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Abstract  

In order to properly design new structures or assess the safety and reliability of 

existing structures and their mechanical components, it is important to study the 

way in which structures respond to external loads. The vast majority of the 

external loads that a structure can experience is of dynamic nature: for example 

earthquakes, external impacts, explosions, vibrations induced by vehicles or 

machine equipment inside or nearby the structure, etc. The development of 

efficient dynamic analysis methods over the last decades has stimulated the 

interest for considering also dynamic response in the formulation of structural 

design optimization problems. In order to account for these issues, accurate and 

computationally affordable computational techniques, which include dynamic 

analysis methods and optimization techniques, are needed.  

The goal of the thesis is to develop new computational techniques for the 

optimum design of structures based on their dynamic response, with emphasis 

on seismic design, and provide the necessary numerical tools for their 

implementation. This goal is addressed by developing algorithms for (a) solving 

the dynamic equilibrium differential equations in the time domain, (b) 

processing of strong ground motion data for the generation of various elastic and 

inelastic spectra, (c) optimizing the distribution of the seismic energy absorbed 

by MDOF shear buildings and (d) optimizing the ground motion acceleration 

time histories used for the dynamic analysis of structures in the framework of 

their seismic design. In order to deal with these problems efficiently, various 

algorithms and methodologies have to be used, such as efficient deterministic 

and stochastic optimizers, constitutive model formulations for the estimation of 

the nonlinear dynamic response, and a novel spectra-matching framework which 

employs a linear combination of raw ground motion records to generate artificial 

acceleration time histories taking into account both acceleration and seismic 

input energy equivalent velocity spectra. 

The dissertation consists of seven chapters in total, plus Appendix A. It is 

organized as follows: following the introduction of Chapter 1, Chapter 2 

introduces a generalized dynamic time – integration algorithm framework for 

non-linear structural dynamics. Chapter 3 presents the development of 

OpenSeismoMatlab, which is an innovative open-source software for strong 

ground motion data processing, written in MATLAB, and is based on the family 

of the dynamic time integration algorithms presented in Chapter 2. In Chapter 4 

a new optimization concept is introduced which involves the optimization of 

nonlinear planar shear buildings by using a gradient method based on equivalent 

linear structures, instead of the traditional practice of calculating the gradients 

from the nonlinear objective function. Chapter 5 introduces a novel spectra-
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matching framework, which employs a linear combination of raw ground motion 

records to generate artificial acceleration time histories perfectly matched a 

target spectrum, taking into account not only the acceleration but also the 

seismic input energy equivalent velocity. The optimization procedures employed 

in Chapter 5 use solvers that involve the use of OpenSeismoMatlab, among 

others. Chapter 6 introduces a new integrated optimization framework for 

engineering applications, Abaqus2Matlab. This is a tool which connects Abaqus, 

a sophisticated finite element package, with Matlab, the most comprehensive 

program for mathematical analysis. Using Abaqus2Matlab, an Abaqus analysis 

can be conducted through Matlab, without interacting with Abaqus/CAE 

interface, or even Abaqus/Command. Abaqus2Matlab transfers data between 

Abaqus and Matlab in a form that enables the user to easily manipulate it for 

further postprocessing, and also in a way that enables the performance of 

complex types of analyses (e.g. inverse optimization, training artificial neural 

networks, etc.). Chapter 7 contains the conclusions, the original contribution of 

the thesis, and directions for future research. Finally, Appendix A is presented, 

which contains a listing of publications by the author. Each Chapter is 

accompanied by conclusions and the corresponding bibliography and notation. 
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Εκτενής Π ερίληψη  

0.1. Εισαγωγή 

 

Ο σχεδιασμός οποιασδήποτε κατασκευής επιβάλλει την ταυτόχρονη 

ελαχιστοποίηση του κόστους κατασκευής και λειτουργίας της, με παράλληλη 

βελτιστοποίηση της συμπεριφοράς της έναντι διαφόρων εξωτερικών παραγόντων. 

Τα ανωτέρω επιτυγχάνονται μέσω χρήσης αλγορίθμων βελτιστοποίησης είτε 

ντετερμινιστικών, είτε στοχαστικών. Η παρούσα διατριβή αποσκοπεί στην 

ανάπτυξη κοινοτόμων υπολογιστικών τεχνικών για το βέλτιστο σχεδιασμό των 

κατασκευών οι οποίες υπόκεινται σε δυναμική φόρτιση, καθώς και των εργαλείων 

που αυτές απαιτούν. Αυτό επιτυγχάνεται με: (α) ανάπτυξη μεθοδολογιών για την 

άμεση βήμα προς βήμα εν χρόνω ολοκλήρωση των διαφορικών εξισώσεων 

δυναμικής ισορροπίας, (β) την ανάπτυξη ενός υπολογιστικού εργαλείου για την 

επεξεργασία σεισμικών επιταχυνσιογραφημάτων για την παραγωγή συμβατών 

φασμάτων ελαστικής και ανελαστικής απόκρισης μετατόπισης, ταχύτητας και 

επιτάχυνσης, καθώς και φασμάτων Fourier και συνήθων δεικτών για τη μέτρηση 

συγκεκριμένων χαρακτηριστικών των σεισμικών καταγραφών, (γ) ανάπτυξη ενός 

νέου επαναληπτικού αλγορίθμου βελτιστοποίησης τύπου Newton με δυνατότητες 

επιπλέον γραμμικής αναζήτησης, ειδικά σχεδιασμένο για γραμμικά ελαστικά και 

ελαστοπλαστικά διατμητικά κτίρια, ο οποίος βρίσκει τη βέλτιστη κατανομή της 

δυσκαμψίας και της αντοχής καθ’ ύψος του κτιρίου για δεδομένη θεμελιώδη 

(ελαστική) ιδιοπερίοδο του κτιρίου, ούτως ώστε η σεισμική ενέργεια που 

αποσβέννεται να είναι σταθερή καθ’ ύψος του κτιρίου, (δ) την ανάπτυξη ενός 

μικτού γενετικού αλγορίθμου με κατάλληλους τελεστές για την ανεύρεση 

βελτιωμένων επιταχυνσιογραφημάτων για τη δυναμική ανάλυση κατασκευών στο 

πλαίσιο του αντισεισμικού σχεδιασμού τους, καθιστώντας με αυτό τον τρόπο πιο 

ρεαλιστικό τον αντισεισμικό σχεδιασμό τους και τέλος (ε) την ανάπτυξη ενός νέου 

λογισμικού, του Abaqus2Matlab, το οποίο χρησιμοποιείται για την ενοποίηση του 

κώδκα πεπερασμένων στοιχείων Abaqus με τη γλώσσα προγραμματισμού Matlab, 

σε διάφορες διαδικασίες βελτιστοποίησης συμπεριλαμβανομένων, αλλά όχι 

περιοριζόμενων σε, βέλτιστο σχεδιασμό των κατασκευών με βάση τις δυναμικές 

ιδιότητες και τη δυναμική απόκρισή τους. Το συγκεκριμένο υπολογιστικό 

περιβάλλον μεταξύ των δυο γνωστών προαναφερθέντων λογισμικών όχι μόνο 

συνδυάζει το εξελιγμένο γραφικό περιβάλλον και χαρακτηριστικά παρουσίασης 

δδεδομένων του Matlab, αλλά ανοίγει νέους δρόμους στον τρόπο 

μετεπεξεργασίας, στατιστικής ανάλυσης και βελτιστοποίησης των αποτελεσμάτων 

της ανάλυσης πεπερασμένων στοιχείων του Abaqus, και παρέχει επίσης πολλές 

άλλες δυνατότητες. 
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0.2. Ένας γενικευμένος αλγόριθμος μη γραμμικής δυναμικής των 

κατασκευών 

 

0.2.1.  Ο γραμμικός γενικευμένος αλγόριθμος εν χρόνω ολοκλήρωσης 

απλού βήματος απλής λύσης 

 

Η εξίσωση κίνησης ενός γραμμικού μονοβάθμιου ταλαντωτή δίνεται από τη 

σχέση: 

        Mu t Cu t Ku t f t    (0.1)  

με αρχικές συνθήκες: 

    0 0u 0 u , u 0 u    (0.2) 

Η εξίσωση (2.10) μπορεί να εφαρμοστεί και σε πολυβάθμια συστήματα, με την 

προυπόθεση ότι τα τελευταία μπορούν να αναχθούν σε ένα πεπερασμένο αριθμό 

μονοβάθμιων συστημάτων, χρησιμοποιώντας διάφορες μεθόδους γραμμικής 

επαλληλίας. Οι Zhou & Tamma (2004) παρουσίασαν μια οικογένεια αλγορίθμων 

εν χρόνω ολοκλήρωσης απλού βήματος απλής λύσης, ήτοι αλγορίθμων που δεν 

περιλαμβάνουν πολλαπλασιασμό μητρώων, αλλά μόνο μια επίλυση γραμμικού 

συστήματος εξισώσεων για καθε χρονικό βήμα. Για τους αλγορίθμους αυτούς 

ισχύει το θεώρημα Dahlquist (Dahlquist, 1963) το οποίο αναφέρει ότι ενας 

αλγόριθμος απλού βήματος απλής λύσης ο οποίος είναι απόλυτα ευσταθής 

(unconditionally stable) μπορεί να έχει ακρίβεια το πολύ δευτέρας τάξης (second 

order accurate).  

Σύμφωνα με τη θεωρία που παρουσίασαν οι Zhou & Tamma, (2004), η εξίσωση 

(2.10) μπορεί να αναπαρασταθεί ως χρονικά σταθμισμένο υπόλοιπο ως εξής: 

  
n 1

n

t

t
W Mu Cu Ku f dt



    (0.3) 

όπου η στάθμιση του χρόνου υποτίθεται ότι είναι της μορφής 

 
2 3

1 2 3W 1 w w w       (0.4) 

και: 

 n n 1 n/ t, t t , t t t           (0.5) 

Οι εξαρτώμενες μεταβλητές πεδίου ( u , u , u ) μπορούν να προσεγγιστούν από τα 

ακόλουθα αναπτύγματα ασυμπτωτικών σειρών: 

 
2 3n 1 n

n 1 n 2 n 3

u u
u u u u

t

 
     


 (0.6) 

 
2n 1 n

n 4 n 5

u u
u u u

t

 
   


 (0.7) 

 n 1 n
n 6

u u
u u

t

 
  


 (0.8) 

και το διάνυσμα της φόρτισης αναπτύσσεται σε σειρά πρώτης τάξης μεσω 

αναπτύγματος Taylor: 
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 n 1 n
n

f f
f f

t

 
  


 (0.9) 

Οι τιμές της μετατόπισης και της ταχύτητας στο επόμενο βήμα δίνονται από τις 

ακόλουθες σχέσεις: 

  2 2

n 1 n 1 n 2 n 3 n 1 nu u u t u t u u t          (0.10) 

  n 1 n 4 n 5 n 1 nu u u t u u t        (0.11) 

Η τιμή της επιτάχυνσης στο επόμενο βήμα προκύπτει με αντικατάσταση των 

εξισώσεων από (2.13) εως (2.20) στην εξίσωση (2.12) ως εξής: 

 

 
 

 

 
 

2

6 5 3 n 1

n 6 n

n 4 n 5 n

2 2

n 1 n 2 n 3 n

1 n 1 n 1

M C t K t u

M u u

C u u t u t

K u u t u t u t

1 W f W f





     

 

    

      

  

 (0.12) 

ή σε απλοποιημένη μορφή: 

 n 1 nMu F   (0.13) 

όπου 

 
     

   

n n 6 n n 4 n 5 n

2 2

n 1 n 2 n 3 n 1 n 1 n 1

F K,C,f M u u C u u t u t

K u u t u t u t 1 W f W f 

       

         
 (0.14) 

και 

   2

6 5 3M K,C M C t K t      (0.15) 

Ο δείκτης της ποσότητας nF  υποδηλώνει το χρονικό βήμα στο οποίο 

χρησιμοποιούνται οι ποσότητες u , u , u  για τον υπολογισμό του. Οι σταθερές iW  

δίνονται από τη σχέση: 

 

3
j

j 1

i 3
j

j 1

w1

1 i 1 i j
W , i 1,2,3

w
1

1 j






  

  







 (0.16) 

Υπάρχουν 12 ανεξάρτητες σταθερές ολοκλήρωσης που απαιτούνται προκειμένου 

να γίνει εφαρμογή των εξισώσεων (2.21), (2.19) και (2.20) προκειμένου ο 

αλγόριθμος να προχωρήσει στο επόμενο βήμα. Αυτές είναι οι 1W , 1 , 2 , 3 , 4 , 

5 , 6 , 1 , 2 , 3 , 4 , 5 . Καθε συνδυασμός των παραπάνω παραμέτρων 

αντιστοιχεί και σε ένα μοναδικό αλγόριθμο εν χρόνω ολοκλήρωσης και μπορεί να 

θεωρηθεί κατα κάποιο τρόπο ως η ταυτότητα του αλγορίθμου αυτού. Πολλοί 

γνωστοί αλγόριθμοι εν χρόνω ολοκλήρωσης, που παρουσιάζονται εντός της 

διατριβής, προκύπτουν από κατάλληλη επιλογή των ανωτέρω σταθερών 

ολοκλήρωσης. Στην εργασία των Zhou & Tamma (2004), οι σταθερές 

ολοκλήρωσης υπολογίζονται με επιβολή διαφορετικών περιορισμών στον 

αλγόριθμο, σχετικά με την τάξη της ακρίβειάς του, την υπερακόντιση 
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(overshooting), ιδιάζουσες ρίζες στα κατωτερα και ανώτερα συχνοτικά όρια, τις 

ιδιότητες σκεδασμού και διασποράς, διακλάδωση των πρωτευουσών ριζών, κλπ. 

Με τον τρόπο αυτό εξάγονται εννέα διαφορετικοί αλγόριθμοι.  

 

0.2.2.  Τροποποίηση του γραμμικού αλγορίθμου για υπολογισμό της μη 

γραμμικής δυναμικής απόκρισης 

 

Η οικογένεια των αλγορίθμων εν χρόνω ολοκλήρωσης που παρουσιάστηκε 

παραπάνω τροποποιείται για να λάβει υπόψη της τη μη γραμμική δυναμική 

απόκριση που προέρχεται από μη γραμμικότητα υλικού. Στη γενική περίπτωση, 

για να προχωρήσει ο αλγόριθμος από το τρέχον βήμα ( nu , nu , nu ) στο επόμενο (

n 1u  , n 1u  , n 1u  ), απαιτούνται τα μητρώα της τέμνουσας δυσκαμψίας και της 

απόσβεσης, τα οποία συνήθως εξαρτώνται από τα n 1u   και n 1u  . Δεδομένου ότι τα 

τελευταία είναι άγνωστα, τα εν λόγω μητρώα υπολογίζονται με επαναληπτικό 

τρόπο ούτως ώστε ο αλγόριθμος να συγκλίνει στη λύση. Η σύγκλιση 

επιτυγχάνεται μεσω μια επαναληπτικής διαδικασίας τύπου Newton-Raphson. Σε 

μερικούς αλγορίθμους εν χρόνω ολοκλήρωσης η ανωτέρω επαναληπτική 

διαδικασία αποφεύγεται με τη χρήση των αρχικών εφαπτομενικών μητρώων 

δυσκαμψίας και απόσβεσης, ωστόσο η προσέγγιση αυτή δεν είναι απόλυτα 

θεωρητικά σωστή. Το διαγραμμα ροής του μη γραμμικού αλγορίθμου εν χρόνω 

ολοκλήρωσης απλού βήματος απλής λύσης που αναπτύχθηκε στην παρούσα 

διατριβή παρουσιάζεται στην εικόνα 0.1. 

 

0.2.3.  Αποτελέσματα σχετικά με την αποτελεσματικότητα των μη 

γραμμικών αλγορίθμων χρονικής ολοκλήρωσης 

 

Συγκρίνονται δεκατρείς διαφορετικοί αλγόριθμοι εν χρόνω ολοκλήρωσης μεσω 

εφαρμογής τους για την επιλυση έξι προβλημάτων αναφοράς. Οι αλγόριθμοι που 

συγκρίνονται είναι οι εξής: 

 Newmark Average Constant Acceleration (Newmark, 1959) <1> 

 Newmark Linear Acceleration (Newmark, 1959) <2> 

 Newmark Backward Acceleration (Ascher & Petzold, 1998) <3> 

 Fox-Goodwin (Fox & Goodwin, 1949) <4> 

 U0-V1-Opt <5> 

 U0-V1-CA <6> 

 U0-V1-DA <7> 

 U0-V0-Opt <8> 

 U0-V0-CA <9> 

 U0-V0-DA <10> 

 U1-V0-Opt <11> 

 U1-V0-CA <12> 

 U1-V0-DA <13> 
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Ο δείκτης που υπάρχει κατω από τα σύμβολα U (μετατόπιση) και V (ταχύτητα) 

δίνει την τάξη υπερακόντισης του καθε αλγορίθμου ως προς τη μετατόπιση και 

την ταχύτητα αντίστοιχα, ενώ η κατάληξη «-Opt» υποδηλώνει ότι ο αλγόριθμος 

διαθέτει βέλτιστο αριθμητικό σκεδασμό και διασπορά, και οι καταλήξεις «-CA» 

και «-DA» υποδηλώνουν αντιστοιχα συνεχή και ασυνεχή μεταβολή της 

επιτάχυνσης σε καθε χρονικό βήμα.  

Τα έξι προβλήματα αναφοράς περιλαμβάνουν τη δυναμική ανάλυση μη 

γραμμικών μονοβάθμιων συστημάτων με διάφορα καταστατικά προσομοιώματα 

και τύπους απόσβεσης και είναι τα εξής: 

 

 Μονοβάθμιος ταλαντωτής χωρίς απόσβεση με σκλήρυνση 

 Μονοβάθμιος ταλαντωτής χωρίς απόσβεση με κράτυνση 

 Μονοβάθμιος γραμμικά ελαστικός ταλαντωτής χωρίς απόσβεση  

 Μονοβάθμιος γραμμικά ελαστικός ταλαντωτής με ιξωδοελαστική 

απόσβεση  

 Μονοβάθμιος γραμμικά ελαστικός ταλαντωτής με απόσβεση Coulomb 

 Μονοβάθμιος γραμμικά ελαστικός ταλαντωτής με υστερητική απόσβεση 

 

Στόχος των παραπάνω εφαρμογών είναι η αξιολόγηση της απόδοσης των 

διαφόρων αλγορίθμων εν χρόνω ολοκλήρωσης. 
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Εικόνα 0.1: Ψευδοκώδικας του αλγορίθμου μη γραμμικής εν χρόνω ολοκλήρωσης 

που αναπτύχθηκε στην παρούσα διατριβή. 
 
 
Η μάζα όλων των μονοβάθμιων ταλαντωτών που θεωρούνται στο παρόν κεφάλαιο 
θεωρείται ίση με τη μονάδα, χωρίς βλάβη της γενικότητας. Το χρονικό βήμα 

ισούται με t 0.01   (επαρκώς μεγάλο για να προκύπτει υπολογίσιμο σφάλμα 
κατα τη χρονική ολοκλήρωση) και η διάρκεια της δυναμικής απόκρισης είναι ίση 
με 100 βήματα (1 sec) για όλα τα προβλήματα αναφοράς. Ένας αποτελεσματικός 
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αλγόριθμος χρονικής ολοκλήρωσης θα πρεπει να κάνει ακριβή υπολογισμό της 
ενέργειας των μονοβάθμιων συστημάτων. Ως «ακριβής» τιμή της ενέργειας του 
κάθε ταλαντωτή, θεωρείται η ενέργεια που υπολογίζεται με τον εκάστοτε 
αλγόριθμο χρονικής ολοκλήρωσης χρησιμοποιώντας ένα πολύ μικρότερο χρονικό 
βήμα (και άρα πολύ ακριβέστερο υπολογισμό). Το εν λόγω χρονικό βήμα 

λαμβάνεται ίσο με 0.0001t  , που αντιστοιχεί σε 10000 βήματα για δυναμική 
απόκριση διάρκειας 1 sec. Δεδομένου ότι το χρονικό βήμα η χρονική διάρκεια, η 
δυσκαμψία (σε μικρές παραμορφώσεις) οι αρχικές συνθήκες και οι σταθερές 
ολοκλήρωσης είναι ίδιες για όλα τα προβλήματα αναφοράς, οι διαφορές που 
εμφανίζονται στους ενεργειακούς υπολογισμούς οφείλονται αποκλειστικά στις 
διαφορετικές ποιότητες των εμπλεκόμενων αλγορίθμων χρονικής ολοκλήρωσης. 
Στην Εικόνα 0.2 παρουσιάζονται αποτελέσματα για τη χρονική εξέλιξη του 
σχετικού σφάλματος στη συνολική ενέργεια κάθε ταλαντωτή, για τρεις 
αλγορίθμους με βέλτιστο αριθμητικό σκεδασμό και διασπορά. Παρατηρείται ότι ο 
αλγόριθμος U0-V0-Opt δίνει το μικρότερο σφάλμα σε σχέση με τους υπόλοιπους 
αλγορίθμους, για όλα τα προβλήματα αναφοράς. Με δεδομένο ότι όλοι οι 
συγκρινόμενοι αλγόριθμοι είναι κατηγορίας βέλτιστου αριθμητικού σκεδασμού και 
διασποράς, τα αποτελέσματα δείχνουν ότι είναι επιθυμητή η χρήση αλγορίθμων 
ολοκλήρωσης με μηδενική τάξη υπερακόντισης τόσο ως προς την μετατόπιση όσο 
και ως προς την ταχύτητα, για αυξημένη ακρίβεια στα αποτελέσματα.  
 
 
 
 



xxii  

 

 

 
Εικόνα 0.2: Χρονοιστορία του σχετικού σφάλματος της ολικής ενέργειας των 

μονοβάθμιων ταλαντωτών των προβληματων αναφοράς 1-5, με χρήση αλγορίθμων 
χρονικής ολοκληρωσης κατηγορίας βέλτιστου αριθμητικού σκεδασμού και 

διασποράς (-Opt). 

 

Το μέγιστο σχετικό σφάλμα της χρονοιστορίας της ολικής ενέργειας για όλα τα 
ζεύγη αλγορίθμων – προβλημάτων αναφοράς παρουσιάζονται στην εικόνα 0.3, 
όπου στον κατακόρυφο άξονα παρουσιάζεται το μέγιστο σχετικό σφάλμα της 
ολικής ενέργειας και στον οριζόντιο άξονα παρουσιάζονται τα ζεύγη αλγορίθμου – 
προβλήματος αναφοράς. Το ελάχιστο σφάλμα παρατηρείται για τους 
αλγορίθμους συνεχούς επιτάχυνσης (συμπεριλαμβανομένου και του αλγορίθμου 
Hilber-Hughes-Taylor – HHT) για τον γραμμικά ελαστικό ταλαντωτή με 
απόσβεση Coulomb, τον ταλαντωτή χωρίς απόσβεση με κρατυνόμενη 
συμπεριφορά, τον γραμμικά ελαστικό ταλαντωτή χωρίς και με ιξωδοελαστική 
απόσβεση. Από την άλλη μεριά, στην περίπτωση του ταλαντωτή χωρίς απόσβεση 



 xxiii 

 

 

με σκλήρυνση όπου εφαρμόζονται αλγόριθμοι χρονικής ολοκλήρωσης ασυνεχούς 
επιτάχυνσης, παρατηρείται το μεγαλύτερο σφάλμα. 
 

 

 
Εικόνα 0.3: Μέγιστο σχετικό σφάλμα της συνολικής ενέργειας των ταλαντωτών των 

προβλημάτων αναφοράς 1-5 υπολογιζόμενης με τους αλγορίθμους χρονικής 
ολοκλήρωσης που αναπτύχθηκαν στο παρόν κεφάλαιο. 

 

0.2.4.  Γραμμικά ελαστικό σύστημα 3 βαθμών ελευθερίας χωρίς απόσβεση 

 

Πέραν των προαναφερθέντων προβλημάτων αναφοράς, το πρόβλημα των Bathe 

& Noh (2012) επιλύθηκε με τους αλγορίθμους χρονικής ολοκλήρωσης που 

παρουσιάζονται στο κεφάλαιο αυτό. Το προβλημα αφορά ένα σύστημα 3 βαθμών 

ελευθερίας που φαίνεται στην Εικόνα 0.4, και αντιπροσωπεύει μοντέλα 

πεπεραμένων στοιχείων που περιλαμβάνουν στοιχεία τόσο κανονικής, όσο και 

σχετικά μεγάλης δυσκαμψίας. Τα στοιχεία μεγάλης δυσκαμψίας μπορεί να 

αντιπροσωπεύουν π.χ. άκαμπτες συνδέσεις, στηρίξεις, πακτώσεις, κλπ, ή ακόμα 

και συντελεστές ποινής (penalty factors) για διάφορους τύπους περιορισμών. Οι 

αλγόριθμοι που παρουσιάζονται στο κεφάλαιο αυτό έλυσαν το εν λόγω πρόβλημα 

ακριβέστερα σε σχέση με τους στοιχειώδεις γνωστούς αλγορίθμους χρονικής 

ολοκλήρωσης. 

 

 

Εικόνα 0.4: Προσομοίωμα αναφοράς 3 βαθμών ελευθερίας (Bathe & Noh, 2012). 
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0.2.5.  Ταλάντωση απλού εκκρεμούς χωρίς απόσβεση με μεγάλη στροφή 

 

Ένα ευρέως διαδεδομένο πρόβλημα αναφοράς που χρησιμοποιείται για την 

εκτίμηση της αποτελεσματικότητας αλγορίθμων χρονικής ολοκλήρωσης είναι η 

ταλάντωση απλού εκκρεμούς χωρίς απόσβεση με μεγάλη στροφή. Αυτό 

αποτελείται από μια σημεική μάζα συνδεδεμένη σε μια αβαρή και άκαμπτη ράβδο, 

εντός βαρυτικού πεδίου. Η ακριβής λύση της μη γραμμικής ελεύθερης 

ταλάντωσης του εκκρεμούς χρησιμοποιείται ως λύση αναφοράς. Το απλό 

εκκρεμές εικονίσεται στην Εικόνα 0.5.  

 
Εικόνα 0.5: Απλό εκκρεμές χωρίς απόσβεση με μεγάλη στροφή. 

 

Όπως και στο προηγούμενο πρόβλημα αναφοράς, αποδεικνύεται ότι οι 

αλγόριθμοι που παρουσιάζονται στο παρόν κεφάλαιο δίνουν ακριβέστερες λύσεις 

σε σχεση με τους στοιχειώδεις αλγορίθμους. 

 

 

0.2.6.  Συμπεράσματα 

 
Η οικογένεια των αλγορίθμων χρονικής ολοκλήρωσης απλού βήματος απλής 
λύσης που περιλαμβάνει τους πιο γνωστούς αλγορίθμους χρονικής ολοκλήρωσης 
ως ειδικές περιπτώσεις, μπορεί να επεκταθεί για την επίλυση μη γραμμικών 
προβλημάτων δυναμικής απόκρισης λόγω μη γραμμικότητας περοερχόμενης τόσο 
από το υλικό όσο και από τη γεωμετρία, μεσω μιας επαναληπτικής διαδικασίας 
τύπου Newton – Raphson. Ακόμα και με σχετικά μεγάλο μέγεθος χρονικού 
βήματος, οι ανωτέρω αλγόριθμοι είναι αποτελεσματικοί, με παραδεκτή ακρίβεια 
και ευστάθεια, ενώ είναι πολύ ανώτεροι από τους στοιχειώδεις αλγορίθμους, οι 
οποίοι αποτυγχάνουν να υπολογίσουν τη δυναμική απόκριση χρησιμοποιώντας το 
ίδιο μέγεθος χρονικού βήματος.  
Επισημαίνεται ότι, απόλυτα ευσταθείς αλγόριθμοι για γραμμικά προβλήματα, 
μπορεί να χάσουν την ευστάθειά τους στη μη γραμμική περιοχή. Για αυξημένο 

θ
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L

0 0,θ θ
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χρονικό βήμα (και συνεπώς μικρότερο υπολογιστικό φόρτο) οι αλγόριθμοι 
σταθερής επιτάχυνσης, στους οποίους περιλαμβάνεται ο αλγόριθμος HHT ως 
ειδική περίπτωση, δίνουν το πιο ακριβές αποτέλεσμα υπολογισμού της δυναμικής 
απόκρισης για τις περισσότερες από τις περιπτώσεις που μελετήθηκαν. Αποτελούν 
για το λόγο αυτό την βελτιστη επιλογή, ως προς τη γενική τους απόδοση για τον 
υπολογισμό της δυναμικής απόκρισης. Περαν αυτού, ο μεγάλος αριθμός των 
σταθερών ολοκλήρωσης των αλγορίθμων απλού βήματος απλής λύσης, δίνει την 
ευελιξία της επιλογής των τιμών τους λαμβάνοντας υπόψη τις ιδιαιτερότητες του 
προβλήματος ή/και της κατασκευής που πρόκειται να επιλυθεί.  
 
 

0.3. OpenSeismoMatlab: Ένα νέο λογισμικό ανοικτού κώδικα για την 

επεξεργασία δεδομένων ισχυρών εδαφικών κινήσεων 

 

0.3.1.  Χαρακτηριστικά, δυνατότητες και εφαρμογές 

 
Ένα νέο λογισμικό ανοικτού κώδικα εισάγεται στην παρούσα διατριβή το οποίο 
μπορεί να επεξεργάζεται δεδομένα ισχυρών σεισμικών καταγραφών, και είναι 
γραμμένο σε γλώσσα προγραμματισμού MATLAB. Το εν λόγω λογισμικό 
χρησιμοποιεί ένα ελαστοπλαστικό διγραμμικό καταστατικό προσομοίωμα με 
κρατυνόμενη συμπεριφορά κινηματικού τύπου, το οποίο ενσωματώνει σε ένα 
αλγόριθμο εν χρόνω ολοκλήρωσης, απλού βήματος, απλής λύσης, ο οποίος 
παρουσιάζεται στο κεφάλαιο 2 της παρούσας διατριβής. Το OpenSeismoMatlab 
μπορεί να υπολογίζει χρονοιστορίες, μέγιστες τιμές, ένταση Arias και τη 
χρονοιστορία αυτής, την ενεργό διάρκεια ενός σεισμού, διάφορα γραμμικά 
ελαστικά φάσματα και ψευδοφάσματα απόκρισης, διάφορα ανελαστικά φάσματα 
απόκρισης σταθερής πλαστιμότητας, και επίσης φάσματα πλατους Fourier και τη 
μεση περίοδο ενός σεισμογραφήματος. Δεδομένης της ανοικτής φύσης του, το 
OpenSeismoMatlab μπορεί να επεκταθεί ή/και να τροποποιηθεί εύκολα, πραγμα 
που το καθιστά ένα λογισμικό μεγάλης εκπειδευτικής ή/και ερευνητικής αξίας για 
την επαγγελματική και ερευνητική κοινότητα.  
Στο 3ο κεφάλαιο της παρούσας διατριβής παρουσιάζονται λεπτομερώς η δομή, οι 
αλγόριθμοι καθώς και οι κύριες υπορουτίνες του ανωτέρω λογισμικού. Επίσης, 
γίνεται εφαρμογή του σε μια γκαμα ισχυρών σεισμικών εδαφικών κινήσεων και 
υπολογίζονται διάφορα φάσματα, τα οποία συγκρίνονται με αντίστοιχα 
αποτελέσματα από άλλα κατοχυρωμένα λογισμικά.  
Η σημαντικότητα του λογισμικού καθώς και των αυξημένης ακριβείας 
αποτελεσμάτων του διαφαίνεται από το γεγονός ότι σχεδόν όλοι οι αντισεισμικοί 
κώδικες και κανονισμοί διεθνώς απαιτούν την επιλογή αντιπροσωπευτικών 
ισχυρών σεισμικών καταγραφών οι οποίες χρησιμοποιούνται ως αρχικά δεδομένα 
για το σχεδιασμό των κατασκευών, με βαση την απόκριση των τελευταίων στις 
καταγραφές αυτές. Είναι επομένως σημαντικό να γίνεται ρεαλιστική επιλογή και 
επεξεργασία των ακατέργαστων ισχυρών καταγραφών, με σκοπό τον υπολογισμό 
εκείνων των σεισμικών παραμέτρων που χρησιμεύουν στον υπολογισμό της 
δυναμικής απόκρισης της κατασκευής που σχεδιάζεται. Διάφορα λογισμικά έχουν 
αναπτυχθεί για την επιλογή ισχυρών σεισμικών εδαφικών κινήσεων, που 
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χρησιμοποιούνται για τη δυναμική ανάλυση και τον αντισεισμικό σχεδιασμό των 
κατασκευών (Katsanos & Sextos, 2013; Macedo & Castro, 2017). Μεταξύ των πιο 
σημαντικών σεισμικών παραμέτρων μις ισχυρής εδαφικής κίνησης είναι οι 
διάφοροι τύποι φασμάτων (ελαστικά φάσματα απόκρισης, φάσματα σταθερής 
πλαστιμότητας, φάσματα σταθερής αντοχής διαρροής, φάσματα Fourier, κλπ) τα 
οποία προκύπτουν από την ελεξεργασία των ακατέργαστων σεισμικών 
καταγραφών και τα οποία χρησιμοποιούνται σε διάφορες μεθόδους αντισεισμικού 
σχεδιασμού, όπως η δυναμική φασματική ανάλυση, η ασύζευκτη ιδιομορφική 
ανάλυση χρονοιστορίας (Uncoupled Modal Response History Analysis, UMRHA), 
η ιδιομορφική ανάλυση pushover (MPA), κλπ (Chopra, 2012). Επίσης, με 
κατάλληλη προσαρμογή του φάσματος Fourier μιας ισχυρής σεισμικής 
καταγραφής, είναι δυνατός ο έλεγχος του συχνοτικού περιεχομένου της. Όλα τα 
παραπάνω δείχνουν ότι ένα λογισμικό ακριβείας για την επεξεργασία των 
καταγραφών είναι απαραίτητο για τον σωστό αντισεισμικό σχεδιασμό των 
κατασκευών, συμπεριλαμβανομένων στρατηγικών για διασφάλιση της υγείας και 
της ασφάλειας των ενοίκων και των περιουσιακών τους στοιχείων κατα τη 
διάρκεια ζωής της κατασκευής. Στο 5ο κεφάλαιο της παρούσα διατριβής 
αναπτύσσεται μεθοδολογία για την επιλογή σεισμικών καταγραφών με σκοπό τη 
δυναμική ανάλυση και τον αντισεισμικό σχεδιασμό των κατασκευών, η οποία 
χρησιμοποιεί με επιτυχία το OpenSeismoMatlab, όπως φαίνεται από την ποιότητα 
και αντιπροσωπευτικότητα των παραγόμενων τεχνητών σεισμικών καταγραφών  
Το OpenSeismoMatlab έχει τα ακόλουθα πλεονεκτήματα και μοναδικά 
χαρακτηριστικά, έναντι των υπόλοιπων λογισμικών επεξεργασίας ισχυρών 
σεισμικών εδαφικών κινήσεων: 
 

 Χρησιμοποιεί αλγόριθμους εν χρόνω ολοκλήρωσης τελευταίας τεχνολογίας 
(απλού βήματος, απλής λύσης) οι οποίοι είναι πιο εύρωστοι και ακριβείς, 
όπως αποδείχθηκε στο κεφάλαιο 2 της παρούσας διατριβής 
(Papazafeiropoulos et al., 2017a; Papazafeiropoulos et al., 2017b) σε σχέση 
με τους συμβατικούς αλγορίθμους εν χρόνω ολοκλήρωσης (Newmark, 
κλπ.) που χρησιμοποιούνται ευρέως από τα άλλα λογισμικά. Οι πρώτοι 
ανήκουν σε μια οικογένεια αλγορίθμων απλού βήματος απλής λύσης και, 
μεσω των 14 ανεξάρτητων σταθερών ολοκλήρωσης που διαθέτουν, 
μπορούν να προσαρμοστούν εύκολα για τον έλεγχο της αριθμητικής 
απόσβεσης και διασποράς, της συνέχειας της επιτάχυνσης εντός του 
χρονικού βήματος, καθώς και της τάξης της υπερακόντισης στη 
μετακίνηση και την ταχύτητα. Επιλέγοντας τις τιμές των σταθερών 
ολοκλήρωσης, ο χρήστης μπορεί να διαλέξει από μια μεγάλη ποικιλία 
αλγορίθμων εν χρόνω ολοκλήρωσης, σύμφωνα με τους Papazafeiropoulos 
et al. (2017a) και αυτό επιτρέπει την βέλτιστη ποιότητα των παραγόμενων 
αποτελεσμάτων (χρονοιστοριών, φασμάτων, κλπ). 

 Είναι τελείως δωρεάν και παρέχεται σε μορφή ανοικτού κώδικα, 
χαρακτηριστικά που το καθιστούν μεγάλης εκπαιδευτικής και ερευνητικής 
αξίας. Περιέχει κώδικα MATLAB γραμμένο με απλό τρόπο, συνοδευόμενο 
από σχόλια και συνεπώς είναι εύκολα κατανοήσιμο από το χρήστη. Η 
λογική των χρησιμοποιούμενων μεθόδων εξηγείται λεπτομερώς με μορφή 
σολίων εντός του κώδικα. Περαν αυτών, ο ανοικτός κώδικας παρέχει την 
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δυνατότητα επέκτασης, αναβάθμισης ή ουσιώδους τροποποίησής του με 
κάθε επιθυμητό τρόπο. 

 Επιπλέον, το ελαστοπλαστικό διγραμμικό καταστατικό προσομοίωμα με 
κρατυνόμενη σκλήρυνση που περιλαμβάνει το OpenSeismoMatlab, το 
οποίο αποτελεί βασικό κομμάτι για τον υπολογισμό των μη γραμμικών 
φασμάτων, είναι διατυπωμένο με τρόπο ταυτόχρονα απλό και ακριβή. Το 
OpenSeismoMatlab δεν περιλαμβάνει απλοικές μορφές του εν λόγω 
καταστατικού προσομοιώματος υλικού, όπως συμβαίνει συχνά στη 
βιβλιογραφία (Newmark & Hall, 1982; Krawinkler & Nassar, 1992; Miranda 
& Bertero, 1994). 

 
Ο πλήρης κώδικας του OpenSeismoMatlab έχει ανέβει σε δυο διαφορετικές 
διαδικτυακές πλατφόρμες διανομής: (i) την υπηρεσία File Exchange του MATLAB 
central (Papazafeiropoulos, 2018) και (ii) στο ResearchGate (Papazafeiropoulos & 
Plevris, 2018), ούτως ώστε να είναι δημόσια διαθέσιμο.  

 

0.3.2.  Δομή και κώδικας του OpenSeismoMatlab 

 

Στην Εικόνα 0.6 φαίνεται το διάγραμμα εξάρτησης μεταξύ των διαφόρων 

υπορουτίνων που χρησιμοποιούνται από το OpenSeismoMatlab Οι τέσσερις 

κύριες συναρτήσεις είναι οι LEReSp για τον υπολογισμό του φάσματος γραμμικά 

ελαστικής απόκρισης, CDReSp για τον υπολογισμό του φάσματος σταθερής 

πλαστιμότητας, FASp για τον υπολογισμό των φασμάτων Fourier, και 

baselineCorr για τη διόρθωση της γραμμής βάσης (baseline correction) της 

καταγραφής εισόδου. Οι υπορουτίνες DRHA, NLIDABLKIN και HalfStep 

καλούνται άμεσα από τη συνάρτηση CDReSp και χρησιμοποιούνται για τη 

δυναμική ανάλυση χρονοιστορίας, το μοντέλο μη γραμμικής δυναμικής ανάλυσης 

με διγραμμικό κινηματικής κράτυνσης υλικό, και διαίρεση μιας σεισμικής 

καταγραφής στο μισό του αρχικού χρονικού βήματος, αντίστοιχα. Η συνάρτηση 

LIDA χρησιμοποιείται για τη γραμμική δυναμική ανάλυση και καλέιται από τις 

συναρτήσεις LEReSp και DRHA, όπου η υπορουτίνα BLKIN καλείται από τη 

συνάρτηση NLIDABLKIN. 

 

 
Εικόνα 0.6: Σχηματικό διάγραμμα εξάρτησης μεταξύ των διαφόρων υπορουτίνων 

που περιλαμβάνονται στο λογισμικό OpenSeismoMatlab. 

OpenSeismoMatlab

FASp.mbaselineCorr.m

CDReSp.mLEReSp.m

DRHA.m NLIDABLKIN.m HalfStep.m

LIDA.m BLKIN.m
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Οι σχετικοί κώδικες των ανωτέρω συναρτήσεων παρουσιάζονται αναλυτικά στο 
κεφάλαιο 3 της διατριβής. Για παράδειγμα, ένα διάγραμμα ροής για τον 
υπολογισμό του φάσματος ελαστικής απόκρισης μιας ισχυρής σεισμικής 
καταγραφής φαίνεται στην Εικόνα 0.7  

 

 
Εικόνα 0.7: Διάγραμμα ροής για τον υπολογισμό του φάσματος ελαστικής 

απόκρισης, που χρησιμοποιείται στο OpenSeismoMatlab. 
 

Ενδεικτικά παρουσιάζεται στην Εικόνα 0.8 (και στην Εικόνα 0.9, ως συνέχεια της 
0.8) ο κώδικας της συνάρτησης LEReSp.m, η οποία χρησιμοποιείται για τον 
υπολογισμό του φάσματος γραμμικά ελαστικής απόκρισης.  

 

Input: gu ,  ,   

Initialize SD ,SV SA  

Set 0u  and 0u  

for each SDOF i with eigenfrequency i  

    if  i t 2 0.02    

        Reproduce gu with half time step (from t  to t 2 ) 

        Set t t 2    

    end 

    Perform dynamic analysis of SDOF with input ( gu , , 0u , 0u ) 

    Assign   max u t  to  SD i  

    Assign   max u t  to  SV i  

    Assign   max u t  to  SA i  

end 

Calculate PSV SD  and 2PSA SD  

Output: SD , SV , SA , PSV , PSA  
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Εικόνα 0.8: Πηγαίος κώδικας της συνάρτησης LEReSp. 

 

function [PSa,PSv,Sd,Sv,Sa]=LEReSp(dt,xgtt,T,varargin) 

% set defaults for optional inputs 

optargs = {0.05,0.01,'U0-V0-CA',0}; 

% skip any new inputs if they are empty 

newVals = cellfun(@(x) ~isempty(x), varargin); 

% overwrite the default values by those specified in varargin 

optargs(newVals) = varargin(newVals); 

% place optional args in memorable variable names 

[ksi,dtTol,AlgID,rinf] = optargs{:}; 

% initialize 

NumSDOF=length(T); 

Sd=zeros(NumSDOF,1); 

Sv=zeros(NumSDOF,1); 

Sa=zeros(NumSDOF,1); 

% Set the eigenfrequencies of the SDOF population 

omega=2*pi./T; 

% Flip eigenfrequency vector in order for the half-stepping algorithm 

% (HalfStep function) to work from large to small eigenperiods 

omega=omega(end:-1:1); 

% set initial conditions 

u0=0; 

ut0=0; 

% zero-order displacement & velocity overshooting behavior and 

% optimal numerical dissipation and dispersion 

rinf=1; % mid-point rule a-form algorithm 

for j=1:length(T) 

    omegaj=omega(j); 

    % Check if dt/T>dtTol. If yes, then reproduce the time history     

    % with the half step 

    if dt*omegaj/(2*pi)>dtTol 

        xgtt=HalfStep(xgtt); 

        dt=dt/2; 

    end 

    [u,ut,utt] = LIDA(dt,xgtt,omegaj,ksi,u0,ut0,AlgID,rinf); 

    % output 

    Sd(j)=max(abs(u)); 

    Sv(j)=max(abs(ut)); 

    Sa(j)=max(abs(utt)); 

end 

 

% Flip output quantities to be compatible with omega 

omega=omega(end:-1:1); 

Sd=Sd(end:-1:1); 

Sv=Sv(end:-1:1); 

Sa=Sa(end:-1:1); 

% Calculate pseudovelocity and pseudoacceleration 

PSv=Sd.*omega; 

PSa=Sd.*omega.^2; 
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Εικόνα 0.9: Πηγαίος κώδικας της συνάρτησης LEReSp (συνέχεια της Εικόνας 0.8). 

 

 

0.3.3.  Αποτελέσματα - συγκρίσεις 
 

Με στόχο την επαλήθευση της ορθότητας των αποτελεσμάτων του 

OpenSeismoMatlab, αυτά συγκρίνονται με αντίστοιχα αποτελέσματα ενός 

εμπορικού λογισμικού επεξεργασίας δεδομένων ισχυρών σεισμικών καταγραφών, 

του SeismoSignal. Λεπτομερής περιγραφή του λογισμικού αυτού δίνεται στην 

παράγραφο 3.1 της παρούσας διατριβής. Το SeismoSignal επιλέχθηκε λόγω του ότι 

είναι εύκολο στη χρήση, έχει σχετικά λεπτομερή βιβλιογραφία υψηλής ποιότητας 

και είναι γενικά αποδεκτό ως ένα αξιόπιστο εργαλείο παγκοσμίως, δεδομένου ότι 

χρησιμοποιείται εδώ και μερικά χρόνια από ερευνητές και επαγγελματίες.  

Ωστόσο, το SeismoSignal χρησιμοποιεί συμβατικούς αλγορίθμους εν χρόνω 

ολοκλήρωσης, και σε ορισμένες περιπτώσεις μπορεί να είναι επιρρεπές σε 

σφάλματα, ιδίως όταν απαιτείται χρήση αλγορίθμων με ανώτερης ποιότητας 

ιδιότητες αριθμητικής απόσβεσης και υπερακοντισμού σε σχέση με αυτές των 

αλγορίθμων Newmark. Το OpenSeismoMatlab ερχεται για να βελτιώσει αυτήν την 

αδυναμία. Για λόγους σύγκρισης, επιλέχθηκε ένας αριθμός ισχυρών σεισμικών 

καταγραφών σε όρους χρονοιστορίας επιτάχυνσης τα στοιχειά των οποίων 

φαίνονται στον Πίνακα 0.1  

 

Earthquake Year Station 

Imperial Valley 1979 
El Centro Array Sta 8, CA, 95 E 

Cruickshank Rd 

Izmit-Kocaeli 1999 Yarimca Petkim 

Loma Prieta 1989 
Gilroy Array Sta 3, CA, Sewage 

Plant 

Northridge 1994 090 CDMG Station 24278 

San Fernando 1971 Castaic, CA, Old Ridge Route 

Spitak 1988 Gukasyan 

Cape Mendocino 1992 Cape Mendocino, CA, Petrolia 

% Flip output quantities to be compatible with omega 

omega=omega(end:-1:1); 

Sd=Sd(end:-1:1); 

Sv=Sv(end:-1:1); 

Sa=Sa(end:-1:1); 

% Calculate pseudovelocity and pseudoacceleration 

PSv=Sd.*omega; 

PSa=Sd.*omega.^2; 

end 
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Chi-Chi 1999 Nantou - Hsinjie School, WNT 

El Centro 1940 
El Centro Terminal Substation 

Building 

Hollister 1961 USGS Station 1028 

Kobe 1995 Takarazuka 

Πίνακας 0.1: Σεισμοί ισχυρές καταγραφές των οποίων χρησιμοποιήθηκαν για τη 
σύγκριση των αποτελεσμάτων των SeismoSignal και OpenSeismoMatlab. 

 
Στην εικόνα 0.10 φαίνεται η φασματική μετατόπιση των ανελαστικών φασμάτων 
σταθερής πλαστιμότητας των έντεκα ισχυρών σεισμικών καταγραφών που 
παρουσιάζονται στον πίνακα 0.1, για στοχευόμενη πλαστιμότητα ίση με 2. Οι 
διαφορές μεταξύ των καμπυλών του OpenSeismoMatlab και SeismoSignal 
αποδίδονται στους διαφορετικούς αλγόριθμους εν χρόνω ολοκλήρωσης που 
χρησιμοποιούνται από τα δυο προαναφερόμενα λογισμικά, την ανωτερότητα του 
αλγορίθμου εν χρόνω ολοκλήρωσης που χρησιμοποιεί το OpenSeismoMatlab και 
άλλους παράγοντες σχετιζόμενους με την αποτελεσματικότητα της υλοποίησης 
των διαφόρων αλγοριθμικών διαδικασιών στον κώδικα των δυο λογισμικών. Παρά 
τα παραπάνω, γενικά τα αντίστοιχα αποτελέσματα των δυο λογισμικών είναι 
λογικά κοντά μεταξύ τους τόσο στη γραμμική όσο και στη μη γραμμική περιοχή. Η 
συμφωνία μεταξύ των δυο λογισμικών είναι πολύ μεγαλύτερη στη γραμμική 
περιοχή, σε σχέση με τη μη γραμμική.  
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Εικόνα 0.10: Ανελαστικά φάσματα μετατόπισης σταθερής πλαστιμότητας για τις 11 

ισχυρές σεισμικές καταγραφές υπολογισμένα με OpenSeismoMatlab και 
SeismoSignal.  

 

0.3.4.  Επίδραση του χρονικού βήματος στην ακρίβεια των αποτελεσμάτων 

 

Θεωρείται το φάσμα της ψευδοεπιτάχυνσης (PSa) της χρονοιστορίας επιτάχυνσης 

που αντιστοιχεί στη συνάρτηση  gu sin 20 t   με ποσοστό κρίσιμης απόσβεσης   

ίσο με 5%. Η διέγερση είναι μια αρμονική (ημιτονοειδής) κίνηση με κυκλική 

συχνότητα ίση με 20  (δηλ. συχνότητα 10 Hz και περίοδο 0.1 sec) και συνολική 

διάρκεια 2 sec, ενώ έχει ψηφιοποιηθεί σε επαρκώς μικρά χρονικά βήματα (
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t 0.0001s  ). Το φάσμα PSa υπολογίζεται ξεχωριστά με το OpenSeismoMatlab 

και το SeismoSignal και αρχικά γίνεται σύγκριση μεταξύ των δυο λύσεων. Η 

σύγκριση αυτή φαίνεται στην Εικόνα 0.11 όπου ο δεκαδικός λογάριθμος του 

φάσματος PSa παριστάνεται γραφικά σαν συνάρτηση της ιδιοπεριόδου.  

Είναι προφανές ότι οι δυο καμπύλες σχεδόν συμπίπτουν και επίσης συμπίπτουν με 

την ακριβή λύση, δεδομένου ότι το χρονικό βήμα είναι αρκούντως μικρό. Οι 

διαφορές μεταξύ των καμπυλών είναι της τάξης του 5ου δεκαδικού ψηφίου. 

Ορίζουμε τη λύση αυτή ως λύση αναφοράς για καθε λογισμικό, 0PSa , η οποία από 

εδω και εφεξής θεωρείται ως η ακριβής λύση. Όσο το μέγεθος του χρονικού 

βήματος αυξάνει, το φάσμα PSa εμφανίζει αριθμητικό σφάλμα. Ένα μέτρο αυτού 

του σφάλματος μπορεί να είναι η τετραγωνική ρίζα του μέσου όρου των 

τετραγώνων των αποκλίσεων μεταξύ του φάσματος PSa για μια αυθαίρετη τιμή 

του Δt και του ακριβούς φάσματος 0PSa  που παρουσιάζεται στην εικόνα 0.11. Το 

σφάλμα υπολογίζεται από την εξίσωση (3.22) ως ακολούθως:  

 

 
n

2
i i

t 0

i 1

PSa PSa

RMSD
n










  (0.17) 

όπου tPSa  είναι το φάσμα PSa που υπολογίζεται για χρονικό βήμα ίσο με Δt και n 

είναι ο αριθμός των τιμών ιδιοπεριόδου που περιέχονται στην καμπύλη του 

φάσματος PSa (n=400 στην παρούσα διερεύνηση). Οι διαφορετικές τιμές του Δt 

που θεωρούνται είναι 3×10-4 s, 1×10-3 s και 3×10-3 s. Για κάθε μια από αυτές τις 

τιμές υπολογίζονται δύο φάσματα tPSa , ένα από το OpenSeismoMatlab και ένα 

από το SeismoSignal. Μετά, εφαρμόζεται η εξίσωση (3.22) για τα δυο λογισμικά 

ξεχωριστά, όπου υπολογίζονται δυο ξεχωριστές καμπύλες RMSD και 

παριστάνονται στην Εικόνα 0.12 για λόγους σύγκρισης. Είναι προφανές ότι οι 

λύσεις που παρέχονται από το OpenSeismoMatlab έχουν μικρότερο σφάλμα από 

τις αντίστοιχες λύσεις που παρέχοναι από το SeismoSignal, για τα διάφορα μεγέθη 

του χρονικού βήματος. Συνεπώς, η ποιότητα των αποτελεσμάτων του 

OpenSeismoMatlab είναι ανώτερη από αυτήν των αποτελεσμάτων του 

SeismoSignal, τουλάχιστον υπό συγκεκριμένες συνθήκες. Το γεγονός αυτό 

αποδίδεται στο ότι το πρώτο χρησιμοποιεί προχωρημένους αλγορίθμους εν χρόνω 

ολοκλήρωσης, οι οποίοι παρουσιάστηκαν εκτενώς στο 2ο κεφάλαιο της παρούσας 

διατριβής.  

 



xxxiv  

 

 

 
Εικόνα 0.11: Σύγκριση του φάσματος ψευδοεπιτάχυνσης PSa για σχετικά μικρό 
μέγεθος χρονικού βήματος (Δt=10-4 s) μεταξύ του OpenSeismoMatlab και του 

SeismoSignal. 
 

 
Εικόνα 0.12: Σύγκριση του σφάλματος του φάσματος ψευδοεπιτάχυνσης (PSa) σε 

σχέση με το 0PSa , μεταξύ του OpenSeismoMatlab και του SeismoSignal. 
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0.4. Μια νέα διαδικασία βελτιστου σχεδιασμού των κατασκευών εναντι 

σεισμικών φόρτισεων με βαση τη σεισμική ενέργεια 

 

0.4.1.  Εισαγωγή 
 

Στο κεφάλαιο αυτό εισάγεται μια διαδικασία για το βέλτιστο σχεδιασμό των μη 

γραμμικών επίπεδων διατμητικών κτιρίων με τη χρήση μιας μεθόδου κλίσης 

βασισμένης σε ισοδύναμες γραμμικές κατασκευές, αντί για τη συνηθισμένη μέθοδο 

υπολογισμού της κλίσης από την αντικειμενική συνάρτηση που απαιτεί την 

επίλυση των μη γραμμικών κτιρίων. Το πρόβλημα της βελτιστοποίησης 

διατυπώνεται με τη μορφή ενός ισοδύναμου γραμμικού συστήματος εξισώσεων 

στο οποίο οι συνιστώσες της αντικειμενικής συνάρτησης είναι μια στοχευόμενη 

θεμελιώδ ιδιοσυχνότητα και μια ομοιόμορφη κατανομή της ενέργειας απόσβεσης 

καθ’ ύψος του κτιρίου. Η ως άνω διαδικασία εφαρμόζεται με τη μέθοδο Newton 

Raphson για την εύρεση της βέλτιστης κατανομής δυσκαμψίας καθ’ ύψος για δυο 

αντιπροσωπευτικά πολυβάθμια διατμητικά κτίρια, τόσο γραμμικά όσο και μη 

γραμμικά, ώστε η αποσβεννύμενη ενέργεια κατα τη διάρκεια μιας σεισμικής 

διέγερσης (τόσο ιξωδοελαστικής μορφής όσο και υστερητικής μορφής) να είναι 

ομοιόμορφη κατα το ύψος της κατασκευής. Εξετάζεται η επιρροή της σεισμικής 

διέγερσης, του ποσοστού της κρίσιμης απόσβεσης και του κανονικοποιημένου 

ορίου διαρροής της σχετικής μετακίνησης μεταξύ διαδοχικών ορόφων στα 

αποτελέσματα της διαδικασίας βελτιστοποίησης. Ο σχεδιασμός με βαση την 

προτεινόμενη μέθοδο βελτιστοποίησης είναι περισσότερο λογικός και 

κατασκευαστικά εφαρμόσιμος σε σύγκριση με άλλες στρατηγικές 

βελτιστοποίησης (π.χ. βελτιστος σχεδιασμός με βαση την ομοιόμορφη 

πλαστιμότητα καθ’ ύψος), ενώ αναμένεται να οδηγήσει σε αυξημένη προστασία 

της κατασκευή έναντι ολικής κατάρρευσης και της συνεπαγόμενης απώλειας 

έμψυχου και άψυχου υλικού κατα τη διάρκεια ισχυρών σεισμικών εδαφικών 

κινήσεων. Τέλος, περαν των ανωτέρω, αποδεικνύεται ότι η νέα μέθοδος 

βελτιστοποίησης όχι μόνο μειώνει τον απαιτούμενο χρόνο επίλυσης έως και 91% 

σε σύγκριση με την κλασσική μέθοδο Newton Raphson, αλλά μπορεί επίσης να 

εφαρμοστεί και σε άλλα προβλήματα βελτιστοποίησης, όπου η προχώρηση σε 

κάθε βήμα γίνεται με υπολογισμό της κλίσης της αντικειμενικής συνάρτησης. 

Κατα το σύγχρονο σχεδιασμό των κατασκευών έναντι στατικής ή/και δυναμικής 

φόρτισης είναι επιθυμητή η απόκριση της κατασκευής στην πλαστική περιοχή, 

καθότι η θεώρηση αυτή οδηγεί σε πιο οικονομικό σχεδιασμό. Ειδικότερα στον 

αντισεισμικό σχεδιασμό, η ανελαστική συμπεριφορά είναι παραδεκτή εντός 

συγκεκριμένων ορίων, που καθορίζονται από μια ισορροπία μεταξύ ασφάλειας και 

οικονομίας. Στο παρελθόν πολλές κατασκευές έχουν αντέξει δυνάμεις 

μεγαλύτερες από εκείνες που υπολογίζονται με παραδοχή γραμμικά ελαστικής 

απόκρισης. Η πλαστιμότητα είναι εκείνη η ποσότητα που ρυθμίζει το πρώτο και 

δικαιολογεί το δεύτερο. Ωστόσο, η χρονοιστορία της φόρτισης μιας κατασκευής 

παίζει σημαντικό ρόλο, πέραν της πλαστιμότητάς της, και θα πρέπει να 
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λαμβάνεται υπόψη. Υπάρχουν διάφορες ποσότητες που αυξάνουν αθροιστικά στην 

κατασκευή κατα τη διάρκεια μιας σεισμικής διέγερσης, και παρέχουν 

πληροφορίες για το πως συμπεριφέρθηκε η κατασκευή, όπως π.χ. η πλαστική 

ενέργεια που απορροφάται από τα δομικά στοιχεία. Η τελευταία είναι ένα χρήσιμο 

μέτρο της βλάβης που υφίσταται μια κατασκευή, και ειδικά για τις κατασκευές 

από ωπλισμένο σκυρόδεμα. Συμπερασματικά, θα πρέπει να γίνει κατανοητό ότι ο 

αντισεισμικός σχεδιασμός πρεπει να εξαρτάται όχι μόνο από μέγιστα σε 

συγκεκριμένες χρονικές στιγμές κατα τη διάρκεια της σεισμικής φόρτισης (π.χ. 

μέγιστη επιτάχυνση) αλλά θα πρέπει επίσης να εξαρτάται και από τη χρονοιστορία 

της φόρτισης. Στα ανωτέρω βασίζεται ο σχεδιασμός βασιζόμενος στην ενέργεια 

απόσβεσης (Energy Based Design, EBD). Σύμφωνα με αυτόν, μια κατασκευή 

πρέπει να σχεδιάζεται ώστε να έχει την ικανότητα να απορροφά μεγαλύτερες 

ποσότητες σεισμικής ενέργειας από αυτές που θα εισηχθούν σε αυτή μέσω του 

σεισμού, ώστε να μπορεί να αποκριθεί αποτελεσματικά σε σεισμικές φορτίσεις.  

Εκτός από την πλαστιμότητα του υλικού κατασκευής, η σεισμική απόκριση μιας 

κατασκευής επηρεάζεται και από τη μορφολογία της καθώς και από την κατανομή 

της δυσκαμψίας και της αντοχής σε αυτή. Οι περισσότερες καταρρεύσεις 

κατασκευών στο παρελθόν έχουν συμβεί εως ένα βαθμό εξαιτίας εσφαλμένης 

κατασκευαστικής διαμόρφωσης. Ο σχηματισμός μαλακών ορόφων είναι 

χαρακτηριστικό παράδειγμα ανεπαρκούς απόκρισης της κατασκευής, όπου σε 

έναν όροφο παρατηρούνται υπερβολική πλαστιμότητα και σχετική μετακίνηση, οι 

οποίες οδηγούν σε τοπική κατάρρευση. Τα περισσότερα κτίρια σχεδιάζονται 

σύμφωνα με την έννοια των ισοδύναμων στατικών δυνάμεων που 

προδιαγράφονται από αντισεισμικούς κανονισμούς. Η καθ’ ύψος κατανομή αυτών 

των δυνάμεων προκύπτει από την υπόθεση ότι οι ιδιομορφές ταλάντωσης της 

κατασκευής είναι γραμμικά ελαστικές. Αφετέρου, σύμφωνα με το σχεδιασμό 

βασιζόμενο στην ενέργεια απόσβεσης (EBD) υποτίθεται ότι η κατασκευή 

αποκρίνεται μη γραμμικά, συνεπώς ο υπολογισμός των ιδιομορφών που βασίζεται 

σε γραμμικά ελαστικό φορέα δεν οδηγεί σε ρεαλιστικό υπολογισμό των 

ισοδύναμων στατικών σεισμικών δυνάμεων, και συνεπώς δεν διασφαλίζει τη 

βέλτιστη σεισμική απόκριση, ούτε καν πολλές φορές την ασφάλεια.  

