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ABSTRACT 

The main objective of this Diploma Thesis is to investigate the difference in power 

consumption of two control strategies in a hydraulic configuration that uses a 

hydraulic cylinder. Initially, a theoretical analysis of hydraulic systems is done followed 

by an analysis of the two control strategies that are under investigation. Then the 

values of the system parameters are being defined and the components of both 

systems are selected. Finally, the simulation results for the power consumption, mean 

chamber pressure and position error are presented for each system. In addition, the 

effect of inertia and friction losses are also investigated in a separate model.  
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1. Hydraulic Systems Theory 

1.1. Introduction 
The function of hydraulic systems is based on Pascal’s law, which states that applying 

a pressure to a fluid inside a closed circuit, will result in the transmission of this 

pressure equally in all directions. So, a hydraulic system functions by using a fluid 

which is under pressure to produce work.  

A hydraulic system comprises of interconnected components that transfer fluid in 

order to perform a desired function. These components usually are [1]: 

 hydraulic power supply 

 control elements 

 actuators 

 other elements (pipelines, measuring devices, etc.) 

The hydraulic power supply usually consists of a pump connected to a prime mover 

(electric or diesel motor). The pump then converts the available mechanical power of 

the prime mover to hydraulic power at the actuator, which can either be a hydraulic 

cylinder for translational motion or a hydraulic motor for rotational motion. In 

addition, control elements, such as valves, control the flow direction, pressure and 

power at the actuator. 

 

1.2. Hydraulic Power Supply 
Hydraulic pumps are machines that convert the available mechanical power from an 

electric or diesel motor into hydraulic power of the fluid flowing through them. The 

rotating speed of the pump determines the flow rate of the fluid whereas the pressure 

developed is determined by the load at the pump outlet. The main types of hydraulic 

pumps are: 

 External gear pumps use two gears rotating against each other to provide fluid 

flow. As the gears rotate away from each other, fluid trapped in the slots 

between the teeth is carried around and discharged at the outlet port. 

 Internal gear pumps have two gears, an inner gear which is inside an outer 

gear. The shaft of the motor drives the inner gear which in turn moves the 

outer gear. Fluid is trapped between the teeth of the two gears and is 

transferred from the inlet to the outlet port. 

 Rotary vane pumps consist of variable length vanes mounted to an off-

centered shaft. As the shaft rotates, the vanes slide in and out in order to 

maintain contact with the pump housing and so chambers of varying sizes are 

created inside the pump. The fluid enters the pump at the largest chamber 

which becomes smaller in size as the fluid exits through the discharge port. 

 Swash-plate piston pumps have a rotating shaft connected to a cylinder block 

which contains pistons. These pistons are pressed against a swash place which 

sits at an angle to the cylinder. As the shaft rotates, the pistons move against 
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the swash-plate which causes them to reciprocate within the piston block. The 

pistons create a vacuum which forces fluid inside them during the intake stroke 

and expel it during the discharge stroke. 

 Radial piston pumps have pistons that are arranged around the cylinder block 

with an eccentric cam mounted on the drive shaft. As the shaft rotates, the 

cam moves towards the pistons forcing them down into the cylinder block and 

discharging the fluid. 

 Screw pumps consist of two screws that intermesh with each other. As the 

screws rotate, a vacuum is created at the inlet causing fluid to fill the space 

between the treads and the housing. 

 

1.3. Control Elements 
The most important control element in a hydraulic circuit are the hydraulic valves. 

There are four basic types of valves in hydraulic systems [1]. 

 Pressure valves are used to maintain and/or select the desired pressure level 

in the hydraulic system. 

 Check valves are a special type of directional valves which only allow fluid flow 

in one direction while preventing the flow in the reverse direction. 

 Flow control valves are used to regulate the flow rate of the fluid from one 

part of the hydraulic circuit to another. 

 Directional control valves (DCVs) are used to control the direction of fluid flow 

into various paths. They are characterized by the number of connected lines 

(ways), the number of control positions and the number of lands. The most 

common type of DCVs consist of a spool inside a cylinder (sleeve) and the 

position of the spool determines the direction of flow. A special type of DCV is 

the servo controlled valve. 

 

1.3.1. Lands and ports 

The spool of a DCV can have different number of connected lines (ways) and lands, 

depending on the application. Since a supply, a return and at least a line to the 

actuator is needed, the spool needs to have three or more ports. Some examples of 

valve spools are shown in the figure below [2]. 
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Figure 1-1: Typical configuration of valve spools [2] 

 

1.3.2. Center type 

The center type of a valve is defined by the “lap”, which is the width of the spool land 

relative to the width of the port in the valve sleeve. Based on this, there are three 

main categories of center types [1] [2]. 

 Open center or under-lapped where the width of the land is smaller than the 

width of the port. In this case, there is a moment where all ports are connected 

to each other. This results in smooth, continuous flow during the valve 

operation. 

 Closed center or over-lapped where the width of the land is larger than the 

width of the port. In this type of valves, there is a length around the neutral 

position of the spool where all the ports are not connected, which in turn 

causes a dead-band in flow. 

 Critical center or zero-lapped where the width of the land is equal to the width 

of the port. They are the most common type of valves and is because of their 

geometry, they can achieve a linear flow gain around the neutral position. 

 

Figure 1-2: Types of valve lapping at neutral position [2] 
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Figure 1-3: Typical valve flow gain [2] 

 

1.3.3. Servo valve 

Servo valves are fast responding DCVs that incorporate a control law in order to 

accurately control motion, force and other parameters. “In its simplest form, a servo 

or a servomechanism is a control system, which measures its own output and forces 

the output to quickly and accurately follow a command signal” [2]. A typical type of a 

hydraulic servo valve is the two stage flapper-nozzle valve (figure 1-4). An electrical 

current in the torque motor causes the armature to rotate which displaces the flapper 

between the two nozzles. This displacement makes the area of the nozzle that comes 

closer to the flapper, smaller, lowering the flow rate and increasing the pressure on 

that side. Then, the pressure increase moves the spool to the opposite direction and 

continues to move it until the feedback signal matches the desired signal. 

 

Figure 1-4: Servo valve, no signal [3] 
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Figure 1-5: Signal applied to electric motor and spool about to move [3] 

 

 

Figure 1-6: Equilibrium condition with signal applied [3] 

 

Although servo valves have many advantages, they are not energy efficient due to the 

heavy throttling losses they introduce to the system. For example, “the nominal flow 

capacity of a servo valve is specified at a total valve pressure drop of 70 bar. Assuming 

a supply pressure of 210 bar gives that only the valve losses represents 33% of the 

input power at nominal flow conditions and only 67% remains for load actuations” [2].  

 

1.4. Actuators 
Hydraulic actuators are components that convert hydraulic power, delivered by the 

pump, to mechanical power in the desired form. There are two main types of 

actuators, the hydraulic cylinder and the hydraulic motor. 



18 
 

Hydraulic cylinders convert the hydraulic power of the fluid into mechanical power, 

performing a translational motion. The pressure of the fluid is converted into force 

acting on the piston whereas the flow rate determines the piston velocity. 

 

Figure 1-7: 3D model of a hydraulic cylinder 

 

Hydraulic motors have similar function to the pump, in the reverse way. Instead of 

pushing fluid into the system, they are pushed by the fluid and thus convert the fluid 

pressure and flow rate into torque and rotary velocity at the shaft. 

 

Figure 1-8: An axial piston hydraulic motor 
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2. System analysis 

2.1. Problem description 
As stated in chapter 1.3.3, although the servo valve offers quick and accurate system 

control, it forces the liquid to pass through narrow ports and orifices which leads in 

heavy energy losses. This is further increased by the frequency of the system, making 

the servo valve a non-optimal control choice for systems operating at high 

frequencies. 

In this thesis an alternative control configuration is being investigated. This 

configuration consists of a cylindrical mass connected to one of the chambers of a 

hydraulic cylinder and can freely move in and out of the chamber with the help of an 

electric motor. The position of the control volume affects the pressure and the size of 

the cylinder chamber that is connected, which in turn causes the cylinder piston to 

move at the desired direction. 

 

2.2. Hydro-mechanical servo system 

2.2.1. Hydro-mechanical system 

Consider a hydro-mechanical system consisting of a servo valve controlled hydraulic 

piston connected to a mass. The analysis for the aforementioned configuration has 

already been done in previous works [2] [3], but it is critical to repeat the analysis for 

completeness reasons.  

 

Figure 2-1: Functional schematic of hydro-mechanical servo system 
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It is assumed that the servo valve is critical center and symmetrical, the supply 

pressure is constant and the tank pressure is zero. Also, it is assumed that the leakages 

inside the servo valve are zero, as well as the effect of inertia, compressibility and 

friction of the oil inside the hydraulic lines connecting the supply and tank to the 

corresponding piston chamber. 

The flow rate equations through the restriction areas of the servo valve can be written 

as: 

 

𝑄1 = 𝐶𝑑𝐴𝑏(𝑥𝑣)√
2

𝜌
(𝑃𝑠 − 𝑃1) − 𝐶𝑑𝐴a(𝑥𝑣)√

2

𝜌
(𝑃1 − 𝑃𝑡) (2-1) 

 

 

𝑄2 = 𝐶𝑑𝐴𝑐(𝑥𝑣)√
2

𝜌
(𝑃𝑠 − 𝑃2) − 𝐶𝑑𝐴𝑑(𝑥𝑣)√

2

𝜌
(𝑃2 − 𝑃𝑡) (2-2) 

where: 

 𝑄i: Servo valve flow rate 

 𝐶𝑑: Discharge coefficient 

 𝐴𝑖(𝑥𝑣): Restriction areas 

 𝜌: Oil density 

 𝑃𝑠: Supply pressure 

 𝑃𝑡: Tank pressure 

 𝑃1: Servo valve pressure in land 1 

 𝑃2: Servo valve pressure in land 2 

 

It is assumed that the valve is matched (𝐴a(𝑥𝑣) = 𝐴𝑐(𝑥𝑣) and 𝐴𝑏(𝑥𝑣) = 𝐴𝑑(𝑥𝑣)) and 

symmetrical (𝐴a(−𝑥𝑣) = 𝐴𝑏(𝑥𝑣) and 𝐴𝑐(−𝑥𝑣) = 𝐴𝑑(𝑥𝑣)) type. Also, the radial clearance 

of the spool is considered to be zero. So, the restriction areas (assuming they are 

rectangular) are calculated as follows: 

 

 𝐴a = 𝐴c = 0

      𝐴b = 𝐴d = 𝐴 = 𝑤𝑥𝑣
}  𝐹𝑜𝑟 𝑥𝑣 > 0 

 
(2-3) 

      𝐴a = 𝐴c = 𝐴 = 𝑤𝑥𝑣
𝐴b = 𝐴d = 0

}  𝐹𝑜𝑟 𝑥𝑣 < 0 

 
(2-4) 

where: 

 𝑥𝑣: Spool displacement/stroke 

 𝑤: Port width 

 𝐴: Servo valve port area 
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The hydraulic oil flow is actually a spatial distributed physical system and the 

mathematical model that describes it is too complicated when taking into 

consideration all the parameters that affect it. For this reason, a lumped element 

model is used in order to simplify the behavior of the system. Except from the driving 

forces, the motion of hydraulic oil is also affected by oil inertia and compressibility, 

during transient conditions, and, as well as, friction. The effect of inertia, resistance 

and capacitance in each piston chamber are considered to be separate from each 

other. 

