

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΔΠΜΣ ΕΠΙΣΤΗΜΗ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΗΧΑΝΙΚΗ ΜΑΘΗΣΗ

TRANSFER LEARNING AND DOMAIN ADAPTATION IN CREDIT

RISK PROBLEMS

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

της

ΜΑΡΙΑΣ ΚΑΪΚΤΖΟΓΛΟΥ

ΕΠΙΒΛΕΠΩΝ: ΣΤΕΦΑΝΟΣ ΚΟΛΛΙΑΣ, ΚΑΘΗΓΗΤΗΣ Ε.Μ.Π.

ΣΥΝΕΠΙΒΛΕΠΟΥΣΑ: ΠΑΡΑΣΚΕΥΗ ΤΖΟΥΒΕΛΗ, Ε.ΔΙ.Π. Ε.Μ.Π.

Αθήνα, Μάρτιος 2022

2

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΔΠΜΣ ΕΠΙΣΤΗΜΗ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΗΧΑΝΙΚΗ ΜΑΘΗΣΗ

TRANSFER LEARNING AND DOMAIN ADAPTATION IN CREDIT

RISK PROBLEMS

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

της

ΜΑΡΙΑΣ ΚΑΪΚΤΖΟΓΛΟΥ

ΕΠΙΒΛΕΠΩΝ: ΣΤΕΦΑΝΟΣ ΚΟΛΛΙΑΣ, ΚΑΘΗΓΗΤΗΣ Ε.Μ.Π.

ΣΥΝΕΠΙΒΛΕΠΟΥΣΑ: ΠΑΡΑΣΚΕΥΗ ΤΖΟΥΒΕΛΗ, Ε.ΔΙ.Π. Ε.Μ.Π.

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή στις 10 Μαρτίου 2022

Αθήνα, Μάρτιος 2022

3

Μαρία Καϊκτζόγλου

Πτυχιούχος Μαθηματικής σχολής

Copyright © Μαρία Καϊκτζόγλου, 2022.

Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή τμήματος

αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό μη

κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή

προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για

κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα και δεν

πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσόβιου Πολυτεχνείου.

4

Abstract

In the contemporary market where the demand for credit is growing more and more, the necessity of Credit

Risk analysis is of major importance to any institution that issues loans. The last decades machine learning

models are used to profile and score the creditworthiness of the applicants. Although machine learning has

provided to Credit Risk strong tools, real world situations often pose constraints or hide unseen

complications that obstruct the models’ learning. Two characteristic examples are the shortage of data and

the change of the data’s distribution over time or area or groups of people etc.

In this thesis we are concerned with the problem of the change in the distribution of the data in the Credit

Risk context and we are using Transfer Learning to confront it. We are using two different datasets. In the

first we use Transfer Learning to predict the class of defaulters of high amount applicants by exploiting the

knowledge from lower amount applicants. In the second we use it to predict defaulters who are clients of a

fintech company in a certain country based on the knowledge possessed from the company’s clients in

another country. After preprocessing the data and building some good base classifiers, we apply two

Transfer Learning methods and thus we study the problem by experimenting with some variations regarding

the distribution change between the data that is used for training and the data that is used for testing. We

use the logistic model, Gradient Boosting and Random Forest as the base classifiers, as those have been

used in past research on this topic.

Our results show that Transfer Learning can help in the problem of change in the distribution, although it is

also possible to negatively affect the learning. Each algorithm demonstrates a distinct behavior under the

Transfer Learning methods and the results also seem to strongly rely on the degree of the change in the

distribution. We discuss our results based on the theoretical background of the algorithms and methods

and existing research and we suggest some possible explanations for each case. We finally propose ideas

for future research that can follow up this thesis that would probably shed more light to some results and

help develop more adequate Transfer Learning strategies.

Key words

Transfer Learning, Domain Adaptation, Boosting, Source Domain, Target Domain, Concept Drift,

Distributions Divergence, Distributions Similarity, Machine Learning, Credit Risk

5

6

Περίληψη

Στη σύγχρονη αγορά όπου η πιστωτική ζήτηση αυξάνεται ολοένα και περισσότερο, η ανάγκη για ανάλυση

Πιστωτικού Κινδύνου είναι μεγάλης σημασίας για κάθε οργανισμό που εκδίδει δάνεια. Τις τελευταίες

δεκαετίες χρησιμοποιούνται μοντέλα μηχανικής μάθησης για να σκιαγραφήσουν το προφίλ των αιτούντων

και για να βαθμολογήσουν την πιστωτική τους φερεγγυότητα. Αν και η μηχανική μάθηση έχει προσφέρει

στην Ανάλυση Κινδύνου δυνατά εργαλεία, διάφορες καταστάσεις στην πραγματική ζωή συχνά θέτουν

περιορισμούς ή εμπεριέχουν μή εμφανείς επιπλοκές οι οποίες εμποδίζουν την εκμάθηση του μοντέλου.

Δύο χαρακτηριστικά παραδείγματα είναι η έλλειψη δεδομένων και η μεταβολή της κατανομής των

δεδομένων στο χρόνο ή ανά τόπο ή ανά ομάδες ανθρώπων και λοιπά.

Στην παρούσα εργασία μας απασχολεί το πρόβλημα της μεταβολής της κατανομής των δεδομένων στο

πλαίσιο προβλημάτων Πιστωτικού Κινδύνου και χρησιμοποιούμε Μεταφερόμενη Μάθηση για να το

αντιμετωπίσουμε. Χρησιμοποιούμε δύο διαφορετικά σύνολα δεδομένων. Στο πρώτο χρησιμοποιούμε

Μεταφερόμενη Μάθηση για να προβλέψουμε την κλάση των εκπρόθεσμων οφειλών μεταξύ των αιτούντων

υψηλών ποσών δανείου, αξιοποιώντας τη γνώση από τους αιτούντες χαμηλότερων ποσών δανείου. Στο

δεύτερο τη χρησιμοποιούμε για να προβλέψουμε την κλάση των εκπρόθεσμων οφειλετών που είναι

πελάτες μιας fintech εταιρείας σε μια συγκεκριμένη χώρα, με βάση τη γνώση που υπάρχει από τους πελάτες

της εταιρείας σε μια άλλη χώρα. Αφότου κάνουμε μια αρχική προεπεξεργασία των δεδομένων και χτίσουμε

κάποιους καλούς ταξινομητές βάσης, εφαρμόζουμε δύο μεθόδους Μεταφερόμενης Μάθησης και μελετάμε

το πρόβλημα κάνοντας πειραματισμούς και με τον τρόπο που αλλάζει η κατανομή των δεδομένων, από το

σύνολο εκπαίδευσης στο σύνολο επικύρωσης. Χρησιμοποιούμε το λογιστικό μοντέλο και τους ταξινομητές

Gradient Boosting και Τυχαίο Δάσος, αφού έχουν χρησιμοποιηθεί και στο παρελθόν σε παρόμοιες έρευνες.

Τα αποτελέσματα δείχνουν ότι η Μεταφερόμενη Μάθηση μπορεί να βοηθήσει στο πρόβλημα της μεταβολής

στην κατανομή των δεδομένων, αν και είναι επίσης δυνατό να επηρεάσει αρνητικά τη μάθηση. Κάθε

αλγόριθμος έχει διαφορετική συμπεριφορά με τις μεθόδους Μεταφερόμενης Μάθησης και τα αποτελέσματα

φαίνονται να εξαρτώνται σημαντικά από το βαθμό μεταβολής στην κατανομή. Συζητάμε τα αποτελέσματα

με βάση το θεωρητικό υπόβαθρο των αλγορίθμων και των μεθόδων και με την υπάρχουσα έρευνα, και

δίνουμε κάποιες πιθανές εξηγήσεις για κάθε περίπτωση. Τέλος, προτείνουμε ιδέες για μελλοντική έρευνα

που μπορεί να ακολουθήσει αυτήν την εργασία η οποίες θα μπορούσαν να διαφωτίουν περισσότερο κάποια

από τα αποτελέσματα και να συνεισφέρουν στο να αναπτυχθούν πιο κατάλληλες στρατηγικές

Μεταφερόμενης Μάθησης.

Λέξεις-κλειδιά: Μεταφερόμενη Μάθηση, Προσαρμογή Τομέων, Ενίσχυση, Τομέας Πηγής, Τομέας Στόχου,

Αλλαγή Έννοιας, Απόκλιση Κατανομής, Ομοιότητα Κατανομής, Μηχανική Μάθηση, Πιστωτικός Κίνδυνος

7

Acknowledgments

In concluding this thesis, I would like to thank Professor Stefanos Kollias for he has given me the opportunity

to engage with the particularly interesting topic of Transfer Learning and learn a bunch of new things. I am

also deeply thankful to Professor Paraskevi Tzouveli for all her kind and patient support and her helpful

guidance during my writing of this thesis. Last, thanks for one more time to my parents and my brother for

their endless support, and Sofoklis, my precious friend, who has been a glimpse of optimism and inspiration.

8

9

Table of Contents

Abstract 4

Περίληψη 6

Acknowledgements 7

1. Introduction 11

2. Transfer Learning & Domain Adaptation – A review 15

2.1. Definitions 18

2.2. Categorization of Transfer Learning 19

2.2.1. Problem setting perspective 19

2.2.2. Solution strategy perspective 21

 2.2.2.1. Data-based approach: instance-based methods 21

 2.2.2.2. Data-based approach: Feature-based methods 22

 2.2.2.3. Model-based methods 23

2.2. Negative Transfer 24

3. Theoretical background of experiments 29

3.1. Kullback-Leibler Importance Estimation Procedure 29

3.2. TrAdaBoost 34

3.3. Logistic Regression 39

3.4. Gradient Boosting Classifier 41

3.5. Random Forest Classifier 42

3.6. Genetic Algorithm 44

3.7. Variance Inflation Factor 48

3.8. Dimensionality reduction: Principal Components Analysis 49

3.9. Stratified train-test split 52

3.10. Synthetic Minority Over-Sampling Technique 53

3.1. Evaluation metrics 55

3.1.1. Area Under the Curve 56

3.1.2. Brier score and log-loss 57

10

4. Datasets and preparation of the data 59

4.1. Lending Club Dataset data 59

4.2. Dataset B data 61

5. Experiments and results 63

5.1. Lending Club Dataset 64

5.1.1. Lending Club Dataset – KLIEP 69

5.1.2. Lending Club Dataset – TrAdaBoost 71

5.1. Dataset B 75

5.1.1. Dataset B – KLIEP 78

5.1.2. Dataset B – TrAdaBoost 80

6. Conclusions and further research 85

Bibliography 89

Appendix 95

11

1. Introduction

Over the past decades the field of Credit Risk has grown majorly, since it plays a crucial role in

various institutions that issue loans. The increasing demand of credits has necessitated dealing

with the risk of defaulting when a loan is provided to a borrower. The credit institutions must be

able to estimate the trustworthiness of an applicant so that they make a correct decision about

whether to provide a loan or not, and more than that, about the maximum credit value that the

applicant could take. Credit risk is not a risk threatening strictly the loan provision by banks; it is

a risk present in other activities as in bankers’ acceptances, in trading with foreign exchanges in

the global market, futures, bonds, swaps, stocks and other (Adamko, Kliestik & Birtus, 2014).

The history of credit risk is long, starting from decisions that were made under subjective

evaluation of the individual applicants. This though was evidently lacking uniformity, objectivity

and generalizability and was prone to underestimations. It was only in 1967 and 1968 when the

first mathematical tools were developed to evaluate credit risk (Adamko, Kliestik & Birtus, 2014).

Then, the advent and rise of machine and deep learning has provided new ways and perspectives

to approach the credit risk problems, and lots of research has been conducted on this topic. For

example, Khandani et al. (Khandani, Kim & Lo, 2010) tried a few machine learning models - radial

basis functions, tree-based models and support vector machines - to predict delinquencies of

credit repayments, evaluating thus the discriminative power of the models, which they found to

be impressively strong. Addo et. al. (Addo, Guegan & Hassani, 2018) developed Random Forest,

Gradient Boosting and four deep learning models to identify defaulters, finding among other things

that the deep learning models showed to be less stable and did not exhibit particular interest,

while tree-based models outperformed.

At the same time, they raised crucial questions about the transparency of machine and deep

learning algorithms as well as the discrimination and bias towards groups of people that may be

introduced from such models that have a very specific objective. Butaru et al. (Butaru, Chen,

Clark, Das, Lo & Siddique, 2016) also tried machine learning algorithms to predict delinquencies

in six different banks, and while they found that decision trees and random forests are very

powerful, they highlighted that due to the particular regulations and management in each bank,

there is no homogeneity in the predictability of algorithms across the banks. Although the various

questions about the ethics, the generalizability or the interpretability of machine and deep learning

models are legitimate, the research has showcased the power of these models and has set the

ground for further research.

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=credit+risk+history&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AAXglD9puxvoJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=credit+risk+history&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AAXglD9puxvoJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Consumer+credit-risk+models+via+machine-learning+algorithms&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3A7a78CVby1wcJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=credit+risk+deep+learning&btnG=
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Risk+and+risk+management+in+the+credit+card+industry&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AsCcvegZQtjkJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Risk+and+risk+management+in+the+credit+card+industry&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AsCcvegZQtjkJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del

12

Whereas, thus, many institutions and companies can build and utilize machine and deep learning

models in their credit risk, there are often real-life conditions that tend to pose limits on the stability

and predictive power of the models. One such condition is the insufficient amount of data for a

group of applicants, which renders hard or even impossible to train some models. Let’s consider

some specific examples where this can happen. In a bank, there are credit applicants who are

already customers and others who are not. For the customers, the bank possesses a substantial

amount of data that can be used to train a model, but for the non-customers there is no data at

all. How can the bank evaluate the creditworthiness of the non-customers applicants? This case

has been studied by Benniel et al. (Beninel, Bouaguel & Belmufti, 2012). Another example is given

by the request of unfrequently high amounts of loans, something that due to its scarcity it entails

too few data. This case was studied by Huang and Chen (Huang & Chen, 2018).

The fact for the data scientist in each case is the same: the data has seen a significant change

and its size is too small to train the existing model. In other words, the distribution of the data has

changed, hence the classifier is no longer reliable. This change in the marginal distribution of the

data is commonly known as concept drift (Gama & Zhang, 2019). How can this problem be

confronted? Collecting more data is most of the time either impossible or too time-costly,

therefore, not an option. Transfer Learning is the field of machine learning that has arisen to give

an answer to this question. Broadly speaking, Transfer Learning aims at utilizing the existing

knowledge in a problem so as to alleviate the solution of another problem. With respect to the

examples given before, in the second case for instance, Transfer Learning would take advantage

of all the knowledge and information carried by the applicants of low and medium credit amounts

and appropriately use it to the applicants of high credit amounts.

We found it particularly interesting thus to merge these two problems, Credit Risk and Transfer

Learning, as having insufficient amount of data or changes in the distribution of the data is a

frequent problem in real-life, and Transfer Learning seems to be able to provide adequate

solutions.

Therefore, in this thesis we chose to use and experiment with two Transfer Learning methods,

KLIEP and trAdaBoost, along with three classifiers, Logistic Regression, Random Forest and

Gradient Boosting, to deal with the concept drift that occurs in credit risk problems. We are using

two different datasets, one publicly available that has been used by researchers in relevant

research, and one that was obtained from the airtime loan provision fintech company Channel

VAS in which the author of this thesis worked for a period.

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Transfer+Learning+Using+Logistic+Regression+in+Credit+Scoring&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AiKEqLICcZ2YJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Domain+Adaptation+Approach+for+Credit+Risk+Analysis&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AK-e8K81BuukJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Learning+under+concept+drift%3A+A+review&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3A5kp5NR3RLJAJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D1%26hl%3Del

13

The results obtained show that the Transfer Learning methods are capable of inducing positive

results if combined with other pre-processing methods, but at the same time they show that it is

likely that the transfer learning methods have a negative impact. It is also noteworthy that there

is no homogeneity in the effect of the Transfer Learning algorithms among the models used; on

the same dataset and with the same Transfer Learning method, one model can be alleviated and

the other degraded.

The structure of this thesis is: This first current chapter is introductory. In chapter 2 we give the

framework of Transfer Learning and describe its various perspectives via a taxonomy that we use.

In chapter 3 we provide the theoretical background of all the machine learning, transfer learning

and statistical methods and algorithms that we have used. Chapter 4 contains the description of

the two datasets. In chapter 5 we explain how the experiments were conducted, we present the

results and we discuss them. Lastly, chapter 6 concludes the thesis.

14

15

2. Transfer Learning & Domain Adaptation – A review

Traditional machine learning engages with the problem of building a model by training it on a part

of a dataset and testing it on another part, until the results obtained on the test part are

satisfactory. Then, this model can be used on other, unknown datasets for classification or

regression. Under this formulation, an implicit assumption is made, that is that the distribution of

the dataset on which the model is built is the same with the distribution of the dataset on which

the model is later used. In real world problems though, this is not always the case; often the two

distributions differ, as Pan and Yang (Pan & Yang, 2009) explain, and when this happens most

models need to be trained from scratch on new data that follow the distribution of the domain

where application is desired. However, as they write (Pan & Yang, 2009, p.1)

“it is expensive or impossible to re-collect the needed training data and rebuild the models. It

would be nice to reduce the need and effort to re-collect the training data”

In addition, in traditional machine learning the model’s task is the same in the training and in the

test part. However, in real life a different task is to be solved on unknown data.

Figure 1: Traditional Machine Learning VS Transfer Learning (Pan & Yang, 2009, p.2)

It would evidently be wonderful if we could transfer the knowledge across the domains or tasks

without the need to recollect data and retrain; and this is where Transfer Learning (TL) jumps in.

This concept originates from educational psychology and the generalization theory of transfer, as

proposed by C.H. Judd, who referred to transfer as the result of generalizing one’s experience

(Zhuang, Qi, Duan, Xi, Zhu, Zhu, ... & He, 2020), which results in learning an activity more easily

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=A+Survey+on+Transfer+Learning&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AqQ_PwXtwB-sJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=A+Survey+on+Transfer+Learning&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AqQ_PwXtwB-sJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=A+Survey+on+Transfer+Learning&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AqQ_PwXtwB-sJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del

16

if knowledge from another activity is used. For example, if one knows to play the violin, it might

be easier to learn to play the guitar, or, if someone speaks French, then it becomes easier to learn

Spanish, as both these languages’ root is Latin.

Figure 2: Intuitive examples of transferring knowledge (Zhuang, Fuzhen, et. al., 2020, p.1)

The need for Transfer Learning can arise in various cases. One typical case is what is commonly

known as concept drift, (Gama & Zhang, 2019, p.1)

“concept drift means that the statistical properties of the target variable, which the model is trying

to predict, change over time in unforeseen ways. This causes problems because the predictions

become less accurate as time passes.”

So, in concept drift, the data originally collected becomes outdated. This means that the marginal

distribution has changed, a phenomenon commonly known as covariate shift. An example of this

case can be seen in the behavioral usage of mobile phones; over the years, audio calls and text

messages usage has shrunk, being replaced to a large extent by video calls and mobile internet

usage. (Gama & Zhang, 2019).

In general, research of learning under concept drift encompasses three major components: drift

detection (if concept drift actually occurs), drift understanding (when, how, where it occurs), drift

adaptation (how to handle the drift).

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=A+Comprehensive+Survey+on+Transfer+Learning&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3A9oWJGHbmMGQJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Learning+under+concept+drift%3A+A+review&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3A5kp5NR3RLJAJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D1%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Learning+under+concept+drift%3A+A+review&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3A5kp5NR3RLJAJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D1%26hl%3Del

17

Figure 3: Example of covariate shift, a change in the marginal distribution. The distributions overlap by 71.56%

There are many cases where Transfer Learning is useful. Consider a problem of sentiment

classification, which aims at classifying the reviews of tech-products to positive, negative, or

neutral, based on text data. For a given product, say a smartphone, lots of data should be

collected along with their labels to train a model. Nonetheless, this model may not perform well

on another product, for example smartwatches, as smartwatches are evaluated under different

criteria, in other words, smartwatches’ reviews as a distribution may substantially differ from that

of smartphones. Adapting the model to the new distribution would dispense us from re-collecting

annotated data and re-training.

Another example from the field of medicine is that of a model that diagnoses lung cancer. Training

a model with data collected from a town in the countryside would result in a model that would

probably underperform in data from an industrial city, as the air pollution rate - a crucial factor for

developing lung cancer – may significantly differ in these two areas.

A last example can be drawn from the field of Credit Risk, where lenders aim at predicting the

behavior of loan applicants to appropriately determine their credit limits. A frequent problem is

that of evaluating new applicants, whose consuming and behavioral distributions may differ to

some extent from existing clients. Using the model built on existing clients is susceptible to

underperforming, while labeled data for the new applicants can be scarce or even nonexistent.

Therefore, using the knowledge from the existing model to the new dataset of new applicants can

significantly improve the performance (Beninel, Bouaguel & Belmufti, 2019)

We should also make a distinction between multi-task learning, a subfield of machine learning,

and Transfer Learning. In multi-task learning:

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Transfer+learning+using+logistic+regression+in+credit+scoring&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AiKEqLICcZ2YJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del

18

“multiple learning tasks are solved at the same time, while exploiting commonalities and

differences across tasks.” (Multi-task learning, 2022)

In other words, multi-task learning aims at learning simultaneously a set of related tasks. More

precisely, every task is alleviated by making use of the interconnections with the other tasks, while

considering the similarities as well as the differences between the tasks. This results in enhancing

the generalization of each task. Although it resembles Transfer Learning in that knowledge is

shared among tasks, the main difference between Transfer Learning and multi-task learning is

that Transfer Learning focuses on the task of the unseen, test data, by exploiting the knowledge

of the training data, while multi-task learning treats all tasks equally by learning them

simultaneously (Zhang & Yang, 2020)

A fundamental condition for transfer is that there is some connection between the two activities,

which in mathematics translates to having two domains that do not differ substantially. It is

important to highlight what Zhuang et al. (Zhuang et al., 2020), stress as well, that transfer does

not always have a positive impact, and this phenomenon of the target learner being negatively

affected is called negative transfer. We elaborate more on negative transfer in section 2.3. Prior

to this, we provide definitions for Transfer Learning (2.1.) and we present a categorization with

respect to its approaches (2.2.).

