
National Technical University of Athens
School of Mechanical Engineering

Fluids Section

Laboratory of Thermal Turbomachines

Parallel CFD & Optimization Unit

The Cut-Cell Method for the Prediction of 2D/3D Flows

in Complex Geometries
and the Adjoint-Based Shape Optimization

Ph.D. Thesis

Konstantinos D. Samouchos

Supervisor: Kyriakos C. Giannakoglou

Professor NTUA

Athens, 2022



ii K. D. Samouchos



National Technical University of Athens
School of Mechanical Engineering
Fluids Section
Laboratory of Thermal Turbomachines
Parallel CFD & Optimization Unit

The cut-cell method for the prediction of 2D/3D flows
in complex geometries

and the adjoint-based shape optimization

PhD Thesis

Konstantinos D. Samouchos

Examination Committee:

1. Kyriakos Giannakoglou∗ (Supervisor), Professor, NTUA,
School of Mechanical Engineering

2. Ioannis Anagnostopoulos∗, Professor, NTUA,
School of Mechanical Engineering

3. Spyridon Voutsinas∗, Professor, NTUA,
School of Mechanical Engineering

4. Konstantinos Mathioudakis, Professor, NTUA,
School of Mechanical Engineering

5. Konstantinos Belibassakis, Professor, NTUA,
School of Naval Architecture and Marine Engineering

6. Demetri Bouris, Associate Professor, NTUA,
School of Mechanical Engineering

7. George Papadakis, Assistant Professor, NTUA,
School of Naval Architecture and Marine Engineering

∗ Member of the Advisory Committee

Athens, 2022



iv K. D. Samouchos



v

Accompanied by my deepest gratitude and love,

I dedicate this dissertation to

my mother who has never left my side,

my father who showed me the roughed path of morality,

my brother who has brightened my days, and

my grandparents who taught me the virtues of a balanced life.

They will always be the guiding light of my life and

an inexhaustible source of inspiration.



vi K. D. Samouchos



vii

Acknowledgments

I would like to express my gratitude to the following people who have significantly

contributed to the completion of this dissertation. Firstly, I would like to thank

my supervisor, Pr. Kyriakos Giannakoglou, for introducing me to the world of

Computational Fluid Dynamics and Adjoint-Based Optimization. I’m also thankful

for his meaningful recommendations on the thesis text and presentation.

I am also deeply grateful to the members of the research group of the Parallel CFD

& Optimization Unit (PCOpot), NTUA without the help of whom I would have

never completed this thesis. More specifically, I would like to sincerely thank Dr.

Xenofon Trompoukis, who shared important information about advanced numerical

methods and their application to practical cases. Moreover, I’m more than appre-

ciative to Dr. Konstantinos Tsiakas, who taught me the essentials of CFD as well

as techniques for efficient scientific programming. Words are not enough to thank

Dr. Evangelos Papoutsis-Kiachagias for sharing valuable details about the mathe-

matical formulation of the continuous and discrete adjoint theory. Furthermore, I

feel honored collaborating with Panagiotis-Giannis Vrionis, who applied and further

improved the cut-cell method developed in this dissertation.

I am also profoundly grateful to the rest, current or former, members of the PCOpt

family, namely Dr. Christos Kapellos, Dr. Flavio Gagliardi, Dr. Ioannis Kavvadias,

Dr. Dimitrios Kapsoulis, Dr. Konstantinos Gkaragkounis, Dr. Morteza Monfaredi,

Dr. Varvara Asouti, James Koch, Christos Veziris, Themistoklis Skamagkis, An-

dreas Margetis, Mehdi Ghavami Nejad and Ioannis Trompoukis. They were always

supportive and willing to help with any problem I was facing, scientific or not. Last

but not least, I am honestly thankful to Kimon Velitzanidis, Ioannis Stasinopou-

los, Panagiotis Meletis, Konstantinos Zarnaris, and Konstantinos Boudounis. Their

genuine friendship accompanied me in good and bad times, giving me the necessary

encouragement to continue working on this thesis.



viii K. D. Samouchos



ix

All of old. Nothing else ever. Ever tried. Ever failed.

No matter. Try again. Fail again. Fail better.

[...]

All of old. Nothing else ever. But never so failed.

Worse failed. With care never worse failed.

Wortsward Ho, 1983

Samuel Beckett

You Can Never Hold Back Spring, 2005

Tom Waits & Kathleen Brennan



x K. D. Samouchos



xi

Matrix, 2020

Marcel Caram



xii K. D. Samouchos



xiii

Abstract

This dissertation thesis develops integrated, robust, and reliable Computational

Fluid Dynamics (CFD) methods and software for the analysis and shape optimiza-

tion in real-world applications in fluid mechanics and aerodynamics. To this end,

the cut-cell method, which removes mesh generation barriers from the flow anal-

ysis and design process is adopted. The computational domain is firstly covered

with a Cartesian mesh and then parts occupied by the solid bodies are discarded,

giving rise to the cut-cell mesh. The benefits of this method are profound in fluid

problems with moving solid bodies which are allowed to move upon the stationary

background mesh, avoiding the use of mesh deformation tools. Moreover, contrary

to body-conforming approaches, the changes in shape during an optimization loop

do not affect the surrounding mesh, preventing mesh generation failure and the

premature breakdown of the optimization loop. Therefore, this dissertation thesis

exploits these beneficial features and develops a cut-cell-based flow solver and shape

optimization tool for compressible and incompressible flow problems.

Firstly, a fast and automated mesh generation method with low memory require-

ments is developed, which guarantees smooth mesh refinement close to solid bound-

aries and flow features that require higher mesh resolution. Cells intersected by the

geometry get rid of their solid part by giving rise to the so-called cut-cells. New

algorithms are proposed for computing their topological characteristics needed by

the flow-solver and post-processor. Numerical instabilities caused by the presence of

small cut-cells adjacent to much larger ones are avoided by cell-merging, according

to which small cell fragments are geometrically merged with their neighbors. Fur-

thermore, algorithms for fast neighbor detection, mesh connectivity computation,

and mesh-partitioning are also developed and used.

Then, compressible and incompressible flow solvers are developed, the latter being

based on the artificial compressibility method, to numerically solve the (U)RANS

equations. The presented numerical scheme takes advantage of the Cartesian mesh

structure and uses a cell-centered, finite volume approach employing the MUSCL

scheme and the approximate Riemann solver of Roe for the convection terms. In ap-

plications concerning moving geometries, the mesh is continuously adapted to their

motion, employing local refining and coarsening operations. Strategies to accurately

extrapolate the current flow solution to the mesh of the next time step are presented.

Additionally, a novel method to impose the flow conservation laws even in large ge-



xiv K. D. Samouchos

ometry displacements is developed by performing a cell clustering algorithm which

properly treats the sudden change in cells’ status from solid to fluid and vice-versa.

The resulting software is parallelized using the Open MPI protocol and assessed in

a series of tests concerning internal and external, inviscid and laminar flows. More-

over, comparisons with data provided by conventional body-conforming approaches

indicate its ability to deliver flow solutions of the same accuracy. The method’s ef-

fectiveness is demonstrated in several challenging applications of practical interest.

Among other, the flow simulation in a scroll machine, which is quite rare in the

literature due to its high complexity, is presented. Another application concerns the

flow inside a valveless diaphragm micropump, where the mass conservation is suc-

cessfully imposed despite the intensive deformation of the diaphragm. Finally, the

flow within an Electrical Submersible Pump (ESP) stage is studied, introducing the

cut-cell method as an alternative to address the rotor-stator interaction problem.

In the field of gradient-based shape optimization, the continuous and discrete ad-

joint approaches are developed, programmed, and used. These methods compute

the gradient of the objective function at a cost, which is independent of the number

of design variables, providing a viable tool for industrial design processes. Their

mathematical formulation, software development, and implementation in cut-cell

meshes for viscous and unsteady flows are presented for the first time in the litera-

ture. Concerning the continuous approach, different discretization schemes for the

adjoint Partial Differential Equations (PDEs) are investigated, resulting in adjoint

schemes which are equivalent to the FVS, HLLC, and Roe’s approximate Riemann

primal solvers.

Moreover, a discrete adjoint software is developed by accurately hand-differentiating

both the compressible and incompressible flow cut-cell solvers. Particular emphasis

is laid on properly treating the discrete adjoint time integration by differentiating

algorithms dealing with flow field extrapolation between meshes of subsequent time

steps. Furthermore, the adjoint cut-cell software is verified and applied to industrial

optimization problems, such as the total pressure losses minimization of a duct, the

lift maximization of a wing, and the outlet tangential velocity minimization of the

Electrical Submersible Pump stage. Finally, the multi-objective optimization under

uncertainties of the diaphragm micropump is carried out. In all cases, solutions of

adequately improved performance are delivered, confirming the effectiveness of the

developed method and software.



xv

Keywords: Navier-Stokes Equations, Computational Fluid Dynamics, Cut-Cell

Method, Compressible Flow, Incompressible Flow, Unsteady Flow, Shape Opti-

mization, Continuous Adjoint Method, Discrete Adjoint Method



xvi K. D. Samouchos



xvii

Abbreviations

ALE Arbitrary Lagrangian-Eulerian

CAD Computer-Aided Design

CFD Computational Fluid Dynamics

CG Conjugate Gradient

CSAMR Cell-based Structured Adaptive Mesh Refinement

DNS Direct Numerical Simulation

EA Evolutionary Algorithm

EASY Evolutionary Algorithms SYstem

ESP Electrical Submersible Pump

FDs Finite Differences

FVS Flux Vector Splitting

GB Gradient-Based

GCL Geometric Conservation Law

HLLC Harten-Lax-van Leer-Contact

IBM Immersed Boundary Method

LES Large Eddy Simulation

l.h.s. Left-Hand Side

LTT Lab of Thermal Turbomachines

MAEA Metamodel-Assisted EA

NTUA National Technical University of Athens

PAD Pareto Advancement Direction

PCA Principal Component Analysis

PCE Polynomial Chaos Expansion

PCOpt Parallel CFD & Optimization Unit

PDE Partial Differential Equation

PGD Proper Orthogonal Decomposition

RANS Reynolds-Averaged Navier-Stokes

r.h.s. Right-Hand Side

SDF Signed Distance Function

SD(s) Sensitivity Derivative(s)

STL Standard Triangle Language

SVD Singular Value Decomposition

(U)RANS Unsteady RANS

w.r.t. with respect to



xviii K. D. Samouchos



Contents

1 Introduction 1

1.1 The Immersed Boundary Methods . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Mesh Generation Methods . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 The Cut-Cell Method . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Shape Optimization in Fluid Dynamics . . . . . . . . . . . . . . . . . 12

1.2.1 Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . 13

1.2.2 Gradient-Based Optimization Methods . . . . . . . . . . . . . 14

1.2.3 The Adjoint Method . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.4 Adjoint Formulation to the Immersed Boundary Methods . . . 18

1.2.5 Adjoint Formulation to the Cut-Cell Method . . . . . . . . . . 19

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 The Cut-Cell Mesh Generation 24

2.1 The Cartesian Mesh Data Structure . . . . . . . . . . . . . . . . . . . 26

2.2 The Octree Mesh Generation . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 The Octree Data Structure . . . . . . . . . . . . . . . . . . . . 28

2.2.2 The Integer Coordinate System . . . . . . . . . . . . . . . . . 30

2.2.3 Detection of the Immersed Geometry . . . . . . . . . . . . . . 33

2.2.4 Pseudocode of the Octree Generation . . . . . . . . . . . . . . 34

2.3 Mesh Smoothing and Flow Adaptation . . . . . . . . . . . . . . . . . 37

2.4 The Cut-Cell Generation . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.1 The Construction of Solid Faces . . . . . . . . . . . . . . . . . 43

2.4.2 The Construction of Fluid Faces . . . . . . . . . . . . . . . . . 46

2.4.3 Illustration of the Cut-Cell Construction . . . . . . . . . . . . 49

2.5 The Face-Based Mesh Data Structure . . . . . . . . . . . . . . . . . . 53

2.5.1 The Cell-to-Cell Connectivity . . . . . . . . . . . . . . . . . . 53

xix



xx K. D. Samouchos

2.5.2 Numbering of Nodes and Faces . . . . . . . . . . . . . . . . . 56

2.5.3 Detection of fluid cells . . . . . . . . . . . . . . . . . . . . . . 58

2.5.4 Computation of the Finite Volume’s Geometric Quantities . . 61

2.6 Cell Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.7 Mesh Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.8 Mesh with Moving Boundaries . . . . . . . . . . . . . . . . . . . . . . 72

2.8.1 Mapping Between Subsequent Meshes . . . . . . . . . . . . . . 73

2.8.2 Covered and Uncovered Cells . . . . . . . . . . . . . . . . . . 75

2.8.3 Cell Linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.9 Mesh Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.9.1 Differentiation of the Mesh Solid Boundary . . . . . . . . . . . 82

2.9.2 Differentiation of Face and Cell Geometric Quantities . . . . . 84

3 Numerical Discretization of the Navier-Stokes Equations 88

3.1 Compressible Fluid Flow Model . . . . . . . . . . . . . . . . . . . . . 89

3.2 Discretization of the Steady Compressible Laminar Equations . . . . 91

3.2.1 The Finite Volume Method . . . . . . . . . . . . . . . . . . . 92

3.2.2 Convective Flux Discretization Scheme . . . . . . . . . . . . . 93

3.2.3 The second-order MUSCL Method . . . . . . . . . . . . . . . 97

3.2.4 Limiters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.2.5 Gradient Computation Using the Least Squares Method . . . 100

3.2.6 Flux Computation at the Boundary Faces . . . . . . . . . . . 101

3.2.7 Diffusive Flux Discretization Scheme . . . . . . . . . . . . . . 102

3.2.8 Pseudo-Time Step Computation . . . . . . . . . . . . . . . . . 104

3.3 Temporal Term Discretization of the Compressible Equations . . . . . 105

3.3.1 The Arbitrary Lagrangian Eulerian Technique . . . . . . . . . 106

3.3.2 Dual-Time Stepping . . . . . . . . . . . . . . . . . . . . . . . 108

3.3.3 Covered and Uncovered Cells Treatment . . . . . . . . . . . . 109

3.4 Incompressible Fluid Flow Model . . . . . . . . . . . . . . . . . . . . 112

3.5 Discretization of the Steady Incompressible Laminar Equations . . . . 114

3.6 Temporal Term Discretization of the Incompressible Equations . . . . 116

3.7 Numerical Solution of the Discretized Flow Equations . . . . . . . . . 119

3.8 The Ghost-Cell Method . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.8.1 Wall Boundary Conditions Implementation . . . . . . . . . . . 123



Contents xxi

3.8.2 The Unsteady Ghost-Cell Method Implemented in Moving Walls129

4 Flow Solver Assessment 130

4.1 Compressible Flow Solver Assessment . . . . . . . . . . . . . . . . . . 130

4.1.1 Inviscid Flow Over the NACA0012 Isolated Airfoil . . . . . . . 131

4.1.2 Inviscid Flow Over a Wedge . . . . . . . . . . . . . . . . . . . 134

4.1.3 Convergent-Divergent Duct Flow . . . . . . . . . . . . . . . . 136

4.1.4 Parallel Flow Over a Flat Plate . . . . . . . . . . . . . . . . . 139

4.1.5 Laminar Flow Over the NACA0012 Isolated Airfoil . . . . . . 143

4.1.6 Inviscid Flow over ONERA M6 wing . . . . . . . . . . . . . . 145

4.2 Incompressible Flow Solver Assessment . . . . . . . . . . . . . . . . . 148

4.2.1 Inviscid Flow over the Joukowski airfoil . . . . . . . . . . . . . 148

4.2.2 Inviscid Flow over cylinder . . . . . . . . . . . . . . . . . . . . 151

4.2.3 Convergent-Divergent Duct Flow . . . . . . . . . . . . . . . . 153

4.2.4 Laminar flow over a Cylinder . . . . . . . . . . . . . . . . . . 155

4.2.5 Driven Cavity Flow . . . . . . . . . . . . . . . . . . . . . . . . 159

4.2.6 Laminar flow in a 3D S-Shaped Duct . . . . . . . . . . . . . . 161

4.3 Unsteady Flow Solver Assessment . . . . . . . . . . . . . . . . . . . . 163

4.3.1 Piston Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

4.3.2 Flow around Oscillating NACA0012 . . . . . . . . . . . . . . . 167

5 Flow Simulation in Industrial Applications 170

5.1 Incompressible Flow inside a Butterfly Valve . . . . . . . . . . . . . . 171

5.2 Compressible Flow in a Scroll Expander . . . . . . . . . . . . . . . . 175

5.3 Incompressible Flow inside a Valveless Diaphragm Micropump . . . . 182

5.4 Compressible Flow inside an Electrical Submersible Pump Stage . . . 187

6 The Continuous Adjoint Method 192

6.1 Mathematical Development of the Compressible Adjoint Method . . . 193

6.1.1 Definition of the Total Derivative . . . . . . . . . . . . . . . . 193

6.1.2 Differentiation of the Objective Function . . . . . . . . . . . . 195

6.1.3 Definition of the Augmented Function . . . . . . . . . . . . . 197

6.1.4 Differentiation of the Temporal Term . . . . . . . . . . . . . . 198

6.1.5 Differentiation of the Convection Term . . . . . . . . . . . . . 199

6.1.6 Differentiation of the Diffusion Term . . . . . . . . . . . . . . 201



xxii K. D. Samouchos

6.1.7 The Compressible Field Adjoint Equations . . . . . . . . . . . 204

6.1.8 The Inlet-Outlet Adjoint Boundary Conditions . . . . . . . . . 205

6.1.9 The Wall Adjoint Boundary Conditions . . . . . . . . . . . . . 206

6.1.10 Sensitivity Derivatives Expression . . . . . . . . . . . . . . . . 207

6.1.11 The Continuous Adjoint Method for Steady Flows . . . . . . . 209

6.2 Mathematical Development of the Incompressible Adjoint Method . . 211

6.2.1 Definition and Differentiation of the Objective and Augmented

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

6.2.2 Differentiation of the Temporal Term . . . . . . . . . . . . . . 212

6.2.3 Differentiation of the Convection Term . . . . . . . . . . . . . 213

6.2.4 Differentiation of the Diffusion Term . . . . . . . . . . . . . . 214

6.2.5 The Incompressible Field Adjoint Equations . . . . . . . . . . 216

6.2.6 The Inlet-Outlet Adjoint Boundary Conditions . . . . . . . . . 216

6.2.7 The Adjoint Wall Conditions . . . . . . . . . . . . . . . . . . 217

6.2.8 Sensitivity Derivatives Expression . . . . . . . . . . . . . . . . 218

6.2.9 The Continuous Adjoint Method for Steady Flows . . . . . . . 219

6.3 Discretization of the Steady Adjoint Equations . . . . . . . . . . . . . 220

6.3.1 The Adjoint Roe Scheme . . . . . . . . . . . . . . . . . . . . . 223

6.3.2 The Corrected Adjoint Roe Scheme . . . . . . . . . . . . . . . 225

6.3.3 The 3D Adjoint Solver . . . . . . . . . . . . . . . . . . . . . . 227

6.4 The Adjoint Method Implemented in Unsteady Flows . . . . . . . . . 227

7 The Discrete Adjoint Method 230

7.1 The Discrete Field Adjoint Equation and Sensitivity Derivatives . . . 231

7.2 The Discrete Adjoint Flux . . . . . . . . . . . . . . . . . . . . . . . . 233

7.3 The Compressible Discrete Adjoint Equation . . . . . . . . . . . . . . 237

7.3.1 Differentiation of the Convection Term . . . . . . . . . . . . . 238

7.3.2 Differentiation of the Diffusion Term . . . . . . . . . . . . . . 241

7.3.3 Differentiation of the Temporal Term . . . . . . . . . . . . . . 244

7.4 Sensitivity Derivatives for Compressible Flows . . . . . . . . . . . . . 245

7.4.1 Differentiation of the Convection Term . . . . . . . . . . . . . 246

7.4.2 Differentiation of the Diffusion Term . . . . . . . . . . . . . . 250

7.4.3 Differentiation of the Unsteady flow Equations . . . . . . . . . 253

7.5 The Incompressible Discrete Adjoint Equation and Sensitivities . . . 255



Contents xxiii

7.6 The Sensitivity Map Post-Processing . . . . . . . . . . . . . . . . . . 257

8 Adjoint Solver Assessment 261

8.1 Incompressible Adjoint Solver Assessment . . . . . . . . . . . . . . . 262

8.2 Compressible Adjoint Solver Assessment . . . . . . . . . . . . . . . . 267

8.3 Unsteady Adjoint Solver Assessment . . . . . . . . . . . . . . . . . . 270

9 Optimization of Industrial Applications 276

9.1 S-Duct Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

9.2 Wing Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

9.3 Submersible Pump Optimization . . . . . . . . . . . . . . . . . . . . 285

9.4 Valveless Diaphragm Pump Optimization under Uncertainties . . . . 289

9.5 Optimization of a Compressor Rotor . . . . . . . . . . . . . . . . . . 294

10 Closure 298

10.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

10.2 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

10.3 Novel Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

10.4 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

10.5 Future Work Recommendations . . . . . . . . . . . . . . . . . . . . . 307

A Identification of Cells in an Octree Data Structure 310

B Fast Cut-Cell Construction 312

C Optimal Value of the Artificial Compressibility Parameter 318

D The Compressible and Incompressible Jacobian Matrices 322

E Approximate Riemann Solver of Roe 325

F Approximate Riemann Solver of Roe for Preconditioned Conser-

vative Laws 331

G Monotone and TVD schemes relation 334

H The Barth-Jespersen Limiter 338



xxiv K. D. Samouchos

I Orthogonal Correction Expression 342

J Boundary Conditions Differentiation 344

K The Continuous Adjoint Method Implemented in Cases with Re-

circulation at the Outlet 346

L The adjoint HLLC and FVS schemes 349

L.1 The Adjoint HLLC Scheme . . . . . . . . . . . . . . . . . . . . . . . 349

L.2 The Adjoint FVS Scheme . . . . . . . . . . . . . . . . . . . . . . . . 352

L.3 Comparison of Adjoint Discretization Schemes . . . . . . . . . . . . . 353

M Memory Reduction by using the SVD Method 355

N Memory Reduction by using the PGD Method 359

N.1 The PGD and Incremental PGD Theory . . . . . . . . . . . . . . . . 359

N.2 Implementation of the Incremental PGD Based on the Ghost-Cell

Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

O The Absolute Roe Jacobian Derivative For Compressible Flows 364

P The Absolute Roe Jacobian Derivative For Incompressible Flows 367

Bibliography 370



Chapter 1

Introduction

Over the last decades, the exponential growth of computational power coupled with

the maturity of numerical methods has made Computational Fluid Dynamics (CFD)

an indispensable and cost-effective tool for analysis and product design in numerous

engineering fields. CFD is implemented in a wide range of problems from aeronauti-

cal, aerospace, and automotive applications to the weather forecast and biomedical

technology. Moreover, its accessibility and ability to test various combinations of

different geometries and flow conditions in relatively low turnaround time makes

it a valuable tool, especially for sensitivity analysis, optimization, and preliminary

design.

Therefore, accurate flow computations around complex geometries, usually asso-

ciated with practical applications, are highly valued. In addition, the increased

interest in the aerodynamic or hydrodynamic analysis of moving bodies requires ef-

ficient and reliable tools to deal with this challenging problem. To this end, fast and

robust mesh generation is a vital prerequisite, which, however, is still a strenuous,

costly, and not fully automated task.

A remedy to this issue is to adopt the Immersed Boundary Methods (IBMs), which

remove the mesh generation bottleneck from the evaluation and design process.

Amongst different approaches constituting this vast scientific spectrum, the cut-cell

method holds a central position due to its increased accuracy and reliability. Its

implementation to the flow analysis and optimization process in practical applica-

tions defines the two central axes of this dissertation. In particular, the first axis is

concerned with original techniques for mesh generation and flow simulation around

1



2 K. D. Samouchos

complex moving geometries. An introduction to these methods accompanied by the

corresponding literature survey is presented in section 1.1. The second axis deals

with the development of efficient optimization tools assisted by the continuous and

discrete adjoint formulations on the cut-cell method. An introductory examination

of these approaches and their effective performance in real-world problems is given

in section 1.2. Finally, the thesis outline is described in section 1.3.

1.1 The Immersed Boundary Methods

Contrary to the conventional concept of body-conforming meshes, IBMs employ

meshes that do not necessarily fit the geometry’s boundary. This concept was first

introduced by Peskin [244] in 1972, and since then, the field of immersed bound-

ary methods has flourished with the development of a wide variety of different ap-

proaches. The general idea behind these methods is subdividing the computational

domain into rectangular hexahedra constituting a Cartesian mesh extended through

the geometry’s boundary to the fluid and solid regions. Thus, the volume mesh

generation is decoupled from the complexity of the solid surface description. More-

over, in cases including moving bodies, the immersed geometry is allowed to move

upon the background stationary Cartesian mesh, avoiding the mesh deformation

or regeneration, which is common in body-conforming mesh approaches. Fig. 1.2

compares a body-conforming unstructured mesh around an isolated airfoil, fig. 1.2a,

and a Cartesian mesh around the same geometry, fig. 1.2b.

These methods have proven remarkably useful in flow simulation around complex

stationary or moving geometries performing large displacements. Section 1.1.1 com-

pares IBMs with other alternatives and indicates their advantages and drawbacks.

From that point of view, using Cartesian meshes transforms the problem of con-

forming the mesh to the boundary into the imposition of the flow conditions at

the wall, which requires modifications to the discretization scheme of the governing

equations close to the immersed boundary. The proper boundary treatment gives

rise to various approaches presented in brief in section 1.1.2. Then, section 1.1.3

focuses on a subclass of IBMs called the cut-cell method providing a broader context

in which the present work is placed.



1.1. The Immersed Boundary Methods 3

1.1.1 Mesh Generation Methods

As an introduction to IBMs, a comparison is presented between this approach and

two alternatives dealing with complex moving geometries. These are structured

or unstructured deforming, body-conforming meshes, and composite overlapping

mesh approaches [33], [199], [8]. Unstructured or structured multi-block mesh meth-

ods [305] appear extremely powerful for arbitrarily complex geometries. In moving

boundary problems, the volume mesh should follow the surface motion deforming

its elements [185], [23]. However, this process may damage the mesh quality, de-

teriorating the flow solution’s accuracy, fig. 1.1a. In addition, mesh deformation

fails to proceed after large boundary displacements, and re-meshing is unavoidable,

requiring the user’s intervention. Then, interpolation of the flow solution to the new

mesh is needed, which is far from trivial.

On the other hand, in overlapping-mesh or overset approaches, individual separately

generated meshes overlay a background mesh, fig. 1.1b. In cases including moving

boundaries, the associated mesh follows the geometry’s motion, while the rest remain

stationary, avoiding the mesh deformation. During the flow solution, information is

interpolated between meshes. Nevertheless, overset methods cannot guarantee con-

servation across composite mesh boundaries without sophisticated geometric con-

structions in the overlap region. Moreover, the difficulties of mesh generation around

complex geometries remain untreated.

Contrary to the before-mentioned approaches, stationary Cartesian meshes con-

siderably simplify and automate the mesh generation process, fig. 1.1c. However,

implementing a discretization scheme that maintains conservation is not straight-

forward. Moreover, the mesh resolution is expected to be higher in a Cartesian

mesh than in a body-fitted one to maintain the same level of accuracy in the flow

solution, resulting in higher computational and memory requirements. Therefore,

the formulation of a highly accurate IBM, capable of maintaining conservation even

for gross boundary motions while retaining its robustness, is among the targets of

this thesis.



4 K. D. Samouchos

(a) (b)

(c)

Figure 1.1: (a) A body-conforming unstructured mesh is deformed following the

motion of a cylinder. Invalid elements appear at time step n+1 damaging the mesh

quality. (b) A body-conforming mesh (green) is moving upon a background sta-

tionary mesh (blue), depicting the overset approach. Special treatment is needed

for imposing conservation across the composite mesh boundary. (c) A cylinder is

displaced upon a stationary background Cartesian mesh over two successive time

steps. Covered and uncovered cells lying within the swept region require additional

numerical manipulations to prevent spurious sinks and sources that harm the accu-

racy of the flow simulation. Figures drawn from [219].

1.1.2 Literature Survey

This section aims to present a short overview of the broad field of IBMs, highlighting

the wide variety of available methods and identifying some of the most effective

approaches. The interested reader may find extensive reviews in Mittal et al. [209],



1.1. The Immersed Boundary Methods 5

Sotiropoulos et al. [289], and Maxey [198].

IBMs can be classified regarding a variety of criteria. Among others, Sotiropoulos et

al. [289] introduced a taxonomy based on the representation of the immersed geom-

etry, dividing the field into diffused and sharp interface methods. Diffused interface

methods employ a blur representation of the immersed boundary, the effect of which

is introduced implicitly over a narrow zone of computational cells. In contrast, sharp

interface methods use a crisp representation of the fluid-solid interface throughout

the flow simulation, avoiding its spatial smearing over a range of mesh cells.

Diffused interface methods can further be subdivided into continuous and discrete

forcing approaches [35]. The first approach exerts an artificial volume force employed

in the vicinity of the interface to effectively represent the effect of the immersed

boundary on the flow field. The forcing is expressed as an additional term in the

continuous equations and, therefore, is independent of the chosen discretization.

The continuous forcing approaches have been applied to flows around elastic and

rigid boundaries. Such examples are given below.

The original work of Peskin [244], [245], who introduced the IBMs, belongs to the

first class of the continuous forcing approaches. In this method, blood flows within

a beating heart upon a stationary Cartesian mesh. The heart’s muscle contraction

is represented by elastic fibers consisting of massless points moving along with the

flow in a Lagrangian manner. A forcing term added to the momentum equations

encapsulates the effect of the fibers’ motion to the fluid. In particular, a smoothed

Dirac function distributes the force of each Lagrangian point to the surrounding

cells. The correct choice of the smoothed function is of paramount importance, and

it has been studied by numerous researchers giving rise to various distributions [44],

[270], [172]. Second-order accurate methods of this kind have been developed by Lai

et al. [172], Griffith et al. [117], and others.

However, employing this method in cases concerning rigid bodies causes numerical

instabilities. An approach to surpass this issue is by using highly stiff springs that

approximate the rigid behavior of the body [44], [172]. Other approaches solve the

governing equations by imposing a rigidity constraint to the fluid inside the solid

region of the mesh [107], [240], [19] or assuming that the entire flow occurs in a

porous medium [20], [161]. The exerted spring force and the porosity assumption

can be considered subclasses of the more generic force formulation introduced by

Goldstein et al. [111].



6 K. D. Samouchos

On the other hand, in the discrete forcing approach, the forcing is incorporated

straight into the discretized governing equations. It can be explicit [316] or implicit

[295] and allows for direct control over the solver’s numerical accuracy and stability.

The method was firstly introduced by Mohd-Yusof [213], who used the difference

between the velocity at the mesh nodes and the desired velocity at the boundary to

define the forcing term. Then, Fadlun et al. [89] extended this work by implement-

ing the discrete forcing approach on a 3D marker-and-cell (MAC) staggered mesh.

Further improvements concerning stability and accuracy were made by Balaras [24],

Gilmanov et al. [105], Zhang et al. [344], and Choi et al. [62]. Finally, this approach

has been implemented in various applications, including the turbulent flow inside

an internal combustion engine [322].

The great advantage of the diffused interface methods is that the presence of the

wall does not affect the equations’ discretization scheme apart from the term ex-

pressing the distributed force. In particular, they avoid the complicated intersection

computation of the immersed geometry with the mesh cells offering a method for

straightforward software development. However, these methods are unable to predict

boundary layers accurately. Therefore, the sharp interface approaches were intro-

duced, emphasizing the direct imposition of the boundary conditions by modifying

the discretization scheme to cells next to the wall. The two main representatives of

this category are the ghost-cell and the cut-cell methods described below.

In the ghost-cell method, described by Tseng et al. [310], cells intersected by the

boundary were explicitly detected, avoiding the artificial smearing of the flow field

close to the wall. The method’s principle is to repeatedly extrapolate the current

solution to a zone of ghost cells adjacent to the wall and enforce the necessary

boundary condition by modifying the flow variables stored at each ghost cell. Various

interpolation or extrapolation schemes have been proposed, with the simplest one

being the linear interpolation by Ferziger et al. [93]. However, the accuracy of this

approach is questionable, especially in high Reynolds flows. A better alternative is

employing linear interpolation in the tangential to the wall direction and a quadratic

one along the normal direction [190]. Another technique proposed by Gibou et

al. [102] slightly modifies the solid boundary, avoiding erroneous boundary layer

predictions.

Several researchers have contributed to the method’s improvement. For example,

Mittal et al. [208] introduced the concept of image points to fulfill the divergence-

free criterion. Moreover, Berthelsen et al. [43] presented a method to handle highly



1.1. The Immersed Boundary Methods 7

irregular boundaries constituting sharp corners or solid thin plates without losing

accuracy. Furthermore, Pan et al. [234] and Gao et al. [100] used different tech-

niques to improve the approach of Tseng et al. [310] by mitigating the instabilities

caused in the extrapolation scheme when fluid nodes are very close to the bound-

ary. Additionally, Shinn et al. [284] increased the discretization’s accuracy at the

boundaries by preserving the mass continuity for ghost cells on a staggered mesh.

Recently, Grosse et al. [114] developed a second-order technique by adequately

solving the Riemann problem at cells located on the boundary. Finally, the ghost

fluid method, introduced by Fedkiw [91], [90], is worth noticing as well as its im-

provements concerning accuracy and robustness by Terashima et al. [304] and Liu et

al. [184]. According to that, each cell in the computational domain is equipped with

a ghost-cell being in contrast to the rest ghost-cell methods, where the ghost-cells

are defined exclusively alongside the immersed boundary.

A significant drawback of the methods presented so far is that none guarantees the

satisfaction of the flow conservation laws in the vicinity of the wall. On the other

hand, the cut-cell method offers strict conservation of mass, momentum, and energy

at each mesh cell, constituting a valuable alternative to the above approaches. The

extensive study of this method has resulted in a wide field of different approaches,

the most remarkable of which are presented in subsection 1.1.3.

1.1.3 The Cut-Cell Method

Over the last two decades, the cut-cell method has become increasingly popular as

an alternative to simulate the flow around complex geometries. It is considered one

of the most reliable IBMs since it accurately represents the fluid-structure interfaces.

Consequently, it avoids the generation of spurious pressure fluctuations caused by

violating the conservation laws, observed typically in other approaches like the ghost-

cell method [218].

Contrary to the rest IBMs, the cut-cell method uses only the fluid part of the

background mesh. In particular, the Cartesian structure of the mesh is retained in

all but cells intersected by the immersed boundary. These cells discard their solid

part to conform to the wall. The remaining fluid part of each cell constitutes a new

polygon in 2D or polyhedron in 3D called cut-cell. An example of such a mesh is

shown in fig. 1.2c. Therefore, the advantage of using a Cartesian mesh is preserved

for the interior cells, and a more delicate treatment is needed only for the cut-cells.



8 K. D. Samouchos

In other words, the case-specific and challenging mesh generation around complex

geometries is replaced by the general problem of constructing the cut-cells. Thus,

this approach can be considered a consistent extension of the finite volume method,

at least for stationary geometries, and as such, it guarantees the satisfaction of the

conservation laws.

(a)

(b) (c)

Figure 1.2: (a) A body-conforming unstructured mesh around an isolated airfoil.

(b) The airfoil (red) is immersed into a Cartesian mesh (black). (c) The solid part

of the Cartesian mesh has been discarded, giving rise to a cut-cell mesh type.

The concept of cut-cells was firstly proposed by Purvis et al. [250] in 1979 and then

by Wedan et al. [331] in 1983. These authors applied a finite volume method on a

cut-cell mesh to solve the fully nonlinear potential equation. Later, in 1986, Clarke

et al. [65] extended this idea to the 2D Euler equations. In that work, each cut-cell

was describing the geometry in a piecewise linear fashion. Gaffney et al. [99] used

the same technique to solve the 3D Euler equations. At around the same period,

Rubbert et al. [264] applied a cut-cell finite element method to discretize the 3D

potential flow equation.

The above-mentioned pioneering works did not only establish the cut-cell method

but also described its main drawbacks. A common implication is related to the

reshaping of the intersected cells. In particular, the fluid part of these cells may



1.1. The Immersed Boundary Methods 9

become very small, harming the stability of the flow solver. Such an example is

illustrated in fig. 1.3. First, Clarke et al. [65] resolved this problem by adopting

an agglomeration technique, in which small cell fragments were incorporated into

adjacent cells. Similarly, Ye et al. [340] suggested an approach in which cut-cells,

with centroids located in the solid region, were absorbed by neighboring ones, gen-

erating new trapezoidal cells. Over the next years, several techniques have been

proposed to tackle this issue while retaining the conservative nature of the finite

volume method. Some of them are the cell-merging [53], [40], [134], [27], cell-linking

[165], flux redistribution [70], [132], mesh reshaping [268], and the H-Box method

[40].

Figure 1.3: A Cartesian mesh (black) over an arbitrary embedded solid boundary

(red). Regular cut-cells are colored blue, while 6 very small cut-cells are indicated

with green.

In the late ’80s, the cut-cell method gained popularity, and the first techniques for

mesh adaptation appeared. Berger et al. [40] and Quirk [252] used a similar isotropic

adaptive mesh refinement to capture strong shock waves accurately. Moreover, Pem-

ber et al. [242] applied a solution-based adaptation to solve the 3D Euler equations,

and Melton et al. [201] developed a 3D Euler cut-cell method that incorporated a

geometry-based mesh refinement technique.

The extension to viscous cases was made by Quirk [251]. However, the demon-

stration was brief and was applied to simple test cases. Then, Coirier et al. [69]

used the cut-cell method to simulate the laminar flow around more complex 2D

geometries. Moreover, Hartmann et al. [124] were the first to implement a fully

conservative cut-cell-based method for 3D problems of compressible laminar flows.

However, properly treating the viscous terms on irregularly-shaped cut-cells was



10 K. D. Samouchos

quite challenging because high mesh resolution is needed to represent the developed

boundary layer accurately. A remedy to this issue is the conjunction of the Cartesian

approach with structured curvilinear meshes. In such methods, a body-fitted mesh

is generated close to the immersed boundary, and the rest domain is filled with a

Cartesian mesh intersected with the outer layer of the structured mesh [157], [330],

[77]. Although these methods increase simulation’s accuracy without excessively

refining the mesh, their implementation in complex or moving geometries is quite

delicate.

An attractive alternative is to employ the Cartesian mesh down to the wall and

properly change the discretization scheme to cells close to the wall. Following this

approach, Hartmann et al. [124] and Ji et al. [145] developed a second-order accurate

discretization scheme. However, its accuracy decreased to nearly one in the vicinity

of the wall. Moreover, Ye et al. [340] investigated a new interpolation scheme next to

the immersed boundaries, capable of retaining second-order accuracy. In addition,

a promising approach was presented by Berger et al. [36], who used quadratic poly-

nomials to compute the flow variables and their derivatives stored in cut-cells. A

similar strategy was proposed by Anagnostopoulos [11], who suggested polynomials

of different degrees for each flow variable. Furthermore, other researchers alleviate

the non-alignment of the mesh to the geometry by increasing the order of the dis-

cretization stencil [218], [167], [10]. Finally, the cut-cell method has been extended

to turbulent flows in the Reynolds-averaged Navier–Stokes (RANS) [36], [37], the

Large Eddy Simulation (LES) [204], [203], [56], or the Direct Numerical Simulation

(DNS) [80] framework.

New challenges emerge introducing the cut-cell method to cases involving moving

geometries. In particular, additional complexities arise due to the change in the

Cartesian cells’ nature from fluid to solid and vice versa caused by the boundary’s

displacement, fig. 1.1c. In such cases, Seo et al. [279] proved that the violation of the

Geometric Conservation Law (GCL) causes the violation of the mass conservation

leading to significant pressure oscillations, which damage the simulation’s accuracy.

As a result, various attempts have been made to increase to solution’s accuracy

while retaining the conservative identity of the method.

Schneiders et al. [278], [277] extended the work done by Hartmann et al. [124] to

compressible viscous flows around moving boundaries. Their technique was dis-

tributing the loss in mass to neighboring cells without though discussing its effect

on the accuracy of the flow solution. Moreover, Guthner et al. [120] introduced a



1.1. The Immersed Boundary Methods 11

level-set approach to keep track of the boundary’s motion, sacrificing the accuracy

of the boundary’s representation. Recently, Muralidharan et al. [218] developed a

second-order cell clustering algorithm to ensure the conservative laws’ imposition

even for large structural displacements. However, this method imposes strict limi-

tations to the maximum allowed displacement of the boundary at each time step.

Another alternative, Aftosmis et al. [219] and Asao et al. [21], is based on the

geometric construction of space-time finite volumes. Although this approach offers

a proper treatment for the solidified and newborn cells, its complexity limits its use

only to the development of simpler methods. Other implementations include cell

merging methods [29], [338], [27], implicit time-stepping [5], and flux redistribution

methods [200].

The cut-cell method has been applied to a great variety of real-world problems.

These applications include, among others, flapping foils [211], flow-induced vibra-

tions [207], diaphragm-driven synthetic jets [317], and objects in free fall [210].

Moreover, it has been used to capture the air-water interface [133], including the

detonation of ships [145]. In addition, the cut-cell method has been proven beneficial

in simulating internal flows of combustion engines [120], [276], centrifugal pump im-

pellers [12], flows with cavitation [232], particle-laden turbulence [277], and the flow

around a space shuttle orbiter [38]. Finally, its use is advantageous in fluid-structure

interaction [206] and multiphase flow [334] problems.

Despite the development of several variations of the cut-cell method and its appli-

cation to various cases, there is much space for improvement. This thesis develops

techniques to increase the method’s efficiency by contributing to the automatic gen-

eration and adaptation of the mesh around stationary or moving geometries. Firstly,

it deals with the challenging process of the cut-cells’ construction. In particular, it

extends the method of Aftosmis et al. [6] by proposing a robust algorithm capable of

computing any intersection between a Cartesian cell and an arbitrary triangulated

surface. Moreover, the algorithm consistently handles degeneracies of the immersed

geometry without the user’s intervention offering an autonomous and valuable tool

for the mesh generation in 3D practical applications.

Although several attempts have been made to simulate unsteady phenomena around

moving geometries accurately, none has gained wide acceptance from the scientific

community. Indeed, the previously presented survey illustrates the existing gap

in the literature and indicates the difficulties of this challenging task. Hence, the



12 K. D. Samouchos

present research supports this effort by improving the aforementioned cell merging

method. More specifically, it introduces a technique that extends the existing meth-

ods’ capabilities (e.g., the one in [219]), offering a smooth representation of the flow

close to the moving wall. Furthermore, the method’s accuracy has been verified by

comparing the developed software’s results with experimental and numerical data

from solvers based on body-fitted meshes. Moreover, its efficiency is demonstrated

by successfully applying the method to 3D industrial problems.

1.2 Shape Optimization in Fluid Dynamics

Shape optimization applied in fluid dynamics modifies a given geometry to maximize

its aerodynamic or hydrodynamic performance. The geometry’s boundary is con-

trolled by a set of variables called design variables (⃗b). These can be the coordinates

of control points defining the shape of the geometry through a parameterization

tool. Alternatively, the coordinates of the nodes comprising the discretized solid

boundary can be used. The performance of a given geometry, and thus, the set of

the corresponding design variables, is measured by computing the objective function

F of the optimization problem. This function is the quantity of interest defined in

each application, e.g., the drag of a wing or the efficiency of a turbomachinery blade

row. The value of the objective function is computed by solving the Partial Differ-

ential Equations (PDEs) describing the physical phenomenon under consideration,

such as the Euler or Navier-Stokes equations. However, the absence of an analytical

solution to these equations makes the optimization process challenging, giving rise to

numerous approaches seeking the optimal set of design variables that maximizes or

minimizes the objective function. Optimization methods can be classified according

to various criteria. A common taxonomy is based on the method used to search the

design space for the optimal solution(s) and categorizes the optimization methods

into stochastic and deterministic ones.

After a short presentation of stochastic methods and, in particular, evolutionary

algorithms in subsection 1.2.1, the analysis proceeds in subsection 1.2.2, focusing on

gradient-based methods, which are mainly used in this thesis. In addition, it briefly

presents methods for computing the necessary gradient of the objective function.

Then, subsection 1.2.3 introduces the adjoint method and explains its formulations.

Finally, a literature survey about the implementation of adjoint methods on IBMs

and the cut-cell method is documented in subsections 1.2.4 and 1.2.5, respectively,



1.2. Shape Optimization in Fluid Dynamics 13

indicating the research gap addressed by this work.

1.2.1 Evolutionary Algorithms

Stochastic methods explore the design space in a heuristic-based manner [205], [290].

Evolutionary Algorithms (EA) are a notable representative of this class, and they

are based on a population-based optimization inspired by the Darwin’s theory of

biological evolution. According to that, individuals correspond to different sets of

design variables and are organized into generations. During the optimization pro-

cess, crossover, parent selection, and mutation operators are applied to the members

of each generation producing new individuals progressively closer to the optimal so-

lution.

The use of EAs is beneficial in several aspects. In particular, based on the ran-

domized search of the design space, they avoid local extrema reaching the global

optimum. Moreover, their use in multi-objective optimization problems is advanta-

geous due to their ability to compute the Pareto front of non-dominated solutions

directly. Another important characteristic is their non-intrusiveness. Hence, no

direct access is needed to the evaluation tool, i.e., the CFD solver, which is used

as a black box. Finally, compared to deterministic methods, the straightforward

treatment of constraints makes it a valuable tool for real-world applications.

However, an extensive number of evaluations is usually needed to reach the opti-

mal solution. Therefore, the optimization’s computational cost may be prohibitive,

especially in CFD-based applications where a flow simulation is needed for each

evaluation. Various techniques have been proposed to surpass this problem, such as

implementing surrogate evaluation models [155], [46] or developing distributed and

hierarchical optimization schemes [79], [156]. Moreover, EAs may be computation-

ally expensive in applications identified by a large number of design variables. In

such cases, even using the above methods may not reduce the cost at a reasonable

level. A remedy to this issue is the development of unsupervised learning techniques

such as the Principal Component Analysis (PCA) method [127], [169].

Although EAs have been used supplementary in this thesis, they are beyond its pri-

mary interest, and, thus, they will not be discussed further. A detailed study of this

field can be found in [151]. Instead, the principal contributions of this dissertation

are in the area of deterministic methods, discussed in subsection 1.2.2.



14 K. D. Samouchos

1.2.2 Gradient-Based Optimization Methods

The most well-known deterministic approaches belong to the Gradient-Based (GB)

optimization methods class. These approaches use the derivatives of the objective

function with respect to (w.r.t.) the design variables, also called sensitivity deriva-

tives, to explore the design space. Since every new update of the design variables

is based on the direction indicated by the sensitivity derivatives, significantly fewer

optimization steps are necessary than those required by stochastic methods [98].

However, contrary to the latter, GB methods are often trapped into local minima,

impotent to reach the global optimum. Moreover, their implementation in multi-

objective optimization problems is not straightforward.

Hybrid optimization methods attempt to combine the advantages of the stochastic

and deterministic methods treating their previously discussed drawbacks. Such ap-

proaches use gradient-based methods to improve promising individuals during the

optimization employed by evolutionary algorithms. Thus, in multi-objective opti-

mization problems, a single objective function is defined each time as the target of

the gradient-based method, while the rest act as constraints [163]. Another alterna-

tive uses weights to combine multiple objective functions to a single one, targeted

by the gradient-based method [149], [166]. Although this thesis mainly deals with

single-objective optimization problems, the tools developed in [153] are used else-

where.

Various GB methods have been proposed implementing different techniques to up-

date the design variables at each optimization cycle. They are separated into two

primary strategies, the line search [95] and the trust-region [341] ones. In particular,

line search methods initiate from a starting point in the design space and choose a

descent direction p⃗ (for minimization problems) along which the optimization will

proceed. Then, they solve a 1D optimization problem to compute the appropriate

step size that best maximizes/minimizes the objective function. In contrast, the

trust-region methods first choose a maximum distance at which a model function

accurately enough approximates F . Then, they seek the step size and direction

along which the best improvement is attained.

In line search methods, the derivatives of F are used to determine the descent di-

rection. According to the most straightforward approach, referred to as the steepest

descent method, the descent direction is aligned to that of the objective’s gradient.

However, due to its poor efficiency, other methods have been proposed. Among



1.2. Shape Optimization in Fluid Dynamics 15

them, the Newton method is one of the most remarkable. It uses the second deriva-

tives, i.e., the Hessian matrix, of F providing fast convergence of the optimization

process. However, the additional effort required for the extra derivatives’ compu-

tation restricts its use in CFD-based problems. Therefore, quasi-Newton methods,

such as BFGS [95], have been introduced, approximating the Hessian matrix using

only first-order derivatives. Another method that balances simplicity and efficiency

is the conjugate gradient method [96] adopted in this thesis. This method computes

the ith component of the descent direction as

pnewi = − ∂F

∂bi

∣∣∣∣
new

+ βnewpoldi

where various alternatives exist for the computation of βnew using exclusively first-

order derivatives from the current and previous optimization cycle. Although its

convergence is slower than in the two previous methods, its low memory requirements

make it suitable for CFD-oriented applications. Finally, a detailed presentation of

gradient-based optimization methods can be found in [229].

The computation of the gradient of F strongly affects the efficiency of the opti-

mization. Unfortunately, in applications related to fluid dynamics, the objective

function’s expression w.r.t. the design variables is rarely available in a closed form,

making its differentiation pretty challenging. Therefore, in the absence of an ana-

lytical computation, the gradient is numerically approximated. Finite Differences

(FDs) stand for the most straightforward way to approximate the gradient. When

a central finite difference scheme is adopted, each design variable is subjected to

a positive and negative perturbation by a small quantity ϵ while the rest remain

constant,

∂F

∂bi
≃ F (b1, b2, · · · , bi + ϵ, · · · , bN)− F (b1, b2, · · · , bi − ϵ, · · · , bN)

2ϵ

Each time, the geometry’s boundary slightly changes, affecting the surrounding

flow field and resulting in a different objective function value, which is evaluated

by solving the governing equations anew. Therefore, the gradient’s computational

cost is proportional to the number of design variables, making the implementation

impractical in multivariable problems.

Moreover, the resulted derivatives are sensitive to the value of the user-defined

variable ϵ. Large values reduce the method’s accuracy, while small values cause



16 K. D. Samouchos

round-off errors, damaging the prediction of the gradient. The repetitive process

for determining its appropriate value further increases method’s computational cost.

However, its simplicity makes it valuable for validating other, more efficient methods.

The dependency of ϵ is eliminated by using the Complex Variable Method [194], [17],

the cost of which is reduced to half but remains proportional to the design variables’

number. Another alternative is the Direct Differentiation Method [282], [28], which

is preferred for computing the Hessian matrix or in applications with more objective

functions than design variables. Since both are out of this thesis scope, and thus,

this method will not be discussed further.

1.2.3 The Adjoint Method

In contrast to the previously presented approaches, the adjoint methods compute

the gradient at a low cost, independent of the number of design variables [139],

[247]. This property makes them a viable alternative, appropriate for industrial-

scale applications. Its remarkable efficiency originates from introducing the so-called

adjoint variables, which satisfy the field adjoint equations. At each optimization

cycle, the flow equations are firstly solved. Next, the resulted flow field is used to

solve the system of adjoint PDEs. The latter comes at a cost comparable to that of

the governing equations. Finally, the flow and adjoint fields are introduced to the

sensitivity derivatives expression, computing the required gradient. Hence, the total

computational cost is equivalent to solving the flow equations twice.

The concept of the adjoint approach was introduced by Lions in 1971 [183]. However,

its first application in the field of fluid dynamics was made much later, in 1984, by

Pironeau [247], who studied physical systems described by an elliptic PDE. Later,

Jameson extended this work by mathematically developing [139] and applying [257],

[140] the adjoint method to the Euler equations. Over the following years, this

method has been employed in various real-world applications, such as in aeronautical

[259], [193], [168], [311] and automotive industries [233], [239], [237], [150]. A detailed

literature survey on adjoint methods can be found in [237].

Two main approaches constitute the adjoint methods depending on the way they

derive the adjoint equations. Firstly, the discrete approach [86], [16], [103] uses the

discretized objective function and governing equations, and through their differenti-

ation, it defines the adjoint PDEs, the corresponding boundary conditions, and the

sensitivity derivatives expression in a discretized form. In particular, the flow solver



1.2. Shape Optimization in Fluid Dynamics 17

is differentiated either “by hand” or in a more automated way called Algorithmic

Differentiation [116], [71], [125]. The second approach is usually preferred when the

software under differentiation is quite complex, offering a straightforward process to

build its adjoint counterpart. Many tools performing automatic differentiation are

available, such as TAPENADE [300], ADIFOR [196], and ADOL-C [328]. However,

the resulting software tends to have high memory requirements, and thus, its use

may be prohibitive in large-scale applications. In contrast, “hand differentiation”

can prove tedious but avoids memory overuse.

In the second approach, called continuous adjoint method [18], [258], [164], the ob-

jective function and governing equations are differentiated in their continuous form.

After the appropriate mathematical development, the field adjoint equations arise,

accompanied by the corresponding boundary conditions and the expression of sensi-

tivity derivatives. Then, an adjoint discretization is chosen, usually equivalent to the

one used for the governing PDEs. Finally, the resulted adjoint field is substituted in

the sensitivity derivatives expression, which allow two different formulations. The

first one comprises only surface integrals and is referred to as Surface Integral (SI)

formulation [235], while the second one also involves field integrals and is called

Field Integral (FI) formulation [238]. In practice, the SI approach does not take the

impact of the volume mesh displacement during the optimization under considera-

tion, and thus, is unable to compute the accurate value of the gradient consistently.

On the other hand, the FI approach is more reliable but computationally expensive.

Thus, the Enhanced-Surface Integral (E-SI) formulation [160] has been proposed,

which bridges the gap between the aforementioned methods by introducing the con-

cept of the adjoint mesh displacement and by additionally solving the corresponding

adjoint equation.

The discrete and continuous approaches mentioned above are not equivalent in the

sense that they result in different approximations of the gradient. Hence, their

unique features and benefits have extensively been discussed in the literature [104],

[220], [138]. The main advantage of the discrete approach is its ability to deliver the

necessary gradient accurately. Moreover, the development of the software computing

the adjoint field is straightforward. On the other hand, in the continuous formula-

tion, the flow and adjoint solvers share many similarities, which reduces the invested

time for software development and the demand for memory resources. However,

choosing the appropriate adjoint discretization scheme is far from trivial and crucial

for accurately predicting the necessary gradient. The present study underlines the

usefulness of both discrete and continuous approaches by contributing in both direc-



18 K. D. Samouchos

tions. In particular, it develops a discrete adjoint solver by hand-differentiating the

cut-cell software. Additionally, it investigates the accuracy of various schemes used

for the continuous adjoint PDEs discretization. Finally, it applies both approaches

to practical optimization problems.

The previous short discussion on the adjoint methods denotes not only the extent

of various formulations but also the central role of mesh perturbation caused by the

geometry’s displacement during the optimization. Most implementations on body-

fitted meshes use mesh deformation tools to smoothly adjust the volume mesh on

the continuously modified optimized shape. The effect of the mesh perturbation

on the objective function is taken into account by differentiating the corresponding

tool [212], [256], [104]. Several studies have been performed on the impact of mesh

sensitivities on the gradient’s accurate computation, showing that their elimination

severely damages the optimization process [18], [188], [160]. On the other hand, their

computation entails the solution of an extra adjoint equation in both the discrete

[197] and continuous [160] methods (at least in the E-SI formulation), increasing

the computational cost of the optimization. Furthermore, mesh deformation tools

may fail to handle considerably large shape modifications, causing the premature

termination of the optimization process. Then, user’s intervention is unavoidable,

harming the unsupervised performance of the optimization. In contrast, this thesis

suggests the use of IBMs, which circumvent these issues by offering a robust and

reliable framework for the optimization implementation.

1.2.4 Adjoint Formulation to the Immersed Boundary Meth-

ods

Contrary to the body-conforming approaches, the immersed boundary methods over-

come the previously mentioned problems by restricting the effects of the geometry’s

deformation to a narrow zone of cells close to the wall. In particular, their capa-

bility to decouple the mesh generation from the geometry’s complexity allows for a

fully automated optimization regardless of the extent of the shape’s modification.

Moreover, IBMs combine the high accuracy of methods incorporating the mesh dis-

placement differentiation (e.g., the FI formulation) with the efficiency of strategies

that avoid the mesh perturbation effect (e.g., the SI formulation). Although several

approaches exploit the advantages of the immersed boundary methods using various

optimization strategies [66], [225], [221], [261], limited research has been conducted



1.2. Shape Optimization in Fluid Dynamics 19

on the adjoint-based gradient computation implemented in Cartesian meshes. Some

of the few examples are listed below.

Firstly, Dadone et al. [73], in 2005, introduced the discrete adjoint to the ghost cell

method and applied it in 2D flows. The necessary differentiation of the discretized

flow equations and the ghost boundary condition were approximated by FDs. Some

years later, Hinterberger et al. [129] performed topology optimization supported by

the continuous adjoint method, applied in automotive exhaust systems. A staircase

representation of the boundary was used, where each mesh cell was marked as fluid

or solid. Furthermore, Xu et al. [336] implemented the continuous adjoint method in

2D flows around moving bodies, where a continuous forcing approach expressed the

presence of the immersed geometry within the flow. More recently, Okubo et al. [231]

applied the discrete adjoint formulation in a flow solver implementing a ghost cell

technique in steady 2D problems. In a similar framework, Rutkowski et al. [265]

presented an adjoint Lattice Boltzmann Method for multi-objective optimization of

a 2D flapping airfoil.

1.2.5 Adjoint Formulation to the Cut-Cell Method

The implementation of adjoint methods on a cut-cell framework is remarkably rare

in the literature. Nemec et al. [224] first introduced in 2005 the discrete adjoint

formulation to the cut-cell method applied in transonic and supersonic flow opti-

mization problems governed by the 3D steady Euler equations. In particular, they

hand-differentiated the state equations w.r.t. the flow variables assuming that the

limiter remains constant during the shape transformation. Moreover, the sensitiv-

ity of the governing equations to the design variables was approximated by finite

differences. Then, in 2006 [222], they extended that work by incorporating an ac-

curate computation of the mesh sensitivities through the exact linearization of the

cut-cell geometry. In a succeeding study [223], they examined the effect of limiters

on the optimization, showing that the constant limiter assumption may harm the

gradient computation documenting a relative error of around 16% compared to FDs.

Finally, a later work of the same group [332] proposed an adjoint-based adaptive

mesh refinement method to minimize discretization errors of the flow simulation.

Moreover, worth saying is the research in the field of cut finite elements. Firstly,

Benk et al. [34] applied this discretization method in fluid-structure interaction

optimization problems governed by the 3D Stokes equations. In particular, they



20 K. D. Samouchos

employed Nitsche’s penalty discretization method [195], which supports the compu-

tation of finite element integrals in cut-cells and computed the objective’s gradient

by using the discrete adjoint formulation. Moreover, Jenkins et al. [142] carried out

a topology optimization taking advantage of the cut-cell method’s accurate repre-

sentation of the fluid-solid interface. Again, Nitsche’s method was used and the

continuous adjoint formulation was implemented for the gradient computation. The

method was applied in 2D steady optimization problems, the fluid part of which was

modeled by the incompressible Navier-Stokes equations. Finally, the cut element

method assisted by discrete adjoint has been applied to acoustic shape optimization

problems [42], [82].

According to the above literature survey, there is much space for investigation con-

cerning the adjoint methods implemented in a cut-cell environment. The present

thesis contributes to the existing literature in the following ways. Firstly, it extends

the work of Nemec et al. by encapsulating the limiter differentiation in the discrete

adjoint formulation of the 3D compressible Euler equations. Then, it proceeds to the

implementation of the method in viscous and unsteady flows. Finally, the method

is applied in 3D incompressible flow optimization problems for the first time in liter-

ature. Another innovative aspect of this study is the introduction of the continuous

adjoint formulation to the cut-cell method by using a finite volume discretization.

Finally, an important side product of this thesis is the development of the ghost-cell

variation of the continuous adjoint method for the 3D unsteady Euler equations.

1.3 Thesis Outline

Motivated by the open issues indicated in the previous sections concerning the cut-

cell method and its use in conjunction with the adjoint methods, this dissertation

develops strategies and computational methods that bring the CFD-based anal-

ysis and optimization closer to industrial reality. The thesis is structured along

two axes. Firstly, chapters 2-5 are dedicated to the flow simulation employing the

cut-cell method. Then, chapters 6-9 are concerned with the adjoint methods and

optimization problems. Finally, chapter 10 summarizes the thesis contributions and

proposes some concepts for future development. The subject of each chapter is

shortly presented below.

Chapter 2 describes the algorithm generating a Cartesian mesh appropriate for flow



1.3. Thesis Outline 21

simulation based on the cut-cell method. The mesh is adapted to the immersed

boundaries and to flow phenomena of particular interest. The process is based on

an octree data structure and guarantees a smooth transition between regions of

different refinement levels. Emphasis is laid on the detailed presentation of the

algorithm constructing the cut-cells by intersecting the mesh with the geometry’s

boundary. Small cut-cells were merged with their neighbors to avoid instabilities

during the flow solution. Furthermore, a mesh partitioning technique is discussed

based on the Hilbert space-filling curve. In addition, a strictly conservative method

is developed dealing with Cartesian meshes over moving geometries. Finally, the

derivatives of geometric quantities required during the gradient-based optimization

process are computed.

Chapter 3 presents the numerical discretization of the compressible or incompressible

flow equations to a cut-cell mesh. The examined flow model concerns the steady

or unsteady Navier-Stokes equations, where the artificial compressibility method

is applied to stabilize the incompressible solver. Discretization is based on a cell-

centered, second-order finite volume method employing the MUSCL scheme and

Roe’s approximate Riemann solver. In unsteady simulations, the time integration

is based on a dual time-stepping technique. Special treatment is made for cells that

appear or disappear from the fluid region of the mesh in cases involving moving

bodies. Finally, this chapter describes a ghost-cell approach for steady and unsteady

flow simulations.

Chapter 5 aims to validate/verify the developed cut-cell flow solver in compress-

ible and incompressible cases selected from the literature. Firstly, inviscid flows

in external and internal aerodynamics are considered, demonstrating the benefits

gained by the direct imposition of the wall conditions. Then, laminar flow cases

are examined, focusing on the effect of the cut-cells’ irregularities on the boundary

layer representation. Emphasis is laid on the ability of the developed software to

produce highly accurate results, equivalent to those obtained by body-conforming

meshes. Finally, the proposed method’s ability to correctly predict flows around

moving bodies satisfying the conservation laws is investigated.

Chapter 5 illustrates the ability of the developed software to handle industrial cases.

Moreover, it indicates the benefits of implementing IBMs in various applications

due to the absence of limitations that usually accompany body-conforming meshes.

Indeed, the chosen applications accommodate complex geometries in relative motion,

proving the superiority of the cut-cell method against other CFD approaches. More



22 K. D. Samouchos

specifically, they deal with the unsteady compressible or incompressible internal flow

in a moving valve, a scroll machine, a diaphragm pump, and a submersible pump.

Chapter 6 is concerned with the mathematical development of the continuous ad-

joint method for compressible and incompressible flows implemented to the cut-cell

and the ghost-cell method. Each term of the governing equations is separately dif-

ferentiated, computing the contributions to the formulation of the adjoint equation

and the corresponding boundary conditions and sensitivity derivatives. Moreover,

an investigation is carried out about the adjoint Riemann problem definition and

the discretization of the field adjoint equations. Subsequently, the unsteady variant

of the adjoint method is studied, and data compression techniques are used to deal

with the increased demand for memory resources.

Chapter 7 discusses the discrete adjoint formulation to the cut-cell method. There-

fore, a hand-differentiation process is presented for all terms of the steady and

unsteady viscous flow equations for both compressible and incompressible flows.

Moreover, no simplifications are introduced, giving rise to the exact discrete adjoint

expressions and the accurate computation of the objective’s gradient. Furthermore,

a comparison is made between the resulting discrete terms and the corresponding

discretization schemes proposed for the continuous adjoint equations. Particular em-

phasis is put on the proper differentiation of algorithms treating the appearance and

disappearance of mesh cells in applications involving moving geometries. Finally,

smoothing techniques of the resulting sensitivity derivatives are proposed.

Chapter 8 demonstrates the ability of the developed adjoint software to accurately

compute the objective’s gradient. The assessment of the adjoint software concerns

compressible or incompressible flows around stationary or moving geometries. The

computed sensitivity derivatives are compared with central FDs in each case, result-

ing in minor deviations. After confirming the accuracy of the computed derivatives,

a shape optimization is carried out each time, using the conjugate gradient method.

Prompted by this investigation, the physical meaning of the adjoint variables is

shortly discussed.

Chapter 9 implements gradient-based optimization assisted by the adjoint method

in real-world applications. The coordinates of the surface nodes constituting the

geometry under modification are the design variables of the optimization problem.

Thus, the high number of design variables suggests the adjoint method as the only

reasonable approach for gradient computation. The presented optimization cases



1.3. Thesis Outline 23

are concerned with the total pressure losses minimization in an S-duct, the lift max-

imization of a wing, the outlet tangential velocity minimization in a submersible

pump, and the back-flow minimization along with the volume flow rate maximiza-

tion of a diaphragm micropump. In the last multi-objective optimization, a hybrid

approach is used, which combines evolutionary and gradient-based methods. Ad-

ditionally, uncertainties are introduced to the design variables of this optimization

problem. Finally, contrary to the previous applications, the adjoint to the ghost-cell

method is used to optimize a compressor rotor.

The theoretical development of the flow or adjoint problem presented in the pre-

vious chapters is facilitated by 16 Appendices. In particular, Appendices A and B

complete the analysis of the mesh generation. Appendices C to I further describe

the theoretical background of the discretization used in the compressible and in-

compressible flow equations. Appendices J to L discuss details about the boundary

conditions accompanying the continuous adjoint PDEs and the schemes used for

discretizing the adjoint convection term. Appendices M and N present the SVD

and PGD methods, respectively, for data compression used in unsteady optimiza-

tion problems. Finally, Appendices O and P give details about the mathematical

formulation of the convection term of the discrete field adjoint equations.

Computations have been performed on the high-performance computational plat-

form “VELOS” of the PCOpt/NTUA Unit. Two DELL PowerEdge blade servers

were used for simulations carried out by the cut-cell software and its adjoint coun-

terpart. Each of them is provided with 48 double-threaded AMD EPYC 7401 pro-

cessors with 128 Gb RAM and 2 GHz clock speed. Communication between blades

employs the MPI protocol. In addition, a supplementary cluster of NVIDIA Tesla

K20 GPUs was used for the ghost-cell flow and adjoint software operation.



Chapter 2

The Cut-Cell Mesh Generation

The unique characteristic that distinguishes the cut-cell method from other CFD

approaches is the special structure of the mesh used for the flow simulation. This

chapter describes a rapid, robust, and automated 3D Cartesian mesh generation

method for stationary and moving solid bodies capable of supporting inviscid and

laminar flow solvers.

The mesh generator takes a triangulated surface as input and generates a volume

mesh through the repetitive subdivision of an initial cell which defines the domain

boundaries. The process is based on an octree data structure, which is presented in

section 2.2. Moreover, methods responsible for the mesh quality improvement and

the enhancement of the flow simulation’s accuracy are discussed in section 2.3. These

approaches consider the smooth transition between regions of different refinement

levels and the mesh adaptation in the vicinity of solid boundaries, shock waves, and

large eddies.

However, the tree-like data structure introduces several complications damaging the

flow solver’s efficiency. These are related to the detection of neighboring cells and

the computation of geometric quantities necessary for the flow simulation. Thus, a

fully unstructured approach is preferred, presented in section 2.5. Moreover, this

section studies the faces and nodes numbering as well as the mesh separation into

its fluid and solid parts.

24



25

The most challenging part of the mesh generator is cutting the Cartesian hexahedra

intersected by solid surfaces, producing polyhedral control volumes. A robust algo-

rithm is discussed in section 2.4, which handles any possible intersection, clipping

the hexahedra against the body’s surface, and creating complex cut-cell topologies.

Issues relating to roundoff errors resulted from the intersection computation are also

studied. The generated cut-cells can be polyhedra of any shape and size. Thus, small

cell fragments may appear next to much bigger cells, causing numerical instabilities

during the flow solution process. This problem is usually mentioned in the literature

as the “small cell problem”. A cell-merging approach is developed in section 2.6 to

address this problem by geometrically merging small cells with their neighbors.

The mesh partitioning has a major impact on the efficiency of the flow solver’s

parallel behavior. The partitioner shown in section 2.7 is developed explicitly for

Cartesian meshes taking advantage of their special structure. It is based on the

Hilbert space-filling curve [4] exploiting its essential properties, further explained in

the same section.

In applications concerning moving solid bodies, the refined mesh follows their mo-

tion employing local refinement and de-refinement operations. A strictly conser-

vative method is presented in section 2.8 to handle large geometry displacements

by enforcing a cell clustering algorithm. In particular, the sudden appearance or

disappearance of cells from the domain is successfully treated, ensuring the satisfac-

tion of the conservation laws during the unsteady flow simulation. Additionally, the

section focuses on schemes used to extrapolate the current flow field to the mesh of

the following time step.

Finally, considering that this thesis deals with gradient-based shape optimization

algorithms, mesh differentiation is necessary. Therefore, all geometric quantities

computed by the mesh generator should be differentiated w.r.t. the nodes describ-

ing the input surface. Section 2.9 provides the corresponding mathematical devel-

opment resulting in the appropriate formulas for the computation of the requested

derivatives.



26 K. D. Samouchos

2.1 The Cartesian Mesh Data Structure

A wide variety of Cartesian mesh generation methods has been proposed in the

literature, dating back to the 1970s [55]. The firstly appeared meshes of this kind

were uniform, and their use was limited to few academic problems. Then, the

Adaptive Mesh Refinement (AMR) [41] extended the Cartesian meshes’ ability to

handle practical applications by accurately representing the flow solution at a low

cost. Furthermore, this refining process through cell-splitting operations effectively

combined the computational efficiency offered by a Cartesian structured mesh with

the flexibility of the widely used unstructured meshes.

Before discussing the AMR in detail, it is essential to introduce the terminology

adopted from computer science for the commonly used tree data structures. The

tree is a collection of hierarchically structured nodes linked with one parent node

starting from an initial root node. Fig. 2.1 shows a simple tree, where each node

has at most two children. Moreover, a leaf is a node located at the bottom of the

tree having no children. Every other node is called internal. Finally, an octree (or

quadtree in 2D meshes) is a tree where each internal node has at most eight children

(or four children in 2D).

Figure 2.1: A tree data structure of 3 levels. The root, internal, and leaf nodes are

colored black, red, and blue, respectively.

Two main approaches based on the AMR have been developed in the literature.

The first approach uses a sequence of overlapped structured meshes at different

hierarchies or levels [39], [251]. The nested hierarchical nature of the mesh perfectly

matches the tree-like data structure, which assists the communication between the



2.1. The Cartesian Mesh Data Structure 27

regular Cartesian meshes represented by tree nodes. Although efficient solvers for

structured meshes can be applied to each sub-mesh, the lack of flexibility in the

sub-meshes definition may lead to regions covered with unnecessarily dense mesh,

wasting substantial computational resources.

The computational efficiency of the AMR method can be increased by employing

the second approach, which matches each tree node with a mesh cell, allowing better

control of the mesh resolution [343], [242], [68], [55]. However, the computation of

the connectivity between cells is a very time-consuming process, especially in big

meshes, because a significant part of the tree data structure must be traversed before

a neighbor can be found.

The development of the Fully Threaded Tree (FTT) [162] further reduced the mem-

ory overhead required by the second AMR method. This new data structure stores

its information in structures called octs. Each oct contains a pointer to the parent

cell, a pointer to each child cell, the parent cell’s refinement level, and its position in

the domain. Although FTT allows for more efficient access to the information stored

in the tree, a complete tree traversal starting from the root cell is still frequently

required.

A better version of the FTT data structure is the Cell-based Structured Adaptive

Mesh Refinement (CSAMR) data structure [144], which constitutes the basis for

developing the data structure used in this thesis. Its novelty was the introduction of

Cartesian-like indices, which identify each cell by mimicking the cells’ enumeration

in structured meshes. A triplet (or a pair in 2D) of indices is stored for each cell,

which gives all the needed information about its parent, children, neighbors, and

Cartesian coordinates, significantly reducing the memory usage. Therefore, the

traversal of a considerable part of the tree, required by the previous approaches,

becomes unnecessary.

Although the CSAMR reduces the cost of the mesh connectivity computation, the

repetitive access to neighboring cells through the tree structure during the flow

simulation still delays the solution process. Thus, this thesis proposes an alternative

method that combines the CSAMR’s flexibility with the advantages of a conventional

unstructured data structure, which considers the mesh as a collection of arbitrary

polyhedra. Hence, despite using an unstructured framework, the hexahedral shape

of most cells leads to a pretty compact data structure. The developed method

consists of two stages. Initially, it uses the CSAMR to efficiently generate the



28 K. D. Samouchos

Cartesian mesh, keeping the required memory as low as possible. Then, it transfers

the necessary data to a face-based data structure, similar to the one presented in

[51], where the connectivity is explicitly stored and easily accessed by the flow solver.

Sections 2.2 and 2.5 explain in detail each of the two stages, respectively.

2.2 The Octree Mesh Generation

This section presents the first part of the mesh generation process, which results

in a initial mesh version. Its assistance by the tree data structure is discussed in

subsection 2.2.1. Additionally, the mesh adaptation to the geometry’s surface is

studied in detail. Next, subsection 2.2.2 introduces the integer coordinates used for

quickly identifying each cell. Their properties, expressed by mathematical formulas,

are given as well. Furthermore, methods to detect the immersed geometry are

examined in subsection 2.2.3. The whole algorithm is presented in a pseudocode

format in subsection 2.2.4.

2.2.1 The Octree Data Structure

The input of the volume mesh generator is the geometry’s surface in the Standard

Tessellation Language (STL) format, typically provided by a Computer-Aided De-

sign (CAD) package. Moreover, the box-shaped domain is described by inserting its

length along each Cartesian direction (dx, dy, dz) and the coordinates of its centroid

(x0, y0, z0). The mesh generation begins with the definition of the root cell, which

coincides with the box itself. Then, the root cell is equally subdivided into 8 (or

4 in 2D meshes) children constituting the new generation of cells in the tree data

structure.

Subsequently, the cell splitting procedure repeatedly produces new generations of

cells extending the octree data structure. Each newborn cell is geometrically con-

tained within its parent’s boundaries and is placed below the parent cell in the tree

data structure. Therefore, whenever a cell is deemed appropriate for subdivision, a

new sub-branch is created below its position in the tree, and the mesh generation

process is driven through the new sub-branch, implying the partition criteria to the

newly created cells. Fig. 2.2a presents a 2D root cell split into four children, the

one of which is further subdivided into four offspring. The resulted tree is shown in



2.2. The Octree Mesh Generation 29

fig. 2.2b.

The splitting of each cell can be isotropic [51], [124] or anisotropic [67], [6]. Contrar-

ily to an isotropic division, the anisotropic refinement allows for different splitting

in each direction. The latter provides a reduced mesh size but sacrifices the sim-

plicity of the data structure supported by the Cartesian mesh nature, and thus it is

avoided.

(a)

(b)

Figure 2.2: (a) The root cell indexed 0 is subdivided into four children, namely 1,

2, 3, and 4. Then, cell 3 is further subdivided into cells 5, 6, 7, and 8. (b) The

process is depicted in the tree structure, where each node corresponds to one cell.

The nodes’ colors are explained in fig. 2.1.



30 K. D. Samouchos

Next, the refinement criteria are discussed. Initially, cells are subdivided until an

acceptable refinement level, defined by the user, is reached. The satisfaction of this

condition produces a uniform Cartesian mesh. Subsequently, the subdivision process

continues, triggered by either geometric or flow field requirements. Nevertheless,

only geometry-based adaptation criteria are used during the initial mesh generation

due to the absence of the flow solution. Mesh adaptation guided by local flow

phenomena will be discussed in section 2.3. So far, the mesh is adequately refined

in the wall’s proximity by subdividing cells cut by the solid boundary.

During the subdivision process, the maximum refinement level difference between

neighboring cells is limited to one. This restriction is imposed along the mesh gen-

eration process by splitting each cell adjacent to more than four (or two in 2D)

neighboring cells through a single face. Hence, the intersected cells’ division quickly

propagates through the mesh, affecting cells far from the immersed geometries, in-

creasing the mesh quality by smoothly varying its resolution from dense regions close

to the bodies to coarser areas in the far-field. Furthermore, this constraint accel-

erates the mesh connectivity computation avoiding the time-consuming traversal of

considerable parts of the octree structure.

The mesh refinement process terminates after a predefined limit is met. Two differ-

ent limits can be imposed, leading to a differently refined mesh. In the first case,

the user specifies the minimum allowed cell size, preventing the subdivision of cells

smaller in volume than the limit’s value. This condition provides an almost uniform

mesh resolution close to the wall, independent of the geometry’s structure. Alterna-

tively, cells are subdivided until the mesh resolution becomes similar to the adjacent

triangles’ size of the solid surface. This requirement is achieved by refining the mesh

until all cells intersected by the wall contain at most two surface nodes. Although

the mesh is usually independent of the surface mesh structure in all IBMs, defining

the local cell size by the surface resolution offers a direct and flexible way to control

mesh generation. In such a case, the surface discretization should be finer in high

curvature regions, which usually induce complex flow phenomena.

2.2.2 The Integer Coordinate System

A standard structured mesh indexing (i, j, k) is stored to identify each cell efficiently.

By definition, the triplet of indices determining the root cell is (1, 1, 1). The rest of

the cells are automatically labeled following the rule illustrated in fig. 2.3. Fig. 2.3a



2.2. The Octree Mesh Generation 31

depicts an arbitrary cell, identified by integer coordinates (i, j, k), split into eight

equally sized subcells. Colors are used to separate the two quartets occupying the

bottom and top half of the cell. The indices given to each subcell of the two quartets

are shown in figs. 2.3b and 2.3c.

(a)

(b)

(c)

Figure 2.3: (a) A Cartesian cell with integer coordinates (i, j, k) is subdivided into

8 children. Their integer coordinates are shown in (b) and (c) for the upper and

lower quartet, respectively.

Based on this rule, the children and the parent of each cell are easily computed as

(ic, jc, kc) = (2i + l1, 2j + l2, 2k + l3) ∀ l1, l2, l3 = 0, 1 (2.1)

and

(ip, jp, kp) =

(
int

[
i

2

]
, int

[
j

2

]
, int

[
k

2

])
(2.2)



32 K. D. Samouchos

where the function int[x] returns the integer part of x. Fig. 2.4 defines a local

numbering for the children of each cell, useful in later topics.

(a) (b)

Figure 2.4: Children local numbering for (a) bottom and (b) top cells of fig. 2.3.

Moreover, each generation of cells is identified by integer L, which shows the level

of refinement. Initially, the level of the root cell is zero representing the coarsest

possible level. The 8 cells of the next generation correspond to L = 1. Generally,

the level of an arbitrary cell is equal to the level of its parent increased by one and

is given in one of the three following equivalent alternatives

L = int [log2(i)] = int [log2(j)] = int [log2(k)] (2.3)

Finally, by using the stored index information, the dimensions and centroid of each

cell can explicitly be calculated as

(∆x,∆y,∆z) =
1

2L
(dx, dy, dz) (2.4)

and

xc = x0 −
3

2
dx +

(
i +

1

2

)
∆x

yc = y0 −
3

2
dy +

(
j +

1

2

)
∆y

zc = z0 −
3

2
dz +

(
k +

1

2

)
∆z

(2.5)

Even though the integer coordinates identify each cell successfully, introducing a



2.2. The Octree Mesh Generation 33

single integer that uniquely specifies each cell would occasionally be beneficial. Con-

sequently, the index ID is defined as

ID = 4L(k − 1) + 2L(j − 1) + (i− 1)− 6

7

(
8L − 1

)
(2.6)

The proof of the above equation is given in Appendix A. Although this quantity

is mentioned in the literature (e.g., in [144]), its exponential rise to extremely high

values makes it impractical in 3D cases. Finally, the computation of integer powers

of two in the preceding equations is implemented very efficiently by using the bitwise

left shift operator, available in most programming languages.

2.2.3 Detection of the Immersed Geometry

The mesh adaptation to the solid bodies’ surface requires the detection of the em-

bedded geometry. To this end, cells cut by the solid surface should be identified

employing a fast and robust tagging procedure based on the already developed tree

data structure. The process starts by finding all triangular geometry facets con-

tained to or intersected by the root cell. After its split, the same process is repeated

for each one of its eight children. As the mesh subdivision continues, newly created

cells inherit the triangle list of their parents. Thus, the list gets shorter after each

successive subdivision increasing the efficiency of the cut-cells detection procedure.

The conditions responsible for testing the inclusion or intersection of a triangle

by a Cartesian cell are checked remarkably often during the mesh generation and,

therefore, should be carefully chosen. At this point, some necessary definitions are

given. Firstly, the plane at which each face lies separates the 3D space into two

subspaces. Let the one containing the entire cell be called internal and the other

external. Moreover, the active area of a face is defined as the set of points satisfying

the following conditions. Firstly, they belong to the external subspace of the face,

and secondly, their projection to the face’s plane belongs to the face.

The algorithm’s structure consists of a number of consecutive geometric conditions

arranged in ascending order in terms of computational effort. Hence, each criterion

is checked only if its former is not satisfied. The conditions are:

1. If at least one triangle vertex is located inside the cell, return true.



34 K. D. Samouchos

2. If all triangle vertices are placed into the external subspace of any face, return

false.

3. If two triangle vertices are located in the active area of two opposite faces,

return true.

4. If the list of vertices resulting from the Sutherland–Hodgman algorithm, ex-

plained in section 2.4.1, is empty, return false. Else return true.

When the mesh generation ends, cells farthest down the hierarchy, called leaf cells,

belong to different refinement levels and satisfy all the aforementioned geometric

requirements. However, they do not constitute the final version of the mesh. Indeed,

extra adjustments are needed to prepare the mesh for the flow simulation process

because, until this step, the mesh connectivity is inaccessible by the flow solver,

cut-cells have not been constructed yet, and cells that are covered entirely by the

solid bodies are still part of the mesh. The following sections deal with these issues

explaining the next steps of the mesh generation.

2.2.4 Pseudocode of the Octree Generation

To sum up, given a list of all triangular surface facets, i.e., “surfaceTriangles”, the

data provided and stored in memory by the process presented in this section are:

1. List “cells”, which stores the integer coordinates for each cell belonging to the

octree data structure.

2. List “cellPosition” mapping the integer coordinates of each cell with the cell’s

position in list cells.

3. List “cellIsRefined”, which consists of a boolean variable for each cell that is

true only for leaf cells. Cells numbered by list cells are in correspondence with

those listed in “cellIsRefined”.

4. List “cellTriangles” containing the list’s “surfaceTriangles” position of tiangles

enclosed or intersected by each cut-cell.

Finally, Algorithm 1 presents the mesh generation process in a pseudocode form.



2.2. The Octree Mesh Generation 35

Algorithm 1: Tree Data Structure Mesh Refinement (1)

input : surfaceTriangles

output: cells, cellPosition, cellIsRefined, cellT riangles

1 Main Function meshGenerator()

// create data for root cell

2 i⃗← (1, 1, 1) // integer coordinates

3 cells[0]← i⃗

4 cellPosition[⃗i]← 0

5 cellIsRefined[0]← false

6 cellT riangles[0]← intersectionOrInclusion(surfaceTriangles)

// create tree data structure

7 refinement← true

8 Nmin ← 0

9 while refinement is true do

10 refinement← false

11 Nmax ← totalNumberOfCells()

12 foreach cell c ∈ [Nmin, Nmax) do

13 if cellMustSplit(c) then

14 splitCellAndNeighbours(c)

15 refinement← true

16 end

17 end

18 Nmin ← Nmax

19 end

20 return

The main function “meshGenerator” uses three functions, the purpose of which is

further explained. The first one, called “intersectionOrInclusion”, identifies the tri-

angles of the given list that are totally or partly located in the cell’s region. The used

criteria are presented in subsection 2.2.3. Moreover, function “cellMustSplit” decides

which cell is suitable for subdivision applying the already discussed user-defined cri-

teria. Finally, function “splitCellAndNeighbours” is presented in Algorithm 2 and

properly subdivides the given cell and its neighbors, ensuring that their difference

in refinement level is at most equal to one. Moreover, its recursive behavior, sup-

ported by many programming languages, significantly boosts the mesh generation



36 K. D. Samouchos

procedure.

Algorithm 2: Tree Data Structure Mesh Refinement (2)

1 Function splitCellAndNeighbours(c)

2 i⃗← cells[c]

3 foreach non-boundary face f of cell c do

4 i⃗n ← findNeighbor(⃗i, f) // add ±1 to one integer

coordinate

5 i⃗p ← findParentCell(⃗in) // use eq. 2.2

6 cp ← cellPosition[⃗ip]

7 if not cellIsRefined[cp] then neighbors← addToList(cp)

8 end

9 splitCell(c)

10 foreach member k of list neighbors do

11 cp ← neighbors[k]

12 splitCellAndNeighbours(cp) // recursion

13 end

14 return

15 Function splitCell(c)

16 i⃗← cells[c]

17 cellIsRefined[c]← true

18 N ← totalNumberOfCells()

19 foreach child k do

20 i⃗c ← findChildCell(⃗i, k) // use eq. 2.1; k from fig. 2.4

21 cells[N + k]← i⃗c
22 cellPosition[⃗ic]← N + k

23 cellIsRefined[N + k]← false

24 cellT riangles[N +k]← intersectionOrInclusion(cellTriangles[i])

25 end

26 return

The mesh generator’s speed depends on the size of the corresponding tree. For

example, the wall-clock time for the mesh generation around the ONERA M6 wing,

used for an inviscid flow simulation, is approximately 0.251̇06 leaf cells/min. In

contrast, the generation of meshes for internal aerodynamics is faster, exceeding the

2.51̇06 leaf cells/min. because a reduced variation in cell size is expected. Software’s



2.3. Mesh Smoothing and Flow Adaptation 37

efficiency is comparable with other Cartesian mesh generators found in literature,

e.g., 106 cells/min. in [6]. Finally, fig. 2.5 shows the resulted mesh around an isolated

airfoil. On its left, the shape of the airfoil and the given domain are presented, while

on its right the final mesh after the implementation of Algorithm 1 is depicted.

(a) (b)

Figure 2.5: (a) An isolated airfoil located within a squared computational box. (b)

The resulted mesh after the implementation of Algorithm 1.

2.3 Mesh Smoothing and Flow Adaptation

This section highlights two essential functionalities of regular body-conforming meth-

ods and proposes alternatives that mimic their behavior in the Cartesian mesh en-

vironment. Indeed, they increase the quality of the mesh by smoothing out the

refinement level variations between different mesh regions and applying flow-field

adaptation whenever considered necessary.

One major drawback of the mesh produced by Algorithm 1 is the abrupt cell’s

size growth with the distance from the wall, approximating the rate of a geometric

progression law with a scale factor of 8 (or 4 in 2D). However, these sharp coarsening

progressions adversely affect the convergence and accuracy of the flow solver, causing

significant errors, especially in the proximity of large flow gradients. In contrast,

conventional body-fitted mesh generators impose smooth cell size changes, especially

in the development of boundary layers. Therefore, a smoothing is performed in



38 K. D. Samouchos

the already generated mesh, reducing the differences between refined zones and

increasing its quality.

The developed smoother applies Algorithm 1 to all leaf cells, taking advantage of its

recursive nature to increase the procedure’s efficiency. However, the criterion for the

cell subdivision used in function “cellMustSplit” differs detecting cells larger than a

predefined volume limit Vl, which are consecutively split until the condition is met.

The criterion is applied to all non-cut-cells being closer to the geometry than a fixed

value r0. Moreover, volume Vl differs between cells, smoothly progressing from the

size of cut-cells Vc to the maximum allowed cell size Vmax according to the formula

Vl = fVmax + (1− f)Vc

where

f = −2

(
r

r0

)3

+ 3

(
r

r0

)2

, r < r0

Variables Vc and r represent each cell’s distance from the wall and the volume of the

closest cut-cell, respectively. However, the computation of their exact values is chal-

lenging. Several approaches have been proposed for the distance field computation

such as the solution of the eikonal equation [281] or other attempts of equivalently

high cost. Instead, a more efficient approximation method is preferred, explained in

the following steps.

Firstly, it is considered that the distance of each cut-cell centroid from the closest

wall is zero in the absence of more information at this stage of the mesh generation.

On the contrary, the distance between cells is easily computed and temporarily

stored in list “distanceFromNeighbors” applying eq. 2.5. Using this information,

cells in the first layer away from the wall detect and store the closest neighboring

cut-cell and the corresponding distance into lists “closestCutCells” and “distance-

FromWall”, respectively. Then, the process is repeated between cells of the first and

second layers. A cell of the second layer approximates its wall distance by adding its

distance from the closest neighbor of the first layer to the latter’s already computed

wall distance. The process gradually propagates to successive layers until all cells

are reached. Algorithm 3 depicts the above method in a pseudocode form.

Two lines of Algorithm 3 need further explanation. Firstly, line 4 creates a list

data structure with just one member deleting any previously stored information.

Secondly, line 8 uses dynamical memory allocation to add new members to the list.



2.3. Mesh Smoothing and Flow Adaptation 39

Finally, the body of function “minimumDistanceFromNeighboursFound” is shown

in Algorithm 4.

Algorithm 3: Mesh Smoother (1)

input : distanceFromNeighbors

output: distanceFromWall, closestCutCell

1 Main Function meshSmoother()

2 foreach intersected leaf cell c do

3 foreach neighbor cn of cell c do

4 list← createListWithOneMember(cn)

5 foreach member k of the list do

6 ck ← list[k]

7 if minimumDistanceFromNeighborsFound(ck) then

8 list← addToListAllCellNeighbors(ck)

9 end

10 end

11 end

12 end

13 return

Algorithm 4: Mesh Smoother (2)

1 Function minimumDistanceFromNeighboursFound(c)

2 cellDistanceIsRecomputed← false

3 foreach neighbor cn of cell c do

4 d← distanceFromWall[cn] + distanceFromNeighbours[c][cn]

5 if distanceFromWall[c] > d then

6 distanceFromWall[c]← d

7 closestCutCell[c]← closestCutCell[cn]

8 cellDistanceIsRecomputed← true

9 end

10 end

11 return cellDistanceIsRecomputed



40 K. D. Samouchos

Fig. 2.6 shows the modification caused by Algorithm 3 to the mesh of fig. 2.5b.

(a) (b)

Figure 2.6: (a) The mesh around an isolated airfoil originated from fig. 2.5b. (b)

Resulting mesh smoothened by Algorithms 1 and 3.

Another essential feature of mesh generators is their ability to perform local mesh

enrichment triggered by characteristics of the current flow solution. Consequently,

cells are added to regions where an increased resolution is required, improving the

simulation’s accuracy. Contrary to body-fitted meshes, solution-based refinement in

the proposed mesh generator is straightforward by taking advantage of the tree data

structure. In particular, after specifying a region of high interest, cells are further

subdivided by simply creating new sub-branches in the already developed tree.

Hence, in addition to geometric refinement, described in section 2.2, flow-field re-

finement is also possible by further exploiting Algorithm 1 supported with different

subdivision criteria. The new conditions employ flow sensors to detect specific phys-

ical flow phenomena and activate cell refinement. Mesh adaptation is performed

several times during the flow simulation. Each attempt takes place only after the

solution is sufficiently converged, providing a trustworthy approximation of the flow

solution. After the mesh enrichment is completed, the flow field is transferred to the

newly adapted mesh, and the solution process continues until convergence criterion

is met.

The sensors developed in this thesis detect shock waves and viscous wakes. Grid

adaptation along discontinuities is firstly discussed. A cell is flagged for refinement



2.3. Mesh Smoothing and Flow Adaptation 41

under the condition ∣∣∣∣ v⃗ · n⃗c − 1

∣∣∣∣ < ϵ

It detects cells placed in a zone of width ϵ close to the normal Mach number’s iso-

surface of unity computed along the perpendicular to the shock direction, expressed

by the unitary vector n⃗ [187]. This vector is parallel to the local pressure gradient,

which implies

n⃗ =
∇p
|∇p|

The notation of the above flow quantities is explained in chapter 3. Due to the

absence of the converged flow field, errors in the pressure gradient computation lead

to false shock wave detection. To overcome this issue, the filtering

|∇p| < ω|∇p|max (2.7)

is applied, where ω is a user-defined factor [348]. Additionally, in unsteady flows, a

correction is needed to detect the transient shock wave. Therefore, as proposed by

[187], an additional term is introduced to the aforementioned relation,∣∣∣∣1c 1

|∇p|
∂p

∂t
+

v⃗ · n⃗
c
− 1

∣∣∣∣ < ϵ

The detection of the viscous wake, characterized by the presence of flow recirculation,

is more complicated. Many sensors have been proposed, like the helicity method

[178], the λ2 criterion [143], or the vorticity indicator [83]. An overview of existing

detection methods is given in [146]. However, this study uses a simpler and more

efficient criterion, in terms of computational cost, based on the total pressure (pt)

drop in regions with high viscous effects [214]. It is expressed as

pt < ηpt∞

where pt∞ is a user-defined threshold usually chosen equal to the far-field total

pressure. Filter 2.7 is additionally used. Moreover, the reduction in η at each

successive adaptation improves the sensor’s behavior.



42 K. D. Samouchos

2.4 The Cut-Cell Generation

It has already been emphasized that the great advantage of the cut-cell method

is the automatic and fast Cartesian mesh generation. Indeed, the process devel-

oped in the previous sections is very efficient and independent of the geometry’s

complexity having also low memory requirements. However, the cost to pay for its

simplicity is the computation of the intersection between the solid surface and the

Cartesian background mesh, making the cut-cells construction the most crucial part

of the mesh generation. However, robust algorithms available in the literature deal

efficiently with this challenging task, simplifying and automating the intersection

procedure.

Initially, the appropriate terminology adopted in this thesis is introduced starting

from clarifying the term “Cartesian cell”. This cell is part of the background mesh

and has the shape of a rectangular cuboid. Whenever intersected by the solid

surface, its fluid part is occupied by the corresponding cut-cell. Fig. 2.10d illustrates

an arbitrary cut-cell consisting of Cartesian-directed faces and boundary cut-faces

colored blue and red, respectively. The first set’s faces are part of the Cartesian

black-colored background mesh and are called fluid faces. On the other hand, the

faces of the second class are part of the triangulated surface and are mentioned

as solid faces. Since both the Cartesian cell and the triangles are convex, their

intersection produces convex solid faces. In contrast, fluid faces may be convex or

concave.

Similarly, the nodes forming the cut-cell are split into two categories. Those belong-

ing to the initial hexahedral cell are denoted as fluid nodes and are highlighted in

fig. 2.10c. The rest are marked in blue in fig. 2.10a and are called solid nodes. The

latter are subdivided further into two categories, the external nodes, which are part

of at least one fluid face, and the internal nodes, which are located in the interior of

the Cartesian cell. Finally, the consecutive line segments linking external nodes of

the same external face comprise a fluid polyline. Fig. 2.10b depicts a cut-cell with

four fluid polylines plotted with blue.

In the developed mesh generation method, the already constructed background mesh

facilitates the cutting process. In particular, the tree data structure provides each

cut-cell with the geometry facets needed for the intersection computation. Moreover,

for simplicity reasons, each cut-cell is generated separately from the rest, paying the



2.4. The Cut-Cell Generation 43

extra cost of determining twice the shape of faces between neighboring cut-cells.

Hence, the developed algorithm focuses on the intersection of a single Cartesian

cell by an arbitrary triangulated surface. Its purpose is to construct the result-

ing polyhedron and compute all the necessary topological information for the flow

simulation.

Although the concept of such an intersection algorithm may be straightforward, its

implementation is delicate. In a general case, the topology of a cut-cell may become

very complex, containing dozens of nodes and faces. Thus, the proposition of a

robust algorithm considering all possible geometric cases, including the hexahedron’s

separation into more than one discrete finite volume, is of paramount importance.

The proposed method is partly based on techniques from the field of computer

graphics [226], and its consecutive steps are described in the following subsections.

Finally, the introduction of some assumptions considerably simplifies the cut-cell

construction. Under this point of view, a second algorithm has been developed,

which requires low computational and memory resources, presented in Appendix B.

2.4.1 The Construction of Solid Faces

The first step in the cut-cell construction algorithm is forming the solid faces by

cutting off the surface triangles’ parts that extend beyond the Cartesian cell’s vol-

ume. The cutting procedure implemented in this thesis is based upon the concept

of polygon clipping [6], which in 2D indicates the process where a square-shaped

Cartesian cell acts as a window, and its target is to compute the visible parts of a

polygon through it. Among various alternatives found in the literature [180], [340],

this section applies a robust and straightforward algorithm proposed by Sutherland

and Hodgman [296], which has the attractive property that the returning polygon

keeps the initial order of its vertices. Moreover, its only requirement is for the clip

window to be convex, making it suitable for trimming the solid triangular facets

protruding from the cell’s region.

The procedure will be firstly explained in 2D and then extended to the more com-

plicated 3D case for the reader’s convenience. The algorithm’s key feature is the

division of the clipping operation into a sequence of simpler problems by implement-

ing a loop over the edges of the rectangular cell, focusing each time on the relative

position between the polygon and the Cartesian edge. Fig. 2.7 illustrates the it-

erative process through four successive steps. During each step, the corresponding



44 K. D. Samouchos

Cartesian edge is extended infinitely in both directions, splitting the 2D space into

two areas, the visible and the invisible one. Then a nested loop sweeps over all

segments of the polygon. If a segment crosses the extended edge, the intersection’s

point will be added as a new vertex to the polygon, but if a segment lies entirely in

the invisible area, then it will be discarded. Therefore, a new polygon is created after

each iteration, which is then imported to the next one. Finally, once all edges have

been processed, the resulting polygon will entirely be placed inside the Cartesian

cell.

