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Abstract
Modal parameter identification is a fundamental procedure in structural engineering,

applied both in the design phase of new structures as well as the monitoring or the as-
sessment of existing structures.

The objective of this thesis is the application of the Continuous Wavelet Transform (CWT)
on the free decay responses of damped linear structural systems, with the aim of the iden-
tification of their modal parameters. Both single degree of freedom (s.d.o.f.) and multi
degree of freedom (m.d.o.f.) systems were examined, under the assumptions of weak
damping and of linear behaviour. The condition of weak damping allowed the considera-
tion of the processed signals as a sum of components consisting of asymptotic frequency
modulated signals. Consequently, the concept of the analytic signal with the terms of
instantaneous amplitude, phase and frequency was applied and the modal parameter
identification was performed directly, by employing procedures and equations involving
these signals.

The CWT is a multi-scale time-frequency signal processing method, based on a set of
family wavelets formed by scaling and translation of a prototype mother wavelet. Two
complex mother wavelets were employed, the Complex Morlet wavelet and the Cauchy
wavelet of order n. The CWT using a complex mother wavelet returns information about
both the instantaneous amplitude and instantaneous phase of each component within the
processed signals, as the calculated data tends to “concentrate” near a series of curves in
the time-frequency domain, called the ridges of the transform. Ridges can be defined as the
place where the instantaneous frequency of the signal is equal to the analyzing wavelet’s
center frequency. Each ridge corresponds to a component of the signal, and thus, the
identification of the ridges allows for the estimation of the corresponding instantaneous
frequencies, the damping rations and the mode shapes. The algorithms implemented for
the identification of ridges focus on differential methods, specifically the “Simple” method
that employs the modulus of the CWT and the “Marseille” method that employs the
phase of the CWT.

The thesis is structured into three thematic sections: The first thematic section presents
the essential engineering, physical and mathematical theoretical background, with em-
phasis in signal processing techniques and the fundamental definitions and properties of
the CWT. The second thematic section focuses on the methods and algorithms that are
applied for modal parameter identification using the CWT and the third involves two
numerical applications of the provided methods, one over a s.d.o.f system and one on a
m.d.o.f. system.

The implementation of the algorithms, the calculations and the visualizations are done
with MATLAB ver.R2021a, using the standard features and additionally the Signal Pro-
cessing Toolbox and the Wavelet Toolbox.
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Περίληψη

Ο προσδιορισμός των ιδιοχαρακτηριστικών (ιδιοσυχνότητες, ποσοστά απόσβεσης, ιδιο-

μορφές) μιας κατασκευής είναι μια θεμελιώδης διαδικασία στη δομική μηχανική, η οποία

εφαρμόζεται τόσο στη φάση του σχεδιασμού νέων κατασκευών όσο και στην παρακολούθη-

ση της δομικής ακεραιότητας ( Structural Health Monitoring) ή την αποτίμηση υφιστάμενων
κατασκευών (Damage detection).

Τα κύρια βήματα μιας τέτοιας διαδικασίας είναι τρία: Πρώτο βήμα είναι η διέγερση της

κατασκευής και η συλλογή δεδομένων, η οποία μπορεί να γίνει μέσω Πειραματικής ιδιομορφι-

κής ανάλυσης (Experimental Modal Analysis) ή μέσω Λειτουργικής ιδιομορφικής ανάλυσης
(Operational Modal Analysis). Το δεύτερο βήμα είναι η ανάλυση αυτών των δεδομένων
με μεθόδους επεξεργασίας σημάτων (Signal Processing Methods), οι οποίες περιλαμβάνουν
μεθόδους στο πεδίο του χρόνου (Time domain), στο πεδίο της συχνότητας (Frequency Do-
main) και στο πεδίο της χρονο-συχνότητας (Time-Frequency domain). Το τρίτο βήμα είναι
ο υπολογισμός των ιδιοχαρακτηριστικών με εφαρμογή κατάλληλων αλγορίθμων και εξισώσε-

ων.

Η παρούσα μεταπτυχιακή εργασία εστιάζεται στην εκτίμηση των ιδιοχαρακτηριστικών σε

υφιστάμενες κατασκευές με χρήση μιας μεθόδου στο πεδίο της χρονο-συχνότητας, τον Συ-

νεχή Κυματιδιακό Μετασχηματισμό (Continuous Wavelet Transform - CWT).

Εξετάζονται τόσο συστήματα ενός βαθμού ελευθερίας (s.d.o.f.) όσο και συστήματα πολλα-
πλών βαθμών ελευθερίας (m.d.o.f.) με την παραδοχή γραμμικής ελαστικής συμπεριφοράς και
υποκρίσιμης απόσβεσης, στα οποία αφού εισάγονται κάποιες αρχικές συνθήκες, στη συνέχεια

αφήνονται να ταλαντωθούν ελεύθερα και καταγράφονται οι αποκρίσεις της μετατόπισης, της

ταχύτητας και της επιτάχυνσης με τον χρόνο.

Οι αποκρίσεις των μονοβαθμίων συστημάτων είναι σήματα που περιέχουν μία συνιστώσα

(monocomponent), ενώ των πολυβαθμίων συντίθενται από πολλές συνιστώσες (multiocom-
ponent) από τις οποίες κάθε μια αντιστοιχεί σε μια ιδιομορφή. Τα σήματα των αποκρίσεων
έχουν επιπλέον το χαρακτηριστικό ότι είναι μη-στάσιμα, δηλαδή το συχνοτικό τους περιε-

χόμενο μεταβέλλεται με τον χρόνο.

Η ανάλυση και επεξεργασία τέτοιων σημάτων απαιτεί την έκφρασή τους σε συνάρτηση με

τον χρόνο. Η παραδοχή της υποκρίσιμης απόσβεσης, επιτρέπει την εφαρμογή της έννοιας

του αναλυτικού σήματος (Analytic Signal) εισάγοντας τις έννοιες του στιγμιαίου πλάτους
(Instantaneous amplitude), της στιγμιαίας φάσης (Instantaneous phase) και της στιγμιαίας
συχνότητας (Instantaneous frequency), οι οποίες μπορούν να εφαρμοστούν κατάλληλα σε
αλγορίθμους και σχέσεις ώστε να υπολογιστούν τα ιδιοχαρακτηριστικά του συστήματος.

Τα αποτελέσματα μιας ανάλυσης στο πεδίο της χρονο-συχνότητας είναι τρισδιάστατα και συ-

νήθως απεικονίζονται σε ένα δισδιάστατο γράφημα όπου ο οριζόντιος άξονας είναι ο χρόνος

και ο κατακόρυφος άξονας είναι η συχνότητα, επομένως μπορούν να ληφθούν για το επεξερ-

γασμένο σήμα πληροφορίες και για τη συμπεριφορά των συνιστωσών του ως προς τον χρόνο

αλλά και για το συχνοτικό του περιεχόμενο.
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Μια τέτοια απεικόνιση στο πεδίο της χρονο-συχνότητας έχει το χαρακτηριστικό ότι τα υ-

πολογιζόμενα δεδομένα τείνουν να ῾῾συγκεντρώνονται᾿᾿ σε περιοχές του γραφήματος, σχη-

ματίζοντας ῾῾κορυφές᾿᾿ (Ridges). Κάθε κορυφή, αντιστοιχεί σε μια συνιστώσα του σήματος
με συγκεκριμένη συχνότητα, επομένως, ο προσδιορισμός των κορυφών αυτών επιτρέπει τον

υπολογισμό των αντίστοιχων στιγμιαίων συχνοτήτων και των αντίστοιχων ποσοστών απο-

σβέσεως και ιδιομορφών με χρήση σχέσεων του αναλυτικού σήματος.

Ο Συνεχής Κυματιδιακός Μετασχηματισμός είναι μια μέθοδος επεξεργασίας σήματος με με-

ταβαλλόμενη ευκρίνεια η οποία βασίζεται σε ένα σύνολο ομοειδών συναρτήσεων (κυματιδίων-

(wavelets» οι οποίες παράγονται από την κλιμάκωση (scaling) και τη χρονική μετάθεση
(translation) μιας πρωτότυπης (μητρικής) συνάρτησης (mother wavelet) η οποία έχει μορ-
φή κυματιδίου. Επομένως Ο Συνεχής Κυματιδιακός Μετασχηματισμός είναι συνάρτηση δύο

παραμέτρων: της κλίμακας α και της χρονικής μετάθεσης b.

Στην παρούσα εργασία χρησιμοποιήθηκαν δύο μιγαδικά μητρικά κυματίδια, το μιγαδικό κυ-

ματίδιο Morlet (Complex Morlet wavelet) και το κυματίδιο Cauchy (Cauchy wavelet) τάξης
n.

Ο Συνεχής Κυματιδιακός Μετασχηματισμός που χρησιμοποιεί μιγαδικό μητρικό κυματίδιο

παράγει πληροφορίες τόσο για το στιγμιαίο πλάτος όσο και για τη στιγμιαία φάση κάθε συ-

νιστώσας στο επεξεργασμένο σήμα. Κάθε συνιστώσα αναλύεται ξεχωριστά.

Για τον προσδιορισμό των κορυφών υπάρχουν διάφορες μέθοδοι οι οποίες μπορούν να κα-

ταταχθούν σε δύο κατηγορίες: Differential Methods και Integral Methods. Οι differential
μέθοδοι βασίζονται στην εύρεση ενός ζεύγους (α,b) για το οποίο η στιγμιαία συχνότητα του
σήματος ταυτίζεται με τη κεντρική συχνότητα του κυματιδίου. Οι integral μέθοδοι βασίζο-
νται στην θεώρηση των κορυφών ως συναρτήσεις οι οποίες έχουν ως χαρακτηριστικό ότι

η ενέργειά τους τείνει να συγκεντρώνεται στις περιοχές των κορυφών στο διάγραμμα του

χρόνου-συχνότητας. Εισάγοντας μια κατάλληλη συνάρτηση ποινής (penalty function), οι
κορυφές εκτιμώνται ως οι συναρτήσεις αυτές που ελαχιστοποιούν αυτή τη συνάρτηση.

Στην παρούσα μεταπτυχιακή εργασία εφαρμόστηκαν δύο differential μέθοδοι , η Simple
Method και η Marseille method. Η Simple Method βασίζεται στο διάγραμμα του μέτρου
του συνεχή κυματιδιακού μετασχηματισμού και αναζητεί τις περιοχές όπου εμφανίζεται το

τοπικό μέγιστο, που αντιστοιχεί στην συχνότητα της αντίστοιχης συνιστώσας. Η Marseille
Method είναι ένας επαναληπτικός αλγόριθμος και βασίζεται στο διάγραμμα της φάσης του
συνεχή κυματιδιακού μετασχηματισμού. Η Marseille Method αναζητεί την κλίμακα στην
οποία αντιστοιχεί η εξεταζόμενη κορυφή και υπολογίζει την συχνότητα ως την κλίση του

διαγράμματος της φάσης με τον χρόνο για την κλίμακα αυτή.

Με γνωστές τις κορυφές, μπορεί να βρεθεί η τιμή του συνεχή κυματιδιακού μετασχηματι-

σμού στις θέσεις αυτές και υπολογίζονται τα αναλυτικά σήματα. Η συσχέτιση της λύσης της

εξίσωσης της κίνησης για ελεύθερη ταλάντωση με απόσβεση με το στιγμιαίο πλάτος και τη

στιγμιαία φάση του αναλυτικού σήματος, επιτρέπει την εξαγωγή εξισώσεων που υπολογίζουν

τα ποσοστά απόσβεσης και τις ιδιομορφές.
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Η παρούσα μεταπτυχιακή εργασία διαρθρώνεται σε τρεις θεματικές ενότητες: Η πρώτη θεμα-

τική ενότητα παρουσιάζει το βασικό τεχνικό, φυσικό και μαθηματικό θεωρητικό υπόβαθρο, με

έμφαση σε σημαντικές έννοιες της επεξεργασίας σήματος όπως η δειγματοληψία (sampling)
και η αναδίπλωση (aliasing), καθώς και σε θεμελιώδεις ορισμούς και ιδιότητες του συνεχή
κυματιδιακού μετασχηματισμού, αναλύοντας τις έννοιες της ευκρίνειας (resolution), της ε-
πιλογής των μητρικών κυματιδίων, της κανονικοποίησης (normalization), της παραμέτρου
της κλίμακας (scaling), της παραμέτρου (Q), της επιρροής των φαινομένων των άκρων (edge
effects) και του υπολογισμού του μετασχηματισμού σε Η/Υ. Η δεύτερη θεματική ενότητα
επικεντρώνεται στις μεθόδους και τους αλγορίθμους που εφαρμόζονται για τον προσδιορισμό

των ιδιοχαρακτηριστικών μιας κατασκευής με τη χρήση συνεχή κυματιδιακού μετασχηματι-

σμού όπως αναλύθηκε προηγουμένως και η τρίτη περιλαμβάνει δύο αριθμητικές εφαρμογές

των μεθόδων αυτών, μία σε ένα μονοβάθμιο σύστημα και μία σε ένα πολυβάθμιο σύστημα.

Η υλοποίηση των αλγορίθμων, οι υπολογισμοί και οι απεικονίσεις έγιναν με το πρόγραμμα

MATLAB ver.R2021a, χρησιμοποιώντας επιπλέον και τα Signal Processing Toolbox και
Wavelet Toolbox.
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Chapter 1

Introduction

1.1 Overview

Modal analysis is the process of identifying the inherent dynamic characteristics of a
structural system - also known as modal parameters - which include the natural frequen-
cies, the damping ratios, and the mode shape vectors. Modal parameter identification is
a fundamental part of structural engineering, used in the design phase of new structures
as well as the monitoring or the assessment of existing structures under dynamic loading
conditions.

When designing a new structure, the mass, damping, and stiffness matrix are known
and used as inputs to modal analysis, the results (outputs) of which provide the prediction
of the structure’s response to external loading, allowing the evaluation and optimization
of the design. For example, assessing the structure’s natural periods and mode shapes
might result in a design decision to modify the structure’s stiffness matrix to avoid un-
wanted behavior. For existing structures, the knowledge of the structure’s current modal
parameters is important for its monitoring and/or assessment through dynamic analy-
sis, structural health monitoring, detection of structural modifications In these cases, the
problem is inverse, meaning that the damping and stiffness matrix are not known in ad-
vance. Consequently, modal parameter identification is essential for the description of
an existing structural system by a model, based on data recorded by instruments. For
example, structural damage caused by earthquake results in observable changes in the
vibratory responses of the structure, hence the analysis of these outputs can allow the es-
timation of the decreased stiffness matrix. Furthermore, measured vibration data can be
employed for validating and updating finite-element-models used in the analysis, even in
the design phase for some cases of complex and large-scale structures where experiments
and tests are also performed.

In existing structures, modal parameter identification consists in general of three main
steps: excitation and data acquisition, signal processing, and modal parameters estima-
tion. Focusing on the first step, vibration measurements can be obtained by performing
Experimental Modal Analysis (EMA) or Operational Modal Analysis (OMA). Experi-
mental Modal Analysis or Modal testing is an experimental process where the structure
is subjected to a controlled input (excitation) and its output (response) is being recorded.
This testing procedure is generally made under carefully-controlled conditions and con-
sequently yields more accurate and detailed information. However, EMA methods have
some disadvantages, including the requirement of special equipment that might make the
testing quite costly, the difficulties and expenses of implementing such testing in large-
scale structures, and the need for evacuation before any testing. Operational Modal
Analysis aims at identifying the modal properties of a structure based on vibration data
collected during operating conditions of the structure under study, i.e., no initial excita-
tion or known artificial excitation is applied. OMA methods are output-only methods,
since the system’s input is unknown (wind, traffic, machine vibration etc.). In many
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cases, OMA is used instead of classical modal analysis, as it provides the advantages of
not requiring special equipment and evacuation of the structure during the measurements
and it can be applied in situations where it is difficult or impossible to artificially excite
the structure. Additionally, OMA methods make possible the ongoing structural health
monitoring and damage detection. Yet, OMA methods do have disadvantages; since the
ambient vibration is random, there is a chance that some of the modes appearing in the
measured response might not originate from the structure itself, but might actually be
input modes that have been filtered through the structural system. Thus, the methods
should be able to distinguish the system’s natural frequencies from excitation frequencies
through stochastic procedures.

Continuing in the second and third step of modal parameter identification, signal pro-
cessing techniques are used for the estimation of modal parameters. The most common
classification of these methods is done according to the domain where the data are pro-
cessed: time domain, frequency domain and time-frequency domain. Early methods used
to work in the frequency domain, but problems associated with frequency resolution, leak-
age and high modal densities led to the developing of time domain methods as a promising
alternative. In general, time domain models tend to provide the best results when a wide
frequency range or large number of modes exist in the data, whereas frequency domain
models tend to provide the best results when the frequency range of interest is limited
and the number of modes is relatively small. However, time domain methods have a
major disadvantage in that they can only estimate modes inside the frequency range of
analysis, and take no account on the residual effects of modes that lie outside that range
[19]. Frequency domain methods still have the difficulties mentioned, plus they do not
provide any information about the time where the components of the frequency content
of the under signal are present. For a long time, frequency domain identification and time
domain identification were considered as competing methods to solve the same problem.
A main conclusion of Ljung and Glover [17] back in 1979, was that these two approaches
are complementary rather than rivalling. Thus, taking it one step further, the need to
overcome the inability of the frequency domain approach to capture time-varying fea-
tures of a structure but retain the advantage of the frequency content information, led to
the development of the time-frequency domain methods. These methods study a signal
in both the time and frequency domains simultaneously; subsequently they were widely
applied and used in system identification and damage detection.

The wavelet transform (WT) originated in the early 1980s in the works of Morlet [25]
who used it in seismology and then Grossman and Morlet [26] who developed the geomet-
rical formalism of the continuous wavelet transform. The Continuous wavelet transform
(CWT) is a time-frequency domain output-only modal identification method and was first
proposed by Staszewski and Cooper [36] in 1995 to estimate structural parameters. Since
then, the potential of modal parameter identification using the CWT has been receiving
considerable attention in the literature (see from [37] to [52] and [13], [33]). Early works
were focused on exploring and developing methods and techniques for the estimation of
a system’s natural frequencies, damping ratios and gradually mode shapes, e.g. Ruzzene
et al. [39] in 1997 showed that the CWT applied to free responses of m.d.o.f system
represents a consistent improvement for the estimation of instantaneous frequencies and
viscous damping ratios compared to the Hilbert transform (HT), Staszewski also in 1997
[37] proposed three different damping estimation procedures for MDOF systems, based on
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the CWT. Le and Argoul in 2003 [13] focused on improving the use of continuous wavelet
transform for modal identification purposes from the free-decay responses of structures by
exploring the choice of the mother wavelet and of its localization properties and making
efforts to remedy the problem of edge effect appearing during the numerical computation
of the CWT. Progressively these methods were expanded to process free responses of non-
linear systems, e.g. by Staszewski [38] and Argoul and Le [43]. In recent years there has
been a great focus on the practical utilization of the CWT in structural health monitoring
(SHM) for modal parameter identification through ambient excitation measurements, e.g.
Le and Paultre [48] in 2012 proposed a new method that allows a straightforward CWT
calculation from raw data of ambient tests and the direct use of all available procedures
that are valid for free decay response in identifying modal parameters, while Wijesundara
et al. [51] in 2015 explored the estimation of modal parameters of low-rise buildings using
ambient excitation measurements.

The CWT is a linear transform by definition and thus, appropriate for multi-component
signals. Compared with other identification techniques, CWT has two fundamental ad-
vantages in structural parameter identification [52]. The first is the multi-resolution ability
inherent to wavelet analysis. This property enables the separation of the close frequency
components of a coupled frequency signal, allowing MDOF systems to be handled di-
rectly. Additionally this ability ensures that CWT can work as a band-pass filter and
automatically filter out noise from the signal; hence this method can handle very noisy
measurements. The second advantage is that CWT can resolve multiple structural param-
eters from a single signal without knowledge of the applied force acting on the structure.
This advantage makes it a promising output-only identification method that is widely uti-
lized in both EMA and OMA. Another important advantage of the CWT is that it can be
used to analyze time series that contain nonstationary power at many different frequencies
[5], and therefore it can process nonstationary vibration measurements. Lastly, the use of
the CWT allows to determine the time variation of instantaneous amplitude and phase
of each component within the signal [13] a property that facilitates the identification pro-
cedure of modal parameters through the identification of ridges and the reconstruction of
the signal; procedures that will be applied in this thesis.

1.2 Objective

The objective of this thesis is the application of the Continuous Wavelet Transform
(CWT) on the free decay responses of damped linear structural systems, with the aim
of the identification of their modal parameters. Both SDOF and MDOF systems are ex-
amined, under the assumptions of weak damping and of linear behaviour. The condition
of weak damping allows the consideration of the processed signals as a sum of compo-
nents consisting of asymptotic frequency modulated signals. Consequently, the concept
of the analytic signal with the terms of instantaneous amplitude, phase and frequency
can be applied and the modal parameter identification can be performed directly, by
employing procedures and equations involving these signals. The CWT is a multi-scale
time-frequency analysis method, based on a set of family wavelets formed by scaling and
translation of a prototype mother wavelet. Two complex mother wavelets are employed,
the Complex Morlet wavelet and the Cauchy wavelet of order n. The CWT using a com-
plex mother wavelet returns information about both the instantaneous amplitude and

3



instantaneous phase of each component within the processed signals, as the calculated
data tends to “concentrate” near a series of curves in the time-frequency domain, called
the ridges of the transform. Ridges can be defined as the place where the instantaneous
frequency of the signal is equal to the analyzing wavelet’s center frequency. Each ridge
corresponds to a component of the signal, and thus, the identification of the ridges allows
for the estimation of the corresponding instantaneous frequencies, the damping rations
and the mode shapes. The algorithms implemented for the identification of ridges focus
on differential methods, specifically the “Simple” method that employs the modulus of
the CWT and the “Marseille” - as referred by Carmona in [2] - method that employs the
phase of the CWT.

1.3 Thesis outline

This thesis is divided into 7 Chapters and is structured in such way that:

• Chapters 1 to 3 present the essential engineering, physical and mathematical theoretical
background that is required to comprehend the contents and the methods applied in
the following Chapters. Specifically:

✤ Chapter 1 illustrates a general overview of modal parameter identification meth-
ods.

✤ Chapter 2 presents basic ideas and definitions used in signal processing that will
be applied for the analysis of the signals.

✤ Chapter 3 provides the fundamental definitions and properties needed to under-
stand the wavelet theory and its application to the estimation of modal parameters,
plus information on the implementation of the CWT in the MATLAB environment
for the calculations.

• Chapter 4 describes the methods and algorithms that will be applied for modal param-
eter identification using the CWT.

• Chapter 5 provides an essential background on structural dynamics and presents the
techniques used in obtaining the modal parameters from the results of the CWT anal-
ysis.

• Chapter 6 presents two numerical applications of the method, one over a s.d.o.f system
and one on a m.d.o.f. system.

• Chapter 7 concludes, summarizes this thesis and presents some remarks and suggestions
for further work.

1.4 Programs applied

• MATLAB ver.2021a

The implementation of the algorithms, the calculations and the visualizations are
done with MATLAB ver.R2021a, using the standard features and additionally the Signal
Processing Toolbox and the Wavelet Toolbox.
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The Signal Processing Toolbox provides functions and apps to analyze, preprocess,
and extract features from uniformly and nonuniformly sampled signals, while the Wavelet
Toolbox provides apps and functions for analyzing and synthesizing signals and images[21].
There are two cwt commands, one called new version and one the old of the legacy one;
their main difference in the calculation of the CWT is on the choice of normalization of
the mother wavelet. In this thesis, the old cwt command was employed as it allowed to
insert user defined mother wavelets. More will be discussed thoroughly on Chapter 6.

1.5 Modal parameter identification techniques

As mentioned in the overview, the dynamic properties of existing structures, such
as natural periods, mode shapes and damping ratios, can be estimated by applying
modal identification methods on vibration measurements. Modal parameter identifica-
tion based on vibration measurements represents a challenge because the recorded data is
non-stationary and is usually embedded in high-level noise. Furthermore, the estimation
of closely-spaced modal parameters present in a structure is an additional challenge in
those methods. Over the past decades, many modal identification methods have been
developed and can be found in the literature. Α classification of such methods, influenced
by Maia et al.[19] is the following:

• Time domain, frequency domain and time-frequency domain methods

The most common classification of modal parameter identification techniques is done ac-
cording to the domain where the data are processed; therefore they can be categorized
into three main groups: time domain, frequency domain and time-frequency domain.

Time domain methods do not employ any form of transform space to process a time
series. Modal parameters are estimated with techniques that use correlation functions of
the signals, or the signals directly. Time domain methods can be categorized in subspace
methods, free decay-based methods and statistical time series [29]. Some examples are
the Random Decrement (RD) method, the Least-Squares Complex Exponential (LSCE),
the Polyreference Complex Exponential (PRCE), the Ibrahim Time Domain (ITD), the
Single-Station Time Domain (SSTD), and the Eigensystem Realization Algorithm (ERA)
[19]. However, a crucial problem with many time domain methods is the incapacity for
distinguishing structural modes from uncorrelated modes and the fact that they are often
very sensitive to noise in the data since all frequency components present in the data are
included into the analysis.

Frequency domain methods are based on the frequency response function (FRF). A
FRF is a function used to quantify in the frequency domain the response of a system to an
excitation and is usually graphically represented by Bode type diagrams. Frequency do-
main methods can be categorized in Fourier transform-based methods and high-resolution
methods [29]. Some examples are the Frequency Domain Decomposition method (FDD),
the Enhanced Frequency Domain Decomposition (EFDD), the Curve Fit frequency Do-
main Decomposition (CFDD), the Peak Picking Method (PPM), the Polyreference Least
Squares Complex Frequency Domain method (p-LCSF) and the Complex mode indication
function method (CMIF). However, frequency response methods require the application
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of signal processing techniques as transformation of the data from the time domain to
the frequency domain is prone to leakage errors: noiseless data in the time domain might
result in noisy FRFs. Additionally, problems in frequency domain methods also arise for
nonlinear or lightly damped structural systems.

