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Abstract

The aim of the research is to examine whether data-driven pedestrian simulation
models can outperform the theoretical ones and provide a robust model
framework for pedestrian simulation. Initially, an extended literature review was
performed to identify the existing pedestrian simulation models and the main
parameters utilized in pedestrian simulation. To achieve the aim of the study, a
comparative analysis of a well-known and widely applied theoretical pedestrian
simulation model (i.e. the social force mode) and four data-driven techniques: the
Artificial Neural Networks, the Support Vector Regression, the Gaussian
Processes and the Locally Weighted Regression was conducted. A suitable
methodological framework for the comparative analysis was designed. Initially,
appropriate data (i.e. pedestrian trajectories) were collected from two different
area types: a metro station during peak hours and a shopping mall during
afternoon hours, via video recordings. Then, with the aid of an appropriate
software, pedestrian trajectories were extracted. Due to the fact that the collected
data include white noise, an algorithm for noise elimination was developed as a
combination of existing smoothing filters. Subsequently, an appropriate
pedestrian simulation model setup for the data-driven techniques was developed,
as they do not cater specifically for pedestrian simulation framework. In order to
conduct a fair comparison the variables of the theoretical model were employed
in the data-driven models. Cross-validation was applied as the appropriate
method for examining each model’s performance and to cater for data overfitting,
while a combination of goodness-of-fit measures the models’ accuracy were
estimated to assess the models in a holistic manner. The results indicate that
data-driven methods have higher capability of simulating pedestrian movement
as they perform better according to all of goodness-of-fit measures. Following the
first level of comparison (compare models with the same parameters), additional
parameters (agent’s characteristics and time parameter) have been included in
the data-driven models in order to examine the possibility of improving (and its
magnitude) the performance of these models. Results of this analysis indicate
that the employment of the selected variables can improve data-driven pedestrian
simulation models performance (they performed better for almost every

goodness-of-fit measure).



Keywords: Pedestrian simulation, data-driven techniques, social force model,
Artificial Neural Networks, Support Vector Regression, Gaussian Processes,
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MepiAnyn

2KOTTO TnG Trapoucag £peuvag atroteAei n dlepelvnon TNG KATOAANASTNTOG
uI08£TnoNnG povTéAwv TTou Baacifovtal o€ PeBOdoUG avaAuong dedopévwy yia TNV
TTpooopoiwon TNG TTeCAg Kivnong. MNa 1o okotd autd, oxediddovTal KataAAnAa
MOVTEAQ Kal €CeT@leTal av duvaTtal va TTapAoXouv éva agloTmoTo PueBOOOAOYIKO
TAQioI0 OoTnv Tpoocopoiwon Tng Tedng kivnong. EmmmAéov, a&iohoyeitalr n
a1TOd001 TOUG OE OXECN ME TA AVTIOTOIXO BEWPNTIKA PHOVTEAQ TTPOCONOIWONG TNG
1edNG Kivnong. £10 TTAQICI0 QUTO TTPAYUOTOTTOIEITAI PIO CUYKPITIKF) avaAuon evog
OPKETA YVWOTOU KAl EUPEWG EQAPUOTHEVOU BewpnTIKOU HOVTEAOU TTPOCON0IWONG
NG 1elNg Kivnong (To povtéAo social force) kal Teoodpwyv PeBOdwY avaluong
oedopévwy: Twv Texvntwy Neupwvikwy AIKTUWY, Twv Mnxavwy Alovuoudtwyv
YmooTtApiEng, Twv Gaussian Processes kai tng Tomkd ZTaBuiopévng un
Mapapetpikig MaAivopoéunong. MpoyevéoTepa autou pia €KTEVAG PBIBAIOYPAPIKA
QvaoKoTTNoN avedelEe Ta UPIoTAUEVA BewpnTIKA WOVTEAQ TTPOCOMOIWONG TNG
TeCAG Kivnong Kai TIG TTApaPETPOUG Toug. AKOAOUBWG OoXedIAOTNKE éva KATAAANAO
pMEBOBOAOYIKO TTAQICIO yia TN OUYKPITIKA avAaAuon. Apxikd OUAAEXOnkav Ta
oedopéva (o1 TPoxIEG Twv TTECWV) atmd duo dIOPOPETIKOUG TUTTOUG TTEPIOXWYV, TV
TTAATQOPUA VOGS OTABUOU TOU PETPO KATA TIG WPEG AIXUAG KAl EVOG EUTTOPIKOU
KEVTPOU KATA TIG ATTOYEUMOTIVEG WPEG, OAQ HEOW PBIVTEOOKOTTNONG. AKOAOUBWG e
TN BonBeia evog katdAAnAou AoyiopikoU e€nxbnoav ol TpoxIég Twv TTeCwv. Kabwg
Ta OUMNeXBEvTa  dedopéva  TrepIEXoUV  BOpuBo  avaTrtuxbnke  KATAAANAOG
aAyopIBuog yia eAaxioToTToinon Tou BopuBou Twv dedoUEVWY, UIOBETWVTAG Evav
OUVOUOOUO UPICTAUEVWY QIATPWY OUAAOTTOINONG. 2T CUVEXEID avaTITUXBNKE £va
KATGAANAO povTéAo TTpocopoiwong TNG TTeCAG Kivnong TO OTT0I0 EVOWMATWONKE
oTIg NEBGOOoUG avaAuong dedopévy KaBwg auTég dev dIaBETOUV KATTOIO TTAQICIO
TTpooopoiwong TnGg TeCAg kivnong. MNa Tnv Tpayuarorroinon piag  dikaing
oUyKPIONG XPNOIMOTTOINONKAV oTa POVTEAD avaAuong OedOUEVWY Of TTAPAUETPOI
Tou BewpnTIKOU povTéEAOU TTpooopoiwong TNG TeCAS Kivnong. H péBodog Tng
dlaoTaupwpévng eMIKUpwong (cross-validation) uloBeTBNke wg N KATAAANAGTEPN
MEBODBOG yia TNV e€€Taon TNG aTTOO0CONG TWV POVTEAWY KAl yIa TOV TTEPIOPICHO TOU
TTPORAPaTOg TNG uTrEpPovTEAOTTOINONG (overfitting). ETTITTAéOv XpnoiyoTToInénke
évag ouvduaopog  OEIKTWV  aTTedoonG Yia va TTOCOTIKOTIOINGEl N KAAN
TTPOCAPUOYN KAl N akpiBeia Twv JovTEAwV. Ta aTToTEAECUATA UTTODEIKVUOUV TTWG

ol MEBodoI avdAuong dedopévwy  TTapoucidlouv  heyaAuTepn  duvaTtoTnTa



TTpooopoiwong TG TTeCAG Kivnong KaBwg artrodidouv KaAuTepa pe Baon 6Aoug
Toug TIpoavaPepBévteg OcikTeg. MeTd TO TTPWTO ETITTEDO TNG OUYKPITIKAG
agloAdynong (6tou ouykpivovTal POVTEAQ pE TIG iDIEG TTAPAUETPOUG), ETTITTAEOV
TTAPAUETPOI (TO XOPOKTNPIOTIKA Twv TECWV KAl N TTOPAPETPOG TOU XPOVOU)
EvowpaTwonkav oTta PoviéAa avaAuong Oedopévwy yia €CETAOTEN TTEPAITEPW
BeAtiwon Tng amodoong Toug. Ta amoTreAéopata  auTAg TNG avaAuong
UTTOQEIKVUOUV TTWG N UIOBETNON TWV OUYKEKPIMEVWY HETABANTWY MTTOPET va
BeATiLwoEl TNV aTTOdOCN TWV POVTEAWV avAAUONG OEBOUEVWY TTOU APOPOUV TNV

TTPOCOMOoIWoN TNG TTECG Kivnong.

NEEEIG KAE10IA: pooopoiwaon TG TeCAGS Kivnong, uEBodol avaAuong dedouévwy,
social force povtélo, Texvntd Neupwvikd Aiktua, Mnxavég Alavuopdtwyv
YmooTtApiEng, Gaussian Processes, Tomkd 2taBuiopévn pn  MNopaueTpiki
MaAivdpounon, cross-validation, deikteg KaAg Tpooappoyng, Unscented Kalman

Filter, kivnTog péoog 6pog, eAaxioTotroinon Bopuou dedouévv



Extended abstract

The analysis of pedestrian movement has attracted the interest of the scientific
community. Some of the reasons that have contributed in this, are the change of
the urban environment (e.g. higher buildings and high centralization of activities
in smaller spaces that results in higher densities), as well as a change of focus of

transportation policies in which walking plays a crucial role.

Initially, an overview of several theoretical pedestrian simulation models was
conducted. These rely on pedestrian dynamics and flow principles and are
classified according to their level of analysis (microscopic, macroscopic, etc.). On
the other hand the emergence of data-driven models is offering new possibilities
in pedestrian simulation. Data-driven techniques have proved their simulation
robustness in terms of clustering, classification and regression although their
employment does not require a priori knowledge of the model parameters’

relationship.

The aim of this research is to examine whether data-driven methods can provide
a robust model framework for pedestrian simulation. To achieve this, several
data-driven models were designed for pedestrian simulation utilizing various
widely used data-driven techniques. To display their potential utility these models
were compared against a theoretical pedestrian simulation model. Due to the fact
that data-driven models do not include a pedestrian simulation framework, an
appropriate one, based on the theoretical pedestrian simulation models
principles, has been developed. Furthermore, the incorporation of these
principles in the data-driven models allowed for a fair comparison between data-

driven models and theoretical pedestrian simulation ones.

To achieve the objective of this research a five-step process was followed. First,
the appropriate data i.e. pedestrian trajectories, were collected. Two different
area types, which exhibit different walking patterns, were selected. Due to the
fact that the raw data include white noise, a smoothing algorithm that eliminates
data’s white noise was developed as a combination of existing filters.
Subsequently, five models were designed: one based on a representative
pedestrian simulation model in the field of theoretical approaches and four

models utilizing different data-driven techniques. For the latter, an appropriate



pedestrian simulation model setup was developed. In order to assess in a fair
manner the performance of the different models, the variables of the theoretical
model were employed in the data-driven models’ design. Cross-validation was
performed as it comprises an appropriate method for examining each model’s
performance, while it caters for data overfitting, a common issue with data-driven
models. At the same time, a combination of goodness-of-fit (GoF) measures was
utilized to estimate the models’ performance in a holistic manner. Following the
first level of comparison (compare models with the same parameters), additional
parameters were included in the data-driven models in order to examine their
potential improvement (and its magnitude) in their performance. The

methodological framework of the present research follows:

Model
calibration

Estimate
agent'’s height

Social force
model

Incorporate
agent'’s height
and gender

Design of data
collection Data collection
experiment

Incorporate
time

Cross-
validation

Data
processing

Data-driven
techniques

Results Results Results

Model setup

Comparison

FIGURE 1: Methodological framework

Prior to this process an extended literature review was conducted. The state of
the art considering pedestrian simulation models was explored. The models were
categorized according to their analysis level and according to the adopted theory
describing pedestrian dynamics. The models that analyze pedestrian movement
are, mostly, microscopic. Thus, three main categories were identified: a) social
force, b) cellular automata and c) lattice gas models. Route choice theory was
also elaborated, mostly, in parallel to the aforementioned theories leading to
combined models. Data-driven models were also mentioned in the literature

review, as initial attempts for modeling pedestrian movement.



Another aim of the literature review was to investigate the factors that affect
pedestrian movement. Certain parameters that affect pedestrian movement have
been specified. They were organized in a new framework, clustered in three main
categories: a) facilities’ geometry, b) pedestrian flow properties, and c) pedestrian

characteristics (e.g. agent’s gender and height), and were further analyzed.

Within the literature review different data collection techniques were elaborated
including video recording and sensors [Global Positioning System (GPS), Radio
Frequency Identification (RFID), Light Detection and Ranging (LiDAR)]. In this
research, data have been collected from the field through video recordings. The
experimental design focused on facilities where only pedestrians are present,
thus interactions with other traffic modes (e.g. vehicles, bicycles) were not
considered. Two different types of areas were employed, a metro station and a
shopping mall. Two digital cameras were placed at both locations at an upper
level point. The first camera was focused on the terrain where pedestrians walk,
and the second captured their characteristics (height, gender etc.). An
appropriate software was applied for the extraction of pedestrian trajectories from
video recordings, which utilizes both automatic and semi-automatic processes for
pedestrian tracking. In this research a manual process was employed in order to

ensure high level of accuracy in pedestrian tracking.

Accurate data is a prerequisite for developing reliable simulation models,
particularly when applying data-driven theories, as they rely highly on the utilized
data. Data-driven methods are applied for simulating phenomena without a priori
knowledge of parameter relations/connections. Due to the fact that the extracted
data include noise, a suitable algorithm for data noise reduction was developed.
The proposed algorithm relies on the Kalman filter framework. In particular, the
Unscented Kalman Filter (UKF) was employed for relaxing standard Kalman filter
assumptions. The filtering process was conducted in three steps. The first step
includes video recording segmentation, in the second step the UKF extension
was adopted, and in the third step the moving average filter was incorporated to
UKF. An innovation of this research is the incorporation of moving average in the

UKF that provides more accurate pedestrian trajectory estimations.

In addition, a procedure for evaluating Kalman filter noise covariance matrices

was suggested, which comprises another contribution of this research. Algorithm



results from real pedestrian trajectory data indicated high efficacy level in
reducing data noise, thus improving their contribution in calibrating and validating

pedestrian simulation models.

Two different simulation approaches were considered, a theory-derived model
and four data-driven techniques. The social force model was employed as the
theory-derived model, due to its ascendancy to other pedestrian simulation
models (relies on the same principle, but is a continuous space model) and its
wide application in pedestrian simulation and pedestrian simulation software. As
for data-driven techniques, four promising methods were explored: a) the well-
known Articial Neural Networks (ANN), b) the classical Support Vector Machines
(SVM) [in particular as we refer to regression analysis, Support Vector
Regression (SVR) is employed], c) the rising Gaussian Processes (GP), and d)

the Locally Weighted Regression (Loess).

The social force model utilizes five parameters: the distances between the
simulated agent and pedestrians triggering repulsive effects, pedestrians
triggering attractive effects, space boundaries and to the next destination point
and the velocity of pedestrians that trigger repulsive effects. In this research a fair
comparison between the social force model and the data-driven techniques was
attempted, thus, the parameters utilized in the social force model were also
employed in the model setup for the data-driven techniques. A limitation of this
procedure is that the Loess technique can only model up to three variables.
Hence, for this technique the following parameters (employed from the social
force model) were considered: pedestrian velocity at the current time step and
the distances between the examined agent and a) the pedestrians triggering

repulsive effects and b) the space boundaries.

In the model setup the distances were separated in the two axes representing the
horizontal and the vertical projections of the adjacent pedestrian/obstacle. Due to
the fact that data-driven models consider one value for every variable, in cases of
more than one “repulsive” or “attractive” agents or/and obstacles, a selection
criterion was specified. This criterion is an angular dependence factor based on
the agent’s view. It considers that pedestrians who walk outside of the agent’s

sight view (i.e. behind them) or close to its contour (i.e. vertically to agent) affect

10



the simulated pedestrian’s movement at a substantially lower degree than those

who are in front of them and close to their trajectory.

Boundary Vertical distance ~ Pedestrian

Horizontal

. distance
Pedestrian a @ = —— o Deestination
Horizontal
distance

Boundary

FIGURE 2: Data-driven model setup

Models’ performance was examined under a cross-validation pattern and in
particular a 5-fold one, in order to overcome overfitting problems that data-driven
methods suffer from. The two datasets (one from the metro station platform and
the other from the shopping mall) were merged together and then shuffled and
divided into five equally sized datasets. Considering the design of the data-driven
models, these were developed following a training process the aim of which was
to estimate each model’s parameters that minimize the cost function, set to be
the Mean Squared Error (MSE) of the agent’s velocity. As agent’s velocity was
presented in two axes, multi-output data-driven models were employed. In
addition, as the social force model does not incorporate a training algorithm (in
contrast to data-driven techniques) a genetic algorithm was utilized, for model
calibration. Two alternative processes that examine the most effective
parameters and then train the social force model only around them were also
presented (one-at-time sensitivity analysis and global sensitivity analysis).
Though, due to the fact that genetic algorithms overcome the aforementioned
need of examining the most effective parameters and have proven their

robustness in the field of optimization, they were employed in this research.

A set of GoF indices was used to evaluate each model’s performance. Results
indicate that data-driven methods have higher capability of simulating pedestrian
movements, as they performed better according to all of GoF measures. The
theoretical simulation model (social force) included large errors compared to the
data-driven models, while the Loess method displayed the highest performance.
Also, the social force model included both systematic and unsystematic biases
that almost did not exist in data-driven models. Furthermore, data-driven methods

accomplished the cross-validation process significantly faster compared to the

11



social force model. On the other hand, it should be noted that the social force
model provides an integrated simulation framework where every parameter is
directly related to the model output. It explains in a clear manner the way that
pedestrians walk and interact with each other (high level of interpretability), while

data-driven methods are considered to be, at some level, as black boxes.

In addition, a comparison among the four data-driven methods revealed that the
Loess model performed better considering almost every index. ANN and GP
presented similar performance levels, while SVR provided inferior predictions. It
should also be mentioned that the Loess model performed better although it
employed a smaller number of predictors compared to the other data-driven
methods, while also accomplishing the cross-validation procedure in significantly
less time. In contrast, it is clear that there are limitations, related to the opacity
and the (lack of) interpretability of the data-driven models. A comparison of the
GoF measures in every run of the cross-validation procedure revealed that data-

driven methods tend to overfit as they learn/develop from the data.

In the last step of the present research, three additional variables were
incorporated in the data-driven models in order to examine if any further
enhancement of their performance can be accomplished. Additional variables
have been selected based on the literature review. Initially agent’s height and
gender were added. Agent's height was estimated with the aid of
photogrammetric tools. It should be noted that this analysis was not performed for
the Loess method, as it cannot employ further parameters. Results of this
analysis indicated that the employment of agent’s characteristics can improve
data-driven pedestrian simulation models performance (they performed better in
almost every GoF measure). The additional adoption of the time parameter in the
data-driven pedestrian simulation models was also tested. The models following
the incorporation of the time parameter seemed to perform better, but not for all
the of the GoF measures. In general, the adoption of the extra variables seemed
to improve mainly the performance of the ANN model implying that this technique

can “handle” more efficiently the incorporation of these variables.
The research contributions and conclusions are outlined below:

e Provide a framework for data (pedestrian trajectories) noise elimination

12



o Enhance UKF performance with the incorporation of symmetric
moving average
o Estimate UKF noise covariances when unknown
e Provide a framework for setting up a pedestrian model for data-driven
simulations
e Apply a time efficient social force model calibration method
e Display data-driven modelling efficiency in the field of pedestrian
simulation (in relation to existing theoretical models)
e Improve the performance of data-driven models including additional

pedestrian simulation variables

Directions for future research were also provided. An amplification of the data-
driven models can be accomplished with the incorporation of further variables. An
example of this could be the employment of a density measure in order to
capture not only one agent that affects mostly the simulated one, but also all the
agents in close vicinity. In addition, extra data can be considered for an improved
evaluation of the models. Furthermore, an interesting research objective might be
the investigation of pedestrian movement, while interacting with vehicles in more
complex scenarios and situations. The application of data-driven models in these
scenarios should be examined. This notation is crucial as it can enhance the
performance of pedestrian collision warning systems and autonomous vehicles.
Moreover the parameter of time was tested in the current research for its impact
in the data-driven pedestrian simulation model. Recurrent Neural Networks
(RNN), a class of ANN, and in particular Long Short-Term Memory (LSTM)
architecture can also be tested for their applicability in terms of pedestrian
simulation. Finally, a comparison in pedestrian movements between normal and
emergency situations should be further explored to identify the differences in
pedestrian behavior under emergencies. This, as well as the incorporation of
vehicle-pedestrian interactions will represent pedestrian movement in a more

holistic manner, and thus enhance pedestrian simulation models’ performance.
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EkteTapévn TepiAnyn

H avdAuon tng mmedng Kivnong €xel TIPOCEAKUCEI TO EVOIQQEPOV TNG ETTIOTNMOVIKAG
KoivoTnTag. Katrolol ammd toug AGyoug TTou ouvéEBaAav o€ autd a@opouv OTnV
oAayfy Tou aoTikoU TTEPIBAAAOVTOG (TT.X. KATAOKEUR UWNAOGTEPWYV KTIpiwV Kal
MEYOAUTEPN OUYKEVTPWON dPACTNPIOTATWY OE MIKPOTEPOUG XWPOUG TTOU 00rynoe
O€ MEYOAUTEPEG XWPIKEG TTUKVOTNTEG) OTTWG €TTIONG KAl N aAAQYH TWV KEVTPIKWV
OTOXWV TWV OCUYKOIVWVIOKWY OTPATNYIKWY OTOUG OTToioug N Tredny  Kivnon

dladpapaTifel GNUAVTIKO POAO.

2TV Trapouca  €pPeuva TTPAYMATOTTOINONKE €TTIOKOTTNON TWV  BewpnTIKWV
MOVTEAWV TTPOCOWOIWONG TNG TTECNG Kivnong n OTToid TTAPOUCIAZETAlI GTOV TTAPOV
Keipevo. Ta ev Adyw povtéAa Bacifovral oTIGC UVAUIKEG KOl OTOUG [BaciKoug
KAVOVEG TNG PONG Kal KATNYOPIOTTOIOUVTAl CUPQPWVA PE TO ETTITTEDO TNG AVAAUCAG
TOUG (MIKPOOKOTTIKA, MOKPOOKOTTIKA, KATT.). ATTO Tnv GAAn TTAcupd, n €u@avion
Twv  HEBOGOWV avAaAuong Oedopévwv  TTapEXEl  vEeg  duvatoTnTeEG  OTNV
TTpooouoiwong TNG TECAG Kivnong. O1 cuykekpipéveg nEBodOI £xouv aTTodEiCel TRV
QTTOTEAEOUATIKOTNTA TOUG OE BEéuaTta ouoTadoTToinoNG, KATNyopoTroinong Kal
TPORAeWNS (TTaAivopdunong) TapdAo TTou dev aTTalTouv TNV €§’ apxrg yvwaon TnG

ox€ong METAEU TWV TTAPAPETPWY TOU HOVTEAOU.

2KOTTO TnG Trapoucag €peuvag aTroteAei n digpeuvnon Tng duvatoTnTOg
uI0B£TNONG MEBOdWY avdaAuong Oedouévwy yia TNV TTIPooopoiwon TnG TTeCAG
Kivnong. MNa va emTeuxBei autd XPNOIPOTTOINONKAV EUPEWG EPAPUOOCHEVEG
MEBOSOI avaAuong dedopévwy, oxXedIGOTNKAV QVTIOTOIXA MOVTEAQ TTPOCOMOIWONG
me(AG Kivnong, evw yia va ekTiunBei n ammdédoory Toug Ouykpibnkav pe €va
BewpnTIKO POVTEAO TTpOocOouOoiwoNng TTeCNG Kivnong. EEaitiag Tou yeyovoTog TTwg
Ta  MoviéAa  avdAuong Oedopévwyv  Oev  guTTEPIEXOUV  KATTOI0O  TTAQiCIO
TTPpooopoiwong TTECAG Kivnong, avatrtuxdnke éva KatdAAnAo povtéo Baoifduevo
OTIG APXES TV BewpnTIKWV PHOVTEAWV TTpOooOoUOoiwoNG. ETTITTAéov n elcaywyn Twv
ev Adyw apxwv ota povtéAa avaAuong dedopévwy Edwaoe Tn duvatoTnTa yia Pid

dikain ouykpIon YETAEU TWV CUYKEKPIUEVWV JOVTEAWV Kal TOU BewpPnTIKOU.

MNa TNV TTpayyartotroinon Tng Trpoava@epbeicag ouykpIong akoAouBrnbnke pia
dladikacia TTévie oTadiwv. ApPXIKA CUAAEXONkav Ta KATAAANAa dedopéva (ol

TPOXIEG TwV TeCWV). H ouAloyr dedouévwy TTpayuaToTTroIndnke o€ dUO TTEPIOXEG

14



TTOU TTaPOoUCIAlouv  JIOQPOPETIKA XAPOKTNEIOTIKGE woTe va  eEaxBouv  Ta
OIa@OPETIKA PoTiBa kivnong Twv medwv. AGyw Tou OTI Ta ApXIKWG CUAAEXBEVTQ
oedopéva TTepIEXOUV BOpUPBO avamTuxOnke €vag aAyopiBPog TTou eAaXIOTOTTOIE
TOoV BOpuUBo dedopévwy Kal BacifeTal o€ UPIOTAPEVA QIATPA opaAloTToinong. XN
OUVEXEI, OUYKPIONKE N atrddo0n VOGS QVTITTIPOCWITEUTIKOU BewpnTIKOU POVTEAOU
ammdé ToV TOPEQ TNG TTPOCOPOoIWoNG TNG TTECAG Kivnong Kal TEOOAPWY HOVTEAWV
TTou oxedIdoTnKav UIoBeTWVTAG PEBOdOUG avaAuong dedouévwy. Ma Adyoug
d1e€aywyng piag dikaing oUYKPITIKAG avaAuong xpnoipotroinénkav ol JeTaBANTEG
TOU BewpnTiKOU pPOVTEAOU OTa avtioToixa MOVTEAA Twv pEBOGdWV avaAuong
oedopévwy. H péBodog g dlaoTaupwuévng ETTIKUpwong (cross-validation)
XPNOIYOTTOINONKE WG N KATaAANAOTEPN yia Tnv €&étaon Tng amoédoonsg Twv
MovTéEAWYV, pEBOdOG N oTToia TTEPIOPICEl KAl TIG ETTITITWOEIS TOU TTPOBAAUATOS TNG
utrepupovteAotroinong (overfitting) ammd 1o otmoio Tmadoxouv o1 péBodol avaAuong
oedopévwy. ETtiong xpnoipgotmoinBnke évag ouvduaouog BEIKTwY atrdédoong yia
VQ TTOOOTIKOTTOINBEI N KOAR TTpoCcapuoyr Kai n akpipeia Twv goviéAwy. TEAOG Kal
O€ OUVEXEID TOU TTPWTOU ETTITTEOOU TNG CUYKPITIKAG avaAuong, OTTou ouykpitnkav
Ta povréAa pe TIG id1EG PETABANTEG, €mMITTAéOV TTAPAPETPOI TTPOCOMNOIWONG TNG
TeCNG Kivnong TTpooTéBnKav oTa PJoVTEAA avaAuong SeQOPEVWYV VIO VO ECETOOTEI
TuxoUuoa augnon Tng amodoong Toug. To peBodoAoyikd TTAQicIo TNG TTapouoag

¢peuvag TTapaTifeTal TTOPAKATW:

BaBuovéunon
HovTéAou

EkTipnon
Uyoug Tedou
Social force Woug el

model

ZxedIAoPOG
ouMoyig Twv
Sedopévwv

Evowpdrwon
Uyoug Kal
@UAou TTeCOU

Evowpdrtwon
Xpovou

Cross-
validation

ZuMoyn Emegepyacia
Oedopévwv Sedopévwv

MéBodol
avaAuong
Oedopévwv

AtroteAéopara ATroteAéopaTa AtroteAéopata

ZXedIaopOG
HovTéAou

2XHMA 1: MeBodoAoyikod TTAaicio
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MpoyevéoTepa TNG TTapatmavw diadikaciag dieEnxOn uia ektevAag BiBAIoypa@ikni
avaoKOTTNoN OTToU OIEPEUVABNKE N ETTITOPN TWV POVTEAWV TTPOCOMNOIWONG TNG
medAg Kivnong. Ta MoOvIEAa KaTnyoploTroifdnkav oUP@wva HE TO ETTITTEDO
avAAuonG TOUG Kal oUPWVA HPE TN Bewpia TTOU TTEPIYPAPEI TN OUVOUIKA TNG
Kivnong twv 1rewv. Ta povréAa 1Tou avaAuouv TIG KIVAOEIG TwV TTECWV Eival,
KUPiwg, PIKpooKoTTiKG. TpeEIg KUPIEG KaTnyopieg evTotTioTnkav: a) social force, B)
KUTTapIKG autéuata (cellular automata), kai y) lattice gas povtéda. H Bewpia Tng
emMAOYNG dIadpoung oTnv TTPooouoiwon TnG TEeCAG Kivnong TTAPOUCIAOTNKE,
KUpiwg, TTapAAAnAa pe TIG TTapatrdvw Bewpieg odnywvrtag o€ OUVOUAOTIKA
MovTéAa. Ta poviéAa avaAuong Oedopévwyv  €TTioNg  ava@EépovTal  OTn
BiBAIoypa@IKA avaoKOTInNon, WS oav ApXIKES TTPOOTTABEIEG JOVTEAOTTOINONG TNG

Kivnong Twv TTeCwv.

‘Evag emTAéov OKOTTOG TNG BIBAIOYPAPIKAG avaoKOTTNONG ATAV VA OIEPEUVIOEI
TOUG TTOPAYOVTEG TIOU ETTNPEACOUV TNV Kivnon Twv TECWV. ZUYKEKPIPEVOI
TTOPAYOVTEG  TTPOOdIOPIOTNKAY, Ol OTIoiol  KATATAXONKAV Of  TPEIG KUPIEG
KATNYOPIEG: a) YEWMUETPIa TNG TTEPIOXNG Kivnong, B) 1816TNTES TG PONS TNG Kiviong
TwV TTECWV, KAl Y) XOPAKTNPEIOTIKA TwV TTECWV (TT.X. UYOoS Kal QUAo TTECoU), Kal £V

ouvexeia avaAubnkav.