(a) (b)

(c) (d)

Figure 2.7: The geometric representation of the Sutherland and Hodgman polygon

clipping algorithm. Each edge of the black square is infinitely extended and the non

visible part of the triangle is cropped.



2.4. The Cut-Cell Generation 45

Algorithm 5 presents the generalization of the previously described procedure in 3D.

It is adjusted in the case where the viewing window is a rectangular cuboid. Function

“vertexIsVisible” checks the relative position of the polygon’s vertices against the

infinite extension of face f . Thus, fast spatial comparison operators are introduced

to increase the algorithm’s efficiency. These are based on outcode flags associated

with each vertex location with respect to the hexahedron. The outcodes’ definition

is inspired by the study of crystalline structures and is discussed in detail in [6].

However, these operations are prone to roundoff errors, especially for vertices placed

very close to the face’s plane. Therefore, the plane is slightly displaced towards the

invisible subspace to encompass the questionable vertices to the visible area making

the algorithm less dependent on the computers’s precision.

Algorithm 5: Sutherland-Hodgman Clipping Algorithm

input : polygon

output: polygon

// every enumeration starts from zero

1 foreach face f of the rectangular cuboid do

2 foreach vertex v1 of polygon do

3 N ← totalNumberOfVertices(polygon)

4 v2 = (v1 + 1) mod N // next vertex of v1
5 if vertexIsVisible(f , v1, polygon) then

6 polygonNew ← addVertexToPolygon(v1, polygon)

7 if not vertexIsVisible(f , v2, polygon) then

8 p← findIntersection(f , v1, v2, polygon)

9 polygonNew ← addVertexToPolygon(p)

10 end

11 else if vertexIsVisible(f , v2, polygon) then

12 p← findIntersection(f , v1, v2, polygon)

13 polygonNew ← addVertexToPolygon(p)

14 end

15 end

16 polygon← polygonNew

17 polygonNew ← clearMemory()

18 end



46 K. D. Samouchos

2.4.2 The Construction of Fluid Faces

The construction of the solid faces, shown in subsection 2.4.1, is only a part of

the cut-cell creation process. The reason is that although Algorithm 5 sufficiently

computes the vertices’ coordinates of each solid face in the correct order, it does not

give any other connectivity information. Hence, the target of the present subsection

is the computation of the resulting polyhedron’s topological features, which are

summarized as:

1. A vertex-coordinates mapping, which connects each vertex index with its spa-

tial coordinates avoiding the existence of coincident vertices

2. A face-vertices mapping, which describes the faces by their vertices in a coun-

terclockwise order

3. A face-cells mapping, which declares the cell in which each face belongs

The last mapping is useful only when a Cartesian cell is split into more than one

cut-cells.

The developed method initially focuses on solid faces. Firstly, it separates the inter-

nal and external nodes by comparing the coordinates of each solid node, computed

by Algorithm 5, with the coordinates of the hexahedron’s faces given by eqs. 2.4

and 2.5. A useful sideproduct of the comparison is identifying the face on which

each external node is laid. These belonging to more than one faces are located at

the edges of the Cartesian cell and flagged as edge nodes to be easily accessed in a

subsequent step of the algorithm.

Next step deals with the multiple storage of each solid node’s coordinates resulting

from the clipping algorithm’s implementation in each triangle separately. Thus,

each node is stored in memory as many times as the number of solid faces it belongs

to. The unification of internal nodes is straightforward because they are usually

numbered by the surface’s data structure on which they belong. On the other hand,

all external nodes arise from the intersection of a surface triangle with a Cartesian

cell, and their unique identification is not straightforward.

To this end, a loop over the solid faces is implemented, searching for edges placed

on the faces of the hexahedron. Each one of these edges represents a directional line



2.4. The Cut-Cell Generation 47

segment being part of a fluid polyline. Fig. 2.8a depicts a Cartesian face, which is

cut by an arbitrary solid surface. The intersection results in edges computed from

Algorithm 5 as parts of the solid faces and represented by red segments directed

from the empty to the filled cycle. Then, the edges are linked to construct the

fluid polylines for each face. The process successively connects the ending node of

each edge with the beginning of the next one by detecting coincident nodes, fig. 2.8b.

The comparison of nodes’ coordinates is prone to roundoff errors, and thus, avoided.

Instead, identical nodes are verified by checking the identification integer number

of the surface mesh’s edge to which each node belongs. The formation of each fluid

polyline starts and ends to a node located at an edge of the hexahedron. By the

end of this process, all double-stored external nodes have been discarded.

Until now, the solid faces have been formed, and all internal and external nodes are

uniquely stored in memory, resulting in the vertex-coordinates mapping. Next, the

fluid faces are formed. The first step is to put all nodes located at the boundary, i.e.,

the edge nodes, of each Cartesian face in the correct order forming a list starting

from a node that indicates the beginning of a fluid polyline. The order follows the

orientation of the face’s boundary which is defined by the right-hand rule such that

the normal to the face points always outwards. In the example of fig. 2.8c, the

boundary’s orientation is counterclockwise, represented by black arrows. Moreover,

the correct numbering of the edge nodes is also shown in this figure.

Next, the fluid nodes of each Cartesian face are detected. It is done by sweeping

over the members of the before-mentioned list and classifying the four corner nodes

by changing the status from solid (represented as a yellow dot) to fluid (represented

as a blue dot) each time a solid node is met. For example, in fig. 2.8c, the process

starts from node 1. If the next node in the list is one of the square’s four corners, it

will be labeled solid. Instead, node 2 is detected, changing the status from solid to

fluid which means that node 3 is a fluid node.

Then, the formation of fluid faces is possible by iterating over the edge nodes and

creating polygons by using the fluid nodes and fluid polylines. In fig. 2.8c, the

process starts from node 1. The red arrows guide the algorithm through the fluid

polyline to node 7. Then, the black arrow indicates the next node identified by index

8. The process continues till node 1 is met. The set of nodes defining this route

forms a fluid face of the cut-cell. The process continues with the next edge node

that is not included in the already defined fluid face, i.e., node 2. The two routes

are presented with blue in fig. 2.8d. Finally, the detected faces are blue-colored in



48 K. D. Samouchos

fig. 2.8e. By the end of this stage, the face-vertices mapping is completed for all

faces of the cut-cell.

(a) (b)

(c) (d)

(e)

Figure 2.8: Construction of fluid faces in a Cartesian face (black square). The

resulted intersection of the Cartesian face with a single triangle of the solid surface

is represented by a red line connecting an empty with a filled cycle and is illustrated

in (a). The process starts from (a) by linking consecutive red edges and ends to (e),

showing the resulting faces with blue.



2.4. The Cut-Cell Generation 49

Subsequently, the face-cells mapping is created when the intersection between the

Cartesian cell and the wall results in multiple cut-cells. Firstly, the solid nodes

constructing each cut-cell are identified. The process starts by considering that an

arbitrary solid node is part of the first cut-cell. Then, all the solid nodes connected

to it belong to the same cell. The process continues by marking the neighbors

of the just specified nodes until no other node can be added to this set. Next, a

non-identified arbitrary node is considered part of the second cell, and the nodes’

designation continues until all solid nodes are classified. Afterward, fluid nodes are

labeled, which is done by visiting fluid faces containing at least one solid node and

listing the rest of the nodes to the same cell. This method also corrects the label

of solid nodes which are part of the same cell without sharing the same face. After

classifying the solid and fluid nodes to the corresponding cells, each face is linked to

the cell in which its nodes belong.

2.4.3 Illustration of the Cut-Cell Construction

This subsection discusses some examples of the cut-cell procedure offering a practical

view of the methods explained in the previous subsections. Firstly, the intersection

between a cube and a triangulated surface, shown in fig. 2.9a, is studied. The

Sutherland–Hodgman algorithm is implemented for each red triangle to crop their

part located outside the black cube. Different stages of the process are presented

in fig. 2.9 describing the trimming of each triangle from each cube face. The fi-

nal surface shape, shown in fig. 2.9p, is the input of the algorithm explained in

subsection 2.4.2. Its four distinct steps are presented in fig. 2.10. The first step,

fig. 2.10a, discards the duplicated internal nodes, marked in blue, while the second

step, fig. 2.10b, generates the fluid polylines, highlighted with blue, resulting in a

uniform node numbering. The eight vertices of the cube are labeled as fluid or solid,

which are indicated with blue or yellow, respectively, in fig. 2.10c. Finally, the fluid

faces of the cut-cell are defined, which are colored in blue in fig. 2.10d. The resulted

polyhedron is appropriately shaded in fig. 2.11, giving a better perspective in its 3D

shape.

Subsequently, the developed method’s capabilities are tested on various demanding

cases, where the resulted cut-cells are considered invalid by most mesh generators.

This is because these cells usually cause complexities in their construction and diffi-

culties in ascertaining their neighbors. Therefore, most software avoid dealing with



50 K. D. Samouchos

these cases by applying local mesh refinement. However, this treatment increases

the flow simulation cost without guaranteeing the problem solution because degen-

erate cells may still exist even in very fine meshes. In contrast, the developed cutting

process successfully handles these odd cases, avoids any further mesh refinement,

and ensures the mesh generation’s robustness.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 2.9: The red triangulated surface is clipped into the black cube by imple-

menting the Sutherland–Hodgman algorithm in each triangle.



2.4. The Cut-Cell Generation 51

(a) (b)

(c) (d)

Figure 2.10: Four stages of the cut-cell construction starting from the result of the

clipping algorithm shown in fig. 2.9p.

Figure 2.11: The appropriately shaded cut-cell of fig. 2.10d.

The presented cases are collected in fig. 2.12. In the first case, fig. 2.12a, the em-

bedded boundary intersects the Cartesian cell at two regions. It usually happens

around solid boundaries of high curvature or when two bodies tend to touch each

other. On the other hand, fig. 2.12b shows a Cartesian cell divided into three sep-

arate cut-cells. This case usually appears at the trailing edge of a wing, where a

hexahedron splits into two polyhedral. The appearance of cut-cells like the one de-

picted in fig. 2.12c is also typical in the vicinity of the trailing edge. A 3D version of

a wedge penetrating the cube from the front face is illustrated in fig. 2.12d. In this



52 K. D. Samouchos

case, a hole is formed in the middle of the face, which may hinder the convergence

of the flow solver. Therefore, it is split into four convex sub-faces. Finally, fig. 2.12e

shows an exotic geometric construction, where a wedge passes through the entire

cell. It may happen close to sharp nibs.

(a) (b)

(c) (d)

(e)

Figure 2.12: Demanding cases successfully treated by the developed cut-cell gener-

ator. (a) A cell is cut into two different regions. (b) Three cut-cells are originated

from a single Cartesian cell. (c) A wedge cuts the left-hand side of a cube. (d) The

corner of a tetrahedron penetrates the front face of a cube. (e) A solid body passes

through the entire cube.



2.5. The Face-Based Mesh Data Structure 53

2.5 The Face-Based Mesh Data Structure

The developed tree data structure described in section 2.2 is convenient for the

mesh’s generation, but its practicality during the flow solution is questionable due

to its inefficient mesh connectivity computation. Therefore, another alternative is

adopted, which combines the flexibility of a face-based data structure, commonly

used in unstructured meshes, with the special nature of Cartesian meshes leading

to a highly compact data set.

This section presents the development of the face-based data structure starting from

the storage of the cell connectivity derived from the tree data structure. Addition-

ally, an algorithm computing the face-nodes and face-cells mapping considering all

cells of the mesh is proposed. This information enables the detection of cells entirely

covered by the solid geometries, which are discarded from the domain. Finally, a

collection of geometric quantities, necessary for the performance of the flow-solver

and the post-processor, is computed, taking advantage of the hexahedral shape of

most cells.

2.5.1 The Cell-to-Cell Connectivity

The discussion below presents the algorithm detecting each cell’s neighbors. Storing

the tree in the manner described in section 2.2 gives important information for

obtaining cell connectivity. Furthermore, provided that the difference in refinement

levels between neighbors is at most one, the searching algorithm avoids the time-

consuming traversing of the entire tree.

For the sake of clarity, the proposed algorithm is exemplified using a case study,

where the neighbors along the positive half x-axis of an arbitrary cell (i, j, k) are re-

quested. Firstly, the algorithm looks for a neighbor at the same refinement level, in-

dexed as (i+1, j, k). If the cell does not exist, its parent (int[(i+1)/2], int[j/2], int[k/2]),

eq. 2.2, is the requested neighbor. On the other hand, if cell (i+ 1, j, k) exists, “cell-

Position” computes the entry key to list “cellIsRefined”, computed by Algorithm

1, giving information about its refinement status. The cell is a neighbor only if not

further subdivided. Otherwise, four of its eight children are adjacent to cell (i, j, k),

which are identified by function “child”, presented below. The whole process is

carried out in Algorithm 6.



54 K. D. Samouchos

Algorithm 6: Neighbors Detector (1)

input : cell c, face f

output: neighbors cp (coarser level) or cn (same level) or cc (finer level)

1 Main Function neighborDetector(c, f)

// c: position of cell in list ‘‘cells’’

// f: index declaring one of the 6 faces of c, f ∈ [0, 5]

2 if face f is part of the mesh boundary then return Boundary Flag

3 i⃗← cells[c]

4 i⃗n ← neighbors(⃗i, f)

5 i⃗p ← findParentCell(⃗in) // use eq. 2.2

6 cp ← cellPosition[⃗ip]

7 if cellIsRefined[cp] is false then return cp

8 cn ← cellPosition[⃗in]

9 if cellIsRefined[cn] is false then return cn

10 fop ← oppositeFace[f ]

11 foreach face segment fs ∈ [0, 3] of f do

12 i⃗c ← child(⃗i, fop, fs)

13 cc[fs]← cellPosition[⃗ic]

14 end

15 return cc

Below, some details of Algorithm 6 are further explained. For this purpose, specific

names are given to each of the 6 faces of a Cartesian cell. The two faces normal

to the Cartesian x-axis are called Fwest and Feast, where the abscissa of the first

is smaller than that of the latter. Similarly, Fsouth is opposite to Fnorth along the

y-direction, and Fbottom is opposite to Ftop and both are normal to the z-axis.

Initially, the algorithm checks the existence of a neighboring cell in line 2. In other

words, it confirms that the cell indexed as (i, j, k) is not at the edge of the mesh

bounding box (B). These cells are detected by the following conditions,

i = imin ⇔ Fwest ∈ B, i = imax ⇔ Feast ∈ B,

j = jmin ⇔ Fsouth ∈ B, j = jmax ⇔ Fnorth ∈ B,

k = kmin ⇔ Fbottom ∈ B, k = kmax ⇔ Ftop ∈ B



2.5. The Face-Based Mesh Data Structure 55

where

imin = jmin = kmin = 2L

imax = jmax = kmax = 2L+1 − 1

Subsequently, Algorithm 7 presents the two functions used in lines 4 and 12.

Algorithm 7: Neighbors Detector (2)

1 Function neighbors(⃗i, f)

2 dim← faceDimension[f ]

3 dir ← faceDirection[f ]

4 i⃗n ← i⃗

5 in[dim]← in[dim] + dir

6 return in

7 Function child(⃗i, f , fs)

8 c← childrenInEveryDirection[f ][fs]

9 foreach dimension d ∈ [0, 2] do

10 m← childIdentification[c][d]

11 ic[d]← 2i[d] + m

12 end

13 return i⃗c

Finally, the used matrices are

faceDimension = [1 1 0 0 2 2]

faceDirection = [+1 − 1 + 1 − 1 + 1 − 1]

oppositeFace = [1 0 3 2 5 4]



56 K. D. Samouchos

and

childrenInEveryDirection =



2 3 6 7

0 1 4 5

3 1 7 5

2 0 6 4

6 7 4 5

2 3 0 1


, childIdentification =



0 0 0

1 0 0

0 1 0

1 1 0

0 0 1

1 0 1

0 1 1

1 1 1


(2.8)

The children’s numbering, used in matrix “childrenInEveryDirection”, follows the

instructions of fig. 2.4.

2.5.2 Numbering of Nodes and Faces

At this point of the mesh generation, the shape of each cell is well-defined, nodes and

faces determining each cell are locally numbered, and neighbors of each cell have

been stored. However, the global specification of each face through the face-cells

mapping is fundamental for the developed flow solver’s functionality. Moreover, the

global numbering of the mesh nodes is necessary for post-processing purposes. This

being said, the global numbering of faces and nodes is studied below. It concerns

the fluid and solid part of the mesh and is applied only to leaf cells. Considering the

high complexity of the developed algorithm, only its basic structure is explained for

the reader’s convenience.

For the sake of the following discussion, the concept of hanging nodes, edges, and

faces is introduced. They appear when a cell c is adjacent to four smaller in size

cells. The area between them, shown in brown in fig. 2.13a, is described by one or

four rectangular faces depending on the viewpoint of each side. The face belonging

to c, occupying the whole brown area, will be called hanging face. Moreover, the

term “hanging node” refers to the common node of the four neighboring cells lying

on the hanging face. An example of such a node is shown with blue in fig. 2.13b.

“Hanging edge” is called a segment on a hanging face defined by two nodes, one of

which is hanging. Fig. 2.13b illustrates the point by plotting four hanging edges in

red.



2.5. The Face-Based Mesh Data Structure 57

(a) (b)

Figure 2.13: (a) The large cell on the left is adjacent to four smaller cells on the

right side. The hanging face in brown belongs to the large cell. (b) A “hanging

node” (blue) and four “hanging edges” (red) are formed in the border between the

two sides.

The numbering process starts from the nodes. Firstly, the fluid nodes are numbered

by looping over the faces of each Cartesian cell and giving the same identification

number to coincident nodes of neighboring cells. Special treatment is needed for each

hanging node which is never part of both neighboring cells of different sizes. More-

over, a repetitive process is necessary for common nodes between non-neighboring

cells since the only available information concerns the direct neighbors. After that,

the external solid nodes are numbered. They always belong to the border between

two cut-cells. A typical neighborhood of cut-cells is shown in fig. 2.14. The iden-

tical nodes are detected without comparing their spatial coordinates, which could

affect the mesh generator’s robustness. Instead, each node placed in the interior of

a cell’s face is represented by the index number of the solid surface’s edge at which

it is located. On the other hand, two nodes placed at the same Cartesian edge are

compared by using the index number of the surface triangle, at which they belong.

Finally, numbering the solid nodes is straightforward since no comparison between

nodes is needed.

Thereafter, the numbering of faces follows, giving rise to the face-vertices and face-

cells mapping. Faces belonging to the bounding box of the mesh and the solid

faces are numbered in a straightforward manner. However, this is not the case for

internal faces, which are classified into three categories, depending on the nature

of the adjacent cells. In the first case, faces between Cartesian cells are always

rectangular and easily detected by using list “neighbors” created by Algorithm 6.

Moreover, each hanging face is rejected and replaced by the four equally sized faces



58 K. D. Samouchos

of the neighboring cells.

Figure 2.14: Neighborhood of 11 cut-cells of different shapes and refinement levels.

Solid nodes shape the upper side of the cells.

The second category refers to faces between cut and non-cut Cartesian cells. The

shape of these faces is still rectangular, but attention should be paid to cases where

the intersected Cartesian cell is separated into more than one cut-cells. Then the

face-cells mapping, presented in subsection 2.4.2, suggests in which of them the

specific face belongs. Finally, the last category contains all the intersected by the

solid surface faces. Such an example is shown in fig. 2.8e. The two neighboring

cut-cells share all faces plotted in blue, which are matched by comparing them

node-by-node. The process becomes more complicated when the adjacent Cartesian

cells are of different refinement levels. Then, hanging nodes and solid nodes located

along handing edges are only part of one of the two identical shapes, and thus,

should be excluded from the face comparison procedure.

2.5.3 Detection of fluid cells

The cells of a Cartesian mesh belong either into the fluid or the solid region. Depend-

ing on the application, the solid part may also participate in the simulation process.

For example, in applications involving Fluid-Structure Interaction (FSI), the body’s

deformation is computed by solving the appropriate PDEs in the solid part of the

mesh. In particular, the direct collaboration of the solid and fluid regions through

a sharp interface in a single fixed reference mesh makes the cut-cell method a valu-

able tool for simulating such phenomena. An extensive overview of IB approaches



2.5. The Face-Based Mesh Data Structure 59

used to solve FSI problems can be found in [289]. Another application that requires

the fluid-solid coupling is the numerical simulation of the Conjugate Heat Transfer

(CHT) problem which consists of the heat conduction on a solid body, the heat

convection in the surrounded fluid, and their thermal interaction. A solution to this

problem based on the cut-cell method is explained in [230].

Moreover, in unsteady phenomena around moving bodies, which are also studied in

the current thesis, the geometry covers and uncovers cells modifying their nature

from solid to fluid and vice versa. Therefore, the solid part of the mesh is still

necessary for the extrapolation of the flow field between successive time steps. A

detailed algorithm dealing with these cases is described in [277]. However, the

governing equations are solved only in the fluid part of the mesh, and thus, in this

thesis, the solid part is excluded from the domain, erasing the corresponding part

of the computer memory. The method described below aims to detect the fluid cells

by implying a moving-front method. Fig. 2.15 shows the method’s effect on a mesh

around an isolated airfoil.

(a) (b)

Figure 2.15: (a) The mesh around an isolated airfoil, shown also in fig. 2.6b, is

generated by Algorithm 3. (b) Resulting mesh after the rejection of its solid part.

A Cartesian cell is identified as solid when it lies completely inside the grid’s solid

region. The rest comprise the fluid cells classified as cut-cells and Cartesian cells

entirely included in the fluid region. The next process marks all fluid cells starting

from the geometry’s boundary and then propagating to the interior. Firstly, a

front of Cartesian cells, which lie in the fluid region and are neighbors of cut-cells,

is formulated. This is possible by looping over the fluid faces of each cut-cell and



60 K. D. Samouchos

checking their vertices. If a vertex is labeled “fluid” from the algorithm of subsection

2.4.3 and illustrated in fig. 2.10c, the neighboring Cartesian cell adjacent to the face

is added to the front. Then, the front is moving to its new position comprised of the

neighboring Cartesian cells of the first front cells. The process continues until the

front’s size becomes zero. Finally, Algorithm 8 presents the method in a pseudocode

form.

Algorithm 8: Detector of Cartesian Fluid Cells

input : mesh topology

output: fluid cells

// initialize front

1 front← createEmptyList()

2 foreach cut-cell c do

3 foreach face f of c do

4 if face has at least one fluid vertex then

5 cn ← neighborOfCell(c, f)

6 front← addCellToFront(cn)

7 flagFluidCell(cn)

8 end

9 end

10 end

// move front

11 while size of front is greater than zero do

12 frontNew ← createEmptyList()

13 foreach member k of the front do

14 c← front[k]

15 foreach neighbor cn of c do

16 if cn has not been already flagged then

17 frontNew ← addCellToFront(cn)

18 flagFluidCell(cn)

19 end

20 end

21 end

22 front← frontNew

23 end



2.5. The Face-Based Mesh Data Structure 61

2.5.4 Computation of the Finite Volume’s Geometric Quan-

tities

The computation of the finite volumes’ geometric quantities completes the creation

of the mesh data structure. The term “geometric quantities” encapsulates all entities

participating in the flow equations’ discretization scheme, which are the area Af ,

unit normal vector ˆ⃗nf , and centroid x⃗ f of each face f as well as the volume Ωc and

centroid x⃗ c of each cell c. Details about the used discretization method can be found

in chapter 3.

The decision to store the above information, instead of computing it whenever

needed, is based on a tradeoff between memory usage and computational efficiency.

The software’s ability to adjust its memory storage depending on each case is a

middle-ground option, followed in this thesis. For example, if the memory resources

are limited, the geometric quantities for uncut cells can be computed on the fly by

eqs. 2.4 and 2.5, without any significant damage to the software’s efficiency.

Subsequently, the computation of the aforementioned quantities for cut-cells, con-

sidered as arbitrary polyhedra, is presented. Firstly, the area and unit normal vector

of each face are computed. The vector’s direction is defined by the orbit of the face

vertices x⃗ i, i = 1, · · · , N . The components of ˆ⃗nf can be derived by the cross-product

of the unit tangent vectors along two arbitrary edges of the face boundary. Although

this method is efficient enough, the result is prone to roundoff errors, especially in

very small faces. Thus, an alternative is preferred, which divides the face into N

smaller triangles, each of them defined by an arbitrary point c⃗ on the plane of the

face and two successive vertices (i.e., x⃗ 1 and x⃗ 2). Then, vectors t⃗ 1 = x⃗ 1 − c⃗ and

t⃗ 2 = x⃗ 2 − c⃗, tangent to the face, are defined. The normal to the triangle’s plane is

n⃗ t =
1

2

(
t⃗ 1 × t⃗ 2

)
Its magnitude is equal to the triangle’s area At. Then, vector n⃗ f , defined as n⃗ f =
ˆ⃗nfAf , is computed as

n⃗ f =
N∑
t=1

n⃗ t

Finally, Af = |n⃗ f | and ˆ⃗nf = n⃗ f/Af . The result is independent of c⃗, but numerical

experiments show that the roundoff error is reduced by choosing the arithmetic mean

⃗̄x f of the face vertices.



62 K. D. Samouchos

The same geometric construction is used for the computation of x⃗ f , which is defined

as

x⃗ f =
1

Af

∫
Af

x⃗dA =
1

Af

N∑
t=1

Atx⃗
t (2.9)

where

x⃗ t =
1

At

∫
At

x⃗dA =
1

3

(
x⃗ 1 + x⃗ 2 + ⃗̄x f

)
is the centroid of each triangle, and At is its signed area given by

At = n⃗ t · ˆ⃗nf

It is worth saying that x⃗f always lies on f because the developed mesh generator

always provides planar faces.

Hereafter, the computation of the volume of each cut-cell is presented. Let F be the

number of faces of each cut-cell. The widely used formula

Ωc =
1

3

F∑
f=1

(
x⃗ f · n⃗ f

)
is avoided because it is prone to roundoff errors and consequently fails to compute

accurately the volume of very small cut-cells. On the contrary, pyramids are formed

by connecting all vertices of the cut-cell with an arbitrary point r⃗. The base of each

pyramid is the corresponding face f , and its apex is point r⃗. The summation of

the signed volume Ωf of all pyramids equals the total volume of the polyhedron.

Volume Ωf is

Ωf =
1

3
Afhf

where hf is the height of each pyramid and is computed as

hf =
(
x⃗ f − r⃗

)
· ˆ⃗nf

Point r⃗ is set equal to the arithmetic mean ⃗̄x c of all cell vertices. This choice is of

essential importance for the correct computation of the centroid in very small cut-

cells. Furthermore, the cell centroid is computed as the volume-weighted average of

the pyramid centroids,

x⃗ c =
1

Ωc

∫
Ωc

x⃗dΩ =
1

Ωc

F∑
f=1

Ωf x⃗
pf



2.6. Cell Merging 63

where x⃗ pf is the centroid of the pyramid corresponding to face f . The latter is

located on the line segment connecting x⃗ f and ⃗̄x c being at a distance from x⃗ f equal

to one-quarter of its length, which implies

x⃗ c =
3

4Ωc

F∑
f=1

Ωf

(
x⃗ f − ⃗̄x c

)
+ ⃗̄x c

Finally, it is clarified that whenever a Cartesian cell is divided into multiple distinct

cut-cells, the above geometric quantities are computed separately for each one of

them.

2.6 Cell Merging

This section deals with a common issue in cut-cell methods called the “small cell

problem”. Generally, the intersection between the surface of a solid body and the

Cartesian mesh creates cut-cells of arbitrary shapes and sizes. As a result, extremely

small cell fragments most probably coexist next to regularly sized cells. However,

small cut-cells adversely affect the flow solver’s efficiency. Especially in explicit

methods, the global time step’s maximum value is drastically limited due to sta-

bility criteria, significantly delaying the simulation’s wall-clock time [145]. On the

other hand, in implicit methods, small cells increase the stiffness of the discretized

equations’ system, leading to stability and convergence issues [165].

The previously described problem is common to all cut-cell-based immersed bound-

ary schemes and has been addressed using several approaches. Various researchers

[340], [59], [338] have proposed a conservative approach according to which small

cells can be eliminated by geometrically merging them with their neighbors. How-

ever, this process introduces additional complexities to the governing equations’

discretization since the computational stencil becomes different for the merged cell

and its neighbors. The problem is more profound when structured codes are used.

Moreover, choosing the appropriate neighbors for merging is non-trivial in 3D meshes

[218].

A way to overcome these issues is by applying the cell linking approach [165], where

a small cell is linked with an adjacent bigger master cell to form a master-slave pair.

This method retains both the master and the slave cell, avoiding their geometrical



64 K. D. Samouchos

unification. Thus, the governing equations are discretized separately for both cells,

applying the same procedure followed for the rest cells. Another method, which also

avoids the topological changes on the mesh, is the cell mixing procedure [132]. Ac-

cording to that, fluid portion of a target cell is transferred to small cells maintaining

the conservation of the flow equations. Finally, some other mixed procedures can

be found in [124], [54].

In this thesis, a cell merging approach is presented based on [145] that circumvents

the problems mentioned above. According to this approach, each small cell is ge-

ometrically merged with a bigger neighbor creating a hyper-cell, which substitutes

both the small and bigger cells in the mesh data structure. Therefore, a new cen-

troid and volume are computed and the list of neighbors is updated for the new cell

and all its neighbors. Finally, nodes, faces, and cells of the mesh are re-numbered.

Since these changes are based on the already developed data structure, the new

modifications are implemented with a negligible computational cost. The developed

method is exemplified in fig. 2.16.

The great advantage of this process is that the governing equations’ spatial dis-

cretization remains unchanged throughout all mesh cells. Consequently, the flow

solver does not treat the new merged cells differently, simplifying the software’s

structure. More specifically, the flow variables are stored at the merged cut-cell

centroid, avoiding small cells’ participation in the discretization scheme and, thus,

preventing convergence issues they cause. Finally, although the proposed approach

is more complicated, it is more natural in the sense that it preserves the conservative

nature of the flow equations and avoids any artificial interference to the discretiza-

tion scheme.

The algorithm responsible for the cell merging is then presented. The first step

implements the definition of a “small cell”, adopted in this thesis, to tag the proper

cells for merging. A cut-cell is considered small when attached to a cell with a

volume at least 20 times bigger. Then, a neighboring cell is chosen to be merged

with each tagged cell. The criteria used to determine the proper neighbor aim to

avoid creating stretched merged cells that may harm the flow simulation. Moreover,

the algorithm is flexible enough to allow more than two cells to form a hyper-cell,

which is usually needed in regions where the curvature of the wall is considerably

high. Fig. 2.17 illustrates such a case.

The next step categorizes the tagged small cells into different zones. This is necessary



2.6. Cell Merging 65

because different merging criteria are implemented into different zones. Also, it has

been observed that the treatment of small cells by zone results in a better quality

mesh. In the first zone belong all small cells, which have at least one regular-sized

(non-small) neighbor. The second zone contains the small cells which are attached

to cells of the first zone. The next zones are formed following the same rule. The

merging process starts from the cells of the first zone. Then, each of them is merged

by discarding the largest face that connects it with a regular-sized neighbor. Next,

the cells of the second zone are merged with the neighboring regular-sized or already

merged cell of the smallest total volume. The process continues with the rest zones

by using the volume criterion until all small cells disappear.

Figure 2.16: Two small cells are merged with their regular-sized neighbors, creating

two new colored cells. A blue arrow starts from each small cell showing the regular-

sized cell which is chosen for merging.

Figure 2.17: Three small cells are merged with a bigger one, creating a new cell

shadowed with gray. A blue arrow starts from each small cell showing the chosen

neighbor for merging.



66 K. D. Samouchos

2.7 Mesh Partitioning

The flow simulation of real-life applications requires the development of a flow solver

adjusted in a parallel programming environment. This work implements a parallel

non-shared memory programming method based on the Message Passing Interface

(MPI). The multi-block decomposition of the domain is a prerequisite for the im-

plementation of this strategy. The mesh-partitioning can be obtained in different

ways. One option is to apply a commercial software package like METIS [158] or

SCOTCH [58]. However, an attractive alternative arises from exploiting the nature

of Cartesian meshes. This thesis develops a partitioner based on the Space-Filling

Curve (SFC) concept [22], widely employed among various Cartesian methods [51].

The family of space-filling curves has been developed as a mapping method rather

than a partitioning technique. The curves are characterized by their ability to pass

through every point of a multi-dimensional space, hence the name “space-filling”.

Peano first defined the concept of these curves in 1890 [241]. Since then, numerous

types have been created (i.e., Hilvert [128] or Morton [217] curves) and applied in dif-

ferent fields, including mathematics [50], computational physics [271], geographical

information systems [3], image processing [293], databases [45], algebraic multigrid

[115], and mesh generation [30]. The developed partitioner presented in this sub-

section considers the Hilbert SFC approach due to the unique properties it offers.

Fig. 2.18b shows the curve visiting each cell of the 4×4 block. A comparative study

of various partitioners using different SFCs can be found in [7].

There are three essential properties associated with the Hilbert SFC making it at-

tractive as a mesh partitioner [246],[4], namely,

1. Mapping: it provides a unique mapping from the 2D or 3D space to a 1D

space.

2. Locality: two cells adjacent on the curve remain neighbors in the 2D or 3D

mesh.

3. Compactness: it requires only local information (cell’s integer coordinates) for

the mapping construction, disregarding the connectivity of the mesh.

Once the curve has passed through each Cartesian cell, the first two properties allow

for a fast and straightforward mesh decomposition. The only operation needed is



2.7. Mesh Partitioning 67

to divide the curve into equal segments and map the corresponding mesh domains

to each processor. Subsequently, an example of a mesh of 10K cells is given, which

should be decomposed into four processors. Firstly, the Hilbert SFC renumbers all

cells giving each of them a unique ID. Then, cells with ID smaller or equal to 2500

belong to the first processor, cells with ID between 2501 and 5000 belong to the

second one, and so on.

One advantage of this approach is that once the mapping from the SFC is computed

and stored, the mesh can be repartitioned into any number of processors without

paying almost any extra computational cost. This practice is very beneficial when

a simulation should be restarted on a different number of processors. Alternatively,

extra flexibility is given to users of a time-sharing workstation cluster environment,

where the number of available processors may not be known a priori.

Moreover, locality ensures that the divided mesh domains are simply connected

spaces. In other words, each domain consists of one piece without holes passing

through it. This property reduces the computational cost caused by interprocessor

communications. In fact, the quality of the mesh decomposition resulted from the

SFC curves is quite competitive compared to other popular partitioners [246]. Fur-

thermore, close distant cells are most likely to preserve their locality in the curve’s

access pattern. Thus, the discretization of the flow equations based on the pre-

sented renumbering results in a linear system with more nonzero elements close to

the matrix diagonal. Overall, the reordering improves the conditioning of the matrix

facilitating the system’s solution process and reducing the simulation’s wall clock

time [274]. Finally, compactness is also important because it supports the parallel

construction of the curve, avoiding the frequent communication between processors.

The Hilbert SFC is defined recursively in self-similar levels. Each subsequent level

adds segments to the previous level’s curve filling more of the space. Due to the

special nature of this curve, the partitioning is applied to the Cartesian mesh before

the removal of its solid part. The curve is constructed in parallel with the mesh

generation procedure based on the tree data structure explained in section 2.2.

The curve passes through all cells of the mesh, constructed at each level, using

information from the curve’s shape of the previous level. In the first level, the mesh

consists of only one cell, and thus the curve degenerates to a point. Fig. 2.18a

shows the Hilbert curve in the mesh of the second level forming the characteristic

’U’ shape. This curve is called primitive and represents the simplest Hilbert curve

[147]. It starts from the bottom left corner of the square and ends at the bottom



68 K. D. Samouchos

right corner. Different orientations of the ’U’ shape lead to four in total undirected

primitive curves in 2D. Each of them can be traversed in two directions, defining

eight primitive curves.

Fig. 2.18b presents the curve at the next level, which has been enriched exclusively

by primitive curves. At each consecutive level, the curve is formed by appropriately

connecting multiple primitive curves, figs. 2.18c and 2.18d. However, in an adapted

Cartesian mesh, the curve is not entirely shaped. Fig. 2.18e demonstrates a non-

uniform mesh around an airfoil and the corresponding Hilbert SFC. The subdivision

of the curve into four equivalent parts leads to the mesh decomposition into four

regions colored differently in fig. 2.18f.

(a) (b) (c)

(d) (e) (f)

Figure 2.18: (a-e) Different levels during the mesh generation process around an

airfoil. At each level, the Hilbert SFC (blue line) visits every Cartesian cell. Then,

it is used to decompose the final mesh into four parts shown in (f) with different

colors.



2.7. Mesh Partitioning 69

The extension of the Hilbert SFC in 3D is possible by defining new primitive curves.

The 3D curve follows the same basic construction rules, but its shape is more com-

plicated, allowing the curve to turn into multiple directions to pass through each cell

of a 3D mesh. An example of a curve in a 4× 4× 4 block is shown in fig. 2.19. The

definition of the primitive curves is more sophisticated than in the 2D case, leading

to 48 directed primitive curves embedded inside a 2 × 2 × 2 block. Moreover, the

3D primitive curves are not uniquely defined, allowing different Hilbert curves to

occupy a given mesh. A complete discussion about the different curves of the Hilbert

family is presented in [126]. A comparison of partitioners in terms of efficiency is

demonstrated as well.

Figure 2.19: An example of a 3D Hilbert SFC passing through all cells of a 4×4×4

mesh.

Subsequently, the shape of the 2D primitive curves is defined using the children’s

numbering shown in fig. 2.4. Each primitive curve visits the four cells of a 2 × 2

block in a different order. For example, the ’U’ curve, shown in fig. 2.18a, follows the

sequence 0, 2, 3, 1, where each number corresponds to a child cell of the block. The

following matrix, called “PrimitiveCurves”, contains the characteristic sequence of

each primitive curve in each of its 8 rows

PrimitiveCurves =


0 3 2 1 1 2 0 3

2 1 3 0 3 0 1 2

3 0 1 2 2 1 3 0

1 2 0 3 0 3 2 1


T

The row number names each curve starting from 0, and thus the ‘0’ curve is the one



70 K. D. Samouchos

shown in fig. 2.18a.

The curve of the next level emerges by substituting each of the 4 cells with a new

2 × 2 block traversed by a primitive curve [184]. Therefore, a recipe is needed

to determine which primitive curve replaces each cell. For example, in curve 0,

primitive curves 6, 0, 0, and 7 replace children 0, 1, 2, and 3, leading to the curve

of fig. 2.18b. Equivalently, the rest primitive curves from 1 to 7 correspond to

a different sequence of 4 numbers. Matrix “CurveReplacement” contains such a

sequence in each of its 8 rows.

CurveReplacement =


6 7 5 4 3 2 0 1

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

7 6 4 5 2 3 1 0


T

The corresponding matrices “PrimitiveCurves” (PC) and “CurveReplacement” (CR)
for the 3D Hilbert SFC are

PC =



0 5 1 4 6 3 2 7 4 2 0 6 1 7 3 5 0 3 2 1 5 6 4 7 · · ·
2 7 3 6 4 1 0 5 5 3 1 7 0 6 2 4 4 7 6 5 1 2 0 3

4 1 0 5 2 7 3 6 0 6 2 4 5 3 1 7 1 2 0 3 4 7 6 5 · · ·
6 3 2 7 0 5 1 4 1 7 3 5 4 2 0 6 5 6 4 7 0 3 2 1

5 0 4 1 3 6 7 2 2 4 6 0 7 1 5 3 3 0 1 2 6 5 7 4 · · ·
7 2 6 3 1 4 5 0 3 5 7 1 6 0 4 2 7 4 5 6 2 1 3 0

1 4 5 0 7 2 6 3 6 0 4 2 3 5 7 1 2 1 3 0 7 4 5 6 · · ·
3 6 7 2 5 0 4 1 7 1 5 3 2 4 6 0 6 5 7 4 3 0 1 2

3 6 7 2 5 0 4 1 7 1 5 3 2 4 6 0 6 5 7 4 3 0 1 2 · · ·
1 4 5 0 7 2 6 3 6 0 4 2 3 5 7 1 2 1 3 0 7 4 5 6

7 2 6 3 1 4 5 0 3 5 7 1 6 0 4 2 7 4 5 6 2 1 3 0 · · ·
5 0 4 1 3 6 7 2 2 4 6 0 7 1 5 3 3 0 1 2 6 5 7 4

6 3 2 7 0 5 1 4 1 7 3 5 4 2 0 6 5 6 4 7 0 3 2 1 · · ·
4 1 0 5 2 7 3 6 0 6 2 4 5 3 1 7 1 2 0 3 4 7 6 5

2 7 3 6 4 1 0 5 5 3 1 7 0 6 2 4 4 7 6 5 1 2 0 3 · · ·
0 5 1 4 6 3 2 7 4 2 0 6 1 7 3 5 0 3 2 1 5 6 4 7



T

CR =



46 43 34 39 42 47 38 35 40 45 30 27 44 41 26 31 36 33 24 29 32 37 28 25 · · ·
18 23 14 11 22 19 10 15 20 17 2 7 16 21 6 3 8 13 4 1 12 9 0 5

36 32 44 40 37 33 45 41 28 24 46 42 29 25 47 43 30 26 38 34 31 27 39 35 · · ·
9 13 17 21 8 12 16 20 1 5 19 23 0 4 18 22 3 7 11 15 2 6 10 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 · · ·
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

11 14 18 23 10 15 19 22 2 7 17 20 3 6 16 21 1 4 8 13 0 5 9 12 · · ·
39 34 46 43 38 35 47 42 30 27 45 40 31 26 44 41 29 24 36 33 28 25 37 32

15 10 22 19 14 11 23 18 6 3 21 16 7 2 20 17 5 0 12 9 4 1 13 8 · · ·
35 38 42 47 34 39 43 46 26 31 41 44 27 30 40 45 25 28 32 37 24 29 33 36

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 · · ·
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

33 37 41 45 32 36 40 44 25 29 43 47 24 28 42 46 27 31 35 39 26 30 34 38 · · ·
12 8 20 16 13 9 21 17 4 0 22 18 5 1 23 19 6 2 14 10 7 3 15 11

42 47 38 35 46 43 34 39 44 41 26 31 40 45 30 27 32 37 28 25 36 33 24 29 · · ·
22 19 10 15 18 23 14 11 16 21 6 3 20 17 2 7 12 9 0 5 8 13 4 1



T

where the dots indicate the continuation of the row to the next line. Algorithm

9 maps each cell c to its new identification number represented by index ch such

that c=hilbertCurve[ch], where hilbertCurve stores the new numbering of cells. A

similar approach is discussed in [147].



2.7. Mesh Partitioning 71

Algorithm 9: Hilbert Curve Generator (1)

input : mesh topology

output: hilbertCurve

1 Main Function createHilbertCurve()

// PCI: primitive curve index

2 c← 0

3 PCI ← 0 // it can be any number between 0 and 7

4 ch ← 0

5 createNextLevelOfHilbertCurve(c, PCI, ch)

6 return

Function “createNextLevelOfHilbertCurve” is presented in Algorithm 10.

Algorithm 10: Hilbert Curve Generator (2)

1 Function createNextLevelOfHilbertCurve(c, PCI, ch)

2 if not cellIsRefined[c] then

3 hilbertCurve[ch]← c

4 ch ← ch + 1

5 return

6 end

7 i⃗← cells[c]

8 foreach child k do

// k ∈ [0, 7] or k ∈ [0, 3] for 2D or 3D, respectively

9 j ← PrimitiveCurves[PCI][k]

10 PCIc ← CurveReplacement[PCI][k]

11 foreach dimension d ∈ [0, 2] or d ∈ [0, 1] do

12 m← childIdentification[j][d]

13 ic[d]← 2i[d] + m

14 end

15 cc ← cellPosition[⃗ic]

16 createNextLevelOfHilbertCurve(cc, PCIc, ch) // recursion

17 end

18 return

Matrices cells, cellPosition, and cellIsRefined used above are defined in subsection

2.2.4. Finally, matrix childIdentification is given by eq. 2.8.



72 K. D. Samouchos

2.8 Mesh with Moving Boundaries

This section deals with moving impermeable boundaries within a fixed Cartesian

mesh. The prescribed motion of a solid body, immersed in a fixed Cartesian mesh,

causes extra complexities, absent from the mesh generation process around static

geometries demonstrated in the previous sections. The presented method facilitates

the flow solver maintaining the conservation of the flow even for large boundary

displacements and retaining its efficiency and robustness.

At each time step, the geometry changes its position, and the mesh is re-adapted

to the updated solid wall keeping track of its motion. Thus, regions close to the

geometry’s previous position are coarsened, and cells in the vicinity of the displaced

boundary are split anew, increasing the flow simulation’s accuracy. A method for

the field’s extrapolation at each time step to the subsequent mesh is presented in

subsection 2.8.1. Although the status of most cells remains unchanged over a time

step, the cells within the region swept by the moving boundary modify their shape

and nature. In particular, the displaced fluid-solid interface may cover fluid cells

changing their nature from fluid to solid. These solidified cells, called covered cells,

disappear from the domain and are no longer used during the flow simulation. In

contrast, the geometry’s motion can reveal solid cells, called uncovered cells, which

suddenly appear as newborn cells in the fluid part of the mesh.

These transitions cause abrupt modifications in the governing equations’ discretiza-

tion, which act like spurious sources or sinks, generating artificial oscillations travel-

ing throughout the flow field and deteriorating the flow solution. The cause of these

abnormalities has been studied extensively by numerous researchers. For exam-

ple, according to [279], unphysical pressure oscillations are induced by violating the

geometric conservation law due to the cells’ sudden appearance or disappearance.

Moreover, [189] mentions that the abrupt change in the numerical scheme’s stencil

may also cause such oscillations. Finally, the influence of the time step’s size and the

mesh width on the oscillations’ generation has been investigated by [137]. Therefore,

additional modifications are required to the numerical scheme to eliminate the trun-

cation error and maintain strict conservation. Existing approaches involve merging

newborn cells with their neighbors [340], use ghost-cells to provide continuation in

time to the conservative variables [339], or implement Lagrangian interpolation to

estimate the velocities of the uncovered cells [344]. This thesis mimics the merging

technique and improves it by developing a cell linking method, described in subsec-



2.8. Mesh with Moving Boundaries 73

tions 2.8.2 and 2.8.3, ensuring flow conservation without restricting the maximum

displacement of the immersed geometry at each time step.

2.8.1 Mapping Between Subsequent Meshes

The discussion starts with the study of the continuous mesh adaptation to the mov-

ing boundary. Fig. 2.20 shows an airfoil performing an upward translational motion

followed by the corresponding adapted mesh. The mesh generation at each time step

can be initialized by the mesh of the previous time instant and then readjust the

final mesh performing the appropriate coarsening and refining operations. However,

generating a mesh from scratch is preferred because it simplifies the corresponding

algorithm without damaging its efficiency. Indeed, both strategies were developed

and compared without noticing any significant difference in their efficiency.

(a) (b)

Figure 2.20: An airfoil performs a translational motion. The mesh is dynamically

adapted to the solid boundary (red) at each time step.

The mapping between two successive meshes supports the flow solver with the nec-

essary time history for each cell. In general, two successive meshes do not have

a cell-to-cell match, and 3D interpolation of the flow field is required. However,

finding interpolants by searching over all cells of both meshes is very expensive and

impractical. Nevertheless, the tree data structure, presented in section 2.2, allows

for an efficient way to detect the cells of the new mesh (e.g., B) contained in each

cell of the old mesh (e.g., A) and the other way around. Fig. 2.21 shows a cell

of A mapped onto various cells of B belonging to different refinement levels. The

left-right arrow represents the opposite case, where a group of cells corresponds to



74 K. D. Samouchos

a larger one. The developed algorithm starts from the root cell in both meshes and

visits all tree levels cell-by-cell until a leaf cell appears, e.g., in A. If its counterpart

in tree B is further subdivided, the algorithm traverses the rest of tree B, searching

for its offspring leaf cells, which are included by definition in the cell of A. Fig. 2.22

proves that both cases represented by the left-right arrow in fig. 2.21 can be present

concurrently. Blue arrows show the mapping between the black and the red mesh.

Finally, section 3.3 presents the mathematical formulation for transferring the flow

variables to the new mesh.

(a) (b)

Figure 2.21: Two meshes corresponding to successive time steps are shown. The

cell on the left is mapped onto several smaller cells on the right. Inversely, various

cells on the right are mapped onto only one cell on the left.

(a) (b) (c)

Figure 2.22: (a, b) Two meshes at successive time steps are presented in different

colors (black, red). The bold horizontal line indicates the fluid-solid interface. (c)

Blue arrows depict the mapping between the two meshes plotted on top of each

other.



2.8. Mesh with Moving Boundaries 75

2.8.2 Covered and Uncovered Cells

Firstly, the treatment of covered cells by the solid geometry is discussed. Fig. 2.23c

shows a cluster of two cells, the lower of which becomes solid due to the boundary’s

upward motion. The loss of conservative variables stored in this cell is avoided

by merging it with its neighbor before the surface displacement. Figs. 2.23b and

2.23a represent the past and present states of the merged fluid cell. Consequently,

although the cut-cell finally disappears from the fluid domain, its contribution to

the conserved variables is transferred into its neighbor.

However, the cell merging technique may lead to very complicated structures, espe-

cially in large surface displacements. Thus, a virtual linking between the brown cell

of fig. 2.23c and the gray cell of fig. 2.23a is preferred, avoiding the formulation of the

merged cell in fig. 2.23b. Consequently, the linking method corrects the flow vari-

ables, which are stored in the gray cell defining its time history. A similar strategy

is shown in [277], where the numerical error is redistributed from the disappeared

cut-cell to the surrounding cells.

(a) (b) (c)

Figure 2.23: From left to right, the boundary moves downwards and reveals a new-

born cell. In the reversed order, a fluid cell is covered by the solid body. Colors

correspond to the mesh’ fluid part and indicate the proper cell merging.

On the other hand, following the subfigures from subfig. 2.23a to subfig. 2.23c,

the fluid-solid interface moves downwards, uncovering the lower cell. Such cells

emerge into the fluid with no flow solution history, and thus their time integration

is meaningless. This issue is resolved by temporarily linking the newborn cells with



76 K. D. Samouchos

an adequately chosen neighbor in a similar manner to the solidification approach.

Such corrections ensure that all newborn cells are initialized with consistent flow

values at the cost of a more complex algorithm and implementation. The following

subsection presents an algorithm that, under specific criteria, determines the linking

between cells.

2.8.3 Cell Linking

The correct linking between cells is far from trivial due to various geometric con-

ditions needed to be satisfied. Firstly, each cluster of connected cells should define

a simply connected space. Secondly, neighboring clusters of linked cells that differ

much in volume shall be avoided because they damage the robustness of the flow

solver. Finally, it is recommended to formulate linked cells in the direction of the

surface velocity vector. This practice is consistent with the concept of the grid

velocity used in body-fitted meshes.

Algorithm 11 determines the correct cell linking, accomplishing all the aforemen-

tioned requirements. Its input is the data structure of two successive meshes, A and

B. If A stands for the old mesh and B for the new one, the developed method han-

dles covered cells linking each of them with a fluid neighbor, both located in B. On

the other hand, the algorithm deals with uncovered cells if A and B correspond to

the new and old mesh, respectively. For the sake of brevity, the subsequent analysis

refers only to the cells’ solidifications.

The algorithm’s first step is implemented by function “disappearedCell” shown in

Algorithm 12, which detects disappeared cells from the domain of B. Then an

iteration over these cells is carried out, looking over the proper linking among their

first neighbors. Only fluid neighbors cn in a requested direction are allowed to be

linked with each disappeared cell c. At this point, angle ϕ is introduced to determine

this direction. It is defined as the angle between the vector connecting the centroids

of c and cn and a vector defined as the arithmetic mean of velocity vectors stored in

the solid faces of c. Then, the proper neighbor for linking is the one that forms the

smallest angle ϕ, which should also be less than 90◦ degrees (condition in line 15 of

Algorithm 12). Function “connectFirstCategoryCells” in Algorithm 12 is responsible

for these computations.

The necessary velocity on each face centroid (x⃗ f ) is computed anew at each time



2.8. Mesh with Moving Boundaries 77

instant since the solid faces may not be continuously present during the unsteady

flow simulation. Therefore, its value emerges by interpolating the velocities of the

solid surface’s vertices. Considering that x⃗ f lies on an arbitrary triangle of the solid

surface defined by vertices x⃗ 1, x⃗ 2, and x⃗ 3 provided with velocities v⃗ 1, v⃗ 2, and v⃗ 3,

respectively, the extrapolated velocity v⃗ f is computed as

v⃗ f =
1

At

(
A23v⃗

1 + A31v⃗
2 + A12v⃗

3
)

where At is the triangle’s area and Aij is the area of a triangle defined by x⃗ f and

vertices x⃗ i and x⃗ j.

However, not all disappeared cells are able to find a linking satisfying the previously

mentioned criterion. The rest are linked by function “connectSecondCategoryCells”,

also presented in Algorithm 12. According to that, each cell c looks for the proper

link in the group of fluid cells that have already been linked with the neighbors of

c. The fluid cell forming the smallest angle ϕ is preferred.

The final step prevents the creation of large clusters of linked cells. Thus, each

covered cell is allowed to be linked with multiple fluid cells distributing its flow

variables to a broader mesh area. This new kind of linking is achieved under the

following rules. The first one refers to each covered cell c, already connected to a

fluid cell cn of higher refinement level, which also happens to be its neighbor. This

cell should also be connected with the common neighbor c′n of c and cn under the

condition that c′n is a fluid cell. Fig. 2.24a exemplifies the case by plotting a red

mesh, on which the horizontal fluid-solid interface moves upwards. As a result, the

covered large cell at the bottom is linked to two neighboring cells of smaller size.

A second rule also allows for multiple linking and refers only to each solid cell c

surrounded exclusively by solid neighbors. Let cn be a smaller in size neighbor,

which is connected to a fluid cell cf . Then, c can also be connected with cf . An

example is shown in fig. 2.24b. Each of the 4 small disappeared cells is connected

with its fluid neighbor of the same size. Then, each of the two larger disappeared cells

is connected with two of these fluid neighbors. Finally, both rules mentioned before

are imposed by function “distributeConnection” used in Algorithm 11. Fig. 2.24c

demonstrates the case shown in fig. 2.22c after the implementation of this function.



78 K. D. Samouchos

(a) (b) (c)

Figure 2.24: (a) The solid surface, depicted by a bold horizontal line, moves from its

black to the red position over an unmodified, in time, mesh. (a) Two blue vectors

show the contribution of the covered large cell to two smaller cells. (b) Each one of

the 4 small covered cells is linked with its fluid neighbor. The larger covered cells

use this information to be linked with the same fluid cells. (c) The final cell linking

applied in the example of fig. 2.22c after imposing function “distributeConnection”.

The 12 vectors indicate the linking between the two subsequent in time meshes.

Algorithm 11: Cell Linking in Unsteady Cases (1)

input : mesh A, mesh B

output: list connection

1 Main Function linkCells()

// create list DC of disappeared cells

2 foreach cell cB of mesh B do

3 if disappearedCell(cB) then DC ←addToList(cB)

4 end

// fill list connection

5 connectFirstCategoryCells()

6 connectSecondCategoryCells()

7 distributeConnection()

8 return



2.8. Mesh with Moving Boundaries 79

Algorithm 12: Cell Linking in Unsteady Cases (2)

1 Function disappearedCell(cB)

2 if cB is fluid cell then return false

3 foreach cell cA of mesh A mapped onto cB do

4 if cA is fluid cell then return true

5 end

6 return false

7 Function connectFirstCategoryCells()

8 foreach cell c of list DC do

9 foreach neighbor cn of c do

10 if cellIsFluid(cn) and not disappearedCell(cn) then

11 neighbors← addToList(cn)

12 end

13 end

14 cn ← findProperCell(c, neighbors, correctDirection)

15 if correctDirection then connection[c]← cn

16 end

17 return

18 Function connectSecondCategoryCells()

19 correction← true

20 while correction do

21 correction← false

22 foreach second category cell c do

23 foreach connected neighbor cn of c do

24 neighbors← addToList(connection[cn])

25 end

26 c′n ← findProperCell(c, neighbors, correctDirection)

27 if connection[c] =/ c′n then

28 connection[c]← c′n
29 correction← true

30 end

31 end

32 end

33 return



80 K. D. Samouchos

2.9 Mesh Differentiation

A significant part of this thesis deals with gradient-based shape optimization meth-

ods applied in complex geometric structures of industrial interest. A continuous or

discrete adjoint approach supports the optimization algorithm computing the re-

quired shape sensitivities on a Cartesian mesh. The corresponding mathematical

development is presented in section 7.4 and indicates the need for the mesh’s differ-

entiation. The term “mesh differentiation” refers to the computation of the variation

of every geometric quantity included in the flow equations’ discrete form caused by

the infinitesimal change of the geometry’s shape. The quantities of interest are the

unit normal vector ˆ⃗nf , surface area Af , and centroid x⃗ f of each face f , as well as the

volume Ωc and centroid x⃗ c of each cell c comprising the members of the generalized

vector G⃗.

Moreover, using a parameterization tool to update the geometry’s shape during the

optimization loop is out of this thesis discussion. Thus, the geometry’s modification

is expressed by changing the coordinates of vertices v⃗ k constituting the triangulated

geometry’s surface, where k indicates the serial number of each node. Furthermore,

the set of vertices v⃗ k is the only input of the mesh generator that varies during the

optimization process, implying that G⃗ is a function of v⃗ k. The computation of its

derivative ∂G⃗/∂v⃗ k is the target of this section.

While this approach is well understood and widely used in implementations based

on body-fitted meshes, an alternative approach is required for the cut-cell method.

The difference originates from the special readjustment of the Cartesian mesh to the

modified geometry at each optimization step. In particular, if the geometry’s defor-

mation is infinitesimally small, only the shape of the cut-cells is affected, preserving

the mesh’s topological characteristics. In other words, the face-vertices and face-

cells mappings remain unchanged. Considering also that the mathematical formulas

describing the shape of each face or cell are differentiable w.r.t. v⃗ k, one concludes

that the derivative ∂G⃗/∂v⃗ k is well defined.

The finite difference method (FD) is a straightforward way to approximate these

derivatives. Although it has widely been used in body-fitted meshes, its application

is questionable in Cartesian meshes due to the great effect the step size value has on

the final result. The chosen value should vary within limits that provide a sufficiently

accurate gradient approximation, avoiding round-off errors. However, any value in



2.9. Mesh Differentiation 81

this range may cause a wide enough displacement of the geometry’s boundary to

cover or uncover mesh cells. In such a case, the one-to-one mapping of faces and

cells before and after the solid surface’s displacement is meaningless, making the

gradient’s approximation through FD impractical.

Therefore, the mathematical differentiation of G⃗ is a reasonable alternative. In the

method presented below, no assumptions are made regarding the mesh and geom-

etry intersection, providing accurate expressions for the computation of ∂G⃗/∂v⃗ k.

Moreover, the developed software is robust and insensitive to the complexity of

the geometry’s shape. Finally, the computational cost of this approach is negligible

since, contrary to the body-fitted meshes, the derivative is non-zero only to cut-cells.

The process followed for the differentiation of G⃗ is better explained by the example

below. Fig. 2.25a shows a cube with dashed lines intersected by a solid surface

consisting of 4 red-colored triangles. The resulted cut-cell is depicted in blue, and

one of its solid faces is gray shaded. A top view, shown in fig. 2.25b, offers a better

perspective of the shaded face. Its shape is determined by the relative position of the

cube and the bolded triangle described by vertices v⃗ 1, v⃗ 2, and v⃗ 3. Their intersection

gives rise to the four blue points noted by x⃗ l, l=1, · · · , 4, the coordinates of which

are computed by the Sutherland-Hodgman algorithm, section 2.4.1.

The coordinates of the centroid x⃗ c, shown in black, are exclusively defined by the

location of these blue points. Therefore, the centroid and generally all members of

vector G⃗ depend on the solid vertices x⃗ l of the mesh, which are functions of the

geometry’s vertices v⃗ k. Thus,

∂G⃗

∂v⃗ k
=

L∑
l=1

∂G⃗

∂x⃗ l

∂x⃗ l

∂v⃗ k
(2.10)

where L is the number of vertices comprising the solid boundary of the mesh. Term

∂x⃗ l/∂v⃗ k is of major importance for the cut-cell method because it encapsulates the

adjustment of the stationary Cartesian mesh on a continuously modified geome-

try. Thus, it represents the main difference between the present method and the

conventional body-fitted approaches.



82 K. D. Samouchos

(a) (b)

Figure 2.25: (a) The intersection of the red triangles and the cube, plotted with

dashed black lines, results in the blue cut-cell. (b) Top view of the cut-cell. The

blue points define a solid gray shaded face. They are located on the interior (x⃗ s),

the edges (x⃗ e), or the vertices (v⃗ 1) of the bolded triangle. The centroid x⃗ c of the

shaded face is presented with a black dot.

2.9.1 Differentiation of the Mesh Solid Boundary

Subsequently, the mathematical development of the second term on the r.h.s. of

eq. 2.10 is examined. Three different approaches are followed based on the location

of x⃗ l on the triangulated solid surface. In the first case, the mesh node coincides

with a vertex of the geometry. An example is given in fig. 2.25b, where v⃗ 1 is part

of both the blue face and the red triangle. Secondly, nodes such as v⃗ e are located

on the edge of a triangle. These nodes are originated from the intersection of this

edge with a face of the Cartesian mesh. Finally, nodes that lie on the interior of the

triangles’ surface, e.g., x⃗ s, emerge when a Cartesian edge pierces the solid body’s

boundary.

The first case is trivial and reads,

∂xl
i

∂vkj
=

{
δij, x⃗ l = v⃗ k

0, otherwise

where i, j indicate the Cartesian coordinates of each vertex and δij is the Kronecker

delta.



2.9. Mesh Differentiation 83

The differentiation of vertices located on the edge is presented via the example of

x⃗ e. Its position changes due to the displacement of v⃗ 1 and v⃗ 2 always remaining on

the cube’s face. Therefore, one of its coordinates, expressed by index d, is constant

and equal to c. In total, the vertex’s position is expressed as

xe
i =

{
λ (v2i − v1i ) + v1i , i = {1, 2, 3} \ d
c, i = d

where

λ =
xe
d − v1d

v2d − v1d

Its derivatives are computed as

∂xe
i

∂v1j
= (1− λ)Mij

∂xe
i

∂v2j
= λMij

(2.11)

Matrix M is defined as M =I + Φd, where I is the identity matrix and Φd
ij = ϕiδjd.

Finally,

ϕi =
v2i − v1i
v2d − v1d

The coordinates of the third set of vertices are differentiated considering the arbi-

trary case of an intersection point x⃗ s located in the interior of a triangle defined by

vertices v⃗ l1 , v⃗ l2 , and v⃗ k. The derivative ∂x⃗ s/∂v⃗ k is computed under the condition

that the intersection point remains aligned to the cube’s edge after the infinitesimal

displacement of v⃗ k. Therefore, the derivative is parallel to the edge’s Cartesian

direction, denoted by d, implying that

∂x⃗ s

∂vkj
= akj e⃗

d (2.12)

where e⃗ d represents the unit vector along the d axis. The unknown akj is computed

by considering that x⃗ s lies on the triangle’s plane,(
x⃗ s − v⃗ l1

)
· n⃗ t = 0 (2.13)



84 K. D. Samouchos

where n⃗ t is normal to the plane, and its magnitude equals the triangle’s area,

n⃗ t =
1

2

(
v⃗ l2 − v⃗ l1

)
×
(
v⃗ k − v⃗ l1

)
(2.14)

By differentiating eqs. 2.13 and 2.14 w.r.t. vkj one gets

∂x⃗ s

∂vkj
· n⃗ t +

(
x⃗ s − v⃗ l1

)
· ∂n⃗

t

∂vkj
= 0⇔ akj e⃗

d · n⃗ t −
(
v⃗ l1 − x⃗ s

)
· ∂n⃗

t

∂vkj
= 0

and
∂n⃗ t

∂vkj
=

1

2

(
v⃗ l2 − v⃗ l1

)
× ∂v⃗ k

∂vkj
⇔ ∂n⃗ t

∂vkj
=

1

2

(
v⃗ l2 − v⃗ l1

)
× e⃗ j

Their combination leads to

akj e⃗
d · n⃗ t −

(
v⃗ l1 − x⃗ s

)
· 1

2

[(
v⃗ l2 − v⃗ l1

)
× e⃗ j

]
= 0⇔

akj e⃗
d · n⃗ t −

(
v⃗ l1 − x⃗ s

)
· 1

2

[(
v⃗ l2 − x⃗ s

)
× e⃗ j −

(
v⃗ l1 − x⃗ s

)
× e⃗ j

]
= 0⇔

akj e⃗
d · n⃗ t − 1

2

(
v⃗ l1 − x⃗ s

)
·
[(
v⃗ l2 − x⃗ s

)
× e⃗ j

]
= 0⇔

akj e⃗
d · n⃗ t − 1

2
e⃗ j ·

[(
v⃗ l1 − x⃗ s

)
×
(
v⃗ l2 − x⃗ s

)]
= 0⇔

akjA
t
d − e⃗ j · ˆ⃗ntAt

k = 0⇔ akj =
At

k

At
d

n̂t
j

where At
d represents the triangle’s area projection to the d-direction, and At

k is the

triangle’s sub-area defined by x⃗ s, v⃗ l1 , and v⃗ l2 . Moreover, ˆ⃗nt is the unit vector,

normal to the triangle’s plane. Finally, eq. 2.12 becomes

∂xs
i

∂vkj
=

At
k

At
d

n̂t
jδid (2.15)

2.9.2 Differentiation of Face and Cell Geometric Quantities

The computation of term ∂G⃗/∂x⃗ l, eq. 2.10, for each member of G⃗ is presented below

using the same notation and definitions introduced in subsection 2.5.4. According

to that, the normal face vector is

n⃗ f =
1

2

N∑
n=1

t⃗ n × t⃗ n
′



2.9. Mesh Differentiation 85

where n and n′ are two subsequent face vertices. Its derivative w.r.t. the face vertex

x⃗ l is

∂n⃗ f

∂x⃗ l
=

 0 ∆t3 −∆t2
−∆t3 0 ∆t1

∆t2 −∆t1 0

 (2.16)

where ∆t⃗= t⃗ s − t⃗ p. Indices s, p identify the subsequent and previous vertices of x⃗ l.

Moreover, Af = |n⃗ f |, which implies

∂Af

∂xl
j

= ˆ⃗nf · ∂n⃗
f

∂xl
j

(2.17)

According to eq. 2.9, the face centroid is

x⃗f =
1

Af

N∑
n=1

x⃗nn′
Ann′

where Ann′ and x⃗nn′
are the area and centroid of the triangle defined by x⃗ f and

vertices n and n′. Its differentiation concludes to

∂xf
i

∂xl
j

=
1

Af

[
Āf + Apl + Aln

3
δij +

N∑
n=1

(
xnn′

i − xf
i

) ∂Ann′

∂xl
j

]
(2.18)

where Āf = Af/N . Therefore, the computation of ∂Ann′/∂xl
j is needed. Terms

∂Apl/∂x
l
j and ∂Als/∂x

l
j are separately discussed. The first of them is defined as

Apl =
1

2

(
t⃗ p × t⃗ l

)
· ˆ⃗nf

and its derivative is

∂Apl

∂xl
j

=
1

2

∂

∂xl
j

(
t⃗ p × t⃗ l

)
· ˆ⃗nf +

1

2

(
t⃗ p × t⃗ l

)
· ∂

ˆ⃗nf

∂xl
j

However, the derivative of the normal unit vector is represented by a vector lying

on the face, and thus, the second addend is zero. After the proper mathematical

development of the remaining term, the derivative is expressed as

∂Apl

∂xl
j

=
1

2
ˆ⃗nf ×

[
t⃗ p +

1

N

(
t⃗ l − t⃗ p

)]



86 K. D. Samouchos

Similarly,
∂Als

∂xl
j

= −1

2
ˆ⃗nf ×

[
t⃗ s +

1

N

(
t⃗ l − t⃗ s

)]
and

∂Ann′

∂xl
j

=
1

2N
ˆ⃗nf ×

(
t⃗ n

′ − t⃗ n
)
, ∀ n, n′ ̸= l

According to subsection 2.5.4, the volume of a cell is

Ωc =
F∑

f=1

Ωf

where

Ωf =
1

3

(
x⃗ f − r⃗

)
· n⃗ f

is the volume of each pyramid to which the cell is divided. The cell’s volume is

independent of r⃗, and thus, it will be considered constant during the differentiation.

Therefore,

∂Ωc

∂xl
j

=
F̃∑

f=1

∂Ωf

∂xl
j

(2.19)

and
∂Ωf

∂xl
j

=
1

3

[
∂x⃗ f

∂xl
j

· n⃗ f +
(
x⃗ f − r⃗

)
· ∂n⃗

f

∂xl
j

]
(2.20)

The sum on the r.h.s. of eq. 2.19 consists exclusively of F̃ in number pyramids

containing vertex x⃗ l. The derivatives of n⃗ f and x⃗ f on the r.h.s. of eq. 2.20 are

computed by eqs. 2.16 and 2.18, respectively. Additionally, the arithmetic mean of

cell vertices can be used to compute r⃗.

Finally, based on subsection 2.5.4, the cell’s centroid is

x⃗ c =
3

4Ωc

F∑
f=1

(
x⃗ f − r⃗

)
Ωf + r⃗

Once again, the centroid’s value is independent of r⃗, and thus, it is considered

constant during the differentiation process. Hence,

∂x⃗ c

∂xl
j

=
3

4Ωc

F̃∑
f=1

[
∂x⃗ f

∂xl
j

Ωf +
(
x⃗ f − r⃗

) ∂Ωf

∂xl
j

]
− 1

Ωc

(x⃗ c − r⃗ )
∂Ωc

∂xl
j

(2.21)



2.9. Mesh Differentiation 87

The derivatives of x⃗ f , Ωf , and Ωc on the r.h.s. are computed from eqs. 2.18, 2.20,

and 2.19, respectively.



Chapter 3

Numerical Discretization of the

Navier-Stokes Equations

This chapter presents the mathematical formulation of the flow equations, their dis-

cretization, and a numerical method to solve the resulting algebraic system. The

examined flow model consists of the steady or unsteady Navier-Stokes equations

for either compressible or incompressible, inviscid or laminar flows. The artificial

compressibility method is applied to solve the incompressible flow equations. The

presented discretization scheme takes advantage of the Cartesian mesh data struc-

ture dictated by the cut-cell method. It is based on a cell-centered, second-order

finite volume method employing the MUSCL scheme. The Roe’s approximate Rie-

mann solver is used to compute inviscid fluxes, and second-order accuracy is attained

by reconstructing the flow variables at mesh faces based on a Taylor series expan-

sion. The required gradients of flow field variables are computed through the least

squares technique. Orthogonal correction is utilized to compute the velocity and

temperature gradients used for the viscous flux discretization. In unsteady simula-

tions, the temporal term is discretized by applying a first-order Euler scheme, and

time marching is based on a dual time-stepping method. Special treatment is made

for cells that appear or disappear from the fluid domain in case of flows involving

moving bodies. The Newton-Raphson algorithm is applied for solving the result-

ing non-linear system. The last section describes the ghost-cell method for steady

and unsteady flow simulations and provides details about the fluid-solid interface

treatment.

88



3.1. Compressible Fluid Flow Model 89

3.1 Compressible Fluid Flow Model

The Navier-Stokes equations and the mass and energy conservation laws for a 3D un-

steady compressible flow of a perfect gas can be expressed in a Cartesian coordinate

system (x1, x2, x3) as [173]

∂Ui

∂t
+

∂f inv
ik

∂xk

− ∂f vis
ik

∂xk

= 0, i = 1, · · · , 5, k = 1, · · · , 3 (3.1)

where

U⃗ =


ρ

ρv1
ρv2
ρv3
ρE

 , f⃗ inv
k =


ρvk

ρvkv1 + δ1kp

ρvkv2 + δ2kp

ρvkv3 + δ3kp

ρvkht

 , f⃗ vis
k =


0

τ1k
τ2k
τ3k

vjτjk + qk


The Einstein notation has been used, according to which repeated indices imply

summation. U⃗ , f⃗ inv
k and f⃗ vis

k are the conservative variables, inviscid flux and viscous

flux vectors, respectively. Primitive variables ρ, vi and p stand for the fluid’s density,

velocity components and pressure. The corresponding primitive variables’ vector is

defined as V⃗ = [ρ, v1, v2, v3, p]. E stands for the energy per unit mass and ht is

the total enthalpy. These are related through the equation

ht = E +
p

ρ

For a Newtonian fluid, the viscous stress tensor τ is expressed as

τik = µ

(
∂vi
∂xk

+
∂vk
∂xi

− 2

3
δik

∂vm
∂xm

)
with µ being the fluid’s dynamic viscosity and δik the Kronecker delta. Heat flux

qm is given by the Fourier’s law

qm = k
∂T

∂xm

where k and T stand for the fluid’s thermal conductivity and temperature, respec-

tively. The equation of state

p = ρRT



90 K. D. Samouchos

completes the above system of PDEs, where R is the specific gas constant. Finally,

for the conservative to primitive set of flow variables conversion,

ρE =
p

γ − 1
+

1

2
ρv2i

where γ is the specific heat ratio, is used.

An appropriate set of boundary conditions accompanies the above system of PDEs.

They depend on the type of each boundary and the physics behind every specific

application. In external aerodynamics, such as the flow simulation around an iso-

lated wing, far-field boundaries are positioned far away from the examined geometry.

Far-field flow is considered constant, and five flow variables are set at ghost-nodes

placed along the mesh boundary. On the other hand, in internal aerodynamics,

such as flow simulation within ducts or pumps, a different set of flow quantities is

imposed at the inlet and outlet. For subsonic inlet boundaries total pressure (pt),

total temperature (Tt) and two angles (αyaw, αpitch) are specified. Primitive variables

are computed by interpolating the velocity magnitude (|v⃗|) from the flow domain

interior. This process starts from the temperature computation T =Tt − |v⃗|2/(2cp)

at the boundary, where cp is the specific heat capacity at constant pressure. Then,

the primitive variables are computed as

pBC = pt

(
T

Tt

) γ
γ−1

ρBC =
pBC

RT

vBC
1 = |v⃗|sin(αpitch)cos(αyaw)

vBC
2 = |v⃗|sin(αpitch)sin(αyaw)

vBC
3 = |v⃗|cos(αpitch)

An alternative is the imposition of entropy (s) and the three velocity components.

Density is extrapolated from the interior and, then pressure is computed as p=sργ.

However, in real-world applications, inlet entropy is usually unknown. Its value

can be found by the user-defined density (ρ0) and pressure (p0) approximations,

so that s = p0/ρ
γ
0 . For supersonic inlet flow boundaries, all primitive variables are

user-defined. At the outlet, only pressure is specified in the case of a subsonic

flow. The other four primitive variables are extrapolated from the interior. On the

other hand, in a supersonic outlet case, no boundary conditions are imposed at the



3.2. Discretization of the Steady Compressible Laminar Equations 91

exit. Wall boundary conditions depend on the used flow model. For inviscid flows,

the no-penetration condition applies, and thus the flow and wall’s normal velocity

components (vwi ) are equal,

vini = vwi ni

where ni is the normal to the wall component along the xi direction. In a viscous

flow case, the no-slip condition is employed as well, namely the flow and wall velocity

vectors are equal,

vi = vwi

Moreover, solid walls are adiabatic, thus

qknk =0

Finally, boundary conditions along a symmetry plane are

∂ρ

∂n

∣∣∣∣
BC

= 0

∂p

∂n

∣∣∣∣
BC

= 0

vBC
i = vi − 2vknkni

where n⃗ is the perpendicular to the symmetry plane unit vector, v⃗ is the fluid’s

velocity, and v⃗BC is the modified velocity at the boundary.

3.2 Discretization of the Steady Compressible Lam-

inar Equations

This section deals with the discretization of the governing eqs. 3.1 in steady flows.

Its structure is separated into smaller parts discussing specific details of the dis-

cretization scheme. Firstly, the finite volume method implementation is presented.

The next subsection focuses on the flux discretization, the Riemann problem and its

approximate solution by the Roe scheme. Then, the second-order MUSCL method

is demonstrated and the limiter’s use is briefly explained. Limiters are presented in

detail in the following subsection. A separate subsection deals with the flow vari-

ables gradient computation by using the least squares method. After that, the flux

computation over the boundary faces is examined. Thereafter, the discretization of



92 K. D. Samouchos

viscous terms is presented. Finally, stability and convergence issues are discussed.

3.2.1 The Finite Volume Method

Over the years, numerous methods have been developed to discretize hyperbolic sys-

tems of PDEs. Therefore, the steady flow equations are reformulated as a hyperbolic

system to take advantage of such accurate solvers [306]. Accordingly, a pseudo-time

derivative of the conservative variables is added to the governing equations. Their

final form is
∂Ui

∂τ
+

∂fik
∂xk

= 0, i = 1, · · · , 5, k = 1, · · · , 3

where f⃗k = f⃗ inv
k −f⃗ vis

k and pseudo-time is denoted by τ to be distinguished from the

real-time t. The above modification does not affect the flow solution because the

extra term vanishes after convergence is achieved. The flow equations discretization

is based on the cell-centered finite volume method [177]. On a cut-cell basis, each

finite volume (Ω) is considered a region placed entirely inside the mesh fluid part,

restricted by solid boundaries and internal mesh faces. It can be an internal orthog-

onal polyhedron or a boundary cut-cell of an arbitrary polyhedral shape. Fig. 3.1

shows a mesh detail with two differently colored cells. Conservative variables (U⃗P ,

U⃗Q) are stored at their centroids. Integrating the above equation over Ω×∆τ and

applying the Green-Gauss theorem in the temporal and spatial terms, one gets∫ τ+∆τ

τ

∫
Ω

∂Ui

∂τ
dΩdτ +

∫ τ+∆τ

τ

∫
Ω

∂fik
∂xk

dΩdτ = 0⇔∫
Ω

UidΩ

∣∣∣∣
τ+∆τ

−
∫
Ω

UidΩ

∣∣∣∣
τ

+

∫ τ+∆τ

τ

∫
S

fiknkdSdτ = 0

where
∫
Ω

and
∫
S

are shortcuts for the triple volume and double surface integrals,

∆τ is the pseudo-time discretization step, S is the finite volume boundary surface

and n⃗ is the outward pointing surface unit normal vector. The surface integral can

be written as a summation of integrals over all edges or faces of a polygonal or

polyhedral finite volume in a 2D or 3D case. Each of them is represented by the

averaged flux vector ⃗̄fm
k leading to the following formula

∫
Ω

UidΩ

∣∣∣∣
τ+∆τ

−
∫
Ω

UidΩ

∣∣∣∣
τ

+

∫ τ+∆τ

τ

(
M∑

m=1

f̄m
ikn

m
k ∆Sm

)
dτ = 0



3.2. Discretization of the Steady Compressible Laminar Equations 93

where

f̄m
ik =

∫
Sm

fikdS

∆Sm

and M is the number of finite volume’s faces. By defining the mean values

Ūn
i =

∫
Ω
UidΩ

∣∣
τ

Ω
, and Ūn+1

i =

∫
Ω
UidΩ

∣∣
τ+∆τ

Ω

the equation is written as

Ūn+1
i − Ūn

i

∆τ
Ω +

M∑
m=1

(
1

∆τ

∫ τ+∆τ

τ

f̄m
ikn

m
k dτ∆Sm

)
= 0 (3.2)

The pseudo-time integral computation is quite different for the inviscid and viscous

flux. Therefore, it is described separately in subsections 3.2.2 and 3.2.7.

3.2.2 Convective Flux Discretization Scheme

The computation of the integral in eq. 3.2 along every mesh face is challenging since

two neighboring finite volumes are met, creating a discontinuity in the flow field. For

example, fig. 3.1 shows a 2D mesh detail, where an edge is separating finite volumes

P and Q. On its left-hand side, flow variables are equal to U⃗L, being different than

the right-hand values U⃗R. Generally, U⃗L and U⃗R may differ from U⃗P and U⃗Q. Their

values depend on the assumption on the rules the flow distribution follows inside the

finite volume. The discontinuity problem is physically well represented by the 1D

so-called shock-tube problem along the segment connecting the two centroids, where

two stationary gases of different pressure and density are placed in a tube separated

by a diaphragm. The diaphragm removal generates a nearly centered wave system

that typically consists of a rarefaction wave, a contact discontinuity, and a shock

wave. The general case, in which the gases are initially allowed to move, having

different velocities v⃗L and v⃗R, is the renowned Riemann problem. Its analytical

solution allows for the exact computation of the above integral. Assuming that the

chosen time step ∆τ is small enough and, thus, prevents the wave interaction be-

tween the finite volume faces, the Riemann problem local solution suggests constant

flow values U⃗nm along ∆τ , where n is the pseudo-time step counter. Thus,

M∑
m=1

1

∆τ

∫ τ+∆τ

τ

f̄ inv,m
ik nm

k dτ∆Sm =
M∑

m=1

f̄ inv,m
ik (U⃗nm)nm

k ∆Sm



94 K. D. Samouchos

Figure 3.1: Mesh detail of two neighboring cells P and Q. Flux f⃗PQ is computed

on their common edge. A discontinuity appears along the edge separating the V⃗ L

and V⃗ R flow conditions. Edge normal unit vector n⃗ is also shown.

The discretization presented above is called the Godunov method [109]. Its integral

form is easily implemented in an unstructured mesh, allowing for discontinuous

solutions to appear. However, it suffers from two weaknesses. Firstly, like most

discretization schemes, ∆τ is restricted by an upper limit relying on the maximum

absolute wave velocity Sn
max = |vn|+ cn throughout the finite volume. For a 1D cell

of length h, this upper limit is

∆τ <
h

Sn
max

(3.3)

The meaning of the above inequality is evident in fig. 3.2, where a 1D cross-section

along the line connecting the two centroids, depicted in fig. 3.1, is shown in a space-

time plane. The P finite volume is surrounded by waves created on its boundaries.

Time step ∆τ should be quite small to impede the interaction of the two groups

of waves, allowing for the two Riemann problems separate treatment. This upper

limit delays the convergence, increasing the overall computational cost. To over-

come this drawback, U⃗ (n+1)m can be used instead of U⃗mn, giving rise to an implicit

discretization scheme.

Secondly, the Riemann problem analytical solution is required. Although exact

Riemann solvers are available, they involve iterative procedures increasing the com-

putational cost. In practical applications, the Riemann problem should be solved

millions of times, making it impossible to implement an exact Riemann solver. On

the other hand, approximate, non-iterative solvers have the potential to provide

accurate enough numerical solutions at a reasonable computational cost.



3.2. Discretization of the Steady Compressible Laminar Equations 95

Figure 3.2: A wave system representation in a space-time plane generated by dis-

continuities appeared at both boundaries of the 1D finite volume P of length h.

Dashed, bold, and fan-type lines represent the contact, shock and rarefaction waves,

respectively. The neighboring finite volume Q is also shown. Solution of the lo-

cal Riemann problem caused due to the V n
L and V n

R discontinuity is needed by the

Godunov averaging method. Pseudo-time step ∆τ is chosen such as the wave of

maximum speed Sn
max within P is not affecting the Riemann solution of the right

wave system. Post- processed figure taken from [306].

One of the most well–known approximate Riemann solvers was introduced by Roe

in 1981 [262]. Many refinements and corrections have been presented, such as the

Roe-Pike approach [263] or the Glaister extension for the time-dependent Euler

equations [106]. Roe’s approach has been applied to a great variety of physical

problems proving its reliability and robustness. According to the Roe’s approximate

Riemann solver, the flux is computed by using one of the two following alternatives

[306], [309],

f̄ inv,m
ik nPQ

k =
1

2

(
fL
ik + fR

ik

)
nPQ
k − 1

2

∣∣∣Ãijkn
PQ
k

∣∣∣ (UR
j − UL

j

)
(3.4)

f̄ inv,m
ik nPQ

k =
1

2

(
fP
ik + fQ

ik

)
nPQ
k − 1

2

∣∣∣Ãijkn
PQ
k

∣∣∣ (UR
j − UL

j

)
(3.5)

where n⃗PQ is the unit vector normal to the surface separating finite volumes P, Q,

always directed from the L to the R side. Ak is the Jacobian matrix of the governing



96 K. D. Samouchos

equations system along the k-direction,

Aijk =
∂fik
∂Uj

(3.6)

The Jacobian matrix projected to the normal direction leads to the diagonalizable

matrix Aknk. Due to the hyperbolic nature of the governing PDEs, Aknk has real

eigenvalues. Its absolute counterpart is

|Aijknk| = Pil |Λlm|P−1
mj (3.7)

Column vectors of P are the right eigenvectors of Aknk and |Λ|=diag(|λ1| , |λ2| , · · · , |λ5|)
where |λi| are the absolute eigenvalues of Aknk. The P and Λ analytical expressions

can be found in [130] and Appendix D. Finally, the tilde symbol denotes the use of

the Roe averages for the
∣∣∣Ãijknk

∣∣∣ computation. These are given as

ρ̃ =
√

ρLρR

ṽi =

√
ρLvLi +

√
ρRvRi√

ρL +
√

ρR
(3.8)

h̃t =

√
ρLhL

t +
√

ρRhR
t√

ρL +
√

ρR

Very useful is also the relation giving the Roe averaged sound speed,

c̃ =

√
(γ − 1)h̃t −

1

2
ṽ2i

A detailed proof of eq. 3.4 is presented in Appendix E. All values being part of the

Roe scheme discretization correspond to time τ+∆τ . Superscript n+1 is omitted

for the sake of brevity. Eq. 3.4 is more accurate than eq. 3.5, but it may cause

convergence issues, especially in transonic flows where strong shock waves occur.

This behavior is avoided by using eq. 3.5, which is proved to also provide second-

order accuracy results [18]. However, numerical experiments have shown that eq. 3.5

causes spurious pressure oscillations close to the solid boundary of a Cartesian mesh.

Thus, its use should be avoided whenever possible.



3.2. Discretization of the Steady Compressible Laminar Equations 97

3.2.3 The second-order MUSCL Method

Numerical simulations of real-world applications require at least second-order accu-

racy algorithms to preserve reliability. In this thesis, the Monotone Upstream–centered

Scheme for Conservation Laws (MUSCL) introduced by van Leer [318] is applied to

compute the left (L) and right (R) conditions that appeared in eqs. 3.4 and 3.5. How-

ever, according to Godunov’s theorem [108], second or higher-order accurate linear

schemes are prone to create spurious oscillations in the flow field, especially in the

vicinity of large gradients. This condition is overcome by constructing non–linear,

oscillation–free discretization methods, called Total Variation Diminishing (TVD)

schemes, offering second-order accuracy in smooth parts of the solution. These

methods try to mimic the exact solution of the scalar conservation laws by prevent-

ing the total variation increase in pseudo-time. Appendix G proves that monotone

schemes, such as MUSCL, belong to the class of TVD schemes. Non-linearity in

the MUSCL scheme is introduced by the use of slope limiters, which enforce mono-

tonicity. Consequently, the MUSCL approach not only implies second-order spatial

accuracy but also avoids the creation of unphysical oscillations during the simula-

tion. It is essential to mention that the above theoretical basis is mathematically

developed only for scalar 1D cases. However, experience over many decades shows

that this theory serves well as a guideline for extending the above ideas in multidi-

mensional applications.

According to MUSCL, the primitive flow variables follow a linear distribution inside

a finite volume as follows

Vi(x⃗) = V c
i + ϕi

2 or 3∑
j=1

∂Vi

∂xj

∣∣∣∣
c

(xj − xc
j)

where ϕi is the slope limiter for each variable. Index c denotes the finite volume’s

centroid. Based on this assumption, flow values U⃗L and U⃗R correspond to the

extrapolated variables U⃗P and U⃗Q at the two sides of each face.

V L
i =V P

i + ϕP
i

2 or 3∑
j=1

∂Vi

∂xj

∣∣∣∣
P

(xf
j − xP

j )

V R
i =V Q

i + ϕQ
i

2 or 3∑
j=1

∂Vi

∂xj

∣∣∣∣
Q

(xf
j − xQ

j )

(3.9)



98 K. D. Samouchos

where x⃗f are the coordinates of the edge or face centroid for 2D or 3D cases, re-

spectively. Fig. 3.3 depicts the extrapolation by using blue arrows in two different

cases. Blue arrows geometrically present the extrapolation in fig. 3.3 in cases where

centroids P and Q are not inlined due to geometrical intersections or cells surround-

ing the face are of different coarsening levels. Finally, an important fact is that,

although the MUSCL procedure is second-order accurate, close to the solid bound-

ary the limiter takes very low values at a significant number of cut-cells, reducing

the discretization accuracy locally to first-order. The next subsections are dealing

with the computation of the limiter function and the primitive variables’ gradient

used in eqs. 3.9.

(a)

(b)

Figure 3.3: Two cases of V⃗ P and V⃗ Q variables extrapolation to approximate V⃗ L and

V⃗ R conditions used for flux computation at internal (f⃗PQ) or boundary (f⃗w) edges.

P and Q centroids are not aligned due to (a) solid boundary intersections and (b)

different cells’ size.



3.2. Discretization of the Steady Compressible Laminar Equations 99

3.2.4 Limiters

The benefits using limiter in eqs. 3.9 are already discussed in subsection 3.2.3. This

subsection focuses on two ways to compute limiters. By definition, limiters guar-

antee that the extrapolated flow variables’ magnitude does not exceed the adjacent

neighbor’s cell-centered solution. Various limiters have been proposed in the litera-

ture with different characteristics and behavior. The proper limiter choice depends

on the case and is selected on a trial and error basis. Two kinds of limiters for

unstructured meshes are used in this thesis. The first one (ϕBJ) is introduced by

Barth and Jespersen [26] and uses the non-differential min function which may harm

the convergence of non-linear systems. Although the limiter enforces monotonicity,

it reduces the scheme’s accuracy because it remains active in smooth regions of the

solution. Limiter’s ability to prevent the generation of new local extrema is pre-

sented in Appendix H. The second one (ϕV ), proposed by Venkatakrishnan [321], is

based on ϕBJ but is differentiable. It can also revert to a scheme without limiter in

smooth regions, increasing the discretization accuracy, but it cannot maintain the

solution’s monotonicity. Both limiters’ expressions are shown below

ϕBJ =

{
min

(
1, ∆c

∆f

)
|∆f | ⩾ eps

1 |∆f | < eps
(3.10)

ϕV =

 1
∆f

(∆2
c+ϵ)∆f+2∆2

f∆c

∆2
c+2∆2

f+∆f∆c+ϵ
|∆f | ⩾ eps

1 |∆f | < eps
(3.11)

where

∆c =

{
Vimax − V c

i ∆f ⩾ eps

Vimin
− V c

i ∆f < eps

∆f = V f
i − V c

i =
∂Vi

∂xj

∣∣∣∣
c

(xf
j − xc

j)

and

ϵ = (KD)3

The user-defined eps value takes on a very small value (e.g., 10−14), K=0.3, and D

is the cell’s hydraulic diameter computed as D=6Ω/S. For each cell, flow variables

V⃗ c stored at the centroid x⃗c are extrapolated at each cell’s face centroid x⃗f by using

the first-order Taylor expansion. The resulting values V⃗ f are used to compute ∆f .

Depending on ∆f sign, ∆c is computed by using Vimax or Vimin
standing for the



100 K. D. Samouchos

maximum or minimum value stored in neighboring cells’ centroid. Neighboring cells

are considered all cells that share a common face with the referred finite volume.

In case a finite volume’s face is part of a mesh boundary, a fake node is used as the

corresponding V⃗ c
i value. Its flow variables are computed by using the extrapolated

on the face values V⃗ f which are modified according to the corresponding boundary

conditions presented in section 3.1. The procedure mentioned above is applied for

each finite volume’s face giving a different limiter’s value, the minimum of which is

its final finite volume’s limiter value. The algorithm is repeated for each primitive

variable.

3.2.5 Gradient Computation Using the Least Squares Method

Computation of primitive flow variables at the face’s centroid via eq. 3.9 requires

the cell-centered gradient ∂Vi

∂xj

∣∣∣
P

evaluation in an arbitrary finite volume P. There are

two common techniques for its computation, the Green–Gauss theorem or the least-

squares approach. Despite its relative complexity, the second method is used in this

study due to its higher accuracy [298]. It computes a gradient by best approximating

the flow variables stored in the neighboring cells through the Taylor expansion. This

request is obtained by minimizing a cost function for each primitive variable i given

by

Ei =
M∑

m=1

wm

[
V m
i − V P

i −
∂Vi

∂xj

∣∣∣∣
P

(
xm
j − xp

j

)]2
where M is the number of cell’s faces. If the face is internal, then x⃗m and V⃗ m are

the neighboring cell’s centroid and flow variables, respectively. Otherwise, a fake

node is defined, positioned at the face centroid. Firstly, V⃗ P is copied to the fake

node and, then, transformed by considering the appropriate boundary conditions

giving rise to the corresponding V⃗ m flow vector. The weight coefficient wm places

greater importance to the stencil of neighbors being nearby. It is usually set to

wm = 1/
∣∣x⃗m − x⃗P

∣∣2. Numerical experiments have shown that wm = 1 also gives

accurate results. The cost function’s minimum is computed by nullifying its deriva-

tives w.r.t. the unknown gradient components leading to a 3 × 3 algebraic system

Ax⃗= b⃗i given by
∑

wm∆xm
1 ∆xm

1

∑
wm∆xm

1 ∆xm
2

∑
wm∆xm

1 ∆xm
3∑

wm∆xm
2 ∆xm

1

∑
wm∆xm

2 ∆xm
2

∑
wm∆xm

2 ∆xm
3∑

wm∆xm
3 ∆xm

1

∑
wm∆xm

3 ∆xm
2

∑
wm∆xm

3 ∆xm
3




∂Vi

∂x1
∂Vi

∂x2
∂Vi

∂x3

 =


∑

wm∆xm
1 ∆V m

i∑
wm∆xm

2 ∆V m
i∑

wm∆xm
3 ∆V m

i





3.2. Discretization of the Steady Compressible Laminar Equations 101

where ∆xm
i = xm

i − xP
i and ∆V m

i = V m
i − V P

i . The system has a unique solution

provided that A is invertible. At the end of each pseudo-time step, flow variables

are recomputed and their derivatives are given by solving the above system for each

finite volume P and each primitive variable i. This procedure is computationally

costly and can be avoided by differently formulating the system. Firstly, a new

matrix and vector are defined as

B =

w1∆x1
1 w2∆x2

1 · · · wm∆xm
1

w1∆x1
2 w2∆x2

2 · · · wm∆xm
2

w1∆x1
3 w2∆x2

3 · · · wm∆xm
3

 , c⃗i =


∆V 1

i

∆V 2
i

...

∆V m
i


where the m index repetition in matrix B does not imply summation. By definition,

b⃗i =Bc⃗i which yields

Ax⃗ = b⃗i ⇔ Ax⃗ = Bc⃗i ⇔ x⃗ = A−1Bc⃗i ⇔ x⃗ = Wc⃗i

where

W = A−1B =

W⃗1

W⃗2

W⃗3

 (3.12)

Then, the gradient is computed as

∂Vi

∂xj

= W⃗j .⃗ci (3.13)

where W⃗j is a function of only geometrical quantities, and c⃗i contains exclusively

flow variables. Therefore, W⃗j remains constant during the convergence procedure

and can be computed at the beginning of the flow simulation. Then, at the end of

each time step, c⃗i changes, and the variables’ gradient is computed anew at the cost

of an internal product (eq. 3.13) instead of a 3× 3 system solution.

3.2.6 Flux Computation at the Boundary Faces

So far, the convection term discretization for internal faces has been presented in

detail. The flux computation at the boundary faces differs, depending on the kind

of the corresponding boundary conditions. For wall boundary faces, the Roe scheme



102 K. D. Samouchos

is not used and, thus, additional dissipation is avoided. Wall fluxes (f̄w,m
ik nk) are

computed on the centroid of the face being part of the intersection between the solid

bodies and the Cartesian mesh. Such a case is illustrated in fig. 3.3a. The presented

discretization’s capability indicates the cut-cell method’s superiority compared to

other immersed boundary methods. Wall flux expression on a stationary boundary

is

⃗̄fw,m
k nk =


0

pn1

pn2

pn3

0

 (3.14)

Pressure is computed by extrapolating its value from the cell to the face centroid,

fig. 3.3a. The exact wall boundary representation through the precise cut-cell con-

struction described in chapter 2 increases the extrapolation accuracy and, therefore,

the solid boundary conditions imposition. On the other hand, for the inlet, outlet,

and symmetry conditions, the Roe scheme is preferred due to its ability to increase

stability and drive the governing equations to convergence. Eq. 3.4 is transformed

as

f̄ inv,BC,m
ik nk =

1

2

(
fL
ik + fBC

ik

)
nk −

1

2

∣∣∣Ãijknk

∣∣∣ (UBC
j − UL

j

)
(3.15)

where left (L) variables are computed through extrapolation from the boundary cell’s

barycenter, and U⃗BC is computed by imposing the boundary conditions presented

in section 3.1, on the U⃗L flow variables.