Time-frequency (TF) domain methods process a signal in both the time and fre-
quency domains simultaneously: The signal is treated as a function whose domain is
the two-dimensional real plane, obtained from the signal via a time–frequency transform.
The most basic TF methods are the short-time Fourier transform (STFT) and the Gabor
transform. More sophisticated techniques already established are the wavelet transform
(WT - Continuous wavelet transform and Discrete wavelet transform), the Hilbert-Huang
transform (HHT), the Blind Source Separation (BSS) and the Wigner–Ville distribu-
tion (WVD), however still new methods and further improvements are developed and
explored such as the Local Characteristic-scale Decomposition (LCD), the Compact Em-
pirical Mode Decomposition (CEMD), the music-Empirical Wavelet Transform and the
Novel blind source separation algorithm [29].

Summarizing, table 1.1, influenced by [29] presents a summary of the main advan-
tages and disadvantages of the signal processing techniques used for modal parameter
identification.

• Direct and Indirect methods

Time domain and frequency domain methods can be further divided into direct and
indirect (or modal) methods, while the time-frequency domain methods belong only to
the indirect methods. In direct methods, the identification procedure is directly based on
the spatial model, i.e., on the general matrix equation of dynamic equilibrium. In indirect
methods the identification procedure is based on the modal model, i.e., on the modal
parameters (natural frequencies, damping ratios, modal constants and their phases) which
are the quantities in the characteristic solutions of the dynamic equations of equilibrium.

• Single Degree Of Freedom and Multiple Degrees Of Freedom

A further division refers to the number of modes which can be analysed. Single Degree Of
Freedom analysis (SDOF) considers only one mode in the analysis, whereas in Multiple
Degrees Of Freedom (MDOF) analysis more than one modes are considered. In the time
domain, only MDOF analysis can be performed, whereas in the frequency domain, both
types of analysis: SDOF and MDOF can be performed in the indirect methods. Direct
methods only apply to MDOF analysis.
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Table 1.1: Advantages and disadvantages of the signal processing techniques used in
modal parameter identification

Domain Method Advantages Disadvantages

Time
domain
methods

STSM

Straightforward use.
Modal parameters can
be directly obtained
from the model. Can

deal with small
noise-level signals.

Linear and stationary
model. Accuracy

depends on the level
of noise. Model order

selection can be a
time-consuming

procedure.

Free-decay methods

Filtering properties.
Can process raw

ambiental responses.
Simplicity. Easy
implementation.

Multi-stage schemes.
Increased

computational burden.
Sensitive to noise.
Used mainly to

process stationary
responses.

SSI methods

Noise immunity.
Closely-spaced modes

detection. Modal
parameters are

directly obtained. Can
process slightly

non-stationary signals.

Heavy computational
burden. Require

calibration.
Generation of spurious

modes.

Frequency
domain
methods

FT-based methods

Straightforward use.
Modal parameters are

directly obtained.
Simplicity (PP). Non
a-priori knowledge of
the number of modes
is required. Filtering
properties (FRF).

Fixed resolution. Can
deal with only

stationary signals.
Sensitive to noise.

Closely-spaced modes
are not detected. The

input excitation
should be available for

FRF estimation. If
the excitation source
is a harmonic signal,
the estimated natural

frequency can be
biased (FDD).

High-resolution
methods

Noise immunity.
Closely-spaced modes

can be detected.

Computational
burden. Require

calibration.
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Time-
Frequency
domain
methods

Wavelet transform

Multi-resolution
time-frequency

analysis. Detection of
sudden frequency

changes and
transients.

Closely-spaced modes
can be detected. Can
process non-stationary
signals. Can handle

noisy signals.
Output-only method.
Modal parameters are

directly obtained.

Accuracy depends on
the mother wavelet

choice. Require
calibration.

Computational burden
for very fine analysis.
DWT method lacks

translation-invariance.

HHT and its variants

Adaptive method.
Straightforward use.
The individual modes
are extracted. No user
interaction is required.

Mode-mixing. EMD
variants require
calibration. Its

computational burden
and accuracy depends
on selected algorithm:

EMD (lower),
ensemble EMD

(higher).

BSS

Good accuracy to
separate frequency
components. Can

identify modes with
low energy.

A pre-filtered stage is
required for signal

embedded in
high-level noise. High
damping ratios cannot

be accurately
estimated.

• Single-Input-Single-Output, Single-Input-Multi-Output and Multi-Input-
Multi-Output methods

In Input-output methods, used in EMA, modal parameter identification is based in the use
of both input (excitation) and output (response) measurements, whereas in output-only
methods, used in OMA, only output signals are used for estimating the modal parameters.

While collecting the measured data, FRFs can also be calculated from the recorded
responses. These FRFs are the result of exciting the structure at each selected point and
measuring the response at several locations across that structure. Single-Input-Single-
Output methods refer to modal analysis methods that can be applied only to a single
FRF at a time. Other methods allow for several FRFs to be analysed simultaneously,
with responses taken at various points on the structure, but using one excitation point.
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These methods are called Single-Input-Multi-Output (SIMO) methods. The philosophy
behind this category of methods is that the natural frequencies and damping ratios do
not vary (theoretically) from FRF to FRF (they are global properties of a structure) and,
thus, it should be possible to obtain a consistent and unique set of those properties by
processing several FRFs at the same time. Finally, there are methods that can process all
the available FRFs simultaneously, from various excitation and response locations. These
methods are called Multi-Input-Multi-Output (MIMO) methods [19].

• Wavelet Analysis

Referring to the classification of Maia et al [19], wavelet analysis for modal identication is
added as a time-frequency domain processing method allows modal identication through
applying the indirect MDOF and SIMO methods.
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Chapter 2

Signal Processing Basics

This chapter presents some fundamental concepts and definitions used in signal pro-
cessing, so that they can be utilized for the wavelet analysis theory and its application
on the estimation of modal parameters (natural frequencies, damping ratios and mode
shapes) that will be described in the following chapters.

2.1 Signal definition and examples

A signal can be defined as a physical quantity that varies with time, space, or any other
independent variable (or variables) [31]. In signal processing, a signal is a function that
conveys information about a phenomenon and can be represented in the time domain, the
frequency domain, and the time-frequency domain.

Typical examples of signals are: human speech, whale song, music, photographs and
videos, electrocardiograms, encephalograms, etc. Noise is also a signal, but the infor-
mation conveyed by it, is unwanted in general, hence it is considered as undesirable. In
structural dynamics, the most commonly used signals are those that provide information
about the acceleration, velocity, and displacement response of structures during an earth-
quake or any other kind of vibration. One example of such a signal is an accelerogram.

A system may be defined as a physical device that performs an operation such as
analysis, modification, filtering, synthesis, etc. on a signal. “Passing” a signal through a
system is called Signal Processing.

2.2 Traditional Signal Representation

2.2.1 Time domain representation

A typical representation of a signal u is as a function of time, called temporal or
time-domain representation u(t) (see figure 2.2(a)). The time-domain representation,
u(t), provides information about the actual presence of the signal, its start and end time
point, it’s duration in time, its strength and temporal evolution, and it indicates how
the signal’s energy (see equations 2.21 and 2.22) is distributed along the t axis. The
observation and recording of physical phenomena from instruments is usually performed
in relation to time, and therefore the signals obtained are in the time-domain, for example
an accelerogram or the displacement response of a structure during an earthquake.

2.2.2 Frequency domain representation

Another typical representation of a signal u is as a function of frequency, called the
spectral or frequency-domain representation u(ω) (see figure 2.2(b)). The frequency-
domain representation, u(ω), provides information about which frequencies are present in
the signal, their relative magnitudes, minimum frequency, maximum frequency, and the
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bandwidth formed by their difference. A signal represented in time-domain can be also
represented in the frequency-domain by applying a pair of mathematical operators called
a transform. An example is the Fourier Transform (FT) (see equation 3.9) which decom-
poses a function into the sum of a (potentially infinite) number of sine wave frequency
components. The inverse Fourier transform (see equation 3.10) converts the frequency
domain function back to a time function.

2.2.3 Time – frequency representation

Most signals from the nature are intrinsically non-stationary, in the sense that their
frequencies vary along time. Using a time-frequency representation, the signal is rep-
resented on a time-frequency plane, providing both temporal information and spectral
information simultaneously. This illustration on the time-frequency plane allows the de-
termination of the variation of the instantaneous amplitude and phase of each component
within a signal in time.

Depending on the application, a time-frequency representation is more advantageous:
the time-domain representation does not provide information about the frequency con-
tent of a signal and the frequency domain representation dos not not locate in time the
frequency content of the signal, whereas the time-frequency representation illustrates in-
formation on both variables, see figures 2.1 and 2.2.

Example 2.1. Consider a non stationary sinusoidal function composed of the sum of
three sine functions, with frequencies F1 = 1Hz, F2 = 3Hz and F3 = 10Hz: respectively,
defined as,

u(t) = u1(t) + u2(t) + u3(t)

where

u1(t) = sin (2πt) , t ∈ [0, 10] sec

u2(t) = sin (6πt) , t ∈ (2, 7) sec

u3(t) = sin (8πt) , t ∈ (5, 10] sec

The signal u(t) is illustrated in the TF plane in figure 2.1. As it can be observed, both
information about time and frequency can be extracted: The frequency components at 1,
3, and 10 Hz are clearly shown in the frequency axis, while information about the presence
of each component in time is clearly illustrated: component u1(t) is present for all the
signal’s duration, u2(t) is present from 2sec to 7sec and u3(t) is present from 5sec until
the end of the signal.
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Figure 2.1: Time-frequency domain representation of a non stationary signal. It can be
observed that it illustrates information on both time t and frequency f .

Example 2.2. Consider the displacement response of a SDOF signal with natural fre-
quency f = 3Hz and duration L = 10sec. The three representations of the signal are
shown in figure 2.2. a) time domain, (b) frequency domain, and (c) joint time-frequency
domain.

As it can be observed, (a) provides information only about the signal’s duration which
is L = 10sec, (b) provides information about the system’s natural frequency f = 3Hz,
whereas (c) illustrates information on both variables t and f .
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Figure 2.2: Three representations of free decay response u of a s.d.o.f. system: (a) time
domain, (b) frequency domain, and (c) joint time-frequency domain.

2.3 Complex Numbers

Fundamental concepts of oscillatory motion involve the use of complex numbers. Ad-
ditionally, the mother wavelets used in this thesis are complex, which results in the CWT
also being complex. Therefore, this section provides a brief reference to basic definitions
and properties of complex numbers.

Definition 2.1 (Complex number). Let i2 = −1. A complex number is of the form:

z = x+ yi (2.1)

where Re(z) = x and Im(z) = y are real numbers.

Definition 2.2. (Modulus and argument)

i. The modulus of a complex number z = x+ yi, is defined as:

r = ||z|| =
√
x2 + y2 (2.2)

ii. The argument of a complex number z = x+ yi, denoted φ = arg(z), is defined as:

φ = arctan
(y
x

)
, or φ = atan2[Re(z), Im(z)] = atan2(y, x) (2.3)
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Definition 2.3 (Euler’s formula). Euler’s formula, establishes the fundamental relation-
ship between the trigonometric functions and the complex exponential function and is
expressed as:

eiφ = cosφ+ i sinφ (2.4)

Using Euler’s formula, trigonometric functions can be expressed as:

cosφ =
eiφ + e−iφ

2
(2.5)

and

sinφ =
eiφ − e−iφ

2i
(2.6)

Definition 2.4 (Polar form). The polar form of a complex number with modulus r and
argument φ denoted as: z = r∠φ, is defined:

z = |z|eiφ = |z|(cosφ+ i sinφ) (2.7)

Definition 2.5 (Complex conjugate). The complex conjugate of a complex number
z = x+ yi is defined as:

z = x− yi, or z = |z|e−iφ (2.8)

2.4 Simple Harmonic Motion

Simple harmonic motion (a special class of oscillatory motion) can serve as a mathe-
matical model for a variety of phenomena as it provides a basis for the characterization
of more complicated periodic motion. Thus, this section provides some basic definitions
and concepts which will be used in the following chapters.

2.4.1 Trigonometric Notation for Simple Harmonic Motion

Let the motion of a given point be described by the equation:

u(t) = A sin (ωt+ φ) or u(t) = A cos (ωt+ φ) (2.9)

where
u(t) is the displacement from the equilibrium position in m, cm, etc.,
A the displacement magnitude of the oscillation in m, cm, etc.,
ω the angular frequency in rad/s,
φ the phase angle in rad,
and t the time.
The quantity A is the single-peak amplitude; u(t) moves between the limits ±A, so the
peak-to peak amplitude (also known as double amplitude) is 2A. The time history of this
simple harmonic displacement is shown in figure 2.3.
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Figure 2.3: Time history of simple harmonic displacement.

The angular frequency ω is is the rate of change of the phase angle φ with time t:

ω =
dφ

dt
(2.10)

The angular frequency ω is also related with the frequency f = 1/T (units in hertz)
and the period T = 1/f (units in seconds) through the following relations:

ω = 2πf (2.11)

and

ω =
2π

T
(2.12)

Simple harmonic motion can also be described as the sum of a sine function and a
cosine function, that is:

u(t) = a cos (ωt) + b sin (ωt) (2.13)

As seen in figure 2.4 the sum of the sine and cosine functions is also a sinusoid that oscil-
lates at angular frequency, ω. The motion described by equation 2.13 can be expressed in
the form of equation 2.9, with amplitude A =

√
a2 + b2 and phase angle φ = arctan (a/b).

Figure 2.4: Summation of sine and cosine functions of the same frequency produces a
sinusoid of the same frequency. Amplitude and phase of the sinusoid depends on the

amplitudes of the sine and cosine functions.
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2.4.2 Complex Notation for Simple Harmonic Motion

Trigonometric descriptions of simple harmonic motion use familiar functions that are
easy to visualize. However, for many dynamic analyses, the use of trigonometric notation
complicates considerably many operations, particularly the solution of differential equa-
tions. These analyses become much simpler when motions are described using complex
notation, which can be derived directly from trigonometric notation using Euler’s formula
(see equation 2.4)., by substituting equations 2.5 and 2.6 in equation 2.13:

u(t) =
a− ib

2
eiωt +

a+ ib

2
e−iωt (2.14)

2.4.3 Displacement, Velocity, Acceleration

Differentiating with respect to time the expression for simple harmonic displacement
produces expression for velocity and differentiating again produces the expression for
acceleration, i.e for φ = 0:
In trigonometric notation:

u(t) = A sin (ωt) (2.15)

u̇(t) = ωA cos (ωt) = ωA sin (ωt+
π

2
) (2.16)

ü(t) = −ω2A sin (ωt) = ω2A sin (ωt+ π) (2.17)

In complex notation:

u(t) = Aeiωt (2.18)

u̇(t) = iωAeiωt (2.19)

ü(t) = −ω2Aeiωt (2.20)

2.5 Classification of signals

The methods employed in processing a signal depend heavily on the characteristics of
that particular signal, for example, there are techniques that apply only to specific families
of signals. Consequently, any investigation in signal processing requires knowledge of the
classification of the signals that are involved in each application.

Signals can be classified according to many criteria into the following categories:

• Continuous-time and Discrete-time signals.

This classification’s criteria is based on the characteristics of the time (independent)
variable and the values they take. Let u(t) be a function (signal) of the independent
variable t, defined in the time domain:
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If the independent variable t is continuous, t ∈ R, i.e. between any two points in time
there is an infinite number of other points in time, then the corresponding signal is a
continuous-time signal, often called an analog signal. Any signal value can be found at
any arbitrary point in time. Mathematically, these signals can be described by functions of
a continuous variable and they are related to operations with integrals. A simple example
of a continuous-time signal is a sinusoidal function u(t) = sin(ωt), where t ∈ R, see figure
2.5.

Figure 2.5: Example of a continuous time signal: Sinusoidal signal u(t) = sin(ωt), t ∈ R,
with angular frequency ω = π rad/sec.

If the independent variable t takes on only discrete integer values, t ∈ Z, for example
t = ±1, ±2, ±3,..., then the corresponding signal is a discrete-time signal. A discrete-
time signal is not defined at instants between two successive points in time, therefore
mathematically it can be represented by a sequence of real or complex numbers. To
emphasize the discrete-time nature of these signals, they can be denoted as u(n) instead
of u(t). A simple example of a discrete-time signal is a sinusoidal sequence u(n) = sin(ωn),
where n ∈ Z, see figure 2.6.

Generally, discrete-time signals may arise in two ways:

1. By selecting values of a continuous-time signal at discrete-time instants. This pro-
cess is called sampling and the values selected samples. As an example, figure 2.6
can be acquired by sampling the continuous-time signal of figure 2.5. This is a fun-
damental process, as most signals of practical interest in nature (e.g. seismic signals,
speech) are analog; consequently, they must be converted into a discrete-time form
to be able to be processed by digital means (e.g. computers). More will be discussed
in detail in section 2.7.
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2. By accumulating a variable’s values over a period of time. For example, the daily
rainfall data of a specific area or the hourly number of cars passing through a certain
street result in discrete-time signals.

Figure 2.6: Example of a discete-time signal: Sinusoidal signal u(n) = sin(ωn), n ∈ Z,
with angular frequency ω = π rad/sec.

• Deterministic and Random Signals

Mathematical analysis and processing of signals demands the availability of a math-
ematical expression of the signal itself. This requirement leads to another important
classification of signals, in relation to the existence of not of this formula:

Deterministic signals are those whose values are predictable at any time and can be de-
scribed exactly by a mathematical formula, a table of data, or a well-defined rule. It is
worth mentioning that true deterministic signals are very rare in nature because unknown
and uncontrollable factors (e.g. noise) usually influence the signal as well.

Random signals are signals that take on random values at any given time instant, there-
fore they are modeled stochastically, in probabilistic terms. Seismic signals and speech
signals are examples of random signals.

• Stationary and Non-stationary signals

This classification results from the observation of the signal’s frequency content over
time:

Stationary signals are those whose frequency content remains unchanged in time. All
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frequency components exist at all times.

Non-stationary signals are those whose frequency content varies in time. These kinds of
signals are the ones that are found in nature.

• Periodic and aperiodic signals

Periodic signals. These signals have waveforms whose pattern repeats at equal increments
of time; this is expressed mathematically as: u(t + T ) = u(t), where T is the period of
continuous-time signals, or u(n + N) = u(n), where N is the period for discrete-time
signals.

Non-periodic or aperiodic signals, which are signals that are not periodic.

• Energy signals and Power signals.

This classification is based on the signal total energy E and signal average power P ,
definitions which are used to characterize a signal.

The total energy E of a signal is defined as:

For continuous-time signals u(t):

E =

∫ +∞

−∞
|u(t)|2dt (2.21)

For discrete-time signals u(n):

E =
+∞∑

n=−∞

|u(t)|2 (2.22)

The average power P of a signal is defined as:

For continuous-time signals u(t):

P = lim
T→∞

1

2T

∫ T

−T
|u(t)|2dt (2.23)

For discrete-time signals u(n):

P = lim
N→∞

1

2N + 1

N∑
n=−N

|u(t)|2 (2.24)

Hence, the classification goes as follows:

Energy signals are those whose total energy is equal to a finite positive value, i.e. 0 <
E < +∞, and their average power is zero (P = 0). Aperiodic signals are an example of
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energy signals.

Power signals are those whose average power P is finite, i.e. 0 < P < +∞, and their
energy is infinite (E = +∞). Periodic signals are examples of power signals.

• Monocomponent and multicomponent signals

This classification is based on the time-frequency domain, a concept which it will be
discussed in the following section (see subsection 2.2.3) and Chapter 4, but it is presented
here for the purpose of completeness.
A monocomponent signal is described in the time-frequency plane by a single “ridge”
corresponding to an elongated region of energy concentration.[1] For example, the dis-
placement response u(t) of a s.d.o.f system is a monocomponent signal (see figure 2.8).

A multicomponent signal may be described as the sum of two or more monocomponent
signals. For example, the displacement response u(t) of a m.d.o.f system’s d.o.f. is a
multicomponent signal(see figure 2.9).

• Noise

The term noise originates from radio engineering, where it describes the unwanted
signal that it is heard when the radio is not tuned exactly to a radio station. In signal
processing, noise is a general term for unwanted (and, in general, unknown) modifications
that interfere and degrade the desirable information of a signal. This can happen during
capture, storage, transmission, processing, or conversion of a signal.[35]

Signals within which the presence of noise is insignificant, can be characterized as pure,
while signals with significant noise present within them can be characterized as noisy. In
real-life applications, signals are not “clean” in general and most often are embedded in
noise. Noise can be eliminated by filtering of the signal. A filter is a system that removes
unwanted components or features from a signal.

Example 2.3. Figure 2.7 shows the time-domain representations of six continuous-time
signals (left hand side) and their respective frequency-domain representations (only the
modulus plot is presented, right hand side): (a) is simple sinusoidal signal with a constant
frequency f : pure, deterministic, periodic signal. (b) is a sum of sinusoids: a “multicompo-
nent” pure signal containing several “components”. (c) is monocomponent, nonstationary
signal: has a single “component” whose local frequency f(t) changes as time profresses. In
this case, the dominant frequency at a certain time t is a linear function of time t, which
it is called “instantaneous frequency” f(t). (d) is a multicomponent, nonstationary signal.
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Figure 2.7: Example of time-domain representations of six continuous-time signals (left
hand side) and their respective frequency-domain representations modulus plot (right

hand side).

2.6 Τhe Time-Frequency Approach

The basic product of a time-frequency analysis is a set of data represented in the 2D
time-frequency plane as in figures 2.8, 2.9 and 2.10.

• Instantaneous amplitude, phase and frequency

As it was mentioned in Chapter 1, time-frequency methods have the ability to analyze
non-stationary signals efficiently. The frequency of a sinusoidal signal is a well defined
quantity, as it was seen in section 2.4. However, often in practice, signals are not truly
sinusoidal, or even aggregates of sinusoidal components. Non-stationary signals do not
lend themselves well to decomposition into sinusoidal. For such signals, the notion of
frequency loses its effectiveness, and one needs to use a parameter which accounts for
the time-varying nature of the process [1]. Following the thought process of the simple
harmonic motion in equation 2.9 and 2.13, such signals can be expressed as:
For monocomponent, frequency modulated (FM) signal:

u(t) = A(t) cosφ(t) (2.25)
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For a multicomponent, frequency modulated (FM) signal:

u(t) =
N∑
j=1

A(t) cosφ(t) (2.26)

Where A(t) is the instantaneous amplitude and φ(t) is the instantaneous phase of the
signal.

Consequently, the instantaneous frequency (IF) is the temporal rate of the instanta-
neous phase and equation 2.10 becomes:

ω(t) =
φ(t)

dt
= 2πf(t) (2.27)

Figure 2.8: Example of time-frequency analysis of a monocomponent signal: Magnitude
(Modulus) Scalogram of the CWT
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Figure 2.9: Example of time-frequency analysis of a multicomponent signal: Magnitude
(Modulus) Scalogram of the CWT

Figure 2.10: Example of time-frequency analysis of a monocomponent signal:
Magnitude (Modulus) (left) and Phase Plot (right) of the CWT
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• Ridges

The IF of a signal at time t0 indicates the dominant frequency of the signal at that
specific time, therefore it describes the frequency modulation law of the signal. For a
monocomponent FM signal, the peak of the cross-sections parallel to the frequency axis
of the time-frequency plane gives the IF law which describes the signal FM law, while
for a multicomponent FM signal, the dominant peaks of the cross-sections parallel to the
frequency axis of the time-frequency plane reflect the components’ respective FM laws.
Those peaks in the cross-sections parallel to the frequency axis correspond to elongated
regions of energy concentration in the time-frequency plot, called ridges. For example,
the signal of figure 2.8, is a monocomponent signal with frequency f = 3Hz; the ridge
can be observed clearly as a function of time fixed around the frequency point f = 3Hz.
Same in figure 2.9: the signal is multicomponent, containing the frequencies f1 = 4.75Hz
and f2 = 13.60Hz, the two ridges are clearly visible.

• Positive and negative frequencies

Mathematically, the frequency f ranges from −∞ to +∞, yet in practice only the
positive frequencies are used, as it can be seen from the plots shown in the previous
figures. The intuitive explanation is that f represents the number of oscillations per
second, therefore is expected to be positive. Mathematically, this is based on a property
of the FT: if u(t) is real, its FT û(ω) has Hermitian symmetry (see section 3.2.2), thus,
the information contained in the negative frequencies is a duplication of the information
contained in the positive frequencies. Therefore, in practice, negative frequencies are
considered redundant and the analysis is done with positive frequencies. This is achieved
by introducing a particular complex signal Z(t) called the “analytic signal,” which contains
only positive frequencies.

More on analytic signals, ridges and instantaneous amplitude, phase and frequency will
be discussed extensively in Chapter 4.

2.7 Sampling and Aliasing – Nyquist’s Theorem

As referred in the previous section, most signals of practical interest in nature are
continuous-time signals, and therefore they must be converted into a discrete-time form
to be able to be processed by digital means. This conversion of a continuous time signal
to a discrete-time signal is done through a procedure called sampling.

The sampling type that is used most often in practice is the periodic (or uniform)
sampling, where the discrete-time signal is obtained by “taking samples” of the continuous-
time signal every Ts seconds. The time interval Ts between successive samples is called the
sampling period. Its reciprocal Fs = 1/Ts is called the sampling rate (how many samples
per second are recorded) or the sampling frequency.

