National Technical University of Athens
School of Mechanical Engineering

Fluids Section

Laboratory of Thermal Turbomachines

Parallel CFD & Optimization Unit

The Cut-Cell Method for the Prediction of 2D /3D Flows

in Complex Geometries
and the Adjoint-Based Shape Optimization

Ph.D. Thesis

Konstantinos D. Samouchos

Supervisor: Kyriakos C. Giannakoglou
Professor NTUA

Athens, 2022

ii

K. D. Samouchos

National Technical University of Athens
School of Mechanical Engineering
Fluids Section

Laboratory of Thermal Turbomachines
Parallel CFD & Optimization Unit

The cut-cell method for the prediction of 2D /3D flows

in complex geometries
and the adjoint-based shape optimization

PhD Thesis

Konstantinos D. Samouchos

Examination Committee:

1. Kyriakos Giannakoglou* (Supervisor), Professor, NTUA,
School of Mechanical Engineering

2. Toannis Anagnostopoulos®, Professor, NTUA,
School of Mechanical Engineering

3. Spyridon Voutsinas®, Professor, NTUA,
School of Mechanical Engineering

4. Konstantinos Mathioudakis, Professor, NTUA,
School of Mechanical Engineering

5. Konstantinos Belibassakis, Professor, NTUA,
School of Naval Architecture and Marine Engineering

6. Demetri Bouris, Associate Professor, NTUA,
School of Mechanical Engineering

7. George Papadakis, Assistant Professor, NTUA,
School of Naval Architecture and Marine Engineering

* Member of the Advisory Committee

Athens, 2022

v

K. D. Samouchos

Accompanied by my deepest gratitude and love,
I dedicate this dissertation to
my mother who has never left my side,
my father who showed me the roughed path of morality,
my brother who has brightened my days, and
my grandparents who taught me the virtues of a balanced life.
They will always be the guiding light of my life and
an inexhaustible source of inspiration.

vi

K. D. Samouchos

vii

Acknowledgments

I would like to express my gratitude to the following people who have significantly
contributed to the completion of this dissertation. Firstly, I would like to thank
my supervisor, Pr. Kyriakos Giannakoglou, for introducing me to the world of
Computational Fluid Dynamics and Adjoint-Based Optimization. I'm also thankful

for his meaningful recommendations on the thesis text and presentation.

I am also deeply grateful to the members of the research group of the Parallel CFD
& Optimization Unit (PCOpot), NTUA without the help of whom I would have
never completed this thesis. More specifically, I would like to sincerely thank Dr.
Xenofon Trompoukis, who shared important information about advanced numerical
methods and their application to practical cases. Moreover, I'm more than appre-
ciative to Dr. Konstantinos Tsiakas, who taught me the essentials of CFD as well
as techniques for efficient scientific programming. Words are not enough to thank
Dr. Evangelos Papoutsis-Kiachagias for sharing valuable details about the mathe-
matical formulation of the continuous and discrete adjoint theory. Furthermore, I
feel honored collaborating with Panagiotis-Giannis Vrionis, who applied and further

improved the cut-cell method developed in this dissertation.

I am also profoundly grateful to the rest, current or former, members of the PCOpt
family, namely Dr. Christos Kapellos, Dr. Flavio Gagliardi, Dr. Ioannis Kavvadias,
Dr. Dimitrios Kapsoulis, Dr. Konstantinos Gkaragkounis, Dr. Morteza Monfaredi,
Dr. Varvara Asouti, James Koch, Christos Veziris, Themistoklis Skamagkis, An-
dreas Margetis, Mehdi Ghavami Nejad and loannis Trompoukis. They were always
supportive and willing to help with any problem I was facing, scientific or not. Last
but not least, I am honestly thankful to Kimon Velitzanidis, loannis Stasinopou-
los, Panagiotis Meletis, Konstantinos Zarnaris, and Konstantinos Boudounis. Their
genuine friendship accompanied me in good and bad times, giving me the necessary

encouragement to continue working on this thesis.

viiil K. D. Samouchos

ix

All of old. Nothing else ever. Ever tried. Ever failed.
No matter. Try again. Fail again. Fail better.

All of old. Nothing else ever. But never so failed.
Worse failed. With care never worse failed.

Wortsward Ho, 1983
Samuel Beckett

/- : —_—
T I Ll Lt
VI S |

You Can Never Hold Back Spring, 2005
Tom Waits & Kathleen Brennan

K. D. Samouchos

xi

Matrix, 2020
Marcel Caram

xii

K. D. Samouchos

xiii

Abstract

This dissertation thesis develops integrated, robust, and reliable Computational
Fluid Dynamics (CFD) methods and software for the analysis and shape optimiza-
tion in real-world applications in fluid mechanics and aerodynamics. To this end,
the cut-cell method, which removes mesh generation barriers from the flow anal-
ysis and design process is adopted. The computational domain is firstly covered
with a Cartesian mesh and then parts occupied by the solid bodies are discarded,
giving rise to the cut-cell mesh. The benefits of this method are profound in fluid
problems with moving solid bodies which are allowed to move upon the stationary
background mesh, avoiding the use of mesh deformation tools. Moreover, contrary
to body-conforming approaches, the changes in shape during an optimization loop
do not affect the surrounding mesh, preventing mesh generation failure and the
premature breakdown of the optimization loop. Therefore, this dissertation thesis
exploits these beneficial features and develops a cut-cell-based flow solver and shape

optimization tool for compressible and incompressible flow problems.

Firstly, a fast and automated mesh generation method with low memory require-
ments is developed, which guarantees smooth mesh refinement close to solid bound-
aries and flow features that require higher mesh resolution. Cells intersected by the
geometry get rid of their solid part by giving rise to the so-called cut-cells. New
algorithms are proposed for computing their topological characteristics needed by
the flow-solver and post-processor. Numerical instabilities caused by the presence of
small cut-cells adjacent to much larger ones are avoided by cell-merging, according
to which small cell fragments are geometrically merged with their neighbors. Fur-
thermore, algorithms for fast neighbor detection, mesh connectivity computation,

and mesh-partitioning are also developed and used.

Then, compressible and incompressible flow solvers are developed, the latter being
based on the artificial compressibility method, to numerically solve the (U)RANS
equations. The presented numerical scheme takes advantage of the Cartesian mesh
structure and uses a cell-centered, finite volume approach employing the MUSCL
scheme and the approximate Riemann solver of Roe for the convection terms. In ap-
plications concerning moving geometries, the mesh is continuously adapted to their
motion, employing local refining and coarsening operations. Strategies to accurately
extrapolate the current flow solution to the mesh of the next time step are presented.
Additionally, a novel method to impose the flow conservation laws even in large ge-

xiv K. D. Samouchos

ometry displacements is developed by performing a cell clustering algorithm which

properly treats the sudden change in cells’ status from solid to fluid and vice-versa.

The resulting software is parallelized using the Open MPI protocol and assessed in
a series of tests concerning internal and external, inviscid and laminar flows. More-
over, comparisons with data provided by conventional body-conforming approaches
indicate its ability to deliver flow solutions of the same accuracy. The method’s ef-
fectiveness is demonstrated in several challenging applications of practical interest.
Among other, the flow simulation in a scroll machine, which is quite rare in the
literature due to its high complexity, is presented. Another application concerns the
flow inside a valveless diaphragm micropump, where the mass conservation is suc-
cessfully imposed despite the intensive deformation of the diaphragm. Finally, the
flow within an Electrical Submersible Pump (ESP) stage is studied, introducing the
cut-cell method as an alternative to address the rotor-stator interaction problem.

In the field of gradient-based shape optimization, the continuous and discrete ad-
joint approaches are developed, programmed, and used. These methods compute
the gradient of the objective function at a cost, which is independent of the number
of design variables, providing a viable tool for industrial design processes. Their
mathematical formulation, software development, and implementation in cut-cell
meshes for viscous and unsteady flows are presented for the first time in the litera-
ture. Concerning the continuous approach, different discretization schemes for the
adjoint Partial Differential Equations (PDEs) are investigated, resulting in adjoint
schemes which are equivalent to the FVS, HLLC, and Roe’s approximate Riemann

primal solvers.

Moreover, a discrete adjoint software is developed by accurately hand-differentiating
both the compressible and incompressible flow cut-cell solvers. Particular emphasis
is laid on properly treating the discrete adjoint time integration by differentiating
algorithms dealing with flow field extrapolation between meshes of subsequent time
steps. Furthermore, the adjoint cut-cell software is verified and applied to industrial
optimization problems, such as the total pressure losses minimization of a duct, the
lift maximization of a wing, and the outlet tangential velocity minimization of the
Electrical Submersible Pump stage. Finally, the multi-objective optimization under
uncertainties of the diaphragm micropump is carried out. In all cases, solutions of
adequately improved performance are delivered, confirming the effectiveness of the
developed method and software.

Xv

Keywords: Navier-Stokes Equations, Computational Fluid Dynamics, Cut-Cell
Method, Compressible Flow, Incompressible Flow, Unsteady Flow, Shape Opti-
mization, Continuous Adjoint Method, Discrete Adjoint Method

XVi K. D. Samouchos

xVvii

Abbreviations
ALE Arbitrary Lagrangian-Eulerian
CAD Computer-Aided Design
CFD Computational Fluid Dynamics
CG Conjugate Gradient
CSAMR Cell-based Structured Adaptive Mesh Refinement
DNS Direct Numerical Simulation
EA Evolutionary Algorithm
EASY Evolutionary Algorithms SYstem
ESP Electrical Submersible Pump
FDs Finite Differences
FVS Flux Vector Splitting
GB Gradient-Based
GCL Geometric Conservation Law
HLLC Harten-Lax-van Leer-Contact
IBM Immersed Boundary Method
LES Large Eddy Simulation
Lh.s. Left-Hand Side
LTT Lab of Thermal Turbomachines
MAEA Metamodel-Assisted EA
NTUA National Technical University of Athens
PAD Pareto Advancement Direction
PCA Principal Component Analysis
PCE Polynomial Chaos Expansion
PCOpt Parallel CFD & Optimization Unit
PDE Partial Differential Equation
PGD Proper Orthogonal Decomposition
RANS Reynolds-Averaged Navier-Stokes
r.h.s. Right-Hand Side
SDF Signed Distance Function
SD(s) Sensitivity Derivative(s)
STL Standard Triangle Language
SVD Singular Value Decomposition
(UYRANS Unsteady RANS
w.r.t. with respect to

xXviii K. D. Samouchos

Contents

1 Introduction
1.1 The Immersed Boundary Methods

1.2

1.3

2 The
2.1
2.2

2.3
24

2.5

1.1.1
1.1.2
1.1.3

Mesh Generation Methods
Literature Survey L oo

The Cut-Cell Method

Shape Optimization in Fluid Dynamics

1.21
1.2.2
1.2.3
1.2.4
1.2.5

Evolutionary Algorithms
Gradient-Based Optimization Methods
The Adjoint Method
Adjoint Formulation to the Immersed Boundary Methods . . .
Adjoint Formulation to the Cut-Cell Method

Thesis Outline

Cut-Cell Mesh Generation
The Cartesian Mesh Data Structure
The Octree Mesh Generation

2.2.1
2.2.2
2.2.3
224

The Octree Data Structure.
The Integer Coordinate System
Detection of the Immersed Geometry

Pseudocode of the Octree Generation

Mesh Smoothing and Flow Adaptation
The Cut-Cell Generation

24.1
2.4.2
2.4.3

The Construction of Solid Faces
The Construction of Fluid Faces
[lustration of the Cut-Cell Construction

The Face-Based Mesh Data Structure

2.5.1

The Cell-to-Cell Connectivity

xXix

12
13
14
16
18
19
20

XX

K. D. Samouchos

2.5.2 Numbering of Nodes and Faces
2.5.3 Detection of fluid cells
2.5.4 Computation of the Finite Volume’s Geometric Quantities
26 Cell Merging
2.7 Mesh Partitioningo oL
2.8 Mesh with Moving Boundaries
2.8.1 Mapping Between Subsequent Meshes
2.8.2 Covered and Uncovered Cells
2.8.3 Cell Linking
2.9 Mesh Differentiation L
2.9.1 Differentiation of the Mesh Solid Boundary

2.9.2 Differentiation of Face and Cell Geometric Quantities

Numerical Discretization of the Navier-Stokes Equations
3.1 Compressible Fluid Flow Model
3.2 Discretization of the Steady Compressible Laminar Equations C
3.2.1 The Finite Volume Method
3.2.2 Convective Flux Discretization Scheme
3.2.3 The second-order MUSCL Method
3.2.4 Limiters
3.2.5 Gradient Computation Using the Least Squares Method
3.2.6 Flux Computation at the Boundary Faces
3.2.7 Diffusive Flux Discretization Scheme
3.2.8 Pseudo-Time Step Computation
3.3 Temporal Term Discretization of the Compressible Equations
3.3.1 The Arbitrary Lagrangian Eulerian Technique
3.3.2 Dual-Time Stepping
3.3.3 Covered and Uncovered Cells Treatment
3.4 Incompressible Fluid Flow Model
3.5 Discretization of the Steady Incompressible Laminar Equations
3.6 Temporal Term Discretization of the Incompressible Equations
3.7 Numerical Solution of the Discretized Flow Equations
3.8 The Ghost-Cell Method
3.8.1 Wall Boundary Conditions Implementation

Contents

xxi

3.8.2 The Unsteady Ghost-Cell Method Implemented in Moving Walls129

4 Flow Solver Assessment

4.1 Compressible Flow Solver Assessment

4.1.1
4.1.2
4.1.3
414
4.1.5
4.1.6

Inviscid Flow Over the NACAO0012 Isolated Airfoil
Inviscid Flow Over a Wedge
Convergent-Divergent Duct Flow
Parallel Flow Over a Flat Plate
Laminar Flow Over the NACA0012 Isolated Airfoil
Inviscid Flow over ONERA M6 wing

4.2 Incompressible Flow Solver Assessment

4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6

Inviscid Flow over the Joukowski airfoil
Inviscid Flow over cylinder
Convergent-Divergent Duct Flow
Laminar flow over a Cylinder
Driven Cavity Flow
Laminar flow in a 3D S-Shaped Duct

4.3 Unsteady Flow Solver Assessment

4.3.1
4.3.2

Piston Motion o o
Flow around Oscillating NACA0012

5 Flow Simulation in Industrial Applications

5.1 Incompressible Flow inside a Butterfly Valve

5.2 Compressible Flow in a Scroll Expander

5.3 Incompressible Flow inside a Valveless Diaphragm Micropump . . .

5.4 Compressible Flow inside an Electrical Submersible Pump Stage . .

6 The Continuous Adjoint Method

6.1 Mathematical Development of the Compressible Adjoint Method . .

6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
6.1.6

Definition of the Total Derivative
Differentiation of the Objective Function
Definition of the Augmented Function
Differentiation of the Temporal Term
Differentiation of the Convection Term

Differentiation of the Diffusion Term

130
130
131
134
136
139
143
145
148
148
151
153
155
159
161
163
163
167

170
171
175

. 182
. 187

192

. 193

xxii

K. D. Samouchos

6.2

6.3

6.4

7 The
7.1
7.2
7.3

7.4

7.5

6.1.7 The Compressible Field Adjoint Equations 204
6.1.8 The Inlet-Outlet Adjoint Boundary Conditions 205
6.1.9 The Wall Adjoint Boundary Conditions 206
6.1.10 Sensitivity Derivatives Expression 207
6.1.11 The Continuous Adjoint Method for Steady Flows 209

Mathematical Development of the Incompressible Adjoint Method . . 211
6.2.1 Definition and Differentiation of the Objective and Augmented

Functions 211
6.2.2 Differentiation of the Temporal Term 212
6.2.3 Differentiation of the Convection Term 213
6.2.4 Differentiation of the Diffusion Term 214
6.2.5 The Incompressible Field Adjoint Equations 216
6.2.6 The Inlet-Outlet Adjoint Boundary Conditions 216
6.2.7 The Adjoint Wall Conditions 217
6.2.8 Sensitivity Derivatives Expression 218
6.2.9 The Continuous Adjoint Method for Steady Flows 219
Discretization of the Steady Adjoint Equations 220
6.3.1 The Adjoint Roe Scheme 223
6.3.2 The Corrected Adjoint Roe Scheme 225
6.3.3 The 3D Adjoint Solver 227
The Adjoint Method Implemented in Unsteady Flows 227
Discrete Adjoint Method 230
The Discrete Field Adjoint Equation and Sensitivity Derivatives . . . 231
The Discrete Adjoint Flux 233
The Compressible Discrete Adjoint Equation 237
7.3.1 Differentiation of the Convection Term 238
7.3.2 Differentiation of the Diffusion Term 241
7.3.3 Differentiation of the Temporal Term 244
Sensitivity Derivatives for Compressible Flows 245
7.4.1 Differentiation of the Convection Term 246
7.4.2 Differentiation of the Diffusion Term 250
7.4.3 Differentiation of the Unsteady flow Equations 253

The Incompressible Discrete Adjoint Equation and Sensitivities . . . 255

Contents xxiii
7.6 The Sensitivity Map Post-Processing 257
8 Adjoint Solver Assessment 261
8.1 Incompressible Adjoint Solver Assessment 262
8.2 Compressible Adjoint Solver Assessment 267
8.3 Unsteady Adjoint Solver Assessment 270
9 Optimization of Industrial Applications 276
9.1 S-Duct Optimization 277
9.2 Wing Optimization 281
9.3 Submersible Pump Optimization 285
9.4 Valveless Diaphragm Pump Optimization under Uncertainties . 289
9.5 Optimization of a Compressor Rotor 294
10 Closure 298
10.1 Summaryo 298
10.2 Concluding Remarks 0oL 302
10.3 Novel Contributions. 304
10.4 List of Publications, 306
10.5 Future Work Recommendations 307
A Identification of Cells in an Octree Data Structure 310
B Fast Cut-Cell Construction 312
C Optimal Value of the Artificial Compressibility Parameter 318
D The Compressible and Incompressible Jacobian Matrices 322
E Approximate Riemann Solver of Roe 325

F Approximate Riemann Solver of Roe for Preconditioned Conser-

vative Laws
G Monotone and TVD schemes relation

H The Barth-Jespersen Limiter

331

334

338

XXiv K. D. Samouchos

I Orthogonal Correction Expression 342

J Boundary Conditions Differentiation 344
K The Continuous Adjoint Method Implemented in Cases with Re-

circulation at the Outlet 346

L The adjoint HLLC and FVS schemes 349

L.1 The Adjoint HLLC Scheme 349

L.2 The Adjoint FVS Scheme, 352

L.3 Comparison of Adjoint Discretization Schemes 353

M Memory Reduction by using the SVD Method 355

N Memory Reduction by using the PGD Method 359

N.1 The PGD and Incremental PGD Theory 359
N.2 Implementation of the Incremental PGD Based on the Ghost-Cell

Method 362

O The Absolute Roe Jacobian Derivative For Compressible Flows 364

The Absolute Roe Jacobian Derivative For Incompressible Flows 367

Bibliography 370

Chapter 1

Introduction

Over the last decades, the exponential growth of computational power coupled with
the maturity of numerical methods has made Computational Fluid Dynamics (CFD)
an indispensable and cost-effective tool for analysis and product design in numerous
engineering fields. CFD is implemented in a wide range of problems from aeronauti-
cal, aerospace, and automotive applications to the weather forecast and biomedical
technology. Moreover, its accessibility and ability to test various combinations of
different geometries and flow conditions in relatively low turnaround time makes
it a valuable tool, especially for sensitivity analysis, optimization, and preliminary

design.

Therefore, accurate flow computations around complex geometries, usually asso-
ciated with practical applications, are highly valued. In addition, the increased
interest in the aerodynamic or hydrodynamic analysis of moving bodies requires ef-
ficient and reliable tools to deal with this challenging problem. To this end, fast and
robust mesh generation is a vital prerequisite, which, however, is still a strenuous,
costly, and not fully automated task.

A remedy to this issue is to adopt the Immersed Boundary Methods (IBMs), which
remove the mesh generation bottleneck from the evaluation and design process.
Amongst different approaches constituting this vast scientific spectrum, the cut-cell
method holds a central position due to its increased accuracy and reliability. Its
implementation to the flow analysis and optimization process in practical applica-
tions defines the two central axes of this dissertation. In particular, the first axis is

concerned with original techniques for mesh generation and flow simulation around

2 K. D. Samouchos

complex moving geometries. An introduction to these methods accompanied by the
corresponding literature survey is presented in section 1.1. The second axis deals
with the development of efficient optimization tools assisted by the continuous and
discrete adjoint formulations on the cut-cell method. An introductory examination
of these approaches and their effective performance in real-world problems is given

in section 1.2. Finally, the thesis outline is described in section 1.3.

1.1 The Immersed Boundary Methods

Contrary to the conventional concept of body-conforming meshes, IBMs employ
meshes that do not necessarily fit the geometry’s boundary. This concept was first
introduced by Peskin [244] in 1972, and since then, the field of immersed bound-
ary methods has flourished with the development of a wide variety of different ap-
proaches. The general idea behind these methods is subdividing the computational
domain into rectangular hexahedra constituting a Cartesian mesh extended through
the geometry’s boundary to the fluid and solid regions. Thus, the volume mesh
generation is decoupled from the complexity of the solid surface description. More-
over, in cases including moving bodies, the immersed geometry is allowed to move
upon the background stationary Cartesian mesh, avoiding the mesh deformation
or regeneration, which is common in body-conforming mesh approaches. Fig. 1.2
compares a body-conforming unstructured mesh around an isolated airfoil, fig. 1.2a,

and a Cartesian mesh around the same geometry, fig. 1.2b.

These methods have proven remarkably useful in flow simulation around complex
stationary or moving geometries performing large displacements. Section 1.1.1 com-
pares IBMs with other alternatives and indicates their advantages and drawbacks.
From that point of view, using Cartesian meshes transforms the problem of con-
forming the mesh to the boundary into the imposition of the flow conditions at
the wall, which requires modifications to the discretization scheme of the governing
equations close to the immersed boundary. The proper boundary treatment gives
rise to various approaches presented in brief in section 1.1.2. Then, section 1.1.3
focuses on a subclass of IBMs called the cut-cell method providing a broader context

in which the present work is placed.

1.1. The Immersed Boundary Methods 3

1.1.1 Mesh Generation Methods

As an introduction to IBMs, a comparison is presented between this approach and
two alternatives dealing with complex moving geometries. These are structured
or unstructured deforming, body-conforming meshes, and composite overlapping
mesh approaches [33], [199], [8]. Unstructured or structured multi-block mesh meth-
ods [305] appear extremely powerful for arbitrarily complex geometries. In moving
boundary problems, the volume mesh should follow the surface motion deforming
its elements [185], [23]. However, this process may damage the mesh quality, de-
teriorating the flow solution’s accuracy, fig. 1.1a. In addition, mesh deformation
fails to proceed after large boundary displacements, and re-meshing is unavoidable,
requiring the user’s intervention. Then, interpolation of the flow solution to the new

mesh is needed, which is far from trivial.

On the other hand, in overlapping-mesh or overset approaches, individual separately
generated meshes overlay a background mesh, fig. 1.1b. In cases including moving
boundaries, the associated mesh follows the geometry’s motion, while the rest remain
stationary, avoiding the mesh deformation. During the flow solution, information is
interpolated between meshes. Nevertheless, overset methods cannot guarantee con-
servation across composite mesh boundaries without sophisticated geometric con-
structions in the overlap region. Moreover, the difficulties of mesh generation around

complex geometries remain untreated.

Contrary to the before-mentioned approaches, stationary Cartesian meshes con-
siderably simplify and automate the mesh generation process, fig. 1.1c. However,
implementing a discretization scheme that maintains conservation is not straight-
forward. Moreover, the mesh resolution is expected to be higher in a Cartesian
mesh than in a body-fitted one to maintain the same level of accuracy in the flow
solution, resulting in higher computational and memory requirements. Therefore,
the formulation of a highly accurate IBM, capable of maintaining conservation even
for gross boundary motions while retaining its robustness, is among the targets of
this thesis.

4 K. D. Samouchos

t=n t=n
B
li Wia
T T
2 F:\ /
t=n+l t=n+l -
(a) (b)
t=n
[T1
[[1
T T
EENIN Uncut
{ |
HENEEEMEN [| [[]
o r - Cut
[T 1]

()

Figure 1.1: (a) A body-conforming unstructured mesh is deformed following the
motion of a cylinder. Invalid elements appear at time step n+1 damaging the mesh
quality. (b) A body-conforming mesh (green) is moving upon a background sta-
tionary mesh (blue), depicting the overset approach. Special treatment is needed
for imposing conservation across the composite mesh boundary. (c¢) A cylinder is
displaced upon a stationary background Cartesian mesh over two successive time
steps. Covered and uncovered cells lying within the swept region require additional
numerical manipulations to prevent spurious sinks and sources that harm the accu-
racy of the flow simulation. Figures drawn from [219].

1.1.2 Literature Survey

This section aims to present a short overview of the broad field of IBMs, highlighting
the wide variety of available methods and identifying some of the most effective
approaches. The interested reader may find extensive reviews in Mittal et al. [209],

1.1. The Immersed Boundary Methods 5

Sotiropoulos et al. [289], and Maxey [198].

IBMs can be classified regarding a variety of criteria. Among others, Sotiropoulos et
al. [289] introduced a taxonomy based on the representation of the immersed geom-
etry, dividing the field into diffused and sharp interface methods. Diffused interface
methods employ a blur representation of the immersed boundary, the effect of which
is introduced implicitly over a narrow zone of computational cells. In contrast, sharp
interface methods use a crisp representation of the fluid-solid interface throughout

the flow simulation, avoiding its spatial smearing over a range of mesh cells.

Diffused interface methods can further be subdivided into continuous and discrete
forcing approaches [35]. The first approach exerts an artificial volume force employed
in the vicinity of the interface to effectively represent the effect of the immersed
boundary on the flow field. The forcing is expressed as an additional term in the
continuous equations and, therefore, is independent of the chosen discretization.
The continuous forcing approaches have been applied to flows around elastic and
rigid boundaries. Such examples are given below.

The original work of Peskin [244], [245], who introduced the IBMs, belongs to the
first class of the continuous forcing approaches. In this method, blood flows within
a beating heart upon a stationary Cartesian mesh. The heart’s muscle contraction
is represented by elastic fibers consisting of massless points moving along with the
flow in a Lagrangian manner. A forcing term added to the momentum equations
encapsulates the effect of the fibers” motion to the fluid. In particular, a smoothed
Dirac function distributes the force of each Lagrangian point to the surrounding
cells. The correct choice of the smoothed function is of paramount importance, and
it has been studied by numerous researchers giving rise to various distributions [44],
[270], [172]. Second-order accurate methods of this kind have been developed by Lai
et al. [172], Griffith et al. [117], and others.

However, employing this method in cases concerning rigid bodies causes numerical
instabilities. An approach to surpass this issue is by using highly stiff springs that
approximate the rigid behavior of the body [44], [172]. Other approaches solve the
governing equations by imposing a rigidity constraint to the fluid inside the solid
region of the mesh [107], [240], [19] or assuming that the entire flow occurs in a
porous medium [20], [161]. The exerted spring force and the porosity assumption
can be considered subclasses of the more generic force formulation introduced by
Goldstein et al. [111].

6 K. D. Samouchos

On the other hand, in the discrete forcing approach, the forcing is incorporated
straight into the discretized governing equations. It can be explicit [316] or implicit
[295] and allows for direct control over the solver’s numerical accuracy and stability.
The method was firstly introduced by Mohd-Yusof [213], who used the difference
between the velocity at the mesh nodes and the desired velocity at the boundary to
define the forcing term. Then, Fadlun et al. [89] extended this work by implement-
ing the discrete forcing approach on a 3D marker-and-cell (MAC) staggered mesh.
Further improvements concerning stability and accuracy were made by Balaras [24],
Gilmanov et al. [105], Zhang et al. [344], and Choi et al. [62]. Finally, this approach
has been implemented in various applications, including the turbulent flow inside

an internal combustion engine [322].

The great advantage of the diffused interface methods is that the presence of the
wall does not affect the equations’ discretization scheme apart from the term ex-
pressing the distributed force. In particular, they avoid the complicated intersection
computation of the immersed geometry with the mesh cells offering a method for
straightforward software development. However, these methods are unable to predict
boundary layers accurately. Therefore, the sharp interface approaches were intro-
duced, emphasizing the direct imposition of the boundary conditions by modifying
the discretization scheme to cells next to the wall. The two main representatives of
this category are the ghost-cell and the cut-cell methods described below.

In the ghost-cell method, described by Tseng et al. [310], cells intersected by the
boundary were explicitly detected, avoiding the artificial smearing of the flow field
close to the wall. The method’s principle is to repeatedly extrapolate the current
solution to a zone of ghost cells adjacent to the wall and enforce the necessary
boundary condition by modifying the flow variables stored at each ghost cell. Various
interpolation or extrapolation schemes have been proposed, with the simplest one
being the linear interpolation by Ferziger et al. [93]. However, the accuracy of this
approach is questionable, especially in high Reynolds flows. A better alternative is
employing linear interpolation in the tangential to the wall direction and a quadratic
one along the normal direction [190]. Another technique proposed by Gibou et
al. [102] slightly modifies the solid boundary, avoiding erroneous boundary layer
predictions.

Several researchers have contributed to the method’s improvement. For example,
Mittal et al. [208] introduced the concept of image points to fulfill the divergence-
free criterion. Moreover, Berthelsen et al. [43] presented a method to handle highly

1.1. The Immersed Boundary Methods 7

irregular boundaries constituting sharp corners or solid thin plates without losing
accuracy. Furthermore, Pan et al. [234] and Gao et al. [100] used different tech-
niques to improve the approach of Tseng et al. [310] by mitigating the instabilities
caused in the extrapolation scheme when fluid nodes are very close to the bound-
ary. Additionally, Shinn et al. [284] increased the discretization’s accuracy at the
boundaries by preserving the mass continuity for ghost cells on a staggered mesh.
Recently, Grosse et al. [114] developed a second-order technique by adequately
solving the Riemann problem at cells located on the boundary. Finally, the ghost
fluid method, introduced by Fedkiw [91], [90], is worth noticing as well as its im-
provements concerning accuracy and robustness by Terashima et al. [304] and Liu et
al. [184]. According to that, each cell in the computational domain is equipped with
a ghost-cell being in contrast to the rest ghost-cell methods, where the ghost-cells
are defined exclusively alongside the immersed boundary.

A significant drawback of the methods presented so far is that none guarantees the
satisfaction of the flow conservation laws in the vicinity of the wall. On the other
hand, the cut-cell method offers strict conservation of mass, momentum, and energy
at each mesh cell, constituting a valuable alternative to the above approaches. The
extensive study of this method has resulted in a wide field of different approaches,
the most remarkable of which are presented in subsection 1.1.3.

1.1.3 The Cut-Cell Method

Over the last two decades, the cut-cell method has become increasingly popular as
an alternative to simulate the flow around complex geometries. It is considered one
of the most reliable IBMs since it accurately represents the fluid-structure interfaces.
Consequently, it avoids the generation of spurious pressure fluctuations caused by
violating the conservation laws, observed typically in other approaches like the ghost-
cell method [218].

Contrary to the rest IBMs, the cut-cell method uses only the fluid part of the
background mesh. In particular, the Cartesian structure of the mesh is retained in
all but cells intersected by the immersed boundary. These cells discard their solid
part to conform to the wall. The remaining fluid part of each cell constitutes a new
polygon in 2D or polyhedron in 3D called cut-cell. An example of such a mesh is
shown in fig. 1.2c. Therefore, the advantage of using a Cartesian mesh is preserved

for the interior cells, and a more delicate treatment is needed only for the cut-cells.

8 K. D. Samouchos

In other words, the case-specific and challenging mesh generation around complex
geometries is replaced by the general problem of constructing the cut-cells. Thus,
this approach can be considered a consistent extension of the finite volume method,
at least for stationary geometries, and as such, it guarantees the satisfaction of the
conservation laws.

O
R,
AV AYS
SRS
e, %’«ﬂ*i* ¥

<1
¥
K

“

Pav4ys
LR
Vava)
s
v

AV
AeA'A

2N
ARDAK
Rtk

(VAVANAY
'47 \
AV
RRNSS
AVAVSTE!

')

i
2
&
<K
A7
P

)

(7

N

<
25

P

(b) (c)

Figure 1.2: (a) A body-conforming unstructured mesh around an isolated airfoil.
(b) The airfoil (red) is immersed into a Cartesian mesh (black). (c¢) The solid part
of the Cartesian mesh has been discarded, giving rise to a cut-cell mesh type.

The concept of cut-cells was firstly proposed by Purvis et al. [250] in 1979 and then
by Wedan et al. [331] in 1983. These authors applied a finite volume method on a
cut-cell mesh to solve the fully nonlinear potential equation. Later, in 1986, Clarke
et al. [65] extended this idea to the 2D Euler equations. In that work, each cut-cell
was describing the geometry in a piecewise linear fashion. Gaffney et al. [99] used
the same technique to solve the 3D Euler equations. At around the same period,
Rubbert et al. [264] applied a cut-cell finite element method to discretize the 3D
potential flow equation.

The above-mentioned pioneering works did not only establish the cut-cell method
but also described its main drawbacks. A common implication is related to the

reshaping of the intersected cells. In particular, the fluid part of these cells may

1.1. The Immersed Boundary Methods 9

become very small, harming the stability of the flow solver. Such an example is
illustrated in fig. 1.3. First, Clarke et al. [65] resolved this problem by adopting
an agglomeration technique, in which small cell fragments were incorporated into
adjacent cells. Similarly, Ye et al. [340] suggested an approach in which cut-cells,
with centroids located in the solid region, were absorbed by neighboring ones, gen-
erating new trapezoidal cells. Over the next years, several techniques have been
proposed to tackle this issue while retaining the conservative nature of the finite
volume method. Some of them are the cell-merging [53], [40], [134], [27], cell-linking
[165], flux redistribution [70], [132], mesh reshaping [268], and the H-Box method
[40].

Figure 1.3: A Cartesian mesh (black) over an arbitrary embedded solid boundary
(red). Regular cut-cells are colored blue, while 6 very small cut-cells are indicated
with green.

In the late ’80s, the cut-cell method gained popularity, and the first techniques for
mesh adaptation appeared. Berger et al. [40] and Quirk [252] used a similar isotropic
adaptive mesh refinement to capture strong shock waves accurately. Moreover, Pem-
ber et al. [242] applied a solution-based adaptation to solve the 3D Euler equations,
and Melton et al. [201] developed a 3D Euler cut-cell method that incorporated a
geometry-based mesh refinement technique.

The extension to viscous cases was made by Quirk [251]. However, the demon-
stration was brief and was applied to simple test cases. Then, Coirier et al. [69]
used the cut-cell method to simulate the laminar flow around more complex 2D
geometries. Moreover, Hartmann et al. [124] were the first to implement a fully
conservative cut-cell-based method for 3D problems of compressible laminar flows.

However, properly treating the viscous terms on irregularly-shaped cut-cells was

10 K. D. Samouchos

quite challenging because high mesh resolution is needed to represent the developed
boundary layer accurately. A remedy to this issue is the conjunction of the Cartesian
approach with structured curvilinear meshes. In such methods, a body-fitted mesh
is generated close to the immersed boundary, and the rest domain is filled with a
Cartesian mesh intersected with the outer layer of the structured mesh [157], [330],
[77]. Although these methods increase simulation’s accuracy without excessively
refining the mesh, their implementation in complex or moving geometries is quite

delicate.

An attractive alternative is to employ the Cartesian mesh down to the wall and
properly change the discretization scheme to cells close to the wall. Following this
approach, Hartmann et al. [124] and Ji et al. [145] developed a second-order accurate
discretization scheme. However, its accuracy decreased to nearly one in the vicinity
of the wall. Moreover, Ye et al. [340] investigated a new interpolation scheme next to
the immersed boundaries, capable of retaining second-order accuracy. In addition,
a promising approach was presented by Berger et al. [36], who used quadratic poly-
nomials to compute the flow variables and their derivatives stored in cut-cells. A
similar strategy was proposed by Anagnostopoulos [11], who suggested polynomials
of different degrees for each flow variable. Furthermore, other researchers alleviate
the non-alignment of the mesh to the geometry by increasing the order of the dis-
cretization stencil [218], [167], [10]. Finally, the cut-cell method has been extended
to turbulent flows in the Reynolds-averaged Navier—Stokes (RANS) [36], [37], the
Large Eddy Simulation (LES) [204], [203], [56], or the Direct Numerical Simulation
(DNS) [80] framework.

New challenges emerge introducing the cut-cell method to cases involving moving
geometries. In particular, additional complexities arise due to the change in the
Cartesian cells’” nature from fluid to solid and vice versa caused by the boundary’s
displacement, fig. 1.1c. In such cases, Seo et al. [279] proved that the violation of the
Geometric Conservation Law (GCL) causes the violation of the mass conservation
leading to significant pressure oscillations, which damage the simulation’s accuracy.
As a result, various attempts have been made to increase to solution’s accuracy

while retaining the conservative identity of the method.

Schneiders et al. [278], [277] extended the work done by Hartmann et al. [124] to
compressible viscous flows around moving boundaries. Their technique was dis-
tributing the loss in mass to neighboring cells without though discussing its effect
on the accuracy of the flow solution. Moreover, Guthner et al. [120] introduced a

1.1. The Immersed Boundary Methods 11

level-set approach to keep track of the boundary’s motion, sacrificing the accuracy
of the boundary’s representation. Recently, Muralidharan et al. [218] developed a
second-order cell clustering algorithm to ensure the conservative laws’ imposition
even for large structural displacements. However, this method imposes strict limi-
tations to the maximum allowed displacement of the boundary at each time step.

Another alternative, Aftosmis et al. [219] and Asao et al. [21], is based on the
geometric construction of space-time finite volumes. Although this approach offers
a proper treatment for the solidified and newborn cells, its complexity limits its use
only to the development of simpler methods. Other implementations include cell
merging methods [29], [338], [27], implicit time-stepping [5], and flux redistribution
methods [200].

The cut-cell method has been applied to a great variety of real-world problems.
These applications include, among others, flapping foils [211], flow-induced vibra-
tions [207], diaphragm-driven synthetic jets [317], and objects in free fall [210].
Moreover, it has been used to capture the air-water interface [133], including the
detonation of ships [145]. In addition, the cut-cell method has been proven beneficial
in simulating internal flows of combustion engines [120], [276], centrifugal pump im-
pellers [12], flows with cavitation [232], particle-laden turbulence [277], and the flow
around a space shuttle orbiter [38]. Finally, its use is advantageous in fluid-structure
interaction [206] and multiphase flow [334] problems.

Despite the development of several variations of the cut-cell method and its appli-
cation to various cases, there is much space for improvement. This thesis develops
techniques to increase the method’s efficiency by contributing to the automatic gen-
eration and adaptation of the mesh around stationary or moving geometries. Firstly,
it deals with the challenging process of the cut-cells’ construction. In particular, it
extends the method of Aftosmis et al. [6] by proposing a robust algorithm capable of
computing any intersection between a Cartesian cell and an arbitrary triangulated
surface. Moreover, the algorithm consistently handles degeneracies of the immersed
geometry without the user’s intervention offering an autonomous and valuable tool
for the mesh generation in 3D practical applications.

Although several attempts have been made to simulate unsteady phenomena around
moving geometries accurately, none has gained wide acceptance from the scientific
community. Indeed, the previously presented survey illustrates the existing gap

in the literature and indicates the difficulties of this challenging task. Hence, the

12 K. D. Samouchos

present research supports this effort by improving the aforementioned cell merging
method. More specifically, it introduces a technique that extends the existing meth-
ods’ capabilities (e.g., the one in [219]), offering a smooth representation of the flow
close to the moving wall. Furthermore, the method’s accuracy has been verified by
comparing the developed software’s results with experimental and numerical data
from solvers based on body-fitted meshes. Moreover, its efficiency is demonstrated

by successfully applying the method to 3D industrial problems.

1.2 Shape Optimization in Fluid Dynamics

Shape optimization applied in fluid dynamics modifies a given geometry to maximize
its aerodynamic or hydrodynamic performance. The geometry’s boundary is con-
trolled by a set of variables called design variables (5) These can be the coordinates
of control points defining the shape of the geometry through a parameterization
tool. Alternatively, the coordinates of the nodes comprising the discretized solid
boundary can be used. The performance of a given geometry, and thus, the set of
the corresponding design variables, is measured by computing the objective function
F of the optimization problem. This function is the quantity of interest defined in
each application, e.g., the drag of a wing or the efficiency of a turbomachinery blade
row. The value of the objective function is computed by solving the Partial Differ-
ential Equations (PDEs) describing the physical phenomenon under consideration,
such as the Euler or Navier-Stokes equations. However, the absence of an analytical
solution to these equations makes the optimization process challenging, giving rise to
numerous approaches seeking the optimal set of design variables that maximizes or
minimizes the objective function. Optimization methods can be classified according
to various criteria. A common taxonomy is based on the method used to search the
design space for the optimal solution(s) and categorizes the optimization methods
into stochastic and deterministic ones.

After a short presentation of stochastic methods and, in particular, evolutionary
algorithms in subsection 1.2.1, the analysis proceeds in subsection 1.2.2, focusing on
gradient-based methods, which are mainly used in this thesis. In addition, it briefly
presents methods for computing the necessary gradient of the objective function.
Then, subsection 1.2.3 introduces the adjoint method and explains its formulations.
Finally, a literature survey about the implementation of adjoint methods on IBMs

and the cut-cell method is documented in subsections 1.2.4 and 1.2.5, respectively,

1.2. Shape Optimization in Fluid Dynamics 13

indicating the research gap addressed by this work.

1.2.1 Evolutionary Algorithms

Stochastic methods explore the design space in a heuristic-based manner [205], [290].
Evolutionary Algorithms (EA) are a notable representative of this class, and they
are based on a population-based optimization inspired by the Darwin’s theory of
biological evolution. According to that, individuals correspond to different sets of
design variables and are organized into generations. During the optimization pro-
cess, crossover, parent selection, and mutation operators are applied to the members
of each generation producing new individuals progressively closer to the optimal so-

lution.

The use of EAs is beneficial in several aspects. In particular, based on the ran-
domized search of the design space, they avoid local extrema reaching the global
optimum. Moreover, their use in multi-objective optimization problems is advanta-
geous due to their ability to compute the Pareto front of non-dominated solutions
directly. Another important characteristic is their non-intrusiveness. Hence, no
direct access is needed to the evaluation tool, i.e., the CFD solver, which is used
as a black box. Finally, compared to deterministic methods, the straightforward

treatment of constraints makes it a valuable tool for real-world applications.

However, an extensive number of evaluations is usually needed to reach the opti-
mal solution. Therefore, the optimization’s computational cost may be prohibitive,
especially in CFD-based applications where a flow simulation is needed for each
evaluation. Various techniques have been proposed to surpass this problem, such as
implementing surrogate evaluation models [155], [46] or developing distributed and
hierarchical optimization schemes [79], [156]. Moreover, EAs may be computation-
ally expensive in applications identified by a large number of design variables. In
such cases, even using the above methods may not reduce the cost at a reasonable
level. A remedy to this issue is the development of unsupervised learning techniques
such as the Principal Component Analysis (PCA) method [127], [169].

Although EAs have been used supplementary in this thesis, they are beyond its pri-
mary interest, and, thus, they will not be discussed further. A detailed study of this
field can be found in [151]. Instead, the principal contributions of this dissertation
are in the area of deterministic methods, discussed in subsection 1.2.2.

14 K. D. Samouchos

1.2.2 Gradient-Based Optimization Methods

The most well-known deterministic approaches belong to the Gradient-Based (GB)
optimization methods class. These approaches use the derivatives of the objective
function with respect to (w.r.t.) the design variables, also called sensitivity deriva-
tives, to explore the design space. Since every new update of the design variables
is based on the direction indicated by the sensitivity derivatives, significantly fewer
optimization steps are necessary than those required by stochastic methods [98].
However, contrary to the latter, GB methods are often trapped into local minima,
impotent to reach the global optimum. Moreover, their implementation in multi-
objective optimization problems is not straightforward.

Hybrid optimization methods attempt to combine the advantages of the stochastic
and deterministic methods treating their previously discussed drawbacks. Such ap-
proaches use gradient-based methods to improve promising individuals during the
optimization employed by evolutionary algorithms. Thus, in multi-objective opti-
mization problems, a single objective function is defined each time as the target of
the gradient-based method, while the rest act as constraints [163]. Another alterna-
tive uses weights to combine multiple objective functions to a single one, targeted
by the gradient-based method [149], [166]. Although this thesis mainly deals with
single-objective optimization problems, the tools developed in [153] are used else-

where.

Various GB methods have been proposed implementing different techniques to up-
date the design variables at each optimization cycle. They are separated into two
primary strategies, the line search [95] and the trust-region [341] ones. In particular,
line search methods initiate from a starting point in the design space and choose a
descent direction p’ (for minimization problems) along which the optimization will
proceed. Then, they solve a 1D optimization problem to compute the appropriate
step size that best maximizes/minimizes the objective function. In contrast, the
trust-region methods first choose a maximum distance at which a model function
accurately enough approximates F. Then, they seek the step size and direction

along which the best improvement is attained.

In line search methods, the derivatives of I’ are used to determine the descent di-
rection. According to the most straightforward approach, referred to as the steepest
descent method, the descent direction is aligned to that of the objective’s gradient.

However, due to its poor efficiency, other methods have been proposed. Among

1.2. Shape Optimization in Fluid Dynamics 15

them, the Newton method is one of the most remarkable. It uses the second deriva-
tives, i.e., the Hessian matrix, of F' providing fast convergence of the optimization
process. However, the additional effort required for the extra derivatives’ compu-
tation restricts its use in CFD-based problems. Therefore, quasi-Newton methods,
such as BFGS [95], have been introduced, approximating the Hessian matrix using
only first-order derivatives. Another method that balances simplicity and efficiency
is the conjugate gradient method [96] adopted in this thesis. This method computes
the " component of the descent direction as

new __ aF

' — + new qld
P; 5% 5" p;

? Inew

where various alternatives exist for the computation of ™" using exclusively first-
order derivatives from the current and previous optimization cycle. Although its
convergence is slower than in the two previous methods, its low memory requirements
make it suitable for CFD-oriented applications. Finally, a detailed presentation of

gradient-based optimization methods can be found in [229].

The computation of the gradient of F' strongly affects the efficiency of the opti-
mization. Unfortunately, in applications related to fluid dynamics, the objective
function’s expression w.r.t. the design variables is rarely available in a closed form,
making its differentiation pretty challenging. Therefore, in the absence of an ana-
lytical computation, the gradient is numerically approximated. Finite Differences
(FDs) stand for the most straightforward way to approximate the gradient. When
a central finite difference scheme is adopted, each design variable is subjected to
a positive and negative perturbation by a small quantity € while the rest remain
constant,

8FN F(bl,bg,"' ,bi—FE,"' ,bN>—F(bl,b2,"' ,bi—ﬁ,"' ,bN)
061_ 2¢

Each time, the geometry’s boundary slightly changes, affecting the surrounding
flow field and resulting in a different objective function value, which is evaluated
by solving the governing equations anew. Therefore, the gradient’s computational
cost is proportional to the number of design variables, making the implementation

impractical in multivariable problems.

Moreover, the resulted derivatives are sensitive to the value of the user-defined
variable €. Large values reduce the method’s accuracy, while small values cause

16 K. D. Samouchos

round-off errors, damaging the prediction of the gradient. The repetitive process
for determining its appropriate value further increases method’s computational cost.
However, its simplicity makes it valuable for validating other, more efficient methods.
The dependency of € is eliminated by using the Complex Variable Method [194], [17],
the cost of which is reduced to half but remains proportional to the design variables’
number. Another alternative is the Direct Differentiation Method [282], [28], which
is preferred for computing the Hessian matrix or in applications with more objective
functions than design variables. Since both are out of this thesis scope, and thus,
this method will not be discussed further.

1.2.3 The Adjoint Method

In contrast to the previously presented approaches, the adjoint methods compute
the gradient at a low cost, independent of the number of design variables [139],
[247]. This property makes them a viable alternative, appropriate for industrial-
scale applications. Its remarkable efficiency originates from introducing the so-called
adjoint variables, which satisfy the field adjoint equations. At each optimization
cycle, the flow equations are firstly solved. Next, the resulted flow field is used to
solve the system of adjoint PDEs. The latter comes at a cost comparable to that of
the governing equations. Finally, the flow and adjoint fields are introduced to the
sensitivity derivatives expression, computing the required gradient. Hence, the total
computational cost is equivalent to solving the flow equations twice.

The concept of the adjoint approach was introduced by Lions in 1971 [183]. However,
its first application in the field of fluid dynamics was made much later, in 1984, by
Pironeau [247], who studied physical systems described by an elliptic PDE. Later,
Jameson extended this work by mathematically developing [139] and applying [257],
[140] the adjoint method to the Euler equations. Over the following years, this
method has been employed in various real-world applications, such as in aecronautical
[259], [193], [168], [311] and automotive industries [233], [239], [237], [150]. A detailed

literature survey on adjoint methods can be found in [237].

Two main approaches constitute the adjoint methods depending on the way they
derive the adjoint equations. Firstly, the discrete approach [86], [16], [L03] uses the
discretized objective function and governing equations, and through their differenti-
ation, it defines the adjoint PDEs, the corresponding boundary conditions, and the

sensitivity derivatives expression in a discretized form. In particular, the flow solver

1.2. Shape Optimization in Fluid Dynamics 17

is differentiated either “by hand” or in a more automated way called Algorithmic
Differentiation [116], [71], [125]. The second approach is usually preferred when the
software under differentiation is quite complex, offering a straightforward process to
build its adjoint counterpart. Many tools performing automatic differentiation are
available, such as TAPENADE [300], ADIFOR [196], and ADOL-C [328]. However,
the resulting software tends to have high memory requirements, and thus, its use
may be prohibitive in large-scale applications. In contrast, “hand differentiation”

can prove tedious but avoids memory overuse.

In the second approach, called continuous adjoint method [18], [258], [164], the ob-
jective function and governing equations are differentiated in their continuous form.
After the appropriate mathematical development, the field adjoint equations arise,
accompanied by the corresponding boundary conditions and the expression of sensi-
tivity derivatives. Then, an adjoint discretization is chosen, usually equivalent to the
one used for the governing PDEs. Finally, the resulted adjoint field is substituted in
the sensitivity derivatives expression, which allow two different formulations. The
first one comprises only surface integrals and is referred to as Surface Integral (SI)
formulation [235], while the second one also involves field integrals and is called
Field Integral (FI) formulation [238]. In practice, the SI approach does not take the
impact of the volume mesh displacement during the optimization under considera-
tion, and thus, is unable to compute the accurate value of the gradient consistently.
On the other hand, the FI approach is more reliable but computationally expensive.
Thus, the Enhanced-Surface Integral (E-SI) formulation [160] has been proposed,
which bridges the gap between the aforementioned methods by introducing the con-
cept of the adjoint mesh displacement and by additionally solving the corresponding

adjoint equation.

The discrete and continuous approaches mentioned above are not equivalent in the
sense that they result in different approximations of the gradient. Hence, their
unique features and benefits have extensively been discussed in the literature [104],
[220], [138]. The main advantage of the discrete approach is its ability to deliver the
necessary gradient accurately. Moreover, the development of the software computing
the adjoint field is straightforward. On the other hand, in the continuous formula-
tion, the flow and adjoint solvers share many similarities, which reduces the invested
time for software development and the demand for memory resources. However,
choosing the appropriate adjoint discretization scheme is far from trivial and crucial
for accurately predicting the necessary gradient. The present study underlines the

usefulness of both discrete and continuous approaches by contributing in both direc-

18 K. D. Samouchos

tions. In particular, it develops a discrete adjoint solver by hand-differentiating the
cut-cell software. Additionally, it investigates the accuracy of various schemes used
for the continuous adjoint PDEs discretization. Finally, it applies both approaches
to practical optimization problems.

The previous short discussion on the adjoint methods denotes not only the extent
of various formulations but also the central role of mesh perturbation caused by the
geometry’s displacement during the optimization. Most implementations on body-
fitted meshes use mesh deformation tools to smoothly adjust the volume mesh on
the continuously modified optimized shape. The effect of the mesh perturbation
on the objective function is taken into account by differentiating the corresponding
tool [212], [256], [104]. Several studies have been performed on the impact of mesh
sensitivities on the gradient’s accurate computation, showing that their elimination
severely damages the optimization process [18], [188], [160]. On the other hand, their
computation entails the solution of an extra adjoint equation in both the discrete
[197] and continuous [160] methods (at least in the E-SI formulation), increasing
the computational cost of the optimization. Furthermore, mesh deformation tools
may fail to handle considerably large shape modifications, causing the premature
termination of the optimization process. Then, user’s intervention is unavoidable,
harming the unsupervised performance of the optimization. In contrast, this thesis
suggests the use of IBMs, which circumvent these issues by offering a robust and

reliable framework for the optimization implementation.

1.2.4 Adjoint Formulation to the Immersed Boundary Meth-
ods

Contrary to the body-conforming approaches, the immersed boundary methods over-
come the previously mentioned problems by restricting the effects of the geometry’s
deformation to a narrow zone of cells close to the wall. In particular, their capa-
bility to decouple the mesh generation from the geometry’s complexity allows for a
fully automated optimization regardless of the extent of the shape’s modification.
Moreover, IBMs combine the high accuracy of methods incorporating the mesh dis-
placement differentiation (e.g., the FI formulation) with the efficiency of strategies
that avoid the mesh perturbation effect (e.g., the SI formulation). Although several
approaches exploit the advantages of the immersed boundary methods using various
optimization strategies [66], [225], [221], [261], limited research has been conducted

1.2. Shape Optimization in Fluid Dynamics 19

on the adjoint-based gradient computation implemented in Cartesian meshes. Some

of the few examples are listed below.

Firstly, Dadone et al. [73], in 2005, introduced the discrete adjoint to the ghost cell
method and applied it in 2D flows. The necessary differentiation of the discretized
flow equations and the ghost boundary condition were approximated by FDs. Some
years later, Hinterberger et al. [129] performed topology optimization supported by
the continuous adjoint method, applied in automotive exhaust systems. A staircase
representation of the boundary was used, where each mesh cell was marked as fluid
or solid. Furthermore, Xu et al. [336] implemented the continuous adjoint method in
2D flows around moving bodies, where a continuous forcing approach expressed the
presence of the immersed geometry within the flow. More recently, Okubo et al. [231]
applied the discrete adjoint formulation in a flow solver implementing a ghost cell
technique in steady 2D problems. In a similar framework, Rutkowski et al. [265]
presented an adjoint Lattice Boltzmann Method for multi-objective optimization of
a 2D flapping airfoil.

1.2.5 Adjoint Formulation to the Cut-Cell Method

The implementation of adjoint methods on a cut-cell framework is remarkably rare
in the literature. Nemec et al. [224] first introduced in 2005 the discrete adjoint
formulation to the cut-cell method applied in transonic and supersonic flow opti-
mization problems governed by the 3D steady Euler equations. In particular, they
hand-differentiated the state equations w.r.t. the flow variables assuming that the
limiter remains constant during the shape transformation. Moreover, the sensitiv-
ity of the governing equations to the design variables was approximated by finite
differences. Then, in 2006 [222], they extended that work by incorporating an ac-
curate computation of the mesh sensitivities through the exact linearization of the
cut-cell geometry. In a succeeding study [223], they examined the effect of limiters
on the optimization, showing that the constant limiter assumption may harm the
gradient computation documenting a relative error of around 16% compared to FDs.
Finally, a later work of the same group [332] proposed an adjoint-based adaptive

mesh refinement method to minimize discretization errors of the low simulation.

Moreover, worth saying is the research in the field of cut finite elements. Firstly,
Benk et al. [34] applied this discretization method in fluid-structure interaction

optimization problems governed by the 3D Stokes equations. In particular, they

20 K. D. Samouchos

employed Nitsche’s penalty discretization method [195], which supports the compu-
tation of finite element integrals in cut-cells and computed the objective’s gradient
by using the discrete adjoint formulation. Moreover, Jenkins et al. [142] carried out
a topology optimization taking advantage of the cut-cell method’s accurate repre-
sentation of the fluid-solid interface. Again, Nitsche’s method was used and the
continuous adjoint formulation was implemented for the gradient computation. The
method was applied in 2D steady optimization problems, the fluid part of which was
modeled by the incompressible Navier-Stokes equations. Finally, the cut element

method assisted by discrete adjoint has been applied to acoustic shape optimization
problems [42], [82].

According to the above literature survey, there is much space for investigation con-
cerning the adjoint methods implemented in a cut-cell environment. The present
thesis contributes to the existing literature in the following ways. Firstly, it extends
the work of Nemec et al. by encapsulating the limiter differentiation in the discrete
adjoint formulation of the 3D compressible Euler equations. Then, it proceeds to the
implementation of the method in viscous and unsteady flows. Finally, the method
is applied in 3D incompressible flow optimization problems for the first time in liter-
ature. Another innovative aspect of this study is the introduction of the continuous
adjoint formulation to the cut-cell method by using a finite volume discretization.
Finally, an important side product of this thesis is the development of the ghost-cell

variation of the continuous adjoint method for the 3D unsteady Euler equations.

1.3 Thesis Outline

Motivated by the open issues indicated in the previous sections concerning the cut-
cell method and its use in conjunction with the adjoint methods, this dissertation
develops strategies and computational methods that bring the CFD-based anal-
ysis and optimization closer to industrial reality. The thesis is structured along
two axes. Firstly, chapters 2-5 are dedicated to the flow simulation employing the
cut-cell method. Then, chapters 6-9 are concerned with the adjoint methods and
optimization problems. Finally, chapter 10 summarizes the thesis contributions and
proposes some concepts for future development. The subject of each chapter is
shortly presented below.

Chapter 2 describes the algorithm generating a Cartesian mesh appropriate for flow

1.3. Thesis Outline 21

simulation based on the cut-cell method. The mesh is adapted to the immersed
boundaries and to flow phenomena of particular interest. The process is based on
an octree data structure and guarantees a smooth transition between regions of
different refinement levels. Emphasis is laid on the detailed presentation of the
algorithm constructing the cut-cells by intersecting the mesh with the geometry’s
boundary. Small cut-cells were merged with their neighbors to avoid instabilities
during the flow solution. Furthermore, a mesh partitioning technique is discussed
based on the Hilbert space-filling curve. In addition, a strictly conservative method
is developed dealing with Cartesian meshes over moving geometries. Finally, the
derivatives of geometric quantities required during the gradient-based optimization

process are computed.

Chapter 3 presents the numerical discretization of the compressible or incompressible
flow equations to a cut-cell mesh. The examined flow model concerns the steady
or unsteady Navier-Stokes equations, where the artificial compressibility method
is applied to stabilize the incompressible solver. Discretization is based on a cell-
centered, second-order finite volume method employing the MUSCL scheme and
Roe’s approximate Riemann solver. In unsteady simulations, the time integration
is based on a dual time-stepping technique. Special treatment is made for cells that
appear or disappear from the fluid region of the mesh in cases involving moving
bodies. Finally, this chapter describes a ghost-cell approach for steady and unsteady
flow simulations.

Chapter 5 aims to validate/verify the developed cut-cell flow solver in compress-
ible and incompressible cases selected from the literature. Firstly, inviscid flows
in external and internal aerodynamics are considered, demonstrating the benefits
gained by the direct imposition of the wall conditions. Then, laminar flow cases
are examined, focusing on the effect of the cut-cells’ irregularities on the boundary
layer representation. Emphasis is laid on the ability of the developed software to
produce highly accurate results, equivalent to those obtained by body-conforming
meshes. Finally, the proposed method’s ability to correctly predict flows around
moving bodies satisfying the conservation laws is investigated.

Chapter 5 illustrates the ability of the developed software to handle industrial cases.
Moreover, it indicates the benefits of implementing IBMs in various applications
due to the absence of limitations that usually accompany body-conforming meshes.
Indeed, the chosen applications accommodate complex geometries in relative motion,
proving the superiority of the cut-cell method against other CFD approaches. More

22 K. D. Samouchos

specifically, they deal with the unsteady compressible or incompressible internal flow

in a moving valve, a scroll machine, a diaphragm pump, and a submersible pump.

Chapter 6 is concerned with the mathematical development of the continuous ad-
joint method for compressible and incompressible flows implemented to the cut-cell
and the ghost-cell method. Each term of the governing equations is separately dif-
ferentiated, computing the contributions to the formulation of the adjoint equation
and the corresponding boundary conditions and sensitivity derivatives. Moreover,
an investigation is carried out about the adjoint Riemann problem definition and
the discretization of the field adjoint equations. Subsequently, the unsteady variant
of the adjoint method is studied, and data compression techniques are used to deal

with the increased demand for memory resources.

Chapter 7 discusses the discrete adjoint formulation to the cut-cell method. There-
fore, a hand-differentiation process is presented for all terms of the steady and
unsteady viscous flow equations for both compressible and incompressible flows.
Moreover, no simplifications are introduced, giving rise to the exact discrete adjoint
expressions and the accurate computation of the objective’s gradient. Furthermore,
a comparison is made between the resulting discrete terms and the corresponding
discretization schemes proposed for the continuous adjoint equations. Particular em-
phasis is put on the proper differentiation of algorithms treating the appearance and
disappearance of mesh cells in applications involving moving geometries. Finally,
smoothing techniques of the resulting sensitivity derivatives are proposed.

Chapter 8 demonstrates the ability of the developed adjoint software to accurately
compute the objective’s gradient. The assessment of the adjoint software concerns
compressible or incompressible flows around stationary or moving geometries. The
computed sensitivity derivatives are compared with central FDs in each case, result-
ing in minor deviations. After confirming the accuracy of the computed derivatives,
a shape optimization is carried out each time, using the conjugate gradient method.
Prompted by this investigation, the physical meaning of the adjoint variables is
shortly discussed.

Chapter 9 implements gradient-based optimization assisted by the adjoint method
in real-world applications. The coordinates of the surface nodes constituting the
geometry under modification are the design variables of the optimization problem.
Thus, the high number of design variables suggests the adjoint method as the only
reasonable approach for gradient computation. The presented optimization cases

1.3. Thesis Outline 23

are concerned with the total pressure losses minimization in an S-duct, the lift max-
imization of a wing, the outlet tangential velocity minimization in a submersible
pump, and the back-flow minimization along with the volume flow rate maximiza-
tion of a diaphragm micropump. In the last multi-objective optimization, a hybrid
approach is used, which combines evolutionary and gradient-based methods. Ad-
ditionally, uncertainties are introduced to the design variables of this optimization
problem. Finally, contrary to the previous applications, the adjoint to the ghost-cell
method is used to optimize a compressor rotor.

The theoretical development of the flow or adjoint problem presented in the pre-
vious chapters is facilitated by 16 Appendices. In particular, Appendices A and B
complete the analysis of the mesh generation. Appendices C to I further describe
the theoretical background of the discretization used in the compressible and in-
compressible flow equations. Appendices J to L discuss details about the boundary
conditions accompanying the continuous adjoint PDEs and the schemes used for
discretizing the adjoint convection term. Appendices M and N present the SVD
and PGD methods, respectively, for data compression used in unsteady optimiza-
tion problems. Finally, Appendices O and P give details about the mathematical
formulation of the convection term of the discrete field adjoint equations.

Computations have been performed on the high-performance computational plat-
form “VELOS” of the PCOpt/NTUA Unit. Two DELL PowerEdge blade servers
were used for simulations carried out by the cut-cell software and its adjoint coun-
terpart. Each of them is provided with 48 double-threaded AMD EPYC 7401 pro-
cessors with 128 Gb RAM and 2 GHz clock speed. Communication between blades
employs the MPI protocol. In addition, a supplementary cluster of NVIDIA Tesla
K20 GPUs was used for the ghost-cell flow and adjoint software operation.

Chapter 2

The Cut-Cell Mesh Generation

The unique characteristic that distinguishes the cut-cell method from other CFD
approaches is the special structure of the mesh used for the flow simulation. This
chapter describes a rapid, robust, and automated 3D Cartesian mesh generation
method for stationary and moving solid bodies capable of supporting inviscid and

laminar flow solvers.

The mesh generator takes a triangulated surface as input and generates a volume
mesh through the repetitive subdivision of an initial cell which defines the domain
boundaries. The process is based on an octree data structure, which is presented in
section 2.2. Moreover, methods responsible for the mesh quality improvement and
the enhancement of the flow simulation’s accuracy are discussed in section 2.3. These
approaches consider the smooth transition between regions of different refinement
levels and the mesh adaptation in the vicinity of solid boundaries, shock waves, and
large eddies.

However, the tree-like data structure introduces several complications damaging the
flow solver’s efficiency. These are related to the detection of neighboring cells and
the computation of geometric quantities necessary for the flow simulation. Thus, a
fully unstructured approach is preferred, presented in section 2.5. Moreover, this
section studies the faces and nodes numbering as well as the mesh separation into
its fluid and solid parts.

24

25

The most challenging part of the mesh generator is cutting the Cartesian hexahedra
intersected by solid surfaces, producing polyhedral control volumes. A robust algo-
rithm is discussed in section 2.4, which handles any possible intersection, clipping
the hexahedra against the body’s surface, and creating complex cut-cell topologies.
Issues relating to roundoff errors resulted from the intersection computation are also
studied. The generated cut-cells can be polyhedra of any shape and size. Thus, small
cell fragments may appear next to much bigger cells, causing numerical instabilities
during the flow solution process. This problem is usually mentioned in the literature
as the “small cell problem”. A cell-merging approach is developed in section 2.6 to

address this problem by geometrically merging small cells with their neighbors.

The mesh partitioning has a major impact on the efficiency of the flow solver’s
parallel behavior. The partitioner shown in section 2.7 is developed explicitly for
Cartesian meshes taking advantage of their special structure. It is based on the
Hilbert space-filling curve [4] exploiting its essential properties, further explained in
the same section.

In applications concerning moving solid bodies, the refined mesh follows their mo-
tion employing local refinement and de-refinement operations. A strictly conser-
vative method is presented in section 2.8 to handle large geometry displacements
by enforcing a cell clustering algorithm. In particular, the sudden appearance or
disappearance of cells from the domain is successfully treated, ensuring the satisfac-
tion of the conservation laws during the unsteady flow simulation. Additionally, the
section focuses on schemes used to extrapolate the current flow field to the mesh of

the following time step.

Finally, considering that this thesis deals with gradient-based shape optimization
algorithms, mesh differentiation is necessary. Therefore, all geometric quantities
computed by the mesh generator should be differentiated w.r.t. the nodes describ-
ing the input surface. Section 2.9 provides the corresponding mathematical devel-
opment resulting in the appropriate formulas for the computation of the requested

derivatives.

26 K. D. Samouchos

2.1 The Cartesian Mesh Data Structure

A wide variety of Cartesian mesh generation methods has been proposed in the
literature, dating back to the 1970s [55]. The firstly appeared meshes of this kind
were uniform, and their use was limited to few academic problems. Then, the
Adaptive Mesh Refinement (AMR) [41] extended the Cartesian meshes’ ability to
handle practical applications by accurately representing the flow solution at a low
cost. Furthermore, this refining process through cell-splitting operations effectively
combined the computational efficiency offered by a Cartesian structured mesh with
the flexibility of the widely used unstructured meshes.

Before discussing the AMR in detail, it is essential to introduce the terminology
adopted from computer science for the commonly used tree data structures. The
tree is a collection of hierarchically structured nodes linked with one parent node
starting from an initial root node. Fig. 2.1 shows a simple tree, where each node
has at most two children. Moreover, a leaf is a node located at the bottom of the
tree having no children. Every other node is called internal. Finally, an octree (or
quadtree in 2D meshes) is a tree where each internal node has at most eight children
(or four children in 2D).

Figure 2.1: A tree data structure of 3 levels. The root, internal, and leaf nodes are
colored black, red, and blue, respectively.

Two main approaches based on the AMR have been developed in the literature.
The first approach uses a sequence of overlapped structured meshes at different
hierarchies or levels [39], [251]. The nested hierarchical nature of the mesh perfectly

matches the tree-like data structure, which assists the communication between the

2.1. The Cartesian Mesh Data Structure 27

regular Cartesian meshes represented by tree nodes. Although efficient solvers for
structured meshes can be applied to each sub-mesh, the lack of flexibility in the
sub-meshes definition may lead to regions covered with unnecessarily dense mesh,
wasting substantial computational resources.

The computational efficiency of the AMR method can be increased by employing
the second approach, which matches each tree node with a mesh cell, allowing better
control of the mesh resolution [343], [242], [68], [55]. However, the computation of
the connectivity between cells is a very time-consuming process, especially in big
meshes, because a significant part of the tree data structure must be traversed before
a neighbor can be found.

The development of the Fully Threaded Tree (FTT) [162] further reduced the mem-
ory overhead required by the second AMR method. This new data structure stores
its information in structures called octs. Each oct contains a pointer to the parent
cell, a pointer to each child cell, the parent cell’s refinement level, and its position in
the domain. Although FTT allows for more efficient access to the information stored
in the tree, a complete tree traversal starting from the root cell is still frequently

required.

A better version of the FTT data structure is the Cell-based Structured Adaptive
Mesh Refinement (CSAMR) data structure [144], which constitutes the basis for
developing the data structure used in this thesis. Its novelty was the introduction of
Cartesian-like indices, which identify each cell by mimicking the cells’ enumeration
in structured meshes. A triplet (or a pair in 2D) of indices is stored for each cell,
which gives all the needed information about its parent, children, neighbors, and
Cartesian coordinates, significantly reducing the memory usage. Therefore, the
traversal of a considerable part of the tree, required by the previous approaches,

becomes unnecessary.

Although the CSAMR reduces the cost of the mesh connectivity computation, the
repetitive access to neighboring cells through the tree structure during the flow
simulation still delays the solution process. Thus, this thesis proposes an alternative
method that combines the CSAMR’s flexibility with the advantages of a conventional
unstructured data structure, which considers the mesh as a collection of arbitrary
polyhedra. Hence, despite using an unstructured framework, the hexahedral shape
of most cells leads to a pretty compact data structure. The developed method

consists of two stages. Initially, it uses the CSAMR to efficiently generate the

28 K. D. Samouchos

Cartesian mesh, keeping the required memory as low as possible. Then, it transfers
the necessary data to a face-based data structure, similar to the one presented in
[51], where the connectivity is explicitly stored and easily accessed by the flow solver.
Sections 2.2 and 2.5 explain in detail each of the two stages, respectively.

2.2 The Octree Mesh Generation

This section presents the first part of the mesh generation process, which results
in a initial mesh version. Its assistance by the tree data structure is discussed in
subsection 2.2.1. Additionally, the mesh adaptation to the geometry’s surface is
studied in detail. Next, subsection 2.2.2 introduces the integer coordinates used for
quickly identifying each cell. Their properties, expressed by mathematical formulas,
are given as well. Furthermore, methods to detect the immersed geometry are
examined in subsection 2.2.3. The whole algorithm is presented in a pseudocode
format in subsection 2.2.4.

2.2.1 The Octree Data Structure

The input of the volume mesh generator is the geometry’s surface in the Standard
Tessellation Language (STL) format, typically provided by a Computer-Aided De-
sign (CAD) package. Moreover, the box-shaped domain is described by inserting its
length along each Cartesian direction (d,, d,, d,) and the coordinates of its centroid
(%0, Yo, 20). The mesh generation begins with the definition of the root cell, which
coincides with the box itself. Then, the root cell is equally subdivided into 8 (or
4 in 2D meshes) children constituting the new generation of cells in the tree data
structure.

Subsequently, the cell splitting procedure repeatedly produces new generations of
cells extending the octree data structure. Each newborn cell is geometrically con-
tained within its parent’s boundaries and is placed below the parent cell in the tree
data structure. Therefore, whenever a cell is deemed appropriate for subdivision, a
new sub-branch is created below its position in the tree, and the mesh generation
process is driven through the new sub-branch, implying the partition criteria to the
newly created cells. Fig. 2.2a presents a 2D root cell split into four children, the

one of which is further subdivided into four offspring. The resulted tree is shown in

2.2. The Octree Mesh Generation 29

fig. 2.2b.

The splitting of each cell can be isotropic [51], [124] or anisotropic [67], [6]. Contrar-
ily to an isotropic division, the anisotropic refinement allows for different splitting
in each direction. The latter provides a reduced mesh size but sacrifices the sim-
plicity of the data structure supported by the Cartesian mesh nature, and thus it is
avoided.

Figure 2.2: (a) The root cell indexed 0 is subdivided into four children, namely 1,
2, 3, and 4. Then, cell 3 is further subdivided into cells 5, 6, 7, and 8. (b) The
process is depicted in the tree structure, where each node corresponds to one cell.

The nodes’ colors are explained in fig. 2.1.

30 K. D. Samouchos

Next, the refinement criteria are discussed. Initially, cells are subdivided until an
acceptable refinement level, defined by the user, is reached. The satisfaction of this
condition produces a uniform Cartesian mesh. Subsequently, the subdivision process
continues, triggered by either geometric or flow field requirements. Nevertheless,
only geometry-based adaptation criteria are used during the initial mesh generation
due to the absence of the flow solution. Mesh adaptation guided by local flow
phenomena will be discussed in section 2.3. So far, the mesh is adequately refined
in the wall’s proximity by subdividing cells cut by the solid boundary.

During the subdivision process, the maximum refinement level difference between
neighboring cells is limited to one. This restriction is imposed along the mesh gen-
eration process by splitting each cell adjacent to more than four (or two in 2D)
neighboring cells through a single face. Hence, the intersected cells’ division quickly
propagates through the mesh, affecting cells far from the immersed geometries, in-
creasing the mesh quality by smoothly varying its resolution from dense regions close
to the bodies to coarser areas in the far-field. Furthermore, this constraint accel-
erates the mesh connectivity computation avoiding the time-consuming traversal of

considerable parts of the octree structure.

The mesh refinement process terminates after a predefined limit is met. Two differ-
ent limits can be imposed, leading to a differently refined mesh. In the first case,
the user specifies the minimum allowed cell size, preventing the subdivision of cells
smaller in volume than the limit’s value. This condition provides an almost uniform
mesh resolution close to the wall, independent of the geometry’s structure. Alterna-
tively, cells are subdivided until the mesh resolution becomes similar to the adjacent
triangles’ size of the solid surface. This requirement is achieved by refining the mesh
until all cells intersected by the wall contain at most two surface nodes. Although
the mesh is usually independent of the surface mesh structure in all IBMs, defining
the local cell size by the surface resolution offers a direct and flexible way to control
mesh generation. In such a case, the surface discretization should be finer in high
curvature regions, which usually induce complex flow phenomena.

2.2.2 The Integer Coordinate System

A standard structured mesh indexing (i, 7, k) is stored to identify each cell efficiently.
By definition, the triplet of indices determining the root cell is (1,1,1). The rest of
the cells are automatically labeled following the rule illustrated in fig. 2.3. Fig. 2.3a

2.2. The Octree Mesh Generation 31

depicts an arbitrary cell, identified by integer coordinates (i, 7, k), split into eight
equally sized subcells. Colors are used to separate the two quartets occupying the
bottom and top half of the cell. The indices given to each subcell of the two quartets
are shown in figs. 2.3b and 2.3c.

Figure 2.3: (a) A Cartesian cell with integer coordinates (4, j, k) is subdivided into
8 children. Their integer coordinates are shown in (b) and (c) for the upper and
lower quartet, respectively.

Based on this rule, the children and the parent of each cell are easily computed as

(ic;jmkc) — (2Z+ll,2j+l2,2k+13) \V/ll,lz,l:g :O,l (21)

(i, dos k) = <int B] it [%] it {SD (2.2)

and

32 K. D. Samouchos

where the function int[x] returns the integer part of x. Fig. 2.4 defines a local
numbering for the children of each cell, useful in later topics.

LILS
B

(a) (b)

Figure 2.4: Children local numbering for (a) bottom and (b) top cells of fig. 2.3.

Moreover, each generation of cells is identified by integer L, which shows the level
of refinement. Initially, the level of the root cell is zero representing the coarsest
possible level. The 8 cells of the next generation correspond to L =1. Generally,
the level of an arbitrary cell is equal to the level of its parent increased by one and
is given in one of the three following equivalent alternatives

L =int [logs(i)] = int [log2(j)] = int [loga(k)] (2.3)

Finally, by using the stored index information, the dimensions and centroid of each
cell can explicitly be calculated as

1
(Az, Ay, Az) = 5L (dg,dy,d,) (2.4)
and

1
xcza:o—%dm—l—(i—l—E)Ax

2
3 1
Ye = Yo = 5dy + <J + 5) Ay (2.5)
3 1
Zc—20—§dz+ (k—|—§> Az

Even though the integer coordinates identify each cell successfully, introducing a

2.2. The Octree Mesh Generation 33

single integer that uniquely specifies each cell would occasionally be beneficial. Con-

sequently, the index I D is defined as

6
ID:4L(k—1)+2L(j—1)+(i—1)—?(8L—1) (2.6)
The proof of the above equation is given in Appendix A. Although this quantity
is mentioned in the literature (e.g., in [144]), its exponential rise to extremely high
values makes it impractical in 3D cases. Finally, the computation of integer powers
of two in the preceding equations is implemented very efficiently by using the bitwise

left shift operator, available in most programming languages.

2.2.3 Detection of the Immersed Geometry

The mesh adaptation to the solid bodies’ surface requires the detection of the em-
bedded geometry. To this end, cells cut by the solid surface should be identified
employing a fast and robust tagging procedure based on the already developed tree
data structure. The process starts by finding all triangular geometry facets con-
tained to or intersected by the root cell. After its split, the same process is repeated
for each one of its eight children. As the mesh subdivision continues, newly created
cells inherit the triangle list of their parents. Thus, the list gets shorter after each
successive subdivision increasing the efficiency of the cut-cells detection procedure.

The conditions responsible for testing the inclusion or intersection of a triangle
by a Cartesian cell are checked remarkably often during the mesh generation and,
therefore, should be carefully chosen. At this point, some necessary definitions are
given. Firstly, the plane at which each face lies separates the 3D space into two
subspaces. Let the one containing the entire cell be called internal and the other
external. Moreover, the active area of a face is defined as the set of points satisfying
the following conditions. Firstly, they belong to the external subspace of the face,
and secondly, their projection to the face’s plane belongs to the face.

The algorithm’s structure consists of a number of consecutive geometric conditions
arranged in ascending order in terms of computational effort. Hence, each criterion
is checked only if its former is not satisfied. The conditions are:

1. If at least one triangle vertex is located inside the cell, return true.

34 K. D. Samouchos

2. If all triangle vertices are placed into the external subspace of any face, return
false.

3. If two triangle vertices are located in the active area of two opposite faces,

return true.

4. If the list of vertices resulting from the Sutherland-Hodgman algorithm, ex-

plained in section 2.4.1, is empty, return false. Else return true.

When the mesh generation ends, cells farthest down the hierarchy, called leaf cells,
belong to different refinement levels and satisfy all the aforementioned geometric
requirements. However, they do not constitute the final version of the mesh. Indeed,
extra adjustments are needed to prepare the mesh for the flow simulation process
because, until this step, the mesh connectivity is inaccessible by the flow solver,
cut-cells have not been constructed yet, and cells that are covered entirely by the
solid bodies are still part of the mesh. The following sections deal with these issues

explaining the next steps of the mesh generation.

2.2.4 Pseudocode of the Octree Generation

To sum up, given a list of all triangular surface facets, i.e., “surfaceTriangles”, the

data provided and stored in memory by the process presented in this section are:
1. List “cells”, which stores the integer coordinates for each cell belonging to the
octree data structure.

2. List “cellPosition” mapping the integer coordinates of each cell with the cell’s
position in list cells.

3. List “celllsRefined”, which consists of a boolean variable for each cell that is
true only for leaf cells. Cells numbered by list cells are in correspondence with
those listed in “celllsRefined”.

4. List “cellTriangles” containing the list’s “surface Triangles” position of tiangles
enclosed or intersected by each cut-cell.

Finally, Algorithm 1 presents the mesh generation process in a pseudocode form.

2.2. The Octree Mesh Generation 35

Algorithm 1: Tree Data Structure Mesh Refinement (1)
input : surfacelriangles

output: cells, cellPosition, celllsRefined, cellTriangles

1 Main Function meshGenerator ()

// create data for root cell
2 i+ (1,1,1) // integer coordinates
3 cells[0] « 7
4 | cellPosition[i] < 0
5 celllIsRefined[0] < false
6 cellTriangles|0] < intersectionOrInclusion (surfaceTriangles)
// create tree data structure
7 refinement < true
8 Npin < 0
9 while refinement is true do
10 refinement < false
11 Nz < totalNumber0fCells ()
12 foreach cell ¢ € [Npin, Niaz) do
13 if cellMustSplit(c) then
14 splitCellAndNeighbours(c)
15 refinement < true
16 end
17 end
18 Npin < Niaw
19 end
20 return

The main function “meshGenerator” uses three functions, the purpose of which is
further explained. The first one, called “intersectionOrInclusion”, identifies the tri-
angles of the given list that are totally or partly located in the cell’s region. The used
criteria are presented in subsection 2.2.3. Moreover, function “cellMustSplit” decides
which cell is suitable for subdivision applying the already discussed user-defined cri-
teria. Finally, function “splitCellAndNeighbours” is presented in Algorithm 2 and
properly subdivides the given cell and its neighbors, ensuring that their difference
in refinement level is at most equal to one. Moreover, its recursive behavior, sup-

ported by many programming languages, significantly boosts the mesh generation

36 K. D. Samouchos

procedure.

Algorithm 2: Tree Data Structure Mesh Refinement (2)
1 Function splitCellAndNeighbours(c)

2 i + cells[c]

3 foreach non-boundary face f of cell ¢ do

4 in < findNeighbor (7, f) // add #1 to one integer
coordinate

5 ;p < findParentCell(i,) // use eq. 2.2

6 ¢, + cell Position]i,]

7 if not celllsRefined|c,] then neighbors <— addToList (c,)

8 end

9 splitCell(c)

10 foreach member k of list neighbors do

11 ¢p < neighbors|k]

12 splitCellAndNeighbours(c,) // recursion

13 end

14 return

15 Function splitCell(c)

16 i + cells[d]

17 | celllsRefined[c| < true

18 N < totalNumber0fCells()

19 foreach child k do

20 ip + £indChildCell (7, k) // use eq. 2.1; k from fig. 2.4
21 cells|N + k] < i,

22 cell Position[i,] < N + k

23 celllIsRefined[N + k] < false

24 cellTriangles|N + k| < intersectionOrInclusion (cell Triangles/i])
25 end

26 return

The mesh generator’s speed depends on the size of the corresponding tree. For
example, the wall-clock time for the mesh generation around the ONERA M6 wing,
used for an inviscid flow simulation, is approximately 0.2510¢ leaf cells/min. In
contrast, the generation of meshes for internal aerodynamics is faster, exceeding the
2.5100 leaf cells/min. because a reduced variation in cell size is expected. Software’s

2.3. Mesh Smoothing and Flow Adaptation 37

efficiency is comparable with other Cartesian mesh generators found in literature,
e.g., 10° cells/min. in [6]. Finally, fig. 2.5 shows the resulted mesh around an isolated
airfoil. On its left, the shape of the airfoil and the given domain are presented, while
on its right the final mesh after the implementation of Algorithm 1 is depicted.

(a) (b)

Figure 2.5: (a) An isolated airfoil located within a squared computational box. (b)
The resulted mesh after the implementation of Algorithm 1.

2.3 Mesh Smoothing and Flow Adaptation

This section highlights two essential functionalities of regular body-conforming meth-
ods and proposes alternatives that mimic their behavior in the Cartesian mesh en-
vironment. Indeed, they increase the quality of the mesh by smoothing out the
refinement level variations between different mesh regions and applying flow-field
adaptation whenever considered necessary.

One major drawback of the mesh produced by Algorithm 1 is the abrupt cell’s
size growth with the distance from the wall, approximating the rate of a geometric
progression law with a scale factor of 8 (or 4 in 2D). However, these sharp coarsening
progressions adversely affect the convergence and accuracy of the flow solver, causing
significant errors, especially in the proximity of large flow gradients. In contrast,
conventional body-fitted mesh generators impose smooth cell size changes, especially

in the development of boundary layers. Therefore, a smoothing is performed in

38 K. D. Samouchos

the already generated mesh, reducing the differences between refined zones and

increasing its quality.

The developed smoother applies Algorithm 1 to all leaf cells, taking advantage of its
recursive nature to increase the procedure’s efficiency. However, the criterion for the
cell subdivision used in function “cellMustSplit” differs detecting cells larger than a
predefined volume limit V;, which are consecutively split until the condition is met.
The criterion is applied to all non-cut-cells being closer to the geometry than a fixed
value rg. Moreover, volume V; differs between cells, smoothly progressing from the
size of cut-cells V, to the maximum allowed cell size V., according to the formula

‘/l:fvmaa:—f_(l_f)‘/c

" 3 ” 2
f:—2<—> +3(—) ., T <1
To To

Variables V, and r represent each cell’s distance from the wall and the volume of the

where

closest cut-cell, respectively. However, the computation of their exact values is chal-
lenging. Several approaches have been proposed for the distance field computation
such as the solution of the eikonal equation [281] or other attempts of equivalently
high cost. Instead, a more efficient approximation method is preferred, explained in
the following steps.

Firstly, it is considered that the distance of each cut-cell centroid from the closest
wall is zero in the absence of more information at this stage of the mesh generation.
On the contrary, the distance between cells is easily computed and temporarily
stored in list “distanceFromNeighbors” applying eq. 2.5. Using this information,
cells in the first layer away from the wall detect and store the closest neighboring
cut-cell and the corresponding distance into lists “closestCutCells” and “distance-
FromWall”, respectively. Then, the process is repeated between cells of the first and
second layers. A cell of the second layer approximates its wall distance by adding its
distance from the closest neighbor of the first layer to the latter’s already computed
wall distance. The process gradually propagates to successive layers until all cells
are reached. Algorithm 3 depicts the above method in a pseudocode form.

Two lines of Algorithm 3 need further explanation. Firstly, line 4 creates a list
data structure with just one member deleting any previously stored information.

Secondly, line 8 uses dynamical memory allocation to add new members to the list.

2.3. Mesh Smoothing and Flow Adaptation 39

Finally, the body of function “minimumDistanceFromNeighboursFound” is shown
in Algorithm 4.

Algorithm 3: Mesh Smoother (1)
input : distanceFromNeighbors

output: distanceFromWall, closestCutCell

1 Main Function meshSmoother ()

2 foreach intersected leaf cell ¢ do
3 foreach neighbor ¢, of cell ¢ do
4 list < createListWithOneMember (c,)
5 foreach member k of the list do
6 cr < list]k]
7 if minimumDistanceFromNeighborsFound(c;) then
8 ‘ list +— addToListAl1lCellNeighbors (cy)
9 end
10 end
11 end
12 end
13 return

Algorithm 4: Mesh Smoother (2)

1 Function minimumDistanceFromNeighboursFound (c)

2 cell Distancel sRecomputed < false

3 foreach neighbor ¢, of cell ¢ do

4 d < distanceFromWall[c,] + distanceF'romN eighbours|c][c,]
5 if distanceFromWall[c] > d then

6 distance FromWall[c] < d

7 closestCutCell|c] < closestCutCell|cy)

8 cellDistancel s Recomputed < true

9 end

10 end

11 return cellDistancel s Recomputed

40 K. D. Samouchos

Fig. 2.6 shows the modification caused by Algorithm 3 to the mesh of fig. 2.5b.

(a) (b)

Figure 2.6: (a) The mesh around an isolated airfoil originated from fig. 2.5b. (b)
Resulting mesh smoothened by Algorithms 1 and 3.

Another essential feature of mesh generators is their ability to perform local mesh
enrichment triggered by characteristics of the current flow solution. Consequently,
cells are added to regions where an increased resolution is required, improving the
simulation’s accuracy. Contrary to body-fitted meshes, solution-based refinement in
the proposed mesh generator is straightforward by taking advantage of the tree data
structure. In particular, after specifying a region of high interest, cells are further

subdivided by simply creating new sub-branches in the already developed tree.

Hence, in addition to geometric refinement, described in section 2.2, flow-field re-
finement is also possible by further exploiting Algorithm 1 supported with different
subdivision criteria. The new conditions employ flow sensors to detect specific phys-
ical flow phenomena and activate cell refinement. Mesh adaptation is performed
several times during the flow simulation. Each attempt takes place only after the
solution is sufficiently converged, providing a trustworthy approximation of the flow
solution. After the mesh enrichment is completed, the flow field is transferred to the
newly adapted mesh, and the solution process continues until convergence criterion

1S met.

The sensors developed in this thesis detect shock waves and viscous wakes. Grid

adaptation along discontinuities is firstly discussed. A cell is flagged for refinement

2.3. Mesh Smoothing and Flow Adaptation 41

under the condition

U1

— =1
c

<€

It detects cells placed in a zone of width € close to the normal Mach number’s iso-
surface of unity computed along the perpendicular to the shock direction, expressed
by the unitary vector 7 [187]. This vector is parallel to the local pressure gradient,

which implies

Vp
|Vp|

The notation of the above flow quantities is explained in chapter 3. Due to the

n=

absence of the converged flow field, errors in the pressure gradient computation lead
to false shock wave detection. To overcome this issue, the filtering

V| < w[Vplmas (2.7)

is applied, where w is a user-defined factor [348]. Additionally, in unsteady flows, a
correction is needed to detect the transient shock wave. Therefore, as proposed by

[187], an additional term is introduced to the aforementioned relation,

1 1 dp v-nm
Zw—ma + 7 —1| <e€

The detection of the viscous wake, characterized by the presence of flow recirculation,
is more complicated. Many sensors have been proposed, like the helicity method
[178], the Ag criterion [143], or the vorticity indicator [83]. An overview of existing
detection methods is given in [146]. However, this study uses a simpler and more
efficient criterion, in terms of computational cost, based on the total pressure (p;)

drop in regions with high viscous effects [214]. It is expressed as

Pt < NMPtoo

where p;. is a user-defined threshold usually chosen equal to the far-field total
pressure. Filter 2.7 is additionally used. Moreover, the reduction in n at each

successive adaptation improves the sensor’s behavior.