Στο κεφάλαιο 4 παρουσιάζεται ένας νέος επαναληπτικός αλγόριθμος 

βελτιστοποίησης με δυνατότητα γραμμικής αναζήτησης, ειδικά σχεδιασμένος για 

βελτιστοποίηση σχεδιασμού κατασκευών, ο οποίος χρησιμοποιείται για το 

βέλτιστο σχεδιασμό με όρους απορροφώμενης ενέργειας από την κατασκευή για 

έναν αριθμό επιταχυνσιογραφημάτων. Ο εν λόγω αλγόριθμος βρίσκει τη βέλτιστη 

κατανομή της δυσκαμψίας καθ’ υψος ενός κτιρίου ούτως ώστε να 

ελαχιστοποιείται η διακύμανση της ενέργειας απόσβεσης καθ’ υψος του κτιρίου 

(ήτοι αυτή να είναι ομοιόμορφη με τιμή ίση με το μέσο όρο της). Η διαδικασία 

βελτιστοποίησης εφαρμόζεται τόσο σε γραμμικά όσο και σε μη γραμμικά κτίρια. 

Διερευνάται η επιρροή της θεμελιώδους ιδιοπεριόδου, του αριθμού των ορόφων 

και της κατανομής ιξωδοελαστικής απόσβεσης στην βέλτιστη κατανομή της 

αντοχής καθ’ ύψος του κτιρίου.  
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0.4.2.  Προτεινόμενος αλγόριθμος βελτιστου σχεδιασμού 
 
Ο προτεινόμενος αλγόριθμος βελτιστοποίησης εφαρμόζει μια τροποποιημένη 
μέθοδο για την εύρεση του βέλτιστου σημείου που ελαχιστοποιεί μια αντικειμενική 
συνάρτηση (εν προκειμένω την τυπική απόκλιση της κατανομής της ενέργειας 
απόσβεσης καθ’ ύψος του κτιρίου). Οι μέθοδοι βελτιστοποίησης που βασίζονται 
σε κατεύθυνση με βαση τις παραγώγους της αντικειμενικής συνάρτησης σε κάθε 
βήμα, προσεγγίζουν το βέλτιστο σημείο επαναληπτικά. Σε κάθε βήμα, 
προκειμένου να γίνει η μετάβαση στο επόμενο σημείο από το τρέχον σημείο, 
χρειάζεται να υπολογιστεί τόσο η κατεύθυνση προς την οποία βρίσκεται το 
επόμενο σημείο, όσο και η απόστασή του από το τρέχον. Στην περίπτωση του 
αλγορίθμου NR, η κατεύθυνση υπολογίζεται με βάση τις μερικές παραγώγους της 
αντικειμενικής συνάρτησης στο τρέχον σημείο, ως προς τις μεταβλητές 
σχεδιασμού. Στις επριπτώσεις βελτιστοποίησης μη γραμμικών κατασκευών, ο 
υπολογισμός των παραγώγων απαιτεί την εκτέλεση πολλαπλών μη γραμμικών 
αναλύσεων, που είναι γενικά υπολογιστικά απαιτητικές. Για το λόγο αυτό 
προτείνεται ο υπολογισμός των παραγώγων να γίνεται με βάση την αντικειμενική 
συνάρτηση εφαρμοζόμενη σε μια ισοδύναμη γραμμικά ελαστική κατασκευή, που 
απαιτεί πολύ λιγότερο υπολογιστικό φόρτο σε σχέση με τη μη γραμμική. Η 
ισοδύναμη γραμμικά ελαστική κατασκευή προκύπτει αν τεθεί το όριο διαρροής 
της μη γραμμικής κατασκευής ίσο με μια πολύ μεγάλη τιμή (ήτοι πρακτικά 
άπειρη), και αν στον υπολογισμό της αντικειμενικής συνάρτησης αντί για την 
υστερητική ενέργεια απόσβεσης ληφθεί υπόψη η ιξωδοελαστική ενέργεια 
απόσβεσης που προκύπτει από τον ισοδύναμα γραμμικά ελαστικό φορέα. Παρόλη 
τη μικρή απώλεια σε ακρίβεια που υπάρχει με τον ανωτέρω προτεινόμενο 
αλγόριθμο, αποδεικνύεται ότι η συγκεκριμένη πρακτική επιταχύνει κατα πολύ τη 
διαδικασία βελτιστοποίησης και τείνει στο ίδιο βέλτιστο σημείο.  

 

0.4.3.  Τυπικές κατανομές απόσβεσης υστερητικής ενέργειας σε διατμητικά 

κτίρια 
 

Τυπικές κατανομές της ενέργειας που αποσβέννεται εξαιτίας υστερητικής 

συμπεριφοράς ενός 5-όροφου και ενός 10-όροφου κτιρίου κατα τη διάρκεια 

ελαστοπλαστικής απόκρισης, φαίνονται στην εικόνα 0.13. Υποτίθεται ότι 

αμφότερα τα κτίρια έχουν ομοιόμορφες κατανομές δυσκαμψίας καθ’ ύψος, οι 

οποίες είναι κανονικοποιημένες ώστε τα δυο κτίρια να έχουν θεμελιώδεις 

ιδιοσυχνότητες ίσες με 2 Hz και 1 Hz αντίστοιχα. Όπως παρατηρείται και την 

πράξη, οι μεγαλύτερες ποσότητες ενέργειας απόσβεσης εμφανίζονται στους 

κατώτερους ορόφους των κτιρίων, για όλες τις περιπτώσεις σεισμικών 

καταγραφών. Οι εν λόγω κατανομές υποδεικνύουν σαφώς τους λόγους που οι 

βλάβες κατα τη διάρκεια ενός σεισμού συσσωρεύονται στους κατώτερους 

ορόφους, και εξηγούν το λόγο που οι μηχανισμοί μαλακού ορόφου αναπτύσσονται 

τις πιο πολλές φορές σε αυτές τις περιοχές. Το φαινόμενο αυτό είναι ανεπιθύμητο, 

και ως εκ τούτου υπάρχει η ανάγκη για ισοκατανομή της ενέργειας απόσβεσης σε 
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όλους τους ορόφους, ούτως ώστε να υπάρχει όσο το δυνατόν περισσότερη 

εκμετάλλευση του κατασκευαστικού υλικού και να μεγιστοποιείται έτσι η 

ασφάλεια του εκάστοτε κτιρίου.  

 

 
Εικόνα 0.13: Κατανομές της ενέργειας που αποσβέννεται λόγω υστέρησης για το 5- 

και 10-όροφο κτίριο με ομοιόμορφη κατανομή δυσκαμψίας καθ’ ύψος, ξ=5%, 
ūy=0.01 και θεμελιώδεις ιδιοσυχνότητες 2Hz και 1Hz αντίστοιχα, για διάφορες 

σεισμικές καταγραφές.  

 

 

0.4.4.  Βέλτιστες κατανομές δυσκαμψίας για γραμμικά ελαστικά κτίρια 
 
Οι βελτιστες κατανομές δυσκαμψίας για τις περιπτώσεις του 5-όροφου κτιρίου και 
10-όροφου επίπεδου διατμητικού κτιρίου φαίνονται στις εικόνες 0.14 και 0.15. 
Αυτές αναφέρονται στις επιθυμητές θεμελιώδεις ιδιοσυχνότητες που έχουν 
προσδιοριστεί για κάθε κτίριο (2 Hz και 1 Hz αντίστοιχα) και διάφορες σεισμικές 
διεγέρσεις. Είναι εμφανές ότι οι κατανομές δυσκαμψίας είναι ομαλά 
μεταβαλλόμενες καθ’ ύψος και έχουν τη μέγιστη τιμή τους στον 1ο όροφο και την 
ελάχιστη στον τελευταίο όροφο καθε κτιρίου. Επίσης, η κατανομή της 
δυσκαμψίας είναι σχεδόν ανεξάρτητη από την εκάστοτε σεισμική διέγερση, και 
έχει μεγαλύτερες τιμές για το 5-όροφο κτίριο σε σχέση με το 10-όροφο. 
 

 
Εικόνα 0.14: Βέλτιστες κατανομές δυσκαμψίας σε γραμμικά ελαστικό 5-όροφο 
κτίριο και αντίστοιχες κατανομές ενέργειας απόσβεσης με ξ=5% για διάφορες 

σεισμικές διεγέρσεις. 
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Εικόνα 0.15: Βέλτιστες κατανομές δυσκαμψίας σε γραμμικά ελαστικό 10-όροφο 

κτίριο και αντίστοιχες κατανομές ενέργειας απόσβεσης με ξ=5% για διάφορες 
σεισμικές διεγέρσεις. 

 

0.4.5.  Βέλτιστες κατανομές δυσκαμψίας για ελαστοπλαστικά κτίρια 
 
Στην περίπτωση ελαστοπλαστικών κτιρίων, λαμβάνεται υπόψη μια επιπρόσθετη 
παράμετρος, που είναι το κανονικοποιημένο όριο διαρροής σε όρους μετατόπισης 
μεταξύ δυο διαδοχικών ορόφων, που ορίζεται στην εξίσωση (4.16). Σημειώνεται ότι 
η σεισμική δύναμη για την οποία σχεδιάζεται η κατασκευή υπολογίζεται από τη 
βέλτιστη κατανομή της δυσκαμψίας πολλαπλασιασμένη με την ομοιόμορφη 
κατανομή του συντελεστή διαρροής μεταξύ διαδοχικών ορόφων. Οι θεμελιώδεις 
ιδιοσυχνότητες μικρών παραμορφώσεων των δυο κτιρίων είναι ίδιες με αυτές των 
αντίστοιχων γραμμικά ελαστικών. Οι βέλτιστες κατανομές δυσκαμψίας μικρών 
παραμορφώσεων και οι αντίστοιχες κατανομές ενέργειας υστερητικής απόσβεσης 
φαίνονται στις εικόνες 0.16 και 0.17 για το 5-όροφο και το 10-όροφο κτίριο 
αντίστοιχα. Παρατηρείται ότι γενικά οι κατανομές δυσκαμψίας μειώνονται όσο 
αυξάνει το ύψος του κτιρίου, πραγμα που παρατηρήθηκε επίσης και στην 
περίπτωση των γραμμικά ελαστικών κτιρίων. Είναι αξιοσημείωτο ότι υπάρχει μια 
γενική μορφή οιονεί γραμμικής κατανομή δυσκαμψίας, την οποία ακολουθούν 
όλες οι κατανομές δυσκαμψίας για τις διάφορες περιπτώσεις σεισμικών 
καταγραφών, για αμφότερα τα δυο κτιρια που μελετωνται.  
 

 

 
Εικόνα 0.16: Βέλτιστες κατανομές δυσκαμψίας μικρών παραμορφώσεων και 

ενέργεια υστερητικής απόσβεσης για το 5-όροφο διατμητικό κτίριο με ξ=5%, ūy=0.1 
για διάφορες σισμικές καταγραφές. 
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Εικόνα 0.17: Βέλτιστες κατανομές δυσκαμψίας μικρών παραμορφώσεων και 

ενέργεια υστερητικής απόσβεσης για το 10-όροφο διατμητικό κτίριο με ξ=5%, 
ūy=0.04 για διάφορες σισμικές καταγραφές. 

 

0.4.6.  Απόδοση της νέας μεθόδου βελτιστου σχεδιασμού 
 

Για κάθε καινούριο αλγόριθμο βελτιστοποίησης, τίθεται το θέμα της απόδοσής 

του, της ταχύτητάς του κλπ, σε σχέση με τους υπόλοιπους γνωστούς αλγορίθμους 

που χρησιμοποιούνται για ενα συγκεκριμένο πρόβλημα βελτιστοποίησης. 

Επισημαίνεται ότι η νεα μέθδοος βελτιστοποίησης μπορεί να εφαρμοστεί για 

οποιοδήποτε μη γραμμικό πρόβλημα, αλλά για τα δεδομένα της παρούσας 

διατριβής θα περιοριστούμε στο πρόβλημα του βέλτιστου σχεδιασμού επίπεδων 

διατμητικών κτιρίων, αυτών που εξετάστηκαν παραπάνω. Στην Εικόνα 0.18 

φαίνεται η εξέλιξη της τυπικής απόκλισης της κατανομής ενέργειας υστερητικής 

απόσβεσης ως συνάρτηση του κανονικοποιημένου χρόνου εκτέλεσης του 

αλγορίθμου για το 5-όροφο και το 10-όροφο διατμητικό κτίριο που μελετήθηκαν 

παραπάνω, με f0=2Hz, ξ=0.05, ūy=0.1 και f0=1Hz, ξ=0.05, ūy=0.04 αντίστοιχα, τα 

οποία διεγείρονται από καταγραφή του σεισμού El Centro. Παρατηρείται ότι οι 

χρόνοι εκτέλεσης των αλγορίθμων Newton Raphson (NR) με γραμμικές 

παραγώγους είναι πολύ μικρότεροι από αυτούς με μη γραμμικές παραγώγους. Η 

κανονικοποίηση των χρόνων εκτέελσης έγινε με βάση το χρόνο εκτέλεσης του 

αντίστοιχου αλγορίθμου με μη γρμαμικές παραγώγους, και ως εκ τούτου οι 

κανονικοποιημένοι χρόνοι των αλγορίθμων με μη γραμμικές παραγώγους είναι 

αμφότεροι ίσοι με 100%.  

Φαίνεται ξεκάθαρα ότι ο προτεινόμενος αλγόριθμος είναι έως και 11 φορές πιο 

γρήγορος από τον παραδοσιακό αλγόριθμο NR για το 10-όροφο κτίριο και έως και 

7 φορές πιο γρήγορος για το 5-όροφο κτίριο. Για μεγαλύτερο αριθμό ορόφων, ο 

προτεινόμενος αλγόριθμος αναμένεται να είναι ακόμα πιο γρήγορος σε σχέση με 

τον συνηθισμένο NR, κάνοντας έτσι οικονομία υπολογιστικού φόρτου. 

Σημειώνεται εδώ ότι για να απομονωθεί η επιρροή του αρχικού σημείου κατα τη 

σύγκριση των δυο αλγορίθμων, το αρχικό σημείο είναι ίσο με τη βέλτιστη 

κατανομή δυσκαμψίας για το γραμμικά ελαστικό κτίριο για ξ=0.05. Με τον τρόπο 

αυτό, δεδομένου ότι οι αλγόριθμοι εκκινούν από το ίσιο αρχικό σημείο για να 
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επιλύσουν το ίδιο πρόβλημα (σε όρους σεισμικής καταγραγής που εξετάζεται και 

των διαφόρων ιδιοτήτων της κατασκευής), η διαφορά του χρόνου εκτέλεσης 

οφείλεται μόνον από τη φύση του αλγορίθμου και τις ιδιότητές του. Τα 

αποτελέσματα των διαδικασιών βελτιστοποίησης που συγκρίθηκαν φαίνονται 

στην Εικόνα 0.18 και στον Πίνακα 0.2.  

Παρατηρείται ότι ο προτεινόμενος αλγόριθμος NR, ενώ χρειάζεται σχεδόν τον 

ίδιο αριθμό επαναλήψεων με τον κλασσικό NR, μπορεί να μειώσει το χρόνο 

εκτέλεσης κατα 85% στην περίπτωση του 5-όροφου κτιρίου και κατα 91% στην 

περίπτωση του 10-όροφου κτιρίου. Η μείωση στο χρόνο εκτέλεσης αναμένεται να 

είναι μεγαλύτερη για κτίρια με μεγαλύτερο αριθμό ορόφων, ή κατασκευές με 

μεγαλύτερο αριθμό βαθμών ελευθερίας γενικά. Ως αποτέλεσμα αυτού, για 

πολυπλοκότερες κατασκευές, η χρήση του ρποτεινόμενου αλγορίθμου θα 

οδηγήσει σε μεγαλύτερη οικονομία χρόνου. Σημειώνεται αναφορικά με τις 

παραπάνω συγκρίσεις, ότι οι τελικές βέλτιστες κατανομές δυσκαμψίας μικρών 

παραμορφώσεων είναι ίδιες τόσο για τον κλασσικό αλγόριθμο NR, όσο και για τον 

προτεινόμενο αλγόριθμο NR. 

 

 
Εικόνα 0.18: Εξέλιξη της τυπικής απόκλισης της κατανομής ενέργειας υστερητικής 

απόσβεσης για διάφορες διαδικασίες βελτιστοποίησης για τον κλασσικό αλγόριθμο 
NR και τον προτεινόμενο αλγόριθμο NR, για 5- και 10-όροφα διατμηατικά κτίρια με 

f0=2 Hz, ξ=5%, ūy=0.1 και f0=1 Hz, ξ=5%, ūy=0.04 αντίστοιχα, διεγειρόμενα από 
σεισμική καταγραφή του σεισμού El Centro. 

 

Περίπτωση 

Κανονικοποιημένος 

χρόνος εκτέλεσης Μείωση Επαναλήψεις 

5-όροφο, Newton-Raphson 100% - 136 

5-όροφο, proposed algorithm 14.9% 85.1% 135 

10-όροφο, Newton-Raphson 100% - 153 

10-όροφο, proposed algorithm 8.8% 91.2% 143 

Πίνακας 0.2: Numerical results of the optimization processes the evolution of which is 
presented in Figure 4-14 
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0.4.7.  Συμπεράσματα 
 

Τα κυριότερα συμπεράσματα είναι τα ακόλουθα: 

 Αποδεικνύεται ότι υπάρχουν μοναδικές κατανομές δυσκαμψίας που 
αντιστοιχούν σε ομοιόμορφα κατανεμημένη ενέργεια ιξωδολεαστικής και 
υστερητικής απόσβεσης για γραμμικά ελαστικά και ελαστοπλαστικά επίπεδα 
διατμητικά κτίρια αντίστοιχα.  

 Η βέλτιστη κατανομή δυσκαμψίας τόσο για ελαστικά όσο και για 
ελαστοπλαστικά κτίρια εμφανίζεται ως οιονεί γραμμική (με ελάχιστη 
καμπυλότητα), με τη μέγιστη τιμή στον πρώτο όροφο και την ελάχιστη τιμή στον 
τελευταίο όροφο του εκάστοτε κτιρίου. Το σχήμα αυτό των βέλτιστων κατανομών 
είναι γενικά ανεξάρτητο της σεισμικής διέγερσης και προσφέρει τη δυνατότητα 
υπολογισμού της με απλές μεθόδους. 

 Ο σχεδιασμός των κατασκευών με βάση την προτεινόμενη μεθοδολογία 
είναι πιο λογικός και τεχνικά εφικτός σε σύγκριση με το σχεδιασμό που έχει στόχο 
την ομοιόμορφη κατανομή πλαστιμότητας, ενώ αναμένεται να οδηγήσει σε 
κατασκευές με μεγαλύτερη ασφάλεια και προστασία έναντι ολικής κατάρρευσης 
και απωλειών κατα τη διάρκεια ισχυρών σεισμών. 

Τέλος, αποδεικνύεται ότι ο νέος προτεινόμενος αλγόριθμος που ακολουθεί 

κατεύθυνσεις για την προσέγγιση του βέλτιστου σημείου με βαση τις παραγώγους 

της ισοδυναμης γραμμικής κατασκευής, εφοδιασμένος με ένα σταθεροποιητή με 

σκοπό τη βελτιστοποίηση μη γραμμικών προβλημάτων επιτυγχάνει ουσιαστικό 

κέρδος σε υπολογιστικό φόρτο, μολονότι απαιτεί τον ίδιο σχεδον αριθμό 

επαναλήψεων προκειμένου να συγκλίνει. Η νέα μεθοδολογία βελτιστοποίησης που 

παρουσιάζεται στην παρούσα διατριβή μπορεί να εφαρμοστεί για τη 

βελτιστοποίηση οποιασδήποτε μη γραμμικής κατασκευής, καθώς και να εισαχθεί 

σαν έννοια σε άλλους γνωστούς αλγορίθμους, πέραν του NR, όπως π.χ. 

αλγορίθμους γραμμικής αναζήτησης, περιοχής εμπιστοσύνης, μεθόδους απότομης 

κατάβασης, συζυγών κλίσεων, Broyden, κλπ.  

 

0.5. Αναπτυξη βελτιωμένων ενεργειακά συμβατών τεχνητών 

καταγραφών με μεθόδους βέλτιστου γραμμικού συνδυασμού 

 

0.5.1.  Εισαγωγή 
 

Προτείνεται μια νέα μεθοδολογία για την παραγωγή τεχνητών σεισμογραφημάτων 

τα οποία συμβαδίζουν με δεδομένα φάσματα ελαστικής απόκρισης και ενέργειας 

απόσβεσης. Με τη μεθοδολογία αυτή χρησιμοποιείται ένας γραμμμικός 

συνδυασμός ακατέργαστων καταγραφών σεισμικής εδαφικής κίνησης, 

προκειμένου να παραχθεί ένα τεχνητό επιταχυνσιογράφημα το οποίο θα 

συμμορφώνεται με έναν αριθμό στοχευόμενων φασμάτων, που λαμβάνουν υπόψη 

όχι μόνο τη φασματική επιτάχυνση, αλλά και τη φασματική ισοδύναμη ταχύτητα 

σεισμικής ενέργειας. Η θεώρηση του φάσματος ισοδύναμης ταχύτητας σεισμικής 
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ενέργειας οδηγεί στην ανάπτυξη τεχνητών επιταχυνσιογραφημάτων που είναι πιο 

ρεαλιστικά σε σχέση με αυτά που λαμβάνουν υπόψη τους μόνο το φάσμα 

ελαστικής απόκρισης. Η διαδικασία γραμμικού συνδυασμού καταγραφών από μια 

δεδομένη δεξαμενή προκειμένου η παραγόμενη καταγραφή να συμμορφώνεται με 

δεδομένα στοχευόμενα φάσματα διατυπώνεται σε όρους προβλήματος 

βελτιστοποίησης. Για την επαλήθευση της αποτελεσματικότητας του αλγορίθμου, 

επιλέχθηκαν χαρακτηριστικές εδαφικές κινήσεις με διαφορετικά χαρακτηριστικά 

και ιδιότητες, τα φάσματα των οποίων θεωρήθηκαν ως στοχευόμενα φάσματα. 

Πέραν αυτού, η διερεύνηση της αποτελεσματικότητας της προτεινόμενης 

μεθοδολογίας έγινε και αναφορικά με τη σεισμική απόκριση μονοβάθμιων και 

πολυβάθμιων συστημάτων, μεσω του ποσοστού της σεισμικής ενέργειας που 

αποσβέννεται εντός της κατασκευής. Αποδεικνύεται ότι υπάρχει άριστη συμφωνία 

μεταξύ αφενός των φασμάτων των τεχνητών καταγραφών που προκύπτουν από 

βέλτιστο γραμμικό συνδυασμό ανεπεξέργαστων σεισμικών καταγραφών και 

αφετέρου των στοχευόμενων φασμάτων, πράγμα που επαληθεύει την αξιοπιστία 

της προτεινόμενης μεθοδολογίας.  

Παραδοσιακά, ο αντισεισμικός σχεδιασμός των κατασκευών βασίζεται σε 

μεθόδους δυνάμεων ή/και μετατοπίσεων, στις οποίες η επιρροή της σεισμικής 

φόρτισης ποσοτικοποιείται χρησιμοποιώντας τη μέγιστη επιτάχυνση 

χρονοιστορίας ή τη μέγιστη φασματική επιτάχυνση της εκάστοτε σεισμικής 

καταγραφής. Με την επιλογή αυτή δεν λαμβάνεται υπόψη η επίδραση της 

χρονοιστορίας φόρτισης της κατασκευής, παρα μόνο ένα σημείο αυτής, που 

αντιστοιχεί στο μέγιστο. Ετσι σημαντικό μέρος της πληροφορίας της σεισμικής 

απόκρισης της κατασκευής χάνεται κατα την ανωτέρω διαδικασία σχεδιασμού. Η 

ανωτέρω απώλεια πληροφορίας αντανακλάται στο σφάλμα που ενυπάρχει συχνά 

κατα την παραγωγή τεχνητών σεισμογραφημάτων τα οποία παραδοσιακά 

συμμορφώνονται μόνο με φασματα επιτάχυνσης. Η παραγωγή 

σεισμογραφημάτων τα οποία, περαν των ανωτέρω φασμάτων, θα 

συμμορφώνονται επιπλέον με φάσματα ισοδυναμης ταχύτητας σεισμικής 

ενέργειας θα λαμβάνει υπόψη της την επιρροή της χρονοιστορίας φόρτισης μεσω 

των τελευταίων, και οδηγεί έτσι σε πιο ρεαλιστικά σεισμογραφήματα. 

 

0.5.2.  Αλγόριθμος δημιουργίας τεχνητών επιταχυνσιογραφημάτων 
 

0.5.2.1. Επεξεργασία ακατέργαστων σεισμικών εδαφικών κινήσεων 
 

Ένας γραμμικός συνδυασμός πραγματικών επιταχυνσιογραφημάτων απαιτεί μόνο 

την επιλογή και στάθμιση των τελευταίων, ενώ δεν αλλοιώνει τα εσωτερικά τους 

χαρακτηριστικά, όπως π.χ. μη στασιμότητα, υστερούσες κυματοσειρές (coda), 

φασικό περιεχομενο, κλπ. τα οποία θα πρέπει να διατηρούνται όσο το δυνατόν 

καλύτερα με στόχο τη δημιουργία όσο το δυνατόν πιο ρεαλιστικών τεχνητών 

καταγραφών, ως αποτέλεσμα γραμμικού συνδυασμού. Δεδομένου ότι οι 

πραγματικές καταγραφές δεν έχουν πάντα την ίδια διάρκεια, η διαδικασία του 
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γραμμικού συνδυασμού δεν μπορεί να εφαρμοστεί άμεσα σε αυτές. Ωστόσο, 

μπορεί να εφαρμοστεί στα φάσματα Fourier που προκύπτου από τον ομώνυμο 

μετασχηματισμό τους, τα οποία έχουν το ίδιο μήκος (διάρκεια). Η γραμμικά 

συνδυασμένη τεχνητή καταγραφή μπορεί να ληφθεί από τον αντίστροφο 

μετασχηματισμό Fourier του γραμμικού συνδυασμού των φασμάτων Fourier των 

επιμέρους πραγματικών καταγραφών (οι οποίες λαμβάνονται από δεδομένη 

«δεξαμενή»). Είναι προφανές ότι ένας αντίστροφος μετασχηματισμός Fourier 

απαιτεί την τιμή του χρονικού βήματος με βαση το οποίο έγινε ο μετασχηματισμός 

Fourier των πραγματικών καταγραφών πριν το γραμμικό συνδυασμό τους, όπως 

παρουσιάζεται παραπάνω. Το μέγεθος αυτό του χρονικού βήματος πρεπει να ειναι 

ίδιο με αυτό που χρησιμοποιείται για το μετασχηματισμό Fourier των καταγραφών 

που επιλέγονται για το γραμμικό συνδυασμό. Για το λόγο αυτό, κάθε καταγραφή 

υφίσταται επεξεργασία κατα την οποία γίνεται επαναδειγματισμός της, με το 

χρονικό βήμα που χρησιμοποιείται για τους μετασχηματισμούς Fourier. Συνεπώς, 

πριν το γραμμικό συνδυασμό τους, οι καταγραφές επαναδειγματίζονται και εν 

συνεχεία μετασχηματίζονται κατα Fourier, προκειμένου να εξασφαλιστεί η 

ομοιογένεια τους κατα το γραμμικό συνδυασμό τους.  
 

0.5.2.2. Προσδιορισμός βέλτιστου γραμμικού συνδυασμού για παραγωγή 

τεχνητών επιταχυνσιογραφημάτων 
 

Το πρόβλημα της παραγωγής ενός τεχνητού επιταχυνσιογραφήματος που 

συμμορφώνεται με δεδομένα στοχευόμενα φάσματα, διατυπώνεται ως πρόβλημα 

βελτιστοποίησης, στο οποίο η αντικειμενική συνάρτηση που ελαχιστοποιείται είναι 

το σφάλμα μεταξύ των στοχευόμενων φασμάτων και των αντίστοιχων φασμάτων 

τα οποία επιτυγχάνει ένας οποιοσδήποτε γραμμικός συνδυασμός καταγραφών. Η 

αντικειμενική συνάρτηση που χρησιμοποιείται είναι της μορφής: 

 

 
2

1

T ABS ABS REL REL

c t c t c t
Sa Siev ABS REL

t t tT

Sa (T) Sa (T) Siev (T) Siev (T) Siev (T) Siev (T)
f p T dT

Sa (T) Siev (T) Siev (T)


   
    

 


 

και αποτελείται από ένα άθροισμα της επιφάνειας μεταξύ των καμπυλών του 

στοχευόμενου ( tSa ) και επιτυγχανόμενου ( cSa ) φασματος ελαστικής απόκρισης 

επιτάχυνσης, στοχευόμενου ( ABS

tSiev ) και επιτυγχανόμενου ( ABS

cSiev ) φασματος 

ισοδύναμης απόλυτης ταχύτητας της σεισμικής ενέργειας εισόδου, και 

στοχευόμενου ( REL

tSiev ) και επιτυγχανόμενου ( REL

cSiev ) φασματος ισοδύναμης 

σχετικής ταχύτητας της σεισμικής ενέργειας εισόδου. Η ποσότητα  p T  είναι ένας 

γραμμικός συντελεστής ποινής, με αυξημένη βαρύτητα στην πειροχή των μικρών 

ιδιοπεριόδων. Με αυτό τον τρόπο δίνεται έμφαση στην ανωτέρω περιοχή, όπου 

ενδιαφέρει η ρεαλιστικότητα των παραγόμενων τεχνητών καταγραφών.  
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Οι μεταβλητές σχεδιασμού του προβλήματος βελτιστοποίησης είναι 2m, όπου m 

είναι ο αριθμός των πραγματικών καταγραφών που υπάρχουν στη δεξαμενή και 

συνδυάζονται γραμμικά. Οι πρώτες m μεταβλητές είναι οι συντελεστές στάθμισης 

των επιλεγόμενων καταγραφών, ενώ οι τελευταίες m μεταβλητές είναι ακέραιοι 

αριθμοί που δηλώνουν τις «ετικέτες» των καταγραφών που συνδυάζονται, όπως 

αυτές είναι αποθηκευμένες μέσα στη δεξαμενή.  

Για την επίλυση του προβλήματος βελτιστοποίησης επιλέχθηκε ένας γενετικός 

αλγόριθμος κατάλληλος για μεικτά προβλήματα (πραγματικών – ακεραίων), 

δεδομένης της φύσης των μεταβλητών σχεδιασμού. Ο γενετικός αλγόριθμος 

εφαρμόζει σε έναν πληθυσμό υποψήφιων λύσεων την αρχή της εξελικτικής 

θεωρίας, προκειμένου να παράγει καλύτερες προσεγγίσεις προς τη βέλτιστη λύση. 

Σε κάθε γενιά, ένας νέος πληθυσμός δημιουργείται από τον τρέχοντα, μεσα από 

την επιλογή των υποψηφίων απογόνων σύμφωνα με τα επίπεδα καταλληλότητάς 

τους, και εν συνεχεία τηνα ναπαραγωγή τους χρησιμοποιώντας τελεστές 

εμπνευσμένους από τις αντίστοιχες φυσικές διαδικασίες της εξέλιξης (επιλογή, 

διασταύρωση και μετάλλαξη). Η διαδικασία αυτή οδηγεί στην εξέλιξη του 

πληθυσμού ούτως ώστε τα άτομα να γίνονται όλο και «καλύτερα» προς την 

κατεύθυνση του βέλτιστου σημείου του προβλήματος. Ο αλγόριθμος τερματίζει 

όταν ικανοποιείται ένα κατάλληλο προς το σκοπό αυτό κριτήριο, π.χ. μέγιστος 

αριθμός γενεών, MAXGEN. Ένας ψευδοκώδικας του γενετικού αλγορίθμου που 

χρησιμοποιήθηκε στην παρούσα διατριβή περιγράφεται στην Εικόνα 0.19. 

 

Pseudocode of the GA 

1 Set parameters 

2 Generate the initial population 

3 while GEN < MAXGEN do 

4  Fitness calculation 

5  Selection 

6  Crossover 

7  Mutation 

8 end while 

9 Obtain the individual with maximum fitness 

10 return the best solution 

Εικόνα 0.19: Ο ψευδοκώδικας ενός γενετικού αλγορίθμου 

 

0.5.3.  Σύγκλιση προτεινόμενου αλγορίθμου 
 

Η αποτελεσματικότητα του προτεινόμενου αλγόριθμου εξετάζεται μεσω της 

παραγωγής τεχνητών επιταχυνσιογραφημάτων τα οποία συμμορφώνονται σε 

διάφορες ειδικές περιπτώσεις όσον αφορά τη φύση των στοχευόμενων φασμάτων 

και η διασφάλιση της ανεξαρτησίας της απόδοσης του αλγορίθμου από το είδος 

του στοχευόμενου φάσματος. Τρεις διαφορετικές σεισμικές καταγραφές 

επιλέχθηκαν για την προδιαγραφή στοχευόμενων φασμάτων: α) καταγραφή El 
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Centro Terminal Substation Building του σεισμού στο Imperial Valley (1940), β) 

καταγραφή Rinaldi του σεισμού του Northridge (1994) και γ) καταγραφή Sakarya 

– SKR του σεισμού του Kocaeli (1999). Τα τρία παραπάνω επιταχυνσιογραφήματα 

εκφράζουν μια καταγραφή μακρινού πεδίου, μια καταγραφή κοντικού πεδίου που 

περιέχει φαινόμενα εμπρόσθιας κατευθυντικότητας (forward directivity) και μια 

καταγραφή κοντινού πεδίου που περιέχει φαινόμενα μόνιμης στατικής 

παραμόρφωσης (fling step) αντίστοιχα. Εξετάζονται δυο σενάρια: i) Σενάριο 1, 

όπου το τεχνητό επιταχυνσιογράφημα συμμορφώνεται μόνο με το στοχευόμενο 

φάσμα ελαστικής απόκρισης επιτάχυσνης, και ii) Σενάριο 2, όπου το τεχνητό 

επιταχυνσιογράφημα συμμορφώνεται, όχι μόνο με το στοχευόμενο φάσμα 

ελαστικής απόκρισης επιτάχυνσης, αλλά και με το στοχευόμενο φάσμα 

ισοδύναμης ταχύτητας σεισμικής ενέργειας (απόλυτης και σχετικής).  

Τα αποτελέσματα για το σενάριο 1 φαίνονται στην εικόνα 0.20. Αντίστοιχα 

αποτελέσματα για το σενάριο 2 φαίνονται στην εικόνα 0.21. Για κάθε στοχευόμενο 

φάσμα (με μαύρη γραμμή) εμφανίζονται, μεταξύ των 30 ανεξάρτητων 

αποτελεσμάτων του γενετικού αλγορίθμου (ο αλγόριθμος έτρεξε 30 φορές για να 

διασφαλιστεί ότι το αποτέλεσμα είναι ανεξάρτητο από τις παραμέτρους του 

αλγορίθμου, από τις οποίες παρήχθησαν 30 καμπύλες που φαίνονται με γκρι 

χρώμα), το αποτέλεσμα με το ελάχιστο σφάλμα (κόκκινη γραμμή) και το μέγιστο 

σφάλμα (μπλέ γραμμή). Με πράσινη γραμμή απεικονίζεται ο συντελεστής 

μεταβλητότητας των 30 καμπυλών κάθε στοχευόεμνου φάσματος. Παρατηρείται 

ότι υπάρχει πολύ καλή συμφωνία μεταξύ της καμπύλης με το ελάχιστο σφάλμα 

και του στοχευόμενου φάσματος σε όλες τις περιπτώσεις. 

 

  
(α) (β) 
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(γ) 

Εικόνα 0.20: Αποτελέσματα βελτιστοποίησης για το σενάριο 1, για κάθε 
στοχευόμενο φάσμα: (α) El Centro, (β) Northridge και (γ) Sakarya.  

 

  
(α) (β) 

 
(γ) 

Εικόνα 0.21: Αποτελέσματα βελτιστοποίησης για το σενάριο 2, για το στοχευόμενο 
φάσμα ελαστικής απόκρισης επιτάχυνσης για κάθε στοχευόμενο φάσμα: (α) El 

Centro, (β) Northridge and (γ) Sakarya.  
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0.5.4.  Σεισμική ενέργεια απόσβεσης 
 

Για την αξιολόγηση της ευρωστίας και της ακρίβειας της προτεινόμενης 

μεθοδολογίας εξετάστηκε η σεισμική απόκριση μονοβάθμιων και πολυβάθμιων 

συστημάτων. Έγιναν μη γραμμικές εν χρόνω αναλύσεις των εν λόγω συστημάτων 

για τα βέλτιστα τεχνητά επιταχυνσιογραφήματα που έδωσαν τα δυο σενάρια και 

έγινε σύγκριση μεταξύ τους, και με το αντίστοιχο αποτέλεσμα της εν χρόνω 

ολοκλήρωσης των ανωτέρω συστημάτων με τα επιταχυνσιογραφήματα που 

χρησιμοποιήθηκαν για τον καθορισμό των στοχευόμενων φασμάτων. Για τη 

σύγκριση χρησιμοποιείται η σεισμική ενέργεια που αποσβέννεται στις κατασκευές 

λόγω ιξωδοελαστικής απόσβεσης. Στην Εικόνα 0.22 φαίνεται η χρονική μεταβολή 

της ενέργειας ιξωδοελαστικής απόσβεσης στην κατασκευή ανα μονάδα μάζας για 

κάθε περιπτωση στοχευόμενου φάσματος, στην περίπτωση ενός μονοβάθμιου 

ταλαντωτή. Παρατηρείται καλή συμφωνία μεταξύ της ενέργειας απόσβεσης του 

ταλαντωτή όταν διεγείρεται με το τεχνητό επιταχυνσιογράφημα που παρήχθη από 

τον προτεινόμενο αλγόριθμο (κόκκινη γραμμή) και όταν διεγείρεται με το 

επιταχυνσιογράφημα με βαση το οποίο παρήχθη το στοχευόμενο φάσμα (μαύρη 

γραμμή). Η συμφωνία αυτή παρατηρείται για όλες τις περιπτώσεις στοχευόμενων 

φασμάτων και είναι σε όλες τις περιτπώσεις καλύτερη για το σενάριο 2 σε σχέση 

με αυτή για το σενάριο 1. Αυτό σημαίνει ότι η μεθοδολογία του σεναρίου 2 (ήτοι 

συμμόρφωση τόσο με το φάσμα ελαστικής απόκρισης επιτάχυνσης όσο και με τα 

φάσματα ισοδύναμης ταχύτητας σεισμικής ενέργειας) δίνει πιο ρεαλιστικά 

τεχνητά επιταχυνσιογραφήματα σε σχέση με τη μεθοδολογία του σεναρίου 1 (ήτοι 

συμμόρφωση μόνο με το φάσμα ελαστικής απόκρισης επιτάχυνσης)  

 

  
(α) (β) 
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(γ) 

Εικόνα 0.22: Χρονική εξέλιξη της ενέργειας ιξωδοελαστικής απόσβεσης ανα μονάδα 
μάζας για τα τεχνητά επιταχυνσιογραφήματα των δυο σεναρίων και για κάθε 

περίπτωση στοχευόμενου φάσματος (α) El Centro, (β) Northridge και (γ) Sakarya. 

 

0.5.5.  Συμπεράσματα 
 
Αναπτύχθηκε μια νεα μεθοδολογία παραγωγής τεχνητών επιταχυνσιογραφημάτων 
με γραμμικό συνδυασμό ακατέργαστων καταγραφών από μια βαση δεδομένων. 
Κατα τη δημιουργία των τεχνητών επιταχυνσιογραφημάτων λαμβάνεται υπόψη όχι 
μόνο η συμμόρφωσή τους με το φάσμα ελαστικής απόκρισης επιτάχυνσης που 
πραδιαγράφεται από τους κανονισμούς κατα το συνήθη αντισεισμικό σχεδιασμό, 
αλλά και τα φάσματα της ισοδύναμης ταχύτητας σεισμικής ενέργειας. Η θεώρηση 
αυτή οδηγεί στην παραγωγή βελτιωμένων τεχνητών καταγραφών που είναι αρκετά 
πιο ρεαλιστικές Το πρόβλημα παραγωγής τεχνητών επιταχυνσιογραφημάτων 
ανάγεται σε πρόβλημα βελτιστοποίησης, για την επίλυση του οποίου 
χρησιμοποιείται γενετικός αλγόριθμος μεικτής φύσης (πραγματικών – ακεραίων). 
Αποδεικνύεται ότι οι τεχνητές καταγραφές που παράγονται με βαση την 
προτεινόμενη μεθοδολογία οδηγούν σε ακριβέστερη εκτίμηση της σεισμικής 
ενέργειας απόσβεσης στις κατασκευές, σε σχέση με τις συμβατικές μεθόδους 
παραγωγής τεχνητών καταγραφών, και συνεπώς σε ακριβέστερη εκτίμηση της 
καταπόνησης των κατασκευών κατα τη διάρκεια σεισμικών διεγέργσεων. Επίσης, 
αποδεικνύεται η ευρωστία και ακρίβεια του γενετικού αλγορίθμου που 
χρησιμοποιήθηκε στην ανωτέρω μεθοδολογία. 
 

 

0.6. Abaqus2Matlab: Ένα Ολοκληρωμένο Λογισμικό Βέλτιστου 

Σχεδιασμού για Εφαρμογές Μηχανικού 

 

0.6.1.  Εισαγωγή 
 
Οι πρακτικές εφαρμογές της μεθόδου των πεπερασμένων στοιχείων συνήθως 
εντάσσονται σε ένα πλαίσιο βελτιστοποίησης, όπου επιδιώκεται καθε φορά μεσω 
της μεθόδου των πεπερασμένων στοιχείων η επίτευξη ενός βέλτιστου σχεδιασμού. 
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Κύριος λόγος είναι η μεγάλη πολυπλοκότητα των αντικειμενικών στόχων του 
βέλτιστου κατασκευαστικού σχεδιασμού, που δεν επιτρέπει την ενσωμάτωσή τους 
στην μέθοδο των πεπερασμένων στοιχείων. Τις περισσότερες φορές απαιτείται μια 
αντίστροφη ανάλυση, όπου είναι γνωστά τα αποτελέσματα της μεθόδου των 
πεπερασμενων στοιχείων και είναι άγνωστες οι παράμετροι του προσομοιώματος. 
Συνήθως αντίστροφες αναλύσεις τέτοιου είδους εφαρμόζονται για την εκτίμηση 
παραμέτρων σε καταστατικά προσομοιώματα, και όχι μόνο, και μπορούν να 
δώσουν αποτελέσματα που είναι σχεδόν αδύνατο να ανακτηθούν με άλλο τρόπο. 
Για τους παραπάνω λόγους, και για την επίλυση των ανωτέρω προβλημάτων όπου 
για τη μέθοδο των πεπερασμένων στοιχείων χρησιμοποιείται το Abaqus και για τη 
διαδικασία βελτιστοποίησης χρησιμοποιείται η γλώσσα προγραμματισμού Matlab, 
αναπτύχθηκε ένα νέο λογισμικό, το Abaqus2Matlab (Papazafeiropoulos et al., 
2017), το οποίο έχει τα ακόλουθα κύρια χαρακτηριστικά: 

 Παρέχει μια σύνδεση με την οποία μπορεί να γίνει μεταφορά δεδομένων 

από Abaqus σε Matlab και αντιστρόφως. Η ανάλυση σε Abaqus μπορεί να 

εκτελεστεί μέσω Matlab, χωρίς να απαιτείται η εκδήλωση ενεργειών εκ μέρους 

του χρήστη, είτε στο γραφικό περιβάλλον είτε στη γραμμή εντολών του Abaqus 

(Abaqus/CAE και Abaqus /Command αντίστοιχα). 

 Μεταφέρει αποτελεσματικά τα αποτελέσματα από το Abaqus στο Matlab, 

με διαδικασίες απαλλαγμένες από σφάλματα, δεδομένου και ότι όλες οι 

υπορουτίνες του ανωτέρω λογισμικού έχουν επαληθευτεί μέσω ανάλογων 

αναλύσεων. Τα αποτελέσματα των επαληθεύσεων αυτών καθώς και όλα τα 

συνοδευτικά αρχεία παρουσιάζονται στη βιβλιογραφία του Abaqus2Matlab, και 

είναι πλήρως αναπαράξιμα από τον ενδιαφερόμενο χρήστη. 

 Παρέχει τα αποτελέσματα του Abaqus στο Matlab ως μεταβλητές έτοιμες 

προς χειρισμό από το χρήστη μέσα στο περιβάλλον της Matlab, δίνοντας έτσι 

ευκολία για την περαιτέρω μετεπεξεργασία τους.  

 Μπορεί να διαβάσει πολλά διαφορετικά είδη αποτελεσμάτων (σε κόμβους, 

σε σημεία ολοκλήρωσης πεπερασμένων στοιχείων και γενικά αποτελέσματα, όπως 

π.χ. συνδεσιμότητα δικτύου πεπερασμένων στοιχείων, ιδιοτιμές, κλπ). 

 Παρέχεται πλήρης οδηγός χρήσης του Abaqus2Matlab καθώς και ανοικτός 

κώδικας. 

 Συμπεριλαμβάνεται επαρκής αριθμός υπορουτίνων στις βιβλιοθήκες του 

ανωτέρω λογισμικού για την επεξεργασία των συνηθέστερων τύπων 

αποτελεσμάτων του Abaqus. 

 Το λογισμικό, η βιβλιογραφία του καθώς και άλλο συνοδευτικό υλικό είναι 

προσβάσιμα μεσω της ιστοσελίδας www.abaqus2matlab.com. 
 

Το Abaqus2Matlab διανέμεται προς τους χρήστες ως ανοικτός πηγαίος κώδικας 

με στόχο τη διευκόλυνση και επιτάχυνση της επιστήμης του μηχανικού. Τα 

αποτελέσματα του Abaqus διαβάζονται από το Abaqus2Matlab μέσω αρχείων της 

μορφής ASCII, που λέγονται results files. Τα εν λόγω αρχεία μπορούν να είναι είτε 

σε δυαδική μορφή (binary) είστε σε αναγνώσιμη μορφή (ASCII). Ο χειρισμός και 

επεξεργασία των αρχείων σε μορφή ASCII είναι ευκολότερος σε σχέση με το 

http://www.abaqus2matlab.com/
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χειρισμό των αρχείων δυαδικής μορφής, αφού τα αρχεία μορφής ASCII μπορούν 

να διαβαστούν από διαφορετικούς υπολογιστές, με διαφορετική κωδικοποίηση, με 

χρήση διαφορετικών λογισμικών μετεπεξεργασίας, χωρίς την ανάγκη ειδικών 

ρυθμίσεων που απαιτούν χρόνο και πολύτιμους πόρους. Κύριο μειονέκτημα των 

αρχείων ASCII είναι ότι είναι μεγαλύτερα σε μέγεθος από τα αρχεία τύπου binary. 

Τόσο στην παρούσα διατριβή όσο και στο εγχειρίδιο χρήσης του λογισμικού 

(βιλβιογραφία) αναφέρεται λεπτομερώς ο τρόπος εξαγωγής των αποτελεσμάτων 

από τα εν λόγω αρχεία, τα οποία δημιουργούνται μετά από κάθε ανάλυση του 

Abaqus, ύστερα από κατάλληλη παραμετροποίηση των αντίστοιχων αρχείων 

εισόδου (Abaqus input files). Για περισσότερες πληροφορίες όσοαν αφορά το 

λογισμικό, ο αναγνώστης παραπέμπεται στο σχετικός άρθρο (Papazafeiropoulos 

et al., 2017).  

 

0.6.2.  Οργάνωση του κώδικα του Abaqus2Matlab 
 
Το Abaqus2Matlab αποτελείται από τις εξής υπορουτίνες που κατανέμονται σε 
υποφακέλους: 

 Μια συνάρτηση που μετατρέπει τα περιεχόμενα του αρχείου 

αποτελεσμάτων (ή ισοδύναμα, *.fil), σε ένα διανυσμα χαρακτήρων που εκτείνεται 

σε μια γραμμή, από το οποίο ανακτώνται τα αποτελέσματα για να φορτωθούν εν 

συνεχεία στο περιβάλλον του Matlab.  

 Ένας υποφάκελος με το όνομα «OutputAnalysis» που περιέχει όλες τις 

υπορουτίνες για την εξαγωγή των αποτελεσμάτων τύπου «ανάλυσης» (ήτοι αυτών 

που δεν αναφέρονται σε κόμβους ή στοιχεία), όπως για παράδειμγα ορισμούς 

κόμβων, στοιχείων, συνδεσιμότητα δικτύου, κλπ. Οι σχετικές μεταβλητές 

φαίνονται στον πίνακα 0.3. Η πρώτη στήλη (με τίτλο “record type”) περιγράφει τη 

μεταβλητή τα αποτελέσματα της οποίας καταγράφονται στο αρχείο *.fil, για το 

αντίστοιχο κλειδί εγγραφής που αναγράφεται στη δεύτερη στήλη. Στην τρίτη 

στήλη αναγράφεται το κλειδί της μεταβλητής εξόδου, που χρησιμοποιείται στο 

αρχείο εισόδου στο Abaqus, προκειμένου να εκτυπωθούν τα αποτελέσμτα της 

συγκεκριμένης εμταβλητής στο αρχείο *.fil κατα τη διάρκεια της ανάλυσης. 

Τέλος, στην τέταρτη στήλη φαίνεται η υπορουτίνα του Abaqus2Matlab που είναι 

υπεύθυνη για την εξεγωγή των αποτελεσμάτων της εκάστοτε μεταβλητής.  

 Ένας υποφάκελος με το όνομα «OutputNodes» που περιέχει τις 

υπορουτίνες για την επεξεργασία αποτελεσμάτων που αναφέρονται σε κόμβους. 

Οι διαθεσιμες μεταβλητές για το σκοπό αυτό φαίνονται στον πίνακα 0.4. 

 Ένας υποφάκελος με το όνομα «OutputElements» που περιέχει τις 

υπορουτίνες για την επεξεργασία αποτελεσμάτων που αναφέροντσι σε 

πεπερασμένα στοιχεία (είτε στα σημεία ολοκλήρωσης αυτών είτε στο σύνολο του 

στοιχείου). Οι διαθέσιμες μεταβλητές για το σκοπό αυτό φαίνονται στον Πίνακα 

0.5. 

 Ένας υποφάκελος με το όνομα «Verification», που περιέχει κώδικες σε 

Matlab για την επαλήθευση των διαφόρων υπορουτίνων. 
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 Ένας υποφάκελος με το όνομα «ABAQUSInputFiles» που περιέχει όλα τα 

αρχεία εισόδου του Abaqus που χρησιμοποιούνται για την επαλήθευση. 

 Ένας υποφάκελος με το όνομα «help» που περιέχει όλα τα αρχεία σχετικά 

με τη βιβλιογραφία του Abaqus2Matlab. 

 

ANALYSIS RECORD TYPE RECORD KEY 

OUTPUT VARIABLE 

IDENTIFIER FUNCTION 

Element definitions 1900 - Rec1900.m 
Node definitions 1901 - Rec1901.m 
Modal 1980 - Rec1980.m 

Πίνακας 0.3: Λίστα μεταβλητών για αποτελέσματα τύπου «ανάλυσης» που 
εξάγονται με το Abaqus2Matlab.  

 

NODAL RECORD TYPE RECORD KEY OUTPUT VARIABLE 
IDENTIFIER 

FUNCTION 

Nodal Acceleration 103 A Rec103.m 

Concentrated Electrical 
Nodal Charge 

120 CECHG Rec120.m 

Concentrated Electrical 
Nodal Current 

139 CECUR Rec139.m 

Nodal Point Load 106 CF Rec106.m 

Concentrated Flux 206 CFL Rec206.m 

Nodal Coordinate 107 COORD Rec107.m 

Fluid Cavity Volume 137 CVOL Rec137.m 

Electrical Potential 105 EPOT Rec105.m 

Motions (in Cavity 
Radiation Analysis) 

237 MOT Rec237.m 

Normalized 
Concentration (Mass 
Diffusion Analysis) 

221 NNC Rec221.m 

Temperature 201 NT Rec201.m 

Fluid Cavity Pressure 136 PCAV Rec136.m 

Pore or Acoustic Pressure 108 POR Rec108.m 

Electrical Reaction 
Charge 

119 RCHG Rec119.m 

Electrical Reaction 
Current 

138 RECUR Rec138.m 

Nodal Reaction Force 104 RF Rec104.m 

Residual Flux 204 RFL Rec204.m 

Internal Flux 214 RFLE Rec214.m 

Reactive Fluid Volume 
Flux 

109 RVF Rec109.m 

Reactive Fluid Total 
Volume 

110 RVT Rec110.m 

Total Force 146 TF Rec146.m 
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Nodal Displacement 101 U Rec101.m 

Nodal Velocity 102 V Rec102.m 

Viscous Forces Due to 
Static Stabilization 

145 VF Rec145.m 

Πίνακας 0.4: Λίστα μεταβλητών για αποτελέσματα τύπου «κόμβου» που εξάγονται 
με το Abaqus2Matlab. 

 

ELEMENT RECORD TYPE RECORD 
KEY 

OUTPUT VARIABLE 
IDENTIFIER 

FUNCTION 

Creep Strain (Including 
Swelling) 

23 CE Rec23.m 

Mass Concentration (Mass 
Diffusion Analysis) 

38 CONC Rec38.m 

Concrete Failure 31 CONF Rec31.m 

Coordinates 8 COORD Rec8.m 

Unit Normal to Crack in 
Concrete 

26 CRACK Rec26.m 

Total Strain 21 E Rec21.m 

Total Elastic Strain 25 EE Rec25.m 

Energy (Summed over 
Element) 

19 ELEN Rec19.m 

Energy Density 14 ENER Rec14.m 

Mechanical Strain Rate 91 ER Rec91.m 

Whole element volume 78 EVOL Rec78.m 

Film 33 FILM Rec33.m 

Total Fluid Volume Ratio 43 FLUVR Rec43.m 

Pore Fluid Effective 
Velocity Vector 

97 FLVEL Rec97.m 

Gel (Pore Pressure 
Analysis) 

40 GELVR Rec40.m 

Heat Flux Vector 28 HFL Rec28.m 

Total Inelastic Strain 24 IE Rec24.m 

Logarithmic Strain 89 LE Rec89.m 

Nominal Strain 90 NE Rec90.m 

Nodal Flux Caused by Heat 10 NFLUX Rec10.m 

Plastic Strain 22 PE Rec22.m 

Pore or Acoustic Pressure 18 POR Rec18.m 

Radiation 34 RAD Rec34.m 

Stress 11 S Rec11.m 

Saturation (Pore Pressure 
Analysis) 

35 SAT Rec35.m 

Section Strain and 
Curvature 

29 SE Rec29.m 

Section Force and Moment 13 SF Rec13.m 

Stress Invariant 12 SINV Rec12.m 
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Strain Jump at Nodes 32 SJP Rec32.m 

Principal stresses 401 SP Rec401.m 

Average Shell Section 
Stress 

83 SSAVG Rec83.m 

Element Status 61 STATUS Rec61.m 

Section Thickness 27 STH Rec27.m 

Thermal Strain 88 THE Rec88.m 

Πίνακας 0.5: Λίστα μεταβλητών για αποτελέσματα τύπου «στοιχείου» που 
εξάγονται με το Abaqus2Matlab. 

 

0.6.3.  Επαλήθευση του προβλήματος βελτιστου σχεδιασμού δικτυώματος 

10 κόμβων 
 
Για την επαλήθευση του Abaqus2Matlab χρησιμοποιήθηκε μια σειρά από 
προβλήματα βελτιστοποίησης, όπου συγκρίνονται τα αποτελέσματα της 
βιβλιογραφίας με αυτά που δίνει το Abaqus2Matlab. Θεωρείται ένα επίπεδο 
δικτύωμα 10 κόμβων το οποίο φαίνεται στην Εικόνα 0.23, με τα ακόλουθα δομικά 
χαρακτηριστικά: 
 

 Μέτρο ελαστικότητας E = 10,000 ksi 

 Πυκνότητα rho = 0.1 lb/in3 

 Μήκος L = 360 in 

 Φορτίο P = 100 kip 

Οι ράβδοι του δικτυώματος διαχωρίζονται σε 10 ομάδες. Οι μεταβλητές 

σχεδιασμού είναι τα εμβαδά διατομής των ράβδων που ανήκουν σε κάθε ομάδα. 

και τα οποία ανήκουν στο διάστημα [0.1, 35] (in2). Οι περιορισμοί επιβάλλονται 

τόσο στις τάσεις όσο και στις παραμορφώσεις των δομικών στοιχείων. Η μέγιστη 

επιτρεπόμενη μετατόπιση στις διευθύνσεις ±x και ±y για κάθε κόμβο είναι d_max= 

2 in, ενώ η μέγιστη επιτρεπόμενη τάση (απόλυτη τιμή) είναι sigma_allow= 25 ksi 

τόσο σε εφελκυσμό όσο και σε θλίψη, και η αντικειμενική συνάρτηση είναι να 

ελαχιστσοποιηθεί το βάρος του δικτυώματος, υπό τους ανωτέρω περιορισμούς, με 

απώτερο στόχο την οικονομικότερη κατασκευή. 

 

 
Εικόνα 0.23: Γεωμετρία και φόρτιση του δικτυώματος 10 κόμβων. 
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Ο Πίνακας 0.6 παρουσιάζει τα βέλτιστα αποτελέσματα τα οποία υπολογίστηκαν 

με την προτεινόμενη διαδικασία βελτιστοποίησης και επίσης τον αντίστοιχο 

αριθμό υπολογισμών αντικειμενικής συνάρτησης. Τα αποτελέσματα της 

προτεινόμενης διαδικασίας συγκρίνονται με αντίστοιχα αποτελέσματα ορισμένων 

μελετών που υπάρχουν στη βιβλιογραφία. Πρατηρείται ότι το βέλτιστο βάρος και 

τιμές των μεταβλητών σχεδιασμού που υπολογίστηκαν με το Abaqus2Matlab 

βρίσκονται πολύ κοντά με τα αντίστοιχα αποτελέσματα που υπάρχουν στη 

βιβλιογραφία. Ωστόσο, είναι προφανές ότι η προτεινόμενη διαδικασία απαιτεί 

πολύ μικρότερο αριθμό στατικών αναλύσεων σε σχέση με άλλες μεθόδους, 

προκειμένου ο αλγόριθμος να φτάσει τους βέλστιστους σχεδιασμούς. 

 

Variables Optimal cross section area (in2) 

Design 

name 

M. 

Sonmez 

(2011) 

Wu & 

Tseng 

(2010) 

Li et al. 

(2007) 

Degertekin 

&Hayalioglu 

(2013) 

Degertekin 

(2012) 

Kaveh et 

al. (2014) 

Present 

thesis 

A1 30.548 30.378 30.704 30.429 30.394 30.208 30.5218 

A2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

A3 23.18 23.468 23.167 23.244 23.098 22.698 23.1999 

A4 15.218 15.196 15.183 15.368 15.491 15.275 15.2229 

A5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

A6 0.551 0.533 0.551 0.575 0.529 0.529 0.5514 

A7 7.463 7.437 7.46 7.440 7.488 7.558 7.4572 

A8 21.058 21.084 20.978 20.967 21.189 21.559 21.0364 

A9 21.501 21.433 21.508 21.533 21.342 21.491 21.5284 

A10 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Weight (lb) 5060.88 5060.45 5060.92 5060.96 5061.42 5062.39 5060.9 

Number of 

function 

evaluations 

 

500,000 

 

32,100 

 

125,000 

 

16,872 

 

7,081 

 

9,791 

 

347 

Πίνακας 0.6: Αποτελέσματα βελτιστου σχεδιασμού του δικτυώματος 10 κόμβων. 

