductility inelastic acceleration response spectrum
e Fourier amplitude spectrum

e Mean period (T,)

The source code of OpenSeismoMatlab has been uploaded on two different
distribution channels: (i) the File Exchange service of MATLAB central
(Papazafeiropoulos, 2018) and (ii) on ResearchGate (Papazafeiropoulos & Plevris,
2018), so that it is publicly available. The source code is organized in folders as
follows:

e A folder named “data” contains the acceleration time histories of the
earthquakes considered in this chapter, in digitized format

e A folder named “examples” contains three MATLAB scripts which
illustrate how the software can be used properly for the generation of Elastic
Response Spectra, Fourier Spectra and Constant Ductility Response Spectra

e A folder named “figures” contains the figures that are generated after the
execution of the MATLAB scripts contained in the “examples” folder
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e A folder named “lib” contains all the subroutine functions of the
OpenSeismoMatlab software. These functions are substantial for the application
of OpenSeismoMatlab.

In Figure 3-1 the dependency diagram between the various functions included in
the OpenSeismoMatlab package is shown. The four main functions are LEReSp
for the linear elastic response spectra, CDReSp for the constant ductility response
spectra, FASp for the Fourier spectra and baselineCorr for the baseline correction
of the input ground motion. The functions DRHA, NLIDABLKIN and HalfStep
are called directly by the function CDReSp and are used for Dynamic Response
History Analysis, NonLInear Dynamic Analysis with BiLinear KINematic
hardening model, and reproduction of an earthquake excitation with the half
time step, respectively. The function LIDA is used for Linear Incremental
Dynamic Analysis and is called by the functions LEReSp and DRHA, whereas the
function BLKIN is called by the function NLIDABLKIN.

( ]

OpenSeismoMatlab
P )

LEReSp.m CDReSp.m

[ DRHA.m ] [NLIDABLKIN.m] [ HaIfStep.m]

[baselineCorr.mj [ FASp.m ]

—{ LIDA.m BLKIN.m

Figure 3-1: Schematic dependency diagram between the various functions included in
the OpenSeismoMatlab package.

The beginning section of the main MATLAB function (OpenSeismoMatlab.m) is
shown in Listing 1 for purposes of completeness, and to show how the various
variables that appear in parts of the main function code presented in the
subsequent sections are defined. The two necessary input arguments are the time
column vector (denoted as time) and the ground acceleration time history
column vector (denoted as xgtt). Apart from these, shows the various default
values which are set in the required variable definitions, in case they are not
specified by the user. These are the critical damping ratio ¢ (denoted in the code
as ksi), the lower period limit T1, the upper period limit T2 and the period step dT
of the generated response spectra (denoted in the code as Ti, T2 and dT
respectively), and finally the target ductility pt (denoted in the code as mu).
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function seismic=0OpenSeismoMatlab (time,xgtt,varargin)
%% Initial checks
if nargin<2
error ('Input arguments less than required')
end
if nargin>7
error ('Input arguments more than required')
end
% set defaults for optional inputs
optargs = {0.05,0.04,10,0.05,2};
% skip any new inputs if they are empty
newVals = cellfun(@(x) ~isempty(x), varargin);
% overwrite the default values by those specified in varargin
optargs (newVals) = varargin (newVals);
% place optional args in memorable variable names
[ksi,T1,T2,dT,mu] = optargs{:};
time = time(:);
xgtt = xgtt(:);
dt = time(2)-time (1) ;

Listing 3-1: Source code for the determination of various variables before the main
calculations.

3.2.1 Displacement and velocity time histories and peak values

This part of the OpenSeismoMatlab code is quite straightforward. The MATLAB
code shown in Listing 3-2 is executed in order to determine the displacement
time history of the input motion, the velocity time history, the peak
displacement, the peak velocity and the peak acceleration. The time integration is
simply performed by the summation of the product of the integrand function by
the time step At. The velocity and displacement time histories are given by eq.
(3.1) and (3.2) respectively:

k .
uy :(Zu;)m (3.1)
u'g‘ =(ZU;jAt (3.2)

where k denotes the kth time step of the earthquake motion. Since the size of the
time step is constant throughout the various earthquake motions, eq. (3.1) and
(3.2) make use of the cumulative sums (cumsum) of the earthquake acceleration
and the earthquake velocity respectively. The peak values are given by the
equations (3.3) to (3.5) respectively:

PGA = max (‘Ug ‘) (3-3)

PGV = max(|u,|) (34)
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PGD = max |u,|) (3-5)
The user has the option to perform baseline correction to the input acceleration
data, if desired, as shown in Listing 3-2. This capability is activated if the boolean
variable baselineSw is set equal to true. If so, the function baselineCorr.m is used
for this purpose. The source code of baselineCorr.m is shown in Listing 3-3.

% TIME SERIES
if baselineSw
[cor xg,cor xgt,cor xgtt] = baselineCorr (time,xgtt);
seismic.acc=cor xgtt;
seismic.vel=cor_ xgt;
seismic.disp=cor xg;
else
% Acceleration time history
seismic.acc = xgtt;
% Velocity time history
seismic.vel = cumtrapz (time,xgtt) *dt;
% Displacement time history
seismic.disp = cumtrapz(time,seismic.vel) *dt;
end

% PEAK RESPONSES

o\

Peak ground acceleration
seismic.PGA = max (abs (xgtt));

% Peak ground velocity

seismic.PGV = max (abs (seismic.vel));
% Peak ground displacement

°

seismic.PGD = max (abs(seismic.disp));

Listing 3-2: Source code for the calculation of the velocity and displacement time
histories as well as the peak values.

The function baselineCorr.m performs linear baseline correction for an
uncorrected acceleration time history. Initially, first order fitting (straight line) is
performed and the fitting line is subtracted from the acceleration time history,
giving thus the first correction. Afterwards, this first correction of the
acceleration is integrated to obtain the velocity, and then first order fitting
(straight line) is reapplied on this velocity time history. The gradient of the
straight fitting line is then subtracted from the first correction of the acceleration
time history, giving thus the second correction of the acceleration time history.
The second correction of the acceleration time history is then simply and doubly
integrated to give the corrected velocity and displacement time histories,
respectively.
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function [cor xg, cor_ xgt, cor xgtt] = baselineCorr(time,xgtt)
dt = time (2)-time (1) ;

% Least squares fit through acceleration history
p=polyfit (time,xgtt,1);

1sf cor xgtt = polyval(p,time);

cor xgttl = xgtt - 1sf cor xgtt ;

% Integrate for velocity

un_xgt = cumtrapz(time,cor xgttl) *dt;
% Least squares fit through velocity history
ca2 = polyfit(time,un xgt,1);

cor xgtt = cor xgttl - ca2(l);

% Corrected velocity

cor xgt = cumtrapz(time,cor xgtt)*dt;
% Corrected displacement

cor xg = cumtrapz (time,cor xgt)*dt;

Listing 3-3: Source code for the function baselineCorr.m.

3.2.2 Arias Intensity

The Arias Intensity was proposed as an intensity measure of an earthquake by
Arias (1970) and Housner & Jennings (1977), since it was recognized that the peak
values alone cannot adequately portray the intensity of a ground motion. It is
broadly defined as the sum of the energies per unit mass, dissipated due to the
ground motion, by a population of Single Degree of Freedom (SDOF) systems
with all natural frequencies. For undamped linear elastic SDOF systems, it can be
shown (Arias, 1970; Housner & Jennings, 1977) that the Arias Intensity (Al) is
given by:

Al =gj[j§(t)dt (3.6)

where tf is the total duration of the earthquake. For a digitized strong motion
data, Arias intensity is given by:
i
7o e N2
Al== i) |At (3.7)

[ Sary )
where imax denotes the total number of time increments of the earthquake
motion. OpenSeismoMatlab can also output the time history of the normalized

Arias Intensity, which expresses how the current Al (up to the current time
step k, normalized with the total AI) evolves with time during the earthquake
motion, as given by eq.(3.8):

o (3o s

A (3-8)
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where Alk is the value of the Arias Intensity at the kth time step of the
earthquake motion. The MATLAB code that is used for the above calculations is
shown in Listing 3-4:

% ARIAS INTENSITY

% time history of Arias Intensity

aint2 = cumsum(xgtt.”2)*pi*dt/2;

% Total Arias Intensity at the end of the ground motion
arias = aint2(end);

seismic.arias = arias;

% time history of the normalized Arias Intensity

seismic.aint2 = aint2/arias;

Listing 3-4: Source code for the calculation of the Arias Intensity (total and time
history of the normalized Al).

3.2.3 Significant duration

The definition of significant duration is given by Dobry et al. (1978) and Trifunac
& Brady (1975). In this definition, the significant duration is defined as the time
interval between the time at which 5% of the seismic energy is attained and the
time at which 95% of the seismic energy is attained. It is denoted as D5_g5. The
computational implementation is given in the MATLAB code shown in Listing
3-5. The code outputs both the significant duration (denoted in the code as
D_5_95) and the time instants at which 5% and 95% of Al are attained (arranged
in a row vector denoted in the code as t_5_95).

% SIGNIFICANT DURATION

% elements of the time vector which are within the significant duration
timed = time(aint2>=0.05*arias & aint2<=0.95*arias);

% starting and ending points of the significant duration

seismic.t 5 95 = [timed(l),timed(end)];

% significant duration

seismic.D 5 95 = timed(end)-timed(1);

Listing 3-5: Source code for the calculation of the significant duration of an
earthquake.

3.2.4 Elastic Response Spectrum

The Linear Elastic Response Spectrum (LEReSp) for a response quantity
(acceleration, velocity, displacement, etc.) is a plot of the peak value of the
quantity as a function of the natural vibration period (T,) or frequency (f,) of a

population of linear elastic SDOF systems. Each linear elastic response spectrum
is associated with a fixed damping ratio &. A flowchart of the calculation of the
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linear elastic response spectrum of an earthquake strong ground motion is shown
in Listing 3-7.

It is noted that all time integration algorithms require the use of relatively small
time-steps in order to deliver sufficiently accurate solutions (Soroushian, 2008;
Soroushian, 2017). For this purpose, a maximum value of the ratio between the
integration time-step and the period of the oscillator being analyzed is imposed,

as shown in Listing 3-7 (maX{(DiAt/ (271)} =0.02). Initially, the program uses the

time step of the input acceleration time history as the time step of the dynamic
analysis, and then if this is found to violate the aforementioned maximum, the
algorithm automatically reproduces the acceleration time history with half the
current time step through linear interpolation, so that the threshold value is
respected. The maximum limit that is specified above (0.02) leads to sufficiently
accurate solutions. However, in OpenSeismoMatlab it can be changed manually
by the user, if required, in order to handle special cases. The MATLAB function
that reproduces the acceleration time history with half the time step is called
HalfStep and its code is shown in Listing 3-6.

function uNew = HalfStep (u)
a=[([0;u(l:end-1)]+4u)/2,ul"';
uNew=a (:);

uNew (1)=[];

end

Listing 3-6: MATLAB code for the function HalfStep.m.

The main OpenSeismoMatlab function for the calculation of the linear elastic
response spectrum is called “LEReSp” and its source code is shown in Listing 3-8
and Listing 3-9 (as a continuation of Listing 3-8).

It can be seen that the initial conditions for all SDOF systems that are analyzed
for the generation of the LEReSp are zero for both velocity and displacement.
Furthermore, the time integration algorithm that is used for the dynamic
response history analysis of each SDOF system has zero order overshooting
behavior for both displacement and velocity, and since the minimum absolute
value of the eigenvalues of the amplification matrix (I, ) is equal to unity, this

corresponds to the mid-point rule a-form algorithm.
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Input: U, @, ¢

Initialize SD,SV SA
Set U, and U,

for each SDOF i with eigenfrequency o,
if oAt/(2m)>0.02
Reproduce Ugwith half time step (from At to At/2)
Set At=At/2
end

Perform dynamic analysis of SDOF with input (U, &, u,,U,)
Assign max(|u(t)|) to SD(i)
Assign max |u(t)]) to SV(i)
Assign max(|l'j(t)|) to SA(i)

end
Calculate PSV = ®SD and PSA = »’SD
Ountnut: SD SV SA PSV PSA

Listing 3-7: Flowchart of the calculation of the linear elastic response spectrum
implemented in OpenSeismoMatlab.

It has been proven that, for structural dynamics problems, the so-called linear
multi-step methods (LMS) are spectrally identical to a newly developed family of
generalized single step single solve (GSSSS) algorithms (Zhou & Tamma, 2004).
Three subclasses of computational algorithms can be distinguished based on the
overshooting behavior, and additional algorithmic properties such as second-
order accuracy, and unconditional stability with numerical dissipative features:
(i) zero-order displacement and velocity overshoot algorithms (Uo-Vo); (ii) zero-
order displacement and first-order velocity overshoot algorithms (Uo-V1); and
(iii) first-order displacement and zero-order velocity overshoot algorithms (Ui-
Vo).
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function [PSa,PSv, Sd,Sv,Sal=LEReSp (dt,xgtt,T,varargin)

[

°

set defaults for optional inputs

optargs = {0.05,0.01,'U0-VO-CA",0};

o

°

skip any new inputs if they are empty

newVals = cellfun(@(x) ~isempty(x), varargin);

o>

°

overwrite the default values by those specified in varargin

optargs (newVals) = varargin (newVals);

o)

°

place optional args in memorable variable names

[ksi,dtTol,AlgID, rinf] = optargs{:};

o

°

initialize

NumSDOF=1length (T) ;

Sd=zeros (NumSDOF, 1) ;

Sv=zeros (NumSDOF, 1) ;
Sa=zeros (NumSDOF, 1) ;

o>

°

Set the eigenfrequencies of the SDOF population

omega=2*pi./T;

[

°

o>

°

Flip eigenfrequency vector in order for the half-stepping algorithm

(HalfStep function) to work from large to small eigenperiods

omega=omega (end:-1:1) ;

o

°

set initial conditions

u0=0;
ut0=0;

o

°

Q

°

zero-order displacement & velocity overshooting behavior and

optimal numerical dissipation and dispersion

rinf=1; % mid-point rule a-form algorithm

for j=1l:1length(T)

omegaj=omega () ;
% Check if dt/T>dtTol. If yes, then reproduce the time history
% with the half step
if dt*omegaj/ (2*pi)>dtTol
xgtt=HalfStep(xgtt);
dt=dt/2;
end
[u,ut,utt] = LIDA(dt,xgtt,omegaj, ksi,ul,ut0,AlgID,rinf);
% output
Sd(j)=max (abs (u));
Sv (j)=max (abs (ut) ) ;
Sa(j)=max (abs (utt));

end

Listing 3-8: Source code for the function LEReSp.
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[

% Flip output quantities to be compatible with omega
omega=omega (end:-1:1) ;

Sd=Sd(end:-1:1);

Sv=Sv (end:-1:1);

Sa=Sa(end:-1:1);

% Calculate pseudovelocity and pseudoacceleration
PSv=Sd.*omega;

PSa=Sd.*omega."2;

end

Listing 3-9: Source code for the function LEReSp (continued from Listing 3-8).

The formulation of the general case of a GSSSS algorithm involves the
determination of 12 sets of parameters, among which five are related to the
accuracy, five are related to the overshoot, dissipation, and dispersion; one
parameter set is related to the stability; and one parameter set is related to the
second-order approximation for the integration of the load term. Therefore, the
user has the freedom to configure the general algorithm by adjusting the time
integration constants so that it yields acceptable results for any specific case of
application. This capability is also incorporated in OpenSeismoMatlab, since this
general time integration framework is an integral part of it. It has been shown
that many known time integration algorithms (e.g. the members of the Newmark
family) are special cases of this general algorithm framework. A more complete
presentation and investigation of the entire time integration algorithm family
used in OpenSeismoMatlab has been done by Papazafeiropoulos et al. (2017a).
The function LIDA (Linear Implicit Dynamic Analysis) is utilized for the dynamic
analysis of each SDOF system. The internal code of the function LIDA is
presented in Listing 3-10. Initially, the time integration constants are calculated
so that the time integration scheme corresponds to a zero-order displacement &
velocity overshooting behavior and optimal numerical dissipation and dispersion
algorithm (see Listing 3-10). The desired properties of this algorithm are second-
order accuracy, no overshoot, dissipative with optimal dissipation and dispersion,
and unconditional stability. The minimum absolute value of the eigenvalues of
the amplification matrix at the high-frequency limit is imposed to be equal to
unity to minimize the effect of the spurious root at the low-frequency limit.

The reader is referred to Zhou & Tamma (2004) for more details. The default time
integration algorithm of OpenSeismoMatlab (mid-point rule a-form algorithm)
can be used for small-scale (non-stiff) undamped problems. Of course, in special
cases, e.g. for large scale (stiff) problems with initial displacement or initial
velocity, the Ui-Vo or the Uo-V1 algorithms can be used, respectively. In such
cases, the various integration constants can be easily adjusted by the user of
OpenSeismoMatlab by appropriate modification of the code shown in Listing
3-10, so that solutions of superior quality can be obtained.
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function [u,ut,utt] = LIDA (dt,xgtt,omega,varargin)
% set defaults for optional inputs
optargs = {0.05,0,0,1};

% skip any new inputs if they are empty

newVals = cellfun (@ (x) ~isempty(x), varargin);

% overwrite the default values by those specified in varargin
optargs (newVals) = varargin (newVals);

% place optional args in memorable variable names
[ksi,u0,ut0,rinf] = optargs{:};

o)

Integration constants
% zero-order displacement & velocity overshooting behavior and
% optimal numerical dissipation and dispersion

wl=-15* (1-2*rinf)/(1-4*rinf); % suggested

w2=15* (3-4*rinf)/ (1-4*rinf); % suggested

w3=-35* (1-rinf) / (1-4*rinf); % suggested
Wl=(1/24+wl/3+w2/4+w3/5)/ (1+wl/2+w2/34+w3/4); % definition
W1L1l=1/(1l+rinf);

W2L2=1/2/ (1+rinf) ;

W3L3=1/2/ (1+rinf) "2;

W1L4=1/ (1+rinf) ;

W2L5=1/(1+rinf)"2; % suggested

W1L6=(3-rinf) /2/ (1+rinf);

11=1;

12=1/2;

13=1/2/(1+rinf);

14=1;

15=1/ (1+rinf);

Listing 3-10: Source code for the first part of the function LIDA.m used for the

calculation of the time integration constants.

The dynamic response history analysis is performed through the use of the fast
MATLAB function filter. This function proves to be much faster (up to 100x) than
the ordinary time integration routines, and filters the data in any input vector
(i.e. the time history of acceleration) with a rational transfer function described
by two additional input vectors (denominator and nominator) to create the
filtered output data (i.e. the time history of the response). The transfer function

of the filter function is of the form:
TF (1)+TF (2 271+T|:n 3 272+'|'|:n 4)z3
v(z)= 1(+)TF (1)(22+TF (2)(22+TF (3)(22 x()
d d d

(3.9)
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where X(Z) is the input signal (i.e. the time history of acceleration), Y(Z) is the
output signal (i.e. the time history of the SDOF dynamic response), TF. is a row

n
vector containing the coefficients of the nominator of the transfer function and
TF, is a row vector containing the coefficients of the denominator of the transfer

function, as presented in the following.

The calculation of the transfer function denominator and nominator is shown in
Listing 3-11. The elements of the amplification matrix are calculated first, and
then the invariants of the amplification matrix are found as follows:

B 2 2 2]
1 A, Q2 A, - Ay (2EQ+ 1, Q%) A, —hy 1+2p,EQ+p,Q
D D
2 2 2
A _AQ 1 A (2EQ+ 1, Q%) Ay = ke 1+2p,EQ+p,Q (3.10)
D D D
s 28Q+p,0° 1 1r2uE0+ 1,07
D D D |
3
I, =tr(A) = ZA" (3.11)
i=1
I, =%[tr(A)2 —tr(A2 )} (3.12)
I, =det(A) (3.13)

where Q=wAt and D=M6+2H5§Q+M3QZ, while A, and p, (i = 1,..,5) are

constants of the time integration algorithm. The reader is referred to [27] for the
detailed definitions of these integration constants corresponding to the various
time integration algorithms. The denominator of the transfer function is given

by:

TF, =[1-1,,11,,-111,] (3.14)
The nominator of the transfer function is calculated as follows:
TFn = [81’82’83’84] (3.15)
where:
B, = APRW,
D
5 _ A0y (1= W) = (Ag + Ay ) AW, + AL W, + AW, |
, =
D
B. — A_t {_(Azz + A33 ) }‘3 (1_ Wl) + A127“5 (1_ W1 ) + A13 (1_ Wl) + (A22A33 - A23A32 )}‘3W1 -
’ D (A12A33 - A13A32 )7“5W1 + (A12A23 - A13A22 ) Wl
B — A_t2 {(AzzAss B A23A32 )7‘3 (1_ Wl) B (A12A33 B A13A32 ) }‘5 (1_ Wl) +}
) D (A12A23 _A13A22)(1_ Wl)

(3.16)

|
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The denominator vector is constructed by the amplification matrix invariants.
The nominator vector is constructed as a function of the elements of the
amplification matrix and various integration constants. Finally, the displacement
of the SDOF system is found at the first and second time instants by using the
initial conditions and the amplification matrix. The time history of the
displacement is found using the Matlab function filter. Then the velocity is
calculated from the system of equations (3.17) and(3.18), in which the only
unknowns are the time histories of the velocity and acceleration (u' and ',

respectively):
r T

1_k3QZ
D Ut
. L (2EQ+ 1, Q%) | AAL y e
e =] g, - B A [+ 2T (1= W ) (=08 )+ W (5™ ) | Ga7)
A st
L, L 2nE0 0 w
2 3
— D —
it .t t it
mi" +cu’ +ku =-mi, (3.18)

and the acceleration time history, with the time histories of the displacement and
velocity known, is derived merely from eq. (3.18). See Listing 3-12 for more details
about the source code segment in which this computation is performed.

3.2.5 Constant Ductility inelastic Response Spectrum

The Constant Ductility Response Spectrum (CDReSp) is the nonlinear
counterpart of the linear elastic response spectrum that is described in the
previous section. It is a plot of the peak value of any response quantity as a
function of the small strain natural vibration period (T,) or frequency (f ) of a

population of inelastic (bilinear elastoplastic) SDOF systems. Each CDReSp curve
is associated with a fixed critical damping ratio ¢ and target ductility p,. A

flowchart of the calculation of the CDReSp of an earthquake strong ground
motion is shown in Listing 3-13. A number of iterations are performed for each
SDOF system (i.e. for each eigenfrequency) of the CDReSp, as the way to
determine the yield limit of a SDOF structure based on its dynamic response
(ductility) is not straightforward. During the iterations the yield limit is
continuously adjusted so that the ductility that is calculated is as close as possible
to the target ductility. This fact renders the calculation of the CDReSp more
computationally expensive than the calculation of the simple LEReSp. Given its
large extent, the related MATLAB code for this function as well as the children
(called) functions are not presented here but can be easily found online in the
OpenSeismoMatlab package of source files at the File Exchange service of
MATLAB Central, or at other repositories. Inside the function CDReSp, a series of
dynamic analyses of the linear elastic and the bilinear elastoplastic SDOF system
are performed, as can be seen in Listing 3-13. For these dynamic analyses, an
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appropriate external function is called. The flowchart of this function can be
found in Papazafeiropoulos et al. (2017a). It is noted that the constant-ductility
inelastic response spectrum is computed through nonlinear dynamic analyses of
elastoplastic hysteretic systems, rather than through the simplified approaches
that have been proposed in the literature (Newmark & Hall, 1982; Krawinkler &
Nassar, 1992; Miranda & Bertero, 1994).
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[

% Transfer function denominator
Omega=omega*dt;
D=W1L6+2.*W2L5.*ksi.*Omega+W3L3.*Omega."2;
A31=-Omega."2./D;
A32=-1./D.*(2.*ksi.*Omega+WlLl.*Omega."2);
A33=1-1./D.* (1+2.*W1L4.*ksi.*Omega+W2L2.*Omega."2) ;
Al1=1+13.*A31;

Al2=11+13.*A32;

A13=12-13.*(1-A33);

A21=15.*A31;

A22=1+15.*A32;

A23=14-15.*(1-A33);

% Amplification matrix

A=[All Al2 Al13;A21 A22 A23;A31 A32 A33];

% Amplification matrix invariants
Al=A(1,1)+A(2,2)+A(3,3);
A2=A(1,1)*A(2,2)-A(1,2)*A(2,1)+A(1,1)*A(3,3) -
A(1,3)*A(3,1)+A(2,2)*A(3,3)-...

A(2,3)*A(3,2);
A3=A(1,1)*A(2,2)*A(3,3)-A(1,1)*A(2,3)*A(3,2) -
A(l,2)*A(2,1)*A(3,3)+A(1,2)*...

A(2,3)*A(3,1)+A(1,3)*A(2,1)*A(3,2)-A(1,3)*A(2,2)*A(3,1);
% Transfer function denominator
a=[1 -Al A2 -A3];

% Transfer function nominator

Bl=1./D.*dt"2.*13.*W1l;
B2=1./D.*dt"2.*(13.* (1-W1l) - (A22+A33) . *13.*W1+A1l2.*15.*W1+A13.*Wl) ;
B3=1./D.*dt"2.* (- (A22+A33) . *13.* (1-W1)+A12.*15.* (1-W1) +A13.* (1-W1l)+...
(A22 .*A33-A23.*A32) .*13.*Wl-(A12.*A33-A13.*A32) .*15.*W1l+ (Al2.*A23~-

A13.*A22) .*W1) ;
B4=1./D.*dt"2.* ((A22.*A33-A23.*A32) .*13.* (1-W1l)-(A1l2.*A33-
Al13.*A32) .*15.*%(1-...

W1l)+ (Al2.*A23-A13.*A22) .*(1-W1));
b=[B1,B2,B3,B4];

Listing 3-11: Source code for the calculation of the denominator and nominator of the
transfer function used in filter.m (source code continued from Listing 3-10).
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o)

% form initial conditions for filter function
% equivalent external force

f=-xgtt;

% stiffness

k=omega.”"2;

% damping constants

c=2.*omega.*ksi;

% initial acceleration
uttO0=-£ (1) - (k*uO+c*ut0) ;

U 1=A\[u0;dt*ut0;dt"2*utt0];

u 1=U 1(1);

U 2=A\U 1;

u 2=U0 2(1);

ypast=[ul,u _1,u 2];

vinit=zeros(1,3);

vinit(3:-1:1) = filter(-a(4:-1:2),1,ypast);
% main dynamic analysis

u=filter (b,a, f,vinit);

o\

calculate velocity from the following system of equations:

o\°

l1st: the first scalar equation of the matrix equation (60) in

>

.Zhou &
K.K.Tamma (2004)

o\°

o\°

2nd: equation of motion
_u=omega”2*A(1,3)*dt"2-A(1,1);
C f=-A(1,3)*dt"2;
C ut=A(1,2)*dt-A(1,3)*dt"2*2*ksi*omega;
L=1/D*13*dt"2* ((1-W1)*[0;f(l:end-1) ]+W1*f);
ut=(u+C_u*[ul;u(l:end-1)]+C £f*[0;£f(l:end-1)]-L)/C ut;

Q

% calculate acceleration from equation of motion

utt=-omega”2*u-2*ksi*omega*ut;

Listing 3-12: Source code for the final part of the function LIDA.m used for the
dynamic analysis of a linear elastic SDOF system (source code continued from Listing

3-11).
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Input: Ug, o, &, W,

Initialize SD, SV, SA, PSV, PSA
Set m, ngs, U, and U,

for each SDOF i with eigenfrequency o,

Find the low strain stiffness K;; = mo,”

I
if oAt/(2m)>0.02
Reproduce Ugwith half time step (from At to At/2)
Set At=At/2
end
Perform dynamic analysis of linear elastic SDOF ( Ug Ky, m, e, U, 0,)

Upeac = max(|u (t)|)

fpeak khl upeak
Pos = upeak
u
neq = peak
J 1.5,

for k from1to N,
Perform dynamic analysis of bilinear elastoplastic SDOF ( Ug Ky ML E,Ug, Ug, Uy )
Upesic = max(‘u )‘)
H upeak/uyk
res, =H, —1
if |res,|/u, <tol,
break
elseif k>2
Adjust tol, depending on the number of iterations k

Find pos, neg, U,,,; depending on the sign of res,,res, , and res, —res, ,
elseif k=1

uy,k+1 = neg
end
end
Calculate SD(i)=ma (‘ NL(t)‘)—upeak, SV(i)= max(‘ H(t )D and SA(i)= max(‘ I\‘L(t)‘)
Calculate PSV(i)=SD(i)o and PSA(i)=SD(i)w;
end

Nttt SD SV §A P§V P§A

Listing 3-13: Flowchart of the calculation of the constant ductility response spectrum
implemented in OpenSeismoMatlab.
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3.2.6 Fourier Amplitude Spectrum

The Fourier Amplitude Spectrum (FASp) shows how the amplitude of the strong
ground motion varies with frequency. It expresses generally the frequency
content of a ground motion and useful information can be extracted from it. The
MATLAB code that is used for the calculation of the FASp is shown in Listing 3-14
and Listing 3-15.

% FOURIER AMPLITUDE SPECTRUM
[£,U]=FASp (dt,xgtt);
seismic.FAS = U;

seismic.freq = £f;

Listing 3-14: Source code for the calculation of the FASp.

As can be seen in Listing 3-14, the function FASp.m performs the majority of the
calculations needed for the creation of the Fourier Amplitude Spectrum. The
MATLAB source code for the function FASp.m is shown in Listing 3-15. The
highest frequency that is considered for the calculation of the FASp is the Nyquist
frequency of the input acceleration (the last is denoted in the code as xgtt). The
Fourier spectrum that is calculated is single-sided and based on the MATLAB
function fft which applies the Fast Fourier Transform [based on a library called
FFTW ( http://www.fftw.org ); Frigo & Johnson, 1998]. It is apparent from Listing
3-15 that the transform length n_; has been set equal to the minimum power of 2

that gives result larger than the length of the input acceleration. This selection
can increase the performance of FFT. The Fast Fourier Transform is implemented
as follows:

U (k)= U, (ijw, 1 (3.19)
j=1
where

W, =gl (3.20)

Nerr

: th . .. .
isa N root of unity and i in eq. (3.20) is the square root of -1.

3.2.7 Mean Period
The mean period (T, ) is computed from the Fourier amplitude spectrum of an
acceleration time history by eq. (3.21) (Rathje et al., 2004):

o)

T, =" (3.21)
2
for 0.25Hz <f, <20Hz with Af <0.05Hz. U, is the Fourier amplitude, f, is the

frequency corresponding to U, and Af is the frequency interval. Eq. (3.21)


http://www.fftw.org/
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defines that the mean period is the weighted average of the periods of the
spectrum with weighting based on squared Fourier amplitudes. The MATLAB

source code that is used for the calculation of T, is presented in Listing 3-16.

function [£f,U] = FASp(dt,xgtt)

% Nyquist frequency (highest frequency)
Ny = (1/dt)/2;

% number of points in xgtt

L = length(xgtt);

% Next power of 2 from length of xgtt
NFFT = 2”%nextpow2 (L) ;

% frequency spacing

df = 1/ (NFFT*dt);

o\

Fourier amplitudes

U = abs (fft(xgtt,NFFT)) *dt;

oo

Single sided Fourier amplitude spectrum

= U(2:Ny/df+1);

(@)

\o

frequency range

Hh

= linspace (df,Ny,Ny/df)';

end

Listing 3-15: Source code of the function FASp.

% MEAN PERIOD

fi f(£>0.25 & £<20);

Ci = U(£>0.25 & £<20);

Tm = ((Ci(:)'.72)*(1./£1(:)))/(Ci(:)"*Ci(:));

seismic.Tm = Tm;

Listing 3-16: Source code for the calculation of the mean period of an acceleration
time-history.

3.3 Numerical results

In order to verify the results of OpenSeismoMatlab, they are compared with the
corresponding results of a commercial strong ground motion data processing
software, SeismoSignal. A detailed description of this software is given in Section
3.1. The reason for the selection of this software is that it is easy to use, it has a
relatively detailed documentation of high scientific quality and it is accepted as a
trustworthy and reliable tool worldwide, since it has been used and tested
flawlessly for a number of years by researchers and professionals. However,
SeismoSignal uses conventional time integration algorithms, and in certain cases
can be susceptible to errors, especially when time integration algorithms with
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dissipative and overshooting properties superior to those of the Newmark family
of algorithms need to be used. OpenSeismoMatlab comes to improve this
inadequacy. For the purposes of comparison, a suite of 11 strong ground motion
acceleration time histories have been selected, which are presented in Figure 3-2.
Data about the earthquakes that generated these acceleration time histories are
shown in Table 3-1.

Earthquake Year | Station
, El Centro Array Sta 8, CA, 95 E

Imperial Valley 1979 | Cruickshank Rd

Izmit-Kocaeli 1999 | Yarimca Petkim

Loma Prieta 1980 Gilroy Array Sta 3, CA, Sewage
Plant

Northridge 1994 | ogo CDMG Station 24278

San Fernando 1971 | Castaic, CA, Old Ridge Route

Spitak 1988 | Gukasyan

Cape Mendocino 1992 | Cape Mendocino, CA, Petrolia

Chi-Chi 1999 | Nantou - Hsinjie School, WNT

El Centro 1940 El .Ce'zntro Terminal Substation
Building

Hollister 1961 | USGS Station 1028

Kobe 1995 | Takarazuka

Table 3-1: Earthquakes the strong motion records of which have been considered in
the present chapter.

