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ITepixndn

H nopodoa SImhwuotixn] epyocior XoUTATAVETAL UE TNV AVAAUCT] TNE ATOBOTIXOTNTOS DLopOPWY Xo-
voOVwv Yngogoplag 6tav autol AopPdvouy TeploploUévr TANEoPopia 60OV aPopd TIC TEOTIUNCEL
TV Pneopdeny. Me pia dldixacia exoyng, ol Pnpopdeol, wg eni To TAeioTov, UTOBIANOLY TiC
TPOTWNOELS TOUS UE €va TaxTixd Tpomo, elte ¢npillovioc tov mpoTwdTepo yior auTolg UTodT-
pro eite xotabétovroc po xatdtoln Tov utodneiny ye Bdon Tic TpoTUACES Toug. OewpdvTag
TS Ol TEOTWNCELS TV Pnpopdowy Uropolv va ntocotixononfoly, ol tpoavagepbévies tpdmot
GUANOYNS TV TEOTWACEOY GUVIGTOUY ot GUUTTUEN TNg cuvolxig TAneogoplag. ' To Noyo
aUTH GLUYVE Ol UNXAVIOUOL EXNOYAC BEV €Y0UV TN duvaToOTNTa Vo Blaxplvouv xou vor exAé€ouv To
BéXTioto Y TV xowovia anotéNeoua. H yetpwnd| tng mapaudppoong xenoulonotelton yio va
TOCOTIXOTOMTEL TNV EMNOYY Tou xavova npogopiag oe oxéon pe to PENTIOTO amoTéleoua,
000€évTog TEPLOPIoUEVNE TANPOYORlaC. TNV cuyXEXPWEVN epyacia Bo avaUooLUE TNV TaEAULOE-
(puOoT ToL ETLPEPOLY Y Vo Tol unyaviopol dnpogopiag. Kuplng o acyornbolue ye tny nepintoon
omou YnpopoeoL xan LTOPHPIOL ATOTENODY GNUEid EVOC UETELXOU Y(OEOU XUl EV TEOXEWEVW OL
TEOTWAOELS TOV PNPOPOEWY AVTIGTOLYOUY GTNY £y YUTNTA Toug and Toug uodngloug. Xtnv ne-
elntwon 6mou 1o {nToluevo elvar 1 EXAOYY| WAC ETITEOTAC LTOYNPIWY, ATULTEITAL 1) ETAOYT TWY
urodmelnwv vor cuVeTd éval GOVONO OGO TO BUVITO AVTLTPOCHTEUTIXOTERO TROG TNV XOWWVid. XTO
TAAOL0 TOU UETELXOU X(OEoU, aTNY Tepintwaor omou {nteiton 1 exXAoyY| Wiog emteonig uTognelwy
Ol XOTATHEELS TWV YNPoPdewy BeV AmOTENOVUY ETUEXT TANROPOE(N 0UTWS DOTE 1) TUPUULORPWON
va elvon tenepaopévn. ' to Noyo autéd e€etdlouye €va VEO LOVTENO e€ay Y TC TOV TROTWUNOEWY
TV PNPoedowv TEOXEWEVOU Vo NGBoUUE XANUTERA ATOTENEGUATO OE OTL POEE TNV GUVONLIXY

TUEOUORPOOT).

A€ xAELOLA

uroloyio | Bewpla TS xovwvixy emhoyhc, xavoveg Pnpogopiag, xowwvixy eunueplo, Topa-
HOPPOOT), AVANOYLXY| EXTPOCWTNGTY), TEOCEYYLO TLXOL UNYAVIGUOL.






Abstract

The purpose of this diploma dissertation is to examine the efficiency of voting rules when
they receive limited information regarding voters’ preferences. Normally, an election is re-
solved based on each voter’s linear ordering of candidates or in other words their ordinal
preferences. We use the common assumption that voters hold a private cardinal valuation
for each candidate. Thus the embedding of cardinal preferences into ordinal ones entails a
degree of distortion. In this thesis, we will mostly examine the setting where agents represent
points in a metric space and subsequently each voter prefers candidates that are closer to
him to the ones that are further. We will study the multiwinner problem where it is required
to elect a subset of candidates as winners such that each voter feels represented, or in the
setting of the metric space the clusters of voters formed are as compact as possible. In this
setting the ordinal preferences of voters are not enough to ensure bounded distortion. We
examine a new rule of eliciting voters’ preference and analyse the incurred distortion.

Key words

computational social choice , social choice rule, social welfare, distortion, proportional repre-
sentation, approximation mechanisms.






Evyopioticg

H exmévnon e Simhwpatixnig pou epyaciog onuatodotel xou enionua T0 TENOG TV TEOTTUYLIXWY
Hou omoLdWY TNV oXoN Twv Hhextpooywv Mnyovixcyv xow Mrnyavixdv YTroloyiotov. e
autd To onueio Ba HBeXa va evyaploTHoW dooug avBpwroug Eexwelon auTd Ta yedvia. Katapyde,
Ba HOeha vor euyaploThow Bepud Tov emBAénovta xabnynth pou, x. Anunten Potdxn yia Tov
XPOVO TOL YoUL aPLEpnaE, yiar TN Pordela xou Tig cupfoulég mou pou €dwaoe. Eniong, euyapio Tt
Tov dWaxtopwd @ortnth Iovaryidtn Iatoukvdxo v ) Porbelor mou wou mpocégepe xatd T
OLIEXELA TNG EXTIOVNONG TNG OLIAOUATIXNC epyaoioc. Oa Heka va euyaplo THOW TOUC GTEVOUS LOoU
QINOUC VLol TIG OUOPYES OTLYUES oL Tepdooue auTd o xeodvia. TéNog Bo ek va euyopic THow
TNV OXOYEVELX OV, TOV TALTEROL OV, TNV UNTEEX XU TNV aBEE® Wou yia TNV o THRIEN Toug O
oL POVLOL.

Iledpyioc A.Xwovdg,
Ab¥va, 7T Tavouopiouv 2022






ITepieyopeva

IMeeihndm . . . . . .o

Abstract . . . . . . ...
Evuxoewotieg . . . . ...

IMepiexopeva . . . . . . . ..o

IMopdptnuo

1. Extetopévn EX\nvixy) Ilepindm . . . . . .. .. ..

Keipevo ota oryyAixd

Appendix
1. Introduction . . . . . .. ...
1.1 Organization . . . . . . . . . . e
1.2 Contribution . . . . . . ..
1.3 Social Choice Rules and Distortion . . . . .. ... ... .. ... .......
2. Voters Preferences Expressed as Normalized Valuations . ... ... ...
2.1 Single Winner Problem . . . . . . .. .. .. o oo
2.1.1 Impossibility Results with unrestricted valuations . . . . . . .. .. ..
2.1.2  Lower Bounds and Upper Bounds . . . .. ... ... ... ......
2.2 Multi Winner Problem (k-Voting) . . . . . . ... .. ... ... ... ...
2.2.1 Lower and Upper Bounds . . . . . . ... ... ... ... ... ...,
3. Communication-Distortion Tradeoff with normalized valuations . .. ..
4. Single Winner Problem in a Metric Space . ... ... ... ... ......
4.1 Model . . . ..o
4.2 Lower Bounds . . . . . . . .. .
4.3 Lower Bounds on Positional Scoring Rules . . . . . ... ... ... ......
4.4 Upper Bounds on Popular Voting Rules . . . . ... ... ... ... .....
4.4.1 Linear Upper Bounds . . . . .. ... ... ... ... ... ...,
4.4.2  Sublinear Upper Bounds . . . . . . . .. .. ... ... ... ...
4.4.3 Constant Upper Bounds . . . . . .. .. .. ... ... ... ...
4.5 Optimal Metric Distortion . . . . . .. .. .. . o o

4.6 Optimal Metric Distortion Given Candidates Position

11

13

13

27

27

27
28
29
29



5. Multiwinner voting in a metric space. . . . . . .. .. ... L. 57

5.1 Lower Bounds of Distortion Given the Ordinal Preferences . . . . . . . . . .. 58
5.2 Ordinal Preferences given the distances between facilities . . . . . . ... .. 60
5.3 Bucket Preferences . . . . . . . . .. ... 60
5.4 Number of queries - Distortion Tradeoff . . . . . ... ... ... ... .... 61
6. Concluding Remarks and Related Work . . . . . . .. ... ... ... .... 69
Bibliography . . . . . . . . 71

12



Kegpdhawo 1

Extetapévn EX\nvixd Tlepindn

H Simhwpated epyaoio éyel amodobel oo oryyAd yio Aoyoug mpooPoactudtnTog. 110 cuyxexpl-
HEVO xepdrano Ba yiver plo extetouévn tepiAndm tng epyaciag oty eENAVIXT YADooa, opilovTag
Onec TiC Paocxéc évvoleg, oplopols xan Bempruata, xwele OUWS TIC TEYVIXEC AEMTOUERELES TOV
avtioTorywv anodelEewy. H dour Tou autold tou xegolaiou eivon avtioToryn e autrh Tou x0pLou
HEEOUC TNG DIMAOUATIXAC TTOU ATOBIBETOL GTNY oy Y AT YAWDCO.

Ewcoyoyn

To mhaioto e xowwvixhc emhoyfic anaptileton and TaixTe/dtoua xon eVOeOUEVES eExPdoELC.
O xlplog o1ox0¢ NG Bewplag TNg xowovixig emhoyig ebvan 1 AvdAUGT] TOV OTOUXOV TEOTL-
ufoewy tdve otig mbavéc exfdoeig e oxond v e€aywyh g €xPoaong, n onola ixavomolel
Toug TmeploooTEPoUg TakxTec. Ou dvbpwmol oty xaldnuepvotnTa xohoUvTaL Vo xatafécouy Tic
TEOTWACELS TOUG OF EQWTAMATA X0t avTioTol o EVag UnYaviolog xaneiton va Beet o PérTioTo
anotéreopa. Ta mapadelypata etvon moANG. Mepixd amd autd elvar 1 exhoyy| evog 1| Teploco-
Tepwv umodnelwv pe Pdon Tic meoTwoe Twv Ynpopdpny X emhoyr totobesiac otny omolo
Oo yTioTel wa dnuoola unneesio olTwg WoTe va egunneeTolvTan OXoL oL ToNitec. Ta teheutala
15 xpdvia, to Béuata Tne xowwvixhg eTAOYNAC €xoLY UENETNDEL amd dEXETOUE EMGTAUOVES TNG
Bewplac TwV uTONOYIOTOY Xx0BOC aUTd uTopoly va poviehononBody we tpofifuata BertioTo-
Tolnong. LUyXEXPUEVE Tol TEOPAAUATA AUTE UEAETOVTOL UG TN GXOTUE TOU WG O UNYOVICUOS
Nafdvel TiC TPOTWACELS TOV TULXTHOY Xat T dtayelplletal auThY TNV TANeogopia Wote vo e&d-
velL to BéENTIoTo anotéreoya. o va opicouue to BéNTIoTO anoténeoya, ypetdleTon apeVOS va
TOCOTIXOTIOLCOVUE TIC TEOTWNOELS TWV ATOUOY TEVW GTo TV AmOTENECUATA Xl APETEQOU
VoL 0plGOVUE TNV AVTIXEWEVIXT] CUVEETNOY ToL ETULNTOVUE VAL UEYLO TOTOLCOUKE 1) VoL ENOLYLC TO-
Towoovpe. Ye oplouéva TeoPNAuata auTh 1 Tpocéyyion elvar €0NOYY, OTwWE CTNY TERinTOON
TIOU Ol TPOTWNOELS AVTICTOLYOUV OF AMOCTACELS. 1€ GANA TEOBAAUATA, 1) TROCEYYLOT AUTY| BEV
elvan elvon 1600 Quolny|, xabng elvon dloxoro va tocotixonondel n mpotiunon evég atouou oe
oxéon pe éva unodriglo. Exovtag ONeC TI¢ TOCOTIXOTOINUEVES TROTACELS TOV TTAULXTOV, Elvol
euxolo va Beebel 1 BENTIoT™N ExPoom, avdhoya pe TNV avTixelevixy ouvdptnor BeXtiotonoln-
one. Mot evBeOUEVY XONGE®OOY) GTOV TEOTO UE TOV OO0 Ol TOUXTES XANOLUVTAL Vo XaTadécouy
TIC TEOTWWNOELS Toug elvon 1) xatdtadn tov mhavoy exfdocwy pe Bdorn tic npotiwnoec toug. H
CUYXEXQUEVT] TROCEYYLOT) AMOTENEL Glyoupa Evay TO QUOIXS TEOTO YLl ToV AvBpwTo xabdg elvor
EUXONOTERO VO ONADCEL OTL TEOTLUAEL ToV uTodriplo A amd Tov unodrplo B nopd vo ToGOTIXo-
mowoel Tig avtiotoiyec mpotiwnoec. To {htnua elvon 6TL 1 cupndxvworn e TANEoYopiag Ue
TNV LORPT TOV XATATIEEDY XU EV YEVEL UE OTIOLUBNTOTE AANT) LOP®Y|, xaBLo T GUYVE OTOLOVDT-
TOTE UNYoVIoUd adUvVaTo va e€dyel To PéNTIoTO amoténeoya. o va uetprioouue v enidpoon
NG AMWAELNG TG TANROYORIAS GTNV ETAOYY TOU BENTIOTOU AMOTENECUATOS, XENOULOTOLEITOL 1)
HETEW TNG Tapaop@wong. H cuyxexpuiévn uetpuxy| avixel GTNY OXOYEVELXL TOU NOYOU TPOGEY-
yiong xewpotepnS Tepintwong. H évvola auty| xenoulonoleiton oe 8L1dpopous ToUEl TNE EMOTHUNG
TWV UTONOYLOTOV Xt opileton avondywe. Mepixd mapadelypato elvor To approximation ratio
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GTOUG TPOCEYYLOTIX00G aNyopLluoug xan to price of anarchy otn Oswplo Twv mowyviov. H ne-
etocotepn BiPhloypagio Téve GTNY UETEIXT TNE TOEOUOPPLOoNS ExXEL apiepwdel 6To Thalolo 6mou
amoutelTon 1) EMAOYY EVOC VIXNTH, €X0VTaS 0 E00B0 TS TROTWACELS TwV Ynpopdewy oe LopPY
xatotdéemv. Ol TpayHATIXEC-TOCOTIXOTONUEVES TIROTIUACELS TV PNYopdpny eV elval YVOo TéC
0TOV EXACTOTE Unyavioud. Apxxd to meoPAnua ueNetiOnxe yior TNV meplntwon 6mou oL Teoy-
HATIXES TPOTWNOELS AVTIOTOLY 00V GTNY eXTIUNOT oL €xElL Evac Ynpopodpog yia €va uTodhpLo.
O extiroeig eivon avbalpetes Tég Ye to povo meplopiopd va ebvan 6TL Yot xdbe Pmpopdpo to
dbpolopa ONwV TV exTiuNocwy TEEnel va eivan otabepd. H avtixeweviny ocuvdptnon mou Oa
e€etdooupe elvan 1 emhoyy| Tou unodmgpiou Tou ueyioTomolel To ABPOIoUN TWY EXTWACEWY TWY
INpopoemv, N NeYOUEVT XOWwVIXY eunuepia. Xe autd o Thaloto €yxouv dobel xdtw dplar yiar T
TEAUULORPOCT) TOU UTOEEL Vo TETUYEL €VOG UNYOVIOUOS Xou entlong €xouv dobel unyoaviopol mou
T0 emTUYYAvVoUV. Ou pekethoouue enlong to TEdBANUN 6Tou ananteiton 1 emhoyy k unodmeioy,
6mou AL ot Ynpopdeol Batneolv uia extiunon yio Tov xde utodriglo. Oa Bellouue 6TL TO
TeoPANua Twv k utodmeinv atotekel yevixeuorn tou npoffuatog Tou evog urodmgiou, To onolo
oev etvon mpogavég € apync. To mpoPAnua enlone €xetl peretndel extevidg, oto mhaicio dénou ot
npopopol xou oL urtodrigLou avixouyv oe éva UeTELXO Y weo. AvtioTowya éxouv dobel xdtw dpLa
YiaL TNV TEAUULOEPOCT). 3T0 TAXUGCLO auTo €xouv dlatunwdel ToXhol unyaviouol Tou npoceyyilouv
TO XATE OPLO KL UNYAVIOUOG TOU TO TETUYOLVEL. XTO CUYXEXQPLEVO TAX(CLO, TO TEOPBANUA TNG
emhoyic k vrodnplov dev anoteel yevixeuon tng emhoyhc evog unodmepiou xou ev yével évog
unyaviouodg xeeldleton TEPLOaOTERT TANROYOpla amtd Toug Ynpopdooug HaTe va efval SuVaTo vo
emiteuybel TenepaoUEVT TaEUUOEPWOT).

Yuvelogopd: Xe authy TNy Ttuyloxy epyacio e€etdlouue To TEéPANUA TN emoy g k uTo-
dnplwyv, 6tav ol dngpopodeot xou oL uToPHPLOL avVixoUV oE Eva HETELXO X Meo. Apyxd delyvouue
oTL BV elvan BuvaTd Lo xovEva xavova Pnpopoplog Vo TETUXEL TEMEPAUTUEVY) TURPUUOPPWAT), OV
€y0uUe wg Elc0B0 POVO TIC XATATAEELS TV YNPopdowy Tdvw cToug uodrigoug. Ilpotelvouue éva
O OMOTENECUATIXG TEOTO UE TOV OTol0 €E4YOLUE TIC TEOTWACELS TV Ynpopdpwv. Amoutolue
and tov x4 PNnopodeo v pag SWOEL TEOCEYYICTIXA TNV ANOGTACT] TOU and TOUS t TEOTOTE-
poug unodnploug ye Bdorn excivov. Me Bdon autd to YovTENO xau Ue TAUPdUETEO TV aplfud ¢
Oely VOUUE Ta OPLOL TNG TAUPAUORPPWONS

Extiunoeg

Yy evotnta auth fo e€etdoouye 10 TAXIGIO GTO OTOO Ol TEUYUXTIXES TEOTWNOELS TwV Ynpo-
POPMOV AVTIGTOLYOLY GTNY eXTIUNCT Tou TEEPouy yia xdbe vodriglo. Ocwpolue éva clvoro V
a6 n Ynpopdeouc xa éva shvolo C and m unorgploue. Kdbe dmpopdeog i dlatneel tnv mpory-
patx) Tou extiunon v; 1 C' — R>p. Ot mparyoTixée eEXTUACES ONWV TV Ynpopdpnv opilouy
évo Sudvuopo v = {v1,v2, . . ., Up }. H xowvwvixnd eunuepla mou empépet n emhoyn evég urodnepiou
¢ Ye Pdom To BLEVUoUN UV TOV TEXYUATIXOV EXTNOEWY 0pileTol ¢

SW(v,c) = Z v;(c)

S

Enilong Bewpolye 611 0 unyoviopog éxel npdofacn oTic TeoTWNoES Tov Pnpopdowy Uéown Tou
dlavoopatog I. T éva Yngogopo @ to I; mepiéyel Nydtepn mAnpogoplo 6 oyéon TO v; TOU
TEPLEXEL ONOXANEN TNV TANeogopia. H mo cuvhfne mepintwon elvon 6tay to I; avtiotoiyel otny
xatdtaln Tov urtodneinv e Bdon tic mpotwroelc Tou ¢mgopdeou i. Me Bdon to mopoamdve
€youyue Tov €N oploud.