2.1. Definitions

Based on the works of Pan and Yang (Pan & Yang, 2009) and Zhuang et al (Zhuang et al., 2020)

we will give the definitions for two fundamental notions of Transfer Learning, “Domain” and “Task”,

with the aid of which we will then provide a definition for Transfer Learning.

Definition 1: A domain D consists of a feature space 𝑋 and a marginal distribution 𝑃(𝑋)

𝐷 = {𝑋, 𝑃(𝑋)}

𝑤ℎ𝑒𝑟𝑒 𝑋 = {𝑥𝑖 | 𝑥𝑖 ∈ 𝑋, 𝑖 = 1, … , 𝑛}

Definition 2: given a domain 𝐷 = {𝑋, 𝑃(𝑋)}, a task 𝑇 consists of a label space 𝑌 and a decision

function 𝑓(・), e.g. 𝑇 = {𝑌, 𝑓(・)}. The decision function is unknown and is to be learned from the

sample data, which comprises of pairs {𝑥𝑖, 𝑦𝑖}, where 𝑥𝑖∈𝑋 and 𝑦𝑖∈𝑌, 𝑖 = 1, … , 𝑛.

https://en.wikipedia.org/wiki/Multi-task_learning
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=An+overview+of+multi-task+learning&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3A5gg6A4gTJZ0J%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=A+Comprehensive+Survey+on+Transfer+Learning&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3A9oWJGHbmMGQJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=A+Survey+on+Transfer+Learning&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AqQ_PwXtwB-sJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=A+Comprehensive+Survey+on+Transfer+Learning&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3A9oWJGHbmMGQJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del

19

We call Source domain the domain from which knowledge is transferred and Target domain the

domain to which knowledge is transferred from Source. Moreover, we use the term task to refer

to the procedure of building a predictive model. We can now provide the following definition for

Transfer Learning

Definition 3: Given a source domain DS and learning task TS, a target domain DT, and learning

task TT, Transfer Learning consists of methods that aim to assist the learning of the target

predictive function fT (・) in DT by exploiting the knowledge acquired in DS, where DS ≠ DT or

TS ≠ TT.

A special subcategory of Transfer Learning that falls in the case when the tasks in the two

domains are the same but their distributions differ is known as Domain Adaptation, and it can

tackle problems under the existence or not of target labeled data (Kouw & Loog, 2019).

2.2. Categorization of Transfer Learning

Transfer learning can accept various categorizations that depend on the perspective from which

it is approached. We are presenting a categorization of Transfer Learning based on the works of

Pan and Yang (Pan & Yang, 2009, Zhuang et al (Zhuang, et al., 2020), and Kouw and Loog

(Kouw & Loog, 2019).

The first level of this categorization is done between the problem setting of Transfer Learning and

the solution strategy. In 2.2.1. we describe the problem setting perspective and in 2.2.2. we

present the solution strategy perspective.

2.2.1. Problem setting perspective

From the problem setting perspective, we can make a categorization that takes into account the

domains’ relevance, the tasks to be learned and the labels’ availability. With these three

considered, we have three major categories of Transfer Learning, inductive, transductive and

unsupervised (Pan & Yang, 2009), (Zhuang et al., 2020). In inductive learning the two distributions

are the same, while the tasks, although differ, are related. There are abundant labels in Source

and no or few labels in Target. In transductive learning the two tasks are the same, while the two

distributions are different, yet related, and there are labels available only in Source. Unsupervised

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=A+review+of+domain+adaptation+without+target+label&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AsvDVsJm8MCgJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=A+Survey+on+Transfer+Learning&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AqQ_PwXtwB-sJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=A+Comprehensive+Survey+on+Transfer+Learning&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3A9oWJGHbmMGQJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=A+review+of+domain+adaptation+without+target+labels&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AsvDVsJm8MCgJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=A+Survey+on+Transfer+Learning&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AqQ_PwXtwB-sJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=A+Comprehensive+Survey+on+Transfer+Learning&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3A9oWJGHbmMGQJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del

20

learning describes the case when both domains and tasks are different but related and there are

no labels in either of them.

Figure 4: Transfer Learning settings

From the problem-setting perspective, if we now look at the feature space of the Source and the

Target domain, Transfer Learning can be characterized as homogeneous or heterogeneous. This

refers to cases where the domains are of the same feature space, while the latter, those in which

the feature space differs. Many homogeneous learning studies assume that domains differ only

in marginal and not in conditional distributions, although this assumption does not always hold.

This thesis falls into the homogeneous learning as the datasets live in the same feature space.

Figure 5: Categorization of Transfer Learning

2.2.2. Solution strategy perspective

Focusing thus on the solution strategies Pan and Yang (Pan & Yang, 2009) categorized Transfer

Learning into four groups: instance-based, feature-based, parameter-based and relational-based

unsupervised. Zhuang et. al. (Zhuang et al., 2020), follow a different categorization: data-based,

which incorporates instance-based and feature-based approaches and model-based, which

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=A+Survey+on+Transfer+Learning&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AqQ_PwXtwB-sJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=A+Comprehensive+Survey+on+Transfer+Learning&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3A9oWJGHbmMGQJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del

21

covers the parameter based approaches. Their survey does not cover relational-based

approaches as there have been few studies on them. We are following Zhuan et al. categorization

and we will expand on instance-based methods since we applied two of them in this thesis.

2.2.2.1. Data-based approach: Instance-based methods

Instance-based methods are built on the basis that some instances in the Source domain can be

used to train in Target as long as some weighting is applied on them. Let’s consider the case

when the two marginal distributions differ and the two conditional distributions are the same, e.g.,

𝑃𝑆(𝛸) ≠ 𝑃𝛵(𝛸) and 𝑃𝑆(𝑌|𝑋) = 𝑃𝑇(𝑌|𝑋). In a real context, we can think that we want to build a

model that diagnoses lung cancer in two areas, one of which is a town in the countryside and the

other one is an industrial city. Building a model on data from the countryside town is reasonably

susceptible to bad performance if applied on the industrial city, as air pollution rate, a crucial factor

for developing lung cancer, differs significantly. Mathematically speaking, the two marginal

distributions differ, and if we want to use the knowledge acquired when building the model in

source to the target domain, they should first be somehow brought closer. A simple and often

successful way to do this is to assign weights to source domain instances in the loss function, in

a way that they will denote how this instance contributes to the proximity of the two domains.

Then, instead of training the target’s instances, we can train the weighted instances of the

source. This strategy is expanded as follows:

𝐸(𝑥,𝑦)~𝑃𝑇[𝐿(𝑥, 𝑦; 𝑓)] = (1)

 𝐸(𝑥,𝑦)~𝑃𝑆 [
𝑃𝑇(𝑥,𝑦)

𝑃𝑆(𝑥,𝑦)
𝐿(𝑥, 𝑦; 𝑓)] = (2)

` 𝐸(𝑥,𝑦)~𝑃𝑆 [
𝑃𝑇(𝑥)𝑃𝑇(𝑥)

𝑃𝑆(𝑥)𝑃𝑆(𝑥)
𝐿(𝑥, 𝑦; 𝑓)] = (3)

 𝐸(𝑥,𝑦)~𝑃𝑆 [
𝑃𝑇(𝑥)

𝑃𝑆(𝑥)
𝐿(𝑥, 𝑦; 𝑓)] (4)

22

Therefore, the objective function takes the form

𝑚𝑖𝑛𝑓

1

𝑛𝑠
∑ 𝛽𝑖𝐿(𝑓(𝑥𝑖

𝑠), 𝑦𝑖
𝑠) + 𝛺(𝑓)

𝑛𝑠

𝑖=1

 (5)

Where 𝛽𝑖 =
𝑃𝑇(𝑥𝑖)

𝑃𝑆(𝑥𝑖)
 (i=1,…,𝑛𝑠) and 𝛺(𝑓) is the structural risk - e.g. the sum of loss and the model’s

complexity (Zhuang et al., 2020).

A problem is that the estimation of the distributions’ ratio is a difficult task with the traditional

methods. There are some methods that have been developed that bypass this, among which the

Kernel Mean Matching (KMM), Kullback-Leibler Importance Estimation Procedure (KLIEP) and

TrAdaBoost. We are going to further describe KLIEP and TrAdaBoost in Chapter 3, as they are

two domain adaptation methods that were applied in this thesis.

2.2.2.2. Data-based approach: feature-based methods

Feature-based methods involve finding a new feature space representation for the target domain,

where knowledge from source can be transferred. These methods can apply to both

homogeneous and heterogeneous learning; the former aims to reduce the distance between the

marginal distributions, while the latter aims to reduce the distance between the feature spaces.

Quoting Zhuang et al. (Zhuang et al., 2020, p.7).

“The objectives of constructing a new feature representation include minimizing the marginal and

the conditional distribution difference, preserving the properties or the potential structures of the

data, and finding the correspondence between features.”

Strategies to find a suitable feature space representation depend on the availability of labeled

data in the Source. If there are abundant labeled data, then supervised methods may be used,

else, unsupervised methods are required to construct the feature representation (Pan & Yang,

2009).

Supervised feature construction methods are grounded on the idea of learning a lower-

dimensional representation on a subspace of both domains. This is similar in multitask learning

that seeks for a representation that is sharable by the various tasks. The new representation is

aimed to reduce the classification error.

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=A+Comprehensive+Survey+on+Transfer+Learning&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3A9oWJGHbmMGQJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=A+Comprehensive+Survey+on+Transfer+Learning&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3A9oWJGHbmMGQJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=A+Survey+on+Transfer+Learning&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AqQ_PwXtwB-sJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=A+Survey+on+Transfer+Learning&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AqQ_PwXtwB-sJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del

23

Raina et al. (Raina, Battle, Lee, Packer & Ng, 2007) have suggested an unsupervised feature

construction method, which at learning a higher-dimensional representation, by first solving an

optimization problem on Source that minimizes the L2-norm between the original features and

their new representation. Then this takes place for Target. A disadvantage of this method is that

the basis learned in the first step, e.g., from Source, might not be adequate for the Target domain.

2.2.2.3. Model-based methods

Model-based - or parameter-based – strategy is basically applied to inductive Transfer Learning

problems and assumes that models of related tasks should share some parameters of prior

distributions of hyperparameters (Pan & Yang, 2009).

One idea is to share the parameters of the trained model. Let’s consider the example of object

classification on image data (Zhuang et al., 2020). Each class’s attribute, such as the color and

the shape, has a prior from the image features that can be learned from the Source domain and

then be used to foster the learning on the Target domain.

“The parameters of a model actually reflect the knowledge learned by the model. Therefore, it is

possible to transfer the knowledge at the parametric level.” (Zhuang et al., 2020, p.15)

Another idea is to use the regularizers from pre-trained models on various source domains to the

target domain model. Such a framework has been proposed by Duan et al. and is called Domain

Adaptation Machine (DAM) (Duan, Tsang, Xu & Chua, 2009).

Finally, from the model-perspective we should not omit how neural networks have been

developed for Transfer Learning. Ζhuang et al. (Zhuang et al., 2015) have proposed an approach

based on Autoencoders, called Transfer Learning with Deep Autoencoders (TLDA). TLDA uses

two autoencoders that share the same encoding and decoding weights and it enforces the Source

and Target domains to be similar using the Kullback-Leibler divergence. It uses softmax

regression, a generalization of logistic regression for multiple class classification problems. Thus,

the objective function contains three terms to be optimized:

● The reconstruction error for both Source and Target domains

● The KL divergence of the embedded instances between the source and target

● The loss function of the softmax regression

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Self-taught+learning%3A+Transfer+learning+from+unlabeled+data&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AlQUELH5aZUwJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=A+Survey+on+Transfer+Learning&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AqQ_PwXtwB-sJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=A+Comprehensive+Survey+on+Transfer+Learning&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3A9oWJGHbmMGQJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=A+Comprehensive+Survey+on+Transfer+Learning&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3A9oWJGHbmMGQJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Domain+adaptation+from+multiple+sources+via+auxiliary+&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AyZ8BePydMHsJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Supervised+representation+learning%3A+Transfer+learning+with+deep+autoencoders&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AmDUfJ7nxE_YJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del

24

Another framework inspired by Generative Adversarial Networks (GAN) (Goodfellow, Pouget-

Abadie, Mirza, Xu, Warde-Farley, Ozair & Bengio, 2020). Let’s first say that GAN is a framework

inspired by a competitive game between two models; a Generator G that is trying to learn the

distribution of the data and generates imitations of it, and a Discriminator D that is trying to

discriminate the true from the fake data produced by G. This way a two-fold objective is achieved:

learning the distribution of the data and building a classifier. Based on this setting it has been

proposed (Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette & Lempitsky, 2016) a similar

setting where it is assumed that no Target labels are available. The idea is that there are sought

features that (i) assist the discriminative task in the Source domain and (ii) are indiscriminate for

the Source and the Target domain. In other words, the extraction of features is the Generator’s

goal and the discrimination between the Source and the Target domain under the covariance shift

is the Discriminator’s goal. This architecture can be materialized using backpropagation and

stochastic gradient descent.

2.3. Negative Transfer

As mentioned in the beginning of this chapter, Transfer Learning does not always result in

enhanced performance. The negative impact to Target domain that results from transferring

knowledge from Source to Target is known as negative transfer. Wang et al. in their paper (Wang,

Dai, Póczos & Carbonell, 2019) provide a formal definition of negative transfer and analyze three

important aspects of it.

Some of the crucial questions to be answered when negative transfer is discussed are the

following:

i. What is its exact definition? To answer this, we should first answer some other

questions like, should it be measured in a test set? What type of baseline should be

used for comparison?

ii. What factors cause it and how can we exploit them?

iii. Given limited or no labeled data, how can it be detected?

Therefore, Wang et al. stress three specific points in their attempt to describe negative transfer.

Before presenting these three points some necessary notations are introduced.

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Generative+adversarial+networks.&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3A1q1YoxF1M2oJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D5%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Generative+adversarial+networks.&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3A1q1YoxF1M2oJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D5%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Characterizing+and+avoiding+negative+transfer%29+&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AfM8ohViWphEJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Characterizing+and+avoiding+negative+transfer%29+&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AfM8ohViWphEJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del

25

● 𝑃𝑆(𝑋, 𝑌) and 𝑃𝑇(𝑋, 𝑌) are the Source 𝑆 and Target 𝑇 distributions respectively, while

𝑋, 𝑌 are the input and output random variables.

● 𝑆 = {(𝑥𝑠
𝑖 , 𝑦𝑠

𝑖)}𝑖=1
𝑛𝑠 : labeled Source set drawn from 𝑃𝑆(𝑋, 𝑌)

● 𝑇𝑙 = {(𝑥𝑙
𝑗
, 𝑦𝑙

𝑗
)}𝑗=1

𝑛𝑙 : labeled Target set drawn from 𝑃𝑇(𝑋, 𝑌)

● 𝑇𝑢 = {(𝑥𝑢
𝑘)}𝑘=1

𝑛𝑢 : labeled Target set drawn from 𝑃𝑇(𝑋)

● 𝐴 is an algorithm

● ℎ = 𝐴(𝑆, 𝑇) the hypothesis (model) output by algorithm 𝐴

● 𝑅𝑃𝑇
(ℎ) ≔ 𝐸𝑥,𝑦~𝑃𝑇

[𝑙(ℎ(𝑥)), 𝑦)] , the standard expected risk, where 𝑙 is some specific loss

function

With the above definitions we can now present the three aforementioned points discussed by

Wang et al (Wang et al., 2019):

1. “Negative transfer should be defined with respect to the algorithm” (Wang et al., 2019, p.2).

In case multiple algorithms are used it would be unsuitable and misleading to compare the

results in the Target domain with only the best algorithm obtained from Source, e.g., defining

the negative transfer under the objective

𝑅𝑃𝑇
(𝐴(𝑆, 𝑇)) > 𝑚𝑖𝑛𝐴′𝑅𝑃𝑇

(𝐴′(∅, 𝑇)) (6)

as the increase in risk may not stem from the difference in domains but from the difference in the

algorithms. Therefore, the study of negative transfer requires to restrict to a specific algorithm and

compare its performance with and without the source-domain data. This leads to defining the

negative transfer condition

 𝑅𝑃𝑇
(𝐴(𝑆, 𝑇)) > 𝑅𝑃𝑇

(𝐴(∅, 𝑇)) (7)

2. “Divergence between the joint distributions of Source and Target is the root of negative

transfer” (Wang et al., 2019, p.2) An extreme example is given by the authors to illustrate

this; consider that 𝑃𝑇(𝑋) = 𝑃𝑆(𝑋) and that 𝑃𝑆(𝑌|𝑥) is uniform. Then 𝑃𝑆(𝑋, 𝑌) is not informative

and making use of 𝑆~𝑃𝑆(𝑋, 𝑌) would rather damage the estimation of 𝑃𝑇(𝑌|𝑋) unless 𝑃𝑆(𝑌|𝑋)

is also uniform. Practically, to apply transfer learning there must exist some similarity

between the two joint distributions, and then apply an algorithm that will identify and rely only

on the similar, useful part. If the divergent part is not disregarded, it will lead to negative

transfer.

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Characterizing+and+avoiding+negative+transfer%29+&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AfM8ohViWphEJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Characterizing+and+avoiding+negative+transfer%29+&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AfM8ohViWphEJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Characterizing+and+avoiding+negative+transfer%29+&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AfM8ohViWphEJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del

26

3. “Negative transfer strongly depends on the amount of labeled target data” (Wang et al., 2019,

p.2). This factor actually has a mixed effect. On one hand, the existence of labeled data in

target does not guarantee a successful transfer. In case there are no labels in target the

classification task in target becomes a zero-shot one (there are classes in test set that were

not present in the training set) and using only the training samples of target would probably

result in a weak classifier. Thus, the negative transfer condition is not very likely to be met. If

there are a few labeled data in Target, they can be used with semi-supervised methods to

build a baseline model in the Target domain. Consequently, it is relatively more likely for

negative transfer to occur. Lastly, if there is an abundance of labeled target data, then

transferring from an even slightly different domain while failing to identify the similar part,

makes it again likely to deteriorate the performance of the model in Target compared to the

baseline model built with these abundant labels. All the above come to show that negative

transfer is relative with respect to the amount of available labeled target data. At the same

time though, the amount of labeled data significantly impacts (a) the feasibility of discovering

similar parts between the joint distributions, (b) the reliability of the similar parts detected by

the transfer learning algorithm. As discussed in point 1 the similarity between 𝑃𝑆(𝑋, 𝑌) and

𝑃𝑇(𝑋, 𝑌) is determining. Hence, in the absence of labeled target data one should only merely

rely on the marginal distributions 𝑃𝑆(𝑋) , 𝑃𝑇(𝑋) , which though has been shown to have

theoretical limitations (Wang et al., 2019, as cited by Ben-David). If there is a considerable

number of labeled target data though, this problem becomes likely to be manageable. This

being said, Wang et al. conclude that (Wang et al., 2019)

“Therefore, an ideal transfer learning algorithm may be able to utilize labeled target data to

mitigate the negative impact of unrelated source information”

Another study about the effects of negative transfer has been made by Jiménez-Guarneros and

Gómez-Gil (Jiménez-Guarneros and Gómez-Gil, 2021), who specifically studied the effect of

various distribution shifts and geometric transformations on the performance of deep learning

unsupervised domain adaptation (D-UDA) models. The distributions they studied were spherical

and non-spherical and they conducted tests about shifts on the marginal distributions as well as

on the conditional distributions. Various interesting results and observations were derived. First,

the intensity of negative transfer was dependent on all factors, e.g., the model used, the shape of

the distribution, the specific geometric transformation and whether the shift regarded the marginal

or the conditional distribution. Moreover, spherical distributions showed more robustness under

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Characterizing+and+avoiding+negative+transfer%29+&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AfM8ohViWphEJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=characterizing+and+avoiding+negative+transfer&btnG=&oq=characterizing+and+av#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AAUw3bLhD8T8J%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D1%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Characterizing+and+avoiding+negative+transfer%29+&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AfM8ohViWphEJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=A+study+of+the+effects+of+negative+transfer+on+deep+unsupervised+domain&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AMuf6YZlH2pcJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del

27

the various transformations in comparison to non-spherical ones. Some other findings were that

rotation, shearing and skewness negatively affected all models and particularly the non-spherical

distributions under marginal distribution shift. Noise, overlapping clusters and subclusters

degraded the models’ performance under conditional distributions shifts.

Studies like these are necessary and insightful in order to get a good grasp of the causes and the

effect of negative transfer under distributions shift so that it is prevented when a model is built.

28

29

3. Theoretical background of experiments

In this chapter we are describing the various algorithms and methods that we used to build base

classifiers and those that we used for the Transfer Learning. At first, we explain in detail the two

Domain Adaptation methods that we used, Kullback-Leibler Estimation Procedure (KLIEP) and

TrAdaBoost. We then write a few things about the three classifiers deployed, Logistic Regression,

Gradient Boosting and Random Forest. We describe the two feature selection methods we used,

Genetic Algorithm (GA) and the Variance Inflation Factor (VIF) criterion. There follows the

description of the method we tried in order to deal with the imbalance in Dataset B, Synthetic

Minority Over-sampling Technique (SMOTE), and of Principal Components Analysis (PCA) that

we used when we were building the base classifier in dataset B. Lastly, we write about the metrics

that we chose to use to evaluate the performance of our models and algorithms.