3.3.1 Peak values of displacement, velocity and acceleration time histories

In Table 3-2 the peak ground displacement (PGD), peak ground velocity (PGV)
and peak ground acceleration (PGA) are calculated for 11 strong ground motions
with various characteristics. Compared to the corresponding results of
SeismoSignal (not shown here), it has been observed that the peak values are
almost identical with the largest relative difference within 0.5% of the original
value.

3.3.2 Arias Intensity values and time histories

In Table 3-3 the Arias intensity is shown for the same 11 strong ground motion
records of Table 3-2. The results of OpenSeismoMatlab coincide with those of
SeismoSignal.

In Figure 3-3 the time histories of the normalized Arias Intensity (Al) are
presented for the 1 strong ground motions considered in this chapter. The
normalization is made with respect to the Al values shown in Table 3-3. Two time
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histories are shown in each subplot of this figure. The curves in red color
correspond to the results of OpenSeismoMatlab whereas the curves in black color

Earthquake PGD (m) | PGV (m/s) PGA (m/s?)
Imperial
Valley 1.233 0.553 5.997
Kocaeli 1.538 0.885 3.085
Loma Prieta 0.106 0.364 5.317
Northridge 0.402 0.787 9.707
San Fernando | 1.722 0.337 2.654
Spitak 5.801 0.667 1.879
Cape
Mendocino 0.349 0.445 10.194
ChiChi 0.422 0.644 9.373
El Centro 0.212 0.363 3.128
Hollister 0.003 0.042 1.347
Kobe 0.267 0.685 6.803

Table 3-2: PGD, PDV and PGA values of the strong motion data considered in this

chapter.

Arias Intensity
Earthquake (m/s)
Imperial
Valley 1.582
Kocaeli 1.669
Loma Prieta 2.075
Northridge 16.634
San Fernando 0.973
Spitak 0.311
Cape
Mendocino 2.386
ChiChi 7.569
El Centro 1.802
Hollister 0.044
Kobe 3.067

Table 3-3: Arias Intensity (Al) of the strong motion data considered in this chapter.



76 Chapter 3
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Figure 3-2: Acceleration time histories of the earthquake records considered.

(almost invisible since they are almost fully covered by the red curves)
correspond to the results of SeismoSignal. It can be seen that the curves are

nearly identical; this shows that the agreement between the two software is very
good.

3.3.3 Significant durations 5-95

The significant duration of each strong ground motion record are shown in Table
3-4. The significant duration 5-95 is defined as the time interval between the
point at which 5% of the Arias intensity is attained, and the point at which 95% of
the Arias intensity is attained. The results of the two programs coincide.
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Figure 3-3: Time histories of the normalized Arias Intensity for the strong motion data
considered in this chapter calculated by OpenSeismoMatlab and SeismoSignal.
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Earthquake Sig.n ificant
duration 5-95 (s)
Imperial
Valley 6.84
Kocaeli 31.66
Loma Prieta 6.00
Northridge 12.58
San Fernando 15.82
Spitak 8.08
Cape
Mendocino 10.04
ChiChi 27.34
El Centro 23.84
Hollister 2.48
Kobe 4.60

Table 3-4: Significant duration of the strong motion data considered in this chapter.

3.3.4 Elastic response spectra

In Figure 3-4, Figure 3-5 and Figure 3-6 the displacement, pseudo-velocity and
pseudo-acceleration response spectra are presented for the various strong ground
motions considered in this chapter. As done also in other figures, the curves with
red and the black color correspond to the results of OpenSeismoMatlab and
SeismoSignal, respectively. The comparison is excellent between the two
programs.

3.3.5 Constant-ductility inelastic response spectra

In Figure 3-7 and Figure 3-8 the spectral displacement and spectral velocity
respectively are shown for the constant-ductility inelastic response spectra of the
11 strong ground motions considered for target ductility equal to 2. Obviously, the
difference between the curves of the results of the two software is larger than that
between the linear elastic counterparts. The differences between the results can
be attributed to the different methods used by the two software, the superiority
of the time integration algorithms used by OpenSeismoMatlab and other factors
related to the efficiency of the implementation of the various procedures in the
code of the two software. Despite these, generally the corresponding results of
the two software are reasonably close to each other also in the nonlinear regime.

3.3.6 Fourier amplitude spectra

In Figure 3-9 the Fourier amplitude spectra (FAS) are shown for the strong
ground motions considered. Two curves for each record are shown which
correspond to the two software being compared. It seems that the various Fourier
spectra are nearly identical.
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Figure 3-4: Linear elastic displacement response spectra for the strong motion data
considered in this chapter calculated by OpenSeismoMatlab and SeismoSignal.
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Figure 3-5: Linear elastic pseudo-velocity response spectra for the strong motion data
considered in this chapter calculated by OpenSeismoMatlab and SeismoSignal.
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Figure 3-6: Linear elastic pseudo-acceleration response spectra for the strong motion
data considered in this chapter calculated by OpenSeismoMatlab and SeismoSignal.
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Figure 3-7: Constant ductility inelastic displacement response spectra for the strong
motion data considered in this chapter calculated by OpenSeismoMatlab and
SeismoSignal.
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Figure 3-8: Constant ductility inelastic velocity response spectra for the strong motion
data considered in this chapter calculated by OpenSeismoMatlab and SeismoSignal.

3.4 Effect of the time step on the accuracy of the output

In this section, the effect of the time step size on the accuracy of the solutions
provided by OpenSeismoMatlab is investigated. The pseudoacceleration (PSa)
response spectrum of a sinusoidal acceleration time history (corresponding to the

function U, =Sin(207tt)) with critical damping ratio & equal to 5% is considered.

The excitation is a harmonic (sinusoidal) motion with circular frequency equal to
207t (i.e. frequency 10 Hz and period o.1 s) and total duration 2 s, whereas it is
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digitized in sufficiently small time steps (At=0.0001s). The PSa spectrum is
calculated for OpenSeismoMatlab and SeismoSignal separately and initially a
comparison is made between the two solutions. This comparison is shown in
Figure 3-10, in which the decimal logarithm of the PSa spectrum is plotted versus
the range of eigenperiods considered.

It is obvious that the two curves nearly coincide with each other and from this it
can be concluded that practically they both coincide with the real solution, since
the time step is relatively small enabling thus high accuracy computations. The
differences between the two solutions are very small, found only at the 5th
decimal digit. We define as PSa, this reference solution, i.e PSa, is considered

the correct solution for each program. As the time step size increases, a certain
degree of error is introduced in the PSa spectrum. A measure of this error can be
the root-mean-square deviation between the PSa spectrum for an arbitrary value
of At and the accurate PSa, presented in Figure 3-10, which is estimated by eq.

(3.22) as follows:

Zn:(PSa‘At —PSa:))2
RMSD ={|= . (3.22)

where PSay, is the PSa spectrum obtained for time step equal to At and n is the
number of eigenperiods contained in the PSa spectrum (n=400 in this
investigation). The different values of At that are considered are 3x10-4 s, 1x10-3 s
and 3x10-3 s. For each value of these time steps, two PSaa: spectra are calculated,
one by OpenSeismoMatlab and one by SeismoSignal. Then, Eq. (3.22) is applied
for the two programs separately, where for each one the corresponding PSa, is

considered; two separate RMSD curves are extracted and plotted in Figure 3-11 for
comparison. It is obvious that the solutions provided by OpenSeismoMatlab have
less error than the corresponding solutions provided by SeismoSignal, for the
various time step sizes. As a result, it is shown that the quality of the results of
OpenSeismoMatlab is superior to that of SeismoSignal, at least under certain
circumstances. This is attributed to the fact that advanced time integration
algorithms are used by the former.

3.5 Conclusions

A new open-source software for strong ground motion data processing called
OpenSeismoMatlab is presented, which uses advanced time integration
algorithms, contains open and free source code written in MATLAB, and uses an
accurate formulation and implementation of the elastoplastic bilinear kinematic
hardening constitutive model. Parts of the code have been presented and
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Figure 3-9: Fourier amplitude spectra for the strong motion data considered in this
chapter calculated by OpenSeismoMatlab and SeismoSignal.



86 Chapter 3

PSa spectrum (for time step 10'4)

log, (PSa) (m/s”)

SeismoSignal
OpenSeismoMatlab

Period (s)

Figure 3-10: Comparison of the pseudoacceleration response spectrum PSa of a
sinusoidal acceleration time history for a very small step size (At=10-4 s) between
OpenSeismoMatlab and SeismoSignal.
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Figure 3-11: Comparison of the error of the pseudoacceleration spectrum (PSa) of a
sinusoidal acceleration time history with respect to PSa,,, between
OpenSeismoMatlab and SeismoSignal.

explained in detail in this chapter, so that the reader can easily understand the
structure and implementation of the software and make various case-dependent
adjustments in order to obtain results of the highest quality. The various types of
spectra of 1 earthquake strong ground motions have been extracted with



Chapter 3 87

OpenSeismoMatlab and it has been shown that they are nearly identical to
corresponding results of SeismoSignal, a reliable commercial proprietary
software. In some cases, the quality of the results of the new software is superior
to that of SeismoSignal due to the fact that it uses advanced time integration
algorithms that allow for controlled dissipation, dispersion and overshooting
properties. A numerical investigation was made which showed that
OpenSeismoMatlab provides more accurate results than SeismoSignal when the
same integration step size is used for both. OpenSeismoMatlab is a unique
software that combines innovative numerical algorithms, high quality and
robustness and is provided as an open-source tool to the research and
professional engineering communities for the seismic design of structures as well
as the processing of strong ground motions. The new software can be used for
free by students and/or programmers for the seismic design of structures as well
as general processing of strong ground motions. Thanks to its open source
nature, it can be of high educational value for related university courses and can
be easily extended or modified in order to be incorporated in higher level
software.

3.6 Notation

At : step of direct time integration scheme
A,...As: time integration constants

L...lls : time integration constants

p: ductility ratio achieved for dynamic nonlinear analysis of a SDOF system
¢ target ductility ratio

g : ratio of critical viscous damping

Q: Normalized circular eigenfrequency

w: circular eigenfrequency

Al: Arias Intensity

Al: Normalized Arias Intensity

c: damping coefficient

Ds_4s: Significant duration of an earthquake

dT: period step of the generated response spectra
errAt: error associated with the time step At

f.: frequency corresponding to Fourier amplitude U,

fa: eigenfreuency of the nth SDOF system

fpeak: maximum linear elastic force

imax: Total number of time increments of the earthquake motion
k: stiffness

m: mass

n: number of eigenperiods contained in the PSa spectrum

Ne : the transform length of the fft function
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nnr: Newton Raphson number of iterations for convergence to the target ductility
PGA: Peak Ground Acceleration

PGV: Peak Ground Velocity

PGD: Peak Ground Displacement

PSA: Pseudo Spectral Acceleration

PSaac: PSa spectrum for time step equal to At

PSV: Pseudo Spectral Velocity

RMSD: Root-mean-square deviation between the PSa spectrum for an arbitrary
value of At and PSa,

SA: Spectral acceleration

SD: Spectral displacement

SV: Spectral velocity

T.: lower period limit of the generated response spectra

T,: upper period limit of the generated response spectra

TFq: vector containing the coefficients of the denominator of the transfer
function

TFy: vector containing the coefficients of the nominator of the transfer function
tr: total duration of the earthquake

T, : mean period of an acceleration time-history

Thn: eigenperiod of the nth SDOF system
o - initial displacement

o - earthquake ground displacement

o : initial velocity

¢ - earthquake ground velocity

U, : earthquake ground acceleration

Upeak: maximum value of the absolute displacement time history of a linear SDOF
system

U: displacement time history of the linear elastic SDOF system

Ut displacement at time t

u': velocity at time t

ii': acceleration at time t

Uy : yield limit of a SDOF system at k'™ iteration

u™-: displacement time history of the bilinear elastoplastic SDOF system

U:ﬂ;k: maximum value of the absolute displacement time history of a nonlinear

SDOF system
U : Fourier amplitude
W, : time integration constant
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4 A new energy-based structural design
optimization concept under seismic
actions

4.1 Introduction

In this chapter a new optimization concept is introduced which involves the
optimization of nonlinear planar shear buildings by using a gradient method
based on equivalent linear structures, instead of the traditional practice of
calculating the gradients from the nonlinear objective function. The optimization
problem is formulated as an equivalent linear system of equations in which a
target fundamental eigenfrequency and an equally dissipated energy distribution
among the storeys of the building are the components of the objective function.
The concept is applied in a modified Newton-Raphson algorithm in order to find
the optimum stiffness distribution of two representative linear or nonlinear
MDOF shear buildings, so that the distribution of viscously damped and
hysteretically dissipated energy respectively over the structural height is uniform.
A number of optimization results are presented in which the effect of the
earthquake excitation, the critical modal damping ratio and the normalized yield
interstorey drift limit on the optimum stiffness distributions is studied. Structural
design based on the proposed approach is more rational and technically feasible
compared to other optimization strategies (e.g. uniform ductility concept),
whereas it is expected to provide increased protection against global collapse and
loss of life during strong earthquake events. Finally, it is proven that the new
optimization concept not only reduces running times by as much as 91%
compared to the classical Newton-Raphson optimization algorithms, but also it
can be applied in other optimization algorithms which use gradient information
to proceed to the optimum point.

Optimization techniques play an important role in various occasions in structural
design, where they can be used by engineers, decision makers, etc. to find the
best possible solution. Optimization methods used for structural design can be
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classified into various categories, i.e. deterministic or stochastic (based on
whether the model involves a fully specified or probabilistic formulation),
constrained or unconstrained, local or global, etc. The objective of any structural
optimization algorithm is to select among various possible design cases the
optimum case which will minimize cost, maximize safety, and at the same time
comply with the various design and construction constraints, if present.

In modern structural design for static and/or dynamic loading it is intended to
design structures that will partially respond in the inelastic range, since this
design proves to be more economical. Especially in seismic design, inelastic
behavior is acceptable within certain limits, determined by the tradeoff between
structural safety and economy. Besides, many structures have resisted
earthquakes during which much higher inertia forces were induced to them than
their strength calculated through linear elastic force based design. The concept of
ductility was introduced to justify the latter and as a design tool for the former.
These facts are realized by most current seismic design codes, mainly based on
the traditional force based design procedures, which take these effects into
account by introducing modification factors to reduce seismic force and
overstrength demands depending on the structural system and the ductility
desired. However, both force-based and displacement based design concepts are
based only on the peak responses of a structure subject to an earthquake; the
loading history or the time history of its response are not taken into account. The
peak response does not provide enough information on how the structure has
performed nonlinearly during an earthquake ground motion; there are various
quantities which accumulate within the structure, such as the plastic energy
absorbed by the structural components. The latter is a good indication of the
damage suffered by the structure, especially in reinforced concrete structures.
Therefore, it should be understood that seismic design should be time-history
dependent and not based only on peak response at specific time instances. Based
on the above a new design method has appeared, based on the energy input and
dissipation in structures, named Energy Based Design (EBD). According to this
method, an energy-dissipating mechanism has to be designed, which must have
the ability to absorb greater amounts of energy than the input energy to a
structure during strong ground motion, in order to ensure that the structure will
efficiently resist earthquake motions.

Apart from the ductility of the construction material, the seismic performance of
a structure is affected by its structural configuration and the distribution of
strength and stiffness. Most collapses during or after past earthquakes have
occurred to some extent due to incorrect structural configuration. The creation of
soft storeys are a characteristic example of deficient structural behavior, where
excessive ductility and drift are observed at a single floor of a building, leading to
local collapse. Most buildings are designed according to the concept of equivalent
static forces prescribed by seismic codes. The heightwise distribution of these
forces results from the inherent assumption that the vibration modes of the
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structure are linear elastic. On the other hand, according to the EBD concept, it is
assumed that the structure responds non-linearly; consequently the assumption
of linear elastic modes does not lead to realistic calculation of equivalent force
distributions of the structure, and thus does not necessarily ensure optimum
seismic performance, or even safety.

In this chapter, a new iterative optimization algorithm of Newton type with line
search capabilities especially designed for structural optimization is presented
and implemented for the optimum structural design in terms of the energy
absorbed during an ensemble of seismic excitations. More specifically, the
objective of the optimization process is to minimize the variation of the
dissipated energy distribution along the height of a MDOF planar shear building,
by finding the optimum distribution of storey stiffness and strength, for a
prescribed fundamental (small strain) eigenperiod of the building. The
optimization procedure is applied both for linear elastic and elastoplastic
buildings. Based on the optimization results, the effects of different earthquakes,
fundamental eigenperiods, number of storeys and amount of viscous damping
along the height of the building on the optimum strength distributions are
investigated and discussed.

4.2 Literature review

In most seismic design codes for buildings worldwide, the seismic effects on
structures are taken into account in simplistic ways which refer to linear elastic
structural models, or lateral force methods of analysis, e.g. CEN (1998); KBC
(2009); IBC (2006); UBC (1997); NZS1170 (2004); AlJ (1996). For example, in Part 1,
section 4.3.3.2 of CEN (1998), the horizontal seismic force distributions to be
applied for design are determined based on the elastic properties of the structure,
or even on a triangular distribution of horizontal displacements. It is apparent
that these force distributions usually do not lead to evenly distributed dynamic
distress of building structures, and therefore attempts have been made in the
past to calculate these distributions in an optimum way by enforcing that distress
and damage are equidistributed among the storeys of a building.

A first approach is to apply the theory of uniform deformation to determine
the optimum seismic forces (Moghaddam & Hajirasouliha, 2004). According to
this concept, while in most conventional design cases the ductility demand will
vary among the floors of a building, leading either to material partially working
or to material less than required, it is enforced that the maximum interstorey
drift is uniformly distributed heightwise, and equal to the maximum allowable
limit. Thus the condition of uniform deformation results in optimum use of
material. The uniform deformation theory has been successfully applied in
various studies for optimum seismic design of fixed-base shear buildings
(Moghaddam & Hajirasouliha, 2006; Park & Medina, 2007; Hajirasouliha &
Moghaddam, 2009; Hajirasouliha et al., 2012; Hajirasouliha & Pilakoutas, 2012). It
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is concluded that there is generally a unique optimum distribution of structural
properties, regardless of the load distribution used for the initial design
(Moghaddam & Hajirasouliha, 2006). Furthermore, if the fundamental period
increases, the load pattern usually increases at the top storeys due to higher
mode effects. On the contrary, if the ductility demand increases the load pattern
increases at the lower floors. Furthermore, a methodology to avoid concentrated
deformation of a building and to distribute damage uniformly along the height
without utilizing any optimization algorithm is proposed by Park & Medina
(2007). The distributions implemented in current seismic codes are modified by
suitably adjusting specific parameters using regression techniques. The resulting
relationships remain highly empirical, and applicable only for structures with
properties similar to those examined. In the study of Hajirasouliha &
Moghaddam (2009) it is shown that structures designed according to the average
of optimum load patterns, for the same ductility demand, have relatively less
structural material in comparison with those designed conventionally. A practical
method to redistribute material in reinforced concrete frames in order to achieve
uniform deformation or damage is proposed, and is extended to take into
account multiple performance objectives (Hajirasouliha et al., 2012). Moreover,
the average strength distribution resulting from optimum strength distributions,
calculated for various synthetic earthquakes representing a typical building code
design spectrum and corresponding to either minimum ductility or minimum
cumulative damage, is found and it is shown that structures accordingly designed
can have up to 37% less structural weight compared to conventionally designed
structures (Hajirasouliha & Pilakoutas, 2012). Also, structures with nonuniform
mass distributions are considered and optimized in that study.

Soil-structure interaction effects are taken into account for the application of
the uniform deformation theory for the optimum seismic design of shear
buildings (Ganjavi & Hao, 2012a; Ganjavi & Hao, 2012b; Ganjavi & Hao, 2013). The
effect of Soil-Structure interaction (SSI) on the optimum strength distribution at
a MDOF structure, initially linear elastic and later nonlinear, based on the
uniform deformation theory is examined (Ganjavi & Hao, 2012a; Ganjavi & Hao,
2012b). It is found that among the various seismic codes, UBC (1997). leads to the
best performance, and that when SSI is taken into account, things change
substantially regarding the optimum strength distribution, while optimum
strength distributions established for fixed-based structures lose their efficiency
when applied in their flexible foundation counterparts.

Besides these, hysteretic energy dissipation in a structure during an
earthquake is the key factor related to the amount of damage in it. A structure is
considered to resist an earthquake ground motion provided that the energy input
to the structure from the earthquake is lower than its energy absorption capacity.
Following this, the EBD concept as well as the determination of elastic and/or
hysteretic energy distributions, have been examined for MDOF systems (Berg &
Thomaides, 1960; Penzien, 1960; Zahrah & Hall, 1982; Akiyama, 1985; Nakamura &
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Yamane, 1986; Léger & Dussault, 1992; Rodriguez, 1994; Nakashima et al., 1996;
Connor et al., 1997). The energy dissipation in inelastic single degree of freedom
structures is studied by Berg & Thomaides (1960), where it is found that usually
when the yield level decreases, the amount of seismic energy transferred to the
structure decreases. It is highlighted that design of multistorey buildings
involving nonlinear response is not straightforward, because the number of
points of occurrence and the distribution of inelastic deformations cannot be
readily predicted. The elastoplastic shear-beam type models with several degrees
of freedom are investigated and it is found that higher modes may have a large
contribution in the overall structural response when the plastic deformations are
relatively low, and therefore the lateral force distribution considered for design
should be carefully selected (Penzien, 1960). The energy absorption in, and the
inelastic behavior of, SDOF and 2-DOF structures during strong earthquake
excitation are investigated (Zahrah & Hall, 1982). A shear-beam type 2-DOF
structure is considered, with member behavior modeled by an elastoplastic
bending moment-end rotation relationship. It is found that the amount of input
energy in the 2-DOF system is the same as in an equivalent SDOF system with
the same fundamental eigenfrequency, and the amount of energy dissipated by
yielding is roughly equal to that of an equivalent SDOF system with the same
damping and displacement ductility as the original structure. Moreover, an
attempt for balanced energy dissipation among the two floors is made, whereas
for structures with a balanced energy dissipation accurate predictions of their
dynamic response can be made using modal analysis with a modified response
spectrum. The effect of different mathematical models of viscous damping,
computed from either the initial elastic or the tangent inelastic system
properties, on the seismic hysteretic energy dissipation in MDOF structures is
studied by Léger & Dussault (1992). A new parameter for measuring seismic
damage capacity is proposed by Rodriguez (1994). It uses the energy dissipated by
a structure in inelastic deformations and a structural overall drift, and it yields
consistent results with building damage observed in practice. The energy
behavior of buildings with hysteretic dampers modeled as bilinear elastic systems
is examined by Nakashima et al. (1996), where the yield strength distribution
over the storeys is such that all the DOFs of the building would yield
simultaneously under the static design earthquake force profile specified in the
Japanese Seismic Design Code (1981). It is found that the hysteretic energy profile
becomes more uniform for increasing values of the post-yield to pre-yield
stiffness ratio. A procedure for the distribution of seismic energy demand over
the floors of a MDOF system solely by modal superposition of energy shapes
which are established from a static pushover analysis is presented (Chou & Uang,
2003). Similar equivalent SDOF system concepts have also been used in the
context of modal pushover analysis to estimate the hysteretic energy demand
without the need for nonlinear time history analysis (Ghosh & Collins, 2006;
Prasanth et al., 2008). Equations for the distribution of hysteretic energy for
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MDOF systems, which are suitable for hard soil sites and for buildings the
dynamic response of which is mainly controlled by the first mode shape are
proposed (Wang & Yi, 2012), whereas a simplified method of distribution of
hysteretic energy over the height of moment resisting frames, based on the work
done by external forces applied at the storeys during the displacements of the
latter is proposed by Mezgebo, (2015). A special case of this distribution scheme
occurs if the story displacements are assumed to be proportional to the story
mode shape values, which is similar to the relation proposed by Wang & Yi
(2012).

Apart from the above, it has been shown that the addition to the structure of

dampers of various types leads to modification of the hysteretic energy or
maximum interstorey drift patterns. Optimum stiffness distribution along the
building height has been proposed by Uetani et al. (2003). Optimum placement
of oil, hysteretic and inertial mass dampers in order to minimize the maximum
interstorey drift of the structure has been examined (Murakami et al., 2013).
Detailed methods for addition of dampers in structures to optimize performance-
based design for earthquakes can be found in Takewaki (20m1).
Despite the large amount of the literature being concerned with hysteretic energy
distributions in shear buildings, to the best of the authors’ knowledge the
investigation of the conditions for uniform distribution of hysteretic energy along
the height of a shear building has not been yet addressed in the literature. It was
shown that it is possible to find an optimal stiffness distribution over the height
of a linear elastic MDOF building to minimize the total seismic input energy, a
ratio of which is the hysteretic energy responsible for structural damage (Shargh
& Hosseini, 2010; Shargh & Hosseini, 2011). This optimum stiffness distribution
results in minimum value of total dissipated hysteretic energy (Shargh et al.,
2012).

The issue of optimum seismic design of nonlinear MDOF structures by
modification of the stiffness and strength properties in order to achieve a uniform
hysteretic energy dissipation pattern over the structure’s height requires the
formulation of a theory of uniform hysteretic energy dissipation, similar to the
theory of uniform deformation already used for optimum seismic design and
presented in the previous section. It has been shown that according to the latter
with decreasing lateral yield strength the ductility demand decreases and if the
former becomes lower than a certain point this trend is reversed (Penzien, 1960).
However, the variation of hysteretic energy demand with yield strength is not as
obvious as the variation of ductility demand with yield strength; it also depends
on additional factors such as the duration of the seismic event. This entails that
more robust techniques than those used for the uniform deformation theory have
to be used to find optimum structural properties for uniform hysteretic energy
distributions. An attempt to develop a new powerful optimization technique is
made in this chapter to solve the uniform hysteretic energy problem in planar
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MDOF systems, a problem that has not been solved yet, to the best of the
author’s knowledge. Therefore, two main novelties are considered in this chapter:
+  Formulation of the theory of uniform energy dissipation and optimum
design of shear buildings according to the former, and
*  Development of a new fast and robust energy-based optimization
technique.

4.3 Numerical modeling

4.3.1  Structural model

The most common model used for the dynamic response history analysis of
building structures is the shear beam model. This system is represented by a
viscously damped spring-mass system, where the mass is considered to be
concentrated on each floor level and the storey shear force versus storey
deflection relationship is presumed to be bilinear with a very low nonzero
positive post-yield stiffness, so that the model responds effectively as elastic -
perfectly plastic. The building deforms only in shear, since it is assumed that the
floors are axially and flexurally rigid. Regularity with regards to the mass
distribution along the height of a building is assumed and also it is presumed that
changes in the stiffness distribution lead to negligible changes in the mass
distribution (resulting from changes e.g. in the cross section of the columns, etc).
Moreover, it is assumed that the floor masses move horizontally only within a
vertical plane. Two MDOF systems are analysed: one 5-storey building and one
10-storey building. For each of the two MDOF systems the height of the storeys is
assumed to be equal to 3m and the mass per floor is assumed to be equal to
25000kg. For each building a realistic value of fundamental eigenfrequency f,

has been assumed; for the 5-storey building it is set equal to 2Hz (corresponding
to fundamental eigenperiod o0.5sec) and for the 10-storey building it is set equal to
1Hz (corresponding to fundamental eigenperiod 1sec). The well-known rule of
thumb that the fundamental eigenperiod of a building is equal to o. sec
multiplied by the number of storeys was used. Both buildings are considered to
be fixed at their base, whereas their behavior is assumed to be either linear or
nonlinear. Both linear and nonlinear buildings have been examined in this
chapter. Also, for the nonlinear MDOF systems uniform non-dimensional yield
displacement is assumed for all the floors, i.e. lateral stiffness is assumed as
proportional to shear strength at each story. Damping is included through a
classical damping matrix resulting from the superposition of the damping
matrices of all linear elastic modes of the structures which have the same modal
damping ratio. A number of horizontal seismic excitations are imposed at the
base of the MDOF systems, resulting in their dynamic response. The two MDOF
shear buildings analysed are shown in Figure 4-1.
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Several types of hysteresis models are employed in research and engineering
practice to predict the response of steel and reinforced concrete members
subjected to cyclic loading. Six of them have been presented by Decanini &
Mollaioli (2001) where a methodology for the assessment of the seismic energy
demands imposed in structures is applied. To model the nonlinear force-
deformation behavior of shear buildings, the elastic-perfectly plastic constitutive
model is chosen in this chapter.
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Figure 4-1: Planar shear building models analysed in this chapter with 5 and 10
storeys.

The elastoplastic model is chosen as a reference hysteretic model, since the
introduction of a more sophisticated model of nonlinear response would
complicate the range of validity of the optimization results, subtracting thus from
generality. The elastoplastic model is considered as the fundamental model of
hysteretic behavior and furthermore it is easier to be compared with other
models. The methodology introduced in the present chapter is virtually a general
framework for the optimum design of shear buildings, opening thus the way for
more specialized treatments of the problem using advanced structural
constitutive models. Bilinear hysteretic behavior is simulated using two linear
models, corresponding to the two branches of the hysteresis loop.

The basic idea is that each branch of the hysteresis may be described by an

equation of the form fy =k(U—d), where f, is the restoring force, U is the

displacement and d, K are the equilibrium displacement and pre- or post-yield
stiffness at the last application of the elastoplastic model. The restoring force is
zero when u=d. By suitable loops over the floors of the MDOF structure
(counting from top to bottom of the shear building) and identification of
transitions between the elastic loading, plastic loading and elastic unloading
states, the interstorey forces and stiffnesses are calculated and passed to the time
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integration algorithm. An indicative one-cycle force-displacement diagram of the
bilinear elastic model is shown in Figure 4-2. The elastic-perfectly plastic
constitutive model used in this chapter is implemented as follows:

e (*) Form the square pre-yield stiffness matrix K from kK,

e Find the eigenfrequencies ®, and eigenvectors @, of the linear elastic

(pre-yield) structure with stiffness K and mass M for which the following
relations hold:

[K-oiM|=0 (4
(K—(DizM)(pi:O (4.2)

and calculate the elastic pre-yield tangent damping matrix:
C= rﬁ%wi'\ﬂwiw?M (43)

(**)Read the values of U, U and add a zero element to U, U to account for

the fixed base:
u=| o= (44
“lol o 44

for i from1to Ny, where n,, is the number of degrees of freedom (or storeys)
of the structure, do the following:
e Compute the stiffness force of the current storey from k and d stored

from previous application of the elastoplastic model (see step beginning
with three asterisks (***) below):

Pk =k; (ui —Uiy _di) (4.5)
Compute the yielding force level:
Py =Ko (Ui~ |+1)+(khi,i _klo,i)uy,i -sign (U, _ui+1) (4.6)

Check for yielding or load reversal and update K; and d,accordingly

o If ki= khi’i and U, -
positive yield force level. Update as follows:

k' = kloi (4.7)

d; = (1=Kpy; /Koy ) Uy, (4.8)

>0 and Pg; >Py;, the system has exceeded its

|+1

If ki :khi,i and Ui

negative yield force level. Update as follows:

<0 and Pg; <Py;, the system has exceeded its

|+1

Ki =Ky, (4.9)
(khl |/kI0| - ) yii (4.10)
If k, = k|0, and Py ( i +1) <0, the system reloads from negative ultimate

displacement or unloads from positive ultimate displacement. Update
as follows:

ki = khi,i (4.11)
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di =U; _ui+1_klo,i/khi,i(ui _ui+1_di) (4.12)
Update the global force vector:
Printies = K; (ui -U,,—d, ) (4.13)

for i from 1 to n,, find the elastoplastic forces of all storeys of the

structure (with respect to its base):

Pi = Printiss = Prcint, (4.14)
Add the contribution of linear elastic damping to the internal force:
p=p+Cu (4.15)

(***) Store k and d, and go back to the step beginning with an asterisk
(*). Alternatively, store C, k and d, and go back to the step beginning
with two asterisks (**).
The dimensionless interstorey drift yield limit is considered to be uniform along
the height of the MDOF shear building, and is given by the equation:

__ ke (2rh)

- maxfiffm 7 maxfx,

jou
<

(4.16)

where K is the pre-yield stiffness of a hypothetical SDOF system, U, is its yield
limit, m is its mass, f, is its fundamental eigenfrequency (which is considered
equal to that of the building analysed) and Xg is the time history of the
earthquake acceleration.