3.2.7 Diffusive Flux Discretization Scheme

This subsection deals with the discretization of the integral’s viscous part appeared

in eq. 3.2. More specifically,

M∑
m=1

(
1

∆τ

∫ τ+∆τ

τ

f̄ vis,m
ik nm

k dτ∆Sm

)
=

M∑
m=1

(
f̄ vis,m
ik (U⃗m,

∂U⃗

∂x⃗

∣∣∣∣∣
m

)nm
k ∆Sm

)



3.2. Discretization of the Steady Compressible Laminar Equations 103

Superscript n+1 in terms U⃗m and ∂U⃗
∂x⃗

∣∣∣
m

is omitted for the sake of brevity. Based

on eq. 3.1, flux f̄ vis,m
ik nk is computed as

f̄ vis,m
ik nk =


0

τ1knk

τ2knk

τ3knk

viτiknk + qknk


m

Subscript m on the r.h.s. denotes that all primitive variables and their spatial deriva-

tives should be computed at the mth face centroid. Cells attached to the face are

denoted as P and Q. Then, primitive variables are

ρm =
ρL + ρR

2

vmi =
ρLvLi + ρRvRi

ρL + ρR

pm =
pL + pR

2

(3.16)

The left (L) and right (R) states are given by eq. 3.9. The spatial derivative ∂Vi

∂xk

∣∣∣
m

is computed by using an orthogonal correction scheme [141], which appropriately

combines the already computed derivatives at P and Q centroids as described in

subsection 3.2.5. It allows for the gradient’s discretization for any angle formed

between vector
−→
PQ and the face normal n⃗. Moreover, it smooths out any unphysical

oscillations that may occur during the pseudo-time iteration process [78], [269]. Face

and cell centroids are x⃗F , x⃗P and x⃗Q, respectively. The gradient is computed by the

formula
∂Vi

∂xk

∣∣∣∣
m

=
∂Vi

∂xk

−
(
∂Vi

∂xj

αj −
∂Vi

∂α

∣∣∣∣
m

)
αk (3.17)

where

α⃗ =
x⃗Q − x⃗P

|x⃗Q − x⃗P |

is a unit vector parallel to
−→
PQ. Moreover, the mean derivative appearing in eq. 3.17

is
∂Vi

∂xk

=
∂Vi

∂xk

∣∣∣∣
P

w +
∂Vi

∂xk

∣∣∣∣
Q

(1− w)



104 K. D. Samouchos

where

w =

∣∣x⃗F − x⃗Q
∣∣

|x⃗Q − x⃗P |
and the gradient along the α⃗ direction is

∂Vi

∂α

∣∣∣∣
m

=
V Q
i − V P

i

|x⃗Q − x⃗P |

Eq. 3.17 is explained in detail in Appendix I. It is likely that, in a Cartesian mesh,

cells P and Q are of the same size. Considering that α⃗ = n⃗ and w = 0.5 the

aforementioned equations are simplified, which significantly reduces the gradient’s

computational cost. Regarding a boundary face, w is set to 1, which leads to

∂Vi

∂xk

=
∂Vi

∂xk

∣∣∣∣
P

Furthermore,
∂Vi

∂α

∣∣∣∣
m

=
V BC
i − V P

i

|x⃗F − x⃗P |

where V BC
i computation is explained in subsection 3.2.6. Finally, for internal and

boundary faces, the temperature gradient, needed for the heat flux computation, is

∂T

∂xk

∣∣∣∣
m

=

(
1

pm
∂p

∂xk

∣∣∣∣
m

− 1

ρm
∂ρ

∂xk

∣∣∣∣
m

)
Tm

where Tm(ρm, pm) is given by the equation of state presented in section 3.1.

3.2.8 Pseudo-Time Step Computation

The stability and convergence speed of the flow solver considerably depend on the

pseudo-time step (∆τ) choice [319]. One should choose the largest possible step

size to accelerate the pseudo-time marching procedure and, consequently, reduce

the total computational cost. However, stability analysis of 1D hyperbolic equa-

tions’ explicit numerical solution scheme sets an upper bound on its value, eq. 3.3.

Moreover, stability restriction for the 1D model diffusion equation ut =νuxx suggests

∆τ ⩽ 1/(2ν∆x2). Both criteria depend on local geometrical and flow quantities,

which appear in a wide variety of scales along the flow field, and therefore, a local

∆τ is adjusted at each finite volume [312], [249]. Due to the lack of similar theo-



3.3. Temporal Term Discretization of the Compressible Equations 105

retical analysis for the multi-dimensional Navier-Stokes equations, a combination of

the two 1D restrictions is employed [148], though it does not ensure convergence.

Specifically,

∆τ = min(∆τ1,∆τ2,∆τ3) (3.18)

where

∆τi = CFL
hi

|vi|+ c + T vis
i

, i = 1, · · · , 3

and

T vis
i =

2µ

ρhi

For inviscid flow applications T vis
i is set to zero. In most CFD cases, the inviscid

(Courant) stability restriction is stricter than the viscous limitation [148]. Variable

hi is the cell’s height for each direction and CFL is the Courant-Friedrichs-Lewy

number. Its value varies starting from a significantly small value and gradually

increasing as the pseudo-time iterations (n) proceed,

CFL =

{
10−3 + r5(6− 5r)CFLmax, n < nmax

CFLmax, n ⩾ nmax

where r=n/nmax. The user-defined variables CFLmax and nmax determine the first

time step in which CFL takes its maximum value. The discretization presented in

the previous subsections allows for CFLmax > 1.

3.3 Temporal Term Discretization of the Com-

pressible Equations

Phenomena dealing with unsteady flows around moving geometries are of significant

importance in real-world applications. However, they pose various challenges, such

as the need for mesh deformation tools, which can inherently be met by IBMs. De-

spite their significant superiority in such cases over solvers using body-fitted meshes,

they face difficulties retaining high simulation accuracy close to the moving solid

bodies. Especially, the cut-cell method struggles to maintain conservation or pro-

vide physical solutions in large boundary displacements [219]. This section describes

a discretization method developed within the current thesis which deals with these

challenges. Firstly, the Arbitrary Lagrangian-Eulerian technique is briefly described,



106 K. D. Samouchos

and flow equations are presented in a proper formulation. Thereafter, the dual

time-stepping method is explained, and the corresponding algorithm for simulating

unsteady flows is presented. Finally, treatments for the cells’ abrupt appearance or

disappearance within the flow domain, as well as the flow field projection from each

mesh to the next one, are discussed in detail.

3.3.1 The Arbitrary Lagrangian Eulerian Technique

In flow simulations around moving bodies, the governing equations are integrated

over a deforming finite volume provided with an arbitrary velocity distribution on its

surface. Their discretization is based on the Arbitrary Lagrangian-Eulerian (ALE)

technique [131] as a convenient way to face the Lagrangian motion of a body through

an Eulerian flow field. The governing equations’ integral form is

d

dt

∫
Ω

UidΩ−
∫
S

Uiv
g
knkdS +

∫
Ω

∂fik
∂xk

dΩ = 0 (3.19)

where vgk is the solid body’s surface velocity. When v⃗g =0⃗, the equations’ description

is Eulerian, which allows for the simulation of a moving flow in a fixed computa-

tional mesh. On the contrary, when v⃗g is equal to the flow velocity, the equations’

formulation turns into a Lagrangian one, meaning that mesh nodes follow the mov-

ing material particles. Therefore, ALE is a generalization of the two aforementioned

flow field representations.

When a solid body performs an infinitesimally small displacement, all but mesh

boundary faces stay unaffected, meaning that only boundary flux expressions are

modified compared to the corresponding steady ones. Therefore, the steady equa-

tions’ discretization method presented in section 3.2 remains almost intact. The

following analysis aims to alleviate differences in moving wall fluxes by adjusting

the equations’ formulation. Without loss of generality, a finite volume is studied,

constituted by three internal and one solid face, fig. 3.4. Although the three faces 1,

3, and w are modified due to the wall’s motion, normal wall velocity vgknk is non-zero

only in face w, and therefore, it is the only face contributing to the surface integral

of eq. 3.19,

d

dt

∫
Ω

UidΩ− Uw
i v

g
jn

w
k ∆Sw +

3∑
m=1

fm
ikn

m
k ∆Sm + fw

ikn
w
k ∆Sw = 0 (3.20)



3.3. Temporal Term Discretization of the Compressible Equations 107

The temporal term is discretized as

d

dt

∫
Ω

UidΩ =
Ωn+1Un+1

i − Ωn+ 1
2U

n+ 1
2

i

∆t
(3.21)

where ∆t is the chosen physical time step. The computation of the conservative

variables and volumes at the intermediate time step (n+1/2) is discussed in subsec-

tion 3.3.3. Taking the no-penetration condition vwi n
w
i =vgi n

w
i on a moving wall into

account, the flux becomes

f⃗w
k n

w
k =


ρwvgi n

w
i

ρwvw1 v
g
i n

w
i + pwnw

1 − τw1jn
w
j

ρwvw2 v
g
i n

w
i + pwnw

2 − τw2jn
w
j

ρwvw3 v
g
i n

w
i + pwnw

3 − τw3jn
w
j

(ρwEw + pw)vgi n
w
i − vgi τ

w
ijn

w
j

 = U⃗wvgi n
w
i +


0

pwnw
1

pwnw
2

pwnw
3

pwvgi n
w
i


︸ ︷︷ ︸

f⃗ inv,w
k nw

k

−


0

τw1jn
w
j

τw2jn
w
j

τw3jn
w
j

vgi τ
w
ijn

w
j


︸ ︷︷ ︸

f⃗vis,w
k nw

k

(3.22)

where the no-slip (vwi = vgi ) and adiabatic wall (qwk nk = 0) boundary conditions

have also been taken into account in the viscous terms. Substituting the wall flux

expression into eq. 3.20 one gets

Ωn+1Un+1
i − Ωn+ 1

2U
n+ 1

2
i

∆t
+

3∑
m=1

fm
ikn

m
k ∆Sm+f inv,w

ik nw
k ∆Sw−f vis,w

ik nw
k ∆Sw = 0 (3.23)

Therefore, the term corresponding to the surface integral of eq. 3.19 vanishes and

unsteady wall flux is almost the same compared to its steady variant, eq. 3.14. Their

only difference appears in the energy equation, where v⃗g emerges, which should

be computed so as to satisfy the Geometric Conservation Law (GCL) [176]. This

ensures that no spurious mass, momentum or energy sinks appear in the flow domain.

The GCL is a straight consequence of the Reynolds transport theorem [260], stated

as
d

dt

∫
Ω

dΩ−
∫
S

vgknkdS = 0

A first-order forward-in-time finite difference scheme is used for its discretization

vgknk =
Ωn+1 − Ωn+ 1

2

∆t
∑

wall faces

∆Sw



108 K. D. Samouchos

The Ωn+ 1
2 computation does not guarantee that the resulting vgknk matches the user-

defined solid body’s velocity v̂gk =
dxg

k

dt
. Numerical experiments have shown that the

v̂gk choice over vgk facilitates convergence and results in a smoother flow field close to

the moving boundaries, and thus, its use is preferred.

Figure 3.4: Cell intersected by a moving boundary wall (red line). Square’s fluid

part is colored. Vectors show the boundary’s displacement direction. Blue numbers

and letter ’w’ (wall edge) name the four cut-cell edges.

3.3.2 Dual-Time Stepping

Moving boundaries flow applications have received an excessive amount of attention,

leading to a substantial number of discretization methods in the recent literature.

An implicit dual-time stepping method [202], firstly introduced by [179], is used

for eq. 3.23 time evolution, allowing for an implicit temporal treatment that decou-

ples the time step from the local mesh’ scale, avoiding further stability restriction

barriers. Consequently, time step choice is determined by the physics appropriate

handling rather than numerical restrictions. By increasing the time step, the num-

ber of times the geometry and mesh intersection is detected over the whole unsteady

simulation decreases, avoiding the frequent use of the most time-consuming part of

the mesh generator. Moreover, the dual-time formulation supports the straightfor-

ward incorporation of the already developed steady-state flow solver infrastructure,

discussed in section 3.2. The governing equations become

∂Ui

∂t
+

∂Ui

∂τ
+

∂fik
∂xk

= 0



3.3. Temporal Term Discretization of the Compressible Equations 109

and their discretization is

Ωn+1Un+1,q+1
i − Ωn+ 1

2U
n+ 1

2
i

∆t
+

Ωn+1Un+1,q+1
i − Ωn+1Un+1,q

i

∆τ
+

M∑
m=1

(fm
ikn

m
k ∆Sm)n+1,q+1 = 0

Recall that τ is referred to pseudo-time representing the internal iterative process,

and t is the physical time. Contrary to section 3.2, indices n and q stand for the time

and pseudo-time step counting, respectively. According to the developed algorithm,

at each time-step, the geometry moves to its new position, the mesh is regenerated,

and U⃗n+ 1
2 are computed. Then, flow field U⃗n+1 is initialized with U⃗n+ 1

2 values,

and a pseudo-time iteration process starts, until convergence is achieved, namely

|Un+1,q+1
i − Un+1,q

i | < eps, where eps is a predefined small number. By the end of

the current time step, the pseudo-time derivative term will vanish and, subsequently,

the same procedure is repeated for the next time step.

3.3.3 Covered and Uncovered Cells Treatment

The main difficulty related to the flow simulation around moving boundaries using

the cut-cell method and, generally, any IBM is the loss of mass, momentum, and

energy conservation due to several cells’ transition from solid to fluid and vice versa

at each time step. Although this issue has already been discussed in section 2.8,

where the cell-linking approach was introduced, this subsections deals with it from

the perspective of the flow equations discretization. According to that, both transi-

tions require delicate treatment leading to the U⃗n+ 1
2 field computation used in the

temporal term discretization presented in subsection 3.3.2.

Fig. 3.5 shows a fluid cell at time step n which is going to be covered by the solid

region. Starting from fig. 3.5c, two finite volumes are depicted, the lower of which

is going to disappear at the next time step. Indeed, the red boundary is lifted up

totally covering the brown cell. The mesh detail after the boundary’s motion at

time step n+1 is presented in fig. 3.5a, where only the upper finite volume appears,

deformed in shape. The cell’s cover causes the disappearance of the conservative

variables stored at its centroid. Within this context, an intermediate fake step

(n+1/2) is defined, fig. 3.5b. The lower cell is combined with its upper neighbor,

forming a merged hyper-cell. So, its contribution to the flow conservation variables

will be transferred into the neighboring cell, which continues to exist at time step

n+1. Flow variables at the intermediate step are computed ensuring conservation



110 K. D. Samouchos

as

Ωn+ 1
2 =

M∑
m=1

Ωmn

U
n+ 1

2
i =

M∑
m=1

Umn
i Ωmn

Ωn+ 1
2

(3.24)

where M is the total number of incorporated cells forming a merged finite volume.

On the other hand, different complications arise when newborn cells emerge at a

new time step. Their time integration by the governing equation is meaningless

due to the absence of their conservative variables’ time history. The case is also

exemplified in fig. 3.5. Starting from fig. 3.5a at time step n, where only the upper

cell belongs to the fluid domain, and following the red boundary lowering motion,

a new cell appears in fig. 3.5c with no time history. Therefore, it is linked to its

neighboring cell, yielding to the combined finite volume shown in fig. 3.5b. At time

instant n+1, the cells are separated again and are treated independently by the flow

solver. The volume and the conservative variables of each merged cell are updated

as follows,

Ωn+ 1
2 =

M∑
m=1

1

km
Ωmn

U
n+ 1

2
i =

M∑
m=1

Umn
i

1
km

Ωmn

Ωn+ 1
2

(3.25)

where M is the total number of cells combined to form a hyper-cell and km is the

number of merged cells the mth cell of the nth time instant is part of. In the simple

example illustrated in fig. 3.5, M =2 and km =1.

Consequently, spurious mass sources or sinks are avoided, and conservation is strictly

maintained. Moreover, the developed method does not impose any restriction to

the time step choice, allowing for large boundary displacements to occur covering

or uncovering a great number of cells. Large intermediate merged cells close to the

solid boundaries may reduce the simulation accuracy, but practice has shown that

it does not affect the global accuracy of the discretization method [53], [68]. Section

2.8 defines the criteria used to form the merged cells at the n+1/2 time instant for

appeared and disappeared cells.



3.3. Temporal Term Discretization of the Compressible Equations 111

(a) (b) (c)

Figure 3.5: By arranging the figures from left to the right, a new cell appears to the

fluid domain due to the red solid boundary’s lowering motion. In the reversed order,

a cell disappears from the fluid region. The squares’ colored segment indicates the

cells’ fluid part.

Another factor affecting the intermediate step n+1/2 computation is mesh adap-

tation to the moving boundaries, which also affects cells far from the solid wall.

Mesh is dynamically refined at each time step in the vicinity of the solid boundaries

following their motion and maximizing the simulation’s accuracy. According to sub-

section 2.8.1, this process embodies both coarsening and refinement tasks. Along

with the mesh adaptation, interpolation should be employed to transfer the flow

solution from the previous time step to the new one [273]. For the sake of clarity,

two simple cases are demonstrated. Firstly, during the refinement process, the cell

depicted in fig. 3.6a is subdivided into several cells of various sizes, fig. 3.6b. Flow

variables U⃗n+ 1
2 at the newly created cells are set equal to the initial cell’s values

U⃗n. On the other hand, by reversing the figures’ order, all cells, shown in fig. 3.6b,

are merged to form a single hyper-cell, fig. 3.6a. The following formulas are used to

attribute values to its centroid, ensuring the satisfaction of the conservation laws,

Ωn+ 1
2 =Ωn+1

U
n+ 1

2
i =

M∑
m=1

Umn
i Ωmn

Ωn+ 1
2

A matching process is required for both projections explained above, connecting

cells from one mesh to the other. Such an algorithm is explained in subsection 2.8.1.



112 K. D. Samouchos

(a) (b)

Figure 3.6: During the refining process, the cell on the left is subdivided into a

number of smaller cells on the right. Inversely, on a coarsening process, neighboring

cells on the right are merged to form the hyper-cell on the left.

3.4 Incompressible Fluid Flow Model

This section presents the equations governing incompressible flows. The governing

equations are not a sub-case of the compressible equations presented in section

3.1 because the equation of state no longer holds. The density field is considered

constant, causing the decoupling of the energy equation from the continuity and

momentum PDEs. Heat transfer flow problems are beyond the thesis scope, and,

therefore, the energy equation is not included in the mathematical model. The

governing equations are

Mij
∂Vj

∂t
+

∂f inv
ik

∂xk

− ∂f vis
ik

∂xk

= 0, i = 1, · · · , 4, k = 1, · · · , 3 (3.26)

where

V⃗ =


p

v1
v2
v3

 , f⃗ inv
k =


vk

vkv1 + δ1kp

vkv2 + δ2kp

vkv3 + δ3kp

 , f⃗ vis
k =


0

τ1k
τ2k
τ3k

 , M =


0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1





3.4. Incompressible Fluid Flow Model 113

where p denotes the pressure divided by the constant fluid’s density. The stress

tensor τ is expressed as

τik = ν

(
∂vi
∂xk

+
∂vk
∂xi

)
with ν being the kinematic viscosity µ/ρ.

A set of boundary conditions completes the above system of PDEs. In external

aerodynamics, boundaries are positioned far away from the examined geometry, and

all flow variables’ values are user-defined. The discretization scheme employed at the

boundary is responsible for their selective implementation depending on the local

flow conditions. On the other hand, in internal aerodynamics, a different set of flow

quantities is imposed at the inlet and outlet. Three Dirichlet conditions are imposed

at the inlet, two of which are the two angles identifying the velocity vector direction.

The third quantity can either be the total pressure or the velocity magnitude. In

the first case, velocity magnitude is extrapolated from the flow domain interior. The

corresponding primitive variables are computed as

p = pt −
1

2
v2i

v1 = v2i sin(θ)cos(ϕ)

v2 = v2i sin(θ)sin(ϕ)

v3 = v2i cos(θ)

where pt stands for the total pressure divided by density. The Bernoulli law is used

for the total pressure definition. In the second set of boundary conditions, pressure is

extrapolated from the flow domain. On the other hand, pressure is always imposed

at the outlet, and the three velocity components are extrapolated from the flow

domain.

Boundary conditions implied at the solid wall for inviscid or viscous flows are the

same for incompressible and compressible flows, see section 3.1. Finally, boundary

conditions on the symmetry plane are

∂p

∂n
= 0

vBC
i = vi − 2vknkni



114 K. D. Samouchos

3.5 Discretization of the Steady Incompressible

Laminar Equations

The study of eqs. 3.26 discretization starts by initially neglecting its viscous terms.

Their numerical solution represents some significant difficulties since the correspond-

ing system’s Jacobian matrix does not provide real eigenvalues. Thus, the system

of PDEs is not hyperbolic, and the techniques presented in section 3.2 are no more

applicable for the incompressible equations. The artificial compressibility approach

developed by Chorin [63] overcomes this difficulty by introducing an artificial density

(ρ̂) and the equation of state

pρ = β2ρ̂

where β is a positive real number called the artificial compressibility parameter and

is assumed to be constant along the flow field. It is also reminded that p stands for

the pressure divided by the constant fluid’s density. By mimicking the compressible

flow equations, eq. 3.1, the pseudo-temporal derivative of the density ( ∂ρ̂
∂τ

) is added

to the incompressible continuity equation. Thus, the steady variant of eqs. 3.26

becomes

Γ−1
ij

∂Vj

∂τ
+

∂f inv
ik

∂xk

= 0 (3.27)

with Γ being the preconditioner matrix equal to

Γ =


β2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


The governing equations’ multiplication with Γ modifies the inviscid flux as follows,

f⃗ inv,Γ
k = Γf⃗ inv

k =


β2vk

v1vk + δ1kp

v2vk + δ2kp

v3vk + δ3kp


For further details on this method and its generalization, the reader is referred

to [314], [315]. The flow equations’ mathematical nature alteration leads to a hy-

perbolic system allowing for numerical techniques implementation, similar to those

used for the compressible equations. The governing equations integration over a



3.5. Discretization of the Steady Incompressible Laminar Equations 115

finite volume complies with the same analysis presented in 3.2.1. Moreover, Go-

dunov discretization is also implemented in eps. 3.27. Therefore, a corresponding

1D Riemann problem should be solved to provide the appropriate flux expression

[87]. The properly modified Roe’s approximate Riemann solver gives

f̄ inv,Γ,m
ik nPQ

k =
1

2

(
f inv,Γ,L
ik + f inv,Γ,R

ik

)
nPQ
k − 1

2

∣∣∣ÃΓ
ijkn

PQ
k

∣∣∣ (V R
j − V L

j

)
(3.28)

where

AΓ
ijk =

∂f inv,Γ
ik

∂Vj

(3.29)

The preconditioned Jacobian AΓ
knk is diagonalizable with real eigenvalues. Absolute

Jacobian is defined as

|AΓ
ijknk| = P Γ

il |ΛΓ
lm|P

Γ,−1
mj (3.30)

The P Γ, ΛΓ and P Γ,−1 expressions can be found in [283] and Appendix D. Matrix

|ÃΓ
knk| is computed by using Roe averages, which are set to the mean quantities

between the L and R states. It is shown in [302] that this algebraic average satisfies

the Roe conditions,

Ṽi =
V L
i + V R

i

2
(3.31)

Proof of eq. 3.28 can be found in Appendix F.

According to the previous discussion, the absolute Jacobian matrix is a function

of the artificial compressibility parameter and, consequently, part of the flux dis-

cretization scheme. Thus, its value affects the final flow solution. Contrary to the

compressible equations, the influence of the pseudo-temporal term added to the

governing equations does not vanish after convergence is achieved. Therefore, the

simulation’s accuracy is based on the β value, which may be problematic in practical

applications. Research in this area has not yet concluded with the appropriate β

computation. Its value choice is a fact of experience and trial and error process.

Moreover, Jacobian matrix’ eigenvalues also depend on parameter β. Considering

that stability criteria are based on their values, one concludes that the artificial com-

pressibility parameter plays a significant role in the numerical instabilities reduction

and the convergence rate acceleration. Based on the theory presented in subsection

3.2.2, the optimal choice of β in terms of stability is the one that minimizes the

largest possible ratio of wave speeds generated between two neighboring finite vol-

umes [313]. After some algebra, shown in Appendix C, it is proven that the optimal



116 K. D. Samouchos

artificial compressibility parameter is given by

β2 = 3v2i (3.32)

This formula suggests that optimal β is locally adjusted depending on each cell’s

velocity magnitude rather than remaining constant over the flow domain. However,

this tactic leads to instabilities when very low-velocity magnitude regions exist and

is avoided throughout this thesis. Nevertheless, the above formula can still indicate

an appropriate global β value based on a characteristic flow field velocity.

A second-order discretization method is possible by applying the MUSCL method

of subsection 3.2.3. The extrapolation scheme of eq. 3.9 is also valid for incompress-

ible flows, where limiter expressions are given by eq. 3.10 or 3.11 and the required

gradient of V⃗ is computed by eq. 3.13.

In case of viscous incompressible flows, the viscous fluxes, eq. 3.26, should be mul-

tiplied by the preconditioning matrix Γ. However, the viscous flux remains intact

because Γf⃗ vis
k = f⃗ vis

k , and thus, the exact discretization method presented in subsec-

tion 3.2.7 can be applied.

Finally, the pseudo-time step ∆τ is computed by eq 3.18. The required sound speed

is considered infinite for incompressible flows due to the constant density assumption.

Artificial sound speed is used instead [87], which is defined as

c =
√

v2i + β2 (3.33)

3.6 Temporal Term Discretization of the Incom-

pressible Equations

Discretization of the unsteady incompressible equations around moving boundaries

presents similarities with the method developed for compressible flows in section

3.3. The ALE integral form of the governing equations, eq. 3.19, is also applied in



3.6. Temporal Term Discretization of the Incompressible Equations 117

this case, where the vector U⃗ is defined as

U⃗ =


0

v1
v2
v3


The equations’ discretization is exemplified by using the simple case depicted in

fig. 3.4, which leads to eq. 3.20. Temporal term is discretized by using eq. 3.21. The

corresponding flux on a moving wall displays some differences with respect to the

compressible case. It is expressed as

f⃗w
k n

w
k =


vgi n

w
i

vw1 v
g
i n

w
i + pwnw

1 − τw1jn
w
j

vw2 v
g
i n

w
i + pwnw

2 − τw2jn
w
j

vw3 v
g
i n

w
i + pwnw

3 − τw3jn
w
j

 = U⃗wvgi n
w
i +


vgi n

w
i

0

0

0

+


0

pwnw
1

pwnw
2

pwnw
3


︸ ︷︷ ︸

f⃗ inv,w
k nw

k

−


0

τw1jn
w
j

τw2jn
w
j

τw3jn
w
j


︸ ︷︷ ︸

f⃗vis,w
k nw

k

Thus, the ALE formulation discrete form is
0

Ωn+1vn+1
1 −Ωn+1

2 v
n+1

2
1

∆t

Ωn+1vn+1
2 −Ωn+1

2 v
n+1

2
2

∆t

Ωn+1vn+1
3 −Ωn+1

2 v
n+1

2
3

∆t

+


vgi n

w
i

0

0

0

+
3∑

m=1

fm
ikn

m
k ∆Sm+f inv,w

ik nw
k ∆Sw−f vis,w

ik nw
k ∆Sw = 0

Normal velocity vgi n
w
i can be substituted by using the discrete GCL

Ωn+1 − Ωn+ 1
2

∆t
− vgi n

w
i = 0

Then, the governing equations become

Ωn+1Ûn+1
i − Ωn+ 1

2 Û
n+ 1

2
i

∆t
+

3∑
m=1

fm
ikn

m
k ∆Sm + f inv,w

ik nw
k ∆Sw − f vis,w

ik nw
k ∆Sw = 0



118 K. D. Samouchos

with

⃗̂
U =


1

v1
v2
v3


Fluxes f⃗ inv,w

k nw
k and f⃗ vis,w

k nw
k are the same as those of a steady flow case. Moreover,

v⃗g has been vanished from the equations’ discrete expression, and there is no need

for its computation.

Dual time-stepping, discussed in subsection 3.3.2, is used for the equations’ propaga-

tion in time. The pseudo-time derivative multiplied with the preconditioner matrix

is added to the unsteady incompressible equations,

∂Ui

∂t
+ Γ−1

ij

∂Vj

∂τ
+

∂fik
∂xk

= 0⇔

Γij
∂Uj

∂t
+

∂Vi

∂τ
+ Γij

∂fjk
∂xk

= 0

The preconditioned equations’ discrete form is

Ωn+1ÛΓ,n+1,q+1
i − Ωn+ 1

2 Û
Γ,n+ 1

2
i

∆t
+

Ωn+1V n+1,q+1
i − Ωn+1V n+1,q

i

∆τ
+

M∑
m=1

(
fΓ,m
ik nm

k ∆Sm
)n+1,q+1

= 0

(3.34)

where

⃗̂
UΓ =


β2

v1
v2
v3


Flux fΓ,m

ik nm
k computation is presented in section 3.5. The algorithm implemented

for simulating unsteady flows is described in subsection 3.3.2. Geometrical and

flow variables computation at the intermediate time step (n + 1/2) is explained in

subsection 3.3.3.



3.7. Numerical Solution of the Discretized Flow Equations 119

3.7 Numerical Solution of the Discretized Flow

Equations

In sections 3.2, 3.3, 3.5 and 3.6, the numerical discretization of the compressible

and incompressible flow equations was studied, which leads to a non-linear algebraic

system of K×L equations, where K is the number of mesh cells, and L the number

of PDEs modeling the flow phenomenon. This section presents a point-implicit

method to solve this numerical system. Vector R⃗i ∈ RL represents the sub-system

corresponding to residuals of the ith finite volume and W⃗i is the vector of its unknown

variables. It is equal to U⃗ for compressible flows (eq. 3.1) and V⃗ for incompressible

flows (eq. 3.26). At each time step n, the Newton-Raphson algorithm [248] performs

the system linearization. For an arbitrary cell P , it is expressed as

̂∂RP,q+1
i

∂W k,q+1
j

∆W k,q+1
j = −RP,q+1

i , i = 1, · · · , L, k, P = 1, · · · , K

where ∆W k,q+1
j =W k,q+1

j −W k,q
j , with q denoting the current pseudo-time step. The

residual at each cell is not only a function of its flow variables, but also of those

corresponding to other cells around its region. Index k stands for the summation

of these dependencies. For simplicity reasons and for decreasing the computational

memory requirements, it is assumed that R⃗P depends only on W⃗ P and W⃗Qm , where

Qm is the mth first neighbor of cell P . Therefore, the system expressed in matrix

form is

DP
−−−→
∆W P +

M∑
m=1

ODm,P−−→∆WQm = −R⃗P (3.35)

with

DP
ij =

∂̂RP
i

∂W P
j

ODm,P
ij =

∂̂RP
i

∂WQm

j

i, j = 1, · · · , L

standing for the diagonal and off-diagonal matrix elements. The q+1 superscript has

been neglected for the sake of brevity. The hat symbol indicates that the residual

derivative is approximately estimated. Its exact computation is avoided reducing

numerical operations, which may lead to complicated and costly algorithms. How-



120 K. D. Samouchos

ever, the computed derivative should be accurate enough to drive the system into

convergence. It is essential to clarify that this approximation does not sacrifice the

flow simulation’s accuracy. The computation of D and OD matrices is presented

below.

By differentiating eq. 3.23 or 3.34 one gets

Dij =
Ωn+1

∆t
+

Ωn+1

∆τ
+

M∑
m=1

 ̂∂(f inv,m
ik nm

k )

∂W P
j

−
̂∂(f vis,m
ik nm

k )

∂W P
j


ODm

ij =
̂∂(f inv,m
ik nm

k )

∂WQm

j

−
̂∂(f vis,m
ik nm

k )

∂WQm

j

Repeated index m does not imply summation. Superscript P is omitted in terms in

which neither P nor Q index is mentioned. The simplified inviscid flux derivatives

for internal mesh faces are computed by differentiating eq. 3.4/3.5 or 3.28,

̂∂(f inv,m
ik nm

k )

∂W P
j

=
1

2
AP

ijkn
PQ
k − 1

2
|Ãijkn

PQ
k |

̂∂(f inv,m
ik nm

k )

∂WQm

j

=
1

2
AQ

ijkn
PQ
k − 1

2
|Ãijkn

PQ
k |

The absolute Jacobian matrix derivative multiplied by the flow variables vector is

assumed to be zero. In the case of a boundary face, flux contribution to the off-

diagonal matrix is considered zero. The compressible inviscid flux derivative on the

wall is

̂
∂(f⃗ inv,w

k nw
k )

∂W P
j

=


0 0 0 0 0

∂p
∂U1

nw
1

∂p
∂U2

nw
1

∂p
∂U3

nw
1

∂p
∂U4

nw
1

∂p
∂U5

nw
1

∂p
∂U1

nw
2

∂p
∂U2

nw
2

∂p
∂U3

nw
2

∂p
∂U4

nw
2

∂p
∂U5

nw
2

∂p
∂U1

nw
3

∂p
∂U2

nw
3

∂p
∂U3

nw
3

∂p
∂U4

nw
3

∂p
∂U5

nw
3

∂p
∂U1

vn
∂p
∂U2

vn
∂p
∂U3

vn
∂p
∂U4

vn
∂p
∂U5

vn


where vn =vgkn

w
k and

∂p

∂U⃗
= (γ − 1)


1
2
v2i
−v1
−v2
−v3

1





3.7. Numerical Solution of the Discretized Flow Equations 121

All the above flow quantities are computed by extrapolating their values from the

cell’s centroid to each face. The incompressible inviscid flux derivative on the wall

is

̂
∂(f⃗ inv,w

k nw
k )

∂W P
j

=


0 0 0 0

nw
1 0 0 0

nw
2 0 0 0

nw
3 0 0 0


The viscous part of the equations is similarly treated. Differentiation of the com-

pressible viscous flux is based on the following assumptions. Firstly, a simplified

orthogonal correction formula is used, instead of eq. 3.17,

∂Φ

∂xk

∣∣∣∣
m

≃ ∂Φ

∂α

∣∣∣∣
m

αk

where Φ is a velocity component or temperature. Another simplification is made by

linearizing the energy equation’s viscous terms. Therefore,

̂
∂(f⃗ vis,m

k nm
k )

∂W P
j

=



0 0 0 0
∂̂τn1

∂U1

∂̂τn1

∂U2

∂̂τn1

∂U3

∂̂τn1

∂U4

∂̂τn1

∂U5

∂̂τn2

∂U1

∂̂τn2

∂U2

∂̂τn2

∂U3

∂̂τn2

∂U4

∂̂τn2

∂U5

∂̂τn3

∂U1

∂̂τn3

∂U2

∂̂τn3

∂U3

∂̂τn3

∂U4

∂̂τn3

∂U5

vi
∂̂τni

∂U1
+ ∂̂qn

∂U1
vi

∂̂τni

∂U2
+ ∂̂qn

∂U2
vi

∂̂τni

∂U3
+ ∂̂qn

∂U3
vi

∂̂τni

∂U4
+ ∂̂qn

∂U4
vi

∂̂τni

∂U5
+ ∂̂qn

∂U5


with

∂̂τni

∂Uj

=− µ

(
∂vi
∂Uj

αknk +
∂vk
∂Uj

αink −
2

3

∂vk
∂Uj

αkni

)
∂̂qn
∂Uj

=− k
∂T

∂Uj

aknk

and

∂v⃗

∂U⃗
=

1

ρ

−v1 1 0 0 0

−v2 0 1 0 0

−v3 0 0 1 0

 ,
∂T

∂U⃗
=

1

cvρ


−E
−v1
−v2
−v3

1





122 K. D. Samouchos

where cv = R
γ−1

is the heat capacity at constant volume. All flow quantities needed

in the above expressions are computed on the face as explained in subsection 3.2.7.

Regarding the incompressible case, a similar strategy is followed. The derivatives of

the stress tensor projected in the normal direction are

∂̂τni

∂Uj

= −µ (αinj + αknkδi+1,j)

The same formulas are valid also for boundary fluxes for both compressible and

incompressible flows. Finally, the viscous off-diagonal term is

ODm
ij (W⃗Qm) = −Dij(W⃗

Qm)

The system of eqs. 3.35 for every cell P is iteratively solved by using the Symmetric

Gauss-Seidel (SGS) method [266]. The process terminates after a user-defined num-

ber of iterations is reached. Finally, the steps followed for simulating an unsteady

flow are

1. Initialize flow field.

2. Loop over mesh faces to compute contributions to R⃗, D, and OD from both

neighboring cells (scatter-add technique [186]).

3. Solve system, eq. 3.35, by applying the SGS iterative method, until the pre-

defined iterations’ number is reached.

4. Use system’s solution (∆W⃗ ) to recompute flow solution.

5. If convergence criterion is met, go to step 7.

6. Start a new pseudo-time step by continuing with step 2.

7. Start a new time step by initializing the past and current flow field with the

solution achieved in step 3.

8. If number of time steps is reached, terminate. Otherwise go to step 2.



3.8. The Ghost-Cell Method 123

3.8 The Ghost-Cell Method

The cut-cell method for solving compressible and incompressible flows has been dis-

cussed in detail in sections 3.1 to 3.6. Its Cartesian mesh treatment distinguishes the

method from the rest of IBMs. The cut-cells’ arbitrary shape results in a complicated

data structure and flow solver. On the other hand, the introduction of the ghost-cell

method, as a subclass of the IBMs, eases these difficulties keeping the benefits of

the automated mesh generation a Cartesian mesh offers. The intersection between

the immersed geometry and the mesh is not detected, and wall boundary conditions

are indirectly implemented, allowing to treat complicated moving geometries in a

straightforward manner. Its conceptual simplicity has attracted the scientists’ in-

terest resulting in a high number of publications, which leads to the development of

numerous variations of the method and its application to a considerable amount of

industrial cases.

In this thesis, a combination of the ghost-cell method developed in [74] and the

ghost-fluid method introduced in [92] is programmed to simulate compressible in-

viscid flows [215]. According to this, both the fluid and solid parts of the mesh are

used. The governing equations are discretized according to section 3.2 and solved

throughout the entire Cartesian mesh. The corresponding finite volumes coincide

with the cubic Cartesian cells, even for cells intersected by the solid wall, without

performing any further geometrical modification. Therefore, the only mesh bound-

ary is its outer box surface. Consequently, special treatment is needed in the vicinity

of the solid wall to implement the no-penetration condition, which is described in

detail in subsection 3.8.1.

3.8.1 Wall Boundary Conditions Implementation

The present approach firstly defines a ghost layer of predefined length equal to

3 3
√

∆x∆y∆z inside the solid body, where ∆x, ∆y and ∆z are the local cells’ dimen-

sions. If a cell’s centroid is placed inside this layer, it is called a “ghost-cell”. The

method’s main purpose is to mirror the flow field image through the boundary on

the ghost layer, defining each ghost-cell’s flow variables. This process is exemplified

in fig. 3.7 for a 2D case. It shows a mesh detail intersected by the solid wall de-

picted by a straight red line. The ghost layer is colored in gray. Two nodes G and

G′ are also shown. Point G′ is the image of the ghost cell’s centroid G through the



124 K. D. Samouchos

boundary. Let v⃗G′
be the velocity vector corresponding to G′. Then, the velocity

at the ghost-cell’s centroid is defined as

vGi = vG
′

i − 2vG
′

j njni (3.36)

where n⃗ is the unit vector normal to the boundary. Their mean velocity computed

at the GG′ segment’s midpoint satisfies the no-penetration condition v⃗ w · n⃗ = 0.

Many interpolation methods have been developed for the v⃗G′
computation. Most of

them express the velocity as a function of the neighboring cells’ velocity and their

distance from point G′.

Figure 3.7: Ghost-cell G is placed inside the ghost layer, colored in gray. It’s image

through the red wall is noted as G′. Velocity vector v⃗G′
, presented in blue, is copied

to cell G. Its normal to the wall component is reversed forming the green vector.

In order to avoid such complicated geometrical structures, the following method is

preferred. Firstly, the Signed Distance Function (SDF) Φ is computed at each cell’s

centroid. It is defined as the shortest distance between the centroid and the wall’s

surface. Its sign is positive for centroids placed inside the solid region and negative

for the rest. The Φ = 0 iso-surface represents the sold wall. A direct outcome of

the SDF definition is that the Φ gradient on the wall is equal to the unit normal

vector pointing from the fluid to the solid region. This property is used to define

the normal vector for each cell P as

nP
i =

∂Φ

∂xi

∣∣∣∣
P



3.8. The Ghost-Cell Method 125

Another notable property is that Φ satisfies the eikonal equation(
∂Φ

∂xi

)2

= 1

Various methods have been proposed for the SDF computation. Some of them are

based on the eikonal PDE numerical solution [280], [281], [345] and others on geo-

metrical computations [75]. The developed method belongs to the second category.

Initially, cells intersected by the geometry are detected, forming a front. Their dis-

tance from the surface is accurately computed. The closest surface point coordinates

are also stored for each cell. Subsequently, a second front is defined, which consists

of cells neighboring the first front. Each newly examined cell computes its distance

from the surface points stored in its first front neighbors and stores their minimum

as well as the corresponding surface point. The front propagation continues until all

cells are processed. This procedure may introduce inaccuracies, which are canceled

by repeating the algorithm several times until no further corrections are possible.

The second step of the wall boundary condition implementation is to transfer the

primitive variables from the flow domain (Φ < 0) to the ghost layer (Φ > 0) along

the normal direction. This process is made by solving the

∂Vi

∂n
= 0

PDE in the ghost layer for each primitive variable. A more useful formulation is

∂Vi

∂n
= 0⇔ ∂Vi

∂xj

nj = 0⇔ ∂Vi

∂xj

∂Φ

∂xj

= 0⇔ ∂Vi

∂τ
+

∂Φ

∂xj

∂Vi

∂xj

= 0

where a pseudo-time derivative has been added. This equation is hyperbolic, and an

upwind scheme is applied for its discretization. It is solved by repetitively accessing

each ghost-cell and correcting its primitive variables by

V n+1
i = V n

i −∆τ
∂Φ

∂xj

∂Vi

∂xj

∣∣∣∣
n

(3.37)

where n is the iterations’ counter. Φ gradient is computed by the Least Square

Method explained in subsection 3.2.5. Vi gradient is discretized by using a backward,

in case ∂Φ
∂xi

> 0, or forward, in case ∂Φ
∂xi

< 0, first-order finite differences scheme. For



126 K. D. Samouchos

example, the Vi derivative w.r.t. the x1 Cartesian coordinate is

∂V P
i

∂x1

=


V P
i −V̄

QL
i

∆x1
, ∂Φ

∂x1

∣∣∣
P
> 0

V̄
QR
i −V P

i

∆x1
, ∂Φ

∂x1

∣∣∣
P
< 0

where V̄ QL
i and V̄ QR

i are the left and right numerical averages between cell’s P

neighboring values. Fig. 3.8 presents such a case, in which V̄ QR
i =(V Q1

i + V Q1

i )/2.

Figure 3.8: Cell P borders on two neighboring cells Q1 and Q2 on its r.h.s. The

mean value of their primitive variables equals to V̄ QR
i , which is used for the eq. 3.37

discretization.

The iterative process’s stability is controlled by the pseudo-time step, which is

∆τ = min(
∆x1

n1

,
∆x2

n2

,
∆x3

n3

)

The last step is the reversal of the ghost-cells velocity’s normal component. Eq. 3.36

is transformed to

vG,new
i = vGi − 2vGj njni (3.38)

Therefore, the velocity at each ghost-cell is paired with the mirrored flow velocity

across the immersed boundary canceling its normal component at the wall.

The described method does not take the flow conservation laws into consideration,

and thus, mass, momentum, and energy leakage from the flow field to the solid’s

interior is unavoidable. Fig. 3.9 demonstrates this argument by comparing the way

the ghost-cell and the cut-cell methods treat the solid boundary. It’s evident that

the use of mesh squares as finite volumes allows for the flow to enter the solid

region violating the flow conservation laws. Mesh adaptation close to the fluid-



3.8. The Ghost-Cell Method 127

solid intersection increases the extrapolation’s accuracy sharpening the solid-fluid

interface and alleviating the flow penetration into the solid bodies. Therefore, a

denser mesh is usually used compared to the cut-cell method.

(a) (b)

Figure 3.9: The ghost-cell method (a) does not detect the mesh-geometry inter-

section allowing small flow portions to escape from the fluid domain, violating the

conservation laws. On the contrary, the cut-cell method (b) prevents the flow from

entering into the solid region (blue) by discarding the cut-cells’ solid part.

A comparison in terms of accuracy is made between the ghost-cell and the cut-

cell method in the following application. A duct with one inlet and two outlets is

used. Total pressure (1 bar) and total temperature (293 K) are imposed at the

inlet and static pressure (0.88 bar) at both outlets. Velocity magnitude contours

are shown in fig. 3.10. The white line stands for the duct’s wall and the blue region

indicates the mesh part in which the governing equations were not solved. When

the ghost-cell method is used, fig. 3.10a, the velocity field is successfully mirrored

into the ghost layer, indirectly imposing the no-penetration boundary condition.

On the other hand, when the cut-cell method is implemented, fig. 3.10b, the fluid

region’s and duct’s boundaries coincide. Mass loss percentage deviation is measured

for three different mesh sizes for both methods. Results are summarized in table

3.1. As expected, the cut-cell method successfully satisfies the mass conservation.

Contrarily, the error is high enough in the ghost-cell method and decreases by the

mesh size increase. Moreover, mesh independence is achieved in much larger meshes

resulting in a higher computational cost.



128 K. D. Samouchos

Mesh size (K) Ghost-Cell (%) Cut-Cell (%)

5 - 0.091
10 2.34 0.018
20 2.23 0.018

Table 3.1: The one-inlet-two-outlets duct: Mass conservation percentage devia-

tion between inlet and outlets. Comparison between the ghost-cell and the cut-cell

method for three different mesh sizes.

(a)

(b)

Figure 3.10: The one-inlet-two-outlets duct: Iso-velocity magnitude contours. The

white line indicates the duct’s wall. Flow simulation is implemented by (a) the

ghost-cell and (b) the cut-cell method. Flow field presence in the solid region in (a)

corresponds to the ghost layer.



3.8. The Ghost-Cell Method 129

3.8.2 The Unsteady Ghost-Cell Method Implemented in Mov-

ing Walls

In unsteady cases, the geometry motion causes changes in the SDF. At each time

step, Φ should be modified, increasing the simulation’s computational cost. How-

ever, its recomputation through the algorithm, presented in subsection 3.8.1, is

usually avoided and other methods are used instead. For example, in turbomachin-

ery applications, Φ field is rotated following the rotor blades’ motion surpassing the

algorithm’s repetitive implementation. Since mesh boundaries remain intact, grid

velocity is zero, and the corresponding surface integral of ALE formulation, eq. 3.19,

vanishes. Wall velocity (v⃗ w) is induced to the discretized system through the ghost-

cells’ flow variables. Mirroring implemented in steady cases by eq. 3.38 is modified

becoming

vG,new
i = vGi + 2(vwj − vGj )njni (3.39)

The temporal term is discretized by backward first-order finite differences. Con-

trary to the cut-cell method, cells’ shape remains intact during the flow simulation.

Thus, geometries motion does not cause cells appearance or disappearance. Flow

variables stored at each finite volume continuously change throughout the unsteady

phenomenon, allowing for a straightforward temporal term discretization. Its time

step should be small enough to guarantee that only ghost-cells appear in the fluid

region, preventing the entrance of other solid cells. Thus, a large number of time

iterations is unavoidable, and a fully explicit discretization method is preferable due

to its low computational cost at each time step. In such a case, no pseudo-time

iterations are performed, and the flow variables are computed as

Un+1
i = Un

i −∆t
M∑

m=1

(fm
ikn

m
k ∆Sm)n (3.40)

avoiding the formation and solution of a linear system. Section 9.5 implements the

described method to predict the flow around a compressor rotor.

Consequently, the ghost-cell method is advantageous compared to other CFD meth-

ods in cases concerning flows around complex geometries and perplexed geometry

motions. Moreover, it can easily handle cases in which the initial topology changes.

Furthermore, it is an easily implemented method. However, its accuracy is lower

than the cut-cell method, but can be increased to some extent by using a much more

dense mesh close to the fluid-solid interface.



Chapter 4

Flow Solver Assessment

This chapter presents a detailed validation/verification of the developed cut-cell flow

solver, in numerous compressible and incompressible cases selected from the litera-

ture. External and internal aerodynamics, with inviscid and viscous (laminar) flows,

as well as flows around stationary or moving bodies are considered. The applica-

tions were chosen based on the presence of analytical flow solutions or experimental

or other reliable CFD software results. Firstly, applications for inviscid flows are

considered, where the accuracy of the proposed discretization and the imposition of

accurate boundary conditions along the solid wall will be demonstrated. Then, lam-

inar flow cases are developed, and the way the Cartesian mesh irregularities on the

boundary affect the layer’s development. Finally, the method’s ability to correctly

solve the flow equations around moving solid bodies while satisfying the conserva-

tion laws, is investigated. The purpose of this chapter is to demonstrate the cut-cell

software ability to produce highly accurate results, equivalent to that obtained by

using body-fitted meshes, maintaining all Cartesian mesh advantages.

4.1 Compressible Flow Solver Assessment

In this section, the validation/verification of the compressible flow solver is pre-

sented. Regarding inviscid flow simulations, the external aerodynamics around a

NACA0012 airfoil, a wedge, the ONERA M6 wing, and the flow within a converging-

diverging duct in transonic flow conditions are presented. Concerning laminar flow

130



4.1. Compressible Flow Solver Assessment 131

simulations, velocity and temperature boundary layer profiles are reproduced in a

flat plate case and the NACA0012 airfoil. The cut-cell software results are compared

with analytical solutions and/or the outcome of other CFD codes should those be

available.

4.1.1 Inviscid Flow Over the NACA0012 Isolated Airfoil

This case concerns the 2D inviscid transonic flow over an isolated airfoil. The

accuracy of the cut-cell code is assessed through comparisons with computational

results published in the AGARD No 211 report [97], where the Euler equations were

solved by using a body-fitted O-type structured mesh of 20K nodes. The studied

geometry is the symmetric NACA0012 airfoil with modified/closed trailing edge. Its

upper surface is defined by

ȳ(x) = 5t(0.2969
√
x̄− 0.126x̄− 0.3516x̄2 + 0.2843x̄3 − 0.1015x̄4)

where t=0.12 is the thickness parameter, x= x̄/x0, y= ȳ/x0 and x0 =1.008930411365,

x∈ [0, 1]. The far-field flow conditions are M∞ = 0.85 and α∞ = 1◦. Mesh adapta-

tion was used to increase the simulation’s accuracy by refining the mesh six times,

every 600 pseudo-time iteration steps. The final mesh of 80K cells and a close-up of

the pressure side’s shock region are shown in figs. 4.1a and 4.1b, respectively. The

wall-clock time of this computation is 35 min. using 48 processors. The computed

iso-Mach lines and contours are shown in fig. 4.2, where the two shock waves can be

seen in both airfoil sides. Fig. 4.4 shows the convergence results, where the residual

overshootings indicate the iteration, at which the mesh adaptation occurs. Com-

parison of the Mach number distribution over the airfoil’s surface and the pressure

coefficient with results given by [97] shows good agreement, fig. 4.3. The shock waves

have been detected in the same position, although no adaptation has been used by

[97]. Consequently, the corresponding pressure jumps computed by the cut-cell soft-

ware are steeper leading to a small disagreement in the lift and drag coefficients, as

shown in table 4.1.



132 K. D. Samouchos

(a) (b)

Figure 4.1: Inviscid flow of a compressible fluid over the NACA0012 isolated airfoil:

(a) Mesh adaptation in the vicinity of the pressure and suction sides’ shock waves.

(b) Mesh adaptation detail around the suction side’s shock wave. Thanks to mesh

adaptation, shock waves of infinitesimally low thickness have been computed.

Figure 4.2: Inviscid flow of a compressible fluid over the NACA0012 isolated airfoil:

Computed Mach number iso-lines.



4.1. Compressible Flow Solver Assessment 133

(a) (b)

Figure 4.3: Inviscid flow of a compressible fluid over the NACA0012 isolated airfoil:

(a) Mach number and (b) pressure coefficient distributions over the airfoil surface.

Comparison between the cut-cell results and the CFD results of [97] computed using

a body-fitted mesh.

Figure 4.4: Inviscid flow of a compressible fluid over the NACA0012 isolated air-

foil: Convergence history. Residual overshootings indicate iterations at which mesh

adaptation occurs.



134 K. D. Samouchos

Cl Cd

Cut-Cell 0.335 0.0554
Reference 0.330 0.0528

Deviation (%) 1.52 4.92

Table 4.1: Inviscid flow of a compressible fluid over the NACA0012 isolated airfoil:

Lift and drag coefficients computed by the cut-cell software and results given by

[97].

4.1.2 Inviscid Flow Over a Wedge

The purpose of this application is to test the cut-cell method’s ability to accu-

rately simulate a discontinuity in the worst-case scenario, which happens when a

45◦ oblique shock wave occurs in a square flow domain, meaning that the wave’s

direction is parallel to all mesh’ cells diagonals. Therefore, a wedge is placed into

a supersonic compressible flow. For a given corner angle θ (wedge’ half angle), an

oblique shock wave of angle β is created, as shown in fig. 4.5. The upstream hor-

izontal streamlines are uniformly deflected after the shock wave, changing the flow

direction and parallelizing it to the wedge surface. The flow remains uniform be-

fore and after the shock wave, while a discontinuous change occurs along the shock

surface. According to the inviscid gas dynamics theory, the θ−β−M equation [181]

tanθ = 2cotβ
M2

1 sin
2β − 1

M2
1 [γ + cos(2β)] + 2

expresses the relation between the wedge and shock angles and the upstream Mach

number. Mach numbers before and after the shock are related using the equation

M2
2 sin

2(β − θ) =
1 + γ−1

2
M2

1 sin
2β

γM2
1 sin

2β − γ−1
2

where γ = 1.4 is the heat capacity ratio [181]. The Mach number upstream the

wedge is set equal to 2. According to the θ−β−M equation, a 45◦ oblique shock

wave is created by setting θ ≃ 14.73◦.

The symmetric Mach number field and the adapted mesh are shown in figs. 4.6a and

4.6b respectively. The shock capturing algorithm successfully detected the disconti-

nuity by refining the mesh in a small region around the shock. Despite the difficulty

of capturing a 45◦ shock wave by using a Cartesian mesh, the cut-cell software ac-



4.1. Compressible Flow Solver Assessment 135

curately solved the flow equations producing two regions of constant flow variables

and a sharp discontinuity between them. The Mach number distribution along the

horizontal line y = 0.4m and the corresponding analytical solution are plotted in

fig. 4.7. The comparison between them shows the high accuracy of the proposed

method.

Figure 4.5: Inviscid flow of a compressible fluid over a wedge: Theoretical solution

of the oblique shock (red line) created by the horizontal supersonic flow over the

wedge. Two streamlines (in black) denote the velocity vector change before and

after the shock wave.

(a) (b)

Figure 4.6: Inviscid flow of a compressible flow over a wedge: (a) Mach number field

and velocity streamlines computed by the cut-cell software and (b) adaptive mesh

refinement over the oblique shock wave.



136 K. D. Samouchos

Figure 4.7: Inviscid flow of a compressible fluid over a wedge: Mach number distri-

bution along line y=0.4 m. Comparison between the analytical (black) and cut-cell

(red) solution.

4.1.3 Convergent-Divergent Duct Flow

The flow inside a convergent-divergent duct with adiabatic walls is the next verifi-

cation case. It is appropriate to study mass, momentum, and energy conversation

throughout the duct, being a crucial issue in most IBMs. Assuming that the duct

area variation is moderate, the perpendicular to the duct axis velocity components

are small compared to the parallel ones. According to that, the flow is considered

constant across any cross-section, and an analytical quasi-1D flow solution can be

obtained. More details about the analytical solution can be found in [14]. A com-

parison between the analytical solution and the numerical results along the duct’s

axis of symmetry gives essential evidence about the cut-cell software accuracy. The

cross-section distribution in the axial direction is

A(x) =

{
1.75− 0.75cos[(0.2x− 1)π], 0 ≤ x < 5

1.25− 0.25cos[(0.2x− 1)π], 5 ≤ x ≤ 10

Total pressure and temperature are the imposed boundary conditions at the inlet

(pt = 1 bar and Tt = 290 K). The static outlet pressure is set equal to 0.86 bar,

causing the appearance of a shock wave in the duct’s divergent part. The computed

by the cut-cell method Mach number flow field is shown in fig. 4.8. The computation

accuracy is increased by using mesh adaptation over the normal shock, as depicted



4.1. Compressible Flow Solver Assessment 137

in fig. 4.9. It is computationally verified that the flow and mesh adaptation are

fully axisymmetric. Mach number and static pressure distributions along the duct’s

centerline are compared with the quasi-1D analytical solution. The comparison

presented in fig. 4.10 shows the cut-cell software’s ability to predict the exact shock

wave position and compute a highly accurate flow field. The mass and energy flux

difference between the duct inlet and outlet is significantly small, as shown in table

4.2, indicating the cut-cell method’s ability to satisfy flow conservation. Moreover,

table 4.3 compares the inlet mass and energy flux and the exerted axial force on

the duct between numerical and analytical solutions, confirming the high accuracy

of the programmed cut-cell software.

Figure 4.8: Inviscid flow of a compressible fluid in a duct: Mach number field and

velocity streamlines. A normal shock wave is formed in its divergent part.

Figure 4.9: Inviscid flow of a compressible fluid in a duct: Mach number field iso-

areas. Mesh adaptation close to the normal shock.



138 K. D. Samouchos

(a) (b)

Figure 4.10: Inviscid flow of a compressible fluid in a duct: (a) Mach number and (b)

pressure distributions. Comparison between the cut-cell solution along the centerline

(red) and pseudo-1D analytical solution (black).

Mass (Kg/s) Energy (MJ/s)

Inlet 237.27 69.133

Outlet 237.29 69.138

Deviation (%) 0.0067 0.0072

Table 4.2: Inviscid flow of a compressible fluid in a duct: Duct’s inlet and outlet

mass and energy flux.

Mass (Kg/s) Force (kN) Energy (MJ/s)

Cut-Cell 237.27 95.527 69.133

Reference 237.32 95.52 69.147

Deviation (%) 0.0013 0.0082 0.013

Table 4.3: Inviscid flow of a compressible fluid in a duct: Cut-cell and analytical

results regarding the inlet mass and energy flux and the exerted force on the duct.

Deviation between the aforementioned values is also shown.



4.1. Compressible Flow Solver Assessment 139

4.1.4 Parallel Flow Over a Flat Plate

The following subsections aim the validation/verification of the software for the

simulation of viscous (laminar) flows. The next application focuses on the mesh’

Cartesian structure effect on the boundary layer development. Most of the time,

the Cartesian mesh lines are far from orthogonal to the geometry surface. This

irregularity affects the velocity spatial derivative accuracy close to the solid wall

and harms the accurate computation of viscous fluxes. In particular, the skin fric-

tion appears quite noisy in most IBMs [36]. However, the proposed cut-cell method

overcomes these difficulties, confirmed by the following flat plate boundary layer

study placing the plate parallel and inclined by 15◦ to the mesh lines. These cases

correspond practically to the same phenomenon, and their study investigates how

the mesh orientation at the plate’s surface affects the simulation accuracy. In both

cases, the flow domain is 1.25 m long and 1.0 m high, enforcing no-slip wall bound-

ary conditions only after 20% of its length. Total pressure and temperature are

imposed at the inlet and static pressure at the outlet. The characteristic dimension-

less numbers at the far-field are M∞ =0.5, Re∞ =850, Pr∞ =0.72 and the far-field

angle-of-attack is always parallel to the plate.

The cut-cell software results are compared with the Blasius theory solution extended

for compressible flows [61]. According to that, the velocity and total enthalpy fields

inside the boundary layer are

u(x, y) = u∞f ′(η)

H(x, y) = H∞g(η)

where x, y are the parallel and vertical directions to the plate and η is defined as

η =

√
u∞

2ρ∞µ∞x

∫ y

0

ρdy

The f and g functions are the solutions of the following o.d.e.’s.

f ′′′ + ff ′′ = 0

g′′ + Pr∞fg′ = σ̄(1− Pr∞) (f ′f ′′)
′
, σ̄ =

(γ − 1)M2
∞

1 + γ−1
2
M2

∞

The boundary conditions are f(0)=0, f ′(0)=0, f ′(∞)=1, g′(0)=0, g(∞)=1. The



140 K. D. Samouchos

aforementioned analytical solution requires adiabatic wall boundary conditions and

the use of a linear relation between dynamic viscosity and temperature, expressed as

µ/µ∞ =T/T∞. Thermal conductivity should follow the same rule (k/k∞ =T/T∞).

Figs. 4.11 and 4.12 show the velocity and temperature boundary layers for the hor-

izontal and the inclined flat plate respectively. A mesh detail close to the beginning

fo the boundary layer is shown in fig. 4.13. The mesh irregularity does not prevent

the formulation of a smooth velocity field, especially in the inclined plate where

non-uniform fully unstructured cut-cells are generated. This argument is further

established by comparing the velocity and temperature profiles of numerical and

analytical solutions taken at 90% of the flow domain length (figs. 4.14, 4.15). Even

in the inclined plate case, the computed profiles remain smooth and very close to

the analytical ones, meaning that the non-uniform cut-cells do not sacrifice the flow

simulation’s accuracy. Furthermore, skin friction coefficient is well predicted along

the plate’s surface and compares nicely with the analytical solution, fig. 4.16. A

mesh sensitivity analysis is presented in the same plot, where the mesh refinement

leads to more accurate results as the red line becomes the blue one, being much

closer to the straight analytical line. Moreover, in the inclined case, the results are

compared with an other cut-cell software [36], in which a quadratic reconstruction in

the wall-normal direction is used near the walls to mitigate mesh irregularity. The

governing equations were discretized using the finite volume approach and the HLLC

Riemann solver. The comparison shows good agreement confirming the proposed

method’s high accuracy.

(a) (b)

Figure 4.11: Laminar flow of a compressible fluid over flat plate: (a) Velocity and

(b) temperature boundary layers over a horizontal plate.



4.1. Compressible Flow Solver Assessment 141

(a) (b)

Figure 4.12: Laminar flow of a compressible fluid over flat plate: (a) Velocity and

(b) temperature boundary layers over an inclined plate.

(a) (b)

Figure 4.13: Laminar flow of a compressible fluid over flat plate: Velocity magnitude

contours over (a) a horizontal and (b) an inclined plate. The non-uniform cut-cells

do not affect the computed flow field smoothness.



142 K. D. Samouchos

(a) (b)

Figure 4.14: Laminar flow of a compressible fluid over flat plate: (a) Velocity and

(b) temperature profiles over a horizontal plate at 90% of its length. Comparison

with analytical solutions.

(a) (b)

Figure 4.15: Laminar flow over a compressible flat plate: (a) Velocity and (b)

temperature profiles over an inclined plate computed along a vertical line positioned

at 90% of the flow domain length. Comparison with analytical solutions.



4.1. Compressible Flow Solver Assessment 143

(a) (b)

Figure 4.16: Laminar flow of a compressible fluid over flat plate: Skin friction

coefficient for (a) a horizontal and (b) an inclined plate. Results from an other

cut-cell software [36] are shown with green dots.

4.1.5 Laminar Flow Over the NACA0012 Isolated Airfoil

Another test case is a NACA0012 isolated airfoil exposed to a laminar flow at M∞ =

0.5, Re∞ = 5000, Pr∞ = 0.72, and α∞ = 0◦. In contrast to the flat plate case, the

development of the boundary layer on curved walls is studied. Fig. 4.17a shows

the mesh refinement close to the airfoil’s surface to ensure the accurate boundary

layer computation. Moreover, cells have been further subdivided into smaller parts

in the downstream direction by defining, in the mesh generation software input

file, the region where more refinement is needed. Fig. 4.17b shows a close-up view

of the mesh around the airfoil’s leading-edge, indicating the challenging process

of computing a smooth boundary layer due to the problematic surface orientation

concerning the Cartesian mesh lines direction. However, mesh non-orthogonality at

the boundary does not affect the flow field smoothness. The Mach number field is

presented in fig. 4.18. Finally, results are compared with corresponding data from

[297], where a body-fitted structured C-type mesh of 8M nodes was used. In that

study, the convective terms were discretized by applying a finite-volume approach

and a three-point second-order scheme with a Roe-type numerical dissipation. The

viscous terms were discretized with a second-order central difference approximation.

Fig. 4.19 compares the pressure and skin friction coefficient distributions around

the body with the aforementioned data from the literature. Both distributions are



144 K. D. Samouchos

smooth along the airfoil and agree well with the cited results.

(a) (b)

Figure 4.17: Laminar flow of a compressible fluid over the NACA0012 isolated airfoil:

(a) Mesh is refined close to the airfoil and downstream. (b) Mesh close-up view

around the leading-edge.

Figure 4.18: Laminar flow of a compressible fluid over the NACA0012 isolated airfoil:

Mach number iso-areas computed by the cut-cell method.



4.1. Compressible Flow Solver Assessment 145

(a) (b)

Figure 4.19: Laminar flow of a compressible flow over the NACA0012 isolated air-

foil: (a) Pressure and (b) skin friction coefficient distributions around the airfoil.

Comparison between the cut-cell software results (red) and CFD results provided

by [297] (black).

4.1.6 Inviscid Flow over ONERA M6 wing

This case is concerned with the flow over the ONERA M6 wing, which is a typi-

cal CFD validation case for external flows leading to a great number of CFD and

experimental data available in the literature. The wing’s analytical geometrical de-

scription can be found in [97]. Far-field flow parallel to the XZ plane (fig. 4.20) of

M∞ =0.84 and α∞ =3.06◦ forms a transonic and turbulent phenomenon. However,

the presented results of the cut-cell software, assume that the flow is inviscid. The

following comparative study is based on results produced by CFL3D, a turbulent

flow solver created by NASA which makes use of body-fitted meshes [286].

A mesh of 1.4M cells which adapts along the two shock waves formed in the wing’s

suction side was used. A slice vertical to the wing spanwise direction is displayed in

fig. 4.20, where the Mach number field and mesh adaptation are shown. Assuming

that the pressure coefficient at wing’s sections along the span is accurately com-

puted despite the inviscid flow simplification, a comparison is performed consisting

of cut-cell, CFL3D results and experimental data provided by [275]. Fig. 4.21 shows

the sections defined at 20%, 44%, 65%, 80%, and 90% of span length, where the

pressure coefficient has been measured. Results plotted in fig. 4.22 show good agree-

ment among the cut-cell software, CFL3D, and experimental data. Shock position

has been accurately predicted causing an abrupt static pressure rise. The difference



146 K. D. Samouchos

between experimental data and cut-cell results is significantly small and compara-

ble with the corresponding difference from CFL3D results, confirming the cut-cell

method’s ability to successfully handle 3D applications.

Figure 4.20: Inviscid flow of a compressible fluid over ONERA M6 wing: Mach

number field on a slice perpendicular to the spanwise direction. Mesh is adapted

close to the two normal shocks formed on the wing suction side.

Figure 4.21: Inviscid flow of a compressible fluid over ONERA M6 wing: Slices de-

fined at 20%, 44%, 65%, 80%, and 90% of span length, where the pressure coefficient

is measured (see fig. 4.22).



4.1. Compressible Flow Solver Assessment 147

(a) (b)

(c) (d)

(e)

Figure 4.22: Inviscid flow of a compressible fluid over ONERA M6 wing: Pressure

coefficient distribution on slices shown in fig. 4.21 starting from the wing’s root and

ending close to the tip. Results are produced by the cut-cell software (red), CFL3D

(blue) and experimental measurements (black).



148 K. D. Samouchos

4.2 Incompressible Flow Solver Assessment

Herein, the programmed cut-cell flow solver for incompressible fluids is assessed

in a number of internal and external aerodynamics test cases. The inviscid flow

around the Joukowski airfoil, a cylinder, and inside a convergent-divergent duct is

studied. The software’s ability to predict viscous effects is analyzed through the

laminar flow over a cylinder and inside a driven cavity and a 3D S-bend duct. The

cut-cell software results are compared with experimental data or analytical solutions

wherever available.

4.2.1 Inviscid Flow over the Joukowski airfoil

The Joukowski foil is a common case study in fluid dynamics, although it does not

find any practical aeronautical application. Its value is derived from the existence

of an analytical solution obtained by a conformal mapping introduced by Nicolai

Zhukovsky, which transforms the well known potential flow over a cylinder to the

flow past a family of airfoil shapes.

The airfoil’s surface is defined as x=Re(ζ), y=Im(ζ), where ζ is given parametri-

cally in the complex plane by

ζ = z +
a2

z
,

z

α
= 1 +

R

α
(eiθ − e−iβ)

where θ ∈ [−β, 2π − β]. Max. and min. θ values correspond to the trailing edge.

The airfoil’s baseline curvature is determined by the parameter β and its thickness

by R/α, where α is the angle of attack (in rad). Velocity magnitude on its surface

is given by

v

v∞
= [2sin(θ − α) + sin(α + β)]

∣∣∣∣∣ z

z − α2

z

∣∣∣∣∣
Pressure and lift coefficients are equal to Cp = 1 −

(
v
v∞

)2
and Cl = 8πR

c
sin(α +

β) respectively, where c is the airfoil’s chord. More details about the Joukowski

conformal mapping can be found in [267]. The parameters mentioned above are:

α=β=5◦ and R/α=1.1.



4.2. Incompressible Flow Solver Assessment 149

The airfoil is exposed to flow of v∞ = 10 m/s and p∞ = 1 bar. A mesh of 90K

cells was used, and the simulation wall-clock time was 16 min. on 48 processors.

The governing equations residual convergence is plotted in fig. 4.24. The velocity

contours are shown in fig. 4.23. The pressure coefficient computed by the cut-cell

method agrees well with the analytical solution except from a small region close

to the leading edge, as shown in fig. 4.25. Its smoothness and accuracy should be

mentioned. Moreover, a mesh sensitivity analysis is made, where the lift coefficient

error is computed for every gradually refined mesh, fig. 4.26. The last two presented

meshes have the same number of cells, and their only difference is detected in the

number of points used for the airfoil’s representation. 2K points were used in all

but the last case, in which their number increased by a factor of 10. Increasing the

number of points in the geometry significantly increases the lift coefficient accuracy.

The cut-cell method allows for different geometry and mesh resolutions, and their

incompatibility may cause inaccuracies. A general rule can be formulated, indicating

that the geometry resolution should always be higher than the mesh resolution so

as at least two points of the solid body’s contour belong to each mesh cell. The

lift coefficient error computed in the most refined mesh is significantly small, as

demonstrated in table 4.4.

Figure 4.23: Inviscid flow of an incompressible fluid over Joukowski airfoil: Velocity

magnitude iso-areas.



150 K. D. Samouchos

Figure 4.24: Inviscid flow of an incompressible fluid over Joukowski airfoil: Conver-

gence of the residuals of mass and momentum equations in the cut-cell method.

Figure 4.25: Inviscid flow of an incompressible fluid over Joukowski airfoil: Pressure

coefficient distribution computed by the cut-cell software (red) are compared with

the analytical solution (black).

Cl

Cut-Cell 1.19092
Reference 1.19093

Deviation (%) 0.00084

Table 4.4: Inviscid flow of an incompressible fluid over Joukowski airfoil: Lift co-

efficient values given by the cut-cell software and the analytical solution. Their

percentage deviation is shown as well.



4.2. Incompressible Flow Solver Assessment 151

(a) (b)

Figure 4.26: Inviscid flow of an incompressible fluid over Joukowski airfoil: (a) Lift

coefficient and (b) the corresponding percentage error variation due to the gradual

mesh refinement. The last two points represent two meshes with the same number

of cells but a different number of points on the airfoil’s surface. The black line in

the left figure represents the value given by the analytical solution.

4.2.2 Inviscid Flow over cylinder

Flow simulation over a cylinder is pretty challenging for an IBM and a proper

validation case for the cut-cell software. Due to its shape, the flow on its surface

is far from parallel to the Cartesian mesh lines producing high artificial dissipation.

Fig. 4.27 shows a mesh detail to illustrate the non-orthogonality of mesh lines on the

solid boundary. The computational results are compared with the analytical solution

available for potential flow [267]. According to this theory, the pressure coefficient

and tangential velocity on the cylinder’s surface parameterized as x⃗=(cosθ, sinθ) is

given by

vt = −2v∞|sinθ|
Cp = 1− 4sin2θ

where v∞ is the freestream velocity. Fig. 4.28 presents the velocity and pressure

contours around the cylinder corresponding to the far-field conditions v∞ =20 m/s

and p∞ = 1 bar. Tangential velocity along the wall and pressure coefficient dis-

tributions are displayed in fig. 4.29. The plotted curves are smooth despite mesh

irregularities close to its boundary. Comparison with the analytical solution certifies



152 K. D. Samouchos

the software’s accuracy.

Figure 4.27: Inviscid flow of an incompressible fluid over cylinder: Mesh detail shows

its irregularity close to the cylinder’s boundary.

(a) (b)

Figure 4.28: Inviscid flow of an incompressible fluid over cylinder: (a) Velocity

magnitude contours and (b) iso-bar lines.



4.2. Incompressible Flow Solver Assessment 153

(a) (b)

Figure 4.29: Inviscid flow of an incompressible fluid over cylinder: (a) Tangential

velocity over the cylinder’s surface. (b) Pressure coefficient distribution. Curves are

given by the cut-cell software (red) the analytical solution (black).

4.2.3 Convergent-Divergent Duct Flow

The case of a flow inside a convergent-divergent duct allows for the study of the in-

compressible flow solver ability to satisfy mass and momentum conversation through-

out the duct. The duct shape has already been defined in subsection 4.1.3. Total

pressure (1 bar) is imposed at the inlet and static pressure (0.995 bar) at the outlet.

Flow results accuracy is tested as follows. Firstly, fig. 4.30 shows the computed

velocity iso-areas, where its symmetry is computationally verified. Secondly, mean

velocity in every section is computed analytically and compared successfully with

the numerical one fig. 4.31a. Finally, the software’s ability to keep the total pressure

constant along the duct is investigated, fig. 4.31b. Mass flow difference between the

duct inlet and outlet, shown in table 4.5, is essentially small verifying the cut-cell

method’s high accuracy. Table 4.6 compares the inlet mass flow and the exerted

axial force on the duct between the cut-cell and analytical solutions, certifying the

softwares’s high accuracy. The analytical value of the exerted force is computed

based on uniform velocity profile assumption at each cross-section. Consequently,

the proposed cut-cell method preserves the flow equations conservation property and

prevents flow loss through the solid walls by successfully imposing no-penetration

over the walls.



154 K. D. Samouchos

Figure 4.30: Inviscid flow of an incompressible fluid in duct: Velocity magnitude

iso-areas.

(a) (b)

Figure 4.31: Inviscid flow of an incompressible fluid in duct: (a) Mean velocity and

(b) total pressure at each duct cross-section. Comparison between cut-cell (red) and

analytical solution (black).

Mass (Kg/s)

Inlet 47.428
Outlet 47.431

Deviation (%) 0.0057

Table 4.5: Inviscid flow of an incompressible fluid in duct: Mass flow at duct’s inlet

and outlet. Their deviation is shown as well.



4.2. Incompressible Flow Solver Assessment 155

Mass (Kg/s) Force (kN)

Cut-Cell 47.428 99.7009
Reference 47.434 99.7

Deviation (%) 0.0063 0.0009

Table 4.6: Inviscid flow of an incompressible fluid in duct: Mass flow and axial force

comparison between numerical and analytical results.

4.2.4 Laminar flow over a Cylinder

The analysis presented in the previous subsections completed the inviscid incom-

pressible flow solver assessment. The next cases focus on the validation of the

softwares’s viscous part. The first case is concerned with the laminar flow over a

circular cylinder for which extensive experimental and numerical data are available

in the literature. Its experimental and numerical study lasts almost over a century

and continues even today to analyze the complex cylinder wake flow phenomena. In

the presented case, the resulting Reynolds number based on the cylinder’s diameter

is 10, which corresponds to a steady flow without periodic vortex shedding [94]. A

dynamic mesh adaptation technique to the cylinder’s wake is used, which allows the

increase in flow simulation accuracy. The wake’s region is identified by measuring

the total pressure losses at each finite volume over the flow field, fig. 4.32a. Cells

detected with a high amount of losses are subdivided into four smaller parts. This

criterion also marks cells close to the cylinder’s boundary before the flow separation

occurs, and therefore not being part of the wake. For this reason, cells belonging

to areas with high pressure gradient values are excluded from the refining process,

fig. 4.32b. After four successive adaptations, the final mesh consists of 190K cells.

Fig. 4.33 shows the final mesh along with the total pressure field, indicating the co-

incidence between the mesh refinement and the high total pressure loss areas. The

flow equations convergence took 75 min. on 48 processors and is plotted in fig. 4.34.

The velocity magnitude field over the cylinder is displayed in fig. 4.35.

Velocity measurements were made in the cylinder’s wake [228], and results were

compared with the aforementioned numerical solution. The origin of the Cartesian

mesh is defined at the cylinder’s center. The velocity distributions plotted at various

x/d positions, d being the cylinder’s diameter, agree well with the experimental

results, fig. 4.36. However, there are some discrepancies, especially at large y/d,

which are examined as follows. Fig. 4.37 shows the symmetrical velocity profile



156 K. D. Samouchos

computed by the cut-cell method along x/d = 4. The corresponding experimental

data are not entirely symmetric due to small measurement errors which partially

explains their difference from numerical results. Moreover, the velocity profile along

x/d=1 differs notably from the measurements close to y/d=0. Fig. 4.38 compares

the cut-cell results with data provided by a CFD software that uses body-fitted

meshes [299]. The two software results come to a close agreement ensuring the

argument that a small measurement error occurs in this specific area. Finally, table

4.7 shows the difference in the cylinder’s drag coefficient between the numerical and

experimental data. Their slightly high deviation is expected due to the numerical

and experimental differences mentioned above.

(a) (b)

Figure 4.32: Laminar flow of an incompressible fluid over a cylinder: (a) Total

pressure and (b) static pressure gradient magnitude over the cylinder. Cells with

high total pressure losses (blue-green area of the left figure) and small pressure

gradient (blue area of the right figure) are subdivided into smaller cells increasing

the flow simulation’s accuracy.

Figure 4.33: Laminar flow of an incompressible fluid over a cylinder: Final mesh

adapted over the area of high total pressure loss.



4.2. Incompressible Flow Solver Assessment 157

Figure 4.34: Laminar flow of an incompressible fluid over a cylinder: Convergence

of the residuals of mass and momentum equations. Residual overshootings indicate

the iteration at which mesh adaptation occurs.

Figure 4.35: Laminar flow of an incompressible fluid over a cylinder: Velocity mag-

nitude iso-areas.



158 K. D. Samouchos

(a) x/d=1 (b) x/d=2

(c) x/d=4 (d) x/d=7

Figure 4.36: Laminar flow of an incompressible fluid over a cylinder: Wake velocity

distributions measured at various distances from the cylinder. Comparison between

cut-cell results (red) and experimental data [228] (black).

Figure 4.37: Laminar flow of an incompressible fluid over a cylinder: Symmetrical

velocity profile at x/d = 4 computed by the cut-cell software (red). Experimental

data (black) are given by [228].



4.2. Incompressible Flow Solver Assessment 159

Figure 4.38: Laminar flow of an incompressible fluid over a cylinder: Velocity profile

at x/d = 4 given by the cut-cell method (red), numerical results [299] (blue) and

experimental data [228] (black).

Cd

Cut-Cell 2.798
Reference 2.746

Deviation (%) 1.894

Table 4.7: Laminar flow of an incompressible fluid over a cylinder: Drag coefficient

computed by the cut-cell software. Its deviation from the corresponding experimen-

tal data [228] is also shown.

4.2.5 Driven Cavity Flow

Despite the singularities at its corners, the laminar incompressible flow in a square-

shaped cavity with its top wall sliding uniformly has been used very often as a

problem for testing and assessing numerical techniques [2]. Published results are

available for a wide range of Reynolds numbers. In this study, the Reynolds number

is set equal to 1000, and results are compared with data given by [101]. These

data are taken from a CFD software using a body-fitted mesh and have been cross-

checked numerous times by many independent researchers during the last decades.

A mesh of 140K cells is used. Its edges are purposely not coincident with the

cavity’s geometric boundaries, giving rise to cut-cells generation, which justifies the

choice of this case as a verification case. Velocity magnitude iso-areas are shown

in fig. 4.39. Streamlines show the development of a central, nearly circular vortex



160 K. D. Samouchos

and a secondary vortex in each of the bottom corners. Fig. 4.40 shows velocity

profiles along the horizontal and vertical cube axes of symmetry, on each of them

the vertical and horizontal velocity component is plotted respectively. Moreover,

vorticity distribution is displayed in a slice along the horizontal axis in fig. 4.41.

Results are consistent with the analysis of [101], verifying the reliability and accuracy

of the cut-cell method.

Figure 4.39: Laminar flow of an incompressible fluid inside the driven cavity: Ve-

locity magnitude iso-areas and streamlines. Streamline pattern depicts the primary

and the two secondary vortices.

(a) (b)

Figure 4.40: Laminar flow of an incompressible fluid inside the driven cavity: (a)

Vertical velocity component along the horizontal axis of symmetry and (b) horizontal

velocity component along the vertical axis of symmetry. Results are computed by

the cut-cell software (red) and numerical data provided by [101] (black).



4.2. Incompressible Flow Solver Assessment 161

Figure 4.41: Laminar flow of an incompressible fluid inside the driven cavity: Vor-

ticity magnitude distribution along the horizontal axis of symmetry. Comparison

between results given by the cut-cell software (red) and numerical data from [101]

(black).

4.2.6 Laminar flow in a 3D S-Shaped Duct

This study aims to validate the 3D cut-cell software by comparing its results with

benchmark experimental data. A duct with a square cross-section creates a 3D

laminar flow with mild curvature, small center-line displacement and, therefore,

reduced flow separation at the duct walls, fig. 4.42. The mean line of the duct

consists of two straight parts and two circular segments of opposite curvature. The

exact geometry representation is given by analytical expressions described in [301].

The Reynolds number based on cross-section width is 790. A Mesh of 240K cells is

used, details of which are shown in fig. 4.43, for the inlet cross-section and along the

streamwise direction. Mesh is refined close to the walls to ensure correct prediction

of the developed boundary layer. Fig. 4.44 presents the computed velocity contours

in three cross-sections along the duct, the position of which is clear in fig. 4.42. In

cross-sections 4.44a and 4.44b, just before the duct’s second turn, secondary flows

drive the boundary layer to thicken on the top wall. In cross-section 4.44c, the

accumulation of low-speed fluid near the inner wall develops into vortices within

the bend, causing a severely distorted flow field. The computed and experimental

streamwise velocity profiles in the symmetry plane [301] are compared at five stations

along the duct, shown in fig. 4.45, and agree well with one another. CFD results of a

body-fitted structured mesh of 180K nodes are provided by [308] and are also plotted

with a blue line. The two CFD results differ equally from the experimental data,

proving that the cut-cell method’s accuracy is equivalent to that of conventional



162 K. D. Samouchos

CFD methods using body-fitted meshes.

Figure 4.42: Laminar flow of an incompressible fluid in a duct: The S-shaped duct

geometry. The three marked cross-sections depict the positions where the velocity

fields are shown in fig. 4.44.

(a) (b)

Figure 4.43: Laminar flow of an incompressible fluid in a duct: Mesh details (a) on

the inlet cross-section and (b) on the duct’s symmetry plane.

(a) (b) (c)

Figure 4.44: Laminar flow of an incompressible fluid in a duct: Velocity magni-

tude contours and streamlines at the three cross-sections along the duct depicted in

fig. 4.42. The low-speed flow on the top wall in (a) and (b) creates a double vortex

within the duct, shown in (c).



4.3. Unsteady Flow Solver Assessment 163

(a) (b) (c) (d)

Figure 4.45: Laminar flow of an incompressible fluid in a duct: cut-cell (red) and

experimental (black) streamwise velocity profiles over the symmetry plane. Com-

putational results from [308] are also plotted (blue). Velocity is normalized by its

mean value on each cross-section. y∗ = 2(y − ymin)/(ymax − ymin) − 1 is a proper

non-dimensional parameter of the duct’s height.

4.3 Unsteady Flow Solver Assessment

The cut-cell method for predicting flows around moving boundaries within a fixed

Cartesian mesh is validated. The moving boundary slides on a fixed Eulerian mesh

at each time step, avoiding repetitive re-meshing, which may harm the flow solver’s

speed and robustness. Cells close to moving boundaries change shape after geome-

try’s motion and even appear or disappear from the fluid domain. The developed

method’s ability to maintain conservation for large displacements of moving bound-

aries while still retaining the solver’s accuracy is the target of this section. The

primary analysis concerns examining a pseudo-2D application of a moving piston

and a more complex 2D case of an oscillating airfoil. The study assumes com-

pressible inviscid flows and presents numerical results, including comparisons with

analytical solutions or other CFD results and experimental data.

4.3.1 Piston Motion

The method’s ability to satisfy the flow conservation laws is demonstrated by simu-

lating a piston propagating through an initially quiescent fluid inside a tube. Two



164 K. D. Samouchos

different cases are studied. In the first case, the piston moves into the fluid creating

a shock wave traveling along the tube. In the second case, the piston is pulled back

causing an expansion wave. Both phenomena are 1D and are described by analyt-

ical expressions [181]. Here, a 2D uniform mesh and solver are used to verify the

method’s ability to prevent flow leakage through the piston walls. In both cases, the

piston’s velocity corresponds to M =2 and its displacement is equal to the width of

around three cells, meaning that at least three cells appear or disappear from every

mesh row at each time step. Despite the piston’s considerable displacement, mesh

quality remains excellent and the use of complicated deformation tools is avoided,

fig. 4.46. Pressure contours are plotted at three different time steps for both cases

in figs. 4.47 and 4.48. Numerical results are compared with the exact analytical

solution. Pressure and density distributions along the tube are plotted in figs. 4.49

and 4.50. In the first case, the shock is predicted at the correct location ahead of

the traveling piston. If conservation were not satisfied, the shock would be formed

in the wrong position [219]. In the second case, the agreement between numerical

and analytical solutions in the expansion region is very good.

Figure 4.46: Inviscid flow of a compressible fluid in a piston tube: Mesh correspond-

ing to two piston’s positions.



4.3. Unsteady Flow Solver Assessment 165

(a)

(b)

(c)

Figure 4.47: Inviscid flow f a compressible fluid in a piston tube: Piston moves to

the right, forming a shock wave propagating through the fluid.

(a)

(b)

(c)

Figure 4.48: Inviscid flow of a compressible fluid in a piston tube: Piston moves to

the left, producing an expansion wave along the tube.



166 K. D. Samouchos

(a) (b)

Figure 4.49: Inviscid flow of a compressible fluid in a piston tube: Comparison

between numerical and analytical solutions, when piston moves into the fluid.

(a) (b)

Figure 4.50: Inviscid flow of a compressible fluid in a piston tube: Comparison

between numerical and analytical solution, when piston is pulled back.



4.3. Unsteady Flow Solver Assessment 167

4.3.2 Flow around Oscillating NACA0012

Results of compressible inviscid flow over an oscillating NACA0012 airfoil are pre-

sented. This case has been studied extensively by many researchers using body-fitted

[255] or Cartesian meshes [219]. The pitching motion around the quarter-chord is

prescribed by the sinusoidal function α(t) =α∞ + α0sin(ωt), where α(t) is the an-

gle between the airfoil’s chord and the x-axis. The far-field angle-of-attack and

amplitude are α∞ = 0.16◦ and α0 = 2.51◦, respectively. The reduced frequency is

k=ωc/u∞ =0.1628 and the free-stream Mach number is 0.755. A steady transonic

field initializes the unsteady phenomenon, in which five periods are computed. The

simulation uses 150 time steps per complete cycle of the airfoil motion.

As the airfoil oscillates, the shock shifts between the airfoil’s upper and lower sur-

faces. Shock is well captured due to mesh adaptation, which follows its motion.

Moreover, mesh refinement close to the airfoil’s boundary is adjusted at each time

step. These two phenomena and the cells’ appearance or disappearance from the

flow domain can be seen in fig. 4.51, where the airfoil is shown at two snapshots of its

motion. Fig. 4.52 shows the CL–α curve, where the initial transition and periodicity

establishment is evident. Phase lag between the variations in angle-of-attack and lift

causes the characteristic hysteresis. The curve is compared with experimental [174]

and numerical data from two different sources [15], [309]. It closely matches the

obtained CFD results and differs from the experimental points, leading to the con-

clusion that error may affect measurements’ accuracy. Four time-equidistant Mach

number contour snapshots are shown in fig. 4.53. The relative motion scheme affects

neither the contours’ smoothness nor the shock’s sharpness. The hysteresis is also

evident in fig. 4.53b and fig. 4.53c, where the airfoil passes through its equilibrium

position on the upstroke and downstroke, respectively.



168 K. D. Samouchos

(a) (b)

Figure 4.51: Inviscid flow of a compressible fluid around an oscillating NACA0012

airfoil: Mesh and iso-bar contours at two snapshots of the oscillating airfoil. Mesh

adapts to the shock wave location and the airfoil’s contour. Moreover, cells appear

or disappear from the flow domain at each time step.

Figure 4.52: Inviscid flow of a compressible fluid around an oscillating NACA0012

airfoil: Time lag between airfoil’s motion and the computed lift. Comparison among

results of the proposed cut-cell method (red), experimental data (black) [174] and

other CFD softwares [15] (green) and [309] (blue).



4.3. Unsteady Flow Solver Assessment 169

(a) (b)

(c) (d)

Figure 4.53: Inviscid flow of a compressible fluid around an oscillating NACA0012

airfoil: Mach contours at four equidistant period’s time steps. (a) and (d) snapshots

correspond to the airfoil’s oscillation extreme positions, while (b) and (c) correspond

to the equilibrium position.



Chapter 5

Flow Simulation in Industrial

Applications

The IBMs were introduced to overcome difficulties related to the classical CFD

methods’ inability to handle flow simulations around complex geometries or solid

bodies’ complex motion. In some cases, these methods are the only possible al-

ternative available due to body-fitted mesh generation or deformation unsuccessful

attempts. Such applications can widely be found in the industry, where flow simu-

lation accuracy is important since small computational errors could probably lead

to considerable financial costs. Consequently, the cut-cell method remains a perfect

choice due to its superiority regarding accuracy compared to other IBMs.

This chapter aims to show the developed method’s ability to handle current in-

dustrial cases. An explanation is given in each application about the reasons why

the use of the cut-cell method is essential and much more efficient than other CFD

approaches. The presented applications deal with the unsteady compressible or in-

compressible internal flows in a moving valve, a scroll machine, a diaphragm pump,

and a submersible pump. Their CFD analysis is part of projects investigating new

designs of the machines and mechanism mentioned above. The produced results’ ac-

curacy and reliability are not under examination due to the absence of experimental

or corresponding CFD results in the literature. However, the reader is referred to

chapter 4 for a detailed study on the proposed method’s validation/verification.

170



5.1. Incompressible Flow inside a Butterfly Valve 171

5.1 Incompressible Flow inside a Butterfly Valve

This case is concerned with the incompressible flow inside a valved duct. Valves

are widely used in many applications to prevent undesirable backflow. The valve is

modeled as a shutter rotating around an axis and moves from open to closed position

in 0.5s, fig. 5.1. In the presence of large boundary movements or when two bodies

approach and finally touch each other, mesh deformation becomes costly, delicate,

or even impossible. Therefore, the cut-cell software suits perfectly as it avoids

morphing a body-fitted mesh. The coarse background mesh remains stationary while

the immersed valve is allowed to move, covering and uncovering grid cells. Mesh

is continuously refined at each time step close to the moving geometry to increase

the flow simulation accuracy. Fig. 5.2 shows three time-instants during the valve’s

motion. Mesh generation and partitioning at 26 time steps in total and computation

of all information needed to transfer the flow solution from one mesh to the next

takes 36 min in one processor. According to fig. 5.3, mesh size ranges from 830K to

900K cells, and around 8K cells appear or disappear at each time step. At the last

time step, the valve is positioned in parallel with mesh lines, and mesh is refined

only along the streamwise direction explaining the abrupt decrease in cells’ number.

Moreover, at the same time step, the valve covers a notable amount of cell rows,

increasing the number of disappeared cells, fig. 5.2b. The duct’s length and diameter

are set equal to 2 m and 10 cm, respectively. Total and static pressure are imposed

at its inlet and outlet so as the isentropic velocity defined as v2inv = 2(pint − pout)/ρ

is equal to 0.045 m/s. The cut-cell software ran for 9 hours in 24 processors to

complete the 26 time steps of the unsteady phenomenon. Velocity magnitude and

pressure fields for different valve positions are shown in fig. 5.5, respectively. As

the valve rotates and gradually blocks the flow motion, the velocity field reduces in

magnitude until it becomes zero and the pressure field becomes uniform by taking on

two distinct values before and after the valve. Flow trajectories around the rotating

disc are presented in fig. 5.4.



172 K. D. Samouchos

Figure 5.1: Laminar flow of an incompressible fluid inside a valved duct: Butterfly

valve inside duct, rotating around an axis.

(a)

(b)

Figure 5.2: Laminar flow of an incompressible fluid inside a valved duct: (a) Adapted

Cartesian mesh in a slice along the streamwise direction for three positions of the

butterfly valve. (b) View of the valve at a duct’s cross-section in the valve’s fully

open position.



5.1. Incompressible Flow inside a Butterfly Valve 173

(a) (b)

Figure 5.3: Laminar flow of an incompressible fluid inside a valved duct: (a) Mesh

size evolution for each time step during the unsteady simulation (b) Number of

disappeared and appeared cells at each time step caused by the valve’s rotational

motion.

Figure 5.4: Laminar flow of an incompressible fluid in a valved duct: Flow trajec-

tories within the valved duct with the disc half-open.



174 K. D. Samouchos

(a)

(b)

Figure 5.5: Laminar flow of an incompressible fluid inside a valved duct: Instanta-

neous (a) velocity magnitude and (b) pressure iso-areas within the valved duct, at

equally distributed time instants.



5.2. Compressible Flow in a Scroll Expander 175

5.2 Compressible Flow in a Scroll Expander

The interest in the theoretical and experimental Organic Rankine Cycle’s (ORC)

study has grown dramatically in the past decades [253]. The ORC produces elec-

tric energy from low temperature, non-costly heat sources, such as solar thermal

power, geothermal heat sources and engine exhaust gases, making it a promising

environmentally friendly technology [303]. Its name refers to the organic working

fluid, which can evaporate at a lower temperature than water. One of the essential

parts of an ORC is its expander. Displacement-type machines are more beneficial

than turbo-machines due to their lower flow rates, higher pressure ratios, and much

lower rotational speeds [243]. Scroll expander is an advantageous displacement ma-

chine due to its reduced number of moving parts, wide output power range, and

low manufacturing cost [342]. However, experimental and CFD work is limited re-

garding scroll machines in expander mode [175]. The present work attempts to

fill a part of this literature gap by proposing the cut-cell method as an alterna-

tive tool for the flow simulation on the scroll machine’s complex geometry, with a

lot of advantages. Research presented in this subsection is part of the results of

a project titled “Development of a small-scale low-temperature supercritical ORC

with optimized scroll expander and heat exchanger” funded by the Business Plan

“Cooperation 2011 - Partnership of Manufacturing and Research Parties Special-

ized in Research & Technology Sectors.” with Greece and the European Union’s

co-financing.

Creux first proposed the scroll machine in 1905 as a new compressor design [72].

Only after 75 years and the appearance of accurate and reliable tools was its man-

ufacturing possible. The interest in its geometric modeling and dynamical analysis

led to a significant amount of publications, one of the first complete studies being

[216]. The following analysis is based on [31], where the details and proofs of the

following mathematical analysis can be found. The scroll machine consists of two

symmetric spirals, fig. 5.6c. The one is stationary, fig. 5.6a, while the other is al-

lowed to orbit around the first one, fig. 5.6b. Orbiting is defined here as the motion

where the Cartesian coordinate axes of the two spirals remain aligned while the

moving origin orbits around the other. Flow is entered at the scroll’s center and

pushes the orbiting spiral along its way to the outlet. Fig. 5.8 presents the scroll’s

operation during one period of its motion. Blue parts correspond to areas occupied

by the fluid. As the red spiral moves, the blue area increases, and fluid’s pressure

decreases. Finally, a generator is responsible for converting the scroll’s motion to



176 K. D. Samouchos

electrical energy.

The stationary spiral geometry is based on two involutes, the inner and the outer,

unwrapping from a circle of radius rb, called the base circle. The machine’s coordi-

nate system origin is placed at the center of the stationary base circle. The involute’s

parametric equations are given by

x(ϕ) = rb[cosϕ + (ϕ− ϕ0)sinϕ]

y(ϕ) = rb[sinϕ− (ϕ− ϕ0)cosϕ]

where ϕ corresponds to the range from ϕ0 to ϕe. The inner and outer involutes differ

in the value of these parameters, which are defined as ϕi0, ϕie and ϕo0, ϕoe, respec-

tively. Only the part from ϕs to ϕe, correspondingly for both involutes, is part of the

spiral geometry, fig. 5.7a. The rest part from ϕ0 to ϕs, called the two-arc discharge

region geometry in scroll compressors terminology, is shown in fig. 5.7b. It consists

of two arcs (red and blue) continuing the inner and outer involutes respectively and

a straight tangent to the arcs line (green) of length L. The exact value of both

cycles center and radius arises from a geometrical analysis developed in [272] and is

presented in the same figure. It can be proved that the spiral thickness is

tw = rb(ϕi0 − ϕo0)

The moving spiral is reflected through the stationary one’s origin and shifted by r0
computed as

r0 = rbπ − tw

The displacement vector is

r⃗0 = r0

(
cos(ϕie −

π

2
− θ), sin(ϕie −

π

2
− θ)

)
where θ is a function of time and corresponds to different positions of the orbiting

spiral. More details can be found in [272]. In our model every 2D geometrical

representation of a scroll machine is uniquely defined by the parameters rb, ϕis, ϕie, tw
and L. Their values are given in table 5.1 generating the specific geometry studied

in this section, where h is the scroll’s height.

Leakage loss between the two spirals is responsible for a significant reduction in

the scroll’s efficiency and, therefore, is one of the most important and challenging

phenomena to model in a scroll expander. Most CFD software have difficulties in



5.2. Compressible Flow in a Scroll Expander 177

rb 0.004968 m
ϕis 240.78◦

ϕie 800.20◦

tw 0.0042 m
L 0.0094 m
h 0.1467 m

Table 5.1: Laminar flow of a compressible fluid in scroll: Parametric values gener-

ating the scroll machine studied in this section.

simulating the leakage flow as they can hardly account for the mesh generation

and deformation due to scroll geometry and motion complexity [333], [88]. There

are several widely used models available. The most common treat the flow as an

isentropic compressible flow through a nozzle [191], [337]. The proposed method

avoids using these models, and it is capable of solving the flow equations through

the leakage and, therefore, computing the machine’s quantities of interest, such as

the expansion ratio, with an acceptable accuracy.

