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Abstract  

The aim of the research is to examine whether data-driven pedestrian simulation 

models can outperform the theoretical ones and provide a robust model 

framework for pedestrian simulation. Initially, an extended literature review was 

performed to identify the existing pedestrian simulation models and the main 

parameters utilized in pedestrian simulation. To achieve the aim of the study, a 

comparative analysis of a well-known and widely applied theoretical pedestrian 

simulation model (i.e. the social force mode) and four data-driven techniques: the 

Artificial Neural Networks, the Support Vector Regression, the Gaussian 

Processes and the Locally Weighted Regression was conducted. A suitable 

methodological framework for the comparative analysis was designed. Initially, 

appropriate data (i.e. pedestrian trajectories) were collected from two different 

area types: a metro station during peak hours and a shopping mall during 

afternoon hours, via video recordings. Then, with the aid of an appropriate 

software, pedestrian trajectories were extracted. Due to the fact that the collected 

data include white noise, an algorithm for noise elimination was developed as a 

combination of existing smoothing filters. Subsequently, an appropriate 

pedestrian simulation model setup for the data-driven techniques was developed, 

as they do not cater specifically for pedestrian simulation framework. In order to 

conduct a fair comparison the variables of the theoretical model were employed 

in the data-driven models. Cross-validation was applied as the appropriate 

method for examining each model’s performance and to cater for data overfitting, 

while a combination of goodness-of-fit measures the models’ accuracy were 

estimated to assess the models in a holistic manner. The results indicate that 

data-driven methods have higher capability of simulating pedestrian movement 

as they perform better according to all of goodness-of-fit measures. Following the 

first level of comparison (compare models with the same parameters), additional 

parameters (agent’s characteristics and time parameter) have been included in 

the data-driven models in order to examine the possibility of improving (and its 

magnitude) the performance of these models. Results of this analysis indicate 

that the employment of the selected variables can improve data-driven pedestrian 

simulation models performance (they performed better for almost every 

goodness-of-fit measure). 
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Περίληψη 

Σκοπό της παρούσας έρευνας αποτελεί η διερεύνηση της καταλληλότητας 

υιοθέτησης μοντέλων που βασίζονται σε μεθόδους ανάλυσης δεδομένων για την 

προσομοίωση της πεζής κίνησης. Για το σκοπό αυτό, σχεδιάζονται κατάλληλα 

μοντέλα και εξετάζεται αν δύναται να παράσχουν ένα αξιόπιστο μεθοδολογικό 

πλαίσιο στην προσομοίωση της πεζής κίνησης. Επιπλέον, αξιολογείται η 

απόδοσή τους σε σχέση με τα αντίστοιχα θεωρητικά μοντέλα προσομοίωσης της 

πεζής κίνησης. Στο πλαίσιο αυτό πραγματοποιείται μια συγκριτική ανάλυση ενός 

αρκετά γνωστού και ευρέως εφαρμοσμένου θεωρητικού μοντέλου προσομοίωσης 

της πεζής κίνησης (το μοντέλο social force) και τεσσάρων μεθόδων ανάλυσης 

δεδομένων: των Τεχνητών Νευρωνικών Δικτύων, των Μηχανών Διανυσμάτων 

Υποστήριξης, των Gaussian Processes και της Τοπικά Σταθμισμένης μη 

Παραμετρικής Παλινδρόμησης. Προγενέστερα αυτού μια εκτενής βιβλιογραφική 

ανασκόπηση ανέδειξε τα υφιστάμενα θεωρητικά μοντέλα προσομοίωσης της 

πεζής κίνησης και τις παραμέτρους τους. Ακολούθως σχεδιάστηκε ένα κατάλληλο 

μεθοδολογικό πλαίσιο για τη συγκριτική ανάλυση. Αρχικά συλλέχθηκαν τα 

δεδομένα (οι τροχιές των πεζών) από δυο διαφορετικούς τύπους περιοχών, την 

πλατφόρμα ενός σταθμού του μετρό κατά τις ώρες αιχμής και ενός εμπορικού 

κέντρου κατά τις απογευματινές ώρες, όλα μέσω βιντεοσκόπησης. Ακολούθως με 

τη βοήθεια ενός κατάλληλου λογισμικού εξήχθησαν οι τροχιές των πεζών. Καθώς 

τα συλλεχθέντα δεδομένα περιέχουν θόρυβο αναπτύχθηκε κατάλληλος 

αλγόριθμος για ελαχιστοποίηση του θορύβου των δεδομένων, υιοθετώντας έναν 

συνδυασμό υφιστάμενων φίλτρων ομαλοποίησης. Στη συνέχεια αναπτύχθηκε ένα 

κατάλληλο μοντέλο προσομοίωσης της πεζής κίνησης το οποίο ενσωματώθηκε 

στις μεθόδους ανάλυσης δεδομένων καθώς αυτές δεν διαθέτουν κάποιο πλαίσιο 

προσομοίωσης της πεζής κίνησης. Για την πραγματοποίηση μιας δίκαιης 

σύγκρισης χρησιμοποιήθηκαν στα μοντέλα ανάλυσης δεδομένων οι παράμετροι 

του θεωρητικού μοντέλου προσομοίωσης της πεζής κίνησης. Η μέθοδος της 

διασταυρωμένης επικύρωσης (cross-validation) υιοθετήθηκε ως η καταλληλότερη 

μέθοδος για την εξέταση της απόδοσης των μοντέλων και για τον περιορισμό του 

προβλήματος της υπερμοντελοποίησης (overfitting). Επιπλέον χρησιμοποιήθηκε 

ένας συνδυασμός δεικτών απόδοσης για να ποσοτικοποιηθεί η καλή 

προσαρμογή και η ακρίβεια των μοντέλων. Τα αποτελέσματα υποδεικνύουν πως 

οι μέθοδοι ανάλυσης δεδομένων παρουσιάζουν μεγαλύτερη δυνατότητα 
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προσομοίωσης της πεζής κίνησης καθώς αποδίδουν καλύτερα με βάση όλους 

τους προαναφερθέντες δείκτες. Μετά το πρώτο επίπεδο της συγκριτικής 

αξιολόγησης (όπου συγκρίνονται μοντέλα με τις ίδιες παραμέτρους), επιπλέον 

παράμετροι (τα χαρακτηριστικά των πεζών και η παράμετρος του χρόνου) 

ενσωματώθηκαν στα μοντέλα ανάλυσης δεδομένων για εξεταστεί περαιτέρω 

βελτίωση της απόδοσής τους. Τα αποτελέσματα αυτής της ανάλυσης 

υποδεικνύουν πως η υιοθέτηση των συγκεκριμένων μεταβλητών μπορεί να 

βελτιώσει την απόδοση των μοντέλων ανάλυσης δεδομένων που αφορούν στην 

προσομοίωση της πεζής κίνησης.  

Λέξεις κλειδιά: Προσομοίωση της πεζής κίνησης, μέθοδοι ανάλυσης δεδομένων, 

social force μοντέλο, Τεχνητά Νευρωνικά Δίκτυα, Μηχανές Διανυσμάτων 

Υποστήριξης, Gaussian Processes, Τοπικά Σταθμισμένη μη Παραμετρική 

Παλινδρόμηση, cross-validation, δείκτες καλής προσαρμογής, Unscented Kalman 

Filter, κινητός μέσος όρος, ελαχιστοποίηση θορύβου δεδομένων 
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Extended abstract 

The analysis of pedestrian movement has attracted the interest of the scientific 

community. Some of the reasons that have contributed in this, are the change of 

the urban environment (e.g. higher buildings and high centralization of activities 

in smaller spaces that results in higher densities), as well as a change of focus of 

transportation policies in which walking plays a crucial role. 

Initially, an overview of several theoretical pedestrian simulation models was 

conducted. These rely on pedestrian dynamics and flow principles and are 

classified according to their level of analysis (microscopic, macroscopic, etc.). On 

the other hand the emergence of data-driven models is offering new possibilities 

in pedestrian simulation. Data-driven techniques have proved their simulation 

robustness in terms of clustering, classification and regression although their 

employment does not require a priori knowledge of the model parameters’ 

relationship. 

The aim of this research is to examine whether data-driven methods can provide 

a robust model framework for pedestrian simulation. To achieve this, several 

data-driven models were designed for pedestrian simulation utilizing various 

widely used data-driven techniques. To display their potential utility these models 

were compared against a theoretical pedestrian simulation model. Due to the fact 

that data-driven models do not include a pedestrian simulation framework, an 

appropriate one, based on the theoretical pedestrian simulation models 

principles, has been developed. Furthermore, the incorporation of these 

principles in the data-driven models allowed for a fair comparison between data-

driven models and theoretical pedestrian simulation ones. 

To achieve the objective of this research a five-step process was followed. First, 

the appropriate data i.e. pedestrian trajectories, were collected. Two different 

area types, which exhibit different walking patterns, were selected. Due to the 

fact that the raw data include white noise, a smoothing algorithm that eliminates 

data’s white noise was developed as a combination of existing filters. 

Subsequently, five models were designed: one based on a representative 

pedestrian simulation model in the field of theoretical approaches and four 

models utilizing different data-driven techniques. For the latter, an appropriate 
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pedestrian simulation model setup was developed. In order to assess in a fair 

manner the performance of the different models, the variables of the theoretical 

model were employed in the data-driven models’ design. Cross-validation was 

performed as it comprises an appropriate method for examining each model’s 

performance, while it caters for data overfitting, a common issue with data-driven 

models. At the same time, a combination of goodness-of-fit (GoF) measures was 

utilized to estimate the models’ performance in a holistic manner. Following the 

first level of comparison (compare models with the same parameters), additional 

parameters were included in the data-driven models in order to examine their 

potential improvement (and its magnitude) in their performance. The 

methodological framework of the present research follows: 

 

FIGURE 1: Methodological framework 

Prior to this process an extended literature review was conducted. The state of 

the art considering pedestrian simulation models was explored. The models were 

categorized according to their analysis level and according to the adopted theory 

describing pedestrian dynamics. The models that analyze pedestrian movement 

are, mostly, microscopic. Thus, three main categories were identified: a) social 

force, b) cellular automata and c) lattice gas models. Route choice theory was 

also elaborated, mostly, in parallel to the aforementioned theories leading to 

combined models. Data-driven models were also mentioned in the literature 

review, as initial attempts for modeling pedestrian movement.  
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Another aim of the literature review was to investigate the factors that affect 

pedestrian movement. Certain parameters that affect pedestrian movement have 

been specified. They were organized in a new framework, clustered in three main 

categories: a) facilities’ geometry, b) pedestrian flow properties, and c) pedestrian 

characteristics (e.g. agent’s gender and height), and were further analyzed. 

Within the literature review different data collection techniques were elaborated 

including video recording and sensors [Global Positioning System (GPS), Radio 

Frequency Identification (RFID), Light Detection and Ranging (LiDAR)]. In this 

research, data have been collected from the field through video recordings. The 

experimental design focused on facilities where only pedestrians are present, 

thus interactions with other traffic modes (e.g. vehicles, bicycles) were not 

considered. Two different types of areas were employed, a metro station and a 

shopping mall. Two digital cameras were placed at both locations at an upper 

level point. The first camera was focused on the terrain where pedestrians walk, 

and the second captured their characteristics (height, gender etc.). An 

appropriate software was applied for the extraction of pedestrian trajectories from 

video recordings, which utilizes both automatic and semi-automatic processes for 

pedestrian tracking. In this research a manual process was employed in order to 

ensure high level of accuracy in pedestrian tracking. 

Accurate data is a prerequisite for developing reliable simulation models, 

particularly when applying data-driven theories, as they rely highly on the utilized 

data. Data-driven methods are applied for simulating phenomena without a priori 

knowledge of parameter relations/connections. Due to the fact that the extracted 

data include noise, a suitable algorithm for data noise reduction was developed. 

The proposed algorithm relies on the Kalman filter framework. In particular, the 

Unscented Kalman Filter (UKF) was employed for relaxing standard Kalman filter 

assumptions. The filtering process was conducted in three steps. The first step 

includes video recording segmentation, in the second step the UKF extension 

was adopted, and in the third step the moving average filter was incorporated to 

UKF. An innovation of this research is the incorporation of moving average in the 

UKF that provides more accurate pedestrian trajectory estimations. 

In addition, a procedure for evaluating Kalman filter noise covariance matrices 

was suggested, which comprises another contribution of this research. Algorithm 
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results from real pedestrian trajectory data indicated high efficacy level in 

reducing data noise, thus improving their contribution in calibrating and validating 

pedestrian simulation models. 

Two different simulation approaches were considered, a theory-derived model 

and four data-driven techniques. The social force model was employed as the 

theory-derived model, due to its ascendancy to other pedestrian simulation 

models (relies on the same principle, but is a continuous space model) and its 

wide application in pedestrian simulation and pedestrian simulation software. As 

for data-driven techniques, four promising methods were explored: a) the well-

known Articial Neural Networks (ANN), b) the classical Support Vector Machines 

(SVM) [in particular as we refer to regression analysis, Support Vector 

Regression (SVR) is employed], c) the rising Gaussian Processes (GP), and d) 

the Locally Weighted Regression (Loess). 

The social force model utilizes five parameters: the distances between the 

simulated agent and pedestrians triggering repulsive effects, pedestrians 

triggering attractive effects, space boundaries and to the next destination point 

and the velocity of pedestrians that trigger repulsive effects. In this research a fair 

comparison between the social force model and the data-driven techniques was 

attempted, thus, the parameters utilized in the social force model were also 

employed in the model setup for the data-driven techniques. A limitation of this 

procedure is that the Loess technique can only model up to three variables. 

Hence, for this technique the following parameters (employed from the social 

force model) were considered: pedestrian velocity at the current time step and 

the distances between the examined agent and a) the pedestrians triggering 

repulsive effects and b) the space boundaries. 

In the model setup the distances were separated in the two axes representing the 

horizontal and the vertical projections of the adjacent pedestrian/obstacle. Due to 

the fact that data-driven models consider one value for every variable, in cases of 

more than one “repulsive” or “attractive” agents or/and obstacles, a selection 

criterion was specified. This criterion is an angular dependence factor based on 

the agent’s view. It considers that pedestrians who walk outside of the agent’s 

sight view (i.e. behind them) or close to its contour (i.e. vertically to agent) affect 
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the simulated pedestrian’s movement at a substantially lower degree than those 

who are in front of them and close to their trajectory. 

 

FIGURE 2: Data-driven model setup 

Models’ performance was examined under a cross-validation pattern and in 

particular a 5-fold one, in order to overcome overfitting problems that data-driven 

methods suffer from. The two datasets (one from the metro station platform and 

the other from the shopping mall) were merged together and then shuffled and 

divided into five equally sized datasets. Considering the design of the data-driven 

models, these were developed following a training process the aim of which was 

to estimate each model’s parameters that minimize the cost function, set to be 

the Mean Squared Error (MSE) of the agent’s velocity. As agent’s velocity was 

presented in two axes, multi-output data-driven models were employed. In 

addition, as the social force model does not incorporate a training algorithm (in 

contrast to data-driven techniques) a genetic algorithm was utilized, for model 

calibration. Two alternative processes that examine the most effective 

parameters and then train the social force model only around them were also 

presented (one-at-time sensitivity analysis and global sensitivity analysis). 

Though, due to the fact that genetic algorithms overcome the aforementioned 

need of examining the most effective parameters and have proven their 

robustness in the field of optimization, they were employed in this research. 

A set of GoF indices was used to evaluate each model’s performance. Results 

indicate that data-driven methods have higher capability of simulating pedestrian 

movements, as they performed better according to all of GoF measures. The 

theoretical simulation model (social force) included large errors compared to the 

data-driven models, while the Loess method displayed the highest performance. 

Also, the social force model included both systematic and unsystematic biases 

that almost did not exist in data-driven models. Furthermore, data-driven methods 

accomplished the cross-validation process significantly faster compared to the 
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social force model. On the other hand, it should be noted that the social force 

model provides an integrated simulation framework where every parameter is 

directly related to the model output. It explains in a clear manner the way that 

pedestrians walk and interact with each other (high level of interpretability), while 

data-driven methods are considered to be, at some level, as black boxes.  

In addition, a comparison among the four data-driven methods revealed that the 

Loess model performed better considering almost every index. ANN and GP 

presented similar performance levels, while SVR provided inferior predictions. It 

should also be mentioned that the Loess model performed better although it 

employed a smaller number of predictors compared to the other data-driven 

methods, while also accomplishing the cross-validation procedure in significantly 

less time. In contrast, it is clear that there are limitations, related to the opacity 

and the (lack of) interpretability of the data-driven models. A comparison of the 

GoF measures in every run of the cross-validation procedure revealed that data-

driven methods tend to overfit as they learn/develop from the data. 

In the last step of the present research, three additional variables were 

incorporated in the data-driven models in order to examine if any further 

enhancement of their performance can be accomplished. Additional variables 

have been selected based on the literature review. Initially agent’s height and 

gender were added. Agent’s height was estimated with the aid of 

photogrammetric tools. It should be noted that this analysis was not performed for 

the Loess method, as it cannot employ further parameters. Results of this 

analysis indicated that the employment of agent’s characteristics can improve 

data-driven pedestrian simulation models performance (they performed better in 

almost every GoF measure). The additional adoption of the time parameter in the 

data-driven pedestrian simulation models was also tested. The models following 

the incorporation of the time parameter seemed to perform better, but not for all 

the of the GoF measures. In general, the adoption of the extra variables seemed 

to improve mainly the performance of the ANN model implying that this technique 

can “handle” more efficiently the incorporation of these variables. 

The research contributions and conclusions are outlined below:  

 Provide a framework for data (pedestrian trajectories) noise elimination 
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o Enhance UKF performance with the incorporation of symmetric 

moving average 

o Estimate UKF noise covariances when unknown 

 Provide a framework for setting up a pedestrian model for data-driven 

simulations 

 Apply a time efficient social force model calibration method 

 Display data-driven modelling efficiency in the field of pedestrian 

simulation (in relation to existing theoretical models) 

 Improve the performance of data-driven models including additional 

pedestrian simulation variables 

Directions for future research were also provided. An amplification of the data-

driven models can be accomplished with the incorporation of further variables. An 

example of this could be the employment of a density measure in order to 

capture not only one agent that affects mostly the simulated one, but also all the 

agents in close vicinity. In addition, extra data can be considered for an improved 

evaluation of the models. Furthermore, an interesting research objective might be 

the investigation of pedestrian movement, while interacting with vehicles in more 

complex scenarios and situations. The application of data-driven models in these 

scenarios should be examined. This notation is crucial as it can enhance the 

performance of pedestrian collision warning systems and autonomous vehicles. 

Moreover the parameter of time was tested in the current research for its impact 

in the data-driven pedestrian simulation model. Recurrent Neural Networks 

(RNN), a class of ANN, and in particular Long Short-Term Memory (LSTM) 

architecture can also be tested for their applicability in terms of pedestrian 

simulation. Finally, a comparison in pedestrian movements between normal and 

emergency situations should be further explored to identify the differences in 

pedestrian behavior under emergencies. This, as well as the incorporation of 

vehicle-pedestrian interactions will represent pedestrian movement in a more 

holistic manner, and thus enhance pedestrian simulation models’ performance. 
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Εκτεταμένη περίληψη  

Η ανάλυση της πεζής κίνησης έχει προσελκύσει το ενδιαφέρον της επιστημονικής 

κοινότητας. Κάποιοι από τους λόγους που συνέβαλαν σε αυτό αφορούν στην 

αλλαγή του αστικού περιβάλλοντος (π.χ. κατασκευή υψηλότερων κτιρίων και 

μεγαλύτερη συγκέντρωση δραστηριοτήτων σε μικρότερους χώρους που οδήγησε 

σε μεγαλύτερες χωρικές πυκνότητες) όπως επίσης και η αλλαγή των κεντρικών 

στόχων των συγκοινωνιακών στρατηγικών στους οποίους η πεζή κίνηση 

διαδραματίζει σημαντικό ρόλο. 

Στην παρούσα έρευνα πραγματοποιήθηκε επισκόπηση των θεωρητικών 

μοντέλων προσομοίωσης της πεζής κίνησης η οποία παρουσιάζεται στον παρόν 

κείμενο. Τα εν λόγω μοντέλα βασίζονται στις δυναμικές και στους βασικούς 

κανόνες της ροής και κατηγοριοποιούνται σύμφωνα με το επίπεδο της ανάλυσής 

τους (μικροσκοπικά, μακροσκοπικά, κλπ.). Από την άλλη πλευρά, η εμφάνιση 

των μεθόδων ανάλυσης δεδομένων παρέχει νέες δυνατότητες στην 

προσομοίωσης της πεζής κίνησης. Οι συγκεκριμένες μέθοδοι έχουν αποδείξει την 

αποτελεσματικότητά τους σε θέματα συσταδοποίησης, κατηγοροποίησης και 

πρόβλεψης (παλινδρόμησης) παρόλο που δεν απαιτούν την εξ’ αρχής γνώση της 

σχέσης μεταξύ των παραμέτρων του μοντέλου. 

Σκοπό της παρούσας έρευνας αποτελεί η διερεύνηση της δυνατότητας 

υιοθέτησης μεθόδων ανάλυσης δεδομένων για την προσομοίωση της πεζής 

κίνησης. Για να επιτευχθεί αυτό χρησιμοποιήθηκαν ευρέως εφαρμοσμένες 

μέθοδοι ανάλυσης δεδομένων, σχεδιάστηκαν αντίστοιχα μοντέλα προσομοίωσης 

πεζής κίνησης, ενώ για να εκτιμηθεί η απόδοσή τους συγκρίθηκαν με ένα 

θεωρητικό μοντέλο προσομοίωσης πεζής κίνησης. Εξαιτίας του γεγονότος πως 

τα μοντέλα ανάλυσης δεδομένων δεν εμπεριέχουν κάποιο πλαίσιο 

προσομοίωσης πεζής κίνησης, αναπτύχθηκε ένα κατάλληλο μοντέλο βασιζόμενο 

στις αρχές των θεωρητικών μοντέλων προσομοίωσης. Επιπλέον η εισαγωγή των 

εν λόγω αρχών στα μοντέλα ανάλυσης δεδομένων έδωσε τη δυνατότητα για μια 

δίκαιη σύγκριση μεταξύ των συγκεκριμένων μοντέλων και του θεωρητικού. 

Για την πραγματοποίηση της προαναφερθείσας σύγκρισης ακολουθήθηκε μια 

διαδικασία πέντε σταδίων. Αρχικά συλλέχθηκαν τα κατάλληλα δεδομένα (οι 

τροχιές των πεζών). Η συλλογή δεδομένων πραγματοποιήθηκε σε δύο περιοχές 
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που παρουσιάζουν διαφορετικά χαρακτηριστικά ώστε να εξαχθούν τα 

διαφορετικά μοτίβα κίνησης των πεζών. Λόγω του ότι τα αρχικώς συλλεχθέντα 

δεδομένα περιέχουν θόρυβο αναπτύχθηκε ένας αλγόριθμος που ελαχιστοποιεί 

τον θόρυβο δεδομένων και βασίζεται σε υφιστάμενα φίλτρα ομαλοποίησης. Στη 

συνέχεια, συγκρίθηκε η απόδοση ενός αντιπροσωπευτικού θεωρητικού μοντέλου 

από τον τομέα της προσομοίωσης της πεζής κίνησης και τεσσάρων μοντέλων 

που σχεδιάστηκαν υιοθετώντας μεθόδους ανάλυσης δεδομένων. Για λόγους 

διεξαγωγής μιας δίκαιης συγκριτικής ανάλυσης χρησιμοποιήθηκαν οι μεταβλητές 

του θεωρητικού μοντέλου στα αντίστοιχα μοντέλα των μεθόδων ανάλυσης 

δεδομένων. Η μέθοδος της διασταυρωμένης επικύρωσης (cross-validation) 

χρησιμοποιήθηκε ως η καταλληλότερη για την εξέταση της απόδοσης των 

μοντέλων, μέθοδος η οποία περιορίζει και τις επιπτώσεις του προβλήματος της 

υπερμοντελοποίησης (overfitting) από το οποίο πάσχουν οι μέθοδοι ανάλυσης 

δεδομένων. Επίσης χρησιμοποιήθηκε ένας συνδυασμός δεικτών απόδοσης για 

να ποσοτικοποιηθεί η καλή προσαρμογή και η ακρίβεια των μοντέλων. Τέλος και 

σε συνέχεια του πρώτου επιπέδου της συγκριτικής ανάλυσης, όπου συγκρίθηκαν 

τα μοντέλα με τις ίδιες μεταβλητές, επιπλέον παράμετροι προσομοίωσης της 

πεζής κίνησης προστέθηκαν στα μοντέλα ανάλυσης δεδομένων για να εξεταστεί 

τυχούσα αύξηση της απόδοσης τους. Το μεθοδολογικό πλαίσιο της παρούσας 

έρευνας παρατίθεται παρακάτω:  

 

ΣΧΗΜΑ 1: Μεθοδολογικό πλαίσιο 
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Προγενέστερα της παραπάνω διαδικασίας διεξήχθη μια εκτενής βιβλιογραφική 

ανασκόπηση όπου διερευνήθηκε η επιτομή των μοντέλων προσομοίωσης της 

πεζής κίνησης. Τα μοντέλα κατηγοριοποιήθηκαν σύμφωνα με το επίπεδο 

ανάλυσής τους και σύμφωνα με τη θεωρία που περιγράφει τη δυναμική της 

κίνησης των πεζών. Τα μοντέλα που αναλύουν τις κινήσεις των πεζών είναι, 

κυρίως, μικροσκοπικά. Τρεις κύριες κατηγορίες εντοπίστηκαν: α) social force, β) 

κυτταρικά αυτόματα (cellular automata), και γ) lattice gas μοντέλα. Η θεωρία της 

επιλογής διαδρομής στην προσομοίωση της πεζής κίνησης παρουσιάστηκε, 

κυρίως, παράλληλα με τις παραπάνω θεωρίες οδηγώντας σε συνδυαστικά 

μοντέλα. Τα μοντέλα ανάλυσης δεδομένων επίσης αναφέρονται στη 

βιβλιογραφική ανασκόπηση, όμως σαν αρχικές προσπάθειες μοντελοποίησης της 

κίνησης των πεζών.  

Ένας επιπλέον σκοπός της βιβλιογραφικής ανασκόπησης ήταν να διερευνήσει 

τους παράγοντες που επηρεάζουν την κίνηση των πεζών. Συγκεκριμένοι 

παράγοντες προσδιορίστηκαν, οι οποίοι κατατάχθηκαν σε τρεις κύριες 

κατηγορίες: α) γεωμετρία της περιοχής κίνησης, β) ιδιότητες της ροής της κίνησης 

των πεζών, και γ) χαρακτηριστικά των πεζών (π.χ. ύψος και φύλο πεζού), και εν 

συνεχεία αναλύθηκαν.  

Στα πλαίσια της βιβλιογραφικής ανασκόπησης διαφορετικές τεχνικές συλλογής 

δεδομένων εξετάστηκαν συμπεριλαμβανομένων της βιντεοσκόπησης και των 

αισθητήρων (GPS, RFID, LiDAR). Στην παρούσα έρευνα τα δεδομένα 

συλλέχθηκαν από το πεδίο μέσω βιντεοσκόπησης. Ο σχεδιασμός του πειράματος 

της έρευνας πεδίου εστίασε σε εγκαταστάσεις όπου κυκλοφορούν μόνο πεζοί και 

ως εκ τούτου αλληλεπιδράσεις με άλλα μέσα μεταφοράς (π.χ. αυτοκίνητα, 

ποδήλατα) δεν περιλαμβάνονται. Δύο διαφορετικοί τύποι υποδομών ελήφθησαν 

υπόψη, ένας σταθμός του μετρό και ένα εμπορικό κέντρο. Δύο ψηφιακές κάμερες 

τοποθετήθηκαν και στις δυο περιοχές σε ένα υψηλό σημείο. Η πρώτη κάμερα 

εστίαζε στο έδαφος, όπου οι πεζοί περπατούν, και η δεύτερη αποτύπωνε τα 

χαρακτηριστικά τους (ύψος, φύλο κλπ.). Επισημαίνεται πως υπάρχουν λογισμικά 

τα οποία παρέχουν αυτόματες ή ημι-αυτόματες διαδικασίες εξαγωγής της τροχιάς 

των πεζών από δεδομένα βίντεο. Στην παρούσα έρευνα μια χειροκίνητη 

διαδικασία επιλέχθηκε για να διασφαλιστεί το υψηλό επίπεδο ακρίβειας των 

αποτελεσμάτων της.  
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Η ακρίβεια στα δεδομένα είναι προαπαιτούμενο για την ανάπτυξη αξιόπιστων 

μοντέλων προσομοίωσης, ειδικότερα όταν εφαρμόζονται θεωρίες ανάλυσης 

δεδομένων, καθώς αυτές βασίζονται κυρίως στα ίδια τα δεδομένα. Οι μέθοδοι 

ανάλυσης δεδομένων εφαρμόζονται για την προσομοίωση φαινομένων χωρίς την 

εκ των προτέρων γνώση της σχέσης μεταξύ των παραμέτρων. Καθώς τα 

εξαχθέντα δεδομένα εμπεριέχουν θόρυβο, αναπτύχθηκε ένας κατάλληλος 

αλγόριθμος για μείωση του θορύβου. Ο προτεινόμενος αλγόριθμος βασίζεται στο 

φίλτρο Κάλμαν. Ειδικότερα η παραλλαγή Unscented Kalman Filter (UKF) 

χρησιμοποιήθηκε για να περιοριστεί η επίδραση των υποθέσεων του βασικού 

φίλτρου Κάλμαν. Η διαδικασία περιορισμού του θορύβου των δεδομένων 

πραγματοποιήθηκε σε τρία στάδια. Στο πρώτο στάδιο ομαδοποιήθηκαν τα καρέ 

της καταγραφής της βιντεοσκόπησης, στο δεύτερο στάδιο υιοθετήθηκε η 

παραλλαγή UKF του φίλτρου Κάλμαν και στο τρίτο στάδιο το φίλτρο του κινητού 

μέσου όρου ενσωματώθηκε στην προαναφερθείσα παραλλαγή. Μια καινοτομία 

της παρούσας έρευνας είναι η ενσωμάτωση του κινητού μέσου όρου στο φίλτρο 

UKF κάτι που παρέχει ακριβέστερες εκτιμήσεις των τροχιών των πεζών. 