The walls of the hydraulic cylinder can be considered rigid compared to the hydraulic 

oil due to the effect of oil compressibility and therefore, the deformation of the 

hydraulic cylinder walls is zero. Applying the continuity equations to the piston 

chambers results in the following equations: 

 
𝑄1 − 𝐴p

𝑑𝑋P
𝑑𝑡
− 𝑄leak − 𝑄ep,leak =

𝑉𝑝

𝛽𝑒

𝑑𝑃p

𝑑𝑡
 (2-5) 

 

 
𝑄2 + 𝐴𝑟

𝑑𝑋P
𝑑𝑡
+ 𝑄leak − 𝑄er,leak =

𝑉𝑟
𝛽𝑒

𝑑𝑃r
𝑑𝑡

 (2-6) 

where: 

 𝐴p: Piston area without rod (Piston Chamber) 

 𝐴r: Piston area with rod (Ring Chamber) 

 𝑋𝑃: Piston displacement 

 𝑉𝑝: Volume of Piston Chamber 

 𝑉𝑟: Volume of Ring Chamber  

 𝑃p: Pressure inside Piston Chamber 

 𝑃r: Pressure inside Ring Chamber 

 𝛽𝑒: Bulk modulus 

 𝑄𝑙𝑒𝑎𝑘: Internal leakage flow 

 𝑄ei,leak: External leakage flow 

 

The internal and external leakage flows of the hydraulic cylinder are considered to be 

linear to the pressure difference and are calculated as: 

 𝑄𝑙𝑒𝑎𝑘 = 𝐾𝑙𝑒𝑎𝑘(𝑃p − 𝑃r) (2-7) 

 

 𝑄𝑒𝑖,𝑙𝑒𝑎𝑘 = 𝐾𝑒𝑖,𝑙𝑒𝑎𝑘𝑃i (2-8) 
where: 

 𝐾𝑙𝑒𝑎𝑘: Internal leakage coefficient 

 𝐾𝑒𝑖,𝑙𝑒𝑎𝑘: External leakage coefficient 
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Considering equations (2-5) and (2-6) and the direction of individual flow rates at the 

corresponding piston chambers, the total flow rate inside each chamber is: 

 
𝑄𝐴 = 𝑄1 − 𝑄leak − 𝑄ep,leak −

𝑉𝑝

𝛽𝑒

𝑑𝑃p

𝑑𝑡
 (2-9) 

 

 
𝑄𝐵 = 𝑄2 + 𝑄leak − 𝑄er,leak −

𝑉𝑟
𝛽𝑒

𝑑𝑃r
𝑑𝑡

 (2-10) 

 

The pressure inside the servo valve is different from the pressure inside the cylinder 

chambers due to liquid inertia and friction affecting the formation of pressure inside 

the cylinder chambers. Considering the oil inertia and friction inside the hydraulic 

cylinder chambers, the following equations can be deduced: 

 
𝑃1 − 𝑃p = 𝐼𝑝

𝑑𝑄𝐴
𝑑𝑡

+ 𝑅𝑝𝑄𝐴 (2-11) 

 

 
𝑃2 − 𝑃r = 𝐼𝑟

𝑑𝑄𝐵
𝑑𝑡

+ 𝑅𝑟𝑄𝐵 (2-12) 

where: 

 𝐼𝑖: Oil inertia in chamber i 

 𝑅𝑖: Oil resistance in chamber i 

 

The oil inertia and resistance in the cylinder chambers, assuming a linear flow, are 

calculated as: 

 
𝐼𝑖 =

4𝜌𝐿𝑖

𝜋𝐷𝑖
2 =

𝜌𝐿𝑖
𝐴𝑖

 (2-13) 

 

 
𝑅𝑖 =

128𝜇𝐿𝑖

𝜋𝐷𝑖
4 =

8𝜇𝜋𝐿𝑖

𝐷𝑖
2  (2-14) 

where: 

 𝜇: Oil viscosity 

 𝐿𝑖: Chamber length 

 

Combining equations (2-1) and (2-2) with equations (2-11) and (2-12), the flow rate 

equations can be written as: 
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𝑄1 = 𝐶𝑑𝐴𝑏(𝑥𝑣)√
2

𝜌
(𝑃𝑠 − 𝑃p − 𝐼𝑝

𝑑𝑄𝐴
𝑑𝑡

− 𝑅𝑝𝑄𝐴)

− 𝐶𝑑𝐴a(𝑥𝑣)√
2

𝜌
(𝑃p + 𝐼𝑝

𝑑𝑄𝐴
𝑑𝑡

+ 𝑅𝑝𝑄𝐴 − 𝑃𝑡) 

(2-15) 

 

 

𝑄2 = 𝐶𝑑𝐴𝑐(𝑥𝑣)√
2

𝜌
(𝑃𝑠 − 𝑃r − 𝐼𝑟

𝑑𝑄𝐵
𝑑𝑡

− 𝑅𝑟𝑄𝐵)

− 𝐶𝑑𝐴𝑑(𝑥𝑣)√
2

𝜌
(𝑃r + 𝐼𝑟

𝑑𝑄𝐵
𝑑𝑡

+ 𝑅𝑟𝑄𝐵 − 𝑃𝑡) 

(2-16) 

 

The final equation derives from the force equilibrium on the piston: 

 
𝐴𝑝𝑃p − 𝐴𝑟𝑃r = 𝑀𝐿

𝑑2𝑋𝑃
𝑑𝑡2

+ 𝐵𝐿
𝑑𝑋𝑃
𝑑𝑡
+ 𝐾𝐿𝑋𝑃 + 𝛥𝐹𝐿  (2-17) 

where: 

 𝑀𝐿: Load mass 

 𝐵𝐿: Friction coefficient 

 𝐾𝐿: Load stiffness 

 𝛥𝐹𝐿: External loading force 

 

2.2.2. Servo valve modeling 

In the hydro-mechanical system analysis, it was assumed that the servo valve port has 

a rectangular shape. This is not the case for the selected servo valve which has a 

circular port. Thus, the restriction area of the servo valve must be calculated. 

For a circular shaped area, the central angle is: 

 
𝜃 = 2 cos−1 (1 −

|𝑥𝑣|

𝑅
) (2-18) 

 

The circular segment area (green area) can be calculated as: 

 
𝐴 =

𝑅2

2
(𝜃 − sin 𝜃) (2-19) 
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Figure 2-2: Servo valve port area 

 

To continue the analysis, MOOG D936 Series is selected as servo valve that has a 

maximum nominal flow rate of 40
𝑙

𝑚𝑖𝑛
, which is considered sufficient for the specific 

application. From servo valve theory [2], as well as, from the step response of the 

servo valve, it is deduced that it can be modelled as a first order system. The transfer 

function of the servo valve can be written as: 

 
𝐺𝑠𝑣 =

1

𝜏𝑠 + 1
 (2-20) 

 

where 𝜏 is the settling time. The manufacturer states that the maximum settling time 

is 11ms, which can also be seen in the step response diagram (figure 2-3). 

 

Figure 2-3: Step response of the MOOG D936 servo valve 

 

The above value of the settling time is true in the case that the spool moves from 0 to 

100% of its stroke. Because the needed stroke of the servo valve constantly varies 
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depending on its operation, a relationship between stroke and settling time must be 

established. For this reason, the step response of the servo valve was digitalized. Also, 

a line that connects the settling time points for the various strokes was created in 

order to correlate the two parameters, as shown in the figure below. 

 

Figure 2-4: Digitalized step response of the MOOG D936 servo valve  

 

It is observed that the line connecting the settling time points is almost straight and it 

can be safely linearized without important error. It is also assumed that the maximum 

stroke of the servo valve equals to the maximum port width, which is the maximum 

port diameter for a circular shaped port. By plotting the valve stroke on x-axis and 

settling time on y-axis, an equation for the two parameters can be obtained. 

 

Figure 2-5: Spool stroke - Valve settling time diagram 
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From the above diagram, the equation that relates valve stroke with settling time is: 

 𝑦 = 1.0915|𝑥𝑣 − 𝑥𝑣,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠| + 0.0031 (2-21) 

 

2.3. Active system 
The active hydraulic system consists of a hydraulic cylinder with pre-pressurized oil in 

both cylinder chambers and a small control volume/mass that is connected to the 

piston chamber. The control volume can move in and out of the chamber with the 

help of an electric motor and thus, respectively decreasing and increasing the volume 

of the chamber and ultimately increasing or decreasing the pressure of the chamber. 

This causes the piston to move in the desired direction. 

 

Figure 2-6: Functional schematic of active hydraulic system 

 

The volume of each chamber can be calculated by the following equations: 

 𝑉𝑝 = 𝑋𝑃𝐴𝑝 − 𝑋𝑚𝐴𝑚 (2-22) 
 

 𝑉𝑟 = (𝐿 − 𝑋𝑃)𝐴𝑟 (2-23) 
where: 

 𝑉𝑖: Chamber volume 

 𝐿: Total length of hydraulic cylinder 

 𝑋𝑚: Control volume displacement 

 𝐴𝑚: Control volume area 
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Applying the continuity equation to each hydraulic cylinder chamber results in: 

 𝑑𝑋𝑚
𝑑𝑡

𝐴𝑚 −
𝑑𝑋𝑃
𝑑𝑡
𝐴𝑝 − 𝑄leak − 𝑄ep,leak =

𝑉𝑝

𝛽𝑒

𝑑𝑃𝑝

𝑑𝑡
 (2-24) 

 

 
𝐴𝑟
𝑑𝑋P
𝑑𝑡
+ 𝑄leak − 𝑄er,leak =

𝑉𝑟
𝛽𝑒

𝑑𝑃𝑟
𝑑𝑡

 (2-25) 

 

The force equilibrium equation on the hydraulic piston is the same as in the servo 

valve analysis. 

 
𝐴𝑝𝑃𝑝 − 𝐴𝑟𝑃𝑟 = 𝑀𝐿

𝑑2𝑋𝑃
𝑑𝑡2

+ 𝐵𝐿
𝑑𝑋𝑃
𝑑𝑡
+ 𝐾𝐿𝑋𝑃 + 𝛥𝐹𝐿 (2-26) 

 

A DC motor is a common actuator that provides rotary motion, which can be 

converted into translational motion if needed. The electrical circuit of a DC motor 

consists of two circuits, the armature and the field circuit. It is assumed that the field 

is excited by a constant voltage, thus only the armature circuit is considered. The 

armature circuit consist of a voltage source, an electrical resistance, an inductor and 

the rotor. The speed of the DC motor is proportional to armature voltage. 