 

 

0.6.4.  Βέλτιστος σχεδιασμός πρόβολων τοίχων αντιστήριξης γραμμικά 

ελαστικού εδάφους με χρήση γενετικού αλγορίθμου 
 

Στην ενότητα αυτή εξετάζεται ο βέλτιστος σχεδιασμός πρόβολων τοίχων 

αντιστήριξης που υπόκεινται σε σεισμική φόρτιση και αποκρίνονται με γραμμικά 

ελαστική συμπεριφορά. Η αντικειμενική συνάρτηση που ελαχιστοποιείται είναι το 

βάρος του τοίχου αντιστήριξης. Αυτό είναι περίπου ανάλογο του κόστους 

κατασκευής του, εφόσον το τελευταίο είναι γενικά μια αύξουσα συνάρτηση του 

βάρους του υλικού κατασκευής. Η αντικειμενική συνάρτηση ελαχιστοποιείται 

υποκείμενη σε σχεδιαστικούς περιορισμούς. Εκτός από τους συνήθεις 

περιορισμούς που επιβάλλονται στις περισσότερες περιπτώσεις βελτιστοποίησης 
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παρόμοιου τύπου, επιβάλλεται ένας πρόσθετος περιορισμός που αφορά την 

περιστροφική απόκριση του τοίχου. Η βελτιστοποίηση πραγματοποιείται μεσω 

ενός γενετικού αλγορίθμου, ο οποίους έχει ήδη χρησιμοποιηθεί για 

βελτιστοποίηση προβλημάτων δομοστατικού σχεδιασμού πολλών μεταβλητών και 

πολύπλοκων περιορισμών (Pei & Xia, 2012). Παρουσιάζονται δυο περιπτώσεις 

διαδικασίας βέλτιστου σχεδιασμού, που αντιστοιχούν σε δύο τιμές της 

υψομετρικής διαφοράς του εδαφικού στρώματος που πρόκειται να αντιστηριχθεί: 

8m (περίπτωση 1) και 12m (περίπτωση 2). Το γενικό προσομοίωμα για τις δυο 

περιπτώσεις αντιστηρίξεων φαίνεται σην Εικόνα 0.24. Αποτελείται από ένα 

εδαφικό στρώμα που εκτείνεται στο άπειρο προς αμφότερες τις δυο οριζόντιες 

κατευθύνσεις, έχει οριζόνται βάση, και είναι ψηλότερο στα ανάντη προς την 

θετική κατεύθυνση, σε σχέση με την αρνητική κατεύθυνση. Το «σκαλοπάτι» που 

δημιουργείται αντιστηρίζεται από έναν τοίχο αντιστήριξης, που θεμελιώνεται σε 

πέδιλο, αποτελούμενο από τη «μύτη» (τμήμα κατάντη) και το «τακούνι» (τμήμα 

ανάντη). Η απόσταση από τον τοίχο μέχρι το μακρινό πεδίο (κατάντη) είναι ίση με 

10 φορές το αντιστηριζόμενο ύψος. Ομοίως προς την ανάντη κατεύθυνση.  

Τα αποτελέσματα των δυο διαδικασιών βελτιστοποίησης φαίνονται στον Πίνακα 

0.6. Παρατηρείται γενικά ότι το βάθος και το πλάτος της θεμελίωσης του τοίχου 

είναι αυξημένα στην περίπτωση 2 σε σχεση με την περίπτωση 1. Επίσης το ίδιο 

ισχύει για τη βέλτιστη τιμή της αντικειμενικής συνάρτησης. Οι παρατηρήσεις 

αυτές συμφωνούν με τη συνήθη διαίσθηση. Το μήκος του τακουνιού του τοίχου 

(heel) είναι ίσο με το ελάχιστο όριο σε αμφότερες τις περιπτώσεις. 

 
Εικόνα 0.24: Προσομοίωμα τοίχου αντιστήριξης από ωπλισμένο σκυρόδεμα. 
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  Case 1 (H=8m) Case 2 (H=12m) 

Design variables 

hemb (m) 7.76 7.16 

dtoe (m) 4.57 6.57 

dheel (m) 2.00 2.00 

twall (m) 0.20 0.22 

ttoe (m) 0.20 0.22 

theel (m) 0.20 0.20 

Constraint quantities 

θ 0.328% 0.246% 

maxτ (kPa) 78.42 88.46 

minτ (kPa) -131.96 -135.73 

minσyy (kPa) -505.98 -592.45 

maxσyy (kPa) -122.07 -124.53 

σb,s,max (kPa) 22570.73 21476.85 

σb,t,max (kPa) 4265.33 1183.35 

σb,h,max (kPa) 2029.97 2180.68 

σb,s,min (kPa) -23795.84 -23385.15 

σb,t,min (kPa) -7336.37 -8128.82 

σb,h,min (kPa) -2176.36 -2501.06 

Algorithm details 

Min. value of obj. fun. (m2) 4.47 6.12 

Number of generations 73 64 

Number of fun. 
evaluations 

1480 1300 

Πίνακας 0.6: Αποτελέσματα βέλτιστου σχεδιασμού για τις δυο περιπτώσεις 
αντιστηρίξεων. 

 

0.6.5.  Βαθμονόμηση των καταστατικών ιδιοτήτων του υλικού ενός 

ελαστικού μεσω διαδικασίας βελτιστοποίησης 
 
Θεωρούνται οι ιδιομορφές και ιδιοσυχνότητες στην περιοχή των χαμηλών 
συχνοτήτων προκειμένου να αναπτυχθεί ένα ρεαλιστικό μοντέλο ελαστικού 
αυτοκινήτου, με βάση αντίστοιχα αριθμητικά δεδομένα από τη βιβλιογραφία. 
Αυτό επιτυγχάνεται μεσω μιας διαδικασίας βελτιστοποίησης, η οποία προσαρμόζει 
διάφορες καταστατικές παραμέτρους του υλικού κατασκευής του ελαστικού, 
ούτως ώστε οι ιδιομορφές του ελαστικού στο βέλτιστο σημείο να βρίσκονται 
κοντά στις πειραματικές (δεδομένες από τη βιβλιογραφία) το περισσότερο 
δυνατό. Δεδομένου του μικρού αριθμου των μεταβλητών σχεδιασμού, 
χρησιμοποιήθηκαν απλές μέθοδοι μαθηματικού προγραμματισμού για την επιλυση 
του ανωτέρω προβλήματος βελτιστοποίησης. Μέθοδοι που ανήκουν σε αυτή την 
κατηγορία είναι οι σειριακές μέθοδοι τετραγωνικού προγραμματισμού για μη 
γραμμικές διαδικασίες βελτιστοποίησης (που χρησιμοποιήθηκαν σε αυτή την 
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ενότητα), και άλλες. Περισσότερες λεπτομέρειες για αυτές τις μεθόδους 
παρουσιάζονται από τους Nocedal & Wright (2006).  
 
Η διατομή του ελαστικού, P235/75R17, φαίνεται στην Εικόνα 0.25. Το ελαστικό 
αποτελείται από τη ζώνη, το πέλμα, και τα πλευρικά τοιχώματα, τα οποία 
προσομοιώνονται με υπερελαστικό υλικό, αντιπροσωπευτικό του καουτσούκ. Το 
υπερελαστικό υλικό μοντελοποιείται με δυναμικό ενέργειας παραμόρφωσης 
αποτελούμενο από έναν πολυωνυμικό όρο (Mooney – Rivlin model). με σειρά 
Prony μοναδικού όρου, για την προσομοίωση της εν χρόνω ιξωδοελαστικότητας 
(Bekakos et al., 2016). Η ζώνη περιέχει οπλισμό δυο στρώσεων και τον οπλισμό 
του σκελετού, όπου ο τελευταίος εκτείνεται πάνω από την περιοχή της ζώνης και 
καλύπτει τα πλευρικά τοιχώματα. Οι δυο στρώσεις της ζώνης και ο σκελετός 
διακριτοποιούνται με επιφανειακά στοιχεία με δυνατότητα παραμόρφωσης 
στρέβλωσης. Το χείλος διακριτοποιείται με γραμμικά στοιχεία συνδέσμου δυο 
κόμβων για αξονοσυμμετρικές επίπεδες γεωμετρίες, και τα υπόλοιπα τμήματα της 
διατομής διακριτοποιούνται με τετρακομβικά διγραμμικά στοιχεία μειωμένης 
ολοκλήρωσης με ελεγχόμενο hourglassing.  
 

 
Εικόνα 0.25: Γεωμετρία ημιδιατομής του ελαστικού. 

 
 

Τα αποτελέσματα της διαδικασίας βελτιστοποίησης φαίνονται στον Πίνακα 0.7.  
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 Initial model 
Optimised 
model 

Wheeler 
et al. 
(2005) 

Deviation 
(%) 

Design Variables 

Abelt (m2) 2.11868*10-7 3.64826*10-7 N/A - 

Acarcass (m2) 4.20835*10-7 8.01133*10-8 N/A - 

C10 (Pa) 106 106 +0.01489 N/A - 

Eigenfrequencies 

f1 [0,0] (Hz) 36.85 30.86 31.7  2.66 

f2 [0,0] (Hz) 37.17 35.85 35  2.43 

f3 [1,1] (Hz) 43.85 36.92 37.8  2.33 

f4 [1,1] (Hz) 43.85 36.92 37.8  2.33 

f5 [1,0] (Hz) 65.07 58.75 58.5  0.43 

f6 [1,0] (Hz) 65.07 58.75 58.5  0.43 

f7 [2,1] (Hz) 76.33 68.41 66.1  3.49 

f8 [2,1] (Hz) 76.33 68.41 66.1  3.49 

f9 [2,0] (Hz) 86.65 78.67 79.5  1.04 

f10 [2,0] (Hz) 86.65 78.67 79.5  1.04 

f11 [3,0] (Hz) 104.36  96.42 97.6  1.21 

f12 [3,0] (Hz) 104.36  96.42 97.6  1.21 

f13 [3,1] (Hz) 117.07  107.9 102.7  5.06 

f14 [3,1] (Hz) 117.07  107.9 102.7  5.06 

f15 [4,0] (Hz) 122.65  114.9 115.9  0.83 

f16 [4,0] (Hz) 122.65  114.9 115.9  0.83 

Algorithm Details 

Min. value of 
obj. function 

- 8.59 - - 

Number of obj. 
function 
evaluations 

- 25 - - 

 

Πίνακας 0.7: Αποτελέσματα της διαδικασίας βελτιστοποίησης των ιδιοτιμών του 
ελαστικού που εξετάζεται στην παρούσα ενότητα. 

 
Άλλες εφαρμογές του Abaqus2Matlab που παρουσιάζονται στην παρούσα 
διατριβή είναι οι εξής: 
 
Βέλτιστος σχεδιασμός έναντι λυγισμού δοκών με πολλαπλές διαμήκεις ενισχύσεις 
στη διατομή, υποκείμενη σε συνδυασμένη κάμψη και διάτμηση  
Πρόβλεψη του συντελεστή λυγισμού ενισχυμένων δοκών με χρήση αλγορίθμων 
βαθιάς μηχανικής μάθησης 
Μια υπολογιστική μέθοδος για τη διεξαγωγή μη γραμμικών προσαρμοστικών 
αναλύσεων pushover κατασκευών μεσω προσομοίωσης Abaqus 
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0.7. Συμπεράσματα 

 
Τα κύρια συμπεράσματα της παρούσας διατριβής είναι τα ακόλουθα: 
 

 Η οικογένεια αλγορίθμων μη γραμμικής γενικευμένης εν χρόνω 

ολοκλήρωσης, απλού βήματος απλής λύσης που αναπτύχθηκαν περιέχει 

αλγορίθμους πολύ αποτελεσματικοί ακριβείς και ευσταθείς, ακόμα και με 

αυξημένο μέγεθος χρονικού βήματος ολοκλήρωσης, ενώ οι αλγόριθμοι 

συνεχούς επιτάχυνσης, που περιλαμβάνουν τη μέθοδο HHT-a ως ειδική 

περίπτωση, δίνουν τα πιο ακριβή αποτελέσματα για τις περισσότερες 

περιπτώσεις που μελετήθηκαν. 

 Αναπτύχθηκε νέο λογισμικό επεξεγασίας ισχυρών εδαφικών κινήσεων, το 

οποίο υπερισχύει σε ακρίβεια σε ορισμένες περιπτώσεις, λόγω χρήσης 

προχωρημένων αλγορίθμων παραμετροποιήσιμων ώστε να έχουν 

ελεγχόμενες ιδιότητες αριθμητικής απόσβεσης, διασκεδασμού και 

υπερακοντισμού. Εχει δε το μεγάλο πλεονέκτημα του δωρεάν προσβάσιμου 

ανοικτού κώδικα, που το κάνει ανάρπαστο για ερευνητικούς και 

διδακτικούς σκοπούς.  

 Αποδεικνύεται ότι υπάρχουν μοναδικές βέλτιστες κατανομές δυσκαμψίας 

οιονεί γραμμικού σχήματος, για την ομοιόμορφη κατανομή καθ’ ύψος της 

ενέργειας ιξωδοελαστικής και υστερητικής απόσβεσης σε ελαστικά και 

ελαστοπλαστικά επίπεδα διατμητικά κτίρια. Η ομοιόμορφη κατανομή της 

ενέργειας απόσβεσης παρέχει αυξημένη ασφάλεια έναντι ολικής 

κατάρρευσης κατα τη διάρκεια ισχυρών σεισμικών γεγονότων. 

 Εισάγεται η καινοτόμα έννοια της γραμμικής κατεύθυνσης ενός μη 

γραμμικού αλγορίθμου βελτιστοποίησης που οδηγεί σε βασική 

εξοικονόμηση υπολογιστικού φόρτου για τη λύση μη γραμμικών 

προβλημάτων βελτιστοποίησης. 

 Αποδεικνύεται ότι οι τεχνητές σεισμικές καταγραφές που παράγονται με τη 

μεθοδολογία του κεφαλαίου 5 της παρούσας διατριβής είναι πιο 

ρεαλιστικές για τον αντισεισμικό σχεδιασμό των κατασκευών, σε σχέση με 

τις τεχνητές καταγραφές που παράγονται με τις υπάρχουσες μεθόδους. 

 Αποδεικνύεται ότι το Abaqus2Matlab, ένα νέο λογισμικό που αναπτύχθηκε 

κατα τη διάρκεια εκπόνησης της παρούσας διατριβής, με κύριο σκοπό την 

επίλυση προβλημάτων βελτιστοποίησης, είναι εύρωστο και 

αποτελεσματικό, εφαρμόσιμο σε μια μεγάλη ποικιλία προβλημάτων 

μηχανικού. 

Ο κύριος σκοπός της παρούσας διατριβής είναι να θεμελιώσει καινοτόμες 

μεθοδολογίες για το σχεδιασμό των κατασκευών βασισμένο στις δυναμικές τους 
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ιδιότητες και τη σεισμική τους απόκριση με τη χρήση προηγμένων υπολογιστικών 

μεθόδων.  
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C h a p t e r  1 E q u a t i o n  S e c t i o n  ( N e x t )  

 

1  Introduct ion  

1.1 Motivation 

The design of any structural system aims to minimize its construction and 

operational costs and improve its structural performance. In this regard, 

engineers use either simple design rules based on experience, or structural 

optimization procedures in order to improve or optimize the design. It is obvious 

that this task is often difficult, given the large number of parameters that affect 

the design and the overall complexity of structural response. 

Direct time integration (or time stepping, or step by step) methods are a widely 

used approach to solve dynamic linear or nonlinear response analysis problems. 

In these methods the equilibrium equations are satisfied at discrete time points 

(or steps) of the loading and the response history. The response during each step 

is calculated from the displacement and velocity at the beginning of the step and 

from the history of loading during the step. Thus the response for each step is an 

independent analysis problem. The dynamic direct time integration methods 

have to satisfy certain criteria in order to be suitable for the integration of the 

differential equation of motion in the linear or nonlinear regime. In linear 

dynamic response, emphasis is given in accuracy, whereas in nonlinear dynamic 

response numerical stability is of primary interest. The large number of criteria 

that have to be satisfied has led to the development of dynamic time integration 

algorithms the results of which depend highly on the nature of the problem 

considered, i.e. while any algorithm may be suitable for dynamic analysis 

involving a specific time stepping and/or constitutive model, it may be 

inappropriate for dynamic analysis involving different characteristics of the two 

aforementioned factors. The classification of the various direct time integration 

algorithms into categories highlights this fact. From the aforementioned points, 

it is obvious that there is the need for the development of a direct time 

integration algorithm that will be able to be universally applied to any dynamic 

structural analysis problem. Among the goals of this thesis, is to cover this need. 
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The optimization methodologies can be widely classified in the following two 

generic formulations: 

i. Deterministic Optimization; 

ii. Stochastic Optimization.  

Algorithms of the first category proceed towards the optimum solution by 

following a specific path. Apart from the value of the objective function, they 

need additional information at each point to determine the direction in which 

they will proceed. On the contrary, algorithms of the second category use only 

the objective value and are able to find the global optimum in a stochastic way. In 

Chapter 4 of this thesis a new algorithm of the first category is developed which 

involves an innovative way to obtain additional information in each evaluation 

point of the path towards the optimum, whereas in Chapter 5 a new algorithm of 

the second category is presented which is able to handle the optimization 

problem considered. 

1.2 Objectives and scope 

The goal of the thesis is the development of innovative computational techniques 

for the optimum design of structures which respond due to dynamic (seismic) 

loading. Also, the necessary numerical tools for the implementation of the new 

computational techniques are provided. This is achieved by (a) developing 

methodologies for the direct step by step integration of the differential equations 

of dynamic equilibrium in the time domain, (b) the development of a 

computational tool for processing of raw strong-motion acceleration time series 

to produce compatible acceleration, velocity and displacement time series, 

acceleration, velocity and displacement elastic and inelastic response spectra, 

Fourier amplitude spectra, and standard earthquake-engineering intensity 

measures, (c) development of a novel iterative optimization algorithm of Newton 

type with line search capabilities, especially designed for linear elastic and 

elastoplastic shear buildings, which finds the optimum distribution of storey 

stiffness and strength for a prescribed fundamental (small strain) eigenperiod of 

the building, so that the distribution of dissipated energy along the height of the 

building becomes uniform, (d) development of a mixed real – integer genetic 

algorithm with appropriately customized genetic operators for the optimization 

of the ground motion acceleration time histories used for the dynamic analysis of 

structures in the framework of their seismic design, enabling in this way the more 

realistic seismic design of structures, and (e) the development of a new software, 

Abaqus2Matlab, which serves to integrate Abaqus and Matlab for various 

optimization procedures including, but not limited to, optimum structural design 

based on the dynamic properties and dynamic response of a structure. This 

interface between these well-known codes not only benefits from the image 

processing and the integrated graph-plotting features of Matlab, but opens up 
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new opportunities in results post-processing, statistical analysis and 

mathematical optimization, among many other possibilities. 

For the efficient solution of the aforementioned problems, efforts have been 

made for maximizing accuracy while retaining the computational effort as low as 

possible, through the optimized implementation of the various algorithms and 

their associated codes. 

All the issues described above have been addressed in the thesis, as will be 

described in detail in the following chapters. Furthermore, via numerical 

applications of realistic design problems the proposed computational framework 

is evaluated and tested. The original contribution of the thesis is presented in 

detail in Section 7.1 of the Conclusions (Chapter 7). 

1.3 Organization and outline 

The thesis consists of six chapters in total, plus the bibliography and three 

appendices at the end of it. Its structure is organized as follows: 

Chapter 1 is the introduction of the dissertation which provides a general 

description of the motivation, the goals pursued, as well as a brief description of 

the contents of each chapter. 

Chapter 2 introduces a generalized dynamic time – integration algorithm 

framework for non-linear structural dynamics. The nonlinear versions of the 

General Single Step Single Solve time integration algorithms’ family are 

formulated and outlined in an explicit flowchart which describes the nonlinear 

integration procedure in detail. Afterwards the various algorithms are applied to 

some benchmark dynamic analysis problems. 

Chapter 3 presents the development of OpenSeismoMatlab, which is an 

innovative open-source software for strong ground motion data processing, 

written in MATLAB, and is based on the family of the dynamic time integration 

algorithms presented in Chapter 2. This software is capable of processing of raw 

strong-motion acceleration time series to produce compatible acceleration, 

velocity and displacement time series, acceleration, velocity and displacement 

elastic and inelastic response spectra, Fourier amplitude spectra, and standard 

earthquake-engineering intensity measures. 

In Chapter 4 a new optimization concept is introduced which involves the 

uniform distribution of the dissipated seismic input energy among the various 

storeys of an arbitrary planar shear building. This is achieved by appropriately 

adjusting the stiffnesses and strengths of the various storeys of the building. The 

optimization technique uses a gradient method based on equivalent linear 

structures, instead of the traditional practice of calculating the gradients from the 

nonlinear objective function. The family of the direct time integration algorithms 

presented in Chapter 2 is used for the dynamic analysis required for the 

estimation of the dissipated seismic input energy. 



4 Chapter 1 

 

 

Chapter 5 introduces a novel spectra-matching framework, which employs a 

linear combination of raw ground motion records to generate artificial 

acceleration time histories perfectly matching a target spectrum, taking into 

account not only the acceleration but also the seismic input energy equivalent 

velocity. The optimization procedures employed in Chapter 5 use solvers that 

involve the use of OpenSeismoMatlab, among others.  

Chapter 6 presents a novel software, Abaqus2Matlab, that connects Abaqus, a 

sophisticated finite element package, with Matlab, the most comprehensive 

program for mathematical analysis. Abaqus2Matlab is used for various 

applications, including the optimum design of a retaining wall based on its 

seismic response, and the inverse analysis for the calibration of the constitutive 

properties of a tyre based on its dynamic properties. 

Chapter 7 contains the conclusions, the original contribution of the thesis, and 

directions for future research.  

Finally, the bibliography is presented followed by Appendix A which contains a 

listing of publications by the author. Each Chapter is accompanied by its 

corresponding references and notation. 
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2  A General ized Algorithm Framework 
for  Non-Linear  Structural  Dynamics  

2.1 Introduction 

In this chapter a generalized time integration algorithm that incorporates several 

well-known algorithms as special cases is extended into the nonlinear regime. 

The behavior of the algorithm during the time integration of the equation of 

motion of nonlinear dynamic structural problems is studied. After a literature 

review of the available time integration schemes used for problems of nonlinear 

structural dynamics and of the family of linear GSSSS algorithms, the nonlinear 

schemes are formulated and outlined in an explicit flowchart which describes the 

nonlinear integration procedure in detail. Afterwards, the nonlinear family of 

algorithms is applied to six elementary benchmark SDOF problems involving the 

dynamic response of SDOF systems with various stiffness and damping 

properties, as well as to two advanced benchmark problems, which involve a 3dof 

structure representing finite element systems containing rigid connections, 

penalty factors and other such types of constraints and a simple undamped 

pendulum with large rotations. 

The dynamic analysis of engineering structures under dynamic loading 

(earthquake, impact, etc.) with the finite element method results in a set of 

ordinary differential equations as follows: 

       Mu p u,u f t        (2.1) 

where M is the mass matrix, p is the internal force vector, which is in general a 

nonlinear function of the displacements u  and velocities u  and is equal to the 

sum of the forces in the structure due to stiffness and damping, and f is the 

external force vector which is a function of time t. In the case of a linear elastic 

structure with viscous damping  p u,u  is equal to: 

     p u,u Ku Cu       (2.2) 
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Where K  is the stiffness matrix and C  is the damping matrix, both of them 

independent of the displacement and velocity. Linear equations of dynamic 

equilibrium of the form of (2.1) in which  p u,u  is given by (2.2) can be solved 

using various superposition methods in the time or frequency domain, which 

greatly simplify the problem. However, in dynamic analysis of nonlinear 

response, superposition cannot be used and one has to resort to step-by-step 

methods. 

Direct time integration (or time stepping, or step by step) methods are a widely 

used approach to solve dynamic linear or nonlinear response analysis problems. 

In these methods the equilibrium equations are satisfied at discrete time points 

(or steps) of the loading and the response history. The response during each step 

is calculated from the displacement and velocity at the beginning of the step and 

from the history of loading during the step. Thus the response for each step is an 

independent analysis problem. 

The most common characteristics of time integration schemes are the following: 

 Stability. An integration scheme is said to be stable if the numerical 

solution, under any initial conditions, does not grow without bound. An 

algorithm is unconditionally stable for linear problems if the convergence of the 

solution is independent of the size of the time step, that is, the errors are not 

amplified from one step to the next no matter how long a time step is. In 
mathematical terms, numerical stability is provided, when the spectral radius   

of the amplification matrix A defined by: 
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is not more than unity throughout the dynamic analysis, i.e. 

     1 1max , ,..., 1          (2.4) 

where a  denotes the order of the derivative of u  and 1 2 a, ,...,    are the 

eigenvalues of the amplification matrix A . 

 Convergence. An integration scheme is convergent if the numerical 

solution approaches the exact solution as the size of the time step tends to zero. 

Suppose that the error is defined as follows: 

    
t exactE u u      (2.5) 

where tu  is an approximation of u  depending on the time step t , and  

denotes an arbitrary norm. If the following relation holds: 

    
t 0

lim E 0
 

      (2.6) 
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and there is a convergence trend shown as a straight line with positive integer 

slope in the  log E  versus  log t  plot, as shown in Figure 2-1, then the 

integration scheme is said to be properly convergent, whereas the slope q  is the 

order of accuracy of the integration scheme. If there is not any piece of the 

 log E  versus  log t  curve which is linear with positive integer slope, then the 

integration scheme is said not to be properly convergent. 

 
Figure 2-1: Typical variation of error with time step size for converging approximate 

time integration algorithms. 

 Accuracy. The order of accuracy of a time integration scheme is the largest 

positive integer q for which the following relation holds: 

    
t t

i i 1

qt 0

i 1

i

u u
lim 0

t
1

t

 



 






 
 

 

     (2.7) 

where it  is the time step size at iteration i  of the equation limit (2.7). Two 

numerical errors are associated with the accuracy of any algorithm: (a) numerical 

dispersion (often expressed in terms of period elongation) and (b) numerical 

dissipation (often expressed in terms of either the amplitude decay or the 

algorithmic damping ratio). Although the order of accuracy is conceptually 

independent from the numerical stability, there is some relationship between the 

two, in the form of various restrictions, e.g. Dalquist Barriers (Wood, 1990). 

 Algorithmic dissipation. It is a kind of filtering of the higher frequency 

oscillations, necessary to eliminate the spurious high frequency modes inherent 

in a finite element mesh. For a SDOF system, the plot of the amplitude of the 
spectral radius   of the amplification matrix A , with respect to t  (or 

equivalently t / T ), represents the capability of the time integration scheme to 

damp out the higher modes of a finite element model, which are sometimes 
introducing considerable error in the response. If 1  , smaller values of   entail 

larger degree of elimination of the higher frequency oscillations. 0  means 

complete elimination (see Figure 2-2). 

 Self-starting. This type of algorithms requires data from two time steps to 

proceed the solution. If data from more than two time steps are needed, the 

algorithm must be implemented with a starting procedure. 

 

 log E L

 Δ ,Ei it

q is integer
L>0: proper convergence
L=0: improper convergence

 log Δt

q

1
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Figure 2-2: Typical variation of spectral radius with t / T  for conditionally and 

unconditionally stable time integration algorithms. 

 Overshooting. It is the tendency of an algorithm to exceed heavily the 

exact solution in the first few time steps, but eventually to converge to the exact 

solution. 

Taking into account the above characteristics, a time integration scheme should 

have the following desirable features (Zhou & Tamma, 2004): 

 Unconditional stability. 

 At least second-order accuracy in time. 

 No more than zero-order displacement and velocity overshooting behavior 

with minimal numerical dissipation and dispersion. 

 Self-starting features with no more than one set of single-field system of 

implicit equations to be solved at each time step to include ease of 

implementation and computational simplicity. 

Regarding linear dynamic response, accuracy is the main concern, since many 

time integration algorithms are unconditionally stable. However, algorithms 

which are unconditionally stable for linear dynamics, often lose this stability for 

nonlinear dynamics, and therefore numerical stability is of primary interest in 

such cases. 

In this chapter, after a concise literature review about the numerical direct time 

integration algorithms applicable to the dynamic equilibrium equations of 

structural analysis of the form (2.1), a modification of the group of general single 

step single solve algorithms is presented, which can account for nonlinear 

dynamic response. This group of algorithms has already been published in the 

literature (Zhou & Tamma, 2004), but only for the case of linear dynamic 

response. The modification consists of introducing a Newton-Raphson iterative 

procedure inside each increment (or time step). Afterwards, the modified 

algorithm is applied for the direct time integration of the equation of motion (in 

the form of eq. (2.1)) of nonlinear dynamic systems the details of which can be 

found in section 2.2. The effect of all the characteristics of the various integration 

schemes used, as presented above, on the resulting dynamic response is studied 

and the relative performances of the various time integration schemes used are 

ρ
ρinf = 0: complete elimination of 
higher modes
(a): unconditionally stable
(b): stable for Δt<Δtcr

Δt

T

1

infρ

Δ crt

T

(a)

(b)
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compared. Apart from its robustness in solving nonlinear problems, it is proved 

that the algorithm can be designed to cope with cases with any degree of 

nonlinearity. 

The simplest direct time integration method for dynamic analysis is the 

piecewise exact method in which the equation of motion is solved exactly for 

linear loading during each time step, in which it is assumed that the actual 

loading history has constant slope (Clough & Penzien, 2003). Although the 

equation of motion is solved rigorously during each time step, the linear 

interpolation of the excitation function introduces some error into the calculated 

response; this can be eliminated either by reducing the length of the time step, or 

adjusting it so that the introduced loading history fits best the actual one. 

The numerical direct time integration schemes can be classified as either 

explicit or implicit. An explicit scheme is one in which the response values for the 

next step are calculated only from quantities belonging to the current step. On 

the other hand, an implicit scheme is one in which the expressions giving the 

values for the next step include one or more values of the next step, and therefore 

successive iterations are needed to arrive to the solution for the next step. 

Implicit methods lead in general to increased computational effort, although it is 

possible for some of them to be converted into an explicit formulation.  

Algorithms that require two or more implicit systems to be solved 

simultaneously at each time step have improved properties (Argyris et al., 1973), 

but they require twice or more the computational effort of the simple implicit 

systems. 

Another classification that can be made is according to the formulation used to 

ensure conservation (or decay) of energy within a time step which is a sufficient 

condition for algorithmic stability (Kuhl & Crisfield, 1999). This energy criterion 

is summarized in the following inequality: 

    n 1 n 1 n n extU K U K W      (2.8) 

where nU  and n 1U   represent the strain energy at the beginning and at the end of 

the time step respectively, nK  and n 1K   are the corresponding kinetic energies 

and extW  represents the work done by external forces within the time step. This 

classification results in the following three categories of algorithms which satisfy 

inequality (2.8): 

 Algorithms which employ numerical dissipation. The algorithms considered 

in the present chapter fall in this category. 

 Algorithms extending others by using constraints of energy conservation 

imposed via Lagrange multipliers (Constraint Energy Method), the first of 

which was presented in (Hughes & Caughey, 1978). 

 Algorithms which enforce energy conservation algorithmically such as the 

energy-momentum method presented in (Kuhl & Ramm, 1996). One of the 

first algorithms of this category was presented in (Simo & Tarnow, 1992). In 
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the absence of external loading these algorithms are designed to obey the 

following laws: 

 t t totdL dJ dE
0, 0, 0

dt dt dt
      (2.9) 

where tL  is the linear momentum, tJ  is the angular momentum and 
tot

tE  is the 

total energy. Combinations of algorithms of different categories from the above 

have also been made, such as combinations of numerical dissipation algorithms 

and algorithms ensuring energy conservation algorithmically presented in (Kuhl 

& Crisfield, 1999; Armero & Petöcz, 1996). 

Due to the lack of a general time integration algorithm suitable for various 

complex nonlinear dynamic structural systems, attempts have been made to 

combine two or more known algorithms into new more efficient ones. This 

concept of composition is another alternative for the construction of time 

integration schemes which possess desired properties, depending on the 

properties of the parent algorithms being combined. Algorithm composition can 

be done in two main ways: 

 Each time step is divided into two or more substeps, at which different 

independent integration schemes are applied. Equilibrium is satisfied at 

each time substep. The final solution depends on the algorithms used as 

well as on the way of partition of the time steps. The most representative 

method is presented by Bathe and his collaborators (Bathe, 2007; Bathe & 

Baig, 2005; Bathe & Noh, 2012) in which the trapezoidal rule is combined 

with a three-point backward difference method in two equal substeps. 

Generally, different ways of segmentation of the integration steps into 

substeps require additional parameters to be introduced (Matias Silva & 

Mendes Bezerra, 2008). 

 Different difference formulae are combined in one whole time step to 

inherit their advantages. Representative algorithms of this category have 

been presented in (Liu et al., 2012; Rezaiee-Pajand et al., 2011; Fung, 1998). 

For example, Liu et al. (2012) have proposed an efficient backward Euler 

time integration algorithm by composing the two point and three-point 

backward Euler formulae, which is a self-starting, two-step, second-order 

accurate algorithm with the same computational effort as the trapezoidal 

rule. However, with the increase of ratio t / T , this method results in the 

largest amplitude decay and period elongation, compared to Newmark, 

Bathe and Alpha methods. 

An additional category of methods to solve time dependent problems is the 

family of temporal discretization techniques, adopted by approximation of a 

continuous time interval with temporal finite elements. The Whole Element 

Method (WEM) in which time is incorporated along with the other spatial 

variables into a direct variational method is outlined in (Rosales & Filipich, 2002). 

A time-discontinuous Galerkin (TDG) method was presented by Li & Wiberg 

(1996) whereas a mixed finite element method was developed by Fung et al. 
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(1998). Similar time integration algorithms have been developed by Argyris & 

Scharpf, 1969; Gellert, 1978; Riff & Baruch, 1984a, 1984b; Golley, 1996; Chien & 

Wu, 2000; Bar-Yoseph, 2000. 

2.2 Modified nonlinear time integration algorithm 

2.2.1 The linear generalized single step single solve algorithm 

The equation of motion of a Single Degree of Freedom (SDOF) linear structure 

is given by the combination of the linear SDOF counterparts of (2.1) and (2.2): 

        Mu t Cu t Ku t f t    (2.10)  

with initial conditions: 

    0 0u 0 u , u 0 u    (2.11) 

Equation (2.10) can be applied to MDOF structures, given that the latter can be 

decomposed into a finite number of SDOF structures using various superposition 

methods. In (Zhou & Tamma, 2004) a family of general single step single solve 

(GSSSS) algorithms, namely algorithms which do not involve matrix 

multiplications and involve only one single system solve in a single time step is 

studied. A single size of the system refers to the number of degrees-of-freedom 

resulting from its spatial discretization. It is shown that the Dahlquist theorem 

(Dahlquist, 1963) holds not only for the linear multistep methods (LMS), but also 

for the general single step single solve (GSSSS) time integration algorithms, 

which are spectrally identical to the former. This theorem states that a GSSSS 

algorithm which is unconditionally stable, can be at most second order accurate. 

According to the theory presented by Zhou & Tamma, (2004), equation (2.10) 

can be represented as a time weighted residual as follows: 

  
n 1

n

t

t
W Mu Cu Ku f dt



    (2.12) 

where the weighted time field is assumed to be of the form 

 
2 3

1 2 3W 1 w w w       (2.13) 

and: 

 n n 1 n/ t, t t , t t t           (2.14) 

The dependent field variables ( u , u , u ) can be approximated by the following 

asymptotic series expansions: 

 2 3n 1 n
n 1 n 2 n 3

u u
u u u u

t

 
     


 (2.15) 

 2n 1 n
n 4 n 5

u u
u u u

t

 
   


 (2.16) 

 n 1 n
n 6

u u
u u

t

 
  


 (2.17) 

and the load vector is expanded to first order via a Taylor series: 
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 n 1 n
n

f f
f f

t

 
  


 (2.18) 

The updates of displacement and velocity are given by the equations: 

  2 2

n 1 n 1 n 2 n 3 n 1 nu u u t u t u u t          (2.19) 

  n 1 n 4 n 5 n 1 nu u u t u u t        (2.20) 

The update of acceleration is given by substitution of equations (2.13) to (2.20) 

into (2.12) as follows: 

 

 
 

 

 
 

2

6 5 3 n 1

n 6 n

n 4 n 5 n

2 2

n 1 n 2 n 3 n

1 n 1 n 1

M C t K t u

M u u

C u u t u t

K u u t u t u t

1 W f W f





     

 

    

      

  

 (2.21) 

or in a simplified form: 

 n 1 nMu F   (2.22) 

where 

 
     

   

n n 6 n n 4 n 5 n

2 2

n 1 n 2 n 3 n 1 n 1 n 1

F K,C,f M u u C u u t u t

K u u t u t u t 1 W f W f 

       

         
 (2.23) 

and 

   2

6 5 3M K,C M C t K t      (2.24) 

The subscript of nF  denotes the time step at which the quantities u , u , u  are 

evaluated for its calculation. The time step at which K , C  and f  are evaluated is 

denoted by a separate subscript placed at these quantities. The constants iW  are 

given by: 

 

3
j

j 1

i 3
j

j 1

w1

1 i 1 i j
W , i 1, 2,3

w
1

1 j






  

  







 (2.25) 

There are 12 independent integration constants that are needed in order to apply 

equations(2.21), (2.19) and (2.20) to proceed to the next step. These are 1W , 1 , 

2 , 3 , 4 , 5 , 6 , 1 , 2 , 3 , 4 , 5 . Each combination of these parameters 

defines a unique algorithm, and can be considered in some way as the algorithm’s 

signature. Many known time integration algorithms, which will be presented 

later, result from suitable selection of these parameters. In the study by Zhou & 

Tamma (2004), the integration parameters are calculated by imposing several 

different constraints to the algorithm, regarding order of accuracy, overshooting 

behavior (in terms of displacement and velocity orders), spurious roots at the 

high and low frequency limits, dissipation and dispersion properties, bifurcation 

of the principal roots, etc, which results in the derivation of 9 different 
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algorithms belonging to the above family. In this chapter, iW  is calculated 

directly from (2.25), after specifying the parameters 1w , 2w , 3w , so the number 

of integration constants needed is 14. 

 

2.2.2 Design of the linear generalized single step single solve algorithm – 

special cases 

An algorithm is termed to have the property of continuous acceleration, if the 

acceleration n 1u   calculated at nt t  satisfies the equation of motion (strong 

form) at nt t . Otherwise, the algorithm is termed to have the property of 

discontinuous acceleration (Zhou & Tamma, 2004). 

The procedure for designing the algorithm presented in the previous section to 

apply it to time integration problems (i.e. setting its 14 integration constants), is 

presented by Zhou & Tamma (2004). The algorithms of the generalized single 

step family are shown in Table 2-1. 

The values of the integration constants are shown for various known integration 

schemes in tables. In Table 2 the parameters of the central difference method, the 

general family of Newmark methods (Newmark, 1959), the Average Constant 

Acceleration method (Newmark, 1959), the Linear Acceleration method 

(Newmark, 1959), the Backward Acceleration Method (Ascher & Petzold, 1998), 

and the Fox-Goodwin formula (Fox & Goodwin, 1949) are shown. In the case of 

the general family of Newmark methods, β and γ are the well-known Newmark 

constants. In Table 2-3 the parameters are given for the zero-order displacement, 

first-order velocity overshooting algorithms, presented by Zhou & Tamma (2004). 

It has to be mentioned that the formulas presented in Table 2-3 correspond to 

three special cases of these zero-order displacement, first-order velocity 

overshooting algorithms, namely the generalized a-method, the HHT-a method 

and the WBZ a-method, presented in Chung & Hulbert, 1993; Hilber et al., 1977; 

Wood et al., 1980) respectively. In order to evaluate the integration constants, the 

spectral radius  , which is the minimum absolute value of the principal roots of 

the amplification matrix at the high-frequency limit, has to be first assigned a 

desired value, which must lie in the range given at the first row of Table 2-3, 

Table 2-4 and Table 2-5. If 1  , the resulting algorithm is non-dissipative. In 

Table 2-4 the parameters of the zero-order displacement and zero-order velocity 

overshooting algorithms are presented (Zhou & Tamma, 2004). Table 2-5 shows 

the parameters of the first-order displacement and zero-order velocity 

overshooting algorithms. If 1  , the first-order displacement, zero-order 

velocity, optimal numerical dissipation and dispersion, the first-order 

displacement, zero-order velocity, continuous acceleration and the first-order 

displacement, zero-order velocity, discontinuous acceleration algorithms recover, 

the first the mid-point rule a-form algorithm, and the two last the Newmark 

average acceleration a-form algorithm. In Table 2-2, Table 2-3, Table 2-4 and 
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Table 2-5, the number inside the angle brackets after the name of each algorithm 

is the number with which the algorithm is referred to in this chapter. This is done 

merely for easy identification of each algorithm throughout this chapter. 

 

2.2.3 Modification of the linear algorithm for nonlinear dynamic response 

In this section the family of generalized linear algorithms presented above is 

modified to account for materially nonlinear dynamic response. In general, to 

proceed from the current step ( nu , nu , nu ) to the next time step ( n 1u  , n 1u  , n 1u 

), the secant stiffness and damping matrices are needed, which usually depend on 

n 1u   and n 1u  . Since the latter are unknown, the tangent stiffness and damping 

matrices are calculated and iterations are performed to arrive to a converged 

solution. Convergence is attained via a Newton-Raphson iterative procedure. In 

some time integration algorithms, this iteration is avoided by using the initial 

tangent matrices instead of updating them, even though this approximation is 

not correct in principle. 

The outline of the modified nonlinear time integration algorithm used in this 

chapter is shown in Figure 2-3. The given data are the mass, stiffness and 

damping properties of the SDOF oscillator and the imposed external force, 

denoted by M , K , C , f  respectively. Note that the various quantities 

correspond to a MDOF system in general; this means that u , u , u , f  are column 

vectors, and M , K , C  are square matrices. The symbol ./ denotes right array 

division, namely the division of two vectors of the same size in an element by 

element fashion. 

Before the application of the algorithm, the necessary integration constants are 

calculated and the maximum tolerance maxtol  and the maximum number of 

iterations until convergence maxk  are set. 
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Method 

name 

Displacement 

overshooting 

order 

Velocity 

overshooting 

order 

Type 

U0-V0-Opt 0 0 

optimal numerical 

dissipation and 

dispersion 

U0-V0-CA 0 0 
continuous 

acceleration 

U0-V0-DA 0 0 
discontinuous 

acceleration 

U0-V1-Opt 0 1 

optimal numerical 

dissipation and 

dispersion 

U0-V1-CA 0 1 
continuous 

acceleration 

U0-V1-DA 0 1 
discontinuous 

acceleration 

U1-V0-Opt 1 0 

optimal numerical 

dissipation and 

dispersion 

U1-V0-CA 1 0 
continuous 

acceleration 

U1-V0-DA 1 0 
discontinuous 

acceleration 

Table 2-1: Algorithms of the generalized single step single solve (GSSSS) family. 
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Central 

Difference 

Method 

Family of 

Newmark 

Methods 

(Newmark, 

1959) 

Newmark 

Average 

Constant 

Acceleration 

(Newmark, 

1959) 

Newmark 

Linear     

Acceleration 

(Newmark, 

1959) 

Newmark 

Backward 

Acceleration 

(Ascher & 

Petzold, 

1998) 

Fox-

Goodwin 

formula  

(Fox & 

Goodwin, 

1949) 

w1 -15 -15 -15 -15 -15 -15 

w2 45 45 45 45 45 45 

w3 -35 -35 -35 -35 -35 -35 

μ1 1 1 1 1 1 1 

μ2 0 β 1
4

 1
6

 1
2

 1
12

 

μ3 0 β 1
4

 1
6

 1
2

 1
12

 

μ4 1
2

 γ 1
2

 1
2

 1
2

 1
2

 

μ5 1
2

 γ 1
2

 1
2

 1
2

 1
2

 

μ6 1 1 1 1 1 1 

λ1 1 1 1 1 1 1 

λ2 1
2

 1
2

 1
2

 1
2

 1
2

 1
2

 

λ3 0 β 1
4

 1
6

 1
2

 1
12

 

λ4 1 1 1 1 1 1 

λ5 1
2

 γ 1
2

 1
2

 1
2

 1
2

 

Table 2-2: Integration parameters for various known time integration schemes. 
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U0-V1-Opt (Chung 

& Hulbert, 1993) 

U0-V1-CA (Hilber et 

al., 1977) 

U0-V1-DA (Wood et 

al., 1980) 

  [0    1] [1/2    1] [0     1] 

w1 
1 2

15
1 4





 


 
 

1 2
15

2 3





 


 
 -15 

w2 
3 4

15
1 4





 

 
 

2 5
15

2 3





 

 
 45 

w3 
1

35
1 4








 
 

 
1 3

35
2 2 3





 


 
 -35 

μ1 
1

1  
 

2

1







 
 1 

μ2  
1

2 1 
 

1







 
 

1

2
 

μ3  
3

1

1 
 

 
3

2

1








 

 
2

1

1 
 

μ4 
1

1  
 

2

1







 
 1 

μ5  
2

3

2 1








 

 

 
2

3

1

 



 


 

 
3

2 1








 

μ6 
2

1







 
 1 

2

1  
 

λ1 1 1 1 

λ2 
1

2
 

1

2
 

1

2
 

λ3  
2

1

1 
 

 
2

1

1 
 

 
2

1

1 
 

λ4 1 1 1 

λ5  
3

2 1








 

 
3

2 1








 

 
3

2 1








 

Table 2-3: Integration parameters for zero-order displacement, first order velocity 
overshooting algorithms. 
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  U0-V0-Opt <8> U0-V0-CA <9> U0-V0-DA <10> 

  [0    1] [1/3    1] [0    1] 

w1 
1 2

15
1 4





 


 
 

1 5
15

3 7





 


 
 -15 

w2 
3 4

15
1 4





 

 
 

1 13
15

3 7





 

 
 45 

w3 
1

35
1 4








 
 140

3 7







 
 -35 

μ1 
1

1  
 

 
1 3

2 1





 


 1 

μ2  
1

2 1 
 

 
1 3

4 1





 


 1

2
 

μ3  
2

1

2 1 
 

 
2

1 3

4 1





 


 

 
1

2 1 
 

μ4 
1

1  
 

 
1 3

2 1





 


 1 

μ5  
2

1

1 
 

 
2

1 3

2 1





 


 

1

1  
 

μ6  
3-

2 1








 1  

3+

2 1








 

λ1 1 1 1 

λ2 
1

2
 

1

2
 

1

2
 

λ3  
1

2 1 
 

 
1

2 1 
 

 
1

2 1 
 

λ4 1 1 1 

λ5 
1

1  
 

1

1  
 

1

1  
 

Table 2-4: Integration parameters for zero-order displacement, zero order velocity 
overshooting algorithms. 
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  U1-V0-Opt <11> U1-V0-CA <12> U1-V0-DA <13> 

  [0     1] [1/2     1] [0     1] 

w1 

2

2

3 8 6
30

9 22 19

 

 

   


   
 

2

2

2 8 7
60

11 48 41

 

 

   


   
 

3 4
30

9 11





 


 
 

w2  

2

2

25 74 53
15

2 9 22 19

 

 

   


   
 

 

2

2

37 140 127
15

2 11 48 41

 

 

   

   
 

 
25 37

15
2 9 11





 

 
 

w3 

2

2

3 10 7
35

9 22 19

 

 

   


   
 

2

2

5 18 17
35

11 48 41

 

 

   


   
 

3 5
35

9 11





 


 
 

μ1  
3

2 1








 

 
1 3

2 1





 


 

 
3

2 1








 

μ2  
2

1

1 
 

 
2

2

1








 

1

1  
 

μ3  
3

1

1 
 

 
3

2

1








 

 
2

1

1 
 

μ4  
3

2 1








 

 
1 3

2 1





 


 

 
3

2 1








 

μ5  
3

2

1 
 

 
3

4

1








 

 
2

2

1 
 

μ6 
2

1







 
 1 

2

1  
 

λ1 1 1 1 

λ2 
1

2
 

1

2
 

1

2
 

λ3  
1

2 1 
 

 
1

2 1 
 

 
2

1

1 
 

λ4 1 1 1 

λ5 
1

1  
 

1

1  
 

 
3

2 1








 

Table 2-5: Integration parameters for first-order displacement, zero order velocity 
overshooting algorithms. 

2.3 Benchmark SDOF systems for evaluation of algorithms’ performance 

In this section, 13 different time integration schemes presented in Table 2-2, 

Table 2-3, Table 2-4 and Table 2-5 are compared through their application for 

solving a number of elementary (benchmark) problems. The schemes compared 

are the Newmark Average Constant Acceleration method (Newmark, 1959), 

denoted by <1>, the Newmark Linear Acceleration method (Newmark, 1959), 

denoted by <2>, the Newmark Backward Acceleration method (Ascher & Petzold, 
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1998), denoted by <3>, the Fox-Goodwin formula (Fox & Goodwin, 1949), denoted 

by <4>, the U0-V1-Opt, denoted by <5>, the U0-V1-CA, denoted by <6>, the U0-

V1-DA, denoted by <7>, the U0-V0-Opt, denoted by <8>, the U0-V0-CA, denoted 

by <9>, the U0-V0-DA, denoted by <10>, the U1-V0-Opt, denoted by <11>, the U1-

V0-CA, denoted by <12>, and the U1-V0-DA, denoted by <13>, algorithms. The 

last 9 integration schemes are presented by Zhou & Tamma (2004) and details 

about their notation can be seen in Table 2-3, Table 2-4 and Table 2-5. 

In this section, 6 benchmark dynamic analyses of nonlinear SDOF systems have 

been considered which have various constitutive relations, damping types, and 

the dynamic response of which occurs purely due to nonzero initial conditions 

(unforced). These applications have been studied in order to assess the 

performance of the various time integration schemes. Their description will be 

made in the following sections. In each problem, the   parameter is selected to 

be equal to zero, or the lowest possible value for all integration algorithms used. 

Concerning the Newton-Raphson iterative procedure used, the maximum 

convergence tolerance and the maximum number of iterations are maxtol 0.01  

and maxk 200  respectively. All units involved in the calculations belong to the SI 

system. For simplification of the calculations, the mass of all the SDOF systems 

considered is set to unity, without loss of generality. The time step used is 

t 0.01   and the duration of the dynamic analysis is equal to 100 time steps (1 

sec) for all problems. 

 

2.3.1 Undamped SDOF oscillator with hardening spring 

The first benchmark problem studied is a SDOF oscillator with hardening 

spring, for which the equation of motion is: 

  2

1 2mu S u 1 S u 0    (2.26) 

This type of oscillator represents the well-known unforced and undamped 

Duffing oscillator (Duffing, 1918). The system is conservative and its total energy 

is constant and given by analytical integration of (2.26): 

 2 2 4

tot 1 1 2

1 1 1
E mu S u S S u

2 2 4
    (2.27) 

In this example 1S 1000 , 2S 0.1  and the initial conditions are 0u 1.5  and 

0u 0 .  

2.3.2 Undamped SDOF oscillator with softening spring 

The second benchmark problem studied is a SDOF oscillator with softening 

spring, for which the equation of motion is: 

  mu Stanh u 0   (2.28) 
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Figure 2-3: Pseudocode of the implementation of the nonlinear time integration 

algorithms used in this chapter. 

 

The system is conservative and its total energy is constant and given by analytical 

integration of (2.28): 

Set 
1 2 3 1 1 2 2 3 3 1 4 2 5 1 6 1 2 3 4 5

w , w , w , W , W , W , W , W , W , , , , ,            

Find 1W  from eq. (2.25) for i 1  

Initialize n 0u u , n 0u u  

Find  0 0 0K K u ,u ,  0 0 0C C u ,u ,  0 0 0p p u ,u  

Find  0 0 0u f p M    

Set n 0K K , n 0C C , n 0p p , n 0u u , n 0u u , n 0u u  

for n = 1:length(f)-1 
Initialize k = 1 
Initialize 

maxtolqda  

Find    1 1

n 1 n n n n n nu M K ,C F K ,C ,p

   from eq. (2.22) 

while    maxmax abs tolqda  & maxk k  

Iteration k of increment n+1: 

Set 
k 1

n 1 n n 1u u u    

Find 
k

n 1u   and 
k

n 1u   according to (2.19) and (2.20) respectively 

Find  k k k

n 1 n 1 n 1K K u ,u   ,  k k k

n 1 n 1 n 1C C u , u   ,  k k k

n 1 n 1 n 1p p u ,u    

Find the residual    k k k k k k k 1

n 1 n 1 n 1 n 1 n 1 n 1 n 1 n 1R F K ,C ,p M K ,C u          

Set  k 1

n 1 n n 1du u u da    , where da  is a constant infinitesimal variation of 

acceleration  

Find 
k

n 1du   and 
k

n 1du   from (2.19) and (2.20) respectively 

Find  k k k

n 1 n 1 n 1dK K du ,du   ,  k k k

n 1 n 1 n 1dC C du ,du   ,  k k k

n 1 n 1 n 1dp p du ,du    

Find the residual    k k k k k k k k

n 1 n 1 n 1 n 1 n 1 n 1 n 1 n 1dR dF dK ,d C ,d p dM dK ,d C du          

Find  k 1 k k

n 1 n 1 n 1 n 1qda R . u . dR R . da   
      

 

Update  1 1

n 1 n 1u 1 qda u    

Update k k 1   
end 

Set 
k 1

n 1 n n 1u u u    

Find 
k

n 1u   and 
k

n 1u   according to (2.19) and (2.20) respectively 

Find  k k k

n 1 n 1 n 1K K u ,u   ,  k k k

n 1 n 1 n 1C C u , u   ,  k k k

n 1 n 1 n 1p p u ,u    

Assign for next increment: 
k

n 1 n 1K K  , 
k

n 1 n 1C C  , 
k

n 1 n 1p p  , 
k

n 1 n 1u u  , 

k

n 1 n 1u u  , 
k

n 1 n 1u u   

end 
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   2

tot

1
E mu Sln cosh u

2
   (2.29) 

 

In this example S 1000  and the initial conditions are 0u 0.3  and 0u 0 . 

 

2.3.3 Undamped SDOF oscillator with linear elastic spring 

The third benchmark problem studied is a SDOF oscillator with linear elastic 

spring, for which the equation of motion is: 

 mu ku 0   (2.30) 

The system is conservative and its total energy is constant and given by analytical 

integration of (2.30): 

 2 2

tot

1 1
E mu ku

2 2
   (2.31) 

In this example k 1000  and the initial conditions are 0u 4  and 0u 0 . 

2.3.4 SDOF oscillator with linear elastic spring and viscous damping 

The fourth benchmark problem studied is a SDOF oscillator with linear elastic 

spring and viscous damping, for which the equation of motion is: 

 mu cu ku 0    (2.32) 

The damping coefficient is given by the equation: 

 
k

c 2
m

   (2.33) 

where   is the critical viscous damping ratio equal to 2%. The system is not 

conservative; its total energy gradually decreases due to the damping force 

according to the equation: 

 
2

2 2

tot 0 0

1 1
E x

2 k m
t

1
mu ku e p

2 2

  
     







 
 (2.34) 

In this example k 1000  and the initial conditions are 0u 4  and 0u 0 . 

2.3.5 SDOF oscillator with linear elastic spring and Coulomb damping 

The fifth benchmark problem studied is a SDOF oscillator with linear elastic 

spring and Coulomb damping, for which the equation of motion is: 

 
u

mu ku F 0
u

    (2.35) 

The system is not conservative; its total energy gradually decreases due to the 

Coulomb friction according to the equation: 
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tot 0 F

k m1
E k u 2u t

2

 
  

  

 (2.36) 

and Fu F k  is a constant which may be interpreted as the static deformation of 

the system due to friction force F. In this example k 1000 , Fu 0.05  and the 

initial conditions are 0u 4  and 0u 0 . 

2.3.6 SDOF oscillator with linear elastic spring and hysteretic damping 

The sixth benchmark problem studied is a SDOF oscillator with linear elastic 

spring and hysteretic damping, for which the equation of motion is: 

 mu cu ku 0    (2.37) 

The damping coefficient is given by the equation: 

 
k

c
m

   (2.38) 

where   is the critical hysteretic damping ratio equal to 5%. The system is not 

conservative; its total energy gradually decreases due to the hysteretic damping 

force. Analytical equation for the estimation of the energy loss does not exist; the 

comparison is made with reference to the energy loss associated with the same 

benchmark problem, calculated for a much smaller time step. In this example 

k 1000  and the initial conditions are 0u 4  and 0u 0 . The time step used for 

the reference energy loss is equal to 0.0001t   and the duration of the dynamic 

analysis in this case is equal to 10000 time steps.  

2.3.7 Results of benchmark problems in terms of total energy 

Since no energy considerations were made for the formulation of the linear 

version of the time integration algorithm family assessed in this chapter, the 

evaluation of the various algorithms can be made in terms of energy measures, 

for the benchmark problems of the previous section. An efficient nonlinear time 

integration scheme should result in an accurate calculation of the energy of these 

systems. In cases that the analytical calculation of the energy is possible, the 

numerically calculated energy is compared to the former; in cases that this 

calculation is not possible (only for problem 6), the comparison is made with the 

energy calculated for a much smaller time step, a result which is practically the 

same for all algorithms involved. All the numerical analyses involved in this 

chapter were performed using MATLAB programming language. 

In the diagrams of Figure 2-4 - Figure 2-9, the vertical axis represents the 

natural logarithm of the total energy of the vibrating system ( totE ) and the 

horizontal axis represents time. To avoid confusion due to the large number of 

algorithms being studied here, a separate graph has been constructed for each 

algorithm, and incorporated as a subplot in each Figure. The various subplots of 

these figures have the same scaling in their axes, to enable numerical 
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comparisons by simple observation of the deviation of the various curves from 

the dashed curve which gives the accurate value of the total energy of each 

system. The first four graphs in each figure from Figure 2-4 - Figure 2-9, 

distributed in the two first horizontal rows present results of the elementary time 

integration schemes considered in this chapter (i.e. the Newmark ACA, Newmark 

LA, Newmark BA and Fox-Goodwin methods), and the last nine graphs in each 

figure, distributed in the last three rows, present results of the advanced 

integration schemes (i.e. those belonging to the family of the GSSSS algorithms). 

Another point to be highlighted is that, since the size of the time step and the 

duration of the dynamic analysis is the same for all the benchmark problems, and 

the small-strain stiffness and mass of the SDOF systems analyzed is the same, 

these factors which affect the performance of the time integration schemes are 

isolated from the results, and the differences observed are solely due to the 

differences in the quality of the algorithms (i.e. the magnitude of the numerical 

error introduced by them). This fact enables the easier understanding of the 

numerical performance of the time integration schemes considered in this 

chapter. 

In Figure 2-4 the natural logarithm of the total energy of the undamped SDOF 

system with hardening spring (benchmark problem described in section 2.3.1) is 

presented for each algorithm. The exact value of the total energy is calculated at 

the onset of the vibration and should remain constant throughout the dynamic 

response, since there is no energy loss due to damping or other sources, and is 

plotted in all subplots with a dashed line. It is noted that the Continuous 

acceleration (CA) algorithms, along with the Newmark Average Acceleration 

Method perform generally better than the others in this problem. The least 

energy error is observed for the HHT-a method (or U0-V1-CA method), i.e. the 

zero order displacement-first order velocity-continuous acceleration method. 

Furthermore, the U0-V0-Opt and U0-V0-DA algorithms seem to perform better 

than their U0-V1 or U1-V0 counterparts. It was checked that if the size of the time 

step is sufficiently reduced, all the algorithms of the GSSSS family produce the 

exact response. The largest numerical error is observed in the case of U1-V0-DA 

algorithm. Finally, it is observed that numerical errors associated with the time 

integration schemes may result in increase of the total energy in some cases. 

In Figure 2-5 the natural logarithm of the total energy of the undamped SDOF 

system with softening spring (benchmark problem described in section 2.3.2) is 

presented for each algorithm. Again the most accurate method is the HHT-a 

method, in the graph of which the difference between the numerically calculated 

total energy and the analytical reference energy is hard to discern. A difference is 

noted in the performance of the Newmark Average Constant Acceleration 

algorithm between the cases of the undamped SDOF system with hardening 

spring and the undamped SDOF system with softening spring. As it is easily seen, 

this algorithm loses its accuracy in the latter case, which is comparable to that of 

the other elementary integration schemes. The superiority of the Continuous 
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Acceleration advanced algorithms is remarkable. The largest error is observed for 

the case of U1-V0-DA algorithm, as in the case of the undamped SDOF system 

with hardening spring. In general, undulations are exhibited in the energy curves 

of the less accurate algorithms, either advanced or elementary. The total energy 

calculated may decrease or increase with respect to the reference energy curve, 

depending on the numerical error introduced by each algorithm. 

 
Figure 2-4: Natural logarithm of the total energy for problem 1 (undamped SDOF 

system with hardening spring). 

 



26 Chapter 2 

 

 

 
Figure 2-5: Natural logarithm of the total energy for problem 2 (undamped SDOF 

system with softening spring). 
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Figure 2-6: Natural logarithm of the total energy for problem 3 (undamped SDOF 

system with linear elastic spring). 

 

In Figure 2-6, the natural logarithm of the total energy of the undamped SDOF 

system with linear elastic spring (benchmark problem described in section 2.3.3) 

is presented. It is seen that the HHT-a method is the most accurate, and among 

the elementary methods, the Newmark Backward Acceleration method is of 

comparable accuracy with the HHT-a method. Apart from the Continuous 

Acceleration and the Newmark BA methods, the remaining algorithms give less 

accurate results, of various orders of error. The least accurate method is the U1-

V0-DA method. 
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In Figure 2-7, the natural logarithm of the total energy of the linear elastic SDOF 

system with viscous damping (benchmark problem described in section 2.3.4) is 

presented. Similarly to the undamped linear elastic SDOF case, the HHT-a and 

Newmark BA methods are the most accurate among the advanced and the 

elementary methods respectively. It has to be pointed out that the total energy of 

the system decreases with time due to the presence of viscous damping; therefore 

the reference energy curves in the subplots have negative slope and are straight 

because the energy decrease is exponential and its natural logarithm linear. 