210 TAdiola NG BIBAIOYPAQIKAG avOOKOTINONG BIAPOPETIKEG TEXVIKEG OUAAOYNAG
O0edoPEVWV  EEETAOTNKAV CUNTTEPIAAMPBAVOPEVWY TNG BIVIEOOKOTINONG KAl TwV
aiobnmpwv (GPS, RFID, LIDAR). Zmnv Tmapouca é€psuva Ta Oedouéva
OUAAEXBNKav atrd 1o TTedio péow PBIvieookOTTNONG. O oXEDIOONOS TOU TTEIPAPATOS
TNG £peuvag TTediou €0TIOOE OE EYKATAOTAOEIG OTTOU KUKAOQOPOUV Uovo TTeCoi Kal
WG €K TOUTOU OAANAeTIOPdoElS pe GAAO pECO PETAQOPAG (TT.X. auToKivnTa,
TodnAata) dev TrepIAapBavovTtal. AUO SIaQOPETIKOI TUTTOI UTTOBOUWY EARQONnoav
uTTOWn, £vag oTaBPOG TOU PETPO Kal Eva EUTTOPIKO KEVTPO. AUO WNQIAKES KAUEPEG
TOTTOBETABNKAV KAl OTIG dUO TTEPIOXEG O éva uywnAd onueio. H TTpwTtn KApepa
eoTiale oTo £da@og, OTToU oI TTeCoi TTeEPTTATOUV, Kal n OeUTEPN ATTOTUTTWVE TA
XOPOKTNPIOTIK& TOUG (UWOog, QUAO KATT.). EmionuaiveTal TTwg utrapxouv AoyICHIKA
TA OTTOIA TTAPEXOUV QUTOUATEG I NUI-auTOUaTEG BladIKaoieg eEaywyng TNG TPOXIAG
Twv meCwv atrd dedopéva Bivieo. ZTnv TTOPOUCO £pPEUva HIO  XEIPOKIVNTN
dladikaoia eTMAEXONKE yia va OIAO@ANIOTEI TO UYPNAO ETTITTEdO OKPIBEIOG TwV

QTTOTEAEOUATWY TNG.
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H akpiBeia ota dedopéva gival TTPOATTAITOUPEVO YIO TNV QVATITUEN agIOTTIOTWY
MOVTEAWV TTpoocopoiwong, €IBIKOTEPa OTav e@apuolovral Bewpieg avaiuong
oedopévwy, KaBwg autég Paaifovtal Kupiwg ota idia Ta dedopéva. O1 puéBodol
avaAuong OedoNEVWY EQaPPOCOVTal VIO TNV TIPOCOPO0IWON QAIVOUEVWY XWPIG TV
€K TWV TIPOTEPWYV YVWON TNG OXEONG METALU Twv TTapauéTpwy. Kabwg Ta
eCaxBévia dedopéva  euttepIEXouv  BOpuPBo, avamTuxdnke €vag KATAAANAOG
aAyopIBuog yia ueiwaon Tou BopuBou. O TpoTevopevog alyopiBuog BaaieTal oTo
@iATpo KdaApav. Eidikétepa n tapaAdayry Unscented Kalman Filter (UKF)
XPNOIMOTTOINONKE yIa va TTEPIOPIOTEI N €Tidpacn Twv UTTOBECcEWY Tou [Bacikou
@iATpou KdaAuav. H diadikacia Treplopicpgol Tou Bopufou Twv OedOUEVWV
TTPAYMOTOTTOINONKE O€ Tpia oTAdIa. 2T0 TTPWTO OTAdIO opadoTroirdnkav Ta Kapé
TNG KOTaypa@ng Tng PIVIEOOKOTINONG, OTO OeUTEPO OTAdIO UIOBETHONKE n
TTapaAAayry UKF Tou @iATpou KaGApav Kal oTo TPiTo oTAdIO TO QIATPO TOU KIVNTOU
MEOOU Opou evOowMaTWONKE OTnV TTpoavagepBeioa TapaAAayr. Mia kaivoTouia
TNG TTAPOUCAG EPEUVAG EiVAl N EVOWPATWON TOU KIVITOU HECOU OPOU OTO QIATPO
UKF kAt TTOU TTapEXEl OKPIBEOTEPEG EKTIUAOEIG TWV TPOXIWV TWwV TTECWV.
2UYKEKPIUEVA O CUPUETPIKOG KIVNTOG NECOG OPOG avTavakAd Tnv Tdon Tng Kivnong
€VOG TTECOU KOBWG EVOWMATWVEI TO TTPONYOUUEVA KAl TA ETTOPEVA BANOTA OTNV

EKTIMNON TNG TPOXIAG.

EmmpooBiTweg  mpotddnke  pia  diadikacia  yia  EKTINON  TwWV  PINTPWWVY
ouvdlakupavong OQ@OAUATWY  TNG TTapaAAaynig Tou @iATpou KdaApav. Ta
aTTOTEAEOUATA TOU OAYOpIBUoU aTTd TTpayMaTIKA Oedopéva TPOXIWY  TTECWV
uTTOdEIKVUOUV €va uynAd etritredo amoédoong oTn Heiwon Tou Bopufou Twv
OedopévWV KOl WG €K TOUTOU OTn PeATiwon Tng OuvelIo@opdg TOUuG OTn

BaBuovounon Kai oTnv €MKUPWON TWV MOVTEAWV TTECAG TTPOCOHOIWONG.

AUO dI0QOPETIKEG TTPOOEYYIOEIS EAAPONOavV uTToWn: éva BewpnTIKO POVTEAO Kal
Té00€EpIG HEBODOI avaAuong dedouévwy. To social force model xpnoipgotroinénke
w¢ 10 BewpnTIKO POVTEAO AOYW TNG UTTEPOXNAG TOU O€ OXEon PE GAAQ POVTEAQ
TTpooopoiwong TG TeCnS kivnong (Baoiletal oTig idlE¢ PBaACIKEG APXES
TIPOCOMOIWONG YE TA UTTOAOITTA POVTEAA, OAAG o€ avtiBeon pe auta eival €va
OUVEXEG OTO XWPO MOVTEAO) Kal AOYyw TnG €upuTeEPNSG ATTOBOXNG TOU KAl TNG
UI0B£TNONG TOu aTTO €UpPEwGg dladedopéva AOYIOUIKA TTpooopoiwong TNG TTECG
Kivnong. Ooov agopd TIg peBodoug avaAuong dedousvwy, TEOOEPIG PEBODOI

digpeuvnOnkav: a) Ta eupéwg diadedopéva Texvntd Neupwvikd Aiktua (TNA), B)
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ol KAaooikég Mnyavég Alavuopdtwy YTrooTipiEng [€10IkOTEPa N TTapaAAayr Tng
pMEBGBOU TTOU agopd ot ¢nTAuata TTPORAewng/TTahivdopdunons (SVR)], y) ol
avepxoueveg Gaussian Processes (GP) kai ) n Tomkd& ZTaBuiopévn un
Mapapetpikh MaAivopounon (Loess).

To povtéAo social force TrepIExel TTEVTE TTAPAUETPOUG: TIG ATTOOTACEIG METAEU TOU
e€eTadduevou 1TeCoU Kal TwV TTECWYV TTOU TOU aOKOoUV ammwonTikég emMOPACEIS, TwV
TTECWV TTOU TOU OOKOUV €AKTIKEG €TMIOPACEIG, TWV OTABEPWY ONUEIWV OTO XWPO
Kivnong (EUTTOdIA) KAl TOU ETTOUEVOU ONUEIOU TTPOOPICHOU Kal TG TaXUTNTAG TwV
TECWV TTOU AOKOUV aTTwONnTIKEG €MOPACEIS. 2TNV TTapouca £peuva pia dikain
ouUykpion YETagU Tou povTéAou social force kal Twv Teoodpwy peBddwv avaAuong
oedopévwy emmiXeIpNONKE. MNa Tov OKOTIO auTd yia TO OXEDIAONO TOU HOVTEAOU
Kivnong Twv peBodwyv avaAuong OedopEVWY UIOBETHBNKAV oI TTOPAPETPOI TTOU
xpnoigotroiouvtal ammo 1o povréAo social force. 'Evag treplopiopydg o€ auth
diadikaoia agopd oTo yeyovog TTwg N uEB0dOG Loess PTtTopei va XpnoIPoTIoINOEl
€wg TpeIG METABANTEG. QG €K TOUTOU yIa TN OUYKEKPIYEVN PEBODO oI akOAouBeg
TTapdueTpol (o1 otroieg uIoBeTABNKaV atmd TO social force povréAo) eAn@Onoav
utTown, ATol N TaXUTNTA Tou TTECOU OTO TTAPOV XPOVIKO PBrpa Kal O aTTOOTACEIG
METAEU Tou e€eTadduevou TTeCOU Kal a) Twv TTECWV TTOU TOU AOKOUV aTTwOnTIKESG

EMOPACEIG KAl B) TWV EUTTODIWV.

2TOV TTPOCBIOPICHUO TOU POVTEAOU (TTOU TTPOKEITAI VO EVOWHATWOEI 0TI ueBddoug
av@Auong oOedouévwy) o1 atrooTdoelg  dlaxwpioTnkav  oe  Ouo  G&oveg
QVTITTPOOWTTEUOVTAG TIG OPICOVTIEG KOl TIG KABETEG TIPOPBOAEG atmd Toug/Ta
TTECOUG/EUTTODIA. ZE TTEPITITWOEIG OTTOU UTTAPYXOUV TTAEOV TOUG €vOg TTeCOU (TToU
OOKEi €iTe aTwONTIKEG €iTE €AKTIKEG €mMOPAOCEIG) 1 eutrodiou Kal eEaITiog TOu
YEYOVOTOG TTWG o1 PéBodoI avaAuong dedopévwv AauBdavouy uttown dia TiPn yia
KGBe petaBAntr, TIpoodiopioTnke €va  KATAAANAO Kpitplo  €mmAoyng. To
OUYKEKPIMEVO KPITAPIO BaCifeTal OTOV TTAPAYOVTA TOU OTITIKOU TTEdiou Tou TTECOU
Kal Bewpei TTwg TECOi TTOU KIVOUVTAI €KTOG TOU OTITIKOU Tou Trediou (Triow atrd
auTov) f KOvTd OTo OpI6 Tou (KABeTa O QuUTOV) €TTNPEAloOUV TNV Kivnon Tou
efetalduevou TeECOU onuUAvTIKG AlyoTEPO aTTd TOUG TTECOUG TTOU  KIVOUVTQI

MTTPOOTA TOU KAl KOVTA OTnV TTopEia TNG Kivnorg Tou.
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Epmoédio K&eem améotaon  M1€Go¢ B

OpigévTia
. aTéoTao
Medog a O fffffffffffffffff T > [poopiopdg

OpigoévTia
améoTaon

Epmédio

2XHMA 2: [lpoodiopiopydg poviéAou Kivnong yia TIg peBddoug avaluong

OedoEVWIV

H amédoon Twv pOvTEAWV €EeTAOTNKE OUPQWvVA e TN MEBODO TNG
dlaoTaUPWMEVNG  ETTIKUPWONG  WOTE  va  UTTEPKEPAOTOUV  Ta  ¢nTAMOTA
MovTeAoTTOiNOoNG aTTd TA OTTOIA TTACYOUV O1 hEBodoI avaAuong dedopévwy. Ta duo
o€eT 0edopévwy (Eva atrd TNV TTAATEOPPA TOU OTABUOU TOU PETPO Kal €va aTTd TO
EMTTOPIKO  KEVTPO) opadotroindnkav Kal  OTn  OUVEXEId avapixbnkav  Kai
Xwpiotnkav o€ TTEVTE I00PEYEDN OT dedopévwy. Katd 1n diadikacia ekTraidsuong
TWV MOVTEAWV O OTOXOG €ival va eKTIUNOOUV OI TTAPAUETPOI TOU KABE POVTEAOU
TTOU €EAAXIOTOTTOIOUV TN OUVAPTNON KOOTOUG, NTOI TO JECO TETPAYWVIKO O@AAua
TNG TaXUTNTAG TOou TreCou. KaBwg n taxutnta Tou TTeCoU dlaXwpioTnke o€ dUO
agoveg, xpnoidotroindnkav  PovréAa  avaAuong  OedopEVWY  TTOAAQTTAWV
aATTOTEAEOUATWY. ETITTPOC0BETWG, KABWG TO social force povréNo dev dlaBETel Evav
aAyopiBuo ektraideuong (o€ avrtiBeon ue TIG pEBOGOOUG avdaAuong dedopévwy),
XPNOIMOTTOINONKE €vag YEVETIKOG aAyopiBuog yia Ttnv ekmaideuor) Tou. Auo
EVOANOKTIKEG TTPOOEYYIOEIG TTOU €EETACOUV TIG TTAPAPETPOUG ME TN MEYOAUTEPN
emidpaon Kal oTn ouvéxela ekTTaldevouy To social force povTéNo povo yupw aTrd
aQuTtég  TTapoucidoTnkav  etriong. KaBwg, Ouwg, o1 YEVETIKOI  aAyopiOuol
UTTEPTEPOUV TNG TTPoavaPePBEicag avaykng yia €££Taon Twv TTAPAUETPWY UE TN
MEYOAUTEPN ETTIOPAON VW £XOUV QTTOOEIEEI TNV EUPWOTIO TOUG OTOV TOMEQ TNG

BeATioTOTTOINONG, UIOBETABNKAV OTNV TTApoUCa £PEUva.

‘Eva oUVOAO OEIKTWV XPNOIYOTTOINBNKE yia TNV TIOCOTIKOTTOINON TNG KAARG
TTPOCAPUOYNG Kal TG ATTOd00NG TWV POVTEAWV. Ta atToTeEAEéOUATA UTTOOEIKVUOUV
TTwG ol  MEBodol  avaAuong dedopévwyv  €xouv  KAAUTEPn  duvatoTnTa
TTPOCONOIWONG TNG Kivnong Twv TTeCWwV KaBwg atrodidouv KaAUTEpa HE BAon
OAoug Toug TTpoavapepBEévTeg OcikTeg. To BewpnTikG povTéAo (social force)
EMQAVIOE UYNAOTEPEG TIMEG OQOAPATWY OE OXEON ME Ta POVTEAQ avaAuong
Oedopévwy, PE To PovTéAO TnG Loess va eugavilel TRV uwnAoTEPn atrodoorn.

Emiong 10 povtéAo social force gu@avice uwnAd cuoTnUIKA Kal W OUCTNUIKA
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o@AAPaTa Ta oTroia OoxedOv dev UTINPXAV OTA POVTEAA avAAuong OEQOMEVWV.
EmmAéov Ta povréAa avaAuong Oedopévwv  diegnyav T diadikacia TG
dIACTAUPWEVNG ETTIKUPWONG ONUAVTIKA Taxutepa atmd 1o social force povtélo.
ATO TNV GAAN TTAeupd TTpétrel va emonuavlei TTwg 1o social force povréAo
TTaPEXEl €va OAOKANPWHEVO TTAQICIO TTPOCOMOIWONG OTTOU N KABE TTAPAPETPOG
OXETICETAI YE TO QTTOTEAEOPA TOUu POVTEAOU. To pOVTEAO €TTenyei EUKPIVWOG TIG
oAANAemdpdoelg Twy TECWVY KAl TOV TPOTTO PE TOV OTT0I0 Kivouvtal (uwnAd
ETTITTEDO EPUNVEUCIPOTNTAG) €V AVTIBECEI PE TIG HEBODOUG avaAuong OedouEVWV

TTOU QVTIYETWTTICOVTAI, O KATTOIO BABUO, WG «Jaupa KOUTIAY.

EmmpooBéTwg pia ouykpion METAlU Twv TEOOAPWY HOVTEAWV avAaAuong
0edopévwv KaTédEIEE TTWG TO POVvTéEAO TNG Loess atrodidel KaAUTEpa oUPWVA
oxedov pe kdBe Oeiktn, Ta TNA ka1 oi GP mapouciacav avTioToIXO ETTITTEQO
ammodoong, evw ol SVR Trapeixe utrodeéoTtepeg TTPoPRAEWeIS. TpéTTel €TTiong va
emonuavlei TTwWG TO MOVTEAO TNG Loess ammédide KOAUTEPA OKOPN Kal av
EVOWMATWVE PIKPOTEPO APIOUS YETABANTWY O€ ox£on PE TIG UTTOAOITTEG NEBOOOUG
avadAluong Oedouévwy, evw diggiye T dladikacia Tng  dlaoTAUPWHEVNG
EMKUPWONG O€ ONUavTIKA Alyotepo Xpdvo. e avtiBeon eival {ekABapo TTwg
UTTAPXOUV TTEPIOPICMOI TTOU OXETICovTal PE TNV adia@Aaveia Kal TNV EAAEIWn
EPUNVEUCIPOTNTAG TWV POVTEAWV avdAuong Oedopévwy. Mia ouykpion Twv
OEIKTWV O0€ KABe yupo Tng Oladikaciag TnG OIAoTAUPWHEVNG ETTIKUPWONG
aTmOKAAUWE  TTwg Ta  MOvTEAa  avaAuong  dedopévwy  Teivouv  va

UTTEPMOVTEAOTTOIOUV KABWG pabaivouv/egeAicoovTal atmd Ta dedouéva.

270 TeAeuTaio OTAdIO TNG TTOPOUCOSG £PEUVAG EVOWMATWONKAV TPEIG ETTITTAEOV
METABANTEG OTa povTéAa avaAuong dedopévwy woTe va eEeTaoTel av duvaral va
BeATIwOei N arddoon Toug. O1 emITTAéoV PETABANTEG ETTIAEXONKAV CUPQWVA PE TN
BiBAIoypa@Iky avaokotrnon. ApXIKA TTpooTéBNKav TO UWOG Kal TO QUAO TOU
medou. To UWog Tou TTECOU eKTINABNKE pE TN Pornbeia QuTOYPANPETPIKWY
epyaAeiwv. H péBodog Loess dev duvaral va epapuocBei o€ autrv Tnv avdAuon
Kabwg aduvarei va ouptrepIAGBel emimTAéov peTaBANTEG. Ta atroteAéopaTa auTAg
TNG avAAuong UTTOOEIKVUOUV TTWG N EVOWHATWON TWV XAPOKTNPIOTIKWY TOU
meCou ptTopei va BeATiwoel Tnv attédoon Twv PovTéEAwv avaluong dedouévv
TTOU a@OpoUV OTnV TIpooopoiwon TnG TedNg Kivnong (atrodidouv KaAuTepa
oUh@WVa oxedOv pe KABe Ocgiktn). AKOuUn €eTAOTNKE N TTPOOBETN EVOWUATWON

TNG TIOPANETPOU TOU XpOvou oOTa  HoviéAa avaAluong dedouévwy. Ta

20



atroTeAEOUATA AUTHG TNG dIAdIKOCIAG POIAOUV APKETA PE TO ATTOTEAEOUATA TWV
MOVTEAWYV avAAuOoNG BEDOPEVWV WE TIG ETTITTAEOV PHETABANTEG TWV XOPOKTNPIOTIKWY
Tou TeCoU. EidIkOTEPA TO POVTEAQ PETA TNV EVOWMATWON TNG TTAPAUETPOU TOU
Xxpoévou @aiveTal va atrodidouv KaAUTeEpa dE PAon kKABe Oeiktn. evikd n
EVOWMATWON €MTTAEOV PETARBANTWYV QaiveTal va BEATIWVEL, KUPIwG, TNV atrddoon
TOU povTéAou Twv TNA uTTod€IKVUOVTAG TTWG N CUYKEKPIPEVN HEBODOG duvaTal va

KXEIPIOTEI» ATTOBOTIKOTEPA TNV EVOWMPATWON ETTITTAEOV PETABANTWV.
Ta oupTrepAoPaTA KAl N CUVEICQOPA TNG £PEUVAG TTAPATIOEVTAI TTAPAKATW:

e [lapoxn evog tAaiciou gAayioToTroinong Tou BopufBou Twv OEdOUEVWV
(TpoxI€EG TTECWV)
o Evioxuon 1ng amédoong tou Unscented Kalman Filter pye nv
EVOWMATWON 0€ AuTO TOU CUMMPETPIKOU KIvnTOoU PETOU Opou
o Ektipnon Twv pnTpwwyv  ouvdloKUPAVONG  OQOAPATWY  O€
TTEPITITWOEIG TTOU QUTEG OEV €ival YVWOTEG
e AvamTugn povtélou TIpocopoiwong TG  TECAG  Kivnong yia TNV
EVOWMATWON TOou OTIG HEBGOOUG avaAuong dedouEVWV
o Xpovikd atrodoTIK) Babuovéunon Tou povtélou social force
e YT6deiEn TNG a1TodOTIKOTNTAG TWV HOVTEAWV avaAuong dedouéEvwy OTOV
TOMEQ TNG TTPOCOMOIWONG TNG TTECNG Kivnong (o€ oxéon PeE Ta BewpnTIKA
MOVTEAQ TTPOCONOIWONG)
e BeAtiwon mng amoédoong Twv PoVvTEAWV avaAuong dedopévwy OTav autd
EVOWMATWVOUV ETTITTAEOV TTAPAPETPOUG TNG TTPOCOMPOIWONG TNG TTECNG

Kivnong

Mia evioxuon Twv PovTéEAwV avaAuong OedOUEVWV UTTOPED va ETTITEUXOEI PE TNV
evowpaTwon emmAéov  TTopapéTpwy. ‘Eva Trapddeiypa Ba  ptropouce  va
QTTOTEAECEI N UI0BETNON TOU MEYEBOUG TNG TTUKVOTNTAG Twv TTE(WV WOTE va
OUMTTEPIANPOEI O0TO POVTEAO OXI HOVo O TTECOG TTOU ETTIOPA TTEPICTOTEPO OTOV
e€etalouevo meCO aAAG OAol ol TTeoi TTou BpiokovTal 0€ KOVTIVi) atTéoTaon Tou.
EmmAéov, 1TpocBeTa dedouéva Ba pTTOpoUCcaV va CUMPTTEPIANGOOUV yia pIa
BeATiwpévn agloAdynon Twv POvTEAWV. AKOUn €va evllo@Eépov  €PEUVNTIKO
QvTIKEIHEVO Ba ptTopouce va atroteAéoel n dlgpelivnon TNG Kivnong Twv TTedwv
OTav autoi aAANAETTIOPOUV UE oxAuaTa. @a uTTopolce va €EETAOTEI N EQPAPUOYN

MOVTEAWV avAAuong OeQONEVWV OE AUTEG TIG TTEPITITWOEIG. AUTH N OnUEiwon givai
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ONMAVTIKA KABWG MBavVWG va gvioxue TNV ammodoon TwV aUTOVOPWY OXNUATWY.
EmmAéov oTnv TTapouoa £peuva €EETACTNKE N TTAPAUETPOG TOU XPOVOU YIa TNV
emidopaor, ota povréAa avdAuong Oedopévwy. Kard ouvétreia Ta AvadpouiKa
Neupwvikd Aiktua (katnyopia Twv TNA) kai €18IKOTEPA N APXITEKTOVIKI TWV
OIKTUWV Makpdg kai Bpaxeiaog MvAung 6a umopoluocav va €LETAOTOUV O€
TTEPITITWOEIG TIPOCOUOIWONG TNG TTECAG Kivnong. TEAOG, pia oUykpion OTNV Kivnon
TWV TTECWV UTTO KAVOVIKEG OUVONKEG Kal UTTO OUVONAKEG EKTAKTOU avAaykng Oa
MTTOpOoUcE va OlepeuvnBei woTe va TTPOCdIOPICTOUV 01 dIaPOPOTIOINCEIS OTN
OUMTTEPIPOPA TWV TTECWV OTAV AUTOI KIVOUVTAI O OUVOAKEG EKTAKTNG avAyKNG.
AuTO Ba BeATiwve TNV a1rdd0o0N TWV PHOVTEAWY TTPOCOMOIWONG TNG TTECAG Kivnong
TapExoviag éva O OAMIOTIKO TTAdiclo, OTTwg €ToNg Kol Ta  HOVTEAQ

TIPOCONOIWONG TNG Kivnong oxAuaTog — 1reou.
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1. INTRODUCTION

1.1. Overview

1.1.1. Theoretical models

The significant increase of urbanization which has resulted in the formation of
densely populated cities i.e. the concentration of a relatively large number of
people in a limited space, has significantly affected everyday living. At the same
time, modern urban infrastructures, (underground railway stations, shopping
malls, tall buildings) being a significant element of city design, greatly affect
travel patterns (Klingsch, 2010), resulting in substantial changes in transportation
network elements design. Therefore, the construction of necessary
infrastructures and the management/regulation of existing ones are of great

importance considering quality of life in the cities.

For this reason it is necessary to understand the movement behaviour of citizens;
and with walking being a major component of all urban trips nowadays, the need
to comprehend pedestrians’ behaviour comprises a prerequisite for the design of
a sustainable transportation system. Pedestrian movement differs substantially
from vehicle movement, and is much more complex. As Burstedde et al. (2001)
mentioned, pedestrians are more flexible and more intelligent than cars, and they
can choose an optimum route according to the environment around them taking
into account only a small number of constraining elements. Even slight bumping
is acceptable and need not be absolutely avoided as in traffic flow models
(Burstedde et al., 2001).

Pedestrian simulation has gained greater interest from researchers during the
last two decades. Advanced models of traffic simulation, which can determine,
with considerable accuracy, traveller behaviour at a macroscopic or a
microscopic level (e.g. trip generation and distribution, model choice, traffic
assignment and driver and pedestrian behaviour), have been developed. In many
studies, pedestrian movement is compared with fluid movement (e.g. Helbing,
1992). Econometric models, which rely greatly on probabilities as well as models,

which take into account psychological factors, are also used in pedestrian
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simulation. Moreover, models based on scientific disciplines (physics, biology,
chemistry, etc.) have also been developed. On the other hand, most of the
studies on pedestrian simulation, focus on specific parameters (e.g. infrastructure
architecture, pedestrian characteristics, time period in a day, etc.) failing to
consider a more integrated approach. In general, a wide range of pedestrian
simulation models have been developed, including the social force model, cellular
automata, lattice gas and route choice models (for a review cf. Kouskoulis and
Antoniou 2017). All of the aforementioned models consider the agent’s desired

path and surroundings; in this case being pedestrians and obstacles.

1.1.2. Data-driven models

Statistics set the ground for basic modeling. Regression analysis (linear,
polynomial etc.) is a useful tool for quantifying parameters’ impact. Nevertheless,
regression analysis is subject to parametric limitations (e.g. data obtained from
Gaussian distribution, hard to define a priori the type of the mathematical model,
etc.) and is applied in cases where the researcher has specific clues for the most

appropriate model.

A revolution in many scientific fields has been observed during the past decades
with the emergence of data-driven analytics and machine learning theory.
Following up on the continuous widespread availability of data and computational
advances, data-driven modeling has been increasingly gaining researchers’
interest over the last decades. Several methods and techniques [including
Artificial Neural Networks (ANN) and Support Vector Machines (SVM), among
others] have been developed and provide their simulation robustness in terms of
clustering, classifying and regression. These techniques do not require a priori
knowledge of the relationships among the model variables, but they “learn” from
the data.

Data-driven theory differs from classical statistics as its methods are non-
parametric. Theoretical models, on the other hand, provide a straight
mathematical framework, while relating model parameters based on logical
principles and rules. Hence, data-driven methods are not subject to parametric

limitations (data obtained from Gaussian distribution, complexity of defining a
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priori the type of the mathematical model, etc.) and, as a consequence, are
widely applicable. They are based on data (data-driven), without providing a
specific mathematical framework, and can deal with large and complicated data.
Locally weighted regression (Loess, Cleveland 1979) is an example of a data-
driven regression method, a non-parametric tool that can deal with complicated
data and model circumstances. Its validity on the development of traffic
simulation models has already been demonstrated (e.g. Antoniou et al., 2013;

Papathanasopoulou and Antoniou, 2015).

Data-driven models require a vast amount of data in order to gain the accurate
modeling information, which in turn necessitates higher computational
requirements. Though these methods were initially developed several years ago,
they have been spreading only recently due to growing data availability and the

enhancement of computational power.

1.2. Aim

The aim of this research is to examine whether data-driven methods can provide
a robust model framework for pedestrian simulation. To achieve this, their
performance is compared against a “traditional” (i.e. widely used) pedestrian
simulation model. The inherent difference of these two categories is that
conventional models can stipulate a straight mathematical framework based on
logical principles, while data-driven techniques do not comprise a clear
mathematical model. While no clear drawbacks of the theoretical pedestrian
simulation models have been considered, according to the literature review, the
goal of this thesis is to investigate if data-driven techniques (whose presence is
strong in many research fields during the last decades) can produce a more

efficient pedestrian simulation modelling framework.

The present research proposes a data-driven pedestrian simulation framework
and investigates its appropriateness of use alongside theoretical models (a first
attempt considering one standalone data-driven method is presented in
Kouskoulis et al., 2018). Pedestrian trajectories are therefore collected and
simulated using both a theoretical model and data-driven techniques — namely,

the social force model and four well-known data-driven methods.
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Prior to the application of these methods, an appropriate data noise elimination
filter is applied, i.e. a combination of Unscented Kalman filtering and the moving

average method due to the fact that initially extracted data include noise.

Subsequently to the models’ comparison improved models that incorporate
additional pedestrian simulation parameters are tested in order to evaluate their
performance compared to the initially designed data-driven pedestrian simulation

models.
Thus, the objectives of this thesis are described explicitly below:

¢ Extend/improve an algorithm for reducing noise in pedestrian trajectories
data

e Develop a framework for pedestrian simulation that can be employed in
data-driven techniques

e Assess the performance of data-driven techniques (using the pedestrian
simulation model) by comparing them with an established theoretical
pedestrian simulation model utilizing the appropriate methodology and
metrics

¢ In case data-driven pedestrian simulation models perform better (than the
theoretical one), enhance them with additional potentially relevant, i.e. that
are anticipated to affect pedestrian movement, parameters and evaluate

their performance.