 

Figure 2-7: Simplified electric motor circuit 

 

By applying Kirchhoff’s law on the armature circuit, the following expression can be 

written: 

 
𝑣𝑎 = 𝑖𝑎𝑅𝑎 +

𝑑𝑖𝑎
𝑑𝑡
𝐿𝑎 + 𝑒𝑏 (2-27) 

where: 

 𝑣𝑎: Armature voltage 

 𝑖𝑎: Armature current 
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 𝑅𝑎: Armature resistance 

 𝐿𝑎: Armature inductance 

 𝑒𝑏: Back-emf 

 

The torque of a DC motor is proportional to armature current and can be calculated 

as: 

 𝑇 = 𝑘𝑡𝑖𝑎 (2-28) 
where: 

 𝑇: Motor torque 

 𝑘𝑡: Motor torque constant 

 

The back-emf of the DC motor is proportional to the angular velocity of the shaft: 

 
𝑒𝑏 = 𝑘𝑏

𝑑𝜃

𝑑𝑡
= 𝑘𝑏𝜔 (2-29) 

where: 

 𝑘𝑏: Back-emf constant 

 𝜃: Motor angular position 

 𝜔: Motor angular velocity 

 

The motor torque constant and back-emf constant are equal in SI units. Finally, by 

applying Newton’s 2nd law the following equation is deduced: 

 
𝑇 = 𝐽

𝑑2𝜃

𝑑𝑡2
+ 𝐵

𝑑𝜃

𝑑𝑡
+ 𝑇𝑙 (2-30) 

where: 

 𝐽: Rotor moment of inertia 

 𝐵: Rotor viscous friction 

 𝑇𝑙: Load torque 

 

Applying the Laplace transformation on equations (2-27) – (2-30) and then combing 

equations (2-28) and (2-30), results in: 

 𝑘𝑡𝐼𝑎(𝑠) = 𝐽𝑠
2𝛩(𝑠) + 𝐵𝑠𝛩(𝑠) + 𝑇𝑙(𝑠) ⇒  

 
𝐼𝑎(𝑠) =

𝐽𝑠2 + 𝐵𝑠

𝑘𝑡
𝛩(𝑠) +

1

𝑘𝑡
𝑇𝑙(𝑠) (2-31) 

 

Again, by combing equations (2-27), (2-28) and (2-31) the final expression for the 

angular position is obtained: 
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𝑉𝑎(𝑠) = (

𝐽𝑠2 + 𝐵𝑠

𝑘𝑡
𝛩(𝑠) +

1

𝑘𝑡
𝑇𝑙(𝑠))𝑅𝑎

+ (
𝐽𝑠2 + 𝐵𝑠

𝑘𝑡
𝛩(𝑠) +

1

𝑘𝑡
𝑇𝑙(𝑠)) 𝑠𝐿𝑎 + 𝑘𝑏𝑠𝛩(𝑠) ⇒ 

 

 
𝛩(𝑠) =

𝑘𝑡
𝑠(𝐽𝐿𝑎𝑠2 + (𝐽𝑅𝑎 + 𝐵𝐿𝑎)𝑠 + (𝐵𝑅𝑎 + 𝑘𝑡𝑘𝑏))

(𝑉𝑎(𝑠)

−
𝐿𝑎𝑠 + 𝑅𝑎
𝑘𝑡

𝑇𝑙(𝑠)) 

(2-
32) 

 

The load torque is the torque that the electric motor has to overcome in order to move 

the piston and it is caused by the force developed on the control volume connected 

to the hydraulic chamber. This force is caused by the pressure inside the hydraulic 

chamber and can be calculated by the equation below: 

 𝐹𝑙 = 𝑃𝑝𝐴𝑚 (2-33) 
where: 

 𝐹𝑙: Load force 

 

Assuming that a rack and pinion mechanism is used to convert the rotational to 

translational movement, the load torque is given by the equation: 

 𝑇𝑙 = 𝐹𝑙𝑅 (2-34) 
where: 

 𝑅: Pinion effective/pitch radius 
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3. System parameters and Sizing 

3.1. System sizing 
For the sizing of the hydraulic circuit a few parameters need to be determined. In all 

cases the desired piston trajectory is a sinusoidal wave, which can be expressed by the 

equation below. 

 𝑋𝑃 = 𝐴 sin(𝜔𝑡) (3-1) 
where: 

 𝐴: Amplitude 

 𝜔: Angular frequency 

 𝑡: Time 

 

The angular frequency can be calculated from the desired piston frequency: 

 𝜔 = 2𝜋𝑓 (3-2) 
 

The desired velocity and acceleration of the piston are found by differentiating 

equation (3-1): 

 
𝑢 =

𝑑𝑋𝑃
𝑑𝑡

= 𝐴𝜔 cos(𝜔𝑡) (3-3) 

 

 
𝑎 =

𝑑𝑢

𝑑𝑡
=
𝑑2𝑋𝑃
𝑑𝑡2

= −𝐴𝜔2 sin(𝜔𝑡) (3-4) 

 

From the force analysis on the hydraulic system, the total force acting on the piston is 

given by the following equation: 

 
𝐹𝑡𝑜𝑡 = 𝑀𝐿

𝑑2𝑋𝑃
𝑑𝑡2

+ 𝐵𝐿
𝑑𝑋𝑃
𝑑𝑡
+ 𝐾𝐿𝑋𝑃 + 𝛥𝐹𝐿 (3-5) 

 

It is assumed that no external forces are applied on the load and that the load stiffness 

is zero. Using equations (3-3) to (3-5), the total force can then be written as: 

 𝐹𝑡𝑜𝑡 = −𝑀𝐿𝐴𝜔
2 sin(𝜔𝑡) + 𝐵𝐿𝐴𝜔 cos(𝜔𝑡) (3-6) 

 

The total force is a sum of two sinusoidal forces with different amplitudes and a phase 

shift of 90o. For this reason, the maximum force is applied at a different time than the 

maximum inertia and friction force, as shown in the figure below (in this example a 

frequency of 1Hz and an amplitude of 0.1m was used). 
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Figure 3-1: Time – Theoretical force diagram 

 

The time, at which the maximum total force is applied, can be found by differentiating 

equation (3-5) and setting it to zero: 

 𝑑𝐹𝑡𝑜𝑡
𝑑𝑡

= 0 ⇒ −𝑀𝐿𝐴𝜔
3 cos(𝜔𝑡′) − 𝐵𝐿𝐴𝜔

2 sin(𝜔𝑡′) = 0 ⇒  

 
⇒ tan(𝜔𝑡′) = −

𝑀𝐿𝜔

𝐵𝐿
⇒ 𝑡′ =

1

𝜔
tan−1 (−

𝑀𝐿𝜔

𝐵𝐿
) (3-7) 

 

Thus, the maximum total force can be calculated: 

 𝐹𝑡𝑜𝑡,𝑚𝑎𝑥 = −𝑀𝐿𝐴𝜔
2 sin(𝜔𝑡′) + 𝐵𝐿𝐴𝜔 cos(𝜔𝑡

′) (3-8) 
 

By dividing the maximum total force with the supply pressure results into the 

appropriate piston area: 

 
𝐴𝑟 =

𝐹𝑡𝑜𝑡,𝑚𝑎𝑥
𝑃𝑠

 (3-9) 

 

For the typical double-acting hydraulic cylinder, the active areas of the piston head 

are not the same since one side of the head has the rod (ring side), thus decreasing 

the available area on that side. Since the desired trajectory is the same for the cylinder 
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extension and retraction, the area calculated above must correspond to the ring area, 

which is the area on the side that has the cylinder rod. The piston area can then be 

selected by hydraulic cylinder catalogs, since the ring area has already been 

determined. Also, the piston diameter can be seen in the catalog or can be calculated: 

 

𝐷𝑝 = √
4𝐴𝑝

𝜋
 (3-10) 

 

 

The power needed for the system to act can be calculated from the equation: 

 𝒫 = 𝐹𝑡𝑜𝑡𝑢 (3-11) 
 

From the diagram below it can be seen that the power of the system has double the 

frequency of the total force. This can also be confirmed by using Fourier 

transformation on the signal above. 

 

Figure 3-2: Time – Power diagram 
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Figure 3-3: Fourier transformation of the system power 

 

3.2. Value selection 
In order to compare the two models, some parameters must first be set either by 

estimation, assumption or trial and error. First of all, for the active system, it is 

assumed that the pressure of the oil inside the hydraulic cylinder ring chamber is 

280bar. Although, a high oil pressure means more required power for the electric 

motor, it is necessary in order to prevent vacuum inside the chambers. The vacuum 

may appear because moving the control volume quickly out of the chamber creates 

suction which is further amplified by the movement of the piston.  

For the load, a mass of 1000kg is chosen with a friction coefficient of 1000Nsec/m. 

Also, the amplitude of the desired trajectory was set at 2.5mm and the maximum 

piston stroke at 0.4m.  

Next, the range of frequencies that are going to be examined must be determined. For 

a load mass of 1000kg executing a trajectory that constantly requires it to accelerate 

and decelerate, a maximum frequency of 10Hz is considered as satisfactory, while the 

minimum frequency was set at 0.1Hz. 

Since all the parameters of the load and desired trajectory are set, the maximum force 

can be calculated from equation (3-6) and also the ring area of the piston from 

equation (3-9). By searching in hydraulic cylinder catalogs, an approximate area ratio 

of 2 is selected and hence, the value of the appropriate piston diameter is calculated: 
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𝐷𝑝 = √
4𝐴𝑝

𝜋
= √

8𝐴𝑟
𝜋
= 0.0268𝑚 (3-12) 

 

Considering a safety factor of about 1.5, the hydraulic cylinder selected is Bosch 

Rexroth Series CDH3 with piston diameter of 0.04m and ring diameter (rod side) of 

0.028m. 

 

Figure 3-4: Bosch Rexroth Series CDH3 hydraulic cylinder 

 

In order for the forces acting on both sides of piston to balance, the pressure of the 

oil inside the piston chamber must be equal to: 

 
𝑃𝑝 = 280

𝐴𝑟
𝐴𝑝
= 142.8𝑏𝑎𝑟 (3-13) 

 

The control volume is assumed to be of cylindrical shape. The area of the control 

volume is selected to be five times smaller than the area of the piston mass and so, 

the diameter of the control volume is calculated: 

 

𝐷𝑚 = √
4𝐴𝑚
𝜋
= √

4𝐴𝑃
5𝜋

= 0.0179𝑚 (3-14) 

 

Also the control volume is assumed to be made of stainless steel with density of 

7500kg/m3 and that it has a length equal to the piston diameter which makes its 

weight equal to: 

 𝑀𝑚 = 𝜌𝐴𝑚𝐷𝑝 = 0.0754𝑘𝑔 (3-15) 
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For the electric motor, the ME1302 DLC-28 from Electric Motorsport was selected. The 

manufacturer doesn’t give a value for the viscous friction coefficient. By going through 

the literature, it can be seen that the viscous friction coefficient for a DC motor has a 

low value of 10−5 or below [4] [5]. Because the values found are for a small DC motor, 

a value of 10−3 is assumed instead. In addition, after running some simulations, the 

pitch radius for the pinion gear is set at 6.25mm with a module of 1.25. 

