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Abstract
Most holonomic Unmanned Aerial Vehicles (HUAVs) (usually small-scale), employ at least four high-power thrusting
actuators, resulting in increased mass, inertia, and energy consumption. In this work, a novel design for a HUAV using only
three high-power thrusting actuators is developed. The pointing dynamics of the high rpm motor-propeller assemblies are
included in the analysis, resulting in the exposure of oscillatory gyroscopic dynamics. These are studied analytically to yield
vectoring oscillation frequency estimates, useful in selecting actuators. A geometric, singularity free, control framework
comprised of a new control-allocation scheme and a new vectoring controller is developed. Stability proofs are included
and controller robustness is addressed. Simulations (MATLAB/GAZEBO) demonstrating the effectiveness of the developed
design and control framework are provided; a HUAV with independent position/attitude regulation (full pose control) using
only three thrusting actuators is showcased.
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Nomenclature

II

{
E1,E2,E3

}
Inertial reference frame.

Ii

{
ie1, ie2, ie3

}
ith body-fixed frame, i = 0,...,3.

mj ∈ R
+ mass of body j = 0, ..., 3, [kg]

kJj ∈ R
3×3 inertia of body j = 0, ..., 3, [kgm2]

kxj ∈ R
3 position of j th body, j = 0,..., 3, [m]

kvj ∈ R
3 velocity of j th body, j = 0,..., 3, [ms−1]

krj ∈ R
3 vector from center of mass (CM) of

body-0 to the extremity of Leg j , j =
1, 2, 3, [m]

kpj ∈ R
3 vector (‖kpj‖ = b, b ∈ R

+) from
CM of body-j to the extremity of Leg j ,
j = 1, 2, 3, [m]
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IRi ∈ SO(3) linear transformation of the representation
of a vector from Ii , i = 0, ..., 3, to II .
Usage example: iR0=IRT

i
IR0=iRI

IR0
IRid

i ∈ SO(3) desired absolute attitude trajectory cor-
responding to body-i, i = 0, .., 3. Usage
example: IRid

0 = IRid
i

iR0
kωj ∈ R

3 angular velocity of the, j th body, j =
0, ..., 3, wrt., II , [rad s−1]

kωid /0 ∈ R
3 desired relative angular velocity of the,

ith body, i = 1, ..., 3, wrt., I0, [rad s−1]
kωj/0 ∈ R

3 relative angular velocity of the, j th body,

j = 1, ..., 3, wrt., I0, [rad s−1]
kqj ∈ R

3 unit vector collinear to the j th propeller
axis equal to kRj

j e3
kqjd

∈ R
3 desired j th propeller axis pointing direc-

tion equal to kRjd

j
je3

φ, θ, Ψ ∈ R precession, nutation, spin Euler angles,
of the “313” set, [rad]

h ∈ R
3 “321” Euler angles set, i.e., h1=yaw,

h2=pitch, h3=roll, [rad]
bm ∈ R

+ propeller torque constant, [m]
bT ∈ R

+ propeller thrust constant, [Ns2 rad−2]
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b ∈ R
+ distance from CM of body-j to the

extremity of Leg j (‖kpj‖ = b), j =
1, 2, 3, [m]

g ∈ R
+ gravity constant, 9.8 [ms−2]

ρ ∈ R
+ air density constant, [kgm−3]

kgj ∈ R
3 gravity force of body j = 0, ..., 3, [N]

kuj ∈ R
3 control moment acting on body j =

1, 2, 3, [Nm]
kfc,j ∈ R

3 constraint force acting on body j =
1, 2, 3 by body 0, [N]

kfp,j ∈ R
3 propeller force acting on body j =

1, 2, 3, [N]
kfp,je

∈ R
3 relative thrust tracking error of the, j th

body, wrt., I0, [N]
kfw,j ∈ R

3 wind disturbance force applied on body
j = 0, ..., 3, [N]

knw,j ∈ R
3 wind disturbance moment applied on

body j = 0, ..., 3, [Nm]
Subscript

Left superscript k(.) vector/matrix (.) expressed in frame
Ik, k = I, 0, ..., 3.

Right subscript (.)j j th tricopter body, j = 0, ..., 3
Right subscript (.)d desired vector/matrix/signal
Right subscript (.)u signal resulting from control action

1 Introduction

Small-scale Unmanned Aerial Vehicles (UAVs), have
attracted strong attention, by both the research community
and industry. High demand for UAV civilian, scientific, and
defense applications, is mainly attributed to their vertical
take-off/landing and hover capabilities. Key examples
include vehicles utilizing three [1, 2], four [3] or six
[4] thrusting motors. UAVs are further classified as
nonholonomic and holonomic vehicles.

Nonholonomic UAVs (such as quadrotors [5–7]) must
lean their body sideways to change their horizontal position.
This leaning motion restricts their ability to assume the
required attitude when negotiating cluttered spaces or when
performing complex surveillance/inspection or interaction
tasks.

On the other hand, holonomic UAVs (HUAVs) can
regulate their attitude and position independently [8–21];
they can naturally accomplish inspection, surveillance,
mapping, or wrench application tasks. To advance their
capabilities and produce efficient HUAVs, research focuses
on full pose (position-attitude) control designs including
quadrotors with tilting propellers [8–10], hexarotor designs

with canted propellers [11–14], or on a configuration where
each propeller has a fixed orientation that is rotated about
two possible axes with respect to the body-fixed frame
[15, 16]. Unconventional designs include a UAV actuated
by six optimally distributed rotors driven by reversible
Electronic Speed Controllers (ESC) [17], a platform using
seven thrusters with fixed orientations [18], a vehicle of
eight rotors pairwise aligned with four different planes
and driven by reversible ESCs [19], a holonomic UAV
able to perform docking [20], and a UAV employing eight
ducted-fans and 8 servos [21]. In most works, four high-
power thrusting actuators or more are employed, resulting in
HUAVs of increased mass/inertia and energy consumption.

This work presents a novel three-thruster HUAV, that
operates by pointing its three rotors. A design of fully
vectored rotors is chosen under the rationale that full
maneuverability is maintained in any orientation, since
the propellers are able to orient themselves and naturally
resist external wrenches. In our prior work, a vectoring
controller and the HUAV concept were introduced in [22,
23]. However the system studied in [22] was very simple,
i.e., a single rigid body connected to a fixed base (the
controller was unsuitable for the floating base architecture
of the vehicle). The work in [23] represented an incomplete
attempt since the control solution was developed under the
hard limitation of internal wrench feedback availability;
however, this required feedback sensors and therefore, it
was not implementable.

This paper builds on our previous work and addresses
the limitations of [22, 23], by developing a novel control
framework. Although in most works the dynamics of reori-
enting fast spinning motor-propeller assemblies are ignored
(the fast spinning motor-propeller assemblies are considered
simply as sources of thrust and torque), here they are taken
into consideration, exposing high-frequency oscillatory
gyroscopic dynamics. The contributions of this work are the
following; (i) an analytic expression for estimating the oscil-
latory gyroscopic dynamics frequency is developed, useful
in selecting actuators. (ii) A new geometric controller to reg-
ulate the attitude of the high rotating speed motor-propeller
assemblies is developed, for a floating base architecture.
(iii) A new control-allocation solution is developed also tak-
ing into account the dynamics of the high rotating speed
motor-propeller assemblies. This control solution is robust
to parametric uncertainties, signal noise/estimation accu-
racy, and external disturbances. (iv) Stability assurances of
the proposed control solution are produced via Lyapunov
analysis. Simulation results in MATLAB and ROS/GAZEBO
using a detailed system model demonstrate independent
position/attitude regulation using three thrusting actuators
only, proving the effectiveness of the developed approach.
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2 Dynamics

2.1 Preliminaries

The holonomic tricopter design developed includes three
motors vectored by two actuators each. The three motor-
propeller assemblies are located at the extremities of the
vehicle’s legs (see Fig. 1); each mounted via a gimbal
mechanism equipped with slip rings allowing unconstrained
vectoring (3 thrust inputs + 6 gimbal inputs, i.e., 2 gimbal
inputs for each thrust input). The legs are co-planar and
are distributed evenly at 120o apart. Realistic vehicle
parameters are obtained via a CAD design that includes
all mechanical components (gimbals, servos, legs, etc.) and
all electronics (battery, reversible ESCs, encoders, cameras,
etc.), see Fig. 1.

The modeling of the platform was conducted in [23], but
for completeness reasons it is presented briefly, here too.
The HUAV is modeled as a four rigid body system. Body-
0 (see Fig. 1) contains the frame, electronics, the gimbal
mechanisms, and the static components of the motors. The
gimbal mechanisms are included as part of Body-0 due to
their small inertia; it is also assumed that vectoring is done at
slow speeds. Body-i (i=1,2,3, see Fig. 1) is comprised by the
spinning motor-propeller components of the assembly, and
is called a thrusting assembly (TA). This modeling choice
allows the study of gyroscopic dynamic phenomena, and
leads to improved control design, and to vectoring actuator
selection.

An inertial frame II

{
E1,E2,E3

}
and a body-0 fixed

frame I0
{
0e1, 0e2, 0e3

}
at the center of mass (CM)

of body-0 are used, see Fig. 1. Body-i fixed frames,
Ii

{
ie1, ie2, ie3

}
, are also defined with i = 1,2,3 denoting

the ith frame, see Fig. 1. The HUAV configuration is
determined by the location of its body-0 CM, Ix0, and

Fig. 1 Holonomic Tricopter design. Interaction wrench,
[
i fc,i; iui

]
,

between body-0 and ith thrust apparatus (TA) is also visible by
exploding the ith-TA assembly

by its attitude, described by rotation matrix, IR0, together
with the attitude of the three TA’s, IRi , i=1,2,3. The HUAV
configuration manifold is given by SE(3)×SO(3)×SO(3)×
SO(3). During operation, each TA follows a desired pointing
direction, and simultaneously tracks a desired angular
velocity about the pointing direction, thus generating a force
ifp,i [24] and a torque inp,i [25]. Each TA is controlled
by a moment iui = [iui1; iui2; iui3 ]. Components iui1 ,

iui2

are responsible for pointing the ith-TA and are applied by
the gimbal actuators; iui3 corresponds to the motor torque
required for developing a desired propeller speed.