Example 2.4. The figure 2.6 illustrates a discrete-time sinusoidal signal u(n) = sin(ωn)
with angular frequency ω = π rad/sec. The sampling frequency is Fs = 10Hz and the
sampling period Ts = 0.1sec.The figure can be produced by the following matlab script:
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Listing 2.1: Creating the discrete-time sinusoidal signal of figure 2.6
1 % Discrete time Sine Signal
2 Fy=0.5 %signal frequency in Hz
3 omega =2*pi*Fy %signal angular frequency in rad/s
4
5 Fs=10 %sampling frequency in Hz
6 dt=1/Fs %sampling period;
7 t=-10:dt:10; %time intervals set
8 y=sin(omega*t); %signal data set
9

10 figure ()
11 hold on; box on;
12 stem(t,y,'filled ','b','LineStyle ',':')
13 yline(0,'k')
14 title('Sinusoidal Signal ');
15 xlabel('Time (s)')
16 ylabel('Amplitude ')
17 xlim([-2 2])

The sampling rate has a significant effect on the reconstruction of the continuous real
signal in the time domain. Insufficient sampling frequency results to a phenomenon called
aliasing. Aliasing is an effect that causes different signals to become indistinguishable (or
aliases of one another) when sampled. It also often refers to the distortion or artifact that
results when a signal reconstructed from samples is different from the original continuous-
time signal. Generally, a high Fs is desired, because as Fs increases, the effectiveness of
sampling increases too, but after a certain value, no further improvement is achieved, and
instead the computational time is increased.

Example 2.5. Consider two different sinusoidal signals have different frequencies, F1 =
1/8Hz and F2 = −7/8Hz:

u1(t) = sin

(
2π

8
t

)
and

u2(t) = sin

(
−14π

8
t

)
The two signals are plotted in figure 2.11, together with a third signal, which is the
second one calculated with a sampling frequency Fs = 1Hz. It can be clearly observed
that choosing a sampling frequency Fs = 1Hz results in the second signal to be illustrated
almost the same as the first one, when in reality they are completely different. This is an
example of aliasing.

Listing 2.2: Example of aliasing of figure 2.11
1 % Signal 1
2 Fy1 =1/8; %signal frequency in Hz
3 omega1 =2*pi*Fy1 %signal frequency in rad/s
4 % Signal 2
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5 Fy2 =-7/8; %signal frequency in Hz
6 omega2 =2*pi*Fy2 %signal frequency in rad/s
7 % Efficient sampling rate
8 Fs=70; %sampling frequency in Hz
9 dt=1/Fs; %sampling period

10 t=0:dt:20; %time intervals set
11 u1=sin(omega1*t); %signal 1 data set
12 u2=sin(omega2*t); %signal 2 data set
13 % Non efficient sampling rate
14 Fs3 =1; %sampling frequency in Hz
15 dt3 =1/ Fs3; %sampling period
16 t3=0: dt3 :20; %time intervals set
17 u3=sin(omega2*t3); %signal data set
18
19 figure ()
20 hold on; box on;
21 plot(t,u1,'b','LineWidth ' ,2);
22 plot(t,u2,'c','LineWidth ' ,2);
23 plot(t3,u3,'r--','LineWidth ' ,2);
24 yline(0,'k')
25 xlabel('Time (s)','FontSize ' ,14)
26 ylabel('Amplitude ','FontSize ' ,14)
27 legend('Signal 1','Signal 2','Signal 2 with inefficient Fs')

Figure 2.11: Example of aliasing

Consequently, to avoid the ambiguities resulting from aliasing, the sampling rate must
be selected to be sufficiently high; this is solved by following the Nyquist–Shannon sam-
pling theorem.

Theorem 2.1 (Nyquist–Shannon sampling theorem). Sampling frequency Fs must be at
least two times greater than the signal’s highest frequency Fmax:

Fs ≥ 2Fmax (2.28)

The theorem establishes a sufficient condition for a sample rate that permits a discrete
sequence of samples to capture all the information from a continuous-time signal of finite
bandwidth. Usually the general frequency content of the signal is known, thus the signal’s
highest frequency can be estimated.
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Definition 2.6 (Nyquist frequency). The previous theorem leads to the definition of the
Nyquist frequency as the maximum frequency in the frequency domain of the analysis:

FNyquist =
Fs
2

(2.29)
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Chapter 3

Wavelet Analysis – The Continuous Wavelet Trans-
form (CWT)

This chapter presents an overview of the background of the continuous wavelet trans-
form. It provides the basic definitions and properties needed to understand the wavelet
theory and its application to modal parameter identification.

3.1 Function Spaces

This section provides a brief description of the function spaces used in wavelet theory[6].

3.1.1 Normed Spaces

The concept of norm in a vector space is an abstract generalization of the length of
a vector in the R3 set and is defined axiomatically; i.e. any real-valued function that
satisfies some particular conditions can be defined as a norm.

Definition 3.1 (Norm). A real-valued function ||x|| defined on a vector space X, where
x ∈ X, is called a norm on X if the following conditions are satisfied:

i. ||x|| = 0 if and only if x = 0,

ii. ||ax|| = |a| ||x|| for every a ∈ R and x ∈ X,

iii. ||x+ y|| ≤ ||x||+ ||y|| for all x ∈ X (also known as the triangle equality).

Combining i, ii, and iii, follows that: 0 = ||0|| = ||x−x|| ≤ ||x||+ ||−x|| = 2||x||, therefore
||x|| ≥ 0 for every x ∈ X.

Definition 3.2 (Normed Space). A normed space is a pair (X, || · ||) where X is a vector
space and || · || is a norm defined on X.
Note: It is possible to define different norms on the same vector space.

Example 3.1. i. R is a real normed space with the norm defined by the absolute
values: ||x|| = |x|.

ii. C is a complex normed space with the norm defined by the modulus: ||z|| = |z|.
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Example 3.2. The sequence space ℓp(1 ≤ p ≤ +∞) is the set of all sequences x = [xn]
+∞
n=1

of real (or complex) numbers such that
(∑+∞

n=1 |xn|p
)
<∞ is a normed space with a norm

defined as:

||x||p =

[
+∞∑
n=1

|xn|p
]1/p

(3.1)

Example 3.3. RN =
[
(x1, x2, ..., xN) : x1, x2,. .., xN ∈ R

]
is a vector spase with norm

defined by setting p=2 at equation 3.1:

||x||2 =
√

(x21 + x22 + · · ·+ x2N) (3.2)

where x = (x1, x2,. .., xN) ∈ R. This norm is called the Euclidean Norm.

3.1.2 Lp Spaces

Definition 3.3. If p ≥ 1 is any real number, the vector space of all complex-valued
Lebesgue integrable functions f defined on R is denoted by Lp(R) with a norm:

||f ||p =
[∫ +∞

−∞
|f(x)|pdx

]1/p
(3.3)

where ||f ||p is the Lp-norm.

Remarks:

1. The range of p is 1 ≤ p ≤ +∞, as for values 0 < p < 1 the function || · ||p does not
satisfy the triangle inequality (see Definition 3.1) [18].

2. Equation 3.1 is the discrete version of equation 3.3.

3. The case p = 2 warrants special attention: it is a Hilbert space, more will be discussed
in subsection 4.3.

4. Elements of L2(R) are called square integrable functions.

5. The term “signal of finite energy” in the following, refers to a generic element of L2(R).

6. The equation of the total energy of a function (see equations2.21 and 2.22) can be
defined as the square of the L2 norm of the function.

3.1.3 The Complex Hardy Space

The Complex Hardy space H2(R) -sometimes called the space of analytic signals-, is
made of signals which do not have negative frequency components, and is defined as:

H2(R) =
[
f ∈ L2(R); f̂(ω) = 0 for ω ≤ 0

]
(3.4)
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3.1.4 Convolution

Definition 3.4 (Convolution). Let f and g be functions in L1(R). Then the (continuous-
time) convolution of f and g is also an L1(R) function h ∈ L1(R) defined by:

h(x) = (f ∗ g)(x) =
∫ +∞

−∞
f(x− y)g(y)dy (3.5)

whenever the integral is well-defined. The convolution’s properties are that it is commu-
tative, associative and distributive.

Theorem 3.1. If f and g ∈ L1(R), then the function f(x − y)g(y)dy is integrable for
almost all x ∈ R. Furthermore, the convolution h is an integrable function and the
following equality holds:

||h||1 = ||f ∗ g||1 ≤ ||f ||1 ||g||1 (3.6)

3.1.5 Inner product

Definition 3.5. Let f and g ∈ L2(R). The inner product and norm for the space L2(R)
is given by:

⟨f, g⟩ =
∫ +∞

−∞
f(x)g(x)dx (3.7)

||f ||2 = ⟨f, f⟩1/2 (3.8)

3.2 From Fourier analysis to Wavelet analysis

3.2.1 The Fourier Transform

As mentioned in Chapter 2, the Fourier Transform (FT) converts a signal from the
time domain to the frequency domain by decomposing it into the sum of a (potentially
infinite) number of sine wave frequency components.

Definition 3.6 (Fourier Transform). For finite energy signals u(t) ∈ L1(R) ∩ L2(R) the
FT is defined as:

û(ω) = F [u] =

∫ +∞

−∞
u(t)e−iωtdt (3.9)

And the inverse FT as:

u(t) = F−1[u] =
1

2π

∫ +∞

−∞
û(ω)eiωtdω (3.10)
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The function û(ω) is complex, and can be expressed in polar form as û(ω) = Aeiφ to
express the amplitude spectrum A(ω) (frequency-amplitude plot), and phase spectrum
φ(ω) (frequency-phase angle plot).

It is important to mention that the Parseval identity allows the extension of the definition
of FT from L1(R) to L2(R) to include finite energy signals:

Definition 3.7 (Parseval’s Identity). Let f ∈ L1(R) ∩ L2(R). Then the FT f̂ of f is in
L2(R), and satisfies the following Parseval’s Identity:

||f ||22 =
1

2π
||f̂ ||22 (3.11)

which by substituting equation 3.3 of norm, Parseval’s Identity becomes:∫ +∞

−∞
|f(t)|2dt = 1

2π

∫ +∞

−∞
|f̂(ω)|2dω (3.12)

It can be observed that the left hand side part of the equation is the energy of a signal (see
equation 2.21). Consequently, Parseval’s Identity states a conservation of energy between
the time and the frequency domains.

Then, for all f and g ∈ L1(R)∩L2(R) (signals of finite energy), the following identity
is easily obtained from Parseval’s identity using the inner product definition (see equation
3.7): ∫ +∞

−∞
f(t)g(t)dt =

1

2π

∫ +∞

−∞
f̂(ω)ĝ(ω)dω or ⟨f, g⟩ = 1

2π

〈
f̂ , ĝ

〉
(3.13)

which emphasizes the fact that the Fourier transform preserves the Hilbert spaces inner
products.

3.2.2 Properties of the Fourier Transform

Some basic properties of the FT are (mentioned because they will be extended to
wavelet analysis):

• Linearity

F

[
N∑
j=1

uj

]
=

N∑
j=1

F [uj] (3.14)

• Time scaling

F [u(at)](ω) =
1

|a|
û
(ω
a

)
, a ̸= 0 (3.15)
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• Translation / time shifting

For any real number t0 ∈ R:

F [u(t− t0)](ω) = e−iωt0û(ω) (3.16)

• Modulation / frequency shifting

For any real number ω0 ∈ R:

F [e−iω0tu(t)](ω) = û(ω − ω0) (3.17)

• Hermitian symetry

For a real function u(t) ∈ R:

û(−ω) = û(ω) (3.18)

• Convolution

(u1 ∗ u2)(t) = F−1[û1(ω)û2(ω)] (3.19)

3.2.3 The Fast Fourier Transform

FT is implemented in digital means by the discrete form of equation 3.9, the Discrete
Fourier Transform (DFT). The DFT of a discrete-time signal u(n) is:

û(k) =
1

N

N−1∑
n=0

u(n)e−i(
2πkn
N ) (3.20)

where k = 0, 1, ..., N − 1 is the frequency index.
However, the calculation of the DFT with equation 3.20 requires performing approxi-
mately N2 multiplications, which becomes impractical when large amounts of data (large
values of N) are required for processing.

As it is implied by its name, the Fast Fourier Transform (FFT) is an algorithm that
determines the DFT of a signal significantly faster than computing it directly, as it per-
forms an N-term DFT in 2N log (N) calculations allowing the analysis of large data sets.
FFT can be implemented in MATLAB using the fft command.

3.2.4 Spectral leakage

Signals that are used in practice are of finite length. Due to this finite duration,
signals that are converted from the time domain to the frequency domain are subject
to spectral leakage. When the DFT is applied to an aperiodic signal of finite length, it
assumes that any existing frequency components are periodic and infinite, i.e the same
finite signal is repeated infinite times. So, when a spectral component that is not a
harmonic of the fundamental frequency for the observation window exists, the repetition
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of that finite component by the transform creates discontinuities at the boundaries of the
iterations. Since that component is not a harmonic, and no longer a smooth wave due to
the discontinuities, the energy of that component cannot be expressed on a single basis
and instead is distributed among the other harmonic frequency bases. This “smearing”
of energy manifests on the amplitude spectrum as low amplitude frequency components
that are not actually present. Introducing a proper window function into the transform
can reduce the degree of spectral leakage in the spectrum. [10].

Example 3.4. Consider a sinusoidal function composed of the sum of three sine functions,
with frequencies F1 = 1Hz, F2 = 3Hz and F3 = 4Hz: respectively, defined as,

u(t) = sin (2πt) + sin (6πt) + sin (8πt) , t ∈ [0, 10] sec

The signal u(t) is displayed in figure 3.1 with respective Fourier amplitude spectrum
normalized by the sampling period and its phase spectrum. The signal u(t) is real,
therefore the spectrum is symmetric, so the one-sided spectrum is illustrated. The peaks
in the plot of Figure 3.1 (b) indicate the presence of frequency components at 1, 3, and
4 Hz. Since the present frequency components have equivalent amplitudes (all have an
amplitude of one), the relative power for each of the frequencies within the signal is also
equivalent. This can be observed by the uniform amplitude of the peaks.

The effect of leakage can be observed by making the signal u(t) non-stationary:

u(t) = u1(t) + u2(t) + u3(t)

where

u1(t) = sin (2πt) , t ∈ [0, 10] sec

u2(t) = sin (6πt) , t ∈ (2, 7) sec

u3(t) = sin (8πt) , t ∈ (5, 10] sec

As it can be observed in figure 3.2, the Fourier amplitude is distorted by spectral leakage,
i.e. low amplitude frequency components.

Listing 3.1: FFT computation: amplitude spectrum and phase spectrum
1 %% FFT
2 Fs =2^10; % sampling frequency in Hz
3 dt=1/Fs % sampling period
4 t=0:dt:10-dt; % time intervals set
5 Ny = Fs/2; % nyquist frequency
6
7 % Generate the signal
8 F1 = 1; % Hz
9 F2 = 3; % Hz

10 F3 = 4; % Hz
11 ut = sin(2*pi*F1*t)+sin (2*pi*F2*t)+sin (2*pi*F3*t);
12 %ut = sin (2*pi*F1*t)+sin(2*pi*F2*t).*(t>2 & t<7)+sin(2*pi*F3*t).*(t>5);
13
14 NbSpl = length(t) % number of samples in the time domain (in power of 2)
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15
16 min_omega = 0; % min angular frequency
17 max_omega = 2*pi*Ny; % max angular frequency
18 delta_omega = 2*pi*Fs/NbSpl; % frequency step
19 omega = (min_omega:delta_omega:max_omega); % frequency range rad/sec
20
21 % Transform u from time domain u(t) to frequency domain u(w)
22 uw = fft(ut);
23 uw = uw ';
24
25 Nw_max = 1+fix(max_omega*NbSpl /(2*pi*Fs)); % Single sided
26 uw = uw(1: Nw_max);
27
28 % Amplitude Spectrum
29 A = abs(uw).*dt; % Amplitude
30 F = omega ./(2* pi); % Frequency range in Hz
31 % Phase spectrum
32 phi =-angle(uw);
33 %plots
34 figure ()
35 subplot (3,1,1)
36 hold on; box on; grid on;
37 plot(t,ut,'b','LineWidth ' ,2)
38 xlabel('Time (s)')
39 ylabel('Amplitude ')
40 title('Simulated signal u(t)')
41
42 subplot (3,1,2)
43 hold on; box on; grid on;
44 plot(F,A,'b','LineWidth ' ,2)
45 xlim ([0 5])
46 xlabel('Frequency (Hz)')
47 ylabel('Amplitude ')
48 title('Fourier Amplitude Spectrum of u(t)')
49
50 subplot (3,1,3)
51 hold on; box on; grid on;
52 plot(F,phi ,'b','LineWidth ' ,2)
53 xlim ([0 5])
54 xlabel('Frequency (Hz)')
55 ylabel('Phase')
56 title('Fourier Phase Spectrum of u(t)')
57 set(gca ,'YTick',-pi:pi/2:pi)
58 set(gca ,'YTickLabel ',{'-\pi','-\pi/2','0','\pi/2','\pi'})
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Figure 3.1: A sine wave with three frequency components,its corresponding Fourier
amplitude spectrum and phase spectrum. (a) A sinusoidal function u(t) with frequencies

1, 3, and 4 Hz. (b) The Fourier amplitude spectrum of u(t). Frequency components
emerge at 1, 3, and 4 Hz. (c) The Fourier phase spectrum of u(t).

Figure 3.2: Example of spectral leakage. As it can be observed, the Fourier amplitude is
distorted by spectral leakage.
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3.2.5 Window function

As it was mentioned, the problem of spectral leakage can be reduced with the use of a
proper window function. Window functions operate by multiplying the time signal by a
finite-length window with an amplitude that varies smoothly and gradually toward zero
at the edges.

In signal processing, a window function is a mathematical function that is zero-valued
outside of some chosen interval, normally symmetric around the middle of the interval,
usually near a maximum in the middle, and usually tapering away from the middle.

Definition 3.8. A nontrivial function ψ ∈ L2(R) is called a window function if xψ(x)
is also in L2(R). The center xψ and radius ∆xψ of a window function w are defined
respectively by:

xψ =

∫ +∞

−∞
x
|ψ(x)|2

||ψ||22
dx (3.21)

and

∆xψ =
1

||ψ||2

√∫ +∞

−∞
(x− xψ)2|ψ(x)|2dx (3.22)

Note that the radius ∆xψ expression is equivalent to standard deviation in statistics. The
width of the window function is defined as 2∆xψ.

Most popular window functions are bell-shaped curves, for example the Hann window
or a Gaussian window (see figure 3.3. These are just presented for the sake of completeness
as a passage to the Short Time Fourier Transform (time-frequency domain).

Figure 3.3: Example of two window functions in the time domain as generated by
MATLAB with the signal processing toolbox.
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3.2.6 Short Time Fourier Transform (or Windowed Fourier Transform)

As demonstrated in Example 3.4, the FT converts a signal from the time domain into
the frequency domain and does not provide any information about the time localization
of the frequency components. In Chapter 1, was mentioned that the need to overcome the
inability of the frequency domain approach to capture time-varying features of a structure
but retain the advantage of the frequency content information, plus the problem of spectral
leakage, led to the development of the time-frequency domain methods.

Gabor in 1946 developed and introduced the Short Time Fourier Transform (STFT,
otherwise known as the windowed Fourier transform, or Gabor transform). The STFT
is nothing but a simple localization of the FT via the introduction of a sliding window
function. The existence of this window makes this transform into a function of two param-
eters: a time parameter giving the location of the center of the window and a frequency
parameter for the computation of the Fourier transform of the windowed signal[2].

Introducing now the time-frequency window ψ, with time center and frequency center
respectively defined as:

tψ =

∫ +∞

−∞
t
|ψ(t)|2

||ψ||22
dt (3.23)

and

ωψ =

∫ +∞

−∞
ω
|ψ̂(ω)|2

||ψ̂||22
dω (3.24)

And with time radius and frequency radius respectively defined as:

∆tψ =
1

||ψ||2

√∫ +∞

−∞
(t− tψ)2|ψ(t)|2dt (3.25)

and

∆ωψ =
1

||ψ̂||2

√∫ +∞

−∞
(ω − ωψ)2|ψ̂(t)|2dω (3.26)

The window function now is in the time-frequency plane and has dimensions 2∆t and
2∆ω.

Definition 3.9 (Heisenberg uncertainty principle). The Heisenberg uncertainty principle
states that:

µψ = ∆t∆ω ≥ 1

2
(3.27)

Consequently, an improvement of the time localization (i.e., a decrease of Δt) is accom-
panied by a deterioration in the frequency localization (i.e., an increase of Δω), thus it
is not possible to achieve optimal localization simultaneously in the time and the fre-
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quency domains. Note that the inequality becomes an equality in the case of Gaussian
(or modulated Gaussian) functions.

Definition 3.10. The STFT of a function u(t), STFTu consists of multiplying u(t) by a
(usually real) window function ψ shifted in time. If ψ(t) is a prototype window, symmetric
about t = 0, then STFTu is calculated as:

STFTu =

∫ +∞

−∞
u(t)ψ(t− b)e−iωtdt (3.28)

where the parameter b is used to translate the window in order to cover the whole time-
domain, for extracting local information of the Fourier transform of the signal.

Definition 3.11 (Mother function). Given a window function g ∈ L2(R) the correspond-
ing family [gb,ω; b ∈ R, ω ∈ R] of Gabor functions is obtained by shifting and modulating
copies of g:

gb,ω(t) = g(t− b)eiω(t−b) (3.29)

Examples of two such functions are illustrated in figure 3.4. Once the window g is fixed,
the associated continuous Gabor transform is defined as follows.

Figure 3.4: Examples of two gb,ω(t) functions in the time domain.

Definition 3.12. Let g ∈ L2(R) a window function. The continuous Gabor Transform
of a finite-energy signal u(t) ∈ L2(R) is defined by:

Gu(b, ω) = ⟨u, gb,ω⟩ =
∫ +∞

−∞
u(t)gb,ω(t)dt (3.30)

Consequently, the Gabor transform is essentially a STFT with a Gaussian window. As
it can be observed by the previous definitions, changing the values of t simply corresponds
to translating the window in time while its width is kept fixed. Similarly, as the mod-
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ulation parameter ω varies, the transform translates in frequency, retaining a constant
width. Thus, the resolution windows in the time–frequency plane have dimensions 2∆t
and 2∆ω, which are fixed for all t and ω, thus, STFT and Gabor transform the fixed-
duration window function is accompanied by a fixed frequency resolution. Consequently,
this transform allows only a fixed time–frequency resolution. This is shown in figure 3.5 in
which the mother function is illustrated centered at (t0, ω0) and the sliding time window
are centered at integral multiples of t0 and the transforms are evaluated at frequencies
centered at integral multiples of ω0.

Figure 3.5: Fixed time-frequency resolution for the Gabor Transform.

However, the STFT represents an inaccurate and inefficient method of time–frequency
localization, as it imposes a scale or “response interval” 2∆t into the analysis. The inac-
curacy arises from the aliasing of high- and low-frequency components that do not fall
within the frequency range of the window [34].

Since frequency is directly proportional to the number of cycles per unit time, it
requires a narrow time-window to locate high frequency phenomena more precisely and
a wide time-window to analyze low frequency behaviors more spectral information. In
other words, it is important to have a flexible time-frequency window that automatically
narrows at high center-frequency and widens at low center-frequency. Hence, the STFT is
not suitable for analyzing signals with both very high and very low frequencies [3]. This
constraint led to the development of the Wavelet transform where a dilation (or scale)
parameter a is introduced to make the time-frequency window flexible.

Summarizing, the Gabor transform is based upon time and frequency translations, as
opposed to time translations and scalings as in the case of the wavelet transform which
is presented in the next section.
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3.3 The Continuous Wavelet Transform

This section provides a presentation on the basic theory of the continuous wavelet
transform. The main idea is that the wavelet transform is based on a set of basis func-
tions (wavelet family) formed by dilation and translation of a prototype mother function
(wavelet) ψ(t) and is used to decompose a function (signal) u(t) into the time-frequency
domain.

Definitions in the literature vary slightly and depend on the choice of normalization
of the wavelets. However, normalization is irrelevant to the basic theory [11], thus, in
order to present the basic theory, the definition by Carmona et al.[2] is used for the
wavelet definition; the differences and the influence of normalization are described in the
“Normalization” section.

3.3.1 Definitions and basic properties

Definition 3.13 (Mother wavelet). Let ψ ∈ L1(R) ∩ L2(R) be a window function. This
function is called the mother (analyzing) wavelet, and the corresponding family of wavelets
is the family [ψb,a; b ∈ R, a ∈ R∗

+] of shifted and scaled (dilated) copies of ψ defined as:

ψb,a(t) =
1

a
ψ

(
t− b

a

)
, t ∈ R (3.31)

where a > 0 is a scaling parameter that defines the dilation of the mother wavelet ψ(t)
and b is the translation parameter related to time. Scale factor a > 1 corresponds to
dilation and 0 < a < 1 corresponds to compression (see figure 3.10). The mother wavelet
is the member of the family where b = 0 and a = 1. Consequently, in terms of a window
function, the ψb,a(t) wavelet can be viewed as a copy of the original mother wavelet with
center frequency rescaled by a, that is, ωψ/a and centered around the time tψ + b.
Common mother wavelets are the Morlet wavelet, the Meyer wavelet, the Mexican Hat,
the Paul wavelet, the Cauchy wavelet, the Daubechies wavelets, the Gaussian Derivatives
Family (DOG), the generalized Morse wavelets etc. (see figure 3.6).

For a window function ψ(t) to be accepted as a mother wavelet,it must fulfill the
admissibility condition:
Let ψ ∈ L1(R) ∩ L2(R) be such that the number Cψ defined by:

0 < Cψ =

∫ +∞

0

|ψ̂(aω)|2da
a
< +∞ (3.32)

So, the constant Cψ finite, non-zero and independent of ω ∈ R. The finiteness of this
constant restricts the class of L2(R) functions that can be used as “mother wavelets” in the
definition of the integral wavelet transform. In particular, if ψ(t) must also be a window
function, then is necessarily in L1(R) [3], meaning:∫ +∞

−∞
|ψ(t)|2dt < +∞ (3.33)

40



and the integral of the mother wavelet ψ(t) has to vanish, so that the graph in the time
domain to be a small wave: ∫ +∞

−∞
ψ(t)dt = 0 (3.34)

Figure 3.6: Example of different mother wavelets in the time domain, real and two
complex. For the complex wavelets the plots illustrate the real part (solid) and

imaginary part (dashed) for the wavelets.

Definition 3.14. A wavelet ψ(t) is progressive, when ψ(t) ∈ H2(R). That is, its FT
ψ̂(ω) vanishes for ω ≤ 0.