3.1. Kullback-Leibler Importance Estimation Procedure

KLIEP is a method that aims to tackle the problems that arise when the train and the test samples

do not follow the same marginal distribution, otherwise known as covariate shift.

“Under covariate shift, standard learning methods such as maximum likelihood estimation are no

longer consistent—weighted variants according to the ratio of test and training input densities are

consistent. Therefore, accurately estimating the density ratio, called the importance, is one of the

key issues in covariate shift adaptation” (Sugiyama, Suzuki, Nakajima, Kashima, von Bünau &

Kawanabe, 2008, p.1)

A straightforward yet naïve approach would be to estimate the two densities directly and then

compute the importance. However, as already mentioned, density estimation is a hard task -

especially in high dimensionality - and it could consequently result in a poorly performing model

if densities were not estimated well. Sugiyama et al. propose an alternative approach that involves

a direct importance estimation that skips density estimation. Let’s articulate a formulation for the

problem that is posed in KLIEP.

Problem Formulation: Let 𝑝𝑡𝑟(𝑥) and 𝑝𝑡𝑒(𝑥) be the densities of the training and test distributions,

where {𝑥𝑖
𝑡𝑟}𝑖=1

𝑛𝑡𝑟 and {𝑥𝑗
𝑡𝑒}𝑗=1

𝑛𝑡𝑒 are identically independent distributed samples from a domain D

and 𝑝𝑡𝑟(𝑥) > 0 for all 𝑥 ∈ 𝐷. The aim is to estimate the importance w(x) defined as

30

𝑤(𝑥) ≔
𝑝𝑡𝑒(𝑥)

𝑝𝑡𝑟(𝑥)
 (8)

Therefore, a method is required so that the importance is estimated. One thing that can be done

is to linearly model the importance 𝑤(𝑥) as following:

𝑤̂(𝑥) = ∑ 𝑎𝑙𝜑𝑙(𝑥)

𝑏

𝑙=1

 (9)

Where {𝑎𝑙
 }𝑙=1

𝑏 are parameters to be learned from the data samples and {𝜑𝑙(𝑥)}𝑙=1
𝑏 are basis

functions such that 𝜑𝑙(𝑥) ≥ 0 for all 𝑥 ∈ 𝐷 and for 𝑙 = 1, … , 𝑏. Kernel models are also a possible

option for modeling the importance, which means that b and {𝜑𝑙(𝑥)}𝑙=1
𝑏 could be dependent on

{𝑥𝑖
𝑡𝑟}𝑖=1

𝑛𝑡𝑟 and {𝑥𝑗
𝑡𝑒}𝑗=1

𝑛𝑡𝑒

The test density can then be estimated from 𝑝̂𝑡𝑒(𝑥) = 𝑤̂(𝑥)𝑝𝑡𝑟(𝑥) . The parameters {𝑎𝑙}𝑙=1
𝑏 in (4)

can be determined as solutions to the problem of minimization of the Kullback-Leibler (KL)

divergence from 𝑝𝑡𝑒(𝑥) to 𝑝̂𝑡𝑒(𝑥).

Before we formulate the problem, we should first provide a definition for the KL divergence. This

is as follows (Jiawei, 2022)

“a non-symmetric measure of the difference between two probability distributions p(x) and q(x).

Specifically, the Kullback-Leibler (KL) divergence of q(x) from p(x), denoted 𝐷𝐾𝐿(𝑝(𝑥) || 𝑞(𝑥)) is

a measure of the information lost when q(x) is used to approximate p(x)”

The mathematical formulation is:

 𝐷𝐾𝐿(𝑝(𝑥) || 𝑞(𝑥)) = ∑ 𝑝(𝑥)𝑙𝑛
𝑝(𝑥)

𝑞(𝑥)𝑥∈𝑋 (10)

Let’s also note that,

“Although the KL divergence measures the “distance” between two distributions, it is not a

distance measure. This is because that the KL divergence is not a metric measure. It is not

symmetric: the KL from p(x) to q(x) is generally not the same as the KL from q(x) to p(x).

Furthermore, it need not satisfy triangular inequality. Nevertheless, 𝐷𝐾𝐿(𝑃||𝑄) is a non-negative

measure. 𝐷𝐾𝐿(𝑃||𝑄) ≥ 0 and 𝐷𝐾𝐿(𝑃||𝑄) = 0 if and only if P = Q”. (Jiawei, 2022)

31

We can now return to the problem of estimating the test density from 𝑝̂𝑡𝑒(𝑥) = 𝑤̂(𝑥)𝑝𝑡𝑟(𝑥) . As we

said, the parameters {𝑎𝑙}𝑙=1
𝑏 in (4) can be determined as solutions to the problem of minimization

of the Kullback-Leibler (KL) divergence from 𝑝𝑡𝑒(𝑥) to 𝑝̂𝑡𝑒(𝑥).

𝐷𝐾𝐿 (𝑝𝑡𝑒(𝑥) || 𝑝̂𝑡𝑒(𝑥)) = (11)

 ∫ 𝑝𝑡𝑒(𝑥)𝑙𝑜𝑔 (
𝑝𝑡𝑒(𝑥)

𝑤̂(𝑥) 𝑝𝑡𝑟(𝑥)
)𝑑𝑥

𝐷
 = (12)

∫ 𝑝𝑡𝑒(𝑥)𝑙𝑜𝑔 (
𝑝𝑡𝑒(𝑥)

𝑝𝑡𝑟(𝑥)
)

𝐷
 𝑑𝑥 - ∫ 𝑝𝑡𝑒(𝑥)𝑙𝑜𝑔 𝑤̂(𝑥)

𝐷
 𝑑𝑥 (13)

We are interested in the second term, as the first one is independent of {𝑎𝑙}𝑙=1
𝑏 . We denote this

second term as:

J:=∫ 𝑝𝑡𝑒(𝑥)𝑙𝑜𝑔 𝑤̂(𝑥) 𝑑𝑥
𝐷

≈ (14)

1

𝑛𝑡𝑒
∑ 𝑙𝑜𝑔 (𝑤̂(𝑥𝑗𝑡𝑒

))
𝑛𝑡𝑒
𝑗=1 = (15)

1

𝑛𝑡𝑒
∑ 𝑙𝑜𝑔 (∑ 𝑎𝑙𝜑𝑙(𝑥𝑗𝑡𝑒

)𝑏
𝑙=1)

𝑛𝑡𝑒
𝑗=1 (16)

where the empirical approximation based on the test samples is used from the first line to the

second line above. Thus (16) is the objective function to be maximized with respect to the

parameters {𝑎𝑙}𝑙=1
𝑏 , and it is concave (Sugiyama et al., 2008)

A first constraint is that 𝑤̂(𝑥) ≥ 0, by definition of 𝑤(𝑥), which is positive. Since the basis functions

φ are also positive, the constraint can be posed on 𝑎𝑙 as

𝑎𝑙 > 0 for all 𝑙 = 1, … , 𝑏

Moreover, since 𝑝̂𝑡𝑒(𝑥) = 𝑤̂ (𝑥)𝑝𝑡𝑟(𝑥) is a probability density function, 𝑤̂ (𝑥) should also be

normalized. Therefore, we obtain a second constraint via

 1 = ∫ 𝑝̂𝑡𝑒(𝑥)𝑑𝑥
𝐷

 = (17)

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=%2C+Direct+importance+estimation+for+covariate+shift+adaptation&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AgUj-J0ZmXCwJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del

32

 ∫ 𝑤̂ (𝑥)𝑝𝑡𝑟(𝑥)𝑑𝑥
𝐷

≈ (18)

1

𝑛𝑡𝑟
 ∑ 𝑤̂ (𝑥𝑖𝑡𝑟)

𝑛𝑡𝑟
𝑙=1 = (19)

1

𝑛𝑡𝑟
 ∑ ∑ 𝑎𝑙𝜑𝑙(𝑥𝑖𝑡𝑟

)

𝑏

𝑙=1

𝑛𝑡𝑟

𝑙=1

 (20)

where the empirical approximation based on the training samples is used from the first to the

second line above. All that considered we have the convex optimization problem

 𝑚𝑎𝑥{𝑎𝑙}𝑙=1
𝑏 [∑ 𝑙𝑜𝑔 (∑ 𝑎𝑙𝜑𝑙(𝑥𝑖𝑡𝑒

))𝑏
𝑙=1

𝑛𝑡𝑒
𝑙=1]

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
1

𝑛𝑡𝑟
 ∑ ∑ 𝑎𝑙𝜑𝑙(𝑥𝑖𝑡𝑟

)𝑏
𝑙=1

𝑛𝑡𝑟
𝑖=1 = 1 𝑎𝑛𝑑 𝑎𝑙 > 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑙 = 1,2, … , 𝑏

The model 𝑤̂ (𝑥) , e.g. the 𝜑𝑙 functions are selected via likelihood cross validation (LCV) as

follows: The test samples are split into R disjoint subsets, and each subset is used to get an

estimate for 𝑤̂ (𝑥), so we end up with 𝑤̂𝑟(𝑥) estimates, where 𝑟 = 1 … . , 𝑅. Subsequently, every

importance gives the estimated 𝐽

 𝐽𝑟 ∶=
1

|𝑋𝑟𝑡𝑒
|
 ∑ 𝑙𝑜𝑔 (𝑤𝑟̂

(𝑥))𝑥∈𝑋𝑟𝑡𝑒
 (21)

And the final estimate for J is derived as the mean of the R-estimates

 𝐽 ∶=
1

𝑅
 ∑ 𝐽𝑟

𝑅
𝑟=1 (22)

33

There follows pseudo-algorithm for the model selection by LCV (Sugiyama et al., 2008)

 Input: 𝑀 = {𝑚𝑘|𝑚𝑘 = {𝜑𝑙
(𝑘)

(𝑥)}
𝑙=1

𝑏(𝑘)

} , {𝑥𝑖
𝑡𝑟}

𝑖=1

𝑛𝑡𝑟
, 𝑎𝑛𝑑 {𝑥𝑗

𝑡𝑒}
𝑗=1

𝑛𝑡𝑒

 Output: 𝑤̂(𝑥)

 Split {𝑥𝑗
𝑡𝑒}

𝑗=1

𝑛𝑡𝑒
 into R disjoint subsets {xi

te}
𝑟=1

𝑅
;

 for each model m∈ 𝑀:

 for each split 𝑟 = 1,2, … , 𝑅

 𝑤̂𝑟(𝑥) ← 𝐾𝐿𝐼𝐸𝑃 (𝑚, {𝑥𝑖
𝑡𝑟}

𝑖=1

𝑛𝑡𝑟
 , {𝑥𝑗

𝑡𝑒}
𝑗≠𝑟

) ;

 𝐽𝑟(𝑚) ←
1

|𝑥𝑟
𝑡𝑒|

∑ log 𝑤𝑟̂𝑥∈𝑋𝑟
𝑡𝑒 (𝑥);

 end

 𝐽(𝑚) ←
1

𝑅
∑ 𝐽𝑟̂(𝑚)𝑅

𝑟=1 ;

 end

 𝑚̂ ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑚∈𝑀𝐽𝑟(𝑚);

 𝑤̂(𝑥) ← 𝐾𝐿𝐼𝐸𝑃 (𝑚̂, {𝑥𝑖
𝑡𝑟}

𝑖=1

𝑛𝑡𝑟 , {𝑥𝑗
𝑡𝑒}

𝑗=1

𝑛𝑡𝑒)

In our implementation we used Gaussian Kernels as the 𝜑 functions as Sugiyama et. al. did

(Sugiyama et al., 2008). The choice of the hyperparameters 𝜎 and 𝐵 is very important. As the

authors write, when the importance 𝑤(𝑥) ≔
𝑝𝑡𝑒(𝑥)

𝑝𝑡𝑟(𝑥)
 outputs large values, that is when the two

distributions differ significantly, a large number of Kernels is required for a good estimation.

Therefore, we chose to use many kernels, namely 𝐵 = 100, assuming significant dissimilarity

between the distributions. The authors also showed in their paper that the kernel width 𝜎 is also

determinant in the performance of KLIEP. We tried KLIEP with 𝜎 = 1 and we also used 5-fold

cross-validation to choose its optimal value. The best result was obtained with 𝜎 = 1.

3.2. TrAdaBoost

TrAdaBoost (Wenyuan, Qiang, Gui-rong, Yong, 2007) is a domain adaptation method that is

inspired by traditional boosting-learning algorithms and extends their application to cases where

covariance shift occurs. A significant difference with KLIEP is that trAdaBoost requires some

labeled data from the Target domain. The concept is the same; when the available (train) data

becomes outdated for some reason the existing model might fail to perform well on new (test)

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=%2C+Direct+importance+estimation+for+covariate+shift+adaptation&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AgUj-J0ZmXCwJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=%2C+Direct+importance+estimation+for+covariate+shift+adaptation&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AgUj-J0ZmXCwJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del

34

data. TrAdaBoost relies on the idea that some part of the old data presents similarities with the

new data and so it can still be useful for the training, e.g., it can be reused. It is a key issue then

to find this part of the data that is still useful, and this is the reason that some labeled test data is

required: to be able to measure the similarity between the train and the test instances.

The outdated data is called diff-distribution data and the new data same-distribution data. The

general idea is to find out by a voting mechanism how useful each instance of the diff-distribution

data is and assign a corresponding weight that will help the classifier either put more emphasis

on this instance or diminish its contribution to the training. More specifically, the instances will be

weighted in a way so that those instances that are more relevant to the same-distribution data will

contribute more to building the new classifier whereas the less relevant will play a minor role. In

their paper Wenyuan et al. (Wenyuan et al. 2007) prove that boosting learning converges well to

the desired model.

Before describing more trAdaBoost it would be good to give the general framework of AdaBoost,

the first boosting algorithm developed by Freund and Schapire (Freund & Schapire , 1997).

Broadly speaking, Boosting refers to any method that aims to create a strong classifier by using

in an interactive mode many “weak” classifiers (Freund & Schapire, 1996). “Weak” is a word used

to describe a classifier that does well yet not well enough, in other words, if there is space for

improvement. We will describe the idea of AdaBoost considering as learners Decision Trees,

although any algorithm can be used.

Consider a set of learners 𝐿1, … , 𝐿𝑘 that are the simplest decision trees, that is, trees with only

one node and two leaves. These are otherwise called decision stumps where each node

corresponds to a predictor and the two leaves to the two classes. At first all samples are assigned

the same weight, namely 𝑤𝑖 =
1

𝑛
, where 𝑛 is the number of samples. Learner 𝐿1 is trained on all

training samples with the weights 𝑤𝑖 and the total classification error 𝜀𝑡 is calculated for learner

𝐿1 on the test set. The total classification error is then used to determine the strength of this

learner, let us call it 𝐵𝑖. Each of the samples is then assigned a new weight 𝑤𝑖 based on 𝐵𝑖 and

whether it was correctly or incorrectly classified by 𝐿1. The rule is that the incorrectly classified

samples increase their weight to let the next learner know that it should emphasize on them and

improve. Moreover, the stronger the 𝐿1, the more the weight increases. Following this logic, the

correctly classified samples decrease their weight, largely if the learner 𝐿1has a large 𝑆1 and little

otherwise. The re-weighted dataset is then passed to 𝐿2 for training and testing, and likewise, the

total classification error, the strength of the learner 𝐿2 and the new weights of the samples are

https://scholar.google.com/scholar?q=Boosting+for+Transfer+Learning+2007&hl=el&as_sdt=2007&as_ylo=2006&as_yhi=2009#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3Ao1t_wVqFT9kJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=A+Decision-Theoretic+Generalization+of+On-Line+Learning+and+an+Application+to+Boosting&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3APGxM2ONifbEJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Experiments+with+a+New+Boosting+Algorithm&btnG=

35

calculated. This process continues until maximum iterations are reached or until an accepted

tolerance level is reached.

Figure 6: The sequential way in which AdaBoost works. Each learner is helped by the previous one.

The final classifier is a weighted majority voting classifier. Specifically:

“for a given instance 𝑥, ℎ𝑓𝑖𝑛 outputs the label 𝑦 that maximizes the sum of the weights of the weak

hypotheses predicting that label. The weight of hypothesis ℎ𝑡 is defined to be 𝑙𝑛 (
1

𝑏𝑡
), so that

greater weight is given to hypotheses with lower error”. (Freund & Schapire, 1996, p.13)

Let’s recall that trAdaBoost is an extension of AdaBoost that also makes use of the labeled

samples from the same-distribution data. The training takes place by using the same-distribution

samples together with the labeled samples from the diff-distribution data. During the training

process TrAdaBoost assigns weights to both the same-distribution and diff-distribution samples

in a way that tells the classifier how much to emphasize, how to be influenced by each sample

according to some criteria. The following picture illustrates the process that this is done.

Learner 1

𝑻𝒓𝒂𝒊𝒏 𝒐𝒏 𝑿𝒕𝒓𝒂𝒊𝒏, 𝒘𝒊

𝑻𝒆𝒔𝒕 𝒐𝒏 𝑿𝒕𝒆𝒔𝒕

𝒈𝒆𝒕 𝜺𝒕𝟏
, 𝑩𝟏, 𝒘𝒊

Learner 2

𝑻𝒓𝒂𝒊𝒏 𝒐𝒏 𝑿𝒕𝒓𝒂𝒊𝒏, 𝒘𝒊

𝑻𝒆𝒔𝒕 𝒐𝒏 𝑿𝒕𝒆𝒔𝒕

𝒈𝒆𝒕 𝜺𝒕𝟐
, 𝑩𝟐, 𝒘𝒊

Learner k

𝑻𝒓𝒂𝒊𝒏 𝒐𝒏 𝑿𝒕𝒓𝒂𝒊𝒏, 𝒘𝒊

𝑻𝒆𝒔𝒕 𝒐𝒏 𝑿𝒕𝒆𝒔𝒕

𝒈𝒆𝒕 𝜺𝒕𝒌
, 𝑩𝒌, 𝒘𝒊

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Experiments+with+a+New+Boosting+Algorithm&btnG=

36

c

Figure 7: Graphical illustration of the way trAdaBoost works. Each learner is helped by the previous

one, as in AdaBoost, but here labeled Target labels are exploited too for the training.

TrAdaBoost has been applied to Credit Scoring problems. For example, Xiao et. al. (Xiao, Wang,

Teng & Hu, 2014) used it along with other strategies in credit scoring data where covariance shift

occurred, and trAdaBoost provided the second best roc-auc score among six methods.