2.2 Equations of Motion (EoM)

The Newton-Euler methodology is employed in the
derivation of the EoM. The position of the CM of the ith-TA,
Ixi , (see Fig. 1) is given by

Ixi = Ix0 + IR0
0ri − IRi

ipi

The ith-TA dynamics are described by

I ẋi = Ivi (1a)

mi
I v̇i = Igi + IRi (

i fc,i + i fp,i ) + I fw,i (1b)

iJi
i ω̇i = iui + S

(
ipi

)
i fc,i + inp,i + inw,i − S

(
iωi

)
iJi

iωi (1c)

I Ṙi = IRiS
(

iωi

)
(1d)

where ifp,i (inp,i) is the thrust force (propeller torque)
generated by the ith-TA propeller, ifc,i is the internal
constraint force applied on the ith-TA by body-0, and
I fw,i (inw,i) is the wind and aerodynamic disturbance force
(torque). The cross product map S(.) : R

3→so(3), its
inverse, S−1(.) : so(3)→R

3, and the accelerations, are
given in the Appendix, see Eqs. (A1), (A2b). The thrust
force, ifp,i , (propeller torque, inp,i) is

ifp,i =
[
0; 0; bT

(
iω

T

i
ie3
)2]

(2a)

inp,i = −bm sgn
(

iω
T

i
ie3
)

ifp,i (2b)

where sgn(.) is the sign function. Using Eq. (1b), the internal
constraint force applied on the ith-TA, ifc,i , by body-0 is

ifc,i = iRI

(
mi

I v̇i − Igi − I fw,i

)
− ifp,i (3)

The angular velocity of the ith-TA, iωi = [iωi1; iωi2; iωi3

]
,

can be expressed as

iωi = iω0 + iωi/0 = iR0
0ω0 + iωi/0 (4)

where iωi/0 is the angular velocity of the ith-TA with

respect to body-0. The angular acceleration of the ith-TA,
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iω̇i = [i ω̇i1; i ω̇i2; i ω̇i3

]
, is found by differentiating Eq. (4),

yielding

iω̇i = iR0
0ω̇0 − S

(
iωi/0

)
iR0

0ω0 + iω̇i/0 (5)

Body-0 accelerates under the action of the forces −ifc,i
applied by the ith-TA (given by Eq. (3)) and the body-0
gravity force, Ig0. Attitude-wise, each TA applies a moment
−iui , on body-0. Thus, the body-0 EoM are given by

I ẋ0 = Iv0 (6a)

m0
I v̇0 = Ig0 −

3∑

i=1

IRi
ifc,i + I fw,0 (6b)

0J0 0ω̇0 =
3∑

i=1

S
(
0ri

) (
0Ri

(
−ifc,i

))
+ 0nw,0

−
3∑

i=1

(
0Ri

iui

)
− S

(
0ω0

)
0J0 0ω0 (6c)

I Ṙ0 = IR0S
(
0ω0

)
(6d)

The forces/moments I fw,i,
inw,i , i = 0, .., 3 in Eqs. (1) and

(6), due to the wind and other disturbances are modeled as
in [26] and assumed to be bounded

‖I fw,i(t)‖ ≤ fw,imax , i = 0, .., 3, ∀t (7a)

‖inw,i(t)‖ ≤ nw,imax , i = 0, .., 3, ∀t (7b)

The system inputs are the moments iui (i=1,2,3)
actuating each TA. The EoM of the entire UAV are given
by Eqs. (1b)-(1d), (6b)-(6d); an alternative form of the
EoM containing all states and control inputs is found
by rewriting the EoM in matrix form with respect to
[
I v̇0, 0ω̇0,

1ω̇1,
2ω̇2,

3ω̇3
]T

as follows

M

⎡

⎢⎢⎢⎢
⎣

I v̇0
0ω̇0
1ω̇1
2ω̇2
3ω̇3

⎤

⎥⎥⎥⎥
⎦

+�+G+P+D=B

⎡

⎣
1u1
2u2
3u3

⎤

⎦ (8)

whereM ∈ R
15×15, �,G,P,D ∈ R

15×1 and B ∈ R
15×9 are

given in the Appendix, see Eqs. (A3)-(A9a).

2.3 Relative Motion of the i th Thrusting Assembly
wrt. Body-0

The dynamics governing the relative motion of the ith-TA
wrt. body-0 are employed in the control design. Noting that
IRi = IR0

0Ri , the relative motion dynamics are derived
by substituting Eqs. (3) and (A2b) in (1c), and then by
inserting Eq. (5) into the resulting expression. This yields

the dynamics of the relative motion of the ith-TA with
respect to body-0 as

iJ i
iω̇i/0 = S

(
ipi

)
mi

i v̇0+iZi
0ω̇0 + inr,i

+S
(

ipi

)
(−ifw,i) + inw,i + iui (9a)

0Ṙi = 0RiS
(

iωi/0

)
(9b)

where inr,i ∈ R
3×1, and iJ i ,

iZi ∈ R
3×3 containing inertia

terms, are given in the Appendix by Eqs. (A10a)-(A10d).

3 Pointing an Outrunner Motor-Propeller
Assembly

The dynamic phenomena that occur during flight by
pointing a high angular speed motor-propeller are studied
using a simple motor-propeller assembly (ith-TA) that is
pointed with respect to a fixed base, see Fig. 2. To simplify
the notation, the body-0 fixed frame I0 is used as the global
reference and the CM of the ith-TA is connected to I0 by
the vector ipi

ipi = −b ie3, b ∈ R
+ (10)

The origin of the ith-TA fixed frame Ii coincides with the
CM of the ith-TA, see Fig. 2. Writing the system angular
momentum balance with respect to the origin of I0, and
calculating its derivative we get

iui = iJi
iω̇i + S

(
iωi

)
iJi

iωi

+miS
(

ipi

) {
S
(

iωi

)
S
(

iωi

)
ipi + S(iω̇i )

ipi

}
(11)

Assuming that iJi = diag
(
iJi1,1 ,

iJi2,2 ,
iJi3,3

)
, then

Eq. (11) in component form is given by

iui1 =
(

iJi3,3−iJi2,2−mib
2
)

iωi3
iωi2+

(
iJi1,1+mib

2
)

i ω̇i1 (12a)

iui2 =
(

iJi1,1−iJi3,3+mib
2
)

iωi3
iωi1+

(
iJi2,2+mib

2
)

i ω̇i2 (12b)

iui3 =
(

iJi2,2−iJi1,1

)
iωi2

iωi1+iJi3,3
i ω̇i3 (12c)

Fig. 2 Free body diagram of the ith-TA, modeled as a rigid body

51   Page 4 of 21 J Intell Robot Syst (2022) 105: 51



The controlled motion of this system is characterized
by nutation and precession oscillations [27]. Nutation is
described by a change in the second Euler angle of the
“313” sequence, denoted here by θi ; it is a swaying/nodding
motion of the pointing axis, ie3, with respect to 0e3.
Precession describes the azimuth variation of the assembly’s
pointing axis, ie3, about 0e3. It is described by a change in
the first Euler angle of the “313” sequence, denoted here
by φi [28]. The dynamics of this system are studied aiming
to obtain analytic expressions for the nutation/precession
frequencies.

Assuming a model-based control input, iui (t), that
achieves smooth pointing trajectory of constant high
propeller speed, iωi3 � iωi1 ,

iωi2 , Eqs. (12a), (12b) are
solved for the controlled angular rates iωi1u

, iωi2u
(subscript

“u” denotes that the angular rates are due to the applied
control iui (t)). These are given by

iωi1u
=

iui2(t)−
(
iJi2,2+mib

2
)

i ω̇i2(
iJi1,1−iJi3,3+mib2

)
iωi3u

,

iωi2u
=

iui1(t)−
(
iJi1,1+mib

2
)

i ω̇i1(
iJi3,3−iJi2,2−mib2

)
iωi3u

(13)

The equations reveal linear dependence of the angular rates
to the angular accelerations of the neighboring axes (the
pointing axis is excluded). This indicates that movement
about axis ie1 produces motion about axis ie2 and vice
versa.

3.1 Nutation/Precession Frequency Estimation

To extract the nutation and precession responses from
iωi , the Euler angle succession “313” that describes these
motions [28] is used
⎡

⎣
φ̇i

θ̇i

ψ̇i

⎤

⎦=
⎡

⎢
⎣

sin(ψi)
sin(θi )

cos(ψi)
sin(θi )

0
cos(ψi) − sin(ψi) 0

− sin(ψi) cos(θi )
sin(θi )

− cos(ψi) cos(θi )
sin(θi )

1

⎤

⎥
⎦

⎡

⎣
iωi1u
iωi2u
iωi3u

⎤

⎦ (14)

where ψi is the third Euler angle of the “313” succession; it
denotes the rotation angle of the motor-propeller assembly
about its own axis ie3.

Note that Eq. (14) is valid only when θi �∈ {nπ |n ∈
N} and this agrees with the physical intuition that no
precession exists when the motor-propeller axis of rotation
(AoR) is aligned with the precession AoR. However, since
we are working with coordinate-free representations of
attitude in the modeling, control design and simulation, we
are not restricted by any specific attitude or Euler angle
limitation. Additionally, Eq. (14) is not used during vehicle
operation/control, it is rather used as an aid in understanding
the behavior of the gyroscopic phenomena.

Taking into account the high-velocity spin of the
assembly, the fact that the assembly has small inertia, and

the form of Eq. (14), low amplitude but high-frequency
oscillations on the nutation/precession rates, θ̇i /φ̇i , are
expected. The low amplitude is due to to the smooth
pointing motion i.e., small iωi1u

, iωi2u
, while the high-

frequency is due to the high iωi3u
that makes ψi to increase

continually. Hence, ψi trigonometric functions affecting
Eq. (14), oscillate between -1 to 1 very fast. Moreover, the
faster the propeller spin, the faster will be the interchange
of the effect of iωi1u

, iωi2u
on the nutation/precession rates,

θ̇i /φ̇i .
An estimate of the high-frequency oscillations can be

obtained by approximating the value of ψi as follows:
Solving Eq. (14) for iωi3u

, noting that ψ̇i � φ̇i , and
considering the boundedness of the trigonometric numbers
then, iωi3u

≈ ψ̇i . Hence

ψi(t) ≈ iωi3u
t + ψi(0), ∀t ≥ 0 (15)

Using Eqs. (13) into (14), the nutation rate of change, θ̇i , is
given by

θ̇i = cos(ψi)

iui2 − (iJi2,2+mib
2
)

i ω̇i2(
iJi1,1−iJi3,3+mib2

)
iωi3u

− sin(ψi)

iui1 − (iJi1,1+mib
2
)

i ω̇i1(
iJi3,3−iJi2,2−mib2

)
iωi3u

(16)

The hypothesis that the control achieves smooth pointing
of the TA assembly, allows one to assume that iui1(t),
iui2(t), will have an oscillatory nature to counteract the ψi

dependent trigonometric terms. Hence, iui1(t),
iui2(t), must

contain ψi dependent trigonometric terms as follows

iu1(t) = ηi1 (αi1 (t) sin(ψi) + βi1 (t) cos(ψi))+
(

iJi1,1+mib
2
)

i ω̇i1 (17a)

iu2(t) = ηi2 (αi2 (t) sin(ψi) + βi2 (t) cos(ψi))+
(

iJi2,2+mib
2
)

i ω̇i2 (17b)

ηi1 =
(

iJi3,3−iJi2,2−mib
2
)

iωi3 (17c)

ηi2 =
(

iJi1,1−iJi3,3−mib
2
)

iωi3 (17d)

where αij (t), βij (t) ∈ R are the control amplitudes needed
to achieve the desired pointing trajectory. Substituting
Eqs. (17) in (16), and applying trigonometric identities, the
nutation rate, θ̇i , is approximated by

θ̇i ≈ 1

2

(
αi2(t) sin(2ψi) + βi2(t)(1 + cos(2ψi))

−αi1(t)(1 − cos(2ψi)) − βi1(t) sin(2ψi)
)

(18)

Equation (18) indicates that the frequency of the oscillatory
behavior is described by the argument of the trigonometric
functions, namely 2ψi . Using this result and Eq. (15), the
nutation frequency, f∼, is found as

(2πf∼)t + phase = 2ψi � 2
(

iωi3u
t + ψi(0)

)
⇒

f∼(t) � iω3u(t)/π (19)
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By repeating the above analysis using the precession
component of Eq. (14), it can be shown that the same
result holds for the precession rate, φ̇i . Hence Eq. (19)
holds for both nutation and precession frequencies. Thus
in experimental pointing implementations, Eq. (19), allows
easy calculation of the gyroscopic oscillation frequencies
useful in evaluating or selecting of pointing actuators.