The first objective revolves around the proposal and validation of a Kalman—
filtering—based (Kalman, 1960) procedure for noise reduction. An extension
[Unscented Kalman filter (Wan and Van der Merwe, 2000)] of the filter is
employed in order to relax standard algorithm assumptions. A method for
estimating noise covariance matrices is presented, while an extension of the

moving average is incorporated in the Kalman filter.

The second and third objectives involve the comparison between data-driven and
theoretical pedestrian simulation models. In this research, the social force model
is selected as the most representative theoretical model. The social force model
has been widely used in pedestrian simulations and forms the basis for
simulation software [e.g. VisWalk (PTV, 2015) and SimWalk (Zainuddin et al.,
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2009)]. Furthermore, it relies on the same principles as the other main pedestrian

simulation models.

As for machine learning techniques, four promising methods are utilized: a) the
well-known ANN, b) the classical SVM [in particular as we refer to regression
analysis, Support Vector Regression (SVR) is employed], c) the rising Gaussian

Processes (GP), and d) the Locally Weighted Regression (Loess).

In parallel a continuous updated literature review is conducted in order to identify
additional parameters that affect pedestrian movement or/and improved versions

of the employed models.

It should be clarified that in this study we focus only on pedestrian movement,
where pedestrians interact only with stationary obstacles and/or stationary or

moving pedestrians. Pedestrian — vehicle interactions are not considered.

Figure 1.1: Conceptual framework
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1.3. Structure

The remainder of this thesis is organized as follows. Chapter 2 comprises the
literature review in which relevant studies with their results are described. In an
extended review the basic theoretical approaches for pedestrian movement are
presented. The parameters that affect pedestrian movement in theoretical
approaches are also highlighted. In addition, data-driven methods for pedestrian
simulation are also described. A specific section on emergency situations is
presented due to the increased interest of the research community. Validation

and data collection methods are also presented in this Chapter.

In Chapter 3, the methodological framework is illustrated. Initially the design of
the data collection experiment is presented. Due to the fact that the collected
data (i.e. pedestrian trajectories) include noise, the main methods for data
filtering (existing smoothing filters) are described. Subsequently a presentation of
the social force model is provided through its governing rules and its parameters,
while also considering the most recent model updates. The main data-driven
methods are demonstrated with their extensions related to the present
experiments (most of these techniques result to one dimensional output, while
the current experiment is a two dimensional one). Their pros and cons are also

discussed. Finally the framework for the comparative analysis is outlined.

Chapter 4 describes the methodology for data collection and processing. The
data collection sites are defined. The cameras’ setup and the experimental
design for this procedure are presented. The photogrammetric technique utilized
to estimate agent’s ground coordinates is also described. An extension of this
technique leads to the estimation of pedestrian’s height, a parameter that will be
used next in the analysis. A specialised software that performs automated
tracking from moving objects (in general), utilized in this research, is also
described. Last, the algorithm that has been developed based on existing

smoothing filters and leads to data noise elimination is provided.

Chapter 5 illustrates the comparative analysis results. The performance of the
theoretical pedestrian simulation model and the data-driven approaches is
compared. Prior to this the description of the machine learning model setup,

appropriate for pedestrian simulation, is elaborated. Suitable transformations of
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the model parameters are conducted where required. Cross-validation process is
used to avoid data-driven models’ overfitting, while a genetic algorithm is
employed for calibrating the theoretical pedestrian simulation model’s
parameters. Complementary two different types of sensitivity analysis which
reveal the model parameters with the highest impact are presented. Due to the
fact that genetic algorithms overcome the need of examining the most effective
parameters, the sensitivity analysis methods are cited in the current thesis for the
sake of an integrated approach. The results of the simulations are also presented
in this Chapter. An extended data-driven model that includes additional

pedestrian movement parameters is also designed and evaluated.

Chapter 6 presents the results of the comparative analysis described in the
previous chapter. The findings of this research are discussed and their
contributions are clarified, while also limitations of the study (related to the data-

driven theory) are provided. Ultimately, directions for future research are outlined.
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2. BACKGROUND ON PEDESTRIAN MODELING

2.1. Overview

In this section the literature review that is relevant to pedestrian simulation is
presented. The results of the relevant studies are discussed and the parameters
employed in the different pedestrian simulation models are classified in
meaningful distinct categories. The section is based on the review of Kouskoulis
and Antoniou (2017).

Pedestrian simulation has become a crucial element in integrated transport
analysis, mainly in the past three decades, as transport engineers have realized
its significance considering traffic management (Akin and Sisiopiku, 2007;
Helbing et al., 2005) and public transportation network design (Daamen et al.,
2002). Furthermore, reliable pedestrian simulation models comprise a
prerequisite for the implementation of specific intelligent transportation systems
and autonomous vehicles (Matthews et al., 2017). Therefore the necessity for
exploring pedestrian walking behaviour and forecasting pedestrian movement

has brought a lot of attention to pedestrian simulation.

The principle for every simulation method is model development. In general,
simulation models are classified according to their level of analysis in
microscopic, for individual pedestrian behavior, and macroscopic, for aggregated
dynamics. Mesoscopic models have been also developed though at a lesser
degree. Pedestrian simulation models can also be classified according to the
pedestrian walking theory that is applied to represent their dynamics. Examples
of microscopic models considering the adopted walking theory include social

force models, cellular automata, and so on, and are presented in section 2.2.

Fundamental diagrams are, also, of major importance in traffic simulation and as
a consequence in pedestrian simulation. Through these diagrams the relation
between density and velocity (or other fundamental magnitudes) is visualized and
a better overview to the planner is provided. An analysis of these diagrams is

presented in section 2.3.
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In the recent years, a relatively low — yet increasing — number of approaches that
deal with pedestrian simulation problems employing data-driven methods have
been presented. Still these models are at a rather early stage of development
and have not been widely applied yet. Some of those models also adopt
principles from the existing microscopic models. These are presented in section
24.

As it is widely known, a model is not reliable unless its results are validated.
Validation techniques have attracted the interest of the scientific community
because they are essential in model development. Data collection tools, such as
sensors, cameras and so on, are utilized to provide to the researchers the
appropriate data in order to verify their theory. In terms of pedestrian simulation
models the appropriate data involve, mainly, pedestrian trajectories. The existing
tools and methods for collecting pedestrian trajectory data are demonstrated in

section 2.7.

Pedestrian simulation under emergency conditions, has gained researchers’
interest, mainly during the last decade. Although the design of pedestrian
simulation models for emergency situations is significant, only a small number of
studies focus on pedestrian evacuation (Vermuyten et al., 2016). Still this number
has increased in the recent years. Urban and metropolitan areas exhibit an
increase in population and as a consequence the frequency of emergencies has
also increased. Floods, tsunamis, volcanic eruptions and fires are examples of
such emergencies. The importance the representation of pedestrian movement
under emergencies is acknowledged and the adopted approaches are presented

in section 2.6.

2.2. Theoretical approaches

Pedestrian behavior considering walking follows specific rules. Several
researchers have focused on simulating pedestrian movement based on various
sets of logical rules. These efforts resulted in the development of analytical
approaches. In the same manner as in traffic simulation, pedestrian models are

divided in two major categories according to the level of analysis:
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e Microscopic (e.g. Gipps and Marksjo, 1985; Helbing and Molnar, 1995;
Teknomo, 2006) focusing on individual pedestrian dynamics and

characteristics; and

¢ Macroscopic (Hughes, 2000), which consider aggregate characteristics of
pedestrian flows (e.g. mean velocity, mean density) and are used at a

substantially lesser degree.

Macroscopic approaches may fail to capture accurately specific phenomena in
pedestrian simulation (Lavas, 1994). As a result microscopic models are mainly
developed for pedestrian simulation. At the same time microscopic simulation has
a high computational cost, which has been reduced with the enhancement of
hardware and software capacities (Teknomo, 2006). Nikolic et al. (2013)
mentioned mesoscopic models, an intermediate level between microscopic and
macroscopic, which has not been widely applied in pedestrian simulation. A
typical example is that of Tordeux et al. (2018a) where pedestrian movement is
described at an aggregated level while, at the same time, individual pedestrians
are considered. Another example is that of cell transmission models (CTM) where
obstacles are discretized into grids. This type of models can describe both
general and detailed characteristics of pedestrian flows (Li and Guo, 2020). In
addition, Duives et al. (2013) referred to hybrid models as a combination of
microscopic and macroscopic models. Not significantly different from mesoscopic
models, hybrid models consider human interactions at a microscopic level while

using macroscopic background for reducing the models’ computation time.

Pedestrian simulation models are also classified pertaining to the theory which
describes the way that pedestrians walk. Three major categories can be identified

considering microscopic models (Figure 2.1):
e Social force;
e Cellular automata; and
e Lattice gas.

Complementary to the above categories route choice theory is a method that is

mainly utilized in combination with other models (for example the behavioral
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theory model arises from a combination of the social force model and the route

choice theory), rather than as a stand-alone model.

Pedestrian simulation models

Y

Y

Social force
(e.g. Helbing and Molnar, 1995;
Moussaid et al., 2010)

Cellular automata
(e.g. Gipps and Marksjo, 1985;
Blue and Adler, 2001)

Lattice gas

(e.g. Muramatsu et al., 1999;

Isobe et al., 2004)

Y

Centrifugal force
(Chraibi et al., 2010)

Y
Behavioral theory
(e.g. Hoogendoorn et al., 2003;
Hoogendoorn and Daamen,

2007)

A 4

Route choice
(e.g. Hoogendoorn and Bovy,
2004; Robin et al., 2009)

Figure 2.1: Categorization of pedestrian simulation models (microscopic)

Other types of pedestrian model categories have also been found in the

literature. Duives et al. (2013) presents a more detailed classification in

pedestrian modeling as:

Cellular automata;

Social force;

Activity choice;

Velocity based;

Continuum;

Hybrid;

Behavioral; and

Network models.




Guo et al. (2010) added semi-continuous models, while Ma and Song (2013)
focused on distinguishing continuous and discrete pedestrian simulation models.

Das et al. (2014) categorized microscopic (pedestrian simulation) models as:
e Cellular automata;
e Forced based;
¢ Queuing; and
e Agent-based.
Last, Vermuyten et al. (2016) classified pedestrian simulation models as:
e Continuum;
e Network based;
e Cellular automata;
e Agent based;

e Social force; and

Game theoretic.

Many of the aforementioned categories are not clearly separated from the others.
For example agent-based models comprise a rather general category that does
not provide any specific rules (i.e. as a stand-alone model) in terms of the theory
according to which an agent walks, but can overlap with other models (e.g. social
force as mentioned in Xing et al., 2017). The four most commonly used
categories of theoretical pedestrian models are presented in the following

sections.

2.2.1. Social force

The principle of social force models, or in general force based models, arises
from the assumption that pedestrian dynamics are determined from the repulsive

and attractive forces that are acted on the moving pedestrian (Figure 2.2). In one
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of the earliest approaches, when the need introducing microscopic models in
pedestrian simulation was suggested, mostly, due to the inability of macroscopic
models to capture the variations in pedestrians’ movements, Gipps and Marksjo
(1985) simulated pedestrian movement using cellular automata and applied
social forces in order to determine pedestrians’ direction. A gain function was
calculated for every adjacent cell and pedestrians moved to the cell with the
highest gain. An advantage of this method is that it refers to the perceived - by

the pedestrian - distance and not to the actual distance.

Repulsive Forces

Agent

@
—

Attractive Forces

Figure 2.2: Social force model approach

Subsequently, Helbing and Molnar (1995) set the principles for the application of
social force models in pedestrian simulation. Based on Langevin equations
(stochastic equations) they examined pedestrian movement taking into account

the environment’s influence. The model considers three elements:
a) the aim of reaching a certain destination;
b) the influence of other pedestrians, borders, or both; and
c) the attractive effects of other persons or objects.

The first element is related to the agent’s desired direction. This is determined
considering the pedestrian’s objective, which is to reach their destination. It is
also related to the deviation of the pedestrian’s actual velocity compared to their
desired velocity (1 — relaxation factor). The second element concerns the
repulsive effects that are provoked by the pedestrian’s surroundings. The

repulsive forces decrease exponentially as the distance from the obstacle(s)
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increases. The third element is the opposite of the second and can be caused by
objects (e.g. advertisements) or persons that attract pedestrian’s attention and
disrupt them while moving towards their destination. Helbing and Molnar (1995)
study also suggests that in a narrow door, where only one stream can pass

through, pedestrians of the opposite stream will have to wait.

The basic function describing the dynamics of social force models is (Helbing and
Molnar, 1995):

F () =F2(Ug,ule,)+ D Fg(eg. o -1y +2FB<eq,q- i8)+ > Fa(enr 1Y)
B i

where

I?q(t) = pedestrian’s total motivation;
F° = pedestrian’s desire;

ﬁ.ﬁ and a = repulsive forces from other pedestrians and from borders (e.g.

walls, obstacles), respectively; and
Fti = attractive forces.

A grouping factor in social force models was introduced by Moussaid et al.
(2010). They mentioned that pedestrians move not only individually, but also in
groups due to their social lives. In particular they found out that the proportion of
pedestrian groups in the pedestrian population follows a Poisson distribution.
They imported a group force in the equation of the social force model and

transformed the model as (Moussaid et al., 2010):

£
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a

o

Ifg”a" = the repulsive effects of boundaries;

F¥°® = the response of pedestrian o to other group members.
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The above groups only apply to up to 4 agents. In cases of more pedestrians the

groups are split up.

Chraibi et al. (2010) introduced the collision detection technique to limit
overlapping between pedestrians, while a heuristic function that defines
pedestrian direction in cases of trying to avoid obstacles was mentioned by
Moussaid et al. (2011).

An extensive presentation of the social force model is provided in section 3.3 in
order to be explicitly described for the scope of the models’ comparison. In that
section an improved modified version of the social force model, developed by

Helbing and Johansson (2010), is also presented.

2.2.2. Cellular automata

Although cellular automata (CA) are most commonly used in microscopic
approaches (e.g. Gipps and Marksjo 1985; Burstedde et al., 2001; Blue and
Adler, 2001; Weifeng et al., 2003; Flétteréd and Lammel, 2015), they have also

been adopted in a mesoscopic context (Papadimitriou et al., 2014).

Gipps and Markjso (1985) set the groundwork for CA in the field of pedestrian
simulation. Since, the first adoption of CA for simulation in the transport field, CA
was revised in 1992 by Nagel and Schreckenberg who introduced the CA for
vehicular traffic. Their model proved to be quite effective and increased its
popularity in the transport field. The CA theory is based on space discretization
(rather than considering space as a continuous element as in the social force
model). The explored area is separated in cells of specific dimensions, in which

pedestrians move (Figure 2.3).
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Figure 2.3: Cellular automata approach (based on Burstedde et al., 2001)

In most studies, the cell dimensions are 0.4m X 0.4m (Burstedde et al., 2001;
Isobe et al., 2004; Ma and Song, 2013; Li et al., 2019; Lu et al., 2015; Weifeng et
al., 2003), while in Gipps and Markjso (1985) they are 0.5m X 0.5m. In addition,
Lohner and Haug (2014), though not related to the cellular automata theory,
estimated agent’s length and width (in crowd situations) to be 0.3m and 0.5m
respectively. Furthermore, Kretz et al. (2011) determined the lower range of
human body diameters between 0.15m and 0.20m. Guo et al. (2012) specified
cell dimensions as 0.2m X 0.2m to be able to represent also objects’ dimensions.
Hexagonal cells have also been found in recent studies (e.g. Torres-Ruiz et al.,
2017).

According to the CA adaptation for pedestrian simulation, obstacles, walls, and
people occupy cells of the space. Each cell can be occupied at most by one
agent. In the initial simulation step, the space is divided in occupied and
unoccupied cells. At every simulation step, the condition movement of the agent
is updated and the agent can either move to one of the neighbouring cells or
remain at the same cell. A new layout of occupied and unoccupied cells is then
created. The same process is repeated for each simulation step. Both von
Neumann neighborhoods (four cells neighborhood type) and Moore
neighborhoods (nine cells neighborhood type) have been studied. Cellular
automata models can also simulate pedestrian group movement (Vizzari et al.,
2013).
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CA’s advantage is the simplicity of their rules (Lu et al., 2015), while their
disadvantage becomes evident in large simulation scenarios where increased

memory requirements are noted (Gloor et al., 2004).

CA theory was also employed in evacuation modeling by examining pedestrian
coupling and its impact on evacuation time (Muller and Schadschneider, 2016).
Burstedde et al. (2001) extended cellular automata in evacuation plans by
introducing the floor field, which is a second grid of cells underlying the main grid
that acts as a substitute for pedestrian intelligence. This floor field demonstrates

the interactions between pedestrians.

Combinations of CA and social force models are also found in the literature
(Table 2.1). In such models (the combinations of CA and social force) the space
segmentation element is adopted from the CA theory and the forces among

pedestrians and other obstacles from the social force theory.

2.2.3. Lattice gas

Unlike the aforementioned models, lattice gas models have not been widely
applied in pedestrian simulation (e.g. Muramatsu et al., 1999; Muramatsu and
Nagatani, 2000; Isobe et al., 2004). They rely on the concept that pedestrians
move according to the flow’s strength, also referred to as drift strength. Drift
strength is the primary parameter for the probability function that defines the
direction of the pedestrian in the next simulation step. Pedestrians prefer to follow
other pedestrians than create their own paths. Lattice gas models evince that

pedestrians tend to follow their leader as they move (Isobe et al., 2004).

Muramatsu et al. (1999) applied one of the primary approaches for lattice gas
models in pedestrian simulation. They separated walkers in right walkers (move
to the right) and left walkers (move to the left). Their model relies on the
probability of walkers to choose their next site in the next time step, which

depends on the drift strength. They concluded that:

e the mean velocity increases with increasing drift;
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e the mean velocity, the occupancy and the jamming transition do not

depend on the ratio of the right walkers to all walkers.

This study did not include the option for pedestrian’s back step. Subsequently,
Muramatsu and Nagatani (2000) introduced two different types of pedestrian
simulation models, one for two-way pedestrian flow and one for four-way
pedestrian flow. In the first model, walkers can only move up or right, and in the
second in all possible directions. The simulation of the first model (two-way) was
conducted under the assumption that the density of the right walkers is equal to
the density of the up walkers. Simulation experiments revealed that by increasing
drift strength, critical density (the value of density when the jamming transition
begins to occur) decreases while mean velocity increases. In the simulation of
the second model (four-way) the density is equal for each type of walker (the
walker type is defined by the direction they move). The mean velocity above the
transition point is almost zero in the four-way experiment and slightly higher in the
two-way. Critical density and mean velocity “react” in the same manner in both

models (two-way and four-way), but the patterns are different.

Isobe et al. (2004) also utilized a lattice gas model for simulating pedestrian
movement. They presented a bi-directional pedestrian flow simulation inside a
channel with the assumption that the number of pedestrians is equal in each
direction. The walls of the channel acted as boundaries for the pedestrians and
applied repulsive forces on them. They found that the probabilities of the
movement direction of an agent (transition probabilities — p;) depend on the drift

strength.

Lattice gas models have been applied in pedestrian simulation, but not as
extensively as social force and cellular automata models. A thorough review of
pedestrian models resulted in only 5 studies where lattice gas models were
applied for pedestrian simulation. Considering the fact that all of them were
edited by the same or related researchers, the real applicability of lattice gas

models seems to be rather limited.
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Figure 2.4: Lattice gas approach (based on Isobe et al., 2004)

2.2.4. Route choice

Naturally, route choice theory is also relevant in modeling pedestrian behavior,
while it resembles its applications in vehicle traffic. Route choice probability is

computed according to maximum likelihood theory.

Nested logit models have been used for maximizing the utility that an agent gains
from moving from a place to another (Robin et al., 2009). The utility function

consists of the following factors:
a) the tendency of an agent to keep their direction;
b) the aim of reaching their destination;
c) their acceleration in free flow conditions;
d) the tendency of following their leader;
e) the aim to avoid collisions.

In the same data sample, different categories of logit models (e.g. cross-nested
and mixed nested) provide similar coefficient values (Antonini et al., 2006). An
extensive literature review of pedestrian route choice models is presented in
Papadimitriou et al. (2009).
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Hoogendoorn and Bovy (2004) modified route choice models (behavioral theory)
by inserting infinite alternative choices in pedestrian’s route. Behavioral theory
force models comprise actually a sub-category of social force models that
combine social force and route choice models (Hoogendoorn and Bovy, 2003;
Hoogendoorn and Daamen, 2007). Guo et al. (2010) introduced logit models in
social force models and applied differential equations to compute movement
probability. At this point it is mentioned that another sub-category of social force
models are centrifugal force models, which take into consideration pedestrian
velocity while adopting collision detection techniques in order to avoid conflicts
and overlaps among pedestrians. Centrifugal force models are also practical for

evacuating buildings (Chraibi et al., 2010).

Li et al. (2019) combined choice behavior models with cellular automata in order
to simulate pedestrian movements at a ticket gate machine at a rail transit
station. They set three pedestrian choice strategies including pedestrians’
preferences for i) minimizing their distance, ii) selecting the queue with the
minimum number of pedestrians and iii) eliminating their estimated time. Poisson

distribution was applied to model pedestrians entering the station interval.

It is worth mentioning that under high-density conditions all of the aforementioned
models are incapable of accurately reproducing the existing phenomena (Duives
et al., 2013). Cellular automata and social force models appear more suitable for

pedestrian crowd simulation.

A recent study on the field of route choice models has been conducted by Wu et
al. (2021). The researchers made their experiments in a subway station.
Considering the factor of local view (i.e. the fact that pedestrian’s field of vision
can be blocked by obstacles) they concluded that the exit's choice is related to
the agent’s space familiarity, while temporary directions before determining the
final exit are possible and local view factor can make pedestrians to re-select

their final exits.
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Table 2.1: Overview of pedestrian simulation models

Source Model level Model category Fu:gZTaemntal vaaﬁiedr:t?::t
Antonini et al. (2006) Microscopic Route choice theory < <
Blue and Adler (2001) Microscopic Cellular automata v v
Burstedde et al. (2001) Microscopic Cellular automata < <
Chaibi et al. (2010) Microscopic Social force (centrifugal force) v v
Flotteréd and Lammel (2015) Microscopic Cellular automata v v

Combined of cellular automata and
Gipps and Marksjo (1985) Microscopic social force models < x
Combined of cellular automata and
Gloor et al. (2004) Microscopic social force models < <
Guo et al. (2010) Microscopic Social force (behavioural theory) v v
Helbing and Molnar (1995) Microscopic Social force < <
Helbing et al. (2007) Microscopic Social force v v
Hoogendoorn and Bovy (2003) Microscopic Social force (behavioural theory) v v
Hoogendoorn and Bovy (2004) Microscopic Route choice theory < x
Hoogendoorn and Daamen (2007) Microscopic Social force (behavioural theory) < v
Hughes (2000) Macroscopic Route choice theory < x
Isobe et al. (2004) Microscopic Lattice gas v <
Combination of cellular automata
Kneidl and Borrmann (2011) Microscopic and social forces < <
Kretz et al. (2011) Microscopic Social force < <
Combination of cellular automata

Li et al. (2019) Microscopic and choice behavior analysis < <
Li and Guo (2020) Mesoscopic Cell transmission model v v
Lavas (1994) Microscopic Route choice theory v <

Lu et al. (2015) Microscopic Comblna;Ir?g s;;g:ll;(l)?é: iomata < ;tgrsoen;t%:g
Moussaid et al. (2010) Microscopic Social force < v
Moussaid et al. (2011) Microscopic Social force < v
Muramatsu et al. (1999) Microscopic Lattice gas v <
Muramatsu and Nagatani (2000) Microscopic Lattice gas v <
Nagatani (2001) Microscopic Lattice gas v <
Nagatani (2002) Microscopic Lattice gas v <
Okazaki and Matsushita (1993) Microscopic Force based < <
Robin et al. (2009) Microscopic Route choice < v
Song et al. (2013) Microscopic Social force < <
Teknomo (2006) Microscopic Social force v v
Tordeux et al. (2018a) Mesoscopic Hexagon lattice v v
Torres-Ruiz et al. (2017) Microscopic Cellular automata v v
Weifeng et al. (2003) Microscopic Cellular automata v <
Wou et al. (2021) Microscopic Route choice theory < v
Zanlungo et al. (2014a) Microscopic Social force < v
Zhao et al. (2012) Microscopic Social force < <
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2.3. Fundamental diagram

Fundamental diagrams are an essential element for traffic simulation. Relying on
the relations between basic traffic magnitudes, they evince the validity of the
proposed models. Similarly in pedestrian simulation they are considered to be an
important tool, particularly in terms of model calibration (e.g. Tordeux et al.,

2018a), as considered in the previous table (2.1).

One of the earliest studies on pedestrian fundamental diagrams was that of
Weidmann’s (1993). The proposed fundamental diagram correlates pedestrian
density and pedestrian velocity by illustrating that velocity is inversely related to
density. The diagram has also been verified in later studies, for example in

Seyfried et al. (2005) where four regimes have been identified (Figure 2.3).
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Figure 2.5: Fundamental diagram for pedestrians (Seyfried et al., 2005)

It is worth mentioning that the measuring unit of density (p) in pedestrian flows
refers to square meters (1/m?) and is related to the area, rather than the length
that pedestrians occupy. This is not the case for traffic flow where density is
expressed in vehicles per unit of length e.g. lane-kilometers (veh/km/lane). The
cause of this difference is that vehicles are organized in specific lanes and they

typically follow each other, thus the vertical dimension is not so relevant. It only
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becomes relevant when modelling heterogeneous traffic where power-two-
wheelers are present. Is such cases, event approaches are introduced to include
the vertical dimension. As pedestrians do not necessarily walk in specific lanes
(expect in specific cases that are analysed below), but in an un-directional i.e. a
scattered (to some degree) manner in space, it is crucial to examine the area that

the pedestrian occupies. Thus, both length and width need to be considered.

Maximum density value in Figure 2.5, is reached when velocity almost zeroes
and is 5.4 pedestrians/m? Helbing et al. (2007) noted from their experiments that
density can slightly exceed 9 pedestrians/m?. In addition, Lavas (1994) mentions
that maximum pedestrian flow varies between different populations, situations

and walkways.

Hughes (2000) analysed the way that pedestrian velocity decreases when
density increases (without providing a fundamental diagram) by developing a
macroscopic pedestrian simulation model. This study implied that velocity
depends only on density without considering surface heterogeneity, in contrast to
Lgvas (1994). Additionally, Hughes’s approach does not consider different types
of pedestrians. The application of his approach in a case study revealed that the
psychological state of pedestrians can completely change the flow pattern.
Hughes (2000) simulated pedestrian velocity using differential equations and

postulated three hypotheses:

e Pedestrian velocity depends on surrounding pedestrian density and

pedestrians’ behavioral characteristics;
e Pedestrians move towards their destination; and

e Pedestrians minimize their travel time, but relax this in order to avoid high

densities.

Blue and Adler (2001) recognized the fact that pedestrian velocity depends on
the location of other pedestrians in the neighboring area (see section 2.4). They
utilized cellular automata for pedestrian simulation using microscopic models and
examined the way that pedestrians act as they move. They set possibilities
regarding whether or not pedestrians will change lane. They classified

bidirectional flow in to a) separated flow, b) interspersed flow and c) dynamic
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multi-lane (DML) flow, and they concluded that the velocity/density curve

(pattern) differs between unidirectional to bidirectional flow.

Isobe’s et al. (2004) study also demonstrated the relationship between velocity
and density in one-way and on two-way pedestrian traffic flow. In the first case
the relationship was found to be linear and in the second logarithmic (with R?

equal to 0.82 and 0.90 respectively).

A specific type of density, local density (the density at a certain space and time),
has also been studied (e.g. Helbing et al., 2007; Lu et al., 2015). Helbing et al.
(2007) made the first attempt of assigning local density and local velocity. They
determined the level of the difference between local and average values and
suggested that local density can reach twice the value of average density. In very
high densities, the movement of each pedestrian was determined, mainly from

the crowd movement.

Daamen et al. (2015) pointed out the significance of variation in pedestrian
density (similarly to Helbing et al., 2007). Particularly, they concluded that density
variations are proportionate to pedestrian flow and inversely proportionate to

pedestrian velocity.

Furthermore, pedestrian velocity under normal conditions has also been
examined. Weifeng et al. (2003) estimated it about 1.0m/s, Lu et al. (2015) about
1.2m/s, while Antonini et al. (2006) refer to an average pedestrian’s speed in their
datasets of about 1.6m/s. On the other hand, BrScic et al. (2014) characterized as

moving pedestrians those who have an average velocity of more than 0.5m/s.

Last, Tordeux et al. (2018a) employed, besides the velocity—density fundamental
diagram, the flow—density diagram in order to test the applicability of their model.
Both in uni-directional and multi-directional experiments fundamental diagrams

were used as a tool for examining model validity.

2.4. Data-driven models on pedestrian simulation

During the past years an increasing adoption of data-driven techniques in the

field of pedestrian simulation has been observed. These techniques are
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described in a separate subsection: the terminology and a detailed description of

data-driven theory are presented in detail in section 3.4.

Data-driven modeling is not an unfamiliar approach to pedestrian simulation and
has been applied only recently, though not as extensively. One of the early
attempts was that of Tay and Laugier (2008) who performed a motion pattern
analysis with the aid of Gaussian Processes (GP). The researchers utilized GP
for modeling paths into a typical path with the mean function equal to the mean of
the GPs, without considering surroundings. They employed the Expectation

Maximization algorithm as a useful tool for model training.

Ma et al. (2016) employed Neural Networks (ANN) and pointed out their
paramount advantages (nonlinearity and adaptability) in an attempt of predicting
agents’ movement by collecting data in a crosswalk on a street in Hong Kong.
The model parameters were initially categorized in five groups, regarding
pedestrian’s current velocity, interactive agents’ relative positions and velocities,
obstacles’ relative positions, relative positions of the desired targets and
pedestrian characteristics (i.e. physiology and emotions). Due to homogenous
pedestrian flow hypothesis, the fifth group of parameters was ruled out.
Additionally, as the simulation involved a crosswalk, no obstacles were
considered except for the boundaries. Subsequently, a single hidden layer Multi-
Layer Perceptron (MLP) was trained on real data, recorded from a camera, and

proved its efficiency.