In Figure 2-8, the natural logarithm of the total energy of the linear elastic SDOF 

system with damping due to Coulomb friction (benchmark problem described in 

section 2.3.5) is presented. The most accurate estimation of energy is provided by 

the Continuous acceleration algorithms and the Newmark Backward Acceleration 

method. The performance of the U1-V0-DA is the poorest as in the previous 

examples. The reference energy curves are not straight lines, because the rate of 

energy dissipation is quadratic and not exponential, as can be seen from eq.(2.36)

.  

In Figure 2-9 the natural logarithm of the total energy of the linear elastic 

SDOF system with hysteretic damping (benchmark problem described in section 

2.3.6) is presented. Similarly to the results of the other problems, the most 

accurate algorithms prove to be the Continuous Acceleration algorithms. The 

most accurate scheme appears to be the HHT-a method among the advanced 

algorithms, and the Newmark Backward Acceleration scheme among the 

elementary algorithms. Generally, the energy plots show periodic fluctuations 

and the U0-V0-Opt and U0-V0-DA algorithms seem to perform better than their 

U0-V1 or U1-V0 counterparts, a general trend observed in Figure 2-4 - Figure 2-9. 

Analytical calculation of the reference total energy is not possible in this 

benchmark problem and for this reason it is computed by setting a much smaller 

time step, as outlined in section 2.3.6. The linear configuration of the various 

curves implies that the energy dissipation during the free vibration of a 

hysteretically damped SDOF oscillator varies exponentially with time; this type of 

variation was previously observed also for the viscously damped SDOF oscillator 

presented in Figure 2-7 and described in section 2.3.4. 

It is generally observed in the numerical results in terms of energy presented 

above that the most accurate scheme in the linear and nonlinear regimes is the 

HHT-a method. The time integration algorithms considered in this chapter 

(either advanced or elementary) do not always ensure that the variation of energy 

is as expected (e.g. conserved for undamped and unforced systems). However, 

any degree of accuracy can be achieved for all types of oscillators considered in 

this chapter, if the time step is sufficiently reduced. 
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Figure 2-7: Natural logarithm of the total energy for problem 4 (linear elastic SDOF 

system with viscous damping). 
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Figure 2-8: Natural logarithm of the total energy for problem 5 (linear elastic SDOF 

system with damping due to Coulomb friction). 
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Figure 2-9: Natural logarithm of the total energy for problem 6 (linear elastic SDOF 

system with hysteretic damping). 

 

It is generally observed in the numerical results in terms of energy presented 

above that the most accurate scheme in the linear and nonlinear regimes is the 

HHT-a method. The time integration algorithms considered in this chapter 

(either advanced or elementary) do not always ensure that the variation of energy 

is as expected (e.g. conserved for undamped and unforced systems). However, 

any degree of accuracy can be achieved for all types of oscillators considered in 

this chapter, if the time step is sufficiently reduced. 
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2.3.8 Comparison of algorithm performance in linear and nonlinear regime 

In this section the performance of the various time integration schemes is 

evaluated for linear and nonlinear problems. Comparisons are made between 

these two categories of analysis. Since the time step, the time duration, and the 

algorithmic constants are the same for all benchmark problems analyzed, and the 

stiffness of the various oscillators in their small-strain region is the same, the 

comparisons in this section are made with reference to the quality of the time 

integration schemes and their associated numerical error.  

In Figure 2-10, a dimensionless quantity equal to the relative error of the total 

energy of the various systems is plotted against integration time. Three schemes 

are used for the integration of the SDOF systems involved: the Newmark Average 

Constant Acceleration (ACA), Newmark Linear Acceleration (LA) and Newmark 

Backward Acceleration (BA) methods. The various curves include linear as well as 

nonlinear energy error. It is seen that, depending on the algorithm used, the 

various SDOF systems yield different integration errors. In the case of Newmark 

ACA algorithm, the largest error is observed for the viscoelastic and elastic 

system with Coulomb damping, whereas the lowest energy error is observed for 

softening and linear elastic undamped systems. In the case of Newmark LA 

algorithm, the hardening system shows the maximum relative error, whereas the 

softening and linear elastic undamped systems show the minimum relative error. 

Finally, Newmark BA algorithm yields the most accurate results for linear elastic 

undamped system, whereas the maximum error is observed for the hardening 

and viscoelastic systems.  

Similar to Figure 2-10, Figure 2-11 compares the relative error of the total energy 

of the various systems, plotted against integration time, where the continuous 

acceleration (CA) algorithms are used. It is apparent that the hardening system 

yields relatively large energy numerical error for all three CA members of the 

GSSSS family. The maximum error is generally observed for the U1-V0-CA (<12>) 

algorithm, for all problems considered in this chapter. Compared to the error of 

the hardening system, the error of the remaining systems is considerably lower. 

The error is much lower if Continuous Acceleration algorithms are used, 

compared to the elementary time integration algorithms the results of which are 

shown in Figure 2-10.  

Corresponding results with those of the previous paragraph are observed in 

Figure 2-12 and Figure 2-13, for the optimal numerical dissipation and dispersion 

(Opt) algorithms and the discontinuous acceleration (DA) algorithms 

respectively. The hardening system exhibits the maximum total energy error for 

all these types of algorithms, as can be seen in both figures. The lowest energy 

error is observed for the linear viscoelastic system for all optimum numerical 

dissipation and dispersion algorithms, as well as discontinuous acceleration 

algorithms. Finally, the error associated with the optimal numerical dissipation 

and dispersion algorithms and the discontinuous acceleration algorithms is 
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certainly higher in general than that of the continuous acceleration methods, for 

the same SDOF benchmark problems studied. 

The main conclusion from this figure is that the linear and nonlinear versions of 

the GSSSS algorithm family yield comparable percentages of total energy error, 

and in many instances, the error of the total energy of nonlinear systems is lower 

than the error in the total energy of linear systems. Given that in each subplot the 

problems considered have the same initial conditions, time step, integration 

algorithm, nonlinear convergence parameters, etc., the differences between the 

various curves in each subplot originate mainly from the differences between the 

constitutive properties of the oscillators. It is a fact that the existence of iterations 

within a time step is a source of additional error. The linear integration 

algorithms do not require any iterations within a time step. The opposite is the 

case with the nonlinear time integration algorithms. Consequently, it is expected 

that the error accumulated in the nonlinear response will be higher than the 

error of the linear response. However, from the results presented in this chapter, 

it is concluded that this does not happen in a regular basis; there are cases in 

which the error of a nonlinear problem is lower than that of a linear problem, 

while the same integration scheme is used. From this observation, the conclusion 

is drawn that the extension of the linear versions of the GSSSS algorithms into 

the nonlinear regime with incorporation of Newton–Raphson iterations results in 

nonlinear time integration algorithms which possess a similar (and sometimes 

higher) level of accuracy with their linear counterparts. 

The results presented in Figure 2-10 -Figure 2-13 are summarized in Figure 2-14, 

where the maximum relative error of the total energy for each SDOF system – 

integration algorithm pair and for the duration of the oscillation is shown in the 

form of bar chart. In the horizontal axis each label refers to the type of SDOF 

system and the time integration algorithm with which its response is calculated, 

whereas in the vertical axis, the percentage of relative energy error is shown. The 

lowest error is observed for the Continuous Acceleration algorithms (including 

HHT algorithm) for the linear elastic with Coulomb damping, undamped 

softening, undamped linear elastic and viscoelastic oscillators and the Newmark 

Backward Acceleration algorithm for the undamped linear elastic oscillator. On 

the other hand, the error associated with the Discontinuous Acceleration 

algorithms and the undamped hardening oscillator is the largest among all cases 

and algorithms considered in this chapter. 
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Figure 2-10: Time history of the relative error of the total energy of the SDOF 

oscillators of problems 1–5 integrated by the Newmark ACA, Newmark LA and 
Newmark BA algorithms of the GSSSS family. 
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Figure 2-11: Time history of the relative error of the total energy of the SDOF 

oscillators of problems 1–5 integrated by the Continuous Acceleration (CA) algorithms 
of the GSSSS family. 
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Figure 2-12: Time history of the relative error of the total energy of the SDOF 

oscillators of problems 1–5 integrated by the optimal numerical dissipation and 
dispersion (Opt) algorithms of the GSSSS family. 
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Figure 2-13: Time history of the relative error of the total energy of the SDOF 
oscillators of problems 1–5 integrated by the Discontinuous Acceleration (DA) 

algorithms of the GSSSS family. 
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Figure 2-14: Maximum relative error of the total energy of the SDOF oscillators of 
problems 1–5 integrated by the nonlinear integration algorithms developed in this 

chapter. 

 

2.4 Benchmark problem of undamped linear elastic system with 3 DOFs 

for evaluation of algorithms’ performance 

In this section, the problem studied by Bathe & Noh (2012) is considered, which is 

a 3-degree-of-freedom spring system shown in Figure 2-15. This problem is used 

as a benchmark problem mainly due to the fact that it represents finite element 

models which include high stiffness elements, as well as flexible elements. High 

stiffness elements can involve, for example, rigid connections or penalty factors 

or various types of constraints of the model. Such high stiffness values used in 

finite element models have rarely any physical meaning; they are almost always 

used to provide constraints. This system is studied here in order to compare the 

dynamic response produced by the various time integration algorithms with the 

“exact” presented by Bathe & Noh (2012). The numerical data 
7

1k 1e , 2k 1 , 

1m 0 , 2m 1 , 3m 1  are used for the system properties. Also, node 1 has 

prescribed displacement equal to: 

 1 pu sin t   (2.39) 

where p 1.2  . The governing equation of motion is the following: 

 

1 1 1 1 1 1

2 2 1 1 2 2 2

3 3 2 2 3

m 0 0 u k k 0 u R

0 m 0 u k k k k u 0

0 0 m u 0 k k u 0

         
         

    
         
                  

 (2.40) 

which can be rewritten for the unknown displacements 2u  and 3u  as follows: 
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 2 2 21 2 2 1 1

3 3 32 2

m 0 u uk k k k u

0 m u uk k 0

         
                 

 (2.41) 

The initial conditions are considered to be zero for both the displacements and 

the velocities. The response of the system is estimated for a time duration of 10 

sec, and the time step used is 0.2618sect  . 

 

Figure 2-15: Model of three degrees of freedom spring system (Bathe & Noh, 2012). 

 

The displacement, velocity and acceleration at degree of freedom 2 of the 3dof 

system are calculated and compared to the corresponding results presented by 

Bathe & Noh (2012). The displacement response of the degree of freedom 2 of the 

3DOF oscillator is illustrated in Figure 2-16. The exact solution, as presented by 

Bathe & Noh (2012) is plotted with a dashed curve. It is evident that for all 

advanced algorithms, except for the U1-V0-DA algorithm, the numerically 

calculated displacement time history practically coincides with the exact 

solution. Among the elementary time integration schemes, only the Newmark 

Backward Acceleration method manages to trace the response, whereas all others 

fail. It is concluded that the majority of the advanced algorithms reproduce the 

exact displacement result of the time integration procedure regarding the 

structural system studied by Bathe & Noh (2012). Things become different in the 

case of the velocity at dof 2 of the 3DOF undamped linear elastic system, as the 

response is computed accurately only by the U0-V1 and U1-V0 algorithms except 

for the U1-V0-DA algorithm, as seen in Figure 2-17. Spurious oscillations around 

the exact solution are observed in the response produced by the U0-V0 

algorithms. All the elementary integration schemes fail to reproduce the exact 

velocity response; the erroneous behavior of the Newmark BA algorithm has been 

already shown by Bathe & Noh (2012). It seems that the generalized-a and the 

WBZ methods are more accurate than the HHT-a method in the first steps of the 

response, without this meaning that the latter is generally subordinate with 

respect to the others. 

The acceleration time history at dof 2 of the 3DOF undamped linear elastic 

system is shown in Figure 2-18. The exact solution, as presented by Bathe & Noh 

(2012), is most accurately reproduced by the generalized-a, WBZ and U1-V0-Opt 

methods. All the elementary time integration methods fail to accurately calculate 

the dynamic response. The spurious undulations which are present in certain 

subplots have already been pointed out (Bathe & Noh, 2012). In the velocity and 

acceleration time histories some overshooting behaviour is observed in the 
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beginning of the response, especially in the cases of U0-V1 and U1-V0 algorithms. 

This is expected due to the way these algorithms are formulated. However, 

despite this overshooting behaviour, it is observed that they are generally more 

accurate (with an exception for the DA version U1-V0 algorithm category) than 

their optimal numerical dissipation and dispersion (Opt) counterparts. 

 
Figure 2-16: Time history of the displacement at the dof 2 of the 3DOF undamped 

linear elastic system. 
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Figure 2-17: Time history of the velocity at the dof 2 of the 3DOF undamped linear 

elastic system. 
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Figure 2-18: Time history of the acceleration at the dof 2 of the 3DOF undamped linear 

elastic system. 

 

2.5 Benchmark problem of large angular oscillation of a simple 

undamped pendulum 

A fundamental benchmark problem which is widely used for testing the 

nonlinear performance of various time integration algorithms is the nonlinear 

oscillation of a pendulum with large rotations. Consider an undamped pendulum 

in the gravity field which is comprised of a point mass m and a weightless rigid 
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rod of length L . Here, g  is the acceleration of gravity. In this example, as is done 

in the previous benchmark SDOF problems, in order to verify the accuracy of the 

family of the GSSSS algorithms the exact solution of the nonlinear free vibration 

of the pendulum will be employed. The simple pendulum system is shown 

graphically in Figure 2-19. 

 
Figure 2-19: Simple undamped pendulum system with large rotations. 

 

Assume the pendulum to be initially at its lower equilibrium point with initial 

angular velocity 0 . The differential equation of the nonlinear pendulum is 

(Bornemann et al., 2002): 

  mL mgsin 0    (2.42) 

with the following initial conditions: 

     00 0, 0      (2.43) 

where   is the angular displacement. After some manipulations, eq. (2.42) can be 

written in nondimensional form as: 

       0sin 0, 0 0, 0            (2.44) 

where 0t    and 0 g / L   and the subscript   denotes differentiation with 

respect to  . Among the various special characteristics of the simple undamped 

pendulum problem, is that the degree of nonlinearity can be adjusted by setting 

appropriate values to the initial conditions, i.e. if the values of    0 , 0   

increase, nonlinearity increases as well. It is of interest to examine the total 

energy of this nonlinear system which, given that it is undamped, has to remain 

constant throughout the time history of its response: 

         
22

tot

1 1
E 1 cos 0 1 cos 0

2 2
 

                    (2.45) 

Assuming that the pendulum oscillates in the plane instead of rotating, the 

maximum angle max can be calculated by setting 0   in eq.(2.45): 

θ

mg

L

0 0,θ θ
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max

1
cos cos 0 0

2





 
           

 
 (2.46) 

It is apparent that max     in order for the pendulum to oscillate. In this 

chapter,  0 0   and the initial angular velocity is specified so that oscillation 

instead of rotation is ensured. Therefore, from eq. (2.46) it is obvious that: 

  
max

0 2   (2.47) 

Two different cases are studied here. In the first case,  0 2   which 

corresponds to max / 2    and in the second case ,  0 ~ 2  which corresponds 

to max ~  . 

In Figure 2-20 the natural logarithm of the total energy of the simple undamped 

pendulum with large rotation is presented. The time step is t 0.15sec  , the 

duration of the motion is 20sec  and the initial velocity is  0 2   which 

corresponds to the first case examined. The spectral radius   parameter is 

selected to be equal to zero, or the lowest possible value for all integration 

algorithms used. Concerning the Newton-Raphson iterative procedure used, the 

maximum convergence tolerance and the maximum number of iterations are 

maxtol 0.01  and maxk 200  respectively. It is obvious that the most accurate 

algorithms are the Continuous Acceleration (CA) algorithms, in which the mean 

value of the total energy of the system is more flat than that of the elementary, 

Opt and DA algorithms. It seems that the lowest error occurs for the U1-V0-CA 

algorithm. The total energy of the system that is calculated analytically according 

to the relation (2.45) is shown with dashed lines and the limits in the various 

subplots are set to be the same for all algorithms to make visual comparisons of 

the error easier.  

The plots that are shown in Figure 2-21 refer to the second case, in which the 

initial angular velocity is  0 1.99999  . This value is intentionally selected to 

avoid rotation of the pendulum which happens for  0 2  , meaning that 2 is a 

limiting value for  0  which can be approached, but not reached. The values of 

all the remaining parameters are identical to those which were used for in the 

results presented in Figure 2-20. Regarding the energy error, in Figure 2-21 the 

trends observed are similar as in Figure 2-20. The main difference here is that 

there exist “oscillations” in the evolution of the total energy that are more 

pronounced than those that exist in Figure 2-20. One reason for this is that the 

degree of nonlinearity is larger in case 2, since the initial velocity is larger.  
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Figure 2-20: Natural logarithm of the total energy for simple undamped pendulum 

with initial angular velocity  0 2   . 
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Figure 2-21: Natural logarithm of the total energy for simple undamped pendulum 

with initial angular velocity  0 1.99999  . 

 

2.6 Conclusions 

The family of linear generalized single step single solve (GSSSS) algorithms, 

which includes the most commonly used time integration algorithms as special 

cases, can be extended to solve materially and geometrically nonlinear dynamic 

response via a Newton–Raphson iterative procedure. In the nonlinear regime, the 

extended nonlinear generalized algorithms are very efficient, with acceptable 
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accuracy and stability, even with increased size of the time step. They perform 

much better in some cases illustrated in this study, contrary to the elementary 

algorithms which in practice fail to trace the dynamic response.  

It is pointed out that unconditionally stable algorithms for linear problems, may 

lose their stability in the presence of nonlinearities. For increased time step (and 

thus lower computational effort), the Continuous Acceleration methods, which 

include the HHT-a method (<6>) as a special case, exhibit the most accurate 

response for most of the cases studied. They appear to be the best option, 

regarding their general performance at the benchmark problems studied 

compared to the other integration schemes. For sufficiently small time step, all 

algorithms converge to the exact dynamic response. Further research has to be 

made to investigate the relation between the stable time increment of the 

generalized single step single solve algorithms applied in nonlinear problems and 

various other problem-dependent input data. Apart from this, the numerous 

integration constants of the algorithms belonging to the GSSSS family, allows for 

optimization of the values of the integration constants, so that certain difficult 

dynamic nonlinear problems can be efficiently time-integrated. 

2.7 Notation 

A : amplification matrix 

a: order of the derivative of u  

C : damping matrix  

c : damping coefficient of SDOF oscillator 

E : error between numerical and exact solutions of dynamic response 

totE : total energy 

F : friction force 

nF : effective force matrix at time step n 

f : external force vector 

nf : external force vector at time step n 

g : acceleration of gravity  

tJ : angular momentum 

nK : kinetic energy at time step n 

K : stiffness matrix  

k : stiffness of SDOF oscillator 

maxk : maximum number of iterations until convergence 

ik : stiffness at degree of freedom i 

L : length of pendulum 

tL : linear momentum 

M : mass matrix 

M : effective mass matrix 
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m : mass of SDOF oscillator 

im : lumped mass at degree of freedom i 

p : internal force 

q : order of accuracy of the integration scheme 

S : parameter of SDOF oscillator with hardening spring 

1S : parameter of SDOF oscillator with softening spring 

2S : parameter of SDOF oscillator with softening spring 

T : period 

t : time 

nt : time at step n 

maxtol : maximum tolerance for convergence of the GSSSS algorithm 

nU : strain energy at time step n 

u : displacement 

Fu : static deformation of SDOF oscillator due to friction force 

iu : displacement at degree of freedom i 

u : velocity 

iu : velocity at degree of freedom i 

u : acceleration 

iu : acceleration at degree of freedom i 

nu : displacement at time step n 

nu : velocity at time step n 

nu : acceleration at time step n 
tu : approximation of u  depending on the time step t  

0u : initial displacement 

0u : initial velocity 

extW : work done by external forces 

W : weighted time field 

1W : time integration constant given by eq. (1.25) for i=1 

iw : integration constants (i=1…3) 

 : parameter given by eq. (1.14) 

t : step of direct time integration scheme 

it : time step size at iteration i  of the equation limit (1.7) 

 : critical hysteretic damping ratio 

 : angular displacement 

max : maximum angular displacement 

 : angular velocity 

 : angular acceleration 

0 : initial angular velocity 

a : eigenvalue of the amplification matrix of order a  
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1 6...  : time integration constants 

1 5...  : time integration constants 

1 6...  : time integration constants 

 : critical viscous damping ratio 

 : spectral radius of the amplification matrix 

 : minimum absolute value of the principal roots of the amplification matrix at 

the high-frequency limit 

 : parameter given by eq. (1.14) 

 : dimensionless time, given by 0t    

 : cyclic frequency 

0 : cyclic eigenfrequency of simple undamped pendulum oscillator 

p : cyclic frequency of prescribed load 

 





 

C h a p t e r  3 Equation Section (Next) 

 

3  OpenSeismoMatlab:  A  New Open -
source Software for  Strong Ground 
Motion Data Process ing  

3.1 Introduction 

In this chapter a new open source software is introduced which can process 

strong ground motion data. OpenSeismoMatlab is an innovative open-source 

software for strong ground motion data processing, written in MATLAB. The 

software implements an elastoplastic bilinear kinematic hardening constitutive 

model and uses a state-of-the-art single step single solve time integration 

algorithm featuring exceptional speed, robustness and accuracy. 

OpenSeismoMatlab can calculate various time histories and corresponding peak 

values, Arias intensity and its time history, significant duration, various linear 

elastic response spectra and constant ductility inelastic response spectra, as well 

as the Fourier amplitude spectrum and the mean period. Due to its open-source 

nature, the software can be easily extended or modified, having high research and 

educational value for the professional engineering and research community. In 

the present chapter, the structure, algorithms and main routines of the program 

are explained in detail and the results for various types of spectra of 11 earthquake 

strong ground motions are calculated and compared to corresponding results 

from other proprietary software. 

Earthquake resistant building codes require earthquake engineering studies 

which, in order to be performed, need strong motion records as original input 

data. It is therefore important to make realistic selections and processing of the 

raw input strong motion records in order to calculate the seismic parameters 

which will help in the estimation of the dynamic response of the structure(s) to 

be designed. Various software programs have been developed for the selection of 

the strong ground motions which are used for the dynamic analysis and design of 

structure(s) (Katsanos & Sextos, 2013; Macedo & Castro, 2017). Among the most 
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important seismic parameters of a strong ground motion are the various types of 

spectra (i.e. elastic response spectrum, constant ductility spectrum, constant-

damage yield strength spectrum, Fourier spectrum, etc.) which result from the 

processing of the ground motion and which are used in various seismic design 

procedures, such as the Dynamic Response Spectrum Analysis (DRSA), the 

Uncoupled Modal Response History Analysis (UMRHA), the Modal Pushover 

Analysis (MPA) procedures for dynamic analysis (Chopra, 2012). Furthermore, by 

adjusting the Fourier spectrum of a strong ground motion, it is possible to 

control its frequency content. Therefore, the use of a robust and accurate strong 

motion processing software is critical for the proper seismic design of structures, 

including strategies for designing earthquake-resistant buildings to ensure the 

health, safety, and security of building occupants and assets during the 

structure’s lifetime. 

The concept of the elastic response spectrum was introduced by G.W. Housner 

(1959), whereas Newmark & Hall (1969) presented a fundamental work on linear 

elastic response spectra. Since then a large research effort has been made for the 

evaluation of the seismic response of linear SDOF systems with particular 

attention to the effect of input motion and site conditions. Most studies on 

inelastic response spectra have focused on the selection of the elastic-perfectly 

plastic material behavior, on taking into account the effects of the duration of the 

motion and on scaling methods (Newmark et al., 1973; Veletsos & Newmark, 

1960; Veletsos et al., 1965; Ziang et al., 2016). In addition, Veletsos & Vann (1971) 

published among the first studies that systematically investigated the elastic and 

inelastic structural response to pulse-like excitations (typically not caused by 

earthquakes).  

Many software programs, either free or commercial, have been developed for the 

processing of strong ground motion data. Some characteristic cases are presented 

below: 

 SMA (Strong Motion Analyst Processing Software) is a commercial 
Windows-based tool designed to interactively process strong motion 
accelerograms, featuring instrument correction, data editing, filtering, 
ground motion integrations, Fourier and Response Spectra calculations, 
and V1, V2, V3 file format output. It has been developed by the 
Kinemetrics company. 

 EQ-TOOLS (latest version is 3.0) is a free closed source software for 
earthquake engineering education which allows the user to select, analyze, 
scale, and modify ground motions. The capabilities of selection and 
analysis as well as scaling of ground motion records against several types 
of target spectra, including the ASCE 7 spectrum, spectra from attenuation 
relationships, and conditional mean spectra are included. Ground motion 
history analysis, linear response spectrum analysis and Fourier amplitude 
analysis and a module that enables the modification of ground motions for 
consideration of site effects are provided. It has been developed by the 
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George E. Brown, Jr. Network for Earthquake Engineering Simulation 
(NEES). 

 PRISM (Processing and Review Interface for Strong Motion data) is a free 
open-source software used for processing strong-motion records (Jones et 
al., 2017a; Jones et al., 2017b; Jones et al., 2017c; Kalkan & Stephens, 2017; 
Jones et al., 2018). It can be installed and run as a stand-alone system on 
common operating systems such as Linux, Mac and Windows and is 
flexible and extensible to incorporate new strong motion processing 
techniques.  

 PRISM for Earthquake Engineering (Jeong et al., 2016) includes capabilities 
for modification, correction, scaling, truncation and baseline correction of 
earthquake records and it can calculate a variety of strong motion 
parameters (Arias intensity, elastic and inelastic response spectra, 
acceleration, velocity, displacement and force-displacement response 
histories). Various hysteresis models are provided (linear elastic, bi-linear, 
tri-linear, modified Takeda, Bouc-Wen, and Al-Bermani) 

 SEISMOSIGNAL is an interesting, user-friendly and efficient commercial 
software for processing of strong motion data (Antoniou et al., 2012). 
Among others, it can calculate the elastic, constant ductility, Fourier 
amplitude and power spectra and it provides for filtering of high and low 
frequency record content and estimation of other important seismological 
parameters, such as the Arias Intensity and the significant and effective 
durations. 

 OPENSIGNAL is a free closed-source software platform for the processing 
and selection of seismic records, signal processing, response spectra 
analysis, soil spectra analysis and more (Cimellaro & Marasco, 2014; 
Cimellaro & Marasco, 2015). It provides filtering uncorrected ground 
motion records and calculation of the main parameters of a record (Arias 
Intensity, duration, PGA, PGV, elastic response spectra, etc.). 

 USDP (Utility Software for Data Processing) is a computer program that 
can be used for strong ground-motion data processing by various filtering 
and baseline adjustment techniques and spectral calculations (Linear 
spectral analysis, Fourier spectral analysis, Constant strength, ductility and 
base-shear coefficient nonlinear spectral analysis) for a variety of stiffness 
and/or strength degrading hysteretic models (Akkar, 2008). It has been 
developed by the METU-Earthquake Engineering Research Center team 
and uses public-open Fortran source codes. 

 TSPP (Time Series Processing Programs) is a collection of FORTRAN 
programs that have been developed for processing and manipulating 
strong-motion accelerograms in terms of displacement, velocity and 
acceleration time-histories, response and Fourier spectra and filtering 
(Boore, 2001).  

 VIEWWAVE (v2.2.0) is a free closed source software for processing and 
viewing strong motion records. It can read a large variety of files in many 
formats and can calculate various waveforms, Fourier and power 
spectrum, as well as acceleration, velocity and displacement response 
spectra (Kashima, 2016). 
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Apart from the above software, some other rather elementary programs have 

been developed in MATLAB programming language (Kalkan, 2016; Kalkan, 2017a; 

Kalkan, 2017b; Tazarn, 2011; Carlton, 2015; all submitted to the File Exchange 

service of the Mathworks official website). However, none of these MATLAB 

implementations contains advanced time integration algorithms for the 

extraction of the displacement, velocity and acceleration time histories and the 

various response spectra. In the present chapter, a new MATLAB open-source 

software, called OpenSeismoMatlab, is presented which, compared to other 

similar software, has the following advantages and unique characteristics: 

 It uses state-of-the-art time integration algorithms which are more robust 
and accurate (Papazafeiropoulos et al., 2017a; Papazafeiropoulos et al., 
2017b) compared to conventional integration techniques (Newmark, etc.) 
that are widely used by other software for strong motion data processing. 
The former algorithms belong to a general single step single solve family 
and can be adjusted through the specification of 14 independent 
integration constants to control numerical dissipation and dispersion, 
continuity of acceleration, and the order of overshooting in displacement 
and velocity. By adjusting a number of parameters, the user can select 
from a large family of time integration algorithms, according to 
Papazafeiropoulos et al. (2017a) and this permits the manual configuration 
and optimization of the quality of the desired results (time histories, 
spectra, etc.). 

 It is completely free and provided together with its source code (open 
source). OpenSeismoMatlab is of high educational value, since it contains 
simply written MATLAB code with comments and is generally easy to be 
understood by the user. The rationale of the implemented methods is 
explained in detailed comments within the code. Apart from this, the 
open-source code format provides the opportunity of extending/upgrading 
or integrating the software in all possible ways. 

 Furthermore, the elastoplastic bilinear kinematic hardening constitutive 
model which is fundamental for the computation of the nonlinear spectra 
is accurately formulated and programmed in the software. No simplified 
versions of the elastoplastic bilinear kinematic hardening constitutive 
model (Newmark & Hall, 1982; Krawinkler & Nassar, 1992; Miranda & 
Bertero, 1994) are used, as is usually the case in the literature. 

 

In the following sections, OpenSeismoMatlab is presented, and then it is applied 

in a number of earthquake records for the calculation of the various response 

spectra and other quantities. 
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3.2 Structure and source code of OpenSeismoMatlab 

In this section the design of the various algorithms used by OpenSeismoMatlab 

for the computation of the strong motion data processing results (spectra, time 

histories, etc.) are given. For each algorithm the structure of the main MATLAB 

function and its subroutines (if present) are provided and the architecture of the 

various MATLAB codes within the OpenSeismoMatlab software is presented. 

Finally, the capabilities and restrictions of OpenSeismoMatlab are discussed. 

OpenSeismoMatlab can calculate the following strong motion data processing 

output: 

 

 Time history of velocity 

 Time history of displacement 

 Peak ground acceleration (PGA) 

 Peak ground velocity (PGV) 

 Peak ground displacement (PGD) 

 Time history of normalized Arias intensity 

 Total Arias intensity  

 Time interval between 5% and 95% of Arias intensity has occurred 

(significant duration 5 95D  ) 

 Linear elastic pseudo-acceleration response spectrum 

 Linear elastic pseudo-velocity response spectrum 

 Linear elastic displacement response spectrum 

 Linear elastic velocity response spectrum 

 Linear elastic acceleration response spectrum 

 Constant ductility inelastic displacement response spectrum 

 Constant ductility inelastic velocity response spectrum 

 Constant ductility inelastic acceleration response spectrum 

 Fourier amplitude spectrum 

 Mean period ( mT ) 

 

The source code of OpenSeismoMatlab has been uploaded on two different 

distribution channels: (i) the File Exchange service of MATLAB central 

(Papazafeiropoulos, 2018) and (ii) on ResearchGate (Papazafeiropoulos & Plevris, 

2018), so that it is publicly available. The source code is organized in folders as 

follows: 

 A folder named “data” contains the acceleration time histories of the 
earthquakes considered in this chapter, in digitized format 

 A folder named “examples” contains three MATLAB scripts which 
illustrate how the software can be used properly for the generation of Elastic 
Response Spectra, Fourier Spectra and Constant Ductility Response Spectra 

 A folder named “figures” contains the figures that are generated after the 
execution of the MATLAB scripts contained in the “examples” folder 
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 A folder named “lib” contains all the subroutine functions of the 
OpenSeismoMatlab software. These functions are substantial for the application 
of OpenSeismoMatlab. 
 

In Figure 3-1 the dependency diagram between the various functions included in 

the OpenSeismoMatlab package is shown. The four main functions are LEReSp 

for the linear elastic response spectra, CDReSp for the constant ductility response 

spectra, FASp for the Fourier spectra and baselineCorr for the baseline correction 

of the input ground motion. The functions DRHA, NLIDABLKIN and HalfStep 

are called directly by the function CDReSp and are used for Dynamic Response 

History Analysis, NonLInear Dynamic Analysis with BiLinear KINematic 

hardening model, and reproduction of an earthquake excitation with the half 

time step, respectively. The function LIDA is used for Linear Incremental 

Dynamic Analysis and is called by the functions LEReSp and DRHA, whereas the 

function BLKIN is called by the function NLIDABLKIN. 

 

 
Figure 3-1: Schematic dependency diagram between the various functions included in 

the OpenSeismoMatlab package. 

 

The beginning section of the main MATLAB function (OpenSeismoMatlab.m) is 

shown in Listing 1 for purposes of completeness, and to show how the various 

variables that appear in parts of the main function code presented in the 

subsequent sections are defined. The two necessary input arguments are the time 

column vector (denoted as time) and the ground acceleration time history 

column vector (denoted as xgtt). Apart from these, shows the various default 

values which are set in the required variable definitions, in case they are not 

specified by the user. These are the critical damping ratio ξ (denoted in the code 

as ksi), the lower period limit T1, the upper period limit T2 and the period step dT 

of the generated response spectra (denoted in the code as T1, T2 and dT 

respectively), and finally the target ductility μt (denoted in the code as mu).  

 

OpenSeismoMatlab

FASp.mbaselineCorr.m

CDReSp.mLEReSp.m

DRHA.m NLIDABLKIN.m HalfStep.m

LIDA.m BLKIN.m
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Listing 3-1: Source code for the determination of various variables before the main 

calculations. 

3.2.1 Displacement and velocity time histories and peak values 

This part of the OpenSeismoMatlab code is quite straightforward. The MATLAB 

code shown in Listing 3-2 is executed in order to determine the displacement 

time history of the input motion, the velocity time history, the peak 

displacement, the peak velocity and the peak acceleration. The time integration is 

simply performed by the summation of the product of the integrand function by 

the time step Δt. The velocity and displacement time histories are given by eq. 

(3.1) and (3.2) respectively: 
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where k denotes the kth time step of the earthquake motion. Since the size of the 

time step is constant throughout the various earthquake motions, eq. (3.1) and 

(3.2) make use of the cumulative sums (cumsum) of the earthquake acceleration 

and the earthquake velocity respectively. The peak values are given by the 

equations (3.3) to (3.5) respectively: 

  gPGA max u  (3.3) 

  gPGV max u   (3.4) 

function seismic=OpenSeismoMatlab(time,xgtt,varargin) 

%% Initial checks 

if nargin<2 

    error('Input arguments less than required') 

end 

if nargin>7 

    error('Input arguments more than required') 

end 

% set defaults for optional inputs 

optargs = {0.05,0.04,10,0.05,2}; 

% skip any new inputs if they are empty 

newVals = cellfun(@(x) ~isempty(x), varargin); 

% overwrite the default values by those specified in varargin 

optargs(newVals) = varargin(newVals); 

% place optional args in memorable variable names 

[ksi,T1,T2,dT,mu] = optargs{:}; 

time = time(:); 

xgtt = xgtt(:); 

dt = time(2)-time(1); 
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  gPGD max u   (3.5) 

The user has the option to perform baseline correction to the input acceleration 

data, if desired, as shown in Listing 3-2. This capability is activated if the boolean 

variable baselineSw is set equal to true. If so, the function baselineCorr.m is used 

for this purpose. The source code of baselineCorr.m is shown in Listing 3-3. 

 
Listing 3-2: Source code for the calculation of the velocity and displacement time 

histories as well as the peak values. 
 

The function baselineCorr.m performs linear baseline correction for an 

uncorrected acceleration time history. Initially, first order fitting (straight line) is 

performed and the fitting line is subtracted from the acceleration time history, 

giving thus the first correction. Afterwards, this first correction of the 

acceleration is integrated to obtain the velocity, and then first order fitting 

(straight line) is reapplied on this velocity time history. The gradient of the 

straight fitting line is then subtracted from the first correction of the acceleration 

time history, giving thus the second correction of the acceleration time history. 

The second correction of the acceleration time history is then simply and doubly 

integrated to give the corrected velocity and displacement time histories, 

respectively. 

 

% TIME SERIES 

if baselineSw 

    [cor_xg,cor_xgt,cor_xgtt] = baselineCorr(time,xgtt); 

    seismic.acc=cor_xgtt; 

    seismic.vel=cor_xgt; 

    seismic.disp=cor_xg; 

else 

    % Acceleration time history 

    seismic.acc = xgtt; 

    % Velocity time history 

    seismic.vel = cumtrapz(time,xgtt)*dt; 

    % Displacement time history 

    seismic.disp = cumtrapz(time,seismic.vel)*dt; 

end 

% PEAK RESPONSES 

% Peak ground acceleration 

seismic.PGA = max(abs(xgtt)); 

% Peak ground velocity 

seismic.PGV = max(abs(seismic.vel)); 

% Peak ground displacement 

seismic.PGD = max(abs(seismic.disp)); 
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Listing 3-3: Source code for the function baselineCorr.m. 

 

3.2.2 Arias Intensity 

The Arias Intensity was proposed as an intensity measure of an earthquake by 

Arias (1970) and Housner & Jennings (1977), since it was recognized that the peak 

values alone cannot adequately portray the intensity of a ground motion. It is 

broadly defined as the sum of the energies per unit mass, dissipated due to the 

ground motion, by a population of Single Degree of Freedom (SDOF) systems 

with all natural frequencies. For undamped linear elastic SDOF systems, it can be 

shown (Arias, 1970; Housner & Jennings, 1977) that the Arias Intensity (AI) is 

given by: 
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where tf is the total duration of the earthquake. For a digitized strong motion 

data, Arias intensity is given by: 
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       (3.7) 

where imax denotes the total number of time increments of the earthquake 

motion. OpenSeismoMatlab can also output the time history of the normalized 

Arias Intensity, which expresses how the current kAI  (up to the current time 

step k, normalized with the total AI) evolves with time during the earthquake 

motion, as given by eq.(3.8): 
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     (3.8) 

function [cor_xg, cor_xgt, cor_xgtt] = baselineCorr(time,xgtt) 

dt = time(2)-time(1); 

% Least squares fit through acceleration history 

p=polyfit(time,xgtt,1); 

lsf_cor_xgtt = polyval(p,time); 

cor_xgtt1 = xgtt - lsf_cor_xgtt ; 

% Integrate for velocity 

un_xgt = cumtrapz(time,cor_xgtt1)*dt; 

% Least squares fit through velocity history 

ca2 = polyfit(time,un_xgt,1); 

cor_xgtt = cor_xgtt1 - ca2(1); 

% Corrected velocity 

cor_xgt = cumtrapz(time,cor_xgtt)*dt; 

% Corrected displacement 

cor_xg = cumtrapz(time,cor_xgt)*dt; 
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where AIk  is the value of the Arias Intensity at the kth time step of the 

earthquake motion. The MATLAB code that is used for the above calculations is 

shown in Listing 3-4: 

 

 
Listing 3-4: Source code for the calculation of the Arias Intensity (total and time 

history of the normalized AI). 

3.2.3 Significant duration 

The definition of significant duration is given by Dobry et al. (1978) and Trifunac 

& Brady (1975). In this definition, the significant duration is defined as the time 

interval between the time at which 5% of the seismic energy is attained and the 

time at which 95% of the seismic energy is attained. It is denoted as D5_95. The 

computational implementation is given in the MATLAB code shown in Listing 

3-5. The code outputs both the significant duration (denoted in the code as 

D_5_95) and the time instants at which 5% and 95% of AI are attained (arranged 

in a row vector denoted in the code as t_5_95).  

 

 
Listing 3-5: Source code for the calculation of the significant duration of an 

earthquake. 

3.2.4 Elastic Response Spectrum 

The Linear Elastic Response Spectrum (LEReSp) for a response quantity 

(acceleration, velocity, displacement, etc.) is a plot of the peak value of the 

quantity as a function of the natural vibration period ( nT ) or frequency ( nf ) of a 

population of linear elastic SDOF systems. Each linear elastic response spectrum 
is associated with a fixed damping ratio  . A flowchart of the calculation of the 

% SIGNIFICANT DURATION 

% elements of the time vector which are within the significant duration 

timed = time(aint2>=0.05*arias & aint2<=0.95*arias); 

% starting and ending points of the significant duration 

seismic.t_5_95 = [timed(1),timed(end)]; 

% significant duration 

seismic.D_5_95 = timed(end)-timed(1); 

% ARIAS INTENSITY 

% time history of Arias Intensity 

aint2 = cumsum(xgtt.^2)*pi*dt/2; 

% Total Arias Intensity at the end of the ground motion 

arias = aint2(end); 

seismic.arias = arias; 

% time history of the normalized Arias Intensity 

seismic.aint2 = aint2/arias; 
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linear elastic response spectrum of an earthquake strong ground motion is shown 

in Listing 3-7. 

It is noted that all time integration algorithms require the use of relatively small 

time-steps in order to deliver sufficiently accurate solutions (Soroushian, 2008; 

Soroushian, 2017). For this purpose, a maximum value of the ratio between the 

integration time-step and the period of the oscillator being analyzed is imposed, 

as shown in Listing 3-7 (   imax t 2 0.02   ). Initially, the program uses the 

time step of the input acceleration time history as the time step of the dynamic 

analysis, and then if this is found to violate the aforementioned maximum, the 

algorithm automatically reproduces the acceleration time history with half the 

current time step through linear interpolation, so that the threshold value is 

respected. The maximum limit that is specified above (0.02) leads to sufficiently 

accurate solutions. However, in OpenSeismoMatlab it can be changed manually 

by the user, if required, in order to handle special cases. The MATLAB function 

that reproduces the acceleration time history with half the time step is called 

HalfStep and its code is shown in Listing 3-6. 

 
Listing 3-6: MATLAB code for the function HalfStep.m. 

 
The main OpenSeismoMatlab function for the calculation of the linear elastic 
response spectrum is called “LEReSp” and its source code is shown in Listing 3-8 
and Listing 3-9 (as a continuation of Listing 3-8). 

 

It can be seen that the initial conditions for all SDOF systems that are analyzed 

for the generation of the LEReSp are zero for both velocity and displacement. 

Furthermore, the time integration algorithm that is used for the dynamic 

response history analysis of each SDOF system has zero order overshooting 

behavior for both displacement and velocity, and since the minimum absolute 

value of the eigenvalues of the amplification matrix ( infr ) is equal to unity, this 

corresponds to the mid-point rule a-form algorithm.  

 

function uNew = HalfStep(u) 

a=[([0;u(1:end-1)]+u)/2,u]'; 

uNew=a(:); 

uNew(1)=[]; 

end 
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Listing 3-7: Flowchart of the calculation of the linear elastic response spectrum 

implemented in OpenSeismoMatlab. 
 

It has been proven that, for structural dynamics problems, the so-called linear 

multi-step methods (LMS) are spectrally identical to a newly developed family of 

generalized single step single solve (GSSSS) algorithms (Zhou & Tamma, 2004). 

Three subclasses of computational algorithms can be distinguished based on the 

overshooting behavior, and additional algorithmic properties such as second-

order accuracy, and unconditional stability with numerical dissipative features: 

(i) zero-order displacement and velocity overshoot algorithms (U0-V0); (ii) zero-

order displacement and first-order velocity overshoot algorithms (U0-V1); and 

(iii) first-order displacement and zero-order velocity overshoot algorithms (U1-

V0). 

Input: gu ,  ,   

Initialize SD ,SV SA  

Set 0u  and 0u  

for each SDOF i with eigenfrequency i  

    if  i t 2 0.02    

        Reproduce gu with half time step (from t  to t 2 ) 

        Set t t 2    

    end 

    Perform dynamic analysis of SDOF with input ( gu , , 0u , 0u ) 

    Assign   max u t  to  SD i  

    Assign   max u t  to  SV i  

    Assign   max u t  to  SA i  

end 

Calculate PSV SD  and 2PSA SD  

Output: SD , SV , SA , PSV , PSA  
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Listing 3-8: Source code for the function LEReSp. 

 

function [PSa,PSv,Sd,Sv,Sa]=LEReSp(dt,xgtt,T,varargin) 

% set defaults for optional inputs 

optargs = {0.05,0.01,'U0-V0-CA',0}; 

% skip any new inputs if they are empty 

newVals = cellfun(@(x) ~isempty(x), varargin); 

% overwrite the default values by those specified in varargin 

optargs(newVals) = varargin(newVals); 

% place optional args in memorable variable names 

[ksi,dtTol,AlgID,rinf] = optargs{:}; 

% initialize 

NumSDOF=length(T); 

Sd=zeros(NumSDOF,1); 

Sv=zeros(NumSDOF,1); 

Sa=zeros(NumSDOF,1); 

% Set the eigenfrequencies of the SDOF population 

omega=2*pi./T; 

% Flip eigenfrequency vector in order for the half-stepping algorithm 

% (HalfStep function) to work from large to small eigenperiods 

omega=omega(end:-1:1); 

% set initial conditions 

u0=0; 

ut0=0; 

% zero-order displacement & velocity overshooting behavior and 

% optimal numerical dissipation and dispersion 

rinf=1; % mid-point rule a-form algorithm 

for j=1:length(T) 

    omegaj=omega(j); 

    % Check if dt/T>dtTol. If yes, then reproduce the time history     

    % with the half step 

    if dt*omegaj/(2*pi)>dtTol 

        xgtt=HalfStep(xgtt); 

        dt=dt/2; 

    end 

    [u,ut,utt] = LIDA(dt,xgtt,omegaj,ksi,u0,ut0,AlgID,rinf); 

    % output 

    Sd(j)=max(abs(u)); 

    Sv(j)=max(abs(ut)); 

    Sa(j)=max(abs(utt)); 

end 

 

% Flip output quantities to be compatible with omega 

omega=omega(end:-1:1); 

Sd=Sd(end:-1:1); 

Sv=Sv(end:-1:1); 

Sa=Sa(end:-1:1); 

% Calculate pseudovelocity and pseudoacceleration 

PSv=Sd.*omega; 

PSa=Sd.*omega.^2; 
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Listing 3-9: Source code for the function LEReSp (continued from Listing 3-8). 

 

The formulation of the general case of a GSSSS algorithm involves the 

determination of 12 sets of parameters, among which five are related to the 

accuracy, five are related to the overshoot, dissipation, and dispersion; one 

parameter set is related to the stability; and one parameter set is related to the 

second-order approximation for the integration of the load term. Therefore, the 

user has the freedom to configure the general algorithm by adjusting the time 

integration constants so that it yields acceptable results for any specific case of 

application. This capability is also incorporated in OpenSeismoMatlab, since this 

general time integration framework is an integral part of it. It has been shown 

that many known time integration algorithms (e.g. the members of the Newmark 

family) are special cases of this general algorithm framework. A more complete 

presentation and investigation of the entire time integration algorithm family 

used in OpenSeismoMatlab has been done by Papazafeiropoulos et al. (2017a).  

The function LIDA (Linear Implicit Dynamic Analysis) is utilized for the dynamic 

analysis of each SDOF system. The internal code of the function LIDA is 

presented in Listing 3-10. Initially, the time integration constants are calculated 

so that the time integration scheme corresponds to a zero-order displacement & 

velocity overshooting behavior and optimal numerical dissipation and dispersion 

algorithm (see Listing 3-10). The desired properties of this algorithm are second-

order accuracy, no overshoot, dissipative with optimal dissipation and dispersion, 

and unconditional stability. The minimum absolute value of the eigenvalues of 

the amplification matrix at the high-frequency limit is imposed to be equal to 

unity to minimize the effect of the spurious root at the low-frequency limit.  

The reader is referred to Zhou & Tamma (2004) for more details. The default time 

integration algorithm of OpenSeismoMatlab (mid-point rule a-form algorithm) 

can be used for small-scale (non-stiff) undamped problems. Of course, in special 

cases, e.g. for large scale (stiff) problems with initial displacement or initial 

velocity, the U1-V0 or the U0-V1 algorithms can be used, respectively. In such 

cases, the various integration constants can be easily adjusted by the user of 

OpenSeismoMatlab by appropriate modification of the code shown in Listing 

3-10, so that solutions of superior quality can be obtained.  

% Flip output quantities to be compatible with omega 

omega=omega(end:-1:1); 

Sd=Sd(end:-1:1); 

Sv=Sv(end:-1:1); 

Sa=Sa(end:-1:1); 

% Calculate pseudovelocity and pseudoacceleration 

PSv=Sd.*omega; 

PSa=Sd.*omega.^2; 

end 
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Listing 3-10: Source code for the first part of the function LIDA.m used for the 

calculation of the time integration constants. 
 

The dynamic response history analysis is performed through the use of the fast 

MATLAB function filter. This function proves to be much faster (up to 100x) than 

the ordinary time integration routines, and filters the data in any input vector 

(i.e. the time history of acceleration) with a rational transfer function described 

by two additional input vectors (denominator and nominator) to create the 

filtered output data (i.e. the time history of the response). The transfer function 

of the filter function is of the form: 

  
       

     
 

1 2 3

n n n n

1 2 3

d d d

TF 1 TF 2 z TF 3 z TF 4 z
Y z X z

1 TF 1 z TF 2 z TF 3 z

  

  

  


  
 (3.9) 

function [u,ut,utt] = LIDA(dt,xgtt,omega,varargin) 

% set defaults for optional inputs 

optargs = {0.05,0,0,1}; 

% skip any new inputs if they are empty 

newVals = cellfun(@(x) ~isempty(x), varargin); 

% overwrite the default values by those specified in varargin 

optargs(newVals) = varargin(newVals); 

% place optional args in memorable variable names 

[ksi,u0,ut0,rinf] = optargs{:}; 

% Integration constants 

% zero-order displacement & velocity overshooting behavior and 

% optimal numerical dissipation and dispersion 

w1=-15*(1-2*rinf)/(1-4*rinf); % suggested 

w2=15*(3-4*rinf)/(1-4*rinf); % suggested 

w3=-35*(1-rinf)/(1-4*rinf); % suggested 

W1=(1/2+w1/3+w2/4+w3/5)/(1+w1/2+w2/3+w3/4); % definition 

W1L1=1/(1+rinf); 

W2L2=1/2/(1+rinf); 

W3L3=1/2/(1+rinf)^2; 

W1L4=1/(1+rinf); 

W2L5=1/(1+rinf)^2; % suggested 

W1L6=(3-rinf)/2/(1+rinf); 

l1=1; 

l2=1/2; 

l3=1/2/(1+rinf); 

l4=1; 

l5=1/(1+rinf); 
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where  X z  is the input signal (i.e. the time history of acceleration),  Y z  is the 

output signal (i.e. the time history of the SDOF dynamic response), nTF  is a row 

vector containing the coefficients of the nominator of the transfer function and 

dTF  is a row vector containing the coefficients of the denominator of the transfer 

function, as presented in the following. 

The calculation of the transfer function denominator and nominator is shown in 

Listing 3-11. The elements of the amplification matrix are calculated first, and 

then the invariants of the amplification matrix are found as follows: 
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  AIII det A   (3.13) 

where t  and 
2

6 5 3D 2      , while i  and i  (i = 1,...,5) are 

constants of the time integration algorithm. The reader is referred to [27] for the 

detailed definitions of these integration constants corresponding to the various 

time integration algorithms. The denominator of the transfer function is given 

by: 

  d A A ATF 1 I , II , III     (3.14) 

The nominator of the transfer function is calculated as follows: 

  n 1 2 3 4TF B ,B ,B ,B   (3.15) 

where: 
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The denominator vector is constructed by the amplification matrix invariants. 

The nominator vector is constructed as a function of the elements of the 

amplification matrix and various integration constants. Finally, the displacement 

of the SDOF system is found at the first and second time instants by using the 

initial conditions and the amplification matrix. The time history of the 

displacement is found using the Matlab function filter. Then the velocity is 

calculated from the system of equations (3.17) and(3.18), in which the only 

unknowns are the time histories of the velocity and acceleration ( tu  and tu , 

respectively):  
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 (3.17) 

 
t t t t

gmu cu ku mu      (3.18) 

and the acceleration time history, with the time histories of the displacement and 

velocity known, is derived merely from eq. (3.18). See Listing 3-12 for more details 

about the source code segment in which this computation is performed.  

3.2.5 Constant Ductility inelastic Response Spectrum 

The Constant Ductility Response Spectrum (CDReSp) is the nonlinear 

counterpart of the linear elastic response spectrum that is described in the 

previous section. It is a plot of the peak value of any response quantity as a 

function of the small strain natural vibration period ( nT ) or frequency ( nf ) of a 

population of inelastic (bilinear elastoplastic) SDOF systems. Each CDReSp curve 

is associated with a fixed critical damping ratio   and target ductility t . A 

flowchart of the calculation of the CDReSp of an earthquake strong ground 

motion is shown in Listing 3-13. A number of iterations are performed for each 

SDOF system (i.e. for each eigenfrequency) of the CDReSp, as the way to 

determine the yield limit of a SDOF structure based on its dynamic response 

(ductility) is not straightforward. During the iterations the yield limit is 

continuously adjusted so that the ductility that is calculated is as close as possible 

to the target ductility. This fact renders the calculation of the CDReSp more 

computationally expensive than the calculation of the simple LEReSp. Given its 

large extent, the related MATLAB code for this function as well as the children 

(called) functions are not presented here but can be easily found online in the 

OpenSeismoMatlab package of source files at the File Exchange service of 

MATLAB Central, or at other repositories. Inside the function CDReSp, a series of 

dynamic analyses of the linear elastic and the bilinear elastoplastic SDOF system 

are performed, as can be seen in Listing 3-13. For these dynamic analyses, an 
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appropriate external function is called. The flowchart of this function can be 

found in Papazafeiropoulos et al. (2017a). It is noted that the constant-ductility 

inelastic response spectrum is computed through nonlinear dynamic analyses of 

elastoplastic hysteretic systems, rather than through the simplified approaches 

that have been proposed in the literature (Newmark & Hall, 1982; Krawinkler & 

Nassar, 1992; Miranda & Bertero, 1994). 
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Listing 3-11: Source code for the calculation of the denominator and nominator of the 

transfer function used in filter.m (source code continued from Listing 3-10). 

 

% Transfer function denominator 

Omega=omega*dt; 

D=W1L6+2.*W2L5.*ksi.*Omega+W3L3.*Omega.^2; 

A31=-Omega.^2./D; 

A32=-1./D.*(2.*ksi.*Omega+W1L1.*Omega.^2); 

A33=1-1./D.*(1+2.*W1L4.*ksi.*Omega+W2L2.*Omega.^2); 

A11=1+l3.*A31; 

A12=l1+l3.*A32; 

A13=l2-l3.*(1-A33); 

A21=l5.*A31; 

A22=1+l5.*A32; 

A23=l4-l5.*(1-A33); 

% Amplification matrix 

A=[A11 A12 A13;A21 A22 A23;A31 A32 A33]; 

% Amplification matrix invariants 

A1=A(1,1)+A(2,2)+A(3,3); 

A2=A(1,1)*A(2,2)-A(1,2)*A(2,1)+A(1,1)*A(3,3)-

A(1,3)*A(3,1)+A(2,2)*A(3,3)-... 

    A(2,3)*A(3,2); 

A3=A(1,1)*A(2,2)*A(3,3)-A(1,1)*A(2,3)*A(3,2)-

A(1,2)*A(2,1)*A(3,3)+A(1,2)*... 

    A(2,3)*A(3,1)+A(1,3)*A(2,1)*A(3,2)-A(1,3)*A(2,2)*A(3,1); 

% Transfer function denominator 

a=[1 -A1 A2 -A3]; 

% Transfer function nominator 

B1=1./D.*dt^2.*l3.*W1; 

B2=1./D.*dt^2.*(l3.*(1-W1)-(A22+A33).*l3.*W1+A12.*l5.*W1+A13.*W1); 

B3=1./D.*dt^2.*(-(A22+A33).*l3.*(1-W1)+A12.*l5.*(1-W1)+A13.*(1-W1)+... 

    (A22.*A33-A23.*A32).*l3.*W1-(A12.*A33-A13.*A32).*l5.*W1+(A12.*A23-

... 

    A13.*A22).*W1); 

B4=1./D.*dt^2.*((A22.*A33-A23.*A32).*l3.*(1-W1)-(A12.*A33-

A13.*A32).*l5.*(1-... 

    W1)+(A12.*A23-A13.*A22).*(1-W1)); 

b=[B1,B2,B3,B4]; 
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Listing 3-12: Source code for the final part of the function LIDA.m used for the 

dynamic analysis of a linear elastic SDOF system (source code continued from Listing 
3-11). 

 

% form initial conditions for filter function 

% equivalent external force 

f=-xgtt; 

% stiffness 

k=omega.^2; 

% damping constants 

c=2.*omega.*ksi; 

% initial acceleration 

utt0=-f(1)-(k*u0+c*ut0); 

U_1=A\[u0;dt*ut0;dt^2*utt0]; 

u_1=U_1(1); 

U_2=A\U_1; 

u_2=U_2(1); 

ypast=[u0,u_1,u_2]; 

vinit=zeros(1,3); 

vinit(3:-1:1) = filter(-a(4:-1:2),1,ypast); 

% main dynamic analysis 

u=filter(b,a,f,vinit); 

% calculate velocity from the following system of equations: 

% 1st: the first scalar equation of the matrix equation (60) in 

X.Zhou & 

% K.K.Tamma (2004) 

% 2nd: equation of motion 

C_u=omega^2*A(1,3)*dt^2-A(1,1); 

C_f=-A(1,3)*dt^2; 

C_ut=A(1,2)*dt-A(1,3)*dt^2*2*ksi*omega; 

L=1/D*l3*dt^2*((1-W1)*[0;f(1:end-1)]+W1*f); 

ut=(u+C_u*[u0;u(1:end-1)]+C_f*[0;f(1:end-1)]-L)/C_ut; 

% calculate acceleration from equation of motion 

utt=-omega^2*u-2*ksi*omega*ut; 

end 
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Listing 3-13: Flowchart of the calculation of the constant ductility response spectrum 

implemented in OpenSeismoMatlab. 

    for k from 1 to NRn  

        Perform dynamic analysis of bilinear elastoplastic SDOF ( gu , hik , m , , 0u , 0u , y,ku ) 

          NL NL

peaku max u t  

        
NL

peak y,ku u   

        k tres    

        if k t 1res tol   

            break 

        else if k 2  

            Adjust 1tol  depending on the number of iterations k 

            Find pos , neg , y,k 1u   depending on the sign of kres , k 1res   and k k 1res res   

        else if k 1  

            y,k 1u neg   

        end 

    end 

    Calculate     NL NL

peakSD i max u t u  ,     NLSV i max u t  and     NLSA i max u t  

    Calculate     iPSV i SD i   and     2

iPSA i SD i   

end 

Output: SD , SV , SA , PSV , PSA  

 

Input: gu ,  ,  , t  

Initialize SD , SV , SA , PSV , PSA  

Set m , NRn , 0u  and 0u  

for each SDOF i with eigenfrequency i  

    Find the low strain stiffness 
2

hi ik m   

    if  i t 2 0.02    

        Reproduce gu with half time step (from t  to t 2 ) 

        Set t t 2    

    end 

    Perform dynamic analysis of linear elastic SDOF ( gu , hik , m , , 0u , 0u ) 

      peaku max u t  

    peak hi peakf k u  

    peakpos u  

    
peak

t

u
neg

1.5



 

     

 



72 Chapter 3 

 

 

3.2.6 Fourier Amplitude Spectrum 

The Fourier Amplitude Spectrum (FASp) shows how the amplitude of the strong 

ground motion varies with frequency. It expresses generally the frequency 

content of a ground motion and useful information can be extracted from it. The 

MATLAB code that is used for the calculation of the FASp is shown in Listing 3-14 

and Listing 3-15.  

 

 
Listing 3-14: Source code for the calculation of the FASp. 

 

As can be seen in Listing 3-14, the function FASp.m performs the majority of the 

calculations needed for the creation of the Fourier Amplitude Spectrum. The 

MATLAB source code for the function FASp.m is shown in Listing 3-15. The 

highest frequency that is considered for the calculation of the FASp is the Nyquist 

frequency of the input acceleration (the last is denoted in the code as xgtt). The 

Fourier spectrum that is calculated is single-sided and based on the MATLAB 

function fft which applies the Fast Fourier Transform [based on a library called 

FFTW ( http://www.fftw.org ); Frigo & Johnson, 1998]. It is apparent from Listing 

3-15 that the transform length FFTn  has been set equal to the minimum power of 2 

that gives result larger than the length of the input acceleration. This selection 

can increase the performance of FFT. The Fast Fourier Transform is implemented 

as follows: 

       
FFT

FFT

n
j 1 k 1

g n

j 1

U k u j W
 



   (3.19) 

where 

 
  FFT

FFT

2 i n

nW e
 

   (3.20) 

is a 
th

FFTn  root of unity and i  in eq. (3.20) is the square root of -1. 

