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Abstract

This study concerns the implementation of a computational method simulating ultrasound
crystallization breakage. Even though ultrasound has been investigated experimentally, a sys-
tematic study of the underlying mechanisms is not yet available. To this end, modeling ap-
proaches need to be applied and in particular population balance models that can describe the
interplay of various mechanisms. Here, a population balance model (PBM) has been developed
to simulate ultrasound crystal breakage process. In this work, the main focus is to investigate
crystal breakage with ultrasounds. PBM is a complex class of equations and requires the im-
plementation of numerical techniques. Here, we apply the cell average technique (CAT). We
validate CAT by comparing numerical results with simplified PBEs with analytic solutions.
Upon validation, we proceed with the comparison of the CAT for pure breakage on crystals
with experimental measurements that are provided by the group of professor G. Stefanidis in
KU Leuven. We discuss the importance to select an appropriate formulation for the daughter
distribution function that describes the breakage mechanism. In order to estimate the neces-
sary breakage kinetic parameters as well as distribution parameters that may be needed, the
development of an optimization framework is required. Among the different types of daugh-
ter distributions that are modeled, in this work the optimum results are provided using the
U-shaped function, which describes the probability distribution of two produced particles after
the breakage of the mother crystal. Furthermore, we examine the effect of ultrasound power
by fitting for each experiment the corresponding kinetic parameters of the model and derive
a power law equation that generalizes our findings. Additionally, we study the effect of ultra-
sound frequency for three different cases. The majority of the simulations is referred to sodium
chlorate, NaClO3, however, we fit the CAT results with the case of L-glutamic acid, LGLu with
similar findings.
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Περίληψη

Η παρούσα μελέτη αφορά την εφαρμογή μιας υπολογιστικής μεθόδου για την προσομοίωση διάσ-

πασης κρυστάλλων με υπέρηχους. Παρόλο που η μέθοδος των υπερήχων έχει διερευνηθεί πειρα-
ματικά, δεν είναι ακόμη διαθέσιμη μια συστηματική μελέτη των υποκείμενων μηχανισμών. Για
το σκοπό αυτό, πρέπει να εφαρμοσθούν προσεγγίσεις μοντελοποίησης και συγκεκριμένα μοντέλα
ισοζυγίων πληθυσμών που μπορούν να περιγράψουν την αλληλεπίδραση διαφόρων μηχανισμών.
Ως εκ τούτου, έχει αναπτυχθεί ένα μοντέλο ισοζυγίου πληθυσμού (PBM) το οποίο είναι ικανό
να προσομοιώνει τη διαδικασία θραύσης κρυστάλλων με υπερήχους. Σε αυτήν την εργασία, το
μοντέλο εστιάζει στη διερεύνηση της θραύσης των κρυστάλλων. Το μοντέλο ισοζύγου πλυθησμού
είναι μια σύνθετη κατηγορία εξισώσεων και απαιτεί την εφαρμογή αριθμητικών τεχνικών. Σε αυτή
τη μελέτη, εφαρμόζεται η μέθοδος διακριτοποίησης cell average technique (CAT). Η ακρίβεια της
μεθόδου CAT επιβεβαιώνεται συγκρίνοντας τα αριθμητικά αποτελέσματα με απλοποιημένα μοντέλα
ισοζύγιων πλυθησμών, με αναλυτικές λύσεις. Εν συνεχεία, συγκρίνεται η CAT με πειραματικές
μετρήσεις, που παρέχονται από την ερευνητική ομάδα του καθηγητή Γ. Στεφανίδη στο KU Leu-
ven, για καθαρή θραύση σε κρυστάλλους. Αναλύεται η σημασία της επιλογής της κατάλληλης
εξίσωσης για τη συνάρτηση κατανομής των σωματιδίων που περιγράφει τον μηχανισμό θραύσης.
Προκειμένου να εκτιμηθούν οι απαραίτητες κινητικές παράμετροι θραύσης καθώς και οι παράμετροι

κατανομής που μπορεί να χρειαστούν, απαιτείται η ανάπτυξη ενός μοντέλου βελτιστοποίησης.
Μεταξύ των διαφορετικών τύπων θυγατρικών κατανομών που μοντελοποιούνται, σε αυτήν την
εργασία, τα βέλτιστα αποτελέσματα παρέχονται χρησιμοποιώντας τη συνάρτηση σχήματος U, η
οποία περιγράφει την κατανομή πιθανότητας δύο παραγόμενων σωματιδίων μετά τη θραύση του

μητρικού κρυστάλλου. Επιπλέον, εξετάζεται η επίδραση της ισχύος υπερήχων προσαρμόζοντας
για κάθε πείραμα τις αντίστοιχες κινητικές παραμέτρους του μοντέλου και εξάγεται μια εξίσωση

νόμου ισχύος που γενικεύει τα αποτελέσματα της μεθόδου. Επιπλέον, μελετάται η επίδραση της
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συχνότητας των υπερήχων για τρεις διαφορετικές περιπτώσεις. Η πλειονότητα των προσομοιώσεων
αναφέρεται στο χλωρικό νάτριο, NaClO3, ωστόσο συγκρίνεται η μέθοδος CAT με μια περίπτωση
L-γλουταμινικού οξέος, LGLu, οδηγώντας σε παρόμοια αποτελέσματα.
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1 Introduction

In general, crystallization is an important process for the chemical industry. It is frequently
utilized as a purification method. The ability to control the crystal size is of major importance
for pharmaceuticals. The requirements are for products of as uniform as possible crystals.

Crystallization is a process during which different sub-processes undergo including nucleation,
growth, breakage and agglomeration. All these sub-processes individually, as well as their
interplay, control basic properties of the crystals as polymorphic form, size and chirality. In this
study, the breakage mechanism is investigated. Generally, the crystal breakage can be achieved
by applying stress on the particles. Actually, this pressure is applied either between particles or
solid surfaces and particles depending on the specifics of each case. Another breakage method
is ultrasound crystal breakage which is investigated in this study. The major advantage of
ultrasound compared to the surface stress applying methods is that smaller crystal sizes can be
achieved. Therefore, the use of ultrasound in the crystallization process has resulted in better
process properties. Although various attempts to examine the sono-crystallization kinetics
have been undertaken in the past, only nucleation and crystal growth have been considered
[13, 14, 26, 33]. Thus, the main aim of this work is to examine the mechanism of breakage on
crystallization procedures.

Many studies relative literature are experimental. Viedma ripening, [63], [64] is a correspond-
ing four stages process that uses crystal breakage to convert a mixture of enantiomers in an
enantiopure end product. On the other hand, there is a lack in the studies that relate the
kinetics and mechanism of ultrasound facilitated breakage. Consequently, there is a need for
computational techniques. The computations are necessary in order to better understand the
underlying mechanisms, and of course being able to provide (as accurate as possible) quanti-
tative predictions. This very first step needs experiments for validation. The next step is to
use the computational findings and optimize the process, by appropriately modifying various
control variables in the procedure. And of course, for upscaling (i.e. application at the indus-
trial level), a computational model is also required. There are various computational methods
developed to study crystallization processes. In this work, crystal breakage is simulated using
population balance equations (PBEs).

The foundation of population balance equations (PBEs) for particulate processes was laid by
Hulburt et al. [17] and developed more specifically from Ramkrishna [46]. The population
balance equations (PBEs) are complex partial-integro-differential equations that can be solved
analytically only for specific cases. In the case of crystal breakage, the population balance
model (PBM) demands the definition and resolution of two kinetic parametric equations, the
distribution of daughter particles and the breakage rate. These equations can be used to model
and describe processes that involve particle elements. The population balance can be regarded
as a balance based on a certain variable such as number or volume. The population balances
theory is founded on the idea that the population can be characterized by a continuous function.

There is a variety of computational approaches to deal with PBE in order to extract crystalliza-
tion kinetics or simulate the evolution of crystal size distribution (CSD) of the crystallization
process. In this study, the cell average technique (CAT) for pure crystal breakage will be ana-
lyzed. The CAT method was developed by Kumar et al. [23] and has been used extensively in
the literature. In most cases, it is difficult to compute an analytic solution for PBE when taking
into account the breakage equation. Consequently, analytical solutions of PBE are available
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only for specific cases. There are a few examples where the computational method can be com-
pared to an analytical solution as Kumar et al. [23] presents. Furthermore, Falola et. al [10]
presents some simplified cases where analytical solutions can be included. Consequently, the
calculation of the aforementioned breakage equations and the breakage PBE is the main aim of
this study. The modeling of a crystal breakage system demands the definition of the breakage
kinetic parameters and distribution parameters when needed. Thus, the simulation can be im-
plemented through a necessary, appropriate optimization model, as there are information and
measurements for a variety of experimental cases.
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2 Literature Review

2.1 Crystallization

Crystallization is the physical transformation of a liquid, solution, or gas into a crystal. Crys-
tal is solid with an ordered internal arrangement of molecules, ions, or atoms. This results
in a crystal lattice that extends in all directions. On a macroscopic scale, the crystals are
usually identifiable by their geometrical shape, consisting of faces with specific, characteristic
orientations. The basic crystal geometries are depicted in Figure 2.1.

Figure 2.1: Basic shapes of crystals [16].

Many substances studied in research or found in technological and commercial fields are crys-
talline. In food technology and nutrition i.e., crystalline substances include sugars, sugar alco-
hols, salts, fats, fatty acids, artificial sweeteners, etc. can be found [5].

The crystallization process can isolate chemical substances in the solid form for long-term
storage and downstream processing. The process can be performed under different conditions
resulting in various properties on the produced particles. Crystallization has been developed
based on thermodynamics, kinetics, fluid dynamics, crystal structures, and inter-facial sciences.
Crystallization usually is implemented through precipitating from solution or melt, but can even
directly be deposited from a gas.

Crystallization only occurs when supersaturation is created that acts as the driving force for
crystallization. From a thermodynamic perspective this driving force is reflected by the dif-
ference in chemical potential of the solute in the liquid, µL and in the solid phase, µS, at
temperature T . The aforementioned force represents the supersaturation [21]

∆µ = µL(T )− µS(T ). (2.1)

Cooling crystallization from the melt or the solution

∆µ =
∆Heq

T ∗ ∆T, (2.2)

where ∆Heq and ∆T denote the enthalpy and temperature differences, respectively. The eq
index is used to denote the equilibrium phase. For practical reasons the supersaturation in
cooling can be defined as

∆T = T − T ∗. (2.3)
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In the case of melt pressure crystallization

∆µ = ∆Vmolar∆P =
∆ρ

ρmeltρsolid
∆P, (2.4)

where ∆Vmolar denotes the molar volume difference, ∆P and ∆ρ denote the differences of
pressure and density, respectively; ρi is the density of each material. For the case of evaporative
crystallization (2.1) can be transformed

∆µ = RTln

(
a

aeq

)
, (2.5)

where with a is described the energy per amount of material and R is the gas constant. Su-
persaturation is a prerequisite factor for crystallization. The formation of a solid is impossible
under the solubility threshold. Solubility depends on multiple factors such as temperature,
concentration, polarity and ionic strength. Phase diagrams as in Figure 2.2 are commonly
used. The figure illustrates three basic stability areas. The stable region or unsaturated region
is beneath the solubility threshold. In this region any crystal will dissolve. At the boundary
between stable and metastable just when the solution turns from under saturated to super-
saturated, the chance for nucleation is small. But the chance increases until the labile zone is
reached. In the labile zone, the solution will nucleate spontaneously.

Figure 2.2: Phases of Crystallization [41].