Before we describe the algorithm let’s introduce some notation and definitions:

- 𝑋𝑠: the same-distribution data

- 𝑋𝑑: the diff-distribution data

- 𝑌 = {0,1}: the set of class labels

- ℎ: a Boolean function ℎ: 𝑋𝑠𝑈𝑋𝑑 → 𝑌 called hypothesis

- 𝑇𝑠 = {(𝑥𝑖
𝑠, ℎ(𝑥𝑖

𝑠))}: the same-distribution training data; the labeled part of the diff-distribution

data 𝑋𝑠 = {𝑥𝑖
𝑠 |𝑖 = 1, … , 𝑚}

- 𝑇𝑑 = {(𝑥𝑖
𝑑 , ℎ(𝑥𝑖

𝑑))}: the diff-distribution training data that corresponds to 𝑋𝑑 = {𝑥𝑖
𝑑 |𝑖 = 1, … , 𝑛}

- 𝑇 = 𝑇𝑠𝑈𝑇𝑑: all training data. Precisely, 𝑇 = {
𝑥𝑖

𝑠,𝑖=𝑛+1,…,𝑛+𝑚

𝑥𝑖
𝑑,𝑖=1,…,𝑛

Same-distribution data

Unlabeled

Used for testing the classifier

Labeled

Used for

building the

classifier

Labeled

Used for building the classifier

Diff-distribution data

Learner 1 Learner 2 Learner k

𝑻𝒓𝒂𝒊𝒏 𝒐𝒏 𝑿𝒕𝒓𝒂𝒊𝒏, 𝒘𝒊

𝑻𝒆𝒔𝒕 𝒐𝒏 𝑿𝒕𝒆𝒔𝒕

𝒈𝒆𝒕 𝜺𝒕𝟏
, 𝑩𝟏, 𝒘𝒊

𝑻𝒓𝒂𝒊𝒏 𝒐𝒏 𝑿𝒕𝒓𝒂𝒊𝒏, 𝒘𝒊

𝑻𝒆𝒔𝒕 𝒐𝒏 𝑿𝒕𝒆𝒔𝒕

𝒈𝒆𝒕 𝜺𝒕𝟐
, 𝑩𝟐, 𝒘𝒊

𝑻𝒓𝒂𝒊𝒏 𝒐𝒏 𝑿𝒕𝒓𝒂𝒊𝒏, 𝒘𝒊

𝑻𝒆𝒔𝒕 𝒐𝒏 𝑿𝒕𝒆𝒔𝒕

𝒈𝒆𝒕 𝜺𝒌, 𝑩𝒌, 𝒘𝒊

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=A+transfer+learning+based+classifier+emsemble+model+for+customer+credit+scoring%2C+2014&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3ALrThJOjVP3cJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=A+transfer+learning+based+classifier+emsemble+model+for+customer+credit+scoring%2C+2014&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3ALrThJOjVP3cJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del

37

- 𝑆 = {(𝑥𝑖
𝑡)}: the test data. Τhis is the unlabeled part of 𝑋𝑠, e.g., 𝑥𝑖

𝑡 ∈ 𝑋𝑠, 𝑖 = 1, … , 𝑘 and 𝑘 is the

number of unlabeled instances of 𝑋𝑠

So, the problem can be postulated as: “having a small portion of labeled instances from 𝑋𝑠 ,

abundant labeled instances from 𝑋𝑑 and many unlabeled instances from 𝑋𝑠 train a classifier so

that the hypothesis ℎ: 𝑋𝑠𝑈𝑋𝑑 → 𝑌 has the minimum prediction error on the unlabeled data”

(Wenyuan et al. 2007). Here follows the pseudocode of the algorithm:

 Input: 𝑇𝑑, 𝑇𝑠, 𝐿𝑒𝑎𝑟𝑛𝑒𝑟, 𝑁 = 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟

 Initialize: 𝑤1 = (𝑤1
1, … , 𝑤𝑛+𝑚

1)

 For t = 1,…,N :

1. Set 𝑝𝑡 =
𝑤𝑡

∑ 𝑤𝑖
𝑡𝑛+𝑚

𝑖=1

2. Call Learner

train on 𝑇 that follows the distribution 𝑝𝑡
test on 𝑆
get a hypothesis ℎ𝑡: 𝑋 → 𝑌

3. Calculate the error of ℎ𝑡 on 𝑇𝑠

𝜀𝑡 = ∑
𝑤𝑖

𝑡|ℎ𝑡(𝑥𝑖)−𝑐(𝑥𝑖)|

∑ 𝑤𝑖
𝑡𝑛+𝑚

𝑖=𝑛+1

𝑛+𝑚
𝑖=𝑛+1

4. Set 𝛽𝑡 =
𝜀𝑡

1−𝜀𝑡
 and 𝛽 =

1

1+√2𝑙𝑛
𝑛

𝑁

 ; Condition 𝜀𝑡 <
1

2
 must be satisfied

5. Update the weight vector

𝑤𝑖
𝑡+1 = {

𝑤𝑖
𝑡𝛽|ℎ𝑡(𝑥𝑖)−𝑐(𝑥𝑖)|, 1 ≤ 𝑖 ≤ 𝑛

𝑤𝑖
𝑡𝛽𝑡

−|ℎ𝑡(𝑥𝑖)−𝑐(𝑥𝑖)|
, 𝑛 + 1 ≤ 𝑖 ≤ 𝑛 + 𝑚

6. Output: the hypothesis

ℎ(𝑥) = {
1, ∏ 𝛽𝑡

−ℎ𝑡(𝑥)𝑁

𝑡=⌈
𝑁

2
⌉

≥ ∏ 𝛽𝑡

−
1

2𝑁

𝑡=⌈
𝑁

2
⌉

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

https://scholar.google.com/scholar?q=Boosting+for+Transfer+Learning+2007&hl=el&as_sdt=2007&as_ylo=2006&as_yhi=2009#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3Ao1t_wVqFT9kJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del

38

As one can see, in each iteration, every instance from the diff-distribution data that is incorrectly

classified has its weight decreased by 𝛽|ℎ𝑡(𝑥𝑖)−𝑐(𝑥𝑖)| (note that 𝛽 ∈ (0,1]). This is because, since

the learner is fed with both same and diff-distribution instances, it is likely that the misclassified

instances from 𝑋𝑑 come in conflict with 𝑋𝑠. For example, suppose that the instances in 𝑋𝑑 are

located to a two-dimensional space as shown in figure 8, forming these two clusters. When the

instances from 𝑋𝑠 are added, the learner is influenced by their distribution’s parameters and hence

the formed clusters might change in a way that the previously correctly predicted instances from

𝑋𝑑 are now misclassified.

Figure 8: How the distribution of the data can change when more samples are appended in a dataset; a spatial illustration

Similarly, every instance from the same-distribution data that is misclassified increases its weight

by 𝛽
𝑡
−|ℎ𝑡(𝑥𝑖)−𝑐(𝑥𝑖)| (where again 𝛽𝑡 < 1). In this way, the instances from 𝑋𝑑 that are dissimilar to

same-distribution instances will not affect the classifier’s learning significantly, while at the same

time the instances from 𝑋𝑠 that are misclassified will be emphasized in order to help the classifier

learn them better (Freund & Schapire, 1996), (Zheng, Liu, Yan, Jiang, Zhou & Li, 2020). A

drawback of AdaBoost that is also reflected in trAdaBoost is that it is not good at handling

hypotheses that give out error greater than
1

2
 (Freund & Schapire, 1996) (Zheng et al., 2020).

Some alternations of AdaBoost have been proposed to tackle this, as for example measuring the

distance of each 𝑋𝑑 instance to 𝑋𝑠 domain (Zheng et al., 2020); in this way, when an 𝑋𝑑 instance

is misclassified but it is close to 𝑋𝑠 distribution, its weight is increased, whereas when it is far from

𝑋𝑠 distribution its weight is decreased. Maximum Mean Discrepancy (MMD) in reproducing kernel

Hilbert space (RKHS) is used to measure the distance. In our code we follow the original approach

and when 𝜀𝑡 >
1

2
 , 𝜀𝑡 is set to

1

2
 which makes 𝛽𝑡 to retain its value and consequently 𝑤𝑡 too.

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Experiments+with+a+New+Boosting+Algorithm&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AIFTHs1-xdsoJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Improved+TrAdaBoost+and+Its+Application+to+Transaction+Fraud+Detection&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AN7CAWp5w1y4J%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Experiments+with+a+New+Boosting+Algorithm&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AIFTHs1-xdsoJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Improved+TrAdaBoost+and+Its+Application+to+Transaction+Fraud+Detection&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AN7CAWp5w1y4J%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Improved+TrAdaBoost+and+Its+Application+to+Transaction+Fraud+Detection&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AN7CAWp5w1y4J%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del

39

3.3. Logistic Regression

Logistic Regression is a statistical method used for binary classification. The desired model is

learned from a family of hypothesis functions ℎ ∶ 𝑅𝑑 → [0,1]. Although the outcome of ℎ is some

number in the continuous interval [0,1], which indicates a probability, this is then turned and

interpreted as a decision in a binary classification problem (Suryanto, Guan, Voumard & Beydoun,

G., 2019), (Bishop, 2006). The hypothesis class in Logistic Regression is basically the

composition of a sigmoid function over the class of linear functions (Suryanto et al., 2019).

In linear regression the hypothesis function to be learned is a linear function of the weights 𝛽𝑖 for
the predictors 𝑥𝑖, where 𝑖 ∈ 𝑅, e.g., ℎ𝐿(𝑥) = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑘𝑥𝑘 . If we pose the log of the

odds 𝑙𝑜𝑔
𝑝

1−𝑝
 to be equal to ℎ𝐿(𝑥), we get

𝑙𝑜𝑔
𝑝

1−𝑝
= 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑘𝑥𝑘 (23)

𝑝

1−𝑝
= 𝑒𝛽0+𝛽1𝑥1+⋯+𝛽𝑘𝑥𝑘 (24)

𝑝 =
1

1+𝑒−𝑧 , 𝑝𝑜𝑠𝑖𝑛𝑔 𝑧 = ∑ 𝛽𝑖𝑥𝑖 (25)𝑘
𝑖=1

And then posing the probability 𝑝 to be the sigmoid function of the 𝑧 we get

𝜎(𝑧) =
1

1+𝑒−𝑧 (26)

Which explains how the model learned is the composition of the sigmoid function with a linear

function of the weights to be learned. The sigmoid on 𝑧 gives the probability of obtaining class 0;

if this number is > 0.5 then the classifier calls class 0, else it calls class 1.

Figure 9: How a sigmoid function look like

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=understanding+machine+learning+theory+algorithms&btnG=&oq=understanding+mach#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AGBzGIpYNxj4J%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=understanding+machine+learning+theory+algorithms&btnG=&oq=understanding+mach#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AGBzGIpYNxj4J%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=bishop+pattern+recognition&btnG=&oq=bishop+#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AyiKquKHyAWAJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=understanding+machine+learning+theory+algorithms&btnG=&oq=understanding+mach#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AGBzGIpYNxj4J%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del

40

The loss function for Logistic Regression is defined as

 𝑙(ℎ(𝑥, 𝑦)) = −𝑦𝑙𝑜𝑔(ℎ(𝑥)) + (1 − 𝑦)𝑙𝑜𝑔 (1 − ℎ(𝑥)) (27)

where ℎ(𝑥) denotes the class label predicted by the learned hypothesis on 𝑥, and 𝑦 is the actual

class label of 𝑥. This function, commonly known also as cross-entropy, is convex and can be

proved to converge with standard methods (Suryanto et al., 2019, p. 127).

Logistic Regression has been used in past research in credit scoring and transfer learning

problems (Wei, Liu & Wu, 2021), (Beninel, Bouaguel & Belmufti, 2012). This statistical model has

the advantage that is simply interpretable and provides the probabilities of a sample being in a

class, two characteristics that are highly appreciated in credit scoring. For instance, one reason

that Channel VAS credit scoring team uses this model is that there might be the need to explain

to some client why a user was denied a specific loan, so the team can use some simple math to

explain such cases if requested.

We applied Logistic Regression in dataset B using sklearn’s module. After experimentation with

the hyperparameters, we tuned the model to have the “liblinear” solver along with “L1” penalty,

which is also called Lasso, from Lasso regression. L1 regularization adds 𝜆||𝛽𝑖|| as a penalty to

the coefficient 𝛽𝑖 , where 𝜆 is some real number that regulates the amount of shrinkage of the

coefficient; the greater 𝜆 is the smaller the coefficient becomes. The hyperparameter 𝐶 in sklearn

takes the role of 𝜆 and it is called the inverse regularization parameter (𝐶 =
1

𝜆
); we set 𝐶 = 10.

Number of iterations was set to 2,000 or 3,000 and tolerance to 0.0001.

On the Lending Club dataset, the respective hyperparameters were set to “liblinear”, “L1”, 1, 5,

0.001.

3.4. Gradient Boosting Classifier

Gradient Boosting was originally developed as a regression algorithm (Friedman, 2001) but it was

then modified in order to be used as a classifier. It is an algorithm grounded on AdaBoost and as

a classifier it also uses the log odds, like logistic regression. It makes use of a number of weak

learners that sequentially boost each other in order to eventually obtain a strong classifier. Unlike

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=understanding+machine+learning+theory+algorithms&btnG=&oq=understanding+mach#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AGBzGIpYNxj4J%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Transfer+Learning+Based+Credit+Scoring&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AxKjB0lvtEU8J%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Transfer+Learning+Using+Logistic+Regression+in+Credit&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AiKEqLICcZ2YJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Greedy+Function+Approximation%3A+A+Gradient+Boosting+Machine&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AOdbwpHMq1pYJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del

41

AdaBoost, it uses trees with more than one leaf, while in every iteration it predicts residuals (actual

value – predicted value) and not classes.

Let’s consider a specific loss function – although many functions can be chosen for this purpose,

as long as they are differentiable – and describe the algorithm in steps. Let the loss function then

be

𝐿(𝑦𝑖 , 𝑝𝑖) = −𝑦𝑖𝑙𝑜𝑔 𝑝𝑖 − (1 − 𝑦𝑖)𝑙𝑜𝑔 (1 − 𝑝𝑖) (28)

for sample 𝑥𝑖 where 𝑦𝑖 is the actual label and 𝑝𝑖 is the predicted probability. The loss function can

also be written as

𝐿(𝑦𝑖 , 𝑝𝑖) = −𝑦𝑖𝛾𝑖 + 𝑙𝑜𝑔 (1 + 𝑒𝛾𝑖) (29)

if we pose 𝛾𝑖 = 𝑒𝑜𝑑𝑑𝑠 = 𝑒
𝑝𝑖

1−𝑝𝑖 .

Let also 𝑋 = {𝑥1, … , 𝑥𝑛} be the sample, observed data and 𝑌 = {𝑦1, … , 𝑦𝑛} the labels of the

samples.

The first step is to initialize the model with a constant value as the prediction for all samples. This

is obtained by minimizing the loss function.

 𝑓𝑖𝑟𝑠𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑓0(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾 ∑ 𝐿(𝑦𝑖, 𝛾)𝑛
𝑖=1 , ∀𝑥 (30)

 𝑓0(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾 ∑ [−𝑦𝑖 log 𝛾 + log(1 + 𝑒𝛾)]𝑛
𝑖=1 (31)

We can find p by setting the derivative to be zero

𝜕 ∑ [−𝑦𝑖 log 𝛾+log(1+𝑒𝛾)]𝑛

𝑖=1

𝜕𝛾
= 0 (32)

 ∑ [−𝑦𝑖 +
𝑒𝛾

1+𝑒𝛾]𝑛
𝑖=1 = 0 (33)

And if we replace back 𝛾 with 𝑙𝑜𝑔 (
𝑝

1−𝑝
) , this will yield 𝑝 = ∑

𝑦𝑖

𝑛
 𝑛

𝑖=1 , e.g., the average of the

observed sample labels.

So, in steps the Gradient Boosting Classifier algorithm can be written as:

42

 Input: learning rate 𝑎, max iterations M

 Step 1: Initialize the model with a constant value

𝑓0(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾 ∑ 𝐿(𝑦𝑖, 𝛾)

𝑛

𝑖=1

 Step 2: for k=1 to M:

(a) Compute 𝑟𝑖𝑘 = −
𝜕𝐿(𝑦𝑖,𝑓(𝑥𝑖))

𝜕𝑓(𝑥𝑖)
, 𝑤ℎ𝑒𝑟𝑒 𝐹(𝑥) = 𝑓𝑘−1(𝑥) 𝑓𝑜𝑟 𝑖 = 1, … , 𝑛

(b) Fit a tree model to {𝑟𝑖𝑘} that will give leaf nodes
with residuals 𝑅𝑖𝑗

(c) For 𝑗 = 1, … , 𝐽𝑘, calculate 𝛾𝑗𝑘 =

𝑎𝑟𝑔𝑚𝑖𝑛𝛾 ∑ 𝐿(𝑦𝑖, 𝑓𝑘−1(𝑥𝑖) + 𝛾)𝑥𝑖∈𝑅𝑖𝑗

(d) Update the model: 𝑓𝑘(𝑥) = 𝑓𝑘−1(𝑥) + 𝛼 ∑ 𝛾𝑘𝐼(𝑥 ∈ 𝑅𝑗𝑘)
𝐽𝑘
𝑗=1

The algorithm thus works by reducing the residuals with every learner, which respectively then

produces a better predicted probability by the subsequent learner in the subsequent iteration.

We used GradientBoostingClassifier from sklearn ensemble module and we tuned the learning

rate to be 1, the maximum depth of the trees to be 1, the number of learners to be 4 and the loss

function to be “deviance”, the same as of the logistic regression’s cross-entropy.

3.5. Random Forest Classifier

Random Forest in a bagging algorithm for regression and classification. It makes use of decision

trees, namely, it builds a big set of de-correlated trees and averages their decisions (Hastie,

Tibshirani & Friedman, 2009). It is well known that decision trees are susceptible to variance, so

by using aggregately multiple noisy but quiet unbiased models with bootstrap variance is reduced.

It is good to briefly overview decision trees and then explain how Random Forests are built on

them.

Being an intuitive, simple to understand and tune algorithm with an inherent ability to deal with

missing values, Decision Trees have been largely popular for regression and classification

problems. A decision tree classifies data samples by sequentially asking questions derived from

features.

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=elements+of+statistical+learning+random+forests&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3Apr-6r5Rel_QJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D1%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=elements+of+statistical+learning+random+forests&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3Apr-6r5Rel_QJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D1%26hl%3Del

43

“Each question is contained in a node, and every internal node points to one child node for each

possible answer to its question. The questions thereby form a hierarchy, encoded as a tree”

(Kingsford & Salzberg, 2008, p.1)

The first question is called root node, the subsequent questions are called children nodes and the

last nodes that contain the classifications (0 or 1) are the leaves. For each split, the choice of the

predictive variable is made upon the measurement of the impurity of the split. Ideally, a question

should accurately separate all samples into different classes, in other words, be pure, but this is

far too optimistic. One of the most popular and used impurity measures is the Gini index, which

for a specific node 𝑠 is defined as

 𝐺𝑖𝑛𝑖𝑠 = 1 − ∑ 𝑝𝑖
2 𝑚

𝑖=1 (34)

Where 𝑚 is the number of items that are classified by node 𝑠, and 𝑝𝑖 is the fraction of samples

classified by 𝑠 that belong to class 𝑖. This quantity becomes zero if and only if all samples

classified by the node belong to the same class. Highlight though that this is the Gini index of a

node; a variable, when used as a question splits the samples into 𝑘 ≥ 1 nodes, and the Gini index

of the predictive variable is the weighted average of the Gini indexes of all the 𝑘 nodes.

Figure 10: Example of the calculation of Gini impurity of a predictive variable

The variable that takes a node every time is the one with the smallest Gini impurity. Note that for

a further split to take place to a node, the new Gini impurity must be smaller than the current one.

Random Forests build on this process using multiple decision trees in an ensemble mechanism.

Given a dataset with N samples, setting the number of trees to be B, we have:

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=What+are+decision+trees%3F&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3APctqTZC2ycwJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del

44

Input: N: Dataset of size N, B: number of trees for the ensemble, M: max

depth of the trees

 For b=1, …, B:

1. Draw a bootstrap sample Z* of size N; the samples left out from the

bootstrap are called Out Of Bag (OOB) samples.

2. For various values of 𝑘, create trees with 𝑘 predictors each of max

depth M by using the bootstrapped sample.

3. Classify the OOB samples with majority voting. Choose the 𝑘 that

gives the lowest OOB error (misclassified samples).

3.6. Genetic Algorithm

Feature selection describes the process of selecting a subset of predictive features to train a

model. The purpose of feature selection is twofold; it can help reduce the time and the resources

required, while at the same time improving the performance of the model by removing the non-

useful features.

«Many models, especially those based on regression slopes and intercepts, will estimate

parameters for every term in the model. Because of this, the presence of non-informative

variables can add uncertainty to the predictions and reduce the overall effectiveness of the

model» (Kuhn & Johnson, 2013, p.488)

A first categorization of feature selection algorithms is that of supervised and unsupervised ones.

Supervised algorithms take into consideration the target variable, while unsupervised algorithms

do not; the latter use other criteria such as the features’ variance, entropy, or their ability to

preserve local similarity etc. A second categorization falls between wrapper and filter methods.

Wrapper methods evaluate a set of models according to a specific metric, on different subsets of

the initial feature space. Otherwise stated, they repetitively search among the predictors to

determine which ones improve the current model when they enter it.

Stepwise elimination, simulated annealing and genetic algorithms fall into this category (Kuhn &

Johnson, 2013). Filter methods select the predictors without involving the model. These methods

usually evaluate each predictor separately, something that makes them prone to multicollinearity

and multiplicity problems, that can be addressed with using simultaneously various statistical

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=applied+predictive+modeling+&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AQXaSLWSajUoJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=applied+predictive+modeling+&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AQXaSLWSajUoJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=applied+predictive+modeling+&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AQXaSLWSajUoJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del

45

tests. Lastly, let’s mention that there are machine learning algorithms for which feature selection

is an intrinsic part of them. Such algorithms are tree-based algorithms and those that use

penalization, like Lasso and Ridge regression.

In this thesis Genetic Algorithm (GA) was used as a primary feature selection technique for

Dataset B, which was then followed by some intrinsic algorithms that were tried while developing

a model. The way GAs function is inspired by concepts of population evolution in biology.

Babatunde et. al. write,

“The operations in a GA are iterative procedures manipulating one population of chromosomes

(solution candidates) to produce a new population through genetic functionals such as crossover

and mutation (in a similar way to Charles Darwin evolution principle of reproduction, genetic

recombination, and the survival of the fittest).” (Babatunde, Armstrong, Leng & Diepeveen, 2014,

p.3)

In biology, chromosomes consist of genes and occasionally perform crossover and mutation.

Under these processes the strongest or fittest new chromosomes (children) take over the old

chromosomes (parents). The set of possible chromosomes is referred to as population. In

machine learning language, chromosomes are binary vectors and genes are features. Therefore,

the presence or absence of a feature in the dataset is indicated by the respective binary value in

the vector. In other words, if the value of the 𝑛𝑡ℎ element of the vector is 1 it means that the 𝑛𝑡ℎ

feature will participate in the dataset, and if the value it is 0 it will not. Fitness or strength is the

outcome of the evaluation of a binary vector on an objective (fitness) function. The values of this

evaluation are used in ranking the chromosomes at a certain iteration of the algorithm

(Babatunde, Armstrong, Leng & Diepeveen, 2014). The postulation of the fitness functions turns

thus, the problem of feature selection into a convex optimization problem.

Assuming that the feature space is of dimension 𝑛, the size of the population, e.g. the total number

of possible chromosomes, is 2𝑛. Exploring the whole space would thus be a very costly procedure.

To avoid this GA usually starts with a random subset of the population, which forms the first

generation. All the chromosomes’ fitness is then calculated, and the two strongest chromosomes

are selected in order to “reproduce”. Reproduction consists of two processes, mutation and

crossover. In crossover, the two chromosomes are split at a specific position - randomly chosen

- and they exchange one part of the split. Picture 1, illustrating crossover, shows the selected

chromosomes of a certain generation that consist of genes C,H,A,G,E and B,D,H,F,A,C

respectively. The split takes place at the fifth position and so the yellow part of 𝑐ℎ𝑟𝑖 exchanges

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=A+genetic+algorithm-based+feature+selection&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AuBPiEE3r_RcJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=A+genetic+algorithm-based+feature+selection&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AuBPiEE3r_RcJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=A+genetic+algorithm-based+feature+selection&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AuBPiEE3r_RcJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del

46

place with the green part of 𝑐ℎ𝑟𝑗. Note here that because gene A already participates in 𝑐ℎ𝑟𝑖, after

the crossover only gene F is added to it.