Alahi et al. (2016) predicted pedestrian next step position in a time series
framework with the aid of Long Short-Term Memory (LSTM) networks, a type of
ANN (particularly Recurrent Neural Networks). Their model is a mix of social
force and LSTM considering the locations of the neighboring pedestrians. They
applied LSTM in every examined pedestrian, while a “social” hidden state pooled
the multiple LSTMs in one model. Alahi et al. (2016) compared their model with
the social force demonstrating the superiority of data-driven modeling in their

datasets.

Ridel et al. (2019) went one step further in the LSTM technique (applied for
pedestrian simulation) by taking under consideration pedestrian-vehicle
interactions. The researchers used as inputs in their model pedestrian positions,

head orientation and ego-vehicle locations while they predicted pedestrian future
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positions in the next 2 seconds. They developed their model with the aid of
PyTorch (an open-source machine learning library for Python programming
language) using Adam as the optimization algorithm and the mean squared error
(MSE) as the loss function. Their study limitations arise from the fact that
although they consider pedestrian-vehicle interactions, pedestrian-pedestrian and
pedestrian-obstacles (e.g. buildings) interactions were not included in their

approach.

Martinez-Gil et al. (2017) employed reinforcement learning theory to simulate
pedestrian behaviors in groups. In terms of control theory, the reinforcement
learning model consists of two stages. First, pedestrians independently learn, by
interaction with the environment, their behavior and then each learned behavior is

replicated in pedestrian groups.

Tordeux et al. (2018b) applied ANN in pedestrian simulation to predict agent’s
velocity. They indicated ANN’s efficiency, while comparing them with a
fundamental-diagram based model. In terms of cross-validation process, half of
the data were used as the training set while the other as the testing set. Mean
squared error was the error function in the back-propagation algorithm. The

model that performed better was a single hidden layer network with three nodes.

Duives et al. (2019) also used Recurrent Neural Networks in pedestrian
simulation. With the aid of cell sequences (agent’s previous steps ordered by
time), utilizing GPS data, they trained and tested their model during a festival in
the Netherlands.

Prior to pedestrian simulation, ANN have been utilized extensively in
transportation research [e.g. Antoniou et al., 2013, Karlaftis and Vlahogianni,
2011, Papathanasopoulou and Antoniou, (2015, 2017)]. For example, Antoniou et
al. (2013) employed ANN, among other data-driven methods, for predicting traffic
states, while Papathanasopoulou and Antoniou (2015, 2017) adopted ANN as an
alternative traffic simulation technique with significant results. On the other hand,
Karlaftis and Vlahogianni (2011) pointed out ANN’s limited descriptive ability,
when applying them in transportation modeling. In cases of primary parameters’
relationships, ANN could be avoided. Compared to statistical methods, ANN may

be advantageous when dealing with complicated data, but they do not produce a
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relationship between inputs and outputs. Karlaftis and Vlahogianni (2011)

mention that a “fair” comparison between them is not always feasible.

2.5. Parameters specification

The most commonly used models that simulate pedestrian movements are
described in section 2.2. The process of developing the simulation models
includes the determination of the factors that affect pedestrian movement. Models

are then calibrated and validated.

It should be noted that each study in section 2.2 holds different assumptions. For
example, considering movement directions, a few studies take into consideration
only one directional movement (e.g. Nagatani, 2002), while others do not include

the possibility of back stepping (e.g. Weifeng et al., 2003).

The parameters that affect pedestrian movement as determined in the relevant
studies and have been incorporated in pedestrian simulation models can be

classified in the following distinct categories (presented in Figure 2.4):

o Facilities geometry
e Pedestrian flow properties

¢ Pedestrian characteristics

Facilities geometry

Lgvas (1994) concluded that pedestrian velocity is not affected considerably by
the direction of traffic, but is a function of personal and conditional factors. At the
same time he noted that walking through a door versus a corridor of the same
width restricts pedestrian flow. He also noticed that the queue phenomenon

(pedestrians are standing in queues) can occur next to doors.

The relative dimensions of a corridor i.e. width of the narrow part/width of the
wide part affect critical density (Nagatani, 2001). The width of the corridor in
which pedestrians walk is not very crucial as long as it does not impede the free

flow of the pedestrians (Seyfried et al., 2005). At the same time, density at the
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exit point affects the relation between the mean flow rate and the entrance
density (Nagatani, 2001).

Depending on the type of infrastructure e.g. stairs, ramps, bottlenecks or halls
and the number of assumed directions of the streams (uni-directional/bi-
directional), the fundamental velocity - density relationship may differ (Seyfried et
al., 2005). In particular, in four-way systems, the mean velocity above the
transition point is almost zero, whereas in two-way systems, it has a low non-zero
value (Muramatsu and Nagatani, 2000). In addition, Hoogendoorn and Bovy
(2004) referred to the spatial distribution of the alternative route choices (route

choice models) that affects pedestrian movement.

Pedestrian flow properties

The density of the moving area, similarly to traffic simulation, is the most crucial
factor considering pedestrian movement (Gipps and Marksjo, 1985; Helbing and
Molnar, 1995; and Isobe et al., 2004). Density increases proportionally to the
density at the entry point (Nagatani, 2001). For a specific value of the critical
entry density, which depends on the dimension of the corridor (see Facilities
geometry), the conditions become saturated. In bi-directional movement, when
pedestrians walking in opposite direction come close, they tend to diverge from
their initial trajectory in order to increase their lateral distance. This phenomenon
occurs for density values lower than a threshold value, after which pedestrians
are restricted by the presence of other pedestrians, and this phenomenon stops

occurring (Isobe et al., 2004).

Nagatani (2002) showed that the higher the density of a corridor’s exit, the higher
the possibility of merging two pedestrian flows, in the same direction,
downstream of a meeting point inside the corridor. His simulations were
conducted without the possibility of back stepping and under unidirectional

movement.

Hoogendoorn and Bovy (2004), in the application of route choice models, defined
crucial factors for pedestrian simulation. Expected travel time, interactions

between pedestrians and obstacles, maintaining a certain speed, interactions
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between pedestrians and environmental stimuli were categorized as running
costs, while the cost of the delay in the destination as the terminal cost (though
maintaining certain speed and cost of delay factors are categorized as
“pedestrian characteristics”). Pedestrian velocity depends on the time of day;
higher velocities are observed in peak hours (even in high densities), and lower
velocities are observed in later hours (BrScic et al., 2014). Also, pedestrian
velocity depends on the location of other pedestrians in the area (Blue and Adler,
2001). Anisotropy (whether a pedestrian is influenced only by people that are in
front of them) and pedestrian reaction time are crucial factors (Hoogendoorn and
Daamen, 2007). Pedestrians with higher free flow speed anticipate other agents

in greater distances.

Weifeng et al. (2003) broke the deadlock of back stepping adopting the von
Neumann neighborhood, which involves four adjacent cells. The simulation
results suggested that in low density pedestrians move freely, while in crowded
situations the system is self-organized in lanes. These results are in line with the
findings of Bracic et al. (2014). Lane segregation policy has high influence in the
average delay and in the average velocity compared to the mix lane policy
(Teknomo, 2006). Pedestrians generally tend to move on the same side of the
corridor/tunnel/road in a bidirectional movement (Blue and Adler, 2001). As the
total density increases, the existing lanes merge in two lanes: the right lane
contains “up walkers” and the left the “down walkers”. In the jammed state (higher
density) only some of the pedestrians can move. Also due to the back stepping,
the system will not reach easily a jammed state (as pedestrians can easily adjust
their positions). Finally, a factor determining whether pedestrians prefer to walk
on the right-hand side of the road or on the left-hand (depending on each

country) was introduced.

Conflict delay is another crucial factor of pedestrian simulation (Flétteréd and
Lammel, 2015). It declares the delay between two pedestrians from the opposite
directions when they interact with each other. In their model, the ratio of density
in each direction was 50/50. Pedestrians’ conflicts could lead to velocity reduction
(by up to one-third) in a bidirectional flow (Lu et al., 2015). As also mentioned

above, pedestrians want to minimize their travel time (Hughes, 2000).

57



In social groups, pedestrians walk side by side to improve their communication,
but they change the shape of the walking line (that is, perpendicular to the
direction movement) into a U-shape as the population of the group increases
or/and the density increases (Moussaid et al., 2010). The U-shape does not
change in bidirectional flows. According to Zanlungo et al. (2014a), as the size of
a pedestrian group increases, the velocity decreases and pedestrians are forced

to move from the surrounding environment towards the centre of the group.

Pedestrian characteristics

Hoogendoorn and Daamen (2007) calibrated five parameters (agent’s free
speed, agent’s acceleration time, interaction constant, interaction distance and
agent’s reaction time — though interaction constant and interaction distance are
categorized as “Pedestrian flow properties”) that affect pedestrian’s movement.
Drift strength is another essential factor, encountered on lattice gas models
(Muramatsu et al., 1999; Muramatsu and Nagatani, 2000; and Isobe et al., 2004).
Muramatsu et al. (1999) deduced that mean velocity increases with increasing
drift, and the jamming transition is independent of the ratio of the walkers moving
to the right side of all the walkers. The jamming transition point depends on the
system size for small systems (Muramatsu and Nagatani, 2000). Drift strength
also affects mean arrival time and route choice (Isobe et al., 2004). A similar

factor to drift strength is crowd pressure (Kretz, 2011).

The existence of elderly people in the pedestrian flow influences pedestrian
velocity (Isobe et al., 2004). Specifically, average velocity decreases
logarithmically as the proportion of the elderly pedestrians increases (Teknomo,
2006). Additionally, agent height affects velocity, almost linearly between 1.45
and 1.8 m (Brscic et al., 2014). While taller people walk faster, their movement is
inhibited as the number of short persons increases. Agent dimensions are related
to the headway and to their step size (Kretz, 2011). Generally, personal
characteristics comprise a crucial factor determining pedestrian movement
(Nikoli¢ et al., 2013).

The agents’ intentions relevant to whether they desire to reach their destination

as soon as possible, irrespective of the length of the route that they follow
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(quickest path factor) is another important factor (Kretz et al., 2011).
Emergencies are an example. It is obvious that the quickest path is not always
the shortest. Furthermore, the agent’s psychological state, as already mentioned,

is considered as a crucial factor in pedestrian simulation (Hughes, 2000).

Finally, Hamed (2001) listed a number of factors that influence waiting time in a
crossing and the number of attempts until some pedestrian passes including,

amongst others, agent’s age and gender.

59



Pedestrian Simulation Parameters

Facilities Geometry

Pedestrian Flow
Properties

Pedestrian
Characteristics

Movement Through Corridor - Door
(Lovas, 1994)

Pedestrian Density
(Gipps and Marksjo, 1985, Helbing and
Molnar, 1995 and Isobe et al., 2004)

Pedestrian Free Flow Speed
(Hoogendoorn and Daamen, 2007)

Corridor Ratio Width
(Nagatani, 2001 and Seyfried et al., 2005)

Attractive Effects
(Helbing and Molnar, 1995)

Acceleration Time
(Hoogendoorn and Daamen, 2007)

Spatial Distribution of Alternative
Destinations
(Hoogendoorn and Bovy, 2004)

Interactions Between Pedestrians
and Obstacles
(Hoogendoorn and Bovy, 2004)

Reaction Time
(Hoogendoorn and Daamen, 2007)

Facility Architecture
(Seyfried et al., 2005)

Interactions Between Pedestrians
(Hoogendoorn and Bovy, 2004)

Desired Direction - Relaxation Factor
(m)
(Helbing and Molnar, 1995)

Streams Directions
(Muramatsu and Nagatani, 2000 and
Seyfried et al., 2005)

Interaction Distance
(Hoogendoorn and Daamen, 2007)

Maintenance of Certain Speed
(Hoogendoorn and Bovy, 2004)

Interaction Constant
(Hoogendoorn and Daamen, 2007)

Cost of Delay
(Hoogendoorn and Bovy, 2004)

Lane Formation
(Weifeng et al., 2003 and Teknomo, 2006)

Drift Strength
(Muramatsu et al., 1999, Muramatsu and
Nagatani, 2000 and Isobe et al., 2004)

Time Period in a Day or in a Week
(Brécic et al., 2014) /
Expected Travel Time
(Hoogendoorn and Bovy, 2004)

Demographic Characteristics
(Hamed, 2001, Isobe et al., 2004 and
Teknomo, 2006)

Conflict Delay
(Flotteréd and Lammel, 2015)

Agent’s Height
(Brécic et al., 2014)

Critical Density at Entry Point
(Nagatani, 2001)

Pedestrian Psychological State
(Hughes, 2000)

Density at Exit Point
(Nagatani, 2002)

Quickest/Shortest Path
(Kretz et al., 2011)

Minimization of Travel Time
(Hughes, 2000)

Pedestrian Dimensions
(Kretz, 2011)

Environmental Stimuli
(Hoogendoorn and Bovy, 2004)

Social Factor

(Moussaid et al., 2010 and Zanlungo et al.,

2014a)

Figure 2.6: Pedestrian simulation parameters
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2.6. Modeling emergencies

Due to the increased interest of the research community on pedestrian simulation
modeling under emergencies, mainly during the last decade, results from some of

the most representative studies, are presented.

In this thesis, emergencies are defined as situations during which, in a short
period of time, sudden disruptions occur and drastic actions must be carried out
to prevent serious incidents. Emergencies are classified according to their cause,
in natural disasters (earthquakes, floods, etc.) and in man-made events (fires,

terrorist actions, etc.).

A key difference between pedestrian simulation in normal conditions and under
emergencies is the stress associated with emergencies (Yun et al., 2012). Kneidl

and Borrmann (2011) categorized pedestrians in evacuation plans into three

types:

¢ Those who know the location and can find an alternative route,
¢ Those who have no detailed knowledge of the area, and
e Those who are totally unaware of the area.

In evacuation methods, dynamic plans are the most effective, followed by static
plans and then by evacuation methods without a plan (Yun et al., 2012). Koo et
al. (2013) pointed out the contribution of hybrid strategies in evacuation plans in
which only people in wheelchairs use elevators and the rest use the stairs. In
addition, they concluded that evacuation in phases requires less time than a
simultaneous strategy. Evacuation time (average and maximum) is the primary

indicator for the assessment of the evaluation plan (Vermuyten et al., 2016).

Training for emergency situations affects evacuation plans. Chen et al. (2012)
highlighted the significance of information systems and virtual reality. Studying
human psychology in disaster preparedness, Paton (2003) introduced critical
awareness as the way or level that people perceive danger. Motivation and
danger awareness are the primary factors for triggering people to act

preventively.
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Simulation models are employed in evacuation plans. Cellular automata (Guo et
al., 2012; Liao et al., 2014), social force (Okazaki and Matsushita, 1993; Helbing
et al., 2000; Parisi and Dorso, 2005) and lattice gas models (Helbing et al., 2003)
are the main categories, while route choice theory is employed complementary to
them. Parisi and Dorso (2005) stated that cellular automata models lack in
calculating interaction forces (between agents or between agents and objects).
Route choice models are of great importance because route selection is crucial in
evacuation plans. In these models, the probability for an agent to select their
evacuation route plays a crucial role in evacuation effectiveness. Pedestrians
choose routes that minimize distance (Guo et al., 2012), although the shortest

route sometimes is not the quickest (Kretz et al., 2011).

A modulated force model was presented by Helbing et al. (2000) that takes into
account two extra forces: one that raises body compression and another that
focuses on tangential movement. The researchers considered parameters from
pedestrian movement under normal conditions (repulsive forces, attractive forces,
desired velocity, and relaxation factor) and pointed out that in emergencies their
values are much higher. Desired velocity, in particular, could reach values to 10
times higher. Parisi and Dorso (2005), who also pointed out that desired velocity
in emergencies can reach much higher values (up to 8 m/s), concluded,
surprisingly, that the minimum evacuation time occurs under intermediate desired
velocity values. They found that evacuation time increases in low and high

desired velocity values because of clogging (in high-level values).

Under panic conditions, when desired velocities are high, congestion problems
occur in door exits and in corridor widenings. Exit door width is inversely
proportional to the probability of congestion at the exit (Parisi and Dorso, 2005).
Evacuation time is reduced exponentially by an increase in the width of the exit

door.

Okazaki and Matsushita (1993) described a social force model for pedestrian
movements under building evacuation. The model is based on the process of
negative and positive poles, where positive poles are pedestrians and their
obstacles and negative poles are the destinations. Thus, pedestrians, because of
the magnetic fields, are repelled from the obstacles or the other pedestrians and

are attracted by their destination (possibly the nearest exit). A function for
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physical interactions was used for overcrowded situations in which pedestrians
are forced to walk in a specific direction without exercising their own will
(Moussaid et al., 2011).

The level of visibility in an emergency is an important factor in evacuation plans
(Guo et al., 2012; Liao et al., 2014, Cao et al., 2018). Guo et al. (2012) used
cellular automata and route choice models for specifying pedestrian behavior
under good and zero visibility. Under low visibility conditions, space familiarity
(also mentioned by Liao et al., 2014) for each of the evacuees was considered.
Cao et al. (2018) experiments in a supermarket under good and limited visibility
pointed out five main findings (a) pedestrians attempt to find the closest exit in
order to minimize the movement distance in both conditions, (b) follow other
neighbors, (c) help other people under low visibility conditions (that does not
occur often under normal conditions), (d) try to find dependents and walk along
obstacles, and (e) their speed under low visibility conditions is significantly lower
than under normal conditions. Song et al. (2013) classified crowd behaviour in
panic situations (in that case, the evacuation of a metro rail station because of a
bioterrorism act) according to people who will (a) select the closest exit, (b) be in
total panic, and (c) follow the flow of the crowd around them. The percentage in
each group was 90%, 5%, and 5%, respectively. For persons who are familiar
with the room, the way of finding the nearest exit (if there is more than one) may
not be difficult. Additionally, pedestrians prefer moving by touching an object
(wall, obstacle etc.) or another agent. Under good visibility conditions, Guo et al.
(2012) indicated three parameters that affect pedestrians’ route choice behavior:
(a) route distance to the exit, (b) congestion on the frontal route, and (c) frontal
route capacity. They deduced that pedestrian velocity under zero visibility is half
of velocity under good visibility conditions. However, their simulations were

conducted without taking into account psychological factors.

Liao et al. (2014) mentioned the route choice parameter introduced by Guo et al.
(2012), and added building structure, agent psychology and information
availability without extensively studying them. They examined three exit layout
types: (a) parallel, (b) convex, and (c) concave. They concluded that the parallel

layout is the least effective in evacuation plans.
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A specific study on evacuation of tall buildings has been conducted by
Aleksandrov et al. (2018). These building types may have a refuge floor i.e. a
floor that pedestrians can have a short break as they walk with the stairs. The
researchers conclude (relying on questionnaires) that pedestrians are more
willing to follow instructions from staff than from sings. Also they point out that
people density on the stairs, refuge floors positions, knowledge that lifts can be
used for evacuation, agent’s characteristics (e.g. body mass index) are critical

parameters for evacuation plans.

Persons with disabilities have also been considered in evacuation plans (Manley
and Kim, 2012). In this study, people were categorized in six types: (a) people
without impairment, (b) motorized wheelchair users, (c) nonmotorized wheelchair
users, (d) visually impaired, (e) hearing impaired, and (f) stamina impaired. The
third (c) and the sixth (f) types were considered as the most vulnerable ones.
Simulation results highlighted the need of assessing the type of disability that will

further enhance evacuation plans.

Joo et al. (2013) studied human behavior in emergency situations and mentioned
two hypotheses: (a) humans decide as a consequence of their perceived
information and (b) humans set a goal to achieve with their actions. The paper
does not examine human interaction and communication. Three models are
referred to represent human behaviors in complex and realistic environments:
Soar, Act-R, and Belief-Desire-Intention. The models follow three different
approaches: (a) an economics-based approach, (b) a psychology-based

approach, and (c) a synthetic engineering-based approach.

In emergency and crowd conditions, local magnitudes are more representative of
pedestrian dynamics. Helbing et al. (2007) made the first attempt of considering
local magnitudes, while Daamen et al. (2015) pointed out the significance of
variation in pedestrian density. They concluded that density variations are
proportionate to pedestrian flow and inversely proportionate to pedestrian

velocity, also in emergency conditions.

Geographic Information Systems (GIS) comprise an important tool in evacuation
plans (Pidd et al., 1996 and Huang and Pan, 2007). Pidd et al. (1996) developed
a configurable evacuation management and planning system to be used in man-

made disasters. They considered GIS as an efficient technology that can
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examine static aspects of evacuation plans, such as determining evacuation zone
and evacuation routes, but they noted that it cannot consider dynamic ones.
Huang and Pan (2007) presented a more integrated way to simulate models
appropriate for evacuation under panic conditions. They incorporated GIS with a
traffic simulation engine and an optimization engine. GIS provided the primary
user interface, processed network data, derived the shortest-time path and
visualized the results, while a traffic simulation engine simulated incidents in the
network, gathered link travel times at regular intervals and transmitted time
dependent information to GIS. Finally, an optimization engine derived an optimal

dispatching strategy by minimizing the total travel time of all response units.

Virtual geographic environments (a GIS specification) are useful in crowd
evacuation (Song et al., 2013). The conceptual framework of virtual geographic
environments has three components (Gong et al., 2009): (a) representation in a
virtual geographic large-scale landscape, (b) a smaller-scale environment, and

(c) a layer of collaborative participation of the users.

Furthermore, control of pedestrian behavior is a crucial factor in evacuation
plans. Siques (2002) presented the effectiveness of control devices in human
behavior. The author examined scenarios in grade crossings and found that
active warning devices, such as pedestrian automatic gates or pedestrian
flashing lights, are more powerful in preventing pedestrian grade crossing as a
train approaches, than simple visual signs. Zhao et al. (2012) pointed out that the
factor of pedestrian flow stability is crucial for flow control, because small
perturbations in unstable flows can cause serious effects. The proportion of
pedestrians that follow the traffic guidance is important for the “stabilization” of

the streams (as the proportion grows the flow becomes more stable).

Recently data-driven models were employed on pedestrian movement under
evacuation. Wang et al. (2019) utilized machine learning techniques, including
SVM and ANN, for classifying pedestrian movement patterns under emergencies.
They came up with the findings that the distance to the target exit is an important
factor and that surrounding evacuees affect the examined one. In a comparison
of the performance among the utilized machine learning methods, ANN was

proven to be superior.
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Xu et al. (2021) used ANN and particular Deep Neural Networks combined with
Reinforcement Learning theory in multi-exit navigation for pedestrian evacuation.
The evacuees were trying to leave the room (the examined place) as soon as
possible avoiding obstacles or other pedestrians. The experiment assumes fully
environmental awareness. Also in this study Neural Networks proved their

outperformance.

2.7. Data collection

As noted in Table 2.1, only a few studies validate their models. The cause is the

lack of real data, and the limited access to them.

Validation methods and techniques are crucial in order to prove that theory
models are sensible and applicable to reality, while displaying a satisfactory
representation of actual movement. Cross-validation techniques have been
applied extensively and provide an effective validation technique (Robin et al.,
2009; Floétteréd and Lammel, 2015; Nikoli¢ et al., 2016). Robin et al. (2009)
performed a cross validation method by splitting the data in five subsets, utilizing
one each time for validation and the rest four subsets for calibration. Flotterod
and Lammel (2015) cross validated their results by estimating and validating
among unidirectional and bidirectional flow data and vice versa. Nikoli¢ et al.
(2016) used 80% of their data (randomly selected) to estimate model parameters
and the remaining 20% for validating the estimated model using Kolmogorov-

Smirnov goodness-of-fit test.

Data collection is crucial for validation. The most commonly utilized data sources

generally are those employing video recordings and sensors.

The basic issue of video recording techniques is structuring methods to track
pedestrians accurately. In video recordings, principles of photogrammetry are
utilized as it comprises a significant tool for separating agents from their
background. One approach for assessing the agent’s position and tracking their
route is tracking the head of an agent one approach (Teknomo et al., 2000;
Johansson et al., 2007). The shortcoming of this method is that the height of the
agent cannot be specified. Hoogendoorn et al. (2003) and Ma and Song (2013)
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placed colored caps on the agents’ heads to solve the problem of accurately
assessing the positions of the agents. Using a color function, they tracked
pedestrians in a cluster, frame-by-frame, by the color of their hat. In a respective
framework Federici et al. (2014) relied on video footage in order to track
pedestrians. Teknomo et al. (2001) presented an automated method for tracking
pedestrians as they are moving. The researchers used an algorithm to isolate
pedestrians from their background, assessed pedestrians’ contour (by their
neighboring cells), connected them in each frame (tracking pedestrians), and
computed pedestrians’ flow characteristics. The disadvantage of this method is
the confusion in high density situations due to the occlusion phenomenon (two or
more persons who are too close to each other are treated as one) resulting in the

mismatching of pedestrian positions after each frame.

Another issue with video techniques is the conversion of the image coordinates to
real-world coordinates. Teknomo et al. (2000) used a rectangular grid to extract
pedestrians’ coordinates with a high level of accuracy and then converted the
image coordinates to real-world coordinates. Hoogendoorn et al. (2003) and

Brscic et al. (2013) used reference points.

In the sequel of video recordings, Unmanned Aerial Vehicles (UAV), better known
as drones, have been employed recently in the field of trajectory tracking.
Sutheerakul et al. (2017) placed a video camera in both stationary and moving
UAVs to collect data on pedestrian flow characteristics (in particular they
recorded pedestrian trajectories) from a shopping street in Thailand. They
pointed out skills’ requirements for handling the drone, batteries short-term
capability and requiring flight permission from the aviation or other relative bodies
as drawbacks of this method. On the other hand, the absence of the limitation for
recording particular areas is mentioned as an advantage from Barmpounakis et
al. (2016a) in an attempt of extracting both vehicle and pedestrian trajectories

separately.

Antoniou et al. (2011) categorized the technologies for traffic data capturing as
(a) point sensors, (b) point to point, and (c) areawide. Kourogi et al. (2006)
utilized a combination of a Global Positioning System (GPS) sensor and a Radio
Frequency ldentification (RFID) tag system for tracking pedestrians in outdoors

and indoors environments respectively. A Kalman Filter algorithm was employed
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for enhancing GPS position estimation. Reades et al. (2007) used mobile phone
antennas for assigning pedestrian flows and their distributions during the day and
the week. The inability of some devices to capture the signal of all the cell phones
in the area (because of out-of-range frequencies) is a shortcoming of this
method. Brscic et al. (2013) employed a multi-sensor system that was set in the
ceiling of the study area. Still sensor-based methods could lead to accuracy
issues (they cannot capture accurately pedestrian trajectory) that affect the
efficiency of microscopic simulation. Infrared sensors (Nikoli¢ et al., 2016) and
sensors that rely on the change in environmental temperature (Kerridge et al.,
2007) have also been used. Lesani et al. (2020) used LiDAR (Light Detection and
Ranging) sensors, a technique that relies on radiation. LIDAR sensors measure
the distance from the moving objects every 20 ms. However, experiment results
revealed that not all the pedestrians that participated in the experiment were
tracked (e.g. pedestrians that carry an umbrella might cover other agents). An
overview of data collection tools employed in pedestrian simulation studies is

presented in Table 2.2.
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Table 2.2: Data collection tools in pedestrian simulation studies

Data collection

Means of Data

Tracking

Paper Collection Type Data Type
Barmpounakis et al. (2016a) | Video recording (UAV) Semi- Vehicle and pedesrian
automated trajectories
Brscic et al. (2013) Sensors S()r;"lsltJIet:gl)e-sensor Automated Pedestrian trajectories
Federici et al. (2014) Video recording Automated Pedestrian trajectories
Floétteréd and Lammel (2015) Video recording Manual Pedestrian trajectories
Guo et al. (2010) Video recording Manual and Pedestrian trajectories
automated
Helbing et al. (2007) Video recording Automated Pedestrian pc_J_smons and
velocities
Hoogendoorn et al. (2003) Video recording Automated Pedestrian trajectories
Hoogendo?zrgoa;)d Daamen Video recording Automated Pedestrian trajectories
Johansson et al. (2007) Video recording Automated Pedestrian trajectories
Kerridge et al. (2007) Sensors (thermal) Automated Pedestrian trajectories
Kourogi et al. (2006) Sensors (GPS and RFID) | Automated Pedestrian trajectories
Lesani et al. (2020) Sensors (LIDAR) Automated Pedestrian trajectories
Lu et al. (2015) Video recording Automated Pedestrian trajectories
Ma and Song (2013) Video recording Automated Pedestrian trajectories
Moussaid et al. (2010) Video recording Manual Pedestrian trajectories
Moussaid et al. (2011) Video recording Automated Pedestrian trajectories
o Lausgnne Sensors (infrared) Automated Pedestrian trajectories
Nikolic et al. experiment
(2016) Dglft Video recording Automated Pedestrian trajectories
experiment
Reades et al. (2007) Sensors (mobile phones) | Automated Pedestrian flows
Robin et al. (2009) Video recording Manual Pedestrian trajectories
Sutheerakul et al. (2017) Video recording (UAV) Automated Pedestrian trajectories
Teknomo et al. (2000) Video recording Automated Pedestrian trajectories
Teknomo et al. (2001) Video recording Automated Pedestrian trajectories
Teknomo (2006) Video recording Automated Pedestrian trajectories
Zanlungo et al. (2014a) Sensors and video Automated Pedestrian trajectories

recording
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2.8. Resume

In this chapter a literature review of the existing pedestrian simulation models is
presented, including data-driven approaches. Both microscopic and macroscopic
models are described. The former have gained greater researchers’ interest and
are classified into three main categories: a) social force, b) cellular automata and
c) lattice gas. Data-driven models, on the other hand, comprise a rather recent

method in pedestrian modelling attracting researchers’ interest.