2.2 Mechanisms of Crystallization

The product consists of internal and external states. Composition characteristics constitute the
internal states of a crystalline product. The external state of a crystal consists of its geometric
position and of the external velocity of the crystal, which gives the change in the external state.
The external velocity is a function of both the hydrodynamics of the solid-liquid phase system
and the internal states of the crystal.

This section focuses on the main crystallization fundamentals or mechanisms that can change
the internal states of a crystalline product. The four basic mechanisms are nucleation, growth,
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dissolution, agglomeration and attrition or breakage. The internal states determine largely the
rates of the events of the aforementioned mechanisms. More precisely, the mechanisms are
related with rate coefficients and driving forces, which are defined by slurry states or local
process conditions such as supersaturation, energy dissipation, solids concentration, pressure
and temperature, as well as internal crystal states, such as size, strain and shape.

2.2.1 Nucleation

Nucleation involves the formation of the new crystalline particles and is classified as being
primary or secondary according to the mechanism through which it occurs (figure 2.3).

Primary nucleation includes the development of a new solid phase from a clear solvent. This
type of nucleation is further divided into homogeneous and heterogeneous nucleation [21]. In
heterogeneous nucleation, nucleation starts on foreign substrates of mostly microscopic parti-
cles. In case of absence of the these particles, statistical fluctuations of solute entities clustering
together can develop a new phase. This case concerns the mechanism of homogeneous nucle-
ation. The driving force for primary nucleation is the supersaturation of the crystallization
system, which is defined as the difference in the chemical potential of the substance in the
liquid and the solid phase Eq. (2.1). The rate coefficient or resistance for primary nucleation is
a function of the cluster-liquid inter-facial tension and diffusion coefficient. The internal states
at the time of nuclei formation such as size, lattice structure and purity, are also related to the
supersaturation.

Figure 2.3: Nucleation stages and mechanisms [53].

Secondary nucleation refers to the birth of new crystals at the interface of parent crystals.
The mechanism of secondary nucleation does not demand a high level of supersaturation. A
supersaturated solution nucleates more readily at a lower level of supersaturation when solute
crystals are already present or added. Secondary nucleation also is affected by the hydrody-
namics and the suspension density, while the dominant source of secondary nucleation in batch
crystallization is attrition.
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2.2.2 Crystal Growth

Crystal growth is a major mechanism of a crystallization process, and consists of the addition
of new atoms, ions, or polymer strings into the characteristic arrangement of the crystalline
lattice [37]. Growth is a mechanism responsible for increasing crystal size, thus essentially
determining crystal morphology. The surface structure and the purity of the crystal depend on
crystal face growth rates together with the growth mechanism. The growth rates of particular
crystal faces usually are not equal, but an overall linear growth rate is often used. Crystal growth
is a process consisting of mass transfer, surface integration and heat transfer. Mass transfer
and surface integration occur sequentially and in parallel with heat transfer. Mass transfer
involves the diffusion of growth units to the crystal surface. Surface integration consists of
surface diffusion, orientation and the actual incorporation into the lattice.

2.2.3 Agglomeration

Agglomeration is a particle formation process in which at least two primary particles are com-
bined to form a new one. Agglomerates can be formed by various mechanisms, as for example
due to electrostatic forces between nano-particles, the formation of bridges between particles,
or by thermal effects, for instance, sintering or glass transition. The formed mass is defined as
aggregate in the case of existence of interparticle forces only, such as Van der Waals (attractive),
electrostatic (repulsive) and steric forces [45].

The agglomeration mechanism can be divided into primary and secondary. In the latter, the
agglomerates are developed by the malformation of crystals. This leads to typical formations
such as polycrystals and dendrites. Secondary agglomeration arises in suspended particle sys-
tems due to particle collisions. Secondary agglomeration is a phenomenon that takes place in
a limited size range from submicron to micron and is negligible beyond 50 mm. The are three
main collision mechanisms that lead to particle agglomeration, perikinetic, orthokinetic and
inertia. The driving force for agglomeration is supersaturation [40]. Without supersaturation,
aggregates can be formed but agglomerates cannot. The rate coefficient or kernel for agglom-
eration is a function of the number of particles, the size of particles involved, and in the case
of orthokinetic agglomeration the fluid shear or energy dissipation.

The properties of the formed agglomerates, e.g. size, shape and porosity, significantly affect
certain end-use properties, e.g. dissolubility, processability and storability [51]. Therefore
agglomerates are undesirable in many applications, e.g. pharmaceutical manufacturing, food
processing and fertilizer production.

2.2.4 Attrition or Crystal Breakage

Attrition is a process that involves either particle-particle or particle-solution interactions. This
results in the erosion of the particles known as attrition of particles to produce smaller particles.
Disruption kinetics can be modelled for attrition based on a disruption rate [59], [67]. The
disruption process is a function of the degree of supersaturation in the crystallizer and hence
high supersaturation levels produce high growth rates and therefore stronger agglomerated
particles, which reduces the chance of breakage. Increasing the input implies an increase in the
disruption rate. Attrition of a particle can lead to the formation of two similar or equal-sized
particles (particle splitting), leading to a uniform breakage function, two particles of different
size (attrition) leading to a parabolic breakage function, or a number of particles leading to a
multiple breakage function. The corresponding particle distributions will be analyzed in the
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"Crystal Breakage Kinetics" chapter.

2.3 Viedma Ripening

Viedma ripening or attrition-enhanced deracemization is an isothermal re-crystallization pro-
cess that allows the complete conversion of a racemic suspension of conglomerate crystals to
an enantiopure solid phase by contact with an attrition source, e.g. stirring in the presence of
grinding media [69]. It can be classified in the wider area of spontaneous symmetry-breaking
phenomena observed in chemistry and physics. It was discovered in 2005 by geologist Cristo-
bal Viedma, who used glass beads and a magnetic stirrer to enable particle breakage of a
racemic mixture of enantiomorphous sodium chlorate NaClO3 crystals in contact with their
saturated solution in water [64]. Modifications in the initial structure of the experiment allow
the modelling various substances such as amino acids [43], [66] and pharmaceuticals [54], [61].
Therefore, Viedma ripening is a new technique to separate enantiomers of chiral molecules in
the pharmaceutical and fine chemical industries (chiral resolution). Figure 2.4 presents the
procedure of Viedma ripening.

Figure 2.4: Stirring of a racemic mixture of conglomerate crystals in the presence of glass
beads (Viedma ripening) [53].

The four stages of the process can be described as follows.

• Racemization in solution

In order to convert all enantiomers in the solid phase to one form, the molecule must
continuously racemize in solution. Furthermore, the probability of chiral clusters of the
(S)-enantiomer to encounter a crystal of the same handedness is lower and as a conse-
quence, it is harder to dissolve. Therefore, the solution is enhanced with the opposite
enantiomer to the one that is enriched in the solid phase. Eventually, the enantiomer in
solution undergoes racemization leading to its increase compared to the enantiomer in
the solid phase.

• Ostwald ripening

Ostwald ripening, first described by Wilhelm Ostwald in 1896 [38], is the continued dis-
solution and growth of crystals to reach a thermodynamically stable state wherein the
surface area to volume ratio of the solid system is minimized.
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• Aggregation

The crystals during the whole process consecutively break into clusters. The reincorpora-
tion of these clusters into larger crystallites occurs more often for the enantiomer which is
in overabundance in the solid phase. Aggregation combined with attrition have as a result
the autocatalytic amplification effect typical for Viedma ripening. Experimental proof for
enantioselective incorporation of chiral clusters remains to be found, although some in-
direct evidence relating to NaClO3, the archetypical compound for Viedma ripening, has
been reported.

• Attrition

While enantiopure clusters and molecules of R and S incorporate enantioselectively in
the bulk crystals R and S, respectively, the bulk crystals are ground, producing chiral
fragments as well as monomers. The steady attrition also maintains overall small crystal
sizes which enhance the Ostwald ripening effect. A higher attrition strength implies
shorter deracemization times.

Figure 2.5: Fundamental mechanism of Viedma ripening [53].

2.4 Ultrasound crystal breakage

Ultrasound is an oscillating sound pressure wave over a frequency range of 15 kHz to 10 MHz
[57]. When ultrasonic waves of sufficiently high amplitude flow through a liquid, the negative
pressure exceeds the liquid’s local tensile strength, causing bubbles to form [31]. Bubbles
are most commonly formed near pre-existing contaminants that fluctuate and expand during
compression and expansion cycles. When the bubbles reach a resonant size, they absorb energy
from ultrasound waves efficiently in a single compression-expansion cycle [57,58]. The resonant
size varies on the frequency of the irradiated ultrasound and is about 170 μm for a 20 kHz
of ultrasound frequency. Due to excellent energy absorption, bubbles develop rapidly at the
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resonant size within a single cycle of ultrasonic waves. Because bubbles cannot be sustained
without absorbing energy, they implode once they reach the resonant size. This procedure is
called acoustic cavitation.

Acoustic cavitation has both chemical and physical impacts. In liquid, ultrasonic wavelengths
range from 1 mm to 10 cm, which is substantially larger than the molecular size scale. As
a consequence, the chemical and physical effects of ultrasound are caused through acoustic
cavitation rather than direct interactions between ultrasound and chemical species. [4, 31, 56].
Hot spots are formed when bubbles break down, resulting in high local temperatures (5000 K),
pressures (1000 atm) and a rapid heating and cooling rate (>1010 K·s -1). In heterogeneous
systems (solid-liquid systems), ultrasound has a wider range of physical effects than in homo-
geneous systems. When a bubble collides with a much larger surface or particle, it no longer
collapses spherically, and a high-velocity liquid stream with a velocity greater than 100 m/s is
created (i.e., a microjet) [3,28]. The liquid flows toward the solid material’s surface, deforming
it or altering its chemical composition. Furthermore, high-velocity collisions between micron-
sized solid particles are caused by shockwaves created by acoustic cavitation (i.e., interparticle
collisions). Shockwaves can also contact directly with particles, causing them to break (i.e.,
sonofragmentation).

Richards and Loomis initially described sonocrystallization (crystallization caused by ultra-
sonic) in 1927 [49]. The authors of that work focused on the impacts of ultrasonic crystal-
lization, amid a slew of other physical and chemical factors. Sonocrystallization was actively
explored in the former Soviet Union from the 1950s to the 1970s [2, 19, 44, 62]. Due to the de-
velopment of ultrasonic equipment, industrial use increased in the 1980s, and it is now widely
used in the pharmaceutical and fine chemicals industries to generate crystals [6,7,50]. Despite
extensive research, a basic understanding of sonocrystallization mechanism is still lacking.

2.5 Crystallization process applications

There is a variety of crystallization applications both at the laboratory and industrial levels.
As far as the former is concerned crystallization can be used to investigate the structure and
isolation of proteins. Until now, the analysis of proteins is carried out mainly by X-ray crys-
tallography, which relies on the presence of crystals of appropriate size and quality [39]. These
criteria are met through crystallization, which can be done in a variety of ways.

On an industrial scale, crystallization has applications in the production of bulk chemicals
such as sucrose and many minerals (chlorides, sulfates, chlorides) [48], in the production of
fertilizers such as ammonium nitrate, potassium chloride and urea, cosmetics, medicines, food
and products in electronics [32]. The most well-known bulk chemical produced by crystallization
is table salt, as worldwide its production exceeds 108 tons each year. The salt is separated
from the water by evaporation. The solution reaches its boiling point at a given pressure and
temperature, at which point the water evaporates and the salt concentration in the remaining
solution rises. As a result, nucleation and crystal formation commence [21].

