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Abstract— New quadrotor UAV control algorithms are devel-
oped, based on nonlinear surfaces composed of tracking errors
that evolve directly on the nonlinear configuration manifold,
thus inherently including in the control design the nonlinear
characteristics of the SE(3) configuration space. In particular,
geometric surface-based controllers are developed and are
shown, through rigorous stability proofs, to have desirable al-
most global closed loop properties. For the first time in regards
to the geometric literature, a region of attraction independent
of the position error is identified and its effects are analyzed.
The effectiveness of the proposed ‘surface based’ controllers
are illustrated by simulations of aggressive maneuvers in the
presence of disturbances and motor saturation.

I. INTRODUCTION

Quadrotor unmanned aerial vehicles are characterized by

a simple mechanical structure comprised of two pairs of

counter rotating outrunner motors where each one is driving

a dedicated propeller, resulting in a platform with high

thrust-to-weight ratio, able to achieve vertical takeoff and

landing (VTOL) maneuvers and operate in a broad spectrum

of flight scenarios. Quadrotors have good flight endurance

characteristics and acceptable payload transporting potential

for a plethora of applications. Although the quadrotor UAV

has six degrees of freedom, it is underactuated since it has

only four inputs and can only track four commands or less.

A plethora of theoretical and experimental works regarding

quadrotors exist including results demonstrating aerobatic

maneuvers [1], decentralized collision avoidance for multiple

quadrotors [2], safe passage schemes satisfying constraints

on velocities, accelerations, and inputs [3], backsteping [4],

and hybrid global/robust controllers [5], [6], [7].

In this paper, a geometric nonlinear control system

(GNCS) for a quadrotor UAV is developed directly on the

special Euclidean group, thus inherently entailing in the

control design the characteristics of the nonlinear configu-

ration manifold, and avoiding singularities and ambiguities

associated with minimal attitude representations. The key

contributions of this work are: (a) An attitude and a position

controller is developed based on nonlinear surfaces com-

posed by tracking errors that evolve directly on the nonlinear

configuration manifold. These controllers allow for precision

pose tracking by tuning three gains per controller. (b) In

contrast to other GNCSs such as [1], [8] - [12], rigorous
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stability proofs are developed and regions of attraction both

with and without restrictions on the initial position/velocity

error are identified, thus introducing simplicity in trajectory

design. The proposed strategies are validated in simulation

in the presence of motor saturation and wind disturbances.

II. QUADROTOR KINETICS MODEL

The quadrotor studied is comprised by two pairs of counter

rotating out-runner motors. Each motor drives a dedicated

propeller and generates thrust and torque normal to the plane

produced by the centers of mass (CM) of the four rotors. An

inertial reference frame IR
{
E1,E2,E3

}
and a body-fixed

frame Ib
{
e1, e2, e3

}
are employed with the origin of the

latter to be located at the quadrotor CM, which belongs to

the four rotor CM plane. Vectors e1 and e2 are co-linear with

the two quadrotor legs. The following apply throughout the

paper. The actual control input is the thrust of each propeller,

which is co-linear with e3. The first and third propellers

generate positive thrust when rotating clockwise, while the

second and fourth propellers generate positive thrust when

rotating counterclockwise. The collective thrust is denoted

by f =
∑4

i=1 fi ∈ R, where fi and other system variables

are described in Table I.

TABLE I: Definitions of variables.

x ∈ R3 Quadrotor CM position in IR
v ∈ R3 Quadrotor CM velocity in IR
bω ∈ R3 Angular velocity of the quadrotor wrt. IR in Ib
R ∈ SO (3) Rotation matrix from Ib to IR frame
bu ∈ R3 Control moment bu=[bu1; bu2; bu3] in Ib
fi ∈ R Force produced by the i-th propeller along e3
bT ∈ R+ Torque coefficient
g ∈ R Gravity constant

d ∈ R+ Distance between system CM and each motor axis

J ∈ R3×3 Inertial matrix (IM) of the quadrotor in Ib
m ∈ R Quadrotor total mass
λmin,max(.) Minimum, maximum eigenvalue of (.) respectively