Definition 3.15 (Continuous wavelet transform). Let u(t) be a signal that is of finite
energy and a piece-wise continuous function of t. Given a mother wavelet ψ(t), the
continuous wavelet transform of this signal is given by the integral:

Tψ[u](b, a) =
1

a

∫ +∞

−∞
u(t)ψ

(
t− b

a

)
dt (3.35)

where a > 0 is a scaling parameter that defines the dilation of the mother wavelet ψ(t)
and b is the translation parameter related to time. As it can be observed by the equation
3.35, CWT transforms a one-dimensional (time domain) signal u(t) to a two-dimensional
representation: the time-scale plane. Scales are directly linked with frequencies: a scale
a corresponds to a scaled version of the mother wavelet with center frequency ωψ/a, thus
bringing the CWT on the time-frequency plane.
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Remark 3.1. The CWT, as defined by equation 3.35, can be interpreted as:

- The convolution of u(t) with 1
a
ψ
(
− b−t

a

)
, based on equation 3.5.

- The inner product of of u(t) with the shifted and scaled copies of the mother wavelet,
ψb,a =

1
a
ψ
(
t−b
a

)
, based on equation 3.7.

Consequently, the CWT can be viewed as a tool that measures the similarity between
a signal u(t) and the shifted and scaled copies ψb,a of a mother wavelet ψ(t). A general
illustration of how the CWT works can be seen in figure 3.7. This concept now allows
for a more simple definition of the ridges as the region where the frequency of the scaled
mother wavelet is equal to the instantaneous frequency of the signal. Thus, in the ridges’
regions of the TF plane, the CWT coefficients have (locally) relatively larger values, as
the level of similitude is high, creating peaks in the TF representation as it can be seen
in figure figure 3.8.

Figure 3.7: General illustration of how the CWT works. Source, class notes from [30]
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Figure 3.8: 3D representation of the TF plane to observe the ridges.

Definition 3.16 (Inverse Continuous wavelet transform). When the admissibility condi-
tion is fulfilled, the signal u(t) can be reconstructed as:

u(t) =
1

Cψ

∫ +∞

−∞

∫ +∞

0

Tψ[u](b, a)ψ

(
t− b

a

)
da

a
db (3.36)

Remark 3.2. A simple application of Parseval’s relation gives the wavelet coefficients in
terms of the Fourier transforms of the signal and the mother wavelet using the definition
of the inverse Fourier transform:

Tψ[u](b, a) =
1

2π

∫ +∞

−∞
û(ω)ψ̂(aω)eiωbdω (3.37)

3.3.2 CWT Properties

• Linearity

Tψ

[
N∑
j=1

uj

]
(b, a) =

N∑
j=1

Tψ[uj](b, a) (3.38)

Consequently, multicomponent signals can be processed and a particular component
uj(t) can be extracted by using the localization properties of the mother wavelets, in
both time and frequency domains.

• CWT of u(t), u̇(t), ü(t) relations

Generally, the free responses that are recorded are displacement, velocity or accelera-
tion, so the relation between their CWT can be useful. If ψ(t) and u(t) are continuous
and piece-wise differentiable, the integration by parts theorem allows equation 3.35 to
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be rewritten as:

Tψ[u̇](b, a) =
1

a

[
u(t)ψ

(
t− b

a

) ∣∣∣+∞

−∞
− 1

a

∫ +∞

−∞
u(t)ψ̇

(
t− b

a

)
dt

]
(3.39)

ψ(t) is a window function, so:

lim
t→+∞

|ψ(t)| = lim
t→−∞

|ψ(t)| = 0 (3.40)

Consequently, it follows that:

lim
t→+∞

∣∣∣∣u(t)ψ(
t− b

a

)∣∣∣∣ = lim
t→−∞

∣∣∣∣u(t)ψ(
t− b

a

)∣∣∣∣ = 0 , (3.41)

lim
t→+∞

u(t)ψ

(
t− b

a

)
= lim

t→−∞
u(t)ψ

(
t− b

a

)
= 0 (3.42)

Therefore,

lim
t→+∞

u(t)ψ

(
t− b

a

)
− lim

t→−∞
u(t)ψ

(
t− b

a

)
= u(t)ψ

(
t− b

a

) ∣∣∣+∞

−∞
= 0 (3.43)

So, when ψ̇(t) is square and absolutely integrable and u̇(t) is of finite energy, the CWT
of u̇(t) with ψ(t) is then related to the CWT of u(t) with ψ̇(t):

Tψ[u̇](b, a) = −1

a
Tψ̇[u](b, a) (3.44)

This relation can be easily extended to the finite energy signal ü(t) when ψ̈(t) is square
and absolutely integrable:

Tψ[ü](b, a) = −1

a
Tψ̇[u](b, a) =

1

a2
Tψ̈[u](b, a) (3.45)

3.3.3 Resolution

The value of Tψ[u](b, a) contains the information of the level of similitude of the signal
u(t) with the scaled wavelet at scale a around the time point b. The scaled wavelet at
scale a has a duration ∆t and frequency bandwidth ∆ω, thus the local resolution of the
CWT in time and in frequency depends on the scale parameter a and is determined,
respectively, by the duration ∆tψ and bandwidth ∆ωψ of the mother wavelet.

The resolution of the time-frequency window can be constructed by considering:
Time localization: Considering the time shifting property, equation 3.16:

ψb(t) = ψ(t− b) and ψ̂b(ω) = e−iωbψ̂(ω) (3.46)

Consequently, if the mother wavelet is localized around the time t = tψ , with temporal
resolution ∆tψ, the translation property gives the temporal localization of ψb(t) around
t = b+ tψ with the same time resolution ∆tψ.
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Frequency localization: In the STFT, the frequency localization of the analyzing wavelet
was changing by translating the value of the frequency in the frequency axis. In CWT,
where the concept of scale is applied, the frequency localization of the mother wavelet is
obtained considering the time scaling property, equation 3.15:

ψa(·) =
1

a

( ·
a

)
and ψ̂a(ω) = ψ̂(aω) (3.47)

Consequently, if the mother wavelet is localized around tψ and ωψ with time and frequency
resolution ∆tψ and ∆ωψ respectively, the scaled copy ψb,a is localized around:

t = b+ atψ , ω =
ωψ
a

(3.48)

with time and frequency resolution ∆tψ and ∆ωψ respectively:

∆t = a∆tψ , ∆ω =
∆ωψ
a

(3.49)

Thus, looking ωψ/a as the frequency variable ω, then the t−ω plane can be considered as
the time-frequency plane. The localization domain for the CWT at point (b+atψ , ωψ/a)
is the time-frequency window (see figure 3.9):

[b+ atψ − a∆tψ , b+ atψ + a∆tψ]×
[
ωψ
a

− ∆ωψ
a

,
ωψ
a

+
∆ωψ
a

]
(3.50)

where

[b+ atψ − a∆tψ , b+ atψ + a∆tψ] (3.51)

is the time-window, which narrows for small values of a and widens for large values of a,
and [

ωψ
a

− ∆ωψ
a

,
ωψ
a

+
∆ωψ
a

]
(3.52)

is the frequency-window, which widens for small values of a and narrows for large values
of a.
Hence, this window automatically narrows for detecting rapidly changing details, i.e. high-
frequency phenomena (small a), and widens for investigating slowly changing details, i.e.
low-frequency behavior (large a). This is exactly what is most desirable in time-frequency
analysis, and makes the use of the CWT appropriate for analyzing non-stationary signals.
This can be observed clearly in figure 3.9.
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Figure 3.9: Time-frequency resolution for the CWT. The mother wavelet is illustrated
at (tψ , ωψ) , as a = 1 and b = 0 by definition. Scaled wavelets at points

(b+ atψ , ωψ/a) for scales a > 1 and scales 0 < a < 1

Example 3.5. Consider the Complex Morlet wavelet, defined in the time domain in the
frequency domain respectively as:

ψ(t) = e−t
2/(2δ2)eiβt , ψ̂(ω) = δ

√
2πe−(ω−β)2δ2/2

The center time is considered zero, tψ = 0 and the center frequency is equal to β, ωψ = β.
δ controls the rate at which the time-domain wavelet and frequency domain spectrum are
driven towards zero. The effect of scaling is as: ω = ωψ/a and δ = aδψ.
Let the mother wavelet have ωψ = 10rad/sec and δ = 0.5. Consider two scaled wavelets,
one with scale a = 2 > 1 with center frequency ωψ = 10/2 = 5rad/sec and one with
scale 0 < a = 0.5 < 1 with center frequency ωψ = 10/0.5 = 20rad/sec. Figure 3.10
shows the results. The plots on the left hand side illustrate the real part (solid) and
imaginary part (dashed) for the wavelets in the time domain. The plots on the right hand
illustrate the corresponding wavelets in the frequency domain. (a) Shows the mother
wavelet ωψ = 10rad/sec, (b) Illustrates a scaled version with a > 1. It can be observed
that it is the original wavelet stretched in time, while the frequency bandwidth narrows.
(c) Illustrates a scaled version with 0 < a < 1. It can be observed that it is the original
wavelet compressed in time. It can be clearly observed that a wide spread in time (high
time resolution) corresponds with a narrow spread in frequency (low frequency resolution).
Conversely, a narrow spread in time (low time resolution) corresponds with a wide spread
in frequency (high frequency resolution)
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Figure 3.10: Example of the effect of scaling on a Morlet wavelet. (a) Mother wavelet,
(b) Scaled version with a > 1. (c) Scaled version with 0 < a < 1.

Listing 3.2: Effect of scaling on a Morlet wavelet
1 clc; clearvars; close all;
2
3 % Morlet Wavelet
4 % Specify the morlet wavelet
5 beta = 10
6 delta = 0.5
7 % Q parameter
8 Q2 = beta*delta/sqrt (2)
9

10 % Mother wavelet parameters
11 m=400; % mother wavelet points to calculate
12
13 % time domain
14 t2 = linspace(-3,3,m);
15 m_w_morlet=exp(-t2 .^2./(2.* delta ^2)).*exp(1i.*beta.*t2);
16
17 % frequency domain
18 omega2 = linspace (0,40,m);
19 m_w_morlet_w=delta.*sqrt (2*pi).*exp(-(omega2 -beta).^2.*( delta ^2) ./2);
20
21
22 % Scale a>1
23 a1 = 2
24 betaSc1 = beta/a1
25 deltaSc1 = delta*a1
26
27 % time domain
28 m_w_morlet_Sc1=exp(-t2 .^2./(2.* deltaSc1 ^2)).*exp(1i.* betaSc1 .*t2);
29
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30 % frequency domain
31 m_w_morlet_w_Sc1=deltaSc1 .*sqrt (2*pi).*exp(-(omega2 -betaSc1).^2.*(

deltaSc1 ^2) ./2);
32
33
34 % Scale 0<a<1
35 a2 = 0.5
36 betaSc2 = beta/a2
37 deltaSc2 = delta*a2
38
39 % time domain
40 m_w_morlet_Sc2=exp(-t2 .^2./(2.* deltaSc2 ^2)).*exp(1i.* betaSc2 .*t2);
41
42 % frequency domain
43 m_w_morlet_w_Sc2=deltaSc2 .*sqrt (2*pi).*exp(-(omega2 -betaSc2).^2.*(

deltaSc2 ^2) ./2);
44
45 % plot the morlet wavelet
46 figure ()
47 subplot (3,2,1)
48 hold on; grid on; box on;
49 plot(t2,abs(m_w_morlet),'-','LineWidth ' ,2)
50 plot(t2,real(m_w_morlet),'-','LineWidth ' ,2)
51 plot(t2,imag(m_w_morlet),'--','LineWidth ' ,2)
52 legend('modulus ','real','imag')
53 title('Morlet mother wavelet omega_psi ')
54 xlabel('t')
55
56 subplot (3,2,2)
57 hold on; grid on; box on;
58 plot(omega2 ,abs(m_w_morlet_w),'-','LineWidth ' ,2)
59 legend('modulus ')
60 title('Morlet mother wavelet omega_psi ')
61 xlabel('omega')
62
63 subplot (3,2,3)
64 hold on; grid on; box on;
65 plot(t2,abs(m_w_morlet_Sc1),'-','LineWidth ' ,2)
66 plot(t2,real(m_w_morlet_Sc1),'-','LineWidth ' ,2)
67 plot(t2,imag(m_w_morlet_Sc1),'--','LineWidth ' ,2)
68 legend('modulus ','real','imag')
69 title('Morlet mother wavelet omega_psi/alpha , alpha >1')
70 xlabel('t')
71
72 subplot (3,2,4)
73 hold on; grid on; box on;
74 plot(omega2 ,abs(m_w_morlet_w_Sc1),'-','LineWidth ' ,2)
75 legend('modulus ')
76 title('Morlet mother wavelet omega_psi/alpha , alpha >1')
77 xlabel('omega')
78
79 subplot (3,2,5)
80 hold on; grid on; box on;
81 plot(t2,abs(m_w_morlet_Sc2),'-','LineWidth ' ,2)
82 plot(t2,real(m_w_morlet_Sc2),'-','LineWidth ' ,2)
83 plot(t2,imag(m_w_morlet_Sc2),'--','LineWidth ' ,2)
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84 legend('modulus ','real','imag')
85 title('Morlet mother wavelet omega_psi/alpha , 0<alpha <1')
86 xlabel('t')
87
88 subplot (3,2,6)
89 hold on; grid on; box on;
90 plot(omega2 ,abs(m_w_morlet_w_Sc2),'-','LineWidth ' ,2)
91 legend('modulus ')
92 title('Morlet mother wavelet omega_psi/alpha , 0<alpha <1')
93 xlabel('omega')

3.3.4 Normalization

To ensure that the wavelet transforms at each scale a are directly comparable to each
other and to the transforms of other time series, the wavelet function at each scale a is
normalized.

Different normalizations can be found in the literature. Attempting now to give a
general definition in order to explore the choice of normalization, let the mother wavelet
ψ(t) and an arbitrary number q ≥ 0. The corresponding family of wavelets is the family
[ψb,a; b ∈ R, a ∈ R∗

+] of shifted and scaled (dilated) copies of ψ defined as:

ψb,a(t) = |a|−qψ
(
t− b

a

)
, t ∈ R (3.53)

where a is the scaling parameter and b is the translation parameter. This definition
associates the normalization choice with the just the value of q. Different values have
been selected in the literature, for example, Carmona et al. [2], Delprat et al. [7] use
q = 1. Chui [3] and Daubechies [5] use q = 1/2. When dealing with orthonormal bases of
wavelets, the choice q = 0 is sometimes convenient [11]. Thus, these three values will be
explored and presented in the next.
Starting with q = 1, equation 3.53 becomes:

ψb,a(t) =
1

a
ψ

(
t− b

a

)
, t ∈ R (3.54)

The scaled wavelets ψb,a(t) have been normalized in such a way that:

||ψb,a(t)||1 =
∫ +∞

−∞
|ψb,a(t)| = ||ψ(t)||1 = constant (3.55)

Thus, all the scaled wavelets, ψb,a(t), at every scale, a, enclose the same area.

For q = 1/2, equation 3.53 becomes:

ψb,a(t) =
1√
a
ψ

(
t− b

a

)
, t ∈ R (3.56)
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The scaled wavelets ψb,a(t) have been normalized in such a way that:

||ψb,a(t)||2 =
∫ +∞

−∞
|ψb,a(t)|2 = ||ψ(t)||2 = constant (3.57)

Thus, all the scaled wavelets, ψb,a(t), at every scale, a, have the same energy.

For q = 0, equation 3.53 becomes:

ψb,a(t) = ψ

(
t− b

a

)
, t ∈ R (3.58)

The scaled wavelets ψb,a(t) have been normalized in such a way that:

||ψb,a(t)||∞ = constant (3.59)

Thus, all the scaled wavelets, ψb,a(t), at every scale, a, have merely the same maximum
value.

Example 3.6. Consider the Complex Morlet wavelet of the previous example, defined
in the time domain as ψ(t) = e−t

2/(2δ2)eiβt. Let the mother wavelet have ωψ = 10rad/sec
and δ = 0.5. Consider two scaled wavelets, one with scale a = 2 > 1 and one with scale
0 < a = 0.5 < 1 and b = 0 for both. The three presented cases of normalization are
considered, q = 1 (same area), q = 1/2 (same energy), and q = 0 (same peak amplitude).

Figure 3.11: Example of the effect of normalization for q = 1 (same area), q = 1/2 (same
energy), and q = 0 (same peak amplitude) on a Morlet wavelet.
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Figure 3.11 shows the results. The plots on the left hand side illustrate the real part
of the wavelets in the time domain. The plots on the right hand illustrate the modulus of
the wavelets in the time domain, which give a more clear picture of the situation. Notice
that for q = 0 how all the wavelets have the same peak amplitude = 1, as expected.

Listing 3.3: The effect of normalization on a Morlet wavelet script
1 clc; clearvars; close all;
2
3 % Morlet Wavelet
4 % Specify the morlet wavelet
5 beta = 10;
6 delta = 0.5;
7
8 % Mother wavelet parameters
9 m=400; % mother wavelet points to calculate

10
11 % time domain
12 t2 = linspace(-3,3,m);
13 m_w_morlet=exp(-t2 .^2./(2.* delta ^2)).*exp(1i.*beta.*t2);
14
15 % frequency domain
16 omega2 = linspace (0,40,m);
17 m_w_morlet_w=delta.*sqrt (2*pi).*exp(-(omega2 -beta).^2.*( delta ^2) ./2);
18
19 % Scale a>1
20 a1 = 2;
21 betaSc1 = beta/a1;
22 deltaSc1 = delta*a1;
23
24 % time domain
25 m_w_morlet_Sc1 =(exp(-t2 .^2./(2.* deltaSc1 ^2)).*exp(1i.* betaSc1 .*t2));
26
27 % q = 1 (same area)
28 m_w_morlet_Sc1_q1 = m_w_morlet_Sc1/a1;
29
30 % q = 1/2 (same energy)
31 m_w_morlet_Sc1_q2 = m_w_morlet_Sc1/sqrt(a1);
32
33
34 % Scale 0<a<1
35 a2 = 0.5;
36 betaSc2 = beta/a2;
37 deltaSc2 = delta*a2;
38
39 % time domain
40 m_w_morlet_Sc2 = (exp(-t2 .^2./(2.* deltaSc2 ^2)).*exp(1i.* betaSc2 .*t2));
41
42 % q = 1 (same area)
43 m_w_morlet_Sc2_q1 = m_w_morlet_Sc2/a2;
44
45 % q = 1/2 (same energy)
46 m_w_morlet_Sc2_q2 = m_w_morlet_Sc2/sqrt(a2);
47
48
49 % plot the morlet wavelet
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50 figure ()
51 subplot (3,2,1)
52 hold on; grid on; box on;
53 plot(t2,real(m_w_morlet),'-','LineWidth ' ,2)
54 plot(t2,real(m_w_morlet_Sc1_q1),'-','LineWidth ' ,2)
55 plot(t2,real(m_w_morlet_Sc2_q1),'-','LineWidth ' ,2)
56 legend('a=1','a=2','a=0.5')
57 title('Morlet wavelet , q=1 (same area) - Real part plot')
58 xlabel('t')
59
60 subplot (3,2,2)
61 hold on; grid on; box on;
62 plot(t2,abs(m_w_morlet),'-','LineWidth ' ,2)
63 plot(t2,abs(m_w_morlet_Sc1_q1),'-','LineWidth ' ,2)
64 plot(t2,abs(m_w_morlet_Sc2_q1),'-','LineWidth ' ,2)
65 legend('a=1','a=2','a=0.5')
66 title('Morlet wavelet , q=1 (same area) - Modulus plot')
67 xlabel('t')
68
69 subplot (3,2,3)
70 hold on; grid on; box on;
71 plot(t2,real(m_w_morlet),'-','LineWidth ' ,2)
72 plot(t2,real(m_w_morlet_Sc1_q2),'-','LineWidth ' ,2)
73 plot(t2,real(m_w_morlet_Sc2_q2),'-','LineWidth ' ,2)
74 legend('a=1','a=2','a=0.5')
75 title('Morlet wavelet , q=1/2 (same energy) - Real part plot')
76 xlabel('t')
77
78 subplot (3,2,4)
79 hold on; grid on; box on;
80 plot(t2,abs(m_w_morlet),'-','LineWidth ' ,2)
81 plot(t2,abs(m_w_morlet_Sc1_q2),'-','LineWidth ' ,2)
82 plot(t2,abs(m_w_morlet_Sc2_q2),'-','LineWidth ' ,2)
83 legend('a=1','a=2','a=0.5')
84 title('Morlet wavelet , q=1/2 (same energy) - Modulus plot')
85 xlabel('t')
86
87 subplot (3,2,5)
88 hold on; grid on; box on;
89 plot(t2,real(m_w_morlet),'-','LineWidth ' ,2)
90 plot(t2,real(m_w_morlet_Sc1),'-','LineWidth ' ,2)
91 plot(t2,real(m_w_morlet_Sc2),'-','LineWidth ' ,2)
92 legend('a=1','a=2','a=0.5')
93 title('Morlet wavelet , q=0 (same peak amplitude) - Real part plot')
94 xlabel('t')
95
96 subplot (3,2,6)
97 hold on; grid on; box on;
98 plot(t2,abs(m_w_morlet),'-','LineWidth ' ,2)
99 plot(t2,abs(m_w_morlet_Sc1),'-','LineWidth ' ,2)

100 plot(t2,abs(m_w_morlet_Sc2),'-','LineWidth ' ,2)
101 legend('a=1','a=2','a=0.5')
102 title('Morlet wavelet , q=0 (same peak amplitude) - Modulus plot')
103 xlabel('t')
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3.3.5 Choice of mother wavelets

There are a lot of mother wavelets in the literature, some examples are shown in figure
3.6. The choice of the mother wavelet is dictated by the characteristics of the signal under
study and the nature of the application. It is important to use a wavelet that is the best
fit for the analysis that will follow. Consequently, there are several factors which should
be considered in the choice of the mother wavelet [34]:

1. Complex or Real. A complex wavelet function will return information about both
amplitude and phase and is better adapted for capturing oscillatory behavior. A real
mother wavelet returns only a single component and can be used to isolate peaks or
discontinuities.

2. Shape. The wavelet function should reflect the type of features present in the time
series. For example, in the analysis of free responses of structures, wave-like mother
wavelets with an increased number of oscillations such as the Morlet wavelet and the
Cauchy wavelet are preferred. For time series with sharp jumps or steps, one would
choose a boxcar-like function such as the Harr, while for smoothly varying time series
one would choose a smooth function such as a damped cosine. If one is primarily inter-
ested in wavelet power spectra, then the choice of wavelet function is not critical, and
one function will give the same qualitative results as another. Conversely, the wavelet
function can also be chosen to uncover specific signal features that are hypothesized
to exist in the signal but may not be directly evident upon initial inspection.

3. Width. The resolution of a wavelet function is determined by the balance between the
width in real space and the width in Fourier space. A narrow (in time) function will
have good time resolution but poor frequency resolution, while a broad function will
have poor time resolution, yet good frequency resolution.

4. Orthogonal or nonorthogonal. This refers to the DWT. In orthogonal wavelet anal-
ysis, the number of convolutions at each scale is proportional to the width of the wavelet
basis at that scale. This produces a wavelet spectrum that contains discrete “blocks”
of wavelet power and is useful for signal processing as it gives the most compact repre-
sentation of the signal. Unfortunately for time series analysis, an aperiodic shift in the
time series produces a different wavelet spectrum. Conversely, a nonorthogonal analy-
sis is highly redundant at large scales, where the wavelet spectrum at adjacent times
is highly correlated. The nonorthogonal transform is useful for time series analysis,
where smooth, continuous variations in wavelet amplitude are expected.

The optimal mother wavelet ψ for modal identification purposes using the free re-
sponses of a m.d.o.f system should satisfy the following conditions [13]:

1. ψ is admissible. Obvious, required by definition.

2. ψ is progressive. Several reasons suggest the use of progressive wavelets instead of real
ones for the analysis of real signals:

i. It allows the direct connection between a real signal and its associated analytic
signal.
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ii. The wavelet transform of real signals using real wavelets yields real wavelet co-
efficients, and there is no natural way of making a connection with some “local
spectrum” which one would like associate with a given signal.

3. ψ has good time and frequency localization properties. This condition is very important
in the context of time–frequency analysis as presented in the section of resolution.

4. The first and the second derivatives of ψ satisfy the three previous conditions. This
condition makes the processing by CWT of displacement, velocity and acceleration
easier without differential and integral operations.

Example 3.7 (Complex Morlet wavelet and Cauchy wavelet of order n). Two important
complex mother wavelets and their properties are presented in table 3.1, the complex
Morlet wavelet and the Cauchy wavelet of order n.
The Complex Morlet wavelet, is defined in the time domain in the frequency domain
respectively as:

ψ(t) = e−t
2/(2δ2)eiβt , ψ̂(ω) = δ

√
2πe−(ω−β)2δ2/2 (3.60)

where β is a frequency parameter controlling the number of oscillations of the wavelet
and δ is a parameter that controls the spread of the wavelet.
The Cauchy wavelet of order n, is defined in the time domain in the frequency domain
respectively as:

ψ(t) =

(
i

t+ i

)n+1

=

(
1√
t2 + 1

)n+1

ei(n+1)arctan(t) , ψ̂(ω) =
2πωne−ω

n!
Θ(ω) (3.61)

Figure 3.12: (a) The complex Morlet wavelet for β = 37.5 and δ = 0.1629 and (b) the
Cauchy wavelet for n = 7.
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These two wavelets are applied in this thesis. An essential aspect of these mother
wavelets is that they have parameters in their definitions that strongly influence the
localization properties, i.e. β and δ for the Complex Morlet wavelet and n for the Cauchy
wavelet. It can be observed that the more the ωψ increases, the closer the Cauchy and
the Morlet wavelet curves become in both time-frequency domains.