In the pharmaceutical industry, crystallization is used in the separation of enantiomers, the
manufacturing of active pharmaceutical ingredients (APIs), and the administration of phar-
maceuticals through methods such as controlled inhalation and intravenous injection. More
specifically, in drugs administered by the lung, the size distribution of the crystals must be
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characterized by modest dispersion (narrow distribution), hence the crystallization procedure
is crucial. Larger crystal sizes than foresight will not reach the appropriate areas (loop and alve-
oli), while smaller can pass through lung tissue [29]. In general, smaller particles have a higher
surface to volume ratio which is beneficial for the solubility and dissolution rate. Therefore,
these qualities improve the effects of the medicine.

In the food industry, control of crystallization is crucial for the quality of products and their
shelf life. In some foods, the presence of crystals is desirable while in others it should be avoided.
The presence of cocoa crystals in chocolate, for example, is a key component of its flavor, but
lactose crystals in ice cream provide an unpleasant texture that renders it undesirable. They
also become unsuitable for other foods like cheddar cheese, some candies and hard candies with
the appearance of crystals during storage [15].

In the field of electronics, the crystallization of polymers is used for the production of thin
films which are necessary for applications such as the production of transistors and solar cells.
Thin perovskite films employed as photovoltaics, for instance, are sensitive to their shape. The
morphology controlled by the crystallization process has a great effect on the performance
of the solar cell as well as poor morphology (rough outer surface) results in electrical short
circuits. For this reason, special attention is paid to the nucleation and development of their
crystals. [34]. The yield of transistors is affected by the crystallization parameters, just as it is
in solar cells. In this case, it is the size of the crystals in the semiconductor that needs to be
modified [30].

2.6 Experimental and Computational approaches of Crystallization

Cristobal Viedma used glass beads and a magnetic stirrer to enable particle breakage of a
racemic mixture of enantiomorphous sodium chlorate NaClO3 crystals in contact with their
saturated solution in water [64]. The study comprised the first crystallization experiment to
induce homochirality and chiral purity from a system in which both enantiomers were present.
Previously, chiral purity could only be attained by seeding the solution.

In 2008 Noorduin et al. recreated the experiment that Viedma had performed. However, they
employed amino acid derivatives, which have chirality in the dissolved phase, extending the
ripening process of Viedma to other molecules. They also managed to increase the volume of
the original experiment, indicating that it may be used at the industrial level.

Rene Steendam’s work [55] on Viedma ripening looked into the impact of chiral impurities. Even
though spontaneous symmetry breaking and chiral amplification via Viedma ripening should
result in complete deracemization of a racemic conglomerate into either of the enantiomers
with equal probability, this is not the case in practice. Viedma ripening is influenced by chiral
impurities, and one enantiomer is favored over the other. Increasing the attrition intensity
during Viedma ripening was the solution. As a result, contaminants do not affect the likelihood
of either enantiomer forming. According to the findings, higher attrition resulted in smaller
crystals with lower impurity surface density, however, this is insufficient to determine the chiral
outcome.

Xiouras et al. [70] examined two ways of attrition-enhanced deracemization for NaClO3. In this
study, Viedma’s original experiment with glass bead-enhanced grinding was compared against
ultrasound-enhanced grinding, while for large-scale or continuous-flow processes, this is a more
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practical option. In comparison with glass bead-enhanced grinding, the results demonstrated
that ultrasound grinding produced smaller crystals with a narrower crystal size distribution.
Furthermore, ultrasonography boosts the pace of initial deracemization. The ultrasound, how-
ever, did not result in a fully enantiopure end product. To solve this, they utilized seeding or
a hybrid procedure that blended the two methods. Both options resulted in enantiopurity in
the end. Additionally, Xiouras et al. [68] through three sections of experiments describe the
particle breakage kinetics and mechanism from the parallel phenomena (growth-dissolution,
agglomeration).

Crystallization is an important process for various industrial and research fields. However, the
experimental procedures are difficult to be applied in the industry, since the mechanisms are still
investigated. There are obstacles in adapting the experiments to industrial scale and there is a
need for up-scaling and process optimization. Therefore, the implementation of computational
methods for the simulation of crystallization processes is of great importance. Uwaha presented
one of the first models for Viedma ripening [60]. To explain the progression to an enantiopure
product, he employed a reaction-type model, taking into account only the total number of
crystals in each configuration, monomers in solution, and chiral clusters. Although the model
was able to reproduce some experimental results, it was unable to explain size-dependent effects.

Population balance model simulating the Viedma ripening was utilized in the work of Iggland
et al. [18]. Details for population balance model theory will be provided in the "Mathematical
Model" chapter. Stochastic algorithms like Monte Carlo have been developed in order to solve
population balance equations [35], [18]. Computational fluid dynamics (CFD) methods and
more precisely the finite volume discretization has been developed by Wang and Wang [65]
and Kumar et al. [22]. Additionally, Grof et al. [12] used a discrete element method (DEM)
to solve a population balance model (PBM). Moreover, the method of moments for solving the
population balances associated with simultaneous coagulation and breakage is presented in the
work of Diemer and Olson [8].

The fixed pivot technique (FPT) was introduced by Kumar [25]. Kostoglou [20] compared the
FPT with the cell average technique (CAT). The latter was developed by Kumar et al. [24]
and has been used extensively in the literature. In this study, the cell average technique for
the mechanisms of crystal breakage, agglomeration and the combination of the aforementioned
procedures will be analyzed.
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3 Mathematical Model

3.1 Population Balance Equations (PBEs)

Population balance equations have been developed to describe particle systems. The processes
that can be modeled using PBEs are characterized by the coexistence of a continuous and a
dispersed phase consisting of particles. In this study the dispersed phase involves crystals.
There are properties of the particles like size, porosity, composition, etc. that are not constant
and can be described with distributions. This work is about the modeling of crystals that are
created through breakage and the variation of their size distribution.

The particle state can be described by a partitioned vector [x1, x2, ..., xm] where xi represents
the vector of n components in the ith compartment. A distinction is made between external
coordinates r = (rl, r2, r3), which may be used to represent the position vector of the particle
(as determined by that of its centroid), and internal coordinates x = (xl, x2, ..., xd) denoting d
different quantities associated with the particle. The particle state vector (x, r) accounts for
both internal and external coordinates. The continuous phase is defined by a continuous phase
vector Y (r, t) = [Y1(r, t), Y2(r, t), ..., Yc(r, t)], as a function of external coordinates r and time t.

An average number density function can be defined in the particle state space

E [(n(x, r, t))] = f1(x, r, t), x ∈ Ωx, r ∈ Ωr. (3.1)

The left-hand side of the Eq.(3.1) denotes the expectation or the average of the actual number
density n(x, r, t) while the right-hand side displays the average number density f1(x, r, t). The
Ωx and Ωr terms represent the domains of internal and external coordinates, respectively.

The average total number of crystals in the entire system can be defined as

Ntotal =

∫
Ωx

dVx

∫
Ωr

dVrf1(x, r, t). (3.2)

The local (average) number density in physical space, i.e., the (average) total number of particles
per unit volume of physical space, denoted N(r, t), is given by

N(r, t) =

∫
Ωx

dVxf1(x, r, t). (3.3)

In the same way, other densities such as volume or mass density can also be defined for the
particle population.

Generally, the population balance equation describes the equilibrium as

Accumulation = Inflow −Outflow. (3.4)

Where the left-hand side of Eq. (3.4) stands for the rate of change of crystal population. The
inflow term is about the movement and the creation of new crystals inside the defined space,
while the outflow term describes the corresponding crystal movements when their size becomes
bigger than the examined space.
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Assuming a population of crystals of different sizes distributed according to their size x which
varies between 0 and ∞. The particles are uniformly distributed in space and there is no
dependence on the external coordinates. The growth rate of particles can be denoted with
Ẋ(x, t) and the number density function is denoted as f1(x, t). The rate of change in the
interval [x, x+ dx] described as

Ẋ(x, t)f1(x, t)− Ẋ(x+ dx, t)f1(x+ dx, t), (3.5)

where the terms in Eq. (3.5) represent particle fluxes in x and x+dx, respectively. Considering
that particles can move between intervals only due to growth the number balance can be
formulated as

d

dt

∫ b

a

f1(x, t)dx = Ẋ(x, t)f1(x, t)− Ẋ(x+ dx, t)f1(x+ dx, t). (3.6)

The Eq. (3.6) can be rewritten as∫ b

a

[
∂f1(x, t)

∂t
+

∂

∂x

(
Ẋ(x, t)f1(x, t)

)]
dx = 0. (3.7)

Therefore, the population balance equation can be written as

∂f1(x, t)

∂t
+

∂

∂x

(
Ẋ(x, t)f1(x, t)

)
= 0. (3.8)

The necessary boundary and initial conditions of the PBE Eq. (3.8) have to been defined. The
assumption of an initial number of particles n0 leads to the initial condition f1(x, 0) = 0. For
the boundary condition the nucleation rate can be ṅ0 particles per unit and the assumption
that newly born particles have zero mass is made. Thus

Ẋ(0, t)f1(0, t) = ṅ0 (3.9)

If Eq. (3.8) is integrated over all particle sizes

d

dt

∫ ∞

0

f1(x, t)dx = Ẋ(0, t)f1(0, t)− Ẋ(∞, t)f1(∞, t) = ṅ0, (3.10)

which leads to the consumption that

Ẋ(∞, t)f1(∞, t) = 0. (3.11)

Equation (3.9) is the required boundary condition while (3.11) in the literature is referred as
regularity boundary condition.

In the above analysis, were not been envisaged the birth and death of particles in the interval
[x, x+ dx]. In the case of breakage and aggregation, for example, the net rate of generation
of particles can be denoted with h(x, t) and depends on each mechanism. Thus, the equation
(3.7) will be replaced from∫ b

a

[
∂f1(x, t)

∂t
+

∂

∂x

(
Ẋ(x, t)f1(x, t)

)
− h(x, t)

]
dx = 0, (3.12)
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and the PBE will take the form

∂f1(x, t)

∂t
+

∂

∂x

(
Ẋ(x, t)f1(x, t)

)
= h(x, t). (3.13)

Consider the continuous phase to be described by a scalar quantity Y , which is assumed to
be uniform in space. In a well-mixed crystallizer, Y may represent the supersaturation at
the surface of the crystals. In this case the nucleation rate depends on Y , i.e., ṅ0 = ṅ0(Y ).
Moreover, the growth rate may be depended Y as Ẋ = Ẋ(x, Y, t).

So, the proper definition for Eq. (3.13) is

∂f1(x, t)

∂t
+

∂

∂x

(
Ẋ(x, Y, t)f1(x, t)

)
= h(x, Y, t). (3.14)

The initial condition remains the same as before while the boundary condition recognizes the
dependence of the nucleation and growth rates on Y . Thus

Ẋ(0, Y, t)f1(0, t) = ṅ0(Y ). (3.15)

To solve the problem, it is necessary to define an initial condition for Y depending on the
mechanism that is modeled.

The reason for neglecting breakage and agglomeration during sonocrystallization lies in the
complexity of the mathematical modeling of crystallization in general. The modeling of the
crystallization process is performed using PBE. A population balance is a means of keeping
track of numbers of entities whose presence or occurrence may dictate the behavior of the
system under study. PBE coupled with mass and energy balance equations describes the
crystallization process mathematically. Additionally, it is assumed that the particles are cubic,
and the formulation as well as the solution of the equations implemented in the volume of
particles which is denoted as x = L3, where L represents the particle length in µm.

