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Chapter 1

Introduction

1.1 Steam Turbine-Generator operating fundamentals

A steam turbine is a machine that utilizes thermal energy from pressurized steam to
do mechanical work on a rotating shaft which in turn drives the electrical generator.
The invention of the modern steam turbine is attributed to Sir Charles Parsons [1, 2].
Steam turbine-generator shaft trains are the dominant method of power generation,
about 85% of all electricity generation in the United States in the year 2014 was by
use of steam turbines [3]. The global steam turbine market size was estimated at
USD 27.93 billion in 2021 and is expected to hit over USD 36.2 billion by 2030 and
poised to grow at a CAGR (Compound Annual Growth Rate) of 2.9% from 2021 to
2030 [4].

FIGURE 1.1: Alstom’s "ultra-super-critical" steam turbine at the
Boxberg power plant in Germany can produce 600MW (credit:GE).

As of 2021, among the largest steam turbines in the world is the Arabelle nuclear
steam turbine manufactured by GE based on an original design by Alstom [5]. An
Arabelle turbine is 7m in diameter, weighs 4000 tons, spins at 1500 rpm and can pro-
duce up to 1900 MW. In a typical nuclear installation, over 4000 tons of supporting
steel structure is required, as well as 1000 tons of pumps, valves, and pipes [5].
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Continued advances on the design and manufacturing technology of steam tur-
bines and turbo generators in the 20th and 21st century remain core to the energy
economy. The first commercial steam turbines in the US were rated at 1.5 MW. From
1910 to around 1920, 30 to 70 MW units were common. By 1945, the median size unit
sold in the US was still only 100 MW, but by 1967 the median size unit had increased
to 700 MW. Today, the average size is somewhat smaller, but the decrease is the re-
sult of non-technical factors, mostly the prevalence of cogeneration and independent
power units. Efficiency and reliability have continued to improve until today and
supercritical steam conditions on the order of 240 bar and 540 ◦C are common, while
having a working life of 30 years or more and more than 42% shaft efficiency. De-
sign of the steam turbine generator system can be divided into the Thermodynamics
of the steam cycle, the turbine blade design, the turbine and generator casings and
the structural integrity of the rotating shaft and the supporting structures which in-
cludes the shaft train rotors, couplings, bearings, pedestals and turning gear.

In Fig. 1.2 a three stage turbine electricity generation powerplant is illustrated.
The high pressure steam comes from the boiler and is fed into the high pressure tur-
bine in which steam pressure drops and the kinetic energy of the steam increases.
The moving steam impacts on the rotational blades and transfers part of its kinetic
energy to these blades. The steam from the outlet is fed into the mid (or interme-
diate) and low pressure turbines, repeating the process and further dropping the
temperature and pressure of the steam. The outlet steam from the low pressure tur-
bine goes into the condenser, in which the temperature of steam drops below its
boiling point. The feed water is then reheated using waste heat from the turbines
before it is recycled to the boiler.

a. Momentum equation:

Re
∂Φρ
∂τ

+ReΨ∇ · (ΦρUU

ε
) = −ε∇P +∇ ·T + εΦρGrex

− ε(ΨµU

Da2
+
FReΨ

Da
ΦρUU)

(8)

c. Energy equation for the molten salt:

PrRe
∂

∂τ
(−εΦρΦCplΘl) + PrRe∇ · (ΦρΦCplΘlU)

=
1

Ψ
∇ · (Φke∇Θl) + 2PrAReΦµ[SS′ + tr(S)tr(S′)]

+ ΦklNuiΨ(Θs −Θl)

(9)

d. Energy equation for the filler material:

PrRe
∂

∂τ
[(1− ε)ΩΦρsΦCpsΘs] = −ΦklNuiΨ(Θs −Θl)

(10)
Coefficients Φρ,Φmu,ΦCpl,Φkl, Φke, Φρs and ΦCps repre-

sent the density, viscosity, specific heat, thermal conductivity,
effective thermal conductivity, of molten salt, and density
and specific heat of filler material, respectively. T and S are
expressed as T = 2S− 2

3 tr(S), S = ∇U+(∇U)T

2 .
The Nusselt number Nui is approximated in [29] as Nui =

6(1− ε)(2 + 1.1Re0.6
L Pr

1/3
L ), Ψ is defined as length ratio of

the distance covered by the molten salt flow in a charge (or
discharge) half-cycle to the diameter of the filler particles.
Other non-dimensional coefficients in equations 7 to 10 are
expressed in appendix C.

D. Steam Turbine Electricity Generation System

Figure 6 gives a three level turbine electricity generation
system, the high pressure steam comes from boiler, and is
fed into the turbine, in which steam pressure drops and the
kinetic energy of steam increases. The moving steam impacts
on the rotational blades and transfers part of its kinetic energy
to these blades. The steam from the outlet is fed into mid and
low pressure turbine again, repeating process, causing the drop
of temperature and pressure of steam again. The outlet steam
from the low pressure turbine goes into condenser, in which
the temperature of steam drops below boiling point, and is fed
into the boiler again.

Boiler

  High

pressure

 turbine

   Mid

pressure

 turbine

   Low

pressure

 turbine
Generator

Feed-

water

heater

Feed-

water

heater
Feed pump 3

Feed pump 1

Condenser

Q

qs

qf

Feed pump 2

Figure 6. Schematic illustration of steam turbine power generation system

Steam turbines of different levels of dynamic complexity
have been modelled by different researchers [30], [31], [32].
Here we divide steam turbine electricity generation system into
different subsystems.

1) Boiler dynamics: The information flow of boiler systems
is also shown in figure 6. The external heat, Q in the diagram
is supplied by the thermal storage of CSP plant to the riser
and heats up the working fluid (usually water). Feedwater, qf ,
in the diagram is supplied to the drum and saturated steam, qs
is the heated steam flowing towards turbines. Inside the drum
is a mix of saturated steam and liquid. It is worth mentioning
that global mass and energy balance need to be met during the
whole process. We assume that the heat transfer in the system
is effective enough that all parts that the saturated steam-liquid
mix are at thermal equilibrium.

By choosing state variables: Drum pressure p, total water
volume Vwt steam quality at riser outlet αr, and volume of
steam under liquid level Vsd, we can derive dynamic equations
as shown in [33]:

e11
dVwt
dt

+ e12
dp

dt
= qf − qs (11)

e21
dVwt
dt

+ e22
dp

dt
= Q+ qfhf − qshs (12)

e32
dp

dt
+ e33

dαr
dt

= Q− αrhcqdc (13)

e42
dp

dt
+ e43

dα

dt
+ e44

dVsd
dt

=
ρs(V

0
sdVsd)

Td
+

(hf − hw)qf
hc

(14)

where we have V denote the volume, ρ specific density, u
specific internal energy, h specific enthalpy, t temperature,
q mass flow rate, and subscripts s, w, f , and m refer to
steam, water, feedwater and metal, double subscripts t denotes
total system, d drum and r riser in above equations, and the
detailed equations for coefficients e11 to e44 are supplied in
appendix D.

2) Steam turbine dynamics: There are two basic steam
turbine types, impulse turbines and reaction turbines, whose
blades are designed control the speed, direction and pressure
of the steam as it passes through the turbine [34].

Based on previous work [35], the steam turbine-generator
unit has very complex mechanical characteristics. These char-
acteristics can be simplified to lumped mass-spring-damper
model shown in the following equations:

JiB
dωiB
dt

= τiB −DiBωiB −KiB(θiB − θi) (15)

i = H,M,L (16)

The turbine rotor dynamics are as follows:

JH
dωH
dt

= τH−DHωH−KHM (θH−θM )−KHB(θH−θHB)

(17)

(18)JM
dωM
dt

= τM −DMωM −KML(θM − θL)

−KHM (θM − θH)−KMB(θM − θMB)
FIGURE 1.2: Schematic illustration of steam turbine power generation

[6].

The boiler uses an heat source such as the burning of fossil fuels (coal, natural
gas etc.), nuclear fission or renewable sources (renewable natural gas, concentrated
solar power) in order to convert the feed water to steam of certain properties. In
Fig. 1.3 the percentage of market share in thermal power plants by fuel type in
2018 is shown. Under normal atmospheric pressure (1.01 bar), water boils at 100

◦
C.

When pressure is increased to 221.2 bar, and at a temperature of 374
◦
C, water does
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not boil but is directly converted into steam. This is called the critical point and
the pressure above this critical point is called supercritical pressure. Supercritical
pressure with a temperature equal or more than 593

◦
C is called ultra-supercritical

pressure. Latest advancements have led to advanced ultra-supercritical technology
with temperatures in the range of around 700 − 760

◦
C and pressure of 350 bar that

targets operating efficiency greater than 50%.

FIGURE 1.3: Percentage of various fuels used in boilers for power
generation.

In Fig. 1.4, a cut-out of a three stage steam turbine generator shaft train is illus-
trated with some of its core parts annotated. There are several technical concerns
concerning the structural integrity of a shaft train and its supporting structure in-
cluding rotor imbalance, vibration, bearing wear and uneven expansion (thermal
shock) among others.

Rotordynamics of the shaft train regarding the assessment of bending (lateral)
and torsional vibrations and the simulating methodology are of major importance.
Turbine applications for power generation implement rotor-bearing systems of medium
speed range, mostly from 3000RPM up to 10000RPM or even higher. Depending on
the geometrical configuration, steam turbines for power generation are designed
to achieve higher or lower speeds of continuous operation. At steady state (at rated
speed) such systems should not develop high amplitude vibrations and have a smooth
and safe operation that is limited from various standards defined at most cases from
the International Standard Organization (ISO) and the American Petroleum Insti-
tute (API, see Fig. 1.5). Furthermore, the run-up procedure considers transient rotor
vibrations passing through critical speeds and other resonances such as pedestal res-
onances. The run-up procedure may take considerable time duration till achieved
depending on the hot/cold conditions of the rotor-bearing system and of the con-
figuration/type of the machine. The rotordynamic assessment during the run-up of
a large turbine-generator shaft line should be precise enough to estimate dynamic
parameters of major importance such as critical speeds, critical speed amplitudes,
amplification factors in resonances and stability margins, see Fig. 1.5.
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FIGURE 1.4: Illustration of steam turbine generator [6].

Rotor-bearing systems of industrial turbine-generator shaft lines consider slen-
der rotors concerning their elastic deformation due to the static and dynamic loads.
At an initial study, the source of the static loads is the gravity forces acting in all ma-
jor components of the machine (rotor, bearing supports/pedestals, turbine casing),
see Fig. 1.8, and the source of the dynamic loads may consider unbalance forces and
inertia forces. As a further assessment (if demanded), various dynamic loads may
be implemented such as steam flow excitation or other.

A preliminary rotordynamic study of linear rotor and linear bearing properties
(see Fig. 1.7) may be enough to give to experienced designers a confident view



1.2. Oil-film Bearings 5

FIGURE 1.5: Representation of Rotor Response Plot [7]
.

regarding the mechanical integrity and the performance of the machine. In other
words, a harmonic vibration analysis should be enough to render revision or accep-
tance of a design. However, the demands for even greater performance and more
precise rotordynamics initiate the demand for the study of nonlinear phenomena
and transient nonlinear response analysis. The main reason is that recent machines
have been built with more tight clearances than in the past to improve the ther-
modynamic performance. Various phenomena may be implemented in a nonlinear
transient analysis of a turbine-generator shaft-line. A significant source of nonlinear-
ity that considerably influences dynamic parameters of the machine (such as critical
speeds and amplitudes) is the nonlinear oil film forces of the journal bearings. Al-
though the oil-film forces behave linearly enough in the greater range of operating
speed, there are ranges of operating speeds close to the critical speeds that would
raise considerably higher amplitudes of rotor vibrations and therefore change the
oil film forces to behave non-linearly.

1.2 Oil-film Bearings

Oil-film operation is determined by the principle of hydrodynamic lubrication which
first requires an always sufficient quantity of oil to fill the clearance between the ro-
tor shaft and the bearing, and second the formation of the oil-film wedge (see Fig.
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1.6) and the establishment of the conditions for hydrodynamic lubrication depend-
ing on the type of bearing, the relative velocity, the viscosity of the oil and the load. If
the load is acting perpendicularly to the shaft axis, then the bearing derives its name
from the neck of the shaft and is defined as a "journal bearing". If the load is acting
in the direction of the shaft axis, then the bearing is defined as a "thrust bearing"
(see Fig.1.10).Journal bearings are classified on the type of the sliding surfaces. If
the journal bearing has fixed sliding surfaces, then it is defined as a "sleeve bearing"
(Fig. 1.9 (A,B)), otherwise the bearing has one or more pivoted pads, which can tilt
freely in which case it is defined as a "tilting pad journal bearing" (TPJB) (Fig. 1.9
(C)).