The aim of this research is to examine whether data-driven methods can provide
a robust model framework for pedestrian simulation. To achieve this, pedestrian
models utilizing specific data-driven techniques are employed to simulate
pedestrians and their performance is compared against traditional pedestrian
simulation models. The social force model is employed in order to compare the
models’ accuracy with the data-driven techniques, as it comprises the most
representative and widely used theoretical pedestrian simulation model. In

particular, the social force model:

¢ relies on the same principle as the other two model types, i.e. pedestrian’s
next step is based on the positions of the adjacent pedestrians/objects,

while at the same time is a continuous space model and

e is widely used and adopted in widely applied simulation software, such as
VisWalk (PTV, 2015) and SimWalk (Zainuddin et al., 2009)

Considering data-driven techniques, four promising methods are employed: a)
the well-known Atrtificial Neural Networks (ANN), b) the classical Support Vector
Machines (SVM) [in particular as we refer to regression analysis, Support Vector
Regression (SVR) is employed], c) the rising Gaussian Processes (GP) and d)
the Locally Weighted Regression (Loess). All four methods have been adopted in

traffic simulations (e.g. Papathanasopoulou and Antoniou, 2017).

To assess the performance of the aforementioned model types real data in the
form of pedestrian trajectories are required. In section 2.6, the existing methods
for extracting pedestrian trajectories are described. Two main sources are found:
video recordings and sensors. As it can been seen in Table 2.2 most of the

existing studies employed video recordings for extracting pedestrian kinematics
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and characteristics, while a small number of used sensors. In line with this, video
camera is the tool employed for collecting and extracting pedestrian trajectories
(in order to further use these trajectories for the model comparison) in this
research. An extensive description for the data collection of the experiment is

provided in section 4.
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3. METHODOLOGICAL FRAMEWORK

3.1. Overview

The present research is an attempt to design data-driven pedestrian simulation
models and to assess them through a comparison with well-established
theoretical models. It should be stated that only pedestrian movement is
considered i.e. environments where pedestrians do not interact with vehicles are
explored. Furthermore, this study involves pedestrian movement under normal

conditions.

The methodological framework consists of specific steps and is illustrated in
Figure 3.1. Initially the data collection experiment is designed. In the present
research, two different area types, where pedestrians walk, are used for data
collection, with the different areas expected to exhibit different walking patterns.
Data processing is performed with the aid of photogrammetric tools used for the

transformation of pixel coordinates to real world coordinates.

Further data processing is required, as data include noise, and a suitable
algorithm is employed for reducing it. The smoothing algorithm in this research is

a combination of two robust smoothing filters.

Following data noise reduction, pedestrian simulation models are developed
based on the processed data. In particular, a representative model in the field of
theoretical approaches and four data-driven techniques are utilized. As data-
driven techniques are not inherently a pedestrian simulation model, an
appropriate model setup is required. Also, in order to accomplish a fair
comparison between the theoretical pedestrian simulation model and the data-
driven methods the same variables that are used in the former are included in the

latter.

Due to the fact that data-driven techniques suffer from overfitting, i.e. they can
simulate efficiently the given data, but may fail to generalize their results on other
datasets, a comparative method that captures the generalization impact is utilized

both in the theoretical and in the data-driven models in a fourth step (cross-
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validation method). Several goodness-of-fit measures (GoF) are estimated to

demonstrate the accuracy of each simulation method.

Following the first level of comparison (compare models with the same
parameters), additional parameters that affect pedestrian movements are
incorporated in the data-driven pedestrian simulation models in order to examine
the resulting performance. Initially, agent’s height and gender are considered,
while the parameter of time is also included. The estimation of agent’s height was

achieved with the employment of photogrammetric tools.

The methodological framework considering the design of the data collection
experiment, the smoothing filters, the pedestrian simulation model and the data-
driven techniques are presented in this section (3), while the data collection
procedure and the methodology of noise elimination are discussed in the
following section. In section 5 the comparative analysis of the theoretical
pedestrian simulation model and the data-driven techniques are extensively
elaborated, as well as the incorporation of the additional variables in the data-

driven models and their contribution in the models’ performance.
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3.2. Design of data collection

Prior to the overview of the data collection design (as this process is presented
explicitly in section 4) the need for this must be defined. Several pedestrian
trajectory databases are already available with one of the University of Edinburgh
being the most widely utilized (Majecka, 2009). All of these databases include
pedestrian trajectories mainly in the 2D plane, while other variables, such as
pedestrian’s velocity etc, can also be extracted from them. However, the present
research necessitates the use of additional parameters, besides pedestrian’s
velocity, considering agent’s characteristics (e.g. height, gender). Due to this fact
it was decided to design an experiment to collect the necessary data with the

principles that are described below.

In order to extract pedestrian’s height a 3D video recording plane is necessary for
the knowledge of all of their characteristics (including their height). Cameras were
not placed close to pedestrians (at least 5m. from the ground) in order to avoid
recording agents’ personal characteristics (e.g. faces), while zoom level was the

lowest.

Furthermore, the data collection experiment was not a controlled experiment, and
as such pedestrians should not have been be aware of being recorded. The
reason for this is that their natural behavior under normal circumstances was
required to be captured. Thus, other types of data collection tools (e.g. sensors
that are placed in their body) were excluded. At this point it should be stated that
all the required permissions from the authorities that manage the recorded areas

were taken.

This experiment attempts to examine pedestrian movements in a holistic manner.
As a consequence pedestrians who walk in various conditions are considered,
i.e. pedestrians that are relaxed and move in a non-rush manner and others for
whom time is a very import parameter and is depicted in the way they walk. For
this reason two different types of areas were selected. A metro station during
peak hours where most of the performed trips involve commuting trips with low
flexibility (involving pedestrians in a rush) and a shopping mall during afternoon

hours where pedestrians enjoy their walk, stare shop windows and shop.
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As the data collection output, the position of each agent in each of the recorded
frames should be collected. A simple but extremely time consuming method is to
note the pixel coordinates for every agent in each of the recorded frames
manually. However, there is software that can track moving objects (in general)
from video recordings in an automated (or at least semi-automated) mode
reducing substantially the time and the manual effort of this process. A drawback
of the software utilization is the fact that the outputs (i.e. the pixel coordinates of

every pedestrian) may include false positions.

In addition to the above, further processing is required involving the appropriate
transformation (based on photogrammetry) for converting pixel coordinates to
real world coordinates to compute the trajectory of each agent. Another
necessary transformation, which is relevant to the location of the camera (and
photogrammetry), is also applied for extracting agents’ height. An extended
description of the applied methodology in the field of data collection is provided in

section 4.

The data that are collected might include noise, particularly in cases where the
recorded rate (the number of video frames in every second) is high or the camera
is placed away from the floor where pedestrians move. In the present experiment
both of these conditions exist (the recording rate is high and the camera is placed
away from the moving area). In the next section the filters that can be applied to

reduce noise are presented.

3.3. Smoothing Filters

The pedestrian trajectories that were extracted include noise that needs to be
eliminated, prior to data analysis. Several algorithms have been developed for
reducing data noise, with the most commonly used being the Kalman filter,

splines and moving average.
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3.3.1. Kalman Filter

Kalman filter is a method for removing noise in time series data. It is based on
two principles: i) transition equations: utilizing an equation for predicting the
variable in following time steps, and ii) measurement equations: correcting the
measured value in this step (Kalman, 1960). Kalman filter is a time—based
algorithm very popular in control theory, which evaluates the predicted value

given the measured value of each time interval.

Predicted state

X@+1|t)=4X(t|t)+Bu+w
(A )

Initial state
X(t1)

P(t|?)

P(t+1|t)=AP(t|t)A" +Q

Kalman gain

_ Pe+1nC"
CP(t+1]|)CT +R

(3.3)

Measurement state
Y(+1|t)=CX(t+1|t)+v (3.2)
P (t+1|1)=CP(t+1|)C" +R

Estimated state
X@+1t+D)=X(@+1|O)+ KX (t+1|t)-CX(t+1]|1))
(3.4)

P(t+1|t+1) = -KC)P(t+1|1)

Figure 3.2: Kalman Filter method

Figure 3.2 illustrates the basic Kalman filter form, where X(t|t) stands for the
vector state at the interval t, P(t|t) the covariance matrix, X(t+1|t) and P(t+1]|t) the
predicted values for the vector state and the covariance matrix respectively, A the
state transition matrix, B the control input matrix, C the measurement matrix, u
the control vector, w prediction noise with covariance matrix Q, v measurement
noise with covariance matrix R and K the Kalman gain with ranging among
0 <K <1. As K approaches 0 the algorithm tends to rely more on the predicted
value (w — 0) and as K approaches 1 the algorithm tends to rely on the

measurement value (v — 0 ).

The Bu factor in Figure 3.2 (equation (3.1)) can be subtracted in case of no

movement control, transforming the equation to
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X(t+1]t) = AX(t ) +w (3.1a)

States that comprise more than one variables (e.g. position and velocity of a
tracked object) are also possible to be estimated with Kalman Filter, utilizing the
appropriate matrices. In cases of two-dimensional movement (as we are dealing

with in our data) X state is transformed to

(3.5)

X
I
< X < X

where x and y stand for the coordinates in X and Y axes, while x and y are the

velocities in these axes.

Additionally, the covariance matrix P is transformed to

o, 0,0, 0,0, 0,0,
2
p=| 9O Oy 0,0, 0,0 (3.6)
2 -
0,0, 0,0, 0O; 0,0,
2

2

where o_° stands for the standard deviation of each variable (in case of one

variable state, the covariance matrix equals to the variance).

Standard Kalman Filter methods adopt system linearity and Gaussian noise
distribution hypotheses that can be overcome by the Extended Kalman Filter
(EKF) and the Unscented Kalman Filter (UKF) respectively. EKF could be utilized
in non—linear systems. Based on Taylor series, EKF joints the gradient of the
system equation (Gelb, 1974). In higher order, Taylor series system equation is
replicated more accurately. However, due to computational performance, first
order Taylor series were mainly employed. lterated EKF modifies EKF via state

vector estimation.

UKF obviates the need for noise’s Gaussian assumption. Unscented
Transformation (UT) remodels sample distribution to the best Gaussian
approximation (Wan and Van der Merwe, 2000). Sigma points are the principal

element for the transformation. They are chosen based on the distribution
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dimensionality. The first sigma point is the mean. Sigma points’ weights are also
essential. The factor that assigns the distance of each sigma point from the mean
must be stated following substantial consideration. In addition, restructuring
points’ dimensionality is possible from higher to lower level. A concise discussion
of EKF and UKF in the context of model calibration is available in Antoniou et al.
(2007).

The main requirement in Kalman Filter applications is an a priori knowledge of
noise covariance matrices. Bavdekar et al. (2011) attempted to overcome the
aforementioned restriction in the field of chemistry. Particularly they employed
two approaches. The first relied on maximum likelihood objective function
optimization and the second in the expectation maximization of EKF. They
assumed that noise covariance matrices are normally distributed. The algorithms
performed better when they dealt with datasets with “true” states in order to
conform with the outputs. In cases where no “true” datasets existed, initial

parameter guesses were essential for the comparison and error extraction.

Kalman filter requires a primary phase for eliminating estimations’ variations (it
does not immediately narrow down to the true values). Hence, the data on the
primary phase could be considered as “off-line” and used for model calibration.
Kalman filter efficiency is improved significantly during the primary phase.
Antoniou (2004) adopts a “warm-—up” phase, where initial ad hoc noise
covariance matrices (prediction and measurement) are assumed, and the actual
covariance matrices for the model application are then extracted iteratively from
the output of this “warm—up” phase. For more details on Kalman Filter variants

applied in Dynamic Traffic Assignment see Antoniou (2004).

3.3.2. Splines

Splines (Craven and Wahba, 1979) are a numeric method for line smoothness,
and are based on polynomial functions. Polynomial degree defines spline’s
accuracy level. Quadratic splines comprise of two—degree polynomial, cubic

splines of three—degree, and so on.
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Assume a line that consists of n points; n-1 splines are required for joining them.
For k polynomial degree, (k+1)*(n-1) equations are postulated for structuring the
spline. In case of a quadratic spline (2" degree polynomial) equations are

presented as follows:

for n points coordinated as x,y;, i=1,2,...,n

. 2
Vi1 =aX; +bX 4 +C

y,=ax’+bx, +c, (3.7)
d 2 d .2
d_X(ai—1Xi+1 + bi—1Xi+1 + Ci—1) = d_X(aiXi+1 + bixi+1 + Ci)

Equations (3.7) illustrate that each spline merges two consecutive points, while
the slopes of two conterminous splines in their merge point are equal. For higher
order splines (cubic, etc.) additional differential equations (e.g second order

differential in cubic splines) with increased parameters are needed.

Types of splines (B-splines) rely on control points in order to smoothen the basic

line. The number of control points defines the level of smoothness.

3.3.3. Moving average

Moving average is another method for smoothing trajectories. Its principle relies
on averaging data points from the previous measurements in order to predict the
current one. Moving average methods comprise of more than one type. The
preceding statements describe the simple moving average type. The weighted
moving average results from the extension of the simple moving average with the
incorporation of weight coefficients to the previous measurements in order to
prioritize current data points. Exponential moving average (EMA) is also a moving
average extension that emphasizes, by default, on current data points, in contrast
to weighted moving average where weights are set up by the researcher. The
contribution of the previous data points decreases exponentially, as described in

equation 3.8.
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x, =aD,,+a(1-a)D,, +a(1-a)’D,, +a(1-a)°D,, +...+a(1-a)"'D,, =
x,=a(D.,+(1-a)D_, +(1-a)’D,, +(1-a)’D, +...+(1-a)"' D, ) = (3.8)

x,=ay D (1-a)"
i=1

where x; stands for the estimated value at time t, a is a smoothing parameter
representing the weighting level, ranging between 0 and 1 and D is the actual

measurement at time t-1.

In addition, the running average technique is a similar approach to the moving
average. Instead of employing the average of the previous data points, it utilizes
the median. Hence the importance of outliers in the examined dataset is limited
(Hen et al., 2004).

3.4. Social Force Model

3.4.1. Overview (base model)

Social force model is presented analytically to outline the concept of the model,
describe its parameters and clarify the comparison with the data-driven
techniques. Data-driven predictors are selected based on the social force model’s

parameters.

The social force model was first developed and calibrated by Helbing and Molnar
(1995) for pedestrian movement capturing well known pedestrian movement

phenomena (through computer simulations). They defined three velocity types of

pedestrian a : i) desired velocity ag as the velocity that pedestrian will walk, if
they were not disturbed from surroundings, ii) preferred velocity Wa that its
alterations are assessed by the social forces and is constrained to the maximum

acceptable speed and iii) actual velocity E The main idea of the model is that

velocity time deviations are originated by the social forces according to equation
3.9.

@ =F (t) (3.9)




where F:(t) stands for the total forces that are acted upon pedestrian a at time t.
Helbing and Molnar (1995) added fluctuations to equation (3.9) in order to include

model uncertainty. Social forces F:(t) are classified to:

-0
e Attractive forces from destination Fq

¢ Repulsive forces

o From other pedestrians 3 (%)

—_—

o From boundaries B (Fz) and

e Attractive forces from other agents or objects i (Fji)

Destination area forces the agent to reach their destination (attractive force). In

cases of no disturbances pedestrians tend to keep their desired direction (et)

with their desired speed (ug). A relaxation factor (1,) that measures the time

duration an agent needs for re-adapting its route to the desired one (when
deviations from their desired route occur) is introduced. The attractive force to

destination is specified in equation (3.10).
e,-U,) (3.10)

Contrary to attractive forces, repulsive forces, generated from agents and
boundaries (pedestrians avoid proximity to boundaries), are acted upon the

moving pedestrian. Among other parameters, distances between the examined

—_—

agent and other pedestrians (r;) or boundaries (r;) are crucial. Equations

(3.11) and (3.12) illustrate repulsive forces from pedestrians and obstacles

respectively.
fop =~V Vo [b(1p)] (3.11)

FaB = -VGUGB(

raB

) (3.12)
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where b stands for the minor of V ellipse monotonic function, given by equation
(3.13). The distance from the closest to the pedestrian obstacle point is taken into

account in equation (3.13).
it
b=

where u At stands for the pedestrian’s 3 step width.

r

cB+

s —Us Mg | - (U A

2

(3.13)

Helbing and Molnar (1995) assessed repulsive force’s functions in their

experiment as:

V,(0)=Ve™ (3.14)
uqu@\)que*‘@"R (3.15)

—_—

Nearby agents and objects might also apply attractive forces (F, ) to the moving

pedestrian. The specific force type distracts walking agents from their final
destination. The difference from repulsive forces is that the parameter of time is

introduced in attractive forces, due to the decreasing interest by the time.

rll,t) (3.16)

f_a; = -vﬁwai(

Humans do not have 360° angle of vision and events that occur out of their sight
view affect them less. As a consequence, weights that consider moving
pedestrian’s view angle are introduced in the estimation of repulsive and

attractive forces, converting them to:

B

Fop = Wi (3.17)

Fe=wl, (3.18)

Ultimately, the force that affects pedestrian movement (F (t)) is estimated as the

sum of the aforementioned forces.
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— 0 — ——
ch =F°‘+(FGB + UB)+FUi (319)

max
a

Maximal acceptable speed u is also introduced to social force model for

preventing simulation of extreme and unrealistic pedestrian velocities.

3.4.2. Social Force Model Modifications

An improved modified version, which was developed by Helbing and Johansson
(2010) and was also described in Helbing (2012), differentiated the social force
model pedestrian’s repulsive forces equation (3.20) by importing interaction

strength (A) and interaction range (B) parameters.

V,5(b)=ABe™" (3.20)

Furthermore, in this version the pedestrian’s velocity (u,) was also included in

estimation of the repulsive force. Semi-minor ellipse monotonic axis b equation is

transformed to:

— — —_— — — — 2
Vsl s 5~ s ;)
b= (3.21)
2
leading to the below repulsive force equation
. o L A T i Y e A g V.Y
omneelaltle b 1y ettt |
2b 2 HrCIB raB-(uB-uq)AtH

An improved specification of agent’s angular sight view was also introduced. The

angular-dependent prefactor w(@.g) of @qs angle is determined as follows:

1+Cos(Pyg)

W((qu (t)) = )\u + (1 - )\u ) (323)

where A4 represents the strength of interactions from behind, ranging among 0

and 1 and cos(@qg) is computed as:
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u p
008(@ g ) = e (3.24)
u_ | (r

all || aB

Moussaid et al. (2009) presented an alternative social force approach in order to
simulate interaction laws among pedestrians. Their model differs from the initial
of Helbing and Molnar (1995) considering the term of repulsive forces (among
agents). However, it did not provide explicitly improved simulation results

compared to those of Helbing and Johansson (2010).

3.4.3. Social Force Model Parameters
The parameters that determine the model structure are:

e Moving pedestrian
o Desired speed (ug)

o Relaxation time (71,)

max )
a

o Maximum acceptable speed (u

o Strength of interactions from behind (A,)
¢ Repulsive force
o From pedestrian
» interaction strength (A)
» interaction range (B)

o From obstacle
= function constant (UgB )

= exponential parameter (R)

e Attractive force
o function constant (W)

o exponential parameter (L)

Helbing and Molnar (1995) specified social force parameters in their experiment,

as presented in Table 3.1.
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Table 3.1: Social force parameters (Helbing and Molnar, 1995)

Social force parameters

Parameter Value Units
Desired speed N~(1.34, 0.26) m/s
Maximum

acceptable speed 1.3 * desired speed | m/s

Relaxation time 0.5 S
Angle view 200 degrees
OU’FSIde of view 05 i
influence
Coterminous
pedestrian step 2 s

time

Repulsive force
from pedestrian 21 m2/s2
function constant

Repulsive force
from pedestrian
exponential
parameter

0.3 m

Repulsive force
from obstacle 10 m2/s2
function constant

Repulsive force
from obstacle
exponential
parameter

0.2 m

Figure 3.3 provides an overview of the calibrated social force model parameters
as recorded in the relevant studies. Helbing and Molnar (1995) were the first to
attempt to estimate social force model parameters. Besides that, postliminary
papers deal with this issue. Specifically, Zeng et al. (2014) calibrated pedestrians’
desired speed, relaxation time, maximum acceptable speed and the repulsive
forces’ parameters in crossing scenarios, where pedestrian conflicts with vehicles

occurred. They, however, did not use the most recent at the time version of the
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social force model. Johansson et al. (2007) and Zanlungo et al. (2011) calibrated
repulsive forces’ parameters in indoor environments. Song et al. (2006) specified
desired speed range in a mixed social force model (including cellular automata)
in order to simulate arching, clogging and “faster is slower” phenomena.
Moussaid et al. (2009) calibrated social force parameters using video trajectories
from corridors, while Voloshin et al. (2015) utilized real-world data from a metro
station entrance. Voloshin et al. (2015) presented a method for calibrating the
constant and exponential parameters both for repulsive forces among
pedestrians, and between pedestrians and objects by employing a genetic
algorithm, without providing information on parameters’ optimal values and/or
ranges. At the same time, attractive force parameters have not been widely

examined, and thus their ranges are unknown.

The ranges noted by the different researchers will form the basis for the social
force model calibration in this research. The noted range of maximal desirable
speed is wider to that of acceptable speed, as Song et al. (2006) who provided
the widest range of desired speed, did not provide the respective values for
maximal acceptable speed. As a consequence, in the social force model training
process (see Section 5.2) a range of maximal acceptable speed coefficient
between 1 and 2 is employed. In addition, Johansson et al. (2007) and Helbing
and Johansson (2010) provide an extremely wide range for interaction range (B)
parameter that is restricted in the social force model training process (Section
5.2). Furthermore, considering the aforementioned training process, Zeng et al.
(2014) relaxation time parameter range is reduced based on its mean (2.2s) and

standard deviation (0.5s).

Apart from social force models, calibration techniques have been also used in
other pedestrian simulation model types. For example, Teknomo (2006)
developed a microscopic pedestrian model, similar to social force, and calibrated
and validated its parameters focusing on minimizing the difference between
simulated and tracked attributes. Guo et al. (2010) developed a discrete choice
model for pedestrian simulation and calibrated it using data from experiments
with the aid of a heuristic method. Daamen and Hoogendoorn (2012) employed
maximum likelihood estimation for calibrating their model by using data from

laboratory experiments. They assumed errors (agent acceleration difference
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between simulated and obtained from data) follow zero mean normal

distributions.
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Figure 3.3: Social force model parameters range
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3.5. Data-Driven Modelling

3.5.1. Overview

Data-driven models employ non-parametric methods. Algorithms are used in
order to extract, in a definite manner, information from data and develop
automatically a model based entirely on them (data). Classification, clustering,
regression and prediction comprise data mining principles. They overcome
parametric tools as they do not rely on specific assumptions and do not require a
priori determination of the relationship among the variables. On the other hand,
they do not provide an unambiguous relationship between variables. In the next
sections the data-driven techniques that are employed in this research are
described. A brief description of the comparison framework between the different
models is provided in section 3.6, while an extensive description of the models’

comparison procedure is provided in section 5.1.

3.5.2. Neural Networks

Artificial Neural Networks (ANN) comprise one of the most popular data-driven
methods. They can be implemented in classification, clustering and regression
problems. They are used both in supervised and unsupervised learning. ANN
attempt to mimic the operation of biological neural networks. The information is
transferred from the neurons (nodes) of the first layer to those in the next layer
with the aid of the synaptic weights and the activation function until the final layer
(output layer), where predicted values are estimated. The goal of the ANN
training procedure is to estimate the values of the weights that minimize a cost
function, i.e. an error function between predicted (output layer) and measured

values.

One of the first ANN models was presented by McCullogh and Pitts (1943). In
their approach one hidden layer with one neuron was employed. The neuron
takes the inputs from the first layer and according to the step function fires or not.
Synaptic weights and thresholds are the critical parameters for this. As

McCullogh-Pitts model did not perform sufficiently well in nonlinear problems,
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networks with more neurons and hidden layers were later developed, such as the

Multi-Layer Perceptron (MLP). A typical MLP is presented in Fig. 3.4.

Hidden Layer

\\"/ “‘}

TP ()
PNV
-‘\X.'/'
SBEEA NS
SN Y
‘\\\< (0

Figure 3.4: Multi-Layer Perceptron

Every node in each layer is connected to all the nodes of the next layer. Data are
imported in the model in the first layer, named as input layer. Then the nodes in
the hidden layer are affected by the input layer nodes according to equation
(3.25).

u=> wx (3.25)

where w; stands for the synaptic weights from the node i of the input layer and x;
for the input value of the node i. In case of i=0 wp equals to the threshold value

and Xo equals to -1. Subsequently, according to an activation function the neuron
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of the hidden layer produces a specific value. This procedure is repeated to all
the nodes of the hidden layer. Next, the neurons in the output layers are
activated. In this case the input values are the values that have been produced in
the nodes of the hidden layer. An error measure (e.g. mean square error) among
the predicted and the measured (in terms of supervised learning) values is used.
The goal of the ANN training procedure is to estimate the values of the weights
that minimize a cost function, i.e. an error function between predicted and

measured values.

A few training algorithms have been proposed with the Back-Propagation being
the most widespread. It was proposed by Paul Werbos (1974) for application in
ANN while a higher recognition in the ANN training process was gained by
Rumelhart et al. (1986). This is a supervised learning algorithm. In this method,

the algorithm “corrects” the synaptic weights in a gradient descent procedure.

Initially the inputs of the first data are passed in the ANN model with pre-defined
synaptic weights values and predicted values in the output layer are computed.
The algorithm alters the weights backwards (from the output layer to the input)
according to the delta rule and attempting to reduce the cost function. It then
computes the contribution to error (&;) of the output layer nodes and in the hidden

layers (equation 3.26).

ef'(u), vie output layer

0 = K 3.26
' ]f(u)>_8,w;, Vi hidden layer (3.26)
=

where e; stands for the error in the i neuron, f(u) for the derivative of the

activation function, j is the neuron in the net of next layer (i.e. in one case on one
hidden layer j neuron stands for the neuron of the output layer) and w; for the

synaptic weight from node to neuron i to neuron j.

Weights alteration is accomplished according to equation (3.27)

Aw, =ngy, (3.27)

where n is the learning rate and y; the output of neuron i.
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Following the computation of the new weights, the second data are passed in the
model and the same procedure is repeated. When all of the synaptic weights until
the first layer are re-estimated an epoch is completed. The training procedure
continues until a termination criterion is fulfilled. Termination criteria might be a) a
maximum number of epochs, b) the error being lower than a priori specified

threshold, c) the error remaining the same for two continuing epochs.

A careful specification of n is crucial as very low values can lead to vanishing
gradient problems where the weights are updated very slowly and the algorithm
needs time to converge or on the other hand to exploding gradient problems
where high values of learning deter the algorithm to converge. The inclusion of
momentum can restrict this problem. Thus equation (3.27) can be updated to
(3.28).

Aw;(n)=nd;(n)y;(n)+alAw;(n-1) (3.28)
where n stands for the epoch and a for the momentum variable.

In all of the above described methods the weight initialization might play a crucial

role in the training of the model.

Algorithm 3.1 : Back-Propagation
Initialize synaptic weights w;
For epoch n=1:N {
Pass inputs in the model
Compute outputs in the output layer
Compute 6; for all the neurons
Compute Aw; for all the neurons

Update synaptic weights w;(n+1)=w;(n)+Aw;(n)
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The number of layers, the number of nodes in each layer, the activation function
(can be different among the nodes), the training algorithm (back-propagation is
the most common), the optimization algorithm (gradient descent procedure), its
learning rate and its termination criterion, are hyperparameters that need to be
specified prior to the training process. It should be mentioned that a model with
more nodes in the hidden layer has greater ability to capture interactions between

parameters.

The application of ANN technique in the present research is presented in section

5 (see section 5.2.3).

3.5.3. Gaussian Processes

Gaussian Processes (GP) comprise an additional method in the field of machine
learning techniques, mainly used in terms of supervised learning (regression,
classification). They are described below according to Rasmussen and Williams
(2006). As indicated by their name they rely on Gaussian (normal) distributions
and are a collection of random variables, which follow a multivariate Gaussian
distribution. A GP is specified by its mean m(x) and its covariance function

K(x,x') (equations 3.29 — 3.31). In case of a multivariate Gaussian distribution

with two or more variables, they can be partitioned to Gaussians with means and

covariance matrices (marginalization property).

f(x) ~ GP(m(x),K(x, ")) (3.29)
m(x) =E[f(x)] (3.30)
K(x,x') =E[ (f(x)-m(x))(f(x)-m(x))" | (3.31)

As in most cases the mean is considered to be zero, the interest is around the
covariance function. For this reason, a kernel function is necessary in order to
estimate the covariance. The most commonly used kernel is the Radial Basis
Function (RBF) or the Gaussian kernel (equation 3.32), while periodic and linear
kernels have also been applied (Rasmussen and Williams, 2006). RBF is a

stationary kernel where the covariance of two points depends on their relative
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and not on their absolute (contrary to non-stationary kernels) position. In terms of
mathematical calculations and in order to perform Choleksy decomposition (for
estimating covariance matrix square root), the kernel matrix needs to be

symmetric and positive definite.

During the training process, the GP provide the model framework relating all the
data in multivariate Gaussian distributions with a predefined kernel function. As
for the RBF kernel, its function consists, among others, of two parameters, the

length (1) and the height (o) of the kernel, called hyperparameters.

Furthermore, assuming of an i.i.d. noise with zero mean and 05 variance
(similarly to parametric regression), the covariance matrix is updated in order to
incorporate noise as in equation (3.33). Last, GP returns a predictive value
adding its uncertainty (probabilistic prediction with confidence intervals).