The motor torques, τ i, corresponding to each propeller

are assumed to be proportional to thrust,

τ i = (−1)ibT fie3, i = 1, .., 4 (1)

where the (−1)i term connects each propeller with the

correct rotation direction. The control inputs include the

collective thrust, f , and moment, bu, given by,

[
f
bu

]
=

⎡
⎢⎢⎣

1 1 1 1
0 d 0 −d
−d 0 d 0
−bT bT −bT bT

⎤
⎥⎥⎦F, F =

⎡
⎢⎢⎣
f1
f2
f3
f4

⎤
⎥⎥⎦ (2)

with F ∈ R4 the thrust vector, and the 4× 4 matrix to be of

full rank for d, bT ∈ R+ and thus always invertible.
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The spatial configuration of the quadrotor UAV is de-

scribed by the quadrotor attitude and the location of its

center of mass, both with respect to IR. The configuration

manifold is SE(3)=R3×SO(3), the special Euclidean group.

The equations of motion of the quadrotor are given by,

ẋ = v

mv̇ = −mgE3 +Rfe3 + δx (3)

Jbω̇ = bu− bω × Jbω + δR (4)

Ṙ = RS(bω) (5)

where δx, δR are disturbance terms and S(.) : R3 → so(3)
is the cross product map given by,

S(r)=[0,−r3, r2; r3, 0,−r1;−r2, r1, 0], S−1(S(r))=r(6)

III. QUADROTOR TRACKING CONTROLS

Given the underactuated nature of quadrotors, in this paper

two flight modes are considered:

• Attitude Control Mode: The controller achieves tracking

for the attitude of the quadrotor UAV.

• Position Control Mode: The controller achieves tracking

for the quadrotor CM position and a pointing attitude

associated with the quadrotor yaw.

Using these flight modes in suitable successions, a quadro-

tor can perform a complex flight maneuver. Moreover it will

be shown that each mode has stability properties that allow

the safe switching between flight modes (end of Section III).

A. Attitude Control Mode (ACM)

A controller to track a sufficiently smooth attitude Rd(t)
is developed, under the assumption that δR=03×1.

1) Attitude tracking errors: For a given tracking com-

mand (Rd,
bωd) and current state (R, bω), two sets of track-

ing errors are considered. Each set consists of an attitude
error function Ψ:SO(3)×SO(3)→R, and an attitude error
vector eR ∈ R3, defined as follows. The first set is, [9]:

Ψ(R,Rd) =
1

2
tr[I−RT

d R] ≥ 0 (7)

eR(R,Rd) =
1

2
S−1(RT

d R−RTRd) (8)

with tr[.] the trace function. The second according to [13]:

Ψ(R,Rd)=2−
√
1 + tr[RT

d R] ≥ 0 (9)

eR(R,Rd)=
1

2
S−1(RT

d R−RTRd)(1+tr[R
T
d R])−

1
2(10)

Both (7), (9) yield the angular velocity error vector, eω∈R3,

eω(R,
bω,Rd,

bωd) =
bω −RTRd

bωd (11)

For the ACM, the controller is designed to be compatible

with both sets of eR. This is because the first set given

by {(7), (8)} bestows excellent tracking properties to the

controller if the orientation tracking error remains less than

90o wrt. an axis-angle rotation; however for larger orientation

errors, the magnitude of the attitude error vector, (8), is not

proportional to the orientation error and results to deteri-

orating performance as the state approaches the antipodal

equilibrium (see [13] for more details). In contrast to this, the

second set {(9), (10)} does not suffer from this problem but

is marginally outperformed by the first set if the attitude error

is less than 90o. Thus depending on the flight conditions, the

user can choose which set of attitude tracking errors to use.

The maximum attitude error, that of 180o wrt. an axis-

angle rotation between R and Rd, occurs when the rotation

matrices are antipodal; then (7) or (9) yield Ψ(R,Rd)=2, i.e.

100% error. If R, Rd, express the same attitude i.e., R=Rd,

then Ψ(R,Rd)=0, i.e. 0% error. Properties about (7)-(11),

and their assosiated error dynamics are given in [9], [13].

2) Attitude tracking controller: A controller is developed

stabilizing eR, eω , to zero exponentially, almost globally

under the assumption that δR = 03×1.