Figure 11: Crossover operation

In mutation, the binary value of every feature is changed into the other one, so the selected

chromosome drops all the existing genes and takes all the remaining ones. Picture 2 illustrates

mutation.

Figure 12: Mutation operation

The resulting chromosomes after selection, crossover and mutation are called children and they

replace their parents (initially selected chromosomes). This way, the new generation is formed.

Both crossover and mutation occur with a probability, which turns them into hyperparameters of

a GA along with the population size and the number of generations. Hassanat et al. explain:

“Determining the interactions that occur among different GA parameters has a direct impact on

the quality of the solution, and keeping parameters values "balanced" improves the solution of the

GA.” (Hassanat, Almohammadi, Alkafaween, Abunawas, Hammouri & Prasath, 2019, p.5)

Crossover operation allows selected parents to exchange genetic material, resulting in

chromosomes that are likely to be stronger, as they have genes from both parents. In other words,

it contributes to the balancing between exploration and exploitation (Hassanat & Alkafaween,

2017). However, using only the crossover operation runs the risk of making the GA stacking to

local optima areas, as the algorithm would basically produce copies of the initial population

without enriching with new members the new generations .” (Hassanat et al., 2019). Mutation is

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=choosing+mutation+and+crossover+ratios+for+GA+-+a+review+with+a+new+dynamic+approach&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3ArJCwzMUYqXgJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=On+Enhancing+Genetic+Algorithms+Using+New+Crossovers&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AQyRkrn-yDGEJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=On+Enhancing+Genetic+Algorithms+Using+New+Crossovers&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AQyRkrn-yDGEJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=choosing+mutation+and+crossover+ratios+for+GA+-+a+review+with+a+new+dynamic+approach&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3ArJCwzMUYqXgJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del

47

the operation that plays this very role of providing new children distinct from their parents and

boosts the diversity in the population.

Figure 13: visualization of GA phases (Hassanat et al., 2019)

We experimented with combinations for (a) population size, (b) number of generations, (c)

crossover probability, (d) mutation probability, guided by the work of Hassanat et al. (Hassanat et

al., 2019) that includes a literature review over this problem. We chose the roc-auc scoring

function for the fitness function to evaluate the individuals, and the final parameters we concluded

to are shown in table below.

Population size 100

Number of generations 10

Mutation probability 0.05

Crossover probability 0.8

Table 1: tuning of Genetic Algorithm

3.7. Variance Inflation Factor

When building a model one must select the set of variables to use for the regression or

classification. If the predicted variable is uncorrelated with some of the predictors, then one should

pose the question of the adequacy of the selected variables in the model. One thing that can

cause this low performance in multiple regression analysis is collinearity and multicollinearity.

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=choosing+mutation+and+crossover+ratios+for+GA+-+a+review+with+a+new+dynamic+approach&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3ArJCwzMUYqXgJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=choosing+mutation+and+crossover+ratios+for+GA+-+a+review+with+a+new+dynamic+approach&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3ArJCwzMUYqXgJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=choosing+mutation+and+crossover+ratios+for+GA+-+a+review+with+a+new+dynamic+approach&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3ArJCwzMUYqXgJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del

48

“Collinearity is a linear association between two explanatory (predictor) variables. Two regressor

variables are perfectly collinear if there is an exact linear relationship between the two.

Multicollinearity: Multicollinearity refers to a situation in which two or more explanatory (predictor)

variables in a multiple regression model are related with each other and likewise related with the

response variable.” (Akinwande, Dikko & Samson, 2015, p.2)

The reason why multicollinearity negatively impacts the model is that it inflates the standard errors

of the coefficients without any reason, and this in turn tells the model that these variables are

statistically insignificant for the model, whereas without the multicollinearity they would be

significant (Akinwande et al., 2015).

One method that estimates the degree of multicollinearity is the Variance Inflation Factor (VIF),

which, for a particular predictor 𝑥𝑗, can be described as the ratio of the variance of its coefficient

𝛽𝑗 when all variables fit the model over the variance of 𝛽𝑗 if only 𝑥𝑗 first the model (James, Witten,

Hastie & Tibshirani, 2013). In other words, it assesses for a specific predictor how much its

variance is inflated under the presence of multicollinearity; if it is highly inflated its contribution to

the model cannot be evaluated properly.

The mathematical formulation of VIF is given by the formula:

 𝑉𝐼𝐹(𝛽̂𝑗) =
1

1−𝑅𝑋𝑗|𝑋−𝑗
2 (35)

Where 𝑅𝑋𝑗|𝑋−𝑗

2 is the Pearson correlation coefficient 𝑅2 from a regression of 𝑋𝑗 onto all of the other

predictive variables (James, Witten, Hastie & Tibshirani, 2013). If 𝑅𝑋𝑗|𝑋−𝑗

2 has value close to 1 it

signifies high multicollinearity which it turn increases the value of 𝑉𝐼𝐹(𝛽̂𝑗), while when 𝑅𝑋𝑗|𝑋−𝑗

2 is

close to 0 then VIF’s value goes towards 1. A general rule states that the smallest value of VIF is

1, when there is no multicollinearity, values between 1 and 5 indicate the existence of some

multicollinearity but not of a degree of concern, and values greater than 5 require to handle in

some way these predictors.

We applied the VIF criterion to Lending Club Dataset variables and we removed all the variables

whose VIF exceeded the threshold 5. We conducted the experiments then both with the full

dataset and the one after the removal of these predictors. The effect and full results are presented

in chapter 5.

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Variance+Inflation+Factor%3A+As+a+Condition+for+the+Inclusion+of+Suppressor+Variable%28s%29+in+Regression+Analysis&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AZgdMMOxGJTIJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Variance+Inflation+Factor%3A+As+a+Condition+for+the+Inclusion+of+Suppressor+Variable%28s%29+in+Regression+Analysis&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AZgdMMOxGJTIJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=an+introduction+to+statistical+learning+chapter+3&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AZ2-9IIxHTBkJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=an+introduction+to+statistical+learning+chapter+3&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AZ2-9IIxHTBkJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=an+introduction+to+statistical+learning+chapter+3&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AZ2-9IIxHTBkJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del

49

3.8. Dimensionality reduction – Principal Components Analysis

Among the methods we tried in our effort to enhance the performance of the classifier for Dataset

B was dimensionality reduction. Dataset B originally lived in 𝑅236 and all tis variables were

numeric. Many of the variables were correlated, something that we initially spotted by reading

their interpretation and then we confirmed by plotting a correlation heatmap. For example,

anstd13to18ma and anstd13to24ma denoted the advances number standard deviation 13 to 18

and 13 to 24 months ago respectively, two values that are correlated.

To address this issue, we applied a well-known technique known as Principal Component

Analysis (PCA). PCA is a quite old technique, as it was first invented by Karl Pearson in 1901 and

later developed by Harold Hotelling during the 1930s. Let us first provide a definition originally

given by Hotelling in 1933

 “PCA can be defined as the orthogonal projection of the data onto a lower dimensional linear

space, known as the principal subspace, such that the variance of the projected data is

maximized” (Bishop, 2006, p.561).

or, equivalently

“as the linear projection that minimized the average projection cost, defined as the mean squared

distance between the data points and their projections”. (Bishop, 2006, p.561).

Let’s assume we are in 𝑅2 and we have a set of samples as shown in picture 8. We want to

reduce the features’ dimension onto R. We can do this by projecting every sample into a vector

onto 𝑅2 and consider the projections of all the samples instead of the original ones. There are

infinitely many choices to choose such a vector, however, the optimal would be the one that

maximizes the projected points’ variance, so that we lose the minimum information possible.

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=bishop+pattern+recognition&btnG=&oq=bishop+#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AyiKquKHyAWAJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=bishop+pattern+recognition&btnG=&oq=bishop+#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AyiKquKHyAWAJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del

50

Figure 14: Samples in 𝑅2

For example, comparing the projection onto the two vectors as shown in pictures 9 and 10, we

can see that in the former case the projected points look more compact, hence retain less

variance, hence losing more information.

Figure 15: not optimal projection (left), optimal projection (right)

Mathematically speaking, let 𝑋 = {𝑥𝑖, …, 𝑥𝑑} be the samples set and 𝑢1 he vector onto which

they are projected. We want to maximize the quantity Var(𝑢1𝑥) for 𝑢𝑖, or equivalently, the quantity

51

𝑢1
𝑇S𝑢1, where 𝑆 is the covariance matrix of 𝑋, which translates into the following convex

optimization problem:

𝑚𝑎𝑥𝑢1
𝑢1

𝑇S𝑢1

under the constraint 𝑢1
𝑇S𝑢1 =1

The constraint is posed because the quantity 𝑢1
𝑇S𝑢1 is quadratic and monotonically increasing

when 𝑢1 is free.

This is a convex optimization problem that can be resolved with Lagrangian multipliers and it
translates into

 𝑚𝑎𝑥𝑢1
𝐿(𝑢1, 𝜆) = 𝑢1

𝑇S𝑢1-λ(𝑢1
𝑇S𝑢1 − 1) (36)

So,

ⴋL

ⴋ𝑢1
 = 2S𝑢1 − 2𝜆𝑢1 = 0 →S𝑢1 = 𝜆𝑢1 (37)

Which results in obtaining the solution by determining the max eigenvalue and its corresponding

eigenvector.

This can be generalized as moving from 𝑅𝑑 to 𝑅𝑝 where p<d, where 𝑢1,… 𝑢𝑑 are the principal

components that span the p-dimensional space onto which the samples are projected. Principal

components are orthonormal linear transformations of the original spanning vectors of 𝑅𝑑.

PCA is an uncostly technique that can speed up the training of a model and increase the predictive

ability of the model as it reduces or even eliminates multicollinearity that can lead to overfit.

3.9. Stratified train-test split

The next step after choosing the methods and algorithms to use and tuning the hyperparameters

is to train the model on the training set and evaluate its performance on some data points that it

has never seen. Therefore, one part of the dataset is used for the training process, and another

one, usually smaller, to the validation process. This is commonly known as train-test split. The

model’s parameters are tuned with the guidance of the loss function used.

52

One essential parameter to consider when splitting the dataset is whether the dataset’s classes

are balanced or not. In Dataset B the degree of imbalance was very high, with the minority class

(positive class) to constitute merely 3.79% for Source and for Target 2.23%. Thus, when splitting

the dataset one should ensure that both train and test part contain the same ratio of 0 and 1

labeled samples. Assume this condition is not satisfied, and that the train set contains none of the

1-labeled samples. Then the model will be trained to identify the 0-labeled but will have no clue

about the 1-labeled. Hence, when it is fed with 1-labeled samples in the validation process, its

decision will not have grounds on some training process via which it learned those samples’

distribution, but it will simply apply the parameters that were obtained with respect to the training

of the 0-labeled samples. In other words, the model will have learned nothing for the one of the

two classes, which is evidently problematic.

Stratified split offers a solution to this problem. It is an alteration of the traditional train-test split

that during the process of dividing the dataset into train and test, it takes into consideration the

class ratio. So, if a dataset consists of 980 positive and 20 negative samples, and we decide to

allocate 50% of it for training and 50% for validation, then 490 positives and 10 negatives will be

allotted to each subset.

 Figure 16: Stratified train-test split in a 4-fold cross validation

Train-test split is a validation technique that requires a sufficiently large dataset to work well. What

“sufficiently large” means, is of course subject to each particular problem, but with too few data

points the model will probably not be able to learn sufficiently. The necessity of a large dataset is

more evident in the case of an imbalanced dataset where the minority class is harder to learn.

We used Sklearn’s implementation of stratified train-test split and applied it to Dataset B to ensure

that the two splits contain the same ratio of majority to minority class samples.

53

3.10. Synthetic Minority Over-Sampling Technique

The Dataset B was highly imbalanced with the minority class to hold merely 3.79% in Source and

2.23% in Target. This is reasonable as the Credit Scoring aims, among other things, at minimizing

the number of users who do not pay their loan back. The dataset is split into segments with respect

to the recharge amount, and in general, the users who spend less on recharging are less

trustworthy and more likely to default on their loan. The table below depicts the default rates per

segment in Source and Target.

 segment

1

segment

2

segment

3

segment

4

segment

5

segment

6

segment

7

segment

8

Source 4.53% 5.27% 4.48% 4.15% 4.56% 3.99% 2.77% 1.16%

Target 2.75% 2.87% 3.21% 2.77% 1.43% 1.72% 1.00% 1.97%

Table 2: Default rates of Source and Target in Dataset B

The small number of positive samples in comparison to the negative samples makes it hard for a

classifier to learn the positive class. The problem has been observed in applications of diverse

nature, such as the detection of oil spills in satellite radar images, of fraudulent phone calls, in

information retrieval and filtering, in in-flight helicopter gearbox fault monitoring and also in

diagnosing infrequent medical cases like thyroid diseases (Japkowicz & Stephen, 2002). The

sample size, the level of imbalance and the complexity of the problem to be solved are three

determinant factors for the impact of the imbalance in the model’s performance (Japkowicz &

Stephen, 2002). The second one is definitely present to a large extent in our case.

A number of methods have been proposed to deal with class imbalance, which could be

categorized into three big categories: oversampling, undersampling and cost-sensitive training.

Cost-sensitive training is based on the idea that every misclassified sample is assigned a cost

and these costs take part in the training process. The goal is to minimize this cost of

misclassification while not all misclassifications are treated equivalently; instead, they are

assigned weights (Ling & Sheng, 2008). This approach has been tried also in neural networks

with positive results (Zhou & Liu, 2005). The undersampling method occurs in the majority class.

It will reduce the number of negative samples (without loss of generality, the negative class can

be considered as the minority) and bring the dataset to a more balanced state. An important

drawback of this method is that the sample size might be significantly reduced. Oversampling is

done to the minority class and it involves increasing the number of positive samples by

bootstrapping or by creating synthetic positive samples. One of the most popular techniques for

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=imbalance&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3Ay5XF8bAzxFgJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=imbalance&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3Ay5XF8bAzxFgJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=imbalance&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3Ay5XF8bAzxFgJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Cost-Sensitive+Learning+and+the+Class+Imbalance+Problem&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3ALeDNaDO7qsIJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Training+cost-sensitive+neural+networks+with+methods+addressing+the+class+imbalance+problem&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3A7Js6aDCNiDUJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del

54

the latter is Synthetic Minority Oversampling Technique (SMOTE) (Chawla, Bowyer, Hall, &

Kegelmeyer, 2002).

SMOTE creates synthetic minority samples among the real ones. It chooses a positive sample, it

finds its 𝑘 nearest neighbors - where 𝑘 is a hyperparameter – and it selects one or more of them.

Then it connects with a line the first sample chosen with its selected neighbor(s) and it places in

the middle of the line a new negative sample.

Figure 17: Illustration of SMOTE; the 2 nearest neighbors of A are found and the synthetic samples are placed in between the lines

drawn (https://iq.opengenus.org/smote-for-imbalanced-dataset/)

SMOTE comes with drawbacks of course; it is susceptible to creating noise and it might make the

decision surface more complicated for some classifiers. We used SMOTE from imblearn ‘s

over_sampling module and we experimented with the number of neighbors as well as with the

final ratio (minority/majority) after the oversampling, eventually setting 𝑘 = 5 and 𝑟𝑎𝑡𝑖𝑜 = 0.3.

3.11. Evaluation metrics

Part of the process when building a model is its performance evaluation. It is crucial when

choosing the best model among various candidates. Numerous metrics have been introduced,

since in various problems and applications what needs to be measured differs. Ferri et al. (Ferri,

Hernández-Orallo & Modroiu, 2009) have proposed a taxonomy that classifies measures into

three families:

● Threshold metrics: these evaluate the ability of a classifier to minimize the number of wrong

predictions and are informative with respect to the qualitative understanding of the error. Such

measures are accuracy, F-score and Kappa statistics.

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=smote&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AXUCmjl0QoVQJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=smote&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AXUCmjl0QoVQJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=An+experimental+comparison+of+performance+measures+for+classification&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3ADu4nMYfC248J%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=An+experimental+comparison+of+performance+measures+for+classification&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3ADu4nMYfC248J%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del

55

● Probabilistic metrics: these metrics are interested in evaluating not only whether the correct

class was predicted, but also whether the wrong class is predicted with high or low probability.

Such measures are Brier Score, Log Loss (cross-entropy), some probability-rate and some

calibration metrics.

● Ranking metrics: these emphasize on the ability of the classifier to distinguish between the

classes. Area Under the Curve (AUC) is such a metric.

The existence of imbalance between the classes in a dataset - as is the case in Dataset B - affects

the choice of the metric. Branco et. al. (Branco, Torgo & Ribeiro, 2015) stress that choosing a

common metric in imbalanced datasets can result in sub-optimal and misleading classification

models as these metrics are insensitive to the existence of skewness in domains. Moreover, they

highlight that metrics play a role when the model learns

“Adequate metrics should not only provide means to compare the models according to the user

preferences, but can also be used to drive the learning of these models.” (Branco et al., 2015,

p.4)

An example that can illustrate the need of a correct metric choice is the case of building a model

to predict whether a tumor is benign or malignant over a dataset that consists of 99,000 benign

and 1,000 malicious samples. Evaluating the model with Accuracy could possibly result in high

scores, as the model would learn very well the majority class while remain ignorant in the minority

class. However, this would be a useless, if not dangerous, model, as all tumors would be classified

as benign.

As far as Dataset B is concerned, the Credit Scoring team of Channel VAS is mainly interested in

distinguishing between the two classes. However, it is also useful to be able to predict the

probability with which the class was predicted. This is because Credit Scoring aims at determining

the Temporary Credit Limit (TCL) that defines exactly the limit of the amount someone can borrow.

Loan providers are not only interested in deciding whether to provide a loan or not, but also in

determining the exact loan amount someone can borrow. If TCL is too low then loan providers

run the risk of falling subject to many defaults. On the other hand, if TCL is too high, few loans

are provided and the ability to increase profits is confined. This is the reason why probabilistic

and ranking metrics are preferred over threshold metrics.

Specifically, we have chosen to use the Receiving Operator Characteristic – Area Under the

Curve (roc-auc score) to evaluate the performance of the classifiers when using Transfer Learning

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=A+Survey+of+Predictive+Modelling+under+Imbalanced+Distributions&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3A8iDwQkuDQ-wJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=A+Survey+of+Predictive+Modelling+under+Imbalanced+Distributions&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3A8iDwQkuDQ-wJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del

56

methods, and Log Loss and Brier score also when building a base classifier for dataset B. Each

of these are described below.

3.11.1. Area Under the Curve

Area Under the Curve (AUC) of a binary classifier reflects the probability that a randomly chosen

positive sample will be ranked higher than a randomly chosen negative sample. To understand

this on a high level it is helpful to introduce the notions of True Positive Rate (TPR) and False

Positive Rate (FPS).

TPR is defined as the fraction of the instances that are correctly classified as positive out of all

the actually positive ones. Intuitively, it expresses the ability of the classifier to capture the positive

instances. A 100% TPR means that the classifier does not miss a single positive instance. It can

be thought of as the number of instances that are positive and are correctly classified as such

𝑇𝑃𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

FPS is defined as the fraction of the instances that have been wrongly classified as positive over

the total number of negative instances. Intuitively, it expresses how prone the classifier is to

missing negative instances. A 100% FPR means that the classifier is unable to capture negative

instances. It can be thought of as the number of instances that are negative but were classified

as positive

FPN =
𝐹𝑃

𝐹𝑃+𝑇𝑁

Receiving Operator Characteristic (ROC) curve plots the TPR versus the FPR at different

classification thresholds. Lower thresholds benefit positive classification and consequently TP

and FP, while higher thresholds benefit negative classification and this TN and FN. Therefore,

the curve is a measurement of how well the classifier distinguishes the two classes. In the

extreme scenario where a classifier classifies completely at random the curve becomes a

straight line and the respective area under the curve, 0.5. On the other extreme and ideal

scenario where a classifier classifies all instances correctly the curve takes the shape of a

Gamma, and the respective area under the curve is 1. Figure 18 illustrates the two extreme

cases as well as another case when the area under the curve is at 0.65 (its average

57

performance) in comparison to a random classification.

Figure 18: The Receiving Operator Characteristic. Left: the extreme cases, right: a ROC whose AUC is 0.635

3.11.2. Brier score and log loss

Brier score is also known as Mean Squared Error and for binary classification is defined as

𝐵𝑟𝑖𝑒𝑟 =
∑ (𝑓(𝑖,𝑗)−𝑝(𝑖,𝑗))2𝑚

𝑖=1

𝑚
 (38)

where 𝑓(𝑖, 𝑗) represents the actual probability of the sample 𝑖 to be in class 𝑗, 𝑝(𝑖, 𝑗) represents

the estimated probability of sample 𝑖 to be in class 𝑗, and 𝑚 is the total number of samples (Ferri

et al., 2009). Since we are dealing here with binary classification, (1) can be written as

𝐵𝑟𝑖𝑒𝑟 =
∑ (𝑦𝑖−𝑦̂𝑖)2𝑚

𝑖=1

𝑚
 (39)

Where 𝑦𝑖 is the class label of sample i and 𝑦̂𝑖 the estimated probability that the sample is positive.

Log Los also measures how good probability estimates are, however, it may be misleading in

imbalanced datasets. Log Loss, otherwise known as cross-entropy, is defined as

𝐿𝑜𝑔 𝐿𝑜𝑠𝑠 =
∑ (𝑦𝑖+ (1−𝑦𝑖)𝑙𝑜𝑔 (1−𝑦𝑖))2𝑚

𝑖=1

𝑚
 (40)

In a highly imbalanced dataset few elements of the sum are non-zero which results to low log loss

score.