Optowde 1.1. H magaudopwon(distortion) ya éva pnyanoud f mov ebdyer tny ovumvxvauérn
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nogopogpla 1; and xdde ynpopdpo i xar emiléyer ws vt tov vroyhguo f(V,I) evai:

mazjccSW(jlv)

dist((f, 1)) = supwsr SW(f(V,I)|v)

Yty nepioocdtepn Pioypagpla, o autd To TAaiolo axolouleitan 1 cUuPaon dtL To dbpoloua
TWY EXTWACEOY EVOS PNpopdeou yio Ghoug Toug utodriglouc Oxoug eivan otafepd. Oo axorou-
0rjoouue xi euelc auth ™) oluPoor. Me Bdon auth, oL exTRoEC UToEOLY Vo XoWwVixoTolndoly
étolL wote va abfpotlouv oo 1.

Ocwenpa 1.1. Ita to medfinua tne emAoyns evoc vroynpiov ws MxnTi, 0To TAaow TWY
xavovixomouévwy extiutioswy xdde punyanouds éyxer magaudopwaon Q(m?)

Ocwenpa 1.2. Ita to mnedfinua tne emAoyns evoc vroynpiov ws MxnTin, 0To TAaow TwY
xavovixomouévwy extyiioewy o xdvovas Plurality metvyaiver magaudopwon O(m?).

O xavovoe Plurality emhéyer tov unodrigio o onolog éxel avadeuyBel tpidtog oTig TeplocdTERE]
XATATAEELS TV Pnpopdpnv. Ouclactixd, pog apxel povo 1 menhtn Prigoc xdbe dnpopdoou yia
NV e@apuoyn Tou xavéva Plurality, o onolog metuyalvel T xaNUTERT BUVATH TOEUUOPPWOT).

En\oy7 k vrodnglov og vixnteg

To npéfinua tng emhoyhc k urtodnplov we vixntég cuvavtdtar o avTioToLy o TEOPARUATL G TNV
mpaypatxotnTo. To mo yapaxtneoTixd eivar oL exhoyég, omou amouteiton 1 dnuovpyio wag
emitponnc k urodmplwy, ol omolol Ba avtintpocwnebouy 10 GUVONO GE GO TO BUVATOV UEYUNVTEQO
Babud. o to Noyo autd opilouvue TNy extiunon evog Pmeogpdeou i yio éva civoro X unodmeioy
ueyéboug k wg e€ng.
v;(X) = maxv;(c)
ceX

Anhady 1 extiunon tou Ynpopodeou yia Eva UTOGUVONO UTOYNPIOY TEOXVOTTEL ATOXNELT TiXA.
amd Tov UTOPRPLO TOU UTOGUVONOU TOU EXTIUE TEPLOGOTERO. XE OTL APOPd TNV TAURUULOLPWON
Bewpolue mdNL 6T 1) elcodog oL BlveTon GTO UNYAVIOUO Eval Ol XATATAEELS TV PNpopdonmy Téve
otoug urogrglouc. Ilpoxdntouy Tar axdNovba aroteNéouaTd.

Oewenpa 1.3. Ia to mpdflnua tne emdoyns k vmoynplwy ws mxntés, wydovy ta napaxdrw
xdTw oQLa yua TNY TAQAUOQPWO) OV UROQEL va TETVEL xdle pnyaviouos f

o Nak <m/6 dist(f) >1+m 23k
o [lak<m/2dist(f)>14+m
o Ia k>m/2 dist(f) > 1+m-mT_k

Ocwpnua 1.4. Ia o medpinua s emAopic k vroympiwy ws mxntés o xavévas k-Plurality
TETVYAVEL TAQAUOQPWOT) (’)(mTQ)

O xavéovag k-Plurality emh\éyel toug k unodrigloug mou €xouv avadeybel tpwdtol otig xatatdielc
TV PNPopoprv TIC TEPLOGOTERES PORES.

[Mopatneovtoag o xdTw Oplot TN ToEALOEPOONS, Yiveton avTIANTTd 6Tl 660 o aplbuds k Tov
VOMTOV ouEGvEToL, Tar HpLa Y ANIRWMYOLY”, YEYOVOS TOU LTOBEXVUEL OTL Ue TNV (Blar TANpopopla
umopolue vo emTOyoLUE xaAOTEPR amotenéopata. Me d\ha hoyla, To mpdfAnua yiveton euxorod-
T€P0 600 ALEAVETAL 0 oGS TwV VMTKOY. Téhog, dnwe avapépbnxe, otny nepintwor Tou evog
uTodNPIoL WS VIXNTH AANG XU TNV TERITTWOY TOU GUVONOU UTOPNPIWY WS VIXNTES, UToEOVUE
VoL eTTUXOLUE BENTIO TN ToeadppmoT) aELOTOWMVTAS UOVO TNV TeMTN emAoYY xdbe Jmpopdeou.
Yo auth TV EVvola 1) TEPAUTER® TATPOPORIa TTOL TaEEY0LY oL xaTatdiels elvan tepltth). Ouota-
T3, UTOPOUUE VO CUUTEREVOUUE OTL OE oUTO TO TAXCLO, OL XATATIEES TwV Ynpopdony dev
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ATOTENOLY TOV TO AmOd0TIXO TEOTO, ot OTL agopd To wéyebog tng mAnpogopiag oe oyéon ue
NV Tapadpeao Tou unopel va emteuybel. ‘Eva emduevo Briua, to omolo €xel mparypatonowndel
elvol 1 ouGTNUATXXOTERT MENETN Tou Looluylou uetal Tou ueyéhoug Tng mAnpogoplac mou divel
o xdBe Ynpopdpog xaL TwV oplwv TNC TUPUUOEPWONS TOU UTopel Vo eMTUYEL XADE UNyoVIoUOS
0edoUEVNS aUTAS TNG TANEOPORLAS.

En\oyr evog vnodngiov wg vixnTty o LETEIXO Y WEO

Ye autd to mhaloto Oewpolue OTL oL YNPopdpoL xou LTOYHPLOL AVATUEIGTOUY onuela ot éva
HETEO XPO. XE QUTHY TNV TEPITTWON 0L TPOTWACELS TV PNPoPoemY AVTIGTOLY0VY CTIC omo-
otdoelc Toug and Toug urodmeplous, dnAadY| Evag Ynpopdeog TpoTwd xdbe uTodrPlo Tou améyEL
uxer| andotoon oe oxéon pe avtolg mou Peloxovian mo paxpeld. Enopéveg avalntodue tov
unohplo-oNueio 6To XMEO YLt ToV 0Tolo To dpoloud OXWY TWV ATOCTACEWY HETAUED AUTOY Xou
TV Ynpopopov elvar eNdyioto. Amo €8¢ xan oo e€rg, Ba ypnowonowolue TN cuvdptnon d,
6mou elval gL apVNTIXY cLVAETNON Tou Bivel TNV andctaoT YeTall dlo onuelwy oto xweo.” H
€vooT Tou cuvorou V' Ttov ¢ngopdewy xa. Tou cuvérou C' Tov vtodnplewy pall ue Ty cuvde-
™on d opiCouv To petEd ywpeo. a3 onueia =, y, 2 Tou avixouv ce éva UeTEIXd XOEO Loy VEL
1 Terywvixh ovieotnTe, dnhadn d(z,y) < d(z, z) + d(z,y).

H avtixewevixn ouvdetnor nou emlntolue Vo EXAYLO TOTOLCOUUE OE AUTHY TNV TepinTwor efvor
TO GUVOAXO XOWOVIXO XOGTOS, To ontolo i éva urodriglo = opiletan we e€he.

SC(z,VI|d) = > d(i, )
1%

Opiowog 1.2, Ia to medfinua tne emdoyns evos vropn@lov we MxnTH O [ETOXO YO, 1
nagaudppwon(distortion) ya éva unyanoud f mov éyer ws gloodo Tty ovumvrvwErn TAngopogia
I yia nic mpotyunoes twy Yynpopoowy xar emiléyer ws mxntn tov vaoyhpwo w = f(V,I) opiletar
we:

| _ SC(f(V,I),V|d)
dist(f, 1) = max SC(x, V|d)

A&ilel va onuewwbel Tog 0 TEPLOPIOUOS TNG TELYOVIXNG AVIoOTNTOC UELOVEL TO Babud avbopestag
TWY TEOTWACE®Y TV Npopdowy, oe oY£om Ue TO TEONYOUUEVO TAX(CL0 Tou eEETAGTNXE TOU
X0 YL TO AOYO 0UTO OVOUEVOUUE TOL XATW OPLoL TNS TOROUOPPWONS VoL Efval XUUNNOTERA.

Ye authv Ty evotnta Bewpoldue OTL 1 cuumuxveuévn Taneogopio I mou Naufdver xdbe unyovi-
ouog elvon oL xatatdEel o Twv Pnpopdowy. Bewpolue ot xdbe tepinTwon 6TL oL xATUTAEELS elvon
CUVETE(G UE TIC TEAYUATIXEG EXTIUNTELS TOUS BNAADY| oV yiat €val Ynpogdpo i xan duo urohpLoug
w, z woyLel 6t d(i, w) < d(i, ) qUTO ATOTUTWVETOL XU OTNY XUTATAEN TOU dnAadh w >=; .

Ocswenpa 1.5. H nagaudppwon evéc unyaviopot f mwov Aaufdver ws eloodo g xarardéels o twy
pnpopdowy elvar peyativteon 1N lon tov 3.
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n n
5 agents 5 agents

Yyfuo 1.1: Lower bound

OewpoluE OTL £Y0VUE 2 UTOPHPLOUS C1, C2, OTIOL OL Uicol YNPopoEOL TEOTYWOVY TOV €1 EVE) OL UTO-
ourtol tov ca. Koavévag unyoviopdc dev unopel vo Eeywpeloet molo elivan o BéXTIoT0g, 6TOTE Ywpld
PX&Pn e yevidntog Bewpolue 6Tl emhéyetan o unodrglog c2 wg vintrg. Kataoxeudlouue
éva TopddeLypa €Tol WoTe oL wool dmpogpdeol va Beloxovton 6to (Blo onuelo ue Tov utodrplo
c1 xau oL utéloinol va Peloxovton 6to (Blo onuelo xou vo anéyouy anéctacy 14 € and tov c1 xou
anéctoon 1 — € and Tov c2, 6nwg galveton xou ato Lo 1.1. Me Bdorn Tic nparypatixéc ano-
0 TdoEC 0 LTOPHPLOE TOU ENAYICTOTOLEL TO XOWWVIXO x6cTo¢ elvon o c1. To avtioTorya x6GTn
v toug 2 unodngpioug etvar SC(c2,d) =n/2-2+n/2- (1 —€) xau SC(c1,d) =n/2- (1 +¢).
Omnote 1 nopopdppuon teivel 6o 3 xabwe To € telvel oto 0.

2t cuveyela Ba TUPOUCLAGOUUE Ta Gve OPLYL TNG TOEUULORPOOTE TOL TETUYAVOLY UepiXol Unya-
viopol. ot Ty anddelln Tov dvw oplwy TS TUpaldePOoNS TO ETOUEVO AU EVOL XENOLIO.

Afppa 1.1, I'a dYo vroyngrovs w, x ogilovue to 0volo wx we to oVworo Twy YNPopdowy mov
mooTyoty Tov w oe oyéon e Tov x. Adue ot o vroyhpioc w mxder Tov x av |ww| > §.

Ogwopoc 1.3. Evac vroyngros w ovopdletar Condorcet winner av yia xdde dAlo vmoyngwo x
wyver o |lwx| > 3.

Ocwenua 1.6. Ia dvo vroyngovs w,x oyveL % <2

H mapandve aviodtnto elvon onuovTixny yia Vo pedEouUe TN Tapaddp@noT EVOS UNYAVIOUWOD Tou
emNéYeL TOV LTOPAPLO W, oV UTopoluE Vo Ppolue éva xdtw Gplo Yol TNV TocoTNT |we|, Yio
xd0e dANo urodrigo

Me Bdon to Oewpnua 1.6, av undpyer Condorcet winner toTe 1 EMAOYY TOU CUYXEXQLIEVOU

urodmelou wg vixnty €xer distortion to moXd 3. Ildpa tadto dev umdeyer mdvta Condorcet
winner.

IToxXol amd Toug YV TONE XAVOVES Ylot TNV ETAOYY EVOS LTOYNPIOL KE VIXNTY AVAXOLY TNV
owxoyévelo Twv positional scoring rules. Xe autolg Toug xavoveS 1 xotdtoln o; xd0e Ynpopdoou
i avtiotovylletan o éva Bidvuoua st = {51,852, .., Sm} UE S1 > S2 > -+ > Sy, ONNaOR xdbe
unodhplog AopPdvel éva Pabud amd xdbe dnpopdeo ue Bdorn Ty xatdtadn Tou xaL 0 VIXNTAS
elvan autdg mou ouyxevTEWVEL afpoloTixd TN ueyoUTepr Babuoloyio. Tétowol unyoaviopol, yia
rapddelyua elvan ol xavovee Plurality xoaw Borda xan ta avtiotouya dtaviopato elval:

e Plurality: s = {1,0,...,0}
e Borda: s={m—-1,m—2,...,0}

Ocwenpa 1.7. O xavoves Plurality xar Borda gpovy distortion to mold 2m — 1.
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Io vae tethyoupe otabepd distortion ypeidleton vo e€etdoouye Tic oéoelc Twv unodmepiov ov
Celyn pe Bdon tig xotatdiec Twv Pnpopdenv. I'a 1o Noyo autd elodyoue TV €vvolo TV
tournament graphs, 6mou oe auTolg TOUG YedYous xdbe x6ufoc avtioTouxel oe évay uTodhPLo.
Opilouye dVo TéTol €01 YEAPLY.

Ogiwopoc 1.4. To tournament graph elvar €évac xarevivviuevos, émov xdde xdufoc avriotoyyel
oe €va vroyno xar vadoyer axun and tov xdufo a otov xoufo b av woyve ow labl > §

Ogwopoc 1.5. To weighted tournament graph eivar évac minges xarevdvvduevog yodpos e
pdon, arov omoio 1 axun aré tov xéufo a orov xdufo b éyer fdoos |ab| xar avtiotoa m axun and
Tov xpfo b otov xdupo a e Pdgos |bal.

Y10 mopoxdte mopdderypo 5 dmgopopol xatabétouy T xoaTatdlelc vl Toug 4 unodmeioug
a, b, c,d xou ye Bdon auTéC TEOXVTTOLY OL YEAPOL OU OPIC TNXAY TAULATAVE.

eci:a=b=c>d
eoo:a=c-b>=d
e o3:d>b>cra
eopbr-a-c>d
e o5:d>=b>=c>a

Ou ypdpot mou mpoxdnToLY QalvovTtal 6To LyAuo 1.2

a

Y

Cc

(a) Tournament graph (b) Weighted tournament graph

Yyfuo 1.2: Tournament graphs

Optowde 1.6 (Uncovered set). Evac vropnpuos w avfxer oto uncovered set av yia xdde dAro
voyneo x wyve on |lwr| > 5 1 vrdgyer évag dAlos vroyngios y tétolos wote |wy| > G xat
lyal = 5.

Mrnopolue va TopatneiCOVUE TS O 0plopoS Tou uncovered set amdtelel pio xoaNdpwon ot
oxéon ue tov oploud twv Condorcet winners. To onuavtixé onuelo elvon 6TL uTdpEyeL TavVTA
évog umoPiploc mou avrixel oe auté To clvolo. Enione aliler va onuewbdel n cuoyétion tou
tournament graph ye toug vnodrigloug tou avixouv cto uncovered set. Kdbe urodripiog mou
avrixel 6to uncovered set, yio Tov avtio oo x6ufo tou ypapriuatog oy el 6Tl uropel vo uetofel
o€ onolovdnnoTe dANo x6ufo o€ To TONY duo PBruaTo.

Ocswenpa 1.8. H nagaudppwon tov unyanouod o omolog emAoyn vay vmopnelo mov avyxel oTo
uncovered set givar to oAV 5.

Or optopol Twv tournament graph xou uncovered set, oyetilovton Ye TiC TEOTUACELS TN TAELO-
Inoplag twv Pnpogopnv yia xdbe Ledyog unodnpiov. To enduevo Prua yio va avalnthoouue
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unYaviouols Ue mo uixpn mapaudepwon eivon va e€etdoouue yia xde Ledyog Yngpopdpnv Tig
TeoTWROoELS Toug Lo xdBe Lelyog unodnelny.

Optopobg 1.7 (Matching Uncovered Set). To Matching Uncovered Set eivar éva ovvolo vmo-
pnplwy w, térowor wote pa xdide dAdo vroynpo x € C\ {w} vadgyer éva téleto talpiaoua oo
Sieoéc yodomua G(w,x) = (V,V, Ey ), oto onolo vrdoyer axut) (i,j) € Ey . av vadoye évac
VIOYPNPLOS Y TETOLOS (OTE W =4 Y KAl Y = .

Aweuxpwvilouye OtL toylel 1 oyéon w =; w yia xdbe unodrplo w xou Ynpowdeo i.

Ocswenpa 1.9. H smdoyn evioc vroyngov mov avixer oto matching uncovered set emipépet
distortion to moAv 3.

Mrnopolue va oploouye €va oplcouue €val BLaPOopETIXG BLUERES YRdPNUa, GTO ontolo 1) avalTnon
EVOC TENELOL TALPLAOUATOC Vol LGOOUVOUT UE TO TURATAVE.

Ogtop6g 1.8 (Integral domination graph). To Integral domination graph evéc vrophgpiov w
elvar to Syepés yodonua Gy, = (V,V, Ey), oto omolo vadoyer n axun (i,j) € Ey, av ya tov
PN@opdpo i oyber 6t w =; top(j), dmov top(j) elvar mpotydregos vroyhpLos Tov j.

Ocswenpa 1.10. H emdoyn evis vroyngiov tov onoiov to Integral domination graph Séyetai
téleto talpiaoua, empégel distortion to moAd 3.

En\oyr k£ vnodnplov og vixnTtec o RETELXO X WEOo

Ye authy Ty evotnta Bor peletioouue To TEOBANU TN emNoyiC k utodmplov we vixntég, dtav
oL {mypopdeol xou utoriplol avixouy ae €va YeTeixd Yweo. Emdidxouye téNL t0 glvolo twyv
unodnplwy mou B exkeyel va elvor avTtitpocnneuTind tpog 6Xouc. I'iat 1o Noyo autd, 1 extiunon
evog Ynpopopou yia éva clvoro k uodnploy TeoxdnTelL AmOXNEIG TXE antd TOV TEOTIWOTERO €€
AUTOV, ONAABT TOV XOVTIVOTERO LTIOYNPLO IO AVHXEL GTO eXdG TOTE cUVONO. Tumxd, 1 andc oo
ToL €xel évag Pnpopopog i and éva alvoro X umodmeinv ueyébouc k oplleton wg

d(i, X) = 1221)1(1 d(i, ) xon xot’ ETEXTAON TO GUVONIXG XOWWVIXO XOOTOG TIOU TPOXUTTEL Omd TNV

gm0y Tou cuvorou X unodnpiov opiletan wg

SCC,v)y=>Y_ min d(7, c)
iev ©

Av oy yvwotéc OXeg oL anooTdoels to oAU Bor avorydtay yia Ty enthuor Tou TEoPAT-
uatog metric k-Medians. Yuyxexpyéva 1o nedfAnua autd yeetdleton va emié€oupe k xé-
vipo(uodghgLoug) xar vo avTioTovyicoupe To utohotna onueia(dngopdpouc) oe auTd €Tol Mo Te
Ta cupTAéyPaTa ou B dnuloupynBolv va elvar 6co to duvatdv mo cuunayy. To mpdBAnua
metric k-Medians avixe. otny xotnyopla twv NP dVoxolov tpofinudtwy. o to Xoyo autd,
€youv dobel apxetol mpooeyyloTixol aNyopLduoL ue cTalepd NoYo TEOGEYYIONG TOU EMAVOLY TO
TEOPBANUA O TOAUOVLUXO YE6VOo. Ol TeplocdTepol amd auToNg TOUS aNY0RlOOUE YENOLLOTOL)Y
TEYVIXEC Tpoaéyylong mou Pacilovion GTO YeoUULXO TEOYEUUUATIOUO.