FIGURE 1.6: Illustration of cylindrical journal bearing pressure distri-
bution.
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FIGURE 1.7: Speed depended linearized coefficients of stiffness (A)
and damping (B) of the oil film of a partial-arc bearing.
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FIGURE 1.8: Schematic of steam turbine generator shaft train with
bearings and pedestals. [8].

The basic shape of sleeve bearings is the cylindrical bearing, in which the cross-
section of the bearing surface is a circle. However, this kind of bearing is not used
in steam turbines, since it is prone to causing instability, in particular oil-whip [9],
and has been replaced for a long time by other designs, i.e. by multilobe bearings or
by TPJBs. Multilobe bearings have a cross-section composed of two to four circular
arcs, forming the so-called "lobes". In the case of two lobes, the bearing is sometimes
dubbed as "lemon-bore". Two-lobe bearings may have a pocket machined in the up-
per half, called the pressure-dam, whose aim is to impose an additional downward
load on the shaft, which contributes to stabilizing the rotor (and to increasing the
bearing dynamic stiffness).

Tilting pad journal bearings (TPJBs) have several pads, around both the halves
of the bearing shell or only in the lower one. Moreover, the pads may have the same
or different geometry. Equal pads are the most common case, while, for instance,
asymmetric three-pad TPJBs have been used in large steam turbines employed in
nuclear power plants while they are ubiquitous in high speed steam turbines (in
general small turbines around 20-30 MW or less can run up from 8000 to 15000 RPM).
TPJBs were not employed for this work and the reader is referred to [10].

Thrust bearings used in steam turbines are generally of the tilting-pad type. The
possibility of the angle of tilt to vary with load improves the load capacity of the
bearing. Generally, two thrust bearings are installed in a front-to-front or in a back-
to-back configuration in order to balance the axial rotor thrust in both directions(Fig.
1.10).

1.3 Linear bearing & support model

The bearing characteristics concern the linearized coefficients of stiffness and damp-
ing that the oil film of the bearing develops at a certain rotating speed of the shaft.
The evaluation of these coefficients has been a subject of research from the pioneers
in rotordynamics and bearing performance during the latest decades. The bearing
shell of each bearing is supposed to be rigidly mounted in the bearing housing. The
bearing housing is the surrounding structure of the bearing shell that holds the bear-
ing shell in a fixed position within the extended bearing housing structure, here
called pedestal (or bearing support). Each bearing pedestal is a complex structure
(see Fig. 1.11) and its properties of stiffness and damping are mostly evaluated us-
ing Finite Element Analysis (FEA). The scope of pedestal structural analysis using
FEA is to approximate the bearing center displacement for a given static or dynamic
load that is supposed to be applied in the non-deformable bearing shell, see Fig.
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(A)

(B)

(C)

FIGURE 1.9: Photos of (A) Cylindrical bearing, (B) two lobe (lemon
bore) journal bearing, (C) Tilting pad journal bearing. (Credit: Eu-

robearings Srl).

1.12. For a given load transmitted from the shaft to the bearing shell (in horizontal
and vertical direction), the respective displacement of the bearing shell is evaluated
with respect to the rigid foundation. For a static load the static stiffness and damp-
ing characteristics are evaluated as KP,X, CP,X in horizontal and KP,Y, CP,Y in vertical
direction. For linearly varying load frequency (and constant load amplitude), the dy-
namic stiffness and damping characteristics can be evaluated as KP,X(Ω), CP,X(Ω) in
horizontal and KP,Y(Ω), CP,Y(Ω) in vertical direction. It should be highlighted that
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(A)

(B)

FIGURE 1.10: Photos of tilting pad thrust bearings (A) and example
of front-to-front installation (B). [10]

the only excitation frequency in the pedestal structure is the rotating frequency of the
rotor. The pedestal inertia is supposed to be separated regarding its action in hori-
zontal and vertical plane. This simplification aims to enable the good approximation
of dynamic stiffness/damping resonant peaks with a 2DOF model per direction, see
Fig. 1.13. As shown in Fig. 1.12, there are definitions of "horizontal mass" MP,X and
of "vertical mass" MP,Y. Typical dynamic stiffness/damping function of a pedestal
is presented in Fig. 1.14.
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FIGURE 1.11: Pedestals for steam turbine journal bearings
(Credit:Siemens).

FIGURE 1.12: Configuration of the linear bearing and the linear sup-
port structure (pedestal).
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FIGURE 1.13: Simplified layout of the shaft nodal mass (journal) and
the bearing support structure (pedestal), in vertical (left) and hori-
zontal plane (right). The coupled (due to oil film cross coupling coef-

ficients) has 2 DoF per plane.

FIGURE 1.14: Typical dynamic stiffness function of a bearing support
(pedestal) structure.KR is the effective bending stiffness of the rotor
and Ω0 is the 1st rigid support natural frequency of the HP turbine

rotor.

In Fig. 1.14 is seen that in the frequency range of interest (e.g. 0 < Ω/Ω0 < 4) the
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function KP,X(Ω) or KP,Y(Ω) can be approximated in its single peak with an 1DOF
per plane model as shown in Fig. 1.13.

1.4 Nonlinear Dynamics of Rotor-Fluid Bearing Systems

Nonlinear phenomena in rotor-bearing systems due to fluid film bearing forces have
been observed and studied since the latter half of the twentieth century. In 1965
Tondl [11] and in 1966 Ehrich [12] studied nonlinear resonances due to fluid film
forces in journal bearings and squeeze-film damper bearings respectively (see Fig.
1.16). In 1988 and 1991 Ehrich [13, 14] also studied subharmonic resonances of high
order and chaotic vibrations in high speed rotor systems. Other nonlinear phenom-
ena arising mainly from oil whirl/whip, such as quasi-periodic, aperiodic motions,
Andronov-Hopf and Neimark-Sacker bifurcations were also observed and studied
by DiPrima [15], Mayers [16], Hollis and Taylor [17], Muszynska [18], Crooijmans,
Brouwers, and D. H. van Campen [19], Ehrich [20], Noah and Sundararajan [21],
Chen, Natsiavas, and Nelson [22], Theodossiades and Natsiavas [23], Wang and
Khonsari [24, 25], Miraskari, Hemmati, and Gadala [26], Shoyama [27], Chasalevris
[28], and Runeng et al. [29]. These works mainly consider simplified rotor systems
(Jeffcott rotors of a few DOFs, see Fig. 1.15) and apply mostly perturbation methods
like harmonic balance method and multiple scales. For more information on these
methods, the reader can refer to Nayfeh and Mook [30] .

FIGURE 1.15: Representation of a Jeffcott rotor mounted on two iden-
tical journal bearings, carrying a disc at the bearing mid-span, and

two identical journal masses at its ends [31]

In practical medium speed rotor systems such as those for industrial power gen-
eration, the rotor dynamic design is performed by linear harmonic analysis where
the fluid film forces are linearized around the static equilibrium point. These lin-
earized stiffness and damping coefficients have been successfully implemented in
the stability assessment for various bearing designs (partial arc, lobed, tilting pad,
squeeze film damper, floating ring, pressure dam bearings etc.) and for various as-
sumptions in the oil film flow ((heat dependence, turbulence, inertia of the lubricant,
boundary conditions for the lubricant flow, cavitation, and others), and operating

[11] A. Tondl. Some Problems of Rotor Dynamics. Czechoslovak Academy of Sciences, Prague, 1965
[12] F.F. Ehrich. Subharmonic Vibration of Rotors in Bearing Clearance. American Society of Mechanical
Engineers. ASME, 1966
[13] F. F. Ehrich. “High Order Subharmonic Response of High Speed Rotors in Bearing Clearance”. In:
Journal of Vibration, Acoustics, Stress, and Reliability in Design 110.1 (Jan. 1988), pp. 9–16
[14] F.F. Ehrich. “Some Observations of Chaotic Vibration Phenomena in High-Speed Rotordynamics”.
In: Journal of Vibration and Acoustics 113 (1991), pp. 50–57
[30] A. H. Nayfeh and D. Mook. Nonlinear Oscillations. John Wiley & Sons, 1979
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holds), the following holds to an accuracy of O(ε):

G(ω) = 1 + ipω
2 − ω2 = (p2

f − ipωpf) − ipω
2 − ω2

= (ω − pf)(ipω − pf − ω)≈ − (ω − pf)2ω(1 − ip
/

2)

≈ − (1 − ip
/

2)(ω2 − p2
f )

ω≈ωc = 1
/√

1 − ip




(6.35)

Then, we know that Eq. (6.34) coincides with Eq. (6.22).

6.4.2
Subharmonic Resonance of Order 1/2 of a Forward Whirling Mode

If the system has asymmetrical nonlinear characteristics expressed by second
power terms of coordinates, a subharmonic resonance of order 1/2 occurs when the
relationship 2pf = ω or −2pb = ω holds. In this section we discuss the subharmonic
resonance of order 1/2 of a forward whirling mode, which occurs in the vicinity of
the rotational speed ω0 where the relationship

2pf = ω (6.36)

holds between the natural frequency pf and the rotational speed ω (Figure 5.6).
Following the notation mentioned previously, this resonance is represented by the
symbol [2pf].

Figure 6.8 shows time histories and an orbit obtained by numerical simulation.
The dashed lines show components of subharmonic vibrations. As the time history
of the dashed line in the x-direction is advanced more than that in the y-direction
by a quarter period, we know that this vibration is a forward whirling motion.

Unlike the case of the harmonic resonance, the magnitude of force F is assumed
to be O(ε0) in the analysis of this resonance. Although this assumption is adopted
for the sake of analytical convenience, a comparatively large unbalance is necessary
for the occurrence of a subharmonic resonance, in practice. In the vicinity of this
critical speed ω0, a subharmonic component with the frequency (1/2)ω occurs in

O

O

O

y

x y

x

T
T
4

t

t

Figure 6.8 Time histories and an orbit of a subharmonic resonance [2pf].
FIGURE 1.16: Time histories and orbit of a subharmonic resonance of

order 1/2 [14].

conditions (rotating speed, load)) [9, 32, 33] . It is apparent that linear harmonic
analysis can only produce elliptic orbital motions and cannot be used to predict
nonlinearities of any kind. In practical high speed rotor systems where the non-
linear behavior cannot be ignored, direct numerical integration of the equations of
motion is most commonly employed, however this comes at a large computational
cost which makes system design or optimization impractical, particularly for large
order systems. Other limitations of direct numerical integration are the inability to
compute unstable (repelling) steady state solutions (limit cycles) of the equations of
motion and difficulty in computing coexisting stable (attracting) solutions both of
which are required to reveal the complete potential of motions and bifurcations.

1.5 Methods of limit cycle calculation

Numerical tools formerly used on the study of dynamic systems, are lately engaged
in the study of the quality of motion and of the global stability of nonlinear dynamic
rotor bearing systems, still considering simplified rotor models. The method of nu-
merical continuation [34, 35, 36, 37] is a well-known method for finding solution
branches in mechanical (and not only) systems even with strong nonlinearities as
one (or more) design (or operating) parameters change (as bifurcation parameter).