The first and the second condition are verified by the Cauchy wavelet. The Morlet
wavelet is only numerically admissible and progressive when the product of the two pa-
rameters βδ is large enough (βδ ≥ 5 in practice). According to the third condition, the
Morlet wavelet has its time–frequency window with the smallest area allowable (1/2) by
the Heisenberg inequality. The uncertainty µψ of the Cauchy wavelet behaves asymptot-
ically with this threshold when its order parameter n tends towards infinity. The last
condition is easily verified by the definition of the Cauchy wavelet. The first and second
derivatives of the Cauchy wavelet ψn are also Cauchy wavelets:

ψ̇n(t) =
dψn(t)

dt
= (n+ 1)

(
i

t+ i

)n
d(i/(t+ i))

dt

= (n+ 1)

(
i

t+ i

)n −1i

(t+ i)2

= (n+ 1)
in

(t+ i)n
i2i

(t+ i)2

= i(n+ 1)
in+2

(t+ i)n+2

= i(n+ 1)

(
i

t+ i

)n+2

= i(n+ 1)ψn+1(t) (3.62)

thus,

ψ̇n(t) = i(n+ 1)ψn+1(t) and ψ̇n(t) = −(n+ 1)(n+ 2)ψn+2(t) (3.63)

Consequently an identification procedure using u̇ and ü can be simplified. The first and
second derivatives of the Morlet wavelet also satisfy the fourth condition, but they are
not the Morlet wavelets and their time–frequency localization are no longer as good as
the Morlet wavelet [13].
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Table 3.1: Definition and main properties of the Complex Morlet wavelet and the
Cauchy wavelet of order n.
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Figure 3.13: Example of when the two wavelets have the same center frequency ωψ(a)
The complex Morlet wavelet for β = 37.5 and δ = 0.1629 and (b) the Cauchy wavelet for

n = 37.

3.3.6 Scales and Converting scale to frequency

By definition the CWT decomposes signals based on time and scale parameters. How-
ever in many applications, including the modal parameter identification, the results are
preferred to be on the time-frequency plane. Therefore,it is important to define a rela-
tionship between scale and frequency. As it was presented in the Resolution section a
scaled wavelet’s frequency is ω =

ωψ
a

, thus scale and frequency are inversely proportional
and related through the center frequency ωψ, and can be theoretically computed as:

f =
fψ
a

(3.64)

where fψ is the center frequency of the mother wavelet, and a the scale.
In a more intuitive sense, the center frequency of a wavelet is a simplified approximation
of the dominant frequency component contained in the function. The center frequency
can be determined and visualized by superimposing a sine wave onto the wavelet and
determining the frequency value for which the sinusoid best parallels the wavelet’s main
oscillation. MATLAB, in the built in cwt command, determines the center frequency by
this approximation and makes a slight variation of the theoretical equation, adding the
sampling period dt:

f =
fψ
a

1

dt
(3.65)

Example 3.8. Consider a Cauchy wavelet with n = 37 and ωψ = 37.5rad/sec, that is
fψ = 5.97Hz. This wavelet is inserted in MATLAB as user defined. As it can be observed
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by figure 3.14, MATLAB “tailors” a sine wave into the wavelet, so the center frequency
estimated by MATLAB fψ = 5.7Hz is very close to the original.

Figure 3.14: Approximation of the wavelet to a sine wave and its frequency.

As the frequency variable is identified as a constant multiple of 1/a, then the mother
wavelet ψ can be considered as an adaptive bandpass filter, with pass-band given by 3.52.
Thus, the series of the scaled copies of ψ can be viewed as a bandpass filterbank. The
number of scales used in an analysis defines the number of scaled copies of the mother
wavelet that will be generated; the finer the scales, the finer the frequency resolution.

Octave is a notion from acoustics and refers to a duplication of frequency, e.g. a fre-
quency range [10 20]Hz is one octave, as log2(fmax/fmin) = log2(20/10) = 1. Number
of Voices per Octave is a term commonly used to designate the number of scaled wavelets
per octave, i.e. the number of scales per octave. Therefore, number of voices per octave
determines the number of scales between a frequency duplication.

Summarizing, the number of octaves determines the span of frequencies being ana-
lyzed, while the number of voices per octave determines the number of scales (i.e. samples)
across this span. The appropriate range of octaves and scales depends on the spectral
content of the data, and the highest requested frequency in the CWT [16].

Example 3.9 (Scales and frequencies relationship). The following script computes the
scales for the analysis of a signal, using the Cauchy wavelet, that has ωψ = n+ 0.5. The
max and min frequencies are defined by the user; here the Nyquist frequency is considered
as max frequency. The relationship f =

fψ
a

it can be observed clearly (considering the
same corresponding index): Lower frequencies correspond to larger scales, e.g. see index
100, while higher frequencies correspond to smaller scales, e.g. see index 20.
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Figure 3.15: Plot of scale index vs scale value, 16 voices per octave

Listing 3.4: Scale and frequency relationship script
1 clc; close all; clearvars;
2 % Signal processing
3 dt = 0.01; % sampling period
4 Fs = 1/dt; % sampling frequency
5 Fn = Fs/2; % Nyquist frequency
6
7 % Wavelet center frequency
8 n=5;
9 omega_psi = n+1/2; % center frequency in rad/sec - Cauchy

wavelet
10 CentFreq = omega_psi /(2*pi) % center frequency in Hz
11
12 % Analysis frequencies for scale calculation
13 min_freq = dt/4; % min freq of analysis
14 max_freq = Fn; % max freq of analysis
15
16 % Define proper scales
17 NumVoices = 8; % voices per octave
18 a0 = 2^(1/ NumVoices);
19 min_scale = CentFreq /( max_freq*dt);
20 max_scale = CentFreq /( min_freq*dt);
21 min_scale = floor(NumVoices*log2(min_scale));
22 max_scale = ceil(NumVoices*log2(max_scale));
23 scales = a0.^( min_scale:max_scale).*dt;
24 frequencies = CentFreq ./ scales;
25
26 figure ()
27 subplot (1,2,1)
28 hold on; grid on; box on;
29 plot(scales ,'b.')%,'LineWidth ',2)
30 title('Scale values ')
31 xlabel('Scale index ')
32 ylabel('Scale a')
33 xlim([0, length(scales)])
34 ylim([min(scales),max(scales)])
35
36 subplot (1,2,2)
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37 hold on; grid on; box on;
38 plot(frequencies ,'b.')%,'LineWidth ',2)
39 title('Frequency values ')
40 xlabel('Frequency index ')
41 ylabel('Frequency (Hz)')
42 xlim([0, length(frequencies)])
43 ylim([min(frequencies),max(frequencies)])

Example 3.10 (Number of scales influence to frequency resolution). The following script
computes the cwt of a signal ut, using the Morlet wavelet. The focus is on the frequency
range frequency range [10 20]Hz,i.e. in one octave. The signal u(t) is the free response
of a SDOF system with :
mass m = 1 kg, stiffness k = 7 kN/m, damping coefficient c = 2 N s/m,
initial conditions: u(0) = 1 m and u̇(0) = 0 m/s,
length of the signal is L = 5 s and the sampling period dt = 0.001 s.
Two cases are presented: the first considers 4 number of voices per octave, while the
second 48 number of voices per octave. The new cwt command is used for this. It should
be metniones that it also calls the matlab function sdfLcdf to solve the SDOF system.

As it can be clearly observed in figure 3.17, 4 number of voices per octave correspond
to 4 scaled wavelets (+1 the mother wavelet), while 48 number of voices per octave
correspond to 48 scaled wavelets (+1 the mother wavelet). In figure 3.18 the effect of
the number of scales can be clearly observed. Low number of scales (Nv=4) result in
poor frequency resolution and unclear information about the signal, whlie high number
of scales (Nv=48) result in good frequency resolution and clear information about the
signal.

Figure 3.16: Signal u(t). Free decay response of the SDOF system
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Figure 3.17: Filterbank frequency respones. On the left hand side is the case with 4
number of voices per octave and on the right hand side is the case with 48 number of

voices per octave.

Figure 3.18: CWT modulus Scalogram. (a) 4 number of voices per octave (b) 48 number
of voices per octave.

Listing 3.5: Number of scales influence to frequency resolution
1 clc; clearvars; close all;
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2
3 % Solve the SDOF system
4 M = 1; % kg
5 K = 7000; % N/m
6 omega_exact = sqrt(K/M)
7 T_exact =2*pi/omega_exact % natural period
8 f_exact =1/ T_exact
9 C = 2; % N*s/m

10 xi_exact=C/(2*M*omega_exact) % damping ratio
11
12 % initial conditions
13 u0 = 1.0;
14 v0 = 0;
15
16 L = 5; % length of signal - sec
17 dt = 0.001; % sampling period sec
18 F = zeros(floor(L/dt) ,1);
19 irec = 0;
20 [amax ,vmax ,umax ,ut,uv,ua] = sdfLcdf(T_exact ,F,xi_exact ,dt,irec ,u0 ,v0);
21
22 t = (1: length(ut))*dt;
23 t = t';
24
25 %Plot the free decay response
26 figure ()
27 hold on; box on; grid on;
28 h3 = plot(t,ut ,'b','LineWidth ' ,2);
29 title('Free decay response u(t)')
30 xlabel('Time (s)')
31 ylabel('Displacement u(t)')
32 xlim([0,L])
33
34 % Filterbank creation
35 fb_morlet1 = cwtfilterbank('SignalLength ',numel(ut),'SamplingFrequency '

,1/dt,'FrequencyLimits ' ,[10 20],'VoicesPerOctave ',4,'Wavelet ','amor')
;

36 fb_morlet2 = cwtfilterbank('SignalLength ',numel(ut),'SamplingFrequency '
,1/dt,'FrequencyLimits ' ,[10 20],'VoicesPerOctave ',48,'Wavelet ','amor'
);

37 % As the number of voices per octave increases , the scale resolution
becomes finer

38
39 % plot the magnitude frequency responses for the CWT filter bank
40 figure ()
41 subplot (1,2,1)
42 hold on; grid on; box on;
43 [psidft1 ,frqfb1] = freqz(fb_morlet1);
44 plot(frqfb1 ,psidft1)
45 title('Filterbank Frequency Responses , Nv = 4','FontSize ' ,8)
46 xlabel('Frequency (Hz)')
47 ylabel('Magnitude ')
48 xlim ([0 ,35])
49
50 subplot (1,2,2)
51 hold on; grid on; box on;
52 [psidft2 ,frqfb2] = freqz(fb_morlet2);
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53 plot(frqfb2 ,psidft2)
54 title('Filterbank Frequency Responses , Nv = 48','FontSize ' ,8)
55 xlabel('Frequency (Hz)')
56 ylabel('Magnitude ')
57 xlim ([0 ,35])
58
59
60 figure ()
61 cwt(ut,'Filterbank ',fb_morlet1) %Analytic Morlet(Gabor) Wavelet
62 title('Analytic Morlet(Gabor) Wavelet , Nv = 4')
63
64
65 figure ()
66 cwt(ut,'Filterbank ',fb_morlet2) %Analytic Morlet(Gabor) Wavelet
67 title('Analytic Morlet(Gabor) Wavelet , Nv = 48')

3.3.7 Edge effect - Cone of influence

The CWT works as described in figure 3.7, i.e, the mother wavelet is scaled, then
translated in time and covers the whole signal. Inevitably, when the wavelets are near
the beginning or end of the data "catch" data outside the observation interval, thus
the computed wavelet coefficients near the beginning and end of the data are affected
by the fact that there wavelets are extending outside the boundary. This is called the
edge effect problem, which arises due to the finite length and to the discretization of
measured data record and to the nature of the CWT [13]. Furthermore, the extent of
the wavelet coefficients affected by data outside the observation interval depends on the
scale (frequency). Low frequencies correspond to wavelets of larger scale, while higher
frequencies correspond to wavelets of smaller scale. The edge effect persists longer in time
with large scaled wavelets, that is why the affected area takes the shape of a cone [23].
Various techniques have been developed to remedy the edge effect, however it cannot
be removed and the interpretation of wavelet coefficients near the boundaries must be
handled with great caution. Thus, a domain D in the TF plane, must be determined,
where the edge effect can be neglected. The cone of influence (COI) is the region of the
wavelet spectrum in which edge effects become important.

However, there is no closed mathematical formula to determine the extent of the cone of
influence at each scale. Nobach et al. [28] define the extent of the cone of influence at each
scale as the point where the wavelet transform magnitude decays to 2% of its peak value.
Because many of the wavelets used in continuous wavelet analysis decay exponentially
in time, Torrence and Compo [34] use the time constant 1/e to delineate the borders of
the cone of influence at each scale. For Morse wavelets, Lilly [15] uses the concept of the
“wavelet footprint”, which is the time interval that encompasses approximately 95% of
the wavelet’s energy. Lilly delineates the COI by adding 1/2 the wavelet footprint to the
beginning of the observation interval and subtracting 1/2 the footprint from the end of
the interval at each scale.

Le and Argoul [13] introduced two real coefficients ct ≥ 1 and cf ≥ 1 that have the
property that:
when t is outside the interval Ict = [tψ − ct∆tψ , tψ + ct∆tψ]
and when ω is outside the interval Icf = [ωψ − cf∆ωψ , ωψ + cf∆ωψ],
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ψ(t) and ψ̂(ω) have good decreasing properties, i.e. have null or very “small” values.
They explored the effect of the different values of ct and cf and concluded that the choice
of ct = 5 and cf = 5 seem to yield good results. Consequently, they proposed to define the
domain D as an “extended” time–frequency localization domain for the CWT as expressed
in equation 3.50 around the point bj , ωj = ωψ/aj: Using the coefficients ct and cf and
the progressive property of the mother wavelet, D becomes:[
bj+

ωψ
ωj
tψ−

ωψ
ωj
ct∆tψ , bj+

ωψ
ωj
tψ+

ωψ
ωj
ct∆tψ

]
×

[
max

(
0, ωj

(
1− cf

∆ωψ
ωψ

))
, ωj

(
1+cf

∆ωψ
ωψ

)]
(3.66)

The domain D must be included into [0, L]×[2πfNyquist], this leads to the following system
of inequalities: 

ωψ
ωj
ct∆tψ − ωψ

ωj
tψ ≤ bj ≤ L− ωψ

ωj
ct∆tψ − ωψ

ωj
tψ

0 < ωj ≤
2πfNyquist

1 + cf
∆ωψ
ωψ

(3.67)

where L is the signal’s duration.

Example 3.11 (Application on the complex Morlet and the Cauchy wavelets). As men-
tioned in table 3.1, tψ = 0 for both the complex Morlet and the Cauchy wavelets, thus
the domain D becomes: 

ωψ
ωj
ct∆tψ ≤ bj ≤ L− ωψ

ωj
ct∆tψ

0 < ωj ≤
2πfNyquist

1 + cf
∆ωψ
ωψ

Solving for ω, four equations are obtained, which delimit the useful domain D:

ω1 =
ωψ
b
ct∆tψ

ω2 =
ωψ
L− b

ct∆tψ

ω3 = 0

ω4 =
2πfNyquist

1 + cf
∆ωψ
ωψ

ω1 and ω2 are two hyperbolae and ω3 and ω4 are two horizontal lines, see figure 3.19.Due
to the introduction of the two parameters ct ≥ 1 and cf ≥ 1, the useful time interval is
smaller than L and the maximum useful frequency is smaller than fNyquist.
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Figure 3.19 illustrates the modulus scalogram of a SDOF system with natural period
T = 0.5sec. The white lines are the ω1 and ω2 hyperbolae limits. Notice the cone of
influence on the region where the data begins that manifests as a spread of energy along
the frequency axis. Observe that the white line follows that shape.

Figure 3.19: CWT modulus Scalogram. Illustration of edge effects, ct = 3 and cf = 3.

3.3.8 Q factor and it’s influence

In figure 3.9, a parameter Q is presented and stated that it remains constant. As it
was mentioned in the previous, the center frequency ωψ of is assumed to be positive. This
enables the consideration on the frequency window of 3.52 as a frequency band (or octave)
with center-frequency ωψ/a and bandwidth 2∆ωψ/a. The importance of this identification
is that it allows the introduction of the following ratio (Q factor):

Q =

ωψ
a

2
∆ωψ
a

=
ωψ

2∆ωψ
(3.68)

Q is independent of the scaling a. Hence, if the frequency variable is identified as a
constant multiple of 1/a, then an adaptive bandpass filter, with pass-band given by 3.52,
has the property that the center-frequency to bandwidth ratio is independent of the
location of the center-frequency, thus it remains constant. This is called constant-Q
filtering, where Q, once set in the beginning of the analysis, remains the same for all
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scaled and shifted wavelets. Q depends only at the mother wavelet choice.
Gram-Hansen and Dorize [9] associate this Q value to the filterbank of a (1/N)th

octave as:

Q =
1

21/(2N) − 2−1/(2N)
(3.69)

where an (1/N)th of center frequency ωψ is a band [ω1, ω2] with ω1 = 2−1/(2N) and
ω2 = 21/(2N).

As it follows by it’s definition in 3.68, the Q factor can be associated with the mother
wavelet parameters and define their tuning. Higher Q produce narrower wavelets, with
more oscillations within their waveform. Consequently applying the CWT with a high
Q factor allows a multiscale analysis with high frequency resolution (at the expense of a
lower time resolution), making it appropriate for analyzing oscillatory signals such as the
displacement response of a structure. Therefore, the choice of Q depends on the spectral
components contained in the signal as well as the sampling frequency Fs and the duration
of the signal.

Example 3.12 (Q and mother wavelet definition parameters). Consider the previously
mentioned complex Morlet wavelet and the Cauchy wavelet of order n, defined as: The
Complex Morlet wavelet, is defined in the time domain in the frequency domain respec-
tively as:

ψ(t) = e−t
2/(2δ2)eiβt , ψ̂(ω) = δ

√
2πe−(ω−β)2δ2/2

The Cauchy wavelet of order n, is defined in the time domain in the frequency domain
respectively as:

ψ(t) =

(
i

t+ i

)n+1

= , ψ̂(ω) =
2πωne−ω

n!
Θ(ω)

Their Q value from table 3.1 is:

Q =
βδ√
2

, for the Morlet wavelet

and

Q =
n+

1

2√
2n+ 1

, for the Cauchy wavelet

In order to find the relationship between Q and mother wavelet definition parameters, the
following problem is set: For a given parameter of Q, find the corresponding value of the
mother wavelet.
Starting with the Morlet wavelet:
For the Morlet wavelet, ψ̂(0) ̸= 0 but ψ̂(0) tends towards 0 when the product βδ increases.
Additionally, at a given ωj of a scaled wavelet, the localizations in time and in frequency
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obtained from equation 3.49 and the definition of Q from table 3.1 are:

βδ√
2
=

ωj
2∆ωj

, solving for ∆ωj,

∆ωj =
ωj
√
2

2βδ
=

ωj

βδ
√
2

and, as ∆tj∆ωj = µψ = 1/2, thus ∆ωj =
1

2∆tj
and the previous equation becomes:

1

2∆tj
=
ωj
√
2

2βδ
, solving for ∆tj,

∆tj =
βδ

ωj
√
2

Consequently, ∆ωj and ∆tj depend only on the product βδ and thus on the Q value. So,
without loss of generality, one can assign δ = 1 and β varying to reach the expected value
of Q, so:

Q =
β√
2
, solving for β,

β = Q
√
2

For the Cauchy wavelet, the equation Q =
n+

1

2√
2n+ 1

is solved for n:

Q =
n+

1

2√
2n+ 1

Q
√
2n+ 1 = n+

1

2(
Q
√
2n+ 1

)2

=

(
n+

1

2

)2

Q2(2n+ 1) = n2 + n+
1

4

n2 + n+
1

4
− 2nQ2 −Q2 = 0

n2 + n(1− 2Q2) + (0.25−Q2) = 0
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solving the quadratic equation:

n =
− (1− 2Q2)±

√
(1− 2Q2)2 − 4(0.25−Q2)

2

n =
−1 + 2Q2 ±

√
1− 4Q2 + 4Q4 − 1− 4Q2

2

n =
−1 + 2Q2 ±

√
4Q4

2

n =
−1 + 2Q2 ± 2Q2

2

n > 0 , so only positive solutions are accepted:

n =
−1 + 4Q2

2

n = 2Q2 − 1

2

Now the next step is to implement the problem in MATLAB: Setting a avalue of Q,
compute the parameters β for the Morlet wavelet, n for the Cauchy wavelet, compute
and visualise the mother wavelets. Figure 3.20 illustrates the Morlet wavelet, in the
time domain and in the frequency domain, for Q = 4.3185, 8.6514 and 17.3099. As
δ = 1 = constant the spread of the wavelet in the time domain (time bandwidth) does
not change, but as Q increases, ωj increases, thus more oscillations occur in the waveform.
Figure 3.21 illustrates the Cauchy wavelet, in the time domain and in the frequency
domain, for Q = 1.4142, 2.8710 and 4.3185. As Q increases, more oscillations occur in the
waveform and the time bandwidth decreases while the frequency bandwidth increases.

As it follows again by it’s definition, the Q factor affects the edge effects. The higher
the Q, the more significant the edge effect become, thus the cone of influence becomes
larger, as illustrated in the next example.
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Figure 3.20: Example of the effect of Q factor on a Morlet wavelet.

Figure 3.21: Example of the effect of Q factor on a Cauchy wavelet.
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Example 3.13 (Q and edge effects). Continuing the example 3.11, to implement the
factor Q. As it was mentioned, the four equations which delimit the useful domain D are:

ω1 =
ωψ
b
ct∆tψ

ω2 =
ωψ
L− b

ct∆tψ

ω3 = 0

ω4 =
2πfNyquist

1 + cf
∆ωψ
ωψ

Setting Q =
ωψ

2∆ωψ
and µψ = ∆ωψ∆tψ, follows that ωψ∆tψ = 2Qµψ.

Additionally, now,
∆ωψ
ωψ

=
1

2Q
, thus the previous equations become:



ω1 =
1

b
2ctQµψ

ω2 =
1

L− b
2ctQµψ

ω3 = 0

ω4 =
2πfNyquist
1 + cf

1
2Q

This useful domain D will be used for the modal identification procedure. Implementing
these equations in MATLAB, the influence of Q can be observed: Consider the signal u(t)
is the free response of a SDOF system with :
mass m = 1 kg, damping ratio ξ = 2%,
initial conditions: u(0) = 0.5 m and u̇(0) = 0 m/s,
length of the signal is L = 10 s and the sampling period dt = 0.01 s.
Two cases are presented: the first considers Q = 2.871, while the second Q = 8.6514.
Figure 3.22 illustrates the CWT modulus scalogram of the two cases, zoomed by 2 to
show clearly the edge effect. It can be observed that when the Q value increases, the
edge effect become more significant, thus the useful time interval for modal identification
is reduced.
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Figure 3.22: Example of the effect of Q factor on the edge effect.

The Q factor value has also another significant property, it can be used to correctly
extract two close ridges corresponding to two coupled modes, which is of great importance
in the modal parameter identification of MDOF systems. Continuing with the method
proposed by Le and Argoul [13], the problem is set as: ωj the angular eigenfrequency
and dωj the frequency discrepancy from which the effect of the modal coupling must be
avoided. In order to solve this problem, the frequency localization domain of the CWT
along a ridge, as modified to take into account the edge effects in relation 3.66 is assumed
to be included into a bandwidth [ωj − dωj, ωj + dωj] This leads to bounding the Q as:

Q ≥ cf
ωj
2dωj

(3.70)

Let dωj = min[(ωj − ωj−1), (ωj+1 − ωj)] for 1 ≤ j ≤ N with ω0 = 0, ωN+1 = 2πfNyquist.

Consequently, the edge effect delimiting inequality

0 ≤ ωj ≤
2πfNyquist
1 + cf

1
2Q

(3.71)

is immediately checked, since dωj < πfNyquist. Then, the edge effect delimiting inequality

1

ωj
2ctQµψ ≤ bj ≤ L− 1

ωj
2ctQµψ (3.72)

combined with the Heisenberg’s inequality gives:

Q ≤ Lωj
2ct

(3.73)

Concluding, the parameter Q can be bounded as:

cf
ωj
2dωj

≤ Q ≤ Lωj
2ct

(3.74)
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Where L is the signal’s length and the contained ωjs in a signal can be obtained by
applying FFT, then classified in an increasing order. Finally, ct and cf must fulfill the
following inequality:

ctcf ≤ Ldωj (3.75)

Le and Argoul prospose to start with ct = cf = 5. When the inequality 3.75 is not
satisfied, ct and cf should be reduced until it becomes true. Then the value of Q can be
chosen between the limits posed in 3.74.

Example 3.14 (Q, mode decoupling and edge effects). Consider the signal uk(t) is the
free response of a dof k, of a MDOF system with 4 dofs:
masses m1 = m2 = m3 = m4 = 1 kg, natural periods T1 = 0.2509sec, T2 = 0.0880sec, T3 =
0.0570sec, T4 = 0.0465sec, stiffness k1 = k2 = k3 = k4 = 5 kN/m
initial conditions: [u1(0) = 1, u2(0) = 0.75, u3(0) = 0.50, u4(0) = 0.25]Tm,
length of the signal is L = 5s and the sampling period dt = 0.005 sec.
Two cases are presented: the first considers Q = 8, while the second Q = 30. Figure 3.23
illustrates the CWT modulus scalogram of the two cases, zoomed by 2. It can be observed
that when the Q = 8 the two higher modes (3 and 4) are coupled (not distinguishable).
Setting Q = 8, the cone of influence increases, but the two previously coupled modes now
are decoupled and clearly distinguishable.

Figure 3.23: Example of the effect of Q factor on mode decoupling.

3.3.9 Numerical implementation of the Continuous Wavelet Transform

The CWT computation can be performed by different algorithms: quadrature rule, fast
Fourier transform (FFT) with or without zero padding, convolution product and the chirp
Z transform. These algorithms are based on different expressions of the definition of the
CWT [14]. In the following, two algorithms are presented for numerical implementation
in MATLAB, plus the CWT computation of the MATLAB built in cwt command.
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• Computation as a convolution product

Based on the remark 3.1, the CWT can be defined as:

Tψ[u](b, a) =
1

a

∫ +∞

−∞
u(t)ψ

(
−b− t

a

)
dt (3.76)

Setting a parity operator: P :s 7−→ P such that (Ps)(t) = s(−t), then the restriction of
Tψ[u](., a) is the convolution product of u(t) with Pψa:

Tψ[u](b, a) =
1

a
[u ∗ Pψa(b)] (3.77)

This remark leads us to the use of the convolution algorithm conv available in MATLAB.
The algorithm as it is proposed by [14] is shown in figure 3.24. For the test of a simple
cosine signal, this procedure needs 4.34 seconds of calculation [14].