Euelc 0o yehetoouue to distortion mou dSnuovpyeitan 6to cuyxexpiévo meoPANUY, 6Tav ot
xavoveg Yngpogoploc AouPdvouy Teplopiouévr TAneogopla.

Apywd omolocdhmote unyaviouds exhoyhc k unodnplov oe UETEXOS Y WOEO0, 0 0Tolog AowPAvel we
eloodo T xatatdielc Tov Ynpopdony unopel vo teTlyEL Tot EENC AMOTENECUNTA GE GUVAETNOM
ue tov oplbud k tov vixntov:

o k=2 tbte dist = Q(n)

o k> 2 t6te dist = 0
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[apatneodue Notndv, Twe oL xaTatdEelg Bev anoTe oV enapxy| TANeogopia Yo vor emiteuydel
TEMEPAUOUEVT], ToRoUOePwoT. Aluchntixd n napaudepwon ancpileton 6tav otnyv avdbeorn mou
TEUYUOTOTIOLEL O UNYAVIOUOS, UE TNV TANnpogopio mou dlabétel, évag 1 TeplocdTtEROL Ynpopod-
eol Slavbouy andctacT mou unopel va efvon aubalpeta ueyokitepn o oxéom Ue TIC AVTIoTOLKES
arnoctdoelc ot PéENTIoTn avdbeon. Me dAha Noyia, YETE TNV ETAOYT TOU GUVONOU TWV UTO-
dnplov W and tov xavova dngogopiag dnuiovpyolvion k cupmAéypata and Pnpopdeous, 6Tou
T0 xobéva avtioTouxel o évav unodhplo. Av xdnolog amd toug Pnpopdeoug dlaviel avbolpeto
ueyoNUTepn anda oo and auth mou Bu Biévue av elxe avatebel otov BéNTioTo utoPRglo, TtoTE
1 ToEALOPYwoT etvon dmelpr). ot To Xéyo autd, Bev UmopOUUE VoL YEVIXEDCOUUE TIC TEXVIXES Xl
TOUC UNYAVIOUOUE TIOU YENOWOTOWGUUE GTNY TERITTWON TN exXXNoyig evdc untodmepiou wg vixnT
o€ YETEWXO YWpo, xabws ot exelvn Ty mepintwon dnuovpyolviay uévo éva abumieyuo. AZilet
vo onuelwBel 6t n oty TeplnTwon g exhoyic evog utodnelou we vixnty, N Tuxala ETAOYT
evoc uodmeiov o omolog XATATACOETAL TEMTOG NG TOUNLOTOV €va YNPopdeo, eMLpEpEL Too-
wéppwon O(n).

Suyxexpwéva, yio To TedfANue e emhoyic k unodmepiov, arouteiton tocotixh TAneogopia yia
TIC AMOCTAGELS TV Pnpopdpwy and toug urnodnpious, ovtwe Kote va emiteuydel tencpacuévn
rapapdepoaon. Ilpotelvouue Nowndy évay mo anodotxd Tedno va eEQYOUIE TANEOPORLA VLol TIC
TEOTWNTELE TwV PNPopdpwyv. Zntdue and xdbe Pnpopdeo vo BHGEL P eXTUNoT TS AndC TACTG
Tou and Toug t xovTvoTtepog unodnglous tou. Oplloupe dINAABY CUYXEXPWEVA BLOG TAULOTA Xol
Unrdpe and xdbe Ynpopdpo vo emNéEeL GE TOLO OO AUTE TaL LG TAHUATA AVAXEL 1) TEAYUATLXY) TOU
anéc oot and toug t mpotiwdTepoug utodngioug Tou. A&ilel va onueiwlel 6TL doo peyaniTepn
elvow 1 andotaom oL YnPopdeou amd €va UToPHPLo Tou TEdXELToL Vo xaTabéoel, To avtioToly o
oo Tnua etvan peyaritepo, xabog elvan dUoxo o va yivel wa Tétola Tpocéyyion ue axpifeta. T
va oplooupe ta tpoavapepbévTa dloc ThHUATA Bewpolue OTL elvon YVOGTN N ENAXLO TN ATOCTAUOT
ueTagd dVo umodmepinv xon v opllovue ©¢ dimin. To SldoTnua 7 opiletou:

- (di—1,d;) omovdy=ry-di—1 ,i>1
N , do omou dg = fmin=¢t j —
' 0,d do = miz 0

Ané tov mapandve oploud, napatneolue dtL o ueyédn Twyv Sloo Tudtev avgdvovtar exBeTind ue
T0 7y, onol To 7y elvon Wiar oTolepd. Xe auTOd To TANACIO HENETAUE TNV TUPAULORPOCT) TOLU UTOEEL
Vo eTiTUXEL xG0E UnyovVIoUOS TUPAUETEOTOWOVTAS Tov aplBud t Tov utodnplwy mou amateiton
v xatabéael xdbe Pnpogdpoog. Onwg avapépdnxe to mpofinuo metric k-Medians eivon NP
OUCHONO. LT ETOUEVA DEWEAUATA, XETOUWOTOLOUUE EVOY ATd TOUG UTEEYOVIES TEOCEYYLC TXOUS
ayopifuoug pe Noyo mpocéyyiong B we wadpo xoutl. H cuvoliny| nopopdpgpworn Ba e&optdton
am6 To . Av Bev eVOLUPEROUATTE Yiol TO UTONOYLOTIXG x6GT0¢ TOTE avTxabiotolpe f = 1.

Ocenua 1.11. Ay xdde ynpopdpos xaralérer ta daorniuara ota omoia avixovy dlow oL vro-
pnguot, dnladn t = m, tote VIAQYEL UNYAVIOUOS TOV TETVYALVEL TTAQAUOQPWOTN) TO TV 3 - 7.

Ye auTAV TNV TEPITTWOT], OUCLACTIXG, O UNYXAVIOUOS OLabETeL wlor exTiunom ylo TNV anocToo
ueTaEd &b Pnpogpdeou i xan unodrgou j. H extiunon auth anoxiivel to ToX) v Qopéc amd
v mparypatx. Ondte av Bewpricouvue 6TL N xdbe andotaom auté ebvan (o ue o dvw dpLo Tou
avTloTOLXOL BLo THUATOS Xt AVGoupE To TpoBAnua metric k-Medians ye autéc tic anootdoelc
YENOLLOTOLOVTAS EVOL TEOCEYYICTIXO aNYOplbuo ue Noyo B mpoxOnTel Tapaldppnacn To TOND
B

Ocwpenpa 1.12. Ay xdie ynpopdogos xaralérer ta daoriuara ota omoia avijxovy ot > 3
TQOTYLOTEQOL VIOYNPLOL, TOTE VIAQYEL UNYAVIOILOS TTOV TETVYAVEL 0TAVEQT TTAQAUOQPWOT).

To onuavuxd onuelo oty nepintwon 6mou o velBuds Tev urtodmeiny Tou divel xdbe npopdeog
7 m ’ 7 / ’ ’ 7 Z 7 Z 7 7
elvan t > 7 elvon 611 xdbe Lelyoc dnpogdpnv €xel xatabéosl TouldyloTov éva xové utodrglo.
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Yuvenwg, nopd Ty uelwon tou aplbuo ¢, n andc oot puetall xdbe Pnpopdoou i xou uTodriplou
J umopel vou Tpooey Yo TEL XoU GTN) CUVEXELXL UE QUTES TIC TROCEYYLIOTIXES ATOCTAGEL AUVOUUE
T0 TEOBANUA To TEOPANUA metric k-Medians. Yuyxexpyévo ol anoctdoelg mou Ba yenowonol-
floouue yiot TNy ent\uon tou metric k-Medians opllovton wg eERc:

d; av e € b;
degt (i7 C) = 1;%1‘1/1 (dext (i7 b) + deat (]7 C) + degt (]7 b)) av e QI b;
bebiﬂbj

Ocwpenpa 1.13. Av xdie ynpopdgoc xaralérer ta daoriuara ota omoia avixovy ot =

vroyngiot, tote xdde xavévas ynpopopiag éyer magaudopwon (n) xar vrdgyer pNYANouss wov
retvyalver magaudppwon O(n).

4 ’ 4 ’ 4 4 I m 4 ’ 7
To xdtw dplo mpoxinTeL and 10 yeyovég OTL vy t = T umdpyel teplnTwon ol Yngopdpol va
KwELoTOVY o€ Lo opddes 6Tou xdbe oudda divel Toug Bloug t = % urogmeplouvg. Xuvenmg ol
anootdoelg HETAEY TV Ynpogdowy g wag ouddag xou Towv utodngiov mou éxouv dobel and

TNV GANT opdda Yneopdemv elvor yvVwoTeC xou BEV UTOPOUV VoL TROGEYYLOTOUV.

O unyovioude mou netuyaivel topapdppwon O(n) Aettovpyel we e&he:

e 'Eotw 611 dnuovpyodvTal 800 ouddeg Pmpopdewy, dmou 1 xdbe oudda Pneilel Toug (Bloug
t = 5 vnogngiovc. To mpoPAnua xwelletu oe 800 unonpoPNfuata Pr, P. AGvouue 10
%&b meoPANua Eexwetotd Yo aplud vomtav ky =1,k —1xouw kg =1,...,k — 1 xou
XEATAUE TNV ANUGCT] TOU ENA(LOTOTOLEL TO XOWWVIXO x0GTOS TéTol WO TE ki + ko = k.

o Awpopetixd Aovouue to oAU ue Bdon o Oswenua 1.12

ITépiopa 1.1. Me fdon ta magandvew Jewonuata ylvetar xatavonté mws yua va emrlyer €vag
unyanopuos oradepn mapaudppwon ue Tty mAnoopopia mov Salétel, mogmer va pmogel va ava-
XHATAOXEVAOEL TQOOEYYIOTIXA TO [ETOXO YOO Tdvew oTov omolo foloxovtar oL Ynepopogolr xar ol
VIOYPHPLOL.

Ocswpenpa 1.14. Ay xdie ynpopogos xaralérer ta daoriuara ota omoia avijxovy ot <
vroyngLoL, Tote xdile xavovas ynpopoplac éyer dmelQn mAQAUOQPLOT).
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y | — —X

candidate candidate

y  — —X

candidate candidate

G3

O

(b) Aeitepo mopdderya

(a) ITpdto napddetyua
Eyua 1.3: Avo nopoadelyuota T onolo 0To0GOATOTE UNXAvIowos Bev UTOPEL Vo ToL Loy wpeloel

Ocwpolpe 6Tt 0 apudc Twv {nToluevey vtodmeloy evon t = 5 — 1 xou m eivou dptiog. O

aptbude Twv vixntoy eivar 3. Me Bdorn to Xyhua 1.3 Bewpodye dti ol 800 pxpol xhxhot G, G3
avamoeto To0v 800 opddeg Ynpopdewy, 6mou 1 xdbe pla €xel dngioel Toug (Bloug t urtodrigloug. O
peydhog x0xhog G avamaploté Ty Teitn oudda Pnpopdewy mou divouv Toug (Bloug utodrploug,
6mou awtol etvan o1 2 evamopetvavteg unodhgiol (m — 2+ (4 — 1)) %o oL undXoToL avixouy 610
olvoro TV utodnpiov Tou éyxouv dngicel ou Yngogpdeol tng ouddag Gi. H oudda G ywpelletoun
o€ UToOUAdES Ynpopdpnv, dnou xdbe pio améyel avbalpeta pixer andctacy and éva ex TOV
6Vo evanopévov urodmeiov. Ta dbo napadelyuyota mou galvovton oto oyhua 1.3 dev unopolyv
Vo Bl weloToly and xavéva xavova dmgogoplag. 1To TedTo Toedderyua 1 BENTIOTN NUom,
avtiotovyilel Tic ouddes G, Ga oe éva cUumieypa xou xdbe plo and T utoopddes g G ot
€var OLLPOPETIXG GUUTAEYUA. 2T0 Oe0TEPO Tapddelya, 1 BENTIOTN NUom avTictovyilel Tic 6o
unoouddeg g G2 o€ éva cUUTAEYHA xou T opddeg G, Gz ot 800 BLUPOPETIXG CUUTNEYUOTAL.
Omodte, xwele PAEPN T yevixdtntag, Bewpolue OTL 0 xavdvae Pngogopiag divel Ty avddeon
ue Bdon 1o devtepo mopdderypa. Ot anootdoeic toTe Tou Bo Biavicouy oL Ynpopdeot Twv 500
UTIOOUABWY GTO TEMTO Topddelyua lvar awbaipeto pueyariTepeg amd autéc T PENTIOTNG Abong
%Ol YLt TO NOYO aUTO 1) TORUUORPWoT) elvon dmelpen.

Me Bdomn tov véo TpOTO GUANOYTC TV TEOTACE®OY TV Pnpogdeny Tapatneolue Tog Evag
UNYAVIOUOC YL VoL TETUXEL TETEPAOUEVY) TapoUdpwa Ypeetdletal amd xdbe Ynpopdeo Tig mpo-
CEYYLOTIXES AMOG TYOELS TOU amd TOUNAXIG TOV Toug Uools urodnplouvg. AZilel va onuewdel ot
TO 6plO TWV ATAUTOVUEVWY LUTOPHAPLoY Yo oTabepr| Tapaudppwon dev Oo dANale av ol Pnpo-
popol xotébetay Tic axplPelc anootdoelg vl (Blo aplud utodneluwy. Xenowonouwvtag dnhody
aUTO TO POVTENO amauteltan opxeTH TANpoQopio and xdbe Ynpopdpo olTwg MoTe va emiteuydel
TENEQUOUEVT TOEAUUORPWOT). AuTo cupaivel BL6TL 1 ando TaoT EVOS YNPopdeou and Toug ¢t TEoTI-
uotepoug utodneioug, ev yével, BeV Hog £YYUTAL OTL UTOPOVUE VAl AV PEAEOUUE TIC ATOC TAGELS
UE Toug uTdNoLToUS uTodNploue.
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JuunepdopaTa

YT TOPATEV® EVOTNTES UENETHOOME BLAPOPOUS xavOveS exhoyhg. I'ia va xplvouue téco amote-
AECUATING AELTOLEYOVY Ol XAVOVES, BEBOUEVNS TNG TEQLOPLOUEVNS TANEOPORLISC TTOL BEYOVTOL amd
ToUS PNPOPOEOUS, XENOWOTOCUUE TNV UETEIXY TNS TORUUORPWONG. LUYXEXOUIEVO UENETHOUUE
0UO BloPopeTIXd TAaioLL. 2TO TEMTO, OL TEOTWAHCELS TV YNPoPoeny ws TEog Toug utomnpioug
EXPEAC TNXAY WS XAVOVLXOTIOMNUEVES exTUNoEL Tou abpollouy aTo 1 yio xdbe Ynpopdeo. EEetd-
OOUE TIC TEPLTTWOELS OToL YpeldleTtan va exhevel elte évag utodhgiog wg vixnThg elte éva GUVoNo
urodmelov xou anodellaue 6Tl 0L XAVOVEC TIOL EQUEUOCTNXAY GTNV TROTYN TEQITTOOT UTOPOVY
VO YEVIXELUTOUV Xl GTNV TERINTOOT eXNOYNC EVOS cuVONou untodmpiov AouBdvovTtag udhio o
XUNDTEPA ATOTENEGHAT 600 aEdveTon To LEyeBog Tou GUVONOL TV VixNTYV. To deltepo Thai-
olo Tou e€eTdooue NToV aUTO 6To 0Tolo YNYPoPdEOoL xou UTOYPHPLOL AVTLOTOLXOVY OE GMUEld EVOS
METEXOU Y WEOoL. e aQUTAY TNV TEPITTWOY, Ol TPOTWACELS TOV PNPoPoeny K¢ TEOE TOUG UTO-
neploug expedloviar we amootdoelg and autols. o Toug xavoveg Tou PeENETHOUUE, GTOYOC
ATAV 1) ENAYLOTOTOMNGY TOU XOWWVIXOU XOGTOUG. UTNV TERInTOon exAoyhS evog unodnpiov wg
VIXTTH), Ol XATATAEELS TV PNPopodewy HTay ApXeTEC OO TE Vo eTTeLy el Younin nopaudepwon
X0l CLYXEXEWEVA BO0NXE 0 aNyYOEIBUOC TOU TETUYALVEL TO XATOTATO OPLO TAUPAUORPOONS, O
Aad?) 3. ‘Ooov agopd to mEdPANUa TS EMAOYAC EVOC cuvOou utodnpiny amodellaue OTL oL
XATATAEELS BEV AMOTENOVY 0pXETY) TANPOpopla Yl v emiteuy el tenepaouévn tapapdpponaon. Ta
TO NOYO AUTO AVUAUCUUE EVAL TIO ATOTENECUATIXG TROTO GUANOYYS TWV TROTWNGEWY TV Ynpo-
popwv. Idpa tadta yio var emiteuyBel tenepaouévn nopoudePwoT amoutelTon ApPXETH TANEOQORia
and xdfe Ynpopodeo, xabng o {ntoduevog aplbudc vrodnplowv tou tpdxeton va Pnploet evdé-
yetan vo Bploxovion xovtd Tou xou cLVETWS elvon adUvato vo avaxtnbel 1 Béon Tou cTo YWEO
oe oyéon ye Toug unorolmoug unodrgroug. AZilel va onuelwbel 6tL To cuyxexpévo TEdLANUA,
and dnodn mapadepnong ey €xel UeAeTnOel apxeTd xou yi oUTO AMOTENEL AVOLYTO EPWTNUA
1 €0PECN AMOBOTIXOTERWV UNYAVIOUWY OO TE 1) TANEoYopia Tou amoutelton and xdbe Ynpopodeo
va elvan 660 To Buvatd Nyodteen. To yoviélo mou npotelvoue, oéfeton éva amd to Pacixdtepa
adrwpata e Bewplag g xowwvixig emhoyig, TV aveovuplo, Tou onualvel Twe o xovovag §n-
pogoplag ouuneplpépeton otov xdbe Ynpopdeo we loo. dpa Tadta, motedoupe 6L a&iler va
uexetnbel to 16oliyio PETAE) TOPOUOPPWONS Xl TNG CUVONLXAC ETUXOWVWVING G UNYOVIGHOUS
6ToL EXTENOVUVTAL GE BU0 o Tddlo: 670 TeKTo Ba e€dryeton (om TAnpogoplia and xdbe Pmpopdeo xou
o710 delteEpO Bor avary vwpilovton oplouévol dmpopopol ng avtimpdowtol xou o e€dyeton nepoutépn
TAneogopia and autols. Emlong, mpénel va emonuaivouue 0Tl UENETACOUE OLAPOPOUSC XAVOVES
EXNOYNC WS TEOG TNV BENTIOTOTOMOT UG CUYXEXPULEVNG AVTIXEWUEVIXAC CUVAETNONG, TNG ENO-
YO TOTOMNONG TOU CLYOAOU XOWVWVIXOV XOCTOUS (AVTIoTOUKA HEYIOTOTOMON TNS XOWVWVIXAC
eunueplac). H napopdppwon twv xavévev exhoyic e€etdleton xou Téve 68 GANES AVTIXEWUEVIXES
CUVUPTACELS, OTIWC YLl TORADELY A, 1) EXNOYY) EVOS LToYNplou €TOL (OO TE Vo ENXYLOTOTOLELTAL T
uéyotn andotacn mou daviel évag Pnpopdeog. Téhog, adilel vo onueiwbel twg o auth TNy
OLTAOUOTIXY EpYAoiol MENETAOUUE UOVO VIEPUIVIG TIXOUS unyoviopols. Xt BipNoypapia, €xouv
avantuybel xou TuyotomomuévoL unyxaviouol, 6Tou Aoyw TNG TUXOTNTAS ToL avTio Tolya dplal TNS
TEAUOPPOONG EVOL UXEOTERA.
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Chapter 1

Introduction

In social choice theory, the primary objective is to analyse individual preferences in order to
reach a decision that reflects on their collective opinion. Collective decision making problems
come in different ways. They include problems of how to divide resources fairly, how to match
people based on their preferences and generally how to aggregate individuals’ opinions. We
can think of many instances in real life in which individuals express their preferences over
an issue and a mechanism aggregates their preferences in order to reach to an outcome that
aligns best with the social opinion. Namely, such instances may be choosing an electoral
candidate or a committee of candidates, a public policy or choosing the most suitable places
to build public facilities. The most usual example, however is voting.