42 K. D. Samouchos

2.4 The Cut-Cell Generation

It has already been emphasized that the great advantage of the cut-cell method
is the automatic and fast Cartesian mesh generation. Indeed, the process devel-
oped in the previous sections is very efficient and independent of the geometry’s
complexity having also low memory requirements. However, the cost to pay for its
simplicity is the computation of the intersection between the solid surface and the
Cartesian background mesh, making the cut-cells construction the most crucial part
of the mesh generation. However, robust algorithms available in the literature deal
efficiently with this challenging task, simplifying and automating the intersection
procedure.

Initially, the appropriate terminology adopted in this thesis is introduced starting
from clarifying the term “Cartesian cell”. This cell is part of the background mesh
and has the shape of a rectangular cuboid. Whenever intersected by the solid
surface, its fluid part is occupied by the corresponding cut-cell. Fig. 2.10d illustrates
an arbitrary cut-cell consisting of Cartesian-directed faces and boundary cut-faces
colored blue and red, respectively. The first set’s faces are part of the Cartesian
black-colored background mesh and are called fluid faces. On the other hand, the
faces of the second class are part of the triangulated surface and are mentioned
as solid faces. Since both the Cartesian cell and the triangles are convex, their
intersection produces convex solid faces. In contrast, fluid faces may be convex or

concave.

Similarly, the nodes forming the cut-cell are split into two categories. Those belong-
ing to the initial hexahedral cell are denoted as fluid nodes and are highlighted in
fig. 2.10c. The rest are marked in blue in fig. 2.10a and are called solid nodes. The
latter are subdivided further into two categories, the external nodes, which are part
of at least one fluid face, and the internal nodes, which are located in the interior of
the Cartesian cell. Finally, the consecutive line segments linking external nodes of
the same external face comprise a fluid polyline. Fig. 2.10b depicts a cut-cell with

four fluid polylines plotted with blue.

In the developed mesh generation method, the already constructed background mesh
facilitates the cutting process. In particular, the tree data structure provides each
cut-cell with the geometry facets needed for the intersection computation. Moreover,

for simplicity reasons, each cut-cell is generated separately from the rest, paying the

2.4. The Cut-Cell Generation 43

extra cost of determining twice the shape of faces between neighboring cut-cells.
Hence, the developed algorithm focuses on the intersection of a single Cartesian
cell by an arbitrary triangulated surface. Its purpose is to construct the result-
ing polyhedron and compute all the necessary topological information for the flow

simulation.

Although the concept of such an intersection algorithm may be straightforward, its
implementation is delicate. In a general case, the topology of a cut-cell may become
very complex, containing dozens of nodes and faces. Thus, the proposition of a
robust algorithm considering all possible geometric cases, including the hexahedron’s
separation into more than one discrete finite volume, is of paramount importance.
The proposed method is partly based on techniques from the field of computer
graphics [226], and its consecutive steps are described in the following subsections.
Finally, the introduction of some assumptions considerably simplifies the cut-cell
construction. Under this point of view, a second algorithm has been developed,
which requires low computational and memory resources, presented in Appendix B.

2.4.1 The Construction of Solid Faces

The first step in the cut-cell construction algorithm is forming the solid faces by
cutting off the surface triangles’ parts that extend beyond the Cartesian cell’s vol-
ume. The cutting procedure implemented in this thesis is based upon the concept
of polygon clipping [6], which in 2D indicates the process where a square-shaped
Cartesian cell acts as a window, and its target is to compute the visible parts of a
polygon through it. Among various alternatives found in the literature [180], [340],
this section applies a robust and straightforward algorithm proposed by Sutherland
and Hodgman [296], which has the attractive property that the returning polygon
keeps the initial order of its vertices. Moreover, its only requirement is for the clip
window to be convex, making it suitable for trimming the solid triangular facets
protruding from the cell’s region.

The procedure will be firstly explained in 2D and then extended to the more com-
plicated 3D case for the reader’s convenience. The algorithm’s key feature is the
division of the clipping operation into a sequence of simpler problems by implement-
ing a loop over the edges of the rectangular cell, focusing each time on the relative
position between the polygon and the Cartesian edge. Fig. 2.7 illustrates the it-

erative process through four successive steps. During each step, the corresponding

44 K. D. Samouchos

Cartesian edge is extended infinitely in both directions, splitting the 2D space into
two areas, the visible and the invisible one. Then a nested loop sweeps over all
segments of the polygon. If a segment crosses the extended edge, the intersection’s
point will be added as a new vertex to the polygon, but if a segment lies entirely in
the invisible area, then it will be discarded. Therefore, a new polygon is created after
each iteration, which is then imported to the next one. Finally, once all edges have
been processed, the resulting polygon will entirely be placed inside the Cartesian
cell.

() (d)

Figure 2.7: The geometric representation of the Sutherland and Hodgman polygon
clipping algorithm. Each edge of the black square is infinitely extended and the non
visible part of the triangle is cropped.

2.4. The Cut-Cell Generation 45

Algorithm 5 presents the generalization of the previously described procedure in 3D.
It is adjusted in the case where the viewing window is a rectangular cuboid. Function
“vertexIsVisible” checks the relative position of the polygon’s vertices against the
infinite extension of face f. Thus, fast spatial comparison operators are introduced
to increase the algorithm’s efficiency. These are based on outcode flags associated
with each vertex location with respect to the hexahedron. The outcodes’ definition
is inspired by the study of crystalline structures and is discussed in detail in [6].
However, these operations are prone to roundoff errors, especially for vertices placed
very close to the face’s plane. Therefore, the plane is slightly displaced towards the
invisible subspace to encompass the questionable vertices to the visible area making

the algorithm less dependent on the computers’s precision.

Algorithm 5: Sutherland-Hodgman Clipping Algorithm
input : polygon

output: polygon

// every enumeration starts from zero
1 foreach face f of the rectangular cuboid do
foreach vertex v, of polygon do

2
3 N <— totalNumber0fVertices (polygon)

4 ve = (v + 1) mod N // next vertex of u

5 if vertexIsVisible(f, vy, polygon) then

6 polygon New < addVertexToPolygon (v, polygon)
7 if not vertexIsVisible(f, vy, polygon) then

8 p < findIntersection(f, v, v, polygon)

9 polygonNew < addVertexToPolygon (p)

10 end

11 else if vertexIsVisible(f, vy, polygon) then

12 p < findIntersection(f, vy, ve, polygon)

13 polygonNew < addVertexToPolygon (p)

14 end
15 end

16 polygon < polygon N ew

17 polygonNew < clearMemory ()

18 end

46 K. D. Samouchos

2.4.2 The Construction of Fluid Faces

The construction of the solid faces, shown in subsection 2.4.1, is only a part of
the cut-cell creation process. The reason is that although Algorithm 5 sufficiently
computes the vertices’ coordinates of each solid face in the correct order, it does not
give any other connectivity information. Hence, the target of the present subsection
is the computation of the resulting polyhedron’s topological features, which are

summarized as:

1. A vertex-coordinates mapping, which connects each vertex index with its spa-

tial coordinates avoiding the existence of coincident vertices

2. A face-vertices mapping, which describes the faces by their vertices in a coun-
terclockwise order

3. A face-cells mapping, which declares the cell in which each face belongs

The last mapping is useful only when a Cartesian cell is split into more than one

cut-cells.

The developed method initially focuses on solid faces. Firstly, it separates the inter-
nal and external nodes by comparing the coordinates of each solid node, computed
by Algorithm 5, with the coordinates of the hexahedron’s faces given by eqgs. 2.4
and 2.5. A useful sideproduct of the comparison is identifying the face on which
each external node is laid. These belonging to more than one faces are located at
the edges of the Cartesian cell and flagged as edge nodes to be easily accessed in a
subsequent step of the algorithm.

Next step deals with the multiple storage of each solid node’s coordinates resulting
from the clipping algorithm’s implementation in each triangle separately. Thus,
each node is stored in memory as many times as the number of solid faces it belongs
to. The unification of internal nodes is straightforward because they are usually
numbered by the surface’s data structure on which they belong. On the other hand,
all external nodes arise from the intersection of a surface triangle with a Cartesian
cell, and their unique identification is not straightforward.

To this end, a loop over the solid faces is implemented, searching for edges placed

on the faces of the hexahedron. Each one of these edges represents a directional line

2.4. The Cut-Cell Generation 47

segment being part of a fluid polyline. Fig. 2.8a depicts a Cartesian face, which is
cut by an arbitrary solid surface. The intersection results in edges computed from
Algorithm 5 as parts of the solid faces and represented by red segments directed
from the empty to the filled cycle. Then, the edges are linked to construct the
fluid polylines for each face. The process successively connects the ending node of
each edge with the beginning of the next one by detecting coincident nodes, fig. 2.8b.
The comparison of nodes’ coordinates is prone to roundoff errors, and thus, avoided.
Instead, identical nodes are verified by checking the identification integer number
of the surface mesh’s edge to which each node belongs. The formation of each fluid
polyline starts and ends to a node located at an edge of the hexahedron. By the
end of this process, all double-stored external nodes have been discarded.

Until now, the solid faces have been formed, and all internal and external nodes are
uniquely stored in memory, resulting in the vertex-coordinates mapping. Next, the
fluid faces are formed. The first step is to put all nodes located at the boundary, i.e.,
the edge nodes, of each Cartesian face in the correct order forming a list starting
from a node that indicates the beginning of a fluid polyline. The order follows the
orientation of the face’s boundary which is defined by the right-hand rule such that
the normal to the face points always outwards. In the example of fig. 2.8¢c, the
boundary’s orientation is counterclockwise, represented by black arrows. Moreover,
the correct numbering of the edge nodes is also shown in this figure.

Next, the fluid nodes of each Cartesian face are detected. It is done by sweeping
over the members of the before-mentioned list and classifying the four corner nodes
by changing the status from solid (represented as a yellow dot) to fluid (represented
as a blue dot) each time a solid node is met. For example, in fig. 2.8¢, the process
starts from node 1. If the next node in the list is one of the square’s four corners, it
will be labeled solid. Instead, node 2 is detected, changing the status from solid to
fluid which means that node 3 is a fluid node.

Then, the formation of fluid faces is possible by iterating over the edge nodes and
creating polygons by using the fluid nodes and fluid polylines. In fig. 2.8¢c, the
process starts from node 1. The red arrows guide the algorithm through the fluid
polyline to node 7. Then, the black arrow indicates the next node identified by index
8. The process continues till node 1 is met. The set of nodes defining this route
forms a fluid face of the cut-cell. The process continues with the next edge node
that is not included in the already defined fluid face, i.e., node 2. The two routes
are presented with blue in fig. 2.8d. Finally, the detected faces are blue-colored in

48 K. D. Samouchos

fig. 2.8e. By the end of this stage, the face-vertices mapping is completed for all
faces of the cut-cell.

Figure 2.8: Construction of fluid faces in a Cartesian face (black square). The
resulted intersection of the Cartesian face with a single triangle of the solid surface
is represented by a red line connecting an empty with a filled cycle and is illustrated
in (a). The process starts from (a) by linking consecutive red edges and ends to (e),
showing the resulting faces with blue.

2.4. The Cut-Cell Generation 49

Subsequently, the face-cells mapping is created when the intersection between the
Cartesian cell and the wall results in multiple cut-cells. Firstly, the solid nodes
constructing each cut-cell are identified. The process starts by considering that an
arbitrary solid node is part of the first cut-cell. Then, all the solid nodes connected
to it belong to the same cell. The process continues by marking the neighbors
of the just specified nodes until no other node can be added to this set. Next, a
non-identified arbitrary node is considered part of the second cell, and the nodes’
designation continues until all solid nodes are classified. Afterward, fluid nodes are
labeled, which is done by visiting fluid faces containing at least one solid node and
listing the rest of the nodes to the same cell. This method also corrects the label
of solid nodes which are part of the same cell without sharing the same face. After
classifying the solid and fluid nodes to the corresponding cells, each face is linked to
the cell in which its nodes belong.

2.4.3 Illustration of the Cut-Cell Construction

This subsection discusses some examples of the cut-cell procedure offering a practical
view of the methods explained in the previous subsections. Firstly, the intersection
between a cube and a triangulated surface, shown in fig. 2.9a, is studied. The
Sutherland-Hodgman algorithm is implemented for each red triangle to crop their
part located outside the black cube. Different stages of the process are presented
in fig. 2.9 describing the trimming of each triangle from each cube face. The fi-
nal surface shape, shown in fig. 2.9p, is the input of the algorithm explained in
subsection 2.4.2. Its four distinct steps are presented in fig. 2.10. The first step,
fig. 2.10a, discards the duplicated internal nodes, marked in blue, while the second
step, fig. 2.10b, generates the fluid polylines, highlighted with blue, resulting in a
uniform node numbering. The eight vertices of the cube are labeled as fluid or solid,
which are indicated with blue or yellow, respectively, in fig. 2.10c. Finally, the fluid
faces of the cut-cell are defined, which are colored in blue in fig. 2.10d. The resulted
polyhedron is appropriately shaded in fig. 2.11, giving a better perspective in its 3D
shape.

Subsequently, the developed method’s capabilities are tested on various demanding
cases, where the resulted cut-cells are considered invalid by most mesh generators.
This is because these cells usually cause complexities in their construction and diffi-

culties in ascertaining their neighbors. Therefore, most software avoid dealing with

50 K. D. Samouchos

these cases by applying local mesh refinement. However, this treatment increases
the flow simulation cost without guaranteeing the problem solution because degen-
erate cells may still exist even in very fine meshes. In contrast, the developed cutting
process successfully handles these odd cases, avoids any further mesh refinement,

and ensures the mesh generation’s robustness.

(m) (n) (0) (p)

Figure 2.9: The red triangulated surface is clipped into the black cube by imple-

menting the Sutherland—-Hodgman algorithm in each triangle.

2.4. The Cut-Cell Generation 51

L
it

(c) (d)

Figure 2.10: Four stages of the cut-cell construction starting from the result of the

clipping algorithm shown in fig. 2.9p.

Figure 2.11: The appropriately shaded cut-cell of fig. 2.10d.

The presented cases are collected in fig. 2.12. In the first case, fig. 2.12a, the em-
bedded boundary intersects the Cartesian cell at two regions. It usually happens
around solid boundaries of high curvature or when two bodies tend to touch each
other. On the other hand, fig. 2.12b shows a Cartesian cell divided into three sep-
arate cut-cells. This case usually appears at the trailing edge of a wing, where a
hexahedron splits into two polyhedral. The appearance of cut-cells like the one de-
picted in fig. 2.12c is also typical in the vicinity of the trailing edge. A 3D version of
a wedge penetrating the cube from the front face is illustrated in fig. 2.12d. In this

52 K. D. Samouchos

case, a hole is formed in the middle of the face, which may hinder the convergence
of the flow solver. Therefore, it is split into four convex sub-faces. Finally, fig. 2.12e
shows an exotic geometric construction, where a wedge passes through the entire
cell. It may happen close to sharp nibs.

Figure 2.12: Demanding cases successfully treated by the developed cut-cell gener-
ator. (a) A cell is cut into two different regions. (b) Three cut-cells are originated
from a single Cartesian cell. (¢) A wedge cuts the left-hand side of a cube. (d) The
corner of a tetrahedron penetrates the front face of a cube. (e) A solid body passes
through the entire cube.

2.5. The Face-Based Mesh Data Structure 53

2.5 The Face-Based Mesh Data Structure

The developed tree data structure described in section 2.2 is convenient for the
mesh’s generation, but its practicality during the flow solution is questionable due
to its inefficient mesh connectivity computation. Therefore, another alternative is
adopted, which combines the flexibility of a face-based data structure, commonly
used in unstructured meshes, with the special nature of Cartesian meshes leading
to a highly compact data set.

This section presents the development of the face-based data structure starting from
the storage of the cell connectivity derived from the tree data structure. Addition-
ally, an algorithm computing the face-nodes and face-cells mapping considering all
cells of the mesh is proposed. This information enables the detection of cells entirely
covered by the solid geometries, which are discarded from the domain. Finally, a
collection of geometric quantities, necessary for the performance of the flow-solver
and the post-processor, is computed, taking advantage of the hexahedral shape of

most cells.

2.5.1 The Cell-to-Cell Connectivity

The discussion below presents the algorithm detecting each cell’s neighbors. Storing
the tree in the manner described in section 2.2 gives important information for
obtaining cell connectivity. Furthermore, provided that the difference in refinement
levels between neighbors is at most one, the searching algorithm avoids the time-

consuming traversing of the entire tree.

For the sake of clarity, the proposed algorithm is exemplified using a case study,
where the neighbors along the positive half x-axis of an arbitrary cell (i, j, k) are re-
quested. Firstly, the algorithm looks for a neighbor at the same refinement level, in-
dexed as (i+1, j, k). If the cell does not exist, its parent (int[(i+1)/2], int[j/2], int[k/2]),
eq. 2.2, is the requested neighbor. On the other hand, if cell (i + 1, j, k) exists, “cell-
Position” computes the entry key to list “celllsRefined”, computed by Algorithm
1, giving information about its refinement status. The cell is a neighbor only if not
further subdivided. Otherwise, four of its eight children are adjacent to cell (i, j, k),
which are identified by function “child”, presented below. The whole process is

carried out in Algorithm 6.

54 K. D. Samouchos

Algorithm 6: Neighbors Detector (1)
input : cell ¢, face f

output: neighbors ¢, (coarser level) or ¢, (same level) or c. (finer level)

1 Main Function neighborDetector(c, f)

// c: position of cell in list ‘‘cells’’

// f: index declaring one of the 6 faces of c, f € [0,5]
2 if face f is part of the mesh boundary then return Boundary Flag

3 i + cells[d]

4 i neighbors G f)

5 Zp + findParentCell(i,) // use eq. 2.2
6 | ¢, cellPosition|iy)

7 | if celllsRefined|c,] is false then return c,
8 ¢n cell Position[iy)

9 if celllsRefined|c,) is false then return c,

10 fop < oppositeFace|f]
11 foreach face segment fs € [0,3] of f do

12 ie < child (i, fop, fs)
13 Celfs] < cellPosition[;c]
14 end

15 return c.

Below, some details of Algorithm 6 are further explained. For this purpose, specific
names are given to each of the 6 faces of a Cartesian cell. The two faces normal
to the Cartesian x-axis are called F,.s; and F,,s, where the abscissa of the first
is smaller than that of the latter. Similarly, F,. is opposite to F.., along the
y-direction, and Fyoom is opposite to Fi,, and both are normal to the z-axis.

Initially, the algorithm checks the existence of a neighboring cell in line 2. In other
words, it confirms that the cell indexed as (7,7, k) is not at the edge of the mesh
bounding box (B). These cells are detected by the following conditions,

i:iminﬁFwesteBy Z-:Z.mobz<:>’{TeasteB;
j:jminﬁFsouthEBy j:jma:c@FnortheBy
k:kminﬁFbottomEBa k:kmax@FtopeB

2.5. The Face-Based Mesh Data Structure

55

where

Subsequently, Algorithm 7 presents the two functions used in lines 4 and 12.

. . L
Ymin = Jmin = kmin =2

Ymaz = Jmax = kmax =2 —1

Algorithm 7: Neighbors Detector (2)

1

(S B Y M)

(=]

10

11

12

13

Function neighbors i,)
dim < faceDimension|f]
dir < faceDirection][f]
In 1
in[dim] < i,[dim] + dir

return ¢,

Function child(, f, fs)
¢ < childrenInEveryDirection|f][fs]
foreach dimension d € [0,2] do
m <« childIdentification|c|[d]
ic[d] < 2i[d] +m

end

return ¢,

Finally, the used matrices are

faceDimension =1 1 0 0 2 2]
faceDirection=[+1 —1 +1 —1 +1 —1]
oppositeFace =1 0 3 2 5 4]

56 K. D. Samouchos

and

[0 0 0]

2 3 6 7] 100

01465 010

childrenInFEveryDirection = 3 LTS . childIdenti fication = L 1o
2 0 6 4 001

6 7 4 5 101

2 3 01 01 1

)] 11 1]
(2.8)

The children’s numbering, used in matrix “childrenInFEveryDirection” , follows the
instructions of fig. 2.4.

2.5.2 Numbering of Nodes and Faces

At this point of the mesh generation, the shape of each cell is well-defined, nodes and
faces determining each cell are locally numbered, and neighbors of each cell have
been stored. However, the global specification of each face through the face-cells
mapping is fundamental for the developed flow solver’s functionality. Moreover, the
global numbering of the mesh nodes is necessary for post-processing purposes. This
being said, the global numbering of faces and nodes is studied below. It concerns
the fluid and solid part of the mesh and is applied only to leaf cells. Considering the
high complexity of the developed algorithm, only its basic structure is explained for
the reader’s convenience.

For the sake of the following discussion, the concept of hanging nodes, edges, and
faces is introduced. They appear when a cell ¢ is adjacent to four smaller in size
cells. The area between them, shown in brown in fig. 2.13a, is described by one or
four rectangular faces depending on the viewpoint of each side. The face belonging
to ¢, occupying the whole brown area, will be called hanging face. Moreover, the
term “hanging node” refers to the common node of the four neighboring cells lying
on the hanging face. An example of such a node is shown with blue in fig. 2.13b.
“Hanging edge” is called a segment on a hanging face defined by two nodes, one of
which is hanging. Fig. 2.13b illustrates the point by plotting four hanging edges in
red.

2.5. The Face-Based Mesh Data Structure 57

<

(a) (b)

Figure 2.13: (a) The large cell on the left is adjacent to four smaller cells on the

right side. The hanging face in brown belongs to the large cell. (b) A “hanging
node” (blue) and four “hanging edges” (red) are formed in the border between the
two sides.

The numbering process starts from the nodes. Firstly, the fluid nodes are numbered
by looping over the faces of each Cartesian cell and giving the same identification
number to coincident nodes of neighboring cells. Special treatment is needed for each
hanging node which is never part of both neighboring cells of different sizes. More-
over, a repetitive process is necessary for common nodes between non-neighboring
cells since the only available information concerns the direct neighbors. After that,
the external solid nodes are numbered. They always belong to the border between
two cut-cells. A typical neighborhood of cut-cells is shown in fig. 2.14. The iden-
tical nodes are detected without comparing their spatial coordinates, which could
affect the mesh generator’s robustness. Instead, each node placed in the interior of
a cell’s face is represented by the index number of the solid surface’s edge at which
it is located. On the other hand, two nodes placed at the same Cartesian edge are
compared by using the index number of the surface triangle, at which they belong.
Finally, numbering the solid nodes is straightforward since no comparison between
nodes is needed.

Thereafter, the numbering of faces follows, giving rise to the face-vertices and face-
cells mapping. Faces belonging to the bounding box of the mesh and the solid
faces are numbered in a straightforward manner. However, this is not the case for
internal faces, which are classified into three categories, depending on the nature
of the adjacent cells. In the first case, faces between Cartesian cells are always
rectangular and easily detected by using list “neighbors” created by Algorithm 6.

Moreover, each hanging face is rejected and replaced by the four equally sized faces

58 K. D. Samouchos

of the neighboring cells.

Figure 2.14: Neighborhood of 11 cut-cells of different shapes and refinement levels.
Solid nodes shape the upper side of the cells.

The second category refers to faces between cut and non-cut Cartesian cells. The
shape of these faces is still rectangular, but attention should be paid to cases where
the intersected Cartesian cell is separated into more than one cut-cells. Then the
face-cells mapping, presented in subsection 2.4.2, suggests in which of them the
specific face belongs. Finally, the last category contains all the intersected by the
solid surface faces. Such an example is shown in fig. 2.8e. The two neighboring
cut-cells share all faces plotted in blue, which are matched by comparing them
node-by-node. The process becomes more complicated when the adjacent Cartesian
cells are of different refinement levels. Then, hanging nodes and solid nodes located
along handing edges are only part of one of the two identical shapes, and thus,
should be excluded from the face comparison procedure.

2.5.3 Detection of fluid cells

The cells of a Cartesian mesh belong either into the fluid or the solid region. Depend-
ing on the application, the solid part may also participate in the simulation process.
For example, in applications involving Fluid-Structure Interaction (FSI), the body’s
deformation is computed by solving the appropriate PDEs in the solid part of the
mesh. In particular, the direct collaboration of the solid and fluid regions through
a sharp interface in a single fixed reference mesh makes the cut-cell method a valu-
able tool for simulating such phenomena. An extensive overview of IB approaches

2.5. The Face-Based Mesh Data Structure 59

used to solve FSI problems can be found in [289]. Another application that requires
the fluid-solid coupling is the numerical simulation of the Conjugate Heat Transfer
(CHT) problem which consists of the heat conduction on a solid body, the heat
convection in the surrounded fluid, and their thermal interaction. A solution to this
problem based on the cut-cell method is explained in [230].

Moreover, in unsteady phenomena around moving bodies, which are also studied in
the current thesis, the geometry covers and uncovers cells modifying their nature
from solid to fluid and vice versa. Therefore, the solid part of the mesh is still
necessary for the extrapolation of the flow field between successive time steps. A
detailed algorithm dealing with these cases is described in [277]. However, the
governing equations are solved only in the fluid part of the mesh, and thus, in this
thesis, the solid part is excluded from the domain, erasing the corresponding part
of the computer memory. The method described below aims to detect the fluid cells
by implying a moving-front method. Fig. 2.15 shows the method’s effect on a mesh
around an isolated airfoil.

(a) (b)

Figure 2.15: (a) The mesh around an isolated airfoil, shown also in fig. 2.6b, is
generated by Algorithm 3. (b) Resulting mesh after the rejection of its solid part.

A Cartesian cell is identified as solid when it lies completely inside the grid’s solid
region. The rest comprise the fluid cells classified as cut-cells and Cartesian cells
entirely included in the fluid region. The next process marks all fluid cells starting
from the geometry’s boundary and then propagating to the interior. Firstly, a
front of Cartesian cells, which lie in the fluid region and are neighbors of cut-cells,

is formulated. This is possible by looping over the fluid faces of each cut-cell and

60 K. D. Samouchos

checking their vertices. If a vertex is labeled “fluid” from the algorithm of subsection
2.4.3 and illustrated in fig. 2.10c, the neighboring Cartesian cell adjacent to the face
is added to the front. Then, the front is moving to its new position comprised of the
neighboring Cartesian cells of the first front cells. The process continues until the
front’s size becomes zero. Finally, Algorithm 8 presents the method in a pseudocode

form.

Algorithm 8: Detector of Cartesian Fluid Cells
input : mesh topology

output: fluid cells

// initialize front
front < createEmptyList ()
foreach cut-cell ¢ do

[y

[

3 foreach face f of ¢ do

4 if face has at least one fluid vertex then
5 ¢n < neighbor0fCell(c, f)

6 front < addCellToFront(c,)

7 flagFluidCell(c,)

8 end

9 end
10 end

// move front

11 while size of front is greater than zero do

12 frontNew < createEmptyList ()

13 foreach member k of the front do

14 ¢ < frontlk]

15 foreach neighbor ¢, of ¢ do

16 if ¢, has not been already flagged then
17 frontNew < addCellToFront(c,)
18 flagFluidCell(c,)

19 end

20 end

21 end

22 front < frontNew

23 end

2.5. The Face-Based Mesh Data Structure 61

2.5.4 Computation of the Finite Volume’s Geometric Quan-

tities

The computation of the finite volumes’ geometric quantities completes the creation
of the mesh data structure. The term “geometric quantities” encapsulates all entities
participating in the flow equations’ discretization scheme, which are the area Ay,
unit normal vector 7if , and centroid Z/ of each face f as well as the volume €, and
centroid ¢ of each cell c. Details about the used discretization method can be found
in chapter 3.

The decision to store the above information, instead of computing it whenever
needed, is based on a tradeoff between memory usage and computational efficiency.
The software’s ability to adjust its memory storage depending on each case is a
middle-ground option, followed in this thesis. For example, if the memory resources
are limited, the geometric quantities for uncut cells can be computed on the fly by
eqs. 2.4 and 2.5, without any significant damage to the software’s efficiency.

Subsequently, the computation of the aforementioned quantities for cut-cells, con-
sidered as arbitrary polyhedra, is presented. Firstly, the area and unit normal vector
of each face are computed. The vector’s direction is defined by the orbit of the face
vertices £, i =1,--- , N. The components of it/ can be derived by the cross-product
of the unit tangent vectors along two arbitrary edges of the face boundary. Although
this method is efficient enough, the result is prone to roundoff errors, especially in
very small faces. Thus, an alternative is preferred, which divides the face into N
smaller triangles, each of them defined by an arbitrary point ¢ on the plane of the
face and two successive vertices (i.e., #' and #2). Then, vectors t' = Z! — & and

t?=122 — ¢, tangent to the face, are defined. The normal to the triangle’s plane is

it = o (' < P?)

Its magnitude is equal to the triangle’s area A;. Then, vector 71/, defined as 71/ =
il Ay, is computed as

N
il =3 i
t=1

Finally, A; = |iif| and 7/ =7/ /A;. The result is independent of & but numerical
experiments show that the roundoff error is reduced by choosing the arithmetic mean
z/ of the face vertices.

62 K. D. Samouchos

The same geometric construction is used for the computation of #/, which is defined

as

1 1
Bl=— | @dA=—) A (2.9)

where

is the centroid of each triangle, and A; is its signed area given by
A =it-al

It is worth saying that Z; always lies on f because the developed mesh generator
always provides planar faces.

Hereafter, the computation of the volume of each cut-cell is presented. Let F' be the
number of faces of each cut-cell. The widely used formula

Z (ff.ﬁf)

F
Q. =
f=1

W

is avoided because it is prone to roundoff errors and consequently fails to compute
accurately the volume of very small cut-cells. On the contrary, pyramids are formed
by connecting all vertices of the cut-cell with an arbitrary point . The base of each
pyramid is the corresponding face f, and its apex is point 7. The summation of
the signed volume ; of all pyramids equals the total volume of the polyhedron.
Volume €2 is

1
Qp = gAfhf

where hy is the height of each pyramid and is computed as
hy = (&) —7) -a!

Point 7 is set equal to the arithmetic mean Z¢ of all cell vertices. This choice is of
essential importance for the correct computation of the centroid in very small cut-
cells. Furthermore, the cell centroid is computed as the volume-weighted average of

the pyramid centroids,

1 1 &
—c — _ — f
r¢ = % Jo ZdS) = o fg_l Q,z?

2.6. Cell Merging 63

where 2P/ is the centroid of the pyramid corresponding to face f. The latter is
located on the line segment connecting #/ and 7 ¢ being at a distance from 7/ equal
to one-quarter of its length, which implies

3 F
=30 (-) + 7
Cf=1

Finally, it is clarified that whenever a Cartesian cell is divided into multiple distinct
cut-cells, the above geometric quantities are computed separately for each one of
them.

2.6 Cell Merging

This section deals with a common issue in cut-cell methods called the “small cell
problem”. Generally, the intersection between the surface of a solid body and the
Cartesian mesh creates cut-cells of arbitrary shapes and sizes. As a result, extremely
small cell fragments most probably coexist next to regularly sized cells. However,
small cut-cells adversely affect the flow solver’s efficiency. Especially in explicit
methods, the global time step’s maximum value is drastically limited due to sta-
bility criteria, significantly delaying the simulation’s wall-clock time [145]. On the
other hand, in implicit methods, small cells increase the stiffness of the discretized
equations’ system, leading to stability and convergence issues [165].

The previously described problem is common to all cut-cell-based immersed bound-
ary schemes and has been addressed using several approaches. Various researchers
[340], [59], [338] have proposed a conservative approach according to which small
cells can be eliminated by geometrically merging them with their neighbors. How-
ever, this process introduces additional complexities to the governing equations’
discretization since the computational stencil becomes different for the merged cell
and its neighbors. The problem is more profound when structured codes are used.
Moreover, choosing the appropriate neighbors for merging is non-trivial in 3D meshes
[218].

A way to overcome these issues is by applying the cell linking approach [165], where
a small cell is linked with an adjacent bigger master cell to form a master-slave pair.

This method retains both the master and the slave cell, avoiding their geometrical

64 K. D. Samouchos

unification. Thus, the governing equations are discretized separately for both cells,
applying the same procedure followed for the rest cells. Another method, which also
avoids the topological changes on the mesh, is the cell mixing procedure [132]. Ac-
cording to that, fluid portion of a target cell is transferred to small cells maintaining
the conservation of the flow equations. Finally, some other mixed procedures can
be found in [124], [54].

In this thesis, a cell merging approach is presented based on [145] that circumvents
the problems mentioned above. According to this approach, each small cell is ge-
ometrically merged with a bigger neighbor creating a hyper-cell, which substitutes
both the small and bigger cells in the mesh data structure. Therefore, a new cen-
troid and volume are computed and the list of neighbors is updated for the new cell
and all its neighbors. Finally, nodes, faces, and cells of the mesh are re-numbered.
Since these changes are based on the already developed data structure, the new
modifications are implemented with a negligible computational cost. The developed
method is exemplified in fig. 2.16.

The great advantage of this process is that the governing equations’ spatial dis-
cretization remains unchanged throughout all mesh cells. Consequently, the flow
solver does not treat the new merged cells differently, simplifying the software’s
structure. More specifically, the flow variables are stored at the merged cut-cell
centroid, avoiding small cells’ participation in the discretization scheme and, thus,
preventing convergence issues they cause. Finally, although the proposed approach
is more complicated, it is more natural in the sense that it preserves the conservative
nature of the flow equations and avoids any artificial interference to the discretiza-

tion scheme.

The algorithm responsible for the cell merging is then presented. The first step
implements the definition of a “small cell”, adopted in this thesis, to tag the proper
cells for merging. A cut-cell is considered small when attached to a cell with a
volume at least 20 times bigger. Then, a neighboring cell is chosen to be merged
with each tagged cell. The criteria used to determine the proper neighbor aim to
avoid creating stretched merged cells that may harm the flow simulation. Moreover,
the algorithm is flexible enough to allow more than two cells to form a hyper-cell,
which is usually needed in regions where the curvature of the wall is considerably

high. Fig. 2.17 illustrates such a case.

The next step categorizes the tagged small cells into different zones. This is necessary

2.6. Cell Merging 65

because different merging criteria are implemented into different zones. Also, it has
been observed that the treatment of small cells by zone results in a better quality
mesh. In the first zone belong all small cells, which have at least one regular-sized
(non-small) neighbor. The second zone contains the small cells which are attached
to cells of the first zone. The next zones are formed following the same rule. The
merging process starts from the cells of the first zone. Then, each of them is merged
by discarding the largest face that connects it with a regular-sized neighbor. Next,
the cells of the second zone are merged with the neighboring regular-sized or already
merged cell of the smallest total volume. The process continues with the rest zones

by using the volume criterion until all small cells disappear.

et

Figure 2.16: Two small cells are merged with their regular-sized neighbors, creating
two new colored cells. A blue arrow starts from each small cell showing the regular-
sized cell which is chosen for merging.

Figure 2.17: Three small cells are merged with a bigger one, creating a new cell
shadowed with gray. A blue arrow starts from each small cell showing the chosen
neighbor for merging.

66 K. D. Samouchos

2.7 Mesh Partitioning

The flow simulation of real-life applications requires the development of a flow solver
adjusted in a parallel programming environment. This work implements a parallel
non-shared memory programming method based on the Message Passing Interface
(MPI). The multi-block decomposition of the domain is a prerequisite for the im-
plementation of this strategy. The mesh-partitioning can be obtained in different
ways. One option is to apply a commercial software package like METIS [158] or
SCOTCH [58]. However, an attractive alternative arises from exploiting the nature
of Cartesian meshes. This thesis develops a partitioner based on the Space-Filling
Curve (SFC) concept [22], widely employed among various Cartesian methods [51].

The family of space-filling curves has been developed as a mapping method rather
than a partitioning technique. The curves are characterized by their ability to pass
through every point of a multi-dimensional space, hence the name “space-filling”.
Peano first defined the concept of these curves in 1890 [241]. Since then, numerous
types have been created (i.e., Hilvert [128] or Morton [217] curves) and applied in dif-
ferent fields, including mathematics [50], computational physics [271], geographical
information systems [3], image processing [293], databases [45], algebraic multigrid
[115], and mesh generation [30]. The developed partitioner presented in this sub-
section considers the Hilbert SFC approach due to the unique properties it offers.
Fig. 2.18b shows the curve visiting each cell of the 4 x 4 block. A comparative study
of various partitioners using different SFCs can be found in [7].

There are three essential properties associated with the Hilbert SFC making it at-
tractive as a mesh partitioner [246],[4], namely,

1. Mapping: it provides a unique mapping from the 2D or 3D space to a 1D

space.

2. Locality: two cells adjacent on the curve remain neighbors in the 2D or 3D
mesh.

3. Compactness: it requires only local information (cell’s integer coordinates) for

the mapping construction, disregarding the connectivity of the mesh.

Once the curve has passed through each Cartesian cell, the first two properties allow

for a fast and straightforward mesh decomposition. The only operation needed is

2.7. Mesh Partitioning 67

to divide the curve into equal segments and map the corresponding mesh domains
to each processor. Subsequently, an example of a mesh of 10K cells is given, which
should be decomposed into four processors. Firstly, the Hilbert SFC renumbers all
cells giving each of them a unique ID. Then, cells with ID smaller or equal to 2500
belong to the first processor, cells with ID between 2501 and 5000 belong to the

second one, and so on.

One advantage of this approach is that once the mapping from the SFC is computed
and stored, the mesh can be repartitioned into any number of processors without
paying almost any extra computational cost. This practice is very beneficial when
a simulation should be restarted on a different number of processors. Alternatively,
extra flexibility is given to users of a time-sharing workstation cluster environment,

where the number of available processors may not be known a priori.

Moreover, locality ensures that the divided mesh domains are simply connected
spaces. In other words, each domain consists of one piece without holes passing
through it. This property reduces the computational cost caused by interprocessor
communications. In fact, the quality of the mesh decomposition resulted from the
SFC curves is quite competitive compared to other popular partitioners [246]. Fur-
thermore, close distant cells are most likely to preserve their locality in the curve’s
access pattern. Thus, the discretization of the flow equations based on the pre-
sented renumbering results in a linear system with more nonzero elements close to
the matrix diagonal. Overall, the reordering improves the conditioning of the matrix
facilitating the system’s solution process and reducing the simulation’s wall clock
time [274]. Finally, compactness is also important because it supports the parallel

construction of the curve, avoiding the frequent communication between processors.

The Hilbert SFC is defined recursively in self-similar levels. Each subsequent level
adds segments to the previous level’s curve filling more of the space. Due to the
special nature of this curve, the partitioning is applied to the Cartesian mesh before
the removal of its solid part. The curve is constructed in parallel with the mesh
generation procedure based on the tree data structure explained in section 2.2.
The curve passes through all cells of the mesh, constructed at each level, using
information from the curve’s shape of the previous level. In the first level, the mesh
consists of only one cell, and thus the curve degenerates to a point. Fig. 2.18a
shows the Hilbert curve in the mesh of the second level forming the characteristic
"U’” shape. This curve is called primitive and represents the simplest Hilbert curve
[147]. Tt starts from the bottom left corner of the square and ends at the bottom

68 K. D. Samouchos

right corner. Different orientations of the "U’ shape lead to four in total undirected
primitive curves in 2D. Each of them can be traversed in two directions, defining

eight primitive curves.

Fig. 2.18b presents the curve at the next level, which has been enriched exclusively
by primitive curves. At each consecutive level, the curve is formed by appropriately
connecting multiple primitive curves, figs. 2.18c and 2.18d. However, in an adapted
Cartesian mesh, the curve is not entirely shaped. Fig. 2.18¢ demonstrates a non-
uniform mesh around an airfoil and the corresponding Hilbert SFC. The subdivision
of the curve into four equivalent parts leads to the mesh decomposition into four
regions colored differently in fig. 2.18f.

Ll
L] L[]
N I I I I
LI NN
T
L [] -
=
(a) (b) ()

ol i e mnlisnlinslianiinnlinnlianlinn

LLJJLLJJLLJJ‘LJJ LLJJLLJJLJJLLJJ

i I Bl B B A mlllm inill B n i

! T TP T, 1 [YRR [

| - |- | I— | — | I— = d=h [P Shdh [dh | —

{ }{ } { H——HHH— }

HH 7}{: = f?}{:jt fﬁ}jﬁ?ﬁ???f?ﬁ??fﬁg:j[

e I I iR TSR [P T rh o 8]

9 [P 5] | s gEnEay : HH I

thidh ol e n P [AR i L f

S N - e oL A

! !

e A S AP T LR [S e e e ey ||

I EEpE Lo O e e e | L

mlm Ol 0 o) R (| o | rh

‘ | ‘ [[_J LT I ‘ [‘ | [‘ L f__\ Lj S ‘] ‘

LT FJ 1 Lj FJ M Lj FJ Lj FJ M1 Lj FJ | Lj FJ

i B

(d) (¢) (f)

Figure 2.18: (a-e) Different levels during the mesh generation process around an
airfoil. At each level, the Hilbert SFC (blue line) visits every Cartesian cell. Then,
it is used to decompose the final mesh into four parts shown in (f) with different

colors.

2.7. Mesh Partitioning 69

The extension of the Hilbert SFC in 3D is possible by defining new primitive curves.
The 3D curve follows the same basic construction rules, but its shape is more com-
plicated, allowing the curve to turn into multiple directions to pass through each cell
of a 3D mesh. An example of a curve in a 4 x 4 x 4 block is shown in fig. 2.19. The
definition of the primitive curves is more sophisticated than in the 2D case, leading
to 48 directed primitive curves embedded inside a 2 x 2 x 2 block. Moreover, the
3D primitive curves are not uniquely defined, allowing different Hilbert curves to
occupy a given mesh. A complete discussion about the different curves of the Hilbert
family is presented in [126]. A comparison of partitioners in terms of efficiency is

demonstrated as well.

Figure 2.19: An example of a 3D Hilbert SFC passing through all cells of a 4 x 4 x 4
mesh.

Subsequently, the shape of the 2D primitive curves is defined using the children’s
numbering shown in fig. 2.4. Each primitive curve visits the four cells of a 2 x 2
block in a different order. For example, the "U’ curve, shown in fig. 2.18a, follows the
sequence 0, 2, 3, 1, where each number corresponds to a child cell of the block. The
following matrix, called “PrimitiveCurves”, contains the characteristic sequence of

each primitive curve in each of its 8 rows

PrimitiveCurves =

= w NN O
N O =W
S = W N
w NN O =
SN W
W = O N
N W —= O
= O N W

The row number names each curve starting from 0, and thus the ‘0’ curve is the one

70 K. D. Samouchos

shown in fig. 2.18a.

The curve of the next level emerges by substituting each of the 4 cells with a new
2 x 2 block traversed by a primitive curve [184]. Therefore, a recipe is needed
to determine which primitive curve replaces each cell. For example, in curve 0,
primitive curves 6, 0, 0, and 7 replace children 0, 1, 2, and 3, leading to the curve
of fig. 2.18b. Equivalently, the rest primitive curves from 1 to 7 correspond to
a different sequence of 4 numbers. Matrix “CurveReplacement” contains such a

sequence in each of its 8 rows.

CurveReplacement =

T o o o
S = =g
N NI OIS
T W
RO R o
SRS B I)
— o o O
o~~~

-
Q

The corresponding matrices “PrimitiveCurves” (PC) and “CurveReplacement” (CR)

for the 3D Hilbert SFC are

ro s 1 4 6 3 2 7 4 2 0 6 1 7 3 &5 0 3 2 1 5 6 4 7 17
2 7 3 6 4 1 o0 5 5 3 1 7 O 6 2 4 4 7 6 5 1 2 0 3
4 1 0 5 2 7 3 6 O 6 2 4 5 3 1 7 1 2 0 3 4 7 6 5
6 3 2 7 o 5 1 4 1 7 3 5 4 2 0 6 5 6 4 7 0 3 2 1
5 0 4 1 3 6 7 2 2 4 6 0 7 1 5 3 3 O 1 2 6 5 7 4
7T 2 6 3 i1 4 5 o0 3 5 7 1 6 0 4 2 7 4 5 6 2 1 3 0
i1 4 5 o0 7 2 6 3 6 0 4 2 3 5 7 1 2 1 3 0 7 4 5 6
PC = 3 6 7 2 5 0 4 1 7 1 5 3 2 4 6 0 6 5 7 4 3 0 1 2
3 6 7 2 5 0O 4 1 7 1 5 3 2 4 6 O 6 5 7 4 3 0 1 2
1 4 5 o 7 2 6 3 6 0O 4 2 3 5 7 1 2 1 3 0 7 4 5 6
7T 2 6 3 1 4 5 0o 3 5 7 1 6 0 4 2 7 4 5 6 2 1 3 0
5 0 4 1 3 6 7 2 2 4 6 0 7 1 5 3 3 O 1 2 6 5 7 4
6 3 2 7 o0 5 1 4 1 7 3 5 4 2 0 6 5 6 4 7 0 3 2 1
4 1 0 5 2 7 3 6 O 6 2 4 5 3 1 7 1 2 0 3 4 7 6 5
2 7 3 6 4 1 0 5 5 3 1 7 0 6 2 4 4 7 6 5 1 2 0 3
Lo 5 1 4 6 3 2 7 4 2 0 6 1 7 3 5 0 3 2 1 5 6 4 7 i

[46 43 34 39 42 47 38 35 40 45 30 27 44 41 26 31 36 33 24 29 32 37 28
18 23 14 11 22 19 10 15 20 17 2 7 16 21 6 3 8 13 4 1 12 9 0
36 32 44 40 37 33 45 41 28 24 46 42 29 25 47 43 30 26 38 34 31 27 39
9 13 17 21 8 12 16 20 1 5 19 23 0 4 18 22 3 7 11 15 2 6 10
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
11 14 18 23 10 15 19 22 2 7 17 20 3 6 16 21 1 4 8 13 0 5 9
39 34 46 43 38 35 47 42 30 27 45 40 31 26 44 41 29 24 36 33 28 25 37
15 10 22 19 14 11 23 18 6 3 21 16 7 2 20 17 5 0 12 9 4 1 13
35 38 42 47 34 39 43 46 26 31 41 44 27 30 40 45 25 28 32 37 24 29 33
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 16 17 18 19 20 21 22
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
33 37 41 45 32 36 40 44 25 29 43 47 24 28 42 46 27 31 35 39 26 30 34
12 8 20 16 13 9 21 17 4 0 22 18 5 1 23 19 6 2 14 10 7 3 15
42 47 38 35 46 43 34 39 44 41 26 31 40 45 30 27 32 37 28 25 36 33 24
22 19 10 15 18 23 14 11 16 21 6 3 20 17 2 7 12 9 0 5 8 13 4

CR =

where the dots indicate the continuation of the row to the next line. Algorithm
9 maps each cell ¢ to its new identification number represented by index ¢, such
that c=hilbertCurve[cy], where hilbertCurve stores the new numbering of cells. A

similar approach is discussed in [147].

2.7. Mesh Partitioning 71

Algorithm 9: Hilbert Curve Generator (1)
input : mesh topology

output: hilbertCurve

1 Main Function createHilbertCurve ()

// PCI: primitive curve index
2 c+0
3 PCI <+ 0// it can be any number between O and 7
4 cp, <0
5 createNextLevelOfHilbertCurve(c, PCI, cp)
6 return

Function “createNextLevelOfHilbertCurve” is presented in Algorithm 10.

Algorithm 10: Hilbert Curve Generator (2)
1 Function createNextLevelOfHilbertCurve(c, PCI, cp)

2 if not celllsRefined|c|] then

3 hilbertCurve[cy] < ¢

4 cp—cp+1

5 return

6 end

7 | i« cells|d]

8 foreach child k do

// ke€l0,7] or k€ |0,3] for 2D or 3D, respectively

9 J < PrimitiveCurves[PCI|[k]

10 PC1. + CurveReplacement[PC1I][k]

11 foreach dimension d € [0,2] or d € [0,1] do

12 m < childIdentification|j][d]

13 ic[d] <= 2i[d] +m

14 end

15 ¢. + cell Positioni,]

16 createNextLevelOfHilbertCurve(c., PCI., ¢;) // recursion
17 end
18 return

Matrices cells, cell Position, and celllsRe fined used above are defined in subsection
2.2.4. Finally, matrix childIdentification is given by eq. 2.8.

72 K. D. Samouchos

2.8 Mesh with Moving Boundaries

This section deals with moving impermeable boundaries within a fixed Cartesian
mesh. The prescribed motion of a solid body, immersed in a fixed Cartesian mesh,
causes extra complexities, absent from the mesh generation process around static
geometries demonstrated in the previous sections. The presented method facilitates
the flow solver maintaining the conservation of the flow even for large boundary
displacements and retaining its efficiency and robustness.

At each time step, the geometry changes its position, and the mesh is re-adapted
to the updated solid wall keeping track of its motion. Thus, regions close to the
geometry’s previous position are coarsened, and cells in the vicinity of the displaced
boundary are split anew, increasing the flow simulation’s accuracy. A method for
the field’s extrapolation at each time step to the subsequent mesh is presented in
subsection 2.8.1. Although the status of most cells remains unchanged over a time
step, the cells within the region swept by the moving boundary modify their shape
and nature. In particular, the displaced fluid-solid interface may cover fluid cells
changing their nature from fluid to solid. These solidified cells, called covered cells,
disappear from the domain and are no longer used during the flow simulation. In
contrast, the geometry’s motion can reveal solid cells, called uncovered cells, which
suddenly appear as newborn cells in the fluid part of the mesh.

These transitions cause abrupt modifications in the governing equations’ discretiza-
tion, which act like spurious sources or sinks, generating artificial oscillations travel-
ing throughout the flow field and deteriorating the flow solution. The cause of these
abnormalities has been studied extensively by numerous researchers. For exam-
ple, according to [279], unphysical pressure oscillations are induced by violating the
geometric conservation law due to the cells’ sudden appearance or disappearance.
Moreover, [189] mentions that the abrupt change in the numerical scheme’s stencil
may also cause such oscillations. Finally, the influence of the time step’s size and the
mesh width on the oscillations’ generation has been investigated by [137]. Therefore,
additional modifications are required to the numerical scheme to eliminate the trun-
cation error and maintain strict conservation. Existing approaches involve merging
newborn cells with their neighbors [340], use ghost-cells to provide continuation in
time to the conservative variables [339], or implement Lagrangian interpolation to
estimate the velocities of the uncovered cells [344]. This thesis mimics the merging

technique and improves it by developing a cell linking method, described in subsec-

2.8. Mesh with Moving Boundaries 73

tions 2.8.2 and 2.8.3, ensuring flow conservation without restricting the maximum

displacement of the immersed geometry at each time step.

2.8.1 Mapping Between Subsequent Meshes

The discussion starts with the study of the continuous mesh adaptation to the mov-
ing boundary. Fig. 2.20 shows an airfoil performing an upward translational motion
followed by the corresponding adapted mesh. The mesh generation at each time step
can be initialized by the mesh of the previous time instant and then readjust the
final mesh performing the appropriate coarsening and refining operations. However,
generating a mesh from scratch is preferred because it simplifies the corresponding
algorithm without damaging its efficiency. Indeed, both strategies were developed

and compared without noticing any significant difference in their efficiency.

met i

(a) (b)

Figure 2.20: An airfoil performs a translational motion. The mesh is dynamically
adapted to the solid boundary (red) at each time step.

The mapping between two successive meshes supports the flow solver with the nec-
essary time history for each cell. In general, two successive meshes do not have
a cell-to-cell match, and 3D interpolation of the flow field is required. However,
finding interpolants by searching over all cells of both meshes is very expensive and
impractical. Nevertheless, the tree data structure, presented in section 2.2, allows
for an efficient way to detect the cells of the new mesh (e.g., B) contained in each
cell of the old mesh (e.g., A) and the other way around. Fig. 2.21 shows a cell
of A mapped onto various cells of B belonging to different refinement levels. The

left-right arrow represents the opposite case, where a group of cells corresponds to

74 K. D. Samouchos

a larger one. The developed algorithm starts from the root cell in both meshes and
visits all tree levels cell-by-cell until a leaf cell appears, e.g., in A. If its counterpart
in tree B is further subdivided, the algorithm traverses the rest of tree B, searching
for its offspring leaf cells, which are included by definition in the cell of A. Fig. 2.22
proves that both cases represented by the left-right arrow in fig. 2.21 can be present
concurrently. Blue arrows show the mapping between the black and the red mesh.
Finally, section 3.3 presents the mathematical formulation for transferring the flow
variables to the new mesh.

(a) (b)

Figure 2.21: Two meshes corresponding to successive time steps are shown. The
cell on the left is mapped onto several smaller cells on the right. Inversely, various

cells on the right are mapped onto only one cell on the left.

(a) (b) (c)

Figure 2.22: (a, b) Two meshes at successive time steps are presented in different
colors (black, red). The bold horizontal line indicates the fluid-solid interface. (c)
Blue arrows depict the mapping between the two meshes plotted on top of each
other.

2.8. Mesh with Moving Boundaries 75

2.8.2 Covered and Uncovered Cells

Firstly, the treatment of covered cells by the solid geometry is discussed. Fig. 2.23c
shows a cluster of two cells, the lower of which becomes solid due to the boundary’s
upward motion. The loss of conservative variables stored in this cell is avoided
by merging it with its neighbor before the surface displacement. Figs. 2.23b and
2.23a represent the past and present states of the merged fluid cell. Consequently,
although the cut-cell finally disappears from the fluid domain, its contribution to
the conserved variables is transferred into its neighbor.

However, the cell merging technique may lead to very complicated structures, espe-
cially in large surface displacements. Thus, a virtual linking between the brown cell
of fig. 2.23c and the gray cell of fig. 2.23a is preferred, avoiding the formulation of the
merged cell in fig. 2.23b. Consequently, the linking method corrects the flow vari-
ables, which are stored in the gray cell defining its time history. A similar strategy
is shown in [277], where the numerical error is redistributed from the disappeared
cut-cell to the surrounding cells.

(a) (b) (c)

Figure 2.23: From left to right, the boundary moves downwards and reveals a new-
born cell. In the reversed order, a fluid cell is covered by the solid body. Colors
correspond to the mesh’ fluid part and indicate the proper cell merging.

On the other hand, following the subfigures from subfig. 2.23a to subfig. 2.23c,
the fluid-solid interface moves downwards, uncovering the lower cell. Such cells
emerge into the fluid with no flow solution history, and thus their time integration

is meaningless. This issue is resolved by temporarily linking the newborn cells with

76 K. D. Samouchos

an adequately chosen neighbor in a similar manner to the solidification approach.
Such corrections ensure that all newborn cells are initialized with consistent flow
values at the cost of a more complex algorithm and implementation. The following
subsection presents an algorithm that, under specific criteria, determines the linking
between cells.

2.8.3 Cell Linking

The correct linking between cells is far from trivial due to various geometric con-
ditions needed to be satisfied. Firstly, each cluster of connected cells should define
a simply connected space. Secondly, neighboring clusters of linked cells that differ
much in volume shall be avoided because they damage the robustness of the flow
solver. Finally, it is recommended to formulate linked cells in the direction of the
surface velocity vector. This practice is consistent with the concept of the grid
velocity used in body-fitted meshes.

Algorithm 11 determines the correct cell linking, accomplishing all the aforemen-
tioned requirements. Its input is the data structure of two successive meshes, A and
B. If A stands for the old mesh and B for the new one, the developed method han-
dles covered cells linking each of them with a fluid neighbor, both located in B. On
the other hand, the algorithm deals with uncovered cells if A and B correspond to
the new and old mesh, respectively. For the sake of brevity, the subsequent analysis
refers only to the cells’ solidifications.

The algorithm’s first step is implemented by function “disappearedCell” shown in
Algorithm 12, which detects disappeared cells from the domain of B. Then an
iteration over these cells is carried out, looking over the proper linking among their
first neighbors. Only fluid neighbors ¢, in a requested direction are allowed to be
linked with each disappeared cell c. At this point, angle ¢ is introduced to determine
this direction. It is defined as the angle between the vector connecting the centroids
of ¢ and ¢,, and a vector defined as the arithmetic mean of velocity vectors stored in
the solid faces of ¢. Then, the proper neighbor for linking is the one that forms the
smallest angle ¢, which should also be less than 90° degrees (condition in line 15 of
Algorithm 12). Function “connectFirstCategoryCells” in Algorithm 12 is responsible

for these computations.

The necessary velocity on each face centroid (Z7/) is computed anew at each time

2.8. Mesh with Moving Boundaries 't

instant since the solid faces may not be continuously present during the unsteady
flow simulation. Therefore, its value emerges by interpolating the velocities of the
solid surface’s vertices. Considering that Z/ lies on an arbitrary triangle of the solid

2 2

surface defined by vertices 1, 2, and ¥3 provided with velocities 7!, ¥72, and 73,

respectively, the extrapolated velocity ¢/ is computed as

1
A

7/ =

where A; is the triangle’s area and A;; is the area of a triangle defined by 7/ and

vertices #* and 7.

However, not all disappeared cells are able to find a linking satisfying the previously
mentioned criterion. The rest are linked by function “connectSecondCategoryCells”,
also presented in Algorithm 12. According to that, each cell ¢ looks for the proper
link in the group of fluid cells that have already been linked with the neighbors of
c. The fluid cell forming the smallest angle ¢ is preferred.

The final step prevents the creation of large clusters of linked cells. Thus, each
covered cell is allowed to be linked with multiple fluid cells distributing its flow
variables to a broader mesh area. This new kind of linking is achieved under the
following rules. The first one refers to each covered cell ¢, already connected to a
fluid cell ¢, of higher refinement level, which also happens to be its neighbor. This
cell should also be connected with the common neighbor ¢,, of ¢ and ¢, under the
condition that ¢, is a fluid cell. Fig. 2.24a exemplifies the case by plotting a red
mesh, on which the horizontal fluid-solid interface moves upwards. As a result, the
covered large cell at the bottom is linked to two neighboring cells of smaller size.

A second rule also allows for multiple linking and refers only to each solid cell ¢
surrounded exclusively by solid neighbors. Let ¢, be a smaller in size neighbor,
which is connected to a fluid cell ¢;. Then, ¢ can also be connected with c¢;. An
example is shown in fig. 2.24b. Each of the 4 small disappeared cells is connected
with its fluid neighbor of the same size. Then, each of the two larger disappeared cells
is connected with two of these fluid neighbors. Finally, both rules mentioned before
are imposed by function “distributeConnection” used in Algorithm 11. Fig. 2.24c
demonstrates the case shown in fig. 2.22¢ after the implementation of this function.

78 K. D. Samouchos

(a) (b) (c)

Figure 2.24: (a) The solid surface, depicted by a bold horizontal line, moves from its
black to the red position over an unmodified, in time, mesh. (a) Two blue vectors
show the contribution of the covered large cell to two smaller cells. (b) Each one of
the 4 small covered cells is linked with its fluid neighbor. The larger covered cells
use this information to be linked with the same fluid cells. (c¢) The final cell linking
applied in the example of fig. 2.22¢ after imposing function “distributeConnection”.
The 12 vectors indicate the linking between the two subsequent in time meshes.

Algorithm 11: Cell Linking in Unsteady Cases (1)
input : mesh A, mesh B

output: list connection

1 Main Function 1inkCells()
// create list DC of disappeared cells

2 foreach cell cg of mesh B do
3 if disappearedCell(cp) then DC <-addToList(cp)
4 end

// £ill list connection
5 connectFirstCategoryCells ()
6 connectSecondCategoryCells ()

7 distributeConnection()

8 return

2.8. Mesh with Moving Boundaries 79

Algorithm 12: Cell Linking in Unsteady Cases (2)

1 Function disappearedCell(cp)

2 if cp is fluid cell then return false

3 foreach cell c4 of mesh A mapped onto cg do

4 ‘ if ¢y s fluid cell then return true

5 end

6 return false

7 Function connectFirstCategoryCells()

8 foreach cell ¢ of list DC' do

9 foreach neighbor c,, of ¢ do

10 if cellIsFluid(c,) and not disappearedCell(c,) then
11 ‘ neighbors <— addToList (¢,)

12 end

13 end

14 ¢, + findProperCell(c, neighbors, correct Direction)
15 if correctDirection then connection|c| + ¢,

16 end

17 return

18 Function connectSecondCategoryCells ()

19 correction < true

20 while correction do

21 correction < false

22 foreach second category cell ¢ do

23 foreach connected neighbor ¢, of ¢ do

24 ‘ neighbors < addToList (connection|c,])
25 end

26 ¢, < findProperCell(c, neighbors, correctDirection)
27 if connection|c] # ¢!, then

28 connection[c| + ¢,

29 correction < true

30 end

31 end

32 end

33 return

80 K. D. Samouchos

2.9 Mesh Differentiation

A significant part of this thesis deals with gradient-based shape optimization meth-
ods applied in complex geometric structures of industrial interest. A continuous or
discrete adjoint approach supports the optimization algorithm computing the re-
quired shape sensitivities on a Cartesian mesh. The corresponding mathematical
development is presented in section 7.4 and indicates the need for the mesh’s differ-
entiation. The term “mesh differentiation” refers to the computation of the variation
of every geometric quantity included in the flow equations’ discrete form caused by
the infinitesimal change of the geometry’s shape. The quantities of interest are the
unit normal vector 71/ , surface area Ay, and centroid Z/ of each face f, as well as the
volume €2, and centroid ¢ of each cell ¢ comprising the members of the generalized

vector (.

Moreover, using a parameterization tool to update the geometry’s shape during the
optimization loop is out of this thesis discussion. Thus, the geometry’s modification

is expressed by changing the coordinates of vertices 7%

constituting the triangulated
geometry’s surface, where k indicates the serial number of each node. Furthermore,
the set of vertices ¥* is the only input of the mesh generator that varies during the
optimization process, implying that G is a function of #*. The computation of its

derivative G JOT* is the target of this section.

While this approach is well understood and widely used in implementations based
on body-fitted meshes, an alternative approach is required for the cut-cell method.
The difference originates from the special readjustment of the Cartesian mesh to the
modified geometry at each optimization step. In particular, if the geometry’s defor-
mation is infinitesimally small, only the shape of the cut-cells is affected, preserving
the mesh’s topological characteristics. In other words, the face-vertices and face-
cells mappings remain unchanged. Considering also that the mathematical formulas
describing the shape of each face or cell are differentiable w.r.t. 7%, one concludes
that the derivative dG/97* is well defined.

The finite difference method (FD) is a straightforward way to approximate these
derivatives. Although it has widely been used in body-fitted meshes, its application
is questionable in Cartesian meshes due to the great effect the step size value has on
the final result. The chosen value should vary within limits that provide a sufficiently

accurate gradient approximation, avoiding round-off errors. However, any value in

2.9. Mesh Differentiation 81

this range may cause a wide enough displacement of the geometry’s boundary to
cover or uncover mesh cells. In such a case, the one-to-one mapping of faces and
cells before and after the solid surface’s displacement is meaningless, making the
gradient’s approximation through FD impractical.

Therefore, the mathematical differentiation of G is a reasonable alternative. In the
method presented below, no assumptions are made regarding the mesh and geom-
etry intersection, providing accurate expressions for the computation of oG JOTk.
Moreover, the developed software is robust and insensitive to the complexity of
the geometry’s shape. Finally, the computational cost of this approach is negligible
since, contrary to the body-fitted meshes, the derivative is non-zero only to cut-cells.

The process followed for the differentiation of G is better explained by the example
below. Fig. 2.25a shows a cube with dashed lines intersected by a solid surface
consisting of 4 red-colored triangles. The resulted cut-cell is depicted in blue, and
one of its solid faces is gray shaded. A top view, shown in fig. 2.25b, offers a better
perspective of the shaded face. Its shape is determined by the relative position of the
cube and the bolded triangle described by vertices !, ©'2, and #/3. Their intersection
gives rise to the four blue points noted by !, [=1,--- , 4, the coordinates of which

are computed by the Sutherland-Hodgman algorithm, section 2.4.1.

The coordinates of the centroid Z¢, shown in black, are exclusively defined by the
location of these blue points. Therefore, the centroid and generally all members of
vector G depend on the solid vertices Z! of the mesh, which are functions of the
geometry’s vertices 7%. Thus,

0G < 0G 07!

N (2.10)

ouk — oxt ovk
where L is the number of vertices comprising the solid boundary of the mesh. Term
07 /0T* is of major importance for the cut-cell method because it encapsulates the
adjustment of the stationary Cartesian mesh on a continuously modified geome-
try. Thus, it represents the main difference between the present method and the
conventional body-fitted approaches.

82 K. D. Samouchos

(a) (b)

Figure 2.25: (a) The intersection of the red triangles and the cube, plotted with
dashed black lines, results in the blue cut-cell. (b) Top view of the cut-cell. The
blue points define a solid gray shaded face. They are located on the interior ('),
the edges (Z°¢), or the vertices (1) of the bolded triangle. The centroid ¥ of the
shaded face is presented with a black dot.

2.9.1 Differentiation of the Mesh Solid Boundary

Subsequently, the mathematical development of the second term on the r.h.s. of
eq. 2.10 is examined. Three different approaches are followed based on the location
of ! on the triangulated solid surface. In the first case, the mesh node coincides
with a vertex of the geometry. An example is given in fig. 2.25b, where ¢! is part
of both the blue face and the red triangle. Secondly, nodes such as v¢ are located
on the edge of a triangle. These nodes are originated from the intersection of this
edge with a face of the Cartesian mesh. Finally, nodes that lie on the interior of the
triangles’ surface, e.g., ©®, emerge when a Cartesian edge pierces the solid body’s
boundary.

The first case is trivial and reads,

=1 —k

Ozl _) 0y T =0
ovr 0, otherwise

J

where 4, j indicate the Cartesian coordinates of each vertex and 9;; is the Kronecker
delta.

2.9. Mesh Differentiation 83

The differentiation of vertices located on the edge is presented via the example of
7. Its position changes due to the displacement of ¢! and ¥? always remaining on
the cube’s face. Therefore, one of its coordinates, expressed by index d, is constant
and equal to c. In total, the vertex’s position is expressed as

xr: =

. {A(vf—v})ﬂ%, i={1,2,3}\d

‘ c, i=d
where 1
N TG — U,
T2 ot
d Y
Its derivatives are computed as
ox¢
= (1—-AN)M;;
81}} (| 2.11
ox§ (2.11)

Matrix M is defined as M =1 + ®?, where I is the identity matrix and <I>Z“-lj = ¢i0;q.

Finally,

v2 — o]

¢ = -

2
Vg — Vg

ST

—

The coordinates of the third set of vertices are differentiated considering the arbi-
trary case of an intersection point Z'*® located in the interior of a triangle defined by
vertices 7', 72, and ¥*. The derivative 07°/0v* is computed under the condition
that the intersection point remains aligned to the cube’s edge after the infinitesimal
displacement of ¥*. Therefore, the derivative is parallel to the edge’s Cartesian
direction, denoted by d, implying that

oz* k >d
— =dke (2.12)

k

where €7 represents the unit vector along the d axis. The unknown aj is computed

by considering that Z* lies on the triangle’s plane,

(Zs=0")-i' =0 (2.13)

84 K. D. Samouchos

where 71 is normal to the plane, and its magnitude equals the triangle’s area,
(v — o) x (% — o) (2.14)

By differentiating eqs. 2.13 and 2.14 w.r.t. v;-“ one gets

or° gy On' hod | ot (ol =ey O
81}? n+(m vl) aU?—O(:)aje n (vl x) 31}?’ 0
and ont 1 ov* ont 1
on _ L (ple _ gl gv Lo sl =
81}? 2(1)2 vl)xavf@avf 2(1}2 vl)xe
Their combination leads to
dhet it — (7%~ 2%) - [(7 —) x @] =0
et it (7~ 7%) - 2 [(7% —) x & - (10 - 2) x] =0 &
diet it — o (00— 7) - [(7 —) x @] =0 o
et it — et [(-) x (7 -)] =0
aP AL — g1 gt A —O@ak—A—znt
Jjiid AL
d

where A}, represents the triangle’s area projection to the d-direction, and A% is the
triangle’s sub-area defined by #*, ¢, and ¥'2. Moreover, 7i* is the unit vector,
normal to the triangle’s plane. Finally, eq. 2.12 becomes

ox; A_Z At

TR
ovj Ay

S (2.15)

2.9.2 Differentiation of Face and Cell Geometric Quantities

The computation of term oG /0T, eq. 2.10, for each member of G is presented below
using the same notation and definitions introduced in subsection 2.5.4. According

to that, the normal face vector is

il =

N | —

N
E £ g
n=1

2.9. Mesh Differentiation 85

where n and n’ are two subsequent face vertices. Its derivative w.r.t. the face vertex

zlis
o7t ! 0 Aty —Aty
Aty —=At; 0

where At=¢° — 7. Indices s, p identify the subsequent and previous vertices of Z'.
Moreover, A;=|7i/|, which implies

0A; -, Oit!

- —_— 2.17
81’5- " 8x§- ()

According to eq. 2.9, the face centroid is

1 N
=N A
T = X nn'
f n=1

where A,y and ™ are the area and centroid of the triangle defined by #/ and
vertices n and n’. Its differentiation concludes to

i Z;

8xl- Af 3

J

ax{ _ 1 Af + Apl + Alnd‘ + i <xnn/ f) OAnw
ij

— 2.1
G:Ué- (2.18)

n=1

where Ay = Ay/N. Therefore, the computation of dAy, /dz} is needed. Terms
OAp/0xh and 9A;)0z are separately discussed. The first of them is defined as

1 5 5 ~
Aplzﬁ(thtl)~ﬁf
and its derivative is
aApl 1 a —, —»l ~ 1 = . aq%jf
=—— (" xt") -l + - (P xth)
3x§- 289175- () wt 2 () 8x§

However, the derivative of the normal unit vector is represented by a vector lying
on the face, and thus, the second addend is zero. After the proper mathematical
development of the remaining term, the derivative is expressed as
— —zf P ! P
= -—n’ X |t — (" =1
ort 2 + N ()

J

86 K. D. Samouchos

Similarly,
814[5 1A -, 1 —»l —
=—= 4 (1 -1
= i [T 7]
and
0A 1 - ST
nn’ _ —»f _rn /
7! = 5N " (t t), Vn,n #I1

According to subsection 2.5.4, the volume of a cell is

I
-
o)

where)

Qf:§(ff—F) it
is the volume of each pyramid to which the cell is divided. The cell’s volume is
independent of 7, and thus, it will be considered constant during the differentiation.

Therefore,

F
of)
:Za—lf (2.19)
J f=1 Ly
and
oy 1 orf g Lf - on !
ikt AP L Pl 2.2
891; 3 895; " —i—(x T) 83:5 (2.20)

The sum on the r.h.s. of eq. 2.19 consists exclusively of F in number pyramids

l

containing vertex #'. The derivatives of 77/ and #/ on the r.h.s. of eq. 2.20 are

computed by egs. 2.16 and 2.18, respectively. Additionally, the arithmetic mean of
cell vertices can be used to compute 7.

Finally, based on subsection 2.5.4, the cell’s centroid is

3 F
4Q Z Qf—|—7”

c =1

Once again, the centroid’s value is independent of 7, and thus, it is considered
constant during the differentiation process. Hence,

ozc 3 o [0z’ o0, 1 o0
_ >f osef L ome = Yiie
=g 2 | e @ 7)o o | o (T —7) 5! (2.21)

2.9. Mesh Differentiation 87

The derivatives of Z7, ¢, and), on the r.h.s. are computed from eqs. 2.18, 2.20,
and 2.19, respectively.

Chapter 3

Numerical Discretization of the
Navier-Stokes Equations

This chapter presents the mathematical formulation of the flow equations, their dis-
cretization, and a numerical method to solve the resulting algebraic system. The
examined flow model consists of the steady or unsteady Navier-Stokes equations
for either compressible or incompressible, inviscid or laminar flows. The artificial
compressibility method is applied to solve the incompressible flow equations. The
presented discretization scheme takes advantage of the Cartesian mesh data struc-
ture dictated by the cut-cell method. It is based on a cell-centered, second-order
finite volume method employing the MUSCL scheme. The Roe’s approximate Rie-
mann solver is used to compute inviscid fluxes, and second-order accuracy is attained
by reconstructing the flow variables at mesh faces based on a Taylor series expan-
sion. The required gradients of flow field variables are computed through the least
squares technique. Orthogonal correction is utilized to compute the velocity and
temperature gradients used for the viscous flux discretization. In unsteady simula-
tions, the temporal term is discretized by applying a first-order Euler scheme, and
time marching is based on a dual time-stepping method. Special treatment is made
for cells that appear or disappear from the fluid domain in case of flows involving
moving bodies. The Newton-Raphson algorithm is applied for solving the result-
ing non-linear system. The last section describes the ghost-cell method for steady
and unsteady flow simulations and provides details about the fluid-solid interface

treatment.

38

3.1. Compressible Fluid Flow Model 89

3.1 Compressible Fluid Flow Model

The Navier-Stokes equations and the mass and energy conservation laws for a 3D un-
steady compressible flow of a perfect gas can be expressed in a Cartesian coordinate

system (xy, z9,x3) as [173]

oU; | ofirr ofy
+ ik ik

=0, +=1,---,5, k=1,---,3 3.1
8t 8[Ek 8[Ek ! ()
where
[p] [PV | [0 1
pUL PUEV1 + O13p Tk
U=\ pvs |, fi" = pogva+oup |, fi°= Tok
pU3 PURV3 + d3p T3k
| pE | poghy L 0Tjk + Qi

The Einstein notation has been used, according to which repeated indices imply
summation. U, ﬁim’ and ﬁfis are the conservative variables, inviscid flux and viscous
flux vectors, respectively. Primitive variables p, v; and p stand for the fluid’s density,
velocity components and pressure. The corresponding primitive variables’ vector is
defined as V = [p, v1, va, v, p|. E stands for the energy per unit mass and h; is
the total enthalpy. These are related through the equation

ht:E‘i‘B

p

For a Newtonian fluid, the viscous stress tensor 7 is expressed as

e 8%4_81}]‘3_25.8@_7”
Tik =4 Ox;, Ox; 3 Zk@xm

with p being the fluid’s dynamic viscosity and ¢;; the Kronecker delta. Heat flux
Gm is given by the Fourier’s law
aoT
m — k—
4 0T,
where k and T stand for the fluid’s thermal conductivity and temperature, respec-
tively. The equation of state
p = pRT

90 K. D. Samouchos

completes the above system of PDEs, where R is the specific gas constant. Finally,
for the conservative to primitive set of flow variables conversion,
P 1

E=-2_ 1 -n?

where 7 is the specific heat ratio, is used.

An appropriate set of boundary conditions accompanies the above system of PDEs.
They depend on the type of each boundary and the physics behind every specific
application. In external aerodynamics, such as the flow simulation around an iso-
lated wing, far-field boundaries are positioned far away from the examined geometry.
Far-field flow is considered constant, and five flow variables are set at ghost-nodes
placed along the mesh boundary. On the other hand, in internal aerodynamics,
such as flow simulation within ducts or pumps, a different set of flow quantities is
imposed at the inlet and outlet. For subsonic inlet boundaries total pressure (p;),
total temperature (7;) and two angles (qyquw, Qpitcn) are specified. Primitive variables
are computed by interpolating the velocity magnitude (|¢]) from the flow domain
interior. This process starts from the temperature computation T'=T; — |v]*/(2¢,)
at the boundary, where ¢, is the specific heat capacity at constant pressure. Then,
the primitive variables are computed as

T\ 1
BC __ 4
p = Pt (Tt>

o P

RT
vPC = || sin(piren)cos(yaw)
VP = || sin(upiten) sin(Qtyaw)
0P = |7 cos(piten)

An alternative is the imposition of entropy (s) and the three velocity components.
Density is extrapolated from the interior and, then pressure is computed as p=sp”.
However, in real-world applications, inlet entropy is usually unknown. Its value
can be found by the user-defined density (pg) and pressure (pg) approximations,
so that s =pgy/pg. For supersonic inlet flow boundaries, all primitive variables are
user-defined. At the outlet, only pressure is specified in the case of a subsonic
flow. The other four primitive variables are extrapolated from the interior. On the

other hand, in a supersonic outlet case, no boundary conditions are imposed at the

3.2. Discretization of the Steady Compressible Laminar Equations 91

exit. Wall boundary conditions depend on the used flow model. For inviscid flows,
the no-penetration condition applies, and thus the flow and wall’s normal velocity
components (v}) are equal,

(2

vin; = 0

i Th

where n; is the normal to the wall component along the x; direction. In a viscous
flow case, the no-slip condition is employed as well, namely the flow and wall velocity
vectors are equal,

v; = v’

Moreover, solid walls are adiabatic, thus
qeny =0

Finally, boundary conditions along a symmetry plane are

% _,
on|pe
% _,
on | go
szC = v; — 20LNEMN;

where 77 is the perpendicular to the symmetry plane unit vector, ¢ is the fluid’s
velocity, and 7P¢ is the modified velocity at the boundary.

3.2 Discretization of the Steady Compressible Lam-

inar Equations

This section deals with the discretization of the governing eqgs. 3.1 in steady flows.
Its structure is separated into smaller parts discussing specific details of the dis-
cretization scheme. Firstly, the finite volume method implementation is presented.
The next subsection focuses on the flux discretization, the Riemann problem and its
approximate solution by the Roe scheme. Then, the second-order MUSCL method
is demonstrated and the limiter’s use is briefly explained. Limiters are presented in
detail in the following subsection. A separate subsection deals with the flow vari-
ables gradient computation by using the least squares method. After that, the flux

computation over the boundary faces is examined. Thereafter, the discretization of

92 K. D. Samouchos

viscous terms is presented. Finally, stability and convergence issues are discussed.

3.2.1 The Finite Volume Method

Over the years, numerous methods have been developed to discretize hyperbolic sys-
tems of PDEs. Therefore, the steady flow equations are reformulated as a hyperbolic
system to take advantage of such accurate solvers [306]. Accordingly, a pseudo-time
derivative of the conservative variables is added to the governing equations. Their
final form is

oU; Of .
=0 =1,---,5, k=1,---,3
67_ + axk) ? 7 Y) 7 Y
where fk = zm’— 2’“ and pseudo-time is denoted by 7 to be distinguished from the

real-time t. The above modification does not affect the flow solution because the
extra term vanishes after convergence is achieved. The flow equations discretization
is based on the cell-centered finite volume method [177]. On a cut-cell basis, each
finite volume (2) is considered a region placed entirely inside the mesh fluid part,
restricted by solid boundaries and internal mesh faces. It can be an internal orthog-
onal polyhedron or a boundary cut-cell of an arbitrary polyhedral shape. Fig. 3.1
shows a mesh detail with two differently colored cells. Conservative variables ((j P,
ﬁQ) are stored at their centroids. Integrating the above equation over 2 x A7 and
applying the Green-Gauss theorem in the temporal and spatial terms, one gets

T+AT A T+AT)
/ Wi 40dr + / ik 400dr — 0

Q @7‘ Q al’k
T+AT
Q ’TJrAT Q T T S

where fﬂ and | ¢ are shortcuts for the triple volume and double surface integrals,

AT is the pseudo-time discretization step, S is the finite volume boundary surface
and 7 is the outward pointing surface unit normal vector. The surface integral can
be written as a summation of integrals over all edges or faces of a polygonal or
polyhedral finite volume in a 2D or 3D case. Each of them is represented by the
averaged flux vector ﬁm leading to the following formula

T+AT M 3
/ U;d$) - / UdQ| + / > fEnpAS™ | dr =0
Q T+AT Q T T

m=1

3.2. Discretization of the Steady Compressible Laminar Equations 93

where
—_— fsm fixdS
mAgT
and M is the number of finite volume’s faces. By defining the mean values
L PR L BV
! Q ’ ! Q

the equation is written as

gt _gn M A
0+ ; (E/T FrnirdrAS) =0 (3.2)

The pseudo-time integral computation is quite different for the inviscid and viscous

flux. Therefore, it is described separately in subsections 3.2.2 and 3.2.7.

3.2.2 Convective Flux Discretization Scheme

The computation of the integral in eq. 3.2 along every mesh face is challenging since
two neighboring finite volumes are met, creating a discontinuity in the flow field. For
example, fig. 3.1 shows a 2D mesh detail, where an edge is separating finite volumes
P and Q. On its left-hand side, flow variables are equal to U L being different than
the right-hand values U®. Generally, UZ and U® may differ from U” and U®. Their
values depend on the assumption on the rules the flow distribution follows inside the
finite volume. The discontinuity problem is physically well represented by the 1D
so-called shock-tube problem along the segment connecting the two centroids, where
two stationary gases of different pressure and density are placed in a tube separated
by a diaphragm. The diaphragm removal generates a nearly centered wave system
that typically consists of a rarefaction wave, a contact discontinuity, and a shock
wave. The general case, in which the gases are initially allowed to move, having
different velocities ©% and #%, is the renowned Riemann problem. Its analytical
solution allows for the exact computation of the above integral. Assuming that the
chosen time step A7 is small enough and, thus, prevents the wave interaction be-
tween the finite volume faces, the Riemann problem local solution suggests constant
flow values U™ along A7, where n is the pseudo-time step counter. Thus,

M 1 THAT
ZE / fimempmgr AS™ = Z Fimom(gjnmypm A Gm

94 K. D. Samouchos

Fige
—
VP VL VR VQ
[®
AT

Figure 3.1: Mesh detail of two neighboring cells P and). Flux fP Q is computed
on their common edge. A discontinuity appears along the edge separating the %2

and V' flow conditions. Edge normal unit vector 7 is also shown.

The discretization presented above is called the Godunov method [109]. Its integral
form is easily implemented in an unstructured mesh, allowing for discontinuous
solutions to appear. However, it suffers from two weaknesses. Firstly, like most
discretization schemes, A7 is restricted by an upper limit relying on the maximum
absolute wave velocity SI* ~=|v"| + ¢" throughout the finite volume. For a 1D cell
of length A, this upper limit is

AT <

- (3.3)

maz
The meaning of the above inequality is evident in fig. 3.2, where a 1D cross-section
along the line connecting the two centroids, depicted in fig. 3.1, is shown in a space-
time plane. The P finite volume is surrounded by waves created on its boundaries.
Time step A7 should be quite small to impede the interaction of the two groups
of waves, allowing for the two Riemann problems separate treatment. This upper
limit delays the convergence, increasing the overall computational cost. To over-
come this drawback, U@ +Dm can be used instead of U ™ giving rise to an implicit

discretization scheme.

Secondly, the Riemann problem analytical solution is required. Although exact
Riemann solvers are available, they involve iterative procedures increasing the com-
putational cost. In practical applications, the Riemann problem should be solved
millions of times, making it impossible to implement an exact Riemann solver. On
the other hand, approximate, non-iterative solvers have the potential to provide

accurate enough numerical solutions at a reasonable computational cost.

3.2. Discretization of the Steady Compressible Laminar Equations 95

ik '7\ L/

AT

Y

Figure 3.2: A wave system representation in a space-time plane generated by dis-
continuities appeared at both boundaries of the 1D finite volume P of length h.
Dashed, bold, and fan-type lines represent the contact, shock and rarefaction waves,
respectively. The neighboring finite volume () is also shown. Solution of the lo-
cal Riemann problem caused due to the V' and Vj; discontinuity is needed by the
Godunov averaging method. Pseudo-time step A7 is chosen such as the wave of
maximum speed S~ within P is not affecting the Riemann solution of the right

max

wave system. Post- processed figure taken from [306].

One of the most well-known approximate Riemann solvers was introduced by Roe
in 1981 [262]. Many refinements and corrections have been presented, such as the
Roe-Pike approach [263] or the Glaister extension for the time-dependent Euler
equations [106]. Roe’s approach has been applied to a great variety of physical
problems proving its reliability and robustness. According to the Roe’s approximate

Riemann solver, the flux is computed by using one of the two following alternatives
1306], [309),

(2

Finv,m 1 L
Fiemab® = 5 (fh+ 13 nd® = 5 | A @] (UF - UF) (3.4)

f:]?v mnkPQ - (ik + f > 7o 2 ‘Az]knk ’ UL) (35)

where 7779 is the unit vector normal to the surface separating finite volumes P, Q,
always directed from the L to the R side. Ay is the Jacobian matrix of the governing

96 K. D. Samouchos

equations system along the k-direction,

Ai' -
AT

(3.6)

The Jacobian matrix projected to the normal direction leads to the diagonalizable
matrix Agng. Due to the hyperbolic nature of the governing PDEs, Axn; has real

eigenvalues. Its absolute counterpart is
| Ak = Pu | Al Py (3.7)

Column vectors of P are the right eigenvectors of Agng and |A|=diag(|A1],|A2], - ,|s])
where |\;| are the absolute eigenvalues of Ayny. The P and A analytical expressions
can be found in [130] and Appendix D. Finally, the tilde symbol denotes the use of

the Roe averages for the flijknk‘ computation. These are given as

p=vppt
. :\/FU’LL + \/ﬁviR (3.8)
L Vet
. _VPPhE + RS
VioE 4+ /ot

Very useful is also the relation giving the Roe averaged sound speed,

. = 1
c:\/(”y—l)ht—ﬁv?

A detailed proof of eq. 3.4 is presented in Appendix E. All values being part of the

Roe scheme discretization correspond to time 7+ A7. Superscript n+1 is omitted
for the sake of brevity. Eq. 3.4 is more accurate than eq. 3.5, but it may cause
convergence issues, especially in transonic flows where strong shock waves occur.
This behavior is avoided by using eq. 3.5, which is proved to also provide second-
order accuracy results [18]. However, numerical experiments have shown that eq. 3.5
causes spurious pressure oscillations close to the solid boundary of a Cartesian mesh.
Thus, its use should be avoided whenever possible.

3.2. Discretization of the Steady Compressible Laminar Equations 97

3.2.3 The second-order MUSCL Method

Numerical simulations of real-world applications require at least second-order accu-
racy algorithms to preserve reliability. In this thesis, the Monotone Upstream—centered
Scheme for Conservation Laws (MUSCL) introduced by van Leer [318] is applied to
compute the left (L) and right (R) conditions that appeared in egs. 3.4 and 3.5. How-
ever, according to Godunov’s theorem [108], second or higher-order accurate linear
schemes are prone to create spurious oscillations in the flow field, especially in the
vicinity of large gradients. This condition is overcome by constructing non-linear,
oscillation—free discretization methods, called Total Variation Diminishing (TVD)
schemes, offering second-order accuracy in smooth parts of the solution. These
methods try to mimic the exact solution of the scalar conservation laws by prevent-
ing the total variation increase in pseudo-time. Appendix G proves that monotone
schemes, such as MUSCL, belong to the class of TVD schemes. Non-linearity in
the MUSCL scheme is introduced by the use of slope limiters, which enforce mono-
tonicity. Consequently, the MUSCL approach not only implies second-order spatial
accuracy but also avoids the creation of unphysical oscillations during the simula-
tion. It is essential to mention that the above theoretical basis is mathematically
developed only for scalar 1D cases. However, experience over many decades shows
that this theory serves well as a guideline for extending the above ideas in multidi-

mensional applications.

According to MUSCL, the primitive flow variables follow a linear distribution inside
a finite volume as follows

20r3
Vi(@) = Vi + ¢ Z

Jj=1

oV;
(9$j

(zj —)

c

where ¢; is the slope limiter for each variable. Index ¢ denotes the finite volume’s
centroid. Based on this assumption, flow values UL and UR correspond to the
extrapolated variables UP and UQ at the two sides of each face.

207'3
VP (bP Z ax xf)
_ J
20r3 av (39)
Tjlg

7j=1

98 K. D. Samouchos

where 7/ are the coordinates of the edge or face centroid for 2D or 3D cases, re-
spectively. Fig. 3.3 depicts the extrapolation by using blue arrows in two different
cases. Blue arrows geometrically present the extrapolation in fig. 3.3 in cases where
centroids P and () are not inlined due to geometrical intersections or cells surround-
ing the face are of different coarsening levels. Finally, an important fact is that,
although the MUSCL procedure is second-order accurate, close to the solid bound-
ary the limiter takes very low values at a significant number of cut-cells, reducing
the discretization accuracy locally to first-order. The next subsections are dealing
with the computation of the limiter function and the primitive variables’ gradient
used in egs. 3.9.

\ Vi e Ve

VL :
i
v 1
(a)
VLR Vv

l<—0
PQ
\%f_).

(b)

Figure 3.3: Two cases of V and V@ variables extrapolation to approximate V2 and
VE conditions used for flux computation at internal (f7?) or boundary (f*) edges.
P and @) centroids are not aligned due to (a) solid boundary intersections and (b)
different cells’ size.

3.2. Discretization of the Steady Compressible Laminar Equations 99

3.2.4 Limiters

The benefits using limiter in eqs. 3.9 are already discussed in subsection 3.2.3. This
subsection focuses on two ways to compute limiters. By definition, limiters guar-
antee that the extrapolated flow variables’ magnitude does not exceed the adjacent
neighbor’s cell-centered solution. Various limiters have been proposed in the litera-
ture with different characteristics and behavior. The proper limiter choice depends
on the case and is selected on a trial and error basis. Two kinds of limiters for
unstructured meshes are used in this thesis. The first one (¢p;) is introduced by
Barth and Jespersen [26] and uses the non-differential min function which may harm
the convergence of non-linear systems. Although the limiter enforces monotonicity,
it reduces the scheme’s accuracy because it remains active in smooth regions of the
solution. Limiter’s ability to prevent the generation of new local extrema is pre-
sented in Appendix H. The second one (¢y), proposed by Venkatakrishnan [321], is
based on ¢p; but is differentiable. It can also revert to a scheme without limiter in
smooth regions, increasing the discretization accuracy, but it cannot maintain the

solution’s monotonicity. Both limiters’ expressions are shown below

by = min (1, ﬁ;) |Af| > eps (3.10)
1 |Ay| < eps
1 (AZre)ast2niA. <
by = { B AH2ATFA[AAe |Af| = eps (3.11)
1 |Ag| < eps
where
A _ ‘/im,am - ‘/’L'C Af 2 epS
‘o ‘/;mzn_‘/lc Af<€p8
(& 8‘/; c
Ap=V]-Ve= o, (] — 25)
and
e = (KD)?

The user-defined eps value takes on a very small value (e.g., 1071*), K=0.3, and D
is the cell’s hydraulic diameter computed as D=6£2/S. For each cell, flow variables
Ve stored at the centroid Z° are extrapolated at each cell’s face centroid #/ by using
the first-order Taylor expansion. The resulting values V7 are used to compute A I
Depending on Ay sign, A. is computed by using V;, .. or V; . standing for the

max min

100 K. D. Samouchos

maximum or minimum value stored in neighboring cells’ centroid. Neighboring cells
are considered all cells that share a common face with the referred finite volume.
In case a finite volume’s face is part of a mesh boundary, a fake node is used as the
corresponding ‘7{: value. Its flow variables are computed by using the extrapolated
on the face values V/ which are modified according to the corresponding boundary
conditions presented in section 3.1. The procedure mentioned above is applied for
each finite volume’s face giving a different limiter’s value, the minimum of which is
its final finite volume’s limiter value. The algorithm is repeated for each primitive
variable.