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=An+experimental+comparison+of+performance+measures+for+classification&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3ADu4nMYfC248J%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=An+experimental+comparison+of+performance+measures+for+classification&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3ADu4nMYfC248J%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del

58

We used roc-auc metric to evaluate the performance of the classifiers before and after the Domain

Adaptation techniques, in both datasets, and we used Brier score and Log Loss when we were

building base classifiers for Dataset B.

59

4. Datasets and preparation of data

For our experiments we used two different datasets, one is the Lending Club Dataset, which is

the same as in papers (Huang & Chen, 2018), (Suryanto et al, 2019) and a dataset obtained from

Channel VAS, a FinTech company based in Greece, which we will call Dataset B. In the following

two sections we will describe the two datasets.

4.1. Lending Club Dataset data

The Lending Club Dataset which is publicly available

(https://www.kaggle.com/adarshsng/lending-club-loan-data-csv?select=LCDataDictionary.xlsx)

in a csv form. There are various versions depending on the period that the data was collected.

The one we chose contains loan data for loans issued through Lending Club institution for the

period 2007-2015 that involve among others credit scores, number of finance inquiries, address

including zip codes and state and more. One of the columns regards the loan status, which, after

the preprocessing we did, contained the values:

● Fully Paid

● Late (31-120 days)

● Charged Off

● Default

“Fully Paid” was the value for non-defaulters, and all the rest for defaulters. Initially, the dataset

consisted of 2,260,668 and 145 columns. A full description of the columns can be found in the

Appendix.

We followed a similar preprocessing as the one followed by Huang & Chen that is described in

their paper (Huang & Chen, 2018) who also used Lending Club Dataset among other for their

experiments in their domain adaptation approach in a credit risk problem.

Firstly, we cleaned the dataset from missing values by removing columns that had more than 50%

of their missing values removed. Moreover, the rows that had at least one missing value, were

dropped as well. After this cleaning, we ended up with 113,534 rows and 81 columns. In their

paper, Huan & Chen (Huang & Chen, 2018) removed features with very high collinearity, as it is

commonly known that collinearity when developing a model may obscure the contribution of each

variable in prediction. We attempted to remove collinear features by applying the Variance

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Domain+Adaptation+Approach+for+Credit+Risk+Analysis&btnG=
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Transfer+Learning+in+Credit+Risk&btnG=
https://www.kaggle.com/adarshsng/lending-club-loan-data-csv?select=LCDataDictionary.xlsx
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Domain+Adaptation+Approach+for+Credit+Risk+Analysis&btnG=
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Domain+Adaptation+Approach+for+Credit+Risk+Analysis&btnG=

60

Inflation Factor (VIF) criterion to see how it affects the learning with and without domain

adaptation. When VIF was applied (with threshold = 5) 40 variables were filtered out of the 81.

Eventually we used all variables as feature selection with VIF negatively affected the results.

Figure 19: distribution of the variable loan_amnt

The column loan_amnt that describes the amount of the loan that has been requested by the

borrower, was used to split the dataset into Source and Target. We grouped the loan_amnt into

groups of range 5,000 and the distribution can be seen in the graph above. The exact splits that

were used are described in a subsequent chapter where the experiments and the results are

presented in detail.

The default rate in the whole dataset is 26.9% but it differs for every category as it can be seen

on the table below. It gradually decreases until the last category, the one with the highest

loan_amnt, where it increases again.

Interval (loan_amnt in $) Defaulters Non-defaulters

(0.0, 5000.0] 21.19% 78.81%

(5000.0, 10000.0] 24.67% 76.33%

(10,000.0, 15,000.0] 27.53% 72.47%

(15000.0, 20000.0] 30.16% 69.84%

(20,000.0, 25,000.0] 30.72% 69.28%

(25,000.0, 30,000.0] 31.33% 68.67%

(30,000.0, 35,000.0] 34.81% 65.19%

(35,000.0, 40,000.0] 23.47% 76.52%

Table 3: Default rates per bin constructed by loan_amnt variable

61

There is some degree of imbalance, with the minority class holding approximately 25%, but this

was expected, as a lending company would not be profitable and well-operating if there was a

significant number of defaults on the loans.

4.2. Dataset B data

This dataset was provided by the company Channel VAS, in which the person writing this thesis

worked for one year and four months. The company collaborates with mobile telephone providers

and provides to the end users airtime and data loans when they do not have money in their

account. Channel VAS operates in more than 25 countries and works along with more than 35

operators. A project refers to a specific provider together with the country of operation. The

company receives from its collaborators transactional, behavioral data which it then processes

and uses to profile the users and assign to them a Temporary Credit Limit (TCL). Thus, every

user who requests a loan can receive an amount up to their TCL.

We got two datasets from two different countries, Nigeria and Ghana, one used as the Source

and the other as the Target. These countries were chosen because they are located in the same

geographical area and it has been noted by the people working in the Credit Risk department that

they present behavioral similarities, and this should offer the ground for the existence of the

domain similarity that is required for Transfer Learning and Domain Adaptation.

The variables of the dataset describe the expenditures of the users on airtime recharges, the

loans that they have taken and the repayments of the loans, as well as some other information

like how long they have been to the operator. A user is characterized as a defaulter when they

have not repaid their loan after six months. The users are split into segments resulting from a

segmentation that is based on the number and amount of recharge expenditures made. The

segments are usually four, but we expanded them into eight. The overall default rate for Source

was 3.79% and for Target 2.23%. For each segment the corresponding rates are shown in the

table below. The existence of high imbalance between the two classes is evident for both

datasets. This issue was attempted to be addressed via methods that will be described in a

subsequent chapter.

62

 segment

1

segment

2

segment

3

segment

4

segment

5

segment

6

segment

7

segment

8

Source 4.53% 5.27% 4.48% 4.15% 4.56% 3.99% 2.77% 1.16%

Target 2.75% 2.87% 3.21% 2.77% 1.43% 1.72% 1.00% 1.97%

Table 4: default rates of Source and Target in Dataset B

There was a variable that denoted the telephone number of the user, which is used in Channel

VAS as a key to provide a TCL. Since this information is sensitive and in order to comply with the

General Data Protection Regulation (GDPR) we encrypted these numbers.

The two datasets did not have any missing values or any sort of inconsistency as all data is

subject to validation when received from the operators. Source’s dataset originally consisted of

314 features and Target’s of 277. Out of all these features some were common. So, since we

followed approaches developed for homogeneous cases, we selected a subset of 236 common

features, plus the target variable. All of them were numerical. There were 850,000 rows in

Source’s dataset and 750,000 in Target’s. The data was retrieved with queries using matlab and

SQL from the company’s cluster.

63

5. Experiments and results

In this chapter we are presenting the experiments that were ran on the datasets and their results.

The results from each dataset are presented separately.

5.1. Lending Club Dataset

The two domain adaptation methods applied were KLIEP and trAdaBoost and the machine

learning algorithms used were Gradient Boosting, Random Forest and Logistic Regression. The

Lending Club dataset consisted - after the cleaning – of 113,534 samples. Binning the loaned

amount in bins of range=5,000 we can see that approximately 42% of the borrowers loaned up to

$10,000 and approximately 62% loaned up to $15,000. Only 6.3% loaned more than $30,000.

Interval (loan_amnt in $) percentage

(0.0, 5000.0] 13.74%

(5000.0, 10000.0] 28.2%

(10,000.0, 15,000.0] 20.14%

(15000.0, 20000.0] 16.01%

(20,000.0, 25,000.0] 9.81%

(25,000.0, 30,000.0] 5.78%

(30,000.0, 35,000.0] 5.54%

(35,000.0, 40,000.0] 0.78%

Table 5: Distribution of loan_amnt variable

We ran the experiments with three different splits for the Source and the Target domain:

a. Source: loans < $10,000, Target loans > $10,000

b. Source: loans < $15,000, Target loans > $25,000

c. Source: loans < $10,000, Target loans > $30,000

64

Figure 20: Histogram of the distribution of loan_amnt variable

This is because we wanted to get some insight on how the size of the domains and their similarity

influence transfer learning. To explain what is meant by this, let us first notice that every split

allocates different amounts of data to Source and Target. The amount of data allocated to Source

is determinant because it is the Source where the training takes place. The amount and the

variance of the Target’s (where testing takes place) samples is also very important, in the sense

that if the test samples are close to each other on the feature space (less variance), then it is

likely easier for a classifier to learn well and less likely to be confused. This case has been studied

by Jiménez-Guarneros and Pilar (Jiménez-Guarneros & Pilar, 2021) as the case of subclusters

in the Target domain’s classes, which has been shown to induce negative transfer. The exemplary

pictures below illustrate this.

Therefore, if Target’s samples include those with loan_amnt > 10,000 - the maximum being

40,000 - the samples’ features could have more variance and greater range of values, thus be

more expanded in the feature space, while if the Target’s samples include those with loan_amnt

> 30,000, the features are likely to have less variance and higher proximity in the feature space.

Of course, this is not certain, but taking some insight through graphs, it is reasonably probable.

Moreover, the amount of loan requested by an applicant usually comes in accordance with various

indexes, like the annual income for example. The higher loan amounts are more likely to be

requested by applicants with higher income. In other words, there is correlation between the

variable loan_amnt and other variables. Consequently, there are many features that follow a

different distribution when samples are restricted with respect to loan_amnt beyond or above

some threshold, and this respectively affects the similarity between the Source and the Target

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=A+study+of+the+effects+of+negative+transfer+on+deep+unsupervised&btnG=&oq=A+study+of+the+effects+of+negative+transfer+on+deep+unduper#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AMuf6YZlH2pcJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del

65

domains. The following graphs show two characteristic features that are distributed evidently

differently when the threshold of loan_amnt changes.

Figure 21: on a two-dimensional space, the positive test samples on the right form a single cluster and it is easier for a classifier to

separate them from the negatives. On the left, we see a case where the positive samples are located in two areas on the space, and

this could make some classifiers more error prone.

66

Figure 22: Top: annual income for applicants of amounts<10,000; the distribution is left skewed. Bottom: annual income for

applicants of amount>10,000; the distribution is right skewed

67

Figure 23: Top: late fees received to date: intensely right skewed with most values on range 10-20. Bottom: late fees received to date:

non symmetric bimodal

Such geometrical transformations in the Target’s distribution has been studied as well by

Jiménez-Guarneros and Pilar (Jiménez-Guarneros & Pilar, 2021), who observed that some

transformations like skewness for example, negatively affected the learning. Considering the

above, in split (a) there are several samples that are more related, those closer to

loan_amnt=10,000, hence some degree of similarity between the domains, and there is more

variance in the Target domain. In split (b) there are fewer similar samples and less variance in

Target as well. Split (c) could be considered the most extreme case where there is little similarity

between the two domains and little variance on Target. To get some insight into the similarity of

the domains, we applied PCA with 2 principal components to do scatter plots and see how the

clusters formed resemble or differ.

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=A+study+of+the+effects+of+negative+transfer+on+deep+unsupervised&btnG=&oq=A+study+of+the+effects+of+negative+transfer+on+deep+unduper#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AMuf6YZlH2pcJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del

68

Figure 24: Top left depicts the two clusters formed when using the whole dataset. Top middle picture can be viewed in comparison

with top right and bottom left (for splits (a) and (c) respectively) to observe that the top right seems to have been reflected along the

vertical axis and widened, and the bottom left seems to have been rotated by 45° and widened. Lastly, the bottom right image looks

also rotated by - 45° and widened.

5.1.1. Lending Club Dataset - KLIEP

We applied the KLIEP method to Gradient Boosting, Random Forest and Logistic Regression,

with and without feature selection with VIF criterion. We tested the method in various sample

sizes, namely, 25,000, 50,000, 75,000 and 100,000 that were drawn randomly. In general, the

feature selection using VIF impeded the performance of the classifiers with and without transfer

learning. This can have happened because the features that were removed might have been the

features over which the two domains were more similar, as well as more predictive. Thus,

removing them may trigger the root cause of negative transfer, the divergence between the two

domains (Wang et al., 2019). The table below shows a characteristic example on how the roc-

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=characterizing+and+avoiding+negative+transfer&btnG=&oq=characterizing+and+av#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AAUw3bLhD8T8J%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D1%26hl%3Del

69

auc scores were with/without feature selection and KLIEP, in this case with Gradient Boosting

classifier.

 Table 6: roc-auc scores with Gradient boosting for various settings for loan_amnt thresholds 10,000 and 10,000, per sample size

Gradient Boosting improved its performance on splits (a) and (b) on all sample sizes by

approximately 9%, while decreased it in split (c) on all sample sizes by approximately 8% except

for sample size=50,000. This could hint that this classifier had more difficulty in predicting Target’s

class when there was not so much similarity between the domains. The sample size did not play

an important role on the predictions. This may be explained by the fact that, as explained in

previous chapter, KLIEP targets to solve the following convex optimization problem:

𝑚𝑎𝑥{𝑎𝑙}𝑙=1
𝑏 [∑ 𝑙𝑜𝑔 (∑ 𝑎𝑙𝜑𝑙(𝑥𝑖𝑡𝑒

𝑏

𝑙=1

))

𝑛𝑡𝑒

𝑙=1

]

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
1

𝑛𝑡𝑟
 ∑ ∑ 𝑎𝑙𝜑𝑙(𝑥𝑖𝑡𝑟

)

𝑏

𝑙=1

𝑛𝑡𝑟

𝑖=1

= 1 𝑎𝑛𝑑 𝑎𝑙 > 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑙 = 1,2, … , 𝑏

Where 𝑎𝜄 are the parameters to be learned and 𝜑𝑖 kernel functions, where the number of training

samples is fixed. Thus, an adequate choice for the number of kernels should provide a global

optima solution to the above problem regardless of the number of training samples.

70

Figure 25: Gradient Boosting roc-auc results with and without KLIEP on different Source-Target splits and sample sizes with all

features.

Random Forest improved in most cases its roc-auc score but certainly to a smaller degree than

Gradient Boosting. There were two cases when negative and neutral (no significant change)

transfer occurred. Sample size also did not seem to play an important role here. Only in one case

there was an astonishing increase of 16% in roc-auc score, that is when sample size was 50,000

in split (b). Given that this happened only once we do not have some hint for its cause; we could

assume that it happened due to the particular sample drawn, as it was randomly selected. Re-

running the experiments multiple times or using cross-validation could be insightful for this.

71

Figure 26: Random Forest roc-auc results with and without KLIEP on different Source-Target splits and sample sizes and without

feature selection.

Logistic regression did not seem to be affected at all by KLIEP; the roc-auc scores were already,

without the use of KLIEP, very high (approximately 99%), therefore KLIEP had minor impact in all

cases (less than 0.4%).

5.1.2. Lending Club Dataset - TrAdaBoost

With trAdaBoost, we experimented with various test sizes, namely, 0.7, 0.8, 0.9, 0.95, 0.995. The

smaller the test size the more samples from the Target domain are available in the training,

something that may boost a classifier’s learning, but at the same time it contains the risk of

overfitting.

Gradient Boosting Classifier in split (a) had a slight increase in roc-auc in test sizes 0.7 and 0.8,

significant negative transfer in test sizes 0.9 and 0.95 and a good increase in test size 0.995

72

(approximately 8%), that is, only when few samples from the Target were allocated to training as

labeled there was a pretty high boost. Split (a) allows for more similarity between the Source and

the Target domain samples. An adequate number of labeled Target samples is required to prevent

both overfitting and underfitting. For example, providing only a few labeled Target samples (0.5%)

might have been an adequate amount of data to help the classifier adjust the instances’ weights

without confusing it, as for example it could happen in figure 8. The decreased performance

(negative transfer) in test sizes 5% and 10% looks strange at first. However, for negative transfer

to be avoided it is essential that appropriate size of Target labeled data be used. As they write,

“When labeled target data is available … a better target-only baseline can be obtained using semi-

supervised learning methods and so negative transfer is relatively more likely to occur. At the

other end of the spectrum, if there is an abundance of labeled target data, then transferring from

an even slightly different source domain could hurt the generalization. Thus, this shows that

negative transfer is relative.” (Wang et al., 2019, p.3)

This could be an explanation of the negative transfer induced with test sizes 5% and 10%. Another

explanation could be that the algorithm did not run in sufficiently many epochs (iterations) in order

to adjust the weights appropriately. There could be Source instances that should further decrease

their weights in order that they have a minor role in the classifier’s learning, or, respectively, some

Target’s instances should have had their weights further increased so that the classifier puts more

emphasis on them. Let us recall that the Source’s and Target’s weights are updated in every

iteration as following:

𝑤𝑖
𝑡+1 = {𝑤𝑖

𝑡𝛽|ℎ𝑡(𝑥𝑖)−𝑐(𝑥𝑖)|, 1 ≤ 𝑖 ≤ 𝑛 𝑤𝑖
𝑡𝛽𝑡

−|ℎ𝑡(𝑥𝑖)−𝑐(𝑥𝑖)|
, 𝑛 + 1 ≤ 𝑖 ≤ 𝑛 + 𝑚} (41)

where betas belong to (-0,1], 𝑥𝑖 , 𝑖 = 1, … , 𝑛 are the Source’s instances and 𝑥𝑖, 𝑖 = 𝑛 + 1, … , 𝑚 the

Target’s instances.

Test sizes 20% and 30% means that there were abundant labeled samples from Target that were

used in training, and these samples themselves could be sufficiently many to help the classifier

learn the Target’s classes.

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=characterizing+and+avoiding+negative+transfer&btnG=&oq=characterizing+and+av#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AAUw3bLhD8T8J%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D1%26hl%3Del

73

Figure 27: Gradient Boosting roc-auc results with and without trAdaBoost on different Source-Target splits and sample sizes and

without feature selection.

In split (b), only positive transfer occurred, which ranged from 4% up to the impressive 16%, which

led to almost a perfect classifier with a 99.1% roc-auc score when test size was 90%. The distance

between the domains here is bigger and there are fewer samples allocated to Target.

In split (c), slight negative transfer occurred only when test size was 99.5%, i.e., when merely

0.5% of the Target’s samples participated in training as labeled. The similarity between Source

and Target was even smaller here as was the number of samples of the Target. Just 0.5% of

labeled Target samples might have been too little to help the classifier learn the similarities

between the two domains.

The table below summarizes when there was negative (-), positive (+) and highly positive (++)

transfer.

74

Split / test size 0.7 0.8 0.9 0.95 0.995

10,000-10,000 + + - - ++

15,000-25,000 + + ++ ++ ++

10,000-30,000 + ++ ++ ++ -

Table 7: Impact of trAdaBoost (positive or negative) with Gradient Boosting Classifier with respect to test size

Random Forest presented a slightly negative or neutral (no significant change) transfer in split (a)

for all test sizes. With split (b), there was positive transfer of 2%-6% in test sizes 0.7, 0.8 and 0.9

but negative transfer of 2%-9% in test sizes 0.95% and 0.995%. Probably there were not

sufficiently many labeled Target samples to boost the training. In split (c) negative transfer was

spotted only when test size was 0.95% and in the other cases positive or neutral transfer of up to

9%.

Figure 28: Random Forest roc-auc results with and without trAdaBoost on different Source-Target splits and sample sizes and without

feature selection.

It is evidently more complicated to understand the behavior of Random Forest. It seems to do

better in smaller test sizes, e.g., when more labeled Target data are provided, however, more

experiments should be conducted in order that we make some meaningful observations. The

table below summarizes the situation (+ stands for positive transfer, - for negative and N for

neutral)

75

Split / test size 0.7 0.8 0.9 0.95 0.995

10000-10000 - - N N -

15000-25000 + + + - -

10000-30000 + N + - +

Table 8: Impact of trAdaBoost (positive or negative) with Random Forest Classifier with respect to test size

Logistic Regression did not show any noticeable changes with trAdaBoost either; as also

mentioned before its performance was already approximately 99% in auc-roc score, so the minor

changes induced by using trAdaBoost are not of interest or informative.

5.2. Dataset B

In this section we will present the results we obtained applying KLIEP and TrAdaBoost on Dataset

B, using Logistic Regression. Before this though, we will show the results we obtained when we

were trying to build a good base classifier to later use with transfer learning.

Without any process the roc-auc score obtained with Logistic Regression on Source was 0.728.

We then applied PCA, feature selection with Genetic Algorithm and oversampling with SMOTE,

under-sampling with sklearn’s RandomUnderSampler, as well as combinations of these. As one

can see from the table below, nothing managed to contribute to a significant increase; roc-auc

increased from 0.3% up to 1%. PCA was applied to maintain a 99% explained variance. We

experimented with the sampling strategy (ratio between classes after oversampling) and the

number of neighbors in SMOTE, eventually choosing the values 0.3 and 5 respectively. Let’s also

note that SMOTE and the combinations increased the log-loss and the Brier scores.

We did the same experiments with Random Forest and Gradient Boosting to see if this difficulty

in improving the learning was due to the specific classifier, but the results we obtained were not

better; in some cases actually, some of the things we tried deteriorated the scores.

Source no

process

PCA f.s. Under

sample

SMOTE f.s. -

PCA

f.s. –

SMOTE

PCA –

SMOTE

f.s-PCA-

SMOTE

roc-auc 0.728 0.738 0.736 0.741 0.736 0.736 0.735 0.737 0.731

Log loss 0.150 0.150 0.148 0.147 0.150 0.148 0.282 0.150 0.282

Brier 0.035 0.035 0.035 0.035 0.076 0.035 0.076 0.076 0.078

Table 9: evaluation metrics on Source with various training settings (PCA, feature selection with GA, undersampling, SMOTE and

combinations of these)

76

We did the same with Target to see what can be a maximum (from our trials) score that can be

reached using the whole dataset. The results are shown in the table below and at a first glance

one can see that no significant changes occurred here either. The roc-auc scores varied from

0.76 up to 0.77.