[9] Y. Hori. Hydrodynamic Lubrication. Springer-Verlag, 2006
[32] M. Khonsari and E.Booser. Applied Tribology: Bearing Design and Lubrication, 3rd Edition. Wiley
online Library, 2010
[33] D. Childs. Turbomachinery Rotordynamics - Phenomena, Modeling, and Analysis. John Wiley & Sons,
1993
[34] K. Georg E. L. Allgower. Introduction to Numerical Continuation Methods. Society for Industrial
and Applied Mathematics, 2003
[35] H. Meijer, F. Dercole, and B. Olderman. Numerical bifurcation analysis. Encyclopedia of Complexity
and Systems Science, R. A. Meyers Ed. Springer New Yorks, pp. 6329–6352
[36] Y. A. Kuznetsov. Elements of applied bifurcation theory 2nd ed. Applied mathematical sciences.
Springer New York, 1998
[37] A. H. Nayfeh and B. Balachandran. Applied nonlinear dynamics. Wiley series in nonlinear science.
J. Wiley & Sons, 1995
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The numerical continuation method, in one of its most popular versions (pseudo arc
length continuation) has the primary advance to study MDOF systems where the
nonlinear motion equations can be many [38]. In the current work, the author pro-
grammed the pseudo arc length continuation of limit cycles directly from the notes
[34, 37, 39] . Numerical continuation has been lately applied in the study of non-
linear rotor bearing systems, and the potential of the applicability of the respective
methodology in rotor bearing systems appears to rise in the literature. Among the
various contributions, in [40, 41, 42] simplified models of high speed rotors on float-
ing ring bearings are studied, while in [43, 44, 45, 46] Jeffcott rotor models in sim-
ple oil film bearings are studied on their bifurcation sets. In [31] complex bearing
profiles and bearing pedestal models are included. Recently, the bifurcation sets of
simple rotor models on adjustable bearings [47] and on [48] gas-foil bearings where
extensively studied. The works hereby referred do not consider complex rotor mod-
els but simplistic models of few DOFs, as most of the effort was on the respective
bearing models. In [49, 50, 51] the deflation method is applied to evaluate solution
branches (fixed points and limit cycles) in simple and in MDOF rotor systems of
high speed. The current work primarily aims to reveal the potential of a realistic
turbine-generator shaft train model to produce motions of different quality (further
to the well-known and widely studied linear elliptic orbits) which may lie close to
the linearly predicted stable whirling. Secondary, the well-known method of nu-
merical continuation for analyzing the motions and the global stability of MDOF
nonlinear systems, is applied in a large scale system whose nonlinear motions may
be rather different than those predicted by the simplified rotor models. Furthermore,
unbalance response is evaluated for the non-autonomous (unbalanced rotor) inves-
tigating the potential of unstable motions in speeds lower than the service speed.
Further to that, realistic bearing models (of partial arc and lemon bore configuration)
are engaged in the analysis, while simplified pedestal models (1 DOF per direction)
is included in the analysis to investigate the influence of the foundation properties
in the bifurcation set. Case studies conclude the influence of misalignment, of par-
tial arc and lemon bore bearing key design parameters (arc length, preload, offset),
of pedestal properties (stiffness and damping), and of rotor properties (slenderness
ratio - flexibility) on the bifurcation set of fixed points and of limit cycles for the
autonomous (balanced) and the non-autonomous (unbalanced) shaft train.

[34] E. J. Doedel, H.B. Keller, and J.P. Kernevez. “Nonlinear dynamic analysis of supercritical and
subcritical Hopf bifurcations in gas foil bearing-rotor systems”. In: International Journal of Bifurcation
and Chaos 1.3 (1991), pp. 745–772
[34] K. Georg E. L. Allgower. Introduction to Numerical Continuation Methods. Society for Industrial
and Applied Mathematics, 2003
[37] A. H. Nayfeh and B. Balachandran. Applied nonlinear dynamics. Wiley series in nonlinear science.
J. Wiley & Sons, 1995
[39] E. J. Doedel. “Lecture Notes on Numerical Analysis of Nonlinear Equations”. In: Department of
Computer Science, Concordia University, Montreal, Canada ()
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TABLE 1.1: Timeline of application of numerical continuation in rotor
bearing systems

Year Author and Details Illustrations

2009

Boyaci et al. [40]- Sym-
metric and balanced
rigid rotor with floating
ring bearings. Center
manifold reduction and
comparison with AUTO
bifurcation diagrams.

Rubel [43]-MDOF (tur-
bocharger) systems,
Plain Journal Bearings,
Evaluation of periodic
and quasiperiodic limit
cycles with using AUTO
and TORCONT.

2011

Amamou and
Chouchane [44]-
Symmetric rigid Jeffcott
rotor, Short bearing ap-
proximation, Evaluation
of periodic limit cycles
using MATCONT.

2015

Sghir and Chouchane
[45]-Symmetric rigid Jef-
fcott rotor, Short bearing
approximation, Evalu-
ation of periodic limit
cycles using MATCONT.
Boyaci, Lu, and
Schweizer [41]-
Symmetric elastic and
damped Jeffcott ro-
tor, Semi-floating ring
bearings. Evaluation
of periodic limit cycles
using MATCONT.

2016

Sghir and Chouchane
[46]-Symmetric elas-
tic Jeffcott rotor, Short
bearing approximation.
Evaluation of periodic
limit cycles using MAT-
CONT.
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Timeline of application of numerical continuation in rotor bearing
systems (Continued)

Year Author and Details Illustrations

Breemen [42]-Symmetric
elastic and damped Jeff-
cott rotor, Short bearing
approximation. Evalua-
tion of periodic limit cy-
cles using MATCONT.

2017
Kim and Palazzolo [49,
50, 51]-Jeffcott and
MDOF (Tur-
bocharger,Compressor)
systems, Floating ring
bearings and TPJBs.
Evaluation of periodit
limit cycles using
shooting method.

2019

Becker [47]-Jeffcott rotor,
Sleeve bearings of vari-
able geometry. Eval-
uation of periodic and
quasiperiodic limit cy-
cles with HBM.

2021

Leister [48]-Jeffcott rotor,
Refrigerant-Lubricated
Gas Foil Bearings. Eval-
uation of periodic limit
cycles using AUTO2000.
Anastasopoulos and
Chasalevris [31]-
Symmetric elastic and
damped Jeffcott rotor
with 2DOF pedestals,
lemon bore and partial-
arc bearings. Evaluation
of periodic limit cycles
using MATCONT.



17

Chapter 2

Model and formulation of the shaft
train

In this Chapter the methods used to formulate the shaft train model are presented.
These methods and all underlying assumptions form the basis for the rest of the
work done during this thesis. The main objective of this chapter is to give the reader
a brief overview of the relevant theory concerning modeling rotors, element order
reduction methods and modeling of the bearings and pedestals as performed in this
work, with references to literature and Appendices, where deemed appropriate.

2.1 Model of Rotor

In practice, rotating machines have complex geometry. In turbomachinery for power
generation for example, multiple flexible shafts with variable cross sections with
flexible disks, blades and generator windings and connected with flexible or rigid
couplings of various stiffness. Such machines cannot be modeled by Jeffcott or Laval
rotors as it is important to accurately calculate the eigenfrequencies, vibration modes
and unbalance response for the respective rotor design. To this end, the rotor is
discretized with continuous beam elements, each element having two nodes and
eight total degrees of freedom (lateral bending). The equations of motion for a multi-
degree-of-freedom (MDOF) system are represented in matrix form as follows:

Mq̈ + (C + ΩG)q̇ + Kq = f (2.1)

where M, C, G, K are the mass (or inertia) matrix, damping matrix, gyroscopic
matrix and stiffness matrix for the complete system (square matrices of size No.
of DOFs, asymmetric in general due to bearing linear coefficients and gyroscopic
terms) respectively and are assembled from the individual element matrices, and q
and f are the displacement vector and force vector (of length No. of DOFs) respec-
tively. An example is given below for a three element matrix. It is reminded that
every individual element matrix is of size 8 × 8 and so if we follow conventional
numbering rules (see A) the elements in the cross-hatched area are calculated from
the sum of the respective element matrices. The element matrices derivation is based
on the Timoshenko beam theory as presented in [52, 53].

For the accurate representation of the rotor using finite elements, the discretiza-
tion should follow clear changes of diameter, and locations where the evaluation of

[52] Y. Ishida and T. Yamamoto. Linear and Nonlinear Rotordynamics: A Modern Treatment with Applica-
tions, Second Edition. Wiley-VCH Verlag GmbH & Co. KGaA, 2012
[53] J. M. McVaugh H. D. Nelson. “The Dynamics of Rotor-Bearing Systems Using Finite Elements.”
In: ASME Journal of Engineering for Industry 98 (1976), pp. 593–600
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FIGURE 2.1: Example of global matrix assembly from three finite ele-

ments

response if of crucial importance (e.g. bearings, steam path, gland sealing, unbal-
ance nodes).

It should be noted that for a rotor made from fully linear-elastic material, the
damping matrix C is given by the classical Rayleigh damping C = αM + βK, where
α, β are real scalars. A small numerical damping value is applied to the rotor (C =
10−5K) in order to make the ODE1 system less numerically stiff without affecting the
dynamic behavior.

The geometric and physical properties must be supplied for all segments defined
in the discretized shaft train. These are defined in Table 2.1. A brief description of
the properties will first be given.

The outer and inner mass diameters MOM,i, MIM,i define the geometrical outline
of the material of the shaft. The outer and inner stiffness diameters MOS,i, MIS,i de-
fine the volume of the segment that would receive load due to bending. The effective
stiffness of the shaft is influenced from the stiffness diameters. The mass diameters
influence the mass and the inertia of each segment and therefore the total mass and
inertia of the rotor.

It is advisable that a segment should not have a length to stiffness diameter ratio
LS,i/DOS,i less than 0.05 or greater than 0.8. Furthermore, comparing the length to
stiffness diameter ratio of two sequential segments, these should not differ more
than a factor of 4. The discretization of Fig. 2.5 is according to such considerations,
however there are many alternative mesh configurations that may be acceptable.

In Fig. 2.2 it is shown that the stiffness diameter line (dashed line) should define
two triangles of equal area (hatched) in each segment. Stiffness diameter equals
mass diameter when the entire segment’s cross section participates in bending, as it
happens for instance in the winding portion of the GEN rotor. It is very common
that shafts also include cavities (hollow shaft). A cavity may be designed where two
shafts are welded together, or for other reasons like lowering thermal stresses and
shaft elongation. In the case of hollow shaft, the diameters of interest are similarly
defined.

Additional mass may exist in a rotor segment, such as rotating blades (in a tur-
bine rotor) or wiring (in a generator rotor). In Fig. 2.3 the additional masses rep-
resent the rotating blades of the turbine rotor or other components (e.g. gears, fans
etc.).

Additional mass is implemented by two parameters, the first being the diameter
of gyration DAM, as defined in Fig. 2.3, and the second being the total mass that
is added in the shaft segment, MAM. For instance, in segment 13, see Fig. 2.3, the
additional mass MAM is the mass of one blade multiplied by the number of blades
existing in segment 13. The center of gravity of one blade is defined also in Fig. 2.3,
for all blades at all stages.

1ODE: Ordinary Differential Equation
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(A)

(B)

FIGURE 2.2: Definition of outside (A) and inside (B) stiffness diame-
ters using the 45◦ rule in segments where change in mass diameter is

notified.