• Calculation via FFT

Equation 3.37, suggests that the CWT can be computed with the inverse Fourier
transform. This remark provides the opportunity to use the FFT on the algorithm, thus
making the analysis much faster than the one using the convolution. Using the the fft
and ifft commands of MATLAB, the algorithm it is proposed by [14] is shown in figure
3.25. The computation time of the previous test is only 0.3 seconds.[14].

3.3.10 Implementation in MATLAB

MATLAB Wavelet Toolbox has it’s own built in cwt command, which employs a
discretized version of the CWT and computes the coefficients as a convolution product
with conv.

There are two versions of cwt, a new one and the old one, their main difference is in the
normalization used for the mother wavelets. Their basic differences are presented in table
3.2. Throughout this thesis, both the new and the old command are used for the examples,
each is stated in the example description. However, for the numerical applications of
Chapter 6 are implemented with the old cwt command because it allows the definition
of user defined mother wavelets. The new command provides only the choice of Morse,
Morlet(Gabor), and Bump mother wavelets with parameter tuning allowed only in the
Morse wavelets. However, the focus of this thesis is on the complex Morlet wavelet and
the Cauchy wavelet and the definition of their parameters with the Q factor. Attempts
where made to tune Morse wavelets accordingly to fit the desired mother wavelets for
given values of Q, but no successful correspondence was achieved.

Continuing with the old cwt command, as it was referred in the section of Scaling,
there is a conflict between the scales as defined in the theory, with the scales calculated in
the built in command. This was addressed here because it was distorting the results of the
analytic signal. This was solved by setting the scales a equal to aDT on the convolution
computation line (DT is the sampling period).
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Figure 3.24: Algorithm for the computation of CWT as a convolution product.
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Figure 3.25: Algorithm for the computation of CWT with the FFT.
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Table 3.2: MATLAB old vs. new cwt command

Old cwt New cwt

Mother wavelets : wavelets within the
toolbox, allows to add user defined

wavelets.

Mother wavelets : only Morse, Morlet
(Gabor), and Bump wavelet.

Allows parameter tuning of wavelets. Allows parameter tuning only for Morse
wavelets.

Uses L2 normalization Uses L1 normalization

Is specified by user defined scales Is specified by the sampling frequency Fs

Returns the frequencies f Returns the frequencies f

Does not return the cone of influence Returns the cone of influence

Listing 3.6: MATLAB old CWT correction for scales
1 for k = 1: nb_SCALES
2 a = scales(k);
3 a_SIG = a/stepSIG;
4 j = 1+ floor ((0: a_SIG*xMaxWAV)/(a_SIG*stepWAV));
5 if length(j)==1 , j = [1 1]; end
6 f = fliplr(val_WAV(j));
7 coefs(ind ,:) = -sqrt(a*DT)*wkeep1(diff(wconv1(ySIG ,f)),lenSIG);
8 ind = ind+1;
9 end

Another important remark is the addition of user mother wavelets, which is described in
the following script for a Cauchy wavelet.

Listing 3.7: Adding user mother wavelets
1 % Specify the Cauchy wavelet
2 % n
3 n = round (2*Q^2 - 1/2); % n is an integer > 0
4
5 % Mother wavelet parameters
6 Dt_psi = 1/sqrt (2*n-1); % duration
7 Dtw = 6* Dt_psi;
8 omega_psi = n+1/2; % center frequency
9 m1=ceil (60* omega_psi); % sample rate 60 points per

oscilation
10 t1 = linspace(-Dtw ,Dtw ,m1); % time interval to calculate t

values
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11
12 % mother wavelet
13 m_w_cauchy =(1i./(t1+1i)).^(n+1); % Le-Argoul paper equation
14
15 % plot the cauchy wavelet
16 figure ()
17 hold on; grid on; box on;
18 plot(t1,abs(m_w_cauchy),'-','LineWidth ' ,2)
19 plot(t1,real(m_w_cauchy),'-','LineWidth ' ,2)
20 plot(t1,imag(m_w_cauchy),'--','LineWidth ' ,2)
21 legend('modulus ','real','imag')
22 title(['Cauchy mother wavelet , Q = ' num2str(Q)])
23
24 % Adding a wavelet
25 % familyName = 'Cauchy '; Can be whatever name
26 % familyShortName = 'cchy '; The number of characters must be <= 4
27 % familyWaveType = 5;
28 % Wavelet family type , specified as one of the following:
29 % 1 Orthogonal wavelets
30 % 2 Biorthogonal wavelets
31 % 3 Wavelet with a scaling function
32 % 4 Wavelet without a scaling function
33 % 5 Complex wavelet without a scaling function :
34 % Complex wavelets without FIR filter and without scale function.
35 % These wavelets can be defined through the definition of the wavelet

function.
36 % Same applies for type 4.
37 % familyNums = ''; % If the family consists of a single wavelet ,

NUMS is the empty string ''
38 % fileWaveName = 'Cauchy.mat ';
39 % effective support : is valid only for wavelets of type 3, 4, and 5.
40 % It represents the time interval where the wavelet is non zero.
41
42 X=linspace(-Dtw ,Dtw ,length(m_w_cauchy));
43 Y=m_w_cauchy ;
44 save('Cauchy.mat','X','Y')
45
46 % wavemngr('add ',familyName ,familyShortName ,familyWaveType ,familyNums ,

...
47 ...fileWaveName ,effectiveSupport)
48 wavemngr('add','Cauchy ','cchy',5,'','Cauchy.mat',[-Dtw Dtw])
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Chapter 4

Instantaneous frequency identification using the
CWT

As referred in Chapter 3, if the Fourier transform of a mother wavelet ψ(t) is sharply
concentrated near a fixed value ω = ωj of frequency, the continuous wavelet transform
tends to “concentrate” near a series of curves in the time-frequency domain, called the
ridges of the transform. The ridge, let it be referred to as ar(b), has an interesting
property: it describes the frequency modulation law of the signal. This property can be
utilized to extract important features of the original signal which can be associated with
the modal parameters of the s.d.o.f or m.d.o.f system under study, as will be described in
this chapter.

4.1 Ridge estimation methods

There are several algorithms developed for the detection of ridges, depending on what
problem they are called to solve: signals with a unique component or several components,
pure or noisy signals. These algorithms can be classified into two categories, the “In-
tegral” methods and the “Differential” methods. Integral methods are more stable than
differential ones, consequently they are preferred in cases where significant noise is present
within the signal, whereas differential methods are usually applied to pure signals where
the noise component is relatively small in the regions occupied by the ridges.

“Differential” methods are based on a local analysis either of the extrema of the modulus
of the CWT or the search for the points (b,a) -scale a and time point b- where the instan-
taneous frequency of the signal is equal to the frequency of the scaled mother wavelet.
Two such methods reviewed in this thesis are:

• The “Simple” method, which uses the modulus of the CWT:

This method is based on CWT’s modulus scalogram to extract a cross-section parallel
to the scale (or frequency) axis of the plot, for a fixed value of the time variable b.

In the simple case where the signal is monocomponent, it possesses a unique ridge (see
figure 4.1), so an estimation of the ridge is obtained by looking for the global maxima in
the scale variable:

|Tψ[u](b, ar(b))| = max
a

|Tψ[u](b, a)| (4.1)

In the case of multicomponent signals, more than one ridge are present - one for each
mode - (see figure 4.2); therefore the estimation of each ridge focuses on local maxima,
still with respect to the scale variable:

∂|Tψ[u](b, ar(b))|
∂a

= 0 (4.2)
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Figure 4.1: Example: Modulus scalogram of Tψ[u](b, a) in the case of a s.d.o.f. system.
The ridge, defined as ar(b) = φ̇(0)

ωu(b)
, is unique and it can be estimated by looking for the

global maxima in the scale variable

Figure 4.2: Example: Modulus scalogram of Tψ[u](b, a) in the case of a m.d.o.f. system
(here a 4 d.o.f. system). Each ridge corresponds to a mode of the m.d.o.f. system. The

ridges, defined as ar(b) = φ̇(0)
ωu(b)

, are estimated for each mode by looking for local
maximas in the scale variable
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However, the Simple method turns out to be unstable in the presence of noise; the
noise creates additional local maxima, and to determine the ridge, one has to discriminate
between the local maxima which come from a “true” ridge and those that are noise artifacts
[2].

• The “Marseille” method, which uses the phase of the CWT:

This method is based on the definition of the ridges, as the place where the frequency of
the scaled mother wavelet is equal to the instantaneous frequency of the signal; therefore
it can be calculated as the first derivative of the CWT’s phase with respect to time:

∂∠(Tψ[u](b, ar(b)))
∂b

≈ ωu(b) (4.3)

Graphically the first derivative of a function provides the slope of a tangent line to the
function’s graph at any instant. Utilizing this property, equation 4.3 can be interpreted
(and easily calculated) as the slope of the phase-time data extracted from the phase plot
of the CWT on the time-frequency plane, at the wavelet’s ridge, see figure 4.3.

Figure 4.3: Example: (a) Phase plot of Tψ[u](b, a) on the time-frequency plane, (b)
Phase-time plot on the ridge, (c) Unwrapped phase-time plot on the ridge: The slope of

the phase of Tψ[u](b, a),equal to ∂∠(Tψ [u](b,ar(b)))
∂b

is the instantaneous frequency ωu(b).
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In “Integral” methods, ridges are considered as smooth and slowly varying functions
where the energy has a tendency to localize in the time–frequency map. An appropriate
penalty function is introduced on the set of possible ridges, and it estimates the ridge as
the one that minimizes the penalty. There are various techniques that can be used to
minimize the penalty function, for example the simulated annealing algorithm. Examples
of integral methods are the “Corona” method and the “Crazy Climbers” method. However,
integral methods have drawbacks too: when abrupt changes of parameters – such as
natural frequency of time-variant systems – are involved, detection of time instant for
which these changes appear is not a trivial task and often impossible [50].

4.2 Canonical representation of a real signal

Physical signals u(t) obtained from vibration measurement are real valued and in the
time domain. Following the concepts presented in Chapter 2 and since by definition the
instantaneous angular frequency is the derivative of phase with respect to time (see equa-
tion 4.3), there is a need for the signal to be expressed by canonical representation.

An arbitrary real monocomponent signal u(t) can always be represented in terms of
instantaneous modulus Au(t) and instantaneous phase φu(t), in the form :

u(t) = Au(t) cos [φu(t)] (4.4)

where Au(t) ≥ 0 and φu(t) ∈ [0, 2π).

Multicomponent signals then may be expressed canonically as the sum of two or more
monocomponent signals:

u(t) =
N∑
j=1

Au(t) cos [φu(t)] (4.5)

As referred in section 3.3.8, choosing an appropriate value of Q allows to isolate cou-
pled modes, therefore it can be assumed that multicomponent signals have components
which do not interact. Consequently, the analysis can be restricted to a domain where
the wavelet coefficients of all but one component are negligible, allowing to treat each
component as a monocomponent signal (which is one of the advantages of employing a
time-frequency analysis). That being the case, the following theory focuses on monocom-
ponent signals.

Continuing with equation 4.4, differentiating the phase φu(t) with respect to time
gives the instantaneous angular frequency:

ωu(t) =
dφu(t)

dt
= φ̇u(t) (4.6)

However, there is a problem with this representation: the pair of [Au(t), φu(t)] is far
from unique since there are infinite such pairs that can be associated with the real signal
u(t). This obstacle can be overcome with the use of the Hilbert Transform, which can be
utilized as described in the following two sub-chapters.
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4.3 Hilbert Transform

The Hilbert transform of u can be considered as the convolution of the function (or
signal) u(t) with the function h(t) = 1

πt
, known as the Cauchy kernel. Because 1

t
is not

integrable across t = 0, the integral defining the convolution does not always converge.
Therefore, the Hilbert transform is given by:

Hu(t) = u(t) ∗ 1

πt

=
1

π
p.v.

∫ +∞

−∞

u(τ)

t− τ
dτ , t ∈ R (4.7)

where p.v.[·] denotes the Cauchy principal value of the improper integral (i.e., to account
for the t = τ situation).

In the frequency domain, the Hilbert transform has a very useful form:

Ĥu(ω) = −isgn(ω)û(ω) , ω ∈ R (4.8)

where sgn(ω) is the sign function of a real number.

4.4 Analytic Signals and Instantaneous Frequency

An analytic signal is defined as a complex-valued function that has no negative fre-
quency components, therefore, the analytic signal Zu(t) associated with a real-valued
signal of finite energy u(t) is obtained by a linear filtering of u(t) canceling its negative
frequencies. By using the Hilbert transform, Zu(t) can be defined (up to a factor 2) as
u(t) signal’s orthogonal projection onto the subspace H2(R) of L2(R):

Zu(t) = u(t) + iHu(t) (4.9)

Note that Re[Zu(t)] = u(t). It should be mentioned also that, although an analytic signal
contains no negative frequencies, it may have a spectral component at zero frequency.
Considering the previous sub-chapter’s observation, the Fourier Transform of an analytic
signal is given by:

Ẑu(ω) = û(ω) + iĤu(ω)

eq.4.8
= û(ω)− i2sgn(ω)û(ω)

= û(ω) + sgn(ω)û(ω)

=

{
2û(ω), if ω ≥ 0.

0, if ω < 0.

= 2û(ω)Θ(ω) (4.10)

82



where Θ(ω) denotes the Heaviside step function.

By definition, Zu(t) is an analytic function in the upper half complex plane (hence the
term analytic). If one assumes a pair [Au(t), φu(t)], where Au(t) = |Zu(t)| ≥ 0 and
φu(t) = ∠[Zu(t)] ∈ [0, 2π), the function Zu(t) has a unique polar coordinate representa-
tion:

Zu(t) = Au(t)e
iφu(t) (4.11)

where

Au(t) = |Zu(t)| =

√[
Re(Zu(t))

]2
+

[
Im(Zu(t))

]2
(4.12)

and

φu(t) = ∠(Zu(t)) = arctan

(
Im(Zu(t))

Re(Zu(t))

)
(4.13)

Applying this canonical pair [Au(t), φu(t)] to equation 4.4, a unique representation of
the form can be determined and it is defined as the canonical representation of a real signal.

The instantaneous angular frequency then can be defined by setting φu(t) = ∠[Zu(t)]
in equation 4.6 as:

ωu(t) =
dφu(t)

dt
=
d∠(Zu(t))

dt
(4.14)

Remark 4.1. This is the most direct method for determination of instantaneous fre-
quency, and is easy to implement. However it is important to note that although this
definition of the instantaneous frequency is always valid mathematically, its physical mean-
ing can be doubtful in some particular situations, especially when the signal u(t) is not
oscillating enough, i.e. when φu(t) varies slowly compared to Au(t), or when the frequency
ωu(t) itself has fast variations [2],[33].

4.5 Asymptotic Signals

For some real finite energy signals u(t) ∈ L2(R) that have the form u(t) = Au(t) cos [φu(t)]
with Au(t) ≥ 0 and φu(t) ∈ [0, 2π), the associated analytic signal is approximated as:

Zu(t) ≈ Au(t)e
iφu(t) (4.15)

However this is not the case in general, but only for signals that are considered oscillatory
enough. Those signals for which this statement is true are called asymptotic signals. Os-
cillatory enough means that the variations of u(t) coming from the phase term cos [φu(t)]
(i.e. change of phase) are much faster than the variations coming from the amplitude
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Au(t) (i.e. amplitude modulation) [7]:∣∣∣∣dφu(t)dt

∣∣∣∣ ≫ ∣∣∣∣ 1

Au(t)

dAu(t)

dt

∣∣∣∣ (4.16)

This definition of asymptotic signals derives from the following lemma as taken from [2]:

Lemma 4.1. Let u(t) ∈ L2(R) be of the form u(t) = Au(t) cos [λφu(t)] , whereλ ≫ 1
(i.e. large positive number), and Au(t) ∈ C2(R) (space of twice continuously differentiable
functions) and φu(t) ∈ C4(R) (space of four times continuously differentiable functions).
Then, as λ→ ∞, the analytic signal associated with u(t) is:

Zu(t) = Au(t)e
iλφu(t) +O(λ−

3
2 ) (4.17)

4.6 CWT of Asymptotic Signals - Method of Stationary Phase

Having expressed the asymptotic signal u(t) = Au(t) cos [φu(t)] as it’s associated ana-
lytic signal of the form Zu(t) ≈ Au(t)e

iφu(t), and assuming ψb,a(t) to be a family of general
progressive and asymptotic wavelets (progressive = a wavelet whose Fourier Transform is
non-negative) of the form:

ψ(t) = Aψ(t)e
iφψ(t) (4.18)

the CWT of u(t) is then a Hardy function and will be expressed as:

Tψ[u](b, a) = ⟨u, ψb,a⟩

=
1

a

∫ +∞

−∞
u(t)ψ

(
t− b

a

)
dt

=
1

2a

∫ +∞

−∞
Zu(t)ψ

(
t− b

a

)
dt

=
1

2
Tψ[Zu](b, a) (4.19)

Substituting equations 4.15, 4.18 into 4.19 gives:

Tψ[u](b, a) =
1

2a

∫ +∞

−∞
Au(t)Aψ

(
t− b

a

)
ei
[
φu(t)−φψ( t−ba )

]

=
1

2a

∫ +∞

−∞
Mb,a(t)e

iΦb,a(t)dt (4.20)

where

Mb,a(t) = Au(t)Aψ

(
t− b

a

)
(4.21)
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and

Φb,a(t) =

[
φu(t)− φψ

(
t− b

a

)]
(4.22)

If both the signal u(t) and wavelet ψ(t) are asymptotic, then the integrand in equation
4.20 is also asymptotic. Therefore the CWT integral of equation 4.20 is of the form:

I(λ) =

∫ b

a

A(t)eiλφ(t) (4.23)

where λ > 0 is a large parameter and the function A(x) is called the amplitude and the
real-valued function φ(x) is the phase, therefore I(λ) can be characterized as a generalized
Fourier integral and the Method of Stationary Phase can be applied for its approximation.

Note. For equations 4.23 and 4.24, a and b symbolize the lower limit and the upper limit
of the definite integral respectively and not the wavelet parameters.

4.6.1 The method of stationary phase in 1-dimension

Keeping in mind equation 4.23, some basic concepts and definitions of the method of
stationary phase in 1-dimension are:

Definition 4.1 (Stationary points). The endpoints of integration, i.e. places where the
derivatives of A(t) fail to be continuous, and places where the derivatives of φ(t) vanish
are called critical points. A simple critical point is a point t = t0, where φ̇(t0) = 0 but
φ̈(t0) ̸= 0. Such a simple critical point is also called a stationary point because this is the
place where the phase function has a minimum or a maximum and is thus, stationary.

Theorem 4.1 (The Principal of Stationary Phase). As λ → ∞ (i.e. the integrand
becomes very oscillatory) the dominant terms in the asymptotic expansion of I(λ) arise
from the immediate neighborhood of the end points and intermediate points at which
λφ(t) is stationary.

The physical interpretation of this principle is as follows: When λ→ ∞ and
λφ̇(t0) ̸= 0, then ω = λφ̇(t0) is very large, which means that the signal is very oscillatory,
so oscillatory that the amplitude A(t) changes very little during one cycle and the integral
in equation 4.23 evaluated over one cycle is zero. At points where φ(t) is stationary, this
cancellation does not occur. Consequently, only contributions from the stationary points
and the boundary points add to the value of the integral.
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Definition 4.2 (Stationary phase formula). For an interior stationary point t = t0, where
a < t0 < b: If A(t)eiλφ(t) has only one stationary point, t = t0 (of first order), then the
integral is estimated as:

lim
λ→∞

I(λ) = lim
λ→∞

∫ b

a

A(t)eiλφ(t)dt

=

√
2πeisgn[φ̈(t0)]

π
4√

λ|φ̈(t0)|
A(t0)e

iλφ(t0) +O(λ−
3
2 ) , as λ→ ∞ (4.24)

4.6.2 Application on the Continuous Wavelet Transform - “Marseille” Method

Let t = t0 be a stationary point of first order of the equation 4.20 integrand, i.e. such
that:

Φ̇b,a(t0) =

[
φ̇u(t0)−

1

a
φ̇ψ

(
t0 − b

a

)]
= 0 (4.25)

and

Φ̈b,a(t0) =

[
φ̈u(t0)−

1

a2
φ̈ψ

(
t0 − b

a

)]
̸= 0 (4.26)

Applying the Method of Stationary Phase for the stationary point t = t0 by substi-
tuting equation 4.20 to equation 4.24, Tψ[u](b, a) is approximated by :

Tψ[u](b, a) ≈
1

2a

√
2πeisgn[Φ̈b,a(t0)]

π
4√

|Φ̈b,a(t0)|
Mb,a(t)e

iΦb,a(t)

=
1

2a

√
2πeisgn[Φ̈b,a(t0)]

π
4√

|Φ̈b,a(t0)|
Zu(t0)ψ

(
t0 − b

a

)
(4.27)

which can be written as the value of the integrand of equation 4.19 at t = t0 corrected by
some factor, i.e.:

Tψ[u](b, a) ≈
√
π

2

Zu(t0)ψ
(
t0−b
a

)
corr(b, a)

(4.28)

where

corr(b, a) = a|Φ̈b,a(t0)|1/2 exp−i(π/4) sgn[Φ̈b,a(t0)] (4.29)

As it was presented in Chapter 3, with a proper choice of the parameter Q, mode de-
coupling can be achieved. Consequently, for multicomponent signals, any mode can be
isolated and the modal identification procedure can be performed on the amplitude and
phase of one component separately as it is for a monocomponent signal, allowing the anal-
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ysis to be restricted to a domain where the wavelet coefficients of all but one component
are negligible. Thus, it can be assumed that t = t0 is a unique stationary point and that
it is of first order.

• Ridge definition

Focusing on the previously attained conclusions, the ridge ar(b) of the Tψ[u](b, a) now
can be defined as the set of points (b, a) in the domain of the transform where the phase
of u(t)ψ

(
t−b
a

)
is stationary, i.e. the points that satisfy t0(b, a) = b.

Substituting t0 = b, a = ar(b) and φ̇(t0) = ωu(t0) = ωu(b) in the stationary phase
condition 4.25 gives:

ωu(b) =
φ̇ψ(t0)

ar(b)
(4.30)

Consequently, once the ridge of the wavelet transform is determined, the instantaneous
frequency can be determined easily from equation 4.1.

Example 4.1 (Instantaneous frequency for the complex Morlet wavelet and the Cauchy
wavelet). Calculating the φ̇ψ(t0) for the complex Morlet wavelet and the Cauchy wavelet,
utilized in this thesis:
For the Complex Morlet wavelet:

ψ(t) = e−t
2/(2δ2)eiβt

Thus, the wavelet’s phase is equal to:

φψ(t) = βt = ωψt,

φ̇ψ(t) = ωψ

Therefore φ̇ψ(0) = ωψ. Substituting in equation 4.1 gives for the Morlet wavelet:

ωu(b) =
ωψ
ar(b)

For the Cauchy wavelet:

ψ(t) =

(
i

t+ i

)n+1

=

(
1√
t2 + 1

)n+1

ei(n+1) arctan(t)

Thus, the wavelet’s phase is equal to:

φψ(t) = (n+ 1) arctan (t),

φ̇ψ(t) =
n+ 1

1 + t2

87



Therefore φ̇ψ(0) = n+ 1. Substituting in equation 4.1 gives for the Cauchy wavelet:

ωu(b) =
n+ 1

ar(b)

• Analytic signal from the skeleton of the CWT

The skeleton of the Tψ[u](b, a) is the wavelet transform evaluated on the ridge, i.e.
Tψ[u](b, ar(b)). The phase of the CWT Φb,a(t) on the ridge where t0 = b, a = ar(b),
(equation 4.22) then becomes:

Φb,a(t) = [φu(t)− φψ(0)] (4.31)

where φu(t) the phase of the analytic signal and φψ(0) the phase of the analyzing wavelet.
Thus, if the equation of the analyzing wavelet is known, one can compute the instanta-
neous phase φu(t) of the analytic signal on the ridge from the CWT.

Example 4.2 (Phase of the analytic signal for the complex Morlet wavelet and the
Cauchy wavelet). Consider from the previous example the phase of the Morlet and the
Cauchy wavelet respectively:

φψ(t) = βt = ωψt and φψ(t) = (n+ 1) arctan (t)

Therefore, for both the Morlet and the Cauchy wavelet: φψ(0) = 0.
This leads to Φb,a(t) = φu(t) − 0 = φu(t). Consequently, when using the Morlet and the
Cauchy wavelet the instantaneous phase of the analytic signal φu(t) is equal to the phase
of the CWT.

Continuing with the correction calculation, equation 4.32 implies that on the ridge
where t0 = b, a = ar(b):

Tψ[u](b, a) ≈
√
π

2

Zu(b)ψ(0)

corr(b, ar(b))
(4.32)

Thus, one can conclude that the CWT on the ridge generally can be approximated as:

Tψ[u](b, ar(b)) ≈ correction(b, ar(b))Zu(b) (4.33)

which leads that the analytical signal on the ridge can be obtained by:

Zu(b) ≈
Tψ[u](b, ar(b))

correction(b, ar(b))
(4.34)

The approximation of Tψ[u](b, a) by the equation 4.32 is the one followed by Carmona [2]
and is of general sense. Focusing now on the correction(b, ar(b)) calculation with wavelets
that have constant frequency along the time axis, i.e.
ωψ(t) = dφψ(t)/dt = φ̇ψ(t) = constant.
Therefore, φ̈ψ(t) = 0 for all t. Applying this for t = b, a = ar(b), the ridge is defined as the
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line a = ar(b). Consequently, ridges on the frequency axis can be represented in a Fourier
line spectrum. Le-Argoul [13] employed this property and performed the approximate
calculation of the CWT on the ridge as:

Tψ[u](b, ar(b)) ≈
1

2
Zu(b)ψ̂

(
φ̇ψ(0)

)
(4.35)

Thus, the analytic signal Zu(b) can be calculated from the skeleton of the CWT as:

Zu(b) ≈
2

ψ̂(φ̇ψ(0))
Tψ[u](b, ar(b)) (4.36)

with instantaneous amplitude:

A(b) = |Zu(b)| ≈

∣∣∣∣∣ 2

ψ̂(φ̇ψ(0))
Tψ[u](b, ar(b))

∣∣∣∣∣ (4.37)

The correction term is equal to:

correction(b) =
2

ψ̂(φ̇ψ(0))
(4.38)

and depends only on the ridge and on the analyzing wavelet.