The roots of social choice go way back to ancient times and the first organized committees
where individuals have to make decisions to serve their common cause. In the Middle Age,
the Catalan philosopher Ramon LLull proposed that the outcomes of voting rules should
be based on the pairwise contests between pairs of candidates. Yet, the first mathematical
observations came during the period of Enlightenment, mainly thanks to the works of Jean-
Charles de Borda and Marquis de Condorcet. The former proposed a new voting rule, widely
known until today as Borda rule. The latter though, argued against his rule and highlighted
a critical problem, called Condorcet paradox.

Moving forward in time, in the middle of the twentieth century, the work of Kennal Arrow
generalised the problem observed by Condorcet. Specifically, Arrow proved that there is not
any voting rule that satisfies simultaneously three keys properties: non-dictatorship, Pareto
efficiency and Independence of Irrelevant Alternatives(ITA). Non-dictatorship states that the
voting rule must not mimic the preferences of a single voter, the dictator. Pareto efficiency
states that if each individual prefers alternative a to b, which is denoted by a > b, then the
outcome of the voting rule must obey this societal preference order. Lastly, IIA states that
the relative ranking between two alternatives a,b output by the voting rule must not relate
to the individuals’ preferences regarding a third alternative c. In the light of this classic
impossibility result [I] as well as Gibbard and Satterthwaite impossibility result [2],[3] for
axiomatic approaches to social choice, a new field of research emerged, the computational
social choice(COMSOC). This is a field that combines computer science and voting theory.
The arrival of computer science in the field of social choice led researchers to reexamine the old
established problems from scratch and subsequently led to new fruitful questions. Research in
computational social choice can be split in two directions. First, through the lens of computer
scientists, social choice rules can be viewed as approximation algorithms and thus, one of the
main fields of the research of computational social choice is to apply computational techniques
in order to provide better analysis of social choice mechanisms. Second, researchers study
the application of social choice theory to computational environments. For instance, it has
been proposed that social choice theory can provide tools in joint decision making where
software agents are heterogeneous and probably selfish. The context of this thesis belongs to
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the first field mentioned. We will study social choice rules under utilitarian view. In order to
define formally the problem, we need to quantify voters’ preferences over candidates. We will
examine two different frameworks. First, we will adopt the classic theory of Von Neumann
and Morgenstern |[1] where individual preferences are captured through a utility function,
which assigns numerical (or cardinal) values to each alternative. In this framework one of
the most common objectives, is to find the outcome, i.e. select an alternative that maximizes
the sum of voters’ valuations. The second framework that we will examine is the one where
agents are located in a metric space and thus voters’ preferences are translated to distances
from candidates. Here the distances correspond to spatial preferences, which mean that the
metric space can be viewed as an ideological space in which a more preferred candidate would
be closer to a voter. The spatial model of preferences has received an extensive amount of
literature in the social choice theory [5], [6], [7], [2],[9], [L0]. The problem in each case would
be trivial if a mechanism acquired each voter’s precise utility for each candidate. Though,
it seems impractical to ask each agent to define precisely what her valuation is for each
alternative. Furthermore, behavioral economists have argued that the agents cannot obtain
the full information concerning their utility, or that obtaining this information requires a
high cognitive cost. Additionally, sending more information also casts a higher burden on
the mechanism. With that being said, each mechanism should elicit voters’ preferences in
a more conceivable way. For instance, an ordinal ranking over the prospective alternatives
is, undoubtedly, a more natural and easy way to gather voters’ preferences. Procaccia and
Rosenschein proposed the framework of implicit utilitarian voting, whereby voters expressed
ranked preferences over alternatives are seen as proxy for their underlying numerical utility
functions. The implicit loss of information due to the embedding of cardinal preferences
into ordinal render the mechanisms that elicit voters preferences in this way more difficult
to distinguish the socially optimal outcome. Procaccia and Rosenschein [I1] introduce the
notion of distortion in order to quantify the drop in efficiency due to the loss of information.
More formally distortion is a measure for the best worst-case approximation of the objective
function that can be achieved given the available information. The notion of approximation
due to some kind of limitations has been studied in other fields of computer science as well.
Such notions are the approximation ratio used in approximation algorithms [12] in order
to approximate NP-hard problems in polynomial time, the Price of Anarchy |[I13] used in
game theory in order to measures loss of efficiency in worst case due to selfish behavior and
the approximation ratio used in designing truthful mechanisms. It is important to note that
in this thesis we assume that voters are non strategic, which means that the information
they provide to the voting rule aligns with their true preferences. This is done, in order to
keep with the line of work on analyzing the distortion of social choice functions, and avoid
issues of game-theoretic modeling and equilibrium existence or selection, see [11]. We are
going to examine both the single winner setting and the multiwinner setting. In the latter
setting, the goal is to select a fixed number k& of candidates as winners so as each individual
would feel represented. Specifically, the metric multiwinner setting can be viewed as the well
studied problem of facility location [15], [16], [17], where voters correspond to customers and
candidates correspond to feasible locations for a new facility to open.

1.1 Organization

The first chapters of this thesis are dedicated to exploring the literature of distortion.

In Chapter 2 we give the formal definition of distortion and examine the single winner set-
ting when agents have normalized valuations. We highlight the importance of normalized
valuations in the framework of distortion and generally in the computational social choice
theory. We review the lower bounds of distortion when the voting rule is given the ordinal
preferences of voters. Furthermore, we examine the multiwinner setting with normalized val-
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uations, where a subset of candidates with a fixed size has to be chosen. In this setting we
consider that a voter’s utility for a set of candidates derives only from her favorite alternative
that belongs in the set. This definition captures the notion of proportional representation,
which is usually a required property. We introduce regret, another measure of loss due to
limited information and give the relation with distortion. We review the lower bounds of
distortion, given the ordinal preferences of voters. Based on the lower bounds we conclude
that in the multiwinner setting with normalized valuations, the problem become easier as the
number of winners k increases.

In Chapter 3 we briefly review a slightly different work on distortion. In this context the
information given is not a (partially) ranking of voters but is measured in bits, or in other
words, measured in computational complexity. Specifically we examine the tradeoff between
distortion and communication complexity both in single winner and multiwinner settings
with normalized valuations. The literature of communication complexity lies slightly out of
our the scope of our thesis, yet the results are intuitive.

In Chapter 4 we examine the single winner setting when agents and candidates are in a
metric space. Due to the restrictions of the metric space the lower bound of distortion is
constant, when voters give their ordinal preferences. We develop tools in order to prove
upper bounds on many well known voting rules. Moreover we review the notion of majority
graphs which are formed based on the ordinal preferences of voters. The notion is critical
in order to construct mechanisms that achieve constant upper bounds. Lastly, we examine a
slightly different framework where apart from the ordinal preferences of voters, the positions
of alternatives are given too. In this framework there is a mechanism that achieves tight
distortion using only the top choice of each voter.

1.2 Contribution

In Chapter 5 we present our results in the multiwinner setting when the agents lie in a
metric space. We show that it is impossible to achieve bounded distortion given only the
ordinal preferences. Therefore, mechanisms need more information, cardinal information. We
propose a new framework in which voters provide an approximation of their real distances
for a given number of their most preferred candidates. We investigate how the distortion
increases as the number candidates asked per voter decays.

1.3 Social Choice Rules and Distortion

As stated, the objective of social choice theory is to analyse the individual preferences in order
to conclude to an outcome that is best for the society. To do so, individuals submit their
preferences in a fixed way and a social choice rule/mechanism aggregate their preferences and
output an outcome that is considered socially optimal. A socially optimal outcome can be
interpreted in a few ways. The most common ones are.

e Utilitarian view: Aims to maximize the sum of utilities
e Egalitarian view: Aims to maximize the minimum utility, thus maximizing fairness.

In this thesis we are going to examine the efficiency of the voting rules through the lens of
Utilitarian view. In most cases we will assume that voters submit their ordinal preferences,
which is a ranking of candidates based on their preferences. As a warm-up, we present some
of the most popular social choice rules that elicit the ordinal preferences of voters and output
a candidate as a winner.

29



Plurality Rule: The candidate who is ranked first by the most voters is selected as
the winner

Borda Rule: For each vote, each candidate receives a number of points corresponding
to the number of candidates ranked lower than him. For each ballot, the candidate
ranked last receives 0 points, the next lowest candidate receives 1 point and so one.
The candidate that gathers the highest total score, i.e. the highest borda count is
selected as the winner.

Harmonic Rule: The voter awards the first ranked candidate 1 point, the second %
points, the third % and so on. The candidate that receives the highest total score is
selected as the winner.

Veto Rule: The voter awards each candidate one point except of one candidate. The
candidate that receives the highest total score is selected as the winner.

k-Approval: The voter awards k candidates with 1 point and with 0 the others. The
candidate that receives the highest total score is selected as the winner.

The above voting rules belong to the family of positional scoring rule where the ranking of
each voter is translated to a scoring vector and the candidate with the highest total score is
selected as winner. The next rule is the Single Transferable Vote, a multi round voting rule
that is used in government elections in a few countries, such as Australia, India and Ireland.

Single Transferable Vote(STV)[15]: STV is a multi round voting rule that works
as follows. In each round the candidate with the lowest plurality votes(votes in which a
candidate is ranked first) is eliminated and these votes are transferred to the next most
preferred candidate. After m — 1 rounds only one candidate is left and is chosen as the
winner.

The following two rules choose the winner based on pairwise majority contests. The winner of
the pairwise majority contest between two candidates a, b is the one such that if we restricted
the voting to those two candidates, she would be preferred by the majority of voters.

Copeland Rule: The candidate who wins the largest number of pairwise majority
contests is chosen as the winner.

Ranked Pairs: Initially, the rule computes the number of wins of each candidate
against each candidate in their pairwise contest. Afterwards, the pairs are sort based
on the number of wins in a decreasing order. A graph G is constructed as follows. For
each pair candidates (x,y) in the sorted list, add the directed edge (z,y) if it will not
create a circle. The winner is the source node o the resulting acyclic graph.

In the following chapters we will examine other more sophisticated social rules as well. As
mentioned before, a social choice rule can be viewed as an approximation algorithm that tries
to choose the best possible candidate. In order to measure how well a social choice rule works,
given some fixed input, we will use the metric of distortion. We will establish lower and upper
bounds. The lower bound of distortion, given a fixed input, such as the ordinal rankings, is
independent of the social choice rule used. The lower bound derives only from the limitations
of the respective input and none of the voting rules cannot achieve better distortion than the
lower bound. The upper bound of the distortion of each mechanism will be the measure in
order to review how well the mechanism performs given the respective information.
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Chapter 2

Voters Preferences Expressed as Normalized
Valuations

2.1 Single Winner Problem

In this framework, we assume that the preferences of voters are expressed as cardinal valua-
tions. Formally, let V' be a set of n voters and C be a set of m candidates. Each voter has a
private valuation v; : C' — R>¢. Given the valuation profile of voters v = {v1,va,..,v,} the
social welfare for an alternative ¢ € C' equals to:

SW(v,c) = Z v;(c)

%

Given the valuation profile of voters v, it is trivial to select the candidate that maximizes the
social welfare.

A social choice rule though can only have access to the preference profile I. The preference
profile I contains limited information compared to the valuation profile v. The most common
case is when the preference profile I corresponds to the ordinal preferences of the voters, that
is a ranking in which each voter sorts the candidates based on her preferences. In this case,
we will use the binary symbol >, to denote the preference of a voter between two candidates.
For example for a voter ¢ and two candidates x,y, the relation x »; y denotes that voter i
prefers candidate x to candidate y.

We assume that each preference profile I is consistent with their real valuation profile v. In
other words, for a voter ¢ and two candidates w, x if v;(w) > v;(x), which means voter i values
more candidate w than candidate x, this relation is apparent in her ordinal preferences and
thus w >; x.

Definition 2.1. The distortion of a social choice rule f that elicits the limited information
I; from each voter i € V and selects the alternative f(V,I) as winner is defined as:

maxjecSW (jlv)
SW(f(V.I)|v)

dist((f,I)) = supysr

We note that distortion is a multiplicative measure of loss.

2.1.1 Impossibility Results with unrestricted valuations

In most cases the valuations of agents are studied under specific restrictions. The most
common is the assumption that there exists a constant K € N such that for each voter ¢
it holds that »_ ;.- vi(j) = K. Subsequently, the valuations can be normalized such that
for each voter ¢ it holds that } ;- v;(j) = 1. The latter assumption has been termed as
unit-sum. In the framework of distortion the normalized valuations are mandatory in order
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to bound the distortion. To justify this statement, consider an instance where the set of
voters is V' = {1,2,3} and the set of candidates is C' = {c1,c2}. The voting rule has only
access to the ordinal preferences and these are given above.

e > C
® Cco 2 C1
® Co >3 C1
We fix the voters valuations as:
o vi(c1) =c,vi(cg) =0, for ¢ > 0
e vy(c1) =0,v2(c2) =1
e v3(c1) =0,v3(c2) =1

Therefore any voting rule, given only the ordinal preferences will choose candidate 2 as
winner. Based on the voters valuations the social welfare of candidate ¢; is SW(c1|v) = ¢
and SW(cg|v) = 2 respectively for co. If ¢ > 2 the optimal candidate is ¢; and thus the

distortion is
. SW(ci,v c
SW(ca,v) 2
and may be unbounded as c¢ increases. The assumption of restricted valuations can also
ensure that every voter has equal influence in determining the socially optimal outcome. The

use of normalized valuations has been further analysed by Aziz [19]

2.1.2 Lower Bounds and Upper Bounds

Given the voters ordinal preferences, one of the easiest ways to aggregate their preferences
is to select the candidate that is ranked first by the most candidates. This is called the
Plurality rule, as mentioned in the previous section. We will first prove the upper bound of
the distortion of Plurality rule.

Theorem 2.1. The distortion of Plurality rule is O(m?), where m is the number of voters.

Before we proceed to the proof we highlight two useful bounds for the voters valuations that
will help us establishing the lower bound of distortion. Let o;(x) be the position voter i ranks

candidate z.
1
m

e Lower bound: If 0;(z) = 1, then v;(x) >
<

1
O’Z((E)

e Upper bound: v;(x)

Proof Suppose that w is the candidate chosen as winner by the Plurality rule. By the
pigeonhole principle it holds that at least - voters ranked w first. For those voters, since
the sum of valuations add up to 1, their valuation for candidate w is at least % Hence, the
social cost of w is at least -5. The social cost for any candidate c is at most n, i.e. the edge
case where every voter i has valuation v;(¢) = 1, and v;(¢’) = 0, for ¢ # ¢. Therefore the
worst case distortion of Plurality rule is - = m? O

m

d

Interestingly, we will see that this simple rule achieves the lowest possible distortion, given
the ordinal preferences. Note, that we only use the most preferred candidate of each voter
rather than the whole ranking. We recall, that the only restriction a social choice rule can
capitalise, is that for each voter the valuations of all candidates add up to 1. Apart from
that, the valuations can be totally abstract. In order to make this clear, we consider now the
distortion of Borda rule.
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Theorem 2.2. The distortion of Borda rule is unbounded.

Proof Consider an instance where two candidates x,w € C gather the highest score, i.e.
the highest borda count. For candidate w all the voters ranked her second. For candidate x
half of the voters ranked her first and the others ranked him third, and thus both candidates
gather equal borda count. Without loss of generality, we assume that candidate w is chosen
as the winner. We can fix the valuation profile of voters such that each voter’s valuation for
candidate w is 0 and 1 for their top choice and subsequently the candidate that maximizes
social welfare is x. Hence, the distortion in this case is unbounded, since the social welfare
of candidate w is 0. O

In other words, a voting rule that may choose a candidate that is not ranked first by none of
the voters has unbounded distortion.

We will now see that the Plurality rule achieves tight distortion, by proving that the respective
lower bound is Q(m?)

Theorem 2.3. Given the ordinal preferences, every social choice rule f has distortion Q(m?).

Proof Let C = {c1,ca,...,cn} be the set of candidates. We partition C' in two sets:

X =A{ci,...yem—2} and Y = C\ X = {¢pm-1,cm}. We construct the ranking profile as
follow. Each of the m — 2 candidates in set X is ranked first by "5 voters and each of the
2 candidates in set Y is ranked second by 5 voters. Any voting rule has to choose either one
of the m — 2 candidates in set X or one of two candidates in set Y and there is no way to
distinguish a candidate in each set. Without loss of generality, suppose that the voting rule
selects a candidate ¢ from set X or ¢, from set Y. We now fix the valuation profile. For each
voter that ranks c; first, set her valuations equal to % for each candidate. For the remaining
voters, for those who ranked candidate ¢, second, set their valuations equal to 1 for their top
candidate and 0 for the others. Lastly, for those who ranked ¢,,_1 second set their valuations
equal to %, for their top two candidates and 0 for the others. Thus for candidates ¢y, ¢, the
incurred social welfare is m The social welfare for candidate ¢;,—1 is %, which is the

m-(m—2)

", yielding a lower bound of Q(m?). O

optimal. Therefore, the distortion is

We conclude that if the voting rule is deterministic and the input is the ordinal rankings of
voters, the problem is resolved since the Plurality rule achieves tight distortion. It is worth-
noting though that, given the ordinal rankings, the only useful information that the voting
rule gained for each voter regarding her cardinal valuations was a lower bound of % for her
valuation for her most preferred candidate. We are going to examine voting rules that elicit
voters’ preferences more efficiently in Chapter 3.

2.2 Multi Winner Problem (k-Voting)

In the multi winner elections the objective is to select a subset of k candidates as winners
that maximizes the social welfare. Much of the work on multiwinner elections has focused
on the question of proportional or diverse representation: How can we choose a winning
committee where every voter feels represented. Multiwinner elections clearly arise in choosing
a winning parliament in representative democracies. The most common framework that will
be examined in this Chapter is again the implicit utilitarian voting, i.e. the case where the
voters give their ordinal preferences. Many multiwinner rules rely on ideas from single winner
rules. We provide some of them below:

e Single Transferable Vote: A multistage voting rule based on plurality scores. If there

is a candidate w whose plurality score is at least ¢ = ILLJF‘I + 1 then do the following:

— include w to selected subset
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— delete the g votes in which w was ranked first
— remove w from all the remaining votes

— if the plurality score for each candidate is less than ¢ remove the candidate with
the lowest plurality score

e Single Nontransferable Vote(k-Plurality Rule): Return the k candidates with
the highest plurality score.

e Bloc: Return the k candidates with the highest approval votes.
e k-Borda Rule: Return the k£ candidates with the highest Borda score.

e Chamberlin-Courant Rule [20]: Given a committee X with k candidates, a voter
is represented by the candidate that he ranks the highest among candidates from X. If
x(v) denotes the candidate that is representing voter v, the optimal committee under
the Chamberlin-Courant voting rule seeks to minimize the sum or the maximum value
of (oy(x(v))), taken over all voters v (where o, (c) denotes the ranking of the candidate
¢ in the vote v).