 

Figure 3-5: ME1302 (DLC-28) Brushless 15 kW - 38 kW Liquid-Cooled PMAC Motor 

 

For the servo valve system, by calculating the maximum desired velocity of the piston, 

the maximum flow rate needed can also be calculated using the equation below: 

 
𝑄𝑚𝑎𝑥 = 𝑢𝑚𝑎𝑥𝐴𝑝 = 11.84

𝑙

𝑚𝑖𝑛
 (3-16) 

 

The pump selected is Bosch Rexroth Axial Piston Fixed Pump A2FO series 6. For the 

size of the pump, two values are selected, at 5
𝑐𝑚3

𝑟𝑒𝑣
 and 10

𝑐𝑚3

𝑟𝑒𝑣
 since both sizes meet the 

requirement for the maximum flow rate. However, for these values, the pump has 

different maximum nominal speed, which is interesting to investigate further. Also, 

since the manufacturer doesn’t give any information about the volumetric efficiency 

of the pump, a value of 0.92 is selected. The speed of the pump that is needed to 

provide the maximum flow rate can be calculated as: 
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𝑛 =

𝑄𝑚𝑎𝑥
𝑉𝑔𝜂𝑣

 (3-17) 

 

 

Figure 3-6: Bosch Rexroth Axial Piston Fixed Pump A2FO series 6 

 

Since the maximum desired piston velocity and hence, the maximum flow rate are 

proportional to the trajectory frequency, the speed of the pump will be as well. For 

this reason, the nominal pump velocity is calculated for frequency of 1Hz which results 

in 130rpm for the bigger pump and 260rpm for the smaller pump. This means that the 

appropriate speed of the pump can be easily calculated as: 

 𝑛 = 𝑛𝑛𝑜𝑚𝑓 (3-18) 
 

The servo valve that is selected is MOOG D936 Series with nominal flow rate 20
𝑙

𝑚𝑖𝑛
. 

For maximum flow rate, the manufacturer states that the port width is designed with 

∅7.5mm. Since the maximum nominal flow rate is 40
𝑙

𝑚𝑖𝑛
, the port diameter for the 

wanted flow rate must be calculated. The nominal flow rate is calculated for a pressure 

drop of 70bar. According to the above and equation (2-1), for a positive spool 

displacement, the following expression can be written: 

 
𝑄𝑁

𝑄𝑁,𝑚𝑎𝑥
=

𝐶𝑑𝐴𝑁√
2
𝜌
(𝛥p)

𝐶𝑑𝐴𝑁,𝑚𝑎𝑥√
2
𝜌
(𝛥p)

⟹
𝑄𝑁

𝑄𝑁,𝑚𝑎𝑥
=

𝐴𝑁
𝐴𝑁,𝑚𝑎𝑥

=
4𝜋𝐷𝑁

2

4𝜋𝐷𝑁,𝑚𝑎𝑥
2

⟹ 

 

 
𝐷𝑁 = √

𝑄𝑁
𝑄𝑁,𝑚𝑎𝑥

𝐷𝑁,𝑚𝑎𝑥 = 5.81𝑚𝑚 (3-19) 
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Figure 3-7: D936 Servo-Proportional Valve 

 

Finally, the discharge coefficient of the servo valve is selected at 0.611 [3]. Also, since 

the active model is a closed system with no oil supply, the seals of the hydraulic 

cylinder must be of excellent quality and, therefore, the leakage coefficient was 

selected at 10−16 𝑃𝑎𝑠𝑒𝑐 𝑚3⁄ . 

 

3.3. Final simulation parameters 
All parameters and values used in the simulations are shown in the tables below. 

System 

Parameter name Value [Unit] Description 

𝒇 0.1 − 10 [𝐻𝑧] Frequency 

𝑨 0.0025[𝑚] Amplitude 

𝑷𝒓 = 𝑷𝟐 280 [𝑏𝑎𝑟] 
Pre-charge pressure ring 

chamber 

𝑷𝒑 = 𝑷𝟏 142.8 [𝑏𝑎𝑟] 
Pre-charge pressure 

piston chamber 

𝑷𝒕 0.1 [𝑏𝑎𝑟] Tank pressure 
Table 3-1: System parameter values 

Cylinder 

Parameter name Value [Unit] Description 
𝑫𝒑 0.04 [𝑚] Piston diameter 

𝑫𝒓 0.028 [𝑚] Ring diameter 

𝑲𝒍𝒆𝒂𝒌 1𝑒 − 16 [𝑃𝑎𝑠𝑒𝑐 𝑚3⁄ ] Leakage coefficient 
𝑿𝒑,𝒎𝒂𝒙 0.4 [𝑚] Maximum piston stroke 

Table 3-2: Hydraulic cylinder parameter values 
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Load 

Parameter name Value [Unit] Description 

𝑴𝒍 1000 [𝑘𝑔] Load mass 

𝑩𝒍 1000 [𝑁𝑠𝑒𝑐 𝑚⁄ ] Load damping coefficient 
Table 3-3: Load parameter values 

Motor 

Parameter name Value [Unit] Description 

𝑱𝒂 45𝑒 − 4 [𝑘𝑔𝑚2] Armature inertia 

𝑹𝒂 0.013[𝑂ℎ𝑚] Armature resistance 

𝑳𝒂 0.1𝑒 − 3 [𝐻] Armature inductance 

𝒌𝒕 0.15 [𝑁𝑚 𝐴⁄ ] Torque constant 

𝒌𝒃 0.15 [𝑉𝑠𝑒𝑐 𝑟𝑎𝑑⁄ ] Speed constant 

𝜼𝒎 0.90 Motor efficiency 

𝑩𝒎 0.001 [𝑁𝑚𝑠𝑒𝑐 𝑟𝑎𝑑⁄ ] 
Motor damping 

coefficient 
Table 3-4: Electric motor parameter value 

Pump 

Parameter name Value [Unit] Description 

𝑹𝑷𝑴𝒏𝒐𝒎 3150,5600[𝑟𝑝𝑚] Nominal pump speed 

𝑹𝑷𝑴𝒎 130𝑓, 260𝑓[𝑟𝑝𝑚] Pump speed 
𝑽𝒈 5,10 [𝑐𝑚3 𝑟𝑒𝑣⁄ ] Pump displacement 

𝑱𝒑 0.6𝑒 − 4, 4𝑒 − 4 [𝑘𝑔𝑚2] Pump inertia 

𝑲𝒑 0.63,0.92 [𝑘𝑁𝑚 𝑟𝑎𝑑⁄ ] Pump rotary stiffness 
Table 3-5: Hydraulic pump parameter value 

Servo valve 

Parameter name Value [Unit] Description 

𝑪𝒅 0.611 Discharge coefficient 

𝑫𝒔𝒆𝒓𝒗𝒐 0.0053 [𝑚] 
Servo valve maximum 

opening 
Table 3-6: Servo valve parameter value 

Control volume 

Parameter name Value [Unit] Description 

𝑫𝒎 0.0179 [𝑚] Control volume diameter 

𝑳𝒎 0.004[𝑚] Control volume length 

𝝆𝒎 7500 [𝑘𝑔 𝑚3⁄ ] Control volume density 

𝑴𝒎 0.0754 [𝑘𝑔] Control volume mass 

𝑹𝒑 0.00625 [𝑚] Pinion pitch radius 
Table 3-7: Control volume parameter value 
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Oil 

Parameter name Value [Unit] Description 

𝝆𝒐 857.2 [𝑘𝑔 𝑚3⁄ ] Oil density 

𝒗 31.81𝑒 − 6 [𝑚2 𝑠𝑒𝑐⁄ ] Oil kinematic viscosity 

𝜷𝒆 1.44756𝑒9 [𝑃𝑎] Oil bulk modulus 
Table 3-8: Hydraulic oil parameter value 
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4. Results 

4.1. Model Description 
In this chapter the results of two sets of simulations are being presented. All the 

simulations were implemented on Matlab and specifically, Simulink and Simscape.  

The first set features two models of a hydraulic servo system, consisting of a servo 

valve and a hydraulic cylinder connected to a mass. The first model (simple) was 

created using Simscape by connecting the appropriate hydraulic blocks, while the 

second model (full) derives from the system analysis and is using the function blocks 

provided. A major difference between these two models is that in the Simscape 

model, the effect of oil inertia and friction inside the cylinder chambers isn’t 

simulated. So, the aim of this set is to investigate the effect of oil inertia and friction 

on system response. The Simulink models of the two systems are presented below. 

 

Figure 4-1: Simple system Simulink model 
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Figure 4-2: Full system Simulink model 

 

The second set, which is the main objective of this thesis, compares a hydraulic servo 

system to the active system, which was presented in a previous chapter. The servo 

system model is implemented through Simscape hydro-mechanical blocks while for 

the active system model, the Matlab function blocks are used. The goal of this set is 

to compare the energy required for the two systems to achieve the same trajectory in 

a range of frequencies, as well as other parameters. The Simulink models of the two 

systems are presented below. 

 

Figure 4-3: Hydro-mechanical servo system model 
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Figure 4-4: Active system model 

 

4.2. Effect of hydraulic losses on the system 
Based on the hydro-mechanical servo system analysis in chapter 2.2, a Simulink model 

of the complete hydraulic servo system was created in order to simulate the piston 

stroke. In addition, it is possible with Simulink, through Simscape, to simulate various 

physical models, including hydraulic systems, although some parameters such as fluid 

inertia and friction in a varying volume are not calculated. In order to determine the 

extent of which those parameters affect the system, a comparison between the two 

models was made. 

For this comparison a sinusoidal trajectory for the piston was selected with a 

frequency of 1Hz and an amplitude of 0.05m. For both models a constant pressure 

supply of 280bar was considered while the remaining values are the same as stated in 

chapter 3.3. The results from the simulations are presented below. 

For both models the piston position is almost the same although the trajectory of the 

model that has inertia and friction implemented (full model) seems less smooth 

especially when the piston reaches its extreme positions. 
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Figure 4-5: Time – Piston position diagram 

 

Figure 4-6: Time – Piston position diagram (detail) 
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In the figure below, it can be seen that the power of the hydraulic fluid in both models 

is again identical, with the full model having a little higher power. 

 

Figure 4-7: Time – Hydraulic power diagram 

 

The pressure inside each cylinder chamber is shown below. In both cases the pressure 

of the two models are very close, but in the full model some oscillations appear during 

the piston extension, as well as, some spikes in pressure during the piston retraction 

probably due to the fluid inertia. 
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Figure 4-8: Time – Piston chamber pressure diagram 

 

Figure 4-9: Time – Ring chamber pressure diagram 
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In the four diagrams below, the inertia and friction losses are shown. First of all, the 

inertia losses diagrams have oscillations which is expected since the desired piston 

stroke has a constantly varying acceleration and fluid inertia is affected by 

acceleration. Also, the inertia losses are about ten times higher than the friction losses 

but are still very small compared to the minimum pressure that is developed inside 

the piston chamber. All and all, the losses due to inertia and friction are very small and 

can be neglected without affecting the final results. 

 

Figure 4-10: Time – Inertia losses in piston chamber diagram 
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Figure 4-11: Time – Inertia losses in ring chamber diagram 

 

Figure 4-12: Time – Friction losses in piston chamber diagram 
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Figure 4-13: Time –Friction losses in ring chamber diagram 

 

In addition to the above, another comparison of the two aforementioned models was 

done, this time with 0.0025m amplitude, which is the same as in the final simulation 

of the active system, so that to examine the effect of amplitude in hydraulic losses. It 

was observed that both models where unstable and could not be controlled simply 

with a proportional gain and so, a PID controller was used.  