A general one-dimensional PBE for a well mixed system for the four mechanisms of growth,
nucleation, breakage and aggregation can be described as

∂n(t, x)

∂t
=
Qin

Ṽ
nin(x)−

Qout

Ṽ
nout(x)−

∂[G(t, x)n(t, x)]

∂x

+Bnuc(t, x) +Bbreak(t, x) +Bagg(t, x)

−Dbreak(t, x)−Dagg(t, x).

(3.16)

The first two terms on the right-hand side represent the flow into and out of a continuous
process. The symbols Qin and Qout denote the inlet and outlet flow rates from the system.
The Bbreak(t, x) and Dbreak(t, x) term stand for birth and death of particles in the breakage
process, respectively. Along the same lines, the birth and death terms for the aggregation
process are defined by the terms Bagg(t, x) and Dagg(t, x), while Bnuc(t, x) and G(t, x) describe
the nucleation and growth rates, respectively. The system volume is represented by Ṽ . The
main purpose of this work is the investigation of the pure breakage mechanism.
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3.2 The Cell Average Technique (CAT)

The cell average technique (CAT) is a method for solving partial integral equations. This
method was developed by Kumar [23] and it is a discretization method. The CAT was chosen
because it is the only technique that is consistent with two moments. Equation (3.17) describes
the jth moment of a particle size distribution (PSD). The first two moments represent some
important characteristics of the distribution. The zeroth (j = 0) and first (j = 1) moments are
proportional to the total number and total mass of particles, respectively [24].

µj =

∫ ∞

0

xjn(t, x)dx. (3.17)

CAT method is also proven to be more accurate than other methods applied to analytical
solutions. In what follows the general concept of the cell average technique will be explained.
Afterwards, it will be applied to the particular breakage problem. The goal of the cell average
technique is to transform the general continuous population balance equation into a set of
discrete ODEs.

The entire size domain is divided into a finite number I of small cells. The lower and upper
boundaries of the ith cell are denoted with xi−1/2 and xi+1/2, respectively. All particles belonging
to a cell are identified by a representative size of the cell, also called grid point. This cell size
can be chosen at any position between the lower and upper boundaries of the cell. In this work,
the center of the cell, the arithmetic mean of the cell boundaries, is defined as the representative
size.

Figure 3.1: CAT 1D domain discretization [24].

The aim is to transform the general continuous population balance equation into a set of I
ODEs. The numerical solution of the resulting ODE set can be obtained by well-established
numerical techniques (ode solvers). For the ith cell of the discretized domain the ODE has the
following form

dNi

dt
= Bi

CA −Di
CA , i = 1, 2, ..., I, (3.18)

where the CA exponent stands for Cell Average. The particulate events that may change the
concentration number of particles include the four basic crystallization mechanisms, breakage,
aggregation, growth and nucleation.

The total birth of particles in the ith cell can be calculated as

Bi =

Ii∑
j=1

Bj
i . (3.19)
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Assuming that the particle births B1
i , B

2
i , ..., B

I
i take place at positions y1i , y

2
i , . . . , y

I
i , respec-

tively due to some particulate processes in the cell i. The average volume of newborn particles
vi can be defined as

vi =

∑Ii
j=1 y

j
iB

j
i

Bi

. (3.20)

Generally the Bi particles are found in the interval
[
xi−1/2, xi+1/2

]
. If the average volume vi

matches with the representative size xi then the total birth Bi can be assigned to the node xi.
But this is rarely true, hence the total particle birth Bi has to be reassigned to the neighbouring
nodes in order to obtain mass equilibrium. The particles have to be distributed among the
neighboring cells in a way that guarantees consistency with the first two moments. Therefore,
it is necessary to apply the following transformations for the two first moments

a1(vi, xi) + a2(vi, xi+1) = Bi, (3.21)

xia1(vi, xi) + xi+1a2(vi, xi+1) = Bivi. (3.22)

The terms a1(vi, xi) and a2(vi, xi+1) stand for the fractions of the birth term Bi to be assigned
at xi and xi+1, respectively. The above equations can be solved for the aforementioned fractions
as

a1(vi, xi) = Bi
vi − xi+1

xi − xi+1

(3.23)

a2(vi, xi+1) = Bi
vi − xi

xi+1 − xi

(3.24)

To simplify calculations the lamda function is denoted as

λ±
i (x) =

x− xi ± 1

xi − xi ± 1
(3.25)

Thus, the fractions can be expressed in terms of λ as

a1(vi, xi) = Biλ
+
i (vi) (3.26)

a2(vi, xi+1) = Biλ
−
i+1(vi) (3.27)

The birth term consists of four possible birth fractions that may add a birth contribution
at the node xi: two from the neighboring cells and two from the ith cell. All possible birth
contributions are shown in Figure 3.2.

Figure 3.2: Particles in a cell [24].
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Collecting all birth contributions, the birth term for the cell average technique is given by

BCA
i =Bi−1 λ

−
i (vi−1)H(vi−1 − xi−1) +Bi λ

−
i (vi)H(xi − vi)

+Bi λ
+
i (vi)H(vi − xi) +Bi+1 λ

+
i (vi+1)H(xi+1 − vi+1)

(3.28)

Where the H(x) stands for Heavyside Function:

H(x) =


1 , x > 0
1/2 , x = 0
0 , x < 0

(3.29)

3.3 CAT Implementation

3.3.1 Pure Breakage

The mechanism studied in this work is the crystal breakage, thus Eq. (3.16) can be simplified
as follows:

∂n(t, x)

∂t
= Bbreak(t, x)−Dbreak(t, x). (3.30)

The population balance equation for breakage (Eq. (3.30)) simply gives a balance stating that
the change in the number of particles is given as the difference between births and deaths of
crystals. A crystal that breaks is considered a death contribution and will give rise to new
smaller crystals which are the births for cells at smaller xi. There are three different functions
present and they depend on three different variables. These variables are t, x and x′ which
stand respectively for time, crystal size and crystal size of a mother crystal particle. The term
n(x, t) stands for the density distribution and n(x)dx gives the number of crystals with size in
the interval [x− dx, x+ dx]. The functions b(x, x′) and S(x) give the particle size distribution
(PSD) of the daughter particles for a given mother particle and the specific breakage rate which
indicates how often crystals break, respectively. These functions are the two major breakage
equations and they are unknown in general. They depend on the system that is modeled and as
a consequence the necessity of computational models is significant in order to investigate their
exact form. The aforementioned equations are thoroughly analyzed in the "Crystal Breakage
Kinetics" chapter.

∂n(x, t)

∂t
=

∫ ∞

x

b(x, x′)S(x′)n(t, x′)dx′ − S(x)n(t, x). (3.31)

On the right-hand side of Eq. (3.31), the first part stands for the birth term, while the second
one is the death term, respectively. With the implementation of CAT, the total birth and death
rates of particles in the ith cell are calculated by integrating the birth and death rates in the
interval

[
xi−1/2, xi+1/2

]
as

Bbreak,i =

∫ xi+1/2

xi−1/2

∫ ∞

x

b(x, x′)S(x′)n(t, x′)dx′dx, (3.32)

Dbreak,i =

∫ xi+1/2

xi−1/2

S(x)n(t, x)dx. (3.33)
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The total volume flux as a result of breakage into the cell i is needed to calculate the average
volume (3.39) and it is given by

Vbreak,i =

∫ xi+1/2

xi−1/2

∫ ∞

x

xb(x, x′)S(x′)n(t, x′)dx′dx. (3.34)

The continuous number density function n(t, x) can be approximated in terms of Dirac-delta
distribution as

n(t, x) ≈
I∑

i=1

Niδ(x− xi). (3.35)

Substituting the Dirac-delta mass representation (3.35) of the continuous number density n(t, x)
into the above birth, volume and death rates, the equations are become:

Bbreak,i =
∑
k≥i

Nk(t)Sk

∫ pik

xi−1/2

b(x, xk) dx, (3.36)

Vbreak,i =
∑
k≥i

Nk(t)Sk

∫ pik

xi−1/2

bx(x, xk) dx, (3.37)

Dbreak,i = Si Ni(t). (3.38)

by dividing the total volume birth Vbreak,i by the total number birth Bbreak,i, we obtain the
volume average vbreak,i in the ith cell as

vbreak,i =
Vbreak,i

Bbreak,i

. (3.39)

3.3.2 Breakage and Aggregation

In the case of the combination of breakage and aggregation mechanisms the main PBE (3.16)
can be formed as

∂n(t, x)

∂t
= Bbreak(t, x) +Bagg(t, x)−Dbreak(t, x)−Dagg(t, x). (3.40)

In the assumption of combined breakage and aggregation the PBE has the following form

∂n(x, t)

∂t
=

∫ ∞

x

b(x, x′)S(x′)n(t, x′)dx′ − S(x)n(t, x)︸ ︷︷ ︸
breakage

+

1

2

∫ x

0

β(t, x− x′, x′)n(t, x− x′)n(t, x′)dx′ − n(t, x)

∫ ∞

0

β(t, x, x′)n(t, x′)dx′︸ ︷︷ ︸
aggregation

.

(3.41)

The β term in (3.41) denotes the coagulation kernel and it represents properties of the physical
medium. Similarly with pure breakage applying the CAT the birth and death terms for pure
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aggregation can be denoted in the interval
[
xi−1/2, xi+1/2

]
as

Bagg,i =
1

2

∫ xi+1/2

xi−1/2

∫ x

0

β(t, x− x′, x′)n(t, x− x′)n(t, x′)dx′dx, (3.42)

Dagg,i =

∫ xi+1/2

xi−1/2

[
n(t, x)

∫ ∞

0

β(t, x, x′)n(t, x′)dx′
]
dx. (3.43)

Substituting the Dirac-delta mass representation (3.35) of the continuous number density n(t, x)
into the above birth and death rates, the equations are formed as

Bagg,i =

j≥k∑
j,k

xi−1/2≤(xj+xk)<xi+1/2

(
1− 1

2
δj,k

)
βj,k Nj Nk, (3.44)

Dagg,i = Ni

I∑
k=1

βi,k Nk. (3.45)

The total volume flux as a result of breakage into the cell i is needed to calculate the average
volume (3.47) and it is given by

Vagg,i =

j≥k∑
j,k

xi−1/2≤(xj+xk)<xi+1/2

(
1− 1

2
δj,k

)
βj,k Nj Nk (xj + xk) . (3.46)

The average volume of all newborn particles can be calculated as in the case of pure breakage
in the ith cell as

vagg,i =
Vagg,i

Bagg,i

. (3.47)

When combining breakage and aggregation, the birth, death and average volume terms can be
expressed as

Bi = Bbreak,i +Bagg,i (3.48)

Di = Dbreak,i +Dagg,i (3.49)

vi =
Vbreak,i + Vagg,i

Bbreak,i +Bagg,i

(3.50)

The total birth term is denoted in Eq. (3.28) as

BCA
i = Bi−1 λ

−
i (vi−1)H(vi−1 − xi−1)

+Bi λ
−
i (vi)H(xi − vi)

+Bi λ
+
i (vi)H(vi − xi)

+Bi+1 λ
+
i (vi+1)H(xi+1 − vi+1)

(3.51)
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The total death term is defined directly from Eq. (3.49)

DCA
i = Di (3.52)

Finally, the requested ODEs system (3.18) can be solved for pure breakage, pure aggregation,
or the combination of both the aforementioned mechanisms.

3.4 Crystal Breakage Kinetics

The population balance equation for breakage, Eq. (3.31).