Bilinear elastic

Force

Displacement
Figure 4-2. Force-displacement diagram showing one cycle of the bilinear elastic
model used in this chapter.
4.3.2 Time integration algorithm for evaluation of structural response

The hysteretic energy demand can be accurately computed through a
nonlinear dynamic time-history analysis of the structure subjected to a given
earthquake ground acceleration. For the dynamic response history analyses
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performed in this chapter, the family of nonlinear direct time integration
algorithms presented by Papazafeiropoulos et al. (2017) is used. This family of
algorithms is described by the following basic relationships:

e The updates of displacement and velocity:

Uy = U, + A0 At+A,U AL + 2 (U, — U, )AL (4.17)
lJn+l:un+7\’4unAt+}\‘5(un+1_un)At (4-18)
e The update of acceleration:
My0,., =T (419)
where
£ (KK, CELTX) = =M (U — Uk ) — Ck (Ul + pr, UKAL — p KAL)
(4.20)

—K (Ul pyORAL+ L USAL — pURAE )+ (1- W, ) £+ WK

n+l
and
I\N/I,f(KE,Cﬁ):ueM+u5CﬁAt+u3KEAt2 (4.21)

The residual equivalent force, which becomes zero if an iteration within an
increment reaches equilibrium:

gy =y - M (422)
Any scheme of the aforementioned algorithm family needs 15 integration
constants (of which 14 are independent) to be uniquely defined. See
Papazafeiropoulos et al. (2017) for a complete list of the known time integration
schemes which are special cases of this family. The time integration algorithm
used here has optimal numerical dissipation and dispersion and zero order
overshooting in displacement and velocity (Uo-Vo-Opt). In addition, equilibrium
iterations are made within each increment by the use of a Newton-Raphson (N-
R) procedure. The last updates the stiffness matrix at each iteration, until an
equilibrium state is reached and the time integration algorithm proceeds to the
next increment. It is possible, however, that during the iterations within an
increment the algorithm does not converge, usually due to the fact that the
stiffness of the structure changes abruptly between pre- and post-yielding state.
In this case, the iterations are terminated and the last meaningful solution is
accepted for equilibrium.

4.3.3 Energy-based design optimization problem

The minimization of the deviation of the energy distribution along the height
of a building is treated in this chapter as an unconstrained optimization problem,
the components of which are described in detail in the following paragraphs.

4.3.3.1 Design variables

The design variables of the optimization procedure are simply the stiffness of
each storey of the two buildings under consideration, namely for the 5-storey and
10-storey buildings there are 5 and 10 design variables respectively. The various
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stiffness distributions encountered during the optimization process have to
respect some upper and lower limits, to ensure that computations remain
meaningful and that no premature termination of the process occurs. For the
stiffness of each storey, an upper and a lower limit is imposed which remains
constant during the optimization procedure. Moreover, if at an iteration the new
value of X, violates any of the upper and lower bounds, the step length is

appropriately decreased by applying a line-search algorithm, so that the new
value of X, lies within the upper and lower limits, whereas the Newton direction

remains unchanged. This line search algorithm is described in section 4.3.4
below. The upper and lower bounds are equal to 1E9 N/m and 1E6 N/m
respectively.

4.3.3.2 Objective function

The objective of the optimization procedure employed in this chapter is to find
the stiffness distribution that corresponds to uniform energy dissipation over the
structural height, either in terms of energy dissipation due to viscous damping
for linear elastic structures, or in terms of energy dissipation due to hysteresis for
elastic-perfectly plastic structures. However, the enforcement of uniform energy
dissipation alone does not lead to a unique stiffness/strength distribution of the
structure; the magnitude of the energy dissipated has to be additionally
determined. The latter is done by imposing that the structure will have a specific
fundamental eigenfrequency f, which controls the energy input in the structure.

From the above it is concluded that the objective function has to be defined in a
way that not only the distribution of the energy dissipation, but also the
fundamental eigenfrequency of the structure have to be calculated as functions of
the design variables (stiffness distribution along the height).

In this chapter the gradient of the objective function for elastic-perfectly
plastic structures is defined as:

q
yk wO,k
\Y = =X .
obj (Xk) yk (anoJ (4 23)

where the exponent ( serves as a weighting factor between the energy

distribution and the desired fundamental eigenfrequency of the building and is
selected in a manner that maximizes the convergence rate of the optimization
process. In this chapter  is set equal to 10 for all optimization analyses. Here, Y,

is the vector of the hysteretically dissipated energy distribution along the height
of the structure, Yy, is its mean value and ®, is the fundamental cyclic
eigenfrequency of the structure having stiffness distribution X,. Analogous

equation holds for the linear elastic structures:

Vi (Xi) = O _[ o J (4.24)
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where d, is the vector of the damped energy distribution along the structural

height and ak its average. It must be noted here that the explicit definition of the

objective function is not of interest here, since it does not have any physical
meaning; only its gradient is considered, which becomes zero at the point of
optimum design.

4.3.3.3 Earthquakes considered

Nine earthquake records have been studied, which are the following: Imperial
Valley (1979), Kobe (1995), Izmit-Kocaeli (1999), Cape Mendocino (1992), Loma
Prieta (1989), Chi-Chi (1999), Imperial Valley (1940), Spitak (1988), San Fernando
(1971). More details about these earthquake records can be seen in Table 4-1.

Earthquake Station Instrument | Component

Imperial Valley 1979 ilru(i:celilst}:;)nﬁrl;:ly Sta 8, CA, 95 E Ground level 140

Kobe 1995 Takarazuka Ground level

Izmit-Kocaeli 1999 Yarimca Petkim Basement

Cape Mendocino 1992 | Cape Mendocino, CA, Petrolia Ground level 90

Loma Prieta 1989 Gilroy Array Sta 3, CA, Sewage Ground level o
Plant

Chi-Chi 1999 Nantou - Hsinjie School, WNT Free-field 90

) El Centro Terminal Substation

Imperial Valley 1940 . Ground level N-S
Building

Spitak 1988 Gukasyan Free-field 0

San Fernando 1971 Castaic, CA, Old Ridge Route Ground level 201

Table 4-1: Earthquake excitations considered in this chapter and their characteristics.

4.3.4 Optimization algorithm

In this chapter a gradient optimization strategy is employed to find optimum
stiffness (and strength) distributions at MDOF shear buildings. Gradient based
optimization methods search for a minimum of a scalar function fobj(Xk) of a
vector including the floor stiffnesses as design variables X, iteratively, by

approximating the objective function by a Taylor series expansion around X, :

T 1
fobj(xk+x)zf0bj(xk)+(Vfobj(xk)) X+EXTV2fobj(Xk)X (4.25)
At each optimization step, a direction €, and a step length a, are calculated

based on the current value of the stiffness distribution X,, and the latter as well

as the objective function are updated based on the following equations:
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X =X, +3,8, (4.26)

fobj (Xk+1) (4.27)
The algorithm begins with a random initial stiffness distribution X,. The above

process is repeated until the convergence criterion is satisfied, at which point the
optimization algorithm terminates. The formal version of the Newton direction
method involves a quadratic approximation of the objective function realized
through the calculation of the Hessian matrix as follows:

-1
e, = _[VZfobj (xk)] Vi (%) (4.28)
where szobj(xk) is the jacobian. In this chapter, however, the above Newton

direction is modified by adding a constant multiplied by the unity matrix, which
is proved to stabilize the whole behavior of the optimization algorithm:

=)
& = _[vzfobj (Xk ) + NRStab'] Vfobj (Xk) (429)
where szobj (Xk)+ NR,,! is the modified jacobian. Equation (4.29) can be

rewritten due to equations (4.23) and (4.24) as follows:

-1
d ® q y o q

g, = —| V=K | 0K NR_ || |2k | 0K )

k { { dk [anoj}+ } [yk [anon (430
d ® K h d ® ‘

g, =—| VI=k | oK NR. || | =] 2K .

‘ {dk (ZRfOJ }+ st [dk (znfou (431)

for elastic-perfectly plastic and linear elastic MDOF structures respectively.

and

In this chapter equations (4.30) and (4.31) are used for the computation of the
modified Newton direction, without explicit consideration of the objective

function fobj(Xk). Note that the modified jacobian of equation (4.30) is not a
function of the hysteretically dissipated energy Y, , but the damping energy of the
equivalent linear elastic MDOF system d,. The equivalent linear elastic MDOF

system of a given elastic-perfectly plastic MDOF system is defined as the latter
with its yield limit set equal to infinity (i.e. the former is defined by the behavior
of the latter for small strains). This new way of calculation of the jacobian
accelerates by far the optimization process of the nonlinear MDOF system,
despite the minor loss in accuracy that is associated with this option.

Given that the calculation of the derivative of the energy distribution requires the
largest part of the total computational effort required for the optimization
process, it is concluded that this new logic of gradient optimization of nonlinear
structures is vital for the reduction of the computational load. In addition, this
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rationale introduces the concept of optimization points found from nonlinear
structural response and directions found from equivalent linear structural
response. The last concept can be applied not only in the case of Newton
direction methods, but in many other types of optimization methods, utilizing
either line searches or trust regions, such as steepest descent, conjugate gradient,
subspace minimization, Broyden class algorithms, etc. In a future study, the
authors will deal with how the aforementioned concept can be applied for
improving the performance of such algorithms.

Two optimization procedures are implemented in this chapter. The first concerns
the optimization of the linear elastic structure with respect to damping energy,
using equations (4.31) and (4.26), whereas the second concerns the optimization
of the elastic-perfectly plastic structure using equations (4.30) and (4.26). After
having estimated the optimum stiffness distribution of the linear elastic
structure, this distribution is used as the initial point for the optimization of the
nonlinear structure. The optimization procedure implemented in this chapter is
as follows:
e Initialize:

k=1 (4.32)
X, =X, (4.33)
e =-T (4.34)

While the vector ‘rk ‘ / M contains at least one value higher than tol, :

e Check if the hessian has to be updated. If yes, calculate it from the
relation(4.35), else omit this step and proceed to the following steps:

d o) ‘
J = V{a—k—(ﬁ] }+ NR, ! (4.35)
k 0

Solve for the quasi-Newton direction €, according to equations (4.30) or(4.31).

e Find a trial value for X, by assuming a unit step along the direction e,
using equation (4.36):

Xy = X +€, (4.36)

If any value of the new vector X,,, is not within the upper and lower limits u,

and |, respectively:

e Perform line search for the step in the direction e, as follows:

a, =min{u, —x,} /(max{e,} -min{e, }) (4.37)
a, =min{x, -1,}/(max{e } -min{e, }) (4.38)
a = min{alk’aZK} (439)

Adjust X,,; for the next iteration according to equation (4.26).

e (alculate the new residual for the next iteration:
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o=Vl (Xk+1) (4.40)

Update the design variables and the iteration counter for the next iteration of the
while loop:

X =X (4.41)

k=k+1 (4.42)

Regarding the aforementioned optimization parameters, the values
NRstab =-3E-6 and tOlr =0.01 are specified in this chapter. The optimization

algorithm implemented in this chapter can be easily applied in the case of
irregular structures and give proper optimum stiffness distributions, not only for
linear, but also for nonlinear shear buildings.

4.4 Typical hysteretic energy distributions for shear building

Typical distributions of the energy dissipated due to hysteresis during
elastoplastic response of the 5-storey and 10-storey buildings considered in this
chapter are shown in Figure 4-3. It has been assumed that the buildings have
uniform stiffness distributions along their height, which are scaled so that they
correspond to fundamental eigenfrequencies equal to 2 Hz and 1 Hz respectively.
As it has been often observed in practice, the largest amounts of energy are
concentrated at the bottom floors of the buildings for all the earthquake records
considered. At the top floors the energy is much lower, and sometimes becomes
zero (i.e. the upper floors do not participate as an energy absorption mechanism
during seismic response). It is seen that generally the energy distributions vary
nonlinearly with height. The largest energy demand on the building is generally
imposed by the Kobe (1995), Kocaeli (1999) and Chi-Chi (1999) earthquakes.
Figure 4-3 shows clearly the reason for which the damages caused by an
earthquake accumulate at the lower floors, and why soft storey mechanisms
develop more often at these levels. This phenomenon is undesirable; there is the
need to equidistribute the seismic energy absorbed by the building among all
storeys, in order to exploit the construction material as much as possible, and
maximize structural safety. This chapter tries to cover this need by proposing a
family of new fast optimization algorithms which has already been presented in
the previous sections.

4.5 Optimum stiffness distributions for linear structures

In this section the optimum stiffness distributions are shown for the cases of
the linear elastic versions of the 5-storey and 10-storey planar shear buildings
considered in this chapter. The optimum stiffness distributions refer to the
specific fundamental eigenfrequencies prescribed for both buildings (2 Hz and 1
Hz respectively) and various values of the critical damping ratio; uniformity of
the dissipated energy due to viscous damping is enforced as has been already
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discussed. Apart from the optimum stiffness distributions, the effects of various
factors are discussed in the next.

4.51 Effect of earthquake excitation on optimum stiffness and energy
distributions

Two families of optimum stiffness distributions along with their corresponding
damping energy distributions are shown in Figure 4-4 and Figure 4-5 for the 5-
storey and 10-storey MDOF systems analyzed in this chapter, respectively. It
seems that the optimum stiffness generally has a regular distribution, where the
largest value is at the first storey and the lowest at the top storey.

5-DOF building 10-DOF building

—©— Imperial Valley
—©— Kobe

Kocaeli
—©— Cape Mendocino
—O— Loma Prieta
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O Q
> \\h > chichi
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—&— San Femnando
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\
D § 5 Qs
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Energy (J) x10° Energy (J) x 10"

Figure 4-3: Distributions of energy dissipated due to hysteresis for the 5- and 10-storey
shear buildings with uniform stiffness along their height, §=5%, Uy=0.01 and
fundamental eigenfrequencies 2Hz and 1Hz respectively, for various earthquake
records.

Similar results with Figure 4-4 are presented in Figure 4-5, where the optimum
stiffness and optimum damping energy distributions for the 1o0-storey shear
building are shown. It is obvious that the stiffness distributions of the 10-storey
MDOF systems are regular and have generally their largest value at the bottom of
the structure and their lowest value at the top. The general observation is that
the stiffness distribution which corresponds to uniform damping energy over the
height of a shear building is generally independent of the earthquake motion
with which the building is excited. By comparing Figure 4-5 with Figure 4-4, it
can be stated that, the stiffnesses of the 10-storey building are generally close to
those of the 5-storey shear buildings. On the other hand, the energy distributions
of the 10-storey building seem to be generally lower than those of the 5-storey
building.

4.5.2 Effect of modal damping on optimum stiffness and energy distributions

In Figure 4-6 and Figure 4-7 the effect of critical modal viscous damping ratio
on the optimum distributions of stiffness and damping energy for both 5-storey
and 10-storey systems considered in this chapter is illustrated. In Figure 4-6 and
Figure 4-7 results regarding the El Centro earthquake record are presented. It is
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apparent that the two shear buildings have nearly identical stiffness distributions
for the various critical damping ratios in the case of the El Centro earthquake
record. Regarding the damping energy distributions, it can be seen generally that
as the damping ratio increases, the amount of the dissipated energy also
increases. Apart from this, with increasing damping ratio, the difference between
successive dissipated energy distributions of the 5-storey system and the 10-storey
system becomes lower. Finally, another thing to be noted is that the energy
distributions of the 5-storey building are generally larger than those of the 10-
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Damping energy
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Figure 4-4: Optimum distributions of elastic stiffness and energy dissipated due to
damping for the 5-storey shear building with §&=5% for various earthquake records.
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Figure 4-5: Optimum distributions of elastic stiffness and energy dissipated due to
damping for the 10-storey shear building with §&=5% for various earthquake records.
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Figure 4-6: Optimum distributions of elastic stiffness and energy dissipated due to
damping for the 5-storey shear building subject to the El Centro earthquake record for
various critical modal damping ratios.
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Figure 4-7: Optimum distributions of elastic stiffness and energy dissipated due to
damping for the 10-storey shear building subject to the El Centro earthquake record
for various critical modal damping ratios.

storey building.
4.6 Optimum stiffness distributions for elastic - perfectly plastic
structures

In this section, optimization results are presented for the elastic-perfectly
plastic counterparts of the planar shear buildings considered in the previous
section. Along with the critical modal damping ratio, an additional parameter is
taken into account here, which is the normalized interstorey drift yield limit,
defined in equation (4.16). The fundamental eigenfrequencies of the two
buildings remain the same as those in the linear elastic case: 2 Hz and 1 Hz for
the 5- and 10-storey building respectively. The uniform normalized interstorey

drift yield limit is assumed to be U, = 0.1 and u, = 0.04 for the 5- and 10-storey

building respectively. It has to be noted here that the effective seismic force for
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which the structure will be designed can be easily calculated from the optimum
stiffness distribution multiplied by the uniform yield interstorey drift limit.

4.61 Effect of earthquake excitation on optimum stiffness and energy
distributions

The optimum pre-yield stiffness distributions and its corresponding hysteretic
energy distributions are shown in Figure 4-8, in the left and right subplots,
respectively, for the 5-storey shear building considered in this chapter. It is
observed that the stiffness distributions generally decrease from bottom to top, as
was seen in the linear elastic case in Figure 4-4. It is noted that a general (quasi-
linear) optimum stiffness distribution trend exists which is followed by the
stiffness distributions for the various earthquake records considered, for both 5-
storey and 10-storey buildings, perhaps with the slight exception of the Cape
Mendocino (1992) and Loma Prieta (1989) earthquakes in the cases of 5- and 10-
storey shear buildings respectively. The general stiffness distribution trend can be
used in each case for structural design, at least in the preliminary stage.
Concerning the hysteretic energy distributions for optimum stiffness at the right
subplot of the figure, it is seen that the hysteretic energy that is suffered by the
two buildings in the case of Kobe (1995) earthquake appears to be the largest of
all earthquakes. The Kobe (1995) earthquake yields also the largest damping
energy distribution in the case of the linear elastic 10-DOF system with optimum
stiffness distribution (Figure 4-5). The hysteretic energy distribution of the Spitak
(1988) earthquake remains to be the lowest of all earthquakes for both buildings.
The above results lead to the conclusion that there is some close relation between
the linear viscous damping energy and elastoplastic hysteretic energy that is
dissipated at the storeys of a shear building.

Figure 4-9 shows the optimum pre-yield stiffness distributions and their
associated hysteretic energy distributions for the elasto-plastically responding 10-
storey shear building subject to various seismic excitations. It is seen that a
general trend is again followed by the majority of the earthquakes considered.
Regarding the energy distributions, it is seen again that the maximum hysteretic
energy distribution occurs for the Kobe (1995) earthquake and the minimum for
the Spitak (1988) earthquake. Additionally, the former is larger for the optimal 5-
storey building than that for the optimal 10-storey building.
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Figure 4-8: Optimum distributions of elastic pre-yield stiffness and energy dissipated
due to hysteresis for the 5-storey shear building with §&=5%, Gy=0.1 for various
earthquake records.
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Figure 4-9: Optimum distributions of elastic pre-yield stiffness and energy dissipated
due to hysteresis for the 10-storey shear building with §&=5%, 0y=0.04 for various
earthquake records.

4.6.2 Effect of critical modal damping ratio on optimum stiffness and energy

distributions

The effect of critical modal damping ratio on the optimum stiffness and energy
distributions of the two shear buildings is shown in Figure 4-10 and Figure 4-11 for
the El Centro earthquake. It is observed that the various optimum stiffness
distributions are nearly identical for the various cases of damping ratio, whereas
it seems that as the damping ratio increases, the hysteretic energy distribution
decreases. This can be explained by considering that the earthquake energy that
is input to a shear building can be dissipated through either damping or
hysteretic elastoplastic response. As the damping ratio increases, the energy
dissipated through damping also increases. As a consequence of this, the portion
of the input energy that is dissipated through hysteresis decreases. Apart from
this, it is also observed that in all cases examined the 5-storey building has larger
hysteretic energy distributions than the 10-storey building. Finally, the stiffness
distributions for the 10-storey building are slightly lower than the corresponding
distributions of the 5-storey building.
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Figure 4-10: Optimum distributions of elastic pre-yield stiffness and energy dissipated
due to hysteresis for the 5-storey shear building with Oy=0.1 subject to the El Centro
earthquake record for various critical modal damping ratios.
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Figure 4-11: Optimum distributions of elastic pre-yield stiffness and energy dissipated
due to hysteresis for the 10-storey shear building with 0y=0.04 subject to the El Centro
earthquake record for various critical modal damping ratios.

4.6.3 Effect of normalized yield interstorey drift on optimum stiffness and

energy distributions

The distribution of the normalized interstorey drift yield limit at a shear
building is another factor that affects profoundly its structural response in the
elastoplastic regime. This parameter is taken to be uniform for all storeys, and is
calculated based on equation (4.16). In Figure 4-12 and Figure 4-13 the effect of
this parameter is illustrated for the 5-storey and 1o0-storey shear building
respectively with &=0.05, subject to the El Centro earthquake excitation. It is
observed that the stiffness distributions are relatively close to each other both for

5-storey and for 10-storey buildings, for the two values of Uy. This can be

attributed to the fact that U, is uniform over the building height for both cases.
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Besides, the energy distributions show clearly that as Uy decreases, the dissipated
energy due to hysteresis increases, as is expected. This can be explained by the
fact that as Uy decreases, the structure responds at the perfectly plastic branch of
the elastoplastic response for larger time intervals, and therefore the effect of
plasticity becomes greater, leading to larger hysteresis loops and thus increased
hysteretic energies. Finally, it can be noted that the 5-storey building has slightly
lower stiffness distributions and dissipates larger amounts of hysteretic energy
than the 10-storey building.
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Figure 4-12: Optimum distributions of elastic pre-yield stiffness and energy dissipated
due to hysteresis for the 5-storey shear building with £&=5% subject to the El Centro
earthquake record for various normalized yield interstorey drifts.

4.7 Effectiveness of the new optimization concept

For every new optimization algorithm, the question arises, how it increases the
effectiveness, speed, etc. of the optimization process to which it is applied. The
new optimization concept presented in this chapter can be applied for any
energy-based optimization problem, and we need to see how the algorithm
behaves for typical examples already presented in previous sections. In Figure
4-14 the evolution of the standard deviation of the hysteretic energy distribution
is shown as a function of the normalized running time for the 5- and 10-storey

shear buildings considered in this chapter with fO =2Hz, £=0.05, U, =0.1 and
f,=1Hz,
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Figure 4-13: Optimum distributions of elastic pre-yield stiffness and energy dissipated
due to hysteresis for the 10-storey shear building with §=5% subject to the El Centro
earthquake record for various normalized yield interstorey drifts.

§=0.05, Uy =0.04 respectively subject to the El Centro earthquake record. The

optimum stiffness and energy distributions for the two cases are shown in Figure
4-12 and Figure 4-13. It is seen that the running times of the NR algorithm using
linear derivatives are much lower than those with nonlinear derivatives. The
running time of each optimization problem is normalized with respect to the
running time of the optimization algorithm using nonlinear derivatives, hence
the running time of the two nonlinear derivative algorithms is set to unity
(100%).

It is clearly seen that the novel optimization algorithm proposed in this
chapter can be roughly as much as 11 times faster than the traditional NR for the
10-storey system and roughly 7 times faster for the 5-storey system. For further
increasing number of storeys, the novel algorithm is expected to be even over 1
times faster than the ordinary NR, saving thus a great amount of computational
effort. It has to be noted here that, for comparison purposes, the initial stiffness
distributions with which the algorithms began were set to be identical for both
sets of cases, and equal to the linear elastic optimum stiffness distributions
shown in Figure 4-6 and Figure 4-7 for & =0.05. Since the algorithms begin from
the same initial distribution to solve essentially the same problem (in terms of
earthquake record and various structural properties), the differences in the
running times and the general behavior are affected merely by the nature of the
algorithm and its properties. The results of the optimization studies shown in
Figure 4-14, are shown in Table 4-2.

It is seen that, the proposed NR algorithm in this chapter, while it retains the
number of iterations approximately at the same levels with the classic NR, it can
reduce the execution time by as much as 85% in the case of the 5-storey building
and by 91% in the case of the 10-storey building. The reduction in the running
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time is expected to increase for buildings with more storeys, or generally
structures with more degrees of freedom. As a result, as the problem becomes
more complicated, the proposed algorithm is expected to perform better
compared to the classic NR method. Finally, it has to be pointed out that in both
sets of cases, the final optimum stiffness distribution result was identical for both
the classical NR method and the proposed optimization algorithm.

5-storey building 10-storey building
25 35
Proposed Newton-Raphson algorithm Proposed Newton-Raphson algorithm
Classic Newton-Raphson algorithm 3 Classic Newton-Raphson algorithm
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Figure 4-14: Evolution of the standard deviation of the hysteretic energy distributions
during various optimization processes for the classic N-R optimization procedure and
the proposed N-R optimization procedure, for 5- and 10-storey shear buildings with
fo=2 Hz, §&=5%, Oy=0.1 and fo=1 Hz, §=5%, Uy=0.04 respectively subject to the El
Centro earthquake record.

Normalized

running
Case time Time reduction | Iterations
5-storey, Newton-Raphson 100% - 136
5-storey, proposed algorithm 14.9% 85.1% 135
10-storey, Newton-Raphson 100% - 153
10-storey, proposed algorithm 8.8% 91.2% 143

Table 4-2: Numerical results of the optimization processes the evolution of which is
presented in Figure 4-14

4.8 Conclusions

The main conclusions drawn from this chapter are the following:

e [tis shown that there exist unique optimum stiffness distributions which
correspond to equidistributed viscous damping and hysteretic energy dissipation
for linear elastic and elastoplastic planar shear building structures, respectively.

e In addition, the optimum stiffness distribution for both elastic and
elastoplastic shear buildings appears generally to have a quasi-linear shape
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(slightly curved), with the maximum value at the bottom floor and the minimum
value at the top floor of the structure. This shape is generally independent of the
earthquake excitation and offers the possibility for the development of simple
methods for the calculation of the optimum stiffness distribution in shear
buildings.

e Structural design based on the proposed approach is more rational and
technically feasible compared to the uniform ductility concept, whereas it is
expected to provide increased protection against global collapse and loss of life
during strong earthquake events.

It is finally proved that the novel concept of linear directions equipped with a
stabilizer for optimization of nonlinear problems, as applied for the modification
of a simple full N-R method, leads to substantial computational savings, since,
although the number of iterations required for convergence remains roughly the
same, the running times can be reduced by a factor equal to 1. It is obvious that
the new modified N-R algorithm is robust and efficient. The new concept
presented in this chapter can be applied to other commonly used algorithms,
which is the aim of future research to be conducted by the authors.

4.9 Notation

d, : step length of update of X, at iteration k

C : damping matrix

d: equilibrium displacement

di : equilibrium displacement at degree of freedom i at the last application of the
elastoplastic model

dk: damping energy distribution vector at iteration k of the optimization
procedure

ak: average of damping energy distribution at iteration k of the optimization
procedure

€, : direction of update of X, at iteration k

Ed : damping energy of a SDOF system

f : equivalent external loading vector due to seismic excitation imposed on the
structure
f : effective force vector

Y: hysteretic energy distribution vector at iteration k of the optimization
procedure
Y, : average of hysteretic energy distribution at iteration k of the optimization
procedure
fo: fundamental eigenfrequency of SDOF or MDOF structure for small

deformations
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fk : restoring force

fobj : objective function

0 : residual equivalent force vector

| : unity matrix

Jy : jacobian matrix (first derivative of energy distribution) at iteration k
K: iteration number or stiffness associated with a degree of freedom

Kii: pre-yield stiffness vector

khi,i : pre-yield stiffness at degree of freedom i

ki: stiffness at degree of freedom i at the last application of the elastoplastic
model

klo.i : post-yield stiffness at degree of freedom i

K : stiffness matrix

: lower bound of stiffness distribution X

o

: mass matrix
: effective mass matrix
: lumped mass per storey of SDOF or MDOF systems

3 2<Z

Nyt : number of degrees of freedom of the structure

NR stab - Newton-Raphson stabilizer constant for optimization procedure

P; : internal force due to stiffness at degree of freedom i

Pk i : internal force at degree of freedom i due to stiffness

Py inti : interstorey force between degrees of freedom i and i+1 due to stiffness

py,i syield force at degree of freedom i
(: exponent of eigenfrequency ratio
r : initial value of residual for the optimization procedure

' : residual at iteration k of optimization procedure
To : fundamental eigenperiod of SDOF or MDOF structure for small deformations

tol. : tolerance of ‘rkV M
U: displacement

Uy, : upper bound of stiffness distribution X,
i : displacement at degree of freedom i

i : velocity at degree of freedom i

[ - [

i : acceleration at degree of freedom i

U, : yield displacement
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U, ;:yield displacement at degree of freedom i. Yielding occurs if the interstorey
drift between degrees of freedom i and i+1 exceeds U, ;.

U, : dimensionless yield interstorey drift

W1: time integration constant

X, : earthquake ground acceleration

X, : stiffness distribution at iteration k of optimization procedure

o: initial value of stiffness distribution to start optimization procedure
At : step of direct time integration scheme

M---M : time integration constants

H,...lg : time integration constants
¢: ratio of critical viscous damping of the system, assumed to be unique for all
storeys of the structure

@, : it" fundamental eigenmode of structure

0y : fundamental cyclic eigenfrequency of structure with stiffness distribution
X, for small deformations

®; : it" fundamental cyclic eigenfrequency of structure
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5 Selecting and Scaling of Energy-
Compatible Ground Motion Records

5.1 Introduction

A novel spectra-matching framework is proposed, which employs a linear
combination of raw ground motion records to generate artificial acceleration
time histories perfectly matching a target spectrum, taking into account not only
the acceleration but also the seismic input energy equivalent velocity. This
consideration is leading to optimum acceleration time histories which represent
actual ground motions in a much more realistic way. The procedure of selection
and scaling of the suite of ground motion records to fit a given target spectrum is
formulated by means of an optimization problem. Characteristic ground motion
records of different inherent nature are selected as target spectra, to verify the
effectiveness of the algorithm. In order to assess the robustness and accuracy of
the proposed methodology the seismic performance of single- and multi- degree
of freedom structural systems has been also considered. The portion of the
seismic input energy that is dissipated due to viscous damping action in the
structure is quantified. It is shown that there exists a good agreement between
the target and optimized spectra for the different matching scenarios examined,
regardless of the nature of target spectra, demonstrating the reliability of the
proposed methodology.

The response history analysis for the seismic design and the evaluation of the
performance of structures has evolved along with the rapid increase in the
computational power of the various engineering software. This has enabled not
only the application of a faster and more accurate linear elastic time history
analysis of structures having some thousands degrees of freedom, but also of the
nonlinear time history response analysis which is becoming more and more
common nowadays. Traditionally, the seismic design of structures is based on a
force-based and/or displacement based approach, in which the effect of the
earthquake loading is quantified using the peak ground and response spectra
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acceleration of the corresponding ground motion record. However, the current
status of the various norms regarding the selection of suitable ground motion
records that meet specific requirements is rather simplified, which, despite the
robustness of the various finite element models available for seismic design, may
account for significant source of error in structural design. Therefore, the
selection of appropriate sets of ground motion records for linear/nonlinear
dynamic analysis of structures remains a challenge.

5.2 Literature review

Although, large ground motion databases are today widely available, in
engineering practice, the problem of record selection is tackled either through
scaling a real ground motion, or generating them artificially. A state-of-the-art
review on the available methods for selection and scaling of ground motion
records is presented by Katsanos et al. (2010), whereas some critical issues in
record selection and manipulation are presented by Iervolino et al. (2008). In
case of limited availability of appropriate real acceleration time-histories,
simulated strong motion records can be used (Boore, 2009; Graves and Pitarka,
2010). The generation of artificial/simulated spectrum-compatible ground motion
records has some disadvantages against real ground motions. Artificial records
have generally a large number of cycles of strong motion, which leads to
increased energy content compared to real ground motions. Adjusting the
Fourier spectrum of a real ground motion in the frequency domain with a view to
matching a target spectrum at specific frequencies affects amplitude, frequency
content and phasing, which generally tends to increase the total input energy.
The same deficiencies are observed also in the simulated records, which may not
produce similar nonlinear response in structures as real records due to unrealistic
phasing as well as peaks and troughs effects (Atkinson and Goda, 2010).

An alternative formulation of the loading effect of earthquakes on structures
can be based on the earthquake input energy, which is the internal product of
force and displacement. Energy considerations for the seismic design of
structures constitutes the basis of the energy-based seismic design (EBSD)
approach and is gaining extensive attention (Uang and Bertero, 1988; Chou and
Uang, 2003; Surahman, 2007; Leelataviwat et al., 2009; Jiao et al., 2011; Lopez
Almansa et al., 2013). Since in the EBSD methods the energy-absorption capacity
of the structure and the input energy that comes from the ground motion are
compared for seismic design, it is imperative to develop and use design energy
input spectra (DEIS).

EBSD has many benefits and compensates the deficiencies related to the use of
conventional acceleration or pseudo-acceleration response spectra as follows: (a)
It accounts for the effects of duration of the cyclic loading of the earthquake
ground motion. Therefore, it can adequately capture the different type of time
histories (impulsive, non-impulsive, periodic with long-duration pulses, etc.)
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regarding their destructive potential. (b) It enables the quantitative evaluation of
the cumulative structural damage in terms of hysteretic energy without the need
to use equivalent viscous damping and/or ductility reduction. (c) There is no
interdependence between the earthquake input energy and the structural
resistance in terms of energy dissipation capacity, (d) The input energy that a
structure experiences during an earthquake is governed primarily by its
eigenperiod and mass and less by its strength or damping, except for the short-
period range (Zahrah and Hall, 1984; Akiyama, 1985; Kuwamura and Galambos,
1989). This has been verified experimentally by Tselentis et al. (2010). Therefore
the input energy is a stable quantity that does not depend on many factors and
thus is simpler to handle and interpret.