Again, it is observed that the results are very close for the two models. An important 

thing to notice is that both inertia and friction losses decrease as the amplitude 

decreased, which is expected since both the acceleration and velocity of the piston 

are lower. More specifically, it can be seen that decreasing the amplitude by twenty 

times causes the same decrease in both inertia and friction losses. 
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Figure 4-14: Time – Piston position diagram 

 

Figure 4-15: Time –Hydraulic power diagram 
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Figure 4-16: Time – Piston chamber pressure diagram 

 

Figure 4-17: Time – Ring chamber pressure diagram 
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Figure 4-18: Time – Inertia losses in piston chamber diagram 

 

Figure 4-19: Time – Inertia losses in ring chamber diagram 
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Figure 4-20: Time – Friction losses in piston chamber diagram 

 

Figure 4-21: Time – Friction losses in ring chamber diagram 
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In addition to the above, another simulation of the full model was run at the same 

amplitude as the second simulation, but at a frequency of 10Hz. This was done to 

investigate the effect of frequency on hydraulic losses. It can be seen, in the figures 

below, that although the amplitude is the same, both inertia and friction losses have 

increased. Specifically, increasing the frequency of the system by ten times, increased 

the friction losses by almost the same amount. On the other hand, the inertia losses 

have increased by almost eighty times. This indicates that the inertia of the hydraulic 

fluid is affected intensively by the system frequency, as expected. Also, it is worth 

mentioning that the inertia losses of the final simulation are higher than those of the 

first, of amplitude 0.05m and frequency 1Hz. This means that although the amplitude 

decreased by twenty times, a ten times increase in frequency produces more inertia 

losses. 

 

Figure 4-22: Time – Inertia losses in piston chamber diagram 
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Figure 4-23: Time – Inertia losses in ring chamber diagram 

 

Figure 4-24: Time – Friction losses in piston chamber diagram 
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Figure 4-25: Time – Friction losses in ring chamber diagram 

 

To conclude, both amplitude and frequency affect the hydraulic losses of the system, 

although the frequency of the system has a bigger impact at inertia losses. Also, the 

friction seems to have the least impact on the total pressure losses of the system. Even 

so, the maximum value of inertia losses is still very small compared to the pressure 

developed inside the cylinder chambers and so, both friction and inertia losses can be 

neglected without having much error in the results. 

In the table below, the mean absolute value of the inertia and friction pressure losses 

are presented for each simulation. 

Hydraulic Pressure Losses (Pa) 

Simulation R1 R2 I1 I2 

A = 0.05m / f = 1Hz 20.71 40.42 238.92 235.62 

A = 0.0025m / f = 1Hz 1.1 2.15 12.93 12.95 

A = 0.0025m / f = 10Hz 10.64 20.84 1010.43 1009.07 
Table 4-1: Mean absolute values of the Pressure Losses 
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4.3. Hydraulic – Active system comparison 

4.3.1. Main results 

The comparison of the two systems was made by simulating them for various values 

of stroke frequency with constant amplitude. The frequencies that were used in the 

simulations range from 0.1 to 10Hz. The comparison variables that were selected are 

the power needed for each system, the mean pressure developed in each chamber of 

the hydraulic cylinder, the absolute position error and the percent position error. Also, 

a PID controller was used for the proper control of the two systems. 

The main goal of this analysis is to examine whether there is a significant difference in 

power consumption between the two systems. For this reason, the two models must 

follow the same trajectories, otherwise the results would not be valid. For example, if 

the stroke for the active system with the control volume had a greater amplitude than 

the servo valve system, then a comparison between those two systems would be 

wrong. Based on the above, the PID controllers for both systems were tuned so that 

they are as fast as possible but without them being unstable and so that the amplitude 

of the piston stroke doesn’t exceed the desired amplitude. 

The figures below present the mean power needed for the electric motor for the 

active system, the mean mechanical power needed for the pump for the servo valve 

system and, as well as, the mean hydraulic power of the hydraulic oil. First of all, it can 

be seen that, for low frequencies, the active system has an almost constant minimum 

value for the power consumption. This is logical since the oil inside the cylinder 

chambers is pre-charged and so, a minimum power is needed in order for the electric 

motor to overcome this pressure. 

By comparing the power consumption of the electric motor with the mechanical 

power for the two different size pumps, it can be deduced that the power 

consumption of the active system is greater for frequencies below 0.8Hz as shown 

clearly in figure (4-27). On the contrary, for frequencies above those values, the power 

consumption of the servo valve systems is increased drastically, while the smaller 

pump system has greater power consumption than the bigger pump system (figure 4-

26). Additionally, it can be seen that the hydraulic power of the oil for both pump 

systems is almost the same. 
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Figure 4-26: Frequency – Power diagram 

 

Figure 4-27: Frequency – Power diagram (detail) 
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In addition to the above, the percent power loss for the servo systems was calculated, 

using the mechanical and hydraulic power for each system, as shown in the figure 

below. It can be seen that, that the power loss curve for both systems is similar and 

that the small pump system has more power losses than the big pump system. Also, 

for both systems, the power loss increases slightly as the frequency increases up to 

1Hz and for frequency above 1Hz, the power loss decreases drastically. 

 

Figure 4-28: Frequency – Percent Power Loss diagram 

 

The mean pressure of both hydraulic cylinder chambers for each system are shown in 

the diagrams below. The pressure for the active system is almost constant regardless 

of the frequency and greater than that of the two servo valve systems. On the 

contrary, the pressure for the servo valve systems is increased as the frequency 

increases, while having almost the same value except at frequencies ranging from 2 

to 8Hz where the bigger pump system has greater mean pressure. 
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Figure 4-29: Frequency – Piston Chamber Pressure diagram 

 

 

Figure 4-30: Frequency – Ring Chamber Pressure diagram 
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The mean absolute and percent position error are shown in the figures below. First of 

all, it can be easily concluded that the position of the active system is smaller than 

both the servo valve systems. Also, it can be seen than at frequencies above 1Hz the 

mean position error of the bigger pump system is greater than that of the smaller 

pump system, while both pump systems have the same mean error for frequencies 

below 1Hz. 

 

Figure 4-31: Frequency – Piston Absolute Position Error diagram 



61 
 

 

Figure 4-32: Frequency – Piston Percent Position Error diagram 

 

Finally, the piston position at 10Hz is being shown in the diagrams below for the bigger 

pump system. The selection of the pump size is random, since the behavior of both 

servo valve systems is identical at high frequencies. Generally, as the frequency of the 

system increases above 4Hz, the response of all systems has overshooting from the 

desired position at the beginning of the simulation. More specifically, the servo valve 

systems have larger overshooting than the active system, but have smaller settling 

time. Also, for the active system, the piston at the beginning moves at the opposite 

direction than the desired one. This happens due to the pressure of the piston 

chamber exerting a force on the control volume and moving it out of chamber before 

the electric motor controls it and moves it to the desired positon.  

It can also be seen in both figures (4-32) and (4-33) that, for the retraction, the piston 

doesn’t reach the lower desired position at has an error of about 0.25mm while it 

reaches the desired higher position (extension). This can be caused by an error at the 

simulation or due to the fact that oils needs to enter the ring area of the piston which 

has greater pressure and thus it is more difficult for the pump to produce the 

necessary flow. Generally, the main conclusion is that, for high frequencies, the active 

system has better behavior regarding the piston position. 



62 
 

 

Figure 4-33: Frequency – Piston Position at 10Hz diagram 

 

 

Figure 4-34: Frequency – Piston Position at 10Hz diagram (detail) 
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All simulation values are presented in Appendix A at the according tables. 

 

4.3.2. Piston Position Results 

The main conclusions, after all the simulations were finished, for the piston position 

are summarized below: 

 Better response for the active system than the servo valve systems (more 

stable, equal retraction and extension range, no oscillations). 

 For the servo valve systems, for frequencies of 8Hz and above the piston 

doesn’t reach the lower desired position (retraction). 

 For frequencies of 2Hz below the opposite happens, the piston seems to go 

easier further down to the lower position than to the higher position 

(extension). 

 At 4Hz and 6Hz the response of the servo valve systems is more stable and the 

retraction and extension lengths are almost the same. 

 At the transient state, the servo valve systems have greater overshooting than 

the active system. In contrast, the active system has greater settling time. 

 At the start of the simulation, the piston at the active system moves at the 

opposite direction due to the pressurized oil inside the piston chamber. 

 

The piston position diagrams for each frequency and pump size are presented in 

Appendix B. The codes used are presented in Appendix C. 

4.4. Conclusion 
Summing up this diploma thesis, some very interesting conclusions have surfaced. 

First of all, at low frequencies the power required for the active system is higher than 

the power required for both servo valve systems and seems to have a minimum value 

which is constant. This is due to the oil inside of the piston chambers being pre-

pressurized and the value of the pre-charge pressure effects this minimum power 

value. The power required for the active system at 0.1Hz is 45.33 times greater than 

the power required for the small pump servo valve system and 57.5 times greater than 

the big servo valve system. On the other hand, the power required for the active 

system at 10Hz is 5.76 times smaller than the small pump servo valve system and 4.52 

times smaller than the big servo valve system. So, it is easily deduced that the active 

system is more energy efficient at high frequencies than the servo valve systems. 

Considering the system performance, the active system generally displays better 

response and smaller position error than the servo valve system, throughout all the 

range of frequencies. Specifically, the position error for the active system at 0.1Hz is 

33.79% lower than the small pump servo system and 33.30% lower than the big pump 

servo system. At 10Hz, these values become 4.03% and 4.60% respectively. 
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The active system consists of the electrical subsystem, comprising of the electric 

motor, the hydraulic system, comprising of the hydraulic cylinder and the control 

volume, and the mechanical subsystem, comprising of the rack and pinion mechanism 

that converts the rotational to translational motion. The complexity of the active 

system is not considered superior than that of the servo valve system since servo 

valves are very intricate and costly mechanisms. Nevertheless, the manufacturing 

process to connect the control volume to the hydraulic cylinder must be of extremely 

high precision in order to prevent leakages, since the oil inside the cylinder chambers 

is at high pressure. It is also important to note that since the active system is a closed 

hydraulic system, it has no way to replace the oil lost due to leakages. 

Additionally, the parameter values of the active system were selected for specific 

frequency and amplitude values. By adjusting the hydraulic cylinder and control 

volume size and, as well as, the pre-charge pressure of the oil, greater or smaller 

amplitudes and frequencies can be achieved. For example, lowering the value of the 

pre-charge pressure will lower the minimum required power for the active system, 

thus making it more energy efficient in low frequencies. 