∂n(x, t)

∂t
=

∫ ∞

x

b(x, x′)S(x′)n(t, x′)dx′ − S(x)n(t, x). (3.53)

Where t, x and x′ denote time, crystal size and crystal size of a mother crystal particle, re-
spectively. Furthermore, The term n(x, t) denotes the crystal size distribution and gives the
number density distribution at different times. The objective is to find this function as a result
of the given input. The particle size distribution of the daughter particles function, b(x, x′) and
the breakage rate, S(x) are investigated in the following paragraphs.

3.4.1 Breakage Rate

The breakage rate usually depends on the problem that is simulated. This calls for a differ-
ent approach when a function with several parameters is fitted to closely approximate given
experimental data. The basic form of the breakage rate is a power law such as the one given
in equation (3.54). This form is based on the derivation from Kusters et al. [27] for ultra-
sound breakage. The parameters S1 and m are the kinetic parameters and have to be positive
constants.

S(x) = S1x
m (3.54)

The selection rate constant S1 and the exponential constant m are related to the cavitation
rate. For any m > 0, this expression has the breakage rate approaching zero as the crystal
volume x approaches zero. The dynamics of the number density function slow down, i.e.,
significant changes are observed at the start of the process, but things gradually slow down until
appearing to approach a limiting value over the finite time duration of the single experiment.
Experimentally, the cavitation rate was observed to be related to the liquid viscosity [47]. Thus,
an expression for S1:

S1 = S0P
n. (3.55)

In Eq. (3.55) the variable P denotes the ultrasound power in Watt, while the exponential
parameter n is related to the liquid viscosity.

The theory about breakage rate for ultrasound breakage can be found in the work of Kusters
et al. [27]. It is assumed that the breakage rate of a particle of size x, s(x) is proportional to
the number of collapsing cavities per unit time denoted by Nc:

S(x) ∼ NcVc

Vtot

. (3.56)
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The variable Vc stands for the volume around an imploding cavity, while Vtot represents the
total suspension volume. In the ultrasound breakage, agglomerates can break with two different
mechanisms. The first one is the results of high pressure in the vicinity of a collapsing cavity.
The second one is by induced by liquid jets resulting from the collapse of adjacent cavities. The
volume surrounding a cavity denoted as

Vc =
4

3
π
(
(Rb +Ra)

3 −R3
b

)
. (3.57)

Breakage requires the agglomerates have to be close to the cavities. As a result, only agglom-
erates at the cavities’ edges collapse. This is depicted in Figure 3.3.

Figure 3.3: Agglomerate rupture in close proximity to a collapsing cavity [27].

For non spherically shaped agglomerates, Ra and φ denote the equivalent spherical radius and
solids volume fraction, respectively, of the agglomerate. Usually, the agglomerate radius Ra is
negligible ahead cavity radius Rb. Hence, Vc, can be approximated by

Vc = 4πR2
bRa. (3.58)

In the case of spherical shaped agglomerates of radius Ra, with solids volume fraction φ, the
relationship between the agglomerate radius Rb, and solids volume v is

v =
4

3
πR3

aφ. (3.59)

Taking into account the previous analysis, a relation between the breakage rate can be expressed
as

S(x) ∼ NcR
2
bv

1/3

Vtot

(3.60)

The energy lost E upon collapsing cavities can be defined as [9]:

E =
4

3
πR3

b∆P. (3.61)
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Where ∆P stands for the pressure difference between the cavity wall, during the time of col-
lapsing. Considering that only a fraction κ of the ultrasonic power ε is used to create cavities
a relation between the number of collapsing cavities can be denoted as

Nc ∼
κε

4
3
πR3

bPh

. (3.62)

A relationship between maximum radius of cavities and ultrasound power can be expressed
as [52]

RB ∼ ε1/2. (3.63)

Substituting these in the original expression for the breakage rate ultimately gives the final
relation

S(x) ∼ κε1/2v1/3

Vtot

. (3.64)

In this thesis, the generalized power law breakage rate, Eq. (3.54) is used, because the crystals
are considered to be cubic shaped, and the main purpose is to investigate the influence of the
kinetic parameters S1 and m.

3.4.2 Daughter Distribution

The daughter distribution formulates the particle size distribution of the newborn particles
for a given mother particle. A mother particle is an original crystal that breaks and as a
result, produces new smaller particles. A daughter distribution gives insight into the breaking
mechanism. The selection of the daughter distribution is important for the crystal breakage
simulation and it is system- specific. A main purpose of this work is to formulate an appropriate
distribution for ultrasound breakage. Daughter distribution can describe the average number
of particles per breakage as

Np =

∫ x′

0

b(x, x′) dx′. (3.65)

One of the most common distribution model (Kumar et al. [22], Bari et al. [1]) is the uniform
binary breakage distribution function, (see Eq. (3.66)) which assumes that when one particle
breaks, it forms two particles and there is equal probability of forming a particle of any smaller
size

b(x, x′) =
2

x′ . (3.66)

A different approach to the breakage mechanism is described with the ternary distribution. In
this case the mother particle forms three particles as described in:

b(x, x′) =
6

x′ −
6x

x′2 . (3.67)

Binary parabolic distribution (3.68) and normal distribution (3.69) assume the formation of two
particles. The normal distribution is used in the work of Grof et al. [12] for the implementation
of a discrete element method (DEM) simulation.

b(x, x′) =
2

x′

[
6x

x′

(
1− x

x′

)]
, (3.68)

b(x, x′) =
1

σ
√
2π

exp

[
−(x− µ)2

2σ2

]
. (3.69)
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A U-Shaped Distribution (3.70) is used in the work of Iggland and Mazzotti [18]

b(x, x′) = 3 x2 (2q + 1)

(
2

x′3

)(2q+1)(
x3 − x′3

2

)(2q)

, (3.70)

where q denotes the size rate of the produced particles. Large values of q lead to larger difference
between the sizes of the two produced crystals. In the case, for example, that q = 0, implies
the uniform binary daughter distribution function.

An empirical breakage distribution function for multiple breakage introduced from Ziff et al. [71]
and it is implemented in the study of Bari et al. [1],

b(x, x′) =
φλ

x′

( x

x′

)λ−2

+ (1− φ)
η

x′

( x

x′

)η−2

. (3.71)

The graphical representation of the different distribution curves are illustrated in Figure 3.4.

Figure 3.4: Particle size distributions of daughter particles for various distribution functions.

3.5 Optimization Algorithm

The cell average technique allows simulating the number distribution up to a given time for a
given breakage rate and daughter distribution. Depending on the selection of the b(x, x′) and
S(x) the model requires the assumption of the kinetic parameters and the daughter distribution
variables respectively when it is needed. Consequently, the breakage parameters S1 and m in
Eq. (3.54) are the optimization design variables, where S1 depends on the ultrasound power
P and the parameter n according to equation (3.55). In the case that i.e. the empirical
daughter distribution (3.71) is modeled, the variables φ, λ and η are also included in the
optimization process as design variables. As mentioned in the previous sections, the selection
of the aforementioned breakage equations depends on the specificity of the system. Therefore,
it is necessary to fit the design variables depending on the corresponding breakage experiments.
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Upon the decision of the daughter distribution function, we define a cost function, which has
to be minimized over experimental measurements in order to estimate the optimum design
variables. An optimization algorithm can be used to achieve it. A general optimization tech-
nique demands the initialization of the design variables. At each optimization cycle, the design
variables are evaluated upon a specific norm. The procedure is repeated until a convergence
criterion is satisfied. The convergence rate usually depends on the optimization method. The
cost function that is minimized is defined in:

f(x) =
1

T

1

N

T∑
j=1

N∑
i=1

wij

√
(Xij{exp} −Xij{sim})2, (3.72)

where T and N denote the time steps and the total nodes, respectively. The wi,j is a weight
distribution function and Xij{exp}, Xij{sim} denote the experimental and the simulation
results, respectively.

One common convergence criterion is

|f(x)n − f(x)n−1| < r, (3.73)

where f(x) stands for the cost function at the optimization cycles n and n− 1 respectively and
r is a post-defined tolerance value.

The selection of the Xij data in Eq. (3.72) is significant and it determines the optimization
result. One possible option in the case of breakage would be to fit any of the moments of the
distribution. For the moment d10 this would mean that the program tries to fit the average
volume or size of the particles from the simulation with the experiment. This could lead to a
nice match between data and experiment for the moment without the actual number density
distributions matching. On the other hand, the cumulative distributions can be considered as
a different criterion to fit the experimental data. A more representative criterion and the one
used in this work is to fit the entire number density distributions.

The selection of the appropriate optimization algorithm has an important impact on the ac-
curacy of the results and in the computational cost. There are a few studies like Fytopoulos
et al. [11] and Grof et al. [12] that approach the objective function with least-squares meth-
ods. Furthermore, Mahoney et al. [36] use non-linear optimization in their study. A different
approach can be achieved with a generalized cost function for the optimization algorithm as
described in Eq. (3.72). In this work, the downhill simplex method proposed by Nelder and
Mead [42] is implemented. To achieve the optimum fitting with the experimental results the
weight distribution in (3.72) uses the experimental data as it is. A different approach could
neglect the weight terms, but due to the nature of the system, i.e in the number density fitting
due to the fact that many values are near zero, the results tend to be more accurate using the
experimental measurements as weight functions wi,j = Xij{exp}.

In order to avoid the solution becoming entrapped in local minimum in the optimization pro-
cedure, the algorithm has to be performed for different initial values sets. For the initialization
of the fitting variables, we used a large interval, linearly discretized. The purpose is to choose
random values for every initial set of the design variables. In each optimization case, we used
100 different initial sets. In Figure 3.5 we illustrate the case that only the kinetic parameters
S1 and m need to be fitted.
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Figure 3.5: Initial sets of values S1 and m for the optimization algorithm.

Thus, according to Figure 3.5, the selection of the values is completely random in order to avoid
possible local minimum values in our solution. The case when the kinetic parameters are the
only one degrees of freedom (DOF) is the less expensive referred to computational cost. There
are need about 5 hours to run 100 different initial sets on a personal computer in this case.
However, in the case that, for example, the empirical daughter distribution (3.71) is modeled,
the fitting variables are 5, and the algorithm needs to calculate the integral of Eq. (3.65) in
every evaluation. Therefore, the computational cost is largely increased. Consequently, the
optimization algorithm is developed to run in parallel in a cluster. The necessary parallel
executions were performed in the "Andromeda" cluster of the School of Chemical Engineering,
NTUA.

25



4 Materials and Experimental set-up

In this section are discussed the materials that are used for the ultrasound experiments, as well
as the experimental set-up and the procedure, are represented. All the different experiments
took place in KU Leuven by professor Georgios Stefanidis and Dr. Xiouras Christos. There is
no involvement with the experimental procedure in this work. The results of the experiments
are used exclusively in order to fit the kinetic parameters to the CAT method.

4.1 Materials

The sodium chlorate NaClO3 is the key substance for the experiments of this application.
Viedma [63] used a saturated solution of sodium chlorate NaClO3 in his study. Sodium chlorate
does not have chirality when dissolved but does form chiral crystals. The study included the
first experiment to induce homochirality and chiral purity from an initial system where both
enantiomers were present through crystallization. In earlier studies, chiral purity was only
achieved by seeding the solution. To verify whether ultrasound shows the same results regardless
of the chosen compound the same experiment is now performed with L glutamic acid, LGLu.