Equation (19), is verified via a simulation involving the
vectoring tricopter UAV performing a 90o pitch attitude
maneuver while hovering still. The simulation conditions
and system parameters are given in Section 5, Table 1 and
Eq. (48). Each TA approximately follows a desired pointing
trajectory of a pure 90o rotation about the 0e1 body fixed axis
with a steady spin velocity. The results are presented in Fig. 3
and in the supplementary video file (second flight scenario).

After an initial position deviation (see ‖ex‖ in Fig. 3a),
a smooth steady hover (position hold) and transition to the
desired orientation is observed (see Fig. 3a). Yaw and roll
angles stay close to zero and are omitted in Fig. 3a. The
2nd -TA motion is displayed in Fig. 3b-d. The TA orientation
relative to body-0 is varied by 90o, while the propellers
constantly point upward to maintain the desired gravity-
canceling position (see φ2, θ2 in Fig. 3b). The propeller
velocity, ψ̇2, is maintained close to 748.2 rad/s despite some
variations due to the vehicle body-0 changing orientation
and the disturbances (Fig. 3b). The vectoring control effort

required is less than 0.5 [Nm] (see 2u21 ,
2u22 in Fig. 3d).

The control that actuates the spin of the propeller, 2u23 ,
modulates due to the disturbances (Fig. 3d).

The nutation rate, θ̇2(t) (extracted using Eq. (14)) shows
high frequency gyroscopic oscillations (see θ̇2 in Fig. 3c).
An FFT analysis of the signal (see PSD in Fig. 3c) reveals a
low frequency group of less than 5Hz, a group with a central
frequency at 235.5Hz, and a group with a central frequency
at 474.6Hz. The low frequency group is attributed to
the desired maneuver and the disturbances. The higher
frequency groups are attributed to gyroscopic oscillations
where the group with a central frequency at 235.5Hz is
the base frequency of the gyroscopic oscillations. The last
group is considered a higher harmonic of the base frequency
since 2 × 235.5 ≈ 474.6Hz. Using the developed estimate,
Eq. (19), we compute the nutation frequency as 236.80Hz,
i.e., with a deviation equal to 0.55%. The same holds for the
precession rate (omitted due to space limitations), validating
the developed result.

Concluding, by studying the pointing motion of a
high RPM motor/propeller assembly and by using the
“313” Euler angle succession the high frequency pre-
cession/nutation oscillations were calculated analytically
(Eq. (19)). This equation can be employed in the process
of selecting actuators and allows the swift discern of the
gyroscopic oscillation frequencies and the nature of the

Fig. 3 UAV position hold with
90o pitch maneuver. (3a) Top:
Position error (norm). Middle:
Pitch maneuver attitude response
(Blue: state, Black: desired).
Bottom: Initial pose (left) vs.
final pose (right) of the UAV.
(3b) 2nd -TA attitude relative to
II . Top: Precession φ2(t).
Middle: Nutation θ2(t). Bottom:
Spin/propeller rate ψ̇2(t). (3c)
2nd -TA nutation rate response.
Top: Nutation rate θ̇2. Middle:
Detail of θ̇2. Bottom: Nutation
frequency content via FFT. (3d)
2nd -TA control torque, 2u2

51   Page 6 of 21 J Intell Robot Syst (2022) 105: 51



motion (without the need of time consuming simulations or
experiments).

4 Control Design

For HUAVs, a global operational envelope is needed; hence
a coordinate-free, i.e., geometric framework is employed
to avoid singularities and ambiguities; also the resulting
controller action belongs to the system nonlinear manifold.

The developed control strategy is summarized next; and
illustrated in Fig. 4. Vehicle control is conducted in three
steps: (a) an output tracking control law computes a virtual-
desired wrench,

[
I f0; 0n0

]
d
, that minimizes the body-0

output tracking error (top left block of Fig. 4), (b) the desired
wrench, is resolved into desired forces for the TA’s; these
are transformed to the needed desired pointing, 0qid , and
angular velocity, iωid /0, states for each TA (allocation block
of Fig. 4), (c) the desired TA states are fed into vectoring
controllers that apply the needed control torques, iui , on
each TA producing the thrusts which achieve the desired
vehicle pose (ith vectoring block of Fig. 4).

In short the individual motor-propeller generated thrusts
are considered as alternative control inputs in linearizing the
control model; this is done by allocating the needed motor-
propeller pointing directions, 0qid , and angular velocities,
iωid /0, via a simple geometric rule.

4.1 Vectoring Controller

The control design procedure begins with the development
of the vectoring controller that actuates each TA. Unit
vectors, 0qi , (i = 1, 2, 3) collinear to the ith-propeller axis
are defined as the system pointing states; a singularity-free
pointing attitude representation. The propeller axis vector,
0qi , and angular velocity, iωi/0, relative to the body-0 frame
i.e. the TA states, and their derivatives are given by
0qi = 0Ri

ie3 (20a)
0q̇i = S

(
0Ri

iωi/0

)
0qi (20b)

iωi/0 = iωi−iR0
0ω0 (20c)

iω̇i/0 = −iR0
0ω̇0+S

(
iωi/0

)
iR0

0ω0+iω̇i (20d)

Hence, the ith-TA configuration manifold with respect to
body-0 is given by S2 × R

3, i.e. a vector on S2 ={
ξ ∈ R

3 | ξT ξ = 1
}

denoting the pointing state, and a

vector on R3 denoting the TA angular velocity.
For the desired body-i absolute attitude trajectory IRid

i ∈
SO(3), the following kinematic relation holds

I Ṙid
i =IRid

i S
(
iωid

)
, i = 0, .., 3 (21)

where iωid ∈ R
3 is the desired angular velocity of body-

i, i = 0, .., 3. Using 0Rid
i = 0RI

IRid
i , the desired pointing

direction, 0qid , its derivative, 0q̇id , the desired angular
velocity relative to I0, iωid /0, and its acceleration, iω̇id /0,
are found as

0qid = 0Rid
i

ie3=0RI
Iqid (22a)

0q̇id = S
(
0Rid

i
iωid /0

)
0qid (22b)

iωid /0 = iωid −iRid
0

0ω0 (22c)

iω̇id /0 = iω̇id −iRid
0

0ω̇0+S
(

iωid /0

)
iRid

0
0ω0 (22d)

The above desired states are provided via control allocation.
Suitable tracking errors are needed that employ the

developed pointing state vectors
(
0qi ,

iωi/0

)
and desired

vectors
(
0qid ,

iωid /0

)
. The error function, Ψi , [29, 38]

Ψi = 1 − 0qT
i
0qid (23)

is used that quantifies the pointing attitude error. When the
unit vectors, 0qi ,

0qid , are antipodal, Ψi = 2, i.e. Ψi% =
100% attitude error. If 0qi , 0qid are perpendicular, Ψi = 1,
and when 0qi , 0qid , are coincident, Ψi = 0, i.e. Ψi% = 0%
error. The pointing error vector, ieq,i , and angular velocity
error vector, ieω,i , are derived via Eq. (23) and are given by
[22, 23]

ieq,i = iR0S
(
0qid

)
0qi (24a)

ieω,i = iωi/0 − iR0
0Rid

i
iωid /0 (24b)

Fig. 4 High level tricopter
control strategy
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A necessary condition in using Eq. (24a), is that
Ψi

(
0qid ,

0qi

)
<2 i.e., 0qid �=−0qi . Also via Eq. (24a), the

following bounding inequality holds [22, 23]

∀ψi ∈ R
+|Ψi ≤ ψi<2 =⇒

1

2
‖ieq,i‖2 ≤ Ψi ≤ 1

2 − ψi

‖ieq,i‖2 (25)

Using Eqs. (20b), (22b), and (23), the error dynamics are
found to be

Ψ̇i =
(
0Ri

ieq,i

)T
0Ri

ieω,i (26a)

i ėq,i = iEi
ieω,i (26b)

i ėω,i = iω̇i/0 + iai (26c)

where iEi ∈ R
3×3 and iai ∈ R

3 are given by

iEi = iR0

(
0qT

id
0qi1−0qid

0qT
i

)
0Ri (27a)

iai = S
(

iωi/0

)
iR0

0Rid
i

iωid /0−iR0
0Rid

i
iω̇id /0 (27b)

= −S
(

iR0
0Rid

i
iωid /0

)
ieω,i−iR0

0Rid
i

iω̇id /0 (27c)

The developed vectoring controller, iui , stabilizing the
ith-TA dynamics, Eq.(9), was developed via the Lyapunov
analysis in Appendix B, and is given by

iui = −înr,i − S
(

ipi

)
mi

î v̇0−îZi
0̂ω̇0

+k−1
ω

îJ i

(
−kω

iai−(kq + Ψi)
i ėq,i−Ψ̇i

ieq,i−γ isi
)

(28a)

isi = (kq + Ψi)
ieq,i+kω

ieω,i , kq , kω ∈ R
+ (28b)

γ = γ1 + γ2 + γ3, γ3 = γ4 + γ5, γi=1,..,5 ∈ R
+ (28c)

γ5 > Nω,imax /λJi
(28d)

kω > Nn,imax /
(
γ5λJi

− Nω,imax

)
(28e)