Given the advantages of the EBSD over the traditional approaches, the
incorporation of not only acceleration spectra but also energy-based spectra for
the generation of artificial ground motion records is an interesting alternative
that could lead to more realistic spectrum-compatible design records (Chapman,
1999; Tselentis et al., 2010). Actually, it has been demonstrated that if the hazard
is assessed on the basis of the earthquake input energy, the hazard posed by
larger magnitude earthquakes contributes more to the total seismic hazard at a
specific site, than that based on spectral acceleration (Tselentis et al., 2010). It is
noted that the input energy spectrum that is obtained elastically is valid also for
inelastic systems since the strength and plastification of the structure do not
practically affect the total energy input (Lopez Almansa et al., 2013; Dindar et al.,
2015).

In this chapter a novel spectra-matching framework is developed, to generate
artificial acceleration time histories perfectly matched a target spectrum. Apart
from the well-known design acceleration spectrum that is prescribed by the
various norms and guidelines, the seismic input energy equivalent velocity
spectrum is also taken into account. This consideration is leading therefore to
optimum acceleration time histories which represent actual motions in a much
more realistic way. In order to produce elastic spectra that match as closely as
possible to a given target spectrum, the procedure of selection and scaling of the
suite of ground motion records to fit a given target spectrum is formulated as an
optimization problem. Three characteristic ground motion records of different
inherent nature are selected as target spectra, to verify the effectiveness of the
proposed algorithm, ensuring that its performance is target spectrum
independent assuming different matching scenarios. The optimization results
have shown that there exists a good agreement between the target and optimum
spectra for each case examined, regardless of the nature of target spectrum,
demonstrating the reliability and performance of the proposed methodology.
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5.3 Numerical modeling

The main goal of this chapter is to obtain artificial ground motion records by
performing as minimum as possible number of operations on the raw ground
motion data. These ground motion records are linearly combined together
forming a suite of records. The procedure of selection and scaling of the suite of
ground motion records to fit a given target spectrum is formulated as an
optimization problem. In this section, the processing of the raw ground motion
data as well as the ingredients for the formulation of the optimization problem
are presented.

5.3.1 Processing raw ground motion data

A linear combination of real accelerograms requires only selection and scaling of
the latter and does not alter their inherent characteristics (e.g. non-stationarity,
coda, phase content, etc.), which have to be preserved in order to obtain realistic
artificial records as a result of the linear combination. Since the real records have
various durations, linear combination cannot be applied directly to the
acceleration time histories. However, it can be applied to their Fourier spectra in
the frequency domain which have the same length for all motions; the resulting
time history can be obtained by the inverse Fourier transform of the Fourier
spectra of a suite of m ground motion records as follows:

Uy, = IFFT(i xiFFT(Ug,i)j (5.1)

where U,; is the acceleration time history, FFT(Ug’i) is its Fast Fourier

th

Transform, X; is the combination coefficient respectively of the i" ground

motion, |FFT( ) is the inverse Fourier transform and Ug’C is the linear

combination of the accelerations of ground motions records in the suite. Given
that the Fourier transform of any real ground motion record is a linear
transformation, it can be established that Eq. (5.1) effectively combines linearly
the various records involved. In this way, the artificial time history that is
generated depends only on selection and scaling of the participating ground

motion records and also on the values of the combination coefficients X;, i.e.

scale factors.

It is apparent that an inverse Fourier transform of a signal in the frequency
domain which is a linear combination of Fourier-transformed signals, requires a
time step which has to be identical to that used for the Fourier transform of the
original records, in order to obtain in this way realistic linear combinations of
real ground motions. For this purpose, each record is resampled so that the fixed
sampling rate of all records in the data base is unique. This fixed sampling rate
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(or fixed time step) is used for the inverse Fourier transform of the linear
combination of the Fourier transforms of the resampled motions.

5.3.1.1  Resampling

The resampling technique is based on least-squares linear-phase finite-duration
impulse-response (FIR) filter for the rate conversion. The order NHR of the FIR
filter is given by:

Neg =20-max(Atyy, At,,, ) (5.2)
where Al Al are the time steps of the ground motion before and after

conversion, respectively. The frequency-amplitude characteristics of the FIR filter
approximately match those given by the relation:

1 0<f<f
A(f)= 0 .
(f) {0 f,<f<1 53)

where A is the amplitude that corresponds to frequency f, 1 is the Nyquist
frequency and fO is given by:

fO :]/maX{AtoId’Atnew} (5-4)
The coefficients of the FIR filter are multiplied by the coefficients of a Kaiser
window of length equal to NHR +1, given by:

o]
o (P) O

where |0 is the zero-th order modified Bessel function of the first kind. In this

w(n)= <n<Ngp (5.5)

chapter, p parameter is selected to be equal to 5. To compensate for the delay of
the linear phase filter a number of entries at the beginning of the output
sequence are removed. After obtaining the FIR filter designed via a Kaiser
window, the raw ground motion record is resampled based on this filter thus
obtaining the modified ground motion history.

5.3.1.2 Fast Fourier Transform
The FFT of a raw motion data of Eq. (5.1) is calculated by means of DFT (Discrete

Fourier Transform). The DFT of raw motion data Ug (t) is calculated as:

T, (ko) = 20, (1AL W 56
=1
where W, =e”™" is one of the n roots of unity and oa:J/(ZnAt). The inverse
DFT of '_Ug (k(x)) is given by:
i, (jat) = -7, (ko)W1 57
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The execution time of DFT depends on the number of multiplications involved. A

direct DFT evaluation takes n? multiplications whereas FFT takes NI0g,N

multiplications. It has been proven that the n-point DFT can be obtained from
two n/2-point transforms, one on even input data and one on odd input data
(Frigo and Johnson, 1998; FFTW). Therefore, if n is a power of 2, then it is
possible to recursively apply this decomposition until only discrete Fourier
transforms of single points are left.

5.3.2 Problem formulation

In mathematical terms the procedure of selection, scaling and linearly combining
of ground motion records to fit a given target spectrum is formulated as follows:

minimize: f(x)
- X min = X; = X; max (58)
subject to: T ’
i={L2,..,D}

where f is the objective function to be minimized, x is the vector of design
variables of dimension D, and X iy, Xjnax are the lower and upper bounds of its

i-th component.

5.3.2.1  Obijective function
In this chapter, two types of objective functions are proposed:

(a) Objective function fSa which consists a measure of the area under the curve of

the deviation between the suite and the target spectral accelerations and is
defined as follows:

_t|sa,(T)—Sa, (T
fo, = I sa.(h) |p(T)dT (5.9)

where Sac is the spectral acceleration of the linear combination of the ground
motions as obtained from Eq. (5.1) and Sat is the target spectral acceleration.

(b) Objective function fSa_Sivehich consists a measure of the sum of the
following:

* The area between the spectral acceleration curves.

» The area between the equivalent seismic absolute input energy velocity
spectra curves.

* The area between the equivalent seismic relative input energy velocity
spectra curves.

fSa—Siev is given by:

T,
fSa—Siev = J.[

T

sa,(T)-Sa,(T)| ,
Sa,(T)

Siev2®(T) - Sievi®(T)| , [Sieve (1) —Siev(™ (T (T)T
SievA®(T) | SieviE-(T) |
(5.10)
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A ABS @i REL . .
where SIeV; , SIV;  are the spectral equivalent absolute and relative input

. . . : o\ ABS
energy velocities respectively of the suite of the ground motions and SIeV,

W REL . o
Siev; are the target spectral equivalent absolute and relative input energy

velocities, respectively. Detailed calculation of SierBS and SiEVfa - quantities can
be found in Uang and Bertero, 1990.

In Egs. (5.9) and (5.10) ‘ ‘ denotes the absolute value and p(T) is a linear penalty
function which is biased towards the lower period range and is given by:

o) =TTk (T:=T)

1
T T (5.11)

where T, T, are the lower and upper period integration limits, T is the period

and kp is a penalty constant. Although baseline correction is performed before

the various spectral computations, the penalty function ensures that the
displacement and velocity of the acceleration is equal to zero at the start and the
end of the time history considered.

5.3.2.2 Design variables

The design variables of the optimization problem are arranged into the vector x
which contains 2m components, where m is the number of ground motion
records in the suite. The first m components are the scale factors (continuous
variables) used for the selected ground motions in the suite of Eq.(5.1), and the
remaining components, are the IDs (integer variables) of the corresponding
selected ground motion. The lower and upper bounds, X, and Xju«
respectively of the continuous variables, i={,2,...,m}, have a significant impact
on the performance of the optimization algorithm and the quality of the
optimum solution. As the range of values of a design variable gets broader, the
optimization algorithm shows a relaxed behavior, which can become unstable for
very large upper and/or very small lower limits. Therefore, suitable values for
these limits should be selected. The values selected in this chapter are as follows:

-2.0 1<i<m
Xi min = - (5-12)
’ 1 m+1<i<2m
2.0 1<i<m
imax - (5.13)
: M m+1<i<?2m

where M is the total number of the raw ground motions records contained in the
database.

As obtained from Egs. (5.12) and (5.13) the problem considered in this chapter is
virtually a mixed-integer optimization problem and for this purpose the
optimization algorithm has to be able to handle such a situation.
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5.3.3 Mixed integer genetic algorithm

Choosing the proper search algorithm for solving such problem is not a
straightforward procedure. Metaheuristic search optimization algorithms achieve
efficient performance for a wide range of structural optimization problems. In
this chapter, among the plethora of metaheuristic algorithms, a genetic algorithm
has been chosen to solve the underlying optimization problem, capable to handle
mixed-integer nature of the design variables. This should not be considered as an
implication related to the efficiency of other algorithms, since any algorithm
available can be used for solving a particular optimization problem based on
researcher’s experience.

The Genetic Algorithm (GA) is a stochastic global search optimization method
introduced by Holland (1992) which emulates the natural biological evolution.
GA applies on a population of potential solutions the principle of survival of the
fittest to produce better approximations to a solution. At each generation, a new
set of approximations is created by the process of selecting individuals according
to their level of fitness in the problem domain and breeding them together using
operators borrowed from natural genetics (selection, crossover and mutation).
This process leads to the evolution of individuals that are better suited to their
environment than the individuals that they were created from, like in natural
evolution process. The algorithm stops when a suitable criterion is met (e.g.
current generation GEN equals to maximum number of generations, MAXGEN).
A pseudocode of GA is described in Listing 5-1.

Pseudocode of the GA
Set parameters

Generate the initial population
while GEN < MAXGEN do
Fitness calculation
Selection
Crossover
Mutation
end while

O 00N oV AW -

Obtain the individual with maximum fitness
return the best solution
Listing 5-1: The pseudocode of a GA

=
o

For the purposes of this chapter, a real-valued representation is adopted as
encoding strategy. The use of real-valued genes in GAs offers over binary
encodings the following advantages: (i) efficiency of the GA is increased as there
is no need to convert chromosomes to phenotypes before each function
evaluation, (ii) less memory is required as efficient floating point internal
computer representations can be used directly, (iii) no loss in precision by
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discretization to binary or other values, (iv) greater freedom to use a variety of
genetic operators.

5.3.3.1 Initialization of population
The GA starts with the generation of a random initial population of individuals
with uniform distribution in the initial generation. If the initial population is

denoted by Py and its size (number of individuals) by Ny, then any element of P,
is given by:

Xii = Xjmin T (Xj,max = X min )aRU (5.14)
where dp is a random variable with uniform distribution for which 0< dpy <l

is ensured that X;, i={m+1m+2,..,2m} is a positive integer. In case of a
duplicate integer found this is replaced by a random integer value (respecting the

upper and lower bounds) different from the calculated ones in Po :

5.3.3.2 Selection and crossover

The stochastic universal sampling (SUS) is used as a selection function, which
provides zero bias and minimum spread. SUS offers an offspring selection
procedure that may lead to faster convergence to the solution of a problem than
other selection methods, such as e.g. roulette wheel selection.

In addition, to avoid duplicate entries in the ground motion record identities a
new crossover scheme is proposed which ensures that the linear combination of
the ground motion records examined each time is comprised by unique
members. This procedure is described by detail in the following:

If the crossover is performed between two random individuals at generation K,

Pei= {Xu, j} and P, ={Xi2’j}, the individual Pk+1,12 is produced as a result of the
crossover. Initially, three set operations are performed between the two
individuals:

a) Intersection between Xj; ; and X, ;:

X = X X, ) (515)
b) Subtraction of Xj, ; from Xj j:

Xip = {Xil,j}’ ~{ X} (5.16)
c) Subtraction of Xj; ; from X, ;:

Xos = X}~ X (517)

The offspring Pk+1,12 will contain the intersection X,., which contains Ny

elements and the vector {Xl_Z,XZ_l}I which contains |=m—n1m randomly

selected elements from the vector formed by concatenating the two differences
{X1—2’X2—1} :
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Pk+l,12 = {X1021{X1—2’X2—1}|} (5-18)

In the case where X,, = then {XH,XH}l Z{XH,XH}. Egs. (5.15) - (5.18) apply

both for continuous and integer design variables of the problem.

5.3.3.3 Mutation

In GA, the mutation function uses various distributions from which random
numbers (perturbations) are generated and added to the components of the
individual that is mutated. In this chapter, the perturbation of the
continuous/integer design variables, is performed using a Gaussian/random
uniform distribution respectively and are described in detail below.

Continuous variables: The mutation function of continuous design variables
follows a Gaussian distribution of zero-mean with standard deviation given by
the relation:

Mec e = Mg (1— me,, Kkaxj (5.19)
where the standard deviation Mg, is the fraction of the maximum range of
possible perturbations of the design variables (i.e. scale factors) that can be added
to an individual in generation K during mutation process. Mg, is the scale

parameter and is equal to the fraction of the maximum range of possible
perturbations of the continuous variables at the initial generation (o), whereas

Mg, is the shrink parameter which controls how fast Mgy is reduced as
generations evolved. Both of the parameters Msc, and Mg, can be arbitrarily

selected and their values must be between o and 1. Mg, <0 or Mgy, >1 is also
possible, but not recommended. For a random individual at generation K,

Pi= {Xu, j} this operation can be written as follows:
Peas = {Xiuj} + BouMyey, 1< j<m (5.20)

where Mg is given by Eq. (5.19) and 8g is a vector with entries following a

uniform Gaussian distribution.

Integer variables: The mutation function of integer design variables follows a
random uniform distribution. Since the random perturbations are not integers in
general, the result is rounded towards the nearest integer and then the remainder
of its Euclidean division with M is extracted, to ensure that the result does not

exceed M value. For a random individual at generation K, Pk'1={xi1’j} this

operation can be written as follows:

Peis = mOd(<{Xi1,j} +(2§RU —1) msc,k>, M), m+1<j<2m (5.21)
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where the symbol < > is used to denote the nearest integer of the quantity

contained in the brackets, dg, is a vector with entries following a uniform

random distribution with OSERU, i <1, Mg is the scale parameter of mutation
function (standard deviation of Gaussian distribution at the k" generation), and
mod( ) denotes the modulo operation, i.e. the remainder of the Euclidean

division of between the two arguments. After application of Eq. (5.21)the result is
checked for duplicate values of integer components. If so, the duplicates are
replaced by a random integer value (respecting the upper and lower bounds)
different from the calculated ones.

5.4 Numerical results

The effectiveness of the proposed algorithm is verified by generation of artificial
accelerograms which are compliant to target spectra of different inherent nature,
ensuring also the independence of the algorithm’s performance from the target
spectrum. More specific, the acceleration and equivalent input energy velocity
response spectra of three ground motion records: a) El Centro Terminal
Substation Building record of the 1940 Imperial Valley earthquake, b) Rinaldi
record of the 1994 Northridge earthquake and c) Sakarya - SKR record of the 1999
Kocaeli earthquake are defined as target spectra. The target spectra are associated
with a far-field ground motion, a near-field ground motion which contains
forward directivity effects and a near-field ground motion which contains fling-
step effects, respectively (Kalkan and Kunnath, 2006). Typical characteristic of
the near-field motions is the presence of high-velocity pulses, which do not exist
in typical far-field ground motions. The difference between these two types of
motions originates mainly from two factors: (a) the distance between the site
where the earthquake is recorded and the seismic fault, (b) the orientation of the
last. It is noted that the three target spectra have essentially different general
configurations, a fact that results from the different inherent nature of the time
histories of the three ground motions.

Two matching scenarios are considered: i) Matching Scenario 1 (Sa matching):
Matching only the spectral acceleration and ii) Matching Scenario 2 (Sa-Vei
matching): Matching both the spectral acceleration and the equivalent input
energy velocity spectra (absolute and relative). In each scenario, the database is
comprised of the ground motion records obtained from the European Strong
Motion (ESD) database (lervolino et al., 2010; Ambraseys et al., 2004). After a
preliminary screening of the ESD database, a subset database is constructed that
consists of 6026 ground motion records corresponding to horizontal earthquake
components, i.e. M =6026. The number m of ground motion records in the suite

is set to be equal to 20 and the matching range of periods is between T,=0.15 and

T2 =4.08 . The penalty constant kp is set to be equal to 50.
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Furthermore, the tuning parameters of the GA are selected as follows: the

population size N, (number of individuals in each generation) is equal to 8o. For

reproduction, the number of individuals that are guaranteed to survive to the
next generation (elite children) is equal to 5% of the population size, namely

Ng = 0-05np =4 and the fraction of the next generation, other than elite children,
that is produced by crossover (crossover fraction) is equal to 0.8, i.e.
Ne =0.8(I’1P —nE) ~61 individuals are produced in each generation. The number
of individuals in each generation that are produced by mutation is
Ny =Ns—N:—N. =15 In the GA used in this chapter no migration occurs, as

there are no subpopulations. As stopping criteria for the GA algorithm the
maximum number of generations (MAXGEN) is used, i.e. equal to 100. A
sensitivity analysis of 30 independent optimization runs is also performed
followed by a statistical process on the optimized results. The sensitivity analysis
represents a necessary step since the GA optimization procedure does not yield
the same results when restarted due to its stochastic nature.

In all cases examined, the objective function is evaluated using
OpenSeismoMatlab, an open source tool for earthquake ground motion
processing (Papazafeiropoulos and Plevris, 2018). OpenSeismoMatlab performs
baseline correction and generates the elastic acceleration and equivalent input
energy velocity response spectra which are then used for the calculation of the
objective function.

5.4.1 Matching scenario 1

The optimization results for Matching Scenario 1 are depicted in Figure 5-1. For
each target record, the black curve represents the target acceleration spectrum,
while the red and blue curves represent the spectral acceleration that
corresponds to the optimization run (out of the 30 runs) that fits best and worst
to the target spectrum, respectively. The coefficient of variation (CoV) of the 30
runs for each period is also depicted by the green curve.
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Figure 5-1: Optimization results of Matching Scenario 1 for each target: (a) El Centro,
(b) Northridge and (c) Sakarya.

A good agreement is observed between the “best” and “target” spectra in all cases
examined while the CoV value increases near the bounds of the matching period
range. This is mostly attributed to the range of the periods involved in the
calculation of the objective value (see Egs. (9) and (10)) which is defined in a way
that it covers the eigenperiods of a structure. This means that the period range
used in the matching procedure and consequently the optimized acceleration
time history are period-dependent. In this chapter, an extended period range is
selected to highlight the applicability of the proposed methodology for a variety
of structures. However, most of civil structures have eigenperiods that are
concentrated near the middle of the range considered, where the CoV values are
minimum and high accuracy can be achieved. Furthermore, the finite number of
ground motions in the suite of the linear combination contributes to large CoV
values in general. As the number of the ground motions in the suite decreases,
the methodology becomes more cumbersome, since the time history given by the
suite has less flexibility. Hence, as the number of the ground motions increases,
the matching becomes generally better. Finally, the shape of the penalty function
in Eq. (1) has an important effect on the optimized response spectrum of each
optimization run, since the weighting of the deviation from the target spectrum
for the matching period range considered is not uniform, as has been already
mentioned in the previous section.
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Figure 5-2: Optimization history of the 30 independent runs of the Matching Scenario
1 for each target: (a) El Centro, (b) Northridge and (c) Sakarya.

Figure 5-2 shows the convergence history of the 30 independent optimization
runs of Matching Scenario 1. Each curve represents the objective value of the best
individual at each generation of a given optimization run. The red (blue) curve
represents the evolution of the objective value that corresponds to the
optimization run (out of the 30 runs) that fits best (worst) to the target spectrum.
[t can be noted that in the case of El Centro earthquake the best individual of the
final generation for the best independent run corresponds to roughly 14% of the
objective value of the best individual of the initial generation. The best individual
of the final generation for the worst independent run corresponds to roughly
40.3% of the objective value of the best individual of the initial generation. In the
case of Northridge earthquake these percentages are roughly equal to 16.1% and
53.6% respectively, and in the case of Sakarya earthquake they are 17.7% and
36.9% respectively.

The trend of all convergence histories shows that the approach to the
optimum value is quick and relatively smooth, which is achieved by proper
adjustment of the crossover and mutation rates, in order to ensure sufficient
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population diversity in each generation. It seems that, while the coefficient of
variation among the optimization histories increases at the early stages of the
optimization process, there is a point after which it stabilizes until termination.
The magnitude of the final stabilized value of the CoV value is a measure of the
complexity of the optimization space. As it is expected, larger CoV values
corresponds to increased diversity between the various optimization runs, in
terms of the path followed by the best individual of each optimization run. The
largest CoV value of the objective value of the best individual among the various
optimization runs at the final generation occurs in the case of Northridge
earthquake, an observation that correlates well with the large dispersion of the
optimum spectra, especially in the low period range, in Figure 5-1b.

5.4.2 Matching scenario 2

The optimization results for Matching Scenario 2 are depicted in Figure 5-3.
Nearly the same traits that are mentioned for Figure 5-1 are observed; the
proposed algorithm gives higher CoV values in the lower and higher limits of the
matching period range considered.
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Figure 5-3: Results of Matching Scenario 2 regarding spectral acceleration for each
target: (a) El Centro, (b) Northridge and (c) Sakarya.
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In Figure 5-4 and Figure 5-5, the absolute seismic input energy equivalent
velocity (SievABS) and the relative seismic input energy equivalent velocity
(SievREL) spectra for each target spectrum are presented respectively. A very
close agreement between the target and corresponding optimized spectra is also
observed in this case. Although the CoV plots exhibit local peaks and troughs, all
of them fluctuate around the value of 10%, regardless of the target spectrum.

In a similar rationale, Figure 5-6 depicts the convergence history of the 30
independent optimization runs of Matching Scenario 2. It is apparent that in the
case of El Centro earthquake the best optimization run gives result equal to
32.8% of the best objective value of the initial population, whereas the worst
result is roughly equal to 48.3% of the initial best objective value. In the case of
Northridge earthquake the best and worst results are roughly equal to 32% and
55.7% respectively of the initial best objective value. Similarly, the corresponding
percentages for the Sakarya earthquake are 26% and 41.1%. Interestingly, the
lowest (best) percentage appears in the case of Sakarya earthquake whereas the
highest (worst) percentage appears in the case of Northridge earthquake. The
smooth convergence in optimization histories demonstrates the reliability of the
proposed algorithm not only for matching the target spectral acceleration, but
also for matching both target acceleration and target seismic input energy
equivalent velocity spectra.
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Figure 5-4: Results of Matching Scenario 2 regarding equivalent absolute seismic input
energy velocity spectra (SievABS) for each target: (a) El Centro, (b) Northridge and (c)

Sakarya.
' 05
—Target ||
—Best 0.4
= = —Worst |[
E E —CV _Jtos
] o, 00 i
107 7 L
T « -0.2
Q 2 [
n %) .
- 0.1
—CoV r
: - —¥0 — —F0
107 10° 107" 10°
Period (s) Period (s)
(a) (b)
0.5
0.4
@
£ 03
] Q)
x 1 (@)
> J 0.2
Q ]
%) ) A
-0.1
4 i
Jl—cov
| : o —+0
107 10°
Period (s)

(c)
Figure 5-5: Results of Matching Scenario 2 regarding equivalent relative seismic input
energy velocity spectra (SievREL) for each target: (a) El Centro, (b) Northridge and (c)
Sakarya.
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Figure 5-6: Optimization history of the 30 independent runs of the Matching Scenario
2 for each target: (a) El Centro, (b) Northridge and (c) Sakarya.

5.4.3 Comparison of the two scenarios

A one-to-one comparison between the performance of the two scenarios
shows that the CoV is generally higher in Scenario 2. This occurs because the
optimization problem of Scenario 1 is more “relaxed” than the Scenario 2. In
Scenario 1, the objective function is related only with a single target spectrum
(acceleration), while in Scenario 2 the objective function is related with three
target spectra (acceleration, absolute velocity, relative velocity), at the same time.
This relation establishes an indirect "constraint” which implies that, with respect
to the target acceleration spectrum only, the optimized solution of Scenario 2 will
have higher deviation than that of Scenario 1, which interprets the higher CoV
values in Figure 5-3 when compared to Figure 5-1. Consequently, in the case of
Scenario 2 the possible “paths” of the population evolution towards the optimum
are far fewer and therefore the population diversity is lower compared to
Scenario 1, which explains the reduced CoV in the last generation in Figure 5-6
(Scenario 2), compared to that in Figure 5-2 (Scenario 1). Finally, it is noted that
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as the generations increase, the CoV fluctuation is smoother in the case of
Scenario 2, related to the increased robustness of the algorithm in this case.

5.5 Verification of the proposed methodology

In order to assess the robustness and accuracy of the proposed methodology
the seismic performance of single- and multi- degree of freedom structural
systems has been considered. To this end, nonlinear response history analyses
were conducted for the optimized accelerograms of the two Matching Scenarios
as resulted for the three target ground motion records in Section 3. The response
results are compared in terms of the goodness-of-fit with the respective response
result of the target ground motion. The seismic input energy that is dissipated
due to viscous damping action in the structure (damping energy) is also
quantified.

5.5.1 Energy definitions

The seismic input energy that is absorbed by an inelastic single degree of freedom
(SDOF) structural system during an earthquake can be defined by integrating the
equation of motion of the system as follows:

O ey

tmdu + [ uedu + [ f.du = m {1}, du (5.22)
0 0 0

where Mis the mass matrix, Cis the viscous damping coefficient matrix, fs is the
resistance force due to stiffness, | is the unit influence vector of the structure
and U, is the linear combination of the accelerations of ground motions records

in the suite as defined in Section 2.1. Eq. (5.22) stands as a statement of energy
balance of the system and can be rewritten as:

E,(t)+E,(t)+E(t)+E, (t)=E,(t) (5.23)
With regard to Eq. (5.22) the first integral gives the kinetic energy E,, the
integral on the right-hand side gives the input energy E, imparted from the
ground motion to the structure and the last integral on the left-hand side is equal
to the sum of the linear elastic recoverable strain energy E, and the plastic

irrecoverable strain energy Ey. The damping energy term Ed is defined as

follows:
Eq(t)= J.L]Edu (5.24)
0

The definitions of the aforementioned energy quantities are given for a structure

whose mass is acted upon by a force equal to P (t)=—ﬁ'l{|}ugyc, i.e. they are

based on the consideration of the structural motion relative to the base, rather
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than the total motion of the structure. The two types of energy formulations
(relative and absolute) are equivalent but the former is more intuitive and
simplifies the calculations when it comes to multi degree of freedom (MDOF)
structural systems. Egs (5.22) to (5.24) correspond to a SDOF system in
mathematical terms and their extension to MDOF systems can be done in a
straightforward manner.

5.5.2 SDOF system results

Three SDOF systems involving a bilinear elastoplastic constitutive model with
kinematic hardening are analyzed for each target ground motion. The
eigenperiod, the critical damping ratio, the post-yield stiffness ratio (i.e. the ratio
of the post-yield stiffness to the initial small strain stiffness of the structure), and
the ductility demand are same for all the SDOF systems and equal to o.5 sec, 5%,
1% and 1.1 respectively. The three systems have different yield displacements,
equal to 0.052 m, 0.1 m and 0.025 m for the El Centro, the Northridge and the
Sakarya target ground motion, respectively. The reader is referred to
Papazafeiropoulos et al. (2017) for more details about the implementation of the
bilinear elastoplastic constitutive model with kinematic hardening and the time
integration algorithm that were used in this chapter.

The small ductility value specified for all target ground motions denotes that
structures only with slightly nonlinear behavior are considered in this chapter;
for cases of severely nonlinear response the scenarios presented in this chapter
for calculation of the design artificial ground motion is an open research issue.
For such cases it would be better to consider the inelastic response spectra, rather
than elastic response spectra in matching scenarios. In addition, the physical
properties of each SDOF system remain the same for the estimation of its
dynamic response for each target ground motion as well as the optimized ground
motions obtained from the two matching scenarios. Based on an arbitrarily
selected value of ductility demand (equal to 1.1, to ensure a slightly nonlinear
response) for each target ground motion the yield displacement that is calculated
was used also for the corresponding optimized ground motions obtained from
the two matching scenarios in all nonlinear time history response analyses.

In Figure 5-7, the time variation of the damping energy per unit mass for each
target motion and the optimized ground motion records produced from the two
matching scenarios is depicted. A good agreement is observed in all cases since
the damping energy of the optimized ground motion (red line) is very close to
that of the respective target ground motion (black line). To quantify this

agreement, the normalized error €; for the ith story (in the case of SDOF

systems i is always equal to 1) and jth matching scenario, which is proportional to
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the area between a matching scenario and the target ground motion curves was
used as a metric of this goodness-of-fit, defined as follows:

HE

)~ Eq ()]t

(5.25)

j E;, (t)dt
0
where Eé,i and EL is the damping energy for the j* scenario and the target

ground motion respectively.
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Figure 5-7: Energy dissipated by viscous damping per unit mass over time for the
optimized artificial ground motions of the two matching scenarios and for each target
ground motion: (a) El Centro, (b) Northridge and (c) Sakarya.

Even in the case of Northridge target ground motion, it is indicative that the
damping energy corresponding to Scenario 2 is slightly closer to the respective
curve of the target motion, although there is not much difference between the
two scenarios (17% as seen in Table 2). This fact, in combination with the large
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value of the dissipated energy per unit mass may be a consequence of the special
characteristics of Northridge earthquake, which contains a high velocity pulse
(forward directivity effect) as a near-field ground motion.

Target Matching | Matching | Difference
ground motion | Scenario1 | Scenario 2 (%)
El Centro 0.4065 0.2794 31.3
Northridge 0.2289 0.1901 17.0
Sakarya 1.2104 0.2310 80.9

Table 5-1: Normalized error of the damping energy between the optimized and the
target ground motion records.

5.5.3 MDOF system results

Two model buildings were analyzed as a 3-DOF and 9-DOF structural systems.
More specific, the model buildings are a 3-story (LA3) and a 9-story building
(LAg) designed as standard office buildings and situated on a stiff soil (soil type
S2), following the local code requirements for the Los Angeles city (UBC 1994),
and according to the provisions of the FEMA/SAC project, presented in FEMA-
355C (2000). The plan and elevation of their effective structural models, along
with the various cross sections of its members are shown in Figure 5-8. The
perimeter moment-resisting frames act as the structural system of the building.
The column bases of the moment resisting frames are considered as fixed.
Furthermore, the design of the buildings for the two orthogonal directions is
quite similar, and therefore only half of the structure is considered in the analysis
in each case.
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Figure 5-8: Plan view, typical floor and elevation view of the effective model of the (a)
LA3 and (b) LAg model buildings.

The benchmark buildings are simulated as a 3-DOF and a 9-DOF structural
system involving the same bilinear elastoplastic constitutive model with
kinematic hardening, as in the SDOF system analyzed previously. Their
fundamental eigenperiods are equal to 1.01 sec and 2.85 sec, respectively. The
post-yield stiffness ratio and critical damping ratio were set equal to 1% and 5%,
respectively. The yield displacement and ductility demand of each story for the 3-
DOF and 9-DOF structural systems are shown in Table 3. The maximum ductility
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at any story does not exceed the value of 2. Usually, an interpolative iterative
procedure is necessary to obtain the yield displacement for a target ductility
demand (Chopra, 2017). However, for each target ground motion in each building
the yield displacement is assumed as uniform distributed across all storeys and is
calculated so that the maximum ductility demand is equal to 2 at least in one
story of the building. For both of the LA3 and LAg buildings the maximum
ductility demand is observed at the first story. The ductility of the remaining
storeys is much lower or even lower than 1 (i.e. story remains linear elastic).