3.2.5 Gradient Computation Using the Least Squares Method

Computation of primitive flow variables at the face’s centroid via eq. 3.9 requires

the cell-centered gradient g;/? } evaluation in an arbitrary finite volume P. There are
J

two common techniques for its computation, the Green—Gauss theorem or the least-
squares approach. Despite its relative complexity, the second method is used in this
study due to its higher accuracy [298]. It computes a gradient by best approximating
the flow variables stored in the neighboring cells through the Taylor expansion. This

request is obtained by minimizing a cost function for each primitive variable ¢ given

by

M
oV,
E; = i A
S v v - 3

ey -]

where M is the number of cell’s faces. If the face is internal, then 7™ and V™ are

m=1 P

the neighboring cell’s centroid and flow variables, respectively. Otherwise, a fake
node is defined, positioned at the face centroid. Firstly, VP is copied to the fake
node and, then, transformed by considering the appropriate boundary conditions
giving rise to the corresponding V™ flow vector. The weight coefficient w™ places
greater importance to the stencil of neighbors being nearby. It is usually set to
w™ =1/ |a‘:’m —zP ‘2. Numerical experiments have shown that w™ =1 also gives
accurate results. The cost function’s minimum is computed by nullifying its deriva-
tives w.r.t. the unknown gradient components leading to a 3 x 3 algebraic system
AZ=b; given by

SwmAxT AT Y wmAxT Azl > wm Ax T AxY g—;/j ST wmAZTAV™
Swm Azl Az Y wm AP AxD Y wm Axh Axy g—};;’ = [D wm AP AV
Ywm AP AT DY wm AP AxY Y wAxy Axy g—;/; dTwm AT AV

3.2. Discretization of the Steady Compressible Laminar Equations 101

where Az =z — 2P and AV™ = V™ — V.. The system has a unique solution
provided that A is invertible. At the end of each pseudo-time step, flow variables
are recomputed and their derivatives are given by solving the above system for each
finite volume P and each primitive variable i. This procedure is computationally
costly and can be avoided by differently formulating the system. Firstly, a new
matrix and vector are defined as

AL 2 A g2 AV}
m m
wAzy wAzxy - whAx] AV2
- K3
B = |w'Az) w?Azi - wmAzP|, &= .
w'Azi w?Azi oo wmAxD '
AV"

where the m index repetition in matrix B does not imply summation. By definition,
b; = B¢; which yields

A7 =b; < A7 = B¢, & 7= A"'B¢ < 7 =W¢

where -
Wi
W=A"'B=|W, (3.12)
Ws
Then, the gradient is computed as
oV; -
= W,.G 3.13
axj J c ()

where Vf/j is a function of only geometrical quantities, and ¢; contains exclusively
flow variables. Therefore, Vf@ remains constant during the convergence procedure
and can be computed at the beginning of the flow simulation. Then, at the end of
each time step, ¢; changes, and the variables’ gradient is computed anew at the cost
of an internal product (eq. 3.13) instead of a 3 x 3 system solution.

3.2.6 Flux Computation at the Boundary Faces

So far, the convection term discretization for internal faces has been presented in
detail. The flux computation at the boundary faces differs, depending on the kind

of the corresponding boundary conditions. For wall boundary faces, the Roe scheme

102 K. D. Samouchos

is not used and, thus, additional dissipation is avoided. Wall fluxes (f;,zmnk) are
computed on the centroid of the face being part of the intersection between the solid
bodies and the Cartesian mesh. Such a case is illustrated in fig. 3.3a. The presented
discretization’s capability indicates the cut-cell method’s superiority compared to
other immersed boundary methods. Wall flux expression on a stationary boundary
is

0
. y2Ua
"y = | png (3.14)
pns

0

Pressure is computed by extrapolating its value from the cell to the face centroid,
fig. 3.3a. The exact wall boundary representation through the precise cut-cell con-
struction described in chapter 2 increases the extrapolation accuracy and, therefore,
the solid boundary conditions imposition. On the other hand, for the inlet, outlet,
and symmetry conditions, the Roe scheme is preferred due to its ability to increase
stability and drive the governing equations to convergence. Eq. 3.4 is transformed
as 1

. 1+
f;"”’BC’mnk =3 (fix + fgc) L)Az’jknk‘ (UJBC — U]L) (3.15)

where left (L) variables are computed through extrapolation from the boundary cell’s

barycenter, and UBC is computed by imposing the boundary conditions presented
in section 3.1, on the UL flow variables.

3.2.7 Diffusive Flux Discretization Scheme

This subsection deals with the discretization of the integral’s viscous part appeared
in eq. 3.2. More specifically,

—

M M
1 THAT FUIS,M __m m FUis,m (77m ou
S (ar mewass):Z(ﬂ'k Sy

m=1 m=1

)n$A5m>

m

3.2. Discretization of the Steady Compressible Laminar Equations 103

Superscript n+1 in terms U™ and % is omitted for the sake of brevity. Based
m

on eq. 3.1, flux f;"""ny is computed as

0

T1kMk
rUS,Mm .

f i nE = TokNk
T3k

| UiTikME + Qe

- m

Subscript m on the r.h.s. denotes that all primitive variables and their spatial deriva-
tives should be computed at the m** face centroid. Cells attached to the face are
denoted as P and (). Then, primitive variables are

Y
P =

L, L R, R
m ProF 4 ptto!
pr=

The left (L) and right (R) states are given by eq. 3.9. The spatial derivative g;z

is computed by using an orthogonal correction scheme [141], which appropriately
combines the already computed derivatives at P and () centroids as described in
subsection 3.2.5. It allows for the gradient’s discretization for any angle formed
between vector }ﬁ and the face normal 77. Moreover, it smooths out any unphysical
oscillations that may occur during the pseudo-time iteration process [78], [269]. Face

—F

and cell centroids are #¥, #¥ and 9, respectively. The gradient is computed by the

formula
oV, oV, oV, oV,
_ Y (Y YV 1
al’k m 6xk (6%% e m) A (3 7>
where
I L
CT e P

is a unit vector parallel to }@ Moreover, the mean derivative appearing in eq. 3.17
is
vy IV,

8xk N 8xk

ov;
w +

1_
0t] G

Q

104 K. D. Samouchos

where
‘xF — 7@ ‘

w = ——
72— 7]
and the gradient along the a direction is

oV B ‘/iQ_V;P

da|, |79 — 7P|

Eq. 3.17 is explained in detail in Appendix I. It is likely that, in a Cartesian mesh,
cells P and) are of the same size. Considering that @ = 7 and w = 0.5 the
aforementioned equations are simplified, which significantly reduces the gradient’s
computational cost. Regarding a boundary face, w is set to 1, which leads to

Vv, oV
8$k N (933k P
Furthermore,
% _ ‘/z‘BC _ ‘/z‘P
oo |, @ — 2P

where V,P¢ computation is explained in subsection 3.2.6. Finally, for internal and
boundary faces, the temperature gradient, needed for the heat flux computation, is

1 Op
— _— Tm
m (Pm Oy m>

where T (p™, p™) is given by the equation of state presented in section 3.1.

ar
8mk

1 0p

P Oxy

m

3.2.8 Pseudo-Time Step Computation

The stability and convergence speed of the flow solver considerably depend on the
pseudo-time step (A7) choice [319]. One should choose the largest possible step
size to accelerate the pseudo-time marching procedure and, consequently, reduce
the total computational cost. However, stability analysis of 1D hyperbolic equa-
tions’ explicit numerical solution scheme sets an upper bound on its value, eq. 3.3.
Moreover, stability restriction for the 1D model diffusion equation u; = vu,, suggests
A7 < 1/(2vAz?). Both criteria depend on local geometrical and flow quantities,
which appear in a wide variety of scales along the flow field, and therefore, a local
AT is adjusted at each finite volume [312], [249]. Due to the lack of similar theo-

3.3. Temporal Term Discretization of the Compressible Equations 105

retical analysis for the multi-dimensional Navier-Stokes equations, a combination of

the two 1D restrictions is employed [148], though it does not ensure convergence.

Specifically,
AT = min(ATy, Ay, AT3) (3.18)
where b
At =CFL——F"——| 1,---,3
ol + e+ T
and 5
Tvivis — _:u
phi

For inviscid flow applications T** is set to zero. In most CFD cases, the inviscid
(Courant) stability restriction is stricter than the viscous limitation [148]. Variable
h; is the cell’s height for each direction and CFL is the Courant-Friedrichs-Lewy
number. Its value varies starting from a significantly small value and gradually

increasing as the pseudo-time iterations (n) proceed,

-3, .5l _
OFL — 1072 +7°(6 — 57)CF Lypaz, 1 < Npnaz
CFLmaw, n Z Mg

where r=n/n,4.. The user-defined variables C'F' L,,4, and 7,4, determine the first
time step in which CFL takes its maximum value. The discretization presented in
the previous subsections allows for CFL,,q, > 1.

3.3 Temporal Term Discretization of the Com-

pressible Equations

Phenomena dealing with unsteady flows around moving geometries are of significant
importance in real-world applications. However, they pose various challenges, such
as the need for mesh deformation tools, which can inherently be met by IBMs. De-
spite their significant superiority in such cases over solvers using body-fitted meshes,
they face difficulties retaining high simulation accuracy close to the moving solid
bodies. Especially, the cut-cell method struggles to maintain conservation or pro-
vide physical solutions in large boundary displacements [219]. This section describes
a discretization method developed within the current thesis which deals with these
challenges. Firstly, the Arbitrary Lagrangian-Eulerian technique is briefly described,

106 K. D. Samouchos

and flow equations are presented in a proper formulation. Thereafter, the dual
time-stepping method is explained, and the corresponding algorithm for simulating
unsteady flows is presented. Finally, treatments for the cells” abrupt appearance or
disappearance within the flow domain, as well as the flow field projection from each
mesh to the next one, are discussed in detail.

3.3.1 The Arbitrary Lagrangian Eulerian Technique

In flow simulations around moving bodies, the governing equations are integrated
over a deforming finite volume provided with an arbitrary velocity distribution on its
surface. Their discretization is based on the Arbitrary Lagrangian-Eulerian (ALE)
technique [131] as a convenient way to face the Lagrangian motion of a body through
an Eulerian flow field. The governing equations’ integral form is

4 aa - / Up?ngdS + / Ok gy — (3.19)
dt Jq g q O

where v} is the solid body’s surface velocity. When =0, the equations’ description
is Eulerian, which allows for the simulation of a moving flow in a fixed computa-
tional mesh. On the contrary, when ¢¥ is equal to the flow velocity, the equations’
formulation turns into a Lagrangian one, meaning that mesh nodes follow the mov-
ing material particles. Therefore, ALE is a generalization of the two aforementioned
flow field representations.

When a solid body performs an infinitesimally small displacement, all but mesh
boundary faces stay unaffected, meaning that only boundary flux expressions are
modified compared to the corresponding steady ones. Therefore, the steady equa-
tions’ discretization method presented in section 3.2 remains almost intact. The
following analysis aims to alleviate differences in moving wall fluxes by adjusting
the equations’ formulation. Without loss of generality, a finite volume is studied,
constituted by three internal and one solid face, fig. 3.4. Although the three faces 1,
3, and w are modified due to the wall’s motion, normal wall velocity vyny is non-zero
only in face w, and therefore, it is the only face contributing to the surface integral
of eq. 3.19,

d 3
— / UidQ — UPvInff ASY + > [t AS™ + fin AS™ = 0 (3.20)
dt Jo J P

3.3. Temporal Term Discretization of the Compressible Equations 107

The temporal term is discretized as

1
d Qn+1Un+1 . Qn+%U-TL+§
%/QUidQ: v (3.21)

where At is the chosen physical time step. The computation of the conservative
variables and volumes at the intermediate time step (n+1/2) is discussed in subsec-
tion 3.3.3. Taking the no-penetration condition vn¥ =v/n}’ on a moving wall into

account, the flux becomes

pruiny 0 0
Wy, W9, W Wy W W oW Wy W W oy W
pPrUL VN PNy = TN P m T1575
fw, ow W Wy g 0y W W) W W oy W _ TTw,, 9w W) W _ W,y W
Jeng = PV VN PNy = Ty = U%;n; + PNy To;15
W, W), G 0y W W) W W oy W W) W W oy W
prusvin; +ping — T3;1; ping T3,1;
w Lw w9, w 9w, w w, 9, W 9w, w
| (0" EY 4 p*)vin; —UiT 1 | DUy | Uy Ty
TV 4 N TV
Anv,w g Fois,w
k k k N
(3.22)

where the no-slip (v} = v/) and adiabatic wall (¢{’nx = 0) boundary conditions
have also been taken into account in the viscous terms. Substituting the wall flux
expression into eq. 3.20 one gets

Qi+l _ Qn+%U”+% 3) .
Y FnPAS U AS T — £ AS” = 0 (3.23)
m=1

Therefore, the term corresponding to the surface integral of eq. 3.19 vanishes and
unsteady wall flux is almost the same compared to its steady variant, eq. 3.14. Their
only difference appears in the energy equation, where ¥ emerges, which should
be computed so as to satisfy the Geometric Conservation Law (GCL) [176]. This
ensures that no spurious mass, momentum or energy sinks appear in the flow domain.
The GCL is a straight consequence of the Reynolds transport theorem [260], stated
as

d
% QdQ_/SUandS:O

A first-order forward-in-time finite difference scheme is used for its discretization

QnJrl _ Qn—i—%

At S AS®

wall faces

ving, =

108 K. D. Samouchos

The Q"2 computation does not guarantee that the resulting v{n; matches the user-
defined solid body’s velocity 0] = %. Numerical experiments have shown that the
07 choice over v{ facilitates convergence and results in a smoother flow field close to
the moving boundaries, and thus, its use is preferred.

1
AN

\§

Figure 3.4: Cell intersected by a moving boundary wall (red line). Square’s fluid
part is colored. Vectors show the boundary’s displacement direction. Blue numbers
and letter 'w’ (wall edge) name the four cut-cell edges.

3.3.2 Dual-Time Stepping

Moving boundaries flow applications have received an excessive amount of attention,
leading to a substantial number of discretization methods in the recent literature.
An implicit dual-time stepping method [202], firstly introduced by [179], is used
for eq. 3.23 time evolution, allowing for an implicit temporal treatment that decou-
ples the time step from the local mesh’ scale, avoiding further stability restriction
barriers. Consequently, time step choice is determined by the physics appropriate
handling rather than numerical restrictions. By increasing the time step, the num-
ber of times the geometry and mesh intersection is detected over the whole unsteady
simulation decreases, avoiding the frequent use of the most time-consuming part of
the mesh generator. Moreover, the dual-time formulation supports the straightfor-
ward incorporation of the already developed steady-state flow solver infrastructure,
discussed in section 3.2. The governing equations become

ou;, oU; Of;
L 0U; | Ofa

ot | or axk:o

3.3. Temporal Term Discretization of the Compressible Equations 109

and their discretization is

1
n+1y7n+1,q+1 nt+iypmts n+1yrn+l,g+1 n+lyn+lq
Qry; —Qrray; Qry; — QU
At AT

1 1
E : ank Asm n+1,q+

Recall that 7 is referred to pseudo-time representing the internal iterative process,
and t is the physical time. Contrary to section 3.2, indices n and ¢ stand for the time
and pseudo-time step counting, respectively. According to the developed algorithm,
at each time-step, the geometry moves to its new position, the mesh is regenerated,
and U2 are computed. Then, flow field U"*! is initialized with U "3 values,
and a pseudo-time iteration process starts, until convergence is achieved, namely
\UPhat gt < eps, where eps is a predefined small number. By the end of
the current time step, the pseudo-time derivative term will vanish and, subsequently,

the same procedure is repeated for the next time step.

3.3.3 Covered and Uncovered Cells Treatment

The main difficulty related to the flow simulation around moving boundaries using
the cut-cell method and, generally, any IBM is the loss of mass, momentum, and
energy conservation due to several cells’ transition from solid to fluid and vice versa
at each time step. Although this issue has already been discussed in section 2.8,
where the cell-linking approach was introduced, this subsections deals with it from
the perspective of the flow equations discretization. According to that, both transi-
tions require delicate treatment leading to the Unts field computation used in the
temporal term discretization presented in subsection 3.3.2.

Fig. 3.5 shows a fluid cell at time step n which is going to be covered by the solid
region. Starting from fig. 3.5¢, two finite volumes are depicted, the lower of which
is going to disappear at the next time step. Indeed, the red boundary is lifted up
totally covering the brown cell. The mesh detail after the boundary’s motion at
time step n+1 is presented in fig. 3.5a, where only the upper finite volume appears,
deformed in shape. The cell’s cover causes the disappearance of the conservative
variables stored at its centroid. Within this context, an intermediate fake step
(n+1/2) is defined, fig. 3.5b. The lower cell is combined with its upper neighbor,
forming a merged hyper-cell. So, its contribution to the flow conservation variables
will be transferred into the neighboring cell, which continues to exist at time step

n—+1. Flow variables at the intermediate step are computed ensuring conservation

=0

110 K. D. Samouchos

as

M
Qn—‘r% — E an
m=1

M (3.24)
m=1

1
n+3
Ui = .1
Qnta

where M is the total number of incorporated cells forming a merged finite volume.

On the other hand, different complications arise when newborn cells emerge at a
new time step. Their time integration by the governing equation is meaningless
due to the absence of their conservative variables’ time history. The case is also
exemplified in fig. 3.5. Starting from fig. 3.5a at time step n, where only the upper
cell belongs to the fluid domain, and following the red boundary lowering motion,
a new cell appears in fig. 3.5¢ with no time history. Therefore, it is linked to its
neighboring cell, yielding to the combined finite volume shown in fig. 3.5b. At time
instant n+1, the cells are separated again and are treated independently by the flow
solver. The volume and the conservative variables of each merged cell are updated
as follows,

Mo
m=1
M (3.25)

U’i - Qn+l
2

where M is the total number of cells combined to form a hyper-cell and k™ is the
number of merged cells the m!” cell of the n'” time instant is part of. In the simple
example illustrated in fig. 3.5, M =2 and k" =1.

Consequently, spurious mass sources or sinks are avoided, and conservation is strictly
maintained. Moreover, the developed method does not impose any restriction to
the time step choice, allowing for large boundary displacements to occur covering
or uncovering a great number of cells. Large intermediate merged cells close to the
solid boundaries may reduce the simulation accuracy, but practice has shown that
it does not affect the global accuracy of the discretization method [53], [68]. Section
2.8 defines the criteria used to form the merged cells at the n+1/2 time instant for
appeared and disappeared cells.

3.3. Temporal Term Discretization of the Compressible Equations 111

(a) (b) ()

Figure 3.5: By arranging the figures from left to the right, a new cell appears to the
fluid domain due to the red solid boundary’s lowering motion. In the reversed order,
a cell disappears from the fluid region. The squares’ colored segment indicates the
cells” fluid part.

Another factor affecting the intermediate step n+1/2 computation is mesh adap-
tation to the moving boundaries, which also affects cells far from the solid wall.
Mesh is dynamically refined at each time step in the vicinity of the solid boundaries
following their motion and maximizing the simulation’s accuracy. According to sub-
section 2.8.1, this process embodies both coarsening and refinement tasks. Along
with the mesh adaptation, interpolation should be employed to transfer the flow
solution from the previous time step to the new one [273]. For the sake of clarity,
two simple cases are demonstrated. Firstly, during the refinement process, the cell
depicted in fig. 3.6a is subdivided into several cells of various sizes, fig. 3.6b. Flow
variables U"*2 at the newly created cells are set equal to the initial cell’s values
U". On the other hand, by reversing the figures’ order, all cells, shown in fig. 3.6b,
are merged to form a single hyper-cell, fig. 3.6a. The following formulas are used to
attribute values to its centroid, ensuring the satisfaction of the conservation laws,

Qn—‘r% :Qn—l—l
M
> Uy
) Qn—i-%

A matching process is required for both projections explained above, connecting

cells from one mesh to the other. Such an algorithm is explained in subsection 2.8.1.

112 K. D. Samouchos

(a) (b)

Figure 3.6: During the refining process, the cell on the left is subdivided into a
number of smaller cells on the right. Inversely, on a coarsening process, neighboring
cells on the right are merged to form the hyper-cell on the left.

3.4 Incompressible Fluid Flow Model

This section presents the equations governing incompressible flows. The governing
equations are not a sub-case of the compressible equations presented in section
3.1 because the equation of state no longer holds. The density field is considered
constant, causing the decoupling of the energy equation from the continuity and
momentum PDEs. Heat transfer flow problems are beyond the thesis scope, and,
therefore, the energy equation is not included in the mathematical model. The

governing equations are

oV, | oL of

MZ” — 207 ':17""4,]{::17"',3 326
7ot oxy, oxy, ! ()
where
p Vg 0 00 0O
‘7 _ U1 7 —Ii,,w _ VEU1 + 61kp 7 _;é;is — Tik ’ M = 0100
Uy VU2 + 0ok Tok, 0010
VU3 URU3 + 03P T3k 0 0 01

3.4. Incompressible Fluid Flow Model 113

where p denotes the pressure divided by the constant fluid’s density. The stress

o ov; n oy,
Tik = Ooxr Ox;

with v being the kinematic viscosity p/p.

tensor 7 is expressed as

A set of boundary conditions completes the above system of PDEs. In external
aerodynamics, boundaries are positioned far away from the examined geometry, and
all flow variables’ values are user-defined. The discretization scheme employed at the
boundary is responsible for their selective implementation depending on the local
flow conditions. On the other hand, in internal aerodynamics, a different set of flow
quantities is imposed at the inlet and outlet. Three Dirichlet conditions are imposed
at the inlet, two of which are the two angles identifying the velocity vector direction.
The third quantity can either be the total pressure or the velocity magnitude. In
the first case, velocity magnitude is extrapolated from the flow domain interior. The
corresponding primitive variables are computed as

1
p=p— v
v; = v2sin(0)cos(o)
vy = v2sin(6)sin(e)
v3 = vZcos(6)

where p; stands for the total pressure divided by density. The Bernoulli law is used
for the total pressure definition. In the second set of boundary conditions, pressure is
extrapolated from the flow domain. On the other hand, pressure is always imposed
at the outlet, and the three velocity components are extrapolated from the flow
domain.

Boundary conditions implied at the solid wall for inviscid or viscous flows are the
same for incompressible and compressible flows, see section 3.1. Finally, boundary
conditions on the symmetry plane are

9p _
on

0

) V; — 20NEN;

114 K. D. Samouchos

3.5 Discretization of the Steady Incompressible

Laminar Equations

The study of egs. 3.26 discretization starts by initially neglecting its viscous terms.
Their numerical solution represents some significant difficulties since the correspond-
ing system’s Jacobian matrix does not provide real eigenvalues. Thus, the system
of PDEs is not hyperbolic, and the techniques presented in section 3.2 are no more
applicable for the incompressible equations. The artificial compressibility approach
developed by Chorin [63] overcomes this difficulty by introducing an artificial density
(p) and the equation of state
pp = p

where [is a positive real number called the artificial compressibility parameter and
is assumed to be constant along the flow field. It is also reminded that p stands for
the pressure divided by the constant fluid’s density. By mimicking the compressible
flow equations, eq. 3.1, the pseudo-temporal derivative of the density (gﬁ) is added
to the incompressible continuity equation. Thus, the steady variant of eqs. 3.26

becomes oV o
e 3.27
7or Oxy ()
with I' being the preconditioner matrix equal to
B2 0 0 0
r_ 0 0 0O
0 0 0 O
0 0 0 O

The governing equations’ multiplication with I modifies the inviscid flux as follows,

ﬁ%k
V1V + 01D
VoV + OoxP
V3Vg + O3xP

Finv,l mnv
k - ka -

For further details on this method and its generalization, the reader is referred
to [314], [315]. The flow equations’ mathematical nature alteration leads to a hy-
perbolic system allowing for numerical techniques implementation, similar to those

used for the compressible equations. The governing equations integration over a

3.5. Discretization of the Steady Incompressible Laminar Equations 115

finite volume complies with the same analysis presented in 3.2.1. Moreover, Go-
dunov discretization is also implemented in eps. 3.27. Therefore, a corresponding
1D Riemann problem should be solved to provide the appropriate flux expression
[87]. The properly modified Roe’s approximate Riemann solver gives

rinv,I'’m 1 inv inv L
Ji a nkPQ D) <fzk Ty fir I’R) ”1{:@) ‘Agjkan (V;‘R - V;L) (3.28)
where ol
8fimv,
AL 8’;/ (3.29)
J

The preconditioned Jacobian A} ny, is diagonalizable with real eigenvalues. Absolute
Jacobian is defined as
| Afeni] = Py IAL Py (3.30)

The PY, AT and P''~! expressions can be found in [283] and Appendix D. Matrix
|/11,;nk| is computed by using Roe averages, which are set to the mean quantities
between the L and R states. It is shown in [302] that this algebraic average satisfies
the Roe conditions,

_ VL VR

Proof of eq. 3.28 can be found in Appendix F.

(3.31)

According to the previous discussion, the absolute Jacobian matrix is a function
of the artificial compressibility parameter and, consequently, part of the flux dis-
cretization scheme. Thus, its value affects the final flow solution. Contrary to the
compressible equations, the influence of the pseudo-temporal term added to the
governing equations does not vanish after convergence is achieved. Therefore, the
simulation’s accuracy is based on the [value, which may be problematic in practical
applications. Research in this area has not yet concluded with the appropriate £
computation. Its value choice is a fact of experience and trial and error process.

Moreover, Jacobian matrix’ eigenvalues also depend on parameter 5. Considering
that stability criteria are based on their values, one concludes that the artificial com-
pressibility parameter plays a significant role in the numerical instabilities reduction
and the convergence rate acceleration. Based on the theory presented in subsection
3.2.2, the optimal choice of 8 in terms of stability is the one that minimizes the
largest possible ratio of wave speeds generated between two neighboring finite vol-
umes [313]. After some algebra, shown in Appendix C, it is proven that the optimal

116 K. D. Samouchos

artificial compressibility parameter is given by
B2 = 3} (3.32)

This formula suggests that optimal [is locally adjusted depending on each cell’s
velocity magnitude rather than remaining constant over the flow domain. However,
this tactic leads to instabilities when very low-velocity magnitude regions exist and
is avoided throughout this thesis. Nevertheless, the above formula can still indicate
an appropriate global § value based on a characteristic flow field velocity.

A second-order discretization method is possible by applying the MUSCL method
of subsection 3.2.3. The extrapolation scheme of eq. 3.9 is also valid for incompress-
ible flows, where limiter expressions are given by eq. 3.10 or 3.11 and the required
gradient of Vs computed by eq. 3.13.

In case of viscous incompressible flows, the viscous fluxes, eq. 3.26, should be mul-
tiplied by the preconditioning matrix I'. However, the viscous flux remains intact
because I' f,i’is = _,i’is, and thus, the exact discretization method presented in subsec-

tion 3.2.7 can be applied.

Finally, the pseudo-time step A7 is computed by eq 3.18. The required sound speed
is considered infinite for incompressible flows due to the constant density assumption.
Artificial sound speed is used instead [87], which is defined as

c=/v? + B2 (3.33)

3.6 Temporal Term Discretization of the Incom-

pressible Equations

Discretization of the unsteady incompressible equations around moving boundaries
presents similarities with the method developed for compressible flows in section
3.3. The ALE integral form of the governing equations, eq. 3.19, is also applied in

3.6. Temporal Term Discretization of the Incompressible Equations 117

this case, where the vector U is defined as

0
0= "
Vg

U3

The equations’ discretization is exemplified by using the simple case depicted in
fig. 3.4, which leads to eq. 3.20. Temporal term is discretized by using eq. 3.21. The
corresponding flux on a moving wall displays some differences with respect to the
compressible case. It is expressed as

g, w g ,w

vy n; v;n; 0 0
W, ,9 0w W oy W Wy W W oy W W oy W

Fopw _ VpUin PNy — TN, _ [jwvgnw+ 0 1 pny 1M
k "k T w9, w w,,w W W - (A W\ W W oW
W, ,9 W Wo W W W W, W W oy W

vy vy + ping — T5ng 0 p¥ns T3;1;

NS g N

. h .v

f‘;znv,wng f:zs,wn}:

Thus, the ALE formulation discrete form is

0
Qn+1v?+1*Qn+%vT 5

At 0 E m,.m m NV,W__w w VIS, W w w
Q"+1U;+1—Qn+%v;+% + O + fzk; nk AS _'_flk nk AS —fz nk AS — O

m=1
Qn+1yn+1A;n+%vn+% O
3 — 3
At

g
;T

w
+3 Ui 1

Normal velocity v{n}’ can be substituted by using the discrete GCL

Qn+1 . Qn-ﬁ-%
At

—vinf =0
Then, the governing equations become

. o1
Qn+1U?+1_Qn+%U:+§ & m_m m nvw _w w vis, W _w w
~ +)P AS™ 4 f O ASY — f g ASY = 0

i
m=1

118 K. D. Samouchos

with
1
U=|"

V2

U3

Fluxes fm” “ni and fms "“n¥ are the same as those of a steady flow case. Moreover,
79 has been Vanlshed from the equations’ discrete expression, and there is no need
b

for its computation.

Dual time-stepping, discussed in subsection 3.3.2, is used for the equations’ propaga-
tion in time. The pseudo-time derivative multiplied with the preconditioner matrix
is added to the unsteady incompressible equations,

aUZ — 8fzk
r-1 Vi _
o i T, VT
PO OV O

Yot or Y Oy,
The preconditioned equations’ discrete form is

Qn+1f]il“,n+1,q+1 Onts UF nt3 +Qn+1vin+1,q+1 N Qn+1Vin+1 q+z (I'm mAS >n+17q+1 0
At AT T B

(3.34)

where

Ut =

Flux f-™ . npt computation is presented in section 3.5. The algorithm implemented
for simulating unsteady flows is described in subsection 3.3.2. Geometrical and
flow variables computation at the intermediate time step (n + 1/2) is explained in
subsection 3.3.3.

3.7. Numerical Solution of the Discretized Flow Equations 119

3.7 Numerical Solution of the Discretized Flow

Equations

In sections 3.2, 3.3, 3.5 and 3.6, the numerical discretization of the compressible
and incompressible flow equations was studied, which leads to a non-linear algebraic
system of K x L equations, where K is the number of mesh cells, and L the number
of PDEs modeling the flow phenomenon. This section presents a point-implicit
method to solve this numerical system. Vector R; € R- represents the sub-system
corresponding to residuals of the i*" finite volume and W, is the vector of its unknown
variables. It is equal to U for compressible flows (eq. 3.1) and V for incompressible
flows (eq. 3.26). At each time step n, the Newton-Raphson algorithm [248] performs
the system linearization. For an arbitrary cell P, it is expressed as

/13\1
7q

WAW]M“ =R/ i=1,- L, kP=1- K
j
where AVVf’qJrl = V[/f’qJrl — Wf’q, with ¢ denoting the current pseudo-time step. The
residual at each cell is not only a function of its flow variables, but also of those
corresponding to other cells around its region. Index k stands for the summation
of these dependencies. For simplicity reasons and for decreasing the computational
memory requirements, it is assumed that RF depends only on WP and WQ’", where
Q. is the m' first neighbor of cell P. Therefore, the system expressed in matrix
form is u
DPAW? + > OD™F AW — _ 3P (3.35)
m=1

with

5T ow?
J
ORP
oD} =—— i, j=1,---,L
ow;
standing for the diagonal and off-diagonal matrix elements. The ¢+1 superscript has
been neglected for the sake of brevity. The hat symbol indicates that the residual
derivative is approximately estimated. Its exact computation is avoided reducing

numerical operations, which may lead to complicated and costly algorithms. How-

120 K. D. Samouchos

ever, the computed derivative should be accurate enough to drive the system into
convergence. It is essential to clarify that this approximation does not sacrifice the
flow simulation’s accuracy. The computation of D and OD matrices is presented

below.

By differentiating eq. 3.23 or 3.34 one gets

Qntl Qntl M 8(f%,?nm) a<f@m)
Di' — i k/ i k
ITAE A T mZ: oWF OWF
oDy :a(fi 7an)OS 7an)
3VVj " aWj "

Repeated index m does not imply summation. Superscript P is omitted in terms in
which neither P nor @) index is mentioned. The simplified inviscid flux derivatives
for internal mesh faces are computed by differentiating eq. 3.4/3.5 or 3.28,

—

O(f ™) 1 o 1~ 5
T.Pk :éAgk”kQ B E‘A“’“”kQ|
J

o(f ™) 1 1+
—%WQ’”]C) =§A§kan - §|AijknkPQ|
J
The absolute Jacobian matrix derivative multiplied by the flow variables vector is
assumed to be zero. In the case of a boundary face, flux contribution to the off-

diagonal matrix is considered zero. The compressible inviscid flux derivative on the

wall is ~ _
0 0 0 0 0
— Op w 9p w Op w Op w 9p w
a(_inv,wnw) oU1 nl U9 nl oUs3 nl oUy nl oUs nl
k k — 8}) nu) 8}7 nu) 8]) nu} 8}) nw 8}) nw
aWP oU; 72 Uy ' 72 U3 ' "2 U, "2 oUs ' 2
j O w8 8w 0w 00
3g1 3 8(‘()]2 3 853 3 8g4 3 5g5 3
9p_ op_ op_ 9P op_
au; Un au,Yn ausYn Bu,Un aus Un

where v, =v{n}’ and

2 Vi
P 1y |
2 (y— —v
or Y 2
— 3
- 1 -

3.7. Numerical Solution of the Discretized Flow Equations 121

All the above flow quantities are computed by extrapolating their values from the
cell’s centroid to each face. The incompressible inviscid flux derivative on the wall

18

. 0 000
Af“ny) |n¥ 0 0 0
oWr In¥ 00 0

ny 0 0 0

The viscous part of the equations is similarly treated. Differentiation of the com-
pressible viscous flux is based on the following assumptions. Firstly, a simplified
orthogonal correction formula is used, instead of eq. 3.17,

0P

oe| 09
al‘k

~ — A
. Oa

m

where ® is a velocity component or temperature. Another simplification is made by
linearizing the energy equation’s viscous terms. Therefore,

0 0 0 0
07y 07y 07y 07y 7y
—_—

o Fois,m m) UL Uz OUs Uy OUs.
k kJ _ OTnqy OTngy OTnqy OTng OTnqy
owr oy OUs s Uy OUs.

J O0Tng OTng O0Tng O0Tng O0Tng
_on _on, v, _au, v,
OTn, Oqn O, 9qn OTn, Iqn OTn, 9qn, OTn, BE
gty o, Vigo, Tous Viaw, T aus Vigo, T ous Viaus T avs
with
OTp, ov; n vy, 2 Jvy,
=—Uu AN OGN — — N,
U, U, ou, " T 3au, M
oqy, I oT
= — K77 agng
U, U,
and
o
. —U1 1 000 —V1
ov 1 oT 1
= = — | — U2 01 00 5 - = —V2
ou p oUu Cyp
—Us 0010 —Vs
- 1 -

122 K. D. Samouchos

R
v—1
in the above expressions are computed on the face as explained in subsection 3.2.7.

where ¢, = is the heat capacity at constant volume. All flow quantities needed

Regarding the incompressible case, a similar strategy is followed. The derivatives of
the stress tensor projected in the normal direction are

a/T\ni (+ 0)
= — ;N aEMNE0; :

The same formulas are valid also for boundary fluxes for both compressible and

incompressible flows. Finally, the viscous off-diagonal term is
OD(W9m) = —Dy; (W)

The system of eqs. 3.35 for every cell P is iteratively solved by using the Symmetric
Gauss-Seidel (SGS) method [266]. The process terminates after a user-defined num-
ber of iterations is reached. Finally, the steps followed for simulating an unsteady
flow are

1. Initialize flow field.

2. Loop over mesh faces to compute contributions to R, D, and OD from both
neighboring cells (scatter-add technique [186]).

3. Solve system, eq. 3.35, by applying the SGS iterative method, until the pre-
defined iterations’ number is reached.

4. Use system’s solution (AW) to recompute flow solution.
5. If convergence criterion is met, go to step 7.
6. Start a new pseudo-time step by continuing with step 2.

7. Start a new time step by initializing the past and current flow field with the
solution achieved in step 3.

8. If number of time steps is reached, terminate. Otherwise go to step 2.

3.8. The Ghost-Cell Method 123

3.8 The Ghost-Cell Method

The cut-cell method for solving compressible and incompressible flows has been dis-
cussed in detail in sections 3.1 to 3.6. Its Cartesian mesh treatment distinguishes the
method from the rest of IBMs. The cut-cells’ arbitrary shape results in a complicated
data structure and flow solver. On the other hand, the introduction of the ghost-cell
method, as a subclass of the IBMs, eases these difficulties keeping the benefits of
the automated mesh generation a Cartesian mesh offers. The intersection between
the immersed geometry and the mesh is not detected, and wall boundary conditions
are indirectly implemented, allowing to treat complicated moving geometries in a
straightforward manner. Its conceptual simplicity has attracted the scientists’ in-
terest resulting in a high number of publications, which leads to the development of
numerous variations of the method and its application to a considerable amount of
industrial cases.

In this thesis, a combination of the ghost-cell method developed in [74] and the
ghost-fluid method introduced in [92] is programmed to simulate compressible in-
viscid flows [215]. According to this, both the fluid and solid parts of the mesh are
used. The governing equations are discretized according to section 3.2 and solved
throughout the entire Cartesian mesh. The corresponding finite volumes coincide
with the cubic Cartesian cells, even for cells intersected by the solid wall, without
performing any further geometrical modification. Therefore, the only mesh bound-
ary is its outer box surface. Consequently, special treatment is needed in the vicinity
of the solid wall to implement the no-penetration condition, which is described in

detail in subsection 3.8.1.

3.8.1 Wall Boundary Conditions Implementation

The present approach firstly defines a ghost layer of predefined length equal to
3v/AxAyAz inside the solid body, where Az, Ay and Az are the local cells’ dimen-
sions. If a cell’s centroid is placed inside this layer, it is called a “ghost-cell”. The
method’s main purpose is to mirror the flow field image through the boundary on
the ghost layer, defining each ghost-cell’s flow variables. This process is exemplified
in fig. 3.7 for a 2D case. It shows a mesh detail intersected by the solid wall de-
picted by a straight red line. The ghost layer is colored in gray. Two nodes G and
G’ are also shown. Point G’ is the image of the ghost cell’s centroid G through the

124 K. D. Samouchos

boundary. Let 7 be the velocity vector corresponding to G’. Then, the velocity
at the ghost-cell’s centroid is defined as

08 =0 — ZUJGlnjni (3.36)
where 77 is the unit vector normal to the boundary. Their mean velocity computed
at the GG’ segment’s midpoint satisfies the no-penetration condition v% - 7 = 0.
Many interpolation methods have been developed for the ¢ computation. Most of

them express the velocity as a function of the neighboring cells” velocity and their

distance from point G'.

f /

/

/

Figure 3.7: Ghost-cell G is placed inside the ghost layer, colored in gray. It’s image

through the red wall is noted as G’. Velocity vector ¢, presented in blue, is copied
to cell G. Its normal to the wall component is reversed forming the green vector.

In order to avoid such complicated geometrical structures, the following method is
preferred. Firstly, the Signed Distance Function (SDF) ® is computed at each cell’s
centroid. It is defined as the shortest distance between the centroid and the wall’s
surface. Its sign is positive for centroids placed inside the solid region and negative
for the rest. The ® = 0 iso-surface represents the sold wall. A direct outcome of
the SDF' definition is that the ® gradient on the wall is equal to the unit normal
vector pointing from the fluid to the solid region. This property is used to define
the normal vector for each cell P as

p 00

n.: =
! 3:1:1 P

3.8. The Ghost-Cell Method 125

Another notable property is that ® satisfies the eikonal equation

0P\ >
(3%‘) -

Various methods have been proposed for the SDF computation. Some of them are
based on the eikonal PDE numerical solution [280], [281], [345] and others on geo-
metrical computations [75]. The developed method belongs to the second category.

Initially, cells intersected by the geometry are detected, forming a front. Their dis-
tance from the surface is accurately computed. The closest surface point coordinates
are also stored for each cell. Subsequently, a second front is defined, which consists
of cells neighboring the first front. Each newly examined cell computes its distance
from the surface points stored in its first front neighbors and stores their minimum
as well as the corresponding surface point. The front propagation continues until all
cells are processed. This procedure may introduce inaccuracies, which are canceled

by repeating the algorithm several times until no further corrections are possible.

The second step of the wall boundary condition implementation is to transfer the
primitive variables from the flow domain (® < 0) to the ghost layer (& > 0) along
the normal direction. This process is made by solving the

ov;

an_O

PDE in the ghost layer for each primitive variable. A more useful formulation is

v, Mo OV 9D 0V

=0 —n; =0« =0« — =
on 6xjn] Oz, Ox; or + Oz, Ox;

0

where a pseudo-time derivative has been added. This equation is hyperbolic, and an

upwind scheme is applied for its discretization. It is solved by repetitively accessing

each ghost-cell and correcting its primitive variables by
0® 9V,

V;n—l—l — V;n — AT —

(%j 6$j n

(3.37)

where n is the iterations’ counter. & gradient is computed by the Least Square
Method explained in subsection 3.2.5. V; gradient is discretized by using a backward,
in case g—i > 0, or forward, in case % < 0, first-order finite differences scheme. For

126 K. D. Samouchos

example, the V; derivative w.r.t. the x; Cartesian coordinate is

vr-vir 0P
P KA 7 —_ =
a‘/z . A$1) 81‘1 P > O
dur | W ae|
Az) ox1 P

where V% and V2% are the left and right numerical averages between cell’s P

neighboring values. Fig. 3.8 presents such a case, in which V;%% = (V%" + V1) /2.

vl

Q2

Figure 3.8: Cell P borders on two neighboring cells @)1 and Q)5 on its r.h.s. The
mean value of their primitive variables equals to ‘ZQR, which is used for the eq. 3.37
discretization.

The iterative process’s stability is controlled by the pseudo-time step, which is

A.ﬁl]l ALEQ ALEg

ny U ns

AT = min()
The last step is the reversal of the ghost-cells velocity’s normal component. Eq. 3.36
is transformed to

(%

Gmew _ G _ 205'n;n; (3.38)

Therefore, the velocity at each ghost-cell is paired with the mirrored flow velocity
across the immersed boundary canceling its normal component at the wall.

The described method does not take the flow conservation laws into consideration,
and thus, mass, momentum, and energy leakage from the flow field to the solid’s
interior is unavoidable. Fig. 3.9 demonstrates this argument by comparing the way
the ghost-cell and the cut-cell methods treat the solid boundary. It’s evident that
the use of mesh squares as finite volumes allows for the flow to enter the solid

region violating the flow conservation laws. Mesh adaptation close to the fluid-

3.8. The Ghost-Cell Method 127

solid intersection increases the extrapolation’s accuracy sharpening the solid-fluid
interface and alleviating the flow penetration into the solid bodies. Therefore, a
denser mesh is usually used compared to the cut-cell method.

DX\Y% Dx DX:% _ Dx, ¢

— —

[
; 2 S 7
> — %

(a) (b)

Figure 3.9: The ghost-cell method (a) does not detect the mesh-geometry inter-
section allowing small flow portions to escape from the fluid domain, violating the
conservation laws. On the contrary, the cut-cell method (b) prevents the flow from
entering into the solid region (blue) by discarding the cut-cells’ solid part.

A comparison in terms of accuracy is made between the ghost-cell and the cut-
cell method in the following application. A duct with one inlet and two outlets is
used. Total pressure (1 bar) and total temperature (293 K) are imposed at the
inlet and static pressure (0.88 bar) at both outlets. Velocity magnitude contours
are shown in fig. 3.10. The white line stands for the duct’s wall and the blue region
indicates the mesh part in which the governing equations were not solved. When
the ghost-cell method is used, fig. 3.10a, the velocity field is successfully mirrored
into the ghost layer, indirectly imposing the no-penetration boundary condition.
On the other hand, when the cut-cell method is implemented, fig. 3.10b, the fluid
region’s and duct’s boundaries coincide. Mass loss percentage deviation is measured
for three different mesh sizes for both methods. Results are summarized in table
3.1. As expected, the cut-cell method successfully satisfies the mass conservation.
Contrarily, the error is high enough in the ghost-cell method and decreases by the
mesh size increase. Moreover, mesh independence is achieved in much larger meshes

resulting in a higher computational cost.

128 K. D. Samouchos

Mesh size (K) | Ghost-Cell (%) | Cut-Cell (%)
d - 0.091
10 2.34 0.018
20 2.23 0.018

Table 3.1: The one-inlet-two-outlets duct: Mass conservation percentage devia-
tion between inlet and outlets. Comparison between the ghost-cell and the cut-cell

method for three different mesh sizes.

(b)

Figure 3.10: The one-inlet-two-outlets duct: Iso-velocity magnitude contours. The

white line indicates the duct’s wall. Flow simulation is implemented by (a) the
ghost-cell and (b) the cut-cell method. Flow field presence in the solid region in (a)
corresponds to the ghost layer.

3.8. The Ghost-Cell Method 129

3.8.2 The Unsteady Ghost-Cell Method Implemented in Mov-
ing Walls

In unsteady cases, the geometry motion causes changes in the SDF. At each time
step, ® should be modified, increasing the simulation’s computational cost. How-
ever, its recomputation through the algorithm, presented in subsection 3.8.1, is
usually avoided and other methods are used instead. For example, in turbomachin-
ery applications, ® field is rotated following the rotor blades” motion surpassing the
algorithm’s repetitive implementation. Since mesh boundaries remain intact, grid
velocity is zero, and the corresponding surface integral of ALE formulation, eq. 3.19,
vanishes. Wall velocity (¢") is induced to the discretized system through the ghost-
cells’ flow variables. Mirroring implemented in steady cases by eq. 3.38 is modified

becoming
UiG,new — Uz‘G + 2(’0;0 _ Uf)njni (339)

The temporal term is discretized by backward first-order finite differences. Con-
trary to the cut-cell method, cells’ shape remains intact during the flow simulation.
Thus, geometries motion does not cause cells appearance or disappearance. Flow
variables stored at each finite volume continuously change throughout the unsteady
phenomenon, allowing for a straightforward temporal term discretization. Its time
step should be small enough to guarantee that only ghost-cells appear in the fluid
region, preventing the entrance of other solid cells. Thus, a large number of time
iterations is unavoidable, and a fully explicit discretization method is preferable due
to its low computational cost at each time step. In such a case, no pseudo-time
iterations are performed, and the flow variables are computed as

Urtt = ur — Atz (frnr AS™)" (3.40)

avoiding the formation and solution of a linear system. Section 9.5 implements the

described method to predict the flow around a compressor rotor.

Consequently, the ghost-cell method is advantageous compared to other CFD meth-
ods in cases concerning flows around complex geometries and perplexed geometry
motions. Moreover, it can easily handle cases in which the initial topology changes.
Furthermore, it is an easily implemented method. However, its accuracy is lower
than the cut-cell method, but can be increased to some extent by using a much more

dense mesh close to the fluid-solid interface.

Chapter 4

Flow Solver Assessment

This chapter presents a detailed validation/verification of the developed cut-cell flow
solver, in numerous compressible and incompressible cases selected from the litera-
ture. External and internal aerodynamics, with inviscid and viscous (laminar) flows,
as well as flows around stationary or moving bodies are considered. The applica-
tions were chosen based on the presence of analytical flow solutions or experimental
or other reliable CFD software results. Firstly, applications for inviscid flows are
considered, where the accuracy of the proposed discretization and the imposition of
accurate boundary conditions along the solid wall will be demonstrated. Then, lam-
inar flow cases are developed, and the way the Cartesian mesh irregularities on the
boundary affect the layer’s development. Finally, the method’s ability to correctly
solve the flow equations around moving solid bodies while satisfying the conserva-
tion laws, is investigated. The purpose of this chapter is to demonstrate the cut-cell
software ability to produce highly accurate results, equivalent to that obtained by
using body-fitted meshes, maintaining all Cartesian mesh advantages.

4.1 Compressible Flow Solver Assessment

In this section, the validation/verification of the compressible flow solver is pre-
sented. Regarding inviscid flow simulations, the external aerodynamics around a
NACAO0012 airfoil, a wedge, the ONERA M6 wing, and the flow within a converging-

diverging duct in transonic flow conditions are presented. Concerning laminar flow

130

4.1. Compressible Flow Solver Assessment 131

simulations, velocity and temperature boundary layer profiles are reproduced in a
flat plate case and the NACAO0012 airfoil. The cut-cell software results are compared
with analytical solutions and/or the outcome of other CFD codes should those be
available.

4.1.1 Inviscid Flow Over the NACAOQ0012 Isolated Airfoil

This case concerns the 2D inviscid transonic flow over an isolated airfoil. The
accuracy of the cut-cell code is assessed through comparisons with computational
results published in the AGARD No 211 report [97], where the Euler equations were
solved by using a body-fitted O-type structured mesh of 20K nodes. The studied
geometry is the symmetric NACA0012 airfoil with modified/closed trailing edge. Its
upper surface is defined by

gy(x) = 5t(0.2969v/Z — 0.126Z — 0.35162> 4 0.2843z° — 0.1015z%)

where ¢t =0.12 is the thickness parameter, t =7 /xq, y =7 /xo and o= 1.008930411365,
x €[0,1]. The far-field flow conditions are M, =0.85 and o, =1°. Mesh adapta-
tion was used to increase the simulation’s accuracy by refining the mesh six times,
every 600 pseudo-time iteration steps. The final mesh of 80K cells and a close-up of
the pressure side’s shock region are shown in figs. 4.1a and 4.1b, respectively. The
wall-clock time of this computation is 35 min. using 48 processors. The computed
iso-Mach lines and contours are shown in fig. 4.2, where the two shock waves can be
seen in both airfoil sides. Fig. 4.4 shows the convergence results, where the residual
overshootings indicate the iteration, at which the mesh adaptation occurs. Com-
parison of the Mach number distribution over the airfoil’s surface and the pressure
coefficient with results given by [97] shows good agreement, fig. 4.3. The shock waves
have been detected in the same position, although no adaptation has been used by
[97]. Consequently, the corresponding pressure jumps computed by the cut-cell soft-
ware are steeper leading to a small disagreement in the lift and drag coefficients, as
shown in table 4.1.

132 K. D. Samouchos

(a) (b)

Figure 4.1: Inviscid flow of a compressible fluid over the NACA0012 isolated airfoil:
(a) Mesh adaptation in the vicinity of the pressure and suction sides’ shock waves.
(b) Mesh adaptation detail around the suction side’s shock wave. Thanks to mesh
adaptation, shock waves of infinitesimally low thickness have been computed.

Figure 4.2: Inviscid flow of a compressible fluid over the NACA0012 isolated airfoil:
Computed Mach number iso-lines.

4.1. Compressible Flow Solver Assessment 133

1.6 T T 1.5 T T T
Cut-Cell

Rizzi et al.

02 Cut-Cell
Rizzi etI al.

0 I I 1
0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1

(a) (b)

Figure 4.3: Inviscid flow of a compressible fluid over the NACA0012 isolated airfoil:
(a) Mach number and (b) pressure coefficient distributions over the airfoil surface.
Comparison between the cut-cell results and the CEFD results of [97] computed using
a body-fitted mesh.

8 |
Mass
6 s X-Momentum —
Y-Momentum
4= Energy =

Residual Magnitude

-10 | | |
0 5000 10000 15000 20000

Pseudo-Time Iterations

Figure 4.4: Inviscid flow of a compressible fluid over the NACA0012 isolated air-
foil: Convergence history. Residual overshootings indicate iterations at which mesh
adaptation occurs.

134 K. D. Samouchos

Cy Cy
Cut-Cell 0.335 | 0.0554
Reference 0.330 | 0.0528

Deviation (%) | 1.52 | 4.92

Table 4.1: Inviscid flow of a compressible fluid over the NACA0012 isolated airfoil:
Lift and drag coefficients computed by the cut-cell software and results given by

[97).

4.1.2 Inviscid Flow Over a Wedge

The purpose of this application is to test the cut-cell method’s ability to accu-
rately simulate a discontinuity in the worst-case scenario, which happens when a
45° oblique shock wave occurs in a square flow domain, meaning that the wave’s
direction is parallel to all mesh’ cells diagonals. Therefore, a wedge is placed into
a supersonic compressible flow. For a given corner angle 6 (wedge’ half angle), an
oblique shock wave of angle 3 is created, as shown in fig. 4.5. The upstream hor-
izontal streamlines are uniformly deflected after the shock wave, changing the flow
direction and parallelizing it to the wedge surface. The flow remains uniform be-
fore and after the shock wave, while a discontinuous change occurs along the shock
surface. According to the inviscid gas dynamics theory, the §—3—M equation [181]

Misin?p —1

= 2cot
tan = 2co 5M12[’y + cos(26)] + 2

expresses the relation between the wedge and shock angles and the upstream Mach
number. Mach numbers before and after the shock are related using the equation
1+ L MEsin?B

yMZsin?3 — %1

MZsin*(f —0) =

where v = 1.4 is the heat capacity ratio [181]. The Mach number upstream the
wedge is set equal to 2. According to the § — 3 — M equation, a 45° oblique shock
wave is created by setting 6 ~ 14.73°.

The symmetric Mach number field and the adapted mesh are shown in figs. 4.6a and
4.6b respectively. The shock capturing algorithm successfully detected the disconti-
nuity by refining the mesh in a small region around the shock. Despite the difficulty

of capturing a 45° shock wave by using a Cartesian mesh, the cut-cell software ac-

4.1. Compressible Flow Solver Assessment 135

curately solved the flow equations producing two regions of constant flow variables
and a sharp discontinuity between them. The Mach number distribution along the
horizontal line y = 0.4m and the corresponding analytical solution are plotted in
fig. 4.7. The comparison between them shows the high accuracy of the proposed
method.

M,
Ml //
B
(¢]
M, \
N

Figure 4.5: Inviscid flow of a compressible fluid over a wedge: Theoretical solution

of the oblique shock (red line) created by the horizontal supersonic flow over the
wedge. Two streamlines (in black) denote the velocity vector change before and
after the shock wave.

HE [T [[[T
Mach: 145 15 155 16 165 17 175 18 185 19 195 2

(a) (b)

Figure 4.6: Inviscid flow of a compressible flow over a wedge: (a) Mach number field
and velocity streamlines computed by the cut-cell software and (b) adaptive mesh
refinement over the oblique shock wave.

136 K. D. Samouchos

2.4 T T T
2 —
=
1.6 | b
Cut-Cell
Analytical Solution
1.2 | | | |

0 0.2 0.4 0.6 0.8 1

X

Figure 4.7: Inviscid flow of a compressible fluid over a wedge: Mach number distri-
bution along line y=0.4 m. Comparison between the analytical (black) and cut-cell
(red) solution.

4.1.3 Convergent-Divergent Duct Flow

The flow inside a convergent-divergent duct with adiabatic walls is the next verifi-
cation case. It is appropriate to study mass, momentum, and energy conversation
throughout the duct, being a crucial issue in most IBMs. Assuming that the duct
area variation is moderate, the perpendicular to the duct axis velocity components
are small compared to the parallel ones. According to that, the flow is considered
constant across any cross-section, and an analytical quasi-1D flow solution can be
obtained. More details about the analytical solution can be found in [14]. A com-
parison between the analytical solution and the numerical results along the duct’s
axis of symmetry gives essential evidence about the cut-cell software accuracy. The

cross-section distribution in the axial direction is

Alr) = 1.75 — 0.75¢co0s[(0.22 — 7], 0 <z <5
| 1.25 —0.25c08[(0.22 — 1)n1], 5 < <10

Total pressure and temperature are the imposed boundary conditions at the inlet
(p =1 bar and T; =290 K). The static outlet pressure is set equal to 0.86 bar,
causing the appearance of a shock wave in the duct’s divergent part. The computed
by the cut-cell method Mach number flow field is shown in fig. 4.8. The computation

accuracy is increased by using mesh adaptation over the normal shock, as depicted

4.1. Compressible Flow Solver Assessment 137

in fig. 4.9. It is computationally verified that the flow and mesh adaptation are
fully axisymmetric. Mach number and static pressure distributions along the duct’s
centerline are compared with the quasi-1D analytical solution. The comparison
presented in fig. 4.10 shows the cut-cell software’s ability to predict the exact shock
wave position and compute a highly accurate flow field. The mass and energy flux
difference between the duct inlet and outlet is significantly small, as shown in table
4.2, indicating the cut-cell method’s ability to satisfy flow conservation. Moreover,
table 4.3 compares the inlet mass and energy flux and the exerted axial force on
the duct between numerical and analytical solutions, confirming the high accuracy
of the programmed cut-cell software.

___JENEereEREEEE

Mach: 03 04 05 06 07 08 0% 1 11 1.2

Figure 4.8: Inviscid flow of a compressible fluid in a duct: Mach number field and
velocity streamlines. A normal shock wave is formed in its divergent part.

Mach: 03 04 05 06 07 08 09 1 11 1.2

Figure 4.9: Inviscid flow of a compressible fluid in a duct: Mach number field iso-
areas. Mesh adaptation close to the normal shock.

138 K. D. Samouchos

14 T

T T 1 T

T
Cut-Cell
Analytical Solution

T
Cut-Cell
Analytical Solution

0.9 -

0.8 -

0.7 -

0.6 -

05+

0.4 -

0.3 1 1 1 1

Figure 4.10: Inviscid flow of a compressible fluid in a duct: (a) Mach number and (b)
pressure distributions. Comparison between the cut-cell solution along the centerline
(red) and pseudo-1D analytical solution (black).

Mass (Kg/s)

Energy (MJ/s)

Inlet 237.27 69.133
Outlet 237.29 69.138
Deviation (%) | 0.0067 0.0072

Table 4.2: Inviscid flow of a compressible fluid in a duct: Duct’s inlet and outlet

mass and energy flux.

Mass (Kg/s) | Force (kN) | Energy (MJ/s)
Cut-Cell 237.27 95.527 69.133
Reference 237.32 95.52 69.147
Deviation (%) 0.0013 0.0082 0.013

Table 4.3: Inviscid flow of a compressible fluid in a duct: Cut-cell and analytical
results regarding the inlet mass and energy flux and the exerted force on the duct.

Deviation between the aforementioned values is also shown.

4.1. Compressible Flow Solver Assessment 139

4.1.4 Parallel Flow Over a Flat Plate

The following subsections aim the validation/verification of the software for the
simulation of viscous (laminar) flows. The next application focuses on the mesh’
Cartesian structure effect on the boundary layer development. Most of the time,
the Cartesian mesh lines are far from orthogonal to the geometry surface. This
irregularity affects the velocity spatial derivative accuracy close to the solid wall
and harms the accurate computation of viscous fluxes. In particular, the skin fric-
tion appears quite noisy in most IBMs [36]. However, the proposed cut-cell method
overcomes these difficulties, confirmed by the following flat plate boundary layer
study placing the plate parallel and inclined by 15° to the mesh lines. These cases
correspond practically to the same phenomenon, and their study investigates how
the mesh orientation at the plate’s surface affects the simulation accuracy. In both
cases, the flow domain is 1.25 m long and 1.0 m high, enforcing no-slip wall bound-
ary conditions only after 20% of its length. Total pressure and temperature are
imposed at the inlet and static pressure at the outlet. The characteristic dimension-
less numbers at the far-field are M, =0.5, Re,, =850, Pro,=0.72 and the far-field
angle-of-attack is always parallel to the plate.

The cut-cell software results are compared with the Blasius theory solution extended
for compressible flows [61]. According to that, the velocity and total enthalpy fields
inside the boundary layer are

U(SE, y) = UOOf/(n)
H(x,y) = Hwg(n)

where x, y are the parallel and vertical directions to the plate and 7 is defined as

Uso v
/Y A —— / pdy
2poc oo Jo

The f and g functions are the solutions of the following o.d.e.’s.

f/// + ff// — O

§'+ Profy =1 Pro) (77, 5 = UM

—1
1+ 2202,

The boundary conditions are f(0)=0, f'(0)=0, f'(c0)=1, ¢'(0)=0, g(cc)=1. The

140 K. D. Samouchos

aforementioned analytical solution requires adiabatic wall boundary conditions and
the use of a linear relation between dynamic viscosity and temperature, expressed as
p/ oo =T/T. Thermal conductivity should follow the same rule (k/ko=T/Tx).

Figs. 4.11 and 4.12 show the velocity and temperature boundary layers for the hor-
izontal and the inclined flat plate respectively. A mesh detail close to the beginning
fo the boundary layer is shown in fig. 4.13. The mesh irregularity does not prevent
the formulation of a smooth velocity field, especially in the inclined plate where
non-uniform fully unstructured cut-cells are generated. This argument is further
established by comparing the velocity and temperature profiles of numerical and
analytical solutions taken at 90% of the flow domain length (figs. 4.14, 4.15). Even
in the inclined plate case, the computed profiles remain smooth and very close to
the analytical ones, meaning that the non-uniform cut-cells do not sacrifice the flow
simulation’s accuracy. Furthermore, skin friction coefficient is well predicted along
the plate’s surface and compares nicely with the analytical solution, fig. 4.16. A
mesh sensitivity analysis is presented in the same plot, where the mesh refinement
leads to more accurate results as the red line becomes the blue one, being much
closer to the straight analytical line. Moreover, in the inclined case, the results are
compared with an other cut-cell software [36], in which a quadratic reconstruction in
the wall-normal direction is used near the walls to mitigate mesh irregularity. The
governing equations were discretized using the finite volume approach and the HLLC
Riemann solver. The comparison shows good agreement confirming the proposed
method’s high accuracy.

INENEN NN

(a) (b)

Figure 4.11: Laminar flow of a compressible fluid over flat plate: (a) Velocity and
(b) temperature boundary layers over a horizontal plate.

4.1. Compressible Flow Solver Assessment 141

(a) (b)

Figure 4.12: Laminar flow of a compressible fluid over flat plate: (a) Velocity and
(b) temperature boundary layers over an inclined plate.

EESEEEEmEma:
wwwwwwwwww
\\\\\\\\\\\

Figure 4.13: Laminar flow of a compressible fluid over flat plate: Velocity magnitude
contours over (a) a horizontal and (b) an inclined plate. The non-uniform cut-cells
do not affect the computed flow field smoothness.

142 K. D. Samouchos
0.4 T T T T 0.4 T T T
Cut-Cell Cut-Cell
Analytical Solution Analytical Selution
0.3 b 03
= 02 b 0.2 -
0.1 b 01 -
0 1 1 1 1 0
40 80 120 160 200 284 286 288 290 292 294 296 298
u
(a) (b)

Figure 4.14: Laminar flow of a compressible fluid over flat plate: (a) Velocity and
(b) temperature profiles over a horizontal plate at 90% of its length. Comparison
with analytical solutions.

0.4

0.3

0.1

T T
Cut-Cell
Analytical Solution

200

0.4

0.3 -

0.1 -

Analytical Solution

T T
Cut-Cell

0
284

286

288

290

(b)

292

294 296

298

Figure 4.15: Laminar flow over a compressible flat plate: (a) Velocity and (b)
temperature profiles over an inclined plate computed along a vertical line positioned
at 90% of the flow domain length. Comparison with analytical solutions.

4.1. Compressible Flow Solver Assessment 143

100 Co e R

10t

Cut-Cell
Cut-Cell fine
Bergeretal. =

Cut-Cell
Cut-Cell fine
Analytical Soluti‘on

Analytical Soluti‘on

102 L 107
10° 10t 10 10° 10° 10! 10? 10°

Rey Rey

(a) (b)

Figure 4.16: Laminar flow of a compressible fluid over flat plate: Skin friction

coefficient for (a) a horizontal and (b) an inclined plate. Results from an other
cut-cell software [36] are shown with green dots.

4.1.5 Laminar Flow Over the NACAQ0012 Isolated Airfoil

Another test case is a NACA0012 isolated airfoil exposed to a laminar flow at M, =
0.5, Reo, =5000, Pro, =0.72, and a, =0°. In contrast to the flat plate case, the
development of the boundary layer on curved walls is studied. Fig. 4.17a shows
the mesh refinement close to the airfoil’s surface to ensure the accurate boundary
layer computation. Moreover, cells have been further subdivided into smaller parts
in the downstream direction by defining, in the mesh generation software input
file, the region where more refinement is needed. Fig. 4.17b shows a close-up view
of the mesh around the airfoil’s leading-edge, indicating the challenging process
of computing a smooth boundary layer due to the problematic surface orientation
concerning the Cartesian mesh lines direction. However, mesh non-orthogonality at
the boundary does not affect the flow field smoothness. The Mach number field is
presented in fig. 4.18. Finally, results are compared with corresponding data from
[297], where a body-fitted structured C-type mesh of 8M nodes was used. In that
study, the convective terms were discretized by applying a finite-volume approach
and a three-point second-order scheme with a Roe-type numerical dissipation. The
viscous terms were discretized with a second-order central difference approximation.
Fig. 4.19 compares the pressure and skin friction coefficient distributions around

the body with the aforementioned data from the literature. Both distributions are

144 K. D. Samouchos

smooth along the airfoil and agree well with the cited results.

(a) (b)

Figure 4.17: Laminar flow of a compressible fluid over the NACA0012 isolated airfoil:
(a) Mesh is refined close to the airfoil and downstream. (b) Mesh close-up view
around the leading-edge.

Figure 4.18: Laminar flow of a compressible fluid over the NACA0012 isolated airfoil:
Mach number iso-areas computed by the cut-cell method.

4.1.

Compressible Flow Solver Assessment

145

1.2 T T T T T
Cut-Cell
1F Swanson et al.

0.8 |

0.6 |-

04

Ct

0.16

0.14

0.12

T T T
Cut-Cell
Swanson et al.

0.04

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05

(a) (b)

Figure 4.19: Laminar flow of a compressible flow over the NACA0012 isolated air-

06 07 08 09 1

foil: (a) Pressure and (b) skin friction coefficient distributions around the airfoil.
Comparison between the cut-cell software results (red) and CED results provided
by [297] (black).

4.1.6 Inviscid Flow over ONERA M6 wing

This case is concerned with the flow over the ONERA M6 wing, which is a typi-
cal CFD validation case for external flows leading to a great number of CFD and
experimental data available in the literature. The wing’s analytical geometrical de-
scription can be found in [97]. Far-field flow parallel to the XZ plane (fig. 4.20) of
M., =0.84 and a,, =3.06° forms a transonic and turbulent phenomenon. However,
the presented results of the cut-cell software, assume that the flow is inviscid. The
following comparative study is based on results produced by CFL3D, a turbulent
flow solver created by NASA which makes use of body-fitted meshes [286].

A mesh of 1.4M cells which adapts along the two shock waves formed in the wing’s
suction side was used. A slice vertical to the wing spanwise direction is displayed in
fig. 4.20, where the Mach number field and mesh adaptation are shown. Assuming
that the pressure coefficient at wing’s sections along the span is accurately com-
puted despite the inviscid flow simplification, a comparison is performed consisting
of cut-cell, CFL3D results and experimental data provided by [275]. Fig. 4.21 shows
the sections defined at 20%, 44%, 65%, 80%, and 90% of span length, where the
pressure coefficient has been measured. Results plotted in fig. 4.22 show good agree-
ment among the cut-cell software, CFL3D, and experimental data. Shock position

has been accurately predicted causing an abrupt static pressure rise. The difference

146 K. D. Samouchos

between experimental data and cut-cell results is significantly small and compara-
ble with the corresponding difference from CFL3D results, confirming the cut-cell
method’s ability to successfully handle 3D applications.

Figure 4.20: Inviscid flow of a compressible fluid over ONERA M6 wing: Mach
number field on a slice perpendicular to the spanwise direction. Mesh is adapted
close to the two normal shocks formed on the wing suction side.

Figure 4.21: Inviscid flow of a compressible fluid over ONERA M6 wing: Slices de-
fined at 20%, 44%, 65%, 80%, and 90% of span length, where the pressure coefficient
is measured (see fig. 4.22).

4.1. Compressible Flow Solver Assessment 147

1.5 T T 1.5 T T T
Cut-Cell Cut-Cell
Slater Slater
Schmittetal. = Schmitt etal. =

(="
<
1 | | L L
0 0.2 0.4 0.6 0.8 1
x/L
(a)
1.5 T T 1.5 T T T
Cut-Cell Cut-Cell
Slater Slater
Schmitt etal. = Schmitt etal. =
(=T
<

1 1 L L | |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x/L XL
(c) (d)
1.5 T T
Cut-Cell
Slater

Schmittetal. =

0.5

'CP

Figure 4.22: Inviscid flow of a compressible fluid over ONERA M6 wing: Pressure
coefficient distribution on slices shown in fig. 4.21 starting from the wing’s root and
ending close to the tip. Results are produced by the cut-cell software (red), CFL3D
(blue) and experimental measurements (black).

148 K. D. Samouchos

4.2 Incompressible Flow Solver Assessment

Herein, the programmed cut-cell flow solver for incompressible fluids is assessed
in a number of internal and external aerodynamics test cases. The inviscid flow
around the Joukowski airfoil, a cylinder, and inside a convergent-divergent duct is
studied. The software’s ability to predict viscous effects is analyzed through the
laminar flow over a cylinder and inside a driven cavity and a 3D S-bend duct. The
cut-cell software results are compared with experimental data or analytical solutions
wherever available.

4.2.1 Inviscid Flow over the Joukowski airfoil

The Joukowski foil is a common case study in fluid dynamics, although it does not
find any practical aeronautical application. Its value is derived from the existence
of an analytical solution obtained by a conformal mapping introduced by Nicolai
Zhukovsky, which transforms the well known potential flow over a cylinder to the

flow past a family of airfoil shapes.

The airfoil’s surface is defined as = Re((), y=1Im((), where (is given parametri-

cally in the complex plane by

where 0 € [—3,2m — §]. Max. and min. 6 values correspond to the trailing edge.
The airfoil’s baseline curvature is determined by the parameter § and its thickness
by R/a, where « is the angle of attack (in rad). Velocity magnitude on its surface
is given by

é = [2sin(0 — a) + sin(a + B)]

2
Pressure and lift coefficients are equal to C), =1 — and C; = 87 &sin(a +

oo

f) respectively, where ¢ is the airfoil’s chord. More details about the Joukowski

conformal mapping can be found in [267]. The parameters mentioned above are:
a=0F=5%and R/a=1.1.

4.2. Incompressible Flow Solver Assessment 149

The airfoil is exposed to flow of v, = 10 m/s and p,, =1 bar. A mesh of 90K
cells was used, and the simulation wall-clock time was 16 min. on 48 processors.
The governing equations residual convergence is plotted in fig. 4.24. The velocity
contours are shown in fig. 4.23. The pressure coefficient computed by the cut-cell
method agrees well with the analytical solution except from a small region close
to the leading edge, as shown in fig. 4.25. Its smoothness and accuracy should be
mentioned. Moreover, a mesh sensitivity analysis is made, where the lift coefficient
error is computed for every gradually refined mesh, fig. 4.26. The last two presented
meshes have the same number of cells, and their only difference is detected in the
number of points used for the airfoil’s representation. 2K points were used in all
but the last case, in which their number increased by a factor of 10. Increasing the
number of points in the geometry significantly increases the lift coefficient accuracy.
The cut-cell method allows for different geometry and mesh resolutions, and their
incompatibility may cause inaccuracies. A general rule can be formulated, indicating
that the geometry resolution should always be higher than the mesh resolution so
as at least two points of the solid body’s contour belong to each mesh cell. The
lift coefficient error computed in the most refined mesh is significantly small, as
demonstrated in table 4.4.

—

Figure 4.23: Inviscid flow of an incompressible fluid over Joukowski airfoil: Velocity

magnitude iso-areas.

150 K. D. Samouchos

4 T T T T T T T T
Mass

X-Momentum
Y-Momentum

Residual Order of Magnitude

10 I I I I I I L L
0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Pseudo-Time Iterations

Figure 4.24: Inviscid flow of an incompressible fluid over Joukowski airfoil: Conver-
gence of the residuals of mass and momentum equations in the cut-cell method.

1.5 T T

T
Cut-Cell
Analytical Solution

L_ —
o.sk 1

0r ,

-0.5 b

a1k i

15 F .

2 I I I I 1 1 1
-0.2 -015 -0.1 -0.05 0 0.05 01 015 02

X

Figure 4.25: Inviscid flow of an incompressible fluid over Joukowski airfoil: Pressure
coefficient distribution computed by the cut-cell software (red) are compared with

the analytical solution (black).

Ci
Cut-Cell 1.19092
Reference 1.19093

Deviation (%) | 0.00084

Table 4.4: Inviscid flow of an incompressible fluid over Joukowski airfoil: Lift co-
efficient values given by the cut-cell software and the analytical solution. Their

percentage deviation is shown as well.

4.2. Incompressible Flow Solver Assessment 151

1.2 T T T T T T

=
-
T
1
-
[N]
T
!

o]
T
|

105 - N

Lift Coefficient
Lift Coefficient Error (%)

IS
T
I

055 1 | 1 1 | 1 0 | | 1 | T —31
0 0.5 1 15 2 25 3 0 05 1 15 2 25 3
Grid Size (x10°) Grid Size (x10°)
(a) (b)

Figure 4.26: Inviscid flow of an incompressible fluid over Joukowski airfoil: (a) Lift
coefficient and (b) the corresponding percentage error variation due to the gradual
mesh refinement. The last two points represent two meshes with the same number
of cells but a different number of points on the airfoil’s surface. The black line in
the left figure represents the value given by the analytical solution.

4.2.2 Inviscid Flow over cylinder

Flow simulation over a cylinder is pretty challenging for an IBM and a proper
validation case for the cut-cell software. Due to its shape, the flow on its surface
is far from parallel to the Cartesian mesh lines producing high artificial dissipation.
Fig. 4.27 shows a mesh detail to illustrate the non-orthogonality of mesh lines on the
solid boundary. The computational results are compared with the analytical solution
available for potential flow [267]. According to this theory, the pressure coefficient
and tangential velocity on the cylinder’s surface parameterized as = (cosf, sinf) is

given by

vy = —200|si00|

C, =1— 4sin®0

where v, is the freestream velocity. Fig. 4.28 presents the velocity and pressure
contours around the cylinder corresponding to the far-field conditions v, =20 m/s
and p, = 1 bar. Tangential velocity along the wall and pressure coefficient dis-
tributions are displayed in fig. 4.29. The plotted curves are smooth despite mesh

irregularities close to its boundary. Comparison with the analytical solution certifies

152 K. D. Samouchos

the software’s accuracy.

il
i

]

I
=

ff

it

Figure 4.27: Inviscid flow of an incompressible fluid over cylinder: Mesh detail shows
its irregularity close to the cylinder’s boundary.

[T
[Prossure: 0995~ 0997 0999 101

\ g/

(a) (b)

Figure 4.28: Inviscid flow of an incompressible fluid over cylinder: (a) Velocity
magnitude contours and (b) iso-bar lines.

4.2. Incompressible Flow Solver Assessment 153

5 T T T 1.5 T T T T T T

T T T T
Cut-Cell Cut-Cell

o Analytical Solution 7 1 Analytical Solution

Figure 4.29: Inviscid flow of an incompressible fluid over cylinder: (a) Tangential
velocity over the cylinder’s surface. (b) Pressure coefficient distribution. Curves are
given by the cut-cell software (red) the analytical solution (black).

4.2.3 Convergent-Divergent Duct Flow

The case of a flow inside a convergent-divergent duct allows for the study of the in-
compressible flow solver ability to satisfy mass and momentum conversation through-
out the duct. The duct shape has already been defined in subsection 4.1.3. Total
pressure (1 bar) is imposed at the inlet and static pressure (0.995 bar) at the outlet.
Flow results accuracy is tested as follows. Firstly, fig. 4.30 shows the computed
velocity iso-areas, where its symmetry is computationally verified. Secondly, mean
velocity in every section is computed analytically and compared successfully with
the numerical one fig. 4.31a. Finally, the software’s ability to keep the total pressure
constant along the duct is investigated, fig. 4.31b. Mass flow difference between the
duct inlet and outlet, shown in table 4.5, is essentially small verifying the cut-cell
method’s high accuracy. Table 4.6 compares the inlet mass flow and the exerted
axial force on the duct between the cut-cell and analytical solutions, certifying the
softwares’s high accuracy. The analytical value of the exerted force is computed
based on uniform velocity profile assumption at each cross-section. Consequently,
the proposed cut-cell method preserves the flow equations conservation property and
prevents flow loss through the solid walls by successfully imposing no-penetration
over the walls.

154

K. D. Samouchos

BT [[[T LT LTI T

VelocityMag: 20 22 24 26 28 30 32 34 36 38 40 42 44 46

Figure 4.30: Inviscid flow of an incompressible fluid in duct: Velocity magnitude

1So-areas.

50 T

Cut-Cell
A.‘nalyUcal Solu‘lion

0 2 4 6

(a)

8 10

1.005 -

T
Cut-Cell
Analytical Solution

P

0.995 -

0.99 .

Figure 4.31: Inviscid flow of an incompressible fluid in duct: (a) Mean velocity and

(b) total pressure at each duct cross-section. Comparison between cut-cell (red) and

analytical solution (black).

Mass (Kg/s)

Inlet 47.428
Outlet 47.431
Deviation (%) 0.0057

Table 4.5: Inviscid flow of an incompressible fluid in duct: Mass flow at duct’s inlet

and outlet. Their deviation is shown as well.

4.2. Incompressible Flow Solver Assessment 155

Mass (Kg/s) | Force (kN)
Cut-Cell 47.428 99.7009
Reference 47.434 99.7
Deviation (%) 0.0063 0.0009

Table 4.6: Inviscid flow of an incompressible fluid in duct: Mass flow and axial force

comparison between numerical and analytical results.

4.2.4 Laminar flow over a Cylinder

The analysis presented in the previous subsections completed the inviscid incom-
pressible flow solver assessment. The next cases focus on the validation of the
softwares’s viscous part. The first case is concerned with the laminar flow over a
circular cylinder for which extensive experimental and numerical data are available
in the literature. Its experimental and numerical study lasts almost over a century
and continues even today to analyze the complex cylinder wake flow phenomena. In
the presented case, the resulting Reynolds number based on the cylinder’s diameter
is 10, which corresponds to a steady flow without periodic vortex shedding [94]. A
dynamic mesh adaptation technique to the cylinder’s wake is used, which allows the
increase in flow simulation accuracy. The wake’s region is identified by measuring
the total pressure losses at each finite volume over the flow field, fig. 4.32a. Cells
detected with a high amount of losses are subdivided into four smaller parts. This
criterion also marks cells close to the cylinder’s boundary before the flow separation
occurs, and therefore not being part of the wake. For this reason, cells belonging
to areas with high pressure gradient values are excluded from the refining process,
fig. 4.32b. After four successive adaptations, the final mesh consists of 190K cells.
Fig. 4.33 shows the final mesh along with the total pressure field, indicating the co-
incidence between the mesh refinement and the high total pressure loss areas. The
flow equations convergence took 75 min. on 48 processors and is plotted in fig. 4.34.
The velocity magnitude field over the cylinder is displayed in fig. 4.35.

Velocity measurements were made in the cylinder’s wake [228], and results were
compared with the aforementioned numerical solution. The origin of the Cartesian
mesh is defined at the cylinder’s center. The velocity distributions plotted at various
x/d positions, d being the cylinder’s diameter, agree well with the experimental
results, fig. 4.36. However, there are some discrepancies, especially at large y/d,

which are examined as follows. Fig. 4.37 shows the symmetrical velocity profile

156 K. D. Samouchos

computed by the cut-cell method along x/d =4. The corresponding experimental
data are not entirely symmetric due to small measurement errors which partially
explains their difference from numerical results. Moreover, the velocity profile along
x/d=1 differs notably from the measurements close to y/d=0. Fig. 4.38 compares
the cut-cell results with data provided by a CFD software that uses body-fitted
meshes [299]. The two software results come to a close agreement ensuring the
argument that a small measurement error occurs in this specific area. Finally, table
4.7 shows the difference in the cylinder’s drag coefficient between the numerical and
experimental data. Their slightly high deviation is expected due to the numerical
and experimental differences mentioned above.

-

[BT TEET T RN
[FH; 0.9995 0.9997 0.9999 1.0001 1.0003 1.0005 1.0007 Pressure

(a) (b)

Figure 4.32: Laminar flow of an incompressible fluid over a cylinder: (a) Total
pressure and (b) static pressure gradient magnitude over the cylinder. Cells with
high total pressure losses (blue-green area of the left figure) and small pressure
gradient (blue area of the right figure) are subdivided into smaller cells increasing
the flow simulation’s accuracy.

-
|

8 7
= =t t t T T

o
1

Figure 4.33: Laminar flow of an incompressible fluid over a cylinder: Final mesh
adapted over the area of high total pressure loss.

4.2. Incompressible Flow Solver Assessment 157

3 T T T T

T
Mass

2 X-Momentum
Y-Momentum

Residual Order of Magnitude

6 I I I I \
0 2000 4000 6000 8000 10000 12000

Pseudo-Time Iterations

Figure 4.34: Laminar flow of an incompressible fluid over a cylinder: Convergence
of the residuals of mass and momentum equations. Residual overshootings indicate
the iteration at which mesh adaptation occurs.

Figure 4.35: Laminar flow of an incompressible fluid over a cylinder: Velocity mag-

nitude iso-areas.

158 K. D. Samouchos

8 8
Zz 06 £ 7
B >
0.4 | B
02 b
Cut-Cell =—— Cut-Cell =—— -
Nishioka etal. = Nishioka etal. =
0 Il Il Il Il Il Il Il 1 Il Il
0 1 2 3 4 5 6 7 3 4 5 6 7
y/d y/d
(a) x/d=1 (b) z/d=2
11 T T T T T T T T T
1k
0.9
0.8 -
g 07 8
i< Z
Z 06 4
0.5
0.4
0.3 - Cut-Cell 03 rm Cut-Cell B
(] Nishioka etal. = Nishioka etal. =
0.2 Il Il Il Il Il Il 0.2 Il Il Il 1 Il Il
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
y/d y/d
(c) x/d=4 (d) z/d=7

Figure 4.36: Laminar flow of an incompressible fluid over a cylinder: Wake velocity
distributions measured at various distances from the cylinder. Comparison between
cut-cell results (red) and experimental data [228] (black).

1.2 T T
1
g 0.8
Zz
06
0.4 Cut-Cell
Nishiokaetal. =
0'2 L | L |
-6 -4 -2 0 2 4 6
y/id

Figure 4.37: Laminar flow of an incompressible fluid over a cylinder: Symmetrical
velocity profile at z/d =4 computed by the cut-cell software (red). Experimental
data (black) are given by [228].

4.2. Incompressible Flow Solver Assessment 159

1.2 T T T

0.6 -

ViV

0.4 -

0.2 - Cut-Cell = 7
Takami et al.

INishiokla etal. "

0 I I I I
0 0.5 1 1.5 2 2.5 3 3.5 4

yid
Figure 4.38: Laminar flow of an incompressible fluid over a cylinder: Velocity profile
at x/d =4 given by the cut-cell method (red), numerical results [299] (blue) and
experimental data [228] (black).

Cy
Cut-Cell 2.798
Reference 2.746

Deviation (%) | 1.894

Table 4.7: Laminar flow of an incompressible fluid over a cylinder: Drag coefficient
computed by the cut-cell software. Its deviation from the corresponding experimen-
tal data [228] is also shown.

4.2.5 Driven Cavity Flow

Despite the singularities at its corners, the laminar incompressible flow in a square-
shaped cavity with its top wall sliding uniformly has been used very often as a
problem for testing and assessing numerical techniques [2]. Published results are
available for a wide range of Reynolds numbers. In this study, the Reynolds number
is set equal to 1000, and results are compared with data given by [101]. These
data are taken from a CFD software using a body-fitted mesh and have been cross-
checked numerous times by many independent researchers during the last decades.
A mesh of 140K cells is used. Its edges are purposely not coincident with the
cavity’s geometric boundaries, giving rise to cut-cells generation, which justifies the
choice of this case as a verification case. Velocity magnitude iso-areas are shown

in fig. 4.39. Streamlines show the development of a central, nearly circular vortex

160 K. D. Samouchos

and a secondary vortex in each of the bottom corners. Fig. 4.40 shows velocity
profiles along the horizontal and vertical cube axes of symmetry, on each of them
the vertical and horizontal velocity component is plotted respectively. Moreover,
vorticity distribution is displayed in a slice along the horizontal axis in fig. 4.41.
Results are consistent with the analysis of [101], verifying the reliability and accuracy

of the cut-cell method.

VelocityMag

Figure 4.39: Laminar flow of an incompressible fluid inside the driven cavity: Ve-
locity magnitude iso-areas and streamlines. Streamline pattern depicts the primary

and the two secondary vortices.

04 T
Cut-Ce]] ===

| Ghiaetal. ®

T
Cut-Cell ===
Ghiaetal. W

0.2

y-velocity
x-velocity

-0.2

-0.4

0.6 I I

Figure 4.40: Laminar flow of an incompressible fluid inside the driven cavity: (a)
Vertical velocity component along the horizontal axis of symmetry and (b) horizontal
velocity component along the vertical axis of symmetry. Results are computed by
the cut-cell software (red) and numerical data provided by [101] (black).

4.2. Incompressible Flow Solver Assessment 161

400

T
Cut-Cell
Ghiaetal. W

300 | b

100 -

X

Figure 4.41: Laminar flow of an incompressible fluid inside the driven cavity: Vor-
ticity magnitude distribution along the horizontal axis of symmetry. Comparison

between results given by the cut-cell software (red) and numerical data from [101]
(black).

4.2.6 Laminar flow in a 3D S-Shaped Duct

This study aims to validate the 3D cut-cell software by comparing its results with
benchmark experimental data. A duct with a square cross-section creates a 3D
laminar flow with mild curvature, small center-line displacement and, therefore,
reduced flow separation at the duct walls, fig. 4.42. The mean line of the duct
consists of two straight parts and two circular segments of opposite curvature. The
exact geometry representation is given by analytical expressions described in [301].
The Reynolds number based on cross-section width is 790. A Mesh of 240K cells is
used, details of which are shown in fig. 4.43, for the inlet cross-section and along the
streamwise direction. Mesh is refined close to the walls to ensure correct prediction
of the developed boundary layer. Fig. 4.44 presents the computed velocity contours
in three cross-sections along the duct, the position of which is clear in fig. 4.42. In
cross-sections 4.44a and 4.44b, just before the duct’s second turn, secondary flows
drive the boundary layer to thicken on the top wall. In cross-section 4.44c, the
accumulation of low-speed fluid near the inner wall develops into vortices within
the bend, causing a severely distorted flow field. The computed and experimental
streamwise velocity profiles in the symmetry plane [301] are compared at five stations
along the duct, shown in fig. 4.45, and agree well with one another. CFD results of a
body-fitted structured mesh of 180K nodes are provided by [308] and are also plotted
with a blue line. The two CFD results differ equally from the experimental data,

proving that the cut-cell method’s accuracy is equivalent to that of conventional

162 K. D. Samouchos

CFD methods using body-fitted meshes.

Figure 4.42: Laminar flow of an incompressible fluid in a duct: The S-shaped duct
geometry. The three marked cross-sections depict the positions where the velocity

fields are shown in fig. 4.44.

(a)

Figure 4.43: Laminar flow of an incompressible fluid in a duct: Mesh details (a) on
the inlet cross-section and (b) on the duct’s symmetry plane.

VelocityMag
17

Figure 4.44: Laminar flow of an incompressible fluid in a duct: Velocity magni-
tude contours and streamlines at the three cross-sections along the duct depicted in
fig. 4.42. The low-speed flow on the top wall in (a) and (b) creates a double vortex

within the duct, shown in (c).

4.3. Unsteady Flow Solver Assessment 163

05 - B 05 | 05 - 05 |

Distance y
E}
Distance y”
o
Distance y”
E}
Distance y*
o
T

-0.5 - b -0.5 -0.5 -

1 I 1 1 1 1 1 I 1 1 1
0 05 1 15 2 0 05 1 15 2 0 05 1 15 2 0 05 1 15 2

Velocity u/u Velocity u/u Velocity wu Velocity w/u

(a) (b) (c) (d)

Cut-Cell] ——
Towne
Tavloretal. MW

Figure 4.45: Laminar flow of an incompressible fluid in a duct: cut-cell (red) and
experimental (black) streamwise velocity profiles over the symmetry plane. Com-
putational results from [308] are also plotted (blue). Velocity is normalized by its
mean value on each cross-section. y* = 2(y — Ymin)/(Ymaz — Ymin) — 1 is a proper
non-dimensional parameter of the duct’s height.

4.3 Unsteady Flow Solver Assessment

The cut-cell method for predicting flows around moving boundaries within a fixed
Cartesian mesh is validated. The moving boundary slides on a fixed Eulerian mesh
at each time step, avoiding repetitive re-meshing, which may harm the flow solver’s
speed and robustness. Cells close to moving boundaries change shape after geome-
try’s motion and even appear or disappear from the fluid domain. The developed
method’s ability to maintain conservation for large displacements of moving bound-
aries while still retaining the solver’s accuracy is the target of this section. The
primary analysis concerns examining a pseudo-2D application of a moving piston
and a more complex 2D case of an oscillating airfoil. The study assumes com-
pressible inviscid flows and presents numerical results, including comparisons with
analytical solutions or other CFD results and experimental data.

4.3.1 Piston Motion

The method’s ability to satisfy the flow conservation laws is demonstrated by simu-

lating a piston propagating through an initially quiescent fluid inside a tube. Two

164 K. D. Samouchos

different cases are studied. In the first case, the piston moves into the fluid creating
a shock wave traveling along the tube. In the second case, the piston is pulled back
causing an expansion wave. Both phenomena are 1D and are described by analyt-
ical expressions [181]. Here, a 2D uniform mesh and solver are used to verify the
method’s ability to prevent flow leakage through the piston walls. In both cases, the
piston’s velocity corresponds to M =2 and its displacement is equal to the width of
around three cells, meaning that at least three cells appear or disappear from every
mesh row at each time step. Despite the piston’s considerable displacement, mesh
quality remains excellent and the use of complicated deformation tools is avoided,
fig. 4.46. Pressure contours are plotted at three different time steps for both cases
in figs. 4.47 and 4.48. Numerical results are compared with the exact analytical
solution. Pressure and density distributions along the tube are plotted in figs. 4.49
and 4.50. In the first case, the shock is predicted at the correct location ahead of
the traveling piston. If conservation were not satisfied, the shock would be formed
in the wrong position [219]. In the second case, the agreement between numerical

and analytical solutions in the expansion region is very good.