T xex?

k(x,X') = 0% (3.32)
K(x,X) =k(x,x)+lo? (3.33)

GP perform well in a small amount of data, while they have significantly high
computational requirements in models with many variables (high dimensional
kernel matrices) and large datasets. Reduced-rank approximations to the

covariance matrix are one way for moderating the problem.

In comparison to other data-driven techniques, Rasmussen and Williams (2006)
note that SVM perform slightly better than GP in terms of classification problems.
In addition, they present an alternative to the cross-validation method which is

based on Bayesian statistics for estimating GP kernel function hyperparameters.
The general idea of this method is that the posterior distribution p(w |y, X,0,H,)
over the parameters w is related to the prior distribution p(w |J,H;) given the

hyperparameters 8 and the set of possible model structures H;, the likelihood

p(y | X,w,H,) and the marginal likelihood p(y | X,8,H,) of all the outputs y for all the

possible datasets (equation 3.34). A prior distribution can be converted to a

posterior after incorporating some data.
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(y[X,w,H)p(w|8,H)
p(y | X,6,H))

pw|y,X,8,H)=" (3.34)

Still, this Bayesian framework depends on several mathematical formulations
(integrals) that may not be governable. In addition, the results are very sensitive

to the prior distribution.

At this point it must be clarified that GP training optimization differs from training
optimization in other machine learning methods (e.g. ANN). During the training in
a GP the goal is to estimate model hyperparameters (see above) with the
employment of the appropriate algorithm. On the other hand, hyperparameters in
an ANN are set initially (prior to the training process) and remain constant during
the whole training procedure. The goal of an ANN train is to estimate model
parameters, e.g. synaptic weights. Still, in both methods initial values are

important for model training.

A widespread optimization algorithm for GP training process is the Limited-
memory BFGS (L- BFGS) that is based on the Broyden—Fletcher—Goldfarb—
Shanno (BFGS), which was independently developed in 1970 by Broyden (1970),
Fletcher (1970), Goldfarb (1970) and Shanno (1970). L- BFGS is presented by
Byrd et al. (1995) as a gradient descent method in the field of quasi-Newton
theory. The algorithm is relaxed of second derivatives calculation and can be

applied when the Hessian matrix computation is not practical.

In the present research a multi-output regression has to be performed as the
pedestrian’s velocity is presented in two axes. However GP initial setup lacks the
multi-output model availability. A solution might be to apply separated GP models
for every output (i.e. the velocity in each axis), though the correlation among the

outputs, which is a crucial information, will be discarded.

Alvarez et al. (2012) presented multi-output kernel functions for GP modeling.
The method is suitable also in cases with different input spaces for every output

(heterotopic models). Contrary to single—output models, multi—output models
associate variables to different processes ({fd}L, where D is the number of

outputs). Alvarez et al. (2012) developed a linear model of coregionalization
(LMC), where outputs are expressed as linear combinations of independent

random functions and each f4 is expressed with the aid of latent functions uq(x), of
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zero mean and covariance cov[uq(x),uq,(x')] (equation 3.35), and scalar

coefficients (aqq equation 3.36). Grouping the number of latent functions that
share the same covariance, they ended up with equation (3.36). R stands for the
number of latent functions that share the same covariance in the group and the

number Q of groups.

cov| uy(x),uy (X) | =k, (x,x), if q=q’ (3.35)

Rq

Q . .
fa(x) =D ay U, (x) (3.36)

g=1 i=1

The cross-covariance between any two functions fy4(x) and fd,(x') is illustrated in

below (equation (3.37)).

Py

CIRQ

Q Q . . . Y
cov|[f ZZ ay 8y (COV [u'(](x), Uy (x')} (3.37)
'=1

=1q'=1i=1 i'=1

Q
I
-

Expressing equation (3.37) as a kernel function and due to the independence of

latent functions, researchers came up with equation (3.38).

R

Q
(K(x,x'))d’d,=z Al 48 oKq ( Zbdd o (3.38)

g=1 =1

RQ
. q — i i
with by, = E 8448y q-
i=1

Ultimately the kernel function can be expressed in terms of a symmetric and
positive semi-definite D x D matrix (Bq) that encodes correlations among the

outputs (equation 3.39).
K(x,x') =D Bk, (x,x') (3.39)

In this paper researchers have also presented a simplified and much more

restrictive method than LMC called the intrinsic coregionalization model (ICM).
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The application of GP technique in the present research is presented in section 5

(see section 5.2.3).

3.5.4. Support Vector Regression (SVR)

Support vector regression (SVR) is a regression machine learning method relying
on Support Vector Machines (SVM). SVM is a widespread method mainly applied
in classification problems and rarely in clustering (Support Vector Clustering -
SVC). They are used for separating data between two classes, though multiclass

classification libraries have also been presented (e.g. Chang and Lin, 2011).

SVM estimate the best hyperplane that separates the data between the two
classes. Suppose that we have a set of data points (x) that belongs either to Cy or

to C4 class. The classification problem is defined by the equation (3.40).

Wix+wgd 0.xeCy (3.40)
>0,xeC,

A margin between the two classes is also set (Fig 3.5). The margin is defined by

the two support vectors that in practice are the “edges” of the two classes and is

equal to the inverse of their distance (”2—|| )-
w
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Ve Qin

Figure 3.5: Support Vector Machine

In cases where the margin is close to zero the possibility of a false classification
is high due to the fact that the two classes are not clearly separated. As a
consequence SVM relies only on the support vectors ignoring all the other data
points. This reduces significantly the complexity of the model and their
computational requirements, but on the other hand makes it very sensitive to
support vectors as a small modification of them (modification only on the support
vectors and not on the rest of the dataset) change the separating hyperplane.
The goal of an SVM is to estimate the coefficients w' and wy of the hyperplane

equation (3.41).
wix+w,=0 (3.41)

In particular to find w' and wo that maximize the margin and thus minimize ||w||

such that all data points (x;, y;).

Yo (WX +w, ) =1 (3.42)
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Data outputs (y;) equal to -1 or 1 whether the data point i belongs either to Cy or

to C4 class. Actually the model minimizes %||w||2 as the derivative of |w|| is also

a constant value (the constant % is added for simplicity reasons). As a result this

is a quadratic programming optimization problem. Lagrange multipliers a; are very

useful for this type of problems. The loss function is transformed to

L (W, wy,a;) = %”w”2 - Z a, [yi (w'x, + Wo)'ﬂ (3.43)

L function needs to be minimized w.r.t. to w and wy, and maximized w.r.t. a,.

According to Karush-Kuhn-Tucker conditions at the optimization point we get:

L~ (3.44)
oW
oo (3.45)
oW
[ T -
o[ y; (WX +w,)-1]=0 (3.46)

Equations (3.44) and (3.46) are then transformed to equations (3.47) and (3.48)

respectively.

i ay, =0 (3.47)

N
w = Z ay,X, (3.48)
=1

By substituting equations (3.47) and (3.48) to equation (3.46) the optimization

problem is converted to the dual problem [maximize equation (3.49)].
N 1 N N T
Lo (W’WO’ai)=Zai-Ezzaiajyiiji X; (3.49)

subject to
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i ya =0 (3.50)

a =0 (3.51)

In cases of non-separable data slack variables ¢; are introduced in the model.

Thus equation (3.42) is transformed to
Y, (WX +wo)21-¢, (3.52)
while €20 (3.53)

and equation (3.43) to
Lp(w,wo,ai,éi)=%||w||2+CZ§i-Za[yi(wai+wo)-1+§i]-zui§i (3.54)

where p; stands for the Lagrange multipliers of slack variables & and C a penalty
parameter. By increasing C more weight is placed on the slack variables while
setting C equal to 0 makes slack variables unimportant. In line to Karush-Kuhn-

Tucker conditions

oL
a_éi =0 (3.55)
leads to
C-a,-y, =0 (3.56)
or
a,=C-y, (3.57)
with o, 20 (3.58)

As a consequence the equation of the dual problem is

N 1 N N
Ly (w,wo,ai)=Zai-EZZaicxjyiijiij (3.59)



subject to
N
D ya =0 (3.60)

0<a <C (3.61)

The aforementioned analysis is referred to as linear classification problems. In
nonlinear classification the problem is converted nearly to linear with the aid of
kernel functions (mentioned also in GP regression). In particular a nonlinear
transformation function ®(x) is adopted converting the loss function in the dual

problem to equation (3.62).

N

LD(W,WO,Gi)=;G|

N

D> aayy ®x;) d(x)) (3.62)

i=1 j=1

|\>|—x

The dot product of CD(xi)T(x,-) is the kernel function (equation 3.63).
k(x;,X;) = D(x,)T D(x;) (3.63)

In order to approach linearity, transformation functions “add dimensions” to the
variables, while kernel functions reduce (sometimes significantly) the computation

complexity.

Vapnik (1995) introduced regression to SVM. SVR uses the e-sensitive loss

function of observed values y; and data inputs x; (equation 3.64).

) {|y 0 if |y, - f(x;, w)|< e (3.64)

-f(x,w)|-€ otherwise

In line with SVM, SVR employs slack variables ¢ and § for measuring the

deviation of the training samples outside the e-sensitive zone and kernel

functions for nonlinear regression. & and & are the positive differences between

the observed value and ¢ regardless of whether the observed point is above or

below the tube, created by the e-sensitive loss function, respectively.
. . . e s 1 2 N *
In particular SVR aim is to minimize §||W|| +CY (&%)
i=1
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subject to

yi-f(xi,w)Sg+§i* (3.65)
f(x,w)-y, Se+g (3.66)
£, 20 (3.67)

In line to the Lagrange method the optimization problem is transformed to

Lp(w,wo,ai,a:,&i,ai)=%||w||2+C<Z&i+Z§;‘>-Zai (W )+ wy -y, +e+¢ |
i=1 i=1 i=1 (368)

-ZCX: [(WTXi)"'Wo -y te +§:]'Z(Ui§i +“|*§.*)

i=1

and the dual problem to
N . N . 1 N N . . T
Lo =_£Z(ai +a )+Z(Gi 'Gi)'EZZ(Gi -a;)(a -ap)(x x;)  (3.69)
subject to

N N .
Zq=2q (3.70)
0<a sC (3.71)

0<a <C (3.72)

Pérez-Cruz et al. (2000) presented an Iterative Re-Weighted Least Square
(IRWLS) algorithm application in training SVR. Compared to Quadratic
programming IRWLS improves the speed of the SVR train process and reduces

the computational complexity. First, they rearranged equation (3.68) [including
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nonlinear transformation
leading to (3.76)

where
e, =e-y, +®" (x,)w+w,

e =e+y, -O" (x,)w-w,

20,
ai = T
E-y,+O (x))w+w,
. 2a
a 1

ety 0T (X)W -w,

Consequently, they applied the IRWLS algorithm that runs in three steps:

function ®(x)] based on equations (3.74) and (3.75)

C-0,-§=0

1 1 .
Lp =§||W||2 'EZ[aieiz +a, (e )2]

1. Fix a;and a that minimize equation (3.76)

2. Recalculate a; and a, from the solution in step 1

3. Repeat until convergence

(3.74)

(3.75)

(3.76)

Similar to GP and in contrast to ANN a multi-output framework was not available

in the initial SVR model setup, and SVR resulted to a single output. An alternative

method could be to train the model for every output separately. In this case,

however, a possible correlation between the outputs will be lost.

Still, specific methodologies have been proposed to deal with this problem. It is

noted that the initial setup for SVM was for classification between two classes.

Except for outputs correlation in terms of SVR the ¢-sensitive zone around the

estimation will not treat equally the samples over each output dimension.
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In order to deal with this problem, Pérez-Cruz et al. (2002) introduced w' weights
in equation (3.68) for every output, while Sanchez-Fernandez et al. (2004) added,
besides the weights, a CT sum of constant terms presenting a multioutput SVR
(MSVR) model setup. Both studies mentioned that quadratic programming is not
feasible in the MSVR, and employed IRWLS algorithm application in training
SVR. Equation (3.77) illustrates the quadratic approximation of MSVR.

RSN 2
Le == |w![ += > au? +CT (3.77)
2 = 23
where
0, u‘<e
a; =4 2C(u -¢)

T

(eik)T =y -0 (x) W -(wp)

The way that MSVR has been used for predicting pedestrian’s velocity in this

research is presented in section 5 (see section 5.2.3).

3.5.5. Locally weighted regression

Locally weighted regression (Loess, Cleveland 1979) is employed as the fourth
data-driven technique. It is a widely applied data-driven method used for
predicting and regression analysis that fits data points, based on a smoothing
technique and weighted least squares. Particularly, relying on k-NN clustering

algorithm, Loess utilizes local regression functions (equation 3.78).
Y =g(x;)*+e (3.78)

where y; is the dependent variable, x; the predictors (independent variables), g(x,)

the local regression function and e; an error term. Local fitting is the principle of
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Loess (Cleveland and Devlin, 1988). Initially, the number of the selected data
points around predictor x; (span) that will be used is specified. Namely, span is
the ratio of the selected data points (x) to the total data points of the specific
predictor. If all the given data points will be used, span equals to 1 (100%) and a
total smoothed curve will be produced, while for a span value of 0 the curve will fit
exactly the data points. Subsequently, the used data points around predictor x;
are weighted to their distance from x; according to a tricube weighted function
(equation 3.79). Hence, significantly high weighting is given to the closest data
points. A scaled distance z; is employed relating the data point x;, the predictor x;

and the span.

(1-[z,[ ) for [z, <1

w(z;)= (3.79)

O,for‘zj‘ >1

An n-degree polynomial regression function g(x;) then fits the data points around
the predictor. The objective function minimizes the weighted sum of square

errors:
minZw *g?

Among others, Loess has been employed for modeling ozone concentration
based on solar radiation, wind speed and temperature (Loess predictors) in
missing data (Cleveland and Devlin, 1988) and on criminal and civil justice
expense relying on crime rate and taxable wealth (Cleveland et al., 1988).
Additionally Loess has been applied in space galaxy velocity smoothing (noise

reduction) with remarkable results (Cleveland and Devlin, 1988).

Nonetheless Loess suffers of the so called “curse of dimensionality”. In practice,
the method performs efficiently in one predictor modeling while its performance is
reduced as the number of predictors increases. The cause of this drawback rises
from the fact that the smoothing process becomes more complicated with the
extra dimensions, while the span remains fixed (Cleveland and Devlin, 1988 and
Cleveland et al., 1988).

Loess application in traffic simulation was examined by Antoniou et al. (2013),

and Papathanasopoulou and Antoniou (2015). Antoniou et al. (2013) employed
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data-driven methods for predicting traffic states. Initially the data were clustered
(in specific traffic states). Subsequently rules were set up for predicting the next
traffic state (based on the sequence of the previous states). Loess was the
crucial tool, along with goodness-of-fit statistics, that provided the relationships
between the fundamental traffic quantities (speed, density, volume) for each
cluster. Loess contributed a lot in speed prediction. Goodness-of-fit statistics, e.g.
root mean square error and Theil's coefficients, measured model’'s validity and

preciseness.

Papathanasopoulou and Antoniou (2015) highlighted that data-driven models’
added value in traffic simulation, incorporating it into microscopic traffic models.
They estimated span and polynomial degree using the RMSN (normalized root
mean square error) indicator. The contribution of Loess in traffic simulation has

been outlined alongside to its advantages that comprise in:

Managing data (generally for machine learning methods)

¢ Non-Requirement for model function (non-parametric)

e Useful in many traffic situations

e Convenient incorporation of additional parameters

e Proper outliers’ management

Loess compared to simple regression analysis outweighs on the one hand in the
fact that it weighs each input and on the other hand it constitutes a non-
parametric method. The lack of mathematical function could be considered as a
drawback for Loess when parameter relationships should clearly be
demonstrated. Moreover large datasets are computationally expensive and

extreme outliers could mislead significantly the researcher.

An extensive Loess application in terms of pedestrian modelling is presented in

section 5 (see section 5.2.3).

Table 3.2 presents the pros and cons of the aforementioned data-driven

methods.
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Table 3.2: Data-driven methods pros and cons

other data-driven

methods)

Method Strength Weakness
High number of
ANN Initial setup for multi- | hyperparameters (number of
dimensional outputs | nodes, activation function
etc.) — model complexity
Lacks in high dimensional
Provides confidence | SP3¢®S ~ regression with
GP intervals many features
Single output initial setup
Low model Sensitive to support vectors
SVR _
complexity Single output initial setup
Simple mathematical | Limited number of variables
equations (in
, “Curse of dimensionality”
Loess comparison to the

The complexity of each type of model is related to its structure. In particular, ANN
complexity [O((n+p)*q)] involves the number of neurons in the input layer (n), in
the output layer (p) and in the hidden layer (q), while SVR (RBF kernel)
complexity [O(ns,d)] is affected by the number of inputs (d) and the number of the
support vectors (ns,). Also, as mentioned above, GP high complexity [O(n%)]

encumbers model training process with large datasets, while Loess complexity

depends on the number of data points that are used [O(n)].
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3.6. Model’s Comparison

In a fair model comparison, the main principle, when examining different types of
models, is to set them in a way to be comparable to each other, while respecting
the models characteristics and dynamics. Thus, the results that each model will
provide can be compared with the results of the other models and their
performance can be evaluated. Data-driven models do not include any pedestrian
movement modeling. Hence, this should be set by the researcher. Apart from the
absence of the pedestrian movement model, the main principle of the models’
comparison (i.e. the fact that the models must be comparable) should be also
considered. Due to the fact that the social force model incorporates a clear
simulation framework, the same framework is set in the data-driven models. In
other words, the same parameters that social force model includes are also
employed by the data-driven models. Furthermore, there might be cases where
the social force model parameters cannot be incorporated in the same manner in
the data-driven models. Hence, appropriate transformation for these parameters
is conducted (an extensive description of these parameters is provided in section

5.1 / parameters of distance).

Another issue that should be considered during the comparison process is the
method that will be employed. Due to the fact that data-driven models suffer from
overfitting a cross-validation procedure was employed in the current research. In
cross-validation, the total dataset is separated into k parts (folds). In each run,
one of the k folds is used as the testing set while all the others as the training set.
The model is applied in the training set by calibrating its parameters and selecting
the parameter values combination that minimizes the total error (GoF measure).
Subsequently the model with the selected parameter values is applied to the
testing dataset capturing its validity (the error in the testing set is computed).
When all of the k folds have been used as a testing set, the cross-validation
process is complete and the total error of the testing sets is computed. The model
type with the lowest error value implies to be more appropriate for simulating the

phenomenon.

Furthermore, issues that are related to the time and computational cost reduction
are also discussed in the present study. A naive approach could be the

calibration of all the model parameters during the training process. This would
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result in an extremely large computational and time cost. Thus, three different
approaches are examined including the one-at-a-time (OAT) sensitivity analysis,
the Global Sensitivity Analysis (GSA) and the genetic algorithms, with the latter

being the most efficient one and thus utilized at the cross-validation process.

Last, a set of GoF measures was employed for capturing models’ performance.
The appropriate velocity type (Euclidean norm, etc.) that is used as the error in
the GoF measures is described explicitly during the experimental procedure in

section 5.
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4. DATA COLLECTION AND PREPARATION

4.1. Overview

Data collection is one of the essential steps in the research, as it provides the
appropriate data required in the model development procedure. Data comprise a
crucial element, utilized in model development through the calibration and
validation processes. Hence, accurate data is a prerequisite for designing a
reliable simulation model. With the evolution of machine learning methods and
data-driven techniques, data inherent properties have become even more
significant. Data-driven models do not incorporate the physical theory between
the relevant parameters and are solely constructed by the data, while including

only statistical correlations.

In microscopic traffic simulation, data mostly involves vehicle, bicycle or
pedestrian trajectories, while there are several tools for collecting them. Data
collection tools include radars, lasers, cameras, sensors, GPS and exhibit
different merits and limitations, and different accuracy levels (Antoniou et al.,
2011).

In the present experiment, video cameras are employed for recording pedestrian
trajectories. As they often rely on techniques that have not been perfected, errors
in the tracking process should be anticipated. At the same time, their contribution
to model calibration is significant, affecting the validity of the investigated model

(more in data-driven methods — see section 3.4.).

Pedestrian trajectories comprise the output of the pedestrian tracking process
following data collection. At the same time, and regardless of the selected tool,
the collected data may contain noise levels that exceed an acceptable threshold,
thus requiring a data noise reduction step. The existence of data noise may affect
significantly model development and may lead to a less accurate and reliable
model. Hence, measurement error reduction methods must be employed. The
methods that reduce data noise have been presented in the section 3.2, while
their applications in pedestrian (and traffic) movements are described in section

4.4.1. Furthermore, this research presents an algorithm for eliminating data
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noise, based on the Kalman filter and moving average extensions. A state-space
formulation with the use of Unscented Kalman Filter (UKF) as an initial smoothing
filter and the incorporation of the symmetric Simple Moving Average (sSMA) for
producing an improved algorithm is introduced. Noise elimination and trajectory

smoothness processes are described below.

4.2. Pedestrian Tracking

The experimental design of this research focuses on facilities where only
pedestrians are present, without the interactions of other traffic modes (e.g.
vehicles, bicycles). Existing databases with pedestrian trajectories have been
published, including the noted one from the University of Edinburgh (Majecka,
2009), where the agent’s characteristics (e.g. agent’s height) are not provided
and a special knowledge is required in order to evaluate false recordings. Thus,
existing databases would not be appropriate for the present research and were
then not utilized. To collect the relevant data, two data collection experiments
were designed. The selected data collection sites displayed pedestrian

movement characteristics required for this research (see section 3.1).

Data collection took place at the platforms of Moschato metro station (Figure
4.1a) in the morning (8:30 am) in a working day (28/12/2016) and at the indoor
shopping mall in Athens (Figure 4.1b) in the evening (7:40 pm) in a non-working
day (08/04/2017). Agents were tracked, with a recording frequency of 30 frames
per second (fps), during their entire movement in the frame, and their walk lasted

between 12 seconds and 45 seconds.
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(a) (b)
Figure 4.1: Collection data locations: (a) Metro station, (b) Shopping mall indoor

In total, 20281 trajectory data points were extracted from 111 moving
pedestrians. Data size in studies that utilize trajectory data to develop and/or
calibrate pedestrian simulation models can vary significantly. Examples include
36 trajectories with a total of 1675 observed positions in 3 frames/second
(Antonini et al., 2006) and 150 trajectories (when referring mainly to machine
learning based models) recorded at a section of a basketball stadium (Wang et
al., 2019). Studies with substantially larger data size have been found, e.g.
Tordeux et al. (2018a) and Torres-Ruiz et al. (2017) with 400 participants tracked
in a bottleneck with a width of 2.20m and in three corridors with variable width
(ranging from 1.8m to 3.0m) respectively. In the current research, an integrated
approach has been conducted where the data capture a mix of pedestrian
behavior including agents that walk in a relaxed mode and others displaying a
rush mode, while the data was collected in two areas. It should be mentioned that
the utilized data collection method ensured agents’ unawareness of being
captured, achieving unbiased pedestrian behavior, which in turn enhances model

applicability.

In the metro station platform pedestrians/agents were walking from/to the exit of
the platforms (top of Figure 4.1a) towards/from the exit of the station (bottom of
Figure 4.1b), while in the mall areas pedestrians did not follow a specific route,
but walked in all possible directions (e.g. store entrances). Both single
pedestrians and pedestrians walking in small groups (2 persons) were tracked in
both sites. Considering the size of the recorded walking areas captured in the
data, this was about 5m wide and 6.5m long for the metro platform data and

about 8m wide and 13m long for the mall data.
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Video recordings were conducted using two digital cameras that were placed at
both locations at an upper level point. This is in line with similar experiments. For
example, Ma and Song (2013) and Giannis and Vlahogianni (2018) who also
collected data for extracting pedestrian trajectories utilizing video-recordings
placed the cameras on the top of the recorded area. The first camera was
focused on the terrain where pedestrians walk and the second captured their
characteristics (height, gender etc.). Camera steadiness is crucial during the
whole recording process for avoiding extra and significant noise in pedestrian
trajectories. In cases where the recordings are not steady the appropriate
software must be utilized to correct the recorded data (i.e. export a steady video
recording). In the present experiment, in order to avoid additional and significant

noise, the cameras were placed on tripods to achieve high levels of steadiness.

Subsequently video recordings were imported in a tracking software named
“Tracker — Video Analysis and Modeling Tool” (version 4.90), which has already
been used in vehicle tracking (Barmpounakis et al., 2016a; Barmpounakis et al.,
2016b). The software employs a semi-automatic detection and tracking process.
In particular, object detection, whether this involves pedestrians, vehicles or
bicycles, is made by the user and object tracking by the software. First, the user
detects the first point of the object trajectory and places it in the frame so as to
identify the object, while automatic tracking conducted by the software follows.
The possibility of manual corrections considering the object’s trajectory (noisy
points) is also available. Prior to this, a perspective filter is applied in order to
remove lens distortion and compute the appropriate trajectory’s coordinates.
Alternatively, photogrammetric tools can be utilized in order to convert image
points to actual coordinates. This method is described in section 4.3, while an
extension of this procedure leads to the calculation of the height of the recorded
agents (see section 5.3). Agent’s height is required as it is used as an additional

variable in the data-driven methods (section 5.3).

The employed software surpasses other tracking algorithms and software, based
on computer vision, as it does not extract false trajectories from non-existent
objects (that may occur due to luminousness errors) and allows for manual
corrections. On the other hand, manual detection adds requisite time to the user,
proportionate to the estimated trajectories that fully automatic tracking algorithms

do not require.

115



In this experiment a fully manual procedure is utilized in order to extract agents’
positions with high precision. As already mentioned, data accuracy is crucial for
model calibration and validation, and even more vital for the development of data-

driven models.

Pedestrian trajectories are thus exported. However, they include noise from
measurements that needs to be eliminated. Noise elimination and trajectory

smoothness processes are described further below (section 4.4).

4.3. Image points to real world coordinates

Photogrammetric tools are useful for converting image points to real world
coordinates. In particular, the application of photogrammetric processes allows
for the extraction of an agent’s position in actual coordinates from video

recordings.

Initially camera lens distortion needs to be removed. Focal length is the
parameter that defines distortion, which is produced by the camera lens, and is
measured in pixel units. If the camera is not used in auto-focus mode, the
estimation of focal length is carried out once. Checkerboard pattern is a common
method for removing lens distortion. Images (optimally 10 to 20) are captured in
different angles and sites illustrating a checkerboard. Through computer vision
techniques square edges are detected. Square edges color contrast (black and
white colors) is optimum for their exact detection that consequently leads to the
specification of checkerboard orientation and site. Applying the Camera
Calibration Toolbox for Matlab (Heikkila and Silven, 1997), the camera’s focal
length and image coordinates of the principal point (x,, Yo) are computed. Image
principal point is the projection of the center of projection in the image plane and

it differs from the image plane center (Figure 4.2).
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Figure 4.2: Image’s principal point

An alternative method has also been employed for computing camera intrinsics

(i.e. focal length and principal point’s image coordinates) providing similar results
to the Matlab algorithm (Table 4.1). With the aid of Fauccal (Fully Automated
Camera Calibration), an open source software that is implemented in Matlab

(Douskos et al., 2009), camera calibration can be accomplished. Likewise the

software relies on the chess—board pattern. The algorithm extracts feature points

on the image and uses the medians of their x, y coordinates for calculating

camera parameters. A bundle adjustment is needed for parameters final

estimation (Douskos et al., 2007).

Table 4.1: Camera calibration results

Matlab Fauccal
Intrinsics
X - axis Y - axis X - axis Y - axis
Focal length | 233.85 + 0.21 231.60 + 0.21 235.68 + 0.55 | 233.29 + 0.54
(pixels)
Principal 151.19 + 0.22 11468 +0.17 | 15117057 | 113.81 £0.43
point (pixels)
Radial 4.03*107(-7) £ | -5.08*107(-11) £ | 3.49*107(-7) £ | -3.51*10"(-11)
distortion 8.49*10/(-8) 1.04*107(-11) 9.17*107(-8) |+ 4.07*107(-12)

117




Subsequently to intrinsics estimation, extrinsics, i.e. camera’s site and angles
during video recording, need to be identified. It is very important that the camera
remains steady during the entire video recording. Otherwise camera exterior
orientation will be changed and must be recomputed after every alteration. One
video frame should be extracted in order to assign at least four points with known
coordinate values. For advanced extrinsics evaluation the assigned points should
cover the main part of the recorded area. Extra points can also improve camera
calibration. Collinearity equations are utilized for estimating camera site (Xo, Yo,
Z, coordinates) and angles (omega — turn in X-axis, phi — in Y—axis and kappa —
in Z—axis). Matlab Photogrammetric Toolbox (MPT) is an open source software
specified in extrinsics estimation (Kalisperakis et al. 2006). Camera constant (c),
principal point’s coordinates and radial distortion coefficients, i.e. camera’s
interior orientation parameters, are considered as inputs, while MPT software
outputs the camera’s exterior orientation. In case of approximate prior knowledge
of the camera’s site and orientation, initial values can be used to improve
software’s efficacy. It is worth mentioning that as focus distance (S) tends to
approach infinity values, focal length (f) equals to camera constant (equation 4.1).

1.1 .1

i7s'c @1
Following the estimation of the camera’s interior and exterior orientation, the
pedestrian’s location in actual coordinates can be easily defined with the aid of
orientation coefficients. First, one of the video frames illustrating the pedestrian is

extracted. Second, camera’s orientation coefficients are computed as:

r,, = cos(phi)cos(kappa)

r,, = cos(omega)sin(kappa)+ sin(omega)sin(phi)cos(kappa)

r,; = sin(omega)sin(kappa) - cos(omega)sin(phi)cos(kappa)

r,, = -cos(phi)sin(kappa)

r,, = cos(omega)cos(kappa)- sin(omega)sin(phi)sin(kappa) (4.2)
r,, = sin(omega)cos(kappa)+ cos(omega)sin(phi)sin(kappa)

r;, = sin(phi)

r, =-sin(omega)cos(phi)

r;; = cos(omega)cos(phi)
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where omega, phi and kappa stand for the camera angles across X, Y and Z axis

respectively.