Target Ground Motion El Centro | Northridge | Sakarya
Yield displacement 0.0283 01681 0.0356
LAz _ [m]
Ductility | Story2 1.19 0.99 0.99
demand Story 3 0.62 0.48 0.49
Yield displacement 0.0685 0166 01193
[m]
Story 2 0.41 0.38 0.38
Story 3 0.44 0.41 0.38
LAo N Story 4 0.39 0.39 0.30
Ductility Story 5 0.51 0.58 0.30
demand Story 6 0.47 0.61 0.25
Story 7 0.52 0.74 0.28
Story 8 0.36 0.53 0.20
Story 9 0.18 0.26 0.10

Table 5-2: Yield displacement and ductility demand of each story for the
3-DOF and 9-DOF structural systems

For each target ground motion, three nonlinear response history analyses were
conducted using as excitation the target ground motion and the two optimized
ground motions resulting from the two matching scenarios. Figure 5-9-Figure 5-1
show the time history of the damping energy at the three storeys of the building
for each target ground motion and the optimized ground motion records. Again,
a good agreement is observed in all cases since the damping energy of the
optimized ground motion (red line) is very close to that of the respective target
ground motion (black line).
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Figure 5-9: Time variation of energy dissipated at the 1st story of the 3-DOF system
for the optimized and the target ground motion records: (a) El Centro, (b) Northridge
and (c) Sakarya.
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Figure 5-10: Time variation of energy dissipated at the 2nd story of the 3-DOF system
for the optimized and the target ground motion records: (a) El Centro, (b) Northridge
and (c) Sakarya.
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Figure 5-11: Time variation of energy dissipated at the 3rd story of the 3-DOF system
for the optimized and the target ground motion records: (a) El Centro, (b) Northridge
and (c) Sakarya.

To quantify this agreement the normalized error as defined in Eq. (5.25) was used
as a metric of this goodness-of-fit. Figure 5-12 shows the normalized error of the
damping energy between the optimized and the target ground motion records for
each floor of the 3-DOF structural system. The min/max errors for the two
scenarios are 15%/48% and 3%/20%, respectively. It is observed that the proposed
algorithm (Scenario 2) yields far lower error compared to Scenario 1. Although
the error of Scenario 2 remains lower, only in the case of the dynamic response of
the third floor of the 3-DOF system for the El Centro target motion Scenario 2
gives greater error compared to Scenario 1 (28% higher). It is worth noting that in
the case of the Sakarya target ground motion the error of the Scenario 2 is 78.3%
lower compared to Scenario 1. This is directly related with the low CoV values
observed in Section 3 for this specific case, a fact that also proves the robustness
and accuracy of the proposed methodology.



144 Chapter 5

50

. . .
I Scenario 1
Il Scenario 2

N
o
T

30

20

Normalized error (%)

-
o
T

1st  2nd  3rd 1st  2nd  3rd 1st  2nd  3rd
El Centro Northridge Sakarya

Story
Figure 5-12: Normalized error of the damping energy between the optimized and the

target ground motion records for each floor of the 3-DOF structural system.

Figure 5-13 shows the time history of the damping energy at a typical story (i.e.
first story) of the LAg building for each target ground motion and the optimized
ground motion records. Again, a good agreement is observed in all cases since the
damping energy of the optimized ground motion is very close to that of the
respective target ground motion. To quantify this agreement, Figure 5-14 shows
the normalized error of the damping energy between the optimized and the
target ground motion records for each story of the 9-DOF structural system. The
min/max errors for the two scenarios are 8.2%/88.7% and 9.8%/38.5%,
respectively. It is observed that the proposed algorithm (Scenario 2) yields far
lower error compared to Scenario 1. The error of Scenario 2 remains higher, only
in the case of the dynamic response of the upper storeys of the 9-DOF system for
the Northridge target motion. This deviation is attributed to the dynamic
characteristics of the structural system mainly affected by the near field effects of
the specific ground motion. It is worth noting that the maximum error of the

Scenario 1 is 130.4% higher compared to the corresponding maximum error of the
Scenario 2.
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Figure 5-13: Time variation of energy dissipated at the 1st story of the 9-DOF system

for the optimized and the target ground motion records: (a) El Centro, (b) Northridge
and (c) Sakarya.
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Figure 5-14: Normalized error of the damping energy between the optimized and the
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5.6 Conclusions

In this chapter a novel spectra-matching framework is developed, which employs
a linear combination of raw ground motion records to generate artificial
accelerograms. To this end, apart from the well-known design acceleration
spectrum that is prescribed by the various norms and guidelines, the seismic
input energy equivalent velocity spectrum is also taken into account.

This consideration is leading therefore to optimized acceleration time histories,
which represent actual motions in a much more realistic way. In order to produce
elastic spectra that match as closely as possible to a given target spectrum, the
procedure of selection and scaling of a suite of ground motion records to fit a
given target spectrum is formulated as an optimization problem. Three
characteristic ground motion records of different inherent nature are selected as
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target spectra, to verify the effectiveness of the proposed algorithm, ensuring that
its performance is not ground motion record-dependent assuming different
matching scenarios. The optimization results have shown that there exists a good
agreement between the target and optimized spectra for each case examined,
regardless of the nature of target spectrum. Finally, it is proved that the
artificially generated records are much more realistic and suitable for the seismic
design of structures, since they reproduce better the real nonlinear structural
inelastic response in terms of the damping energy, demonstrating also the
reliability and robustness of the proposed methodology.

5.7 Notation

A : amplitude
dpy : scalar variable with uniform random distribution with 0<ag, <1

cu : vector with entries following a uniform Gaussian distribution

dpy : vector with entries following a uniform random distribution with 0<a, <1
C: viscous damping coefficient matrix

DFT( ) : Discrete Fourier Transform

: Energy dissipated due to damping

: Kinetic energy

Ed
Ek
E,: Input energy due to earthquake
E, : Elastic recoverable strain energy

Ey : Energy dissipated due to yielding

f : frequency

f.: fitness value of the i -th individual

fs : force due to stiffness

FFT( ) : Fast Fourier Transform

| : unit column vector (influence vector)

|0 : zeroth — order modified Bessel function of the first kind
|FFT( ): Inverse Fast Fourier Transform

k: number of generation

kmax : maximum number of generations
kp : constant for penalty of lower period bound

ks : positive integer for selection function with 0< ks <N -1

k : small strain (initial) stiffness matrix
M : number of raw accelerograms that are contained in the earthquake data base
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m : number of raw accelerograms combined to produce the artificial time history
Mge,: scale parameter of mutation function (standard deviation of Gaussian
distribution at the first generation) at the initial generation (o)

Mg\ : scale parameter of mutation function (standard deviation of Gaussian
distribution at the first generation) at generation Kk

Mg, : shrink parameter of mutation function (rate of decrease of standard

deviation w.r.t. generation number)
M : mass matrix

NHR : order of FIR filter

n:length of the Fourier transform

Ny, : number of elements of the intersection X,

N : number of individuals in each generation produced by crossover

Ne : number of elite individuals in each generation

Ny : number of individuals in each generation produced by mutation

: population size

: number of individuals which are selected for breeding in each generation

p
S
0 : population at zeroth generation (initial)
k- population at generation k

1

n
P
P
P
P
P

n
: first random individual belonging to population at generation k

k2 : second random individual belonging to population at generation k

k112 - offspring from crossover between Pk,l and Pk,z
p (T) : penalty function
P; : probability of selection of the i" individual
r: rank of an individual
Sa,: spectral acceleration of the linear combination of the selected ground
motions
Sat : target spectral acceleration

1\ /ABS . . . .
SIev.™: spectral equivalent absolute input energy velocity of the linear
combination of the selected ground motions

REL : . . :
Siev, : spectral equivalent relative input energy velocity of the linear
combination of the selected ground motions

1 ABS . . :
SIeV; : target spectral equivalent absolute input energy velocity

- REL . . .
SIeV; : target spectral equivalent relative input energy velocity
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T : eigenperiod

T, : lower period limit of the various spectra
1 p p

T2 : upper period limit of the various spectra

T, : duration of the earthquake time history
t:time

U: displacement vector of the structure

U: velocity vector of the structure

li : acceleration vector of the structure

U, . : acceleration time history of the linear combination of the selected ground
motions

Uy ; : acceleration time history of the i ground motion

W, : one of the n roots of unity

W : coefficients of Kaiser window

X)~2: intersection between two random individuals Xj; j and X;,
X, : relative complement of individual X, in individual Xj
X, : relative complement of individual Xj, j in individual X;,

X; : combination coefficient respectively of the i ground motion

Xij: j! element of the it individual

B: constant equal to 5
AL, : time step of ground motion before resampling

At : time step of ground motion after resampling

O : cyclic frequency step of the Fourier spectrum
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6 Abaqus2Matlab: An Integrated
Optimization Framework for
Engineering Applications

6.1 Introduction

Practical FEA applications are often not standalone, but incorporated into a
general optimization framework, so that a predefined objective is attained. The
reason for this is that usually the various objectives of the optimum structural
design are too complex to be implemented within the framework of a finite
element analysis. Sometimes an optimization process (e.g. an inverse analysis) is
necessary in order to compensate for the lack of modeling information (e.g.
constitutive material properties, etc.) and can yield results that are otherwise
infeasible to obtain. To implement the optimization procedures that are
presented in this chapter, the Abaqusz2Matlab software (Papazafeiropoulos et al.,
2017) has been used.

Abaqusz2Matlab is an effective tool with the following features:

e It provides linking between Abaqus and Matlab. Abaqus analysis can be
conducted through Matlab, without interacting with Abaqus/CAE interface, or
even Abaqus/Command.

e It transfers efficiently results from Abaqus to Matlab, in an error-proof
way, since every contained external function is verified by its application in
reading the results of a corresponding Abaqus analysis. The results of the
verification of each function are presented in this toolbox in the form of html
files.

e It provides the requested results in a form that enables the user to easily
manipulate the data for further postprocessing.

e It can read many different kinds of nodal results (results at nodes),
elemental results (results at the element integration points or results regarding
whole elements) and analysis results (e.g. node definitions, element connectivity,
eigenfrequencies and eigenvalues, etc.)
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e A complete documentation package is provided along with the source
code.

e A sufficient number of functions is included in the toolbox to capture the
most usually requested Abaqus results.

e The software, as well as all the associated material and documentation can
be accessed and downloaded for free at www.abaqus2matlab.com.

6.2 AbaquszMatlab - software development

6.2.1 Introduction

Partial Differential Equations (PDEs) govern the physics of most engineering
systems. As analytical solutions are limited and generally restricted to idealized
cases, the development of efficient and robust numerical methods marks a
milestone in the solution of boundary value problems in structural mechanics,
electromagnetism, heat transfer, mass diffusion and fluid dynamics, among many
other disciplines. The Finite Element Method (FEM) has become the leading
numerical technique for solving PDEs in the mechanical, civil, aeronautical and
bioengineering industries. Among the wide range of packages available, ABAQUS
is undoubtedly one of the most popular finite element tools for academics and
practitioners. However, practical applications often require consideration of non-
linear conditions, where uncertainties hinder high fidelity numerical predictions.
In such circumstances, the use of advanced analysis methodologies —such as
optimization procedures, inverse approaches, statistical tools or hybrid
experimental-numerical techniques -has proven to compensate for the lack of
information, yielding results that are otherwise unobtainable. More specifically,
in many cases the objective function is a function of the error between a
numerical analysis and an experiment, which needs to be minimized by adjusting
various design variables of the numerical model. These design variables almost
always involve some or all of the material constitutive parameters, since the
constitutive properties of a model have the largest effect on its response. The
results of the aforementioned optimization analysis are some "optimum" values
of the constitutive properties. Assuming the the constitutive model has been
selected in a reasonable way, these "optimum" values will be identical to the
"real" constitutive values. The latter values are actually modeling information
that is missing for an engineer who wants to perform a direct FEA and also are
infeasible to obtain by direct (straight) FE analysis. Therefore optimization is
necessary to find this lacking constitutive information of the material (i.e.
modeling information), and since Abaqus cannot do inverse analysis by itself,
various third-party softwares are used (in this thesis Matlab, which is integrated
with Abaqus using Abaqus2Matlab). MATLAB, a multi-paradigm computing
environment, is generally considered to be the most powerful software in this
regard due to its advanced capabilities in statistics, machine learning, neural
networks, curve fitting, model-based calibration and optimization. Yet, a
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connection between the two most used packages in, respectively, finite element
modeling and mathematical analysis, is still lacking. To fill this gap, a novel
software tool is here proposed: Abaqus2Matlab, which allows to run ABAQUS
directly from Matlab and to post-process the results, providing a link between the
two well-known packages in a non-intrusive and versatile manner. The present
proposal enjoys the benefits of MATLAB’s user friendly and centralized
environment, as opposed to other powerful tools like Python, which require add-
on libraries. Abaqus2Matlab is distributed as source code with the aim of
facilitating research. Section 6.2 is organized as follows. The structure of
ABAQUS results (*.fil) files is described in section 6.2.2 and the way in which
Abaqus2Matlab reads the file is presented in section 6.2.3. The software
framework and architecture are explained in section 6.2.4 . For more details
about the software, the reader is referred to Papazafeiropoulos et al. (2017).

6.2.2 Structure of ABAQUS results (*.fil) files

A medium in which ABAQUS analysis results can be transferred to other software
for postprocessing or pre- and postprocessing is the results file. The ABAQUS
results file can be written in binary (default) or ASCII format. Generally, the
manipulation of results files in ASCII format is easier than in binary format, since
they can be transferred between different computer systems and read from many
different postprocessing software without special settings. On the other hand, for
large problems the results files in ASCII format are significantly larger than the
same files in binary format. ABAQUS provides the ascfil facility to convert a
results file from binary to ASCII format, as shown in section 6.2.2.4. The
discussion from now on will concern only ABAQUS results files in ASCII format.

6.2.2.1 Dataitem format
Any data item contained in a results file can be either integer, floating point
number or character string. Integers begin with the character I, followed by a two

digit integer which shows the number of the digits of the integer, followed by the
integer itself. If the number of digits of the integer has one digit, the first
character after character I is a blank space. For example, integer number “8”
would be written as “I 18” and integer number “9999999999” would be written as
“1109999999999".

Floating point numbers begin with the character D, followed by the number in
the format E22.15 or D22.15, depending on the precision (single or double
respectively). For example, number “0.5” in double precision would be written as
“D 5.000000000000000D-01".

Character strings begin with the character A, followed by eight characters. If the
length of a character string is less than 8, then the trailing positions are filled
with blank spaces. If the length of a character string is larger than 8, then the
character string is written in consecutive character strings, eight characters at a
time. For example, “HOMOGENEOUS TENSION FOR ELEMENT 1” would be
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written as “AHOMOGENEAQOUS TENSAION FOR AELEMENT A1 “. Note the

seven trailing blank spaces after the last character (“1”) in the last character
string.

6.2.2.2 Record format

The results file is a sequential file, meaning that it contains and stores data
records in a specific order. It must be read from the beginning, up to the location
of the desired data. All data items are converted into equivalent character strings

and written in series which are called (logical) records. Each single line of a
results file contains a series of 8o string characters, which may contain whole or
part of a record. In the latter case, after completely filling the first line in which a
record begins, the record string continues at the subsequent lines till the end of
the record. If a record string ends before the end of a line, then the next record
starts immediately after the current record in the same line, with continuation in
the subsequent lines as explained above. The beginning of each record is
indicated by an asterisk (*). Within each record, the data items are arranged
immediately behind each other, and therefore it is possible that the end of a line
splits a data item, with its first characters belonging to a line and the remaining
characters belonging to the next line. The last line of the results file, if partially
completed, is filled with blank spaces until the end of the line. Then, a logical
record consisting of 8o blanks is inserted as the next line, in order for the end-of-
file to be handled correctly. Each record has the format shown in Table 6-1.

Location | Length | Description

1 1 Record length (L)
2 1 Record type key
3 (L-2) Attributes

Table 6-1: Format of a record written in an ABAQUS results file.

The location number denotes the position in the record, where a series of
consecutive data items is written. The number of data items in each series is
denoted by the length number. The first series of data items (consisting of a
single data item) is an integer showing the record length, i.e. the number of data
items which the record contains. The second series of data items (also consisting
of a single data item) is an integer showing the record type key. The record type
keys are standard indicators set in ABAQUS by convention, and denote the type
of data which the record includes. The data items which actually provide useful
information for the user (or attributes) are contained in a series of L-2 data items,
at the 3™ (and last) position of a record. For example, record key 1900 (Record
type: Element definition) for a CPE4R element with element number 2 and nodes
5, 6, 7, and 8 would be written as follows:

*1181 419001 12ACPE4R 115016117118

and record key 101 (Output variable identifier: U, i.e. displacements) for node 145
and displacements for the 6 degrees of freedom equal to (0.2000000029802322,
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0.00, -0.07500000298023224, 1.732049942016602, 1.732049942016602 and
1.732049942016602) would be written as:

I 191 31011 3145D 2.000000029802322D-01D 0.000000000000000D+00D-
7.50000029802322 4D-02D 1.732049942016602D+00D 1.732049942016602D+00D
1.732049942016602D+00

In a data record which contains complex values (e.g. in a steady-state analysis),
all the real components of the data record are written first and all the imaginary
components follow immediately. For example, record key 101 (Output variable
identifier: U, i.e. displacements) for node 1 and complex displacements for the 6
degrees of freedom  equal to (-1.621881950939540€-16+0.50930i,
0.004367975320916413+0.679751, -1.558539209401511€-15+0.0551) would be written
as:

*1 191 31011 11D-1.621881950939540D-16D 4.367975320916413D-03D-
1.558539209401511 D-15D 0.509390000000000D+00D 0.679750000000000D+00D
0.055000000000000D+00

6.2.2.3 Output
The types of output that can be written to the results file are the following:

. element output, nodal output, energy output, modal output, contact
surface output, and section output

. element matrix output
. substructure matrix output
. cavity radiation viewfactor matrices

It is possible that a model is defined as an assembly of part instances, the nodes
and/or the elements of which have repeated numbering definitions. In this case
the local node and element numbers are converted internally into global node
and element numbers, which are unique for the model being analyzed. The
output in the results file is given in terms of these global identities. A map
between user-defined numbers and internal numbers is printed to the data file
(*.dat) if any results file output that includes node and element numbers is
requested.

Set and surface names that appear in the results file are given along with their
corresponding assembly and part instance names, separated by underscores. For
example, if Set1 is the name of a set or surface of part Parti, which is instanced in
the assembly Assemblyl, then this set appears with the name
Assembly1_Part1_Set1 in the results file.

6.2.2.4 Generation of ABAQUS Results (*.fil) files
ABAQUS results files can be produced in a variety of ways. The overall

implementation which includes the generation of the results file(s) depends on
the information flow between ABAQUS and other pre- and postprocessing
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software. In order to retrieve the results of an analysis in an easy to handle form,
results files in ASCII format must be generated. This can be achieved by
determining specific execution procedures, which can involve input (*.inp),
restart (*.res), and other types of files which can be found in the ABAQUS
Documentation. In each of the input files involved, specific options with specific
parameters have to be defined. In addition, the results file generation procedures
differ between ABAQUS/Standard and ABAQUS/Explicit. The execution
procedures for ABAQUS/Standard and ABAQUS/Explicit, the required files as
well as the options in the input files of the single or restart analysis are shown in
Table 2. Four procedures are presented, which combine ABAQUS/Standard and
ABAQUS/Explicit finite element programs with either single or restart analysis,
resulting thus in four different cases. The ABAQUS ascfil utility serves to convert
results files from binary to ASCII format. This is particularly useful when
ABAQUS/Explicit is used for the analyses, in which the results files generated can
be only in binary format. In the case of a restart analysis, the *FILE FORMAT,
ASCII and *FILE OUTPUT options for ABAQUS/Standard and ABAQUS/Explicit
respectively have to be specified either in the initial or in the restart input files.

Finite element | Execution command | Files Input file options Result files
program required generated
ABAQUS/Standard | ABAQUS job=1 Linp Required Optional 1.fil (ascii)
- single analysis *FILE FORMAT, ASCII | *CONTACT
FILE
*EL FILE
*ENERGY FILE
*MODAL FILE
*NODE FILE
*SECTION FILE
ABAQUS/Standard | ABAQUS job=2 | 2.inp Required Optional 2.fil (ascii)
- restart analysis oldjob=1 1.mdl *POST OUTPUT *CONTACT
FILE
1.odb *FILE FORMAT, ASCII | *EL FILE
1.stt *ENERGY FILE
1.prt *MODAL FILE
Lres *NODE FILE
*SECTION FILE
ABAQUS/Explicit - | ABAQUS job=1 Linp Required Optional 1fil
single analysis *FILE OUTPUT *CONTACT (binary)
FILE
*EL FILE
*ENERGY FILE
*MODAL FILE
*NODE FILE
*SECTION FILE
ABAQUS/Explicit - | ABAQUS job=2 | 2.inp Required Optional 2.fil
restart analysis oldjob=1 1.abq *RESTART,READ *CONTACT (binary)
FILE
1.mdl *FILE OUTPUT *EL FILE
1.0db *ENERGY FILE
1.stt *MODAL FILE
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1.pac *NODE FILE
1.prt *SECTION FILE
LT€s
1.sel
ABAQUS ascfil job=1 | 1.fil - 1fin (ascii)
(binary)

Table 6-2: Procedures used in ABAQUS for the generation of results (*.fil) files.

6.2.3 Reading of ABAQUS results files with Abaqus2zMatlab

This section describes the way an ABAQUS result file is read, in order to obtain
the numerical data in an easy to use form. A segment of a results file is shown in
Figure 1. As mentioned in a previous section, each single line of a results file
contains a series of 8o string characters, which may contain whole or part of a
record. The segment shown in Figure 1 contains three records. Before the first
record, the last 74 characters of the last record appear. After the third record, the
first 98 characters of the next record appear.

4D-02D 1.732049942016602D+00D 1.732049942016602D+00D 1.732049942016602D+00*I 191
419011 3262D 1.147152855992317D-01D-1.638304144144058D-01D 7.500000298023224D-0
2D 1.732049942016602D+00D 1.732049942016602D+00D 1.732049942016602D+00*I 191 419
01T 3263D 1.285575181245804D-01D-1.532088816165924D-01D 7.500000298023224D-02D 1
.732049942016602D+00D 1.732049942016602D+00D 1.732049942016602D+00*I 19T 419011
3264D 1.414213627576828D-01D-1.414213627576828D-01D 7.500000298023224D-02D 1.732
049942016602D+00D 1.732049942016602D+00D 1.732049942016602D+00*I 19T 41901I 3265
D 1.532088816165924D-01D-1.285575181245804D-01D 7.500000298023224D-02D 1.7320499

Listing 6-1: Segment of the contents of an ABAQUS results file.

The way Abaqus2matlab reads the segment of the results file presented in Listing
6-1 will be illustrated. For this purpose, the code used for reading the segment
will be shown and explained line by line.

The function Filzstr (fil file to string conversion), the code of which is shown in
Listing 6-2, opens the ABAQUS results file for reading only, reads the data in this
file by considering it as a string and concatenating lines horizontally, so that the
cell array C contains a single line string. It is reminded that all lines starting with
“%” are not executed and are treated as comments. Special characters as
delimiters, whitespaces or end of line characters are not specified. The
concatenation in a single line during execution of textscan does not happen in
previous versions of Matlab, and therefore the newline and carriage return
characters of the string A contained in the 1 x 1 cell array C have to be deleted
(replaced with nothing) by applying two strrep (string replacement) commands
consecutively, as shown in lines 19 & 21 of the code shown in Listing 6-2, in order
to yield a single line string containing all information of the results file. A single
line output string is necessary, since this is the only way to manipulate whole
records easily, avoiding interruptions due to continuation to subsequent lines.
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After the application of Filzastr function, all lines of the segment in Listing 6-1 will
be arranged in a single line as shown in Listing 6-3.

Line | Code

1 function Rec = Fil2str (ResultsFileName)

2 % Open the results file for reading

3 fileID = fopen(ResultsFileName, 'r'");
% Read data from results file as a string and assign them to a

4 cell array

5 % Concatenate each line without specifying delimiter, whitespace
or end of

6 % line characters

7 try

8 C = textscan (filelID, '$s’', 'CollectOutput’', 1Y,
'delimiter’',

9 '','whitespace',"'','endofline',"'");

10 catch

11 C = textscan (fileID, '%s', 'CollectOutput', 1, 'delimiter',

12 "', 'whitespace','','endofline',"'");

13 end

14 % Close the results file

15 fclose (filelID);

16 % Assign A

17 A = C{1}{1};

18 % Remove newline characters

19 Al = strrep(A,sprintf('\n'),"");

20 % Remove carriage return characters

21 Rec = strrep(Al,sprintf('\r'),"'");

Listing 6-2: Matlab code of the function Fil2str.m.

. .4D-02D 1.732049942016602D+00D 1.732049942016602D+00D 1.732049942016602D+00*I 1 OI
419011 32 62D 1.147152855992317D-01D-1.638304144144058D-01D 7.500000298023224D-02D
1.73204994201660 2D+0 0D 1.732049942016602D+00D 1.732049942016602D+00*I 1 9I 41 901I

3263D 1.285575181245804D-01D-1. 532088816165924D-01D 7.500000298023224D-02D 1
.732049942016602D+00D 1.732049942016602D +00D 1. 732049942016602D+00*I 19T 41901I3264D
1.414213627576828D-01D-1.414213627576828D-01D 7.50000029 8023224D-02D

1.732049942016602D+00D 1.732049942016602D+00D 1.732049942016602D+00*I 19I 419011 3 265D
1.532088816165924D-01D-1.285575181245804D-01D 7.500000298023224D-02D 1.732049 9. ..

Listing 6-3: Single line string extracted from the data in Listing 6-1.

The single line string, after being produced by Filastr function, enters another
suitable function specified by the user, depending on the type of the results to be
extracted from this string. The string shown in Listing 6-3 contains node
definition data (which are identified by the record key 1901 in ABAQUS) and a
function which can read node definitions from the string must be used. Of
course, the string may contain more than one types of data (such as nodal
displacements, for example), but there is not a unique function which can extract
all types of data from a string. For each type of data to be extracted, the
corresponding function has to be used. Abaquszmatlab contains different
functions which can read different types of results from a single line string that
has been produced from a results file. To avoid confusion, there is a standard
naming convention of these functions. For example, in order to extract node




Chapter 6 159

definition results (record key 1901 as mentioned above) the function Recigoi.m
has to be used, namely, the name of the function is comprised of “Rec” followed
by the record key of the results to be read. In the string shown in Listing 6-3, the
results correspond to record key 1901. Therefore, the function Recigo1 has to be
used to read these results. The code of all such functions follows a similar logic,
which does not differ significantly from the logic described for the code of the
function Recigo1.m. The application of this function is explained in the following.

Line Code
1| function out = Recl901 (Rec)
2| ind = strfind(Rec,'I 41901'); % record key for node output (1901)
3| 1f isempty (ind)
4 out=1[1;
5 return;
6 | end
7 | nextpos=numel ('T 41901")+1;
8| % Initialize
9 | NodeNum=zeros (numel (ind), 1) ;

10| $ Initialize record length matrix
11 | NW=zeros (numel (ind), 1) ;
12 | for i=1:numel (ind)

13 % find the record length (NW)

14 Rec2=Rec (ind (i) -7:ind (1)) ;

15 indNW=strfind (Rec2, '*'"); % record starts with *
16 % ensure that the record exists and that the record type key is at
17 % location 2

18 if isempty (indNW) || indNW>3

19 ind (i) =NaN;

20 continue;

21 end

22 % number of digits of record length

23 indl=indNW+2;

24 ind2=1indNW+3;

25 al=str2num(Rec?2 (indl:ind2)) ;

26 % Record length (NW)

27 indl=indl1+2;

28 ind2=ind2+al;

29 NW (i) =str2num (Rec2 (indl:ind2)) ;

30 | end

31 | NodeCoords=zeros (numel (ind) ,max (NW) -4) ;
32 | for i=1:numel (ind)

33 % number of digits of node number
34 indl=ind (i) tnextpos;

35 ind2=ind (i) +tnextpos+1;

36 al=str2num(Rec (indl:ind2)) ;

37 % Node number

38 indl=indl+2;

39 ind2=ind2+al;

40 NodeNum (1) =str2num (Rec (indl:ind2)) ;
41 % Node coordinates

42 for j=1:NW(i)-4

43 % node coordinate

44 indl=ind2+2;

45 ind2=ind2+23;

46 NodeCoords (i, J)=str2num(Rec (indl:ind2)) ;

a7 end
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48 | end

49 | $ Assemply of matrices for output
50 | out=[NodeNum NodeCoords];

51 | end

Listing 6-4: Matlab code of the function Recigo1.m.

The Recigoi.m function works as follows. In order to accelerate matrix storage in
Matlab, preallocation of the results matrix has to be made, especially for large
output. In order to preallocate the results matrix, the record length has to be
known. To find the record length, the positions of the record key in ASCII form
(“I 41901”) are found first using the strfind function (line 2). The position of the
record key is meant to be the position of its first character (i.e. the character I).
These positions for the example string in Listing 6-3 are [235 391 546]. After
this, a typical check is made if the array ind is empty (i.e. if no string “I 41901” is
found). In positive case, the function is exited giving as output an empty matrix
(lines 3 - 6). This case can be encountered if in the results file no nodal definition
data are written for some reason.

Thereafter, the record length matrix is initialized, having number of rows equal
to the number of elements in ind array. It is known that the record length is
written one position before the record key number and therefore the pointer goes
back from the position of the record key by a default number of 7 characters and
stores these characters in string Rec2. After this, the string Rec2 is searched for
“*?"to determine the positions where the records start. If there is not an asterisk,
then this means that the record does not start within these seven characters, and
consequently the string “I 41901” does not signify a record key (it could be the
number of a node in an element definition for example). Another point to be
noted is that indNW (which shows the location of the asterisk (*) within the
seven characters preceding the string “I 41901”) cannot be larger than 3; this
would mean that the first data item of the record includes less than 7-3=4
characters, which is not possible, since if this occurs, only the number of digits of
the record length will be known, and not the record length itself (three
characters include the character I followed by at most two numerical characters).
In any of the two cases, ind is set equal to NaN, so that results in the
corresponding positions are not read. After having ensured that indNW shows
the position of the beginning of a record, the number of digits of the record
length is read using the function stranum, which converts a string into a number.
In a similar way, the record length is read (with indexing based on the number of
its digits given previously) and assigned to array NW.

Having formed the array NW, its maximum value is taken to set the number of
columns of the output matrix at preallocation, denoted as out. The number of
rows of this matrix is set to be equal to the number of elements of ind. After this,
the elements of ind (i.e. position of the second data item of records giving node
definition results) are scanned and for each element the number of digits of node
number is determined first, then the node number, and finally the nodal
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coordinates, by the insertion of a for loop within each record definition, intended
to scan the three coordinates (x,y,z) of each node. Finally, the node numbers and
the node coordinates are concatenated horizontally to form the output array out.

6.2.4 Use of Abaqus2zMatlab

Before using the Abaqus2Matlab toolbox, the user has to be aware of the various
source codes contained and how they are organized. Knowledge of the source
codes will enable the user to use the toolbox more effectively to perform the
desired postprocessing of the ABAQUS results. In this section, after a description
of how the various files are organized in the toolbox, detailed instructions are
given for the use of Abaqus2Matlab.

6.2.4.1 Organization of the source code
The source code files and folders used in the toolbox are the following:

e A function named Fil2str.m that converts the contents of the results file
into a one-row string from which the desired output is retrieved, as already
mentioned in previous sections.

¢ A folder named OutputAnalysis which contains the functions available for
the processing of the results of analysis type (e.g. node definitions, element
connectivity, eigenfrequencies and eigenvalues, etc). A table of variables available
for analysis output requests is shown in Table 6-3. The first column (with title
“record type”) describes the variable which is written in the ABAQUS results file
for the corresponding record key shown in the second column. In the third
column the output variable identifier is written. The output variable identifier is
the identifying key for the variables to be written to the results (.fil) or selected
results (.sel) file. The keys are defined in the sections “ABAQUS/Standard output
variable identifiers” and “ABAQUS/Explicit output variable identifiers” of the
ABAQUS Analysis User's Guide. In the fourth column, the Matlab function
suitable for the extraction of the corresponding variable from the ABAQUS
results file is shown.

e A folder named OutputNodes which contains the functions available for
the processing of the results of nodal type (e.g. node displacements, concentrated
forces, nodal temperatures, etc). A table of variables available for nodal output
requests is shown in Table 6-4 The variables are ordered according to the output
variable identifiers’ names, alphabetically.

e A folder named OutputElements which contains the functions for the
processing of the element results (results at the element integration points or
results regarding whole elements, e.g. total strains, section forces and moments,
etc). A table of variables available for element output requests is shown in Table
6-5. The variables are ordered according to the output variable identifiers’ names,
alphabetically.
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e A folder named Verification, which contain Matlab scripts for the
verification of the Filastr.m and the various RecX.m functions (where X is the
record key). All the functions provided with the AbaquszMatlab toolbox and
associated with obtaining analysis, element or nodal results are verified to ensure
that they work correctly and they are not error-prone. In the verification process,
an appropriate ABAQUS input file (in which the option for the extraction of the
desired results in an ASCII results file (.fil) is specified), is run by ABAQUS. After
the ABAQUS analysis terminates and the results file is created in the ABAQUS
working directory, it is processed appropriately by AbaquszMatlab to obtain the
requested results. Finally, the results are presented and checked with regard to
their class and size. The verification of Abaqus2Matlab toolbox was made using
ABAQUS 6.13.

e A folder named ABAQUSInputFiles which contains the input files which
are run by ABAQUS for the verification procedure. Each ABAQUS input file is
named with a number (let it be Y) which is the record key of the corresponding
output variable identifier, followed by the extension “.inp”. The ABAQUS input
file Y.inp is run by ABAQUS and produces results which are retrieved (after
ABAQUS completes the analysis) by the function RecY.m.

e A folder named help which contains all Matlab source codes which are
intended to print the contents of the ABAQUS input files contained in the folder
ABAQUSInputFiles.

e A folder named html which contains all the html files of the
documentation of AbaquszMatlab, including the html files produced by
publishing the verification examples. All the verification examples contained in
the folder Verification and the ABAQUS input files contained in the folder help
are published by Matlab in this folder and are accessible through the
documentation.