Συγκεκριμένα ο συμμετρικός κινητός μέσος όρος αντανακλά την τάση της κίνησης 

ενός πεζού καθώς ενσωματώνει τα προηγούμενα και τα επόμενα βήματα στην 

εκτίμηση της τροχιάς.  

Επιπροσθέτως προτάθηκε μια διαδικασία για εκτίμηση των μητρώων 

συνδιακύμανσης σφαλμάτων της παραλλαγής του φίλτρου Κάλμαν. Τα 

αποτελέσματα του αλγόριθμου από πραγματικά δεδομένα τροχιών πεζών 

υποδεικνύουν ένα υψηλό επίπεδο απόδοσης στη μείωση του θορύβου των 

δεδομένων και ως εκ τούτου στη βελτίωση της συνεισφοράς τους στη 

βαθμονόμηση και στην επικύρωση των μοντέλων πεζής προσομοίωσης. 

Δύο διαφορετικές προσεγγίσεις ελήφθησαν υπόψη: ένα θεωρητικό μοντέλο και 

τέσσερις μέθοδοι ανάλυσης δεδομένων. Το social force model χρησιμοποιήθηκε 

ως το θεωρητικό μοντέλο λόγω της υπεροχής του σε σχέση με άλλα μοντέλα 

προσομοίωσης της πεζής κίνησης (βασίζεται στις ίδιες βασικές αρχές 

προσομοίωσης με τα υπόλοιπα μοντέλα, αλλά σε αντίθεση με αυτά είναι ένα 

συνεχές στο χώρο μοντέλο) και λόγω της ευρύτερης αποδοχής του και της 

υιοθέτησής του από ευρέως διαδεδομένα λογισμικά προσομοίωσης της πεζής 

κίνησης. Όσον αφορά τις μεθόδους ανάλυσης δεδομένων, τέσσερις μέθοδοι 

διερευνήθηκαν: α) τα ευρέως διαδεδομένα Τεχνητά Νευρωνικά Δίκτυα (ΤΝΔ), β) 
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οι κλασσικές Μηχανές Διανυσμάτων Υποστήριξης [ειδικότερα η παραλλαγή της 

μεθόδου που αφορά σε ζητήματα πρόβλεψης/παλινδρόμησης (SVR)], γ) οι 

ανερχόμενες Gaussian Processes (GP) και δ) η Τοπικά Σταθμισμένη μη 

Παραμετρική Παλινδρόμηση (Loess). 

Το μοντέλο social force περιέχει πέντε παραμέτρους: τις αποστάσεις μεταξύ του 

εξεταζόμενου πεζού και των πεζών που του ασκούν απωθητικές επιδράσεις, των 

πεζών που του ασκούν ελκτικές επιδράσεις, των σταθερών σημείων στο χώρο 

κίνησης (εμπόδια) και του επόμενου σημείου προορισμού και της ταχύτητας των 

πεζών που ασκούν απωθητικές επιδράσεις. Στην παρούσα έρευνα μια δίκαιη 

σύγκριση μεταξύ του μοντέλου social force και των τεσσάρων μεθόδων ανάλυσης 

δεδομένων επιχειρήθηκε. Για τον σκοπό αυτό για το σχεδιασμό του μοντέλου 

κίνησης των μεθόδων ανάλυσης δεδομένων υιοθετήθηκαν οι παράμετροι που 

χρησιμοποιούνται από το μοντέλο social force. Ένας περιορισμός σε αυτή τη 

διαδικασία αφορά στο γεγονός πως η μέθοδος Loess μπορεί να χρησιμοποιήσει 

έως τρεις μεταβλητές. Ως εκ τούτου για τη συγκεκριμένη μέθοδο οι ακόλουθες 

παράμετροι (οι οποίες υιοθετήθηκαν από το social force μοντέλο) ελήφθησαν 

υπόψη, ήτοι η ταχύτητα του πεζού στο παρόν χρονικό βήμα και οι αποστάσεις 

μεταξύ του εξεταζόμενου πεζού και α) των πεζών που του ασκούν απωθητικές 

επιδράσεις και β) των εμποδίων. 

Στον προσδιορισμό του μοντέλου (που πρόκειται να ενσωματωθεί στις μεθόδους 

ανάλυσης δεδομένων) οι αποστάσεις διαχωρίστηκαν σε δύο άξονες 

αντιπροσωπεύοντας τις οριζόντιες και τις κάθετες προβολές από τους/τα 

πεζούς/εμπόδια. Σε περιπτώσεις όπου υπάρχουν πλέον τους ενός πεζού (που 

ασκεί είτε απωθητικές είτε ελκτικές επιδράσεις) ή εμποδίου και εξαιτίας του 

γεγονότος πως οι μέθοδοι ανάλυσης δεδομένων λαμβάνουν υπόψη μία τιμή για 

κάθε μεταβλητή, προσδιορίστηκε ένα κατάλληλο κριτήριο επιλογής. Το 

συγκεκριμένο κριτήριο βασίζεται στον παράγοντα του οπτικού πεδίου του πεζού 

και θεωρεί πως πεζοί που κινούνται εκτός του οπτικού του πεδίου (πίσω από 

αυτόν) ή κοντά στο όριό του (κάθετα σε αυτόν) επηρεάζουν την κίνηση του 

εξεταζόμενου πεζού σημαντικά λιγότερο από τους πεζούς που κινούνται 

μπροστά του και κοντά στην πορεία της κίνησής του. 
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ΣΧΗΜΑ 2: Προσδιορισμός μοντέλου κίνησης για τις μεθόδους ανάλυσης 

δεδομένων 

Η απόδοση των μοντέλων εξετάστηκε σύμφωνα με τη μέθοδο της 

διασταυρωμένης επικύρωσης ώστε να υπερκεραστούν τα ζητήματα 

μοντελοποίησης από τα οποία πάσχουν οι μέθοδοι ανάλυσης δεδομένων. Τα δύο 

σετ δεδομένων (ένα από την πλατφόρμα του σταθμού του μετρό και ένα από το 

εμπορικό κέντρο) ομαδοποιήθηκαν και στη συνέχεια αναμίχθηκαν και 

χωρίστηκαν σε πέντε ισομεγέθη σετ δεδομένων. Κατά τη διαδικασία εκπαίδευσης 

των μοντέλων ο στόχος είναι να εκτιμηθούν οι παράμετροι του κάθε μοντέλου 

που ελαχιστοποιούν τη συνάρτηση κόστους, ήτοι το μέσο τετραγωνικό σφάλμα 

της ταχύτητας του πεζού. Καθώς η ταχύτητα του πεζού διαχωρίστηκε σε δύο 

άξονες, χρησιμοποιήθηκαν μοντέλα ανάλυσης δεδομένων πολλαπλών 

αποτελεσμάτων. Επιπροσθέτως, καθώς το social force μοντέλο δεν διαθέτει έναν 

αλγόριθμο εκπαίδευσης (σε αντίθεση με τις μεθόδους ανάλυσης δεδομένων), 

χρησιμοποιήθηκε ένας γενετικός αλγόριθμος για την εκπαίδευσή του. Δυο 

εναλλακτικές προσεγγίσεις που εξετάζουν τις παραμέτρους με τη μεγαλύτερη 

επίδραση και στη συνέχεια εκπαιδεύουν το social force  μοντέλο μόνο γύρω από 

αυτές παρουσιάστηκαν επίσης. Καθώς, όμως, οι γενετικοί αλγόριθμοι 

υπερτερούν της προαναφερθείσας ανάγκης για εξέταση των παραμέτρων με τη 

μεγαλύτερη επίδραση ενώ έχουν αποδείξει την ευρωστία τους στον τομέα της 

βελτιστοποίησης, υιοθετήθηκαν στην παρούσα έρευνα. 

Ένα σύνολο δεικτών χρησιμοποιήθηκε για την ποσοτικοποίηση της καλής 

προσαρμογής και της απόδοσης των μοντέλων. Τα αποτελέσματα υποδεικνύουν 

πως οι μέθοδοι ανάλυσης δεδομένων έχουν καλύτερη δυνατότητα 

προσομοίωσης της κίνησης των πεζών καθώς αποδίδουν καλύτερα με βάση 

όλους τους προαναφερθέντες δείκτες. Το θεωρητικό μοντέλο (social force) 

εμφάνισε υψηλότερες τιμές σφαλμάτων σε σχέση με τα μοντέλα ανάλυσης 

δεδομένων, με το μοντέλο της Loess να εμφανίζει την υψηλότερη απόδοση. 

Επίσης το μοντέλο social force εμφάνισε υψηλά συστημικά και μη συστημικά 
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σφάλματα τα οποία σχεδόν δεν υπήρχαν στα μοντέλα ανάλυσης δεδομένων. 

Επιπλέον τα μοντέλα ανάλυσης δεδομένων διεξήγαν τη διαδικασία της 

διασταυρωμένης επικύρωσης σημαντικά ταχύτερα από το social force μοντέλο. 

Από την άλλη πλευρά πρέπει να επισημανθεί πως το social force μοντέλο 

παρέχει ένα ολοκληρωμένο πλαίσιο προσομοίωσης όπου η κάθε παράμετρος 

σχετίζεται με το αποτέλεσμα του μοντέλου. Το μοντέλο επεξηγεί ευκρινώς τις 

αλληλεπιδράσεις των πεζών και τον τρόπο με τον οποίο κινούνται (υψηλό 

επίπεδο ερμηνευσιμότητας) εν αντιθέσει με τις μεθόδους ανάλυσης δεδομένων 

που αντιμετωπίζονται, σε κάποιο βαθμό, ως «μαύρα κουτιά».   

Επιπροσθέτως μια σύγκριση μεταξύ των τεσσάρων μοντέλων ανάλυσης 

δεδομένων κατέδειξε πως το μοντέλο της Loess αποδίδει καλύτερα σύμφωνα 

σχεδόν με κάθε δείκτη, τα ΤΝΔ και οι GP παρουσίασαν αντίστοιχο επίπεδο 

απόδοσης, ενώ οι SVR παρείχε υποδεέστερες προβλέψεις. Πρέπει επίσης να 

επισημανθεί πως το μοντέλο της Loess απέδιδε καλύτερα ακόμη και αν 

ενσωμάτωνε μικρότερο αριθμό μεταβλητών σε σχέση με τις υπόλοιπες μεθόδους 

ανάλυσης δεδομένων, ενώ διεξήγε τη διαδικασία της διασταυρωμένης 

επικύρωσης σε σημαντικά λιγότερο χρόνο. Σε αντίθεση είναι ξεκάθαρο πως 

υπάρχουν περιορισμοί που σχετίζονται με την αδιαφάνεια και την έλλειψη 

ερμηνευσιμότητας των μοντέλων ανάλυσης δεδομένων. Μία σύγκριση των 

δεικτών σε κάθε γύρο της διαδικασίας της διασταυρωμένης επικύρωσης 

αποκάλυψε πως τα μοντέλα ανάλυσης δεδομένων τείνουν να 

υπερμοντελοποιούν καθώς μαθαίνουν/εξελίσσονται από τα δεδομένα. 

Στο τελευταίο στάδιο της παρούσας έρευνας ενσωματώθηκαν τρεις επιπλέον 

μεταβλητές στα μοντέλα ανάλυσης δεδομένων ώστε να εξεταστεί αν δύναται να 

βελτιωθεί η απόδοσή τους. Οι επιπλέον μεταβλητές επιλέχθηκαν σύμφωνα με τη 

βιβλιογραφική ανασκόπηση. Αρχικά προστέθηκαν το ύψος και το φύλο του 

πεζού. Το ύψος του πεζού εκτιμήθηκε με τη βοήθεια φωτογραμμετρικών 

εργαλείων. Η μέθοδος Loess δεν δύναται να εφαρμοσθεί σε αυτήν την ανάλυση 

καθώς αδυνατεί να συμπεριλάβει επιπλέον μεταβλητές. Τα αποτελέσματα αυτής 

της ανάλυσης υποδεικνύουν πως η ενσωμάτωση των χαρακτηριστικών του 

πεζού μπορεί να βελτιώσει την απόδοση των μοντέλων ανάλυσης δεδομένων 

που αφορούν στην προσομοίωση της πεζής κίνησης (αποδίδουν καλύτερα 

σύμφωνα σχεδόν με κάθε δείκτη). Ακόμη εξετάστηκε η πρόσθετη ενσωμάτωση 

της παραμέτρου του χρόνου στα μοντέλα ανάλυσης δεδομένων. Τα 
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αποτελέσματα αυτής της διαδικασίας μοιάζουν αρκετά με τα αποτελέσματα των 

μοντέλων ανάλυσης δεδομένων με τις επιπλέον μεταβλητές των χαρακτηριστικών 

του πεζού. Ειδικότερα τα μοντέλα μετά την ενσωμάτωση της παραμέτρου του 

χρόνου φαίνεται να αποδίδουν καλύτερα με βάση κάθε δείκτη. Γενικά η 

ενσωμάτωση επιπλέον μεταβλητών φαίνεται να βελτιώνει, κυρίως, την απόδοση 

του μοντέλου των ΤΝΔ υποδεικνύοντας πως η συγκεκριμένη μέθοδος δύναται να 

«χειριστεί» αποδοτικότερα την ενσωμάτωση επιπλέον μεταβλητών. 

Τα συμπεράσματα και η συνεισφορά της έρευνας παρατίθενται παρακάτω:  

 Παροχή ενός πλαισίου ελαχιστοποίησης του θορύβου των δεδομένων 

(τροχιές πεζών) 

o Ενίσχυση της απόδοσης του Unscented Kalman Filter με την 

ενσωμάτωση σε αυτό του συμμετρικού κινητού μέσου όρου 

o Εκτίμηση των μητρώων συνδιακύμανσης σφαλμάτων σε 

περιπτώσεις που αυτές δεν είναι γνωστές 

 Ανάπτυξη μοντέλου προσομοίωσης της πεζής κίνησης για την 

ενσωμάτωσή του στις μεθόδους ανάλυσης δεδομένων 

 Χρονικά αποδοτική βαθμονόμηση του μοντέλου social force 

 Υπόδειξη της αποδοτικότητας των μοντέλων ανάλυσης δεδομένων στον 

τομέα της προσομοίωσης της πεζής κίνησης (σε σχέση με τα θεωρητικά 

μοντέλα προσομοίωσης) 

 Βελτίωση της απόδοσης των μοντέλων ανάλυσης δεδομένων όταν αυτά 

ενσωματώνουν επιπλέον παραμέτρους της προσομοίωσης της πεζής 

κίνησης  

Μια ενίσχυση των μοντέλων ανάλυσης δεδομένων μπορεί να επιτευχθεί με την 

ενσωμάτωση επιπλέον παραμέτρων. Ένα παράδειγμα θα μπορούσε να 

αποτελέσει η υιοθέτηση του μεγέθους της πυκνότητας των πεζών ώστε να 

συμπεριληφθεί στο μοντέλο όχι μόνο ο πεζός που επιδρά περισσότερο στον 

εξεταζόμενο πεζό αλλά όλοι οι πεζοί που βρίσκονται σε κοντινή απόστασή του. 

Επιπλέον, πρόσθετα δεδομένα θα μπορούσαν να συμπεριληφθούν για μια 

βελτιωμένη αξιολόγηση των μοντέλων. Ακόμη ένα ενδιαφέρον ερευνητικό 

αντικείμενο θα μπορούσε να αποτελέσει η διερεύνηση της κίνησης των πεζών 

όταν αυτοί αλληλεπιδρούν με οχήματα. Θα μπορούσε να εξεταστεί η εφαρμογή 

μοντέλων ανάλυσης δεδομένων σε αυτές τις περιπτώσεις. Αυτή η σημείωση είναι 
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σημαντική καθώς πιθανώς να ενίσχυε την απόδοση των αυτόνομων οχημάτων. 

Επιπλέον στην παρούσα έρευνα εξετάστηκε η παράμετρος του χρόνου για την 

επίδρασή στα μοντέλα ανάλυσης δεδομένων. Κατά συνέπεια τα Αναδρομικά 

Νευρωνικά Δίκτυα (κατηγορία των ΤΝΔ) και ειδικότερα η αρχιτεκτονική των 

δικτύων Μακράς και Βραχείας Μνήμης θα μπορούσαν να εξεταστούν σε 

περιπτώσεις προσομοίωσης της πεζής κίνησης. Τέλος, μια σύγκριση στην κίνηση 

των πεζών υπό κανονικές συνθήκες και υπό συνθήκες εκτάκτου ανάγκης θα 

μπορούσε να διερευνηθεί ώστε να προσδιοριστούν οι διαφοροποιήσεις στη 

συμπεριφορά των πεζών όταν αυτοί κινούνται σε συνθήκες έκτακτης ανάγκης. 

Αυτό θα βελτίωνε την απόδοση των μοντέλων προσομοίωσης της πεζής κίνησης 

παρέχοντας ένα πιο ολιστικό πλαίσιο, όπως επίσης και τα μοντέλα 

προσομοίωσης της κίνησης οχήματος – πεζού.  
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1. INTRODUCTION 

 

1.1. Overview  

1.1.1. Theoretical models 

The significant increase of urbanization which has resulted in the formation of 

densely populated cities i.e. the concentration of a relatively large number of 

people in a limited space, has significantly affected everyday living. At the same 

time, modern urban infrastructures, (underground railway stations, shopping 

malls, tall buildings) being a significant element of city design, greatly affect  

travel patterns (Klingsch, 2010), resulting in substantial changes in transportation 

network elements design. Therefore, the construction of necessary 

infrastructures and the management/regulation of existing ones are of great 

importance considering quality of life in the cities.  

For this reason it is necessary to understand the movement behaviour of citizens; 

and with walking being a major component of all urban trips nowadays, the need 

to comprehend pedestrians’ behaviour comprises a prerequisite for the design of 

a sustainable transportation system. Pedestrian movement differs substantially 

from vehicle movement, and is much more complex. As Burstedde et al. (2001) 

mentioned, pedestrians are more flexible and more intelligent than cars, and they 

can choose an optimum route according to the environment around them taking 

into account only a small number of constraining elements. Even slight bumping 

is acceptable and need not be absolutely avoided as in traffic flow models 

(Burstedde et al., 2001). 

Pedestrian simulation has gained greater interest from researchers during the 

last two decades. Advanced models of traffic simulation, which can determine, 

with considerable accuracy, traveller behaviour at a macroscopic or a 

microscopic level (e.g. trip generation and distribution, model choice, traffic 

assignment and driver and pedestrian behaviour), have been developed. In many 

studies, pedestrian movement is compared with fluid movement (e.g. Helbing, 

1992). Econometric models, which rely greatly on probabilities as well as models, 

which take into account psychological factors, are also used in pedestrian 
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simulation. Moreover, models based on scientific disciplines (physics, biology, 

chemistry, etc.) have also been developed. On the other hand, most of the 

studies on pedestrian simulation, focus on specific parameters (e.g. infrastructure 

architecture, pedestrian characteristics, time period in a day, etc.) failing to 

consider a more integrated approach. In general, a wide range of pedestrian 

simulation models have been developed, including the social force model, cellular 

automata, lattice gas and route choice models (for a review cf. Kouskoulis and 

Antoniou 2017). All of the aforementioned models consider the agent’s desired 

path and surroundings; in this case being pedestrians and obstacles. 

 

1.1.2. Data-driven models 

Statistics set the ground for basic modeling. Regression analysis (linear, 

polynomial etc.) is a useful tool for quantifying parameters’ impact. Nevertheless, 

regression analysis is subject to parametric limitations (e.g. data obtained from 

Gaussian distribution, hard to define a priori the type of the mathematical model, 

etc.) and is applied in cases where the researcher has specific clues for the most 

appropriate model. 

A revolution in many scientific fields has been observed during the past decades 

with the emergence of data-driven analytics and machine learning theory. 

Following up on the continuous widespread availability of data and computational 

advances, data-driven modeling has been increasingly gaining researchers’ 

interest over the last decades. Several methods and techniques [including 

Artificial Neural Networks (ANN) and Support Vector Machines (SVM), among 

others] have been developed and provide their simulation robustness in terms of 

clustering, classifying and regression. These techniques do not require a priori 

knowledge of the relationships among the model variables, but they “learn” from 

the data.   

Data-driven theory differs from classical statistics as its methods are non-

parametric. Theoretical models, on the other hand, provide a straight 

mathematical framework, while relating model parameters based on logical 

principles and rules. Hence, data-driven methods are not subject to parametric 

limitations (data obtained from Gaussian distribution, complexity of defining a 
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priori the type of the mathematical model, etc.) and, as a consequence, are 

widely applicable. They are based on data (data-driven), without providing a 

specific mathematical framework, and can deal with large and complicated data. 

Locally weighted regression (Loess, Cleveland 1979) is an example of a data-

driven regression method, a non-parametric tool that can deal with complicated 

data and model circumstances. Its validity on the development of traffic 

simulation models has already been demonstrated (e.g. Antoniou et al., 2013; 

Papathanasopoulou and Antoniou, 2015). 

Data-driven models require a vast amount of data in order to gain the accurate 

modeling information, which in turn necessitates higher computational 

requirements. Though these methods were initially developed several years ago, 

they have been spreading only recently due to growing data availability and the 

enhancement of computational power. 

 

1.2. Aim 

The aim of this research is to examine whether data-driven methods can provide 

a robust model framework for pedestrian simulation. To achieve this, their 

performance is compared against a “traditional” (i.e. widely used) pedestrian 

simulation model. The inherent difference of these two categories is that 

conventional models can stipulate a straight mathematical framework based on 

logical principles, while data-driven techniques do not comprise a clear 

mathematical model. While no clear drawbacks of the theoretical pedestrian 

simulation models have been considered, according to the literature review, the 

goal of this thesis is to investigate if data-driven techniques (whose presence is 

strong in many research fields during the last decades) can produce a more 

efficient pedestrian simulation modelling framework. 

The present research proposes a data-driven pedestrian simulation framework 

and investigates its appropriateness of use alongside theoretical models (a first 

attempt considering one standalone data-driven method is presented in 

Kouskoulis et al., 2018). Pedestrian trajectories are therefore collected and 

simulated using both a theoretical model and data-driven techniques – namely, 

the social force model and four well-known data-driven methods.  
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Prior to the application of these methods, an appropriate data noise elimination 

filter is applied, i.e. a combination of Unscented Kalman filtering and the moving 

average method due to the fact that initially extracted data include noise. 

Subsequently to the models’ comparison improved models that incorporate 

additional pedestrian simulation parameters are tested in order to evaluate their 

performance compared to the initially designed data-driven pedestrian simulation 

models. 

Thus, the objectives of this thesis are described explicitly below: 

 Extend/improve an algorithm for reducing noise in pedestrian trajectories 

data 

 Develop a framework for pedestrian simulation that can be employed in 

data-driven techniques 

 Assess the performance of data-driven techniques (using the pedestrian 

simulation model) by comparing them with an established theoretical 

pedestrian simulation model utilizing the appropriate methodology and 

metrics 

 In case data-driven pedestrian simulation models perform better (than the 

theoretical one), enhance them with additional potentially relevant, i.e. that 

are anticipated to affect pedestrian movement, parameters and evaluate 

their performance. 

The first objective revolves around the proposal and validation of a Kalman–

filtering–based (Kalman, 1960) procedure for noise reduction. An extension 

[Unscented Kalman filter (Wan and Van der Merwe, 2000)] of the filter is 

employed in order to relax standard algorithm assumptions. A method for 

estimating noise covariance matrices is presented, while an extension of the 

moving average is incorporated in the Kalman filter.  

The second and third objectives involve the comparison between data-driven and 

theoretical pedestrian simulation models. In this research, the social force model 

is selected as the most representative theoretical model. The social force model 

has been widely used in pedestrian simulations and forms the basis for 

simulation software [e.g. VisWalk (PTV, 2015) and SimWalk (Zainuddin et al., 
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2009)]. Furthermore, it relies on the same principles as the other main pedestrian 

simulation models. 

As for machine learning techniques, four promising methods are utilized: a) the 

well-known ANN, b) the classical SVM [in particular as we refer to regression 

analysis, Support Vector Regression (SVR) is employed], c) the rising Gaussian 

Processes (GP), and d) the Locally Weighted Regression (Loess). 

In parallel a continuous updated literature review is conducted in order to identify 

additional parameters that affect pedestrian movement or/and improved versions 

of the employed models. 

It should be clarified that in this study we focus only on pedestrian movement, 

where pedestrians interact only with stationary obstacles and/or stationary or 

moving pedestrians. Pedestrian – vehicle interactions are not considered. 

  

Figure 1.1: Conceptual framework 
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1.3. Structure 

The remainder of this thesis is organized as follows. Chapter 2 comprises the 

literature review in which relevant studies with their results are described. In an 

extended review the basic theoretical approaches for pedestrian movement are 

presented. The parameters that affect pedestrian movement in theoretical 

approaches are also highlighted. In addition, data-driven methods for pedestrian 

simulation are also described. A specific section on emergency situations is 

presented due to the increased interest of the research community. Validation 

and data collection methods are also presented in this Chapter. 

In Chapter 3, the methodological framework is illustrated. Initially the design of 

the data collection experiment is presented. Due to the fact that the collected 

data (i.e. pedestrian trajectories) include noise, the main methods for data 

filtering (existing smoothing filters) are described. Subsequently a presentation of 

the social force model is provided through its governing rules and its parameters, 

while also considering the most recent model updates. The main data-driven 

methods are demonstrated with their extensions related to the present 

experiments (most of these techniques result to one dimensional output, while 

the current experiment is a two dimensional one). Their pros and cons are also 

discussed. Finally the framework for the comparative analysis is outlined. 

Chapter 4 describes the methodology for data collection and processing. The 

data collection sites are defined. The cameras’ setup and the experimental 

design for this procedure are presented. The photogrammetric technique utilized 

to estimate agent’s ground coordinates is also described. An extension of this 

technique leads to the estimation of pedestrian’s height, a parameter that will be 

used next in the analysis. A specialised software that performs automated 

tracking from moving objects (in general), utilized in this research, is also 

described. Last, the algorithm that has been developed based on existing 

smoothing filters and leads to data noise elimination is provided. 

Chapter 5 illustrates the comparative analysis results. The performance of the 

theoretical pedestrian simulation model and the data-driven approaches is 

compared. Prior to this the description of the machine learning model setup, 

appropriate for pedestrian simulation, is elaborated. Suitable transformations of 
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the model parameters are conducted where required. Cross-validation process is 

used to avoid data-driven models’ overfitting, while a genetic algorithm is 

employed for calibrating the theoretical pedestrian simulation model’s 

parameters. Complementary two different types of sensitivity analysis which 

reveal the model parameters with the highest impact are presented. Due to the 

fact that genetic algorithms overcome the need of examining the most effective 

parameters, the sensitivity analysis methods are cited in the current thesis for the 

sake of an integrated approach. The results of the simulations are also presented 

in this Chapter. An extended data-driven model that includes additional 

pedestrian movement parameters is also designed and evaluated. 

Chapter 6 presents the results of the comparative analysis described in the 

previous chapter. The findings of this research are discussed and their 

contributions are clarified, while also limitations of the study (related to the data-

driven theory) are provided. Ultimately, directions for future research are outlined. 
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2. BACKGROUND ON PEDESTRIAN MODELING 

 

2.1. Overview 

In this section the literature review that is relevant to pedestrian simulation is 

presented. Τhe results of the relevant studies are discussed and the parameters 

employed in the different pedestrian simulation models are classified in 

meaningful distinct categories. The section is based on the review of Kouskoulis 

and Antoniou (2017). 

Pedestrian simulation has become a crucial element in integrated transport 

analysis, mainly in the past three decades, as transport engineers have realized 

its significance considering traffic management (Akin and Sisiopiku, 2007; 

Helbing et al., 2005) and public transportation network design (Daamen et al., 

2002). Furthermore, reliable pedestrian simulation models comprise a 

prerequisite for the implementation of specific intelligent transportation systems 

and autonomous vehicles (Matthews et al., 2017). Therefore the necessity for 

exploring pedestrian walking behaviour and forecasting pedestrian movement 

has brought a lot of attention to pedestrian simulation. 

The principle for every simulation method is model development. In general, 

simulation models are classified according to their level of analysis in 

microscopic, for individual pedestrian behavior, and macroscopic, for aggregated 

dynamics. Mesoscopic models have been also developed though at a lesser 

degree. Pedestrian simulation models can also be classified according to the 

pedestrian walking theory that is applied to represent their dynamics. Examples 

of microscopic models considering the adopted walking theory include social 

force models, cellular automata, and so on, and are presented in section 2.2.  

Fundamental diagrams are, also, of major importance in traffic simulation and as 

a consequence in pedestrian simulation. Through these diagrams the relation 

between density and velocity (or other fundamental magnitudes) is visualized and 

a better overview to the planner is provided. An analysis of these diagrams is 

presented in section 2.3. 
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In the recent years, a relatively low – yet increasing – number of approaches that 

deal with pedestrian simulation problems employing data-driven methods have 

been presented. Still these models are at a rather early stage of development 

and have not been widely applied yet. Some of those models also adopt 

principles from the existing microscopic models. These are presented in section 

2.4. 

As it is widely known, a model is not reliable unless its results are validated. 