Proposition 3. For η, kR, kω ∈ R+, with,

η > kR/kω
2 (12)

and initial conditions satisfying,

Ψ(R(0),Rd(0)) < 2 (13)

‖eω(0)‖2 < 2ηkR (2−Ψ(R(0),Rd(0))) (14)

and for a desired arbitrary smooth attitude Rd(t)∈SO(3) in,

L2 = {(R,Rd) ∈ SO(3)× SO(3)|Ψ(R,Rd) < 2} (15)

then, under the assumption of perfect parameter knowledge,

we propose the following nonlinear surface-based controller,

bu = bω × Jbω − J

(
kR
kω

ėR + ad + ηsR

)
(16a)

ad = S(bω)RTRd
bωd −RTRd

bω̇d (16b)

sR = kReR + kωeω (16c)

where ėR, if the {(7), (8)} set is used, it is given by

ėR =
1

2
{tr[RTRd]I−RTRd}eω (17)

while if the {(9), (10)} set is used, ėR is given by,

ėR =
{tr[RTRd]I−RTRd + 2eRe

T
R}

2
√
1 + tr[RT

d R]
eω (18)

Then, the zero equilibrium of the quadrotor closed loop

attitude tracking error (eR, eω) = (0,0) is almost globally

exponentially stable; moreover ∃μ, τ > 0 such that

Ψ(R,Rd) < min{2, μe−τt} (19)

Proof. Due to space limitations see [14], Appendix B.

The convergence properties introduced by the surface sR
are analyzed at the end of Section III. The initial angular

velocity can be arbitrarily large by using sufficiently large

gains. The region of attraction given by (13)-(14) ensures

that Rd is not antipodal to R, because the topology of SO(3)

prohibits the design of a smooth global controller, [15]. Thus

exponential stability is guaranteed almost globally.

Because (16a) is developed directly on SO(3), it avoids

singularities associated with minimum attitude representa-

tions and it can control the attitude dynamics of any rigid

body and not only quadrotor systems. Attitude tracking does
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not depend on f , the ACM is more suited for short durations

of time. The thrust magnitude can be selected to achieve

any additional objective compatible with the attitude tracking

task. An example is tracking a desired altitude [1]. Despite

developing (16a) under the assumption that δR=03×1, its

robustness properties will be tested in simulation considering

motor saturation and wind disturbances.

B. Position Control Mode (PCM)

Under the assumption that δx=03×1, a controller is devel-

oped for the position dynamics of the quadrotor, stabilizing

the tracking errors to zero asymptotically, almost globally.

1) Position tracking errors: For an arbitrary smooth po-

sition tracking instruction xd∈R3, the tracking errors are,

ex = x− xd, ev = v − ẋd (20)

For kx, kv∈R+ the position surface is defined as,

sx = kxex + kvev (21)

In the PCM, the attitude dynamics must be compatible

with the desired position tracking. This results in the defini-

tion of a position-induced attitude matrix, Rx(t)∈SO(3), for

use as an attitude command. To define this matrix, first the

desired thrust direction of the quadrotor, e3x , is computed,

e3x=
mgE3 −mkx

kv
ev − asx +mẍd

‖mgE3 −mkx

kv
ev − asx +mẍd‖

∈ S2, a∈R+(22)

where it is assumed that by selecting xd, ẋd, ẍd hereafter,

‖mgE3 −mkx
kv

ev − asx +mẍd‖ > 0

i.e. the set of admissible trajectories result to a physical thrust

direction. Secondly, a desired yaw direction e1d∈S2 of the e1
body-fixed axis of the quadrotor is defined, so that e1d∦e3x .

This is used to find the position-induced heading, e1h , [8],

e1h = ((e3x × e1d)× e3x)/‖(e3x × e1d)× e3x‖
The position related attitude Rx(t)∈SO(3), bωx(t)∈R3×1 is,

Rx=

[
e1h ,

e3x × e1h
‖e3x × e1h‖

, e3x

]
, bωx=S

−1(RT
x Ṙx) (23)

The attitude dynamics are guided to follow Rx(t),
bωx(t).

2) Position tracking controller: Assuming that δx=03×1,

a control system is developed for the position dynamics of

the quadrotor, achieving almost global asymptotic stabiliza-

tion of (ex,ev ,eR,eω) to zero through the action/effect of the

soon to be introduced Propositions 4 and 5.

For a sufficiently smooth yaw pointing direction e1d(t) ∈
S2, and a sufficiently smooth position tracking instruction

xd(t) ∈ R3 the following position controller is defined,

f(xd, ẋd, ẍd)=(mgE3−mkx
kv

ev−asx+mẍd)
TRe3 (24a)

bu(Rx,
bωx)=

bω×Jbω−J
(
kR
kω

ėRx+adx+ηsRx

)
(24b)

where adx
, sRx

, ėRx
, are given by (16b)-(18) and the desired

attitude matrix that is used in (24) is given by (23).