γ4 >
(
γ5Ψ

2
i

)
/
(
(kq + Ψi)

2 − Ψ 2
i

)
(28f)

λJi
= λmin

(
iJ −1

i
îJ i

)
(28g)

where the bounds Nn,imax , Nω,imax , which depend on the
desired trajectory, are given in Appendix B, Eq. (B9),
λmin(.) denotes the smallest eigenvalue of the term (.),
and (̂.) denotes an estimate of the term (.). Vector ipi , is
given by Eq. (10). Matrices iJ i , îJ i given in Appendix
A, Eq. (A10a) are diagonal positive definite matrices since
iJi , îJi (used in Eq. (A10a)) are positive definite also. The
values of λJi

, and ΔJi are needed in the calculation of

γ , kω. To do so, knowledge of iJ −1
i

îJ i is required; this
is done using a conservative estimate of iJ −1

i given by

(ιîJ i )
−1 where ι > 1, and conservatively selecting larger

gains than those instructed by Eqs. (28d), (28e).
The controller works as follows. The first three terms

of Eq. (28a), are feedback linearizing terms. The term
iai , cancels residual terms caused by the desired vectoring
command. The term (kq + Ψi)

i ėq,i penalizes the rate of

change of the pointing error, to smooth out the pointing
response. Using Eq. (26a), the term Ψ̇i

ieq,i is given by

Ψ̇i
ieq,i = ieq,i

ieT
q,i

ieω,i (29)

Hence, the term Ψ̇i
ieq,i smooths out the response by

penalizing the angular velocity error, ieω,i , as a function of
the ieq,i

ieT
q,i matrix. The vector isi , describes a nonlinear

surface in the angular velocity error and the pointing
tracking error space. The surface acts as a PD correction
term; however the action of this surface is penalized by
multiplying isi by gain γ , thus allowing for fine tuning of
the response (see [22] for details). The stability properties
of the controller are provided in the following proposition.

Proposition 1 Under the following conditions:

1. For bounded external disturbances as prescribed by
Eq. (7)

2. A bounded desired angular velocity profile iωid /0(t) ∈
R
3 which is sufficiently smooth as defined by

‖iωid /0(t)‖ ≤ iωid/0max
, ∀t (30a)

‖iω̇id /0(t)‖ ≤ i ω̇id/0max
, ∀t (30b)

3. A desired pointing direction 0qid (t) ∈ S2 subject to
Eq. (22b), that is never antipodal to 0qi (t) as described
by

Ψi

(
0qi (t),

0qid (t)
)

< 2, ∀t (31)

4. Assuming a good estimate of body-0 acceleration and
system parameters so that

‖I v̇0(t) − I ̂̇v0(t)‖ ≤ ev̇0max
∀t (32a)

‖iZi (t)
0ω̇0(t)−îZi (t)0̂ω̇0(t)‖ ≤ eω̇0max

∀t (32b)

‖inr,i (t) − înr,i (t)‖ ≤ enr,imax
∀t (32c)

5. For a sufficiently large gain γ such that

δi < λmin(Π3i
) (33)

(for Π3i
∈ R

3×3, δi and their γ dependence see
Appendix B Eqs. (B11b), (B15b))

The developed controller given in Eq. (28a renders(
ieq,i ,

ieω,i

)
uniformly ultimately bounded (UUB), stabiliz-

ing
(
ieq,i ,

ieω,i

)
exponentially in a bounded set of the zero

equilibrium in the presence of parametric uncertainties, dis-
turbances and signal estimation errors. An estimate of the
ultimate bound is given by

‖zi‖ <

√
δi

λmin(Π3i
)
, zi =

[
‖ieq,i‖; ‖ieω,i‖

]
(34)

Proof See Appendix B.
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The developed controller architecture/design yields
strong robustness properties in the presence of parametric
uncertainties, disturbances and signal estimation errors. The
components δi , Π3i

(used in Eqs. (33), (34)) are composed
by additional terms that are a function of the disturbances,
the desired trajectory, the estimation errors and the gains.
Proposition 1 implies that the lower the magnitude of the
disturbances, the lesser the aggressiveness of the desired
trajectory, the higher the accuracy of the estimation of the
parameters/accelerations, and/or the higher the value of γ ,
the ultimate bound shrinks. Additionally, as γ is increased,
the tracking errors converge faster to the set containing the
desired equilibrium. Concluding, the developed controller is
singularity-free, satisfying the design requirements.

An important ramification of Proposition 1 is that
it proves that under the action of the controller, and
the assumptions made, the vectoring states of each TA
relative to body-0 are stabilized in a neighborhood of
the desired equilibrium without assuming body-0 stability.
Consequently the relative motion of each TA with respect to
body-0 is stable and bounded. This result is needed to prove
stability for the overall system.

4.2 Output Tracking Position-Attitude Control Law

A control law is designed accounting for the rigid body
motion of each TA and generating a desired wrench
command that allows the body-0 of the vehicle to track any
sufficiently smooth pose trajectory. Due to the tilting of high
rpm spinning rigid bodies, this is a difficult control problem;
straight forward feedback linearization is insufficient and
a combination of Lyapunov design techniques and partial
feedback linearization is needed to produce a stable and
robust control law.

The output tracking controller employs the attitude error
function Ψ0, [30]

Ψ0 = 2 −
√

1 + tr
[
0R0d

I (t) IR0(t)
]

(35)

where tr[.] is the trace function; Eq. (35) compares the
current attitude of body-0, IR0, with the desired one,
IR0d

0 . The maximum attitude error occurs when the rotation
matrices are antipodal (Ψ0 = 2, Ψ0% = 100%). Via Ψ0, the
error vectors for attitude, eR , and angular velocity, eω, are
produced, (see [30] for details) allowing the definition of the
following pose error vectors

ex,R =
[
ex

eR

]
=
⎡

⎢
⎣

Ix0 − Ix0d

1
2

S−1
(
0R

0d
I

IR0−0RI
IR

0d
0

)

√
1+tr[0R0d

I
IR0]

⎤

⎥
⎦ (36a)

ev,ω =
[
ev

eω

]
=
[

Iv0 − Iv0d

0ω0 − IRT
0

IR0d

0
0ω0d

]
(36b)

A necessary condition in using the attitude error vector, eR ,
is that IR0d

0 is not antipodal to IR0. This condition derives
from the fact that the SO(3) topology prohibits the design of
a smooth global controller [31].

The pose control law is developed by studying the
structure of the dynamics of body-0. First Eqs. (6b)-(6c),
are substituted in Eqs. (1b)-(1c). The obtained expression
is solved for the body-0 resultant wrench; it is used in
conjunction with partial feedback linearization techniques
and guided by Lyapunov analysis on the combined closed-
loop system dynamics until a control law satisfying all
requirements is obtained.

Specifically it generates the desired wrench that must be
applied by the combined action of the TA’s on body-0 to
achieve stable flight and is derived as

[
I f0
0n0

]

d

= hg−hp+C
[
K−1

v 1 03×3

03×3 K−1
Ω 1

]

{
−ζz−

[ −Kv
I v̇0d

+Kxev

KΩ
0a0+(KR+Ψ0)ėR+Ψ̇0eR

]}
(37a)

ζ = ζ1 + ζ2 (37b)

where Kv, Kx, KΩ, KR, ζ1, ζ2∈R+. The vector z ∈ R
6×1

is defined as

z=
[

Kvev + Kxex

KΩeω + (KR + Ψ0)eR

]
(38)

while the expressions for the terms hg, hp ∈ R
6×1, C ∈

R
6×6, 0a0, ėR ∈ R

3×1, Ψ̇0 ∈ R used in Eq. (37) are given
in Appendix A, Eqs. (A13a)-(A17a); the stability proof is
provided in Section 4.4, Proposition 2.

Depending on the desired pose trajectory, Eq. (37) may
produce a non-realizable (due to actuator limits) wrench;
this can be avoided by selecting a sufficiently smooth
desired pose trajectory that respects these limitations.
Guidelines on selecting a pose trajectory that comply to TA
limitations are provided in Section 4.4.

4.3 Allocation

For this platform, allocation aims to achieve a minimum
norm solution; such a solution implies energy conservation.
A solution mapping the desired wrench, Eq. (37), into thrust
commands for each TA is obtained as
⎡

⎣

(
IR1

1fp,1
)
d(

IR2
2fp,2

)
d(

IR3
3fp,3

)
d

⎤

⎦=A#
[

I f0
0n0

]

d

(39)

The matrix A ∈ R
6×9 (see Appendix Eq. (A18)), defined

by platform geometry, has full row rank; it is used
to calculate the Moore-Penrose pseudoinverse given by
A#=AT (AAT )−1 ∈ R

9×6.
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Using Eq. (39), the desired commands for the propeller
direction, Iqid , and speed, iωid , are computed as follows

Iqid =
(

IRi
ifp,i

)

d
/

∥∥∥
(

IRi
ifp,i

)

d

∥∥∥ (40a)

iωid =
√

b−1
T ‖(IRi

ifp,i

)
d
‖ie3 (40b)

Via the vectoring controller, Eq. (28a), the TA dynamics in
Eq. (1) track

(
Iqid ,

i ωid

)
and produce the desired thrusts of

Eq. (39) that linearize the dynamics and achieve the desired
motion.

For proper generation of the desired commands,
‖(IRi

ifp,i

)
d
‖ �= 0 must hold. Since Eq. (39) is a function

of the desired pose trajectory, if the trajectory is selected to
be adequately smooth, then ‖(IRi

ifp,i

)
d
‖ �= 0 because the

platform must compensate for gravity continuously. In the
event that ‖(IRi

ifp,i

)
d
‖=0, for example if a free-fall com-

mand is issued, the propeller direction is selected as that of
the previous time step, i.e., Iqid (t) = Iqid (t−dt).

4.4 SystemOverall Stability

Under the assumption of body-0 known parameters, it is
proved that the developed control solution yields stable
platform motion/trajectory tracking. A hard requirement for
the validity of the proof is that the body-0 desired attitude
command lies in

L2=
{

IR0d

0 ∈ SO(3) | Ψ0

(
IR0,

IR0d

0

)
<2
}

(41)

i.e., the desired body-0 attitude, IR0d

0 , is not antipodal to the
current attitude, IR0. Any antipodal physical attitude can be
reached by any intermediate attitude step.