OUTPUT VARIABLE
ANALYSIS RECORD TYPE |[RECORD KEY IDENTIFIER FUNCTION
Element definitions 1900 - Reci1900.m
Node definitions 1901 - Recigoi.m
Modal 1080 - Reci1080.m

Table 6-3: List of variables available in Abaqus2Matlab for analysis output requests

NODAL RECORD TYPE RECORD KEY | OUTPUT VARIABLE | FUNCTIO
IDENTIFIER N

Nodal Acceleration 103 A Reci03.m
Concentrated FElectrical

Nodal Charge 120 CECHG Reci2o.m
Concentrated Electrical

Nodal Current 139 CECUR Reci139.m
Nodal Point Load 106 CF Recio6.m
Concentrated Flux 206 CFL Rec206.m
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Nodal Coordinate 107 COORD Recio7.m
Fluid Cavity Volume 137 CVOL Rec137.m
Electrical Potential 105 EPOT Recio5.m
Motions  (in  Cavity
Radiation Analysis) 237 MOT Rec237.m
Normalized
Concentration (Mass 221 NNC Rec221.m
Diffusion Analysis)

Temperature 201 NT Rec201.m
Fluid Cavity Pressure 136 PCAV Rec136.m
Pore or Acoustic Pressure 108 POR Rec108.m
gl;;;l:al Reaction 19 RCHG Rec11i9.m
gljrcrterlllctal Reaction 138 RECUR Rec138.m
Nodal Reaction Force 104 RF Recio4.m
Residual Flux 204 RFL Rec204.m
Internal Flux 214 RFLE Rec214.m
lljlef;tlve Fluid Volume 109 RVF Rec109.m
52?3;1:: Fluid — Total 110 RVT Reciio.m
Total Force 146 TF Reci46.m
Nodal Displacement 101 U Reci101.m
Nodal Velocity 102 \4 Recio2.m
Viscous Forces Due to 145 VF Rec4s.m

Static Stabilization

Table 6-4: List of variables available in Abaqus2Matlab for nodal output requests.

ELEMENT RECORD TYPE | RECORD OUTPUT VARIABLE | FUNCTION
KEY IDENTIFIER

Creep Strain (Including

Swelling) 23 CE Rec23.m

Mass Concentration (Mass

Diffusion Analysis) 38 CONC Rec38.m

Concrete Failure 31 CONF Rec31.m

Coordinates 8 COORD Rec8.m

Unit Normal to Crack in 26 CRACK Rec26.m

Concrete

Total Strain 21 E Rec21.m

Total Elastic Strain 25 EE Rec25.m

Energy (Summed over

Element) 19 ELEN Recig.m

Energy Density 14 ENER Reci4.m

Mechanical Strain Rate 91 ER Recgor.m
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Whole element volume 78 EVOL Rec78.m
Film 33 FILM Rec33.m
Total Fluid Volume Ratio 43 FLUVR Rec43.m
Pore Fluid Effective
Velocity Vector 97 FLVEL Recg7.m
ifl{alysis)(Pore Pressure 40 GELVR Rec4o0.m
Heat Flux Vector 28 HFL Rec28.m
Total Inelastic Strain 24 IE Rec24.m
Logarithmic Strain 89 LE Rec89.m
Nominal Strain 90 NE Recgo.m
Nodal Flux Caused by Heat 10 NFLUX Recio.m
Plastic Strain 22 PE Rec22.m
Pore or Acoustic Pressure 18 POR Reci8.m
Radiation 34 RAD Rec34.m
Stress 1 S Recii.m
ia;;;ztg;n (Pore Pressure 35 SAT Recss.m
iicrt;g?ure Strain and 29 SE Recag.m
Section Force and Moment 13 SF Rec13.m
Stress Invariant 12 SINV Reci2.m
Strain Jump at Nodes 32 SJp Rec32.m
Principal stresses 401 SP Recqo1.m
Average  Shell Section 83 SSAVG Rec83.m
Stress
Element Status 61 STATUS Rec61.m
Section Thickness 27 STH Rec27.m
Thermal Strain 88 THE Rec88.m

Table 6-5: List of variables available in Abaqus2Matlab for element output requests

6.2.4.2 Instructions for use of Abaqus2Matlab
To use AbaquszMatlab, the instructions below have to be followed:

e Ensure that ABAQUS license server is running.
e Open the file named Documentation.m in Matlab and run it (press Fs).
This action virtually sets up all files and folders contained in the Abaqus2matlab
toolbox, including the documentation. It is noted that the files generated during
ABAQUS analyses will be placed one level up (outside) of the toolbox folder. The
command “S=pwd” finds the directory containing the file Documentation.m,

wherever may it be. The command “addpath(genpath(S))” does the setup.
e To extract an arbitrary ABAQUS analysis result from an ABAQUS results
file, initially the record key and the output variable identifier have to be specified.
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These can be obtained from Table 6-3 for an analysis-type output, Table 6-4 for a
node-type output, and Table 6-5 for an element-type output.

e The syntax of each RecX.m function has to be known (especially regarding
its output). To view the syntax of an arbitrary RecX.m function type “doc RecX”
or “help RecX” (where X is the record key) in the Matlab command window. The
first option shows the function manual in a Matlab browser, whereas the second
option shows the function manual in the Matlab command window. In the
manual of each function the necessary options to be included in the
corresponding ABAQUS input file are shown.

e C(Create the ABAQUS input file and place it in the folder of the
AbaquszMatlab toolbox (at least at the same level as the Documentation.m script
and anyway not outside the toolbox folder).

e Run the ABAQUS input file by typing in the Matlab command window
“IABAQUS job=X”, then enter. After the analysis terminates, the results file X.fil is
generated in the same directory as the X.inp file. The results file is then read by
Abaqusz2Matlab to extract the requested results.

e Type in the Matlab command window “Rec=Filzstr('X.fil')”. The variable
Rec is a one-row string containing the information included in the X fil file.

e Type in the Matlab command window “out=RecX(Rec)”. The variable out
contains the requested results, extracted from the X.fil results file. It will be
generally a double or cell array. For more information about the identity and/or
physical meaning of each element contained in this array, one can refer to the
manual of the function RecX.m, mentioned in section “Results file output format”
of the ABAQUS Analysis User's Guide.

6.3 Abaqusz2Matlab - optimization

6.3.1 Aspects of coupling different optimizer and solver software

Structural optimization is a research field dealing with optimal design of load-
carrying mechanical structures. The standard form of a structural optimization
problem is as follows:

Minimize:
f(x) (6.1)

Subject to:
gi(x)go, i=1..m (6.2)
h;(x)=0, J=L...p (63)

In structural optimization problems, the evaluation of structural (static and/or
dynamic) response is involved in at least one of the functions f, g, h as shown in
(6.1), (6.2) and (6.3) respectively, either directly or indirectly. Semi - analytic
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implementations of structural solvers within optimization algorithms that
improve the overall computational performance have been published by Dafalias
& Dupuis (1972) and by Chern et al. (1973). Abaqus2Matlab provides an interface
between Matlab which serves as the optimization environment, and ABAQUS,
which serves as the structural analysis solver. In such cases where interfaces are
used for coupling the optimization software and the solver software, it is of
paramount importance that the user takes into consideration two major
components of the optimization procedure which are (1) formulation and way of
solving the optimization problem and (2) sensitivity and approximation issues.
These are described below, along with various recommendations to the
Abaqusz2Matlab user, in order to enjoy the best possible solutions to optimization
problems using the Abaqus2Matlab software.

6.3.1.1 Formulation

The formulation of an optimization problem affects the success of the optimum
design process in terms of computational effort and quality of results. Numerical
difficulties result mainly from the following reasons:

e Usage of highly nonlinear objective or constraint functions. The gains in
the convergence rate are apparent when linear formulations inside the objective
and constraint functions of the optimization problem are used. In some cases,
nonlinear formulations can be converted into equivalent linear and thus simplify
the problem.

e large differences between the magnitudes of the design variables,
objective function(s) and constraint function(s). This problem can worsen if the
software involved in the optimization procedure are not numerically robust. The
best option in this case is to normalize the design variables, objective function(s)
and equality constraint(s) to order 1 by scaling, and to normalize the inequality
constraint(s) by the maximum or minimum value used to form them.

e Determination of the set of active constraints. If all the constraints are
considered during the search process, the computational effort may be very high,
whereas the consideration of only the constraints that are active or nearly active
at a trial solution may lead to spurious oscillations and therefore inability for
convergence. An appropriate and robust methodology for the consideration of
the active set of constraints is a vital component of an optimization algorithm
and must be carefully selected.

e The ABAQUS structural analysis model depends on the formulation of the
optimization problem running in Matlab, in which it participates. While
sometimes a detailed ABAQUS model is required to verify a case, if the same
ABAQUS model is involved in an optimization procedure in Matlab, it needs to
be appropriately simplified and/or reduced, so that the increase in the
computational load is not prohibitively high, given the fact that a large number of
ABAQUS analyses are induced by the optimization algorithm running in Matlab.
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e The formulation of the optimization problem in Matlab sometimes
depends on the ABAQUS model. If the sensitivity of the ABAQUS FE analysis
results with respect to the design variables is low, then there is room for the use
of a relatively simple and more straightforward optimization algorithm in Matlab;
otherwise, depending on the complexity of the ABAQUS model, the optimization
algorithm that will be used in Matlab must meet the ABAQUS model
requirements.

e The ABAQUS FE analysis and Matlab optimization procedure can be
integrated on a step-by-step basis, especially when the ABAQUS analysis in
highly nonlinear. It is possible to combine the FE analysis and optimum design
iterations in a single iterative process using Abaqus2Matlab.

6.3.1.2 Sensitivity
This aspect is related either to high gradients of the objective and/or constraint

function(s) with respect to the design variables, or to the existence of jumps in
the variation of these functions. The sensitivity of an optimization algorithm is
influenced by the efficient calculation of derivatives of the objective and
constraint function(s), with respect to the design variables. The importance of
these derivatives is apparent, as they are usually used for:

e Approximate constraint evaluations to reduce the computational effort
associated with exact evaluations

e Evaluation of the direction at which the optimization algorithm will
proceed in each step to reach a solution which is better than the current

The sensitivity of the derivatives clearly affects the accuracy of the optimum
solution as well as the stability of the optimization algorithm. In cases that the
sensitivity of the derivatives is high, the following options are proposed:

e Suitable re-formulation of the optimization problem so that the
optimization domain contains fewer or no irregular (singular) points.
Quantitatively, estimation of the degree of irregularity of the search region is a
matter of experience and can be crudely calculated by the ratio of the largest to
the smallest eigenvalue of the Hessian matrix of the objective function at the
optimal point, only in the case of unconstrained optimization problems.

e Substitute of the used optimization algorithm with another algorithm that
uses fewer derivatives and/or has superlinear convergence rate, unless the
computational load per iteration becomes prohibitively high. If a sequence

Xpr Xgnns X converges to a value r and if there exist real numbers »#>0 and 221

such that

lim H = (6.4)

then a is the rate of convergence of the sequence.



168 Chapter 6

From the above it is apparent that the selection of the optimization algorithm is
case-dependent, and it is nearly impossible to assert without ambiguity that an
algorithm is generally better than another.

6.3.2 Structural analysis solver function using Abaqus2zMatlab

The main purpose of Abaqus2Matlab as an interface within an optimization
procedure is to play the role of the structural analysis solver in an automated and
reliable way, non-prone to errors. For this purpose, Abaqus2Matlab follows a
certain workflow, which is different among its various components, e.g. it is
different between Abaqus2Matlab/fil2Matlab (responsible for processing
ABAQUS results (*.fil) files), and Abaqus2Matlab/odb2Matlab (responsible for
processing ABAQUS output data base (*.odb) files). In this thesis, the fil2Matlab
component is used. The workflow is shown in Figure 6-1 and is executed as
follows:

e The ABAQUS input file that corresponds to the current values of the
design variables x is generated. This job is done by the Abaqus2Matlab function
InpFileConstr.m. This function apparently depends on the ABAQUS model and
the way that it is parameterized. x is a vector containing the current values of the
design variables. The function InpFileConstr.m does not give any output. The
following option with its parameter has to be specified in the ABAQUS input file
in order for the results (*.fil) file to be generated:

*FILE FORMAT, ASCII

o After the ABAQUS input file is generated, it is run remotely by
AbaquszMatlab, through the function runABAQUSAnalysis.m. This function
accepts the name of the ABAQUS input file to be run, an upper time limit tu, and
a lower time limit ti,. ABAQUS execution starts and afterwards Matlab execution
is halted, waiting until any of the following events happens:

(1) ABAQUS execution starts normally and the ABAQUS lock (*.Ick) file
is deleted. This is the normal case.

(2) ABAQUS execution starts normally and tus is exceeded (i.e. for some
reason ABAQUS execution is lagged). In this case, ABAQUS analysis is
automatically terminated and executed again.

(3) ABAQUS execution starts but the ABAQUS lock (*.Ick) file is not

generated, and ti, is exceeded (most likely the execution of the process
SMASimUtility.exe is lagged). In this case, the process SMASimUltility.exe is
automatically killed and the ABAQUS analysis is executed again.
In this function Java variants of various Matlab commands are used where
possible, in order to avoid memory leaks which may cause lags or crashes of
ABAQUS execution. Furthermore, the Java commands are proven to be much
more accurate than the corresponding Matlab commands.
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o After the ABAQUS analysis has been completed, control is passed back to
Matlab and then the Fil2str.m function is used to read the information contained
in the ABAQUS results (*.fil) file in ASCII format and assemble it into a one-row
string. The function Fil2str.m initially opens the results file with reading only
permission, then reads the data included in this file as an assembly of strings
within a cell structure, and finally it removes any newline and carriage return
characters from these strings, eventually resulting in a single-row string that is
passed as output (output argument s). Provisions are taken in order to ensure
that the Filastr.m function works for any Matlab version that the user may be

running.
Abaqus2Matlab solver
Design
Variables (x)
InpFileConstr.m
Abaqus input file
(*.inp)
runAbaqusAnalysis.m
Abaqus results file
(*.fil)
Fil2str.m
Data contained in
Abaqus results file (s)
ReCXV Wﬁ(rm
Abaqus FEA result (y,) Abaqus FEA result (y,)

Figure 6-1: Flowchart of the Abaqus2Matlab application as a structural analysis solver
function.

The single line string that is output by the function Filastr.m is processed by
another suitable function that is specified by the user, depending on the type of
the desired ABAQUS results. Of course, the string may contain more than one
types of data (such as nodal displacements and element stresses for example), for
the extraction of which different functions must be selected by the user then
using the open source version of Abaqus2Matlab (v.1.0). This feature has been
improved in the second version of Abaqus2zMatlab, where a single function is
used for any type of ABAQUS results that are extracted, and the user has only to
specify the record key as an input argument to this function. In the first (open



170 Chapter 6

source) version of Abaqus2Matlab there is a standard naming convention of these
functions, i.e. RecXXX.m as shown in Figure 6-1, where XXX is replaced with the
record key corresponding to the desired result. For example, in this section the
function Recio1.m was used to extract nodal displacement results (record key 101),
whereas the function Rec13.m was used to extract element section forces (record

key 13).

6.3.3 Use of AbaquszMatlab for optimum structural design

The aforementioned description is applicable for the implementation of any
structural analysis solver function using AbaquszMatlab. Consequently
Abaqus2Matlab can be used for any structural optimization problem that is
solvable in ABAQUS. In the following the implementation of Abaqus2Matlab for
the solution of structural optimization problems will be shown, for cases in which
the Matlab fmincon function is used as the optimizer.

There are various patterns for using the Abaqus2Matlab solver within the
framework of the Matlab fmincon function. Figure 6-2 presents the relevant
schematic flow diagram of possible ways of inclusion of the AbaquszMatlab
solver. It is possible to use Abaqus2Matlab for the objective function evaluation
(Case 1) or not (Case 2). The same happens with the constraint function
evaluation. Therefore the Abaqus2Matlab solver that is presented in Figure 6-1
can be used as shown in Figure 6-2 for the evaluation of either the objective
function, or the constraint function, or both of them. Since we are dealing with a
structural optimization problem, it is necessary that at least one of the two
functions (objective and constraint functions) implements the flowchart of Case
1. In the present section, the Abaqus2Matlab was used only in the constraint
function evaluation, i.e. Case 2 and Case 1 were used for the objective and
constraint functions respectively. Instructions about the proposed methodology

| Matlab fmincon function |

= g

Objective function Constraint function
Case 1 ! Case 2 Case 1 \ Case 2
i |
Input: : Input: Input: i Input:
X p|oX X ColoX
1 1
| ! ] :
1 1
Abaqus2Matlab Solver | ! Abaqus2Matlab Solver | |
(Figure 1) ! (Figure 1) .
' i
1 1
1
Output: i | Output: Output: | Output:
1
1 1
f(x) H (%) 9(x) 1 9(x)
1 1
h(x) 1 h(x)
1
1
in order to

Figure 6-2: Flowchart of the possible uses of Abaqus2Matlab for the objective and
constraint function evaluations within the framework of the Matlab fmincon function.
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Define the design variables (x) of the
optimization problem
]
Construct a Matlab function which
generates the Abaqus input file for
given values of the design variables (x)
]
Define the objective function which
returns f(x)

¥
Define the constraint function which
returns g(x), h(x)

Define the upper and lower bounds of
the design variables

v
Program the main Matlab optimization
code

¥

Assign an initial value to the design
variables within the upper and lower
bounds and evaluate the objective and
constraint functions. Check that both of
the return the expected outputs

termination ' I Generate new Abaqus input file
criteria

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
1
' Meeting NO
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Finish

Figure 6-3: Suggested methodology for setting up and performing a structural
optimization problem using Abaqus2Matlab.

setup and solve a structural optimization problem are shown in Figure 6-3.
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6.4 Abaqusz2Matlab - verification

Verification is a substantial process for any software, which is has to be done for
the following reasons:
e It provides substantial evidence for the effectiveness, accuracy and
robustness of a software
e Itrenders a software computationworthy, by building trust to its users
e It provides ways for the correct interpretation of the results from the
usersand/or developers
e The cases that are used for the verification can be used as a template for
various more complex postprocessing tasks.
e [t provides hints on how to alleviate computationally intensive processing
tasks.

In the following, three benchmark truss optimization problems will be solved
with Abaqusz2Matlab as a verification process.

6.4.1 2-bar truss

6.4.1.1  Description
Consider a 2-bar plane truss shown in Figure 1 with the following structural

characteristics:

*  Modulus of Elasticity: E = 68.948 GPa

*  Material unit weight: p = 2767.990 kg/m3

* L=9144m

* P=444.974kN
A concentrated force is applied at node 2 of the truss, whereas all degrees of
freedom of nodes 1 and 3 are constrained (hinged). A linear elastic static analysis
is performed to determine the displacements of the free node. The element
numbers are shown near the middle of each element, whereas the node numbers
are encircled.
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Figure 6-4: 2-bar truss.

The objective of the optimization procedure is to minimize the weight of the
truss, which entails that minimum quantity of material will be used for its
construction, meaning maximization of structural economy. Minimization of
weight is associated with minimization of volume, since density is constant and
the same for all members of the truss. Since the length of the various members of
the truss does not change during the optimization process, minimization of
weight means minimization of the members’ cross-sectional area. The design
variables are the cross section area of each member in the interval
[0.003650822800775, 0.0225806] (m2). The truss structure with the minimum
weight has to satisfy certain constraints which are imposed on stresses and
displacements. The maximum allowable displacement in the +x and +y directions
for each node is dmax = 0.0508 m, while the maximum allowable stress (absolute
value) is omax= 172.369 MPa in tension or compression. The lower limit of cross
section area is determined from the fact that the axial stresses cannot exceed the
aforementioned maximum allowable value. Considering horizontal and vertical
equilibrium of the truss, it is found that member 1 is loaded with compressive
axial force equal to P, whereas member 2 is loaded with extensional axial force

equal to \/EP. Therefore, the critical member is the latter, and the stress
inequality is written as:

2P 2P

6 < Oy 5 S Oy & Ay =~ =0.003650822800775m’ (6.5)

max mi
min max

It is apparent that by specifying the lower limit of the member cross section area
in this way, the constraints of maximum allowable stresses are automatically
satisfied and need not be considered explicitly in the optimization procedure.
Consequently, only constraints regarding displacements will be considered.

6.4.1.2 Implementation
The problem is solved by executing a main Matlab script in which various
variables are firstly defined and finally the built in function fmincon.m is used to

perform the optimization process. Apart from fmincon.m, other user defined
external functions are used as well. All scripts and functions are explained in the
following.
e Main script

The main Matlab script is shown in Listing 6-5. Initially, the variable tABAQUS is
declared as global, in order to be “seen” by the function TrussConfun.m, without
being among its input arguments. The syntax of the functions specified as input
arguments to fmincon.m has a standard format and specific input arguments.
Therefore, if a variable different from the default input arguments has to be
passed inside such a function, it has to be declared as global. NumElements is
equal to the number of elements of the truss. At line 5, NumElements is set to be
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2. After this, an initial guess xo is made for the cross-sectional areas of the 2 bars
of the truss. This is a vector of dimensions 2x1, containing these initial values.
Next, the upper and lower limits of the design variables (cross-sectional areas of
the bars of the truss) are specified. All design variables cannot be lower than
0.003650822800775 m2 and higher than 0.0225806 m2, as already mentioned in
the previous section. AreaMin and AreaMax are the minimum and maximum
cross-sectional area of the members respectively. Ib and ub are the vectorized
lower and upper limits respectively (size 2x1) only for purposes of suitability as
input arguments for the fmincon function. At lines 15 - 18 nondefault options are
specified for the fmincon function. Specifically, options.TolFun
(FunctionTolerance) is a lower bound on the change in the value of the objective
function (i.e. the weight of the truss) during a step and options.TolCon
(ConstraintTolerance) is an upper bound on the magnitude of the constraint
functions. options.Display is the level of display at the command window,
specified to display output at each iteration and give the technical exit message.
At lines 20 & 21 the timer and tABAQUS variable are initialized. At lines 23 and 24
the fmincon function is called with the following input arguments:

*  Objective function: TrussObjfun.m

+ Initial point: xo

+  Lower bounds: 1b

+  Upper bounds: ub

+  Constraint function: TrussConfun.m

* Options: options
The objective and constraint functions will be explained in the following sections.

e TrussObjfun.m
The script of this function is shown in Listing 6-6. The input argument of the
objective function is a vector of size 2x1, containing the current values of the
design variables. The output of the objective function is the weight of the truss.

e TrussConfun.m
The script of this function is shown in Listing 6-7. The input argument of the
constraint function is the same as that of the objective function. Initially the
variable tABAQUS is declared as global, in order to be increased by the time
ABAQUS takes to perform the static analysis of the truss. In lines 6 & 8 the
maximum absolute value of horizontal displacement and the maximum absolute
value of vertical displacement are set respectively. Next, the ABAQUS input file
TrussABAQUS.inp is created, which is run by ABAQUS to give the results. The
code of function TrussInpFileConstr.m is presented in Listing 6-8. After this, the
time elapsed till the start of ABAQUS analysis is reported in variable t1. In the
sequel, the input file TrussABAQUS.inp starts to be processed by ABAQUS at line
14. To halt Matlab execution at this point till ABAQUS analysis terminates, a
while loop is inserted at lines 19 - 21, which is executed under the condition that
the ABAQUS TrussABAQUS.Ick lock file exists in the working directory
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(indicating that ABAQUS is running). As soon as ABAQUS analysis finishes, this
file is automatically deleted by ABAQUS and the while condition becomes false,
so Matlab proceeds with the next commands in the script. To give ABAQUS
enough time to create the lock file, a pause of duration 10 sec is specified before
the while loop starts (line 17). After ABAQUS stops running, the time elapsed is
reported in variable t2 at line 23. The time difference t2-t1 is equal to the time
ABAQUS takes for the analysis and is added to tABAQUS at line 25. At line 27,
using the Filastr function which is part of the AbaquszMatlab toolbox, the
contents of the ABAQUS results file named TrussABAQUS.fil are converted to an
one-row string (Rec) from which the results will be retrieved. The function to
read nodal displacements from Rec is found to be Recio1.m, and is applied to
obtain the nodal displacements (line 29). After the extraction of the results from
the results file the TrussABAQUS. fil, TrussABAQUS.prt, TrussABAQUS.com and
TrussABAQUS.sim files are deleted at lines 32-35, because ABAQUS cannot
rewrite them in the next call of the constraint function, where a new analysis
takes place. Next, postprocessing of the aforementioned results takes place,
which concludes in the formation of the inequality and equality vectors required
as output of the constraint function in Matlab (c and ceq respectively in Listing

6-7).

Line | Code

1 % Declare ABAQUS time counter as global variable (used also in

2 % TrussConfun.m)

3 global tABAQUS

4 % Specify the number of elements of the truss.

5 NumElements=2;

6 % Make a starting guess for the solution.

7 x0 = [0.0037; 0.0049];

8 % Set the lower and upper limit of the cross section areas of the two
9 $ members of the truss.

10 AreaMin=0.003650822800775; % P*sqgrt(2)/maxstress

11 AreaMax=0.0225806;

12 lb=AreaMin*ones (1, NumElements) ;

13 ub=AreaMax*ones (1, NumElements) ;

14 % Set FunctionTolerance and StepTolerance

15 options=optimset ('fmincon');

16 options.Display="iter-detailed’;

17 options.TolFun=le-3;

18 options.TolCon=1le-3;

19 % Start timer

20 tic

21 tABAQUS=0;

22 % Perform constrained optimization of the truss

23 [X, fval,exitflag, output, lambdal]=fmincon (@TrussObjfun,x0, [1, ], [1,[]1,...
24 1b ,ub, '"TrussConfun',options)

25 % Report elapsed times (total, required by ABAQUS and required by Matlab
26 % respectively)

27 tTOTAL=toc

28 tABAQUS

29 tMATLAB=tTOTAL-tABAQUS

Listing 6-5: Matlab code of the main script for the solution of the 2-bar truss problem.
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Line | Code

1 function f = TrussObjfun (x)

2 % Horizontal length

3 u=9.144;

4 % total weight

5 f = 9.81*%2767.990471*x"*u*[1l;sqrt(2)];

6 end

Listing 6-6: Matlab code of the function TrussObjfun.m used for the optimization of

the 2-bar truss.

Line | Code

1 function [c,ceqg] = TrussConfun (x)

2 % Declare ABAQUS timer as global wvariable

3 global tABAQUS

4 % Set the displacement limits of the 2-bar truss

5 % maximum absolute value of horizontal displacement (m)

6 Dmaxhor=0.0508;

7 % maximum absolute value of vertical displacement (m)

8 Dmaxver=0.0508;

9 % Construct the ABAQUS input file TrussABAQUS.inp

10 TrussInpFileConstr (x)

11 % Report time before ABAQUS analysis starts

12 tl=toc;

13 % Run the input file TrussABAQUS.inp with ABAQUS

14 !ABAQUS job=TrussABAQUS

15 % Pause Matlab execution to give ABAQUS enough time to create the

16 % TrussABAQUS.lck file

17 pause (10)

18 % If the TrussABAQUS.Ick file exists then halt Matlab execution

19 while exist ('TrussABAQUS.lck', 'file')==

20 pause (0.1)

21 end

22 % Report time after ABAQUS analysis terminates

23 t2=toc;

24 % Add elapsed time to ABAQUS time counter

25 tABAQUS=tABAQUS+t2-tl;

26 % Assign all lines of the TrussABAQUS.fil file in an one-row string

27 Rec = Fil2str ('TrussABAQUS.fil'");

28 % Obtain the nodal displacements

29 out2 = Recl01 (Rec);

30 NodalDisplacements=out2(:,2:3);

31 $ Delete the files of last ABAQUS run to avoid rewriting them

32 delete ('TrussABAQUS.fil");

33 delete ('TrussABAQUS.prt');

34 delete ('TrussABAQUS.com") ;

35 delete ('TrussABAQUS.sim'") ;

36 % Calculate the maximum nodal displacements

37 maxNodDisplXl=max (abs (NodalDisplacements(:,1)));

38 maxNodDisplYl=max (abs (NodalDisplacements(:,2)));

39 % Assemble the constraints

40 ¢ = [maxNodDisplYl-Dmaxver;

41 maxNodDisplX1l-Dmaxhor];

42 ceq = [];

43 end
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Listing 6-7: Matlab code of the function TrussConfun.m used for the optimization of
the 2-bar truss.

e TrussInpFileConstr.m

In Listing 6-8 the code of TrussInpFileConstr.m function is shown. This function
opens an empty notepad file named “TrussABAQUS.inp” (lines 3 & 4), prints the
necessary input file options for the ABAQUS analysis (lines 6 - 48), and closes the
file (line 50). As seen in Listing 6-8 the majority of options remain unchanged
between ABAQUS analyses, except for lines 24 & 28, where the cross section area
of the two truss members is specified as a function of the design variable x. This
design variable is altered internally by fmincon function during the optimization
procedure.

Line | Code

1 function TrussInpFileConstr (x)

2 % Open input file

3 OutputFileName = 'TrussABAQUS.inp';

4 fileID = fopen (OutputFileName, 'wt');

5 % Write options

6 fprintf (fileID, ' *Heading\n'");

7 fprintf (fileID,' *Preprint, echo=NO, model=NO, history=NO, contact=NO\n'");

8 fprintf (fileID, ' *Part, name=Part-1\n'");

9 fprintf (fileID, ' *End Part\n');

10 fprintf (filelID, ' *Assembly, name=Assembly\n');

11 fprintf (filelID, ' *Instance, name=Part-1-1, part=Part-1\n'");

12 fprintf (fileID, ' *Node\n');

13 fprintf (fileID, ' 1, 0, O0\n'");

14 fprintf (£filelID, ' 2, 9.144, 0\n'");

15 fprintf (£filelID, ' 3, 0, 9.144\n");

16 fprintf (fileID, ' *Element, type=FRAME2D\n');

17 fprintf (fileID,' 1, 1, 2\n'");

18 fprintf (fileID,' 2, 2, 3\n'");

19 fprintf (fileID, ' *Elset, elset= PickedSet2 #1, internall\n');

20 fprintf (fileID, " 1,\n'");

21 fprintf (fileID, ' *Elset, elset= PickedSet2 #2, internal\n');

22 fprintf (fileID, "' 2,\n');

23 fprintf (filelID, ' *FRAME Section, elset= PickedSet2 #1, PINNED\n');

o4 fprintf (£ileID, ' $s\n', [num2str (x(1),20), ", 6.6597028096E-10, 0,
3.7460828304E-10"1) ;

25 fprintf (fileID,' 0.,0.,-1.\n");

26 fprintf (fileID, ' 68947572932, 1e3\n');

27 fprintf (fileID, ' *FRAME Section, elset= PickedSet2 #2, PINNED\n');

28 fprintf (£filelID, ' %s\n', [num2str(x(2),20),", 6.6597028096E-10, 0,
3.7460828304E-10"']) ;

29 fprintf (fileID, "' 0.,0.,-1.\n");

30 fprintf (filelID, ' 68947572932, 1le3\n');

31 fprintf (fileID, ' *End Instance\n');

32 fprintf (£filelID, ' *Nset, nset=_ PickedSet2l, internal, instance=Part-1-
I\n');

33 fprintf (fileID, "' 2\n');
fprintf (filelID, ' *Nset, nset= PickedSet22, internal, instance=Part-1-

34 I\n'");

35 fprintf (fileID, ' 1, 3\n'");

36 fprintf (fileID, ' *End Assembly\n');




37
38
39
40
4
42
43
44
45
46
47
48
49
50
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fprintf (filelD,
fprintf (filelD,
fprintf (filelD,
fprintf (filelD,
fprintf (filelD,
fprintf (filelD,

( *Step, name=Step-1\n'");
(
(
(
(
(
fprintf (£filelD,
(
(
(
(
(

*Static\n');

1., 1., 1le-05, 1.\n'");

*FILE FORMAT, ASCII\n');
*Boundary\n') ;

_PickedSet22, 1, I\n');
_PickedSet22, 2, 2\n');

*Cload\n') ;

_PickedSet21, 2, -444974.11497\n");

fprintf (filelD,
fprintf (filelD,
fprintf (fileID, ' *NODE FILE\n');
fprintf (filelID, RF, U\n'");

fprintf (fileID, ' *End Step\n');

% Close input file
fclose (filelID) ;

Listing 6-8: Matlab code of the function TrussinpFileConstr.m used for the
optimization of the 2-bar truss.