The use of nonlinear surfaces resulted to the thrust feed-

back expression, (24a), which includes three gains; yet Eq.

(24a) can be scaled to a PD form as in [1]. However, since

(24a) is paired with the newly developed attitude controller

(24b), it forms a new PCM controller of improved closed

loop response wrt. [1] and allows finer tuning, see Sect. IV.

The closed loop system defined by (3)-(5) under the action

of (24a)-(24b) is shown to achieve almost global asymptotic

stabilization of (ex,ev ,eR,eω) to the zero equilibrium by the

combined action of Propositions 4 and 5. Specifically (24b)

drives R(t) to asymptotically track Rx(t) and combined

with (24a), asymptotic position tracking is achieved. The

first result of exponential stability for a sub-domain of the

quadrotor closed loop position dynamics is presented next.

Proposition 4. Considering the controllers in (24a), (24b)

and for initial conditions in the domain,

Dx = {(ex, ev, eR, eω) ∈ R3 × R3 × R3 × R3|
Ψ(R(0),Rx(0)) < ψp < 1} (25)

and for ẍd ∈ R3×1, B ∈ R+ such that the following holds,

‖mgE3 +mẍd‖ ≤ B (26)

We define Π1,Π2 ∈ R2×2 as,

Π1=

[
ak2x(1−θ) −akxkvθ−mk2

xθ
2kv

−akxkvθ−mk2
xθ

2kv
ak2v−θ(mkx+ak2v)

]
,

Π2 =

[
Bkx 0
Bkv 0

]
(27)

where θ < θmax ∈ R+ and θmax is given by,

θmax = min{ ak2v
ak2v+mkx

, δ1 + δ2}, (28)

δ1 = 2
k2v

√
4k4xk

4
va

4 + 4k5xk
2
va

3m+ 2k6xm
2a2

k4xm
2

δ2 = −4 a
2k4v

m2k2x
−2 ak

2
v

mkx

If {(7), (8)} is used, the attitude error bound, ψp, satisfies,

θmax =
√
ψp(2− ψp)

while if the set {(9), (10)} is used, ψp satisfies,

θmax =

√
ψp(1− ψp

4
)

In conjunction with suitable gains η, kR, kω ∈ R+, such that,

λmin(W3) >
‖Π2‖2

4ηλmin(Π1)
,W3 =

[
k2R 0
0 k2ω

]
(29)

then the zero equilibrium of the closed loop errors

(ex, ev, eR, eω) is exponentially stable in the domain given

by (25). A region of attraction is identified by (25), (28), and

‖eω(0)‖2 < 2ηkR (ψp −Ψ(R(0),Rx(0))) (30)

Proof. Due to space limitations see [14], Appendix C.

Proposition 4 requires that the norm of the initial attitude

error is less than θmax to achieve exponential stability (the

upper bound of θ, (28), depends solely on the control gains

and the quadrotor mass). This corresponds to a reduced

region of attraction in comparison to the regions in [1], [8]

- [12], because no restriction on the initial position/velocity

error was applied during the stability proof. This approach
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is new, wrt. the geometric literature, offering the advantage

of simplifying trajectory design. The region of attraction in

other geometric treatments includes bounds on the initial

position or velocity (see [1], [8] - [12]) meaning that the

trajectory should comply to the position/velocity bounds and

also to the attitude bound, a more involved task.

If a user prefers a larger basin of exponential stability,

this can be achieved by introducing bounds on the initial

position/velocity (due to space see [14], Appendix C, Sec-

tion (f)). Then two new regions of attraction are produced

involving larger initial attitude errors, given by (30) and,

Ψ(R(0),Rx(0)) < ψp < 1, ‖ex/v(0)‖ < ex/vmax
(31)