Target no

process

PCA f.s. Under

sample

SMOTE f.s. -

PCA

f.s. –

SMOTE

PCA –

SMOTE

f.s-PCA-

SMOTE

roc-auc 0.768 0.765 0.764 0.741 0.770 0.761 0.766 0.765 0.760

log loss 0.096 0.097 0.097 0.147 0.258 0.097 0.260 0.260 0.260

Brier 0.021 0.021 0.021 0.035 0.070 0.021 0.070 0.070 0.071

Table 10: evaluation metrics on Target with various training settings (PCA, feature selection with GA, undersampling, SMOTE and

combinations of these)

 trAdaBoost Feature Sel.

Setting 1 X X

Setting 2 X V

Setting 3 V X

Setting 4 V V

Table 11: the four settings used with TrAdaBoost

Since there was not any substantial improvement on the classifier’s performance, we chose to

use only feature selection, something that would contribute to decreasing the time required for

running the algorithms on our subsequent experiments. Therefore, the experiments were

performed under four different settings as shown in table 11.

 KLIEP Feature Sel.

Setting 1 X X

Setting 2 X V

Setting 3 V X

Setting 4 V V

Table 12: the four settings used with KLIEP

We also wanted to take some insight into the similarity between the two datasets. Since the

distributions are unknown, we could not calculate directly the KL-divergence, as we would have

to first estimate the distributions, something very expensive operationally wise.

77

Figure 29: 2 principal components PCA on Source and Target. The clusters formed have a different shape and they look like they

are reflected along the horizontal axis.

We resorted to simpler and more naïve methods again, like with the other dataset. We did PCA

on two principal components to compare the emerging graphs and some histograms on some

variables after binning. We chose two very characteristic and important variables to show, as

shown in the graphs below, namely: recharge value (approximation) 1 month ago (rv(a)1ma) and

recharges number 1 month ago (rn1ma).

78

Figure 30: distribution of rv1ma and rn1ma for Source and Target; graphs on left are the Source’s, graphs on right are the Target’s

5.2.1. Dataset B – KLIEP

As it has been said before, dataset B is split into segments based on the users’ behavior. Segment

1 includes the users who are thriftier and spend less money on airtime recharges and segment 8

includes those who spend more. The default rate is then expectedly different in every segment,

and this is particularly significant as it signifies the magnitude of the imbalance. Namely the default

rates per segment are:

 segment

1

segment

2

segment

3

segment

4

segment

5

segment

6

segment

7

segment

8

Source 4.53% 5.27% 4.48% 4.15% 4.56% 3.99% 2.77% 1.16%

Target 2.75% 2.87% 3.21% 2.77% 1.43% 1.72% 1.00% 1.97%

 Table 13: default rates per segment on Source and Target

Noticeably, the default rate is higher in Source in all segments except for the last one.

The graph below shows the results obtained on each segment and each line corresponds to each

setting described above.

79

Figure 31: line graphs with the roc-auc scores on the four settings (with/without KLIEP, with/without feature selection)

The feature selection was performed on Source’s dataset and the set of selected features was

also applied to Target’s dataset. Of course, in this way we cannot know how good this subset is

for Target; we merely rely on the similarity between the domains. That is, the Genetic Algorithm

ran on Source’s data and it selected an optimal subset of the features’ set for Source. This does

not entail that these specific features that were selected are good and predictive for Target. There

is a huge field of research that studies transfer learning based on feature space (Dai, Xue, Yang

& Yu. 2009), (Johnson & Zhang, 2005), (Blitzer, John, Ryan McDonald, & Fernando Pereira

2006), (Evgeniou, Evgeniou & Pontil, 2007), (Jebara, 2004), (Lee, Chatalbashev, Vickrey & Koller,

2007) . However, since we chose to follow two instance-based methods (Sugiyama et al., 2008),

(Wenyuan et. al., 2007) we did not search an adequate shared representation space any further.

Table 14: roc-auc scores in Dataset B when using KLIEP along with feature selection

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Co-clustering+based+classification+for+out-of-domain+documents&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3Aue-NHQfjBJkJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Co-clustering+based+classification+for+out-of-domain+documents&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3Aue-NHQfjBJkJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=A+high-performance+semi-supervised+learning+method+for+text+chunking&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AnCEncZyg6SEJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Domain+adaptation+with+structural+correspondence+learning&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3A7eb1m1UB-tsJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Domain+adaptation+with+structural+correspondence+learning&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3A7eb1m1UB-tsJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Multi-task+feature+learning&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3A0fbPBiN4LUgJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Multi-task+feature+and+kernel+selection+for+svms&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AxuODUck_x-wJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Learning+a+meta-level+prior+for+feature+relevance+from+multiple+related+tasks&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3Az-DtlTl262UJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Learning+a+meta-level+prior+for+feature+relevance+from+multiple+related+tasks&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3Az-DtlTl262UJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Direct+importance+estimation+for+covariate+shift+adaptation&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AgUj-J0ZmXCwJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0,5&q=Boosting+for+transfer+learning+wenyuan#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3Ao1t_wVqFT9kJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del

80

The worst results were obtained when KLIEP was applied without feature selection which is

depicted in the orange line. The best scores were obtained in segments 2,3,7 by setting (b) KLIEP

and feature selection with a slightly increased roc-auc score over setting (a) no KLIEP, no feature

selection, by 1%. In segments 1, 4 and 8 the scores were almost equal, and in segments 5 and 6

setting (a) exceeded setting (b) in roc-auc but so little (no more than 0.6%) that can be considered

insignificant. Therefore, KLIEP did not seem to be able to systematically adapt the domains and

boost the performance of the classifier on Target. Let’s note that there are limitations on the

success of domain adaptation when there are no labeled Target data and the adaptation relies

merely on the similarity between the two distributions (Wang et al., 2019, as cited by Ben-David).

When using feature selection and KLIEP, this specific subset of features could be one that allowed

for little similarity between the domains, something that inevitably induces transfer learning (Wang

et al., 2019). Blitzer et. al. (Blitzer, McDonald & Pereira, 2006) for example have suggested a

method that identifies pivot features, e.g., those that exhibit in the same way across two

distributions, and uses them to create a new representational, augmented space for the two

domains. We could apply this method to see if the negative transfer is eliminated, at least to some

extent. Another thing to consider as a reason for KLIEP’s failing is that assumption 1 as stated by

Sugiyama et. al. (Sugiyama et al., 2008) is violated. Specifically, it is assumed that the two

distributions are continuous, something that does not hold true in Dataset B, as discrete features

are involved. Another subset, only with continuous variables could be used to see if better results

are obtained, however, restricting only to these variables could leave out some that are very

informative and predictive.

5.2.2. Dataset B – TrAdaBoost

We tried various test sizes when we were experimenting with trAdaBoost. We managed to obtain

best results when we allocated 0.1% and 0.05% of the Target’s samples to training as labeled.

When testing size was 99.95%, in all segments but segment 1 the use of trAdaBoost boosted the

classifier’s learning and performance, increasing roc-auc score from 1% up to 10%. Feature

selection improved the learning in general but did not make any difference to trAdaBoost

particularly. The most impressive boost is noted in segment 8, in which Target’s default rate is

slightly higher than Source’s, while both are very low.

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=characterizing+and+avoiding+negative+transfer&btnG=&oq=characterizing+and+av#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AAUw3bLhD8T8J%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D1%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=characterizing+and+avoiding+negative+transfer&btnG=&oq=characterizing+and+av#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AAUw3bLhD8T8J%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D1%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=characterizing+and+avoiding+negative+transfer&btnG=&oq=characterizing+and+av#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AAUw3bLhD8T8J%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D1%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=J.+Blitzer%2C+R.+McDonald%2C+and+F.+Pereira%2C+%E2%80%9CDomain+adaptation+with+structural+correspondence+learning&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3A7eb1m1UB-tsJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Direct+importance+estimation+for+covariate+shift+adaptation&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AgUj-J0ZmXCwJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Del

81

Figure 32: line graphs with the roc-auc scores with test size 99.95% on the four settings (with/without trAdaBoost, with/without

feature selection)

When test size was set to 99.9%, e.g., when the allocated labeled samples from Target for training

were 0.1%, the use of trAdaBoost along with feature selection gave the best results. Using

trAdaBoost without feature selection alleviated the learning in segments 3 to 8, while on segments

1 and 2 it induced negative transfer. The former segments include the thriftier users, whose

behavior is reflected on various variables. This could be an explanation for the drop in the

performance of trAdaBoost with feature selection in segments 1 and 2. Moreover, when using

trAdaBoost, feature selection influenced the results in segments 1-3, as it can be seen from the

graph below, but on the other segments there was no difference between trAdaBoost with feature

selection and trAdaBoost without feature selection. A similar explanation as the one before could

be given. Not using either trAdaBoost or feature selection proved to be once again the worst case.

82

Figure 33: line graphs with the roc-auc scores with test size 99.9% on the four settings (with/without trAdaBoost, with/without feature

selection)

Tables 15 and 16 summarize the results from the 4 different settings with test sizes 99.9%, 99.5%.

Table 15: roc-auc scores on test size 99.9% on four different settings (with/without trAdaBoost,, with/without feature selection)

83

Table 16: roc-auc scores on test size 99.9% on four different settings (with/without trAdaBoost, with/without feature selection)

84

85

6. Conclusions and further research

In this thesis we used Transfer Learning, and specifically two Domain Adaptation techniques, to

confront the situation of concept drift occurring in two Credit Risk problems. We used two different

loan provision datasets split into a Source and a Target domain and we tried to predict those who

default on their loans. One of the datasets (Dataset B) was highly imbalanced, with minority class

holding less than 3.8%, while the other dataset was imbalanced yet to a more moderate extent,

with minority class holding approximately 25%. The basic metric used to evaluate our methods

was the roc-auc score, because this metric focuses on distinguishing the two classes, that is to

say to recognize the defaulters from the non-defaulters in our case.

Before applying the Transfer Learning methods, we experimented with various techniques to

preprocess the data and build good base classifiers. We eventually chose to try feature selection

with Genetic Algorithm in Dataset B and some data cleaning in Lending Club Dataset. Dataset B

was moreover divided into eighth segments that were created with respect to the amount that the

users spend on recharging. We then applied the two Domain Adaptation techniques, (a) KLIEP,

and (b) TrAdaBoost. In Dataset B we used four different settings as shown in table 11 and we

experimented with the sample size in KLIEP and the test size in trAdaBoost. Likewise, in Lending

Club Dataset we experimented with the sample size in KLIEP and the test size in trAdaBoost after

splitting the dataset with respect to some thresholds of the loaned amount, as specifically

described in section 4.1. The results after using the Domain Adaptation methods were compared

to the results of training on Source and testing on Target domain but without the use of any such

method. One thing to begin with as far as Lending Club Dataset is concerned, in which three

different classifiers were used, is that the three classifiers exhibited a different behavior under the

Domain Adaptation methods.

In Lending Club Dataset, KLIEP proved to significantly boost Gradient Boosting Classifier when

the similarity between the domains was small or medium - splits (a) and (b) - while it induced

negative transfer in most cases where the similarity was high - split (c). With Random Forest the

results of KLIEP were more moderate, with a smaller increase (or neutral/negative two times) in

the roc-auc score. Logistic Regression performed already too well without the use of a Transfer

Learning method, as well as with them, therefore the results were of no interest. In Dataset B,

KLIEP slightly boosted Logistic Regession’s learning in three out of eight segments, and had

minor negative or no impact at all in the remaining five segments. In other words, it did not manage

to substantially assist the learning. It is known that when there are no labeled Target data, the

86

success of the domain adaptation exclusively depends on the similarity between the two

distributions (Wang et al., 2019, as cited by Ben-David).

Therefore, it is most probable that due to the high divergence between Source and Target in

Dataset B, KLIEP did not manage to assist the learning. However, observing that the results vary

with respect to the algorithm used for classification, it is highly probable that there be other

machine or deep learning algorithms that would perform better under KLIEP, and this could be

one extension of this current work. Another interesting observation is that the sample size did not

influence the learning with KLIEP; this can be supported by looking at the mathematical

postulation of the convex optimization problem, where we can see that the sample size is a

parameter that is not involved in it.

TrAdaBoost proved to have varied behavior under changes in the similarity between the domains,

the test size, and of course the dataset and the algorithm used. With Lending Club dataset and

Gradient Boosting it was successful in boosting the learning when there was more divergence

between the domains - splits (b) and (c) - but when the domains were more similar - split (a) - the

performance differed with the various test sizes. It is particularly interesting in split (a) the fact that

with very small - 0.5% - and larger - 20% and 30% - test sizes transfer learning was positive,

whereas on medium test sizes - 5% and 10% - it was negative. The causes may lie in the exact

similarity between the domains, the number of samples in Source and Target, and the epochs

that trAdaBoost ran. Using some metrics like the Kullback-Leibler or Jensen-Shannon divergence

could shed some light into this, as well as experimenting more with more test sizes, epochs and

splits. Random Forest on the other hand showed quite unstable behavior with the various splits

and test sizes, while all the changes, either positive or negative, in the performance were in

general small.

Let’s recall that Random Forest is a bagging classifier and Gradient Boosting is a boosting one.

Thus, it would be possible that Gradient Boosting blends together better with TrAdaBoost which

is also in its nature a boosting algorithm. More experiments with some other bagging and boosting

models could also help us test this hypothesis. With Dataset B and Logistic Regression the

provision of Target labeled samples in the training proved to be determinant, as it boosted the

learning in all but one segments when test size was set to 0.5% and all features were used, with

increase in roc-auc to be up to 9%. It is also interesting that under a slightly different test-size,

that of 1%, some segments were influenced by the feature selection applied, resulting in

significantly lower performance. We can deduce that the common feature space where the data

are brought is essential to be chosen adequately.

https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=characterizing+and+avoiding+negative+transfer&btnG=&oq=characterizing+and+av#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AAUw3bLhD8T8J%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D1%26hl%3Del

87

An exploration of some feature-based methods that aim to find such a space representation would

probably be insightful for this question. We manually restricted the feature space to be that of the

set of common features of Source and Target and then we applied feature selection to Source

domain, but a feature-based method would probably learn a more adequate representation in a

strategic way.

88

89

Bibliography

Adamko, P., Kliestik, T., & Birtus, M. (2014). History of credit risk models. In 2nd international conference

on economics and social science, Information Engineering Research Institute (pp. 148-153).

Addo, P. M., Guegan, D., & Hassani, B. (2018). Credit risk analysis using machine and deep learning models.

Risks, 6(2), 38.

Akinwande, M. O., Dikko, H. G., & Samson, A. (2015). Variance inflation factor: as a condition for the

inclusion of suppressor variable (s) in regression analysis. Open Journal of Statistics, 5(07), 754.

Argyriou, A., Evgeniou, T., & Pontil, M. (2006). Multi-task feature learning. Advances in neural information

processing systems, 19.

Babatunde, O. H., Armstrong, L., Leng, J., & Diepeveen, D. (2014). A genetic algorithm-based feature

selection.

Beninel, F., Bouaguel, W., & Belmufti, G. (2012). Transfer learning using logistic regression in credit

scoring. arXiv preprint arXiv:1212.6167.

Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning (Vol. 4, No. 4, p. 738).

New York: springer.

Blitzer, J., McDonald, R., & Pereira, F. (2006, July). Domain adaptation with structural correspondence

learning. In Proceedings of the 2006 conference on empirical methods in natural language processing (pp.

120-128).

Blitzer, J., McDonald, R., & Pereira, F. (2006, July). Domain adaptation with structural correspondence

learning. In Proceedings of the 2006 conference on empirical methods in natural language processing (pp.

120-128).

Branco, P., Torgo, L., & Ribeiro, R. P. (2016). A survey of predictive modeling on imbalanced domains. ACM

Computing Surveys (CSUR), 49(2), 1-50.

Butaru, F., Chen, Q., Clark, B., Das, S., Lo, A. W., & Siddique, A. (2016). Risk and risk management in the

credit card industry. Journal of Banking & Finance, 72, 218-239.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-

sampling technique. Journal of artificial intelligence research, 16, 321-357.

90

Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., & Bharath, A. A. (2018). Generative

adversarial networks: An overview. IEEE Signal Processing Magazine, 35(1), 53-65.

Dai, W., Xue, G. R., Yang, Q., & Yu, Y. (2007, August). Co-clustering based classification for out-of-domain

documents. In Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery

and data mining (pp. 210-219).

Duan, L., Tsang, I. W., Xu, D., & Chua, T. S. (2009, June). Domain adaptation from multiple sources via

auxiliary classifiers. In Proceedings of the 26th annual international conference on machine learning (pp.

289-296).

Ferri, C., Hernández-Orallo, J., & Modroiu, R. (2009). An experimental comparison of performance

measures for classification. Pattern recognition letters, 30(1), 27-38.

Freund, Y., & Schapire, R. E. (1996, July). Experiments with a new boosting algorithm. In icml (Vol. 96, pp.

148-156).

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an

application to boosting. Journal of computer and system sciences, 55(1), 119-139.

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics,

1189-1232.

Gama, J., & Zhang, G. (2019). Learning under Concept Drift: A Review. IEEE TRANSACTIONS ON

KNOWLEDGE AND DATA ENGINEERING, 31(12).

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., ... & Lempitsky, V. (2016).

Domain-adversarial training of neural networks. The journal of machine learning research, 17(1), 2096-

2030.

Hassanat, A. B., & Alkafaween, E. A. (2017). On enhancing genetic algorithms using new crossovers.

International Journal of Computer Applications in Technology, 55(3), 202-212.

Hassanat, A., Almohammadi, K., Alkafaween, E., Abunawas, E., Hammouri, A., & Prasath, V. B. (2019).

Choosing mutation and crossover ratios for genetic algorithms—a review with a new dynamic approach.

Information, 10(12), 390.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). Random forests. In The elements of statistical learning (pp.

587-604). Springer, New York, NY.

91

Jiawei, H. (2022). Lecture 2: Know Your Data [PDF]. CS412: An Introduction to Data Warehousing and Data

Mining. Illinois. Retrieved from http://hanj.cs.illinois.edu/cs412/bk3/KL-divergence.pdf

Multi-task Learning. (2022, January 30). In https://en.wikipedia.org/wiki/Multi-task_learning

Huang, J., & Chen, M. (2018, January). Domain adaptation approach for credit risk analysis. In Proceedings

of the 2018 International Conference on Software Engineering and Information Management (pp. 104-

107).

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p.

18). New York: springer.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p.

18). New York: springer.

Japkowicz, N., & Stephen, S. (2002). The class imbalance problem: A systematic study. Intelligent data

analysis, 6(5), 429-449.

Jebara, T. (2004, July). Multi-task feature and kernel selection for SVMs. In Proceedings of the twenty-first

international conference on Machine learning (p. 55).

Jiménez-Guarneros, M., & Gomez-Gil, P. (2021). A study of the effects of negative transfer on deep

unsupervised domain adaptation methods. Expert Systems with Applications, 167, 114088.

Johnson, R., & Zhang, T. (2005, June). A high-performance semi-supervised learning method for text

chunking. In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics

(ACL’05) (pp. 1-9).

Khandani, A. E., Kim, A. J., & Lo, A. W. (2010). Consumer credit-risk models via machine-learning

algorithms. Journal of Banking & Finance, 34(11), 2767-2787.

Kingsford, C., & Salzberg, S. L. (2008). What are decision trees?. Nature biotechnology, 26(9), 1011-1013.

Kouw, W. M., & Loog, M. (2019). A review of domain adaptation without target labels. IEEE transactions

on pattern analysis and machine intelligence, 43(3), 766-785.

Kuhn, M., & Johnson, K. (2013). Applied predictive modeling (Vol. 26, p. 13). New York: Springer.

92

Lee, S. I., Chatalbashev, V., Vickrey, D., & Koller, D. (2007, June). Learning a meta-level prior for feature

relevance from multiple related tasks. In Proceedings of the 24th international conference on Machine

learning (pp. 489-496).

Ling, C. X., & Sheng, V. S. (2008). Cost-sensitive learning and the class imbalance problem. Encyclopedia

of machine learning, 2011, 231-235.

Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on knowledge and data

engineering, 22(10), 1345-1359.

Raina, R., Battle, A., Lee, H., Packer, B., & Ng, A. Y. (2007, June). Self-taught learning: transfer learning

from unlabeled data. In Proceedings of the 24th international conference on Machine learning (pp. 759-

766).

Sugiyama, M., Suzuki, T., Nakajima, S., Kashima, H., von Bünau, P., & Kawanabe, M. (2008). Direct

importance estimation for covariate shift adaptation. Annals of the Institute of Statistical Mathematics,

60(4), 699-746.

Suryanto, H., Guan, C., Voumard, A., & Beydoun, G. (2019, September). Transfer learning in credit risk. In

Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 483-498).

Springer, Cham.

Wang, Z., Dai, Z., Póczos, B., & Carbonell, J. (2019). Characterizing and avoiding negative transfer. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 11293-11302).

Wei, Q., Liu, Y., & Wu, K. (2021, May). Transfer Learning Based Credit Scoring. In 2021 IEEE 24th

International Conference on Computer Supported Cooperative Work in Design (CSCWD) (pp. 1251-1255).

IEEE.

Wenyuan Dai , Qiang Yang , Gui-rong Xue , Yong Yu, (2007). Boosting for transfer learning. In Proceedings

of the 24th International Conference on Machine Learning (pp. 193–200).

Xiao, J., Wang, R., Teng, G., & Hu, Y. (2014, July). A transfer learning based classifier ensemble model for

customer credit scoring. In 2014 Seventh International Joint Conference on Computational Sciences and

Optimization (pp. 64-68). IEEE.

Zhang, Y., & Yang, Q. (2018). An overview of multi-task learning. National Science Review, 5(1), 30-43.

93

Zheng, L., Liu, G., Yan, C., Jiang, C., Zhou, M., & Li, M. (2020). Improved TrAdaBoost and its application to

transaction fraud detection. IEEE Transactions on Computational Social Systems, 7(5), 1304-1316.