Mesh generation in the scroll geometry is a very challenging task. As far as con-

ventional methods are concerned, a body-fitted mesh should be generated in the

blue area of fig. 5.8a and follow the domain’s motion until its final shape, shown

in fig. 5.8i. Its transformation is so extreme that any mesh deformation tool would

probably fail. On the other hand, a Cartesian mesh remains stationary during the

spiral’s orbit, following its motion by applying refinement techniques at each time

step in areas close to solid boundaries. Mesh generated at the starting point of the

scroll’s operation is shown in fig. 5.9. Fig. 5.10 focuses on two mesh details, showing

the proposed mesh generator capabilities to successfully handle “abnormal” geomet-

rical shapes. In fig. 5.10a, complex cut-cells have been formed close to the wall’s

corners, while in fig. 5.10b, cut-cells have filled the narrow gap between the station-

ary and moving spirals allowing for the proper leakage simulation. Extra refinement

around that area significantly increases the mesh size and, therefore, is avoided due

to computational resource restrictions.

The transient laminar flow of a compressible fluid inside the scroll machine is simu-

lated during a single operating cycle. Speed of revolution is set equal to 2000 rpm.

Flow is entered from a circular hole of a radius of 0.01 m, and its direction is perpen-

dicular to the scroll’s plane. Inlet boundary conditions are total pressure 40.37 bar

and total temperature 90◦ C. Velocity magnitude iso-areas at 10 equidistant time



178 K. D. Samouchos

instants are shown in fig. 5.11. The initially quiescent fluid is distorted by the spi-

ral’s motion, which pushes it through the exit reducing its pressure. Finally, the

discarded fluid exits from the outer square boundaries. Fluid motion is more ap-

parent by the streamlines’ direction, shown in fig. 5.12. Scroll’s pressure ratio and

mass flow rate are 2.77 and 0.605 kg/s, respectively.

(a) (b) (c)

Figure 5.6: Laminar flow of a compressible fluid in a scroll: (a) Stationary and

(b) orbiting spirals generated by using the parametric values from table 5.1. Their

collaboration is shown in (c).

(a) (b)

Figure 5.7: Laminar flow of a compressible fluid in a scroll: (a) Involute unwrapped

from circle. Characteristic variables ϕ0, ϕs, and ϕe are also shown. (b) The discharge

region geometry consists of two arcs in red and blue and a straight line in green.

Post-processed figures taken from [31].



5.2. Compressible Flow in a Scroll Expander 179

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.8: Laminar flow of a compressible fluid in a scroll: Equidistant snapshots

in a period of scroll’s motion. The blue area covered with fluid depicts the flow

decompression.



180 K. D. Samouchos

Figure 5.9: Laminar flow of a compressible fluid in a scroll: Mesh generated at the

first time instant of scroll’s motion.

(a) (b)

Figure 5.10: Laminar flow of a compressible fluid in a scroll: Mesh details in (a) the

vicinity of spiral’s edge and (b) the gap of a tiny small thickness between stationary

and moving spirals.



5.2. Compressible Flow in a Scroll Expander 181

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 5.11: Laminar flow of a compressible fluid in a scroll: Velocity magnitude

iso-area snapshots taken every 0.03 s during an operating cycle.



182 K. D. Samouchos

Figure 5.12: Laminar flow of a compressible fluid in a scroll: Velocity magnitude

iso-areas and streamlines.

5.3 Incompressible Flow inside a Valveless Diaphragm

Micropump

Diaphragm or membrane pumps are positive displacement pumps. They consist of

the main chamber, an inlet and outlet duct, and a periodically moving diaphragm

which is the passing flow’s driving force. The inlet and outlet ducts might either be

valveless diffusers or tubes of a constant cross-section with valves (valved pumps).

Depending on the application, they are often preferred over bladed pumps since

they are cheaper and can pump various fluids in a noiseless manner [49]. They

are manufactured in large or small scales, with the large (usually valved) ones used

for cleaning tank bottoms or pumping sewage, while the small (valved [320] or

valveless [64]) ones (micropumps) mostly used as medical analysis devices [227], in

biochemical-processing applications, or to deliver drugs to patients. In such cases,

the valves are usually replaced by diffusers. Unfortunately, these pumps often suffer

from undesirable back-flow at the exit during a percentage of their period, which

can be reduced by adequately adjusting the diaphragm motion characteristics. This

study is thoroughly analyzed in section 9.4.



5.3. Incompressible Flow inside a Valveless Diaphragm Micropump 183

The valveless micropump design studied in this section, fig. 5.13, firstly introduced

by [292], is based on an existing micropump found in the literature [288]. Its length

is 1 cm, and the chamber’s length, height and volume are 8.862 mm, 0.5 mm and

around 40 mm3, respectively. The inlet and outlet diffusers are identical. The

inlet cross-sectional area is 0.03 mm2 and the outlet area is 0.2 mm2. Its working

principles are similar to the respiratory system of humans. The elastic diaphragm

is deformed by a piezoelectric device causing its periodical motion, inducing fluid

motion to the right. When the diaphragm moves upwards, the chamber volume

increases, and higher mass flow enters the micropump from the inlet than from the

outlet. Conversely, when the diaphragm moves down, the pressure is increased,

driving the fluid to exit mainly from the outlet. The preferred flow direction is

determined by the diffuser/nozzle elements design, which allows for a lower pressure

loss in the diffuser than in the nozzle direction for the same flow velocity. Therefore,

the net volume is pumped from the inlet to the outlet during a complete pump cycle,

even though the diffuser/nozzle elements allow fluid motion in both directions [292],

[254], [13].

In this study, the diaphragm does not follow the conventional motion found in

most commercial micropumps. Its displacement is described by the mathematical

model presented below, enabling the diaphragm to efficiently guide the incoming

flow towards the outlet by suppressing or, at least, reducing the exit’s undesirable

back-flow phenomena at the exit. The diaphragm motion is parameterized using 8

design variables denoted as bi, i= 0, 7. x and z axes correspond to the longitudinal

and spanwise directions, respectively. The diaphragm motion takes place along the

y-axis and the origin of the coordinate system is at the center of the rectangular

diaphragm of size Lx × Lz. Lm
x = 0.9b0Lx and Lm

z = 0.9b4Lz define the part of its

area which is allowed to move. At each time step, the diaphragm is deformed in bell

shape around xc =Lm
x ( t

T
− 1

2
), zc =0 expressed as

y = −ymaxf(τx)f(τz)

where

f(τ) = 6τ 2 − 8τ 3 + 3τ 4

ymax = b1

(
1−

∣∣∣∣1− 2t

T

∣∣∣∣) e−b5(t−T
2 )

2

where b1 is the maximum displacement over all time steps achieved at the half period,



184 K. D. Samouchos

b5 controls the function’s abruptness and T =0.02s is the period. Every point located

outside the neighborhood with center xc and radius Dx = b3

(
Lm
x

2
− |xc|

)
remains

stationary, while every point belonging to the neighborhood with radius dx= b2Dx

is displaced at ymax. For the rest points, transition is performed smoothly by using

the polynomial mentioned above. This behavior is summarized in the τx definition

which is given as

τx =


0 , x ∈ [−Lm

x

2
, x1

s] ∪ [x2
e,

Lm
x

2
]

1 , x ∈ [x2
s, x

1
e]

x−x1
s

x2
s−x1

s
, x ∈ [x1

s, x
2
s]

x2
e−x

x2
e−x1

e
, x ∈ [x2

s, x
1
s]

where x1
s =xc−Dx, x2

s =xc−dx, x1
e =xc+dx, x2

e =xc+Dx. τz is defined similarly by

setting Dz = b6

(
Lm
z

2
− |zc|

)
and dz = b7Dz. The exact parametric values are given

in table 5.2.

b0 0.79294
b1 0.00045
b2 0.066482
b3 0.85741
b4 0.64411
b5 0.036511
b6 0.67559
b7 0.073943

Table 5.2: Laminar flow of an incompressible fluid inside a diaphragm pump: Values

given to parameters controlling the diaphragm’s motion studied in this section.

Having defined the micropump’s shape and the diaphragm’s motion, the unsteady

CFD flow simulation follows. Fig. 5.14 shows the Cartesian mesh generated at the

first time instant and at the diaphragm’s maximum displacement. Mesh quality

is maintained despite the extreme boundary displacement, illustrating the cut-cell

method’s advantage to handle such cases successfully. Only the half pump is sim-

ulated due to its symmetry along the z = 0 plane. Total pressure and axial ve-

locity direction are imposed at the inlet and static pressure at the outlet, so as

vinv =
√

2(pint − pout)/ρ = 0.875 m/s, inducing a low mass flow rate through the

pump. In case the flow instantaneously exits from the inlet, only total pressure is

used as a boundary condition. After solving the flow equations for four successive



5.3. Incompressible Flow inside a Valveless Diaphragm Micropump 185

periods consisting of 20 time steps each, the flow has become periodic. Fig. 5.15

shows velocity magnitude iso-areas and streamlines on the symmetry plane at 8 time

instants over a single period. Back-flow at the last three time instants is evident.

At some time steps, the diaphragm’s displacement is large enough to cause the ap-

pearance or disappearance of around 2700 cells. Despite this significant change in

mesh size, the mass flow deviation is less than 0.1%, verifying the software’s ability

to ensure mass conservation even when high boundary deformations occur.

Research presented in this section has been funded by the Business Plan “Devel-

opment of Human Resources, Education and Lifelong Learning” entitled “Support

Researchers with Emphasis on Young Researchers” with the co-financing of Greece

and the European Union. The project title is “Design-Optimization of Diaphragm

Pumps under Operational/Manufacturing Uncertainties using the cut-cell Method

and Polynomial Chaos Expansion”.

Figure 5.13: Laminar flow of an incompressible fluid inside a diaphragm pump:

Micropump’s geometry. Flow enters from the left and exits from the right diffuser.

The diaphragm is placed on the chamber’s upper surface.

(a) (b)

Figure 5.14: Laminar flow of an incompressible fluid inside a diaphragm pump:

Cartesian mesh inside the pump (a) at the initial time instant and (b) at the half

of the motion’s period in which the displacement is maximum. Axes not in scale.



186 K. D. Samouchos

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.15: Laminar flow of an incompressible fluid inside a diaphragm pump:

Velocity iso-areas and streamlines at 8 time instants within a single period of the

periodic flow. Axes not in scale.



5.4. Compressible Flow inside an Electrical Submersible Pump Stage 187

5.4 Compressible Flow inside an Electrical Sub-

mersible Pump Stage

The Electrical Submersible Pump (ESP) is an efficient and reliable method for ex-

tracting moderate to high volumes of fluids from wellbores. Its operation is a subject

of great importance, especially in the oil industry. More than 90% of the worldwide

oil-producing wells require an artificial lift to increase the flow from wells when a

reservoir has no longer sufficient energy to induce flow towards the ground [171].

ESPs are one of the most versatile and efficient artificial lift methods. They com-

prise multiple centrifugal pump stages positioned in a series within a proper induc-

tion motor that can achieve rotational speeds of more than 5000 rpm [324]. Each

stage consists of an impeller and a bladed diffuser. At each stage, the fluid’s total

pressure slightly increases until the exit of the multistage arrangement, where the

fluid should have gained enough energy to travel through the well until its exit.

In this section, the numerical simulation of a compressible fluid within an EPS is

presented. CFD is a key feature in the understanding of the complicated flow phe-

nomena developed inside an ESP. During the last decades, considerable research has

been conducted on pump stages, based almost exclusively on body-fitted meshes.

Their use is accompanied by some difficulties arising from the relative motion be-

tween the impeller and the diffuser. This challenge is by-passed by employing the

Multiple Reference Frame (MRF) technique [346], in which a steady-state solver

simulates the flow within the impeller concerning a relative reference frame and

adding proper source terms to the momentum equations simulating the rotating

motion within a non-rotating mesh. Another widely used method is the compar-

atively more accurate Sliding Mesh technique [347], according to which the mesh

generated for the impeller is rotated together with its blades, bringing the simu-

lation closer to the real-world scenario.However, data must be exchanged through

the non-matching interfaces between the rotating impeller’s and stationary diffuser’s

mesh domains.

This work introduces the cut-cell method as a powerful alternative that overcomes

the impeller-diffuser interface problems without using the techniques mentioned

above. Although most papers in the literature on this kind of pumps deal with

multiphase flows [52], this study makes the single-phase inviscid flow assumption,

focusing more on the successful implementation of the developed cut-cell method.

The study is part of a project funded by Schlumberger Cambridge Research Limited



188 K. D. Samouchos

dealing with the optimization of a commercial EPS. The company also provided the

pump’s geometry and operating conditions. Fig. 5.16 shows the pump’s casing and

the impeller and diffuser blades. The flow enters from its bottom and exits from the

top.

A single Cartesian mesh is generated around the impeller and the diffuser. In the

impeller’s vicinity, cells are combined or break anew as the mesh refinement follows

the blades’ rotation. The part of the mesh close to the diffuser remains unchanged.

The impeller’s blades are attached to the casing, the bottom half of which rotates

together with the blades. Consequently, the casing consists of the rotating (bottom)

and the stationary (top) parts. Their interface comprises two concentric circles,

where the outer one is shown in fig. 5.16a. At each time step, edges of the casing’s

triangulated surface mesh that connect one node positioned at the interface with

another one belonging to the rotating part are deleted. Then, the casing’s bottom

half is rotated by a small angle, and new edges are created connecting its two

separated parts. Three periods were simulated. After the second one, periodicity

has been established. Figs. 5.17a and 5.17b show velocity magnitude iso-areas on a

slice perpendicular to the axis and streamlines, indicating the flow direction through

the impeller and the diffuser, respectively. Slices are located as in fig. 5.18. Finally,

figs. 5.19 and 5.20 show four time instants each, at an attempt to visualize the

transient flow inside the impeller and the diffuser, before the flow becomes periodic.

(a) (b)

Figure 5.16: Inviscid flow of a compressible fluid inside an EPS stage: (a) casing

and (b) impeller’s and diffuser’s blades of an ESP’s stage.



5.4. Compressible Flow inside an Electrical Submersible Pump Stage 189

(a) (b)

Figure 5.17: Inviscid flow of a compressible fluid inside an EPS stage: Streamlines

and velocity magnitude iso-areas in (a) the impeller and (b) the diffuser. The slices’

position is depicted in fig. 5.18.

Figure 5.18: Inviscid flow of a compressible fluid inside an EPS stage: Impeller and

diffuser slices, perpendicular to the axis. Velocity magnitude iso-areas are shown.

Slices’ close-up views are presented in fig. 5.17.



190 K. D. Samouchos

(a) (b)

(c) (d)

Figure 5.19: Inviscid flow of a compressible fluid inside an EPS stage: Velocity iso-

areas on an impeller slice during the transient phenomenon computed in the pump’s

second operating period.



5.4. Compressible Flow inside an Electrical Submersible Pump Stage 191

(a) (b)

(c) (d)

Figure 5.20: Inviscid flow of a compressible fluid inside an EPS stage: Velocity

iso-areas on a diffuser slice during the transient phenomenon computed during

the pump’s second operating period. Time instants coincide with those shown in

fig. 5.19.



Chapter 6

The Continuous Adjoint Method

This chapter is concerned with the mathematical development of numerical methods

capable of solving shape optimization problems for academic and industrial flow

applications. Typical examples are drag minimization in external aerodynamics and

total pressure losses minimization in internal aerodynamics. From a mathematical

perspective, an optimization method aims at maximizing or minimizing one or more

targets called objective functions (F ). This thesis deals only with single-target

optimization problems. F is a function of N independent variables called design

variables (bq, q = 1, · · · , N). In all optimization cases presented in this work, the

design variables control the solid bodies’ shape. They can be the coordinates of the

control points of a shape parameterization tool (likely based on Bézier–Bernstein

polynomials, Splines or NURBS) or nodal coordinates on the solid bodies’ discretized

surface.

This chapter focuses on computing the objective function’s gradient to support shape

optimization algorithms. Therefore the continuous adjoint method is developed for

compressible and incompressible flows implemented by the cut-cell or the ghost-cell

method. A discussion is also made about the adjoint Riemann problem defini-

tion and the discretization of the field adjoint equations. Thereafter, the unsteady

method’s variant is studied, and solutions to data storage problems are proposed.

Readers interested in the discrete adjoint method are referred to chapter 7.

192



6.1. Mathematical Development of the Compressible Adjoint Method 193

6.1 Mathematical Development of the Compress-

ible Adjoint Method

This section presents the mathematical formulation of the continuous adjoint method

for 3D compressible steady or unsteady, inviscid and laminar flows. The adjoint

PDEs accompanied by the proper boundary conditions are defined, and the final

expression of the objective’s gradient w.r.t. b⃗ is given. Hereafter, this gradient noted

as δF/δbq will be referred to as the sensitivity derivatives. Firstly, the more general

unsteady laminar case is studied, and then, the resulting formulas are specified in

steady or inviscid flows. In the following development, an assumption is made about

the indices range. Specifically, indices k, l and m correspond to the 3 space dimen-

sions, while h, i and j vary from 1 to the number of the governing equations. Index

r is 1 or 2, and q is used only for the design variables enumeration. Flow quantities

notation follows the definitions made in section 3.1.

6.1.1 Definition of the Total Derivative

Consider a parameterized flow domain Ω and its boundary S. An alteration in b⃗

causes the boundary displacement, which pushes each internal point, defined by its

parametric coordinates, changing their Cartesian coordinates (x⃗= x⃗(⃗b)). However,

the boundary deformation also affects the flow variables stored at each point, allow-

ing for the expression of any field quantity Φ(⃗b, x⃗) (e.g., the governing equation Ri)

as a function of b⃗. Hence,

Φ = Φ
(⃗
b, x⃗(⃗b)

)
In unsteady flows, the design variables are considered independent of time. When

solid bodies are allowed to move, Φ is expressed as

Φ = Φ
(⃗
b, t, x⃗(⃗b, t)

)
Its total derivative w.r.t. bq and t is

δΦ

δbq
=

∂Φ

∂bq
+

∂Φ

∂xk

vsk

δΦ

δt
=

∂Φ

∂t
+

∂Φ

∂xk

vgk



194 K. D. Samouchos

where vsk =∂xk/∂bq is the surface deformation rate during the optimization process

and vgk = ∂xk/∂t is the surface velocity during the unsteady phenomenon. Their

normal components will be denoted as vsn =vsknk and vgn =vgknk. It follows that δΦ/δbq
is a combination of the partial derivative ∂Φ/∂bq representing its variation caused

exclusively by changes in the flow variables due to the surface modification and, the

term describing its change due to the point’s displacement. Furthermore, the total

derivative δΦ/δt is equivalent to the material derivative used in the Lagrangian

description of fluids’ motion. Since the partial derivative is independent of the

Cartesian coordinates variation [237], [159],

∂

∂bq

(
∂Φ

∂xk

)
=

∂

∂xk

(
∂Φ

∂bq

)
As mentioned before, design variables are independent of time, which allows for the

corresponding derivatives permutation,

∂

∂bq

(
∂Φ

∂t

)
=

∂

∂t

(
∂Φ

∂bq

)

A useful tool from the calculus of moving surfaces [119] is also introduced. The

instantaneous rate of change of Φ in the normal direction of a moving surface is

δsΦ

δsbq
=

∂Φ

∂bq
+

∂Φ

∂n
vsn

which was originally defined by J. Hadamard. The term ∂Φ/∂n = ∂Φ/∂xknk rep-

resents the normal to the surface derivative. The δs derivative is applied only to

points on the surface and differs from the δ derivative used only in the interior of the

domain. The aforementioned derivatives play a central role in the differentiation of

volume and surface integrals,

δ

δbq

∫
Ω

ΦdΩ =

∫
Ω

∂Φ

∂bq
dΩ +

∫
S

ΦvsndS

δ

δbq

∫
S

ΦdS =

∫
S

δsΦ

δsbq
dS −

∫
S

ΦHvsndS

(6.1)

where H is the surface mean curvature. The first equation is the Reynolds transport

theorem, and the second one was firstly published in [118] and assumes that S is

closed or its contour is independent of b⃗. In both equations, the first integral on

the r.h.s. corresponds to the rate of change of Φ and the second one represents the



6.1. Mathematical Development of the Compressible Adjoint Method 195

contribution of the surface motion. Based on the Hadamard’s derivative, the surface

differentiation is alternatively expressed as

δ

δbq

∫
S

ΦdS =

∫
S

∂Φ

∂bq
dS +

∫
S

(
∂Φ

∂n
− ΦH

)
vsndS

6.1.2 Differentiation of the Objective Function

This thesis focuses on objective functions given in a volume or surface integral form.

In a general unsteady case,

F =

∫
TF

∫
ΩF

FΩdΩdt +

∫
TF

∫
SF

FSk
nkdSdt

The time window TF is equal to or part of the flow simulation’s period. For example,

in periodic flows, the governing equations are solved until periodicity is established.

However, the design optimization usually focuses only on the periodic part, and thus,

TF is chosen equal to the last period of the simulation. Moreover, the following

mathematical development assumes that ΩF = Ω. The surface SF is considered

part of the boundary of the fluid domain. In applications studied in this thesis,

the integrand FΩ is a function of the conservative variables, and FSk
is expressed

w.r.t. velocity, pressure, temperature, and the stress force (τlknk) exerted from the

fluid to SF . It is helpful to project the force onto the orthonormal basis (n⃗, t⃗ 1, t⃗ 2),

where n⃗, t⃗ 1 and t⃗ 2 are the local normal and tangent vectors to SF ,

τlknk = τnnl + τ t
r

trl (6.2)

where

τn = τlknknl

τ t
r

= τlknkt
r
l



196 K. D. Samouchos

Therefore,
FΩ = FΩ(U⃗)

FSk
= FSk

(v⃗, p, T, τn, τ t
r

)
(6.3)

If FSk
is defined along the wall in a viscous case, its dependency from v⃗ is replaced by

v⃗g. Attention should be paid to the way F depends on b⃗. If a design variable changes,

the geometry’s shape changes as well, causing an alteration in the flow variables,

which should always satisfy the governing equations. Consequently, the dependency

of F is direct through the geometrical terms included in its mathematical expression

and indirect through the flow variables it depends on.

Based on theorems 6.1 the total derivative of F is

δF

δbq
=

∫
TF

∫
Ω

∂FΩ

∂bq
dΩdt +

∫
TF

∫
Sw

FΩv
s
ndSdt

+

∫
TF

∫
SF

∂FSk

∂bq
nkdSdt +

∫
TF

∫
Sw

(
∂FSk

∂n
− FSk

H

)
vsnnkdSdt

+

∫
TF

∫
Sw

FSk

δsnk

δsbq
dSdt

During the optimization only the solid boundary is modified. Therefore, δsnk/δsbq =

0 and vsn = 0 at the inlet or outlet, and terms containing these quantities are inte-

grated only along Sw. Considering the objective function’s dependencies, eqs. 6.3,

the gradient becomes

δF

δbq
=

∫
TF

∫
Ω

∂FΩ

∂Uj

∂Uj

∂bq
dΩdt +

∫
TF

∫
Sw

FΩv
s
ndS +

∫
TF

∫
SF

∂FSk

∂vm

∂vm
∂bq

nkdSdt

+

∫
TF

∫
SF

∂FSk

∂p

∂p

∂bq
nkdSdt +

∫
TF

∫
SF

∂FSk

∂T

∂T

∂bq
nkdSdt

+

∫
TF

∫
SF

∂FSk

∂τn
∂τn

∂bq
nkdSdt +

∫
TF

∫
SF

∂FSk

∂τ tr
∂τ t

r

∂bq
nkdSdt

+

∫
TF

∫
Sw

(
∂FSk

∂n
− FSk

H

)
vsnnkdSdt +

∫
TF

∫
Sw

FSk

δsnk

δsbq
dSdt (6.4)

As expected, the gradient of F contains derivatives of flow quantities w.r.t. the

design variables. A straightforward approach for their computation is the direct

differentiation method, according to which the governing equations and boundary

conditions are differentiated w.r.t. each bq. Their numerical solution provides the



6.1. Mathematical Development of the Compressible Adjoint Method 197

∂Ui/∂bq values by the cost of N equivalent flow simulations, which is unfeasible for

industrial applications where N can be very high. This cost is drastically decreased

to one equivalent flow solution using the adjoint method, which provides an alter-

native expression for δF/δbq calculation independent of ∂Ui/∂bq. This method is

explained in subsection 6.1.3.

6.1.3 Definition of the Augmented Function

Adjoint theory’s central concept is the optimization problem perception as a con-

strained one, where F should be maximized or minimized subject to the constraint

of satisfying the flow equations (R⃗=0⃗). Inspired by the method of Lagrange multi-

pliers, a Lagrangian or augmented function is introduced as

L = F +

∫
TR

∫
Ω

ΨiRidΩdt

where Ψ⃗ are the adjoint or co-state variables, R⃗ stands for the unsteady flow equa-

tions and TR is the flow simulation duration. The adjoint variant for steady flow

problems will emerge as a particular case of the unsteady one in subsection 6.1.11.

The variable TR represents the time window from ts to te at which the unsteady

flow phenomenon is studied. The space-time integral is zero since it contains the

residuals of the governing equations. Therefore, L=F . Differentiation of L w.r.t. bq
yields

δL

δbq
=

δF

δbq
+

∫
TR

∫
Ω

Ψi
∂Ri

∂bq
dΩdt +

∫
TR

∫
S

ΨiRiv
s
ndSdt

where the Reynolds transport theorem is used.

The target of the following mathematical development is to differentiate R⃗ and elim-

inate the resulting volume integrals containing the ∂Ui/∂bq term by factorizing all

∂Ui/∂bq derivatives and nullifying their multipliers, giving rise to the adjoint PDEs.

The same method applied to the surface integrals leads to the introduction of the

corresponding adjoint boundary conditions. In the following development, volume

integrals noted as FAE contribute to the field adjoint equations formulation. Sim-

ilarly, all surface integrals noted as ABC will be used for the adjoint boundary

conditions definition. Finally, integrals annotated as SD contain geometrical varia-

tions and are part of the final sensitivity derivatives expression.



198 K. D. Samouchos

By using eqs. 6.4 and 3.1 one obtains

δL

δbq
=

∫
TF

∫
Ω

∂FΩ

∂Uj

∂Uj

∂bq
dΩdt︸ ︷︷ ︸

FAE

+

∫
TF

∫
Sw

FΩv
s
ndSdt︸ ︷︷ ︸

SD

+

∫
TF

∫
SF

∂FSk

∂vm

∂vm
∂bq

nkdSdt︸ ︷︷ ︸
ABC/SD

+

∫
TF

∫
SF

∂FSk

∂p

∂p

∂bq
nkdSdt︸ ︷︷ ︸

ABC

+

∫
TF

∫
SF

∂FSk

∂T

∂T

∂bq
nkdSdt︸ ︷︷ ︸

ABC

+

∫
TF

∫
SF

∂FSk

∂τn
∂τn

∂bq
nkdSdt︸ ︷︷ ︸

ABC

+

∫
TF

∫
SF

∂FSk

∂τ tr
∂τ t

r

∂bq
nkdSdt︸ ︷︷ ︸

ABC

+

∫
TF

∫
Sw

(
∂FSk

∂n
− FSk

H

)
vsnnkdSdt︸ ︷︷ ︸

SD

+

∫
TF

∫
Sw

FSk

δsnk

δsbq
dSdt︸ ︷︷ ︸

SD

+

∫
TR

∫
Ω

Ψi
∂

∂bq

(
∂Ui

∂t

)
dΩdt︸ ︷︷ ︸

Itemp

+

∫
TR

∫
Ω

Ψi
∂

∂bq

(
∂f inv

ik

∂xk

)
dΩdt︸ ︷︷ ︸

Iinv

−
∫
TR

∫
Ω

Ψi
∂

∂bq

(
∂f vis

ik

∂xk

)
dΩdt︸ ︷︷ ︸

Ivis

(6.5)

If the inlet or outlet boundaries are part of SF , the under-braced integral with

ABC/SD contributes to the inlet/outlet boundary conditions. On the other hand, in

case SF is defined only along the solid wall, the integral contributes to the sensitivity

derivatives expression. Integrals I temp, I inv and Ivis are processed in subsections

6.1.4, 6.1.5, and 6.1.6, respectively.

6.1.4 Differentiation of the Temporal Term

The I temp integral of eq. 6.5 is developed as

I temp =

∫
TR

∫
Ω

Ψi
∂

∂t

(
∂Ui

∂bq

)
dΩdt =

∫
TR

∫
Ω

∂

∂t

(
Ψi

∂Ui

∂bq

)
dΩdt−

∫
TR

∫
Ω

∂Ψi

∂t

∂Ui

∂bq
dΩdt

=

∫
TR

δ

δt

∫
Ω

Ψi
∂Ui

∂bq
dΩdt−

∫
TR

∫
Sw

Ψi
∂Ui

∂bq
vgndSdt−

∫
TR

∫
Ω

∂Ψi

∂t

∂Ui

∂bq
dΩdt

=

[∫
Ω

Ψi
∂Ui

∂bq
dΩ

]te
ts︸ ︷︷ ︸

ABC

−
∫
TR

∫
Sw

Ψi
∂Ui

∂bq
vgndSdt︸ ︷︷ ︸

ABC

−
∫
TR

∫
Ω

∂Ψi

∂t

∂Ui

∂bq
dΩdt︸ ︷︷ ︸

FAE

(6.6)



6.1. Mathematical Development of the Compressible Adjoint Method 199

6.1.5 Differentiation of the Convection Term

The I inv integral of eq. 6.5 is developed as

I inv =

∫
TR

∫
Ω

Ψi
∂

∂xk

(
∂f inv

ik

∂bq

)
dΩdt =

∫
TR

∫
S

Ψi
∂f inv

ik

∂bq
nkdSdt−

∫
TR

∫
Ω

∂Ψi

∂xk

∂f inv
ik

∂bq
dΩdt

where the Green-Gauss theorem is used. Since

∂f inv
ik

∂bq
=

∂f inv
ik

∂Uj

∂Uj

∂bq
= Aijk

∂Uj

∂bq

the inviscid integral is expressed as

I inv =

∫
TR

∫
S

Ψi
∂f inv

ik

∂bq
nkdSdt−

∫
TR

∫
Ω

∂Ψi

∂xk

Aijk
∂Uj

∂bq
dΩdt

Boundary S consists of the inlet and outlet parts (SIO) and walls (Sw). The surface

integral is split into these parts, which are treated differently,

I inv =

∫
TR

∫
Sw

Ψi
∂f inv

ik

∂bq
nkdSdt︸ ︷︷ ︸

Iinv
S

+

∫
TR

∫
SIO

ΨiAijk
∂Uj

∂bq
nkdSdt︸ ︷︷ ︸

ABC

−
∫
TR

∫
Ω

∂Ψi

∂xk

Aijk
∂Uj

∂bq
dΩdt︸ ︷︷ ︸

FAE

(6.7)

Considering that only the solid boundary is modified during the optimization, v⃗s =0⃗

and δsnk/δsbq =0 along SIO. Under these conditions, term I invS becomes

I invS =

∫
TR

∫
Sw

Ψi
∂f inv

ik

∂bq
nkdSdt =

∫
TR

∫
Sw

Ψi

(
δsf

inv
ik

δsbq
− ∂f inv

ik

∂n
vsn

)
nkdSdt

=

∫
TR

∫
Sw

Ψi
δsf

inv
ik

δsbq
nkdSdt−

∫
TR

∫
Sw

Ψi
∂f inv

ik

∂n
vsnnkdSdt

=

∫
TR

∫
Sw

Ψi
δs(f

inv
ik nk)

δsbq
dSdt−

∫
TR

∫
Sw

Ψif
inv
ik

δsnk

δsbq
dSdt

−
∫
TR

∫
Sw

Ψi
∂f inv

ik

∂n
vsnnkdSdt



200 K. D. Samouchos

By using the wall flux expression, eq. 3.22,

f⃗ inv,w
k nw

k =


ρwvgn

ρwvw1 v
g
n + pwnw

1

ρwvw2 v
g
n + pwnw

2

ρwvw3 v
g
n + pwnw

3

(ρwEw + pw)vgn

 = U⃗wvgn + pw


0

nw
1

nw
2

nw
3

vgn


the integral term becomes

I invS =

∫
TR

∫
Sw

Ψi
δs(Uiv

g
n)

δsbq
dSdt +

∫
TR

∫
Sw

Ψk+1
δs(pnk)

δsbq
dSdt +

∫
TR

∫
Sw

ΨE
δs(pv

g
n)

δsbq
dSdt

−
∫
TR

∫
Sw

Ψif
inv
ik

δsnk

δsbq
dSdt−

∫
TR

∫
Sw

Ψi
∂f inv

ik

∂n
vsnnkdSdt

where ΨE = Ψ5 is the adjoint variable corresponding to the energy equation. Ge-

ometry’s normal velocity vgn may dependent on bq (e.g., application 5.3). Thus, the

above expression is written as

I invS =

∫
TR

∫
Sw

(
Ψiv

g
n

∂Ui

∂bq
+ (Ψk+1nk + ΨEv

g
n)

∂p

∂bq

)
dSdt︸ ︷︷ ︸

ABC

+

∫
TR

∫
Sw

(
Ψiv

g
n

∂Ui

∂n
+ (Ψk+1nk + ΨEv

g
n)

∂p

∂n

)
vsndSdt︸ ︷︷ ︸

SD

+

∫
TR

∫
Sw

(
Ψk+1p

δsnk

δsbq
+ (ΨiUi + ΨEp)

δsv
g
n

δsbq

)
dSdt︸ ︷︷ ︸

SD

−
∫
TR

∫
Sw

Ψif
inv
ik

δsnk

δsbq
dSdt︸ ︷︷ ︸

SD

−
∫
TR

∫
Sw

Ψi
∂f inv

ik

∂n
vsnnkdSdt︸ ︷︷ ︸

SD

(6.8)



6.1. Mathematical Development of the Compressible Adjoint Method 201

6.1.6 Differentiation of the Diffusion Term

A process similar to subsection 6.1.5 is followed for the viscous term,

Ivis =

∫
TR

∫
Ω

Ψi
∂

∂xk

(
∂f vis

ik

∂bq

)
dΩdt =

∫
TR

∫
S

Ψi
∂f vis

ik

∂bq
nkdSdt−

∫
TR

∫
Ω

∂Ψi

∂xk

∂f vis
ik

∂bq
dΩdt

=

∫
TR

∫
Sw

Ψi
δs(f

vis
ik nk)

δsbq
dSdt︸ ︷︷ ︸

IvisS

−
∫
TR

∫
Sw

Ψif
vis
ik

δsnk

δsbq
dSdt︸ ︷︷ ︸

SD

−
∫
TR

∫
Sw

Ψi
∂f vis

ik

∂n
vsnnkdSdt︸ ︷︷ ︸

SD

−
∫
TR

∫
Ω

∂Ψi

∂xk

∂f vis
ik

∂bq
dΩdt︸ ︷︷ ︸

IvisΩ

(6.9)

where the surface integral along SIO containing the variation of the viscous terms is

neglected. The viscous volume term reads

IvisΩ =

∫
TR

∫
Ω

∂Ψl+1

∂xk

∂τlk
∂bq

dΩdt +

∫
TR

∫
Ω

∂ΨE

∂xk

∂(vlτlk)

∂bq
dΩdt +

∫
TR

∫
Ω

∂ΨE

∂xk

∂qk
∂bq

dΩdt

=

∫
TR

∫
Ω

(
∂Ψl+1

∂xk

+
∂ΨE

∂xk

vl

)
∂τlk
∂bq

dΩdt +

∫
TR

∫
Ω

∂ΨE

∂xk

τlk
∂vl
∂bq

dΩdt +

∫
TR

∫
Ω

∂ΨE

∂xk

∂qk
∂bq

dΩdt

A useful variable is defined as

hkl =
∂Ψl+1

∂xk

+
∂ΨE

∂xk

vl

By substituting the stress tensor and heat flux expressions from section 3.1 and

using the Green-Gauss theorem, one gets

IvisΩ =

∫
TR

∫
Ω

µhkl
∂

∂xk

(
∂vl
∂bq

)
dΩdt +

∫
TR

∫
Ω

µhkl
∂

∂xl

(
∂vk
∂bq

)
dΩdt

− 2

3
δkl

∫
TR

∫
Ω

µhkl
∂

∂xm

(
∂vm
∂bq

)
dΩdt

+

∫
TR

∫
Ω

k
∂ΨE

∂xk

∂

∂xk

(
∂T

∂bq

)
dΩdt +

∫
TR

∫
Ω

∂ΨE

∂xk

τlk
∂vl
∂bq

dΩdt



202 K. D. Samouchos

and thus,

IvisΩ =

∫
TR

∫
S

µhkl
∂vl
∂bq

nkdSdt +

∫
TR

∫
S

µhkl
∂vk
∂bq

nldSdt−
2

3
δkl

∫
TR

∫
S

µhkl
∂vm
∂bq

nmdSdt

−
∫
TR

∫
Ω

µ
∂hkl

∂xk

∂vl
∂bq

dΩdt−
∫
TR

∫
Ω

µ
∂hkl

∂xl

∂vk
∂bq

dΩdt +
2

3
δkl

∫
TR

∫
Ω

µ
∂hkl

∂xm

∂vm
∂bq

dΩdt

+

∫
TR

∫
S

k
∂ΨE

∂xk

∂T

∂bq
nkdSdt−

∫
TR

∫
Ω

k
∂2ΨE

∂x2
k

∂T

∂bq
dΩdt +

∫
TR

∫
Ω

∂ΨE

∂xk

τlk
∂vl
∂bq

dΩdt

By using the two identities,

δklhkl
∂vm
∂bq

nm ≡ δklhmm
∂vl
∂bq

nk

δkl
∂hkl

∂xm

∂vm
∂bq
≡ δkl

∂hmm

∂xk

∂vl
∂bq

the volume term becomes

IvisΩ =

∫
TR

∫
S

µ

(
hkl + hlk −

2

3
δklhmm

)
∂vl
∂bq

nkdSdt

−
∫
TR

∫
Ω

µ

(
∂hkl

∂xk

+
∂hlk

∂xk

− 2

3
δkl

∂hmm

∂xk

)
∂vl
∂bq

dΩdt

+

∫
TR

∫
S

k
∂ΨE

∂xk

∂T

∂bq
nkdSdt−

∫
TR

∫
Ω

k
∂2ΨE

∂x2
k

∂T

∂bq
dΩdt

+

∫
TR

∫
Ω

∂ΨE

∂xk

τlk
∂vl
∂bq

dΩdt

The adjoint stress tensor and heat flux are defined as

τAkl = µ

(
hkl + hlk −

2

3
δklhmm

)
qAk = k

∂ΨE

∂xk



6.1. Mathematical Development of the Compressible Adjoint Method 203

By neglecting the surface integrals along the inlet and outlet and taking the flow

boundary conditions at the wall into account, IvisΩ becomes

IvisΩ =

∫
TR

∫
Sw

qAk
∂T

∂bq
nkdSdt︸ ︷︷ ︸

ABC

+

∫
TR

∫
Sw

τAkl
δsv

g
l

δsbq
nkdSdt︸ ︷︷ ︸

SD

−
∫
TR

∫
Sw

τAkl
∂vl
∂n

vsnnkdSdt︸ ︷︷ ︸
SD

−
∫
TR

∫
Ω

[(
∂τAkl
∂xk

− ∂ΨE

∂xk

τlk

)
∂vl
∂Uj

+
∂qAk
∂xk

∂T

∂Uj

]
∂Uj

∂bq
dΩdt︸ ︷︷ ︸

FAE

(6.10)

The viscous surface term is processed as

IvisS =

∫
TR

∫
Sw

Ψl+1
δs(τlknk)

δsbq
dSdt+

∫
TR

∫
Sw

ΨE
δs(v

g
l τlknk)

δsbq
dSdt+

∫
TR

∫
Sw

ΨE
δs(qknk)

δsbq
dSdt

where the vl = vgl boundary condition has been used. The last integral is canceled

out since the solid wall is always considered adiabatic. By rearranging terms, IvisS

becomes

IvisS =

∫
TR

∫
Sw

gl
δs(τlknk)

δsbq
dSdt +

∫
TR

∫
Sw

ΨEτlknk
δsv

g
l

δsbq
dSdt

where

gl = Ψl+1 + ΨEv
g
l

The force τlknk is substituted from eq. 6.2 and term IvisS is written as

IvisS =

∫
TR

∫
Sw

glnl
∂τn

∂bq
dSdt︸ ︷︷ ︸

ABC

+

∫
TR

∫
Sw

glnl
∂τn

∂n
vsndSdt︸ ︷︷ ︸

SD

+

∫
TR

∫
Sw

glτ
n δsnl

δsbq
dSdt︸ ︷︷ ︸

SD

+

∫
TR

∫
Sw

glt
r
l

∂τ t
r

∂bq
dSdt︸ ︷︷ ︸

ABC

+

∫
TR

∫
Sw

glt
r
l

∂τ t
r

∂n
vsndSdt︸ ︷︷ ︸

SD

+

∫
TR

∫
Sw

glτ
tr δst

r
l

δsbq
dSdt︸ ︷︷ ︸

SD

+

∫
TR

∫
Sw

ΨEτlknk
δsv

g
l

δsbq
dSdt︸ ︷︷ ︸

SD

(6.11)



204 K. D. Samouchos

6.1.7 The Compressible Field Adjoint Equations

In the previous sections, all terms resulted from the differentiation of the governing

equations has been developed and classified. The next step is gathering all FAE,

ABC and SD terms from eqs. 6.5, 6.6, 6.7, 6.8, 6.9, 6.10, and 6.11 to give rise

to the field adjoint equation, the adjoint boundary conditions, and the sensitivity

derivatives. This section focuses on the FAE terms, which are∫
TR

∫
Ω

(
∂FΩ

∂Uj

− ∂Ψj

∂t
− ∂Ψi

∂xk

Aijk −
((

∂τAkl
∂xk

− ∂ΨE

∂xk

τlk

)
∂vl
∂Uj

+
∂qAk
∂xk

∂T

∂Uj

))
∂Uj

∂bq
dΩdt

The multiplier of ∂Uj/∂bq is set to zero and this gives rise to the compressible adjoint

equations

−∂Ψi

∂t
− Ajik

∂Ψj

∂xk

− T vis
i +

∂FΩ

∂Ui

= 0 (6.12)

where

T vis
i =

∂τAkl
∂xk

∂vl
∂Ui

+
∂qAk
∂xk

∂T

∂Ui

− ∂ΨE

∂xk

τlk
∂vl
∂Ui

τAkl = µ

(
hkl + hlk −

2

3
δklhmm

)
hkl =

∂Ψl+1

∂xk

+
∂ΨE

∂xk

vl

qAk = k
∂ΨE

∂xk

and

∂v⃗

∂U⃗
=

1

ρ

−v1 1 0 0 0

−v2 0 1 0 0

−v3 0 0 1 0

 ,
∂T

∂U⃗
=

1

cvρ

[
− p

(γ−1)ρ
+ 1

2
v2k v1 v2 v3 1

]T

In the case of unsteady inviscid flows, T vis
i = 0. Eq. 6.12 represents a linear 5 × 5

system of PDEs. If the objective function is defined only by a surface integral,

source term ∂FΩ/∂Ui vanishes. Moreover, if the time integration of F differs from

the simulation’s time window (i.e., TF ̸= TR), the source term remains active only

during the TF period. The special meaning of the temporal and convective terms’

minus sign is discussed in section 6.4. A similar to the one described in section 3.7

procedure is used for the discretized system solution process. The main difference

is that the system’s l.h.s. remains constant and, thus, is computed at the beginning



6.1. Mathematical Development of the Compressible Adjoint Method 205

of each time step.

6.1.8 The Inlet-Outlet Adjoint Boundary Conditions

The ABC terms are collected from expressions appeared in subsections 6.1.3, 6.1.4,

6.1.5, 6.1.6, and all together give∫
TR

∫
SIO

∂FSk

∂vm

∂vm
∂bq

nkdSdt +

∫
TR

∫
SIO

∂FSk

∂p

∂p

∂bq
nkdSdt

+

∫
TR

∫
SIO

∂FSk

∂T

∂T

∂bq
nkdSdt +

∫
TR

∫
SIO

ΨiAijk
∂Uj

∂bq
nkdSdt

They can also be written as∫
TR

∫
SIO

(
∂FSk

∂Uj

+ ΨiAijk

)
∂Uj

∂bq
nkdSdt

It has already been discussed in section 3.1 that a different number of flow vari-

ables are imposed as Dirichlet conditions at the inlet and outlet, depending also

on the local Mach number. In each case, a new vector Q⃗ ∈ R5 is introduced

containing all the imposed flow quantities accompanied by the variables which are

extrapolated from the interior of the domain. For example, at the inlet it could be

Q⃗ = (pt, Tt, αpitch, αyaw, |v⃗|) where, for stationary inlet, ∂Qi/∂bq = δQi/δbq = 0, i =

1, · · · , 4. Therefore, the above terms can be written also as∫
TR

∫
SIO

(
∂FSk

∂Uj

+ ΨiAijk

)
∂Uj

∂Qh

∂Qh

∂bq
nkdSdt

and is eliminated by introducing the adjoint boundary conditions,

ΨiAijknk
∂Uj

∂Qh

= −∂FSk

∂Qh

nk (6.13)

where for all h the condition ∂Qh/∂bq ̸= 0 is true. In the previous example, h= 5

and Qh = p. The term ∂FSk
/∂Qh remains active only during the TF time window

and is zero in case the objective function is not defined at the inlet or outlet. Finally,

details about the computation of ∂Uj/∂Qh are given in Appendix J.

At a subsonic outlet, pressure is usually imposed as a Dirichlet condition, and, thus,

Q⃗ is chosen to be equal to V⃗ . Index h varies from 1 to 4. Hence, a system of 4



206 K. D. Samouchos

equations should be solved there. The Q⃗ choice should guarantee that the matrix

Aijknk∂Uj/∂Qh is invertible. However, this is not always possible. The interested

reader can find such a case in Appendix K.

6.1.9 The Wall Adjoint Boundary Conditions

The ABC surface integrals along the wall appeared in subsections 6.1.3, 6.1.4, 6.1.5,

and 6.1.6 are rewritten below,[∫
Ω

Ψi
∂Ui

∂bq
dΩ

]te
ts

+

∫
TR

∫
Sw

(
Ψk+1 + ΨEv

g
k +

∂FSk

∂p

)
∂p

∂bq
nkdSdt

+

∫
TR

∫
Sw

(
Ψiv

g
k

∂Ui

∂bq
−Ψiv

g
k

∂Ui

∂bq
+ qAk

∂T

∂bq
+

∂FSk

∂T

∂T

∂bq

)
nkdSdt

−
∫
TR

∫
Sw

(
gk −

∂FSk

∂τn

)
∂τn

∂bq
nkdSdt−

∫
TR

∫
Sw

(
gkt

r
k −

∂FSk

∂τ tr
nk

)
∂τ t

r

∂bq
dSdt

and rearranged as[∫
Ω

Ψi
∂Ui

∂bq
dΩ

]te
ts

+

∫
TR

∫
Sw

(
gk +

∂FSk

∂p

)
∂p

∂bq
nkdSdt

+

∫
TR

∫
Sw

(
qAk +

∂FSk

∂T

)
∂T

∂bq
nkdSdt

−
∫
TR

∫
Sw

(
gk −

∂FSk

∂τn

)
∂τn

∂bq
nkdSdt−

∫
TR

∫
Sw

(
gkt

r
k −

∂FSk

∂τ tr
nk

)
∂τ t

r

∂bq
dSdt

Elimination of the above surface terms leads to

gknk = −∂FSk

∂p
nk

gknk =
∂FSk

∂τn
nk

gkt
r
k =

∂FSk

∂τ tr
nk

qAk nk = −∂FSk

∂T
nk

In order to get a single boundary condition for gknk, the objective function should



6.1. Mathematical Development of the Compressible Adjoint Method 207

satisfy the condition (
∂FSk

∂p
+

∂FSk

∂τn

)
nk = 0 (6.14)

This condition is true for most objective functions used in real-world optimization

problems. Such an objective is the lift or the drag, which are common optimization

targets in industrial applications. Consequently, the viscous adjoint wall boundary

conditions are

(Ψk+1 + vgkΨE)nk =
∂FSk

∂τn
nk

(Ψk+1 + vgkΨE) trk =
∂FSk

∂τ tr
nk

k
∂ΨE

∂xk

nk = −∂FSk

∂T
nk

(6.15)

The corresponding boundary condition for the inviscid adjoint equations is

Ψk+1nk = −vgnΨE −
∂FSk

∂p
nk (6.16)

and the condition 6.14 is not necessary anymore.

Subsequently, the elimination of the volume integral is investigated, where two ap-

proaches are discussed. Firstly, the objective function is integrated for the whole

simulation’s time (TF =TR). Flow initialization at t= ts remains the same at each

optimization cycle, and thus, ∂Ui

∂bq

∣∣∣
ts
= 0. Therefore, the Ψi(t = te) = 0 condition is

defined.

On the other hand, in periodic phenomena, TF is equal to the period of the flow

(TP ) that is different from TR, because the geometry is usually optimized without

considering the flow development during the transition phase. Then, the adjoint

equations are repetitively solved along the flow simulation’s last period until peri-

odicity is established. In other words, Ψi(te) = Ψi(te − Tp) is imposed, eliminating

the volume term.

6.1.10 Sensitivity Derivatives Expression

The appropriate definition of the field adjoint equations and boundary conditions

eliminates all the FAE and ABC integrals. The remaining SD terms provide the

formula for the augmented function’s gradient computation. Since δF/δbq =δL/δbq,



208 K. D. Samouchos

the final expression of the sensitivity derivatives reads

δF

δbq
=

∫
TF

∫
Sw

FΩv
s
ndSdt +

∫
TR

∫
Sw

∂FSk

∂vgm

δsv
g
m

δsbq
nkdSdt

+

∫
TF

∫
Sw

(
∂FSk

∂n
− FSk

H

)
vsnnkdSdt +

∫
TF

∫
Sw

FSk

δsnk

δsbq
dSdt

+

∫
TR

∫
Sw

(
Ψiv

g
n

∂Ui

∂n
+ (Ψk+1nk + ΨEv

g
n)

∂p

∂n

)
vsndSdt

+

∫
TR

∫
Sw

(
pΨk+1

δsnk

δsbq
+ (ΨiUi + pΨE)

δsv
g
n

δsbq

)
dSdt−

∫
TR

∫
Sw

Ψif
inv
ik

δsnk

δsbq
dSdt

−
∫
TR

∫
Sw

Ψi
∂f inv

ik

∂n
vsnnkdSdt +

∫
TR

∫
Sw

Ψif
vis
ik

δsnk

δsbq
dSdt +

∫
TR

∫
Sw

Ψi
∂f vis

ik

∂n
vsnnkdSdt

+

∫
TR

∫
Sw

τAkl
δsv

g
l

δsbq
nkdSdt−

∫
TR

∫
Sw

τAkl
∂vl
∂n

vsnnkdSdt−
∫
TR

∫
Sw

glnl
∂τn

∂n
vsndSdt

−
∫
TR

∫
Sw

glτ
n δsnl

δsbq
dSdt−

∫
TR

∫
Sw

glt
r
l

∂τ t
r

∂n
vsndSdt−

∫
TR

∫
Sw

glτ
tr δst

r
l

δsbq
dSdt

−
∫
TR

∫
Sw

ΨEτlknk
δsv

g
l

δsbq
dSdt

Taking the viscous adjoint boundary conditions into account,eq. 6.15, the following

terms ∫
TR

∫
Sw

(
FSk

∂n
nk + (Ψk+1nk + ΨEv

g
n)
∂p

∂n
− gknk

∂τn

∂n
− gkt

r
k

∂τ t
r

∂n

)
vsndSdt

=

∫
TR

∫
Sw

(
FSk

∂n
− FSk

∂p

∂p

∂n
− FSk

∂τn
∂τn

∂n
− FSk

∂τ tr
∂τ t

r

∂n

)
vsndSdt

=

∫
TR

∫
Sw

FSk

∂T

∂T

∂n
vsndSdt = 0

are canceled out. The last equality is true due to the imposed adiabatic wall condi-

tion (∂T/∂n=0).



6.1. Mathematical Development of the Compressible Adjoint Method 209

By rearranging the remaining terms, one gets

δF

δbq
=

∫
TR

∫
Sw

(
Ψiv

g
n

∂Ui

∂n
−Ψi

∂fik
∂n

nk − τAklnk
∂vl
∂n

+ FΩ − FSk
nkH

)
vsndSdt

+

∫
TR

∫
Sw

(FSk
+ pΨk+1 −Ψifik − gkτ

n)
δsnk

δsbq
dSdt−

∫
TR

∫
Sw

gkτ
tr δst

r
k

δsbq
dSdt

+

∫
TR

∫
Sw

(
∂FSk

∂vgl
+ τAkl −ΨEτkl

)
δsv

g
l

δsbq
nkdSdt

+

∫
TR

∫
Sw

(ΨiUi + pΨE)
δsv

g
n

δsbq
dSdt (6.17)

where gk = Ψk+1 + vgkΨE and f⃗k = f⃗ inv
k − f⃗ vis

k . The required normal and tangent

derivatives are

δsnk

δsbq
= −trk∇ru

s
n

δst
r
k

δsbq
= nk∇ru

s
n

where ∇r is the surface covariant derivative [119]. The corresponding sensitivity

derivatives expression for inviscid flows is

δF

δbq
=

∫
TR

∫
Sw

(
Ψiv

g
n

∂Ui

∂n
−Ψi

∂f inv
ik

∂n
nk + FΩ − FSk

nkH

)
vsndSdt

+

∫
TR

∫
Sw

(
FSk

+ pΨk+1 −Ψif
inv
ik

) δsnk

δsbq
dSdt

+

∫
TR

∫
Sw

(ΨiUi + pΨE)
δsv

g
n

δsbq
dSdt

The continuous adjoint method applied in inviscid flows cannot handle objective

functions integrated along the wall depending on flow variables different from pres-

sure. Thus, the ∂FSk
/∂vgl nk term has been neglected from the expression above.

6.1.11 The Continuous Adjoint Method for Steady Flows

In regard to steady flows, the main differences between the mathematical devel-

opment presented in subsections 6.1.2 to 6.1.10 for unsteady flows are the lack of

the temporal term in the flow equations and the condition v⃗g = 0⃗ along the solid

boundaries, which results in δvgk/δbq =0. Based on eqs. 6.12, 6.13, and 6.15 the field



210 K. D. Samouchos

adjoint equations are

−Ajik
∂Ψj

∂xk

− T vis
i +

∂FΩ

∂Ui

= 0

accompanied by the proper adjoint boundary conditions at the inlet and outlet,

ΨiAijknk
∂Uj

∂Qh

= −∂FSk

∂Qh

nk

and the solid wall,

Ψk+1nk =
∂FSk

∂τn
nk

Ψk+1t
r
k =

∂FSk

∂τ tr
nk

k
∂ΨE

∂xk

nk = −∂FSk

∂T
nk

Considering eq. 6.16, the adjoint wall condition for inviscid cases is

Ψk+1nk = −∂FSk

∂p
nk

According to eq. 6.17, the corresponding sensitivity derivatives expression for lami-

nar flows is

δF

δbq
=−

∫
Sw

(
Ψi

∂fik
∂n

nk + τAklnk
∂vl
∂n
− FΩ + FSk

nkH

)
vsndS

+

∫
Sw

(FSk
+ pΨk+1 −Ψifik −Ψk+1τ

n)
δsnk

δsbq
dS

−
∫
Sw

Ψk+1τ
tr δst

r
k

δsbq
dS

and for inviscid flows is

δF

δbq
=−

∫
Sw

(
Ψi

∂f inv
ik

∂n
nk − FΩ + FSk

nkH

)
vsndS

+

∫
Sw

(
FSk

+ pΨk+1 −Ψif
inv
ik

) δsnk

δsbq
dS



6.2. Mathematical Development of the Incompressible Adjoint Method 211

6.2 Mathematical Development of the Incompress-

ible Adjoint Method

This section formulates the continuous adjoint method for steady or unsteady vis-

cous incompressible flows. It presents many similarities with the corresponding

mathematical development for the compressible flows presented in section 6.1, and

thus, it is kept shorter by just laying emphasis to its the key points. The used

flow quantities notation follows the definitions made in section 3.4. The continuous

adjoint implementation is based on the differential operators defined in subsection

6.1.1, and the assumptions of section 6.1 are made for indices applying summation.

6.2.1 Definition and Differentiation of the Objective and

Augmented Functions

Similarly to subsection 6.1.2, the objective function is defined by a volume or surface

integral. Both integrants’ dependencies are

FΩ = FΩ(V⃗ )

FSk
= FSk

(v⃗, p, τn, τ t
r

)

The objective function’s total derivative w.r.t. bq is

δF

δbq
=

∫
TF

∫
Ω

∂FΩ

∂Vj

∂Vj

∂bq
dΩdt +

∫
TF

∫
Sw

FΩv
s
ndS

+

∫
TF

∫
SF

∂FSk

∂vm

∂vm
∂bq

nkdSdt +

∫
TF

∫
SF

∂FSk

∂p

∂p

∂bq
nkdSdt

+

∫
TF

∫
SF

∂FSk

∂τn
∂τn

∂bq
nkdSdt +

∫
TF

∫
SF

∂FSk

∂τ tr
∂τ t

r

∂bq
nkdSdt

+

∫
TF

∫
Sw

(
∂FSk

∂n
− FSk

H

)
vsnnkdSdt +

∫
TF

∫
Sw

FSk

δsnk

δsbq
dSdt (6.18)



212 K. D. Samouchos

The objective function is defined as in subsection 6.1.3 and its differentiation leads

to

δL

δbq
=

∫
TF

∫
Ω

∂FΩ

∂Vj

∂Vj

∂bq
dΩdt︸ ︷︷ ︸

FAE

+

∫
TF

∫
Sw

FΩv
s
ndSdt︸ ︷︷ ︸

SD

+

∫
TF

∫
SF

∂FSk

∂vm

∂vm
∂bq

nkdSdt︸ ︷︷ ︸
ABC/SD

+

∫
TF

∫
SF

∂FSk

∂p

∂p

∂bq
nkdSdt︸ ︷︷ ︸

ABC

+

∫
TF

∫
SF

∂FSk

∂τn
∂τn

∂bq
nkdSdt︸ ︷︷ ︸

ABC

+

∫
TF

∫
SF

∂FSk

∂τ tr
∂τ t

r

∂bq
nkdSdt︸ ︷︷ ︸

ABC

+

∫
TF

∫
Sw

(
∂FSk

∂n
− FSk

H

)
vsnnkdSdt︸ ︷︷ ︸

SD

+

∫
TF

∫
Sw

FSk

δsnk

δsbq
dSdt︸ ︷︷ ︸

SD

+

∫
TR

∫
Ω

Ψi
∂

∂bq

(
∂(MijVi)

∂t

)
dΩdt︸ ︷︷ ︸

Itemp

+

∫
TR

∫
Ω

Ψi
∂

∂bq

(
∂f inv

ik

∂xk

)
dΩdt︸ ︷︷ ︸

Iinv

−
∫
TR

∫
Ω

Ψi
∂

∂bq

(
∂f vis

ik

∂xk

)
dΩdt︸ ︷︷ ︸

Ivis

(6.19)

where the governing equation’s residual is given by eq. 3.4.

6.2.2 Differentiation of the Temporal Term

The I temp integral of eq. 6.19 is processed as

I temp =

∫
TR

∫
Ω

∂

∂t

(
ΨiMij

∂Vj

∂bq

)
dΩdt−

∫
TR

∫
Ω

∂(ΨiMij)

∂t

∂Vj

∂bq
dΩdt

By defining the vector
⃗̄Ψ = MΨ⃗

the integral term becomes

I temp =

∫
TR

δ

δt

∫
Ω

Ψ̄i
∂Vi

∂bq
dΩdt−

∫
TR

∫
Sw

Ψ̄i
∂Vi

∂bq
vgndSdt−

∫
TR

∫
Ω

∂Ψ̄i

∂t

∂Vi

∂bq
dΩdt

=

[∫
Ω

Ψ̄i
∂Vi

∂bq
dΩ

]te
ts︸ ︷︷ ︸

ABC

−
∫
TR

∫
Sw

Ψ̄i
∂Vi

∂bq
vgndSdt︸ ︷︷ ︸

ABC

−
∫
TR

∫
Ω

∂Ψ̄i

∂t

∂Vi

∂bq
dΩdt︸ ︷︷ ︸

FAE

(6.20)



6.2. Mathematical Development of the Incompressible Adjoint Method 213

6.2.3 Differentiation of the Convection Term

The I inv integral of eq. 6.19 is developed as

I inv =

∫
TR

∫
Ω

Ψi
∂

∂xk

(
∂f inv

ik

∂bq

)
dΩdt

=

∫
TR

∫
Sw

Ψi
∂f inv

ik

∂bq
nkdSdt︸ ︷︷ ︸

Iinv
S

+

∫
TR

∫
SIO

ΨiAijk
∂Vj

∂bq
nkdSdt︸ ︷︷ ︸

ABC

−
∫
TR

∫
Ω

∂Ψi

∂xk

Aijk
∂Vj

∂bq
dΩdt︸ ︷︷ ︸

FAE

(6.21)

where
∂f inv

ik

∂bq
= Aijk

∂Vj

∂bq

Term I invS becomes

I invS =

∫
TR

∫
Sw

Ψi
δs(f

inv
ik nk)

δsbq
dSdt−

∫
TR

∫
Sw

Ψif
inv
ik

δsnk

δsbq
dSdt

−
∫
TR

∫
Sw

Ψi
∂f inv

ik

∂n
vsnnkdSdt

By using the wall flux expression,

f⃗ inv,w
k nw

k =


vgn

vw1 v
g
n + pwnw

1

vw2 v
g
n + pwnw

2

vw3 v
g
n + pwnw

3

 = MV⃗ wvgn +


vgn

pwnw
1

pwnw
2

pwnw
3


the integral term becomes

I invS =

∫
TR

∫
Sw

Ψi
δs(MijVjv

g
n)

δsbq
dSdt +

∫
TR

∫
Sw

Ψp
δsv

g
n

δsbq
dSdt

+

∫
TR

∫
Sw

Ψk+1
δs(pnk)

δsbq
dSdt

−
∫
TR

∫
Sw

Ψif
inv
ik

δsnk

δsbq
dSdt−

∫
TR

∫
Sw

Ψi
∂f inv

ik

∂n
vsnnkdSdt



214 K. D. Samouchos

Finally,

I invS =

∫
TR

∫
Sw

(
Ψ̄iv

g
n

∂Vi

∂bq
+ Ψk+1nk

∂p

∂bq

)
dSdt︸ ︷︷ ︸

ABC

+

∫
TR

∫
Sw

(
Ψ̄iv

g
n

∂Vi

∂n
+ Ψk+1nk

∂p

∂n

)
vsndSdt︸ ︷︷ ︸

SD

+

∫
TR

∫
Sw

(
Ψk+1p

δsnk

δsbq
+
(
Ψ̄iVi + Ψp

) δsvgn
δsbq

)
dSdt︸ ︷︷ ︸

SD

−
∫
TR

∫
Sw

Ψif
inv
ik

δsnk

δsbq
dSdt︸ ︷︷ ︸

SD

−
∫
TR

∫
Sw

Ψi
∂f inv

ik

∂n
vsnnkdSdt︸ ︷︷ ︸

SD

(6.22)

6.2.4 Differentiation of the Diffusion Term

A development that is similar to that of subsection 6.1.6 is followed for the viscous

integral term,

Ivis =

∫
TR

∫
Ω

Ψi
∂

∂xk

(
∂f vis

ik

∂bq

)
dΩdt

=

∫
TR

∫
Sw

Ψi
δs(f

vis
ik nk)

δsbq
dSdt︸ ︷︷ ︸

IvisS

−
∫
TR

∫
Sw

Ψif
vis
ik

δsnk

δsbq
dSdt︸ ︷︷ ︸

SD

−
∫
TR

∫
Sw

Ψi
∂f vis

ik

∂n
vsnnkdSdt︸ ︷︷ ︸

SD

−
∫
TR

∫
Ω

∂Ψi

∂xk

∂f vis
ik

∂bq
dΩdt︸ ︷︷ ︸

IvisΩ

(6.23)

where the surface integral along SIO has been neglected. The viscous volume term

reads

IvisΩ =

∫
TR

∫
Ω

∂Ψl+1

∂xk

∂τlk
∂bq

dΩdt

=

∫
TR

∫
Ω

µ
∂Ψl+1

∂xk

∂

∂xk

(
∂vl
∂bq

)
dΩdt +

∫
TR

∫
Ω

µ
∂Ψl+1

∂xk

∂

∂xl

(
∂vk
∂bq

)
dΩdt



6.2. Mathematical Development of the Incompressible Adjoint Method 215

The Green-Gauss theorem is used at each of the above integrals leading to

IvisΩ =

∫
TR

∫
S

µ
∂Ψl+1

∂xk

∂vl
∂bq

nkdSdt +

∫
TR

∫
S

µ
∂Ψl+1

∂xk

∂vk
∂bq

nldSdt

−
∫
TR

∫
Ω

µ
∂2Ψl+1

∂x2
k

∂vl
∂bq

dΩdt−
∫
TR

∫
Ω

µ
∂2Ψl+1

∂xk∂xl

∂vk
∂bq

dΩdt

By rearranging terms, it becomes

IvisΩ =

∫
TR

∫
S

µ

(
∂Ψl+1

∂xk

+
∂Ψk+1

∂xl

)
∂vl
∂bq

nkdSdt

−
∫
TR

∫
Ω

µ

(
∂2Ψl+1

∂x2
k

+
∂Ψk+1

∂xk∂xl

)
∂vl
∂bq

dΩdt

The adjoint stress tensor in incompressible flows is defined as

τAkl = µ

(
∂Ψk+1

∂xl

+
∂Ψl+1

∂xk

)
By neglecting the surface integrals along the inlet and outlet and taking the wall

conditions into account, this becomes

IvisΩ =

∫
TR

∫
Sw

τAkl
δsv

g
l

δsbq
nkdSdt︸ ︷︷ ︸

SD

−
∫
TR

∫
Sw

τAkl
∂vl
∂n

vsnnkdSdt︸ ︷︷ ︸
SD

−
∫
TR

∫
Ω

∂τAkl
∂xk

∂vl
∂bq

dΩdt︸ ︷︷ ︸
FAE

(6.24)

The viscous surface term is written as

IvisS =

∫
TR

∫
Sw

Ψl+1
δs(τlknk)

δsbq
dSdt

=

∫
TR

∫
Sw

Ψl+1nl
∂τn

∂bq
dSdt︸ ︷︷ ︸

ABC

+

∫
TR

∫
Sw

Ψl+1nl
∂τn

∂n
vsndSdt︸ ︷︷ ︸

SD

+

∫
TR

∫
Sw

Ψl+1τ
n δsnl

δsbq
dSdt︸ ︷︷ ︸

SD

+

∫
TR

∫
Sw

Ψl+1t
r
l

∂τ t
r

∂bq
dSdt︸ ︷︷ ︸

ABC

+

∫
TR

∫
Sw

Ψl+1t
r
l

∂τ t
r

∂n
vsndSdt︸ ︷︷ ︸

SD

+

∫
TR

∫
Sw

Ψl+1τ
tr δst

r
l

δsbq
dSdt︸ ︷︷ ︸

SD

(6.25)



216 K. D. Samouchos

6.2.5 The Incompressible Field Adjoint Equations

The FAE terms are gathered from eqs. 6.19, 6.20, 6.21, 6.22, 6.23, 6.24, and 6.25,

and can be written as∫
TR

∫
Ω

[(
∂FΩ

∂Vj

− ∂Ψ̄j

∂t
− ∂Ψi

∂xk

Aijk

)
∂Vj

∂bq
− ∂τAkl

∂xk

∂vl
∂bq

]
=

∫
TR

∫
Ω

(
∂FΩ

∂Vj

− ∂Ψ̄j

∂t
− ∂Ψi

∂xk

Aijk −
∂τAkl
∂xk

Mlj

)
∂Vj

∂bq
dΩdt

The multiplier of ∂Vj/∂bq is set to zero defining the incompressible field adjoint

equations,

−Mij
∂Ψj

∂t
− Ajik

∂Ψj

∂xk

− ∂f vis,A
k

∂xk

+
∂FΩ

∂Vi

= 0 (6.26)

where

f⃗ vis,A
k =

(
0, τA1k, τA2k, τA3k

)
They represent a linear 4 × 4 system of PDEs in 3D. The source term ∂FΩ/∂Vi is

active only during the TF period. The discretization of eq. 6.26 results in a linear

algebraic system which is solved according to the method described in section 3.7.

6.2.6 The Inlet-Outlet Adjoint Boundary Conditions

The ABC terms are aggregated from expressions appeared in subsections 6.2.1,

6.2.2, 6.2.3, 6.2.4,∫
TR

∫
SIO

∂FSk

∂vm

∂vm
∂bq

nkdSdt +

∫
TR

∫
SIO

∂FSk

∂p

∂p

∂bq
nkdSdt

+

∫
TR

∫
SIO

ΨiAijk
∂Vj

∂bq
nkdSdt

where the stress tensor’s variation is considered negligible. The same terms are

rewritten as ∫
TR

∫
SIO

(
∂FSk

∂Vj

+ ΨiAijk

)
∂Vj

∂bq
nkdSdt



6.2. Mathematical Development of the Incompressible Adjoint Method 217

Vector Q⃗ ∈ R4 defined in subsection 6.1.8 is also introduced in the incompressible

case. Therefore, ∫
TR

∫
SIO

(
∂FSk

∂Vj

+ ΨiAijk

)
∂Vj

∂Qh

∂Qh

∂bq
nkdSdt

This term is eliminated by introducing the incompressible adjoint boundary condi-

tions,

ΨiAijknk
∂Vj

∂Qh

= −∂FSk

∂Qh

nk (6.27)

where for every index h is true that ∂Qh/∂bq ̸= 0. The term ∂FSk
/∂Qh remains

active only during the TF time window and only if the surface SF comprises the inlet

and/or outlet boundaries. Finally, expression ∂Vj/∂Qh depends on the implemented

boundary condition, which differs for each application.

6.2.7 The Adjoint Wall Conditions

The ABC surface integrals along the wall appeared in subsections 6.2.1, 6.2.2, 6.2.3,

and 6.2.4 are written as[∫
Ω

Ψ̄i
∂Vi

∂bq
dΩ

]te
ts

+

∫
TR

∫
Sw

(
Ψk+1 +

∂FSk

∂p

)
∂p

∂bq
nkdSdt

−
∫
TR

∫
Sw

(
Ψk+1 −

∂FSk

∂τn

)
∂τn

∂bq
nkdSdt−

∫
TR

∫
Sw

(
Ψk+1t

r
k −

∂FSk

∂τ tr
nk

)
∂τ t

r

∂bq
dSdt

Elimination of the above surface terms leads to

Ψk+1nk = −∂FSk

∂p
nk

Ψk+1nk =
∂FSk

∂τn
nk

Ψk+1t
r
k =

∂FSk

∂τ tr
nk

The above equations lead to a single boundary expression only in case the objective



218 K. D. Samouchos

function satisfies condition 6.14. Consequently, the adjoint wall conditions are

Ψk+1nk =
∂FSk

∂τn
nk

Ψk+1t
r
k =

∂FSk

∂τ tr
nk

(6.28)

The volume integral is eliminated by applying the method discussed in subsection

6.1.9.

6.2.8 Sensitivity Derivatives Expression

The appropriate definition of the field adjoint equations and boundary conditions

presented in subsections 6.2.5, 6.2.6, 6.2.7 eliminates all the FAE and ABC inte-

grals. The remaining SD terms provide the formula for the augmented function’s

gradient computation. Since δF/δbq =δL/δbq, the final expression of the sensitivity

derivatives reads

δF

δbq
=

∫
TF

∫
Sw

FΩv
s
ndSdt +

∫
TR

∫
Sw

∂FSk

∂vgm

δsv
g
m

δsbq
nkdSdt

+

∫
TF

∫
Sw

(
∂FSk

∂n
− FSk

H

)
vsnnkdSdt +

∫
TF

∫
Sw

FSk

δsnk

δsbq
dSdt

+

∫
TR

∫
Sw

(
Ψ̄iv

g
n

∂Vi

∂n
+ Ψk+1nk

∂p

∂n

)
vsndSdt

+

∫
TR

∫
Sw

(
pΨk+1

δsnk

δsbq
+ (Ψ̄iVi + Ψp)

δsv
g
n

δsbq

)
dSdt−

∫
TR

∫
Sw

Ψif
inv
ik

δsnk

δsbq
dSdt

−
∫
TR

∫
Sw

Ψi
∂f inv

ik

∂n
vsnnkdSdt +

∫
TR

∫
Sw

Ψif
vis
ik

δsnk

δsbq
dSdt +

∫
TR

∫
Sw

Ψi
∂f vis

ik

∂n
vsnnkdSdt

+

∫
TR

∫
Sw

τAkl
δsv

g
l

δsbq
nkdSdt−

∫
TR

∫
Sw

τAkl
∂vl
∂n

vsnnkdSdt−
∫
TR

∫
Sw

Ψl+1nl
∂τn

∂n
vsndSdt

−
∫
TR

∫
Sw

Ψl+1τ
n δsnl

δsbq
dSdt−

∫
TR

∫
Sw

Ψl+1t
r
l

∂τ t
r

∂n
vsndSdt−

∫
TR

∫
Sw

Ψl+1τ
tr δst

r
l

δsbq
dSdt



6.2. Mathematical Development of the Incompressible Adjoint Method 219

Taking the viscous adjoint boundary conditions into consideration, the following

terms ∫
TR

∫
Sw

(
FSk

∂n
nk + Ψk+1nk

∂p

∂n
−Ψk+1nk

∂τn

∂n
−Ψk+1t

r
k

∂τ t
r

∂n

)
vsndSdt

=

∫
TR

∫
Sw

(
FSk

∂n
− FSk

∂p

∂p

∂n
− FSk

∂τn
∂τn

∂n
− FSk

∂τ tr
∂τ t

r

∂n

)
vsndSdt = 0

are canceled out.

By rearranging the remaining terms, one gets

δF

δbq
=

∫
TR

∫
Sw

(
MijΨjv

g
n

∂Vi

∂n
−Ψi

∂fik
∂n

nk − τAklnk
∂vl
∂n

+ FΩ − FSk
nkH

)
vsndSdt

+

∫
TR

∫
Sw

(FSk
+ pΨk+1 −Ψifik −Ψk+1τ

n)
δsnk

δsbq
dSdt−

∫
TR

∫
Sw

Ψk+1τ
tr δst

r
k

δsbq
dSdt

+

∫
TR

∫
Sw

(
∂FSk

∂vgl
+ τAkl

)
δsv

g
l

δsbq
nkdSdt +

∫
TR

∫
Sw

(MijΨjVi + Ψp)
δsv

g
n

δsbq
dSdt

(6.29)

where f⃗k = f⃗ inv
k − f⃗ vis

k . The formulas for the required normal and tangent derivatives

computation are given is subsection 6.1.10.

6.2.9 The Continuous Adjoint Method for Steady Flows

Based on the already presented demonstration for the unsteady case, the incom-

pressible field adjoint equations are

−Ajik
∂Ψj

∂xk

− ∂f vis,A
k

∂xk

+
∂FΩ

∂Vi

= 0

The accompanied adjoint boundary conditions coincide with the unsteady ones and

are mentioned in subsections 6.2.6 and 6.2.7. The corresponding sensitivity deriva-



220 K. D. Samouchos

tives are expressed as

δF

δbq
=−

∫
Sw

(
Ψi

∂fik
∂n

nk + τAklnk
∂vl
∂n
− FΩ + FSk

nkH

)
vsndS

+

∫
Sw

(FSk
+ pΨk+1 −Ψifik −Ψk+1τ

n)
δsnk

δsbq
dS

−
∫
Sw

Ψk+1τ
tr δst

r
k

δsbq
dS

6.3 Discretization of the Steady Adjoint Equa-

tions

The adjoint equations present similarities with the corresponding primal flow PDEs,

and, consequently, similar techniques can be used for their numerical solution. How-

ever, studies on the proper discretization of the continuous adjoint PDEs are limited

in the literature. In this thesis, three different discretization methods are developed

based on the Roe [262], HLLC [307], and FVS [291] schemes. The section starts

with the definition of the adjoint flux and the study of specific properties of the

adjoint equations necessary for the discretization schemes formulation. Then, it fo-

cuses only on Roe’s approach since it is the mainly used scheme in this thesis. The

mathematical development of the rest schemes can be found in Appendix L. The

adjoint PDEs numerical solution presents similarities with the theory developed for

the flow equations in subsections 3.2.1 and 3.2.2. A significant part of the following

analysis is described in detail in Appendix E for conservative hyperbolic systems.

Thus, attention is mainly paid to parts of significant importance.

The following study focuses on the 1D steady conservative system,

Aij
∂Uj

∂x
= 0, i = 1, · · · , N (6.30)

before its generalization to 3D in subsection 6.3.3. According to Appendix E, the

system of eqs. 6.30 can be expressed in the form of N wave equations representing the

motion of the characteristic waves inside the domain. Their velocity is equal to the

matrix coefficient (A) eigenvalues. The wave propagation direction agrees with the

number of conditions imposed along each boundary. For example, in compressible

subsonic flows where N =3, two waves move from the inlet to the interior, and one



6.3. Discretization of the Steady Adjoint Equations 221

in the opposite direction. An equal number of Dirichlet conditions are imposed at

the inlet and outlet, respectively.

The continuous adjoint method, presented in sections 6.1 and 6.2 implemented in

the 1D problem, results in the following adjoint equations,

Aji
∂Ψj

∂x
= 0, i = 1, · · · , N (6.31)

The matrix coefficient of the adjoint problem is the transpose of the primal one,

meaning that the adjoint characteristic waves’ velocity is equal to the primal one.

However, the number of the boundary conditions accompanying the adjoint problem

at each border of the 1D domain is N − NBC , where NBC is the number of the

corresponding primal boundary conditions. In the example of the 1D compressible

subsonic adjoint problem, one Dirichlet condition should be imposed at the inlet

and two at the outlet. Therefore, the waves associated with the adjoint field should

have the opposite direction of the primal ones to comply with the corresponding

adjoint boundary conditions. Therefore, the adjoint equations are multiplied with

−1 to reverse the eigenvalues’ sign. Finally, an artificial time derivative is added to

the l.h.s. of eqs. 6.31 to convert them to a system of hyperbolic PDEs,

∂Ψi

∂t
− Aji

∂Ψj

∂x
= 0 (6.32)

The corresponding initial values defining the adjoint Riemann problem are

Ψi(x, t = 0) =

{
ΨL

i , UL
i x ⩽ 0

ΨR
i , UR

i x > 0

The flow initialization U⃗L and U⃗R is considered constant in time, while the adjoint

field proceeds in time. According to Godunov’s method, the time-averaged flux at

x=0 should be found.

At first, the adjoint flux is introduced. Contrary to the flow equations, the adjoint

convection is not conservative, and the definition of the adjoint flux is not straight-

forward. The suggested definition aims to overcome the convection term’s spatial

integration challenge and is expressed as

fL
i (x, t) = −

∫ x

SLT

Aji
∂Ψj

∂x
dx− AL

jiΨ
L
j



222 K. D. Samouchos

or

fR
i (x, t) =

∫ SRT

x

Aji
∂Ψj

∂x
dx− AR

jiΨ
R
j

where

SL = −max{λL,R
i }

SR = −min{λL,R
i }

and λi are the eigenvalues of the Jacobian matrices AL and AR. Then, the time-

averaged flux is

fL0
i =

1

T

∫ T

0

fL
i (x = 0, t)dt

or

fR0
i =

1

T

∫ T

0

fR
i (x = 0, t)dt

Generally, f⃗L0 ̸= f⃗R0, due to the loss of the conservative property. Firstly, f⃗L0 is

computed by integrating eq. 6.32 in the [SLT, 0]× [0, T ] spatial-temporal domain.∫ T

0

∫ 0

SLT

∂Ψi

∂t
dxdt−

∫ T

0

∫ 0

SLT

Aji
∂Ψj

∂x
dxdt = 0⇔∫ 0

SLT

(Ψi(x, T )−Ψi(x, 0)) dx +

∫ T

0

(
fL
i (0, t) + AL

jiΨ
L
j

)
dt = 0⇔∫ 0

SLT

Ψi(x, T )dx + ΨL
i S

LT + fL0
i T + AL

jiΨ
L
j T = 0⇔

fL0
i = −AL

jiΨ
L
j −ΨL

i S
L − 1

T

∫ 0

SLT

Ψi(x, T )dx (6.33)

Similarly, by integrating eq. 6.32 in the [0, SRT ]× [0, T ] domain, one gets

fR0
i = −AR

jiΨ
R
j −ΨR

i S
R +

1

T

∫ SRT

0

Ψi(x, T )dx (6.34)

Computing the unknown integrals of eqs. 6.33 and 6.34 is challenging, but can be

facilitated by making a number of simplifications. Based on these assumptions,

different discretization schemes appear. In the following subsections and Appendix

L, three variants are presented inspired by the Roe, the HLLC, and the FVS schemes.



6.3. Discretization of the Steady Adjoint Equations 223

6.3.1 The Adjoint Roe Scheme

In this subsection, the unknown integrals of eqs. 6.33 and 6.34 are computed by

introducing an approximation to the adjoint Riemann problem inspired by the Roe

approach. It is based on the assumption that the flow field is constant throughout

the 1D domain and equal to the Roe averages ( ⃗̃U) of U⃗L and U⃗R. The corresponding

equation is

∂Ψ̂i

∂t
− Ãji

∂Ψ̂j

∂x
= 0 i = 1, · · · , N (6.35)

Ψ̂i(x, t = 0) =

{
ΨL

i , x ⩽ 0

ΨR
i , x > 0

where Ã = A( ⃗̃U). In the following expressions, eigenvalues SL and SR correspond

to the newly defined matrix Ã. Its integration in the [SL, 0]× [0, T ] control volume

gives ∫ T

0

∫ 0

SLT

∂Ψ̂i

∂t
dxdt−

∫ T

0

∫ 0

SLT

Ãji
∂Ψ̂j

∂x
dxdt = 0⇔∫ 0

SLT

Ψ̂i(x, T )dx = −ÃjiΨ
L
j T + ÃjiΨ̂

0
jT −ΨL

i S
LT (6.36)

where

Ψ̂0
i =

1

T

∫ T

0

Ψ̂i(0, t)dt

Substituting eq. 6.36 into eq. 6.33 one gets

fL0
i = −AL

jiΨ
L
j − Ãji

(
Ψ̂0

j −ΨL
j

)
(6.37)

Similarly,

fR0
i = −AR

jiΨ
R
j − Ãji

(
Ψ̂0

j −ΨR
j

)
(6.38)

The final step is the
⃗̂
Ψ0 computation, which is derived from the solution of the

approximate adjoint Riemann problem. It arises by firstly diagonalizing matrix Ã,

Ã = P̃ Λ̃P̃−1

where Λ̃ = diag(λ̃1, · · · , λ̃N) with λ̃i being the eigenvalues of Ã in ascending order,



224 K. D. Samouchos

and columns of P̃ are the right eigenvectors of Ã. Apparently, SL = −λ̃N and

SR =−λ̃1. Thereafter, the adjoint Riemann invariants are introduced as

W⃗ = P̃ T ⃗̂Ψ

Then, eq. 6.35 becomes

∂Ψ̂i

∂t
− P̃−1

mi Λ̃nmP̃jn
∂Ψ̂j

∂x
= 0⇔ P̃mi

∂Ψ̂m

∂t
− Λ̃miP̃jm

∂Ψ̂j

∂x
= 0⇔

∂Wi

∂t
− Λ̃im

∂Wm

∂x
= 0

The last equation describes the already mentioned motion of N characteristic waves

with a velocity of −λ̃i. In other words, Wi remains constant along the characteristic

curve dx/dt = −λ̃i. Since λ̃i is constant, the three curves are the straight lines

x=−λ̃it + x0, which leads to

Wi(x, t) = Wi(x + λ̂it) = Wi(x0) = W 0
i

Thus, W⃗ and
⃗̂
Ψ are 1D functions of x/t. Their value along the t-axis is constant

and equal to W⃗ 0 and
⃗̂
Ψ0, respectively. They are related through the definition of

W⃗ ,

Ψ̂0
i =

N∑
m=1

P̃−1
mi W

0
m ⇔ Ψ̂0

i =
m̂∑

m=1

P̃−1
mi W

L
m +

N∑
m=m̂+1

P̃−1
mi W

R
m (6.39)

where

W⃗L = P̃L,T ⃗̂ΨL

W⃗R = P̃R,T ⃗̂ΨR

Index m̂ is the maximum integer for which λ̃m̂ < 0. Eq. 6.39 is expressed in two

alternative ways,

Ψ̂0
i = ΨL

i +
N∑

m=m̂+1

P̃−1
mi (WR

m −WL
m) (6.40)

Ψ̂0
i = ΨR

i −
m̂∑

m=1

P̃−1
mi (WR

m −WL
m) (6.41)



6.3. Discretization of the Steady Adjoint Equations 225

By substituting these expressions into eqs 6.37 and 6.38, one concludes that

fL0
i = −AL

jiΨ
L
j −

N∑
m=m̂+1

λ̃mP
−1
mi

(
WR

m −WL
m

)
fR0
i = −AR

jiΨ
R
j +

m̂∑
m=1

λ̃mP
−1
mi

(
WR

m −WL
m

)

Contrary to the adjoint eq. 6.32, the approximate adjoint Riemann problem of

eq. 6.35 is governed by a conservative PDE. Therefore, fL0
i = fR0

i = f 0
i . By adding

the expressions of f⃗L0 and f⃗R0, the final adjoint Roe scheme becomes

f 0
i =

1

2
(−AL

jiΨ
L
j − AR

jiΨ
R
j )− 1

2

N∑
m=1

P̃−1
mi |λ̃m|P̃jm(ΨR

j −ΨL
j ) (6.42)

where

λ̃m =

{
−|λ̃m|, m ⩽ m̂

|λ̃m|, m > m̂

has been used.

6.3.2 The Corrected Adjoint Roe Scheme

The discretization scheme developed in subsection 6.3.1 does not consider the non-

conservative nature of the adjoint equations. This simplification is eliminated by

adding a correction term to the flux expression of eq. 6.42 and creating a more

accurate discretization scheme as explained in subsection 7.3.1. So, the conservative

form of the convection term is added and subtracted from eq. 6.32,

∂Ψi

∂t
− Aji

∂Ψj

∂x
= 0⇔

[
∂Ψi

∂t
− ∂(AjiΨj)

∂x

]
︸ ︷︷ ︸

Th

+

[
∂(AjiΨj)

∂x
− Aji

∂Ψj

∂x

]
︸ ︷︷ ︸

Tc

= 0

The first bracket (Th) corresponds to a conservative hyperbolic equation, and the

method developed in subsection 6.3.1 is applied. Its discretized expression at node



226 K. D. Samouchos

i and time instant n in a mesh of equally distributed nodes of spacing ∆x is

Ih =

∫ T

0

∫ +∆x
2

−∆x
2

Thdxdt =

∫ T

0

∫ +∆x
2

−∆x
2

∂Ψ⃗

∂t
dxdt−

∫ T

0

∫ +∆x
2

−∆x
2

∂(AT Ψ⃗)

∂x
dxdt

= (Ψ⃗n+1
i − Ψ⃗n

i )∆x + (f⃗n
i,i+1 − f⃗n

i−1,i)∆t

where ∆t is the chosen time step, and f⃗n
i,j stands for the flux between nodes i, j

which correspond to the left (L) and right (R) states of eq. 6.42. Term Tc stands for

the difference between the conservative and non-conservative convection term, repre-

senting the necessary correction for the already developed scheme. Its discretization

is based on central finite differences,

Ic =

∫ T

0

∫ +∆x
2

−∆x
2

Tcdxdt =

∫ T

0

∫ +∆x
2

−∆x
2

∂(AT Ψ⃗)

∂x
dxdt−

∫ T

0

∫ +∆x
2

−∆x
2

AT ∂Ψ⃗

∂x
dxdt

=
∂(AT Ψ⃗)

∂x

∣∣∣∣∣
i,n

∆x∆t− AT
i

∂Ψ⃗

∂x

∣∣∣∣∣
i,n

∆x∆t

=
1

2
(ATn

i+1Ψ
n
i+1 − ATn

i−1Ψ
n
i−1)∆t− 1

2
ATn

i (Ψn
i+1 −Ψn

i−1)∆t

After rearranging terms, equation Ih+Ic =0 becomes

(Ψ⃗n+1
i − Ψ⃗n

i )∆x

+

[(
f⃗n
i,i+1 +

1

2
(ATn

i+1 − ATn
i )Ψ⃗n

i+1

)
−
(
f⃗n
i−1,i +

1

2
(ATn

i−1 − ATn
i )Ψ⃗n

i−1

)]
∆t = 0

Both parentheses suggest a new non-conservative expression for the flux between

the L and R nodes,

fL0
i

′
= f 0

i +
1

2
(AR

ji − AL
ji)Ψ

R
j

fR0
i

′
= f 0

i +
1

2
(AL

ji − AR
ji)Ψ

L
j

concluding with the final expressions,

fL0
i

′
= −1

2
AL

ji(Ψ̂
L
j + Ψ̂R

j )− 1

2

N∑
m=1

P̃−1
mi |λ̃m|P̃jm(Ψ̂R

j − Ψ̂L
j ) (6.43)

fR0
i

′
= −1

2
AR

ji(Ψ̂
L
j + Ψ̂R

j )− 1

2

N∑
m=1

P̃−1
mi |λ̃m|P̃jm(Ψ̂R

j − Ψ̂L
j ) (6.44)



6.4. The Adjoint Method Implemented in Unsteady Flows 227

6.3.3 The 3D Adjoint Solver

Although all the discretization schemes described in this thesis have the same be-

havior in terms of convergence, they result in slightly different adjoint fields leading

to deviations in the computation of the sensitivity derivatives. Thus, choosing the

appropriate discretization scheme is of high importance because it substantially af-

fects the optimization process. Usually, the adjoint version of the flow discretization

scheme is the most suitable choice. Therefore, in this thesis, the non-conservative

adjoint Roe scheme, eq. 6.43, is preferred, which in 3D applications is expressed as

f̄A,inv,m
ik nPQ

k = −1

2
AL

jik

(
ΨL

j + ΨR
j

)
nPQ
k − 1

2

∣∣∣Ãjikn
PQ
k

∣∣∣ (ΨR
j −ΨL

j

)
or

f̄A,inv,m
ik nPQ

k = −1

2
AP

jik

(
ΨP

j + ΨQ
j

)
nPQ
k − 1

2

∣∣∣Ãjikn
PQ
k

∣∣∣ (ΨR
j −ΨL

j

)
Its second-order discretization is achieved by applying the MUSCL scheme, as ex-

plained in subsection 3.2.3 for the flow equations, where the same limiters, presented

in subsection 3.2.4, can be used. The required derivatives of the adjoint variables are

given by the Least Square Method described in subsection 3.2.5. Regarding the vis-

cous adjoint terms, they are treated as in subsection 3.2.7. Finally, the pseudo-time

step is computed from eq. 3.18. Moreover, the incompressible adjoint equations’

discretization is based on methods discussed in section 3.5. Hence, relatively little

effort is needed to develop the adjoint solver since it shows many similarities with

the corresponding flow solver. Its straightforward implementation is one of the con-

tinuous adjoint method’s most significant advantages, making it a suitable choice

for complex flow software handling industrial applications.

6.4 The Adjoint Method Implemented in Unsteady

Flows

The formulation of the continuous adjoint method for unsteady compressible flows

results in the adjoint PDEs, eq. 6.12, where the negative sign in front of the tem-

poral, the convection, and diffusion terms is of significant importance. Section 6.3

describes the physical meaning of the convection’s negative sign and explains why

its negligence drives the adjoint solver to divergence. Therefore, the multiplier of



228 K. D. Samouchos

the other two terms should also remain negative. To emphasize the point, the vis-

cous term T vis
i , which represents the elliptic part of the equation modeling diffusive

phenomena, should always have a negative sign whenever placed on the l.h.s. of any

PDE. First-order forward finite differences discretize the temporal term as

−∂Ψi

∂t
= −Ψn+1

i −Ψn
i

∆t

where ∆t is the chosen time step. The negative multiplier −1/∆t of the unknown

quantity Ψn+1
i causes serious stability issues preventing the adjoint solver’s conver-

gence. Thus, the discretized adjoint equation should be solved w.r.t. Ψn
i , which

implies the following discretization scheme for stationary geometries,

Ψn
i −Ψn+1

i

∆t
Ωn +

Ψn,q+1
i −Ψn,q

i

∆τ
Ωn +

M∑
m=1

(
fA,m
ik nm

k ∆Sm
)n,q+1

= 0

which imposes that the adjoint equations must be solved backwards in time. The

reader is referred to section 3.3 for the used notation definition. Subsection 6.1.9

proves that the initial conditions for non-periodic adjoint problems are defined at

the end of the simulation time, which comes to an agreement with the backward in-

time integration of the PDEs. However, the same argument also states for periodic

flows, even though no initial boundary conditions are imposed.

Hence, the backward-in-time marching adjoint algorithm should start once the so-

lution of the flow PDEs, via the forward-in-time marching algorithm, has been

integrated. Computing the instantaneous adjoint field at any time step requires the

corresponding flow field at the same time step to be available. In view of the above,

the full storage of the flow field’s entire time series seems mandatory, although it

is not always feasible due to the huge storage requirements. Therefore, alterna-

tive methods have been proposed in the literature based on the unsteady flow field

recomputation, up to the instant the adjoint equations are solved. The optimal

check-pointing techniques, [116], [329], are some of the most widely used methods,

according to which the flow field is partially recomputed from selectively stored

instantaneous fields. Another alternative of lower computational cost is based on

approximations to the already computed unsteady fields built during the forward-in-

time marching flow simulation. Some of them efficiently compress and store the flow

time series neglecting the less important details of the flow field. Two approaches of

this kind were developed and appropriately adjusted to cooperate with the cut-cell

and the ghost-cell methods. The first one is based on the Singular Value Decom-



6.4. The Adjoint Method Implemented in Unsteady Flows 229

position (SVD) [112], [113], [323] and the second one uses the Proper Generalized

Decomposition (PGD) [60], [9], [170]. More details can be found in Appendices M,

N and section 9.5.



Chapter 7

The Discrete Adjoint Method

This chapter discusses the discrete adjoint to the steady and unsteady solvers based

on the cut-cell method. Discrete adjoint codes can be implemented by either differ-

entiating the discretized primal residuals “by hand” or using Algorithmic Differenti-

ation. Even though the latter automates the generation of the discrete adjoint code,

the resulting software tends to have significant memory requirements compared to

hand-differentiated codes. Therefore, this thesis deals with the hand differentiation

of the viscous flow equations of both compressible and incompressible fluids. How-

ever, their complex discretized form makes the differentiation a challenging process

that hinders the development of the discrete adjoint software. Therefore, various

assumptions have been proposed in the literature, simplifying the process at the cost

of reducing the accuracy of the computed sensitivity derivatives.

Contrary to the usual practice, no assumptions are made in the following analysis,

leading to the exact discrete adjoint expressions. The resulting terms are compared

with the corresponding discretization schemes proposed for the continuous adjoint

equations. Special treatment is given to the differentiation of the temporal term,

taking the cells’ appearance and disappearance into account in applications that

involve moving solid bodies. Hereafter, the expressions for the sensitivity derivatives

computation are derived. Finally, emphasis is laid on smoothing techniques reducing

the high-frequency signals that appear on the sensitivity map, making it capable of

optimizing geometrically complex cases.

In the following sections, great effort is made for the clear mathematical development

defining new quantities, which allow for a more compact presentation of the resulting

230



7.1. The Discrete Field Adjoint Equation and Sensitivity Derivatives 231

expressions. The used notation is based on chapter 6, where the objective function

(F ) and the design variables (bq) are defined as well. Moreover, an assumption is

made about the indices variation for the rest of the chapter. Indices k, λ, and µ are

used for the Cartesian directions, whereas i, j, and l are for the flow variables or

equations. Finally, m and n are used for cells, time steps, and geometrical quantities.

Contrary to the other chapters, the Einstein notation does not apply here. Whenever

summation is implied, the symbol
∑

will be used instead, neglecting its upper and

lower limits for the sake of brevity. For example,
∑
k

is the shortcut for
3∑

k=1

in 3D or

2∑
k=1

in 2D cases.

7.1 The Discrete Field Adjoint Equation and Sen-

sitivity Derivatives

Consider a computational domain covered by a Cartesian mesh of N cells. The

flow PDEs R⃗= 0⃗ are discretized at each cell C ∈ [1, N ], forming a set of algebraic

equations, R⃗C = 0⃗. According to the discretization method presented in chapter 3,

residuals are functions of the unknown flow variables U⃗n stored at the centroid of

cells enumerated by index n ∈ [1, N ]. Moreover, the residual expressions contain

geometrical quantities listed in G⃗m, where m is the counter of the list. Its members

are the coordinates of the nodes of the triangulated solid surfaces, the normal vector,

area, centroid, and velocity of the mesh faces as well as the volume and centroid of

the cells.