In multiwinner voting the utility of voter for a subset of voters is not as straightforward
to define as in the single winner setting. In order to capture the notion of proportional
representation in the definition of voter’s utility we assume that each voter has unit demand
for a set of candidates [21]. This means that her utility for a set of candidates derives only from
her favorite candidate in the set. In order to see the importance of unit demand valuations
in proportional representation, suppose, for contrast, that each voter’s utility for a set of
candidate derives from all the candidates in the set. Consider an instance with 5 voters and
the objective is to select a committee of 5 candidates. Based on the latter definition, if 3 voters
have the same valuations for the candidates, the optimal set may include candidates that are
preferred only by 3 out of 5 voters and thus leaving the remaining voters unrepresented.

We can now define formally the utility a voter ¢ has for a subset S of candidates:

vi(S) = r)r{lg}g(vi(X)

Therefore the social welfare for a set S of k£ candidates and a valuation profile v is
SW(S,v) = Z max u;(X)

We assume again that voters have unit-sum valuations.

2.2.1 Lower and Upper Bounds

The distortion in the multiwinner elections, given only the ordinal preferences of voters was
studied by Caragiannis et al [22]. Some notions in single winner framework can be naturally
generalized for the multiwinner setting and will be useful in this analysis.

Definition 2.2. For a preference profile o, that is the rankings of candidates, given by the
voters and a set of candidates S C C, we denote

0i(S) = mingeg 0i(x), the candidate in the set that voter i ranks the highest ranking. Moreover
for a voter i we can define the relation between two set of candidates X,Y as X >=; Y which
means that from the candidates in these two sets, voter i prefers a candidate in set X
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Definition 2.3. The plurality score of a set S C C' is the number of votes in which alternatives
i S are ranked first, i.e:

plu(S,0) = Z plu(z, o)

€S

In their work, they established certain lower bounds and showed that the k-plurality rule
achieves tight distortion. In order to prove those bounds we need to define another measure
of loss, the regret. In the next definitions, we will use Ay to denote all the subsets of candidates
of size k.

For a multiwinner voting rule f which chooses the subset X given the preference profile o
the regret is defined:

regret(f) = S sup <max SW(A,v) — SW(X, 1)))

n v>o SEAk

Regret is an additive measure of loss, whereas distortion is a multiplicative. The following
lemma demonstrates how distortion and regret are related.

Lemma 2.1. For a voting rule f and a preference profile o that select the subset of candidates
X the regret of f is given by

B 1 K18 = X]
reg(f) = max oD 71(S)
and the distortion is given by
. n-reg(f)
dist(f) =1 7
sif)=1+m plu(X, o)

Proof We give the sketch of how these formulas are proved. As you may observe, the proof
will be similar to the one in the single winner setting. We will use again the two useful bounds
established in the previous Chapter. As stated, both distortion and regret are measures based
on worst case analysis. We want to fix a valuation profile v* such that the chosen subset X
has the least possible social welfare under v*. For each voter ¢ compare the chosen set X and
the arbitrary set S. If S >; X we want to maximize the difference between v;(S) and v;(X)
and we do so by setting v;(X) = 0 and v;(5) = ﬁ which is the highest possible valuation.
Remind that o;(S) is the highest ranked candidate in subset S based on voter i.

If X >=; S we want to minimize the difference between v;(S) and v;(X) which means set the
two valuations equal and want to be as small as possible in order to maximize the distortion.
This is achieved by setting both utilities zero if 0;(X) > 1 and by setting both valuations %
if 0;(X) = 1, which is the lowest possible valuation for a top candidate. ]

The above formula of distortion formalizes the importance of plurality score for each candidate
in the framework of distortion. It is easy to observe that a voting rule which selects a candidate
x with plu(x, o) = 0 has unbounded distortion.

By using Lemma 2.1 and following similar reasoning when we prove the lower bound in the
single winner setting, we establish the following lower bounds for every deterministic voting
rule f, depending on k

o For k <m/6 dist(f) >1+m - mk

e For k <m/2 dist(f) >1+m
e For k > m/2 dist(f)Zl—i—m-mT_k

As it was mentioned above, the voting rule f that selects the k& candidates with the highest
plurality score achieves tight distortion.
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Theorem 2.4. The k-Plurality rule achieves distortion of at most 1 + m - (% — 1)

Proof We consider that the rule selects the subset X of candidates. We know that the sum
of plurality scores of all the candidates equals n. By the pigeonhole principle the sum of the
k highest plurality scores is at least k- n/m. Moreover for every S € Ay \ X the number of
voters i for whom it holds S >=; X is at most n — plu(X, o). Therefore by Lemma 2.1 the
distortion of this rule is at most:

n-reg(f) n — plu(X, o) n
Lam- BTN ) g gy BTPRRT) oy (P
tm plu(X,0) — tm plu(X, o) " plu(X, o)
m
< N
<i4+m- (T -1)

O

Given only the ordinal preferences of voters, the problem has been settled down as we reviewed
that plurality rule achieves tight distortion, by just using the top choice of each voter. It
is worth-noting that the lower bounds of distortion, given the ordinal preferences, decay as
k increases. Less formally, the problem becomes easier as k increases. This is not obvious
apriori because by increasing the value of &, this allows us returning larger sets that achieve
higher social welfare, but it also raises the optimal social welfare against which a voting rule
needs to compete. As we will see in the next Chapter, the observation that distortion decays
as the number or winners increases, can be generalised with any given input.
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Chapter 3

Communication-Distortion Tradeoff with
normalized valuations

So far, in the normalized valuations setting, we examine rules that elicit information from
voters in a specific way which is the ordinal rankings. In this case the bits of information
required from each voter is ©(m - logm). This holds as the possible different responses that
each voter can submit are m!. Asymptotically, by taking the logarithm of this quantity we get
©(logm!) = ©(mlogm) bits of information. This is the communication complexity of those
voting rules. For further information about the communication complexity in voting rules
see [23]. Obviously, it is desirable for a voting rule to have low communication complexity
and low distortion. Typically, though by eliciting more information from the voters enables
voting rules to achieve lower distortion. Mandal et al. [24] took a novel approach in analyzing
voting rules. They considered them as a combination of two rules:

e Elicitation rule: Asks voters to answer a query based on their preference

e Aggregation rule: Outputs a set of candidates as winners based on the information
collected in the elicitation rule

Working on this framework they examine the frontier of the tradeoff between distortion and
communication complexity and they provide upper and lower bounds on the communication
complexity required in order to achieve at most distortion d. They implement both deter-
ministic and randomized rules. A randomized voting rule assigns a probability distribution
over all feasible outcomes. For example in the single winner setting, the voting rule assigns
a probability distribution over all candidates and in the multiwinner setting, with k& winners,
assigns a probability distribution over all possible sets of k& candidates. In this case the distor-
tion is the worst case ratio between the optimal social welfare and the expected social welfare
of the subset selected by the voting rule. In this section though, we are going to review only
the deterministic rules. The two rules that we are going to examine rely on an input format
called threshold format whereby each voter is asked to submit whether her utility for each
candidate is above or below a given threshold. This idea was introduced by Benadé et al.
[25]. As we will see, the next algorithms generalize this idea by constructing more than one
threshold formats.

First we review a voting rule called PREFTHRESHOLD;; for the single winner setting,
which uses deterministic elicitation and deterministic aggregation. The idea is that each
voter is asked to submit approximately the valuations for her top t candidates. In order to
approximate voters’ valuations the interval [0, 1] is split into [ exponentially spaced buckets.
Therefore each voter submits in which bucket [ belong her valuation from each of her top ¢
candidates. The aggregation rule outputs the candidates with the highest estimated welfare,
which is derived from the above approximations in the elicitation step. That is, the rule sums
up the upper bounds of the bucket in which each valuation belongs. The formal algorithm is
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given above.

Algorithm 1: PREFTHRESHOLD,;
Elicitation Rule:

Partition the interval [0, 1] in I + 1 buckets, where By = (0, #] and
B, = (m~H@=V0 =15 0/0] for p=1,...,1

Ask each voter i to pick the set S! of the ¢ most preferred candidates and identify the
bucket B, each valuation v;(a) belong for a € S!

Aggregation Rule:

For each p let U, denote the upper bound the respective bucket B,
For each voter ¢ and candidate a define v;(a) = U), if v;(a) € By, and 9;(a) = 0 otherwise
For each candidate a define sw(a) = > 0;(a)
i€V
Output the candidate x such that w € arg max sw(a)
ae

The next theorem provides the bounds of the voting rule f = PREFTHRESHOLD,;

Theorem 3.1.
For 1 <t <m, the communication complexity and distortion are:

C(f) =0 (t log (’"(1:1)» . dist(f) =0 (mHQ/l/t)

Fort =1 it holds
C(f) =log(ml), dist(f)=0 <m1+1/1>

Proof The desired communication complexity derives from the fact that a voter can give
(T) - (14 1) different responses for t > 1 and m - [ for t = 1. And asymptotically by taking
the logarithm we conclude that:

» C(f) =0 (log [(7) - 1+ 1)]) = (tlog () ) for ¢ > 1
o C(f)=log(ml), fort=1
O

As expected, if ¢ or [ increases the communication complexity increases and the distortion
drops. The above parameterization provides us the ability to make some remarks:

e For t =1 and [ = 2, we get distortion of O(m+/m) with communication complexity
O(logm + 1)

e For t = m, | = logm, we get constant distortion with communication complexity
O(mloglogm)

We recall that by eliciting the ordinal preferences of voters which translates to ©(mlogm)
bits, we got a lower bound of distortion at Q(m?) for the single winner. However we proved
that the plurality rule achieves the optimal distortion given the ordinal rankings, which in fact
can be achieved by providing only the first vote which translated in logm bits of information.
Thus, with one more bit of information PREFTHRESHOLD gives subquadratic distortion
of O(my/m). We can infer that the ordinal preferences are not the optimal way to elicit
information from the voters.

In their follow up work Mandal et al. [20] gave a similar algorithm for the multiwinner voting
setting with deterministic elicitation and randomized aggregation. Again the idea is to ask
voters more efficiently about their preferences rather than giving their ordinal preferences.
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We provide again the idea of the algorithm. The interval of [0, 1] which is the range within
the valuations for each candidate belong, is partitioned into logm exponentially value-sized
buckets. Furthermore, the set of integers [m] N {0} is partitioned into logm exponentially
quantity-buckets. For every combination of each value-sized bucket and each quantity-sized
bucket the voters are asked to give the set of candidates for whom the valuations belong to the
respective value bucket, if the cardinality of this set belongs to the quantity bucket. In order
to keep communication complexity low, it is not necessary to ask voters to submit sets with
high cardinality, because in these sets the valuations for each candidate are approximately
the same. Thus, the rule learns approximately the distribution of each voter valuation. The
aggregation rule forms a number of possible subsets of k candidates based on the voters
preferences and picks one of them randomly. The formal algorithm is given below.

Algorithm 2: k-Selection
Elicitation Rule:

Set t = m | |
Partition the interval [0, 1] into 2logm + 1 buckets: By = [0, #) and Bj = [QTJH—?, %) for
j=1,...,2logm
Partition the interval [m] U {0} into logm + 1 buckets: Cp = {0}, C; = {27~1,...,27} for
j=1,...,logm
Set gs = log 7
For each pair (p, q) such that p € {1,...,2logm} and q € {1,...,qs}
Each voter ¢ calculates set S?? of candidates a such that v;(a) € B,
Send S if |SP| € (.

Aggregation Rule:

For each pair (p, q) such that p € {1,...,2logm} and q € {1,...,qs}
IF ¢ > ¢ select Ay, uniformly at random from {S C C': |S| = k}
ELSE Obtain S from each voter 1.

Choose A, € srns
oose Ay, argsgrcr}z?s)T:k{ ; # 0}

Output uniformly at random one of (1 4 2logm) - (1 4 logm) subsets of A,

Theorem 3.2. For d > 144log* m there is a voting rule with deterministic elicitation with
O(d) distortion and communication complexity O (% log® m)

Proof Suppose we have a valuation profile V? for each p € {0, 1,..,2logm} that corresponds

to the respective upper bound of bucket B;,. We can find the optimal sets of k candidates A}

for each p.

Since szfm SW (A3, V,) > SW(A*,v), by the pigeonhole principle there exists p € {0, 1,..2logm}

such that )
A* * > -, A*
SW(Ap Vy) = 1+ 2logm SW(A",v)

. Following the same reasoning we can define the valuation profile VP4, where for each
voter ¢ it holds

V0 iff{a:V2a)= 1%} €C, and p=0

V=9 VP ifl{a:Vi(a) = 5} €Cy and p>1

7
0 otherwise

It holds that Zzoién SW (A3, VP1) > SW(A;, VP). By pigeonhole principle there exists

q € {0,1,..,logm} such that

* 1 *
SW(qu, qu) 2 mSW(Ap, VP)
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Combining the two results we get that there is a pair (p',¢’) such that

SW(A*,v) S SW(A*,v)
(1+1logm) - (1+2logm) ~— 6logZm

SW (AL, VPT) >

*
p'q">

The next step is to bound the expected value of the social welfare of flpq selected by the

mechanism with the optimal subset Ay, with respect to valuation profile V4. For every

Prq
voter i and candidate a it holds that v;(a) > Ve _ L. This inequality is relaxed in order
2 2m

to be true for p = 0 as well. Hence for any subset S C A such that |S| = k we get

SW (S )—me-()>zvipq_i_l (Squ)—L
W)= 2 naxvia 2 am2 27w om?

It is important to note that when ¢ < g5 the subset /lpq selected by the mechanism is equal
to the respective A} .

Hence the only thing left to bound is the social welfare of the random subset S selected when
q > gs. In this case it holds that E(sw(S, V?9)) > 2 - sw(Ay,, V)
Thus, irrespective of the value of ¢ we can bound the expected value of the social welfare of

A~

Apq selected by the mechanism with respect to the original valutation profile v

N 1 A n 1 P
E(sw(Apg, v)) = §3w(quvaq) T om2 2 T sw(Apg, V) —

sw(A*,v) n

> _
2m? = 24tlog?m  2m?

Lastly, by dividing with the optimal social welfare we get:

E(sw(Apq,v)) S 1 n 1 1 S 1

_ > _ -
sw(A*,v) T 24tlog?m  2m?-sw(A*,v) T 24tlog’m  2m ~ 48tlog®m

The second inequality holds due to the fact that the social welfare is a non decreasing func-

tion with respect to the number of winners and for the single winner there is at least one
n n

candidate a such that sw(a,v) > = and consequently sw(A*,v) > . The last inequality

holds by the definition of ¢ = I 41‘jg4m < 5 lg’gzm. Lastly, remind that the mechanism picks

one of the flpq subset uniformly at random. Thus, the probability that the pair (p',q’) is
selected is i Hence, we conclude that the distortion is at most

1 > 1
14+2logm)-(1+logm) = 6logZm’
d = 1441og*m

For the communication complexity, each voter submits (1 4+ 2logm) - (1 4 logm) < 6log®m
4

sets. The size of each set is at most # = W. Hence the total communication from

each voters is at most O(7% log®m) bits. O

The authors gave respective lower bounds for both problems. These are presented below:

e Let f be a single winner voting rule which achieves distortion dist(f) < d. Then
c(f) =)
e Let f be a multiwinner voting rule which achieves distortion dist(f) < d. Then C(f) =
Q(7q)
These lower bounds are proved using tools from the multi-part communication complexity lit-

erature. Specifically the authors reduce the voting problem to the multi-party set disjointness
problem. We are not going into details as communication complexity is out of our scope. For
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further reading about some of the techniques used communication complexity theory we refer
the reader to [27]. Based on the latter lower bounds, the two rules that we review achieve
tight distortion up to some logarithmic factors. Another important observation is that the
lower and upper bounds decrease with k. This formalises the statement that as number of
winner increases the problem become easier, which means that the voting rules need lesser
information.
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Chapter 4

Single Winner Problem in a Metric Space

In this chapter we will examine the setting where agents and candidates lie in a metric space.
In this setting, the underlying assumption is, that the closer a candidate is to a voter, the
more similar their positions are on a specific subject. We assume again that voters provide
their ordinal preferences. Thus voters rank candidates by increasing distances from them.
We begin with the simplest metric space, the line (R). A natural way to interpret this setting
is as left wing and right wing line, where voters and candidates are located on the line. The
structure of line led scientists to establish two significant properties about the formation of
candidates and voters. First, the group of voters are said to have single peaked preferences
over the set of candidates. We define formally the single preference profile.

Definition 4.1. We say that a preference profile is single peaked if there exists an ordering
o, denoted by >, over the set C' of candidates such that the ordinal preference of every voter
i denoted by =; has the following structure. Let top(i) be the most preferred candidate of i.
For every pair of candidates x,y such that x =; y in i’s ordinal preference, we have either
top(i) = x >y ory = x > top(i) in the ordering o.

The above definition indicates that the further a candidate is located from voter i’s top
choice, the less is preferred by her and that there is an ordering of candidates consistent with
the ordinal preferences of voters. This specific class of preference relations implies a number
of fruitful properties and has been studied extensively by political and computer scientists
2], 201, 1301, [31], 321, [33], (341, [39].

The second established property states that there is an ordering over the set V' of voters as
well. This property is called single crossing [30].

Definition 4.2. We say that a preference profile belong to the single crossing domain, if it
admits a permutation of voters such that for any pair of candidates x,y there is an index
j(x,y) such that either all voters i with i < j(x,y) prefer candidate x to y and all voters i
with i > j(x,y) or vice versa.

In other words, preferences are single-crossing if there exists a linear ordering of voters such
that for any pair of candidates there is a single spot, along this ordering, where the voters
switch from preferring one candidate to the other one. Scientists have analysed the multiple

aspects of the majority rule under single crossing preferences [37],[3%]. Furthermore, single
crossing preferences relate to the field of income redistribution [39], coalition formation [10],
local public goods [11], [12] and with the choice of constitutional voting rule [43].

Since the setting of line may seem as a simplistic way to interpret political views, we can
consider the political compass in 4.1, where candidates and voters correspond to points in
the plane, in which the horizontal axis measures their economic views and the vertical axis
measures their social views.
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Figure 4.1: Political compass where the dimensions correspond to economic and social views

Going a step beyond, political scientists have analysed the so called Downsian proximity
model [29]. One way to interpret this model, is as a high dimensional metric space where
each dimension corresponds to a different issue. And thus, the more issues a voter aligns with
a candidate, the more close to her he will be. As far as the distortion of each mechanism is
concerned, the lower and upper bounds that we will examine hold for every metric space.

As stated, in these cases, voters preferences are defined as distances over the candidates and
we aim to select a candidate that minimizes the total social cost, i.e. the sum of distances of
all agents from the chosen alternative. In this framework we expect to get tighter bounds since
the restrictions of the metric space reduce the level of arbitrariness in the voters’ preferences.

4.1 Model

Let V be a set of n voters, C' be a set of m candidates and we define the set of all agents
A =V UC. We define also d : A x A=R>0, a non-negative function that measures the
distance between points that correspond to voters and candidates. Specifically, d satisfies the
above properties:

e identity of indiscernibles: d(x,z) =0
e symmetry: d(z,y) = d(y, x)
e triangle inequality: d(z,y) < d(z,z) + d(z,y)

The pair (A, d) defines the metric space.
The social cost for a candidate ¢ € C is defined as

SC(ce,V|d) = d(i,c)
i€V
For a social choice rule f, that is given the ordinal ranking profile of voters o = {01, 09,...,0,}

and selects alternative f(V,o0) = w € C as winner, the distortion is defined as:

SC(f(V,0),V|d)
mingec SC(x, V|d)

dist(f) = max

44



With slight abuse of notation we will often omit the metric space d in our definitions,

by writing SC(w,V'). We define also some useful notation:

For candidates x,y zy = {i € V : = »; y} is the set of voters that prefer = to y. Similarly,
for candidates x,y, z we define the set xyz ={i € V:x =; y =; z} .