Pixel coordinates of pedestrian’s lowest point (x4,y1) are computed by removing
principal point’s coordinates [x1l=x1-x0, y1' =-(y,-Y,)]- It is reminded that pixel

values are descending in the Y — axis (from the bottom to the top of the frame).
Pedestrian world coordinates (X, Y) are computed as:

XyFyq+ Y Ty -C,
111 1°21 31
X . .

(Z-Z,X

)+ X,
Xl Y M3 -Clhyy
Xy Typ + Y4 Ty - CF,
Y=((Z-Zo)( 1' 12 1' 22 32 ))+Y0
Xl Y T3 -Cly

(4.3)

where Z can take an initial value (e.g. 0). The method is outlined below.

119



Intrinsics estimation
(focal length and
principal point —

checkerboard pattern)

Extrinsics computation
(camera site and angles)

Frame that illustrates
the agent

Camera orientation
coefficients estimation

A4

Defining pixel
coordinates of lowest
agent's points

A4

Converting lowest
point coordinates to
real world
coordinates

Figure 4.3: Converting pixel to real world coordinates
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4.4. Trajectory smoothing

4.4.1. Smoothing filters applications

Kalman filter approximations have been applied in studies for pedestrian tracking
(e.g. Bertozzi et al., 2004; Heikkila and Silven, 2004; Foxlin, 2005; Zampella, et
al., 2012; Particke et al., 2017) in order to eliminate measurement noise. Bertozzi
et al. (2004) employed Kalman filter for preventing pedestrian overlapping during
detection phase. Foxlin (2005) presented pedestrian detection and tracking
application with sensors that were placed into the agent’s shoelaces. Through a
process that includes EKF algorithm, he specified pedestrian’s position with high
accuracy. Heikkila and Silven (2004), in their study for automatical pedestrian
and cyclist classification, assumed white Gaussian noises’ distribution in the
tracking process (both prediction and measurement noise). Zampella et al. (2012)
employed Kalman filter extensions. Particularly they proposed the use of UKF
due to the higher order approximation instead of EKF (EKF relies on first order).
Particke et al. (2017) compared the basic Kalman filter algorithm accuracy with
and without the employment of a pedestrian simulation model. The simulation
model, titled Generalized Potential Field Approach (GPFA), is based on the social
force model principles. Wang et al. (2007) relied on the particle filter algorithm. Its
principle is similar to Kalman filter (estimates the probability based on the past
observations). Rather than noises, particle filter algorithm calculates weights for

each subsequent sample point (particle).

Splines have been also applied in pedestrian tracking (Philomin et al., 2000,
Siebel and Maybank, 2001). Nonetheless, the aim of these studies was the

smoothness of pedestrian shapes.

In terms of moving average, Dodge et al. (2009) employed the filter in order to
smooth moving point objects’ (i.e. vehicles, motorcycles, bicycles and
pedestrians) trajectories and further to classify them in distinct object type
categories. Nevertheless, moving average application on trajectories tend to
reduce velocity peaks duration, i.e. the duration of the period when a pedestrian
stands motionless (Hen et al., 2004). Symmetric moving average provides an
improved version, as data points in the following time steps (t+1) are also

included in the prediction of time step t. Thiemann et al. (2008) employed
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symmetric exponential moving average for smoothing NGSIM data (a well know

group of datasets for traffic data — vehicle trajectories).

Attempts have been made for specifying moving average parameters (i.e. the
number of data points used for smoothing and the smoothing factor for EMA).
Gudmundsson et al. (2012) used the symmetric simple moving average of nine
points for preprocessing data in order to cluster movements in team sports and
weather phenomena (e.g. hurricanes). Ossen and Hoogendoorn (2008)
employed a simple moving average smoothing method for vehicle trajectories,
with a nine observations time span (referred to 0.9s) that provided trajectory
smoothness and moving dynamics at the same time. They mentioned that the
number of smoothing data points are of high importance as in extremely high
time span the gain of smoothness will be supplanted by the loss of kinematics.
Thiemann et al. (2008), in a more holistic approach, utilized different smoothing

widths for vehicle acceleration, velocity and position relying on their variances.

4.4.2. Methodology

This study employs a combination of Kalman filter [Unscented Kalman Filter
(UKF)] and moving average (symmetric simple moving average) to filter
pedestrian data. Noise reduction is conducted in three steps (Figure 4.4). The
first step includes video recording segmentation, in the second UKF extension is

adopted and in the third step the moving average filter is incorporated to UKF.
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Figure 4.4: Smoothing process

Due to the high recording frequency (30fps) pedestrian steps are tracked in a
0.03s time period and thus pedestrian velocity is exposed to high false recording
(slight differences in the agent’s cite lead to high velocity variations). A first step
for reducing noise is to aggregate frames. By altering the time period of the
tracking process to 0.2s (i.e. tracking pedestrian’s next step after 6 frames) the
noise that is caused from the aforementioned short period time of tracking is
significantly reduced. The selected time step is in agreement with Guo et al.
(2010), Zanlungo et al. (2011) and Ridel et al. (2019), while other studies employ
smaller time steps (0.04s) (e.g. Daamen and Hoogendoorn, 2012) or larger ones
(0.5s) (e.g. Teknomo, 2006; Zanlungo et al., 2014b; Zeng et al., 2014). None of

the aforementioned papers employed further smoothing algorithms.

In the second step, the Kalman filtering framework is used. In order to relax the
basic Kalman filter's hypotheses, UKF is applied. State vector X is defined as in
equation (3.5), while the covariance matrix P is assumed to be diagonal (equation
3.6) as state variables are assumed to be independent. Five sigma points are
selected, as the state dimension equals 2 (the number of sigma points is defined

as 2n+1, where n is the state dimension). Sigma points are extracted as:
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Xo(t]t)=X(t|t)
m_ K

®  n+k

Wy = K_+1-a%+b
n+k (4.4)

X(t]t)=X(t|t)+ ((n+k)P(t[1)),
Xion (] 1) = X(t| 1) - (\/(n+K)P(t] 1)),
k

W.=W =——
[ i+n 2(n+k)

where X(t|t) stands for the sigma points at frame t, W; for their weights, k is a
scaling parameter, n the dimensions of the state, a is a factor that assigns the
scale of each sigma point from the mean [Wan and van der Merwe, (2000),
define a equals to 10°] and b a prior knowledge factor which has an optimal

value equal to 2 for Gaussian distributions (Antoniou, 2004). Julier et al. (2000)

mentioned that by setting n+k=3 the optimal Gaussian approximation is achieved

(as they propose a heuristic method). \/(n +k)P (t] t)i is the i™ row or column

element of the root matrix that resulted from the Cholesky decomposition method
(Julier et al., 2000). In the present study A=LL" is selected as the form of the
square root; therefore the i column element is chosen. UKF equations are

presented below:
X (t+1]t) = AX(t]t)
2n
X(t+1t) = WX (t+1] 1)+ > WX,
! (4.5)
P(t+1]1)= W5 (X, (t+1]1) = x(t+1]1))* (X, (t+1] ) = x(t+1]1))" +

30 WO (E+ 1] - X(E+1]9)* (X (1] - x(t+1] )T +Q

Equations (4.5) illustrate the predicted state where A is the transition matrix which

equals to
1 0 At O
0 1 0 At
A= (4.6)
0O 0 1 O
0O 0 0 1
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Kalman filter requires a simulation model in the prediction state (in order to
predict velocity at t+1 time step). However, the objective of Kalman filter's
application in the current study is to smooth velocity without any knowledge of the
moving dynamics. Velocity alterations result from the moving average algorithm
(see below) and the prediction state noise part.

Y (t+1]t)=HX,(t+1]t)

yt+1t)= WY, (t+1]t)+ ZWY

(4.7)
Py(t+1)= W5 (Yo(t+11t)-y(t+111)* (Yo (t+1]t)-y(t+1]1)" +

+ZW (110 -y(E+ 11 0) (Yt + 1] ) -y(t+1]1)" +R

Equations (4.7) provide the measurement state, where H is the transition matrix

which equals to

1000
L0100 @)

0010

000 1

Py (£+1) = W5 (X (t+ 1] )-x(t+ 1] 1) * (Yo (t+ 1] t)-y(t+1]1))" +
(4.9)
+ZWi(Xi(t+1|t)'X(t+1|t))*(Yi(t+1|t)'y(t+1|t))T

=P, (t+1)P,(t+1)" (4.10)

Kalman gain (K) is the product (equation 4.10) of the predicted and measured
states covariance matrix (P,y) and the inverse of the measurement covariance
matrix (Py). The output of the UKF is the state estimation in t+1 time step as

presented below:

x(t+1)=x(t+1]1)-K(y(t+1)-y(t+1]t))

P(t+1)=P(t+1|t)_KPy(t+1)KT (4.11)

An improvement has been accomplished in the presented UKF by introducing the

moving average component. Velocity is crucial for predicting pedestrian’s next
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time step in UKF prediction equation. Moving average is applied for estimating
the velocity (among to X and Y axis) during the UKF process, as it reduces
agent’'s velocity noise and, as a consequence, enhances UKF efficiency.
Additionally, the symmetric moving average (moving average extension that is
implemented in the present study) reflects the tendency of the agent’'s movement
as it incorporates previous and following time steps (smoothing width) in the

estimation and relaxes the model absence at UKF prediction state.

As mentioned in section 3.2.3, three moving average types exist, the simple
moving average (SMA), the weighted (WMA) and the exponential (EMA). The
difference the between simple versus the weighted and exponential moving
average relies on the fact that SMA treat equally the regarded data points, while
WMA and EMA set weights on them. Notably, EMA weighting is decreased
exponentially to the previous data points, while in WMA the weights are assigned
optionally. As a consequence, a considerably higher importance is given in the
most recent data points and the existence of outliers will lead in false estimation
at the current time step. Hence, a simple moving average is employed in this
study. Further, for reducing smoothing in peak points, the symmetric type is
utilized (symmetric simple moving average — sSMA), as presented in equation
(4.12).

[E_z](t) ) 2[)1”2(3—;](0 (4.12)

where u, and uy stand for the speeds across X and Y axis respectively and D for

the smoothing width.

To sum up, UKF is applied for eliminating data noise, after aggregating frames to
0.2s time step, while the symmetric simple moving average reduces velocity false
variance and improve UKF’s efficiency. UKF requires noises’ covariances

determination while sSMA smoothing width specification.

The Kalman filter algorithm relies on prediction and measurement errors. In case
of no primary knowledge or sense for the error values (as in the current case),
most of the studies insert a priori error values. In this study a consideration has

been made based on the Q/R ratio that affects Kalman gain.
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Initially, velocity variance for the first three time steps is computed. Three time
steps stand for a 0.6 seconds time period in the specific example. For this
duration, pedestrian velocity should stay almost unchanged. Hence, velocity

variance indicates noises in measurement process.

For the following frames, velocity constancy should be relaxed by assuming
vector state variance, including prediction noise, as acceptable. Due to the
absence of a simulation model in the prediction state, measurement noise should

not exceed prediction noise (Q/R >1).

An investigation has been conducted for examining the effect of noises ratio
(Q/R) in trajectory estimation. It was experimentally observed, that Q/R ratio
affects edge trajectory points’ locations and thus their divergence is considered
as the critical indicator. It is highlighted that, by changing the number of the initial
“accepted” trajectory points (in the current study this is 3), the divergence must

differ. Hence, this is kept constant in the experiment.

On the other hand, smoothing width affects velocity variance (velocity variance is
reduced inversely to the number of data points). Adopting an extremely high
number of data points, velocity variance approaches zero even in cases where
the agent alters its velocity (oversmoothing). In this case movement dynamics will
be diminished. Thereafter, velocity variance elimination by preserving pedestrian

kinematics is required.
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Figure 4.5: Q/R ratio effect

First, smoothing width (D) remains constant at the value of 2 and Q/R ratio
varies. Figure 4.5 illustrates that edge points’ distance divergence decreases
logarithmically as Q/R ratio increases. In order to avoid overfitting (estimated
trajectory points are close to measured) and high velocity alterations, high ratio
values are rejected. As shown in Figure 4.5, insignificant differences in distance
divergence are noted in ratio values higher than 2.5. Hence, a Q/R ratio equal to
2.5 seems to be reasonable, for avoiding overfitting and accepting low velocity

alterations, and is therefore selected.

Alternatively, a threshold value on the gradient of the curve of Figure 4.5 could be
adopted. Low threshold values indicate that an extra increase of the Q/R ratio
does not significantly alter distance deviation. Namely, a threshold value of 0.03
suggests that an increase of 1 of the Q/R ratio decreases distance divergence
per 0.03 m, which seems to be an acceptable value. The aforementioned

threshold value appears at around 2.5 Q/R ratio value (Table 4.2).
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Table 4.2: Q/R ratio curve gradient

Q/R ratio Ed%eivp;(:;r:rs]csi(sr’f)nce Curve gradient

1.00 0.172

1.25 0.146 0.101
1.50 0.128 0.074
1.75 0.114 0.056
2.00 0.103 0.045
2.25 0.094 0.036
2.50 0.086 0.030
2.75 0.080 0.026
3.00 0.074 0.022
3.25 0.069 0.019
3.50 0.065 0.017
3.75 0.061 0.015
4.00 0.058 0.013
4.25 0.055 0.012
4.50 0.053 0.011
4.75 0.050 0.010
5.00 0.048 0.009

Further, Q/R ratio is kept fixed at 2.5 and smoothing width is being modified. In
this case velocity variance is the critical index. Five specific trajectories exhibiting
almost constant velocity, as indicated from the video recordings, were selected
randomly. The aim is to accomplish, for the specific trajectories, zero velocity
variances (or almost 100% reduction) while preserving movement dynamics.
Velocity variance decreases inversely to the number of data points, as illustrated
in Table 4.3. The first data row of the table presents velocity variance of each

pedestrian ID, while the other rows exhibit the reduction in the velocity variance

with the increasing smoothing width.
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Table 4.3: Velocity variance reduction

Wisdrtr;]olog‘;ggi 4| Ped001 | Ped013 | Ped017 | Ped029 | Ped035 | Average
0 0.145 0.118 0.159 0.101 0.104
1 91% 80% 80% 79% 74% 81%
2 96% 89% 87% 87% 88% 89%
3 98% 93% 91% 91% 91% 93%
4 99% 95% 93% 96% 95% 96%
5 99% 97% 96% 98% 97% 97%

A significant reduction is accomplished by adding only two data points
symmetrically to the current time step (D=1). When smoothing width exceeds the
value of 2, an additional increase does not significantly reduce velocity variance.
Thus, the value of 2 is adopted for the smoothing width as kinematics should be
maintained. Hence, the number of total data points that are considered in the
symmetric moving average is 5 (2D+1). 5 data points correspond to 1s duration
time, which approaches Moussaid et al. (2009), Moussaid et al. (2011) and
Ossen and Hoogendoorn (2008) smoothing widths (0.83s), though the latter
study referred to vehicle trajectories rather than pedestrian ones. In cases of not
enough trajectory data points (<25, prior to frames aggregation) smoothing width

is adjusted according to them.

In the current stage, all but the initial “accepted” trajectory steps have been
estimated. The process is executed backwards for estimating them. In order to
avoid high acceleration alterations that exist despite noise elimination, pedestrian
acceleration is computed in 1 second time step. Additionally, acceleration in the
first step (as it cannot be extracted from velocity alteration) is specified as equal
to the second step. Alternatively, an approach that employs UKF and sSMA in
separate stages (first UKF and after sSMA) has been examined providing higher
velocity and acceleration variances, that cannot be deduced from the specific
pedestrian movements. UKF application combined to sSMA indicates trajectory
smoothness and data noise reduction. Figure 4.6 displays the results of this
process, i.e. a comparison between the two phases (before and after filters’

application) for 3 pedestrian trajectories.
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5. CASE STUDIES

5.1. Case Studies Setup / Experimental Setup

In this research, we consider two modeling approaches: (i) a theory-derived
social force model, and (ii) four data-driven techniques. A visual overview of their

modeling assumptions is provided in Figure 5.1.

Boundary | E
aB

«—
.,O Pedestrian B
— Fo F
Pedestrian a O—F“ of Destination
Boundary I Foe
(a) Social force description
Boundary Vertical distance ~ Pedestrian
Horizontal
. distance
Pedestrian a @ e ———— e ——— e == Destination
Horizontal
distance
Boundary

(b) Data-driven model setup
Figure 5.1: Distance separation

As mentioned in section 3, Helbing and Molnar (1995) presented the social force
model to simulate pedestrian kinematics. The model set the principles for
specifying the rules of pedestrian movement and has been employed in widely
applied simulation software, such as VisWalk (PTV, 2015) and SimWalk
(Zainuddin et al., 2009). Social force model simulates pedestrian’s velocity in the
next time step (the same is simulated with the data-driven models in the current
experiment). It represents the following dynamics: as an agent walks they receive
forces from their surroundings that coerce them to amend their velocity, similarly

to the forces in fluid molecules. Social forces are distinguished in attractive and
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repulsive, and the total force that the agent receives from their surroundings is

condensed as:

_—

lg

g - (05 -u )|
2b

Fo = (U, -u,)+ (Ae™
T

1 g, Top ~(Us - Uy )A

— - A, +(1-A
: TR A, +(1-A,)

)+ (5.1)

1+cos(@,)
2

lop

1+ cos(cpa.

(V. U (a7, We(fra] A, +(1- 2, ) 220 Pa)y)

Equation (5.1), which is adopted in the present research, corresponds to the
improved version of the social force model presented by Helbing and Johansson
(2010), and Helbing (2012) and described in section 3.3.2. The equation denotes
that pedestrian motion relies on five variables. One can add pedestrian velocity in
the current time step (t) as a sixth variable for predicting pedestrian velocity in the
next time step (t+1). In other words (and based on equation (5.1)), pedestrian
velocity can be computed as:

(t+1) f(u ()r rorr uB) (5.2)

YaB? aB? a? ai?

_

where E(t) stands for the pedestrian velocity in the current time step, r, the
distance between the examined agent and the pedestrians triggering repulsive

effects and @ their velocity, @ the distance between the examined agent and

space boundaries, r. the distance between the examined agent and the

al

pedestrians triggering attractive effects, and r* the distance to the next

a

destination point, implied in equation (3.10) by the desired direction factor (ej).

To assess the effectiveness of the developed data-driven models a fair
comparison between the social force model and the data-driven ones was
designed. Therefore the data-driven pedestrian simulation models are developed
with agents updating their velocity according to social force model parameters.

Thus, pedestrian velocity (in the data-driven models) in the next time step [

u (t+1)] is estimated based on the:
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e agent’s velocity I(t) in the current time step;

e distance r;g between the examined agent and the pedestrians triggering

repulsive effects;

e distance r,; between the examined agent and space boundaries;

-

e distance between the examined agent and the pedestrians triggering

ai

attractive effects;

o distance E to the next destination point; and

pedestrians triggering repulsive effects velocity @ .

However, as -due to implementation details- and only in terms of Loess technique

its variables are limited to three, i.e. the following variables are considered i)

pedestrian velocity in the current time step (E(t), i) distance between the

examined agent and the pedestrians triggering repulsive effects (FQ;) and iii)

—_—

distance between the examined agent and space boundaries (r,g ).

In all models, distances r;, fg, f; and r are separated into two axes

al

representing the horizontal and the vertical projections of the adjacent
pedestrian/obstacle [Figure 5.1(b)]. In cases of more than one “repulsive” or
“attractive” agents or/and obstacles, a selection criterion needs to be specified for
determining the agent and the obstacle that has the highest impact on the
examined pedestrian. Contrary to the social force model, data-driven models
consider one value for every predictor and thus the appropriate one must be
adopted. In an initial approach the closest obstacle/pedestrian could be selected.
Helbing and Johansson (2010) and Helbing (2012) pointed out in their updated
version of the social force model, an angular dependence factor (based on
agent’s view) is a crucial measure in forces effects. Pedestrians who walk outside
of the agent’s sight view (i.e. behind them) or close to its contour (i.e. vertically to
agent) affect the simulated pedestrian’s movement much less than those who are

in front of them and close to their trajectory. Further investigation considering the
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determination of the “influence” area has been conducted from Giannis and
Vlahogianni (2018), though their study referred to overtaking situations (two
elliptical axis in front and behind the agent) considering both unidirectional and
bidirectional flows. They suggested that the asymmetry of this area is related to
the kinematics and the general characteristics of the examined pedestrians
(those who overtake and those who are overtaken). In the present research, in
accordance to Helbing and Johansson (2010) and Helbing (2012), the sight view
factor is adopted as the selection criterion in the present model. The same factor
is employed in “attractive” pedestrians. In terms of “repulsive” pedestrians the
density measure could be considered as an extra predictor in a future model in
order to take into account not only one pedestrian but also the rest that affect the

simulated one.

Furthermore, pedestrian velocity is a two (or three) dimensional quantity. As
agents are tracked in a steady coordinated system, an appropriate transformation
is required for computing vertical and horizontal velocity in each time step.
Trajectory slope is considered as crucial in a 1 second time step (the current
frame, two prior and two posterior frames are taken into account). The

u
coordinated system is thus rotated to the slope axis, and agent velocity [ux} is

y
transformed according to equation (5.3).

{u%}z{cose sineﬂux} (5.3)
u -sin® cosO || u,

y

u
where L.X } stands for the velocity in the rotated coordinated system and 6 for the
y

angle rotation. As also noticed in 4.3 section pixel values are descending in the Y

— axis. For a clear description see Fig. 5.2.
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Figure 5.2: Velocity rotation

In cases where specific variables cannot be computed, suitable large or low
values are selected, depending on the impact of the variable on the output value
(i.e. agent’s velocity in the next time step), in the following manner. Namely, when
an agent walks with no attractive or/and repulsive pedestrians for a certain period
of time, and thus the distances between the agent and the pedestrians (horizontal
and vertical) are not determinable, large values are allocated to distances while
pedestrian velocities are set to zero. In other words, a pseudo-agent is assumed
with their position being set far away (outside the recording area) from the
examined agents, while they are assumed to be stationary (their velocity set to
zero). The reason for this is that agents’ and obstacles’ distance is inversely
proportional to pedestrians’ velocity. Hence, setting a high value to this
parameter, results to the impact of this predictor in the specific data input to be

substantially small.

In terms of the destination points, while the recorded area covers a part of the
agent’s trajectory, the social force model refers to the next destination point (i.e.

an intermediate destination point) for the pedestrians that in the current
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experiment can be easily defined for both the employed collection data locations.
These are the ticket gates (entrance / exit) for the metro platforms and points
following pedestrian’s trajectory outside the recorded area (e.g. next corner) for
the shopping mall, according to its geometry (for pedestrians that do not stop

inside the recorded area).

5.2. Comparison of social force model with data-driven

models (with same number of variables)

Following data collection, trajectory extraction and noise reduction, the employed
models were designed and calibrated. Sensitivity analysis is performed to
estimate the impact of the social force model parameters in the derived outputs in
order to detect possible non-influencing parameters (or parameters that affect at
a rather low degree) and set them as constants during the calibration process, to

achieve a reduction in computational time.

Two different methods for sensitivity analysis are described next, the simple one-
at-a-time and the global sensitivity, while an approach based on genetic
algorithm, for calibrating social force model parameters, has also been taken into
consideration. The genetic algorithm does not require the a priori knowledge of
the most affective parameters (provided by the sensitivity analysis). Hence, it is
employed for training the social force model, while sensitivity analysis methods

are only presented indicatively.

5.2.1. One-at-a-time (OAT) sensitivity analysis

A one-at-a-time (OAT) sensitivity analysis has been performed on the parameters
of the social force model. Every parameter was been examined separately, within
a predetermined range, while all the other parameters are given a reasonable
value. The values of the fixed parameters and their ranges are presented in
Table 5.1. Mean squared error (MSE), as described in equation 5.7 and also
employed in the next sections, is used as the metric to capture the sensitivity

analysis performance. Following Zanlungo et al. (2011), the agent’s desired
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speed is regarded to differ between pedestrians (its values are drawn randomly
from its distribution). Both mean desired speed and its standard deviation are
considered to follow a Gaussian distribution (Helbing and Molnar, 1995 and Zeng
et al., 2014).

Table 5.1: Parameters fixed values and ranges

Parameter Range Fixed value Units
Relaxation time 0.1-4.5 0.5 seconds
Desired speed 0.5-5.0 1.34 m/s
(mean)

Desired speed 0.05-1.00 0.26 m/s
(std)

Maximal 1.47-5.09 1.74 m/s
acceptable speed

Strength of

interactions from 0.02-0.19 0.1

behind

Repulsive force
from obstacle 0.5-20.0 10 m?/s?
function constant

Repulsive force
from obstacle
exponential
parameter

0.1-2.0 0.2 m

Repulsive force
from pedestrian -
interaction
strength

0.03-8.21 4.3 m/s?

Repulsive force
from pedestrian- | 0.001-3.89 1.07 m
interaction range

The sensitivity analysis suggests that most of the parameters affect simulation

results with the critical determining parameters being the maximum acceptable
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speed, and the mean and standard deviation of the desired speed, as
anticipated. Results indicated that desired speed standard deviation parameter
values higher than 0.5m/s might increase the simulation error substantially. Low
values for relaxation time (<0.2s) and attractive force exponential parameter
(<0.3m) lead to false model estimations. Additionally, the values of the repulsive
force from pedestrian interaction range, the attractive force function constant and
the repulsive force from obstacle force function constant should not exceed 0.8,
0.5 and 3.0 respectively. On the other hand, the strength of interactions from the
behind parameter does not seem to affect significantly simulation results. At this
point it should be stated that most of the aforementioned parameters are
correlated (e.g. function constant and exponential parameters) and OAT
sensitivity analysis might not be the appropriate method for examining their
impact, and is only presented as an initial approach. Further investigation on the
sensitivity analysis is conducted adopting global sensitivity analysis, as described

in the next section.
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Figure 5.3: Social Force Model parameters impact
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5.2.2. Global sensitivity analysis (GSA)

In order to obviate parameters correlation the global sensitivity analysis (GSA)
was employed. GSA method is described in Saltelli et al. (2008). It is a variance
based approach conducted in terms of a Monte Carlo experiment. The Monte
Carlo experiment size (N) is required to be large for precise coefficients
estimation (small experiment size leads to high confidence intervals). GSA
computes sensitivity indices S; of parameter i. First-order index is a sensitivity
measure that presents the impact of parameter i over the model output (Y)
without considering parameters’ interaction while higher-order sensitivity indices
(total effects) capture parameters correlation. The principle of GSA arises on the
fact that sensitivity indices are computed not on a single parameter value (as the
selection of the value impacts sensitivity analysis output), but on the average of
all the possible values. High values of sensitivity indices (i.e. approach value of 1)

indicate important parameters.

A brute-force estimation of sensitivity indices requires a N? procedure. Saltelli et
al. (2008) proposed a method where sensitivity indices estimation cost is reduced
to N(k+2) (k is the number of model parameters). The principle of this method
arises on the fact that two different matrices (A, B) are set as standard.
Subsequently a group of matrices C; are generated where all of the matrix
columns are extracted from B except from the i-th column that is extracted from A
matrix. Thus, the number of C; matrices is equal to k. All of the aforementioned
matrices are used as model inputs. Model outputs are then computed as follows

(equations 5.4, 5.5, 5.6) and are utilized in the sensitivity indices estimation.

Ya =f(A) (5.4)
y, =f(B) (5.5)
Y., =f(C) (5.6)

A N(2k+2) (24.000 simulations) experiment was performed in order to estimate
second order (Saltelli, 2002) indices (experiment size N = 1000). Second order
sensitivity indices include the interactions between two parameters. To avoid

second order effects computation a 13.000 simulations experiment will be

142



required. In contrast, a brute-force estimation experiment will end after 10°

simulations. Thus, the reduction in computational time is significant.

In every simulation the error between the predicted (according to the social force
model) and the actual (subsequently to the smoothing application) velocities was
computed. MSE (equation 5.7) is used as the metric to capture the sensitivity
analysis performance, in line to OAT. Following Zanlungo et al. (2011), similarly
to the application in the OAT sensitivity analysis, the agent’s desired speed
differs between pedestrians (its values are drawn randomly from its distribution).
Both mean desired speed and its standard deviation follow the Gaussian
distribution (Helbing and Molnar, 1995 and Zeng et al., 2014).
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Table 5.2: Global sensitivity analysis

confidence confidence
Parameter STi Si
interval interval
Relaxation time 0,540 0,1060 0,253 0,0908
Desired speed - mean 0,594 0,0918 0,282 0,0877
Desired speed - std 0,142 0,0373 0,042 0,0376

Maximal acceptable speed 0,007 0,0029 0,000 0,0049

Strength of interactions from

behind 0,001 0,0004 0,000 0,0022

Repulsive force from

. 0,061 0,0095 0,052 0,0213
obstacle - function constant

Repulsive force from

obstacle - exponential 0,015 0,0033 0,004 0,0093
parameter

Repulsive force from

pedestrian - interaction 0,001 0,0004 0,000 0,0029
strength

Repulsive force from

pedestrian - interaction 0,003 0,0006 0,000 0,0036
range

Attractive force - function

0,001 0,0002 0,000 0,0017
constant

Attractive force - exponential

parameter 0,001 0,0003 0,000 0,0023

Table 5.2 presents the total effects and the first-order sensitivity indices for the
social force model as applied in the collected data. The sensitivity analysis
suggests that desired speed and relaxation time are the critical determining
parameters, as also extracted from OAT sensitivity analysis. A false estimation in
them will cause significant errors in applying the social force model. The other

parameters do not seem to affect substantially simulation results.