FIGURE 2.3: Representation of additional mass in a segment and def-
inition of additional mass diameter DAM

A very important parameter that should be implemented in the simulation is
the temperature at each shaft segment. Steam turbine rotors experience tempera-
tures above 500

◦
C in some segments. A typical temperature distribution in a steam

turbine rotor is presented in Fig. 2.5b. Such temperatures degrade the modulus of
elasticity of the material of shaft segment. The considerable degradation of modulus
of elasticity due to temperature is shown in Fig. 2.4
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TABLE 2.1: Definition of the geometric and physical properties of the
rotor segment i = 1, 2, . . . , N

Symbol Description Definition

LS,i Length of segment
DOM,i Outer mass diameter of seg-

ment
DOM,i = 2ROM,i

DIM,i Inner mass diameter of seg-
ment

DIM,i = 2RIM,i

DOS,i Outer stiffness diameter of
segment

DOS,i = 2ROS,i

DIS,i Inner stiffness diameter of
segment

DIS,i = 2RIS,i

DAMI,i Inner diameter of additional
mass in segment

DAMI,i = 2RAMI,i = DOM,i = 2ROM,i

DAMO,i Outer diameter of additional
mass in segment

DAMO,i = 2RAMO,i

DAM,i Diameter of gyration of addi-
tional mass in segment

DAM,i = 2RAM,i =
√

D2
AMI,i + D2

AMO,i

Ti Temperature of segment
Ei Young’s modulus of shaft

segment

Gi Shear modulus of segment Gi =
Ei

2(1 + vi)
vi Poisson’s ratio of shaft seg-

ment
ρi Density of material of shaft

segment

s fi Shear factor of shaft segment s fi =
7 + 6vi

6 + 6vi
AS,i Area of cross section of shaft

segment, considering stiff-
ness

AS,i = πR2
OS,i − πR2

OS,i

AM,i Area of cross section of shaft
segment, considering mass

AM,i = πR2
OM,i − πR2

IM,i

AAM,i Area of cross section of addi-
tional mass in segment

AAM,i = πR2
AMO,i − πR2

AMI,i

MS,i Mass of shaft segment MS,i = ρi AM,iLS,i
MAM,i Total additional mass in seg-

ment
IS,i Area moment of inertia of the

shaft segment (around bend-
ing axis)

IS,i = π(R4
OS,i − R4

IS,i)/4

JSP,i Mass moment of inertia (po-
lar) of the shaft segment

JSP,i = MS,i(R2
OM,i + R2

IM,i)/2

JSD,i Mass moment of inertia (dia-
metric) of the shaft segment

JSD,i = JSP,i/2 + MS,iL2
S,i/12

JAP,i Mass moment of inertia (po-
lar) of the additional mass in
segment

JAP,i = MAM,i(R2
AMO,i + R2

AMI,i)/2

JAD,i Mass moment of inertia (di-
ametric) of the additional
mass in segment

JAD,i = JAP,i/2 + MAM,iL2
S,i/12
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The shaft train studied in this thesis is a representative multi-rotor, multi-bearing
shaft train of a turbine-generator as shown in Fig. 2.5. The rotors are connected to
each other with rigid couplings. Static alignment (see Fig. 2.6) is performed in the
shaft train elevating the bearings #1, #4 and #5 by δ1, δ4 and δ5 respectively to mini-
mize the bending moment in the coupling flanges and to ensure loading in bearing
#5 (approximately 10 kN). Bearings #2 and #3 are not elevated (δ2 = δ3 = 0).

FIGURE 2.4: Modulus of elasticity as a function of temperature for a
typical steam turbine shaft steel.
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FIGURE 2.5: Representation of a turbine-generator shaft train consist-
ing of 4 rotors (HP IPLP GEN SR shaft) and 5 bearings/pedestals.
Finite element discretization, bearing elevation δi , sag line, bearing
span Li , balance planes, and master nodes are also depicted in fig-
ure. Temperature distribution and additional masses of blades, gears
and fans, and generator wiring are included in the model as shown

in 2.5b

The shaft train consists of 184 beam elements with 740 DoFs (184 finite elements,
185 nodes, 4 DoFs per node). The bearing pedestals are modeled by linear springs
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FIGURE 2.6: Static Alignment of Shaft train.

with point mass (1 DoF per translational DoF without cross-coupling of coefficients
for an additional 10 DoFs). Since the rotor and pedestals are coupled only through
the bearing forces there are no cross-coupling terms between the rotor and pedestal
DoFs but for simplicity of notation the pedestal matrices Mp, Cp, Gp, Kp can be ap-
pended to the rotor matrices. The matrices Mp, Cp, Kp are diagonal of size 10 × 10
and the gyroscopic matrix Gp is the zero matrix of size 10 × 10. It follows that the
complete system matrices are of size 750 × 750.

The force vector f consists of the bearing forces ( f B
i ), the unbalance forces ( f U

i )
and the gravity forces in rotor and pedestals ( f G

i ). Unbalance forces are consid-
ered for selected nodes and for constant rotating speed Ω, according to the un-
balance cases some of them being e.g. single/pair unbalance in IPLP rotor, sin-
gle/pair/triple unbalance in GEN rotor. Mk is the total mass (shaft mass and ad-
ditional masses) of the rotor part (k = 1,2,3,4) defined between sequential bearing
locations. The unbalance eccentricity eu follows in this thesis the ISO G-grade defi-
nition with service speed of the shaft train at Ω = 377rad/s. G-grade 2.5 applies in
such systems as reference, therefore eu = G/Ωr = 6.6[µm] applies for the reference
unbalance calculation.

f U
i,X = MkeuΩ2cos(Ωt), f U

i,Y = MkeuΩ2sin(Ωt) (2.2)
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2.2 Linear Harmonic Analysis

The well established Linear Harmonic Analysis consists of calculating the eigenval-
ues of the system and the calculation of the steady-state synchronous response. The
eigenvalues of the linear system can be calculated by setting the force vector to zero
(free vibration) and converting Eq. 2.1 to a 1st order ODE by setting

x =

{
q̇
q

}
(2.3)

and then Eq. 2.1 becomes

Aẋ + Bx = Q (2.4)

where

A =

[
0 M
M C + ΩG

]
, B =

[
−M 0

0 K

]
, Q =

[
0
f

]
For free vibrations, Q = 0 and a solution of Eq. 2.4 is sought of the form x = ϕeλt.
Substituting in Eq. 2.4 then gives:

[λA + B]ϕ = 0

or in the familiar eigenvalue problem form:

Dϕ =
1
λ

ϕ (2.5)

where D = −B−1A.
The steady-state synchronous response for synchronous harmonic excitation of

the form f (t) = Xccos(Ωt) + Xssin(Ωt) can be written as q(t) = Accos(Ωt) +
Assin(Ωt). Substituting to the equations of motion, the steady-state response can
be calculated from the following set of linear algebraic equations:[

K − Ω2M ΩC
−ΩC K − Ω2M

] [
Ac
As

]
=

[
Xc
Xs

]
(2.6)

In Fig. 2.7 the harmonic response of the shaft train at operating speed with G2.5
generator pair unbalance is shown.

2.3 Model Order Reduction

The rotor model is reduced applying static (Guyan) reduction [54] retaining 2 Master
DoFs (transverse displacement) per Master Node, these depicted in 2.5. The total
number of Master Nodes are 21, therefore 42 Master DOFs are included in the vector
Qm,i in Eq. 2.7.

Mrq̈r + (Cr + ΩGr)q̇r + Krqr = f B
r,i + f U

r,i + f G
r,i (2.7)

The selection of master nodes has been performed according to the demand for
master nodes in bearing locations and in unbalance planes (at least), where dynamic
forces act. Further master nodes are added to match the dynamic response of the
reduced system to that of the full system in terms of unbalance response, critical

[54] J. Guyan. “Reduction of stiffness and mass matrices”. In: AIAA Journal 3 (1965), p. 380
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FIGURE 2.7: Harmonic response of the shaft-train at 3600RPM for
G2.5 generator pair unbalance.

speeds and modal properties, while static performance (sag line) is absolutely satis-
fied. The performance of the reduced model is validated in Chapter 4. An overview
of the Guyan reduction is given in Appendix B.

2.4 Bearing and Pedestal Modeling

The resulting bearing forces FB
X , FB

Y (fluid film forces) produced in each bearing and
included in the system of ODEs are evaluated in this section.

The reader should bear in mind that the bearing impedance force nonlinearity
(with respect to the journal kinematics) is the sole (and strong) source of nonlin-
earity in the ODE set. Pedestal properties retain their speed (frequency) dependent
linear stiffness and damping characteristics, while the bearing forces are expressed
in Equation 2.8 as nonlinear functions of the geometry and operating parameters
(radial clearance cr, journal Radius R, bearing width L, lubricant dynamic viscosity
µ and Rotating speed Ω) (further variables such as pad clearance, offset, pad length
etc. may be included according to the selected bearing type), pedestal motion (hori-
zontal displacement xP, vertical displacement yP, horizontal velocity ẋP and vertical
velocity ẏP) and shaft motion (horizontal displacement xi, vertical displacement yi,
horizontal velocity ẋi and vertical velocity ẏi). Bearing forces in journal bearings of
actively adjustable geometry (such as TJPBs) include also the independent variable
of time t of which they are an explicit function.

{
FB

X
FB

Y

}
=


f1(cr, R, L, µ, Ω, xP, yP, ẋP, ẏP, xi, yi, ẋi, ẏi)
f2(cr, R, L, µ, Ω︸ ︷︷ ︸

geometry and
operation

, xP, yP, ẋP, ẏP︸ ︷︷ ︸
pedestal motion

, xi, yi, ẋi, ẏi︸ ︷︷ ︸
shaft motion

)

 (2.8)

Two bearing profiles are included in this study: the cylindrical partial arc bearing
(Figure 2.8a) and the elliptical (lemon bore) bearing (Figure 2.8b), both being widely
applied in industrial turbomachinery of medium speed, e.g. steam/gas turbines and
generators [28].

[28] A. Chasalevris. “Stability and Hopf bifurcations in rotor- bearing-foundation systems of turbines
and generators”. In: Tribology International 145 (2020), p. 106154



2.4. Bearing and Pedestal Modeling 25

(A) (B)

FIGURE 2.8: Representation of configuration and of key design and
operation parameters in 2.8a) a partial arc bearing and 2.8b) a 2-lobe

elliptical bearing (lemon-bore bearing).

Key design parameters in both bearings are the starting angle θS, ending angle θE
of the effective lubricating surface (bearing shell) at each bearing, the bearing length
Lb and the journal diameter D = 2R.

The angle of the arc spanned by the two angle values is α. The arc angle usually
receives values at the range of 60◦ ≤ α ≤ 140◦ in common applications. Radial
clearance is defined as cb = Rb − R at both types of bearings. At the lemon-bore
bearing, a clearance cp = Rp − R is also defined to describe the curvature at each
of the two lobes and the geometric preload m = 1 − cb/cp which influences the
effective eccentricity of the bearing and as a consequence the threshold speed of
instability and the respective bifurcation type.

Geometric preload normally receives values in the range 0.3 ≤ m ≤ 0.7. The
offset β is an additional design parameter for this type of bearing and describes
the horizontal displacement of the two bearing halves relative to each other. This
parameter receives values of ca. 0.0 ≤ β ≤ 0.5cb and then the bearing configuration
belongs to the so called ’offset halves’ bearing. A reference bearing design table for
the geometric and physical properties is defined as shown in Table2.2.

TABLE 2.2: Reference Bearing Geometric and Physical parameters

Bearing no. 1 2 3 4 5

Journal Radius R[mm] 90 110 200 150 100
Length to Diameter Ratio L/D 0.5 0.9 0.9 0.9 0.5
Radial clearance cr 0.002R
Arclength α[◦] 60 160 160 160 60
Geometric Preload m - 0.5 0.5 0.5 -
Offset β - 0 0 0 -
Dynamic viscosity (ISO VG46 @ 90◦C) µ[Pa · s] 0.0067

The calculation of oil film impedance forces generated in the mentioned bearing
types relies on numerical solution (finite difference method) of the Reynolds equa-
tion for isothermal (isoviscous) flow with Constantinescu’s turbulence model [55]
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which is defined in Equation 2.9.

1
µR2

∂

∂θ

(
h3 1

kx

∂p
∂θ

)
+

h3

µ

∂

∂z

(
1
kz

∂p
∂z

)
=

1
2

Ω
∂h
∂θ

+
dh
dt

(2.9)

Pressure distribution is defined as p = p(θ, z). The fluid film thickness function
is defined in Equation 2.10 for the partial arc bearing as h. The lemon bore bearing
consists of the upper and lower lobe, where the fluid film thickness is defined as
hu and hl respectively, see Equation 2.10. The turbulence coefficients kx, kz can be
calculated as kx = 12 + 0.53(k2Reh)

0.725, kz = 12 + 0.296(k2Reh)
0.65, k = 0.125Reh

where Reh = ρΩRh/µ is the local Reynolds number.

h = cb − xJcos(θ)− yjsin(θ),

hu = cp − xJcos(θ)− (yj − (−cp + cb))sin(θ),

hl = cp − xJcos(θ)− (yj − (−cp − cb))sin(θ),

θS ≤θ ≤ θE

θS − π ≤θ ≤ θE − π

θS ≤θ ≤ θE

(2.10)

The fluid film thickness function h = h(θ) is defined only for positive values
(no impact between rotor and stator is considered) where hydrodynamic lubrica-
tion regime (thin film lubrication) is established. This requires that h > 0.15cr as
the Reynolds equation should be considered valid for relative eccentricity values
0.15 < e/cr < 0.85. The finite difference method applied for the numerical solution
of the Reynolds equation requires the definition of the fluid film thickness function h
in a mesh of Nθ × Nz in circumferential and axial direction respectively. The fact that
journal and bearing are considered aligned (no angular misalignment is considered)
does not alter the fluid film function h in axial direction; therefore, h is a function of
circumferential coordinate θ only. The sensitivity of the resulting pressure distribu-
tion in the mesh size has been studied to confirm that the dynamic characteristics
of the system are repeated for different mesh grid sizes. The stability of numerical
solution is also confirmed in the various grids checked. The finite difference solution
scheme is given in Appendix C.