Example 4.3 (Correction computation with the complex Morlet wavelet and the Cauchy
wavelet). Continuing now the application for the Morlet and the Cauchy wavelet, the
values of φ̇ψ(0) where calculated in the previous example. The correction(b) then is:
For the Morlet wavelet with δ = 1:

ψ̂(ω) =
√
2πe−(ω−β)2/2

As calculated, φ̇ψ(0) = β, thus the correction(b) becomes:

correction(b) =
2

ψ̂(φ̇ψ(0))
=

2

ψ̂(β)
=

2√
2πe−(β−β)2/2

=

√
2

π

For the Cauchy wavelet:

ψ̂(ω) =
2πωne−ω

n!
Θ(ω)

where Θ(ω) is the Heaviside step function, but as ψ(t) is progressive, Θ(ω) can be ignored
from the equation. As calculated, φ̇ψ(0) = n+ 1, thus the correction(b) becomes:

correction(b) =
2

ψ̂(φ̇ψ(0))
=

2

ψ̂(n+ 1)
=

2

2π(n+ 1)ne−(n+1)

n!

=
n!

π(n+ 1)ne−(n+1)

However, for the Cauchy wavelet, the correction function contains a factorial (!), which
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MATLAB does not calculate for large values of n,i.e. (n > 140), but returns Inf. The
problem is solved by handling large numbers using the natural logarithm and the gamma
function that has the property: Γln(n+ 1) = ln(n!) which can be implemented in MAT-
LAB with the command gammaln(). Thus, the fraction is handled as follows:

ln
(
correction(b)

)
= ln

(
n!

π(n+ 1)ne−(n+1)

)
= ln (n!)−

[
ln (π) + n ln (n+ 1)− (n+ 1) ln (e)

]
= ln (n!)− ln (π)− n ln (n+ 1) + (n+ 1)

= Γln(n+ 1)− ln (π)− n ln (n+ 1) + (n+ 1)

thus,

correction(b) = exp
[
Γln(n+ 1)− ln (π)− n ln (n+ 1) + (n+ 1)

]
In matlab the natural logarithm is called with the command log(). Validation test results:

Table 4.1: Large numbers handling validation test

n factorial() gammaln()

5 1.9817 1.9817

50 5.7074 5.7074

100 8.0253 8.0253

140 9.4800 9.4800

200 NaN 11.3167

1800 (Q=30) NaN 33.8623

Listing 4.1: Handling the large factorials of the Cauchy wavelet
1 % set n value
2 n = 5
3
4 % Correction with natural logarithms
5 correction1 = exp(gammaln(n+1)-log(pi)-n*log(n+1)+(n+1))
6
7 % Correction as the original equation
8 correction2 = factorial(n)/(pi*exp(-(n+1))*(n+1)^n)
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• Ridge Estimation from the Phase of the Continuous Wavelet Transform

As it was mentioned in the previous, the phase of the analytic signal can be obtained
from the phase of the CWT. From equation 4.27, the phase of Tψ[u](b, a) is be defined as:

∠
(
Tψ[u](b, a)

)
= i

π

4
sgn[Φ̈b,a(t0)] + Φb,a(t0) (4.39)

so, the derivatives of ∠
(
Tψ[u](b, a)

)
are essentially those of Φb,a(t0).

Differentiation of equation 4.39 with respect to scale gives:

∂∠(Tψ[u](b, ar(b)))
∂a

= −t0 − b

a2
Φ̇b,a

(
t0 − b

a

)
(4.40)

on the intersection with the ridge, where t0 = b:

∂∠(Tψ[u](b, ar(b)))
∂a

= 0 (4.41)

Therefore, for a given time b, the ridge ar(b) can be found by iteration, as the fixed point
of equation 4.41.

Similarly, differentiation of equation 4.39 with respect to b gives:

∂∠(Tψ[u](b, ar(b)))
∂b

=
1

a
φ̇ψ

(
t0 − b

a

)
+

[
∂a

∂b

]
t0 − b

a2
φ̇ψ

(
t0 − b

a

)

=
φ̇ψ(0)

ar(b)
(4.42)

the ridge ar(b) can be found by iteration, as the fixed point of equation 4.42.

Example 4.4 (Application for the Morlet and the Cauchy wavelet). The fraction φ̇ψ(0)

ar(b)

for the Morlet wavelet is equal to:

∂∠(Tψ[u](b, ar(b)))
∂b

=
ωψ
ar(b)

and for the Cauchy wavelet is equal to:

∂∠(Tψ[u](b, ar(b)))
∂b

=
n+ 1

ar(b)

Example 4.5 (Illustration of the thought process of equation 4.41). Consider a Cauchy
wavelet with Q = 8. Employ the CWT of a monocomponent signal u(t), find the ridge
and plot a cross section of the modulus scalogram and a cross section of the phase diagram
parallel to the scale axis. Compute the first derivative of the phase with respect to the
scale a. Figure 4.4 shows the result where (a) is the cross section of the phase diagram
parallel to the scale axis, (b) is the first derivative of the phase with respect to the scale
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a and (c) is the cross section of the modulus scalogram parallel to the scale axis. As it
can be observed, on the ridge ar(b) = 10.26, there is a peak on (c), and on (b) the graph
becomes a straight line equal to zero, confirming equation 4.41.

Figure 4.4: Example of the application of derivation of phase with respect to scale

4.7 Algorithms for the estimation of the instantaneous frequency

Once the ridge is determined, the instantaneous frequency can be calculated, from
ωb =

φ̇ψ
ar(b)

. Thus, the whole procedure is based on the identification of the ridge.

4.7.1 “Simple” method

This method is based on the heuristic that in a narrow time interval the energy of the
signal is concentrated near its instantaneous frequency for that time interval. Particularly,
this method is based on CWT’s modulus scalogram and extracts a cross-section parallel
to the scale (or frequency) axis of the plot, for a fixed value of the time variable b. If the
signal is monocomponent, the ridge is unique ridge, thus the estimation of the ridge is
obtained by looking for the global maxima in the scale variable, while for multicomponent
signals where more than one ridge are present the estimation of each ridge focuses on local
maxima, still with respect to the scale variable.

The basic algorithm is as follows:

1. Calculate the CWT matrix of the signal ut.
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2. Based on the modulus scalogram, estimate a scale range [amin, amax] that contains one
candidate ridge.

3. Select a time value ta to extract a cross-section of the modulus scalogram parallel to
the scale axis. ta must be such that the whole candidate ridge falls within the useful
domain D outside the cone of influence.

4. Find the maximum value of the CWT modulus inside the range [amin, amax]

5. Repeat steps 2-4 if more than one ridges are present.

There are several ways to implement this algorithm in MATLAB and estimate directly
the instantaneous frequency:

• Finding the Modulus maxima manually using the max command:

1. Calculate the CWT matrix of the signal ut:
[coefs ,freq] = cwt(ut ,scales ,'wname',dt,'plot') ;

2. Based on the modulus scalogram, estimate a frequency range [fmin, fmax] that contains
one candidate ridge.

3. Select a time point to extract the cross section parallel to the frequency axis to be
inside the domain D (The cone of influence) and find its index.
w_t = Q/2;
ind = round(w_t/dt);

4. Find maxima and it’s indices [i,ind] at the coefs matrix.
disp('Simple method: - max():')
modulus=abs(coefs);
max_modulus = max(modulus(:,ind));
[i,~]= find(modulus == max_modulus);

f_modulus1=freq(i)
omega_modulus1 =2*pi*f_modulus1
T_modulus1 =1/ f_modulus1

5. Repeat steps 2-4 if more than one ridges are present.

• Finding the Modulus maxima manually using the findpeaks command from
the Signal Processing Toolbox:

The command pks=findpeaks(data) returns a vector with the local maxima (peaks) of
the input signal vector, data. A local peak is a data sample that is either larger than its
two neighboring samples or is equal to Inf.
The command [pks,locs] = findpeaks(data) additionally returns the indices at which the
peaks occur.
Thus the application becomes simpler:

1. Calculate the CWT matrix of the signal ut:
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[coefs ,freq] = cwt(ut ,scales ,'wname',dt,'plot') ;

2. Select a time point to extract the the cross section parallel to the frequency axis to be
inside the domain D (The cone of influence) and find its index.
w_t = Q/2;
ind = round(w_t/dt);

3. Find the local maximas of the cross section
disp('Simple method - findpeaks:')
freq_data = modulus(:,ind);
[~,locs] = findpeaks(freq_data ,'MinPeakProminence ' ,0.25);
f_modulus2 = freq(locs)
omega_modulus2 =2*pi*f_modulus2
T_modulus2 =1/ f_modulus2

It it important to note that using the max command one can find better results than the
findpeaks, because findpeaks is very sensitive to the "MinPeakProminence" setting and
might return low frequency values that belong to noise. Additionally, it works well only
for values inside the domain D.

4.7.2 “Marseille” method

This method is based on the definition of the ridges as the place where the frequency of
the scaled mother wavelet is equal to the instantaneous frequency of the signal; therefore
it can be calculated based on the fact:

ωb =
φ̇ψ(0)

ar(b)
≈ ∂∠(Tψ[u](b, ar(b)))

∂b

Graphically the first derivative of a function provides the slope of a tangent line to the
function’s graph at any instant. Utilizing this property, ωb can be calculated as the slope
of the phase-time data extracted from the phase plot of the CWT on the time-frequency
plane, at the wavelet’s ridge.

The basic algorithm is as follows:

1. Calculate the CWT matrix of the signal ut.

2. Based on the modulus scalogram, estimate a scale range [amin, amax] that contains one
candidate ridge.

3. Set the indices kmin and kmax that correspond to the range [amin, amax].

4. Select an initial value of scale: ak.

5. Do for scale steps: k from kmin to kmax

(a) Compute dCWTphase =
∂∠(Tψ [u](b,ak))

∂b
as the slope of the phase plot in the time

axis for the current scale ak.

(b) Calculate aknew =
φ̇ψ(0)

dCWTphase
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(c) Check |aknew − ak| < ε, where ε is the is the pre-defined accuracy. If the condition
is true, ω(b) = dCWTphase and end the iteration (break). If it is false, continue.

(d) Set next value ak = aknew

Remark 4.2. This algorithm works only for values inside the domain D, outside the cone
of influence. If tuned correctly, produces very accurate results.

This algorithm can be easily implemented in MATLAB:

Listing 4.2: Marseille method
1 % Marseille method - using the phase of the CWT
2 disp('Marseille method:')
3 % Set the frequency range
4 fmin = 1.0; % Hz
5 fmax = 3.5; % Hz
6 freq = freq ';
7 indx_f = find(freq >fmin & freq <fmax);
8 kmin = min(indx_f);
9 kmax = max(indx_f);

10 a_ridge = scales (1)*dt;
11
12 for k=kmin:kmax
13
14 dCWT_phase=median(abs(diff(unwrap(angle(coefs(k,indx_t)))/dt)));
15 a_new = (n+1)/dCWT_phase;
16
17 if abs(a_new -a_ridge) < 10^-4
18 omega_marseille = (n+1)/a_new;
19 f_marseille = omega_marseille /(2*pi);
20 a_ridge = a_new;
21 break
22 end
23 omega_marseille = (n+1)/a_new;
24 f_marseille = omega_marseille /(2*pi);
25
26 a_ridge = a_new;
27 end

Remark 4.3. ∂∠(Tψ [u](b,ak))
∂b

is a continuous function. However, by definition, this quantity
always belongs to the interval [−π/2, π/2] and this will create discontinuities. Using the
unwrap command in MATLAB removes these discontinuities.

Example 4.6 (Illustration of the thought process of equation 4.42). Consider a Cauchy
wavelet with Q = 8. Employ the CWT of a monocomponent signal u(t), find the ridge
and extract a cross section of the phase diagram parallel to the time axis. Compute
the unwrapped phase. Figure 4.5 shows the result where (a) is the phase diagram on
the time-frequency plane with the ridge illustrated, (b) is the extracted phase-time cross
section of the phase diagram parallel to the time axis, and (c) is the unwrapped phase-
time extracted cross section plot. The slope gives the instantaneous frequency which is
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f = 2Hz, confirming the Marseille algorithm.

Figure 4.5: Example of the application of Marseille method. The slope gives the
instantaneous frequency

4.7.3 MATLAB tfridge

MATLAB’s Signal Processing Toolbox offers also the tfridge command. The func-
tion uses a penalized forward-backward greedy algorithm to extract the maximum-energy
ridges from a time-frequency matrix, thus it can be considered to resemble an “integral”
method.
The command fridge=tfridge(tfm,f) extracts the maximum-energy time-frequency ridge
from the time-frequency matrix, tfm, and the frequency vector, f, and outputs the time-
dependent frequency, fridge.
The command [fridge,iridge] = tfridge(tfm,f) also returns the row-index vector correspond-
ing to the maximum-energy ridge. However, tfridge is very sensitive to the ’NumFrequen-
cyBins’ setting and might return low frequency values that belong to noise. Additionally,
it works well only for values inside the domain D.
% Using the tfridge command from the Signal Processing Toolbox
disp('tfridge:')
[fridge ,iridge] = tfridge(modulus(:,indx_t),freq ,'NumRidges ',4,...

...'NumFrequencyBins ',Q); % values inside the domain D
f_tfridge = fridge (1,:) % frequencies
i_ridge = iridge (1,:); % matrix index of ridges
omega_tfridge = 2*pi*f_tfridge
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Chapter 5

Modal parameter identification using the CWT

This Chapter provides a basic theoretical background on structural dynamics and
presents the techniques used in obtaining the modal parameters from the results of the
CWT analysis. The systems considered are linear, with viscous proportional damping.

5.1 Structural Dynamics - Single Degree of Freedom (s.d.o.f.)
systems

5.1.1 Equation of motion

Let u(t), u̇(t), ü(t) denote respectively the displacement, velocity, and acceleration of
a s.d.o.f. system. The equation of motion then is given by:

mü(t) + cu̇(t) + ku(t) = p(t) (5.1)

where m is the system’s mass, c is the damping constant, k is the stiffness and p(t) is the
externally applied dynamic force.

5.1.2 Viscoulsy damped free vibration of s.d.o.f. systems

Free vibration is initiated by displacing the system from its static equilibrium position
via imparting the mass an initial displacement u(0) and velocity u̇(0) at time zero t = 0.
If there is no externally applied dynamic force, then the free motion depends only on these
initial conditions u(0) and u̇(0). Setting p(t) = 0 in equation 5.1 gives the differential
equation governing free vibration of s.d.o.f. systems with damping:

mü(t) + cu̇(t) + ku(t) = 0 (5.2a)

Dividing by the mass m gives:

ü(t) + 2ξω u̇(t) + ω2u(t) = 0 (5.2b)

where
ω is the undamped angular natural frequency of the system, given by:

ω =

√
k

m
(5.3)

ξ is the damping ratio or fraction of critical damping of the system, defined as:

ξ =
c

2mω
=

c

ccr
(5.4)
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c, the damping constant, is a measure of the energy dissipated in a cycle of free vibration
or in a cycle of forced harmonic vibration.
ccr refers to the critical damping coefficient; it is the smallest value of c that inhibits
oscillation completely, i.e. it is the dividing line between oscillatory and nonoscillatory
motion and vise-versa. Consequently, ccr defines the type of the system as:

i. Underdamped systems, where c < ccr or ξ < 1 : the system oscillates about its
equilibrium position with a progressively decreasing amplitude.

ii. Critically damped systems, where c = ccr or ξ = 1 : the system returns to its
equilibrium position without oscillating.

iii. Overdamped systems, where c > ccr or ξ > 1 : the system does not oscillate and
returns to its equilibrium position, as in the ζ = 1 case, but at a slower rate.

As mentioned in Chapter 5, for the associated analytic signal to be approximated as
Zu(t) ≈ Au(t)e

iφu(t), the assumption of weak damping ξ ≪ 1/
√
2 is made, therefore the

solution of the equation 5.2 that is presented in the following is for underdamped systems.

5.1.3 Free response of underdamped s.d.o.f. system

For underdamped systems where c < ccr or ξ < 1 the solution to the equation 5.2
subject to the initial conditions u(0) and u̇(0) is:

u(t) = e−ξωt
[
u(0) cos ω̃t+

u̇(0) + u(0)ξω

ω̃
sin ω̃t

]
(5.5)

where ω̃ is the damped angular natural frequency of the system, given by:

ω̃ = ω
√
1− ξ2 (5.6)

Setting

ρ =

√
[u(0)]2 +

[
u̇(0) + u(0)ξω

ω̃

]2
(5.7)

and

φ = arctan

(
u̇(0) + u(0)ξω

u(0)ω̃

)
(5.8)

the equation 5.5 of displacement becomes:

u(t) = ρe−ξωt cos (ω̃t− φ) (5.9)

The velocity and the acceleration are obtained by successively deriving the displace-
ment u(t):
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The velocity is calculated as:

u̇(t) = ρωe−ξωt
[
− ξ cos (ω̃t− φ)−

√
1− ξ2 sin (ω̃t− φ)

]
= −ρωe−ξωt cos (ω̃t− φ− δ) (5.10)

where

δ = arctan

√
1− ξ2

ξ
(5.11)

and the acceleration is calculated as:

ü(t) = ρωe−ξωt(−ξω)
[
− ξ cos (ω̃t− φ)−

√
1− ξ2 sin (ω̃t− φ)

]
+ ρωe−ξωt

[
ξω̃ sin (ω̃t− φ)−

√
1− ξ2 ω̃ cos (ω̃t− φ)

]
= ρω2e−ξωt

[
(ξ2 − (1− ξ2)) cos (ω̃t− φ) + 2ξ

√
1− ξ2 sin (ω̃t− φ)

]
= −ρω2e−ξωt cos (ω̃t− φ+ θ) (5.12)

where

θ = arctan
2ξ
√

1− ξ2

1− 2ξ2
(5.13)

It can be noted that the phase of the velocity and the phase of the acceleration are
differentiated from the phase of the displacement by a quantity depending on the damping
ratio ξ.

5.2 Structural Dynamics - Multi Degree of Freedom (m.d.o.f.)
systems

5.2.1 Equation of motion

Let u(t), u̇(t), ü(t) denote respectively the displacement, velocity, and acceleration
vectors of a m.d.o.f. system with N degrees of freedom. The equation of motion then is
given by:

Mü(t) + Cu̇(t) + Ku(t) = P(t) (5.14)

where M is the system’s mass matrix, C is the damping matrix, K is the stiffness matrix
and P(t) is the externally applied dynamic force vector.
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5.2.2 Modal superposition

Let Φ be the modal matrix made of eigenvectors Φj = [Φ1j,Φ2j, ...,ΦNj]
T . By defini-

tion, the mode shape vector Φj describes the shape of the jth mode corresponding to the
natural frequency ωj. Then, the vector of displacements can be described mathematically
by:

u(t) =
N∑
j=1

Φjyj(t) = ΦY(t) (5.15)

The coupled equation of motion of equation 5.14 can be uncoupled after substituting u(t)
using equation 5.15 and left multiplying it with ΦT . This is achieved with the aid of the
orthogonality condition, which makes M, K and C diagonal, and is defined as:

Φ
T
j MΦi =

{
Mj , if j = i

0 , if j ̸= i
(5.16)

Φ
T
j CΦi =

{
Cj , if j = i

0 , if j ̸= i
(5.17)

Φ
T
j KΦi =

{
Kj , if j = i

0 , if j ̸= i
(5.18)

5.2.3 Viscoulsy damped free vibration of m.d.o.f. systems

Considering again damped free vibration with initial conditions u(0), u̇(0) at t = 0,
then P(t) = 0, the equation of motion becomes:

Mü(t) + Cu̇(t) + Ku(t) = 0 (5.19)

Procedures to obtain the desired solution differ depending on the form of damping. The
damping matrix C generally is not easy to calculate in practice. However, with condition
5.17, the transformation that diagonalizes both M and K will also diagonalize C. So, by
applying equation 5.15, equation 5.19 becomes:

MΦŸ + CΦẎ + KΦY = 0 (5.20)

Left multiplying by ΦT gives:

Φ
TMΦŸ +ΦTCΦẎ +ΦTKΦY = 0 (5.21)

Thus, the equations of motion can then be expressed as a N set of uncoupled s.d.o.f.
equations:

Mj ÿj + Cj ẏj +Kjyj = 0 j = 1, 2, ..., N (5.22)
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Considering Cj = 2ξjMjωj and Kj = Mjω
2
j , and dividing by Mj, the equations can be

further simplified to:

ÿj + 2ξjωj ẏj + ω2
j yj = 0 j = 1, 2, ..., N (5.23)

5.2.4 Free response of underdamped m.d.o.f. system

Consequently, the equations of 5.23 are of the same form as equation 5.2b governing
the free vibration of a s.d.o.f system with viscous proportional damping. Adapting this
result, the solution for equations 5.23 becomes:

yj(t) = ρje
−ξjωjt cos (ω̃jt− φj) (5.24)

ẏj(t) = −ρjωje−ξjωjt cos (ω̃jt− φj − δj) (5.25)

ÿj(t) = −ρjω2
j e

−ξjωjt cos (ω̃jt− φj + θj) (5.26)

where

ω2
j =

kj
mj

(5.27)

ω̃j = ωj

√
1− ξ2j (5.28)

Therefore, for any degree of freedom k = 1, ..., N , the m.d.o.f. system’s responses can be
expressed as:

uk(t) =
N∑
j=1

ukj(t) =
N∑
j=1

Φkjρje
−ξjωjt cos (ω̃jt− φj) (5.29)

u̇k(t) =
N∑
j=1

u̇kj(t) = −
N∑
j=1

Φkjρjωje
−ξjωjt cos (ω̃tj − φj − δj) (5.30)

ük(t) =
N∑
j=1

ükj(t) = −
N∑
j=1

Φkjρjω
2
j e

−ξjωjt cos (ω̃jt− φj + θj) (5.31)

5.3 Modal Parameters Identification Procedure

5.3.1 Relations between obtained data and modal parameters

As it was presented in the previous Chapter, employing a ridge estimation method
allows the identification of the instantaneous frequencies ωj and the analytical signal Z·kj .
The next step is to find a relation to extract the damping ratio and the mode shapes
(the modal parameters in general) from the analytical signal. At this point it is assumed
that the CWT has been applied on the measured free responses uk(t), u̇k(t), and ük(t) of
the k DOF, and each signal has been decomposed into its N components in the form of
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instantaneous functions:

N∑
j=1

A·kj(t) cos [φ·kj(t)] (5.32)

Then, to be able to identify the modal parameters, equations 5.29, 5.30 and 5.31 are
expressed in the form of equation 5.32:

uk(t) =
N∑
j=1

ukj(t) =
N∑
j=1

Aukj(t) cos [φukj(t)] (5.33)

where: φukj(t) = ω̃jt− φj +
π

2
(1− sgn(Φkj))

Aukj(t) = |Φkj|ρje−ξjωjt
(5.34)

u̇k(t) =
N∑
j=1

u̇kj(t) =
N∑
j=1

Au̇kj(t) cos [φu̇kj(t)] (5.35)

where: φu̇kj(t) = ω̃jt− φj − δj +
π

2
(1 + sgn(Φkj))

Au̇kj(t) = |Φkj|ρjωje−ξjωjt
(5.36)

ük(t) =
N∑
j=1

ükj(t) =
N∑
j=1

Aükj(t) cos [φükj(t)] (5.37)

where: φükj(t) = ω̃jt− φj + θj +
π

2
(1 + sgn(Φkj))

Aükj(t) = |Φkj|ρjω2
j e

−ξjωjt
(5.38)

Le-Argoul [13] used these instantaneous functions to get linear or constant relations be-
tween data and modal parameters. They defined these relations by performing a para-
metric identification technique based on the minimization by the least squares method of
an error criterion. This error criterion was defined as the difference between the instanta-
neous functions that are derived from the processed data Rmeasure(t) and those obtained
from the theory Rmodel(t). The results are the following relations:
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• Using the phases of the obtained analytical signals

As it was presented in the previous Chapter, the time evolution of the phase (φukj(t), or
φu̇kj(t), or φükj(t)) is a straight line with slope ωj; the estimation of ωj then leads then
to a straight line inverse problem. Additionally, the time evolution of the ridge ar(t) was
shown to be constant, thus the damped natural angular frequency ω̃j is related with the
instantaneous frequency φ̇·kj by:

ω̃j = φ̇ukj(t) =
φ̇ψ(0)

arukj(t)
(5.39)

ω̃j = φ̇u̇kj(t) =
φ̇ψ(0)

aru̇kj(t)
(5.40)

ω̃j = φ̇ükj(t) =
φ̇ψ(0)

arükj(t)
(5.41)

The damping ratio can be obtained directly by:

ξj = |cos (δj − π sgn(Φkj))| =
∣∣cos (φukj(t)− φu̇kj(t)

)∣∣ (5.42)

ξj =

∣∣∣∣cos(θj + π sgn(Φkj)

2

)∣∣∣∣ = ∣∣∣∣cos(φükj(t)− φukj(t)

2

)∣∣∣∣ (5.43)

The sign of Φkj can be obtained in relation with a reference Φmj. The phase difference
dkmj between a dof k and a dof m on the j mode is equal to:

dkmj (t) = φukj(t)− φumj(t) = −(φu̇kj(t)− φu̇mj(t)) = −(φükj(t)− φümj(t)) (5.44)

is either zero or equal to ±π:

dkmj (t) =
π

2
(sgn(Φmj)− sgn(Φkj)) (5.45)

Therefore, Φkj and Φmj have the same sign if dkmj (t) = 0 and opposite signs if dkmj (t) = ±π.