Some possible applications that could use the active hydraulic system are: 

 the hydraulic KDamper, at controlling the meta-stable point at the initial 

position. “The KDamper is a novel passive vibration isolation and damping 

concept, based essentially on the optimal combination of appropriate 

stiffness elements, which include a negative stiffness element” [6]. The 

hydraulic KDamper aims to enhance the performance of the KDamper by 

replacing the negative stiffness spring configuration, used by the KDamper, 

with a hydraulic spring comprising of a bladder type accumulator connected 

with a hydraulic actuator which acts as a negative stiffness spring. More 

information on KDamper are presented in Appendix D. 

 fatigue test machines that use dynamic load to determine the sturdiness of 

components and products. 
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Appendix 

A. Mean simulation values 

Mean System Power [Watt] 

frequency 
[Hz] 

Electric 
Motor 

Mechanical Power 
Pump 

(𝟓 𝒄𝒎𝟑 𝒓𝒆𝒗⁄ )  

Mechanical Power 
Pump 

(𝟏𝟎 𝒄𝒎𝟑 𝒓𝒆𝒗⁄ )  

Hydraulic Power 
Pump 

(𝟓 𝒄𝒎𝟑 𝒓𝒆𝒗⁄ ) 

Hydraulic Power 
Pump 

(𝟏𝟎 𝒄𝒎𝟑 𝒓𝒆𝒗⁄ )  
0.1 371.78 8.20 6.47 1.44 1.48 

0.2 370.56 32.80 25.79 5.65 5.86 

0.4 371.08 134.58 104.18 20.93 22.33 

0.6 375.00 315.52 246.28 42.88 45.18 

0.8 396.25 551.64 422.29 78.95 86.13 

1.0 426.43 896.90 683.88 112.13 123.54 

2.0 649.22 2623.89 2049.11 735.13 749.92 

4.0 1139.82 5319.70 4174.35 2245.24 2260.80 

6.0 1581.69 7985.51 6266.74 3764.08 3779.65 

8.0 1885.62 10651.89 8357.53 5281.87 5298.97 

10.0 2312.07 13315.91 10454.45 6805.21 6815.58 
Table A-1:  Mean System Power 

Mean Piston Chamber Pressure [MPa] 

frequency [Hz] Active Pump (𝟓 𝒄𝒎𝟑 𝒓𝒆𝒗⁄ ) Pump (𝟏𝟎𝒄𝒎𝟑 𝒓𝒆𝒗⁄ ) 

0.1 13.86 0.63 0.64 

0.2 13.89 1.24 1.27 

0.4 13.90 2.36 2.41 

0.6 13.92 3.38 3.44 

0.8 13.93 4.46 4.51 

1.0 13.94 5.47 5.53 

2.0 13.96 9.67 9.74 

4.0 13.97 10.97 11.14 

6.0 13.99 11.23 11.37 

8.0 14.00 11.18 11.28 

10.0 14.02 11.52 11.58 
Table A-2: Mean Piston Chamber Pressure 

Mean Ring Chamber Pressure [MPa] 

frequency [Hz] Active Pump (𝟓 𝒄𝒎𝟑 𝒓𝒆𝒗⁄ ) Pump (𝟏𝟎𝒄𝒎𝟑 𝒓𝒆𝒗⁄ ) 

0.1 27.17 1.32 1.34 

0.2 27.21 2.53 2.58 

0.4 27.27 4.72 4.81 

0.6 27.29 6.73 6.85 

0.8 27.31 8.84 8.93 

1.0 27.32 10.81 10.94 

2.0 27.37 19.07 19.22 

4.0 27.40 21.61 21.95 

6.0 27.43 22.20 22.43 
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8.0 27.46 22.50 22.65 

10.0 27.50 23.36 23.47 
Table A-3: Mean Ring Chamber Pressure 

Mean Absolute Error [mm] 

frequency [Hz] Active Pump (𝟓 𝒄𝒎𝟑 𝒓𝒆𝒗⁄ ) Pump (𝟏𝟎𝒄𝒎𝟑 𝒓𝒆𝒗⁄ ) 

0.1 0.21 0.31 0.31 

0.2 0.36 0.48 0.48 

0.4 0.61 0.76 0.77 

0.6 0.76 1.06 1.07 

0.8 0.98 1.29 1.31 

1.0 1.20 1.57 1.58 

2.0 2.00 2.57 2.60 

4.0 2.62 2.89 2.94 

6.0 2.91 3.05 3.09 

8.0 3.01 3.19 3.21 

10.0 3.07 3.20 3.22 
Table-A-4: Mean Absolute Error 

Mean Percent Error [%] 

frequency [Hz] Active Pump (𝟓 𝒄𝒎𝟑 𝒓𝒆𝒗⁄ ) Pump (𝟏𝟎𝒄𝒎𝟑 𝒓𝒆𝒗⁄ ) 

0.1 4.13 6.24 6.19 

0.2 7.23 9.54 9.61 

0.4 12.2 15.11 15.43 

0.6 15.2 21.25 21.41 

0.8 19.6 25.83 26.18 

1.0 23.8 31.41 31.63 

2.0 40.05 51.34 51.98 

4.0 52.48 57.73 58.79 

6.0 58.3 60.94 61.79 

8.0 60.19 63.70 64.28 

10.0 61.38 63.96 63.34 
Table A-5: Mean Percent Error 
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B. Position plots 

 𝑽𝒈 = 𝟓
𝒄𝒎𝟑

𝒓𝒆𝒏
 

 f = 0.1Hz 

 

Figure B-1: Frequency – Piston Position at 0.1Hz diagram (Vg = 5cm3/rev) 

 

 f = 0.2Hz 

 

Figure-B-2: Frequency – Piston Position at 0.2Hz diagram (Vg = 5cm3/rev) 
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 f = 0.4Hz 

 

Figure B-3: Frequency – Piston Position at 0.4Hz diagram (Vg = 5cm3/rev) 

 

 f = 0.6Hz 

 

Figure B-4: Frequency – Piston Position at 0.6Hz diagram (Vg = 5cm3/rev) 
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 f = 0.8Hz 

 

Figure B-5: Frequency – Piston Position at 0.8Hz diagram (Vg = 5cm3/rev) 

 

 f = 1Hz 

 

Figure B-6: Frequency – Piston Position at 1Hz diagram (Vg = 5cm3/rev) 
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 f = 2Hz 

 

Figure B-7: Frequency – Piston Position at 2Hz diagram (Vg = 5cm3/rev) 

 

 f = 4Hz 

 

Figure B-8: Frequency – Piston Position at 4Hz diagram (Vg = 5cm3/rev) 
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 f = 6Hz 

 

Figure B-9: Frequency – Piston Position at 6Hz diagram (Vg = 5cm3/rev) 

 

 f = 8Hz 

 

Figure B-10: Frequency – Piston Position at 8Hz diagram (Vg = 5cm3/rev) 
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 f = 10Hz 

 

Figure B-11: Frequency – Piston Position at 10Hz diagram (Vg = 5cm3/rev) 

 

 𝑽𝒈 = 𝟏𝟎
𝒄𝒎𝟑

𝒓𝒆𝒏
 

 f = 0.1Hz 

 

Figure B-12: Frequency – Piston Position at 0.1Hz diagram (Vg = 10cm3/rev) 
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 f = 0.2Hz 

 

Figure B-13: Frequency – Piston Position at 0.2Hz diagram (Vg = 10cm3/rev) 

 

 f = 0.4Hz 

 

Figure B-14: Frequency – Piston Position at 0.4Hz diagram (Vg = 10cm3/rev) 
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 f = 0.6Hz 

 

Figure B-15: Frequency – Piston Position at 0.6Hz diagram (Vg = 10cm3/rev) 

 

 f = 0.8Hz 

 

Figure B-16: Frequency – Piston Position at 0.8Hz diagram (Vg = 10cm3/rev) 
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 f = 1Hz 

 

Figure B-17: Frequency – Piston Position at 1Hz diagram (Vg = 10cm3/rev) 

 

 f = 2Hz 

 

Figure B-18: Frequency – Piston Position at 2Hz diagram (Vg = 10cm3/rev) 
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 f = 4Hz 

 

Figure B-19: Frequency – Piston Position at 4Hz diagram (Vg = 10cm3/rev) 

 

 f = 6Hz 

 

Figure B-20: Frequency – Piston Position at 6Hz diagram (Vg = 10cm3/rev) 
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 f = 8Hz 

 

Figure B-21: Frequency – Piston Position at 8Hz diagram (Vg = 10cm3/rev) 

 

 f = 10Hz 

 

Figure B-22: Frequency – Piston Position at 10Hz diagram (Vg = 10cm3/rev) 
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C. Matlab codes 
a) Main code 

close all 
clear 
clc 
%% Manual test 
% f = 10; 
% w = 2*pi*f; 
% Vg = 5; 
%  
% if Vg == 10 
%     RPM = 130*f; 
%     RPM_nom = 3150; 
%     Ks_pump = 0.92e3; 
%     J_pump = 0.0004; 
%     P_nom = 400; 
% elseif Vg == 23 
%     RPM = 560; 
%     RPM_nom = 2500; 
%     Ks_pump = 2.56e3; 
%     J_pump = 0.0012; 
%     P_nom = 400; 
% elseif Vg == 5 
%     RPM = 260*f; 
%     RPM_nom = 5600; 
%     Ks_pump = 0.63e3; 
%     J_pump = 0.00006; 
%     P_nom = 350; 
% end 
% [k_act,ki_act,kd_act,k_pump,ki_pump,kd_pump] = PID_gains_new(f); 
%% Simulation 
simulation = 1;                                                             

%0 = no / 1 = yes 
validation = 0;                                                             

%0 = no / 1 = yes 
freq = [0.1,0.2,0.4,0.6,0.8,1,2,4,6,8,10];                                  

%system frequency [Hz] 
A = 0.0025;                                                                 

%amplitude [m] (must be A < Xp_init) 
Xp_max = 0.4;                                                               

%max piston stroke [m] 
Xp_init = Xp_max/2;                                                         

%initial piston position [m] 
Vg_pump = [10,5];                                                           

%pump displacement 
%% servo valve 
% Hydraulic system 
D_piston = 0.04;                                                            

%piston no-rod side diameter [m] 
D_rod = 0.028;                                                              

%piston rod side diameter [m] 
Ps = 28e6;                                                                  

%supply pressure [Pa] 
Pt = 0;                                                                     

%tank pressure [Pa] 
Cd = 0.611;                                                                 

%discharge coef 
A1 = pi*D_piston^2/4;                                                       

%piston area chamber 1 [m^2] 
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A2 = pi*D_piston^2/4 - pi*D_rod^2/4;                                        

%piston area chamber 2 [m^2] 
D_servo = 0.0075*sqrt(20/40);                                               

%servo valve port diameter [m] 
A_servo = pi*D_servo^2/4;                                                   

%servo valve port area [m^2] 
K_leak = 1e-14;                                                             

%internal leakage coef [Pasec/m^3] 
Ki_leak = 1e-14;                                                            

%external leakage coef [Pasec/m^3] 
%% active 
P2_init = Ps;                                                               

%initial pressure in chamber 2 [Pa] 
P1_init = P2_init*A2/A1;                                                    

%initial pressure in chamber 1 [Pa] 

  
% ME1302 electric motor 
Ja = 45e-4;                                                                 

%motor inertia [kgm^2] 
Ra = 0.013;                                                                 

%armature resistance [Ohm] 
La = 0.1e-3;                                                                

%armature inductance [H] 
kt = 0.15;                                                                  

%torque constant [Nm/A] 
kb = kt;                                                                    

%back-emf constant [Vsec/rad] 
B = 0.001;                                                                  

%motor viscous friction [Nmsec/rad] 

  
% Control volume 
Am = A1/5;                                                                  

%Control volume area 
Dm = sqrt(4*Am/pi);                                                         

%Control volume diameter [m] 
Lm = D_piston;                                                              

%Control volume length [m] 
dm = 7500;                                                                  

%Control volume density [kg/m^3] 
Mm = Am*Lm*dm;                                                              

%Control volume mass [kg] 
R = 0.00625;                                                                

%pinion pitch radius [m] 
Jm = Mm*R^2;                                                                

%Control volume moment of inertia [kgm^2] 
Jtot = Ja + Jm;                                                             

%total moment of inertia [kgm^2] 

  
% transfer function 
a3 = Jtot*La; 
a2 = Jtot*Ra + B*La; 
a1 = B*Ra + kb*kt; 
a0 = 0; 
b0 = kt; 
b11 = La; 
b01 = Ra; 
%% accumulator 
Vo = 5e-3;                                                                  