[55] V. N. Constantinescu. “On Turbulent Lubrication”. In: Proceedings of the Institution of Mechanical
Engineers 173.1 (1959), pp. 881–900
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(A) Bearing #1 (B) Bearing #2 (lower half)

(C) Bearing #3 (lower half) (D) Bearing #4 (lower half)

(E) Bearing #5

FIGURE 2.9: Pressure Distribution of Bearings 1-5 at Operating speed
Ω = 3600RPM for the balanced (G0) system. Finite difference grid
Nθ × Nz is equal to 20× 9 for bearings #1 and #5 (partial-arc) and 30×
9 for bearings #2, #3 and #4 (lemon-bore) bearings. For the lemon-

bore bearings, only the lower halves are depicted.
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(A) Bearing #1 section of pressure profile at bear-
ing axial centerline

(B) Bearing #1 section of pressure profile at bear-
ing circumferential centerline

FIGURE 2.10: Pressure distribution for various grid sizes in axial (A)
and circumferential (B) direction. Nθ = 20 for (A) and Nz = 9 for (B).

Operating conditions same as Fig. 2.9.

The fluid film impedance forces in horizontal and vertical direction FB
X , FB

Y are
evaluated numerically in Equation 2.11 for the partial arc bearing and in Equation
2.12 for the lemon-bore bearing, after the pressure distribution p(θ, z) is defined,
and considering only the positive pressure values. In the lemon bore bearing where
two bearing pads are considered, pu(θ, z) is the pressure distribution for the upper
pad and pl is the pressure distribution for the lower pad. Therefore, the Reynolds
equation is solved two times in the case of a lemon bore bearing.

{
FB

X
FB

Y

}
=
∫ θE

θS

∫ Lb/2

−Lb/2
p(θ, z)R

{
cos(θ)
sin(θ)

}
dzdθ (2.11)

{
FB

X
FB

Y

}
=
∫ θE−π

θS−π

∫ Lb/2

−Lb/2
pu(θ, z)R

{
cos(θ)
sin(θ)

}
dzdθ

+
∫ θE

θS

∫ Lb/2

−Lb/2
pl(θ, z)R

{
cos(θ)
sin(θ)

}
dzdθ

(2.12)

When numerical solutions are applied in the Reynolds equation, a variety of dif-
ferent boundary conditions can be implemented in the lubrication problem, with the
most applicable being these defined by Elrod [56], Jakobson and Floberg [57] (or JFO
for simplicity), Stieber [58] and Gümbel [59] (or half-Sommerfeld). There are cases
of operating conditions where the selection of a boundary condition is not critical
for the rotor dynamic design of a specific application. In the scope of this work,

[56] H. Elrod. “A Cavitation Algorithm”. In: Journal of Lubrication Technology 103.3 (1981), pp. 350–354
[57] B. Jakobson and L. Floberg. “The finite journal bearing considering vaporization”. In: Transactions
of Chalmers University Technology, Goteborg, Sweden 190.190 (1957), pp. 1–119
[58] W. Stieber. Das Schwimmlager: Hydrodynamische Theorie des Gleitlagers. V.D.I. Verlag GMBH, Berlin
106, 1933
[59] L. Gümbel. Das Problem der Lagerreibung. Mon. Berl. Bezirksverein.,V.D.I., 5, 1914, 87104 and
109–120
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the Gümbel boundary condition is applied for computational effectiveness (reduced
evaluation time). Pressure distribution is considered only in the convergent region
of the bearing (the wedge between the journal and the bearing, for static conditions),
while the rest area of the bearing pad is considered to experience cavitation (and as-
sumption of oil film rupture).

Each bearing of the shaft train fits in its bearing housing (pedestal) whose model
follows a simplistic (but still effective) approach to introduce the influence of foun-
dation flexibility in the dynamics of the shaft train. Bearing pedestal motion is mod-
eled with 1 DoF per direction mass-spring-damper system, see Figure 2.11. The re-
spective mass, stiffness and damping properties (MP,X, MP,Y, KP,X, KP,Y, CP,X, CP,Y)
are selected such that modal properties of pedestals (natural frequencies and damp-
ing ratio) are close to those obtained from real pedestal structures (for a selected
natural frequency close to the operating speed). Pedestal properties are included in
the case study presented in Chapter 4. The reference pedestal mass, stiffness and
damping coefficients are shown below, see Table 2.3.

FIGURE 2.11: Representation of the simplified bearing pedestal
model with 1 DoF per direction [28]2

TABLE 2.3: Pedestal properties.

Pedestal no. 1 2 3 4 5

Mass MP[kg] 104 104 6 · 103 3.8 · 103 103

Stiffness KP[N/m]
x 5 · 109 5 · 109 5 · 109 2 · 109 0.67 · 109

y 6.7 · 109 6.7 · 109 6.7 · 109 5 · 109 2 · 109

Damping CP[N · s/m]
x 7.1 · 105 7.1 · 105 5.9 · 105 2.8 · 105 0.82 · 105

y 4.9 · 105 4.9 · 105 3.8 · 105 2.6 · 105 0.85 · 105

2.5 Formulation of the ODE system

The coupled reduced rotor and pedestal motion equations (of 2nd order) are then
converted to a 1st order ODE set applying the transformations of Eq. 2.13, known as
Duncan method.
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x =

{
q
q̇

}
(2.13)

The combined reduced rotor model and the pedestal model are then written in
Eq. 2.14 and the force vector appearing are defined in Eq. 2.15.

ẋ =

[
0 I

−M−1K −M−1(ΩG + C)

]
x +

{
0

M−1 fr,i

}
(2.14)

fr,i = f B
r,i + f U

r,i + f G
r,i (2.15)

The coupled ODE set is a nonlinear autonomous ODE system when unbalance
force vectors are zero (eu = 0). Then, time t does not appear explicitly in the motion
equations (Eq. 2.14). Unbalance force formulas for eu ̸= 0 are the unique reason
for time t to appear explicitly in Eq. 2.14 and then the system is characterized non-
autonomous. As the methods discussed in Chapter 3 and Appendix D for numeri-
cal continuation of periodic solutions cannot handle non-autonomous ODE systems
[38], Eq. 2.14 has to be converted to autonomous. This is achieved by coupling the
ODE system of Eq. 2.14 with a two DoF oscillator, see Eqs. 2.16a and 2.16b, whose
unique solution is a harmonic motion of frequency Ω, see Eq. 2.17 [38].

ẏ1 = y1 + Ωy2 − y1(y2
1 + y2

2) (2.16a)

ẏ2 = −Ωy1 + y2 − y2y2
1 + y2

2) (2.16b)

y1 = cos(Ωt), y2 = sin(Ωt) (2.17)

The final autonomous ODE system is of size n = 2 × Nr + 10 + 2 (Nr is the
number of the reduced rotor DOFs plus 10 pedestal DOFs (vertical and horizontal
for 5 Pedestals) plus the two DoF simple oscillator of Eq. 2.17) and is defined in Eq.
2.18 and the unbalance forces to be defined for constant rotating speed, in Eq. 2.19.

ẋ = f (x, Ω) (2.18)

f U
i,X = M(k)euΩ2y1, f U

i,Y = M(k)euΩ2y2 (2.19)
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Chapter 3

Evaluation of Limit Cycles and
Bifurcation Sets

In this chapter, the methods for the evaluation of periodic limit cycles with numer-
ical continuation (or path following methods) along the independent parameter of
rotating speed, their stability characteristics and detection of local bifurcations of
periodic solutions using Floquet Theory are briefly presented. In addition, a brief
overview of well established methods for characterizing motions from simulated or
experimental time history (signal) data is given, namely Fourier or frequency spec-
tra, Poincaré maps and Lyapunov Exponents.

3.1 Numerical Continuation of Limit Cycles

Numerical continuation refers to a class of methods for computing approximate so-
lutions to a system of parameterized nonlinear equations F(x, λ) = 0 where one or
more scalar parameters appears explicitly in the system of equations. The solution x
can be time independent (stationary solution or fixed point or equilibrium or steady
state) or time dependent (dynamic solution). A numerical continuation algorithm
takes as input a system of parameterized nonlinear equations F(x, λ) = 0 and an
initial solution (x0, λ0) and produces a set of solutions [(x1, λ1), (x2, λ2), . . . (xk, λk])
which satisfy the system of nonlinear equations and are continuously connected to
the initial solution (x0, λ0) by a path of solutions (x(s), λ(s)) (also called solution
branch). In the problem studied in this work the sole bifurcation parameter used is
the rotating speed Ω and only codimension-1 bifurcations are considered (bifurca-
tions encountered by varying one parameter).

Numerical continuation has been extensively used to study parameterized au-
tonomous nonlinear dynamical systems of the form ẋ = f (x, λ). Since time is not
explicitly included in the system of equations as a variable but the solutions x can
be time-dependent x = x(t), it is possible to construct solutions with certain char-
acteristics (e.g. periodicity) without the need of a time transient simulation from
an initial (in time) solution, provided there is a good enough guess for the solution
(prediction) so that an acceptable approximation can be numerically calculated (cor-
rection). In this sense, numerical continuation belongs to a wider class of algorithms
(predictor-corrector methods) designed to integrate ordinary differential equations.
Numerical continuation algorithms are then classified based on the predictor and
corrector steps. The same principles of continuation hold for various types of solu-
tions (fixed point, periodic, quasi-periodic) provided the "zero problem" F(x, λ) = 0
is well posed. In this work, numerical continuation is performed for fixed point and
periodic solutions using pseudo-arclength continuation.
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The simplest form of continuation is what is called natural parameter continua-
tion (or sequential continuation) where the solution at one value of λ is used as the
initial guess for the solution at λ + ∆λ. One advantage of this type of continuation
is that it does not require an explicit formula for the "zero problem" F(x, λ) = 0
(equation-free or black box models) and only requires the previous solution (x0, λ0)
and the function evaluation F(x, λ). However, natural parameter continuation fails
at turning points (fold bifurcation or limit point of cycles), where the sign of ∆λ
changes between steps. The sign of ∆λ can be manually changed at the turning
point but it is possible that the solution will converge to the previously computed
solutions. One method to remedy this is to temporarily swap the continuation pa-
rameter λ with one of the states of the solution vector xi. Another method is to mod-
ify the original system using a deflation operator and update it after a new solution
is found. If we define the deflation operator as

D(x, λ) =
p

∏
i=1

||(x, λ)− (xi, λi)|| (3.1)

where i = 1, 2, . . . , p are the previously found solutions of F(x, λ) = 0 then the
modified (deflated) function F̂(x, λ) = F(x, λ)/D(x, λ) has all of the same roots as
the original function with the exception that roots that have already been located no
longer are roots of the deflated function.

FIGURE 3.1: Parameter and Pseudo arclength continuation.
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(A) Journal displacement of bearing #3 for time transient simulation of a runup with G2.5 pair unbal-
ance in GEN rotor.

(B) Solution branches of bearing #4 for G0 unbalance (autonomous system)
.

FIGURE 3.2: Time transient simulation of runup (A) and continuation
of fixed points and limit cycles (B).

Another widely applied method of continuation and the one used in this work
is pseudo-arclength continuation. This method introduces a separate independent
parameter (the arclength) s and produces an initial guess for the next step in the
tangential direction at the current solution step. This enables the method to continue
the solution branch at turning points for the parameter λ and can make larger steps
at regions of high curvature, resulting in better computational efficiency. Then the
parameter λ becomes part of the new solution vector u = (x, λ) and an additional
equation is required to close the system
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F(x, λ) =0
x′0(x − x0) + λ′

0(λ − λ0) =∆s
(3.2)

where (x′0, λ′
0) is the tangent vector at (x0, λ0). The prediction (x∗, λ∗) to the next

solution is tangent to the previous solution so x∗ = x0 + x′0∆s, λ∗ = λ0 + λ′
0∆s.

Using this prediction the corrector step can be used (usually some variant of New-
ton’s method) to solve the nonlinear system.