4.4.1 Note on the Vectoring Controller Stability

In Section 4.1 it was proved that the relative motion of each
TA with respect to body-0 is stabilized in a neighborhood
of the zero equilibrium, independently from the motion
of body-0 with respect to the inertial frame (see proof
of Proposition 1) and without assuming body-0 stability.
Explicitly it was shown that the pointing error vectors, ieq,i ,
ieω,i are UUB in the set Lc

σ , see Appendix B, Eq. (B19a).
The implication is that there exist σq, σω, σω̇ ∈ (0, ∞) such
that

‖0qi (t) − 0qid (t)‖ < σq, t → ∞ (42a)

‖iωi/0(t) − iωid /0(t)‖ < σω, t → ∞ (42b)

‖iω̇i/0(t) − iω̇id /0(t)‖ < σω̇, t → ∞ (42c)

Equation (42), is used throughout the stability proof
allowing to address, at selected instances, terms containing
iωi/0,

iω̇i/0 as bounded disturbances.
The rational behind the system overall stability proof

is that it sets the conditions/bounds for the disturbances,

the signal/parameter estimation errors and the pose tracking
requirements (i.e. flight, vehicle and path planning con-
ditions) at which the vectoring controller (Eq. 28a) can
efficiently track the desired commands for the propeller
direction, Iqid , and speed, iωid ; they are generated by
the output tracking position/attitude controller. Accurate
tracking of the desired propeller direction/speed, Iqid /

iωid ,
yields accurate desired thrust tracking (given in Eq. 39); this
produces the needed desired wrench (Eq. 37) that acts on
body-0 resulting in efficient pose tracking.

The proposition regarding platform stability is stated
next.

Proposition 2 Under the following conditions:

1. For a sufficiently smooth pose command, Ix0d
, IR0d

0 ,
such that the control-allocation strategy given by Eqs.
(37), (39), (40), yields TA commands, Iqid ,

iωid , that
comply with the conditions of Proposition 1,

2. Under the conditions of Prop. 1 ensuring stable
vectoring controller performance,

3. For a body-0 desired attitude, IR0d

0 , that is never
antipodal to IR0 as described by Eq. (41),

4. For a sufficiently large gain ζ = ζ1 + ζ2 such that

εmax < ζ2
√
2λmax(W2) (43)

(for εmax , W2 see Appendix C Eqs. (C10c), (C4c)
5. For known body-0 parameters,

The control-allocation strategy given by Eqs. (37), (39),
(40), through the action of the developed vectoring
controller (see Eq. (28a), renders the tracking errors (ex ,
ev , eR , eω) of body-0 UUB; they are stabilized exponentially
in a bounded set of the zero equilibrium in the presence of
bounded external disturbances. An estimate of the ultimate
bound is given by,

‖z‖=εmax

ζ2
(44)

Proof See Appendix C.

The components, εmax , W2 (in Eqs. (43) and (44)), are
functions of the disturbances, the TA thrust tracking errors,
the relative motion between each TA and body-0, and the
gains. To keep the proposition compact, the expressions for
εmax , W2 in Eq. 43 are given in Appendix C, Eqs. (C10c),
(C4c).

The ultimate bound, i.e. Eq. (44), depends on the TA
thrust tracking errors, the disturbances, and the relative
motion between each TA and body-0; all are bounded.
The ultimate bound shrinks with less aggressive desired
trajectories of body-0 and smaller disturbances. This bound
also depends on the gain ζ via ζ2; a larger ζ yields a smaller
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ultimate bound while the tracking errors converge faster to
the desired equilibrium. However the value of ζ is limited
by the actuator/thrust constraints. The assumption of body-
0 parameter knowledge is reasonable since a high fidelity
estimate can be obtained via a CAD software or standard
system identification techniques.

Concluding, the developed control solution that yields
the aforementioned overall system stability characteristics
is composed by Eqs. (37), (39), (40), and (28a). In terms
of sequence, first (i) Eq. (37) computes the desired wrench,
[
I f0 0n0

]T
d
, that needs to be applied on body-0 to minimize

its output pose-tracking error, then (ii) Eq. (39) maps the
desired wrench into thrust commands,

(
IRi

ifp,i

)
d
, for each

of the three TAs (i=1,2,3), followed by (iii) Eq. (40) that
transforms the thrust commands into desired commands for
the propeller direction, Iqid , and speed, iωid , of each TA,
and finally (iv) Eq. (28a) that yields the control action,
iui , applied on each TA, that produces the desired thrust
commands and minimizes the pose-tracking error of body-0.

5 Simulation Results

The ability of the platform to achieve independent position-
attitude regulation is illustrated through simulation results.

5.1 Simulation Set-Up

The experiments are conducted under the effect of actuator
constraints, parametric uncertainties, signal noise, and
disturbances.

5.1.1 Parameters and Gains

The system parameters (obtained by the CAD design of
the platform, see Fig. 1) are given in Table 1. The mass
of the motor-propeller assembly is 0.109[kg]; 0.049[kg]
correspond to the rotating parts, 0.06[kg] to the stationary
parts. The stationary masses are included in the mass of
body-0. The controller parameters are given in Table 1; they
were computed following the guidelines provided in [27].
The large pointing gains kq, kω result from the fact that the
desired TA angular velocity is very large combined with the
fact that the TA inertia is very small.

5.1.2 Measurement Noise Modeling

Precision encoders measure each TA assembly’s relative
orientation with respect to body-0. An Inertial Measurment
Unit (IMU) is available; together with a Kalman filter,
they provide an estimate of the body-0 attitude. The IMU
measurements are modeled as, [32]:

0ω̃0 = 0ω0 + 0nω0 + 0bω0

0ḃω0 = 0nb

where 0bω0 is the gyroscope bias considered to be a
“Wiener” process and the terms 0nω0 and 0nb represent
white Gaussian noise with zero-mean and standard devia-
tions σω0 and σb, respectively. The simulated IMU is the
ADIS16477 with an Angular RandomWalk specification of

Table 1 System & Controller
parameters Type Values

Kinematic parameters 0r1 = [0.3352;−0.1935; 0] [m]
0r2 = [−0.3352;−0.1935; 0] [m]
0r3 = [0; 0.3870; 0] [m], b = 0 [m]

Inertial parameters m0 = 1.5679 [kg], mi = 0.049 [kg]

0J0 =
⎡

⎢
⎣

0.04899 0 0

0 0.049804 0

0 0 0.10461

⎤

⎥
⎦ [kgm2]

iJi =
⎡

⎢
⎣

7.8460 −0.76200 0

−0.76200 2.7490 0

0 0 5.7700

⎤

⎥
⎦ 10−5 [kgm2]

TA coefficients bT = 1.0122·10−5 [N s2/rad2], bm = 0.0154 [m]
Allocation gains Kx = 106.97, Kv = 20.68

KR = 204.08, KΩ = 28.57, ζ = 2

Vectoring gains kq = 555516.78, kω = 1788.79, γ = 310.55
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0.3 [o/√hr] and an In-Run Bias Stability of 2.5 [o/hr] [33].
Noise is inserted into the measurements modeled by

I R̃i = exp(nRi
, ti )IRi , i=0, .., 3 (45)

where IRi , is the true attitude, exp(nRi
, ti ) is the

exponential map given in Appendix Eq. (A19), ti is
the instantaneous axis of rotation of IRi , and nRi

represents Gaussian noise of zero-mean and standard
deviations σR0=0.1582o for body-0 (simulating Kalman
filtering performance according to [34] at 200[Hz]), and
σRi

=0.087o (simulating the pointing actuators homing
offset documented in [35]), i = 1, 2, 3. Note that the signals
0̂ω0, 0̂ω̇0, Î v̇0, îω̇id , i = 1, 2, 3 are filtered using a 2nd
order low-pass Butterworth filter with a cutoff frequency of
25Hz.

5.1.3 Actuator Constraints

Actuator constraints in the form of saturation are placed on
the control inputs based on the Dynamixel XL430-W250T
actuator [35]. For i = 1, 2, 3 the control input iui is limited
as follows

‖iuij ‖ ≤ 0.8 [Nm], j = 1, 2 (46a)

0 ≤ iui3 ≤ 0.3 [Nm] (46b)

5.1.4 Wind Disturbance Modeling

A bounded disturbance wrench,
[
I fw,i;inw,i

]
, i = 0, .., 3

simulating the wind is applied using the wind profile shown
in Fig. 5, in conjunction with the drag equation [36]. The

Fig. 5 Wind disturbance profile

drag coefficient, CD,0 ∈ R
3×3, and reference area, AD,0 ∈

R
3×3, matrices of the vehicle are given by,

CD,0 = diag(0.4,0.43,0.64),

AD,0 = diag(0.1966,0.1966,0.83) [m2]
CD,i = diag(0.4,0.40,0.61),

AD,i = diag(0.092778,0.092778,0.19635) [m2],
i = 1, .., 3

The torque due to wind, 0nw,0, is calculated by assuming
that the disturbance force is applied at 0.03 0e3 [m] and inw,i

is applied at 0.01 ie3 [m], i = 1, .., 3.

5.1.5 Parametric Uncertainties

To demonstrate controller robustness, the simulation
includes parameter errors:

b̂T = bT −0.1bT , b̂m = bm−0.32bm (47a)

m̂0 = m0−0.1m0, m̂i = mi+0.034mi, îJi = iJi+0.33 iJi

(47b)

The capabilities of the UAV are tested via a precision flight
maneuver, during which the UAV follows a desired pose
trajectory; a maneuver where the UAV recovers from a large
initial pose error is carried out also. The initial conditions
(ICs) for all simulations are:
Ix0(0) = [0, 0, 0.0965]T [m], Iv0(0)=0 [m/s] (48a)
IR0(0) = 1, 0ω0(0)=0 [rad/s] (48b)
IRi (0) ≈ 1, iωi (0)=744.6001ie3 [rad/s], i=1, .., 3 (48c)

5.2 High Precision Surveillance Flight Maneuver

To demonstrate independent position-attitude regulation as
well as the effectiveness and robustness of the control
strategy, a complex figure “R” type trajectory is performed
(generated using “minimum-snap” polynomials [37]), while
at the same time a camera (fixed to the vehicle) is pointed
at a target (KUKA youBot, see Fig. 6a). The series of
way-points used for trajectory generation are given in the
Appendix, Section A.6.

The results are shown in Fig. 6 and in the Supplementary
video file (third flight scenario). Snapshots of the UAV’s
pose trajectory (via ROS-Gazebo) are visible in Fig. 6a;
the trajectory is accurately tracked. The attitude response
is shown in Fig. 6c; via Eq. (35), the percentage attitude
error remains below Ψ0=1.5% (see Fig. 6c, 3rd row) and
the desired yaw/pitch orientation is smoothly tracked (see
Fig. 6c, 1st /2nd row). The roll response is maintained close
to zero (not shown due to space limitations). Except from
a steady state altitude tracking error, |ex3 |<0.0975 [m] (see
Fig. 6b, 3rd row), the controller is robust. The soft allocation
gains, see Table 1, are the cause. The control effort for
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Fig. 6 UAV figure “R” tracking.
(6a) UAV initial to final pose
tracking response. (6b) Position
response (Blue: state, Black:
desired). (6c) Base attitude
response via Euler angles, and
percentage attitude, Ψ0% . (6d)
Control inputs, 2u2 Nm

pointing and spinning the second TA is shown in Fig. 6d;
saturation bounds are defined per Eq. (46). Due to the
disturbances, actuator saturation is observed, see Fig. 6d.
Via Eq. (23), the percentage pointing error is Ψ2%<0.04%
(not shown due to space limitations). The response of the
other TAs is omitted; they exhibit similar response.