Validation techniques have attracted the interest of the scientific community 

because they are essential in model development. Data collection tools, such as 

sensors, cameras and so on, are utilized to provide to the researchers the 

appropriate data in order to verify their theory. In terms of pedestrian simulation 

models the appropriate data involve, mainly, pedestrian trajectories. The existing 

tools and methods for collecting pedestrian trajectory data are demonstrated in 

section 2.7. 

Pedestrian simulation under emergency conditions, has gained researchers’ 

interest, mainly during the last decade. Although the design of pedestrian 

simulation models for emergency situations is significant, only a small number of 

studies focus on pedestrian evacuation (Vermuyten et al., 2016). Still this number 

has increased in the recent years. Urban and metropolitan areas exhibit an 

increase in population and as a consequence the frequency of emergencies has 

also increased. Floods, tsunamis, volcanic eruptions and fires are examples of 

such emergencies. The importance the representation of pedestrian movement 

under emergencies is acknowledged and the adopted approaches are presented 

in section 2.6.  

 

2.2. Theoretical approaches 

Pedestrian behavior considering walking follows specific rules. Several 

researchers have focused on simulating pedestrian movement based on various 

sets of logical rules. These efforts resulted in the development of analytical 

approaches. In the same manner as in traffic simulation, pedestrian models are 

divided in two major categories according to the level of analysis: 
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 Microscopic (e.g. Gipps and Marksjo, 1985; Helbing and Molnár, 1995; 

Teknomo, 2006) focusing on individual pedestrian dynamics and 

characteristics; and 

 Macroscopic (Hughes, 2000), which consider aggregate characteristics of 

pedestrian flows (e.g. mean velocity, mean density) and are used at a 

substantially lesser degree. 

Macroscopic approaches may fail to capture accurately specific phenomena in 

pedestrian simulation (Løvås, 1994). As a result microscopic models are mainly 

developed for pedestrian simulation. At the same time microscopic simulation has 

a high computational cost, which has been reduced with the enhancement of 

hardware and software capacities (Teknomo, 2006). Nikolić et al. (2013) 

mentioned mesoscopic models, an intermediate level between microscopic and 

macroscopic, which has not been widely applied in pedestrian simulation. A 

typical example is that of Tordeux et al. (2018a) where pedestrian movement is 

described at an aggregated level while, at the same time, individual pedestrians 

are considered. Another example is that of cell transmission models (CTM) where 

obstacles are discretized into grids. This type of models can describe both 

general and detailed characteristics of pedestrian flows (Li and Guo, 2020). In 

addition, Duives et al. (2013) referred to hybrid models as a combination of 

microscopic and macroscopic models. Not significantly different from mesoscopic 

models, hybrid models consider human interactions at a microscopic level while 

using macroscopic background for reducing the models’ computation time.  

Pedestrian simulation models are also classified pertaining to the theory which 

describes the way that pedestrians walk. Three major categories can be identified 

considering microscopic models (Figure 2.1): 

 Social force; 

 Cellular automata; and 

 Lattice gas. 

Complementary to the above categories route choice theory is a method that is 

mainly utilized in combination with other models (for example the behavioral 
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theory model arises from a combination of the social force model and the route 

choice theory), rather than as a stand-alone model. 

 

 

Figure 2.1: Categorization of pedestrian simulation models (microscopic) 

Other types of pedestrian model categories have also been found in the 

literature. Duives et al. (2013) presents a more detailed classification in 

pedestrian modeling as: 

 Cellular automata; 

 Social force; 

 Activity choice; 

 Velocity based; 

 Continuum; 

 Hybrid; 

 Behavioral; and 

 Network models. 
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Guo et al. (2010) added semi-continuous models, while Ma and Song (2013) 

focused on distinguishing continuous and discrete pedestrian simulation models. 

Das et al. (2014) categorized microscopic (pedestrian simulation) models as: 

 Cellular automata;  

 Forced based; 

 Queuing; and 

 Agent-based. 

Last, Vermuyten et al. (2016) classified pedestrian simulation models as:  

 Continuum;  

 Network based; 

 Cellular automata; 

 Agent based; 

 Social force; and 

 Game theoretic. 

Many of the aforementioned categories are not clearly separated from the others. 

For example agent-based models comprise a rather general category that does 

not provide any specific rules (i.e. as a stand-alone model) in terms of the theory 

according to which an agent walks, but can overlap with other models (e.g. social 

force as mentioned in Xing et al., 2017). The four most commonly used 

categories of theoretical pedestrian models are presented in the following 

sections. 

 

2.2.1. Social force 

The principle of social force models, or in general force based models, arises 

from the assumption that pedestrian dynamics are determined from the repulsive 

and attractive forces that are acted on the moving pedestrian (Figure 2.2). In one 
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of the earliest approaches, when the need introducing microscopic models in 

pedestrian simulation was suggested, mostly, due to the inability of macroscopic 

models to capture the variations in pedestrians’ movements, Gipps and Marksjo 

(1985) simulated pedestrian movement using cellular automata and applied 

social forces in order to determine pedestrians’ direction. A gain function was 

calculated for every adjacent cell and pedestrians moved to the cell with the 

highest gain. An advantage of this method is that it refers to the perceived - by 

the pedestrian - distance and not to the actual distance.  

 

Figure 2.2: Social force model approach 

Subsequently, Helbing and Molnár (1995) set the principles for the application of 

social force models in pedestrian simulation. Based on Langevin equations 

(stochastic equations) they examined pedestrian movement taking into account 

the environment’s influence. The model considers three elements: 

a) the aim of reaching a certain destination; 

b) the influence of other pedestrians, borders, or both; and 

c) the attractive effects of other persons or objects. 

The first element is related to the agent’s desired direction. This is determined 

considering the pedestrian’s objective, which is to reach their destination. It is 

also related to the deviation of the pedestrian’s actual velocity compared to their 

desired velocity (τ – relaxation factor). The second element concerns the 

repulsive effects that are provoked by the pedestrian’s surroundings. The 

repulsive forces decrease exponentially as the distance from the obstacle(s) 
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increases. The third element is the opposite of the second and can be caused by 

objects (e.g. advertisements) or persons that attract pedestrian’s attention and 

disrupt them while moving towards their destination. Helbing and Molnár (1995) 

study also suggests that in a narrow door, where only one stream can pass 

through, pedestrians of the opposite stream will have to wait. 

The basic function describing the dynamics of social force models is (Helbing and 

Molnár, 1995): 

  
              

0 0 α
α α α α α αβ α α β αΒ α α Β αi α α i

β Β i

F (t)=F (u ,u e )+ F (e ,r -r )+ F (e ,r -r )+ F (e ,r -r,t)  

where 


αF (t)  pedestrian’s total motivation; 


0
αF  pedestrian’s desire; 


αβF  and 


αΒF  = repulsive forces from other pedestrians and from borders (e.g. 

walls, obstacles), respectively; and 


αiF  attractive forces. 

A grouping factor in social force models was introduced by Moussaïd et al. 

(2010). They mentioned that pedestrians move not only individually, but also in 

groups due to their social lives. In particular they found out that the proportion of 

pedestrian groups in the pedestrian population follows a Poisson distribution. 

They imported a group force in the equation of the social force model and 

transformed the model as (Moussaïd et al., 2010):  


  


   

0 wall groupα
α α αβ α α β α

β

du
F F + F (e r r )+F

dt
= + , -  


wall
αF  the repulsive effects of boundaries; 


group
αF  the response of pedestrian α to other group members. 
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The above groups only apply to up to 4 agents. In cases of more pedestrians the 

groups are split up.  

Chraibi et al. (2010) introduced the collision detection technique to limit 

overlapping between pedestrians, while a heuristic function that defines 

pedestrian direction in cases of trying to avoid obstacles was mentioned by 

Moussaïd et al. (2011). 

An extensive presentation of the social force model is provided in section 3.3 in 

order to be explicitly described for the scope of the models’ comparison. In that 

section an improved modified version of the social force model, developed by 

Helbing and Johansson (2010), is also presented. 

 

2.2.2. Cellular automata 

Although cellular automata (CA) are most commonly used in microscopic 

approaches (e.g. Gipps and Marksjo 1985; Burstedde et al., 2001; Blue and 

Adler, 2001; Weifeng et al., 2003; Flötteröd and Lämmel, 2015), they have also 

been adopted in a mesoscopic context (Papadimitriou et al., 2014).  

Gipps and Markjso (1985) set the groundwork for CA in the field of pedestrian 

simulation. Since, the first adoption of CA for simulation in the transport field, CA 

was revised in 1992 by Nagel and Schreckenberg who introduced the CA for 

vehicular traffic. Their model proved to be quite effective and increased its 

popularity in the transport field. The CA theory is based on space discretization 

(rather than considering space as a continuous element as in the social force 

model). The explored area is separated in cells of specific dimensions, in which 

pedestrians move (Figure 2.3). 
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Figure 2.3: Cellular automata approach (based on Burstedde et al., 2001) 

In most studies, the cell dimensions are 0.4m X 0.4m (Burstedde et al., 2001; 

Isobe et al., 2004; Ma and Song, 2013; Li et al., 2019; Lu et al., 2015; Weifeng et 

al., 2003), while in Gipps and Markjso (1985) they are 0.5m X 0.5m. In addition, 

Löhner and Haug (2014), though not related to the cellular automata theory, 

estimated agent’s length and width (in crowd situations) to be 0.3m and 0.5m 

respectively. Furthermore, Kretz et al. (2011) determined the lower range of 

human body diameters between 0.15m and 0.20m. Guo et al. (2012) specified 

cell dimensions as 0.2m X 0.2m to be able to represent also objects’ dimensions. 

Hexagonal cells have also been found in recent studies (e.g. Torres-Ruiz et al., 

2017). 

According to the CA adaptation for pedestrian simulation, obstacles, walls, and 

people occupy cells of the space. Each cell can be occupied at most by one 

agent. In the initial simulation step, the space is divided in occupied and 

unoccupied cells. At every simulation step, the condition movement of the agent 

is updated and the agent can either move to one of the neighbouring cells or 

remain at the same cell. A new layout of occupied and unoccupied cells is then 

created. The same process is repeated for each simulation step. Both von 

Neumann neighborhoods (four cells neighborhood type) and Moore 

neighborhoods (nine cells neighborhood type) have been studied. Cellular 

automata models can also simulate pedestrian group movement (Vizzari et al., 

2013).  
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CA’s advantage is the simplicity of their rules (Lu et al., 2015), while their 

disadvantage becomes evident in large simulation scenarios where increased 

memory requirements are noted (Gloor et al., 2004).  

CA theory was also employed in evacuation modeling by examining pedestrian 

coupling and its impact on evacuation time (Müller and Schadschneider, 2016). 

Burstedde et al. (2001) extended cellular automata in evacuation plans by 

introducing the floor field, which is a second grid of cells underlying the main grid 

that acts as a substitute for pedestrian intelligence. This floor field demonstrates 

the interactions between pedestrians. 

Combinations of CA and social force models are also found in the literature 

(Table 2.1). In such models (the combinations of CA and social force) the space 

segmentation element is adopted from the CA theory and the forces among 

pedestrians and other obstacles from the social force theory. 

 

2.2.3. Lattice gas 

Unlike the aforementioned models, lattice gas models have not been widely 

applied in pedestrian simulation (e.g. Muramatsu et al., 1999; Muramatsu and 

Nagatani, 2000; Isobe et al., 2004). They rely on the concept that pedestrians 

move according to the flow’s strength, also referred to as drift strength. Drift 

strength is the primary parameter for the probability function that defines the 

direction of the pedestrian in the next simulation step. Pedestrians prefer to follow 

other pedestrians than create their own paths. Lattice gas models evince that 

pedestrians tend to follow their leader as they move (Isobe et al., 2004). 

Muramatsu et al. (1999) applied one of the primary approaches for lattice gas 

models in pedestrian simulation. They separated walkers in right walkers (move 

to the right) and left walkers (move to the left). Their model relies on the 

probability of walkers to choose their next site in the next time step, which 

depends on the drift strength. They concluded that: 

 the mean velocity increases with increasing drift; 
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 the mean velocity, the occupancy and the jamming transition do not 

depend on the ratio of the right walkers to all walkers. 

This study did not include the option for pedestrian’s back step. Subsequently, 

Muramatsu and Nagatani (2000) introduced two different types of pedestrian 

simulation models, one for two-way pedestrian flow and one for four-way 

pedestrian flow. In the first model, walkers can only move up or right, and in the 

second in all possible directions. The simulation of the first model (two-way) was 

conducted under the assumption that the density of the right walkers is equal to 

the density of the up walkers. Simulation experiments revealed that by increasing 

drift strength, critical density (the value of density when the jamming transition 

begins to occur) decreases while mean velocity increases. In the simulation of 

the second model (four-way) the density is equal for each type of walker (the 

walker type is defined by the direction they move). Τhe mean velocity above the 

transition point is almost zero in the four-way experiment and slightly higher in the 

two-way. Critical density and mean velocity “react” in the same manner in both 

models (two-way and four-way), but the patterns are different.  

Isobe et al. (2004) also utilized a lattice gas model for simulating pedestrian 

movement. They presented a bi-directional pedestrian flow simulation inside a 

channel with the assumption that the number of pedestrians is equal in each 

direction. The walls of the channel acted as boundaries for the pedestrians and 

applied repulsive forces on them. They found that the probabilities of the 

movement direction of an agent (transition probabilities – pt) depend on the drift 

strength.  

Lattice gas models have been applied in pedestrian simulation, but not as 

extensively as social force and cellular automata models. A thorough review of 

pedestrian models resulted in only 5 studies where lattice gas models were 

applied for pedestrian simulation. Considering the fact that all of them were 

edited by the same or related researchers, the real applicability of lattice gas 

models seems to be rather limited. 
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Figure 2.4: Lattice gas approach (based on Isobe et al., 2004) 

 

2.2.4. Route choice 

Naturally, route choice theory is also relevant in modeling pedestrian behavior, 

while it resembles its applications in vehicle traffic. Route choice probability is 

computed according to maximum likelihood theory. 

Nested logit models have been used for maximizing the utility that an agent gains 

from moving from a place to another (Robin et al., 2009). The utility function 

consists of the following factors: 

a) the tendency of an agent to keep their direction; 

b) the aim of reaching their destination; 

c) their acceleration in free flow conditions; 

d) the tendency of following their leader; 

e) the aim to avoid collisions. 

In the same data sample, different categories of logit models (e.g. cross-nested 

and mixed nested) provide similar coefficient values (Antonini et al., 2006). An 

extensive literature review of pedestrian route choice models is presented in 

Papadimitriou et al. (2009).  
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Hoogendoorn and Bovy (2004) modified route choice models (behavioral theory) 

by inserting infinite alternative choices in pedestrian’s route. Behavioral theory 

force models comprise actually a sub-category of social force models that 

combine social force and route choice models (Hoogendoorn and Bovy, 2003; 

Hoogendoorn and Daamen, 2007). Guo et al. (2010) introduced logit models in 

social force models and applied differential equations to compute movement 

probability. At this point it is mentioned that another sub-category of social force 

models are centrifugal force models, which take into consideration pedestrian 

velocity while adopting collision detection techniques in order to avoid conflicts 

and overlaps among pedestrians. Centrifugal force models are also practical for 

evacuating buildings (Chraibi et al., 2010).  

Li et al. (2019) combined choice behavior models with cellular automata in order 

to simulate pedestrian movements at a ticket gate machine at a rail transit 

station. They set three pedestrian choice strategies including pedestrians’ 

preferences for i) minimizing their distance, ii) selecting the queue with the 

minimum number of pedestrians and iii) eliminating their estimated time. Poisson 

distribution was applied to model pedestrians entering the station interval. 

It is worth mentioning that under high-density conditions all of the aforementioned 

models are incapable of accurately reproducing the existing phenomena (Duives 

et al., 2013). Cellular automata and social force models appear more suitable for 

pedestrian crowd simulation. 

A recent study on the field of route choice models has been conducted by Wu et 

al. (2021). The researchers made their experiments in a subway station. 

Considering the factor of local view (i.e. the fact that pedestrian’s field of vision 

can be blocked by obstacles) they concluded that the exit’s choice is related to 

the agent’s space familiarity, while temporary directions before determining the 

final exit are possible and local view factor can make pedestrians to re-select 

their final exits. 
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Table 2.1: Overview of pedestrian simulation models 

Source Model level Model category 
Fundamental 

diagram 
Experiment 
validation 

Antonini et al. (2006) Microscopic Route choice theory  
Blue and Adler (2001) Microscopic Cellular automata  
Burstedde et al. (2001) Microscopic Cellular automata  

Chaibi et al. (2010) Microscopic Social force (centrifugal force)  
Flötteröd and Lämmel (2015) Microscopic Cellular automata  

Gipps and Marksjo (1985) Microscopic 
Combined of cellular automata and 

social force models  

Gloor et al. (2004) Microscopic 
Combined of cellular automata and 

social force models  
Guo et al. (2010) Microscopic Social force (behavioural theory)  

Helbing and Molnár (1995) Microscopic Social force  
Helbing et al. (2007) Microscopic Social force  

Hoogendoorn and Bovy (2003) Microscopic Social force (behavioural theory)  
Hoogendoorn and Bovy (2004) Microscopic Route choice theory  

Hoogendoorn and Daamen (2007) Microscopic Social force (behavioural theory)  
Hughes (2000) Macroscopic Route choice theory  

Isobe et al. (2004) Microscopic Lattice gas  

Kneidl and Borrmann (2011) Microscopic 
Combination of cellular automata 

and social forces  
Kretz et al. (2011) Microscopic Social force  

Li et al. (2019) Microscopic 
Combination of cellular automata 

and choice behavior analysis  
Li and Guo (2020) Mesoscopic Cell transmission model  

Løvås (1994) Microscopic Route choice theory  

Lu et al. (2015) Microscopic 
Combination of cellular automata 

and social force 
  (from one 
intersection)

Moussaïd et al. (2010) Microscopic Social force  
Moussaïd et al. (2011) Microscopic Social force  

Muramatsu et al. (1999) Microscopic Lattice gas  
Muramatsu and Nagatani (2000) Microscopic Lattice gas  

Nagatani (2001) Microscopic Lattice gas  
Nagatani (2002) Microscopic Lattice gas  

Okazaki and Matsushita (1993) Microscopic Force based  
Robin et al. (2009) Microscopic Route choice  
Song et al. (2013) Microscopic Social force  
Teknomo (2006) Microscopic Social force  

Tordeux et al. (2018a) Mesoscopic Hexagon lattice  
Torres-Ruiz et al. (2017) Microscopic Cellular automata  

Weifeng et al. (2003) Microscopic Cellular automata  
Wu et al. (2021) Microscopic Route choice theory  

Zanlungo et al. (2014a) Microscopic Social force  
Zhao et al. (2012) Microscopic Social force  
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2.3. Fundamental diagram 

Fundamental diagrams are an essential element for traffic simulation. Relying on 

the relations between basic traffic magnitudes, they evince the validity of the 

proposed models. Similarly in pedestrian simulation they are considered to be an 

important tool, particularly in terms of model calibration (e.g. Tordeux et al., 

2018a), as considered in the previous table (2.1).  

One of the earliest studies on pedestrian fundamental diagrams was that of 

Weidmann’s (1993). The proposed fundamental diagram correlates pedestrian 

density and pedestrian velocity by illustrating that velocity is inversely related to 

density. The diagram has also been verified in later studies, for example in 

Seyfried et al. (2005) where four regimes have been identified (Figure 2.3). 

 

Figure 2.5: Fundamental diagram for pedestrians (Seyfried et al., 2005) 

It is worth mentioning that the measuring unit of density (p) in pedestrian flows 

refers to square meters (1/m2) and is related to the area, rather than the length 

that pedestrians occupy. This is not the case for traffic flow where density is 

expressed in vehicles per unit of length e.g. lane-kilometers (veh/km/lane). The 

cause of this difference is that vehicles are organized in specific lanes and they 

typically follow each other, thus the vertical dimension is not so relevant. It only 
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becomes relevant when modelling heterogeneous traffic where power-two-

wheelers are present. Is such cases, event approaches are introduced to include 

the vertical dimension. As pedestrians do not necessarily walk in specific lanes 

(expect in specific cases that are analysed below), but in an un-directional i.e. a 

scattered (to some degree) manner in space, it is crucial to examine the area that 

the pedestrian occupies. Thus, both length and width need to be considered. 

Maximum density value in Figure 2.5, is reached when velocity almost zeroes 

and is 5.4 pedestrians/m2. Helbing et al. (2007) noted from their experiments that 

density can slightly exceed 9 pedestrians/m2. In addition, Løvås (1994) mentions 

that maximum pedestrian flow varies between different populations, situations 

and walkways. 

Hughes (2000) analysed the way that pedestrian velocity decreases when 

density increases (without providing a fundamental diagram) by developing a 

macroscopic pedestrian simulation model. This study implied that velocity 

depends only on density without considering surface heterogeneity, in contrast to 

Løvås (1994). Additionally, Hughes’s approach does not consider different types 

of pedestrians. The application of his approach in a case study revealed that the 

psychological state of pedestrians can completely change the flow pattern. 

Hughes (2000) simulated pedestrian velocity using differential equations and 

postulated three hypotheses: 

 Pedestrian velocity depends on surrounding pedestrian density and 

pedestrians’ behavioral characteristics; 

 Pedestrians move towards their destination; and  

 Pedestrians minimize their travel time, but relax this in order to avoid high 

densities. 

Blue and Adler (2001) recognized the fact that pedestrian velocity depends on 

the location of other pedestrians in the neighboring area (see section 2.4). They 

utilized cellular automata for pedestrian simulation using microscopic models and 

examined the way that pedestrians act as they move. They set possibilities 

regarding whether or not pedestrians will change lane. They classified 

bidirectional flow in to a) separated flow, b) interspersed flow and c) dynamic 
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multi-lane (DML) flow, and they concluded that the velocity/density curve 

(pattern) differs between unidirectional to bidirectional flow.  

Isobe’s et al. (2004) study also demonstrated the relationship between velocity 

and density in one-way and on two-way pedestrian traffic flow. In the first case 

the relationship was found to be linear and in the second logarithmic (with R2 

equal to 0.82 and 0.90 respectively). 

A specific type of density, local density (the density at a certain space and time), 

has also been studied (e.g. Helbing et al., 2007; Lu et al., 2015). Helbing et al. 

(2007) made the first attempt of assigning local density and local velocity. They 

determined the level of the difference between local and average values and 

suggested that local density can reach twice the value of average density. In very 

high densities, the movement of each pedestrian was determined, mainly from 

the crowd movement. 

Daamen et al. (2015) pointed out the significance of variation in pedestrian 

density (similarly to Helbing et al., 2007). Particularly, they concluded that density 

variations are proportionate to pedestrian flow and inversely proportionate to 

pedestrian velocity. 

Furthermore, pedestrian velocity under normal conditions has also been 

examined. Weifeng et al. (2003) estimated it about 1.0m/s, Lu et al. (2015) about 

1.2m/s, while Antonini et al. (2006) refer to an average pedestrian’s speed in their 

datasets of about 1.6m/s. On the other hand, Bršcic et al. (2014) characterized as 

moving pedestrians those who have an average velocity of more than 0.5m/s. 

Last, Tordeux et al. (2018a) employed, besides the velocity–density fundamental 

diagram, the flow–density diagram in order to test the applicability of their model. 

Both in uni-directional and multi-directional experiments fundamental diagrams 

were used as a tool for examining model validity.  

 

2.4. Data-driven models on pedestrian simulation 

During the past years an increasing adoption of data-driven techniques in the 

field of pedestrian simulation has been observed. These techniques are 
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described in a separate subsection: the terminology and a detailed description of 

data-driven theory are presented in detail in section 3.4. 

Data-driven modeling is not an unfamiliar approach to pedestrian simulation and 

has been applied only recently, though not as extensively. One of the early 

attempts was that of Tay and Laugier (2008) who performed a motion pattern 

analysis with the aid of Gaussian Processes (GP). The researchers utilized GP 

for modeling paths into a typical path with the mean function equal to the mean of 

the GPs, without considering surroundings. They employed the Expectation 

Maximization algorithm as a useful tool for model training.  

Ma et al. (2016) employed Neural Networks (ANN) and pointed out their 

paramount advantages (nonlinearity and adaptability) in an attempt of predicting 

agents’ movement by collecting data in a crosswalk on a street in Hong Kong. 

The model parameters were initially categorized in five groups, regarding 

pedestrian’s current velocity, interactive agents’ relative positions and velocities, 

obstacles’ relative positions, relative positions of the desired targets and 

pedestrian characteristics (i.e. physiology and emotions). Due to homogenous 

pedestrian flow hypothesis, the fifth group of parameters was ruled out. 

Additionally, as the simulation involved a crosswalk, no obstacles were 

considered except for the boundaries. Subsequently, a single hidden layer Multi-

Layer Perceptron (MLP) was trained on real data, recorded from a camera, and 

proved its efficiency.   

Alahi et al. (2016) predicted pedestrian next step position in a time series 

framework with the aid of Long Short-Term Memory (LSTM) networks, a type of 

ANN (particularly Recurrent Neural Networks). Their model is a mix of social 

force and LSTM considering the locations of the neighboring pedestrians. They 

applied LSTM in every examined pedestrian, while a “social” hidden state pooled 

the multiple LSTMs in one model. Alahi et al. (2016) compared their model with 

the social force demonstrating the superiority of data-driven modeling in their 

datasets. 

Ridel et al. (2019) went one step further in the LSTM technique (applied for 

pedestrian simulation) by taking under consideration pedestrian-vehicle 

interactions. The researchers used as inputs in their model pedestrian positions, 

head orientation and ego-vehicle locations while they predicted pedestrian future 
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positions in the next 2 seconds. They developed their model with the aid of 

PyTorch (an open-source machine learning library for Python programming 

language) using Adam as the optimization algorithm and the mean squared error 

(MSE) as the loss function. Their study limitations arise from the fact that 

although they consider pedestrian-vehicle interactions, pedestrian-pedestrian and 

pedestrian-obstacles (e.g. buildings) interactions were not included in their 

approach. 

Martinez-Gil et al. (2017) employed reinforcement learning theory to simulate 

pedestrian behaviors in groups. In terms of control theory, the reinforcement 

learning model consists of two stages. First, pedestrians independently learn, by 

interaction with the environment, their behavior and then each learned behavior is 

replicated in pedestrian groups. 

Tordeux et al. (2018b) applied ANN in pedestrian simulation to predict agent’s 

velocity. They indicated ANN’s efficiency, while comparing them with a 

fundamental-diagram based model. In terms of cross-validation process, half of 

the data were used as the training set while the other as the testing set. Mean 

squared error was the error function in the back-propagation algorithm. The 

model that performed better was a single hidden layer network with three nodes. 

Duives et al. (2019) also used Recurrent Neural Networks in pedestrian 

simulation. With the aid of cell sequences (agent’s previous steps ordered by 

time), utilizing GPS data, they trained and tested their model during a festival in 

the Netherlands.  

Prior to pedestrian simulation, ANN have been utilized extensively in 

transportation research [e.g. Antoniou et al., 2013, Karlaftis and Vlahogianni, 

2011, Papathanasopoulou and Antoniou, (2015, 2017)]. For example, Antoniou et 

al. (2013) employed ANN, among other data-driven methods, for predicting traffic 

states, while Papathanasopoulou and Antoniou (2015, 2017) adopted ANN as an 

alternative traffic simulation technique with significant results. On the other hand, 

Karlaftis and Vlahogianni (2011) pointed out ANN’s limited descriptive ability, 

when applying them in transportation modeling. In cases of primary parameters’ 

relationships, ANN could be avoided. Compared to statistical methods, ANN may 

be advantageous when dealing with complicated data, but they do not produce a 
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relationship between inputs and outputs. Karlaftis and Vlahogianni (2011) 

mention that a “fair” comparison between them is not always feasible. 

 

2.5. Parameters specification 

The most commonly used models that simulate pedestrian movements are 

described in section 2.2. The process of developing the simulation models 

includes the determination of the factors that affect pedestrian movement. Models 

are then calibrated and validated. 

It should be noted that each study in section 2.2 holds different assumptions. For 

example, considering movement directions, a few studies take into consideration 

only one directional movement (e.g. Nagatani, 2002), while others do not include 

the possibility of back stepping (e.g. Weifeng et al., 2003). 

The parameters that affect pedestrian movement as determined in the relevant 

studies and have been incorporated in pedestrian simulation models can be 

classified in the following distinct categories (presented in Figure 2.4): 

 Facilities geometry 

 Pedestrian flow properties 

 Pedestrian characteristics 

 

Facilities geometry  

Løvås (1994) concluded that pedestrian velocity is not affected considerably by 

the direction of traffic, but is a function of personal and conditional factors. At the 

same time he noted that walking through a door versus a corridor of the same 

width restricts pedestrian flow. He also noticed that the queue phenomenon 

(pedestrians are standing in queues) can occur next to doors. 

The relative dimensions of a corridor i.e. width of the narrow part/width of the 

wide part affect critical density (Nagatani, 2001). The width of the corridor in 

which pedestrians walk is not very crucial as long as it does not impede the free 

flow of the pedestrians (Seyfried et al., 2005). At the same time, density at the 



56 
 

exit point affects the relation between the mean flow rate and the entrance 

density (Nagatani, 2001). 

Depending on the type of infrastructure e.g. stairs, ramps, bottlenecks or halls 

and the number of assumed directions of the streams (uni-directional/bi-

directional), the fundamental velocity - density relationship may differ (Seyfried et 

al., 2005). In particular, in four-way systems, the mean velocity above the 

transition point is almost zero, whereas in two-way systems, it has a low non-zero 

value (Muramatsu and Nagatani, 2000). In addition, Hoogendoorn and Bovy 

(2004) referred to the spatial distribution of the alternative route choices (route 

choice models) that affects pedestrian movement.  