The boundary displacement due to a change in b⃗ implies a mesh deformation af-

fecting the aforementioned geometrical quantities. However, the variation in mesh

quantities also modifies the flow solution. Thus, R⃗C can be written as a function of

b⃗ in the form,

R⃗C = R⃗C
(
G⃗m(⃗b), U⃗n(G⃗m(⃗b))

)
= R⃗C

(
G⃗m(⃗b), U⃗n(⃗b)

)
Likewise, the objective function, can be expressed in the same way,

F = F
(
G⃗m(⃗b), U⃗n(⃗b)

)
Similarly to the continuous adjoint, computing the gradient of F is reduced to the



232 K. D. Samouchos

cost of one equivalent flow simulation by introducing the Lagrangian function,

L = F +
∑
C

Ψ⃗C · R⃗C

where Ψ⃗C are the adjoint variables corresponding to cell C. The Lagrangian and

the objective function are equal, so do their derivatives. An infinitesimal change in b⃗

causes a boundary displacement, which is always small enough to prevent the cells’ or

faces’ appearance or disappearance. Therefore, functions G⃗m(⃗b) are continuous and

differentiable in the neighborhood of point b⃗. The Lagrangian function’s derivative

is
δL

δbq
=

δF

δbq
+
∑
C

Ψ⃗C · δR⃗
C

δbq

where δ is used for the partial derivative w.r.t. bq. The already presented indirect

dependency of F and R on the design variables yields

δL

δbq
=
∑
m

∂F

∂G⃗m
· δG⃗

m

δbq
+
∑
C

∑
m

Ψ⃗C ·

(
∂R⃗C

∂G⃗m

δG⃗m

δbq

)

+
∑
n

(
∂F

∂U⃗n
+
∑
C

∑
i

ΨC
i

∂RC
i

∂U⃗n

)
· δU⃗

n

δbq

The high computational cost of term δU⃗n/δbq is avoided by eliminating its multiplier

giving rise to N discrete adjoint equations,

∑
C

∑
i

ΨC
i

∂RC
i

∂U⃗n
+

∂F

∂U⃗n
= 0⃗, n = 1, · · · , N (7.1)

which form a linear N ×N system. After finding the unknown adjoint variables by

solving the aforementioned system, the sensitivity derivatives are computed as

δF

δbq
=
∑
m

∂F

∂G⃗m
· δG⃗

m

δbq
+
∑
C

∑
m

Ψ⃗C ·

(
∂R⃗C

∂G⃗m

δG⃗m

δbq

)
(7.2)

A great advantage of using a Cartesian mesh is that derivatives δG⃗m/δbq are non-zero

only in cut-cells, drastically reducing the cost of computing the objective function’s

gradient. The next sections focus on the computation of
∑
C

∑
i

ΨC
i (∂RC

i /∂U⃗
n) and∑

C

∑
i

ΨC
i (∂RC

i /∂G⃗
m).



7.2. The Discrete Adjoint Flux 233

Before moving to this analysis, a short investigation is made about the physical

meaning of the adjoint variables. Hence, a hypothetical scenario is adopted, ac-

cording to which term sC0
i is added on the r.h.s. of residual RC0

i , where C0 is an

arbitrarily chosen cell. Depending on the value of i, this term acts as a source of

mass, force, or source of energy. Additionally, consider an optimization problem,

according to which the design variables affect only sC0
i . Therefore, an equivalent

relation to eq. 7.2 can be derived, where sC0
i is used instead of G⃗m,

δF

δbq
=

∂F

∂sC0
i

δsC0
i

δbq
+
∑
C

Ψ⃗C ·

(
∂R⃗C

∂sC0
i

δsC0
i

δbq

)

However, F and R⃗C , where C ̸= C0, are not functions of sC0
i , simplifying the above

expression to

δF

δbq
= Ψ⃗C0 ·

(
∂R⃗C0

∂sC0
i

δsC0
i

δbq

)
= ΨC0

i

∂RC0
i

∂sC0
i

δsC0
i

δbq
= −ΨC0

i

δsC0
i

δbq

If sC0
i is the only design variable of this hypothetical optimization problem, the

objective’s gradient can be written as

δF

δsC0
i

= −ΨC0
i

which implies that each adjoint variable of a cell C0 indicates the infinitesimal varia-

tion of the objective function caused by an corresponding infinitesimally small source

term placed on C0. An example of this conclusion is given in section 8.1.

7.2 The Discrete Adjoint Flux

The programming of the discrete adjoint method requests the reformation of the field

adjoint equations to seem like the discretized flow equations. Hence, the adjoint flux

should be defined, which is achieved by the following mathematical development

based on a steady flow consideration. Firstly, some new indices are introduced.

Index C ′ refers to all neighboring cells of cell C. Moreover,
∑
C′

stands for the

summation over all neighbors of C. Index F indicates each mesh face, and FC is a

local enumerator usually used for summation over all faces of cell C, which is written



234 K. D. Samouchos

as
∑
FC

. Additionally, if the face belongs to the solid wall boundary, enumerator Fw
C

is preferred for stationary faces and F v
C for moving faces. Each quantity computed

on the face can be written either with F or FC . For example, the normal to the face

vector appears as n⃗F or n⃗FC . Based on this notation and according to chapter 3,

the flow residual can be written as

R⃗C =
∑
FC

∑
k

f⃗ FC
k nFC

k ∆SFC

Then, eq. 7.1 suggests that the nth steady adjoint residual is

R⃗A,n =
∑
C

∑
FC

∑
i

∑
k

ΨC
i

∂fFC
ik

∂U⃗n
nFC
k ∆SFC +

∂F

∂U⃗n
(7.3)

Each inner face F lays between two neighboring cells called P and Q. The face is

identified differently by the local enumeration of each cell. Let F be the FP
th face

of P and the FQ
th face of Q. Though FP and FQ correspond to the same face, two

geometrical or flow quantities qFP and qFQ are not always equal. The conservative

nature of the flow equations implies

f⃗ FP
k nFP

k ∆SFP = −f⃗ FQ

k n
FQ

k ∆SFQ

According to eq. 7.3, the flux through each inner face contributes twice in the sum-

mation as part of cells P and Q. These terms are

ΨP
i

∂f FP
ik

∂U⃗n
nFP
k ∆SFP + ΨQ

i

∂f
FQ

ik

∂U⃗n
n
FQ

k ∆SFQ =
(

ΨP
i −ΨQ

i

) ∂f FP
ik

∂U⃗n
nFP
k ∆SFP

Then, the adjoint residual is reformed by substituting the double sum over C and

FC with a single sum over all mesh faces,

R⃗A,C =
∑
F

∑
i

∑
k

(
ΨP

i −ΨQ
i

) ∂f F
ik

∂U⃗C
nF
k ∆SF +

∂F

∂U⃗C
(7.4)

where Ψ⃗Q = 0⃗ is imposed at each boundary face. Moreover, the normal vector nF
k

is defined to point from P to Q. The same convention is also adopted for any

other notation of the normal vector (e.g., n⃗FC ) for the rest of this chapter. The last

expression suggests that all fluxes containing U⃗C contribute to the adjoint equation

of cell C. These faces can be separated into two categories. In the first one belong



7.2. The Discrete Adjoint Flux 235

faces that separate C from its neighbors. The second one includes faces lying between

the first and second neighbors of C. The following example explains the reason why

the fluxes through these faces contribute to R⃗A,C .

Consider cell P , its neighbor Q, and a neighbor of Q called R. Cell R is not a

direct neighbor of P . The flux through the face between Q and R depends on the

flow variables and their derivatives stored at Q and R. The spatial derivative of

U⃗Q is computed by the Least Squares Method, subsection 3.2.5, which uses the flow

variables of all direct neighbors of Q, including P . Therefore, the flux between the

first (Q) and the second (R) neighbors of P depend on U⃗P .

The sum over mesh faces of eq. 7.4 is split into these two categories,

R⃗A,C =
∑
F∈C

∑
i

∑
k

(
ΨP

i −ΨQ
i

) ∂f F
ik

∂U⃗C
nF
k ∆SF

+
∑
F∈C′

∑
i

∑
k

(
ΨP

i −ΨQ
i

) ∂f F
ik

∂U⃗C
nF
k ∆SF +

∂F

∂U⃗C

=
∑
FC

∑
k

f⃗A,FC

k nFC
k ∆SFC +

∑
C′

B⃗C′

C +
∂F

∂U⃗C

where f⃗A,FC

k is the adjoint flux on face FC and its components are defined as

fA,FC

jk =
∑
i

∂fFP
ik

∂UC
j

(
ΨP

i −ΨQ
i

)
(7.5)

If C = P , then f⃗A,FP

k is part of the adjoint residual of P . Similarly, if C = Q,

then f⃗
A,FQ

k is part of R⃗A,Q. The above definition implies that f⃗A,FP

k ̸= f⃗
A,FQ

k which

expresses the non-conservative nature of the field adjoint equations. The primal flux

derivative is computed by considering that all flow variables and their derivatives

stored at all cells but C are constant. The rest dependencies are taken into account

by the following term.

The new vector B⃗C′
C will be called the B-term and represents the contribution of

each neighbor C ′ to C. Its components are defined as

Bj
C′

C =
∑
FC′

∑
i

∑
k

∂f
FP ′
ik

∂UC
j

(
ΨP ′

i −ΨQ′

i

)
n
FC′
k ∆SFC′ (7.6)



236 K. D. Samouchos

where P ′ and Q′ are the two cells separated by face FC′ . Its upper index shows the

cell at which the vector is stored, while the lower index signifies the cell’s adjoint

equation in which B⃗C′
C is part of. This vector plays a central role in software paral-

lelization. As mentioned before, the adjoint residual computation at C needs also

information from neighbors other than its direct ones. However, the parallelization

of CFD software is usually designed to solve discretized equations that exchange only

the flow variables and their derivatives between neighbors. The proposed algorithm

shown below is designed to overpass these complexities.

Algorithm 13: Discrete Adjoint Residual Computation

1 R⃗A,C ← 0⃗

2 foreach mesh face F do

3 R⃗A,P ← R⃗A,P + f⃗A,FP

k nF
k ∆SF

4 R⃗A,Q ← R⃗A,Q + f⃗
A,FQ

k nF
k ∆SF

5 end

6 foreach mesh cell C do

7 R⃗A,C ← R⃗A,C + ∂F

∂U⃗C

8 foreach cell’s neighbor C ′ do

9 B⃗C
C′ ← 0⃗

10 foreach cell’s face FC do

11 B⃗C
C′ ← B⃗C

C′ +
∑
i

∑
k

∂f
FC
ik

∂U⃗C′

(
ΨP

i −ΨQ
i

)
nFC
k ∆SFC

12 end

13 end

14 end

15 exchange B⃗C
C′ ∀C,C ′ between processors

16 foreach mesh cell C do

17 foreach cell’s neighbor C ′ do

18 R⃗A,C ← R⃗A,C + B⃗C′
C

19 end

20 end

It starts with a loop over all mesh faces and computes the adjoint fluxes of cells

P and Q, imitating the flow solver’s algorithm. Afterwards, each mesh cell C is

responsible for computing the objective function’s source term and the B⃗C
C′ contri-

butions for its direct neighbors C ′. For each and every pair (C,C ′), the vector’s



7.3. The Compressible Discrete Adjoint Equation 237

computation requires the loop over all faces FC . Then, vectors B⃗C
C′ are exchanged

between the processors’ boundary cells and added to the adjoint equation’s residual

of the appropriate cell.

7.3 The Compressible Discrete Adjoint Equation

According to eq. 7.1, the discretized flow equations and the objective function should

be differentiated w.r.t. the vector of the flow variables, which, in the case of com-

pressible flows, are the conservative variables U⃗n defined in section 3.1. However,

the differentiation w.r.t. the primitive variables V⃗ n is much easier and leads to the

same field adjoint equation. This statement is easily shown by rewriting eq. 7.1 as

∑
C

∑
i

ΨC
i

∂RC
i

∂U⃗n
+

∂F

∂U⃗n
= 0⇔

∑
C

∑
i

∑
j

ΨC
i

∂RC
i

∂V n
j

∂V n
j

∂U⃗n
+
∑
j

∂F

∂V n
j

∂V n
j

∂U⃗n
= 0

Matrix ∂V⃗ /∂U⃗ is always invertible, which allows for the equation’s simplification,

∑
C

∑
i

ΨC
i

∂RC
i

∂V⃗ n
+

∂F

∂V⃗ n
= 0

Therefore, for the reasons mentioned above, the residual derivation w.r.t. V⃗ n is

preferred.

The computation of the adjoint flux and B-term is the target of the following sub-

sections. The class of matrices introduced below plays a central role in this process,

Di
Y
X =

∂pYi
∂qXi

where p⃗X and q⃗ Y are any flow quantities. Indices X and Y represent either cells

(C, C ′) or faces (FC , Fw
C , F v

C , F ′) and indicate the position at which each quantity

is computed. If neither X nor Y is a dotted index (C ′, F ′), the symbol D is used



238 K. D. Samouchos

instead, and the Jacobian matrix is defined as

DY
ij =

∂pYi
∂qXj

Therefore, matrix D is used for the adjoint flux computation while D contributes to

the B-term’s expression. During the diffusion differentiation, quantity p represents

a matrix instead of a vector. Then, the above definitions are transformed to

Dik
Y
X =

∂pYik
∂qXi

and

DY
ijk =

∂pYik
∂qXj

In case q is a geometrical quantity, a tilde is added on top of the matrix (e.g., D̃i
Y
X).

7.3.1 Differentiation of the Convection Term

According to eq. 7.5, the adjoint inviscid flux is

f inv,A,FC

jk =
∑
i

∂f inv,FP

ik

∂V C
j

(
ΨP

i −ΨQ
i

)
where f⃗ inv,FP

k , defined by eq. 3.5, is a function of the flow variables stored at P and

Q centroids. However, according to the MUSCL scheme, subsection 3.2.3, the flux is

also a function of the flow variables extrapolated from the P and Q to the centroid

of F , given by eq. 3.9. These variables will be referred to as
⃗̂
V FP and

⃗̂
V FQ , where

⃗̂
V FP ̸= ⃗̂

V FQ . By combining eqs. 3.9 and 3.13, every extrapolated flow variable
⃗̂
V FC

can be written as

V̂ FC
i = V C

i + ϕC
i

∑
k

dV C
ik ∆xFC

k = V C
i + ϕC

i

∑
k

∑
C′

Ck
C
C′

(
V C′

i − V C
i

)
∆xFC

k

where dV C
ik stands for the spatial derivative of V C

i w.r.t. xk, C⃗C
C′ is an alternative

notation for W⃗ defined in eq. 3.12, ∆x⃗FC is a vector positioned at C pointing to

F centroids and ϕ⃗C stands for the used limiter. Only the limiter by Barth and

Jespersen, is differentiated and used in the discrete adjoint formulation. This is



7.3. The Compressible Discrete Adjoint Equation 239

computed as

ϕC
i =

V C̄
i − V C

i

V̂ F̄C
i − V C

i

According to the notation used in subsection 3.2.4 for the limiter’s definition, V C̄
i is

either Vimax or Vimin
, and V̂ F̄C

i is equal to V f
i . For more information, see eq. 3.10.

Moreover, four matrices, necessary for the following mathematical development, are

defined as

D
FC
ij =

∂V̂
FC
i

∂V C
j

∣∣∣∣
ϕ⃗C

, DLFC
ij =

∂V̂
FC
i

∂V C
j

Di
FC

C′ =
∂V̂

FC
i

∂V C′
i

∣∣∣∣
ϕ⃗C

, DLi
FC

C′ =
∂V̂

FC
i

∂V C′
i

(7.7)

where the sidebar denotes that the limiter is considered constant during the corre-

sponding differentiation.

The final expressions for the inviscid adjoint flux and the B-term are

f inv,A,FC

jk =
∑
i

∂f inv,FP

ik

∂V C
j

∣∣∣∣∣ ⃗̂
V C

(
ΨP

i −ΨQ
i

)
+
∑
i

∑
l

∂f inv,FP

ik

∂V̂ C
l

(
ΨP

i −ΨQ
i

)
DLFC

lj

Binv
j

C

C′ =
∑
FC

∑
i

∑
k

∂f inv,FP

ik

∂V̂ C
j

(
ΨP

i −ΨQ
i

)
DLj

FC

C′ nFC
k ∆SFC

The first term of the adjoint flux expression is computed by considering
⃗̂
V C constant

and is non-zero only if eq. 3.5 is used instead of eq. 3.4 for the flow equations

discretization. The matrices defined in eq. 7.7 are

DLFC
ij =

(
∂V C̄

i

∂V C
j

−DF̄C
ij

)
Ti

FC

F̄
+DFC

ij

DLi
FC

C′ =
(
δC̄C′ −Di

F̄C

C′

)
Ti

FC

F̄
+ Di

FC

C′

D
FC
ij =

[
1− ϕC

i

∑
k

(∑
C′

Ck
C
C′

)
∆xFC

k

]
δij + ϕC

i

∑
k

(
BF∑
C′

Ck
C
C′QC′

ij

)
∆xFC

k

Di
FC

C′ = ϕC
i

∑
k

Ck
C
C′∆xFC

k

Ti
FC

F̄
=

(∑
k

dV C
ik ∆xFC

k

)
/

(∑
k

dV C
ik ∆xF̄C

k

)
(7.8)



240 K. D. Samouchos

and
∂V C̄

i

∂V C
j

=

{
δijδC̄C , ∃ C̄

QC̄
ij, ∄ C̄

The above expressions can be applied in all but wall faces. Symbol
BF∑
C′

stands for

the summation over all boundary faces of C. The QC̄
ij and QC′

ij appear in boundary

faces where cells C̄ or C ′ do not exist and correspond to the differentiation of the

imposed boundary conditions on that face expressed as ∂V BC
i /∂V C

j , where V⃗ BC is

defined in section 3.1.

The previously described discretization can be simplified by avoiding the limiter

differentiation. In this case, DLFC
ij =DFC

ij and DLi
FC

C′ =Di
FC

C′ . Matrices DFC
ij and Di

FC

C′

are responsible for discretizing the adjoint flux and the B-term with second order

accuracy. A first order discretization is possible by setting DLFC
ij =D

FC
ij = δij and

DLi
FC

C′ =Di
FC

C′ =0, which significantly reduces the computational cost of the adjoint

solution process.

Derivative ∂f⃗ inv,FP

k /∂
⃗̂
V C emerges by differentiating eq. 3.4 w.r.t.

⃗̂
V P and

⃗̂
V Q,

∂f̄ inv,FP

ik

∂V̂ P
j

nF
k =

∑
k

ĀP
ijkn

F
k +

1

2

∑
l

∑
k

|Ãilkn
F
k |W P

lj −
1

2
Ad,P

ij

∂f̄ inv,FP

ik

∂V̂ Q
j

nF
k =

∑
k

ĀQ
ijkn

F
k −

1

2

∑
l

∑
k

|Ãilkn
F
k |W

Q
lj −

1

2
Ad,Q

ij

(7.9)

where Ā is the Jacobian matrix of the flux derivative w.r.t. the primitive flow vari-

ables and

WC
ij =

∂UC
i

∂V C
j

Ad,C
ij =

∑
l

∑
k

∂|Ãilkn
F
k |

∂V C
j

(
UQ
l − UP

l

)
(7.10)

Matrix Ad,C arises from the differentiation of the absolute Jacobian matrix, which

is presented in Appendix O. The computational effort needed for its computation is

very high. Numerical examples in inviscid flows around isolated airfoils using coarse

meshes signify that its elimination affects at most the third significant digit of the

sensitivity derivatives. Thus, avoiding its computation is advantageous when the

derivatives high accuracy is not crucial for the optimization implementation.



7.3. The Compressible Discrete Adjoint Equation 241

An essential outcome of the previous mathematical development is the relation of

the discrete adjoint equation with the adjoint Roe scheme, shown in subsection

6.3.3, which is used in the continuous adjoint method. The comparison is more

clear if a first order consideration is made. By additionally setting Ad,C = 0, the

two schemes coincide, showing the remarkable correlation between the continuous

and adjoint variants. This comparison also suggests that the corrected adjoint Roe

scheme developed in subsection 6.3.2 is probably the best choice among the adjoint

schemes presented in this thesis, provided that the Roe scheme discretizes the flow

equations.

Finally, the adjoint wall flux is

∑
k

f
inv,A,Fw

C
jk n

Fw
C

k =
∑
i

∑
l

∑
k

∂(f
Fw
C

ik n
Fw
C

k )

∂V̂ C
l

(
ΨP

i −ΨQ
i

)
DL

Fw
C

lj

with DL
Fw
C

ij computed like DLFC
ij and

∂(f⃗
Fw
C

k n
Fw
C

k )

∂V̂ C
m

= 0⃗, ∀ m ̸= 5,

∂(f⃗
Fw
C

k n
Fw
C

k )

∂V̂ C
5

=

(
0, n1, n2, n3,

∑
k

v̂gknk

)

where v̂gk is defined in subsection 3.3.1.

7.3.2 Differentiation of the Diffusion Term

The adjoint viscous flux and B-term are defined as

f vis,A,FC

jk =
∑
i

∂f vis,FC

ik

∂V C
j

(
ΨP

i −ΨQ
i

)
Bvis

j

C

C′ =
∑
FC

∑
i

∑
k

∂f vis,FC

ik

∂V C′
j

(
ΨP

i −ΨQ
i

)
nFC
k ∆SFC

where f vis,F
ik computation is presented in subsection 3.2.7 and depends on V⃗ P and

V⃗ Q as well as the spatial derivatives of the primitive flow variables on FC , which are



242 K. D. Samouchos

denoted by
∂Vi

∂xk

∣∣∣∣
F

= dV F
ik

for the sake of simplicity. They are given by the orthogonal correction formula,

eq. 3.17, which is rewritten as

dV F
ik = dV w

ik −

(∑
λ

dV w
iλα

F
λ + ∆FPV P

i + ∆FQV Q
i

)
αF
k (7.11)

The newly presented quantities are

dV w
ik = wFP dV P

ik + wFQdV Q
ik ,

wFP = wF , wFQ = 1− wF

∆FP =
sP

|x⃗Q − x⃗P |
, ∆FQ =

sQ

|x⃗Q − x⃗P |
,

sP = 1, sQ = −1

and wF , α⃗F are equal to the weight w and vector α⃗ defined in subsection 3.2.7. The

spatial derivatives dV P
ik and dV Q

ik of V P
i and V Q

i are computed by the Least Square

Method explained in subsection 3.2.5. Two matrices are defined

DC
ijk =

∂dV C
ik

∂V C
j

Dik
C
C′ =

∂dV C
ik

∂V C′
i

(7.12)

following the same process as in subsection 7.3.1. Then, the final expressions for the

adjoint viscous flux and the B-term are

f vis,A,FC

jk =
∑
λ

τAλjk
FC

C

(
ΨP

λ+1 −ΨQ
λ+1

)
+ fE

jk

FC

C

(
ΨP

5 −ΨQ
5

)
(7.13)

Bj
C
C′ =

∑
FC

∑
λ

∑
k

[
τAλjk

FC

C′

(
ΨP

λ+1 −ΨQ
λ+1

)
+ fE

jk

FC

C′

(
ΨP

5 −ΨQ
5

)]
nFC
k ∆SFC (7.14)

The adjoint stress tensors τAλjk
FC

C
and τAλjk

FC

C′ are given by a similar formula. Moreover,

variables fE
jk

FC

C
and fE

jk
FC

C′ denote the contribution of the energy diffusion differentia-

tion to the adjoint equations and are computed analogously. Expressions like these



7.3. The Compressible Discrete Adjoint Equation 243

remain similar for cells C and C ′ and make use of the symbol C(′). Therefore,

τAλjk
FC

C(′)
= µ

(
∂dV FC

λ+1,k

∂V
C(′)
j

+
∂dV FC

k+1,λ

∂V
C(′)
j

− 2

3

∑
µ

∂dV FC
µ+1,µ

∂V
C(′)
j

δλk

)

fE
jk

FC

C(′)
=
∑
λ

(
V FC
λ+1 τAλjk

FC

C(′)
+

∂V FC
λ+1

∂V
C(′)
j

τλk

)
+ qAjk

FC

C(′)

The newly introduced adjoint heat flux qAjk
FC

C(′)
is

qAjk
FC

C(′)
= kT FC

[
1

V FC
5

∂dV FC
5k

∂V
C(′)
j

− 1

V FC
1

∂dV FC
1k

∂V
C(′)
j

− 1

(V FC
5 )2

dV FC
5k

∂V FC
5

∂V
C(′)
j

+
1

(V FC
1 )2

dV FC
1k

∂V FC
1

∂V
C(′)
j

+ dT FC
k

(
1

V FC
5

∂V FC
5

∂V
C(′)
j

− 1

V FC
1

∂V FC
1

∂V
C(′)
j

)]

in all faces, except those belonging to solid boundaries, where qAjk
FC

C(′)
=0 and fE

jk
FC

C(′)
=∑

λ

V FC
λ+1 τAλjk

FC

C(′)
. Term ∂dV FC

ik /∂V
C(′)
j is computed by differentiating the orthogonal

correction formula given by eq. 7.11 w.r.t. the primal variables of C and C ′, which

reads

∂dV FC
ik

∂V C
j

= wFCDC
ijk − αF

k w
FC

(∑
λ

DC
ijλα

F
λ

)
− αF

k ∆FCδij + αF
k ∆FC

∑
l

QC
ilDL

FC
lj

∂dV FC
ik

∂V C′
j

= wFCDik
C
C′δij − αF

k w
FC

(∑
λ

Diλ
C
C′αF

λ

)
δij + αF

k ∆FCQC
ijDLj

FC

C′

The last term in both equations appears only if FC is a boundary face and contains

the matrices DLFC
ij and DLik

FC

C′ defined in eq. 7.7 and QC , representing the differ-

entiation of the boundary conditions w.r.t. V⃗ C . It is also reminded that, for these

faces, wFC =1. The used matrices defined in eq. 7.12 are

DC
ijk = −

(∑
C′

Ck
C
C′

)
δij +

BC∑
C′

Ck
C
C′QC′

ij

Dik
C
C′ = Ck

C
C′ ∀ i



244 K. D. Samouchos

Finally, the flow variables V FC
i are given by eq. 3.16 and their derivative w.r.t. V

C(′)
j

is
∂V FC

i

∂V C
j

=
∑
l

∂V FC
i

∂V̂ C
l

DLFC
lj ,

∂V FC
i

∂V C′
j

=
∂V FC

i

∂V̂ C′
j

DLj
FC

C′

and

∂V⃗ FC

∂
⃗̂
V C(′)

=
1

2V FC
1


V FC
1 0 0 0 0

V̂
C(′)
2 − V FC

2 V̂
C(′)
1 0 0 0

V̂
C(′)
3 − V FC

3 0 V̂
C(′)
1 0 0

V̂
C(′)
4 − V FC

4 0 0 V̂
C(′)
1 0

0 0 0 0 V FC
1



7.3.3 Differentiation of the Temporal Term

In unsteady applications with moving geometries, the temporal term differentiation

needs special treatment. In such cases, the mesh is adjusted at each time iteration,

which necessitates the flow transportation from the mesh of the previous time step

(n) to the next one (n+1) defining an intermediate flow field (n+1/2), which is used

in the temporal term discretization. This transportation also takes the appearing

and disappearing cells into consideration, which is discussed in subsection 3.3.3.

From a mathematical perspective, the conservative variables’ vector U⃗C
n+ 1

2

stored at

cell C is a linear combination of flow variables stored at a group of cells from time

step n, enumerated by C̄. Thus,

U⃗C
n+ 1

2
=
∑
C̄

Zn+1
C
C̄U⃗

C̄
n (7.15)

where coefficients Zn
C
C̄ depend only on geometrical quantities. The discretization of

the temporal term, shown in eq. 3.21 can be rewritten as

T⃗C
n =

ΩC
n U⃗

C
n − ΩC

n− 1
2

U⃗C
n− 1

2

∆t
(7.16)

The discrete adjoint equation of cell C, eq. 7.1, for unsteady flows at time step n is

∑
n

∑
m

Ψ⃗m
n

∂R⃗m
n

∂V⃗ C
n

+
∂F

∂V⃗ C
n

= 0



7.4. Sensitivity Derivatives for Compressible Flows 245

with index m enumerating mesh cells. Therefore, only the flow equations containing

the vector V⃗ C
n in the discretization of their temporal term contribute to the adjoint

equation of C. Apparently, this is true for the term T⃗C
n of equation R⃗C

n . Furthermore,

V⃗ C
n appears in multiple equations of time step n + 1, enumerated by the index Ĉ,

as part of the flow variables formulating the field at n + 1/2. Then, the adjoint

equations’ temporal term becomes

T⃗A,C
n = Ψ⃗C

n

∂T⃗C
n

∂V⃗ C
n

+
∑
Ĉ

Ψ⃗Ĉ
n+1

∂T⃗ Ĉ
n+1

∂V⃗ C
n

The proper differentiation of the above temporal terms yields

T⃗A,C
n = (WC)T

ΩC
n Ψ⃗C

n − ΩC
n+ 1

2

Ψ⃗C
n+ 1

2

∆t

It is reminded that

WC
ij =

∂UC
i

∂V C
j

It is highlighted that the adjoint field Ψ⃗C
n+ 1

2

is not computed similarly to the flow

field at the same intermediate step. Instead, the differentiation of the flow equations

indicates that

Ψ⃗C
n+ 1

2
=

1

ΩC
n+ 1

2

∑
Ĉ

ΩĈ
n+1/2 Zn+1

Ĉ
C ΨĈ

n+1 (7.17)

The discretization of the temporal term designates the need for the inverse time

integration of the discrete adjoint equations, which totally agrees with the proposed

time discretization in section 6.4 for the continuous field adjoint equations.

7.4 Sensitivity Derivatives for Compressible Flows

The sensitivity derivatives of an arbitrary objective function F are given by eq. 7.2,

which requires the computation of several quantities listed below. Firstly, δF/δbq
depend on the derivatives of F w.r.t. G⃗, the computation of which is usually straight-

forward. Secondly, the adjoint variables Ψ⃗ are necessary, which are computed by

solving the discrete field adjoint equations shown in section 7.3. Moreover, the

δG⃗/δbq terms are needed, which are given by expressions presented in section 2.9.

Finally, the derivatives of the flow equations w.r.t. to G⃗ are required, the computa-



246 K. D. Samouchos

tion of which is the goal of this section.

The term of eq. 7.2 containing the derivatives of the flow residual is developed as

∂R⃗C

∂G⃗m

δG⃗m

δbq
=
∑
n

∂R⃗C

∂G⃗m

∂G⃗m

∂x⃗n

δx⃗n

δbq
(7.18)

where x⃗n are the nodes constituting the triangulated solid surface. The first two

terms of the r.h.s. can further be decomposed as

∂R⃗C

∂G⃗m

∂G⃗m

∂x⃗n
=
∑
Cw

∂R⃗C

∂x⃗Cw

∂x⃗Cw

∂x⃗n
+
∑
F

∂R⃗C

∂x⃗F

∂x⃗F

∂x⃗n
+
∑
F

∂R⃗C

∂N⃗F

∂N⃗F

∂x⃗n

+
∑
Cw

∂R⃗C

∂ΩCw

∂ΩCw

∂x⃗n
+
∑
Fw

∂R⃗C

∂v⃗Fw

∂v⃗Fw

∂x⃗n
(7.19)

Index Cw in the first term sums the contributions of centroids x⃗Cw of all cells cut

by the wall. The rest of the cell centroids remain intact by the variation of bq in a

Cartesian mesh. The second term describes the flow residual’s change due to the

variation of face centroids (x⃗F ). There exist two kinds of faces, the centroid of which

are affected by the geometry’s shape modification in a Cartesian mesh. In the first

kind belong all wall faces, and the second one consists of inner faces cut by the solid

boundary. The following term corresponds to the face normal vectors contribution.

Once again, only the wall and cut faces participate in the summation. The N⃗ vector

is defined as the normal unit vector n⃗ multiplied by the area ∆S of each face. The

last two terms exist only in unsteady cases, including moving solid bodies where the

cut-cells volume ΩCw and the velocity v⃗Fw of each wall face Fw depend on bq.

The following sections discuss the differentiation of the convection and diffusion

terms to result in expressions used to compute the terms included in eq. 7.19.

7.4.1 Differentiation of the Convection Term

The discussion starts from the computation of the first term of eq. 7.19. According

to the proposed discretization of the flow equations, a slight change in x⃗Cw modifies

the primitive variables’ spatial derivative at cell C and its neighbors C ′. Therefore,

the residuals of C, its first and second neighbors are affected, which allows the

development of a similar method to the one shown in section 7.2. The equivalent



7.4. Sensitivity Derivatives for Compressible Flows 247

terms to the adjoint flux and B-term are defined as

T inv,C
λ =

∑
FC

∑
i

∑
j

∑
k

∂f inv,FP

ik

∂V̂ C
j

(
ΨP

i −ΨQ
i

)
D̃LFC

jλ n
FC
k ∆SFC

B̃vis
λ

C
C′ =

∑
FC

∑
i

∑
j

∑
k

∂f inv,FP

ik

∂V̂ C
j

(
ΨP

i −ΨQ
i

)
D̃Ljλ

FC

C′ nFC
k ∆SFC

where

D̃LFC
ik =

∂V̂ FC
i

∂xC
k

= D̃
FC
ik − Ti

FC

F̄
D̃

F̄C
ik

D̃Lik
FC

C′ =
∂V̂ FC

i

∂xC′
k

= D̃ik
FC

C′ − Ti
FC

F̄
D̃ik

FC

C′

and

D̃
FC
ik =

∂V̂ FC
i

∂xC
k

∣∣∣∣∣
ϕ⃗C

= ϕC
i

∑
λ

∑
C′

∂Cλ
C
C′

∂xC
k

(
V C′

i − V C
i

)
∆xFC

λ − ϕC
i dV

C
ik

D̃ik
FC

C′ =
∂V̂ FC

i

∂xC′
k

∣∣∣∣∣
ϕ⃗C

= ϕC
i

∑
λ

∑
Ĉ

∂Cλ
C
Ĉ

∂xC′
k

(
V Ĉ
i − V C

i

)
∆xFC

λ

The T FC

F̄
term is computed by eq. 7.8. The ∂Cλ

C
C′/∂xC

k and ∂Cλ
C
Ĉ
/∂xC′

k terms are

computed by differentiating the Least Squares Method w.r.t. x⃗C . The computation

of coefficients Cλ
C
C′ in the non-weighted version of the method is based on vector

b⃗CC′ = x⃗C′ − x⃗C and matrix AC defined in subsection 3.2.5,

AC
kλ =

∑
C′

bk
C
C′bλ

C
C′

The mathematical development leads to

∂Cλ
C
C′

∂xC
k

= (A−1)Cλk

(∑
µ

SC
µ Cµ

C
C′ − 1

)
+ Ck

C
C′

∑
µ

SC
µ A

−1
λµ

C

∂Cλ
C
Ĉ

∂xC′
k

= (A−1)Cλk

(
δC′Ĉ −

∑
µ

bµ
C
C′Cµ

C
Ĉ

)
− Ck

C
Ĉ

∑
µ

bµ
C
C′A

−1
λµ

C



248 K. D. Samouchos

where

SC
k =

∑
C′

bk
C
C′

The corresponding algorithm is

Algorithm 14: Contribution of cell centroids to sensitivity derivatives

1 foreach cut-cell Cw do

2
δF
δbq
← δF

δbq
+
∑
λ

TCw
λ

δxCw
λ

δbq

3 foreach cell’s neighbor C ′ do

4
δF
δbq
← δF

δbq
+
∑
λ

Bλ
C′

Cw

δxCw
λ

δbq

5 end

6 end

Then, the convection differentiation w.r.t. the face centroids is discussed. According

to the MUSCL scheme, the second order flux computation requests the flow vari-

ables extrapolation from the cells to the faces centroids. Therefore, the centroids’

position affects the extrapolated variables and the corresponding flux. Furthermore,

centroids of the wall faces also influence the computation of Cµ
C
C′ . Both residual

dependencies are modeled by introducing a similar to TCw
λ term,

T inv,FC

λ =
∑
F ′

∑
i

∑
j

∑
k

∂f inv,F ′

ik

∂V̂ FC
j

(
ΨP

i −ΨQ
i

)
D̃Ljλ

FC

F ′ n
F ′

k ∆SF ′
(7.20)

where F ′ enumerates the faces of cell C. The D̃LFC

F ′ matrix is computed by differ-

entiating the extrapolation scheme and the Least Squares system,

D̃Ljλ
FC

F ′ =
∂V̂ FC

i

∂xF ′
k

= D̃jλ
FC

F ′ − Ti
FC

F̄
D̃jλ

F̄C

F ′

D̃ik
FC

F ′ =
∂V̂ FC

i

∂xF ′
k

∣∣∣∣∣
ϕ⃗C

= ϕC
i

∑
λ

∑
C′

∂Cλ
C
C′

∂xF ′
k

(
V C′

i − V C
i

)
∆xF

k + ϕC
i dV

C
ik δF ′F

∂Cλ
C
C′

∂xF
k

= (A−1)Cλk

(
δC′F −

∑
µ

bµ
C
FCµ

C
C′

)
+ Ck

C
C′

∑
µ

bµ
C
F (A−1)Cλµ

bk
C
F = xF

k − xC
k

The algorithm which gathers all contributions is



7.4. Sensitivity Derivatives for Compressible Flows 249

Algorithm 15: Contribution of face centroids to sensitivity derivatives

1 foreach wall or cut face F do

2 if inner face then

3
δF
δbq
← δF

δbq
+
∑
λ

T FP
λ

δxF
λ

δbq

4
δF
δbq
← δF

δbq
+
∑
λ

T
FQ

λ
δxF

λ

δbq

5 else

6
δF
δbq
← δF

δbq
+
∑
λ

T FC
λ

δxF
λ

δbq

7 end

8 end

Subsequently, the normal vector N⃗ contribution to the sensitivity derivatives is

presented. It has already been mentioned that N⃗ is modified only in the wall and

cut faces. However, the vector corresponding to the inner faces of a Cartesian mesh

changes only in magnitude, a.k.a. the face area ∆S, significantly simplifying the

residual differentiation process. Therefore, the contribution of each inner face to the

sensitivity derivatives is ∑
k

fF
ikn

F
k

∂∆S

∂bq

The effect of the solid faces’ normal vector on the spatial flow derivatives and the

limiter of the corresponding cut-cell is expressed through term T
inv,Fw

C
λ . It is non-zero

only when the slip wall condition is used, and it is computed as

T
inv,Fw

C
λ =

∑
FC

∑
i

∑
j

∑
k

∂f inv,FC

ik

∂V̂
Fw
C

j

(
ΨP

i −ΨQ
i

)
D̃Ljλ

Fw
C

FC
nFC
k ∆SFC

D̃Lik
Fw
C

FC
= D̃ik

Fw
C

FC
+

(
∂V

Fw
C

i

∂n
Fw
C

k

δFC̄Fw
C
− D̃ik

Fw
C

F̄C

)
Ti

FC

F̄

D̃ik
Fw
C

FC
= ϕC

i

∑
λ

Cλ
C
Fw
C

∂V
Fw
C

i

∂n
Fw
C

k

∆xFC
k

∂V
Fw
C

i

∂n
Fw
C

k

= − 1

∆SFw
C

[
vCn δik + n

Fw
C

i (V C
k+1 − 2v

Fw
C

n n
Fw
C

k )
]

where V
Fw
C

i is the velocity on the face after the imposition of the no-penetration wall

condition and v
Fw
C

n =
∑
k

V C
k+1n

Fw
C

k .



250 K. D. Samouchos

7.4.2 Differentiation of the Diffusion Term

The differentiation of the diffusive term of compressible equations w.r.t. geometrical

quantities included in its discretization scheme presents similarities with the method

discussed in subsection 7.4.1. Terms of eq. 7.19 are successively examined.

The residual differentiation w.r.t. G⃗ gives rise to the T⃗ vis term, which is

T
vis,C(F )
λ =

∑
FC

∑
µ

∑
k

[
f vis,FC

µ+1,k

∂G
C(F )
λ

(
ΨP

µ+1 −ΨQ
µ+1

)
+

f vis,FC

5k

∂G
C(F )
λ

(
ΨP

5 −ΨQ
5

)]
nFC
k ∆SFC

(7.21)

Vector G⃗ represents x⃗C , x⃗F , n⃗F , or v⃗F
w
C stored in the cell or face centroids which

exemplifies the use of symbol G⃗C(F ). The unknown derivatives associated with

T
vis,C(F )
λ are

f vis,FC

µ+1,k

∂G
C(F )
λ

=
∑
k

µ

(
∂dV FC

µ+1,k

∂G
C(F )
λ

+
∂dV FC

k+1,µ

∂G
C(F )
λ

− 2

3

∑
m

∂dV FC
m+1,m

∂G
C(F )
λ

δµk

)
f vis,FC

5k

∂G
C(F )
λ

=
∑
µ

(
V FC
µ+1 τAµλk

FC

C
+
∑
j

∂V FC
µ+1

∂V̂ FC
j

∂V̂ FC
j

∂G
C(F )
λ

τµk

)
+

∂qFC
k

∂G
C(F )
λ

(7.22)

and

∂qFC
k

∂G
C(F )
λ

= kT FC

[
1

V FC
5

∂dV FC
5k

∂G
C(F )
λ

− 1

V FC
1

∂dV FC
1k

∂G
C(F )
λ

− 1

(V FC
5 )2

dV FC
5k

∑
j

∂V FC
5

∂V̂ FC
j

∂V̂ FC
j

∂G
C(F )
λ

+
1

(V FC
1 )2

dV FC
1k

∑
j

∂V FC
1

∂V̂
C(F )
j

∂V̂
C(F )
j

∂G
C(F )
λ

+ dT FC
k

(
1

V FC
5

∂V FC
5

∂V̂ FC
5

∂V̂ FC
5

∂G
C(F )
λ

− 1

V FC
1

∂V FC
1

∂V̂ FC
1

∂V̂ FC
1

∂G
C(F )
λ

)]
(7.23)

The computation of all terms excluding the ∂dV FC
ik /∂G

C(F )
λ derivatives has already

been discussed in the previous subsections. The computation of the new terms de-

pends on the geometrical quantity type represented by G⃗C(F ). Firstly, the residual

differentiation w.r.t. the cell centroids is presented, which, similarly to subsection

7.4.1, requires the definition of T⃗ vis,C and ⃗̃BvisC
C′ . Vector T⃗ vis,C emerges by substi-



7.4. Sensitivity Derivatives for Compressible Flows 251

tuting index C(F ) with C and G
C(F )
λ with xC

λ in eq. 7.21, while the B-term is

Bλ
C
C′ =

∑
FC

∑
µ

∑
k

[
f vis,FC

µ+1,k

∂xC′
λ

(
ΨP

µ+1 −ΨQ
µ+1

)
+

f vis,FC

5k

∂xC′
λ

(
ΨP

5 −ΨQ
5

)]
nFC
k ∆SFC

Moreover, the differentiation of the orthogonal correction scheme, eq. 7.11, for inner

faces yields the expressions of the remaining unknown terms,

∂dV FC
iλ

∂xC
k

=
∂dV w

iλ

∂xC
k

− ∂αF
λ

∂xC
k

(∑
µ

dV w
iλα

F
µ −

V Q
i − V P

i

∆FC

)

− αF
λ

[∑
µ

(
∂dV w

iµ

∂xC
k

αF
µ + dV w

iµ

∂αF
µ

∂xC
k

)
−
(
V Q
i − V P

i

) ∂

∂xC
k

(
1

∆FC

)]

where

∂αF
λ

∂xC
k

=
sC

∆FC

(
αF
λα

F
k − δλk

)
,

∂

∂xC
k

(
1

∆FC

)
=

sC

(∆FC )2
αF
k ,

∂dV w
iλ

∂xC
k

= wFC D̃
FC
iλk + wFC

bk
C
F

dC (dP + dQ)

(
dV P

iλ − dV Q
iλ

)
sC ,

∂dV FC
iλ

∂xC′
k

= wFCD̃iλk
FC

C′ − αF
λw

FC

∑
µ

D̃iµk
FC

C′ α
F
µ

It is reminded that wFP ̸= wFQ , although FP and FQ correspond to the same face.

Some of the equations presented above are slightly modified when applied to bound-

ary faces. Their corrected terms, shown with a sidebar, are

∂dV FC
iλ

∂xC
k

∣∣∣∣∣
BC

=
∂dV FC

iλ

∂xC
k

+
αF
λ

∆FC
D̃LFC

ik

∂αF
µ

∂xC
k

∣∣∣∣∣
BC

=
1

∆FC

(
αF
λα

F
k − δλk

)
∂

∂xC
k

(
1

∆FC

)∣∣∣∣
BC

=
1

(∆FC )2
αF
k

∂dV w
iλ

∂xC
k

∣∣∣∣
BC

= D̃
FC
iλk



252 K. D. Samouchos

Finally,

D̃
FC
iλk =

∑
C′

∂Cλ
C
C′

∂xC
k

(
V C′

i − V C
i

)
D̃iλk

FC

C′ =
∑
Ĉ

∂Cλ
C
Ĉ

∂xC′
k

(
V Ĉ
i − V C

i

) (7.24)

Algorithm 14 is also applied for gathering the cell centroids’ contributions of the

diffusion discretization scheme to the sensitivity derivatives.

The substitution of G⃗ with x⃗F ′
and of C(F ) with F ′ in eqs. 7.21, 7.22, and 7.23 gives

rise to the T vis,FC

λ term. The differentiation of the orthogonal correction scheme

w.r.t. the face centroids gives

∂dV FC
iλ

∂xF ′
k

=
∂dV w

iλ

∂xF ′
k

− ∂αF
λ

∂xF ′
k

(∑
µ

dV w
iλα

F
µ −

V Q
i − V P

i

∆FC

)

− αF
λ

[∑
µ

(
∂dV w

iµ

∂xF ′
k

αF
µ + dV w

iµ

∂αF
µ

∂xF ′
k

)
−
(
V Q
i − V P

i

) ∂

∂xF ′
k

(
1

∆FC

)]

+

(
αF
λ

∆FC
D̃LFC

ik

)
BC

The last term appears in case FC is part of the mesh boundary. The computation

of the derivatives that appeared on the r.h.s. differs between inner and boundary

faces. In the subsequent expressions, the two cases are denoted as F :I and F :B,

∂αF
λ

∂xF ′
k

=

{
0, F : I

− sC

∆FC

(
αF
λα

F
k − δλk

)
δF ′F , F : B

∂

∂xF ′
k

(
1

∆FC

)
=

{
0, F : I

− sC

(∆FC )2
αF
k δF ′F , F : B

∂dV w
iλ

∂xF ′
k

=



∂wFC

∂xF ′
k

(
dV P

iλ − dV Q
iλ

)
sC , F : I, F ′ : I

wFC
∂dV C

iλ

∂xF ′
k

, F : I, F ′ : B

0, F : B, F ′ : I
∂dV C

iλ

∂xF ′
k

, F : B, F ′ : B



7.4. Sensitivity Derivatives for Compressible Flows 253

where

∂wFC

∂xF ′
k

=
1

dP + dQ

[
wFP

1

dP
(
xP
k − xF

k

)
− wFQ

1

dQ

(
xQ
k − xF

k

)]
sCδF ′F

∂dV C
iλ

∂xF ′
k

= D̃Liλk
FC

F ′

Matrix components D̃Liλk
FC

F ′ are computed similarly to eq. 7.24.

Lastly, the diffusion derivative w.r.t. the normal vector component of each wall and

cut face is presented. In the case of inner faces, the differentiation is simple and is

explained in subsection 7.4.1. On the other hand, term T
vis,Fw

C
λ represents the wall

faces contribution, and it is computed by substituting G⃗ with n⃗Fw
C and C(F ) with

Fw
C in eqs. 7.21, 7.22 and 7.23. The emerging derivatives necessary for the T

vis,Fw
C

λ

computation are

∂dV
Fw
C

iλ

∂n
Fw
C

k

= − αFw
λ

∆Fw

∂V
Fw
C

i

∂n
Fw
C

k

∂V
Fw
C

i

∂n
Fw
C

k

=
∑
j

Q
Fw
C

ij D̃Ljk
Fw
C

Fw
C

where Q
Fw
C

ij is the derivative of the variables computed by imposing the wall condition

w.r.t. the flow variables extrapolated from the cell centroid to the face.

7.4.3 Differentiation of the Unsteady flow Equations

The geometrical complexities caused by the motion of a solid body within a station-

ary Cartesian mesh perplex the differentiation of the temporal term. Based on its

discretization shown in eq. 7.16, only the Zn
C
C̄ coefficients, defined in eq. 7.15, depend

directly on geometrical quantities. Their differentiation gives the corresponding con-

tributions to the sensitivity derivatives.

Firstly, it is stated that although the Zn
C
C̄ coefficients are not continuous func-

tions w.r.t. time, they are differentiable w.r.t. the design variables bq. According

to eqs. 3.24 and 3.25, Zn
C
C̄ depend only on the cells’ volume and index kC

n , which

stands for the number of cells from time step n+1 affecting the flow variables of C.

Thus, kC
n remains constant during an infinitesimal change of bq. Let T temp,C

n be the



254 K. D. Samouchos

derivative of the temporal term w.r.t. the volume of C at time step n (ΩC
n ). After

the proper mathematical development, the term is computed as

T temp,C
n =

Ψ⃗C
n − ⃗̄ΨC

n+1

∆t
· U⃗C

n

where

⃗̄ΨC
n+1 =

1

kC
n+1

kCn+1∑
Ĉ=1

Ψ⃗Ĉ
n+1 (7.25)

A significant impact of the unsteady residual to the sensitivity derivatives emerges

from the use of the geometries’ velocity (v⃗F
v
C ) in the no-penetration and/or no-slip

conditions imposed along the wall. The flow variables’ spatial derivatives and the

limiters stored at cut-cells’ centroids and the spatial derivatives computed at their

faces also depend on v⃗F
v
C . The extra contributions are called T

inv,F v
C

λ and T
vis,F v

C
λ

and represent the convective and diffusive flux derivatives w.r.t. the wall velocity.

Starting from the convective flux,

T
inv,F v

C
λ =

∑
FC

∑
i

∑
j

∑
k

∂f inv,FC

ik

∂V̂
F v
C

j

(
ΨP

i −ΨQ
i

)
D̃Ljλ

F v
C

FC
nFC
k ∆SFC + pFCΨC

5 nFC
λ ∆SFC

D̃Lik
F v
C

FC
= D̃ik

F v
C

FC
+

(
∂V

F v
C

i

∂v
F v
C

k

δFC̄F v
C
− D̃ik

F v
C

F̄C

)
Ti

FC

F̄

D̃ik
F v
C

FC
= ϕC

i

∑
λ

Cλ
C
F v
C

∂V
F v
C

i

∂v
F v
C

k

∆xFC
k

The ∂V
F v
C

i /∂v
F v
C

k derivative depends on the chosen wall condition. For slip walls,

∂V
F v
C

i

∂v
F v
C

k

=

{
0, i = 1, 5

ni−1nk, i = 2, 3, 4

and for no-slip walls,

∂V
F v
C

i

∂v
F v
C

k

=

{
0, i = 1, 5

δi−1,k, i = 2, 3, 4

The expression for computing T
vis,F v

C
λ is based on eqs. 7.21, 7.22 and 7.23 and

is derived by substituting G⃗ with v⃗F
C
w and C(F ) with F v

C and adding the term,

ΨC
5

∑
k

τλkn
FC
k ∆SFC . The differentiation of the orthogonal correction scheme w.r.t. v⃗F

v
C



7.5. The Incompressible Discrete Adjoint Equation and Sensitivities 255

leads to different expressions for inner or boundary faces,

∂dV FC
iλ

∂V
F v
C

k

=


wFCCλ

C
F v
C

∂V
Fv
C

i

∂v
Fv
C

k

− αF
λw

FC
∑
µ

Cµ
C
F v
C

∂V
Fv
C

i

∂v
Fv
C

k

αF
µ , FC : I

Cλ
C
F v
C

∂V
Fv
C

i

∂v
Fv
C

k

− αF
λ

∑
µ

Cµ
C
F v
C

∂V
Fv
C

i

∂v
Fv
C

k

αF
µ +

αF
λ

∆FC
Qik

FC
F v
C
, FC : B

where

Qik
FC
F v
C

= D̃Lik
F v
C

FC
+ δF v

C ,FC

∂V
F v
C

i

∂v
F v
C

k

7.5 The Incompressible Discrete Adjoint Equa-

tion and Sensitivities

The derivation of the incompressible discrete adjoint equations and sensitivities is

based on the differentiation of the discretized incompressible flow equations, which

is presented in section 3.5 and shares many similarities with the discretization of the

compressible equations. The development of the corresponding adjoint equations

takes advantage of these similarities embracing most of the analysis presented in

subsections 7.3.1 and 7.4.1. Hence, this section mainly deals with the indication of

the differences between the two variants.

According to eq. 7.1, the development of the adjoint formulation is based on the

differentiation of the incompressible flow equations w.r.t. vector V⃗ defined in eq 3.26.

Regarding the convective terms, all the equations of subsection 7.3.1 are still valid

except for eq. 7.9, which is rewritten as

∂f̄ inv,FP

ik

∂V̂ P
j

nF
k =

∑
k

ĀΓ,P
ijk n

F
k +

1

2

∑
l

∑
k

|ÃΓ
ijkn

F
k | −

1

2
Ad,Γ,P

ij

∂f̄ inv,FP

ik

∂V̂ Q
j

nF
k =

∑
k

ĀΓ,Q
ijk n

F
k −

1

2

∑
l

∑
k

|ÃΓ
ijkn

F
k | −

1

2
Ad,Γ,Q

ij

(7.26)

where ĀΓ emerges from the differentiation of the preconditioned incompressible flux

w.r.t. V⃗ and ÃΓ is defined in eq. 3.28. Matrix Ad,Γ is computed by differentiating the

absolute Jacobian matrix w.r.t. V⃗ , which is presented in Appendix P. The artificial

compressibility parameter (β) is considered independent of the design variables, and,

thus, it remains constant during the optimization process. A main difference between



256 K. D. Samouchos

the continuous and discrete adjoint versions is that eqs. 7.26 already incorporates the

preconditioned matrix effects, in contrast with the continuous equations at which a

new adjoint preconditioned matrix should be introduced during their discretization.

Subsequently, the diffusion differentiation is studied. Eqs. 7.13 and 7.14 should be

reintroduced,

f vis,A,FC

jk =
∑
λ

τAλjk
FC

C

(
ΨP

λ+1 −ΨQ
λ+1

)
Bj

C
C′ =

∑
FC

∑
λ

∑
k

τAλjk
FC

C′

(
ΨP

λ+1 −ΨQ
λ+1

)
nFC
k ∆SFC

where

τAλjk
FC

C(′)
= µ

(
∂dV FC

λ+1,k

∂V
C(′)
j

+
∂dV FC

k+1,λ

∂V
C(′)
j

)
The absence of an equation representing the energy conservation in incompressible

flows significantly simplifies the above expressions.

The differentiation of the temporal term yields

T⃗A,C
n = M

ΩC
n Ψ⃗C

n − ΩC
n+ 1

2

Ψ⃗C
n+ 1

2

∆t

where M is defined in eq. 3.26 and Ψ⃗C
n+ 1

2

is given by eq. 7.17.

Regarding the sensitivity derivatives, some modifications should also be made to

the compressible version presented in section 7.4. The expressions resulted from the

convection differentiation remain valid as long as the incompressible flux (f⃗inv,Γ,FP

k )

and variables (V⃗ C) are used. Also, terms containing the adjoint energy Ψ5 are

neglected. On the contrary, some changes are needed in the diffusive terms. Initially,

T⃗ vis and Bλ
C
C′ become

T
vis,C(F )
λ =

∑
FC

∑
µ

∑
k

f vis,FC

µ+1,k

∂G
C(F )
λ

(
ΨP

µ+1 −ΨQ
µ+1

)
nFC
k ∆SFC

where
f vis,FC

µ+1,k

∂G
C(F )
λ

=
∑
k

µ

(
∂dV FC

µ+1,k

∂G
C(F )
λ

+
∂dV FC

k+1,µ

∂G
C(F )
λ

)



7.6. The Sensitivity Map Post-Processing 257

and

Bλ
C
C′ =

∑
FC

∑
µ

∑
k

f vis,FC

µ+1,k

∂xC′
λ

(
ΨP

µ+1 −ΨQ
µ+1

)
nFC
k ∆SFC

Finally, the differentiation of the temporal term multiplied by the preconditioner

matrix leads to

T temp,C
n =

Ψ⃗C
n − ⃗̄ΨC

n+1

∆t
· U⃗Γ,C

n

where U⃗Γ,C
n =(β2, v1, v2, v3)

C
n and ⃗̄ΨC

n+1 is given by eq. 7.25.

7.6 The Sensitivity Map Post-Processing

The parameterization of the examined geometry is of great importance for the opti-

mization process. The target of a parameterization tool is to control the position of

the surface nodes constituting the discretized geometry by handling a much smaller

number of design variables, ensuring zero, first, or even second order smoothness

in most of the optimized surface parts. A common parameterization technique

for 3D industrial applications is based on CAD software, which provide the best

counterbalance between complexity and manufacturability. In case the geometry’s

optimization is driven by a gradient-based method, the parameterization differenti-

ation is required for computing the δx⃗n/δbq term included in eq. 7.18. However, the

parameterization’s differentiation is usually a challenging enough process, especially

when a CAD package is used. Moreover, a parameterization tool is not always avail-

able. These drawbacks can be surpassed by assuming that every surface node can

move independently from the rest and, thus, its coordinates are design variables.

Therefore,

δxn
k

δbq
=

{
1, xn

k = bq
0, xn

k ̸= bq

Then, the objective function’s gradient represents a vector at each surface node

pointing to the direction in which the node’s minimal motion maximizes the ob-

jective’s improvement. However, any infinitesimal node’s movement, tangent to a

smooth surface, does not change its shape. Thus, only the gradient’s normal compo-

nent, (∂F/∂x⃗m)·n⃗m, must be considered. This scalar field plotted on the geometry’s

surface is called the sensitivity map and highlights the areas characterized by high

absolute valued sensitivities, where aerodynamic or hydrodynamic improvement has



258 K. D. Samouchos

the most significant potential. Hence, it can be used not only in automated gradient-

based optimization methods but also as a tool giving valuable information to the

designer. Nevertheless, its computation can be costly since the number of design

variables can be equal to 104 or even 105 for industrial 3D cases illustrating the

great advantage of the adjoint-based methods, which can compute the sensitivity

map at a cost independent of the surface nodes’ number and comparable to the flow

simulation’s cost.

However, the use of a sensitivity map in an automated optimization process presents

some disadvantages. Most significantly, the independent displacement of each node

may result in raffled surfaces or even in surfaces with invalid elements causing the

optimization to fail. In practice, this phenomenon is amplified by the high-frequency

content of the sensitivity field. These signals are caused mainly by the geometry’s

and computational domain’s discretization. A remedy to this problem is smoothing

the sensitivity map before using it to deform the shape, although such a process

sacrifices the map’s accuracy and, potentially, slows down the optimization progress.

The used approach combines an algorithm imitating the diffusive effect of an elliptic

equation solution on the deformable surface with the implementation of filters that

detect and reduce the sensitivity field’s extreme values, diminishing the produc-

tion of invalid mesh elements after each surface deformation, and thus, facilitating

the optimization process completion. Consequently, even though such an approach

seems parameterization-free, it actually prohibits the independent motion of the

surface nodes forcing them to interact with each other, implying some type of shape

parameterization.

The mistraction of the optimization process by the smoothing operation is partly

avoided by firstly allowing the optimization algorithm to propose the new position

of each node (x⃗m
new) using the exact derivative computed by the adjoint method.

Then, the field sm = (x⃗m
new − x⃗m

old) · n⃗m
old is smoothed out, where the subscript “old”

denotes the geometry at the current optimization step. It has also been observed

that refining the s instead of the (∂F/∂x⃗m) · n⃗m field produces smoother shapes.

The developed method is divided into two steps. Firstly, a filter is applied, which

reduces the gradient of s in areas where its value exceeds a user-defined threshold.

Then, a smoothing is used, substituting sm at the mth node with the mean value

of its neighbors. The already processed by the filter field allows for an improved

spreading of the diffusion caused by the smoothing, preventing the distortion of sig-



7.6. The Sensitivity Map Post-Processing 259

nificant surface areas from existing distinctive spikes. The whole process is described

by Algorithm 16.

Algorithm 16: The Sensitivity Map Post-Processing

1 foreach surface node m do

2 x⃗new ← optimization method (m, x⃗m
old)

3 sm = (x⃗m
new − x⃗m

old) · n⃗m
old

4 end

5 decrease extrema (s)

6 smooth field (s)

7 foreach surface node m do

8 x⃗m
new ← x⃗m

old + smn⃗m
old

9 end

Subsequently, the function called “decrease extrema” is described. Firstly, all nodes

having sm greater than their neighbors are detected. In other words, the local

maxima or minima are identified. For each node corresponding to a local maximum,

the neighboring node with the lowest field’s value is found. Let index mn denote

this neighbor for each node m. Then, the gradient

gm =
sm − smn

|x⃗m − x⃗mn|

is computed. If gm is greater than a predefined threshold (ḡ), sm should be lowered

enough to produce a gradient equal to ḡ. However, this requirement may cause the

change in sign of sm, which may harm the optimization process, and thus, should

be prevented, leading to the formula

smnew =

{
smn + ḡ|x⃗m − x⃗mn|, sm (smn + ḡ|x⃗m − x⃗mn|) > 0

0, otherwise

for the mth node and

smn
new =

{
smn , sm (smn + ḡ|x⃗m − x⃗mn|) > 0

−ḡ|x⃗m − x⃗mn|, otherwise

for its neighbor. A similar procedure is used for the modification of the minima.



260 K. D. Samouchos

After the treatment of all extrema, the process is repeated until the elimination of

all peculiar spikes is achieved.

The structure of the function “smooth field” is simpler. For each surface node

the algorithm computes its neighbors’ mean value (s̄m). Then, the corrected field

becomes

smnew =

{
s̄m, sms̄m > 0

0.1sm, otherwise

Values smnew are firstly computed at all surface nodes and, then, they replace the

corresponding sm values. The process can be repeated multiple times. The larger

the number of iterations, the smoother the sensitivity map, and the higher the

deviation from its initial proper values. The suitable number of iterations varies

depending on the current application.

The above-presented post-processing has successfully been used in several industrial

cases with compressible and incompressible flows. Chapter 9 presents applications,

including the optimization of 3D ducts, wings, and pumps.



Chapter 8

Adjoint Solver Assessment

In this chapter, the developed adjoint method’s ability to compute accurate deriva-

tives is demonstrated in various cases. The descretization of the adjoint equations is

based on the governing equations hand-differentiation, presented in chapter 7. The

computed sensitivity derivatives are compared with a central Finite Difference (FD)

scheme, considered to be the reference values. The adjoint software’s assessment

refers to compressible or incompressible fluid flows around stationary or moving ge-

ometries. After confirming the computed derivatives’ accuracy, a shape optimization

is carried out using the Conjugate Gradient method (CG). The target is to maximize

the lift generated by an isolated airfoil being the optimization’s initial shape in all

cases presented below. The airfoil is parameterized using two Bézier–Bernstein (or

simply Bézier) curves representing the pressure and suction side. The coordinates of

their control points are the design variables of the optimization process, excluding

the points corresponding to the leading and trailing edge ensuring that the air-

foil’s chord length remains unchanged during the optimization. Prompted by these

cases, an illustration of the adjoint variables’ physical meaning is also discussed.

It is important to make clear that the chapter’s content focuses on examining the

derivatives’ accuracy and the optimization abilities of the developed software and

does not aim to deliver solutions to practical aerodynamic shape optimization prob-

lems, which is the subject of chapter 9. Thus, the optimization in the presence

of constraints, such as the airfoil’s drag coefficient, is beyond the purpose of this

chapter.

261



262 K. D. Samouchos

8.1 Incompressible Adjoint Solver Assessment

The first case examined refers to the lift maximization of an isolated NACA0012

airfoil exposed to an incompressible flow of Re∞ = 1000 and zero angle-of-attack.

The objective function is given as

L =

∫
S

(pni − τijnj)ridS

where the notation of section 3.1 is adopted. Additionally, S is the airfoil’s boundary

and r⃗=(0, 1). The airfoil’s geometry and Bézier control polygon are shown in fig. 8.1.

The convergence of the flow and adjoint equations is plotted in fig. 8.2.

This application is the perfect example to illustrate the physical meaning of the ad-

joint variables. Firstly, it is useful to note that the adjoint velocity (Ψ⃗v) magnitude

is higher close to the airfoil’s contour and almost zero at far-field, fig. 8.3, meaning

that a small perturbation in the velocity field in the solid boundary’s vicinity has a

severe impact on the generated lift value. Moreover, the imposed boundary condi-

tions make the adjoint momentum flux to exit from the pressure side and reenter at

the suction side. The adjoint velocity direction, depicted by the streamlines shown

in fig. 8.3, contains essential information concerning the flow field’s effect on lift

value configuration. A small force δf⃗ with a direction parallel and opposite to the

positive x-axis, implemented to particles close to the pressure side, decelerates the

flow, increasing both pressure and lift. The effect of an infinitesimally small force on

the lift is described by the adjoint field as well. The analysis of section 7.1 concludes

that the lift variation is expressed as δL=−Ψ⃗v · δf⃗ . The main x-component of the

adjoint velocity close to the pressure side is positive, so Ψ⃗v · δf⃗ < 0 meaning that

δL > 0, which mathematically expresses the lift’s increase due to the force exertion.

Similarly, the imposition of δf⃗ close to the suction side causes lift to drop, which

is also expressed by the negative x-component sign of the adjoint velocity on that

area.

The sensitivity derivatives computed by the proposed adjoint method are compared

with FDs, fig. 8.4. Due to the symmetry of the case, derivatives are symmetrical

too. Derivatives w.r.t. the x-coordinates of the control points over airfoil’s sides

are opposite, while derivatives w.r.t. y-coordinates coincide. Overall, both x and

y derivatives perfectly match the FDs, verifying the adjoint solver’s high accuracy.

More specifically, the deviation between the two methods is less than 10−4%, mean-



8.1. Incompressible Adjoint Solver Assessment 263

ing that at least five significant digits are correctly computed. It should be kept in

mind that the slight inaccuracies of FDs are caused by round-off errors and depen-

dence on the step size choice. Fig. 8.1 presents the gradients of all control points.

After 20 optimization cycles, both airfoil sides are cambered, fig. 8.6, causing an

increase in lift, as shown in fig. 8.5. Fig. 8.7 compares the pressure field before and

after the optimization. The geometry’s change causes a reduction in pressure over

the airfoil upper side, leading to increased lift.

In the absence of constraints, running the optimization for 20 cycles is enough to

display the cut-cell adjoint method’s ability to continuously increase airfoil’s lift.

As expected, fig. 8.5 shows that there is still enough room for improvement. By

continuing the optimization for 80 more cycles, fig. 8.8, lift increases by a factor of

8. After around 100 cycles, the flow becomes unsteady, and this is why optimization

terminates there. The airfoil’s new “abnormal” shape is presented in fig. 8.9. Its in-

tense deformation confirms the mesh ability to handle any resulting shape, verifying

the cut-cell method superiority, from this point of view, against other CFD meth-

ods used in optimization problems. A clear message is that, the proposed method

overcomes difficulties associated with mesh deformation in optimization loops using

body-fitted CFD, being a a well-known reason of premature termination.

Figure 8.1: NACA0012 airfoil optimization, laminar flow, incompressible fluid:

Bézier control polygons (red) separately generating the two sides of the baseline

airfoil (black). Green vectors represent the computed gradient at each control point

of the initial geometry.



264 K. D. Samouchos

(a) (b)

Figure 8.2: NACA0012 airfoil optimization, laminar flow, incompressible fluid: Con-

vergence of the residuals of the (a) flow and (b) adjoint equations.

Figure 8.3: NACA0012 airfoil optimization, laminar flow, incompressible fluid: Ad-

joint iso-velocity contours and adjoint streamlines.



8.1. Incompressible Adjoint Solver Assessment 265

(a) (b)

Figure 8.4: NACA0012 airfoil optimization, laminar flow, incompressible fluid: Sen-

sitivity derivatives computed w.r.t. the x and y coordinates of the control points.

Comparison between adjoint derivatives (red) and FDs (black).

Figure 8.5: NACA0012 airfoil optimization, laminar flow, incompressible fluid:

Adjoint-based optimization for lift maximization. To increase the readability of

the plot, lift is non-dimensionalized by its value at the 20th cycle.

Figure 8.6: NACA0012 airfoil optimization, laminar flow, incompressible fluid: Com-

parison between the baseline (black) and optimized (red) airfoil after 20 cycles.



266 K. D. Samouchos

(a) (b)

Figure 8.7: NACA0012 airfoil optimization laminar flow, incompressible fluid: Iso-

bar areas of the (a) baseline and (b) optimized airfoil after 20 cycles.

Figure 8.8: NACA0012 airfoil, optimization laminar flow, incompressible fluid:

Adjoint-based optimization for lift maximization. Lift is non-dimensionalized by

its value at the 20th cycle, which corresponds to lift final value during the optimiza-

tion presented in fig. 8.5.

Figure 8.9: NACA0012 airfoil optimization, laminar flow, incompressible fluid: Com-

parison between the baseline (black) and optimized (red) airfoils after 100 cycles.



8.2. Compressible Adjoint Solver Assessment 267

8.2 Compressible Adjoint Solver Assessment

The second application is concerned with the optimization of an isolated NACA0012

airfoil exposed to a laminar compressible flow of M∞ =0.293, Re∞ =1000, Pr∞ =0.7

and zero angle-of-attack. The airfoil’s parameterization and design variables defini-

tion is presented in section 8.1. The flow and adjoint equation’s solution terminates

when the 3000 pseudo-time steps criterion is met. Their convergence is plotted in

fig. 8.11. The adjoint momentum magnitude field and streamlines, shown in fig. 8.12,

agree with the analysis presented in section 8.1 regarding the interpretation of the

adjoint variables fields. The CG method drives the optimization towards the opti-

mum. The optimization stops prematurely after completing 20 cycles, which was the

available computational budget set for the run. Fig. 8.14 presents the correspond-

ing convergence history. The objective function’s evaluation remains smooth even

though more than 200 cells appear or disappear from the fluid domain due to the

airfoil’s deformation at each cycle, indicating that the abrupt and non-differentiable

mesh topology modification does not hinder the optimization process.

Fig. 8.15 compares the baseline and optimized airfoil’s contour. Curvature has in-

creased along the suction side, accelerating the regional flow, while the pressure

side has been considerably flattened. The new shape allows for the pressure dif-

ference growth between the airfoil’s sides, increasing thus lift. Fig. 8.16 illustrates

the above statements by comparing the baseline and optimized pressure fields. Sen-

sitivity derivatives, computed by the adjoint method, are plotted in fig. 8.10. A

comparison with FDs, presented in fig. 8.13, proves the high accuracy of the com-

putational gradient, with the resulting error being smaller than 10−4%.

Figure 8.10: NACA0012 airfoil optimization, laminar flow, compressible fluid: Bézier

control polygons (red) parameterizing separately the two sides of the baseline airfoil

(black). Green vectors represent the computed sensitivity derivative at each control

point of the initial airfoil.



268 K. D. Samouchos

(a) (b)

Figure 8.11: NACA0012 airfoil optimization, laminar flow, compressible fluid: Con-

vergence of the residuals of the (a) flow and (b) adjoint equations.

Figure 8.12: NACA0012 airfoil optimization, laminar flow, compressible fluid: Ad-

joint iso-velocity contours and adjoint streamlines.



8.2. Compressible Adjoint Solver Assessment 269

(a) (b)

Figure 8.13: NACA0012 airfoil optimization, laminar flow, compressible fluid: Sen-

sitivity derivatives computed w.r.t. the x and y coordinates of the control points.

Comparison between adjoint derivatives (red) and FDs (black).

Figure 8.14: NACA0012 airfoil optimization, laminar flow, compressible fluid: Lift

evolution during the adjoint-based optimization. To increase readability of the plot,

lift is non-dimensionalized by its value at the 20th cycle.

Figure 8.15: NACA0012 airfoil optimization, laminar flow, compressible fluid: Com-

parison between the baseline (black) and optimized (red) airfoil contours.



270 K. D. Samouchos

(a) (b)

Figure 8.16: NACA0012 airfoil optimization, laminar flow, compressible fluid: Iso-

bar areas of the (a) baseline and (b) optimized airfoil.

8.3 Unsteady Adjoint Solver Assessment

This application concerns the optimization of a pitching NACA0012 airfoil exposed

in a subsonic compressible inviscid flow. The objective function to be minimized is

the time-averaged lift during one period. The section’s main scope confirms the cor-

rect differentiation of the algorithm which handles the appearing and disappearing

cells due to the airfoil’s motion. Moreover, the way the adjoint field is transferred

to the mesh of the previous time step, as integration proceeds backwards in time is

also verified. The airfoil surface is morphed using two Bézier curves parameterizing

the pressure and suction side, as mentioned in section 8.1 and shown in fig. 8.17.

The pitching motion around the quarter-chord is prescribed by the sinusoidal func-

tion α(t)=α∞ + α0sin(ωt), where α(t) is the angle between the airfoil’s chord and

the x-axis. The far-field flow angle and amplitude are α∞ = 0.16◦ and α0 = 2.51◦,

respectively. The period is T = 0.15s and the free-stream Mach number is 0.439.

The flow equations are solved for four periods to overcome transient phenomena

occurring at the beginning of the simulation. Upon the end of the third period,

the integration required to compute the objective function begins and lasts for the

entire last period.

The time-averaged objective function’s differentiation leads to a reverse time inte-

gration method with an initial condition at the end of the unsteady phenomenon.



8.3. Unsteady Adjoint Solver Assessment 271

Thus, the flow problem’s solution and mesh are stored at all time steps to be avail-

able for the adjoint solver. Data regarding the flow transition from one mesh to the

next are also stored. According to the mathematical formulation presented in sec-

tion 6.4, the adjoint problem must be solved for the entire time window of the four

periods, which does not coincide with the time over which the objective function is

integrated. Consequently, as the adjoint is solved backwards in time, the adjoint

equations’ source term which triggers the adjoint field takes on non-zero values only

during the fourth period, i.e. the first period for the adjoint solver, and is set to zero

afterwards, resulting in a gradual attenuation of the adjoint field.

The adjoint field’s and corresponding mesh’s behavior bear similarities with the

unsteady primal case. Mesh is adapted close to the airfoil’s boundary, and cells

are transported from the fluid to the solid mesh region or vice-versa at each time

step due to the airfoil’s motion. The characteristic hysteresis is also evident in

figs. 8.18a and 8.18c, where the airfoil passes through its equilibrium position on

the upstroke and downstroke, respectively. Comparison between figs. 8.18 and 8.22,

which presents the pressure field at the same time steps, shows the airfoil reversed

motion during the adjoint simulation.

The objective function’s derivatives w.r.t. the design variables computed by the de-

veloped adjoint software are compared to FDs in fig. 8.19 showing excellent agree-

ment and yielding to a relative error smaller than 10−4%. The FD step size is set to

10−6, after conducting an independence study. Sensitivity derivatives are depicted

in fig. 8.17. A shape design based on the CG method is carried out leading to an

optimized airfoil contour, validating the software’s shape optimization capabilities

in unsteady flows. The smooth and monotonous objective function history, shown

in fig. 8.20, indicates the correct differentiation of the temporal term, including the

adjoint field’s projection to the next mesh at each time step and the time-dependent

geometrical terms treatment in the sensitivity derivatives’ expression. As shown in

fig. 8.21, the optimization algorithm cambers the geometry close to the trailing edge

affecting the pressure exerted on both airfoil’s sides. Additionally, the adjoint field

is quite intense close to the trailing edge, as this is the area which is mostly affecting

lift. Comparison of figs. 8.22 and 8.23 illustrates that pressure is lower close to the

suction side, leading to higher lift.



272 K. D. Samouchos

Figure 8.17: Pitching NACA0012 airfoil optimization, inviscid flow, compressible

fluid: Bézier control polygons (red) parameterizing separately the two sides of the

baseline airfoil (black). Green vectors represent the computed sensitivity derivative

at each control point of the initial airfoil.

(a) (b)

(c) (d)

Figure 8.18: Pitching NACA0012 airfoil optimization, inviscid flow, compressible

fluid: Adjoint iso-velocity contours and adjoint streamlines at T, 5T/4, 7T/4 and

2T time instants.



8.3. Unsteady Adjoint Solver Assessment 273

(a) (b)

Figure 8.19: Pitching NACA0012 airfoil optimization, inviscid flow, compressible

fluid: Sensitivity derivatives computed w.r.t. x and y coordinates of the control

points. Comparison between the adjoint derivatives (red) and FDs (black).

Figure 8.20: Pitching NACA0012 airfoil optimization, inviscid flow, compressible

fluid: Time-averaged lift evolution during the adjoint-based optimization.

Figure 8.21: Pitching NACA0012 airfoil optimization, inviscid flow, compressible

fluid: Comparison between the baseline (black) and optimized (red) airfoil contours.



274 K. D. Samouchos

(a) (b)

(c) (d)

Figure 8.22: Pitching NACA0012 airfoil optimization, inviscid flow, compressible

fluid: Iso-bar areas at T, 5T/4, 7T/4 and 2T time instants of the baseline airfoil.



8.3. Unsteady Adjoint Solver Assessment 275

(a) (b)

(c) (d)

Figure 8.23: Pitching NACA0012 airfoil optimization, inviscid flow, compressible

fluid: Iso-bar areas at T, 5T/4, 7T/4 and 2T time instants of the optimized airfoil.



Chapter 9

Optimization of Industrial

Applications

This chapter provides the implementation of the gradient-based optimization as-

sisted by the adjoint method in real-world applications. The corresponding adjoint

theory is developed in chapter 7. In contrast to the applications presented in chapter

8, no shape parameterization is used. Instead, the design variables are the coordi-

nates of the surface nodes of the optimized shapes. As the number of design variables

is high, the adjoint method should be used since the cost of computing the objective

function’s gradient is independent of the number of design variables. In practice

though, the sensitivity field contains high-frequency content, making its use in the

optimization very ineffective. An additional processing step is thus needed at each

cycle, which guarantees the smoothness of the shape while avoiding the formation

of invalid surface elements. The used approach, described in section 7.6, combines

an algorithm imitating an elliptic surface equation behavior with filters preventing

gradient spikes generation on the surface. Each optimization step requires much

more computational time than the benchmark cases studied in chapter 8, which

restricts the optimization cycles to 20 for all applications due to computational re-

source limitations. It is essential to clarify that the premature termination is not

related to the software reliability. A study presented in section 8.1 indicates the soft-

ware’s ability to continue the optimization until a predefined criterion is met. The

presented optimization cases refer to compressible or incompressible fluid flows with

stationary or moving geometries. They are concerned with the total pressure losses

minimization in an S-duct, the lift maximization of a wing, the outlet tangential

276



9.1. S-Duct Optimization 277

velocity minimization in a submersible pump, and the back-flow minimization along

with the volume flow rate maximization (two targets) in a diaphragm micropump.

Moreover, an optimization under uncertainties is performed. The cases mentioned

before are solved by the cut-cell variant of the adjoint method. However, the adjoint

ghost-cell method is also capable of optimizing industrial cases. Such an example is

presented in the last section, where a compressor rotor is optimized supported by

the SVD method. Finally, work done by the author on the continuous adjoint to

the cut-cell method implemented in unsteady problems can be found in [273].

9.1 S-Duct Optimization

In this application, the shape of a 3D S-duct is optimized for minimum total pres-

sure losses. The duct is formed by an S-shaped central part, upwind and downwing

extended with straight segments. The baseline geometry’s surface and volume mesh

consist of around 20K triangles and 100K cells, respectively. The imposed total

(1.0022 bar) and static (1 bar) pressure conditions at the duct’s inlet and outlet

drive the incompressible fluid of density 1 kg/m3. The Reynolds number based

on the duct’s inlet diameter and the isentropic velocity which corresponds to the

aforementioned total and static pressures is 250. Since the inlet total pressure re-

mains constant during the optimization, only the outlet total pressure contributes

to the objective function. The design variables are the coordinates of the duct

surface nodes. Nodes placed on the straight segments cannot vary during the op-

timization. The 20-cycle optimization takes 8 hours on 48 processors. Losses have

been decreased by more than 2.5%, as displayed by the convergence history plot-

ted in fig. 9.1, where the vertical axis presents the difference between the losses at

each optimization cycle and the baseline geometry. A steep reduction of the objec-

tive function is taken place in the first 5 cycles followed by smaller changes while

the optimization algorithm reaches the minimum. Initial and optimized geometries

are shown in fig. 9.2, and are compared in fig. 9.3. The surface displacement be-

comes more clear by the comparison of three cross-sections’ geometries, fig. 9.4.

Displacement is not totally symmetrical with respect to the x-axis due to the non-

symmetrical surface triangulation. Iso-velocity contours are presented in fig. 9.5

at the same cross-sections for the baseline and optimized geometry. It seems that

the wall deformation increases the low-velocity areas close to the boundary of the

optimized geometry causing stress reduction between the solid and the fluid. The



278 K. D. Samouchos

objective function reduction is evident in figs. 9.6 and 9.7 where total pressure loss

contours are shown along the longitudinal direction and at the duct’s exit, respec-

tively. Losses have been mostly decreased in the duct’s central axis vicinity, while

regions close to the wall remain the losses’ primary source. Fig. 9.8 presents the

sensitivity map in the duct’s initial shape. Red regions indicate areas where the

surface should be displaced inwards, blue should do the opposite and green parts

should remain still. The optimized surface is smooth, without being affected by

high frequency changes in the computed sensitivity derivatives. Its strange shape

could have been avoided by using less design variables, for instance by means of a

free-form parameterization method [311].

Figure 9.1: S-duct optimization: Reduction in total pressure losses during the opti-

mization loop.

(a) (b)

Figure 9.2: S-duct optimization: Close-up views of (a) baseline and (b) optimized

geometries, in the middle of the duct.



9.1. S-Duct Optimization 279

Figure 9.3: S-duct optimization: Baseline (gray-transmissive) and optimized (red)

ducts plotted together.

(a) (b) (c)

(d)

Figure 9.4: S-duct optimization: Comparison of the (a) baseline (black) and (b)

optimized geometry (red) at three cross-sections. Their position is shown in (d)

which presents the baseline (dark gray) and optimized ducts (light gray).



280 K. D. Samouchos

(a)

(b)

Figure 9.5: S-duct optimization: Velocity magnitude iso-areas at the cross-sections

defined in fig. 9.4d for the (a) baseline and (b) optimized geometries.

(a)

(b)

Figure 9.6: S-duct optimization: Total pressure loss contours over a cross-section

with a plane along the longitudinal direction in the (a) baseline and (b) optimized

geometry.



9.2. Wing Optimization 281

(a) (b)

Figure 9.7: S-duct optimization: Total pressure loss contours at the exit of the (a)

baseline and (b) optimized duct.

Figure 9.8: S-duct optimization: Sensitivity map on the duct surface computed at

the end of the first optimization cycle.

9.2 Wing Optimization

This application is concerned with the optimization of an isolated wing in a subsonic

compressible flow for lift maximization. The flow is assumed to be inviscid. The

baseline wing is build based on the symmetrical ONERA-D airfoil. The leading and

trailing edge sweep angles are 30◦ and 15.8◦, respectively, forming a relevant surface

area of around 2.19 m2. All but the leading and trailing edge surface nodes are

allowed to move during the optimization. Nodes placed at the tip are restricted to

move only along the vertical direction. The far-field Mach number, angle-of-attack

and angle-of-sideslip are 0.5, 0◦ and 0◦, respectively. At these flow conditions, the

initial design produces zero lift. The mesh for the baseline geometry consists of

100K cells. After 20 optimization cycles, lift has increased to almost 3 kN as shown



282 K. D. Samouchos

in fig. 9.9 leading to a lift coefficient equal to 0.343. The wing geometries before and

after the optimization are compared in fig. 9.10 at three cross-sections perpendicular

to the lateral direction, fig. 9.10d, . The wing’s part close to the leading edge is

mainly displaced. Its curvature increases as the cross-section reaches the wing’s tip.

The new design supports the pressure increase on the lower side while decreasing

pressure on the upper side. Fig. 9.11 compares the pressure fields for the baseline and

optimized wings. Lift rise is also evident from the surface pressure distributions on

the upper, fig. 9.12, and lower sides, fig. 9.13. Finally, the sensitivity map computed

at the end of the first optimization cycle is presented in fig. 9.14. The map has

been smoothed enough to suppress high frequencies, allowing for a reasonable shape

deformation. As expected, derivatives are higher close to the trailing edge. The red

color denotes areas that should be pulled outwards. The opposite happens for areas

in blue, giving rise to the characteristic cambered shape close to the trailing edge

shown in fig. 9.10.

Figure 9.9: Wing optimization: Increase in the objective function during the opti-

mization loop.



9.2. Wing Optimization 283

(a) (b) (c)

(d)

Figure 9.10: Wing optimization: Comparison between the baseline (black) and

optimized (red) wing airfoils. From (a) to (c), wing tip is approached. Cross-

sections’ position is shown in (d).

(a)

(b)

Figure 9.11: Wing optimization: Iso-bar contours in cross-sections defined in

fig. 9.10d for the (a) baseline and (b) optimized wings.



284 K. D. Samouchos

(a) (b)

Figure 9.12: Wing optimization: Pressure distribution on the suction side for the

(a) baseline and (b) optimized wings.

(a) (b)

Figure 9.13: Wing optimization: Pressure distribution on the pressure side for the

(a) baseline and (b) optimized wings.



9.3. Submersible Pump Optimization 285

(a) (b)

Figure 9.14: Wing optimization: Sensitivity map on the (a) suction and (b) pressure

side of the baseline wing.

9.3 Submersible Pump Optimization

This application aims at the optimization of a 3D Electrical Submersible Pump

(ESP). Publications dedicated to the ESP gradient-based optimization assisted by

the adjoint method are limited, although it allows for a low-cost computation while

maintaining a high degree of freedom by handling a great number of design variables.

Information about the ESP technology and the flow analysis of the baseline geometry

can be found in section 5.4. The study is part of a research program funded by

Schlumberger Cambridge Research Limited.

The target of the present optimization problem is the minimization of the radial (vr)

and peripheral (vp) outlet velocity components, which is mathematically expressed

as

J =

∫
Sout

(
v2r + v2p

)
ds

where Sout is the stage outlet surface. Both impeller and diffuser blades are deformed

during the optimization while the casing remains stationary. Nodes located at the

hub and shroud are allowed to move only along the peripheral direction. At each

optimization cycle, the casing nodes positions are smoothed ensuring the validity of



286 K. D. Samouchos

all surface elements. An inviscid flow model for compressible fluids is used.

Fig. 9.15 shows the evolution of objective function’s deviation from its value at

the end of the first cycle. According to the plot, the outlet tangential velocity has

decreased by 35%. Tangential velocity magnitude contours at the exit of the initial

and final geometry are compared in fig. 9.16 for four snapshots equally distributed

along a single period. Two cross-sections perpendicular to the pump’s axis show

the impeller and diffuser blades displacement, fig. 9.17. While slight changes in

the impeller can be seen, the diffuser has noticeably been changed, meaning that

its blades, being closer to the exit, mostly determine the outlet velocity direction.

The impeller and diffuser blades deformation is presented in fig. 9.18. Finally, the

sensitivity map on the impeller and diffuser baseline blades is shown in fig. 9.19.

Areas colored in red should be moved inwards whereas blue areas should be moved

outwards. Nodes at which the sensitivity derivative is close to zero are colored in

green. Areas with high absolute valued sensitivity derivatives have a more significant

potential for optimization. According to the presented sensitivity maps, higher

displacements are detected close to their trailing edge which is the area that mainly

affects the velocity direction.

Figure 9.15: Submersible pump stage optimization: Optimization history. A reduc-

tion of ∼ 35% in the objective function is achieved after 20 optimization cycles.



9.3. Submersible Pump Optimization 287

(a)

(b)

Figure 9.16: Submersible pump stage optimization: Tangential velocity magnitude

at the pump outlet at four equally distributed time steps along one period for the

(a) baseline and (b) optimized geometry.

(a) (b)

Figure 9.17: Submersible pump stage optimization: Comparison between the base-

line (black) and optimized (red) blades presented in cross-sections perpendicular to

the pump’s axis for (a) the impeller and (b) the diffuser. A close-up view of (a) is

shown in (c).



288 K. D. Samouchos

(a) (b)

(c) (d)

Figure 9.18: Submersible pump stage optimization: Comparison between the base-

line (black) and optimized (red) impeller blade for the (a) pressure and (b) suction

side and diffuser blade for the (c) pressure and (d) suction side.

(a) (b)

(c) (d)

Figure 9.19: Submersible pump stage optimization: Sensitivity map for the impeller

blade on the (a) pressure and (b) suction side and diffuser blade on the (c) pressure

and (d) suction side.



9.4. Valveless Diaphragm Pump Optimization under Uncertainties 289

9.4 Valveless Diaphragm Pump Optimization un-

der Uncertainties

This section focuses on optimizing a 3D valveless diaphragm micropump in the pres-

ence of uncertainties. The diaphragm’s motion is parameterized by eight variables

being the design and uncertain optimization variables. A detailed description of

the parameterization scheme is presented in section 5.3. Its flow analysis is demon-

strated in the same section, showing that the absence of valves allows the flow to

re-enter from the pump’s exits at a significant time window within a period. Back-

flow is unwanted in most practical cases, such as medical applications, and should

be minimized. It is defined as the integral of the negative velocity at the exit.

Qbf =
1

T

∫
T

∫
Sout

min(0, v⃗.n⃗)dsdt

where Sout is the pump’s outlet surface, n⃗ is its unit normal vector and v⃗ the flow

velocity. Another drawback is the low flow rate micropumps can handle due to their

small size [81]. Its mathematical expression is

Qnet =
1

T

∫
T

∫
Sout

v⃗.n⃗dsdt

These two functions, related to performance of the pump, are the so-called quantities

of interest.

Operating and manufacturing inaccuracies, modeled by introducing uncertainties

into the design variables, affect the quantities of interest. The two objective functions

arise by computing the mean values and standard deviations of the two quantities

of interest and forming their weighted sum,

F1 =w11µQbf
+ w12σQbf

F2 =w21µQnet + w22σQnet

Here, w11 = +1, w12 = +1, w21 = +1 and w22 =−1. Their signs depend on whether

minimization or maximization is targeted. The non-intrusive Polynomial Chaos

Expansion (PCE) [85], [335] is used to compute the required statistical moments. It

is assumed that all uncertain variables follow the normal distribution (w), meaning

that Hermite Polynomials (Hei) should be selected. The stochastic quantities of



290 K. D. Samouchos

interest are given by the following truncated summation,

Qi(b) ≃
q∑

j=1

αijHej(b)

where q is the user-defined chaos order. The PCE coefficients are given by

αij =

∫
D

Qi(b)Hej(b)w(b)db

where D is the design space. The above integrals are computed by the Gauss

quadrature integration method, which determines a set of Gaussian nodes, each

of them should be evaluated by the cut-cell CFD solver. The first two statistical

moments are computed through Galerkin projections as

µQi
= αi0, σ2

Qi
=

q∑
j=1

a2ij

The chaos order is set to one and, thus, 9 expansion coefficients should be computed,

requiring the significant number of 256 CFD-based evaluations per candidate solu-

tion. The overall computational cost is reduced by using the Smolyak sparse grid

theory [287], according to which the same coefficients are approximated at the cost

of 17 evaluations on the cut-ell software.

The in-house optimization tool EASY (Evolutional Algorithms SYstem) [1] com-

putes the Pareto front of non-dominant solutions [151]. The optimization cost is re-

duced by implementing surrogate models or metamodels (Metamodel-Assisted EA

or MAEA) [154] and the Principal Component Analysis (PCA) [169] of the pop-

ulation members. Metamodels replicate the objective functions computed by the

CFD tool at an almost negligible computational cost. The PCA transforms the de-

sign space into a new feature space, in which the evolution operators perform much

better. PCA also assists metamodels to be trained with the most significant input

variables only, as identified by the PCA. The computational cost is further reduced

by combining the PCA-driven MAEA with a Gradient-Based (GB) optimization

method, giving rise to a hybrid algorithm, in which the EA undertakes the explo-

ration of the design space and the GB method the refinement of selected promising

solutions [285], [152].

The GB method implementation starts by concatenating the two objectives in a



9.4. Valveless Diaphragm Pump Optimization under Uncertainties 291

single scalar function equal to their weighted sum (F = w1F1 +w2F2). Then, the

adjoint cut-cell solver computes its gradient and the selected individuals are im-

proved by performing a single descent step. The computation of ∂Fi/∂bk requires

the statistical moments’ derivatives given by

∂µQi

∂bk
=

∂αi0

∂bk

∂σQi

∂bk
=

1

σQi

q∑
j=1

αij
∂αij

∂bk

The PCE coefficients’ derivatives are

∂αij

∂bk
=

∫
D

∂Qi

∂bk
Hejwdb

where ∂Qi/∂bk are computed by the cut-cell adjoint software. The GB improvement

is applied to just one individual in each generation due to the gradient’s extra

computational cost. The new individual should simultaneously improve all objective

functions, which is possible by correctly choosing the weights’ values. Each pair of

weights (w1, w2) determines a different direction in the objective functions’ space. A

descent direction leading to a new dominated individual is referred to as the Pareto

Advancement Direction (PAD). A proper method for computing the PAD is given

in [152]. As mentioned before, according to the non-intrusive PCE assisted by the

Smolyak theory, each individual’s evaluation costs 17 CFD runs and, if selected for

GB refinement, another 34 adjoint runs are needed to compute the gradients.

A (6, 10) PCA-Assisted Hybrid Algorithm is used for the optimization problem.

Both metamodels and PCA start being used after the first generation. The compu-

tational budget is restricted to 1400 calls to the cut-cell software or its adjoint due

to their high computational cost. Fig. 9.20b presents the individuals’ update by the

GB method between three successive generations. The final front of non-dominated

solutions is presented in fig. 9.20a. Moreover, fig. 9.21 shows the backflow and vol-

ume flow rate evolution within a period for the two front edges and the reference

solution. Black lines indicate the mean values and the blue hatched areas correspond

to the three-sigma interval width. In the maximum F2 solution, the volume flow

rate remains negative for almost half of the period, although its positive part over-

weights the negative one. The solution appears to be quite erratic, as it is seriously

affected by the design variables’ uncertainties. Regarding the minimum F1 solution,

backflow appears during a single step only. In the reference solution, the volume



292 K. D. Samouchos

flow rate is positive only during half of the period, yielding a lower volume flow rate

and higher backflow than both of the above-mentioned optimized solutions. From

this point of view, any of the Pareto solutions dominate the reference pump. Finally,

fig. 9.22 shows the instantaneous flow field of the two extreme points on the front

and the reference solutions when the reference pump has the greatest backflow.

Research presented in this section has been funded by the Business Plan “Devel-

opment of Human Resources, Education and Lifelong Learning” entitled “Support

Researchers with Emphasis on Young Researchers” with the co-financing of Greece

and the European Union. The project title is “Design-Optimization of Diaphragm

Pumps under Operational/Manufacturing Uncertainties using the cut-cell Method

and Polynomial Chaos Expansion”.

(a) (b)

Figure 9.20: Diaphragm pump optimization: (a) Computed Pareto front of non-

dominated solutions. (b) Progress made in the front computed by the PCA-Assisted

Hybrid Algorithm in three consecutive generations. Arrows show the PAD used by

the GB method to upgrade a single individual per generation. Only part of the front

is shown.



9.4. Valveless Diaphragm Pump Optimization under Uncertainties 293

Figure 9.21: Diaphragm pump optimization: Qnet and Qbf times series for the

maximum F2 (top), minimum F1 (middle) and reference (bottom) solutions. Black

line corresponds to the mean values. The hatched area signifies the ±3σ zone.

Figure 9.22: Diaphragm pump optimization: Instantaneous velocity fields of the

maximum F2 (left), minimum F1 (middle) and reference solutions (right). Axes not

in scale.



294 K. D. Samouchos

9.5 Optimization of a Compressor Rotor

In this subsection, the optimization of a compressor rotor is carried out, minimizing

the swirl at its exit. The nodes coordinates constituting the rotor blades stand for

the corresponding design variables. Its experimental investigation was carried out

by Inoue in a low-speed rotating cascade facility [136]. Details of the geometry and

the blading are given in [135].

Inlet boundary conditions are total pressure (1 bar) and total temperature (290 K).

Inlet flow is aligned with the axial direction. At the outlet, the static pressure

is 0.995 bar. The rotating speed is set to 680 rad/s. A fixed uniform mesh of

122×122×120 cells is used for all time steps and the flow equations discretization is

based on the ghost-cell method explained in section 3.8. Flow simulation terminated

after periodicity is established. Fig. 9.23 shows the compressor’s blades and iso-Mach

contours at two cross-sections along the axial and radial directions, respectively. The

pressure field has been projected on the blades surface and is presented in fig. 9.24.

The resulting contours are quite noisy due to the wall boundary conditions indirect

imposition and errors introduced during the projection process.

The continuous adjoint to the ghost-cell method is implemented to compute the

sensitivity map on the blades’ surface. Its backward in time integration along with

the constant number of cells at each time step enables the iSVD method, presented

in Appendix M, to compress the flow field time series. However, the combination of

the iSVD or SVD with an explicit solver should be avoided due to its inability to

represent the produced flow field accurately. The complication is detected on the

choice of a very small time step for the flow simulation due to stability issues of

the explicit ghost-cell solver. Let M be the matrix in which the field time series

is stored. Although the matrix is never constructed as a whole, the iSVD aims

to decompose it computing its singular values and vectors. However, due to the

small time step choice, minor changes are expected between two successive flow

fields inducing similarities among the columns of M . Therefore, the matrix is ill-

conditioned, causing instability issues to the SVD or iSVD algorithm, significantly

increasing the roundoff errors in the singular values and vectors computation.

The problem mentioned above is surpassed by introducing a slightly different pro-

cedure for flow field compression. According to that, the iSVD algorithm takes into

account the instantaneous flow field every 100 time steps, avoiding the column simi-



9.5. Optimization of a Compressor Rotor 295

larities in M . Thus, the iSVD can provide the corresponding flow field to the adjoint

solver only at every 100 steps. The rest necessary fields are approximated by linear

interpolation. The method’s computational cost is comparable with the cost of the

unsteady flow simulation and is less than the cost of the check-pointing algorithm.

Six optimization cycles were carried out, reducing the objective function by 7%,

fig. 9.25. The sensitivity map computed on the pressure and suction side of the

blade is presented in fig. 9.26, where the blue color indicates the regions pushed

inwards, while the red-colored regions are deformed along the opposite direction.