Moreover, we say that candidate 2 (weakly) defeats candidate y if |wz| > §

4.2 Lower Bounds

As stated, in the following sections we assume that the information given by each voter i to
mechanisms is a preference ranking o; over the candidates in C' where voter ¢ ranks candi-
dates in a non-decreasing order of their distance from her. We assume that d is consistent
with the preference ranking o; if and only if for voter 7 and for every candidates ¢, ¢ where
d(i,c) < d(i, ) follows that ¢ =; .

Theorem 4.1. Given the voters’ ordinal preferences there is no (determinstic) social choice
rule that has distortion less than 3.

5 agents 5 agents

Figure 4.2: Lower bound

Proof Consider the case where there are only two candidates ¢y, co. Half of the voters prefer
c1 and the other half of them prefer co. Without loss of generality we assume that a social
choice rule chooses ¢y as the winner.

We can design the following instance as illustrated in Figure 4.2. The voters who prefer ¢;
are collocated with him, therefore for them it holds that d(7,c1) = 0 and also d(i,c2) = 2.
For the other half of the voters who prefer cg, fix the distances for them as: d(i,cy) = 1—e€ and
d(i,c1) = 1+e. The total social cost incurred by selecting cp is SC(c2,V) =2-5+(1—¢)- 5.
Whereas the optimal candidate is ¢; and the social cost in this case is SC(c1, V) = (1+¢€)-§

SC(c2,V) _ 2:5+(1—€) % z

Therefore the distortion equals ST V) = (1Fo™ 2 which approaches 3 as ¢ — 0

Thus, no matter how efficient a deterministic voting rule will be, there will always be an
instance in which the voting rule will select a candidate that yields social cost at least 3 times
greater than the optimal candidate.

4.3 Lower Bounds on Positional Scoring Rules

As mentioned in the first chapter, many of the well known voting rules belong to the family
of positional scoring rules. A positional scoring rule maps the voter’s ordinal preference to a
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scoring vector s = {s1, S2, .., S;m }, where s1 > s9 > ... > s,,,. If a voter i ranks candidate c at
position j then he receives s; points from her. The winner is the alternative that gathers the
most total points.

We present the scoring vectors for some positional scoring rules:

e Plurality : s = {1,0,..,0}

e Borda: s={m—1,m—2,..,0}

e Harmonic : s ={1,1/2,..,1/m}

e Veto: s =1{1,1,..,1,0}

e k-Approval : s ={1,1,..,1,0,...,0}

For the positional scoring rules we consider two cases in order to prove lower bounds on
distortion

® s; = so. In this case the worst-case distortion is unbounded. Consider the instance
where the candidates are placed on the real line and the position of each candidate
c; € Cis j. All the voters all collocated with candidate c;. Therefore, for j > 1
the distance between candidate ¢; and each voter ¢ is d(i,¢;) = j — 1. The winners
based on this positional scoring rule are candidates ¢; and ¢y aggregating total score of
n-s1 =n-s2. The optimal candidate is ¢; yielding social cost of 0, whereas the rule
may choose candidate co. The distortion in this case is unbounded.

e 51 > s9. For every positional scoring rule f with this restriction, there exists a voting
preference profile such that
dist(f) > 142+/Inm — 1. For the technical proof of this proposition we refer the reader
to original paper [11].

The first bullet states that each positional scoring rule must respect each voter’s top choice,
in order to achieve bounded distortion. As we can observe, the lower bound of distortion
of 1 + 2v/Inm — 1 for positional scoring rules scales with the number m of candidates and
diverges from the general lower bound of 3 as m increases. This result highlights the problem
of positional scoring rules in the context of distortion. Voters embed their cardinal prefer-
ences into ordinal and the position scoring rules remap the ordinal preferences into cardinal
ones with a fix way. This remapping may differ compared to the voters’ original cardinal
preferences.

Lemma 4.1. The scoring rules f = {Veto, k-Approval} belong to the first case. Therefore
the distortion of these rules is unbounded.

4.4 Upper Bounds on Popular Voting Rules

4.4.1 Linear Upper Bounds

First we will show the upper bounds that have been proven on the above positional scoring
rules. In order to get the upper bounds on the distortion of Plurality and Borda rules, a
critical lemma is used.

Lemma 4.2. For every pair of alternatives x,w it holds that:

‘gg((i"‘//)) < \’t%l — 1, where |wzx| is the number of voters that prefer w to x.
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Proof In order to upper bound the social cost of candidate w we split her social cost in voters
that belong to wx and xw. Remind that set wx consists of voters that prefer w to x.

SC(w, V) D icws A, w) + >0, di, w)

SC(z,V) Y iy di, )
< 2icws U62) + X iepy (A7) +d(z,w) _ diey A6, 2) + X igpw AW, 2)
o ZiEV d(la ZL') ZieV d(Z, :E)

Jow| - d(w,z) . (n—|wz]) - d(w, z)
Yievdiiz) b ey di, x)

=1+

Lastly, we have to lower bound the social cost of candidate x by >,y d(i, ) > > ., d(i, )
and we also know by the triangle inequality that for each voter ¢ € wx it holds that
d(i,z) > Ld(z,w).
Summing for all voters in wx we get >,y d(i,x) > 33, d(@,w) = 3 - |wz| - d(z, w)
All together
SC(w, V)
SC(z,V)

<1+2(n—|waz|) _2n 1
- |wz| |wz|

O]

The above lemma is useful in order to derive upper bounds on distortion of voting rules if
for the chosen candidate w and for every other candidate x we can lower bound the quantity
|wz|. Thus, we get the following upper bounds for both Plurality and Borda rules.

Theorem 4.2. For the voting rules f = {Plurality, Borda} it holds that:
dist(f) <2m —1

Proof In both cases by the pigeonhole principle it holds that [wz| > L. Therefore by
appplying lemma 4.2 we get

SC(w,d) _ 2n

=< ——1=2m-1

SC(w,d) = = "

4.4.2 Sublinear Upper Bounds

Theorem 4.3. The distortion of the Harmonic rule is asymptotically bounded by O(3 ),
which almost matches the lower bound of distortion of positional scoring rules.

Theorem 4.4. The worst-case distortion of the STV rule is asymptotically bound by O(Inm)

For the technical proof of the former bound we refer the reader to the original paper [15].

4.4.3 Constant Upper Bounds

Next, we review voting rules that achieve constant distortion. To derive constant bounds,
the notion of tournament graphs is used [16]. These graphs are constructed by examining
the pairwise relations between any two candidates a,b € C. Each node corresponds to a
candidate. We define the following graphs.

e The tournament graph: A directed edge from node a to node b is drawn if |ab| > 5
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e The weighted tournament graph: It can be considered as generalisation of the

tournament graph. For each pair of nodes a, b two weighted directed edges are drawn.

A directed edge from node a to node b is drawn with weight [l 2nd a directed edge

b
n
lad|

from node b to node a is drawn with weight 1 — =

To illustrate these graphs consider the following example where 5 voters give their ordinal
preferences on 4 candidates.

eovi:a-b-c>d
e oy a-c-b-d
eo3:d-b>=cxa
e oy b=a-c>d
eo5:d>b=c+a

The incurred graphs are given in Figure 4.3

a

(a) Tournament graph (b) Weighted tournament graph

Figure 4.3: Tournament graphs

By observing the tournament graph, one can say that a node that has many outgoing edges
seems as a rational choice as winner since he defeats many other candidates. In particular, if
there is a source node in the tournament graph, it means that this candidate defeats every
other candidate. The candidate that corresponds to a source node is called Condorcet winner
and by Lemma 4.2 the distortion incurred by selecting such a candidate is at most 3, which is
the best possible. However, it is not guaranteed that there will always exist such a candidate.

Definition 4.3. The uncovered set is a set of candidates a € C' such that for any candidate
b # a we have:

o cither a weakly defeats b, i.e. |ab| > §

e or there is another candidate ¢ ¢ {a,b} such that candidate a weakly defeats ¢ and c
weakly defeats b, i.e. |ac| > § and |cb| > §

Intuitively, this set of candidates constitutes a relaxation from the Condorcet winners. Every
candidate w that belongs to the uncovered set seems as a compelling choice, considering that
for every other candidate x either the majority of voters prefers w , or if it is not the case,
there is another alternative y who is preferred by the majority of voters compared to x and
yet the majority prefers w to y. The following lemma strengthens the importance of the
uncovered set.
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Lemma 4.3. The uncovered set is always non-empty.

Proof In order to verify this, consider the tournament graph of candidates of an arbitrary
instance. A candidate x belongs to the uncovered set, based on the above definition, if and
only if the corresponding node x in the tournament graph can reach every other node in
one or two steps. Let x be the node of the tournament graph with the greatest out-degree.
Suppose there is a node y that doesn’t satisfy the above two conditions, that is, there is not
an edge from = to y and there is not any other node w such that there is an edge from x
to w and an edge from w to y. Therefore node y has greater out-degree from z which is a
contradiction. O

Next, we will prove that the choice of a candidate that belongs to the uncovered set yields
constant distortion.

Theorem 4.5. Let w be a candidate that belongs to the uncovered set and x be the optimal
candidate. Then SC(w,d) <5-SC(z,d)

In order to prove the distortion we will use the following lemmas.
Lemma 4.4. Consider a vector v € R™ where v1 > vy > ... > vy,. If for all k € [m] it holds

k k
that »_ a; > > b; then
i=1 i=1

m m
E via; > E v;b;
i—1 i—1

Lemma 4.5. For a pair of candidates x,w if

for some v > 1 then
SC(w, V)< (1+7)-SC(z,V)

We will now prove the distortion of the upper bound on the distortion of picking a candidate
from the uncovered set.

Proof We suppose that w is the chosen candidate and x is the optimal. If [wz| > 5 from
Lemma 4.2 we get immediately that SC(w,d) < 3SC(z,d). Suppose this is not the case.
Thus based on the definition of the uncovered set there exist a candidate y such that [wy| > %
and |[yz| > 5. We examine the cases where d(z,y) > d(y, w) and d(z,y) < d(y, w) separately.

o d(z,y) = d(y,w)
In order to lower bound the social cost of candidate z we will use the fact that for each
voter i € yx it holds d(z,y) < d(i,z) + d(i,y) < 2d(i,x) and since we examine the case
where d(y,w) < d(z,y), it follows that d(i,z) > 1d(y,w). Thus

=S di,x) > S dii,z) > % S d(a, w)

1% 1€Yx 1€YT

1 1
= 5 lyz] - d(z,w) 2 S d(z,w) 2 7 |ew] - d(z, w)
1

M N:

1 1n d($ 2)

m
S

And by applying Lemma 4.5 we get

> d(i,w) <5 d(i,w)

eV eV
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o d(z,y) <d(y,w)
In this case we will use the sets wx, zwy, ywx to get to the desired distortion.

lwz| + [rwy| = [ywz| + [wyz| + [wzy| + [TwY|
1 1
> |wy| > lyw| > |yzw| + |ryw] > 3 lyzw]| + 3 lzywl
and
lwz| + lyrw| = |[ywz| + Iwywl + |wzy| + lyzw|
1
> |yx| > 5 23 (Jyzw| + [zyw| + [zwyl)

We are going to fix two vectors «a, § and apply Lemma 4.4. We set:
a1 = Jwz| + |zwy| g = [yzw| a3 = —|zwyl
1 1 1
1= §\yxw] + glmywl B2 = 5’95“)19’ B3=0

V1 = d(x,w) V2 = d(.’E,y) v3 = d(:l:a y)

It holds that a; > 31 and by the last inequality we get a3 + as + az > 81 + B2 + 33
and since ags < 0 and B = 0 we get aq + ao > 1 + [B2. Thus we can apply Lemma 4.4
and we get

Zam = (Jwz| + |zwyl) - d(z, w) + (Jyzrw] = |zyw]) - d(z, y)

3
1 1
Z 5 (lyzw| +[eyw]) - d(z, w) + Slzwy| - d(z, y)

[\

Now we can derive the desired bound

> d(iz) = Y d(i )+ Y diia)+ Y d(i,x) (4.1)

eV 1EwT 1ETWY 1EYyTW

> gl dew) + oyl - (XD 4 Dl de) 02
= il w) - (we] + fowy]) + 5d(z,y) - (g — [zwy) (4.3)
> 5yl + eyl - dw,w) + § - lawy] - d(,y) (44)
> % : 2 1131;11}2 d(zx, z) (4.5)

We will now explain why each inequality holds. The first inequality holds as wx UxwyU
yrxw C V. The third inequality holds since we apply Lemma 4.4. The last inequality
holds because zw = yxw U xyw U zwy, w =; w Vi € V and w =; y Vi € zwy.

Finally, we can apply Lemma 4.5 for v = 4 and thus we get

» <5 d(i,x)
% %

Therefore, in each case we prove that by selecting a candidate from the uncovered set,
the distortion is at most 5.
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Definition 4.4 (Copeland Rule [17]). Copeland rule outputs the set of candidates with the
mazimum Copeland score. The Copeland score for candidate w is defined as the number of
candidates x that defeats
(ie. |veC:|wz|> %)

Lemma 4.6. The alternatives that Copeland rule outputs is a subset of the uncovered set.

Proof Let w be the candidate that Copeland rule outputs and let {c1, c2, .., ¢ } be the candi-
dates that w weakly defeats. Suppose there is a candidate x that none of the {w, ¢y, ca, .., cx }
defeats him. Therefore he defeats all of them which is a contradiction because he would have
highest Copeland score than w

O]

Subsequently, Copeland rule yields distortion of at most 5.

4.5 Optimal Metric Distortion

In this section we further review mechanisms that achieve improved constant distortion. First
we examine the work of Munagala et al. [13]. They made two generalizations in the context
of uncovered sets which was defined in 4.4.3

They define the A weighted uncovered sets.

Definition 4.5. Let A € [0.5,1] be a constant. The \ weighted uncovered set is the set of
candidates a € C such that for any candidate b # a we have:

o cither |ab| > (1 — M\)n
e or there is another candidate ¢ & {a,b} such that |ac| > (1 — XN)n and |cb| > An

It is easy to see that for A = 0.5 we get the uncovered set.

They proved that that A\ weighted uncovered sets are always non-empty. More importantly
they proved that by setting A = @ ~ 0.618 the candidates that belong to this weighted
uncovered set have worst case distortion of /5 + 2 ~ 4.236.

The proof of their distortion analysis is based on some modifications on the proof of the
distortion of uncovered set.

The second critical point of their work was the definition of matching uncovered set.

Definition 4.6. The matching uncovered set is a set of candidates a € C such that for every
candidate b € C'\ {a} there exists a perfect matching in the bipartite graph

G(a,b) = (V,V, E.p), where (i,j) € Eqy if there exists a candidate x € C' such that voter i
weakly prefers a to x and voter j weakly prefers candidate x to b.

Remind that for a voter ¢ and each candidate ¢, it holds that voter ¢ weakly prefers candidate
c to c.

Consider the following ordinal preference profile of 4 voters over 3 candidates.
ecoi:ar-brc
e oy c-arb
ez ax-c-b

e oy b=a>c

ol



whtg =D tery ot Q= te0 @ (V) O @
{a.} (2) IR IO) ® {abc} (2) Q@) fec
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(a) Graph G(a,b) (b) Graph G(a,c) (c) Graph G(c,a)

Figure 4.4: Graphs defined in 4.6. There exists an edge (i,7) if the intersection of the
respective subsets of candidates is non empty.

Based on the above ordinal preferences graphs G(a,b), G(a,c) and G(c,a) have been con-
structed. Candidate a belongs to the matching uncovered set, since graphs G(a,b) and
G(a,c) admit a perfect matching. However candidate ¢ does not belong to the matching
uncovered set since graph G(c,a) does not admit a perfect matching.

Theorem 4.6. If there is a candidate w that belongs to the matching uncovered set, the
distortion of this candidate is at most 3.

The worst-case distortion of picking a candidate from the matching uncovered set is better
than choosing one from the uncovered set. In a high level, this can be justified because the
relation a candidate w, that belongs to the matching uncovered set, has with the rest of the
candidates is stronger than the respective relation when w belongs to uncovered set. More
specifically, in the latter case the condition for those candidates must apply for the majority
of voters, whereas in the former case the condition must apply for every pair of voters. Thus,
the matching uncovered set is a subset of the uncovered set.

In order to see this difference, consider the ordinal preference profile over three candidates
x,Y, z, where :

e 5 — 1 voters rank them as y = z > w
e 5 — 1 voters rank them as z > w > y

e The remaining 2 voters rank them as w > y >

In this case, candidate w defeats y, y defeats x and = defeats w and thus all of them belong
to the uncovered set. However, only candidate y belong to the matching uncovered set.

Gatzelis et al. [19] devise their work by building on this work. They define the integral
domination graph G(a) for every candidate a € C, which is directly correlated with the
bipartite graph G(a,b) defined above.

Definition 4.7. The integral domination graph of candidate A € C is a bipartite graph
Go = (V,V, E,) where (i,7) € E, if voter i weakly prefers candidate a to the top choice of
voter j, i.e. a > top(j).

In order to see how these graphs are constructed consider again the ordinal preference profile
given above, when we define the matching uncovered set.

ecoi:a>b>c
e oy c=arb

eo3a=-c-b
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S
OHONONC)
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(a) G(a) (b) G(b) (¢) G(c)

Figure 4.5: Integral domination graph of each candidate. G(a) admits a perfect matching.

They proposed a rule called PLURALITYMATCHING that selects the candidate whose
integral domination graph admits a perfect matching. The importance of this rule is twofold;
there is always such a candidate and the distortion of selecting this candidate is at most 3,
which is the lowest possible. The heavy lifting of this work was to prove the existence of such
a candidate. Below we only give the proof of the distortion of this rule.

Theorem 4.7. Selecting a candidate whose integral domination graph admits a perfect match-
ing yields distortion at most 3 in general metric spaces

Proof Suppose that candidate w is a candidate whose integral domination graph admits a
perfect matching and x is the optimal candidate. We will upper bound the social cost of
candidate w as follows:

SCw, V)= d(i,w) < 3 d(i, top(M(i))) < S {d(i, ) + d(x, top(M(i))}

eV 1<% eV
= SC(z,V)+ > d(z,top(M(i)) = SC(z,V) + Y _ d(x,top(i))
eV eV
< SC(x,V) + > {d(z,4) +d(i,top(i))} = 2SC(x, V) + > _ d(i, top(i))
eV eV
<25C(x,V)+ Y _d(i,z) =3 SC(x,V)
eV

The first inequality holds due to the structure of integral domination graph. The second due
to triangle inequality. Moreover it holds that

Y iy d(x, top(M (i) = > ,cn d(x,top(i)) because M is a perfect matching. And the last
inequality holds as candidate top(i) is the closest candidate to voter i and hence d (z, top(i)) <
d(i, x). O

Intuitively, by selecting such a candidate w we can say that for each voter j who has another
candidate ranked first denoted as top(j), there is at least one voter ¢ who prefers candidate a
to candidate top(j). Therefore the selected candidate a is placed approximately at the middle
of the voters in the metric space.

Therefore, as far as deterministic rules are concerned, given the ordinal preferences, this rule
resolves the single winner problem in a metric space. At this point, we think it is interesting
to introduce a generalisation of metric spaces that has been proposed by Anshelevich et al.