 

Pedestrian flow properties 

The density of the moving area, similarly to traffic simulation, is the most crucial 

factor considering pedestrian movement (Gipps and Marksjo, 1985; Helbing and 

Molnár, 1995; and Isobe et al., 2004). Density increases proportionally to the 

density at the entry point (Nagatani, 2001). For a specific value of the critical 

entry density, which depends on the dimension of the corridor (see Facilities 

geometry), the conditions become saturated. In bi-directional movement, when 

pedestrians walking in opposite direction come close, they tend to diverge from 

their initial trajectory in order to increase their lateral distance. This phenomenon 

occurs for density values lower than a threshold value, after which pedestrians 

are restricted by the presence of other pedestrians, and this phenomenon stops 

occurring (Isobe et al., 2004). 

Nagatani (2002) showed that the higher the density of a corridor’s exit, the higher 

the possibility of merging two pedestrian flows, in the same direction, 

downstream of a meeting point inside the corridor. His simulations were 

conducted without the possibility of back stepping and under unidirectional 

movement. 

Hoogendoorn and Bovy (2004), in the application of route choice models, defined 

crucial factors for pedestrian simulation. Expected travel time, interactions 

between pedestrians and obstacles, maintaining a certain speed, interactions 
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between pedestrians and environmental stimuli were categorized as running 

costs, while the cost of the delay in the destination as the terminal cost (though 

maintaining certain speed and cost of delay factors are categorized as 

“pedestrian characteristics”). Pedestrian velocity depends on the time of day; 

higher velocities are observed in peak hours (even in high densities), and lower 

velocities are observed in later hours (Bršcic et al., 2014). Also, pedestrian 

velocity depends on the location of other pedestrians in the area (Blue and Adler, 

2001). Anisotropy (whether a pedestrian is influenced only by people that are in 

front of them) and pedestrian reaction time are crucial factors (Hoogendoorn and 

Daamen, 2007). Pedestrians with higher free flow speed anticipate other agents 

in greater distances.  

Weifeng et al. (2003) broke the deadlock of back stepping adopting the von 

Neumann neighborhood, which involves four adjacent cells. The simulation 

results suggested that in low density pedestrians move freely, while in crowded 

situations the system is self-organized in lanes. These results are in line with the 

findings of Bršcic et al. (2014). Lane segregation policy has high influence in the 

average delay and in the average velocity compared to the mix lane policy 

(Teknomo, 2006). Pedestrians generally tend to move on the same side of the 

corridor/tunnel/road in a bidirectional movement (Blue and Adler, 2001). As the 

total density increases, the existing lanes merge in two lanes: the right lane 

contains “up walkers” and the left the “down walkers”. In the jammed state (higher 

density) only some of the pedestrians can move. Also due to the back stepping, 

the system will not reach easily a jammed state (as pedestrians can easily adjust 

their positions). Finally, a factor determining whether pedestrians prefer to walk 

on the right-hand side of the road or on the left-hand (depending on each 

country) was introduced. 

Conflict delay is another crucial factor of pedestrian simulation (Flötteröd and 

Lämmel, 2015). It declares the delay between two pedestrians from the opposite 

directions when they interact with each other. In their model, the ratio of density 

in each direction was 50/50. Pedestrians’ conflicts could lead to velocity reduction 

(by up to one-third) in a bidirectional flow (Lu et al., 2015). As also mentioned 

above, pedestrians want to minimize their travel time (Hughes, 2000). 
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In social groups, pedestrians walk side by side to improve their communication, 

but they change the shape of the walking line (that is, perpendicular to the 

direction movement) into a U-shape as the population of the group increases 

or/and the density increases (Moussaïd et al., 2010). The U-shape does not 

change in bidirectional flows. According to Zanlungo et al. (2014a), as the size of 

a pedestrian group increases, the velocity decreases and pedestrians are forced 

to move from the surrounding environment towards the centre of the group.  

 

Pedestrian characteristics 

Hoogendoorn and Daamen (2007) calibrated five parameters (agent’s free 

speed, agent’s acceleration time, interaction constant, interaction distance and 

agent’s reaction time – though interaction constant and interaction distance are 

categorized as “Pedestrian flow properties”) that affect pedestrian’s movement. 

Drift strength is another essential factor, encountered on lattice gas models 

(Muramatsu et al., 1999; Muramatsu and Nagatani, 2000; and Isobe et al., 2004). 

Muramatsu et al. (1999) deduced that mean velocity increases with increasing 

drift, and the jamming transition is independent of the ratio of the walkers moving 

to the right side of all the walkers. The jamming transition point depends on the 

system size for small systems (Muramatsu and Nagatani, 2000). Drift strength 

also affects mean arrival time and route choice (Isobe et al., 2004). A similar 

factor to drift strength is crowd pressure (Kretz, 2011). 

The existence of elderly people in the pedestrian flow influences pedestrian 

velocity (Isobe et al., 2004). Specifically, average velocity decreases 

logarithmically as the proportion of the elderly pedestrians increases (Teknomo, 

2006). Additionally, agent height affects velocity, almost linearly between 1.45 

and 1.8 m (Bršcic et al., 2014). While taller people walk faster, their movement is 

inhibited as the number of short persons increases. Agent dimensions are related 

to the headway and to their step size (Kretz, 2011). Generally, personal 

characteristics comprise a crucial factor determining pedestrian movement 

(Nikolić et al., 2013). 

The agents’ intentions relevant to whether they desire to reach their destination 

as soon as possible, irrespective of the length of the route that they follow 
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(quickest path factor) is another important factor (Kretz et al., 2011). 

Emergencies are an example. It is obvious that the quickest path is not always 

the shortest. Furthermore, the agent’s psychological state, as already mentioned, 

is considered as a crucial factor in pedestrian simulation (Hughes, 2000). 

Finally, Hamed (2001) listed a number of factors that influence waiting time in a 

crossing and the number of attempts until some pedestrian passes including, 

amongst others, agent’s age and gender.  
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Figure 2.6: Pedestrian simulation parameters 
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2.6. Modeling emergencies 

Due to the increased interest of the research community on pedestrian simulation 

modeling under emergencies, mainly during the last decade, results from some of 

the most representative studies, are presented. 

In this thesis, emergencies are defined as situations during which, in a short 

period of time, sudden disruptions occur and drastic actions must be carried out 

to prevent serious incidents. Emergencies are classified according to their cause, 

in natural disasters (earthquakes, floods, etc.) and in man-made events (fires, 

terrorist actions, etc.). 

A key difference between pedestrian simulation in normal conditions and under 

emergencies is the stress associated with emergencies (Yun et al., 2012). Kneidl 

and Borrmann (2011) categorized pedestrians in evacuation plans into three 

types: 

 Those who know the location and can find an alternative route, 

 Those who have no detailed knowledge of the area, and 

 Those who are totally unaware of the area. 

In evacuation methods, dynamic plans are the most effective, followed by static 

plans and then by evacuation methods without a plan (Yun et al., 2012). Koo et 

al. (2013) pointed out the contribution of hybrid strategies in evacuation plans in 

which only people in wheelchairs use elevators and the rest use the stairs. In 

addition, they concluded that evacuation in phases requires less time than a 

simultaneous strategy. Evacuation time (average and maximum) is the primary 

indicator for the assessment of the evaluation plan (Vermuyten et al., 2016). 

Training for emergency situations affects evacuation plans. Chen et al. (2012) 

highlighted the significance of information systems and virtual reality. Studying 

human psychology in disaster preparedness, Paton (2003) introduced critical 

awareness as the way or level that people perceive danger. Motivation and 

danger awareness are the primary factors for triggering people to act 

preventively.  
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Simulation models are employed in evacuation plans. Cellular automata (Guo et 

al., 2012; Liao et al., 2014), social force (Okazaki and Matsushita, 1993; Helbing 

et al., 2000; Parisi and Dorso, 2005) and lattice gas models (Helbing et al., 2003) 

are the main categories, while route choice theory is employed complementary to 

them. Parisi and Dorso (2005) stated that cellular automata models lack in 

calculating interaction forces (between agents or between agents and objects). 

Route choice models are of great importance because route selection is crucial in 

evacuation plans. In these models, the probability for an agent to select their 

evacuation route plays a crucial role in evacuation effectiveness. Pedestrians 

choose routes that minimize distance (Guo et al., 2012), although the shortest 

route sometimes is not the quickest (Kretz et al., 2011). 

A modulated force model was presented by Helbing et al. (2000) that takes into 

account two extra forces: one that raises body compression and another that 

focuses on tangential movement. The researchers considered parameters from 

pedestrian movement under normal conditions (repulsive forces, attractive forces, 

desired velocity, and relaxation factor) and pointed out that in emergencies their 

values are much higher. Desired velocity, in particular, could reach values to 10 

times higher. Parisi and Dorso (2005), who also pointed out that desired velocity 

in emergencies can reach much higher values (up to 8 m/s), concluded, 

surprisingly, that the minimum evacuation time occurs under intermediate desired 

velocity values. They found that evacuation time increases in low and high 

desired velocity values because of clogging (in high-level values). 

Under panic conditions, when desired velocities are high, congestion problems 

occur in door exits and in corridor widenings. Exit door width is inversely 

proportional to the probability of congestion at the exit (Parisi and Dorso, 2005). 

Evacuation time is reduced exponentially by an increase in the width of the exit 

door. 

Okazaki and Matsushita (1993) described a social force model for pedestrian 

movements under building evacuation. The model is based on the process of 

negative and positive poles, where positive poles are pedestrians and their 

obstacles and negative poles are the destinations. Thus, pedestrians, because of 

the magnetic fields, are repelled from the obstacles or the other pedestrians and 

are attracted by their destination (possibly the nearest exit). A function for 
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physical interactions was used for overcrowded situations in which pedestrians 

are forced to walk in a specific direction without exercising their own will 

(Moussaïd et al., 2011). 

The level of visibility in an emergency is an important factor in evacuation plans 

(Guo et al., 2012; Liao et al., 2014, Cao et al., 2018). Guo et al. (2012) used 

cellular automata and route choice models for specifying pedestrian behavior 

under good and zero visibility. Under low visibility conditions, space familiarity 

(also mentioned by Liao et al., 2014) for each of the evacuees was considered. 

Cao et al. (2018) experiments in a supermarket under good and limited visibility 

pointed out five main findings (a) pedestrians attempt to find the closest exit in 

order to minimize the movement distance in both conditions, (b) follow other 

neighbors, (c) help other people under low visibility conditions (that does not 

occur often under normal conditions), (d) try to find dependents and walk along 

obstacles, and (e) their speed under low visibility conditions is significantly lower 

than under normal conditions. Song et al. (2013) classified crowd behaviour in 

panic situations (in that case, the evacuation of a metro rail station because of a 

bioterrorism act) according to people who will (a) select the closest exit, (b) be in 

total panic, and (c) follow the flow of the crowd around them. The percentage in 

each group was 90%, 5%, and 5%, respectively. For persons who are familiar 

with the room, the way of finding the nearest exit (if there is more than one) may 

not be difficult. Additionally, pedestrians prefer moving by touching an object 

(wall, obstacle etc.) or another agent. Under good visibility conditions, Guo et al. 

(2012) indicated three parameters that affect pedestrians’ route choice behavior: 

(a) route distance to the exit, (b) congestion on the frontal route, and (c) frontal 

route capacity. They deduced that pedestrian velocity under zero visibility is half 

of velocity under good visibility conditions. However, their simulations were 

conducted without taking into account psychological factors. 

Liao et al. (2014) mentioned the route choice parameter introduced by Guo et al. 

(2012), and added building structure, agent psychology and information 

availability without extensively studying them. They examined three exit layout 

types: (a) parallel, (b) convex, and (c) concave. They concluded that the parallel 

layout is the least effective in evacuation plans. 
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A specific study on evacuation of tall buildings has been conducted by 

Aleksandrov et al. (2018). These building types may have a refuge floor i.e. a 

floor that pedestrians can have a short break as they walk with the stairs. The 

researchers conclude (relying on questionnaires) that pedestrians are more 

willing to follow instructions from staff than from sings. Also they point out that 

people density on the stairs, refuge floors positions, knowledge that lifts can be 

used for evacuation, agent’s characteristics (e.g. body mass index) are critical 

parameters for evacuation plans.   

Persons with disabilities have also been considered in evacuation plans (Manley 

and Kim, 2012). In this study, people were categorized in six types: (a) people 

without impairment, (b) motorized wheelchair users, (c) nonmotorized wheelchair 

users, (d) visually impaired, (e) hearing impaired, and (f) stamina impaired. The 

third (c) and the sixth (f) types were considered as the most vulnerable ones. 

Simulation results highlighted the need of assessing the type of disability that will 

further enhance evacuation plans. 

Joo et al. (2013) studied human behavior in emergency situations and mentioned 

two hypotheses: (a) humans decide as a consequence of their perceived 

information and (b) humans set a goal to achieve with their actions. The paper 

does not examine human interaction and communication. Three models are 

referred to represent human behaviors in complex and realistic environments: 

Soar, Act-R, and Belief-Desire-Intention. The models follow three different 

approaches: (a) an economics-based approach, (b) a psychology-based 

approach, and (c) a synthetic engineering-based approach.  

In emergency and crowd conditions, local magnitudes are more representative of 

pedestrian dynamics. Helbing et al. (2007) made the first attempt of considering 

local magnitudes, while Daamen et al. (2015) pointed out the significance of 

variation in pedestrian density. They concluded that density variations are 

proportionate to pedestrian flow and inversely proportionate to pedestrian 

velocity, also in emergency conditions. 

Geographic Information Systems (GIS) comprise an important tool in evacuation 

plans (Pidd et al., 1996 and Huang and Pan, 2007). Pidd et al. (1996) developed 

a configurable evacuation management and planning system to be used in man-

made disasters. They considered GIS as an efficient technology that can 
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examine static aspects of evacuation plans, such as determining evacuation zone 

and evacuation routes, but they noted that it cannot consider dynamic ones. 

Huang and Pan (2007) presented a more integrated way to simulate models 

appropriate for evacuation under panic conditions. They incorporated GIS with a 

traffic simulation engine and an optimization engine. GIS provided the primary 

user interface, processed network data, derived the shortest-time path and 

visualized the results, while a traffic simulation engine simulated incidents in the 

network, gathered link travel times at regular intervals and transmitted time 

dependent information to GIS. Finally, an optimization engine derived an optimal 

dispatching strategy by minimizing the total travel time of all response units. 

Virtual geographic environments (a GIS specification) are useful in crowd 

evacuation (Song et al., 2013). The conceptual framework of virtual geographic 

environments has three components (Gong et al., 2009): (a) representation in a 

virtual geographic large-scale landscape, (b) a smaller-scale environment, and 

(c) a layer of collaborative participation of the users. 

Furthermore, control of pedestrian behavior is a crucial factor in evacuation 

plans. Siques (2002) presented the effectiveness of control devices in human 

behavior. The author examined scenarios in grade crossings and found that 

active warning devices, such as pedestrian automatic gates or pedestrian 

flashing lights, are more powerful in preventing pedestrian grade crossing as a 

train approaches, than simple visual signs. Zhao et al. (2012) pointed out that the 

factor of pedestrian flow stability is crucial for flow control, because small 

perturbations in unstable flows can cause serious effects. The proportion of 

pedestrians that follow the traffic guidance is important for the “stabilization” of 

the streams (as the proportion grows the flow becomes more stable). 

Recently data-driven models were employed on pedestrian movement under 

evacuation. Wang et al. (2019) utilized machine learning techniques, including 

SVM and ANN, for classifying pedestrian movement patterns under emergencies. 

They came up with the findings that the distance to the target exit is an important 

factor and that surrounding evacuees affect the examined one. In a comparison 

of the performance among the utilized machine learning methods, ANN was 

proven to be superior. 
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Xu et al. (2021) used ANN and particular Deep Neural Networks combined with 

Reinforcement Learning theory in multi-exit navigation for pedestrian evacuation. 

The evacuees were trying to leave the room (the examined place) as soon as 

possible avoiding obstacles or other pedestrians. The experiment assumes fully 

environmental awareness. Also in this study Neural Networks proved their 

outperformance.  

 

2.7. Data collection 

As noted in Table 2.1, only a few studies validate their models. The cause is the 

lack of real data, and the limited access to them.  

Validation methods and techniques are crucial in order to prove that theory 

models are sensible and applicable to reality, while displaying a satisfactory 

representation of actual movement. Cross-validation techniques have been 

applied extensively and provide an effective validation technique (Robin et al., 

2009; Flötteröd and Lämmel, 2015; Nikolić et al., 2016). Robin et al. (2009) 

performed a cross validation method by splitting the data in five subsets, utilizing 

one each time for validation and the rest four subsets for calibration. Flötteröd 

and Lämmel (2015) cross validated their results by estimating and validating 

among unidirectional and bidirectional flow data and vice versa. Nikolić et al. 

(2016) used 80% of their data (randomly selected) to estimate model parameters 

and the remaining 20% for validating the estimated model using Kolmogorov-

Smirnov goodness-of-fit test. 

Data collection is crucial for validation. The most commonly utilized data sources 

generally are those employing video recordings and sensors. 

The basic issue of video recording techniques is structuring methods to track 

pedestrians accurately. In video recordings, principles of photogrammetry are 

utilized as it comprises a significant tool for separating agents from their 

background. One approach for assessing the agent’s position and tracking their 

route is tracking the head of an agent one approach (Teknomo et al., 2000; 

Johansson et al., 2007). The shortcoming of this method is that the height of the 

agent cannot be specified. Hoogendoorn et al. (2003) and Ma and Song (2013) 
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placed colored caps on the agents’ heads to solve the problem of accurately 

assessing the positions of the agents. Using a color function, they tracked 

pedestrians in a cluster, frame-by-frame, by the color of their hat. In a respective 

framework Federici et al. (2014) relied on video footage in order to track 

pedestrians. Teknomo et al. (2001) presented an automated method for tracking 

pedestrians as they are moving. The researchers used an algorithm to isolate 

pedestrians from their background, assessed pedestrians’ contour (by their 

neighboring cells), connected them in each frame (tracking pedestrians), and 

computed pedestrians’ flow characteristics. The disadvantage of this method is 

the confusion in high density situations due to the occlusion phenomenon (two or 

more persons who are too close to each other are treated as one) resulting in the 

mismatching of pedestrian positions after each frame.  

Another issue with video techniques is the conversion of the image coordinates to 

real-world coordinates. Teknomo et al. (2000) used a rectangular grid to extract 

pedestrians’ coordinates with a high level of accuracy and then converted the 

image coordinates to real-world coordinates. Hoogendoorn et al. (2003) and 

Bršcic et al. (2013) used reference points. 

In the sequel of video recordings, Unmanned Aerial Vehicles (UAV), better known 

as drones, have been employed recently in the field of trajectory tracking. 

Sutheerakul et al. (2017) placed a video camera in both stationary and moving 

UAVs to collect data on pedestrian flow characteristics (in particular they 

recorded pedestrian trajectories) from a shopping street in Thailand. They 

pointed out skills’ requirements for handling the drone, batteries short-term 

capability and requiring flight permission from the aviation or other relative bodies 

as drawbacks of this method. On the other hand, the absence of the limitation for 

recording particular areas is mentioned as an advantage from Barmpounakis et 

al. (2016a) in an attempt of extracting both vehicle and pedestrian trajectories 

separately. 

Antoniou et al. (2011) categorized the technologies for traffic data capturing as 

(a) point sensors, (b) point to point, and (c) areawide. Kourogi et al. (2006) 

utilized a combination of a Global Positioning System (GPS) sensor and a Radio 

Frequency Identification (RFID) tag system for tracking pedestrians in outdoors 

and indoors environments respectively. A Kalman Filter algorithm was employed 
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for enhancing GPS position estimation. Reades et al. (2007) used mobile phone 

antennas for assigning pedestrian flows and their distributions during the day and 

the week. The inability of some devices to capture the signal of all the cell phones 

in the area (because of out-of-range frequencies) is a shortcoming of this 

method. Bršcic et al. (2013) employed a multi-sensor system that was set in the 

ceiling of the study area. Still sensor-based methods could lead to accuracy 

issues (they cannot capture accurately pedestrian trajectory) that affect the 

efficiency of microscopic simulation. Infrared sensors (Nikolić et al., 2016) and 

sensors that rely on the change in environmental temperature (Kerridge et al., 

2007) have also been used. Lesani et al. (2020) used LiDAR (Light Detection and 

Ranging) sensors, a technique that relies on radiation. LiDAR sensors measure 

the distance from the moving objects every 20 ms. However, experiment results 

revealed that not all the pedestrians that participated in the experiment were 

tracked (e.g. pedestrians that carry an umbrella might cover other agents). An 

overview of data collection tools employed in pedestrian simulation studies is 

presented in Table 2.2. 
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Table 2.2: Data collection tools in pedestrian simulation studies 

Data collection 

Paper 
Means of Data 

Collection 
Tracking 

Type 
Data Type 

Barmpounakis et al. (2016a) Video recording (UAV) 
Semi-

automated 
Vehicle and pedestrian 

trajectories 

Bršcic et al. (2013) 
Sensors (multiple-sensor 

system) 
Automated Pedestrian trajectories 

Federici et al. (2014) Video recording Automated Pedestrian trajectories 
Flötteröd and Lämmel (2015) Video recording Manual Pedestrian trajectories 

Guo et al. (2010) Video recording 
Manual and 
automated 

Pedestrian trajectories 

Helbing et al. (2007) Video recording Automated 
Pedestrian positions and 

velocities 
Hoogendoorn et al. (2003) Video recording Automated Pedestrian trajectories 
Hoogendoorn and Daamen 

(2007) 
Video recording Automated Pedestrian trajectories 

Johansson et al. (2007) Video recording Automated Pedestrian trajectories 
Kerridge et al. (2007) Sensors (thermal) Automated Pedestrian trajectories 
Kourogi et al. (2006) Sensors (GPS and RFID) Automated Pedestrian trajectories 
Lesani et al. (2020) Sensors (LiDAR) Automated Pedestrian trajectories 

Lu et al. (2015) Video recording Automated Pedestrian trajectories 
Ma and Song (2013) Video recording Automated Pedestrian trajectories 

Moussaïd et al. (2010) Video recording Manual Pedestrian trajectories 
Moussaïd et al. (2011) Video recording Automated Pedestrian trajectories 

Nikolic et al. 
(2016)  

Lausanne 
experiment 

Sensors (infrared) Automated Pedestrian trajectories 

Delft 
experiment 

Video recording Automated Pedestrian trajectories 

Reades et al. (2007) Sensors (mobile phones) Automated Pedestrian flows 
Robin et al. (2009) Video recording Manual Pedestrian trajectories 

Sutheerakul et al. (2017) Video recording (UAV) Automated Pedestrian trajectories 
Teknomo et al. (2000) Video recording Automated Pedestrian trajectories 
Teknomo et al. (2001) Video recording Automated Pedestrian trajectories 

Teknomo (2006) Video recording Automated Pedestrian trajectories 

Zanlungo et al. (2014a) 
Sensors and video 

recording 
Automated Pedestrian trajectories 
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2.8. Resume  

In this chapter a literature review of the existing pedestrian simulation models is 

presented, including data-driven approaches. Both microscopic and macroscopic 

models are described. The former have gained greater researchers’ interest and 

are classified into three main categories: a) social force, b) cellular automata and 

c) lattice gas. Data-driven models, on the other hand, comprise a rather recent 

method in pedestrian modelling attracting researchers’ interest.  

The aim of this research is to examine whether data-driven methods can provide 

a robust model framework for pedestrian simulation. To achieve this, pedestrian 

models utilizing specific data-driven techniques are employed to simulate 

pedestrians and their performance is compared against traditional pedestrian 

simulation models. The social force model is employed in order to compare the 

models’ accuracy with the data-driven techniques, as it comprises the most 

representative and widely used theoretical pedestrian simulation model. In 

particular, the social force model: 

 relies on the same principle as the other two model types, i.e. pedestrian’s 

next step is based on the positions of the adjacent pedestrians/objects, 

while at the same time is a continuous space model and 

 is widely used and adopted in widely applied simulation software, such as 

VisWalk (PTV, 2015) and SimWalk (Zainuddin et al., 2009) 

Considering data-driven techniques, four promising methods are employed: a) 

the well-known Artificial Neural Networks (ANN), b) the classical Support Vector 

Machines (SVM) [in particular as we refer to regression analysis, Support Vector 

Regression (SVR) is employed], c) the rising Gaussian Processes (GP) and d) 

the Locally Weighted Regression (Loess). All four methods have been adopted in 

traffic simulations (e.g. Papathanasopoulou and Antoniou, 2017). 

To assess the performance of the aforementioned model types real data in the 

form of pedestrian trajectories are required. In section 2.6, the existing methods 

for extracting pedestrian trajectories are described. Two main sources are found: 

video recordings and sensors. As it can been seen in Table 2.2 most of the 

existing studies employed video recordings for extracting pedestrian kinematics 
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and characteristics, while a small number of used sensors. In line with this, video 

camera is the tool employed for collecting and extracting pedestrian trajectories 

(in order to further use these trajectories for the model comparison) in this 

research. An extensive description for the data collection of the experiment is 

provided in section 4. 
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3. METHODOLOGICAL FRAMEWORK 

 

3.1. Overview 

The present research is an attempt to design data-driven pedestrian simulation 

models and to assess them through a comparison with well-established 

theoretical models. It should be stated that only pedestrian movement is 

considered i.e. environments where pedestrians do not interact with vehicles are 

explored. Furthermore, this study involves pedestrian movement under normal 

conditions. 

The methodological framework consists of specific steps and is illustrated in 

Figure 3.1. Initially the data collection experiment is designed. In the present 

research, two different area types, where pedestrians walk, are used for data 

collection, with the different areas expected to exhibit different walking patterns. 

Data processing is performed with the aid of photogrammetric tools used for the 

transformation of pixel coordinates to real world coordinates. 

Further data processing is required, as data include noise, and a suitable 

algorithm is employed for reducing it. The smoothing algorithm in this research is 

a combination of two robust smoothing filters.  

Following data noise reduction, pedestrian simulation models are developed 

based on the processed data. In particular, a representative model in the field of 

theoretical approaches and four data-driven techniques are utilized. As data-

driven techniques are not inherently a pedestrian simulation model, an 

appropriate model setup is required. Also, in order to accomplish a fair 

comparison between the theoretical pedestrian simulation model and the data-

driven methods the same variables that are used in the former are included in the 

latter.  

Due to the fact that data-driven techniques suffer from overfitting, i.e. they can 

simulate efficiently the given data, but may fail to generalize their results on other 

datasets, a comparative method that captures the generalization impact is utilized 

both in the theoretical and in the data-driven models in a fourth step (cross-
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validation method). Several goodness-of-fit measures (GoF) are estimated to 

demonstrate the accuracy of each simulation method.  

Following the first level of comparison (compare models with the same 

parameters), additional parameters that affect pedestrian movements are 

incorporated in the data-driven pedestrian simulation models in order to examine 

the resulting performance. Initially, agent’s height and gender are considered, 

while the parameter of time is also included. The estimation of agent’s height was 

achieved with the employment of photogrammetric tools. 

The methodological framework considering the design of the data collection 

experiment, the smoothing filters, the pedestrian simulation model and the data-

driven techniques are presented in this section (3), while the data collection 

procedure and the methodology of noise elimination are discussed in the 

following section. In section 5 the comparative analysis of the theoretical 

pedestrian simulation model and the data-driven techniques are extensively 

elaborated, as well as the incorporation of the additional variables in the data-

driven models and their contribution in the models’ performance. 
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Figure 3.1: Methodological framework  
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3.2. Design of data collection  

Prior to the overview of the data collection design (as this process is presented 

explicitly in section 4) the need for this must be defined. Several pedestrian 

trajectory databases are already available with one of the University of Edinburgh 

being the most widely utilized (Majecka, 2009). All of these databases include 

pedestrian trajectories mainly in the 2D plane, while other variables, such as 

pedestrian’s velocity etc, can also be extracted from them. However, the present 

research necessitates the use of additional parameters, besides pedestrian’s 

velocity, considering agent’s characteristics (e.g. height, gender). Due to this fact 

it was decided to design an experiment to collect the necessary data with the 

principles that are described below. 

In order to extract pedestrian’s height a 3D video recording plane is necessary for 

the knowledge of all of their characteristics (including their height). Cameras were 

not placed close to pedestrians (at least 5m. from the ground) in order to avoid 

recording agents’ personal characteristics (e.g. faces), while zoom level was the 

lowest. 

Furthermore, the data collection experiment was not a controlled experiment, and 

as such pedestrians should not have been be aware of being recorded. The 

reason for this is that their natural behavior under normal circumstances was 

required to be captured. Thus, other types of data collection tools (e.g. sensors 

that are placed in their body) were excluded. At this point it should be stated that 

all the required permissions from the authorities that manage the recorded areas 

were taken. 

This experiment attempts to examine pedestrian movements in a holistic manner. 

As a consequence pedestrians who walk in various conditions are considered, 

i.e. pedestrians that are relaxed and move in a non-rush manner and others for 

whom time is a very import parameter and is depicted in the way they walk. For 

this reason two different types of areas were selected. A metro station during 

peak hours where most of the performed trips involve commuting trips with low 

flexibility (involving pedestrians in a rush) and a shopping mall during afternoon 

hours where pedestrians enjoy their walk, stare shop windows and shop. 
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As the data collection output, the position of each agent in each of the recorded 

frames should be collected. A simple but extremely time consuming method is to 

note the pixel coordinates for every agent in each of the recorded frames 

manually. However, there is software that can track moving objects (in general) 

from video recordings in an automated (or at least semi-automated) mode 

reducing substantially the time and the manual effort of this process. A drawback 

of the software utilization is the fact that the outputs (i.e. the pixel coordinates of 

every pedestrian) may include false positions.  

In addition to the above, further processing is required involving the appropriate 

transformation (based on photogrammetry) for converting pixel coordinates to 

real world coordinates to compute the trajectory of each agent. Another 

necessary transformation, which is relevant to the location of the camera (and 

photogrammetry), is also applied for extracting agents’ height. An extended 

description of the applied methodology in the field of data collection is provided in 

section 4. 