4.2 Experimental Set-up

The experiment focused on crystal breaking using ultrasound and measuring the crystal size
distributions over time while excluding (as much as possible) all other possible particulate
events. This is coined pure breakage. The experimental set-up is shown in Figure 4.1. The
set-up has a jacketed glass cylinder without lids and an ultrasound transducer. The transducer
is positioned at the bottom of the vessel and was made to properly seal the vessel. Utilizing
different transducers allows to vary the ultrasound frequency. The temperature of the solu-
tion was fixed at 22 ± 2 oC by a Lauda thermostatic bath. The temperature is continuously
measured by a probe in the solution. To prevent sedimentation of the particles and to allow
for representative sampling an axial blade impeller was used as a stirrer. The stirrer operated
at around 800 rpm, this speed prevents sedimentation and does not cause particle breakage
(verified by an experiment without ultrasound). A waveform generator connected to a power
amplifier controls both the frequency and power of the transducers.

4.3 Experimental Procedure

The reactor is filled with a filtered 100 ml solution of Hexane. In the next step ultrasound
and stirring are applied which leads to a temporary increase in the temperature. After the
temperature stabilized 20 g of Sodium Chlorate crystals NaClO3 was added to the solution.
The Hexane acts as an anti-solvent this inhibits other particulate events. At this point, samples
are taken with a pipette. These were sent straight to the Malvern 3000 Master-sizer laser
diffractometer which measures the crystal size and a Philips XL 30 FEG scanning electron
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Figure 4.1: Ultrasound breakage experimental set-up [68].

microscope analyzes the crystal shape. Furthermore, 1 gr of lecithin, a surfactant, was added
to the solution to prevent the adhesion of crystal particles to the cell window of the Master-sizer.
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5 Results

The main purpose of this work is to fit the CAT model in the experimental measurements that
took place in KU Leuven by professor Georgios Stefanidis and Dr. Christos Xiouras. It is
though important to first validate our code against PBEs with analytic solutions.

5.1 Analytic Solutions of PBEs comparing with CAT

In this paragraph, we compare the results obtained from the implementation of the CAT method
for simplified PBEs with known analytic solutions. Consequently, this section aims to test the
method and discuss some basic computational aspects.

This application concerns analytical expressions that are proposed by Kumar et al. [23].

The breakage rate is expressed with a power law equation

S(x) = x3. (5.1)

A symmetric fragmentation daughter distribution is modeled

b(x, x′) =
6x2

x′3 . (5.2)

The initial particle distribution is given by

n0(x) = 3 x2N0

v0
exp

(
−x3

v0

)
, (5.3)

where, N0 = 1m−3 and v0 = 1m−3.

The analytic solution that is proposed by Kumar et al. [23] is

n(L, t) = 3x2 e−x3(1+t)(1 + t)2. (5.4)

For this application, a fine grid of 101 nodes is used. The results concern the initial particle
size distribution (PSD) and the 5 time-steps are displayed in Figure 5.1.
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Figure 5.1: Comparison of CAT method with analytic solution Eq. (5.4).
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5.2 Simulation of ultrasound breakage experiment

In this section, there are examined the results of different parameters. More precisely, the effects
of various kinetic constants, distribution parameters and optimization methods are discussed.
For this application is used the reference case of 40 W power and 41 kHz frequency of ultrasound.
The comparison of this case with the experimental results is analyzed thoroughly in the next
sections.

The grid that is used for the CAT implementation is discretized based on the experimental
measurements. The set-up is tuned to capture 100 points of different particle sizes. Thus, the
algorithm uses this particle size discretization as it is.

In Figure 5.2 the grid generation is presented.

0 500 1000 1500 2000 2500 3000 3500

particle size ( m)

Figure 5.2: Grid generation according to experimental measurements. The particle sizes are
depicted in linear scale. The total number of nodes is 100.

The crystal size distribution (CSD), usually is represented either as number or volume distri-
bution. In Figure 5.3 the corresponding number and volume distributions are depicted. These
distributions are derived from the experimental measurements. In this study, the number den-
sity is used as the initial size distribution in the CAT algorithm. In every distribution, the
x-axis is presented in the log scale.
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Figure 5.3: Number density and volume distributions of the initial CSD.

5.2.1 Effect of kinetic parameters

In this paragraph, we study the effect of the kinetic parameters S1 and m when Eq. (3.54),
S(x) = S1x

m is used. The grid of the reference case of 40 W and 41 kHz is used, but focusing
only on the impact of the breakage parameters.
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In Figure 5.4 we show the different curves when the S1 and m parameters change. This is
for the case of binary parabolic daughter distribution for t = 3300 sec. In these cases, the
parameters are not optimum and the fitting algorithm is not used at all.
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Figure 5.4: (a) Effect of S1 parameter on breakage rate, while the exponential factor is
constant and equal with m = 0.8. (b) Effect of m exponential factor on breakage rate, while

the kinetic parameter S1 is constant and equal with S1 = 0.01. The binary parabolic daughter
distribution is used in both figures.

According to Figure 5.4a, the S1 parameter has an important impact on the average particle
size, while the shape of the number density distribution is not significantly affected. At every
size of the crystal, a higher S1 value results in increased breakage rates. Overall, this indicates
that the breakage is occurring more quickly. As the distribution moves to smaller crystal
sizes when S1 increases. The effect of the m kinetic factor is different than S1, as expected.
The results, 5.4b in Figure show that the larger the exponent, the narrower the crystal size
distribution becomes. This is due to the fact that a greater exponent for a given crystal size
leads to faster breakage. As a result of the low exponent, some particles are not shattered,
resulting in a larger spread.
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5.2.2 Daughter distribution parameters

In this paragraph, we examine the effect of the parameters used in various daughter distribution
functions. There are equations, like binary, binary parabolic and ternary which do not depend
on any additional parameter. However, in the case, for example, of the U-shaped daughter
distribution (3.70), the q factor is a design variable , likewise the φ, λ and η parameters of
empirical equation (3.71). Additionally, in normal function the mean value µ as well as the
standard deviation σ affect the overall form of distribution in Eq. (3.69).

U-Shaped Distribution

For the case of U-shaped distribution, we first study the effect of q and present representative
results in Figure 5.5. The figure shows the simulated number density function at time, t =
3300 sec. The kinetic parameters remain constant for the various q values and they are S1 = 0.01
and m = 1.1.
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Figure 5.5: Comparison of different q values for U-shaped distribution after time, t = 3300 sec
and constant kinetic parameters, S1 = 0.01 and m = 1.1.
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Figure 5.6: Best fitting obtained for different q values when the U-shaped daughter
distribution function is used. Fitting is performed to fit S1 and m values for each q value.

Figure 5.6 presents the best fitting distributions to the experimental one obtained at time,
t = 3300 sec. In particular, we fit S1 and m values using the U-shaped distribution function
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and different q values. Therefore, for the latter case, the optimization algorithm as described
is chapter 3.5 is needed. The weight functions in Eq. (3.72) are not taken into account in this
case.

The optimized kinetic parameters, as well as the minimum values of the cost function Eq. (3.72)
are presented in Table 1.

Case Kinetic Parameters
q min f(x)

S1 m
1 8.292352 · 10−3 0.780062 q = 0 8.165538 · 10−3

2 9.159949 · 10−3 0.902879 q = 1 3.567647 · 10−3

3 9.207230 · 10−3 1.015681 q = 3 2.717376 · 10−3

4 9.180562 · 10−3 1.082230 q = 5 2.589753 · 10−3

Table 1: Optimization results referred to minimization of Eq. (3.72) for different q values of
U-shaped (3.70) distribution.

As expected, there are important differences referred to the values of the q rate. The optimum
minimization of the objective function (3.72) is achieved for q equal to 5. The q in U-shaped
distribution affects the sizes of the two produced crystals. Therefore, the larger its value, the
more important the size difference between the two developed particles. As a result, the value
of q = 5 is representative for the system that is studied.

Empirical Distribution

This distribution is a multi-breakage daughter distribution with three different design variables,
φ, λ and η. Generally, the breakage of a crystal leads to the formation of at least two particles.
The distributions that are discussed in this thesis, usually model the creation of two particles.
The ternary equation is an exception, since it creates three particles. The empirical distribution
(3.71), theoretically can form multiple particles. Therefore, when the empirical distribution is
used we need to take into account a physical restriction concerning the average number of
particles produced in a fragmentation event, Np, which is described by (5.5)

Np =

∫ x′

0

b(x, x′) dx′ ≥ 2. (5.5)

The restriction of equation (5.5) can be converted into a simplified inequality function in terms
of the requested parameters [71].

λη − φλ− (1− φ)η

(λ− 1)(η − 1)
≥ 2 (5.6)

In Figure 5.7 we plot the simulated number density function at times t = 3300 and 5700 sec
when two optimization scenarios are considered. One, that produces optimal parameter values
neglecting restriction (5.6) and one that performs fitting taking into account this restriction.
The corresponding fitting results are presented in Table 2. In the optimization algorithm a
weight distribution has been used, denoted as wi,j = Xij{exp}.
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Figure 5.7: Comparison of optimized number density distribution functions using the
empirical daughter distribution function. The red and orange lines correspond to optimization
taking and neglecting the restriction (5.6), respectively. (a) Results after t = 3300 sec and (b)

Results after t = 5700 sec.

It is obvious that when there is no constraint in the daughter distribution, the optimization
algorithm can fit the three parameters in the best way. Of course, this violates the physical
restriction described in Eq. (5.6). Therefore, this solution is not acceptable and it is presented
only to realize a possible failure in this system.

Case Method Kinetic Parameters Distribution Parameters
min f(x)

S1 m λ φ η
1 Valid 2.217846 · 10−3 1.129691 5.487047 2.530262 3.880954 5.380825 · 10−3

2 Not Valid 0.869836 · 10−3 1.078713 5.571597 0.386295 0.240043 3.405115 · 10−3

Table 2: Optimization results referred to minimization of Eq. (3.72). We present two
scenarios of optimization: one which takes into account the restriction Eq. (5.6) and one that

neglects the restriction.
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The optimization aspects concerning the fitting for the U-shaped and empirical distributions
are analyzed in the next chapter.

5.2.3 Optimization specifications

As mentioned in paragraph 3.5, there is the need for an optimization method to estimate the
kinetic parameters and the distribution characteristics (when it is needed) for the system that
is modeled. In this work, the downhill simplex method proposed by Nelder and Mead [42]
is used. We also perform a comparison between the simplex method and a non-linear least-
squares technique is made for the sake of completeness. It is important to note that the
requested optimum parameters concern the entire application, thus the fitting process refers to
all the corresponding time steps.

For this test, the binary parabolic and the U-shaped distributions are used. In the first case
the weights distribution on (3.72) is wi,j = 1, i.e. they have no any impact in the cost function.

Figure 5.8 illustrates a comparison of simplex (FMS) and non linear least squares (NLS) meth-
ods for binary parabolic (3.66) and U-shaped (3.70) distributions at t = 3300 sec from the start
of the experiment. For the U-shaped distribution we set q = 5.
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Figure 5.8: Number density distributions. Differences between simplex (FMN) and non linear
least squares (NLS) methods for binary parabolic and U-shaped distributions at t = 3300 sec.

The results referred to the comparison of the optimization techniques are identified as expected.
However, both methods have deviations compared to experimental measurements. The treat-
ment, as well as the optimum algorithm for the system that is modeled, will be examined in
the next chapters.

In Table 3 we report the calculations of the two algorithms. The two fitting methods provide
almost equal results. The initialization is significant in order to achieve the global solution. It
has been pointed out that the algorithm uses 100 different initial sets in order to estimate the
global minimum. The initialization that is used in these cases provides the minimum value of
the cost function. Thus, it is considered that the solution is not trapped in a local minimum.