• Using the amplitudes of the obtained analytical signals

The undamped natural angular frequency ωj can be expressed as:

ωj =
Au̇kj(t)

Aukj(t)
(5.46)

ωj =
Aükj(t)

Au̇kj(t)
(5.47)
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The time evolution of the logarithm of the amplitude (log(Aukj(t)), or log(Au̇kj(t)), or
log(Aükj(t))) is a straight line with slope −ξjωj as it can be observed by:

log(Aukj(t)) = log(|Φkj|ρj)− ξjωjt (5.48)

log(Au̇kj(t)) = log(|Φkj|ρjωj)− ξjωjt (5.49)

log(Aükj(t)) = log(|Φkj|ρjω2
j )− ξjωjt (5.50)

The identification of the absolute value of Φkj is again a straight line inverse problem.
The ratio Aukj(t)/Aumj(t) of the amplitude of the jth component of the response of the
dof k upon that of the dof m is a constant in time which is the absolute value of the kth
component of mode j. Consequently:

|Φkj| =
Aukj(t)

Aumj(t)
(5.51)

5.4 Algorithm for modal parameter identification

Summarizing and combining now all the theory that has been developed in Chapters
3, 4 and this Chapter, an identification procedure is presented to obtain the values of
modal parameters. These methods include a technique that requires only the displacement
response vector u(t) as well as techniques that require the acceleration ü(t), the velocity
u̇(t) and the displacement response vector u(t). The algorithm presented employs the
displacement response, but can be easily extended to velocity or acceleration ones. All
the identification methods are linear and lead to a direct estimation without iteration and
initial conditions. The algorithm is as follows:

1. Choose a mother wavelet. (The factors that define a proper mother wavelet for the
analysis have been presented in section 3.3.5).

2. Apply the FFT and obtain rough estimates of the modal frequencies. This is done
firstly due to the fact that the computation of the bounds of Q and the edge effect
delimiting equations include the values of ωj and secondly because the methods pre-
sented are based on the the analysis of a single component, so when dealing with a
multicomponent signal a range of frequencies where the candidate frequency is located
is needed. (FFT has been presented in section 3.2.3).

3. Choose a value for the Q factor. (The choice of Q has been analyzed in section 3.3.8).

cf
ωj
2dωj

≤ Q ≤ Lωj
2ct
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4. Compute the edge effect delimiting lines. (As presented in section 3.3.7).

ω1 =
1

t
2ctQµψ , ω2 =

1

L− t
2ctQµψ , ω3 = 0 , ω4 =

2πfNyquist
1 + cf

1
2Q

5. Choose a dof k and obtain its responses uk(t), u̇k(t) and ük(t).

6. Compute the CWT of uk(t), Tψ[uk](b, a), the CWT of u̇k(t), Tψ[u̇k](b, a), and the
CWT of ük(t), Tψ[ük](b, a). (Algorithms presented in section 3.3.9).

7. Identify the ridges arukj(b). (As presented in Chapter 4).

8. Construct the analytical signal Zukj(b) for each ridge (As presented in Chapter 4).
Each ridge corresponds to a mode j.

φ̇ukj(b) =
φ̇ψ(0)

arukj(b)

Zukj(b) = Aukj(t)e
i[φukj (t)] ≈ 2

ψ̂(φ̇ψ(0))
Tψ[ukj](b, arukj(b))

Apply the same for Zu̇kj(b) and Zu̇kj(b).

9. Identify the angular frequency ω̃j or ωj as:

i. From ridge (and phase): ω̃j = φ̇ukj(b).

ii. From modulus: ωj =
Au̇kj(b)

Aukj(b)
=

|Zu̇kj(b)|
|Zukj(b)|

then, ω̃j = ωj
√
1− ξ2j

10. Identify the damping ratio ξj as:

i. From modulus: as the slope of log(Aukj(b)) = |Zukj(b)|.

ii. From phase (a): ξj =
∣∣cos (φukj(t)− φu̇kj(t)

)∣∣ = |∠Zukj(b)− ∠Zu̇kj(b)|.

iii. From phase (b): ξj =
∣∣∣∣cos(φükj(t)− φukj(t)

2

)∣∣∣∣ = ∣∣∣∣cos(∠Zükj(b)− ∠Zukj(b)

2

)∣∣∣∣
11. Identify the mode shape vector Φj as:

i. Choose a reference dof m (usually the top dof) and impose Φmj = 1.

ii. Compute the absolute value |Φkj| =
Aukj(b)

Aumj(b)
=

|Zukj(b)|
|Zumj(b)|

.
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iii. Compute the sign sgn(Φkj) as:

Calculate dkmj (b) = |φukj(b)− φumj(b)| = |∠Zukj(b)− ∠Zumj(b)|.

If dkmj (t) = 0, then Φkj and Φmj have the same sign, if else, then Φkj and Φmj

have opposite signs.

iv. Finally, Φkj = |Φkj| sgn(Φkj).

v. The signal uk(t) can be reconstructed from the analytic signal as:

uk(t) =
N∑
j=1

Re
[
Zukj(b)

]
.

Remark 5.1. This algorithm can be summarized into three steps:

1. Compute the CWT of the signal.

2. Identify ridges, the corresponding skeletons and compute the analytic signals.

3. Identify the modal parameters.
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Chapter 6

Numerical Applications

The algorithm presented in section 5.4 is now employed for modal identification of
two examples: a s.d.o.f. system and a m.d.o.f. system. The algorithm is implemented in
MATLAB version 2021a and use the built in cwt command with some modifications as
mentioned in section 3.3.10.

The two chosen mother wavelets are the Complex Morlet wavelet and the Cauchy
wavelet of order n. These two wavelets where selected because of the following reasons:

1. They are admissible.

2. They are both complex,progressive wavelets. Consequently, the CWT results are also
complex, which allows to extract the information about the modulus of the CWT
to implement the Simple method and the the phase of the CWT to implement the
Marseille method, and to reconstruct the signal u(t).

3. They have good time and frequency localization properties.

4. They reflect the type of features present in the time series as they are waveforms with
an increased number of oscillations.

5. They have parameters in their definitions that strongly influence the localization prop-
erties, which enables their tuning with the Q factor.
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6.1 Single Degree of Freedom System

6.1.1 The s.d.o.f. model

Consider the mass-spring-damper system of figure 6.1, with the characteristics pre-
sented in table 6.1. In order to obtain the free responses u(t), u̇(t) and ü(t), the system
is subjected to initial conditions:

u(0) = 0.5m and u̇(0) = 0m/s

The duration of the obtained signal is L=10 sec and the sampling period is dt=0.01 sec.
The displacement response is shown in figure 6.2.

Table 6.1: Characteristics of the test s.d.o.f. system

Natural period T = 0.5 sec

Natural frequency f = 1/T = 2 Hz

Natural damped angular frequency ω = 2π/T = 12.57 rad/sec

Mass m = 1 kg

Damping ratio ξ = 2 %

Stiffness k = mω2 = 157.9 N/m

Figure 6.1: The test s.d.o.f. system

6.1.2 Choice of Q

The FFT results are f = 1.998 Hz → ω = 12.55 rad/sec, illustrated in figure 6.3.
Considering cf = ct = 5 and dω = ω − 0 = ω, the Q value is bounded as:

2.5 ≤ Q ≤ 12.55

After some tests so that Re
[
Zukj(b)

]
= u(t), Q = 2.5 is selected for the Cauchy wavelet

and Q = 9.0 is selected for the Morlet wavelet.
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Figure 6.2: Displacement response u(t) of the test s.d.o.f. system

Figure 6.3: FFT results of the test s.d.o.f. system

6.1.3 CWT results

• Cauchy wavelet

The CWT of the signal u(t) is then calculated, the results are the figures 6.5, 6.6, 6.7,
where the CWT Scalogram, the time-frequency modulus plot and time-frequency phase
plot of signal u(t) with Cauchy mother wavelet for Q = 2.5 are illustrated respectively.
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Figure 6.4: The Cauchy mother wavelet for Q = 2.5

As it can be observed in figures 6.5 and 6.6, there is only one ridge, corresponding to
the fact that the signal is component. Additionally the edge effects outside of the domain
D are clearly visible on the region of the plot with small time values. Edge effects can be
observed also in figure 6.7, for low frequencies.

Figure 6.5: CWT Modulus Scalogram of signal u(t), Cauchy mother wavelet, Q = 2.5
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Figure 6.6: CWT time-frequency modulus plot of signal u(t), Cauchy mother wavelet,
Q = 2.5

Figure 6.7: CWT time-frequency phase plot of signal u(t), Cauchy mother wavelet,
Q = 2.5
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• Morlet wavelet

The CWT of the signal u(t) is then calculated, the results are the figures 6.9, 6.10, 6.11,
where the CWT Scalogram, the time-frequency modulus plot and time-frequency phase
plot of signal u(t) with Morlet mother wavelet for Q = 9.0 are illustrated respectively.

Figure 6.8: The Morlet mother wavelet for Q = 9.0

Same observations with the Cauchy wavelet CWT can be done, as seen in figures 6.9
and 6.10, and 6.11. One extra thing that can be observed is that as for the Morlet wavelet
Q is higher, the edge effects become more significant.

Figure 6.9: CWT Modulus Scalogram of signal u(t), Morlet mother wavelet, Q = 9.0
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Figure 6.10: CWT time-frequency modulus plot of signal u(t), Morlet mother wavelet,
Q = 9.0

Figure 6.11: CWT time-frequency phase plot of signal u(t), Morlet mother wavelet,
Q = 9.0
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6.1.4 Frequency Estimation

• Estimation from modulus max

As there is only one ridge, frequency can be estimated searching for the global maximum
employing the methods presented in Chapter 4, see figures 6.12 and 6.13. Observe that
the maximum is at f = 2 Hz. Also, for low frequencies, outside the domain D, a small
distortion can be observed, which is due to the edge effects.

Figure 6.12: Cross section of the modulus plot parallel to the frequency axis, signal u(t),
Cauchy mother wavelet, Q = 2.5

Figure 6.13: Cross section of the modulus plot parallel to the frequency axis, signal u(t),
Morlet mother wavelet, Q = 9.0
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• Estimation from phase

The Marseille method is applied, as presented in Chapter 4, see figures 6.14 and 6.15.
The slope of the phase-time data extracted from the phase plot of the CWT on the
time-frequency plane, at the wavelet’s ridge, is the natural angular frequency ω.

Figure 6.14: Cross section of the phase plot parallel to the time axis at the ridge, signal
u(t), Cauchy mother wavelet, Q = 2.5

Figure 6.15: Cross section of the phase plot parallel to the time axis at the ridge, signal
u(t), Morlet mother wavelet, Q = 9.0
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6.1.5 Damping Ratio Estimation

• Estimation from modulus

As it was presented in Chapter 5, the slope of the logarithm of the modulus-time data
extracted from the modulus plot of the CWT on the time-frequency plane at the wavelet’s
ridge, is equal to −ξω. Having ω estimated, the damping ratio ξ then can be estimated,
see figures 6.16 and 6.17.

Figure 6.16: Logarithm of the cross section of the modulus plot parallel to the time axis
at the ridge, signal u(t), Cauchy mother wavelet, Q = 2.5.

Figure 6.17: Logarithm of the cross section of the phase plot parallel to the time axis at
the ridge, signal u(t), Morlet mother wavelet, Q = 9.0
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• Estimation from phase

The equations of Chapter 5 they can be visualized and illustrated in figures 6.18 and 6.19,

where (a) is estimated as ξj = |∠Zukj(b)−∠Zu̇kj(b)| and (b): ξj =
∣∣∣∣cos(∠Zükj(b)− ∠Zukj(b)

2

)∣∣∣∣.
It can be observed that only the values inside the domain D give the correct estimation.

Figure 6.18: Damping ratio ξ using the phase , Cauchy mother wavelet, Q = 2.5

Figure 6.19: Damping ratio ξ using the phase, signal u(t), Morlet mother wavelet,
Q = 9.0
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6.1.6 Signal u(t) and Re
[
Zukj(b)

]
The base of the whole definition of analytic signals is that u(t) = Re

[
Zukj(b)

]
. This

is confirmed in figures 6.20 and 6.21. As it can be observed the results are very close: the
frequency modulation fits exactly, while the amplitudes for all values, except from the
beginning because of the edge effects in the calculation of the CWT.

Figure 6.20: Physical signal u(t) and Re[Zu(t)] comparison, Cauchy mother wavelet,
Q = 2.5

Figure 6.21: Physical signal u(t) and Re[Zu(t)] comparison, signal u(t), Morlet mother
wavelet, Q = 9.0

118



6.1.7 Modal parameter identification results

The results obtained from the analysis are summarized in tables 6.9 and 6.10. As it
can be observed, the estimated results for both mother wavelets are very close to the exact
values, practically the same. Changing the values of Q (inside it’s calculated bounds) the
modal parameter identification results vary only on the third decimal point, therefore the
methods and equations applied give steady results.

Table 6.2: s.d.o.f. modal parameter identification results - Natural frequency

Natural frequency f (Hz)

Exact Simple method Marseille method Zu modulus eqn.

Cauchy Morlet Cauchy Morlet Cauchy Morlet

2.0000 2.0072 1.9983 2.0012 2.0009 1.9956 1.9957

Table 6.3: s.d.o.f. modal parameter identification results - Damping ratio

Damping ratio ξ

Exact Slope method Phase eqn.(a) Phase eqn.(b)

Cauchy Morlet Cauchy Morlet Cauchy Morlet

0.0200 0.0201 0.0200 0.0199 0.0199 0.0200 0.0200
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Remark 6.1. The wavy form of (a) in figure 6.18 can be remedied by setting Q = 3,
however the results are not affected.

Figure 6.22: Damping ratio ξ using the phase, signal u(t), Cauchy mother wavelet, Q = 3
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6.2 Multi Degree of Freedom System

6.2.1 The m.d.o.f. model

Consider the mass-spring-damper system with four degrees of freedom, as shown in
figure 6.23, with the characteristics presented in table 6.4. In order to obtain the free
responses uk(t), u̇k(t) and ük(t), 1 ≤ k ≤ 4 of the four masses, the system is subjected to
initial conditions:

u(0) = [u1(0) = 1.00, u2(0) = 0.75, u3(0) = 0.50, u4(0) = 0.25]T m

u̇(0) = 0m/s.

The duration of the obtained signal is L=5 sec and the sampling period is dt=0.0049 sec.
The displacement response is shown in figure 6.24.

Figure 6.23: The test 4 d.o.f. system
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Table 6.4: Characteristics of the test 4 d.o.f. system

Natural frequencies

f1 = 4.7397 Hz

f2 = 13.5900 Hz

f3 = 21.5035 Hz

f4 = 25.9414 Hz

Damping ratios

ξ1 = 0.15 %

ξ2 = 0.43 %

ξ3 = 0.68 %

ξ4 = 0.81 %

Mode shapes Φ=



0.3683 −1.0848 1.3441 −1.8620

0.6498 −1.0453 −0.5468 2.6923

0.8891 0.0886 −1.2818 −2.3209

1.0000 1.0000 1.0000 1.0000



Masses m1 = m2 = m3 = m4 = 1kg

Damping coefficients
c1 = c3 = 0.7 Ns/m

c2 = c4 = 0.8 Ns/m

Stiffness
k1 = k3 = 7000 N/m

k2 = k4 = 8000 N/m
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Figure 6.24: Displacement responses uk(t) of the test 4 d.o.f. system

6.2.2 Choice of Q

The FFT results are illustrated in figure 6.25. Considering cf = ct = 5 and dωj =
min[(ωj − ωj−1), (ωj+1 − ωj)] for 1 ≤ j ≤ N with ω0 = 0, ωN+1 = 2πfNyquist, the Q value
is bounded and chosen for each mode as in table 6.5.

Figure 6.25: FFT results of the test 4 d.o.f. system
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Table 6.5: Q values choice for the test 4 d.o.f. system

ωj (rad/s) dωj (rad/s) bounds Qj

10π 10π 2.500 ≤ Q ≤ 15.708 Q1 = 8

27π 17π 3.971 ≤ Q ≤ 42.412 Q2 = 20

42π 10π 10.500 ≤ Q ≤ 65.973 Q3 = 30

52π 10π 13.000 ≤ Q ≤ 81.681 Q4 = 30

6.2.3 CWT results

The CWT of the signal u(t) is then calculated, the results are the following:

• Cauchy wavelet

Figure 6.26: The Cauchy mother wavelets for different Q values
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Figure 6.27: CWT Modulus Scalogram for each mode, signal u(t), Cauchy mother
wavelet
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Figure 6.28: CWT Modulus Time-Frequency plot for each mode, signal u(t), Cauchy
mother wavelet
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Figure 6.29: CWT Phase Time-Frequency plot for each mode, signal u(t), Cauchy
mother wavelet
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6.2.4 Frequency Estimation

• Estimation from modulus

Figure 6.30: Cross section of the modulus plot parallel to the frequency axis for modes 1
and 2, signal u(t), Cauchy mother wavelet
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Figure 6.31: Cross section of the modulus plot parallel to the frequency axis for modes 3
and 4, signal u(t), Cauchy mother wavelet
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• Estimation from phase

Figure 6.32: Damping ratio ξ for all the modes using the phase, Cauchy mother wavelet
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6.2.5 Damping Ratio Estimation

• Estimation from modulus

Figure 6.33: Logarithm of the cross section of the modulus plot parallel to the time axis
at the ridge for all the modes, signal u(t), Cauchy mother wavelet

• Estimation from phase

Figure 6.34: Damping ratio ξ for all the modes using the phase, Cauchy mother wavelet
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6.2.6 Mode Shape Estimation

Figure 6.35: Estimated mode shapes, signal u(t), Cauchy mother wavelet
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6.2.7 Modal parameter identification results

Table 6.6: m.d.o.f. modal parameter identification results - Natural frequencies

Natural frequencies f (Hz)

Cauchy wavelet

Mode Exact Simple method Marseille method Zu modulus eqn.

1 4.74 4.58 4.74 4.73

2 13.59 13.63 13.69 13.23

3 21.50 21.68 21.92 20.29

4 25.94 26.34 26.67 23.78

Table 6.7: m.d.o.f. modal parameter identification results - Damping ratios

Damping ratios ξ

Cauchy wavelet

Mode Exact Slope method Phase eqn.(a) Phase eqn.(b)

1 0.0015 0.0015 0.0015 0.0015

2 0.0043 0.0042 0.0040 0.0042

3 0.0068 0.0066 0.0056 0.0064

4 0.0081 0.0079 0.0061 0.0075
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Table 6.8: Mode shapes of the test 4 d.o.f. system

Mode shapes Φ

Cauchy wavelet

Exact values Estimated values



0.3683 −1.0848 1.3441 −1.8620

0.6498 −1.0453 −0.5468 2.6923

0.8891 0.0886 −1.2818 −2.3209

1.0000 1.0000 1.0000 1.0000





0.3683 −1.0848 1.3441 −1.8617

0.6498 −1.0453 −0.5469 2.6922

0.8891 0.0886 −1.2819 −2.3207

1.0000 1.0000 1.0000 1.0000



Consequently, one can make the following remarks:

1. In figure 6.28 can be observed that Q factor affects the edge effects: The higher the Q,
the more significant the edge effects, confirming the theory.

2. In figure 6.28 can also be observed that Q factor allows for mode uncoupling: For
Q = 8, modes 1 and 2 can be easily distinguished, but modes 3 and 4 are coupled. For
a higher Q these two modes start to uncouple, but the lower modes are found outside
the domain D. Consequently, the first mode is estimated for Q = 8, the second for
Q = 20, and the third and the fourth for Q = 30 where these two modes are clearly
distinguishable.

3. The estimated natural frequencies are very close to the exact values. Some small
differences appear for the 4th mode.

4. Simple method and Marseille method work very well. Conversely, the built in MAT-
LAB commands findpeaks and tfridge do not detect the frequencies of mode 3 and
4.

5. The estimated damping ratios with the slope method are very close to the exact values.
The estimated damping ratios from phase do have a small difference with the exact
values for higher modes, especially for equation a.

6. One additional observation is that equations (a) ξj = |∠Zukj(b) − ∠Zu̇kj(b)| and (b)

ξj =

∣∣∣∣cos(∠Zükj(b)− ∠Zukj(b)

2

)∣∣∣∣ are very sensitive to the value of the Q, i.e. as the

Q increases, they become more distorted.
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7. Mode shape identification is very successful as the estimated values are practically the
same with the exact values.

8. Similar results for the same problem are obtained from Le-Argoul [13].

6.2.8 Signal u(t) and Re
[
Zukj(b)

]
The value of Q affects only the amplitude of the analytic signal, thus for a particular

value of Q, u(t) = Zu(t). One example is shown in figure 6.36 for the 4th d.o.f.

Figure 6.36: Signal u(t) and Re
[
Zukj(b)

]
of the 4th d.o.f., Cauchy mother wavelet

6.2.9 Morlet Wavelet

For the Morlet wavelet, the previously selected values of Q do not perform well. New
values Q1 = 9, Q2 = 15, Q3 = 20 and varying Q4, are selected and the following
conclusions are obtained:

1. The Simple method estimates accurately the frequencies for all the modes.

2. The Marseille method estimates accurately the frequencies for modes 1,2,3 and fails
completely for mode 4.

3. Using the modulus ratio of the analytic signals also estimates accurately the frequencies
for modes 1,2,3 but has a difference for mode 4 (but the same happens with the Cauchy
wavelet too in this case).

4. The damping ratios are estimated accurately only for modes 1 and 2.

5. The mode shapes are estimated accurately.
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Table 6.9: m.d.o.f. modal parameter identification results - Natural frequencies

Natural frequencies f (Hz)

Morlet wavelet

Mode Exact Simple method Marseille method Zu modulus eqn.

1 4.74 4.74 4.74 4.73

2 13.59 13.63 13.69 13.29

3 21.50 21.95 21.92 20.29

4 25.94 26.56 11.7244 23.23

Table 6.10: m.d.o.f. modal parameter identification results - Damping ratios

Damping ratios ξ

Morlet wavelet

Mode Exact Slope method Phase eqn.(a) Phase eqn.(b)

1 0.0015 0.0016 0.0016 0.0015

2 0.0043 0.0042 0.0040 0.0042

3 0.0068 0.0086 0.0081 0.0067

4 0.0081 0.1945 0.0843 0.0506
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Table 6.11: Mode shapes of the test 4 d.o.f. system

Mode shapes Φ

Morlet wavelet

Exact values Estimated values



0.3683 −1.0848 1.3441 −1.8620

0.6498 −1.0453 −0.5468 2.6923

0.8891 0.0886 −1.2818 −2.3209

1.0000 1.0000 1.0000 1.0000





0.3683 −1.0848 1.3443 −1.8467

0.6498 −1.0453 −0.5468 2.6735

0.8891 0.0886 −1.2824 −2.3073

1.0000 1.0000 1.0000 1.0000
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Chapter 7

Conclusions and Remarks

7.1 Mother wavelet choice

The two chosen mother wavelets were the Complex Morlet wavelet and the Cauchy
wavelet of order n. These two wavelets were selected because of the following reasons:

1. They are admissible.

2. They are both complex,progressive wavelets. Consequently, the CWT results are also
complex, which allows to extract the information about the modulus of the CWT
to implement the Simple method and the the phase of the CWT to implement the
Marseille method, and to reconstruct the signal u(t).

3. They have good time and frequency localization properties.

4. They reflect the type of features present in the time series as they are waveforms with
an increased number of oscillations.

5. They have parameters in their definitions that strongly influence the localization prop-
erties, which enables their tuning with the Q factor.

Both wavelets worked well on the s.d.o.f. system, however, for the m.d.o.f. system, the
Cauchy wavelet estimates all modal parameters for all modes accurately, while the Morlet
wavelet had some differences for the damping ratios of the 3rd and 4rth mode. Therefor,
they are appropriate for modal parameter identification.

7.2 Methods evaluation

Time-frequency analysis of vibration responses with the CWT is effective, as:

1. CWT is an effective tool for the modal parameter identification of s.d.o.f. and m.d.o.f.
damped systems from their free decay responses.

2. CWT is a linear transform by definition and thus, appropriate for the analysis of
multi-component signals.

3. CWT has an inherent multi-resolution ability. This property enables the separation of
the close frequency components of a coupled frequency signal.

4. CWT can be used to analyze effectively non-stationary vibration measurements as the
free responses of a damped system.

5. CWT can identify multiple structural parameters from a single signal without knowl-
edge of the applied force acting on the structure.
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6. CWT with complex mother wavelets allows to determine the time variation of instan-
taneous amplitude and phase of each component within the signal a property that
facilitates the modal parameter identification procedure.

Factors to be considered in the implementation of the CWT are:

1. The choice of proper sampling frequency to avoid aliasing.

2. The choice of proper scale range to cover all the frequency content of the signal.

3. The mother wavelet choice.

4. The effective delimitation of the edge effects.

7.3 Q factor

The role of the Q parameter in the CWT analysis can be summarized as:

1. Q is a useful parameter that can be utilized to define the parameters of mother wavelets,
in order to ameliorate the modal parameter identification using the CWT. Higher
Q produce narrower wavelets, with more oscillations within their waveform. Conse-
quently, the application of the CWT with a high Q factor allows a multiscale analysis
with high frequency resolution (at the expense of a lower time resolution), making it
appropriate for analyzing oscillatory signals such as the responses of a structure.

2. With a proper choice of the parameter Q, mode decoupling can be achieved. Conse-
quently, for multicomonent signals, any mode can be isolated and the modal identi-
fication procedure can be performed on the amplitude and phase of one component
separately as it is for a monocomponent signal.

3. Q factor affects the edge effects: The higher the Q, the more significant the edge effects.
However, by expressing the delimiting equations in relation to Q the useful domain D
can be defined correctly.

7.4 Additional work

This thesis can be further developed by exploring the addition of noise, the use of
ambient vibrations, forced vibrations and the insertion of structural damage (e.g. decrease
of stiffness) in the analysis.
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