The data that are collected might include noise, particularly in cases where the 

recorded rate (the number of video frames in every second) is high or the camera 

is placed away from the floor where pedestrians move. In the present experiment 

both of these conditions exist (the recording rate is high and the camera is placed 

away from the moving area). In the next section the filters that can be applied to 

reduce noise are presented.  

 

3.3. Smoothing Filters 

The pedestrian trajectories that were extracted include noise that needs to be 

eliminated, prior to data analysis. Several algorithms have been developed for 

reducing data noise, with the most commonly used being the Kalman filter, 

splines and moving average. 
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3.3.1. Kalman Filter 

Kalman filter is a method for removing noise in time series data. It is based on 

two principles: i) transition equations: utilizing an equation for predicting the 

variable in following time steps, and ii) measurement equations: correcting the 

measured value in this step (Kalman, 1960). Kalman filter is a time–based 

algorithm very popular in control theory, which evaluates the predicted value 

given the measured value of each time interval.  

( 1| ) ( | )X t t AX t t Bu w   

( 1| ) ( | ) TP t t AP t t A Q  
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T

T

P t t C
K

CP t t C R




 
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( 1| 1) ( ) ( 1| )P t t I KC P t t    

( | )X t t

( | )P t t

( 1| ) ( 1| )Y t t CX t t v   
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yP t t CP t t C R   

 

Figure 3.2: Kalman Filter method 

Figure 3.2 illustrates the basic Kalman filter form, where X(t|t) stands for the 

vector state at the interval t, P(t|t) the covariance matrix, X(t+1|t) and P(t+1|t) the 

predicted values for the vector state and the covariance matrix respectively, A the 

state transition matrix, B the control input matrix, C the measurement matrix, u 

the control vector, w prediction noise with covariance matrix Q, v measurement 

noise with covariance matrix R and K the Kalman gain with ranging among 

0 < K < 1 . As K approaches 0 the algorithm tends to rely more on the predicted 

value ( w 0 ) and as K approaches 1 the algorithm tends to rely on the 

measurement value ( v 0 ). 

The Bu factor in Figure 3.2 (equation (3.1)) can be subtracted in case of no 

movement control, transforming the equation to 
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X(t+1| t)=AX(t | t)+w          (3.1a) 

States that comprise more than one variables (e.g. position and velocity of a 

tracked object) are also possible to be estimated with Kalman Filter, utilizing the 

appropriate matrices. In cases of two-dimensional movement (as we are dealing 

with in our data) X state is transformed to 

 

 
 
 
 
 
 





x

y
X =

x

y

                           (3.5) 

where x and y stand for the coordinates in X and Y axes, while ẋ and ẏ are the 

velocities in these axes.  

Additionally, the covariance matrix P is transformed to 
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         (3.6) 

where σ...
2 stands for the standard deviation of each variable (in case of one 

variable state, the covariance matrix equals to the variance). 

Standard Kalman Filter methods adopt system linearity and Gaussian noise 

distribution hypotheses that can be overcome by the Extended Kalman Filter 

(EKF) and the Unscented Kalman Filter (UKF) respectively. EKF could be utilized 

in non–linear systems. Based on Taylor series, EKF joints the gradient of the 

system equation (Gelb, 1974). In higher order, Taylor series system equation is 

replicated more accurately. However, due to computational performance, first 

order Taylor series were mainly employed. Iterated EKF modifies EKF via state 

vector estimation.  

UKF obviates the need for noise’s Gaussian assumption. Unscented 

Transformation (UT) remodels sample distribution to the best Gaussian 

approximation (Wan and Van der Merwe, 2000). Sigma points are the principal 

element for the transformation. They are chosen based on the distribution 
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dimensionality. The first sigma point is the mean. Sigma points’ weights are also 

essential. The factor that assigns the distance of each sigma point from the mean 

must be stated following substantial consideration. In addition, restructuring 

points’ dimensionality is possible from higher to lower level. A concise discussion 

of EKF and UKF in the context of model calibration is available in Antoniou et al. 

(2007). 

The main requirement in Kalman Filter applications is an a priori knowledge of 

noise covariance matrices. Bavdekar et al. (2011) attempted to overcome the 

aforementioned restriction in the field of chemistry. Particularly they employed 

two approaches. The first relied on maximum likelihood objective function 

optimization and the second in the expectation maximization of EKF. They 

assumed that noise covariance matrices are normally distributed. The algorithms 

performed better when they dealt with datasets with “true” states in order to 

conform with the outputs. In cases where no “true” datasets existed, initial 

parameter guesses were essential for the comparison and error extraction. 

Kalman filter requires a primary phase for eliminating estimations’ variations (it 

does not immediately narrow down to the true values). Hence, the data on the 

primary phase could be considered as “off–line” and used for model calibration. 

Kalman filter efficiency is improved significantly during the primary phase. 

Antoniou (2004) adopts a “warm–up” phase, where initial ad hoc noise 

covariance matrices (prediction and measurement) are assumed, and the actual 

covariance matrices for the model application are then extracted iteratively from 

the output of this “warm–up” phase. For more details on Kalman Filter variants 

applied in Dynamic Traffic Assignment see Antoniou (2004). 

 

3.3.2. Splines  

Splines (Craven and Wahba, 1979) are a numeric method for line smoothness, 

and are based on polynomial functions. Polynomial degree defines spline’s 

accuracy level. Quadratic splines comprise of two–degree polynomial, cubic 

splines of three–degree, and so on.  
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Assume a line that consists of n points; n-1 splines are required for joining them. 

For k polynomial degree, (k+1)*(n-1) equations are postulated for structuring the 

spline. In case of a quadratic spline (2nd degree polynomial) equations are 

presented as follows: 

for n points coordinated as xi,yi, i=1,2,…,n 

  

  

   

2
i-1 i i-1 i i-1 i

2
i i i i i i

2 2
i-1 i+1 i-1 i+1 i-1 i i+1 i i+1 i

y a x b x c

y a x b x c

d d
(a x b x c ) = (a x b x c )

dx dx

        (3.7) 

Equations (3.7) illustrate that each spline merges two consecutive points, while 

the slopes of two conterminous splines in their merge point are equal. For higher 

order splines (cubic, etc.) additional differential equations (e.g second order 

differential in cubic splines) with increased parameters are needed. 

Types of splines (B-splines) rely on control points in order to smoothen the basic 

line. The number of control points defines the level of smoothness. 

 

3.3.3. Moving average  

Moving average is another method for smoothing trajectories. Its principle relies 

on averaging data points from the previous measurements in order to predict the 

current one. Moving average methods comprise of more than one type. The 

preceding statements describe the simple moving average type. The weighted 

moving average results from the extension of the simple moving average with the 

incorporation of weight coefficients to the previous measurements in order to 

prioritize current data points. Exponential moving average (EMA) is also a moving 

average extension that emphasizes, by default, on current data points, in contrast 

to weighted moving average where weights are set up by the researcher. The 

contribution of the previous data points decreases exponentially, as described in 

equation 3.8. 
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where xt stands for the estimated value at time t, a is a smoothing parameter 

representing the weighting level, ranging between 0 and 1 and Dt-1 is the actual 

measurement at time t-1. 

In addition, the running average technique is a similar approach to the moving 

average. Instead of employing the average of the previous data points, it utilizes 

the median. Hence the importance of outliers in the examined dataset is limited 

(Hen et al., 2004). 

 

3.4. Social Force Model 

3.4.1. Overview (base model) 

Social force model is presented analytically to outline the concept of the model, 

describe its parameters and clarify the comparison with the data-driven 

techniques. Data-driven predictors are selected based on the social force model’s 

parameters.  

The social force model was first developed and calibrated by Helbing and Molnár 

(1995) for pedestrian movement capturing well known pedestrian movement 

phenomena (through computer simulations). They defined three velocity types of 

pedestrian α : i) desired velocity 
0

αu  as the velocity that pedestrian will walk, if 

they were not disturbed from surroundings, ii) preferred velocity 


αw  that its 

alterations are assessed by the social forces and is constrained to the maximum 

acceptable speed and iii) actual velocity 


αu . The main idea of the model is that 

velocity time deviations are originated by the social forces according to equation 

3.9. 




α
α

dw
F (t)

dt
=                                  (3.9) 
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where 


αF (t)  stands for the total forces that are acted upon pedestrian α at time t. 

Helbing and Molnár (1995) added fluctuations to equation (3.9) in order to include 

model uncertainty. Social forces 


αF (t) are classified to: 

 Attractive forces from destination 
0

αF  

 Repulsive forces 

o From other pedestrians β (


αβF ) 

o From boundaries B (

αBF ) and   

 Attractive forces from other agents or objects i (


αiF ) 

Destination area forces the agent to reach their destination (attractive force). In 

cases of no disturbances pedestrians tend to keep their desired direction (


αe ) 

with their desired speed ( 0
αu ). A relaxation factor ( ατ ) that measures the time 

duration an agent needs for re-adapting its route to the desired one (when 

deviations from their desired route occur) is introduced. The attractive force to 

destination is specified in equation (3.10). 

  0 0
α α α α

α

1
F u e u

τ
= ( - )                           (3.10) 

Contrary to attractive forces, repulsive forces, generated from agents and 

boundaries (pedestrians avoid proximity to boundaries), are acted upon the 

moving pedestrian. Among other parameters, distances between the examined 

agent and other pedestrians (

αβr ) or boundaries (


αΒr ) are crucial. Equations 

(3.11) and (3.12) illustrate repulsive forces from pedestrians and obstacles 

respectively. 



 

αβ
αβ αβ αβr
f - V [b(r )]=                          (3.11) 



 

aB
aB αΒ aBr

F =- U ( r )                          (3.12)  
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where b stands for the minor of V ellipse monotonic function, given by equation 

(3.13). The distance from the closest to the pedestrian obstacle point is taken into 

account in equation (3.13). 


  

2 2
αβ αβ β β βr r u te ) - (υ Δt)

b =
2

( +
                             (3.13) 

where βυ Δt  stands for the pedestrian’s β step width. 

Helbing and Molnár (1995) assessed repulsive force’s functions in their 

experiment as: 

0 -b/σ
αβ αβV (b)=V e                                    (3.14) 


αΒ- r /R0

αΒ αΒ αΒU ( r )=U e                                    (3.15) 

Nearby agents and objects might also apply attractive forces (


αiF ) to the moving 

pedestrian. The specific force type distracts walking agents from their final 

destination. The difference from repulsive forces is that the parameter of time is 

introduced in attractive forces, due to the decreasing interest by the time.  

 

 

αi
αi αi αir
f W ( r , t)= -                                        (3.16) 

Humans do not have 360o angle of vision and events that occur out of their sight 

view affect them less. As a consequence, weights that consider moving 

pedestrian’s view angle are introduced in the estimation of repulsive and 

attractive forces, converting them to: 

 
αβ αβF wf=                                              (3.17) 

 
αi αiF wf=                                            (3.18) 

Ultimately, the force that affects pedestrian movement (


αF (t)) is estimated as the 

sum of the aforementioned forces. 
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    0
αα αβ αΒ αiF F +(F +F )+F=                           (3.19) 

Maximal acceptable speed max
αu  is also introduced to social force model for 

preventing simulation of extreme and unrealistic pedestrian velocities. 

 

3.4.2. Social Force Model Modifications 

An improved modified version, which was developed by Helbing and Johansson 

(2010) and was also described in Helbing (2012), differentiated the social force 

model pedestrian’s repulsive forces equation (3.20) by importing interaction 

strength (A) and interaction range (B) parameters.  

-b/B
αβV (b)=ABe                                             (3.20) 

Furthermore, in this version the pedestrian’s velocity (


αu ) was also included in 

estimation of the repulsive force. Semi-minor ellipse monotonic axis b equation is 

transformed to:  

( )  
      2

2
αβ αβ β α β αr r u u t ) - (u u Δt)

b =
2

( + )
                    (3.21) 

leading to the below repulsive force equation 

 
 
 
 

       


   
αβ αβ β α αβ αβ β α-b/B

αβ

αβ αβ β α

r + r -(u u )Δt r r -(u -u )Δt1
f Ae +

2b 2 r r -(u -u )Δt

-
=          (3.22) 

An improved specification of agent’s angular sight view was also introduced. The 

angular-dependent prefactor w(φαβ) of φαβ angle is determined as follows: 

αβ
αβ α α

1+cos(φ )
w(φ (t)) = λ +(1-λ )

2
                             (3.23) 

where λα represents the strength of interactions from behind, ranging among 0 

and 1 and cos(φαβ) is computed as: 
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

 
αβα

αβ

α αβ

ru
cos(φ )=

u r

-
                                          (3.24)  

Moussaïd et al. (2009) presented an alternative social force approach in order to 

simulate interaction laws among pedestrians. Their model differs from the initial 

of Helbing and Molnár (1995) considering the term of repulsive forces (among 

agents). However, it did not provide explicitly improved simulation results 

compared to those of Helbing and Johansson (2010).  

 

3.4.3. Social Force Model Parameters 

The parameters that determine the model structure are:  

 Moving pedestrian 

o Desired speed (
0
αu ) 

o Relaxation time ( ατ ) 

o Maximum acceptable speed ( m ax
αu ) 

o Strength of interactions from behind (λα) 

 Repulsive force 

o From pedestrian 

 interaction strength (A) 

 interaction range (B) 

o From obstacle 

 function constant ( 0
αΒU ) 

 exponential parameter (R) 

 Attractive force 

o function constant ( 0
αiW ) 

o exponential parameter (L) 

Helbing and Molnár (1995) specified social force parameters in their experiment, 

as presented in Table 3.1.  
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Table 3.1: Social force parameters (Helbing and Molnár, 1995) 

Social force parameters 

Parameter Value Units 

Desired speed Ν~(1.34, 0.26) m/s 

Maximum 
acceptable speed 

1.3 * desired speed m/s 

Relaxation time 0.5 s 

Angle view 200 degrees 

Outside of view 
influence 

0.5 - 

Coterminous 
pedestrian step 

time 
2 s 

Repulsive force 
from pedestrian 

function constant 
2.1 m2/s2 

Repulsive force 
from pedestrian 

exponential 
parameter 

0.3 m 

Repulsive force 
from obstacle 

function constant 
10 m2/s2 

Repulsive force 
from obstacle 
exponential 
parameter 

0.2 m 

 

Figure 3.3 provides an overview of the calibrated social force model parameters 

as recorded in the relevant studies. Helbing and Molnár (1995) were the first to 

attempt to estimate social force model parameters. Besides that, postliminary 

papers deal with this issue. Specifically, Zeng et al. (2014) calibrated pedestrians’ 

desired speed, relaxation time, maximum acceptable speed and the repulsive 

forces’ parameters in crossing scenarios, where pedestrian conflicts with vehicles 

occurred. They, however, did not use the most recent at the time version of the 
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social force model. Johansson et al. (2007) and Zanlungo et al. (2011) calibrated 

repulsive forces’ parameters in indoor environments. Song et al. (2006) specified 

desired speed range in a mixed social force model (including cellular automata) 

in order to simulate arching, clogging and “faster is slower” phenomena. 

Moussaïd et al. (2009) calibrated social force parameters using video trajectories 

from corridors, while Voloshin et al. (2015) utilized real-world data from a metro 

station entrance. Voloshin et al. (2015) presented a method for calibrating the 

constant and exponential parameters both for repulsive forces among 

pedestrians, and between pedestrians and objects by employing a genetic 

algorithm, without providing information on parameters’ optimal values and/or 

ranges. At the same time, attractive force parameters have not been widely 

examined, and thus their ranges are unknown. 

The ranges noted by the different researchers will form the basis for the social 

force model calibration in this research. The noted range of maximal desirable 

speed is wider to that of acceptable speed, as Song et al. (2006) who provided 

the widest range of desired speed, did not provide the respective values for 

maximal acceptable speed. As a consequence, in the social force model training 

process (see Section 5.2) a range of maximal acceptable speed coefficient 

between 1 and 2 is employed. In addition, Johansson et al. (2007) and Helbing 

and Johansson (2010) provide an extremely wide range for interaction range (B) 

parameter that is restricted in the social force model training process (Section 

5.2). Furthermore, considering the aforementioned training process, Zeng et al. 

(2014) relaxation time parameter range is reduced based on its mean (2.2s) and 

standard deviation (0.5s).  

Apart from social force models, calibration techniques have been also used in 

other pedestrian simulation model types. For example, Teknomo (2006) 

developed a microscopic pedestrian model, similar to social force, and calibrated 

and validated its parameters focusing on minimizing the difference between 

simulated and tracked attributes. Guo et al. (2010) developed a discrete choice 

model for pedestrian simulation and calibrated it using data from experiments 

with the aid of a heuristic method. Daamen and Hoogendoorn (2012) employed 

maximum likelihood estimation for calibrating their model by using data from 

laboratory experiments. They assumed errors (agent acceleration difference 
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between simulated and obtained from data) follow zero mean normal 

distributions. 



 
 

89 
 

 

 



 
 

90 
 

 

  

Figure 3.3: Social force model parameters range
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3.5. Data-Driven Modelling 

3.5.1. Overview 

Data-driven models employ non-parametric methods. Algorithms are used in 

order to extract, in a definite manner, information from data and develop 

automatically a model based entirely on them (data). Classification, clustering, 

regression and prediction comprise data mining principles. They overcome 

parametric tools as they do not rely on specific assumptions and do not require a 

priori determination of the relationship among the variables. On the other hand, 

they do not provide an unambiguous relationship between variables. In the next 

sections the data-driven techniques that are employed in this research are 

described. A brief description of the comparison framework between the different 

models is provided in section 3.6, while an extensive description of the models’ 

comparison procedure is provided in section 5.1. 

 

3.5.2. Neural Networks 

Artificial Neural Networks (ANN) comprise one of the most popular data-driven 

methods. They can be implemented in classification, clustering and regression 

problems. They are used both in supervised and unsupervised learning. ANN 

attempt to mimic the operation of biological neural networks. The information is 

transferred from the neurons (nodes) of the first layer to those in the next layer 

with the aid of the synaptic weights and the activation function until the final layer 

(output layer), where predicted values are estimated. The goal of the ANN 

training procedure is to estimate the values of the weights that minimize a cost 

function, i.e. an error function between predicted (output layer) and measured 

values.  

One of the first ANN models was presented by McCullogh and Pitts (1943). In 

their approach one hidden layer with one neuron was employed. The neuron 

takes the inputs from the first layer and according to the step function fires or not. 

Synaptic weights and thresholds are the critical parameters for this. As 

McCullogh-Pitts model did not perform sufficiently well in nonlinear problems, 
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networks with more neurons and hidden layers were later developed, such as the 

Multi-Layer Perceptron (MLP). A typical MLP is presented in Fig. 3.4. 

 

Figure 3.4: Multi-Layer Perceptron 

Every node in each layer is connected to all the nodes of the next layer. Data are 

imported in the model in the first layer, named as input layer. Then the nodes in 

the hidden layer are affected by the input layer nodes according to equation 

(3.25).  


n

i i
i=0

u= wx                             (3.25) 

where wi stands for the synaptic weights from the node i of the input layer and xi 

for the input value of the node i. In case of i=0 w0 equals to the threshold value 

and x0 equals to -1. Subsequently, according to an activation function the neuron 
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of the hidden layer produces a specific value. This procedure is repeated to all 

the nodes of the hidden layer. Next, the neurons in the output layers are 

activated. In this case the input values are the values that have been produced in 

the nodes of the hidden layer. An error measure (e.g. mean square error) among 

the predicted and the measured (in terms of supervised learning) values is used. 

The goal of the ANN training procedure is to estimate the values of the weights 

that minimize a cost function, i.e. an error function between predicted and 

measured values. 

A few training algorithms have been proposed with the Back-Propagation being 

the most widespread. It was proposed by Paul Werbos (1974) for application in 

ANN while a higher recognition in the ANN training process was gained by 

Rumelhart et al. (1986). This is a supervised learning algorithm. In this method, 

the algorithm “corrects” the synaptic weights in a gradient descent procedure.  

Initially the inputs of the first data are passed in the ANN model with pre-defined 

synaptic weights values and predicted values in the output layer are computed. 

The algorithm alters the weights backwards (from the output layer to the input) 

according to the delta rule and attempting to reduce the cost function. It then 

computes the contribution to error (δi) of the output layer nodes and in the hidden 

layers (equation 3.26).  

  

  








i

k
i

j ij
j=1

e f (u), i output layer

δ =
f (u) δ w , i hidden layer

                          (3.26)                              

where ei stands for the error in the i neuron, f (u)  for the derivative of the 

activation function, j is the neuron in the net of next layer (i.e. in one case on one 

hidden layer j neuron stands for the neuron of the output layer) and wij for the 

synaptic weight from node to neuron i to neuron j. 

Weights alteration is accomplished according to equation (3.27)  

ij j iΔw =ηδ y                                                   (3.27) 

where η is the learning rate and yi the output of neuron i. 
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Following the computation of the new weights, the second data are passed in the 

model and the same procedure is repeated. When all of the synaptic weights until 

the first layer are re-estimated an epoch is completed. The training procedure 

continues until a termination criterion is fulfilled. Termination criteria might be a) a 

maximum number of epochs, b) the error being lower than a priori specified 

threshold, c) the error remaining the same for two continuing epochs.  

A careful specification of η is crucial as very low values can lead to vanishing 

gradient problems where the weights are updated very slowly and the algorithm 

needs time to converge or on the other hand to exploding gradient problems 

where high values of learning deter the algorithm to converge. The inclusion of 

momentum can restrict this problem. Thus equation (3.27) can be updated to 

(3.28). 

ij j i ijΔw (n) = ηδ (n)y (n)+ aΔw (n -1)                              (3.28) 

where n stands for the epoch and a for the momentum variable.  

In all of the above described methods the weight initialization might play a crucial 

role in the training of the model. 

Algorithm 3.1 : Back-Propagation 

Initialize synaptic weights wij  

For epoch n=1:N { 

    Pass inputs in the model 

    Compute outputs in the output layer 

    Compute δi for all the neurons 

    Compute Δwij for all the neurons 

    Update synaptic weights ij ij ijw (n+1)= w (n)+Δw (n)  

} 
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The number of layers, the number of nodes in each layer, the activation function 

(can be different among the nodes), the training algorithm (back-propagation is 

the most common), the optimization algorithm (gradient descent procedure), its 

learning rate and its termination criterion, are hyperparameters that need to be 

specified prior to the training process. It should be mentioned that a model with 

more nodes in the hidden layer has greater ability to capture interactions between 

parameters. 

The application of ANN technique in the present research is presented in section 

5 (see section 5.2.3). 

 

3.5.3. Gaussian Processes 

Gaussian Processes (GP) comprise an additional method in the field of machine 

learning techniques, mainly used in terms of supervised learning (regression, 

classification). They are described below according to Rasmussen and Williams 

(2006). As indicated by their name they rely on Gaussian (normal) distributions 

and are a collection of random variables, which follow a multivariate Gaussian 

distribution. A GP is specified by its mean m(x) and its covariance function 

K(x,x )  (equations 3.29 – 3.31). In case of a multivariate Gaussian distribution 

with two or more variables, they can be partitioned to Gaussians with means and 

covariance matrices (marginalization property).  

f(x) ~ GP(m(x),K(x,x'))                                     (3.29) 

 m(x)=Ε f(x)                                                (3.30)  

  
TK(x,x') = Ε (f(x) -m(x))(f(x') -m(x'))                          (3.31) 

As in most cases the mean is considered to be zero, the interest is around the 

covariance function. For this reason, a kernel function is necessary in order to 

estimate the covariance. The most commonly used kernel is the Radial Basis 

Function (RBF) or the Gaussian kernel (equation 3.32), while periodic and linear 

kernels have also been applied (Rasmussen and Williams, 2006). RBF is a 

stationary kernel where the covariance of two points depends on their relative 
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and not on their absolute (contrary to non-stationary kernels) position. In terms of 

mathematical calculations and in order to perform Choleksy decomposition (for 

estimating covariance matrix square root), the kernel matrix needs to be 

symmetric and positive definite.  

During the training process, the GP provide the model framework relating all the 

data in multivariate Gaussian distributions with a predefined kernel function. As 

for the RBF kernel, its function consists, among others, of two parameters, the 

length (l) and the height (σ) of the kernel, called hyperparameters. 

Furthermore, assuming of an i.i.d. noise with zero mean and 2
yσ  variance 

(similarly to parametric regression), the covariance matrix is updated in order to 

incorporate noise as in equation (3.33). Last, GP returns a predictive value 

adding its uncertainty (probabilistic prediction with confidence intervals). 

2
2

1
- (x-x')

2 2lk(x,x') = σ e                                          (3.32) 

                                                     2
yK(x,x')=k(x,x')+Iσ                                           (3.33) 

GP perform well in a small amount of data, while they have significantly high 

computational requirements in models with many variables (high dimensional 

kernel matrices) and large datasets. Reduced-rank approximations to the 

covariance matrix are one way for moderating the problem. 

In comparison to other data-driven techniques, Rasmussen and Williams (2006) 

note that SVM perform slightly better than GP in terms of classification problems. 

In addition, they present an alternative to the cross-validation method which is 

based on Bayesian statistics for estimating GP kernel function hyperparameters. 

The general idea of this method is that the posterior distribution ip(w | y,X,θ,H )  

over the parameters w is related to the prior distribution ip(w | J,H )  given the 

hyperparameters θ and the set of possible model structures Hi, the likelihood  

ip(y | X,w,H )  and the marginal likelihood ip(y | X,θ,H )  of all the outputs y for all the 

possible datasets (equation 3.34). A prior distribution can be converted to a 

posterior after incorporating some data. 
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i i
i

i

p(y | X,w,H )p(w |θ,H )
p(w | y,X,θ,H ) =

p(y | X,θ,H )
                         (3.34) 

Still, this Bayesian framework depends on several mathematical formulations 

(integrals) that may not be governable. In addition, the results are very sensitive 

to the prior distribution. 

At this point it must be clarified that GP training optimization differs from training 

optimization in other machine learning methods (e.g. ANN). During the training in 

a GP the goal is to estimate model hyperparameters (see above) with the 

employment of the appropriate algorithm. On the other hand, hyperparameters in 

an ANN are set initially (prior to the training process) and remain constant during 

the whole training procedure. The goal of an ANN train is to estimate model 

parameters, e.g. synaptic weights. Still, in both methods initial values are 

important for model training. 

A widespread optimization algorithm for GP training process is the Limited-

memory BFGS (L- BFGS) that is based on the Broyden–Fletcher–Goldfarb–

Shanno (BFGS), which was independently developed in 1970 by Broyden (1970), 

Fletcher (1970), Goldfarb (1970) and Shanno (1970). L- BFGS is presented by 

Byrd et al. (1995) as a gradient descent method in the field of quasi-Newton 

theory. The algorithm is relaxed of second derivatives calculation and can be 

applied when the Hessian matrix computation is not practical. 

In the present research a multi-output regression has to be performed as the 

pedestrian’s velocity is presented in two axes. However GP initial setup lacks the 

multi-output model availability. A solution might be to apply separated GP models 

for every output (i.e. the velocity in each axis), though the correlation among the 

outputs, which is a crucial information, will be discarded.  

Alvarez et al. (2012) presented multi-output kernel functions for GP modeling. 

The method is suitable also in cases with different input spaces for every output 

(heterotopic models). Contrary to single–output models, multi–output models 

associate variables to different processes ( D

d d=1
f , where D is the number of 

outputs). Alvarez et al. (2012) developed a linear model of coregionalization 

(LMC), where outputs are expressed as linear combinations of independent 

random functions and each fd is expressed with the aid of latent functions uq(x), of 
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zero mean and covariance    q qcov u (x),u (x )  (equation 3.35), and scalar 

coefficients (ad,q equation 3.36). Grouping the number of latent functions that 

share the same covariance, they ended up with equation (3.36). R stands for the 

number of latent functions that share the same covariance in the group and the 

number Q of groups. 

    q q qcov u (x),u (x ) = k (x, x ),   if q = q                         (3.35)  


qRQ

i i
d d,q q

q=1 i=1

f (x) = a u (x)                                        (3.36)  

The cross-covariance between any two functions fd(x) and   df x  is illustrated in 

below (equation (3.37)). 

   
   

 

   
q qR RQ Q

i i i i
d d d,q d ,q q q

q=1 q =1 i=1 i =1

cov f (x),f (x ) a a cov u (x),u (x )=           (3.37) 

Expressing equation (3.37) as a kernel function and due to the independence of 

latent functions, researchers came up with equation (3.38). 

       
   

qRQ Q
i i q
d,q d ,q q d,d qd,d

q=1 i=1 q=1

K x,x a a k x,x b k x,x= =                (3.38) 

with  
qR

q i i
d,d d,q d ,q

i=1

b a a= . 

Ultimately the kernel function can be expressed in terms of a symmetric and 

positive semi-definite D x D matrix (Bq) that encodes correlations among the 

outputs (equation 3.39). 

    
Q

q q
q=1

K x,x B k x,x=                               (3.39) 

In this paper researchers have also presented a simplified and much more 

restrictive method than LMC called the intrinsic coregionalization model (ICM). 
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The application of GP technique in the present research is presented in section 5 

(see section 5.2.3). 

 

3.5.4. Support Vector Regression (SVR) 

Support vector regression (SVR) is a regression machine learning method relying 

on Support Vector Machines (SVM). SVM is a widespread method mainly applied 

in classification problems and rarely in clustering (Support Vector Clustering - 

SVC). They are used for separating data between two classes, though multiclass 

classification libraries have also been presented (e.g. Chang and Lin, 2011). 

SVM estimate the best hyperplane that separates the data between the two 

classes. Suppose that we have a set of data points (x) that belongs either to C0 or 

to C1 class. The classification problem is defined by the equation (3.40). 