%acc total volume 
P1 = 400;                                                                   

%gas pressure at initial position 
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P2 = 600;                                                                   

%max system pressure 
Po = 0.9*P1;                                                                

%gas precharge pressure 
V1 = Vo*(Po/P1)^(1/1.4);                                                    

%gas volume at initial position 
V2 = Vo*(Po/P2)^(1/1.4);                                                    

%gas minimum volume 
V_oil = Vo - V1;                                                            

%oil volume in acc at initial position 
%% Load 
Mt = 1000;                                                                  

%mass [kg] 
Bp = 1000;                                                                  

%friction [Nsec/m] 
Kp = 0;                                                                     

%stiffness [N/m] 
%% Oil - ISO VG 32 
d = 857.2;                                                                  

%oil density [kg/m^3] 
nu = 31.8106e-6;                                                            

%kinematic viscosity [m^2/sec] 
mu = nu*d;                                                                  

%dynamic viscosity [Pasec] 
be = 1.44756e9;                                                             

%bulk modulus [Pa] 
%% Simulation 
if (simulation == 1) 
    for k = 1:length(Vg_pump) 
        Vg = Vg_pump(k); 
        if Vg == 10 
            RPM_nom = 3150; 
            Ks_pump = 0.92e3; 
            J_pump = 0.0004; 
            P_nom = 400; 
        elseif Vg == 5 
            RPM_nom = 5600; 
            Ks_pump = 0.63e3; 
            J_pump = 0.00006; 
            P_nom = 350; 
            elseif Vg == 23 
            RPM_nom = 2500; 
            Ks_pump = 2.56e3; 
            J_pump = 0.0012; 
            P_nom = 400; 
        end 
        for j = 1:length(freq) 
            f = freq(j); 
            [k_act,ki_act,kd_act,k_pump,ki_pump,kd_pump] = 

PID_gains_new(f); 
            w = 2*pi*f;                                                     

%angular frequency [rad/sec] 
            T = 1/f;                                                        

%period [sec] 
            if Vg == 10 
                RPM = 130*f; 
            elseif Vg == 23 
                RPM = 56*f; 
            elseif Vg == 5 
                RPM = 260*f; 
            end 
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            %% simscape pump 
            out_pump = sim('servovalve_transfer_function_pump',30); 
            time_pump = out_pump.tout; 
            Xp_d_pump = out_pump.Xp_d_sim; 
            P1_pump = out_pump.P1_sim; 
            P2_pump = out_pump.P2_sim; 
            Xp_pump = out_pump.Xp_sim; 
            P_pump = out_pump.P_pump; 
            Q_pump = out_pump.Q_pump; 
            T_pump = out_pump.Torque_pump; 
            error_pump = out_pump.error_pump; 
            %% active 
            out_act = sim('active_sim_full_voltage',30); 
            time_act = out_act.tout; 
            P1_act = out_act.P1_act; 
            P2_act = out_act.P2_act; 
            Xp_act = out_act.Xp_act; 
            Va_act = out_act.Va_act; 
            Ia_act = out_act.Ia_act; 
            error_act = out_act.error_act; 
            %% Plots 
            figure (1) 
            plot(time_pump,Xp_d_pump,'Color',[0.4660, 0.6740, 

0.1880]) 
            title(['Piston Position at ' num2str(f) 'Hz']) 
            xlabel('time (sec)') 
            ylabel('x (m)') 
            hold on 
            grid on 
            plot(time_act,Xp_act,'Color',[0, 0.4470, 0.7410]) 
            hold on 
            plot(time_pump,Xp_pump,'Color',[0.8500, 0.3250, 0.0980]) 
            hold off 
            

legend({'desired','active','pump'},'location','southeast') 

             
            pos_act{j} = Xp_act; 
            time_active{j} = time_act; 
            %% Power calculation 
            Power_motor{j} = (Va_act.*Ia_act)/0.9; 
            Power_motor_mean(j) = mean(abs(Power_motor{j})); 
            P1_act_mean(j) = mean(P1_act); 
            P2_act_mean(j) = mean(P2_act); 
            error_act_mean(j) = mean(abs(error_act)); 
            error_act_mean_perc(j) = mean(100*abs(error_act/A/2)); 

             
            Power_pump{k,j} = T_pump*RPM*pi/30; 
            Power_pump_hydro{k,j} = P_pump.*Q_pump; 
            if k == 1 
                pos_pump_10{j} = Xp_pump; 
                pos_des_10{j} = Xp_d_pump; 
                time_pump_10{j} = time_pump; 
                Power_pump_mean_10(j) = mean(abs(Power_pump{k,j})); 
                Power_pump_hydro_mean_10(j) = 

mean(abs(Power_pump_hydro{k,j})); 
                P1_pump_mean_10(j) = mean(abs(P1_pump)); 
                P2_pump_mean_10(j) = mean(abs(P2_pump)); 
                error_pump_mean_10(j) = mean(abs(error_pump)); 
                error_pump_mean_perc_10(j) = 

mean(100*abs(error_pump/A/2)); 
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                power_loss_10(j) = (Power_pump_mean_10(j) - 

Power_pump_hydro_mean_10(j))./Power_pump_mean_10(j); 
            elseif k == 2 
                pos_pump_5{j} = Xp_pump; 
                pos_des_5{j} = Xp_d_pump; 
                time_pump_5{j} = time_pump; 
                Power_pump_mean_5(j) = mean(abs(Power_pump{k,j})); 
                Power_pump_hydro_mean_5(j) = 

mean(abs(Power_pump_hydro{k,j})); 
                P1_pump_mean_5(j) = mean(abs(P1_pump)); 
                P2_pump_mean_5(j) = mean(abs(P2_pump)); 
                error_pump_mean_5(j) = mean(abs(error_pump)); 
                error_pump_mean_perc_5(j) = 

mean(100*abs(error_pump/A/2)); 
                power_loss_5(j) = (Power_pump_mean_5(j) - 

Power_pump_hydro_mean_5(j))./Power_pump_mean_5(j); 
            end 
        end 
    end 
    %% Plots 
    xq1 = 0.1:0.01:10; 
    figure (2) 
    Power_motor_meani = pchip(freq,Power_motor_mean,xq1); 
    semilogx(xq1,Power_motor_meani) 
    title('Power') 
    xlabel('f (Hz)') 
    ylabel('Power (W)') 
    grid on 
    hold on 
    Power_pump_mean_5i = pchip(freq,Power_pump_mean_5,xq1); 
    semilogx(xq1,Power_pump_mean_5i) 
    hold on 
    Power_pump_mean_10i = pchip(freq,Power_pump_mean_10,xq1); 
    semilogx(xq1,Power_pump_mean_10i) 
    hold on 
    Power_pump_hydro_mean_5i = 

pchip(freq,Power_pump_hydro_mean_5,xq1); 
    semilogx(xq1,Power_pump_hydro_mean_5i) 
    hold on 
    Power_pump_hydro_mean_10i = 

pchip(freq,Power_pump_hydro_mean_10,xq1); 
    semilogx(xq1,Power_pump_hydro_mean_10i) 
    hold off 
    

legend({'active','pump_m_e_c_h_5','pump_m_e_c_h_1_0','pump_h_y_d_r_5'

,'pump_h_y_d_r_1_0'},'location','northwest') 

     
    figure (3) 
    P1_act_meani = pchip(freq,P1_act_mean,xq1); 
    semilogx(xq1,P1_act_meani) 
    title('Piston Chamber Pressure') 
    xlabel('f (Hz)') 
    ylabel('P (Pa)') 
    grid on 
    hold on 
    P1_pump_mean_5i = pchip(freq,P1_pump_mean_5,xq1); 
    semilogx(xq1,P1_pump_mean_5i) 
    hold on 
    P1_pump_mean_10i = pchip(freq,P1_pump_mean_10,xq1); 
    semilogx(xq1,P1_pump_mean_10i) 
    hold off 
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    legend({'active','pump_5','pump_1_0'},'location','southeast') 

     
    figure (4) 
    P2_act_meani = pchip(freq,P2_act_mean,xq1); 
    semilogx(xq1,P2_act_meani) 
    title('Ring Chamber Pressure') 
    xlabel('f (Hz)') 
    ylabel('P (Pa)') 
    hold on 
    P2_pump_mean_5i = pchip(freq,P2_pump_mean_5,xq1); 
    semilogx(xq1,P2_pump_mean_5i) 
    hold on 
    grid on 
    P2_pump_mean_10i = pchip(freq,P2_pump_mean_10,xq1); 
    semilogx(xq1,P2_pump_mean_10i) 
    hold off 
    legend({'active','pump_5','pump_1_0'},'location','southeast') 

     
    figure (5) 
    error_act_meani = pchip(freq,error_act_mean,xq1); 
    semilogx(xq1,error_act_meani) 
    title('Absolute Position Error') 
    xlabel('f (Hz)') 
    ylabel('error (m)') 
    hold on 
    error_pump_mean_5i = pchip(freq,error_pump_mean_5,xq1); 
    semilogx(xq1,error_pump_mean_5i) 
    hold on 
    grid on 
    error_pump_mean_10i = pchip(freq,error_pump_mean_10,xq1); 
    semilogx(xq1,error_pump_mean_10i) 
    hold off 
    legend({'active','pump_5','pump_1_0'},'location','southeast') 

     
    figure (6) 
    error_act_mean_perci = pchip(freq,error_act_mean_perc,xq1); 
    semilogx(xq1,error_act_mean_perci) 
    title('Percent Position Error') 
    xlabel('f (Hz)') 
    ylabel('error (%)') 
    hold on 
    error_pump_mean_perc_5i = pchip(freq,error_pump_mean_perc_5,xq1); 
    semilogx(xq1,error_pump_mean_perc_5i) 
    hold on 
    grid on 
    error_pump_mean_perc_10i = 

pchip(freq,error_pump_mean_perc_10,xq1); 
    semilogx(xq1,error_pump_mean_perc_10i) 
    hold off 
    legend({'active','pump_5','pump_1_0'},'location','southeast') 

     
    figure (7) 
    power_loss_5i = pchip(freq,power_loss_5,xq1); 
    power_loss_10i = pchip(freq,power_loss_10,xq1); 
    semilogx(xq1,100*power_loss_5i) 
    title('Percent Power Loss') 
    xlabel('f (Hz)') 
    ylabel('error (%)') 
    grid on 
    hold on 
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    semilogx(xq1,100*power_loss_10i) 
    hold off 
    legend({'pump_5','pump_1_0'},'location','southwest') 
end 
%% Piston position plots 
% i = 11; 
% f = freq(i); 
% figure (1) 
% plot(time_pump_5{i},pos_des_5{i},'Color',[0.4660, 0.6740, 0.1880]) 
% title(['Piston Position at ' num2str(f) 'Hz']) 
% xlabel('time (sec)') 
% ylabel('x (m)') 
% hold on 
% grid on 
% plot(time_active{i},pos_act{i},'Color',[0, 0.4470, 0.7410]) 
% hold on 
% plot(time_pump_5{i},pos_pump_5{i},'Color',[0.8500, 0.3250, 0.0980]) 
% hold off 
% legend({'desired','active','pump'},'location','southeast') 
%% Validation simulation 
if validation == 1 
    A = 0.05; 
    f = 1; 
    K = 0.05; 
    K_full = 0.09; 
    ki = 0.375; 
    w = 2*pi*f;                                                              