5.3 Point to Point Motion

The next simulation shows the ability of the platform to
perform motions of large initial pose error. A change from
the ICs in Eq. (48), to:

Ix0d
= [0; 0; 1] [m], Iv0d

=0 [m/s]

IR0d

0 =
⎡

⎣
1 0 0
0 0.8660 0.5000
0 −0.5000 0.8660

⎤

⎦ , 0ω0d
=0 [rad/s], 0ω̇0d

=0 [rad/s2]

is the goal; IR0d

0 expresses a 30o pitch maneuver about the
0e1 axis.

The performed step maneuver is shown in Fig. 7 and
in the Supplementary video file (first flight scenario). A

successful transition to the desired position, Fig. 7a (1st

row), and attitude, Fig. 7a (2nd row), is shown; the dashed
line in the 2nd row denotes the desired command. The
response of the yaw and roll angles is omitted because they
stay close to zero since a pitch only variation is conducted.
A percentage pointing error, Ψi% < 0.02%, is observed, see
Fig. 7b; it is quickly driven to zero. The control input for
the 1st -TA is shown in Fig. 7c; similar response is observed
for the other TAs. To avoid actuator saturation, soft Kx ,
Kv , KR , KΩ gains were selected; saturation is observed
only in the third row in Fig. 7c. The torque-speed response
of the 1st -TA’s pointing actuators is shown in Fig. 7d for
the Dynamixel XL430-W250T actuator [35]; the response
shows that the design is feasible using readily available
actuators.

Concluding, the ability of the developed system/controller
in achieving robustly independent position/attitude regulation,
in the presence of parametric uncertainties, signal estima-
tion errors, actuator saturation, measurement noise, and
disturbances was demonstrated, both in a precision pose
tracking setting and for a large step/error pose recovery
maneuver.
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Fig. 7 UAV point to point
recovery maneuver. (7a) Top:
Position error (norm). Middle:
Pitch attitude response (Blue:
state, Black: desired). Bottom:
Initial pose (left) vs. final pose
(right). (7b) Percentage attitude
error for each TA via Eq. (23).
(7c) 1st -TA control torque, 1u1.
(7d) Torque-speed response for
the 1st -TA. The characteristic
line is for the Dynamixel
XL430-W250T actuator [35]

6 Conclusion

A novel design for a holonomic Unmanned Aerial Vehicle
(HUAV) using three vectored high-power thrusting actu-
ators (TAs) was developed. The pointing motion of high
rpm motor-propeller assemblies is accompanied by oscil-
latory gyroscopic dynamics. These dynamics were studied
analytically to yield vectoring oscillation frequency esti-
mates, useful in selecting actuators. Taking into account
the dynamics/high angular momentum of the high rpm
motor-propeller assemblies, a new vectoring controller able
to regulate the motion of the TAs was developed. A new
body-0 output tracking control law and allocation scheme
was developed yielding vectoring controller commands and
achieving full pose control. Stability proofs demonstrated,
vectoring controller stability under parametric uncertainties,
bounded signal estimation errors and bounded disturbances.
Overall system stability/robustness under bounded distur-
bances was demonstrated in the same manner. Simulations
(MATLAB and ROS/GAZEBO) illustrated the feasibility
of the developed design and control framework via three

different simulation scenarios; a HUAV with independent
position/attitude regulation (full pose control) was illus-
trated, naturally assuming any pose of interest.

Appendix A: Supplementary Material

A.1 Mappings & Kinematics used in Section 2.2

Cross product map, first used in Eq. (1)

S : R3 → so(3), with

S(r)=[0,−r3, r2; r3, 0, −r1; −r2, r1, 0], S−1(S(r))=r

(A1)

where so(3) is the set of all 3× 3 skew symmetric matrices.
Velocity and acceleration of the CM of the ith-TA, first

used in Eq. (1)
Ivi = Iv0 + I Ṙ0

0ri − I Ṙi
ipi (A2a)

I v̇i = I v̇0 + I R̈0
0ri − I R̈i

ipi (A2b)
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A.2 Terms of Eq. (8) used in Section 2.2

Control input matrix, B ∈ R
15×9, and mass matrix, M ∈

R
15×15, from Eq. (8) given by

B =

⎡

⎢⎢⎢
⎣

03×3 03×3 03×3

−0R1 −0R2 −0R3
13×3 03×3 03×3
03×3 13×3 03×3
03×3 03×3 13×3

⎤

⎥⎥⎥
⎦

, M =

⎡

⎢⎢⎢
⎣

M1,1 M1,2 M1,3 M1,4 M1,5
M2,1 M2,2 M2,3 M2,4 M2,5
M3,1 M3,2 M3,3 0 0
M4,1 M4,2 0 M4,4 0
M5,1 M5,2 0 0 M5,5

⎤

⎥⎥⎥
⎦

(A3)

where Mi,j ∈ R
3×3 are given by

M1,1 =
3∑

i=0

mi1, M1,2 = −
3∑

i=1

mi
IR0S

(
0ri

)
,

M1,i+2 = mi
IRiS

(
ipi

)
, i = 1 − 3 (A4a)

M2,1 =
3∑

i=1

S
(
0ri

)
mi

0RI ,

M2,2 = 0J0−
3∑

i=1

S
(
0ri

)
miS

(
0ri

)
(A4b)

M2,i+2 = S
(
0ri

)
0RimiS

(
ipi

)
,

Mi+2,1 = −S
(

ipi

)
mi

iRI , i = 1 − 3 (A4c)

Mi+2,2 = S
(

ipi

)
mi

iR0S
(
0ri

)
,

Mi+2,i+2 = iJi − S
(

ipi

)
miS

(
ipi

)
, i = 1 − 3 (A4d)

The components of � = [Γ1, Γ2, Γ3, Γ4, Γ5]T ∈ R
15×1

from Eq. (8) are given by

Γ1 = −
3∑

i=1

mi
I�i ,

Γ2 = −
3∑

i=1

S
(
0ri

)
0RImi

I�i − S
(
0ω0

)
0J00ω0 (A5a)

Γi+2 = S
(

ipi

)
mi

iRI
I�i − S

(
iωi

)
iJi

iωi , i = 1 − 3

(A5b)

where I�i ∈ R
3×3 is given by

I �i = IR0S
(
0ω0

)
S
(
0ω0

)
0ri − IRiS

(
iωi

)
S
(

iωi

)
ipi (A6a)

The components of G = [G1, G2, G3, G4, G5]T ∈ R
15×1

from Eq. (8) are given by

G1 =
3∑

i=0

Igi , G2 =
3∑

i=1

S
(
0ri

)
0RI

Igi ,

Gi+2 = −S
(

ipi

)
iRI

Igi , i = 1 − 3 (A7)

The components of P = [P1, P2, P3, P4, P5]T ∈ R
15×1

from Eq. (8) are given by

P1 =
3∑

i=1

IRi
ifp,i , P2 =

3∑

i=1

S
(
0ri

)
0Ri

ifp,i ,

Pi+2 = inp,i − S
(

ipi

)
ifp,i , i = 1 − 3 (A8)

The components of D = [D1, D2, D3, D4, D5]T ∈ R
15×1

from Eq. (8) are given by

D1 =
3∑

i=0

I fw,i , D2 =
3∑

i=1

S
(
0ri

)
0RI

I fw,i + 0nw,0 (A9a)

Di+2 = inw,i − S
(

ipi

)
iRI

I fw,i , i = 1 − 3 (A9b)

A.3 Vectoring Controller Terms used in Section 4.1

Pointing dynamics terms, first used in Eq. (9)

iJ i = iJi − mi

(
S
(

ipi

))2
(A10a)

iZi = S
(

ipi

)
iRI mi

I �i − iJi
iR0 (A10b)

I �i = IRiS
(

ipi

)
iR0 − IR0S

(
0ri

)
(A10c)

inr,i = iJiS
(

iωi/0

)
iR0

0ω0 − S
(

iωi

)
iJi

iωi

+S
(

ipi

)
iRI

(
mi

(
Iki−IRi

(
S(iωi/0)

)2
ipi

)
−Igi

)

+
(
−sgn

(
iωi3

)
bm1 − S

(
ipi

))
i fp,i (A10d)

where the term Iki ∈ R
3×1 used above and throughout the

manuscript is given by

Iki = IR0

(
S
(
0ω0

))2
0ri−IRiS

(
ipi

)
S
(

iωi/0

)
iR0

0ω0

−IRi

((
S
(

iR0
0ω0

))2 + S
(

iR0
0ω0

)
S
(

iωi/0

)

+S
(

iωi/0

)
S
(

iR0
0ω0

))
ipi (A11)

A.4 Feedback terms used in Section 4.2

Attitude error function bounding inequality, [30], first used
in Eq. (C4)

‖eR‖2 ≤ Ψ0 ≤ 2‖eR‖2 (A12)
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Error function (attitude error vector) derivatives Ψ̇0 (ėR),
[30], first used in Eq. (39)

Ψ̇0 = eT
Reω (A13a)

ėR = 0Eeω (A13b)

0E =
{
tr
[
0RI

IR0d

0

]
1−0RI

IR0d

0 +2eReT
R

}

2

√
1+tr

[
0RI

IR0d

0

] (A13c)

Supporting term 0a0 ∈ R
3×1, first used in Eq. (39)

0a0=S
(
0ω0

)
0RI

IR0d

0
0ω0d

−0RI
IR0d

0
0ω̇0d

(A14)

Vectors hp, hg ∈ R
6×1, first used in used Eq. (37)

hp = bT

3∑

i=1

[
IR0

0hp,i ;Ai
IR0

0hp,i

]
(A15a)

0hp,i = 0qi

(

2
(

ieT
3

iωi/0

)((
iR0

0ω0

)T
ie3

)
+
((

iR0
0ω0

)T
ie3

)2)

−0qid

(
2
(

ieT
3

iωid /0

)((
iRid

0
0ω0

)T
ie3

)

+
((

iRid
0

0ω0

)T
ie3

)2)

(A15b)

hg =
[
Ihg1 ; 0hg2

]
(A15c)

Ihg1 = −I g0 +
3∑

i=1

(
mi

Iki − I gi

)
(A15d)

0hg2 = 0ω0×0J00ω0−
3∑

i=1

0RI
IRi

iJiS
(

iωi/0

)
iR0

0ω0

−
3∑

i=1

0�i
iRI

(
mi

Iki−I gi

)
+

3∑

i=1

0RI
IRi

iyi (A15e)

where the terms 0�i ∈ R
3×3, iyi ∈ R

3×1, Ai ∈ R
3×3 used

above and throughout the manuscript are given by

0�i = 0RI
IRiS

(
ipi

)
− S

(
0ri

)
0RI

IRi (A16a)

iyi = S
(

iR0
0ω0

)
iJi

iR0
0ω0 + S

(
iR0

0ω0

)
iJi

iωi/0

+S
(

iωi/0

)
iJi

iR0
0ω0 (A16b)

Ai = −sgn
(

iω3

)
bm

0RI − 0�i
iRI (A16c)

and for Iki ∈ R
3×1, see Eq. (A11).