0T
0

1

0,x C
w x + w

0,x C

<

>
                            (3.40) 

A margin between the two classes is also set (Fig 3.5). The margin is defined by 

the two support vectors that in practice are the “edges” of the two classes and is 

equal to the inverse of their distance ( 2

w
). 
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Figure 3.5: Support Vector Machine 

In cases where the margin is close to zero the possibility of a false classification 

is high due to the fact that the two classes are not clearly separated. As a 

consequence SVM relies only on the support vectors ignoring all the other data 

points. This reduces significantly the complexity of the model and their 

computational requirements, but on the other hand makes it very sensitive to 

support vectors as a small modification of them (modification only on the support 

vectors and not on the rest of the dataset) change the separating hyperplane. 

The goal of an SVM is to estimate the coefficients wT and w0 of the hyperplane 

equation (3.41). 

           T
0w x + w = 0                                 (3.41) 

In particular to find wT and w0 that maximize the margin and thus minimize ║w║ 

such that all data points (xi, yi). 

    T
i i 0y w x + w 1              (3.42)  
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Data outputs (yi) equal to -1 or 1 whether the data point i belongs either to C0 or 

to C1 class. Actually the model minimizes 
21

w
2

 as the derivative of ║w║ is also 

a constant value (the constant 
1

2
 is added for simplicity reasons). As a result this 

is a quadratic programming optimization problem. Lagrange multipliers αi are very 

useful for this type of problems. The loss function is transformed to 

      2 T
P 0 i i 0

1
L w,w w y w x w -1

2
, - +

N

i i
i=1

α α                (3.43)  

L function needs to be minimized w.r.t. to w and w0 and maximized w.r.t. αi. 

According to Karush-Kuhn-Tucker conditions at the optimization point we get: 

L
= 0

w 0

∂
∂

                  (3.44) 

∂
∂

L
= 0

w
                            (3.45) 

    
T

i i i 0α y w x + w -1 = 0                           (3.46) 

Equations (3.44) and (3.46) are then transformed to equations (3.47) and (3.48) 

respectively.  


N

i i
i=1

α y = 0                   (3.47) 


N

i i i
i=1

w = α y x                      (3.48) 

By substituting equations (3.47) and (3.48) to equation (3.46) the optimization 

problem is converted to the dual problem [maximize equation (3.49)]. 

   
N N N

T
D 0 i i i j i j i j

i=1 i=1 j=1

1
L w,w α = α - α α y y x x

2
,              (3.49) 

subject to 
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
N

i i
i=1

y α = 0                (3.50) 

iα 0≥                (3.51) 

In cases of non-separable data slack variables ξi are introduced in the model. 

Thus equation (3.42) is transformed to  

  ≥T
i i 0 iy w x + w 1- ξ                         (3.52) 

while                                                 ≥iξ 0                                                     (3.53) 

and equation (3.43) to 

         
N N N

2 T
P 0 i i i i i i 0 i i i

i=1 i=1 i=1

1
L w,w α ξ = w + C ξ α y w x + w -1+ ξ μ ξ

2
, , - -    (3.54)  

where μi stands for the Lagrange multipliers of slack variables ξi and C a penalty 

parameter. By increasing C more weight is placed on the slack variables while 

setting C equal to 0 makes slack variables unimportant. In line to Karush-Kuhn-

Tucker conditions 

 
∂
∂ i

L
= 0

ξ
                             (3.55) 

leads to 

  i iC-α -μ = 0             (3.56) 

or  

i iα = C -μ                   (3.57) 

with                                                   ≥i iα ,μ 0                                            (3.58) 

As a consequence the equation of the dual problem is 

     
N N N

T
D 0 i i i j i j i j

i=1 i=1 j=1

1
L w,w α = α - α α y y x x

2
,                  (3.59) 
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subject to 


N

i i
i=1

y α = 0                     (3.60) 

≤ ≤i0 α C                   (3.61) 

The aforementioned analysis is referred to as linear classification problems. In 

nonlinear classification the problem is converted nearly to linear with the aid of 

kernel functions (mentioned also in GP regression). In particular a nonlinear 

transformation function Φ(x) is adopted converting the loss function in the dual 

problem to equation (3.62).  

   
N N N

T
D 0 i i i j i j i j

i=1 i=1 j=1

1
L w,w ,α = α - α α y y Φ(x ) Φ(x )

2
      (3.62) 

The dot product of Φ(xi)
T(xj) is the kernel function (equation 3.63). 

T
i j i jk(x ,x ) = Φ(x ) Φ(x )                (3.63) 

In order to approach linearity, transformation functions “add dimensions” to the 

variables, while kernel functions reduce (sometimes significantly) the computation 

complexity.  

Vapnik (1995) introduced regression to SVM. SVR uses the ε-sensitive loss 

function of observed values yi and data inputs xi (equation 3.64). 

 

                      





≤i i

i i

0              if y - f(x ,w ε
L =

y - f(x ,w - ε    otherwise  

)

)
            (3.64) 

In line with SVM, SVR employs slack variables ξi and 
i

*ξ  for measuring the 

deviation of the training samples outside the ε-sensitive zone and kernel 

functions for nonlinear regression. ξi and 
i

*ξ  are the positive differences between 

the observed value and ε regardless of whether the observed point is above or 

below the tube, created by the ε-sensitive loss function, respectively.  

In particular SVR aim is to minimize 
N

2 *
i i

i=1

1
w +C (ξ +ξ )

2
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subject to 

 ≤ *
i i iy - f x ,w ε +ξ              (3.65) 

  ≤i i if x ,w - y ε +ξ                         (3.66) 

≥*
i iξ , ξ 0                   (3.67) 

In line to the Lagrange method the optimization problem is transformed to  

   

 

  

  

  

 

N N N
2* * * T

P 0 i i i i i i i i 0 i i
i=1 i=1 i=1

N N
* T * * *
i i 0 i i i i i i

i=1 i=1

1
L w,w ,α ,α ,ξ ,ξ = w + C( ξ + ξ ) - α w x + w - y + ε + ξ

2

- α w x + w - y + ε +ξ - (μξ +μ ξ )

(3.68) 

and the dual problem to  

  
N N N N

* * * * T
D i i i i i i j j i j

i=1 i=1 i=1 j=1

1
L = -ε (α +α )+ (α - α ) - (α - α )(α - α )(x x )

2
      (3.69) 

subject to  

  
N N

*
i i

i=1 i=1
α = α                       (3.70) 

     ≤ ≤i0 α C              (3.71) 

≤ ≤*
i0 α C                              (3.72) 

while adopting a kernel function to 

  
N N N N

* * * * T
D i i i i i i j j i j

i=1 i=1 i=1 j=1

1
L = -ε (α +α )+ (α -α ) - (α - α )(α -α )K(x x )

2
        (3.73) 

Pérez-Cruz et al. (2000) presented an Iterative Re-Weighted Least Square 

(IRWLS) algorithm application in training SVR. Compared to Quadratic 

programming IRWLS improves the speed of the SVR train process and reduces 

the computational complexity. First, they rearranged equation (3.68) [including 
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nonlinear transformation function Φ(x)] based on equations (3.74) and (3.75) 

leading to (3.76)  

  i iC-α -ξ =0             (3.74) 

* *
i iC - α - ξ = 0                      (3.75) 

  
N

2 2 * * 2
P i i i i

i=1

1 1
L = w - ae +a (e )

2 2
                              (3.76) 

where 

 T
i i i 0e = ε - y + Φ x w + w  

 
i

* T
i i 0e = ε + y Φ x w - w-  

i
i T

i i 0

2α
a =

ε - y + Φ (x )w + w
 

i

i

*
*

T
i i 0

2α
a =

ε + y Φ (x )w - w-
 

Consequently, they applied the IRWLS algorithm that runs in three steps: 

1. Fix ai and *
ia  that minimize equation (3.76) 

2. Recalculate ai and *
ia  from the solution in step 1 

3. Repeat until convergence 

Similar to GP and in contrast to ANN a multi-output framework was not available 

in the initial SVR model setup, and SVR resulted to a single output. An alternative 

method could be to train the model for every output separately. In this case, 

however, a possible correlation between the outputs will be lost. 

Still, specific methodologies have been proposed to deal with this problem. It is 

noted that the initial setup for SVM was for classification between two classes. 

Except for outputs correlation in terms of SVR the ε-sensitive zone around the 

estimation will not treat equally the samples over each output dimension.  
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In order to deal with this problem, Pérez-Cruz et al. (2002) introduced wj weights 

in equation (3.68) for every output, while Sánchez-Fernández et al. (2004) added, 

besides the weights, a CT sum of constant terms presenting a multioutput SVR 

(MSVR) model setup. Both studies mentioned that quadratic programming is not 

feasible in the MSVR, and employed IRWLS algorithm application in training 

SVR. Equation (3.77) illustrates the quadratic approximation of MSVR. 

 
Q N2j 2

P i i
j=1 i=1

1 1
L = w + a u + CT

2 2
                           (3.77) 

where 







≥

k
i

k
i ki

ik
i

0,                   u < ε

a 2C(u - ε)
,    u ε

u

=  

 Tk k k
i i iu e e=  

     T Tk T T k k
i i i 0e = y - Φ x w - w  

The way that MSVR has been used for predicting pedestrian’s velocity in this 

research is presented in section 5 (see section 5.2.3). 

 

3.5.5. Locally weighted regression 

Locally weighted regression (Loess, Cleveland 1979) is employed as the fourth 

data-driven technique. It is a widely applied data-driven method used for 

predicting and regression analysis that fits data points, based on a smoothing 

technique and weighted least squares. Particularly, relying on k-NN clustering 

algorithm, Loess utilizes local regression functions (equation 3.78). 

i i iy = g(x )+e                                              (3.78)  

where yi is the dependent variable, xi the predictors (independent variables), ig(x ) 

the local regression function and ei an error term. Local fitting is the principle of 
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Loess (Cleveland and Devlin, 1988). Initially, the number of the selected data 

points around predictor xi (span) that will be used is specified. Namely, span is 

the ratio of the selected data points (xi) to the total data points of the specific 

predictor. If all the given data points will be used, span equals to 1 (100%) and a 

total smoothed curve will be produced, while for a span value of 0 the curve will fit 

exactly the data points. Subsequently, the used data points around predictor xi 

are weighted to their distance from xi according to a tricube weighted function 

(equation 3.79). Hence, significantly high weighting is given to the closest data 

points. A scaled distance zj is employed relating the data point xj, the predictor xi 

and the span.  



 ≥

3 3
j j

j

j

(1- z ) , for z < 1
w(z ) =

0, for z 1
                                   (3.79) 

An n-degree polynomial regression function g(xi) then fits the data points around 

the predictor. The objective function minimizes the weighted sum of square 

errors: 

 2min w *e  

Among others, Loess has been employed for modeling ozone concentration 

based on solar radiation, wind speed and temperature (Loess predictors) in 

missing data (Cleveland and Devlin, 1988) and on criminal and civil justice 

expense relying on crime rate and taxable wealth (Cleveland et al., 1988). 

Additionally Loess has been applied in space galaxy velocity smoothing (noise 

reduction) with remarkable results (Cleveland and Devlin, 1988).  

Nonetheless Loess suffers of the so called “curse of dimensionality”. In practice, 

the method performs efficiently in one predictor modeling while its performance is 

reduced as the number of predictors increases. The cause of this drawback rises 

from the fact that the smoothing process becomes more complicated with the 

extra dimensions, while the span remains fixed (Cleveland and Devlin, 1988 and 

Cleveland et al., 1988). 

Loess application in traffic simulation was examined by Antoniou et al. (2013), 

and Papathanasopoulou and Antoniou (2015). Antoniou et al. (2013) employed 



 
 

108 
 

data-driven methods for predicting traffic states. Initially the data were clustered 

(in specific traffic states). Subsequently rules were set up for predicting the next 

traffic state (based on the sequence of the previous states). Loess was the 

crucial tool, along with goodness-of-fit statistics, that provided the relationships 

between the fundamental traffic quantities (speed, density, volume) for each 

cluster. Loess contributed a lot in speed prediction. Goodness-of-fit statistics, e.g. 

root mean square error and Theil’s coefficients, measured model’s validity and 

preciseness. 

Papathanasopoulou and Antoniou (2015) highlighted that data-driven models’ 

added value in traffic simulation, incorporating it into microscopic traffic models. 

They estimated span and polynomial degree using the RMSN (normalized root 

mean square error) indicator. The contribution of Loess in traffic simulation has 

been outlined alongside to its advantages that comprise in: 

 Managing data (generally for machine learning methods) 

 Non-Requirement for model function (non-parametric) 

 Useful in many traffic situations 

 Convenient incorporation of additional parameters 

 Proper outliers’ management  

Loess compared to simple regression analysis outweighs on the one hand in the 

fact that it weighs each input and on the other hand it constitutes a non-

parametric method.  The lack of mathematical function could be considered as a 

drawback for Loess when parameter relationships should clearly be 

demonstrated. Moreover large datasets are computationally expensive and 

extreme outliers could mislead significantly the researcher. 

An extensive Loess application in terms of pedestrian modelling is presented in 

section 5 (see section 5.2.3). 

Table 3.2 presents the pros and cons of the aforementioned data-driven 

methods. 
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Table 3.2: Data-driven methods pros and cons 

 Method  Strength  Weakness 

ANN  
Initial setup for multi-

dimensional outputs 

High number of 

hyperparameters (number of 

nodes, activation function 

etc.) – model complexity 

GP 
Provides confidence 

intervals 

Lacks in high dimensional 

spaces – regression with 

many features 

Single output initial setup 

SVR  
Low model 

complexity 

Sensitive to support vectors 

Single output initial setup 

Loess 

Simple mathematical 

equations (in 

comparison to the 

other data-driven 

methods) 

Limited number of variables 

“Curse of dimensionality” 

 

The complexity of each type of model is related to its structure. In particular, ANN 

complexity [O((n+p)*q)] involves the number of neurons in the input layer (n), in 

the output layer (p) and in the hidden layer (q), while SVR (RBF kernel) 

complexity [O(nsvd)] is affected by the number of inputs (d) and the number of the 

support vectors (nsv). Also, as mentioned above, GP high complexity [O(n3)] 

encumbers model training process with large datasets, while Loess complexity 

depends on the number of data points that are used [O(n)].  
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3.6. Model’s Comparison 

In a fair model comparison, the main principle, when examining different types of 

models, is to set them in a way to be comparable to each other, while respecting 

the models characteristics and dynamics. Thus, the results that each model will 

provide can be compared with the results of the other models and their 

performance can be evaluated. Data-driven models do not include any pedestrian 

movement modeling. Hence, this should be set by the researcher. Apart from the 

absence of the pedestrian movement model, the main principle of the models’ 

comparison (i.e. the fact that the models must be comparable) should be also 

considered. Due to the fact that the social force model incorporates a clear 

simulation framework, the same framework is set in the data-driven models. In 

other words, the same parameters that social force model includes are also 

employed by the data-driven models. Furthermore, there might be cases where 

the social force model parameters cannot be incorporated in the same manner in 

the data-driven models. Hence, appropriate transformation for these parameters 

is conducted (an extensive description of these parameters is provided in section 

5.1 / parameters of distance). 

Another issue that should be considered during the comparison process is the 

method that will be employed. Due to the fact that data-driven models suffer from 

overfitting a cross-validation procedure was employed in the current research. In 

cross-validation, the total dataset is separated into k parts (folds). In each run, 

one of the k folds is used as the testing set while all the others as the training set. 

The model is applied in the training set by calibrating its parameters and selecting 

the parameter values combination that minimizes the total error (GoF measure). 

Subsequently the model with the selected parameter values is applied to the 

testing dataset capturing its validity (the error in the testing set is computed). 

When all of the k folds have been used as a testing set, the cross-validation 

process is complete and the total error of the testing sets is computed. The model 

type with the lowest error value implies to be more appropriate for simulating the 

phenomenon. 

Furthermore, issues that are related to the time and computational cost reduction 

are also discussed in the present study. A naïve approach could be the 

calibration of all the model parameters during the training process. This would 
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result in an extremely large computational and time cost. Thus, three different 

approaches are examined including the one-at-a-time (OAT) sensitivity analysis, 

the Global Sensitivity Analysis (GSA) and the genetic algorithms, with the latter 

being the most efficient one and thus utilized at the cross-validation process. 

Last, a set of GoF measures was employed for capturing models’ performance. 

The appropriate velocity type (Euclidean norm, etc.) that is used as the error in 

the GoF measures is described explicitly during the experimental procedure in 

section 5. 
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4. DATA COLLECTION AND PREPARATION 

 

4.1. Overview 

Data collection is one of the essential steps in the research, as it provides the 

appropriate data required in the model development procedure. Data comprise a 

crucial element, utilized in model development through the calibration and 

validation processes. Hence, accurate data is a prerequisite for designing a 

reliable simulation model. With the evolution of machine learning methods and 

data-driven techniques, data inherent properties have become even more 

significant. Data-driven models do not incorporate the physical theory between 

the relevant parameters and are solely constructed by the data, while including 

only statistical correlations.  

In microscopic traffic simulation, data mostly involves vehicle, bicycle or 

pedestrian trajectories, while there are several tools for collecting them. Data 

collection tools include radars, lasers, cameras, sensors, GPS and exhibit 

different merits and limitations, and different accuracy levels (Antoniou et al., 

2011).  

In the present experiment, video cameras are employed for recording pedestrian 

trajectories. As they often rely on techniques that have not been perfected, errors 

in the tracking process should be anticipated. At the same time, their contribution 

to model calibration is significant, affecting the validity of the investigated model 

(more in data-driven methods – see section 3.4.). 

Pedestrian trajectories comprise the output of the pedestrian tracking process 

following data collection. At the same time, and regardless of the selected tool, 

the collected data may contain noise levels that exceed an acceptable threshold, 

thus requiring a data noise reduction step. The existence of data noise may affect 

significantly model development and may lead to a less accurate and reliable 

model. Hence, measurement error reduction methods must be employed. The 

methods that reduce data noise have been presented in the section 3.2, while 

their applications in pedestrian (and traffic) movements are described in section 

4.4.1. Furthermore, this research presents an algorithm for eliminating data 
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noise, based on the Kalman filter and moving average extensions. A state-space 

formulation with the use of Unscented Kalman Filter (UKF) as an initial smoothing 

filter and the incorporation of the symmetric Simple Moving Average (sSMA) for 

producing an improved algorithm is introduced. Noise elimination and trajectory 

smoothness processes are described below. 

 

4.2. Pedestrian Tracking  

The experimental design of this research focuses on facilities where only 

pedestrians are present, without the interactions of other traffic modes (e.g. 

vehicles, bicycles). Existing databases with pedestrian trajectories have been 

published, including the noted one from the University of Edinburgh (Majecka, 

2009), where the agent’s characteristics (e.g. agent’s height) are not provided 

and a special knowledge is required in order to evaluate false recordings. Thus, 

existing databases would not be appropriate for the present research and were 

then not utilized. To collect the relevant data, two data collection experiments 

were designed. The selected data collection sites displayed pedestrian 

movement characteristics required for this research (see section 3.1). 

Data collection took place at the platforms of Moschato metro station (Figure 

4.1a) in the morning (8:30 am) in a working day (28/12/2016) and at the indoor 

shopping mall in Athens (Figure 4.1b) in the evening (7:40 pm) in a non-working 

day (08/04/2017). Agents were tracked, with a recording frequency of 30 frames 

per second (fps), during their entire movement in the frame, and their walk lasted 

between 12 seconds and 45 seconds. 
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(a)      (b) 

Figure 4.1: Collection data locations: (a) Metro station, (b) Shopping mall indoor  

In total, 20281 trajectory data points were extracted from 111 moving 

pedestrians. Data size in studies that utilize trajectory data to develop and/or 

calibrate pedestrian simulation models can vary significantly. Examples include 

36 trajectories with a total of 1675 observed positions in 3 frames/second 

(Antonini et al., 2006) and 150 trajectories (when referring mainly to machine 

learning based models) recorded at a section of a basketball stadium (Wang et 

al., 2019). Studies with substantially larger data size have been found, e.g.  

Tordeux et al. (2018a) and Torres-Ruiz et al. (2017) with 400 participants tracked 

in a bottleneck with a width of 2.20m and in three corridors with variable width 

(ranging from 1.8m to 3.0m) respectively. In the current research, an integrated 

approach has been conducted where the data capture a mix of pedestrian 

behavior including agents that walk in a relaxed mode and others displaying a 

rush mode, while the data was collected in two areas. It should be mentioned that 

the utilized data collection method ensured agents’ unawareness of being 

captured, achieving unbiased pedestrian behavior, which in turn enhances model 

applicability. 

In the metro station platform pedestrians/agents were walking from/to the exit of 

the platforms (top of Figure 4.1a) towards/from the exit of the station (bottom of 

Figure 4.1b), while in the mall areas pedestrians did not follow a specific route, 

but walked in all possible directions (e.g. store entrances). Both single 

pedestrians and pedestrians walking in small groups (2 persons) were tracked in 

both sites. Considering the size of the recorded walking areas captured in the 

data, this was about 5m wide and 6.5m long for the metro platform data and 

about 8m wide and 13m long for the mall data. 



 
 

115 
 

Video recordings were conducted using two digital cameras that were placed at 

both locations at an upper level point. This is in line with similar experiments. For 

example, Ma and Song (2013) and Giannis and Vlahogianni (2018) who also 

collected data for extracting pedestrian trajectories utilizing video-recordings 

placed the cameras on the top of the recorded area. The first camera was 

focused on the terrain where pedestrians walk and the second captured their 

characteristics (height, gender etc.). Camera steadiness is crucial during the 

whole recording process for avoiding extra and significant noise in pedestrian 

trajectories. In cases where the recordings are not steady the appropriate 

software must be utilized to correct the recorded data (i.e. export a steady video 

recording). In the present experiment, in order to avoid additional and significant 

noise, the cameras were placed on tripods to achieve high levels of steadiness. 

Subsequently video recordings were imported in a tracking software named 

“Tracker – Video Analysis and Modeling Tool” (version 4.90), which has already 

been used in vehicle tracking (Barmpounakis et al., 2016a; Barmpounakis et al., 

2016b). The software employs a semi-automatic detection and tracking process. 

In particular, object detection, whether this involves pedestrians, vehicles or 

bicycles, is made by the user and object tracking by the software. First, the user 

detects the first point of the object trajectory and places it in the frame so as to 

identify the object, while automatic tracking conducted by the software follows. 

The possibility of manual corrections considering the object’s trajectory (noisy 

points) is also available. Prior to this, a perspective filter is applied in order to 

remove lens distortion and compute the appropriate trajectory’s coordinates. 

Alternatively, photogrammetric tools can be utilized in order to convert image 

points to actual coordinates. This method is described in section 4.3, while an 

extension of this procedure leads to the calculation of the height of the recorded 

agents (see section 5.3). Agent’s height is required as it is used as an additional 

variable in the data-driven methods (section 5.3).  

The employed software surpasses other tracking algorithms and software, based 

on computer vision, as it does not extract false trajectories from non-existent 

objects (that may occur due to luminousness errors) and allows for manual 

corrections. On the other hand, manual detection adds requisite time to the user, 

proportionate to the estimated trajectories that fully automatic tracking algorithms 

do not require.  
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In this experiment a fully manual procedure is utilized in order to extract agents’ 

positions with high precision. As already mentioned, data accuracy is crucial for 

model calibration and validation, and even more vital for the development of data-

driven models. 

Pedestrian trajectories are thus exported. However, they include noise from 

measurements that needs to be eliminated. Noise elimination and trajectory 

smoothness processes are described further below (section 4.4). 

 

4.3. Image points to real world coordinates 

Photogrammetric tools are useful for converting image points to real world 

coordinates. In particular, the application of photogrammetric processes allows 

for the extraction of an agent’s position in actual coordinates from video 

recordings. 

Initially camera lens distortion needs to be removed. Focal length is the 

parameter that defines distortion, which is produced by the camera lens, and is 

measured in pixel units. If the camera is not used in auto-focus mode, the 

estimation of focal length is carried out once. Checkerboard pattern is a common 

method for removing lens distortion. Images (optimally 10 to 20) are captured in 

different angles and sites illustrating a checkerboard. Through computer vision 

techniques square edges are detected. Square edges color contrast (black and 

white colors) is optimum for their exact detection that consequently leads to the 

specification of checkerboard orientation and site. Applying the Camera 

Calibration Toolbox for Matlab (Heikkila and Silven, 1997), the camera’s focal 

length and image coordinates of the principal point (xo, yo) are computed. Image 

principal point is the projection of the center of projection in the image plane and 

it differs from the image plane center (Figure 4.2).  
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Figure 4.2: Image’s principal point  

An alternative method has also been employed for computing camera intrinsics 

(i.e. focal length and principal point’s image coordinates) providing similar results 

to the Matlab algorithm (Table 4.1). With the aid of Fauccal (Fully Automated 

Camera Calibration), an open source software that is implemented in Matlab 

(Douskos et al., 2009), camera calibration can be accomplished. Likewise the 

software relies on the chess–board pattern. The algorithm extracts feature points 

on the image and uses the medians of their x, y coordinates for calculating 

camera parameters. A bundle adjustment is needed for parameters final 

estimation (Douskos et al., 2007). 

Table 4.1: Camera calibration results 

 Matlab Fauccal 

Intrinsics     

 X - axis Y - axis X - axis Y - axis 

Focal length 
(pixels) 

233.85 ± 0.21 231.60 ± 0.21 235.68 ± 0.55  233.29 ± 0.54 

Principal 
point (pixels) 

151.19 ± 0.22 114.68 ± 0.17 151.17 ± 0.57  113.81 ± 0.43 

Radial 
distortion 

4.03*10^(-7) ± 
8.49*10^(-8) 

-5.08*10^(-11) ± 
1.04*10^(-11) 

3.49*10^(-7) ± 
9.17*10^(-8) 

-3.51*10^(-11) 
± 4.07*10^(-12) 
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Subsequently to intrinsics estimation, extrinsics, i.e. camera’s site and angles 

during video recording, need to be identified. It is very important that the camera 

remains steady during the entire video recording. Otherwise camera exterior 

orientation will be changed and must be recomputed after every alteration. One 

video frame should be extracted in order to assign at least four points with known 

coordinate values. For advanced extrinsics evaluation the assigned points should 

cover the main part of the recorded area. Extra points can also improve camera 

calibration. Collinearity equations are utilized for estimating camera site (Xo, Yo, 

Zo coordinates) and angles (omega – turn in X–axis, phi – in Y–axis and kappa – 

in Z–axis). Matlab Photogrammetric Toolbox (MPT) is an open source software 

specified in extrinsics estimation (Kalisperakis et al. 2006). Camera constant (c), 

principal point’s coordinates and radial distortion coefficients, i.e. camera’s 

interior orientation parameters, are considered as inputs, while MPT software 

outputs the camera’s exterior orientation. In case of approximate prior knowledge 

of the camera’s site and orientation, initial values can be used to improve 

software’s efficacy. It is worth mentioning that as focus distance (S) tends to 

approach infinity values, focal length (f) equals to camera constant (equation 4.1). 

1 1 1
= +

f S c
                    (4.1)  

Following the estimation of the camera’s interior and exterior orientation, the 

pedestrian’s location in actual coordinates can be easily defined with the aid of 

orientation coefficients. First, one of the video frames illustrating the pedestrian is 

extracted. Second, camera’s orientation coefficients are computed as: 

11

12

13

21

22

r = cos(phi)cos(kappa)

r = cos(omega)sin(kappa)+sin(omega)sin(phi)cos(kappa)

r = sin(omega)sin(kappa) - cos(omega)sin(phi)cos(kappa)

r = -cos(phi)sin(kappa)

r = cos(omega)cos(kappa) - sin(omega)sin(phi)sin(ka

23

31

32

33

ppa)

r = sin(omega)cos(kappa)+cos(omega)sin(phi)sin(kappa)

r = sin(phi)

r = -sin(omega)cos(phi)

r = cos(omega)cos(phi)

       (4.2) 
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where omega, phi and kappa stand for the camera angles across X, Y and Z axis 

respectively. 

Pixel coordinates of pedestrian’s lowest point (x1,y1) are computed by removing 

principal point’s coordinates [ 1 1 0
'x =x - x , 1 1 0

'y = -(y - y ) ]. It is reminded that pixel 

values are descending in the Y – axis (from the bottom to the top of the frame). 

Pedestrian world coordinates (X, Y) are computed as: 

1 11 1 21 31
0 0

1 13 1 23 33

1 12 1 22 32
0 0

1 13 1 23 33

' 'x r + y r - cr
X = ((Z - Z )( ))+ X

' 'x r + y r - cr

' 'x r + y r - cr
Y = ((Z - Z )( ))+ Y

' 'x r + y r - cr

                    (4.3) 

where Z can take an initial value (e.g. 0). The method is outlined below.  
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Figure 4.3: Converting pixel to real world coordinates 
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4.4. Trajectory smoothing  

4.4.1. Smoothing filters applications  

Kalman filter approximations have been applied in studies for pedestrian tracking 

(e.g. Bertozzi et al., 2004; Heikkila and Silven, 2004; Foxlin, 2005; Zampella, et 

al., 2012; Particke et al., 2017) in order to eliminate measurement noise. Bertozzi 

et al. (2004) employed Kalman filter for preventing pedestrian overlapping during 

detection phase. Foxlin (2005) presented pedestrian detection and tracking 

application with sensors that were placed into the agent’s shoelaces. Through a 

process that includes EKF algorithm, he specified pedestrian’s position with high 

accuracy. Heikkila and Silven (2004), in their study for automatical pedestrian 

and cyclist classification, assumed white Gaussian noises’ distribution in the 

tracking process (both prediction and measurement noise). Zampella et al. (2012) 

employed Kalman filter extensions. Particularly they proposed the use of UKF 

due to the higher order approximation instead of EKF (EKF relies on first order). 