In general, the CAT method simulating pure breakage requires about 5 to 7 seconds in a
discretized domain of 100 nodes, to simulate 3.5 hours of the experiment. This domain is
mainly used in this thesis since it is created according to the experimental measurements which
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in each case are about the same number. Therefore, the main CPU cost increased in the process
of optimization.

Case Method Distribution Kinetic Parameters
min f(x)

S1 m
1 FMN Binary Parabolic 2.951197 · 10−3 0.948542 3.547241 · 10−3

2 NLS Binary Parabolic 2.951145 · 10−3 0.948537 3.547241 · 10−3

3 FMN U-Shaped 9.180562 · 10−3 1.082229 2.589752 · 10−3

4 NLS U-Shaped 9.180565 · 10−3 1.082230 2.589752 · 10−3

Table 3: Optimization results referred to minimization of Eq. (3.72). Comparison of the
simplex (FMS) and non linear least squares (NLS) methods methods for binary parabolic and

U-shaped distributions.

In Figure 5.9 the computational cost of the optimization of each method referred to the requisite
function evaluations is depicted.
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Figure 5.9: Comparison of simplex (FMN) and non linear least squares (NLS) methods for
binary parabolic and U-shaped distributions.

According to Figure 5.9, the non-linear least-squares method is way faster than the simplex
technique in this case. However, it has been pointed out that the former algorithm is very
likely to get trapped in local minimum solutions. Therefore, for this work, as only the crystal
breakage mechanism is studied, it is considered that the computational cost of the simplex
algorithm is not prohibitive. Furthermore, figure 5.9 concerns a case with specific initialization
in the optimization algorithm, which is known beforehand that it has, as a result, the global
minimum value. However, in all the cases of this work, it is necessary to define a multi-start
algorithm for the initialization of the values, in order to know that the final solution refers to
the global minimum. Taking into account all the above remarks, the simplex algorithm is the
most appropriate and it is used exclusively in this work.

In Figure 5.10, we illustrate the fitting without and with the weight functions, respectively.
Because of the system’s design, i.e in the number density fitting, due to the fact that many
values are near zero, the algorithm exploits the experimental measurements as weight functions,
wi,j = Xij{exp}.
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Figure 5.10: Comparison of simplex (FMN) method for binary parabolic (3.66) and U-shaped
(3.70) distributions considering weights in Eq. (3.72) at t = 3300 sec.

There are no significant differences with the use of weights in the cost function. The main
deviations are observed on the smaller and larger particles, respectively. The use of weight
functions takes more into account the smaller and medium-sized particles, while in the case of
wi,j = 1 the larger particles are simulated better. Therefore, it is considered that the use of
weights is more appropriate for this work.

Table 4 illustrates the optimum parameters for the aforementioned cases. The min f(x) values
are not comparable, while the corresponding objective functions are reasonably different.

Case wi,j Distribution Kinetic Parameters
min f(x)

S1 m
1 1 Binary Parabolic 2.951197 · 10−3 0.948542 3.547227 · 10−3

2 Xij{exp} Binary Parabolic 3.760807 · 10−3 0.935292 6.022376 · 10−3

3 1 U-Shaped 9.180562 · 10−3 1.082229 2.589752 · 10−3

4 Xij{exp} U-Shaped 11.469618 · 10−3 1.104574 4.764838 · 10−3

Table 4: Optimization results referred to minimization of Eq. (3.72). Differences of using
weights in the simplex (FMS) method for binary parabolic (3.66) and U-shaped (3.70)

distributions.

One more parameter in the optimization model is the fitting data. It is mentioned that in
this work the algorithm uses the number density distributions to fit the experimental data.
However, the are studies in the literature where the cumulative distribution data or a specific
distribution moment are used.

Thus, figure 5.11 displays a comparison between probability (PDF) and cumulative (CDF)
distribution functions for the U-shaped equation. The diagrams refer to time, t = 3300 sec. As
expected, the optimization method fits the best the corresponding distribution.
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(a) Number density distribution.
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(b) Cumulative distribution function.

Figure 5.11: Number distribution comparison when the fitting algorithm refers to probability
or cumulative distribution. Here, the U-shaped distribution is used with q = 5.

Table 5 presents the optimum parameters when weight functions are incorporated in the cost
function, considering wi,j = Xij{exp}. In this case the U-shaped distribution is implemented.

Case Distribution Kinetic Parameters
min f(x)

S1 m
1 PDF 11.469618 · 10−3 1.104574 4.764838 · 10−3

2 CDF 6.533906 · 10−3 1.029236 1.199379 · 10−1

Table 5: Optimization results referred to minimization of Eq. (3.72). Differences between
using probability (PDF) and cumulative (CDF) distributions in optimization algorithm.

In this case, also, the optimization results are not comparable, since different data are used.
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5.3 Experimental measurements comparing with CAT

5.3.1 Reference Case

The purpose of this paragraph is to define the appropriate daughter distribution function, Eqs.
(3.66)-(3.71) in order to simulate ultrasound crystal breakage. The experimental section of the
reference case was implemented with an ultrasonic transducer at 40 W and 41 kHz. The laser
diffraction meter measures the volume distribution of samples taken at different time steps.
Figure 5.12a depicts the results of the comparison of ternary (3.67) and binary parabolic (3.68)
distributions with the U-shaped equation (3.70) at t = 3300 sec.
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(a) Number density distribution.
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(b) Cumulative distribution function.

Figure 5.12: Comparison of three different daughter distributions with experimental
measurements for t = 3300 sec.

Using the U-shaped distribution, in Figure 5.12a the breakage process appears to have different
behavior compared to the other daughter distribution function. More specifically, the smaller
particles get more negligible influence (i.e. at 10− 0.5µm), while the effect of bigger particles
is greater. The q factor of U-shaped function (3.70) represents the size ratio of the produced
particles. Therefore, to achieve the best results, especially concerning the larger particles the

39



q rate is chosen to be constant and equal with q = 5. The influence of the smaller particles in
the experimental measurements is not representative enough due to the physical restrictions of
the experimental set-up. The same tendencies can be observed in the case of the cumulative
distribution function, figure 5.12b, where the U-shaped function can produce better results.
As has been pointed out, the optimization algorithm is used directly in the number density
distribution, but for the sake of completeness, the cumulative distribution is also displayed.

In Table 6 a complete view for the optimization results of all the daughter distributions that are
denoted in subsection 3.4.2 is given. The U-shaped distribution can provide a more accurate
fitting for the reference case. Thus, the aforementioned distribution equation is considered to
provide the most accurate fitting for the under investigation system and is used extensively in
the following sections.

Daughter Distribution Kinetic Parameters Distribution Parameters min f(x)
S1 m

Uniform Binary Eq. (3.66) 3.9 · 10−3 1.0479 − 5.9752 · 10−3

Ternary Eq. (3.67) 2.5 · 10−3 1.2604 − 6.1145 · 10−3

Binary Parabolic Eq. (3.68) 3.7 · 10−3 0.9353 − 6.0224 · 10−3

Normal Eq. (3.69) 7.5 · 10−3 1.2402 µ = 3.8542, σ = 1.0978 5.8656 · 10−3

U-Shaped Eq. (3.70) 11.5 · 10−3 1.1045 q = 5.0000 4.7646 · 10−3

Empirical Eq. (3.71) 2.2 · 10−3 1.1296 φ = 5.4870, λ = 2.5303, η = 3.8809 5.3808 · 10−3

Table 6: Optimization results referred to minimization of Eq. (3.72). The S1 and m are the
optimum kinetic parameters as described in the Eq. (3.54). The corresponding distribution

parameters are defined based on the Eqs. (3.66)-(3.71).

In Figure 5.13 we depict the volume distribution of the produced crystals during the experiment.
It can be observed that while smaller and smaller particles are formed over time, the distribution
shifts to the left, and over long processing times, the volume of the many small particles balances
out the volume of the fewer but larger particles.
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Figure 5.13: Evolution of experimental volume density distribution.

Ultrasound appears to alter the original distribution by inducing new very small particles
compared to the original particles. This explains the two peaks in the volume distribution.
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The CAT algorithm can calculate the total number of particles as it is defined with Eq. (3.18).
The results of the method’s implementation for the reference case of ultrasound power of 40 W
and frequency stabilized in 41 kHz respectively are illustrated in 5.14a. Due to the fact that
the experimental set-up can measure the number densities of the produced particles, in order
to compare the method with the measurements, in 5.14b the corresponding number densities
distributions are displayed.
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Figure 5.14: (a) Total number of calculated crystals and (b) The corresponding number
density distribution for the reference case of 40 W and 41 kHz.

The model can simulate better the higher crystal concentrations for larger times. In Figures
5.14, it is clear that as time passes smaller particles are formed, thus the distributions in 5.14b
shifted to the left as expected. As the crystals break and smaller particles are formed, they are
more difficult to continue breaking. This fact is observed in the case of number distributions
in Figure 5.14b. In the experimental measurements, smaller particles are produced as time
goes on, while in the CAT method the maximum number density remains stable during the
simulation. As far as the experiment is concerned, this implies that once crystals reach a certain
size, ultrasound can no longer break them, and the model becomes less effective.

As a comparison, d10 characteristic diameters can be calculated for both the simulation and
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the experiment, as shown in Figure 5.15. Similar patterns can be seen in the diameters. The
diameters of the experiment distributions are greater than those of the simulations, which is
mostly due to the right-hand tail in the experiment number distributions.
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Figure 5.15: Evolution of mean diameter d10.

Using ultrasound grinding leads to relatively large volume particles remaining even after long
processing times. The final distribution contains many small particles and a couple of larger
particles that balance themselves out in terms of volume.

5.3.2 Ultrasound Power Impact on Crystal Breakage

The ultrasound strength leads to different behaviors on the crystal breakage. In this section, the
CAT model uses the U-shaped daughter distribution that is described in Eq. (3.70), combined
with the power law breakage rate, Eq. (3.54) in order to describe the effect of ultrasound power.
In these cases, the frequency remains constant at 41 kHz and the wattage of the experiments
ranges from 20 to 60 W with a step of 20 W.

The results of the CAT model for the combination of 40 W and 41 kHz are thoroughly examined
in the previous paragraph. In the case of 20 W, in number density distribution, figure 5.16a
the model shows discrepancies for the higher number densities while, even after t = 5760 sec
is difficult to capture the peaks of the distribution. On the other hand, in the cases of 30
and 60 W, figures 5.17a and 5.18a respectively the results are more accurate. More precisely,
during the initial time steps, the higher number densities are also difficult to be fitted, but the
distribution for the larger particles is calculated more accurately.

As far as the volume densities are concerned some common tendencies between the different
cases of ultrasound power can be observed. More precisely, in the cases of 40 W and 60 W,
there are similarities in the shape of the curves, as well as in the peaks that are created from
the smaller particles, when the time steps are close. In the case of 30 W of power, the impact
of smaller particles is more significant compared to the other three cases. On the other hand,
in the volume distribution in the case of 20 W, the left peak is more negligible, while the right
top is noticeably important. In the latter case, the power of ultrasound seems to be weak to
break an important amount of larger particles that remain after a long time.
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Figure 5.16: (a) Snapshots of number density distribution function, (b) The corresponding
experimental volume density distribution and (c) The d10 mean diameter for the 1st case of 20

W and 41 kHz.
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Figure 5.17: (a) Snapshots of number density distribution function, (b) The corresponding
experimental volume density distribution and (c) The d10 mean diameter for the 2nd case of

30 W and 41 kHz.
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Figure 5.18: (a) Snapshots of number density distribution function, (b) The corresponding
experimental volume density distribution and (c) The d10 mean diameter for the 4rth case of

60 W and 41 kHz.
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Generally, despite small deviations, the model results tend to follow the experimental number
densities of both the small and the larger particles after about the first hour of simulation. In
the case of 60 W 5.18a, the CAT simulation after 75 min provides the best results, compared to
the experimental measurements. The model of 30 W 5.17a appears some variations, while the
best fitting concerns the second time step of the experiment, i.e. about 47 min after the start
of the experiment. In general, the fitting of the parameters is done over all the time steps of the
experimental measurements. As a result, the simulation is not able to capture the peak of the
number density distribution in the first (or even in the last, in some cases) time step accurately.
Furthermore, even though we use weight functions in the optimization algorithm, there are few
experimental measurements (about 20 different points can form the "bell curve") in the number
density distribution that are significantly greater than zero. Therefore, it is difficult to approach
the peak of the number density distribution in the initial time measurements. This conclusion
applies in all the cases that we fit the CAT method to experimental results in this thesis.