R m%

Figure 4.46: Inviscid flow of a compressible fluid in a piston tube: Mesh correspond-
ing to two piston’s positions.

4.3. Unsteady Flow Solver Assessment 165

.
(a)
-4

(b)
()

Pressure: 1.5 25 35 45 55 65 75 85

Figure 4.47: Inviscid flow f a compressible fluid in a piston tube: Piston moves to
the right, forming a shock wave propagating through the fluid.

___JENENNNEEEEE

Pressure: 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Figure 4.48: Inviscid flow of a compressible fluid in a piston tube: Piston moves to

the left, producing an expansion wave along the tube.

166 K. D. Samouchos

700 T T T T 9 T T T T
Cut-Cell Cut-Cell
600 F Analytical Solution 4 3 Analytical Solution i
500 - B 7r B
400 b 6 b
2 g
= =
£ 300 - q a5 b
o]]
A &
200 - b 4 b
100 - b 3 b
0r b 2 - b
-100 ! ! ! L | | 1 | I ! ! I I
6 8 10 12 14 16 18 20 6 8 10 12 14 16 18 20
X X

Figure 4.49: Inviscid flow of a compressible fluid in a piston tube: Comparison

between numerical and analytical solutions, when piston moves into the fluid.

100 T T T T 1 T T T T T
Cut-Cell Cut-Cell
o | Analytical Solution i 0.9 - Analytical Solution 7
08 -
-100 - B
0.7 - -
2200 - 4
o o 06 -
= =5
£ -300 - B 4 05 -
& &
-400 + i 04 - _
03 =
-500 | 4
02 =
-600 - B 01k _
_700 | | | 1 | | 0 | 1
-20 -15 -10 -5 0 5 10 15 20 -20 10 15 20
X X

Figure 4.50: Inviscid flow of a compressible fluid in a piston tube: Comparison

between numerical and analytical solution, when piston is pulled back.

4.3. Unsteady Flow Solver Assessment 167

4.3.2 Flow around Oscillating NACA0012

Results of compressible inviscid flow over an oscillating NACA0012 airfoil are pre-
sented. This case has been studied extensively by many researchers using body-fitted
[255] or Cartesian meshes [219]. The pitching motion around the quarter-chord is
prescribed by the sinusoidal function «(t) = as + apsin(wt), where «(t) is the an-
gle between the airfoil’s chord and the x-axis. The far-field angle-of-attack and
amplitude are a,, = 0.16° and «ag = 2.51°, respectively. The reduced frequency is
k=wc/us=0.1628 and the free-stream Mach number is 0.755. A steady transonic
field initializes the unsteady phenomenon, in which five periods are computed. The
simulation uses 150 time steps per complete cycle of the airfoil motion.

As the airfoil oscillates, the shock shifts between the airfoil’s upper and lower sur-
faces. Shock is well captured due to mesh adaptation, which follows its motion.
Moreover, mesh refinement close to the airfoil’s boundary is adjusted at each time
step. These two phenomena and the cells’ appearance or disappearance from the
flow domain can be seen in fig. 4.51, where the airfoil is shown at two snapshots of its
motion. Fig. 4.52 shows the C',—a curve, where the initial transition and periodicity
establishment is evident. Phase lag between the variations in angle-of-attack and lift
causes the characteristic hysteresis. The curve is compared with experimental [174]
and numerical data from two different sources [15], [309]. It closely matches the
obtained CFD results and differs from the experimental points, leading to the con-
clusion that error may affect measurements’ accuracy. Four time-equidistant Mach
number contour snapshots are shown in fig. 4.53. The relative motion scheme affects
neither the contours’ smoothness nor the shock’s sharpness. The hysteresis is also
evident in fig. 4.53b and fig. 4.53¢c, where the airfoil passes through its equilibrium

position on the upstroke and downstroke, respectively.

168 K. D. Samouchos

(a) (b)

Figure 4.51: Inviscid flow of a compressible fluid around an oscillating NACA0012

airfoil: Mesh and iso-bar contours at two snapshots of the oscillating airfoil. Mesh
adapts to the shock wave location and the airfoil’s contour. Moreover, cells appear
or disappear from the flow domain at each time step.

0.5 T
04] -
0.3 -
0.2 - -
0.1 -
]
@]
[] _ |
-0.1 -
-0.2 - Cut-Cell N
PUMA ——
-03 Anderson et al. =——— -
Landon W
_0.4 | | | 1 1
-3 -2 -1 0 1 2 3

Angle of Attack

Figure 4.52: Inviscid flow of a compressible fluid around an oscillating NACA0012
airfoil: Time lag between airfoil’s motion and the computed lift. Comparison among
results of the proposed cut-cell method (red), experimental data (black) [174] and
other CFD softwares [15] (green) and [309] (blue).

4.3. Unsteady Flow Solver Assessment 169

(a) (b)
(c) (d)

Figure 4.53: Inviscid flow of a compressible fluid around an oscillating NACA0012

airfoil: Mach contours at four equidistant period’s time steps. (a) and (d) snapshots
correspond to the airfoil’s oscillation extreme positions, while (b) and (c) correspond
to the equilibrium position.

Chapter 5

Flow Simulation in Industrial

Applications

The IBMs were introduced to overcome difficulties related to the classical CFD
methods’ inability to handle flow simulations around complex geometries or solid
bodies’ complex motion. In some cases, these methods are the only possible al-
ternative available due to body-fitted mesh generation or deformation unsuccessful
attempts. Such applications can widely be found in the industry, where flow simu-
lation accuracy is important since small computational errors could probably lead
to considerable financial costs. Consequently, the cut-cell method remains a perfect

choice due to its superiority regarding accuracy compared to other IBMs.

This chapter aims to show the developed method’s ability to handle current in-
dustrial cases. An explanation is given in each application about the reasons why
the use of the cut-cell method is essential and much more efficient than other CFD
approaches. The presented applications deal with the unsteady compressible or in-
compressible internal flows in a moving valve, a scroll machine, a diaphragm pump,
and a submersible pump. Their CFD analysis is part of projects investigating new
designs of the machines and mechanism mentioned above. The produced results’” ac-
curacy and reliability are not under examination due to the absence of experimental
or corresponding CFD results in the literature. However, the reader is referred to

chapter 4 for a detailed study on the proposed method’s validation/verification.

170

5.1. Incompressible Flow inside a Butterfly Valve 171

5.1 Incompressible Flow inside a Butterfly Valve

This case is concerned with the incompressible flow inside a valved duct. Valves
are widely used in many applications to prevent undesirable backflow. The valve is
modeled as a shutter rotating around an axis and moves from open to closed position
in 0.5s, fig. 5.1. In the presence of large boundary movements or when two bodies
approach and finally touch each other, mesh deformation becomes costly, delicate,
or even impossible. Therefore, the cut-cell software suits perfectly as it avoids
morphing a body-fitted mesh. The coarse background mesh remains stationary while
the immersed valve is allowed to move, covering and uncovering grid cells. Mesh
is continuously refined at each time step close to the moving geometry to increase
the flow simulation accuracy. Fig. 5.2 shows three time-instants during the valve’s
motion. Mesh generation and partitioning at 26 time steps in total and computation
of all information needed to transfer the flow solution from one mesh to the next
takes 36 min in one processor. According to fig. 5.3, mesh size ranges from 830K to
900K cells, and around 8K cells appear or disappear at each time step. At the last
time step, the valve is positioned in parallel with mesh lines, and mesh is refined
only along the streamwise direction explaining the abrupt decrease in cells” number.
Moreover, at the same time step, the valve covers a notable amount of cell rows,
increasing the number of disappeared cells, fig. 5.2b. The duct’s length and diameter
are set equal to 2 m and 10 ¢m, respectively. Total and static pressure are imposed
at its inlet and outlet so as the isentropic velocity defined as v? , =2(pi" — p°“*)/p
is equal to 0.045 m/s. The cut-cell software ran for 9 hours in 24 processors to
complete the 26 time steps of the unsteady phenomenon. Velocity magnitude and
pressure fields for different valve positions are shown in fig. 5.5, respectively. As
the valve rotates and gradually blocks the flow motion, the velocity field reduces in
magnitude until it becomes zero and the pressure field becomes uniform by taking on
two distinct values before and after the valve. Flow trajectories around the rotating
disc are presented in fig. 5.4.

172 K. D. Samouchos

Figure 5.1: Laminar flow of an incompressible fluid inside a valved duct: Butterfly

valve inside duct, rotating around an axis.

Figure 5.2: Laminar flow of an incompressible fluid inside a valved duct: (a) Adapted
Cartesian mesh in a slice along the streamwise direction for three positions of the
butterfly valve. (b) View of the valve at a duct’s cross-section in the valve’s fully

open position.

5.1. Incompressible Flow inside a Butterfly Valve

173

910

900

890

880

870

860

Grid Size (x10%)

850

840

830

16

14

12

10

Number of Cells (x10%)

820 . .

0.3 0.4 0.5

T T
Disappeared Cells —#—
Appeared Cells —=—

0.2 0.3 0.4 0.5

Time

(b)

Figure 5.3: Laminar flow of an incompressible fluid inside a valved duct: (a) Mesh

size evolution for each time step during the unsteady simulation (b) Number of

disappeared and appeared cells at each time step caused by the valve’s rotational

motion.

568
505
442
379
3186
253
189
126
083
000

VelocityMag

Figure 5.4: Laminar flow of an incompressible fluid in a valved duct: Flow trajec-

tories within the valved duct with the disc half-open.

174 K. D. Samouchos

—=

— A

‘
- —~
= ~—

Figure 5.5: Laminar flow of an incompressible fluid inside a valved duct: Instanta-
neous (a) velocity magnitude and (b) pressure iso-areas within the valved duct, at
equally distributed time instants.

5.2. Compressible Flow in a Scroll Expander 175

5.2 Compressible Flow in a Scroll Expander

The interest in the theoretical and experimental Organic Rankine Cycle’s (ORC)
study has grown dramatically in the past decades [253]. The ORC produces elec-
tric energy from low temperature, non-costly heat sources, such as solar thermal
power, geothermal heat sources and engine exhaust gases, making it a promising
environmentally friendly technology [303]. Its name refers to the organic working
fluid, which can evaporate at a lower temperature than water. One of the essential
parts of an ORC is its expander. Displacement-type machines are more beneficial
than turbo-machines due to their lower flow rates, higher pressure ratios, and much
lower rotational speeds [243]. Scroll expander is an advantageous displacement ma-
chine due to its reduced number of moving parts, wide output power range, and
low manufacturing cost [342]. However, experimental and CFD work is limited re-
garding scroll machines in expander mode [175]. The present work attempts to
fill a part of this literature gap by proposing the cut-cell method as an alterna-
tive tool for the flow simulation on the scroll machine’s complex geometry, with a
lot of advantages. Research presented in this subsection is part of the results of
a project titled “Development of a small-scale low-temperature supercritical ORC
with optimized scroll expander and heat exchanger” funded by the Business Plan
“Cooperation 2011 - Partnership of Manufacturing and Research Parties Special-
ized in Research & Technology Sectors.” with Greece and the European Union’s

co-financing.

Creux first proposed the scroll machine in 1905 as a new compressor design [72].
Only after 75 years and the appearance of accurate and reliable tools was its man-
ufacturing possible. The interest in its geometric modeling and dynamical analysis
led to a significant amount of publications, one of the first complete studies being
[216]. The following analysis is based on [31], where the details and proofs of the
following mathematical analysis can be found. The scroll machine consists of two
symmetric spirals, fig. 5.6c. The one is stationary, fig. 5.6a, while the other is al-
lowed to orbit around the first one, fig. 5.6b. Orbiting is defined here as the motion
where the Cartesian coordinate axes of the two spirals remain aligned while the
moving origin orbits around the other. Flow is entered at the scroll’s center and
pushes the orbiting spiral along its way to the outlet. Fig. 5.8 presents the scroll’s
operation during one period of its motion. Blue parts correspond to areas occupied
by the fluid. As the red spiral moves, the blue area increases, and fluid’s pressure

decreases. Finally, a generator is responsible for converting the scroll’s motion to

176 K. D. Samouchos

electrical energy.

The stationary spiral geometry is based on two involutes, the inner and the outer,
unwrapping from a circle of radius ry, called the base circle. The machine’s coordi-
nate system origin is placed at the center of the stationary base circle. The involute’s
parametric equations are given by

2(¢) = rpfcos¢ + (¢ — ¢o)sind]

where ¢ corresponds to the range from ¢y to ¢.. The inner and outer involutes differ
in the value of these parameters, which are defined as ¢;q, ¢;c and ¢.9, Poe, respec-
tively. Only the part from ¢ to ¢., correspondingly for both involutes, is part of the
spiral geometry, fig. 5.7a. The rest part from ¢, to ¢, called the two-arc discharge
region geometry in scroll compressors terminology, is shown in fig. 5.7b. It consists
of two arcs (red and blue) continuing the inner and outer involutes respectively and
a straight tangent to the arcs line (green) of length L. The exact value of both
cycles center and radius arises from a geometrical analysis developed in [272] and is

presented in the same figure. It can be proved that the spiral thickness is

tw = 1(Pi0 — Po0)

The moving spiral is reflected through the stationary one’s origin and shifted by 7
computed as

To = TpT — oy

The displacement vector is
To = To (cos(@-e — g —0), sin(pie — g — 9))

where 6 is a function of time and corresponds to different positions of the orbiting
spiral. More details can be found in [272]. In our model every 2D geometrical
representation of a scroll machine is uniquely defined by the parameters ry,, ¢;s, Gie, tw
and L. Their values are given in table 5.1 generating the specific geometry studied
in this section, where A is the scroll’s height.

Leakage loss between the two spirals is responsible for a significant reduction in
the scroll’s efficiency and, therefore, is one of the most important and challenging

phenomena to model in a scroll expander. Most CFD software have difficulties in

5.2. Compressible Flow in a Scroll Expander 177

| 0.004968 m
bis | 240.78°
bie | 800.20°
tw | 0.0042 m
L | 0.0094 m
h | 0.1467 m

Table 5.1: Laminar flow of a compressible fluid in scroll: Parametric values gener-
ating the scroll machine studied in this section.

simulating the leakage flow as they can hardly account for the mesh generation
and deformation due to scroll geometry and motion complexity [333], [88]. There
are several widely used models available. The most common treat the flow as an
isentropic compressible flow through a nozzle [191], [337]. The proposed method
avoids using these models, and it is capable of solving the flow equations through
the leakage and, therefore, computing the machine’s quantities of interest, such as

the expansion ratio, with an acceptable accuracy.

Mesh generation in the scroll geometry is a very challenging task. As far as con-
ventional methods are concerned, a body-fitted mesh should be generated in the
blue area of fig. 5.8a and follow the domain’s motion until its final shape, shown
in fig. 5.8i. Its transformation is so extreme that any mesh deformation tool would
probably fail. On the other hand, a Cartesian mesh remains stationary during the
spiral’s orbit, following its motion by applying refinement techniques at each time
step in areas close to solid boundaries. Mesh generated at the starting point of the
scroll’s operation is shown in fig. 5.9. Fig. 5.10 focuses on two mesh details, showing
the proposed mesh generator capabilities to successfully handle “abnormal” geomet-
rical shapes. In fig. 5.10a, complex cut-cells have been formed close to the wall’s
corners, while in fig. 5.10b, cut-cells have filled the narrow gap between the station-
ary and moving spirals allowing for the proper leakage simulation. Extra refinement
around that area significantly increases the mesh size and, therefore, is avoided due

to computational resource restrictions.

The transient laminar flow of a compressible fluid inside the scroll machine is simu-
lated during a single operating cycle. Speed of revolution is set equal to 2000 rpm.
Flow is entered from a circular hole of a radius of 0.01 m, and its direction is perpen-
dicular to the scroll’s plane. Inlet boundary conditions are total pressure 40.37 bar

and total temperature 90° C'. Velocity magnitude iso-areas at 10 equidistant time

178 K. D. Samouchos

instants are shown in fig. 5.11. The initially quiescent fluid is distorted by the spi-
ral’s motion, which pushes it through the exit reducing its pressure. Finally, the
discarded fluid exits from the outer square boundaries. Fluid motion is more ap-
parent by the streamlines’ direction, shown in fig. 5.12. Scroll’s pressure ratio and
mass flow rate are 2.77 and 0.605 kg/s, respectively.

(a) (b) ()

Figure 5.6: Laminar flow of a compressible fluid in a scroll: (a) Stationary and
(b) orbiting spirals generated by using the parametric values from table 5.1. Their
collaboration is shown in (c).

(a) (b)

Figure 5.7: Laminar flow of a compressible fluid in a scroll: (a) Involute unwrapped
from circle. Characteristic variables ¢y, ¢, and ¢, are also shown. (b) The discharge
region geometry consists of two arcs in red and blue and a straight line in green.

Post-processed figures taken from [31].

5.2. Compressible Flow in a Scroll Expander 179

O
(O IR
0O

Figure 5.8: Laminar flow of a compressible fluid in a scroll: Equidistant snapshots

in a period of scroll’s motion. The blue area covered with fluid depicts the flow
decompression.

K. D. Samouchos

180

Figure 5.9: Laminar flow of a compressible fluid in a scroll: Mesh generated at the

first time instant of scroll’s motion.

1 H] 7 //'
/) 7// ‘L/ Aﬂ
/ i / ’ /4 /
/ V 1 7 / y

/ /‘4% /L’ — ///'/f/'

/ /y /’/77 7ﬁ /,// {

/ /17 /;7 *ﬂ'/ /1/ /

// /7 /;7 7#/ A /
an ﬁ A = I B
oy i 1 f f
Ly / / B j |
A B -

N / " i |
|) i 1 ﬁ I
(b)

Figure 5.10: Laminar flow of a compressible fluid in a scroll: Mesh details in (a) the
vicinity of spiral’s edge and (b) the gap of a tiny small thickness between stationary

and moving spirals.

5.2. Compressible Flow in a Scroll Expander 181

VelocityMag
15

()

Figure 5.11: Laminar flow of a compressible fluid in a scroll: Velocity magnitude

iso-area snapshots taken every 0.03 s during an operating cycle.

182 K. D. Samouchos

Figure 5.12: Laminar flow of a compressible fluid in a scroll: Velocity magnitude

iso-areas and streamlines.

5.3 Incompressible Flow inside a Valveless Diaphragm

Micropump

Diaphragm or membrane pumps are positive displacement pumps. They consist of
the main chamber, an inlet and outlet duct, and a periodically moving diaphragm
which is the passing flow’s driving force. The inlet and outlet ducts might either be
valveless diffusers or tubes of a constant cross-section with valves (valved pumps).
Depending on the application, they are often preferred over bladed pumps since
they are cheaper and can pump various fluids in a noiseless manner [49]. They
are manufactured in large or small scales, with the large (usually valved) ones used
for cleaning tank bottoms or pumping sewage, while the small (valved [320] or
valveless [64]) ones (micropumps) mostly used as medical analysis devices [227], in
biochemical-processing applications, or to deliver drugs to patients. In such cases,
the valves are usually replaced by diffusers. Unfortunately, these pumps often suffer
from undesirable back-flow at the exit during a percentage of their period, which
can be reduced by adequately adjusting the diaphragm motion characteristics. This
study is thoroughly analyzed in section 9.4.

5.3. Incompressible Flow inside a Valveless Diaphragm Micropump 183

The valveless micropump design studied in this section, fig. 5.13, firstly introduced
by [292], is based on an existing micropump found in the literature [288]. Its length
is 1 ecm, and the chamber’s length, height and volume are 8.862 mm, 0.5 mm and

3. respectively. The inlet and outlet diffusers are identical. The

around 40 mm
inlet cross-sectional area is 0.03 mm? and the outlet area is 0.2 mm?. Its working
principles are similar to the respiratory system of humans. The elastic diaphragm
is deformed by a piezoelectric device causing its periodical motion, inducing fluid
motion to the right. When the diaphragm moves upwards, the chamber volume
increases, and higher mass flow enters the micropump from the inlet than from the
outlet. Conversely, when the diaphragm moves down, the pressure is increased,
driving the fluid to exit mainly from the outlet. The preferred flow direction is
determined by the diffuser /nozzle elements design, which allows for a lower pressure
loss in the diffuser than in the nozzle direction for the same flow velocity. Therefore,
the net volume is pumped from the inlet to the outlet during a complete pump cycle,
even though the diffuser/nozzle elements allow fluid motion in both directions [292],
[254], [13].

In this study, the diaphragm does not follow the conventional motion found in
most commercial micropumps. Its displacement is described by the mathematical
model presented below, enabling the diaphragm to efficiently guide the incoming
flow towards the outlet by suppressing or, at least, reducing the exit’s undesirable
back-flow phenomena at the exit. The diaphragm motion is parameterized using 8
design variables denoted as b;,7=0,7. x and z axes correspond to the longitudinal
and spanwise directions, respectively. The diaphragm motion takes place along the
y-axis and the origin of the coordinate system is at the center of the rectangular
diaphragm of size L, x L,. L7'=0.9byL, and L' =0.9b,L, define the part of its
area which is allowed to move. At each time step, the diaphragm is deformed in bell
shape around z.=LJ'(% — 3), z.=0 expressed as

Yy = _ymaxf(Tac)f<Tz)

where

f(r) =67% —87% + 37*

2t . (+_T\?2
ymaz:bl(l_ 1_T>e bo(t 2)

where b; is the maximum displacement over all time steps achieved at the half period,

184 K. D. Samouchos

bs controls the function’s abruptness and T'=0.02s is the period. Every point located
outside the neighborhood with center z. and radius Dx = b3 % - |xc|> remains
stationary, while every point belonging to the neighborhood with radius dz=b,Dx
is displaced at ¥,,.,. For the rest points, transition is performed smoothly by using
the polynomial mentioned above. This behavior is summarized in the 7, definition

which is given as

0 RURS [_%’x;]u[xa%]
1 ,x €[22 z]]
Ty = r—x! 1 .2
2221 RS [3357'775]
;ge__é € |73,]

where zl =2, — Dx, 2*=2.—dx, ! =2x.+dx, x> =2.+ Dz. 7, is defined similarly by

setting Dz = bg (% -]zc|> and dz =b;D,. The exact parametric values are given
in table 5.2.

by | 0.79294
by | 0.00045
by | 0.066482
bs | 0.85741
by | 0.64411
bs | 0.036511
bs | 0.67559
b7 | 0.073943

Table 5.2: Laminar flow of an incompressible fluid inside a diaphragm pump: Values

given to parameters controlling the diaphragm’s motion studied in this section.

Having defined the micropump’s shape and the diaphragm’s motion, the unsteady
CFD flow simulation follows. Fig. 5.14 shows the Cartesian mesh generated at the
first time instant and at the diaphragm’s maximum displacement. Mesh quality
is maintained despite the extreme boundary displacement, illustrating the cut-cell
method’s advantage to handle such cases successfully. Only the half pump is sim-
ulated due to its symmetry along the z = 0 plane. Total pressure and axial ve-

locity direction are imposed at the inlet and static pressure at the outlet, so as

Viny = /2(pi" — p°t) /p = 0.875 m/s, inducing a low mass flow rate through the
pump. In case the flow instantaneously exits from the inlet, only total pressure is

used as a boundary condition. After solving the flow equations for four successive

5.3. Incompressible Flow inside a Valveless Diaphragm Micropump 185

periods consisting of 20 time steps each, the flow has become periodic. Fig. 5.15
shows velocity magnitude iso-areas and streamlines on the symmetry plane at 8 time
instants over a single period. Back-flow at the last three time instants is evident.
At some time steps, the diaphragm’s displacement is large enough to cause the ap-
pearance or disappearance of around 2700 cells. Despite this significant change in
mesh size, the mass flow deviation is less than 0.1%, verifying the software’s ability

to ensure mass conservation even when high boundary deformations occur.

Research presented in this section has been funded by the Business Plan “Devel-
opment of Human Resources, Education and Lifelong Learning” entitled “Support
Researchers with Emphasis on Young Researchers” with the co-financing of Greece
and the European Union. The project title is “Design-Optimization of Diaphragm
Pumps under Operational/Manufacturing Uncertainties using the cut-cell Method
and Polynomial Chaos Expansion”.

Figure 5.13: Laminar flow of an incompressible fluid inside a diaphragm pump:
Micropump’s geometry. Flow enters from the left and exits from the right diffuser.
The diaphragm is placed on the chamber’s upper surface.

In
JHITITITT

Figure 5.14: Laminar flow of an incompressible fluid inside a diaphragm pump:
Cartesian mesh inside the pump (a) at the initial time instant and (b) at the half

of the motion’s period in which the displacement is maximum. Axes not in scale.

186 K. D. Samouchos

VelocityMag: 0 05 1 15 2 25 3 35 4 45 5

Figure 5.15: Laminar flow of an incompressible fluid inside a diaphragm pump:
Velocity iso-areas and streamlines at 8 time instants within a single period of the
periodic flow. Axes not in scale.

5.4. Compressible Flow inside an Electrical Submersible Pump Stage 187

5.4 Compressible Flow inside an Electrical Sub-

mersible Pump Stage

The Electrical Submersible Pump (ESP) is an efficient and reliable method for ex-
tracting moderate to high volumes of fluids from wellbores. Its operation is a subject
of great importance, especially in the oil industry. More than 90% of the worldwide
oil-producing wells require an artificial lift to increase the flow from wells when a
reservoir has no longer sufficient energy to induce flow towards the ground [171].
ESPs are one of the most versatile and efficient artificial lift methods. They com-
prise multiple centrifugal pump stages positioned in a series within a proper induc-
tion motor that can achieve rotational speeds of more than 5000 rpm [324]. Each
stage consists of an impeller and a bladed diffuser. At each stage, the fluid’s total
pressure slightly increases until the exit of the multistage arrangement, where the
fluid should have gained enough energy to travel through the well until its exit.

In this section, the numerical simulation of a compressible fluid within an EPS is
presented. CFD is a key feature in the understanding of the complicated flow phe-
nomena developed inside an ESP. During the last decades, considerable research has
been conducted on pump stages, based almost exclusively on body-fitted meshes.
Their use is accompanied by some difficulties arising from the relative motion be-
tween the impeller and the diffuser. This challenge is by-passed by employing the
Multiple Reference Frame (MRF) technique [346], in which a steady-state solver
simulates the flow within the impeller concerning a relative reference frame and
adding proper source terms to the momentum equations simulating the rotating
motion within a non-rotating mesh. Another widely used method is the compar-
atively more accurate Sliding Mesh technique [347], according to which the mesh
generated for the impeller is rotated together with its blades, bringing the simu-
lation closer to the real-world scenario.However, data must be exchanged through
the non-matching interfaces between the rotating impeller’s and stationary diffuser’s

mesh domains.

This work introduces the cut-cell method as a powerful alternative that overcomes
the impeller-diffuser interface problems without using the techniques mentioned
above. Although most papers in the literature on this kind of pumps deal with
multiphase flows [52], this study makes the single-phase inviscid flow assumption,
focusing more on the successful implementation of the developed cut-cell method.
The study is part of a project funded by Schlumberger Cambridge Research Limited

188 K. D. Samouchos

dealing with the optimization of a commercial EPS. The company also provided the
pump’s geometry and operating conditions. Fig. 5.16 shows the pump’s casing and
the impeller and diffuser blades. The flow enters from its bottom and exits from the
top.

A single Cartesian mesh is generated around the impeller and the diffuser. In the
impeller’s vicinity, cells are combined or break anew as the mesh refinement follows
the blades’ rotation. The part of the mesh close to the diffuser remains unchanged.
The impeller’s blades are attached to the casing, the bottom half of which rotates
together with the blades. Consequently, the casing consists of the rotating (bottom)
and the stationary (top) parts. Their interface comprises two concentric circles,
where the outer one is shown in fig. 5.16a. At each time step, edges of the casing’s
triangulated surface mesh that connect one node positioned at the interface with
another one belonging to the rotating part are deleted. Then, the casing’s bottom
half is rotated by a small angle, and new edges are created connecting its two
separated parts. Three periods were simulated. After the second one, periodicity
has been established. Figs. 5.17a and 5.17b show velocity magnitude iso-areas on a
slice perpendicular to the axis and streamlines, indicating the flow direction through
the impeller and the diffuser, respectively. Slices are located as in fig. 5.18. Finally,
figs. 5.19 and 5.20 show four time instants each, at an attempt to visualize the
transient flow inside the impeller and the diffuser, before the flow becomes periodic.

(a) (b)

Figure 5.16: Inviscid flow of a compressible fluid inside an EPS stage: (a) casing
and (b) impeller’s and diffuser’s blades of an ESP’s stage.

5.4. Compressible Flow inside an Electrical Submersible Pump Stage 189

Figure 5.17: Inviscid flow of a compressible fluid inside an EPS stage: Streamlines
and velocity magnitude iso-areas in (a) the impeller and (b) the diffuser. The slices’
position is depicted in fig. 5.18.

Figure 5.18: Inviscid flow of a compressible fluid inside an EPS stage: Impeller and
diffuser slices, perpendicular to the axis. Velocity magnitude iso-areas are shown.
Slices’ close-up views are presented in fig. 5.17.

190 K. D. Samouchos

Figure 5.19: Inviscid flow of a compressible fluid inside an EPS stage: Velocity iso-
areas on an impeller slice during the transient phenomenon computed in the pump’s

second operating period.

5.4. Compressible Flow inside an Electrical Submersible Pump Stage 191

Figure 5.20: Inviscid flow of a compressible fluid inside an EPS stage: Velocity
iso-areas on a diffuser slice during the transient phenomenon computed during
the pump’s second operating period. Time instants coincide with those shown in
fig. 5.19.

Chapter 6

The Continuous Adjoint Method

This chapter is concerned with the mathematical development of numerical methods
capable of solving shape optimization problems for academic and industrial flow
applications. Typical examples are drag minimization in external aerodynamics and
total pressure losses minimization in internal aerodynamics. From a mathematical
perspective, an optimization method aims at maximizing or minimizing one or more
targets called objective functions (F'). This thesis deals only with single-target
optimization problems. F'is a function of N independent variables called design
variables (b, ¢ = 1,---,N). In all optimization cases presented in this work, the
design variables control the solid bodies’ shape. They can be the coordinates of the
control points of a shape parameterization tool (likely based on Bézier-Bernstein
polynomials, Splines or NURBS) or nodal coordinates on the solid bodies’ discretized

surface.

This chapter focuses on computing the objective function’s gradient to support shape
optimization algorithms. Therefore the continuous adjoint method is developed for
compressible and incompressible flows implemented by the cut-cell or the ghost-cell
method. A discussion is also made about the adjoint Riemann problem defini-
tion and the discretization of the field adjoint equations. Thereafter, the unsteady
method’s variant is studied, and solutions to data storage problems are proposed.

Readers interested in the discrete adjoint method are referred to chapter 7.

192

6.1. Mathematical Development of the Compressible Adjoint Method 193

6.1 Mathematical Development of the Compress-
ible Adjoint Method

This section presents the mathematical formulation of the continuous adjoint method
for 3D compressible steady or unsteady, inviscid and laminar flows. The adjoint
PDEs accompanied by the proper boundary conditions are defined, and the final
expression of the objective’s gradient w.r.t. bis given. Hereafter, this gradient noted
as 0F/ob, will be referred to as the sensitivity derivatives. Firstly, the more general
unsteady laminar case is studied, and then, the resulting formulas are specified in
steady or inviscid flows. In the following development, an assumption is made about
the indices range. Specifically, indices k, [and m correspond to the 3 space dimen-
sions, while h, ¢ and j vary from 1 to the number of the governing equations. Index
ris 1 or 2, and ¢ is used only for the design variables enumeration. Flow quantities
notation follows the definitions made in section 3.1.

6.1.1 Definition of the Total Derivative

Consider a parameterized flow domain) and its boundary S. An alteration in b
causes the boundary displacement, which pushes each internal point, defined by its
parametric coordinates, changing their Cartesian coordinates (¥'= a?'(l;)) However,
the boundary deformation also affects the flow variables stored at each point, allow-
ing for the expression of any field quantity <I>(g, 7) (e.g., the governing equation R;)
as a function of b. Hence,
b= (6, f(z?))

In unsteady flows, the design variables are considered independent of time. When
solid bodies are allowed to move, ® is expressed as

= <E,t, #(b, t)>

Its total derivative w.r.t. b, and t is

6 _ 00 0%
sb, b, Owy F
50 0D 9P

g
Uk

St ot dmy

194 K. D. Samouchos

where vi =0x,/0b, is the surface deformation rate during the optimization process
and v] = Oz /0t is the surface velocity during the unsteady phenomenon. Their
normal components will be denoted as vi =vin, and vd =viny. It follows that §®/db,
is a combination of the partial derivative 0®/0b, representing its variation caused
exclusively by changes in the flow variables due to the surface modification and, the
term describing its change due to the point’s displacement. Furthermore, the total
derivative §®/dt is equivalent to the material derivative used in the Lagrangian
description of fluids’ motion. Since the partial derivative is independent of the
Cartesian coordinates variation [237], [159],

O (02N _ 0 (02
Ob, \ Oxy, Oz, ob,
As mentioned before, design variables are independent of time, which allows for the

corresponding derivatives permutation,
o (ov) _o (o0
ob, \ Ot) Ot \ 9b,

A useful tool from the calculus of moving surfaces [119] is also introduced. The
instantaneous rate of change of ® in the normal direction of a moving surface is

- s

50y by om

5b 0D 0D

which was originally defined by J. Hadamard. The term 0®/0n = 0®/dxyny rep-
resents the normal to the surface derivative. The d, derivative is applied only to
points on the surface and differs from the ¢ derivative used only in the interior of the
domain. The aforementioned derivatives play a central role in the differentiation of

volume and surface integrals,

O [aaa= [2aas / DusdS

6bq Q Q abq S (6 1)
i ddS = / 0% ds — / ®Hv;dS

5bq S S 58bq S

where H is the surface mean curvature. The first equation is the Reynolds transport
theorem, and the second one was firstly published in [118] and assumes that S is
closed or its contour is independent of b. In both equations, the first integral on
the r.h.s. corresponds to the rate of change of ® and the second one represents the

6.1. Mathematical Development of the Compressible Adjoint Method 195

contribution of the surface motion. Based on the Hadamard’s derivative, the surface

differentiation is alternatively expressed as

5 /cbds / Z2dS + /(——(I)H) vidsS

6.1.2 Differentiation of the Objective Function

This thesis focuses on objective functions given in a volume or surface integral form.
In a general unsteady case,

_ / / FodQdt + / / Fs,ny,dSdt
T JQp Tr J SF

The time window T is equal to or part of the flow simulation’s period. For example,
in periodic flows, the governing equations are solved until periodicity is established.
However, the design optimization usually focuses only on the periodic part, and thus,
Tr is chosen equal to the last period of the simulation. Moreover, the following
mathematical development assumes that Qr = 2. The surface Sg is considered
part of the boundary of the fluid domain. In applications studied in this thesis,
the integrand [y, is a function of the conservative variables, and Fg, is expressed
w.r.t. velocity, pressure, temperature, and the stress force (m;ny) exerted from the
fluid to Sp. It is helpful to project the force onto the orthonormal basis (7,1,),

where 17, 1 and 2 are the local normal and tangent vectors to Sp,
T = 7"y 4+ 7' 1] (6.2)
where

T = Ty

T

Tt = lenktlr

196 K. D. Samouchos

Therefore,

Fo = Fo(U
o =FaU)) (6.3)
FSk:FSk(ﬁ7p7TaTant)

If Fg, is defined along the wall in a viscous case, its dependency from ¥ is replaced by
v?. Attention should be paid to the way F' depends on b. If a design variable changes,
the geometry’s shape changes as well, causing an alteration in the flow variables,
which should always satisfy the governing equations. Consequently, the dependency
of F is direct through the geometrical terms included in its mathematical expression
and indirect through the flow variables it depends on.

Based on theorems 6.1 the total derivative of F' is

/ aF e / / FouldSdt

TF TF
//as’“ndedtJr/ / (
TF SF

1 / / Py 2™ g5 ar
e Js, b,

During the optimization only the solid boundary is modified. Therefore, d;ny/0:b,=

F
0 Sk FSkH) vindedt

0 and v =0 at the inlet or outlet, and terms containing these quantities are inte-
grated only along S,,. Considering the objective function’s dependencies, eqs. 6.3,
the gradient becomes

6FQ j s 8ng 0vm
SF /TF/ 53, deH/TF/ Fﬂvnds+/T /SF Ul

aFS aFS
—k— dSdt + b —n.dSdt
/TF /sF ap b, /TF /SF aT b, o

OFs, O™ OFs, ot
dSdt
/TF s, O™ Ob, /TF s, Ot b, " o
F
/ / OFs _ py 1) vingdSdt + / / P, 2™ g5t (6.4)
e Js, o Js. b,

As expected, the gradient of F' contains derivatives of flow quantities w.r.t. the
design variables. A straightforward approach for their computation is the direct
differentiation method, according to which the governing equations and boundary

conditions are differentiated w.r.t. each b,. Their numerical solution provides the

6.1. Mathematical Development of the Compressible Adjoint Method 197

0U;/0b, values by the cost of N equivalent flow simulations, which is unfeasible for
industrial applications where N can be very high. This cost is drastically decreased
to one equivalent flow solution using the adjoint method, which provides an alter-
native expression for 0F/db, calculation independent of dU;/0b,. This method is
explained in subsection 6.1.3.

6.1.3 Definition of the Augmented Function

Adjoint theory’s central concept is the optimization problem perception as a con-
strained one, where F' should be maximized or minimized subject to the constraint
of satisfying the flow equations (ﬁz@) Inspired by the method of Lagrange multi-
pliers, a Lagrangian or augmented function is introduced as

L = F+/ /\IfiRidet
Thr JQ

where U are the adjoint or co-state variables, R stands for the unsteady flow equa-
tions and Tg is the flow simulation duration. The adjoint variant for steady flow
problems will emerge as a particular case of the unsteady one in subsection 6.1.11.
The variable T represents the time window from ¢, to t. at which the unsteady
flow phenomenon is studied. The space-time integral is zero since it contains the
residuals of the governing equations. Therefore, L= F'. Differentiation of L w.r.t. b,

db, b, T Ja Oby e Js

where the Reynolds transport theorem is used.

yields

The target of the following mathematical development is to differentiate R and elim-
inate the resulting volume integrals containing the oU;/0b, term by factorizing all
0U; /0b, derivatives and nullifying their multipliers, giving rise to the adjoint PDEs.
The same method applied to the surface integrals leads to the introduction of the
corresponding adjoint boundary conditions. In the following development, volume
integrals noted as FFAFE contribute to the field adjoint equations formulation. Sim-
ilarly, all surface integrals noted as ABC will be used for the adjoint boundary
conditions definition. Finally, integrals annotated as SD contain geometrical varia-

tions and are part of the final sensitivity derivatives expression.

198 K. D. Samouchos

By using eqgs. 6.4 and 3.1 one obtains

oL 0Fq 0U; / / / / 0Fg, Ovy,
i 0 F B Z7m
5, / 8U o, —dQdt + o s QU dSdt + v)5, om0, nedSdt

-~

FAE o
OFs, Op / / OFs, 0 / / 0Fs, 0
nedSt oL asat WO St
+/TF /SF (91) ab - Tr JSF or ab & " Tr JSF orn (% "tk
Ase ABC ABC
OFs, or" 0Fg
k e p .
"‘/TF /SF Ot 3bq ndedt+/ / (S)Unndedt
AEC SD
5 sTk
F; dSdt dQdt
/TF/ S’“M i +// "Ob, ()
Itemp
0 1;?”) / / P (a 1;38)
/TR/ (81’k e abq al’k ' ()
Iln’u Juis

If the inlet or outlet boundaries are part of Sg, the under-braced integral with
ABC'/SD contributes to the inlet/outlet boundary conditions. On the other hand, in
case S is defined only along the solid wall, the integral contributes to the sensitivity
derivatives expression. Integrals I'*™P [and I"* are processed in subsections
6.1.4, 6.1.5, and 6.1.6, respectively.

6.1.4 Differentiation of the Temporal Term

The I**™ integral of eq. 6.5 is developed as

o (oU; oV, oU;
temp __ i 7 _
! _/Tﬁ/mlat()det /TR/ 8t()det /TR/ at ob,
/ / Ui 1y / / / / o, U,
Tr 5t Tr w Tr 8t ab

([dgr [gasa [[2o 66

ABC BC FAE

6.1. Mathematical Development of the Compressible Adjoint Method 199

6.1.5 Differentiation of the Convection Term

The I integral of eq. 6.5 is developed as

inv mnv ‘I, inv
I = / / (8 ik)det :/ /\I/ia ik ndedt—/ /8 O —=—dQdt
Tr 3$k T JS 8bq Tr axk 8[)

where the Green-Gauss theorem is used. Since

ofi” _ofxvou; . 0oU;
ab, oU; db, "o,

the inviscid integral is expressed as

a WL’U
I = “f dSdt — A, Us —LdQdt
/TR / " /TR / axk Jk ob,

Boundary S consists of the inlet and outlet parts (S7o) and walls (S,,). The surface

integral is split into these parts, which are treated differently,

I = / / “‘“ ngdSdt + / / \IfAUkaU nydSdt
Tr J Sw Tr Y S10 ab ,

-~

IZnU ABC

/ / axk Aiji adeth (6.7)
FAE ’

Considering that only the solid boundary is modified during the optimization, v* =0
and 0sng/dsb, =0 along Sro. Under these conditions, term Ifg”” becomes

I / / 91 ”“ npdSdt = / / (_ 9 v;;> npdSdt
Tg Tg 871
5 1m} 'ZTL’U
/ / npdSdt — / / \yi@iv;nkdscﬁ
TR TR
/ / ”’“ Dl) gGqr — / / i, fin OsTk
Tr v Sw Tr 5qu
/ / Zk vy ndSdt
TR w

200 K. D. Samouchos

By using the wall flux expression, eq. 3.22,

| plvd 1 0

pruy g +piny B ny

g = | ptuged +ptny | =00l 4" | g

prvgvd + pny ng
(pwEw+p)n_ L o)

the integral term becomes

8,(pus
i = / / O U) o+ / / By 2P g6 / / P g
TR w TR w 5qu TR w 5qu
_ W, fi : vangdSdt
/TR /w g 5sb Tr w ;

where Uy = U5 is the adjoint variable corresponding to the energy equation. Ge-
ometry’s normal velocity v may dependent on b, (e.g., application 5.3). Thus, the

above expression is written as

dp
m” U Vi Upvd) — | dSdt
/TR/ < n(% + (Whprne + Vo)) (%q) S l
ABC
dp
N Upvd) — | v2dSdt
SD

(5 n 0507
TR s¥q

/ / Jfiw (;Z%s&- / / “f 22k 3 npdSdt (6.8)
Tr Tr

J/

6.1. Mathematical Development of the Compressible Adjoint Method 201

6.1.6 Differentiation of the Diffusion Term

A process similar to subsection 6.1.5 is followed for the viscous term,

1" = / / (a =)det / / ‘ . " St / / OVi 0L oy
Tg a’fk Th 1 Jo 0z Ob,
/ / o Ok) gy / / v, 5,585”’“
TR TR 5 b

I’U’LS

0 Z”,;S oV, 0 ;}js
/TR /w uin det—/ /8xk b, dQdt (6.9)

IUZS

where the surface integral along S;o containing the variation of the viscous terms is
neglected. The viscous volume term reads

; 6\I/l+1 8le 8\IJE Uﬂ'lk) / / O\IJE 8qk
15% = ——dSdt ddt —— ——d2dt
@ / / Oy b, e /TR / dxy Ob, *), b,

8\I/l+1 6\113 8le / / 8\IIE 81}1 / / 8\IIE 8qk
Q —dS2 —dS2
/TR/ (01,) dQdt + - O, le d dt + Dzr. Db, dQdt

A useful variable is defined as

By substituting the stress tensor and heat flux expressions from section 3.1 and

using the Green-Gauss theorem, one gets

/ / pihia (8”) dQdt + / / phia 5 (av’“) dQdt
TR TR
_ _5,d / / fihy =2 (0vm> dQdt
Tr agjm q
a\I/E Vg 81)1
QO 200
LR/ 8xk axk () d dt LR/ axk le d dt

202 K. D. Samouchos

and thus,

2
TR TR TR S
h h 2 h
_/ / M%dgd _/ / M%det —5kz/ /MM%det
Tr 6$k ab TR JQ aaﬁ 3() 3 Tr JQ amm ob

8\IJE or 82\IJE or \IJE 81}1
— — —df —df)
+ /TR/S Dy 81) nidSdt /TR/Q &ci 86 dt + /TR/Q Dy le d dt

By using the two identities,

o0v,, oy
Orihir——"m = dxihmm——
KUkl abq n kl 0ban
5“ 8hkl a’Um =5 8hmm (%l

O by " Oz Ob,

the volume term becomes

. 2 0
137 = / /M (hkl + hy, — —5klhmm) azl nydSdt
Tr
Ohiy 8hlk 2 . Ohy, o
z ape
/TR/ <8zck T 35kl 8 T) 8b d dt
3111 g OT 82\11 g OT
—ndSdt — —dQdt
" /TR/ Ozy, b, S /TR/ axk ab,
/ / a\pEle a“l Lt
Tr Oy,

The adjoint stress tensor and heat flux are defined as

2
TH=H (hkl + hy, — §5kzhmm)

ov
A E
=k

dy a$k

6.1. Mathematical Development of the Compressible Adjoint Method 203

By neglecting the surface integrals along the inlet and outlet and taking the flow
boundary conditions at the wall into account, I becomes

R
I = //q ndet—i—//TA —Ln,dSdt — //T LosngdSdt
Q - kab k kléb k - kla k

J/

-

ABC p
Oty Vg Ouy 8qk oT | oU;
B Q 1
/TR/ [(axk le) aUJ + Ga:k 8U] ab dfldt (6 O)
FAE

The viscous surface term is processed as

10 = / / w,,,) T”“"’“ DA S dt+ / / g 2V) “l”’“”’“ dSdt+ / / NRICELD) ’“”’“ dSdt
TR w TR w TR w

where the v; =] boundary condition has been used. The last integral is canceled
out since the solid wall is always considered adiabatic. By rearranging terms, ¢

10 = / / T”“ Os(Tiete) oy - / / \I/Enknk(; Ldsadt
Tr Tr s¥q

g =Y+ Ygo/

becomes

where

The force T;ny is substituted from eq. 6.2 and term T4 is written as

Igzs _/ / / / / / gﬂ'n s ldet
Tr w Tr w Tr w
¢ ¢ . 6 ty
+/ / ait] or det+/ / glt a s det+/ / gt =LdSdt
\TR w 8b TR w TR w bq
SD SD

N R S1

(6.11)

204 K. D. Samouchos

6.1.7 The Compressible Field Adjoint Equations

In the previous sections, all terms resulted from the differentiation of the governing
equations has been developed and classified. The next step is gathering all FAE,
ABC and SD terms from egs. 6.5, 6.6, 6.7, 6.8, 6.9, 6.10, and 6.11 to give rise
to the field adjoint equation, the adjoint boundary conditions, and the sensitivity

derivatives. This section focuses on the FAFE terms, which are

/TR/Q (an Gt D <(8xk oo) 00, T By 017,)) 9, 1

The multiplier of QU;/0b, is set to zero and this gives rise to the compressible adjoint

equations
ov; oV, . 0Fq
It A S s = 12
ot~ gy, — 1T T g =Y (6.12)
where
vis _ 87’,;‘} oy n 3(]? orT B 8\IJET oy
: Oz, OU; | Oz OU; Oxp " OU;
A 2
T = M| P + hag, — §5klhmm
_ oV¥i44 n 3\11152}
. oxy, oxy, :
ov
A E
=k
4y aIk
and
9 —v; 1 0 0 0 o .
ﬁ:_ —U20100, %:C——ﬁ+%vﬁ V1 Uy Vs 1]
Pl v 001 0 oP

In the case of unsteady inviscid flows, T =0. Eq. 6.12 represents a linear 5 x 5
system of PDEs. If the objective function is defined only by a surface integral,
source term 0Fq/0U; vanishes. Moreover, if the time integration of F' differs from
the simulation’s time window (i.e., T # Tg), the source term remains active only
during the Tr period. The special meaning of the temporal and convective terms’
minus sign is discussed in section 6.4. A similar to the one described in section 3.7
procedure is used for the discretized system solution process. The main difference

is that the system’s L.h.s. remains constant and, thus, is computed at the beginning

6.1. Mathematical Development of the Compressible Adjoint Method 205

of each time step.

6.1.8 The Inlet-Outlet Adjoint Boundary Conditions

The ABC terms are collected from expressions appeared in subsections 6.1.3, 6.1.4,
6.1.5, 6.1.6, and all together give

/ / OFs, Ovm st + / / OFs Op . asat
Tr J S1o0 avm 8b Tr JS10 8p 8b

OFs, OT / / o,
= npdSdt + U, Ay 2 ndSdt
/TR /Slo T b, e S b,

They can also be written as

aF Sk U, Asin oU; I ndSdt
) b,
Tr JSro

It has already been discussed in section 3.1 that a different number of flow vari-

ables are imposed as Dirichlet conditions at the inlet and outlet, depending also
on the local Mach number. In each case, a new vector @ € R’ is introduced
containing all the imposed flow quantities accompanied by the variables which are
extrapolated from the interior of the domain. For example, at the inlet it could be
Q= (pt, Tt, Qpitchs Qyaw, |U]) where, for stationary inlet, 0Q);/0b, = 0Q;/éb, =0, i
1,---,4. Therefore, the above terms can be written also as

] (2 een) S
Tr JS10 Vi Y th abq

and is eliminated by introducing the adjoint boundary conditions,

oU; 0Fs
MGG, T o™ (019
where for all h the condition 0Q),/0b, # 0 is true. In the previous example, h =5
and @, =p. The term 0Fs, /0Q), remains active only during the 7% time window

and is zero in case the objective function is not defined at the inlet or outlet. Finally,
details about the computation of 9U;/0Q), are given in Appendix J.

At a subsonic outlet, pressure is usually imposed as a Dirichlet condition, and, thus,

Cj is chosen to be equal to V. Index h varies from 1 to 4. Hence, a system of 4

206 K. D. Samouchos

equations should be solved there. The Cj choice should guarantee that the matrix
A;jxnk0U; /0Q)y, is invertible. However, this is not always possible. The interested
reader can find such a case in Appendix K.

6.1.9 The Wall Adjoint Boundary Conditions

The ABC surface integrals along the wall appeared in subsections 6.1.3, 6.1.4, 6.1.5,

and 6.1.6 are rewritten below,

ou; ' OFs, \ Op
W, —LdN) v U 0! -z
|:/(‘2 Zaqu :|ts + /TR /w < k+1 + EV; + a) ab ledet
ou, 4, OU; oT OFs OT
W, gz .0 A Sk
+/TR/ (kDb, ’k(% TG, T o B)”kds‘”
(‘)FS) / / (OFs,)aﬁ
gk — gty — —n dSdt
LR/ (g TR k k a t abq

and rearranged as

6ng) 8p
——ndSdt
[] // (g’“ o, "
/ / (;;‘ 6F5k oT
Tr
r 8 sk 87"
/TR /w (gkt 8 tT > abq det

nidSdt

Y (e

Elimination of the above surface terms leads to

o _OFy
GkMg = ap k
ng = 8Fskn
Ik = o |k
. OFs
gktk — aTﬂ].c n

_OF
A Sk
It =" "

In order to get a single boundary condition for ging, the objective function should

6.1. Mathematical Development of the Compressible Adjoint Method 207

satisfy the condition

OFs, OFs\
(o 87”)nk_ (6.14)

This condition is true for most objective functions used in real-world optimization
problems. Such an objective is the lift or the drag, which are common optimization
targets in industrial applications. Consequently, the viscous adjoint wall boundary

conditions are

OF
(Vpp1 +0{Wp)ng = 3 ik ng
T
OF
(Ups +0JTp) by = arf’"k i (6.15)
k:a‘IIEn B —8Fskn
dr, © 9T "
The corresponding boundary condition for the inviscid adjoint equations is
OF:
Upoing = -9 — ask n (6.16)
P

and the condition 6.14 is not necessary anymore.

Subsequently, the elimination of the volume integral is investigated, where two ap-
proaches are discussed. Firstly, the objective function is integrated for the whole
simulation’s time (7F =Tg). Flow initialization at ¢ =ts remains the same at each

optimization cycle, and thus an‘ =0. Therefore, the V;(t=t.) = 0 condition is

» Dby |,
defined.

s

On the other hand, in periodic phenomena, T is equal to the period of the flow
(Tp) that is different from Tx, because the geometry is usually optimized without
considering the flow development during the transition phase. Then, the adjoint
equations are repetitively solved along the flow simulation’s last period until peri-
odicity is established. In other words, ¥;(t.) = V;(t. — T,) is imposed, eliminating

the volume term.

6.1.10 Sensitivity Derivatives Expression

The appropriate definition of the field adjoint equations and boundary conditions
eliminates all the FAE and ABC integrals. The remaining SD terms provide the
formula for the augmented function’s gradient computation. Since dF'/db,=dL/5b,,

208 K. D. Samouchos

the final expression of the sensitivity derivatives reads

an 53119
D Fous k m
/ / Qvndet—i-/TR /Sw 08, Db, ndSdt
/ / (aF S FSkH> vingdSdt + / / Fo, 2™ g5t
- 3.b,
TR w
'/

(\I/Hlnk + \IIE?Jg > ’Ufldet
sNE

zm;(ssn
(p‘Ika 5.0, + (WU +p\I’E))det - /TR/ Wi fir 3. bk

mu . 58 ’UZS
/ Se-vingdSdt + / / O / / vindSdt
Tr J Sw 6 b Tr

L
—/TR/w

Taking the viscous adjoint boundary conditions into account,eq. 6.15, the following
F, 0
S ng + \I/k+1nk + \I/Evg) P

/TR / < an - gknk%
= Fs, Fs 0p Fs 0" Fs 01" |
= /TR /w (an 8p 8” aTTL an aTtr an 'Undet
Fs OT
= b 3dSdt =0
/TR /Sw 0T On

are canceled out. The last equality is true due to the imposed adiabatic wall condi-
tion (07 /On=0).

ndedt //Tkla vonEdSdt — //gm
Tr J Sw Tr
Snl a tr T S
™ det— / / git] ——vidSdt — / / gt b g5t
TR Js, 0N Tr J S0 0sbq

terms

or™ B t@TtT
gk L

) v dSdt

6.1. Mathematical Development of the Compressible Adjoint Method 209

By rearranging the remaining terms, one gets

af; o
L;/q(1”3 qya: qy%al+fb—f%”%H)vdSﬁ

/ / (Fs, + Vi1 — Vi fir — gr™") nk / / Tt dedt
Tr Tr
OFs,)5
A e
Z;/;(Th T BT LS By

J.09
Tr J Sw sbq

where g, = Uy + v/ Vg and fk = ”“’ — z’“. The required normal and tangent
derivatives are

5Snk

— _t’f‘vT S
Sub, YT
0st],

=n,V,u,,
5by "

where V., is the surface covariant derivative [119]. The corresponding sensitivity
derivatives expression for inviscid flows is

a 'im)
— ok Fo — FgniH) v2dSdt
/TR/(Zna zannk+9 5.1k)%S
T ’ Sk p k+1 — 5 b

505
Tr J Sw sbq

The continuous adjoint method applied in inviscid flows cannot handle objective

functions integrated along the wall depending on flow variables different from pres-
sure. Thus, the 0Fs, /0v/n;, term has been neglected from the expression above.

6.1.11 The Continuous Adjoint Method for Steady Flows

In regard to steady flows, the main differences between the mathematical devel-
opment presented in subsections 6.1.2 to 6.1.10 for unsteady flows are the lack of
the temporal term in the flow equations and the condition @ = 0 along the solid
boundaries, which results in dv} /db,=0. Based on eqs. 6.12, 6.13, and 6.15 the field

210 K. D. Samouchos

adjoint equations are
ov; . O0Fqy
—A . J Tvis =0
om0 T a,

accompanied by the proper adjoint boundary conditions at the inlet and outlet,

oU; OFg
\Ilez L = k
MoQn o0 "
and the solid wall,
OF
Vpp1ng = 5 ik Nk
T
. O0Fg
W1ty = 87; Nk
AT OFs,
—n = — n
dzy, or "

Considering eq. 6.16, the adjoint wall condition for inviscid cases is

OFs,
n
dp F

Viping = —

According to eq. 6.17, the corresponding sensitivity derivatives expression for lami-
nar flows is

5F A
_ / (@%nk ot 2 g FsknkH) vidS
Sw

5_bq n on on
n 55nk
+ (Fs, + Vi1 — Vi fir — Vpn ") 5 ds
w sYq
- Ogth
— | Ut ZRdS
/ W S

and for inviscid flows is

oF o finv
— = ik — Fo+ FognyH | v3dS
5, = (0 m Fos Bt)

5snk

d
5.5,

+/ (Fs, + pWhs1 — Ui f11")
Sw

6.2. Mathematical Development of the Incompressible Adjoint Method 211

6.2 Mathematical Development of the Incompress-
ible Adjoint Method

This section formulates the continuous adjoint method for steady or unsteady vis-
cous incompressible flows. It presents many similarities with the corresponding
mathematical development for the compressible flows presented in section 6.1, and
thus, it is kept shorter by just laying emphasis to its the key points. The used
flow quantities notation follows the definitions made in section 3.4. The continuous
adjoint implementation is based on the differential operators defined in subsection

6.1.1, and the assumptions of section 6.1 are made for indices applying summation.

6.2.1 Definition and Differentiation of the Objective and
Augmented Functions

Similarly to subsection 6.1.2, the objective function is defined by a volume or surface
integral. Both integrants’ dependencies are

FSk = FSk (177pa Tna Ttr)

The objective function’s total derivative w.r.t. b, is

aFQ J s
v 3 4Qdt + /T) / ! FovidS

E M dSdt L 0P asat
+/TF/SFavm o, "+5 +/TF/SF A
+/ / ank or" / / 8ng 87'

e Js, 0T b, " e Js, 0T Ob,
/ / (8F &l FSkH> vingdSdt + / / F5k5 R qSdt (6.18)
Tg w T w0 6 b

212 K. D. Samouchos

The objective function is defined as in subsection 6.1.3 and its differentiation leads

to
OF, 0V / / / / OFs, Ovy,
S0t + FovidSdt + e 2o dSdt
/TF/ ov; o,), Jre Js, v 0B,

FAE SD ABC/SD
+/ /8&d§m%w+/u/a&ﬂT
\TF Sk 3p 8bq | \TF Sp 87’” 8bq
ABC ABC
(9F5k 87” 8FS
dSdt b — Fg H | vin,dSdt
+/TF . o7 8[) nidS J—l—\/ / Sy () S l
ABC SD
57% AL<V)
F. dSdt J dQdt
/Tp/w S 5by +/TR/ (%(ot) '
V [temp
/ / (a ik)det—/ /xpii (a ik)det (6.19)
Tr 6wk JTr Q 8bq 8xk)
finv Jois

where the governing equation’s residual is given by eq. 3.4.

6.2.2 Differentiation of the Temporal Term

The I integral of eq. 6.19 is processed as

(U, M;;) OV;
Itemp 0 J J 0
/TR/ o (Mg,)d = /TR/Q ot o,

By defining the vector
U= MU

the integral term becomes

re= / 0 /TR/w aasa- [[S
([dgy [[/TR [i o

ABC BC FAE

6.2. Mathematical Development of the Incompressible Adjoint Method

213

6.2.3 Differentiation of the Convection Term

The I integral of eq. 6.19 is developed as

’L?'LU

I = dQdt
/TR/ axk (q)
/ / 9 “ﬂ ngdSdt + / / \IfiAijk%ndedt
Tr J Sw , JTrYSI0 abq ,

I?’:“ AEC
A; Jdet
/ / 83:k 75 o,
FAE
where ,
Ofie" _ , 9V
b, "o,

Term I3 becomes
5snkz

mv Zlgvnk inv
Oalik ™M) gy / / :
/ZLR/ Tr F 5sbq

/ / ”‘” vangdSdt
TR w

By using the wall flux expression,

g g
Un Un
w W oy W W - W
Finvaw,_w Uy U?L + p _ W, g pny
e My = = MV*vJ +
w g + prLw pwn'éu
V3 vg +p¥ny pny

the integral term becomes

s(M;
i = // ”Vﬂ” 9045) g5t // L2 g gy
dsby
TR w TR w

/ / xpkﬂ p”k dSdt
Tr
. 55 ZTL’U
_ / / g, finw Ok / / 9 Zk vinydSdt
TR w 63b TR w

(6.21)

214 K. D. Samouchos

Finally,

1nv T, ap
IS /TR/w (\Ij ”(% +\I’k+1nkab)det

ABC

/ / (\I/ \I/kJrlnk 8}9) v, sdSdt
TR a

/ / (\kap (qfv+\11))det
T b)
SD
Y W, ks dSdt 6.22
/TR/ kéb CJn s, Tom T (6.22)
SD

6.2.4 Differentiation of the Diffusion Term

A development that is similar to that of subsection 6.1.6 is followed for the viscous
integral term,

Tr 3$k
:/ / - ' det—/ / v, ;;;S‘S”k
Tr Tr (5 b

I'uzs

a k oW, o fuis
7 S _ 7 Q '2
/TR/ vEnpdSdt /TR/M st (6.23)

IUI@

where the surface integral along S7o has been neglected. The viscous volume term
reads

[ms / / a‘Ijl+1 ale
“ Tg Oxy,
8\1154_1 0 81}1 / / 8\Ifl+1 0 ﬁvk
= dSdt — dSdt
/TR/Q Oy 3$k() * Th Oxy Oz \ b,

6.2. Mathematical Development of the Incompressible Adjoint Method 215

The Green-Gauss theorem is used at each of the above integrals leading to

; (9\Ifl+1 81}[/ / 8\I!l+1 c%k
15° = —ndSdt nydSdt
. /I‘“R /S axk ab " N Tr JS 0xk 8()

6 \Ijl-&-l 81)5 / / 8 \Ijl—l—l avk
— —dQdt — —dS)dt
/TR /Q Oz}, by Tr JQ axkaxl db,

By rearranging terms, it becomes

oV 8‘I’kﬂ oy
Iy —ndSdt
2 /TR / (oy | Om) b, "
2
/ / (3 ‘1’z+1 3‘1’k+1) %det
Tr al’k 8xk8xl 81)
The adjoint stress tensor in incompressible flows is defined as

ov ov
A _ y (R l+1)

Ti, =
M 81:1 8$Ck

By neglecting the surface integrals along the inlet and outlet and taking the wall

conditions into account, this becomes

40507 oy, ot Oy,
TYs — A= L, dSdt — / / T ——vSn,dSdt — / / — kL2 AQdt
“ /TR / M 5 b " Tr M a F 8$k 81)

FAE

(6.24)

The viscous surface term is written as

17 = / / Ty 2 lenk)det
TR w

ar" 0sny
= L4 L —02dSdt \ "
/TR /Sw 1+1M 81) /TR/S 1+174 8n v,, —i—/TR/S 1+1 50,

ABC
8 i " tré t;’
\Ijl"rltl 8b det+ \I[H‘ltl 8 det+ \I[l+17— det
TR TR TR -,
ABC

(6.25)

216 K. D. Samouchos

6.2.5 The Incompressible Field Adjoint Equations

The FAFE terms are gathered from eqs. 6.19, 6.20, 6.21, 6.22, 6.23, 6.24, and 6.25,
and can be written as

/ / 8FQ _ 7]‘ 8\IJZA " 8V aTkl 81}1
Tr ot Oxy, %) 0b, Oy, (%
8FQ _j 8\111 aTkl 8VJ
— A — —E M 0
/TR / (al’k ijk aiL'k lj 8b d dt

The multiplier of 0V;/0b, is set to zero defining the incompressible field adjoint

equations,
\Ij . \Ij . Vs A F
—M@'L - jika ’ af + e

—0 (6.26)

where
uis,A A
k <O le? 7'2k> T3)

They represent a linear 4 x 4 system of PDEs in 3D. The source term 0Fg/0V; is
active only during the T period. The discretization of eq. 6.26 results in a linear
algebraic system which is solved according to the method described in section 3.7.

6.2.6 The Inlet-Outlet Adjoint Boundary Conditions

The ABC terms are aggregated from expressions appeared in subsections 6.2.1,
6.2.2, 6.2.3, 6.2.4,

E)FS va / / 8F5 8p
B, dSdt + w2 dSdt
/TR /S,O Oum Ob, "k 1 Js,, Op 9, "

Tr Y S1o0 abq

where the stress tensor’s variation is considered negligible. The same terms are

F
/ / (a S lAl-jk) gv npdSdt
Tr J Sr0 b

rewritten as

6.2. Mathematical Development of the Incompressible Adjoint Method 217

Vector Q € R* defined in subsection 6.1.8 is also introduced in the incompressible

[(o) 22
TR SIO ’L Y th abq

This term is eliminated by introducing the incompressible adjoint boundary condi-

case. Therefore,

tions,
ovV; 0Fs
MG, 0Q ™ (027
where for every index h is true that 0Q),/0b, # 0. The term 0Fs, /O0Q)), remains

active only during the T% time window and only if the surface Sz comprises the inlet

and/or outlet boundaries. Finally, expression 0V;/0@Q), depends on the implemented
boundary condition, which differs for each application.

6.2.7 The Adjoint Wall Conditions

The ABC surface integrals along the wall appeared in subsections 6.2.1, 6.2.2, 6.2.3,
and 6.2.4 are written as

Q Tr 8b
8F5k or" r ang 87”
/TR /Sw (\I/k—i-l 87’") ndedt /TR/ (\I/]H.lt @ tT) 8b ——dSdt

Elimination of the above surface terms leads to

OF
Wpping = — 8Sk N
P
OF,
Uiping = 87’ik N
OF,
Wity = o7 frk”

The above equations lead to a single boundary expression only in case the objective

218 K. D. Samouchos

function satisfies condition 6.14. Consequently, the adjoint wall conditions are

OF,
Vi ing = a:f ng
) 8F5k (6.28)
Wity = or o 1

The volume integral is eliminated by applying the method discussed in subsection
6.1.9.

6.2.8 Sensitivity Derivatives Expression

The appropriate definition of the field adjoint equations and boundary conditions
presented in subsections 6.2.5, 6.2.6, 6.2.7 eliminates all the FAE and ABC' inte-
grals. The remaining SD terms provide the formula for the augmented function’s
gradient computation. Since 0F/§b,=0dL/db,, the final expression of the sensitivity
derivatives reads

OF 8F5 55"Ug
—= FouidSdt RZSTm o, dSdt
5b, / / 20n +/TR /Sw 908, 3.0,
F. Sy
/ / (a S FskH) vinpdSdt + / / Fo, 2% 48t
Te J Sw » 0sbg
dp
+/ / <‘1/ Ug +\Ifk+1nk)U dSdt
Th on
5 (5snk
v U,V + U dSdt — W, fin
/TR/sw (p '““be + (b)) /TR/M 50,
— / / W, Ofi vin,dSdt + / / W, k5”k / / xp,-a ik yingdSdt
TR Sw an w 5 b TR w
+/ / ,:}(;Ul npdSdt — / / T,ﬁavlv “nidSdt — / / \IllHnlaT vidSdt
TR Sw b TR 8 TR 6

5oy / / ort / / Ot
— U " dsdt — Uyt s dSdt — U7 dsdt
/TR /Sw o 656‘] Tr J Sw hr an " Tr J Sw i 5qu

+

6.2. Mathematical Development of the Incompressible Adjoint Method 219

Taking the viscous adjoint boundary conditions into consideration, the following

terms

op or" or"
U = — Wty ~dSdt
/TR/ < “ny + BT e k1t g)Un S

_ FSk Fsk ap Fsk o™ FSk 87_ . -
= /TR /w (an ap on ot On ort™ on Undet =0

are canceled out.

By rearranging the remaining terms, one gets

Vi O fir oy .
/TR/ (v, 8 \Di%nk - T]ﬁnk% + Fo — FsknkH) vy dSdt

O » OgtT
+/ / (Fsp + Vi1 — Vi fie — Vi 7") S gsdt — / / Uy =EdSdt
Th T dsbg

d5bg
F v
/ / (6 S 4 A)5 det+/ / (M0, V; + T,)55 " 4Sdt
Tr J 5., 05bg Tr Js,, 05bq
(6.29)
where fk = ”w ﬁ;is. The formulas for the required normal and tangent derivatives

Computatlon are given is subsection 6.1.10.

6.2.9 The Continuous Adjoint Method for Steady Flows

Based on the already presented demonstration for the unsteady case, the incom-

pressible field adjoint equations are

O ; amsA
g O OFa

—Ajin e O oV

The accompanied adjoint boundary conditions coincide with the unsteady ones and

are mentioned in subsections 6.2.6 and 6.2.7. The corresponding sensitivity deriva-

220 K. D. Samouchos

tives are expressed as

oF Ofik vy s
5_bq = — /Sw (Wz%nk + T]ﬁnk% — Fq + ngnkH) UndS

5snk

2 s
3sbq

+/ (Fs, +pVis1 — Vifir — U m")

r 05t}
—/w \Ifk+17't 58[)];(15

6.3 Discretization of the Steady Adjoint Equa-

tions

The adjoint equations present similarities with the corresponding primal flow PDEs,
and, consequently, similar techniques can be used for their numerical solution. How-
ever, studies on the proper discretization of the continuous adjoint PDEs are limited
in the literature. In this thesis, three different discretization methods are developed
based on the Roe [262], HLLC [307], and FVS [291] schemes. The section starts
with the definition of the adjoint flux and the study of specific properties of the
adjoint equations necessary for the discretization schemes formulation. Then, it fo-
cuses only on Roe’s approach since it is the mainly used scheme in this thesis. The
mathematical development of the rest schemes can be found in Appendix L. The
adjoint PDEs numerical solution presents similarities with the theory developed for
the flow equations in subsections 3.2.1 and 3.2.2. A significant part of the following
analysis is described in detail in Appendix E for conservative hyperbolic systems.
Thus, attention is mainly paid to parts of significant importance.

The following study focuses on the 1D steady conservative system,

U,

before its generalization to 3D in subsection 6.3.3. According to Appendix E, the
system of egs. 6.30 can be expressed in the form of N wave equations representing the
motion of the characteristic waves inside the domain. Their velocity is equal to the
matrix coefficient (A) eigenvalues. The wave propagation direction agrees with the
number of conditions imposed along each boundary. For example, in compressible

subsonic flows where N =3, two waves move from the inlet to the interior, and one

6.3. Discretization of the Steady Adjoint Equations 221

in the opposite direction. An equal number of Dirichlet conditions are imposed at

the inlet and outlet, respectively.

The continuous adjoint method, presented in sections 6.1 and 6.2 implemented in
the 1D problem, results in the following adjoint equations,

o,

The matrix coefficient of the adjoint problem is the transpose of the primal one,
meaning that the adjoint characteristic waves’ velocity is equal to the primal one.
However, the number of the boundary conditions accompanying the adjoint problem
at each border of the 1D domain is N — Npc, where Npc is the number of the
corresponding primal boundary conditions. In the example of the 1D compressible
subsonic adjoint problem, one Dirichlet condition should be imposed at the inlet
and two at the outlet. Therefore, the waves associated with the adjoint field should
have the opposite direction of the primal ones to comply with the corresponding
adjoint boundary conditions. Therefore, the adjoint equations are multiplied with
—1 to reverse the eigenvalues’ sign. Finally, an artificial time derivative is added to
the Lh.s. of egs. 6.31 to convert them to a system of hyperbolic PDEs,

0V, oV,
5 Ajia_x] =0 (6.32)

The corresponding initial values defining the adjoint Riemann problem are

Ul Ul 2<0
\Ifl(ilf,t:()) = ZR7 ZR t

vr Ut x>0
The flow initialization UL and U is considered constant in time, while the adjoint
field proceeds in time. According to Godunov’s method, the time-averaged flux at

=0 should be found.

At first, the adjoint flux is introduced. Contrary to the flow equations, the adjoint
convection is not conservative, and the definition of the adjoint flux is not straight-
forward. The suggested definition aims to overcome the convection term’s spatial
integration challenge and is expressed as

* ov;
L(x,t —_/ ATy — ALGE
fz (SC,) SLT J ax Xz Jr =7

222 K. D. Samouchos

or

SET
v
T

where

St = —maz{\F™}

SE = —min{AF"™}

and)\; are the eigenvalues of the Jacobian matrices A* and A®. Then, the time-

1 T

= ?/0 fE(x=0,t)dt
1 T

= f/o fli(a =

Generally, f20 % fR0 due to the loss of the conservative property. Firstly, f20 is

averaged flux is

or

computed by integrating eq. 6.32 in the [STT, 0] x [0, T] spatial-temporal domain.

[i [[2,200
SLT SLT

/ (Ui(z,T) — Wy(x,0)) do + /T (fF0,8) + ALOH) dt =0 <
SLT 0

0
/ U(z, T)dx + VESET + fOT + ALVULT = 0 &
S

Ly Jr =)

1 0
[0 = —ALgl —ylgh . — / U(x, T)dx (6.33)
S

Jed ! T Jsrp

Similarly, by integrating eq. 6.32 in the [0, S®T] x [0,T] domain, one gets

1 [StT
fI0 = —ARwE —wish 4 7 /0 U(z, T)dw (6.34)
Computing the unknown integrals of eqgs. 6.33 and 6.34 is challenging, but can be
facilitated by making a number of simplifications. Based on these assumptions,
different discretization schemes appear. In the following subsections and Appendix
L, three variants are presented inspired by the Roe, the HLLC, and the FVS schemes.

6.3. Discretization of the Steady Adjoint Equations 223

6.3.1 The Adjoint Roe Scheme

In this subsection, the unknown integrals of eqs. 6.33 and 6.34 are computed by
introducing an approximation to the adjoint Riemann problem inspired by the Roe
approach. It is based on the assumption that Ehe flow field is constant throughout
the 1D domain and equal to the Roe averages ((NJ) of UL and UR. The corresponding
equation is

oW, OV

' A—2=0 i=1,---,N 6.35
8t J al’ G)) ()
. Ul <0

\I]i ,tZO - v

(z) {\IJR 2> 0

—

where A = A(U). In the following expressions, eigenvalues S and S correspond
to the newly defined matrix A. Its integration in the [S*,0] x [0, T] control volume

gives
T (0 o, T 0 9.
0 SLT 8t 0 SLT 8:1:
0
/ Ui(z, T)dx = —A;VET + A 09T — ULSET (6.36)
SLT
where

go - 2 /T\if(o t)dt
i T 0 1\Yy

Substituting eq. 6.36 into eq. 6.33 one gets

Similarly,
fRO= —ARWE - 4 (\113 - \Iff) (6.38)

The final step is the U9 computation, which is derived from the solution of the

approximate adjoint Riemann problem. It arises by firstly diagonalizing matrix A,
A= PAP™!

where A = diag(;\l, e ,:\N) with \; being the eigenvalues of A in ascending order,

224 K. D. Samouchos

and columns of P are the right eigenvectors of A. Apparently, S¥ = —\y and
SE—_)\,. Thereafter, the adjoint Riemann invariants are introduced as

W= P13
Then, eq. 6.35 becomes
oV, - s OV - OV, L = 0V
t— P A Pin—=t =06 P — ApiPim—2 =0 &
ot m " Oz ot I O
ow;, - oW,
R =0
ot ox

The last equation describes the already mentioned motion of N characteristic waves
with a velocity of —X;. In other words, W; remains constant along the characteristic
curve dx/dt = —S\i. Since 5\, is constant, the three curves are the straight lines
r= —S\it + x9, which leads to

~

)

Thus, W and ¥ are 1D functions of x/t. Their value along the t-axis is constant

and equal to W9 and W0, respectively. They are related through the definition of
w,

N i N
W= "P WS W= PIwk+ > PIWE (6.39)
m=1 m=1 m=rn-+1

where
Wk — pL,T&;L
R — pRTGR

Index m is the maximum integer for which A < 0. Eq. 6.39 is expressed in two

alternative ways,

N
W=wl+ > B lWE-W) (6.40)

m

m=rm+1

m

U =wf = > P (W —w)) (6.41)
m=1

6.3. Discretization of the Steady Adjoint Equations 225

By substituting these expressions into eqs 6.37 and 6.38, one concludes that

N
fIO=—ALwh — N NP (WE - WL
m=m-+1
fRO = —ARGE 4 Z M - Wk

Contrary to the adjoint eq. 6.32, the approximate adjoint Riemann problem of
eq. 6.35 is governed by a conservative PDE. Therefore, f/0= f# = . By adding
the expressions of f20 and fR°, the final adjoint Roe scheme becomes

N
1
Lyl _ ARyR) R_ gL
= (AUy — AZVT) ~3 E - m (U5 — U7) (6.42)

m=1

where

m T N ~
Aml, m>m

has been used.

6.3.2 The Corrected Adjoint Roe Scheme

The discretization scheme developed in subsection 6.3.1 does not consider the non-
conservative nature of the adjoint equations. This simplification is eliminated by
adding a correction term to the flux expression of eq. 6.42 and creating a more
accurate discretization scheme as explained in subsection 7.3.1. So, the conservative
form of the convection term is added and subtracted from eq. 6.32,

oY, ov; v, 0(A;Y)) 0(A;; ;) ov;]
ot A or Ve { ot Ox N Ox Ajs or | 0
i T

The first bracket (7},) corresponds to a conservative hyperbolic equation, and the

method developed in subsection 6.3.1 is applied. Its discretized expression at node

226 K. D. Samouchos

i and time instant n in a mesh of equally distributed nodes of spacing Az is

+5* +55 90 T r+5F T
Ih—/ / Thdxdt = / / a—d dt—/ / oA \Il)dxdt
0 _% a.f

= () A+ ([T —) A

zlz

where At is the chosen time step, and :”] stands for the flux between nodes 7, j
which correspond to the left (L) and right (R) states of eq. 6.42. Term 7, stands for
the difference between the conservative and non-conservative convection term, repre-

senting the necessary correction for the already developed scheme. Its discretization

+7
ddt—// AT—da:dt

is based on central finite differences,

Ic:// Tdndt = //

(AT\II) B T@
o AzAt — A; e

,Mm

]' n n n n]' n n n
= i(AzTJrlqliJrl - Aszl\I]ifl)At - §A1T (‘I]iJrl - ‘I’¢71)At

AxAt

%,Mn

After rearranging terms, equation I +1.=0 becomes
(U7 — @)A

. 1 .
+ {(i1 T 5 (A;‘Ffl AT”)\D?H) - (zn—lz + 5(/4?—711 - A?")W?_J} At =0

Both parentheses suggest a new non-conservative expression for the flux between
the L and R nodes,

F = 04 (AL~ AL)U

/ 1
RO 0 (L AR L
fi _fi +§(i ji)\Ijj

concluding with the final expressions,

N
: I 515 (5 oR =
FI = S ARV 100 = 237 B R P (B — 1) (6.43)
m=1
R _ L ar it iRy - LS ot B 6.44
fi —_5 ji(j_'_ j)_§Z mz|m| jm<j_ j) ()

6.4. The Adjoint Method Implemented in Unsteady Flows 227

6.3.3 The 3D Adjoint Solver

Although all the discretization schemes described in this thesis have the same be-
havior in terms of convergence, they result in slightly different adjoint fields leading
to deviations in the computation of the sensitivity derivatives. Thus, choosing the
appropriate discretization scheme is of high importance because it substantially af-
fects the optimization process. Usually, the adjoint version of the flow discretization
scheme is the most suitable choice. Therefore, in this thesis, the non-conservative
adjoint Roe scheme, eq. 6.43, is preferred, which in 3D applications is expressed as

L 1 11~
Ajgnv,m PQ L L R PQ PQ R L
farmmnf® = =S AL (WE e af? - 2 ’Aﬂknk ’ (UF — wh)

or

ﬁ.’:’m”’mngQ = —%Aﬁk <\Ilf + \Il?) an — % ‘zzljz‘knkPQ‘ (\I/f — \Iff)

Its second-order discretization is achieved by applying the MUSCL scheme, as ex-
plained in subsection 3.2.3 for the flow equations, where the same limiters, presented
in subsection 3.2.4, can be used. The required derivatives of the adjoint variables are
given by the Least Square Method described in subsection 3.2.5. Regarding the vis-
cous adjoint terms, they are treated as in subsection 3.2.7. Finally, the pseudo-time
step is computed from eq. 3.18. Moreover, the incompressible adjoint equations’
discretization is based on methods discussed in section 3.5. Hence, relatively little
effort is needed to develop the adjoint solver since it shows many similarities with
the corresponding flow solver. Its straightforward implementation is one of the con-
tinuous adjoint method’s most significant advantages, making it a suitable choice
for complex flow software handling industrial applications.

6.4 The Adjoint Method Implemented in Unsteady

Flows

The formulation of the continuous adjoint method for unsteady compressible flows
results in the adjoint PDEs, eq. 6.12, where the negative sign in front of the tem-
poral, the convection, and diffusion terms is of significant importance. Section 6.3
describes the physical meaning of the convection’s negative sign and explains why

its negligence drives the adjoint solver to divergence. Therefore, the multiplier of

228 K. D. Samouchos

the other two terms should also remain negative. To emphasize the point, the vis-
cous term T which represents the elliptic part of the equation modeling diffusive
phenomena, should always have a negative sign whenever placed on the L.h.s. of any
PDE. First-order forward finite differences discretize the temporal term as

oV, gt g

ot At

where At is the chosen time step. The negative multiplier —1/At of the unknown
quantity W7 causes serious stability issues preventing the adjoint solver’s conver-
gence. Thus, the discretized adjoint equation should be solved w.r.t. W7, which

implies the following discretization scheme for stationary geometries,

pr gt \p"q“ o n,g+1

which imposes that the adjoint equations must be solved backwards in time. The
reader is referred to section 3.3 for the used notation definition. Subsection 6.1.9
proves that the initial conditions for non-periodic adjoint problems are defined at
the end of the simulation time, which comes to an agreement with the backward in-
time integration of the PDEs. However, the same argument also states for periodic
flows, even though no initial boundary conditions are imposed.

Hence, the backward-in-time marching adjoint algorithm should start once the so-
lution of the flow PDEs, via the forward-in-time marching algorithm, has been
integrated. Computing the instantaneous adjoint field at any time step requires the
corresponding flow field at the same time step to be available. In view of the above,
the full storage of the flow field’s entire time series seems mandatory, although it
is not always feasible due to the huge storage requirements. Therefore, alterna-
tive methods have been proposed in the literature based on the unsteady flow field
recomputation, up to the instant the adjoint equations are solved. The optimal
check-pointing techniques, [116], [329], are some of the most widely used methods,
according to which the flow field is partially recomputed from selectively stored
instantaneous fields. Another alternative of lower computational cost is based on
approximations to the already computed unsteady fields built during the forward-in-
time marching flow simulation. Some of them efficiently compress and store the flow
time series neglecting the less important details of the flow field. Two approaches of
this kind were developed and appropriately adjusted to cooperate with the cut-cell
and the ghost-cell methods. The first one is based on the Singular Value Decom-

6.4. The Adjoint Method Implemented in Unsteady Flows 229

position (SVD) [112], [113], [323] and the second one uses the Proper Generalized
Decomposition (PGD) [60], [9], [L70]. More details can be found in Appendices M,
N and section 9.5.

Chapter 7

The Discrete Adjoint Method

This chapter discusses the discrete adjoint to the steady and unsteady solvers based
on the cut-cell method. Discrete adjoint codes can be implemented by either differ-
entiating the discretized primal residuals “by hand” or using Algorithmic Differenti-
ation. Even though the latter automates the generation of the discrete adjoint code,
the resulting software tends to have significant memory requirements compared to
hand-differentiated codes. Therefore, this thesis deals with the hand differentiation
of the viscous flow equations of both compressible and incompressible fluids. How-
ever, their complex discretized form makes the differentiation a challenging process
that hinders the development of the discrete adjoint software. Therefore, various
assumptions have been proposed in the literature, simplifying the process at the cost
of reducing the accuracy of the computed sensitivity derivatives.

Contrary to the usual practice, no assumptions are made in the following analysis,
leading to the exact discrete adjoint expressions. The resulting terms are compared
with the corresponding discretization schemes proposed for the continuous adjoint
equations. Special treatment is given to the differentiation of the temporal term,
taking the cells’ appearance and disappearance into account in applications that
involve moving solid bodies. Hereafter, the expressions for the sensitivity derivatives
computation are derived. Finally, emphasis is laid on smoothing techniques reducing
the high-frequency signals that appear on the sensitivity map, making it capable of
optimizing geometrically complex cases.

In the following sections, great effort is made for the clear mathematical development
defining new quantities, which allow for a more compact presentation of the resulting

230

7.1. The Discrete Field Adjoint Equation and Sensitivity Derivatives 231

expressions. The used notation is based on chapter 6, where the objective function
(F) and the design variables (b,) are defined as well. Moreover, an assumption is
made about the indices variation for the rest of the chapter. Indices k, A, and u are
used for the Cartesian directions, whereas i, 7, and [are for the flow variables or
equations. Finally, m and n are used for cells, time steps, and geometrical quantities.
Contrary to the other chapters, the Einstein notation does not apply here. Whenever

summation is implied, the symbol » will be used instead, neglecting its upper and
3
lower limits for the sake of brevity. For example, Y is the shortcut for > in 3D or
k k=1

2
>~ in 2D cases.
k=1

7.1 The Discrete Field Adjoint Equation and Sen-

sitivity Derivatives

Consider a computational domain covered by a Cartesian mesh of N cells. The
flow PDEs R =0 are discretized at each cell C' € [1, N], forming a set of algebraic
equations, RC=0. According to the discretization method presented in chapter 3,
residuals are functions of the unknown flow variables U™ stored at the centroid of
cells enumerated by index n € [1, N]. Moreover, the residual expressions contain
geometrical quantities listed in ém, where m is the counter of the list. Its members
are the coordinates of the nodes of the triangulated solid surfaces, the normal vector,
area, centroid, and velocity of the mesh faces as well as the volume and centroid of
the cells.

The boundary displacement due to a change in b implies a mesh deformation af-
fecting the aforementioned geometrical quantities. However, the variation in mesh
quantities also modifies the flow solution. Thus, RC can be written as a function of
b in the form,

RC = R (G (), UG ®) = £ (G (6). U"()

Likewise, the objective function, can be expressed in the same way,

-

F=F (ém(),z?n(E))

Similarly to the continuous adjoint, computing the gradient of F' is reduced to the

232 K. D. Samouchos

cost of one equivalent flow simulation by introducing the Lagrangian function,

L:F+Z\I70-EC

where UC are the adjoint variables corresponding to cell C. The Lagrangian and
the objective function are equal, so do their derivatives. An infinitesimal change in b
causes a boundary displacement, which is always small enough to prevent the cells’ or
faces” appearance or disappearance. Therefore, functions C_jm(g) are continuous and
differentiable in the neighborhood of point b. The Lagrangian function’s derivative

5F - OR
_ A
5b, © ; 5b,

where ¢ is used for the partial derivative w.r.t. b,. The already presented indirect

is

dependency of F' and R on the design variables yields
0L _ ~ OF 6G ORC 6G™
su"

- o :
ST w)

C %

The high computational cost of term ¢ ur /6b, is avoided by eliminating its multiplier
giving rise to N discrete adjoint equations,

g OB LOF s
ZZ s am_o, n=1,---,N (7.1)

i

which form a linear N x N system. After finding the unknown adjoint variables by
solving the aforementioned system, the sensitivity derivatives are computed as

§F OF §Gm ORC §Gm
by ZaGm' ZZ (aém 0bq) e

A great advantage of using a Cartesian mesh is that derivatives § Gm /6b, are non-zero

only in cut-cells, drastically reducing the cost of computing the objective function’s

gradient. The next sections focus on the computation of 35" WE(ORC /0U™) and
c i

> Y UE(ORY JoGm).
C i

7.2. The Discrete Adjoint Flux 233

Before moving to this analysis, a short investigation is made about the physical
meaning of the adjoint variables. Hence, a hypothetical scenario is adopted, ac-

cording to which term s is added on the r.h.s. of residual R, where Cy is an

7 Y
arbitrarily chosen cell. Depending on the value of 7, this term acts as a source of
mass, force, or source of energy. Additionally, consider an optimization problem,
according to which the design variables affect only sico. Therefore, an equivalent

relation to eq. 7.2 can be derived, where s° is used instead of ém,

i

Co pC 5.Co
5_F: 812 Js; —|—Z\I/C~ 8RC Js;
5bq 85i0 5bq c 851‘0 5bq

However, F' and ﬁc, where C' # (), are not functions of sico, simplifying the above

expression to

OF _ oo (OR8s0 _ (o 0RY 057 o, 05

ob, 050 db, " 0s% ob, Y 0b,

If SZCO is the only design variable of this hypothetical optimization problem, the
objective’s gradient can be written as

oF
550

)

_ Co
= —\IJZ.

which implies that each adjoint variable of a cell Cj indicates the infinitesimal varia-
tion of the objective function caused by an corresponding infinitesimally small source

term placed on Cy. An example of this conclusion is given in section 8.1.