In the case of periodic solutions, the solution trajectory has to be discretized in
time. Various methods to discretize in time can be used such as shooting methods,
finite difference methods and orthogonal collocation which is implemented in this
work. The scheme for pseudo arclength continuation of periodic solutions with or-
thogonal collocation is outlined in Appendix D.

3.2 Stability and Bifurcations of Limit Cycles

To assess the stability properties of a periodic solution x = x(t) with x(t) = x(t + T)
the fundamental matrix solution Φ(t + T, t) which satisfies

Φ̇(t + T, t) = T f (x, λ)Φ(t + T, t), Φ(0) = I, t ∈ [0, 1] (3.3)

This matrix Φ(t + T, t) is called the monodromy matrix and its eigenvalues µi are
known as Floquet multipliers. The monodromy matrix maps a point x(t0) on the
periodic solution to the response x(t0 + T) at time T (one period) later.

x(t0 + T) = Φ(t0 + T, t0)x(t0) (3.4)

The Floquet multipliers µi indicate the stability and detect the type of bifurcation
as shown below.

When |µi| < 1 for all i, the periodic solution is asymptotically stable. These types
of solutions can also be approximated by integrating the ODE system for a sufficient
amount of time but this can be a slow process. By discretizing the periodic orbit, a
solution can be computed at least an order of magnitude faster as shown in Chapter
4 at any given parameter value, provided the periodic solution is stable and the
initial guess lies in the region of convergence for the Newton scheme of choice. This
process can be further accelerated by parallelizing the calculation of the Jacobian.
The initial guess can be calculated by integrating the ODEs for a smaller amount of
time (this depends heavily on the damping characteristics of the system) or by using
analytical approximations for example if a fixed point undergoes a Hopf bifurcation
and a periodic solution of small amplitude emanates.

When |µi| > 1, the periodic solution is asymptotically unstable. Since these
solutions are repelling they can only be calculated by discretizing the orbit and not
by numerical integration and with a good enough initial guess which can either be
provided analytically or by numerical continuation.

When |µi| = 1, the periodic solution is marginally stable and some type of bifur-
cation occurs. The type of bifurcation depends on the position that one or a pair of
complex conjugate floquet multipliers, leave the unit circle as shown in Fig. 3.3.
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FIGURE 3.3: Floquet multipliers for various types of bifurcations

3.3 Tools for Assessment of Motions

The numerical scheme for numerical continuation of periodic solutions for ODEs
can reveal the existence of different types of solutions, e.g. quasiperiodic through a
Neimark-Sacker bifurcation which is extensively encountered in Chapter 4. Quasiperi-
odic and chaotic solutions cannot be evaluated with this process therefore, other
tools must be employed to characterize these motions.

3.3.1 Fourier Spectra

The Fourier or frequency spectra can help characterize motions as periodic, quasiperi-
odic and chaotic. If the frequency spectrum of a stationary signal x(t) contains peaks
at one fundamental frequency ω and none, one or more of its harmonics 2ω, 3ω, . . . .
In practice, the period T of the signal may not be known so the time length of the
data is not an exact multiple of the period. Then the FFT will consist of large ampli-
tude peaks at the fundamental frequency and its harmonics surrounded by smaller
amplitude peaks, also called sidelobes. This phenomenon is called leakage and can
be remedied by using weighting functions in the time domain (windows).
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FIGURE 3.4: Representation of supercritical bifurcations in au-
tonomous systems.

If the frequency spectrum contains peaks at two or more incommensurate fre-
quencies (ω1, ω2, . . . , ωk, that is ωi/ωj, i, j = 1, 2, . . . , p, i ̸= j is irrational, and multi-
ples of them then the motion is called k-period quasiperiodic. When the frequency
spectrum is broadband then the motion is chaotic.

3.3.2 Poincare Maps

Another tool to analyze motions is the Poincaré section or map. If the period T of a
signal x(t) is known then the Poincaré map is a collection of the points

{x(t0 + T), x(t0 + 2T), . . . , x(t0 + mT)}

where m is an integer. In this case the Poincaré map of a periodic signal is either a
single point or a set of k discrete points, in which case the period is kT. For a 2-period
quasiperiodic signal the Poincaré map will form a closed smooth curve however for
3 or higher period quasiperiodic or chaotic motions there is no simple geometric
shape that is depicted. The Poincaré map of chaotic motions will appear as a cloud
of points with no or some structure depending on the damping characteristics of the
system.
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FIGURE 3.5: Representation of a Poincare Map with Period T

3.3.3 Lyapunov Exponents

The Lyapunov exponents describe the exponential rate of separation from an initial
state. It can be considered a generalization of the floquet multipliers in that they
are characteristic quantities that can characterize any type of motion (fixed point,
periodic, quasiperiodic, chaotic). The maximal Lyapunov exponent of a trajectory is
defined as

λ̄i = lim
t→∞

1
t

ln
(
||x(t)||
||x(0)||

)
(3.5)

For an n-dimensional state space there are n Lyapunov exponents which are inde-
pendent on the choice of basis. This set of n Lyapunov exponents is called the Lya-
punov spectrum and can characterize the motion as follows. If all Lyapunov ex-
ponents are negative, the attractor is a stable fixed point. If one of the Lyapunov
exponents is zero and all others negative, the attractor is a stable periodic limit cy-
cle. If m Lyapunov exponents are zero and the others are negative, the attractor is
m-periodic quasiperiodic. If one or more Lyapunov exponents is positive, the attrac-
tor is chaotic.
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FIGURE 3.6: A collection of experimentally obtained Poincaré sec-
tions: (a)-(c) quasiperiodic motions, (d) phase-locked motion, (e), (f)

chaotic motions [30].
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Chapter 4

Results and Discussion

In this chapter, several results obtained are presented and commented on concern-
ing the bifurcation sets of the reduced turbine-generator shaft train, the limit cycles,
their stability and showcasing the existence of quasiperiodic and chaotic motions.
Alternative scenarios are considered for the pedestal properties, the geometric and
physical characteristics of the bearings and rotor slenderness.

All calculations were performed on a desktop PC with an Intel i7 6700K processor
and 16GB of RAM using MATLAB R2021a. For the numerical integration of the
ODE system the MATLAB ode15s ODE solver was used. For the solution of linear
systems of equations, the MATLAB mldivide function (or \ operator) was used. For
the solution of eigenvalue problems, the MATLAB function eig was used.

The nonlinear dynamic system of the turbine-generator shaft train is first vali-
dated on its dynamic characteristics.

In Fig. 4.1 it is shown that the reduced model depicts very similar (if not identi-
cal) modal parameter of stability (stability factor v is directly related to the logarith-
mic decrement δ). The nonlinear model (still linearized around a fixed point though)
depicts similar but not identical at all cases stability factor compared to the full linear
system. The complex eigenvalues of the nonlinear reduced system have been eval-
uated for several perturbations around the fixed point (sensitivity analysis). The
small differences in the stability factor appear due to the slightly different bearing
coefficients that are effectively taking place in the nonlinear system (when linearized
around equilibrium). In Fig. 4.2 the reduced nonlinear model is validated on unbal-
ance response. The unbalance case considers pair unbalance G2.5 in generator rotor.
Resonance frequencies are identical among the three models, while resonance am-
plitudes appear very similar. All bearings appear with similar unbalance response
comparing the three models, at both horizontal and vertical plane. The unbalance
response of the reduced nonlinear system is evaluated with time integration of the
motion equations for a run-up of the system with low rotating acceleration.

4.1 Bifurcation set of the reference design

The stability of the whirling motions of the reduced nonlinear system is investigated
for the reference design in this section. Applying numerical continuation of limit
cycles in the non-autonomous (unbalanced) system, the response envelop of limit
cycles is depicted in Fig. 4.2b together with the respective transient response of
the system obtained for a run-up with low rotating acceleration (depicted) on its
unbalance response, also in Fig. 4.2a. In Fig. 4.2b one may notice the unstable motion
of the shaft-train when rotating speed exceeds Ω = 6000RPM, where a Neimark-
Sacker bifurcation takes place (see transient response in Fig. 4.2b). The system is
not globally unstable as stable quasi periodic limit cycles are produced after the
Neimark-Sacker bifurcation (supercritical Neimark-Sacker). However, the motion
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FIGURE 4.1: Stability factor v = 10−δ of the lateral (bending) modes
of the system when operating at Ωr = 3600 RPM and 4500 RPM
when the nonlinear reduced system is marginally stable. Modes with
damped natural frequency ωd < 10000 RPM are depicted only. Un-

stable system when v > 1
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(A) Bearing #3 absolute journal response in vertical
direction
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(B) Bearing #5 relative journal response evelope in
vertical direction

FIGURE 4.2: Unbalance response (absolute) with pair unbalance G2.5
in generator rotor

is quasi-periodic and collocation method cannot evaluate such limit cycle motions.
The evaluation of transient response is interrupted at an indicative rotating speed.

The rotating speed of Ω = 6000RPM is out of the operating range of the system
and may sound out of interest. However, there are turbine sets operating at higher
speeds (even higher than Ω = 6000) including slender rotors on bearings of lemon
bore profile (tilting pad bearings are rather preferred in those cases).

In Fig. 4.3a, the balanced system (G0) loses fixed point stability at c.a. Ω =
5000RPM through a supercritical Hopf bifurcation and stable limit cycles (self-excited
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(D) Bearing #3 relative journal orbit and Poincaré
Map using the forcing frequency.

FIGURE 4.3: Reference system response for G0 (autonomous system)
and G2.5, G6.3 (non-autonomous system) pair unbalance in genera-

tor.

motion) are generated. Increasing speed further at Ω = 6750 RPM, the stable limit
cycles lose stability through a subcritical Neimark-Sacker bifurcation and unstable
limit cycles (depicted with dashed lines) are generated. The instability is not global,
as there are no stable manifolds (quasiperiodic or chaotic) on the outside of the re-
pelling periodic limit cycles. In the same graph, the case of G2.5 is identical to this
already discussed in Fig. 4.2b.

The most interesting case is that of G6.3 where stable limit cycles lose stabil-
ity inside the range of operating speed (c.a. Ω = 2700RPM) where the 2nd critical
speed of generator rotor exists. In this case, the instability is not global, still. Stable
limit cycles (self-excited vibrations) are generated as the system experiences the first
Neimark-Sacker bifurcation, these evaluated only by time integration in Fig. 4.3b.
The system experiences another Neimark-Sacker bifurcation at slightly higher speed



42 Chapter 4. Results and Discussion

(c.a. Ω = 2800RPM) and returns to the former limit cycle motion (that correspond-
ing to the elastic response). In Fig. 4.3c, 4.3d the quasi periodic attractor is validated
using frequency spectra and the Poincaré Map.
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(A) Bearing #3 PSD of the quasi periodic attractor
at 6500 RPM.
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(C) Bearing #3 PSD of the chaotic attractor at 7000
RPM.
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(D) Bearing #3 relative journal orbit and Poincaré
Map using the forcing frequency at 7000 RPM.

FIGURE 4.4: Quasiperiodic and chaotic motion in the region between
local and global instability. Unbalanced system G2.5

(non-autonomous system)

Another interesting observation is that between the speed where a supercritical
Neimark-Sacker occurs, c.a. Ω = 5000RPM (for the unbalanced, or non-autonomous
systems) and the speed where the subcritical Neimark-Sacker occurs (for the bal-
anced, or autonomous system) and global stability is lost ca. Ω = 7000RPM, there
exist a 2-period quasi-periodic attractor which breaks down to a chaotic attractor
(torus breakdown) as shown in Fig 4.4. The region between local and global insta-
bility gets narrower as the unbalance magnitude increases.

The effectiveness of collocation method to evaluate complex (but still periodic)
limit cycle motions is depicted in Fig. 4.5 at Operating speed Ω = 7000 RPM of the
balanced reference system (autonomous). The response considers Bearing #5. One
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FIGURE 4.5: Indicative complex limit cycles evaluated by collocation
method, and respective PSD

may notice the initial limit cycle evaluated by transient response and the respective
60 time mesh points per period, and the 2 collocation points per mesh interval. The
reader may refer to Appendix D and [39] among other references for the implemen-
tation of the method.