The derivatives’ magnitude is higher on the blade’s parts closer to the exit, signifying

their major importance for the objective’s minimization. Finally, fig. 9.27 compares

the initial and optimized blades.

Figure 9.23: Compressor Rotor Optimization: Iso-Mach contours around rotor

blades at the mid-step of its operation cycle. Dark blue regions are excluded from

the flow simulation.



296 K. D. Samouchos

(a) (b)

Figure 9.24: Compressor Rotor Optimization: Pressure contours on the (a) pressure

and (b) suction side of Inoue’s rotor blades at the mid-step of its operation cycle.

Figure 9.25: Compressor Rotor Optimization: Adjoint based optimization conver-

gence supported by the iPGD method for swirl minimization at the exit. The

objective function has been decreased by 7% after 6 optimization cycles.



9.5. Optimization of a Compressor Rotor 297

(a) (b)

Figure 9.26: Compressor Rotor Optimization: Sensitivity map on the (a) pressure

and (b) suction side of the blade. Blue and red colors indicate inward and outward

displacements, respectively.

Figure 9.27: Compressor Rotor Optimization: Comparison between the background

(red) and optimized (blue) geometry after 6 optimization cycles The blade is mostly

displaced downwards minimizing the swirl at the outlet.



Chapter 10

Closure

The scope of this dissertation was the development of an integrated software for the

CFD-based analysis and optimization in real-world applications concerning steady

flow phenomena and flows around moving geometries. To this end, the cut-cell

method was proposed as a robust and efficient alternative, which allows for an au-

tomated mesh generation around complex geometries, minimizing user intervention.

In addition, the development of the continuous and discrete adjoint methods in

Cartesian meshes offered a versatile computational tool for optimizing the shape of

industrial products, which removes the limitations introduced by conventional body-

conforming approaches. Section 10.1 summarizes the research presented throughout

this Ph.D. thesis and section 10.2 describes its main concluding remarks. Sections

10.3 and 10.4 outline the novel contributions of this thesis in the scientific field of

IBMs and adjoint methods. Finally, suggestions for future work are proposed in

section 10.5.

10.1 Summary

The core of this Ph.D. thesis and the basis for any additionally developed tool is

the mesh generation which is appropriate for the cut-cell method. The proposed

algorithm is based on an octree data structure and starts by defining the tree’s

root cell, which coincides with the computational domain. Then, the root cell is

isotropically subdivided into 4 (in 2D) or 8 (in 3D) offspring cells. The algorithm

298



10.1. Summary 299

proceeds by repetitively splitting cells, guided by the presence of the immersed

geometry, giving rise to new generations of cells. During the mesh generation, the

maximum refinement level difference between neighboring cells is limited to one.

Therefore, the division of intersected cells quickly propagates through the mesh,

affecting cells far from the wall. The process continues until predefined criteria

related to the cells’ size are met. Thereafter, the mesh quality is increased by

smoothing its resolution from dense regions, in the vicinity of the solid boundary,

to coarser areas in the far-field, increasing the accuracy of the flow simulations.

A structured mesh indexing was introduced to identify each cell efficiently. This

information was used to detect the parent and offspring of each cell in the tree-

like hierarchy and compute its dimensions and centroid. These data are part of the

proposed data structure, which exploits the flexibility of a face-based data structure,

commonly used in unstructured meshes, and takes advantage of the unique nature of

Cartesian meshes leading to a highly compact data set. Thus, the time-consuming,

repetitive traversal of a considerable part of the tree was avoided. Algorithms for

fast neighbor detection, mesh connectivity computation, and solid cells identification

were also programmed and incorporated into the software.

Moreover, a robust algorithm for computing the intersection between the Cartesian

mesh and an arbitrary geometry was developed. The proposed method was based

on the Sutherland-Hodgman clipping algorithm, but it was considerably extended

to accommodate the needs of the flow-solver and post-processor. Subsequently,

the developed method’s capabilities were demonstrated on various cases, considered

demanding by most mesh generators due to their high complexity. Examples of

Cartesian cells intersected in multiple regions or split into more than one finite

volumes were given.

In addition, this thesis dealt with the so-called “small cell problem” by following

a cell merging technique, which alleviates numerical instabilities during the flow

solution caused by the considerable difference in size between adjacent cut-cells.

According to this approach, one or more small cut-cells were geometrically merged

with a larger neighbor creating a hyper-cell, which was treated as a regular cell,

significantly simplifying the structure of the flow solver. Furthermore, a mesh par-

titioning technique was delivered based on the Hilbert space-filling curve to solve

the governing equations in a multi-processor system. The presented algorithm was

a 3D extension of 2D approaches found in the literature.



300 K. D. Samouchos

Moreover, the discretization of the compressible and incompressible flow equations

in a Cartesian mesh was explained in detail. The presented numerical scheme ben-

efited from the Cartesian mesh structure and adjusted to the complex geometry of

cut-cells. It is based on a cell-centered, second-order finite volume approach em-

ploying the MUSCL scheme. The Roe’s approximate Riemann solver was used to

compute inviscid fluxes, and second-order accuracy was attained by extrapolating

the flow variables at mesh faces conforming to the Taylor series expansion. The

required gradients of the flow variables were computed through the least squares

technique. The viscous flux between cells of different refinement levels was modified

by employing orthogonal correction. Finally, the artificial compressibility method

was applied to solve the incompressible flow equations.

This thesis also presented methods for predicting unsteady flows around imperme-

able moving boundaries within fixed Cartesian meshes. The time integration was

based on an Arbitrary Lagrangian-Eulerian approach facilitated by a dual time step-

ping method which allowed for relatively large time steps, reducing the wall clock

time of the simulation. At each time step, the mesh was re-adapted to the displaced

immersed boundary, keeping track of its motion. Thus, regions close to the geom-

etry’s previous position were coarsened, and cells in the vicinity of the displaced

wall were split anew, increasing the flow simulation’s accuracy. At each time step,

the necessary extrapolation of the flow solution to the subsequent mesh was taking

advantage of the developed tree data structure, and thus, the flow solver’s efficiency

was not affected.

However, the displaced fluid-solid interface usually covers Cartesian cells changing

their nature from fluid to solid and vice-versa. These transitions act like spurious

sources or sinks, generating artificial oscillations traveling throughout the flow field

and deteriorating the flow solution. Thus, this thesis proposed a novel cell linking

method that mimics and improves the merging technique. In particular, each solid-

ified cell was transferring its flow variables into a neighboring cell, which continued

to exist at the next time step. The opposite process was followed for newly ap-

peared cells in the fluid part of the mesh, equipping them with the appropriate time

history that ensures smooth time integration. Therefore, strict flow conservation

was maintained even for large boundary displacements, retaining the flow solver’s

efficiency.



10.1. Summary 301

Subsequently, this thesis developed a ghost-cell method for steady and unsteady

flows, which proved more robust and simpler to implement but not as accurate

compared to the cut-cell method. More specifically, the intersection between the im-

mersed geometry and the mesh was not explicitly detected, allowing for the straight-

forward treatment of complex moving geometries. Instead, the presence of the solid

wall within the flow field was expressed by the Signed Distance Function. Thus, the

flow boundary conditions along the wall were indirectly imposed by solving an addi-

tional PDE for each primitive variable field in a thin layer of solid cells close to the

fluid-solid interface. An investigation of the method’s ability to satisfy conservation

was presented, verifying the superiority of the cut-cell method in terms of accuracy.

Concerning shape optimization, the conjugate gradient method was used to ex-

plore the design space. Both the continuous and discrete adjoint formulations were

employed to compute the derivatives of the objective function w.r.t. the design vari-

ables. In particular, the continuous adjoint method was introduced to the cut-cell

and the ghost-cell methods for the first time in the literature. The adjoint ghost-

cell software was developed in a GPU-based environment. The differentiation of the

compressible and incompressible governing PDEs was described in detail resulting in

the adjoint PDEs and the accompanied boundary conditions and sensitivity deriva-

tives. Moreover, the adjoint Riemann problem was defined, and different solution

approximations were adopted to build equal in number discretization schemes. The

proposed adjoint schemes were equivalent to the FVS, HLLC, and Roe’s Riemann

solvers. Subsequently, the unsteady variant of the adjoint method was studied, and

its backward in time integration was discussed. Data compression techniques were

proposed to alleviate the increased demand for memory resources.

Moreover, the discrete adjoint formulation to the cut-cell method was also devel-

oped. Hand-differentiation was applied to both the compressible and incompressible

solvers for steady and unsteady viscous flows. During the differentiation process,

no simplifications were introduced, resulting in the exact discrete adjoint expres-

sions and the accurate computation of the objective’s gradient. In addition, a new

mathematical notation was introduced, which allowed for a compact presentation of

the discrete adjoint expressions. Furthermore, attention was paid to techniques for

developing the corresponding adjoint software in a parallel processing environment.

This thesis also focused on properly treating the discrete adjoint time integration,

especially in cases including moving geometries. That study proved that the adjoint

field extrapolation to the mesh of the next time step should not follow the rules



302 K. D. Samouchos

applied to the flow problem. Instead, alternative schemes were developed capable

of computing the exact sensitivity derivatives. Additionally, the proper differen-

tiation of algorithms treating the appearance and disappearance of cells from the

fluid domain was demonstrated. Finally, filtering was implemented to eliminate the

high-frequency signals from the derived sensitivity map, resulting in smooth-shaped

optimized geometries.

Subsequently, the cut-cell mesh generator was differentiated w.r.t. the design vari-

ables resulting in the geometric sensitivities required for the objective’s gradient

computation. More specifically, the mathematical development concerned the dif-

ferentiation of every geometric quantity included in the flow equations’ discrete

form. In addition, this approach incorporated the differentiation of the cut-cells’

construction, highlighting the difference between the present method and the rest

of conventional body-fitted approaches.

Finally, the developed computational tools for flow analysis and gradient-based op-

timization were assessed in detail. Experimental and numerical data were used for

the flow solvers’ validation/verification, and FDs were employed to ascertain the

accuracy of the adjoint software. Moreover, a series of applications confirmed the

ability of the aforementioned tools to deal with challenging industrial problems.

10.2 Concluding Remarks

This dissertation contributed to the need for fully automated and reliable compu-

tational tools employed for the analysis and optimization of practical applications.

Its main concluding remarks are shortly presented. Initiating from the mesh gener-

ation, the proposed method minimizes the user intervention, automatically adapts

the mesh in the vicinity of stationary or moving walls, and supports the flow solver

providing solution-based refined meshes upon complex domains. Furthermore, de-

tailed comparisons with experimental data assessed its ability to ensure the validity

of conservation laws, retaining the flow solution’s accuracy. Additional verification

in unsteady applications proved its ability to successfully deal with covered and

uncovered by the solid geometry cells, even for large boundary displacements.



10.2. Concluding Remarks 303

The implementation of the artificial compressibility method was combined with the

compressible flow solver resulting in a versatile software appropriate for all flow

regimes. Its exhaustive assessment in internal and external, inviscid and laminar

flows indicated the ability of the cut-cell approach to deliver realistic flow solutions,

the accuracy of which is comparable to those obtained by body-conforming meshes.

In the case of laminar flows, this study demonstrated that although simplicity of

mesh generation comes at the cost of a non-aligned mesh on the wall, cut-cells’ irreg-

ularities do not harm the accurate representation of the developed boundary layer.

The presented results showed good agreement with experimental measurements and

data provided by conventional CFD approaches.

Subsequently, the advantageous performance of the cut-cell method was exploited in

a series of applications involving complex moving geometries of industrial interest.

In particular, the flow simulation inside a valved duct indicated the method’s superi-

ority since it successfully handled the large displacement of the butterfly valve from

the fully open to its closed position, avoiding mesh morphing techniques. A more

challenging application was the flow simulation inside a scroll expander, and espe-

cially within the tight gap between the stationary and moving spirals of the machine.

The flow solver’s ability to maintain strict conservation was successfully tested in

the case of the valveless diaphragm micropump, where the diaphragm was intensely

deformed, covering and uncovering a significant number of cells at each time step.

Finally, the flow simulation within an electrical submersible pump stage introduced

the cut-cell method as an effective alternative to the Multiple Reference Frame, the

Sliding Mesh, or other approaches dealing with the rotor-stator interaction problem.

The implementation of the adjoint theory to the cut-cell framework created an ef-

fective optimization tool overcoming mesh generation barriers. Contrary to the

body-conforming approaches, the mesh deformation triggered by the geometry’s

shape modification was avoided, preventing the premature breakdown of the opti-

mization loop. The Cartesian mesh restricted the mesh perturbation to the cut-cell

zone, reducing the sensitivity derivatives computational cost and accelerating the

optimization process. The adjoint compressible and incompressible flow solver was

assessed by comparing the computed objective’s gradient with FDs, resulting in al-

most zero deviations in cases involving stationary or moving solid bodies. Finally,

the proposed post-processing of the sensitivity map successfully eliminated its high-

frequency signals providing smooth-shaped optimized geometries in all the presented

applications.



304 K. D. Samouchos

The high performance of the adjoint cut-cell software was confirmed through its

implementation in several industrial applications, including the total pressure losses

minimization of an S-shaped duct, the lift maximization of a wing, and the outlet

tangential velocity minimization in a submersible pump. In all cases, the developed

software proposed optimized solutions of adequately improved performance. Fi-

nally, the multi-objective optimization under uncertainties of a valveless diaphragm

micropump incorporated additional strategies to the optimization loop. More specif-

ically, the Polynomial Chaos Expansion implementation effectively reduced the com-

putational cost of each evaluation, and the introduction of the proposed gradient-

based method in the EASY platform [1] drove the optimization faster to the mini-

mum.

10.3 Novel Contributions

This Ph.D. thesis has contributed to the scientific fields of IBMs and adjoint meth-

ods, developing original computational tools and implementing them in real-world

applications. The main novelties of this research are summarized below.

� A new mesh data structure was proposed, which combines the beneficial fea-

tures of CSAMR [144] and face-based structures. The new data structure

contributes to the flow solver’s low memory footprint by storing a compact

data set. Moreover, it reduces the computational cost of the simulation by

offering direct cell-to-cell and face-to-cell mappings.

� An integrated method for the accurate cut-cell construction was proposed. The

corresponding algorithm was based on previously published works [6], but it

was significantly extended to compute more topological data, facilitating the

flow solver and the post-processor. The final algorithm is robust enough to

handle all possible mesh-geometry intersections, including the Cartesian cell

separation into more than one finite volumes.

� An alternative algorithm for generating cut-cells was suggested, which simpli-

fies their construction, and thus, it is very efficient, easy to develop, and allows

for a compact data structure.

� A new cell-merging method was presented, which combines clusters of cells to

create hyper-volumes in 3D meshes. Although various cell-merging techniques



10.3. Novel Contributions 305

have already been proposed [340], the newly presented method takes additional

mesh quality criteria under consideration, increasing the stability of the flow

solver.

� The partitioner for 2D Cartesian meshes presented in [147] was extended to

3D cases, preserving its effectiveness by exploiting the unique features of the

Hilbert space-filling curve.

� A new cell-linking algorithm was proposed, which deals with covered and un-

covered cells due to the motion of solid bodies upon a stationary Cartesian

mesh. The method was validated and used in challenging applications where

large boundary displacements occur.

� During this thesis, the cut-cell method was introduced to applications, for

which the CFD-based analysis is pretty rare due to their high complexity. In

particular, it was used for the flow simulation within a scroll expander and an

Electrical Submersible Pump stage.

� The continuous adjoint to the cut-cell and ghost-cell methods were presented

for the first time in the literature and applied for 3D unsteady problems of

inviscid flows.

� A theoretical investigation was presented about the continuous adjoint coun-

terparts of the FVS, HLLC, and Roe’s discretization schemes.

� The discrete adjoint to the cut-cell method for unsteady and viscous flow

phenomena was first presented in this thesis. Although other relevant works

have been published, they are restricted to the study of inviscid steady flows.

� The increased demand for computational memory during the unsteady adjoint

PDEs’ solution was treated using memory reduction based on the incremen-

tal SVD and PGD methods. In particular, the present thesis adopted these

methods from relevant works [323], [236], and combined them with the cut-cell

and ghost-cell adjoint solvers generating novel and cost-effective optimization

tools.



306 K. D. Samouchos

10.4 List of Publications

Journal Articles:

� Y.-P. Vrionis, K. Samouchos, K. Giannakoglou. Topology Optimization in

Fluid Mechanics Using Continuous Adjoint and the Cut-cell Method. Com-

puters and Mathematics with Applications, 97:286-297, 2021.

� Y.-P. Vrionis, K. Samouchos, K. Giannakoglou. The Continuous Adjoint Cut-

Cell Method for Shape Optimization in Cavitating Flows. Computers & Flu-

ids, 224:104974, 2021.

� D. Kapsoulis, K. Samouchos, X. Trompoukis, K. Giannakoglou. Hybrid Op-

timization of a Valveless Diaphragm Micropump Using the Cut-Cell Method.

Journal of Mechanics Engineering and Automation, 9:120-127, 2019.

� D. Kapsoulis, K. Samouchos, X. Trompoukis, K. Giannakoglou. Optimization

under uncertainties of a valveless diaphragm pump Using the cut-cell method.

The International Journal of Engineering and Science, 8(8):7-14, 2019.

Peer-Reviewed Conference Papers:

� K. Samouchos, D. Kapsoulis, X. Trompoukis, K. Giannakoglou. Shape Op-

timization of 3D Diaphragm Pumps Using the Continuous Adjoint Approach

to the Cut-Cell Method. 10th International Conference on Computational

Methods (ICCM2019), Singapore, July 9-13, 2019.

� Y.-P. Vrionis, K. Samouchos, K. Giannakoglou. Implementation of a Conser-

vative Cut-Cell Method for the Simulation of Two-Phase Cavitating Flows.

10th International Conference on Computational Methods (ICCM 2019), Sin-

gapore, July 9-13, 2019.

� D. Kapsoulis, K. Samouchos, X. Trompoukis, K. Giannakoglou. Design-

Optimization of a Valveless Diaphragm Micropump under Uncertainties Using

Evolutionary Algorithms. International Conference on Adaptive Modeling and

Simulation (ADMOS), El Campello, Spain, May 27-29, 2019.

� K. Samouchos, D. Kapsoulis, X. Trompoukis, K. Giannakoglou. Design of a

Diaphragm Pump under Uncertainties Using the Continuous Adjoint to the



10.5. Future Work Recommendations 307

Cut-Cell Method. 6th European Conference on Computational Mechanics

(ECCM 6) - 7th European Conference on Computational Fluid Dynamics

(ECFD 7), Glasgow, UK, June 11-15, 2018.

� V. Papageorgiou, K. Samouchos, K. Giannakoglou. The Unsteady Continuous

Adjoint Method Assisted by the Proper Generalized Method. EUROGEN

2017, International Conference on Evolutionary and Deterministic Methods for

Design, Optimization and Control with Applications to Industrial and Societal

Problems, Madrid, Spain, September 13-15, 2017.

� K. Samouchos, S. Katsanoulis, K. Giannakoglou. Unsteady Adjoint to the

Cut-Cell Method Using Mesh Adaptation on GPU’s. ECCOMAS Congress

2016, VII European Congress on Computational Methods in Applied Sciences

and Engineering, Crete island, Greece, June 5-10, 2016.

Invited Lectures:

� K. Giannakoglou , E. Papoutsis-Kiachagias, K. Gkaragkounis, K. Samouchos,

C. Vezyris, J. Koch. The Continuous Adjoint Method in Aerodynamic Opti-

mization. von Karman Institute Lectures Series on Introduction to Optimiza-

tion and Multidisciplinary Design, September 23-27, 2018.

10.5 Future Work Recommendations

This dissertation indicated the potential of the cut-cell method for flow analysis

and optimization in challenging applications. Its novel contribution to these fields

smoothed the path for further developments. Various recommendations for future

research are exposed below.

A reasonable extension of the current work is its application to problems concerning

turbulent flows. In such cases, a much larger mesh is usually needed to predict

the boundary layer correctly, which considerably increases the simulation’s compu-

tational cost. A remedy to this problem is the anisotropic cell subdivision during

the mesh generation offering improved flexibility especially close to the solid bound-

ary, where flattened cells are preferred. Other approaches change the discretization

scheme close to the wall achieving reliable flow simulations in coarser meshes. Such



308 K. D. Samouchos

a method places small line segments perpendicular to the wall and uses them to

accurately compute normal derivatives on the wall [36]. Therefore, it mitigates local

mesh irregularities, delivering smoother skin friction distributions along the solid

boundaries.

The accuracy of unsteady flow simulations can be increased by combining Cartesian

and structured meshes. According to that method, a body-conforming structured

mesh is embodied around the moving geometry, following its motion upon a station-

ary background Cartesian mesh. Then, cells covered or uncovered by the structured

mesh can be treated as explained in section 2.8. This method can further be im-

proved by taking the flow field from the structured mesh into account to properly

define the time history for these irregular cut-cells. Alternative approaches to this

issue can be developed based on the space-time integration of the flow equations in

4D cells [219].

The continuous adjoint to the cut-cell method may be extended to turbulent flows by

solving the RANS equations. Differentiating the turbulence model is suggested lead-

ing to the formulation of its adjoint counterpart [327]. This study is in progress in

a Ph.D. thesis [325] carried out in PCOpt/LTT. The same Ph.D. thesis investigates

the extension of the continuous adjoint to multi-phase flows in a cut-cell framework,

where the homogeneous mixture model is employed to predict cavitating flows [326].

A valuable study on the discrete adjoint method concerns the development of strate-

gies to reduce its relatively high memory requirements. Although a plethora of re-

search has already been performed in approaches based on body-conforming meshes,

none relevant work has been published yet about the effect of Cartesian meshes on

the discrete equations and, consequently, to the computational memory usage. This

can be achieved by assessing the impact of terms comprising the adjoint equations

and the sensitivity derivatives expression on the accuracy of the objective function

gradient. Hence, the less critical terms can be discarded in similar cases balancing

accuracy and memory shavings.

Finally, an interesting field of research concerns reducing the significant storage

requirements of unsteady adjoint due to its backward integration in time. Among

various existing methods, this thesis adopted the SVD and PGD algorithms to

compress data to be stored. An extension to this study would be the combination

of these methods with other approaches such as the check-pointing technique [329].

Relevant research [192] conducted in PCOpt/LTT proposes the hybridization of



10.5. Future Work Recommendations 309

PGD and the ZFP compression library [182]. However, a decisive step forward

would be defining an alternative adjoint problem governed by PDEs that could be

solved forward in time and simultaneously with the flow equations, significantly

reducing the memory and computational cost of the current approaches.



Appendix A

Identification of Cells in an Octree

Data Structure

The mesh generator developed in this thesis is based on an octree data structure.

According to subsection 2.2.2, the position of a cell in the tree is uniquely defined

by the integer coordinates (i, j, k) or the index ID given by eq. 2.6. This Appendix

proves this relation and ensures the unique bidirectional match of each cell to a

single index ID for any developed octree.

Each level L of an octree, defined by eq. 2.3, represents a uniform 3D Cartesian

mesh constituted by 2L cells in each direction. Depending on the application, a

different subset of these cells participates in the mesh generation process. However,

the cell indexing by ID considers that all cells are used and need identification. Its

computation is assisted by a local enumerator ĨD ranging at each level from 0 to

2L × 2L × 2L − 1. Then,

ID = ĨD + C(L) (A.1)

where C(L) is the total number of cells constituting levels from 0 to L− 1.

Similarly, a local structured grid indexing
(
ĩ, j̃, k̃

)
is introduced as

ĩ = i− 2L

j̃ = j − 2L

k̃ = k − 2L

310



311

where 2L is the minimum value of i, j, and k at each level. Then,

ĨD = 2L2Lk̃ + 2Lj̃ + ĩ

= 2L2L
(
k − 2L

)
+ 2L

(
j − 2L

)
+
(
i− 2L

)
(A.2)

implying that ĨD ∈
[
0, 23L − 1

]
. Moreover, ID continuously increases from each

level to the next one, avoiding jumps in the cells’ numbering. Therefore,

IDmax(L) = IDmin(L + 1)− 1⇔

ĨDmax(L) + C(L) = ĨDmin(L + 1) + C(L + 1)− 1⇔
C(L + 1) = C(L) + 23L (A.3)

By definition, ID is zero for the root cell, and thus,

IDmin(0) = 0⇔ ĨDmin(0) + C(0) = 0⇔ C(0) = 0 (A.4)

Eqs. A.3 and A.4 imply that

C(L) =
L∑
l=1

23(l−1) =
8L − 1

8− 1
(A.5)

Finally, by substituting eqs. A.2 and A.5 to eq. A.1, the following relation arises,

ID = 4L(k − 1) + 2L(j − 1) + (i− 1)− 6

7

(
8L − 1

)



Appendix B

Fast Cut-Cell Construction

The treatment of the Cartesian mesh intersection by the geometry’s surface is the

most challenging task of the mesh generation process. Section 2.4 presents a method

to accurately detect the fluid-solid interface and construct the corresponding cut-

cells discarding their solid part. However, such methods are pretty complicated,

and thus, are avoided by a significant number of researchers [57], [123], [110], [218].

Instead, simplified methods are preferred, which locally change the geometry’s shape

to facilitate the creation of cut-cells. This appendix proposes an approach in its 2D

version, which allows for straightforward software development with low memory

requirements.

Fig. B.1 shows a Cartesian cell in black, which is intersected by the solid blue

boundary. The resulting cut-cell, computed by the method suggested in section 2.4,

is gray shaded. According to a common simplification found in the literature, the

red line segment replaces the actual solid boundary. This line connects the two

intersection points, shown in the exact figure, and represents the only edge adjacent

to the wall, converting the cut-cell’s shape to a triangle. This modification allows

exclusively triangular, quadrilateral or pentagonal cut-cells to appear, significantly

simplifying the mesh data structure.

The proposed method handles all these shapes consistently by introducing a set of

four variables ϕi for each cut-cell, where i indicates the vertices of the intersected

quadrilateral. It is defined as the signed distance of each vertex from the newly

defined solid segment. This information determines the shape of the cut-cell and

is used to compute all geometrical data required by the flow solver. The method’s

312



313

implementation is straightforward and significantly reduces the memory usage by

storing just the ϕi variables and computing the rest geometric quantities on the fly

during the flow simulation. Moreover, it can upgrade other IBMs, like the ghost

cell method, that already use the Signed Distance Function (SDF) in their imple-

mentation. In particular, a better representation of the solid boundary can easily

be achieved by approximating the ϕi variables by the SDF and then applying the

proposed method to introduce the cut-cells effect to the flow solution, increasing its

accuracy.

Figure B.1: A squared Cartesian cell in black is intersected by the solid blue bound-

ary. The gray shaded area depicts the cut-cell resulting from the method followed in

this thesis and presented in section 2.4. The red segment represents the geometry’s

reformation after applying the simplification suggested in this Appendix.

Hereafter, the mathematical formulation of the developed method is presented.

Firstly, a local numbering of the cell’s vertices and edges is introduced in fig. B.2a.

The cell’s length at each dimension is ∆x and ∆y. Furthermore, ϕi is considered

positive for vertices located in the solid region of the mesh and negative for the rest.

In the example of fig. B.2b, the red line demonstrates the location of the fluid-solid

interface, and its distance from vertices v0 and v1 is ϕ0 =−|⃗b− v⃗0| and ϕ1 = |d⃗− v⃗1|,
respectively. Moreover, point a indicates its intersection with the square’s edge, and

n⃗s is the unit vector, normal to the solid edge.

Additionally, a new variable ri is introduced at each edge i, defined as the ratio

of the edge’s fluid part to its total length. It is computed by using the similarity



314 K. D. Samouchos

relation between triangles (v̂0ab) and (v̂0v1c), which reads

r0∆x

∆x
=
−ϕ0

ϕ1 − ϕ0

⇔ r0 =
|ϕ0|

|ϕ1|+ |ϕ0|

In an arbitrary edge defined by vertices vs and ve, ratio rse is computed as

rse =
|min{ϕs, 0}|+ |min{ϕe, 0}|

|ϕs|+ |ϕe|
(B.1)

Furthermore, the triangle (v̂0v1c) of fig. B.2b is used to compute the first component

of n⃗s as ns1 = cos(ω) = (ϕ1 − ϕ0)/∆x. Similarly, in an arbitrarily intersected cell, it

can be proved that

n⃗s =

(
ϕ1 − ϕ0

∆x
,
ϕ2 − ϕ0

∆y

)
(B.2)

(a) (b)

Figure B.2: (a) Local enumeration of the cell’s nodes and edges. (b) A Cartesian

cell is cut by the boundary of a solid body depicted by a straight red line. The

geometric construction in the cell’s bottom is used to compute the ratio ri of each

edge and the unit vector n⃗s.

The length ∆s of the solid edge is computed by using the relation∫
c

n⃗ds = 0⃗



315

where c is the cell’s boundary curve and n⃗ stands for the unit normal vector along

the curve. The relation gives two equivalent ways for its computation,

∆s =


|r2 − r1|
ϕ1 − ϕ0

∆A, |ϕ1 − ϕ0| > ϵ

|r3 − r0|
ϕ2 − ϕ0

∆A, |ϕ2 − ϕ0| > ϵ

(B.3)

where ∆A=∆x∆y and ϵ is a small user-defined number.

The cut-cell’s area is computed by firstly defining vector w⃗ as the centroid of the

quadrilateral of the background mesh. Its wall distance is

ϕs =
1

4

3∑
i=0

ϕi

Then, the cut-cell is divided into triangles defined by their common vertex w⃗ and

each of the cut-cell’s edges. The area As of the triangle whose base coincides with

the solid face is 0.5∆sϕs. For the rest triangles, the following relation holds,

Ai =
1

4
ri∆A, i = 1, · · · , 4

Their sum gives the total cut-cell area,

A =
1

4
∆A

3∑
i=0

ri −
1

8
∆s

3∑
i=0

ϕi (B.4)

Similarly, the area’s projection to each dimension is

Ax = max{r0, r3}∆x

Ay = max{r1, r2}∆y
(B.5)

The midpoint x⃗ e
i of each edge i is computed as the arithmetic mean of its boundary

vertices and is expressed w.r.t. a Cartesian coordinate system, the origin of which



316 K. D. Samouchos

is located at point ω⃗,
x⃗ e
0 = 1

2
(s0r0∆x , −∆y)

x⃗ e
1 = 1

2
( −∆x , s0r1∆y)

x⃗ e
2 = 1

2
( ∆x , s1r2∆y)

x⃗ e
3 = 1

2
(s2r3∆x , ∆y)

(B.6)

where si is the sign of ϕi. The midpoint coordinates of the solid edge are computed

by the formulas

A =

∫
c

(x, 0) · n⃗ds =

∫
c

(0, y) · n⃗ds

which indicate that

x e
s =


1

ns1∆s

(
A− r1 + r2

2
∆A

)
, |ns1| > ϵ

0, otherwise

y e
s =


1

ns2∆s

(
A− r0 + r3

2
∆A

)
, |ns2| > ϵ

0, otherwise

(B.7)

Finally, the aforementioned triangulation is used to compute the cut-cell’s centroid

x⃗ c, which equals the weighted average of the triangles’ centroids,

Ax⃗ c =
3∑

i=0

⃗̄xiAi + x⃗ sAs

where ⃗̄xi are the centroids of the triangles adjacent to the Cartesian edge i and x⃗ s

is the centroid of the triangle adjacent to the solid face. Therefore,

x⃗ c =
1

A

[
1

6
∆A

3∑
i=0

(rix⃗
e
i )− 1

3
∆sx⃗ e

s

3∑
i=0

ϕi

]
(B.8)

Consequently, the set of equations from B.1 to B.8 comprise a valuable tool to

compute all the necessary geometric variables of a cut-cell by only storing the four ϕi

variables. Moreover, they are valid for any cut-cell constructed under the discussed

simplification, avoiding the time-consuming process of testing each intersection case

separately.

However, these benefits come at the cost of an inaccurate boundary representation,

questioning the proper imposition of the no-penetration and/or no-slip flow condi-



317

tions. Indeed, the newly defined solid edge may not effectively reproduce the wall’s

impact on the flow, particularly close to high curvature boundaries. In this case,

local mesh refinement is required to assure the simulation’s accuracy. Therefore, the

method presented in section 2.4 should be used whenever higher priority is given

to the accuracy of the flow simulation than to the complexity of the developed

software.



Appendix C

Optimal Value of the Artificial

Compressibility Parameter

This Appendix presents the mathematical analysis which leads to the expression giv-

ing the optimal artificial compressibility parameter β in terms of numerical stability.

This parameter is a positive real number and is used in the artificial compressibility

approach for the incompressible flow equations discretization shown in section 3.5.

According to this method the steady inviscid incompressible PDEs are

∂Vi

∂τ
+

∂fik
∂xk

= 0, i = 1, · · · , 4, k = 1, · · · , 3

where

V⃗ =


p

v1
v2
v3

 , f⃗k =


β2vk

v1vk + δ1kp

v2vk + δ2kp

v3vk + δ3kp


For more details the reader is referred to sections 3.4 and 3.5. Jacobian matrices

over each direction are defined

Aijk =
∂fik
∂Vj

318



319

The Jacobian characterizing the 1D Riemann problem along the n⃗ direction is

Aknk =


0 β2n1 β2n2 β2n3

n1 v1n1 + vn v1n2 v1n3

n2 v2n1 v2n2 + vn v2n3

n3 v3n1 v3n2 v3n3 + vn


where vn = vknk. Its eigenvalues are un, un, un+c and un−c with c =

√
v2n + β2.

Three distinctive variables are defined

λ1 = un + c = un + |un|ξ
λ2 = un

λ3 = un − c = un − |un|ξ

with

ξ =

√
1 +

(
β

un

)2

where un is considered different from zero. Apparently, ξ > 1. The optimal β choice

is the one that minimizes the largest ratio of wave speeds. Thus, the function to be

minimized is

F = max

∣∣∣∣λi

λj

∣∣∣∣ =
max|λi|
min|λj|

Hence, the maximum and minimum absolute eigenvalues should be found for every

un. Three cases are considered depending on the normal velocity’s sign.

Case 1: un > 0

The three eigenvalues are λ1 =un(1+ ξ), λ2 =un and λ3 =un(1− ξ). Their minimum

and maximum absolute values should be found. It will be shown that |λ1| is greater

than |λ2| and |λ3|,

|λ1| > |λ2| ⇔ un(1 + ξ) > un ⇔ ξ > 0

which is true. Also,

|λ1| > |λ3| ⇔ un(1 + ξ) > −un(1− ξ)⇔ 1 > −1



320 K. D. Samouchos

Therefore, max|λi|=λ1. Subsequently, the relation between |λ2| and |λ3| is tested,

|λ2| > |λ3| ⇔ un > −un(1− ξ)⇔ ξ < 2

Hence,

min|λi| =

{
λ2 ξ ⩾ 2

−λ3 ξ < 2

Consequently, the function to be minimized is

F =

{
ξ + 1 ξ ⩾ 2
ξ+1
ξ−1

ξ < 2

F is continuous, decreasing for every ξ ∈ (1, 2] and increasing for every ξ ∈ (2,+∞].

Therefore, it achieves its minimum at ξ = 2. The corresponding optimal β value is

computed from ξ definition

√
1 +

(
β

un

)2

= 2⇔ β2 = 3u2
n (C.1)

Case 2: un < 0

The three eigenvalues are λ1 =un(1 − ξ), λ2 =un and λ3 =un(1 + ξ). By following

the same process as in the previous case, max|λi|=λ3 and

min|λi| =

{
λ2 ξ ⩾ 2

−λ1 ξ < 2

The function to be minimized is again

F =

{
ξ + 1 ξ ⩾ 2
ξ+1
ξ−1

ξ < 2

which achieves its minimum at ξ=2. Thus, the optimal β value is

β2 = 3u2
n (C.2)



321

Case 3: un = 0

In this case ξ is not defined and the three eigenvalues are

λ1 = un + c = β

λ2 = 0

λ3 = un − c = −β

Thus, max|λi| = λ1 and min|λi| = λ2 meaning that F is not defined. In or-

der to reduce the spread of wave speeds created from discontinuities, the pseudo-

compressibility parameter should be equal to a very small positive number, namely

β = ϵ (C.3)

Subsequently, by combining eqs. C.1, C.2 and C.3 one concludes that

β = max(
√

3|un|, ϵ) (C.4)

which is in agreement with eq. 3.32.



Appendix D

The Compressible and

Incompressible Jacobian Matrices

According to chapter 3, the Jacobian matrix, defined by eq. 3.6, plays an essential

role in discretizing the flow and adjoint equations. In particular, this matrix and its

diagonalized form accompanies Roe’s approximate Riemann solver and its adjoint

counterpart, implemented in this thesis. Therefore, this Appendix presents the

mathematical formulas for the compressible and incompressible Jacobian matrices,

as well as the matrices comprising the corresponding eigenvalues and eigenvectors.

Furthermore, the notation used below is explained in section 3.1.

Initially, the Jacobian matrix Ak at each Cartesian direction k is

A1 =


0 1 0 0 0

−u2 + γ̂|v⃗|2/2 (3− γ)u −γ̂v −γ̂w γ̂

−uv v u 0 0

−uw w 0 u 0

−u(γE − γ̂|v⃗|2) γE − γ̂(|v⃗|2/2 + u2) −γ̂vu −γ̂wu γu

 ,

A2 =


0 0 1 0 0

−vu v u 0 0

−v2 + γ̂|v⃗|2/2 −γ̂u (3− γ)v −γ̂w γ̂

−vw 0 w v 0

−v(γE − γ̂|v⃗|2) −γ̂uv γE − γ̂(|v⃗|2/2 + v2) −γ̂wv γv

 ,

322



323

A3 =


0 0 0 1 0

−wu w 0 u 0

−wv 0 w v 0

−w2 + γ̂|v⃗|2/2 −γ̂u −γ̂v (3− γ)w γ̂

−w(γE − γ̂|v⃗|2) −γ̂uw −γ̂vw γE − γ̂(|v⃗|2/2 + w2) γw


where v⃗=(u, v, w) is the velocity vector and γ̂=γ − 1.

Matrix An =Aknk stands for the Jacobian matrix along an arbitrary direction defined

by the unit normal vector n⃗. Its diagonalized form is An = PΛP−1 where

Λ =


vn
vn
vn

vn + c

vn − c

 ,

P =


n1 n2 n3 ĉ ĉ

un1 un2 − ρn3 un3 + ρn2 ĉu + ρ̂n1 ĉu− ρ̂n1

vn1 + ρn3 vn2 vn3 − ρn1 ĉv + ρ̂n2 ĉv − ρ̂n2

wn1 − ρn2 wn2 + ρn1 wn3 ĉw + ρ̂n3 ĉw − ρ̂n3

a1 a2 a3 ĉht + ρ̂vn ĉht − ρ̂vn

 ,

and

P−1 =


b1 ur2n1 vr2n1 + r1n3 wr2n1 − r1n2 −r2n1

b2 ur2n2 − r1n3 vr2n2 wr2n2 + r1n1 −r2n2

b3 ur2n3 + r1n3 vr2n3 − r1n1 wr2n3 −r2n3

r3|v⃗|2/2− r1vn r1n1 − ur3 r1n2 − vr3 r1n3 − wr3 r3
r3|v⃗|2/2 + r1vn −r1n1 − ur3 −r1n2 − vr3 −r1n3 − wr3 r3


Additionally, vn = v⃗ · n⃗, ρ̂=ρ/2, ĉ= ρ̂/c, r1 =1/ρ, r2 = γ̂/c2, r3 = γ̂/(ρc), and

a⃗ = |v⃗|2n⃗ + ρ (v⃗ × n⃗) ,

b⃗ =

(
1− γ − 1

2
M2

)
n⃗− 1

γ
(v⃗ × n⃗)

Similarly, the preconditioned Jacobian matrix AΓ
k for incompressible flows, defined



324 K. D. Samouchos

by eq. 3.29, is

AΓ
1 =


0 β2 0 0

1 2u 0 0

0 v u 0

0 w 0 u

 , AΓ
2 =


0 0 β2 0

0 v u 0

1 0 2v 0

0 0 w v

 , AΓ
3 =


0 0 0 β2

0 w 0 u

0 0 w v

1 0 0 2w


The diagonalization of AΓ

n =AΓ
knk implies AΓ

n =P ΓΛΓ
(
P Γ
)−1

, where

ΛΓ =
[
vn vn vn + c̃ vn − c̃

]T
,

P Γ =


0 0 c̃ −c̃
t11 t21 n1 + us1 n1 + us2
t12 t22 n2 + vs1 n2 + vs2
t13 t23 n3 + ws1 n3 + ws2

 ,

and

(
P Γ
)−1

=


(⃗t 2 × v⃗) · n⃗/c̃2 t̃11 t̃12 t̃13
(v⃗ × t⃗ 1) · n⃗/c̃2 t̃21 t̃22 t̃23
(c̃− vn)/(2c̃2) ñ1/2 ñ2/2 ñ3/2

−(c̃ + vn)/(2c̃2) ñ1/2 ñ2/2 ñ3/2


Vectors t⃗ 1 and t⃗ 2 are defined such that the set {t⃗ 1, t⃗ 2, n⃗} forms an orthonormal

basis of R3. Its orientation is dictated by the relation t⃗ 1 × t⃗ 2 = n⃗. Moreover, the

artificial sound speed c̃ is defined by eq. 3.33. Finally, the temporary variables used

in the above expressions are

s1 =
vn + c̃

β2
, s2 =

vn − c̃

β2

and

⃗̃n = λ2n⃗,

⃗̃t 1 = λ2t⃗ 1 +
vn
c̃2
(
t⃗ 2 × v⃗

)
,

⃗̃t 2 = λ2t⃗ 2 +
vn
c̃2
(
v⃗ × t⃗ 1

)
where λ=β/c̃.



Appendix E

Approximate Riemann Solver of

Roe

The purpose of this Appendix is to present the mathematical development leading to

the final expression of the Roe scheme, which is one of the best-known approximate

Riemann solvers used by the Godunov discretization method. The proof is partly

based on [306]. Riemann’s problem mathematical expression for the unsteady 3D

Euler equations is presented below. The equations are

∂Ui

∂t
+

∂fi
∂x

= 0 i = 1, · · · , N (E.1)

Ui(x, t = 0) =

{
UL
i x ⩽ 0

UR
i x > 0

where the system of N × N PDEs is conservative, hyperbolic and non-linear. U⃗ is

the vector of conservative variables and f⃗ is the flux. The Jacobian matrix A(U⃗) is

introduced as

Aij =
∂fi
∂Uj

and is used to rewrite the system of PDEs in a non-conservative form as

∂Ui

∂t
+

∂fi
∂x

= 0⇔ ∂Ui

∂t
+

∂fi
∂Uj

∂Uj

∂x
= 0⇔ ∂Ui

∂t
+ Aij

∂Uj

∂x
= 0

where repetitive indices imply summation. On the other hand, the summation

symbol will be used only in case the summation lower and upper limits should be

325



326 K. D. Samouchos

explicitly mentioned. Although the Riemann problem analytical solution is avail-

able, it is computationally costly. On the contrary, the Riemann problem solution of

a linear PDEs’ system is relatively simpler and numerically faster. Therefore, Roe’s

approach intends to exactly solve an approximate linear Riemann problem. It arises

by replacing Jacobian matrix A(U⃗) with the new constant matrix Ã(U⃗L, U⃗R),

∂Ûi

∂t
+ Ãij

∂Ûj

∂x
=0 i, j = 1, · · · , N (E.2)

Ûi(x, t = 0) =

{
UL
i x ⩽ 0

UR
i x > 0

where
⃗̂
U stands for the exact solution of the approximate Riemann problem. Ac-

cording to Roe’s approach, the new Jacobian matrix satisfies three requirements.

Firstly, the new system of equations should retain hyperbolicity, meaning that Ã

should have N real eigenvalues and a corresponding set of linearly independent right

eigenvectors, meaning that Ã is diagonalizable and, therefore, can be written as

Ã = P̃ Λ̃P̃−1

where Λ̃ = diag(λ̃1, · · · , λ̃N) with λi being the Jacobian’s eigenvalues, and columns

of P̃ are the right eigenvectors. Values in Λ̃ diagonal are positioned in ascending

order (λ̃i ⩽ λ̃i+1). Secondly, Ã should ensure consistency by requiring

Ã(U⃗L = U⃗ , U⃗R = U⃗) = A(U⃗)

Finally, the new PDEs should remain conservative across discontinuities, which is

expressed as

f⃗(U⃗R)− f⃗(U⃗L) = Ã(U⃗R − U⃗L)

This identity also ensures an exact wave recognition in case a single, isolated discon-

tinuity separates the left and right initial conditions. The construction of a matrix

that satisfies all three criteria is based on the definition of the Roe averaged variables
⃗̃U(U⃗L, U⃗R) according to which

Ã = A( ⃗̃U)

Their exact expressions are given by eq. 3.8.

Next step is the approximate Riemann problem solution. To do so, the characteristic



327

Riemann variables are introduced

W⃗ = P̃−1 ⃗̂U

Eq. E.2 becomes

∂Ûi

∂t
+ Ãij

∂Ûj

∂x
= 0⇔ ∂Ûi

∂t
+ P̃imΛ̃mnP̃

−1
nj

∂Ûj

∂x
= 0⇔

P̃−1
im

∂Ûm

∂t
+ Λ̃imP̃

−1
mj

∂Ûj

∂x
= 0⇔ ∂(P̃−1

im Ûm)

∂t
+ Λ̃im

∂(P̃−1
mj Ûj)

∂x
= 0⇔

∂Wi

∂t
+ Λ̃im

∂Wm

∂x
= 0

The previous procedure decouples the system of PDEs. By defining the character-

istic curves dx/dt= λ̃i in the space-time plane, the governing equations become

∂Wi

∂t
+ Λ̃im

∂Wm

∂x
= 0⇔ ∂Wi

∂t
+

∂Wi

∂x

dx

dt
= 0⇔ DWi (x(t), t)

Dt
= 0

which means that Wi remains constant along the ith characteristic curve. DWi/Dt

stands for the total derivative of Wi. Considering that λ̃i is constant, the curves are

the straight lines x= λ̃it+x0, which implies that W⃗i(x, t) is equal to W⃗i(x0, 0), where

x0 is the intersection point between the x-axis and the line with λ̃i slope passing

from (x, t). In other words

Wi(x, t) = Wi(x0) = Wi(x− λ̃it) =

{
WL

0i x0 ⩽ 0

WR
0i x0 > 0

where W⃗L
0 = P̃−1U⃗L and W⃗R

0 = P̃−1U⃗R. Finally, by using the invariants definition,

the approximate Riemann problem solution is

Wi(x, t) =
N∑

m=1

P̃−1
im Ûm(x, t)⇔ Ûi(x, t) =

N∑
m=1

P̃imWm(x, t)⇔

Ûi(x, t) =
m̂∑

m=1

P̃imWm(x− λ̃mt) +
N∑

m=m̂+1

P̃imWm(x− λ̃mt)⇔

Ûi(x, t) =
m̂∑

m=1

P̃imW
R
0m +

N∑
m=m̂+1

P̃imW
L
0m

where m̂ is the maximum value for which x− λ̃m̂t > 0. The last equation shows that



328 K. D. Samouchos

⃗̂
U(x, t) is affected only by m̂, which depends on the inequality x/t > λ̃ satisfaction.

Thus, U⃗ is a 1D function of x/t. Fig. E.1 represents the exact solution graphically.

Three lines represent the discontinuity propagation starting from the axis’ origin

and separating the space-time plane in regions of constant
⃗̂
U(x, t). Another set of

dashed gray lines represents the characteristic lines in which W⃗ is constant. Their

confluence specifies the value of
⃗̂
U(x, t) field.

Figure E.1: Structure of the Riemann problem solution of a linear hyperbolic system.

According to Godunov’s method the mean flux along x=0 line should be found, or

equivalently f⃗(U⃗(0)). Firstly, U⃗(0) is computed. According to the previous analysis

Ûi(0) =
m̂∑

m=1

P̃imW
R
0m +

N∑
m=m̂+1

P̃imW
L
0m (E.3)

where λm̂ < 0 and λm̂+1 > 0. Moreover, it’s true that

UL
i =

N∑
m=1

P̃imW
L
0m (E.4)

and

UR
i =

N∑
m=1

P̃imW
R
0m (E.5)

By subtracting eq. E.3 from eqs. E.4 and E.5 one gets

Ûi(0) = UL
i +

m̂∑
m=1

P̃im(WR
0m −WL

0m) (E.6)



329

and

Ûi(0) = UR
i −

N∑
m=m̂+1

P̃im(WR
0m −WL

0m) (E.7)

Subsequently, the f⃗ 0 = f⃗(U⃗(0)) computation follows. Firstly, the exact flow eqs. E.1

are integrated in the [SLT, 0]× [0, T ] control volume, where SL is the smallest wave

velocity, T is a chosen time window and SLT is the length the wave has traveled

within time T , fig. E.1,∫ T

0

∫ 0

SLT

∂Ui

∂t
dxdt +

∫ T

0

∫ 0

SLT

∂fi
∂x

dxdt = 0⇔∫ 0

SLT

(Ui(x, T )− Ui(x, 0)) dx +

∫ T

0

(
fi(0, t)− fi(S

LT, t)
)
dt = 0⇔∫ 0

SLT

Ui(x, T )dx + UL
i S

LT + f 0
i T − fL

i T = 0

where f⃗L = f⃗(U⃗L). Thus, the exact expression for the flux numerical computation

is obtained from

f 0
i = fL

i − UL
i S

L − 1

T

∫ 0

SLT

Ui(x, T )dx (E.8)

The unknown integral of eq. E.8 is approximated by the solution obtained by the

linearized Riemann problem of eq. E.2. By integrating the PDEs in the same control

volume one gets∫ T

0

∫ 0

SLT

∂Ûi

∂t
dxdt +

∫ T

0

∫ 0

SLT

Ãij
∂Ûj

∂x
dxdt = 0⇔∫ T

0

∫ 0

SLT

∂Ûi

∂t
dxdt +

∫ T

0

∫ 0

SLT

∂(ÃijÛj)

∂x
dxdt = 0⇔∫ 0

SLT

Ûi(x, T )dx + ÛL
i S

LT + ÃijÛj(0)T − ÃijU
L
j T = 0⇔∫ 0

SLT

Ûi(x, T )dx = ÃijU
L
j T − ÃijÛj(0)T − UL

i S
LT (E.9)

where Ûj(0) stands for the constant flow solution along the t-axis. Substitution of

eq. E.9 into eq. E.8 gives

f 0
i = fL

i + Ãij(Ûj(0)− UL
j )



330 K. D. Samouchos

and by using eq. E.6

f 0
i = fL

i +
N∑
j=1

[
Ãij

m̂∑
m=1

P̃jm(WR
0m −WL

0m)

]
⇔

f 0
i = fL

i +
m̂∑

m=1

P̃imλ̃m(WR
0m −WL

0m) (E.10)

Similarly, by integrating eqs. E.1 and E.2 in the [0, SRT ] × [0, T ] control volume,

where SR is the largest wave velocity, one gets

f 0
i = fR

i −
N∑

m=m̂+1

P̃imλ̃m(WR
0m −WL

0m) (E.11)

where f⃗R = f⃗(U⃗R). The eqs. E.10 and E.11 summation results in

2f 0
i = fL

i + fR
i +

m̂∑
m=1

P̃imλ̃m(WR
0m −WL

0m)−
N∑

m=m̂+1

P̃imλ̃m(WR
0m −WL

0m)⇔

f 0
i =

1

2
(fL

i + fR
i )− 1

2

N∑
m=1

P̃im|λ̃m|(WR
0m −WL

0m)

The last equation is valid because

λm =

{
−|λm|, m ⩽ m̂

|λm|, m > m̂

Substitution of W⃗L
0 and W⃗R

0 definition into the above equation gives

f 0
i =

1

2
(fL

i + fR
i )− 1

2

N∑
m=1

P̃im|λ̃m|P̃−1
mj (UR

j − UL
j )

The Roe scheme final expression is usually written as

f 0
i =

1

2
(fL

i + fR
i )− 1

2
|Ãij|(UR

j − UL
j )

where absolute Jacobian matrix is defined as |Ãij|=
N∑

m=1

P̃im|λ̃m|P̃−1
mj .



Appendix F

Approximate Riemann Solver of

Roe for Preconditioned

Conservative Laws

This appendix describes a prolongation of the approximate Riemann Solver of Roe

presented in Appendix E. It focuses on conservative, non-linear PDEs which require

a preconditioned method to alter their mathematical behavior and easily be handled

by the current discretization methods. Such PDEs are the incompressible equations

discussed in section 3.5. The general case of the following 1D preconditioned PDE

Γ−1
ij

∂Uj

∂t
+

∂fi
∂x

= 0

is investigated, where U⃗ and f⃗ are the conservative variables and flux vectors and

Γ stands for the preconditioning matrix. A set of variables W⃗ is defined such that

∂Wi

∂Uj

= Γ−1
ij

Therefore, the above PDE becomes

∂Wi

∂Uj

∂Uj

∂t
+

∂fi
∂x

= 0⇔ ∂Wi

∂t
+

∂fi
∂Wj

∂Wj

∂x
= 0⇔ ∂Wi

∂t
+ AΓ

ij

∂Wj

∂x
= 0

331



332 K. D. Samouchos

The final PDE is hyperbolic and AΓ is diagonalizable. The Jacobian and the pre-

conditioned Jacobian matrices are defined as

Aij =
∂fi
∂Uj

AΓ
ij =

∂fi
∂Wj

They are related through the preconditioning matrix,

AΓ
ij =

∂fi
∂Wj

=
∂fi
∂Um

∂Um

∂Wj

= AimΓmj (F.1)

The Roe approach accurately solves the Riemann problem for the approximate lin-

earized PDE
∂Wi

∂t
+ ÃΓ∂Wj

∂x
= 0

where ÃΓ is a constant matrix satisfying the Roe criteria. The initial values (W⃗L, W⃗R)

of the corresponding Riemann problem are chosen to satisfy the following condition

WR
i −WL

i = Γ̃−1
ij (UR

j − UL
j )

According to Appendix E, Roe’s scheme is

f 0
i =

1

2
(fL

i + fR
i )− 1

2
|ÃΓ

ij|(WR
j −WL

j )

which is rewritten as

f 0
i =

1

2
(fL

i + fR
i )− 1

2
|ÃimΓ̃mn|Γ̃−1

nj (UR
j − UL

j )

where eq. F.1 has been used. The preconditioned Jacobian eigenvectors (p⃗) and

eigenvalues (λp) satisfy the expression

(AΓ)p⃗ = λpp⃗

which is properly modified as

Γ(AΓ)p⃗ = λpΓp⃗⇔ (ΓA)(Γp⃗) = λp(Γp⃗)⇔ (ΓA)q⃗ = λpq⃗

Therefore, ΓA is diagonalizable having independent eigenvectors q⃗ = Γp⃗ and real

eigenvalues λq =λp.



333

The two matrices are expressed in diagonalizable form,

(AΓ) =PΛPP
−1

(ΓA) =QΛQQ
−1

where ΛP = ΛQ and Q = ΓP . Based on the previous analysis, matrices in Roe’s

scheme can be expressed as

|AΓ|Γ−1 = P |ΛP |P−1Γ−1 = Γ−1ΓP |ΛP |P−1Γ−1 =

Γ−1(ΓP )|ΛP |(ΓP )−1 = Γ−1Q|ΛQ|Q−1 = Γ−1|ΓA|

Hence, the Roe scheme is transformed to a more convenient form,

f 0
i =

1

2
(fL

i + fR
i )− 1

2
Γ̃−1
im|Γ̃mnÃnj|(UR

j − UL
j )

If the initial PDE is multiplied by Γ, it becomes

∂Ui

∂t
+ Γij

∂fj
∂x

= 0

The discretization scheme should also be multiplied by Γ. Therefore,

fΓ,0
i = Γf 0

i =
1

2
(fΓ,L

i + fΓ,R
i )− 1

2
|Γ̃imÃmj|(UR

j − UL
j ) (F.2)

where f⃗ Γ,L =Γf⃗ L and f⃗ Γ,R =Γf⃗ R. Last expression agrees with eq. 3.28 presented

in section 3.5.



Appendix G

Monotone and TVD schemes

relation

This Appendix is concerned with the study of monotone schemes and their relation to

the set of Total Variation Diminishing (TVD) schemes applied to the discretization

of a 1D, non-linear, scalar PDE. More specifically, it will be proved that monotone

schemes are a subclass of TVD schemes. The proof is mostly based on [121], [122].

The following single conservation law is considered

∂u

∂t
+

∂f(u)

∂x
= 0

which is discretized in the following way

vn+1
i = H

(
vni−k, v

n
i−k+1, · · · , vni , vni+1, · · · , vni+k

)
with k being a non-negative integer indicating the range of nodes the discretization

scheme takes into account. Variables vni stand for the numerical approximation of

u(x, t) field on node i and at time step n. The scheme H is said to be monotone if

∂H

∂vni
⩾ 0, ∀i

The above discretization scheme can be rewritten in the following conservative form

vn+1
i = un

i − c
[
h
(
vni−k+1, v

n
i−k+2, · · · , vni+k

)
− h

(
vni−k, v

n
i−k+1, · · · , vni+k−1

)]

334



335

where c = ∆t/∆x with ∆x and ∆t being the space and time discretization steps.

Functions H and h are related to 2k+1 and 2k variables, respectively. For con-

venience, these variables will be named as xi starting from i = 0. Therefore, the

conservative form is rewritten as

H(x0, x1, · · · , x2k) = xk − c [h(x1, x2, · · · , x2k)− h(x0, x1, · · · , x2k−1)]

Before continuing with the TVD schemes analysis and their relation with monotone

schemes, a useful identity of H is presented. Differentiation of the above equation

w.r.t. x0 results in
∂H

∂x0

= c
∂h

∂x0

Similarly, by differentiation w.r.t. x1 leads to

∂H

∂x1

= −c
[
∂h(x1, x2, · · · , x2k)

∂x1

− ∂h(x0, x1, · · · , x2k−1)

∂x1

]
The first term on the r.h.s. corresponds to the partial differentiation of h w.r.t. its

first variable and is, therefore, equivalent to ∂h/∂x0. Thus

∂H

∂x1

= −c
(

∂h

∂x0

− ∂h

∂x1

)
where both h functions on the r.h.s. are considered as h=h(x0, x1, · · · , x2k−1). By

repeating the same procedure for i = 2, · · · , 2k one gets

∂H
∂x0

= c ∂h
∂x0

∂H
∂x1

= −c ∂h
∂x0

+ c ∂h
∂x1

∂H
∂x2

= −c ∂h
∂x1

+ c ∂h
∂x2

...
∂H
∂xk

= 1− c ∂h
∂xk−1

+ c ∂h
∂xk

...
∂H

∂x2k−1
= −c ∂h

∂x2k−2
+ c ∂h

∂x2k−1

∂H
∂x2k

= −c ∂h
∂x2k−1

The summation of the above system of equations leads to the important identity

2k∑
i=0

∂H

∂xk

= 1 (G.1)



336 K. D. Samouchos

Subsequently, a study on the TVD schemes is presented. A scheme is called TVD

when the solution’s total variation is not increased in time. The total variation at

time step n is defined as

TV (vn) =
+∞∑

i=−∞

∣∣vni+1 − vni
∣∣

For the above summation to be infinite, one assumes that an integer I exists, such

that vni remains constant for every i ⩾ I. Discretization scheme H is said to be

TVD if

TV (vn+1) ⩽ TV (vn), ∀n

Thereafter, it will be proved that every monotone scheme is also a TVD scheme.

The proof initially assumes that H is monotone. Then, by using TV definition

TV (vn+1) =
∑
i

∣∣vn+1
i+1 − vn+1

i

∣∣ =
∑
i

∣∣H (vni+1−k, · · · , vni+1+k

)
−H

(
vni−k, · · · , vni+k

)∣∣
where the summation limits have been neglected. A new set of functions is defined

as

ξni+1(θ) = θvni+1 + (1− θ)vni

so as ξni+1(0)=un
i and ξni+1(1)=un

i+1. Therefore TV is rewritten as

TV (vn+1) =
∑
i

∣∣∣[H (ξni+1−k, · · · , ξni+1+k

)]1
0

∣∣∣ =

∑
i

∣∣∣∣∣
∫ 1

0

∂H
(
ξni+1−k, · · · , ξni+1+k

)
∂θ

dθ

∣∣∣∣∣ =

∑
i

∣∣∣∣∫ 1

0

(
∂H

∂ξni+1−k

∂ξni+1−k

∂θ
+ · · ·+ ∂H

∂ξni+1+k

∂ξni+1+k

∂θ

)
dθ

∣∣∣∣
Term ∂H

∂ξni+1−k
represents the partial derivative of H w.r.t. its first variable and for

simplicity, considering that H can be expressed as H(x0, · · · , x2k), it is represented



337

by ∂H
∂x0

. Moreover, considering that
∂ξni
∂θ

=vni −vni−1, TV becomes

TV (vn+1) =
∑
i

∣∣∣∣∫ 1

0

[
∂H

∂x0

(vni+1−k − vni+1−k−1) + · · ·+ ∂H

∂x2k

(vni+1+k − vni+1+k−1)

]
dθ

∣∣∣∣ =

∑
i

∣∣∣∣∣
∫ 1

0

2k∑
l=0

∂H

∂xl

(vni−k+l+1 − vni−k+l)dθ

∣∣∣∣∣ ⩽∑
i

2k∑
l=0

∫ 1

0

∣∣∣∣∂H∂xl

∣∣∣∣ ∣∣vni−k+l+1 − vni−k+l

∣∣ dθ
Since H is monotone, it is true that ∂H

∂xl
⩾ 0, which simplifies the above inequality.

Moreover, for the sake of clarity, a vertical bar is added on the left of H derivative,

which indicates the index of the function’s middle (kth) variable,

TV (vn+1) ⩽
∑
i

2k∑
l=0

∫ 1

0

∂H

∂xl

∣∣∣∣
i

∣∣vni−k+l+1 − vni−k+l

∣∣ dθ
Terms of the above double summation are rearranged by setting m= i−k+l,

TV (vn+1) ⩽
∑
m

2k∑
l=0

∫ 1

0

∂H

∂xl

∣∣∣∣
m+k−l

∣∣vnm+1 − vnm
∣∣ dθ =

∑
m

∣∣vnm+1 − vnm
∣∣ ∫ 1

0

2k∑
l=0

∂H

∂xl

∣∣∣∣
m+k−l

dθ

By using the already proved eq. G.1 the inequality becomes

TV (vn+1) ⩽
∑
m

∣∣vnm+1 − vnm
∣∣ ∫ 1

0

dθ =∑
m

∣∣vnm+1 − vnm
∣∣ = TV (vn)

Consequently, TV (vn+1) ⩽ TV (vn), which signifies that every monotone scheme is

also a TVD scheme.



Appendix H

The Barth-Jespersen Limiter

The MUSCL approach, used for the convection term discretization, allows for second-

order accurate simulations. However, according to Godunov’s theorem, high-order

methods produce spurious oscillations, especially across discontinuities. Therefore,

a slope limiter is used to suppress these oscillations while keeping second-order

accurate reconstruction in smooth regions of flow fields. The commonly used Barth-

Jespersen limiter modifies the piecewise linear distribution at each control volume

removing local extrema and ensuring stability. This Appendix aims to prove that

the value extrapolated from the cell center to one of its faces, computed by using

the Barth-Jespersen limiter, does not exceed the maximum or minimum neighboring

flow variables. The proof starts by considering that the extrapolation does not create

a new local extremum and concludes with the Barth-Jespersen limiter formulation.

The case of an arbitrary neighborhood of an unstructured 3D mesh is considered.

The cell in which the extrapolation takes place is called P , and Qn indicates its nth

neighbor. A second-order extrapolation is achieved as follows,

û = uP + ϕ
∂u

∂xi

∣∣∣∣
P

∆xi, i = 1, 3

where uP is any flow variable stored at the cell’s barycenter, û stands for the extrap-

olated value, and ∆x⃗i is the distance vector between the cell’s and face’s barycenters.

The limiter function is represented by ϕ, the codomain of which is strictly set [0, 1].

338



339

The extrapolated value computed without the limiter use is defined as

ũ = uP +
∂u

∂xi

∣∣∣∣
P

∆xi, i = 1, 3

By combining the û and ũ definitions, one concludes to the very useful relation

û = uP + ϕ
(
ũ− uP

)
The maximum and minimum flow variables in the neighborhood are

umin = min
(
uP , uQ1 , uQ2 , · · · , uQN

)
umax = max

(
uP , uQ1 , uQ2 , · · · , uQN

)

where N is the number of neighbors. As already explained, û should not exceed

umax and umin. Thus,

umin ⩽ û ⩽ umin ⇔ umin ⩽ uP + ϕ
(
ũ− uP

)
⩽ umax ⇔

umin − uP ⩽ ϕ
(
ũ− uP

)
⩽ umax − uP (H.1)

Three distinctive cases are considered below.

Case 1: ũ=uP

This case is possible only if ∂u
∂xi

∣∣∣
P

∆xi = 0 implying that û = uP . Therefore, the

limiter’s use is trivial and its value is defined as

ϕ=1 (H.2)

Case 2: ũ > uP

By dividing ineq. H.1 with
(
ũ− uP

)
one gets

umin − uP

ũ− uP
⩽ ϕ ⩽

umax − uP

ũ− uP
(H.3)



340 K. D. Samouchos

The first inequality is always satisfied because

umin ⩽ uP ⇔ umin − uP

ũ− uP
⩽ 0 ⩽ ϕ (H.4)

The last inequality of ineq. H.4 is true due to the requirement ϕ ∈ [0, 1]. The second

inequality in ineq. H.3 is satisfied by setting

ϕ = min(1,
umax − uP

ũ− uP
) (H.5)

which evidently satisfies the ϕ ⩽ 1 condition. Then, in case ϕ ̸= 1, requirement

ϕ ⩾ 0 is automatically satisfied because

umax ⩾ uP ⇔ umax − uP

ũ− uP
⩾ 0⇔ ϕ ⩾ 0

Case 3: ũ < uP

By dividing ineq. H.1 with
(
ũ− uP

)
, one gets

umin − uP

ũ− uP
⩾ ϕ ⩾

umax − uP

ũ− uP
(H.6)

The second inequality is always satisfied because

umax ⩾ uP ⇔ umax − uP

ũ− uP
⩽ 0 ⩽ ϕ

The first inequality in ineq. H.6 is satisfied by setting

ϕ = min(1,
umin − uP

ũ− uP
) (H.7)

which evidently satisfies the ϕ ⩽ 1 requirement. From the above definition, in case

ϕ ̸= 1, inequality ϕ ⩾ 0 is automatically satisfied because

umin ⩽ uP ⇔ umin − uP

ũ− uP
⩾ 0⇔ ϕ ⩾ 0

Consequently, definitions H.2, H.5 and H.7 presented in the three above cases are

combined in the following expression, which is equivalent to the Barth-Jespersen



341

limiter presented in eq. 3.10,

ϕ =


1, ũ = uP

min(1, umax−uP

ũ−uP ), ũ > uP

min(1, umin−uP

ũ−uP ), ũ < uP

(H.8)



Appendix I

Orthogonal Correction Expression

The purpose of this Appendix is to give more details on the mathematical formula-

tion of the orthogonal correction used for the computation of ∂Φ
∂xi

∣∣∣
f

for any variable

Φ. Fig. I.1 shows the general case of two cell centroids P and Q connected with a

blue line. The red line depicts the face separating the two cells. Vector n⃗ is perpen-

dicular to the face, t⃗ is parallel to the face and α⃗ is parallel to (PQ) line. All three

vectors are unitary. The method’s goal is to express the derivative on the face as a

function of the already known Φ and its derivatives in both P and Q.

Figure I.1: Finite volumes P and Q are separated by their common edge, shown as

a red line. Their centroids are connected with the blue line.

The gradient computation is based on its expression in the (α⃗, t⃗) coordinate system,

∂Φ

∂xi

∣∣∣∣
f

=
∂Φ

∂α

∣∣∣∣
f

αi +
∂Φ

∂t

∣∣∣∣
f

ti (I.1)

342



343

Its tangent component is computed by linear interpolation,

∂Φ

∂t

∣∣∣∣
f

ti =

[
∂Φ

∂t

∣∣∣∣
P

w +
∂Φ

∂t

∣∣∣∣
Q

(1− w)

]
ti

where w=(fQ)/(PQ). Segment (fQ) is the distance between the face centroid and

Q, while (PQ) is the distance between and P and Q. Similarly, it is true that

∂Φ

∂t

∣∣∣∣
P,Q

ti =
∂Φ

∂xi

∣∣∣∣
P,Q

− ∂Φ

∂α

∣∣∣∣
P,Q

αi

By combining the two above-mentioned equations one gets

∂Φ

∂t

∣∣∣∣
f

ti =

(
∂Φ

∂xi

∣∣∣∣
P

− ∂Φ

∂α

∣∣∣∣
P

αi

)
w +

(
∂Φ

∂xi

∣∣∣∣
Q

− ∂Φ

∂α

∣∣∣∣
Q

αi

)
(1− w)

By using the identity
∂Φ

∂α

∣∣∣∣
P,Q

=
∂Φ

∂xi

∣∣∣∣
P,Q

αi

and rearranging the terms, the tangential derivative becomes

∂Φ

∂t

∣∣∣∣
f

ti =
∂Φ

∂xi

− ∂Φ

∂xj

αjαi (I.2)

where
∂Φ

∂xi

=
∂Φ

∂xi

∣∣∣∣
P

w +
∂Φ

∂xi

∣∣∣∣
Q

(1− w) (I.3)

The gradient component parallel to (PQ) is approximated by central finite differ-

ences,
∂Φ

∂α

∣∣∣∣
f

=
ΦQ − ΦP

(PQ)
(I.4)

Substitution of eq. I.2 into eq. I.1 gives

∂Φ

∂xi

∣∣∣∣
f

=
∂Φ

∂xi

−

(
∂Φ

∂xj

αj −
∂Φ

∂α

∣∣∣∣
f

)
αi (I.5)

Consequently eq. I.5 expresses the gradient on the face as a function of already

computed quantities from eqs. I.3 and I.4.



Appendix J

Boundary Conditions

Differentiation

The adjoint boundary conditions for compressible and incompressible flows, given

in eqs. 6.13 6.27, require the computation of the Jacobian matrices ∂U⃗

∂Q⃗
and ∂V⃗

∂Q⃗
,

respectively. Their computation depends on the boundary conditions imposed on

the flow problem, which affects the Q⃗ choice. This appendix presents some Jacobian

matrices corresponding to inlet or outlet boundary conditions for both compressible

or incompressible flows.

For compressible inlet boundary conditions, where Q⃗ = (pt, Tt, |v⃗|, αpitch, αyaw), the

Jacobian matrix is expressed as

∂U⃗

∂Q⃗
=

∂U⃗

∂V⃗

∂V⃗

∂Q⃗

where

∂U⃗

∂V⃗
=


1 0 0 0 0

v1 ρ 0 0 0

v2 0 ρ 0 0

v3 0 0 ρ 0
1
2
|v⃗|2 ρv1 ρv2 ρv3

1
γ−1

 , (J.1)

344



345

∂V⃗

∂Q⃗
=


ρ/pt (r − 1)ρ/Tt 2rρ/|v⃗| 0 0

0 0 v1/|v⃗| v3cos(αyaw) −v2
0 0 v2/|v⃗| v3sin(αyaw) v1
0 0 v3/|v⃗| −|v⃗|sin(αpitch) 0

p/pt γrp/Tt 2γrp/|v⃗| 0 0


and

r =
1

γ − 1

(
Tt

T
− 1

)
The angles αpitch and αyaw are defined in section 3.1. According to the same section,

an alternative for Q⃗ in compressible flows is Q⃗=(s, v1, v2, v3, p). Then,

∂U⃗

∂Q⃗
=


− 1

γ
ρ
s

0 0 0 1
γ
ρ
p

− 1
γ
ρv1
s

ρ 0 0 1
γ
ρv1
p

− 1
γ
ρv2
s

0 ρ 0 1
γ
ρv2
p

− 1
γ
ρv3
s

0 0 ρ 1
γ
ρv3
p

− 1
2γ

ρ
s
|v⃗|2 ρv1 ρv2 ρv3

1
γ−1

+ 1
2γ

ρ
p
|v⃗|2


At the outlet, constant pressure is usually imposed, implying Q⃗= V⃗ , and therefore,
∂U⃗

∂Q⃗
= ∂U⃗

∂V⃗
which is given in eq. J.1.

On the other hand, in incompressible flows, Q⃗=(pt, |v⃗|, apitch, ayaw) at the inlet, and

the required Jacobian matrix is

∂V⃗

∂Q⃗
=


1 −|v⃗| 0 0

0 v1/|v⃗| v3cos(αyaw) −v2
0 v2/|v⃗| v3sin(αyaw) v1
0 v3/|v⃗| −|v⃗|sin(αpitch) 0


At the outlet Q⃗= V⃗ and the required Jacobian ∂V⃗

∂Q⃗
is the identity matrix.



Appendix K

The Continuous Adjoint Method

Implemented in Cases with

Recirculation at the Outlet

Optimization in problems concerning internal flows is extensively common in real-

life applications. Turbomachines, pumps, and heat exchangers are some examples

illustrating the great variety and importance of such cases. Their flow simulation can

be challenging enough, especially when recirculation appears at the outlet, harm-

ing the convergence of the governing equations. This phenomenon escalates during

the optimization process, where irregular geometries may appear. The correspond-

ing adjoint equations are also sensitive when recirculation occurs in the flow field,

especially when constant static pressure is imposed at the outlet. If eq. 6.13 is

also implemented as the adjoint outlet boundary condition, the adjoint problem

becomes ill-conditioned, and convergence is impossible. This section presents the

mathematical development which proves the previous statement for compressible

and incompressible flows.

Without loss of generality, the coordinate system is defined with the x1 axis per-

pendicular to the outlet boundary’s plane. The unit vector, normal to the plane, is

n⃗ = (1, 0, 0). In the case of recirculation, there is at least one point on the outlet

plane having zero normal velocity (e.g., v1 = 0). Subsequently, the compressible

adjoint boundary condition at that point is examined.

346



347

Firstly, the l.h.s. of the outlet adjoint condition

ΨiAijknk
∂Uj

∂Qh

=
∂FSk

∂Qh

nk

is expressed in a more convenient form by using the definition of eq. 3.6,

ΨiAijknk
∂Uj

∂Qh

= Ψi
∂fik
∂Uj

nk
∂Uj

∂Vl

∂Vl

∂Qh

= Ψi
∂fik
∂Vj

nk
∂Vj

∂Qh

= Ψi
∂fi1
∂Vj

∂Vj

∂Qh

The Jacobian matrix ∂fi1
∂Vj

for v1 =0 reads

∂f⃗1

∂V⃗
=


0 0 0 0 0

0 0 0 0 1

0 ρv2 0 0 0

0 ρv3 0 0 0

0 ρht 0 0 0


Then,

∂f⃗1

∂V⃗

∂V⃗

∂Q⃗
=


0 0 0 0 0

∂V5

∂Q1

∂V5

∂Q2

∂V5

∂Q3

∂V5

∂Q4

∂V5

∂Q5

ρv2
∂V2

∂Q1
ρv2

∂V2

∂Q2
ρv2

∂V2

∂Q3
ρv2

∂V2

∂Q4
ρv2

∂V2

∂Q5

ρv3
∂V2

∂Q1
ρv3

∂V2

∂Q2
ρv3

∂V2

∂Q3
ρv3

∂V2

∂Q4
ρv3

∂V2

∂Q5

ρht
∂V2

∂Q1
ρht

∂V2

∂Q2
ρht

∂V2

∂Q3
ρht

∂V2

∂Q4
ρht

∂V2

∂Q5


Vector Q⃗ represents any set of 5 independent flow variables. However, one of them

must be the imposed pressure at the outlet. Suppose Qk = p. As explained in

subsection 6.1.8, the kth equation of the above system is excluded. Moreover, in

the present special case, the first column of the systems’s l.h.s.
(

∂f⃗1
∂V⃗

∂V⃗

∂Q⃗

)T
is zero,

eliminating Ψ1. The rest variables can be computed by solving a 4× 4 system.

According to subsection 3.1, V5 =p. Therefore, ∂V5

∂Qi
is zero for i ̸= k. Consequently,

every segment of the second column of
(

∂f⃗1
∂V⃗

∂V⃗

∂Q⃗

)T
is zero except ∂V5

∂Qk
, which, however,

belongs to the deleted kth line. Therefore, Ψ2 is also eliminated and the 4×4 system

becomes

ρv2
∂V2

∂Qh

Ψ3 + ρv3
∂V2

∂Qh

Ψ4 + ρht
∂V2

∂Qh

Ψ5 =
∂FS1

∂Qh

, ∀ h ̸= k, h = 1, · · · , 5



348 K. D. Samouchos

In case there are two integers m,n ̸= k such that
∂FS1

∂Qm
̸= ∂FS1

∂Qn
, the system is in-

consistent, and the boundary conditions cannot be imposed. Otherwise, the system

downgrades to a simple equation with an infinite number of solutions. In both cases,

the adjoint problem is not well defined regardless of the objective’s expression or

the choice of Q⃗.

A similar mathematical development implemented in incompressible flows leads to

β2 ∂V2

∂Qh

Ψ1 + v2
∂V2

∂Qh

Ψ3 + v3
∂V2

∂Qh

Ψ4 =
∂FS1

∂Qh

, ∀ h ̸= k, h = 1, · · · , 4

proving that the adjoint problem is ill-conditioned also in incompressible cases. Con-

sequently, recirculation at the flow field’s exit must be always avoided (e.g., by

transferring the outlet boundaries away from the solid bodies) when the continuous

adjoint method is used in the optimization process.



Appendix L

The adjoint HLLC and FVS

schemes

The following sections introduce two different discretization schemes for the 1D

adjoint equations inspired by the HLLC [307] and FVS [291] schemes. They aim to

approximate the adjoint flux expression defined in eqs. 6.33 and 6.34. Moreover, the

final section compares the convergence of the four discretization schemes that appear

in this thesis. The mathematical development is based on relations and notations

defined in section 6.3.

L.1 The Adjoint HLLC Scheme

The HLLC scheme is studied in the specific case where N = 3. According to this

method, the (x, t) domain is split into four regions separated by the x = S(L,R,∗)t

lines, where SL and SR are estimated as

SL = −max{λL
1 , λ

L
2 , λ

L
3 }

SR = −min{λR
1 , λ

R
2 , λ

R
3 }

and λi are the eigenvalues of the Jacobian matrices AL and AR, respectively [76].

Alternatively, the eigenvalues of Ã can be used instead [76], [84]. Eigenvalue S∗ is

349



350 K. D. Samouchos

given by

S∗ =
ΦR

2 − ΦL
2

ΦR
1 − ΦL

1

where

ΦL
i = AL

ijU
L
j − SLUL

i

ΦR
i = AR

ijU
R
j − SRUR

i

It is always true that SL < S∗ < SR. Adjoint variables at each region are uniform

and equal to ΨL, ΨL0, ΨR0 and ΨR. An example of the (x, t) domain is shown in

fig. L.1. The f⃗ 0 flux discretization depends on the S∗ sign.

f⃗ 0 =

{
f⃗L0, S∗ > 0

f⃗R0, S∗ < 0

In case S∗ > 0, the unknown integral of eq. 6.33 is required which is∫ 0

SLT

Ψi(x, T )dx =

{
−ΨL

i S
LT, SL > 0

−ΨL0
i SLT, SL < 0

and the adjoint flux becomes

fL0
i =

{
−AL

jiΨ
L
j , SL > 0

−AL
jiΨ

L
j + SL

(
ΨL0

i −ΨL
i

)
, SL < 0

Three characteristic lines transfer the adjoint Riemann invariants (W⃗L or W⃗R) from

the field initialization at t=0 to points along the t-axis determining the vector Ψ⃗L0.

By following the same technique shown in subsection 6.3.1 for the diagonalization

of the system
∂Ψi

∂t
− AL

ji

∂Ψj

∂x
= 0

an expression similar to eq.6.40 can be obtained,

ΨL0
i = ΨL

i +
N∑

m=m̂+1

PL,−1
mi (WR

m −WL
m) = ΨL

i + PL,−1
3i (WR

3 −WL
3 )

Then, the flux becomes

fL0
i = −AL

jiΨ
L
j + SLPL,−1

3i (WR
3 −WL

3 )



L.1. The Adjoint HLLC Scheme 351

A similar procedure followed for S∗ < 0 leads to

fR0
i =

{
−AR

jiΨ
R
j − SRPR,−1

1i (WR
1 −WL

1 ), SR > 0

−AR
jiΨ

R
j , SR < 0

Consequently,

f 0
i =


−AL

jiΨ
L
j , S∗ > 0, SL > 0

−AL
jiΨ

L
j + SLPL,−1

3i (WR
3 −WL

3 ), S∗ > 0, SL < 0

−AR
jiΨ

R
j − SRPR,−1

1i (WR
1 −WL

1 ), S∗ < 0, SR > 0

−AR
jiΨ

R
j , S∗ < 0, SR < 0

(L.1)

where

WL
i = PL

jiΨ
L
j

WR
i = PR

jiΨ
R
j

Another alternative for the f⃗ 0 approximation could be the replacement of PL,−1

and PR,−1 with P̃−1. The developed adjoint HLLC scheme avoids the computation

of the absolute Jacobian, making it a much faster discretization method compared

to eq. 6.42.

Figure L.1: Three characteristics are intersected at point (0, t), affecting the field

Ψ⃗R0. The left-most characteristic, associated with the first eigenvalue, transfers the

invariant WL
1 and the other two transfer WR

2 and WR
3 .



352 K. D. Samouchos

L.2 The Adjoint FVS Scheme

The FVS formula for the adjoint flux can be derived in a straightforward manner

by following the procedure used for the flow equations and keeping in mind that the

adjoint eigenvalues are the same in magnitude, though opposite in sign with those

of the primal problem. However, a different process will be followed, highlighting

the close relation between FVS and the already developed adjoint HLLC scheme.

Eq. L.1 is used for its generation, simplified by computing all the associated flow

quantities as the mean average between the left (L) and right (R) states, marked

by an over-bar, and by setting S∗ =λ2. The λ̄+
i and λ̄−

i are introduced such that

λ̄+
i =

{
λ̄i, λ̄i ⩾ 0

0, λ̄i < 0
, λ̄−

i =

{
0, λ̄i > 0

λ̄i, λ̄i ⩽ 0

Additionally, two matrices are defined,

Ā+
ij =

3∑
m=1

P̄imλ̄
+
mP̄

−1
mj , Ā−

ij =
3∑

m=1

P̄imλ̄
−
mP̄

−1
mj

Apparently, λi =λ+
i +λ−

i and Āij = Ā+
ij + Ā−

ij. Subsequently, the four cases presented

in eq. L.1 will be re-expressed with the aid of the newly defined quantities. In the

first case, all adjoint eigenvalues are positive. Therefore, λ̄i = λ̄−
i ∀i, which induces

Ā+ =0 and Ā− = Ā, meaning that f 0
i =−Ā−

jiΨ
L
j −Ā+

jiΨ
R
j . In the second case, λ̄1,2 < 0

and λ̄3 > 0. Hence, λ̄+
1,2 =0, λ̄+

3 = λ̄3 and

f 0
i = −ĀjiΨ

L
j + SLP̄−1

3i (WR
3 −WL

3 ) = −ĀjiΨ
L
j − λ̄3P̄

−1
3i (P̄j3Ψ

R
j − P̄j3Ψ

L
j )

= −Ā+
jiΨ

L
j − Ā−

jiΨ
L
j −

3∑
m=1

P̄−1
mi λ̄

+
m(P̄jmΨR

j − P̄jmΨL
j )

= −Ā+
jiΨ

L
j − Ā−

jiΨ
L
j − Ā+

ji(Ψ
R
j −ΨL

j ) = −Ā−
jiΨ

L
j − Ā+

jiΨ
R
j

Thirdly, λ̄1 < 0 and λ̄2,3 > 0, inducing λ̄−
1 = λ̄1, λ̄

−
2,3 =0. Thus,

f 0
i = −ĀjiΨ

R
j − SRP̄−1

1i (WR
1 −WL

1 ) = −ĀjiΨ
R
j + λ̄1P̄

−1
1i (P̄j1Ψ

R
j − P̄j1Ψ

L
j )

= −Ā+
jiΨ

R
j − Ā−

jiΨ
R
j +

3∑
m=1

P̄−1
mi λ̄

−
m(P̄jmΨR

j − P̄jmΨL
j )

= −Ā+
jiΨ

R
j − Ā−

jiΨ
R
j + Ā−

ji(Ψ
R
j −ΨL

j ) = −Ā−
jiΨ

L
j − Ā+

jiΨ
R
j



L.3. Comparison of Adjoint Discretization Schemes 353

Lastly, when all adjoint eigenvalues are negative, λ̄i = λ̄+
i meaning that Ā+ = Ā and

Ā− =0. Then, the flux can be written as f 0
i =−Ā−

jiΨ
L
j − Ā+

jiΨ
R
j .

In all four cases, the final expression of f⃗ 0 is the same, ensuring that

f 0
i = −Ā−

jiΨ
L
j − Ā+

jiΨ
R
j (L.2)

in any case. Furthermore, considering that

Ā+
ij =

1

2

(
Āij + |Ā|ij

)
, Ā−

ij =
1

2

(
Āij − |Ā|ij

)
where |Ā|ij =

3∑
m=1

P̄im|λ̄m|P̄−1
mj , eq. L.2 becomes

f 0
i =

1

2
(−ĀjiΨ

L
j − ĀjiΨ

R
j )− 1

2

N∑
m=1

P̄−1
mi |λ̄m|P̄jm(ΨR

j −ΨL
j )

underlying the close correlation with eq. 6.42. Finally, another alternative for the

adjoint FVS scheme could come of by substituting Ā for Ã.

L.3 Comparison of Adjoint Discretization Schemes

The previously described discretization schemes and these studied in section 6.3 are

closely related. The convergence rate they provide is tested in a 1D optimization

problem governed by the steady compressible inviscid flow equations,

∂Ui

∂t
+

∂fi
∂x

+ Si = 0, i = 1, · · · , 3

where x ∈ [0, l], Si is a source term, which is non-zero only for the continuity

equation,

S1 = −10
[
bξ4 − 2(b + 1)ξ3 + (b + 3)ξ2

]
and

ξ =

{
2x/l, x ⩽ l/2

2(l − x)/l, x > l/2

Variable l is the domain’s length and b = 1 is the only design variable of the

optimization problem. Total pressure and temperature are defined at the inlet



354 K. D. Samouchos

(pt =1bar, Tt =300K) and static pressure at the outlet (p=0.98bar). The objective

function is set

F =
1

2

∫ l

0

(v − vt)
2dx

where v is the flow velocity, and vt is a constant user-defined velocity target set to

60 m/s. A mesh of 300 cells was used for the flow and adjoint PDEs discretiza-

tion. Fig. L.2 compares the convergence of the field adjoint equations for 4 different

discretization schemes. Although the corrected Roe scheme (ROEC) converges in a

subsequent pseudo-time iteration compared to the others due to a steep rise of the

residual at the beginning of the run, they show the same convergence rate.

Figure L.2: 1D Inviscid Adjoint Flow: Adjoint velocity convergence history. Com-

parison between 4 different adjoint discretization schemes. ROEC stands for the

corrected Roe scheme explained in subsection 6.3.2 and corresponds to the only

curve behaving differently than the others.



Appendix M

Memory Reduction by using the

SVD Method

The Singular Value Decomposition (SVD) [112], [113], [323] is used for the unsteady

flow field’s efficient compression, storage, and reconstruction to be available for the

adjoint solver during the backward in time integration of the unsteady adjoint PDEs.

The method is better explained by initially assuming that during the adjoint flow

simulation, the already computed flow field at each time step is stored, forming a

m× n matrix M , where m is the mesh size and n is the total number of time steps.

The SVD method is implemented to reduce the memory requirements by creating a

more efficiently stored matrix M ′ being also the closest approximation of M among

all matrices of the same rank. This process is divided into two steps.

Firstly, the SVD is applied to M , according to which each real m×n matrix can be

decomposed as

M = USV T

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices and their columns are

called the left and right singular vectors, respectively [32], [294]. Matrix S ∈ Rm×n

is of the following form

Sij =

{
σi i = j

0 i ̸= j

where σ1 ⩾ σ2 ⩾ · · · ⩾ σn are the singular values of M . Various algorithms

have been proposed for the SVD implementation. In this thesis, the Golub-Kahan

algorithm [112], [113] is preferred due to its efficiency and stability.

355



356 K. D. Samouchos

Secondly, S is transformed to the diagonal matrix S ′ by deleting all but its first k

rows forming matrix S ′. Similarly, the sizes of U and V are reduced to m × k and

n× k, respectively. Based on the so-truncated matrices U ′ ∈ Rm×k, S ′ ∈ Rk×k, and

V ′ ∈ Rn×k, M ′ becomes

M ′ = U ′S ′V ′T

Considering that in practical applications k ≪ n, the storage of the m × n matrix

M is avoided by storing U ′, S ′, V ′ instead, reducing the total memory size to k ×
(m + n + 1).

Although the aforementioned method can successfully reduce the required memory,

M should be available in the first place, and memory reduction is, in fact, unneces-

sary. Thus, an alternative way should be investigated to compute M ′ avoiding the

storage of M as a whole. This is possible by implementing the so-called incremental

SVD (iSVD) technique, which computes U ′, S ′, and V ′ by successive approximations

noted as Un, Sn, and V n, where n indicates the current time step. Their product is

denoted as Mn.

Subsequently, an initial approach to the iSVD is explained. Consider that the avail-

able memory capacity is m× (k+1). Once the first k instants of the state field are

stored in Mk, the SVD algorithm is applied, and Uk, Sk, and V k are computed. As

the flow solver proceeds in time, Un+1, Sn+1, and V n+1 are generated based on the

corresponding set of matrices computed at the nth time step. Specifically, at time

step n+1 a new solution (w) becomes available, and matrix Mn+1 is formed as

Mn+1 =

↑

Mn w⃗ m

↓
←k + 1→

where Mn is restored as UnSnV nT . Then, the size of Mn+1 is reduced to m× k by

applying the SVD algorithm and nullifying the last singular value giving rise to Un+1,

Sn+1, and V n+1. By repeating the same procedure at each time step, the required

memory remains constant and less than its upper limit. However, the computational

cost of such a method is very high due to the repeated implementation of the costly

SVD algorithm to the large matrix Mn+1. A much more efficient method [47], [48],

[25] is described below.



357

Each time the number of columns of Mn is increased by one, an extra column ( J⃗) is

added to Un. Matrix Sn is also extended by the column L⃗, and an extra element κ is

added to its diagonal. Matrix V n is enlarged by one column, and one row consisted

of zero elements except its diagonal, which is set to 1. The new temporary matrices

are

U∗ =

↑

Un J⃗ m

↓
←k + 1→

, S∗ =

Sn L⃗ ↑
k + 1

0 κ ↓
←k + 1→

, V ∗ =

V n 0⃗ ↑
k + 1

0⃗ 1 ↓
←k + 1→

The unknown elements are computed under the requirement Mn+1 = U∗S∗V ∗T ,

which implies

w⃗ = U∗S∗ [⃗0 | 1]T = U∗[L⃗ | κ]T = UnL⃗ + κJ⃗ (M.1)

Moreover, U∗ should be orthogonal, meaning that J⃗ is unitary and perpendicular

to any column of Un,

UnT J⃗ = 0⃗

Vector L⃗ is easily computed by multiplying eq. M.1 with Un and considering that

Un is orthogonal (UnTUn =I),

UnT w⃗ = (UnTU)L⃗ + κ(UnT J⃗)⇔ L⃗ = UnT w⃗ (M.2)

Then, vector J⃗ is computed from eq. M.1,

J⃗ =
1

κ

(
w⃗ − UnL⃗

)
(M.3)

The unknown number κ is computed by considering that ||J⃗ ||2 =1,

κ = ||w⃗ − UnL⃗||2 (M.4)

The computation of L⃗, J⃗ , and κ from eqs. M.2, M.3, and M.4 ensures that matrices

U∗ and V ∗ are orthogonal and Mn+1 =U∗S∗V ∗T . The last step is the transformation

of S∗ to a diagonal form by applying the SVD algorithm to this relatively small



358 K. D. Samouchos

matrix, S∗ =UsSsV
T
s . Finally,

Mn+1 = U∗UsSsV
T
s V ∗T = Un+1Sn+1V n+1T

where Un+1 = U∗Us and V n+1 = V ∗Vs are orthogonal as products of orthogonal

matrices and Sn+1 = Ss is diagonal containing the singular values of Mn+1. The

process is repeated during the flow equations’ time integration, and after the total

number of N time steps is completed, U ′, S ′, and V ′ are available as UN , SN , and

V N , respectively. During the solution of the adjoint PDEs, the flow field w⃗n at each

time step n is restored as

wn
i ≃

k∑
j=1

U ′
ijσ

′
jV

′
nj

where σ′
j are the singular values stored in the diagonal of S ′.



Appendix N

Memory Reduction by using the

PGD Method

The Proper Generalized Decomposition (PGD) [60], [9], [170] is able to support

the unsteady adjoint algorithm to overcome the storage of the entire unsteady flow

field, which becomes prohibitive in large-scale simulations. The first section presents

the mathematical development of the method and its incremental counterpart. The

second section gives information about the proper adaptation of the PGD to the

ghost-cell method and its implementation to the lift maximization of an isolated

airfoil. Subsequently, the effect of PGD on the sensitivity derivatives accuracy is

studied in section N.2.

N.1 The PGD and Incremental PGD Theory

The method’s main idea is to represent a multi-dimensional unsteady field as the

sum of 1D function products. For instance, an arbitrary unsteady 2D scalar field u

is written as

u(x, y, t) ≃
M∑
µ=1

ϕµ(x)θµ(y)τµ(t) (N.1)

Assuming that a small number of modes (M) represents the initial field accurately

enough, a noticeable gain in memory usage is expected since scalar modes ϕµ, θµ,

and τµ are stored instead of the entire u(x, y, t) field.

359



360 K. D. Samouchos

Consider that u(x, y, t) is discretized in a structured mesh as ui,j,k, where (i, j)

enumerate the nodes and k identifies the current time step. The corresponding 1D

functions are computed so as to minimize the reconstruction error, defined as

Em =
1

2

K∑
k=1

I∑
i=1

J∑
j=1

[
M∑
µ=1

ϕµ
i θ

µ
j τ

µ
k − ui,j,k

]2
(N.2)

Through its differentiation, the final equations for updating the mth modes emerge

ϕm
i =

J∑
j=1

K∑
k=1

ui,j,kθ
m
j t

m
k −

m−1∑
µ=1

ϕµ
i

(
J∑

j=1

K∑
k=1

θmj θ
µ
j τ

m
k τµk

)
J∑

j=1

K∑
k=1

(θmj )2(τmk )2

θmj =

I∑
i=1

K∑
k=1

ui,j,kϕ
m
i t

m
k −

m−1∑
µ=1

θµj

(
I∑

i=1

K∑
k=1

ϕm
i ϕ

µ
i τ

m
k τµk

)
I∑

i=1

K∑
k=1

(ϕm
i )2(τmk )2

(N.3)

τmk =

J∑
j=1

I∑
i=1

ui,j,kϕ
m
i θ

m
j −

m−1∑
µ=1

τµk

(
J∑

j=1

I∑
i=1

ϕm
i ϕ

µ
i θ

m
j θ

µ
j

)
J∑

j=1

I∑
i=1

(ϕm
i )2(θmj )2

However, eq. N.3 requires the whole field time series, which should have been stored

beforehand. A new method called incremental PGD (iPGD), firstly presented in

[236], overcomes this drawback by redefining the error function as

Em =
1

2

I∑
i=1

J∑
j=1

[
M∑
µ=1

ϕµ
i θ

µ
j τ

µ
K+1 − ui,j,K+1

]2

+
w

2

I∑
i=1

J∑
j=1

K∑
k=1

[
M∑
µ=1

(
ϕµ
i θ

µ
j τ

µ
k − ϕ̃µ

i θ̃
µ
j τ̃

µ
k

)]2
(N.4)

where the first term on the r.h.s. corresponds to the approximation error at the

current time step, whereas the second one to the overall error for all the previous

time steps, which have already been processed through the iPGD yielding modes

ϕ̃µ
i , θ̃µj , τ̃µk . The contribution to the error is weighted by w, which is user-defined. At

each time step, modes (ϕm
i , θmj , τmk ) are updated, and new values τmK+1 are appended.



N.1. The PGD and Incremental PGD Theory 361

The unknown quantities are calculated by setting the derivatives of Em against zero,

getting

ϕm
i = Qi

1x/Q
i
2x, i = 1, · · · , I

θmj = Qj
1y/Q

j
2y, j = 1, · · · , J

τmk = Qk
1t/Q

k
2t, k = 1, · · · , K

τmK+1 = QK+1
1T /QK+1

2t

(N.5)

where

Qi
1x = τmK+1

J∑
j=1

θmj ui,j,K+1 − τmK+1

m−1∑
µ=1

[(
J∑

j=1

(θµj θ
m
j )

)
ϕµ
i τ

µ
K+1

]

+ wϕ̃m
i

K∑
k=1

J∑
j=1

θ̃mj θ
m
j τ̃

m
k τmk − w

K∑
k=1

J∑
j=1

[
m−1∑
µ=1

(
ϕµ
i θ

µ
j τ

µ
k − ϕ̃µ

i θ̃
µ
j τ̃

µ
k

)
θmj τ

m
k

]

Qi
2x = (τmK+1)

2

J∑
j=1

(θmj )2 + w
K∑
k=1

J∑
j=1

(θmj )2(τmk )2

Qj
1y = τmK+1

I∑
i=1

ϕm
i ui,j,K+1 − τmK+1

m−1∑
µ=1

[(
I∑

i=1

(ϕµ
i ϕ

m
i )

)
θµj τ

µ
K+1

]

+ wθ̃mj

K∑
k=1

I∑
i=1

ϕ̃m
i ϕ

m
i τ̃

m
k τmk − w

K∑
k=1

I∑
i=1

[
m−1∑
µ=1

(
ϕµ
i θ

µ
j τ

µ
k − ϕ̃µ

i θ̃
µ
j τ̃

µ
k

)
ϕm
i τ

m
k

]

Qj
2y = (τmK+1)

2

I∑
i=1

(ϕm
i )2 + w

K∑
k=1

I∑
i=1

(ϕm
i )2 (τmk )2

Qk
1t = τ̃mk

J∑
j=1

I∑
i=1

ϕ̃m
i ϕ

m
i θ̃

m
j θ

m
j −

I∑
i=1

J∑
j=1

m−1∑
µ=1

(
ϕµ
i θ

µ
j τ

µ
k − ϕ̃µ

i θ̃
µ
j τ̃

µ
k

)
ϕm
i θ

m
j

Qk
2t =

I∑
i=1

J∑
j=1

(ϕm
i )2(θmj )2

QK+1
1T = τmK+1 =

I∑
i=1

J∑
j=1

ϕm
i θ

m
j ui,j,K+1 −

m−1∑
µ=1

[
τµK+1

I∑
i=1

J∑
j=1

ϕµ
i ϕ

m
i θ

m
j θ

µ
j

]

Eqs. N.5 are coupled and must be solved iteratively. At the first time step, the ϕ,



362 K. D. Samouchos

θ and τ functions are initialized by implementing the PGD algorithm to the 2D

spatial field u(x, y, t=0).