θ < θmax = min{ ak2v
ak2v+mkx

} (32)

where the second inequality in (31) denotes either a bound

on the initial position error, exmax
, or a bound on the

initial velocity error, evmax
, but not on both (due to space

see [14], Appendix C, Section (f) for more details and

expressions regarding Π1, Π2, that comply with (29)). De-

pending on user preference, the trajectory design procedure

can be realized using either one of the three regions of

attraction ({(25), (28), (30)}, {(30), (31), (32)} using exmax

and {(30), (31), (32)} using evmax
) guiding us to favorable

conditions for switching between flight modes. For complete-

ness, all three regions of exponential stability were derived;

however this work focuses on the region {(25), (28), (30)}.
Finally, the next proposition shows that the PCM closed-

loop system is almost globaly exponentialy attractive. This

compensates for the reduced position/velocity free region

of attraction and introduces greater freedom to the user in

regards to control objectives, since the region of attraction

does not depend explicitly on the initial position/velocity

error. If the quadrotor initial states are outside of (25), with

respect to the initial attitude, Prop. 3 still applies due to the

action of (24b). Thus the attitude state enters (25) in finite

time t∗ and the results of Prop. 4 take effect. The result

regarding the PCM is stated next.

Proposition 5. For initial conditions satisfying (14), and

ψp ≤ Ψ(R(0),Rx(0)) < 2 (33)

and a uniformly bounded desired acceleration (26), the

control (24), renders the zero equilibrium of (ex, ev, eR, eω)
almost globally exponentially attractive.

Proof of Proposition 5. See Prop. 4 in [8] but apply (24a).

Prop. 5 shows that during the finite time that it takes

for the attitude states to enter the region of attraction for

exponential stability (25), (30), the position errors remain

bounded. The region of exponential attractiveness given by

(33) ensures that Rx(t) is not antipodal to R(t). Thus the

zero equilibrium is almost globally exponentially attractive.

For both control modes Section III-A (III-B), through the

utilization of the nonlinear surfaces sR, (sx), the dynamics

of the system are altered, by influencing the convergence to

the zero equilibrium via three gains per surface. Using the

gains η, (a), the reaching time to the surface is affected,

by penalizing the combined surface error, while the gains

kR, kω, (kx, kv), affect the convergence time when on/near

the surface by penalizing independently the attitude, angu-

lar velocity, (position, translational velocity), errors. This

is showcased in Fig. 1, showing responses of an attitude

maneuver (Fig. 1a), and a position maneuver (Fig. 1b). In

both cases, the simulations are repeated using larger gains

η, (a), resulting in faster reaching times, see black solid

lines in Fig. 1a,1b. In Fig. 1a, by doubling η, the reaching

time from tsR=0.169 improves to tsR=0.099. In Fig. 1b,

by increasing a by four, the reaching time from tsx=1.999
improves to tsx=0.569. Thus, the strict algebraic relation

to the gains imposed by the proposed controller design,

introduces ”sliding like” closed-loop dynamics, see caption

in Fig. 1, and allows for finer control on the convergence

rate to the zero equilibrium by using the insights gained by

the Lyapunov analysis. Also the sliding behavior is achieved

without the signum function; thus chattering is avoided.

0 0.5 1
0

2

4

6

8

10
sR→

tsR=0.099
tsR=0.169

‖eR‖

‖e
ω
‖[

r
a
d

s
]

(a)

0 0.005 0.01 0.015
0

0.005

0.01

0.015

0.02
sx→

tsx=0.569

tsx=1.999

‖ex‖[m]

‖e
v
‖[

m s
]

(b)
Fig. 1: Sliding behavior produced by, (16a), ((24a), (24b)) using {(9), (10)}.
(1a) Convergence to sR for a step of 179.9999o. (1b) Convergence to sx
for a position step to xd=[1; 1; 1]cm. The black and dashed green lines
indicate the reaching phase to sR,x followed by sliding behavior indicated
by blue lines. The black lines indicate usage of higher sliding gains η, a.
The reaching times, tsR,x , are colored accordingly.

Due to the combined action of (24a) with (24b) it was

possible to identify, for the first time wrt. the geometric

literature, a region of attraction independent of the initial

position/velocity error. This is a new development in regards

to the geometric literature. Also the developed expression,

(24a), with the third gain allows for more intuitive tuning

thus offering further refinement of the closed loop response.

Concluding, by the combined action of Prop. 4 and 5,

asymptotic almost global stabilization of (ex,ev ,eR,eω) to

zero is achieved. Since both flight modes are almost global,

the closed loop system is robust to switching between flight

modes. The only consideration in respect to trajectory plan-

ning is that the desired trajectory must agree with (13)-(14).