Matrix term C ∈ R
6×6, first used in Eq. (37)

C =
[(

m0 +∑3
i=1 mi

)
1
∑3

i=1 mi
I�i

−∑3
i=1

0�i
iRImi C2,2

]

(A17a)

C2,2 = 0J0+
3∑

i=1

(
0RI

IRi
iJi

iR0−0�i
iRImi

I�i

)
(A17b)

where I�i ,
0�i ∈ R

3×3 are given in Eqs. (A10c), (A16a).
Allocation matrix A ∈ R

6×9 , first used in Eq. 39

A=[13×3, 13×3, 13×3;A1,A2,A3] (A18)

and Ai ∈ R
3×3 is given in Eq. (A16c).

A.5 Disturbancemodeling term used in Section 5.1.2

Exponential map using the Rodrigues formulation [29], first
used in Eq. (45)

exp : R × R
3 → SO(3), with

exp(a, ξ)=1+S(ξ) sin a+S(ξ)2(1− cos a) (A19)

A.6 Figure “R” pose trajectory used in Section 5.2

Way-points and pose continuity constraints used with
minimum-snap polynomials for trajectory generation,
employed in Section 5.2

wp0.0|t=0: x0 = [0, 0, 0.0965]T [m], ẋ0 = 0 [m/s],
ẍ0 = 0 [m/s2], ...x 0 = 0 [m/s3]
h = [0, 0, 0]T [deg], ḣ = 0 [deg/s],
ḧ = 0 [deg/s2], ...h = 0 [deg/s3]

wp1|t=10: x0 = [1, 1, 2]T [m], ẋ0 = 0 [m/s],
ẍ0 = 0 [m/s2], ...x 0 = 0 [m/s3]
h = [−180, −64, 0]T [deg], ḣ = 0 [deg/s],
ḧ = 0 [deg/s2], ...h = 0 [deg/s3]

wp2|t=20: x0 = [2, 2, 2]T [m], ẋ0 = 0 [m/s], ẍ0 = 0 [m/s2],
...
x 0 = 0 [m/s3]
h = [−270, −64, 0]T [deg], ḣ = 0 [deg/s],
ḧ = 0 [deg/s2], ...h = 0 [deg/s3]

wp3|t=30: x0 = [3, 1, 2]T [m], ẋ0 = 0 [m/s], ẍ0 = 0 [m/s2],
...
x 0 = 0 [m/s3]
h = [−360, −64, 0]T [deg], ḣ = 0 [deg/s],
ḧ = 0 [deg/s2], ...h = 0 [deg/s3]

wp4|t=40: x0 = [2, 0, 2]T [m], ẋ0 = 0 [m/s], ẍ0 = 0 [m/s2],
...
x 0 = 0 [m/s3]
h = [−450, −64, 0]T [deg], ḣ = 0 [deg/s],
ḧ = 0 [deg/s2], ...h = 0 [deg/s3]

wp5|t=50: x0 = [1, 1, 2]T [m], ẋ0 = 0 [m/s], ẍ0 = 0 [m/s2],
...
x 0 = 0 [m/s3]
h = [−540, −64, 0]T [deg], ḣ = 0 [deg/s],
ḧ = 0 [deg/s2], ...h = 0 [deg/s3]

wp6|t=60: x0 = [0, 1, 2]T [m], ẋ0 = 0 [m/s], ẍ0 = 0 [m/s2],
...
x 0 = 0 [m/s3]
h = [−540, −45, 0]T [deg], ḣ = 0 [deg/s],
ḧ = 0 [deg/s2], ...h = 0 [deg/s3]

where vector h components contain the desired yaw, pitch
and roll commands.
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Appendix B: Proof of Proposition 1

The following Lyapunov functions are defined

Vi

(
Ψi,

ieq,i ,
ieω,i

)
= 1

2
isTi

isi + αiΨi, i=1, 2, 3 (B1a)

αi = 2λJi
kqkω(γ2 + γ3) (B1b)

Note that Ψi and the error vectors appear explicitly
in the Lyapunov function. Thus control design is similar
to nonlinear control design in Euclidean spaces [38]. Via
Eq. (25), it holds

λmin(Π1i
)‖zi‖2 ≤ zT

i Π1i
zi ≤ Vi ≤ zT

i Π2i
zi ≤ λmax(Π2i

)‖zi‖2
(B2)

where zi = [‖ieq,i‖; ‖ieω,i‖] and Π1i
, Π2i

∈ R
2×2 are

given by

Π1i
=
[

(kq+Ψi )
2+αi

2 − (kq+Ψi )kω

2

− (kq+Ψi )kω

2 k2ω/2

]

,Π2i
=
[

(kq+Ψi )
2

2 + αi

2−ψi

(kq+Ψi )kω

2
(kq+Ψi )kω

2 k2ω/2

]

(B3)

The derivative of Eq. (28b) is needed to proceed. It is given
by

i ṡi = Ψ̇i
ieq,i+(kq + Ψi)

i ėq,i+kω
iω̇i/0+kω

iai (B4)

Differentiating Eq. (B1a) and using Eqs. (B4), (26a), (26c)
results in

V̇i=isTi
(
Ψ̇i

ieq,i+(kq + Ψi)
i ėq,i+kω

iω̇i/0+kω
iai

)
+ αiΨ̇i

(B5)

Substituting into Eqs. (B5), (9), (28a), (26b), (27c), in the
given order, after some manipulations

V̇i = isTi
(
ΔJi

( (
ieq,i

ieT
q,i

)
ieω,i

+ (kq+Ψi

)
iEi

ieω,i−kωS
(

iR0
0Rid

i
iωid /0

)
ieω,i

−kω
iR0

0Rid
i

i ω̇id /0

)
−γ iJ −1

i
îJ i

isi

+kω
iJ −1

i

{
S
(

ipi

)
iRI mi

(
I v̇0−Î v̇0

)

+
(

iZi
0ω̇0−îZi

0̂ω̇0

)
+
(

inr,i−înr,i

)

+S
(

ipi

)
iRI

(
−I fw,i

)
+inw,i

})
+αi

ieT
q,i

ieω,i (B6a)

ΔJi = 1−iJ −1
i

îJ i (B6b)

After some rearranging, the above equation is given by

V̇i = isTi
(

iNi
ieω,i + ind,i−γ iJ −1

i
îJ i

isi
)

+αi
ieT

q,i
ieω,i (B7a)

iNi = iNn,i − kω
iNω,i (B7b)

ind,i = kω
iJ −1

i

{
S
(

ipi

)
iRI mi

(
I v̇0−Î v̇0

)
+
(

iZi
0ω̇0−îZi

0̂ω̇0

)

+
(

inr,i−înr,i

)
+S
(

ipi

)
iRI

(
−I fw,i

)
+inw,i

}

−ΔJikω
iR0

0Rid
i

i ω̇id /0 (B7c)

where ind,i depends on the estimation errors, the distur-
bances and the desired angular acceleration and iNn,i , iNω,i ,
are given by

iNn,i = ΔJi

(
ieq,i

ieT
q,i+(kq+Ψi)

iEi

)
(B8a)

iNω,i = ΔJiS
(

iR0
0Rid

i
iωid /0

)
(B8b)

Inspecting the term iEi given in Eq. (27a), the magnitude
of Eq. (B8) above depends on the desired trajectory.
Additionally Eqs. (7), (32), (30a), (30b) imply that

∃Nn,imax , Nω,imax , nd,imax ∈ (0, ∞)
∣∣‖iNn,i‖ ≤ Nn,imax

‖iNω,i‖ ≤ Nω,imax

‖ind,i‖ ≤ nd,imax (B9)

Employing Eq. (B9), the Lyapunov derivative in
Eq. (B7a) is expanded to

V̇i ≤ −γ λJi

isTi
isi + Υi + Ni‖ieω,i‖

+
(
kωNn,imax +k2ωNω,imax

)
‖ieω,i‖2+αi

ieT
q,i

ieω,i (B10a)

Υi = (kq+Ψi)nd,imax (B10b)

Ni = kωnd,imax +(kq+Ψi)
(
Nn,imax +kωNω,imax

)
(B10c)

Employing Eq. (28c) and rearranging

V̇i ≤ −γ1λJi

isTi
isi − zT

i Π3i
zi − γ3λJi

isTi
isi + ϒi + Ni‖ieω,i‖

+
(
kωNn,imax +k2ωNω,imax

)
‖ieω,i‖2+2λJi

kqkωγ3
ieT

q,i
ieω,i (B11a)

Π3i
=
[
γ2λJi

(kq + Ψi)
2 −γ2λJi

Ψikω

−γ2λJi
Ψikω γ2λJi

k2ω

]
(B11b)

Via γ3 =∑5
i=4 γi, γi, ∈ R

+ after some manipulations

V̇i ≤ −γ1λJi

isTi
isi − zT

i Π3i
zi

−zT
i Π4i

zi + ϒi + φ
(
‖ieω,i‖

)
(B12a)

φ
(
‖ieω,i‖

)
= Ni‖ieω,i‖

−
(
(γ5λJi

−Nω,imax )k
2
ω−kωNn,imax

)
‖ieω,i‖2 (B12b)

Π4i
=
[
γ3λJi

(kq + Ψi)
2 −γ3λJi

Ψikω

−γ3λJi
Ψikω γ4λJi

k2ω

]
(B12c)
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The condition in Eq. (28f) ensures that matrix Π4i
is

positive definite. Conditions in Eqs. (28d), (28e), ensure that
the last term of Eq. (B12b) is non-positive. For an angular
velocity error vector, ieω,i , such that

‖ieω,i‖ >
Ni(

γ5λJi
−Nω,imax

)
k2ω−kωNn,imax

(B13)

then Eq. (B12b) is non-positive. Additionally for ‖ieω,i‖
less or equal to Eqs. (B13), (B12b) is bounded by