Zhou, Z. H., & Liu, X. Y. (2005). Training cost-sensitive neural networks with methods addressing the class

imbalance problem. IEEE Transactions on knowledge and data engineering, 18(1), 63-77.

Zhuang, F., Cheng, X., Luo, P., Pan, S. J., & He, Q. (2015, June). Supervised representation learning: Transfer

learning with deep autoencoders. In Twenty-Fourth International Joint Conference on Artificial

Intelligence.

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., ... & He, Q. (2020). A comprehensive survey on transfer

learning. Proceedings of the IEEE, 109(1), 43-76.

94

95

Appendix

A.1. Dictionary for Lending Club Dataset variables

LoanStatNew Description

acc_now_delinq
The number of accounts on which the borrower

is now delinquent.

acc_open_past_24mths Number of trades opened in past 24 months.

addr_state
The state provided by the borrower in the loan

application

all_util Balance to credit limit on all trades

annual_inc
The self-reported annual income provided by

the borrower during registration.

annual_inc_joint

The combined self-reported annual income

provided by the co-borrowers during

registration

application_type

Indicates whether the loan is an individual

application or a joint application with two co-

borrowers

avg_cur_bal Average current balance of all accounts

bc_open_to_buy Total open to buy on revolving bankcards.

bc_util
Ratio of total current balance to high

credit/credit limit for all bankcard accounts.

chargeoff_within_12_mths Number of charge-offs within 12 months

collection_recovery_fee post charge off collection fee

collections_12_mths_ex_med
Number of collections in 12 months excluding

medical collections

delinq_2yrs

The number of 30+ days past-due incidences of

delinquency in the borrower's credit file for the

past 2 years

96

delinq_amnt
The past-due amount owed for the accounts on

which the borrower is now delinquent.

desc Loan description provided by the borrower

dti

A ratio calculated using the borrower’s total

monthly debt payments on the total debt

obligations, excluding mortgage and the

requested LC loan, divided by the borrower’s

self-reported monthly income.

dti_joint

A ratio calculated using the co-borrowers' total

monthly payments on the total debt obligations,

excluding mortgages and the requested LC loan,

divided by the co-borrowers' combined self-

reported monthly income

earliest_cr_line
The month the borrower's earliest reported

credit line was opened

emp_length

Employment length in years. Possible values are

between 0 and 10 where 0 means less than one

year and 10 means ten or more years.

emp_title
The job title supplied by the Borrower when

applying for the loan.*

fico_range_high
The upper boundary range the borrower’s FICO

at loan origination belongs to.

fico_range_low
The lower boundary range the borrower’s FICO

at loan origination belongs to.

funded_amnt
The total amount committed to that loan at that

point in time.

funded_amnt_inv
The total amount committed by investors for

that loan at that point in time.

grade LC assigned loan grade

home_ownership

The home ownership status provided by the

borrower during registration or obtained from

the credit report. Our values are: RENT, OWN,

MORTGAGE, OTHER

97

id A unique LC assigned ID for the loan listing.

il_util
Ratio of total current balance to high

credit/credit limit on all install acct

initial_list_status
The initial listing status of the loan. Possible

values are – W, F

inq_fi Number of personal finance inquiries

inq_last_12m Number of credit inquiries in past 12 months

inq_last_6mths
The number of inquiries in past 6 months

(excluding auto and mortgage inquiries)

installment
The monthly payment owed by the borrower if

the loan originates.

int_rate Interest Rate on the loan

issue_d The month which the loan was funded

last_credit_pull_d
The most recent month LC pulled credit for this

loan

last_fico_range_high
The upper boundary range the borrower’s last

FICO pulled belongs to.

last_fico_range_low
The lower boundary range the borrower’s last

FICO pulled belongs to.

last_pymnt_amnt Last total payment amount received

last_pymnt_d Last month payment was received

loan_amnt

The listed amount of the loan applied for by the

borrower. If at some point in time, the credit

department reduces the loan amount, then it

will be reflected in this value.

loan_status Current status of the loan

max_bal_bc
Maximum current balance owed on all revolving

accounts

98

member_id
A unique LC assigned Id for the borrower

member.

mo_sin_old_il_acct
Months since oldest bank installment account

opened

mo_sin_old_rev_tl_op Months since oldest revolving account opened

mo_sin_rcnt_rev_tl_op
Months since most recent revolving account

opened

mo_sin_rcnt_tl Months since most recent account opened

mort_acc Number of mortgage accounts.

mths_since_last_delinq
The number of months since the borrower's last

delinquency.

mths_since_last_major_derog
Months since most recent 90-day or worse

rating

mths_since_last_record
The number of months since the last public

record.

mths_since_rcnt_il
Months since most recent installment accounts

opened

mths_since_recent_bc
Months since most recent bankcard account

opened.

mths_since_recent_bc_dlq Months since most recent bankcard delinquency

mths_since_recent_inq Months since most recent inquiry.

mths_since_recent_revol_delinq
Months since most recent revolving

delinquency.

next_pymnt_d Next scheduled payment date

num_accts_ever_120_pd
Number of accounts ever 120 or more days past

due

num_actv_bc_tl Number of currently active bankcard accounts

num_actv_rev_tl Number of currently active revolving trades

num_bc_sats Number of satisfactory bankcard accounts

99

num_bc_tl Number of bankcard accounts

num_il_tl Number of installment accounts

num_op_rev_tl Number of open revolving accounts

num_rev_accts Number of revolving accounts

num_rev_tl_bal_gt_0 Number of revolving trades with balance >0

num_sats Number of satisfactory accounts

num_tl_120dpd_2m
Number of accounts currently 120 days past due

(updated in past 2 months)

num_tl_30dpd
Number of accounts currently 30 days past due

(updated in past 2 months)

num_tl_90g_dpd_24m
Number of accounts 90 or more days past due in

last 24 months

num_tl_op_past_12m Number of accounts opened in past 12 months

open_acc
The number of open credit lines in the

borrower's credit file.

open_acc_6m Number of open trades in last 6 months

open_il_12m
Number of installment accounts opened in past

12 months

open_il_24m
Number of installment accounts opened in past

24 months

open_act_il Number of currently active installment trades

open_rv_12m
Number of revolving trades opened in past 12

months

open_rv_24m
Number of revolving trades opened in past 24

months

out_prncp
Remaining outstanding principal for total

amount funded

out_prncp_inv
Remaining outstanding principal for portion of

total amount funded by investors

100

pct_tl_nvr_dlq Percent of trades never delinquent

percent_bc_gt_75
Percentage of all bankcard accounts > 75% of

limit.

policy_code

publicly available policy_code=1

new products not publicly available

policy_code=2

pub_rec Number of derogatory public records

pub_rec_bankruptcies Number of public record bankruptcies

purpose
A category provided by the borrower for the

loan request.

pymnt_plan
Indicates if a payment plan has been put in place

for the loan

recoveries post charge off gross recovery

revol_bal Total credit revolving balance

revol_util

Revolving line utilization rate, or the amount of

credit the borrower is using relative to all

available revolving credit.

sub_grade LC assigned loan subgrade

tax_liens Number of tax liens

term
The number of payments on the loan. Values are

in months and can be either 36 or 60.

title The loan title provided by the borrower

tot_coll_amt Total collection amounts ever owed

tot_cur_bal Total current balance of all accounts

tot_hi_cred_lim Total high credit/credit limit

total_acc
The total number of credit lines currently in the

borrower's credit file

101

total_bal_ex_mort Total credit balance excluding mortgage

total_bal_il Total current balance of all installment accounts

total_bc_limit Total bankcard high credit/credit limit

total_cu_tl Number of finance trades

total_il_high_credit_limit Total installment high credit/credit limit

total_pymnt
Payments received to date for total amount

funded

total_pymnt_inv
Payments received to date for portion of total

amount funded by investors

total_rec_int Interest received to date

total_rec_late_fee Late fees received to date

total_rec_prncp Principal received to date

total_rev_hi_lim Total revolving high credit/credit limit

url URL for the LC page with listing data.

verification_status
Indicates if income was verified by LC, not

verified, or if the income source was verified

verified_status_joint

Indicates if the co-borrowers' joint income was

verified by LC, not verified, or if the income

source was verified

zip_code
The first 3 numbers of the zip code provided by

the borrower in the loan application.

revol_bal_joint
 Sum of revolving credit balance of the co-

borrowers, net of duplicate balances

sec_app_fico_range_low FICO range (high) for the secondary applicant

sec_app_fico_range_high FICO range (low) for the secondary applicant

sec_app_earliest_cr_line
 Earliest credit line at time of application for the

secondary applicant

102

sec_app_inq_last_6mths
 Credit inquiries in the last 6 months at time of

application for the secondary applicant

sec_app_mort_acc
 Number of mortgage accounts at time of

application for the secondary applicant

sec_app_open_acc
 Number of open trades at time of application

for the secondary applicant

sec_app_revol_util
 Ratio of total current balance to high

credit/credit limit for all revolving accounts

sec_app_open_act_il
 Number of currently active installment trades at

time of application for the secondary applicant

sec_app_num_rev_accts
 Number of revolving accounts at time of

application for the secondary applicant

sec_app_chargeoff_within_12_mths
 Number of charge-offs within last 12 months at

time of application for the secondary applicant

sec_app_collections_12_mths_ex_med

 Number of collections within last 12 months

excluding medical collections at time of

application for the secondary applicant

sec_app_mths_since_last_major_derog

 Months since most recent 90-day or worse

rating at time of application for the secondary

applicant

hardship_flag
Flags whether or not the borrower is on a

hardship plan

hardship_type Describes the hardship plan offering

hardship_reason
Describes the reason the hardship plan was

offered

hardship_status
Describes if the hardship plan is active, pending,

canceled, completed, or broken

deferral_term

Amount of months that the borrower is

expected to pay less than the contractual

monthly payment amount due to a hardship

plan

hardship_amount

The interest payment that the borrower has

committed to make each month while they are

on a hardship plan

103

hardship_start_date The start date of the hardship plan period

hardship_end_date The end date of the hardship plan period

payment_plan_start_date

The day the first hardship plan payment is due.

For example, if a borrower has a hardship plan

period of 3 months, the start date is the start of

the three-month period in which the borrower is

allowed to make interest-only payments.

hardship_length

The number of months the borrower will make

smaller payments than normally obligated due

to a hardship plan

hardship_dpd
Account days past due as of the hardship plan

start date

hardship_loan_status Loan Status as of the hardship plan start date

orig_projected_additional_accrued_interest

The original projected additional interest

amount that will accrue for the given hardship

payment plan as of the Hardship Start Date. This

field will be null if the borrower has broken their

hardship payment plan.

hardship_payoff_balance_amount
The payoff balance amount as of the hardship

plan start date

hardship_last_payment_amount
The last payment amount as of the hardship plan

start date

disbursement_method

The method by which the borrower receives

their loan. Possible values are: CASH,

DIRECT_PAY

debt_settlement_flag

Flags whether or not the borrower, who has

charged-off, is working with a debt-settlement

company.

debt_settlement_flag_date
The most recent date that the

Debt_Settlement_Flag has been set

settlement_status

The status of the borrower’s settlement plan.

Possible values are: COMPLETE, ACTIVE,

BROKEN, CANCELLED, DENIED, DRAFT

104

settlement_date
The date that the borrower agrees to the

settlement plan

settlement_amount
The loan amount that the borrower has agreed

to settle for

settlement_percentage
The settlement amount as a percentage of the

payoff balance amount on the loan

settlement_term
The number of months that the borrower will be

on the settlement plan

105

A.2. Dictionary for Dataset B variables

Recharge Features - Calendar

Short Name Description

lrdt Last Recharge Date (before RD, or last day of RM if RD is missing)

lrdsTnr Days passed from last recharge

rvXma Recharge value X calendar months ago

rvXtoYma Total recharge value in X to Y calendar months ago

mrvXtoYma Mean of monthly (calendar) recharge values of X to Y months ago

rvstdXtoYma Standard deviation of monthly (calendar) recharge values of X to Y months ago

rnXma Recharges number X calendar month ago

mrnXtoYma Mean of monthly (calendar) recharge number of X to Y months ago

rnstdXtoYma Standard deviation of monthly (calendar) recharge number of X to Y months ago

mxrXma Maximum Recharge Amount in X calendar month ago

mxrXtoYma Maximum Recharge Amount in X to Y calendar months ago

arvXma Average Recharge Value (the average value of top-ups) X months ago

arvXtoYma Average Recharge Value (the average value of top-ups) in X to Y months ago

mwrXma Months with Recharges in 1 to X months ago (depreciated)

mwrXtoYma Months with Recharges in X to Y months ago

rfgXma Recharge flag in X months ago

STV Recharge Features - Calendar

Short Name Description

stvrvXma STV recharge value X calendar months ago

mstvrvXtoYma Mean of monthly (calendar) STV recharge values of X to Y months ago

stvrvstdXtoYma Standard deviation of monthly (calendar) STVrecharge values of X to Y months ago

stvrnXma STV recharges number X calendar month ago

mstvrnXtoYma Mean of monthly (calendar) STV recharge number of X to Y months ago

stvrnstdXtoYma Standard deviation of monthly (calendar) STV recharge number of X to Y months ago

mxstvrXma Maximum STV Recharge Amount in X calendar month ago

106

mxstvrXtoYma Maximum STV Recharge Amount in X to Y calendar months ago

stvrvpXma STV recharge value percentage of total in X calendar months

stvrvpXtoYma STV recharge value percentage of total in X to Y months ago

stvrnpXma STV recharges number percentage of total in X calendar months ago

stvrnpXtoYma STV recharges number percentage of total in X to Y months ago

mwstvrXtoYma Months with STV Recharges in X to Y months ago

Monetary Recharge Features - Calendar

Short Name Description

mntrvXma MNT recharge value X calendar months ago

mmntrvXtoYma Mean of monthly (calendar) monetary recharge values of X to Y months ago

mntrvstdXtoYma Standard deviation of monthly (calendar) monetary recharge values of X to Y months ago

mntrnXma MNT recharges number X calendar month ago

mmntrnXtoYma Mean of monthly (calendar) monetary recharge number of X to Y months ago

mntrnstdXtoYma Standard deviation of monthly (calendar) monetary recharge number of X to Y months ago

mxmntrXma Maximum MNT Recharge Amount in X calendar month ago

mxmntrXtoYma Maximum Monetary Recharge Amount in X to Y calendar months ago

mntrvpXma Monetary recharge value percentage of total in X calendar months

mntrvpXtoYma Monetary recharge value percentage of total in X to Y months ago

mntrnpXma Monetary recharges number percentage of total in X calendar months ago

mntrnpXtoYma Monetary recharges number percentage of total in X to Y months ago

mwmntrXtoYma Months with Monetary Recharges in X to Y months ago

Recharge Value Approximation - Calendar

Short Name Description

rvaXma Recharge value approximation X calendar months ago

mrvaXtoYma Mean of monthly (calendar) recharge value approximations of X to Y months ago

rvastdXtoYma Standard deviation of monthly (calendar) recharge value approximations of X to Y months ago

mwrvaXtoYma Months with Recharges Value Approximation higher than 0 in X to Y months ago

Business Rules Features - Calendar

Short Name Description

brbXma Business Rules eligible Band X months ago

mbrbXtoYma Mean Business Rules Band X to Y months ago

stdbrbXtoYma Standard Deviation of Business Rules eligible Band X to Y months ago

107

p2p Features - Calendar

Short Name Description

ip2pnXma Incoming p2p transfers number X months ago

ip2pnXtoYma Total Incoming p2p transfers number in X to Y months ago

ip2pvXma Incoming p2p transfers value X months ago

ip2pvXtoYma Total Incoming p2p transfers value in X to Y months ago

Recharge - Calendar

Short Name Description

rmthd Recharge method

Recharge Features - Rolling

Short Name Description

rvXtoYd Recharge value in X to Y days before (inclusive)

mrvXtoYd Mean of 30-days rolling recharge values of X to Y days before

rvstdXtoYd Standard deviation of 30-days rolling recharge values of X to Y days before

rnXtoYd Recharge Counts in X to Y days before (inclusive)

mrnXtoYd Mean of 30-days rolling recharge number of X to Y days before

rnstdXtoYd Standard deviation of 30-days rolling recharge number of X to Y days before

STV Recharge Features - Rolling

Short Name Description

stvrvXtoYd STV recharge value in X to Y 30-days rolling before (inclusive)

stvrnXtoYd STV recharges number in X to Y 30-days rolling before (inclusive)

mxstvrXtoYd Maximum STV Recharge Amount in X to Y 30-days rolling before (inclusive)

stvrvpXtoYd STV recharge value percentage in X to Y days before (inclusive)

stvrnpXtoYd STV recharges number percentage in X to Y days before (inclusive)

Monetary Recharge Features - Rolling

Short Name Description

mntrvXtoYd MNT recharge value in X to Y days before (inclusive)

mntrvpXtoYd MNT recharge value percentage in X to Y days before (inclusive)

mntrnXtoYd MNT recharges number in X to Y days before (inclusive)

mntrnpXtoYd MNT recharges number percentage in X to Y days before (inclusive)

108

Temporal

Short Name Description

fadt First Advance Date (format: yyyMMdd)

smTnr Service usage tenure in months

ladt Last Advance Date

ladsTnr Days passed from last advance

oldUsr Flag indicating whether the subscriber has made and fully repaid an advance within the last 6 calendar months (deprecated)

usrwlXm Flag indicating whether the subscriber has made and fully repaid an advance within the last X calendar months

Advance Features - Calendar

Short Name Description

anXma Advances number X calendar month ago

manXtoYma Monthly Mean advances number of X to Ycalendar months ago

anstdXtoYma Standard Deviation of monthly Advances number of X to Y calendar months ago

avXma Advances gross amount (principal & fee) X calendar month ago

mavXtoYma Monthly Mean advances amount (principal and fees) of X to Ycalendar months ago

avstdXtoYma Standard Deviation of monthly Advances amount (principal and fees) of X to Y calendar months ago

mwaXma Months with advances in 1 to X months ago (depreciated)

mwaXtoYma Months with advances in X to Y months ago

afgXma Advance flag in X months ago

Paid Advance Features - Calendar

Short

Name

Description

panXma Number of repaid advances X calendar month ago, based on full repayment date

mpanXto

Yma

Average number of repaid advances X to Y calendar months ago, based on full repayment date

panstdXt

oYma

Standard deviation of number of repaid advances X to Y calendar months ago, based on full repayment date

paaXma Total amount (principal & fees) of fully repaid advances X calendar months ago, based on full repayment date

109

mpaaXto

Yma

Average total amount (principal & fees) of repaid advances in X to Y calendar months ago, based on full repayment date

paastdXt

oYma

Standard deviation of total amount (principal & fees) of repaid advances in X to Y calendar months ago, based on full repayment date

taaraXtoY

ma

Total Advanced and Paid Amount (principal & fees) of advances from X to Y calendar months (advances should have been made and repaid from X to Y

calendar months ago; new taapawXlm)

bXaapaw

Xlm

Total Advanced and Paid Amount (principal & fees) of advances of Band X within the last X calendar months (advances should have been made and repaid

within the last X calendar months).

mrcXma Mean recovery cycle of advances repaid in X calendar months ago, based on full payment date (an advance paid on the same day has recovery cycle 1, the

next day 2, etc).

mrcXtoY

ma

Mean recovery cycle of advances repaid in X to Y calendar months ago, based on full payment date (an advance paid on the same day has recovery cycle

1, the next day 2, etc).

mrcstdXt

oYma

Standard deviation of recovery cycle of advances repaid in X to Y calendar months ago, based on full payment date (an advance paid on the same day has

recovery cycle 1, the next day 2, etc).

Credit Limit Usage Features - Calendar

Short Name Description

atclpuXma Average TCL percent usage of advances made in X months ago (based on debt)

atclpuXtoYma Average TCL percent usage of advances made in X to Y months ago

tZptclrafrwXlm Times Z percent of TCL reached and fully repaid within X last months

Advance Features - Rolling

Short Name Description

anXtoYd Advances number in X to Y days before (inclusive)

manXtoYd Mean of 30-days rolling advances number of X to Y days before

anstdXtoYd Standard deviation of 30-days rolling advances number of X to Y days before

avXtoYd Advances gross amount in X to Y days before (inclusive)

mavXtoYd Mean of 30-days rolling advances gross amount of X to Y days before

avstdXtoYd Standard deviation of 30-days rolling advances gross amount of X to Y days before

Paid Advance Features - Rolling

Short

Name

Description

panXtoYd Number of repaid advances in X to Y days before (inclusive), based on full repayment date

mpanXtoYd Mean of 30-days rolling number of fully repaid advances of X to Y days before (inclusive), based on full repayment date

panstdXto

Yd

Standard deviation of 30-days rolling number of fully repaid advances of X to Y days before (inclusive), based on full repayment date

paaXtoYd Gross amount (principal & fees) of fully repaid advances n X to Y days before (inclusive), based on full repayment date

110

mpaaXtoYd Mean of 30-days rolling gross amount of fully repaid advances of X to Y days before (inclusive), based on full repayment date

paastdXto

Yd

Standard deviation of 30-days rolling amount of fully repaid advances of X to Y days before (inclusive), based on full repayment date

mrcXtoYd Mean recovery cycle of advances repaid in X to Y days before (inclusive)

taaraXtoYd Gross Advanced and Paid Amount (principal & fees) of advances in X to Y days before (inclusive) (advances should have been made and repaid in X to Y days

before)

Credit Limit Usage Features - Rolling

Short Name Description

atclpuXtoYd Average TCL percent usage of advances made in X to Y days before (inclusive)

tZptclrafrwXld Times Z percent of TCL reached and the advance was fully repaid within X last days