[50]-
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Definition 4.8 (a-decisive metric space). We say a metric space is a-decisive if for each
voter i whose top choice is candidate top(i), it holds that d (i,top(i)) < « - d(i,x), for every
other candidate x and « € [0, 1]

The notion of a-decisiveness captures how strong the voter’s preference for her top choice is
compared to other candidates. General metric spaces are 1 — decisive. The metric space is
0 — decisive if each voter is also a candidate which occurs in settings such as a committee
where the members have to choose one of them to represent them. In particular, though,
a-decisiveness is important in our analysis as many of the worst case examples occur when
many voters are indifferent between their top candidate and the optimal one. The proof of
the lower bound 4.2 relies on this statement. For general a-decisive metric spaces, the lower
bound of distortion that has been established is 2+a—2(1—a)/|m]even- [19]. Note that this
bound approaches 2 + « as the number of candidates m increases. The PLURALITYRULE
achieves tight distortion as well in general a-decisive metric spaces as m — oo. This is true if
we replace the last inequality of the proof as d (x,top(i)) < « - d(i,x) and subsequently this
results in distortion of 2 + a.

4.6 Optimal Metric Distortion Given Candidates Position

In this section we examine a slightly different framework proposed by Anshelevich and Zhu
[51]-

The voters and candidates are located in a metric space. The ordinal preferences of voters are
given and we assume that the exact locations of candidates in the metric space are known.
With this additional assumption they propose a simple mechanism that achieve distortion at
most 3. Notice that the lower bound of distortion remains at 3 even when the locations of
candidates are given.

The mechanism consists of two steps:

e For every voter i generate a projected voter i in the location of his favorite candidate

e Solve the problem optimally in the projected instance (‘7, C,d), since all the distances
are known and output the winner

Theorem 4.8. The above voting rule achieves distortion at most &8 for the total social cost

Proof Let w be the candidate selected by this voting rule and x be the optimal candidate
that minimizes the total social cost. We get

SC(U), f/) ZiEV d(i’ ‘T) < ZiEV d@? w) <

SC(,V)  Yiepdi2) ~ Yieyd(i,z) —

For the original instance we have:

SCw,V) _ Yiey d(i:n) _ Yicy d(i1) + Yy d(i,w)  Yiey d(is1) L Ziev d(i, w)

SC(x,V) Y liepdii,z) — > icv d(i, ) s Yevd(iz) Yy d(i,T)

The latter inequality results from triangle inequality. In order to complete the proof two
observations have to be made. ~
Sy did) _ |

ZieV d(i7x) n

and
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The first holds because ¢ is the top choice of 7. For the second observation we use lemma .
Therefore combining these inequalities we get

SC(w,V)

e St A
SC@,v) =°

O]

Less formally, we can say that candidates that are ranked first by some voter act as proxies
and every proxy has strength equal to number of voters that ranked her first.

It is worth noting that in order to prove the upper bound of the distortion of this mechanism
only the top choice of each voter was used rather than the whole ordinal preference profile.
Hence, given the distances between candidates and the top choice of each voter is enough
to make an accurate approximation of how the voters and candidates are distributed in the
metric space.
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Chapter 5

Multiwinner voting in a metric space

In this chapter we examine the multiwinner voting(k-winner) problem in which agents lie in a
metric space. In this case, in order to capture again the notion of proportional representation
we assume that the voters have unit-demand utilities, which means that their utility for a set
of candidates derives only from his favorite candidate among them, i.e. the closest one.

Formally, the distance a voter ¢ has from a set X of candidates is defined as:

d(i, X) = mind(3
(4, X) = mind(i, )
Consequently, the total social cost of a subset X of candidates for the set of voters V in a
metric d is computed as:
SC(X,V|d) = ; min d(i, c)

In other words, a multiwinner voting rule is seeking to select k candidates such that the
clusters of voters incurred, are the most compact. Specifically, if the distances were known,
the problem would translate in solving an instance of the metric k-median problem, which is
the problem of finding k centers such that the clusters formed by them are the most compact.
The metric k-median problem can be viewed as a special case of a wider family of problems,
the metric facility location. Consider we have a set of agents V and a set of facilities F
distributed in a metric space. The problem is to decide which facilities should serve and
assign each voter to the closest open facility so as to minimize a certain objective function.
Facility assignment problems may have different constraints. Two such common constraints
are

e Each facility F; has a capacity cap;, which is the maximum number of agents that can
be assigned to it.

e Each facility F; has a facility cost ¢;, which is the opening cost of a the facility.

The k-median problem differs from the facility location problem in two aspects - there is no
cost for opening facilities and there is an upper bound, &, on the number of facilities that can
be opened. We are interested in the case where the number of facilities/candidates chosen is
exactly k.

The k-median problem (so as facility location) belong to NP-hard problems. There exist
a number of approximation algorithms in order to solve the problem in polynomial time.
The first approximation algorithm for the metric k-median problem was given in the work of
Bartal [52],[53], in which he shows how to approximate any finite metric space by a tree space.
Moreover Tardos et al. [57], designed the first constant factor approximation algorithm for
the metric k-median problem by giving an algorithm that finds a solution of value at most
6% times larger than the optimal. Many of the algorithms proposed are based on linear
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programming. For sake of completeness we give the integer problems of incapacitate facility
location and metric k-median.

minimize Z dijrij + Z fiYj

ieV,jeF jEF

subject to Z x5 > 1, VieV
ieV,jeF
yj—xijz(), 1eV,jeF
y; € {0, 1}, JEF
l‘ije{o,l}, 1eV,jeF

Figure 5.1: Incapacitate facility location Linear Problem

The above program is an integer program for incapacitate facility location, i.e. the problem
in which each facility has unbounded capacity. In this program, y; is an indicator variable
and denotes if facility j is open and f; is the cost of opening facility j. x;; is an indicator
variable denoting whether agent i is assigned to facility j and d;; is their respective distance.

minimize Z dz’jxij
i€V, jeF
subject to inj >1, VieV
JEF
yj—:EZ']'ZO, ’L'GV,jEC
doyi=k
jec
Y; € {0, 1}, jecC
mijG{O,l}, Z'GV,jEC

Figure 5.2: Metric k-Median Linear Problem

As mentioned, the k-median problem can be interpreted as an instance of the k-winner
problem. Thus, in the above program y; is an indicator variable denoting whether candidate
J is chosen. z;; is an indicator variable denoting whether voter i is represented by candidate
J and d;; is their respective distance.

In the framework of distortion in k-winner setting, we will often use one of the known ap-
proximation algorithms as a black box, in order to extract the value of distortion. As a warm
up, first, we examine the distortion when voters provide their ordinal preferences.

5.1 Lower Bounds of Distortion Given the Ordinal
Preferences

In the previous sections we study the case where the voters give their ordinal preferences
regarding the single voting problem. Firstly, we assume again that the only information
given are the voters’ ordinal preferences. We derive the following lower bounds.

Theorem 5.1. For the metric k-winner problem given the ordinal preferences the following
lower bounds hold:

o If k=2, for any voting rule f the distortion is Q(n)

o If k> 2, for any voting rule f the distortion is unbounded
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Proof

e For k = 2. Suppose there are three groups of voters v, vs,v3, i.e V = v Uwvy U vz and
three candidates x,y, z and the number of winners is kK = 3 . The ordinal preferences
given to the voting rule are:

SV Y > 2
SVl Y =T -2
S V3IZ-Y T

Consider the instance where each group of voters is collocated with a different candidate,
ie. d(vi,x) = d(ve,y) = d(v3, z) = 0. We fix the number of voters in each group as
|vi| = |va] = n/2 and |vs| = O(1). If the voting rule did not select candidate z then we
could fix the distances such that d(vi,v2) << d(ve,v3) and thus the distortion would
be unbounded. Therefore, suppose without loss of generality, that the given voting rule
picks the set

W = {y, z}. We fix the distances such that d(vy,v2) = d(ve,v3) = [. Hence, the optimal
solution is X = {z,y}. The distortion incurred in this case is

, _Ssew,v)y l-nj2
dist(f, o) = SOXV) 1 = Q(n)

e For k > 2 Suppose there are four groups of voters v, va,v3,v4, i.e. V =01 UvgUvzUvy
and four candidates x,y, z, w. The ordinal preferences given to the voting rule are:

VT Y -z w
VYT 2w
V3L ZTW Y X
VWY =X

Consider again that each group of voters is collocated with a different candidate,

ie. d(vy,x) = d(va,y) = d(vs, z) = d(vg,w) = 0. We fix the number of voters in each
group as |v1| = |va| = |vg| = |va| = n/4. Without loss of generality, suppose the given
voting rule picks the subset W = {x,y, z}. In this case, we can fix an instance where
d(vi,v2) << d(vs,v4) and hence the optimal subset is X = {z,z,w}. Therefore the
distortion will be unbounded.

O

Based on the above lower bounds, we deduce that the voters’ ordinal preferences are not
enough in order to achieve bounded distortion. We need a certain amount of cardinal infor-
mation. Intuitively, given this information, none of the voting rules can form the clusters
correctly and subsequently there will always be instances in which voters will pay a distance
arbitrarily larger than the one in the optimal assignment. This is not the case in the metric
single winner setting since there is only one cluster and thus picking the top candidate of a
random voter ¢ yields distortion of O(n). This can be generalized in multiwinner setting. If
the voting rule forms the clusters of voters correctly but fails to choose the optimal candidate
for each cluster the incurred distortion is O(n).
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5.2 Ordinal Preferences given the distances between
facilities

With that being said, a multiwinner voting rule f needs cardinal information in order to
achieve bounded approximation. Before we present our results, we review again the frame-
work proposed by Anshelevich et al. [51]. In this framework the distances between each
pair of candidates are known and voters give their ordinal rankings. As mentioned in the
respective section of the single winner setting, providing this information, a mechanism can
approximate how the voters and candidates are distributed in the metric space. Thus the
same algorithm yields bounded distortion in the multiwinner setting as well. In order to
solve the k-winner problem given all the distances between candidates, an approximation
algorithm, with approximation ratio 8 is used as a black box. The mechanism consists of two
steps:

e For every voter i generate a projected voter ¢ in the location of his favorite candidate

e Solve the problem in the projected instance (‘7, C, d) using an approximation algorithm
with approximation ratio 8 and output this assignment.

Theorem 5.2. The above mechanism yields distortion of at most 23 + 1

Proof We consider as usual W the subset of candidates that the mechanism outputs and X
the optimal subset of candidates. We want to prove that SC(W,V|d) < (28+1)-SC(W, X|d).
In order to prove that we define the following quantities.

s; = ?elw d(z., ¢), t;=d(i, topl(l))u b.i = c{(top(z), arg min d(i, c))

s; = min d(i,c), b =d(top(i),arg min d(i,c))

)

By the triangle inequality it holds
SCWVId) =D s <3 (bi+t) =Y bi+ >t
icV icV icV icV

Since the total social cost for subset W is a [ approximation for the projected instance it
follows that

SCW,V|d)=> b <B-SC(X,V]d)=B-Y bf <28 s}
1<% i€V 2%

The last inequality holds because for each voter ¢ we have t; < s} and by the triangle inequality
we get bF <t; +s7 < 2s].
Combining the last two inequalities with the above bounds we derive

CW,VId) <Y bi+ Y t:<28) si+> t (5.1)

eV i€V 1<% eV
<28) si+ > si=(28+1)-SC(W,X|d) (5.2)
eV eV

Thus, if we are not interested in achieving polynomial running time, by setting 8 = 1 we get
distortion of at most 3. This bound is tight.

5.3 Bucket Preferences

In this section we present our results. We propose a new framework where each voter is
asked to give an approximation of his distance from his ¢ most preferred candidates. The
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idea is to use multiple threshold approvals, as explained in Chapter 3. We highlight that
this query model, apart from eliciting information from voters more efficiently, provides a
more conceivable way of querying the voters about their preferences rather than asking for
their ordinal preferences. It is also important to note that as the distance between a voter
1 and candidate c increases, the respective approximation that we ask them to submit is
relaxed and thus the required cognitive effort is reduced. By eliciting information from each
voter in this way, we get a partial ranking of candidates combined with an approximation of
their distances. We will define the above approximations and examine how the number ¢ of
candidates submitted influence the distortion. We assume that the minimum distance d,;n
between two candidates is known.

We define the bucket x as:

b [dy—1,dy) whered, =~ -dy—1 ,x>1
| [0,do) where dy = d””';_e , =20

For a voter ¢ and candidate ¢ we denote that ¢ € b7 if d,—1 < d(i,¢) < d,.
The size of the buckets increases exponentially with -, which is a constant. The voters are
asked to submit in which bucket the distance from each of their top ¢ candidates belong.

It is mandatory to know the minimum distance between two candidates in order to define the
smallest bucket dy. By defining the first bucket as above, we ensure that a voter may submit
one candidate at most in this bucket.

For each voter i that assigns candidate x in bucket by = (dg_1,dy), we define the extended
distance
degt(i,x) = di, i.e. equal to the upper bound of the respective bucket.

5.4 Number of queries - Distortion Tradeoff

In this section, we will examine how the number ¢ of candidates submitted by each voter
influences distortion.

We consider the case where ¢t = m. That is, ask each voter to submit in which bucket his
distance from every candidate belongs. Thus, the voting rule elicits all the extended distances
between voters and candidates.

Theorem 5.3. If the number of queries per voter is t = m, there is a multiwinner voting
rule that achieves distortion at most (3 - .

Algorithm 3: Multiwinner rule given full bucket profile
Procedure k-Median Solver(V,C,d):
| return A subset W of size k using an approximation algorithm
end
Multiwinner Rule
Input V,C and bucket profile b = {b;,...,b,}
For each voter ¢ and candidate ¢ such that ¢ € b7 = (dy—1,ds)
Define deyi(i,¢) = dy
return k-Median Solver(V,C,deyt)
end

Proof For a voter i and a candidate c it holds that d(i, ¢) < deyt (7, ¢) < 7v-d(i, ¢). Suppose that
the voting rule for the selection of the subset of k candidates uses an approximation algorithm
A that solves the k-median problem using the distances de,; and achieves approximation ratio
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(. Define W the set of candidates that this algorithm outputs, Y the optimal set given the
distances de;+ and X the optimal set of candidates for the original problem. Thus it holds:

SC(VVvV|d) < SC(VVv‘/a ‘deazt) < ﬁ ! SC(Y’V’dext) < /8 : SC(X’V’de:ct) < /8 Y SC(X7V‘d)

O]

Theorem 5.4. If the number of queries per voter is t > %, there is a multiwinner voting
rule that achieves constant distortion for the total social cost.

Algorithm 4:
Procedure k-Median Solver(V,C,d):
| return A subset W of size k using an approximation algorithm
end
Multiwinner Rule
Input V,C,;b = {by,...,b,}
Ask each voter i in which bucket b; belong the distance d(i, ¢) for each of his top ¢
preferred candidates c
For each voter ¢ and candidate ¢ define the extended distance
if c € b7 = (dy—1,d;) then
‘ dext(iu C) = dx

else
dezt(i,¢) = gréln {deat(4,0) + dext (4,0) + dext (4, ¢) }
beb;Nb;
end
return k-Median Solver(V,C,deyt)
end

For each voter i and candidate ¢ define de, (i, ¢) as:

d; ifce
dext (i, C) = %1‘1/1 (dext (i, b) + de;rt (]a C) + dezt (]a b)) if ¢ Q bi
bEbiﬁbJ‘

Proof In order to use the k-Median Solver we need to define the distances between each
voter ¢ and candidate c. Since each voter submits only his top ¢ candidates we define the
remaining distances as written above. For a voter i and a candidate ¢ that does not belong
to his top ¢ most preferred candidates, we define their distances through another voter j
that has submitted at least one common candidate with voter ¢. The above definition of
deyt(i,c) for a voter i and candidate ¢ that does not belong to the submitted candidates is
an overestimation of the real distance and it is derived by application the triangle inequality
twice.

ie., d(i,c) < d(i,b) +d(b,c) < d(i,b) 4+ d(j,b) + d(j,¢)

A single such estimation may be arbitrarily bigger than the real distance, as the distance
d(b,c) can be arbitrarily smaller that distances d(j,b) and d(j,c). However, if we compare
pairwise the social cost of candidate ¢ incurred by this estimation with the original one, then
we get a constant approximation. Consider two voters i, j and a candidate ¢. The incurred
social cost is:

o SCepi(c,i,7) = deat(i,¢) + dext (4, ¢) <vSC(e,4,j), if c € by N b;

)+
o SCeut(c,iy7) = dext(1,0) + dewt(J,0) + 2dent(4, ¢) < 3y (d(i,¢) + d(j,c)) = 3vSC(e, i, 7),
if ceb; \ by and b € b; N b,
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In order to see why the last bullet holds, consider the edge case in Figure 5.3 where there
are two voters i,j and two candidates b,c. Specifically, b € b = (dy—1,dz), ¢ & b; and
b,c € b? = (dy—1,dy). We fix the distances as follow. d(b,c) = € — 0, d(i,b) = dy—1 and
d(j,b) = d(j,c) = dy—1. Hence the extended distances that the mechanism can estimate are
dext(i,b) = dy and

dext(J,0) = dear(j, c) = dy. Following the definition of SCey(c,i,j) for candidate j we get:
SCeut(C,1,7) = deat(i,0) + degt (4,0) + 2deat (4, ¢) = dy + 3dy. Thus

SCemt(Ca Zv]) dm + 3dy v (dz—l + 3dy—1)

— = = <3
SC(c,1,7) dp—q +dy—1 dyp—1 +dy_1 7

(D— don dy1 —@

Figure 5.3: Voter i submits candidate b and voter j submits candidates both b, c. d(b,c) — 0

Lemma 5.1. Going a step further, we can estimate the social cost of a candidate ¢ for voter
vo that submits ¢ and i = {1, 2,3} voters, namely vy, ve,vs that do not submit c.

o i =1: SCep(c,v0,v1) < 3vSC(e,vp,v1)
o i =2: SCeui(c,v0,v1,v2) < 5ySC(c, v, v1,v2)
o i =3: SCeut(c,v0,v1,v2,v3) < TySC(c, vo,v1,v2,v3)

Let X be the optimal subset of winners and ¢l* the optimal clusters of voters incurred by this
selection. We want to prove that given the distances d., as defined above, we can estimate
the social cost of each optimal cluster by searching exhaustively all the possible solutions.

Consider an optimal cluster ¢/ C V', where n’ = |cl| and z the respective optimal candidate
assigned to this cluster. For a candidate w € C we define:

> 1{w € b}
i€cl
By, = oy
which is the percentage of voters in the cluster ¢l that submitted candidate w in their buckets.

Remind that we ask voters to submit the t-most preferred voters, thus it holds that > B. = t.
ceC
By the pigeonhole principle there is a candidate w such that B,, > % Since t > m/2 it follows

that B, > %, which means that there is at least one candidate that is submitted by more
than half of the voters in cluster cl.

We consider the following cases.

e If for the optimal candidate x in cluster ¢l it holds that B, > %, then we can estimate
the social cost of candidate z, by a constant factor of at most 3 - v by Lemma 5.1

e In the contrary case, assume that for the optimal candidate x it holds that B, < %
Ift > 3Tm, since B, > % > %, we can infer that |wz| > ”Z/. Hence by Lemma 4.2 we get
SC(w,cl) <7-SC(z,cl).

Now, suppose that 5 <t < 377". If B, < % then we can infer again that |wz| > %, and
by Lemma 4.2 we get SC(w,cl) <7-SC(z,cl).

Lastly, if i < B; < %, it follows that at least "Z/ voters of the cluster have submitted
candidate x and hence we can estimate this social cost by a constant of 7y by Lemma
5.1
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We prove that if each voter provide the buckets in which his ¢+ > % most preferred candidates
belong, there is a voting rule that can produce a solution with constant distortion § Thus if
the voting rule uses an approximation algorithm with constant approximation ratio 8 given
the distances d.,+ and return the output of the approximation algorithm, the total distortion
is at most 5 - 4§

O]

Up until now, we examined cases where the number of queries per voter was greater than
%. Hence every pair of voters submitted at least one common candidate and that help us

establish an upper bound for each distance between voter ¢ and candidate c.