Despite developing (24) under the assumption that δx=03×1,

its robustness properties will be tested in simulation in the

presence of motor saturation and wind disturbances.

IV. RESULTS

The effectiveness of the developed GNCS is verified

through simulations. First by a comparison with [1], to verify

the claims of Section III-B.2 in regards to the collective thrust

(24a), followed by an aggressive recovery/trajectory tracking

maneuver in the presence of motor saturations and noise to

test the effectiveness and robustness of the developed GNCS.

To analyze GNCSs of different structure, a criterion is

needed for a commensurate comparison. Thus the Root-
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Mean-Square (RMS) of the thrusts is used as a criterion,

fRMS(t) =

√√√√1

t

∫ t

0

4∑
1

[fi(t)]2dτ (34)

Using (34) we calculate the RMS control effort difference,

Δf
RMS

(t) = f
developed

RMS
(t)− f benchmark

RMS
(t) (35)

and tune our developed GNCS such that (35) is negative at

all times so that the benchmark controller has equal or larger

control authority. By comparing the controller performance,

if the developed GNCS produces the least error with less
control effort it is deemed superior. The system parameters

were obtained from the quadrotor described in [16]:

J = [0.0181, 0, 0; 0, 0.0196, 0; 0, 0, 0.0273] kgm2

m = 1.225 kg, d = 0.23 m, bT = 0.0121 m

and the motor thrust limitations, see [16], are given by:

fi,min = 0[N], fi,max = 6.9939[N]

The wind profile shown in Fig. 3d is used in conjunction with

the drag equation, [17]. The drag coefficient and reference

area matrices of the quadrotor are be given by,

CD=diag(0.2,0.22,0.5), AD=diag(0.0907,0.0907,0.4004)m2

The torque due to wind is found by assuming that the

disturbance force is applied at 0.04e3. All simulations were

conducted using fixed-step integration with dt=1·10−3s.

A. Geometric-NCS comparison

For this comparison, the GNCS in [1] was selected as a

benchmark since it is the first quadrotor GNCSs developed

directly on SE(3), it demonstrates remarkable results in

aggressive maneuvers, and to validate the claims of Sect. III-

B.2. The controllers use the first set of error vectors given

by {(7), (8)}, and no saturation/disturbances are included,

to conclude controller competence. The gains were tuned

using (35) as follows. First the attitude gains were tuned

for a desired pitch command of 90o followed by tuning

the position gains for a desired xd=[1; 1; 1][cm]. Tuning the

attitude controller first, ensures that during the PCM, the

attitude controller embedded in the position control loop will

produce homogeneous control effort. Also the gains must be

compliant to (12), (29). The developed controller gains are:

kω=150, kR=5625, η=0.8

kv=59.82, kx=894.62, a=0.5071

The benchmark controller [1] parameters used are:

kω=diag(2.1720, 2.3520, 3.2760)

kR=diag(65.16, 70.56, 98.28), kv=38.71, kx=375.61

The initial conditions (IC’s) are: x(0) = v(0) = bω(0) =
03×1,R(0) = I. The results are presented in Fig. 2.

Examining Fig. 2b, the effectiveness of (16a) (solid black

line: 1) with respect to the benchmark controller (dashed

blue line: 2) in performing attitude maneuvers is visible as

Ψ converges to zero faster and with less control effort, see

Fig. 2a inner plot. The position response for a command

to xd=[1; 1; 1][cm] is shown in Fig (2c,2d). It is clear that

the developed position controller (24) performs equally well

with the benchmark controller, see Fig. (2d). However the

attitude error during the position maneuver is negotiated

better by the developed position controller as Ψ converges

to zero faster and with a smaller overall error, Ψ<0.078,

vs Ψ<0.1198, an important prevalence. In Fig. 2a the value

of, (35), is displayed for both the attitude (inner plot), and

position (outer plot), maneuvers. The benchmark controller

underperforms despite using more control effort, see Fig. 2a.
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Fig. 2: Quadrotor controller comparison. (2a) RMS control effort by (35).
(2b) Response for a step command of 90o. (2c,2d) Response for a position
command to xd=[1; 1; 1][cm]. (2c) Attitude error given by (7). (2d)
Position error, ‖ex‖. Solid lines: Developed, Dashed lines: Benchmark.