N.2 Implementation of the Incremental PGD Based

on the Ghost-Cell Method

Herein, the iPGD method supports the shape optimization of an isolated airfoil

parameterized by Bézier curves, where the design variables are their control points’

coordinates. Two applications will be demonstrated. Firstly, a stationary airfoil is

studied, in which unsteadiness is introduced by the time-varying far-field flow angle.

Secondly, the airfoil is pitching following a sinusoidal motion over constant far-field

conditions. The unsteady Euler equations are solved in both cases.

By definition, the PGD is applied only to structured meshes. The lack of structure

in the used Cartesian mesh due to refinement techniques is overcome through a

reference uniform mesh constituted by cells belonging to the higher refinement level

of the original mesh. Hence, at every time step, each cell of the reference mesh stores

the flow variables corresponding to the cell of the unstructured mesh they belong to

by using an efficient searching algorithm based on a quad-tree data structure. After

that, the iPGD algorithm is implemented to the reference mesh, as explained in

section N.1. The opposite process is followed for the flow field reconstruction during

the adjoint equations’ inverse time integration.

In the first application, the far-field flow conditions are M∞ =0.3 and a∞ =Asin(ωt)

with amplitude A = 3◦ and period T = 0.015s.The mesh used for the simulation

consists of 10500 cells and a constant time step equal to T/20 is used. The iPGD is

carried out by setting M =10 and w=1000.

Fig. N.1 shows the effect of the flow solution approximation through the iPGD

method on the accuracy of the sensitivity derivatives. Sensitivities computed by the

posteriori PGD compression, eq. N.3, are also shown, obtaining a good indication of

the best accuracy the iPGD could ideally attain. Furthermore, the deviation in the

derivatives due to the incremental algorithm between the iPGD and the reference

values computed by the full storage is negligible, demonstrating the capabilities of

the proposed incremental algorithm.



N.2. Implementation of the Incremental PGD Based on the Ghost-Cell Method 363

In the pitching airfoil case, the mesh is changing in time, and the average number

of cells is about 7000. The airfoil exposed to M∞ = 0.3 is oscillating around the

1/4 of the chord with the position angle following a sinusoidal function of amplitude

A = 3◦ and period equal to T = 0.015s. The impact of the compressed flow fields

on the sensitivity derivatives was examined by solving the adjoint equations twice

with full storage and the flow data retrieved by the iPGD algorithm. For the two

aforementioned cases, the sensitivity derivatives are computed and presented in

fig. N.2. Two extra curves for 20 and 30 modes are shown. As the number of

modes increases, the deviation in the computed derivatives diminishes. The saving

in memory using the proposed iPGD algorithm with M = 30 is around 21% of the

full storage, which needs an average of 140K values to be stored in memory.

Figure N.1: PGD Inviscid Flow Reconstruction around a Stationary Airfoil: Com-

parison of the sensitivity derivatives computed using full storage (blue), the a pos-

teriori PGD (red), and the iPGD (black) method.

Figure N.2: PGD Inviscid Flow Reconstruction around a Moving Airfoil: Compari-

son of the sensitivity derivatives computed using full storage and the flow solution

retrieved from the iPGD with M =10, 20, 30.



Appendix O

The Absolute Roe Jacobian

Derivative For Compressible Flows

The absolute Jacobian, defined in subsection 3.2.2, plays a central role in the Roe

scheme used to discretize the compressible flow equations. Its derivative w.r.t. the

primitive flow variables is necessary for the compressible discrete adjoint equations

and, specifically, for the computation of matrix Ad,C defined in eq. 7.10. The deriva-

tive consists of two parts examined separately. Firstly, the derivative of the absolute

Jacobian w.r.t. the Roe averages is presented, followed by the computation of the

Roe averages’ derivatives w.r.t. the primitive variables,

∑
k

|∂Ãimkn
F
k |

∂V C
j

=
∑
n

∑
k

|∂Ãimkn
F
k |

∂Ṽ F
n

∂Ṽ F
n

∂V C
j∑

k

|∂Ãimkn
F
k |

∂Ṽ F
j

=
∑
k

∂P̃ik

∂Ṽj
F
|λ̃k|P̃−1

km +
∑
k

P̃ik
∂|λ̃k|
∂Ṽj

F
P̃−1
km +

∑
k

P̃ik|λ̃k|
∂P̃−1

km

∂Ṽj
F

Therefore, the derivatives of the eigenvalues and eigenvectors of the absolute Jaco-

bian are required. They are expressed as

∂|⃗̃λ|
∂Ṽm

=


sign(ṽn) ∂ṽn/∂Ṽm

sign(ṽn) ∂ṽn/∂Ṽm

sign(ṽn) ∂ṽn/∂Ṽm

sign(ṽn + c̃)(nm + δm5)

sign(ṽn − c̃)(nm − δm5)



364



365

where

ṽn =
∑
k

ṽknk,

∂ṽn

∂Ṽm

=

{
0, m = 1, 5

nm−1, m = 2, 3, 4,

sign(x) =

{
1, x ⩾ 0

−1, x < 0,

and

∂P̃

∂Ṽm

=


0 0 0 αm αm

δm2n1 δm2n2 − δm1n3 δm2n3 + δm1n2 bm2 + 1
2
δm1n1 bm2 − 1

2
δm1n1

δm3n1 + δm1n3 δm3n2 δm3n3 − δm1n1 bm3 + 1
2
δm1n2 bm3 − 1

2
δm1n2

δm4n1 − δm1n2 δm3n2 + δm1n1 δm4n3 bm4 + 1
2
δm1n3 bm4 − 1

2
δm1n3

gm1 gm2 gm3 bm5 + dm bm5 − dm


where

αm =
1

2
c̃δm1 −

1

2

ρ̃

c̃2
δm5

bml = amṽl +
1

2

ρ̃

c̃
δml

dm =
1

2
δm1ṽn +

{
0, m = 1, 5
1
2
ρ̃nm−1, m = 2, 3, 4

g⃗m =


⃗̃v × n⃗, m = 1

ρq⃗ m−1 + ṽm−1n⃗, m = 2, 3, 4

0, m = 5

qji =
∑
k

ϵijknk

The derivative of P̃−1 is given by differentiating the P̃−1P̃ =I identity,

∂P̃−1
im

∂Ṽj

= −
∑
l

∑
n

P̃−1
il

∂P̃ln

∂Ṽj

P̃−1
nm



366 K. D. Samouchos

Finally, the derivatives of the Roe averages, eq. 3.8, w.r.t. the flow variables V⃗ P and

V⃗ Q are

∂Ṽ F
i

∂V P
j

=
∂Ṽi

∂Vj

(
V⃗ P , V⃗ Q

)
∂Ṽ F

i

∂V Q
j

=
∂Ṽi

∂Vj

(
V⃗ Q, V⃗ P

)
where

∂ ⃗̃V

∂V⃗

(
V⃗ L, V⃗ R

)
=



1
2

V R
1

Ṽ1
0 0 0 0

r1(V
L
2 − Ṽ2) r2 0 0 0

r1(V
L
3 − Ṽ3) 0 r2 0 0

r1(V
L
4 − Ṽ4) 0 0 r2 0

r3(
∂h̃
∂V L

1
− ∂|⃗̃v|2

∂V L
1

) r3(
∂h̃
∂V L

2
− r2Ṽ2) r3(

∂h̃
∂V L

3
− r2Ṽ3) r3(

∂h̃
∂V L

4
− r2Ṽ4) r3

∂h̃
∂V L

5


and

∂h̃

∂V L
i

=
∂h̃

∂Ṽi

r2 + (hL − hR)r1δi1

∂|⃗̃v|2

∂V L
1

= r1
∑
k

(V L
k+1 − Ṽk+1)Ṽk+1

where

r1 =
1

2
√

ρL
1√

ρL +
√

ρR

r2 =

√
ρL√

ρL +
√

ρR

r3 =
γ − 1

2c̃

The derivatives of enthalpy w.r.t. the primitive variables are

∂h̃

∂ ⃗̃V
=
[
− c̃2

ρ̃(γ−1)
ṽ1 ṽ2 ṽ3

c̃2

p̃(γ−1)

]



Appendix P

The Absolute Roe Jacobian

Derivative For Incompressible

Flows

The absolute Jacobian matrix is part of the Roe scheme, adjusted and used to

discretize the incompressible flow equations. The scheme’s formulation is shown

in eq. 3.28. Its differentiation w.r.t. the flow variables V⃗ , presented in eq. 3.26, is

necessary to compute the discrete adjoint flux, defined in eq. 7.26.

The differentiation process starts with implementing of a chain rule based on the

Jacobian matrix dependency on the Roe averages, followed by the differentiation of

eq. 3.30,

∑
k

|∂Ãimkn
F
k |

∂V C
j

=
∑
n

∑
k

|∂Ãimkn
F
k |

∂Ṽ F
n

∂Ṽ F
n

∂V C
j

=
1

2

∑
k

|∂Ãimkn
F
k |

∂Ṽ C
j

=
1

2

(∑
k

∂P̃ik

∂Ṽj
F
|λ̃k|P̃−1

km +
∑
k

P̃ik
∂|λ̃k|
∂Ṽj

F
P̃−1
km +

∑
k

P̃ik|λ̃k|
∂P̃−1

km

∂Ṽj
F

)

Subsequently, the derivatives of the absolute eigenvalues vector (|⃗̃λ|) and the matri-

ces comprising the right (P̃ ) and left (P̃−1) eigenvectors are presented,

∂|⃗̃λ|
∂p̃

= 0⃗,

367



368 K. D. Samouchos

∂|⃗̃λ|
∂ṽk

=


sign(ṽn)nk

sign(ṽn)nk

sign(ṽn + c̃)(nk + αk)

sign(ṽn − c̃)(nk − αk)


where

ṽn =
∑
k

ṽknk,

sign(x) =

{
1, x ⩾ 0

−1, x < 0,

and
∂P̃

∂p̃
= 0,

∂P̃

∂ṽk
=

1

β2


0 0 αkβ

2 −αkβ
2

0 0 δk1(ṽn + c̃) + ṽ1(nk + αk) δk1(ṽn − c̃) + ṽ1(nk − αk)

0 0 δk2(ṽn + c̃) + ṽ2(nk + αk) δk2(ṽn − c̃) + ṽ2(nk − αk)

0 0 δk3(ṽn + c̃) + ṽ3(nk + αk) δk3(ṽn − c̃) + ṽ3(nk − αk)


where ṽn =

∑
k

ṽknk. The dashed variables ⃗̃V are defined in eq. 3.31 and the dashed

speed of sound is

c̃ =
√

ṽ2n + β2

Moreover, vector α⃗ is defined as

αk =
∂c̃

∂ṽk
=

ṽnnk

c̃

After computing ∂P̃ /∂Ṽj, the derivative of P̃−1 is easily found by differentiating the

P̃−1P̃ =I identity,
∂P̃−1

im

∂Ṽj

= −
∑
l

∑
n

P̃−1
il

∂P̃ln

∂Ṽj

P̃−1
nm



369



Bibliography

[1] The EASY (Evolutionary Algorithms SYstem) software. http://velos0.

ltt.mech.ntua.gr/EASY.

[2] T. AbdelMigid, K. Saqr, M. Kotb, and A. Aboelfarag. Revisiting the Lid-

Driven Cavity Flow Problem: Review and New Steady State Benchmark-

ing Results Using GPU Accelerated Code. Alexandria Engineering Journal,

56(1):123–135, 2017.

[3] D. Abel and D. Mark. A Comparative Analysis of Some Two-Dimensional Or-

derings. International Journal of Geographical Information Systems, 4(1):21–

31, 1990.

[4] G. Adomavicius, M. Aftosmis, and M. Berger. A Parallel Cartesian Approach

for External Aerodynamics of Vehicles with Complex Geometry. In The tenth

Thermal and Fluids Analysis Workshop, Huntsville, AL, September 1999.

[5] M. Aftosmis, M. Berger, and G. Adomavicius. A Parallel Multilevel Method

for Adaptively Refined Cartesian Grids with Embedded Boundaries. In 38th

Aerospace Sciences Meeting and Exhibit, 2000.

[6] M. Aftosmis, M. Berger, and J. Melton. Robust and Efficient Cartesian Mesh

Generation for Component-Based Geometry. AIAA Journal, 36(6):952–960,

1998.

[7] M. Aftosmis, M. Berger, and S. Murman. Applications of Space-Filling-Curves

to Cartesian Methods for CFD. In 42nd AIAA Aerospace Sciences Meeting

and Exhibit, January 2004.

[8] C. Albone. Embedded Meshes of Controllable Quality Synthesised from Ele-

mentary Geometric Features. In 30th Aerospace Sciences Meeting and Exhibit,

1992.

370

http://velos0.ltt.mech.ntua.gr/EASY
http://velos0.ltt.mech.ntua.gr/EASY


Bibliography 371

[9] A. Ammar, F. Chinesta, E. Cueto, and M. Doblaré. Proper Generalized De-

composition of Time-Multiscale Models. International Journal for Numerical

Methods in Engineering, 90(5):569–596, 2012.

[10] J. Anagnostopoulos. Discretization of Transport Equations on 2D Cartesian

Unstructured Grids Using Data from Remote Cells for the Convection Terms.

International Journal of Numerical Methods in Fluids, 42:297–321, 2003.

[11] J. Anagnostopoulos. A Cartesian Grid Method for the Simulation of Flows in

Complex Geometries. October 2007.

[12] J. Anagnostopoulos. A Fast Numerical Method for Flow Analysis and Blade

Design in Centrifugal Pump Impellers. Computers & Fluids, 38(2):284–289,

2009.

[13] J. Anagnostopoulos and D. Mathioulakis. Numerical Simulation and Hydro-

dynamic Design Optimization of a Tesla-Type Valve for Micropumps. August

2005.

[14] J.D. Anderson. Fundamentals of Aerodynamics. International student edition.

McGraw-Hill, 1984.

[15] K. Anderson and J. Batina. Accurate Solutions, Parameter Studies and Com-

parisons for the Euler and Potential Flow Equations. AGARD, Validation of

Computational Fluid Dynamics. Volume 1: Symposium Papers and Round

Table Discussion, January 1989.

[16] K. Anderson and D. Bonhaus. Aerodynamic Design on Unstructured Grids

for Turbulent Flows. 1997.

[17] K. Anderson, J. Newman, D. Whitfield, and E. Nielsen. Sensitivity Analysis for

Navier-Stokes Equations on Unstructured Meshes Using Complex Variables.

AIAA Journal, 39, November 1999.

[18] W. Anderson and V. Venkatakrishnan. Aerodynamic Design Optimization on

Unstructured Grids with a Continuous Adjoint Formulation. Computers &

Fluids, 28(4):443–480, 1999.

[19] P. Angot. A Fictitious Domain Model for the Stokes/Brinkman Problem

with Jump Embedded Boundary Conditions. Comptes Rendus Mathematique,

348(11):697–702, 2010.



372 K. D. Samouchos

[20] P. Angot, C. Bruneau, and P. Fabrie. A Penalization Method to Take into

Acount Obstacles in Viscous Flows. Numerische Mathematik, 81:497–520,

February 1999.

[21] S. Asao, S. Ishihara, K. Matsuno, and M. Yamakawa. Progressive Development

of Moving-Grid Finite-Volume Method for Three-Dimensional Incompressible

Flows. pages 127–134, January 2010.

[22] M. Bader. Space-filling Curves. An Introduction With Applications in Scien-

tific Computing, volume 9. January 2013.

[23] T. Baker and P. Cavallo. Dynamic Adaptation for Deforming Tetrahedral

Meshes. In 14th Computational Fluid Dynamics Conference, 1999.

[24] E. Balaras. Modeling Complex Boundaries Using an External Force Field

on Fixed Cartesian Grids in Large-Eddy Simulations. Computers & Fluids,

33(3):375–404, 2004.

[25] L. Balzano and S. Wright. On GROUSE and incremental SVD. In 2013 5th

IEEE International Workshop on Computational Advances in Multi-Sensor

Adaptive Processing (CAMSAP), pages 1–4, 2013.

[26] T. Barth and D. Jespersen. The Design and Application of Upwind Schemes

on Unstructured Meshes. In 27th Aerospace Sciences Meeting, 1989.

[27] P. Barton, B. Obadia, and D. Drikakis. A Conservative Level-Set Based

Method for Compressible Solid/Fluid Problems on Fixed Grids. Journal of

Computational Physics, 230(21):7867–7890, 2011.

[28] O. Baysal and M. Eleshaky. Aerodynamic Sensitivity Analysis Methods for

the Compressible Euler Equations. Journal of Fluids Engineering-transactions

of The Asme, 113:681–688, 1991.

[29] S. Bayyuk, K. Powell, and B. van Leer. A Simulation Technique for 2-D

Unsteady Inviscid Flows Around Arbitrarily Moving and Deforming Bodies of

Arbitrary Geometry. July 1993.

[30] J. Behrens and J. Zimmermann. Parallelizing an Unstructured Grid Generator

with a Space-Filling Curve Approach. pages 815–823, August 2000.



Bibliography 373

[31] I. Bell. Theoretical and Experimental Analysis of Liquid Flooded Compres-

sion in Scroll Compressors. PhD thesis, Purdue University, West Lafayette,

Indiana, 2011.

[32] E. Beltrami. Sulle Funzioni Bilineari. Giornale di Matematiche ad Uso degli

Studenti Delle Università Italiane, 11:98–106, 1873. English translation by D.

Boley, 1990.

[33] J. Benek, J. Steger, and F. Dougherty. A Chimera Grid Scheme. page 59–69,

1983.

[34] J. Benk, H. Bungartz, M. Mehl, and M. Ulbrich. Immersed Boundary Methods

for Fluid-Structure Interaction and Shape Optimization within an FEM-Based

PDE Toolbox, volume 93, pages 25–56. January 2013.

[35] W. Bennett, N. Nikiforakis, and R. Klein. A Moving Boundary Flux Sta-

bilization Method for Cartesian Cut-Cell Grids Using Directional Operator

Splitting. Journal of Computational Physics, 368, November 2017.

[36] M. Berger and M. Aftosmis. Progress Towards a Cartesian Cut-Cell Method

for Viscous Compressible Flow. In 50th AIAA Aerospace Sciences Meeting

including the New Horizons Forum and Aerospace Exposition, 2012.

[37] M. Berger and M. Aftosmis. An ODE-Based Wall Model for Turbulent Flow

Simulations. AIAA Journal, 56(2):700–714, 2018.

[38] M. Berger, M. Aftosmis, and S. Murman. Analysis of Slope Limiters on Ir-

regular Grids. 43rd AIAA Aerospace Sciences Meeting and Exhibit - Meeting

Papers, February 2005.

[39] M. Berger and P. Colella. Local Adaptive Mesh Refinement for Shock Hydro-

dynamics. Journal of Computational Physics, 82(1):64–84, 1989.

[40] M. Berger, C. Helzel, and R. Leveque. H-Box Methods for the Approxima-

tion of Hyperbolic Conservation Laws on Irregular Grids. SIAM Journal on

Numerical Analysis, 41(3):893–918, 2003.

[41] M. Berger and J. Oliger. Adaptive Mesh Refinement for Hyperbolic Par-

tial Differential Equations. Journal of Computational Physics, 53(3):484–512,

1984.



374 K. D. Samouchos

[42] A. Bernland, E. Wadbro, and M. Berggren. Acoustic Shape Optimization

Using Cut Finite Elements. International Journal for Numerical Methods in

Engineering, 113(3):432–449, 2018.

[43] P. Berthelsen and O. Faltinsen. A Local Directional Ghost Cell Approach for

Incompressible Viscous Flow Problems with Irregular Boundaries. Journal of

Computational Physics, 227(9):4354–4397, 2008.

[44] R. Beyer and R. Leveque. Analysis of a One-Dimensional Model for the Im-

mersed Boundary Method. SIAM J. Numer. Anal., 29(2):332–364, April 1992.

[45] D. Böhm, S. Berchtold, and D. Keim. Searching in High-Dimensional Spaces:

Index Structures for Improving the Performance of Multimedia Databases.

ACM Computing Surveys, 33(3):322–373, 2001.

[46] K. Boopathy and M. Rumpfkeil. A Multivariate Interpolation and Regression

Enhanced Kriging Surrogate Model. June 2013.

[47] M. Brand. Incremental Singular Value Decomposition Of Uncertain Data With

Missing Values. In Computer Vision – ECCV 2002, pages 707–720. Springer

Berlin Heidelberg, 2002.

[48] M. Brand. Fast Low-Rank Modifications of the Thin Singular Value Decompo-

sition. Linear Algebra and its Applications, 415(1):20–30, 2006. Special Issue

on Large Scale Linear and Nonlinear Eigenvalue Problems.

[49] A. F. Browne and A. B. Paustian. Noise Analysis Methodology for a Dual-

Diaphragm Medical Device Air Pump. In SoutheastCon 2016, pages 1–7, 2016.

[50] A. Butz. Space Filling Curves and Mathematical Programming. Information

and Control, 12(4):314–330, 1968.

[51] F. Capizzano. Automatic Generation of Locally Refined Cartesian Meshes:

Data Management and Algorithms. International Journal for Numerical Meth-

ods in Engineering, 113, August 2017.

[52] J. Caridad and F. Kenyery. CFD Analysis of Electric Submersible

Pumps (ESP) Handling Two-Phase Mixtures. Journal of Energy Resources

Technology-transactions of The Asme - J. Energy Resour. Technol, 126, 06

2004.



Bibliography 375

[53] D. Causon, D. Ingram, and C. Mingham. A Cartesian Cut Cell Method for

Shallow Water Flows with Moving Boundaries. Advances in Water Resources,

24(8):899–911, 2001.

[54] D. Cecere and E. Giacomazzi. An Immersed Volume Method for Large Eddy

Simulation of Compressible Flows Using a Staggered-Grid Approach. Com-

puter Methods in Applied Mechanics and Engineering, 280:1–27, 2014.

[55] E. Charlton and K. Powell. An Octree Solution to Conservation Laws over

Arbitrary Regions (OSCAR). In 35th Aerospace Sciences Meeting and Exhibit,

1997.

[56] Z. Chen, S. Hickel, A. Devesa, J. Berland, and N. Adams. Wall Modeling for

Implicit Large-Eddy Simulation and Immersed-Interface Methods. Theoretical

and Computational Fluid Dynamics, 28, March 2013.

[57] Y. Cheny and O. Botella. The LS-STAG method: A New Immersed

Boundary/Level-Set Method for the Computation of Incompressible Viscous

Flows in Complex Moving Geometries with Good Conservation Properties.

Journal of Computational Physics, 229(4):1043–1076, 2010.

[58] C. Chevalier and F. Pellegrini. PT-Scotch: A Tool for Efficient Parallel Graph

Ordering. Parallel Computing, 34(6):318–331, 2008.

[59] Y. Chiang, B. van Leer, and K. Powell. Simulation of Unsteady Inviscid Flow

on an Adaptively Refined Cartesian Grid. In 30th AIAA Aerospace Sciences

Meeting and Exhibit, January 1992.

[60] F. Chinesta, R. Keunings, and A. Leygue. The Proper Generalized Decompo-

sition for Advanced Numerical Simulations, A Primer. Springer International

Publishing, Nantes, France, 2014.

[61] Y. Cho and A. Aessopos. Similarity Transformation Methods in the Analy-

sis of the Two Dimensional Steady Compressible Laminar Boundary Layer.

Term Paper, 2.26 Compressible Fluid Dynamics, Massachusetts Institute of

Technology, Spring 2004.

[62] J. Choi, R. Oberoi, J. Edwards, and J. Rosati. An Immersed Boundary

Method for Complex Incompressible Flows. Journal of Computational Physics,

224(2):757–784, 2007.



376 K. D. Samouchos

[63] A. Chorin. A Numerical Method for Solving Incompressible Viscous Flow

Problems. Journal of Computational Physics, 2(1):12–26, 1967.

[64] H. Chun-Wei and H. Song-Bin. A Microfluidic Device for Precise Pipetting.

Journal of Micromechanics and Microengineering, 18:035004, 01 2008.

[65] D. Clarke, M. Salas, and H. Hassan. Euler Calculations for Multielement

Airfoils Using Cartesian Grids. AIAA Journal, 24(3):353–358, 1986.

[66] S. Cliff, S. Thomas, T. Baker, A. Jameson, and R. Hicks. Aerodynamic Shape

Optimization Using Unstructured Grid Methods. In 9th AIAA/ISSMO Sym-

posium on Multidisciplinary Analysis and Optimization, 2002.

[67] W. Coirier. An Adaptively-Refined, Cartesian, Cell-Based Scheme for the

Euler and Navier-Stokes Equations. Ph.D. Thesis - Michigan Univ. 1994.

[68] W. Coirier and K. Powell. An Accuracy Assessment of Cartesian-Mesh

Approaches for the Euler Equations. Journal of Computational Physics,

117(1):121–131, 1995.

[69] W. Coirier and K. Powell. Solution-Adaptive Cartesian Cell Approach for

Viscous and Inviscid Flows. AIAA Journal, 34(5):938–945, 1996.

[70] P. Colella, D. Graves, B. Keen, and D. Modiano. A Cartesian Grid Embedded

Boundary Method for Hyperbolic Conservation Laws. Journal of Computa-

tional Physics, 211(1):347–366, 2006.

[71] F. Courty, A. Dervieux, B. Koobus, and L. Hascoët. Reverse Automatic Dif-

ferentiation for Optimum Design: From Adjoint State Assembly to Gradient

Computation. Optimization Methods and Software, 18:615–627, Octover 2003.

[72] L. Creux. Rotary Engine, U.S. Patent 801,182, October 1905.

[73] A. Dadone and B. Grossman. Efficient Fluid Dynamic Design Optimization

Using Cartesian Grids. In 16th AIAA Computational Fluid Dynamics Con-

ference, 2003.

[74] A. Dadone and B. Grossman. Ghost-Cell Method for Inviscid Two-

Dimensional Flows on Cartesian Grids. AIAA Journal, 42(12):2499–2507,

2004.

[75] P.-E. Danielsson. Euclidean Distance Mapping. Computer Graphics and Image

Processing, 14(3):227–248, 1980.



Bibliography 377

[76] S. Davis. Simplified Second-Order Godunov-Type Methods. SIAM Journal

on Scientific and Statistical Computing, 9(3):445–473, 1988.

[77] M. Delanaye, M. Aftosmis, M. Berger, Y. Liu, and T. Pulliman. Automatic

Hybrid-Cartesian Grid Generation for High-Reynolds Number Flows around

Complex Geometries. In 37th Aerospace Sciences Meeting and Exhibit, 1999.

[78] I. Demirdzic. On the Discretization of the Diffusion Term in Finite-Volume

Continuum Mechanics. Numerical Heat Transfer Part B: Fundamentals, 68,

July 2015.

[79] J. Dèsidèri and A. Janka. Hierarchical Parametrization for Multilevel Evolu-

tionary Shape Optimization with Application to Aerodynamics. 2003.

[80] O. Desjardins, J. McCaslin, M. Owkes, and P. Brady. Direct Numerical and

Large-Eddy Simulation of Primary Atomization in Complex Geometries. At-

omization and Sprays, 23:1001–1048, January 2013.

[81] P. Dhananchezhiyan and S. Hiremath. Optimization of Multiple Micro Pumps

to Maximize the Flow Rate and Minimize the Flow Pulsation. Procedia

Technology, 1st Global Colloquium on Recent Advancements and Effectual Re-

searches in Engineering, Science and Technology - RAEREST, 25:1226–1233,

April 2016.

[82] S. Dilgen, J. Jensen, and N. Aage. Shape Optimization of the Time-Harmonic

Response of Vibroacoustic Devices Using Cut Elements. Finite Elements in

Analysis and Design, 196, 2021.

[83] E. Duque, R. Biswas, and R. Strawn. A Solution Adaptive Struc-

tured/Unstructured Overset Grid Flow Solver with Applications to Helicopter

Rotor Flows. In 13th Applied Aerodynamics Conference, August 2012.

[84] B. Einfeldt. On Godunov-Type Methods for Gas Dynamics. Siam Journal on

Numerical Analysis - SIAM J NUMER ANAL, 25:294–318, April 1988.

[85] M. Eldred and J. Burkardt. Comparison of Non-Intrusive Polynomial Chaos

and Stochastic Collocation Methods for Uncertainty Quantification. 47th

AIAA Aerospace Sciences Meeting including the New Horizons Forum and

Aerospace Exposition, January 2009.

[86] J. Elliott and J. Peraire. Aerodynamic Design Using Unstructured Meshes.

1996.



378 K. D. Samouchos

[87] D. Elsworth and E. Toro. Riemann Solvers for Solving the Incompressible

Navier-Stokes Equations Using the Artificial Compressibility Method. NASA

STI/Recon Technical Report N, pages 25778–, June 1992.

[88] E. Fadiga, N. Casari, A. Suman, and M. Pinelli. Structured Mesh Generation

and Numerical Analysis of a Scroll Expander in an Open-Source Environment.

Energies, 13:666, 02 2020.

[89] E. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof. Combined Immersed-

Boundary Finite-Difference Methods for Three-Dimensional Complex Flow

Simulations. Journal of Computational Physics, 161(1):35–60, 2000.

[90] R. Fedkiw. Coupling an Eulerian Fluid Calculation to a Lagrangian Solid

Calculation with the Ghost Fluid Method. Journal of Computational Physics,

175(1):200–224, 2002.

[91] R. Fedkiw, T. Aslam, B. Merriman, and S. Osher. A Non-Oscillatory Eulerian

Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method).

Journal of Computational Physics, 152(2):457–492, 1999.

[92] R. Fedkiw, T. Aslam, B. Merriman, and S. Osher. A Non-oscillatory Eulerian

Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method).

Journal of Computational Physics, 152(2):457–492, 1999.

[93] J. Ferziger and M. Peric. Computational Methods for Fluid Dynamics. New

York:Springer-Verlag, 1996.

[94] U. Fey, M. König, and H. Eckelmann. A New Strouhal–Reynolds-Number

Relationship for the Circular Cylinder in the Range 47<Re<2×105. Physics

of Fluids, 10(7):1547–1549, 1998.

[95] R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, Ltd,

2000.

[96] R. Fletcher and C. M. Reeves. Function Minimization by Conjugate Gradients.

The Computer Journal, 7(2):149–154, January 1964.

[97] North Atlantic Treaty Organization. Advisory Group for Aerospace Research

and Development. Fluid Dynamics Panel. Working Group 07. Test Cases for

Inviscid Flow Field Methods: Report of Fluid Dynamics Panel Working Group

07. AGARD advisory report. AGARD, 1985.



Bibliography 379

[98] N. Foster and G. Dulikravich. Three-Dimensional Aerodynamic Shape Opti-

mization Using Genetic and Gradient Search Algorithms. Journal of Spacecraft

and Rockets - J SPACECRAFT ROCKET, 34:36–42, January 1997.

[99] R. Gaffney, H. Hassan, and M. Salas. Euler Calculations for Wings Using

Cartesian Grids. AIAA Paper 87-0356, 1987.

[100] T. Gao, Y. Tseng, and X. Lu. An Improved Hybrid Cartesian/Immersed

Boundary Method for Fluid–Solid Flows. International Journal for Numerical

Methods in Fluids, 55(12):1189–1211, 2007.

[101] U. Ghia, K.N. Ghia, and C.T. Shin. High-Re Solutions for Incompressible

Flow Using the Navier-Stokes Equations and a Multigrid Method. Journal of

Computational Physics, 48(3):387–411, 1982.

[102] F. Gibou, R. Fedkiw, L. Cheng, and M. Kang. A Second-Order-Accurate Sym-

metric Discretization of the Poisson Equation on Irregular Domains. Journal

of Computational Physics, 176(1):205–227, 2002.

[103] M. Giles, M. Duta, J. Muller, and N. Pierce. Algorithm Developments for

Discrete Adjoint Methods. AIAA Journal, 41(2):198–205, 2003.

[104] M. Giles and N. Pierce. An Introduction to the Adjoint Approach to Design.

Flow, Turbulence and Combustion, 65, April 2000.

[105] A. Gilmanov, F. Sotiropoulos, and E. Balaras. A General Reconstruction

Algorithm for Simulating Flows with Complex 3D Immersed Boundaries on

Cartesian Grids. Journal of Computational Physics, 191(2):660–669, 2003.

[106] P. Glaister. An Approximate Linearised Riemann Solver for the Euler Equa-

tions for Real Gases. Journal of Computational Physics, 74(2):382–408, 1988.

[107] R. Glowinski, T.W. Pan, and J. Periaux. A Fictitious Domain Method for

Dirichlet Problem and Applications. Computer Methods in Applied Mechanics

and Engineering, 111(3):283–303, 1994.

[108] S. Godunov. A difference Scheme for Numerical Solution of Discontinuous

Solution of Hydrodynamic Equations. Math. Sbornik, 47:271–306, 1959.

[109] S. Godunov and I. Bohachevsky. Finite Difference Method for Numerical

Computation of Discontinuous Solutions of the Equations of Fluid Dynamics.

Matematičeskij sbornik, 47(89)(3):271–306, 1959.



380 K. D. Samouchos

[110] N. Gokhale, N. Nikiforakis, and R. Klein. A Dimensionally Split Cartesian

Cut Cell Method for the Compressible Navier–Stokes Equations. Journal of

Computational Physics, 375:1205–1219, 2018.

[111] D. Goldstein, R. Handler, and L. Sirovich. Modeling a no-slip flow boundary

with an external force field. Journal of Computational Physics, 105(2):354–

366, 1993.

[112] G. Golub and W. Kahan. Calculating the Singular Values and Pseudo-Inverse

of a Matrix. Journal of the Society for Industrial and Applied Mathematics:

Series B, Numerical Analysis, 2(2):205–224, 1965.

[113] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins series in the

mathematical sciences / in association with the Department of mathematical

sciences, The Johns Hopkins University. Johns Hopkins University Press, 1996.

[114] Y. Gorsse, A. Iollo, H. Telib, and L. Weynans. A Simple Second Order Carte-

sian Scheme for Compressible Euler Flows. Journal of Computational Physics,

231(23):7780–7794, 2012.

[115] M. Griebel, T. Neunhoeffer, and H. Regler. Algebraic Multigrid Methods

for the Solution of the Navier–Stokes Equations in Complicated Geometries.

International Journal for Numerical Methods in Fluids, 26(3):281–301, 1998.

[116] A. Griewank and A. Walther. Algorithm 799: Revolve: An Implementation

of Checkpointing for the Reverse or Adjoint Mode of Computational Differen-

tiation. ACM Trans. Math. Softw., 26(1):19–45, March 2000.

[117] B. Griffith and C. Peskin. On the Order of Accuracy of the Immersed Boundary

Method: Higher Order Convergence Rates for Sufficiently Smooth Problems.

Journal of Computational Physics, 208(1):75–105, 2005.

[118] M. Grinfeld and P. Grinfeld. The Gibbs Method in Thermodynamics of Hetero-

geneous Substances Carrying Electric Charges. Results in Physics, 6:194–195,

2016.

[119] P Grinfeld. Introduction to Tensor Analysis and the Calculus of Moving Sur-

faces. January 2013.

[120] C. Günther, M. Meinke, and W. Schröder. A Flexible Level-Set Approach

for Tracking Multiple Interacting Interfaces in Embedded Boundary Methods.

Computers & Fluids, 102:182–202, 2014.



Bibliography 381

[121] A. Harten. High Resolution Schemes for Hyperbolic Conservation Laws. Jour-

nal of Computational Physics, 49(3):357–393, 1983.

[122] A. Harten, J. Hyman, P. Lax, and B. Keyfitz. On Finite-Difference Approx-

imations and Entropy Conditions for Shocks. Communications on Pure and

Applied Mathematics, 29(3):297–322, 1976.

[123] D. Hartmann, M. Meinke, and W. Schröder. An Adaptive Aultilevel Multigrid

Formulation for Cartesian Hierarchical Grid Methods. Computers & Fluids,

37(9):1103–1125, 2008.

[124] D. Hartmann, M. Meinke, and W. Schröder. A Strictly Conservative Carte-

sian Cut-Cell Method for Compressible Viscous Flows on Adaptive Grids.

Computer Methods in Applied Mechanics and Engineering, 200(9):1038–1052,

2011.

[125] L. Hascoët, J. Utke, and U. Naumann. Cheaper Adjoints by Reversing Address

Computations. Sci. Program., 16(1):81–92, January 2008.

[126] H. Haverkort. An Inventory of Three-Dimensional Hilbert Space-Filling

Curves, volume 1109.2323 of arXiv.org [cs.CG]. s.n., 2011.

[127] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall

PTR, USA, 2nd edition, 1998.

[128] D. Hilbert. Über die stetige abbildung einer linie auf ein flächenstück. In

Dritter Band: Analysis · Grundlagen der Mathematik · Physik Verschiedenes:

Nebst Einer Lebensgeschichte, Berlin, Heidelberg, 1891. Springer Berlin Hei-

delberg.

[129] C. Hinterberger and M. Olesen. Automatic Geometry Optimization of Ex-

haust Systems Based on Sensitivities Computed by a Continuous Adjoint CFD

Method in OpenFOAM. April 2010.

[130] Charles Hirsch. Numerical Computation of Internal and External Flows (Sec-

ond Edition). Butterworth-Heinemann, Oxford, second edition edition, 2007.

[131] C Hirt, A. Amsden, and J. Cook. An Arbitrary Lagrangian-Eulerian Comput-

ing Method for all Flow Speeds. Journal of Computational Physics, 14(3):227–

253, 1974.



382 K. D. Samouchos

[132] X. Hu, B. Khoo, N. Adams, and F. Huang. A Conservative Interface Method

for Compressible Flows. Journal of Computational Physics, 219(2):553–578,

2006.

[133] Z. Hu, D. Causon, C. Mingham, and L. Qian. A Cartesian Cut Cell Free Sur-

face Capturing Method for 3D Water Impact Problems. International Journal

for Numerical Methods in Fluids, 71(10):1238–1259, 2013.

[134] D. Ingram, D. Causon, and C. Mingham. Developments in Cartesian cut cell

methods. Mathematics and Computers in Simulation, 61(3):561–572, 2003.

MODELLING 2001 - Second IMACS Conference on Mathematical Modelling

and Computational Methods in Mechanics, Physics, Biomechanics and Geo-

dynamics.

[135] M. Inoue and M. Kuroumaru. Structure of Tip Clearance Flow in an Isolated

Axial Compressor Rotor. Journal of Turbomachinery, 111(3):250–256, July

1989.

[136] M. Inoue, M. Kuroumaru, and M. Fukuhara. Behavior of Tip Leakage Flow

Behind an Axial Compressor Rotor. Journal of Engineering for Gas Turbines

and Power, 108(1):7–14, January 1986.

[137] Lee J., J. Kim, H. Choi, and K. Yang. Sources of Spurious Force Oscillations

from an Immersed Boundary Method for Moving-Body Problems. Journal of

Computational Physics, 230(7):2677–2695, 2011.

[138] P. Jacques and R. Dwight. Numerical Sensitivity Analysis for Aerodynamic

Optimization: A Survey of Approaches. Computers & Fluids, 39(3):373–391,

2010.

[139] A. Jameson. Aerodynamic Design via Control Theory. Journal of Scientific

Computing, 3, December 1988.

[140] A. Jameson and J. Reuther. Control Theory Based Airfoil Design Using the

Euler Equations. October 1994.

[141] H. Jasak. Error Analysis and Estimation for the Finite Volume Method

With Applications to Fluid Flows. PhD thesis, ImperialCollegeof Sci-

ence,Technologyand Medicine, January 1996.



Bibliography 383

[142] N. Jenkins and K. Maute. An Immersed Boundary Approach for Shape and

Topology Optimization of Stationary Fluid-Structure Interaction Problems.

Structural and Multidisciplinary Optimization, 54, November 2016.

[143] J. Jeong and F. Hussain. On the Identification of a Vortex. JFM 285, 69-94.

Journal of Fluid Mechanics, 285:69 – 94, February 1995.

[144] H. Ji, F. Lien, and E. Yee. A New Adaptive Mesh Refinement Data Struc-

ture with an Application to Detonation. Journal of Computational Physics,

229(23):8981–8993, 2010.

[145] H. Ji, F. Lien, and E. Yee. Numerical Simulation of Detonation Using an

Adaptive Cartesian Cut-Cell Method Combined with a Cell-Merging Tech-

nique. Computers & Fluids, 39:1041–1057, June 2010.

[146] M. Jiang, R. Machiraju, and D. Thompson. Detection and Visualization of

Vortices. In The Visualization Handbook, 2005.

[147] G. Jin and J. Mellor-Crummey. SFCGen: A Framework for Efficient Gener-

ation of Multi-Dimensional Space-Filling Curves by Recursion. ACM Trans.

Math. Softw., 31:120–148, March 2005.

[148] Y. Kallinderis. A Finite Volume Navier-Stokes Algorithm for Adaptive Grids.

International Journal for Numerical Methods in Fluids, 15(2):193–217, 1992.

[149] I. Kampolis and K. Giannakoglou. A Multilevel Approach to Single- and Mul-

tiobjective Aerodynamic Optimization. Computer Methods in Applied Me-

chanics and Engineering, 197:2963–2975, June 2008.

[150] C. Kapellos. The Continuous Adjoint Method for Automotive Aeroacoustic

Shape Optimization. PhD thesis, National Technical University of Athens,

2019.

[151] D. Kapsoulis. Low-Cost Metamodel-Assisted Evolutionary Algorithms with

Application in Shape Optimization in Fluid Dynamics. PhD thesis, National

Technical University of Athens, 2019.

[152] D. Kapsoulis, K. Tsiakas, X. Trompoukis, V. Asouti, and K. Giannakoglou.

A PCA-assisted Hybrid Algorithm Combining EAs and Adjoint Methods for

CFD-based Optimization. Applied Soft Computing, 73:520–529, 2018.



384 K. D. Samouchos

[153] D. Kapsoulis, K. Tsiakas, X. Trompoukis, V. Asouti, and K. Giannakoglou.

A pca-assisted hybrid algorithm combining eas and adjoint methods for cfd-

based optimization. Applied Soft Computing, 73:520–529, 2018.

[154] M. Karakasis and K. Giannakoglou. On the use of metamodel-assisted, multi-

objective evolutionary algorithms. Engineering Optimization, 38(8):941–957,

2006.

[155] M. Karakasis and Giannakoglou K. On the Use of Metamodel-Assisted, Multi-

Objective Evolutionary Algorithms. Engineering Optimization, 38(8):941–957,

2006.

[156] M. Karakasis, D. Koubogiannis, and K. Giannakoglou. Hierarchical Dis-

tributed Metamodel-Assisted Evolutionary Algorithms in Shape Optimization.

International Journal for Numerical Methods in Fluids, 53(3):455–469, 2007.

[157] S. Karman. SPLITFLOW - A 3D Unstructured Cartesian/Prismatic Grid

CFD Code for Complex Geometries. In 33rd Aerospace Sciences Meeting and

Exhibit, 1995.

[158] G. Karypis and V. Kumar. METIS—A Software Package for Partitioning

Unstructured Graphs, Partitioning Meshes and Computing Fill-Reducing Or-

dering of Sparse Matrices. January 1997.

[159] I. Kavvadias. Continuous Adjoint Methods for Steady and Unsteady Turbulent

flows with Emphasis on the Accuracy of Sensitivity Derivatives. PhD thesis,

National Technical University of Athens, 2016.

[160] I. Kavvadias, E. Papoutsis-Kiachagias, and K. Giannakoglou. On the Proper

Treatment of Grid Sensitivities in Continuous Adjoint Methods for Shape

Optimization. Journal of Computational Physics, 301:1–18, August 2015.

[161] K. Khadra, P. Angot, S. Parneix, and J. Caltagirone. Fictitious domain ap-

proach for numerical modelling of navier–stokes equations. International Jour-

nal for Numerical Methods in Fluids, 34(8):651–684, 2000.

[162] A. Khokhlov. Fully Threaded Tree Algorithms for Adaptive Refinement Fluid

Dynamics Simulations. Journal of Computational Physics, 143(2):519–543,

1998.



Bibliography 385

[163] J. Kim, B. Ovgor, K. Cha, J. Kim, S. Lee, and K. Kim. Optimization of

the Aerodynamic and Aeroacoustic Performance of an Axial-Flow Fan. AIAA

Journal, 52:2032–2043, August 2014.

[164] S. Kim, J. Alonso, and A. Jameson. A gradient accuracy study for the adjoint-

based navier-stokes design method. January 1999.

[165] M. Kirkpatrick, S. Armfield, and J. Kent. A Representation of Curved Bound-

aries for the Solution of the Navier–Stokes Equations on a Staggered Three-

Dimensional Cartesian Grid. Journal of Computational Physics, 184(1):1–36,

2003.

[166] E. Kontoleontos, V. Asouti, and K. Giannakoglou. An Asynchronous

Metamodel-Assisted Memetic Algorithm for CFD-Based Shape Optimization.

Engineering Optimization, 44(2):157–173, February 2012.

[167] D. Krause and F. Kummer. An Incompressible Immersed Boundary Solver

for Moving Body Flows Using a Cut Cell Discontinuous Galerkin Method.

Computers & Fluids, 153:118–129, 2017.

[168] N. Kroll, N. Gauger, J. Brezillon, R. Dwight, A. Fazzolari, D. Vollmer,

K. Becker, H. Barnewitz, V. Schulz, and S. Hazra. Flow simulation and shape

optimization for aircraft design. Journal of Computational and Applied Math-

ematics, 203(2):397–411, 2007.

[169] S. Kyriakou. Evolutionary Algorithm-based Design-Optimization Methods in

Turbomachinery. PhD thesis, National Technical University of Athens, 2013.

[170] P. Ladevèze. PGD in Linear and Nonlinear Computational Solid Mechanics.

In Separated Representations and PGD-Based Model Reduction: Fundamentals

and Applications, Vienna, 2014. Springer.

[171] E. Ladopoulos. Four-dimensional Petroleum Exploration & Non-linear ESP

Artificial Lift by Multiple Pumps for Petroleum Well Development. Universal

Journal of Hydraulics, 3:1–14, 01 2015.

[172] M. Lai and C. Peskin. An Immersed Boundary Method with Formal Second-

Order Accuracy and Reduced Numerical Viscosity. Journal of Computational

Physics, 160(2):705–719, 2000.

[173] L. Landau and E. Lifshitz. Fluid Mechanics, volume 6 of Course of Theoretical

Physics. Pergamon Press, 1987.



386 K. D. Samouchos

[174] R. Landon. NACA 0012 Oscillatory and Transient Pitching. page 16, October

2000.

[175] V. Lemort, S. Quoilin, Cuevas C., and Lebrun J. Testing and Modeling a

Scroll Expander Integrated into an Organic Rankine Cycle. Applied Thermal

Engineering, 29(14):3094–3102, 2009.

[176] M. Lesoinne and C. Farhat. Geometric Conservation Laws for Flow Prob-

lems with Moving Boundaries and Deformable Meshes, and their Impact on

Aeroelastic Computations. Computer Methods in Applied Mechanics and En-

gineering, 134(1):71–90, 1996.

[177] R. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge

Texts in Applied Mathematics. Cambridge University Press, 2002.

[178] Y. Levy, D. Degani, and A. Seginer. Graphical Visualization of Vortical Flows

by Means of Helicity. AIAA Journal, 28(8):1347–1352, 1990.

[179] C. LI. Numerical Solution of Viscous Reacting Blunt Body Flows of a Multi-

component Mixture. In 11th Aerospace Sciences Meeting, 1973.

[180] Y. Liang and B. Barsky. An Analysis and Algorithm for Polygon Clipping.

Commun. of the ACM, 26:868–877, 1983.

[181] H. Liepmann and A. Roshko. Elements of Gas Dynamics, volume 10. January

2001.

[182] P. Lindstrom. Fixed-Rate Compressed Floating-Point Arrays. IEEE Trans-

actions on Visualization and Computer Graphics, 20(12):2674–2683, 2014.

[183] J. Lions. Optimal Control of Systems Governed by Partial Differential Equa-

tions. Springer, Berlin, Heidelberg, 1971.

[184] X. Liu and G. Schrack. Encoding and Decoding the Hilbert Order. Software:

Practice and Experience, 26(12):1335–1346, 1996.

[185] R. Löhner. Adaptive Remeshing for Transient Problems. Computer Methods

in Applied Mechanics and Engineering, 75(1):195–214, 1989.

[186] R. Löhner, K. Morgan, and O. C. Zienkiewicz. Effective Programming of

Finte Element Methods for Computational Fluid Dynamics on Supercomput-

ers, pages 117–125. Vieweg+Teubner Verlag, Wiesbaden, 1986.



Bibliography 387

[187] D. Lovely and R. Haimes. Shock Detection from Computational Fluid Dy-

namics Results. In 14th Computational Fluid Dynamics Conference, 1999.

[188] J. Lu. An a posteriori Error Control Framework for Adaptive Precision Opti-

mization Using Discontinuous Galerkin Finite Element Method. PhD thesis,

Massachusetts Institute of Technology, 2005.

[189] H. Luo, H. Dai, and P. Ferreira de Sousa. A Hybrid Formulation to Suppress

the Numerical Oscillations Caused by Immersed Moving Boundaries. In 62nd

Annual Meeting of the APS Division of Fluid Dynamics, November 2009.

[190] S. Majumdar, G. Iaccarino, and P. Durbin. RANS Solvers with Adaptive

Structured Boundary Non-Conforming Grids. Annual Research Briefs, Jan-

uary 2001.

[191] D. Mangolis, S. Craig, G. Nowakowski, and M. Inada. Modeling and Sim-

ulation of a Scroll Compressor Using Bond Graphs. In Proceedings of the

International Compressor Engineering Conference at Purdue, 1992.

[192] A.-S. Margetis, E. Papoutsis-Kiachagias, and K. Giannakoglou. Lossy Com-

pression Techniques Supporting Unsteady Adjoint on 2D/3D Unstructured

Grids. Computer Methods in Applied Mechanics and Engineering, 387:114152,

2021.

[193] J. Martins, J. Alonso, and J. Reuther. High-Fidelity Aerostructural Design

Optimization of a Supersonic Business Jet. Journal of Aircraft, 41:523–530,

May 2004.

[194] J. Martins, P. Sturdza, and J. Alonso. The Complex-Step Derivative Approx-

imation. ACM Trans. Math. Softw., 29:245–262, 2003.

[195] A. Massing, M. Larson, A. Logg, and M. Rognes. A Nitsche-Based Cut Finite

Element Method for a Fluid–Structure Interaction Problem. Communications

in Applied Mathematics and Computational Science, 10, November 2013.

[196] Argonne National Laboratory Computer Science Division Mathematics and

Rice University Center for Research on Parallel Computation. https://www.

mcs.anl.gov/research/projects/adifor/.

[197] D. Mavriplis. Multigrid Solution of the Discrete Adjoint for Optimization

Problems on Unstructured Meshes. Aiaa Journal - AIAA J, 44:42–50, January

2006.

https://www.mcs.anl.gov/research/projects/adifor/
https://www.mcs.anl.gov/research/projects/adifor/


388 K. D. Samouchos

[198] M. Maxey. Simulation Methods for Particulate Flows and Concentrated Sus-

pensions. Annual Review of Fluid Mechanics, 49(1):171–193, 2017.

[199] R. Meakin and N. Suhs. Unsteady Aerodynamic Simulation of Multiple Bodies

in Relative Motion. In 9th Computational Fluid Dynamics Conference, 1989.

[200] M. Meinke, L. Schneiders, C. Günther, and W. Schröder. A Cut-Cell Method

for Sharp Moving Boundaries in Cartesian Grids. Computers & Fluids, 85:135–

142, 2013. International Workshop on Future of CFD and Aerospace Sciences.

[201] J. Melton, F. Enomoto, and M. Berger. 3D Automatic Cartesian Grid Gen-

eration for Euler Flows. In 11th Computational Fluid Dynamics Conference,

1993.

[202] C. Merkle. Time-Accurate Unsteady Incompressible Flow Algorithms Based

on Artificial Compressibility. In 8th Computational Fluid Dynamics Confer-

ence, 1987.

[203] C. Merlin, P. Domingo, and L. Vervisch. Immersed Boundaries in Large Eddy

Simulation of Compressible Flows. Flow, Turbulence and Combustion, 90,

January 2012.

[204] M. Meyer, A. Devesa, S. Hickel, X. Hu, and N. Adams. A Conservative Im-

mersed Interface Method for Large-Eddy Simulation of Incompressible Flows.

Journal of Computational Physics, 229(18):6300–6317, 2010.

[205] Z. Michalewicz and B. Fogel. How to Solve It: Modern Heuristics. Springer,

Berlin, Heidelberg, 2nd edition, 2004.

[206] C. Michler, E. van Brummelen, S. Hulshoff, and R. de Borst. The Rele-

vance of Conservation for Stability and Accuracy of Numerical Methods for

Fluid–Structure Interaction. Computer Methods in Applied Mechanics and

Engineering, 192(37):4195–4215, 2003.

[207] R. Mittal, C. Bonilla, and H. Udaykumar. Cartesian Grid Methods for Simu-

lating Flows with Moving Boundaries. Computational Engineering, 4:557–566,

January 2003.

[208] R. Mittal, H. Dong, M. Bozkurttas, F. Najjar, A. Vargas, and A. von

Loebbecke. A Versatile Sharp Interface Immersed Boundary Method for

Incompressible Flows with Complex Boundaries. Journal of Computational

Physics, 227(10):4825–4852, 2008.



Bibliography 389

[209] R. Mittal and G. Iaccarino. Immersed Boundary Methods. Annual Review of

Fluid Mechanics, 37(1):239–261, 2005.

[210] R. Mittal, V. Seshadri, and H. Udaykumar. Flutter, Tumble and Vortex In-

duced Autorotation. Theoretical and Computational Fluid Dynamics, 17:165–

170, January 2004.

[211] R. Mittal, Y. Utturkar, and H. Udaykumar. Computational Modeling and

Analysis of Biomimetic Flight Mechanisms. 40th AIAA Aerospace Sciences

Meeting and Exhibit, January 2002.

[212] B. Mohammadi and O. Pironneau. Applied Shape Optimization in Fluids.

Applied Shape Optimization for Fluids, May 2001.

[213] J. Mohd-Yosuf. Combined Immersed Boundary/B-spline Methods for Simula-

tion of Flow in Complex Geometries. Annu. Res. Briefs, Cent. Turbul. Res.,

page 317–28, 1997.

[214] Y. Moigne. Adaptive Mesh Refinement Sensors for Vortex Flow Simulations.

January 2004.

[215] G. Morgan. Numerical Simulation of Moving Boundary Problems Related to

Fracture. Master’s thesis, University of Cambridge, Cambridge, 2013.

[216] E. Morishita and Sugihara M. Scroll Compressor Analytical Model. In 1984

International Compressor Engineering Conference at Purdue University, page

487, 1984.

[217] G. Morton. A Computer Oriented Geodetic Data Base and a New Technique

in File Sequencing. IBM Ltd., 1966.

[218] B. Muralidharan and S. Menon. A High-Order Adaptive Cartesian Cut-Cell

Method for Simulation of Compressible Viscous Flow over Immersed Bodies.

Journal of Computational Physics, 321:342–368, 2016.

[219] S. Murman, M. Aftosmis, M. Berger, and D. Kwak. Implicit Approaches for

Moving Boundaries in a 3-D Cartesian Method. In 41st Aerospace Sciences

Meeting and Exhibit, February 2003.

[220] S. Nadarajah and A. Jameson. A Comparison of the Continuous and Discrete

Adjoint Approach to Automatic Aerodynamic Optimization. November 2014.



390 K. D. Samouchos

[221] A. Nelson, M. Aftosmis, M. Nemec, and T. Pulliam. Aerodynamic Optimiza-

tion of Rocket Control Surfaces Using Cartesian Methods and CAD Geometry.

volume 1, June 2005.

[222] M. Nemec and M. Aftosmis. Aerodynamic Shape Optimization Using a Carte-

sian Adjoint Method and CAD Geometry. 2006.

[223] M. Nemec and M. Aftosmis. Adjoint Sensitivity Computations for an

Embedded-Boundary Cartesian Mesh Method and CAD Geometry. volume

227, pages 2724–2742, 2008.

[224] M. Nemec, M. Aftosmis, S. Murman, and T. Pulliam. Adjoint Formulation

for an Embedded-Boundary Cartesian Method. 2005.

[225] M. Nemec, M. Aftosmis, and T. Pulliam. CAD-Based Aerodynamic Design

of Complex Configurations Using a Cartesian Method. 42nd AIAA Aerospace

Sciences Meeting and Exhibit, January 2004.

[226] W. Newman and R. Sproull, editors. Principles of Interactive Computer

Graphics (2nd Ed.). McGraw-Hill, Inc., USA, 1979.

[227] A. Nisar, N. Afzulpurkar, B. Mahaisavariya, and A. Tuantranont. MEMS-

Based Micropumps in Drug Delivery and Biomedical Applications. Sensors

and Actuators B: Chemical, 130(2):917–942, 2008.

[228] M. Nishioka and H. Sato. Measurements of Velocity Distributions in the Wake

of a Circular Cylinder at Low Reynolds Numbers. Journal of Fluid Mechanics,

65(1):97–112, 1974.

[229] J. Nocedal and S. Wright. Numerical Optimization. Springer, New York, NY,

USA, 2006.

[230] S. Ojeda, H. Sun, S. Allmaras, and D. Darmofal. An Adaptive Simplex Cut-

Cell Method for High-Order Discontinuous Galerkin Discretizations of Con-

jugate Heat Transfer Problems. International Journal for Numerical Methods

in Engineering, 110, August 2016.

[231] G. Okubo and T. Imamura. Characteristics of Adjoint-Based Shape Opti-

mization on Hierarchical Cartesian Mesh with Immersed Boundary Method.

2018.



Bibliography 391

[232] F. Örley, V. Pasquariello, S. Hickel, and Nikolaus A. Cut-Element Based

Immersed Boundary Method for Moving Geometries in Compressible Liquid

Flows with Cavitation. Journal of Computational Physics, 283:1–22, 2015.

[233] C. Othmer. Adjoint Methods for Car Aerodynamics. Journal of Mathematics

in Industry, 4:6, December 2014.

[234] D. Pan and T. Shen. Computation of Incompressible Flows with Immersed

Bodies by a Simple Ghost Cell Method. International Journal for Numerical

Methods in Fluids, 60(12):1378–1401, 2009.

[235] D. Papadimitriou and K. Giannakoglou. A Continuous Adjoint Method with

Objective Function Derivatives Based on Boundary Integrals, for Inviscid and

Viscous Flows. Computers & Fluids, 36(2):325–341, 2007.

[236] V. Papageorgiou, K. Samouchos, and K. Giannakoglou. The Unsteady Con-

tinuous Adjoint Method Assisted by the Proper Generalized Decomposition

Method. In Evolutionary and Deterministic Methods for Design Optimiza-

tion and Control With Applications to Industrial and Societal Problems, pages

109–125, Cham, 2019. Springer International Publishing.

[237] E. Papoutsis-Kiachagias. Adjoint Methods for Turbulent Flows, Applied to

Shape or Topology Optimization and Robust Design. PhD thesis, National

Technical University of Athens, 2013.

[238] E. Papoutsis-Kiachagias, V. Asouti, K. Giannakoglou, K. Gkagkas,

S. Shimokawa, and E. Itakura. Multi-Point Aerodynamic Shape Optimization

of Cars Based on Continuous Adjoint. Struct Multidisc Optim, 59(2):675–694,

2019.

[239] E. Papoutsis-Kiachagias and K. Giannakoglou. Continuous Adjoint Methods

for Turbulent Flows, Applied to Shape and Topology Optimization: Indus-

trial Applications. Archives of Computational Methods in Engineering, 23,

December 2014.

[240] N. Patankar. A Formulation for Fast Computations of Rigid Particulate Flows.

Center for Turbulence Research Annual Research Briefs, January 2001.

[241] G. Peano. Sur une courbe, qui remplit toute une aire plane. Mathematische

Annalen, 36:157–160, 1890.



392 K. D. Samouchos

[242] R. Pember, J. Bell, P. Colella, W. Curtchfield, and M. Welcome. An Adaptive

Cartesian Grid Method for Unsteady Compressible Flow in Irregular Regions.

Journal of Computational Physics, 120(2):278–304, 1995.

[243] J. Persson. Performance Mapping vs Design Parameters for Screw Compres-

sors and other Displacement Compressor Types. VDI Berichte, 859, 1990.

[244] C. Peskin. Flow Patterns around Heart Valves: A Numerical Method. Journal

of Computational Physics, 10(2):252–271, 1972.

[245] C. Peskin. The Fluid Dynamics of Heart Valves: Experimental, Theoretical,

and Computational Methods. Annual Review of Fluid Mechanics, 14(1):235–

259, 1982.

[246] J. Pilkington and S. Baden. Dynamic partitioning of non-uniform structured

workloads with spacefilling curves. IEEE Transactions on Parallel and Dis-

tributed Systems, 7(3):288–300, 1996.

[247] O. Pironneau. Optimal Shape Design for Elliptic Systems. Springer, Berlin,

Heidelberg, 1982.

[248] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling. Numerical Recipes in

C: The Art of Scientific Computing. Cambridge University Press, USA, 1988.

[249] T. Pulliam and J. Steger. Recent Improvements in Efficiency, Accuracy, and

Convergence for Implicit Approximate Factorization Algorithms. February

1985.

[250] J. Purvis and J. Burkhalter. Prediction of Critical Mach Number for Store

Configurations. AIAA Journal, 17(11):1170–1177, 1979.

[251] J. Quirk. An Adaptive Grid Algorithm for Computational Shock Hydrodynam-

ics. PhD thesis, Cranfield University, 1991.

[252] J. Quirk. An Alternative to Unstructured Grids for Computing Gas Dynamic

Flows around Arbitrarily Complex Two-Dimensional Bodies. Computers &

Fluids, 23(1):125–142, 1994.

[253] K. Rahbar, S. Mahmoud, R. K. Al-Dadah, N. Moazami, and S. A.

Mirhadizadeh. Review of Organic Rankine Cycle for Small-Scale Applications.

Energy Conversion and Management, 134:135–155, 2017.



Bibliography 393

[254] N. Ramaswamy, N. Karanth, S. Kulkarni, and V. Desai. Modeling of Microp-

ump Performance and Optimization of Diaphragm Geometry. IJCA Proceed-

ings on International Symposium on Devices MEMS, Intelligent Systems &

Communication (ISDMISC), (5):14–19, 2011. Full text available.

[255] B. Re, C. Dobrzynski, and A. Guardone. An Interpolation-Free ALE Scheme

for Unsteady Inviscid Flows Computations with Large Boundary Displace-

ments over Three-Dimensional Adaptive Grids. Journal of Computational

Physics, 340:26–54, September 2017.

[256] J. Reuther. Aerodynamic Shape Optimization Using Control Theory. PhD

thesis, University of California Davis, 1996.

[257] J. Reuther and A. Jameson. Control Theory Based Airfoil Design for Potential

Flow and a Finite Volume Discretization. February 1994.

[258] J. Reuther and A. Jameson. Aerodynamic Shape Optimization of Wing and

Wing-Body Configurations Using Control Theory. February 1995.

[259] J. Reuther, A. Jameson, J. Farmer, L. Martinelli, and D. Saunders. Aerody-

namic Shape Optimization of Complex Aircraft Configurations via an Adjoint

Formulation. February 1996.

[260] O. Reynolds. Papers on Mechanical and Physical Subjects: The sub-mechanics

of the universe, volume 3. Cambridge University Press, 1903.

[261] D. Rodriguez. Propulsion/Airframe Integration and Optimization on a Su-

personic Business Jet. In 45th AIAA Aerospace Sciences Meeting and Exhibit,

2007.

[262] P. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference

Schemes. Journal of Computational Physics, 43(2):357–372, 1981.

[263] P. Roe and J. Pike. Efficient Construction and Utilisation of Approximate

Riemann Solutions. In Proc. of the Sixth Int’l. Symposium on Computing

Methods in Applied Sciences and Engineering, VI, North-Holland Publishing

Co., page 499–518, NLD, 1985.

[264] P. Rubbert, J. Bussoletti, F. Johnson, K. Sidwell, W. Rowe, S. Samant, G. Sen-

Gupta, W. Weatherill, R. Burkhart, B. Everson, D. Young, and A. Woo. A



394 K. D. Samouchos

New Approach to the Solution of Boundary Value Problems Involving Com-

plex Configurations. Computational Mechanics - Advances and Trends, pages

49–84, 1986.

[265] M. Rutkowski, W. Gryglas, J. Szumbarski, C. Leonardi, and  L.  Laniewski

Wo l lk. Open-Loop Optimal Control of a Flapping Wing Using an Adjoint

Lattice Boltzmann Method. Computers & Mathematics with Applications,

79(12):3547–3569, 2020.

[266] Y. Saad. Iterative Methods for Sparse Linear Systems. January 2003.

[267] R.H. Sabersky, A.J. Acosta, and E.G. Hauptmann. Fluid Flow: A First Course

in Fluid Mechanics. Macmillan, 1989.

[268] J. Sachdev and C. Groth. A Mesh Adjustment Scheme for Embedded Bound-

aries. volume 2, pages 109–114, January 2006.

[269] I. Sadrehaghighi. Essentials of CFD. February 2021.

[270] E. Saiki and S. Biringen. Numerical simulation of a cylinder in uniform flow:

Application of a virtual boundary method. Journal of Computational Physics,

123(2):450–465, 1996.

[271] J. Salmon, M. Warren, and G. Winckelmans. Fast Parallel Tree Codes for

Gravitational and Fluid Dynamical N-Body Problems. International Jour-

nal of Supercomputer Applications and High Performance Computing, 8, May

1994.

[272] K. Samouchos. Development of the Computational Tools for the FlowSimula-

tion into Scroll Turbomachines, used in Supercritical OrganicRankine Cycles.

Programming of Analysis-Optimization Software forthe above Cycles. Mas-

ter’s thesis, National Technical University of Athens, 2013.

[273] K. Samouchos, S. Katsanoulis, and K. Giannakoglou. Unsteady Adjoint to the

Cut-Cell Method Using Mesh Adaptation on GPU’s. In ECCOMAS Congress

2016, Crete, Greece, June 2016.

[274] S. Sastry, E. Kultursay, S. Shontz, and M. Kandemir. Improved Cache Uti-

lization and Preconditioner Efficiency through Use of a Space-Filling Curve

Mesh Element- and Vertex-Reordering Technique. Engineering with Comput-

ers, 30:535–547, 2014.



Bibliography 395

[275] V. Schmitt and F. Charpin. Pressure Distributions on the ONERA M6 Wing

at Transonic Mach Numbers. Report of the Fluid Dynamics Panel Working

Group 04, AGARD AR 138, May 1979.

[276] L. Schneiders, C. Günther, J. Grimmen, M. Meinke, and W. Schroeder. Sharp

Resolution of Complex Moving Geometries Using a Multi-Cut-Cell Viscous

Flow Solver. 2015.

[277] L. Schneiders, C. Günther, M. Meinke, and W. Schröder. An Efficient Conser-

vative Cut-Cell Method for Rigid Bodies Interacting with Viscous Compress-

ible Flows. Journal of Computational Physics, 311:62–86, 2016.

[278] L. Schneiders, D. Hartmann, M. Meinke, and W. Schröder. An accurate

moving boundary formulation in cut-cell methods. Journal of Computational

Physics, 235:786–809, 2013.

[279] J. Seo and R. Mittal. A Sharp-Interface Immersed Boundary Method with Im-

proved Mass Conservation and Reduced Spurious Pressure Oscillations. Jour-

nal of computational physics, 230:7347–7363, August 2011.

[280] J. Sethian. A fast marching level set method for monotonically advancing

fronts. Proceedings of the National Academy of Sciences, 93(4):1591–1595,

1996.

[281] J. Sethian and A. Vladimirsky. Fast Methods for the Eikonal and Related

Hamilton-Jacobi Equations on Unstructured Meshes. Proceedings of the Na-

tional Academy of Sciences of the United States of America, 97:5699–703, June

2000.

[282] T. Sharp and L. Sirovich. Constructing a Continuous Parameter Range of

Computational Flows. AIAA Journal, 27:1326–1331, 1989.

[283] S. Shin. Reynolds-Averaged Navier-Stokes Computation of Tip Clearance Flow

in a Compressor Cascade Using an Unstructured Grid. PhD thesis, Virginia

Polytechnic Institute and State University, 2001.

[284] A. Shinn, M. Goodwin, and S. Vanka. Immersed Boundary Computations

of Shear- and Buoyancy-Driven Flows in Complex Enclosures. International

Journal of Heat and Mass Transfer, 52(17):4082–4089, 2009. Special Issue

Honoring Professor D. Brian Spalding.



396 K. D. Samouchos

[285] K. Sindhya, K. Miettinen, and K. Deb. A Hybrid Framework for Evolutionary

Multi-Objective Optimization. IEEE Transactions on Evolutionary Compu-

tation, 17(4):495–511, 2013.

[286] J. Slater. https://www.grc.nasa.gov/WWW/wind/valid/m6wing/m6wing01/

m6wing01.html.

[287] S. Smolyak. Quadrature and Interpolation Formulas for Tensor Products of

Certain Classes of Functions. Dokl. Akad. Nauk SSSR, 148:1042–1045, 1963.

[288] L. Songjing, J. Liu, and D. Jiang. Dynamic Characterization of a Valveless

Micropump Considering Entrapped Gas Bubbles. Journal of Heat Transfer,

135:091403, 09 2013.

[289] F. Sotiropoulos and X. Yang. Immersed Boundary Methods for Simulating

Fluid–Structure Interaction. Progress in Aerospace Sciences, 65:1–21, 2014.

[290] J. Spall. Introduction to Stochastic Search and Optimization: Estimation,

Simulation, and Control. John Wiley & Sons, 2003.

[291] J. Steger and R. Warming. Flux Vector Splitting of the Inviscid Gasdynamic

Equations with Application to Finite-Difference Methods. Journal of Compu-

tational Physics, 40(2):263–293, 1981.

[292] E. Stemme and Stemme G. A Valveless Diffuser/Nozzle-Based Fluid Pump.

Sensors and Actuators A: Physical, 39(2):159–167, 1993.

[293] R. Stevens, A. Lehar, and F. Preston. Manipulation and Presentation of

Multidimensional Image Data Using the Peano Scan. IEEE Transactions on

Pattern Analysis and Machine Intelligence, PAMI-5(5):520–526, 1983.

[294] G. Stewart. On the Early History of the Singular Value Decomposition. SIAM

Rev., 35:551–566, 1993.

[295] S. Su and C. Lai, M.and Lin. An immersed boundary technique for simulating

complex flows with rigid boundary. Computers & Fluids, 36(2):313–324, 2007.

[296] I. Sutherland and G. Hodgman. Reentrant Polygon Clipping. Commun. ACM,

17(1):32–42, January 1974.

[297] R.C. Swanson and S. Langer. Steady-state Laminar Flow Solutions for NACA

0012 Airfoil. Computers & Fluids, 126:102 – 128, 2016.

https://www.grc.nasa.gov/WWW/wind/valid/m6wing/m6wing01/m6wing01.html
https://www.grc.nasa.gov/WWW/wind/valid/m6wing/m6wing01/m6wing01.html


Bibliography 397

[298] A. Syrakos, S. Varchanis, Y. Dimakopoulos, A. Goulas, and J. Tsamopoulos.

A Critical Analysis of some Popular Methods for the Discretisation of the Gra-

dient Operator in Finite Volume Methods. Physics of Fluids, 29(12):127103,

2017.

[299] H. Takami and H. Keller. Steady Two–Dimensional Viscous Flow of an In-

compressible Fluid past a Circular Cylinder. The Physics of Fluids, 12(12):II–

51–II–56, 1969.

[300] INRIA Sophia-Antipolis. TAPENADE. https://www-sop.inria.fr/

tropics/tapenade.html.

[301] A. M. K. P. Taylor, J. H. Whitelaw, and M. Yianneskis. Developing Flow in

S-shaped Ducts. 1: Square Cross-Section Duct. Final Report Imperial Coll.

of Science and Technology, May 1982.

[302] L. Taylor and D. Whitfield. Unsteady Three-dimensional Incompressible Euler

and Navier-Stokes Solver for Stationary and Dynamic Grids. In 22nd Fluid

Dynamics, Plasma Dynamics and Lasers Conference, 1991.

[303] B. F. Tchanche, G. Lambrinos, A. Frangoudakis, and G. Papadakis. Low-

Grade Heat Conversion into Power Using Organic Rankine Cycles – A Re-

view of Various Applications. Renewable and Sustainable Energy Reviews,

15(8):3963–3979, 2011.

[304] H. Terashima and G. Tryggvason. A Front-Tracking/Ghost-Fluid Method for

Fluid Interfaces in Compressible Flows. Journal of Computational Physics,

228(11):4012–4037, 2009.

[305] J. Thompson, B. Soni, and N. Weatherill. Handbook of Grid Generation. CRC

Press., first edition, 1998.

[306] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics: A

Practical Introduction. January 2009.

[307] E. Toro, M. Spruce, and W. Speares. Restoration of the Contact Surface in

the HLL-Riemann Solver. Shock Waves, 4:25–34, 1994.

[308] C. Towne. Computation of Viscous Flow in Curved Ducts and Comparison

with Experimental Data. In 22nd Aerospace Sciences Meeting.

https://www-sop.inria.fr/tropics/tapenade.html
https://www-sop.inria.fr/tropics/tapenade.html


398 K. D. Samouchos

[309] X. Trompoukis. Solving Aerodynamic-Aeroelastic Problems on Graphics Pro-

cessing Units. PhD thesis, National Technical University of Athens, 2012.

[310] Y. Tseng and J.r Ferzige. A Ghost-Cell Immersed Boundary Method for Flow

in Complex Geometry. Journal of Computational Physics, 192(2):593–623,

2003.

[311] K. Tsiakas. Development of Shape Parameterization Techniques, a Flow Solver

and its Adjoint, for Optimization on GPUs. Turbomachinery and External

Aerodynamics Applications. PhD thesis, National Technical University of

Athens, 2019.

[312] E. Turkel. Acceleration to Steady State for the Euler Equations. February

1985.

[313] E. Turkel. Preconditioned Methods for Solving the Incompressible and Low

Speed Compressible Equations. Journal of Computational Physics, 72(2):277–

298, 1987.

[314] E. Turkel. Review of Preconditioning Methods for Fluid Dynamics. Applied

Numerical Mathematics, 12:257–284, October 1992.

[315] Turkel, E. Preconditioning Techniques in Computational Fluid Dynamics.

Annual Review of Fluid Mechanics, 31(1):385–416, 1999.

[316] M. Uhlmann. An Immersed Boundary Method with Direct Forcing for the Sim-

ulation of Particulate Flows. Journal of Computational Physics, 209(2):448–

476, 2005.

[317] Y. Utturkar, R. Mittal, P. Rampunggoon, and L. Cattafesta. Sensitivity of

Synthetic Jets to the Design of the Jet Cavity. January 2002.

[318] B. van Leer. Towards the Ultimate Conservative Difference Scheme. V.

A Second-Order Sequel to Godunov’s Method. Journal of Computational

Physics, 32(1):101–136, 1979.

[319] B. van Leer, W. Lee, and P. Roe. Characteristic Time-Stepping or Local Pre-

conditioning of the Euler Equations. In 10th Computational Fluid Dynamics

Conference, 1991.



Bibliography 399

[320] H.T.G. van Lintel, F.C.M. van De Pol, and S. Bouwstra. A Piezoelectric

Micropump Based on Micromachining of Silicon. Sensors and Actuators,

15(2):153–167, 1988.

[321] V. Venkatakrishnan. On the Accuracy of Limiters and Convergence to Steady

State Solutions. In 31st Aerospace Sciences Meeting, 1993.

[322] R. Verzicco, J. Mohd-Yusof, P. Orlandi, and D. Haworth. LES in Complex

Geometries Using Boundary Body Forces. AIAA J., 38:427–33, 2000.

[323] C. Vezyris, E. Papoutsis-Kiachagias, and K. Giannakoglou. On the Incre-

mental Singular Value Decomposition Method to Support Unsteady Adjoint-

Based Optimization. International Journal for Numerical Methods in Fluids,

91(7):315–331, 2019.

[324] R. von Flatern. https://www.slb.com/-/media/files/oilfield-review/

defining-esp.ashx.

[325] P.-Y. Vrionis. Shape and Topology Optimization using the Cut-Cell Method

and its Continuous Adjoint for Single– and Two–phase Turbulent flows, in

a Multiprocessor Environment. PhD thesis, National Technical University of

Athens. In progress.

[326] P.-Y. Vrionis, K. Samouchos, and K. Giannakoglou. The Continuous Adjoint

Cut-Cell Method for Shape Optimization in Cavitating Flows. Computers &

Fluids, 224:104974, 04 2021.

[327] P.-Y. Vrionis, K. Samouchos, and K. Giannakoglou. Topology Optimization in

Fluid Mechanics Using Continuous Adjoint and the Cut-Cell Method. Com-

puters & Mathematics with Applications, 97:286–297, 2021.

[328] A. Walther. Getting Started with ADOL-C. Combinatorial Scientific Com-

puting, January 2009.

[329] Q. Wang, P. Moin, and G. Iaccarino. Minimal Repetition Dynamic Check-

pointing Algorithm for Unsteady Adjoint Calculation. SIAM Journal on Sci-

entific Computing, 31(4):2549–2567, 2009.

[330] Z. Wang. A Quadtree-Based Adaptive Cartesian/Quad Grid Flow Solver for

Navier-Stokes Equations. Computers & Fluids, 27(4):529–549, 1998.

https://www.slb.com/-/media/files/oilfield-review/defining-esp.ashx
https://www.slb.com/-/media/files/oilfield-review/defining-esp.ashx


400 K. D. Samouchos

[331] B. Wedan and J. South. A Method for Solving the Transonic Full-Potential

Equation for General Configurations. 1983.

[332] M. Wintzer, M. Nemec, and M. Aftosmis. Adjoint-Based Adaptive Mesh

Refinement for Sonic Boom Prediction. 2008.

[333] G. Xiao and G. Liu. Computer Simulation for Transient Flow in Oil-free Scroll

Compresso. International Journal of Control and Automation, 7(9), 2014.

[334] Z. Xie and T. Stoesser. A Three-Dimensional Cartesian Cut-Cell/Volume-of-

Fluid Method for Two-Phase Flows with Moving Bodies. Journal of Compu-

tational Physics, 416:109536, 2020.

[335] D. Xiu and G. Karniadakis. The Wiener–Askey Polynomial Chaos for Stochas-

tic Differential Equations. SIAM Journal on Scientific Computing, 24(2):619–

644, 2002.

[336] M. Xu and M. Wei. Using Adjoint-Based Approach to Study Flapping Wings,

2013.

[337] T. Yanagisawa T.and T Shimizu. Leakage Losses with a Rolling Piston Type

Rotary Compressor. I. Radical Clearance on the Rolling Piston. International

Journal of Refrigeration, 8(2):75–84, 1985.

[338] G. Yang, D. Causon, D. Ingram, R. Saunders, and P. Battent. A Cartesian

Cut Cell Method for Compressible Flows Part B: Moving Body Problems. The

Aeronautical Journal (1968), 101(1002):57–65, 1997.

[339] J. Yang and E. Balaras. An Embedded-Boundary Formulation for Large-Eddy

Simulation of Turbulent Flows Interacting with Moving Boundaries. Journal

of Computational Physics, 215(1):12–40, 2006.

[340] T. Ye, R. Mittal, H. Udaykumar, and W. Shyy. An Accurate Cartesian Grid

Method for Viscous Incompressible Flows with Complex Immersed Bound-

aries. Journal of Computational Physics, 156(2):209–240, 1999.

[341] Y. Yuan. Recent Advances in Trust Region Algorithms. Mathematical Pro-

gramming, 151, June 2015.

[342] R. Zanelli and D. Favrat. Experimental Investigation of a Hermetic Scroll

Expander–Generator. In Proceedings of the International Compressor Engi-

neering Conference at Purdue, 01 1994.



Bibliography 401

[343] D. Zeeuw and K. Powell. An Adaptively Refined Cartesian Mesh Solver for

the Euler Equations. Journal of Computational Physics, 104:56–68, 1993.

[344] X. Zhang, P. Theissen, and J. Schlüter. A Lagrangian Method for the Treat-

ment of Freshly Cleared Cells in Immersed Boundary Techniques. Interna-

tional Journal of Computational Fluid Dynamics, 23(9):667–670, 2009.

[345] H. Zhao. A Fast Sweeping Method for Eikonal Equations. Mathematics of

Computation, 74(250):603–627, 2005.

[346] J. Zhu, H. Banjar, Z. Xia, and H. Zhang. CFD Simulation and Experimental

Study of Oil Viscosity Effect on Multi-Stage Electrical Submersible Pump

(ESP) Performance. Journal of Petroleum Science and Engineering, 146:735–

745, 2016.

[347] J. Zhu, H. Zhu, J. Zhang, and H. Zhang. A Numerical Study on Flow Patterns

inside an Electrical Submersible Pump (ESP) and Comparison with Visual-

ization Experiments. Journal of Petroleum Science and Engineering, 173:339–

350, 2019.

[348] W. Ziniu, X. Yizhe, W. Wenbin, and H. Ruifeng. Review of Shock Wave

Detection Method in CFD Post-Pocessing. Chinese Journal of Aeronautics,

26(3):501–513, 2013.



Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Μηχανολόγων Μηχανικών

Εργαστήριο Θερμικών Στροβιλομηχανών

Μονάδα Παράλληλης Υπολογιστικής

Ρευστοδυναμικής & Βελτιστοποίησης

Η Μέθοδος των Τεμνόμενων Κυψελών για την Πρόλεξη

2Δ/3Δ Ροών σε Σύνθετες Γεωμετρίες και τη

Βελτιστοποίηση Μορφής με τη Συζυγή Μέθοδο

Διδακτορική Διατριβή

(Εκτεταμένη Περίληψη)

Κωνσταντίνος Δ. Σαμούχος

Επιβλέπων: Κυριάκος Χ. Γιαννάκογλου

Καθηγητής ΕΜΠ

Αθήνα, 2022



ii Κ. Δ. Σαμούχος



Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Μηχανολόγων Μηχανικών

Εργαστήριο Θερμικών Στροβιλομηχανών

Μονάδα Παράλληλης Υπολογιστικής

Ρευστοδυναμικής & Βελτιστοποίησης

Η Μέθοδος των Τεμνόμενων Κυψελών για την Πρόλεξη

2Δ/3Δ Ροών σε Σύνθετες Γεωμετρίες και τη

Βελτιστοποίηση Μορφής με τη Συζυγή Μέθοδο

Διδακτορική Διατριβή

Κωνσταντίνος Δ. Σαμούχος

Εξεταστική Επιτροπή:

1. Κυριάκος Γιαννάκογλου
∗
(Επιβλέπων), Καθηγητής, ΕΜΠ,

Σχολή Μηχανολόγων Μηχανικών

2. Ιωάννης Αναγνωστόπουλος
∗
, Καθηγητής, ΕΜΠ,

Σχολή Μηχανολόγων Μηχανικών

3. Σπυρίδων Βουτσινάς
∗
, Καθηγητής, ΕΜΠ,

Σχολή Μηχανολόγων Μηχανικών

4. Κωνσταντίνος Μαθιουδάκης, Καθηγητής, ΕΜΠ,

Σχολή Μηχανολόγων Μηχανικών

5. Κωνσταντίνος Μπελιμπασάκης, Καθηγητής, ΕΜΠ,

Σχολή Ναυπηγών Μηχανολόγων Μηχανικών

6. Δημήτριος Μπούρης, Αναπληρωτής Καθηγητής, ΕΜΠ,

Σχολή Μηχανολόγων Μηχανικών

7. Γεώργιος Παπαδάκης, Επίκουρος Καθηγητής, ΕΜΠ,

Σχολή Ναυπηγών Μηχανολόγων Μηχανικών

∗
Μέλος της Συμβουλευτικής Επιτροπής

Αθήνα, 2022



iv Κ. Δ. Σαμούχος



v

Περίληψη

Η διδακτορική διατριβή αναπτύσσει εκ του μηδενός ένα αυτοτελές σύνολο εργαλείων

με σκοπό τη ρευστοδυναμική ανάλυση και βελτιστοποίηση μορφής σε εφαρμογές της

μηχανικής των ρευστών. Η διατριβή στηρίζεται στη μέθοδο των τεμνόμενων κυψελών,

προκειμένου να άρει τις δυσκολίες που μπορεί να εισάγει η γένεση πλέγματος στην

ανάλυση και σχεδιασμό μηχανολογικών προϊόντων πολύπλοκης μορφής. Η μέθοδος

αυτή χρησιμοποιεί καρτεσιανά πλέγματα τα οποία καλύπτουν ολόκληρο το υπολογιστικό

χωρίο συμπεριλαμβανομένου του τμήματος που καταλαμβάνεται από τα στερεά σώματα.

Κατά την επίλυση της ροής, το στερεό μέρος του πλέγματος δεν χρησιμοποιείται και,

συνεπώς, αποκόπτεται εισάγοντας την έννοια των τεμνόμενων κυψελών. Πρόκειται για

ορθογώνιες παραλληλόγραμμες (2Δ) ή παραλληλεπίπεδες (3Δ) κυψέλες που τέμνονται

από το όριο της γεωμετρίας και τα οποία ανασχηματίζονται αποβάλλοντας το στερεό

τους τμήμα.

Η μέθοδος των τεμνόμενων κυψελών παρουσιάζει πολλά πλεονεκτήματα με βασικότερο

αυτό της γρήγορης και αυτόματης πλεγματοποίησης που παραμένει ανεξάρτητη από την

πολυπλοκότητα του υπολογιστικού χωρίου. Επιπλέον, η χρήση τους είναι πλεονεκτική

σε εφαρμογές που περιλαμβάνουν κινούμενα στερεά σώματα, καθώς αυτά μπορούν να

κινούνται ελεύθερα πάνω από το απαραμόρφωτο καρτεσιανό πλέγμα. ΄Ετσι, αποφεύγε-

ται εκ νέου πλεγματοποίηση ή χρήση εργαλείων παραμόρφωσης πλεγμάτων, των οποίων

η αποτελεσματικότητα είναι αμφίβολη σε περιπτώσεις έντονης μετατόπισης των στερε-

ών ορίων. ΄Οσον αφορά τη βελτιστοποίηση μορφής, η χρήση καρτεσιανών πλεγμάτων

κρίνεται ιδιαίτερα επωφελής. Σε αυτά τα προβλήματα, η αποφυγή διαρκούς γένεσης ή

παραμόρφωσης οριόδετων πλεγμάτων και των εγγενών δυσκολιών τους επιτρέπει την

αναζήτηση βέλτιστων λύσεων επιτρέποντας την ανάδειξη πιο εξεζητημένων γεωμετρι-

κών σχημάτων.

Αρχικά, η διατριβή παρουσιάζει μεθόδους αυτόματης και γρήγορης γένεσης πλέγματος

για την υποστήριξη της μεθόδου των τεμνόμενων κυψελών, με χαμηλές απαιτήσεις σε

υπολογιστική μνήμη. Η υψηλή ποιότητα των καρτεσιανών πλεγμάτων εξασφαλίζεται

με την ομαλή μεταβολή της πυκνότητάς τους κοντά στα στερεά όρια και σε περιοχές

που λαμβάνουν χώρα ροϊκά φαινόμενα ιδιαίτερου ενδιαφέροντος. Στο ίδιο πλαίσιο, ει-

σάγονται νέοι αλγόριθμοι, ικανοί να υπολογίσουν την ακριβή τομή των καρτεσιανών

κυψελών με τα στερεά όρια και να κατασκευάσουν τις αντίστοιχες τεμνόμενες κυψέλες

καλύπτοντας όλο το φάσμα των πιθανών γεωμετρικών υποπεριπτώσεων. Επιπλέον, α-

ποφεύγονται αριθμητικές αστάθειες κατά την αριθμητική επίλυση της ροής μέσω της



vi Κ. Δ. Σαμούχος

συνένωσης γειτονικών κυψελών αρκετά διαφορετικού μεγέθους. Ακόμα, παρουσιάζο-

νται μέθοδοι γρήγορης ανίχνευσης γειτονικών κυψελών, αρίθμησης κόμβων και εδρών,

καθώς και τεχνικές διάσπασης του πλέγματος σε επιμέρους τμήματα με σκοπό την

επίλυση της ροής σε πολυεπεξεργαστικό περιβάλλον.

Στη συνέχεια, παρουσιάζονται τα λογισμικά αριθμητικής επίλυσης συμπιεστής και α-

συμπίεστης ροής όπου, για ασυμπίεστες ροές, εφαρμόζεται η τεχνική της ψευδοσυ-

μπιεστότητας. Το προτεινόμενο σχήμα διακριτοποίησης επωφελείται από την ιδιαίτε-

ρη δομή του καρτεσιανού πλέγματος και βασίζεται σε μια κεντροκυψελική διατύπωση

πεπερασμένων όγκων, εφαρμόζοντας το σχήμα MUSCL και την κατά Roe προσεγγι-

στική λύση του προβλήματος Riemann. Σε περιπτώσεις κινούμενων στερεών ορίων, η

πύκνωση του πλέγματος μεταβάλλεται με το χρόνο ακολουθώντας την κίνησή τους. Ε-

φαρμόζονται καινοτόμες μέθοδοι μεταφοράς του πεδίου ροής στο πλέγμα της επόμενης

χρονικής στιγμής καθώς και τεχνικές χειρισμού των καρτεσιανών κυψελών, τα οποία

μεταπηδούν από τη στερεή στη ρευστή περιοχή του πλέγματος και αντίστροφα.

Η ακρίβεια του αναπτυχθέντος λογισμικού πιστοποιείται μέσω της σύγκρισης των υ-

πολογισμών του με αντίστοιχες πειραματικές μετρήσεις σε εφαρμογές που καλύπτουν

ένα ευρύ φάσμα περιπτώσεων εσωτερικής και εξωτερικής, ατριβούς ή στρωτής ροής.

Επιπλέον, παρουσιάζονται βιομηχανικές εφαρμογές που αναδεικνύουν τη χρηστικότητα

και αποτελεσματικότητα της μεθόδου. Αρχικά, μελετάται η ροή μέσα σε μια μηχανή

κύλισης, κάτι το οποίο σπανίζει στη βιβλιογραφία. Στη συνέχεια, εξετάζεται η ρευ-

στοδυναμική συμπεριφορά μιας διαφραγματικής αντλίας χωρίς βαλβίδες, όπου παρά τον

μεγάλο αριθμό κυψελών που σαρώνονται από το στερεό όριο κάθε χρονική στιγμή, το

λογισμικό εγγυάται τη διατήρηση της μάζας. Τέλος, προσομοιώνεται η ροή σε βαθμίδα

αντλίας εξόρυξης πετρελαίου μικτού τύπου όπου η μέθοδος των τεμνόμενων κυψελών

προτείνεται ως εναλλακτικός τρόπος αντιμετώπισης του προβλήματος αλληλεπίδρασης

της κινούμενης και της ακίνητης πτερύγωσης.

Σε προβλήματα βελτιστοποίησης μορφής, εφαρμόζονται η συνεχής και διακριτή συζυγής

διατύπωση για τον υπολογισμό της κλίσης της συνάρτησης στόχου. Οι μέθοδοι αυτές

είναι ιδιαίτερα προσφιλείς λόγω του ιδιαίτερα χαμηλού υπολογιστικού τους κόστους, το

οποίο παραμένει ανεξάρτητο του πλήθους των μεταβλητών σχεδιασμού που ελέγχουν

το σχήμα της εκάστοτε γεωμετρίας. Αξίζει να σημειωθεί, ότι η μαθηματική διατύπωση

των μεθόδων αυτών και ανάπτυξη του αντίστοιχου λογισμικού για συνεκτικές ή/και

μη-μόνιμες ροές σε πλέγματα τεμνόμενων κυψελών παρουσιάζεται για πρώτη φορά στη

βιβλιογραφία. ΄Οσον αφορά τη συνεχή διατύπωση, πραγματοποιείται διερεύνηση των

τρόπων διακριτοποίησης των συζυγών εξισώσεων και προτείνονται τα συζυγή ισοδύνα-



vii

μα των σχημάτων FVS, HLLC και Roe.

Η ανάπτυξη του λογισμικού της διακριτής συζυγούς μεθόδου βασίζεται στη δια χειρός

διαφόριση του αντίστοιχου λογισμικού επίλυσης της συμπιεστής και ασυμπίεστης ροής.

Ιδιαίτερη έμφαση δίδεται στο σωστό χειρισμό του χρονικού όρου, κάτι που συνεπάγε-

ται τη διαφόριση των αλγορίθμων που είναι υπεύθυνοι για τη σωστή μεταφορά του

στιγμιαίου πεδίου ροής στο πλέγμα της επόμενης χρονικής στιγμής. Στη συνέχεια,

το λογισμικό εφαρμόζεται σε προβλήματα βιομηχανικού σχεδιασμού, όπως η ελαχι-

στοποίηση των απωλειών ολικής πίεσης ενός αγωγού, η μεγιστοποίηση της άνωσης

πτέρυγας και η ελαχιστοποίηση της εφαπτομενικής ταχύτητας στην έξοδο βαθμίδας

αντλίας εξόρυξης πετρελαίου. Τέλος, χρησιμοποιείται στη βελτιστοποίηση πολλών

στόχων υπό περιορισμούς μιας διαφραγματικής αντλίας. Σε όλες τις περιπτώσεις, το

λογισμικό παρήγαγε γεωμετρικά σχήματα αυξημένης απόδοσης, επιβεβαιώνοντας την

αποτελεσματικότητα της αναπτυχθείσας μεθόδου.

Λέξεις κλειδιά: Εξισώσεις Navier-Stokes, Υπολογιστική Ρευστοδυναμική , Μέθο-

δος Τεμνόμενων Κυψελών Συμπιεστή Ροή, Ασυμπίεστη Ροή, Μη-Μόνιμη Ροή, Βελ-

τιστοποίηση Μορφής, Συνεχής Συζυγής Μέθοδος, Διακριτή Συζυγής Μέθοδος



viii Κ. Δ. Σαμούχος



ix

Ακρωνύμια

ΜΔΕ Μερική Διαφορική Εξίσωση

ΜΕΣ Μέθοδος Εμβαπτιζόμενων Σωμάτων

ΜΤΚ Μέθοδος Τεμνόμενων Κυψελών

ΠΔ Πεπερασμένες Διαφορές

ΥΡ Υπολογιστική Ρευστοδυναμική

EASY Evolutionary Algorithms SYstem

ESP Electrical Submersible Pump

PCE Polynomial Chaos Expansion

PCA Principal Component Analysis



x Κ. Δ. Σαμούχος



Περιεχόμενα

1 Εισαγωγή 1

1.1 Η Μέθοδος των Τεμνόμενων Κυψελών . . . . . . . . . . . . . . . . . . 3

1.2 Αεροδυναμική Βελτιστοποίηση σε Καρτεσιανά Πλέγματα . . . . . . . . 5

2 Γένεση Καρτεσιανού Πλέγματος Τεμνόμενων Κυψελών 7

2.1 Δενδρική Γένεση Πλέγματος . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Κατασκευή των Τεμνόμενων Κυψελών . . . . . . . . . . . . . . . . . . 11

2.3 Γένεση Πλέγματος σε Χρονικά Μεταβαλλόμενα Χωρία . . . . . . . . . 15

3 Διακριτοποίηση των Εξισώσεων Navier-Stokes 18

3.1 Διακριτοποίηση των Εξισώσεων Συμπιεστής ροής . . . . . . . . . . . . 18

3.2 Διακριτοποίηση των Εξισώσεων Ασυμπίεστης Ροής . . . . . . . . . . . 21

4 Η Συνεχής και Διακριτή ΄Εκφραση των Συζυγών Εξισώσεων

Ροής 22

4.1 Η Συνεχής Συζυγής Διατύπωση . . . . . . . . . . . . . . . . . . . . . 23

4.2 Η Διακριτή Συζυγής Διατύπωση . . . . . . . . . . . . . . . . . . . . . 24

5 Εφαρμογή της Μεθόδου των Τεμνόμενων Κυψελών στη Ρευ-

στοδυναμική Ανάλυση και Βελτιστοποίηση 25

5.1 Διηχητική Ατριβής Ροή γύρω από την Πτέρυγα ONERA M6 . . . . . . 26

5.2 Συμπιεστή Ροή εντός Μηχανής Κύλισης . . . . . . . . . . . . . . . . . 28

5.3 Βελτιστοποίηση Βαθμίδας Αντλίας Εξώρυξης . . . . . . . . . . . . . . 31

5.4 Βελτιστοποίηση μίας μικρής διαφραγματικής μη-βαλβιδοφόρου αντλίας . 33

6 Επίλογος 37

6.1 Ανακεφαλαίωση-Συμπεράσματα . . . . . . . . . . . . . . . . . . . . . . 37

6.2 Στοιχεία Πρωτοτυπίας . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

xi



xii Κ. Δ. Σαμούχος

Bibliography 39



Κεφάλαιο 1

Εισαγωγή

Ο επιστημονικός τομέας της Υπολογιστικής Ρευστοδυναμικής (ΥΡ) έχει γνωρίσει ση-

μαντική ανάπτυξη κατά τη διάρκεια των τελευταίων δεκαετιών λόγω της αύξησης της

ισχύος των σύγχρονων υπολογιστικών συστημάτων και της ωρίμανσης των αριθμητι-

κών μεθόδων επίλυσης συστημάτων μη-γραμμικών Μερικών Διαφορικών Εξισώσεων

(ΜΔΕ). Η εξέλιξη αυτή επέτρεψε τη χρήση λογισμικών ΥΡ στη ρευστοδυναμική α-

νάλυση και βελτιστοποίηση σε όλο και πιο απαιτητικές βιομηχανικές εφαρμογές. Η

συνεπαγόμενη αύξηση της ζήτησης για αξιόπιστα και αυτοματοποιημένα λογισμικά που

να μπορούν να ανταποκριθούν σε προβλήματα, τα οποία περιλαμβάνουν περίπλοκες κι-

νούμενες ή μη γεωμετρίες, έθεσε τη γένεση υπολογιστικού πλέγματος ως ένα από τα

κυριότερα προβλήματα προς επίλυση ή βελτίωση.