3.2.7 Mean Period 

The mean period ( mT ) is computed from the Fourier amplitude spectrum of an 

acceleration time history by eq. (3.21) (Rathje et al., 2004): 

 
 2

i i

i
m

2

i

i

U 1 f

T

U





  (3.21) 

for i0.25Hz f 20Hz   with f 0.05Hz  . iU  is the Fourier amplitude, if  is the 

frequency corresponding to iU  and f  is the frequency interval. Eq. (3.21) 

% FOURIER AMPLITUDE SPECTRUM 

[f,U]=FASp(dt,xgtt); 

seismic.FAS = U; 

seismic.freq = f; 

http://www.fftw.org/
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defines that the mean period is the weighted average of the periods of the 

spectrum with weighting based on squared Fourier amplitudes. The MATLAB 

source code that is used for the calculation of mT  is presented in Listing 3-16. 

 

 
Listing 3-15: Source code of the function FASp. 

 

 
Listing 3-16: Source code for the calculation of the mean period of an acceleration 

time-history. 

3.3 Numerical results 

In order to verify the results of OpenSeismoMatlab, they are compared with the 

corresponding results of a commercial strong ground motion data processing 

software, SeismoSignal. A detailed description of this software is given in Section 

3.1. The reason for the selection of this software is that it is easy to use, it has a 

relatively detailed documentation of high scientific quality and it is accepted as a 

trustworthy and reliable tool worldwide, since it has been used and tested 

flawlessly for a number of years by researchers and professionals. However, 

SeismoSignal uses conventional time integration algorithms, and in certain cases 

can be susceptible to errors, especially when time integration algorithms with 

% MEAN PERIOD 

fi = f(f>0.25 & f<20); 

Ci = U(f>0.25 & f<20); 

Tm = ((Ci(:)'.^2)*(1./fi(:)))/(Ci(:)'*Ci(:)); 

seismic.Tm = Tm; 

function [f,U] = FASp(dt,xgtt) 

% Nyquist frequency (highest frequency) 

Ny = (1/dt)/2;  

% number of points in xgtt 

L  = length(xgtt);  

% Next power of 2 from length of xgtt 

NFFT = 2^nextpow2(L); 

% frequency spacing 

df = 1/(NFFT*dt); 

% Fourier amplitudes  

U = abs(fft(xgtt,NFFT))*dt;  

% Single sided Fourier amplitude spectrum 

U = U(2:Ny/df+1); 

% frequency range 

f = linspace(df,Ny,Ny/df)';  

end 
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dissipative and overshooting properties superior to those of the Newmark family 

of algorithms need to be used. OpenSeismoMatlab comes to improve this 

inadequacy. For the purposes of comparison, a suite of 11 strong ground motion 

acceleration time histories have been selected, which are presented in Figure 3-2. 

Data about the earthquakes that generated these acceleration time histories are 

shown in Table 3-1.  

 

Earthquake Year Station 

Imperial Valley 1979 
El Centro Array Sta 8, CA, 95 E 

Cruickshank Rd 

Izmit-Kocaeli 1999 Yarimca Petkim 

Loma Prieta 1989 
Gilroy Array Sta 3, CA, Sewage 

Plant 

Northridge 1994 090 CDMG Station 24278 

San Fernando 1971 Castaic, CA, Old Ridge Route 

Spitak 1988 Gukasyan 

Cape Mendocino 1992 Cape Mendocino, CA, Petrolia 

Chi-Chi 1999 Nantou - Hsinjie School, WNT 

El Centro 1940 
El Centro Terminal Substation 

Building 

Hollister 1961 USGS Station 1028 

Kobe 1995 Takarazuka 

Table 3-1: Earthquakes the strong motion records of which have been considered in 
the present chapter. 

3.3.1 Peak values of displacement, velocity and acceleration time histories 

In Table 3-2 the peak ground displacement (PGD), peak ground velocity (PGV) 

and peak ground acceleration (PGA) are calculated for 11 strong ground motions 

with various characteristics. Compared to the corresponding results of 

SeismoSignal (not shown here), it has been observed that the peak values are 

almost identical with the largest relative difference within 0.5% of the original 

value.  

3.3.2 Arias Intensity values and time histories 

In Table 3-3 the Arias intensity is shown for the same 11 strong ground motion 

records of Table 3-2. The results of OpenSeismoMatlab coincide with those of 

SeismoSignal. 

In Figure 3-3 the time histories of the normalized Arias Intensity ( AI ) are 

presented for the 11 strong ground motions considered in this chapter. The 

normalization is made with respect to the AI values shown in Table 3-3. Two time 
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histories are shown in each subplot of this figure. The curves in red color 

correspond to the results of OpenSeismoMatlab whereas the curves in black color  

 

Earthquake PGD (m) PGV (m/s) PGA (m/s2) 

Imperial 

Valley 1.233 0.553 5.997 

Kocaeli 1.538 0.885 3.085 

Loma Prieta 0.106 0.364 5.317 

Northridge 0.402 0.787 9.707 

San Fernando 1.722 0.337 2.654 

Spitak 5.801 0.667 1.879 

Cape 

Mendocino 0.349 0.445 10.194 

ChiChi 0.422 0.644 9.373 

El Centro 0.212 0.363 3.128 

Hollister 0.003 0.042 1.347 

Kobe 0.267 0.685 6.803 

Table 3-2: PGD, PDV and PGA values of the strong motion data considered in this 
chapter. 

 

 

Earthquake 
Arias Intensity 

(m/s) 

Imperial 

Valley 1.582 

Kocaeli 1.669 

Loma Prieta 2.075 

Northridge 16.634 

San Fernando 0.973 

Spitak 0.311 

Cape 

Mendocino 2.386 

ChiChi 7.569 

El Centro 1.802 

Hollister 0.044 

Kobe 3.067 

Table 3-3: Arias Intensity (AI) of the strong motion data considered in this chapter. 
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Figure 3-2: Acceleration time histories of the earthquake records considered. 

 

(almost invisible since they are almost fully covered by the red curves) 

correspond to the results of SeismoSignal. It can be seen that the curves are 

nearly identical; this shows that the agreement between the two software is very 

good. 

3.3.3 Significant durations 5-95 

The significant duration of each strong ground motion record are shown in Table 

3-4. The significant duration 5-95 is defined as the time interval between the 

point at which 5% of the Arias intensity is attained, and the point at which 95% of 

the Arias intensity is attained. The results of the two programs coincide. 
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Figure 3-3: Time histories of the normalized Arias Intensity for the strong motion data 

considered in this chapter calculated by OpenSeismoMatlab and SeismoSignal. 
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Earthquake 
Significant 

duration 5-95 (s) 

Imperial 

Valley 6.84 

Kocaeli 31.66 

Loma Prieta 6.00 

Northridge 12.58 

San Fernando 15.82 

Spitak 8.08 

Cape 

Mendocino 10.04 

ChiChi 27.34 

El Centro 23.84 

Hollister 2.48 

Kobe 4.60 

Table 3-4: Significant duration of the strong motion data considered in this chapter. 

3.3.4 Elastic response spectra 

In Figure 3-4, Figure 3-5 and Figure 3-6 the displacement, pseudo-velocity and 

pseudo-acceleration response spectra are presented for the various strong ground 

motions considered in this chapter. As done also in other figures, the curves with 

red and the black color correspond to the results of OpenSeismoMatlab and 

SeismoSignal, respectively. The comparison is excellent between the two 

programs. 

3.3.5 Constant-ductility inelastic response spectra 

In Figure 3-7 and Figure 3-8 the spectral displacement and spectral velocity 

respectively are shown for the constant-ductility inelastic response spectra of the 

11 strong ground motions considered for target ductility equal to 2. Obviously, the 

difference between the curves of the results of the two software is larger than that  

between the linear elastic counterparts. The differences between the results can 

be attributed to the different methods used by the two software, the superiority 

of the time integration algorithms used by OpenSeismoMatlab and other factors 

related to the efficiency of the implementation of the various procedures in the 

code of the two software. Despite these, generally the corresponding results of 

the two software are reasonably close to each other also in the nonlinear regime. 

3.3.6 Fourier amplitude spectra 

In Figure 3-9 the Fourier amplitude spectra (FAS) are shown for the strong 

ground motions considered. Two curves for each record are shown which 

correspond to the two software being compared. It seems that the various Fourier 

spectra are nearly identical. 
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Figure 3-4: Linear elastic displacement response spectra for the strong motion data 

considered in this chapter calculated by OpenSeismoMatlab and SeismoSignal. 
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Figure 3-5: Linear elastic pseudo-velocity response spectra for the strong motion data 

considered in this chapter calculated by OpenSeismoMatlab and SeismoSignal. 
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Figure 3-6: Linear elastic pseudo-acceleration response spectra for the strong motion 
data considered in this chapter calculated by OpenSeismoMatlab and SeismoSignal. 
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Figure 3-7: Constant ductility inelastic displacement response spectra for the strong 

motion data considered in this chapter calculated by OpenSeismoMatlab and 
SeismoSignal.  
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Figure 3-8: Constant ductility inelastic velocity response spectra for the strong motion 
data considered in this chapter calculated by OpenSeismoMatlab and SeismoSignal.  

3.4 Effect of the time step on the accuracy of the output 

In this section, the effect of the time step size on the accuracy of the solutions 

provided by OpenSeismoMatlab is investigated. The pseudoacceleration (PSa) 

response spectrum of a sinusoidal acceleration time history (corresponding to the 

function  gu sin 20 t  ) with critical damping ratio   equal to 5% is considered. 

The excitation is a harmonic (sinusoidal) motion with circular frequency equal to 

20  (i.e. frequency 10 Hz and period 0.1 s) and total duration 2 s, whereas it is 
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digitized in sufficiently small time steps ( t 0.0001s  ). The PSa spectrum is 

calculated for OpenSeismoMatlab and SeismoSignal separately and initially a 

comparison is made between the two solutions. This comparison is shown in 

Figure 3-10, in which the decimal logarithm of the PSa spectrum is plotted versus 

the range of eigenperiods considered.  

It is obvious that the two curves nearly coincide with each other and from this it 

can be concluded that practically they both coincide with the real solution, since 

the time step is relatively small enabling thus high accuracy computations. The 

differences between the two solutions are very small, found only at the 5th 

decimal digit. We define as 0PSa  this reference solution, i.e 0PSa  is considered 

the correct solution for each program. As the time step size increases, a certain 

degree of error is introduced in the PSa spectrum. A measure of this error can be 

the root-mean-square deviation between the PSa spectrum for an arbitrary value 

of Δt and the accurate 0PSa  presented in Figure 3-10, which is estimated by eq. 

(3.22) as follows:  

 
 

n
2

i i

t 0

i 1

PSa PSa

RMSD
n










  (3.22) 

where PSaΔt is the PSa spectrum obtained for time step equal to Δt and n is the 

number of eigenperiods contained in the PSa spectrum (n=400 in this 

investigation). The different values of Δt that are considered are 3×10-4 s, 1×10-3 s 

and 3×10-3 s. For each value of these time steps, two PSaΔt spectra are calculated, 

one by OpenSeismoMatlab and one by SeismoSignal. Then, Eq. (3.22) is applied 

for the two programs separately, where for each one the corresponding 0PSa  is 

considered; two separate RMSD curves are extracted and plotted in Figure 3-11 for 

comparison. It is obvious that the solutions provided by OpenSeismoMatlab have 

less error than the corresponding solutions provided by SeismoSignal, for the 

various time step sizes. As a result, it is shown that the quality of the results of 

OpenSeismoMatlab is superior to that of SeismoSignal, at least under certain 

circumstances. This is attributed to the fact that advanced time integration 

algorithms are used by the former. 

3.5 Conclusions 

A new open-source software for strong ground motion data processing called 

OpenSeismoMatlab is presented, which uses advanced time integration 

algorithms, contains open and free source code written in MATLAB, and uses an 

accurate formulation and implementation of the elastoplastic bilinear kinematic 

hardening constitutive model. Parts of the code have been presented and  
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Figure 3-9: Fourier amplitude spectra for the strong motion data considered in this 

chapter calculated by OpenSeismoMatlab and SeismoSignal. 
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Figure 3-10: Comparison of the pseudoacceleration response spectrum PSa of a 

sinusoidal acceleration time history for a very small step size (Δt=10-4 s) between 
OpenSeismoMatlab and SeismoSignal. 

 

 
Figure 3-11: Comparison of the error of the pseudoacceleration spectrum (PSa) of a 

sinusoidal acceleration time history with respect to 0PSa , between 

OpenSeismoMatlab and SeismoSignal. 

 

explained in detail in this chapter, so that the reader can easily understand the 

structure and implementation of the software and make various case-dependent 

adjustments in order to obtain results of the highest quality. The various types of 

spectra of 11 earthquake strong ground motions have been extracted with 
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OpenSeismoMatlab and it has been shown that they are nearly identical to 

corresponding results of SeismoSignal, a reliable commercial proprietary 

software. In some cases, the quality of the results of the new software is superior 

to that of SeismoSignal due to the fact that it uses advanced time integration 

algorithms that allow for controlled dissipation, dispersion and overshooting 

properties. A numerical investigation was made which showed that 

OpenSeismoMatlab provides more accurate results than SeismoSignal when the 

same integration step size is used for both. OpenSeismoMatlab is a unique 

software that combines innovative numerical algorithms, high quality and 

robustness and is provided as an open-source tool to the research and 

professional engineering communities for the seismic design of structures as well 

as the processing of strong ground motions. The new software can be used for 

free by students and/or programmers for the seismic design of structures as well 

as general processing of strong ground motions. Thanks to its open source 

nature, it can be of high educational value for related university courses and can 

be easily extended or modified in order to be incorporated in higher level 

software. 
 

3.6 Notation 

t : step of direct time integration scheme 

1 5...  : time integration constants 

1 6...  : time integration constants 

μ: ductility ratio achieved for dynamic nonlinear analysis of a SDOF system 

μt: target ductility ratio 

 : ratio of critical viscous damping 

Ω: Normalized circular eigenfrequency 

ω: circular eigenfrequency 

AI: Arias Intensity 

AI : Normalized Arias Intensity 

c: damping coefficient 

D5_95: Significant duration of an earthquake 

dT: period step of the generated response spectra 

errΔt: error associated with the time step Δt 

if : frequency corresponding to Fourier amplitude iU  

fn: eigenfreuency of the nth SDOF system 

fpeak: maximum linear elastic force 

imax: Total number of time increments of the earthquake motion 

k: stiffness 

m: mass 

n: number of eigenperiods contained in the PSa spectrum 

FFTn : the transform length of the fft function 
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nNR: Newton Raphson number of iterations for convergence to the target ductility 

PGA: Peak Ground Acceleration 

PGV: Peak Ground Velocity 

PGD: Peak Ground Displacement 

PSA: Pseudo Spectral Acceleration 

PSaΔt: PSa spectrum for time step equal to Δt 

PSV: Pseudo Spectral Velocity 

RMSD: Root-mean-square deviation between the PSa spectrum for an arbitrary 

value of Δt and 0PSa  

SA: Spectral acceleration 

SD: Spectral displacement 

SV: Spectral velocity 

T1: lower period limit of the generated response spectra 

T2: upper period limit of the generated response spectra 

TFd: vector containing the coefficients of the denominator of the transfer 

function 

TFn: vector containing the coefficients of the nominator of the transfer function 

tf : total duration of the earthquake  

mT : mean period of an acceleration time-history 

Tn: eigenperiod of the nth SDOF system  

0u : initial displacement 

gu : earthquake ground displacement 

0u : initial velocity 

gu : earthquake ground velocity 

gu : earthquake ground acceleration 

upeak: maximum value of the absolute displacement time history of a linear SDOF 

system 

u : displacement time history of the linear elastic SDOF system 

u t: displacement at time t 
tu : velocity at time t 
tu : acceleration at time t 

y,ku : yield limit of a SDOF system at kth iteration 

NLu : displacement time history of the bilinear elastoplastic SDOF system 
NL

peaku : maximum value of the absolute displacement time history of a nonlinear 

SDOF system 

U : Fourier amplitude 

1W : time integration constant 

 

 



 

C h a p t e r  4 E q u a t i o n  S e c t i o n  ( N e x t )  

 

4  A new energy -based structural  design 
optimization concept  under seismic 
act ions  

4.1 Introduction 

In this chapter a new optimization concept is introduced which involves the 

optimization of nonlinear planar shear buildings by using a gradient method 

based on equivalent linear structures, instead of the traditional practice of 

calculating the gradients from the nonlinear objective function. The optimization 

problem is formulated as an equivalent linear system of equations in which a 

target fundamental eigenfrequency and an equally dissipated energy distribution 

among the storeys of the building are the components of the objective function. 

The concept is applied in a modified Newton-Raphson algorithm in order to find 

the optimum stiffness distribution of two representative linear or nonlinear 

MDOF shear buildings, so that the distribution of viscously damped and 

hysteretically dissipated energy respectively over the structural height is uniform. 

A number of optimization results are presented in which the effect of the 

earthquake excitation, the critical modal damping ratio and the normalized yield 

interstorey drift limit on the optimum stiffness distributions is studied. Structural 

design based on the proposed approach is more rational and technically feasible 

compared to other optimization strategies (e.g. uniform ductility concept), 

whereas it is expected to provide increased protection against global collapse and 

loss of life during strong earthquake events. Finally, it is proven that the new 

optimization concept not only reduces running times by as much as 91% 

compared to the classical Newton-Raphson optimization algorithms, but also it 

can be applied in other optimization algorithms which use gradient information 

to proceed to the optimum point.  

Optimization techniques play an important role in various occasions in structural 

design, where they can be used by engineers, decision makers, etc. to find the 

best possible solution. Optimization methods used for structural design can be 
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classified into various categories, i.e. deterministic or stochastic (based on 

whether the model involves a fully specified or probabilistic formulation), 

constrained or unconstrained, local or global, etc. The objective of any structural 

optimization algorithm is to select among various possible design cases the 

optimum case which will minimize cost, maximize safety, and at the same time 

comply with the various design and construction constraints, if present. 

In modern structural design for static and/or dynamic loading it is intended to 

design structures that will partially respond in the inelastic range, since this 

design proves to be more economical. Especially in seismic design, inelastic 

behavior is acceptable within certain limits, determined by the tradeoff between 

structural safety and economy. Besides, many structures have resisted 

earthquakes during which much higher inertia forces were induced to them than 

their strength calculated through linear elastic force based design. The concept of 

ductility was introduced to justify the latter and as a design tool for the former. 

These facts are realized by most current seismic design codes, mainly based on 

the traditional force based design procedures, which take these effects into 

account by introducing modification factors to reduce seismic force and 

overstrength demands depending on the structural system and the ductility 

desired. However, both force-based and displacement based design concepts are 

based only on the peak responses of a structure subject to an earthquake; the 

loading history or the time history of its response are not taken into account. The 

peak response does not provide enough information on how the structure has 

performed nonlinearly during an earthquake ground motion; there are various 

quantities which accumulate within the structure, such as the plastic energy 

absorbed by the structural components. The latter is a good indication of the 

damage suffered by the structure, especially in reinforced concrete structures. 

Therefore, it should be understood that seismic design should be time-history 

dependent and not based only on peak response at specific time instances. Based 

on the above a new design method has appeared, based on the energy input and 

dissipation in structures, named Energy Based Design (EBD). According to this 

method, an energy-dissipating mechanism has to be designed, which must have 

the ability to absorb greater amounts of energy than the input energy to a 

structure during strong ground motion, in order to ensure that the structure will 

efficiently resist earthquake motions. 

Apart from the ductility of the construction material, the seismic performance of 

a structure is affected by its structural configuration and the distribution of 

strength and stiffness. Most collapses during or after past earthquakes have 

occurred to some extent due to incorrect structural configuration. The creation of 

soft storeys are a characteristic example of deficient structural behavior, where 

excessive ductility and drift are observed at a single floor of a building, leading to 

local collapse. Most buildings are designed according to the concept of equivalent 

static forces prescribed by seismic codes. The heightwise distribution of these 

forces results from the inherent assumption that the vibration modes of the 
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structure are linear elastic. On the other hand, according to the EBD concept, it is 

assumed that the structure responds non-linearly; consequently the assumption 

of linear elastic modes does not lead to realistic calculation of equivalent force 

distributions of the structure, and thus does not necessarily ensure optimum 

seismic performance, or even safety. 

In this chapter, a new iterative optimization algorithm of Newton type with line 

search capabilities especially designed for structural optimization is presented 

and implemented for the optimum structural design in terms of the energy 

absorbed during an ensemble of seismic excitations. More specifically, the 

objective of the optimization process is to minimize the variation of the 

dissipated energy distribution along the height of a MDOF planar shear building, 

by finding the optimum distribution of storey stiffness and strength, for a 

prescribed fundamental (small strain) eigenperiod of the building. The 

optimization procedure is applied both for linear elastic and elastoplastic 

buildings. Based on the optimization results, the effects of different earthquakes, 

fundamental eigenperiods, number of storeys and amount of viscous damping 

along the height of the building on the optimum strength distributions are 

investigated and discussed. 

4.2 Literature review 

In most seismic design codes for buildings worldwide, the seismic effects on 

structures are taken into account in simplistic ways which refer to linear elastic 

structural models, or lateral force methods of analysis, e.g. CEN (1998); KBC 

(2009); IBC (2006); UBC (1997); NZS1170 (2004); AIJ (1996). For example, in Part 1, 

section 4.3.3.2 of CEN (1998), the horizontal seismic force distributions to be 

applied for design are determined based on the elastic properties of the structure, 

or even on a triangular distribution of horizontal displacements. It is apparent 

that these force distributions usually do not lead to evenly distributed dynamic 

distress of building structures, and therefore attempts have been made in the 

past to calculate these distributions in an optimum way by enforcing that distress 

and damage are equidistributed among the storeys of a building. 

A first approach is to apply the theory of uniform deformation to determine 

the optimum seismic forces (Moghaddam & Hajirasouliha, 2004). According to 

this concept, while in most conventional design cases the ductility demand will 

vary among the floors of a building, leading either to material partially working 

or to material less than required, it is enforced that the maximum interstorey 

drift is uniformly distributed heightwise, and equal to the maximum allowable 

limit. Thus the condition of uniform deformation results in optimum use of 

material. The uniform deformation theory has been successfully applied in 

various studies for optimum seismic design of fixed-base shear buildings 

(Moghaddam & Hajirasouliha, 2006; Park & Medina, 2007; Hajirasouliha & 

Moghaddam, 2009; Hajirasouliha et al., 2012; Hajirasouliha & Pilakoutas, 2012). It 
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is concluded that there is generally a unique optimum distribution of structural 

properties, regardless of the load distribution used for the initial design 

(Moghaddam & Hajirasouliha, 2006). Furthermore, if the fundamental period 

increases, the load pattern usually increases at the top storeys due to higher 

mode effects. On the contrary, if the ductility demand increases the load pattern 

increases at the lower floors. Furthermore, a methodology to avoid concentrated 

deformation of a building and to distribute damage uniformly along the height 

without utilizing any optimization algorithm is proposed by Park & Medina 

(2007). The distributions implemented in current seismic codes are modified by 

suitably adjusting specific parameters using regression techniques. The resulting 

relationships remain highly empirical, and applicable only for structures with 

properties similar to those examined. In the study of Hajirasouliha & 

Moghaddam (2009) it is shown that structures designed according to the average 

of optimum load patterns, for the same ductility demand, have relatively less 

structural material in comparison with those designed conventionally. A practical 

method to redistribute material in reinforced concrete frames in order to achieve 

uniform deformation or damage is proposed, and is extended to take into 

account multiple performance objectives (Hajirasouliha et al., 2012). Moreover, 

the average strength distribution resulting from optimum strength distributions, 

calculated for various synthetic earthquakes representing a typical building code 

design spectrum and corresponding to either minimum ductility or minimum 

cumulative damage, is found and it is shown that structures accordingly designed 

can have up to 37% less structural weight compared to conventionally designed 

structures (Hajirasouliha & Pilakoutas, 2012). Also, structures with nonuniform 

mass distributions are considered and optimized in that study.  

Soil-structure interaction effects are taken into account for the application of 

the uniform deformation theory for the optimum seismic design of shear 

buildings (Ganjavi & Hao, 2012a; Ganjavi & Hao, 2012b; Ganjavi & Hao, 2013). The 

effect of Soil-Structure interaction (SSI) on the optimum strength distribution at 

a MDOF structure, initially linear elastic and later nonlinear, based on the 

uniform deformation theory is examined (Ganjavi & Hao, 2012a; Ganjavi & Hao, 

2012b). It is found that among the various seismic codes, UBC (1997). leads to the 

best performance, and that when SSI is taken into account, things change 

substantially regarding the optimum strength distribution, while optimum 

strength distributions established for fixed-based structures lose their efficiency 

when applied in their flexible foundation counterparts. 

Besides these, hysteretic energy dissipation in a structure during an 

earthquake is the key factor related to the amount of damage in it. A structure is 

considered to resist an earthquake ground motion provided that the energy input 

to the structure from the earthquake is lower than its energy absorption capacity. 

Following this, the EBD concept as well as the determination of elastic and/or 

hysteretic energy distributions, have been examined for MDOF systems (Berg & 

Thomaides, 1960; Penzien, 1960; Zahrah & Hall, 1982; Akiyama, 1985; Nakamura & 
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Yamane, 1986; Léger & Dussault, 1992; Rodriguez, 1994; Nakashima et al., 1996; 

Connor et al., 1997). The energy dissipation in inelastic single degree of freedom 

structures is studied by Berg & Thomaides (1960), where it is found that usually 

when the yield level decreases, the amount of seismic energy transferred to the 

structure decreases. It is highlighted that design of multistorey buildings 

involving nonlinear response is not straightforward, because the number of 

points of occurrence and the distribution of inelastic deformations cannot be 

readily predicted. The elastoplastic shear-beam type models with several degrees 

of freedom are investigated and it is found that higher modes may have a large 

contribution in the overall structural response when the plastic deformations are 

relatively low, and therefore the lateral force distribution considered for design 

should be carefully selected (Penzien, 1960). The energy absorption in, and the 

inelastic behavior of, SDOF and 2-DOF structures during strong earthquake 

excitation are investigated (Zahrah & Hall, 1982). A shear-beam type 2-DOF 

structure is considered, with member behavior modeled by an elastoplastic 

bending moment-end rotation relationship. It is found that the amount of input 

energy in the 2-DOF system is the same as in an equivalent SDOF system with 

the same fundamental eigenfrequency, and the amount of energy dissipated by 

yielding is roughly equal to that of an equivalent SDOF system with the same 

damping and displacement ductility as the original structure. Moreover, an 

attempt for balanced energy dissipation among the two floors is made, whereas 

for structures with a balanced energy dissipation accurate predictions of their 

dynamic response can be made using modal analysis with a modified response 

spectrum. The effect of different mathematical models of viscous damping, 

computed from either the initial elastic or the tangent inelastic system 

properties, on the seismic hysteretic energy dissipation in MDOF structures is 

studied by Léger & Dussault (1992). A new parameter for measuring seismic 

damage capacity is proposed by Rodriguez (1994). It uses the energy dissipated by 

a structure in inelastic deformations and a structural overall drift, and it yields 

consistent results with building damage observed in practice. The energy 

behavior of buildings with hysteretic dampers modeled as bilinear elastic systems 

is examined by Nakashima et al. (1996), where the yield strength distribution 

over the storeys is such that all the DOFs of the building would yield 

simultaneously under the static design earthquake force profile specified in the 

Japanese Seismic Design Code (1981). It is found that the hysteretic energy profile 

becomes more uniform for increasing values of the post-yield to pre-yield 

stiffness ratio. A procedure for the distribution of seismic energy demand over 

the floors of a MDOF system solely by modal superposition of energy shapes 

which are established from a static pushover analysis is presented (Chou & Uang, 

2003). Similar equivalent SDOF system concepts have also been used in the 

context of modal pushover analysis to estimate the hysteretic energy demand 

without the need for nonlinear time history analysis (Ghosh & Collins, 2006; 

Prasanth et al., 2008). Equations for the distribution of hysteretic energy for 
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MDOF systems, which are suitable for hard soil sites and for buildings the 

dynamic response of which is mainly controlled by the first mode shape are 

proposed (Wang & Yi, 2012), whereas a simplified method of distribution of 

hysteretic energy over the height of moment resisting frames, based on the work 

done by external forces applied at the storeys during the displacements of the 

latter is proposed by Mezgebo, (2015). A special case of this distribution scheme 

occurs if the story displacements are assumed to be proportional to the story 

mode shape values, which is similar to the relation proposed by Wang & Yi 

(2012). 

Apart from the above, it has been shown that the addition to the structure of 

dampers of various types leads to modification of the hysteretic energy or 

maximum interstorey drift patterns. Optimum stiffness distribution along the 

building height has been proposed by Uetani et al. (2003). Optimum placement 

of oil, hysteretic and inertial mass dampers in order to minimize the maximum 

interstorey drift of the structure has been examined (Murakami et al., 2013). 

Detailed methods for addition of dampers in structures to optimize performance-

based design for earthquakes can be found in Takewaki (2011). 

Despite the large amount of the literature being concerned with hysteretic energy 

distributions in shear buildings, to the best of the authors’ knowledge the 

investigation of the conditions for uniform distribution of hysteretic energy along 

the height of a shear building has not been yet addressed in the literature. It was 

shown that it is possible to find an optimal stiffness distribution over the height 

of a linear elastic MDOF building to minimize the total seismic input energy, a 

ratio of which is the hysteretic energy responsible for structural damage (Shargh 

& Hosseini, 2010; Shargh & Hosseini, 2011). This optimum stiffness distribution 

results in minimum value of total dissipated hysteretic energy (Shargh et al., 

2012). 

The issue of optimum seismic design of nonlinear MDOF structures by 

modification of the stiffness and strength properties in order to achieve a uniform 

hysteretic energy dissipation pattern over the structure’s height requires the 

formulation of a theory of uniform hysteretic energy dissipation, similar to the 

theory of uniform deformation already used for optimum seismic design and 

presented in the previous section. It has been shown that according to the latter 

with decreasing lateral yield strength the ductility demand decreases and if the 

former becomes lower than a certain point this trend is reversed (Penzien, 1960). 

However, the variation of hysteretic energy demand with yield strength is not as 

obvious as the variation of ductility demand with yield strength; it also depends 

on additional factors such as the duration of the seismic event. This entails that 

more robust techniques than those used for the uniform deformation theory have 

to be used to find optimum structural properties for uniform hysteretic energy 

distributions. An attempt to develop a new powerful optimization technique is 

made in this chapter to solve the uniform hysteretic energy problem in planar 
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MDOF systems, a problem that has not been solved yet, to the best of the 

author’s knowledge. Therefore, two main novelties are considered in this chapter: 

• Formulation of the theory of uniform energy dissipation and optimum 

design of shear buildings according to the former, and 

• Development of a new fast and robust energy-based optimization 

technique. 

4.3 Numerical modeling 

4.3.1 Structural model 

The most common model used for the dynamic response history analysis of 

building structures is the shear beam model. This system is represented by a 

viscously damped spring-mass system, where the mass is considered to be 

concentrated on each floor level and the storey shear force versus storey 

deflection relationship is presumed to be bilinear with a very low nonzero 

positive post-yield stiffness, so that the model responds effectively as elastic - 

perfectly plastic. The building deforms only in shear, since it is assumed that the 

floors are axially and flexurally rigid. Regularity with regards to the mass 

distribution along the height of a building is assumed and also it is presumed that 

changes in the stiffness distribution lead to negligible changes in the mass 

distribution (resulting from changes e.g. in the cross section of the columns, etc). 

Moreover, it is assumed that the floor masses move horizontally only within a 

vertical plane. Two MDOF systems are analysed: one 5-storey building and one 

10-storey building. For each of the two MDOF systems the height of the storeys is 

assumed to be equal to 3m and the mass per floor is assumed to be equal to 

25000kg. For each building a realistic value of fundamental eigenfrequency 0f  

has been assumed; for the 5-storey building it is set equal to 2Hz (corresponding 

to fundamental eigenperiod 0.5sec) and for the 10-storey building it is set equal to 

1Hz (corresponding to fundamental eigenperiod 1sec). The well-known rule of 

thumb that the fundamental eigenperiod of a building is equal to 0.1 sec 

multiplied by the number of storeys was used. Both buildings are considered to 

be fixed at their base, whereas their behavior is assumed to be either linear or 

nonlinear. Both linear and nonlinear buildings have been examined in this 

chapter. Also, for the nonlinear MDOF systems uniform non-dimensional yield 

displacement is assumed for all the floors, i.e. lateral stiffness is assumed as 

proportional to shear strength at each story. Damping is included through a 

classical damping matrix resulting from the superposition of the damping 

matrices of all linear elastic modes of the structures which have the same modal 

damping ratio. A number of horizontal seismic excitations are imposed at the 

base of the MDOF systems, resulting in their dynamic response. The two MDOF 

shear buildings analysed are shown in Figure 4-1. 
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Several types of hysteresis models are employed in research and engineering 

practice to predict the response of steel and reinforced concrete members 

subjected to cyclic loading. Six of them have been presented by Decanini & 

Mollaioli (2001) where a methodology for the assessment of the seismic energy 

demands imposed in structures is applied. To model the nonlinear force-

deformation behavior of shear buildings, the elastic-perfectly plastic constitutive 

model is chosen in this chapter.  

 

 
Figure 4-1: Planar shear building models analysed in this chapter with 5 and 10 

storeys. 

 

The elastoplastic model is chosen as a reference hysteretic model, since the 

introduction of a more sophisticated model of nonlinear response would 

complicate the range of validity of the optimization results, subtracting thus from 

generality. The elastoplastic model is considered as the fundamental model of 

hysteretic behavior and furthermore it is easier to be compared with other 

models. The methodology introduced in the present chapter is virtually a general 

framework for the optimum design of shear buildings, opening thus the way for 

more specialized treatments of the problem using advanced structural 

constitutive models. Bilinear hysteretic behavior is simulated using two linear 

models, corresponding to the two branches of the hysteresis loop.  

The basic idea is that each branch of the hysteresis may be described by an 

equation of the form  Kf k u d  , where Kf  is the restoring force, u  is the 

displacement and d , k  are the equilibrium displacement and pre- or post-yield 

stiffness at the last application of the elastoplastic model. The restoring force is 

zero when u d . By suitable loops over the floors of the MDOF structure 

(counting from top to bottom of the shear building) and identification of 

transitions between the elastic loading, plastic loading and elastic unloading 

states, the interstorey forces and stiffnesses are calculated and passed to the time 
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integration algorithm. An indicative one-cycle force-displacement diagram of the 

bilinear elastic model is shown in Figure 4-2. The elastic-perfectly plastic 

constitutive model used in this chapter is implemented as follows: 

 (*) Form the square pre-yield stiffness matrix K  from hik  

 Find the eigenfrequencies i  and eigenvectors iφ  of the linear elastic 

(pre-yield) structure with stiffness K  and mass M  for which the following 
relations hold: 

 
2

iK M 0    (4.1) 

  2

i iK M φ 0   (4.2) 

and calculate the elastic pre-yield tangent damping matrix: 

 
dofsn

T

i i i

i 1

C 2 Mφ φ M


   (4.3) 

(**)Read the values of u , u  and add a zero element to u , u  to account for 

the fixed base: 

 
u u

u  , u  
0 0

   
    
   

 (4.4) 

for i  from 1 to dofsn , where dofsn  is the number of degrees of freedom (or storeys) 

of the structure, do the following: 

 Compute the stiffness force of the current storey from k  and d  stored 
from previous application of the elastoplastic model (see step beginning 
with three asterisks (***) below): 

  K,i i i i 1 ip =k u u d   (4.5) 

Compute the yielding force level: 

      y,i lo,i i i 1 hi,i lo,i y,i i i 1p =k u u k k u sign u u       (4.6) 

Check for yielding or load reversal and update ik  and id accordingly 

 If i hi,ik k  and i i 1u u 0   and K,i y,ip p , the system has exceeded its 

positive yield force level. Update as follows: 

 i lo,ik k  (4.7) 

  i hi,i lo,i y,id 1 k k u   (4.8) 

If i hi,ik k  and i i 1u u 0   and K,i y,ip p , the system has exceeded its 

negative yield force level. Update as follows: 

 i lo,ik k  (4.9) 

  i hi,i lo,i y,id k k 1 u   (4.10) 

If i lo,ik k  and  K,i i i 1p u u 0  , the system reloads from negative ultimate 

displacement or unloads from positive ultimate displacement. Update 

as follows: 

 i hi,ik k  (4.11) 
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  i i i 1 lo,i hi,i i i 1 id u u k k u u d       (4.12) 

Update the global force vector: 

  K,int,i 1 i i i 1 ip k u u d     (4.13) 

for i  from 1 to dofsn  find the elastoplastic forces of all storeys of the 

structure (with respect to its base): 

 i K,int,i 1 K,int,ip p p   (4.14) 

Add the contribution of linear elastic damping to the internal force: 
 p p Cu   (4.15) 

(***) Store k  and d , and go back to the step beginning with an asterisk 

(*). Alternatively, store C , k  and d , and go back to the step beginning 

with two asterisks (**). 

The dimensionless interstorey drift yield limit is considered to be uniform along 

the height of the MDOF shear building, and is given by the equation: 

 
 

 

 g

y

2

y 0

y

g

u
ku 2 f

u
max x m max x


   (4.16) 

where k  is the pre-yield stiffness of a hypothetical SDOF system, yu  is its yield 

limit, m  is its mass, 0f  is its fundamental eigenfrequency (which is considered 

equal to that of the building analysed) and gx  is the time history of the 

earthquake acceleration. 

 
Figure 4-2. Force-displacement diagram showing one cycle of the bilinear elastic 

model used in this chapter. 

4.3.2 Time integration algorithm for evaluation of structural response 

The hysteretic energy demand can be accurately computed through a 

nonlinear dynamic time-history analysis of the structure subjected to a given 

earthquake ground acceleration. For the dynamic response history analyses 
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performed in this chapter, the family of nonlinear direct time integration 

algorithms presented by Papazafeiropoulos et al. (2017) is used. This family of 

algorithms is described by the following basic relationships: 

 The updates of displacement and velocity: 

  2 2

n 1 n 1 n 2 n 3 n 1 nu u u t u t u u t          (4.17) 

  n 1 n 4 n 5 n 1 nu u u t u u t        (4.18) 

 The update of acceleration: 

 
k k

n nn 11 nM u f   (4.19) 

where 

 
     

   

k k k k k k k k k k

n n n n n 6 n n n 4 n 5 n

k k k k 2 k 2 k k

n n 1 n 2 n 3 n 1 n 1 n 1

f K ,C ,f M u u C u u t u t

K u u t u t u t 1 W f W f 

       

         
 (4.20) 

and 

  k k k k k 2

n n n 6 5 n 3 nM K ,C M C t K t       (4.21) 

The residual equivalent force, which becomes zero if an iteration within an 

increment reaches equilibrium: 

 
k k k k

n n n ng f M u   (4.22) 

Any scheme of the aforementioned algorithm family needs 15 integration 

constants (of which 14 are independent) to be uniquely defined. See 

Papazafeiropoulos et al. (2017) for a complete list of the known time integration 

schemes which are special cases of this family. The time integration algorithm 

used here has optimal numerical dissipation and dispersion and zero order 

overshooting in displacement and velocity (U0-V0-Opt). In addition, equilibrium 

iterations are made within each increment by the use of a Newton-Raphson (N-

R) procedure. The last updates the stiffness matrix at each iteration, until an 

equilibrium state is reached and the time integration algorithm proceeds to the 

next increment. It is possible, however, that during the iterations within an 

increment the algorithm does not converge, usually due to the fact that the 

stiffness of the structure changes abruptly between pre- and post-yielding state. 

In this case, the iterations are terminated and the last meaningful solution is 

accepted for equilibrium. 

4.3.3 Energy-based design optimization problem 

The minimization of the deviation of the energy distribution along the height 

of a building is treated in this chapter as an unconstrained optimization problem, 

the components of which are described in detail in the following paragraphs. 

4.3.3.1 Design variables 

The design variables of the optimization procedure are simply the stiffness of 

each storey of the two buildings under consideration, namely for the 5-storey and 

10-storey buildings there are 5 and 10 design variables respectively. The various 
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stiffness distributions encountered during the optimization process have to 

respect some upper and lower limits, to ensure that computations remain 

meaningful and that no premature termination of the process occurs. For the 

stiffness of each storey, an upper and a lower limit is imposed which remains 

constant during the optimization procedure. Moreover, if at an iteration the new 

value of kx  violates any of the upper and lower bounds, the step length is 

appropriately decreased by applying a line-search algorithm, so that the new 

value of kx  lies within the upper and lower limits, whereas the Newton direction 

remains unchanged. This line search algorithm is described in section 4.3.4 

below. The upper and lower bounds are equal to 1E9 N/m and 1E6 N/m 

respectively. 

4.3.3.2 Objective function 

The objective of the optimization procedure employed in this chapter is to find 

the stiffness distribution that corresponds to uniform energy dissipation over the 

structural height, either in terms of energy dissipation due to viscous damping 

for linear elastic structures, or in terms of energy dissipation due to hysteresis for 

elastic-perfectly plastic structures. However, the enforcement of uniform energy 

dissipation alone does not lead to a unique stiffness/strength distribution of the 

structure; the magnitude of the energy dissipated has to be additionally 

determined. The latter is done by imposing that the structure will have a specific 

fundamental eigenfrequency 0f  which controls the energy input in the structure. 

From the above it is concluded that the objective function has to be defined in a 

way that not only the distribution of the energy dissipation, but also the 

fundamental eigenfrequency of the structure have to be calculated as functions of 

the design variables (stiffness distribution along the height).  

In this chapter the gradient of the objective function for elastic-perfectly 

plastic structures is defined as: 

  
q

0,kk
obj k

k 0

y
f x

y 2 f

 
    

 
 (4.23) 

where the exponent q  serves as a weighting factor between the energy 

distribution and the desired fundamental eigenfrequency of the building and is 

selected in a manner that maximizes the convergence rate of the optimization 

process. In this chapter q  is set equal to 10 for all optimization analyses. Here, ky  

is the vector of the hysteretically dissipated energy distribution along the height 

of the structure, ky  is its mean value and 0,k  is the fundamental cyclic 

eigenfrequency of the structure having stiffness distribution kx . Analogous 

equation holds for the linear elastic structures: 

  
q

0,kk
obj k

k 0

d
f x

d 2 f

 
   

 
 (4.24) 
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where kd  is the vector of the damped energy distribution along the structural 

height and kd  its average. It must be noted here that the explicit definition of the 

objective function is not of interest here, since it does not have any physical 

meaning; only its gradient is considered, which becomes zero at the point of 

optimum design. 

4.3.3.3 Earthquakes considered 

Nine earthquake records have been studied, which are the following: Imperial 

Valley (1979), Kobe (1995), Izmit-Kocaeli (1999), Cape Mendocino (1992), Loma 

Prieta (1989), Chi-Chi (1999), Imperial Valley (1940), Spitak (1988), San Fernando 

(1971). More details about these earthquake records can be seen in Table 4-1. 

 

Earthquake Station Instrument Component 

Imperial Valley 1979 
El Centro Array Sta 8, CA, 95 E 

Cruickshank Rd 
Ground level 140 

Kobe 1995 Takarazuka Ground level 0 

Izmit-Kocaeli 1999 Yarimca Petkim Basement 0 

Cape Mendocino 1992 Cape Mendocino, CA, Petrolia Ground level 90 

Loma Prieta 1989 
Gilroy Array Sta 3, CA, Sewage 

Plant 
Ground level 0 

Chi-Chi 1999 Nantou - Hsinjie School, WNT Free-field 90 

Imperial Valley 1940 
El Centro Terminal Substation 

Building 
Ground level N-S 

Spitak 1988 Gukasyan Free-field 0 

San Fernando 1971 Castaic, CA, Old Ridge Route Ground level 291 

Table 4-1: Earthquake excitations considered in this chapter and their characteristics. 

 

4.3.4 Optimization algorithm 

In this chapter a gradient optimization strategy is employed to find optimum 

stiffness (and strength) distributions at MDOF shear buildings. Gradient based 

optimization methods search for a minimum of a scalar function  obj kf x  of a 

vector including the floor stiffnesses as design variables kx  iteratively, by 

approximating the objective function by a Taylor series expansion around kx : 

         
T

T 2

obj k obj k obj k obj k

1
f x x f x f x x x f x x

2
       (4.25) 

At each optimization step, a direction ke  and a step length ka  are calculated 

based on the current value of the stiffness distribution kx , and the latter as well 

as the objective function are updated based on the following equations: 
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 k 1 k k kx x a e    (4.26) 

  obj k 1f x   (4.27) 

The algorithm begins with a random initial stiffness distribution 0x . The above 

process is repeated until the convergence criterion is satisfied, at which point the 

optimization algorithm terminates. The formal version of the Newton direction 

method involves a quadratic approximation of the objective function realized 

through the calculation of the Hessian matrix as follows: 

    
1

2

k obj k obj ke f x f x


       (4.28) 

where  2

obj kf x  is the jacobian. In this chapter, however, the above Newton 

direction is modified by adding a constant multiplied by the unity matrix, which 

is proved to stabilize the whole behavior of the optimization algorithm: 

    
1

2

k obj k stab obj ke f x NR I f x


        (4.29) 

where  2

obj k stabf x NR I   is the modified jacobian. Equation (4.29) can be 

rewritten due to equations (4.23) and (4.24) as follows: 

 

1
q q

0,k 0,kk k
k stab

k 0 k 0

d y
e NR I

d 2 f y 2 f



         
            

            

 (4.30) 

and 

 

1
q q

0,k 0,kk k
k stab

k 0 k 0

d d
e NR I

d 2 f d 2 f



         
            

            

 (4.31) 

for elastic-perfectly plastic and linear elastic MDOF structures respectively. 

 

In this chapter equations (4.30) and (4.31) are used for the computation of the 

modified Newton direction, without explicit consideration of the objective 

function  obj kf x . Note that the modified jacobian of equation (4.30) is not a 

function of the hysteretically dissipated energy ky , but the damping energy of the 

equivalent linear elastic MDOF system kd . The equivalent linear elastic MDOF 

system of a given elastic-perfectly plastic MDOF system is defined as the latter 

with its yield limit set equal to infinity (i.e. the former is defined by the behavior 

of the latter for small strains). This new way of calculation of the jacobian 

accelerates by far the optimization process of the nonlinear MDOF system, 

despite the minor loss in accuracy that is associated with this option.  

 

Given that the calculation of the derivative of the energy distribution requires the 

largest part of the total computational effort required for the optimization 

process, it is concluded that this new logic of gradient optimization of nonlinear 

structures is vital for the reduction of the computational load. In addition, this 
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rationale introduces the concept of optimization points found from nonlinear 

structural response and directions found from equivalent linear structural 

response. The last concept can be applied not only in the case of Newton 

direction methods, but in many other types of optimization methods, utilizing 

either line searches or trust regions, such as steepest descent, conjugate gradient, 

subspace minimization, Broyden class algorithms, etc. In a future study, the 

authors will deal with how the aforementioned concept can be applied for 

improving the performance of such algorithms. 

 

Two optimization procedures are implemented in this chapter. The first concerns 

the optimization of the linear elastic structure with respect to damping energy, 

using equations (4.31) and (4.26), whereas the second concerns the optimization 

of the elastic-perfectly plastic structure using equations (4.30) and (4.26). After 

having estimated the optimum stiffness distribution of the linear elastic 

structure, this distribution is used as the initial point for the optimization of the 

nonlinear structure. The optimization procedure implemented in this chapter is 

as follows: 

 Initialize: 
 k 1  (4.32) 

 k 0x x  (4.33) 

 kr r   (4.34) 

While the vector kr / r  contains at least one value higher than rtol : 

 Check if the hessian has to be updated. If yes, calculate it from the 
relation(4.35), else omit this step and proceed to the following steps: 

 

q

0,kk
k stab

k 0

d
J NR I

d 2 f

   
     

   

 (4.35) 

Solve for the quasi-Newton direction ke  according to equations (4.30) or(4.31). 

 Find a trial value for kx  by assuming a unit step along the direction ke , 

using equation (4.36):  

 k 1 k kx x e    (4.36) 

If any value of the new vector k 1x   is not within the upper and lower limits bu  

and bl  respectively: 

 Perform line search for the step in the direction ke  as follows: 

       1k b k k ka min u x max e min e    (4.37) 

       2k k b k ka min x l max e min e    (4.38) 

  k 1k 2ka min a ,a  (4.39) 

Adjust k 1x   for the next iteration according to equation (4.26). 

 Calculate the new residual for the next iteration: 
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  k obj k 1r f x   (4.40) 

Update the design variables and the iteration counter for the next iteration of the 

while loop: 

 k k 1x x   (4.41) 

 k k 1   (4.42) 

Regarding the aforementioned optimization parameters, the values 

stab 6NR 3E   and rtol 0.01  are specified in this chapter. The optimization 

algorithm implemented in this chapter can be easily applied in the case of 

irregular structures and give proper optimum stiffness distributions, not only for 

linear, but also for nonlinear shear buildings. 

4.4 Typical hysteretic energy distributions for shear building 

Typical distributions of the energy dissipated due to hysteresis during 

elastoplastic response of the 5-storey and 10-storey buildings considered in this 

chapter are shown in Figure 4-3. It has been assumed that the buildings have 

uniform stiffness distributions along their height, which are scaled so that they 

correspond to fundamental eigenfrequencies equal to 2 Hz and 1 Hz respectively. 

As it has been often observed in practice, the largest amounts of energy are 

concentrated at the bottom floors of the buildings for all the earthquake records 

considered. At the top floors the energy is much lower, and sometimes becomes 

zero (i.e. the upper floors do not participate as an energy absorption mechanism 

during seismic response). It is seen that generally the energy distributions vary 

nonlinearly with height. The largest energy demand on the building is generally 

imposed by the Kobe (1995), Kocaeli (1999) and Chi-Chi (1999) earthquakes. 

Figure 4-3 shows clearly the reason for which the damages caused by an 

earthquake accumulate at the lower floors, and why soft storey mechanisms 

develop more often at these levels. This phenomenon is undesirable; there is the 

need to equidistribute the seismic energy absorbed by the building among all 

storeys, in order to exploit the construction material as much as possible, and 

maximize structural safety. This chapter tries to cover this need by proposing a 

family of new fast optimization algorithms which has already been presented in 

the previous sections. 

4.5 Optimum stiffness distributions for linear structures 

In this section the optimum stiffness distributions are shown for the cases of 

the linear elastic versions of the 5-storey and 10-storey planar shear buildings 

considered in this chapter. The optimum stiffness distributions refer to the 

specific fundamental eigenfrequencies prescribed for both buildings (2 Hz and 1 

Hz respectively) and various values of the critical damping ratio; uniformity of 

the dissipated energy due to viscous damping is enforced as has been already 



Chapter 4 105 

 

 

discussed. Apart from the optimum stiffness distributions, the effects of various 

factors are discussed in the next. 

4.5.1 Effect of earthquake excitation on optimum stiffness and energy 

distributions 

Two families of optimum stiffness distributions along with their corresponding 

damping energy distributions are shown in Figure 4-4 and Figure 4-5 for the 5-

storey and 10-storey MDOF systems analyzed in this chapter, respectively. It 

seems that the optimum stiffness generally has a regular distribution, where the 

largest value is at the first storey and the lowest at the top storey. 

 

 
Figure 4-3: Distributions of energy dissipated due to hysteresis for the 5- and 10-storey 

shear buildings with uniform stiffness along their height, ξ=5%, ūy=0.01 and 
fundamental eigenfrequencies 2Hz and 1Hz respectively, for various earthquake 

records. 

 

Similar results with Figure 4-4 are presented in Figure 4-5, where the optimum 

stiffness and optimum damping energy distributions for the 10-storey shear 

building are shown. It is obvious that the stiffness distributions of the 10-storey 

MDOF systems are regular and have generally their largest value at the bottom of 

the structure and their lowest value at the top. The general observation is that 

the stiffness distribution which corresponds to uniform damping energy over the 

height of a shear building is generally independent of the earthquake motion 

with which the building is excited. By comparing Figure 4-5 with Figure 4-4, it 

can be stated that, the stiffnesses of the 10-storey building are generally close to 

those of the 5-storey shear buildings. On the other hand, the energy distributions 

of the 10-storey building seem to be generally lower than those of the 5-storey 

building. 

4.5.2 Effect of modal damping on optimum stiffness and energy distributions 

In Figure 4-6 and Figure 4-7 the effect of critical modal viscous damping ratio 

on the optimum distributions of stiffness and damping energy for both 5-storey 

and 10-storey systems considered in this chapter is illustrated. In Figure 4-6 and 

Figure 4-7 results regarding the El Centro earthquake record are presented. It is 
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apparent that the two shear buildings have nearly identical stiffness distributions 

for the various critical damping ratios in the case of the El Centro earthquake 

record. Regarding the damping energy distributions, it can be seen generally that 

as the damping ratio increases, the amount of the dissipated energy also 

increases. Apart from this, with increasing damping ratio, the difference between 

successive dissipated energy distributions of the 5-storey system and the 10-storey 

system becomes lower. Finally, another thing to be noted is that the energy 

distributions of the 5-storey building are generally larger than those of the 10- 

 

 
Figure 4-4: Optimum distributions of elastic stiffness and energy dissipated due to 
damping for the 5-storey shear building with ξ=5% for various earthquake records. 

 
Figure 4-5: Optimum distributions of elastic stiffness and energy dissipated due to 

damping for the 10-storey shear building with ξ=5% for various earthquake records. 
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Figure 4-6: Optimum distributions of elastic stiffness and energy dissipated due to 

damping for the 5-storey shear building subject to the El Centro earthquake record for 
various critical modal damping ratios. 

 
Figure 4-7: Optimum distributions of elastic stiffness and energy dissipated due to 

damping for the 10-storey shear building subject to the El Centro earthquake record 
for various critical modal damping ratios. 

storey building. 

4.6 Optimum stiffness distributions for elastic – perfectly plastic 

structures 

In this section, optimization results are presented for the elastic-perfectly 

plastic counterparts of the planar shear buildings considered in the previous 

section. Along with the critical modal damping ratio, an additional parameter is 

taken into account here, which is the normalized interstorey drift yield limit, 

defined in equation (4.16). The fundamental eigenfrequencies of the two 

buildings remain the same as those in the linear elastic case: 2 Hz and 1 Hz for 

the 5- and 10-storey building respectively. The uniform normalized interstorey 

drift yield limit is assumed to be yu 0.1  and yu 0.04  for the 5- and 10-storey 

building respectively. It has to be noted here that the effective seismic force for 
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which the structure will be designed can be easily calculated from the optimum 

stiffness distribution multiplied by the uniform yield interstorey drift limit. 

4.6.1 Effect of earthquake excitation on optimum stiffness and energy 

distributions 

The optimum pre-yield stiffness distributions and its corresponding hysteretic 

energy distributions are shown in Figure 4-8, in the left and right subplots, 

respectively, for the 5-storey shear building considered in this chapter. It is 

observed that the stiffness distributions generally decrease from bottom to top, as 

was seen in the linear elastic case in Figure 4-4. It is noted that a general (quasi-

linear) optimum stiffness distribution trend exists which is followed by the 

stiffness distributions for the various earthquake records considered, for both 5-

storey and 10-storey buildings, perhaps with the slight exception of the Cape 

Mendocino (1992) and Loma Prieta (1989) earthquakes in the cases of 5- and 10-

storey shear buildings respectively. The general stiffness distribution trend can be 

used in each case for structural design, at least in the preliminary stage. 

Concerning the hysteretic energy distributions for optimum stiffness at the right 

subplot of the figure, it is seen that the hysteretic energy that is suffered by the 

two buildings in the case of Kobe (1995) earthquake appears to be the largest of 

all earthquakes. The Kobe (1995) earthquake yields also the largest damping 

energy distribution in the case of the linear elastic 10-DOF system with optimum 

stiffness distribution (Figure 4-5). The hysteretic energy distribution of the Spitak 

(1988) earthquake remains to be the lowest of all earthquakes for both buildings. 

The above results lead to the conclusion that there is some close relation between 

the linear viscous damping energy and elastoplastic hysteretic energy that is 

dissipated at the storeys of a shear building. 

Figure 4-9 shows the optimum pre-yield stiffness distributions and their 

associated hysteretic energy distributions for the elasto-plastically responding 10-

storey shear building subject to various seismic excitations. It is seen that a 

general trend is again followed by the majority of the earthquakes considered. 

Regarding the energy distributions, it is seen again that the maximum hysteretic 

energy distribution occurs for the Kobe (1995) earthquake and the minimum for 

the Spitak (1988) earthquake. Additionally, the former is larger for the optimal 5-

storey building than that for the optimal 10-storey building. 
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Figure 4-8: Optimum distributions of elastic pre-yield stiffness and energy dissipated 

due to hysteresis for the 5-storey shear building with ξ=5%, ūy=0.1 for various 
earthquake records. 

 

 
Figure 4-9: Optimum distributions of elastic pre-yield stiffness and energy dissipated 

due to hysteresis for the 10-storey shear building with ξ=5%, ūy=0.04 for various 
earthquake records. 

4.6.2 Effect of critical modal damping ratio on optimum stiffness and energy 

distributions 

The effect of critical modal damping ratio on the optimum stiffness and energy 

distributions of the two shear buildings is shown in Figure 4-10 and Figure 4-11 for 

the El Centro earthquake. It is observed that the various optimum stiffness 

distributions are nearly identical for the various cases of damping ratio, whereas 

it seems that as the damping ratio increases, the hysteretic energy distribution 

decreases. This can be explained by considering that the earthquake energy that 

is input to a shear building can be dissipated through either damping or 

hysteretic elastoplastic response. As the damping ratio increases, the energy 

dissipated through damping also increases. As a consequence of this, the portion 

of the input energy that is dissipated through hysteresis decreases. Apart from 

this, it is also observed that in all cases examined the 5-storey building has larger 

hysteretic energy distributions than the 10-storey building. Finally, the stiffness 

distributions for the 10-storey building are slightly lower than the corresponding 

distributions of the 5-storey building. 
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Figure 4-10: Optimum distributions of elastic pre-yield stiffness and energy dissipated 
due to hysteresis for the 5-storey shear building with ūy=0.1 subject to the El Centro 

earthquake record for various critical modal damping ratios. 

 

 
Figure 4-11: Optimum distributions of elastic pre-yield stiffness and energy dissipated 
due to hysteresis for the 10-storey shear building with ūy=0.04 subject to the El Centro 

earthquake record for various critical modal damping ratios. 
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building is another factor that affects profoundly its structural response in the 

elastoplastic regime. This parameter is taken to be uniform for all storeys, and is 

calculated based on equation (4.16). In Figure 4-12 and Figure 4-13 the effect of 

this parameter is illustrated for the 5-storey and 10-storey shear building 
respectively with 0.05  , subject to the El Centro earthquake excitation. It is 

observed that the stiffness distributions are relatively close to each other both for 

5-storey and for 10-storey buildings, for the two values of yu . This can be 

attributed to the fact that yu  is uniform over the building height for both cases. 
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Besides, the energy distributions show clearly that as yu  decreases, the dissipated 

energy due to hysteresis increases, as is expected. This can be explained by the 

fact that as yu  decreases, the structure responds at the perfectly plastic branch of 

the elastoplastic response for larger time intervals, and therefore the effect of 

plasticity becomes greater, leading to larger hysteresis loops and thus increased 

hysteretic energies. Finally, it can be noted that the 5-storey building has slightly 

lower stiffness distributions and dissipates larger amounts of hysteretic energy 

than the 10-storey building. 

 

 
Figure 4-12: Optimum distributions of elastic pre-yield stiffness and energy dissipated 

due to hysteresis for the 5-storey shear building with ξ=5% subject to the El Centro 
earthquake record for various normalized yield interstorey drifts. 

4.7 Effectiveness of the new optimization concept 

For every new optimization algorithm, the question arises, how it increases the 

effectiveness, speed, etc. of the optimization process to which it is applied. The 

new optimization concept presented in this chapter can be applied for any 

energy-based optimization problem, and we need to see how the algorithm 

behaves for typical examples already presented in previous sections. In Figure 

4-14 the evolution of the standard deviation of the hysteretic energy distribution 

is shown as a function of the normalized running time for the 5- and 10-storey 

shear buildings considered in this chapter with 0f 2Hz , 0.05  , yu 0.1  and 

0f 1Hz , 
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Figure 4-13: Optimum distributions of elastic pre-yield stiffness and energy dissipated 
due to hysteresis for the 10-storey shear building with ξ=5% subject to the El Centro 

earthquake record for various normalized yield interstorey drifts. 

 

0.05  , yu 0.04  respectively subject to the El Centro earthquake record. The 

optimum stiffness and energy distributions for the two cases are shown in Figure 

4-12 and Figure 4-13. It is seen that the running times of the NR algorithm using 

linear derivatives are much lower than those with nonlinear derivatives. The 

running time of each optimization problem is normalized with respect to the 

running time of the optimization algorithm using nonlinear derivatives, hence 

the running time of the two nonlinear derivative algorithms is set to unity 

(100%).  