Particke et al. (2017) compared the basic Kalman filter algorithm accuracy with 

and without the employment of a pedestrian simulation model. The simulation 

model, titled Generalized Potential Field Approach (GPFA), is based on the social 

force model principles. Wang et al. (2007) relied on the particle filter algorithm. Its 

principle is similar to Kalman filter (estimates the probability based on the past 

observations). Rather than noises, particle filter algorithm calculates weights for 

each subsequent sample point (particle).  

Splines have been also applied in pedestrian tracking (Philomin et al., 2000, 

Siebel and Maybank, 2001). Nonetheless, the aim of these studies was the 

smoothness of pedestrian shapes.  

In terms of moving average, Dodge et al. (2009) employed the filter in order to 

smooth moving point objects’ (i.e. vehicles, motorcycles, bicycles and 

pedestrians) trajectories and further to classify them in distinct object type 

categories. Nevertheless, moving average application on trajectories tend to 

reduce velocity peaks duration, i.e. the duration of the period when a pedestrian 

stands motionless (Hen et al., 2004). Symmetric moving average provides an 

improved version, as data points in the following time steps (t+1) are also 

included in the prediction of time step t. Thiemann et al. (2008) employed 
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symmetric exponential moving average for smoothing NGSIM data (a well know 

group of datasets for traffic data – vehicle trajectories). 

Attempts have been made for specifying moving average parameters (i.e. the 

number of data points used for smoothing and the smoothing factor for EMA). 

Gudmundsson et al. (2012) used the symmetric simple moving average of nine 

points for preprocessing data in order to cluster movements in team sports and 

weather phenomena (e.g. hurricanes). Ossen and Hoogendoorn (2008) 

employed a simple moving average smoothing method for vehicle trajectories, 

with a nine observations time span (referred to 0.9s) that provided trajectory 

smoothness and moving dynamics at the same time. They mentioned that the 

number of smoothing data points are of high importance as in extremely high 

time span the gain of smoothness will be supplanted by the loss of kinematics. 

Thiemann et al. (2008), in a more holistic approach, utilized different smoothing 

widths for vehicle acceleration, velocity and position relying on their variances.  

 

4.4.2. Methodology  

This study employs a combination of Kalman filter [Unscented Kalman Filter 

(UKF)] and moving average (symmetric simple moving average) to filter 

pedestrian data. Noise reduction is conducted in three steps (Figure 4.4). The 

first step includes video recording segmentation, in the second UKF extension is 

adopted and in the third step the moving average filter is incorporated to UKF.  
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Figure 4.4: Smoothing process 

Due to the high recording frequency (30fps) pedestrian steps are tracked in a 

0.03s time period and thus pedestrian velocity is exposed to high false recording 

(slight differences in the agent’s cite lead to high velocity variations). A first step 

for reducing noise is to aggregate frames. By altering the time period of the 

tracking process to 0.2s (i.e. tracking pedestrian’s next step after 6 frames) the 

noise that is caused from the aforementioned short period time of tracking is 

significantly reduced. The selected time step is in agreement with Guo et al. 

(2010), Zanlungo et al. (2011) and Ridel et al. (2019), while other studies employ 

smaller time steps (0.04s) (e.g. Daamen and Hoogendoorn, 2012) or larger ones 

(0.5s) (e.g. Teknomo, 2006; Zanlungo et al., 2014b; Zeng et al., 2014). None of 

the aforementioned papers employed further smoothing algorithms.  

In the second step, the Kalman filtering framework is used. In order to relax the 

basic Kalman filter’s hypotheses, UKF is applied. State vector X is defined as in 

equation (3.5), while the covariance matrix P is assumed to be diagonal (equation 

3.6) as state variables are assumed to be independent. Five sigma points are 

selected, as the state dimension equals 2 (the number of sigma points is defined 

as 2n+1, where n is the state dimension). Sigma points are extracted as: 
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 
 

 

ˆ
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

0
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0

c 2
0

i i

i+n i

i i+n

X (t | t) = x(t | t)

W =

W = +1- a + b

X (t | t) = x(t | t) + ( n + k P(t | t) )

X (t | t) = x(t | t) - ( n + k P(t | t) )

k
W = W

2 n + k

k

n + k
k

n + k            (4.4) 

where Xi(t|t) stands for the sigma points at frame t, Wi for their weights, k is a 

scaling parameter, n the dimensions of the state, a is a factor that assigns the 

scale of each sigma point from the mean [Wan and van der Merwe, (2000), 

define α equals to 10-3] and b a prior knowledge factor which has an optimal 

value equal to 2 for Gaussian distributions (Antoniou, 2004). Julier et al. (2000) 

mentioned that by setting n+k=3 the optimal Gaussian approximation is achieved 

(as they propose a heuristic method).    
i

n + k P t | t  is the ith row or column 

element of the root matrix that resulted from the Cholesky  decomposition method 

(Julier et al., 2000). In the present study A=LLT is selected as the form of the 

square root; therefore the ith column element is chosen. UKF equations are 

presented below:  

 

 





i i

2n
m
0 0 i i

i

c T
0 0 0

2n
T

i i i
i

X (t +1| t) = AX (t | t)

x(t +1| t) = W X (t +1| t) + W X

P(t +1| t) = W (X (t +1| t) x(t +1| t)) * (X (t +1| t) x(t +1| t)) +

W (X (t +1| t) x(t +1| t)) * (X (t +1| t) x(t +1| t)) + Q

    (4.5)        

Equations (4.5) illustrate the predicted state where A is the transition matrix which 

equals to 

 
 
 
 
 
 

1 0 Δt 0

0 1 0 Δt
A =

0 0 1 0

0 0 0 1

                           (4.6) 
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Kalman filter requires a simulation model in the prediction state (in order to 

predict velocity at t+1 time step). However, the objective of Kalman filter’s 

application in the current study is to smooth velocity without any knowledge of the 

moving dynamics. Velocity alterations result from the moving average algorithm 

(see below) and the prediction state noise part.  





i i

2n
m
0 0 i i

i

c T
y 0 0 0

2n
T

i i i
i

Y (t + 1| t) = HX (t + 1| t)

(t +1| t) = W Y (t + 1| t) + W Y

P (t +1) = W (Y (t + 1| t) - y(t +1| t)) * (Y (t + 1| t) - y(t + 1| t)) +

+ W (Y (t +1| t) - y(t + 1| t)) * (Y (t + 1| t) - y(t + 1| t)) + R

y
     (4.7) 

Equations (4.7) provide the measurement state, where H is the transition matrix 

which equals to 

          

 
 
 
 
 
 

1 0 0 0

0 1 0 0
H =

0 0 1 0

0 0 0 1

                       (4.8) 

    


c T
xy 0 0 0

2n
T

i i i
i

P (t + 1) = W (X (t + 1| t) - x(t + 1| t)) * (Y (t + 1| t) - y(t + 1| t)) +

+ W (X (t + 1| t) - x(t + 1| t)) * (Y (t + 1| t) - y(t + 1| t))
            (4.9)

                             

-1
xy yK = P (t +1)P (t +1)                     (4.10)  

Kalman gain (K) is the product (equation 4.10) of the predicted and measured 

states covariance matrix (Pxy) and the inverse of the measurement covariance 

matrix (Py). The output of the UKF is the state estimation in t+1 time step as 

presented below: 

T
y

x(t +1) = x(t +1| t) -K(y(t +1)- y(t +1| t))

P(t +1) =P(t +1| t) -KP (t +1)K
               (4.11) 

An improvement has been accomplished in the presented UKF by introducing the 

moving average component. Velocity is crucial for predicting pedestrian’s next 
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time step in UKF prediction equation. Moving average is applied for estimating 

the velocity (among to X and Y axis) during the UKF process, as it reduces 

agent’s velocity noise and, as a consequence, enhances UKF efficiency. 

Additionally, the symmetric moving average (moving average extension that is 

implemented in the present study) reflects the tendency of the agent’s movement 

as it incorporates previous and following time steps (smoothing width) in the 

estimation and relaxes the model absence at UKF prediction state.  

As mentioned in section 3.2.3, three moving average types exist, the simple 

moving average (SMA), the weighted (WMA) and the exponential (EMA). The 

difference the between simple versus the weighted and exponential moving 

average relies on the fact that SMA treat equally the regarded data points, while 

WMA and EMA set weights on them. Notably, EMA weighting is decreased 

exponentially to the previous data points, while in WMA the weights are assigned 

optionally. As a consequence, a considerably higher importance is given in the 

most recent data points and the existence of outliers will lead in false estimation 

at the current time step. Hence, a simple moving average is employed in this 

study. Further, for reducing smoothing in peak points, the symmetric type is 

utilized (symmetric simple moving average – sSMA), as presented in equation 

(4.12). 

   
  
     

   

t+D

x x

t=t-Dy y

u u1
t = t

u 2D+1 u
                       (4.12) 

where ux and uy stand for the speeds across X and Y axis respectively and D for 

the smoothing width.  

To sum up, UKF is applied for eliminating data noise, after aggregating frames to 

0.2s time step, while the symmetric simple moving average reduces velocity false 

variance and improve UKF’s efficiency. UKF requires noises’ covariances 

determination while sSMA smoothing width specification.  

The Kalman filter algorithm relies on prediction and measurement errors. In case 

of no primary knowledge or sense for the error values (as in the current case), 

most of the studies insert a priori error values. In this study a consideration has 

been made based on the Q/R ratio that affects Kalman gain.   
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Initially, velocity variance for the first three time steps is computed. Three time 

steps stand for a 0.6 seconds time period in the specific example. For this 

duration, pedestrian velocity should stay almost unchanged. Hence, velocity 

variance indicates noises in measurement process.  

For the following frames, velocity constancy should be relaxed by assuming 

vector state variance, including prediction noise, as acceptable. Due to the 

absence of a simulation model in the prediction state, measurement noise should 

not exceed prediction noise (Q/R >1).   

An investigation has been conducted for examining the effect of noises ratio 

(Q/R) in trajectory estimation. It was experimentally observed, that Q/R ratio 

affects edge trajectory points’ locations and thus their divergence is considered 

as the critical indicator. It is highlighted that, by changing the number of the initial 

“accepted” trajectory points (in the current study this is 3), the divergence must 

differ. Hence, this is kept constant in the experiment. 

On the other hand, smoothing width affects velocity variance (velocity variance is 

reduced inversely to the number of data points). Adopting an extremely high 

number of data points, velocity variance approaches zero even in cases where 

the agent alters its velocity (oversmoothing). In this case movement dynamics will 

be diminished. Thereafter, velocity variance elimination by preserving pedestrian 

kinematics is required.  
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Figure 4.5: Q/R ratio effect 

First, smoothing width (D) remains constant at the value of 2 and Q/R ratio 

varies. Figure 4.5 illustrates that edge points’ distance divergence decreases 

logarithmically as Q/R ratio increases. In order to avoid overfitting (estimated 

trajectory points are close to measured) and high velocity alterations, high ratio 

values are rejected. As shown in Figure 4.5, insignificant differences in distance 

divergence are noted in ratio values higher than 2.5. Hence, a Q/R ratio equal to 

2.5 seems to be reasonable, for avoiding overfitting and accepting low velocity 

alterations, and is therefore selected. 

Alternatively, a threshold value on the gradient of the curve of Figure 4.5 could be 

adopted. Low threshold values indicate that an extra increase of the Q/R ratio 

does not significantly alter distance deviation. Namely, a threshold value of 0.03 

suggests that an increase of 1 of the Q/R ratio decreases distance divergence 

per 0.03 m, which seems to be an acceptable value. The aforementioned 

threshold value appears at around 2.5 Q/R ratio value (Table 4.2). 
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Table 4.2: Q/R ratio curve gradient 

Q/R ratio 
Edge points  distance 

divergence (m) 
Curve gradient 

1.00 0.172  

1.25 0.146 0.101 

1.50 0.128 0.074 

1.75 0.114 0.056 

2.00 0.103 0.045 

2.25 0.094 0.036 

2.50 0.086 0.030 

2.75 0.080 0.026 

3.00 0.074 0.022 

3.25 0.069 0.019 

3.50 0.065 0.017 

3.75 0.061 0.015 

4.00 0.058 0.013 

4.25 0.055 0.012 

4.50 0.053 0.011 

4.75 0.050 0.010 

5.00 0.048 0.009 

 

Further, Q/R ratio is kept fixed at 2.5 and smoothing width is being modified. In 

this case velocity variance is the critical index. Five specific trajectories exhibiting 

almost constant velocity, as indicated from the video recordings, were selected 

randomly. The aim is to accomplish, for the specific trajectories, zero velocity 

variances (or almost 100% reduction) while preserving movement dynamics. 

Velocity variance decreases inversely to the number of data points, as illustrated 

in Table 4.3. The first data row of the table presents velocity variance of each 

pedestrian ID, while the other rows exhibit the reduction in the velocity variance 

with the increasing smoothing width. 
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Table 4.3: Velocity variance reduction 

Smoothing 
width / Ped id 

Ped001 Ped013 Ped017 Ped029 Ped035 Average 

0 0.145 0.118 0.159 0.101 0.104  

1 91% 80% 80% 79% 74% 81% 

2 96% 89% 87% 87% 88% 89% 

3 98% 93% 91% 91% 91% 93% 

4 99% 95% 93% 96% 95% 96% 

5 99% 97% 96% 98% 97% 97% 

  

A significant reduction is accomplished by adding only two data points 

symmetrically to the current time step (D=1). When smoothing width exceeds the 

value of 2, an additional increase does not significantly reduce velocity variance. 

Thus, the value of 2 is adopted for the smoothing width as kinematics should be 

maintained. Hence, the number of total data points that are considered in the 

symmetric moving average is 5 (2D+1). 5 data points correspond to 1s duration 

time, which approaches Moussaïd et al. (2009), Moussaïd et al. (2011) and 

Ossen and Hoogendoorn (2008) smoothing widths (0.83s), though the latter 

study referred to vehicle trajectories rather than pedestrian ones. In cases of not 

enough trajectory data points (<25, prior to frames aggregation) smoothing width 

is adjusted according to them.  

In the current stage, all but the initial “accepted” trajectory steps have been 

estimated. The process is executed backwards for estimating them. In order to 

avoid high acceleration alterations that exist despite noise elimination, pedestrian 

acceleration is computed in 1 second time step. Additionally, acceleration in the 

first step (as it cannot be extracted from velocity alteration) is specified as equal 

to the second step. Alternatively, an approach that employs UKF and sSMA in 

separate stages (first UKF and after sSMA) has been examined providing higher 

velocity and acceleration variances, that cannot be deduced from the specific 

pedestrian movements. UKF application combined to sSMA indicates trajectory 

smoothness and data noise reduction. Figure 4.6 displays the results of this 

process, i.e. a comparison between the two phases (before and after filters’ 

application) for 3 pedestrian trajectories.  
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Figure 4.6: Pedestrian’s trajectories smoothing 
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5. CASE STUDIES 

 

5.1. Case Studies Setup / Experimental Setup 

In this research, we consider two modeling approaches: (i) a theory-derived 

social force model, and (ii) four data-driven techniques. A visual overview of their 

modeling assumptions is provided in Figure 5.1. 

 

(a) Social force description 

 

(b) Data-driven model setup 

Figure 5.1: Distance separation 

As mentioned in section 3, Helbing and Molnár (1995) presented the social force 

model to simulate pedestrian kinematics. The model set the principles for 

specifying the rules of pedestrian movement and has been employed in widely 

applied simulation software, such as VisWalk (PTV, 2015) and SimWalk 

(Zainuddin et al., 2009). Social force model simulates pedestrian’s velocity in the 

next time step (the same is simulated with the data-driven models in the current 

experiment). It represents the following dynamics: as an agent walks they receive 

forces from their surroundings that coerce them to amend their velocity, similarly 

to the forces in fluid molecules. Social forces are distinguished in attractive and 



 
 

133 
 

repulsive, and the total force that the agent receives from their surroundings is 

condensed as: 
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 
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              (5.1) 

Equation (5.1), which is adopted in the present research, corresponds to the 

improved version of the social force model presented by Helbing and Johansson 

(2010), and Helbing (2012) and described in section 3.3.2. The equation denotes 

that pedestrian motion relies on five variables. One can add pedestrian velocity in 

the current time step (t) as a sixth variable for predicting pedestrian velocity in the 

next time step (t+1). In other words (and based on equation (5.1)), pedestrian 

velocity can be computed as: 

     
k

α α αβ αΒ α αi βu u r r r r u(t+1)= f( (t), , , , , )                                       (5.2) 

where 


αu (t)  stands for the pedestrian velocity in the current time step, 

αβr  the 

distance between the examined agent and the pedestrians triggering repulsive 

effects and 


βu  their velocity, 

αBr  the distance between the examined agent and 

space boundaries, 

αir  the distance between the examined agent and the 

pedestrians triggering attractive effects, and 


k
αr  the distance to the next 

destination point, implied in equation (3.10) by the desired direction factor (


αe ). 

To assess the effectiveness of the developed data-driven models a fair 

comparison between the social force model and the data-driven ones was 

designed. Therefore the data-driven pedestrian simulation models are developed 

with agents updating their velocity according to social force model parameters. 

Thus, pedestrian velocity (in the data-driven models) in the next time step [


αu (t +1) ] is estimated based on the: 
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 agent’s velocity 


αu (t)  in the current time step; 

 distance 

αβr  between the examined agent and the pedestrians triggering 

repulsive effects; 

 distance 

αBr  between the examined agent and space boundaries; 

 distance 

αir  between the examined agent and the pedestrians triggering 

attractive effects; 

 distance 


k
αr  to the next destination point; and 

 pedestrians triggering repulsive effects velocity 


βu . 

However, as -due to implementation details- and only in terms of Loess technique 

its variables are limited to three, i.e. the following variables are considered i) 

pedestrian velocity in the current time step (


αu (t) , ii) distance between the 

examined agent and the pedestrians triggering repulsive effects (

αβr ) and iii) 

distance between the examined agent and space boundaries (

αBr ).  

In all models, distances 

αβr , 


αBr , 


αir  and 


k
αr  are separated into two axes 

representing the horizontal and the vertical projections of the adjacent 

pedestrian/obstacle [Figure 5.1(b)]. In cases of more than one “repulsive” or 

“attractive” agents or/and obstacles, a selection criterion needs to be specified for 

determining the agent and the obstacle that has the highest impact on the 

examined pedestrian. Contrary to the social force model, data-driven models 

consider one value for every predictor and thus the appropriate one must be 

adopted. In an initial approach the closest obstacle/pedestrian could be selected. 

Helbing and Johansson (2010) and Helbing (2012) pointed out in their updated 

version of the social force model, an angular dependence factor (based on 

agent’s view) is a crucial measure in forces effects. Pedestrians who walk outside 

of the agent’s sight view (i.e. behind them) or close to its contour (i.e. vertically to 

agent) affect the simulated pedestrian’s movement much less than those who are 

in front of them and close to their trajectory. Further investigation considering the 
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determination of the “influence” area has been conducted from Giannis and 

Vlahogianni (2018), though their study referred to overtaking situations (two 

elliptical axis in front and behind the agent) considering both unidirectional and 

bidirectional flows. They suggested that the asymmetry of this area is related to 

the kinematics and the general characteristics of the examined pedestrians 

(those who overtake and those who are overtaken). In the present research, in 

accordance to Helbing and Johansson (2010) and Helbing (2012), the sight view 

factor is adopted as the selection criterion in the present model. The same factor 

is employed in “attractive” pedestrians. In terms of “repulsive” pedestrians the 

density measure could be considered as an extra predictor in a future model in 

order to take into account not only one pedestrian but also the rest that affect the 

simulated one. 

Furthermore, pedestrian velocity is a two (or three) dimensional quantity. As 

agents are tracked in a steady coordinated system, an appropriate transformation 

is required for computing vertical and horizontal velocity in each time step. 

Trajectory slope is considered as crucial in a 1 second time step (the current 

frame, two prior and two posterior frames are taken into account). The 

coordinated system is thus rotated to the slope axis, and agent velocity 
 
 
 

x

y

u

u
 is 

transformed according to equation (5.3).  

    
    
      

'
xx

'
yy

uu cosθ sinθ
=

uu -sinθ cosθ
                                                  (5.3) 

where 
 
 
  

'
x
'
y

u

u
 stands for the velocity in the rotated coordinated system and θ for the 

angle rotation. As also noticed in 4.3 section pixel values are descending in the Y 

– axis. For a clear description see Fig. 5.2. 
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Figure 5.2: Velocity rotation 

In cases where specific variables cannot be computed, suitable large or low 

values are selected, depending on the impact of the variable on the output value 

(i.e. agent’s velocity in the next time step), in the following manner. Namely, when 

an agent walks with no attractive or/and repulsive pedestrians for a certain period 

of time, and thus the distances between the agent and the pedestrians (horizontal 

and vertical) are not determinable, large values are allocated to distances while 

pedestrian velocities are set to zero. In other words, a pseudo-agent is assumed 

with their position being set far away (outside the recording area) from the 

examined agents, while they are assumed to be stationary (their velocity set to 

zero). The reason for this is that agents’ and obstacles’ distance is inversely 

proportional to pedestrians’ velocity. Hence, setting a high value to this 

parameter, results to the impact of this predictor in the specific data input to be 

substantially small.  

In terms of the destination points, while the recorded area covers a part of the 

agent’s trajectory, the social force model refers to the next destination point (i.e. 

an intermediate destination point) for the pedestrians that in the current 



 
 

137 
 

experiment can be easily defined for both the employed collection data locations. 

These are the ticket gates (entrance / exit) for the metro platforms and points 

following pedestrian’s trajectory outside the recorded area (e.g. next corner) for 

the shopping mall, according to its geometry (for pedestrians that do not stop 

inside the recorded area). 

 

5.2. Comparison of social force model with data-driven 

models (with same number of variables) 

Following data collection, trajectory extraction and noise reduction, the employed 

models were designed and calibrated. Sensitivity analysis is performed to 

estimate the impact of the social force model parameters in the derived outputs in 

order to detect possible non-influencing parameters (or parameters that affect at 

a rather low degree) and set them as constants during the calibration process, to 

achieve a reduction in computational time.  

Two different methods for sensitivity analysis are described next, the simple one-

at-a-time and the global sensitivity, while an approach based on genetic 

algorithm, for calibrating social force model parameters, has also been taken into 

consideration. The genetic algorithm does not require the a priori knowledge of 

the most affective parameters (provided by the sensitivity analysis). Hence, it is 

employed for training the social force model, while sensitivity analysis methods 

are only presented indicatively. 

 

5.2.1. One-at-a-time (OAT) sensitivity analysis 

A one-at-a-time (OAT) sensitivity analysis has been performed on the parameters 

of the social force model. Every parameter was been examined separately, within 

a predetermined range, while all the other parameters are given a reasonable 

value. The values of the fixed parameters and their ranges are presented in 

Table 5.1. Mean squared error (MSE), as described in equation 5.7 and also 

employed in the next sections, is used as the metric to capture the sensitivity 

analysis performance. Following Zanlungo et al. (2011), the agent’s desired 
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speed is regarded to differ between pedestrians (its values are drawn randomly 

from its distribution). Both mean desired speed and its standard deviation are 

considered to follow a Gaussian distribution (Helbing and Molnár, 1995 and Zeng 

et al., 2014). 

Table 5.1: Parameters fixed values and ranges 

Parameter Range Fixed value Units 

Relaxation time 0.1-4.5 0.5 seconds 

Desired speed 
(mean) 

0.5-5.0 1.34 m/s 

Desired speed 
(std) 

0.05-1.00 0.26 m/s 

Maximal 
acceptable speed 

1.47-5.09 1.74 m/s 

Strength of 
interactions from 
behind 

0.02-0.19 0.1  

Repulsive force 
from obstacle 
function constant 

0.5-20.0 10 m2/s2 

Repulsive force 
from obstacle 
exponential 
parameter 

0.1-2.0 0.2 m 

Repulsive force 
from pedestrian - 
interaction 
strength 

0.03-8.21 4.3 m/s2 

Repulsive force 
from pedestrian - 
interaction range 

0.001-3.89 1.07 m 

 

The sensitivity analysis suggests that most of the parameters affect simulation 

results with the critical determining parameters being the maximum acceptable 
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speed, and the mean and standard deviation of the desired speed, as 

anticipated. Results indicated that desired speed standard deviation parameter 

values higher than 0.5m/s might increase the simulation error substantially. Low 

values for relaxation time (<0.2s) and attractive force exponential parameter 

(<0.3m) lead to false model estimations. Additionally, the values of the repulsive 

force from pedestrian interaction range, the attractive force function constant and 

the repulsive force from obstacle force function constant should not exceed 0.8, 

0.5 and 3.0 respectively. On the other hand, the strength of interactions from the 

behind parameter does not seem to affect significantly simulation results. At this 

point it should be stated that most of the aforementioned parameters are 

correlated (e.g. function constant and exponential parameters) and OAT 

sensitivity analysis might not be the appropriate method for examining their 

impact, and is only presented as an initial approach. Further investigation on the 

sensitivity analysis is conducted adopting global sensitivity analysis, as described 

in the next section.  
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Figure 5.3: Social Force Model parameters impact
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5.2.2. Global sensitivity analysis (GSA) 

In order to obviate parameters correlation the global sensitivity analysis (GSA) 

was employed. GSA method is described in Saltelli et al. (2008). It is a variance 

based approach conducted in terms of a Monte Carlo experiment. The Monte 

Carlo experiment size (N) is required to be large for precise coefficients 

estimation (small experiment size leads to high confidence intervals). GSA 

computes sensitivity indices Si of parameter i. First-order index is a sensitivity 

measure that presents the impact of parameter i over the model output (Y) 

without considering parameters’ interaction while higher-order sensitivity indices 

(total effects) capture parameters correlation. The principle of GSA arises on the 

fact that sensitivity indices are computed not on a single parameter value (as the 

selection of the value impacts sensitivity analysis output), but on the average of 

all the possible values. High values of sensitivity indices (i.e. approach value of 1) 

indicate important parameters. 

A brute-force estimation of sensitivity indices requires a N2 procedure. Saltelli et 

al. (2008) proposed a method where sensitivity indices estimation cost is reduced 

to N(k+2) (k is the number of model parameters). The principle of this method 

arises on the fact that two different matrices (A, B) are set as standard. 

Subsequently a group of matrices Ci are generated where all of the matrix 

columns are extracted from B except from the i-th column that is extracted from A 

matrix. Thus, the number of Ci matrices is equal to k. All of the aforementioned 

matrices are used as model inputs. Model outputs are then computed as follows 

(equations 5.4, 5.5, 5.6) and are utilized in the sensitivity indices estimation. 

ay = f(A)                                                    (5.4) 

by = f(B)                                                    (5.5) 

ic iy = f(C )                                                   (5.6) 

A N(2k+2) (24.000 simulations) experiment was performed in order to estimate 

second order (Saltelli, 2002) indices (experiment size N = 1000). Second order 

sensitivity indices include the interactions between two parameters. To avoid 

second order effects computation a 13.000 simulations experiment will be 
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required. In contrast, a brute-force estimation experiment will end after 106 

simulations. Thus, the reduction in computational time is significant.  

In every simulation the error between the predicted (according to the social force 

model) and the actual (subsequently to the smoothing application) velocities was 

computed. MSE (equation 5.7) is used as the metric to capture the sensitivity 

analysis performance, in line to OAT. Following Zanlungo et al. (2011), similarly 

to the application in the OAT sensitivity analysis, the agent’s desired speed 

differs between pedestrians (its values are drawn randomly from its distribution). 

Both mean desired speed and its standard deviation follow the Gaussian 

distribution (Helbing and Molnár, 1995 and Zeng et al., 2014).  
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Table 5.2: Global sensitivity analysis 

Parameter STi 
confidence 

interval 
Si 

confidence 

interval 

Relaxation time 0,540 0,1060 0,253 0,0908 

Desired speed - mean 0,594 0,0918 0,282 0,0877 

Desired speed - std 0,142 0,0373 0,042 0,0376 

Maximal acceptable speed 0,007 0,0029 0,000 0,0049 

Strength of interactions from 
behind 

0,001 0,0004 0,000 0,0022 

Repulsive force from 
obstacle - function constant 

0,061 0,0095 0,052 0,0213 

Repulsive force from 
obstacle - exponential 
parameter 

0,015 0,0033 0,004 0,0093 

Repulsive force from 
pedestrian - interaction 
strength 

0,001 0,0004 0,000 0,0029 

Repulsive force from 
pedestrian - interaction 
range 

0,003 0,0006 0,000 0,0036 

Attractive force - function 
constant 

0,001 0,0002 0,000 0,0017 

Attractive force - exponential 
parameter 

0,001 0,0003 0,000 0,0023 

 

Table 5.2 presents the total effects and the first-order sensitivity indices for the 

social force model as applied in the collected data. The sensitivity analysis 

suggests that desired speed and relaxation time are the critical determining 

parameters, as also extracted from OAT sensitivity analysis. A false estimation in 

them will cause significant errors in applying the social force model. The other 

parameters do not seem to affect substantially simulation results.  

In addition, the sum of the first order indices (0.633) indicates the non-additivity of 

the social force model. Parameter ranges were determined according to section 
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3.3.3, while the attractive forces parameters’ ranges were selected randomly as 

no particular reference considering their values was found. 