7.2 The Discrete Adjoint Flux

The programming of the discrete adjoint method requests the reformation of the field
adjoint equations to seem like the discretized flow equations. Hence, the adjoint flux
should be defined, which is achieved by the following mathematical development
based on a steady flow consideration. Firstly, some new indices are introduced.
Index C’ refers to all neighboring cells of cell C. Moreover, Y stands for the

summation over all neighbors of C'. Index F' indicates each mesh face, and F¢ is a

local enumerator usually used for summation over all faces of cell C', which is written

234 K. D. Samouchos

as y_. Additionally, if the face belongs to the solid wall boundary, enumerator F¥
Fe

is preferred for stationary faces and F¢ for moving faces. Each quantity computed

on the face can be written either with F' or Fo. For example, the normal to the face

F Fo

vector appears as 77° or 17°¢. Based on this notation and according to chapter 3,

the flow residual can be written as

A=Y frenfeaste
k

Fe

Then, eq. 7.1 suggests that the n* steady adjoint residual is

F
R =3"3"3"%"wf ?—ék:nchSFc + ;{; (7.3)

C Fo i k

Each inner face F' lays between two neighboring cells called P and (). The face is
identified differently by the local enumeration of each cell. Let F' be the Fp'™ face
of P and the Fch face of Q). Though Fp and Fy correspond to the same face, two
geometrical or flow quantities ¢'7 and ¢'@ are not always equal. The conservative
nature of the flow equations implies

FFp, Fp A oFp _ _ rFq FQ A oFg
[Pn P ASTY = —f, “n, “AS

According to eq. 7.3, the flux through each inner face contributes twice in the sum-
mation as part of cells P and (). These terms are

Fp Fo Fp
N N N U kSN

Then, the adjoint residual is reformed by substituting the double sum over C' and
Fe with a single sum over all mesh faces,

o ofF OF
RAC = ZF: Z Zk: (qff - xp?) [AST (7.4)

where U9 ={ is imposed at each boundary face. Moreover, the normal vector n}
is defined to point from P to (). The same convention is also adopted for any
other notation of the normal vector (e.g., 7€) for the rest of this chapter. The last
expression suggests that all fluxes containing UC contribute to the adjoint equation
of cell C. These faces can be separated into two categories. In the first one belong

7.2. The Discrete Adjoint Flux 235

faces that separate C' from its neighbors. The second one includes faces lying between
the first and second neighbors of C. The following example explains the reason why
the fluxes through these faces contribute to RAC,

Consider cell P, its neighbor @), and a neighbor of) called R. Cell R is not a
direct neighbor of P. The flux through the face between () and R depends on the
flow variables and their derivatives stored at () and R. The spatial derivative of
U is computed by the Least Squares Method, subsection 3.2.5, which uses the flow
variables of all direct neighbors of), including P. Therefore, the flux between the
first (Q) and the second (R) neighbors of P depend on U .

The sum over mesh faces of eq. 7.4 is split into these two categories,

BAC _ ZZZ(\I’P \I,Q> afzk N

FeC 1@

+ZZZ(\I}P Q,Q) 8ka nF AST + p—

FeC’ i

AF F F
=SS eafeastt + 3B o

Fe

where JE];A’ is the adjoint flux on face Fio and its components are defined as

AFc Zg{}kc (_\I]ZQ) (7.5)

If C = P, then f,;A’FP is part of the adjoint residual of P. Similarly, if C' = @,
then f_,;A’FQ is part of RAQ. The above definition implies that ﬁA’FP #* ﬁA’FQ which
expresses the non-conservative nature of the field adjoint equations. The primal flux
derivative is computed by considering that all flow variables and their derivatives
stored at all cells but C are constant. The rest dependencies are taken into account
by the following term.

The new vector ég' will be called the B-term and represents the contribution of
each neighbor C’ to C. Its components are defined as

F

W'ZZZWC

For i

(qff’ - \IJ?’) nle’ AgFer (7.6)

236 K. D. Samouchos

where P’ and ' are the two cells separated by face Fr. Its upper index shows the
cell at which the vector is stored, while the lower index signifies the cell’s adjoint
equation in which égl is part of. This vector plays a central role in software paral-
lelization. As mentioned before, the adjoint residual computation at C' needs also
information from neighbors other than its direct ones. However, the parallelization
of CFD software is usually designed to solve discretized equations that exchange only
the flow variables and their derivatives between neighbors. The proposed algorithm
shown below is designed to overpass these complexities.

Algorithm 13: Discrete Adjoint Residual Computation
1 RAC 0

2 foreach mesh face F' do

s | RAP « RAP 4 fAFPRFASE

4 | RAQ ¢« RAQ 4 fFepFAgH

5 end

6 foreach mesh cell C do

P | RACC fAC 4 on
8 foreach cell’s neighbor C' do

9 BS, 0

10 foreach cell’s face F do

11 BY, « BE, + zlj zk: %—%C, (‘Iff — ‘P?) ;¢ ASte
12 end

13 end
14 end

15 exchange BS, VO, C’ between processors

16 foreach mesh cell C' do
17 foreach cell’s neighbor C' do

— — —
18 RAC « RAC 4 Bg
19 end
20 end

It starts with a loop over all mesh faces and computes the adjoint fluxes of cells
P and @, imitating the flow solver’s algorithm. Afterwards, each mesh cell C is
responsible for computing the objective function’s source term and the Eg, contri-
butions for its direct neighbors C’. For each and every pair (C,C"), the vector’s

7.3. The Compressible Discrete Adjoint Equation 237

computation requires the loop over all faces Fo. Then, vectors ég, are exchanged
between the processors’ boundary cells and added to the adjoint equation’s residual
of the appropriate cell.

7.3 The Compressible Discrete Adjoint Equation

According to eq. 7.1, the discretized flow equations and the objective function should
be differentiated w.r.t. the vector of the flow variables, which, in the case of com-
pressible flows, are the conservative variables U™ defined in section 3.1. However,
the differentiation w.r.t. the primitive variables V™ is much easier and leads to the

same field adjoint equation. This statement is easily shown by rewriting eq. 7.1 as

F
ZZ goBS OF
T g o
ORC OV OF OV}

C] J J
;ZZ\P oV ol o OV U

Matrix oV / oU is always invertible, which allows for the equation’s simplification,

geORE | OF _
ZZ Covn ovn

%

Therefore, for the reasons mentioned above, the residual derivation w.r.t. VAT
preferred.

The computation of the adjoint flux and B-term is the target of the following sub-
sections. The class of matrices introduced below plays a central role in this process,

opY

7

oqX

1

Y

where X and ¢V are any flow quantities. Indices X and Y represent either cells
(C, C") or faces (Fe, FY, Fg, F') and indicate the position at which each quantity
is computed. If neither X nor Y is a dotted index (C’, F’), the symbol D is used

238 K. D. Samouchos

instead, and the Jacobian matrix is defined as

opY
aqu

Yy _
D) =

Therefore, matrix D is used for the adjoint flux computation while D contributes to
the B-term’s expression. During the diffusion differentiation, quantity p represents
a matrix instead of a vector. Then, the above definitions are transformed to

opY
Di Y _ ik
BT 9gX
and y
Y‘k . 8pz’k
ijk = 5 X
8qj

In case q is a geometrical quantity, a tilde is added on top of the matrix (e.g., D;¥).

7.3.1 Differentiation of the Convection Term

According to eq. 7.5, the adjoint inviscid flux is

fimAFe Z§ of""" (\IIP _ \I/Q)
J i aV]C] z

where ﬁzm”Fp , defined by eq. 3.5, is a function of the flow variables stored at P and
@ centroids. However, according to the MUSCL scheme, subsection 3.2.3, the flux is
also a function of the flow variables extrapolated from the P a,rjd Q to t}je centroid
Oj F, given by eq. 3.9. These variables will be referred to as VEP and Ve, Wllere
VEr #* Ve, By combining eqgs. 3.9 and 3.13, every extrapolated flow variable v Fe

can be written as

Ve = VO + 00 S avEAefe = VE +0f 303" 6l (V- V) Aafe
k koo

where dV,{ stands for the spatial derivative of V¢ w.r.t. zy, @g, is an alternative
notation for W defined in eq. 3.12, AZ¢ is a vector positioned at C' pointing to
F' centroids and (50 stands for the used limiter. Only the limiter by Barth and

Jespersen, is differentiated and used in the discrete adjoint formulation. This is

7.3. The Compressible Discrete Adjoint Equation 239

computed as

c_ Vie-ve
SR e

According to the notation used in subsection 3.2.4 for the limiter’s definition, VZC is
either V; orV;

tmazx tmin)

and VZF ¢ is equal to V;f . For more information, see eq. 3.10.

Moreover, four matrices, necessary for the following mathematical development, are
defined as

IDFC _ 6‘71'1:0]DLFC _ 8‘71'FC
(%] - 8Vjc o) 1j - 8Vjc
> FC ~ FC' (77)
D‘FO _ oV DL'FC _ 9
ich = | icr T v
¢ 1

where the sidebar denotes that the limiter is considered constant during the corre-

sponding differentiation.

The final expressions for the inviscid adjoint flux and the B-term are

afzrw ,JFp
(wF - w2)+ Z Z (—w?) DLF
mv ,JFEp

B, Z > zk: (- 2 DL, e AS™e

inv,Fp
finv,A,FC o af
ik “E: ave |-
i V

The first term of the adjoint flux expression is computed by considering V¢ constant
and is non-zero only if eq. 3.5 is used instead of eq. 3.4 for the flow equations

discretization. The matrices defined in eq. 7.7 are

8VC

[F 7
D ijc o (@‘/C
J

F F, F,
m)ﬂﬁ+mf
DL, = (5@, . Dé?) T + Dk

D¢ = [1 — ¢ Z (Z @m> Ax©

Di¢§ = ¢ Y Cpl Az
k

T = (Z d%i’Aazi’C) / (Z d%anziC)
k k

5@] + (bc Z (Z CICC/ ij > Axlfc (7 8)

240 K. D. Samouchos

and) B
Ve { Sydce, 3 C
= = - _
Tl AT
BF
The above expressions can be applied in all but wall faces. Symbol) stands for
C/

the summation over all boundary faces of C'. The Q and Q appear in boundary
faces where cells C' or C” do not exist and correspond to the differentiation of the
imposed boundary conditions on that face expressed as 9V;5¢/ 8V]-C, where VBC is
defined in section 3.1.

The previously described discretization can be simplified by avoiding the limiter
differentiation. In this case,]DLZ-F =]DFC and Dng,C —Dig?. Matrices]DZC and Dig?
are responsible for discretizing the adJ01nt flux and the B-term with second order
accuracy. A first order discretization is possible by setting IDLF ¢ =]DF ¢ =0;; and
Dng,C = ch/ =0, which significantly reduces the computational cost of the adjomt

solution process.

Derivative 0 f,f"”’FP /OVC emerges by differentiating eq. 3.4 w.r.t. VP and V9,

8fzm)Fp 1 ip
an ek = Z oKt ZZ|Azlk”kF|Wl?_§Aij

(7.9)
afznv Fp A g 1Ad o
ava — sy = Z zjknk - Z Z | Aarn | W T 9t

where A is the Jacobian matrix of the flux derivative w.r.t. the primitive flow vari-
ables and

ou’
C i
Wi = gve

ALC — ZZ a’“;;fgk’ (. U,P> (7.10)

Matrix A%C arises from the differentiation of the absolute Jacobian matrix, which
is presented in Appendix O. The computational effort needed for its computation is
very high. Numerical examples in inviscid flows around isolated airfoils using coarse
meshes signify that its elimination affects at most the third significant digit of the
sensitivity derivatives. Thus, avoiding its computation is advantageous when the
derivatives high accuracy is not crucial for the optimization implementation.

7.3. The Compressible Discrete Adjoint Equation 241

An essential outcome of the previous mathematical development is the relation of
the discrete adjoint equation with the adjoint Roe scheme, shown in subsection
6.3.3, which is used in the continuous adjoint method. The comparison is more
clear if a first order consideration is made. By additionally setting A%“ =0, the
two schemes coincide, showing the remarkable correlation between the continuous
and adjoint variants. This comparison also suggests that the corrected adjoint Roe
scheme developed in subsection 6.3.2 is probably the best choice among the adjoint
schemes presented in this thesis, provided that the Roe scheme discretizes the flow

equations.

Finally, the adjoint wall flux is
inv, A, FY F“’ a(fzk nkéu) P Q Fg
2 =220 e (wr —v?) L
Ik

with IDL?CH computed like]DLZ-C and

where f)g is defined in subsection 3.3.1.

7.3.2 Differentiation of the Diffusion Term

The adjoint viscous flux and B-term are defined as

frtte =3, a";VcF - (v —w?)

i
ms JFo

B = S S (v -)i 2

vis,F

where f,;7" computation is presented in subsection 3.2.7 and depends on VP and

V@ as well as the spatial derivatives of the primitive flow variables on Fi, which are

242 K. D. Samouchos

denoted by
oV,

ﬁxk

for the sake of simplicity. They are given by the orthogonal correction formula,

— avy

F

eq. 3.17, which is rewritten as
avil = —-(}:dv;aA%-AFPvP4-AFQvQ> (7.11)

The newly presented quantities are

AV = w'raviy +wedvg,
wP :wF, wfe =1 —w’

P Q
N S
-7 7=

P=1, s9=-1

AFP _

and w!’, @ are equal to the weight w and vector @ defined in subsection 3.2.7. The
spatial derivatives dV;Y and dV,2 of V;¥ and V% are computed by the Least Square
Method explained in subsection 3.2.5. Two matrices are defined

po. _ 94V

ik = Ve
JC (7.12)

oy

following the same process as in subsection 7.3.1. Then, the final expressions for the
adjoint viscous flux and the B-term are

vis,A, F F
Lk o= Z Qkoc (WA+1 \I/?H) + fE ; (- \1’5Q> (7.13)
)

Bj¢. ZZZ [Tf}k? (A1 T >\+1> fﬁ;g,c (- \D?)} nyCASTe (7.14)

.. A Fc A Fo . ..
The adjomt stress tensors Tajke and 73, are given by a similar formula. Moreover,

; k o ¢ and f] ke
tion to the adjoint equations and are computed analogously. Expressions like these

variables “ denote the contribution of the energy diffusion differentia-

7.3. The Compressible Discrete Adjoint Equation 243

remain similar for cells C' and C” and make use of the symbol C(’). Therefore,

A F
Tkgkc((j) =K

0avye, . adV;;CM 2 Z 0av,e g
Efc F, A Fe av}\-&-l Afe
f]kC ; (V}_El /\JkC() + WTAk) + qj‘kc(/)
j
The newly introduced adjoint heat flux qﬁcgf/) is
1 0dV,° 1 ddvye
‘/5FC avyc(/) ‘/'1FC a‘/‘]c(’)
L e OV 1 e OV

I R T (A T

J
arre [ovge 1 avT
Va0 v auct
J J

Afc F
ijc(/) =k ¢

in all faces, except those belonging to sohd boundaries, where q] k, p ()= =0 and f B FC =
E V/\ijl TS, k o () Term advj,jc / 8V)is computed by differentiating the orthogonal

Correctlon formula given by eq. 7.11 w.r.t. the primal variables of C' and C’, which
reads

aav,c
T (Z Dm@x) —af AT, o ATy QIDLYF
J X l

0V

e = w"e D805 — ok w'e (Z DiA%rO&f) dij + oy, AFCQCDLJSC
J A

The last term in both equations appears only if Fo is a boundary face and contains
the matrices DL;; e and DleC, defined in eq. 7.7 and Q¢, representing the differ-
entiation of the boundary conditions w.r.t. VC. It is also reminded that, for these
faces, wf@=1. The used matrices defined in eq. 7.12 are

zgk = (Z CkC’) 61] + ZCkC’ ij

zkc/ Ckc/ Vi

244 K. D. Samouchos

Finally, the flow variables I/;FC are given by eq. 3.16 and their derivative w.r.t. VjC(,)
is

DI fe

ove 3 ov'e g OV av'e

e S
and _ .
Ve 0 0 0 0
o O —vfe vEO 0 0 0
ﬁc o1/ Fe '3 3 1 o
oV 1 ‘/40() ‘/4Fc 0 0 ‘/10() 0
0 0 0 0 Ve

7.3.3 Differentiation of the Temporal Term

In unsteady applications with moving geometries, the temporal term differentiation
needs special treatment. In such cases, the mesh is adjusted at each time iteration,
which necessitates the flow transportation from the mesh of the previous time step
(n) to the next one (n+1) defining an intermediate flow field (n+1/2), which is used
in the temporal term discretization. This transportation also takes the appearing
and disappearing cells into consideration, which is discussed in subsection 3.3.3.
From a mathematical perspective, the conservative variables” vector U C+1 stored at
cell C'is a linear combination of flow variables stored at a group of cells from time

step n, enumerated by C. Thus,

Unﬂ; = Z,n 80 (7.15)
C

where coefficients an depend only on geometrical quantities. The discretization of

the temporal term, shown in eq. 3.21 can be rewritten as

OCU¢ — Q. UC
At

TC = z (7.16)

The discrete adjoint equation of cell C, eq. 7.1, for unsteady flows at time step n is

gndBr | OF _
ZZ " gve aVnC_O

m

7.4. Sensitivity Derivatives for Compressible Flows 245

with index m enumerating mesh cells. Therefore, only the flow equations containing
the vector Vnc in the discretization of their temporal term contribute to the adjoint
equation of C'. Apparently, this is true for the term ff of equation é{;‘ . Furthermore,
Vnc appears in multiple equations of time step n + 1, enumerated by the index C ,
as part of the flow variables formulating the field at n + 1/2. Then, the adjoint

equations’ temporal term becomes

OTC zo 0 T_;zéﬂ
Ve N ov,e

n

TA C \ch

The proper differentiation of the above temporal terms yields

QCUC —Q° WO,
TAC’ we " ntg o ntg
(wer A7

It is reminded that
o OUf

ij_m

J

It is highlighted that the adjoint field \IJC 1 is not computed similarly to the flow
field at the same intermediate step. Instead “the differentiation of the flow equations
indicates that

1 o]

% - 0c ZQn+1/2 n+lC \Iln+1 (7.17)
n =

The discretization of the temporal term designates the need for the inverse time

integration of the discrete adjoint equations, which totally agrees with the proposed

time discretization in section 6.4 for the continuous field adjoint equations.

7.4 Sensitivity Derivatives for Compressible Flows

The sensitivity derivatives of an arbitrary objective function F' are given by eq. 7.2,
which requires the computation of several quantities listed below. Firstly, §F/db,
depend on the derivatives of F' w.r.t. G , the computation of which is usually straight-
forward. Secondly, the adjoint variables U are necessary, which are computed by
solving the discrete field adjoint equations shown in section 7.3. Moreover, the
6G /6b, terms are needed, which are given by expressions presented in section 2.9.

Finally, the derivatives of the flow equations w.r.t. to G are required, the computa-

246 K. D. Samouchos

tion of which is the goal of this section.
The term of eq. 7.2 containing the derivatives of the flow residual is developed as

ORC 6G™ <~ ORC 9G™ 57"
aGm 8b, = gGm OT™ bb,

(7.18)

n

where ™ are the nodes constituting the triangulated solid surface. The first two

terms of the r.h.s. can further be decomposed as

ORC oG™ ORC 9z Cw ORC 0zF Z ORC ONF
Im OF™ - PCuw HEn 7 rn \ rn
oGm 0% o 0xCw OF - oxt ox — ONF 0T
ORC 9NOCw ORC o5tw

£~ 00Cn 9Fn T 4= O O (7:19)
Index C,, in the first term sums the contributions of centroids ¢ of all cells cut
by the wall. The rest of the cell centroids remain intact by the variation of b, in a
Cartesian mesh. The second term describes the flow residual’s change due to the
variation of face centroids (#"). There exist two kinds of faces, the centroid of which
are affected by the geometry’s shape modification in a Cartesian mesh. In the first
kind belong all wall faces, and the second one consists of inner faces cut by the solid
boundary. The following term corresponds to the face normal vectors contribution.
Once again, only the wall and cut faces participate in the summation. The N vector
is defined as the normal unit vector @ multiplied by the area AS of each face. The
last two terms exist only in unsteady cases, including moving solid bodies where the

cut-cells volume Q% and the velocity o of each wall face F,, depend on b,.

The following sections discuss the differentiation of the convection and diffusion

terms to result in expressions used to compute the terms included in eq. 7.19.

7.4.1 Differentiation of the Convection Term

The discussion starts from the computation of the first term of eq. 7.19. According
to the proposed discretization of the flow equations, a slight change in #%» modifies
the primitive variables’ spatial derivative at cell C' and its neighbors C”. Therefore,
the residuals of C', its first and second neighbors are affected, which allows the

development of a similar method to the one shown in section 7.2. The equivalent

7.4. Sensitivity Derivatives for Compressible Flows 247

terms to the adjoint flux and B-term are defined as

where

and

z > z P (””* () DL nfe AT
) j k

ovie
DLLC i =D - TeDle
e OV
DLy = ST = D TFCDM,
k

ov ke C,S, ,
=G|, = S (V) et o
. avite 0C\¢&
wel = Ed CZZ 8x2?<) A

The Tg’c term is computed by eq. 7.8. The 9C,5,/0x{ and 8@,\g/8$f/ terms are
computed by differentiating the Least Squares Method w.r.t. £¢. The computation

of coefficients C,&, in the non-weighted version of the method is based on vector

— L
bg/:xc

— 7% and matrix A® defined in subsection 3.2.5,

c § : Cy C
Ak‘)\ - bkC’b)\C’
Cl

The mathematical development leads to

aC,¢, _C
E);g _)< (Z 59,5, ~ 1) +Ce& Y STA;
k 1

N

ox¢’ = (475 (cré Zbuc’) - Ckgzbﬂg’A 1
I

248 K. D. Samouchos

where

SE=> b
=

The corresponding algorithm is

Algorithm 14: Contribution of cell centroids to sensitivity derivatives

1 foreach cut-cell C,, do

2 &= % o —l— ZTC M

3 foreach cell’s nezghbor C" do
[ed §zSw

5 end

6 end

Then, the convection differentiation w.r.t. the face centroids is discussed. According
to the MUSCL scheme, the second order flux computation requests the flow vari-
ables extrapolation from the cells to the faces centroids. Therefore, the centroids’
position affects the extrapolated variables and the corresponding flux. Furthermore,
centroids of the wall faces also influence the computation of Cug/- Both residual

dependencies are modeled by introducing a similar to T)\C v term,

'mv !

TinvFe — Z Z Z Z ach (- qf?) DL Snt" AS (7.20)

k

where F’ enumerates the faces of cell C. The DL?? matrix is computed by differ-
entiating the extrapolation scheme and the Least Squares system,

. g Ve
DLinpr = dxf k7 — T Djn g

[j Fo __ af/iFC _C aC)\g’ VC' VC A Cd 5

L = ; E E DF (i) xy + oF AV dpp
k e ’ k
¢C A C
C
0 _ (A5 dorr = D bu5C | + Tl D b S (ATS
(91'5 - nCc - nE H

The algorithm which gathers all contributions is

7.4. Sensitivity Derivatives for Compressible Flows 249

Algorithm 15: Contribution of face centroids to sensitivity derivatives

1 foreach wall or cut face F do

2 if inner face then

3 (‘;T}Z <— —|— 2 TFP 69&*
4 (‘;TIZ <— —I— Z TFQ 6%
5 else

6 gTIZ « £ + Z Tfe M—*
7 end

8 end

Subsequently, the normal vector N contribution to the sensitivity derivatives is
presented. It has already been mentioned that N is modified only in the wall and
cut faces. However, the vector corresponding to the inner faces of a Cartesian mesh
changes only in magnitude, a.k.a. the face area AS, significantly simplifying the
residual differentiation process. Therefore, the contribution of each inner face to the

Z“ab

The effect of the solid faces’” normal vector on the spatial flow derivatives and the

sensitivity derivatives is

limiter of the corresponding cut-cell is expressed through term T "¢ Tt is non-zero

only when the slip wall condition is used, and it is computed as

inva“f af;nv,FC Fw
1t =SS S S YT (w8 D e aste
F,
~ Fw w av c ~
DLuft = Duff + (8_5 - D) 1
. pw 8V
Dy = o Z@AC e A

ove 1
ol ~ B5T
where V;Fg is the velocity on the face after the imposition of the no-penetration wall

.. FY Fg
condition and v,¢ =3 V,Srlnkc
k

250 K. D. Samouchos

7.4.2 Differentiation of the Diffusion Term

The differentiation of the diffusive term of compressible equations w.r.t. geometrical
quantities included in its discretization scheme presents similarities with the method
discussed in subsection 7.4.1. Terms of eq. 7.19 are successively examined.

The residual differentiation w.r.t. G gives rise to the Tis term, which is

WS Jo vis, Fo
vzs C(F +1 k F,
Z Z Z u < ptl \P;?H) + 820(F) <\I[5P - qj?) ”kCASFC
A
(7.21)

Vector G represents £¢, &, @¥, or #¥¢ stored in the cell or face centroids which

exemplifies the use of symbol GO@) . The unknown derivatives associated with

Tfis’C(F) are
fjflf;cc Z“ 0av;’e . adv;;om 2 Z 8anf§1m5)
06y oG 3 ac T (7.22)
g)]zs,Fc Z V A FC_}.ZaV;El 8VFC N aqlfc .
oGS T £\ Tt ke R e e
and
0q,° rre | L 0dvye 1 0dvyye
aGf(F) ‘/5Fc 8GC(F) Vch 8G§(F)
1 ovike aVFC 1 avFo v
— Ve T avye Z
(VE>FC>2 - a‘/}FC 8G/\ (vFC)Q ; avj 8G>\
1 ovfe agvte 1 gvfe av
AT R o T T (7.23)
Ve oviie oG¢ Ve gyte oGS

The computation of all terms excluding the 6’d\/£c / aGf(F) derivatives has already
been discussed in the previous subsections. The computation of the new terms de-
pends on the geometrical quantity type represented by GO F irstly, the residual
differentiation w.r.t. the cell centroids is pl;esented, which, similarly to subsection
7.4.1, requires the definition of Tvis:C and B“isg,. Vector TvisC emerges by substi-

7.4. Sensitivity Derivatives for Compressible Flows 251

tuting index C'(F') with C' and Gf(F) with § in eq. 7.21, while the B-term is

UZS Fo ms JFo

Byér = ZZZ [aﬂclfc (ptl \113+1>+ 02 <\I/P \I/5Q>

LCASTe

Moreover, the differentiation of the orthogonal correction scheme, eq. 7.11, for inner

faces yields the expressions of the remaining unknown terms,

odvse 0dvy ool S, RARa
ox¢ 02¢ 0a¢ p Afe

oavwy darl; 0 1
in F w _ Q _yP)_“
§<8°’ “”Vwaxk> (=) 5 (5%)

F

where

dak s p o 0 1 s L
@ = E (Oé)\ak - 6)\k>) 8.%,? AFc = (AFC)Qaka

od zK} FoNF F bkg P Q C
A Cm (dVM - Vg) <€,
odvie .
i = 1 Dls — o’ 3 Diulsol
k

It is reminded that w’? # wf@ although Fp and Fg correspond to the same face.
Some of the equations presented above are slightly modified when applied to bound-
ary faces. Their corrected terms, shown with a sidebar, are

8d‘/;§c — ad‘/zfc Oé)\]DLFC’
oxf oz MNZE
BC
doy; 1 F_ F
BC

o [1 1,
c 7 = TAFo2 Yk
oz, \Afe J|. (Afo)

oavy

C
Oxy,

_ Mmfec
-]Di)\k
BC

252 K. D. Samouchos

Finally,

IDFC _ 8Ckg’ VC" VC
ik T Z axc (7 - Vi)
C/ k

A Fo 80@ ¢ c
Dz’,\kc’/ :Z axg/ <‘/z _V;)

(7.24)

Algorithm 14 is also applied for gathering the cell centroids’ contributions of the
diffusion discretization scheme to the sensitivity derivatives.

The substitution of G with ¥ and of C(F) with F" in eqs. 7.21, 7.22, and 7.23 gives
rise to the TfiS’FC term. The differentiation of the orthogonal correction scheme
w.r.t. the face centroids gives

0dV5e _ 9avy 0of <Z N W)

oxf" oxf" ol Aw AFe
odavy oot 0 1
_ F W R w © _ 'Q _ P
Oé)\ zu: (al’gl Oél/‘ +d‘/;u ax’};/) (‘/’L ‘/’L) 8,Z'kl (AFC)

O‘f = Fo
+ E]DL”c

The last term appears in case F¢ is part of the mesh boundary. The computation
of the derivatives that appeared on the r.h.s. differs between inner and boundary

BC

faces. In the subsequent expressions, the two cases are denoted as F': [and F': B,

ooy | 0, F:I
Oxt” —A"’TCC (edat —0ap) Oprp, F: B
0 (1) 0, F:1
2 (=)= .
8xk Afc —m&faplp, F:B
(ol (dVif —dV;?) €. FiI F 1
QTk \
gavy | wrela F:I, F':B
T Tk
Oy, 0, F:B, F':]
g, F:B, F': B
\ Ik

7.4. Sensitivity Derivatives for Compressible Flows 253

where
owte 1 1 1
oxl” ~ dP + d@ Wit (k=) —wh g (“"”g N xf)] sC0rr
oavs - &
—— B — DLy ke
ozt AR

Matrix components DLZ’,\;{?,C are computed similarly to eq. 7.24.

Lastly, the diffusion derivative w.r.t. the normal vector component of each wall and

cut face is presented. In the case of inner faces, the differentiation is simple and is
is, B

explained in subsection 7.4.1. On the other hand, term Tf\) represents the wall

faces contribution, and it is computed by substituting G with #7¢ and C(F) with
FY in eqgs. 7.21, 7.22 and 7.23. The emerging derivatives necessary for the T;”S’F ¢

computation are

0aV,E g ove

FY = T ARy, FY
on,,© A on,,©
Fw
C w o~ w
v _ > Q¢ DLjiy
8nfg — IR
J

where Qgg is the derivative of the variables computed by imposing the wall condition
w.r.t. the flow variables extrapolated from the cell centroid to the face.

7.4.3 Differentiation of the Unsteady flow Equations

The geometrical complexities caused by the motion of a solid body within a station-
ary Cartesian mesh perplex the differentiation of the temporal term. Based on its
discretization shown in eq. 7.16, only the an coefficients, defined in eq. 7.15, depend
directly on geometrical quantities. Their differentiation gives the corresponding con-
tributions to the sensitivity derivatives.

Firstly, it is stated that although the an coefficients are not continuous func-
tions w.r.t. time, they are differentiable w.r.t. the design variables b,. According
to eqgs. 3.24 and 3.25, an depend only on the cells” volume and index k¢, which

stands for the number of cells from time step n+1 affecting the flow variables of C.

Thus, k¢ remains constant during an infinitesimal change of b,. Let T":C be the

254 K. D. Samouchos

derivative of the temporal term w.r.t. the volume of C' at time step n (QF). After

the proper mathematical development, the term is computed as

— =

Ttemp7C _ \IIS - qjs—&& . U’C
where
n+1
U, = kc Z W, (7.25)
n+1 o

A significant impact of the unsteady residual to the sensitivity derivatives emerges
from the use of the geometries’ velocity (¢/¢) in the no-penetration and/or no-slip
conditions imposed along the wall. The flow variables’ spatial derivatives and the
limiters stored at cut-cells’ centroids and the spatial derivatives computed at their
faces also depend on #7¢. The extra contributions are called T" and TWF

and represent the convective and diffusive flux derivatives w.r.t. the wall velocity.

Starting from the convective flux,

znv JFo

T = Z > Z Z e (F = w®) DLjnl nfeASTe + poug nfe AsTe
) k

- FY oV, ~
DLik’FC = DZkFC + (FéFC - DszC> TFC
Uk

. 8V
Dl = o Z CAC Re

C

The 0ViF8 / 81}58 derivative depends on the chosen wall condition. For slip walls,

av'e | o, i=1,5
(‘31}58 | ik, i=2,3,4
and for no-slip walls,
avi'e | o, i=1,5
81}58 B 5i—1,k7 1= 27 37 4

The expression for Computlng T *f is based on eqs. 7.21, 7.22 and 7.23 and

is derived by substituting G with % and C(F) with F¥ and adding the term,

v T,\knchS Fo | The differentiation of the orthogonal correction scheme w.r.t. 77¢
2

7.5. The Incompressible Discrete Adjoint Equation and Sensitivities 255

leads to different expressions for inner or boundary faces,

Fé
FCCC’3V B Fo CC’3V F J
F,)\ a w v 'u (6% C .
9dvi,© _ 8v;§c A Z “Fca e
Fy
c C 8V F C dV .
avk C)\ d_ ZCNFU ’U AFC Q/LkF’U7 FC . B
Vg
where -
C
Qe = DLy 4 6 . Vi
lkFé itk Fo F¢,Fo avFg
k

7.5 The Incompressible Discrete Adjoint Equa-

tion and Sensitivities

The derivation of the incompressible discrete adjoint equations and sensitivities is
based on the differentiation of the discretized incompressible flow equations, which
is presented in section 3.5 and shares many similarities with the discretization of the
compressible equations. The development of the corresponding adjoint equations
takes advantage of these similarities embracing most of the analysis presented in
subsections 7.3.1 and 7.4.1. Hence, this section mainly deals with the indication of
the differences between the two variants.

According to eq. 7.1, the development of the adjoint formulation is based on the
differentiation of the incompressible flow equations w.r.t. vector V defined in eq 3.26.
Regarding the convective terms, all the equations of subsection 7.3.1 are still valid
except for eq. 7.9, which is rewritten as

a rinv,Fp
J;V.P ny = ZAZ;D +35 ZZ|Azjknk‘ _—Adrp

o F) (7.26)
irQ, 4r,Q
Y% —o = Z Awk o Z Z |Awk k1 §Aij
J k

where AT emerges from the differentiation of the preconditioned incompressible flux
w.r.t. V and AT is defined in eq. 3.28. Matrix A% is computed by differentiating the
absolute Jacobian matrix w.r.t. 17, which is presented in Appendix P. The artificial
compressibility parameter () is considered independent of the design variables, and,

thus, it remains constant during the optimization process. A main difference between

256 K. D. Samouchos

the continuous and discrete adjoint versions is that eqs. 7.26 already incorporates the
preconditioned matrix effects, in contrast with the continuous equations at which a
new adjoint preconditioned matrix should be introduced during their discretization.

Subsequently, the diffusion differentiation is studied. Eqs. 7.13 and 7.14 should be

reintroduced,
vis,A,Fc __ A Fco Q
f]k - E :)\]k:c <l11/\+1 ‘11)\4-1)

Bjcr = ZZZ @k?(M1 ‘1’§2+1> ¢ AsFe

where

A Fo adv}ffl,k 0dvkljrcl,x
Tikeey TR\ Top007 T 500
J J

The absence of an equation representing the energy conservation in incompressible

flows significantly simplifies the above expressions.
The differentiation of the temporal term yields

cqC C C
Qn\If Qn+2\11n+2

At

TAC = M

where M is defined in eq. 3.26 and \fngrl is given by eq. 7.17.
2

Regarding the sensitivity derivatives, some modifications should also be made to
the compressible version presented in section 7.4. The expressions resulted from the
convection differentiation remain valid as long as the incompressible flux (fzm’r’FP)
and variables (VC) are used. Also, terms containing the adjoint energy s are
neglected. On the contrary, some changes are needed in the diffusive terms. Initially,

TV and B,S, become

ms JFo

T ZZZ 85&’} (Wl = w2,) nfeasre

where

f :lekc _ Z i 8dvffl kL 0dvis "
oGS £ G " oG ™

7.6. The Sensitivity Map Post-Processing 257

and
vzs JFo

BrG = ZZZ g;lc’f (o xpff+1> nfe AgFe

Finally, the differentiation of the temporal term multiplied by the preconditioner
matrix leads to

- =

C C
Ttemp,C _ \Ijn - \I}TL+1 . U’F,C
n - n

At
where (j};’cz(ﬁ vy, U2, v3)¢ and \Ian is given by eq. 7.25.

7.6 The Sensitivity Map Post-Processing

The parameterization of the examined geometry is of great importance for the opti-
mization process. The target of a parameterization tool is to control the position of
the surface nodes constituting the discretized geometry by handling a much smaller
number of design variables, ensuring zero, first, or even second order smoothness
in most of the optimized surface parts. A common parameterization technique
for 3D industrial applications is based on CAD software, which provide the best
counterbalance between complexity and manufacturability. In case the geometry’s
optimization is driven by a gradient-based method, the parameterization differenti-
ation is required for computing the 6™ /db, term included in eq. 7.18. However, the
parameterization’s differentiation is usually a challenging enough process, especially
when a CAD package is used. Moreover, a parameterization tool is not always avail-
able. These drawbacks can be surpassed by assuming that every surface node can
move independently from the rest and, thus, its coordinates are design variables.

ox)1, xp =10
5b‘1 a O? SL’]? # bq

Then, the objective function’s gradient represents a vector at each surface node

Therefore,

pointing to the direction in which the node’s minimal motion maximizes the ob-
jective’s improvement. However, any infinitesimal node’s movement, tangent to a
smooth surface, does not change its shape. Thus, only the gradient’s normal compo-
nent, (OF /0Z™)-n™, must be considered. This scalar field plotted on the geometry’s
surface is called the sensitivity map and highlights the areas characterized by high

absolute valued sensitivities, where aerodynamic or hydrodynamic improvement has

258 K. D. Samouchos

the most significant potential. Hence, it can be used not only in automated gradient-
based optimization methods but also as a tool giving valuable information to the
designer. Nevertheless, its computation can be costly since the number of design
variables can be equal to 10* or even 10° for industrial 3D cases illustrating the
great advantage of the adjoint-based methods, which can compute the sensitivity
map at a cost independent of the surface nodes’ number and comparable to the flow

simulation’s cost.

However, the use of a sensitivity map in an automated optimization process presents
some disadvantages. Most significantly, the independent displacement of each node
may result in raffled surfaces or even in surfaces with invalid elements causing the
optimization to fail. In practice, this phenomenon is amplified by the high-frequency
content of the sensitivity field. These signals are caused mainly by the geometry’s
and computational domain’s discretization. A remedy to this problem is smoothing
the sensitivity map before using it to deform the shape, although such a process
sacrifices the map’s accuracy and, potentially, slows down the optimization progress.

The used approach combines an algorithm imitating the diffusive effect of an elliptic
equation solution on the deformable surface with the implementation of filters that
detect and reduce the sensitivity field’s extreme values, diminishing the produc-
tion of invalid mesh elements after each surface deformation, and thus, facilitating
the optimization process completion. Consequently, even though such an approach
seems parameterization-free, it actually prohibits the independent motion of the
surface nodes forcing them to interact with each other, implying some type of shape

parameterization.

The mistraction of the optimization process by the smoothing operation is partly
avoided by firstly allowing the optimization algorithm to propose the new position

of each node (Z7,) using the exact derivative computed by the adjoint method.
Then, the field s™ = (z)%, — Z2) - 2y is smoothed out, where the subscript “old”

denotes the geometry at the current optimization step. It has also been observed
that refining the s instead of the (0F/0Z™) - ™ field produces smoother shapes.

The developed method is divided into two steps. Firstly, a filter is applied, which
reduces the gradient of s in areas where its value exceeds a user-defined threshold.
Then, a smoothing is used, substituting s™ at the m'* node with the mean value
of its neighbors. The already processed by the filter field allows for an improved
spreading of the diffusion caused by the smoothing, preventing the distortion of sig-

7.6. The Sensitivity Map Post-Processing 259

nificant surface areas from existing distinctive spikes. The whole process is described
by Algorithm 16.

Algorithm 16: The Sensitivity Map Post-Processing

1 foreach surface node m do

2 Tpew < optimization method (m, 71})

—

s™ = (T, — Thy) Ty

w

4 end

5 decrease extrema (s)

smooth field (s)

[

7 foreach surface node m do
-=m -m mm

8 Lnew — Lold +s old

9 end

Subsequently, the function called “decrease extrema” is described. Firstly, all nodes
having s™ greater than their neighbors are detected. In other words, the local
maxima or minima are identified. For each node corresponding to a local maximum,
the neighboring node with the lowest field’s value is found. Let index m,, denote
this neighbor for each node m. Then, the gradient

m: o
S

is computed. If g™ is greater than a predefined threshold (g), s™ should be lowered
enough to produce a gradient equal to g. However, this requirement may cause the
change in sign of s, which may harm the optimization process, and thus, should
be prevented, leading to the formula

new

g s 4 gld™ — M|, s (s™n 4 g|lg™ — Z7|) > 0
] o, otherwise

for the m! node and

mn __

Snew -

s s (s 4+ glz™ —2™m|) >0
—glz™ — &™|, otherwise

for its neighbor. A similar procedure is used for the modification of the minima.

260 K. D. Samouchos

After the treatment of all extrema, the process is repeated until the elimination of

all peculiar spikes is achieved.

The structure of the function “smooth field” is simpler. For each surface node
the algorithm computes its neighbors’ mean value (5™). Then, the corrected field

becomes
o 5™, sms™ >0
new 0.1s™, otherwise
Values s, are firstly computed at all surface nodes and, then, they replace the

corresponding s™ values. The process can be repeated multiple times. The larger
the number of iterations, the smoother the sensitivity map, and the higher the
deviation from its initial proper values. The suitable number of iterations varies
depending on the current application.

The above-presented post-processing has successfully been used in several industrial
cases with compressible and incompressible flows. Chapter 9 presents applications,

including the optimization of 3D ducts, wings, and pumps.

Chapter 8

Adjoint Solver Assessment

In this chapter, the developed adjoint method’s ability to compute accurate deriva-
tives is demonstrated in various cases. The descretization of the adjoint equations is
based on the governing equations hand-differentiation, presented in chapter 7. The
computed sensitivity derivatives are compared with a central Finite Difference (FD)
scheme, considered to be the reference values. The adjoint software’s assessment
refers to compressible or incompressible fluid flows around stationary or moving ge-
ometries. After confirming the computed derivatives’ accuracy, a shape optimization
is carried out using the Conjugate Gradient method (CG). The target is to maximize
the lift generated by an isolated airfoil being the optimization’s initial shape in all
cases presented below. The airfoil is parameterized using two Bézier—Bernstein (or
simply Bézier) curves representing the pressure and suction side. The coordinates of
their control points are the design variables of the optimization process, excluding
the points corresponding to the leading and trailing edge ensuring that the air-
foil’s chord length remains unchanged during the optimization. Prompted by these
cases, an illustration of the adjoint variables’ physical meaning is also discussed.
It is important to make clear that the chapter’s content focuses on examining the
derivatives’ accuracy and the optimization abilities of the developed software and
does not aim to deliver solutions to practical aerodynamic shape optimization prob-
lems, which is the subject of chapter 9. Thus, the optimization in the presence
of constraints, such as the airfoil’s drag coefficient, is beyond the purpose of this
chapter.

261

262 K. D. Samouchos

8.1 Incompressible Adjoint Solver Assessment

The first case examined refers to the lift maximization of an isolated NACA0012
airfoil exposed to an incompressible flow of Re,, = 1000 and zero angle-of-attack.
The objective function is given as

L= /(pnl — Tz-jnj)ridS
S

where the notation of section 3.1 is adopted. Additionally, S is the airfoil’s boundary
and 7= (0, 1). The airfoil’s geometry and Bézier control polygon are shown in fig. 8.1.
The convergence of the flow and adjoint equations is plotted in fig. 8.2.

This application is the perfect example to illustrate the physical meaning of the ad-
joint variables. Firstly, it is useful to note that the adjoint velocity (\17”) magnitude
is higher close to the airfoil’s contour and almost zero at far-field, fig. 8.3, meaning
that a small perturbation in the velocity field in the solid boundary’s vicinity has a
severe impact on the generated lift value. Moreover, the imposed boundary condi-
tions make the adjoint momentum flux to exit from the pressure side and reenter at
the suction side. The adjoint velocity direction, depicted by the streamlines shown
in fig. 8.3, contains essential information concerning the flow field’s effect on lift
value configuration. A small force § f with a direction parallel and opposite to the
positive x-axis, implemented to particles close to the pressure side, decelerates the
flow, increasing both pressure and lift. The effect of an infinitesimally small force on
the lift is described by the adjoint field as well. The analysis of section 7.1 concludes
that the lift variation is expressed as 0L = U, -0 f The main x-component of the
adjoint velocity close to the pressure side is positive, so) f < 0 meaning that
0L > 0, which mathematically expresses the lift’s increase due to the force exertion.
Similarly, the imposition of ¢ f close to the suction side causes lift to drop, which
is also expressed by the negative x-component sign of the adjoint velocity on that

area.

The sensitivity derivatives computed by the proposed adjoint method are compared
with FDs, fig. 8.4. Due to the symmetry of the case, derivatives are symmetrical
too. Derivatives w.r.t. the x-coordinates of the control points over airfoil’s sides
are opposite, while derivatives w.r.t. y-coordinates coincide. Overall, both x and
y derivatives perfectly match the FDs, verifying the adjoint solver’s high accuracy.

More specifically, the deviation between the two methods is less than 10~*%, mean-

8.1. Incompressible Adjoint Solver Assessment 263

ing that at least five significant digits are correctly computed. It should be kept in
mind that the slight inaccuracies of FDs are caused by round-off errors and depen-
dence on the step size choice. Fig. 8.1 presents the gradients of all control points.
After 20 optimization cycles, both airfoil sides are cambered, fig. 8.6, causing an
increase in lift, as shown in fig. 8.5. Fig. 8.7 compares the pressure field before and
after the optimization. The geometry’s change causes a reduction in pressure over

the airfoil upper side, leading to increased lift.

In the absence of constraints, running the optimization for 20 cycles is enough to
display the cut-cell adjoint method’s ability to continuously increase airfoil’s lift.
As expected, fig. 8.5 shows that there is still enough room for improvement. By
continuing the optimization for 80 more cycles, fig. 8.8, lift increases by a factor of
8. After around 100 cycles, the flow becomes unsteady, and this is why optimization
terminates there. The airfoil’s new “abnormal” shape is presented in fig. 8.9. Its in-
tense deformation confirms the mesh ability to handle any resulting shape, verifying
the cut-cell method superiority, from this point of view, against other CFD meth-
ods used in optimization problems. A clear message is that, the proposed method
overcomes difficulties associated with mesh deformation in optimization loops using
body-fitted CFD, being a a well-known reason of premature termination.

—

Figure 8.1: NACAO0012 airfoil optimization, laminar flow, incompressible fluid:

Bézier control polygons (red) separately generating the two sides of the baseline
airfoil (black). Green vectors represent the computed gradient at each control point

of the initial geometry.

264 K. D. Samouchos

2 T T 1 T T T T

T
Mass
0+ X-Momentum
Y-Momentum

T
Mass
X-Momentum
'Y-Momentum B

Residual Order of Magnitude
|
Adjoint Residual Order of Magnitude

10 I I I 1 I I 7 I I I I 1 I I 1 I
0 200 400 600 800 1000 1200 1400 0 100 200 300 400 500 600 700 800 900 1000

Pseudo-Time Iterations Pseudo-Time Iterations
(a) (b)

Figure 8.2: NACAO0012 airfoil optimization, laminar flow, incompressible fluid: Con-

vergence of the residuals of the (a) flow and (b) adjoint equations.

LU

Figure 8.3: NACAO0012 airfoil optimization, laminar flow, incompressible fluid: Ad-

joint iso-velocity contours and adjoint streamlines.

8.1. Incompressible Adjoint Solver Assessment 265

1.5 | | | | 1.2 \ \ \ I
Cut-Cell —m— 1 Cut-Cell —8— |
1 FD —=— - FD —=—
0.8 -
e L | L
5 05 E 0.6
> > 04
— 0 —| =
s S 02
g 05+ 18 0f
0.2
-1 m
04
_15 | | | | | | | | -06
0 0.1 02 03 04 0.5 0.6 0.7 0.8 0.9 0 0.1 0.2 03 04 05 0.6 0.7 0.8 0.9
Airfoil Length Airfoil Length
(a) (b)

Figure 8.4: NACAO0012 airfoil optimization, laminar flow, incompressible fluid: Sen-
sitivity derivatives computed w.r.t. the x and y coordinates of the control points.
Comparison between adjoint derivatives (red) and FDs (black).

0 5 10 15 20
Optimization Cycles
Figure 8.5: NACAO0012 airfoil optimization, laminar flow, incompressible fluid:

Adjoint-based optimization for lift maximization. To increase the readability of
the plot, lift is non-dimensionalized by its value at the 20" cycle.

C TTT———

Figure 8.6: NACAQ012 airfoil optimization, laminar flow, incompressible fluid: Com-
parison between the baseline (black) and optimized (red) airfoil after 20 cycles.

266 K. D. Samouchos

(a) (b)

Figure 8.7: NACAO0012 airfoil optimization laminar flow, incompressible fluid: Iso-
bar areas of the (a) baseline and (b) optimized airfoil after 20 cycles.

9
8
7 g
6 /
3 5
= 4
= 3
2 e
1
0
-1
0 20 40 60 80 100
Optimization Cycles

Figure 8.8: NACAO0012 airfoil, optimization laminar flow, incompressible fluid:
Adjoint-based optimization for lift maximization. Lift is non-dimensionalized by
its value at the 20" cycle, which corresponds to lift final value during the optimiza-
tion presented in fig. 8.5.

—————

Figure 8.9: NACAO0012 airfoil optimization, laminar flow, incompressible fluid: Com-
parison between the baseline (black) and optimized (red) airfoils after 100 cycles.

8.2. Compressible Adjoint Solver Assessment 267

8.2 Compressible Adjoint Solver Assessment

The second application is concerned with the optimization of an isolated NACA0012
airfoil exposed to a laminar compressible flow of M., =0.293, Res, =1000, Pro,=0.7
and zero angle-of-attack. The airfoil’s parameterization and design variables defini-
tion is presented in section 8.1. The flow and adjoint equation’s solution terminates
when the 3000 pseudo-time steps criterion is met. Their convergence is plotted in
fig. 8.11. The adjoint momentum magnitude field and streamlines, shown in fig. 8.12,
agree with the analysis presented in section 8.1 regarding the interpretation of the
adjoint variables fields. The CG method drives the optimization towards the opti-
mum. The optimization stops prematurely after completing 20 cycles, which was the
available computational budget set for the run. Fig. 8.14 presents the correspond-
ing convergence history. The objective function’s evaluation remains smooth even
though more than 200 cells appear or disappear from the fluid domain due to the
airfoil’s deformation at each cycle, indicating that the abrupt and non-differentiable

mesh topology modification does not hinder the optimization process.

Fig. 8.15 compares the baseline and optimized airfoil’s contour. Curvature has in-
creased along the suction side, accelerating the regional flow, while the pressure
side has been considerably flattened. The new shape allows for the pressure dif-
ference growth between the airfoil’s sides, increasing thus lift. Fig. 8.16 illustrates
the above statements by comparing the baseline and optimized pressure fields. Sen-
sitivity derivatives, computed by the adjoint method, are plotted in fig. 8.10. A
comparison with FDs, presented in fig. 8.13, proves the high accuracy of the com-
putational gradient, with the resulting error being smaller than 10~*%.

Figure 8.10: NACAO0012 airfoil optimization, laminar flow, compressible fluid: Bézier
control polygons (red) parameterizing separately the two sides of the baseline airfoil
(black). Green vectors represent the computed sensitivity derivative at each control

point of the initial airfoil.

268 K. D. Samouchos

6 T T

4 T

T
Mass
X-Momentum
Y-Momentum
Energy

T
Mass
X-Momentum
‘Y-Momentum
Energy

Residual Order of Magnitude
Adjoint Residual Order of Magnitude

8 1 I I 1 1 -10 I I I I 1
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

Pseudo-Time Iterations Pseudo-Time Iterations
(a) (b)

Figure 8.11: NACAO0012 airfoil optimization, laminar flow, compressible fluid: Con-

vergence of the residuals of the (a) flow and (b) adjoint equations.

Figure 8.12: NACAO0012 airfoil optimization, laminar flow, compressible fluid: Ad-

joint iso-velocity contours and adjoint streamlines.

8.2. Compressible Adjoint Solver Assessment 269

T T T T
Cut-Cell —8— |

FD —=—

T T T T

Cut-Cell —8— _| 0.8

FD —=— | ’
0.6 -

0.4 -
0.2 -

Derivatives X
Derivatives Y

-0.2 -
4 -04
- -0.6 -

0 010203040506 07 08 0. 0 010203040506 07 08 0.9
Airfoil Length Airfoil Length

(a) (b)

Figure 8.13: NACAO0012 airfoil optimization, laminar flow, compressible fluid: Sen-
sitivity derivatives computed w.r.t. the x and y coordinates of the control points.
Comparison between adjoint derivatives (red) and FDs (black).

0.8 }

06 |

04 |

L/L ;g

02}

0 5 10 15 20
Optimization Cycles
Figure 8.14: NACAO0012 airfoil optimization, laminar flow, compressible fluid: Lift

evolution during the adjoint-based optimization. To increase readability of the plot,
lift is non-dimensionalized by its value at the 20" cycle.

<P

Figure 8.15: NACAO0012 airfoil optimization, laminar flow, compressible fluid: Com-
parison between the baseline (black) and optimized (red) airfoil contours.

270 K. D. Samouchos

(a) (b)

Figure 8.16: NACAQ0012 airfoil optimization, laminar flow, compressible fluid: Iso-

bar areas of the (a) baseline and (b) optimized airfoil.

8.3 Unsteady Adjoint Solver Assessment

This application concerns the optimization of a pitching NACA0012 airfoil exposed
in a subsonic compressible inviscid flow. The objective function to be minimized is
the time-averaged lift during one period. The section’s main scope confirms the cor-
rect differentiation of the algorithm which handles the appearing and disappearing
cells due to the airfoil’s motion. Moreover, the way the adjoint field is transferred
to the mesh of the previous time step, as integration proceeds backwards in time is
also verified. The airfoil surface is morphed using two Bézier curves parameterizing
the pressure and suction side, as mentioned in section 8.1 and shown in fig. 8.17.
The pitching motion around the quarter-chord is prescribed by the sinusoidal func-
tion a(t) = as + apsin(wt), where a(t) is the angle between the airfoil’s chord and
the x-axis. The far-field flow angle and amplitude are a, =0.16° and ay = 2.51°,
respectively. The period is T'= 0.15s and the free-stream Mach number is 0.439.
The flow equations are solved for four periods to overcome transient phenomena
occurring at the beginning of the simulation. Upon the end of the third period,
the integration required to compute the objective function begins and lasts for the
entire last period.

The time-averaged objective function’s differentiation leads to a reverse time inte-
gration method with an initial condition at the end of the unsteady phenomenon.

8.3. Unsteady Adjoint Solver Assessment 271

Thus, the flow problem’s solution and mesh are stored at all time steps to be avail-
able for the adjoint solver. Data regarding the flow transition from one mesh to the
next are also stored. According to the mathematical formulation presented in sec-
tion 6.4, the adjoint problem must be solved for the entire time window of the four
periods, which does not coincide with the time over which the objective function is
integrated. Consequently, as the adjoint is solved backwards in time, the adjoint
equations’ source term which triggers the adjoint field takes on non-zero values only
during the fourth period, i.e. the first period for the adjoint solver, and is set to zero
afterwards, resulting in a gradual attenuation of the adjoint field.

The adjoint field’s and corresponding mesh’s behavior bear similarities with the
unsteady primal case. Mesh is adapted close to the airfoil’s boundary, and cells
are transported from the fluid to the solid mesh region or vice-versa at each time
step due to the airfoil’s motion. The characteristic hysteresis is also evident in
figs. 8.18a and 8.18c, where the airfoil passes through its equilibrium position on
the upstroke and downstroke, respectively. Comparison between figs. 8.18 and 8.22,
which presents the pressure field at the same time steps, shows the airfoil reversed

motion during the adjoint simulation.

The objective function’s derivatives w.r.t. the design variables computed by the de-
veloped adjoint software are compared to FDs in fig. 8.19 showing excellent agree-
ment and yielding to a relative error smaller than 1074%. The FD step size is set to
107°, after conducting an independence study. Sensitivity derivatives are depicted
in fig. 8.17. A shape design based on the CG method is carried out leading to an
optimized airfoil contour, validating the software’s shape optimization capabilities
in unsteady flows. The smooth and monotonous objective function history, shown
in fig. 8.20, indicates the correct differentiation of the temporal term, including the
adjoint field’s projection to the next mesh at each time step and the time-dependent
geometrical terms treatment in the sensitivity derivatives’ expression. As shown in
fig. 8.21, the optimization algorithm cambers the geometry close to the trailing edge
affecting the pressure exerted on both airfoil’s sides. Additionally, the adjoint field
is quite intense close to the trailing edge, as this is the area which is mostly affecting
lift. Comparison of figs. 8.22 and 8.23 illustrates that pressure is lower close to the
suction side, leading to higher lift.

272 K. D. Samouchos

——

Figure 8.17: Pitching NACA0012 airfoil optimization, inviscid flow, compressible
fluid: Bézier control polygons (red) parameterizing separately the two sides of the
baseline airfoil (black). Green vectors represent the computed sensitivity derivative

at each control point of the initial airfoil.

INNEEE INNEEE

INNEEE

() (d)

Figure 8.18: Pitching NACAO0012 airfoil optimization, inviscid flow, compressible
fluid: Adjoint iso-velocity contours and adjoint streamlines at T, 5T /4, 7T /4 and

2T time instants.

8.3. Unsteady Adjoint Solver Assessment

273

T T T T
0.8 - Cut-Cell ——
06 L FD —=—
0.4
0.2

-0.2
-0.4
-0.6
-0.8

Derivatives X
o

0 01 02 03 04 05 0.6 0.7 0.8 0.
Airfoil Length

(a)

1 | | T T
0.9 L Cut-Cell —— |
: FD —=—
08 N
>
e 0.7 - —
2
= 06 N
2
g 05 —
]
04 n
0.3 —
0.2 — T | | | | | |
0 0.1 0.2 03 04 05 0.6 0.7 0.8 0.9
Airfoil Length
(b)

Figure 8.19: Pitching NACAO0012 airfoil optimization, inviscid flow, compressible
fluid: Sensitivity derivatives computed w.r.t. x and y coordinates of the control
points. Comparison between the adjoint derivatives (red) and FDs (black).

09 |
08 |
0.7 }
06 |
0.5 }
04 |
03}
02}
0.1 |

L/,

0 5

10 15 20

Optimization Cycles

Figure 8.20: Pitching NACA0012 airfoil optimization, inviscid flow, compressible
fluid: Time-averaged lift evolution during the adjoint-based optimization.

- I

Figure 8.21: Pitching NACAO0012 airfoil optimization, inviscid flow, compressible
fluid: Comparison between the baseline (black) and optimized (red) airfoil contours.

274 K. D. Samouchos

Figure 8.22: Pitching NACAO0012 airfoil optimization, inviscid flow, compressible
fluid: Iso-bar areas at T, 5T /4, 7T/4 and 2T time instants of the baseline airfoil.

8.3. Unsteady Adjoint Solver Assessment 275

(c) (d)

Figure 8.23: Pitching NACAO0012 airfoil optimization, inviscid flow, compressible
fluid: Iso-bar areas at T, 5T /4, 7T/4 and 2T time instants of the optimized airfoil.

Chapter 9

Optimization of Industrial
Applications

This chapter provides the implementation of the gradient-based optimization as-
sisted by the adjoint method in real-world applications. The corresponding adjoint
theory is developed in chapter 7. In contrast to the applications presented in chapter
8, no shape parameterization is used. Instead, the design variables are the coordi-
nates of the surface nodes of the optimized shapes. As the number of design variables
is high, the adjoint method should be used since the cost of computing the objective
function’s gradient is independent of the number of design variables. In practice
though, the sensitivity field contains high-frequency content, making its use in the
optimization very ineffective. An additional processing step is thus needed at each
cycle, which guarantees the smoothness of the shape while avoiding the formation
of invalid surface elements. The used approach, described in section 7.6, combines
an algorithm imitating an elliptic surface equation behavior with filters preventing
gradient spikes generation on the surface. Each optimization step requires much
more computational time than the benchmark cases studied in chapter 8, which
restricts the optimization cycles to 20 for all applications due to computational re-
source limitations. It is essential to clarify that the premature termination is not
related to the software reliability. A study presented in section 8.1 indicates the soft-
ware’s ability to continue the optimization until a predefined criterion is met. The
presented optimization cases refer to compressible or incompressible fluid flows with
stationary or moving geometries. They are concerned with the total pressure losses

minimization in an S-duct, the lift maximization of a wing, the outlet tangential

276

9.1. S-Duct Optimization 277

velocity minimization in a submersible pump, and the back-flow minimization along
with the volume flow rate maximization (two targets) in a diaphragm micropump.
Moreover, an optimization under uncertainties is performed. The cases mentioned
before are solved by the cut-cell variant of the adjoint method. However, the adjoint
ghost-cell method is also capable of optimizing industrial cases. Such an example is
presented in the last section, where a compressor rotor is optimized supported by
the SVD method. Finally, work done by the author on the continuous adjoint to
the cut-cell method implemented in unsteady problems can be found in [273].

9.1 S-Duct Optimization

In this application, the shape of a 3D S-duct is optimized for minimum total pres-
sure losses. The duct is formed by an S-shaped central part, upwind and downwing
extended with straight segments. The baseline geometry’s surface and volume mesh
consist of around 20K triangles and 100K cells, respectively. The imposed total
(1.0022 bar) and static (1 bar) pressure conditions at the duct’s inlet and outlet
drive the incompressible fluid of density 1 kg/m3. The Reynolds number based
on the duct’s inlet diameter and the isentropic velocity which corresponds to the
aforementioned total and static pressures is 250. Since the inlet total pressure re-
mains constant during the optimization, only the outlet total pressure contributes
to the objective function. The design variables are the coordinates of the duct
surface nodes. Nodes placed on the straight segments cannot vary during the op-
timization. The 20-cycle optimization takes 8 hours on 48 processors. Losses have
been decreased by more than 2.5%, as displayed by the convergence history plot-
ted in fig. 9.1, where the vertical axis presents the difference between the losses at
each optimization cycle and the baseline geometry. A steep reduction of the objec-
tive function is taken place in the first 5 cycles followed by smaller changes while
the optimization algorithm reaches the minimum. Initial and optimized geometries
are shown in fig. 9.2, and are compared in fig. 9.3. The surface displacement be-
comes more clear by the comparison of three cross-sections’ geometries, fig. 9.4.
Displacement is not totally symmetrical with respect to the x-axis due to the non-
symmetrical surface triangulation. Iso-velocity contours are presented in fig. 9.5
at the same cross-sections for the baseline and optimized geometry. It seems that
the wall deformation increases the low-velocity areas close to the boundary of the

optimized geometry causing stress reduction between the solid and the fluid. The

278 K. D. Samouchos

objective function reduction is evident in figs. 9.6 and 9.7 where total pressure loss
contours are shown along the longitudinal direction and at the duct’s exit, respec-
tively. Losses have been mostly decreased in the duct’s central axis vicinity, while
regions close to the wall remain the losses’ primary source. Fig. 9.8 presents the
sensitivity map in the duct’s initial shape. Red regions indicate areas where the
surface should be displaced inwards, blue should do the opposite and green parts
should remain still. The optimized surface is smooth, without being affected by
high frequency changes in the computed sensitivity derivatives. Its strange shape
could have been avoided by using less design variables, for instance by means of a
free-form parameterization method [311].

Total Pressure Losses (%)

0 5 10 15 20
Optimization Cycles

Figure 9.1: S-duct optimization: Reduction in total pressure losses during the opti-

mization loop.

(a) (b)

Figure 9.2: S-duct optimization: Close-up views of (a) baseline and (b) optimized
geometries, in the middle of the duct.

9.1. S-Duct Optimization 279

Figure 9.3: S-duct optimization: Baseline (gray-transmissive) and optimized (red)
ducts plotted together.

(d)

Figure 9.4: S-duct optimization: Comparison of the (a) baseline (black) and (b)

optimized geometry (red) at three cross-sections. Their position is shown in (d)
which presents the baseline (dark gray) and optimized ducts (light gray).

280 K. D. Samouchos

Ce®
000

(b)

Figure 9.5: S-duct optimization: Velocity magnitude iso-areas at the cross-sections

VelocityMag

defined in fig. 9.4d for the (a) baseline and (b) optimized geometries.

Pressure Losses

200
180
160
140
120
100

(b)

Figure 9.6: S-duct optimization: Total pressure loss contours over a cross-section

with a plane along the longitudinal direction in the (a) baseline and (b) optimized
geometry.

9.2. Wing Optimization 281

Pressure Losses
220
206
192
178
164
150
136

(a) (b)

Figure 9.7: S-duct optimization: Total pressure loss contours at the exit of the (a)
baseline and (b) optimized duct.

derivative
0.05
0.04
0.03
0.02
0.01
0
-0.01
-0.02
-0.03
-0.04
-0.05

Figure 9.8: S-duct optimization: Sensitivity map on the duct surface computed at
the end of the first optimization cycle.

9.2 Wing Optimization

This application is concerned with the optimization of an isolated wing in a subsonic
compressible flow for lift maximization. The flow is assumed to be inviscid. The
baseline wing is build based on the symmetrical ONERA-D airfoil. The leading and
trailing edge sweep angles are 30° and 15.8°, respectively, forming a relevant surface

area of around 2.19 m?

. All but the leading and trailing edge surface nodes are
allowed to move during the optimization. Nodes placed at the tip are restricted to
move only along the vertical direction. The far-field Mach number, angle-of-attack
and angle-of-sideslip are 0.5, 0° and 0°, respectively. At these flow conditions, the
initial design produces zero lift. The mesh for the baseline geometry consists of

100K cells. After 20 optimization cycles, lift has increased to almost 3 kN as shown

282 K. D. Samouchos

in fig. 9.9 leading to a lift coefficient equal to 0.343. The wing geometries before and
after the optimization are compared in fig. 9.10 at three cross-sections perpendicular
to the lateral direction, fig. 9.10d, . The wing’s part close to the leading edge is
mainly displaced. Its curvature increases as the cross-section reaches the wing’s tip.
The new design supports the pressure increase on the lower side while decreasing
pressure on the upper side. Fig. 9.11 compares the pressure fields for the baseline and
optimized wings. Lift rise is also evident from the surface pressure distributions on
the upper, fig. 9.12, and lower sides, fig. 9.13. Finally, the sensitivity map computed
at the end of the first optimization cycle is presented in fig. 9.14. The map has
been smoothed enough to suppress high frequencies, allowing for a reasonable shape
deformation. As expected, derivatives are higher close to the trailing edge. The red
color denotes areas that should be pulled outwards. The opposite happens for areas
in blue, giving rise to the characteristic cambered shape close to the trailing edge

shown in fig. 9.10.

Lift (kN)

0 5 10 15 20
Optimization Cycles

Figure 9.9: Wing optimization: Increase in the objective function during the opti-

mization loop.

9.2. Wing Optimization 283

< ——

(d)

Figure 9.10: Wing optimization: Comparison between the baseline (black) and

optimized (red) wing airfoils. From (a) to (c), wing tip is approached. Cross-
sections’ position is shown in (d).

(a)

(b)

Figure 9.11: Wing optimization: Iso-bar contours in cross-sections defined in

fig. 9.10d for the (a) baseline and (b) optimized wings.

284 K. D. Samouchos

Pressure Pressure
0.99 099
1 0.98 0.98
= 0.97 0.97
0.96 0.96
0.95 0.95
0.94 0.94
0.93 0.93
0.92 0.92
091 091

0.9 0.9

(a) (b)

Figure 9.12: Wing optimization: Pressure distribution on the suction side for the
(a) baseline and (b) optimized wings.

Pressure Pressure
1.08 1.08

1.06 1.06

1 1.04 1.04
= 1.03 1.03
1.01 1.01

099 099

097 097

095 095

094 0.94

092 0.92

090 090

(a) (b)

Figure 9.13: Wing optimization: Pressure distribution on the pressure side for the

(a) baseline and (b) optimized wings.

9.3. Submersible Pump Optimization 285

derivative
1600
1350
1100

850

600

350

100

-150

-400

derivative
1600
1350
1100
850
600
350
100

-150
-400

(a) (b)

Figure 9.14: Wing optimization: Sensitivity map on the (a) suction and (b) pressure
side of the baseline wing.

9.3 Submersible Pump Optimization

This application aims at the optimization of a 3D Electrical Submersible Pump
(ESP). Publications dedicated to the ESP gradient-based optimization assisted by
the adjoint method are limited, although it allows for a low-cost computation while
maintaining a high degree of freedom by handling a great number of design variables.
Information about the ESP technology and the flow analysis of the baseline geometry
can be found in section 5.4. The study is part of a research program funded by
Schlumberger Cambridge Research Limited.

The target of the present optimization problem is the minimization of the radial (v,)
and peripheral (v,) outlet velocity components, which is mathematically expressed
as

Jz/ (v2 +v)) ds
Sout

where S, is the stage outlet surface. Both impeller and diffuser blades are deformed
during the optimization while the casing remains stationary. Nodes located at the
hub and shroud are allowed to move only along the peripheral direction. At each
optimization cycle, the casing nodes positions are smoothed ensuring the validity of

286 K. D. Samouchos

all surface elements. An inviscid flow model for compressible fluids is used.

Fig. 9.15 shows the evolution of objective function’s deviation from its value at
the end of the first cycle. According to the plot, the outlet tangential velocity has
decreased by 35%. Tangential velocity magnitude contours at the exit of the initial
and final geometry are compared in fig. 9.16 for four snapshots equally distributed
along a single period. Two cross-sections perpendicular to the pump’s axis show
the impeller and diffuser blades displacement, fig. 9.17. While slight changes in
the impeller can be seen, the diffuser has noticeably been changed, meaning that
its blades, being closer to the exit, mostly determine the outlet velocity direction.
The impeller and diffuser blades deformation is presented in fig. 9.18. Finally, the
sensitivity map on the impeller and diffuser baseline blades is shown in fig. 9.19.
Areas colored in red should be moved inwards whereas blue areas should be moved
outwards. Nodes at which the sensitivity derivative is close to zero are colored in
green. Areas with high absolute valued sensitivity derivatives have a more significant
potential for optimization. According to the presented sensitivity maps, higher
displacements are detected close to their trailing edge which is the area that mainly
affects the velocity direction.

-10
-15
-20
-25
-30
-35
-40

Objective Function (%)

0 5 10 15 20

Optimization Cycles

Figure 9.15: Submersible pump stage optimization: Optimization history. A reduc-
tion of ~ 35% in the objective function is achieved after 20 optimization cycles.

9.3. Submersible Pump Optimization 287

0000
D000

(b)

Figure 9.16: Submersible pump stage optimization: Tangential velocity magnitude

at the pump outlet at four equally distributed time steps along one period for the
(a) baseline and (b) optimized geometry.

(a) (b)

Figure 9.17: Submersible pump stage optimization: Comparison between the base-

line (black) and optimized (red) blades presented in cross-sections perpendicular to
the pump’s axis for (a) the impeller and (b) the diffuser. A close-up view of (a) is

shown in (c).

288 K. D. Samouchos
(a) (b)

() (d)

Figure 9.18: Submersible pump stage optimization: Comparison between the base-

line (black) and optimized (red) impeller blade for the (a) pressure and (b) suction
side and diffuser blade for the (c) pressure and (d) suction side.

() (d)

Figure 9.19: Submersible pump stage optimization: Sensitivity map for the impeller

blade on the (a) pressure and (b) suction side and diffuser blade on the (c) pressure
and (d) suction side.

9.4. Valveless Diaphragm Pump Optimization under Uncertainties 289

9.4 Valveless Diaphragm Pump Optimization un-

der Uncertainties

This section focuses on optimizing a 3D valveless diaphragm micropump in the pres-
ence of uncertainties. The diaphragm’s motion is parameterized by eight variables
being the design and uncertain optimization variables. A detailed description of
the parameterization scheme is presented in section 5.3. Its flow analysis is demon-
strated in the same section, showing that the absence of valves allows the flow to
re-enter from the pump’s exits at a significant time window within a period. Back-
flow is unwanted in most practical cases, such as medical applications, and should

be minimized. It is defined as the integral of the negative velocity at the exit.

1
Qv = —/ min(0, U.77)dsdt
T Sout

T
where S,,; is the pump’s outlet surface, 7 is its unit normal vector and v the flow
velocity. Another drawback is the low flow rate micropumps can handle due to their
small size [81]. Its mathematical expression is

1
Opet = — / / .iidsdt
' T T Sout

These two functions, related to performance of the pump, are the so-called quantities
of interest.

Operating and manufacturing inaccuracies, modeled by introducing uncertainties
into the design variables, affect the quantities of interest. The two objective functions
arise by computing the mean values and standard deviations of the two quantities
of interest and forming their weighted sum,

Fi =wipq,; + wi20q,,
F2 :w2IIU/ant + w220Qnet

Here, wyy =+1, wio =41, wo; =+1 and wyy = —1. Their signs depend on whether
minimization or maximization is targeted. The non-intrusive Polynomial Chaos
Expansion (PCE) [85], [335] is used to compute the required statistical moments. It
is assumed that all uncertain variables follow the normal distribution (w), meaning
that Hermite Polynomials (He;) should be selected. The stochastic quantities of

290 K. D. Samouchos

interest are given by the following truncated summation,
q
Qz ~ Z ozinej (b)
j=1

where ¢ is the user-defined chaos order. The PCE coefficients are given by

o = /D Qs(b) He, (b)w(b)db

where D is the design space. The above integrals are computed by the Gauss
quadrature integration method, which determines a set of Gaussian nodes, each
of them should be evaluated by the cut-cell CFD solver. The first two statistical
moments are computed through Galerkin projections as
q
Ho: = o, O, = Y a;
j=1

The chaos order is set to one and, thus, 9 expansion coefficients should be computed,
requiring the significant number of 256 CFD-based evaluations per candidate solu-
tion. The overall computational cost is reduced by using the Smolyak sparse grid
theory [287], according to which the same coefficients are approximated at the cost

of 17 evaluations on the cut-ell software.

The in-house optimization tool EASY (Evolutional Algorithms SYstem) [1] com-
putes the Pareto front of non-dominant solutions [151]. The optimization cost is re-
duced by implementing surrogate models or metamodels (Metamodel-Assisted EA
or MAEA) [154] and the Principal Component Analysis (PCA) [169] of the pop-
ulation members. Metamodels replicate the objective functions computed by the
CFED tool at an almost negligible computational cost. The PCA transforms the de-
sign space into a new feature space, in which the evolution operators perform much
better. PCA also assists metamodels to be trained with the most significant input
variables only, as identified by the PCA. The computational cost is further reduced
by combining the PCA-driven MAEA with a Gradient-Based (GB) optimization
method, giving rise to a hybrid algorithm, in which the EA undertakes the explo-
ration of the design space and the GB method the refinement of selected promising
solutions [285], [152].

The GB method implementation starts by concatenating the two objectives in a

9.4. Valveless Diaphragm Pump Optimization under Uncertainties 291

single scalar function equal to their weighted sum (F' = wyFj+wsF,). Then, the
adjoint cut-cell solver computes its gradient and the selected individuals are im-
proved by performing a single descent step. The computation of OF;/0by requires
the statistical moments’ derivatives given by

Opg; Oayp
ob, by,

doq. _ LZO,.%

The PCE coeflicients’ derivatives are

oy _ [90,

b Jp ok, Y

where 0Q);/0by, are computed by the cut-cell adjoint software. The GB improvement
is applied to just one individual in each generation due to the gradient’s extra
computational cost. The new individual should simultaneously improve all objective
functions, which is possible by correctly choosing the weights’ values. Each pair of
weights (wy, wy) determines a different direction in the objective functions’ space. A
descent direction leading to a new dominated individual is referred to as the Pareto
Advancement Direction (PAD). A proper method for computing the PAD is given
in [152]. As mentioned before, according to the non-intrusive PCE assisted by the
Smolyak theory, each individual’s evaluation costs 17 CFD runs and, if selected for

GB refinement, another 34 adjoint runs are needed to compute the gradients.

A (6, 10) PCA-Assisted Hybrid Algorithm is used for the optimization problem.
Both metamodels and PCA start being used after the first generation. The compu-
tational budget is restricted to 1400 calls to the cut-cell software or its adjoint due
to their high computational cost. Fig. 9.20b presents the individuals’ update by the
GB method between three successive generations. The final front of non-dominated
solutions is presented in fig. 9.20a. Moreover, fig. 9.21 shows the backflow and vol-
ume flow rate evolution within a period for the two front edges and the reference
solution. Black lines indicate the mean values and the blue hatched areas correspond
to the three-sigma interval width. In the maximum F5, solution, the volume flow
rate remains negative for almost half of the period, although its positive part over-
weights the negative one. The solution appears to be quite erratic, as it is seriously
affected by the design variables” uncertainties. Regarding the minimum Fj solution,
backflow appears during a single step only. In the reference solution, the volume

292 K. D. Samouchos

flow rate is positive only during half of the period, yielding a lower volume flow rate
and higher backflow than both of the above-mentioned optimized solutions. From
this point of view, any of the Pareto solutions dominate the reference pump. Finally,
fig. 9.22 shows the instantaneous flow field of the two extreme points on the front
and the reference solutions when the reference pump has the greatest backflow.

Research presented in this section has been funded by the Business Plan “Devel-
opment of Human Resources, Education and Lifelong Learning” entitled “Support
Researchers with Emphasis on Young Researchers” with the co-financing of Greece
and the European Union. The project title is “Design-Optimization of Diaphragm
Pumps under Operational/Manufacturing Uncertainties using the cut-cell Method

and Polynomial Chaos Expansion”.

191 T T T T T T T 190 G 1 11 1 - T T lO
° | Gen. { i
190 - g o ‘o[Geni2 © .
- Gen.13 © i 1
. 189 : g S I -7l = : L
< . < o8
E 188 | .l 4 € 186 : R .
S S 185f -
e N . : ; a4 2
o 187 ? ROk - Cm -
186 | . 183 |- = i
° N n i
185 L - , — 182
p 181 - Ry -
184] | 1 1 1 1 1 180 | | 1 1 1
0 50 100 150 200 250 300 350 400 50 100 150 200 250 300 350
F, (u/min) F, (w/min)
(a) (b)

Figure 9.20: Diaphragm pump optimization: (a) Computed Pareto front of non-
dominated solutions. (b) Progress made in the front computed by the PCA-Assisted
Hybrid Algorithm in three consecutive generations. Arrows show the PAD used by
the GB method to upgrade a single individual per generation. Only part of the front
is shown.

9.4. Valveless Diaphragm Pump Optimization under Uncertainties

293

3500 T T T T
3000
2500
£ £ 2000
£ E
= 3 1500
c;;’ & 1000
500
D.
-500 L 1 l 1
0 0.004 0008 0012 0.016 0.02 0 0.004 0008 0.012 0.016 002
time (sec) time (sec)
400 %0 , ; ‘ ;
300 80 - "_' .
= 200 = 60l 4} i
E 100 E 50l A i
= =
5 0 =
g
fe]
C 00
200 Y
"
-300 1 | 1 1
0 0004 0.008 0012 0016 0.02
time (sec)
8000 12000 ; .
6000 10000 n E
4000
= 2000 = 8000 -
£ [£
3 0 = 6000 4
~ -2000 =
2 =
g -4000 ¢ 4000 .
-6000 2000]
-8000 N
-10000 0 DB
0.004 0.008 0.012 0.016 0.02 0.004 0.008 0.012 0.016 0.02
time (sec) time (sec)

Figure 9.21: Diaphragm pump optimization: Qe and Qs times series for the
maximum F5 (top), minimum F; (middle) and reference (bottom) solutions. Black

line corresponds to the mean values. The hatched area signifies the £30 zone.

:

v
177778
133333
0888880
04zes4a
o

Figure 9.22: Diaphragm pump optimization: Instantaneous velocity fields of the

maximum Fj (left), minimum F} (middle) and reference solutions (right). Axes not

in scale.

294 K. D. Samouchos

9.5 Optimization of a Compressor Rotor

In this subsection, the optimization of a compressor rotor is carried out, minimizing
the swirl at its exit. The nodes coordinates constituting the rotor blades stand for
the corresponding design variables. Its experimental investigation was carried out
by Inoue in a low-speed rotating cascade facility [136]. Details of the geometry and
the blading are given in [135].

Inlet boundary conditions are total pressure (1 bar) and total temperature (290 K).
Inlet flow is aligned with the axial direction. At the outlet, the static pressure
is 0.995 bar. The rotating speed is set to 680 rad/s. A fixed uniform mesh of
122 x 122 x 120 cells is used for all time steps and the flow equations discretization is
based on the ghost-cell method explained in section 3.8. Flow simulation terminated
after periodicity is established. Fig. 9.23 shows the compressor’s blades and iso-Mach
contours at two cross-sections along the axial and radial directions, respectively. The
pressure field has been projected on the blades surface and is presented in fig. 9.24.
The resulting contours are quite noisy due to the wall boundary conditions indirect
imposition and errors introduced during the projection process.

The continuous adjoint to the ghost-cell method is implemented to compute the
sensitivity map on the blades’ surface. Its backward in time integration along with
the constant number of cells at each time step enables the iSVD method, presented
in Appendix M, to compress the flow field time series. However, the combination of
the iSVD or SVD with an explicit solver should be avoided due to its inability to
represent the produced flow field accurately. The complication is detected on the
choice of a very small time step for the flow simulation due to stability issues of
the explicit ghost-cell solver. Let M be the matrix in which the field time series
is stored. Although the matrix is never constructed as a whole, the iSVD aims
to decompose it computing its singular values and vectors. However, due to the
small time step choice, minor changes are expected between two successive flow
fields inducing similarities among the columns of M. Therefore, the matrix is ill-
conditioned, causing instability issues to the SVD or iSVD algorithm, significantly
increasing the roundoff errors in the singular values and vectors computation.

The problem mentioned above is surpassed by introducing a slightly different pro-
cedure for flow field compression. According to that, the iSVD algorithm takes into

account the instantaneous flow field every 100 time steps, avoiding the column simi-

9.5. Optimization of a Compressor Rotor 295

larities in M. Thus, the iSVD can provide the corresponding flow field to the adjoint
solver only at every 100 steps. The rest necessary fields are approximated by linear
interpolation. The method’s computational cost is comparable with the cost of the
unsteady flow simulation and is less than the cost of the check-pointing algorithm.

Six optimization cycles were carried out, reducing the objective function by 7%,
fig. 9.25. The sensitivity map computed on the pressure and suction side of the
blade is presented in fig. 9.26, where the blue color indicates the regions pushed
inwards, while the red-colored regions are deformed along the opposite direction.
The derivatives’ magnitude is higher on the blade’s parts closer to the exit, signifying
their major importance for the objective’s minimization. Finally, fig. 9.27 compares
the initial and optimized blades.

Figure 9.23: Compressor Rotor Optimization: Iso-Mach contours around rotor
blades at the mid-step of its operation cycle. Dark blue regions are excluded from
the flow simulation.

296 K. D. Samouchos

Pressure

102000
101067

100133
99200
98266.7
973333
96400
95466.7
94533.3
93600
92666.7
917333
90800
89866.7
88933.3
88000

(b)

Figure 9.24: Compressor Rotor Optimization: Pressure contours on the (a) pressure
and (b) suction side of Inoue’s rotor blades at the mid-step of its operation cycle.

ol . .
1.02
oo IV K

T
0.89 i)
0.98 i)
0.97 \(
0.96
0.85
0.54 l
0.83 |

0 i 2 3 4 5 6
Optimization Cycle

Marmalized Swirl

Figure 9.25: Compressor Rotor Optimization: Adjoint based optimization conver-
gence supported by the iPGD method for swirl minimization at the exit. The
objective function has been decreased by 7% after 6 optimization cycles.

9.5. Optimization of a Compressor Rotor 297

(a) (b)

Figure 9.26: Compressor Rotor Optimization: Sensitivity map on the (a) pressure

and (b) suction side of the blade. Blue and red colors indicate inward and outward
displacements, respectively.

b

Figure 9.27: Compressor Rotor Optimization: Comparison between the background
(red) and optimized (blue) geometry after 6 optimization cycles The blade is mostly
displaced downwards minimizing the swirl at the outlet.

Chapter 10

Closure

The scope of this dissertation was the development of an integrated software for the
CFD-based analysis and optimization in real-world applications concerning steady
flow phenomena and flows around moving geometries. To this end, the cut-cell
method was proposed as a robust and efficient alternative, which allows for an au-
tomated mesh generation around complex geometries, minimizing user intervention.
In addition, the development of the continuous and discrete adjoint methods in
Cartesian meshes offered a versatile computational tool for optimizing the shape of
industrial products, which removes the limitations introduced by conventional body-
conforming approaches. Section 10.1 summarizes the research presented throughout
this Ph.D. thesis and section 10.2 describes its main concluding remarks. Sections
10.3 and 10.4 outline the novel contributions of this thesis in the scientific field of
IBMs and adjoint methods. Finally, suggestions for future work are proposed in

section 10.5.

10.1 Summary

The core of this Ph.D. thesis and the basis for any additionally developed tool is
the mesh generation which is appropriate for the cut-cell method. The proposed
algorithm is based on an octree data structure and starts by defining the tree’s
root cell, which coincides with the computational domain. Then, the root cell is
isotropically subdivided into 4 (in 2D) or 8 (in 3D) offspring cells. The algorithm

298

10.1. Summary 299

proceeds by repetitively splitting cells, guided by the presence of the immersed
geometry, giving rise to new generations of cells. During the mesh generation, the
maximum refinement level difference between neighboring cells is limited to one.
Therefore, the division of intersected cells quickly propagates through the mesh,
affecting cells far from the wall. The process continues until predefined criteria
related to the cells’ size are met. Thereafter, the mesh quality is increased by
smoothing its resolution from dense regions, in the vicinity of the solid boundary,
to coarser areas in the far-field, increasing the accuracy of the flow simulations.

A structured mesh indexing was introduced to identify each cell efficiently. This
information was used to detect the parent and offspring of each cell in the tree-
like hierarchy and compute its dimensions and centroid. These data are part of the
proposed data structure, which exploits the flexibility of a face-based data structure,
commonly used in unstructured meshes, and takes advantage of the unique nature of
Cartesian meshes leading to a highly compact data set. Thus, the time-consuming,
repetitive traversal of a considerable part of the tree was avoided. Algorithms for
fast neighbor detection, mesh connectivity computation, and solid cells identification

were also programmed and incorporated into the software.

Moreover, a robust algorithm for computing the intersection between the Cartesian
mesh and an arbitrary geometry was developed. The proposed method was based
on the Sutherland-Hodgman clipping algorithm, but it was considerably extended
to accommodate the needs of the flow-solver and post-processor. Subsequently,
the developed method’s capabilities were demonstrated on various cases, considered
demanding by most mesh generators due to their high complexity. Examples of
Cartesian cells intersected in multiple regions or split into more than one finite

volumes were given.

In addition, this thesis dealt with the so-called “small cell problem” by following
a cell merging technique, which alleviates numerical instabilities during the flow
solution caused by the considerable difference in size between adjacent cut-cells.
According to this approach, one or more small cut-cells were geometrically merged
with a larger neighbor creating a hyper-cell, which was treated as a regular cell,
significantly simplifying the structure of the flow solver. Furthermore, a mesh par-
titioning technique was delivered based on the Hilbert space-filling curve to solve
the governing equations in a multi-processor system. The presented algorithm was
a 3D extension of 2D approaches found in the literature.

300 K. D. Samouchos

Moreover, the discretization of the compressible and incompressible flow equations
in a Cartesian mesh was explained in detail. The presented numerical scheme ben-
efited from the Cartesian mesh structure and adjusted to the complex geometry of
cut-cells. It is based on a cell-centered, second-order finite volume approach em-
ploying the MUSCL scheme. The Roe’s approximate Riemann solver was used to
compute inviscid fluxes, and second-order accuracy was attained by extrapolating
the flow variables at mesh faces conforming to the Taylor series expansion. The
required gradients of the flow variables were computed through the least squares
technique. The viscous flux between cells of different refinement levels was modified
by employing orthogonal correction. Finally, the artificial compressibility method

was applied to solve the incompressible flow equations.

This thesis also presented methods for predicting unsteady flows around imperme-
able moving boundaries within fixed Cartesian meshes. The time integration was
based on an Arbitrary Lagrangian-Eulerian approach facilitated by a dual time step-
ping method which allowed for relatively large time steps, reducing the wall clock
time of the simulation. At each time step, the mesh was re-adapted to the displaced
immersed boundary, keeping track of its motion. Thus, regions close to the geom-
etry’s previous position were coarsened, and cells in the vicinity of the displaced
wall were split anew, increasing the flow simulation’s accuracy. At each time step,
the necessary extrapolation of the flow solution to the subsequent mesh was taking
advantage of the developed tree data structure, and thus, the flow solver’s efficiency

was not affected.

However, the displaced fluid-solid interface usually covers Cartesian cells changing
their nature from fluid to solid and vice-versa. These transitions act like spurious
sources or sinks, generating artificial oscillations traveling throughout the flow field
and deteriorating the flow solution. Thus, this thesis proposed a novel cell linking
method that mimics and improves the merging technique. In particular, each solid-
ified cell was transferring its flow variables into a neighboring cell, which continued
to exist at the next time step. The opposite process was followed for newly ap-
peared cells in the fluid part of the mesh, equipping them with the appropriate time
history that ensures smooth time integration. Therefore, strict flow conservation
was maintained even for large boundary displacements, retaining the flow solver’s
efficiency.

10.1. Summary 301

Subsequently, this thesis developed a ghost-cell method for steady and unsteady
flows, which proved more robust and simpler to implement but not as accurate
compared to the cut-cell method. More specifically, the intersection between the im-
mersed geometry and the mesh was not explicitly detected, allowing for the straight-
forward treatment of complex moving geometries. Instead, the presence of the solid
wall within the flow field was expressed by the Signed Distance Function. Thus, the
flow boundary conditions along the wall were indirectly imposed by solving an addi-
tional PDE for each primitive variable field in a thin layer of solid cells close to the
fluid-solid interface. An investigation of the method’s ability to satisfy conservation

was presented, verifying the superiority of the cut-cell method in terms of accuracy.

Concerning shape optimization, the conjugate gradient method was used to ex-
plore the design space. Both the continuous and discrete adjoint formulations were
employed to compute the derivatives of the objective function w.r.t. the design vari-
ables. In particular, the continuous adjoint method was introduced to the cut-cell
and the ghost-cell methods for the first time in the literature. The adjoint ghost-
cell software was developed in a GPU-based environment. The differentiation of the
compressible and incompressible governing PDEs was described in detail resulting in
the adjoint PDEs and the accompanied boundary conditions and sensitivity deriva-
tives. Moreover, the adjoint Riemann problem was defined, and different solution
approximations were adopted to build equal in number discretization schemes. The
proposed adjoint schemes were equivalent to the FVS, HLLC, and Roe’s Riemann
solvers. Subsequently, the unsteady variant of the adjoint method was studied, and
its backward in time integration was discussed. Data compression techniques were
proposed to alleviate the increased demand for memory resources.

Moreover, the discrete adjoint formulation to the cut-cell method was also devel-
oped. Hand-differentiation was applied to both the compressible and incompressible
solvers for steady and unsteady viscous flows. During the differentiation process,
no simplifications were introduced, resulting in the exact discrete adjoint expres-
sions and the accurate computation of the objective’s gradient. In addition, a new
mathematical notation was introduced, which allowed for a compact presentation of
the discrete adjoint expressions. Furthermore, attention was paid to techniques for

developing the corresponding adjoint software in a parallel processing environment.