It is clearly seen that the novel optimization algorithm proposed in this 

chapter can be roughly as much as 11 times faster than the traditional NR for the 

10-storey system and roughly 7 times faster for the 5-storey system. For further 

increasing number of storeys, the novel algorithm is expected to be even over 11 

times faster than the ordinary NR, saving thus a great amount of computational 

effort. It has to be noted here that, for comparison purposes, the initial stiffness 

distributions with which the algorithms began were set to be identical for both 

sets of cases, and equal to the linear elastic optimum stiffness distributions 
shown in Figure 4-6 and Figure 4-7 for 0.05  . Since the algorithms begin from 

the same initial distribution to solve essentially the same problem (in terms of 

earthquake record and various structural properties), the differences in the 

running times and the general behavior are affected merely by the nature of the 

algorithm and its properties. The results of the optimization studies shown in 

Figure 4-14, are shown in Table 4-2. 

It is seen that, the proposed NR algorithm in this chapter, while it retains the 

number of iterations approximately at the same levels with the classic NR, it can 

reduce the execution time by as much as 85% in the case of the 5-storey building 

and by 91% in the case of the 10-storey building. The reduction in the running 
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time is expected to increase for buildings with more storeys, or generally 

structures with more degrees of freedom. As a result, as the problem becomes 

more complicated, the proposed algorithm is expected to perform better 

compared to the classic NR method. Finally, it has to be pointed out that in both 

sets of cases, the final optimum stiffness distribution result was identical for both 

the classical NR method and the proposed optimization algorithm. 

 

 
Figure 4-14: Evolution of the standard deviation of the hysteretic energy distributions 
during various optimization processes for the classic N-R optimization procedure and 
the proposed N-R optimization procedure, for 5- and 10-storey shear buildings with 

f0=2 Hz, ξ=5%, ūy=0.1 and f0=1 Hz, ξ=5%, ūy=0.04 respectively subject to the El 
Centro earthquake record. 

 

Case 

Normalized 

running 

time Time reduction Iterations 

5-storey, Newton-Raphson 100% - 136 

5-storey, proposed algorithm 14.9% 85.1% 135 

10-storey, Newton-Raphson 100% - 153 

10-storey, proposed algorithm 8.8% 91.2% 143 

Table 4-2: Numerical results of the optimization processes the evolution of which is 
presented in Figure 4-14 

 

4.8 Conclusions 

The main conclusions drawn from this chapter are the following: 

 It is shown that there exist unique optimum stiffness distributions which 
correspond to equidistributed viscous damping and hysteretic energy dissipation 
for linear elastic and elastoplastic planar shear building structures, respectively.  

 In addition, the optimum stiffness distribution for both elastic and 
elastoplastic shear buildings appears generally to have a quasi-linear shape 
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(slightly curved), with the maximum value at the bottom floor and the minimum 
value at the top floor of the structure. This shape is generally independent of the 
earthquake excitation and offers the possibility for the development of simple 
methods for the calculation of the optimum stiffness distribution in shear 
buildings. 

 Structural design based on the proposed approach is more rational and 
technically feasible compared to the uniform ductility concept, whereas it is 
expected to provide increased protection against global collapse and loss of life 
during strong earthquake events. 

It is finally proved that the novel concept of linear directions equipped with a 

stabilizer for optimization of nonlinear problems, as applied for the modification 

of a simple full N-R method, leads to substantial computational savings, since, 

although the number of iterations required for convergence remains roughly the 

same, the running times can be reduced by a factor equal to 11. It is obvious that 

the new modified N-R algorithm is robust and efficient. The new concept 

presented in this chapter can be applied to other commonly used algorithms, 

which is the aim of future research to be conducted by the authors. 

4.9 Notation 

ka : step length of update of kx  at iteration k 

C : damping matrix  

d : equilibrium displacement 

id : equilibrium displacement at degree of freedom i at the last application of the 

elastoplastic model  

kd : damping energy distribution vector at iteration k of the optimization 

procedure 

kd : average of damping energy distribution at iteration k of the optimization 

procedure 

ke : direction of update of kx  at iteration k 

dE : damping energy of a SDOF system 

f : equivalent external loading vector due to seismic excitation imposed on the 

structure 

f : effective force vector 

ky : hysteretic energy distribution vector at iteration k of the optimization 

procedure 

ky : average of hysteretic energy distribution at iteration k of the optimization 

procedure 

0f : fundamental eigenfrequency of SDOF or MDOF structure for small 

deformations 
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kf : restoring force 

objf : objective function 

g : residual equivalent force vector  

I : unity matrix 

kJ : jacobian matrix (first derivative of energy distribution) at iteration k 

k : iteration number or stiffness associated with a degree of freedom 

hik : pre-yield stiffness vector 

hi,ik : pre-yield stiffness at degree of freedom i 

ik : stiffness at degree of freedom i at the last application of the elastoplastic 

model  

lo,ik : post-yield stiffness at degree of freedom i 

K : stiffness matrix  

bl : lower bound of stiffness distribution kx  

M : mass matrix 

M : effective mass matrix 

m : lumped mass per storey of SDOF or MDOF systems 

dofsn : number of degrees of freedom of the structure 

stabNR : Newton-Raphson stabilizer constant for optimization procedure 

ip : internal force due to stiffness at degree of freedom i 

K,ip : internal force at degree of freedom i due to stiffness  

K,int,ip : interstorey force between degrees of freedom i and i+1 due to stiffness 

y,ip : yield force at degree of freedom i 

q : exponent of eigenfrequency ratio 

r : initial value of residual for the optimization procedure 

kr : residual at iteration k of optimization procedure 

0T : fundamental eigenperiod of SDOF or MDOF structure for small deformations 

rtol : tolerance of kr r  

u : displacement 

bu : upper bound of stiffness distribution kx  

iu : displacement at degree of freedom i 

iu : velocity at degree of freedom i 

iu : acceleration at degree of freedom i 

yu : yield displacement 
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y,iu : yield displacement at degree of freedom i. Yielding occurs if the interstorey 

drift between degrees of freedom i and i+1 exceeds y,iu . 

yu : dimensionless yield interstorey drift 

1W : time integration constant 

gx : earthquake ground acceleration 

kx : stiffness distribution at iteration k of optimization procedure 

0x : initial value of stiffness distribution to start optimization procedure 

t : step of direct time integration scheme 

1 5...  : time integration constants 

1 6...  : time integration constants 

 : ratio of critical viscous damping of the system, assumed to be unique for all 

storeys of the structure 

iφ : ith fundamental eigenmode of structure 

0,k : fundamental cyclic eigenfrequency of structure with stiffness distribution 

kx  for small deformations 

i : ith fundamental cyclic eigenfrequency of structure 

 

 

 

 



 

C h a p t e r  5 E q u a t i o n  S e c t i o n  ( N e x t )  

 

5  Selecting and Scal ing of  Energy -
Compatible  Ground Motion Records  

5.1 Introduction 

A novel spectra-matching framework is proposed, which employs a linear 

combination of raw ground motion records to generate artificial acceleration 

time histories perfectly matching a target spectrum, taking into account not only 

the acceleration but also the seismic input energy equivalent velocity. This 

consideration is leading to optimum acceleration time histories which represent 

actual ground motions in a much more realistic way. The procedure of selection 

and scaling of the suite of ground motion records to fit a given target spectrum is 

formulated by means of an optimization problem. Characteristic ground motion 

records of different inherent nature are selected as target spectra, to verify the 

effectiveness of the algorithm. In order to assess the robustness and accuracy of 

the proposed methodology the seismic performance of single- and multi- degree 

of freedom structural systems has been also considered. The portion of the 

seismic input energy that is dissipated due to viscous damping action in the 

structure is quantified. It is shown that there exists a good agreement between 

the target and optimized spectra for the different matching scenarios examined, 

regardless of the nature of target spectra, demonstrating the reliability of the 

proposed methodology.  

The response history analysis for the seismic design and the evaluation of the 

performance of structures has evolved along with the rapid increase in the 

computational power of the various engineering software. This has enabled not 

only the application of a faster and more accurate linear elastic time history 

analysis of structures having some thousands degrees of freedom, but also of the 

nonlinear time history response analysis which is becoming more and more 

common nowadays. Traditionally, the seismic design of structures is based on a 

force-based and/or displacement based approach, in which the effect of the 

earthquake loading is quantified using the peak ground and response spectra 
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acceleration of the corresponding ground motion record. However, the current 

status of the various norms regarding the selection of suitable ground motion 

records that meet specific requirements is rather simplified, which, despite the 

robustness of the various finite element models available for seismic design, may 

account for significant source of error in structural design. Therefore, the 

selection of appropriate sets of ground motion records for linear/nonlinear 

dynamic analysis of structures remains a challenge. 

5.2 Literature review 

Although, large ground motion databases are today widely available, in 

engineering practice, the problem of record selection is tackled either through 

scaling a real ground motion, or generating them artificially. A state-of-the-art 

review on the available methods for selection and scaling of ground motion 

records is presented by Katsanos et al. (2010), whereas some critical issues in 

record selection and manipulation are presented by Iervolino et al. (2008). In 

case of limited availability of appropriate real acceleration time-histories, 

simulated strong motion records can be used (Boore, 2009; Graves and Pitarka, 

2010). The generation of artificial/simulated spectrum-compatible ground motion 

records has some disadvantages against real ground motions. Artificial records 

have generally a large number of cycles of strong motion, which leads to 

increased energy content compared to real ground motions. Adjusting the 

Fourier spectrum of a real ground motion in the frequency domain with a view to 

matching a target spectrum at specific frequencies affects amplitude, frequency 

content and phasing, which generally tends to increase the total input energy. 

The same deficiencies are observed also in the simulated records, which may not 

produce similar nonlinear response in structures as real records due to unrealistic 

phasing as well as peaks and troughs effects (Atkinson and Goda, 2010).  

An alternative formulation of the loading effect of earthquakes on structures 

can be based on the earthquake input energy, which is the internal product of 

force and displacement. Energy considerations for the seismic design of 

structures constitutes the basis of the energy-based seismic design (EBSD) 

approach and is gaining extensive attention (Uang and Bertero, 1988; Chou and 

Uang, 2003; Surahman, 2007; Leelataviwat et al., 2009; Jiao et al., 2011; López 

Almansa et al., 2013). Since in the EBSD methods the energy-absorption capacity 

of the structure and the input energy that comes from the ground motion are 

compared for seismic design, it is imperative to develop and use design energy 

input spectra (DEIS).  

EBSD has many benefits and compensates the deficiencies related to the use of 

conventional acceleration or pseudo-acceleration response spectra as follows: (a) 

It accounts for the effects of duration of the cyclic loading of the earthquake 

ground motion. Therefore, it can adequately capture the different type of time 

histories (impulsive, non-impulsive, periodic with long-duration pulses, etc.) 
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regarding their destructive potential. (b) It enables the quantitative evaluation of 

the cumulative structural damage in terms of hysteretic energy without the need 

to use equivalent viscous damping and/or ductility reduction. (c) There is no 

interdependence between the earthquake input energy and the structural 

resistance in terms of energy dissipation capacity, (d) The input energy that a 

structure experiences during an earthquake is governed primarily by its 

eigenperiod and mass and less by its strength or damping, except for the short-

period range (Zahrah and Hall, 1984; Akiyama, 1985; Kuwamura and Galambos, 

1989). This has been verified experimentally by Tselentis et al. (2010). Therefore 

the input energy is a stable quantity that does not depend on many factors and 

thus is simpler to handle and interpret. 

Given the advantages of the EBSD over the traditional approaches, the 

incorporation of not only acceleration spectra but also energy-based spectra for 

the generation of artificial ground motion records is an interesting alternative 

that could lead to more realistic spectrum-compatible design records (Chapman, 

1999; Tselentis et al., 2010). Actually, it has been demonstrated that if the hazard 

is assessed on the basis of the earthquake input energy, the hazard posed by 

larger magnitude earthquakes contributes more to the total seismic hazard at a 

specific site, than that based on spectral acceleration (Tselentis et al., 2010). It is 

noted that the input energy spectrum that is obtained elastically is valid also for 

inelastic systems since the strength and plastification of the structure do not 

practically affect the total energy input (López Almansa et al., 2013; Dindar et al., 

2015). 

In this chapter a novel spectra-matching framework is developed, to generate 

artificial acceleration time histories perfectly matched a target spectrum. Apart 

from the well-known design acceleration spectrum that is prescribed by the 

various norms and guidelines, the seismic input energy equivalent velocity 

spectrum is also taken into account. This consideration is leading therefore to 

optimum acceleration time histories which represent actual motions in a much 

more realistic way. In order to produce elastic spectra that match as closely as 

possible to a given target spectrum, the procedure of selection and scaling of the 

suite of ground motion records to fit a given target spectrum is formulated as an 

optimization problem. Three characteristic ground motion records of different 

inherent nature are selected as target spectra, to verify the effectiveness of the 

proposed algorithm, ensuring that its performance is target spectrum 

independent assuming different matching scenarios. The optimization results 

have shown that there exists a good agreement between the target and optimum 

spectra for each case examined, regardless of the nature of target spectrum, 

demonstrating the reliability and performance of the proposed methodology. 
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5.3 Numerical modeling 

The main goal of this chapter is to obtain artificial ground motion records by 

performing as minimum as possible number of operations on the raw ground 

motion data. These ground motion records are linearly combined together 

forming a suite of records. The procedure of selection and scaling of the suite of 

ground motion records to fit a given target spectrum is formulated as an 

optimization problem. In this section, the processing of the raw ground motion 

data as well as the ingredients for the formulation of the optimization problem 

are presented. 

5.3.1 Processing raw ground motion data 

A linear combination of real accelerograms requires only selection and scaling of 

the latter and does not alter their inherent characteristics (e.g. non-stationarity, 

coda, phase content, etc.), which have to be preserved in order to obtain realistic 

artificial records as a result of the linear combination. Since the real records have 

various durations, linear combination cannot be applied directly to the 

acceleration time histories. However, it can be applied to their Fourier spectra in 

the frequency domain which have the same length for all motions; the resulting 

time history can be obtained by the inverse Fourier transform of the Fourier 

spectra of a suite of m ground motion records as follows: 

  
m

g,c i g,i

i 1

u IFFT x FFT u


 
  

 
   (5.1) 

where g,iu  is the acceleration time history,  g,iFFT u  is its Fast Fourier 

Transform, ix  is the combination coefficient respectively of the thi  ground 

motion,  IFFT  is the inverse Fourier transform and g,cu  is the linear 

combination of the accelerations of ground motions records in the suite. Given 

that the Fourier transform of any real ground motion record is a linear 

transformation, it can be established that Eq. (5.1) effectively combines linearly 

the various records involved. In this way, the artificial time history that is 

generated depends only on selection and scaling of the participating ground 

motion records and also on the values of the combination coefficients ix , i.e. 

scale factors.  

It is apparent that an inverse Fourier transform of a signal in the frequency 

domain which is a linear combination of Fourier-transformed signals, requires a 

time step which has to be identical to that used for the Fourier transform of the 

original records, in order to obtain in this way realistic linear combinations of 

real ground motions. For this purpose, each record is resampled so that the fixed 

sampling rate of all records in the data base is unique. This fixed sampling rate 



Chapter 5 121 

 

 

(or fixed time step) is used for the inverse Fourier transform of the linear 

combination of the Fourier transforms of the resampled motions. 

5.3.1.1 Resampling 

The resampling technique is based on least-squares linear-phase finite-duration 

impulse-response (FIR) filter for the rate conversion. The order FIRN  of the FIR 

filter is given by: 

  FIR old newN 20 max t , t     (5.2) 

where oldt , newt  are the time steps of the ground motion before and after 

conversion, respectively. The frequency-amplitude characteristics of the FIR filter 

approximately match those given by the relation: 

   0

0

1 0 f f
A f

0 f f 1

 
 

 
  (5.3) 

where A  is the amplitude that corresponds to frequency f , 1 is the Nyquist 

frequency and 0f  is given by: 

  old new0f t ,1 max t    (5.4) 

The coefficients of the FIR filter are multiplied by the coefficients of a Kaiser 

window of length equal to FIRN 1 , given by: 

  
 

2

FIR
0

FIR

FIR

0

n N 2
I 1

N 2

w n , 0 n N
I

 
    

  
   


  (5.5) 

where 0I  is the zero-th order modified Bessel function of the first kind. In this 

chapter,   parameter is selected to be equal to 5. To compensate for the delay of 

the linear phase filter a number of entries at the beginning of the output 

sequence are removed. After obtaining the FIR filter designed via a Kaiser 

window, the raw ground motion record is resampled based on this filter thus 

obtaining the modified ground motion history. 

5.3.1.2 Fast Fourier Transform 

The FFT of a raw motion data of Eq. (5.1) is calculated by means of DFT (Discrete 

Fourier Transform). The DFT of raw motion data  gu t  is calculated as: 

       
n

j 1 k 1

g g n

j 1

u k u j t W
 



     (5.6) 

where 
2 i n

nW e   is one of the n  roots of unity and  1 2n t  . The inverse 

DFT of  gu k  is given by: 

       
n

j 1 k 1

g g n

k 1

1
u j t u k W

n

  



     (5.7) 
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The execution time of DFT depends on the number of multiplications involved. A 

direct DFT evaluation takes 2n  multiplications whereas FFT takes 2n log n  

multiplications. It has been proven that the n -point DFT can be obtained from 
two n 2 -point transforms, one on even input data and one on odd input data 

(Frigo and Johnson, 1998; FFTW). Therefore, if n  is a power of 2, then it is 

possible to recursively apply this decomposition until only discrete Fourier 

transforms of single points are left. 

5.3.2 Problem formulation 

In mathematical terms the procedure of selection, scaling and linearly combining 

of ground motion records to fit a given target spectrum is formulated as follows: 

 
i,min i i,max

minimize: f (x)

x x x    
subject to:

       i {1,2,...,D}

 



  (5.8) 

where f  is the objective function to be minimized, x  is the vector of design 

variables of dimension D, and i,minx , i,maxx  are the lower and upper bounds of its 

i-th component. 

5.3.2.1 Objective function 

In this chapter, two types of objective functions are proposed:  

(a) Objective function Saf  which consists a measure of the area under the curve of 

the deviation between the suite and the target spectral accelerations and is 

defined as follows:  

  
2

1

T

c t
Sa

tT

Sa (T) Sa (T)
f p T dT

Sa (T)


    (5.9) 

where cSa  is the spectral acceleration of the linear combination of the ground 

motions as obtained from Eq. (5.1) and tSa  is the target spectral acceleration. 

(b) Objective function Sa Sievf  which consists a measure of the sum of the 

following: 

• The area between the spectral acceleration curves. 
• The area between the equivalent seismic absolute input energy velocity 

spectra curves. 
• The area between the equivalent seismic relative input energy velocity 

spectra curves. 

Sa Sievf   is given by:  
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1
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c t c t c t
Sa Siev ABS REL

t t tT
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f p T dT
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  (5.10) 
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where 
ABS

cSiev , 
REL

cSiev  are the spectral equivalent absolute and relative input 

energy velocities respectively of the suite of the ground motions and 
ABS

tSiev , 

REL

tSiev  are the target spectral equivalent absolute and relative input energy 

velocities, respectively. Detailed calculation of 
ABS

tSiev  and 
REL

tSiev  quantities can 

be found in Uang and Bertero, 1990. 

In Eqs. (5.9) and (5.10)  denotes the absolute value and  p T  is a linear penalty 

function which is biased towards the lower period range and is given by: 

  
   1 p 2

2 1

T T k T T
p T

T T

  



  (5.11) 

where 1T , 2T  are the lower and upper period integration limits, T  is the period 

and pk  is a penalty constant. Although baseline correction is performed before 

the various spectral computations, the penalty function ensures that the 

displacement and velocity of the acceleration is equal to zero at the start and the 

end of the time history considered. 

5.3.2.2 Design variables 

The design variables of the optimization problem are arranged into the vector x

which contains 2m  components, where m is the number of ground motion 

records in the suite. The first m components are the scale factors (continuous 

variables) used for the selected ground motions in the suite of Eq.(5.1), and the 

remaining components, are the IDs (integer variables) of the corresponding 

selected ground motion. The lower and upper bounds, i,minx  and i,maxx  

respectively of the continuous variables, i {1,2,...,m} , have a significant impact 

on the performance of the optimization algorithm and the quality of the 

optimum solution. As the range of values of a design variable gets broader, the 

optimization algorithm shows a relaxed behavior, which can become unstable for 

very large upper and/or very small lower limits. Therefore, suitable values for 

these limits should be selected. The values selected in this chapter are as follows: 

 i,min

2.0 1 i m
x

1 m 1 i 2m

  
 

  
 (5.12) 

 i,max

2.0 1 i m
x

M m 1 i 2m

 
 

  
 (5.13) 

where M  is the total number of the raw ground motions records contained in the 

database.  

As obtained from Eqs. (5.12) and (5.13) the problem considered in this chapter is 

virtually a mixed-integer optimization problem and for this purpose the 

optimization algorithm has to be able to handle such a situation. 
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5.3.3 Mixed integer genetic algorithm 

Choosing the proper search algorithm for solving such problem is not a 

straightforward procedure. Metaheuristic search optimization algorithms achieve 

efficient performance for a wide range of structural optimization problems. In 

this chapter, among the plethora of metaheuristic algorithms, a genetic algorithm 

has been chosen to solve the underlying optimization problem, capable to handle 

mixed-integer nature of the design variables. This should not be considered as an 

implication related to the efficiency of other algorithms, since any algorithm 

available can be used for solving a particular optimization problem based on 

researcher’s experience. 

The Genetic Algorithm (GA) is a stochastic global search optimization method 

introduced by Holland (1992) which emulates the natural biological evolution. 

GA applies on a population of potential solutions the principle of survival of the 

fittest to produce better approximations to a solution. At each generation, a new 

set of approximations is created by the process of selecting individuals according 

to their level of fitness in the problem domain and breeding them together using 

operators borrowed from natural genetics (selection, crossover and mutation). 

This process leads to the evolution of individuals that are better suited to their 

environment than the individuals that they were created from, like in natural 

evolution process. The algorithm stops when a suitable criterion is met (e.g. 

current generation GEN equals to maximum number of generations, MAXGEN). 

A pseudocode of GA is described in Listing 5-1. 

 

Pseudocode of the GA 

1 Set parameters 

2 Generate the initial population 

3 while GEN < MAXGEN do 

4  Fitness calculation 

5  Selection 

6  Crossover 

7  Mutation 

8 end while 

9 Obtain the individual with maximum fitness 

10 return the best solution 

Listing 5-1: The pseudocode of a GA 

 

For the purposes of this chapter, a real-valued representation is adopted as 

encoding strategy. The use of real-valued genes in GAs offers over binary 

encodings the following advantages: (i) efficiency of the GA is increased as there 

is no need to convert chromosomes to phenotypes before each function 

evaluation, (ii) less memory is required as efficient floating point internal 

computer representations can be used directly, (iii) no loss in precision by 
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discretization to binary or other values, (iv) greater freedom to use a variety of 

genetic operators. 

5.3.3.1 Initialization of population 

The GA starts with the generation of a random initial population of individuals 

with uniform distribution in the initial generation. If the initial population is 

denoted by 0P  and its size (number of individuals) by Pn , then any element of 0P  

is given by: 

  i, j j,min j,max j,min RUx x x x a    (5.14) 

where RUa  is a random variable with uniform distribution for which RU0 a 1  . It 

is ensured that ix , i {m 1,m 2,...,2m}    is a positive integer. In case of a 

duplicate integer found this is replaced by a random integer value (respecting the 

upper and lower bounds) different from the calculated ones in 0P . 

5.3.3.2 Selection and crossover 

The stochastic universal sampling (SUS) is used as a selection function, which 

provides zero bias and minimum spread. SUS offers an offspring selection 

procedure that may lead to faster convergence to the solution of a problem than 

other selection methods, such as e.g. roulette wheel selection.  

In addition, to avoid duplicate entries in the ground motion record identities a 

new crossover scheme is proposed which ensures that the linear combination of 

the ground motion records examined each time is comprised by unique 

members. This procedure is described by detail in the following:  

If the crossover is performed between two random individuals at generation k , 

 k,1 i1, jP x  and  k,2 i2, jP x , the individual k 1,12P   is produced as a result of the 

crossover. Initially, three set operations are performed between the two 

individuals: 

a) Intersection between i1, jx  and i2, jx : 

    1 2 i1, j i2, jx x x   (5.15) 

b) Subtraction of i2, jx  from i1, jx : 

    1 2 i1, j i2, jx x x    (5.16) 

c) Subtraction of i1, jx  from i2, jx : 

    2 1 i2, j i1, jx x x    (5.17) 

The offspring k 1,12P   will contain the intersection 1 2x   which contains 1 2n  

elements and the vector  1 2 2 1 l
x ,x   which contains 1 2l m n   randomly 

selected elements from the vector formed by concatenating the two differences 

 1 2 2 1x ,x  : 
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   k 1,12 1 2 1 2 2 1 l
P x , x , x    (5.18) 

In the case where 1 2x    then    1 2 2 1 1 2 2 1l
x ,x x ,x    . Eqs. (5.15) - (5.18) apply 

both for continuous and integer design variables of the problem. 

5.3.3.3 Mutation 

In GA, the mutation function uses various distributions from which random 

numbers (perturbations) are generated and added to the components of the 

individual that is mutated. In this chapter, the perturbation of the 

continuous/integer design variables, is performed using a Gaussian/random 

uniform distribution respectively and are described in detail below.  

Continuous variables: The mutation function of continuous design variables 

follows a Gaussian distribution of zero-mean with standard deviation given by 

the relation: 

 
SC,k SC,0 SH

max

k
m m 1 m

k

 
  

 

 (5.19) 

where the standard deviation SC,km  is the fraction of the maximum range of 

possible perturbations of the design variables (i.e. scale factors) that can be added 

to an individual in generation k  during mutation process. SC,0m  is the scale 

parameter and is equal to the fraction of the maximum range of possible 

perturbations of the continuous variables at the initial generation (0), whereas 

SHm  is the shrink parameter which controls how fast SC,km is reduced as 

generations evolved. Both of the parameters SC,0m  and SHm  can be arbitrarily 

selected and their values must be between 0 and 1. SHm 0  or SHm 1  is also 

possible, but not recommended. For a random individual at generation k , 

 k,1 i1, jP x  this operation can be written as follows: 

  k 1,1 i1, j GU SC,kP x a m   , 1 j m   (5.20) 

where SC,km  is given by Eq. (5.19) and GUa  is a vector with entries following a 

uniform Gaussian distribution. 

Integer variables: The mutation function of integer design variables follows a 

random uniform distribution. Since the random perturbations are not integers in 

general, the result is rounded towards the nearest integer and then the remainder 

of its Euclidean division with M  is extracted, to ensure that the result does not 

exceed M  value. For a random individual at generation k ,  k,1 i1, jP x  this 

operation can be written as follows: 

     k 1,1 i1, j RU SC,kP mod x 2a 1 m ,M    , m 1 j 2m    (5.21) 
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where the symbol  is used to denote the nearest integer of the quantity 

contained in the brackets, RUa  is a vector with entries following a uniform 

random distribution with RU, j0 a 1  , SC,km  is the scale parameter of mutation 

function (standard deviation of Gaussian distribution at the thk  generation), and 

 mod  denotes the modulo operation, i.e. the remainder of the Euclidean 

division of between the two arguments. After application of Eq. (5.21)the result is 

checked for duplicate values of integer components. If so, the duplicates are 

replaced by a random integer value (respecting the upper and lower bounds) 

different from the calculated ones. 

5.4 Numerical results 

The effectiveness of the proposed algorithm is verified by generation of artificial 
accelerograms which are compliant to target spectra of different inherent nature, 
ensuring also the independence of the algorithm’s performance from the target 
spectrum. More specific, the acceleration and equivalent input energy velocity 
response spectra of three ground motion records: a) El Centro Terminal 
Substation Building record of the 1940 Imperial Valley earthquake, b) Rinaldi 
record of the 1994 Northridge earthquake and c) Sakarya – SKR record of the 1999 
Kocaeli earthquake are defined as target spectra. The target spectra are associated 
with a far-field ground motion, a near-field ground motion which contains 
forward directivity effects and a near-field ground motion which contains fling-
step effects, respectively (Kalkan and Kunnath, 2006). Typical characteristic of 
the near-field motions is the presence of high-velocity pulses, which do not exist 
in typical far-field ground motions. The difference between these two types of 
motions originates mainly from two factors: (a) the distance between the site 
where the earthquake is recorded and the seismic fault, (b) the orientation of the 
last. It is noted that the three target spectra have essentially different general 
configurations, a fact that results from the different inherent nature of the time 
histories of the three ground motions. 

Two matching scenarios are considered: i) Matching Scenario 1 (Sa matching): 

Matching only the spectral acceleration and ii) Matching Scenario 2 (Sa–Vei 

matching): Matching both the spectral acceleration and the equivalent input 

energy velocity spectra (absolute and relative). In each scenario, the database is 

comprised of the ground motion records obtained from the European Strong 

Motion (ESD) database (Iervolino et al., 2010; Ambraseys et al., 2004). After a 

preliminary screening of the ESD database, a subset database is constructed that 

consists of 6026 ground motion records corresponding to horizontal earthquake 

components, i.e. M 6026 . The number m of ground motion records in the suite 

is set to be equal to 20 and the matching range of periods is between 1T 0.1s  and 

2T 4.0s . The penalty constant pk  is set to be equal to 50. 
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Furthermore, the tuning parameters of the GA are selected as follows: the 

population size Pn  (number of individuals in each generation) is equal to 80. For 

reproduction, the number of individuals that are guaranteed to survive to the 

next generation (elite children) is equal to 5% of the population size, namely 

E Pn 0.05n 4  , and the fraction of the next generation, other than elite children, 

that is produced by crossover (crossover fraction) is equal to 0.8, i.e. 

 C P En 0.8 n n 61    individuals are produced in each generation. The number 

of individuals in each generation that are produced by mutation is

M P E Cn n n n 15    . In the GA used in this chapter no migration occurs, as 

there are no subpopulations. As stopping criteria for the GA algorithm the 

maximum number of generations (MAXGEN) is used, i.e. equal to 100. A 

sensitivity analysis of 30 independent optimization runs is also performed 

followed by a statistical process on the optimized results. The sensitivity analysis 

represents a necessary step since the GA optimization procedure does not yield 

the same results when restarted due to its stochastic nature.  

In all cases examined, the objective function is evaluated using 

OpenSeismoMatlab, an open source tool for earthquake ground motion 

processing (Papazafeiropoulos and Plevris, 2018). OpenSeismoMatlab performs 

baseline correction and generates the elastic acceleration and equivalent input 

energy velocity response spectra which are then used for the calculation of the 

objective function. 

5.4.1 Matching scenario 1 

The optimization results for Matching Scenario 1 are depicted in Figure 5-1. For 

each target record, the black curve represents the target acceleration spectrum, 

while the red and blue curves represent the spectral acceleration that 

corresponds to the optimization run (out of the 30 runs) that fits best and worst 

to the target spectrum, respectively. The coefficient of variation (CoV) of the 30 

runs for each period is also depicted by the green curve. 

  
(a) (b) 
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(c) 

Figure 5-1: Optimization results of Matching Scenario 1 for each target: (a) El Centro, 
(b) Northridge and (c) Sakarya.  

 
A good agreement is observed between the “best” and “target” spectra in all cases 
examined while the CoV value increases near the bounds of the matching period 
range. This is mostly attributed to the range of the periods involved in the 
calculation of the objective value (see Eqs. (9) and (10)) which is defined in a way 
that it covers the eigenperiods of a structure. This means that the period range 
used in the matching procedure and consequently the optimized acceleration 
time history are period-dependent. In this chapter, an extended period range is 
selected to highlight the applicability of the proposed methodology for a variety 
of structures. However, most of civil structures have eigenperiods that are 
concentrated near the middle of the range considered, where the CoV values are 
minimum and high accuracy can be achieved. Furthermore, the finite number of 
ground motions in the suite of the linear combination contributes to large CoV 
values in general. As the number of the ground motions in the suite decreases, 
the methodology becomes more cumbersome, since the time history given by the 
suite has less flexibility. Hence, as the number of the ground motions increases, 
the matching becomes generally better. Finally, the shape of the penalty function 
in Eq. (11) has an important effect on the optimized response spectrum of each 
optimization run, since the weighting of the deviation from the target spectrum 
for the matching period range considered is not uniform, as has been already 
mentioned in the previous section. 
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(a) (b) 

 
(c) 

Figure 5-2: Optimization history of the 30 independent runs of the Matching Scenario 
1 for each target: (a) El Centro, (b) Northridge and (c) Sakarya.  

 
Figure 5-2 shows the convergence history of the 30 independent optimization 
runs of Matching Scenario 1. Each curve represents the objective value of the best 
individual at each generation of a given optimization run. The red (blue) curve 
represents the evolution of the objective value that corresponds to the 
optimization run (out of the 30 runs) that fits best (worst) to the target spectrum. 
It can be noted that in the case of El Centro earthquake the best individual of the 
final generation for the best independent run corresponds to roughly 14% of the 
objective value of the best individual of the initial generation. The best individual 
of the final generation for the worst independent run corresponds to roughly 
40.3% of the objective value of the best individual of the initial generation. In the 
case of Northridge earthquake these percentages are roughly equal to 16.1% and 
53.6% respectively, and in the case of Sakarya earthquake they are 17.7% and 
36.9% respectively.  
 

The trend of all convergence histories shows that the approach to the 

optimum value is quick and relatively smooth, which is achieved by proper 

adjustment of the crossover and mutation rates, in order to ensure sufficient 
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population diversity in each generation. It seems that, while the coefficient of 

variation among the optimization histories increases at the early stages of the 

optimization process, there is a point after which it stabilizes until termination. 

The magnitude of the final stabilized value of the CoV value is a measure of the 

complexity of the optimization space. As it is expected, larger CoV values 

corresponds to increased diversity between the various optimization runs, in 

terms of the path followed by the best individual of each optimization run. The 

largest CoV value of the objective value of the best individual among the various 

optimization runs at the final generation occurs in the case of Northridge 

earthquake, an observation that correlates well with the large dispersion of the 

optimum spectra, especially in the low period range, in Figure 5-1b. 

5.4.2 Matching scenario 2 

The optimization results for Matching Scenario 2 are depicted in Figure 5-3. 

Nearly the same traits that are mentioned for Figure 5-1 are observed; the 

proposed algorithm gives higher CoV values in the lower and higher limits of the 

matching period range considered.  

  
(a) (b) 

 
(c) 

Figure 5-3: Results of Matching Scenario 2 regarding spectral acceleration for each 
target: (a) El Centro, (b) Northridge and (c) Sakarya.  
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In Figure 5-4 and Figure 5-5, the absolute seismic input energy equivalent 

velocity (SievABS) and the relative seismic input energy equivalent velocity 

(SievREL) spectra for each target spectrum are presented respectively. A very 

close agreement between the target and corresponding optimized spectra is also 

observed in this case. Although the CoV plots exhibit local peaks and troughs, all 

of them fluctuate around the value of 10%, regardless of the target spectrum.  

In a similar rationale, Figure 5-6 depicts the convergence history of the 30 

independent optimization runs of Matching Scenario 2. It is apparent that in the 

case of El Centro earthquake the best optimization run gives result equal to 

32.8% of the best objective value of the initial population, whereas the worst 

result is roughly equal to 48.3% of the initial best objective value. In the case of 

Northridge earthquake the best and worst results are roughly equal to 32% and 

55.7% respectively of the initial best objective value. Similarly, the corresponding 

percentages for the Sakarya earthquake are 26% and 41.1%. Interestingly, the 

lowest (best) percentage appears in the case of Sakarya earthquake whereas the 

highest (worst) percentage appears in the case of Northridge earthquake. The 

smooth convergence in optimization histories demonstrates the reliability of the 

proposed algorithm not only for matching the target spectral acceleration, but 

also for matching both target acceleration and target seismic input energy 

equivalent velocity spectra. 

  
(a) (b) 
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(c) 

Figure 5-4: Results of Matching Scenario 2 regarding equivalent absolute seismic input 
energy velocity spectra (SievABS) for each target: (a) El Centro, (b) Northridge and (c) 

Sakarya.  

 

  
(a) (b) 

 
(c) 

Figure 5-5: Results of Matching Scenario 2 regarding equivalent relative seismic input 
energy velocity spectra (SievREL) for each target: (a) El Centro, (b) Northridge and (c) 

Sakarya.  
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(a) (b) 

 
(c) 

Figure 5-6: Optimization history of the 30 independent runs of the Matching Scenario 
2 for each target: (a) El Centro, (b) Northridge and (c) Sakarya. 

5.4.3 Comparison of the two scenarios 

A one-to-one comparison between the performance of the two scenarios 

shows that the CoV is generally higher in Scenario 2. This occurs because the 

optimization problem of Scenario 1 is more “relaxed” than the Scenario 2. In 

Scenario 1, the objective function is related only with a single target spectrum 

(acceleration), while in Scenario 2 the objective function is related with three 

target spectra (acceleration, absolute velocity, relative velocity), at the same time. 

This relation establishes an indirect "constraint" which implies that, with respect 

to the target acceleration spectrum only, the optimized solution of Scenario 2 will 

have higher deviation than that of Scenario 1, which interprets the higher CoV 

values in Figure 5-3 when compared to Figure 5-1. Consequently, in the case of 

Scenario 2 the possible “paths” of the population evolution towards the optimum 

are far fewer and therefore the population diversity is lower compared to 

Scenario 1, which explains the reduced CoV in the last generation in Figure 5-6 

(Scenario 2), compared to that in Figure 5-2 (Scenario 1). Finally, it is noted that 
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as the generations increase, the CoV fluctuation is smoother in the case of 

Scenario 2, related to the increased robustness of the algorithm in this case. 

5.5 Verification of the proposed methodology 

In order to assess the robustness and accuracy of the proposed methodology 

the seismic performance of single- and multi- degree of freedom structural 

systems has been considered. To this end, nonlinear response history analyses 

were conducted for the optimized accelerograms of the two Matching Scenarios 

as resulted for the three target ground motion records in Section 3. The response 

results are compared in terms of the goodness-of-fit with the respective response 

result of the target ground motion. The seismic input energy that is dissipated 

due to viscous damping action in the structure (damping energy) is also 

quantified. 

5.5.1 Energy definitions 

The seismic input energy that is absorbed by an inelastic single degree of freedom 

(SDOF) structural system during an earthquake can be defined by integrating the 

equation of motion of the system as follows: 

  
u u u u

s g,c

0 0 0 0

umdu ucdu f du m I u du        (5.22) 

where m is the mass matrix, c is the viscous damping coefficient matrix, sf  is the 

resistance force due to stiffness, I  is the unit influence vector of the structure 

and g,cu  is the linear combination of the accelerations of ground motions records 

in the suite as defined in Section 2.1. Eq. (5.22) stands as a statement of energy 

balance of the system and can be rewritten as: 

          k d s y IE t E t E t E t E t     (5.23) 

With regard to Eq. (5.22) the first integral gives the kinetic energy kE , the 

integral on the right-hand side gives the input energy IE  imparted from the 

ground motion to the structure and the last integral on the left-hand side is equal 

to the sum of the linear elastic recoverable strain energy sE  and the plastic 

irrecoverable strain energy yE . The damping energy term dE  is defined as 

follows: 

  
u

d

0

E t ucdu   (5.24) 

The definitions of the aforementioned energy quantities are given for a structure 

whose mass is acted upon by a force equal to    eff g,cp t m I u  , i.e. they are 

based on the consideration of the structural motion relative to the base, rather 
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than the total motion of the structure. The two types of energy formulations 

(relative and absolute) are equivalent but the former is more intuitive and 

simplifies the calculations when it comes to multi degree of freedom (MDOF) 

structural systems. Eqs (5.22) to (5.24) correspond to a SDOF system in 

mathematical terms and their extension to MDOF systems can be done in a 

straightforward manner. 

5.5.2 SDOF system results 

Three SDOF systems involving a bilinear elastoplastic constitutive model with 

kinematic hardening are analyzed for each target ground motion. The 

eigenperiod, the critical damping ratio, the post-yield stiffness ratio (i.e. the ratio 

of the post-yield stiffness to the initial small strain stiffness of the structure), and 

the ductility demand are same for all the SDOF systems and equal to 0.5 sec, 5%, 

1% and 1.1 respectively. The three systems have different yield displacements, 

equal to 0.052 m, 0.1 m and 0.025 m for the El Centro, the Northridge and the 

Sakarya target ground motion, respectively. The reader is referred to 

Papazafeiropoulos et al. (2017) for more details about the implementation of the 

bilinear elastoplastic constitutive model with kinematic hardening and the time 

integration algorithm that were used in this chapter. 

The small ductility value specified for all target ground motions denotes that 

structures only with slightly nonlinear behavior are considered in this chapter; 

for cases of severely nonlinear response the scenarios presented in this chapter 

for calculation of the design artificial ground motion is an open research issue. 

For such cases it would be better to consider the inelastic response spectra, rather 

than elastic response spectra in matching scenarios. In addition, the physical 

properties of each SDOF system remain the same for the estimation of its 

dynamic response for each target ground motion as well as the optimized ground 

motions obtained from the two matching scenarios. Based on an arbitrarily 

selected value of ductility demand (equal to 1.1, to ensure a slightly nonlinear 

response) for each target ground motion the yield displacement that is calculated 

was used also for the corresponding optimized ground motions obtained from 

the two matching scenarios in all nonlinear time history response analyses. 

In Figure 5-7, the time variation of the damping energy per unit mass for each 

target motion and the optimized ground motion records produced from the two 

matching scenarios is depicted. A good agreement is observed in all cases since 

the damping energy of the optimized ground motion (red line) is very close to 

that of the respective target ground motion (black line). To quantify this 

agreement, the normalized error ije  for the ith story (in the case of SDOF 

systems i is always equal to 1) and jth matching scenario, which is proportional to 
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the area between a matching scenario and the target ground motion curves was 

used as a metric of this goodness-of-fit, defined as follows: 

 

   

 

d

d

T

j T

d,i d,i

0
ij T

T

d,i

0

E t E t dt

e

E t dt








  (5.25) 

where 
j

d,iE  and 
T

d,iE  is the damping energy for the jth scenario and the target 

ground motion respectively. 

  
(a) (b) 

 
(c) 

Figure 5-7: Energy dissipated by viscous damping per unit mass over time for the 
optimized artificial ground motions of the two matching scenarios and for each target 

ground motion: (a) El Centro, (b) Northridge and (c) Sakarya. 

 
Even in the case of Northridge target ground motion, it is indicative that the 

damping energy corresponding to Scenario 2 is slightly closer to the respective 

curve of the target motion, although there is not much difference between the 

two scenarios (17% as seen in Table 2). This fact, in combination with the large 
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value of the dissipated energy per unit mass may be a consequence of the special 

characteristics of Northridge earthquake, which contains a high velocity pulse 

(forward directivity effect) as a near-field ground motion. 

Target  

ground motion 

Matching 

Scenario 1 

Matching 

Scenario 2 

Difference 

(%) 

El Centro 0.4065 0.2794 31.3 

Northridge 0.2289 0.1901 17.0 

Sakarya 1.2104 0.2310 80.9 

Table 5-1: Normalized error of the damping energy between the optimized and the 
target ground motion records. 

5.5.3 MDOF system results 

Two model buildings were analyzed as a 3-DOF and 9-DOF structural systems. 

More specific, the model buildings are a 3-story (LA3) and a 9-story building 

(LA9) designed as standard office buildings and situated on a stiff soil (soil type 

S2), following the local code requirements for the Los Angeles city (UBC 1994), 

and according to the provisions of the FEMA/SAC project, presented in FEMA-

355C (2000). The plan and elevation of their effective structural models, along 

with the various cross sections of its members are shown in Figure 5-8. The 

perimeter moment-resisting frames act as the structural system of the building. 

The column bases of the moment resisting frames are considered as fixed. 

Furthermore, the design of the buildings for the two orthogonal directions is 

quite similar, and therefore only half of the structure is considered in the analysis 

in each case. 
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          (a)                                  (b)        

 
Figure 5-8: Plan view, typical floor and elevation view of the effective model of the (a) 

LA3 and (b) LA9 model buildings.  
 

The benchmark buildings are simulated as a 3-DOF and a 9-DOF structural 

system involving the same bilinear elastoplastic constitutive model with 

kinematic hardening, as in the SDOF system analyzed previously. Their 

fundamental eigenperiods are equal to 1.01 sec and 2.85 sec, respectively. The 

post-yield stiffness ratio and critical damping ratio were set equal to 1% and 5%, 

respectively. The yield displacement and ductility demand of each story for the 3-

DOF and 9-DOF structural systems are shown in Table 3. The maximum ductility 
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at any story does not exceed the value of 2. Usually, an interpolative iterative 

procedure is necessary to obtain the yield displacement for a target ductility 

demand (Chopra, 2017). However, for each target ground motion in each building 

the yield displacement is assumed as uniform distributed across all storeys and is 

calculated so that the maximum ductility demand is equal to 2 at least in one 

story of the building. For both of the LA3 and LA9 buildings the maximum 

ductility demand is observed at the first story. The ductility of the remaining 

storeys is much lower or even lower than 1 (i.e. story remains linear elastic). 

Target Ground Motion El Centro Northridge Sakarya 

LA3 

Yield displacement 

[m] 
0.0283 0.1681 0.0356 

Ductility 

demand 

Story 2 1.19 0.99 0.99 

Story 3 0.62 0.48 0.49 

LA9 

Yield displacement 

[m] 
0.0685 0.166 0.1193 

Ductility 

demand 

Story 2 0.41 0.38 0.38 

Story 3 0.44 0.41 0.38 

Story 4 0.39 0.39 0.30 

Story 5 0.51 0.58 0.30 

Story 6 0.47 0.61 0.25 

Story 7 0.52 0.74 0.28 

Story 8 0.36 0.53 0.20 

Story 9 0.18 0.26 0.10 

Table 5-2: Yield displacement and ductility demand of each story for the  
3-DOF and 9-DOF structural systems 

 
For each target ground motion, three nonlinear response history analyses were 

conducted using as excitation the target ground motion and the two optimized 

ground motions resulting from the two matching scenarios. Figure 5-9-Figure 5-11 

show the time history of the damping energy at the three storeys of the building 

for each target ground motion and the optimized ground motion records. Again, 

a good agreement is observed in all cases since the damping energy of the 

optimized ground motion (red line) is very close to that of the respective target 

ground motion (black line).  
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(a) (b) 

 
(c) 

Figure 5-9: Time variation of energy dissipated at the 1st story of the 3-DOF system 
for the optimized and the target ground motion records: (a) El Centro, (b) Northridge 

and (c) Sakarya. 
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(a) (b) 

 
(c) 

Figure 5-10: Time variation of energy dissipated at the 2nd story of the 3-DOF system 
for the optimized and the target ground motion records: (a) El Centro, (b) Northridge 

and (c) Sakarya. 
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(a) (b) 

 
(c) 

Figure 5-11: Time variation of energy dissipated at the 3rd story of the 3-DOF system 
for the optimized and the target ground motion records: (a) El Centro, (b) Northridge 

and (c) Sakarya. 

 
To quantify this agreement the normalized error as defined in Eq. (5.25) was used 

as a metric of this goodness-of-fit. Figure 5-12 shows the normalized error of the 

damping energy between the optimized and the target ground motion records for 

each floor of the 3-DOF structural system. The min/max errors for the two 

scenarios are 15%/48% and 3%/20%, respectively. It is observed that the proposed 

algorithm (Scenario 2) yields far lower error compared to Scenario 1. Although 

the error of Scenario 2 remains lower, only in the case of the dynamic response of 

the third floor of the 3-DOF system for the El Centro target motion Scenario 2 

gives greater error compared to Scenario 1 (28% higher). It is worth noting that in 

the case of the Sakarya target ground motion the error of the Scenario 2 is 78.3% 

lower compared to Scenario 1. This is directly related with the low CoV values 

observed in Section 3 for this specific case, a fact that also proves the robustness 

and accuracy of the proposed methodology.  
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Figure 5-12: Normalized error of the damping energy between the optimized and the 

target ground motion records for each floor of the 3-DOF structural system. 

 
Figure 5-13 shows the time history of the damping energy at a typical story (i.e. 

first story) of the LA9 building for each target ground motion and the optimized 

ground motion records. Again, a good agreement is observed in all cases since the 

damping energy of the optimized ground motion is very close to that of the 

respective target ground motion. To quantify this agreement, Figure 5-14 shows 

the normalized error of the damping energy between the optimized and the 

target ground motion records for each story of the 9-DOF structural system. The 

min/max errors for the two scenarios are 8.2%/88.7% and 9.8%/38.5%, 

respectively. It is observed that the proposed algorithm (Scenario 2) yields far 

lower error compared to Scenario 1. The error of Scenario 2 remains higher, only 

in the case of the dynamic response of the upper storeys of the 9-DOF system for 

the Northridge target motion. This deviation is attributed to the dynamic 

characteristics of the structural system mainly affected by the near field effects of 

the specific ground motion. It is worth noting that the maximum error of the 

Scenario 1 is 130.4% higher compared to the corresponding maximum error of the 

Scenario 2. 
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(a) (b) 

 
(c) 

Figure 5-13: Time variation of energy dissipated at the 1st story of the 9-DOF system 
for the optimized and the target ground motion records: (a) El Centro, (b) Northridge 

and (c) Sakarya. 
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(a) (b) 

 
(c) 

Figure 5-14: Normalized error of the damping energy between the optimized and the 
(a) El Centro, (b) Northridge and (c) Sakarya target ground motion records for each 

floor of the 9-DOF structural system 

5.6 Conclusions 

In this chapter a novel spectra-matching framework is developed, which employs 

a linear combination of raw ground motion records to generate artificial 

accelerograms. To this end, apart from the well-known design acceleration 

spectrum that is prescribed by the various norms and guidelines, the seismic 

input energy equivalent velocity spectrum is also taken into account.  

This consideration is leading therefore to optimized acceleration time histories, 

which represent actual motions in a much more realistic way. In order to produce 

elastic spectra that match as closely as possible to a given target spectrum, the 

procedure of selection and scaling of a suite of ground motion records to fit a 

given target spectrum is formulated as an optimization problem. Three 

characteristic ground motion records of different inherent nature are selected as 
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target spectra, to verify the effectiveness of the proposed algorithm, ensuring that 

its performance is not ground motion record-dependent assuming different 

matching scenarios. The optimization results have shown that there exists a good 

agreement between the target and optimized spectra for each case examined, 

regardless of the nature of target spectrum. Finally, it is proved that the 

artificially generated records are much more realistic and suitable for the seismic 

design of structures, since they reproduce better the real nonlinear structural 

inelastic response in terms of the damping energy, demonstrating also the 

reliability and robustness of the proposed methodology. 

5.7 Notation 

A : amplitude 

RUa : scalar variable with uniform random distribution with RU0 a 1   

GUa : vector with entries following a uniform Gaussian distribution  

RUa : vector with entries following a uniform random distribution with RU0 a 1   

c : viscous damping coefficient matrix  

 DFT : Discrete Fourier Transform 

dE : Energy dissipated due to damping 

kE : Kinetic energy 

IE : Input energy due to earthquake 

sE : Elastic recoverable strain energy 

yE : Energy dissipated due to yielding 

f : frequency 

if : fitness value of the i -th individual 

sf : force due to stiffness 

 FFT : Fast Fourier Transform 

I : unit column vector (influence vector) 

0I : zeroth – order modified Bessel function of the first kind 

 IFFT : Inverse Fast Fourier Transform 

k : number of generation 

maxk : maximum number of generations 

pk : constant for penalty of lower period bound 

Sk : positive integer for selection function with S S0 k n 1    

k : small strain (initial) stiffness matrix  

M : number of raw accelerograms that are contained in the earthquake data base 
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m : number of raw accelerograms combined to produce the artificial time history 

SC,0m : scale parameter of mutation function (standard deviation of Gaussian 

distribution at the first generation) at the initial generation (0) 

SC,km : scale parameter of mutation function (standard deviation of Gaussian 

distribution at the first generation) at generation k  

SHm : shrink parameter of mutation function (rate of decrease of standard 

deviation w.r.t. generation number) 

m : mass matrix  

FIRN : order of FIR filter 

n : length of the Fourier transform 

1 2n : number of elements of the intersection 1 2x   

Cn : number of individuals in each generation produced by crossover 

En : number of elite individuals in each generation 

Mn : number of individuals in each generation produced by mutation 

Pn : population size 

Sn : number of individuals which are selected for breeding in each generation 

0P : population at zeroth generation (initial) 

kP : population at generation k 

k,1P : first random individual belonging to population at generation k 

k,2P : second random individual belonging to population at generation k 

k 1,12P  : offspring from crossover between k,1P  and k,2P  

 p T : penalty function 

ip : probability of selection of the thi  individual 

r : rank of an individual 

cSa : spectral acceleration of the linear combination of the selected ground 

motions 

tSa : target spectral acceleration 

ABS

cSiev : spectral equivalent absolute input energy velocity of the linear 

combination of the selected ground motions 
REL

cSiev : spectral equivalent relative input energy velocity of the linear 

combination of the selected ground motions 
ABS

tSiev : target spectral equivalent absolute input energy velocity 

REL

tSiev : target spectral equivalent relative input energy velocity 
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T : eigenperiod 

1T : lower period limit of the various spectra 

2T : upper period limit of the various spectra 

dT : duration of the earthquake time history 

t : time 
u : displacement vector of the structure 

u : velocity vector of the structure 

u : acceleration vector of the structure 

g,cu : acceleration time history of the linear combination of the selected ground 

motions 

g,iu : acceleration time history of the thi  ground motion 

nW : one of the n  roots of unity 

w : coefficients of Kaiser window 

1 2x  : intersection between two random individuals i1, jx  and i2, jx  

1 2x  : relative complement of individual i2, jx  in individual i1, jx  

2 1x  : relative complement of individual i1, jx  in individual i2, jx  

ix : combination coefficient respectively of the thi  ground motion 

i, jx : jth element of the ith individual 

 : constant equal to 5 

oldt : time step of ground motion before resampling 

newt : time step of ground motion after resampling 

 : cyclic frequency step of the Fourier spectrum 

 

 

 





 

C h a p t e r  6 E q u a t i o n  S e c t i o n  ( N e x t )  

 

6  Abaqus2Matlab:  An Integrated 
Optimizat ion Framework for  
Engineering Appl icat ions  

6.1 Introduction 

Practical FEA applications are often not standalone, but incorporated into a 

general optimization framework, so that a predefined objective is attained. The 

reason for this is that usually the various objectives of the optimum structural 

design are too complex to be implemented within the framework of a finite 

element analysis. Sometimes an optimization process (e.g. an inverse analysis) is 

necessary in order to compensate for the lack of modeling information (e.g. 

constitutive material properties, etc.) and can yield results that are otherwise 

infeasible to obtain. To implement the optimization procedures that are 

presented in this chapter, the Abaqus2Matlab software (Papazafeiropoulos et al., 

2017) has been used.  

Abaqus2Matlab is an effective tool with the following features: 

 It provides linking between Abaqus and Matlab. Abaqus analysis can be 

conducted through Matlab, without interacting with Abaqus/CAE interface, or 

even Abaqus/Command. 

 It transfers efficiently results from Abaqus to Matlab, in an error-proof 

way, since every contained external function is verified by its application in 

reading the results of a corresponding Abaqus analysis. The results of the 

verification of each function are presented in this toolbox in the form of html 

files. 

 It provides the requested results in a form that enables the user to easily 

manipulate the data for further postprocessing. 

 It can read many different kinds of nodal results (results at nodes), 

elemental results (results at the element integration points or results regarding 

whole elements) and analysis results (e.g. node definitions, element connectivity, 

eigenfrequencies and eigenvalues, etc.) 
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 A complete documentation package is provided along with the source 

code. 

 A sufficient number of functions is included in the toolbox to capture the 

most usually requested Abaqus results. 

 The software, as well as all the associated material and documentation can 

be accessed and downloaded for free at www.abaqus2matlab.com. 

6.2 Abaqus2Matlab – software development 

6.2.1 Introduction 

Partial Differential Equations (PDEs) govern the physics of most engineering 

systems. As analytical solutions are limited and generally restricted to idealized 

cases, the development of efficient and robust numerical methods marks a 

milestone in the solution of boundary value problems in structural mechanics, 

electromagnetism, heat transfer, mass diffusion and fluid dynamics, among many 

other disciplines. The Finite Element Method (FEM) has become the leading 

numerical technique for solving PDEs in the mechanical, civil, aeronautical and 

bioengineering industries. Among the wide range of packages available, ABAQUS 

is undoubtedly one of the most popular finite element tools for academics and 

practitioners. However, practical applications often require consideration of non-

linear conditions, where uncertainties hinder high fidelity numerical predictions. 

In such circumstances, the use of advanced analysis methodologies –such as 

optimization procedures, inverse approaches, statistical tools or hybrid 

experimental–numerical techniques –has proven to compensate for the lack of 

information, yielding results that are otherwise unobtainable. More specifically, 

in many cases the objective function is a function of the error between a 

numerical analysis and an experiment, which needs to be minimized by adjusting 

various design variables of the numerical model. These design variables almost 

always involve some or all of the material constitutive parameters, since the 

constitutive properties of a model have the largest effect on its response. The 

results of the aforementioned optimization analysis are some "optimum" values 

of the constitutive properties. Assuming the the constitutive model has been 

selected in a reasonable way, these "optimum" values will be identical to the 

"real" constitutive values. The latter values are actually modeling information 

that is missing for an engineer who wants to perform a direct FEA and also are 

infeasible to obtain by direct (straight) FE analysis. Therefore optimization is 

necessary to find this lacking constitutive information of the material (i.e. 

modeling information), and since Abaqus cannot do inverse analysis by itself, 

various third-party softwares are used (in this thesis Matlab, which is integrated 

with Abaqus using Abaqus2Matlab). MATLAB, a multi-paradigm computing 

environment, is generally considered to be the most powerful software in this 

regard due to its advanced capabilities in statistics, machine learning, neural 

networks, curve fitting, model-based calibration and optimization. Yet, a 

http://www.abaqus2matlab.com/
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connection between the two most used packages in, respectively, finite element 

modeling and mathematical analysis, is still lacking. To fill this gap, a novel 

software tool is here proposed: Abaqus2Matlab, which allows to run ABAQUS 

directly from Matlab and to post-process the results, providing a link between the 

two well-known packages in a non-intrusive and versatile manner. The present 

proposal enjoys the benefits of MATLAB’s user friendly and centralized 

environment, as opposed to other powerful tools like Python, which require add-

on libraries. Abaqus2Matlab is distributed as source code with the aim of 

facilitating research. Section 6.2 is organized as follows. The structure of 

ABAQUS results (*.fil) files is described in section 6.2.2 and the way in which 

Abaqus2Matlab reads the file is presented in section 6.2.3. The software 

framework and architecture are explained in section 6.2.4 . For more details 

about the software, the reader is referred to Papazafeiropoulos et al. (2017). 

6.2.2 Structure of ABAQUS results (*.fil) files 

A medium in which ABAQUS analysis results can be transferred to other software 

for postprocessing or pre- and postprocessing is the results file. The ABAQUS 

results file can be written in binary (default) or ASCII format. Generally, the 

manipulation of results files in ASCII format is easier than in binary format, since 

they can be transferred between different computer systems and read from many 

different postprocessing software without special settings. On the other hand, for 

large problems the results files in ASCII format are significantly larger than the 

same files in binary format. ABAQUS provides the ascfil facility to convert a 

results file from binary to ASCII format, as shown in section 6.2.2.4. The 

discussion from now on will concern only ABAQUS results files in ASCII format. 

6.2.2.1 Data item format 

Any data item contained in a results file can be either integer, floating point 

number or character string. Integers begin with the character I, followed by a two 

digit integer which shows the number of the digits of the integer, followed by the 

integer itself. If the number of digits of the integer has one digit, the first 

character after character I is a blank space. For example, integer number “8” 

would be written as “I 18” and integer number “9999999999” would be written as 

“I109999999999”. 

Floating point numbers begin with the character D, followed by the number in 

the format E22.15 or D22.15, depending on the precision (single or double 

respectively). For example, number “0.5” in double precision would be written as 

“D 5.000000000000000D-01”. 

Character strings begin with the character A, followed by eight characters. If the 

length of a character string is less than 8, then the trailing positions are filled 

with blank spaces. If the length of a character string is larger than 8, then the 

character string is written in consecutive character strings, eight characters at a 

time. For example, “HOMOGENEOUS TENSION FOR ELEMENT 1” would be 
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written as “AHOMOGENEAOUS TENSAION FOR AELEMENT A1       “. Note the 

seven trailing blank spaces after the last character (“1”) in the last character 

string. 

6.2.2.2 Record format 

The results file is a sequential file, meaning that it contains and stores data 

records in a specific order. It must be read from the beginning, up to the location 

of the desired data. All data items are converted into equivalent character strings 

and written in series which are called (logical) records. Each single line of a 

results file contains a series of 80 string characters, which may contain whole or 

part of a record. In the latter case, after completely filling the first line in which a 

record begins, the record string continues at the subsequent lines till the end of 

the record. If a record string ends before the end of a line, then the next record 

starts immediately after the current record in the same line, with continuation in 

the subsequent lines as explained above. The beginning of each record is 

indicated by an asterisk (*). Within each record, the data items are arranged 

immediately behind each other, and therefore it is possible that the end of a line 

splits a data item, with its first characters belonging to a line and the remaining 

characters belonging to the next line. The last line of the results file, if partially 

completed, is filled with blank spaces until the end of the line. Then, a logical 

record consisting of 80 blanks is inserted as the next line, in order for the end-of-

file to be handled correctly. Each record has the format shown in Table 6-1.  