φ
(
‖ieω,i‖

)
≤ N 2

i

4
(
γ5λJi

−Nω,imax

)
k2ω−4kωNn,imax

, ∀t

(B14)

Thus the following inequality is valid

V̇i ≤ −γ1λJi

isTi
isi − λmin(Π3i

)‖zi‖2 − λmin(Π4i
)‖zi‖2 + δi (B15a)

δi = Υi + N 2
i

4(γ5λJi
−Nω,imax )k

2
ω−4kωNn,imax

(B15b)

Concluding, for zi such that

‖zi‖ ≥
√

δi

λmin(Π3i
)

(B16)

then

V̇i≤ − γ1λJi

isTi
isi − λmin(Π4i

)‖zi‖2≤ − λmin(Π4i
)‖zi‖2
(B17)

The first term in Eq. (B17) ensures the desired sliding
behavior. Finally using Eq. (B2)

V̇i≤ − (λmin(Π4i
)/λmax(Π2i

))Vi (B18)

Boundedness: Using Eq. (B16), the following sets are
defined

Lσ =
{(

ieq,i ,
ieω,i

)
∈ R

3×R
3 | Eq. (B16)

}
(B19a)

Lφ =
{(

ieq,i ,
ieω,i

)
∈ R

3×R
3 | Ψi < 2

}
(B19b)

For a gain γ such that, Eq. (33) is satisfied, then Lc
σ ⊂Lφ

((.)c is the complement set of (.)). Hence, Eq. (B18) implies
that for all initial states beginning in Lφ , it holds that

αiΨi≤Vi(t)≤Vi(0)e
− λmin(Π4i

)

λmax (Π2i
)
t

(B20)

Thus Ψi exponentially decreases and the pointing tracking
errors exponentially converge to Lc

σ and are UUB despite
the presence of parametric uncertainties, disturbances and
signal estimation errors. An estimate of the ultimate bound
is given in Eq. (34).

Inspecting Eqs. (B15b), (B11b), if γ2 is increased,
λmin(Π3i

) increases also. Since both Eqs. (B10b), (B10c)
(they comprise δi), are a function of the estimation errors,

the disturbances and the attitude errors which are all
bounded, for suitable γ2, γ5 (γ5 reduces Eq. (B15b)) the
conditions of Eq. (33) are satisfied. However depending on
the actuator/thrust constraints the value of γ2, γ5 is limited.
In this case Eq. (33) is satisfied for less aggressive trajecto-
ries, smaller estimation errors and smaller disturbances.

Appendix C: Proof of Proposition 2

C.1 Body-0 Attitude Error Dynamics

First the derivative of Eq. (36b) is calculated. Then Eqs.
(6b), (6c), are substituted in the derivative followed by Eqs.
(1c), (3). Finally Eqs. (A2b) and (5), are substituted into the
resulting expression to get

ėv,ω = C−1

(
3∑

i=1

[
IRi

ifp,i

Ai
IRi

ifp,i

]
−d−hg

)

+
[−I v̇d

0a0

]
(C1)

where Ai ∈ R
3×3 is given in Eq. (A16c). The vector d =

[d1; d2] ∈ R
6×1 is given by

d1 =
3∑

i=1

(
mi

IRiS
(

ipi

)
i ω̇i/0−I fw,i

−mi
IRi

(
S
(

iωi/0

))2
ipi

)
−I fw,0 (C2a)

d2 =
3∑

i=1

0RI
IRi

{
iJi

i ω̇i/0 + S
(

iωi/0

)
iJi

iωi/0 − inw,i

}
−0nw,0

−
3∑

i=1

0�i
iRI

(
mi

IRiS
(

ipi

)
i ω̇i/0−I fw,i

−mi
IRi

(
S
(

iωi/0

))2
ipi

)
(C2b)

where the matrix 0�i ∈ R
3×3 is given in Eq. (A16a). Vector

d contains bounded disturbance terms (see Eq. (7)); under
the action of Eq. (28a), the relative angular velocity and
acceleration terms, iωi/0,

iω̇i/0, of each TA with respect to
body-0 are stable and bounded (see proof of Proposition
1 or/and see Section 4.4.1). Thus vector d is bounded and
small; the small mass-inertia characteristics and geometry
of each TA contributes to this also.

C.2 Lyapunov Analysis

For ζ1, ζ2 ∈ R
+ such that Eq. (37b) is satisfied, the

following Lyapunov function is defined

V = 1

2
zT z + ζ1KxKveT

x ex + 2ζ1KΩKRΨ0 (C3)
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Defining zc = [‖ex‖; ‖ev‖; ‖eR‖; ‖eω‖] ∈ R
4 and via

Eq. (A12) the Lyapunov function is bounded by

λmin(W1)‖zc‖2≤zT
c W1zc ≤V ≤zT

c W2zc ≤ λmax(W2)‖zc‖2 (C4a)

W1 =

⎡

⎢⎢⎢⎢
⎣

K2
x

2 +ζ1KxKv − KxKv

2 0 0

− KxKv

2
K2

v

2 0 0

0 0 (KR+Ψ0)
2

2 +2ζ1KΩKR − (KR+Ψ0)KΩ

2

0 0 − (KR+Ψ0)KΩ

2
K2

Ω

2

⎤

⎥⎥⎥⎥
⎦
(C4b)

W2 =

⎡

⎢⎢⎢⎢
⎣

K2
x

2 +ζ1KxKv
KxKv

2 0 0
KxKv

2
K2

v

2 0 0

0 0 (KR+Ψ0)
2

2 +4ζ1KΩKR
(KR+Ψ0)KΩ

2

0 0 (KR+Ψ0)KΩ

2
K2

Ω

2

⎤

⎥⎥⎥⎥
⎦

(C4c)

The time derivative of the Lyapunov function is given
by,

V̇ = zT

([
Kv1 03×3

03×3 KΩ1

]
ėv,ω+

[
Kxev

(KR+Ψ0)ėR+Ψ̇0eR

])

+2ζ1KxKveT
x ev + 2ζ1KΩKReT

Reω (C5)

The thrust tracking error of each TA in I0, is given by the
following algebraic relation

0RI

(
IRi

i fp,i − IRid
i

i fp,id

)
= bT

0qi

(
iωT

i
ie3
)2 − bT

0qid

(
iωT

id
ie3
)2

(C6)

Using Eq. (C6) together with Eqs. (20c), (22c) the ith TA
generated thrust can be expressed by the following algebraic
relation

IRi
ifp,i = IR0

(
0fp,ie + bT

0hp,i

)
+ IRid

i
ifp,id (C7)

where 0hp,i ∈ R
3 is found in Eq. (A15b) and 0fp,ie is the

thrust tracking error of each TA relative to body-0. It is given
by

0fp,ie = bT
0qi

(
iωT

i/0
ie3
)2 − bT

0qid

(
iωT

id/0
ie3
)2

(C8)

Due to the action of the vectoring controller, 0fp,ie is
small and bounded; because iωi/0 is bounded (see proof
of Proposition 1 or/and see Section 4.4.1). Substituting
Eqs. (C1) into (C5) followed by Eq. (C7), results in

V̇ = zT
{ [

Kv1 03×3

03×3 KΩ1

]
C−1

( 3∑

i=1

([ IRid
i

ifp,id

Ai
IRid

i
ifp,id

]

+
[

IR0
0fp,ie

Ai
IR0

0fp,ie

] )
−d−hg+hp

)

+
[ −Kv v̇d+Kxev

KΩ
0a0+(KR+Ψ0)ėR+Ψ̇0eR

] }

+2ζ1KxKveT
x ev + 2ζ1KΩKReT

Reω (C9)

By substituting Eqs. (39) in (C9), followed by Eq. (37),
after considerable manipulations

V̇ = −ζzT z + zT ε+2ζ1KxKveT
x ev + 2ζ1KΩKReT

Reω (C10a)

ε =
[
Kv1 03×3
03×3 KΩ1

]
C−1

(
3∑

i=1

[
IR0

0fp,ie

Ai
IR0

0fp,ie

]
− d

)

(C10b)

‖ε‖ ≤ εmax (C10c)

Note that vector ε contains bounded quantities like
disturbance terms. Due to space limitations the bound, εmax ,
is not given explicitly but a conservative estimate can be
found using Eqs. (7), (B16) and ‖ieq,i‖≤1. Employing that
ζ = ζ1 + ζ2, Eq. (C10a) is rearranged to

V̇ =−ζ1zT z−ζ2zT z+zT ε+2ζ1KxKveT
x ev+2ζ1KΩKReT

Reω

(C11)

Expanding the first term, after several manipulations

V̇ ≤ −zT
c W3zc − ζ2zT z + zT ε (C12a)

W3 =

⎡

⎢⎢
⎣

ζ1K
2
x 0 0 0

0 ζ1K
2
v 0 0

0 0 ζ1(KR+Ψ0)
2 −ζ1KΩΨ0

0 0 −ζ1KΩΨ0 ζ1K
2
Ω

⎤

⎥⎥
⎦ (C12b)

Using the Cauchy-Schwarz inequality on Eq. (C12a)

V̇ ≤ −λmin(W3)‖zc‖2−ζ2‖z‖2+‖z‖εmax =⇒
∀‖z‖ ≥ εmax

ζ2
=⇒ V̇ <−λmin(W3)‖zc‖2 (C13)

Furthermore via Eq. (C4a) the following holds

V̇ ≤− λmin(W3)

λmax(W2)
V (C14)

Concluding, via the comparison lemma, ‖zc‖ exponentially

decreases with a rate e
− λmin(W3)

λmax (W2)
t
into an envelope of radius

εmax

ζ2
of the origin and it is maintained there.

Boundedness:Based on the analysis above the following
sets are defined,

Lς =
{
(ex,R, ev,ω) ∈ R

6×R
6 | ‖z‖≥ εmax

ζ2

}
(C15a)

LΣ =
{
(ex,R, ev,ω) ∈ R

6×R
6 | ‖z‖<√2λmax(W2)

}
(C15b)

For a sufficiently large gain ζ such that Eq. (43) is satisfied
then Lc

ς⊂LΣ ((.)c the complement set of (.)). Hence, for
all initial system states in LΣ , the tracking errors (ex , ev ,
eR , eω) exponentially converge to Lc

ς and are UUB despite
the presence of disturbances and thrust tracking errors. The
boundary of the set Lc

ς is an estimate of the ultimate bound.
Also Eqs. (C13), (C14), and (C15) indicate that as ζ is
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increased, the error states converge faster to the desired
equilibrium, while the ultimate bound set Lc

ς shrinks.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10846-021-01541-9.
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