4.2 The influence of pedestal properties in bifurcation set

The influence of pedestal properties in the bifurcation set of the system is studied in
this section. The weak pedestal properties consider pedestal stiffness and damping
coefficients 10 times lower than the reference, while the strong pedestal properties
are 10 times higher than the reference. Only pedestals #2, #3, #4 are considered to
change properties (these are large complex structures whose properties are difficult
to obtain via measurements). The solution branches of the system are evaluated
through numerical continuation and in Fig. 4.6a the vertical response envelop of
Bearing #5 is depicted for the three different pedestal properties, when the system
is considered balanced. Fixed point continuation ends as the fixed points lose sta-
bility through supercritical Hopf bifurcations at all three cases, and afterwards (as
rotating speed increases) stable limit cycles are generated losing stability through
Neimark-Sacker bifurcations. The weak pedestal properties in this system increase
the Hopf bifurcation speed by ca. 500 RPM, while the speed at which Neimark-
Sacker bifurcations occur increases significantly by ca. 2000 RPM. Weak pedestals
provide also a small extent of stable limit cycles which may translate to operability
of the machine even when stability threshold is passed (Hopf bifurcation). This is
not the case for the reference and strong pedestal properties. The dissipated energy
in the weak pedestal (larger motions are allowed) explains the respective trend on
one side. The different pedestal properties allow different static displacement of the
pedestals (due to gravity load) and influence the alignment of the shaft train, and
therefore the bearing loading (and their properties) at some extent.

The unbalanced generator rotor and the respective bifurcations are depicted in
Figs. 4.6b and 4.6c respectively. In Fig. 4.6b, for unbalance G2.5, the weak pedestals
influence the unbalance response amplitude which is significantly reduced. At all
cases Neimark-Sacker bifurcations occur at rotating speed out of the operating range,
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(A) Bearing #5 relative journal response in vertical direction. Balanced system G0 (autonomous sys-
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tical direction. Unbalanced system G6.3 (non-

autonomous system).

FIGURE 4.6: Continuation of fixed point and of limit cycles pro-
gressed at the vertical plane for three different pedestal properties

of stiffness and damping.

these being shifted at lower speed by ca. 500 RPM when weak pedestals are applied,
and at higher speed by ca. 500 RPM when strong pedestals are applied, compared
to the reference case.

Similar trend is depicted in Fig. 4.6c where unbalance G6.3 is applied. The impor-
tant difference compared to G2.5 case is that additional Neimark-Sacker bifurcations
occur at speeds in the operating range of the machine, at ca. the 2nd critical speed,
when the reference and the strong pedestals apply. The weak pedestals introduce
Neimark-Sacker bifurcations out of the operating speed range, but still close to the
upper limit.

Lateral and angular misalignment is a common problem in turbine generator
shaft trains. Referring to Chapter 2, lateral misalignment is considered the lateral
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(A) Bearing #5 relative journal response in vertical direction. Balanced system G0
(autonomous system).
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(B) Bearing #5 relative journal response in vertical
direction. Unbalanced system G2.5

(autonomous system).
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(C) Bearing #5 relative journal response in vertical
direction. Unbalanced system G6.3

(autonomous system).

FIGURE 4.7: Continuation of fixed point and of limit cycles pro-
gressed at the vertical plane for three different elevation values of the

Pedestal #5.

(vertical) displacement of any bearing center with respect to the reference center de-
fined on site so as to produce minimal bending moment at the two couplings, and
adequate load on SR shaft bearing (Bearing #5). There are two main issues that cause
such displacements: non perfect technical work during alignment, and ground re-
treat due to non-perfect foundation. Pedestal displacements of up to 500µm are con-
sidered in the standard design (especially in double bearing design - not this case
hereby), with the respective bearing loads to have major role on the bearing proper-
ties and the stability. Such case is considered in Fig. 4.7 where the bifurcation set of
the autonomous system (balanced) is depicted for the case that the last bearing is ele-
vated by 500µm. In Fig. 13, it is clear that the instability threshold is shifted to higher
speeds when the Bearing #5 load increases (elevation of the bearing increases).
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4.3 The influence of bearing design in bifurcation set

In this section, some key design parameters of the bearings are changed and the
influence in the bifurcation set is presented. The radial clearance of Bearings #2,
#3 and #4 (lemon bore bearings) is increased by 20% and decreased by - 20% with
respect to the radial clearance of the reference design which defines radial clearance
of approximately 0.002 times the journal radius at all bearings.
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(A) Bearing #5 relative journal response in vertical
direction. Balanced system G0
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(B) Bearing #5 relative journal response in vertical
direction. Unbalanced system G6.3

(non-autonomous system).

FIGURE 4.8: Continuation of fixed point and of limit cycles pro-
gressed at the vertical plane for three different radial clearance values

of the Bearings #2, #3, #4.

In Fig. 4.8, the response envelop at Bearing #5 is depicted for the respective ra-
dial clearance variations. It is clear that the change at radial clearance renders a shift
in the threshold speed of instability in the balance system (see Figure 4.8a) by ca.
500RPM higher as the bearing clearance is +20%. The decrement of clearance by
-20% does not render any significant shift of the instability threshold speed. This
is not always the case for rotating systems as the radial clearance has a sensitive
effect to the Sommerfeld number and the respective stiffness and damping prop-
erties. Similarly, in Fig. 4.8b the threshold speed of instability of the unbalanced
system is increased by ca. 1700RPM as the radial clearance is increased by +20%,
while the decrement of radial clearance by -20% does not render significant change
in the instability threshold defined here as the speed of the last (at higher speed)
Neimark-Sacker bifurcation. It is worth mentioning that in the unbalanced system
(see Figure 4.8b), the Neimark-Sacker bifurcation occurring at the 2nd critical speed
when the reference and the higher clearance are applied, does not exist in the -20%
radial clearance. The last notification emerges the scenario that reference unbalance
G2.5 may render Neimark-Sacker bifurcations in rotating speeds inside the operat-
ing range when certain clearance is applied in the bearings.

The offset is changed in the lemon bore Bearings #2, #3 and #4 and the respective
bifurcation set is calculated for the balanced system, and depicted in Fig. ?? at Bear-
ing #3. There is no significant shift of the threshold speed of instability (Hopf point),
and the same goes for the unbalanced system. At the same bearings, the preload
is changed and the respective bifurcation set is depicted at Bearing #3 response, in
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FIGURE 4.9: Bearing #4 relative journal response in vertical direction.
Balanced system G0 (autonomous system) for three different offset

values of Bearings #2, #3, #4.
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(A) Bearing #3 relative journal response in vertical
direction. Balanced system G0
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FIGURE 4.10: Continuation of fixed point and of limit cycles pro-
gressed at the vertical plane for three different preload values of the

Bearings #2, #3, #4.

Fig. 4.10 for the balanced and unbalanced system. Minor alterations are presented
at both cases (balanced and unbalanced), increasing the Hopf bifurcation speed and
the Neimark-Sacker bifurcation speed in the respective two systems. In Fig. 4.10
one may notice that the bifurcation set for 30% bearing preload does not include a
Neimark-Sacker bifurcation at the 2nd critical speed of the GEN rotor (rotating speed
ca. 2650 RPM), while the case for 60% bearing preload does. However, the 60% bear-
ing preload will render an increment of the rotating speed where the 3rd Neimark-
Sacker bifurcations takes place (rotating speed ca. 7500 RPM). The arc length of the
lemon bore Bearings #2, #3 and #4 is changed and the bifurcation set is calculated
and presented in Fig.4.11. One may notice that fore the arc angle α = 140◦, there is
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FIGURE 4.11: Continuation of fixed point and of limit cycles pro-
gressed at the vertical plane for three different arclength values of
the Bearings #2, #3, #4. Unbalanced system G6.3 (non-autonomous

system).

no Neimark-Sacker bifurcation occurring at the operating speed range (<3600 RPM).
This is not the case for α = 120◦ and for the reference design α = 160◦.

4.4 The effect of rotor properties in bifurcation set

Alternative GEN rotor designs are studied in this section on their potential to present
bifurcations at the operating speed range, which is of major importance. The design
parameter selected to be studied is the rotor slenderness ratio which directly related
to the rotor’s flexibility. The slenderness ratio L of the GEN rotor is defined as the
ratio of the bearing span L between Bearing #3 and #4 (where L = L3 in Fig. 2.5a) to
an equivalent diameter Deq (not depicted in Fig. 2.5a) which is evaluated directly by
the area AS defined by the stiffness diameters of the GEN rotor segments between
Bearing #3 and #4, as λ = L/Deq. The equivalent diameter is then Deq = As/L. It is
clear that for a uniform rotor of diameter D, Deq = D as AS = LD. The value λ = 13
is realistic for large GEN rotors. However, turbine rotors hardly exceed λ = 10.
Several GEN rotor designs are available but slenderness ratio is hardly higher than
λ = 14. A flexible GEN rotor of λ = 15 is included in this case study as a theoretical
example, to show that rotor systems of high slenderness may become unstable at
relatively low speed of operation [9]. The GEN rotor of λ = 11 will lose stability
for much higher speed than the realistic design of λ = 13 which depicts a threshold
speed of instability at ca. 4400RPM (this being 122% overspeed), see Fig. 4.12. G2.5
unbalance is applied in GEN rotors per ISO. It is worth noticing that a design of
λ = 11 will not depict Neimark-Sacker bifurcation in the operating speed range,
while designs of λ = 12 and λ = 13 will do.

As the existence of Neimark-Sacker bifurcations in the operating speed range is
sensitive too the unbalance magnitude, slender rotors should be considered well-
balanced on site so as to avoid bifurcations triggered near critical speeds (as ap-
peared in the results of previous sections too).
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(A) Balanced system G0
(autonomous system).
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FIGURE 4.12: Continuation of fixed point and of limit cycles pro-
gressed at the vertical plane, at Bearing #4 for different values of GEN

rotor slenderness.
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Chapter 5

Conclusions and recommendations
for future work

The present work applies the pseudo arclength continuation method combined with
an orthogonal collocation method to evaluate stable and unstable motions (limit cy-
cles) of a realistic multi-rotor multi-bearing turbine-generator shaft train, which is
modeled considering nonlinearities of the sliding bearing impedance forces. The
standard dynamic design (for the execution engineering) of such systems is still
nowadays performed assuming harmonic rotor motions (linear harmonic analysis).
Based on the following conclusions, this thesis aims to raise further concerns on the
dynamic design of such systems, widely applied in power generation.

The unbalanced shaft train may become locally unstable through Neimark-Sacker
bifurcations in speeds lower than the threshold speed of instability Ωth, with Ωth
to coincide here to the speed where Hopf bifurcation occurs (for the balanced sys-
tem). Ωth is very similar to this predicted by linear harmonic analysis (where lin-
earized bearing coefficients are used). The aforementioned Neimark-Sacker bifurca-
tions (and the respective locally unstable motion) may even appear at speeds lower
than the service speed, when higher unbalance magnitude applies, and the system
passes through a major resonance (critical speed).

Depending on bearing design and pedestal properties, when operating speed
exceeds the threshold speed of instability, the system produces limit cycles of higher
or lower (depending on the case) extent inside each bearing clearance, prohibiting
or allowing operation. This is important to predict as the shaft-train may operate
close to threshold speed of instability, especially when slender generator rotors are
included in the design.

Bearing offset and partial arc angle where not correlated to significant changes
of the bifurcation set, while bearing preload change rendered sensitive changes.
Pedestal properties of stiffness and damping are also parameters which alter the
bifurcation set of the nonlinear dynamic system.

The evaluation time for the computation of unbalance response applying nu-
merical continuation and embedded collocation method is approximately an order
of magnitude faster than time integration for the evaluation of stable limit cycles and
an order of magnitude slower from the time required for a linear harmonic analy-
sis of the linearized system. This is feasible after applying model order reduction
methods in the rotor models.
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Appendix A

Beam Element Matrices

FIGURE A.1: Rotating beam element bending in two dimensions [8]

The stiffness matrix of the beam element is

K =



a1 −a2 −a1 −a2
a1 a2 −a1 a2

a3 −a2 a4
a3 a2 a4

a1 a2
sym. a1 −a2

a3
a3


(A.1)

where

a1 =
12

1 + e
EI
l3 , a2 =

6
1 + e

EI
l2 , a3 =

4 + e
1 + e

EI
l

, a4 =
2 − e
1 + e

EI
l

, e =
12EI

GκAl2
(A.2)

and E is the Young’s Modulus of the element material, G is the Shear Modulus of the
element material, l is the element length, I is the 2nd moment of area of the element
cross section and κ is the shear factor which depends on the form of the cross section.
κ = 0.89 for a circle and 0.53 for a thin circular ring.