Location Length Description 

1 1 Record length (L) 

2 1 Record type key 

3 (L-2) Attributes 

Table 6-1: Format of a record written in an ABAQUS results file. 

 

The location number denotes the position in the record, where a series of 

consecutive data items is written. The number of data items in each series is 

denoted by the length number. The first series of data items (consisting of a 

single data item) is an integer showing the record length, i.e. the number of data 

items which the record contains. The second series of data items (also consisting 

of a single data item) is an integer showing the record type key. The record type 

keys are standard indicators set in ABAQUS by convention, and denote the type 

of data which the record includes. The data items which actually provide useful 

information for the user (or attributes) are contained in a series of L-2 data items, 

at the 3rd (and last) position of a record. For example, record key 1900 (Record 

type: Element definition) for a CPE4R element with element number 2 and nodes 

5, 6, 7, and 8 would be written as follows: 

*I 18I 41900I 12ACPE4R   I 15I 16I 17I 18 

and record key 101 (Output variable identifier: U, i.e. displacements) for node 145 

and displacements for the 6 degrees of freedom equal to (0.2000000029802322, 
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0.00, -0.07500000298023224, 1.732049942016602, 1.732049942016602 and 

1.732049942016602) would be written as: 

 

*I 19I 3101I 3145D 2.000000029802322D-01D 0.000000000000000D+00D-

7.50000029802322 4D-02D 1.732049942016602D+00D 1.732049942016602D+00D 

1.732049942016602D+00 

 

In a data record which contains complex values (e.g. in a steady-state analysis), 

all the real components of the data record are written first and all the imaginary 

components follow immediately. For example, record key 101 (Output variable 

identifier: U, i.e. displacements) for node 1 and complex displacements for the 6 

degrees of freedom equal to (-1.621881950939540e-16+0.50939i, 

0.004367975320916413+0.67975i, -1.558539209401511e-15+0.055i) would be written 

as: 

*I 19I 3101I 11D-1.621881950939540D-16D 4.367975320916413D-03D-

1.558539209401511 D-15D 0.509390000000000D+00D 0.679750000000000D+00D 

0.055000000000000D+00 

6.2.2.3 Output 

The types of output that can be written to the results file are the following: 

• element output, nodal output, energy output, modal output, contact 

surface output, and section output 

• element matrix output 

• substructure matrix output 

• cavity radiation viewfactor matrices 

It is possible that a model is defined as an assembly of part instances, the nodes 

and/or the elements of which have repeated numbering definitions. In this case 

the local node and element numbers are converted internally into global node 

and element numbers, which are unique for the model being analyzed. The 

output in the results file is given in terms of these global identities. A map 

between user-defined numbers and internal numbers is printed to the data file 

(*.dat) if any results file output that includes node and element numbers is 

requested. 

Set and surface names that appear in the results file are given along with their 

corresponding assembly and part instance names, separated by underscores. For 

example, if Set1 is the name of a set or surface of part Part1, which is instanced in 

the assembly Assembly1, then this set appears with the name 

Assembly1_Part1_Set1 in the results file. 

6.2.2.4 Generation of ABAQUS Results (*.fil) files 

ABAQUS results files can be produced in a variety of ways. The overall 

implementation which includes the generation of the results file(s) depends on 

the information flow between ABAQUS and other pre- and postprocessing 
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software. In order to retrieve the results of an analysis in an easy to handle form, 

results files in ASCII format must be generated. This can be achieved by 

determining specific execution procedures, which can involve input (*.inp), 

restart (*.res), and other types of files which can be found in the ABAQUS 

Documentation. In each of the input files involved, specific options with specific 

parameters have to be defined. In addition, the results file generation procedures 

differ between ABAQUS/Standard and ABAQUS/Explicit. The execution 

procedures for ABAQUS/Standard and ABAQUS/Explicit, the required files as 

well as the options in the input files of the single or restart analysis are shown in 

Table 2. Four procedures are presented, which combine ABAQUS/Standard and 

ABAQUS/Explicit finite element programs with either single or restart analysis, 

resulting thus in four different cases. The ABAQUS ascfil utility serves to convert 

results files from binary to ASCII format. This is particularly useful when 

ABAQUS/Explicit is used for the analyses, in which the results files generated can 

be only in binary format. In the case of a restart analysis, the *FILE FORMAT, 

ASCII and *FILE OUTPUT options for ABAQUS/Standard and ABAQUS/Explicit 

respectively have to be specified either in the initial or in the restart input files. 
Finite element 
program 

Execution command Files 
required 

Input file options Result files 
generated 

ABAQUS/Standard 
- single analysis 

ABAQUS job=1 1.inp Required Optional 1.fil (ascii) 

*FILE FORMAT, ASCII *CONTACT 
FILE 

  *EL FILE 

*ENERGY FILE 

*MODAL FILE 

*NODE FILE 

*SECTION FILE 

ABAQUS/Standard 
- restart analysis 

ABAQUS job=2 
oldjob=1 

2.inp Required Optional 2.fil (ascii) 

1.mdl *POST OUTPUT *CONTACT 
FILE 

1.odb *FILE FORMAT, ASCII *EL FILE 

1.stt   *ENERGY FILE 

1.prt *MODAL FILE 

1.res *NODE FILE 

  *SECTION FILE 

ABAQUS/Explicit - 
single analysis 

ABAQUS job=1 1.inp Required Optional 1.fil 
(binary) *FILE OUTPUT *CONTACT 

FILE 

  *EL FILE 

*ENERGY FILE 

*MODAL FILE 

*NODE FILE 

*SECTION FILE 

ABAQUS/Explicit - 
restart analysis 

ABAQUS job=2 
oldjob=1 

2.inp Required Optional 2.fil 
(binary) 1.abq *RESTART,READ *CONTACT 

FILE 

1.mdl *FILE OUTPUT *EL FILE 

1.odb   *ENERGY FILE 

1.stt *MODAL FILE 
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1.pac *NODE FILE 

1.prt *SECTION FILE 

1.res 

  1.sel 

- ABAQUS ascfil job=1 1.fil 
(binary) 

- 1.fin (ascii) 

Table 6-2: Procedures used in ABAQUS for the generation of results (*.fil) files. 

 

6.2.3 Reading of ABAQUS results files with Abaqus2Matlab 

This section describes the way an ABAQUS result file is read, in order to obtain 

the numerical data in an easy to use form. A segment of a results file is shown in 

Figure 1. As mentioned in a previous section, each single line of a results file 

contains a series of 80 string characters, which may contain whole or part of a 

record. The segment shown in Figure 1 contains three records. Before the first 

record, the last 74 characters of the last record appear. After the third record, the 

first 98 characters of the next record appear. 

. . . 
4D-02D 1.732049942016602D+00D 1.732049942016602D+00D 1.732049942016602D+00*I 19I 

41901I 3262D 1.147152855992317D-01D-1.638304144144058D-01D 7.500000298023224D-0 

2D 1.732049942016602D+00D 1.732049942016602D+00D 1.732049942016602D+00*I 19I 419 

01I 3263D 1.285575181245804D-01D-1.532088816165924D-01D 7.500000298023224D-02D 1 

.732049942016602D+00D 1.732049942016602D+00D 1.732049942016602D+00*I 19I 41901I 

3264D 1.414213627576828D-01D-1.414213627576828D-01D 7.500000298023224D-02D 1.732 

049942016602D+00D 1.732049942016602D+00D 1.732049942016602D+00*I 19I 41901I 3265 

D 1.532088816165924D-01D-1.285575181245804D-01D 7.500000298023224D-02D 1.7320499 

. . . 

Listing 6-1: Segment of the contents of an ABAQUS results file. 

The way Abaqus2matlab reads the segment of the results file presented in Listing 

6-1 will be illustrated. For this purpose, the code used for reading the segment 

will be shown and explained line by line.  

The function Fil2str (fil file to string conversion), the code of which is shown in 

Listing 6-2, opens the ABAQUS results file for reading only, reads the data in this 

file by considering it as a string and concatenating lines horizontally, so that the 

cell array C contains a single line string. It is reminded that all lines starting with 

“%” are not executed and are treated as comments. Special characters as 

delimiters, whitespaces or end of line characters are not specified. The 

concatenation in a single line during execution of textscan does not happen in 

previous versions of Matlab, and therefore the newline and carriage return 

characters of the string A contained in the 1 x 1 cell array C have to be deleted 

(replaced with nothing) by applying two strrep (string replacement) commands 

consecutively, as shown in lines 19 & 21 of the code shown in Listing 6-2, in order 

to yield a single line string containing all information of the results file. A single 

line output string is necessary, since this is the only way to manipulate whole 

records easily, avoiding interruptions due to continuation to subsequent lines. 
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After the application of Fil2str function, all lines of the segment in Listing 6-1 will 

be arranged in a single line as shown in Listing 6-3. 
Line Code 

1 function Rec = Fil2str(ResultsFileName) 

2 % Open the results file for reading 

3 fileID = fopen(ResultsFileName,'r'); 

4 
% Read data from results file as a string and assign them to a 

cell array 

5 
% Concatenate each line without specifying delimiter, whitespace 

or end of 

6 % line characters 

7 try 

8 
    C = textscan (fileID, '%s', 'CollectOutput', '1', 

'delimiter', ... 

9         '','whitespace','','endofline',''); 

10 catch 

11 
    C = textscan (fileID, '%s', 'CollectOutput', 1, 'delimiter', 

... 

12         '','whitespace','','endofline',''); 

13 end 

14 % Close the results file 

15 fclose(fileID); 

16 % Assign A 

17 A = C{1}{1}; 

18 % Remove newline characters 

19 A1 = strrep(A,sprintf('\n'),''); 

20 % Remove carriage return characters 

21 Rec = strrep(A1,sprintf('\r'),''); 

Listing 6-2: Matlab code of the function Fil2str.m. 

. . .4D-02D 1.732049942016602D+00D 1.732049942016602D+00D 1.732049942016602D+00*I 1 9I 

41901I 32 62D 1.147152855992317D-01D-1.638304144144058D-01D 7.500000298023224D-02D 

1.73204994201660 2D+0 0D 1.732049942016602D+00D 1.732049942016602D+00*I 1 9I 41 901I 

3263D 1.285575181245804D-01D-1. 532088816165924D-01D 7.500000298023224D-02D 1 

.732049942016602D+00D 1.732049942016602D +00D 1. 732049942016602D+00*I 19I 41901I3264D 

1.414213627576828D-01D-1.414213627576828D-01D 7.50000029 8023224D-02D 

1.732049942016602D+00D 1.732049942016602D+00D 1.732049942016602D+00*I 19I 41901I 3 265D 

1.532088816165924D-01D-1.285575181245804D-01D 7.500000298023224D-02D 1.732049 9. . . 

Listing 6-3: Single line string extracted from the data in Listing 6-1. 

The single line string, after being produced by Fil2str function, enters another 

suitable function specified by the user, depending on the type of the results to be 

extracted from this string. The string shown in Listing 6-3 contains node 

definition data (which are identified by the record key 1901 in ABAQUS) and a 

function which can read node definitions from the string must be used. Of 

course, the string may contain more than one types of data (such as nodal 

displacements, for example), but there is not a unique function which can extract 

all types of data from a string. For each type of data to be extracted, the 

corresponding function has to be used. Abaqus2matlab contains different 

functions which can read different types of results from a single line string that 

has been produced from a results file. To avoid confusion, there is a standard 

naming convention of these functions. For example, in order to extract node 
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definition results (record key 1901 as mentioned above) the function Rec1901.m 

has to be used, namely, the name of the function is comprised of “Rec” followed 

by the record key of the results to be read. In the string shown in Listing 6-3, the 

results correspond to record key 1901. Therefore, the function Rec1901 has to be 

used to read these results. The code of all such functions follows a similar logic, 

which does not differ significantly from the logic described for the code of the 

function Rec1901.m. The application of this function is explained in the following. 

 

Line Code 

1 function out = Rec1901(Rec) 

2 ind = strfind(Rec,'I 41901'); % record key for node output (1901) 

3 if isempty(ind) 

4     out=[]; 

5     return; 

6 end 

7 nextpos=numel('I 41901')+1; 

8 % Initialize 

9 NodeNum=zeros(numel(ind),1); 

10 % Initialize record length matrix 

11 NW=zeros(numel(ind),1); 

12 for i=1:numel(ind) 

13     % find the record length (NW) 

14     Rec2=Rec(ind(i)-7:ind(i)); 

15     indNW=strfind(Rec2,'*'); % record starts with * 

16     % ensure that the record exists and that the record type key is at 

17     % location 2 

18     if isempty(indNW) || indNW>3 

19         ind(i)=NaN; 

20         continue; 

21     end 

22     % number of digits of record length 

23     ind1=indNW+2; 

24     ind2=indNW+3; 

25     a1=str2num(Rec2(ind1:ind2)); 

26     % Record length (NW) 

27     ind1=ind1+2; 

28     ind2=ind2+a1; 

29     NW(i)=str2num(Rec2(ind1:ind2)); 

30 end 

31 NodeCoords=zeros(numel(ind),max(NW)-4); 

32 for i=1:numel(ind) 

33     % number of digits of node number 

34     ind1=ind(i)+nextpos; 

35     ind2=ind(i)+nextpos+1; 

36     a1=str2num(Rec(ind1:ind2)); 

37     % Node number 

38     ind1=ind1+2; 

39     ind2=ind2+a1; 

40     NodeNum(i)=str2num(Rec(ind1:ind2)); 

41     % Node coordinates 

42     for j=1:NW(i)-4 

43         % node coordinate 

44         ind1=ind2+2; 

45         ind2=ind2+23; 

46         NodeCoords(i,j)=str2num(Rec(ind1:ind2)); 

47     end 
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48 end 

49 % Assemply of matrices for output 

50 out=[NodeNum NodeCoords]; 

51 end 

Listing 6-4: Matlab code of the function Rec1901.m. 

The Rec1901.m function works as follows. In order to accelerate matrix storage in 

Matlab, preallocation of the results matrix has to be made, especially for large 

output. In order to preallocate the results matrix, the record length has to be 

known. To find the record length, the positions of the record key in ASCII form 

(“I 41901”) are found first using the strfind function (line 2). The position of the 

record key is meant to be the position of its first character (i.e. the character I). 

These positions for the example string in Listing 6-3 are [235   391   546]. After 

this, a typical check is made if the array ind is empty (i.e. if no string “I 41901” is 

found). In positive case, the function is exited giving as output an empty matrix 

(lines 3 – 6). This case can be encountered if in the results file no nodal definition 

data are written for some reason.  

Thereafter, the record length matrix is initialized, having number of rows equal 

to the number of elements in ind array. It is known that the record length is 

written one position before the record key number and therefore the pointer goes 

back from the position of the record key by a default number of 7 characters and 

stores these characters in string Rec2. After this, the string Rec2 is searched for 

“*”, to determine the positions where the records start. If there is not an asterisk, 

then this means that the record does not start within these seven characters, and 

consequently the string “I 41901” does not signify a record key (it could be the 

number of a node in an element definition for example). Another point to be 

noted is that indNW (which shows the location of the asterisk (*) within the 

seven characters preceding the string “I 41901”) cannot be larger than 3; this 

would mean that the first data item of the record includes less than 7-3=4 

characters, which is not possible, since if this occurs, only the number of digits of 

the record length will be known, and not the record length itself (three 

characters include the character I followed by at most two numerical characters). 

In any of the two cases, ind is set equal to NaN, so that results in the 

corresponding positions are not read. After having ensured that indNW shows 

the position of the beginning of a record, the number of digits of the record 

length is read using the function str2num, which converts a string into a number. 

In a similar way, the record length is read (with indexing based on the number of 

its digits given previously) and assigned to array NW.  

Having formed the array NW, its maximum value is taken to set the number of 

columns of the output matrix at preallocation, denoted as out. The number of 

rows of this matrix is set to be equal to the number of elements of ind. After this, 

the elements of ind (i.e. position of the second data item of records giving node 

definition results) are scanned and for each element the number of digits of node 

number is determined first, then the node number, and finally the nodal 
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coordinates, by the insertion of a for loop within each record definition, intended 

to scan the three coordinates (x,y,z) of each node. Finally, the node numbers and 

the node coordinates are concatenated horizontally to form the output array out. 

 

6.2.4 Use of Abaqus2Matlab 

Before using the Abaqus2Matlab toolbox, the user has to be aware of the various 

source codes contained and how they are organized. Knowledge of the source 

codes will enable the user to use the toolbox more effectively to perform the 

desired postprocessing of the ABAQUS results. In this section, after a description 

of how the various files are organized in the toolbox, detailed instructions are 

given for the use of Abaqus2Matlab.  

6.2.4.1 Organization of the source code 

The source code files and folders used in the toolbox are the following: 

 A function named Fil2str.m that converts the contents of the results file 

into a one-row string from which the desired output is retrieved, as already 

mentioned in previous sections. 

 A folder named OutputAnalysis which contains the functions available for 

the processing of the results of analysis type (e.g. node definitions, element 

connectivity, eigenfrequencies and eigenvalues, etc). A table of variables available 

for analysis output requests is shown in Table 6-3. The first column (with title 

“record type”) describes the variable which is written in the ABAQUS results file 

for the corresponding record key shown in the second column. In the third 

column the output variable identifier is written. The output variable identifier is 

the identifying key for the variables to be written to the results (.fil) or selected 

results (.sel) file. The keys are defined in the sections “ABAQUS/Standard output 

variable identifiers” and “ABAQUS/Explicit output variable identifiers” of the 

ABAQUS Analysis User's Guide. In the fourth column, the Matlab function 

suitable for the extraction of the corresponding variable from the ABAQUS 

results file is shown.  

 A folder named OutputNodes which contains the functions available for 

the processing of the results of nodal type (e.g. node displacements, concentrated 

forces, nodal temperatures, etc). A table of variables available for nodal output 

requests is shown in Table 6-4 The variables are ordered according to the output 

variable identifiers’ names, alphabetically. 

 A folder named OutputElements which contains the functions for the 

processing of the element results (results at the element integration points or 

results regarding whole elements, e.g. total strains, section forces and moments, 

etc). A table of variables available for element output requests is shown in Table 

6-5. The variables are ordered according to the output variable identifiers’ names, 

alphabetically. 
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 A folder named Verification, which contain Matlab scripts for the 

verification of the Fil2str.m and the various RecX.m functions (where X is the 

record key). All the functions provided with the Abaqus2Matlab toolbox and 

associated with obtaining analysis, element or nodal results are verified to ensure 

that they work correctly and they are not error-prone. In the verification process, 

an appropriate ABAQUS input file (in which the option for the extraction of the 

desired results in an ASCII results file (.fil) is specified), is run by ABAQUS. After 

the ABAQUS analysis terminates and the results file is created in the ABAQUS 

working directory, it is processed appropriately by Abaqus2Matlab to obtain the 

requested results. Finally, the results are presented and checked with regard to 

their class and size. The verification of Abaqus2Matlab toolbox was made using 

ABAQUS 6.13. 

 A folder named ABAQUSInputFiles which contains the input files which 

are run by ABAQUS for the verification procedure. Each ABAQUS input file is 

named with a number (let it be Y) which is the record key of the corresponding 

output variable identifier, followed by the extension “.inp”. The ABAQUS input 

file Y.inp is run by ABAQUS and produces results which are retrieved (after 

ABAQUS completes the analysis) by the function RecY.m. 

 A folder named help which contains all Matlab source codes which are 

intended to print the contents of the ABAQUS input files contained in the folder 

ABAQUSInputFiles. 

 A folder named html which contains all the html files of the 

documentation of Abaqus2Matlab, including the html files produced by 

publishing the verification examples. All the verification examples contained in 

the folder Verification and the ABAQUS input files contained in the folder help 

are published by Matlab in this folder and are accessible through the 

documentation. 

 

ANALYSIS RECORD TYPE RECORD KEY 

OUTPUT VARIABLE 

IDENTIFIER FUNCTION 

Element definitions 1900 - Rec1900.m 
Node definitions 1901 - Rec1901.m 
Modal 1980 - Rec1980.m 

 Table 6-3: List of variables available in Abaqus2Matlab for analysis output requests 

 

NODAL RECORD TYPE RECORD KEY OUTPUT VARIABLE 
IDENTIFIER 

FUNCTIO
N 

Nodal Acceleration 103 A Rec103.m 

Concentrated Electrical 
Nodal Charge 

120 CECHG Rec120.m 

Concentrated Electrical 
Nodal Current 

139 CECUR Rec139.m 

Nodal Point Load 106 CF Rec106.m 

Concentrated Flux 206 CFL Rec206.m 
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Nodal Coordinate 107 COORD Rec107.m 

Fluid Cavity Volume 137 CVOL Rec137.m 

Electrical Potential 105 EPOT Rec105.m 

Motions (in Cavity 
Radiation Analysis) 

237 MOT Rec237.m 

Normalized 
Concentration (Mass 
Diffusion Analysis) 

221 NNC Rec221.m 

Temperature 201 NT Rec201.m 

Fluid Cavity Pressure 136 PCAV Rec136.m 

Pore or Acoustic Pressure 108 POR Rec108.m 

Electrical Reaction 
Charge 

119 RCHG Rec119.m 

Electrical Reaction 
Current 

138 RECUR Rec138.m 

Nodal Reaction Force 104 RF Rec104.m 

Residual Flux 204 RFL Rec204.m 

Internal Flux 214 RFLE Rec214.m 

Reactive Fluid Volume 
Flux 

109 RVF Rec109.m 

Reactive Fluid Total 
Volume 

110 RVT Rec110.m 

Total Force 146 TF Rec146.m 

Nodal Displacement 101 U Rec101.m 

Nodal Velocity 102 V Rec102.m 

Viscous Forces Due to 
Static Stabilization 

145 VF Rec145.m 

 Table 6-4: List of variables available in Abaqus2Matlab for nodal output requests. 

 

ELEMENT RECORD TYPE RECORD 
KEY 

OUTPUT VARIABLE 
IDENTIFIER 

FUNCTION 

Creep Strain (Including 
Swelling) 

23 CE Rec23.m 

Mass Concentration (Mass 
Diffusion Analysis) 

38 CONC Rec38.m 

Concrete Failure 31 CONF Rec31.m 

Coordinates 8 COORD Rec8.m 

Unit Normal to Crack in 
Concrete 

26 CRACK Rec26.m 

Total Strain 21 E Rec21.m 

Total Elastic Strain 25 EE Rec25.m 

Energy (Summed over 
Element) 

19 ELEN Rec19.m 

Energy Density 14 ENER Rec14.m 

Mechanical Strain Rate 91 ER Rec91.m 



164 Chapter 6 

 

 

Whole element volume 78 EVOL Rec78.m 

Film 33 FILM Rec33.m 

Total Fluid Volume Ratio 43 FLUVR Rec43.m 

Pore Fluid Effective 
Velocity Vector 

97 FLVEL Rec97.m 

Gel (Pore Pressure 
Analysis) 

40 GELVR Rec40.m 

Heat Flux Vector 28 HFL Rec28.m 

Total Inelastic Strain 24 IE Rec24.m 

Logarithmic Strain 89 LE Rec89.m 

Nominal Strain 90 NE Rec90.m 

Nodal Flux Caused by Heat 10 NFLUX Rec10.m 

Plastic Strain 22 PE Rec22.m 

Pore or Acoustic Pressure 18 POR Rec18.m 

Radiation 34 RAD Rec34.m 

Stress 11 S Rec11.m 

Saturation (Pore Pressure 
Analysis) 

35 SAT Rec35.m 

Section Strain and 
Curvature 

29 SE Rec29.m 

Section Force and Moment 13 SF Rec13.m 

Stress Invariant 12 SINV Rec12.m 

Strain Jump at Nodes 32 SJP Rec32.m 

Principal stresses 401 SP Rec401.m 

Average Shell Section 
Stress 

83 SSAVG Rec83.m 

Element Status 61 STATUS Rec61.m 

Section Thickness 27 STH Rec27.m 

Thermal Strain 88 THE Rec88.m 

 Table 6-5:  List of variables available in Abaqus2Matlab for element output requests 

 

6.2.4.2 Instructions for use of Abaqus2Matlab 

To use Abaqus2Matlab, the instructions below have to be followed: 

 Ensure that ABAQUS license server is running. 

 Open the file named Documentation.m in Matlab and run it (press F5). 

This action virtually sets up all files and folders contained in the Abaqus2matlab 

toolbox, including the documentation. It is noted that the files generated during 

ABAQUS analyses will be placed one level up (outside) of the toolbox folder. The 

command “S=pwd” finds the directory containing the file Documentation.m, 

wherever may it be. The command “addpath(genpath(S))” does the setup. 

 To extract an arbitrary ABAQUS analysis result from an ABAQUS results 

file, initially the record key and the output variable identifier have to be specified. 
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These can be obtained from Table 6-3 for an analysis-type output, Table 6-4 for a 

node-type output, and Table 6-5 for an element-type output. 

 The syntax of each RecX.m function has to be known (especially regarding 

its output). To view the syntax of an arbitrary RecX.m function type “doc RecX” 

or “help RecX” (where X is the record key) in the Matlab command window. The 

first option shows the function manual in a Matlab browser, whereas the second 

option shows the function manual in the Matlab command window. In the 

manual of each function the necessary options to be included in the 

corresponding ABAQUS input file are shown. 

 Create the ABAQUS input file and place it in the folder of the 

Abaqus2Matlab toolbox (at least at the same level as the Documentation.m script 

and anyway not outside the toolbox folder). 

 Run the ABAQUS input file by typing in the Matlab command window 

“!ABAQUS job=X”, then enter. After the analysis terminates, the results file X.fil is 

generated in the same directory as the X.inp file. The results file is then read by 

Abaqus2Matlab to extract the requested results. 

 Type in the Matlab command window “Rec=Fil2str('X.fil')”. The variable 

Rec is a one-row string containing the information included in the X.fil file. 

 Type in the Matlab command window “out=RecX(Rec)”. The variable out 

contains the requested results, extracted from the X.fil results file. It will be 

generally a double or cell array. For more information about the identity and/or 

physical meaning of each element contained in this array, one can refer to the 

manual of the function RecX.m, mentioned in section “Results file output format” 

of the ABAQUS Analysis User's Guide. 

 

6.3 Abaqus2Matlab – optimization 

6.3.1 Aspects of coupling different optimizer and solver software 

Structural optimization is a research field dealing with optimal design of load-

carrying mechanical structures. The standard form of a structural optimization 

problem is as follows: 

 
Minimize: 

  f x  (6.1)  

Subject to: 

  ig x 0 , i 1,...,m  (6.2)  

  jh x 0 , j 1,...,p  (6.3)  

 

In structural optimization problems, the evaluation of structural (static and/or 

dynamic) response is involved in at least one of the functions f, g, h as shown in 

(6.1), (6.2) and (6.3) respectively, either directly or indirectly. Semi – analytic 
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implementations of structural solvers within optimization algorithms that 

improve the overall computational performance have been published by Dafalias 

& Dupuis (1972) and by Chern et al. (1973). Abaqus2Matlab provides an interface 

between Matlab which serves as the optimization environment, and ABAQUS, 

which serves as the structural analysis solver. In such cases where interfaces are 

used for coupling the optimization software and the solver software, it is of 

paramount importance that the user takes into consideration two major 

components of the optimization procedure which are (1) formulation and way of 

solving the optimization problem and (2) sensitivity and approximation issues. 

These are described below, along with various recommendations to the 

Abaqus2Matlab user, in order to enjoy the best possible solutions to optimization 

problems using the Abaqus2Matlab software. 

6.3.1.1 Formulation 

The formulation of an optimization problem affects the success of the optimum 

design process in terms of computational effort and quality of results. Numerical 

difficulties result mainly from the following reasons: 

 Usage of highly nonlinear objective or constraint functions. The gains in 

the convergence rate are apparent when linear formulations inside the objective 

and constraint functions of the optimization problem are used. In some cases, 

nonlinear formulations can be converted into equivalent linear and thus simplify 

the problem. 

 Large differences between the magnitudes of the design variables, 

objective function(s) and constraint function(s). This problem can worsen if the 

software involved in the optimization procedure are not numerically robust. The 

best option in this case is to normalize the design variables, objective function(s) 

and equality constraint(s) to order 1 by scaling, and to normalize the inequality 

constraint(s) by the maximum or minimum value used to form them. 

 Determination of the set of active constraints. If all the constraints are 

considered during the search process, the computational effort may be very high, 

whereas the consideration of only the constraints that are active or nearly active 

at a trial solution may lead to spurious oscillations and therefore inability for 

convergence. An appropriate and robust methodology for the consideration of 

the active set of constraints is a vital component of an optimization algorithm 

and must be carefully selected.  

 The ABAQUS structural analysis model depends on the formulation of the 

optimization problem running in Matlab, in which it participates. While 

sometimes a detailed ABAQUS model is required to verify a case, if the same 

ABAQUS model is involved in an optimization procedure in Matlab, it needs to 

be appropriately simplified and/or reduced, so that the increase in the 

computational load is not prohibitively high, given the fact that a large number of 

ABAQUS analyses are induced by the optimization algorithm running in Matlab. 
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 The formulation of the optimization problem in Matlab sometimes 

depends on the ABAQUS model. If the sensitivity of the ABAQUS FE analysis 

results with respect to the design variables is low, then there is room for the use 

of a relatively simple and more straightforward optimization algorithm in Matlab; 

otherwise, depending on the complexity of the ABAQUS model, the optimization 

algorithm that will be used in Matlab must meet the ABAQUS model 

requirements.  

 The ABAQUS FE analysis and Matlab optimization procedure can be 

integrated on a step-by-step basis, especially when the ABAQUS analysis in 

highly nonlinear. It is possible to combine the FE analysis and optimum design 

iterations in a single iterative process using Abaqus2Matlab. 

6.3.1.2 Sensitivity 

This aspect is related either to high gradients of the objective and/or constraint 

function(s) with respect to the design variables, or to the existence of jumps in 

the variation of these functions. The sensitivity of an optimization algorithm is 

influenced by the efficient calculation of derivatives of the objective and 

constraint function(s), with respect to the design variables. The importance of 

these derivatives is apparent, as they are usually used for: 

 Approximate constraint evaluations to reduce the computational effort 

associated with exact evaluations 

 Evaluation of the direction at which the optimization algorithm will 

proceed in each step to reach a solution which is better than the current 

 

The sensitivity of the derivatives clearly affects the accuracy of the optimum 

solution as well as the stability of the optimization algorithm. In cases that the 

sensitivity of the derivatives is high, the following options are proposed: 

 Suitable re-formulation of the optimization problem so that the 

optimization domain contains fewer or no irregular (singular) points. 

Quantitatively, estimation of the degree of irregularity of the search region is a 

matter of experience and can be crudely calculated by the ratio of the largest to 

the smallest eigenvalue of the Hessian matrix of the objective function at the 

optimal point, only in the case of unconstrained optimization problems. 

 Substitute of the used optimization algorithm with another algorithm that 

uses fewer derivatives and/or has superlinear convergence rate, unless the 

computational load per iteration becomes prohibitively high. If a sequence 

1 2 nx ,x ,..., x
 converges to a value r and if there exist real numbers 0   and a 1  

such that  

 n 1

a
n

n

x r
lim

x r






 


 (6.4)  

then a is the rate of convergence of the sequence. 
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From the above it is apparent that the selection of the optimization algorithm is 

case-dependent, and it is nearly impossible to assert without ambiguity that an 

algorithm is generally better than another. 

 

6.3.2 Structural analysis solver function using Abaqus2Matlab 

The main purpose of Abaqus2Matlab as an interface within an optimization 

procedure is to play the role of the structural analysis solver in an automated and 

reliable way, non-prone to errors. For this purpose, Abaqus2Matlab follows a 

certain workflow, which is different among its various components, e.g. it is 

different between Abaqus2Matlab/fil2Matlab (responsible for processing 

ABAQUS results (*.fil) files), and Abaqus2Matlab/odb2Matlab (responsible for 

processing ABAQUS output data base (*.odb) files). In this thesis, the fil2Matlab 

component is used. The workflow is shown in Figure 6-1 and is executed as 

follows: 

 The ABAQUS input file that corresponds to the current values of the 

design variables x is generated. This job is done by the Abaqus2Matlab function 

InpFileConstr.m. This function apparently depends on the ABAQUS model and 

the way that it is parameterized. x is a vector containing the current values of the 

design variables. The function InpFileConstr.m does not give any output. The 

following option with its parameter has to be specified in the ABAQUS input file 

in order for the results (*.fil) file to be generated: 

... 

*FILE FORMAT, ASCII 

... 

 After the ABAQUS input file is generated, it is run remotely by 

Abaqus2Matlab, through the function runABAQUSAnalysis.m. This function 

accepts the name of the ABAQUS input file to be run, an upper time limit tub and 

a lower time limit tlb. ABAQUS execution starts and afterwards Matlab execution 

is halted, waiting until any of the following events happens: 

(1) ABAQUS execution starts normally and the ABAQUS lock (*.lck) file 

is deleted. This is the normal case. 

(2) ABAQUS execution starts normally and tub is exceeded (i.e. for some 

reason ABAQUS execution is lagged). In this case, ABAQUS analysis is 

automatically terminated and executed again. 

(3) ABAQUS execution starts but the ABAQUS lock (*.lck) file is not 

generated, and tlb is exceeded (most likely the execution of the process 

SMASimUtility.exe is lagged). In this case, the process SMASimUtility.exe is 

automatically killed and the ABAQUS analysis is executed again. 

In this function Java variants of various Matlab commands are used where 

possible, in order to avoid memory leaks which may cause lags or crashes of 

ABAQUS execution. Furthermore, the Java commands are proven to be much 

more accurate than the corresponding Matlab commands.  
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 After the ABAQUS analysis has been completed, control is passed back to 

Matlab and then the Fil2str.m function is used to read the information contained 

in the ABAQUS results (*.fil) file in ASCII format and assemble it into a one-row 

string. The function Fil2str.m initially opens the results file with reading only 

permission, then reads the data included in this file as an assembly of strings 

within a cell structure, and finally it removes any newline and carriage return 

characters from these strings, eventually resulting in a single-row string that is 

passed as output (output argument s). Provisions are taken in order to ensure 

that the Fil2str.m function works for any Matlab version that the user may be 

running.  

 

 
Figure 6-1: Flowchart of the Abaqus2Matlab application as a structural analysis solver 

function. 

 

The single line string that is output by the function Fil2str.m is processed by 

another suitable function that is specified by the user, depending on the type of 

the desired ABAQUS results. Of course, the string may contain more than one 

types of data (such as nodal displacements and element stresses for example), for 

the extraction of which different functions must be selected by the user then 

using the open source version of Abaqus2Matlab (v.1.0). This feature has been 

improved in the second version of Abaqus2Matlab, where a single function is 

used for any type of ABAQUS results that are extracted, and the user has only to 

specify the record key as an input argument to this function. In the first (open 

Abaqus2Matlab solver                                                                                               

Design

Variables (x)

InpFileConstr.m

Data contained in 

Abaqus results file (s)

Abaqus FEA result (y1)

runAbaqusAnalysis.m

Fil2str.m

RecXXX1.m

Abaqus FEA result (y2)

RecXXX2.m

Abaqus input file

(*.inp)

Abaqus results file

(*.fil)
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source) version of Abaqus2Matlab there is a standard naming convention of these 

functions, i.e. RecXXX.m as shown in Figure 6-1, where XXX is replaced with the 

record key corresponding to the desired result. For example, in this section the 

function Rec101.m was used to extract nodal displacement results (record key 101), 

whereas the function Rec13.m was used to extract element section forces (record 

key 13). 

6.3.3 Use of Abaqus2Matlab for optimum structural design 

The aforementioned description is applicable for the implementation of any 

structural analysis solver function using Abaqus2Matlab. Consequently 

Abaqus2Matlab can be used for any structural optimization problem that is 

solvable in ABAQUS. In the following the implementation of Abaqus2Matlab for 

the solution of structural optimization problems will be shown, for cases in which 

the Matlab fmincon function is used as the optimizer.  

There are various patterns for using the Abaqus2Matlab solver within the 

framework of the Matlab fmincon function. Figure 6-2 presents the relevant 

schematic flow diagram of possible ways of inclusion of the Abaqus2Matlab 

solver. It is possible to use Abaqus2Matlab for the objective function evaluation 

(Case 1) or not (Case 2). The same happens with the constraint function 

evaluation. Therefore the Abaqus2Matlab solver that is presented in Figure 6-1 

can be used as shown in Figure 6-2 for the evaluation of either the objective 

function, or the constraint function, or both of them. Since we are dealing with a 

structural optimization problem, it is necessary that at least one of the two 

functions (objective and constraint functions) implements the flowchart of Case 

1. In the present section, the Abaqus2Matlab was used only in the constraint 

function evaluation, i.e. Case 2 and Case 1 were used for the objective and 

constraint functions respectively. Instructions about the proposed methodology 

in order to  
Figure 6-2: Flowchart of the possible uses of Abaqus2Matlab for the objective and 

constraint function evaluations within the framework of the Matlab fmincon function. 

Objective function                                                

Case 1 Case 2

Abaqus2Matlab Solver

(Figure 1)

Input:

Output:

 f x

x

Constraint function                                                  

Case 1 Case 2

Abaqus2Matlab Solver

(Figure 1)

Input:

Output:

 g x

 h x

x

Matlab fmincon function

Input:

Output:

 f x

x
Input:

Output:

x

 g x

 h x



Chapter 6 171 

 

 

 

 

 
Figure 6-3: Suggested methodology for setting up and performing a structural 

optimization problem using Abaqus2Matlab. 

 

setup and solve a structural optimization problem are shown in Figure 6-3. 
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6.4 Abaqus2Matlab – verification  

Verification is a substantial process for any software, which is has to be done for 

the following reasons: 

 It provides substantial evidence for the effectiveness, accuracy and 
robustness of a software 

 It renders a software computationworthy, by building trust to its users 

 It provides ways for the correct interpretation of the results from the 

usersand/or developers 

 The cases that are used for the verification can be used as a template for 

various more complex postprocessing tasks.  

 It provides hints on how to alleviate computationally intensive processing 
tasks. 

In the following, three benchmark truss optimization problems will be solved 

with Abaqus2Matlab as a verification process. 

6.4.1 2-bar truss 

6.4.1.1 Description 

Consider a 2-bar plane truss shown in Figure 1 with the following structural 

characteristics:  

• Modulus of Elasticity: E = 68.948 GPa 

• Material unit weight: ρ = 2767.990 kg/m3 

• L = 9.144 m 

• P = 444.974 kN 

A concentrated force is applied at node 2 of the truss, whereas all degrees of 

freedom of nodes 1 and 3 are constrained (hinged). A linear elastic static analysis 

is performed to determine the displacements of the free node. The element 

numbers are shown near the middle of each element, whereas the node numbers 

are encircled.  
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Figure 6-4: 2-bar truss. 

 

The objective of the optimization procedure is to minimize the weight of the 

truss, which entails that minimum quantity of material will be used for its 

construction, meaning maximization of structural economy. Minimization of 

weight is associated with minimization of volume, since density is constant and 

the same for all members of the truss. Since the length of the various members of 

the truss does not change during the optimization process, minimization of 

weight means minimization of the members’ cross-sectional area. The design 

variables are the cross section area of each member in the interval 

[0.003650822800775, 0.0225806] (m2). The truss structure with the minimum 

weight has to satisfy certain constraints which are imposed on stresses and 

displacements. The maximum allowable displacement in the ±x and ±y directions 

for each node is dmax = 0.0508 m, while the maximum allowable stress (absolute 

value) is σmax= 172.369 MPa in tension or compression. The lower limit of cross 

section area is determined from the fact that the axial stresses cannot exceed the 

aforementioned maximum allowable value. Considering horizontal and vertical 

equilibrium of the truss, it is found that member 1 is loaded with compressive 

axial force equal to P , whereas member 2 is loaded with extensional axial force 

equal to 2P . Therefore, the critical member is the latter, and the stress 

inequality is written as: 

 max max min

min m

2

ax

2P 2P
0.003650822800A

A
775m        


 (6.5)  

It is apparent that by specifying the lower limit of the member cross section area 

in this way, the constraints of maximum allowable stresses are automatically 

satisfied and need not be considered explicitly in the optimization procedure. 

Consequently, only constraints regarding displacements will be considered. 

 

6.4.1.2 Implementation 

The problem is solved by executing a main Matlab script in which various 

variables are firstly defined and finally the built in function fmincon.m is used to 

perform the optimization process. Apart from fmincon.m, other user defined 

external functions are used as well. All scripts and functions are explained in the 

following. 

 Main script 

The main Matlab script is shown in Listing 6-5. Initially, the variable tABAQUS is 

declared as global, in order to be “seen” by the function TrussConfun.m, without 

being among its input arguments. The syntax of the functions specified as input 

arguments to fmincon.m has a standard format and specific input arguments. 

Therefore, if a variable different from the default input arguments has to be 

passed inside such a function, it has to be declared as global. NumElements is 

equal to the number of elements of the truss. At line 5, NumElements is set to be 
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2. After this, an initial guess x0 is made for the cross-sectional areas of the 2 bars 

of the truss. This is a vector of dimensions 2x1, containing these initial values. 

Next, the upper and lower limits of the design variables (cross-sectional areas of 

the bars of the truss) are specified. All design variables cannot be lower than 

0.003650822800775 m2 and higher than 0.0225806 m2, as already mentioned in 

the previous section. AreaMin and AreaMax are the minimum and maximum 

cross-sectional area of the members respectively. lb and ub are the vectorized 

lower and upper limits respectively (size 2x1) only for purposes of suitability as 

input arguments for the fmincon function. At lines 15 – 18 nondefault options are 

specified for the fmincon function. Specifically, options.TolFun 

(FunctionTolerance) is a lower bound on the change in the value of the objective 

function (i.e. the weight of the truss) during a step and options.TolCon 

(ConstraintTolerance) is an upper bound on the magnitude of the constraint 

functions. options.Display is the level of display at the command window, 

specified to display output at each iteration and give the technical exit message. 

At lines 20 & 21 the timer and tABAQUS variable are initialized. At lines 23 and 24 

the fmincon function is called with the following input arguments: 

• Objective function: TrussObjfun.m 

• Initial point: x0 

• Lower bounds: lb 

• Upper bounds: ub 

• Constraint function: TrussConfun.m 

• Options: options 

The objective and constraint functions will be explained in the following sections. 

 

 TrussObjfun.m 

The script of this function is shown in Listing 6-6. The input argument of the 

objective function is a vector of size 2x1, containing the current values of the 

design variables. The output of the objective function is the weight of the truss. 

 TrussConfun.m 

The script of this function is shown in Listing 6-7. The input argument of the 

constraint function is the same as that of the objective function. Initially the 

variable tABAQUS is declared as global, in order to be increased by the time 

ABAQUS takes to perform the static analysis of the truss. In lines 6 & 8 the 

maximum absolute value of horizontal displacement and the maximum absolute 

value of vertical displacement are set respectively. Next, the ABAQUS input file 

TrussABAQUS.inp is created, which is run by ABAQUS to give the results. The 

code of function TrussInpFileConstr.m is presented in Listing 6-8. After this, the 

time elapsed till the start of ABAQUS analysis is reported in variable t1. In the 

sequel, the input file TrussABAQUS.inp starts to be processed by ABAQUS at line 

14. To halt Matlab execution at this point till ABAQUS analysis terminates, a 

while loop is inserted at lines 19 – 21, which is executed under the condition that 

the ABAQUS TrussABAQUS.lck lock file exists in the working directory 
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(indicating that ABAQUS is running). As soon as ABAQUS analysis finishes, this 

file is automatically deleted by ABAQUS and the while condition becomes false, 

so Matlab proceeds with the next commands in the script. To give ABAQUS 

enough time to create the lock file, a pause of duration 10 sec is specified before 

the while loop starts (line 17). After ABAQUS stops running, the time elapsed is 

reported in variable t2 at line 23. The time difference t2-t1 is equal to the time 

ABAQUS takes for the analysis and is added to tABAQUS at line 25. At line 27, 

using the Fil2str function which is part of the Abaqus2Matlab toolbox, the 

contents of the ABAQUS results file named TrussABAQUS.fil are converted to an 

one-row string (Rec) from which the results will be retrieved. The function to 

read nodal displacements from Rec is found to be Rec101.m, and is applied to 

obtain the nodal displacements (line 29). After the extraction of the results from 

the results file the TrussABAQUS.fil, TrussABAQUS.prt, TrussABAQUS.com and 

TrussABAQUS.sim files are deleted at lines 32-35, because ABAQUS cannot 

rewrite them in the next call of the constraint function, where a new analysis 

takes place. Next, postprocessing of the aforementioned results takes place, 

which concludes in the formation of the inequality and equality vectors required 

as output of the constraint function in Matlab (c and ceq respectively in Listing 

6-7). 

 
Line Code 

1 % Declare ABAQUS time counter as global variable (used also in 

2 % TrussConfun.m) 

3 global tABAQUS 

4 % Specify the number of elements of the truss. 

5 NumElements=2; 

6 % Make a starting guess for the solution. 

7 x0 = [0.0037; 0.0049]; 

8 % Set the lower and upper limit of the cross section areas of the two 

9 % members of the truss. 

10 AreaMin=0.003650822800775; % P*sqrt(2)/maxstress 

11 AreaMax=0.0225806; 

12 lb=AreaMin*ones(1,NumElements); 

13 ub=AreaMax*ones(1,NumElements); 

14 % Set FunctionTolerance and StepTolerance 

15 options=optimset('fmincon'); 

16 options.Display='iter-detailed'; 

17 options.TolFun=1e-3; 

18 options.TolCon=1e-3; 

19 % Start timer 

20 tic 

21 tABAQUS=0; 

22 % Perform constrained optimization of the truss 

23 [X,fval,exitflag,output,lambda]=fmincon(@TrussObjfun,x0,[],[],[],[],... 

24     lb ,ub,'TrussConfun',options) 

25 % Report elapsed times (total, required by ABAQUS and required by Matlab 

26 % respectively) 

27 tTOTAL=toc 

28 tABAQUS 

29 tMATLAB=tTOTAL-tABAQUS 

Listing 6-5: Matlab code of the main script for the solution of the 2-bar truss problem. 
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Line Code 

1 function f = TrussObjfun(x) 

2 % Horizontal length 

3 u=9.144; 

4 % total weight 

5 f = 9.81*2767.990471*x'*u*[1;sqrt(2)]; 

6 end 

Listing 6-6: Matlab code of the function TrussObjfun.m used for the optimization of 
the 2-bar truss. 

 
Line Code 

1 function [c,ceq] = TrussConfun(x) 

2 % Declare ABAQUS timer as global variable 

3 global tABAQUS 

4 % Set the displacement limits of the 2-bar truss 

5 % maximum absolute value of horizontal displacement (m) 

6 Dmaxhor=0.0508; 

7 % maximum absolute value of vertical displacement (m) 

8 Dmaxver=0.0508; 

9 % Construct the ABAQUS input file TrussABAQUS.inp 

10 TrussInpFileConstr(x) 

11 % Report time before ABAQUS analysis starts 

12 t1=toc; 

13 % Run the input file TrussABAQUS.inp with ABAQUS 

14 !ABAQUS job=TrussABAQUS 

15 % Pause Matlab execution to give ABAQUS enough time to create the 

16 % TrussABAQUS.lck file 

17 pause(10) 

18 % If the TrussABAQUS.lck file exists then halt Matlab execution 

19 while exist('TrussABAQUS.lck','file')==2 

20     pause(0.1) 

21 end 

22 % Report time after ABAQUS analysis terminates 

23 t2=toc; 

24 % Add elapsed time to ABAQUS time counter 

25 tABAQUS=tABAQUS+t2-t1; 

26 % Assign all lines of the TrussABAQUS.fil file in an one-row string 

27 Rec = Fil2str('TrussABAQUS.fil'); 

28 % Obtain the nodal displacements 

29 out2 = Rec101(Rec); 

30 NodalDisplacements=out2(:,2:3); 

31 % Delete the files of last ABAQUS run to avoid rewriting them 

32 delete('TrussABAQUS.fil'); 

33 delete('TrussABAQUS.prt'); 

34 delete('TrussABAQUS.com'); 

35 delete('TrussABAQUS.sim'); 

36 % Calculate the maximum nodal displacements 

37 maxNodDisplX1=max(abs(NodalDisplacements(:,1))); 

38 maxNodDisplY1=max(abs(NodalDisplacements(:,2))); 

39 % Assemble the constraints 

40 c = [maxNodDisplY1-Dmaxver; 

41     maxNodDisplX1-Dmaxhor]; 

42 ceq = []; 

43 end 
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Listing 6-7: Matlab code of the function TrussConfun.m used for the optimization of 
the 2-bar truss. 

 TrussInpFileConstr.m 

In Listing 6-8 the code of TrussInpFileConstr.m function is shown. This function 

opens an empty notepad file named “TrussABAQUS.inp” (lines 3 & 4), prints the 

necessary input file options for the ABAQUS analysis (lines 6 – 48), and closes the 

file (line 50). As seen in Listing 6-8 the majority of options remain unchanged 

between ABAQUS analyses, except for lines 24 & 28, where the cross section area 

of the two truss members is specified as a function of the design variable x. This 

design variable is altered internally by fmincon function during the optimization 

procedure. 

 
Line Code 

1 function TrussInpFileConstr(x) 

2 % Open input file 

3 OutputFileName = 'TrussABAQUS.inp'; 

4 fileID = fopen(OutputFileName,'wt'); 

5 % Write options 

6 fprintf(fileID,' *Heading\n'); 

7 fprintf(fileID,' *Preprint, echo=NO, model=NO, history=NO, contact=NO\n'); 

8 fprintf(fileID,' *Part, name=Part-1\n'); 

9 fprintf(fileID,' *End Part\n'); 

10 fprintf(fileID,' *Assembly, name=Assembly\n'); 

11 fprintf(fileID,' *Instance, name=Part-1-1, part=Part-1\n'); 

12 fprintf(fileID,' *Node\n'); 

13 fprintf(fileID,'  1,    0,  0\n'); 

14 fprintf(fileID,'  2,    9.144,  0\n'); 

15 fprintf(fileID,'  3,    0,  9.144\n'); 

16 fprintf(fileID,' *Element, type=FRAME2D\n'); 

17 fprintf(fileID,'  1, 1, 2\n'); 

18 fprintf(fileID,'  2, 2, 3\n'); 

19 fprintf(fileID,' *Elset, elset=_PickedSet2_#1, internal\n'); 

20 fprintf(fileID,'  1,\n'); 

21 fprintf(fileID,' *Elset, elset=_PickedSet2_#2, internal\n'); 

22 fprintf(fileID,'  2,\n'); 

23 fprintf(fileID,' *FRAME Section, elset=_PickedSet2_#1, PINNED\n'); 

24 
fprintf(fileID,'  %s\n', [num2str(x(1),20),', 6.6597028096E-10, 0, 

3.7460828304E-10']);  

25 fprintf(fileID,'  0.,0.,-1.\n'); 

26 fprintf(fileID,'  68947572932, 1e3\n');   

27 fprintf(fileID,' *FRAME Section, elset=_PickedSet2_#2, PINNED\n'); 

28 
fprintf(fileID,'  %s\n', [num2str(x(2),20),', 6.6597028096E-10, 0, 

3.7460828304E-10']);  

29 fprintf(fileID,'  0.,0.,-1.\n'); 

30 fprintf(fileID,'  68947572932, 1e3\n');   

31 fprintf(fileID,' *End Instance\n'); 

32 
fprintf(fileID,' *Nset, nset=_PickedSet21, internal, instance=Part-1-

1\n'); 

33 fprintf(fileID,'  2\n'); 

34 
fprintf(fileID,' *Nset, nset=_PickedSet22, internal, instance=Part-1-

1\n'); 

35 fprintf(fileID,'  1, 3\n'); 

36 fprintf(fileID,' *End Assembly\n'); 



178 Chapter 6 

 

 

37 fprintf(fileID,' *Step, name=Step-1\n'); 

38 fprintf(fileID,' *Static\n'); 

39 fprintf(fileID,'  1., 1., 1e-05, 1.\n'); 

40 fprintf(fileID,' *FILE FORMAT, ASCII\n'); 

41 fprintf(fileID,' *Boundary\n'); 

42 fprintf(fileID,'  _PickedSet22, 1, 1\n'); 

43 fprintf(fileID,'  _PickedSet22, 2, 2\n'); 

44 fprintf(fileID,' *Cload\n'); 

45 fprintf(fileID,'  _PickedSet21, 2, -444974.11497\n'); 

46 fprintf(fileID,' *NODE FILE\n'); 

47 fprintf(fileID,'  RF, U\n'); 

48 fprintf(fileID,' *End Step\n'); 

49 % Close input file 

50 fclose(fileID); 

Listing 6-8: Matlab code of the function TrussInpFileConstr.m used for the 
optimization of the 2-bar truss. 

6.4.1.3 Result 

After the optimization analysis terminates, the results which appear in the 

Matlab command window are shown in Listing 6-9. From this, it is concluded 

that the local minimum has been reached, while satisfying the constraints. The 

design variables at the local minimum are [0.003651106365609, 

0.004819002266391] m2 and the minimum truss weight is equal to 

2.598717321129937 kN. The output structure contains information about the 

optimization process, e.g. the iterations taken and the number of objective 

function evaluations (6 and 21 respectively). Concerning running times which 

appear in the command window, it is evident that the majority of the running 

time is consumed by ABAQUS (99.79%) whereas Matlab (including the 

Abaqus2Matlab toolbox) takes the rest (0.21%). 
Command Window 
                                            First-order      Norm of 

 Iter F-count            f(x)  Feasibility   optimality         step 

    0       3    2.639299e+03    0.000e+00    1.731e+03 

    1       6    2.222749e+03    9.909e-03    1.348e+02    1.155e-03 

    2       9    2.221682e+03    9.944e-03    5.491e+01    2.938e-06 

    3      12    2.233984e+03    9.533e-03    1.664e+03    3.466e-05 

    4      15    2.519902e+03    1.695e-03    1.008e+05    8.157e-04 

    5      18    2.595075e+03    7.575e-05    8.515e+03    2.146e-04 

    6      21    2.598717e+03    1.718e-07    1.473e+02    1.135e-05 

 

Optimization completed: The relative first-order optimality measure, 

4.195356e-04, 

is less than options.TolFun = 1.000000e-03, and the relative maximum 

constraint 

violation, 1.717630e-07, is less than options.TolCon = 1.000000e-03. 

 

Optimization Metric                                         Options 

relative first-order optimality =   4.20e-04       TolFun =   1e-03 

(selected) 

relative max(constraint violation) =   1.72e-07    TolCon =   1e-03 

(selected) 

 

 

X = 
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   0.003651106365609 

   0.004819002266391 

 

 

fval = 

 

     2.598717321129937e+03 

 

 

exitflag = 

 

     1 

 

 

output =  

 

         iterations: 6 

          funcCount: 21 

    constrviolation: 1.717630013498006e-07 

           stepsize: 1.134970839769077e-05 

          algorithm: 'interior-point' 

      firstorderopt: 1.473172563314147e+02 

       cgiterations: 0 

            message: 'Local minimum found that satisfies the constrai...' 

 

 

lambda =  

 

         eqlin: [0x1 double] 

      eqnonlin: [0x1 double] 

       ineqlin: [0x1 double] 

         lower: [2x1 double] 

         upper: [2x1 double] 

    ineqnonlin: [2x1 double] 

 

 

tTOTAL = 

 

     5.431887016466463e+02 

 

 

tABAQUS = 

 

     5.420298590808136e+02 

 

 

tMATLAB = 

 

   1.158842565832742 

Listing 6-9: Results shown in the Matlab command window after termination of the 
optimization process of the 2-bar truss. 
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6.4.2 10-bar truss 

6.4.2.1 Description 
Consider a 10 bar plane truss shown in Figure 6-5 with the following structural 
characteristics:  

 Modulus of Elasticity E = 10,000 ksi 

 material weight rho = 0.1 lb/in3 

 length L = 360 in 

 load P = 100 kip 

The structural members are divided into 10 groups. The design variables are the 

cross section areas of each member group in the interval [0.1, 35] (in2). The 

constraints are imposed on stresses and displacements. The maximum allowable 

displacement in the ±x and ±y directions for each node is d_max= 2 in, while the 

maximum allowable stress (absolute value) is sigma_allow= 25 ksi in tension or 

compression and the objective is to minimize the weight of the structure under 

the specified constraints. 

The implementation for the solution of the 10-bar truss optimization problem 

using Abaqus2Matlab is much the same as that used for the solution of the 2-bar 

truss optimization problem, and for this reason the relevant details are not 

presented. 

 

 
Figure 6-5: Geometry and applied load for 10-bar truss. 

6.4.2.2 Results & comparison with literature 

Table 6-6 presents the best optimum results found by the proposed optimization 

procedure and the corresponding number of function evaluations. The results of 

the present thesis are compared with corresponding results of some previous 

studies found in the literature. It is observed that the optimum weight and design 

variables obtained in this thesis are very close to those obtained from previous 

studies. However, it is clear that the proposed optimization procedure requires 

much lower structural analyses than other methods to reach the optimum 

designs.  

Variables Optimal cross section area (in2) 

Design 

name 

M. 

Sonmez 

Wu & 

Tseng 

Li et al. 

(2007) 

Degertekin 

&Hayalioglu 

Degertekin 

(2012) 

Kaveh et 

al. (2014) 

Present 

thesis 
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(2011) (2010) (2013) 

A1 30.548 30.378 30.704 30.429 30.394 30.208 30.5218 

A2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

A3 23.18 23.468 23.167 23.244 23.098 22.698 23.1999 

A4 15.218 15.196 15.183 15.368 15.491 15.275 15.2229 

A5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

A6 0.551 0.533 0.551 0.575 0.529 0.529 0.5514 

A7 7.463 7.437 7.46 7.440 7.488 7.558 7.4572 

A8 21.058 21.084 20.978 20.967 21.189 21.559 21.0364 

A9 21.501 21.433 21.508 21.533 21.342 21.491 21.5284 

A10 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Weight (lb) 5060.88 5060.45 5060.92 5060.96 5061.42 5062.39 5060.9 

Number of 

function 

evaluations 

 

500,000 

 

32,100 

 

125,000 

 

16,872 

 

7,081 

 

9,791 

 

347 

Table 6-6: Optimization results of the 10-bar truss. 

 

6.4.3 25-bar truss 

6.4.3.1 Description 

The description of the benchmark 25-bar space truss optimization problem is as 

follows. Consider a 25 bar space truss shown in Figure 6-6 with the following 

structural characteristics:  

Modulus of Elasticity E =10,000 ksi 

Material density rho = 0.1 lb/in3 

The structural members are divided into 8 groups. The design variables are the 

cross section areas of each member group in the range [0.01, 5] (in2). The 

constraints are imposed on stresses and displacements. The maximum allowable 

displacement in the ±x, ±y and ±z directions for each node is d_max= 0.35 in. Two 

load cases have been considered. The maximum and minimum allowable stress is 

shown in Table 6-7. The objective is to minimize the weight of the structure 

under the specified constraints for both load cases simultaneously. The members 

were grouped as follows: (1) element 1; (2) elements 2, 3, 4 and 5; (3) elements 6, 

7, 8 and 9; (4) elements 10 and 11; (5) elements 12 and 13; (6)elements 14, 15, 16, 17 

and 18; (7) elements 18, 19, 20 and 21; (8) elements 22, 23, 24 and 25. 

6.4.3.2 Results & comparison with literature 

Table 6-8 presents the optimum results of the proposed optimization procedure 

and compares these results with those previously reported in the literature. The 

difference among all the results is very small, hence all optimization algorithms 

indicated in Table 6-8 found almost the same optimum structural weight. It is 

apparent that the optimization procedure proposed in this thesis can reach 

optimum results much faster than the other algorithms.  
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DESIGN 
VARIABLE 

MEMBER 
ALLOWABLE 

TENSION 
STRESS (ksi) 

ALLOWABLE 
COMPRESSION 

STRESS (ksi) 

1 1 40 -35.092 

2 2,3,4,5 40 -11.59 

3 6,7,8,9 40 -17.305 

4 10,11 40 -35.092 

5 12,13 40 -35.092 

6 14-17 40 -6.759 

7 18-21 40 -6.759 

8 22-25 40 -11.082 

Table 6-7: Member families of the 25-bar truss optimization problem and 
corresponding stress limits. 

 

 
Figure 6-6: Geometry and applied load for 25-bar truss. 

 

Variables Optimal cross section area (in2) 

No Design 

variables 

M. 

Sonmez 

(2011) 

Li et al. 