6.4.1.3 Result

After the optimization analysis terminates, the results which appear in the
Matlab command window are shown in Listing 6-9. From this, it is concluded
that the local minimum has been reached, while satisfying the constraints. The
design  variables at the local minimum are [0.003651106365609,
0.004819002266391] m2 and the minimum truss weight is equal to
2.598717321129937 kN. The output structure contains information about the
optimization process, e.g. the iterations taken and the number of objective
function evaluations (6 and 21 respectively). Concerning running times which
appear in the command window, it is evident that the majority of the running
time is consumed by ABAQUS (99.79%) whereas Matlab (including the
Abaqus2Matlab toolbox) takes the rest (0.21%).

Command Window

First-order Norm of
Iter F-count f(x) Feasibility optimality step
0 3 2.639299%e+03 0.000e+00 1.731e+03
1 6 2.222749e+03 9.909e-03 1.348e+02 1.155e-03
2 9 2.221682e+03 9.944e-03 5.491e+01 2.938e-06
3 12 2.233984e+03 9.533e-03 1.664e+03 3.466e-05
4 15 2.519902e+03 1.695e-03 1.008e+05 8.157e-04
5 18 2.595075e+03 7.575e-05 8.515e+03 2.146e-04
6 21 2.598717e+03 1.718e-07 1.473e+02 1.135e-05
Optimization completed: The relative first-order optimality measure,
4.195356e-04,
is 1less than options.TolFun = 1.000000e-03, and the relative maximum
constraint

violation, 1.717630e-07, is less than options.TolCon = 1.000000e-03.

Optimization Metric Options
relative first-order optimality = 4.20e-04 TolFun = le-03
(selected)

relative max (constraint wviolation) = 1.72e-07 TolCon = le-03
(selected)
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0.003651106365609
0.004819002266391

fval =

2.598717321129937e+03

exitflag =

1

output =

iterations: 6
funcCount: 21
constrviolation: 1.717630013498006e-07
stepsize: 1.134970839769077e-05
algorithm: 'interior-point'
firstorderopt: 1.473172563314147e+02
cgiterations: 0

message: 'Local minimum found that satisfies the constrai...'
lambda =
eglin: [0x1 double]
egnonlin: [0x1 double]
ineglin: [0x1 double]
lower: [2x1 double]
upper: [2x]1 double]
inegnonlin: [2x1 double]
tTOTAL =

5.431887016466463e+02

tABAQUS =

5.420298590808136e+02

tMATLAB =

1.158842565832742

Listing 6-9: Results shown in the Matlab command window after termination of the
optimization process of the 2-bar truss.
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6.4.2 10-bar truss

6.4.2.1 Description
Consider a 10 bar plane truss shown in Figure 6-5 with the following structural
characteristics:

e Modulus of Elasticity E = 10,000 ksi

e material weight rho = 0.11b/in3

e length L =360 in

e load P =100 kip

The structural members are divided into 10 groups. The design variables are the
cross section areas of each member group in the interval [0.1, 35] (in?). The
constraints are imposed on stresses and displacements. The maximum allowable
displacement in the +x and +y directions for each node is d_max= 2 in, while the
maximum allowable stress (absolute value) is sigma_allow= 25 ksi in tension or
compression and the objective is to minimize the weight of the structure under
the specified constraints.

The implementation for the solution of the 10-bar truss optimization problem
using Abaqus2Matlab is much the same as that used for the solution of the 2-bar
truss optimization problem, and for this reason the relevant details are not
presented.

]
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Figure 6-5: Geometry and applied load for 10-bar truss.

6.4.2.2 Results & comparison with literature

Table 6-6 presents the best optimum results found by the proposed optimization
procedure and the corresponding number of function evaluations. The results of
the present thesis are compared with corresponding results of some previous
studies found in the literature. It is observed that the optimum weight and design
variables obtained in this thesis are very close to those obtained from previous
studies. However, it is clear that the proposed optimization procedure requires
much lower structural analyses than other methods to reach the optimum
designs.

Variables Optimal cross section area (in?)

Design M. Wu & Li et al. Degertekin Degertekin Kaveh et Present

name Sonmez  Tseng (2007) &Hayalioglu (2012) al. (2014)  thesis
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(2011) (2010) (2013)
A1 30.548 30.378 30.704 30.429 30.394 30.208 30.5218
A2 0.1 0.1 0.1 0.1 0.1 0.1 0.1
A3 23.18 23.468 23.167 23.244 23.098 22.698 23.1999
Ag 15.218 15.196 15.183 15.368 15.491 15.275 15.2229
As 0.1 0.1 0.1 0.1 0.1 0.1 0.1
A6 0.551 0.533 0.551 0.575 0.529 0.529 0.5514
A7 7.4603 7-437 7.46 7-440 7488 7.558 7-4572
A8 21.058 21.084 20.978 20.967 21.189 21.559 21.0364
Ag 21.501 21.433 21.508 21.533 21.342 21.491 21.5284
Alo 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Weight (Ib)  5060.88  5060.45 5060.92 5060.96 5061.42 5062.39 5060.9
Number of
function 500,000 32,100 125,000 16,872 7,081 9,791 347

evaluations

Table 6-6: Optimization results of the 10-bar truss.

6.4.3 25-bar truss

6.4.3.1 Description

The description of the benchmark 25-bar space truss optimization problem is as
follows. Consider a 25 bar space truss shown in Figure 6-6 with the following
structural characteristics:

Modulus of Elasticity E =10,000 ksi

Material density rho = 0.1 1b/in3

The structural members are divided into 8 groups. The design variables are the
cross section areas of each member group in the range [o0.01, 5] (in2?). The
constraints are imposed on stresses and displacements. The maximum allowable
displacement in the +x, +y and +z directions for each node is d_max= 0.35 in. Two
load cases have been considered. The maximum and minimum allowable stress is
shown in Table 6-7. The objective is to minimize the weight of the structure
under the specified constraints for both load cases simultaneously. The members
were grouped as follows: (1) element 1; (2) elements 2, 3, 4 and 5; (3) elements 6,
7, 8 and 9; (4) elements 10 and 11; (5) elements 12 and 13; (6)elements 14, 15, 16, 17
and 18; (7) elements 18, 19, 20 and 21; (8) elements 22, 23, 24 and 25.

6.4.3.2 Results & comparison with literature

Table 6-8 presents the optimum results of the proposed optimization procedure
and compares these results with those previously reported in the literature. The
difference among all the results is very small, hence all optimization algorithms
indicated in Table 6-8 found almost the same optimum structural weight. It is
apparent that the optimization procedure proposed in this thesis can reach
optimum results much faster than the other algorithms.
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DESIGN ALLOWABLE | ALLOWABLE
VARIABLE MEMBER | TENSION COMPRESSION
STRESS (ksi) | STRESS (ksi)
! ! 40 -35.092
2 2,3,4,5 40 -11.59
3 6:7’8’9 40 -17.305
4 10,11 40 -35.092
> 12,13 40 -35.092
: 417 40 6.759
7 18-21 40 -6759
8 22725 40 -11.082

Table 6-7: Member families of the 25-bar truss optimization problem and
corresponding stress limits.

~~.__200in.
¥

lin=2.54cm

Figure 6-6: Geometry and applied load for 25-bar truss.

Variables Optimal cross section area (in?)
No Design M. Li et al. Degertekin Degertekin Kaveh et Present

variables Sonmez (2007) & (2012) al. (2014) thesis

(20m1) Hayalioglu
(2013)

1 A1 0.011 0.01 0.01 0.01 0.01 0.01
2 A2-As 1.979 1.970 2.071 2.074 1.9907 1.9856
3 A6-Ag 3.003 3.016 2.957 2.961 2.9881 2.9969
4 Al0-An 0.01 0.01 0.01 0.01 0.01 0.01
5 A12-A13 0.01 0.01 0.01 0.01 0.01 0.01
6 A1g4-A1y 0.69 0.694 0.6891 0.691 0.6824 0.679
7 A18-A21 1.679 1.681 1.6209 1.617 1.6764 1.6769
8 A22-A2s 2.652 2.643 2.6768 2.674 2.6656 2.6676
Weight (Ib) 545.193 545.19 545.09 545.12 545.164 545.166
Number of function 300,000 125,000 15,318 9,051 13,326 851
evaluations

Table 6-8: Optimization results of the 25-bar truss.
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6.5 Optimum design of cantilever walls retaining linear elastic backfill by
use of genetic algorithm

6.5.1 Introduction

Cantilever retaining walls are among the simplest and most common
geotechnical structures intended to support earth backfills. Their main
representatives are retaining walls supporting deep excavations, bridge
abutments, harbor-quay walls, anchored retaining walls, etc. Their design must
satisfy two major requirements: internal and external stability. The former
ensures the structural integrity of the various parts of the retaining wall; the
latter ensures that the wall - soil system formed after construction will remain in
equilibrium, except for some displacements of affordable magnitude.

Retaining walls have to satisfy constraints imposed by the norms, assumptions,
preferences and the target to be accomplished, and simultaneously have to be as
economical as possible. The design is based on a trial-and-error procedure, which
renders the experience of the designer an important factor to reach a cost-
effective design. This manual research for the optimum design may be very time-
consuming and tedious, while it is not ensured that the final result will be the
optimum possible. This necessitates the need for application of various
optimization procedures in order to achieve the optimum design.

Relevant optimization methods range from relatively simple mathematical
programming based (exact) methods to novel heuristic search techniques. The
methods belonging to the first category are very efficient for cases with a few
design variables. A design aid is compiled by Rhomberg & Street (1981) from
results of an exhaustive search, with which simple rules of thumb were developed
to provide for minimum cost design of cantilever retaining walls. Optimization of
reinforced concrete cantilever retaining walls was performed by Saribas & Erbatur
(1996) and the optimum design problem is posed as a constrained non-linear
programming problem with seven design variables. Cost and weight of the walls
were used as objective functions and overturning failure, sliding failure, no
tension condition in the foundation base, shear and moment capacities of toe
slab, heel slab, and stem of wall as constraints. The problem of optimal cost
design of cantilever retaining walls is formulated by Basudhar et al. (2006) as a
non-linear programming problem and a sequential unconstrained minimization
technique is adopted. Sivakumar Babu & Munwar Basha (2008) presented
optimum reliability-based design of cantilever retaining walls by considering the
parameter uncertainties and evaluating the safety in terms of reliability index and
not merely by calculating the safety factor.

However, exact methods require large computational effort when the number
of design variables increases, and apart from this, they require gradient
information and seek to improve the solution in the neighborhood of a starting
point. So, in order to attain an optimum design, one has to resort to more robust
optimization techniques, which are capable of searching effectively the whole
design variable domain and not being trapped into local optima. Recently
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developed heuristic methods, such as genetic algorithms, simulated annealing,
threshold accepting, tabu search, ant colonies, particle swarm, etc. provide more
attractive alternatives. Although these methods use simple algorithms, they
require great computational effort. Representative studies of optimum design of
retaining walls by use of heuristic methods are presented in the following. An
application of a simulated annealing algorithm is reported by Ceranic et al. (2001)
to minimum cost design of reinforced concrete cantilever retaining walls that are
required to resist a combination of earth and hydrostatic loading by using only
geometric design variables, whereas Yepes et al. (2008) used simulated annealing
for optimum design of RC cantilever retaining walls utilized in road construction
by using more design variables, effectively leading to more detailed simulations.
Khajehzadeh et al. (2010, 2011) proposed a modified particle swarm optimization
(MPSO) based on PSO with passive congregation to find the optimum cost
design of a cantilever RC retaining wall. Ghazavi & Bazzazian Bonab (20m)
applied an Ant Colony Optimization (ACO) algorithm to arrive at optimal design
of a RC retaining wall (designed as a gravity wall, i.e. structural integrity is not
taken into account while imposing the constraints). Ghazavi & Salavati (20m)
presented a bacterial foraging optimization algorithm whereas harmony search
based algorithms were proposed by Kaveh & Abadi (2010). Donkada & Menon
(2012) applied a genetic algorithm to reach minimum cost design of three types of
retaining walls: cantilever retaining wall, counterfort retaining wall and retaining
wall with relieving platforms. Pei & Xia (2012) applied a random direction search
complex method and three heuristic algorithms (genetic algorithm, particle
swarm optimization and simulated annealing) are used to obtain the minimum
cost design of a reinforced concrete cantilever retaining wall. Finally, Talatahari
et al. (2012) performed optimum design of gravity retaining walls subject to
dynamic loading using a charged system search algorithm, while the Mononobe-
Okabe method was used to determine the dynamic earth pressures.

Common feature of all the aforementioned studies is the fact that for the
design of the retaining wall, dynamic earth pressures are ignored (except for the
study by Talatahari et al. (2012) in which they are taken into account in a
simplistic way through a pseudostatic approach). In addition, the static earth
pressures (resulting from gravity and/or surcharge load) are calculated according
to Rankine or Coulomb earth pressure theories which assume that a state of
plastic equilibrium is developed in the retained backfill. Moreover, to the authors’
knowledge, no suitable constraint has been imposed to any retaining wall
optimum design case to ensure that the deformations of the retaining wall and
the backfill are within acceptable limits. In most studies, this is ensured implicitly
by avoiding the possibility of overturning and sliding, by controlling the stresses
within allowable limits and by securing the stability of the retaining wall -
retained soil system.

Apart from these, the seismic response of retaining systems is still a matter of
ongoing experimental, analytical and numerical research. The dynamic
interaction between a wall and a retained soil layer makes the response
complicated. The dynamic analysis becomes much more complex, as usually
material and/or geometry non-linearities have to be taken into account (Kramer,
1996, Wu & Finn, 1999). Depending on the expected material behavior of the
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retained soil and the possible mode of the wall displacement, there exist two
main categories of analytical methods used in the design of retaining walls
against earthquakes: (a) the pseudo-static limiting-equilibrium solutions which
assume yielding walls resulting in plastic behavior of the retained soil (Okabe,
1926, Mononobe & Matsuo, 1929, Seed & Whitman, 1970), and (b) the elasticity-
based solutions that regard the retained soil as a visco-elastic continuum
(Veletsos & Younan, 1997, Scott, 1973, Wood, 1975). In most studies presented so
far, in order to perform optimum design of retaining walls, the assumption of
pseudo-static limiting equilibrium is made; there-fore the design is performed in
a simplistic way, ignoring the possibility of a linear elastic or viscoelastic soil
backfill.

This section is concerned with the optimum design of cantilever retaining walls
which are subject to earthquake loading and are responding in a linear elastic
way. The objective function which is optimized is the weight of the retaining
wall. This is roughly proportional to its construction cost, as the latter is generally
an increasing function of the weight of the material used. This function is
minimized subject to design constraints. Apart from the usual constraints
imposed in most optimization studies, in this section a direct design constraint is
imposed which controls the rocking response of the retaining wall. The
optimization analysis is conducted via the use of a genetic algorithm, since Pei &
Xia (2012) have shown that GA can be successfully applied for the optimal
solution of structural optimization problems with many design variables and
complex constraints. Two numerical examples are presented, in which optimum
designs are performed for two values of the height of the soil layer to be retained.

6.5.2 Numerical modeling

In this section the numerical model used to simulate the dynamic response of a
cantilever retaining wall is described. This model consists of an infinite soil layer
with horizontal base and free surface which is at higher elevation towards +oo
than -co. These two elevations result in the existence of a vertical slope of height
H which is retained by a cantilever wall. The wall’s foundation is at a depth equal

to h,,, , relative to the downstream soil surface. Consequently, the overall height

of the retaining wall stem is H +h,, . The retaining wall is considered to rest on a

strip foundation which consists of the toe, which is the portion of the foundation
extending downstream from the wall, and of the heel, extending in the opposite
direction (upstream). The depth of the rigid bedrock from the foundation of the
wall is 1.5H, where H is the thickness of the horizontal layer to be retained, as
seen schematically in Figure 6-7. The distance from the wall toe tip to the far field
(downstream) vertical boundary of the model is 10H ; the same happens with the
distance from the wall heel tip to the far field boundary of the model in the
upstream direction. Shown in Figure 6-7 is also the local coordinate system to
which all calculations are referred. Text in bold denotes the design variables
whereas the others either denote the variables which are dependent on the
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design variables or are problem parameters which remain fixed during optimum
design.
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Figure 6-7: Cantilever reinforced concrete retaining wall model.

The soil layer is fixed on rigid bedrock and along the soil - rock interface
horizontal and vertical fixity is imposed. In order to simulate sufficiently the one
dimensional dynamic soil response, vertical kinematic constraints were used at
the two vertical ends of the model. These constraints are different from the
corresponding kinematic constraints imposed for gravity loading at the same
boundaries, which were in the horizontal direction to simulate one dimensional
compression. The two vertical boundaries of the model were placed relatively far
from the wall to minimize the influence of the difference between the model
response in these regions and one dimensional soil response. The whole model is
considered to respond in plane strain condition, an assumption fairly accurate for
cantilever retaining walls with length much higher than their width, height and
thickness. The wall - soil and the foundation - soil interfaces are considered to be
tied, an assumption generally valid for cohesive soils. This means there is no
separation or relative slip along these interfaces. Initially, gravity acceleration
(body force) is applied to the whole model and in a second step of the analysis,
the transverse ground acceleration record recorded during the December 11, 1967
Koyna earthquake, which was of magnitude 6.5 on the Richter scale, is imposed
along the base of the soil layer. The time history graph of this record is shown in
Figure 6-8.
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Figure 6-8: Transverse acceleration time history record of the December 11, 1967
Koyna earthquake, of magnitude 6.5 on the Richter scale.
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Figure 6-9: Numerical model analyzed for the 1° case (H=8m). Loading and boundary
conditions for the initial gravity step are shown.
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Figure 6-10: Numerical model analyzed for the 1% case (H=8m). Loading and boundary
conditions for the main dynamic time — history analysis step are shown.

In this section, in order to minimize the weight of the retaining wall, two-
dimensional numerical simulations were performed for the wall-soil systems
depicted in Figure 6-9 and Figure 6-10, utilizing the finite element software
ABAQUS. The soil layer is discretized with 8-node bi-quadratic plane strain solid
elements (CPE8). 3-node quadratic interpolation beam elements in plane (B22)
are used for modeling the retaining wall and its foundation. These elements allow
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for transverse shear deformation according to Timoshenko theory and in their
shear flexible formulation it is assumed that the transverse shear behavior is
linear elastic with a fixed shear modulus and, thus, independent of the response
of the beam section to axial stretch and bending. For Timoshenko beam elements
a lumped mass formulation with a 1/6, 2/3, 1/6 distribution is used. The mesh gets
coarser for the part of the soil layer which is left and right of the wall (the
horizontal dimension of the elements is double). This is apparent in Figure 6-9
and Figure 6-10.

The eigenmodes used for the modal dynamic analysis are extracted in a previous
frequency step, in which the Lanczos eigensolver is used, which is a powerful tool
for extraction of the extreme eigenvalues and the corresponding eigenvectors of a
sparse symmetric generalized eigenproblem. For the Lanczos eigensolver, the
minimum and maximum frequencies of interest are specified and all eigenmodes
with eigenfrequencies falling in this range are extracted. These modes are
subsequently used for the calculation of the dynamic response during the modal
dynamic analysis. Energy dissipation due to damping mechanisms is not modeled
explicitly as a material property (e.g. through the simplistic Rayleigh damping
approximation), but it is specified as a fraction of critical damping assigned at all
eigenmodes included for the calculation of the dynamic response, equal to 5%.
Thus the damping fraction remains constant along the frequency range of
interest and energy dissipation is of the same intensity for lower and higher
frequencies.

6.5.3 Formulation of the optimization problem

In this section the optimization problem to be solved is explained in detail. The
design variables, the parameters, the constraints, the objective function and the
optimum design process are presented.

6.5.3.1 Design variables
The design variables of the problem are shown in bold in Figure 6-7. These are the
depth of the wall embedment denoted by h,_ , the width of the toe denoted by

emb ?
d,., the width of the heel denoted by d
denoted by t,,
are selected to be the same and equal to the minimum between the wall stem

thickness t,,, and one tenth of the corresponding widths (d,, /10 and d,., /10),

toe heel

et and the thickness of the wall stem

. The thickness of the wall toe and heel (t,, and t,_, respectively)

hee

so that beam modeling for these components is reasonable.

Design Lower | Upper limit
variable | limit (m) (m)
hemb 0.2 16
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dioe 2 12
dheel 2 12
twall 0.2 2.5
Table 6-9: Design variables of the optimization problem and their lower and upper
bounds.

In the aforementioned design variables upper and lower limits are set, in order to
prevent the algorithm from giving technically infeasible solutions. Table 6-9 shows the
design variables and their corresponding upper and lower limits.

6.5.3.2 Parameters

The parameters of the wall-soil layer system are all the quantities that remain
fixed during a particular optimization search. The parameters of the problem are
summarized in Table 6-10. These are the physical properties of the soil and the
wall. All materials involved in the model are linear elastic, leading thus to a linear
dynamic response. The soil has density ys=1800 kg/m3, modulus of elasticity
Es=100 MPa and Poisson’s ratio vs=0.3. The retaining wall is modeled as a
reinforced concrete beam with a general section, density yw=2500 kg/m3, and
modulus of elasticity Ew=30.5 GPa which corresponds to C25/30. Although the
retaining wall has the inertial and stiffness characteristics of concrete, it deforms
in a linear elastic way, which implies that its stiffness in tension and compression
is equal. Another parameter of the problem is the frequency range used for the
modal dynamic analysis; this is selected to be in the range [0.01 Hz, 29 Hz]. The
lower limit is selected so that the very low frequency spurious eigenmodes are
excluded from the analysis; these are associated with very large modal mass. The
higher limit is selected based upon the fact that the lowest wavelength of the
waves propagating into the soil (lowest velocity of propagation and highest
frequency) has to be at least ten times the internodal interval of the mesh; this is
approximately the distance between adjacent nodes, and it increases as the mesh
gets coarser.

Parameter | Assigned value
Ys 1800 kg/m3
Es 100 MPa
Vs 0.3
Yw 2500 kg/m3
Ey 30.5 GPa
fomin 0.01 Hz
fmax 29 Hz

Table 6-10: Parameters of the optimization problem and their fixed values.

6.5.3.3 Constraints

The constraints of the optimization problem at hand are divided into
structural constraints and geotechnical constraints. The satisfaction of the former
ensures that the retaining wall does not fail as regards its structural integrity,
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whereas the latter ensures that the soil retained by and supporting the wall does
not fail. The constraints are shown in Table 6-11, which includes the formulas for
the calculation of the limiting quantities and the constraint inequalities imposed
for the optimization problem. As far as the structural constraints are concerned,
the maximum tensile (and the minimum compressive) stress which develop due
to axial force and bending moment at the wall stem, toe and heel must not be
higher than (respectively lower than) the material strength. For concrete C25/30
this is 25 MPa by definition, without taking into account the partial safety factor
for concrete strength (EC2, 2004). The material model used for the wall in this
section is linear elastic and this leads to the essential assumption that the
distribution of strains and stresses along the section of the wall and its
foundation is linear which results in the presence of “theoretical” tensile stresses
which are not present in practice. In practice, there are no tensile concrete
stresses and the necessary tensile forces for the equilibrium of the section are
provided by the steel reinforcement. In any case, the tensile stress constraint is
not active in the final optimum design, as will be described in detail later. Shear
stiffness is ignored since shear strength of reinforced concrete cannot be
calculated in a theoretically sound basis; the procedure of calculation and the
final result is very norm specific in general. Except for this, it depends highly on
the reinforcement and its distribution into the beam. Concerning the
geotechnical constraints, the following are specified:

a) It is ensured that the normalized displacement at the top of the wall stem
0 does not exceed 0.33%. The normalized displacement is given by the ratio of the
horizontal displacement at the top of the wall due to tilting or horizontal
translation, divided by the height of its stem including embedded part (H +h,, ).

The above inequality is specified to prevent the development of a limit state or
the initiation of a failure plane in the retained soil (Clough & Duncan, 1991). In
the opposite case the assumption of a linear elastic soil would not be accurate. It
is assumed that, as far as its strength is concerned, the supporting and retained
soil behaves like compacted clay. According to Clough & Duncan (1991), the
values of normalized displacement required to reach active and passive earth
pressure conditions are 1% and 5% respectively. By ensuring that the normalized
displacement is lower than 0.33% (conventionally taken as one third of the
normalized displacement required for active conditions) neither active nor
passive states will develop in the soil.

Quantity Formula Constraint
Normalized
displacement of wall O=max[abs{Displiop/(H+hem)}] 0<0.33%
stem
zilj;;ﬁed shear cu=FEy/850=3-Es/{2-(1+vs)}/850=136 kPa rrrrlllanx((rr));-cct
Soil bearing capacity qu=5.14Cu+Ys Remb -min(oyy)<qu
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Foundation uplift max(oyy)<o
Max bending stress* omax=max(N/t + 6M/t?) Omax<25 MPa
Min bending stress* omin=min(N/t - 6M/t?) Omin=-25 MPa

* For the wall stem, toe and heel. t denotes tstem, tioe and theel.
Table 6-11: Constraints of the optimization problem.

b) Regarding its strength, the soil is assumed to behave as a cohesive soil in
undrained conditions. So, its shear strength in terms of total stresses is equal to
its undrained shear strength cu, i.e. the ¢=0 approach is followed. Thus, it is
specified that the maximum and minimum shear stress along the wall foundation
must not exceed the undrained shear strength of the underlying soil, equal to 136
kPa. This value is calculated as follows: the undrained modulus of elasticity E. of
the soil is calculated according to Table 6-11 to be E.=115.38 MPa. The fraction
Eu/cu according to data available in the literature (Jamiolkowki et al., 1979 and
Jardine et al., 1985) is selected to be roughly 850.

) The bearing capacity of the soil underlying the foundation must not be
surpassed. For this purpose, the bearing capacity under undrained loading (c = ¢y,
¢ = o) is calculated according to the Meyerhof formula for vertical and central

loading of horizontal strip foundation at a depth equal to h,,. The maximum

vertical normal stress at the lower interface of the wall foundation must not get
larger than this value.

d) Along the interface where the aforementioned constraint (c) is imposed,
there must also be no tension, otherwise there would be foundation uplift which
would render the dynamic response of the retaining wall geometrically non-
linear.

The approach followed to impose the constraints is the penalty method. Penalty
methods add a penalty to the objective function to decrease the quality of
infeasible solutions. The penalty quantities that are added are virtually the
product of the constraint violation and a penalty factor which is fixed for each
constraint and adjusted to take into account the relative importance of the
constraint violations.

6.5.3.4 Objective function
The objective function to be minimized is the volume of the retaining wall per
meter in the longitudinal direction. This is proportional to its weight and

indirectly related to its cost of construction. The fitness function which is
minimized by the genetic algorithm used in this section results from the
objective function after the application of the penalties due to constraint
violations, if any.
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6.5.4 Optimization algorithm

The Genetic Algorithm (GA) is a stochastic global search optimization method
that emulates natural biological evolution. GAs apply on a population of potential
solutions the principle of survival of the fittest to produce better approximations
to a solution. At each generation, a new set of approximations is created by the
process of selecting individuals according to their level of fitness in the problem
domain and breeding them together using operators borrowed from natural
genetics (crossover, mutation, etc.). This process leads to the evolution of
individuals that are better suited to their environment than the individuals that
they were created from, just as in natural evolution process. In order to minimize
the objective function, the genetic algorithm implemented in MATLAB software
was used.

The encoding strategy followed is real-valued representation. The use of real-
valued genes in GAs offers a number of advantages in numerical function
optimization over binary encodings: (a) efficiency of the GA is increased as there
is no need to convert chromosomes to phenotypes before each function
evaluation, (b) less memory is required as efficient floating point internal
computer representations can be used directly, (c) there is no loss in precision by
discretization to binary or other values and (d) there is greater freedom to use
different genetic operators.

The population size (number of individuals in each generation) is equal to 20.
The initial population with which the GA begins is created as a random initial
population with uniform distribution. Fitness scaling was implemented by using
a rank function, which scales the raw scores based on the rank of each individual
instead of its score. The rank of an individual is its position in the sorted scores.

An individual with rank r has scaled score proportional to Jr. Rank fitness
scaling removes the effect of the spread of the raw scores. The square root makes
poorly ranked individuals more nearly equal in score, compared to rank scoring.

Regarding the basic genetic operators, stochastic uniform selection is used for
the selection process. In this function each parent corresponds to a section of the
line of length proportional to its scaled value. The algorithm moves along the line
in steps of equal size. At each step, the algorithm allocates a parent from the
section it lands on. The first step is a uniform random number less than the step
size. For reproduction, the number of individuals that are guaranteed to survive
to the next generation (elite children) is 2 and the fraction of the next generation,
other than elite children, that is produced by crossover (crossover fraction) is
equal to 0.8. The mutation function used is Gaussian, which adds a random
number taken from a Gaussian distribution with mean o to each entry of the
parent vector. For the combination of parents to produce the next generation
offspring (crossover), scattered crossover is used, which applies in problems
without linear constraints. It creates a random binary vector and selects the
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genes where the vector entry is 1 from the first parent, and the genes where the
vector entry is o from the second parent, and combines the genes to form the
child. In the GA no migration occurs, as there are no subpopulations.

As stopping criteria for the algorithm the following were specified: (a) the
maximum number of iterations for the genetic algorithm to perform is equal to
100, (b) the algorithm stops if the weighted average relative change in the best
fitness function value over 50 generations is less than or equal to the function
tolerance (equal to 107©).

The following outline summarizes how the GA procedure works:
a) The algorithm begins by creating a random initial population.

b) The algorithm then creates a sequence of new populations. At each step, the
algorithm uses the individuals in the current generation to create the next
population. To create the new population, the algorithm performs the following
steps:

1. Scores each member of the current population by computing its fitness
value.

2. Scales the raw fitness scores to convert them into a more usable range of
values.

3. Selects members, called parents, based on their fitness.

4. Some of the individuals in the current population that have better fitness
are chosen as elite. These elite individuals are passed to the next population.

5. Produces offspring from the parents. Offspring are produced either by
making random changes to a single parent (mutation) or by combining the vector
entries of a pair of parents (crossover).

6. Replaces the current population with the offspring to form the next
generation.

c) The algorithm stops when one of the stopping criteria is met.

The GA optimizer of Matlab is properly coupled with the Abaqus analysis solver
in order to take the modal dynamic analysis results, using Abaqus2Matlab
(Papazafeiropoulos et al., 2017). This is done inside the objective function in
which the analysis solver is called to perform the necessary analyses. Except for
this, suitable functions are called to create the necessary input (*.inp) files to
conduct the analyses and read the results of the analyses from the corresponding
results (*.fil) files. While the analysis solver is running the optimizer is halted and
its execution is continued after the ABAQUS lock (*.1ck) file has been deleted.
Constraint enforcement is applied through an advanced penalty method and not
by the default constraint handlers developed in MATLAB.
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6.5.5 Conventional seismic design of cantilever retaining walls

Conventional seismic design of cantilever reinforced concrete retaining walls is
achieved with use of the well-known Mononobe-Okabe (M-O) theory of seismic
earth pressures (Okabe, 1926 and Mononobe & Matsuo, 1929). Design is
performed regarding the wall stability (sliding and overturning about the tip of
its toe), and the design variables are the wall embedment ( h, . ), the width of the

emb
wall toe (d,) and the width of the wall heel (d,,,). The thickness of the wall
stem and foundation (toe and heel) are selected based on general guidelines for
initial wall dimension proportioning, i.e. they are set equal to 1/10 of the total wall
height (H+h,,). According to the dimension proportioning practice, the

inequality 0.3(H +hemb) < Oy < 05(H -I-hemb)must hold for the width of the

wall heel. The minimum values of the wall embedment, toe width and heel width
are set equal to 0.2 m, 2 m and 2 m respectively. The conventional seismic design
method implemented in this section involves also some kind of optimization

heel

procedure which leads to the minimum total weight of the wall by strict abidance
by all of the constraints mentioned above.

A necessary step during the design process is the evaluation of the soil internal
friction angle ¢ and the soil - wall interface friction angle &. These are set to the
following typical values: ¢ =30°, 5 =18°. The horizontal acceleration coefficient
is taken as k, =0.48 (resulting from the maximum acceleration of the earthquake

record which is 0.48g). These properties are assigned to the soil lying over the
wall foundation. For the soil under the wall foundation undrained response is
assumed, namely its internal friction angle is taken equal to zero and its
undrained shear strength c, is specified in section 6.5.3. The inertial forces and
moments of the wall are also taken into account for the design whereas,
regarding overturning checks, only the upstream and downstream soil portions
lying over the wall foundation are considered to contribute to the wall stability.