Theorem 5.5. If the number of queries per voter is t = 7 the distortion of every multiwinner
voting rule is Q(n)

Figure 5.4: Two groups of voters are formed. The black dots correspond to the voters and
the red to candidates.

Proof Consider the case illustrated in Figure 5.4. In this instance n — 1 voters belong to
group GG1 and the remaining voter ¢ form another group, G5. Each group of voters submit the
same 7 candidates. As it is shown, inside group G two clusters are formed. The diameter
of group G is d(G1) = 2x. The optimal solution is to choose two candidates X = {c1,c2}
from group G and assign voter i to co, the closest one. Let d(i,ce) = 2x. Thus the social
cost incurred is SC(X,V,d) = 2z. A voting rule, given only the results of the queries must
pick one candidate from each group. Let W = {w;, w2} be the chosen candidates. Suppose
wy is the candidate that minimizes the social cost of group G, yielding a cost of (n — 1) - z
and let wy be the top candidate of voter ¢ with distance d(i,w2) = 2x — e. Thus the total
social cost is SC(W,V,d) = (n — 1) - x 4+ 2z — e. The distortion in this case is
SCW,v,d) (n—1)-z+2x—e¢

dist(f) = SC(X,V,d) % =n—1

The last lower bound indicates that in order to achieve constant distortion in the multiwinner
setting a mechanism must elicit implicitly or not an approximation of the distance between
each pair of candidates. This is the reason why the mechanism that we examined in Section
5.2 achieves constant distortion, by knowing apriori the distances between any two candidates.

O

Before we prove the distortion for the other values of ¢, we give the following useful lemma

Lemma 5.2. Consider an instance, the optimal subset of candidates X and the optimal

clusters cl* induced by this selection. For each optimal cluster cl}, if we replace the respective
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optimal candidate x; with a candidate w, that is the top choice for some voter in the cluster
cl¥, the total social cost incurred is an O(n) approzimation.

Proof This lemma is essentially a generalization of Lemma 4.2. Since |wz;| > 0, by Lemma

4.2 it holds that SG(ois < 20 — 1 = O(n) O

Definition 5.1 (Group of Voters). We say that voters i, j belong to group Gy, if they submit
the same candidates, probably in different order.

Moreover by C(G),) we will denote the subset of candidates submitted by group G,,.

We define also the diameter D(G,,) = max  {d(i,c)}, which is the largest distance
i€Gm,c€C(Gm)

between a voter in group G,, and a candidate submitted by them. Next, we will examine
cases where the number of queries is ¢ < %. In this cases, after querying the voters, there may
be formed groups of voters G, G such that C(G1) N C(G2) = @. This means that no voting
rule can approximate the distances between voters from group G; and candidates C'(G3).
It is worth-noting that each pair of groups G, G, such that C(G,,) N C(G,) = & is well
separated from the other, in the sense that if the problem is limited to the submetric space
that contains only voters from G, U G, and candidates from C(G,,) U C(Gy), it is possible
to produce a solution that yields distortion O(n). We will now prove these observations
formally.

Theorem 5.6. If the number of queries per voter is t = 5 there is a multiwinner voting rule
that achieves distortion O(n)

Proof We consider two cases after querying the voters. First, suppose that the distance
between each voter i and candidate ¢ ¢ b® (which means that does not belong in the top ¢
preferred candidates) can be estimated through another voter as stated in Theorem 5.4. In
this case we apply Algorithm 5.4 that returns a solution of constant distortion. In contrast,
suppose now that two groups of voters G1, Gy are formed such that C(G1) N C(Ge) = @.
Notice that this is the worst case. We can solve the subproblems for each group Gi,Gs for
kr=1,....,k—1and ke = 1,...,k — 1 respectively, using the Algorithm 5.3 since for each
group all the distances are known. The mechanism outputs the solution that minimizes the
total social cost such that k1 + k9 = k. Notice that if k&1 > 1 and k9 > 1 the distortion is
constant. This is true, because the social cost is a non-increasing convex function with the
respect to the number of winners. Now suppose that this mechanism returns a subset of
winners such that k; = k — 1 and k3 = 1 and in the optimal solution all the winners belong
to group Gp. The distance that each voter from group G2 has to go though would be larger
than any of the distances payed by the assignment of the mechanism. Thus the worst case
distortion is O(n). O

Theorem 5.7. If the number of queries per voter is t < 7 the distortion of every multiwinner
rule is unbounded.
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(b) Second instance

(a) First instance

Figure 5.5: Two instances that cannot be distinguished by any voting rule, given the top
t candidates. Each circle correspond to a group of voters. The rectangles inside group Ga
correspond to two cluster of voters and each of them is close to different candidate.

Proof Consider an instance where the number of winners is £ = 3 and the number of queries
per voter is t = %3 — 1 and m is even. After querying the voters three groups of voters are
formed G1, Go, G3. As defined above, each group of voters submits the same ¢ candidates. We
fix the distances such that R(G1) << R(G2) and R(G3) << R(G2) and C(G1) N C(G3) = 0.
In other words, G; and Gj3 form two small clusters with no common candidates and the
diameter of group G is arbitrarily bigger than the others. Thus the distance between groups
G1 and G3 cannot be estimated. The voters that belong to group Go submit the remaining
2 candidates from C \ (C(G1) U C(G3)) and t — 2 candidates from C(G1). Moreover group
G2 can be be split into two clusters of voters such that each of them is collocated with one of
the two candidates from C'\ (C(G1) U C(G3)). We can now fix two instances as illustrated in
Figure 5.5 that each voting rule considers the same. In the first instance the optimal solution
is to map each group of voters into a cluster, whereas in second instance the optimal solution
is to assign voters from groups (G1G2 as one cluster and split voters from group G3 into two
clusters. In each case if the voting rule assigns the clusters incorrectly the total social can be
arbitrarily bigger than the optimal and thus the distortion is unbounded.

O]

We examined the distortion incurred in our query model, depending on the number of ap-
proximate distances submitted by each voter. We proved that in order to achieve constant
distortion, each voter had to submit the bucket in which each of his ¢ > &t most preferred
candidates belong. If the number of queries per voter is t = % there is a voting rule that
achieves distortion O(n) which is tight and if the number of queries per voter is ¢ < % the
distortion is unbounded. It is worth-noting that the same impossibility results would have
emerged, had each voter submitted the exact distances from their top ¢ candidates. Obvi-
ously, in order to achieve bounded distortion the required number of queries, elicited in this
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way, is large. As explained in previous section, in metric spaces, in order for a voting rule
to achieve bounded distortion, it must be possible to estimate how voters and candidates are
distributed in the space. In general, the distance of the ¢ most preferred candidates gives a
local point of view and does not help us understand the voter’s position in the metric space,
as these t candidates can be arbitrarily close to him in comparison with the other agents.
We highlight that in this thesis we stick to a model that respects the axiom of anonymity
which states that each voter should be treated alike and thus our query model elicits the
same information from each one. A next interesting step, that violates anonymity, would be
to examine the tradeoff between the number of queries and distortion when the voting rule
queries targeted voters that identifies as critical after an initial query model that elicits the
same information from each voter.
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Chapter 6

Concluding Remarks and Related Work

In this thesis we examine extensively the framework of distortion in two different settings.
Firstly, we examine the setting where voters’ preferences over candidates are expressed as
numerical valuations. Given the ordinal preferences, we review the lower bounds of distortion
and mechanisms that achieve tight distortion. We conclude that, in this setting, as the
number of winners increases the problem becomes easier since given the same information,
the bounds of distortion decay. However we only study deterministic mechanisms. In the
literature there is work dedicated in the distortion of randomized mechanisms Boutilier et

al. [50], Caragiannis et al. [24], Caragiannis et al. [22]. Distortion has also been studied
under different objectives. An interesting example is the participatory budgeting which was
studied by Benade et al. [25]. Participatory budgeting can be thought as an extension of the

multiwinner setting. In this case we are given a budget, each alternative has an associated
cost, and the goal is to choose a subset of alternatives so as to maximize the social welfare of
the agents while ensuring that the total cost of the chosen alternatives does not exceed the
budget.

Secondly, we examine the distortion when voters and candidates lie in a metric space. The
distortion in the single winner setting, given the ordinal preferences is well understood. Specif-
ically we know that any deterministic algorithm has distortion at least 3, which is also the
upper bound of distortion of the mechanism established in the work of Gatzelis et al. [19].
We review as well that, given only the top choice of each voter the Plurality rule is the
optimal determinstic algorithm, achieving distortion of at most 2m — 1. Anagnostides et
al. [56] examine the decay in distortion when voters provide incomplete rankings, i.e the
k-top preferences. As stated above, in this thesis we only examine deterministic mechanisms.
Anshelevich et al. [50] studied the distortion of randomized social choice mechanisms when
agents lie in a metric space. The respective lower bound in the single winner setting is 2.
Moreover, besides the objective of the total social cost the distortion has been studied under
the objective of minimizing the median cost which is the {% + ﬂ— largest cost for a chosen
candidate. This objective captures the notion of fairness.

Our innovative results concern the distortion in the metric multiwinner voting. As mentioned,
if the whole distance profile was given, the metric multiwinner voting is equivalent to metric
k-Median Problem. Since the ordinal rankings are not enough to achieve bounded distortion,
we propose a new framework that reduces the cognitive ability required from voters, as they
are asked to give only an approximation of their distance from their most preferred candidates.
We examined the tradeoff between distortion and the number of such queries/approximations
per voter and prove that in order to achieve bounded distortion this number should be bigger
than . A recommended idea would be to reduce the number of such queries per voter in a
first step and ask in a second step targeted voters to answer a few more queries.

69






Bibliography

1]

2]

3]

[4]

[5]

(6]

7]

8]

9]

[10]

[11]

[12]

[13]

[14]

Kenneth Joseph Arrow. Social Choice and Individual Values. New York, NY, USA:
Wiley: New York, 1951.

Allan Gibbard. Manipulation of voting schemes: A general result. FEconometrica,
41(4):587-601, 1973.

Mark Allen Satterthwaite. Strategy-proofness and arrow’s conditions: Existence and
correspondence theorems for voting procedures and social welfare functions. Journal of
Economic Theory, 10(2):187-217, 1975.

John Von Neumann and Oskar Morgenstern. Theory of Games and Economic Behavior.
Princeton University Press, 1944.

James M. Enelow and Melvin J. Hinich. The Spatial Theory of Voting. Number
9780521275156 in Cambridge Books. Cambridge University Press, 1984.

Norman Schofield. The spatial model of politics. The Spatial Model of Politics, pages
1-241, 12 2007.

Otto A. Davis, Melvin J. Hinich, and Peter C. Ordeshook. An expository development
of a mathematical model of the electoral process. American Political Science Review,
64(2):426-448, 1970.

Kenneth Arrow. Advances in the Spatial Theory of Voting. Cambridge University Press,
1990.

Richard D. McKelvey, Peter C. Ordeshook, and Kenneth Arrow. A Decade of Experimen-
tal Research on Spatial Models of Elections and Committees, page 99-144. Cambridge
University Press, 1990.

Samuel Tii Merrill and Bernard Grofman. A unified theory of voting: Directional and
proximity spatial models. 1999.

Ariel D. Procaccia and Jeffrey S. Rosenschein. The distortion of cardinal preferences in
voting. In Matthias Klusch, Michael Rovatsos, and Terry R. Payne, editors, Cooper-
ative Information Agents X, 10th International Workshop, CIA 2006, Edinburgh, UK,
September 11-13, 2006, Proceedings, volume 4149 of Lecture Notes in Computer Science,
pages 317-331. Springer, 2006.

Vijay V. Vazirani. Approzimation Algorithms. Springer Publishing Company, Incorpo-
rated, 2010.

FElias Koutsoupias and Christos Papadimitriou. Worst-case equilibria. In Christoph
Meinel and Sophie Tison, editors, STACS 99, pages 404—413, Berlin, Heidelberg, 1999.
Springer Berlin Heidelberg.

Michal Feldman, Amos Fiat, and Iddan Golomb. On voting and facility location, 2015.

71



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

72

M. Charikar and S. Guha. Improved combinatorial algorithms for the facility location
and k-median problems. In 40th Annual Symposium on Foundations of Computer Science
(Cat. No.99CB37039), pages 378-388, 1999.

Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin Saberi, and Vijay V.
Vazirani. Greedy facility location algorithms analyzed using dual fitting with factor-
revealing Ip. J. ACM, 50(6):795-824, nov 2003.

Vincent Cohen-Addad, Marcin Pilipczuk, and Michal Pilipczuk. A polynomial-time
approximation scheme for facility location on planar graphs, 2019.

Chris Geller. Single transferable vote with borda elimination: a new vote counting
system. Working papers, Deakin University, Department of Economics, 2002.

Haris Aziz. Justifications of welfare guarantees under normalized utilities. SIGecom
FEzch., 17(2):71-75, January 2020.

John R. Chamberlin and Paul N. Courant. Representative deliberations and representa-
tive decisions: Proportional representation and the borda rule. The American Political
Science Review, 77(3):718-733, 1983.

Tjalling C. Koopmans and Martin Beckmann. Assignment problems and the location of
economic activities. Econometrica, 25(1):53-76, 1957.

Ioannis Caragiannis, Swaprava Nath, Ariel D. Procaccia, and Nisarg Shah. Subset se-
lection via implicit utilitarian voting. In Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, IJCAI'16, page 151-157. AAAI Press, 2016.

Vincent Conitzer and Tuomas Sandholm. Communication complexity of common voting
rules. In Proceedings of the 6th ACM Conference on Electronic Commerce, EC 05, page
78-87, New York, NY, USA, 2005. Association for Computing Machinery.

Debmalya Mandal, Ariel D Procaccia, Nisarg Shah, and David Woodruff. Efficient and
thrifty voting by any means necessary. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 32. Curran Associates, Inc., 2019.

Gerdus Benade, Swaprava Nath, Ariel D. Procaccia, and Nisarg Shah. Preference elici-
tation for participatory budgeting. Manag. Sci., 67:2813-2827, 2017.

Debmalya Mandal, Nisarg Shah, and David P. Woodruff. Optimal communication-
distortion tradeoff in voting. In Proceedings of the 21st ACM Conference on Economics
and Computation, EC 20, page 795-813, New York, NY, USA, 2020. Association for
Computing Machinery.

Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University
Press, 1996.

Duncan Black. On the rationale of group decision-making. Journal of Political Economy,
56(1):23-34, 1948.

Anthony Downs. An economic theory of political action in a democracy. Journal of
Political Economy, 65(2):135-150, 1957.

Duncan Black. The theory of committees and elections. University Press, Cambridge,
1958.

H. Moulin. On strategy-proofness and single peakedness. Public Choice, 35(4):437-455,
1980.



[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]

[48]

[49]

[50]

[51]

Barbera Salvador, Gul Faruk, and Stacchetti Ennio. Generalized Median Voter Schemes
and Committees. Journal of Economic Theory, 61(2):262-289, December 1993.

Diana Richards, Whitman A. Richards, and Brendan D. McKay. Collective Choice and
Mutual Knowledge Structures. Research in Economics 98-04-032e, Santa Fe Institute,
April 1998.

Salvador Barbera. An introduction to strategy-proof social choice functions. Social
Choice and Welfare, 18(4):619-653, 2001.

Ken ichi Inada. The simple majority decision rule. Econometrica, 37(3):490-506, 1969.

Joshua Gans and Michael Smart. Majority voting with single-crossing preferences. Jour-
nal of Public Economics, 59(2):219-237, 1996.

Jean-Michel Grandmont. Intermediate preferences and the majority rule. Fconometrica,
46(2):317-30, 1978.

P. Rothstein. Order restricted preferences and majority rule. Social Choice and Welfare,
7(4):331-342, 1990.

Allan H. Meltzer and Scott F. Richard. A rational theory of the size of government.
Journal of Political Economy, 89(5):914-927, 1981.

Gabrielle Demange. Intermediate preferences and stable coalition structures. Journal of
Mathematical Economics, 23(1):45-58, 1994.

Frank Westhoff. Existence of equilibria in economies with a local public good. Journal
of Economic Theory, 14(1):84-112, February 1977.

Dennis Epple and Glenn J. Platt. Equilibrium and local redistribution in an urban
economy when households differ in both preferences and incomes. Journal of Urban
Economics, 43(1):23-51, 1998.

Salvador Barbera and Matthew Jackson. Choosing how to choose: Self-stable majority
rules and constitutions. The Quarterly Journal of Economics, 119(3):1011-1048, 2004.

Elliot Anshelevich, Onkar Bhardwaj, and John Postl. Approximating optimal social
choice under metric preferences. In Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence, AAAT’15, page 777-783. AAAI Press, 2015.

Piotr Skowron and Edith Elkind. Social choice under metric preferences: Scoring rules
and stv. In AAAL 2017.

H. Moulin. Choosing from a tournament. Social Choice and Welfare, 3(4):271-291, 1986.

Arthur Herbert Copeland. A “reasonable” social welfare function, seminar on mathemat-
ics in social sciences. 1951.

Kamesh Munagala and Kangning Wang. Improved metric distortion for deterministic
social choice rules. Proceedings of the 2019 ACM Conference on Economics and Com-
putation, Jun 2019.

Vasilis Gkatzelis, Daniel Halpern, and Nisarg Shah. Resolving the optimal metric dis-
tortion conjecture, 2020.

Elliot Anshelevich and John Postl. Randomized social choice functions under metric
preferences, 2016.

Elliot Anshelevich and Wennan Zhu. Ordinal approximation for social choice, matching,
and facility location problems given candidate positions, 2018.

73



[52]

[53]

[54]

[55]

[56]

74

Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic applications.
In Proceedings of 37th Conference on Foundations of Computer Science, pages 184-193,
1996.

Yair Bartal. On approximating arbitrary metrices by tree metrics. In Proceedings of the
Thirtieth Annual ACM Symposium on Theory of Computing, STOC 98, page 161-168,
New York, NY, USA, 1998. Association for Computing Machinery.

Moses Charikar, Sudipto Guha, Eva Tardos, and David B. Shmoys. A constant-factor
approximation algorithm for the k-median problem. In Proceedings of the Thirty-First
Annual ACM Symposium on Theory of Computing, STOC 99, page 1-10, New York,
NY, USA, 1999. Association for Computing Machinery.

Craig Boutilier, Ioannis Caragiannis, Simi Haber, Tyler Lu, Ariel D. Procaccia, and
Or Sheffet. Optimal social choice functions: A utilitarian view. EC ’12, page 197214,
New York, NY, USA, 2012. Association for Computing Machinery.

Ioannis Anagnostides, Dimitris Fotakis, and Panagiotis Patsilinakos. Metric-distortion
bounds under limited information, 2021.



	Περίληψη
	Abstract
	Ευχαριστίες
	Περιεχόμενα
	Παράρτημα
	Εκτεταμένη Ελληνική Περίληψη

	Κείμενο στα αγγλικά
	Appendix
	Introduction
	Organization
	Contribution
	Social Choice Rules and Distortion

	Voters Preferences Expressed as Normalized Valuations
	Single Winner Problem
	Impossibility Results with unrestricted valuations
	Lower Bounds and Upper Bounds

	Multi Winner Problem (k-Voting)
	Lower and Upper Bounds


	Communication-Distortion Tradeoff with normalized valuations
	Single Winner Problem in a Metric Space
	Model
	Lower Bounds
	Lower Bounds on Positional Scoring Rules
	Upper Bounds on Popular Voting Rules
	Linear Upper Bounds
	Sublinear Upper Bounds
	Constant Upper Bounds

	Optimal Metric Distortion 
	Optimal Metric Distortion Given Candidates Position

	Multiwinner voting in a metric space
	Lower Bounds of Distortion Given the Ordinal Preferences
	Ordinal Preferences given the distances between facilities
	Bucket Preferences
	Number of queries - Distortion Tradeoff

	Concluding Remarks and Related Work
	Bibliography