(2007) 

Degertekin 

& 

Hayalioglu 

(2013) 

Degertekin 

(2012) 

Kaveh et 

al. (2014) 

Present 

thesis 

1 A1 0.011 0.01 0.01 0.01 0.01 0.01 

2 A2-A5 1.979 1.970 2.071 2.074 1.9907 1.9856 

3 A6-A9 3.003 3.016 2.957 2.961 2.9881 2.9969 

4 A10-A11 0.01 0.01 0.01 0.01 0.01 0.01 

5 A12-A13 0.01 0.01 0.01 0.01 0.01 0.01 

6 A14-A17 0.69 0.694 0.6891 0.691 0.6824 0.679 

7 A18-A21 1.679 1.681 1.6209 1.617 1.6764 1.6769 

8 A22-A25 2.652 2.643 2.6768 2.674 2.6656 2.6676 

Weight (lb) 545.193 545.19 545.09 545.12 545.164 545.166 

Number of function 

evaluations 

300,000 125,000 15,318 9,051 13,326 851 

Table 6-8: Optimization results of the 25-bar truss. 
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6.5 Optimum design of cantilever walls retaining linear elastic backfill by 

use of genetic algorithm 

6.5.1 Introduction 

Cantilever retaining walls are among the simplest and most common 
geotechnical structures intended to support earth backfills. Their main 
representatives are retaining walls supporting deep excavations, bridge 
abutments, harbor-quay walls, anchored retaining walls, etc. Their design must 
satisfy two major requirements: internal and external stability. The former 
ensures the structural integrity of the various parts of the retaining wall; the 
latter ensures that the wall – soil system formed after construction will remain in 
equilibrium, except for some displacements of affordable magnitude. 

Retaining walls have to satisfy constraints imposed by the norms, assumptions, 
preferences and the target to be accomplished, and simultaneously have to be as 
economical as possible. The design is based on a trial-and-error procedure, which 
renders the experience of the designer an important factor to reach a cost-
effective design. This manual research for the optimum design may be very time-
consuming and tedious, while it is not ensured that the final result will be the 
optimum possible. This necessitates the need for application of various 
optimization procedures in order to achieve the optimum design. 

Relevant optimization methods range from relatively simple mathematical 
programming based (exact) methods to novel heuristic search techniques. The 
methods belonging to the first category are very efficient for cases with a few 
design variables. A design aid is compiled by Rhomberg & Street (1981) from 
results of an exhaustive search, with which simple rules of thumb were developed 
to provide for minimum cost design of cantilever retaining walls. Optimization of 
reinforced concrete cantilever retaining walls was performed by Saribas & Erbatur 
(1996) and the optimum design problem is posed as a constrained non-linear 
programming problem with seven design variables. Cost and weight of the walls 
were used as objective functions and overturning failure, sliding failure, no 
tension condition in the foundation base, shear and moment capacities of toe 
slab, heel slab, and stem of wall as constraints. The problem of optimal cost 
design of cantilever retaining walls is formulated by Basudhar et al. (2006) as a 
non-linear programming problem and a sequential unconstrained minimization 
technique is adopted. Sivakumar Babu & Munwar Basha (2008) presented 
optimum reliability-based design of cantilever retaining walls by considering the 
parameter uncertainties and evaluating the safety in terms of reliability index and 
not merely by calculating the safety factor.  

However, exact methods require large computational effort when the number 
of design variables increases, and apart from this, they require gradient 
information and seek to improve the solution in the neighborhood of a starting 
point. So, in order to attain an optimum design, one has to resort to more robust 
optimization techniques, which are capable of searching effectively the whole 
design variable domain and not being trapped into local optima. Recently 
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developed heuristic methods, such as genetic algorithms, simulated annealing, 
threshold accepting, tabu search, ant colonies, particle swarm, etc. provide more 
attractive alternatives. Although these methods use simple algorithms, they 
require great computational effort. Representative studies of optimum design of 
retaining walls by use of heuristic methods are presented in the following. An 
application of a simulated annealing algorithm is reported by Ceranic et al. (2001) 
to minimum cost design of reinforced concrete cantilever retaining walls that are 
required to resist a combination of earth and hydrostatic loading by using only 
geometric design variables, whereas Yepes et al. (2008) used simulated annealing 
for optimum design of RC cantilever retaining walls utilized in road construction 
by using more design variables, effectively leading to more detailed simulations. 
Khajehzadeh et al. (2010, 2011) proposed a modified particle swarm optimization 
(MPSO) based on PSO with passive congregation to find the optimum cost 
design of a cantilever RC retaining wall. Ghazavi & Bazzazian Bonab (2011) 
applied an Ant Colony Optimization (ACO) algorithm to arrive at optimal design 
of a RC retaining wall (designed as a gravity wall, i.e. structural integrity is not 
taken into account while imposing the constraints). Ghazavi & Salavati (2011) 
presented a bacterial foraging optimization algorithm whereas harmony search 
based algorithms were proposed by Kaveh & Abadi (2010). Donkada & Menon 
(2012) applied a genetic algorithm to reach minimum cost design of three types of 
retaining walls: cantilever retaining wall, counterfort retaining wall and retaining 
wall with relieving platforms. Pei & Xia (2012) applied a random direction search 
complex method and three heuristic algorithms (genetic algorithm, particle 
swarm optimization and simulated annealing) are used to obtain the minimum 
cost design of a reinforced concrete cantilever retaining wall. Finally, Talatahari 
et al. (2012) performed optimum design of gravity retaining walls subject to 
dynamic loading using a charged system search algorithm, while the Mononobe-
Okabe method was used to determine the dynamic earth pressures.  

Common feature of all the aforementioned studies is the fact that for the 
design of the retaining wall, dynamic earth pressures are ignored (except for the 
study by Talatahari et al. (2012) in which they are taken into account in a 
simplistic way through a pseudostatic approach). In addition, the static earth 
pressures (resulting from gravity and/or surcharge load) are calculated according 
to Rankine or Coulomb earth pressure theories which assume that a state of 
plastic equilibrium is developed in the retained backfill. Moreover, to the authors’ 
knowledge, no suitable constraint has been imposed to any retaining wall 
optimum design case to ensure that the deformations of the retaining wall and 
the backfill are within acceptable limits. In most studies, this is ensured implicitly 
by avoiding the possibility of overturning and sliding, by controlling the stresses 
within allowable limits and by securing the stability of the retaining wall – 
retained soil system. 

Apart from these, the seismic response of retaining systems is still a matter of 
ongoing experimental, analytical and numerical research. The dynamic 
interaction between a wall and a retained soil layer makes the response 
complicated. The dynamic analysis becomes much more complex, as usually 
material and/or geometry non-linearities have to be taken into account (Kramer, 
1996, Wu & Finn, 1999). Depending on the expected material behavior of the 
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retained soil and the possible mode of the wall displacement, there exist two 
main categories of analytical methods used in the design of retaining walls 
against earthquakes: (a) the pseudo-static limiting-equilibrium solutions which 
assume yielding walls resulting in plastic behavior of the retained soil (Okabe, 
1926, Mononobe & Matsuo, 1929, Seed & Whitman, 1970), and (b) the elasticity-
based solutions that regard the retained soil as a visco-elastic continuum 
(Veletsos & Younan, 1997, Scott, 1973, Wood, 1975). In most studies presented so 
far, in order to perform optimum design of retaining walls, the assumption of 
pseudo-static limiting equilibrium is made; there-fore the design is performed in 
a simplistic way, ignoring the possibility of a linear elastic or viscoelastic soil 
backfill. 
This section is concerned with the optimum design of cantilever retaining walls 
which are subject to earthquake loading and are responding in a linear elastic 
way. The objective function which is optimized is the weight of the retaining 
wall. This is roughly proportional to its construction cost, as the latter is generally 
an increasing function of the weight of the material used. This function is 
minimized subject to design constraints. Apart from the usual constraints 
imposed in most optimization studies, in this section a direct design constraint is 
imposed which controls the rocking response of the retaining wall. The 
optimization analysis is conducted via the use of a genetic algorithm, since Pei & 
Xia (2012) have shown that GA can be successfully applied for the optimal 
solution of structural optimization problems with many design variables and 
complex constraints. Two numerical examples are presented, in which optimum 
designs are performed for two values of the height of the soil layer to be retained. 

6.5.2 Numerical modeling 

In this section the numerical model used to simulate the dynamic response of a 

cantilever retaining wall is described. This model consists of an infinite soil layer 

with horizontal base and free surface which is at higher elevation towards +∞ 

than -∞. These two elevations result in the existence of a vertical slope of height 

H  which is retained by a cantilever wall. The wall’s foundation is at a depth equal 

to embh , relative to the downstream soil surface. Consequently, the overall height 

of the retaining wall stem is embH h . The retaining wall is considered to rest on a 

strip foundation which consists of the toe, which is the portion of the foundation 

extending downstream from the wall, and of the heel, extending in the opposite 

direction (upstream). The depth of the rigid bedrock from the foundation of the 

wall is 1.5H , where H  is the thickness of the horizontal layer to be retained, as 

seen schematically in Figure 6-7. The distance from the wall toe tip to the far field 

(downstream) vertical boundary of the model is 10H ; the same happens with the 

distance from the wall heel tip to the far field boundary of the model in the 

upstream direction. Shown in Figure 6-7 is also the local coordinate system to 

which all calculations are referred. Text in bold denotes the design variables 

whereas the others either denote the variables which are dependent on the 
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design variables or are problem parameters which remain fixed during optimum 

design. 

 
Figure 6-7: Cantilever reinforced concrete retaining wall model. 

 

The soil layer is fixed on rigid bedrock and along the soil – rock interface 

horizontal and vertical fixity is imposed. In order to simulate sufficiently the one 

dimensional dynamic soil response, vertical kinematic constraints were used at 

the two vertical ends of the model. These constraints are different from the 

corresponding kinematic constraints imposed for gravity loading at the same 

boundaries, which were in the horizontal direction to simulate one dimensional 

compression. The two vertical boundaries of the model were placed relatively far 

from the wall to minimize the influence of the difference between the model 

response in these regions and one dimensional soil response. The whole model is 

considered to respond in plane strain condition, an assumption fairly accurate for 

cantilever retaining walls with length much higher than their width, height and 

thickness. The wall – soil and the foundation – soil interfaces are considered to be 

tied, an assumption generally valid for cohesive soils. This means there is no 

separation or relative slip along these interfaces. Initially, gravity acceleration 

(body force) is applied to the whole model and in a second step of the analysis, 

the transverse ground acceleration record recorded during the December 11, 1967 

Koyna earthquake, which was of magnitude 6.5 on the Richter scale, is imposed 

along the base of the soil layer. The time history graph of this record is shown in 

Figure 6-8. 
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Figure 6-8: Transverse acceleration time history record of the December 11, 1967 

Koyna earthquake, of magnitude 6.5 on the Richter scale. 

 

 
Figure 6-9: Numerical model analyzed for the 1st case (H=8m). Loading and boundary 

conditions for the initial gravity step are shown. 

 

 
Figure 6-10: Numerical model analyzed for the 1st case (H=8m). Loading and boundary 

conditions for the main dynamic time – history analysis step are shown. 

 

In this section, in order to minimize the weight of the retaining wall, two-

dimensional numerical simulations were performed for the wall-soil systems 

depicted in Figure 6-9 and Figure 6-10, utilizing the finite element software 

ABAQUS. The soil layer is discretized with 8-node bi-quadratic plane strain solid 

elements (CPE8). 3-node quadratic interpolation beam elements in plane (B22) 

are used for modeling the retaining wall and its foundation. These elements allow 
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for transverse shear deformation according to Timoshenko theory and in their 

shear flexible formulation it is assumed that the transverse shear behavior is 

linear elastic with a fixed shear modulus and, thus, independent of the response 

of the beam section to axial stretch and bending. For Timoshenko beam elements 

a lumped mass formulation with a 1/6, 2/3, 1/6 distribution is used. The mesh gets 

coarser for the part of the soil layer which is left and right of the wall (the 

horizontal dimension of the elements is double). This is apparent in Figure 6-9 

and Figure 6-10.  

The eigenmodes used for the modal dynamic analysis are extracted in a previous 

frequency step, in which the Lanczos eigensolver is used, which is a powerful tool 

for extraction of the extreme eigenvalues and the corresponding eigenvectors of a 

sparse symmetric generalized eigenproblem. For the Lanczos eigensolver, the 

minimum and maximum frequencies of interest are specified and all eigenmodes 

with eigenfrequencies falling in this range are extracted. These modes are 

subsequently used for the calculation of the dynamic response during the modal 

dynamic analysis. Energy dissipation due to damping mechanisms is not modeled 

explicitly as a material property (e.g. through the simplistic Rayleigh damping 

approximation), but it is specified as a fraction of critical damping assigned at all 

eigenmodes included for the calculation of the dynamic response, equal to 5%. 

Thus the damping fraction remains constant along the frequency range of 

interest and energy dissipation is of the same intensity for lower and higher 

frequencies. 

 

6.5.3 Formulation of the optimization problem 

In this section the optimization problem to be solved is explained in detail. The 

design variables, the parameters, the constraints, the objective function and the 

optimum design process are presented. 

6.5.3.1 Design variables 

The design variables of the problem are shown in bold in Figure 6-7. These are the 

depth of the wall embedment denoted by embh , the width of the toe denoted by 

toed , the width of the heel denoted by heeld  and the thickness of the wall stem 

denoted by wallt . The thickness of the wall toe and heel ( toet  and heelt  respectively) 

are selected to be the same and equal to the minimum between the wall stem 

thickness wallt  and one tenth of the corresponding widths ( /10toed  and /10heeld ), 

so that beam modeling for these components is reasonable. 

 

Design 
variable 

Lower 
limit (m) 

Upper limit 
(m) 

hemb 0.2 16 



Chapter 6 189 

 

 

dtoe 2 12 

dheel 2 12 

twall 0.2 2.5 

Table 6-9: Design variables of the optimization problem and their lower and upper 
bounds. 

 
In the aforementioned design variables upper and lower limits are set, in order to 
prevent the algorithm from giving technically infeasible solutions. Table 6-9 shows the 
design variables and their corresponding upper and lower limits. 

6.5.3.2 Parameters 

The parameters of the wall-soil layer system are all the quantities that remain 

fixed during a particular optimization search. The parameters of the problem are 

summarized in Table 6-10. These are the physical properties of the soil and the 

wall. All materials involved in the model are linear elastic, leading thus to a linear 

dynamic response. The soil has density γs=1800 kg/m3, modulus of elasticity 

Es=100 MPa and Poisson’s ratio νs=0.3. The retaining wall is modeled as a 

reinforced concrete beam with a general section, density γw=2500 kg/m3, and 

modulus of elasticity Ew=30.5 GPa which corresponds to C25/30. Although the 

retaining wall has the inertial and stiffness characteristics of concrete, it deforms 

in a linear elastic way, which implies that its stiffness in tension and compression 

is equal. Another parameter of the problem is the frequency range used for the 

modal dynamic analysis; this is selected to be in the range [0.01 Hz, 29 Hz]. The 

lower limit is selected so that the very low frequency spurious eigenmodes are 

excluded from the analysis; these are associated with very large modal mass. The 

higher limit is selected based upon the fact that the lowest wavelength of the 

waves propagating into the soil (lowest velocity of propagation and highest 

frequency) has to be at least ten times the internodal interval of the mesh; this is 

approximately the distance between adjacent nodes, and it increases as the mesh 

gets coarser. 

Parameter Assigned value 

γs 1800 kg/m3 

Es 100 MPa 

νs 0.3 

γw 2500 kg/m3 

Ew 30.5 GPa  

fmin 0.01 Hz 

fmax 29 Hz 

Table 6-10: Parameters of the optimization problem and their fixed values. 

6.5.3.3 Constraints 

The constraints of the optimization problem at hand are divided into 

structural constraints and geotechnical constraints. The satisfaction of the former 

ensures that the retaining wall does not fail as regards its structural integrity, 
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whereas the latter ensures that the soil retained by and supporting the wall does 

not fail. The constraints are shown in Table 6-11, which includes the formulas for 

the calculation of the limiting quantities and the constraint inequalities imposed 

for the optimization problem. As far as the structural constraints are concerned, 

the maximum tensile (and the minimum compressive) stress which develop due 

to axial force and bending moment at the wall stem, toe and heel must not be 

higher than (respectively lower than) the material strength. For concrete C25/30 

this is 25 MPa by definition, without taking into account the partial safety factor 

for concrete strength (EC2, 2004). The material model used for the wall in this 

section is linear elastic and this leads to the essential assumption that the 

distribution of strains and stresses along the section of the wall and its 

foundation is linear which results in the presence of “theoretical” tensile stresses 

which are not present in practice. In practice, there are no tensile concrete 

stresses and the necessary tensile forces for the equilibrium of the section are 

provided by the steel reinforcement. In any case, the tensile stress constraint is 

not active in the final optimum design, as will be described in detail later. Shear 

stiffness is ignored since shear strength of reinforced concrete cannot be 

calculated in a theoretically sound basis; the procedure of calculation and the 

final result is very norm specific in general. Except for this, it depends highly on 

the reinforcement and its distribution into the beam. Concerning the 

geotechnical constraints, the following are specified: 

a) It is ensured that the normalized displacement at the top of the wall stem 

θ does not exceed 0.33%. The normalized displacement is given by the ratio of the 

horizontal displacement at the top of the wall due to tilting or horizontal 

translation, divided by the height of its stem including embedded part ( embH h ). 

The above inequality is specified to prevent the development of a limit state or 

the initiation of a failure plane in the retained soil (Clough & Duncan, 1991). In 

the opposite case the assumption of a linear elastic soil would not be accurate. It 

is assumed that, as far as its strength is concerned, the supporting and retained 

soil behaves like compacted clay. According to Clough & Duncan (1991), the 

values of normalized displacement required to reach active and passive earth 

pressure conditions are 1% and 5% respectively. By ensuring that the normalized 

displacement is lower than 0.33% (conventionally taken as one third of the 

normalized displacement required for active conditions) neither active nor 

passive states will develop in the soil. 

Quantity Formula Constraint 

Normalized 
displacement of wall 
stem 

θ=max[abs{Displtop/(H+hemb)}] θ≤0.33% 

Undrained shear 
strength 

cu=Eu/850=3·Es/{2·(1+νs)}/850=136 kPa 
max(τ)≤cu 

min(τ)≥-cu 

Soil bearing capacity qu=5.14cu+γs·hemb -min(σyy)≤qu 
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Foundation uplift  max(σyy)≤0 

Max bending stress* σmax=max(N/t + 6M/t2) σmax≤25 MPa 

Min bending stress* σmin=min(N/t - 6M/t2) σmin≥-25 MPa 
* For the wall stem, toe and heel. t denotes tstem, ttoe and theel. 

Table 6-11: Constraints of the optimization problem. 

 

b) Regarding its strength, the soil is assumed to behave as a cohesive soil in 

undrained conditions. So, its shear strength in terms of total stresses is equal to 

its undrained shear strength cu, i.e. the φ=0 approach is followed. Thus, it is 

specified that the maximum and minimum shear stress along the wall foundation 

must not exceed the undrained shear strength of the underlying soil, equal to 136 

kPa. This value is calculated as follows: the undrained modulus of elasticity Eu of 

the soil is calculated according to Table 6-11 to be Eu=115.38 MPa. The fraction 

Eu/cu according to data available in the literature (Jamiolkowki et al., 1979 and 

Jardine et al., 1985) is selected to be roughly 850. 

c) The bearing capacity of the soil underlying the foundation must not be 

surpassed. For this purpose, the bearing capacity under undrained loading (c = cu, 

φ = 0) is calculated according to the Meyerhof formula for vertical and central 

loading of horizontal strip foundation at a depth equal to embh . The maximum 

vertical normal stress at the lower interface of the wall foundation must not get 

larger than this value. 

d) Along the interface where the aforementioned constraint (c) is imposed, 

there must also be no tension, otherwise there would be foundation uplift which 

would render the dynamic response of the retaining wall geometrically non-

linear.  

The approach followed to impose the constraints is the penalty method. Penalty 

methods add a penalty to the objective function to decrease the quality of 

infeasible solutions. The penalty quantities that are added are virtually the 

product of the constraint violation and a penalty factor which is fixed for each 

constraint and adjusted to take into account the relative importance of the 

constraint violations. 

6.5.3.4 Objective function 

The objective function to be minimized is the volume of the retaining wall per 

meter in the longitudinal direction. This is proportional to its weight and 

indirectly related to its cost of construction. The fitness function which is 

minimized by the genetic algorithm used in this section results from the 

objective function after the application of the penalties due to constraint 

violations, if any. 
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6.5.4 Optimization algorithm 

The Genetic Algorithm (GA) is a stochastic global search optimization method 

that emulates natural biological evolution. GAs apply on a population of potential 

solutions the principle of survival of the fittest to produce better approximations 

to a solution. At each generation, a new set of approximations is created by the 

process of selecting individuals according to their level of fitness in the problem 

domain and breeding them together using operators borrowed from natural 

genetics (crossover, mutation, etc.). This process leads to the evolution of 

individuals that are better suited to their environment than the individuals that 

they were created from, just as in natural evolution process. In order to minimize 

the objective function, the genetic algorithm implemented in MATLAB software 

was used.  

The encoding strategy followed is real-valued representation. The use of real-

valued genes in GAs offers a number of advantages in numerical function 

optimization over binary encodings: (a) efficiency of the GA is increased as there 

is no need to convert chromosomes to phenotypes before each function 

evaluation, (b) less memory is required as efficient floating point internal 

computer representations can be used directly, (c) there is no loss in precision by 

discretization to binary or other values and (d) there is greater freedom to use 

different genetic operators. 

The population size (number of individuals in each generation) is equal to 20. 

The initial population with which the GA begins is created as a random initial 

population with uniform distribution. Fitness scaling was implemented by using 

a rank function, which scales the raw scores based on the rank of each individual 

instead of its score. The rank of an individual is its position in the sorted scores. 

An individual with rank r  has scaled score proportional to r . Rank fitness 

scaling removes the effect of the spread of the raw scores. The square root makes 

poorly ranked individuals more nearly equal in score, compared to rank scoring.  

Regarding the basic genetic operators, stochastic uniform selection is used for 

the selection process. In this function each parent corresponds to a section of the 

line of length proportional to its scaled value. The algorithm moves along the line 

in steps of equal size. At each step, the algorithm allocates a parent from the 

section it lands on. The first step is a uniform random number less than the step 

size. For reproduction, the number of individuals that are guaranteed to survive 

to the next generation (elite children) is 2 and the fraction of the next generation, 

other than elite children, that is produced by crossover (crossover fraction) is 

equal to 0.8. The mutation function used is Gaussian, which adds a random 

number taken from a Gaussian distribution with mean 0 to each entry of the 

parent vector. For the combination of parents to produce the next generation 

offspring (crossover), scattered crossover is used, which applies in problems 

without linear constraints. It creates a random binary vector and selects the 
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genes where the vector entry is 1 from the first parent, and the genes where the 

vector entry is 0 from the second parent, and combines the genes to form the 

child. In the GA no migration occurs, as there are no subpopulations. 

As stopping criteria for the algorithm the following were specified: (a) the 

maximum number of iterations for the genetic algorithm to perform is equal to 

100, (b) the algorithm stops if the weighted average relative change in the best 

fitness function value over 50 generations is less than or equal to the function 

tolerance (equal to 10-6).  

The following outline summarizes how the GA procedure works: 

a) The algorithm begins by creating a random initial population. 

b) The algorithm then creates a sequence of new populations. At each step, the 

algorithm uses the individuals in the current generation to create the next 

population. To create the new population, the algorithm performs the following 

steps: 

1. Scores each member of the current population by computing its fitness 

value. 

2. Scales the raw fitness scores to convert them into a more usable range of 

values. 

3. Selects members, called parents, based on their fitness. 

4. Some of the individuals in the current population that have better fitness 

are chosen as elite. These elite individuals are passed to the next population. 

5. Produces offspring from the parents. Offspring are produced either by 

making random changes to a single parent (mutation) or by combining the vector 

entries of a pair of parents (crossover). 

6. Replaces the current population with the offspring to form the next 

generation. 

c) The algorithm stops when one of the stopping criteria is met. 

The GA optimizer of Matlab is properly coupled with the Abaqus analysis solver 

in order to take the modal dynamic analysis results, using Abaqus2Matlab 

(Papazafeiropoulos et al., 2017). This is done inside the objective function in 

which the analysis solver is called to perform the necessary analyses. Except for 

this, suitable functions are called to create the necessary input (*.inp) files to 

conduct the analyses and read the results of the analyses from the corresponding 

results (*.fil) files. While the analysis solver is running the optimizer is halted and 

its execution is continued after the ABAQUS lock (*.lck) file has been deleted. 

Constraint enforcement is applied through an advanced penalty method and not 

by the default constraint handlers developed in MATLAB. 
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6.5.5 Conventional seismic design of cantilever retaining walls 

Conventional seismic design of cantilever reinforced concrete retaining walls is 

achieved with use of the well-known Mononobe-Okabe (M-O) theory of seismic 

earth pressures (Okabe, 1926 and Mononobe & Matsuo, 1929). Design is 

performed regarding the wall stability (sliding and overturning about the tip of 

its toe), and the design variables are the wall embedment ( embh ), the width of the 

wall toe ( toed ) and the width of the wall heel ( heeld ). The thickness of the wall 

stem and foundation (toe and heel) are selected based on general guidelines for 

initial wall dimension proportioning, i.e. they are set equal to 1/10 of the total wall 

height ( embH h ). According to the dimension proportioning practice, the 

inequality    0.3     0.5emb heel embH h d H h    must hold for the width of the 

wall heel. The minimum values of the wall embedment, toe width and heel width 

are set equal to 0.2 m, 2 m and 2 m respectively. The conventional seismic design 

method implemented in this section involves also some kind of optimization 

procedure which leads to the minimum total weight of the wall by strict abidance 

by all of the constraints mentioned above. 

A necessary step during the design process is the evaluation of the soil internal 
friction angle   and the soil – wall interface friction angle  . These are set to the 

following typical values: 30  , 18  . The horizontal acceleration coefficient 

is taken as 0.48hk   (resulting from the maximum acceleration of the earthquake 

record which is 0.48g). These properties are assigned to the soil lying over the 

wall foundation. For the soil under the wall foundation undrained response is 

assumed, namely its internal friction angle is taken equal to zero and its 

undrained shear strength cu is specified in section 6.5.3. The inertial forces and 

moments of the wall are also taken into account for the design whereas, 

regarding overturning checks, only the upstream and downstream soil portions 

lying over the wall foundation are considered to contribute to the wall stability.  

6.5.6 Optimization results 

Two retaining wall weight optimization cases were examined: in the first case 

(Case 1) the height of the soil layer to be retained by the wall is equal to 8 m and 

in the second case (Case 2) the height is 12 m. The results of the GA optimization 

procedure as analyzed in the previous sections are shown in Table 6-12. It is 

observed in general that the embedment and foundation dimensions required to 

retain the soil layer with greater height (Case 2) are larger than those in Case 1. 

The optimum value of the objective function increases as well. In both cases, the 

length of the wall heel ( heeld ) which leads to optimum design is the minimum 

possible, i.e. equal to its lower bound. This means that for the parameter values 

and earthquake record considered in this section the heel does not contribute 

significantly to the retaining wall stability and/or structural integrity. The 

thickness of the heel is constrained by the requirement that it is not more than 
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one tenth of its length (to justify its modeling as a beam), whereas the 

thicknesses of the other components (stem and toe) are equal. 

Table 6-13 shows the results of the conventional seismic design according to the 

M-O method. It is observed that the conventional design which is adopted in 

most seismic norms worldwide leads to larger weight of the retaining wall. 

Although the two methods stem from essentially different assumptions, their 

comparison shows clearly the fact that more economical and simultaneously safe 

designs can be achieved by applying detailed optimization methods for the 

seismic design of retaining walls; current seismic code practices can lead to 

unreasonably conservative designs. 

As far as the constraints are concerned, the maximum and minimum normal 

stresses of the heels of the two walls do not differ much. On the contrary, the 

maximum normal stress of the toe differs by a factor greater than 2 between the 

two wall cases. Furthermore, the minimum shear stress along the lower interface 

between the wall foundation and the supporting soil is roughly the same for the  

  Case 1 (H=8m) Case 2 (H=12m) 

Design variables 

hemb (m) 7.76 7.16 

dtoe (m) 4.57 6.57 

dheel (m) 2.00 2.00 

twall (m) 0.20 0.22 

ttoe (m) 0.20 0.22 

theel (m) 0.20 0.20 

Constraint quantities 

θ 0.328% 0.246% 

maxτ (kPa) 78.42 88.46 

minτ (kPa) -131.96 -135.73 

minσyy (kPa) -505.98 -592.45 

maxσyy (kPa) -122.07 -124.53 

σb,s,max (kPa) 22570.73 21476.85 

σb,t,max (kPa) 4265.33 1183.35 

σb,h,max (kPa) 2029.97 2180.68 

σb,s,min (kPa) -23795.84 -23385.15 

σb,t,min (kPa) -7336.37 -8128.82 

σb,h,min (kPa) -2176.36 -2501.06 

Algorithm details 

Min. value of obj. fun. (m2) 4.47 6.12 

Number of generations 73 64 

Number of fun. 
evaluations 

1480 1300 

Table 6-12: Results of the optimization procedure of the two retaining wall cases. 

 

two wall cases. This observation implies that minimum shear stress along the 

lower interface of the wall foundation is independent of the wall height. 
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Furthermore, the constraint imposed for this quantity is active in Case 2. The 

above may provide a hint for controlling the optimization process.  

For more details about the problem discussed in this section, the reader is 

referred to publication [19] in the Appendix A of this thesis.  

 

  
Case 1 

(H=8m) 
Case 2 

(H=12m) 

hemb (m) 0.20 0.20 

dtoe (m) 5.58 8.43 

dheel (m) 4.10 6.10 

twall (m) 0.73 1.32 

ttoe (m) 0.73 1.32 

theel (m) 0.73 1.32 

Area (m2) 13.05 35.28 

Table 6-13: Results of the conventional seismic design of the two retaining wall cases. 

6.6 Calibration of tyre material properties based on an optimization 

procedure 

6.6.1 Introduction 

Handling low frequency interior noise and vibrations which transmits through 

subframe components on vehicles is a main issue regarding their design. The 

importance of this aspect is apparent from the related legislation which limits the 

level of noise a vehicle is allowed to produce. The main source of the vehicle 

noise is the vibrations induced by the tyres. These, after being transmitted from 

the tyre to the wheel axle, and through that to the passengers in the vehicle, can 

have various undesirable effects, some of which are the passengers’ 

inconvenience or body distress, the low performance of the vehicle and its 

suspension system, etc. A tyre is subjected to dynamic forces mainly from two 

main sources: (a) road surface irregularities, potholes, bumps and various other 

obstacles which impose dynamic loads to the tyre, and (b) dynamic loads 

originating from various nonuniformities of the tyre, such as slight imbalances or 

asymmetric tread pattern designs. 

It is essential to consider the dynamic characteristics of the tyres of a vehicle, 

to minimize the aforementioned negative consequences. For this purpose, there 

is need for detailed knowledge of the dynamic response of a tyre, which is 

associated with the energy that is being transmitted to the vehicle from various 

external dynamic events. The dynamic response of a tyre is characterized by its 

vibration modes, or eigenmodes, namely the natural frequencies of the tyre and 

the corresponding mode shapes. These, apart from their significance for the 

design process and troubleshooting of various problems, can constitute a basis 

for the computational efficiency of the various numerical models of tyres used by 

both tyre and automotive industries for prediction of performance.  
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Tyre vibration modes are widely used over the years to represent dynamics in 

tyre models. The dynamic response of tyre models has been studied analytically, 

experimentally or semi-empirically, and numerically, however due to the 

limitations of the analytical and experimental studies, many studies in the 

literature employ numerical (often finite element) models, which can simulate 

complex geometries as well as material, geometric and boundary nonlinearities. 

Relevant studies about tyre dynamics, as well as optimization procedures are 

mentioned in the next.  

Experimental studies about the eigenmodes analysis of tyres have been 

presented by Scavuzzo et al. (1993), Bandel & Monguzzi (1983) and Matsuoka & 

Okuma (2002). In the study by Scavuzzo et al. (1993), the dynamic response of 

the vehicle in terms of accelerations was mon-itored at the wheel axis and the 

passenger compartment. The tyre vibration modes were identi-fied from the 

peaks in the response. Bandel & Monguzzi (1983) developed a lumped parameter 

model to study the behaviour of a tyre running on a road surface with 

irregularities charac-terized by short wave-length spectrum components. 

However, the parameters of the lumped model are given by empirical relations, 

which have resulted from an experimental methodolo-gy. Matsuoka & Okuma 

(2002) presented an experimental modal parameter estimation method in which 

the frequency response function (FRF) of a tyre is decomposed into the 

components of individual modes based on the Fourier transform algorithm. 

The analytical models developed for the estimation of the eigenproperties of a 

tyre range from simple mass/spring systems to various forms of idealized, spring 

supported, flexible rings. Representative studies are these by Vinesse (1996), 

where a rotating and vibrating tyre coupled at its spindle to a secondary structure 

is simulated. A model of a membrane on an elastic foundation is used for the 

description of the vibration of a rolling tyre, as well as models for the calculation 

of the forces at the spindle of a tyre rolling over a small cleat. In the study by 

Molisani (2004) the tyre is modelled as a shell structure in contact with the road 

surface. The contact patch is simulated as a prescribed deformation, and the 

coupled tyre-cavity governing equation of motion is solved analytically to obtain 

the tyre structural and acoustic responses. 

Representative numerical studies regarding the modal analysis of tyres are 

those byWheeler et al. (2005), Dorfi et al. (2005), Chatterjee & Ranjan (2012) and 

Bolarinwa & Olatunbosun (2015). Wheeler et al. (2005) presented the vibration 

modes of radial tyres on a fixed spindle and investigated the effect of the tyre 

components and their contribution in the mode shapes. Following that, the 

corresponding tyre model under rolling conditions was considered by Dorfi et al. 

(2005) and it was shown that non-rolling tyre models are subordinate to their 

roll-ing counterparts, as they do not take into account the proper kinematics. The 

finite element commercial software ANSYS was used by Chatterjee & Ranjan 

(2012) to study the effects of the inflation pressure, the ply angle, the tread 

pattern and the thickness of the belt on the natu-ral frequencies of the tyre. A 
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basic assumption in this section was that the rubber was simulated as a linear 

elastic material. Another commercial finite element software (ABAQUS) has been 

used by Bolarinwa & Olatunbosun (2015) where by using various capabilities of 

ABAQUS, the footprint under purely vertical load was obtained for a vertically 

loaded tyre. Afterwards, the nodes (node coordinates) being in contact with the 

road were maintained in contact by applying an equivalent distributed vertical 

load, whereas the centre of the wheel was set free in all degrees of freedom. In 

this condition of the model, a frequency analysis was performed and it was found 

that the boundary conditions on the tyre model can have large impact on its 

eigenmode response. 

In this section the eigenmodes at the low frequency range are considered for 

the development of a realistic tyre model, based on numerical data published in 

the literature. This is achieved through an optimization process which efficiently 

adjusts various tyre parameters, so that the eigenmodes of the final tyre model 

reach the corresponding data as close as possible. Optimization methods that are 

based on simple mathematical programming (exact) are very efficient for cases 

with a few design variables. Methods belonging to this category are those using 

the sequential quadratic programming procedure for nonlinear optimization 

(used in this section), as well as others. More details regarding these methods are 

presented by Nocedal & Wright (2006). 

6.6.2 Numerical modeling 

The tyre considered for the optimization study is modelled in the commercial 

finite element code ABAQUS 6.13. Implicit integration was performed using 

ABAQUS/Standard, which was also used for the eigenfrequency and eigenmode 

extraction of the tyre. The optimization procedure, as well as the necessary 

coupling with ABAQUS, was implemented in MATLAB programming language.  

The cross section of the tyre, P235/75R17, is shown in Figure 6-11. The tyre is 

comprised of the belt region, the tread region and the side walls which are being 

modelled with a hyperelastic material, representative of rubber. The hyperelastic 

material is simulated by the one term polynomial strain energy potential 

(Mooney-Rivlin model) with one term Prony series to account for viscoelasticity 

(Bekakos et al., 2016). The belt region contains reinforcement of two layers 

(illustrated as Belt layer 1 & 2 in Figure 6-11), and the reinforcement of carcass. 

The last extends over the belt region and it covers the side walls. Both belt layers 

and the carcass are discretized with surface elements with twist (SMFGAX1). The 

rim is discretized with 2-node, linear links for axisymmetric planar geometries 

(RAX2), and the belt, bead, sidewall and tread regions are discretized with 4-node 

bi-linear, reduced integration elements with hourglass control (CGAX4R). The 

nodes of the surface elements of the carcass share the same nodes with those of 

the belt region elements. If separate nodes are used for these two sections (which 

have the same coordinates) numerical instabilities may occur during the analysis. 
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Figure 6-11: Tyre half-cross section geometry. 

 

 
Figure 6-12: Illustration of the tyre model. 

 

By utilizing the capabilities of ABAQUS with regard to symmetric model 

generation (SMG), symmetric results transfer (SRT) and restart option, the full 3d 

numerical model of the tyre is developed, as shown in Figure 6-12. Inflation 

pressure is imposed on the inner surface of the tyre as a distributed load. 

Regarding the boundary conditions, two cases can be distinguished: (a) for the 

unloaded tyre, the boundary conditions are imposed on the six degrees of 

freedom of the wheel centre (fixed-spindle), and (b) for the loaded tyre, the road 

is considered to be fixed and the tyre centre is constrained along all degrees of 

freedom except for the degree of freedom along which the vertical load is 

Belt Layer 1

Belt Layer 2

Side Walls 

Tread Region

Carcass

Belt Region

Rim
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imposed. The rim is rigidly constrained to the tyre centre. The friction between 

the tyre and the road (in the case of the loaded tyre) is assumed to be of Coulomb 

type, with coefficient equal to 0.5. 

 

6.6.3 Formulation of the optimization problem 

6.6.3.1 Design variables 

The geometric properties of the belts and carcass reinforcement, as well as the 

hyperelastic Mooney-Rivlin C10 constant are selected as design variables. The 

reinforcement layers are defined in ABAQUS as smeared layers with a thickness 

equal to the ratio of the area of each reinforcing bar to the reinforcing bar 

spacing. This calculated thickness is assumed to remain constant all over the 

extent of the layer. This consideration has a considerable effect on the selection 

of the design variables, since the stiffness of each reinforcement layer contributes 

to the eigenproperties of the tyre. Due to the fact that the rebar stiffness is given 

by a fraction of two separate input parameters, for constant layer stiffness they 

become dependent on each other. Therefore, it is objective that only one of the 

two parameters for each layer is selected as an independent design variable, and 

the other remains fixed. The variable to remain fixed is the easier to be measured, 

in terms of order of magnitude. Another point to be mentioned is that, because 

the two belt layers have symmetric orientation with respect to the plane of the 

tyre, and the tyre is a centre symmetric structure, its eigenmodes are expected to 

be also symmetric; this means that the cross section areas of the two belt 

reinforcements have to be equal, and therefore the belt reinforcement cross 

sectional area was considered as a single design variable. The design variables of 

the optimization problem, along with their upper and lower bounds are shown in 

Table 6-14. 

Design 
variable  

Lower 
bound  

Upper 
bound 

Abelt  10-7 10-5 

Acarcass  10-8 10-5 

C10 105 107 
 

Table 6-14: Design variables of the optimization problem and their lower and upper 
bounds. 

6.6.3.2 Parameters 

The parameters of the optimization problem are the design input data that 

remain fixed during the optimization process. These include, as mentioned in the 

previous section, the spacing of the rebar layers, which is set to be equal to 

0.00116m for the belts and 0.001m for the carcass. Furthermore, the constants of 

the Mooney-Rivlin strain energy potential are C01=0 and D1=5.085E-8Pa-1. The 

cord angles are 70 and 110 degrees for the two belt layers, and 0 degrees for the 
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carcass. The material properties of the belts and the carcass are also held fixed 

during the optimization process. More details about these properties can be 

found in Bekakos et al. (2016). The inflation pressure with which the tyre is 

inflated is 240kPa.  

6.6.3.3 Constraints 

No constraints are imposed to the model being optimized, apart from the 

upper and lower limits of the design variables. The latter require some experience 

to be specified, because large upper bounds or small lower bounds can lead to 

numerical instabilities in the solver, such as excessive element distortion, etc, 

which result in the premature termination of the optimization procedure. 

6.6.3.4 Objective function 

The objective function for the optimization problem has to be of an 

appropriate form, so that it becomes minimum if the numerically calculated 

eigenfrequencies coincide with the ones available from the literature. The first 16 

eigenfrequencies of the tyre are considered in the objective function, which is 

given by the following equation: 

  
16

2

, ,

1

  i num i lit

i

obj f f  (6.6)  

where 
,i numf  is the ith eigenfrequency calculated by the numerical model in every 

iteration of the algorithm and 
,i litf  is the corresponding ith eigenfrequency 

available in the literature. The correspondence between the various 

eigenfrequencies is made by taking into account the deformed configurations of 

the various eigenmodes. 

6.6.4 Optimization algorithm 

The optimization algorithm used in this section uses a sequential quadratic 

programming (SQP) method. In this method, a quadratic programming (QP) 

subproblem is solved at each iteration. For this purpose the MATLAB built in 

function fmincon is used. This function used an active set strategy and updates 

an estimate of the Hessian of the Lagrangian at each iteration using the BFGS 

formula. An active-set method initializes by making a guess of the optimal active 

set, and if this guess is incorrect, it repeatedly uses gradient and Lagrange 

multiplier information to proceed towards the optimum solution. 

The fmincon optimizer (MATLAB) is properly coupled with the analysis solver 

(ABAQUS) in order to take the frequency analysis results using Abaqus2Matlab. 

This is done inside the objective function in which ABAQUS is called to perform 

the necessary analyses. Except for this, the necessary input (*.inp) files for the 

ABAQUS runs are created by suitable MATLAB functions. To read the results of 

the analyses from the corresponding ABAQUS results (*.fil) files, special 

MATLAB functions are used. While the analysis solver is running the optimizer is 

halted and its execution is continued after the lock (*.lck) file has been deleted. 
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6.6.5 Optimization results 

The results of the optimization process as presented in the previous sections are 

shown in Table 6-15. 

 Initial model 
Optimised 
model 

Wheeler 
et al. 
(2005) 

Deviation 
(%) 

Design Variables 

Abelt (m2) 2.11868*10-7 3.64826*10-7 N/A - 

Acarcass (m2) 4.20835*10-7 8.01133*10-8 N/A - 

C10 (Pa) 106 106 +0.01489 N/A - 

Eigenfrequencies 

f1 [0,0] (Hz) 36.85 30.86 31.7  2.66 

f2 [0,0] (Hz) 37.17 35.85 35  2.43 

f3 [1,1] (Hz) 43.85 36.92 37.8  2.33 

f4 [1,1] (Hz) 43.85 36.92 37.8  2.33 

f5 [1,0] (Hz) 65.07 58.75 58.5  0.43 

f6 [1,0] (Hz) 65.07 58.75 58.5  0.43 

f7 [2,1] (Hz) 76.33 68.41 66.1  3.49 

f8 [2,1] (Hz) 76.33 68.41 66.1  3.49 

f9 [2,0] (Hz) 86.65 78.67 79.5  1.04 

f10 [2,0] (Hz) 86.65 78.67 79.5  1.04 

f11 [3,0] (Hz) 104.36  96.42 97.6  1.21 

f12 [3,0] (Hz) 104.36  96.42 97.6  1.21 

f13 [3,1] (Hz) 117.07  107.9 102.7  5.06 

f14 [3,1] (Hz) 117.07  107.9 102.7  5.06 

f15 [4,0] (Hz) 122.65  114.9 115.9  0.83 

f16 [4,0] (Hz) 122.65  114.9 115.9  0.83 

Algorithm Details 

Min. value of 
obj. function 

- 8.59 - - 

Number of obj. 
function 
evaluations 

- 25 - - 

 

Table 6-15: Results of the optimization procedure of the tyre frequency analysis 
considered in this section. 

 

It is noted that each natural frequency corresponds to a pair of integers enclosed 

in brackets ([c, m]). The first integer denotes the number of sinusoidal waves in 

the circumferential direction of the wheel, whereas the second integer shows the 

number of waves in the meridional direction at a specific location, where the 

deformation of the eigenmode shape is maximum. In addition, only the first 16 

eigenmodes were considered for the development of the realistic tyre model, in 

order to reduce the computational cost. 
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The first column of Table 6-15 shows the data of the initial model, used as the 

starting point of the optimization process. It is evident that the eigenfrequencies 

of the initial model have large difference from the eigenfrequencies of the model 

published by Wheeler et al. (2005). In the second column, the parameters of the 

optimum model are shown, as well as the values of the design variables 

corresponding to it. Regarding the eigenfrequencies, it is observed that they are 

much closer than those of the initial model, leading thus to a numerical model 

that conforms more to the available numerical data, and therefore it is more 

realistic. The maximum deviation of the eigenfrequencies is noted to be roughly 

5%. The optimum model has higher cross section of the reinforcement of the 

belts, and lower cross section area of the reinforcement of the carcass than the 

initial model. The hyperelastic constant C10 is only slightly increased after the 

optimization. Regarding the algorithm output, the minimum value of the 

objective function is equal to approximately 8.59Hz, and the algorithm converged 

after 25 objective function evaluations. The reason for the termination of the 

algorithm is that the magnitude of the search direction was less than the 

corresponding tolerance. The most important factor affecting the tyre modal 

behaviour during the optimization procedure is proved to be the cross section 

area of the carcass (Acarcass). Due to the fact that the initial model has generally 

higher eigenfrequencies than those of the target model (Wheeler et al., 2005), its 

stiffness had to be decreased, in order for the model to approach the latter. The 

decrease in stiffness is achieved with a relatively large decrease in the cross 

sectional area of the carcass, although the cross section area of the belt 

reinforcement increases. 

For more details about the problem discussed in this section, the reader is 

referred to publications [8,10,11,15,16,17] in the Appendix A of this thesis.  

 

6.7 Other applications of Abaqus2Matlab 

In this chapter the use of Abaqus2Matlab software has been illustrated for the 

solution of optimization problems which involve the dynamic properties or 

dynamic response of structures. However, its use is not limited in this field, since 

Abaqus2Matlab provides a convenient integration framework between ABAQUS 

and Matlab and vice versa which can be used in many more engineering 

disciplines. Abaqus2Matlab has already been used in the literature for the 

following topics: 

6.7.1 Optimum design against buckling of plate girders with multiple 

longitudinal stiffeners subject to combined bending and shear 

Abaqus2Matlab is used to optimize the position of the longitudinal stiffeners of a 

multi-stiffened steel plate subject to combined bending and shear, so that the 

buckling coefficient of the plate is maximized. For this purpose, a model of the 
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steel plate is developed in ABAQUS, and an optimization procedure is 

implemented in Matlab. The ABAQUS model performs buckling analysis of the 

steel plate model which is automatically generated by suitable Abaqus2Matlab 

scripts for specific values of the design variables. The Matlab codes use a 

gradient-based interior point algorithm (IPA) which involves a direct Newton 

step and a Conjugate Gradient step to proceed towards the optimum solution. 

Abaqus2Matlab effectively coupled the solver (ABAQUS) and the optimizer 

(Matlab) functions of this complex optimization model by providing a successful 

linking between the various routines. This optimization procedure not only 

verified existing relevant results in the literature (Rockey & Cook, 1965 and Alinia 

& Moosavi, 2008) but also led to successful optimum designs for various 

configuration and loading conditions of the steel plate considered. The new 

designs achieved lead to significantly lower amounts of steel material required for 

construction, reduced by at least 61.76%), while at the same time structural safety 

is increased by as much as 180%. For more details about this application, the 

reader is referred to publications [2,3,4] in the Appendix A of this thesis. 

6.7.2 Prediction of buckling coefficient of stiffened plate girders using deep 

learning algorithm 

A Deep Learning- (DL-) based procedure for the prediction of the critical 

buckling coefficient of longitudinally stiffened web plate girders subjected to 

pure bending is developed. Datasets, consisting of input data (various geometric 

dimensions of the girder) and output data (critical buckling coefficient), are 

generated from eigenvalue buckling analyses in ABAQUS. In this procedure 

Abaqus2Matlab is used for the data transfer between Matlab and ABAQUS and 

vice versa, within a looped procedure for the generation of the training data of 

the Deep Learning network that is developed and verified. 2,200 training data are 

employed to establish the model to predict the buckling coefficient using deep 

learning. The number of hidden layers and the number of neurons in each layer, 

optimizer and activation function are chosen so that the metamodel is optimized 

for the given training data. Finally, 200 test data are utilized to estimate the 

model accuracy. The efficiency of the DL model is verified by comparison of its 

results with those obtained from the literature which showed a good agreement. 

For more details about this application, the reader is referred to publication [12] 

in the Appendix A of this thesis.  

6.7.3 A computational method for performing nonlinear adaptive pushover 

analysis of structures through ABAQUS simulation 

A computational method which uses the nonlinear adaptive static (pushover) 

analysis to evaluate the static force-deformation response of a planar moment 

resisting frame (MRF) for both monotonic and cyclic response has been 

developed. The MRF considered in this section is a seismic-resisting frame of a 

prototype five-storey five-bay steel building structure designed based on the 
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Japanese seismic design code. The frame model is simulated by the finite element 

software ABAQUS. Failure on members is captured by adopting shell elements 

for beams and columns combined with a refined meshing. The lateral force 

distribution is adapted during the pushover analysis according to the first 

eigenmode of the structure by utilizing a novel inverse optimization algorithm. A 

new stop analysis criterion is introduced that overcomes the numerical difficulty 

of the available static-solution algorithms to terminate the analysis in the 

degrading region of the load-deformation response. The effects of load 

distribution and first (fundamental) small strain eigenperiod on the force-

deformation pushover curve are studied. The monotonic adaptive pushover 

procedure is implemented using the programming language MATLAB. The new 

tool effectively combines the advanced modeling and analysis capabilities of 

ABAQUS with the programming simplicity of MATLAB, thus leading to a user-

friendly environment. The last offers a robust implementation of pushover 

analysis and superior numerical results can be obtained, especially the 

descending branch of the pushover curve and collapse mechanism. For more 

details about this application, the reader is referred to publication [13] in the 

Appendix A of this thesis. 

 

6.8 Notation 

minA : Minimum cross section area of truss members 

heeld : Width of the wall heel 

toed : Width of the wall toe  

 f x : Objective function  

,i litf : Experimental value of the ith eigenfrequency of the tyre 

,i numf : The ith eigenfrequency of the tyre calculated numerically 

 ig x : Inequality constraint function ( i 1,...,m ) 

H : Height of vertical slope retained by the retaining wall 

embh : Depth of the wall’s foundation  

 jh x : Equality constraint function ( j 1,...,p ) 

hk : Horizontal acceleration coefficient 

obj : objective function for fitting dynamic properties of the Abaqus tyre model 

P : Axial force of truss 

r : rank of an individual in a population of the genetic algorithm  

heelt : Thickness of the wall heel 

toet : Thickness of the wall toe  

wallt : Thickness of the wall stem  

kx : Design variables ( k 1,...,n ) 

 : Soil – wall interface friction angle.  
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 : Convergence parameter 

 : Axial stress 

max : Maximum (absolute) axial stress 

 : Soil internal friction angle   

 

 

 

 

 



 

C h a p t e r  7 E q u a t i o n  S e c t i o n  ( N e x t )  

 

7  Conclusions  

7.1 Original contribution of the thesis 

The objective of the present thesis was to develop algorithms and methodologies 

for the optimum design of structures which respond due to dynamic (seismic) 

loading. Also, the necessary numerical tools for the implementation of the new 

computational techniques are provided. These problems have some unique 

characteristics that are described in the following. Also, the contribution of the 

present thesis to each one of these problems is described in detail in the next 

sections. 

7.1.1 Development of a family of advanced direct time integration algorithms 

for nonlinear dynamic analysis 

Direct time integration (or time stepping, or step by step) methods are a widely 

used approach to solve dynamic linear or nonlinear response analysis problems. 

They have to satisfy certain criteria in order to be suitable for the integration of 

the differential equation of motion in the linear or nonlinear regime. In linear 

dynamic response, emphasis is given in accuracy, whereas in nonlinear dynamic 

response numerical stability is of primary interest. The large number of criteria 

that have to be satisfied has led to the development of problem-suited dynamic 

time integration algorithms, i.e. while any algorithm may be suitable for dynamic 

analysis involving a specific time stepping and/or constitutive model, it may be 

inappropriate for dynamic analysis involving different characteristics of the three 

aforementioned factors. From the aforementioned points, it is obvious that there 

is the need for the development of a direct time integration algorithm that will be 

able to be universally applied to any dynamic structural analysis problem. The 

General Single Step Single Solve (GSSSS) algorithm family which consists of 

advanced time integration algorithms that allow for controlled dissipation, 

dispersion and overshooting properties has been developed in Chapter 2 to cover 

this need 
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7.1.2 New software for strong ground motion data processing 

Most software that are used for processing of raw ground motion data nowadays 

employ rather elementary dynamic direct time integration algorithms. Taking 

advantage of the advanced GSSSS algorithm family that is presented in Chapter 1 

for the evaluation of the dynamic response, a new software for ground motion 

data processing was developed in this thesis (OpenSeismoMatlab). A numerical 

investigation is made which showed that OpenSeismoMatlab provides generally 

more accurate results than SeismoSignal, another reliable commercial proprietary 

software when the same integration step size is used for both software. This is 

attributed to the fact that OpenSeismoMatlab uses advanced time integration 

algorithms of the GSSSS family. OpenSeismoMatlab is a unique software that 

combines innovative numerical algorithms, high quality and robustness and is 

provided as an open-source tool to the research and professional engineering 

communities for the seismic design of structures as well as the processing of 

strong ground motions. The new software can be used for free by students and/or 

programmers for the seismic design of structures as well as general processing of 

strong ground motions. Thanks to its open source nature, it can be of high 

educational value for related university courses and can be easily extended or 

modified in order to be incorporated in higher level software. 

7.1.3 Novel gradient – based optimization concept related to dynamics of 

structures 

The gradient-based algorithms for optimum structural design generally require 

considerable computational effort, especially when direct time integration for the 

calculation of the structural response is involved in the objective function. Most 

part of the computations is carried out for the calculation of the gradient of the 

objective function at each iteration of the optimization algorithm. This gradient 

determines the direction to which the algorithm will proceed for the next 

evaluation of the objective function. The concept of the equivalent structure for 

the calculation of the gradient of the objective function is one of the main 

contributions of the present thesis. According to this concept, while the objective 

function is evaluated using the model of the real structure that is normally 

considered, the gradient of the objective function is calculated by the 

consideration of an equivalent simplified version of the structural model 

considered, that allows for a significantly reduced computational effort. It has 

been proved in this thesis that this highly accelerates computations (up to 10x) 

saving significant amounts of computational effort. As an example to illustrate 

the application of this concept the problem of uniform distribution of the 

dissipated seismic input energy along the height of a shear planar building has 

been considered. 
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7.1.4 Formulation of a new artificial ground motion generation algorithm 

matching both acceleration and energy spectra 

The various seismic norms worldwide require the selection of suites of 

representative acceleration time histories to be used for the dynamic analysis of a 

structural model, in order to carry out the seismic design. In cases that there is 

scarcity of the available acceleration time history data for a specific site, artificial 

ground motion data have to be generated ensuring that the last are 

representative of the seismic activity at the site where construction will take 

place. However, the current status of the various norms regarding the selection of 

suitable ground motion records that meet specific requirements is rather 

simplified, which, despite the robustness of the various finite element models 

available for seismic design, may account for significant source of error in 

structural design. On the other hand, it has been proven that the destructiveness 

of an earthquake is associated more to the energy absorbed by the structures, 

rather than the acceleration imposed on the latter. The energy-based design 

(EBSD) approach accounts for the effects of duration of the earthquake ground 

motion and conveys information about various characteristics of the seismic 

motion (e.g. impulse, etc.). Taking into account the aforementioned points, it is 

obvious that the artificial ground motions that are generated to match both 

target acceleration and target energy spectra will be much more realistic than 

those generated based merely on a target acceleration spectrum. In this thesis, a 

mixed real – integer genetic algorithm with appropriately customized genetic 

operators is developed for the generation of ground motion acceleration time 

histories that are compatible with both acceleration and input energy spectra, 

enabling in this way a more realistic seismic design of structures against 

earthquakes. 

7.1.5 Development of a new software for linking Abaqus and Matlab 

Usually there are some cases in which, although an advanced FE software and a 

programming language are available, they cannot perform alone a high level 

computational task, such as an optimization procedure. In order to achieve the 

computational task, they most likely need to be suitably “combined”. In the case 

of the Abaqus FEA software and Matlab programming language, Abaqus2Matlab 

provides a solution for combining the two first software by transferring model 

data and results from one of them to the other and vice versa. Abaqus2Matlab 

has been used successfully in this thesis to solve an optimization problem, 

conduct an inverse analysis, perform a static monotonic or cyclic pushover 

analysis, optimize the design of girder plates for maximum critical buckling 

coefficient and finally train a Deep Neural Network for the estimation of the 

buckling coefficient for various geometric configurations of a girder plate. In all 

the aforementioned cases, Abaqus2Matlab has been successfully executed 

without flaws or bugs, while it has preserved a high level of accuracy in the 
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results. This proves its robustness and applicability for solving a large variety of 

advanced engineering problems. 

7.2 Overall conclusions 

Apart from the conclusions discussed in detail in the various chapters, the 

research work done for the thesis led to the following fundamental overall 

conclusions: 

 The family of nonlinear generalized single step single solve (GSSSS) 

algorithms developed in Chapter 2 of this thesis is very efficient, accurate 

and stable, even with increased size of the time step, while the Continuous 

Acceleration methods, which include the HHT-a method as a special case, 

exhibit the most accurate response for most of the cases studied. 

 In some cases, the quality of the results of OpenSeismoMatlab, a new 

software that is developed in Chapter 3 of this thesis, is superior to that of 

SeismoSignal, a reliable commercial proprietary software, due to the fact 

that the former uses advanced time integration algorithms that allow for 

controlled dissipation, dispersion and overshooting properties.  

 It is shown that there exist unique optimum stiffness distributions, of 

quasi-linear shapes, which correspond to equidistributed viscous damping 

and hysteretic energy dissipation for linear elastic and elastoplastic planar 

shear building structures, respectively. Their shapes are generally 

independent of the earthquake excitation and offer the possibility for the 

development of simple methods for the calculation of the optimum 

stiffness distribution in shear buildings. Uniform distribution of energy 

along the structural height provides increased protection against global 

collapse and loss of life during strong earthquake events. 

 The novel concept of linear directions equipped with a stabilizer for 

optimization of nonlinear problems, as applied for the modification of a 

simple full N-R method in Chapter 4 of this thesis, leads to substantial 

computational savings. The new modified N-R algorithm is robust and 

efficient. 

 This consideration is leading therefore to optimized acceleration time 

histories, which represent actual motions in a much more realistic way. In 

order to produce elastic spectra that match as closely as possible to a given 

target spectrum, the procedure of selection and scaling of a suite of 

ground motion records to fit a given target spectrum is formulated as an 

optimization problem. Three characteristic ground motion records of 

different inherent nature are selected as target spectra, to verify the 

effectiveness of the proposed algorithm, ensuring that its performance is 

not ground motion record-dependent assuming different matching 

scenarios. 
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 Regarding the proposed novel spectra-matching framework developed in 

Chapter 5 of this thesis, it is shown that there exists a good agreement 

between the target and optimized spectra for the various cases examined, 

regardless of the nature of target spectrum, demonstrating thus the 

effectiveness of the algorithm. 

 It is proved that the records which are generated artificially by the spectra-

matching framework proposed in Chapter 5 are much more realistic and 

suitable for the seismic design of structures, since they reproduce better 

the real slightly nonlinear structural inelastic response in terms of the 

damping energy. 

 It is proved that Abaqus2Matlab, the new software that has been 

developed during the preparation of the present thesis primarily for 

solving optimization problems, is robust and accurate, and applicable in a 

large variety of high level engineering problems. 

The main objective of this thesis is to establish some methodologies for the 

design of structures based on their dynamic properties and seismic response by 

employing innovative computational techniques and present their advantages. 

Also, this thesis tries to establish the use of these energy concepts for the seismic 

design of structures as the state of the art in the near future and try to encourage 

practice towards that direction, away from the current use of safety factors and 

trial and error processes for the design of structural systems. 

7.3 Future work 

Following the research work done in this thesis, there are some natural 

extensions to this that would help expand and strengthen the methodologies 

proposed and the obtained results: 

 Further research has to be made to investigate the relation between the 

stable time increment of the generalized single step single solve 

algorithms applied in nonlinear problems and various other problem-

dependent input data. Apart from this, the numerous integration 

constants of the algorithms belonging to the GSSSS family, allows for 

optimization of the values of the integration constants, so that certain 

difficult dynamic nonlinear problems can be efficiently time-integrated 

 OpenSeismoMatlab can be used for free by students and/or programmers 

for the seismic design of structures as well as general processing of strong 

ground motions. Thanks to its open source nature, it can be of high 

educational value for related university courses and can be easily extended 

or modified in order to be incorporated in higher level software. 
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 The new optimization concept presented in Chapter 4 of this thesis can be 

applied, apart from the Newton-Raphson algorithm, to other commonly 

used optimization algorithms, accelerating the optimization procedure. 
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