Case Power (W) Frequency (kHz) Kinetic Parameters
min f(x)

S1 m
1 20.0 41.0 10.04 · 10−3 0.8990 5.2006 · 10−3

2 30.0 41.0 10.78 · 10−3 0.8707 4.3013 · 10−3

3 40.0 41.0 11.50 · 10−3 1.1045 4.7646 · 10−3

4 60.0 41.0 9.55 · 10−3 0.7969 4.4851 · 10−3

Table 7: Optimization results referred to minimization of Eq. (3.72). The S1 and m are the
optimum kinetic parameters as described in the Eq. (3.54). For all these cases the produced

particle rate q = 5.

The measurements of the 20, 30, 40 and 60 W experiments indicate that the ultrasound power
initially has a large influence, but it becomes less effective during the process. Table 7 reports
the optimum kinetic parameters for the different ultrasound power values. The case of 30 W
power gives the minimum f(x), while the biggest deviation from the experiment appears for
the 20 W experiment. The mean diameters d10, also appear similarities during the wattage
increase. Specifically, as time passes, the fitting of these values is more accurate.

In Figure 5.19, the fitting model is represented by a power law function as it is defined in Eq.
(5.7). The optimum parameters of the power law for ultrasound strength increase are shown
in Table 8.

S(P ) = S1P
n (5.7)

S(P ) Coefficients Value
S1 7.2050 · 10−3

n 1.0730 · 10−1

Table 8: Optimum kinetic parameter of the fitted power law S(P ).
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Figure 5.19: Fitting model for the kinetic parameter S1 depending on ultrasound power
change.

5.3.3 Ultrasound Frequency Impact on Crystal Breakage

Another important parameter in the ultrasound experimental set-up is the frequency. The
previous experiments were performed with a constant ultrasound frequency at 41 kHz. In this
paragraph, two more experiments within the analysis of frequency impact are investigated. In
particular, the cases of 19.5 kHz and 60.5 kHz are modeled with the CAT method, respectively.
In these instances, the ultrasound power is constant at 30 W.

Figure 5.20 depicts the simulation results compared to the experimental measurements when
the frequency is decreased at 19.5 kHz. The 19.5 kHz experiment still shows the same tendencies
as in the 41 kHz experiments, i.e. an immediate generation of small particles. In the number
density figure 5.20a the results of the simulation model are accurate enough. Especially after t =
4320 sec, the algorithm can fit calculate the higher number densities with negligible deviations.
In the case of the larger particles, there are some differences compared to the experimental
measurements, but the results are quite satisfactory in total. The volume distribution, figure
5.20b has some common characteristics with the similar case of 41 kHz. However, according
to the left top of the curve, the volume of the smaller particles is larger. Moreover, there are
bigger, but fewer large particles even after t = 5520 sec.

Figure 5.21 illustrates the CAT model results compared to the experimental measurements when
the frequency is increased at 60.5 kHz. In the case of 60.5 kHz, the differences in the results
are significant compared to the other experimental set-up instances. The main conclusion is
that this frequency increase cannot produce a sufficient amount of crystals. This fact can be
captured both in number and volume density distributions, shown in Figures 5.21. In the
former distribution many large particles of the order of 0.5 to 1.5µm can be observed. From
the volume perspective, there is not a noticeable peak in smaller particles in Figure 5.21b, while
the larger particles seem to remain unaffected. As far as the simulation model is concerned, it
is difficult to approach the corresponding experimental number densities in Figure 5.21a.

In general, the cavitation bubbles formed by low frequencies reach larger sizes before exploding,
resulting in more intense shock waves, hence a decrease in frequency leads to smaller diameters.
In the case of 60.5 kHz, however, the increase in frequency significantly reduces the breakage
effect. Higher frequencies produce smaller bubbles, resulting in weaker shock waves. Further-
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Figure 5.20: (a) Snapshots of number density distribution function and (b) The corresponding
experimental volume density distribution for the 1st case of 30 W and 19.5 kHz.

more, it appears that there is a frequency cutoff below which significantly less breakage occurs,
and above which increasing the frequency has no effect.

Table 9 reports the fitting of the CAT method to experimental results for the three different
cases of ultrasound frequency.

Case Power (W) Frequency (kHz) Kinetic Parameters
min f(x)

S1 m
1 30.0 19.5 15.19 · 10−3 0.6874 2.6798 · 10−3

2 30.0 41.0 10.78 · 10−3 0.8707 4.3013 · 10−3

3 30.0 60.5 8.28 · 10−3 1.2103 5.9191 · 10−3

Table 9: Optimization results referred to minimization of Eq. (3.72). The S1 and m are the
optimum kinetic parameters as described in Eq. (3.54). For all cases, q = 5.

The optimum fitting is obtained in the case of 30 W and 19.5 kHz, while on the other hand,
the model of 60.5 kHz cannot manage a good adjustment to the experimental measurements.
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Figure 5.21: (a) Snapshots of number density distribution function and (b) The corresponding
experimental volume density distribution for the 2nd case of 30 W and 60.5 kHz.

5.3.4 Comparing with L-glutamic acid

In this section, the L glutamic acid, LGLu is studied in order to verify the efficiency of the CAT
method in a different compound for ultrasound crystal breakage. The ultrasound specifications
concern 30 W of power and 41 kHz of frequency.

Figure 5.22a shows the number density of the produced crystals and Figure 5.22b illustrates
the experimental volume density distribution, respectively. Similar tendencies as the NaClO3

experiments can be observed. The formation of small particles causes a rapid decrease in mean
diameter that decays over time. It is clear that the two experiments using different compounds,
had a different initial distribution. Moreover, in the case of LGLu, the diameters are still larger
than those of NaClO3 after the same processing times.
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Figure 5.22: (a) Snapshots of number density distribution function, (b) The corresponding
experimental volume density distribution and (c) Evolution of the mean diameter d10 for the

case of LGLu compound in 30 W and 41 kHz.
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The CAT methodology using the U-shaped model of distribution (3.70) shows similar tends
at both the NaClO3 and LGLu compounds. Therefore, the model can be efficient with the
appropriate tuning. Comparing figures 5.17a and 5.22a for NaClO3 and LGLu, respectively,
the CAT simulation for the latter compound produces better results even after 125 mins of time.
In the volume distribution curve, shown in Figure 5.22b appears that the breaking process of
the crystals is smooth, while the volume density of the smaller particles is more negligible
compared to NaClO3 corresponding case. Similarly with the latter case, figure 5.22c illustrates
the d10 diameters for the LGLu simulation. Both of the cases of the different compounds lead
to smaller diameters for larger times.

Table 10 reports the fitting results of the CAT method to experimental results for the two
different compounds. The optimization results for both cases are similar.

Case Compound Power (W) Frequency (kHz) Kinetic Parameters
min f(x)

S1 m
1 NaClO3 30.0 41.0 10.78 · 10−3 0.8707 4.3013 · 10−3

2 LGLu 30.0 41.0 9.17 · 10−3 0.9595 4.1861 · 10−3

Table 10: Optimization results referred to minimization of Eq. (3.72). The S1 and m are the
optimum kinetic parameters as described in the Eq. (3.54). For all these cases we consider the

U-shaped distribution with q = 5.
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6 Conclusions and Future Work

In this thesis, the cell average technique (CAT) is implemented for the numerical solution of
population balance equations (PBEs) modeling the breakage mechanism. In particular, we aim
to simulate ultrasound breakage experiments. These experiments took place in KU Leuven
from Dr. Christos Xiouras and are referred to various ultrasound experimental set-ups. Before
this application, we first validate CAT simulating breakage PBEs with analytic solutions.

An important part of this study is the specification of the suitable daughter distribution function
and the relevant parameters in breakage processes. To this end, an optimization framework
able to handle the system parameters has to be developed. The experimental procedure was
a major part of the whole process and the different cases of experiments that were executed
assisted to draw the conclusions.

Concerning the ultrasound experimental procedure, we enlist some basic observations:

• The variation in power from 20 to 60 W with constant frequency at 41 kHz, showed that
increasing the power initially has a large influence on the breakage but only up to a certain
wattage. The reason behind this is that increasing the power leads to more and larger
cavitation bubbles up to a given point. Larger bubbles lead to more violent implosions
causing more breakage. At higher power, the reactor required more cooling this indicates
that the increase in power is mostly lost as heat. The effect of the increase of ultrasound
power on the kinetic parameters can be represented by a power law equation.

• The influence of the frequency was studied by experiments at 19.5 kHz, 41 kHz and 60.5
kHz for a constant power of 30 W. The experiments indicate that lowering frequencies
lead to higher breakage. This can be explained by the size of the cavitation bubbles. At
lower frequencies, the bubbles are allowed to grow bigger and as a result, they implode
much more violently. The increase in breakage with lower frequencies is initially quite
large starting from higher frequencies but this effect diminishes similar to the power effect.
These observations indicate that it will be difficult to reach any desired crystal size with
ultrasound.

• The main compound that is studied is the NaClO3, but we also study the LGLu for the
set-up of 30 W of power and 41 kHz of frequency. The results for the latter compound
were remarkably satisfactory.

In general, as far as the different experimental set-ups are concerned, it is difficult to completely
break large crystals and produce the desired particle size.

The comparison of the different daughter distributions that are found in the literature proved
that the U-shaped daughter distribution equation (3.70) yielded more accurate simulation re-
sults compared to the experimental ones. Even in cases where different experimental set-ups,
depending on the ultrasound power and frequency were tested, this model presents the optimum
behavior. Overall this specific CAT model for crystal breakage simulation produces satisfactory
results.

The computational model can simulate the breakage mechanism. It will be interesting to inves-
tigate the approach of the CAT method in growth, nucleation and agglomeration mechanisms.
The CAT method can be used for simulating different breakage systems. It can be used for
glass bead grinding. In that case, a complete model simulating the four mechanisms of the
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Viedma ripening model could be developed. In addition, a different model able to describe the
deracemization process could be implemented.

It has been pointed out that the breakage rate and the daughter distribution functions have
major importance in the crystal breakage mechanism. In this thesis, the latter function is inves-
tigated in order to fit the simulation model in the experimental measurements. The breakage
rate that is used in this work is based on the generalized power law equation that is proposed
in the literature for simulating ultrasound breakage. There are various approaches in case that
different breakage methods are studied, which may be fitted also in our system.

Finally, a more thorough study of the optimization techniques used to fit the experimental
data can be made. In this thesis, we implemented a Nelder-Mead optimization, however one
can also investigate alternative methods, as for example, evolutionary optimization algorithms,
simulated annealing, or particle swarms.
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