The reason that (35) exhibits large values in Fig. 2a, is

due to the high gains used to achieve precise trajectory

tracking. As a result because the controllers are fed with step

commands, extremely large control efforts are observed.

In view of the above, the ability of the developed PCM

in achieving the position command coequally to [1] but with

less control effort while simultaneously negotiate the attitude

error more efficiently again with less control effort makes it

more effective and validates the claims of Sect. III-B.2.

B. Aggressive recovery/trajectory tracking maneuver

A complex flight maneuver is conducted, in the presence

of motor saturation and noise due to wind, involving transi-

tions between flight modes. In this simulation, the developed

controllers utilize the second set of error vectors given by,

{(9), (10)}. This maneuver was selected to showcase both

the trajectory tracking for position and attitude, and the

recovery capabilities of the developed GNCS. The IC’s are:

x(0) = [0; 0; 5],v(0) = bω(0) = 03×1,R(0) = I. Since

this simulation contains portions characterized by large error

vectors, softer gains are needed to ensure smooth behavior

and minimize motor saturation. The gains used are:

kω=40, kR=400, η=1.002

kv=7.06, kx=12.46, a=0.5081
The flight scenario, to be achieved through the concatenation

of the two flight modes, is described next:

(a) (t < 4): PCM: Translation from the IC’s to xd =
[0; 1; 10],vd = [0; 0; 7], e1d = [1; 0; 0] using smooth

polynomials of eighth degree (SP8th).
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(b) (4 ≤ t < 4.4): ACM: The quadrotor performs a 180o

pitch maneuver, i.e. goes inverted. Rd(t) was designed

by defining the pitch angle using SP8th.

(c) (4.4 ≤ t < 4.9): ACM: The quadrotor recovers from its

inverted state to Rd(t) = I, i.e. point to point command.

(d) (4.9 ≤ t ≤ 10): PCM: Translation to xd =
[−1; 1.5; 10], e1d = [1; 0; 0] using SP8th with IC’s equal

to the states of the quadrotor at the end of the ACM.

The results of the maneuver are illustrated in Fig. 3 where

the duration that the attitude mode is utilized is illustrated by

the magenta colored intervals. The percentage attitude error

using (9) is shown in Fig. 3a. Up to t = 4.4, i.e. the beginning

of the quadrotor recovery from the inverted position, the

atttitude error is maintained below 5% (below 9o wrt. an axis-

angle rotation). During the recovery interval (4.4 < t < 4.9),

despite the large attitude error of 77.64% introduced by

the attitude step command, the quadrotor converges to the

desired orientation undeterred by the disturbances due to

wind and motor saturations, see Fig. 3c, 3d. The position

response is shown in Fig. 3b. During the position mode, i.e.

t<4 and t>4.9, the states track the reference trajectories

effectively, see Fig. 3b. At the PCM interval, ‖ex‖ (not

shown here due to space) increases above 0.06m, to 0.5m,

only between 3<t<4 where the wind increases rapidly, see

Fig. 3d for the wind profile. The effect of the wind at the

same interval is evident also by the noisy motor thrusts, see

Fig. 3c at 3<t<4. A simulation conducted in the absence of

wind, not shown due to space, showed that the noisy behavior

in Fig. 3c is eradicated and ‖ex‖<0.06 throughout the

PCM interval. Concluding, the effectiveness of the proposed

GNCSs in performing precise trajectory tracking maneuvers

(attitude/position) and recovery maneuvers in the presence

of motor saturations and disturbances was shown. The safe

switching between flight modes, stated at the end of Section

III-B, was also demonstrated.
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Fig. 3: Complex trajectory tracking. (3a) Attitude error given by (9). (3b)
Position state x(t) (solid black line) and reference xd(t) (blue dashed line).
(3c) Thrusts (Developed). (3d) Wind profile.

V. CONCLUSION AND FUTURE WORK

New controllers for a quadrotor UAV were developed,

based on nonlinear surfaces and employing tracking errors

that evolve directly on the nonlinear configuration manifold.

Through rigorous stability proofs, the developed GNCS were

shown to have closed-loop properties that are almost global.

A region of attraction, independent of the position error, was

produced and analyzed for the first time, wrt. the geometric

literature. The effectiveness of the developed GNCS was

validated by simulations of aggressive maneuvers, in the

presence of motor saturations and disturbances due to wind.

Our future work will include experimental trials and an

investigation of the developed GNCS robustness properties.
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