 

5.2.3. Comparative analysis 

As mentioned in previous sections, a fair comparison is attempted in this 

research by employing the same social force model parameters as data-driven 

models’ predictors. In terms of the ANN method, a 50 nodes network is utilized 

with one hidden layer (around 4 times the nodes in the input layer), Rectified 

Linear Unit (ReLU) activation function among all nodes and the Adam 

optimization algorithm (Kingma and Ba, 2015) with 0.001 learning rate. Glorot et 

al. (2011) pointed out the superiority of rectifier neural networks (ANN employing 

ReLU activation function) compared to those using previously widely applied 

activations such as logistic sigmoid and tangent hyperbolic ones. They also 

mentioned that rectifier units are closer to biological neurons. The number of 

nodes has been selected during a trial-and-error process in order to avoid 

overfitting. ReLU function is a recently applied activation function in the field of 

ANN that restricts the limitations (e.g. vanishing gradient problem) of the 

previously used activated functions (sigmoid, hyperbolic tangent, linear etc) that 

is further enhanced with employment of the Adam algorithm with a small learning 

rate. The output consists of two nodes (ux, uy) following the pedestrian velocity 

dimension. Αn initial approach, where the cost function is referred to the errors 

between the velocities in the Euclidean norm (u) reveals that low error values do 

not necessarily lead to low errors in each velocity dimension (ux, uy) separately, 

but rather to substantially high ones. Thus, a cost function, where the errors are 

related in each dimension separately is employed (Equation 5.7). ANN were 

modeled in the python programming language, with the aid of the Tensorflow 

library and the Keras API. Tensorflow can use system GPU (Graphics Processing 

Unit) sources in order to speed up model training (and testing) procedures (Abadi 

et al., 2016). 

 n n n n

sim obs 2 sim obs 2N
x x y y

n=1

(u -u ) +(u -u )1
MSE =

N 2
                             (5.7)  

where usim and uobs stands for predicted and observed agent’s velocity. 
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The number of epochs during the training of an ANN plays a very important role 

in the overfitting phenomenon (explained below). As the number of epochs is 

increasing the train error (the error on the training dataset) decreases (as this is 

the aim of the training procedure), but on the other hand the test error (the error 

on the test dataset) might increase. Figure 5.4 presents overfitting for the ANN 

model. From a number of epochs the test error stops to decrease and starts to 

increase while the gap between the type of errors (train and test) commences to 

increase substantially. In this experiment, this happens at around 500 epochs. 

Thus, an ANN model with 500 epochs in the training procedure is employed. 

 

Figure 5.4: Number of epochs 

As a multi-output regression has to be performed in this experiment (we 

distinguish pedestrian velocity in two axes and consider their correlation) MSVR 

and multi-output GP (in particular LMC type) are employed. MSVR was modelled 

in the Matlab programming language utilizing the Alvarez et al. (2018) code, with 

RBF kernel of 4.5 lengthscale, 5.0 penalty parameter C, 0.02 error of the ε-

sensitive zone and the IRWLS optimization algorithm. An RBF kernel is also used 

in the GP model, whose hyperparameters are estimated during the training 

process, modelled in the python programming language. In terms of the Loess 
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method a model of 0.5 span and second polynomial degree is employed. Span 

ranges from 0 to 1 and represents the smoothness of the curve that fits data. 

Lower span values evince less smooth curves and vice versa. Polynomial degree 

ranges in 0, 1 or 2, while 0 is generally avoidable. Cohen (1999) employed bias 

corrected Akaike information criterion (AIC) for span estimation. It is stated that in 

contrast to the other data-driven methods Loess does not have the ability of 

examining possible correlations of the outputs in cases of multi-output 

experiments such the current one. The model has been implemented and 

estimated in R statistical computing environment through Rstudio IDE. 

As also stated in terms of specifying the number of epochs for the ANN model, 

generally data-driven methods tend to perform well (or very well) in the training 

datasets, though their performance in test sets is under consideration. A model 

with low error values in the training sets and high in the test sets is a typical 

situation of overfitting, where the model can replicate only the given datasets and 

lacks generalization to other sets. On the other hand, theoretical simulation 

models, due to the fact that they rely on their own modeling principles and are not 

built on data solely, may not suffer from overfitting. 

Thus, specific attention was given when comparing theoretical and data-driven 

models towards the overfitting problem. Hence, cross-validation is employed for 

the comparison and in particular a 5-fold one, as it overcomes overfitting 

problems.  

In the specific experiment all of the selected pedestrian trajectories (both in the 

metro station and the shopping mall sites) are used for the application and 

comparison of the social force and data-driven models, in a full cross-validation 

pattern (5-fold cross-validation). The distinct recorded datasets are not of the 

same size, however the folds used in the cross-validation process require to be of 

equal size. Thus, the two datasets are merged together. Subsequently, the data 

in the dataset are shuffled and then divided in to five (5-fold cross-validation) 

equally sized datasets. Each time, four of the datasets are used for training, and 

the remaining one for testing. The training part involves the estimation of all 

model parameters, i.e. synaptic weights for ANN, weights for SVR, kernel 

parameters for GP, weights for Loess and the appropriate parameters for the 

social force model, by minimizing the cost function (Equation 5.7), which is the 
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same in all models. Then the trained model is applied to the test dataset, 

providing predicted values for the datapoints in the test set, in order to capture 

model generalization capability. When all of the datasets are utilized once as test 

sets the cross-validation process is completed. The result of the cross-validation 

leads to predicted values for all the datapoints (as are included in the test sets). 

Thus, with the employment of the appropriate GoF measures, comparing 

predicted and observed values, the generalization capability of each model can 

be estimated. 

Considering the social force model training, the objective is to estimate the value 

of 11 model parameters that minimize Equation 5.7 in every cross-validation run 

(training process). As described in sections 5.2.1 and 5.2.2 [while also by 

Kouskoulis et al. (2019)] a two-step approach could be an option for training the 

social force model. At the first step (prior to cross-validation runs), the global 

sensitivity analysis (as a more holistic method as opposed to the OAT sensitivity 

analysis) is performed in the social force model in order to specify model 

parameters with high impact. In the second step (during the cross-validation 

process), the training revolves around the determination of these parameters. 

This study attempts to train the social force model in terms of metaheuristics 

optimization. Especially, as the scope is to estimate 11 parameters that minimize 

a certain cost function, a genetic algorithm is employed. Genetic algorithms have 

proven their robustness in the field of optimization. They overcome the need of 

examining the most affecting parameters and then train the model only around 

them, as they inspect all the model parameters in an effective procedure. 

A population of 30 chromosomes, with 0.8 and 0.2 crossover and mutation 

probabilities, respectively, and the best 2 fitness individuals to survive at each 

generation (elitism), was used to train the social force model (the 

hyperparameters of the genetic algorithm were set after a trial and error process) 

with the aid of R statistical software (Scrucca, 2013). Parameter bounds are 

specified according to Section 3.3.3. 

A set of GoF measures, apart from the MSE, have been employed in order to 

evaluate the performance of each model and to compare them as each of them 

denotes different types of errors. Root mean square percentage error (RMSPE) 

penalizes large errors, mean percentage error (MPE) and Theil’s bias proportion 
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(UM) indicate the existence of systematic bias, Theil’s covariance proportion (UC) 

the existence of unsystematic error, Theil’s inequality coefficient (U) and Theil’s 

variance proportion (US) high values (close to 1) indicate high model inequality 

and difference in the distributions of predicted and observed data respectively. 

UM, US and UC sum to 1 considering MSE decomposition and thus population 

standard deviations for predicted (σsim) and observed agent’s velocities (σobs) are 

used. It is noted that r stands for the correlation coefficient among predicted and 

observed values.  

The errors of the predicted (relying on the social force model) and the measured 

pedestrian’s velocity comprise the crucial indicator for evaluating model’s 

efficacy. Particularly, pedestrian’s actual speed is taken into account. Both in the 

social force and data-driven model simulations zero velocities (when pedestrian 

stands still) are disregarded as they do not show tendency for moving. 

The GoF measures are presented in Equations 5.8 – 5.13 and utilize agent’s 

velocity Euclidean norm (u) in order to capture model’s performance. By 

computing agent’s velocity according to MSE (as described above), i.e. the errors 

are related in each dimension separately, will lead to extremely high values for 

the GoF measures (particularly RMSPE) and will not reflect the exact 

performance of each model. As the aim in this part is not to estimate model 

weights, agent’s velocity Euclidean norm (u) is utilized. This also has been 

applied in the same metrics for the social force model. 
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Table 5.3 presents the performance of each model. The computed GoF 

measures indicate that data-driven methods have higher capability of simulating 

pedestrian movements, as they perform better according to all of GoF measures. 

This implies the outperformance of data-driven techniques in the specific 

simulations. The theoretical simulation model (social force) includes further large 

errors compared to the data-driven models, while the Loess method displayed 

the highest performance. The social force model performs sufficiently well in 

terms of model inequality [social force model Theil index (U) is not significantly 

higher than those of the data-driven techniques]. On the other hand, the social 

force model includes both systematic (MPE and UM) and unsystematic (UC) 

biases that almost do not exist in the data-driven models. Furthermore, the data-

driven methods accomplish the presented cross-validation process significantly 

faster that the social force model, that is 129 seconds for the ANN, 16.5 minutes 

for the GP, 53 seconds for the SVR and 18 seconds for the Loess, while around 

70 hours were required for the social force model employing the aforementioned 

genetic algorithm in the training process. All simulations were performed in an 

Intel i7 CPU @ 1.80GHz laptop with 8GB of RAM and 64-bit Windows 10. 

In addition, a comparison among the four data-driven methods (ANN, GP, SVR 

and Loess) reveals that Loess performs better according to almost every index, 

ANN and GP present similar performance levels, while SVR provides inferior 

predictions. It should also be mentioned that Loess technique performs better 

even though it employs less predictors than the other data-driven methods, while 

accomplishing the cross-validation procedure in significantly less time. 
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In contrast, it is clear that there are limitations, related with the opacity and the 

(lack of) interpretability of the data-driven models. Yet, they seem a promising 

avenue for model development, when model fit is the primary concern. On the 

other hand, the social force model provides an integrated simulation framework 

where every parameter is directly related to the model output. It explains in a 

clear manner the way that pedestrians interact and walk (high level of 

interpretability), while data-driven methods are treated, at some level, as black 

boxes. 

 

Table 5.3: Models performance comparison 

Model / 
GoF MSE RMSPE MPE U UM US UC 
Social 
force 
model 0,005341 19,32% 8,06% 0,0382 0,3760 0,1996 0,4244 

ANN 0,002174 11,57% 0,70% 0,0245 0,0002 0,0045 0,9953 

GP 0,002171 10,76% 0,50% 0,0241 0,0003 0,0058 0,9940 

SVR 0,003109 15,42% 1,29% 0,0304 0,0011 0,0709 0,9280 

Loess 0,002349   8,76% 0,50% 0,0226 0,0002 0,0047 0,9952 
 

Complementary to the above, a comparison of the GoF measures in every run of 

the cross-validation procedure (both train and test measures) is presented in 

Figures 5.5 and 5.6 for every model. The x-axis illustrates the datasets that were 

used in the training and test procedures during the cross-validation process. In 

accordance to the previous analysis the Figures indicate better capability of data-

driven methods for simulating pedestrian movements as they perform better for 

almost all of them with the only one exception being the GP in the test set of the 

first run (RMSPE). 

This implies that data-driven models can simulate more effectively pedestrian 

movements. On the other hand, data-driven methods tend to overfit as they 

learn/develop from the data (as mentioned above), indicated by the gap of the 

measures between the training and the test datasets.  

To sum up data-driven methods strengths comprise: 
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 Higher simulation performance 

 No need for mathematical equations 

 Substantially lower computational time 
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Figure 5.5: GoFs in every CV run – MSE, RMSPE, MPE, Theil coefficient 
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Figure 5.6: GoFs in every CV run – Theil bias, Theil variance, Theil covariance 
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5.3. Introduction of Additional Variables in Data-Driven 

Models 

Following the assessment of the performance of data-driven models in pedestrian 

simulation considering only variables from existed and widely applied pedestrian 

simulation models, further analysis is conducted in order to specify if additional 

variables can improve data-driven models efficacy. The additional variables have 

been selected from section 2 (where the literature review in pedestrian modelling 

is presented). 

Initially the height and the gender of the agents are used for exploring data-driven 

modelling improvement. While agents’ gender is obvious (as the datasets have 

been extracted from video recordings), their height needs to be estimated. The 

aid of photogrammetric tools was substantial. 

Apart from transforming image points to real world ones, photogrammetric 

methods are also useful for calculating the dimensions of every item, and thereby 

agent’s height, from a video recording.  

The process is the same with the methodology employed for the conversion of an 

image point to real world coordinates, regarding the steps of a) removing lens 

distortion, b) cameras site and angles estimation In addition to the pedestrian’s 

lowest point pixel coordinates (x1,y1), those of the highest point (x2, y2) are also 

computed by removing principal point’s coordinates [ 1 1 0
'x = x - x , 1 1 0

'y = -(y - y ) , 

2 2 0
'x = x - x , 2 2 0

'y = -(y - y ) ].   

Subsequently, pedestrian world coordinates (X, Y) are computed according to 

equation (4.3), where Z can take an initial value (e.g. 0). Knowing pedestrian 

world coordinates (X, Y) we insert them in equation (4.3), replace (in equation 

4.3) pedestrian’s lowest point (x1,y1) to pedestrian’s highest point (x2, y2) and 

compute the new Z value. Agent’s height comprises the difference between the 

initial value of Z and the new one. Figure 5.7 presents the method.  
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Figure 5.7: Agent’s height estimation 
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The agent’s gender has been transformed to a numeric (dummy) variable with 

the appropriate encoding in order to be incorporated in the data-driven models. 

Due to implementation details (mentioned in section 5.1) the Loess technique 

cannot be applied in this analysis as it cannot employ further variables. In all of 

the other three data-driven techniques (i.e. ANN, SVR and GP) the same model 

setup, presented in section 5.1, and the same hyperparameters (for the models 

that are needed to specified a priori) have been used. 

Figures 5.8 and 5.9 present the results of this analysis. Following the inclusion of 

agents’ characteristics (height and gender), the updated data-driven pedestrian 

simulation models performed better than the initial ones considering almost every 

GoF measure (described in section 5.1). An exception of this is indicated by the 

Theil’s bias proportion measure in the ANN model (the difference in the SVR 

model is negligible). This index, which implies the existence of systematic bias, 

performed worse in this technique. The existence of a higher systematic bias was 

not verified by the MPE measure. At this point it should be mentioned that Theil’s 

bias proportion measure value was already extremely low before the adoption of 

the agent’s height and gender, and although it increased in the updated model, it 

still remains very low. Other differences in the values of the GoF measure (that 

can imply a lower performance in the updated data-driven model) are not 

considerable (e.g. RMSPE index in the GP model, Theil’s variance proportion in 

the GP and SVR models). In order to illustrate this fact (i.e. the size of the 

difference in the GoF measures) a comparison with social force model GoF 

measures is provided in Figures 5.10 and 5.11. 

In addition, the incorporation of the additional variables in the pedestrian 

simulation model improved fairly the performance of the ANN technique, while 

not as much the performance of GP and SVR techniques where the differences 

in the GoF measures are low (or very low) before and after the incorporation. On 

the other hand, the ANN model, with the aforementioned exception of the Theil’s 

bias proportion index, performed significantly better in all of the other GoF 

measures. 

Finally, the parameter of time is also tested for its impact in the data-driven 

pedestrian simulation model (i.e. whether the incorporation of time can further 

enhance the improvement of the model). As GP and SVR techniques are not 
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time-series models, in contrast to ANN where with its class of Recurrent Neural 

Network (RNN) or the Long short-term memory (LSTM), an architecture of RNN, 

can incorporate the parameter of time, an extra previous time-step of the agent’s 

trajectory is included in the data-driven models. The aim of this research was to 

examine if the parameter of time can upgrade the performance of the data-driven 

models after the incorporation of agent’s height and gender. 

The results of this process (Figures 5.8 and 5.9) resemble a lot with the results of 

the data-driven model with the additional variables of the agent’s characteristics. 

In particular the models after the incorporation of time parameter seem to perform 

better, but not for all the of the GoF measures. Theil’s bias proportion index is 

increased in all of the data-driven models (including GP), but still this lower 

performance is not verified from the MPE index. It should be mentioned that even 

Theil’s bias proportion index increased it remained extremely low for all of the 

data-driven techniques (see also Figure 5.11). ANN model performs better (with 

the exception of Theil’s bias proportion) after the incorporation of time parameter, 

while the differences of GP and SVR models are slightly better. 

Interestingly the adoption of the additional variables cannot enhance the 

performance of some of the employed data-driven models in order to surpass 

Loess model performance (even Loess model employs only three pedestrian 

simulation variables). In particular, SVR model performs worse than Loess even if 

the former employs agent’s characteristics (i.e. height and gender) and time 

variables. GP model performs worse than Loess if only employing pedestrians’ 

characteristics variables (it requires also time variable for outperforming Loess 

model). On the other hand ANN model performs better in the majority of the GoF 

measures than Loess even when employing only pedestrians’ characteristics 

variables.  

In general, the adoption of the additional variables seems to improve mainly the 

performance of the ANN model implying that this technique can “handle” more 

efficiently the incorporation of these variables. 
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Figure 5.8: GoFs with extra variables – MSE, RMSPE, MPE, Theil coefficient 
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Figure 5.9: GoFs with extra variables – Theil bias, Theil variance, Theil 

covariance 
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Figure 5.10: GoFs with extra variables including social force model – MSE, 

RMSPE, MPE, Theil coefficient 



 
 

162 
 

 

 

  

Figure 5.11: GoFs with extra variables including social force model – Theil bias, 

Theil variance, Theil covariance 
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6. DISCUSSION/CONCLUSION 

 

6.1. Overview 

This thesis explores the capabilities of data-driven methods in the field of 

pedestrian simulation and provides an assessment of the model’s validity through 

a comparative analysis of the models’ performance against a traditional 

theoretical model. Four of the most widely used methods - namely, ANN, SVR, 

GP and Loess - were compared with a theoretical pedestrian simulation model, 

the social force model. The model set the principles/rules of pedestrian 

movement and has been employed in widely applied simulation software, such as 

VisWalk (PTV, 2015) and SimWalk (Zainuddin et al., 2009). According to the 

social force model, as an agent walks they receive forces from their surroundings 

that coerce them to amend their velocity, similarly to the forces in fluid molecules. 

Social forces are distinguished in attractive and repulsive, and the total force that 

the agent receives from their surroundings. The model estimates agent’s velocity 

in the next time step [


αu (t +1) ] relying on: a) the agent’s velocity 


αu (t)  in the 

current time step, b) the distance 

αβr  between the examined agent and the 

pedestrians triggering repulsive effects, c) the distance 

αBr  between the examined 

agent and space boundaries, d) the distance 

αir  between the examined agent 

and the pedestrians triggering attractive effects, e) the distance 


k
αr  to the next 

destination point and f) the pedestrians triggering repulsive effects velocity 


βu . 

To design the models, a data collection experiment was designed. The data was 

collected via video recordings at two different sites where pedestrians were 

anticipated to adopt different walking patterns. Data collection was performed at a 

metro station during peak hours, where most of the agents were on their way to 

work/study, and a shopping mall during afternoon hours, where pedestrians 

enjoyed their walk, stared at shop displays and shopped. Video recordings were 

performed utilizing two digital cameras that were placed at both locations at an 

upper level point. The first camera was focused on the terrain, where pedestrians 
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walk, and the second captured their characteristics (height, gender etc.). 

Subsequently, a tracking software was employed for extracting pedestrian 

trajectories. An appropriate transformation based on photogrammetric tools 

allowed the conversion of image points to real world coordinates. 

The extracted data included noise that needs to be eliminated. A data noise 

reduction algorithm, that combines existing methods, was presented in this 

research. In particular, an extension of the Kalman filter algorithm was applied in 

the problem of pedestrian trajectory noise reduction with promising results. While 

most of the studies in pedestrian tracking employ standard Kalman filter and 

consequently adopt its assumptions, the present research utilized UKF in order to 

relax them. As noise matrices (predicted and measurement states) were 

unknown, a procedure for estimating the noise covariance ratio was also 

presented. Experiments were conducted for selecting the appropriate ratio value. 

Moreover sSMA was incorporated in the UKF. Kalman filter prediction for the next 

time step relies on the velocity of the moving object. In cases of velocity noisy 

values Kalman filter finds it difficult to provide an accurate estimation for the next 

time step pedestrian cite. Hence, the incorporation of sSMA in the velocity part of 

UKF reduces velocity noise and thus leads to a higher filter performance. On the 

other hand, exorbitant smoothing was avoided by maintaining pedestrian 

kinematics. The results of the filter in pedestrian trajectory data indicated 

significant noise reduction, with velocity variance of trajectories that approach 

steady movement (zero velocity variance) being substantially reduced. 

Due to the fact that data-driven techniques are not inherently a pedestrian 

simulation model, an appropriate model setup has been developed. In order to 

provide a fair comparison between the social force model and the data-driven 

methods the same parameters that the social force model employs (as 

mentioned before) were also used in the data-driven pedestrian models for 

estimating pedestrian’s velocity in the next time step. Considering the Loess 

model, and due to technique limitations, the model variables were limited to three 

(agent’s velocity in the current time step, distance between the examined agent 

and the pedestrians triggering repulsive effect and distance between the 

examined agent and space boundaries). 
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The comparative analysis of the social force model and the data-driven models 

was conducted adopting the cross-validation procedure. Data-driven methods 

learn from the data and simulate pedestrian movements fairly. On the other hand, 

data-driven techniques fail in generalizing their results on unseen data 

(overfitting). Hence the cross-validation process was utilized in order to cater for 

this limitation. Though the aim of this research is not to provide a pedestrian 

simulation model based on the aforementioned techniques, data-driven models 

hyperparameters were set in order to restrict overfitting issues.  

In terms of the social force model calibration a genetic algorithm (in terms of 

metaheuristics) has been employed. An OAT sensitivity analysis and a more 

holistic method (GSA) were applied and captured model parameters’ impact 

indicating that the desired and acceptable speed and the relaxation time 

comprise the critical parameters. GSA surpasses OAT sensitivity analysis 

drawbacks and specifies parameters correlation. 

A set of GoF measures have been employed to evaluate the performance of 

each model. Results indicate the outperformance of the data-driven methods in 

terms of pedestrian simulation in almost every cross-validation run and every 

GoF measure, although no prior knowledge of pedestrian dynamics has been 

incorporated into them. This indicates the suitability of data-driven methods for 

pedestrian simulation. Still, the tendency of data-driven techniques to overfit 

should be taken into serious consideration, when a researcher aims to develop a 

data-driven model for pedestrian simulation. 

Following the comparison of the performance between the social force model and 

the data-driven models, with the latter including the same variables with the 

former additional variables were included in the data-driven models. These 

variables are the agents’ characteristics’ (height and gender) and the time 

parameter. Further analysis has been conducted in order to investigate if the 

additional parameters can enhance the performance of the data-driven models. 

Loess model was excluded from this procedure due to the limitations of this 

technique. 
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6.2. Research Contributions 

This research provides a contribution towards exploring data-driven techniques’ 

efficacy on pedestrian modeling. Pedestrian trajectories have been extracted 

from video recordings on the field and a filter that combines UKF and sSMA has 

been applied for eliminating data noise. Exorbitant smoothing has been avoided 

by maintaining pedestrian kinematics. Subsequently, the smoothened pedestrian 

trajectories were used for an application utilizing a representative pedestrian 

theoretical model and four data-driven techniques. Following model training and 

testing, simulation results indicated, through the RMSPE index, substantially 

higher (better) performance for the data-driven methods. The results of this study 

demonstrate that data-driven theories comprise a very promising approach for 

pedestrian simulation, as they can provide increased performance. Data-driven 

techniques offer higher simulation performance, less computational time 

requirements and “mathematical” simplicity making them overall a more suitable 

approach for pedestrian simulation. 

Explicitly the contributions of the research are outlined in the following: 

 Provide a framework for data (pedestrian trajectories) noise elimination 

o Enhance UKF performance with the incorporation of sSMA 

o Estimate UKF noise covariances when unknown 

 Pedestrian model setup for data-driven simulations 

 Apply a time efficient social force model calibration 

 Display data-driven modelling efficiency in the field of pedestrian 

simulation (in contrast to existing theoretical models) 

 Improve performance of data-driven models incorporating additional 

meaningful pedestrian simulation variables 

Moving average enhanced UKF performance as it reduces velocity noise and 

further improves the estimation of pedestrian’s next time step. Also due to the 

fact that the symmetric extension of the moving average filter was employed the 

tendency of the agent’s movement was reflected. In addition, a framework that 

estimates UKF noise covariances was provided. In this framework initially the 

noise covariance at measurement state was estimated. Subsequently, the 

relationship (ratio) between the noise covariance at measurement state and the 
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one at the prediction state was examined attempting to avoid extremely 

smoothing and preserve pedestrian kinematics on the one hand, and to avoid 

overfitting (estimated trajectory points are close to measured), on the other hand. 

A fair comparison between the social model and the data-driven techniques was 

performed in this thesis. Hence, the same parameters that social force utilizes in 

order to simulate pedestrian movements were employed in the data-driven 

models. The parameters of distances were set at an appropriate format 

(horizontal and vertical projections) so that the data-driven techniques are able to 

incorporate them. A suitable criterion was specified (based on the “closest” 

distance) for setting distance parameters as a one value variable. Towards this, 

agents’ coordinates were transformed according to their route (angle rotation). 

A time efficient procedure was also proposed for calibrating the social force 

model parameters. A genetic algorithm was employed for minimizing the cost 

function of the social force parameters during its training process. Prior to this, a 

two-step approach that is related to the sensitivity analysis (OAT and GSA where 

the latter obviates model parameters correlation) of the social force model 

parameters was presented. However, as the genetic algorithm is robust and 

efficient, and it does not require the a priori knowledge of the most affective 

parameters, it was used in the present experiment. 

The main contribution of this research is that data-driven techniques seem to 

perform better than the theoretical simulation models in the field of pedestrian 

simulation, and thus data-driven analytics comprise a promising theory. All of the 

employed data-driven methods performed better, with little and negligible 

exceptions, than the social force model although they do not rely on any a priori 

set of pedestrian movement principles. Furthermore, data-driven models proved 

their computation and time efficiency. Slight differences were noticed among the 

performance of the different data-driven methods, with SVR being the least 

powerful of them. On the other hand, the limitations of the data-driven methods 

that concern to the opacity, the (lack of) interpretability and the tendency for 

overfitting should be seriously considered. 

Finally, with the incorporation of additional pedestrian simulation variables, the 

data-driven models performed better, although this improvement was not 

substantially, mainly, due to the fact that their performance had already reached 
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a high level. An increased improvement in the performance of ANN model 

(compared to SVR and GP) was noticed. In this experiment the agent’s height 

and gender, and the parameter of time were considered as the additional 

variables. 

The main contribution of the present research, as mentioned above, is the display 

that data-driven techniques can enhance the performance of pedestrian 

modeling. Improved pedestrian simulation models can be employed by many 

sectors in the transportation field. A typical example is this of autonomous 

vehicles. Self-driving cars recognize their surroundings, including the moving 

objects (e.g. pedestrians), and adjust their movement considering also the agent 

movement in their surroundings. An improved pedestrian simulation model can 

lead to more reliable prediction of agents’ movement in the vehicles’ 

surroundings, and thus lead to improved performance of autonomous vehicles 

considering pedestrian collision avoidance. 

An overall outcome of the research is the outperformance of the data-driven 

techniques in the field of pedestrian simulation (as mentioned above). The writer 

of this thesis recommends the employment of these techniques for developing 

pedestrian simulation models, relying on their high level efficiency. Among the 

four data-driven techniques ANN seem to provide a more holistic modeling 

framework (though more complex) that can capture movement dynamics and can 

be enhanced with the incorporation of additional variables that improve their 

performance.  

 

6.3. Study’s Limitations and Future Research 

Though an extended comparative analysis was conducted in the current research 

further issues are outlined as well. These issues could be considered as next 

steps for the research in the field of data-driven pedestrian simulation. 

A limitation of the research was the employment of certain variables in the data-

driven models, mainly, in order to provide a fair comparison between them and 

the social force model, while certain additional variables were also considered 

(based on the literature review). In future research an amplification of the data-
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driven models can be accomplished with the incorporation of other relevant 

variables. An example of this could be the employment of a density measure. In 

the current thesis the distance parameters of the data-driven model included only 

one “repulsive” and/or “attractive” agent according to the selection criterion that 

was mentioned. The incorporation in the models of a density measure could 

capture not only one pedestrian, but also the other pedestrians affecting the 

simulated one. 

In this experiment specific data (i.e. pedestrian trajectories) were used for 

examining the performance of both data-driven and social force models and 

comparing them. Additional data can be considered for an improved evaluation of 

the models, either from existing datasets or from other new data collection 

experiments under different conditions. 

The scope of this thesis is not to provide a data-driven pedestrian simulation 

model. Though, due to the fact that the results of the present research 

demonstrate that data-driven models are able to capture pedestrian dynamics at 

a satisfactory level, a data-driven pedestrian simulation model could be 

developed in the future. 

Also, in this thesis only pedestrian movements were considered. An interesting 

research objective is the investigation of pedestrian movement while interacting 

with vehicles in more complex scenarios and situations. The application of data-

driven models in these scenarios should be examined. This notation is crucial as 

it can enhance the way that autonomous vehicles behave and perform. In 

particular, in future cities where autonomous vehicles move, interacting with other 

vehicles/bicycles/pedestrians, an advanced data-driven model that simulates 

pedestrian movement in these types of complex environments can improve the 

performance of autonomous vehicles, as pedestrian behavior will be also 

incorporated more efficiently. Data-driven theory can be employed as it has 

proven its efficiency in the present research.  

In addition, in this research the parameter of time in data-driven pedestrian 

simulation models was also tested. RNN architecture of ANN can also be tested 

for its applicability in terms of pedestrian simulation. RNN or LSTM models 

incorporate in their structure the parameter of time. It should be mentioned that 

this requires data with extended pedestrian trajectories as RNN and LSTM 
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models make their predictions in a time series manner requiring a large amount 

of previous time steps of a pedestrian trajectory for predicting the next one. 

Finally, a comparison in pedestrian movements between normal and emergency 

situations should be further explored to identify the differences in pedestrian 

behavior under emergencies. This will contribute to the design of pedestrian 

simulation models which offer a more holistic approach catering for different 

types of situations.  
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