In addition, the sum of the first order indices (0.633) indicates the non-additivity of

the social force model. Parameter ranges were determined according to section
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3.3.3, while the attractive forces parameters’ ranges were selected randomly as

no particular reference considering their values was found.

5.2.3. Comparative analysis

As mentioned in previous sections, a fair comparison is attempted in this
research by employing the same social force model parameters as data-driven
models’ predictors. In terms of the ANN method, a 50 nodes network is utilized
with one hidden layer (around 4 times the nodes in the input layer), Rectified
Linear Unit (ReLU) activation function among all nodes and the Adam
optimization algorithm (Kingma and Ba, 2015) with 0.001 learning rate. Glorot et
al. (2011) pointed out the superiority of rectifier neural networks (ANN employing
RelLU activation function) compared to those using previously widely applied
activations such as logistic sigmoid and tangent hyperbolic ones. They also
mentioned that rectifier units are closer to biological neurons. The number of
nodes has been selected during a trial-and-error process in order to avoid
overfitting. ReLU function is a recently applied activation function in the field of
ANN that restricts the limitations (e.g. vanishing gradient problem) of the
previously used activated functions (sigmoid, hyperbolic tangent, linear etc) that
is further enhanced with employment of the Adam algorithm with a small learning
rate. The output consists of two nodes (ux, uy) following the pedestrian velocity
dimension. An initial approach, where the cost function is referred to the errors
between the velocities in the Euclidean norm (u) reveals that low error values do
not necessarily lead to low errors in each velocity dimension (uy, u,) separately,
but rather to substantially high ones. Thus, a cost function, where the errors are
related in each dimension separately is employed (Equation 5.7). ANN were
modeled in the python programming language, with the aid of the Tensorflow
library and the Keras API. Tensorflow can use system GPU (Graphics Processing
Unit) sources in order to speed up model training (and testing) procedures (Abadi
et al., 2016).

S|m obs )2 + (usim _ uobs )2

lZN: Xn Yn Yn (57)
N4 2

obs

where u®™ and u®® stands for predicted and observed agent's velocity.
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The number of epochs during the training of an ANN plays a very important role
in the overfitting phenomenon (explained below). As the number of epochs is
increasing the train error (the error on the training dataset) decreases (as this is
the aim of the training procedure), but on the other hand the test error (the error
on the test dataset) might increase. Figure 5.4 presents overfitting for the ANN
model. From a number of epochs the test error stops to decrease and starts to
increase while the gap between the type of errors (train and test) commences to
increase substantially. In this experiment, this happens at around 500 epochs.

Thus, an ANN model with 500 epochs in the training procedure is employed.

Number of epochs

0.015-
— Test

— Train

0.010-

M SE

0.005-

\
S S A T R e ek g, by B A 4__.}1 M

0.000-

0 250 500 750 1000

Figure 5.4: Number of epochs

As a multi-output regression has to be performed in this experiment (we
distinguish pedestrian velocity in two axes and consider their correlation) MSVR
and multi-output GP (in particular LMC type) are employed. MSVR was modelled
in the Matlab programming language utilizing the Alvarez et al. (2018) code, with
RBF kernel of 4.5 lengthscale, 5.0 penalty parameter C, 0.02 error of the ¢-
sensitive zone and the IRWLS optimization algorithm. An RBF kernel is also used
in the GP model, whose hyperparameters are estimated during the training

process, modelled in the python programming language. In terms of the Loess
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method a model of 0.5 span and second polynomial degree is employed. Span
ranges from 0 to 1 and represents the smoothness of the curve that fits data.
Lower span values evince less smooth curves and vice versa. Polynomial degree
ranges in 0, 1 or 2, while 0 is generally avoidable. Cohen (1999) employed bias
corrected Akaike information criterion (AlIC) for span estimation. It is stated that in
contrast to the other data-driven methods Loess does not have the ability of
examining possible correlations of the outputs in cases of multi-output
experiments such the current one. The model has been implemented and

estimated in R statistical computing environment through Rstudio IDE.

As also stated in terms of specifying the number of epochs for the ANN model,
generally data-driven methods tend to perform well (or very well) in the training
datasets, though their performance in test sets is under consideration. A model
with low error values in the training sets and high in the test sets is a typical
situation of overfitting, where the model can replicate only the given datasets and
lacks generalization to other sets. On the other hand, theoretical simulation
models, due to the fact that they rely on their own modeling principles and are not

built on data solely, may not suffer from overfitting.

Thus, specific attention was given when comparing theoretical and data-driven
models towards the overfitting problem. Hence, cross-validation is employed for
the comparison and in particular a 5-fold one, as it overcomes overfitting

problems.

In the specific experiment all of the selected pedestrian trajectories (both in the
metro station and the shopping mall sites) are used for the application and
comparison of the social force and data-driven models, in a full cross-validation
pattern (5-fold cross-validation). The distinct recorded datasets are not of the
same size, however the folds used in the cross-validation process require to be of
equal size. Thus, the two datasets are merged together. Subsequently, the data
in the dataset are shuffled and then divided in to five (5-fold cross-validation)
equally sized datasets. Each time, four of the datasets are used for training, and
the remaining one for testing. The training part involves the estimation of all
model parameters, i.e. synaptic weights for ANN, weights for SVR, kernel
parameters for GP, weights for Loess and the appropriate parameters for the

social force model, by minimizing the cost function (Equation 5.7), which is the
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same in all models. Then the trained model is applied to the test dataset,
providing predicted values for the datapoints in the test set, in order to capture
model generalization capability. When all of the datasets are utilized once as test
sets the cross-validation process is completed. The result of the cross-validation
leads to predicted values for all the datapoints (as are included in the test sets).
Thus, with the employment of the appropriate GoF measures, comparing
predicted and observed values, the generalization capability of each model can

be estimated.

Considering the social force model training, the objective is to estimate the value
of 11 model parameters that minimize Equation 5.7 in every cross-validation run
(training process). As described in sections 5.2.1 and 5.2.2 [while also by
Kouskoulis et al. (2019)] a two-step approach could be an option for training the
social force model. At the first step (prior to cross-validation runs), the global
sensitivity analysis (as a more holistic method as opposed to the OAT sensitivity
analysis) is performed in the social force model in order to specify model
parameters with high impact. In the second step (during the cross-validation

process), the training revolves around the determination of these parameters.

This study attempts to train the social force model in terms of metaheuristics
optimization. Especially, as the scope is to estimate 11 parameters that minimize
a certain cost function, a genetic algorithm is employed. Genetic algorithms have
proven their robustness in the field of optimization. They overcome the need of
examining the most affecting parameters and then train the model only around

them, as they inspect all the model parameters in an effective procedure.

A population of 30 chromosomes, with 0.8 and 0.2 crossover and mutation
probabilities, respectively, and the best 2 fitness individuals to survive at each
generation (elitism), was used to train the social force model (the
hyperparameters of the genetic algorithm were set after a trial and error process)
with the aid of R statistical software (Scrucca, 2013). Parameter bounds are

specified according to Section 3.3.3.

A set of GoF measures, apart from the MSE, have been employed in order to
evaluate the performance of each model and to compare them as each of them
denotes different types of errors. Root mean square percentage error (RMSPE)

penalizes large errors, mean percentage error (MPE) and Theil’s bias proportion
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(Un) indicate the existence of systematic bias, Theil’s covariance proportion (Uc)
the existence of unsystematic error, Theil’s inequality coefficient (U) and Theil’s
variance proportion (Us) high values (close to 1) indicate high model inequality
and difference in the distributions of predicted and observed data respectively.
Uwm, Us and Uc sum to 1 considering MSE decomposition and thus population

standard deviations for predicted (c°™) and observed agent’s velocities (°)

are
used. It is noted that r stands for the correlation coefficient among predicted and

observed values.

The errors of the predicted (relying on the social force model) and the measured
pedestrian’s velocity comprise the crucial indicator for evaluating model’s
efficacy. Particularly, pedestrian’s actual speed is taken into account. Both in the
social force and data-driven model simulations zero velocities (when pedestrian

stands still) are disregarded as they do not show tendency for moving.

The GoF measures are presented in Equations 5.8 — 5.13 and utilize agent’s
velocity Euclidean norm (u) in order to capture model's performance. By
computing agent’s velocity according to MSE (as described above), i.e. the errors
are related in each dimension separately, will lead to extremely high values for
the GoF measures (particularly RMSPE) and will not reflect the exact
performance of each model. As the aim in this part is not to estimate model
weights, agent’s velocity Euclidean norm (u) is utilized. This also has been

applied in the same metrics for the social force model.

N sim _ obs 2
RMSPE = \/%z[“u—b“] (5.8)
n=1 n
: 1 N uiim _ugbs
MPE _NZ = (5.9)
n=1 n

U= o= (5.10)
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—sim —obs 2
i)
UM=1 T (5.11)
N;(un —u, )

sim obs \2
U = (0"-0™) (5.12)

ljl i (uzim _ ugbs )2

n=1

2(1 _ r)O.simo.obs

;i(uiim _ ugbs )2

n=1

U = (5.13)

Table 5.3 presents the performance of each model. The computed GoF
measures indicate that data-driven methods have higher capability of simulating
pedestrian movements, as they perform better according to all of GoF measures.
This implies the outperformance of data-driven techniques in the specific
simulations. The theoretical simulation model (social force) includes further large
errors compared to the data-driven models, while the Loess method displayed
the highest performance. The social force model performs sufficiently well in
terms of model inequality [social force model Theil index (U) is not significantly
higher than those of the data-driven techniques]. On the other hand, the social
force model includes both systematic (MPE and Uy) and unsystematic (Uc)
biases that almost do not exist in the data-driven models. Furthermore, the data-
driven methods accomplish the presented cross-validation process significantly
faster that the social force model, that is 129 seconds for the ANN, 16.5 minutes
for the GP, 53 seconds for the SVR and 18 seconds for the Loess, while around
70 hours were required for the social force model employing the aforementioned
genetic algorithm in the training process. All simulations were performed in an
Intel i7 CPU @ 1.80GHz laptop with 8GB of RAM and 64-bit Windows 10.

In addition, a comparison among the four data-driven methods (ANN, GP, SVR
and Loess) reveals that Loess performs better according to almost every index,
ANN and GP present similar performance levels, while SVR provides inferior
predictions. It should also be mentioned that Loess technique performs better
even though it employs less predictors than the other data-driven methods, while

accomplishing the cross-validation procedure in significantly less time.
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In contrast, it is clear that there are limitations, related with the opacity and the
(lack of) interpretability of the data-driven models. Yet, they seem a promising
avenue for model development, when model fit is the primary concern. On the
other hand, the social force model provides an integrated simulation framework
where every parameter is directly related to the model output. It explains in a
clear manner the way that pedestrians interact and walk (high level of
interpretability), while data-driven methods are treated, at some level, as black

boxes.

Table 5.3: Models performance comparison

Model /

GoF MSE RMSPE | MPE U Uwm Us Uc
Social

force

model 0,005341 | 19,32% | 8,06% | 0,0382 | 0,3760 | 0,1996 | 0,4244
ANN 0,002174 | 11,57% | 0,70% | 0,0245 | 0,0002 | 0,0045 | 0,9953
GP 0,002171 | 10,76% | 0,50% | 0,0241 | 0,0003 | 0,0058 | 0,9940
SVR 0,003109 | 15,42% | 1,29% | 0,0304 | 0,0011 | 0,0709 | 0,9280
Loess 0,002349 | 8,76% | 0,50% | 0,0226 | 0,0002 | 0,0047 | 0,9952

Complementary to the above, a comparison of the GoF measures in every run of
the cross-validation procedure (both train and test measures) is presented in
Figures 5.5 and 5.6 for every model. The x-axis illustrates the datasets that were
used in the training and test procedures during the cross-validation process. In
accordance to the previous analysis the Figures indicate better capability of data-
driven methods for simulating pedestrian movements as they perform better for
almost all of them with the only one exception being the GP in the test set of the
first run (RMSPE).

This implies that data-driven models can simulate more effectively pedestrian
movements. On the other hand, data-driven methods tend to overfit as they
learn/develop from the data (as mentioned above), indicated by the gap of the

measures between the training and the test datasets.

To sum up data-driven methods strengths comprise:
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e Higher simulation performance

¢ No need for mathematical equations

e Substantially lower computational time
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Figure 5.5: GoFs in every CV run — MSE, RMSPE, MPE, Theil coefficient
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Figure 5.6: GoFs in every CV run — Theil bias, Theil variance, Theil covariance
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5.3. Introduction of Additional Variables in Data-Driven
Models

Following the assessment of the performance of data-driven models in pedestrian
simulation considering only variables from existed and widely applied pedestrian
simulation models, further analysis is conducted in order to specify if additional
variables can improve data-driven models efficacy. The additional variables have
been selected from section 2 (where the literature review in pedestrian modelling

is presented).

Initially the height and the gender of the agents are used for exploring data-driven
modelling improvement. While agents’ gender is obvious (as the datasets have
been extracted from video recordings), their height needs to be estimated. The

aid of photogrammetric tools was substantial.

Apart from transforming image points to real world ones, photogrammetric
methods are also useful for calculating the dimensions of every item, and thereby

agent’s height, from a video recording.

The process is the same with the methodology employed for the conversion of an
image point to real world coordinates, regarding the steps of a) removing lens
distortion, b) cameras site and angles estimation In addition to the pedestrian’s
lowest point pixel coordinates (x4,y1), those of the highest point (x,, y2) are also

computed by removing principal point’s coordinates [x1'=x1-x0, y1'=-(y1-y0),

Xy =Xy -Xg, Yo ==(Y2-Yo) ]

Subsequently, pedestrian world coordinates (X, Y) are computed according to
equation (4.3), where Z can take an initial value (e.g. 0). Knowing pedestrian
world coordinates (X, Y) we insert them in equation (4.3), replace (in equation
4.3) pedestrian’s lowest point (x4,y4) to pedestrian’s highest point (x2, y2) and
compute the new Z value. Agent’'s height comprises the difference between the

initial value of Z and the new one. Figure 5.7 presents the method.
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Figure 5.7: Agent’s height estimation
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The agent’s gender has been transformed to a numeric (dummy) variable with

the appropriate encoding in order to be incorporated in the data-driven models.

Due to implementation details (mentioned in section 5.1) the Loess technique
cannot be applied in this analysis as it cannot employ further variables. In all of
the other three data-driven techniques (i.e. ANN, SVR and GP) the same model
setup, presented in section 5.1, and the same hyperparameters (for the models

that are needed to specified a priori) have been used.

Figures 5.8 and 5.9 present the results of this analysis. Following the inclusion of
agents’ characteristics (height and gender), the updated data-driven pedestrian
simulation models performed better than the initial ones considering almost every
GoF measure (described in section 5.1). An exception of this is indicated by the
Theil’'s bias proportion measure in the ANN model (the difference in the SVR
model is negligible). This index, which implies the existence of systematic bias,
performed worse in this technique. The existence of a higher systematic bias was
not verified by the MPE measure. At this point it should be mentioned that Theil’s
bias proportion measure value was already extremely low before the adoption of
the agent’s height and gender, and although it increased in the updated model, it
still remains very low. Other differences in the values of the GoF measure (that
can imply a lower performance in the updated data-driven model) are not
considerable (e.g. RMSPE index in the GP model, Theil’s variance proportion in
the GP and SVR models). In order to illustrate this fact (i.e. the size of the
difference in the GoF measures) a comparison with social force model GoF

measures is provided in Figures 5.10 and 5.11.

In addition, the incorporation of the additional variables in the pedestrian
simulation model improved fairly the performance of the ANN technique, while
not as much the performance of GP and SVR techniques where the differences
in the GoF measures are low (or very low) before and after the incorporation. On
the other hand, the ANN model, with the aforementioned exception of the Theil’s
bias proportion index, performed significantly better in all of the other GoF

measures.

Finally, the parameter of time is also tested for its impact in the data-driven
pedestrian simulation model (i.e. whether the incorporation of time can further

enhance the improvement of the model). As GP and SVR techniques are not
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time-series models, in contrast to ANN where with its class of Recurrent Neural
Network (RNN) or the Long short-term memory (LSTM), an architecture of RNN,
can incorporate the parameter of time, an extra previous time-step of the agent’s
trajectory is included in the data-driven models. The aim of this research was to
examine if the parameter of time can upgrade the performance of the data-driven

models after the incorporation of agent’s height and gender.

The results of this process (Figures 5.8 and 5.9) resemble a lot with the results of
the data-driven model with the additional variables of the agent’s characteristics.
In particular the models after the incorporation of time parameter seem to perform
better, but not for all the of the GoF measures. Theil's bias proportion index is
increased in all of the data-driven models (including GP), but still this lower
performance is not verified from the MPE index. It should be mentioned that even
Theil’s bias proportion index increased it remained extremely low for all of the
data-driven techniques (see also Figure 5.11). ANN model performs better (with
the exception of Theil's bias proportion) after the incorporation of time parameter,

while the differences of GP and SVR models are slightly better.

Interestingly the adoption of the additional variables cannot enhance the
performance of some of the employed data-driven models in order to surpass
Loess model performance (even Loess model employs only three pedestrian
simulation variables). In particular, SVR model performs worse than Loess even if
the former employs agent’s characteristics (i.e. height and gender) and time
variables. GP model performs worse than Loess if only employing pedestrians’
characteristics variables (it requires also time variable for outperforming Loess
model). On the other hand ANN model performs better in the majority of the GoF
measures than Loess even when employing only pedestrians’ characteristics

variables.

In general, the adoption of the additional variables seems to improve mainly the
performance of the ANN model implying that this technique can “handle” more

efficiently the incorporation of these variables.
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Figure 5.8: GoFs with extra variables — MSE, RMSPE, MPE, Theil coefficient
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6. DISCUSSION/CONCLUSION

6.1. Overview

This thesis explores the capabilities of data-driven methods in the field of
pedestrian simulation and provides an assessment of the model’s validity through
a comparative analysis of the models’ performance against a traditional
theoretical model. Four of the most widely used methods - namely, ANN, SVR,
GP and Loess - were compared with a theoretical pedestrian simulation model,
the social force model. The model set the principles/rules of pedestrian
movement and has been employed in widely applied simulation software, such as
VisWalk (PTV, 2015) and SimWalk (Zainuddin et al., 2009). According to the
social force model, as an agent walks they receive forces from their surroundings
that coerce them to amend their velocity, similarly to the forces in fluid molecules.
Social forces are distinguished in attractive and repulsive, and the total force that

the agent receives from their surroundings. The model estimates agent’s velocity

in the next time step [uj(t+1)] relying on: a) the agent’s velocity Q(t) in the
current time step, b) the distance FG; between the examined agent and the
pedestrians triggering repulsive effects, c) the distance Fa; between the examined

agent and space boundaries, d) the distance F.. between the examined agent

and the pedestrians triggering attractive effects, e) the distance E to the next

destination point and f) the pedestrians triggering repulsive effects velocity @ .

To design the models, a data collection experiment was designed. The data was
collected via video recordings at two different sites where pedestrians were
anticipated to adopt different walking patterns. Data collection was performed at a
metro station during peak hours, where most of the agents were on their way to
work/study, and a shopping mall during afternoon hours, where pedestrians
enjoyed their walk, stared at shop displays and shopped. Video recordings were
performed utilizing two digital cameras that were placed at both locations at an

upper level point. The first camera was focused on the terrain, where pedestrians
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walk, and the second captured their characteristics (height, gender etc.).
Subsequently, a tracking software was employed for extracting pedestrian
trajectories. An appropriate transformation based on photogrammetric tools

allowed the conversion of image points to real world coordinates.

The extracted data included noise that needs to be eliminated. A data noise
reduction algorithm, that combines existing methods, was presented in this
research. In particular, an extension of the Kalman filter algorithm was applied in
the problem of pedestrian trajectory noise reduction with promising results. While
most of the studies in pedestrian tracking employ standard Kalman filter and
consequently adopt its assumptions, the present research utilized UKF in order to
relax them. As noise matrices (predicted and measurement states) were
unknown, a procedure for estimating the noise covariance ratio was also

presented. Experiments were conducted for selecting the appropriate ratio value.

Moreover sSMA was incorporated in the UKF. Kalman filter prediction for the next
time step relies on the velocity of the moving object. In cases of velocity noisy
values Kalman filter finds it difficult to provide an accurate estimation for the next
time step pedestrian cite. Hence, the incorporation of sSMA in the velocity part of
UKF reduces velocity noise and thus leads to a higher filter performance. On the
other hand, exorbitant smoothing was avoided by maintaining pedestrian
kinematics. The results of the filter in pedestrian trajectory data indicated
significant noise reduction, with velocity variance of trajectories that approach

steady movement (zero velocity variance) being substantially reduced.

Due to the fact that data-driven techniques are not inherently a pedestrian
simulation model, an appropriate model setup has been developed. In order to
provide a fair comparison between the social force model and the data-driven
methods the same parameters that the social force model employs (as
mentioned before) were also used in the data-driven pedestrian models for
estimating pedestrian’s velocity in the next time step. Considering the Loess
model, and due to technique limitations, the model variables were limited to three
(agent’s velocity in the current time step, distance between the examined agent
and the pedestrians triggering repulsive effect and distance between the

examined agent and space boundaries).
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The comparative analysis of the social force model and the data-driven models
was conducted adopting the cross-validation procedure. Data-driven methods
learn from the data and simulate pedestrian movements fairly. On the other hand,
data-driven techniques fail in generalizing their results on unseen data
(overfitting). Hence the cross-validation process was utilized in order to cater for
this limitation. Though the aim of this research is not to provide a pedestrian
simulation model based on the aforementioned techniques, data-driven models

hyperparameters were set in order to restrict overfitting issues.

In terms of the social force model calibration a genetic algorithm (in terms of
metaheuristics) has been employed. An OAT sensitivity analysis and a more
holistic method (GSA) were applied and captured model parameters’ impact
indicating that the desired and acceptable speed and the relaxation time
comprise the critical parameters. GSA surpasses OAT sensitivity analysis

drawbacks and specifies parameters correlation.

A set of GoF measures have been employed to evaluate the performance of
each model. Results indicate the outperformance of the data-driven methods in
terms of pedestrian simulation in almost every cross-validation run and every
GoF measure, although no prior knowledge of pedestrian dynamics has been
incorporated into them. This indicates the suitability of data-driven methods for
pedestrian simulation. Still, the tendency of data-driven techniques to overfit
should be taken into serious consideration, when a researcher aims to develop a

data-driven model for pedestrian simulation.

Following the comparison of the performance between the social force model and
the data-driven models, with the latter including the same variables with the
former additional variables were included in the data-driven models. These
variables are the agents’ characteristics’ (height and gender) and the time
parameter. Further analysis has been conducted in order to investigate if the
additional parameters can enhance the performance of the data-driven models.
Loess model was excluded from this procedure due to the limitations of this

technique.
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6.2. Research Contributions

This research provides a contribution towards exploring data-driven techniques’
efficacy on pedestrian modeling. Pedestrian trajectories have been extracted
from video recordings on the field and a filter that combines UKF and sSMA has
been applied for eliminating data noise. Exorbitant smoothing has been avoided
by maintaining pedestrian kinematics. Subsequently, the smoothened pedestrian
trajectories were used for an application utilizing a representative pedestrian
theoretical model and four data-driven techniques. Following model training and
testing, simulation results indicated, through the RMSPE index, substantially
higher (better) performance for the data-driven methods. The results of this study
demonstrate that data-driven theories comprise a very promising approach for
pedestrian simulation, as they can provide increased performance. Data-driven
techniques offer higher simulation performance, less computational time
requirements and “mathematical” simplicity making them overall a more suitable

approach for pedestrian simulation.
Explicitly the contributions of the research are outlined in the following:

e Provide a framework for data (pedestrian trajectories) noise elimination
o Enhance UKF performance with the incorporation of sSSMA
o Estimate UKF noise covariances when unknown
e Pedestrian model setup for data-driven simulations
e Apply a time efficient social force model calibration
e Display data-driven modelling efficiency in the field of pedestrian
simulation (in contrast to existing theoretical models)
e Improve performance of data-driven models incorporating additional

meaningful pedestrian simulation variables

Moving average enhanced UKF performance as it reduces velocity noise and
further improves the estimation of pedestrian’s next time step. Also due to the
fact that the symmetric extension of the moving average filter was employed the
tendency of the agent’s movement was reflected. In addition, a framework that
estimates UKF noise covariances was provided. In this framework initially the
noise covariance at measurement state was estimated. Subsequently, the

relationship (ratio) between the noise covariance at measurement state and the
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one at the prediction state was examined attempting to avoid extremely
smoothing and preserve pedestrian kinematics on the one hand, and to avoid

overfitting (estimated trajectory points are close to measured), on the other hand.

A fair comparison between the social model and the data-driven techniques was
performed in this thesis. Hence, the same parameters that social force utilizes in
order to simulate pedestrian movements were employed in the data-driven
models. The parameters of distances were set at an appropriate format
(horizontal and vertical projections) so that the data-driven techniques are able to
incorporate them. A suitable criterion was specified (based on the “closest’
distance) for setting distance parameters as a one value variable. Towards this,

agents’ coordinates were transformed according to their route (angle rotation).

A time efficient procedure was also proposed for calibrating the social force
model parameters. A genetic algorithm was employed for minimizing the cost
function of the social force parameters during its training process. Prior to this, a
two-step approach that is related to the sensitivity analysis (OAT and GSA where
the latter obviates model parameters correlation) of the social force model
parameters was presented. However, as the genetic algorithm is robust and
efficient, and it does not require the a priori knowledge of the most affective

parameters, it was used in the present experiment.

The main contribution of this research is that data-driven techniques seem to
perform better than the theoretical simulation models in the field of pedestrian
simulation, and thus data-driven analytics comprise a promising theory. All of the
employed data-driven methods performed better, with little and negligible
exceptions, than the social force model although they do not rely on any a priori
set of pedestrian movement principles. Furthermore, data-driven models proved
their computation and time efficiency. Slight differences were noticed among the
performance of the different data-driven methods, with SVR being the least
powerful of them. On the other hand, the limitations of the data-driven methods
that concern to the opacity, the (lack of) interpretability and the tendency for

overfitting should be seriously considered.

Finally, with the incorporation of additional pedestrian simulation variables, the
data-driven models performed better, although this improvement was not

substantially, mainly, due to the fact that their performance had already reached
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a high level. An increased improvement in the performance of ANN model
(compared to SVR and GP) was noticed. In this experiment the agent’s height
and gender, and the parameter of time were considered as the additional

variables.

The main contribution of the present research, as mentioned above, is the display
that data-driven techniques can enhance the performance of pedestrian
modeling. Improved pedestrian simulation models can be employed by many
sectors in the transportation field. A typical example is this of autonomous
vehicles. Self-driving cars recognize their surroundings, including the moving
objects (e.g. pedestrians), and adjust their movement considering also the agent
movement in their surroundings. An improved pedestrian simulation model can
lead to more reliable prediction of agents’ movement in the vehicles’
surroundings, and thus lead to improved performance of autonomous vehicles

considering pedestrian collision avoidance.

An overall outcome of the research is the outperformance of the data-driven
techniques in the field of pedestrian simulation (as mentioned above). The writer
of this thesis recommends the employment of these techniques for developing
pedestrian simulation models, relying on their high level efficiency. Among the
four data-driven technigues ANN seem to provide a more holistic modeling
framework (though more complex) that can capture movement dynamics and can
be enhanced with the incorporation of additional variables that improve their

performance.

6.3. Study’s Limitations and Future Research

Though an extended comparative analysis was conducted in the current research
further issues are outlined as well. These issues could be considered as next

steps for the research in the field of data-driven pedestrian simulation.

A limitation of the research was the employment of certain variables in the data-
driven models, mainly, in order to provide a fair comparison between them and
the social force model, while certain additional variables were also considered

(based on the literature review). In future research an amplification of the data-
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driven models can be accomplished with the incorporation of other relevant
variables. An example of this could be the employment of a density measure. In
the current thesis the distance parameters of the data-driven model included only
one “repulsive” and/or “attractive” agent according to the selection criterion that
was mentioned. The incorporation in the models of a density measure could
capture not only one pedestrian, but also the other pedestrians affecting the

simulated one.

In this experiment specific data (i.e. pedestrian trajectories) were used for
examining the performance of both data-driven and social force models and
comparing them. Additional data can be considered for an improved evaluation of
the models, either from existing datasets or from other new data collection

experiments under different conditions.

The scope of this thesis is not to provide a data-driven pedestrian simulation
model. Though, due to the fact that the results of the present research
demonstrate that data-driven models are able to capture pedestrian dynamics at
a satisfactory level, a data-driven pedestrian simulation model could be

developed in the future.

Also, in this thesis only pedestrian movements were considered. An interesting
research objective is the investigation of pedestrian movement while interacting
with vehicles in more complex scenarios and situations. The application of data-
driven models in these scenarios should be examined. This notation is crucial as
it can enhance the way that autonomous vehicles behave and perform. In
particular, in future cities where autonomous vehicles move, interacting with other
vehicles/bicycles/pedestrians, an advanced data-driven model that simulates
pedestrian movement in these types of complex environments can improve the
performance of autonomous vehicles, as pedestrian behavior will be also
incorporated more efficiently. Data-driven theory can be employed as it has

proven its efficiency in the present research.

In addition, in this research the parameter of time in data-driven pedestrian
simulation models was also tested. RNN architecture of ANN can also be tested
for its applicability in terms of pedestrian simulation. RNN or LSTM models
incorporate in their structure the parameter of time. It should be mentioned that

this requires data with extended pedestrian trajectories as RNN and LSTM
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models make their predictions in a time series manner requiring a large amount

of previous time steps of a pedestrian trajectory for predicting the next one.

Finally, a comparison in pedestrian movements between normal and emergency
situations should be further explored to identify the differences in pedestrian
behavior under emergencies. This will contribute to the design of pedestrian
simulation models which offer a more holistic approach catering for different

types of situations.
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