This thesis also focused on properly treating the discrete adjoint time integration,
especially in cases including moving geometries. That study proved that the adjoint
field extrapolation to the mesh of the next time step should not follow the rules

302 K. D. Samouchos

applied to the flow problem. Instead, alternative schemes were developed capable
of computing the exact sensitivity derivatives. Additionally, the proper differen-
tiation of algorithms treating the appearance and disappearance of cells from the
fluid domain was demonstrated. Finally, filtering was implemented to eliminate the
high-frequency signals from the derived sensitivity map, resulting in smooth-shaped

optimized geometries.

Subsequently, the cut-cell mesh generator was differentiated w.r.t. the design vari-
ables resulting in the geometric sensitivities required for the objective’s gradient
computation. More specifically, the mathematical development concerned the dif-
ferentiation of every geometric quantity included in the flow equations’ discrete
form. In addition, this approach incorporated the differentiation of the cut-cells’
construction, highlighting the difference between the present method and the rest
of conventional body-fitted approaches.

Finally, the developed computational tools for low analysis and gradient-based op-
timization were assessed in detail. Experimental and numerical data were used for
the flow solvers’ validation/verification, and FDs were employed to ascertain the
accuracy of the adjoint software. Moreover, a series of applications confirmed the

ability of the aforementioned tools to deal with challenging industrial problems.

10.2 Concluding Remarks

This dissertation contributed to the need for fully automated and reliable compu-
tational tools employed for the analysis and optimization of practical applications.
Its main concluding remarks are shortly presented. Initiating from the mesh gener-
ation, the proposed method minimizes the user intervention, automatically adapts
the mesh in the vicinity of stationary or moving walls, and supports the flow solver
providing solution-based refined meshes upon complex domains. Furthermore, de-
tailed comparisons with experimental data assessed its ability to ensure the validity
of conservation laws, retaining the flow solution’s accuracy. Additional verification
in unsteady applications proved its ability to successfully deal with covered and

uncovered by the solid geometry cells, even for large boundary displacements.

10.2. Concluding Remarks 303

The implementation of the artificial compressibility method was combined with the
compressible flow solver resulting in a versatile software appropriate for all flow
regimes. Its exhaustive assessment in internal and external, inviscid and laminar
flows indicated the ability of the cut-cell approach to deliver realistic flow solutions,
the accuracy of which is comparable to those obtained by body-conforming meshes.
In the case of laminar flows, this study demonstrated that although simplicity of
mesh generation comes at the cost of a non-aligned mesh on the wall, cut-cells’ irreg-
ularities do not harm the accurate representation of the developed boundary layer.
The presented results showed good agreement with experimental measurements and
data provided by conventional CFD approaches.

Subsequently, the advantageous performance of the cut-cell method was exploited in
a series of applications involving complex moving geometries of industrial interest.
In particular, the flow simulation inside a valved duct indicated the method’s superi-
ority since it successfully handled the large displacement of the butterfly valve from
the fully open to its closed position, avoiding mesh morphing techniques. A more
challenging application was the flow simulation inside a scroll expander, and espe-
cially within the tight gap between the stationary and moving spirals of the machine.
The flow solver’s ability to maintain strict conservation was successfully tested in
the case of the valveless diaphragm micropump, where the diaphragm was intensely
deformed, covering and uncovering a significant number of cells at each time step.
Finally, the flow simulation within an electrical submersible pump stage introduced
the cut-cell method as an effective alternative to the Multiple Reference Frame, the
Sliding Mesh, or other approaches dealing with the rotor-stator interaction problem.

The implementation of the adjoint theory to the cut-cell framework created an ef-
fective optimization tool overcoming mesh generation barriers. Contrary to the
body-conforming approaches, the mesh deformation triggered by the geometry’s
shape modification was avoided, preventing the premature breakdown of the opti-
mization loop. The Cartesian mesh restricted the mesh perturbation to the cut-cell
zone, reducing the sensitivity derivatives computational cost and accelerating the
optimization process. The adjoint compressible and incompressible flow solver was
assessed by comparing the computed objective’s gradient with FDs, resulting in al-
most zero deviations in cases involving stationary or moving solid bodies. Finally,
the proposed post-processing of the sensitivity map successfully eliminated its high-
frequency signals providing smooth-shaped optimized geometries in all the presented

applications.

304 K. D. Samouchos

The high performance of the adjoint cut-cell software was confirmed through its
implementation in several industrial applications, including the total pressure losses
minimization of an S-shaped duct, the lift maximization of a wing, and the outlet
tangential velocity minimization in a submersible pump. In all cases, the developed
software proposed optimized solutions of adequately improved performance. Fi-
nally, the multi-objective optimization under uncertainties of a valveless diaphragm
micropump incorporated additional strategies to the optimization loop. More specif-
ically, the Polynomial Chaos Expansion implementation effectively reduced the com-
putational cost of each evaluation, and the introduction of the proposed gradient-
based method in the EASY platform [1] drove the optimization faster to the mini-

muin.

10.3 Novel Contributions

This Ph.D. thesis has contributed to the scientific fields of IBMs and adjoint meth-
ods, developing original computational tools and implementing them in real-world

applications. The main novelties of this research are summarized below.

A new mesh data structure was proposed, which combines the beneficial fea-
tures of CSAMR [144] and face-based structures. The new data structure
contributes to the flow solver’s low memory footprint by storing a compact
data set. Moreover, it reduces the computational cost of the simulation by
offering direct cell-to-cell and face-to-cell mappings.

e An integrated method for the accurate cut-cell construction was proposed. The
corresponding algorithm was based on previously published works [6], but it
was significantly extended to compute more topological data, facilitating the
flow solver and the post-processor. The final algorithm is robust enough to
handle all possible mesh-geometry intersections, including the Cartesian cell

separation into more than one finite volumes.

e An alternative algorithm for generating cut-cells was suggested, which simpli-
fies their construction, and thus, it is very efficient, easy to develop, and allows
for a compact data structure.

e A new cell-merging method was presented, which combines clusters of cells to

create hyper-volumes in 3D meshes. Although various cell-merging techniques

10.3.

Novel Contributions 305

have already been proposed [340], the newly presented method takes additional
mesh quality criteria under consideration, increasing the stability of the flow

solver.

The partitioner for 2D Cartesian meshes presented in [147] was extended to
3D cases, preserving its effectiveness by exploiting the unique features of the
Hilbert space-filling curve.

A new cell-linking algorithm was proposed, which deals with covered and un-
covered cells due to the motion of solid bodies upon a stationary Cartesian
mesh. The method was validated and used in challenging applications where

large boundary displacements occur.

During this thesis, the cut-cell method was introduced to applications, for
which the CFD-based analysis is pretty rare due to their high complexity. In
particular, it was used for the flow simulation within a scroll expander and an

Electrical Submersible Pump stage.

The continuous adjoint to the cut-cell and ghost-cell methods were presented
for the first time in the literature and applied for 3D unsteady problems of

inviscid flows.

A theoretical investigation was presented about the continuous adjoint coun-
terparts of the FVS, HLLC, and Roe’s discretization schemes.

The discrete adjoint to the cut-cell method for unsteady and viscous flow
phenomena was first presented in this thesis. Although other relevant works
have been published, they are restricted to the study of inviscid steady flows.

The increased demand for computational memory during the unsteady adjoint
PDEs’ solution was treated using memory reduction based on the incremen-
tal SVD and PGD methods. In particular, the present thesis adopted these
methods from relevant works [323], [236], and combined them with the cut-cell
and ghost-cell adjoint solvers generating novel and cost-effective optimization
tools.

306 K. D. Samouchos

10.4 List of Publications

Journal Articles:

e Y.-P. Vrionis, K. Samouchos, K. Giannakoglou. Topology Optimization in
Fluid Mechanics Using Continuous Adjoint and the Cut-cell Method. Com-
puters and Mathematics with Applications, 97:286-297, 2021.

e Y.-P. Vrionis, K. Samouchos, K. Giannakoglou. The Continuous Adjoint Cut-
Cell Method for Shape Optimization in Cavitating Flows. Computers & Flu-
ids, 224:104974, 2021.

e D. Kapsoulis, K. Samouchos, X. Trompoukis, K. Giannakoglou. Hybrid Op-
timization of a Valveless Diaphragm Micropump Using the Cut-Cell Method.
Journal of Mechanics Engineering and Automation, 9:120-127, 2019.

e D. Kapsoulis, K. Samouchos, X. Trompoukis, K. Giannakoglou. Optimization
under uncertainties of a valveless diaphragm pump Using the cut-cell method.

The International Journal of Engineering and Science, 8(8):7-14, 2019.

Peer-Reviewed Conference Papers:

e K. Samouchos, D. Kapsoulis, X. Trompoukis, K. Giannakoglou. Shape Op-
timization of 3D Diaphragm Pumps Using the Continuous Adjoint Approach
to the Cut-Cell Method. 10th International Conference on Computational
Methods (ICCM2019), Singapore, July 9-13, 2019.

e Y.-P. Vrionis, K. Samouchos, K. Giannakoglou. Implementation of a Conser-
vative Cut-Cell Method for the Simulation of Two-Phase Cavitating Flows.
10th International Conference on Computational Methods (ICCM 2019), Sin-
gapore, July 9-13, 2019.

e D. Kapsoulis, K. Samouchos, X. Trompoukis, K. Giannakoglou. Design-
Optimization of a Valveless Diaphragm Micropump under Uncertainties Using
Evolutionary Algorithms. International Conference on Adaptive Modeling and
Simulation (ADMOS), El Campello, Spain, May 27-29, 2019.

e K. Samouchos, D. Kapsoulis, X. Trompoukis, K. Giannakoglou. Design of a
Diaphragm Pump under Uncertainties Using the Continuous Adjoint to the

10.5. Future Work Recommendations 307

Cut-Cell Method. 6th European Conference on Computational Mechanics
(ECCM 6) - 7th European Conference on Computational Fluid Dynamics
(ECFD 7), Glasgow, UK, June 11-15, 2018.

e V. Papageorgiou, K. Samouchos, K. Giannakoglou. The Unsteady Continuous
Adjoint Method Assisted by the Proper Generalized Method. EUROGEN
2017, International Conference on Evolutionary and Deterministic Methods for
Design, Optimization and Control with Applications to Industrial and Societal
Problems, Madrid, Spain, September 13-15, 2017.

e K. Samouchos, S. Katsanoulis, K. Giannakoglou. Unsteady Adjoint to the
Cut-Cell Method Using Mesh Adaptation on GPU’s. ECCOMAS Congress
2016, VII European Congress on Computational Methods in Applied Sciences
and Engineering, Crete island, Greece, June 5-10, 2016.

Invited Lectures:

e K. Giannakoglou , E. Papoutsis-Kiachagias, K. Gkaragkounis, K. Samouchos,
C. Vezyris, J. Koch. The Continuous Adjoint Method in Aerodynamic Opti-
mization. von Karman Institute Lectures Series on Introduction to Optimiza-
tion and Multidisciplinary Design, September 23-27, 2018.

10.5 Future Work Recommendations

This dissertation indicated the potential of the cut-cell method for flow analysis
and optimization in challenging applications. Its novel contribution to these fields
smoothed the path for further developments. Various recommendations for future
research are exposed below.

A reasonable extension of the current work is its application to problems concerning
turbulent flows. In such cases, a much larger mesh is usually needed to predict
the boundary layer correctly, which considerably increases the simulation’s compu-
tational cost. A remedy to this problem is the anisotropic cell subdivision during
the mesh generation offering improved flexibility especially close to the solid bound-
ary, where flattened cells are preferred. Other approaches change the discretization

scheme close to the wall achieving reliable flow simulations in coarser meshes. Such

308 K. D. Samouchos

a method places small line segments perpendicular to the wall and uses them to
accurately compute normal derivatives on the wall [36]. Therefore, it mitigates local
mesh irregularities, delivering smoother skin friction distributions along the solid
boundaries.

The accuracy of unsteady flow simulations can be increased by combining Cartesian
and structured meshes. According to that method, a body-conforming structured
mesh is embodied around the moving geometry, following its motion upon a station-
ary background Cartesian mesh. Then, cells covered or uncovered by the structured
mesh can be treated as explained in section 2.8. This method can further be im-
proved by taking the flow field from the structured mesh into account to properly
define the time history for these irregular cut-cells. Alternative approaches to this
issue can be developed based on the space-time integration of the flow equations in
4D cells [219].

The continuous adjoint to the cut-cell method may be extended to turbulent flows by
solving the RANS equations. Differentiating the turbulence model is suggested lead-
ing to the formulation of its adjoint counterpart [327]. This study is in progress in
a Ph.D. thesis [325] carried out in PCOpt/LTT. The same Ph.D. thesis investigates
the extension of the continuous adjoint to multi-phase flows in a cut-cell framework,
where the homogeneous mixture model is employed to predict cavitating flows [326].

A valuable study on the discrete adjoint method concerns the development of strate-
gies to reduce its relatively high memory requirements. Although a plethora of re-
search has already been performed in approaches based on body-conforming meshes,
none relevant work has been published yet about the effect of Cartesian meshes on
the discrete equations and, consequently, to the computational memory usage. This
can be achieved by assessing the impact of terms comprising the adjoint equations
and the sensitivity derivatives expression on the accuracy of the objective function
gradient. Hence, the less critical terms can be discarded in similar cases balancing

accuracy and memory shavings.

Finally, an interesting field of research concerns reducing the significant storage
requirements of unsteady adjoint due to its backward integration in time. Among
various existing methods, this thesis adopted the SVD and PGD algorithms to
compress data to be stored. An extension to this study would be the combination
of these methods with other approaches such as the check-pointing technique [329].
Relevant research [192] conducted in PCOpt/LTT proposes the hybridization of

10.5. Future Work Recommendations 309

PGD and the ZFP compression library [182]. However, a decisive step forward
would be defining an alternative adjoint problem governed by PDEs that could be
solved forward in time and simultaneously with the flow equations, significantly
reducing the memory and computational cost of the current approaches.

Appendix A

Identification of Cells in an Octree
Data Structure

The mesh generator developed in this thesis is based on an octree data structure.
According to subsection 2.2.2, the position of a cell in the tree is uniquely defined
by the integer coordinates (i, j, k) or the index I D given by eq. 2.6. This Appendix
proves this relation and ensures the unique bidirectional match of each cell to a
single index I D for any developed octree.

Each level L of an octree, defined by eq. 2.3, represents a uniform 3D Cartesian
mesh constituted by 2% cells in each direction. Depending on the application, a
different subset of these cells participates in the mesh generation process. However,
the cell indexing by I D considers that all cells are used and need identification. Its
computation is assisted by a local enumerator ID ranging at each level from 0 to
2L % 28 x 2% — 1. Then,

ID =1ID+ C(L) (A.1)

where C'(L) is the total number of cells constituting levels from 0 to L — 1.

Similarly, a local structured grid indexing <E,j, l%) is introduced as

;=1q—2F
j=j—2"
k=Fk— 2k

310

311

where 2% is the minimum value of 4, j, and k at each level. Then,

ID = 2LoLk 4+ 285 43
=228 (k—2%) + 2% (j —2%) + (i — 2") (A.2)

implying that ID € [O, 230 1}. Moreover, I D continuously increases from each
level to the next one, avoiding jumps in the cells’ numbering. Therefore,

IDpoz(L) = IDpin (L +1) — 1 &
IDpaw(L) + C(L) = IDpin(L + 1) + C(L+1) — 1 &
C(L+1)=C(L)+ 2% (A.3)
By definition, I D is zero for the root cell, and thus,
IDpin(0) = 0 < IDyin(0) + C(0) = 0 < C(0) =0 (A.4)

Eqgs. A.3 and A.4 imply that

& 8L —1
C(L)y=> 2% = - (A.5)
=1

Finally, by substituting eqs. A.2 and A.5 to eq. A.1, the following relation arises,

ID:4L(k—1)+2L(j—1)+(i—1)—g(8L—1)

Appendix B

Fast Cut-Cell Construction

The treatment of the Cartesian mesh intersection by the geometry’s surface is the
most challenging task of the mesh generation process. Section 2.4 presents a method
to accurately detect the fluid-solid interface and construct the corresponding cut-
cells discarding their solid part. However, such methods are pretty complicated,
and thus, are avoided by a significant number of researchers [57], [123], [110], [218].
Instead, simplified methods are preferred, which locally change the geometry’s shape
to facilitate the creation of cut-cells. This appendix proposes an approach in its 2D
version, which allows for straightforward software development with low memory

requirements.

Fig. B.1 shows a Cartesian cell in black, which is intersected by the solid blue
boundary. The resulting cut-cell, computed by the method suggested in section 2.4,
is gray shaded. According to a common simplification found in the literature, the
red line segment replaces the actual solid boundary. This line connects the two
intersection points, shown in the exact figure, and represents the only edge adjacent
to the wall, converting the cut-cell’s shape to a triangle. This modification allows
exclusively triangular, quadrilateral or pentagonal cut-cells to appear, significantly
simplifying the mesh data structure.

The proposed method handles all these shapes consistently by introducing a set of
four variables ¢; for each cut-cell, where i indicates the vertices of the intersected
quadrilateral. It is defined as the signed distance of each vertex from the newly
defined solid segment. This information determines the shape of the cut-cell and
is used to compute all geometrical data required by the flow solver. The method’s

312

313

implementation is straightforward and significantly reduces the memory usage by
storing just the ¢; variables and computing the rest geometric quantities on the fly
during the flow simulation. Moreover, it can upgrade other IBMs, like the ghost
cell method, that already use the Signed Distance Function (SDF) in their imple-
mentation. In particular, a better representation of the solid boundary can easily
be achieved by approximating the ¢; variables by the SDF and then applying the
proposed method to introduce the cut-cells effect to the flow solution, increasing its
accuracy.

Figure B.1: A squared Cartesian cell in black is intersected by the solid blue bound-
ary. The gray shaded area depicts the cut-cell resulting from the method followed in
this thesis and presented in section 2.4. The red segment represents the geometry’s
reformation after applying the simplification suggested in this Appendix.

Hereafter, the mathematical formulation of the developed method is presented.
Firstly, a local numbering of the cell’s vertices and edges is introduced in fig. B.2a.
The cell’s length at each dimension is Az and Ay. Furthermore, ¢; is considered
positive for vertices located in the solid region of the mesh and negative for the rest.
In the example of fig. B.2b, the red line demonstrates the location of the fluid-solid
interface, and its distance from vertices vy and vy is ¢g= —]5 — Up| and ¢ = \cf — 1,
respectively. Moreover, point a indicates its intersection with the square’s edge, and
s is the unit vector, normal to the solid edge.

Additionally, a new variable r; is introduced at each edge ¢, defined as the ratio
of the edge’s fluid part to its total length. It is computed by using the similarity

314 K. D. Samouchos

relation between triangles (@) and (tov1c), which reads

roAx — o |¢0|

= &Sry=—1"

Az ¢ — ¢o]+ 1ol

In an arbitrary edge defined by vertices v and v,, ratio 7. is computed as

. _ |min{o,, 03] + [min{é., 0}
h (@] + 16

(B.1)

Furthermore, the triangle (vovie) of fig. B.2b is used to compute the first component
of 75 as ng, =cos(w)=(¢1 — ¢o)/Az. Similarly, in an arbitrarily intersected cell, it
can be proved that

(1= Po P2 — o
ns—(Ar 7 Ay) (B.2)
2 3
3
1 2
0 : /
0 1 R - "
-Po\ b
N,
(%)
C

(a) (b)

Figure B.2: (a) Local enumeration of the cell’s nodes and edges. (b) A Cartesian
cell is cut by the boundary of a solid body depicted by a straight red line. The
geometric construction in the cell’s bottom is used to compute the ratio r; of each
edge and the unit vector 7.

The length As of the solid edge is computed by using the relation

/ﬁdszﬁ

315

where c is the cell’s boundary curve and 7 stands for the unit normal vector along

the curve. The relation gives two equivalent ways for its computation,

o — 71

HAA, |1 — ¢o| > €
As = (B.3)
s — 70|
173 7 70l A 4 _
B =gy b 12— ol >

where AA=AxzAy and € is a small user-defined number.

The cut-cell’s area is computed by firstly defining vector w as the centroid of the
quadrilateral of the background mesh. Its wall distance is

Then, the cut-cell is divided into triangles defined by their common vertex w and
each of the cut-cell’s edges. The area A, of the triangle whose base coincides with
the solid face is 0.5As¢,. For the rest triangles, the following relation holds,

1
Ai:ZriAA, Z:1,74
Their sum gives the total cut-cell area,
1, < 1, <
A= ZAA i:EO ry — gAS i:EO (b’t <B4>

Similarly, the area’s projection to each dimension is

A, = max{ry,r3}Ax
{ro,rs} (B.5)
A, = max{ry,r.} Ay

The midpoint Zf of each edge i is computed as the arithmetic mean of its boundary

vertices and is expressed w.r.t. a Cartesian coordinate system, the origin of which

316 K. D. Samouchos

is located at point &J,

T = %(soroAx ., —Ay)

Ty = %(—Ax | soriAy) (B.6)
5 = %(Ax | $1m9AY) '
s %(827‘3AJZ , Ay)

where s; is the sign of ¢;. The midpoint coordinates of the solid edge are computed

by the formulas
A= /(33,0) - nds = /(O,y) - 1ds

which indicate that

(1 T+ T2
A— AA s | >
o nslAs(2)’ Ins,] > €
0, otherwise
(A o T?’AA) L Ing| > e
Y = { Ns,As 2
W otherwise

Finally, the aforementioned triangulation is used to compute the cut-cell’s centroid
¢, which equals the weighted average of the triangles’ centroids,

where Z; are the centroids of the triangles adjacent to the Cartesian edge i and #*
is the centroid of the triangle adjacent to the solid face. Therefore,

3 3
—c 11 —e 1 —e
7= BAA ZEO (r;@f) — gAsxs ZEO o (B.8)

Consequently, the set of equations from B.1 to B.8 comprise a valuable tool to
compute all the necessary geometric variables of a cut-cell by only storing the four ¢;
variables. Moreover, they are valid for any cut-cell constructed under the discussed
simplification, avoiding the time-consuming process of testing each intersection case

separately.

However, these benefits come at the cost of an inaccurate boundary representation,

questioning the proper imposition of the no-penetration and/or no-slip flow condi-

317

tions. Indeed, the newly defined solid edge may not effectively reproduce the wall’s
impact on the flow, particularly close to high curvature boundaries. In this case,
local mesh refinement is required to assure the simulation’s accuracy. Therefore, the
method presented in section 2.4 should be used whenever higher priority is given
to the accuracy of the flow simulation than to the complexity of the developed
software.

Appendix C

Optimal Value of the Artificial

Compressibility Parameter

This Appendix presents the mathematical analysis which leads to the expression giv-
ing the optimal artificial compressibility parameter 8 in terms of numerical stability.
This parameter is a positive real number and is used in the artificial compressibility
approach for the incompressible flow equations discretization shown in section 3.5.
According to this method the steady inviscid incompressible PDEs are

Vi Of .
=0, =1,---,4, k=1,---,3

or o '

where
b 521}1@
V- U1 ’ .]El; _ | vk + 01D

() VoV + Ogkp
U3 V3V + Ogip

For more details the reader is referred to sections 3.4 and 3.5. Jacobian matrices

v,

over each direction are defined
A, =

318

319

The Jacobian characterizing the 1D Riemann problem along the 7 direction is

2 2 2
0 By By B*ns
ny v + Un, V19 vins

Agny, =
1o VoM VaNg + vy, VMg
ng V3N V3MNg U3N3 + Uy

where v, = vpng. Its eigenvalues are w,, u,, u,+c and u, —c with ¢ =y/v2 + 2.
Three distinctive variables are defined

Al = Uy + €= Uy + |uy|€
)\QIU/n

)\3:un—C:un—|un|€

2
-
Unp,

where u,, is considered different from zero. Apparently, £ > 1. The optimal 5 choice

with

is the one that minimizes the largest ratio of wave speeds. Thus, the function to be

minimized is
Ai

Aj

Hence, the maximum and minimum absolute eigenvalues should be found for every

)\.
7 — mar |2 | = mazlAi

u,. Three cases are considered depending on the normal velocity’s sign.

Case 1: u, >0

The three eigenvalues are Ay =u,(14¢), Aa=wu,, and \3=wu,(1 —¢). Their minimum
and maximum absolute values should be found. It will be shown that |A;]| is greater
than || and |\,

A1) > [Nl @ u(1+€) >u, < E>0
which is true. Also,

A1 > A3l @ u(1+8) > —u(l1-¢) < 1> -1

320 K. D. Samouchos

Therefore, maz|\;|=\;. Subsequently, the relation between |Ao| and || is tested,
Ao| > | N3] @ up > —u,(1—§) & €< 2

Hence,

min|\;| =
—/\3 €< 2

Consequently, the function to be minimized is

e §+1 £22
& oe<2

F ' is continuous, decreasing for every £ € (1, 2] and increasing for every & € (2, 400].
Therefore, it achieves its minimum at £ =2. The corresponding optimal [value is
computed from ¢ definition

2
1+ (—) =2 B2 =3u2 (C.1)

n

Case 2: u, <0

The three eigenvalues are A\ =u,(1 — &), Ao =u, and A3 =u,(1 + &). By following
the same process as in the previous case, max|\;| =3 and

, Ay §22
min|\;| =
—/\1 §< 2

The function to be minimized is again

o E+1 €22
& oe<2

which achieves its minimum at £ =2. Thus, the optimal § value is

B8 = 3u? (C.2)

321

Case 3: u, =0

In this case £ is not defined and the three eigenvalues are

)\1:Un+C:ﬁ
A =0
AM=u,—c=-—p0

Thus, mazx|X\;| = Ay and min|\;| = Ay meaning that F' is not defined. In or-
der to reduce the spread of wave speeds created from discontinuities, the pseudo-
compressibility parameter should be equal to a very small positive number, namely

p=c¢ (C.3)

Subsequently, by combining eqs. C.1, C.2 and C.3 one concludes that
B = mazx(V3|uy)|, € (C.4)

which is in agreement with eq. 3.32.

Appendix D

The Compressible and

Incompressible Jacobian Matrices

According to chapter 3, the Jacobian matrix, defined by eq. 3.6, plays an essential
role in discretizing the flow and adjoint equations. In particular, this matrix and its
diagonalized form accompanies Roe’s approximate Riemann solver and its adjoint
counterpart, implemented in this thesis. Therefore, this Appendix presents the
mathematical formulas for the compressible and incompressible Jacobian matrices,
as well as the matrices comprising the corresponding eigenvalues and eigenvectors.

Furthermore, the notation used below is explained in section 3.1.

Initially, the Jacobian matrix A, at each Cartesian direction k is

0 1 0 0 0
—u? +4[0]* /2 (3=7)u —Jv —Aw F
A= —uv v U 0 01,
—Uw w 0 U 0
[—u(yE = A[0P) 7B - A(|01?/2+u®) —Fou —Fwu yu
[0 0 1 0 0]
—vU v U 0 0
Ay = | o +40012/2 —Au (83— w4,
—vw 0 w v 0
| —v(vE = A0?) —Auv vE = 4(|[0]?/2 +v*) —Awv yu]

322

323

i 0 0 0 1 0]
—wu w 0 0
As = — WV 0 w v 0
I R T (3w 5
—w(vE = A0?) —Auw —Avw v E = 5(|0/2 +w?) qw]

where U= (u,v,w) is the velocity vector and 5=+~ — 1.

Matrix A,, = Agn;, stands for the Jacobian matrix along an arbitrary direction defined
by the unit normal vector 7. Its diagonalized form is A, = PAP~! where

Un
Up,
A = /UTL b
Up +C
[Un — €]
[ny %) ns é é i
uny ung — pnz ung + png Cu+ pny cu — pny
P = |uny+ pns UNa vng — pny Cv 4+ png Cv — png |,
wny — png wng + png wng cw + pn3 cw — png
i aq as as chy + pvy, chy — poy, |
and
i by uryny Urang + TiMs Wrang — riNg —Tan |
ba UT9Ny — T1N3 VTN WraNg + riny —ToNg
Pil = b3 urong -+ T1Mn3 Vra9Ng — 11Ny WTroNg —Tong
r3|0]?/2 — v, Ting — urs TNy — UT3 N3 — Wrs T3
|73|0)%/2 + rv, —ring —urs —ring —urs —ring — wrs rs |

Additionally, v, =01, p=p/2, ¢=p/c, 1=1/p, ra=4/c*, r3=4/(pc), and

n+p(0xn),

, —1 1

b= 1—LM2)ﬁ——(Uxﬁ)
2 Y

Similarly, the preconditioned Jacobian matrix AL for incompressible flows, defined

324 K. D. Samouchos

by eq. 3.29, is
0 B2 0 0 00 8 0 00 0 p?
1 2u 0 O 0O v u O 0O w 0 wu
A{ — ’ Ag — , Ag =
v uw 0 1 0 2v 0O 0 0 w w
0 0 u 0 0 w v 1 0 0 2w

The diagonalization of AL = Aln; implies AL = PTAT (PF)_l, where
T
AV = v, v, v,+¢ vn—é} ,

0 O c —C

ti 2 ng4us; ng+ usy

ty 2 ny+wvsy g+ vsy

t 13 nz+ws; ng+wsy

and

t2x0)-n/e ts ti

Txth)-a/E P t2 t2
C—vn)/(2¢%) /2 N2/2 D3/2

—(E+va)/(2¢%) M1/2 Tig/2 M3/2

Vectors t' and t2 are defined such that the set {t',£2 A} forms an orthonormal
basis of R®. Its orientation is dictated by the relation ¢ x 2 =7. Moreover, the
artificial sound speed ¢ is defined by eq. 3.33. Finally, the temporary variables used
in the above expressions are

Up + C U, — C

S1 = 62) So = ﬁ2
and
n =\,
71 271 | Yn o
th =N\ +6—2(t x T),
= ,U’Vl — g
=X+ 2 (Txth)
c

where A=p/¢.

Appendix E

Approximate Riemann Solver of
Roe

The purpose of this Appendix is to present the mathematical development leading to
the final expression of the Roe scheme, which is one of the best-known approximate
Riemann solvers used by the Godunov discretization method. The proof is partly
based on [306]. Riemann’s problem mathematical expression for the unsteady 3D
Euler equations is presented below. The equations are

oU; N of;
ot ox

-0 i=1,---,N (E.1)

Ul <0
UR >0

where the system of N x N PDEs is conservative, hyperbolic and non-linear. U is
the vector of conservative variables and f is the flux. The Jacobian matrix A((j) is

introduced as

Ofi
Ai' =
T oU;
and is used to rewrite the system of PDEs in a non-conservative form as
ou; df; ou; of; oU; oU; oU;
: = o 0 L+ AL =0
ot oz ot v, ox ot iy

where repetitive indices imply summation. On the other hand, the summation

symbol will be used only in case the summation lower and upper limits should be

325

326 K. D. Samouchos

explicitly mentioned. Although the Riemann problem analytical solution is avail-
able, it is computationally costly. On the contrary, the Riemann problem solution of
a linear PDEs’ system is relatively simpler and numerically faster. Therefore, Roe’s
approach intends to exactly solve an approximate linear Riemann problem. It arises
by replacing Jacobian matrix A(U) with the new constant matrix A(UL, UR),

ou; - oU; .
8t —+ Awa_x] :O 1,] = 1, L ,N (E2)
~ Ul 2<0
Ui ,t:O = !
(@) {UZ-R x>0

where U stands for the exact solution of the approximate Riemann problem. Ac-
cording to Roe’s approach, the new Jacobian matrix satisfies three requirements.
Firstly, the new system of equations should retain hyperbolicity, meaning that A
should have N real eigenvalues and a corresponding set of linearly independent right
eigenvectors, meaning that A is diagonalizable and, therefore, can be written as

A=PAP™!

where A = diag(jxl, e ,5\ ~) with A; being the Jacobian’s eigenvalues, and columns
of P are the right eigenvectors. Values in A diagonal are positioned in ascending
order (A; < Ai41). Secondly, A should ensure consistency by requiring

~ = —

AU =U, 0% =U) = A(U)

Finally, the new PDEs should remain conservative across discontinuities, which is

expressed as

fO") - f(0") = A" - 0%

This identity also ensures an exact wave recognition in case a single, isolated discon-
tinuity separates the left and right initial conditions. The construction of a matrix
that satisfies all three criteria is based on the definition of the Roe averaged variables

—

U(U%, UR) according to which

—

A= A)

Their exact expressions are given by eq. 3.8.

Next step is the approximate Riemann problem solution. To do so, the characteristic

327

Riemann variables are introduced

W= Pl
Eq. E.2 becomes

ou; - U, oUu; - - =~ 90U,
AL =0 4+P, AP t=—L=0
ot or T e T Wge 0
. 9U, « =_,0U; (P10, ~ O(P,IU;)
S R WY = g Pt R AlimZm) § A mi I
m g T Ambni g =0 T or 0¥
ow; -~ oW,

: Azm—m:
ot + ox 0

The previous procedure decouples the system of PDEs. By defining the character-
istic curves dz/ dt=); in the space-time plane, the governing equations become

a;/i PR, W W OWide - DW(x(t).)

o o Torar ° Dt =0

which means that W; remains constant along the i* characteristic curve. DW;/Dt
stands for the total derivative of W;. Considering that 5\1 is constant, the curves are
the straight lines o = \;t+xo, which implies that Wl(x, t) is equal to Wi(xo, 0), where
xo is the intersection point between the x-axis and the line with by slope passing
from (x,t). In other words

5 Wk 2y <0
T T L
07

where WF = P~1UL and WE = P~'U". Finally, by using the invariants definition,

the approximate Riemann problem solution is

m=1 m=m-+1
m ~ N
U(,t) =Y PWih+ > PV,
m=1 m=m+1

where 7 is the maximum value for which 2 — A\t > 0. The last equation shows that

328 K. D. Samouchos

—

U (z,t) is affected only by 7, which depends on the inequality x/t >)\ satisfaction.
Thus, U is a 1D function of z /t. Fig. E.1 represents the exact solution graphically.
Three lines represent the discontinuity propagation starting from the axis’ origin
and separating the space-time plane in regions of constant U (x,t). Another set of
dashed gray lines represents the characteristic lines in which W is constant. Their

confluence specifies the value of U(z, t) field.

stT Ut UR SRT X

Figure E.1: Structure of the Riemann problem solution of a linear hyperbolic system.

According to Godunov’s method the mean flux along =0 line should be found, or
equivalently f (ﬁ (0)). Firstly, U (0) is computed. According to the previous analysis

m N
Ui(0) =Y PuWil + > PV, (E3)
m=1

m=m-1

where \; < 0 and A4 > 0. Moreover, it’s true that

N
m=1
and
N ~
Ul =>" Py, (E.5)
m=1

By subtracting eq. E.3 from egs. E.4 and E.5 one gets

U(0) = Ul +) P (W, = Wit (E.6)

329

and
N

U0)=U— > Pn(W5, — W) (E.7)

m=m-1

Subsequently, the f 0= f ((j (0)) computation follows. Firstly, the exact flow eqs. E.1
are integrated in the [SET, 0] x [0, T control volume, where ST is the smallest wave
velocity, T is a chosen time window and S*T is the length the wave has traveled
within time 7T, fig. E.1,

[LG L

/SLT(UZ(:E,T) Uz(x,O))dx—i—/ (fi(0,t) — fi(S*T, 1)) dt =0 <

0

=0«

0
/ Ui(z, T)dx + UFSET + 7T — fFT =0
S

L

where fL = f| ((7 L). Thus, the exact expression for the flux numerical computation

is obtained from o

1

f=f-utst—— / Ui(x,T)dx (E.8)
T Jsur

The unknown integral of eq. E.8 is approximated by the solution obtained by the

linearized Riemann problem of eq. E.2. By integrating the PDEs in the same control

volume one gets

i]dxdt =0&
/ /SLT 8 / /SLT 7 Oz
A~-U»
+ / / #dxdt =0«
/o /SLT 0 0o JsLT Ox

0
/ Us(z, T)dax + UFS"T + Aj;U;(0)T — AyUIT =0 &
SLT

0
/ Ui(z, T)dx = Aj;UFT — Aj;U;(0)T — UFSET (E.9)
S

Lr

where Uj(O) stands for the constant flow solution along the t-axis. Substitution of
eq. E.9 into eq. E.8 gives

fi = fE+ Ay(U;(0) - Uf)

330 K. D. Samouchos

and by using eq. E.6

j=1 m=1
£ = 3 PudWE, — W) (E:10)
m=1

Similarly, by integrating eqs. E.1 and E.2 in the [0, S®T] x [0,T] control volume,

where S¥ is the largest wave velocity, one gets

N

m=m-+1

-, - =

where f®= f(UF). The eqs. E.10 and E.11 summation results in

" N
20 = [E+ fE Y Bk WE —WE) = N Pudn(WE —WE) =
m=1 m=m-+1
1 1
0 _ L R » 3 R L
fl=5r+ 10 - §;Pmmm\<mm = Won)

The last equation is valid because

M:{‘MM= m s m

Aml, m>m

Substitution of W and W definition into the above equation gives
1 I on - 5 -
m=1

The Roe scheme final expression is usually written as

70 = S0+ 1) = SlAglwf - uh)

~ N L
where absolute Jacobian matrix is defined as |A;;|= > Pim|)\m|P7;;‘
m=1

Appendix F

Approximate Riemann Solver of
Roe for Preconditioned

Conservative Laws

This appendix describes a prolongation of the approximate Riemann Solver of Roe
presented in Appendix E. It focuses on conservative, non-linear PDEs which require
a preconditioned method to alter their mathematical behavior and easily be handled
by the current discretization methods. Such PDEs are the incompressible equations
discussed in section 3.5. The general case of the following 1D preconditioned PDE

ou, 0f;

rot=1+ O _

Jot ox
is investigated, where U and f are the conservative variables and flux vectors and
I' stands for the preconditioning matrix. A set of variables W is defined such that

oW
i Fil
oU; "
Therefore, the above PDE becomes
ow; oU; 0f; ow,; — of; OW; oW, r OW;
—7 =0& =0& A —2L =0
ou, ot | oz ot oW, oz ot i or

331

332 K. D. Samouchos

The final PDE is hyperbolic and A is diagonalizable. The Jacobian and the pre-
conditioned Jacobian matrices are defined as

of;
of;
r i

They are related through the preconditioning matrix,

g 9fi _ 90fi 0Uy _
U OW; OU, OW,

Ay (F.1)

The Roe approach accurately solves the Riemann problem for the approximate lin-

ized PDE
earize oW, L oW,)

ot ox

where AT is a constant matrix satisfying the Roe criteria. The initial values (WL, WR)

0

of the corresponding Riemann problem are chosen to satisfy the following condition
R L _ p—1(77R L
Wit = W; —F"<Uj _Uj)

)

According to Appendix E, Roe’s scheme is
o_ L1 . Ry Lir R L
fi = §<f1 + fi') — §|A2]’(VVJ - W)
which is rewritten as
1 1~ ~ A
1= SUE+ 1) = Sl ATl (U] = UF)

where eq. F.1 has been used. The preconditioned Jacobian eigenvectors (p) and
eigenvalues (\,) satisfy the expression

(Af)ﬁ:)‘pﬁ
which is properly modified as
D(AD)F = A,L5e (DA)(TH) = A(T5) & (TA)T = A7

Therefore, I'A is diagonalizable having independent eigenvectors ¢ = I'p and real
eigenvalues A\, =\,

333

The two matrices are expressed in diagonalizable form,

(AT) =PApP~!

(TA) =QAeQ™"
where Ap = Ag and) =T'P. Based on the previous analysis, matrices in Roe’s
scheme can be expressed as

|AD|T! = P|Ap|P~' T =T 'TP|Ap|P'T ! =
=Y IP)|Ap|(TP)™ =T7'Q[Ag|Q™" =TT

Hence, the Roe scheme is transformed to a more convenient form,

£ = (fL+fR)—§Fm}b|rmn/~1nj\(Uf—UjL)
If the initial PDE is multiplied by I', it becomes

U, of;

ot - =0

The discretization scheme should also be multiplied by I'. Therefore,
1 1~ -
[0 =T = S0+ 1) = 5D A | (U = UF) (F.2)

where FOLL =T f FL and o FLE_T fr. FR. Last expression agrees with eq. 3.28 presented
in section 3.5.

Appendix G

Monotone and TVD schemes

relation

This Appendix is concerned with the study of monotone schemes and their relation to
the set of Total Variation Diminishing (TVD) schemes applied to the discretization
of a 1D, non-linear, scalar PDE. More specifically, it will be proved that monotone
schemes are a subclass of TVD schemes. The proof is mostly based on [121], [122].
The following single conservation law is considered

ou Of(u
ou 0w _,
ot ox
which is discretized in the following way
1
U;H_ =H (U?fka U?L'/Lfk"i’l’ T 7U?7Uz‘n+17 T 7Uin+k)

with k being a non-negative integer indicating the range of nodes the discretization
scheme takes into account. Variables v]' stand for the numerical approximation of
u(z,t) field on node i and at time step n. The scheme H is said to be monotone if

O S0, wi

n =
ov]
The above discretization scheme can be rewritten in the following conservative form

U?H =u —c [h (U?—k+1> CANNTYSEE 7U?+k;) —h (U?—m (CARNEPEEE av?+k—1)]

334

335

where ¢ = At/Az with Az and At being the space and time discretization steps.
Functions H and h are related to 2k+1 and 2k variables, respectively. For con-
venience, these variables will be named as x; starting from ¢ = 0. Therefore, the

conservative form is rewritten as
H(xo,xl, t ,IEQk) =X —C [h(%wz, T >$2kz) - h(fEO,Ily T ,$2k—1)]

Before continuing with the TVD schemes analysis and their relation with monotone
schemes, a useful identity of H is presented. Differentiation of the above equation

w.r.t. x¢ results in

OH 0Oh
al‘o 8370

Similarly, by differentiation w.r.t. x; leads to

8H — . [8h($1, Lo, ,1’2]6) ah<m0’ Ti,- - ax2k—1):|

Ory -

8x1 a371

The first term on the r.h.s. corresponds to the partial differentiation of A w.r.t. its

first variable and is, therefore, equivalent to 0h/0xy. Thus

OH (oh Oh)

(99(:1 63:0 (‘31:1
where both A functions on the r.h.s. are considered as h=h(zg, z1, - ,x9,_1). By
repeating the same procedure for ¢ = 2,--- |2k one gets

OH _ c9h

Oxg BJ:O

OH __ Oh

ox1 6900 tc 8:61

OH _ cOh. oh

8$2 _ Bml + Caz‘g

OH _ Oh

oz, 1 - 8:Jc + 8:1%
OH . 0h oh

Orop—1 Cﬁﬂﬁ%-z + Cax2k—1
OH _ _._oh

\ 6x2k 8x2k—1

The summation of the above system of equations leads to the important identity

Z 8a:k (G.1)

336 K. D. Samouchos

Subsequently, a study on the TVD schemes is presented. A scheme is called TVD
when the solution’s total variation is not increased in time. The total variation at
time step n is defined as

+o0o
TV = 3 [u — o7

1=—00

For the above summation to be infinite, one assumes that an integer I exists, such
that v]' remains constant for every ¢ > I. Discretization scheme H is said to be
TVD if

TV (") <TV ("), Vn

Thereafter, it will be proved that every monotone scheme is also a TVD scheme.
The proof initially assumes that H is monotone. Then, by using 7'V definition

TV(’U“+1) = Z ‘U?—:rll o Uzn+1| = Z ‘H (U?Jrlfk? T JU?JrlJrk) —H (U;lkv T 7U?+k>|
% A

where the summation limits have been neglected. A new set of functions is defined
as

&l (0) = Ovily + (1 = 0)of
so as &1 (0)=wv} and &£ (1) =uf, ;. Therefore TV is rewritten as
1

TV(U"“) :Z [H([ARTTERE fﬁl%ﬂo -

i

Z /1 8H(zn+1fk’ e 751'n+1+k) do
0

- 00
Z /1< OH 0§}, I OH 85?+1+k> d@‘
- 1Jo &1y, 00 O 14 00
Term %Q—H represents the partial derivative of H w.r.t. its first variable and for
i+1—k

simplicity, considering that H can be expressed as H(xo,- -+ ,xa), it is represented

337

o
_Ui

by 24

v 1, TV becomes

n OH n oH , "
TV (") = Z /0 [81’ (Via—k = Vaop—) + o0 F @(%—H-ﬁ-k - Ui+1+k—1):| d@‘ =

)
1 2k

Z / Ui ki1 — Vi py)d0) <
22/

Since H is monotone, it is true tha

|Uz k+l+1 — i—k+z| do

83:

t 94 > (, which simplifies the above inequality.

Moreover, for the sake of clarity, a vertical bar is added on the left of H derivative,
which indicates the index of the function’s middle (k**) variable,

2k 1
0
e <23 [5
i 1=0

Terms of the above double summation are rearranged by setting m=1i—k-+1,

o) ZZ/ 5|

m =0
1 2k
Z|Um+1 m’/ aZL‘l

By using the already proved eq. G.1 the inequality becomes

1
V(" <Z lom oy — vm/ df =
— 0
Z ‘U%H - vfn| =TV (v")

n n
i—k+l4+1 Uz’—k+l‘ do

|vfn+1 —U%‘d@ =

do

m—+k—I

Consequently, TV (v"*') < TV (v™), which signifies that every monotone scheme is
also a TVD scheme.

Appendix H

The Barth-Jespersen Limiter

The MUSCL approach, used for the convection term discretization, allows for second-
order accurate simulations. However, according to Godunov’s theorem, high-order
methods produce spurious oscillations, especially across discontinuities. Therefore,
a slope limiter is used to suppress these oscillations while keeping second-order
accurate reconstruction in smooth regions of flow fields. The commonly used Barth-
Jespersen limiter modifies the piecewise linear distribution at each control volume
removing local extrema and ensuring stability. This Appendix aims to prove that
the value extrapolated from the cell center to one of its faces, computed by using
the Barth-Jespersen limiter, does not exceed the maximum or minimum neighboring
flow variables. The proof starts by considering that the extrapolation does not create
a new local extremum and concludes with the Barth-Jespersen limiter formulation.

The case of an arbitrary neighborhood of an unstructured 3D mesh is considered.

The cell in which the extrapolation takes place is called P, and Q,, indicates its n'®

neighbor. A second-order extrapolation is achieved as follows,

ou
t=ul+¢ Azx;, 1=1,3
(91:1- P
where u! is any flow variable stored at the cell’s barycenter, @ stands for the extrap-

olated value, and AZ; is the distance vector between the cell’s and face’s barycenters.
The limiter function is represented by ¢, the codomain of which is strictly set [0, 1].

338

339

The extrapolated value computed without the limiter use is defined as

The maximum and minimum flow variables in the neighborhood are

Uppin = MAN (uP,qu,uQQ,--- ,uQN)

Upnae = MAT (uP,qu,uQQ, e ,uQN)

where N is the number of neighbors. As already explained, u should not exceed

Umaze aNd Upp,. Thus,

N P ~ P
umzné“éumznﬁumzngu +¢(u_u)<umam<:>
P ~ P P
Umin — U <¢(U_u) gumax_u (H1>
Three distinctive cases are considered below.

Case 1: a=u"

This case is possible only if %‘ Ax; = 0 implying that @ = u”. Therefore, the
ilp
limiter’s use is trivial and its value is defined as

o=1 (H.2)

Case 2: @ > u”

By dividing ineq. H.1 with (11 — uP) one gets

P P
Umin — U Umaz — U

<o< (H3)

u — ul u — ul

340 K. D. Samouchos

The first inequality is always satisfied because

P Umin — UP
Uppin, S U <:>ﬁ<0<¢ (H4)
The last inequality of ineq. H.4 is true due to the requirement ¢ € [0, 1]. The second
inequality in ineq. H.3 is satisfied by setting

P
. Umaz — U

which evidently satisfies the ¢ < 1 condition. Then, in case ¢ # 1, requirement

¢ > 0 is automatically satisfied because

u — U
P max
&

— P 20020

Umaz 2 U

Case 3: 1 < u”

By dividing ineq. H.1 with (11 — uP), one gets

P P
Umin — U Umaz — U
Ta—wr 207 Ta—ur (16)
The second inequality is always satisfied because

P
U —Uu
P<:> max <0 Qb

u — ul

N

Umaz 2 U

The first inequality in ineq. H.6 is satisfied by setting

uP

Umin —
=min(l, ——— H.7
6 = min(1, 22—) (H.7)
which evidently satisfies the ¢ < 1 requirement. From the above definition, in case
¢ # 1, inequality ¢ > 0 is automatically satisfied because

Umin — U
P@—

>0 620
u—1u

Consequently, definitions H.2, H.5 and H.7 presented in the three above cases are
combined in the following expression, which is equivalent to the Barth-Jespersen

341

limiter presented in eq. 3.10,

1, a=ub
¢ = ¢ min(l, tmeamg) G > u” (H.8)
a < u”

min(1, s’

Appendix 1

Orthogonal Correction Expression

The purpose of this Appendix is to give more details on the mathematical formula-
tion of the orthogonal correction used for the computation of %‘ for any variable

®. Fig. [.1 shows the general case of two cell centroids P and () connected with a
blue line. The red line depicts the face separating the two cells. Vector 77 is perpen-
dicular to the face, ¢ is parallel to the face and & is parallel to (PQ) line. All three
vectors are unitary. The method’s goal is to express the derivative on the face as a

function of the already known ¢ and its derivatives in both P and Q.

Figure I.1: Finite volumes P and @) are separated by their common edge, shown as

a red line. Their centroids are connected with the blue line.

The gradient computation is based on its expression in the (&, f} coordinate system,

0P
Oxi

0o

0Bl
_oe| 0%
FRT

" oa

t; (L.1)

‘ f

342

343

Its tangent component is computed by linear interpolation,

0P

w4 — (1—w)] t;

| [8(1)
at |,

—| ti=|—
at |, ot

where w=(fQ)/(PQ). Segment (fQ) is the distance between the face centroid and
@), while (PQ) is the distance between and P and @. Similarly, it is true that

e
ot

0%
P,Q ‘ 8x2

_oe
PO Jda

(%)
P7Q

By combining the two above-mentioned equations one gets

0P ; (8(19 0P > N 0P 0P a)
— ;= — — o |w - — o —w
8tf 0v;|p Oal|p 8miQ 8aQ
By using the identity
0P 0P
oo PO ox; PO

and rearranging the terms, the tangential derivative becomes

0d 00 0
at 'f ox; 0w, 0 12)
where L
0P 0P 0P
= 1— I.3
The gradient component parallel to (PQ) is approximated by central finite differ-
ences,
Q_ &P
8_(1) = —(I) ¢ (1.4)
O f (PQ)

Substitution of eq. 1.2 into eq. 1.1 gives

0o
Gxi

0P (6_<I> oD

95,% " 7a

) o (L.5)
f

Consequently eq. [.5 expresses the gradient on the face as a function of already

computed quantities from eqs. [.3 and 1.4.

Appendix J

Boundary Conditions
Differentiation

The adjoint boundary conditions for compressible and incompressible flows, given
in egs. 6.13 6.27, require the computation of the Jacobian matrices g—g and %,
respectively. Their computation depends on the boundary conditions imposed on
the flow problem, which affects the Cj choice. This appendix presents some Jacobian
matrices corresponding to inlet or outlet boundary conditions for both compressible

or incompressible flows.

For compressible inlet boundary conditions, where Q = (pt, Tt, |01, Qpitehs Qyaw), the

Jacobian matrix is expressed as

oU oU oV
0Q 9V aQ
where _
1 0 0 0 0
. 0 0 0
o0 |t P
—=|w 0 p 0 0], (J.1)
Vol 0 0 p 0
% 17|2 pv1r pPv2 PUs ﬁ

344

345

[o/pe (r—1)p/T, 2rp/|v] 0 0]

o7 0 0 1)1/|1Z’| vgc?s(ozyaw) — Uy
P =10 0 v9 /|7 U3SIN(Qyaw) U1
@ 1y 0 vs/|7] —|Flsin(apen) O

Lp/pe yrp/Ti 2y7p/|V] 0 0

and

7)
r=——-|(=-1
vy—1\T

The angles airer, and e, are defined in section 3.1. According to the same section,
an alternative for () in compressible flows is Q= (s,v1,ve,v3,p). Then,

_1p 0 0 0 lp
v P
. _Llpn p 0 0 1pu
ou 1pv 1pv
— = iz 0 0 1pv
3 v s P Y P
Q _1lpvs 0 0 p 1 pvs
v s Y P

—=2[d? i pus pus A5+ L]0P

| 2vs 1 2 3 =1 2yp i

At the outlet, constant pressure is usually imposed, implying Q:V, and therefore,
36 = a7 which is given in eq. J.1.

—

On the other hand, in incompressible flows, Q= (py, ||, apiteh, Gyaw) at the inlet, and
the required Jacobian matrix is

1 |7 0 0
oV 0w /|U] wvscos(ayaw) —v2
a@ o vo /U] wvasin(ayaw) vy

0 ws/|0] —|U|sin(apiten) O

At the outlet Q:V and the required Jacobian g—g is the identity matrix.

Appendix K

The Continuous Adjoint Method
Implemented in Cases with
Recirculation at the Outlet

Optimization in problems concerning internal flows is extensively common in real-
life applications. Turbomachines, pumps, and heat exchangers are some examples
illustrating the great variety and importance of such cases. Their flow simulation can
be challenging enough, especially when recirculation appears at the outlet, harm-
ing the convergence of the governing equations. This phenomenon escalates during
the optimization process, where irregular geometries may appear. The correspond-
ing adjoint equations are also sensitive when recirculation occurs in the flow field,
especially when constant static pressure is imposed at the outlet. If eq. 6.13 is
also implemented as the adjoint outlet boundary condition, the adjoint problem
becomes ill-conditioned, and convergence is impossible. This section presents the
mathematical development which proves the previous statement for compressible
and incompressible flows.

Without loss of generality, the coordinate system is defined with the z; axis per-
pendicular to the outlet boundary’s plane. The unit vector, normal to the plane, is
n=(1,0,0). In the case of recirculation, there is at least one point on the outlet
plane having zero normal velocity (e.g., v; = 0). Subsequently, the compressible

adjoint boundary condition at that point is examined.

346

347

Firstly, the 1.h.s. of the outlet adjoint condition

ov; _ OFs,
0Qn Qs

is expressed in a more convenient form by using the definition of eq. 3.6,

qjiAijknk

th YU, "y, th v th LoV, 0Qn

The Jacobian matrix f“ for v1 =0 reads

0 0 000
- o 0o 001
df1
a—_, =10 PU 0 00
Viodo pus 000 0
0 phy 0 0 0
Then,) i
0 0 0 0 0
Vs Vs Vs Vs Vs
0, 9V T TR PO PR
avag 7o Mg Pags PYags PYogs
PUSTLE UGS PUsGE PUsGRE PUsG
pht% Phtg%é2 pht BVQ pht 8V2 pht%

Vector @ represents any set of 5 independent flow variables. However, one of them
must be the imposed pressure at the outlet. Suppose @), = p. As explained in
subsection 6.1.8, the k" equation of the above system is excluded. Moreover, in

~ N\T
the present special case, the first column of the systems’s 1.h.s. (%%) is zero,

eliminating ;. The rest variables can be computed by solving a 4 x 4 system.

According to subsection 3.1, V5 =p. Therefore, 355 is zero for i # k. Consequently,

. T
of av Vs :
o7 5 Q) is zero except 9oL which, however,

belongs to the deleted £ line. Therefore, U, is also eliminated and the 4 x 4 system
becomes

every segment of the second column of (

V5 oV, oV, OFgl
s+ p Uy + phyetWy = =1
0Qn > P%aq, T aqQs T 0Qn

PU2 5~

Yhtk h=1,---.,5

348 K. D. Samouchos

OFs,

In case there are two integers m,n # k such that 50 # 0L,

oQn "’
consistent, and the boundary conditions cannot be imposed. Otherwise, the system

the system is in-

downgrades to a simple equation with an infinite number of solutions. In both cases,
the adjoint problem is not well defined regardless of the objective’s expression or
the choice of Cj

A similar mathematical development implemented in incompressible flows leads to

oV oV oV OF,

2 2 2 2 S1

R AR IR it
aQn 2 aQn ° v aQ, 00,

proving that the adjoint problem is ill-conditioned also in incompressible cases. Con-

Vhtk h=1--,4

sequently, recirculation at the flow field’s exit must be always avoided (e.g., by
transferring the outlet boundaries away from the solid bodies) when the continuous
adjoint method is used in the optimization process.

Appendix L

The adjoint HLLC and FVS
schemes

The following sections introduce two different discretization schemes for the 1D
adjoint equations inspired by the HLLC [307] and FVS [291] schemes. They aim to
approximate the adjoint flux expression defined in egs. 6.33 and 6.34. Moreover, the
final section compares the convergence of the four discretization schemes that appear
in this thesis. The mathematical development is based on relations and notations
defined in section 6.3.

L.1 The Adjoint HLLC Scheme

The HLLC scheme is studied in the specific case where N =3. According to this

method, the (z,t) domain is split into four regions separated by the x = S(ft)¢

lines, where S and S are estimated as

SL = —max{)\f,)‘57 Ag}

SR = —mm{)\f,)‘527 /\é%}

and \; are the eigenvalues of the Jacobian matrices AY and A%, respectively [76].
Alternatively, the eigenvalues of A can be used instead [76], [84]. Eigenvalue S* is

349

350 K. D. Samouchos

given by
o of-al
oFf — &y

where

dL = ALUL — gLyt

LV

Off = AJUT — STUS

It is always true that S* < S* < ST, Adjoint variables at each region are uniform
and equal to UL, WO ¥R and U An example of the (z,t) domain is shown in
fig. L.1. The f 0 flux discretization depends on the S* sign.

fO _ JiLO7 S* >0
fRO S <0

In case S* > 0, the unknown integral of eq. 6.33 is required which is

0 —WLsLlT SL >
\I’Z' ,T d = v ’
/SLT (z, T)dx { _QLOSLT, ST <

and the adjoint flux becomes

L\yL L
FEO —A;V7, S* >0
' —ALwE 4+ SE (U0 —wf), St <0

Three characteristic lines transfer the adjoint Riemann invariants (WL or WR) from
the field initialization at t=0 to points along the t-axis determining the vector QLo
By following the same technique shown in subsection 6.3.1 for the diagonalization

of the system

or ~ar !

an expression similar to eq.6.40 can be obtained,

N
PO —wb e S PETNVE - Wh) = w4 PR (WE W)

m=m+1

Then, the flux becomes

fEO = —ALGL 4 sLpLTY (Wil — Wik

? Jr =)

L.1. The Adjoint HLLC Scheme 351

A similar procedure followed for S* < 0 leads to

0 _ { AR — STRH (W - W), S >0

RO R R
_Ajz“l’j) St <0
Consequently,
— ALY, S*>0,9% >0
£0 = —ALUE 4 SEPLTYWE - W), S*>0,8F <0)
©) —ARGR _ gRPRYWE —WE), §* < 0,57 >0 '
—ARUT, S* < 0,97 <0
where

11711 PL L
HrR PR R

Another alternative for the f° approximation could be the replacement of PL:—1
and PE~! with P~'. The developed adjoint HLLC scheme avoids the computation
of the absolute Jacobian, making it a much faster discretization method compared
to eq. 6.42.

SL S* wRO SR

W Wr

Figure L.1: Three characteristics are intersected at point (0,t), affecting the field
TR The left-most characteristic, associated with the first eigenvalue, transfers the
invariant W and the other two transfer Wt and WL

352 K. D. Samouchos

L.2 The Adjoint FVS Scheme

The FVS formula for the adjoint flux can be derived in a straightforward manner
by following the procedure used for the flow equations and keeping in mind that the
adjoint eigenvalues are the same in magnitude, though opposite in sign with those
of the primal problem. However, a different process will be followed, highlighting
the close relation between FVS and the already developed adjoint HLLC scheme.
Eq. L.1 is used for its generation, simplified by computing all the associated flow
quantities as the mean average between the left (L) and right (R) states, marked
by an over-bar, and by setting S*=\,. The A\;" and \; are introduced such that

= Ai, A=0 -
1o o N<o TP

Additionally, two matrices are defined,

> O
Egr
NV
o o

3
S Iy O P o B Y o

m=1 m=1

Apparently, \; =\ + A\ and A;;= fl;} + /_12_] Subsequently, the four cases presented
in eq. L..1 will be re-expressed with the aid of the newly defined quantities. In the
first case, all adjoint eigenvalues are positive. Therefore, A\; = \; Vi, which induces
At =0and A~ = A, meaning that f'=—A;, ¥l — ATV In the second case, A\;» < 0

Ji T Jr =

and A3 > 0. Hence, /\12—0 Ay =) and
fl=—A; 0k 4 SLP?jl(WR Wi) = =AUk — APy (Pl — PjgUk)
= —ALUE — ALk — Z PN (P U — Py 0h)

Jr = Ji =g mi m
A+l _ L _ 1+ L L _ A+gk
Thirdly, A; < 0 and 5\2,3 > 0, inducing A} =\, 5\2_,320. Thus,
JE = =AU — SEPIY W — W) = =AUl 4+ M P (PO — Pvl)
3 — — —
= —ALUE - AR N PN (P, U — Py, U

= —ALUE — AU+ A (U —0F) = — A0 — AT

Ji =g VA

L.3. Comparison of Adjoint Discretization Schemes 353

Lastly, when all adjoint eigenvalues are negative, \; =\;” meaning that A* = A and
A~ =0. Then, the flux can be written as f°=—A WL — ATYE

Ji > VA

In all four cases, the final expression of f ¥ is the same, ensuring that

= —A vk - ATUR (L.2)

Ji T Jr =)

in any case. Furthermore, considering that

- - - L < I
A =5 (A +1Aly) - Ay =5 (A = 14ly)

N | —

where |Al;; = Z Pim|Am|P,,;, €q. L.2 becomes

\)

N
_ 1
£ = S(= 497 — —Z i | Am v -0y

underlying the close correlation with eq. 6.42. Finally, another alternative for the
adjoint FVS scheme could come of by substituting A for A.

L.3 Comparison of Adjoint Discretization Schemes

The previously described discretization schemes and these studied in section 6.3 are
closely related. The convergence rate they provide is tested in a 1D optimization

problem governed by the steady compressible inviscid flow equations,

ou; 0f; .
i — Uy -]-7 R
5 o +5,=0, 1 3
where = € [0,1], S; is a source term, which is non-zero only for the continuity
equation,
Sy =—10[b¢" —2(b+ 1) + (b + 3)¢7]
and

) 22/, r<1/2
= 2l —z)/l, x>1/2

Variable [is the domain’s length and b = 1 is the only design variable of the

optimization problem. Total pressure and temperature are defined at the inlet

354 K. D. Samouchos

(pe=1bar, T; =300K) and static pressure at the outlet (p=0.98bar). The objective

function is set l
1
F = —/ (v —vy)?dw
2 Jo

where v is the flow velocity, and v; is a constant user-defined velocity target set to
60 m/s. A mesh of 300 cells was used for the flow and adjoint PDEs discretiza-
tion. Fig. .2 compares the convergence of the field adjoint equations for 4 different
discretization schemes. Although the corrected Roe scheme (ROEC) converges in a
subsequent pseudo-time iteration compared to the others due to a steep rise of the
residual at the beginning of the run, they show the same convergence rate.

-12

Residual Order of Magnitude
[==]

-16

-20 1 1 |
0.0x 10" 5.0x10% 1.0x10° 1.5%10° 2.0x10°

Pseudo-Time Iterations

Figure L.2: 1D Inviscid Adjoint Flow: Adjoint velocity convergence history. Com-
parison between 4 different adjoint discretization schemes. ROEC stands for the
corrected Roe scheme explained in subsection 6.3.2 and corresponds to the only
curve behaving differently than the others.

Appendix M

Memory Reduction by using the
SVD Method

The Singular Value Decomposition (SVD) [112], [113], [323] is used for the unsteady
flow field’s efficient compression, storage, and reconstruction to be available for the
adjoint solver during the backward in time integration of the unsteady adjoint PDEs.
The method is better explained by initially assuming that during the adjoint flow
simulation, the already computed flow field at each time step is stored, forming a
m X n matrix M, where m is the mesh size and n is the total number of time steps.
The SVD method is implemented to reduce the memory requirements by creating a
more efficiently stored matrix M’ being also the closest approximation of M among
all matrices of the same rank. This process is divided into two steps.

Firstly, the SVD is applied to M, according to which each real m x n matrix can be

decomposed as
M=USV"

where U € R™™ and V € R™ " are orthogonal matrices and their columns are
called the left and right singular vectors, respectively [32], [294]. Matrix S € R™*™

is of the following form
Sij =
’ { 0 i#y

where 0y > 09 > .-+ > 0, are the singular values of M. Various algorithms
have been proposed for the SVD implementation. In this thesis, the Golub-Kahan
algorithm [112], [113] is preferred due to its efficiency and stability.

355

356 K. D. Samouchos

Secondly, S is transformed to the diagonal matrix S’ by deleting all but its first &
rows forming matrix S’. Similarly, the sizes of U and V' are reduced to m x k and
n x k, respectively. Based on the so-truncated matrices U’ € R™** S’ € R¥** and
V' e R™* M’ becomes

M/ — U/S/V/T

Considering that in practical applications k£ < n, the storage of the m x n matrix
M is avoided by storing U’, S’, V' instead, reducing the total memory size to k x
(m+n+1).

Although the aforementioned method can successfully reduce the required memory,
M should be available in the first place, and memory reduction is, in fact, unneces-
sary. Thus, an alternative way should be investigated to compute M’ avoiding the
storage of M as a whole. This is possible by implementing the so-called incremental
SVD (iSVD) technique, which computes U’, S’, and V' by successive approximations
noted as U™, S™, and V", where n indicates the current time step. Their product is
denoted as M™.

Subsequently, an initial approach to the iSVD is explained. Consider that the avail-
able memory capacity is m x (k+41). Once the first £ instants of the state field are
stored in M*, the SVD algorithm is applied, and U*, S¥, and V* are computed. As
the flow solver proceeds in time, U™, S"*1 and V™! are generated based on the
corresponding set of matrices computed at the n'* time step. Specifically, at time

step n+1 a new solution (w) becomes available, and matrix M" ! is formed as

/I\
A M™ 1@ | m
i}

—k+1—

where M™ is restored as U™S™V"T. Then, the size of M™t! is reduced to m x k by
applying the SVD algorithm and nullifying the last singular value giving rise to U™+,
St and V™. By repeating the same procedure at each time step, the required
memory remains constant and less than its upper limit. However, the computational
cost of such a method is very high due to the repeated implementation of the costly
SVD algorithm to the large matrix M. A much more efficient method [47], [48],
[25] is described below.

357

=

Each time the number of columns of M™ is increased by one, an extra column (J) is
added to U™. Matrix S™ is also extended by the column E, and an extra element x is
added to its diagonal. Matrix V" is enlarged by one column, and one row consisted
of zero elements except its diagonal, which is set to 1. The new temporary matrices

are
T =
ST |L| 7t | Z4E N N
ge_| Ut | T|m 5o k+1’ o k+1
0 k| 0 1]
i} —k+1— —k+1—
—k+1—

The unknown elements are computed under the requirement M"+! = U*S*V*7T,
which implies
G=US* 0| 1" =U*L | k] =U"L+rJ (M.1)

Moreover, U* should be orthogonal, meaning that J is unitary and perpendicular

to any column of U",
Uty =0

Vector L is easily computed by multiplying eq. M.1 with U™ and considering that
U™ is orthogonal (UMTU"=1),

Ui = (UMTUVL + w(UT) & L= U"Tw (M.2)
Then, vector J is computed from eq. M.1,

f:%@—m@ (M.3)

The unknown number £ is computed by considering that ||.J]|»=1,
k= ||& — UL, (M.4)

The computation of E, f, and k from eqs. M.2, M.3, and M.4 ensures that matrices
U* and V* are orthogonal and M™t' =U*S*V*T. The last step is the transformation
of S* to a diagonal form by applying the SVD algorithm to this relatively small

358 K. D. Samouchos

matrix, S*=U,S,VL. Finally,
MnJrl _ U*USSSVTV*T _ Un+15n+1vn+lT

where U™ = U*U, and V"™ = V*V, are orthogonal as products of orthogonal
matrices and S"™! = S, is diagonal containing the singular values of M™*!. The
process is repeated during the flow equations’ time integration, and after the total
number of N time steps is completed, U’, S’, and V' are available as UV, SV, and
VN respectively. During the solution of the adjoint PDEs, the flow field @™ at each

time step n is restored as
k
n !/ / !
w;' o g U053V,
J=1

where o are the singular values stored in the diagonal of S".

Appendix N

Memory Reduction by using the
PGD Method

The Proper Generalized Decomposition (PGD) [60], [9], [170] is able to support
the unsteady adjoint algorithm to overcome the storage of the entire unsteady flow
field, which becomes prohibitive in large-scale simulations. The first section presents
the mathematical development of the method and its incremental counterpart. The
second section gives information about the proper adaptation of the PGD to the
ghost-cell method and its implementation to the lift maximization of an isolated
airfoil. Subsequently, the effect of PGD on the sensitivity derivatives accuracy is

studied in section N.2.

N.1 The PGD and Incremental PGD Theory

The method’s main idea is to represent a multi-dimensional unsteady field as the
sum of 1D function products. For instance, an arbitrary unsteady 2D scalar field u

1s written as

M
ulz,y,t) =y ¢ (@)0" (y) (1) (N.1)

pn=1
Assuming that a small number of modes (M) represents the initial field accurately

enough, a noticeable gain in memory usage is expected since scalar modes ¢*, 6*,

and 7+ are stored instead of the entire u(x,y,t) field.

359

360 K. D. Samouchos

Consider that u(x,y,t) is discretized in a structured mesh as w;;x, where (3,)
enumerate the nodes and k identifies the current time step. The corresponding 1D

functions are computed so as to minimize the reconstruction error, defined as

B, = %ZZZ [Z ! u] (N.2)

Through its differentiation, the final equations for updating the m!* modes emerge

J K m—1 J K
Do D w0 — 21 o Z Z FOiT T
—]

m j=1lk=1 p=
¢i = J K
> 2. (07)* (7)?
j=1k=1
I K m—1 I K
ZMZ ik P7E — 1 0% <zlkz ¢T¢%€”Tﬂ>
m 1=1k=1 = i=1k=1
0T = — (N.3)
> 2 (@) (m)?
=1 k=1
J m—1 J
> Zuw k¢m0m -2 T | 2 ZQbmﬁb“H;nQ;
m] 1li= pn=1 j=li=
Tk h—

However, eq. N.3 requires the whole field time series, which should have been stored
beforehand. A new method called incremental PGD (iPGD), firstly presented in
[236], overcomes this drawback by redefining the error function as

M 2
1
§ Gy 05T 1 — Ui i

EREIRIS
Z(s “eg‘%,g)] (N.4)

i=1 j=1

l’
| 8
iM-

<
=

where the first term on the r.h.s. corresponds to the approximation error at the
current time step, whereas the second one to the overall error for all the previous

time steps which have already been processed through the iPGD yielding modes
Wogn F
7 Vi)

each tlme step, modes (¢}, 07", 7;") are updated, and new values 77, , are appended.

. The contribution to the error is weighted by w, which is user-defined. At

N.1. The PGD and Incremental PGD Theory 361

The unknown quantities are calculated by setting the derivatives of E,, against zero,

getting
z/Q2:p7 Z:177I
) | = 17 Ty J
= t/Q2t7 k= 7"'7K
TR = QKH/QKJrl
where
m—1 J
o = TK+1 ZQ Uij k41— Ti41 Z [(wa@;n)) ¢QLTIA§+1]
p=1 7j=1
K J K J [m-1
vl 33 et w330 (S (otoget - g oo
=1 j=1 k=1 j=1 Lpu=1
J K J
Q5 = (TK¢41))? Z)2 +w Z 2(97)2(7?)2
j=1 k=1 j=1

I m—1 I
Ty =T > O Ui — TR Y [(Z(qs“asm)) 0;‘7;@“]

=1 p=1 =1
K I m—1
+ w9m Z Z O] T T — w Z [< 0T ¢u9u) ;T]
k=1 i=1 k=1 i=1 |pu=1
I K I
Qs = (TR Y (@7 +w) Y (4f"
=1 k=1 i=1

m—1

J 1 1
Qllct _ ZZ m¢m9m0m _ Z (#0# M‘gﬂ) ¢m9m

j=1 =1 j

1 j=1 p=1
1 J
Qk
2t

=1 j:l

m—1

I J
K+1 _ __m _ mAAm i n L m am
17 T TK+1 = E E b; 9j Wi g, K+1 — E [TK-H E E &5 &; ej ej]
i=1

i=1 j=1 pu=1 =1 j=1

Eqgs. N.5 are coupled and must be solved iteratively. At the first time step, the ¢,

362 K. D. Samouchos

6 and 7 functions are initialized by implementing the PGD algorithm to the 2D
spatial field u(x,y,t=0).

N.2 Implementation of the Incremental PGD Based
on the Ghost-Cell Method

Herein, the iPGD method supports the shape optimization of an isolated airfoil
parameterized by Bézier curves, where the design variables are their control points’
coordinates. Two applications will be demonstrated. Firstly, a stationary airfoil is
studied, in which unsteadiness is introduced by the time-varying far-field flow angle.
Secondly, the airfoil is pitching following a sinusoidal motion over constant far-field

conditions. The unsteady Euler equations are solved in both cases.

By definition, the PGD is applied only to structured meshes. The lack of structure
in the used Cartesian mesh due to refinement techniques is overcome through a
reference uniform mesh constituted by cells belonging to the higher refinement level
of the original mesh. Hence, at every time step, each cell of the reference mesh stores
the flow variables corresponding to the cell of the unstructured mesh they belong to
by using an efficient searching algorithm based on a quad-tree data structure. After
that, the iPGD algorithm is implemented to the reference mesh, as explained in
section N.1. The opposite process is followed for the flow field reconstruction during

the adjoint equations’ inverse time integration.

In the first application, the far-field flow conditions are My, =0.3 and a., = Asin(wt)
with amplitude A = 3° and period T' = 0.015s.The mesh used for the simulation
consists of 10500 cells and a constant time step equal to 7'/20 is used. The iPGD is
carried out by setting M =10 and w=1000.

Fig. N.1 shows the effect of the flow solution approximation through the iPGD
method on the accuracy of the sensitivity derivatives. Sensitivities computed by the
posteriori PGD compression, eq. N.3, are also shown, obtaining a good indication of
the best accuracy the iPGD could ideally attain. Furthermore, the deviation in the
derivatives due to the incremental algorithm between the iPGD and the reference
values computed by the full storage is negligible, demonstrating the capabilities of

the proposed incremental algorithm.

N.2. Implementation of the Incremental PGD Based on the Ghost-Cell Method 363

In the pitching airfoil case, the mesh is changing in time, and the average number
of cells is about 7000. The airfoil exposed to M., = 0.3 is oscillating around the
1/4 of the chord with the position angle following a sinusoidal function of amplitude
A =3° and period equal to T'=0.015s. The impact of the compressed flow fields
on the sensitivity derivatives was examined by solving the adjoint equations twice
with full storage and the flow data retrieved by the iPGD algorithm. For the two
aforementioned cases, the sensitivity derivatives are computed and presented in
fig. N.2. Two extra curves for 20 and 30 modes are shown. As the number of
modes increases, the deviation in the computed derivatives diminishes. The saving
in memory using the proposed iPGD algorithm with M =30 is around 21% of the
full storage, which needs an average of 140K values to be stored in memory.

3000

2500
2000
1500
1000

500

sensitivity derivatives

0

-500

-1000

-1500
0

5 1‘0 1‘5 éO 2‘5 3:0 35

design variables
Figure N.1: PGD Inviscid Flow Reconstruction around a Stationary Airfoil: Com-
parison of the sensitivity derivatives computed using full storage (blue), the a pos-

teriori PGD (red), and the iPGD (black) method.

3000
2500
2000
1500 |
1000 |
500

sensitivity derivatives

-500

-1000 exact —s—
iPGD10 —=—
-1500 [iPGD20 —=—
iPGD30 —=—

-2000
0 5 10 15 20 25 30 35

design variables

Figure N.2: PGD Inviscid Flow Reconstruction around a Moving Airfoil: Compari-
son of the sensitivity derivatives computed using full storage and the flow solution
retrieved from the iPGD with M =10, 20, 30.

Appendix O

The Absolute Roe Jacobian
Derivative For Compressible Flows

The absolute Jacobian, defined in subsection 3.2.2, plays a central role in the Roe
scheme used to discretize the compressible flow equations. Its derivative w.r.t. the
primitive flow variables is necessary for the compressible discrete adjoint equations
and, specifically, for the computation of matrix A%“ defined in eq. 7.10. The deriva-
tive consists of two parts examined separately. Firstly, the derivative of the absolute
Jacobian w.r.t. the Roe averages is presented, followed by the computation of the

Roe averages’ derivatives w.r.t. the primitive variables,
avc - ovF oVF

2%225‘/ P +2sz8| k' +szk’)‘k|ap_
k j

k J

Therefore, the derivatives of the eigenvalues and eigenvectors of the absolute Jaco-
bian are required. They are expressed as

sign () OV /OViy,
sign(y) Oty OV,
— = sign(ty) Oty OV,
sign(Up, + €) (N + Oms)

| sign (U —) (M — Oms) |

S5

Q
S

364

365

where
n =) Dk,
k
o,] 0, m=1,5
avm B Nm—1, m = 27 374a
(z) 1, x>0
sign(z) =
I -1, z <0,
and
[0 0 0 U,
op Omany OmaNe — 0miN3 Oman3 + OmiNa bma + %6m1n1
B = | 0m3n1 + Opans Om3ng 0m3n3 — Ominy bz + %5m1n2
" Omam1 — 01Ny OmaNa + Omim OmaT3 bima + %5m1n3
L ggn ggn gén bm5 + dm
where
1. 1p
Ny — §Cém1 — §~—2(Sm5

p
bm - m + m
| = amU 5 g omt

0, m=1,5
5mlvn + 1 ~
§pnm—1a m = 273a4

1
9
vxﬁ m=1
q" =9 p@™t+ Uy, m=2,34

0, m=2>5

J_
q; = § €ijkTk

k

The derivative of P~ is given by differentiating the P~!P =1 identity,

op, 1=—ZZP118P~”

1

b2 — §5m1n1
1

bz — §5m1n2

1
bm4 D) 5m1n3

bm5 - dm

366 K. D. Samouchos

Finally, the derivatives of the Roe averages, eq. 3.8, w.r.t. the flow variables VP and
VQ are

8{;;.F B ov; (VP,VQ)

ovFP oV,
v _ v <‘7Q ‘713)
ove ov; \ 7
J
where
VR
i 0
% 1 (‘/2[/ - ‘/2) T
oV /- g
— (‘/'L7 VR> — Tl(‘/:gL . ‘/E;) 0 Y 0
0 (V) — ~4) 0 0 ro
~ s) ~)
_T3 8?/}12 B Z|V|L) 703(3?/}22 7“2V2) 7"3(@ 7“2V3) TB(ﬁ 7”2V4)
and
oh Oh
= a5 hY — b6,
T A
Blbik L
(‘3|V’L =N Z(VkLﬂ — Vit 1) Vi
1
where

1 1

NN

N/
NI
v—1

rs =

1

2c

The derivatives of enthalpy w.r.t. the primitive variables are

— = |3 1 V2 U3 ==y
o p(y—1)

Appendix P

The Absolute Roe Jacobian
Derivative For Incompressible
Flows

The absolute Jacobian matrix is part of the Roe scheme, adjusted and used to
discretize the incompressible flow equations. The scheme’s formulation is shown
in eq. 3.28. Its differentiation w.r.t. the flow variables ‘7, presented in eq. 3.26, is
necessary to compute the discrete adjoint flux, defined in eq. 7.26.

The differentiation process starts with implementing of a chain rule based on the
Jacobian matrix dependency on the Roe averages, followed by the differentiation of
eq. 3.30,

|0 Amink | 0Asunk | OVE 0Amin |
Z avkcnk _ZZ ;nk ove Z avlz?nk

=3 (Z OPy =kl Py +szka|)\k m ZPM/\H)
oV

Subsequently, the derivatives of the absolute eigenvalues vector (|\|) and the matri-
ces comprising the right (P) and left (P~!) eigenvectors are presented,

S

0 -
oA g

?

367

368 K. D. Samouchos

B sign (0,)ny
N | signGam

k sign(Un + €)(nk + ay)

sign(v, — ¢)(nk — ag)

o)

Q
N

where
Uy = Zf)knk,
k
gn(z) 1, x>0
sign(xr) =
g -1, 2z <0,
and _
OP
—_— = O’
op
0 0 OékﬁQ —O./k62
8_P . i 0 0 5k1(1~)n + 6) + ﬁl(nk + Oék) 5161(671 - 5) + ’(71(7”0]C - O./k)
81~)k 62 0 0 5k2(7~)n —+ E) + ﬁg(nk -+ Oék> 5k2(7~]n — 5) -+ @Q(nk — Oék)
0 0 5k3(7§n —+ E) —+ 173(’/1,]f + Oék> 51@3(@11 — 5) + ﬁg(ﬂk — Oék)

where 0, =) Uxny. The dashed variables V are defined in eq. 3.31 and the dashed
%
speed of sound is
i= /721 P
Moreover, vector @ is defined as

9 Upny
O =

8vk C

After computing 9P / 8‘7]-, the derivative of P! is easily found by differentiating the

P~'P=T identity,
aP— 0Py, -
=- § E A

369

Bibliography

1]

2]

The EASY (Evolutionary Algorithms SYstem) software. http://velosO.
1tt.mech.ntua.gr/EASY.

T. AbdelMigid, K. Saqr, M. Kotb, and A. Aboelfarag. Revisiting the Lid-
Driven Cavity Flow Problem: Review and New Steady State Benchmark-
ing Results Using GPU Accelerated Code. Alexandria Engineering Journal,
56(1):123-135, 2017.

D. Abel and D. Mark. A Comparative Analysis of Some Two-Dimensional Or-
derings. International Journal of Geographical Information Systems, 4(1):21—
31, 1990.

G. Adomavicius, M. Aftosmis, and M. Berger. A Parallel Cartesian Approach
for External Aerodynamics of Vehicles with Complex Geometry. In The tenth
Thermal and Fluids Analysis Workshop, Huntsville, AL, September 1999.

M. Aftosmis, M. Berger, and G. Adomavicius. A Parallel Multilevel Method
for Adaptively Refined Cartesian Grids with Embedded Boundaries. In 38th
Aerospace Sciences Meeting and Ezhibit, 2000.

M. Aftosmis, M. Berger, and J. Melton. Robust and Efficient Cartesian Mesh
Generation for Component-Based Geometry. AIAA Journal, 36(6):952-960,
1998.

M. Aftosmis, M. Berger, and S. Murman. Applications of Space-Filling-Curves
to Cartesian Methods for CFD. In 42nd AIAA Aerospace Sciences Meeting
and Ezxhibit, January 2004.

C. Albone. Embedded Meshes of Controllable Quality Synthesised from Ele-
mentary Geometric Features. In 30th Aerospace Sciences Meeting and Exhibit,
1992.

370

http://velos0.ltt.mech.ntua.gr/EASY
http://velos0.ltt.mech.ntua.gr/EASY

Bibliography 371

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

A. Ammar, F. Chinesta, E. Cueto, and M. Doblaré. Proper Generalized De-
composition of Time-Multiscale Models. International Journal for Numerical
Methods in Engineering, 90(5):569-596, 2012.

J. Anagnostopoulos. Discretization of Transport Equations on 2D Cartesian
Unstructured Grids Using Data from Remote Cells for the Convection Terms.
International Journal of Numerical Methods in Fluids, 42:297-321, 2003.

J. Anagnostopoulos. A Cartesian Grid Method for the Simulation of Flows in
Complex Geometries. October 2007.

J. Anagnostopoulos. A Fast Numerical Method for Flow Analysis and Blade
Design in Centrifugal Pump Impellers. Computers € Fluids, 38(2):284-289,
20009.

J. Anagnostopoulos and D. Mathioulakis. Numerical Simulation and Hydro-
dynamic Design Optimization of a Tesla-Type Valve for Micropumps. August
2005.

J.D. Anderson. Fundamentals of Aerodynamics. International student edition.
McGraw-Hill, 1984.

K. Anderson and J. Batina. Accurate Solutions, Parameter Studies and Com-
parisons for the Euler and Potential Flow Equations. AGARD, Validation of
Computational Fluid Dynamics. Volume 1: Symposium Papers and Round

Table Discussion, January 1989.

K. Anderson and D. Bonhaus. Aerodynamic Design on Unstructured Grids
for Turbulent Flows. 1997.

K. Anderson, J. Newman, D. Whitfield, and E. Nielsen. Sensitivity Analysis for
Navier-Stokes Equations on Unstructured Meshes Using Complex Variables.
AIAA Journal, 39, November 1999.

W. Anderson and V. Venkatakrishnan. Aerodynamic Design Optimization on
Unstructured Grids with a Continuous Adjoint Formulation. Computers €&
Fluids, 28(4):443-480, 1999.

P. Angot. A Fictitious Domain Model for the Stokes/Brinkman Problem
with Jump Embedded Boundary Conditions. Comptes Rendus Mathematique,
348(11):697-702, 2010.

372

K. D. Samouchos

[20]

[21]

[25]

[29]

[30]

P. Angot, C. Bruneau, and P. Fabrie. A Penalization Method to Take into
Acount Obstacles in Viscous Flows. Numerische Mathematik, 81:497-520,
February 1999.

S. Asao, S. Ishihara, K. Matsuno, and M. Yamakawa. Progressive Development
of Moving-Grid Finite-Volume Method for Three-Dimensional Incompressible
Flows. pages 127-134, January 2010.

M. Bader. Space-filling Curves. An Introduction With Applications in Scien-
tific Computing, volume 9. January 2013.

T. Baker and P. Cavallo. Dynamic Adaptation for Deforming Tetrahedral
Meshes. In 14th Computational Fluid Dynamics Conference, 1999.

E. Balaras. Modeling Complex Boundaries Using an External Force Field
on Fixed Cartesian Grids in Large-Eddy Simulations. Computers & Fluids,
33(3):375-404, 2004.

L. Balzano and S. Wright. On GROUSE and incremental SVD. In 2013 5th
IEEE International Workshop on Computational Advances in Multi-Sensor
Adaptive Processing (CAMSAP), pages 1-4, 2013.

T. Barth and D. Jespersen. The Design and Application of Upwind Schemes
on Unstructured Meshes. In 27th Aerospace Sciences Meeting, 19809.

P. Barton, B. Obadia, and D. Drikakis. A Conservative Level-Set Based
Method for Compressible Solid/Fluid Problems on Fixed Grids. Journal of
Computational Physics, 230(21):7867-7890, 2011.

O. Baysal and M. Eleshaky. Aerodynamic Sensitivity Analysis Methods for
the Compressible Euler Equations. Journal of Fluids Engineering-transactions
of The Asme, 113:681-688, 1991.

S. Bayyuk, K. Powell, and B. van Leer. A Simulation Technique for 2-D
Unsteady Inviscid Flows Around Arbitrarily Moving and Deforming Bodies of
Arbitrary Geometry. July 1993.

J. Behrens and J. Zimmermann. Parallelizing an Unstructured Grid Generator
with a Space-Filling Curve Approach. pages 815823, August 2000.

Bibliography 373

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[41]

[. Bell. Theoretical and Ezperimental Analysis of Liquid Flooded Compres-
sion in Scroll Compressors. PhD thesis, Purdue University, West Lafayette,
Indiana, 2011.

E. Beltrami. Sulle Funzioni Bilineari. Giornale di Matematiche ad Uso degli
Studenti Delle Universita Italiane, 11:98-106, 1873. English translation by D.
Boley, 1990.

J. Benek, J. Steger, and F. Dougherty. A Chimera Grid Scheme. page 5969,
1983.

J. Benk, H. Bungartz, M. Mehl, and M. Ulbrich. Immersed Boundary Methods
for Fluid-Structure Interaction and Shape Optimization within an FEM-Based
PDE Toolbox, volume 93, pages 25-56. January 2013.

W. Bennett, N. Nikiforakis, and R. Klein. A Moving Boundary Flux Sta-
bilization Method for Cartesian Cut-Cell Grids Using Directional Operator
Splitting. Journal of Computational Physics, 368, November 2017.

M. Berger and M. Aftosmis. Progress Towards a Cartesian Cut-Cell Method
for Viscous Compressible Flow. In 50th AIAA Aerospace Sciences Meeting
including the New Horizons Forum and Aerospace Ezxposition, 2012.

M. Berger and M. Aftosmis. An ODE-Based Wall Model for Turbulent Flow
Simulations. AIAA Journal, 56(2):700-714, 2018.

M. Berger, M. Aftosmis, and S. Murman. Analysis of Slope Limiters on Ir-
regular Grids. 43rd AIAA Aerospace Sciences Meeting and Exhibit - Meeting
Papers, February 2005.

M. Berger and P. Colella. Local Adaptive Mesh Refinement for Shock Hydro-
dynamics. Journal of Computational Physics, 82(1):64-84, 1989.

M. Berger, C. Helzel, and R. Leveque. H-Box Methods for the Approxima-
tion of Hyperbolic Conservation Laws on Irregular Grids. SIAM Journal on
Numerical Analysis, 41(3):893-918, 2003.

M. Berger and J. Oliger. Adaptive Mesh Refinement for Hyperbolic Par-
tial Differential Equations. Journal of Computational Physics, 53(3):484-512,
1984.

374

K. D. Samouchos

[42]

[43]

[46]

[47]

[48]

[49]

[50]

[52]

A. Bernland, E. Wadbro, and M. Berggren. Acoustic Shape Optimization
Using Cut Finite Elements. International Journal for Numerical Methods in
Engineering, 113(3):432-449, 2018.

P. Berthelsen and O. Faltinsen. A Local Directional Ghost Cell Approach for
Incompressible Viscous Flow Problems with Irregular Boundaries. Journal of
Computational Physics, 227(9):4354-4397, 2008.

R. Beyer and R. Leveque. Analysis of a One-Dimensional Model for the Im-
mersed Boundary Method. SIAM J. Numer. Anal., 29(2):332-364, April 1992.

D. Bohm, S. Berchtold, and D. Keim. Searching in High-Dimensional Spaces:
Index Structures for Improving the Performance of Multimedia Databases.
ACM Computing Surveys, 33(3):322-373, 2001.

K. Boopathy and M. Rumpfkeil. A Multivariate Interpolation and Regression
Enhanced Kriging Surrogate Model. June 2013.

M. Brand. Incremental Singular Value Decomposition Of Uncertain Data With
Missing Values. In Computer Vision — ECCV 2002, pages 707-720. Springer
Berlin Heidelberg, 2002.