6.5.6 Optimization results

Two retaining wall weight optimization cases were examined: in the first case
(Case 1) the height of the soil layer to be retained by the wall is equal to 8 m and
in the second case (Case 2) the height is 12 m. The results of the GA optimization
procedure as analyzed in the previous sections are shown in Table 6-12. It is
observed in general that the embedment and foundation dimensions required to
retain the soil layer with greater height (Case 2) are larger than those in Case 1.
The optimum value of the objective function increases as well. In both cases, the
length of the wall heel (d,,,) which leads to optimum design is the minimum

possible, i.e. equal to its lower bound. This means that for the parameter values
and earthquake record considered in this section the heel does not contribute

heel

significantly to the retaining wall stability and/or structural integrity. The
thickness of the heel is constrained by the requirement that it is not more than
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one tenth of its length (to justify its modeling as a beam), whereas the
thicknesses of the other components (stem and toe) are equal.

Table 6-13 shows the results of the conventional seismic design according to the
M-O method. It is observed that the conventional design which is adopted in
most seismic norms worldwide leads to larger weight of the retaining wall.
Although the two methods stem from essentially different assumptions, their
comparison shows clearly the fact that more economical and simultaneously safe
designs can be achieved by applying detailed optimization methods for the
seismic design of retaining walls; current seismic code practices can lead to
unreasonably conservative designs.

As far as the constraints are concerned, the maximum and minimum normal
stresses of the heels of the two walls do not differ much. On the contrary, the
maximum normal stress of the toe differs by a factor greater than 2 between the
two wall cases. Furthermore, the minimum shear stress along the lower interface
between the wall foundation and the supporting soil is roughly the same for the

| Case1(H=8m) | Case 2 (H=12m)
Design variables
hemp (M) 7.76 7.16
dtoe (M) 4.57 6.57
dheet (M) 2.00 2.00
twai (m) 0.20 0.22
ttoe (M) 0.20 0.22
theel (M) 0.20 0.20
Constraint quantities
0 0.328% 0.246%
maxt (kPa) 78.42 88.46
mint (kPa) -131.96 -135.73
minoy, (kPa) -505.98 -592.45
maxoyy (kPa) -122.07 -124.53
Ob,s,max (kPa) 22570.73 21476.85
Ob,t, max (kPa) 4265.33 183.35
Ob,hmax (kPa) 2029.97 2180.68
Ob,s,min (kPa) -23795.84 -23385.15
Ob,t,min (kPa) -7336.37 -8128.82
Ob,h,min (kPa) -2176.36 -2501.06
Algorithm details
Min. value of obj. fun. (m?) 4.47 6.12
Number of generations 73 64
Number of fun.
. 1480 1300
evaluations

Table 6-12: Results of the optimization procedure of the two retaining wall cases.

two wall cases. This observation implies that minimum shear stress along the
lower interface of the wall foundation is independent of the wall height.
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Furthermore, the constraint imposed for this quantity is active in Case 2. The
above may provide a hint for controlling the optimization process.

For more details about the problem discussed in this section, the reader is
referred to publication [19] in the Appendix A of this thesis.

Case1 Case 2
(H=8m) (H=12m)

hemp (M) 0.20 0.20
doe (M) 5.58 8.43
dheer (M) 4.10 6.10
twail (M) 0.73 1.32
troe (M) 0.73 1.32
theel (M) 0.73 1.32
Area (m2) 13.05 35.28

Table 6-13: Results of the conventional seismic design of the two retaining wall cases.

6.6 Calibration of tyre material properties based on an optimization
procedure

6.6.1 Introduction

Handling low frequency interior noise and vibrations which transmits through
subframe components on vehicles is a main issue regarding their design. The
importance of this aspect is apparent from the related legislation which limits the
level of noise a vehicle is allowed to produce. The main source of the vehicle
noise is the vibrations induced by the tyres. These, after being transmitted from
the tyre to the wheel axle, and through that to the passengers in the vehicle, can
have various undesirable effects, some of which are the passengers’
inconvenience or body distress, the low performance of the vehicle and its
suspension system, etc. A tyre is subjected to dynamic forces mainly from two
main sources: (a) road surface irregularities, potholes, bumps and various other
obstacles which impose dynamic loads to the tyre, and (b) dynamic loads
originating from various nonuniformities of the tyre, such as slight imbalances or
asymmetric tread pattern designs.

It is essential to consider the dynamic characteristics of the tyres of a vehicle,
to minimize the aforementioned negative consequences. For this purpose, there
is need for detailed knowledge of the dynamic response of a tyre, which is
associated with the energy that is being transmitted to the vehicle from various
external dynamic events. The dynamic response of a tyre is characterized by its
vibration modes, or eigenmodes, namely the natural frequencies of the tyre and
the corresponding mode shapes. These, apart from their significance for the
design process and troubleshooting of various problems, can constitute a basis
for the computational efficiency of the various numerical models of tyres used by
both tyre and automotive industries for prediction of performance.
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Tyre vibration modes are widely used over the years to represent dynamics in
tyre models. The dynamic response of tyre models has been studied analytically,
experimentally or semi-empirically, and numerically, however due to the
limitations of the analytical and experimental studies, many studies in the
literature employ numerical (often finite element) models, which can simulate
complex geometries as well as material, geometric and boundary nonlinearities.
Relevant studies about tyre dynamics, as well as optimization procedures are
mentioned in the next.

Experimental studies about the eigenmodes analysis of tyres have been
presented by Scavuzzo et al. (1993), Bandel & Monguzzi (1983) and Matsuoka &
Okuma (2002). In the study by Scavuzzo et al. (1993), the dynamic response of
the vehicle in terms of accelerations was mon-itored at the wheel axis and the
passenger compartment. The tyre vibration modes were identi-fied from the
peaks in the response. Bandel & Monguzzi (1983) developed a lumped parameter
model to study the behaviour of a tyre running on a road surface with
irregularities charac-terized by short wave-length spectrum components.
However, the parameters of the lumped model are given by empirical relations,
which have resulted from an experimental methodolo-gy. Matsuoka & Okuma
(2002) presented an experimental modal parameter estimation method in which
the frequency response function (FRF) of a tyre is decomposed into the
components of individual modes based on the Fourier transform algorithm.

The analytical models developed for the estimation of the eigenproperties of a
tyre range from simple mass/spring systems to various forms of idealized, spring
supported, flexible rings. Representative studies are these by Vinesse (1996),
where a rotating and vibrating tyre coupled at its spindle to a secondary structure
is simulated. A model of a membrane on an elastic foundation is used for the
description of the vibration of a rolling tyre, as well as models for the calculation
of the forces at the spindle of a tyre rolling over a small cleat. In the study by
Molisani (2004) the tyre is modelled as a shell structure in contact with the road
surface. The contact patch is simulated as a prescribed deformation, and the
coupled tyre-cavity governing equation of motion is solved analytically to obtain
the tyre structural and acoustic responses.

Representative numerical studies regarding the modal analysis of tyres are
those byWheeler et al. (2005), Dorfi et al. (2005), Chatterjee & Ranjan (2012) and
Bolarinwa & Olatunbosun (2015). Wheeler et al. (2005) presented the vibration
modes of radial tyres on a fixed spindle and investigated the effect of the tyre
components and their contribution in the mode shapes. Following that, the
corresponding tyre model under rolling conditions was considered by Dorfi et al.
(2005) and it was shown that non-rolling tyre models are subordinate to their
roll-ing counterparts, as they do not take into account the proper kinematics. The
finite element commercial software ANSYS was used by Chatterjee & Ranjan
(2012) to study the effects of the inflation pressure, the ply angle, the tread
pattern and the thickness of the belt on the natu-ral frequencies of the tyre. A



198 Chapter 6

basic assumption in this section was that the rubber was simulated as a linear
elastic material. Another commercial finite element software (ABAQUS) has been
used by Bolarinwa & Olatunbosun (2015) where by using various capabilities of
ABAQUS, the footprint under purely vertical load was obtained for a vertically
loaded tyre. Afterwards, the nodes (node coordinates) being in contact with the
road were maintained in contact by applying an equivalent distributed vertical
load, whereas the centre of the wheel was set free in all degrees of freedom. In
this condition of the model, a frequency analysis was performed and it was found
that the boundary conditions on the tyre model can have large impact on its
eigenmode response.

In this section the eigenmodes at the low frequency range are considered for
the development of a realistic tyre model, based on numerical data published in
the literature. This is achieved through an optimization process which efficiently
adjusts various tyre parameters, so that the eigenmodes of the final tyre model
reach the corresponding data as close as possible. Optimization methods that are
based on simple mathematical programming (exact) are very efficient for cases
with a few design variables. Methods belonging to this category are those using
the sequential quadratic programming procedure for nonlinear optimization
(used in this section), as well as others. More details regarding these methods are
presented by Nocedal & Wright (2006).

6.6.2 Numerical modeling

The tyre considered for the optimization study is modelled in the commercial
finite element code ABAQUS 6.13. Implicit integration was performed using
ABAQUS/Standard, which was also used for the eigenfrequency and eigenmode
extraction of the tyre. The optimization procedure, as well as the necessary
coupling with ABAQUS, was implemented in MATLAB programming language.

The cross section of the tyre, P235/75R17, is shown in Figure 6-11. The tyre is
comprised of the belt region, the tread region and the side walls which are being
modelled with a hyperelastic material, representative of rubber. The hyperelastic
material is simulated by the one term polynomial strain energy potential
(Mooney-Rivlin model) with one term Prony series to account for viscoelasticity
(Bekakos et al., 2016). The belt region contains reinforcement of two layers
(illustrated as Belt layer 1 & 2 in Figure 6-11), and the reinforcement of carcass.
The last extends over the belt region and it covers the side walls. Both belt layers
and the carcass are discretized with surface elements with twist (SMFGAXi1). The
rim is discretized with 2-node, linear links for axisymmetric planar geometries
(RAX2), and the belt, bead, sidewall and tread regions are discretized with 4-node
bi-linear, reduced integration elements with hourglass control (CGAX4R). The
nodes of the surface elements of the carcass share the same nodes with those of
the belt region elements. If separate nodes are used for these two sections (which
have the same coordinates) numerical instabilities may occur during the analysis.
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Belt Region

-

Belt Layer 2

Belt Layer 1

Carcass

Figure 6-12: lllustration of the tyre model.

By utilizing the capabilities of ABAQUS with regard to symmetric model
generation (SMG), symmetric results transfer (SRT) and restart option, the full 3d
numerical model of the tyre is developed, as shown in Figure 6-12. Inflation
pressure is imposed on the inner surface of the tyre as a distributed load.
Regarding the boundary conditions, two cases can be distinguished: (a) for the
unloaded tyre, the boundary conditions are imposed on the six degrees of
freedom of the wheel centre (fixed-spindle), and (b) for the loaded tyre, the road
is considered to be fixed and the tyre centre is constrained along all degrees of
freedom except for the degree of freedom along which the vertical load is
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imposed. The rim is rigidly constrained to the tyre centre. The friction between
the tyre and the road (in the case of the loaded tyre) is assumed to be of Coulomb
type, with coefficient equal to o.5.

6.6.3 Formulation of the optimization problem

6.6.3.1 Design variables

The geometric properties of the belts and carcass reinforcement, as well as the
hyperelastic Mooney-Rivlin Cio constant are selected as design variables. The
reinforcement layers are defined in ABAQUS as smeared layers with a thickness
equal to the ratio of the area of each reinforcing bar to the reinforcing bar
spacing. This calculated thickness is assumed to remain constant all over the
extent of the layer. This consideration has a considerable effect on the selection
of the design variables, since the stiffness of each reinforcement layer contributes
to the eigenproperties of the tyre. Due to the fact that the rebar stiffness is given
by a fraction of two separate input parameters, for constant layer stiffness they
become dependent on each other. Therefore, it is objective that only one of the
two parameters for each layer is selected as an independent design variable, and
the other remains fixed. The variable to remain fixed is the easier to be measured,
in terms of order of magnitude. Another point to be mentioned is that, because
the two belt layers have symmetric orientation with respect to the plane of the
tyre, and the tyre is a centre symmetric structure, its eigenmodes are expected to
be also symmetric; this means that the cross section areas of the two belt
reinforcements have to be equal, and therefore the belt reinforcement cross
sectional area was considered as a single design variable. The design variables of
the optimization problem, along with their upper and lower bounds are shown in
Table 6-14.

Design Lower Upper
variable |bound bound
Abelt 107 1075
Acarcass 108 107
Cio 105 107

Table 6-14: Design variables of the optimization problem and their lower and upper
bounds.

6.6.3.2 Parameters

The parameters of the optimization problem are the design input data that
remain fixed during the optimization process. These include, as mentioned in the
previous section, the spacing of the rebar layers, which is set to be equal to
o.oon6m for the belts and o0.0o1m for the carcass. Furthermore, the constants of
the Mooney-Rivlin strain energy potential are Co,=0 and D,=5.085E-8Pa™. The
cord angles are 70 and 110 degrees for the two belt layers, and o degrees for the
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carcass. The material properties of the belts and the carcass are also held fixed
during the optimization process. More details about these properties can be
found in Bekakos et al. (2016). The inflation pressure with which the tyre is
inflated is 240kPa.

6.6.3.3 Constraints

No constraints are imposed to the model being optimized, apart from the
upper and lower limits of the design variables. The latter require some experience
to be specified, because large upper bounds or small lower bounds can lead to
numerical instabilities in the solver, such as excessive element distortion, etc,
which result in the premature termination of the optimization procedure.

6.6.3.4 Objective function

The objective function for the optimization problem has to be of an
appropriate form, so that it becomes minimum if the numerically calculated
eigenfrequencies coincide with the ones available from the literature. The first 16
eigenfrequencies of the tyre are considered in the objective function, which is
given by the following equation:

obj = \/126:( fi,num - fi,lit)2 (6.6)

i=1

where f s the i" eigenfrequency calculated by the numerical model in every

I,num

iteration of the algorithm and f, . is the corresponding i eigenfrequency

ilit
available in the literature. The correspondence between the various
eigenfrequencies is made by taking into account the deformed configurations of

the various eigenmodes.

6.6.4 Optimization algorithm

The optimization algorithm used in this section uses a sequential quadratic
programming (SQP) method. In this method, a quadratic programming (QP)
subproblem is solved at each iteration. For this purpose the MATLAB built in
function fmincon is used. This function used an active set strategy and updates
an estimate of the Hessian of the Lagrangian at each iteration using the BFGS
formula. An active-set method initializes by making a guess of the optimal active
set, and if this guess is incorrect, it repeatedly uses gradient and Lagrange
multiplier information to proceed towards the optimum solution.

The fmincon optimizer (MATLAB) is properly coupled with the analysis solver
(ABAQUS) in order to take the frequency analysis results using Abaqus2Matlab.
This is done inside the objective function in which ABAQUS is called to perform
the necessary analyses. Except for this, the necessary input (*.inp) files for the
ABAQUS runs are created by suitable MATLAB functions. To read the results of
the analyses from the corresponding ABAQUS results (*.fil) files, special
MATLAB functions are used. While the analysis solver is running the optimizer is
halted and its execution is continued after the lock (*.Ick) file has been deleted.
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6.6.5 Optimization results

The results of the optimization process as presented in the previous sections are
shown in Table 6-15.

.. Wheeler . L.
Initial model Optimised et al. Deviation
model (%)
(2005)

Design Variables
Abelt (m?) 2.11868*107 3.64826*107 |N/A -
Acarcass (m?) 4.20835%107 8.0133*10% |[N/A -
Cwo (Pa) 108 10° +0.01489 [N/A -

Eigenfrequencies
f, [0,0] (Hz) 36.85 30.86 31.7 2.66
f, [0,0] (Hz) 37.17 35.85 35 2.43
f; [1,1] (Hz) 43.85 36.92 37.8 233
fy [1,1] (Hz) 4385 36.92 37-8 2.33
fs [1,0] (Hz) 65.07 58.75 58.5 0.43
fo [1,0] (Hz) 65.07 58.75 58.5 0.43
f; [2,1] (Hz) 76.33 68.41 66.1 3.49
fs [2,1] (Hz) 76.33 68.41 66.1 3.49
fy [2,0] (Hz) 86.65 78.67 79.5 1.04
fo [2,0] (Hz) 86.65 78.67 79.5 1.04
fu [3,0] (Hz) 104.36 96.42 97.6 1.21
f. [3,0] (Hz) 104.36 96.42 97.6 1.21
fi5 [3,1] (Hz) 117.07 107.9 102.7 5.06
fi4 [3,1] (Hz) 117.07 107.9 102.7 5.06
f;s [4,0] (Hz) 122.65 114.9 115.9 0.83
fi6 [4,0] (Hz) 122.65 114.9 115.9 0.83

Algorithm Details
Min. value of 3
obj. function i 59 i i
Number of obj.
function - 25 - -
evaluations

Table 6-15: Results of the optimization procedure of the tyre frequency analysis
considered in this section.

It is noted that each natural frequency corresponds to a pair of integers enclosed
in brackets ([c, m]). The first integer denotes the number of sinusoidal waves in
the circumferential direction of the wheel, whereas the second integer shows the
number of waves in the meridional direction at a specific location, where the
deformation of the eigenmode shape is maximum. In addition, only the first 16
eigenmodes were considered for the development of the realistic tyre model, in
order to reduce the computational cost.
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The first column of Table 6-15 shows the data of the initial model, used as the
starting point of the optimization process. It is evident that the eigenfrequencies
of the initial model have large difference from the eigenfrequencies of the model
published by Wheeler et al. (2005). In the second column, the parameters of the
optimum model are shown, as well as the values of the design variables
corresponding to it. Regarding the eigenfrequencies, it is observed that they are
much closer than those of the initial model, leading thus to a numerical model
that conforms more to the available numerical data, and therefore it is more
realistic. The maximum deviation of the eigenfrequencies is noted to be roughly
5%. The optimum model has higher cross section of the reinforcement of the
belts, and lower cross section area of the reinforcement of the carcass than the
initial model. The hyperelastic constant C,, is only slightly increased after the
optimization. Regarding the algorithm output, the minimum value of the
objective function is equal to approximately 8.59Hz, and the algorithm converged
after 25 objective function evaluations. The reason for the termination of the
algorithm is that the magnitude of the search direction was less than the
corresponding tolerance. The most important factor affecting the tyre modal
behaviour during the optimization procedure is proved to be the cross section
area of the carcass (Acarcass). Due to the fact that the initial model has generally
higher eigenfrequencies than those of the target model (Wheeler et al., 2005), its
stiffness had to be decreased, in order for the model to approach the latter. The
decrease in stiffness is achieved with a relatively large decrease in the cross
sectional area of the carcass, although the cross section area of the belt
reinforcement increases.

For more details about the problem discussed in this section, the reader is
referred to publications [8,10,11,15,16,17] in the Appendix A of this thesis.

6.7 Other applications of Abaqus2Matlab

In this chapter the use of Abaqus2Matlab software has been illustrated for the
solution of optimization problems which involve the dynamic properties or
dynamic response of structures. However, its use is not limited in this field, since
AbaquszMatlab provides a convenient integration framework between ABAQUS
and Matlab and vice versa which can be used in many more engineering
disciplines. Abaqus2Matlab has already been used in the literature for the
following topics:

6.71 Optimum design against buckling of plate girders with multiple
longitudinal stiffeners subject to combined bending and shear

Abaqusz2Matlab is used to optimize the position of the longitudinal stiffeners of a
multi-stiffened steel plate subject to combined bending and shear, so that the
buckling coefficient of the plate is maximized. For this purpose, a model of the
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steel plate is developed in ABAQUS, and an optimization procedure is
implemented in Matlab. The ABAQUS model performs buckling analysis of the
steel plate model which is automatically generated by suitable Abaqus2Matlab
scripts for specific values of the design variables. The Matlab codes use a
gradient-based interior point algorithm (IPA) which involves a direct Newton
step and a Conjugate Gradient step to proceed towards the optimum solution.
Abaqus2Matlab effectively coupled the solver (ABAQUS) and the optimizer
(Matlab) functions of this complex optimization model by providing a successful
linking between the various routines. This optimization procedure not only
verified existing relevant results in the literature (Rockey & Cook, 1965 and Alinia
& Moosavi, 2008) but also led to successful optimum designs for various
configuration and loading conditions of the steel plate considered. The new
designs achieved lead to significantly lower amounts of steel material required for
construction, reduced by at least 61.76%), while at the same time structural safety
is increased by as much as 180%. For more details about this application, the
reader is referred to publications [2,3,4] in the Appendix A of this thesis.

6.7.2 Prediction of buckling coefficient of stiffened plate girders using deep
learning algorithm

A Deep Learning- (DL-) based procedure for the prediction of the critical
buckling coefficient of longitudinally stiffened web plate girders subjected to
pure bending is developed. Datasets, consisting of input data (various geometric
dimensions of the girder) and output data (critical buckling coefficient), are
generated from eigenvalue buckling analyses in ABAQUS. In this procedure
Abaqusz2Matlab is used for the data transfer between Matlab and ABAQUS and
vice versa, within a looped procedure for the generation of the training data of
the Deep Learning network that is developed and verified. 2,200 training data are
employed to establish the model to predict the buckling coefficient using deep
learning. The number of hidden layers and the number of neurons in each layer,
optimizer and activation function are chosen so that the metamodel is optimized
for the given training data. Finally, 200 test data are utilized to estimate the
model accuracy. The efficiency of the DL model is verified by comparison of its
results with those obtained from the literature which showed a good agreement.
For more details about this application, the reader is referred to publication [12]
in the Appendix A of this thesis.

6.7.3 A computational method for performing nonlinear adaptive pushover
analysis of structures through ABAQUS simulation

A computational method which uses the nonlinear adaptive static (pushover)
analysis to evaluate the static force-deformation response of a planar moment
resisting frame (MRF) for both monotonic and cyclic response has been
developed. The MRF considered in this section is a seismic-resisting frame of a
prototype five-storey five-bay steel building structure designed based on the
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Japanese seismic design code. The frame model is simulated by the finite element
software ABAQUS. Failure on members is captured by adopting shell elements
for beams and columns combined with a refined meshing. The lateral force
distribution is adapted during the pushover analysis according to the first
eigenmode of the structure by utilizing a novel inverse optimization algorithm. A
new stop analysis criterion is introduced that overcomes the numerical difficulty
of the available static-solution algorithms to terminate the analysis in the
degrading region of the load-deformation response. The effects of load
distribution and first (fundamental) small strain eigenperiod on the force-
deformation pushover curve are studied. The monotonic adaptive pushover
procedure is implemented using the programming language MATLAB. The new
tool effectively combines the advanced modeling and analysis capabilities of
ABAQUS with the programming simplicity of MATLAB, thus leading to a user-
friendly environment. The last offers a robust implementation of pushover
analysis and superior numerical results can be obtained, especially the
descending branch of the pushover curve and collapse mechanism. For more
details about this application, the reader is referred to publication [13] in the
Appendix A of this thesis.

6.8 Notation

A, : Minimum cross section area of truss members
0, - Width of the wall heel

d.. : Width of the wall toe

f (x) : Objective function

toe

f, i Experimental value of the i'" eigenfrequency of the tyre

f _:The it eigenfrequency of the tyre calculated numerically

g; (X) : Inequality constraint function ( I=1..,m)
H : Height of vertical slope retained by the retaining wall
h,., : Depth of the wall’s foundation

omb *

h;(x) : Equality constraint function ( j1=1..,p)

k, : Horizontal acceleration coefficient

obj : objective function for fitting dynamic properties of the Abaqus tyre model
P : Axial force of truss

r: rank of an individual in a population of the genetic algorithm

t.. : Thickness of the wall heel

t,. : Thickness of the wall toe
t

X, : Design variables (K=1...,n)

wan - Thickness of the wall stem

¢ : Soil — wall interface friction angle.
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A : Convergence parameter

o : Axial stress

O - Maximum (absolute) axial stress
¢: Soil internal friction angle



Chapter

7 Conclusions

7.1 Original contribution of the thesis

The objective of the present thesis was to develop algorithms and methodologies
for the optimum design of structures which respond due to dynamic (seismic)
loading. Also, the necessary numerical tools for the implementation of the new
computational techniques are provided. These problems have some unique
characteristics that are described in the following. Also, the contribution of the
present thesis to each one of these problems is described in detail in the next
sections.

711 Development of a family of advanced direct time integration algorithms
for nonlinear dynamic analysis

Direct time integration (or time stepping, or step by step) methods are a widely
used approach to solve dynamic linear or nonlinear response analysis problems.
They have to satisfy certain criteria in order to be suitable for the integration of
the differential equation of motion in the linear or nonlinear regime. In linear
dynamic response, emphasis is given in accuracy, whereas in nonlinear dynamic
response numerical stability is of primary interest. The large number of criteria
that have to be satisfied has led to the development of problem-suited dynamic
time integration algorithms, i.e. while any algorithm may be suitable for dynamic
analysis involving a specific time stepping and/or constitutive model, it may be
inappropriate for dynamic analysis involving different characteristics of the three
aforementioned factors. From the aforementioned points, it is obvious that there
is the need for the development of a direct time integration algorithm that will be
able to be universally applied to any dynamic structural analysis problem. The
General Single Step Single Solve (GSSSS) algorithm family which consists of
advanced time integration algorithms that allow for controlled dissipation,
dispersion and overshooting properties has been developed in Chapter 2 to cover
this need
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7.1.2 New software for strong ground motion data processing

Most software that are used for processing of raw ground motion data nowadays
employ rather elementary dynamic direct time integration algorithms. Taking
advantage of the advanced GSSSS algorithm family that is presented in Chapter 1
for the evaluation of the dynamic response, a new software for ground motion
data processing was developed in this thesis (OpenSeismoMatlab). A numerical
investigation is made which showed that OpenSeismoMatlab provides generally
more accurate results than SeismoSignal, another reliable commercial proprietary
software when the same integration step size is used for both software. This is
attributed to the fact that OpenSeismoMatlab uses advanced time integration
algorithms of the GSSSS family. OpenSeismoMatlab is a unique software that
combines innovative numerical algorithms, high quality and robustness and is
provided as an open-source tool to the research and professional engineering
communities for the seismic design of structures as well as the processing of
strong ground motions. The new software can be used for free by students and/or
programmers for the seismic design of structures as well as general processing of
strong ground motions. Thanks to its open source nature, it can be of high
educational value for related university courses and can be easily extended or
modified in order to be incorporated in higher level software.

7.1.3 Novel gradient - based optimization concept related to dynamics of
structures

The gradient-based algorithms for optimum structural design generally require
considerable computational effort, especially when direct time integration for the
calculation of the structural response is involved in the objective function. Most
part of the computations is carried out for the calculation of the gradient of the
objective function at each iteration of the optimization algorithm. This gradient
determines the direction to which the algorithm will proceed for the next
evaluation of the objective function. The concept of the equivalent structure for
the calculation of the gradient of the objective function is one of the main
contributions of the present thesis. According to this concept, while the objective
function is evaluated using the model of the real structure that is normally
considered, the gradient of the objective function is calculated by the
consideration of an equivalent simplified version of the structural model
considered, that allows for a significantly reduced computational effort. It has
been proved in this thesis that this highly accelerates computations (up to 10x)
saving significant amounts of computational effort. As an example to illustrate
the application of this concept the problem of uniform distribution of the
dissipated seismic input energy along the height of a shear planar building has
been considered.
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7.1.4 Formulation of a new artificial ground motion generation algorithm
matching both acceleration and energy spectra

The various seismic norms worldwide require the selection of suites of
representative acceleration time histories to be used for the dynamic analysis of a
structural model, in order to carry out the seismic design. In cases that there is
scarcity of the available acceleration time history data for a specific site, artificial
ground motion data have to be generated ensuring that the last are
representative of the seismic activity at the site where construction will take
place. However, the current status of the various norms regarding the selection of
suitable ground motion records that meet specific requirements is rather
simplified, which, despite the robustness of the various finite element models
available for seismic design, may account for significant source of error in
structural design. On the other hand, it has been proven that the destructiveness
of an earthquake is associated more to the energy absorbed by the structures,
rather than the acceleration imposed on the latter. The energy-based design
(EBSD) approach accounts for the effects of duration of the earthquake ground
motion and conveys information about various characteristics of the seismic
motion (e.g. impulse, etc.). Taking into account the aforementioned points, it is
obvious that the artificial ground motions that are generated to match both
target acceleration and target energy spectra will be much more realistic than
those generated based merely on a target acceleration spectrum. In this thesis, a
mixed real - integer genetic algorithm with appropriately customized genetic
operators is developed for the generation of ground motion acceleration time
histories that are compatible with both acceleration and input energy spectra,
enabling in this way a more realistic seismic design of structures against
earthquakes.

7.1.5 Development of a new software for linking Abaqus and Matlab

Usually there are some cases in which, although an advanced FE software and a
programming language are available, they cannot perform alone a high level
computational task, such as an optimization procedure. In order to achieve the
computational task, they most likely need to be suitably “combined”. In the case
of the Abaqus FEA software and Matlab programming language, Abaqus2Matlab
provides a solution for combining the two first software by transferring model
data and results from one of them to the other and vice versa. Abaqusz2Matlab
has been used successfully in this thesis to solve an optimization problem,
conduct an inverse analysis, perform a static monotonic or cyclic pushover
analysis, optimize the design of girder plates for maximum critical buckling
coefficient and finally train a Deep Neural Network for the estimation of the
buckling coefficient for various geometric configurations of a girder plate. In all
the aforementioned cases, AbaquszMatlab has been successfully executed
without flaws or bugs, while it has preserved a high level of accuracy in the
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results. This proves its robustness and applicability for solving a large variety of
advanced engineering problems.

7.2

Overall conclusions

Apart from the conclusions discussed in detail in the various chapters, the
research work done for the thesis led to the following fundamental overall
conclusions:

The family of nonlinear generalized single step single solve (GSSSS)
algorithms developed in Chapter 2 of this thesis is very efficient, accurate
and stable, even with increased size of the time step, while the Continuous
Acceleration methods, which include the HHT-a method as a special case,
exhibit the most accurate response for most of the cases studied.

In some cases, the quality of the results of OpenSeismoMatlab, a new
software that is developed in Chapter 3 of this thesis, is superior to that of
SeismoSignal, a reliable commercial proprietary software, due to the fact
that the former uses advanced time integration algorithms that allow for
controlled dissipation, dispersion and overshooting properties.

It is shown that there exist unique optimum stiffness distributions, of
quasi-linear shapes, which correspond to equidistributed viscous damping
and hysteretic energy dissipation for linear elastic and elastoplastic planar
shear building structures, respectively. Their shapes are generally
independent of the earthquake excitation and offer the possibility for the
development of simple methods for the calculation of the optimum
stiffness distribution in shear buildings. Uniform distribution of energy
along the structural height provides increased protection against global
collapse and loss of life during strong earthquake events.

The novel concept of linear directions equipped with a stabilizer for
optimization of nonlinear problems, as applied for the modification of a
simple full N-R method in Chapter 4 of this thesis, leads to substantial
computational savings. The new modified N-R algorithm is robust and
efficient.

This consideration is leading therefore to optimized acceleration time
histories, which represent actual motions in a much more realistic way. In
order to produce elastic spectra that match as closely as possible to a given
target spectrum, the procedure of selection and scaling of a suite of
ground motion records to fit a given target spectrum is formulated as an
optimization problem. Three characteristic ground motion records of
different inherent nature are selected as target spectra, to verify the
effectiveness of the proposed algorithm, ensuring that its performance is
not ground motion record-dependent assuming different matching
scenarios.
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e Regarding the proposed novel spectra-matching framework developed in
Chapter 5 of this thesis, it is shown that there exists a good agreement
between the target and optimized spectra for the various cases examined,
regardless of the nature of target spectrum, demonstrating thus the
effectiveness of the algorithm.

e It is proved that the records which are generated artificially by the spectra-
matching framework proposed in Chapter 5 are much more realistic and
suitable for the seismic design of structures, since they reproduce better
the real slightly nonlinear structural inelastic response in terms of the
damping energy.

e [t is proved that Abaqus2Matlab, the new software that has been
developed during the preparation of the present thesis primarily for
solving optimization problems, is robust and accurate, and applicable in a
large variety of high level engineering problems.

The main objective of this thesis is to establish some methodologies for the
design of structures based on their dynamic properties and seismic response by
employing innovative computational techniques and present their advantages.
Also, this thesis tries to establish the use of these energy concepts for the seismic
design of structures as the state of the art in the near future and try to encourage
practice towards that direction, away from the current use of safety factors and
trial and error processes for the design of structural systems.

7.3 Future work

Following the research work done in this thesis, there are some natural
extensions to this that would help expand and strengthen the methodologies
proposed and the obtained results:

e Further research has to be made to investigate the relation between the
stable time increment of the generalized single step single solve
algorithms applied in nonlinear problems and various other problem-
dependent input data. Apart from this, the numerous integration
constants of the algorithms belonging to the GSSSS family, allows for
optimization of the values of the integration constants, so that certain
difficult dynamic nonlinear problems can be efficiently time-integrated

e OpenSeismoMatlab can be used for free by students and/or programmers
for the seismic design of structures as well as general processing of strong
ground motions. Thanks to its open source nature, it can be of high
educational value for related university courses and can be easily extended
or modified in order to be incorporated in higher level software.
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e The new optimization concept presented in Chapter 4 of this thesis can be
applied, apart from the Newton-Raphson algorithm, to other commonly
used optimization algorithms, accelerating the optimization procedure.
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