Μια από τις πιο ελπιδοφόρες τεχνικές αυτόματης πλεγματοποίησης περίπλοκων χωρίων

είναι η Μέθοδος των Εμβαπτιζόμενων Σωμάτων (ΜΕΣ). Σύμφωνα με αυτήν, το υπο-

λογιστικό χωρίο καλύπτεται εξ ολοκλήρου με ένα εύκολα κατασκευάσιμο καρτεσιανό

πλέγμα, το οποίο εκτείνεται τόσο στην περιοχή της ροής όσο και στην περιοχή που

καταλαμβάνεται από στερεά σώματα. Συνεπώς, αντίθετα με τις συνήθεις πρακτικές,

το πλέγμα δεν είναι προσδεδεμένο στην επιφάνεια της γεωμετρίας. ΄Ετσι, το πρόβλη-

μα πλεγματοποίησης αντικαθίσταται από το πρόβλημα διαχείρισης των εμβαπτιζόμενων

στερεών ορίων. Η διαφορά των καρτεσιανών πλεγμάτων από ένα οριόδετο πλέγμα

γίνεται κατανοητή μέσω του σχήματος 1.2, όπου οι δύο τεχνικές εφαρμόζονται για

πρόλεξη της ροής γύρω από μια αεροτομή.

΄Ενα μεγάλο πλεονέκτημα της μεθόδου αυτής έγκειται στην αντιμετώπιση κινούμενων

γεωμετριών, οι οποίες μπορούν να μετακινούνται πάνω στο Καρτεσιανό πλέγμα χωρίς

1



2 Κ. Δ. Σαμούχος

να το παραμορφώνουν. Αυτό επιτρέπει τη διαχείριση έντονα κινούμενων στερεών σω-

μάτων χωρίς να επηρεάζεται η ποιότητα του πλέγματος. Μια αντιπαραβολή μεταξύ της

μεθόδου ΜΕΣ και της παραδοσιακής τεχνικής προσδεδεμένων στο όριο πλεγμάτων φα-

ίνεται στο σχήμα 1.1. Στο σχήμα παρουσιάζεται και η μέθοδος των επικαλυπτόμενων

πλεγμάτων [5], η οποία, ενώ μπορεί εξ ίσου καλά να αντιμετωπίσει έντονες μεταβολές

του ορίου, δυσκολεύεται να επιβάλει τους νόμους διατήρησης μάζας, ορμής και ενέρ-

γειας χωρίς τη χρήση περίπλοκων σχημάτων μεταφοράς της πληροφορίας από το ένα

πλέγμα στο άλλο.

(αʹ) (βʹ)

(γʹ)

Σχήμα 1.1: (α΄) Η κίνηση του κυλίνδρου οδηγεί στην έντονη παραμόρφωση του μη

δομημένου οριόδετου πλέγματος, οδηγώντας στη δημιουργία μη αποδεκτών αναδιπλω-

μένων κυψελών. (β΄) ΄Ενα οριόδετο πλέγμα (πράσινο) κινείται μαζί με τον κύλινδρο,

στον οποίο είναι προσδεδεμένο, πάνω σε ένα απαραμόρφωτο καρτεσιανό πλέγμα (μπλε).

(γ΄) Ο κύλινδρος κινείται πάνω σε ένα καρτεσιανό πλέγμα σαρώνοντας κυψέλες, οι ο-

ποίες μεταπηδούν από τη στερεά στη ρευστή περιοχή του πλέγματος και αντίστροφα.

Ανατύπωση σχημάτων από [31].



1.1. Η Μέθοδος των Τεμνόμενων Κυψελών 3

1.1 Η Μέθοδος των Τεμνόμενων Κυψελών

Η μεγαλύτερη δυσκολία που αντιμετωπίζουν οι ΜΕΣ είναι η επιβολή των συνθηκών μη-

εισχώρησης και μη-ολίσθησης κατά μήκος των στερεών τοιχωμάτων. Πολλές τεχνικές

έχουν προταθεί για την επίλυση του προβλήματος, [30]. Μια από τις πιο ακριβείς

μεθόδους της οικογένειας των ΜΕΣ είναι η μέθοδος των τεμνόμενων κυψελών (ΜΤΚ),

σύμφωνα με την οποία το τμήμα του πλέγματος που καταλαμβάνεται από τη γεωμετρία

αποκόπτεται δημιουργώντας τις λεγόμενες τεμνόμενες κυψέλες.

Συγκεκριμένα, πρόκειται για κυψέλες του καρτεσιανού πλέγματος, όπου ένα τμήμα τους

βρίσκεται στην περιοχή της ροής και το άλλο καλύπτεται από το στερεό σώμα, το οποίο

κι αποβάλλουν σχηματίζοντας πολυεδρικούς όγκους ελέγχου. Το σχήμα 1.2 συγκρίνει

ένα οριόδετο πλέγμα, ένα καρτεσιανό πλέγμα όπως χρησιμοποιείται στις περισσότερες

ΜΕΣ και το ίδιο πλέγμα, αφότου έχει αποκοπεί το τμήμα του στη στερεή περιοχή.

Συνεπώς, η ΜΤΚ μπορεί να θεωρηθεί ως μια επέκταση των οριόδετων πλεγμάτων

διατηρώντας παράλληλα και τα πλεονεκτήματα της χρήσης καρτεσιανών πλεγμάτων.

Η ΜΤΚ προτάθηκε πρώτη φορά στη βιβλιογραφία το 1979 από τους Purvis et al. [35]

και στη συνέχεια εφαρμόστηκε από τους Wedan et al. [47] το 1983 για εξισώσεις

τύπου δυναμικού. Αργότερα, το 1986, οι Clarke et al. [9] εφάρμοσαν την ΜΤΚ στις

2Δ εξισώσεις Euler και οι Gaffney et al. [16] επέκτειναν τη μέθοδο σε 3Δ εφαρμογές.

Στα τέλη της δεκαετίας του ‘80 εμφανίστηκαν οι πρώτες τεχνικές προσαρμογής του

καρτεσιανού πλέγματος τόσο στη διεπιφάνεια μεταξύ στερεού και ρευστού όσο και

σε ροϊκά φαινόμενα όπως τα κύματα κρούσης, που απαιτούν υψηλότερης πυκνότητας

πλέγματα [37]. Η πρώτη εφαρμογή σε συνεκτικές ροές έγινε από τους Quirk [36] και

Coirier et al. [10] για 2Δ ασυμπίεστα ρευστά και από τους Hartmann et al. [18] για

3Δ συμπιεστά ρευστά. Τέλος, η ΜΤΚ έχει χρησιμοποιηθεί για την επίλυση τυρβωδών

ροών [6].

Η πρόλεξη μη-μόνιμων ροών γύρω από κινούμενα στερεά όρια κατέδειξε νέα προβλήμα-

τα που πρέπει να αντιμετωπιστούν, προκειμένου να διατηρηθεί η ακρίβεια της μεθόδου.

Η κυριότερη δυσκολία έγκειται στην ξαφνική εμφάνιση ή εξαφάνιση κυψελών από το

υπολογιστικό χωρίο λόγω της σάρωσής τους από τα κινούμενα σώματα. Η διακρι-

τοποίηση των εξισώσεων ροής σε αυτές τις κυψέλες χρειάζεται προσοχή, έτσι ώστε

να αποφευχθούν τεχνητές πηγές ή καταβόθρες μάζας, ορμής ή ενέργειας. ΄Εχουν

προταθεί διάφορες μέθοδοι για την αντιμετώπιση αυτού του φαινομένου, όπως ο δια-

μοιρασμός της απώλειας ή περίσσειας μάζας σε γειτονικές κυψέλες [40], η συνένωση



4 Κ. Δ. Σαμούχος

των εμφανιζόμενων ή εξαφανιζόμενων κυψελών με γειτονικές τους [4].

(αʹ)

(βʹ) (γʹ)

Σχήμα 1.2: (α΄) Οριόδετο μη-δομημένο πλέγμα γύρω από μεμονωμένη αεροτομή. (β΄)

Εμβαπτιζόμενη αεροτομή εντός καρτεσιανού πλέγματος. (γ΄) Το στερεό τμήμα του

καρτεσιανού πλέγματος έχει αποκοπεί σχηματίζοντας το πλέγμα της ΜΤΚ.

Παρά την ανάπτυξη διάφορων παραλλαγών της ΜΤΚ και της εφαρμογής τους σε με-

γάλο φάσμα προβλημάτων, παραμένει ακόμα η ανάγκη για ακόμα ακριβέστερες τεχνι-

κές τόσο σε μόνιμες όσο και σε μη-μόνιμες ροές. Η διατριβή συμβάλλει σε αυτήν την

προσπάθεια, προτείνοντας αλγορίθμους αυτόματης γένεσης πλέγματος και κατασκευής

των τεμνόμενων κυψελών σε περίπλοκα χωρία, που ελαχιστοποιούν την αλληλεπίδρα-

ση λογισμικού-χρήστη. Για εφαρμογές κινούμενων γεωμετριών, αναπτύσσεται μια νέα

μέθοδος που επιτρέπει τη διατήρηση της μάζας, ορμής και ενέργειας ακόμα και κατά την

έντονη μετατόπιση των στερεών σωμάτων. Το προκύπτον λογισμικό πιστοποιείται σε

εφαρμογές συμπιεστού ή ασυμπίεστου ρευστού, εσωτερικής ή εξωτερικής ρευστοδυνα-

μικής. Τέλος, εφαρμόζεται σε μια σειρά από βιομηχανικές εφαρμογές αναδεικνύοντας

τα πλεονεκτήματα της ΜΤΚ έναντι των παραδοσιακών τεχνικών βασισμένων σε ορι-

όδετα πλέγματα.



1.2. Αεροδυναμική Βελτιστοποίηση σε Καρτεσιανά Πλέγματα 5

1.2 Αεροδυναμική Βελτιστοποίηση σε Καρτε-

σιανά Πλέγματα

Η βελτιστοποίηση μορφής αφορά το μετασχηματισμό της υπό εξέταση γεωμετρίας προ-

κειμένου να αυξηθεί η αεροδυναμική ή υδροδυναμική της απόδοση. Το σχήμα της

γεωμετρίας ελέγχεται από ένα σύνολο μεταβλητών, τις επονομαζόμενες μεταβλητές

σχεδιασμού (~b), ενώ η προς μεγιστοποίηση ή ελαχιστοποίηση ρευστοδυναμική ποσότη-

τα ονομάζεται συνάρτηση στόχος (F ) και ο υπολογισμός της προϋποθέτει την επίλυση

των εξισώσεων ροής. Η διδακτορική διατριβή εφαρμόζει μεθόδους βελτιστοποίησης

που υπολογίζουν και χρησιμοποιούν τις παραγώγους της F ως προς ~b, τις λεγόμε-

νες και παραγώγους ευαισθησίας. Συγκεκριμένα, επιλέγεται η μέθοδος των συζυγών

κλίσεων [14], η οποία ξεκινά από μια αρχική γεωμετρία ακολουθεί την κατεύθυνση που

προσδιορίζεται από το διάνυσμα ~p, οι συνιστώσες του οποίου υπολογίζονται σε κάθε

κύκλο ως

pnewi = − ∂F

∂bi

∣∣∣∣new + βnewpoldi

όπου βnew είναι πραγματικός αριθμός εξαρτώμενος από τις παραγώγους της F σε

προηγούμενους κύκλους βελτιστοποίησης.

Σε πρακτικές εφαρμογές, ο υπολογισμός των παραγώγων ∂F/∂bi είναι αρκετά δύσκο-

λος λόγω της απουσίας αναλυτικής έκφρασης για την F . ΄Ενας άμεσος αλλά πολύ

ακριβός τρόπος για την προσέγγιση της τιμής τους είναι η μέθοδος των Πεπερασμένων

Διαφορών (ΠΔ), που απαιτεί την επίλυση των ροϊκών ΜΔΕ 2N φορές, όπου N ο

αριθμός των bi. Εδώ, λόγω του κόστους της, η μέθοδος αυτή χρησιμοποιείται μόνο

επιλεκτικά για την επαλήθευση της ακρίβειας των παραγώγων της συζυγούς τεχνικής,

της οποίας το υπολογιστικό κόστος είναι ανεξάρτητο του N [34].

Η βασική στρατηγική που ακολουθεί η συζυγής μέθοδος βασίζεται στον ορισμό των

συζυγών πεδιακών μεταβλητών, οι οποίες επαληθεύουν τις συζυγείς ΜΔΕ, το κόστος

της αριθμητικής επίλυσης των οποίων είναι εφάμιλλο του κόστους επίλυσης των ΜΔΕ

του πρωτεύοντος προβλήματος, δηλαδή των εξισώσεων ροής. Σύμφωνα με τη μέθοδο

αυτή, οι ∂F/∂bi εκφράζονται συναρτήσει των μεταβλητών ροής και των αντίστοιχων

συζυγών μεταβλητών και ο υπολογισμός τους επιτυγχάνεται με απλή αντικατάστασή

τους στην έκφραση των παραγώγων ευαισθησίας.

Η συζυγής μέθοδος συναντάται στη βιβλιογραφία με δύο εναλλακτικές διατυπώσεις,

τη συνεχή [2] και τη διακριτή [17]. Η συνεχής διατύπωση παραγωγίζει τις ΜΔΕ του



6 Κ. Δ. Σαμούχος

πρωτεύοντος προβλήματος καταλήγοντας στην αναλυτική έκφραση των συζυγών ΜΔΕ

και της έκφρασης των παραγώγων ευαισθησίας. Στη συνέχεια, επιλέγεται ένα σχήμα

διακριτοποίησης αντίστοιχο του σχήματος που χρησιμοποιήθηκε για της εξισώσεις ρο-

ής. ΄Ετσι, η επίλυση των συζυγών ΜΔΕ παρουσιάζει πολλές ομοιότητες με το ροϊκό

πρόβλημα καθιστώντας εύκολη την ανάπτυξη του συζυγούς λογισμικού. Αντίθετα, ένα

μειονέκτημα της μεθόδου έγκειται στο γεγονός ότι η επιλογή του συζυγούς σχήματος

διακριτοποίησης δεν είναι προφανής και μια ατυχής επιλογή πιθανώς να οδηγήσει σε

λανθασμένη εκτίμηση των παραγώγων ευαισθησίας.

Σε αντιδιαστολή με τη συνεχή διατύπωση, η διακριτή τεχνική παραγωγίζει τη διακριτή

έκφραση των ΜΔΕ του πρωτεύοντος προβλήματος, οδηγώντας στη διακριτή έκφραση

των συζυγών ΜΔΕ και της έκφρασης των παραγώγων ευαισθησίας. ΄Ετσι, η μέθοδος

υπολογίζει την ακριβή τιμή των ∂F/∂bi. Παρόλ’ αυτά το συζυγές σχήμα προκύπτει

αρκετά πιο περίπλοκο, δυσχεραίνοντας την ανάπτυξη του αντίστοιχου συζυγούς λογι-

σμικού, με συγκριτικά μεγαλύτερες απαιτήσεις σε υπολογιστική μνήμη, [33].

Η διατριβή υιοθετεί και τις δύο διατυπώσεις της συζυγούς μεθόδου. Επιπλέον, συν-

δυάζει τα πλεονεκτήματα της ΜΤΚ με το χαμηλό κόστος των συζυγών τεχνικών, πα-

ρουσιάζοντας ένα ισχυρό υπολογιστικό εργαλείο για τη βελτιστοποίηση σε πρακτικές

εφαρμογές. Συγκεκριμένα, η χρήση καρτεσιανών πλεγμάτων υπερέχει έναντι άλλων

τεχνικών, καθώς δεν απαιτεί την παραμόρφωση του πλέγματος λόγω της μεταβολής

του σχήματος της γεωμετρίας κατά τη βελτιστοποίηση. ΄Ετσι, αποφεύγει τον πρόω-

ρο τερματισμό της βελτιστοποίησης λόγω αστοχίας του πλέγματος, κάτι που ενίοτε

συμβαίνει σε μεθόδους βασισμένες σε οριόδετα πλέγματα. Η εφαρμογή των συζυγών

τεχνικών σε ΜΕΣ εμφανίζεται ιδιαίτερα σπάνια στη βιβλιογραφία [12], [19] και ακόμα

λιγότερο σε ΜΤΚ. Η μόνη γνωστή στο συγγραφέα εργασία παρουσιάζει τη διακριτή

διατύπωση εφαρμοσμένη σε πλέγματα τεμνόμενων κυψελών για τη βελτιστοποίηση σε

μόνιμες ατριβείς ροές [32]. Συνεπώς, μια από τις μεγαλύτερες καινοτομίες της διατρι-

βής συνιστά το συνδυασμό της συνεχούς και διακριτής διατύπωσης με τη ΜΤΚ σε

προβλήματα βελτιστοποίησης συνεκτικών ή/και μη-μόνιμων ροών.



Κεφάλαιο 2

Γένεση Καρτεσιανού Πλέγματος

Τεμνόμενων Κυψελών

Το κεφάλαιο αυτό παρουσιάζει τις γενικές αρχές που διέπουν τη διαδικασία της πλεγ-

ματοποίησης και εξετάζει κάποια ιδιαίτερα χαρακτηριστικά της.

2.1 Δενδρική Γένεση Πλέγματος

Η διαδικασία δημιουργίας ενός 3Δ πλέγματος ξεκινά με τον ορισμό του υπολογιστικού

χωρίου σχήματος ορθογώνιου παραλληλεπιπέδου διαστάσεων dx×dy×dz. Η επιφάνεια

της υπό μελέτη γεωμετρίας διακριτοποιείται με τη βοήθεια τριγωνικών στοιχείων. Το

χωρίο διασπάται σε 8 ίσες κυψέλες (4 κυψέλες για 2Δ πλέγματα), οι οποίες θα ονομάζο-

νται απόγονοι της αρχικής κυψέλης. Η διάσπαση μπορεί να αποτυπωθεί με τη βοήθεια

μιας δενδρικής δομής, όπου η κάθε κυψέλη αντιπροσωπεύεται από ένα σημείο, το οποίο

συνδέεται με τους απογόνους του μέσω ευθύγραμμων τμημάτων. ΄Ενα παράδειγμα ενός

2Δ πλέγματος φαίνεται στο σχήμα 2.1.

Η διαδοχική διαίρεση των κυψελών συνεχίζει έως ότου το μέγεθός τους να μην υπερβα-

ίνει μια συγκεκριμένη τιμή που ορίζεται από τον χρήστη. Η διαδικασία της διχοτόμησης

καθοδηγείται από την παρουσία των στερεών σωμάτων. ΄Ετσι, εντοπίζονται οι κυψέλες

που τέμνονται από το στερεό όριο, οι οποίες παράγουν νέες γενιές κελιών. Οι νέες

κυψέλες ελέγχονται ξανά, έτσι ώστε να εντοπιστούν οι τεμνόμενες, οι οποίες θα υπο-

βληθούν στην ίδια διαδικασία. Ο αλγόριθμος σταματά όταν όλες οι τεμνόμενες κυψέλες

7



8 Κ. Δ. Σαμούχος

γίνουν μικρότερες ενός προκαθορισμένου μεγέθους. Προκειμένου να αποφευχθεί η

γειτνίαση αρκετά διαφορετικών σε μέγεθος κυψελών, επιβάλλεται ο περιορισμός του

μέγιστου αριθμού γειτόνων μέσω της ίδιας έδρας σε τέσσερις. ΄Ετσι, κατά τη διάρκεια

της γένεσης πλέγματος, κάθε κυψέλη που παραβιάζει αυτόν τον περιορισμό διασπάται

σε μικρότερες κυψέλες και η πύκνωση του πλέγματος πάνω στο στερεό όριο μετα-

φέρεται και σε εσωτερικές κυψέλες. Το αποτέλεσμα αυτής της μεθόδου παρουσιάζεται

στο σχήμα 2.2, όπου δημιουργείται πλέγμα γύρω από αεροτομή εντός τετραγωνικού

χωρίου.

(αʹ)

(βʹ)

Σχήμα 2.1: (α΄) Η αρχική κυψέλη 0 διαχωρίζεται σε 4 απογόνους με αύξοντες αριθμούς

1, 2, 3, και 4. Στη συνέχεια, η κυψέλη 3 διαχωρίζεται εκ νέου στις κυψέλες 5, 6, 7,

και 8. (β΄) Η παραπάνω διαδικασία αποτυπώνεται με τη βοήθεια της δενδρικής δομής,

όπου κάθε σημείο αντιστοιχεί σε μια κυψέλη. Το μπλε χρώμα σηματοδοτεί τις κυψέλες

του τελικού πλέγματος.



2.1. Δενδρική Γένεση Πλέγματος 9

(αʹ) (βʹ)

Σχήμα 2.2: (α) Το τετραγωνικό χωρίο γύρω από την αεροτομή καταλαμβάνεται από

την αρχική κυψέλη της δενδρικής δομής. (β΄) Προκύπτον καρτεσιανό πλέγμα, το οποίο

έχει προσαρμοστεί στο στερεό όριο.

΄Οπως φαίνεται και από το ανωτέρω σχήμα, η αραίωση του πλέγματος με την αύξηση

της απόστασης από το στερεό όριο είναι αρκετά απότομη για να υποστηρίξει την ακριβή

επίλυση των εξισώσεων ροής. ΄Ετσι, ακολουθεί επεξεργασία του πλέγματος με σκοπό

την ομαλότερη μεταβολή της πυκνότητάς του. Στην περίπτωση του παραδείγματος της

αεροτομής, το αποτέλεσμα της εξομάλυνσης φαίνεται στο σχήμα 2.3.

(αʹ) (βʹ)

Σχήμα 2.3: (α΄) Πλέγμα του παραδείγματος του σχήματος 2.2 πριν (α΄) και μετά (β΄)

την εξομάλυνση της μεταβολής της πυκνότητάς του.



10 Κ. Δ. Σαμούχος

Η δενδρική δομή και καρτεσιανή φύση του πλέγματος επιτρέπουν την πολύ οικονομι-

κή αποθήκευσή του. Συγκεκριμένα, για την αρίθμηση των κυψελών χρησιμοποιείται

ένα σύστημα τριών (ή δύο για 2Δ) ακεραίων εμπνευσμένο από την ονοματολογία των

κόμβων ενός δομημένου πλέγματος. ΄Ετσι, για κάθε κυψέλη αποθηκεύονται μόνο οι

αριθμοί (i, j, k), οι οποίοι χρησιμοποιούνται για τον υπολογισμό όλων των απαραίτητων

γεωμετρικών μεγεθών [21]. Η ονοματολογία ξεκινά με την αρχική κυψέλη του πλέγ-

ματος, η οποία αντιστοιχεί εξ ορισμού στην τριάδα (1, 1, 1). Η αρίθμηση κάθε νέας

κυψέλης εξαρτάται από αυτήν του γονέα της σύμφωνα με τον κανόνα που εικονίζεται

στο σχήμα 2.4.

(αʹ)

(βʹ)

(γʹ)

Σχήμα 2.4: (α΄) Μια τυχαία κυψέλη που αντιστοιχεί στην τριάδα αρίθμησης (i, j, k)

υποδιαιρείται σε 8 απογόνους. Οι τριάδες των αριθμών που τους αντιστοιχούν φαίνονται

στα σχήματα (β΄) και (γ΄) για την άνω και κάτω τετράδα αντίστοιχα.



2.2. Κατασκευή των Τεμνόμενων Κυψελών 11

2.2 Κατασκευή των Τεμνόμενων Κυψελών

Η κατασκευή των πολυεδρικών τεμνόμενων κυψελών ξεκινά με την ανίχνευση των

τριγωνικών επιφανειακών στοιχείων της γεωμετρίας, τα οποία συμπεριλαμβάνονται εξ

ολοκλήρου ή κατά μέρος εντός κάθε κυψέλης. Στη συνέχεια, το τμήμα κάθε τριγώνου

που ῾῾βρέχεται᾿᾿ από το ρευστό αποκόπτεται προκειμένου να οριοθετηθεί η έδρα του

τελικού όγκου ελέγχου. Κατά τη διαδικασία αυτή, εφαρμόζεται ο αλγόριθμος των

Sutherland & Hodgman [43], προκειμένου να υπολογιστεί το ορατό τμήμα ενός πολυ-

γωνικού αντικειμένου μέσα από ένα παράθυρο κυρτού πολυγωνικού σχήματος. Στην

περίπτωση των τεμνόμενων κυψελών το αντικείμενο είναι το τριγωνικό επιφανειακό

στοιχείο και το παράθυρο είναι η κυψέλη.

Η λειτουργία του αλγόριθμου γίνεται πιο κατανοητή μέσα από το παράδειγμα του σχήμα-

τος 2.5, όπου εντοπίζεται το τμήμα του σκιαζόμενου τριγώνου, το οποίο είναι ορατό

μέσα από ένα τετραγωνικό παράθυρου. Η διαδικασία χωρίζεται σε τέσσερα βήματα, δη-

λαδή όσα και οι ακμές του παράθυρου. Σε κάθε βήμα επεκτείνεται η αντίστοιχη ακμή

χωρίζοντας το επίπεδο σε δύο ημιεπίπεδα με το πρώτο εξ αυτών να συμπεριλαμβάνει

το τετράγωνο. Υπολογίζονται οι τομές της επαυξημένης ακμής με το τρίγωνο και α-

ποκόπτεται το τμήμα το οποίο ανήκει στο δεύτερο ημιεπίπεδο. Το προκύπτον σχήμα

εισάγεται στο δεύτερο βήμα, όπου επαναλαμβάνεται η ίδια διαδικασία για την επόμενη

ακμή. Η εφαρμογή του αλγορίθμου σε μια καρτεσιανή κυψέλη φαίνεται στο σχήμα 2.6.

Σχήμα 2.5: Γεωμετρική αναπαράσταση του αλγορίθμου Sutherland & Hodgman.

Κάθε ακμή του τετραγώνου επεκτείνεται και το μη-ορατό τμήμα του σκιαζόμενου α-

ντικειμένου αποκόπτεται.



12 Κ. Δ. Σαμούχος

(αʹ) (βʹ) (γʹ) (δʹ)

(εʹ) (ϛʹ) (ζʹ) (ηʹ)

(θʹ) (ιʹ) (ιαʹ) (ιβʹ)

(ιγʹ) (ιδʹ) (ιεʹ) (ιϛʹ)

Σχήμα 2.6: Η επιφάνεια του στερεού σώματος, που εικονίζεται με κόκκινο χρώμα, απο-

κόπτεται σε διαδοχικά στάδια διατηρώντας μόνο το τμήμα της γεωμετρίας που βρίσκεται

εντός της καρτεσιανής κυψέλης.

Τέλος, σχηματίζονται οι υπόλοιπες πολυγωνικές έδρες με τις οποίες επικοινωνεί η

κυψέλη με τις γειτονικές της. Το σχήμα 2.7αʹ παρουσιάζει με μπλε χρώμα τις εν λόγω

έδρες της τεμνόμενης κυψέλης του σχήματος 2.6. ΄Ετσι, ολοκληρώνεται η κατασκευή

του όγκου ελέγχου, ο οποίος φαίνεται με τριδιάστατη σκίαση στο σχήμα 2.7βʹ.



2.2. Κατασκευή των Τεμνόμενων Κυψελών 13

(αʹ) (βʹ)

Σχήμα 2.7: (α΄) Σχηματισμός των εδρών της τεμνόμενης κυψέλης του σχήματος 2.6

που κείνται εντώς του ρέοντος ρευστού. (β΄) Τριδιάστατη απεικόνιση της τεμνόμενης

κυψέλης.

Η μέθοδος που αναπτύχθηκε κατά τη διάρκεια της διατριβής μπορεί να αντιμετωπίσει

οποιαδήποτε περίπτωση τομής μεταξύ του πλέγματος και της γεωμετρίας ακόμα και

σε περιπτώσεις που θεωρούνται ιδιάζουσες και συνήθως αποφεύγονται από άλλα λο-

γισμικά λόγω της υψηλής πολυπλοκότητάς τους. Η τοπική πύκνωση του πλέγματος

ακολουθείται συχνά προκειμένου να αποφευχθεί ο υπολογισμός τοπολογικά περίπλο-

κων τομών, κάτι που όμως αυξάνει το υπολογιστικό κόστος της επίλυσης της ροής

και, συνεπώς, δεν υιοθετήθηκε. Παραδείγματα απαιτητικών περιπτώσεων που μπορεί

να αντιμετωπίσει ο προτεινόμενος αλγόριθμος παρουσιάζονται στο σχήμα 2.8.

(αʹ) (βʹ) (γʹ)

Σχήμα 2.8: Ιδιάζουσες περιπτώσεις τομής κυψελών από το στερεό όριο. (α΄) Κυψέλη

που τέμνεται από δύο διαφορετικές πλευρές (β΄) Κυψέλη που έχει διαχωριστεί σε 3

επιμέρους τμήματα. (γ΄) Διάτρηση κυψέλης από στερεό σώμα.



14 Κ. Δ. Σαμούχος

Η κατασκευή των τεμνόμενων κυψελών επιτρέπει την απόσχιση και αποβολή του στε-

ρεού μέρους του πλέγματος. Το σχήμα 2.9 παρουσιάζει το καρτεσιανό πλέγμα, όπως

κατασκευάστηκε από τον αλγόριθμο της ενότητας 2.1 και το προκύπτον πλέγμα μετά

την κατασκευή των τεμνόμενων κυψελών και την αποβολή των κυψελών που βρίσκονται

εξολοκλήρου μέσα στο στερεό σώματος.

(αʹ) (βʹ)

Σχήμα 2.9: (α΄) Πλέγμα γύρω απο αεροτομή όπως φαίνεται στο σχήμα 2.3βʹ. (β΄)

Προκύπτον πλέγμα μετά την αποκοπή του στερεού του τμήματος

΄Ομως, το πλέγμα αυτό δεν είναι ακόμα κατάλληλο προς χρήση για την επίλυση της

ροής, επειδή μικρά θραύσματα κυψελών συνορεύουν με αρκετά μεγαλύτερες κυψέλες

προκαλώντας αριθμητική αστάθεια κατά την επίλυση των εξισώσεων ροής. ΄Εχουν

προταθεί πλείστες τεχνικές για την αντιμετώπιση αυτού του φαινομένου [49], [26]. Η

μέθοδος που εφαρμόζεται στη διατριβή βασίζεται στην τεχνική της γεωμετρικής συγ-

χώνευσης των μικρών κελιών με άλλα μεγαλύτερα [22] λόγω της αυξημένης ακρίβειας

πρόλεξης της ροής που προσφέρει. Η συγχώνευση αυτή δημιουργεί νέους ενιαίους

όγκους ελέγχου και οι μεταβλητές της ροής αποθηκεύονται στο βαρύκεντρο του συσ-

σωματώματος. Το σχήμα 2.10αʹ παρουσιάζει δύο μικρές κυψέλες που συνενώνονται με

τις γειτονικά τους, ενώ το σχήμα 2.10βʹ φανερώνει τη δυνατότητα του λογισμικού να

προσαρτά παραπάνω της μιας κυψέλες σε έναν ενιαίο όγκο ελέγχου.



2.3. Γένεση Πλέγματος σε Χρονικά Μεταβαλλόμενα Χωρία 15

(αʹ) (βʹ)

Σχήμα 2.10: (α΄) Δυο μικρές κυψέλες συγχωνεύονται με δύο γείτονές τους όπως δείχνει

το βέλος. Ο ομοιόμορφος χρωματισμός καταδεικνύει τα προκύπτοντα συσσωματώματα.

(β΄) Τέσσερις μικρές κυψέλες ενώνονται προκειμένου να σχηματίσουν έναν ενιαίο όγκου

ελέγχου μεγαλύτερου μεγέθους.

2.3 Γένεση Πλέγματος σε Χρονικά Μεταβαλ-

λόμενα Χωρία

Η γένεση καρτεσιανού πλέγματος γύρω από κινούμενες γεωμετρίες παρουσιάζει ιδιαι-

τερότητες, οι οποίες δε συναντώνται σε οριόδετα πλέγματα και απαιτείται συνεχής

προσαρμογή του πλέγματος στο στερεό όριο μετά από κάθε κίνησή του, σχήμα 2.11.

Συγκεκριμένα, οι περιοχές κοντά στην προγενέστερη θέση της γεωμετρίας υποβάλλο-

νται σε διαδικασία αραίωσης ενώ κελιά κοντά στη νέα θέση της διασπώνται αυξάνοντας

την πύκνωση του πλέγματος. ΄Ετσι, διατηρείται η ακρίβεια της διακριτοποίησης των

ροϊκών ΜΔΕ κοντά στα κινούμενα στερεά τοιχώματα καθόλη τη διάρκεια της προσο-

μοίωσης. Παρόλ’ αυτά η μεταβολή της τοπολογίας του πλέγματος κάθε χρονική στιγμή

επιβάλλει τη μεταφορά των μεγεθών του πεδίου ροής από το παλαιό πλέγμα στο νέο

προκειμένου να διασφαλιστεί η ιστορική συνέχεια των μεταβλητών ροής. Εκμεταλλευ-

όμενη την καρτεσιανή δομή των εν λόγω πλεγμάτων, η διαδικασία αυτή γίνεται εύκολα

και γρήγορα καθώς περιλαμβάνει μόνο δύο περιπτώσεις παρεμβολής, 2.12. Στην πρώτη

περίπτωση, μια κυψέλη της παλαιάς χρονικής στιγμής διασπάται σε επιμέρους κυψέλες,

ενώ στη δεύτερη μια ομάδα κυψελών συγχωνεύονται σε μια.



16 Κ. Δ. Σαμούχος

(αʹ) (βʹ)

Σχήμα 2.11: Μια μεμονωμένη αεροτομή πραγματοποιεί μεταφορική κίνηση σε καρτε-

σιανό πλέγμα, το οποίο προσαρμόζεται σε κάθε χρονική στιγμή παρακολουθώντας την

κίνησή της.

(αʹ) (βʹ)

Σχήμα 2.12: Περιοχή πλέγματος η οποία μεταβάλλεται μεταξύ δύο διαδοχικών χρονι-

κών στιγμών. Το διπλό βέλος σηματοδοτεί τη δυνατότητα αραίωσης ή πύκνωσης του

πλέγματος.

Η χρήση μόνο του εκτεθειμένου στη ροή τμήματος του πλέγματος προκαλεί δυσκολίες

σε χρονικά μεταβαλλόμενα χωρία καθώς το κινούμενο στερεό σώμα καλύπτει ή αποκα-

λύπτει κυψέλες στο πέρασμά του. ΄Ενα παράδειγμα φαίνεται στο σχήμα 2.13, όπου πριν

τη μετατόπιση του στερεού ορίου, σχήμα 2.13αʹ, μόνο η άνω κυψέλη συμμετέχει στην

επίλυση των εξισώσεων ροής. Στη συνέχεια, το τοίχωμα κινείται προς τα κάτω και

αποκαλύπτει ένα μέρος της κάτω κυψέλης, σχήμα 2.13γʹ, η οποία καθίσταται ιδιαίτερα

προβληματική στην αντιμετώπισή της κατά τη διακριτοποίηση των ροϊκών ΜΔΕ. Συ-

γκεκριμένα, η διακριτοποίηση του χρονικού όρου των εξισώσεων είναι αδύνατη αφού

απαιτείται η χρήση των μεταβλητών της ροής την προγενέστερη χρονική στιγμή, όπου

η κυψέλη καλυπτόταν από το στερεό. Η λύση που προτείνεται είναι η δημιουργία ενός

ενδιάμεσου βήματος που εικονίζεται στο σχήμα 2.13βʹ, όπου η νεογεννηθείσα κυψέλη

συγχωνεύεται με τη γειτονική της, η οποία έχει μια συνεχή χρονική παρουσία μεταξύ

των δύο χρονικών βημάτων. ΄Ετσι, η διακριτοποίηση αντιμετωπίζει το συσσωμάτωμα



2.3. Γένεση Πλέγματος σε Χρονικά Μεταβαλλόμενα Χωρία 17

ως τη νέα κατάσταση της κυψέλης του σχήματος 2.13αʹ. Μόλις ολοκληρωθεί η επίλυ-

ση της ροής για το τρέχον χρονικό βήμα, το συσσωμάτωμα διαχωρίζεται εκ νέου στις

επιμέρους κυψέλες, σχήμα 2.13γʹ, και η επίλυση της ροής συνεχίζεται στο επόμενο

βήμα.

Εξίσου προβληματική είναι η ξαφνική κάλυψη μιας κυψέλης από το στερεό σώμα. Α-

κολουθώντας τα στιγμιότυπα του σχήματος 2.13 με αντίστροφη σειρά, η ανύψωση του

τοιχώματος καλύπτει την κάτω κυψέλη της χρονικής στιγμής 2.13γʹ. ΄Ετσι, τη στιγ-

μή 2.13αʹ δε συμμετέχει στην επίλυση της ροής και η μάζα, ορμή και ενέργεια, που

έχουν αποθηκευθεί σε αυτήν, χάνονται. Συνεπώς, οι καλυφθείσες κυψέλες λειτουρ-

γούν ως καταβόθρες αλλοιώνοντας το πεδίο ροής. Προκειμένου να αποφευχθεί αυτό,

οι κυψέλες αυτές ενώνονται με γειτονικές τους σε ένα ενδιάμεσο βήμα, σχήμα 2.13βʹ,

έτσι ώστε να τους αποδώσουν τις μεταβλητές της ροής που έχουν αποθηκεύσει προτού

εξαφανιστούν.

(αʹ) (βʹ) (γʹ)

Σχήμα 2.13: Από αριστερά προς τα δεξιά το στερεό όριο κινείται προς τα κάτω και

αποκαλύπτει μια νέα κυψέλη. Η αντίθετη κίνηση του σώματος, από δεξιά προς τα

αριστερά, καλύπτει μια κυψέλη. Τα χρωματισμένα χωρία αντιστοιχούν στο τμήμα του

πλέγματος που βρέχεται από τη ροή και καταδεικνύουν τη σωστή συγχώνευση των

καλυπτόμενων ή αποκαλυπτόμενων κυψελών.



Κεφάλαιο 3

Διακριτοποίηση των Εξισώσεων

Navier-Stokes

3.1 Διακριτοποίηση των Εξισώσεων Συμπιεστής

ροής

Η κίνησης των συμπιεστών ρευστών μοντελοποιείται μέσω των εξισώσεων Navier-

Stokes και των εξισώσεων διατήρησης της μάζας και της ενέργειας. Αυτές αποτυ-

πώνονται σε ένα καρτεσιανό σύστημα αξόνων (x1, x2, x3) ως [28]

∂Ui
∂t

+
∂f invik

∂xk
− ∂f visik

∂xk
= 0, i = 1, · · · , 5, k = 1, · · · , 3

με

~U =


ρ

ρv1

ρv2

ρv3

ρE

 , ~f invk =


ρvk

ρvkv1 + δ1kp

ρvkv2 + δ2kp

ρvkv3 + δ3kp

ρvkht

 , ~f visk =


0

τ1k

τ2k

τ3k

vjτjk + qk


όπου σύμφωνα με τη σύμβαση κατά Eintein οι επαναλαμβανόμενοι δείκτες υποδηλώνουν

άθροιση. Τα διανύσματα ~U , ~f invk και ~f visk συμβολίζουν τις συντηρητικές ροϊκές μετα-

βλητές, τους όρους συναγωγής και τους όρους διάχυσης, αντίστοιχα. Το διάνυσμα

των μη-συντηρητικών μεγεθών ορίζεται ως ~V =[ρ, v1, v2, v3, p], όπου οι μεταβλητές

18



3.1. Διακριτοποίηση των Εξισώσεων Συμπιεστής ροής 19

ρ, vi και p, δηλώνουν την πυκνότητα, την ταχύτητα ανά κατεύθυνση και την πίεση.

Ακόμα, E και ht είναι η ενέργεια κατά βάρος και ολική ενθαλπία του ρευστού. Η θερ-

μοροή qm δίδεται από το νόμο του Fourier και ο τανιστής των τάσεων τ εκφράζεται ως

τik = µ
(
∂vi
∂xk

+ ∂vk
∂xi

− 2
3
δik

∂vm
∂xm

)
όπου µ είναι η δυναμική συνεκτικότητα του ρευστού

και δik η δ-συνάρτηση του Kronecker.

Η διακριτοποίηση των ανωτέρω εξισώσεων γίνεται μέσω της κεντροκυψελικής διατύπω-

σης των πεπερασμένων όγκων, όπου οι ροϊκές εξισώσεις ολοκληρώνονται σε όγκους

ελέγχου που ταυτίζονται με τις κυψέλες του καρτεσιανού πλέγματος, κάτι που έχει ως

συνέπεια την ανταλλαγή πληροφορίας μεταξύ γειτονικών κυψελών μέσω των διακρι-

τοποιημένων διανυσμάτων ατριβούς (
~̄f inv,mk ) και συνεκτικής (

~̄f vis,mk ) ροής. ΄Ετσι, για

μόνιμες ροές, η διακριτή έκφραση των εξισώσεων είναι

Ūn+1
i − Ūn

i

∆τ
Ω +

M∑
m=1

(
f̄ inv,m,n+1
ik − f̄ vis,m,n+1

ik

)
nmk ∆Sm = 0

όπου έχει προστεθεί ένας ψευδο-χρονικός όρος βήματος ∆τ προκειμένου να διατηρηθεί

ο υπερβολικός χαρακτήρας των ΜΔΕ [44]. Επιπλέον, οι μέσες τιμές Ūn
i αντιστοιχούν

στις μεταβλητές ροής που αποθηκεύονται στο βαρύκεντρο κάθε κυψέλης όγκου Ω με

τον ακέραιο n να μετρά την τρέχουσα ψευδο-χρονική επανάληψη. Τέλος, ο ακέραιος

m αριθμεί τις πλευρές κάθε κυψέλης με ∆Sm και ~nm να αναπαριστούν την επιφάνεια

και το μοναδιαίο κάθετο διάνυσμα σε κάθε πλευρά.

Το διάνυσμα υπολογίζεται μέσω της κατά Roe προσεγγιστικής επίλυσης του προβλήμα-

τος Riemann [38] και χρησιμοποιούνται οι περιοριστές κατά Barth & Jespersen [3] ή

κατά Venkatakrishnan [45]. Ενδεικτική γεωμετρική απεικόνιση της προεκβολής που α-

παιτείται φαίνεται στο σχήμα 3.1 για γειτονικές κυψέλες ίδιου ή διαφορετικού μεγέθους,

καθώς και για τεμνόμενες κυψέλες.

Σε περιπτώσεις κινούμενων στερεών σωμάτων, το σχήμα των τεμνόμενων κυψελών

μεταβάλλεται με το χρόνο λόγω της μετατόπισης των στερεών τους εδρών, σχήμα 3.2.

Η μεταβολή αυτή λαμβάνεται υπόψη μέσω της τεχνικής ALE (Arbitrary Lagrangian-

Eulerian) [20], σύμφωνα με την οποία η ολοκληρωτική μορφή των εξισώσεων γράφεται

d

dt

∫
Ω

UidΩ −
∫
S

Uiv
g
knkdS +

∫
Ω

∂fik
∂xk

dΩ = 0

όπου vgk είναι η ταχύτητα της εκάστοτε έδρας. Η διακριτοποίηση της εξίσωσης οδηγεί



20 Κ. Δ. Σαμούχος

στο σχήμα

Ωn+1Un+1,q+1
i − Ωn+ 1

2U
n+ 1

2
i

∆t
+

Ωn+1Un+1,q+1
i − Ωn+1Un+1,q

i

∆τ
+

M∑
m=1

(fmikn
m
k ∆Sm)n+1,q+1 = 0

όπου οι μετρητές n και q αριθμούν το χρονικό και ψευδο-χρονικό βήμα αντίστοιχα. Ε-

πίσης, η χρονική στιγμή n+1/2 αντιστοιχεί στο πεδίο ροής της προηγούμενης χρονικής

στιγμής προβεβλημένο στο τρέχον πλέγμα.

(αʹ) (βʹ)

Σχήμα 3.1: Προεκβολή των μεγεθών ~V P
και ~V Q

από το βαρύκεντρο των κυψελών

ίδιου ή διαφορετικού μεγέθους στο βαρύκεντρο των μεταξύ τους πλευρών, προκειμένου

να υπολογιστούν οι τιμές των ~V L
και ~V R

, που απαιτούνται από την έκφραση του

διανύσματος ροής τόσο εσωτερικό (~fPQ) και στο στερεό όριο (~fw).

Η αριθμητική επίλυση του μη-μόνιμου προβλήματος γίνεται με την τεχνική του διπλού

χρονικού βήματος [29], σύμφωνα με την οποία σε κάθε χρονική στιγμή λύνεται επα-

ναληπτικά ένα ψευδο-χρονικό πρόβλημα. Η επίλυση του μη-γραμμικού συστήματος

γίνεται με τη βοήθεια της μεθόδου Newton-Raphson. ΄Ετσι, οι διακριτοποιημένες εξι-

σώσεις συγκλίνουν σε κάθε χρονική επανάληψη προτού ο αλγόριθμος συνεχίσει στο

επόμενο χρονικό βήμα, με αποτέλεσμα να επιτρέπεται επιλογή μεγαλύτερων χρονικών

βημάτων χωρίς να προκαλείται αστάθεια στην αριθμητική επίλυση του συστήματος.

Με αυτόν τον τρόπο επιτυγχάνεται η μείωση των χρονικών στιγμών και αποφεύγεται

ο συχνός υπολογισμός της τομής του στερεού σώματος με τη γεωμετρία μειώνοντας

το συνολικό χρόνο της προσομοίωσης.



3.2. Διακριτοποίηση των Εξισώσεων Ασυμπίεστης Ροής 21

Σχήμα 3.2: Μια τεμνόμενη κυψέλη παραμορφώνεται λόγω της κίνησης του στερεού

ορίου ‘w’.

3.2 Διακριτοποίηση των Εξισώσεων Ασυμπίε-

στης Ροής

Η κίνηση ενός ρευστού σταθερής πυκνότητας μοντελοποιείται από τις εξισώσεις,

Mij
∂Vj
∂t

+
∂f invik

∂xk
− ∂f visik

∂xk
= 0, i = 1, · · · , 4, k = 1, · · · , 3

όπου

~V =


p

v1

v2

v3

 , ~f invk =


vk

vkv1 + δ1kp

vkv2 + δ2kp

vkv3 + δ3kp

 , ~f visk =


0

τ1k

τ2k

τ3k

 , M =


0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


Αντίθετα με τη συμπιεστή ροή, η μεταβλητή p προσδιορίζει την πίεση διαιρεμένη με την

πυκνότητα. Προκειμένου να διατηρηθεί η ομοιομορφία του αναπτυχθέντος λογισμικού,

η μέθοδος της τεχνητής συμπιεστότητας χρησιμοποιείται για να αποδώσει υπερβολικό

χαρακτήρα στις ασυμπίεστες ΜΔΕ [8]. Η μέθοδος αυτή επιτρέπει τη δημιουργία ενός

κοινού επιλύτη που καλύπτει όλες τις περιπτώσεις ροής με ελάχιστες διαφορές μεταξύ

των σχημάτων διακριτοποίησης της συμπιεστής και ασυμπίεστης ροής. ΄Ετσι, ο ψευδο-

χρονικός όρος
1
β2

∂p
∂τ

προστίθεται στην εξίσωση συνέχειας. Η μεταβλητή β ονομάζεται

τεχνητή συμπιεστότητα, επιλέγεται σταθερή για όλο το πεδίο, και η τιμή της επηρεάζει

τόσο την ταχύτητα σύγκλισης όσο και την ακρίβεια του αποτελέσματος.



Κεφάλαιο 4

Η Συνεχής και Διακριτή

΄Εκφραση των Συζυγών

Εξισώσεων Ροής

Το κεφάλαιο αυτό παρουσιάζει τη μαθηματική διατύπωση της συζυγούς μεθόδου για

3Δ μη-μόνιμες συμπιεστές και ασυμπίεστες ροές για τον υπολογισμό της κλίσης της

συνάρτησης στόχου F ως προς τις μεταβλητές σχεδιασμού bq, q = 1 · · ·N με υπο-

λογιστικό κόστος ανεξάρτητο του N . Στα προβλήματα βελτιστοποίησης μορφής, οι

μεταβλητές bq ελέγχουν το σχήμα της υπό βελτιστοποίηση γεωμετρίας. Η γενική

έκφραση της F που εξετάζεται στην εργασία αυτή είναι

F =

∫
TF

∫
ΩF

FΩdΩdt+

∫
TF

∫
SF

FSk
nkdSdt

όπου TF είναι το χρονικό παράθυρο, στο οποίο η συνάρτηση στόχος παραμένει ενεργή,

ενώ τα μεγέθη ΩF και SF αναπαριστούν τον όγκο ή επιφάνεια ορισμού της F .

22



4.1. Η Συνεχής Συζυγής Διατύπωση 23

4.1 Η Συνεχής Συζυγής Διατύπωση

Σύμφωνα με τη συνεχή συζυγή διατύπωση, η F επαυξάνεται κατά ένα μηδενικό ογκικό

ολοκλήρωμα, οδηγώντας στον ορισμό της επαυξημένης συνάρτησης

L = F +

∫
TR

∫
Ω

ΨiRidΩdt

όπου ~R=~0 αναπαριστούν την αναλυτική έκφραση των ροϊκών ΜΔΕ, που επιλύονται

για το διάστημα TR, και ~Ψ είναι οι συζυγείς πεδιακές μεταβλητές. Η παραγώγιση της L

οδηγεί σε μια έκφραση που περιλαμβάνει τους όρους ∂Ui/∂bq, των οποίων το κόστος

υπολογισμού είναι ανάλογο του N . ΄Ετσι, επιβάλλεται ο μηδενισμός των πολλαπλα-

σιαστών τους ορίζοντας τις συζυγείς πεδιακές εξισώσεις. Η αντίστοιχη μαθηματική

ανάλυση για συμπιεστές ροές καταλήγει

−∂Ψi

∂t
− Ajik

∂Ψj

∂xk
− T visi +

∂FΩ

∂Ui
= 0

όπου

T visi =
∂τAkl
∂xk

∂vl
∂Ui

+
∂qAk
∂xk

∂T

∂Ui
− ∂ΨE

∂xk
τlk

∂vl
∂Ui

τAkl = µ

(
hkl + hlk −

2

3
δklhmm

)
,

hkl =
∂Ψl+1

∂xk
+
∂ΨE

∂xk
vl, qAk = k

∂ΨE

∂xk

Η διακριτοποίσησή των συζυγών ΜΔΕ είναι αντίστοιχη με αυτήν των εξισώσεων ροής.

Μια σημαντική ιδιομορφία του συζυγούς προβλήματος είναι η επίλυσή του αντίστροφα

στο χρόνο. Αυτό συνεπάγεται την αποθήκευση εκ των προτέρων όλων των στιγμιο-

τύπων του πεδίου ροής, προκειμένου να χρησιμοποιηθούν κατά την επίλυση των συζυ-

γών ΜΔΕ με αντίστροφη σειρά. Καθώς, οι υπολογιστικοί πόροι δεν επαρκούν πάντα

για την αποθήκευση ενός τόσο μεγάλου όγκου πληροφορίας, στο πλαίσιο της διατρι-

βής αναπτύχθηκαν λογισμικά συμπίεσης δεδομένων βασισμένα στις μεθόδους Singular

Value Decomposition (SVD) [46] και Proper Generalized Decomposition (PGD) [7].

Τέλος, η αριθμητική επίλυση των ανωτέρω ΜΔΕ οδηγεί στον υπολογισμό του συζυ-

γούς πεδίου, το οποίο χρησιμοποιείται για τον υπολογισμό της κλίσης της F μέσω της



24 Κ. Δ. Σαμούχος

έκφρασης

δF

δbq
=

∫
TR

∫
Sw

(
Ψiv

g
n

∂Ui
∂n

− Ψi
∂fik
∂n

nk − τAklnk
∂vl
∂n

+ FΩ − FSk
nkH

)
vsndSdt

+

∫
TR

∫
Sw

(FSk
+ pΨk+1 − Ψifik − gkτ

n)
δsnk
δsbq

dSdt−
∫
TR

∫
Sw

gkτ
tr δst

r
k

δsbq
dSdt

+

∫
TR

∫
Sw

(
∂FSk

∂vgl
+ τAkl − ΨEτkl

)
δsv

g
l

δsbq
nkdSdt

+

∫
TR

∫
Sw

(ΨiUi + pΨE)
δsv

g
n

δsbq
dSdt

όπου gk=Ψk+1 + vgkΨE και ~fk= ~f invk − ~f visk .

Αντίστοιχα, προκύπτουν οι συζυγείς ΜΔΕ για τις ασυμπίεστες ροές και εξάγεται η

έκφραση των παραγώγων ευαισθησίας

δF

δbq
=

∫
TR

∫
Sw

(
MijΨjv

g
n

∂Vi
∂n

− Ψi
∂fik
∂n

nk − τAklnk
∂vl
∂n

+ FΩ − FSk
nkH

)
vsndSdt

+

∫
TR

∫
Sw

(FSk
+ pΨk+1 − Ψifik − Ψk+1τ

n)
δsnk
δsbq

dSdt−
∫
TR

∫
Sw

Ψk+1τ
tr δst

r
k

δsbq
dSdt

+

∫
TR

∫
Sw

(
∂FSk

∂vgl
+ τAkl

)
δsv

g
l

δsbq
nkdSdt+

∫
TR

∫
Sw

(MijΨjVi + Ψp)
δsv

g
n

δsbq
dSdt

4.2 Η Διακριτή Συζυγής Διατύπωση

Αντίθετα με τη συνεχή διατύπωση, η διακριτή συζυγής μέθοδος λαμβάνει υπόψη τις

διακριτοποιημένες εξισώσεις ροής ~RC
σε κάθε κελί C η οποία παρουσιάζεται με λεπτο-

μέρεια στο πλήρες κείμενο της διατριβής στην αγγλική γλώσσα.



Κεφάλαιο 5

Εφαρμογή της Μεθόδου των

Τεμνόμενων Κυψελών στη

Ρευστοδυναμική Ανάλυση και

Βελτιστοποίηση

Στο κεφάλαιο αυτό παρουσιάζονται ενδεικτικά 2 εφαρμογές ρεσυτοδυναμικής ανάλυσης

και 2 εφαρμογές βελτιστοποίησης σε πρακτικά προβλήματα. Η πρώτη εφαρμογή αφορά

τη μελέτη της πτέρυγας ONERA M6, όπου γίνεται σύγκριση των αποτελεσμάτων του

αναπτυχθέντος λογισμικού με πειραματικά δεδομένα και αποτελέσματα άλλων κωδίκων

βασισμένων σε οριόδετα πλέγματα. Στη συνέχεια, μελετάται μια μηχανή κύλισης, όπου

διαπιστώνεται η πλεονεκτική χρήση των καρτεσιανών πλεγμάτων. Το πρώτο πρόβλημα

βελτιστοποίησης αφορά τη βαθμίδα μιας αντλίας μικτού τύπου εξόρυξης πετρελαίου.

Τέλος, η συζυγής μέθοδος εφαρμόζεται στη βελτιστοποίηση υπό αβεβαιότητες μιας

μικρής διαφραγματικής μη-βαλβιδοφόρου αντλίας.

Μια πληρέστερη πιστοποίηση του λογισμικού πρόλεξης της ροής και υπολογισμού των

παραγώγων ευαισθησίας μέσω της συζυγούς μεθόδου παρουσιάζεται στο πλήρες κεί-

μενο της διατριβής. Επίσης, παρουσιάζονται περισσότερες εφαρμογές της ΜΤΚ σε

προβλήματα ανάλυσης και βελτιστοποίησης αναδεικνύοντας τα πλεονεκτήματα της με-

θόδου έναντι άλλων τεχνικών.

25



26 Κ. Δ. Σαμούχος

5.1 Διηχητική Ατριβής Ροή γύρω από την Πτέρυ-

γα ONERA M6

Η πρόλεξη της ροής γύρω από την πτέρυγα ONERA M6 [15] χρησιμοποιείται συχνά για

την πιστοποίηση λογισμικών αεροδυναμικής. Οι επ’ άπειρο συνθήκες είναι M∞=0.84

και α∞=3.06◦. Εδώ, τα το αναπτυχθέν λογισμικό επιλύει της εξισώσεις της ατριβούς

ροής σε ένα καρτεσιανό πλέγμα 1.4Μ κυψελών, το οποίο προσαρμόζεται στο κύμα

κρούσης σχήματος ῾λ᾿ στην πλευρά υποπίεσης. Μια τομή του πεδίου ροής φαίνεται στο

σχήμα 5.1.

Επίσης, στο σχήμα 5.2 παρουσιάζονται διαγράμματα, όπου συγκρίνεται ο συντελεστής

πίεσης με πειραματικά δεδομένα [39] σε 6 τομές κατά μήκος της πτέρυγας. Στα ίδια

διαγράμματα φαίνονται και τα αποτελέσματα του λογισμικού CFL3D για την πρόλεξη

της τυρβώδους ροής [41]. Η σύγκριση μεταξύ των αποτελεσμάτων αναδεικνύει την

υψηλή ακρίβεια του αναπτυχθέντος λογισμικού. Συγκεκριμένα, το λογισμικό της ΜΤΚ

έχει εντοπίσει σωστά τη θέση του κύματος και η διαφορά του Cp που υπολόγισε σε

σχέση με τις πειραματικές μετρήσεις είναι μικρή και εφάμιλλη αυτής του πιστοποιημένου

κώδικα CFL3D.

Σχήμα 5.1: Πεδίο του αριθμού Mach σε μια τομή κάθετη στην πτέρυγα. Το πλέγμα

προσαρμόζεται στην περιοχή των δύο κυμάτων κρούσης καθώς και κοντά στο στερεό

όριο.



5.1. Διηχητική Ατριβής Ροή γύρω από την Πτέρυγα ONERA M6 27

(αʹ) (βʹ)

(γʹ) (δʹ)

(εʹ)

Σχήμα 5.2: Συντελεστής πίεσης σε 5 τομές κατά μήκος της πτέρυγας στις θέσεις 20%,

44%, 65%, 80%, 90% και 96%. Συγκρίνονται τα αποτελέσματα του οικείου λογισμικού

(κόκκινο), του λογισμικού CFL3D (μπλε) και πειραματικές μετρήσεις (μαύρο).



28 Κ. Δ. Σαμούχος

5.2 Συμπιεστή Ροή εντός Μηχανής Κύλισης

Η μηχανή κύλισης, η οποία προτάθηκε από τον Creux το 1905 [11], αποτελείται από

δύο έλικες, η μια εκ των οποίων παραμένει σταθερή, ενώ η άλλη εκτελεί κυκλική

κίνηση γύρω από την πρώτη. Η μηχανή μελετάται σε λειτουργία στροβίλου, όπου

υψηλής πίεσης ρευστό εισέρχεται στο κέντρο της μηχανής και σπρώχνει την κινούμενη

έλικα στην πορεία του προς την έξοδο. ΄Οσο η μηχανή βρίσκεται σε κίνηση, τόσο

μειώνεται η πίεση του ρευστού. Η ακριβής περιγραφή του σχήματος των ελίκων μπορεί

να αναζητηθεί στο πλήρες κείμενο της διατριβής. Η μοντελοποίηση της ροής μέσα

στη μηχανή, συμπεριλαμβανομένου του διακένου μεταξύ των δύο ελίκων, σπανίζει στη

βιβλιογραφία λόγω των έντονα μεταβαλλόμενων θυλάκων, στα οποία αποσυμπιέζεται

η ροή. Αντιθέτως, η χρήση καρτεσιανών πλεγμάτων επιτρέπει την εύκολη γένεση

πλέγματος, όπως φαίνεται και στο σχήμα 5.3, ακόμα και εντός των μικρών διακένων

αποφεύγοντας τη χρήση εργαλείων παραμόρφωσης πλέγματος.

Η στρωτή συμπιεστή ροή εντός της μηχανής κύλισης επιλύεται για έναν κύκλο λει-

τουργίας της. Η ταχύτητα κύλισης τίθεται ίση με 2000 rpm και η ολική πίεση και θερ-

μοκρασία εισόδου είναι ίση με 40.37 bar και 90◦ C αντίστοιχα. Το πεδίο της ταχύτητας

και οι γραμμές ροής φαίνονται στο σχήμα 5.4. Επίσης, 10 στιγμιότυπα ισο-μοιρασμένα

στην περίοδο λειτουργίας παρουσιάζονται στο σχήμα 5.5. Τέλος ο λόγος πίεσης και η

παροχή μάζας υπολογίστηκαν 2.77 και 0.605 kg/s αντίστοιχα.

Τα αποτελέσματα της ενότητας αυτής αποτελούν μέρος του προγράμματος ῾῾ΣΥΝΕΡ-

ΓΑΣΙΑ 2011᾿᾿ και συγκεκριμένα του υποέργου ῾Ἁνάπτυξη ενός μικρής-κλίμακας χαμηλής-

θερμοκρασίας υπερκρίσιμου οργανικού κύκλου Rankine με βελτιστοποιημένο εκτονωτή

scroll και ατμοποιητή᾿᾿ που υλοποιήθηκε στο πλαίσιο του ΕΣΠΑ 2007-2013, και του

Επιχειρησιακού προγράμματος ῾Ἁνταγωνιστικότητα & Επιχειρηματικότητα᾿᾿, και συγ-

χρηματοδοτείται από το Ευρωπαϊκό Ταμείο Περιφερειακής Ανάπτυξης της ΕΕ και από

Εθνικούς Πόρους.



5.2. Συμπιεστή Ροή εντός Μηχανής Κύλισης 29

(αʹ)

(βʹ)

(γʹ)

Σχήμα 5.3: (α΄) Πλέγμα γύρω από τη μηχανή κύλισης στην αρχή της περιόδου λειτουρ-

γίας της. Λεπτομέρεια στην άκρη της έλικας (β΄) και στο μικρό διάκενο μεταξύ των

δύο ελίκων (γ΄).

Σχήμα 5.4: Πεδίο του μέτρου της ταχύτητας και γραμμές της συμπιεστής στρωτής

ροής σε ένα στιγμιότυπο λειτουργίας της μηχανής κύλισης.



30 Κ. Δ. Σαμούχος

(αʹ) (βʹ) (γʹ)

(δʹ) (εʹ) (ϛʹ)

(ζʹ) (ηʹ) (θʹ)

(ιʹ)

Σχήμα 5.5: Στιγμιότυπα του πεδίου του μέτρου της ταχύτητας ισο-μοιρασμένα σε μια

περίοδο λειτουργίας της μηχανήω κύλισης.



5.3. Βελτιστοποίηση Βαθμίδας Αντλίας Εξώρυξης 31

5.3 Βελτιστοποίηση Βαθμίδας Αντλίας Εξώρυ-

ξης

Οι ηλεκτρικές αντλίες εξόρυξης (Elactrical Submersible Pump) χρησιμοποιούνται ευ-

ρέως από τη βιομηχανία πετρελαίου καθώς πάνω από το 90% των κοιτασμάτων απαιτεί

τεχνητή υποβοήθηση, προκειμένου να ανέλθει το ορυκτό στο επίπεδο της επιφάνειας

[27]. Συνεπώς, η μελέτη τους καθίσταται εξαιρετικά σημαντική. Η διατριβή προτείνει

τη ΜΤΚ ως ένα τρόπο αντιμετώπισης του προβλήματος αλληλεπίδρασης της κινούμε-

νης και ακίνητης πτερύγωσης κάθε βαθμίδας. Η μελέτη που παρουσιάζεται σε αυτήν

την ενότητα αποτελεί μέρος ενός έργου που χρηματοδοτήθηκε από την Schlumberger

Cambridge Research Limited και έχει ως στόχο η βελτίωση της απόδοσης μιας βαθ-

μίδας ESP μεικτής ροής, η οποία φαίνεται στο σχήμα 5.6, όπου η κατεύθυνση της ροής

είναι από κάτω προς τα επάνω συναντώντας πρώτα την κινούμενη και μετά την ακίνητη

πτερύγωση.

Χρησιμοποιήθηκε ένα ενιαίο καρτεσιανό πλέγμα τόσο για το στάτη όσο και για το δρο-

μέα, το οποίο ακολουθεί τα κινούμενα πτερύγια εκτελώντας διαδοχικές αραιώσεις και

πυκνώσεις. Το οικείο λογισμικό έλυσε τις μη-συνεκτικές εξισώσεις συμπιεστής ροής

για τρεις περιόδους λειτουργίας της αντλίας, έτσι ώστε να αποκατασταθεί η περιοδι-

κότητα της ροής. Στο σχήμα 5.7 φαίνονται δυο τομές του πεδίου σε ένα στιγμιότυπο

της τρίτης περιόδου, όπου παρουσιάζεται το πεδίο του μέτρου της ταχύτητας γύρω από

τα κινούμενα και τα ακίνητα πτερύγια.

Στη συνέχεια, πραγματοποιήθηκε η βελτιστοποίηση μιας βαθμίδας της αντλίας με τη

συζυγή μέθοδο. Ως μεταβλητές σχεδιασμού επιλέχθηκαν οι συντεταγμένες των σημε-

ίων που απαρτίζουν τα ακίνητα και κινούμενα πτερύγια. Στόχος της βελτιστοποίησης

τέθηκε η μείωση της εφαπτομενικής ταχύτητας στην έξοδο του στάτη. Η πορεία της

βελτιστοποίησης παρουσιάζεται στο σχήμα 5.8, όπου φαίνεται η ποσοστιαία μεταβολή

της συνάρτησης στόχου σε κάθε κύκλο βελτιστοποίησης. Μετά το πέρας 20 κύκλων

επιτεύχθηκε μείωσή της κατά 35%. Επίσης, το μέτρο της εφαπτομενικής ταχύτητας

στην έξοδο της βαθμίδας πριν και μετά τη βελτιστοποίηση φαίνεται στο σχήμα 5.9,

όπου διαπιστώνεται η μεγάλη μείωση του πεδίου τιμών της.



32 Κ. Δ. Σαμούχος

(αʹ) (βʹ)

Σχήμα 5.6: (α΄) Κέλυφος και (β) πτερύγια στάτη και δρομέα μιας βαθμίδας ESP.

Σχήμα 5.7: Δυο τομές του πεδίου συμπιεστής μη-συνεκτικής ροής στο ύψος του δρομέα

και του στάτη. Παρουσιάζονται ισογραμμές του μέτρου της ταχύτητας.

Σχήμα 5.8: Πορεία βελτιστοποίησης της βαθμίδας με τη συζυγή μέθοδο. Μετά από 20

κύκλους βελτιστοποίησης η συνάρτηση στόχος μειώθηκε κατά 35% σε σχέση με την

τιμή της στην αρχική γεωμετρία.



5.4. Βελτιστοποίηση μίας μικρής διαφραγματικής μη-βαλβιδοφόρου αντλίας 33

Σχήμα 5.9: Στιγμιαίο πεδίο του μέτρου της εφαπτομενικής ταχύτητας στην έξοδο της

βαθμίδας της αρχικής (α΄) και της βελτιστοποιημένης (β΄) γεωμετρίας.

5.4 Βελτιστοποίηση μίας μικρής διαφραγματι-

κής μη-βαλβιδοφόρου αντλίας

Οι διαφραγματικές αντλίες [42] αποτελούν υποκατηγορία των μηχανών θετικής μετα-

τόπισης. Η λειτουργία τους βασίζεται στην περιοδική μετατόπιση του διαφράγματος, το

οποίο τοποθετείται στη μια πλευρά ενός χωρίου με μια είσοδο και μια έξοδο. Η αντλία

που μελετάται χρησιμοποιείται σε βιοϊατρικές εφαρμογές, όπου αποφεύγεται η χρήση

κινούμενων μερών όπως οι βαλβίδες. Τη θέση τους καταλαμβάνουν δύο διαχύτες, όπως

φαίνεται στο σχήμα 5.10. ΄Ετσι, όταν το διάφραγμα μετατοπίζεται με τέτοιο τρόπο ώστε

να αυξάνεται ο όγκος του κεντρικού χωρίου η ροή εισέρχεται στην αντλία κυρίως από

τον διαχύτη εισόδου. Αντίθετα, όταν ο όγκος μειώνεται, η ροή προτιμά τον διαχύτη

της εξόδου. Αναπόφευκτα, οι αντλίες αυτές αναρροφούν ένα μέρος της παροχής από

την έξοδο. Σκοπός είναι η ελαχιστοποίηση της αναρρόφησης ρευστού από την έξοδο

και η μεγιστοποίηση της παροχής που διοχετεύεται.

Οι μεταβλητές σχεδιασμού του προβλήματος ελέγχουν την κίνηση του διαφράγματος,

επιτρέποντας εξαιρετικά μεγάλες μετατοπίσεις. Στο σχήμα 5.11 εικονίζεται η θέση

ισορροπίας και η ελάχιστη κάτω θέση του διαφράγματος σε μια διαμήκη τομή της α-

ντλίας. ΄Ετσι, η χρήση της ΜΤΚ είναι πλεονεκτική, καθώς η ποιότητα του πλέγματος

δεν επηρεάζεται από την έντονη κίνηση του στερεού τοιχώματος. Η περιοδικότητα του

φαινομένου αποκαθίσταται μετά από 3 περιόδους. Το σχήμα 5.12 παρουσιάζει 4 χρονικά

ισαπέχουσες χρονικές στιγμές κατά τη διάρκεια της τέταρτης περιόδου λειτουργίας.



34 Κ. Δ. Σαμούχος

Κατά τη βελτιστοποίηση της αντλίας λήφθηκαν υπόψη κατασκευαστικές και λειτουργι-

κές ατέλειες, οι οποίες μοντελοποιούνται ως αβεβαιότητες στις τιμές των μεταβλητών

σχεδιασμού που ακολουθούν την κανονική στατιστική κατανομή. Αυτή η διακύμανση

αποτυπώνεται στη μέτρηση των προαναφερθέντων μεγεθών ενδιαφέροντος αναρρόφη-

σης (Qbf ) και παροχής (Qnet) μέσω του υπολογισμού της μέσης τιμής και τυπικής

απόκλισης της απόκρισής τους. ΄Ετσι, οι μεταβλητές σχεδιασμού διαμορφώνονται ως

γραμμικός συνδυασμός των ανωτέρω στατιστικών μεγεθών,

F1 =w11µQbf
+ w12σQbf

F2 =w21µQnet + w22σQnet

Εδώ επιλέγονται οι τιμές w11 =+1, w12 =+1, w21 =+1 και w22 =−1 καθώς επιθυμείται

η βελτίωση της μέσης τιμής και η μείωση της τυπικής απόκλισης της κάθε συνάρτη-

σης στόχου. Οι τιμές των στατιστικών μεγεθών υπολογίζονται μέσω της μεθόδου

πολυωνυμικού χάους (Polynomial Chaos Expansion) [13], [48].

Τέλος, η βελτιστοποίηση πραγματοποιήθηκε μέσω της πλατφόρμας βελτιστοποίησης

γενικής χρήσης EASY (Evolutional Algorithms SYstem) [1] υποβοηθούμενη από τη

συζυγή μέθοδο. Το λογισμικό EASY βασίζεται σε εξελικτικούς αλγορίθμους προκει-

μένου να υπολογίσει το μέτωπο μη-κυριαρχούμενων λύσεων (Pareto front) [23]. Λόγω

του μεγάλου αριθμού κλίσεων του λογισμικού επίλυσης της ροής που απαιτείται από

τη μέθοδο PCE και τον εξελικτικό αλγόριθμο, χρησιμοποιούνται μεταπρότυπα [25].

Επίσης, σε κάθε γενιά οι καλύτερες λύσεις βελτιώνονται περαιτέρω με τη χρήση της

κλίσης των συναρτήσεων στόχων [24], όπως φαίνεται και στο σχήμα 5.13βʹ. Το τελικό

μέτωπο μη κυριαρχούμενων λύσεων εικονίζεται στο σχήμα 5.13αʹ. Επίσης, το σχήμα

5.14 παρουσιάζει τις τιμές των μεγεθών ενδιαφέροντος για τα δύο άκρα του μετώπου.

Τα αποτελέσματα αυτής της ενότητας είναι μέρος της εργασίας με τίτλο ῾῾Σχεδιασμός-

Βελτιστοποίηση Διαφραγματικών Αντλιών παρουσία Λειτουργικών/Κατασκευαστικών

Αβεβαιοτήτων, με τη Μέθοδο των Τεμνομένων Κυψελών και της Ανάπτυξης Πολυω-

νυμικού Χάους᾿᾿ και ανήκει σε έργο που συγχρηματοδοτείται από την Ελλάδα και την

Ευρωπαϊκή ΄Ενωση (Ευρωπαϊκό Κοινωνικό Ταμείο) μέσω του Επιχειρησιακού Προ-

γράμματος ῾Ἁνάπτυξη Ανθρώπινου Δυναμικού, Εκπαίδευση και Διά Βίου Μάθηση᾿᾿

που τιτλοφορείται ως ῾῾Υποστήριξη Ερευνητών με ΄Εμφαση στους Νέους Ερευνητές᾿᾿.



5.4. Βελτιστοποίηση μίας μικρής διαφραγματικής μη-βαλβιδοφόρου αντλίας 35

Σχήμα 5.10: Η διαφραγματική αντλία αποτελείται από ένα κεντρικό χωρίο, εξοπλισμένο

με ένα κινούμενο διάφραγμα στην άνω επιφάνειά του και δύο διαχύτες. Η ροή διέρχεται

από αριστερά προς τα δεξιά.

(αʹ) (βʹ)

Σχήμα 5.11: Καρτεσιανό πλέγμα εντός της αντλίας όταν το διάφραγμα βρίσκεται (α΄)

στο σημείο ηρεμίας και (β΄) στη θέση μέγιστης μετατόπισής. ΄Αξονες σε διαφορετική

κλίμακα.

(αʹ) (βʹ)

(γʹ) (δʹ)

Σχήμα 5.12: Στρωτή ασυμπίεστη ροή εντός της αντλίας. Πεδίο μέτρου ταχύτητας

σε 4 χρονικά ισαπέχοντα στιγμιότυπα σε μια περίοδο λειτουργείας της. ΄Αξονες σε

διαφορετική κλίμακα.



36 Κ. Δ. Σαμούχος

(αʹ) (βʹ)

Σχήμα 5.13: (α΄) Τελικό πεδίο μη-κυριαρχούμενων λύσεων (β΄) Μέρος του μετώπου

τριών συνεχόμενων γενεών. Το βέλος υποδεικνύει τη βελτίωση που επέφερε η χρήση

των παραγώγων ευαισθησίας.

Σχήμα 5.14: Η χρονική μεταβολή των Qnet και Qbf για μέγιστη F2 (πάνω), ελάχιστη

F1 (μέσο) και αρχική (κάτω) λύση. Η μαύρη καμπύλη αντιστοιχεί στη μέση τιμή των

μεγεθών και η μπλε περιοχή σηματοδοτεί ζώνη πάχους ±3σ.



Κεφάλαιο 6

Επίλογος

6.1 Ανακεφαλαίωση-Συμπεράσματα

Στόχος της διδακτορικής διατριβής ήταν η ανάπτυξη ενός ολοκληρωμένου συνόλου υπο-

λογιστικών εργαλείων για τη ρευστοδυναμική ανάλυση και βελτιστοποίηση σε πρακτι-

κές εφαρμογές. Για το σκοπό αυτό προτάθηκε η χρήση της ΜΤΚ, η οποία εξασφαλίζει

την αυτόματη δημιουργία πλέγματος ανεξαρτήτως της πολυπλοκότητας του υπολογι-

στικού χωρίου, διατηρώντας παράλληλα την ακρίβεια επίλυσης των εκάστοτε ΜΔΕ.

΄Ετσι, αναπτύχθηκε λογισμικό γένεσης καρτεσιανών πλεγμάτων, τα οποία τέμνονται

από τα κινούμενα ή μη στερεά όρια σχηματίζοντας τεμνόμενες κυψέλες καθώς και λο-

γισμικό πρόλεξης της συμπιεστής και ασυμπίεστης ροής. Το λογισμικό πιστοποιήθηκε

σε μια σειρά από εφαρμογές εσωτερικής και εξωτερικής αεροδυναμικής αναδεικνύοντας

τη δυνατότητα της ΜΤΚ να επιλύει τις εξισώσεις της μη-συνεκτικής και στρωτής ροής

με υψηλή ακρίβεια εφάμιλλη των τεχνικών που βασίζονται σε οριόδετα πλέγματα. Στη

συνέχεια, η διατριβή κατέδειξε τα πλεονεκτήματα της ΜΤΚ στη βελτιστοποίηση μορ-

φής περίπλοκων γεωμετριών, καθώς μπορεί να ανταποκριθεί σε κάθε ενδιάμεση λύση

που προκύπτει κατά τη διάρκεια της βελτιστοποίησης. Η συνεχής και διακριτή συζυ-

γής μέθοδος χρησιμοποιήθηκαν για τον υπολογισμό των παραγώγων ευαισθησίας σε

περιπτώσεις μόνιμης ή μη-μόνιμης συμπιεστής και ασυμπίεστης ροής. Το λογισμικό ε-

φαρμόστηκε σε 3Δ βιομηχανικά προβλήματα βελτιστοποίησης με ή χωρίς αβεβαιότητες

καταδεικνύοντας την ευελιξία και υψηλή απόδοσή του.

37



38 Κ. Δ. Σαμούχος

6.2 Στοιχεία Πρωτοτυπίας

• Προτάθηκε και δοκιμάστηκε επιτυχώς νέος αλγόριθμος για τη δημιουργία των

τεμνόμενων κυψελών, ικανός να υπολογίσει οποιαδήποτε τομή του καρτεσιανού

πλέγματος με τη στερεή γεωμετρία.

• Αναπτύχθηκε μια νέα μέθοδος αντιμετώπισης των κυψελών που καλύπτονται ή

αποκαλύπτονται από το στερεό σώμα λόγω της κίνησής του πάνω από το καρ-

τεσιανό πλέγμα. Αυτή δοκιμάστηκε σε περιπτώσεις έντονων μετατοπίσεων των

στερεών ορίων και διαπιστώθηκε η διατήρηση της μάζας, ορμής και ενέργειας.

• Η εφαρμογή της συνεχούς συζυγούς μεθόδου σε καρτεσιανά πλέγματα τεμνόμε-

νων κυψελών παρουσιάστηκε για πρώτη φορά στη βιβλιογραφία αποδεικνύοντας

την καταλληλότητά της στη βελτιστοποίηση μορφής.

• Η διακριτή συζυγής μέθοδος εφαρμόστηκε στη ΜΤΚ για πρώτη φορά για την

αντιμετώπιση προβλημάτων συνεκτικής και μη-μόνιμης ροής. Επίσης, δόθη-

κε έμφαση στη σωστή διαφόριση του αλγορίθμου κατασκευής των τεμνόμενων

κυψελών καθώς και στον αλγόριθμο συγχώνευσης των καλυπτόμενων ή από-

καλυπτόμενων κυψελών σε προβλήματα βελτιστοποίησης κινούμενων σωμάτων.



Bibliography

[1] The EASY (Evolutionary Algorithms SYstem) software. http://velos0.ltt.

mech.ntua.gr/EASY.

[2] W. Anderson and V. Venkatakrishnan. Aerodynamic Design Optimization on

Unstructured Grids with a Continuous Adjoint Formulation. Computers &

Fluids, 28(4):443–480, 1999.

[3] T. Barth and D. Jespersen. The Design and Application of Upwind Schemes

on Unstructured Meshes. In 27th Aerospace Sciences Meeting, 1989.

[4] S. Bayyuk, K. Powell, and B. van Leer. A Simulation Technique for 2-D Un-

steady Inviscid Flows Around Arbitrarily Moving and Deforming Bodies of

Arbitrary Geometry. July 1993.

[5] J. Benek, J. Steger, and F. Dougherty. A Chimera Grid Scheme. page 59–69,

1983.

[6] M. Berger and M. Aftosmis. Progress Towards a Cartesian Cut-Cell Method

for Viscous Compressible Flow. In 50th AIAA Aerospace Sciences Meeting

including the New Horizons Forum and Aerospace Exposition, 2012.

[7] F. Chinesta, R. Keunings, and A. Leygue. The Proper Generalized Decompo-

sition for Advanced Numerical Simulations, A Primer. Springer International

Publishing, Nantes, France, 2014.

[8] A. Chorin. A Numerical Method for Solving Incompressible Viscous Flow Prob-

lems. Journal of Computational Physics, 2(1):12–26, 1967.

[9] D. Clarke, M. Salas, and H. Hassan. Euler Calculations for Multielement Air-

foils Using Cartesian Grids. AIAA Journal, 24(3):353–358, 1986.

39

http://velos0.ltt.mech.ntua.gr/EASY
http://velos0.ltt.mech.ntua.gr/EASY


40 Κ. Δ. Σαμούχος

[10] W. Coirier and K. Powell. Solution-Adaptive Cartesian Cell Approach for Vis-

cous and Inviscid Flows. AIAA Journal, 34(5):938–945, 1996.

[11] L. Creux. Rotary Engine, U.S. Patent 801,182, October 1905.

[12] A. Dadone and B. Grossman. Efficient Fluid Dynamic Design Optimization Us-

ing Cartesian Grids. In 16th AIAA Computational Fluid Dynamics Conference,

2003.

[13] M. Eldred and J. Burkardt. Comparison of Non-Intrusive Polynomial Chaos

and Stochastic Collocation Methods for Uncertainty Quantification. 47th AIAA

Aerospace Sciences Meeting including the New Horizons Forum and Aerospace

Exposition, January 2009.

[14] R. Fletcher and C. M. Reeves. Function Minimization by Conjugate Gradients.

The Computer Journal, 7(2):149–154, January 1964.

[15] North Atlantic Treaty Organization. Advisory Group for Aerospace Research

and Development. Fluid Dynamics Panel. Working Group 07. Test Cases for

Inviscid Flow Field Methods: Report of Fluid Dynamics Panel Working Group

07. AGARD advisory report. AGARD, 1985.

[16] R. Gaffney, H. Hassan, and M. Salas. Euler Calculations for Wings Using

Cartesian Grids. AIAA Paper 87-0356, 1987.

[17] M. Giles, M. Duta, J. Muller, and N. Pierce. Algorithm Developments for

Discrete Adjoint Methods. AIAA Journal, 41(2):198–205, 2003.

[18] D. Hartmann, M. Meinke, and W. Schröder. A Strictly Conservative Cartesian

Cut-Cell Method for Compressible Viscous Flows on Adaptive Grids. Computer

Methods in Applied Mechanics and Engineering, 200(9):1038–1052, 2011.

[19] C. Hinterberger and M. Olesen. Automatic Geometry Optimization of Ex-

haust Systems Based on Sensitivities Computed by a Continuous Adjoint CFD

Method in OpenFOAM. April 2010.

[20] C Hirt, A. Amsden, and J. Cook. An Arbitrary Lagrangian-Eulerian Computing

Method for all Flow Speeds. Journal of Computational Physics, 14(3):227–253,

1974.



Bibliography 41

[21] H. Ji, F. Lien, and E. Yee. A New Adaptive Mesh Refinement Data Struc-

ture with an Application to Detonation. Journal of Computational Physics,

229(23):8981–8993, 2010.

[22] H. Ji, F. Lien, and E. Yee. Numerical Simulation of Detonation Using an

Adaptive Cartesian Cut-Cell Method Combined with a Cell-Merging Technique.

Computers & Fluids, 39:1041–1057, June 2010.

[23] D. Kapsoulis. Low-Cost Metamodel-Assisted Evolutionary Algorithms with Ap-

plication in Shape Optimization in Fluid Dynamics. PhD thesis, National Tech-

nical University of Athens, 2019.

[24] D. Kapsoulis, K. Tsiakas, X. Trompoukis, V. Asouti, and K. Giannakoglou.

A PCA-assisted Hybrid Algorithm Combining EAs and Adjoint Methods for

CFD-based Optimization. Applied Soft Computing, 73:520–529, 2018.

[25] M. Karakasis and K. Giannakoglou. On the use of metamodel-assisted, multi-

objective evolutionary algorithms. Engineering Optimization, 38(8):941–957,

2006.

[26] M. Kirkpatrick, S. Armfield, and J. Kent. A Representation of Curved Bound-

aries for the Solution of the Navier–Stokes Equations on a Staggered Three-

Dimensional Cartesian Grid. Journal of Computational Physics, 184(1):1–36,

2003.

[27] E. Ladopoulos. Four-dimensional Petroleum Exploration & Non-linear ESP

Artificial Lift by Multiple Pumps for Petroleum Well Development. Universal

Journal of Hydraulics, 3:1–14, 01 2015.

[28] L. Landau and E. Lifshitz. Fluid Mechanics, volume 6 of Course of Theoretical

Physics. Pergamon Press, 1987.

[29] C. Merkle. Time-Accurate Unsteady Incompressible Flow Algorithms Based on

Artificial Compressibility. In 8th Computational Fluid Dynamics Conference,

1987.

[30] R. Mittal and G. Iaccarino. Immersed Boundary Methods. Annual Review of

Fluid Mechanics, 37(1):239–261, 2005.

[31] S. Murman, M. Aftosmis, M. Berger, and D. Kwak. Implicit Approaches for

Moving Boundaries in a 3-D Cartesian Method. In 41st Aerospace Sciences

Meeting and Exhibit, February 2003.



42 Κ. Δ. Σαμούχος

[32] M. Nemec and M. Aftosmis. Adjoint Sensitivity Computations for an

Embedded-Boundary Cartesian Mesh Method and CAD Geometry. volume

227, pages 2724–2742, 2008.

[33] E. Papoutsis-Kiachagias. Adjoint Methods for Turbulent Flows, Applied to

Shape or Topology Optimization and Robust Design. PhD thesis, National Tech-

nical University of Athens, 2013.

[34] O. Pironneau. Optimal Shape Design for Elliptic Systems. Springer, Berlin,

Heidelberg, 1982.

[35] J. Purvis and J. Burkhalter. Prediction of Critical Mach Number for Store

Configurations. AIAA Journal, 17(11):1170–1177, 1979.

[36] J. Quirk. An Adaptive Grid Algorithm for Computational Shock Hydrodynam-

ics. PhD thesis, Cranfield University, 1991.

[37] J. Quirk. An Alternative to Unstructured Grids for Computing Gas Dynamic

Flows around Arbitrarily Complex Two-Dimensional Bodies. Computers &

Fluids, 23(1):125–142, 1994.

[38] P. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference

Schemes. Journal of Computational Physics, 43(2):357–372, 1981.

[39] V. Schmitt and F. Charpin. Pressure Distributions on the ONERA M6 Wing

at Transonic Mach Numbers. Report of the Fluid Dynamics Panel Working

Group 04, AGARD AR 138, May 1979.

[40] L. Schneiders, C. Günther, M. Meinke, and W. Schröder. An Efficient Conser-

vative Cut-Cell Method for Rigid Bodies Interacting with Viscous Compressible

Flows. Journal of Computational Physics, 311:62–86, 2016.

[41] J. Slater. https://www.grc.nasa.gov/WWW/wind/valid/m6wing/m6wing01/

m6wing01.html.

[42] E. Stemme and Stemme G. A Valveless Diffuser/Nozzle-Based Fluid Pump.

Sensors and Actuators A: Physical, 39(2):159–167, 1993.

[43] I. Sutherland and G. Hodgman. Reentrant Polygon Clipping. Commun. ACM,

17(1):32–42, January 1974.

[44] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics: A

Practical Introduction. January 2009.

https://www.grc.nasa.gov/WWW/wind/valid/m6wing/m6wing01/m6wing01.html
https://www.grc.nasa.gov/WWW/wind/valid/m6wing/m6wing01/m6wing01.html


Bibliography 43

[45] V. Venkatakrishnan. On the Accuracy of Limiters and Convergence to Steady

State Solutions. In 31st Aerospace Sciences Meeting, 1993.

[46] C. Vezyris, E. Papoutsis-Kiachagias, and K. Giannakoglou. On the Incremental

Singular Value Decomposition Method to Support Unsteady Adjoint-Based Op-

timization. International Journal for Numerical Methods in Fluids, 91(7):315–

331, 2019.

[47] B. Wedan and J. South. A Method for Solving the Transonic Full-Potential

Equation for General Configurations. 1983.

[48] D. Xiu and G. Karniadakis. The Wiener–Askey Polynomial Chaos for Stochas-

tic Differential Equations. SIAM Journal on Scientific Computing, 24(2):619–

644, 2002.

[49] T. Ye, R. Mittal, H. Udaykumar, and W. Shyy. An Accurate Cartesian Grid

Method for Viscous Incompressible Flows with Complex Immersed Boundaries.

Journal of Computational Physics, 156(2):209–240, 1999.


	Introduction
	The Immersed Boundary Methods
	Mesh Generation Methods
	Literature Survey
	The Cut-Cell Method

	Shape Optimization in Fluid Dynamics
	Evolutionary Algorithms
	Gradient-Based Optimization Methods
	The Adjoint Method
	Adjoint Formulation to the Immersed Boundary Methods
	Adjoint Formulation to the Cut-Cell Method

	Thesis Outline

	The Cut-Cell Mesh Generation
	The Cartesian Mesh Data Structure
	The Octree Mesh Generation
	The Octree Data Structure
	The Integer Coordinate System
	Detection of the Immersed Geometry
	Pseudocode of the Octree Generation

	Mesh Smoothing and Flow Adaptation
	The Cut-Cell Generation
	The Construction of Solid Faces
	The Construction of Fluid Faces
	Illustration of the Cut-Cell Construction

	The Face-Based Mesh Data Structure
	The Cell-to-Cell Connectivity
	Numbering of Nodes and Faces
	Detection of fluid cells
	Computation of the Finite Volume's Geometric Quantities

	Cell Merging
	Mesh Partitioning
	Mesh with Moving Boundaries
	Mapping Between Subsequent Meshes
	Covered and Uncovered Cells
	Cell Linking

	Mesh Differentiation
	Differentiation of the Mesh Solid Boundary
	Differentiation of Face and Cell Geometric Quantities


	Numerical Discretization of the Navier-Stokes Equations
	Compressible Fluid Flow Model
	Discretization of the Steady Compressible Laminar Equations
	The Finite Volume Method
	Convective Flux Discretization Scheme
	The second-order MUSCL Method
	Limiters
	Gradient Computation Using the Least Squares Method
	Flux Computation at the Boundary Faces
	Diffusive Flux Discretization Scheme
	Pseudo-Time Step Computation

	Temporal Term Discretization of the Compressible Equations
	The Arbitrary Lagrangian Eulerian Technique
	Dual-Time Stepping
	Covered and Uncovered Cells Treatment

	Incompressible Fluid Flow Model
	Discretization of the Steady Incompressible Laminar Equations
	Temporal Term Discretization of the Incompressible Equations
	Numerical Solution of the Discretized Flow Equations
	The Ghost-Cell Method
	Wall Boundary Conditions Implementation
	The Unsteady Ghost-Cell Method Implemented in Moving Walls


	Flow Solver Assessment
	Compressible Flow Solver Assessment
	Inviscid Flow Over the NACA0012 Isolated Airfoil
	Inviscid Flow Over a Wedge
	Convergent-Divergent Duct Flow
	Parallel Flow Over a Flat Plate
	Laminar Flow Over the NACA0012 Isolated Airfoil
	Inviscid Flow over ONERA M6 wing

	Incompressible Flow Solver Assessment
	Inviscid Flow over the Joukowski airfoil
	Inviscid Flow over cylinder
	Convergent-Divergent Duct Flow
	Laminar flow over a Cylinder
	Driven Cavity Flow
	Laminar flow in a 3D S-Shaped Duct

	Unsteady Flow Solver Assessment
	Piston Motion
	Flow around Oscillating NACA0012


	Flow Simulation in Industrial Applications
	Incompressible Flow inside a Butterfly Valve
	Compressible Flow in a Scroll Expander
	Incompressible Flow inside a Valveless Diaphragm Micropump
	Compressible Flow inside an Electrical Submersible Pump Stage

	The Continuous Adjoint Method
	Mathematical Development of the Compressible Adjoint Method
	Definition of the Total Derivative
	Differentiation of the Objective Function
	Definition of the Augmented Function
	Differentiation of the Temporal Term
	Differentiation of the Convection Term
	Differentiation of the Diffusion Term
	The Compressible Field Adjoint Equations
	The Inlet-Outlet Adjoint Boundary Conditions
	The Wall Adjoint Boundary Conditions
	Sensitivity Derivatives Expression
	The Continuous Adjoint Method for Steady Flows

	Mathematical Development of the Incompressible Adjoint Method
	Definition and Differentiation of the Objective and Augmented Functions
	Differentiation of the Temporal Term
	Differentiation of the Convection Term
	Differentiation of the Diffusion Term
	The Incompressible Field Adjoint Equations
	The Inlet-Outlet Adjoint Boundary Conditions
	The Adjoint Wall Conditions
	Sensitivity Derivatives Expression
	The Continuous Adjoint Method for Steady Flows

	Discretization of the Steady Adjoint Equations
	The Adjoint Roe Scheme
	The Corrected Adjoint Roe Scheme
	The 3D Adjoint Solver

	The Adjoint Method Implemented in Unsteady Flows

	The Discrete Adjoint Method
	The Discrete Field Adjoint Equation and Sensitivity Derivatives
	The Discrete Adjoint Flux
	The Compressible Discrete Adjoint Equation
	Differentiation of the Convection Term
	Differentiation of the Diffusion Term
	Differentiation of the Temporal Term

	Sensitivity Derivatives for Compressible Flows
	Differentiation of the Convection Term
	Differentiation of the Diffusion Term
	Differentiation of the Unsteady flow Equations

	The Incompressible Discrete Adjoint Equation and Sensitivities
	The Sensitivity Map Post-Processing

	Adjoint Solver Assessment
	Incompressible Adjoint Solver Assessment
	Compressible Adjoint Solver Assessment
	Unsteady Adjoint Solver Assessment

	Optimization of Industrial Applications
	S-Duct Optimization
	Wing Optimization
	Submersible Pump Optimization
	Valveless Diaphragm Pump Optimization under Uncertainties
	Optimization of a Compressor Rotor

	Closure
	Summary
	Concluding Remarks
	Novel Contributions
	List of Publications
	Future Work Recommendations

	Identification of Cells in an Octree Data Structure
	Fast Cut-Cell Construction
	Optimal Value of the Artificial Compressibility Parameter
	The Compressible and Incompressible Jacobian Matrices
	Approximate Riemann Solver of Roe
	Approximate Riemann Solver of Roe for Preconditioned Conservative Laws
	Monotone and TVD schemes relation
	The Barth-Jespersen Limiter
	Orthogonal Correction Expression
	Boundary Conditions Differentiation
	The Continuous Adjoint Method Implemented in Cases with Recirculation at the Outlet
	The adjoint HLLC and FVS schemes
	The Adjoint HLLC Scheme
	The Adjoint FVS Scheme
	Comparison of Adjoint Discretization Schemes

	Memory Reduction by using the SVD Method
	Memory Reduction by using the PGD Method
	The PGD and Incremental PGD Theory
	Implementation of the Incremental PGD Based on the Ghost-Cell Method

	The Absolute Roe Jacobian Derivative For Compressible Flows
	The Absolute Roe Jacobian Derivative For Incompressible Flows
	Bibliography
	Εισαγωγή
	Η Μέθοδος των Τεμνόμενων Κυψελών
	Αεροδυναμική Βελτιστοποίηση σε Καρτεσιανά Πλέγματα

	Γένεση Καρτεσιανού Πλέγματος Τεμνόμενων Κυψελών
	Δενδρική Γένεση Πλέγματος
	Κατασκευή των Τεμνόμενων Κυψελών
	Γένεση Πλέγματος σε Χρονικά Μεταβαλλόμενα Χωρία

	Διακριτοποίηση των Εξισώσεων Navier-Stokes
	Διακριτοποίηση των Εξισώσεων Συμπιεστής ροής
	Διακριτοποίηση των Εξισώσεων Ασυμπίεστης Ροής

	Η Συνεχής και Διακριτή Έκφραση των Συζυγών Εξισώσεων Ροής
	Η Συνεχής Συζυγής Διατύπωση
	Η Διακριτή Συζυγής Διατύπωση

	Εφαρμογή της Μεθόδου των Τεμνόμενων Κυψελών στη Ρευστοδυναμική Ανάλυση και Βελτιστοποίηση
	Διηχητική Ατριβής Ροή γύρω από την Πτέρυγα ONERA M6
	Συμπιεστή Ροή εντός Μηχανής Κύλισης
	Βελτιστοποίηση Βαθμίδας Αντλίας Εξώρυξης
	Βελτιστοποίηση μίας μικρής διαφραγματικής μη-βαλβιδοφόρου αντλίας

	Επίλογος
	Ανακεφαλαίωση-Συμπεράσματα
	Στοιχεία Πρωτοτυπίας

	Bibliography