M. Brand. Fast Low-Rank Modifications of the Thin Singular Value Decompo-
sition. Linear Algebra and its Applications, 415(1):20-30, 2006. Special Issue
on Large Scale Linear and Nonlinear Eigenvalue Problems.

A. F. Browne and A. B. Paustian. Noise Analysis Methodology for a Dual-
Diaphragm Medical Device Air Pump. In SoutheastCon 2016, pages 1-7, 2016.

A. Butz. Space Filling Curves and Mathematical Programming. Information
and Control, 12(4):314-330, 1968.

F. Capizzano. Automatic Generation of Locally Refined Cartesian Meshes:
Data Management and Algorithms. International Journal for Numerical Meth-

ods in Engineering, 113, August 2017.

J. Caridad and F. Kenyery. CFD Analysis of Electric Submersible
Pumps (ESP) Handling Two-Phase Mixtures. Journal of Energy Resources
Technology-transactions of The Asme - J. Energy Resour. Technol, 126, 06
2004.

Bibliography 375

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

D. Causon, D. Ingram, and C. Mingham. A Cartesian Cut Cell Method for
Shallow Water Flows with Moving Boundaries. Advances in Water Resources,
24(8):899-911, 2001.

D. Cecere and E. Giacomazzi. An Immersed Volume Method for Large Eddy
Simulation of Compressible Flows Using a Staggered-Grid Approach. Com-
puter Methods in Applied Mechanics and Engineering, 280:1-27, 2014.

E. Charlton and K. Powell. An Octree Solution to Conservation Laws over
Arbitrary Regions (OSCAR). In 85th Aerospace Sciences Meeting and Ezhibit,
1997.

Z. Chen, S. Hickel, A. Devesa, J. Berland, and N. Adams. Wall Modeling for
Implicit Large-Eddy Simulation and Immersed-Interface Methods. Theoretical
and Computational Fluid Dynamics, 28, March 2013.

Y. Cheny and O. Botella. The LS-STAG method: A New Immersed
Boundary/Level-Set Method for the Computation of Incompressible Viscous

Flows in Complex Moving Geometries with Good Conservation Properties.
Journal of Computational Physics, 229(4):1043-1076, 2010.

C. Chevalier and F. Pellegrini. PT-Scotch: A Tool for Efficient Parallel Graph
Ordering. Parallel Computing, 34(6):318-331, 2008.

Y. Chiang, B. van Leer, and K. Powell. Simulation of Unsteady Inviscid Flow
on an Adaptively Refined Cartesian Grid. In 30th AIAA Aerospace Sciences
Meeting and Fxhibit, January 1992.

F. Chinesta, R. Keunings, and A. Leygue. The Proper Generalized Decompo-
sition for Advanced Numerical Simulations, A Primer. Springer International
Publishing, Nantes, France, 2014.

Y. Cho and A. Aessopos. Similarity Transformation Methods in the Analy-
sis of the Two Dimensional Steady Compressible Laminar Boundary Layer.
Term Paper, 2.26 Compressible Fluid Dynamics, Massachusetts Institute of
Technology, Spring 2004.

J. Choi, R. Oberoi, J. Edwards, and J. Rosati. An Immersed Boundary
Method for Complex Incompressible Flows. Journal of Computational Physics,
224(2):757-784, 2007.

376

K. D. Samouchos

[63]

[64]

[65]

[66]

[74]

[75]

A. Chorin. A Numerical Method for Solving Incompressible Viscous Flow
Problems. Journal of Computational Physics, 2(1):12-26, 1967.

H. Chun-Wei and H. Song-Bin. A Microfluidic Device for Precise Pipetting.
Journal of Micromechanics and Microengineering, 18:035004, 01 2008.

D. Clarke, M. Salas, and H. Hassan. Euler Calculations for Multielement
Airfoils Using Cartesian Grids. AIAA Journal, 24(3):353-358, 1986.

S. CIliff, S. Thomas, T. Baker, A. Jameson, and R. Hicks. Aerodynamic Shape
Optimization Using Unstructured Grid Methods. In 9th AIAA/ISSMO Sym-
posium on Multidisciplinary Analysis and Optimization, 2002.

W. Coirier. An Adaptively-Refined, Cartesian, Cell-Based Scheme for the
Euler and Navier-Stokes Equations. Ph.D. Thesis - Michigan Univ. 1994.

W. Coirier and K. Powell. An Accuracy Assessment of Cartesian-Mesh
Approaches for the Euler Equations. Journal of Computational Physics,
117(1):121-131, 1995.

W. Coirier and K. Powell. Solution-Adaptive Cartesian Cell Approach for
Viscous and Inviscid Flows. AIAA Journal, 34(5):938-945, 1996.

P. Colella, D. Graves, B. Keen, and D. Modiano. A Cartesian Grid Embedded
Boundary Method for Hyperbolic Conservation Laws. Journal of Computa-
tional Physics, 211(1):347-366, 2006.

F. Courty, A. Dervieux, B. Koobus, and L. Hascoét. Reverse Automatic Dif-
ferentiation for Optimum Design: From Adjoint State Assembly to Gradient
Computation. Optimization Methods and Software, 18:615-627, Octover 2003.

L. Creux. Rotary Engine, U.S. Patent 801,182, October 1905.

A. Dadone and B. Grossman. Efficient Fluid Dynamic Design Optimization
Using Cartesian Grids. In 16th AIAA Computational Fluid Dynamics Con-
ference, 2003.

A. Dadone and B. Grossman. Ghost-Cell Method for Inviscid Two-
Dimensional Flows on Cartesian Grids. AIAA Journal, 42(12):2499-2507,
2004.

P.-E. Danielsson. Euclidean Distance Mapping. Computer Graphics and Image
Processing, 14(3):227-248, 1980.

Bibliography 377

[76]

[77]

78]

[84]

[85]

[36]

S. Davis. Simplified Second-Order Godunov-Type Methods. SIAM Journal
on Scientific and Statistical Computing, 9(3):445-473, 1988.

M. Delanaye, M. Aftosmis, M. Berger, Y. Liu, and T. Pulliman. Automatic
Hybrid-Cartesian Grid Generation for High-Reynolds Number Flows around
Complex Geometries. In 37th Aerospace Sciences Meeting and Ezhibit, 1999.

[. Demirdzic. On the Discretization of the Diffusion Term in Finite-Volume
Continuum Mechanics. Numerical Heat Transfer Part B: Fundamentals, 68,
July 2015.

J. Desideri and A. Janka. Hierarchical Parametrization for Multilevel Evolu-
tionary Shape Optimization with Application to Aerodynamics. 2003.

O. Desjardins, J. McCaslin, M. Owkes, and P. Brady. Direct Numerical and
Large-Eddy Simulation of Primary Atomization in Complex Geometries. At-
omization and Sprays, 23:1001-1048, January 2013.

P. Dhananchezhiyan and S. Hiremath. Optimization of Multiple Micro Pumps
to Maximize the Flow Rate and Minimize the Flow Pulsation. Procedia
Technology, 1st Global Colloguium on Recent Advancements and Effectual Re-
searches in Engineering, Science and Technology - RAEREST, 25:1226-1233,
April 2016.

S. Dilgen, J. Jensen, and N. Aage. Shape Optimization of the Time-Harmonic
Response of Vibroacoustic Devices Using Cut Elements. Finite Elements in
Analysis and Design, 196, 2021.

E. Duque, R. Biswas, and R. Strawn. A Solution Adaptive Struc-
tured/Unstructured Overset Grid Flow Solver with Applications to Helicopter
Rotor Flows. In 13th Applied Aerodynamics Conference, August 2012.

B. Einfeldt. On Godunov-Type Methods for Gas Dynamics. Stam Journal on
Numerical Analysis - SIAM J NUMER ANAL, 25:294-318, April 1988.

M. Eldred and J. Burkardt. Comparison of Non-Intrusive Polynomial Chaos
and Stochastic Collocation Methods for Uncertainty Quantification. 47th
AIAA Aerospace Sciences Meeting including the New Horizons Forum and
Aerospace Ezrposition, January 2009.

J. Elliott and J. Peraire. Aerodynamic Design Using Unstructured Meshes.
1996.

378

K. D. Samouchos

[87]

[89]

[90]

[91]

[92]

[93]

[94]

D. Elsworth and E. Toro. Riemann Solvers for Solving the Incompressible
Navier-Stokes Equations Using the Artificial Compressibility Method. NASA
STI/Recon Technical Report N, pages 25778-, June 1992.

E. Fadiga, N. Casari, A. Suman, and M. Pinelli. Structured Mesh Generation
and Numerical Analysis of a Scroll Expander in an Open-Source Environment.
Energies, 13:666, 02 2020.

E. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof. Combined Immersed-
Boundary Finite-Difference Methods for Three-Dimensional Complex Flow
Simulations. Journal of Computational Physics, 161(1):35-60, 2000.

R. Fedkiw. Coupling an Eulerian Fluid Calculation to a Lagrangian Solid
Calculation with the Ghost Fluid Method. Journal of Computational Physics,
175(1):200-224, 2002.

R. Fedkiw, T. Aslam, B. Merriman, and S. Osher. A Non-Oscillatory Eulerian
Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method).
Journal of Computational Physics, 152(2):457-492, 1999.

R. Fedkiw, T. Aslam, B. Merriman, and S. Osher. A Non-oscillatory Eulerian
Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method).
Journal of Computational Physics, 152(2):457-492, 1999.

J. Ferziger and M. Peric. Computational Methods for Fluid Dynamics. New
York:Springer-Verlag, 1996.

U. Fey, M. Konig, and H. Eckelmann. A New Strouhal-Reynolds-Number
Relationship for the Circular Cylinder in the Range 47 < Re <2x105. Physics
of Fluids, 10(7):1547-1549, 1998.

R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, Ltd,
2000.

R. Fletcher and C. M. Reeves. Function Minimization by Conjugate Gradients.
The Computer Journal, 7(2):149-154, January 1964.

North Atlantic Treaty Organization. Advisory Group for Aerospace Research
and Development. Fluid Dynamics Panel. Working Group 07. Test Cases for
Inviscid Flow Field Methods: Report of Fluid Dynamics Panel Working Group
07. AGARD advisory report. AGARD, 1985.

Bibliography 379

[98]

[99]

[100]

[101]

[102]

103]

[104]

[105]

[106]

[107]

[108]

[109]

N. Foster and G. Dulikravich. Three-Dimensional Aerodynamic Shape Opti-
mization Using Genetic and Gradient Search Algorithms. Journal of Spacecraft
and Rockets - J SPACECRAFT ROCKET, 34:36-42, January 1997.

R. Gaffney, H. Hassan, and M. Salas. Euler Calculations for Wings Using
Cartesian Grids. AIAA Paper 87-0356, 1987.

T. Gao, Y. Tseng, and X. Lu. An Improved Hybrid Cartesian/Immersed
Boundary Method for Fluid-Solid Flows. International Journal for Numerical
Methods in Fluids, 55(12):1189-1211, 2007.

U. Ghia, K.N. Ghia, and C.T. Shin. High-Re Solutions for Incompressible
Flow Using the Navier-Stokes Equations and a Multigrid Method. Journal of
Computational Physics, 48(3):387-411, 1982.

F. Gibou, R. Fedkiw, L.. Cheng, and M. Kang. A Second-Order-Accurate Sym-
metric Discretization of the Poisson Equation on Irregular Domains. Journal
of Computational Physics, 176(1):205-227, 2002.

M. Giles, M. Duta, J. Muller, and N. Pierce. Algorithm Developments for
Discrete Adjoint Methods. AIAA Journal, 41(2):198-205, 2003.

M. Giles and N. Pierce. An Introduction to the Adjoint Approach to Design.
Flow, Turbulence and Combustion, 65, April 2000.

A. Gilmanov, F. Sotiropoulos, and E. Balaras. A General Reconstruction
Algorithm for Simulating Flows with Complex 3D Immersed Boundaries on
Cartesian Grids. Journal of Computational Physics, 191(2):660-669, 2003.

P. Glaister. An Approximate Linearised Riemann Solver for the Euler Equa-
tions for Real Gases. Journal of Computational Physics, 74(2):382-408, 1988.

R. Glowinski, T.W. Pan, and J. Periaux. A Fictitious Domain Method for
Dirichlet Problem and Applications. Computer Methods in Applied Mechanics
and Engineering, 111(3):283-303, 1994.

S. Godunov. A difference Scheme for Numerical Solution of Discontinuous
Solution of Hydrodynamic Equations. Math. Sbornik, 47:271-306, 1959.

S. Godunov and I. Bohachevsky. Finite Difference Method for Numerical
Computation of Discontinuous Solutions of the Equations of Fluid Dynamics.
Matematiceskij sbornik, 47(89)(3):271-306, 1959.

380

K. D. Samouchos

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

N. Gokhale, N. Nikiforakis, and R. Klein. A Dimensionally Split Cartesian
Cut Cell Method for the Compressible Navier—Stokes Equations. Journal of
Computational Physics, 375:1205-1219, 2018.

D. Goldstein, R. Handler, and L. Sirovich. Modeling a no-slip flow boundary
with an external force field. Journal of Computational Physics, 105(2):354—
366, 1993.

G. Golub and W. Kahan. Calculating the Singular Values and Pseudo-Inverse
of a Matrix. Journal of the Society for Industrial and Applied Mathematics:
Series B, Numerical Analysis, 2(2):205-224, 1965.

G. Golub and C. Van Loan. Matriz Computations. Johns Hopkins series in the
mathematical sciences / in association with the Department of mathematical
sciences, The Johns Hopkins University. Johns Hopkins University Press, 1996.

Y. Gorsse, A. Iollo, H. Telib, and L. Weynans. A Simple Second Order Carte-
sian Scheme for Compressible Euler Flows. Journal of Computational Physics,
231(23):7780-7794, 2012.

M. Griebel, T. Neunhoeffer, and H. Regler. Algebraic Multigrid Methods
for the Solution of the Navier-Stokes Equations in Complicated Geometries.
International Journal for Numerical Methods in Fluids, 26(3):281-301, 1998.

A. Griewank and A. Walther. Algorithm 799: Revolve: An Implementation
of Checkpointing for the Reverse or Adjoint Mode of Computational Differen-
tiation. ACM Trans. Math. Softw., 26(1):19-45, March 2000.

B. Griffith and C. Peskin. On the Order of Accuracy of the Immersed Boundary
Method: Higher Order Convergence Rates for Sufficiently Smooth Problems.
Journal of Computational Physics, 208(1):75-105, 2005.

M. Grinfeld and P. Grinfeld. The Gibbs Method in Thermodynamics of Hetero-
geneous Substances Carrying Electric Charges. Results in Physics, 6:194-195,
2016.

P Grinfeld. Introduction to Tensor Analysis and the Calculus of Moving Sur-
faces. January 2013.

C. Ginther, M. Meinke, and W. Schréder. A Flexible Level-Set Approach
for Tracking Multiple Interacting Interfaces in Embedded Boundary Methods.
Computers € Fluids, 102:182-202, 2014.

Bibliography 381

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

A. Harten. High Resolution Schemes for Hyperbolic Conservation Laws. Jour-
nal of Computational Physics, 49(3):357-393, 1983.

A. Harten, J. Hyman, P. Lax, and B. Keyfitz. On Finite-Difference Approx-
imations and Entropy Conditions for Shocks. Communications on Pure and
Applied Mathematics, 29(3):297-322, 1976.

D. Hartmann, M. Meinke, and W. Schroder. An Adaptive Aultilevel Multigrid
Formulation for Cartesian Hierarchical Grid Methods. Computers & Fluids,
37(9):1103-1125, 2008.

D. Hartmann, M. Meinke, and W. Schroder. A Strictly Conservative Carte-
sian Cut-Cell Method for Compressible Viscous Flows on Adaptive Grids.
Computer Methods in Applied Mechanics and Engineering, 200(9):1038-1052,
2011.

L. Hascoét, J. Utke, and U. Naumann. Cheaper Adjoints by Reversing Address
Computations. Sci. Program., 16(1):81-92, January 2008.

H. Haverkort. An Inventory of Three-Dimensional Hilbert Space-Filling
Curves, volume 1109.2323 of arXiv.org [cs.CG]. s.n., 2011.

S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall
PTR, USA, 2nd edition, 1998.

D. Hilbert. Uber die stetige abbildung einer linie auf ein flachenstiick. In
Dritter Band: Analysis - Grundlagen der Mathematik - Physik Verschiedenes:
Nebst Einer Lebensgeschichte, Berlin, Heidelberg, 1891. Springer Berlin Hei-
delberg.

C. Hinterberger and M. Olesen. Automatic Geometry Optimization of Ex-
haust Systems Based on Sensitivities Computed by a Continuous Adjoint CFD
Method in OpenFOAM. April 2010.

Charles Hirsch. Numerical Computation of Internal and External Flows (Sec-
ond Edition). Butterworth-Heinemann, Oxford, second edition edition, 2007.

C Hirt, A. Amsden, and J. Cook. An Arbitrary Lagrangian-Eulerian Comput-
ing Method for all Flow Speeds. Journal of Computational Physics, 14(3):227—
253, 1974.

382

K. D. Samouchos

[132]

[133]

[134]

[135]

[136]

[137]

138

[139]

[140]

[141]

X. Hu, B. Khoo, N. Adams, and F. Huang. A Conservative Interface Method
for Compressible Flows. Journal of Computational Physics, 219(2):553-578,
2006.

Z. Hu, D. Causon, C. Mingham, and L. Qian. A Cartesian Cut Cell Free Sur-
face Capturing Method for 3D Water Impact Problems. International Journal
for Numerical Methods in Fluids, 71(10):1238-1259, 2013.

D. Ingram, D. Causon, and C. Mingham. Developments in Cartesian cut cell
methods. Mathematics and Computers in Simulation, 61(3):561-572, 2003.
MODELLING 2001 - Second IMACS Conference on Mathematical Modelling
and Computational Methods in Mechanics, Physics, Biomechanics and Geo-

dynamics.

M. Inoue and M. Kuroumaru. Structure of Tip Clearance Flow in an Isolated
Axial Compressor Rotor. Journal of Turbomachinery, 111(3):250-256, July
1989.

M. Inoue, M. Kuroumaru, and M. Fukuhara. Behavior of Tip Leakage Flow
Behind an Axial Compressor Rotor. Journal of Engineering for Gas Turbines
and Power, 108(1):7-14, January 1986.

Lee J., J. Kim, H. Choi, and K. Yang. Sources of Spurious Force Oscillations
from an Immersed Boundary Method for Moving-Body Problems. Journal of
Computational Physics, 230(7):2677-2695, 2011.

P. Jacques and R. Dwight. Numerical Sensitivity Analysis for Aerodynamic
Optimization: A Survey of Approaches. Computers & Fluids, 39(3):373-391,
2010.

A. Jameson. Aerodynamic Design via Control Theory. Journal of Scientific
Computing, 3, December 1988.

A. Jameson and J. Reuther. Control Theory Based Airfoil Design Using the
Euler Equations. October 1994.

H. Jasak. FError Analysis and Estimation for the Finite Volume Method
With Applications to Fluid Flows. PhD thesis, ImperialCollegeof Sci-
ence, Technologyand Medicine, January 1996.

Bibliography 383

142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

N. Jenkins and K. Maute. An Immersed Boundary Approach for Shape and
Topology Optimization of Stationary Fluid-Structure Interaction Problems.
Structural and Multidisciplinary Optimization, 54, November 2016.

J. Jeong and F. Hussain. On the Identification of a Vortex. JFM 285, 69-94.
Journal of Fluid Mechanics, 285:69 — 94, February 1995.

H. Ji, F. Lien, and E. Yee. A New Adaptive Mesh Refinement Data Struc-
ture with an Application to Detonation. Journal of Computational Physics,
229(23):8981-8993, 2010.

H. Ji, F. Lien, and E. Yee. Numerical Simulation of Detonation Using an
Adaptive Cartesian Cut-Cell Method Combined with a Cell-Merging Tech-
nique. Computers & Fluids, 39:1041-1057, June 2010.

M. Jiang, R. Machiraju, and D. Thompson. Detection and Visualization of
Vortices. In The Visualization Handbook, 2005.

G. Jin and J. Mellor-Crummey. SFCGen: A Framework for Efficient Gener-
ation of Multi-Dimensional Space-Filling Curves by Recursion. ACM Trans.
Math. Softw., 31:120-148, March 2005.

Y. Kallinderis. A Finite Volume Navier-Stokes Algorithm for Adaptive Grids.
International Journal for Numerical Methods in Fluids, 15(2):193-217, 1992.

I. Kampolis and K. Giannakoglou. A Multilevel Approach to Single- and Mul-
tiobjective Aerodynamic Optimization. Computer Methods in Applied Me-
chanics and Engineering, 197:2963-2975, June 2008.

C. Kapellos. The Continuous Adjoint Method for Automotive Aeroacoustic
Shape Optimization. PhD thesis, National Technical University of Athens,
2019.

D. Kapsoulis. Low-Cost Metamodel-Assisted FEvolutionary Algorithms with
Application in Shape Optimization in Fluid Dynamics. PhD thesis, National
Technical University of Athens, 2019.

D. Kapsoulis, K. Tsiakas, X. Trompoukis, V. Asouti, and K. Giannakoglou.
A PCA-assisted Hybrid Algorithm Combining EAs and Adjoint Methods for
CFD-based Optimization. Applied Soft Computing, 73:520-529, 2018.

384

K. D. Samouchos

[153]

[154]

[155]

[156]

[157]

158

[159]

[160]

[161]

[162]

D. Kapsoulis, K. Tsiakas, X. Trompoukis, V. Asouti, and K. Giannakoglou.
A pca-assisted hybrid algorithm combining eas and adjoint methods for cfd-
based optimization. Applied Soft Computing, 73:520-529, 2018.

M. Karakasis and K. Giannakoglou. On the use of metamodel-assisted, multi-
objective evolutionary algorithms. FEngineering Optimization, 38(8):941-957,
2006.

M. Karakasis and Giannakoglou K. On the Use of Metamodel-Assisted, Multi-
Objective Evolutionary Algorithms. Engineering Optimization, 38(8):941-957,
2006.

M. Karakasis, D. Koubogiannis, and K. Giannakoglou. Hierarchical Dis-
tributed Metamodel-Assisted Evolutionary Algorithms in Shape Optimization.
International Journal for Numerical Methods in Fluids, 53(3):455-469, 2007.

S. Karman. SPLITFLOW - A 3D Unstructured Cartesian/Prismatic Grid
CFD Code for Complex Geometries. In 33rd Aerospace Sciences Meeting and
Exhibit, 1995.

G. Karypis and V. Kumar. METIS—A Software Package for Partitioning
Unstructured Graphs, Partitioning Meshes and Computing Fill-Reducing Or-
dering of Sparse Matrices. January 1997.

. Kavvadias. Continuous Adjoint Methods for Steady and Unsteady Turbulent
flows with Emphasis on the Accuracy of Sensitivity Derivatives. PhD thesis,
National Technical University of Athens, 2016.

[. Kavvadias, E. Papoutsis-Kiachagias, and K. Giannakoglou. On the Proper
Treatment of Grid Sensitivities in Continuous Adjoint Methods for Shape
Optimization. Journal of Computational Physics, 301:1-18, August 2015.

K. Khadra, P. Angot, S. Parneix, and J. Caltagirone. Fictitious domain ap-
proach for numerical modelling of navier—stokes equations. International Jour-
nal for Numerical Methods in Fluids, 34(8):651-684, 2000.

A. Khokhlov. Fully Threaded Tree Algorithms for Adaptive Refinement Fluid
Dynamics Simulations. Journal of Computational Physics, 143(2):519-543,
1998.

Bibliography 385

163

[164]

[165]

[166]

[167]

168

169

[170]

[171]

[172]

[173]

J. Kim, B. Ovgor, K. Cha, J. Kim, S. Lee, and K. Kim. Optimization of
the Aerodynamic and Aeroacoustic Performance of an Axial-Flow Fan. ATAA
Journal, 52:2032-2043, August 2014.

S. Kim, J. Alonso, and A. Jameson. A gradient accuracy study for the adjoint-
based navier-stokes design method. January 1999.

M. Kirkpatrick, S. Armfield, and J. Kent. A Representation of Curved Bound-
aries for the Solution of the Navier-Stokes Equations on a Staggered Three-

Dimensional Cartesian Grid. Journal of Computational Physics, 184(1):1-36,
2003.

E. Kontoleontos, V. Asouti, and K. Giannakoglou. =~ An Asynchronous
Metamodel-Assisted Memetic Algorithm for CFD-Based Shape Optimization.
Engineering Optimization, 44(2):157-173, February 2012.

D. Krause and F. Kummer. An Incompressible Immersed Boundary Solver
for Moving Body Flows Using a Cut Cell Discontinuous Galerkin Method.
Computers & Fluids, 153:118-129, 2017.

N. Kroll, N. Gauger, J. Brezillon, R. Dwight, A. Fazzolari, D. Vollmer,
K. Becker, H. Barnewitz, V. Schulz, and S. Hazra. Flow simulation and shape

optimization for aircraft design. Journal of Computational and Applied Math-
ematics, 203(2):397-411, 2007.

S. Kyriakou. Fwolutionary Algorithm-based Design-Optimization Methods in
Turbomachinery. PhD thesis, National Technical University of Athens, 2013.

P. Ladeveze. PGD in Linear and Nonlinear Computational Solid Mechanics.
In Separated Representations and PGD-Based Model Reduction: Fundamentals
and Applications, Vienna, 2014. Springer.

E. Ladopoulos. Four-dimensional Petroleum Exploration & Non-linear ESP
Artificial Lift by Multiple Pumps for Petroleum Well Development. Universal
Journal of Hydraulics, 3:1-14, 01 2015.

M. Lai and C. Peskin. An Immersed Boundary Method with Formal Second-

Order Accuracy and Reduced Numerical Viscosity. Journal of Computational
Physics, 160(2):705-719, 2000.

L. Landau and E. Lifshitz. Fluid Mechanics, volume 6 of Course of Theoretical
Physics. Pergamon Press, 1987.

386

K. D. Samouchos

174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

R. Landon. NACA 0012 Oscillatory and Transient Pitching. page 16, October
2000.

V. Lemort, S. Quoilin, Cuevas C., and Lebrun J. Testing and Modeling a
Scroll Expander Integrated into an Organic Rankine Cycle. Applied Thermal
Engineering, 29(14):3094-3102, 2009.

M. Lesoinne and C. Farhat. Geometric Conservation Laws for Flow Prob-
lems with Moving Boundaries and Deformable Meshes, and their Impact on
Aeroelastic Computations. Computer Methods in Applied Mechanics and En-
gineering, 134(1):71-90, 1996.

R. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge
Texts in Applied Mathematics. Cambridge University Press, 2002.

Y. Levy, D. Degani, and A. Seginer. Graphical Visualization of Vortical Flows
by Means of Helicity. ATAA Journal, 28(8):1347-1352, 1990.

C. LI. Numerical Solution of Viscous Reacting Blunt Body Flows of a Multi-
component Mixture. In 11th Aerospace Sciences Meeting, 1973.

Y. Liang and B. Barsky. An Analysis and Algorithm for Polygon Clipping.
Commun. of the ACM, 26:868-877, 1983.

H. Liepmann and A. Roshko. Elements of Gas Dynamics, volume 10. January
2001.

P. Lindstrom. Fixed-Rate Compressed Floating-Point Arrays. IEEE Trans-
actions on Visualization and Computer Graphics, 20(12):2674-2683, 2014.

J. Lions. Optimal Control of Systems Governed by Partial Differential Equa-
tions. Springer, Berlin, Heidelberg, 1971.

X. Liu and G. Schrack. Encoding and Decoding the Hilbert Order. Software:
Practice and Ezxperience, 26(12):1335-1346, 1996.

R. Lohner. Adaptive Remeshing for Transient Problems. Computer Methods
in Applied Mechanics and Engineering, 75(1):195-214, 1989.

R. Lohner, K. Morgan, and O. C. Zienkiewicz. Effective Programming of
Finte Element Methods for Computational Fluid Dynamics on Supercomput-
ers, pages 117-125. Vieweg+Teubner Verlag, Wiesbaden, 1986.

Bibliography 387

[187]

[188]

[189)]

[190]

[191]

[192]

193]

194]

[195]

196]

197]

D. Lovely and R. Haimes. Shock Detection from Computational Fluid Dy-
namics Results. In 14th Computational Fluid Dynamics Conference, 1999.

J. Lu. An a posteriori Error Control Framework for Adaptive Precision Opti-
mization Using Discontinuous Galerkin Finite Element Method. PhD thesis,
Massachusetts Institute of Technology, 2005.

H. Luo, H. Dai, and P. Ferreira de Sousa. A Hybrid Formulation to Suppress
the Numerical Oscillations Caused by Immersed Moving Boundaries. In 62nd
Annual Meeting of the APS Division of Fluid Dynamics, November 2009.

S. Majumdar, G. laccarino, and P. Durbin. RANS Solvers with Adaptive
Structured Boundary Non-Conforming Grids. Annual Research Briefs, Jan-
uary 2001.

D. Mangolis, S. Craig, G. Nowakowski, and M. Inada. Modeling and Sim-
ulation of a Scroll Compressor Using Bond Graphs. In Proceedings of the
International Compressor Engineering Conference at Purdue, 1992.

A .-S. Margetis, E. Papoutsis-Kiachagias, and K. Giannakoglou. Lossy Com-
pression Techniques Supporting Unsteady Adjoint on 2D /3D Unstructured
Grids. Computer Methods in Applied Mechanics and Engineering, 387:114152,
2021.

J. Martins, J. Alonso, and J. Reuther. High-Fidelity Aerostructural Design
Optimization of a Supersonic Business Jet. Journal of Aircraft, 41:523-530,
May 2004.

J. Martins, P. Sturdza, and J. Alonso. The Complex-Step Derivative Approx-
imation. ACM Trans. Math. Softw., 29:245-262, 2003.

A. Massing, M. Larson, A. Logg, and M. Rognes. A Nitsche-Based Cut Finite
Element Method for a Fluid—Structure Interaction Problem. Communications
in Applied Mathematics and Computational Science, 10, November 2013.

Argonne National Laboratory Computer Science Division Mathematics and
Rice University Center for Research on Parallel Computation. https://www.

mcs.anl.gov/research/projects/adifor/.

D. Mavriplis. Multigrid Solution of the Discrete Adjoint for Optimization
Problems on Unstructured Meshes. Aiaa Journal - AIAA J, 44:42-50, January
2006.

https://www.mcs.anl.gov/research/projects/adifor/
https://www.mcs.anl.gov/research/projects/adifor/

388

K. D. Samouchos

198

[199]

200]

201]

202]

203)]

204]

[205]

206]

207]

208]

M. Maxey. Simulation Methods for Particulate Flows and Concentrated Sus-
pensions. Annual Review of Fluid Mechanics, 49(1):171-193, 2017.

R. Meakin and N. Suhs. Unsteady Aerodynamic Simulation of Multiple Bodies
in Relative Motion. In 9th Computational Fluid Dynamics Conference, 1989.

M. Meinke, L. Schneiders, C. Giinther, and W. Schréder. A Cut-Cell Method
for Sharp Moving Boundaries in Cartesian Grids. Computers € Fluids, 85:135—
142, 2013. International Workshop on Future of CFD and Aerospace Sciences.

J. Melton, F. Enomoto, and M. Berger. 3D Automatic Cartesian Grid Gen-
eration for Euler Flows. In 11th Computational Fluid Dynamics Conference,
1993.

C. Merkle. Time-Accurate Unsteady Incompressible Flow Algorithms Based
on Artificial Compressibility. In 8th Computational Fluid Dynamics Confer-
ence, 1987.

C. Merlin, P. Domingo, and L. Vervisch. Immersed Boundaries in Large Eddy
Simulation of Compressible Flows. Flow, Turbulence and Combustion, 90,
January 2012.

M. Meyer, A. Devesa, S. Hickel, X. Hu, and N. Adams. A Conservative Im-
mersed Interface Method for Large-Eddy Simulation of Incompressible Flows.
Journal of Computational Physics, 229(18):6300-6317, 2010.

Z. Michalewicz and B. Fogel. How to Solve It: Modern Heuristics. Springer,
Berlin, Heidelberg, 2nd edition, 2004.

C. Michler, E. van Brummelen, S. Hulshoff, and R. de Borst. The Rele-
vance of Conservation for Stability and Accuracy of Numerical Methods for
Fluid-Structure Interaction. Computer Methods in Applied Mechanics and
Engineering, 192(37):4195-4215, 2003.

R. Mittal, C. Bonilla, and H. Udaykumar. Cartesian Grid Methods for Simu-
lating Flows with Moving Boundaries. Computational Engineering, 4:557-566,
January 2003.

R. Mittal, H. Dong, M. Bozkurttas, F. Najjar, A. Vargas, and A. von
Loebbecke. A Versatile Sharp Interface Immersed Boundary Method for

Incompressible Flows with Complex Boundaries. Journal of Computational
Physics, 227(10):4825-4852, 2008.

Bibliography 389

209]

[210]

[211]

212]

[213]

214]

[215]

[216]

217]

[218]

[219]

[220]

R. Mittal and G. laccarino. Immersed Boundary Methods. Annual Review of
Fluid Mechanics, 37(1):239-261, 2005.

R. Mittal, V. Seshadri, and H. Udaykumar. Flutter, Tumble and Vortex In-
duced Autorotation. Theoretical and Computational Fluid Dynamics, 17:165—
170, January 2004.

R. Mittal, Y. Utturkar, and H. Udaykumar. Computational Modeling and
Analysis of Biomimetic Flight Mechanisms. 40th AIAA Aerospace Sciences
Meeting and Exhibit, January 2002.

B. Mohammadi and O. Pironneau. Applied Shape Optimization in Fluids.
Applied Shape Optimization for Fluids, May 2001.

J. Mohd-Yosuf. Combined Immersed Boundary/B-spline Methods for Simula-
tion of Flow in Complex Geometries. Annu. Res. Briefs, Cent. Turbul. Res.,
page 317-28, 1997.

Y. Moigne. Adaptive Mesh Refinement Sensors for Vortex Flow Simulations.
January 2004.

G. Morgan. Numerical Simulation of Moving Boundary Problems Related to
Fracture. Master’s thesis, University of Cambridge, Cambridge, 2013.

E. Morishita and Sugihara M. Scroll Compressor Analytical Model. In 198/
International Compressor Engineering Conference at Purdue University, page
487, 1984.

G. Morton. A Computer Oriented Geodetic Data Base and a New Technique
in File Sequencing. IBM Ltd., 1966.

B. Muralidharan and S. Menon. A High-Order Adaptive Cartesian Cut-Cell
Method for Simulation of Compressible Viscous Flow over Immersed Bodies.
Journal of Computational Physics, 321:342-368, 2016.

S. Murman, M. Aftosmis, M. Berger, and D. Kwak. Implicit Approaches for
Moving Boundaries in a 3-D Cartesian Method. In /1st Aerospace Sciences
Meeting and Fxhibit, February 2003.

S. Nadarajah and A. Jameson. A Comparison of the Continuous and Discrete
Adjoint Approach to Automatic Aerodynamic Optimization. November 2014.

390

K. D. Samouchos

[221]

222]

[223]

224]

[225]

[226]

[227]

[228]

[229]

230]

[231]

A. Nelson, M. Aftosmis, M. Nemec, and T. Pulliam. Aerodynamic Optimiza-
tion of Rocket Control Surfaces Using Cartesian Methods and CAD Geometry.
volume 1, June 2005.

M. Nemec and M. Aftosmis. Aerodynamic Shape Optimization Using a Carte-
sian Adjoint Method and CAD Geometry. 2006.

M. Nemec and M. Aftosmis. Adjoint Sensitivity Computations for an
Embedded-Boundary Cartesian Mesh Method and CAD Geometry. volume
227, pages 2724-2742, 2008.

M. Nemec, M. Aftosmis, S. Murman, and T. Pulliam. Adjoint Formulation
for an Embedded-Boundary Cartesian Method. 2005.

M. Nemec, M. Aftosmis, and T. Pulliam. CAD-Based Aerodynamic Design
of Complex Configurations Using a Cartesian Method. 42nd AIAA Aerospace
Sciences Meeting and Exhibit, January 2004.

W. Newman and R. Sproull, editors. Principles of Interactive Computer
Graphics (2nd Ed.). McGraw-Hill, Inc., USA, 1979.

A. Nisar, N. Afzulpurkar, B. Mahaisavariya, and A. Tuantranont. MEMS-
Based Micropumps in Drug Delivery and Biomedical Applications. Sensors
and Actuators B: Chemical, 130(2):917-942, 2008.

M. Nishioka and H. Sato. Measurements of Velocity Distributions in the Wake
of a Circular Cylinder at Low Reynolds Numbers. Journal of Fluid Mechanics,
65(1):97-112, 1974.

J. Nocedal and S. Wright. Numerical Optimization. Springer, New York, NY,
USA, 2006.

S. Ojeda, H. Sun, S. Allmaras, and D. Darmofal. An Adaptive Simplex Cut-
Cell Method for High-Order Discontinuous Galerkin Discretizations of Con-
jugate Heat Transfer Problems. International Journal for Numerical Methods
in Engineering, 110, August 2016.

G. Okubo and T. Imamura. Characteristics of Adjoint-Based Shape Opti-
mization on Hierarchical Cartesian Mesh with Immersed Boundary Method.
2018.

Bibliography 391

[232]

233

[234]

[235]

[236]

237]

238

239

[240]

[241]

F. Orley, V. Pasquariello, S. Hickel, and Nikolaus A. Cut-Element Based
Immersed Boundary Method for Moving Geometries in Compressible Liquid
Flows with Cavitation. Journal of Computational Physics, 283:1-22, 2015.

C. Othmer. Adjoint Methods for Car Aerodynamics. Journal of Mathematics
in Industry, 4:6, December 2014.

D. Pan and T. Shen. Computation of Incompressible Flows with Immersed
Bodies by a Simple Ghost Cell Method. International Journal for Numerical
Methods in Fluids, 60(12):1378-1401, 2009.

D. Papadimitriou and K. Giannakoglou. A Continuous Adjoint Method with
Objective Function Derivatives Based on Boundary Integrals, for Inviscid and
Viscous Flows. Computers € Fluids, 36(2):325-341, 2007.

V. Papageorgiou, K. Samouchos, and K. Giannakoglou. The Unsteady Con-
tinuous Adjoint Method Assisted by the Proper Generalized Decomposition
Method. In FEwvolutionary and Deterministic Methods for Design Optimiza-
tion and Control With Applications to Industrial and Societal Problems, pages
109-125, Cham, 2019. Springer International Publishing.

E. Papoutsis-Kiachagias. Adjoint Methods for Turbulent Flows, Applied to
Shape or Topology Optimization and Robust Design. PhD thesis, National
Technical University of Athens, 2013.

E. Papoutsis-Kiachagias, V. Asouti, K. Giannakoglou, K. Gkagkas,
S. Shimokawa, and E. Itakura. Multi-Point Aerodynamic Shape Optimization
of Cars Based on Continuous Adjoint. Struct Multidisc Optim, 59(2):675-694,
2019.

E. Papoutsis-Kiachagias and K. Giannakoglou. Continuous Adjoint Methods
for Turbulent Flows, Applied to Shape and Topology Optimization: Indus-
trial Applications. Archives of Computational Methods in Engineering, 23,
December 2014.

N. Patankar. A Formulation for Fast Computations of Rigid Particulate Flows.
Center for Turbulence Research Annual Research Briefs, January 2001.

G. Peano. Sur une courbe, qui remplit toute une aire plane. Mathematische
Annalen, 36:157-160, 1890.

392

K. D. Samouchos

[242]

[243)]

[244]

245

[246]

[247]

[248]

[249]

[250]

[251]

252]

253

R. Pember, J. Bell, P. Colella, W. Curtchfield, and M. Welcome. An Adaptive
Cartesian Grid Method for Unsteady Compressible Flow in Irregular Regions.
Journal of Computational Physics, 120(2):278-304, 1995.

J. Persson. Performance Mapping vs Design Parameters for Screw Compres-
sors and other Displacement Compressor Types. VDI Berichte, 859, 1990.

C. Peskin. Flow Patterns around Heart Valves: A Numerical Method. Journal
of Computational Physics, 10(2):252-271, 1972.

C. Peskin. The Fluid Dynamics of Heart Valves: Experimental, Theoretical,
and Computational Methods. Annual Review of Fluid Mechanics, 14(1):235—
259, 1982.

J. Pilkington and S. Baden. Dynamic partitioning of non-uniform structured
workloads with spacefilling curves. IEEE Transactions on Parallel and Dis-
tributed Systems, 7(3):288-300, 1996.

O. Pironneau. Optimal Shape Design for Elliptic Systems. Springer, Berlin,
Heidelberg, 1982.

W. Press, B. Flannery, S. Teukolsky, and W. Vetterling. Numerical Recipes in
C: The Art of Scientific Computing. Cambridge University Press, USA, 1988.

T. Pulliam and J. Steger. Recent Improvements in Efficiency, Accuracy, and
Convergence for Implicit Approximate Factorization Algorithms. February
1985.

J. Purvis and J. Burkhalter. Prediction of Critical Mach Number for Store
Configurations. AIAA Journal, 17(11):1170-1177, 1979.

J. Quirk. An Adaptive Grid Algorithm for Computational Shock Hydrodynam-
ics. PhD thesis, Cranfield University, 1991.

J. Quirk. An Alternative to Unstructured Grids for Computing Gas Dynamic
Flows around Arbitrarily Complex Two-Dimensional Bodies. Computers €
Fluids, 23(1):125-142, 1994.

K. Rahbar, S. Mahmoud, R. K. Al-Dadah, N. Moazami, and S. A.
Mirhadizadeh. Review of Organic Rankine Cycle for Small-Scale Applications.
Energy Conversion and Management, 134:135-155, 2017.

Bibliography 393

[254]

[255]

[256]

257]

[258]

[259]

260

[261]

262]

263]

[264]

N. Ramaswamy, N. Karanth, S. Kulkarni, and V. Desai. Modeling of Microp-
ump Performance and Optimization of Diaphragm Geometry. IJCA Proceed-
ings on International Symposium on Devices MEMS, Intelligent Systems &
Communication (ISDMISC), (5):14-19, 2011. Full text available.

B. Re, C. Dobrzynski, and A. Guardone. An Interpolation-Free ALE Scheme
for Unsteady Inviscid Flows Computations with Large Boundary Displace-

ments over Three-Dimensional Adaptive Grids. Journal of Computational
Physics, 340:26-54, September 2017.

J. Reuther. Aerodynamic Shape Optimization Using Control Theory. PhD
thesis, University of California Davis, 1996.

J. Reuther and A. Jameson. Control Theory Based Airfoil Design for Potential
Flow and a Finite Volume Discretization. February 1994.

J. Reuther and A. Jameson. Aerodynamic Shape Optimization of Wing and
Wing-Body Configurations Using Control Theory. February 1995.

J. Reuther, A. Jameson, J. Farmer, L. Martinelli, and D. Saunders. Aerody-
namic Shape Optimization of Complex Aircraft Configurations via an Adjoint
Formulation. February 1996.

O. Reynolds. Papers on Mechanical and Physical Subjects: The sub-mechanics
of the universe, volume 3. Cambridge University Press, 1903.

D. Rodriguez. Propulsion/Airframe Integration and Optimization on a Su-
personic Business Jet. In 45th AIAA Aerospace Sciences Meeting and Ezhibit,
2007.

P. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference
Schemes. Journal of Computational Physics, 43(2):357-372, 1981.

P. Roe and J. Pike. Efficient Construction and Utilisation of Approximate
Riemann Solutions. In Proc. of the Sixth Int’l. Symposium on Computing
Methods in Applied Sciences and Engineering, VI, North-Holland Publishing
Co., page 499-518, NLD, 1985.

P. Rubbert, J. Bussoletti, F. Johnson, K. Sidwell, W. Rowe, S. Samant, G. Sen-
Gupta, W. Weatherill, R. Burkhart, B. Everson, D. Young, and A. Woo. A

394

K. D. Samouchos

[265]

[266]

1267]

268]

269

[270]

[271]

272]

273

[274]

New Approach to the Solution of Boundary Value Problems Involving Com-
plex Configurations. Computational Mechanics - Advances and Trends, pages
49-84, 1986.

M. Rutkowski, W. Gryglas, J. Szumbarski, C. Leonardi, and L. Laniewski
Wohk. Open-Loop Optimal Control of a Flapping Wing Using an Adjoint
Lattice Boltzmann Method. Computers € Mathematics with Applications,
79(12):3547-3569, 2020.

Y. Saad. [terative Methods for Sparse Linear Systems. January 2003.

R.H. Sabersky, A.J. Acosta, and E.G. Hauptmann. Fluid Flow: A First Course
in Fluid Mechanics. Macmillan, 1989.

J. Sachdev and C. Groth. A Mesh Adjustment Scheme for Embedded Bound-
aries. volume 2, pages 109114, January 2006.

[. Sadrehaghighi. Essentials of CFD. February 2021.

E. Saiki and S. Biringen. Numerical simulation of a cylinder in uniform flow:
Application of a virtual boundary method. Journal of Computational Physics,
123(2):450-465, 1996.

J. Salmon, M. Warren, and G. Winckelmans. Fast Parallel Tree Codes for
Gravitational and Fluid Dynamical N-Body Problems. International Jour-

nal of Supercomputer Applications and High Performance Computing, 8, May
1994.

K. Samouchos. Development of the Computational Tools for the FlowSimula-
tion into Scroll Turbomachines, used in Supercritical OrganicRankine Cycles.
Programming of Analysis-Optimization Software forthe above Cycles. Mas-
ter’s thesis, National Technical University of Athens, 2013.

K. Samouchos, S. Katsanoulis, and K. Giannakoglou. Unsteady Adjoint to the
Cut-Cell Method Using Mesh Adaptation on GPU’s. In ECCOMAS Congress
2016, Crete, Greece, June 2016.

S. Sastry, E. Kultursay, S. Shontz, and M. Kandemir. Improved Cache Uti-
lization and Preconditioner Efficiency through Use of a Space-Filling Curve

Mesh Element- and Vertex-Reordering Technique. Engineering with Comput-
ers, 30:535-547, 2014.

Bibliography 395

[275]

[276]

277]

278

[279]

[280]

[281]

[282]

[283]

[284]

V. Schmitt and F. Charpin. Pressure Distributions on the ONERA M6 Wing
at Transonic Mach Numbers. Report of the Fluid Dynamics Panel Working
Group 04, AGARD AR 138, May 1979.

L. Schneiders, C. Giinther, J. Grimmen, M. Meinke, and W. Schroeder. Sharp
Resolution of Complex Moving Geometries Using a Multi-Cut-Cell Viscous
Flow Solver. 2015.

L. Schneiders, C. Giinther, M. Meinke, and W. Schroder. An Efficient Conser-
vative Cut-Cell Method for Rigid Bodies Interacting with Viscous Compress-
ible Flows. Journal of Computational Physics, 311:62-86, 2016.

L. Schneiders, D. Hartmann, M. Meinke, and W. Schroder. An accurate
moving boundary formulation in cut-cell methods. Journal of Computational
Physics, 235:786-809, 2013.

J. Seo and R. Mittal. A Sharp-Interface Immersed Boundary Method with Im-
proved Mass Conservation and Reduced Spurious Pressure Oscillations. Jour-
nal of computational physics, 230:7347-7363, August 2011.

J. Sethian. A fast marching level set method for monotonically advancing
fronts. Proceedings of the National Academy of Sciences, 93(4):1591-1595,
1996.

J. Sethian and A. Vladimirsky. Fast Methods for the Eikonal and Related
Hamilton-Jacobi Equations on Unstructured Meshes. Proceedings of the Na-
tional Academy of Sciences of the United States of America, 97:5699-703, June
2000.

T. Sharp and L. Sirovich. Constructing a Continuous Parameter Range of
Computational Flows. ATAA Journal, 27:1326-1331, 1989.

S. Shin. Reynolds-Averaged Navier-Stokes Computation of Tip Clearance Flow
in a Compressor Cascade Using an Unstructured Grid. PhD thesis, Virginia
Polytechnic Institute and State University, 2001.

A. Shinn, M. Goodwin, and S. Vanka. Immersed Boundary Computations
of Shear- and Buoyancy-Driven Flows in Complex Enclosures. International
Journal of Heat and Mass Transfer, 52(17):4082-4089, 2009. Special Issue
Honoring Professor D. Brian Spalding.

396

K. D. Samouchos

[285]

[286]

[287]

[288]

[289)]

290]

291]

202]

203

294]

295]

[296]

297]

K. Sindhya, K. Miettinen, and K. Deb. A Hybrid Framework for Evolutionary
Multi-Objective Optimization. IEEE Transactions on FEvolutionary Compu-
tation, 17(4):495-511, 2013.

J. Slater. https://www.grc.nasa.gov/WWW/wind/valid/méwing/m6wing01/
m6wingOl.html.

S. Smolyak. Quadrature and Interpolation Formulas for Tensor Products of
Certain Classes of Functions. Dokl. Akad. Nauk SSSR, 148:1042-1045, 1963.

L. Songjing, J. Liu, and D. Jiang. Dynamic Characterization of a Valveless
Micropump Considering Entrapped Gas Bubbles. Journal of Heat Transfer,
135:091403, 09 2013.

F. Sotiropoulos and X. Yang. Immersed Boundary Methods for Simulating
Fluid—Structure Interaction. Progress in Aerospace Sciences, 65:1-21, 2014.

J. Spall. Introduction to Stochastic Search and Optimization: Estimation,
Simulation, and Control. John Wiley & Sons, 2003.

J. Steger and R. Warming. Flux Vector Splitting of the Inviscid Gasdynamic
Equations with Application to Finite-Difference Methods. Journal of Compu-
tational Physics, 40(2):263-293, 1981.

E. Stemme and Stemme G. A Valveless Diffuser/Nozzle-Based Fluid Pump.
Sensors and Actuators A: Physical, 39(2):159-167, 1993.

R. Stevens, A. Lehar, and F. Preston. Manipulation and Presentation of
Multidimensional Image Data Using the Peano Scan. IEEE Transactions on
Pattern Analysis and Machine Intelligence, PAMI-5(5):520-526, 1983.

G. Stewart. On the Early History of the Singular Value Decomposition. SIAM
Rev., 35:551-566, 1993.

S. Su and C. Lai, M.and Lin. An immersed boundary technique for simulating
complex flows with rigid boundary. Computers & Fluids, 36(2):313-324, 2007.

I. Sutherland and G. Hodgman. Reentrant Polygon Clipping. Commun. ACM,
17(1):32-42, January 1974.

R.C. Swanson and S. Langer. Steady-state Laminar Flow Solutions for NACA
0012 Airfoil. Computers & Fluids, 126:102 — 128, 2016.

https://www.grc.nasa.gov/WWW/wind/valid/m6wing/m6wing01/m6wing01.html
https://www.grc.nasa.gov/WWW/wind/valid/m6wing/m6wing01/m6wing01.html

Bibliography 397

298]

[299]

300]

301]

302]

303]

304]

305]

306

307]

308]

A. Syrakos, S. Varchanis, Y. Dimakopoulos, A. Goulas, and J. Tsamopoulos.
A Critical Analysis of some Popular Methods for the Discretisation of the Gra-
dient Operator in Finite Volume Methods. Physics of Fluids, 29(12):127103,
2017.

H. Takami and H. Keller. Steady Two-Dimensional Viscous Flow of an In-
compressible Fluid past a Circular Cylinder. The Physics of Fluids, 12(12):11-
51-11-56, 1969.

INRIA Sophia-Antipolis. TAPENADE. https://www-sop.inria.fr/
tropics/tapenade.html.

A. M. K. P. Taylor, J. H. Whitelaw, and M. Yianneskis. Developing Flow in
S-shaped Ducts. 1: Square Cross-Section Duct. Final Report Imperial Coll.
of Science and Technology, May 1982.

L. Taylor and D. Whitfield. Unsteady Three-dimensional Incompressible Euler
and Navier-Stokes Solver for Stationary and Dynamic Grids. In 22nd Fluid

Dynamics, Plasma Dynamics and Lasers Conference, 1991.

B. F. Tchanche, G. Lambrinos, A. Frangoudakis, and G. Papadakis. Low-
Grade Heat Conversion into Power Using Organic Rankine Cycles — A Re-

view of Various Applications. Renewable and Sustainable Energy Reviews,
15(8):3963-3979, 2011.

H. Terashima and G. Tryggvason. A Front-Tracking/Ghost-Fluid Method for
Fluid Interfaces in Compressible Flows. Journal of Computational Physics,
228(11):4012-4037, 20009.

J. Thompson, B. Soni, and N. Weatherill. Handbook of Grid Generation. CRC
Press., first edition, 1998.

E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics: A
Practical Introduction. January 2009.

E. Toro, M. Spruce, and W. Speares. Restoration of the Contact Surface in
the HLL-Riemann Solver. Shock Waves, 4:25-34, 1994.

C. Towne. Computation of Viscous Flow in Curved Ducts and Comparison

with Experimental Data. In 22nd Aerospace Sciences Meeting.

https://www-sop.inria.fr/tropics/tapenade.html
https://www-sop.inria.fr/tropics/tapenade.html

398

K. D. Samouchos

309]

310]

[311]

[312]

313]

[314]

[315]

316]

[317]

318

319

X. Trompoukis. Solving Aerodynamic-Aeroelastic Problems on Graphics Pro-
cessing Units. PhD thesis, National Technical University of Athens, 2012.

Y. Tseng and J.r Ferzige. A Ghost-Cell Immersed Boundary Method for Flow
in Complex Geometry. Journal of Computational Physics, 192(2):593-623,
2003.

K. Tsiakas. Development of Shape Parameterization Techniques, a Flow Solver
and its Adjoint, for Optimization on GPUs. Turbomachinery and External
Aerodynamics Applications. PhD thesis, National Technical University of
Athens, 2019.

E. Turkel. Acceleration to Steady State for the Euler Equations. February
1985.

E. Turkel. Preconditioned Methods for Solving the Incompressible and Low
Speed Compressible Equations. Journal of Computational Physics, 72(2):277—
298, 1987.

E. Turkel. Review of Preconditioning Methods for Fluid Dynamics. Applied
Numerical Mathematics, 12:257-284, October 1992.

Turkel, E. Preconditioning Techniques in Computational Fluid Dynamics.
Annual Review of Fluid Mechanics, 31(1):385-416, 1999.

M. Uhlmann. An Immersed Boundary Method with Direct Forcing for the Sim-
ulation of Particulate Flows. Journal of Computational Physics, 209(2):448—
476, 2005.

Y. Utturkar, R. Mittal, P. Rampunggoon, and L. Cattafesta. Sensitivity of
Synthetic Jets to the Design of the Jet Cavity. January 2002.

B. van Leer. Towards the Ultimate Conservative Difference Scheme. V.
A Second-Order Sequel to Godunov’s Method. Journal of Computational
Physics, 32(1):101-136, 1979.

B. van Leer, W. Lee, and P. Roe. Characteristic Time-Stepping or Local Pre-
conditioning of the Euler Equations. In 10th Computational Fluid Dynamics
Conference, 1991.

Bibliography 399

[320]

[321]

(322]

323

[324]

[325]

[326]

327]

328]

329

330]

H.T.G. van Lintel, F.C.M. van De Pol, and S. Bouwstra. A Piezoelectric
Micropump Based on Micromachining of Silicon. Sensors and Actuators,
15(2):153-167, 1988.

V. Venkatakrishnan. On the Accuracy of Limiters and Convergence to Steady
State Solutions. In 31st Aerospace Sciences Meeting, 1993.

R. Verzicco, J. Mohd-Yusof, P. Orlandi, and D. Haworth. LES in Complex
Geometries Using Boundary Body Forces. ATAA J., 38:427-33, 2000.

C. Vezyris, E. Papoutsis-Kiachagias, and K. Giannakoglou. On the Incre-
mental Singular Value Decomposition Method to Support Unsteady Adjoint-
Based Optimization. International Journal for Numerical Methods in Fluids,
91(7):315-331, 2019.

R. von Flatern. https://www.slb.com/-/media/files/oilfield-review/

defining-esp.ashx.

P.-Y. Vrionis. Shape and Topology Optimization using the Cut-Cell Method
and its Continuous Adjoint for Single— and Two-phase Turbulent flows, in
a Multiprocessor Environment. PhD thesis, National Technical University of

Athens. In progress.

P.-Y. Vrionis, K. Samouchos, and K. Giannakoglou. The Continuous Adjoint
Cut-Cell Method for Shape Optimization in Cavitating Flows. Computers &
Fluids, 224:104974, 04 2021.

P.-Y. Vrionis, K. Samouchos, and K. Giannakoglou. Topology Optimization in
Fluid Mechanics Using Continuous Adjoint and the Cut-Cell Method. Com-
puters €& Mathematics with Applications, 97:286-297, 2021.

A. Walther. Getting Started with ADOL-C. Combinatorial Scientific Com-
puting, January 2009.

Q. Wang, P. Moin, and G. Taccarino. Minimal Repetition Dynamic Check-
pointing Algorithm for Unsteady Adjoint Calculation. SIAM Journal on Sci-
entific Computing, 31(4):2549-2567, 2009.

Z. Wang. A Quadtree-Based Adaptive Cartesian/Quad Grid Flow Solver for
Navier-Stokes Equations. Computers € Fluids, 27(4):529-549, 1998.

https://www.slb.com/-/media/files/oilfield-review/defining-esp.ashx
https://www.slb.com/-/media/files/oilfield-review/defining-esp.ashx

400

K. D. Samouchos

331]

332

333

334]

335]

336

337]

338

339

[340]

[341]

[342]

B. Wedan and J. South. A Method for Solving the Transonic Full-Potential
Equation for General Configurations. 1983.

M. Wintzer, M. Nemec, and M. Aftosmis. Adjoint-Based Adaptive Mesh
Refinement for Sonic Boom Prediction. 2008.

G. Xiao and G. Liu. Computer Simulation for Transient Flow in Oil-free Scroll
Compresso. International Journal of Control and Automation, 7(9), 2014.

Z. Xie and T. Stoesser. A Three-Dimensional Cartesian Cut-Cell/Volume-of-
Fluid Method for Two-Phase Flows with Moving Bodies. Journal of Compu-
tational Physics, 416:109536, 2020.

D. Xiu and G. Karniadakis. The Wiener—Askey Polynomial Chaos for Stochas-
tic Differential Equations. SIAM Journal on Scientific Computing, 24(2):619—
644, 2002.

M. Xu and M. Wei. Using Adjoint-Based Approach to Study Flapping Wings,
2013.

T. Yanagisawa T.and T Shimizu. Leakage Losses with a Rolling Piston Type
Rotary Compressor. I. Radical Clearance on the Rolling Piston. International
Journal of Refrigeration, 8(2):75-84, 1985.

G. Yang, D. Causon, D. Ingram, R. Saunders, and P. Battent. A Cartesian
Cut Cell Method for Compressible Flows Part B: Moving Body Problems. The
Aeronautical Journal (1968), 101(1002):57-65, 1997.

J. Yang and E. Balaras. An Embedded-Boundary Formulation for Large-Eddy
Simulation of Turbulent Flows Interacting with Moving Boundaries. Journal
of Computational Physics, 215(1):12-40, 2006.

T. Ye, R. Mittal, H. Udaykumar, and W. Shyy. An Accurate Cartesian Grid
Method for Viscous Incompressible Flows with Complex Immersed Bound-
aries. Journal of Computational Physics, 156(2):209-240, 1999.

Y. Yuan. Recent Advances in Trust Region Algorithms. Mathematical Pro-
gramming, 151, June 2015.

R. Zanelli and D. Favrat. Experimental Investigation of a Hermetic Scroll
Expander—Generator. In Proceedings of the International Compressor Engi-

neering Conference at Purdue, 01 1994.

Bibliography 401

[343]

[344]

[345]

[346]

[347]

[348]

D. Zeeuw and K. Powell. An Adaptively Refined Cartesian Mesh Solver for
the Euler Equations. Journal of Computational Physics, 104:56—-68, 1993.

X. Zhang, P. Theissen, and J. Schliiter. A Lagrangian Method for the Treat-
ment of Freshly Cleared Cells in Immersed Boundary Techniques. Interna-
tional Journal of Computational Fluid Dynamics, 23(9):667-670, 2009.

H. Zhao. A Fast Sweeping Method for Eikonal Equations. Mathematics of
Computation, 74(250):603-627, 2005.

J. Zhu, H. Banjar, Z. Xia, and H. Zhang. CFD Simulation and Experimental
Study of Oil Viscosity Effect on Multi-Stage Electrical Submersible Pump
(ESP) Performance. Journal of Petroleum Science and Engineering, 146:735-
745, 2016.

J. Zhu, H. Zhu, J. Zhang, and H. Zhang. A Numerical Study on Flow Patterns
inside an Electrical Submersible Pump (ESP) and Comparison with Visual-

ization Experiments. Journal of Petroleum Science and Engineering, 173:339—
350, 2019.

W. Ziniu, X. Yizhe, W. Wenbin, and H. Ruifeng. Review of Shock Wave
Detection Method in CFD Post-Pocessing. Chinese Journal of Aeronautics,
26(3):501-513, 2013.

EO9vixé MetodfBio TTohuteyveio
Xxor Mryavohoywy Mnyavixdy
Epyactripio Ocppixmv AtpoBihounyovey
Movdda ITapdAAnAng Y noloyioTixng

Peuvotoduvauixrc & Beltiotonoinong

H Médobog twv Teuvouevoyv Kuderonv yio tnv Ilpdhein
2A /3A Podv os XOvieteg N'ewpetpleg xou tn
BeAtiotonoinon Mogegrc pe tn 2uvluyrn MEdodo

Awaxtopury Atatein
(Extetopévn Iepiindn)

Kwvotaviivog A. Yapolyog

EmupBiénomv: Kupdxog X. Tavvdxoyiou
Kodnyntic EMII

Adfva, 2022

ii

K. A. Yapolyog

E9vixé Metoofio IToAuteyvelo

X xorj Mryavorhoywy Mryavixdy
Epyactripio Ocpuixov StpoBihounyovey
Movéda ITapdAAnAne Y roloyioTixng
Peuotoduvauixrc & Beltiotonoinong

H Mé£9o6o¢ twv Teuvouevwyv Kudeionv yia tnv [Tgdhedn
2A/3A Poov oe YOvOeteg 'ewpetpies xou tn
BeAtiotonoinon Mopprc pe tn Xuluyr Médodo
Awaxtopury Atatein

KwvoTtavtivog A. Yoapodyog

Eetactiny Entpony:

1. Kuptdxoc Mavvéxoyrov* (EmPrénov), Kadnyntic, EMII,
2y ohfy Mnpyavohdywy Mnyavixwy

2. Iodvvne Avayveoténouroc®, Kadnynthc, EMII,
Yy onr) Mnyoavordywy Minyavixov

3. XLmupldwv Boutowdc*, Kadnyntic, EMII,
2y ohfy Mnyavohdywy Mnyavixnwy

4. Kovotavtivog Moatouddxnng, Kodnyntrec, EMII,
Ly onr) Mnyoavordywy Minyavixov

5. Kwvotavtivoc Mrehumacdxng, Kodnynthc, EMII,
2yohfy Nawrnyov Mnyovohdywy Mnyavixmy

6. Anurtetoc Mrolpng, Avaminpwtic Kodnyntig, EMII,
Yy on) Mnyoavordywy Minyavixov

7. Tewpylog Hamaddxne, Enixovpoc Kadnyntrc, EMII,
2yohfy Nawrnyov Mnyovohdywy Mnyavixoy

* Méhoc tne XuyPouvkevtinrc Emtponic

A9rva, 2022

v

K. A. Yapolyog

Hepirndn

H dwaxtopue| Statelfr) avamtiooeL ex Tou UNdEVOS Eva aUTOTEAEG GUVOLO EpYUAElnY
UE OXOTO TN PEUCTOOUVOLXT avEAUGCT xou BeATioTOTOINGT HORYNC OF EQUOUOYES TNG
unyovixnic Twyv peuctav. H dwatei3y) otnetleton otn pédodo tewv TeuvOUevemY xUDEAGDY,
TEOXEWEVOU VOl GPEL TIC BUOXOMEC TOU UTOEEL VoL ELGAYEL 1) YEVEST] TAEYUAUTOS GTNV
AVIAUGT) XKoL GYEBLACHUO UNYAVOROYIXODY TEOIOVTIWY ToAUTAOXNG Wopgric. H pédodog
Ty Yenoylomolel xapTeatavd TAEYHoTA ToL 0ol XAADTTTOUY OAOXANPO TO UTOAOYLOTIXO
Y@plo CUUTERLAUBAVOUEVOU TOU TUAUATOC TOU XATUAUUBAVETOL Amd TOL GTEPES. GLUATA.
Kotd tnv enfluon tng porig, 10 0Teped PEPOC TOU TAEYUATOS OEV YenoloTolelTal xa,
OLVETME, ATOXOTTETOL ELOAYOVTOS TNY EVVOLX TWV TEUVOUEVGLY xLpehwyv. TIpdxeiton yia
opYoywvieg mapodAnhoypoppes (2A) 1 tapodinieninedes (3A) xuélec mou Téuvovto
amb 1o Oplo TG YEWuETplag xon Tor omofa avacynuatiCovton amoBdANOVTAS TO GTERED
TOUG TUNHOL.

H pédodoc twv tepvouevemy xueodv tapouotdlel ToAG TAEOVEXTAPATA UE BactxdTEQO
QUTO TNS YENYOPNS XOL AUTOUOTNG TAEYHATOTOINOTS TOU TUEOUEVEL AVEEGOTNTN UO TNV
TOAUTTAOXOTNTA TOU UTIOAOYLo TiXoU ywelou. Emmiéov, n yerjorn Toug eivon TAcovextixn
O€ EQUPUOYES TOU TERLAUMPBAVOUY XIVOUUEVA GTERES COUITA, XoKS AUTd UTopoly Vo
xvolvTaL EAeUUEQN TV o6 TO AMUPUUOPPMTO XUPTECLUVO TAEYUa. 'Etot, anogelye-
ToL EX VEOL TIAEYUATOTOINGT 1) XPNOT) EQYUAELWY TaUROUOPPWOTNE TAEYUATWY, TWV OTOWY
1 AMOTEAEOUUTIXOTNTA €Vl oPIBOAT OE TEQIMTMOOELS EVIOVNG PETATOTIONG TWV O TEQE-
oV oplwv. ‘Ocov agopd T PehticTonolnoT Lopgric, 1 eV ON XALTECLAVGDY TAEYUATOV
xplvetan Wiaitepa EMWPEAC. Me auTd Tot TEOBAAUTA, 1) amopuUYT| Slexols YEVEST S N
TOUEUUOPPWOTS OPLOBETMY TAEYHATOV XU TWV EYYEVOY ODUGXOAMMY TOUC ETUTPETEL TNV
avalrtnon BEATIOTWY AIoEWY ETTEENOVTAS TNV AVl To e€elNTNUEVLV YEWUETEL-

AOV OYNUATOV.

Apyxd, 1 Sotpi3y) mapouctdlel HedB0oUE AUTOUATNE oL YRTYOENS YEVESTC TAEYUATOC
YLt TNV LTOO THREY TG UEVOBOU TV TEUVOUEVKDY XUPEAMY, UE YOUNAES OMOUTHOELS OE
umohoyto T uvAun. H vdnhy towdtnto twv xaptectaveoy TAsyudtwy efacpoiileton
UE TNV OUOAT] HETOBOAY) TNG TUXVOTNTAC TOUC XOVTE GTOL GTERES OPLOL X0 OF TEPLOYES
OV AoPBEvVOLY Y WEL POIXE PAUVOUEVL LOLTEPOL EVOLUPEROYTOG. XTo (Blo Thalolo, e
odyovTar veol ahyopriuol, avol va UToAOYIooLY TNV axE3T| TOUY| TWY XAPTECLAVKY
HUPERDY UE TOL OTEPEG OPLOL XOIL VOL XATAUGHEVACOUY TIC AVTIG TOLYES TEUVOUEVES XUPENES
XONOTTOVTOG OAO TO QAGUN TOV TWIAVOY YEWUETEIXDY UTOTEQITTOOEWY. Emniéoy, o-
TogelyovTal apuNTéS aoTaVElEg xaTd TV apriunTxy emiluon Tng pofic Péow TNg

vi K. A. Xopolyoc

CLVEVOONG YELTOVIXOY XUPEADY apxeTd SlapopeTiol Yeyédoug. Axdua, mopouctdlo-
vTon uédodol yeryopns aviyveuong yYertovixmy xuerody, aoldunong xoufonv xa edpwy,
xS Hou TEYVIXEC DIAOTUONG TOU TAEYUUTOS OF ETUYEQOUC TUAMNTA UE OXOTO TNV
eniAucT TNe pofic o€ TOAVETECEPY UG TIXO TEQLBAAROV.

Y11 ouvéyela, moapouotdloval Ta AoYlomxd aptiunTixic entAuoC CUUTIEC TS Xl O-
ouunieoTng PoNC OTOU, YId ACUUTIECTEG POEC, EQUEUOCETOL 1) TEYVIXT| NG Peudocu-
umiectotnTog. To mpotevduevo oyfjua dlaxpitonolnong enwgeheiton amd TNy WLolTe-
e Boury Tou xapTectavol TAEYpaTog xou Boacileton o plar xEVTPoXUPEAXT| SlTUTWOT
TEMEQUOUEVOV OYXWY, e@apuolovtac To oyfuse MUSCL o tnv xotd Roe mpooeyyi-
ot Aoor Tou mpofAfuatoc Riemann. Ye mepintioel XVoUPEVGDY OTEREWY opiwy, 1)
TOXVWOT) TOU TAEYUATOS UETABAAAETAL UE TO YpOVO axoloudmvTag TNy xivnor toug. E-
(popu6lovTon XoUVOTOUES UEVOBOL UETAPORAS TOL TEBIOU PONC OTO TAEYUN TNE EMOUEVNC
YEOVIXNC OTIYUNE XS Xal TEYVIXES YELPLOUOU TWV XAPTECIOVGDY XUPEADY, To omola
METATNOOUY amtd TN GTEPEY| OTY| PEVC TY| TEQLOYT) TOU TAEYUOTOS XU oV TIOTROPAL.

H axpifeio Tou avamtuydévtoc Aoylouixol moTonoleiton Yéow TNg olyxplons Twv u-
TONOYIOU®Y TOU UE AVTIOTOLYES TELRUUAUTIXES UETPYOELS OE EQUOUOYES TIOU XAUAUTITOUY
€vol €UpL PACUN TEQITTMOEWY ECWTERIXNG ol EEWTEPAC, aTEYB0UC 1} OTEWTAS POTC.
Emmniéov, napouctdloviat Blopnyavixés EQupuoyES TOU oVAOEXVIOUY TN YeNo TIXOTNTA
XU OMOTEAEOUATXOTNTA TNG UEVOOOU. Apynd, pEAeTdTaL 1) pOY| UECO OE [lal Uy avA
xOMong, x4t To onolo onavilelr otn BBAoypagia. XN cuvéyewa, eCetdleton 1 PEU-
O TODLVAULXY| GUUTERLPOES. LaG Blappary otix| avTAlag ywelc BakBideg, 6mou napd Tov
UEYEAO aptdud xuPehdY ToU Gop®VOVTL ATt TO GTEPES Oplo XAdE YEoViXT GTYUT|, TO
Aoyiouixd eyyudton T dlathenon tne udlag. Téhog, mpocouolmveton 1) por| oe Barduida
avthiog e€opuing metpelalou pxTol TUTOL 6oL 1) PEVOBOC TWY TEUVOUEVLY XUPEAGDY
TEOTEVETAUL WG EVAANAXTIXOS TROTOG AVTIUETWTLOTG TOU TEOBAAUATOS AAANAETDRUONG
NG HVOLUEVNS X TNG oxbvnTng TTepdymong.

Y& mpofhuata Pedtio Tonoinomng wopgrc, eqopuélovtan 1 cuVEY g xou dtoxpttr) oLlUYHS
OLUTUTILO YL TOV UTOAOYIOUO TNG xhiong tng ouvdptnong otéyou. O uédodol autég
elvon WLadtepa Tpoopiheic Aoy w Tou WwiTEpa YoUNAOU UTOAOYLE TIXOU TOUS XOGTOUS, TO
orofo mopopével aveldptnto Tou TARUOUC TwV YETABANTOY GYEDIACUO) TIOU EAEYYOLY
T0 oo TNg exdoTote YewueTplag. AZilel va onueiwiet, 6TL 1 pardnuoatiny Sltinwon
TOV HEVOOWY AUTMY Xat ovETTUEN TOU oVTIGTOLYOU NOYLOUIXOU Yo GUVEXTIXES T1)/Xou
UN-MOVIIES POEC OE TAEYUATA TELVOUEVLY XUPEADY TopOUGIALETAL VL0 TEWTT YOEd 5T
BBaoypapio. ‘Ocov agopd T cUVEYY| BIATUTWOT), TEXYUUTOTOElTAL BIEELYNOY TWY

TEOTWV Blaxpitononong Twv culuyny eELOMoEWY Xot TpoTelvovTan Tot GLLUYT LGOSV VO-

vii

po v oynudtwy FVS, HLLC xa Roe.

H avdmtugn tou Aoylopwol g dloxprthc culuyolc uevddou Bacileton ot Sl Yeipdg
OLpPOELOT) TOL VTG TOLYOU AOYLOULXOU ETHAUGTC TNG CUUTLEG THS XUl ACUUTIEG TNG POTG.
[Swdtepn éugpoon bideton 0T0 GWOTH YELPIOUO TOU YPOVIXOU 6POU, XUTL TOU GUVETAYE-
Tou TN Sopdptot) Ty aAyopiduwmy mou elvor uTeduvoL Yo TN CWOTYH UETOPORE TOU
ottywaiou medlou porig 0To TAEYUN TNG ETOUEVNG YPOVIXNG OTWYHNAS. TN CUVEYELWL,
TO AOYLOUXO €QupUOlETon G TEOBAYUATO BLOUNYVIXOU) OYEDLICOUOY, OTWS 1) EAoyL-
OTOTOINOY TWV ATWAELOY OAXYG Teong evog aywyoU, 1 UeYIoTOTOlNoT TN AvWong
TTEQUYAC XOL 1) EAXYLOTOTIOMON TNG EQUTTOUEVIXAC ToyLTNTOC 0Ty €€odo Baduidog
avThag eCopulng metpehaiov. Téhog, yenowonoeiton otn BehtioTomoinon ToAGOY
OTOY WY UTO TEQLOPLOUOUS LG DLoppary MaTix G avTAlaG. X OAEC TI TEPLTTWOELS, TO
AOYLOUIXO TORHYUYE YEWUETEXE OYAUNTO QUENUEVNS amodoong, emPBefotmvovToag TNy
ATOTEAECUATIXOTNTA TN avamTuydeioag ueddoou.

A€Zeg xAewdid: Eliowoeic Navier-Stokes, Troloyiotin Peustoduvouxy| , Médo-
oo¢ Tepvopevwy Kuderov Xovumeot| Por|, Acuuricotn Por, Mn-Mévyun Por, Be-
Tiotonoinon Mopgrc, Yuveyric Xuluyrc Médodog, Awxprth Luluyhic Médodoc

viii K. A. Xopolyoc

ix

Axpwviula
MAE Mepuy Awgopiny| Eiowon
MEY Médodog Epfantilopevev Loudtony
MTK Médodog Teuvouevwv Kuderdrv
IIA Henepaopéves Alopopéc
TP Troloyiotxry Peuotoduvouxy
EASY Evolutionary Algorithms SYstem
ESP Electrical Submersible Pump
PCE Polynomial Chaos Expansion
PCA Principal Component Analysis

K. A. Yapolyog

ITepieyopeva

1 Ewaywyn 1
1.1 H Mébodog twv Tepvopevwy Kuerodv.o 3
1.2 Aepoduvouxr BeAtiotonoinorn oe Kopteowovd IIAéypotor 5

2 T'éveorn Kapteoiavol ITAEypatog Tepuvopevoyv Kudelwy 7
2.1 Aevopuef) I'éveon Ihéypotog . . . o . oo oo oo 7
2.2 Koataoxev| twv Tepvopevoy Kupehov . ..o 0000000000 11
2.3 T'éveon Ihéyuatog o Xpovixd Metoforhopeva Xwpla 15

3 Aaxpironoinon twv E€icwoswy Navier-Stokes 18
3.1 Auwxpitonoinon tov Ediohoewy Lupmeotic pofc - oL L 18
3.2 Awxpitonoinon twv Ediodoewy Acuurnieotne Poie L L oL L 21

4 H Yvuveyng xouw Aaxpity] 'Exgeocr towv Yuuyoyv E€lonoswy

Porc 22
4.1 H Yvveyrc Luluyic Awtdnmwon Lo 23
4.2 H Awoxpurr) YuCuyric Atdnomon ... oo 24

5 Egoppoy? tng Medoédou twv Teuvopevwyv Kudelowy otrn Peu-

oToduvapxy Avaiuor xa BeAtioTonoinon 25
5.1 Aumynuuhy Atedric Por| yipw and tnv IItépuya ONERA M6 26
5.2 Yuumeoth Por evtog Mnyavic Kbhone o oo 28
5.3 Behtotonoinon Baduidag Aviilac E€dpuéneo 31

5.4 Behtotonolnon ulag uixerc dtapeoryuotixic un-LoABidogopou avtilag . 33

6 Eniloyog 37
6.1 Avaxe@oholwo-LUUmEQdOoUATO . . . L L 37
6.2 Yrowyelo [Howtotumlog . . . o o oo Lo 38

x1

xii

K. A. Yapolyog

Bibliography

39

Kegpdiowo 1
Eicoaywyn

O emotnuovixde Touéas tng Troloyotinic Peuctoduvouxic (TP) EyeL Yvwploel o
HOVTLXT) oVETTUEY XS T1) BLEEXELD TV TEAEUTAUWY OEXVETIOY AOYW TNg adinone Tne
oY 00¢ TWV GUYYPOVKY UTOAOYIC TIXMDY CUCTNUSTWY Xl TNG WEIUAvVoNS TwV aprdunTi-
*OV Ped6dwY enthuong cLoTNUATWY Un-yeouuxdv Mepiv Algopxaov ECiomoswmy
(MAE). H eZénén auth enétpede tn yenon hoyouxody TP oty peuotoduvouxy| o-
vdluor xat Bedtiotomoinon oe 6ho xan o amoutnTiXéS Brounyovixéc epapuoyéc. H
oLVETAYOUEVY) adEnon TG CATNOMG Yot A€LOTILG TaL XAl CUTOUATOTONUEVA AOYIOULXE TTOU
VoL UTTOpoLY Vo avTamoxptdoly oe TpofAfuata, To omolo nepthopBdvouy teplthoxeg xi-
VOUUEVEC 1) Un YeEwUeTpleg, é0eoe 11 YEVEST UTOAOYIG TO) TAEYHATOS KOG EVal oo Tl
xupLdTepa TEoPBAAUAT TR0 etthuoT Y| Behtiwon.

Mot amd TG o EATULOOPORES TEYVIXEG AUTOUATNE TAEYUATOTOINOTG TEQITAOXWY YwplwV
etvan 1 Médodog twv Eufontilépeveyv Loudtwy (MEX). Yiugwva ye authy, to uto-
AOYIO TN Ywelo XoAITTETOL €€ OAOXATIPOU UE €Val EOXOAA XATACHEVAOYIO XOQTECLAVO
TAEYHA, TO omolo extelveTon TOCO GTNV TEPLOYT TNG PONC OO0 XAl GTNY TEPLOYY| TOU
xoToAoUPAvETAL A GTEPES CWUAT. LUVETGS, avtiieta ue T ouvAlelg TpaxTIXéC,
To TAEYUa Oev elvon TPOGOEdEUEVO GTNY empdvela TNe YewpeTplag. Etol, to mpdfin-
uo TAeyuatonoinong avixadioTaton and To TpoBinua dayelplong Twv ePBunTilOUEVEV
otepewy oplwy. H Blapopd twv xapTECLHVGDY TAEYHAT®Y omd €Vl OPLOOETO TAEYU
yivetar xatovonth yéow Ttou oyfuatog 1.2, 6mou ol 800 TEYVIXEC qopuolovTal Yia
TEOAEEN TNE PONEC YUPW Amd Lol AEEOTOUN.

‘Eva peydho mheovéxtnuo tng uedooou auTrc EYXELTAUL OTNY AVTHIETOTICT XIVOUUEVGY

YEWUETELOY, OL OTIOlEC UTOEOLY VoL UETOXVOUVTAL Ttévew oTo Kopteotavd mAsyua ywelc

2 K. A. Yapolyog

VoL TO TOROUORPMYOUY. AuTO eTITEENEL TN OloyElptor EVToVa XIVOUUEVWY GTEPEWY Cw-
udTwy yowelc vo emnpedleton 1 mowdtnTa Tou TAéypatoc. Mo avtinapafols) uetadd tng
ued650v MEX %o tn¢ mopadootox|c TEYVIXTC TROGOEEUEVLY GTO OPLO TAEYUATGLY Qo
tvetow oto oo 1.1. Mto oyfua Ttopouctdleton xar 1 HEY0B0C TWV ETXAAUTTOUEVHDY
TAeYpdTwV [5], 1 onoio, evey umopel €€ {oou xohd var avTeTwT{oeL £vioves UeTaBOMEC
ToL oplovu, BuoxoieveTaL Vo EMPBIAEL TOUC VOpoUS Satrenong WUalag, opunc xon evép-
YewWS Ywplg T yenon TEpimAoxmy oY NUATOY UETAPORAS TNE TANeopopiag and To Eva
TAEYHO GTO dAhO.

t=n+l

n
[][]

Yyhua 1.1: (o) H xivnon tou xukivipou odnyel otnv éviovn mopaudp@wot Tou un
OOUNUEVOL 0PLOBETOU TAEYUOTOS, OOTYOVTUS OT ONULOURYIO UN) ATOBEX TV oVUOLTAW-
uévwv xuerav. () ‘Evo optédeto mhéypo (tpdowvo) xwvelton pall pe tov xUAvopo,
oTov omo{o efvat TPOGBEBEUEVO, AV GE EVOL ATUPUUORPWTO XAURTEGLAVE TAEYUA (UTAE).
(Y) O xOAvBpoc xveitar méve e évor xapTectovd TAEY MO oaptvovTag XUpENES, oL o-
Toleg UETAMNOOVY amd TN OTEPEY OTI PEUCTY| TEQLOY Y| TOU TAEYUUTOS %ot AVTICTROPAL.
Avotinwon oynudtwy and [31].

1.1. H Médodog twv Teuvouyevonv Kupehov 3

1.1 H Mée£9odog twv Teuvopevov Kudeioy

H peyoiitepn Suoxoiia mou avtyetwnilouv ot MEX eivon 1 emBol twv cuvinuoy un-
ELOYWENOTNS Xou UN-ohio¥nong xutd uixog Twv oTEPEMY ToWUATeLY. TToMAES TeyVinég
€youv mpotadel yio Ty enihuon tou mpolAfuatog, [30]. M and Tic mo axpBeic
uedddouc e ooyévelac twv MEX etvan n uédodog towv tepvouevmy xuderony (MTK),
oUUQVA JE TNV OTtolo TO TUAUA TOU TAEYUOTOS TOU Xatahau3dveTar amd T YEWUETEL

OTOXOTTETOL ONULOVRYMOVTAS TIC AEYOUEVES TEUVOUEVES XUPEREC.

Luyrexptuéva, TeoxeLtaL yiol XUPEAES TOU XAUPTECLOVOU TAEYHATOS, OTIOU EVOL TUHAUN TOUG
BeloxeTon otNy TEPLOY T TNE POTE X0k TO GAAO XUAUTTETAL OO TO OTEPES GLUA, TO OTOlO
xt amofdhhouy oynuatilovtog ToAuedpixols 6yxoug ehéyyou. To oyfua 1.2 cuyxpelvel
€V OQLODETO TAEYHA, EVOL XUQTECLAVO TAEYHUN OTWS YENOUOTOLELTAL OTIC TEPLOCOTERES
MEY xou 1o {810 mAEYUa, a@oTou EYEL UmOXOTEL TO TUNUA TOU OTY| GTEQEY| TMEQLOYY).
Yuvenwg, n MTK unopel vo Yewpniel wg Wior eméxTacn twv 0plOdeTmY TAEYUATOVY
OLUTNEWVTAS TUPGAANACL XL T TAEOVEXTHUNTA TNG YPNONG XUPTECLUVMY TAEYUSTGLY.

H MTK npotdidnxe npdtn gopd otn Bihoypapio to 1979 and toug Purvis et al. [35]
xou 0T oLVEYEL egapudoTixe and touc Wedan et al. [47] to 1983 yi eliomoelg
T0mou duvopxol. Apybtepa, to 1986, ot Clarke et al. [9] epdpuocav v MTK otig
2A eZiowoeic Euler xou o1 Gaffney et al. [16] enéxtewvay) pédodo oe 3A eqappoyéc.
Yta TéAn g dexaetiog Tou ‘80 eugavicTnXaY Ol TENOTEG TEYVIXES TPOCUPUOYHC TOU
XOPTECLVO) TAEYUATOS TOCO 0T OLETLPAVELN UETHED OTEPEOY Xl PEUCTOU OGO %ol
OE P0G QUVOUEVA OTIOC TAL XUPATA XEOUONC, TOU amoutolV UPNAGTERNC TUXVOTNTOC
mAéypota [37]. H mpdtn egapuoyy| oe ouvextinés poég éytve and toug Quirk [36] xou
Coirier et al. [10] vy 2A acuunicota peuotd xou and toug Hartmann et al. [18] yio
3A ovumeotd pevotd. Téhog, n MTK éyel yenowonowmiel yio tnv eniluon Tuplndcv
powv [6].

H mpdheén un-uovidwy poov yOpw and xVOUUEVO G TERES OpLo XUTEDELEE VEO TEOBAR0-
TOL TOU TEETEL VOL AVTLETOTILG TOUY, TEOXEWEVOL va datnendel 1 oaxp{Belor Tng pedddou.
H xupiétepn duoxohio éyxertoan otny Cagpvixy eugdvion 1 e€agdvion xupehwv and to
UTIOAOYIGTIXO Y Wplo AOY® TNG Odpwohc Toug amd Tor xwvolueva oouota. H St
Tonolnom TV eElOMOE®Y poNc ot auTéC TIC xUPEAEC ypetdletal TeoooyT, EToL (WOTE
vo amo@evy Yol teYvNTéS TNYée 1) xatoBovpec udlag, opurc 1| evépyetog. Eyouv
mpotoel Bdpopeg UEVOBOL VLol TNV OVTYETOTION AUTOYU TOU (QUVOUEVOL, OTKSG O OLo-

HOpaopOG TNG amWAcwg 1 teplooeiag udloag o€ YEITOVIXES xUPENES [40], T CLVEVWLOT)

4 K. A. Yapolyog

TV eppavilopevmy 1 e€apavilouevmy xupehdv pe yertovixés toug [4].

VAVAVAVAY

A AVATAY,

%‘ﬁ%’éggx)
ST

A%
W
l ‘&hﬁ

0
X
2
=

é
SR
SOYAA

®) ()
Eynuo 1.2: (o) Optédeto un-6ounuévo miéyua yopw omd UeUoveuévn agpotops|. ()
EuBantlépevn aepotopr| evioe xopteotavol mhéypatoc. (y) To oteped tunpo tou
xopTESLvoU TAEYHaTOC €yel amoxonel oynuatilovtag to mhéyua e MTK.

Hapd Ty avdmtuén ddgpopny maparhaydv tne MTK xar tne egopuoyric Toug oe Je-
YAAO Aoud TEOBANUATODY, TUQUUEVEL 0XOUNL 1) VALY XT| Yo AXOUO OXQPUBECTEQES TEYVI-
%€G TOCO OE UOVES OGO xal OE UM-Uoviueg pogc. H St cuufdiier o authy TNy
Tpoomdiela, tpoteivovtag ahyopliuoug auTOUUTNG YEVEOTC TAEYUUTOS XOU XATAOKEVHG
TV TEUVOUEVKY XUPEA®Y ot Tepimhoxa ywpela, Tou EAXYIGTOTOWNY TNV AAANAETIOp0-
omn hoyouwol-yehotn. Lo eQapuoYes XVOUUEVKDY YEWUETELOY, AVUTTOCCETAL ULl VEX
uéYodog mou EMTEETEL TN BATAENON TNG UALOC, OPUTC XOL EVEQYELIS 0XOU X0 XAUTH TNV
EVTOVY] UETUTOTION TWV CTEPEDY OwUdTwY. To mpoxintov hoyiouxd motonoleiton oe
EQAQUOYES CUUTLEGTOU 1 ACUNTHEGTOU PEVGTOV, ECWTERLXNG 1) EEWTERPIXTC PEVC TOBUVOL-
uhc. Téhog, epopudletar o Wio GeLpd amd BLoUnyavinés EQUOUOYES OVUDEYDOVTOC
o mheovexthApata g MTK évavtt 1wy mapadoctoxdy Teyvixoy Baciouévmy ot opl-
O0ETOL TAEYHATOL.

1.2. Aepoduvouxr Behtiotonoinon oe Kopteowavd ITAEyporta 5

1.2 Aepoduvauixr; BeAtiotonoinorn oce Kopte-

owava [TAeypata

H Behtiotomoinomn yopgric apopd To UETAGY NUATIONS TN UTO eEETUOT YEWUETEIOC TEO-
xewwévou vor auiniel 1 agpoduvouxy 1 udpoduvouxr tTne amodoor. To oyrfua tng
yewueTplag eréyyetar and €va oOvolo UETABANTGY, T EMOVOUalOUEVES UETUBANTES
OYEDLAOUOY (5), EVO 1) PO PEYLOTOTOINGT 1 EALYIC TOTONGT| PEUC TOBLVUULXT TOCOTT
o ovoudletan cuvdptnon otéyoc (F) xou o unohoyiouds tne mpobmovétel Ty enthuon
TV edlowoewy pofc. H dwbaxtopiny| dlater epoapuolel uedddoug Bertiotonoinong
ToL UTOAOYI{OLUY oL YENOWOTOW0Y TIC TapaY®YoUS TNe I w¢ mpog l;, TIC AEYOue-
VEC X0l TOROy@youg evancUnolog. Muyxexpuéva, emhéyeton 1 uédodog v culuydy
xhoewy [14], n omola Eexwvd omd ot apy x| yewpetplo oxohoudel Ty xatekduvon tou
TeocdloptleTon and To BIAVUCUA P, Ol CUVICTOOES Tou ornolou unohoyllovtal oe xdie

HOUANO C
new
new __ OF

omou B elvon mporyuaTixdg apriuog eCUpTWUEVOS amd TIG Topaydyous Tng Fooe

+ Bnewp;)ld

TEOMYOUUEVOUS xUxhoug BeATioTonolnong.