The mass matrix of the beam element is

M =



c1 −c3 −c2 c4
c1 c3 c2 −c4

c5 c4 −c6
c5 −c4 −c6

c1 c3
sym. c1 −c3

c5
c5


(A.3)
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where
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(A.4)

and e as stated previously and µd is the mass per unit length

µ =
m
l
= ρA (A.5)

and
µd = ρI. (A.6)

The gyroscopic matrix of the beam element is

G =



0 g1 g2 −g1 g2
0 g2 g1 g2

0 g4 g2 g3
0 g2 g3

0 g1 −g2
skew-sym. 0 −g2

0 g4
0


(A.7)

where

g1 =
6
5

1
l

µpΩ g2 =
1
10

µpΩ

g1 =
6
5

1
l

µpΩ g2 =
1
10

µpΩ
(A.8)

and
µp = 2µd = 2ρI (A.9)
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Appendix B

Guyan Reduction

The static equilibrium equation is expressed as:

Kx = f (B.1)

where K is the stiffness matrix, f is the force vector and d the displacement vector.
By partitioning the above system of linear equations with regards to loaded (master)
and unloaded (slave) degrees of freedom, the static equilibrium equation can be
written as: [

Kmm Kms
Ksm Kss

]{
xm
xs

}
=

{
f m
0

}
(B.2)

where 0 represents the zero vector of length equal to the number of slave DoFs.
Solving the lower partition of the above system of equations yields:

Ksmxm + Kssxs = 0 (B.3)

Solving the above equation in terms of the master DoFs leads to:

xs = −K−1
ss Ksmxm (B.4)

Finally substituting to the upper partition of equation B.2 leads to the following
reduced system of linear equations.

(Kmm − KmsK−1
ss Ksm)xm = f m (B.5)

The above system of linear equations is equivalent to the original problem but ex-
pressed in terms of the master degrees of freedom. Thus, the Guyan reduction re-
sults in a reduced system by condensing away the slave degrees of freedom.

The Guyan reduction can also be expressed as a change of basis which produces
a low-dimensional representation of the original space, represented by the master
degrees of freedom. The linear transformation that maps the reduced space onto the
full space is expressed as:{

xm
xs

}
=

[
I

−K−1
ss Ksm

] {
xm
}
=
{

TG
} {

xm
}

(B.6)

where Tr represents the Guyan reduction transformation matrix. Thus, the reduced
problem is represented as:

Krxm = f m (B.7)



54 Appendix B. Guyan Reduction

where Kr represents the reduced system of linear equations that’s obtained by ap-
plying the Guyan reduction transformation on the full system, which is expressed
as:

Kr = TT
r KTr (B.8)

The same transformation can be applied to the mass, damping and gyroscopic ma-
trices. However, stiffness coefficients will appear in those matrices. The result is that
the eigenvalue-eigenvector problem is closely but not exactly preserved.
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Appendix C

Application of Finite Difference
method in the solution of Reynolds
equation

Consider a numerical solution for the Reynolds equation as defined below for lami-
nar parallel, isothermal, isoviscous and incompressible flow with negligible inertial
forces.

1
µR2

∂

∂θ

(
h3 ∂p

∂θ

)
+

h3

µ

∂2 p
∂z2 = 6Ω

∂h
∂θ

+ 12
dh
dt

(C.1)

Given the fluid thickness h = h(θ) and a grid of points Nθ × Nz, discretized by dθ
and dz respectively, then the linearized system of equations are:

Ap = Q (C.2)

where

A =


D1 U1
L1 D2 U2

L2 D3
. . .

. . . . . .
LNz−2 DNz−1 UNz−2

 (C.3)

D1 = D2 = · · · = DNz−1 =



d1 du
1

dl
1 d2 du

2

dl
2 d3

. . .
. . . . . .

dl
Nθ−2 dNθ−1 dl

Nθ−2

 (C.4)

dj = −
2h3

j

dz2µ
−

2h3
j

dθµR2

du
j =

h3
j

dθ2R2µ
+

3h2
j

2dθR2µ

dh
dt

∣∣∣
θ=θj

dl
j =

h3
j+1

dθ2µR2 −
3h2

j+1

2dθR2µ

dh
dt

∣∣∣
θ=θj+1

,
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equation

U1 = L1 = U2 = L2 = · · · = UNz−2 = LNz−2 =
1

dz2µ


h3

1
h3

2
. . .

h3
Nθ−1

 (C.5)

and

Q =


R1
R2
...

RNz−1

 (C.6)

where

R1 = R2 = · · · = RNz−1 = 6Ω



∂h
∂θ

∣∣∣
θ=θ1

∂h
∂θ

∣∣∣
θ=θ2
...

∂h
∂θ

∣∣∣
θ=θNθ−1


+ 12



∂h
∂t

∣∣∣
θ=θ1

∂h
∂t

∣∣∣
θ=θ2
...

∂h
∂t

∣∣∣
θ=θNθ−1


(C.7)

Then the discretized pressure distrubution is computed by solving the linear system:

p = A−1Q (C.8)
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Appendix D

Pseudo-arclength continuation
with orthogonal collocation

The problem is to find periodic solutions x(ξ0, t, Ω) for the following Boundary
Value Problem:

ẋ = f (x, Ω), x(ξ0, 0, Ω) = x(ξ0, T, Ω) (D.1)

Rotating speed Ω is the continuation parameter (bifurcation parameter), ξ0 is
an initial state vector that belongs to the solution curve x and T is the period of the
solution. Since the period T can be unknown, time t is rescaled to [0, 1] and Equation
D.1 becomes

ẋ = T f (x, Ω), x(ξ0, 0, Ω) = x(ξ0, 1, Ω) (D.2)

The period T is unkwon and an additional equation (phase condition) is required

ϕ =
∫ 1

0
⟨x, ẋ0⟩dt = 0 (D.3)

where ⟨x, x0⟩ denotes the scalar product and ẋ0 is the time derivative of the previous
solution. If the arc length is used as a continuation parameter then Ω also becomes
an unknown and an additional equation is required (pseudo arc length condition),

ψ =
∫ 1

0
⟨x − x0, x′0⟩dt + (T − T0)T′

0 + (Ω − Ω0)Ω′
0 − ∆s = 0 (D.4)

where ()′ denotes the derivative with respect to arc length d·
/

ds . Setting u =
(x, T, Ω) and writing D.2 as F(u) =

{
0
}

, the system to solve becomes

H(u) =


F(u)
ϕ(x)
ψ(u)

 =


0
0
0

 (D.5)

and Newton’s method for solving D.5 is

ui+1 = ui − [A(ui)]−1H(ui) (D.6)

where

A(u) =


∂F
∂x

∂F
∂T

∂F
∂Ω

∂ϕ

∂x
0 0

x′0 T′
0 Ω′

0

 (D.7)
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The system is iterated until a suitable convergence criterion is satisfied. Quasi-
Newton methods like Broyden’s "good" and "bad" methods may be used. The arc
length derivatives du

/
ds for subsequent continuation steps can be calculated either

by backwards differences or by solving

A
du
ds

=
{

0 · · · 0 1
}T (D.8)

The final step is to discretize in time and calculate A. To this end the method
of orthogonal collocation at Gauss points with piece-wise polynomials is used. An
overview of the method applied to nonlinear BVPs with periodicity boundary con-
ditions with unknwon period is given below.

The time interval [0, 1] is discretized into N sub-intervals. For the ith sub interval
the collocation equations must be assembled at the required time nodes

tij = ti + hiρj, i = 1, 2, . . . , N, j = 1, 2, . . . , m (D.9)

where hi = ti + 1 − ti the length of the time sub-interval i and ρj are chosen as the
zeroes of an mth order Legendre polynomial. At the above time nodes, an initial
solution xij must be provided along with the function evaluation T f (xij) abbrevi-

ated henceforth as fij, Jacobian
∂ f
∂x

(xij, Ω), and parameter derivative (for the case

of pseudo arclength continuation)
∂ f
∂Ω

(xij, Ω). Equivalently, the values xij can be
extracted from the solutions at the global time nodes ti as

xij = xi + hi

m

∑
l=1

αjl f il , xi+1 = xi + hi

m

∑
l=1

βi f il (D.10)

where αj1, αj2, . . . , αjk are the quadrature weights. Then the quasi linearized two
point BVP (equivlanent to Newton’s method) can be written as shown below

∆ẋij = T
∂ f
∂x
(
xij, Ω

)
∆xij + f

(
xij, Ω

)
∆T + T

∂ f
∂Ω

(
xij, Ω

)
∆Ω + rij

xN+1 − x1 = 0
(D.11)

where rij = T f (xij, Ω)− ẋij. Applying parameter condensation to eliminate the local
unknowns xij at every time interval ti we can write the derivatives

f i =
[

f i1 f i2 · · · f im
]T

for the local unknowns as a function of the global unknowns xi. Substituting (D.10a)
in (D.11) yields

f i(∆xij) = f

(
∆xi + hi

m

∑
l=1

αjl f il

)
=

T
∂ f
∂x
(
xij, Ω

)
∆xij + T

∂ f
∂x
(
xij, Ω

)
∆xijhi

m

∑
l=1

αjl f il

+ f
(

xij, Ω
)

∆T + T
∂ f
∂Ω

(
xij, Ω

)
∆Ω + rij

(D.12)

The above can be rewritten as
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f i = W−1
i Vi∆xi + W−1

i Ui∆T + W−1
i Si∆Ω + W−1

i qi (D.13)

where

Wi = I − hi


α11T

∂ f
∂x

(xi1, Ω) · · · α1mT
∂ f
∂x

(xi1, Ω)

...
. . .

...

α1mT
∂ f
∂x

(xim, Ω) · · · αmmT
∂ f
∂x

(xim, Ω)



Vi =


T

∂ f
∂x

(xi1, Ω)

...

T
∂ f
∂x

(xim, Ω)

 , Ui =


f (xi1, Ω)

...
f (xim, Ω)

 , Si =


T

∂ f
∂Ω

(xi1, Ω)

...

T
∂ f
∂Ω

(xim, Ω)

 ,

qi =


T f (xi1, Ω)− f i1

...
T f (xim, Ω)− f im


Substituting (D.13) to (D.10b) yields a set of n × N linear equations

∆xi+1 = ∆xi + hi

m

∑
l=1

βi f il

=∆xi + hi [β1I · · · βmI]
[
W−1

i Vi∆xi + W−1
i Ui∆T + W−1

i Si∆Ω + W−1
i qi

]
=Γi∆xi + Λi∆T + Σi∆Ωi + ri

(D.14)

where D = [β1I · · · βmI] , Γi = I+ hiDW−1
i Vi, Λi = hiDW−1

i Ui, Σi = hiDW−1
i Si, ri =

hiDW−1
i qi

The linear algebraic system for the combined collocation-pseudo arc length con-
tinuation method is finally expressed in Eq. (D.15).
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−Γ1 I 0 · · · 0 −Λ1 −Σ1
0 −Γ2 I 0 · · · −Λ2 −Σ2

. . . . . .
...

...
0 0 · · · −ΓN I −ΛN −ΣN
I 0 · · · 0 −I 0 0

h1x1 h1x2 · · · hNxN 0 0 0
h1x

′0
1 h1x

′0
2 · · · h1x

′0
N 0 T

′0 Ω
′0





∆x1
∆x2

...
∆xN

∆xN+1
∆T
∆Ω


=



r1
r2
...

rN
xN+1 − x1
N

∑
i=1

hi⟨xi, ẋ0
i ⟩

N

∑
i=1

hi⟨xi − x0
i , x

′0⟩+ (T − T0)T
′0 + (Ω − Ω0)Ω

′0 − ∆s



(D.15)

The solution of the linear system can be achieved by various methods. Iterative
methods are applied in this work. Floquet multipliuers are evaluated as the eigen-
values of the matrix Γ1Γ2 · · · ΓN when the iterative solution of the n × N system is
achieved (right hand side less than a maximum). Calculating the Floquet multi-
pluiers in this way severely reduces the evaluation time compared to other methods
(e.g. shooting method). The normal form coefficcient is calculated with different
methods for the different type of bifurcation occuring. For more detailed informa-
tion, the reader may refer to [60]
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