Y€ TPUXTUES EQUPUOYES, O UTOAOYIOUOC TwV Tapayywy OF/0b; eivon apxetd dvoxo-
Ao¢ hoYw tng amouvoiug avaluTixrg éxgeaong yia v F. ‘Evoc duecog ahhd mohd
axeU36¢ TEOTOC YLl TNV TEOGEYYIoT TG TWC Toug ebvan 1 pédodoc twv Ilenepacuévevy
Awogopiyv (IIA), mouv anautel v enilvon tov poixdv MAE 2N gopéc, 6mou N o
aprduog Twv by Edo, Moyw tou xdcToug g, N u€vodog auth yenoiuonoleital uovo
EMAEXTIXG Yt TV enalleuon Tng axp(Belag Tov Tapay®ywy g oLluyols TEYVIXAC,
g omolag To LohoYLo TG x6aToC elvan aveldptnto tou N [34].

H Baowr otpatnyin mou axohovdel 1 culuync pédodog Pacileton oTov oploud Twv
oLLYOY TEBAXWOY PETABANTOY, ot ottolec emaniebouy Tic culuyeic MAE, to x6o7o¢
g oprdunTnhc entluomg Twy omolwy elvor e@dutilo Tou xo0cToug eniluong Twv MAE
TOL TEWTEVOVTOS TEOPBAAUATOS, BNAUDY TV EEIOMOEWY POHS. LUUGPwVA Ue TN uédodo
outh), ot OF/0b; exppdlovion GUVUPTACEL TWY UETUBANTOY PONEC %ol TwV avTioToLY WY
oLLLYOY UETABANTOV X0 O UTOAOYIGUOS TOUG ETUTUYYAVETOL UE ATAY OVTIXATAOTAUON
TOUG OTNV EXPEUCT| TWYV TORAY YWY guoncUnolag.

H ouluyric pédodog ouvavtdtor ot Bihoypapio ye 800 eVahhoaxTixé SLUTUTOELS,
™ ouveyh [2] xou T Sroxprth [17]. H ouveync dotinwon mopaywyiler tic MAE tou

6 K. A. Yapolyog

TEWTEVOVTOG TPOBAAUATOS XATOUAYOVTAS OTNY avaALTIXT| ExPpacT) Twv culuywy MAE
XL TNG EXPEUONG TV THRAYOYWY evatoUnciog. Xtn cuvéyela, emhéyeton Eva oy
dtoxpLTonolnong avticTolyo Tou OYHUNTOS TOL YeNoYoTolUnXE Yio TG ELOWOELS pO-
fic. ‘Etou, n enfhuon twv culuyey MAE ntoapouctdlel oS ouoldTNTES UE TO POIXO
TEOBANUL xoho TOVTG €0X0AN TNV avdmTuln Tou culuYolg Aoylouxol. Avtideta, éva
UELOVEX TN TNS UEVOB0L EYXELTOL OTO YEYOVOS OTL 1 ETAOYT ToU oLLUYOUS GYNUATOS
otoxpLtonoinong dev elfvar Tpo@avrg xou war ATy S EMAOYT Tlovmg Vo odnyYoeL oe
Aovdaouévn extiunom Twy TapaydYwy evatcinotac.

Y€ avTIBLC TOAY| UE TN CUVEYT| BLATUTWOT), 1) OloxELTr) TEYVIXY| Toporywyilel T dlaxelTth
éxgooon Twv MAE tou mpemtedovtog mpoBAAuatog, odnymvTag oTr SLoxpit €xpeoon
v ouluywy MAE xa tng éxgpaong tov mapayoywy evaoincioc. Etot, n yédodog
vnoroyilet Ty axpBh T twv OF/0b;. Tlapol’ autd 1o culuyéc oyfua mpoxinTel
aEXETY To TEPITAOXO, BUCYEPAvVOVTAC TNV avdmTUEN ToL avTioTotyou culuyolc Aoyi-
OUIX0U, UE OUYXELTIXS UEYOADTERES AMAUTACELS OE LTONOYLO T uviun, [33].

H Swtpdr) viodetel xou Tic dVo dratunwoelg g culuyolc pedodou. Emmiéov, cuv-
oudlet ta mheovexthpata e MTK pe 1o yoaunid x6ct0¢ twv culuy®y TEYVIXGY, To-
pouotdlovTag éva oy Ued LTOAOYIo TG EpYalelo yio TN BeATioToTOiNOY OE MEOXTIXES
EQUQUOYES. LUYXEXQUIEVA, 1) YPHON XUQTECLAVAY TAEYUATWY UTEREYEL EVAVTL GAALY
TEYVIXOY, XIS OEV AmMAUTEl TNV TUPUUOPPWST TOU TAEYUATOC AOYW TG UETHBOARC
ToL OYUaToC TNE YewueTtplog xatd Tn Beitiotomoinon. ‘Etol, anogedyel tov npdw-
e0 TepuaTIopd TN PBeltioTonolnong Adyw acToylag Tou TAEYUNTOS, XATL TOou eviote
ouufaiver oe pedodoug Paciopévee oe oplodeta mAéyuota. H epapuoyy| twv culuydv
eyvixdv oe MEX epgovileton diodtepa omdvior ot Bifhoypapio [12], [19] xou oaxdua
Myotepo oe MTK. H pévn yvewot oto cuyypagéo epyaoio nopouctdlel Tn dlaxelth
OLATUTWOT| EQPUQUOCUEVT OE TAEYUATA TEUVOUEVWY XUPEAGY Yl TN BehTio Tomoinor ot
novieg atplBeic pogg [32]. Luvende, po and Tic UEYOAITEPES XOUVOTOUIES NG OLoTpL-
Bric cuVIoTA TO CUVBLAOUG TNG CLVEYOUS Xou dlaxpLtrc Blatinwone ve T MTK oe
TEOBAAUATA BEATIOTOTOINONG CUVEXTIXGY /XAl UN-UOVIIWY POGY.

Kegpdiowo 2

I'eveon Kopteoiavod TTAEyuatoc
Teuvopevwy Kudeionv

To xepdhoto autd mapouctdlel TIC YEVIXES dpyé Tou DETouV T1) Bladixaoia Tng TAEY-
potonoinong xan e€eTdlEl xdmola WITEPOL YOPAUXTNEIC TIXG TNG.

2.1 Aevopwxn I'éveon IIAEypatog

H Suodixacio onuovpyiag evog 3A mhéyuatog EEXVE UE TOV OPIGUO TOU UTOAOYIG TX00
Y wplou oy AUaToC 0pVOYMVIOU THRUAANAETITEDOU Bl TACEWY dy X dy X d.. H emipdvela
NG UTO YEAETN YewUeTplog dloxpitontoteiton ue 11 Bordela tprywvixwy ototyelwy. To
ywelo dloondrta o 8 ioeg xuéres (4 xuéhec yio 2A TAéyuata), ol onoieg Vo ovoudlo-
vTow andyovol g apyhc xupéine. H didonoon unopel va anotunwidet ye) Porfdeta
HLag BeVOPLXTc BoUnc, 6Tou 1) xdie xUPEAN avTiTpocnmTEVETHL antd €var oTelo, To onolo
GUVOEETAL UE TOUC OmOYOVOUC TOL UGk eL0Ypouuwy TUNudTony. Evo nopdderyua evog
2A mhéypatog gatveton 0To oyfua 2.1.

H Sradoy | Suaipeon twv xudehmv ouveyilet éwg dtou To péyetdg Toug va uny utepPo-
fvel wior ouyxexpLévn Ty mou oplleton amd tov yerotn. H Sdacio tng dryotounong
xordodnyeiton amd TNy Tapousia Twy oTEREWY cwudtey. Etot, evtonilovtor ol xuéieg
TOL TEUVOVTAL ol TO GTEPEO OpPLO, OL OTOLEC ToEAYOUV VEEC YEVIEC XEAwY. Ot véeg
xupéreg eréyyovtar Lovd, £TOL MOTE VoL EVIOTUOTOVY OL TEUVOUEVES, Ol omoleg Vo uTto-

BAndoly oty (Bla Saduacio. O alyoprduog oTopatd 6Toy GAES OL TEUVOUEVES XUPEAES

8 K. A. Yapolyog

yivouv pwpdtepeg evog mpoxaopiouevou ueyedoug. Ilpoxeévou va amogeuyvel 7
yerTviaon apxeTd SLapopeTiX®Y ot Yéyedog xuPehwy, eMBUAAETOL O TEQLOPLOUOS TOU
HEYLoTOU aprdUol YEITOVKDY UEcw NG (Blog €dpac ot téooepic. Ertol, xatd tn didpxeta
e Yéveong mAyuatog, xde xupErn Tou Topafidlel aUTOV TOV TEQLOPLOUG BlUoTdToL
O UXEOTEPEG NUPEAEC o 1) TOXVWOT) TOU TAEYPUTOS TAVK GTO OTEPEG OPLO UETO-
pépeTon o o€ eowTEpES xLPELec. To amotéleoua autrg Tng Levddou topouotdleTon
oTo oyfua 2.2, 6Tou dnuioupyeitar TAéyUa YOpw and aEQOTOU EVIOC TETEUYWVIXOD
ywelou.

Eyhua 2.1 (o) H oy xuhéhn 0 Srorywpileton oe 4 anoydvoug pe abEovteg aprduoie
1, 2, 3, xou 4. X0 ouvéyela, 1 xupéhn 3 doyweiletar ex véou ot xuéreg 5, 6, 7,
xou 8. (B") H mopandve dradixacio anotunidveton pe T Bordeta tne devdpnric dourc,
omou xdie onueio avtiotoyel o wa xupéAn. To umhe yeodua onuatodotel TiIc xupéheg
TOU TEALXOU TAEYHATOG.

2.1, Aevdpwr) I'éveon IIéypartog 9

(o) ®)

Yyfuo 2.2: (o) To tetpaymvind ywplo yipw and tnv acpotoun xatahopfdvetar omd
NV oEYWh XUPERT TNG BEVOEIXTC BOoPTC. (B) ITpoxOmTov xapTecioavd TAEYUA, TO oTolo

€Y(EL TPOCUPUOCTEL GTO OTEPED OPLO.

‘Onwe gabvetar xou and 10 avewTépw oYNUA, 1) 0palwaoT) Tou TAEYUATOS UE TNV adinom
NG AmOOTACTC UO TO OTEPES OpLO Vol APXETA ATOTOUT) Yiol VoL UTOGTNRIEEL TNV axELBN
eniluon Twv elowoewy porc. 'Etot, axohovlel enelepyacio Tou TAéyUaTOC UE OXOTO
TNV OUUAOTERT] HETOBOATY TNG TUXVOTNTAG TOU. MTNV TEPITTWOT] TOU TUPUDELYUATOS TNG
OEQOTOUNG, TO AMOTEAEOUA TN EoUdAUVONG QuivETOL OTO Gy fua 2.3.

() ®)

Eyfua 2.3: (o) IIhéypa tou mopadeiypotoc tou oyfuatog 2.2 mpwv (o) xar petd ()
NV €OUIALYOT| TNS UETUPOAAC TNE TUXVOTNTAS TOU.

10 K. A. Yapolyog

H devdpiny| dour| xon xaptectavy ¢UoT Tou TAEYHATOC ETUTEETOUY TNV TOA) OLXOVOUL-
x1) amo¥xeLor) Tou. Luyxexpuuéva, yio TNV apliunom twv xuPehodv yenoiuonoieitot
éva oo tnua Tetv (1 800 Yy 2A) oxepaiov EUTVEUCUEVO omd TNV OvouaTohoYiol TwY
x0UBwv evog dounuévou madyuatoc. ‘Etol, yia xdde xuérn amodnxedovioa yévo ot
opriuol (7, 7, k), ot omolol yenooTotodvTaL Yiol TV UTOAOYIGUS GGV TWY OmupolTNTwY
YewpeTpxv peyedov [21]. H ovopatohoyla Eextvé ue v apyixh xuhéhn touv mAéy-
wortog, 1 onolo avtiototyel €& opiopod oty tetdda (1,1,1). H opldunon xdde véoc
nupéAne eCopTdtan amd aUTHY TOU YOVEX TNG GUUPOVA UE TOV XavovaL Tou euxovileTo
oTo oyfua 2.4.

(i, . k)

(o)

Eyfua 2.4: (o) Mo tuyoda xupédn mouv avtiotoyel oty Tedda apidunone (i, 7, k)
umodlonpeiton og 8 aroydvoug. O TEtddeg ToV aprieY TOU TOUG AVTIGTOLYOLY (afvovTol
ota oyfuata (B7) xou (Y) yio Ty dve xou xdte teteddo avtioTolya.

2.2, Kotaoxevy twv Teuvouevov Kupehov 11

2.2 Koataoxeun twv Teuvopevwyv Kudeiov

H xataoxeu|) 1wV TOAVEDRIXOY TEUVOUEVODY XUPER®Y Cexwvd pe TNy aviyveuorn tewv
TELYOVIXODV ETUPAVELIXWDY O TOLYEIWY TG YEOUETPlaS, Tar omtolo cuunept oufdvovta €€
oloxhfipou 1 xatd P€pog evidg xdde xuErng. 11N cuVEYEL, TO TUAUA XAVE TELY(OVOU
mou “PBeéyeton” and TO PEUCTO ATOXOTTETOL TEOXEWEVOU Vo optodetniel 1 €dpa Tou
TeEMxol Oyxou eléyyou. Kotd tn Swdixaocio auth, epopuoleton o oahydotduog Tomv
Sutherland & Hodgman [43], mpoxeyévou vo UToAOYIOTEL TO 0patd TUAUN EVOS TOAU-
YWVIXOU OAVTIXEWEVOL UECO amd EVaL ToEEDIUEO XUETOU TOAUYWVIXOU OYHUNTOS. LNV
TEQIMTMOT TWV TEUVOUEVLY XUPEADY TO OVTIXEUEVO EIVOL TO TELYWVIXO ETLPAVELONO
otoyelo xa 1o mapdiupo etvar 1 xUPET.

H Aerroupyio tou ahyopriuou yivetow mo xatavonTy| U€oo amd To THUEABELY A TOU G HAo-
T0¢ 2.5, 6mou evroniCetan To TUAUA Tou oxlalOUEVOU TELYWVOoU, To omolo elvol 0patd
uéoo and éva tetparywvixd topddupou. H diadixacia ywplleton oe Téooepa Briuata, on-
AodY| 60 xou oL oxpég Tou Tapdupou. Ye xdie Brjua emextelveTon 1) avtioTouyn oxun
ywetlovtog To eninedo o 800 NUETINEDA UE TO TEMOTO €& QUTOV Vo CUUTERLAOUPAVEL
10 teTPdywvo. TroloyiCovion oL Touéc TNG EMAUENUEVNS oS HE TO TEly®Vo xon o-
TOXOTTETAL TO TUNUA TO omolo avixel 6To deuTepo Nuieninedo. To mpoxintov oyrjua
elodryetan 0To 0eLTEPO B, Omou emavolopPBdveTar 1) (Bl Sadtxacior Yl THY ETOUEVN
ooeur). H eqapuoyt| tou ahyopituou oe ua xaptectov xupérn aiveton oto oyrfjua 2.6.

V 7 V

Yyfua 2.5: Tewpetpus| avoamopdotacr tou aiyopliuou Sutherland & Hodgman.
Kdde axur) Tou TeTpory@vou emeXTEIVETUL Xou TO UNF0pATd TUUA TOU OXalOUEVOU O-

VTIXEWEVOU ATOXOTTETOL.

12 K. A. Yapolyog

(v (10) («€) (1)

Yyfua 2.6: H emgpdvera Tou 61epe00 0MUATOS, TOU ELXOVICETAUL UE XOXXIVO YPOUL, ATO-
XOTTETOL GE OLaBOY XS GTABLA DLATNEWVTAS LOVO TO TUAUA TNG YEWUETElog Tou Peloxeton
EVTOC TNG XAUPTECIAVAC XUPEATC.

Téhog, oynuatiCovton oL UTOAOITES TOAUYWVIXES €DPEC UE TIC OTOLEC ETUXOWVWVEL 1)
xup€hn ue Tic yertovxée tne. To oyfua 2.70" napouctdlel ue UTAE YEOUI TIC EV AOYW®
€0pEC TNG TEUVOPEVNS XUPERNE TOu oy uatog 2.6. 'ETol, OAOXANEMVETAL 1) XATACKELN
TOU OYX0L EAEYYOU, 0 omolog QulveTtar Ue TELdtdoTaTr oxiaorn oto oy o 2.73".

2.2, Kotaoxevh| twv Teuvouevov Kupehodv 13

(o) ()

Eyhua 2.7 (o) Lymuotiopde tov €dptdv e TEUVOREVNS xuédne Tou oyfuatog 2.6
Tou xelvtan eVt Tou péovtog peuotol. () Tebidototn amedvion T TEUVOUEVNS
xUPEANC.

H pédodog mou avamtiydnxe xotd tn dudpxeior Tng SLateLrc umopel vor avTiueTwioet
OTIOLOONTOTE TEPIMTWOT TOUAC UETAUEY TOU TAEYHOTOS XL TNG YEWHETEIOG OXOUaL ol
O€ TMEQIMTWOELS Tou Vewpolvtan 1W1dlouces xat cuvdwe anogedyovtal ond AN Ao-
yiouxd Aoyw tng uPnifc mohumhoxdTnTdg Toug. H tomud| mixvwmorn tou mAdyuatog
oxohoudeltar oLy VA TEoXEWEVOL Vo amogeuy Vel 0 UTOAOYLOUOS ToTOAOYIXS TEp(TAD-
AWV TOUWY, XATL TOLU OUKS AUEGVEL TO UTOAOYIOTIXG XOGTOC TNG EMAUCNG NG POTNC
XL, OLVETKG, dev utodeThRinxe. TlopadelyuaTor ATAUTNTIXGY TEPLTTOOEWY TOU UTOPEL
VO AVTHIETWTIOEL O TEOTEWVOUEVOS ahyOpLiuog Topouctdlovton 6To oy fua 2.8.

Eyfua 2.8: Ididlovoec nepintmoeic touig xuehoy ond to oteped dpto. (o) Kudéin
mou téuveton and SVo dagopetixés mAevpés (B') Kuléhn nou éyer Swoywptotel oe 3
empépoug tTuuata. (y") Audtenon xuhéhne and oteped oo

14 K. A. Yapolyog

H xotaoxeur] 1wV Teuvopeveny xUPeAdY ETITEENEL TNV andoyIoT X0t ATOBOAT TOU OTE-
eeol époug Tou TAéyuatoc. To oyfua 2.9 napouctdlel 1o xUpPTEGLAVO TAEYUA, OTWS
XATUOUEVAC TNXE amd ToV alyoprduo Tng evotrntag 2.1 xat To TeoxUTToV TAEYU UETH
TNV XUTACKEUT) TOV TEUVOUEVLY XUPEADY xou TNV amoBoAt| Towv xuehoy tou Bploxovto
€£0AoXATipoU UECH OTO GTERED GOUITOG.

T
H
iEmiii

(o) ®)

Eynuo 2.9: (o) TIéypa yopw ano agpotoury énwe goiveton oto oynuo 2.3 ()
IpoxOmTov TAEyUa UETE TNV AMOXOTH| TOU GTEEEOD TOU TUAUNTOS

‘Ouwe, T0 MAEyUo auTéd BeV elvol oxoUa XAUTIAANAO TtEog yeYion Yl TNV emlAucn Tng
pofc, eTELDY| wxpd Ypodouata xUPEADY cuVoPELOUY UE aEXETA HEYUROTERES XUPERES
TEOXOAOVTAS apWiunTiny actddeio xotd TNV emthuo TV ellowoewy pofc. Eyouv
rpotadel TAEloTEG TEYVIXES YIoL TNV AVTIUETOTOT 0UTOU Tou gouvouévou [49], [26]. H
uévodoc mou eqopudleton otr SlotelBy) Pacileton TNV TEYVIXT TNG YEWUETPXAC OLY-
YOVELONG TWV XMV XEMGY UE SMa peyahltepa [22] Aoyw tne awénuévne axplBetog
TeoAeEng TNg poric mou mpoogépel. H ouyydvevon auth dnuovpyel véoug eviaioug
OY%0oug EAEYYOL o oL PETUPBANTES NG poNg amoUnxebovial 610 BapUXEVTEO TOU CUOo-
owpatepatos. To oyfua 2.100" tapousctdlel 500 Uixpéc XUPENES TOU GUVEVOVOVTAL [E
TIC YELTOVIXE TOUG, €V To oyfua 2.10B" avep®vel Tr SuvaTOHTNTU TOU AOYIoUXOU Vo
TEOGUOETE TUPATAV® TNG oG XUPEREC OF Evay eViafo X0 EAEYYOU.

2.3. T'éveon II\éypatoc oe Xpovixd Metaarrouevo Xoplo 15

Yyfuo 2.10: (o) Avo pixpég xudéhec ouyywvedovto pe dUo Yeltovég Toug 6Twe dely Vel
70 BéAoc. O 0UOLOUOPPOS YEWUATIONOS XATAGELXVIEL TO TEOXVOTTOVTO GUCCOUXTWUNTAL.
(B) Téooepic pixpéc xuhéheg evervovTon TEOXEWEVOL VoL oy NUoTicouy évay eviaio 6yxou
ehéyyou peyoullTepou peyédouc.

2.3 TI'éveon IIAEypatog o Xpovixd MetofSoh-
ANopevo Xowpela

H yéveon xapteciavol mAéyuatog YOpw and xVOUUEVES YEWUETEIES ToROUCLALEL 1Bt
TEPOTNTES, OL OTOLEC OE CUVAVIWVTUL OE OPLOBETA TAEYUATH Xou omonte{ton ouVEYHC
TEOGUPUOYY| TOU TAEYHATOC GTO GTEPEG Opto PETA amd xdde xivnon Tou, oyfuc 2.11.
Yuyrexpuéva, oL TEployEc xovTd 6TV TeoyevEoTepn Véor g yewueTplaug uroBdiho-
VIO G OLadixaolar apalwong eV XEAG XOVTA 6TN) VEo VEOT TNG BLoTOVTAL AUEAVOVTOG
NV TUXVKOT Tou TAEyuatos. ‘Etot, dwtneeiton 1) axpifeio tng doxpitonoinong tov
eoixcyv MAE xovtd oo xvolueva 6teped oty wuato xadOAn T Sldpxela TN Teoco-
uolwone. Iapdh” autd 1 uetaBoAt| Tng Tomohoylag Tou TAEyuaTog xdle ypovixy oTiyun
emPBdihel TN UeTapopd TwV peyedmy Tou TEdioU PonC amd TO TAAMO TAEYUN OTO VEO
TEOXEWEVOU VUL DLICPUALGTEL 1) LG TOPIXT| CUVEYELX TV UETABANTOY potic. Exuctoiieu-
OUEVY TNV XAPTECLAVY] BOUT| TWV EV AOYW TAEYUATWY, 1) dtodxactior autr| yiveton edxola
xou Yeryopo xodoe tepLAaufdvel Lovo 500 TEQINTOOELS TUpeUPorre, 2.12. XNy menTn
TEPIMTOOT, Wot xUPEAN TNG Thoudg YPOoVixNg o TiyUNg BlooTdTon o eMPEpoUg XUPEAES,
€V 0T BEVTERY ULal OPADA XUPERDY CUYYWVEVOVTOL OE ULdL.

16 K. A. Yapolyog

(o) ®)

Lyfuoe 2.11: Miot UEHOVWUEVT, 0EPOTOUY| TEXYUATOTOLEL UETAQOEIXT| XivnoT) ot XopTE-
olavod TAEYU, To onolo mpocupudleTon oE xddE ypovixr O TLYUY| TaEAUXOAOLIMYTIS TNV

xbvnot| tne.

(o) (®)

Eyfuor 2.12: Tleproy) mAéypotoc 1 omolor YeToBdhheTon UETOED 500 BLABOYIXDY YEOVL-
%@V oTiypwyv. To dimhé Béhog onuotodotel T duvatdTNTa AEAlWOTNS 1 TOXVWOTE TOU
TAEYUOTOC.

H ypefion povo tou extedelpévou ot por) TUARATOS TOU TAEYUATOC TEOXAAEL BUOXOMES
o€ YPOVXE ETOBuANOUEVY Ywola xaddE TO XVOUUEVO GTERES WA XUAUTITEL 1) ATOXO-
AOTTEL xuéheg oTo TEpaoud Tou. ‘Eva mapdderyua gatvetar oTo oyrua 2.13, émou mewv
TN UETATOTIOT ToU 6 TEPE0D opiou, oyrfua 2.130, u6vo 1 dve xUPEAT CUUUETEYEL OTNY
eniluon Twv e€loOOEWY EONC. XTN CUVEYELN, TO TOLYUO XIVEITAL TPOC ToL XATL XOol
ATOXOAUTITEL €val UEPOC TNG xdTe xLEANG, oy 2.13Y", 1 omolo xadiotaton Waitepa
TEOBANUATIXY OTNV OVTWETOTLOY TNS %ATd TN dlaxpitonolnon twv poixwy MAE. Yu-
YHEXQUIEVA, 1) BLOXQLTOTIOMMGT TOU YEOVIXOU 6p0U TwV EELCHOEWY fval adivaT apol
amoutelTon 1) YeNoN TOV UETABANTOVY TNG POTE TNV TEOYEVEGTERT] YEOVIXT OTLY N, OToU
1N ®xVPEAN xohuTToTaY amd To oteped. H ADon mou mpoteiveton elvan 1) Snutovpyia evog
evdiduecou Brjuatog mou ewoviletan oto oyfua 2.133", 6mou 1 veoyevvnieloo xuéin
CUYYWVEVETAL UE TN) YELTOVXY TNG, 1) omola €YEL Lol GLUVEYT YpovixT| Tapoucio Yetalld

WY 000 ypovixwy Brudtey. 'Etot, 1 dlxpitonolnor avietonilel 1o cLocHUATWUA

2.3. T'éveon II\éypatoc oe Xpovixd Metaarrouevo Xoplo 17

0¢ TN VEO ©aTdoTaoT TG xUPEANG Tou oyfuatog 2.13a. Mo ohoxhnpwiel 1 emiiu-
oM TNG PONC Yot TO TEEYOV YPOVIXO Brud, TO CUCCHUATOUA dloryweileTal X VEou OTIC
empépouc xuéreg, oyfua 2.13Y", xou 1 enthvon tng poric ouveylleTton 6TO €MOUEVO

oo

E&icou mpoPAnuatiny etvan 1 Capvixt) xdAudn wag xupérne and to oteped owua. A-
xohoUIOVTAG ToL G TLYUOTUTIO TOL oy uatog 2.13 ue avtiotpogn oepd, 1 avidwon tou
TOLYOUOTOS XUAVTTEL TNV XAt xUPEAN TN yeovixhc otiyurc 2.13y". 'Etot,) otiy-
un 2.130" 6e cuPUeTEYEL oTNY eMthucT TNS Eonc xon 1 WAL, OpUY| XoL EVEQYELD, TOU
€youv anodnxeudel oe auTHY, Ydvovtar. JLVETKC, ol xahuvgicicec xuéreg Aertoup-
Youv w¢ xato3dvpeg ahhovovtag To Tedlo porc. [lpoxewévou va arogeuvydel auto,
oL XUPENEC AUTEC EVOVOVTAL UE YEITOVIXEC TOUG OE €val eVOLdueco Brua, oyrua 2.1303,
€T0L OOTE VOl TOUG ATOdWOOUY TIG HETUPBANTES TNE pong Tou €youy anodnxeloel TpoTo0

eCaPAVIGTOUV.

(o) (®) ()

Eyfuo 2.13: Anod aplotepd mpog Tor 0edld TO O0TEPES 6pLO MUVELTOL TPOC TAL XATE Xl
amoxahOmtel wo véa xupéhn. H avtidetn xdvnomn tou oouatog, and delid mpog o
oploTeRd, xahOmTeL ot xUPERN. Ta ypwuatiopéva ywelo avTioToyolY 6To TUfUd ToU
TAEYHATOC oL BEEYETon amd TN PO Yo XATUOEVIOUV TN GWOTH CUYYMVEUST] TOV
HONUTITOUEVWY 1) ATOXOAUTTOUEVWY XUPERDY.

Kegdiowo 3

Aloxprtonoinon twv ESicwoceswy

Navier-Stokes

3.1 Awaxpitonoinon twv ESiocwoswy Yuuniectrg

lolyls

H xivnong twv cuumectov peustov poviehonoleltar yéow tov edlowoewy Navier-
Stokes xou Twv ellowoewy dathenone e Yalac xou tne evépyelog. AuTéC amoTu-

TOVOVTOL GE €VOL XOPTESLOVG GUGTNHN 0ZoVWY (T1, T2, T3) ©C [28]

oU; | afirr ofy
+ ik ik

=0. i=1.---.5 k=1.---.3
8t axk axk Y ? Y)’ Y Y

UE
[o] [PUk] [0]

) pU1L B pURvL + 011D B Tik

U= 1| pvs |, "=\ powva+baup |, = Tok

pPU3 PURV3 + 031D T3k
| pE | pUrhy i | VT + g

oToL GLUPLVA e TN oUPPaoT xotd Eintein ot emavolopfBovouevot delxteg uTodNAGVOLY
dpoton. Ta daviouato [j, f,ﬁ"” WO z’is cUUPOMLoLY TIC CUVTNENTIXEC POIXEC UETA-
BANTéC, TOUC 6POLG CUVAYWYHC XAl TOUG 6poUG BLdyuoTg, avtiototya. To didvuoua
TV UN-0LVTNENTIXGY PEYEVOY 0plleTon e V= [p, v1, V2, v3, p|, 6TOU OL peTABANTES

18

3.1. Awxpironoinon twv E€lo®oewy Xuuniestic porg 19

P, Vi XL P, SNAGVOUV TNV TUXVOTNTA, TNV Ty TNTo ovd xateuvern xan Ty TieoT.
Axoéuoa, E xou hy ebvon 1 evépyeto xatd Bdpog xan o) eviainior Tou peuctol. H dep-

HOEOY| G, OidETAL 06 TO VOO Tou Fourier xou 0 TaVIGTAC TV TACEWY T ex@eAleTal ¢
- Qui 4 Qv 25 Ovm
Tik = M Ozy, + ox; 35Zk Oxm

xou 5, M 0-ouvdpTnon tou Kronecker.

) OToU f1 EIVOL 1) BUVOULXT] CUVEXTIXOTNTA TOU PEUGTOV

H Sroxprronoinon twv avwtépw eElo®oeny Yivetar Uow TNG xeVTpoxuhexr|g Slatinw-
ONG TV TEMEQUOUEVGLY OYXMY, OTOU Ol POIXEC EEICMOOELS OAOXANPMVOVTOL GE GYXOUC
ehéyyou mou Tautiovton PE TIC XUPEAES TOU XUPTECLOVOU TAEYUATOC, XATL TOU €YEL WS
CUVETELOL TNV oVTOAAAYT) TANRO@oRiag HETAEY YELTOVIXGY XUPEADY UECK TWV Blaxpl-

Z 7 ’ jinv,m /7 jvis,m 7 Vs
TomoNéVLY Btavuoudtwy ateBolc (f"") xou cuvextixhc (f,") porc. 'Etot, yu
HOVIUES POEC, 1) BloxpLTH| EXPRaoT) TwV eEICMOEWY Elvol

UinJrl — Uan - rinv,m,n+1 ruis,m,n+1 m m
AT +Z<fik — /i)”kAS =0
m=1

omou €yel mpooTeVel Evag Peudo-ypovinde dpoc Briuatoc AT mpoxeuévou va dtatneniet
0 uTeEBohxOS YapuxTheas Twv MAE [44]. Emmiéov, ol MEOEC TUIES UZ-" AVTLOTOLY OUV
oTig PeTaPAnTég poric mou anolnxedovion 6To Bopixevipo xdle xuéing dyxou 2 e
TOV aX€POI0 M VoL HETEA TNV TeEyouoa (heudo-ypovixt| enavaindn. Télog, o axépatog
m apuiuel Tic Thevpée xdie xuhéing pe AS™ xou 7™ Vo oavATUEIGTOOY TNV ETLPAVELN
xou To povadiaio xdeTto didvuoua ot xdie TAEUEA.

To didvuopa utoloyiletar péow tne xotd Roe mpoceyylotinic enthuong Tou tpoBAfuo-
to¢ Riemann [38] xou ypnotponootvton ot teptoptotéc xotd Barth & Jespersen [3] A
xotd Venkatakrishnan [45]. EvBewctint| yewuetpw| anetxévion e mpoexBohfc mou a-
ToutelTon Qotveton 6To oy 3.1 Yo yertovinég xuéheg (Blou 1) BlapopeTixol peyEdou,
xS xou YLl TEUVOUEVES XUDENES.

Y TEPITTWOELS XWVOUUEVOY GTEPENDY CWUATMOVY, TO GYNUU TV TEUVOUEVGLY XUPEAGDY
UETOBEAAETOL UE TO YPOVO AOY® TNG UETATOTIONG TWV OTEPEWY TOUC EBRPWY, oY ud 3.2.
H petoforn auth hopPdvetar unodn uéow g teyvixic ALE (Arbitrary Lagrangian-
Eulerian) [20], cOug@wva ye tnv omtola 1 OhoxANee XY Hop®Y| TwV ELGOCEWY YRAPETOL

d g Ofik 1y _
< /Q UidQ — /S Unfnids + | a0 =0

6mou vy elvou 1 Ty TNTA TG exdoToTe €dpag. H Saxpitomoinon g e€lowong odnyet

20 K. A. Yapolyog

07O oYU

1,g+1 1.n+i 1,g+1 1 M
Qn+1Uﬂ+ g+l Qa2 Qn+1Un+ g+l QnJrlU?H- ,q Lotl
i 7 i 7 mA m\n+1,q+
A7 A + (fiimPAS™) =0
T
m=1

OTOL oL PETENTES 1 Xou ¢ aELiO0Y TO YEOVIXG Xal Peudo-ypovixd Briua avtictorya. E-
iong, N yeovixy| otiypn n+1/2 avtiotoryel 6o nedio porc TNS TEONYOVUEVNS YPOVIXNC
oYU TEOPBEBANUEVO GTO TEEYOY TAEYUAL.

VLR Ve
\ vF LR Q VP e
VIV V —

e
e

N\
(«) ®)

Yyfuo 3.1: TTpoexBor) twv ueyedmv VP ya V€ amé 7o Bopixevtpo TwV xUPEh®Y
{dtou 7 BrapopeTno peyédoug 6To PapUXEVTEO TV UETAED TOUS TAEURMY, TPOXEWEVOU
VO UTOAOYIGTOUY Ol TWES TOV VE you VR, TOU UMOUTOUVTOL OO TNV EXPEACT] TOU
SlovhouaTog PoNg TG0 ECWTERIXO (FP9) % o710 oTeped bplo (F).

H opuduntin eniiuom tou un-povipou mpofBiruatog yivetow ue tnv TeY VX Tou iAol
yeovixol Bruatoc [29], olugmvo ye tnv ontola o€ xdde ypovixh otiyur Aovetan €mo-
voanmTxd éva Peudo-ypovind medfBinua. H emlivon tou un-yeauuixold cuothuatog
yivetan pe ™ Pordea tng pevodou Newton-Raphson. ‘Etot, ol Siaxpltonomuéveg eéi-
OWOELG OUYXAIVOLY oE xdle ypovixt| emavdAndn Tpotol o alyodpripog cuveyioel 6To
EMOUEVO YPOVIXO BHAUN, UE ATOTEAEGUO VoL ETUTEENETAL ETUAOYT) UEYUAUTEQMY YROVIXODV
Brudrov ywels vo mpoxaheltar actdieio oty aprdunTtixy eniAucT Tou CUGTHUOTOC.
Me autév TOV TEOTO ETUTUYYAVETAL 1) UELWCT) TWV YEOVIXMY GTLYHMY Xl ATOPEVYETAL
0 OLUYVOG UTOANOYIOUOS TNG TOUNAS TOU GTEPEOU CWUATOS UE TN YEWUETPIN UELOVOVTOG

TO GUYOALXO YPOVO TG TPOCOUOIKOT.

3.2. Awxpironoinon twv EClodoewv Acuunieotng Porg 21

1
AN

AN

YyfAua 3.2: Mo Teuvouevn xUpERT Tapopop@OveETaL AoYw TNG xIvNong Tou OTEREOU

7 Cixr?
opwou "w.

3.2 Auwaxpitonoinon twv Eliowoswyv Acuvunie-

otng Porg

H xivnomn evég peuotol otalepric muxvoTntag povielomoeltar and Tig eELOMOELS,

oV, | oL of

M;; =0, 2=1,---,4, k=1,---,3
J ot 8xk 8xk !
oToU
D Uk 0 0000
V= (2 7 _lzm) _ | wn + O1kp 7 _]i)is _ | T M= 01 00
U2 VgV + Oopp Tok 0010
Vs VU3 + 53kp T3k 0 0 01

Avtideto ye T cuumESTH oY, 1) UETABANTY p TPoTdlopilel TNV TieoT Slonpeuévn PE TNV
muxvotnTa. Tpoxeévou va dwatneniet 1 opotopoppio Tou avamtuydévtog Aoylouxou,
1 Y€V0BOC NG TEYVNTYC CUUTECTOTNTUS YPNOULOTOLE(TOL VLol VO ATOBMOEL LUTERBOAIXO
yopoxthpa otig aovunieoteg MAE [8]. H uédodog auth emtpénel tn Snutovpyio evog
%000 ETADTH TOL XOAITTEL OAEC TIG TEPLTTOOELS POY|G UE ENAYIOTES Dlapopég HETULD
TWY OYNUATOY BLIXELTOTOMNONG TNG CUUTLEGTNS Xou aoupTleoTng porg. 'Etot, o deudo-
YEOVIXOC OpOC %% mpootiietan otny e€icwon ouvéyelag. H petafinty B ovoudleton
TEYVNTH CUUTEGTOTNTA, EMAEYETOL oTadepr| Yiat 6A0 To Tedlo, xou 1) Ty TG emnpedlet
TOGO TNV ToyLTNTA CUYXAONE OGO Xou TNV oXEBEL TOU UmOTEAECUATOC.

Kegdiowo 4

H >uveync xow Alaxpltn
‘Exgpepoocn twv 2uluyoyv
Elicwoswyv Porg

To xepdhoo autd mopovoldlel) podnuotixy dlatiTwor TNg culuyols uedddou yia
3A UN-UOVIUEC CUUTLEGTES Yo ACUUTIEGTEC POEC YLl TOV UTIOAOYLOUO TNg ¥Along tng
ouvdptnong otdyou I wg mpog Tig peTofAnTéC oyedlaouod by, g =1--- N ye uno-
AoyloTixd x6ctog aveldotnto Tou N. Xta mpofifuato BehtioTonolnone Yopghc, ot
HETOPANTES by EAEyyOLY TO oyAua Tng und Pehtiotornolnor yewuetplog. H yevixn
éxqpoon tng F mou eetdleton oty epyaocio auty etvan

F= / / FodQdt + / / Fs ny,dSdt

omou T elvor 10 Ypovixd Taeddupo, 6To OTolo 1) GUVEETNOT) GTOYOC TULUUEVEL EVEQYY),

eve ta peyedn Qp xan Sp avoamaptotoly Tov 6YXo 1) Emipdvela oplouol tng F.

22

4.1. H Xvveyre Xuluyhc Awtinnon 23

4.1 H Yvuveyng Xuluyrc Atatinwon

Yougwva ye ™) cuvey) culuyt| Sltinwon, 1 F emauddveton xotd Eva pndevind oyxxd
ONOXATRWUAL, OONYDOVTAS GTOV 0PIOUO TNG ETMAUENUEVNG CUVARTNONG

L:F+/ /\I/Z»Rid(ldt
TR JQ

6mou B=0 oVAmAELO TOUY TNV avohuTixy) éxgpaon Twv poixey MAE, tou emilovtan
yioe o ddo o TR, xa U civar ot ouluyeic medoég uetofintéc. H maporydyion e L
obnyel o pa éxgpacn mou tepthopPdver toug 6pouc AU, /by, Twv otolwy To x66T0g
umoloylopol etvar avdroyo tou N. 'Etotl, emBdiietor 0 UNOEVIOUOS TV TOAATAO-
oo Ty Toug optlovtag Tig ouluyelg medtoaxée edlonoeig. H avtiotoryn uadnuorin
AVIAUGT) YLOL CUUTILEG TEC POEC XATUAT|YEL
ov; A

T Az i _Tpis
8t Jk@xk ! +

0Fq

=0
oU;

6Tou

; 87',3 81}1 Bq,? oT 8\1113 8"0[
Tvims — + o Tik

2
T/ﬁ =u (hkl + hy, — §5k1hmm))

a\IIH_l 8\IIE A a\I/E
=k
(%ck + 8xk v T (%k

hkl =

H droxprronolonoy| twv ouluyoy MAE elvor avtioTtoyn ve authyv Twv eEl0GGEDY POTHC.
Mot onuovtied wiopopgio tou culuyols TeoBAfuatoc etvar 1 eniAucY| Tou avticTPoPa
07O YEOVO. AUTO CUVETAYETOL TNV ATOUAXEUCT) EX TV TEOTEPWY OAWY TWV CTLYULO-
TOTWY TOL TEBIOL POTIC, TEOXEWEVOL VA YenotuoTodoly xatd Ty eTtAucT Twv oulu-
yov MAE pe avtiotpogn oepd. Kadog, ol untoloylotxol mopol dev emopxolv mévTa
Yoo TV amo¥fxeucT) evog 1660 UeYdAou Gyxou Thnpeogopiag, oTo TACIO TNG dlaTEl-
Bric avamtOy oy Aoyiowxd cuunicong dedouévmy Pactopéva oTic uedédoug Singular
Value Decomposition (SVD) [46] xar Proper Generalized Decomposition (PGD) [7].

Téhoc, n oprduntixg enihuon Tov avetéew MAE odnyel otov unohoyiloud tou culu-
Youg medlou, To onolo yenotwomoteltor Yo Tov UTOROYIoHO TN xhlong Tng F' puéow tng

24 K. A. Yapolyog

EXQPEAOTG

afzk TAn @
S Z n an T T kan

=
(5 r6 t
+ / / (Fo, + PWiir — Wifis — ™) / / ek asa
Tr
GFSk 5ov
— U

0509
Tr J Sw qu

— .
ZTL'U fU'LS
ko

— U, —

—+ FQ — ngnkH) Ufdedt

6mou g =Yyi1 + 07V p xou fk—

AvtioTorya, mpoxintouv ol cuCuyelc MAE v Tic acuunicoteg poég xou e€dyetan 1)
EXPEUOT) TWV TOEAYWYWY evotcUnciog

on on

5 Ogth
+/ / (Fs, + Vi1 — YV, fir — Upa ") nk / / \I’k+17't dedt
Tr w Tr w s

/ / (aFSk) 05t ndedt—i—/ / (Mg 0,V + 0,) 2% g5 gt
" 5.b, - 33D,

4.2 H Awaxprty Yuluyrc Awxtdnwon

av; dfi 0
/ / (M WY \Iflﬁnk — T,ﬁnkﬂ + Fo — FsknkH) vy dSdt
Tr

Avtideta pe) ouveyn Blatinwo, 1 dtaxplth ouluyhc pédodog AauBdver uTodn Tic
OLOXQLTOTIONUEVES EEIOWOELS POTIC RC oe xde xehl C 1 omola TaPoLCLdlEToL UE AETTO-
uépelal 0To TAYpES XelUevo TG BlateBrc oty oy YAr YAGooa.

Kegpdiowo 5

Eopopuoyr tng Mesdooou twv
Teuvopevwy Kuldehodv otn
Peuoctoouvauix”n Avaiuon xou

BeAtioTtonoinon

270 XEQANLO UTO ToEOUGIALOVTOL EVOEIXTIXG 2 EQUOUOYES PECUTOBUVOUIXNS AvEAUOTIC
xou 2 e@apuoyEg Pehtiotonolnong oe mpoxtd mpoBiruato. H mpdtn eqopuoyr agopd
™ uehétn e mtépuyac ONERA M6, 6nou yivetoan oUyxplon TwV anoTEAEOUATOY TOU
AVATTUYVEVTOC AOYLOUIXOU UE TIELQOUATING DEQOUEVOL XUl ATOTEAECUAUTO SAAWY HWOIXWY
Bactopévewy o OpLOBETA TAEYHATA. LT CUVEYELX, UEAETATAL ol Uy avr) xOAoTG, OToU
OLUTLOTOVETAL 1) TAEOVEXTIXT YeN\OT) TWV XAPTESLAVGY TAEYUdTwY. To mpwTo TEoBAnua
Behtiotomoinong agopd TN Borduida wioag avtilog wxtod TOTou e€6pLing TeTEEAAioU.
Téhog, n ouluyrc uédodog epapudletar otn Behtiotonoinon umd aefordTnTeg ULog
uEnc dLapearypatixhc Un-BaiBioopopou avtiiog.

M mAnpéotepn moTtonoinom Tou Aoylouxo) TeOAeENg TNG POME XoL UTOAOYIOUOU TGV
Topay YWY evatodnoiog péow tne ouluyole pedddou TopoucldleTon 6TO TAHPES XEl-
uevo tne dtePrc. Emiong, mopoucidlovtou nepiocdtepes egopuoyéc tne MTK oe
TeoBAAuaTo avdhuUoTC Xl BEATIOTOTOMNONG AVUBELXVIOVTAC TO TAEOVEXTAUNTA TNG UE-
YO00L EVAVTL GAAWY TEYVIXDV.

25

26 K. A. Yapolyog

5.1 Awmymtuxn Ateng Por ydpw and tnyv Iltépu-
vyo ONERA M6

H npdhedn e poric yUpw amd tny ntépuya ONERA M6 [15] yenowwonoteiton ouyvd yio
NV ToTonolnon Aoylouixwy acpoduvauixric. Ot en’ dnepo ocuviiixeg eivan Mo, =0.84
AU e = 3.06°. EO, Tt T0 avamtuy 9y hoyiopund emilel tng e€lomoelg g atpyBoic
pofic oc éva xopTectavd mAéyuo 1.4M xudeldv, To omoio mpoooapudletor 6TO AoUA
xpovong oyfuatog ‘A otny mAgupd utonicong. Mo Tour| Tou edlou poric patvetal oTO

oyfua 5.1.

Enione, oto oyrfua 5.2 napovotdlovton Slorypduuata, OTou GUYXEIVETUL 0 CUVTEAECTAC
nieong pe mepapatixd dedopéva [39] oe 6 Topéc xatd urixoc Tng mTépuyac. Lto (B
OLorypduparta gotvovtal ot To anoteréouata Tou hoytouxol CFL3D yia tnv mpdhedn
e tueBddoug porc [41]. H olyxplon petoll twv anoteAeoudtonv avadexvier Thy
vmAY) axpBeta Tou avamTuy¥EvTog Aoylouxol. Luyxexpwéva, To Aoylouxd tne MTK
€yl evionioel owotd TN Véorn Tou xouatog xou 1) dagopd Tou C), Tou UTOAGYICE O
OYEOT UE TIC TELQUUUTIXEG UETENOELS ELVOL ULXET] %Ol EQAULAAT) UTYIC TOU TULOTOTONUEVOU
oo CFL3D.

Yyfuo 5.1: 1Iedio tou apriuol Mach oe uo Touy| xdetn otny ntépuya. To mAéyua
TEOCUPUOLETUL OTNY TEPLOYT| TWV 800 XUPATWY %poloNe Xo®dE Xol XOVId GTO OTERES
oplo.

5.1. Ayt Atpdric Poy) yopw and v Htépuya ONERA M6 27

1.5 T 1.5 T T

T
Cut-Cell

T
Cut-Cell
Slater , Slater
Schmittetal. = | f Schmittetal. =

(=2 (=%
< <
1 ! ! 1 1
0 0.2 0.4 0.6 0.8 1
x/L
(o)
15 T T 1.5 T T T
Cut-Cell Cut-Cell
Slater Slater
Schmittetal. = 1 Schmittetal. =
0.5 |
(=" =%
q v
0
-0.5
1 1 1 1 ! !
0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1
x/L X/L
’ ’
() (©)
1.5 T T
Cut-Cell
Slater

Schmittetal. =

0.5 |

'CP

-0.5

Eynuo 5.2: Luvtedeothc mleong o€ 5 Touéc xotd urxoc tng mtépuyac otic Véaewg 20%,
44%, 65%, 80%, 90% xou 96%. Luyxpivovton o aTOTEAECUOTO TOL OXEIOU AOYLOMXOU
(x6xuwvo), tou hoytouxol CFL3D (umhe) xou melpopotinéc YeTphoete (Hopo).

28 K. A. Yapolyog

5.2 Xvumeoctr Por evtéc Mnyavric KoAong

H pnyovh xOhong, 1 onola mpotddnxe and tov Creux to 1905 [11], anoteleiton and
0U0 €MXEC, 1) Mo € TV omolwy Topopével oTtadepr), v 1 GAAN exTteAel xUXAXN
xbvnon ylpw and v mpwtn. H unyavh pehetdrton oe Aettouvpyla otpofilou, émou
LMAYC TEONG PEUCTO ELGEQYETOL GTO XEVTEO TNG UMY AVIS X0 CTEWYVEL TNV XIVOUUEVT
€\xor otny Topela Tou Tpog TNy €¢odo. ‘Oco 1 unyavy| Beloxetar o xivnon, t6c0
HELOVETOL 1) Teom Tou peucTol. H axpiBfc meplypopr| Tou oy AuaTog TemY EAX®Y uropet
vo. avalnndel oto mAfpeg xeluevo g dateBric. H povtelomoinon tng poric uéoa
ot unyave, cuuTepthauBovouévou Tou Blaxévou UETAEY TwY 800 eAxwy, omtavilel 6T
BBhoypapio Aoy TwY éviova PETOBoANOUEVKDY YUAIX®Y, 6T omolo amocuumé(ETon
N eoY. Avtuldétwe, 1 Yenor XUPTECIAVOY TAEYUSTWY EMTEENEL TNV €0XOAY YEVEDT
TAEYHATOC, OTKS QUIVETOL XU OTO OYAUA 5.3, aXOUL XAl EVIOS TWV UXEWY BLUXEVKY
ATOPELYOVTAC TN YPNOT EPYUAEY TUPUUORPOCTS TAEYUATOC.

H otpwty| cuumieoty| pon} eviog tng unyavig xOMong emthOETAL Yl EVay XOXAO AEL-
Tovpylag tne. H taydtnta xbiong tideton ion we 2000 rpm xon 1 ohixn nicon xou Yep-
noxpacio etcodou etvon tom ue 40.37 bar xou 90° C avtiototya. To nedio Tng ToyvTnTOC
X oL YPUUUES potic paivovtar 6Tto oyfua 5.4. Erniong, 10 otryudtuna loo-golpacuéva
otnv mepiodo Aettovpylog mopoucidlovton 6to oy 5.5. Téhog o Adyog mleong xau 1
ooy Y| wdlac uvroroyictnxay 2.77 xou 0.605 kg/s avtioTolya.

To amoteréopato TG EVOTNTAC AUTAC amotehoLY pépoc Tou Teoypduuatos L TNEP-
FAYTA 20117 xou ouyxexpipéva Tou UToEpYoL “AVETTUEN EVOS XEVG-XALUOOS YounATic-
Yeppoxpaciog utepxplowou opyavixol xixiou Rankine pe BeAtioTonomnuévo extovwT
scroll xou atgomoint” mou vAomoiinxe oto mhaico tou EXITA 2007-2013, xou Tou
Emyeenotonot mpoypduuoatoc “"Aviaywvictxdtnto & Emvyeionuotixdtnta”, xan cuy-
yenuoatodoteltar and to Bupwmnaixd Tauelo Hepipepetanric Avdmtuing tng EE xou amd
Edvixoice [Topouc.

5.2. Yupmeot| Por eviog Mnyavrc Koiiong 29

®)

|

|
I “f
| B
P | B
) (¥)

Lyhua 5.3: (o) ITA&yuo yOpw amd T unyovr) xOAoNS oTNV oYY TNG TEPLOBOL AELTOUE-
yiog g, Aentopépeia otny dxen e éhxac (B) xon oTo pxpd Btdxevo PeTAZ) TV
0Vo ehixwv (Y).

i

Yyfuo 5.4: IIedlo Tou UETEOU TNG ToYUTNTAC XU YEOUMES TNG CUUTLECTAC OTEWTAG
PONC O EVal OTLYMLOTUTIO AELTOLRYIAG TNG UMYV XVALOTG.

30 K. A. Yapolyog

VelocityMag
15

()

Lyfuo 5.5: LTtydTUTAL TOU TEBIOL TOU UETEOU TNG ToYUTNTAS LOO-UOLOUCUEV OE ULaL

meplodo Aettoupylag Tng pnyovie xOMoTG.

5.3. Beltotomoinon Boduidog Avtiioc EEmpuéng 31

5.3 BeAtiwotonoinon Baduidag Avtiiag E€wpu-
Eng

O nhextpixée avthiec e€6puine (Elactrical Submersible Pump) ypnotwonootvton eu-
eEw¢ and T Prounyavia tetpehaiou xadog médve and To 90% TV x0ITUOUETLY ATOUTEL
TEY VT LToPorinor, mpoxeyévou va avéAlel To 0puXTO 61O ERITEDD TNG EMLPAVELNG
[27]. Xuvende, n puehétn toug xadiotatar eZoupetixd onuavtxr. H Satpdy) mpoteivet
™ MTK w¢ éva 1p0m0 avTIETOTIONS ToU TEOBAAUNTOC oA NAETBoaoNG TNG HvoUUE-
vng xou axiving mtepdywong xdie Boduidac. H pehétn mou mapoucidletoan o authv
TNV eVOTNTA AnmoTEAEL HEPOC EVOC £pYOU TOU YernUaTodoTHUNXE amd Tnv Schlumberger
Cambridge Research Limited xou €yel wg otéyo 1 Bedtivon tng amddoong uog Pord-
uidag ESP pewtrc poric, 1 omola gatvetar oo oyjua 5.6, 6mou 1 xateduvon tng potic
elvon amd %ATe TEOC TOL EMEVEL CUYAVTOVTG TEMTA TNV XIVOUUEVT] XL UETA TNV oxivrtn

TTEQUYWOT).

Xenowonotfinxe Eva eVialo xapTECLOVG TAEYUA TOGO YL TO GTATN OGO XAl YL TO OpO-
uéa, To onolo axohoudel Tor XVOLUEVA TTEPUYLO EXTEADVTOC OLUBOYIXES UPAULWCELS XAl
Tuxveoelg. To owelo hoylopxd €AVoE TG UN-CUVEXTIXEC ECLOMOELS CUUTEGTNG POTIC
YL TREIC TEELOBOUC Aettoupylac Tne avtAlag, €tol koTte v amoxatactadel 1 TepLOdL-
XOTNTAL TNG PONG. 2TO OY AU 5.7 QaivovTor BUO TOUES TOU TEDIOU GE EVAL G TLYULOTUTIO
NG TELTNG TEPLOBOL, 6TOL TUPOUCLILETL TO TEBID TOL PUETEOU TNG Tory UTNTOS YUEW Ao

TOL XWVOUMEVA Yol To oxiviToL TTEPUYLL

YN ouvéyela, mpayuatonot\inxe 1 Behtiotonoinorn wag Poduldag tng avtilog ue ™
ouluyh uédodo. ¢ UeTABANTES OYEDLOUOD ETAEYUNUOUY Ol GUVTETUYUEVES TWV OTUE-
fwv mou amoptiCouy Ta axivnta xon xwvolueva TTeplyta. XToY0¢ TS BeAtioTonoinong
0nxe 1 peiwon e epantouevixhc TayUTNTag oty €€odo tou otdtyn. H mopelo tng
Behtiotomolnong TopouctdleTon 6TO Oy AU 5.8, OTOU QUIVETOL 1) TOCOC TIolA PETAUBOAN
NG ouvdpTtnong otdyou ot xdlde xixho BertioTonolnong. Metd to mépag 20 xOxAwvy
emtebyOnxe peiwor| Tne xatd 35%. Enilong, 10 u€tpo tng epoamtouevinhc ToyOTNTAS
otnv €€odo Tng Poduidog mewv xan UeTd TN BeATioTomoinon gaivetar oto oyrua 5.9,
OTOL BLATIG TWVETOL 1) MEYEAN Uelton) Tou TEdloU TGV TNG.

32 K. A. Yapolyog

(o) (®)
Yyhua 5.6: (o) Kéhugoc xou (B) mrepdyla otdn xou Spopéo poag Baduidac ESP.

Yy 5.7: Auvo Topég Tou TEGIOU GUUTIESTAS UN-CUVEXTIXHC pOTic 6T0 Vo Tou Bpouéa
xou Tou otdtn. Ilopovoidlovtan Woypopués Tou PETEOU TNG TayUTNTIC.

-1-0 \
s |\

20 \
S
30 \\

e

35 I\"'_"'--n—-_._.
40

Objective Function (%)

0 5 10 15 20
Optimization Cycles

Yyfua 5.8: Iopeia ertiotomoinong tng Baduldag pe) ouluyr uédodo. Metd amd 20
xOxhoug Behtiotonoinone 1 ouvdptnon otdyoc Yeddnxe xatd 35% oe oyéon ue TV
TR TNG OTNY aEY XY YEWUETPLAL.

5.4. Behktotomoinom ulag uixpnc dlappaypatixis un-ParBoopogou avtilug 33

Yyfua 5.9: Etypaio medio Tou pétpou TG EQATTOUEVIXYS TayUTNTUS OTNY €£000 TG
Borduidoc e apyxhc (of) xou tne Behtiotomomuévne () yewpetploc.

5.4 Beltwotonoinorn wlag pixeng dSLapooy ot
xS UN-BarLoopocou avtiiog

Ou drpparypotinés avtieg [42] amotehoy unoxotnyopio Ty unyavedy Yetxic ueta-
tomong. H Aettovpyia toug Bacileton 6tny Teptodiny| UETUTOTLOT TOL BLaPEdYUATOS, TO
omoio TonoveTeiton 0T plar TAEURd EVOC ywplou e wa eloodo xan po é€odo. H avtiia
TOL UEAETTOL YpnodoTole{ton ot BLoluTEXES EQUPUOYES, OOV ATOQEDYETAL 1) YPY|ON
XWVOUUEVWY UEROY OTwS ot BuABidec. T Véomn Toug xatahouBdvouy dUo dloyUTeg, OTwe
gotveton oto oyfua 5.10. Etot, dtav to didpporyua uetatomileTon UE TETOLO TEOTO HOTE
VoL aEAVETAL 0 GYXOC TOU XEVTEWOU Ywelou 1 pon ElcépyeTon GTNY avTAla xuplwe and
ToV Ol 0T €1oodou. AvtileTa, OTOV 0 OYXOC UELOVETOL, 1 POT| TEOTA ToV BlayUTN
¢ €€600vL. AvamopeuxTa, oL AVTAMES QUTEC AVaPEOPOLY EVal UEQOC TNS TOROY NS Ao
NV €€000. Xxomdg elvon 1) ehayloTonolnoT TG avapEdPNoNS PEUGTOL amd TNV ££0d0
X0l 1) MEYLOTOTOINGCT) TNG TTOEOY | IOV BLoyETEVETAL.

Ou petofAntéc oyediaouol tou Teofhfuatog eAEyyouy TNV xivnor Tou dlapedyuaTog,
EMTEETOVTOG ECUPETIXG PEYGAES UeTaToTioelg. 2To oyfua 5.11 ewoviCeton 1 Véon
1ooppoTiag xaL 1 eAdytoTn xdte VEon Tou DlaPEdYUATOS GE Lol DlogxT TOUY| TNG O-
viilog. ‘Etot, 1 yeron tng MTK etvor tAcovextixd, xodog 1 ToldTnTar ToU TAEYUATOS
oev emnpedleTon and TNy €vtovr xivnor Tou otepeol Torywuatoc. H meplodixdtnta Tou
pawvouévou amoxadioToton petd and 3 meptodous. To oyfua 5.12 nopouoidlel 4 ypovixd
LOUTEYOUOES YPOVIXES OTIYUES XUTd TN OLEPXELN TN TETAPTNG TEELOOOU AEtTOUEY LG,

34 K. A. Yapolyog

Katd tn Beitiotonoinon tng avtiiog Aeinxoy utodn xaTaoxeLao TiXEG Xt AELTOURYL-
%EC ATEAEIES, OL OTOIEC YOVTEAOTOLOUVTAL G UBEBUOTNTES OTIC TYWES TWV UETABANTOVY
oYEBLGUOU OV ax0hoVHOUY TNV XAVOVIXY| GTUTIO TIXY| XxaTovour. AuTi| 1 dlocOuovon
OMOTUTOVETOL OTH| UETENOT TWV TEOUVAPELIEVTOV HEYEDDV EVOLPECOVTOC avVapEOPT
onc (Qur) xou nopoyAc (Qnet) HEOL TOU UTONOYIOMOL TNC péone Tyhc xou TuTAG
amo¥AoNG TNG amdxeofc Toug. 'Etol, ot ueTaffAnTéc oyedlaouol SLoupoppivVoVToL »¢
YEUUUIXOC CUVBUAOUOS TWV AVWTERR CTATIOTIXWY UEYEDWY,

Fi =wipq,; + wi20q,,
F2 :wzllu’Qnet _'_ w220Qnet

Ed6 emAéyovtan ot Teg wig =+1, wig =41, war =+1 %o wae = —1 xoddg embupeiton
1 Pehtlwon e péong Tng xou N Uelworn g T amdxhong Tng xdie cuvdpTr-
ong otoyou. Ou TWES TV oTATIoTXOY YeYeDDY utohoyilovtal Yéow tne Yedodou
ToAuwvuuixol ydoug (Polynomial Chaos Expansion) [13], [48].

Téhoc, n Pehtiotonoinon npayyatomotfinxe Yéow tne mhatgopuos BertioTtonoinong
vevinrc yerione EASY (Evolutional Algorithms SYstem) [1] urnofondoluevn onéd
ouluy?| pédodo. To hoyouxd EASY Baciletar oe e€ehintinoile alyoplipoug Tpoxel-
UEVOU VoL UTOROYIOEL TO PETWTO Un-xuplopyoluevwy Aiocewy (Pareto front) [23]. Adyw
TOU UeYdAou aptiuol xAlcewy Tou Aoylouxol emAucTg NS eorc Tou amanteiton omod
™ wédodo PCE o tov e€ehixtixd odydprdyo, yenotpomoovvton petampdtumo [25].
Enlong, o xde yewid ov xohltepeg AoEIC BEATIOVOVTOUL TEPAULTER® WE TN} YPeNON NG
UMONG TV CLVIPTACEWY aTOY WYV [24], 6Twe patveton xou oto oyrfua 5.133". To tehixd
HETOTO U1 XUELIEY0VUEVWY AJoewY etxoviCetar oto oyfua 5.13a". Erlong, to oyfua
5.14 mapovotdlel Tic TYWES TV PEYEDDY EVBLAPEEOVTOC VLol ToL BUO dXE0 TOU PUETOTOV.

Tao amotehéopata auTAG TNE EVOTNTAS Ebvan UEEOS TNG epyaotag Ue TITAo Xy EdIUoUOC-
Behuotonoinon Awgpaypatixedy Avthwy mopousio Acttovpyindv /Kotaoxevaotixdy
ABeBatotrtwy, pe ™ Médodo twv Tepvopévev Kupehov xar tng Avdmtuing Iohuw-
vupwo) Xdoug” xal avixel oe €Yo Tou ouyyenuatodoteltar and Ty EARGSa xou Ty
Evpomndixf Evwon (Evpwnoixé Kowvwvixé Toyeio) yéow tou Emyeionotoaxot Ipo-
Yedupatoc "Avdntuin Avipeomivou Auvauixol, Exnaidevon xow Awd Blov Mdidnon”
Tou TitAogopeitar we Yoo then Egeuvntav pe Eugoon otoug Néoug Epeuvntéc™

5.4. Behktotomoinom ulag uixpnc dlappaypatixis un-ParBoopogou avtilug 35

Eyfuor 5.10: H Sroupparyportins| avtAla amoteheiton amd €va xevtpd ywelo, e€OTAIGUEVO
HE €V XWVOUUEVO BLdppory ol 0TV Gve ETLPAVELS Tou xou 000 dlayOteg. H por digpyeton

amo6 oploTEPd TEOC Tt OEELE.

i
AT
i
AR

IHIHIIIIIIIIHIIIIIIIIIIIIIHIIHIIIIIIIIHIIII

T |||\|||\IIIIIIIIHIIIIIIIIIIII||||||\|||||||II||
o
T

(o) ()

Yyfuo 5.11: Kopteotovd nhéyua eviog e avtiiag 6tav to ddgpaypo Beloxeton (o)

oto onueilo npeptac xou (B') otn Véon péyotne yetatomonc. ‘Afoveg o€ OLUPOPETIXT)
xhiponca.

(o) ®)

il

I [[

VelocityMag: 0 05 1 15 2 25 3 35 4 45 5

Eyfuor 5.12: Ytpwth acvurnieotn pory eviog tng avidag. Iledio pétpou ToydTnTog
oe 4 ypovxd wooméyovta oTiypdtuna o W Teplodo Aettouvpyeiog tne. ‘Aovec oe
OLUPOPETIXT) AL

36 K. A. Yapolyog

191 T T T T T T T 190 G T 11 T T T]O
° L Gen. L : .
190 - ‘ . T ool Geni2 o .
189 | : _— I Gen.13 © S
= g _ 187} v 4
<) c G—a
E 188} ,’ - £ 186 f . 4
3 S 185} i .
2 L : : i [— 2
~ 1% . RO om .
186 | - 183 .
° 182 |- - J
185 | - e
] 181 &, .
184 1 1 1 1 1 1 1 180) | 1 1 1
0 50 100 150 200 250 300 350 400 50 100 150 200 250 300 350
F, (u/min) F, (u/min)

(o) ®)

Eynuo 5.13: (o) Tehxd nedio pn-xuptopyoluevoy Aoewy (B') Mépoc tou petwnou
TELOV CLVEYOUEVLY YEVE®Y. To Bélog unodeviel Tn Peitiwon mou enégepe 1) yerion
TV TEAYOYWY evatcdnotac.

3000 T T T T 3500 T T T T
2000 3000
_ 1000 2500
£ £ 2000
£ of E
E 3 1500
c? +1000 & 1000
-2000 i 500
-3000 |- e . 0y
-4000 ! I ! ‘ -500 - ! . !
0 0.004 0.008 0.012 0.016 0.02 0 0.004 0.008 0.012 0.016 0.02
time (sec) time (sec)
400 90 T T T r
- L a
300 80 |
200 or N i
T ' g 6o N ’
E 100 E 50t N .
= =
= of i <2 40
= | a L
N 20
200 | Y § 10 b
"
-300 ! 1 . ! 0
0 0.004 0.008 0.012 0.016 0.02 0 0.004 0.008 0.012 0.016 0.02
time (sec) time (sec)
8000 T T T T 12000 T T
6000 10000 |- " 1
4000
= 2000 z 8000 e
£ 0 E
3 = 6000 -
. -2000 —
[o
g -4000 g 4000 .
-6000 2000 | |
-8000 k L
-10000 L 1 - - o = e
0 0.004 0.008 0.012 0.016 0.02 0 0.004 0.008 0.012 0.016 0.02
time (sec) time (sec)

Yyfuo 5.14: H ypovixh) uetaBorf TV Qner xot Qpp Yo péytotn Fo (ndvew), endytotn
Fi (péoo) xon apywr| (xdtw) Aoon. H yaden xoundhn avtiototyel otn uéon s twy
ueyedwy xa 1 UTAE Teploy | onuotodotel {ovn tdyoug £30.

Kegpdiowo 6

ErniAoyoc

6.1 Avaxegaiolwon-2uunepdopota

Y16y0¢ TNE BLdaxTopx|C BIaTEBAC NTaty 1) avamTUE T EVOC OAOXANEWUEVOL GUVOLOU UTIO-
AOYIOTIXWY EPYOREIWY Lol T1 PEUC TOBUVOUIXT| AVIAUGCT] Xl BEATIOTOTOINOT) OE TEUXTI-
x€¢ eqapuoyéc. o to oxond autd mpotdinxe 1 yefion e MTK, n onola e€acparilet
TNV QUTOUATY Bnutoupyior TAEYUOTog ave€apTHTME TNG TOAUTAOXOTNTAC TOU UTOAOYL-
oTxol ywelou, dlatnewvTag mapdiinio v axpllela enthuong twv exdotote MAE.
‘Etot, avantOydnxe Aoylouixd YEVEONC XUPTECLUVMY TAEYUITGY, ToL oTolo TEUvoVTL
amb ToL XVOUUEVAL 1| UN OTERES Oplar oy nuatiCovtog Teuvoueves xuEAes xadde xou Ao-
YioUx6 TedAEENC TNC ouPTES TS Xou acuutieotne porc. To hoylouxd motomolfunxe
OE 1oL OELREL AO EQPUPUOYES ECOTEPXHAC Xl EEWTEQIXTG AELODUVOIXAG AVAOELXVIOVTOG
™ Suvatotnta TN MTK vo emler Tig e€lo0O0EIC TG UN-CUVEXTIXTC X0 GTEWTAS PONC
ue LMY axplBelar @Al TwV TEYVIX®Y Tou BactlovTal o 0pLOBETA TAEYUTO. 2T
oLvéyela, 1 dlateldr) xatédele Ta mAcovextdota Tne MTK otn BeAtiotonoinon pop-
P TEPIMAOXWY YEWUETELOY, xadn¢ unopel va avtamoxpel o xdie evdidueon Ao
Tou TEOXUTTEL xaTd TN Swdpxeta Tng Pedtiotonoinong. H ouveyrc xou draxprts) oulu-
¢ p€Yodog yenoulomotinxay Yol TOV UTOAOYIOHO TWV ToRaY®YwY vatcUnciog oe
TEQLTTWOOELS HOVIUNG 1) UN-UOVIUNG CUUTIECS TAS Xat acLUTieoTng poric. To Aoyiouxo e-
papuoéotnxe oc 3A Blopnyavixd teoiruato BeAtiotonoinong e 1 yweic afeBodtnreg
xoTadevbovtag TNy euehi&ior xou UPNAY amddocT| ToL.

37

38

K. A. Yapolyog

6.2 Xrowyeia Ilowtotuniog

Hpotddnxe xon doxydoTnxe emTUYOS VEOS alyopuiuog Yo T Onutovpyia Twv
TEUVOUEVWY XUPEAGDY, avdC VoL UTOAOYICEL OTIOLUBATOTE TOUT| TOU XURTEGLVOD
TAEYUOTOC UE TN OTEPEN YEWUETELAL.

AvomtOydnxe por véo p€dodog avTHETOTIONS TwV XUPEAMY TOU XUADTTOVTOL 1
ATOXUNOTITOVTOL ATO TO GTEPED OWUA AOYW TNG XIVNOTHE TOU TAVL Omd TO Xop-
TEOLOVO TAEYHA. AUTY) BOXYAOTNXE OF TEPITTWOOELS £VIOVWY UETATOTIOEWMY TOV

OTEPEWDY 0plwv xau SlamoTwinxe 1 Slothenom e Halog, opunc Xou EVEQYELIC.

H egappoyy| tng ouveyolc culuyolc Uedddou ot xopTECLAVE TAEYUTO TEUVOUE-
VOV XUPEADY TUPOLCIACTNXE Yiol TEWTN Popd ot BBAoypapia anodeviovTag
TNV XUTAAANAGTNTE TNE 0T BeEATioToTolNoT HopgT|C.

H Swxprtr) ouluytic pédodog eqapudotnxe oty MTK yio mpotn @opd yior tnv
AVTWUETOTLON TEOBANUATLY CUVEXTIXAG Xou Ur-uoviung pong. Eriong, 86Un-
XE EUPUOT| 0TI OWOTY| BLPORLGT, TOU AAYORIIUOU XATUCHEUNC TV TEUVOUEVKDVY
XUPEADY xS Aol GTOV AhYOPIIUO CUYYOVEUCTS TWV XUAUTTOUEVKDY 1| omo-
HOANUTTOUEVWY xLUPERGY o€ TpofBAruaTa BEATIOTOTOINOTG HVOUUEVWY CWUATWY.

Bibliography

1]

2]

The EASY (Evolutionary Algorithms SYstem) software. http://velos0.1tt.
mech.ntua.gr/EASY.

W. Anderson and V. Venkatakrishnan. Aerodynamic Design Optimization on
Unstructured Grids with a Continuous Adjoint Formulation. Computers €&
Fluids, 28(4):443-480, 1999.

T. Barth and D. Jespersen. The Design and Application of Upwind Schemes
on Unstructured Meshes. In 27th Aerospace Sciences Meeting, 1989.

S. Bayyuk, K. Powell, and B. van Leer. A Simulation Technique for 2-D Un-
steady Inviscid Flows Around Arbitrarily Moving and Deforming Bodies of
Arbitrary Geometry. July 1993.

J. Benek, J. Steger, and F. Dougherty. A Chimera Grid Scheme. page 59-69,
1983.

M. Berger and M. Aftosmis. Progress Towards a Cartesian Cut-Cell Method
for Viscous Compressible Flow. In 50th AIAA Aerospace Sciences Meeting

including the New Horizons Forum and Aerospace Exposition, 2012.

F. Chinesta, R. Keunings, and A. Leygue. The Proper Generalized Decompo-
sition for Advanced Numerical Simulations, A Primer. Springer International
Publishing, Nantes, France, 2014.

A. Chorin. A Numerical Method for Solving Incompressible Viscous Flow Prob-
lems. Journal of Computational Physics, 2(1):12-26, 1967.

D. Clarke, M. Salas, and H. Hassan. Euler Calculations for Multielement Air-
foils Using Cartesian Grids. ATAA Journal, 24(3):353-358, 1986.

39

http://velos0.ltt.mech.ntua.gr/EASY
http://velos0.ltt.mech.ntua.gr/EASY

40

K. A. Yapolyog

[10]

[11]

[12]

[13]

[14]

[15]

[19]

[20]

W. Coirier and K. Powell. Solution-Adaptive Cartesian Cell Approach for Vis-
cous and Inviscid Flows. AIAA Journal, 34(5):938-945, 1996.

L. Creux. Rotary Engine, U.S. Patent 801,182, October 1905.

A. Dadone and B. Grossman. Efficient Fluid Dynamic Design Optimization Us-
ing Cartesian Grids. In 16th AIAA Computational Fluid Dynamics Conference,
2003.

M. Eldred and J. Burkardt. Comparison of Non-Intrusive Polynomial Chaos
and Stochastic Collocation Methods for Uncertainty Quantification. 47th AIAA
Aerospace Sciences Meeting including the New Horizons Forum and Aerospace
Ezxposition, January 2009.

R. Fletcher and C. M. Reeves. Function Minimization by Conjugate Gradients.
The Computer Journal, 7(2):149-154, January 1964.

North Atlantic Treaty Organization. Advisory Group for Aerospace Research
and Development. Fluid Dynamics Panel. Working Group 07. Test Cases for
Inviscid Flow Field Methods: Report of Fluid Dynamics Panel Working Group
07. AGARD advisory report. AGARD, 1985.

R. Gaffney, H. Hassan, and M. Salas. Euler Calculations for Wings Using
Cartesian Grids. AIAA Paper 87-0356, 1987.

M. Giles, M. Duta, J. Muller, and N. Pierce. Algorithm Developments for
Discrete Adjoint Methods. AIAA Journal, 41(2):198-205, 2003.

D. Hartmann, M. Meinke, and W. Schroder. A Strictly Conservative Cartesian
Cut-Cell Method for Compressible Viscous Flows on Adaptive Grids. Computer
Methods in Applied Mechanics and Engineering, 200(9):1038-1052, 2011.

C. Hinterberger and M. Olesen. Automatic Geometry Optimization of Ex-
haust Systems Based on Sensitivities Computed by a Continuous Adjoint CFD
Method in OpenFOAM. April 2010.

C Hirt, A. Amsden, and J. Cook. An Arbitrary Lagrangian-Eulerian Computing
Method for all Flow Speeds. Journal of Computational Physics, 14(3):227-253,
1974.

Bibliography 41

[21]

[22]

23]

[24]

[25]

[26]

28]

[29]

[30]

[31]

H. Ji, F. Lien, and E. Yee. A New Adaptive Mesh Refinement Data Struc-
ture with an Application to Detonation. Journal of Computational Physics,
229(23):8981-8993, 2010.

H. Ji, F. Lien, and E. Yee. Numerical Simulation of Detonation Using an
Adaptive Cartesian Cut-Cell Method Combined with a Cell-Merging Technique.
Computers € Fluids, 39:1041-1057, June 2010.

D. Kapsoulis. Low-Cost Metamodel-Assisted Evolutionary Algorithms with Ap-
plication in Shape Optimization in Fluid Dynamics. PhD thesis, National Tech-
nical University of Athens, 2019.

D. Kapsoulis, K. Tsiakas, X. Trompoukis, V. Asouti, and K. Giannakoglou.
A PCA-assisted Hybrid Algorithm Combining EAs and Adjoint Methods for
CFD-based Optimization. Applied Soft Computing, 73:520-529, 2018.

M. Karakasis and K. Giannakoglou. On the use of metamodel-assisted, multi-
objective evolutionary algorithms. Engineering Optimization, 38(8):941-957,
2006.

M. Kirkpatrick, S. Armfield, and J. Kent. A Representation of Curved Bound-
aries for the Solution of the Navier-Stokes Equations on a Staggered Three-
Dimensional Cartesian Grid. Journal of Computational Physics, 184(1):1-36,
2003.

E. Ladopoulos. Four-dimensional Petroleum Exploration & Non-linear ESP
Artificial Lift by Multiple Pumps for Petroleum Well Development. Universal
Journal of Hydraulics, 3:1-14, 01 2015.

L. Landau and E. Lifshitz. Fluid Mechanics, volume 6 of Course of Theoretical
Physics. Pergamon Press, 1987.

C. Merkle. Time-Accurate Unsteady Incompressible Flow Algorithms Based on
Artificial Compressibility. In 8th Computational Fluid Dynamics Conference,
1987.

R. Mittal and G. Taccarino. Immersed Boundary Methods. Annual Review of
Fluid Mechanics, 37(1):239-261, 2005.

S. Murman, M. Aftosmis, M. Berger, and D. Kwak. Implicit Approaches for
Moving Boundaries in a 3-D Cartesian Method. In 41st Aerospace Sciences
Meeting and Exhibit, February 2003.

42

K. A. Yapolyog

[32]

[33]

[38]

[39]

[40]

[43]

[44]

M. Nemec and M. Aftosmis. Adjoint Sensitivity Computations for an
Embedded-Boundary Cartesian Mesh Method and CAD Geometry. volume
227, pages 2724-2742, 2008.

E. Papoutsis-Kiachagias. Adjoint Methods for Turbulent Flows, Applied to
Shape or Topology Optimization and Robust Design. PhD thesis, National Tech-
nical University of Athens, 2013.

O. Pironneau. Optimal Shape Design for Elliptic Systems. Springer, Berlin,
Heidelberg, 1982.

J. Purvis and J. Burkhalter. Prediction of Critical Mach Number for Store
Configurations. AIAA Journal, 17(11):1170-1177, 1979.

J. Quirk. An Adaptive Grid Algorithm for Computational Shock Hydrodynam-
1cs. PhD thesis, Cranfield University, 1991.

J. Quirk. An Alternative to Unstructured Grids for Computing Gas Dynamic
Flows around Arbitrarily Complex Two-Dimensional Bodies. Computers &
Fluids, 23(1):125-142, 1994.

P. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference
Schemes. Journal of Computational Physics, 43(2):357-372, 1981.

V. Schmitt and F. Charpin. Pressure Distributions on the ONERA M6 Wing
at Transonic Mach Numbers. Report of the Fluid Dynamics Panel Working
Group 04, AGARD AR 138, May 1979.

L. Schneiders, C. Giinther, M. Meinke, and W. Schroder. An Efficient Conser-
vative Cut-Cell Method for Rigid Bodies Interacting with Viscous Compressible
Flows. Journal of Computational Physics, 311:62-86, 2016.

J. Slater. https://www.grc.nasa.gov/WWW/wind/valid/méwing/m6wing01/
m6wingO1.html.

E. Stemme and Stemme G. A Valveless Diffuser/Nozzle-Based Fluid Pump.
Sensors and Actuators A: Physical, 39(2):159-167, 1993.

I. Sutherland and G. Hodgman. Reentrant Polygon Clipping. Commun. ACM,
17(1):32-42, January 1974.

E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics: A

Practical Introduction. January 2009.

https://www.grc.nasa.gov/WWW/wind/valid/m6wing/m6wing01/m6wing01.html
https://www.grc.nasa.gov/WWW/wind/valid/m6wing/m6wing01/m6wing01.html

Bibliography 43

[45]

[46]

[47]

[48]

[49]

V. Venkatakrishnan. On the Accuracy of Limiters and Convergence to Steady
State Solutions. In 31st Aerospace Sciences Meeting, 1993.

C. Vezyris, E. Papoutsis-Kiachagias, and K. Giannakoglou. On the Incremental
Singular Value Decomposition Method to Support Unsteady Adjoint-Based Op-
timization. International Journal for Numerical Methods in Fluids, 91(7):315—
331, 2019.

B. Wedan and J. South. A Method for Solving the Transonic Full-Potential
Equation for General Configurations. 1983.

D. Xiu and G. Karniadakis. The Wiener—Askey Polynomial Chaos for Stochas-
tic Differential Equations. SIAM Journal on Scientific Computing, 24(2):619-
644, 2002.

T. Ye, R. Mittal, H. Udaykumar, and W. Shyy. An Accurate Cartesian Grid
Method for Viscous Incompressible Flows with Complex Immersed Boundaries.
Journal of Computational Physics, 156(2):209-240, 1999.

	Introduction
	The Immersed Boundary Methods
	Mesh Generation Methods
	Literature Survey
	The Cut-Cell Method

	Shape Optimization in Fluid Dynamics
	Evolutionary Algorithms
	Gradient-Based Optimization Methods
	The Adjoint Method
	Adjoint Formulation to the Immersed Boundary Methods
	Adjoint Formulation to the Cut-Cell Method

	Thesis Outline

	The Cut-Cell Mesh Generation
	The Cartesian Mesh Data Structure
	The Octree Mesh Generation
	The Octree Data Structure
	The Integer Coordinate System
	Detection of the Immersed Geometry
	Pseudocode of the Octree Generation

	Mesh Smoothing and Flow Adaptation
	The Cut-Cell Generation
	The Construction of Solid Faces
	The Construction of Fluid Faces
	Illustration of the Cut-Cell Construction

	The Face-Based Mesh Data Structure
	The Cell-to-Cell Connectivity
	Numbering of Nodes and Faces
	Detection of fluid cells
	Computation of the Finite Volume's Geometric Quantities

	Cell Merging
	Mesh Partitioning
	Mesh with Moving Boundaries
	Mapping Between Subsequent Meshes
	Covered and Uncovered Cells
	Cell Linking

	Mesh Differentiation
	Differentiation of the Mesh Solid Boundary
	Differentiation of Face and Cell Geometric Quantities

	Numerical Discretization of the Navier-Stokes Equations
	Compressible Fluid Flow Model
	Discretization of the Steady Compressible Laminar Equations
	The Finite Volume Method
	Convective Flux Discretization Scheme
	The second-order MUSCL Method
	Limiters
	Gradient Computation Using the Least Squares Method
	Flux Computation at the Boundary Faces
	Diffusive Flux Discretization Scheme
	Pseudo-Time Step Computation

	Temporal Term Discretization of the Compressible Equations
	The Arbitrary Lagrangian Eulerian Technique
	Dual-Time Stepping
	Covered and Uncovered Cells Treatment

	Incompressible Fluid Flow Model
	Discretization of the Steady Incompressible Laminar Equations
	Temporal Term Discretization of the Incompressible Equations
	Numerical Solution of the Discretized Flow Equations
	The Ghost-Cell Method
	Wall Boundary Conditions Implementation
	The Unsteady Ghost-Cell Method Implemented in Moving Walls

	Flow Solver Assessment
	Compressible Flow Solver Assessment
	Inviscid Flow Over the NACA0012 Isolated Airfoil
	Inviscid Flow Over a Wedge
	Convergent-Divergent Duct Flow
	Parallel Flow Over a Flat Plate
	Laminar Flow Over the NACA0012 Isolated Airfoil
	Inviscid Flow over ONERA M6 wing

	Incompressible Flow Solver Assessment
	Inviscid Flow over the Joukowski airfoil
	Inviscid Flow over cylinder
	Convergent-Divergent Duct Flow
	Laminar flow over a Cylinder
	Driven Cavity Flow
	Laminar flow in a 3D S-Shaped Duct

	Unsteady Flow Solver Assessment
	Piston Motion
	Flow around Oscillating NACA0012

	Flow Simulation in Industrial Applications
	Incompressible Flow inside a Butterfly Valve
	Compressible Flow in a Scroll Expander
	Incompressible Flow inside a Valveless Diaphragm Micropump
	Compressible Flow inside an Electrical Submersible Pump Stage

	The Continuous Adjoint Method
	Mathematical Development of the Compressible Adjoint Method
	Definition of the Total Derivative
	Differentiation of the Objective Function
	Definition of the Augmented Function
	Differentiation of the Temporal Term
	Differentiation of the Convection Term
	Differentiation of the Diffusion Term
	The Compressible Field Adjoint Equations
	The Inlet-Outlet Adjoint Boundary Conditions
	The Wall Adjoint Boundary Conditions
	Sensitivity Derivatives Expression
	The Continuous Adjoint Method for Steady Flows

	Mathematical Development of the Incompressible Adjoint Method
	Definition and Differentiation of the Objective and Augmented Functions
	Differentiation of the Temporal Term
	Differentiation of the Convection Term
	Differentiation of the Diffusion Term
	The Incompressible Field Adjoint Equations
	The Inlet-Outlet Adjoint Boundary Conditions
	The Adjoint Wall Conditions
	Sensitivity Derivatives Expression
	The Continuous Adjoint Method for Steady Flows

	Discretization of the Steady Adjoint Equations
	The Adjoint Roe Scheme
	The Corrected Adjoint Roe Scheme
	The 3D Adjoint Solver

	The Adjoint Method Implemented in Unsteady Flows

	The Discrete Adjoint Method
	The Discrete Field Adjoint Equation and Sensitivity Derivatives
	The Discrete Adjoint Flux
	The Compressible Discrete Adjoint Equation
	Differentiation of the Convection Term
	Differentiation of the Diffusion Term
	Differentiation of the Temporal Term

	Sensitivity Derivatives for Compressible Flows
	Differentiation of the Convection Term
	Differentiation of the Diffusion Term
	Differentiation of the Unsteady flow Equations

	The Incompressible Discrete Adjoint Equation and Sensitivities
	The Sensitivity Map Post-Processing

	Adjoint Solver Assessment
	Incompressible Adjoint Solver Assessment
	Compressible Adjoint Solver Assessment
	Unsteady Adjoint Solver Assessment

	Optimization of Industrial Applications
	S-Duct Optimization
	Wing Optimization
	Submersible Pump Optimization
	Valveless Diaphragm Pump Optimization under Uncertainties
	Optimization of a Compressor Rotor

	Closure
	Summary
	Concluding Remarks
	Novel Contributions
	List of Publications
	Future Work Recommendations

	Identification of Cells in an Octree Data Structure
	Fast Cut-Cell Construction
	Optimal Value of the Artificial Compressibility Parameter
	The Compressible and Incompressible Jacobian Matrices
	Approximate Riemann Solver of Roe
	Approximate Riemann Solver of Roe for Preconditioned Conservative Laws
	Monotone and TVD schemes relation
	The Barth-Jespersen Limiter
	Orthogonal Correction Expression
	Boundary Conditions Differentiation
	The Continuous Adjoint Method Implemented in Cases with Recirculation at the Outlet
	The adjoint HLLC and FVS schemes
	The Adjoint HLLC Scheme
	The Adjoint FVS Scheme
	Comparison of Adjoint Discretization Schemes

	Memory Reduction by using the SVD Method
	Memory Reduction by using the PGD Method
	The PGD and Incremental PGD Theory
	Implementation of the Incremental PGD Based on the Ghost-Cell Method

	The Absolute Roe Jacobian Derivative For Compressible Flows
	The Absolute Roe Jacobian Derivative For Incompressible Flows
	Bibliography
	Εισαγωγή
	Η Μέθοδος των Τεμνόμενων Κυψελών
	Αεροδυναμική Βελτιστοποίηση σε Καρτεσιανά Πλέγματα

	Γένεση Καρτεσιανού Πλέγματος Τεμνόμενων Κυψελών
	Δενδρική Γένεση Πλέγματος
	Κατασκευή των Τεμνόμενων Κυψελών
	Γένεση Πλέγματος σε Χρονικά Μεταβαλλόμενα Χωρία

	Διακριτοποίηση των Εξισώσεων Navier-Stokes
	Διακριτοποίηση των Εξισώσεων Συμπιεστής ροής
	Διακριτοποίηση των Εξισώσεων Ασυμπίεστης Ροής

	Η Συνεχής και Διακριτή Έκφραση των Συζυγών Εξισώσεων Ροής
	Η Συνεχής Συζυγής Διατύπωση
	Η Διακριτή Συζυγής Διατύπωση

	Εφαρμογή της Μεθόδου των Τεμνόμενων Κυψελών στη Ρευστοδυναμική Ανάλυση και Βελτιστοποίηση
	Διηχητική Ατριβής Ροή γύρω από την Πτέρυγα ONERA M6
	Συμπιεστή Ροή εντός Μηχανής Κύλισης
	Βελτιστοποίηση Βαθμίδας Αντλίας Εξώρυξης
	Βελτιστοποίηση μίας μικρής διαφραγματικής μη-βαλβιδοφόρου αντλίας

	Επίλογος
	Ανακεφαλαίωση-Συμπεράσματα
	Στοιχεία Πρωτοτυπίας

	Bibliography