%angular frequency [rad/sec] 
    T = 1/f;                                                                 

%period [sec] 
    if A == 0.05 
        K = 0.05; 
        Ki = 0; 
        K_full = 0.09; 
        Ki_full = 0; 
    elseif A == 0.0025 
            if f == 1 
                K = 0.005; 
                Ki = 0.0439; 
                K_full = 0.013; 
                Ki_full = 0.1775; 
            elseif f == 10 
                K = 0.038; 
                Ki = 0.96; 
                K_full = 0.08; 
                Ki_full = 5.45; 
            end 
    end 
    %% full model 
    out_full = sim('FINAL_BD_asymmetric_full',10); 
    time = out_full.tout; 
    Xp = out_full.Xp; 
    Xp_d = out_full.Xp_d; 
    Xp_dot = out_full.Xp_dot; 
    Q1 = out_full.Q1; 
    Q2 = out_full.Q2; 
    Q_leak = out_full.Q_leak; 
    P1 = out_full.P1; 
    P2 = out_full.P2; 
    Xv = out_full.Xv; 
    R1 = out_full.R1_loss; 
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    R2 = out_full.R2_loss; 
    I1 = out_full.I1_loss; 
    I2 = out_full.I2_loss; 
    %% simscape simple model 
    if f ~= 10 
        out_simple = sim('servovalve_transfer_function',10); 
        time_simple = out_simple.tout; 
        Q1_simple = out_simple.Q1_sim; 
        Q2_simple = out_simple.Q2_sim; 
        Xp_simple = out_simple.Xp_sim; 
        Xv_simple = out_simple.Xv_sim; 
        P1_simple = out_simple.P1_sim; 
        P2_simple = out_simple.P2_sim; 
    %% Full-simple models comparisson 
        for i = 1:length(Xv) 
            if Xv(i) > 0 
                P_eff(i,1) = P1(i); 
                Q_eff(i,1) = Q1(i); 
            elseif Xv(i) < 0 
                P_eff(i,1) = P2(i); 
                Q_eff(i,1) = Q2(i); 
            else 
                P_eff(i,1) = 0; 
                Q_eff(i,1) = 0; 
            end 
        end 

  
        for i = 1:length(time_simple) 
            if Xv_simple(i) > 0 
                Q_eff_simple(i,1) = Q1_simple(i); 
            elseif Xv_simple(i) < 0 
                Q_eff_simple(i,1) = Q2_simple(i); 
            else 
                Q_eff_simple(i,1) = 0; 
            end 
        end 

  
        Power_full = Ps*Q_eff; 
        Power_simple = Ps*Q_eff_simple; 
        Power_full_mean = mean(Power_full) 
        Power_simple_mean = mean(Power_simple) 

  
        figure (8) 
         plot(time,Xp_d,'Color',[0.4660, 0.6740, 0.1880]) 
        title('Piston Position') 
        xlabel('time (sec)') 
        ylabel('x (m)') 
        hold on 
        grid on 
        plot(time,Xp,'Color',[0, 0.4470, 0.7410]) 
        hold on 
        plot(time_simple,Xp_simple,'Color',[0.8500, 0.3250, 0.0980] ) 
        hold off 
        legend({'desired','full','simple'},'location','southeast') 

  
        figure (9) 
        plot(time,Power_full) 
        title('Hydraulic Power') 
        xlabel('time (sec)') 
        ylabel('Power (W)') 
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        hold on 
        grid on 
        plot(time_simple,Power_simple) 
        hold off 
        legend({'full','simple'},'location','southeast') 

  
        % Pressure 1 
        figure (10) 
        plot(time,P1) 
        title('Piston Chamber Pressure') 
        xlabel('time (sec)') 
        ylabel('P (Pa)') 
        hold on 
        grid on 
        plot(time_simple,P1_simple) 
        hold off 
        legend({'full','simple'},'location','southeast') 

  
        % Pressure 2 
        figure (11) 
        plot(time,P2) 
        title('Ring Chamber Pressure') 
        xlabel('time (sec)') 
        ylabel('P (Pa)') 
        hold on 
        grid on 
        plot(time_simple,P2_simple) 
        hold off 
        legend({'full','simple'},'location','southeast') 

  
        % flow rate 1 
        figure (12) 
        plot(time,Q1) 
        title('Piston Chamber 1 Flow Rate') 
        xlabel('time (sec)') 
        ylabel('Q (m^3/sec)') 
        hold on 
        grid on 
        plot(time_simple,Q1_simple) 
        hold off 
        legend({'full','simple'},'location','southeast') 

  
        % flow rate 2 
        figure (13) 
        plot(time,Q2) 
        title('Piston Chamber 2 Flow Rate') 
        xlabel('time (sec)') 
        ylabel('Q (m^3/sec)') 
        hold on 
        grid on 
        plot(time_simple,Q2_simple) 
        hold off 
        legend({'full','simple'},'location','southeast') 
        %% 
        % effective flow rate 
        figure (14) 
        plot(time,Q_eff) 
        title('Effective Flow Rate') 
        xlabel('time (sec)') 
        ylabel('Q (m^3/sec)') 
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        grid on 
        hold on 
        plot(time_simple,Q_eff_simple) 
        hold off 
    end 
    %% Losses 
    figure (15) 
    plot(time,I1) 
    title('Inertia losses in Piston Chamber') 
    xlabel('time (sec)') 
    ylabel('P_I_1 (Pa)') 
    grid on 

     
    figure (16) 
    plot(time,I2) 
    title('Inertia losses in Ring Chamber') 
    xlabel('time (sec)') 
    ylabel('P_I_2 (Pa)') 
    grid on 

     
    figure (17) 
    plot(time,R1) 
    title('Friction losses in Piston Chamber') 
    xlabel('time (sec)') 
    ylabel('P_R_1 (Pa)') 
    grid on 

     
    figure (18) 
    plot(time,R2) 
    title('Friction losses in Ring Chamber') 
    xlabel('time (sec)') 
    ylabel('P_R_2 (Pa)') 
    grid on 

     
    I1_mean = mean(abs(I1)) 
    I2_mean = mean(abs(I2)) 
    R1_mean = mean(abs(R1)) 
    R2_mean = mean(abs(R2)) 
end 

 

b) PID Gains 
function [k_act,ki_act,kd_act,k_pump,ki_pump,kd_pump] = 

PID_gains_new(f) 

  
if f == 10 
    k_act = 1500; 
    ki_act = 225000; 
    kd_act = 200; 

     
    k_pump = 0.032; 
    ki_pump = 2.2; 
    kd_pump = 0.001; 

     
    elseif f == 8 
    k_act = 1400; 
    ki_act = 173000; 
    kd_act = 200; 

     
    k_pump = 0.025; 
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    ki_pump = 1.655; 
    kd_pump = 0.001; 

                 
elseif f == 6 
    k_act = 1250; 
    ki_act = 112000; 
    kd_act = 200; 

     
    k_pump = 0.023; 
    ki_pump = 1.12; 
    kd_pump = 0.001; 

                 
elseif f == 4 
    k_act = 1200; 
    ki_act = 56500; 
    kd_act = 200; 

     
    k_pump = 0.0175; 
    ki_pump = 0.56; 
    kd_pump = 0.001; 

        
elseif f == 2 
    k_act = 1000; 
    ki_act = 17700; 
    kd_act = 200; 

     
    k_pump = 0.0115; 
    ki_pump = 0.16; 
    kd_pump = 0; 

         
elseif f == 1 
    k_act = 1000; 
    ki_act = 7500; 
    kd_act = 200; 

     
    k_pump = 0.015; 
    ki_pump = 0.056; 
    kd_pump = 0; 

     
elseif f == 0.8 
    k_act = 1000; 
    ki_act = 6300; 
    kd_act = 200; 

     
    k_pump = 0.017; 
    ki_pump = 0.04; 
    kd_pump = 0; 

                  
elseif f == 0.6 
    k_act = 1000; 
    ki_act = 5250; 
    kd_act = 200; 

     
    k_pump = 0.018; 
    ki_pump = 0.026; 
    kd_pump = 0; 

             
elseif f == 0.4 
    k_act = 800; 
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    ki_act = 4000; 
    kd_act = 200; 

     
    k_pump = 0.0225; 
    ki_pump = 0.015; 
    kd_pump = 0; 

           
elseif f == 0.2 
    k_act = 800; 
    ki_act = 3100; 
    kd_act = 200; 

     
    k_pump = 0.027; 
    ki_pump = 0.0045; 
    kd_pump = 0; 

          
elseif f == 0.1 
    k_act = 800; 
    ki_act = 2800; 
    kd_act = 200; 

     
    k_pump = 0.031; 
    ki_pump = 0.0015; 
    kd_pump = 0; 

   
end 
 

c) Sizing 
close all 
clear 
clc 
%% 
m = 1000;                                                                   

%mass 
B = 1000;                                                                   

%friction 
f = 10;                                                                    

%frequency 
A = 0.0025;                                                                   

%amplitude 
Ps = 35e6;                                                                  

%supply pressure 
%% 
w = 2*pi*f;                                                                 

%angular frequency 
t = atan(-m*w/B)/w + 1/f;                                                   

%time when dF/dt = 0 
F_max_th = -m*A*w^2*sin(w*t) + B*A*w*cos(w*t)                               

%theoretical max value 
%% 
L = 10000; 
time = linspace(0,1/f,L); 
a = -A*w^2*sin(w*time); 
u = A*w*cos(w*time); 
F_a = m*a; 
F_u = B*u; 
F_tot = F_a + F_u; 
F_max = max(F_tot) 
Power = F_tot.*u; 
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figure(1) 
plot(time,F_a) 
xlabel('time (sec)') 
% yyaxis left 
ylabel('Force (N)') 
grid on 
hold on 
plot(time,F_u) 
hold on 
plot(time,F_tot) 
% yyaxis right 
% plot(time,Power) 
% ylabel('Power (W)') 
legend({'F_a','F_u','F_t_o_t'},'location','southeast') 
hold off 
%% Diameter 
A2 = F_max_th/Ps 
A1 = A2*2 
D_piston = sqrt(4*A1/pi) 
%% pump 
Q_max = (max(u)*pi*0.04^2/4)*60000 
Vg = 5; 
n = Q_max*1000/Vg/0.92 
%% Power 
figure (2) 
plot(time,Power) 
xlabel('time (sec)') 
ylabel('Power (W)') 
grid on 
Power_max = max(abs(Power)) 
Power_mean = mean(abs(Power)) 
%% FFT 
Fs = L;                                                                     

% Sampling frequency                     
T_fft = 1/Fs;                                                               

% Sampling period        
t_fft = (0:L-1)*T_fft;                                                      

% Time vector 
Fa = (-A*m*w^2*sin(w*t_fft)); 
Fu = B*A*w*cos(w*t_fft); 
v = A*w*cos(w*t_fft); 
P = (Fa + Fu).*v; 
Y = fft(P); 
P2 = abs(Y/L); 
P1 = P2(1:L/(L/f/10)+1); 
P1(2:end-1) = 2*P1(2:end-1); 
freq = Fs*(0:(L/(L/f/10)))/L; 
xq1 = 0:0.01:max(freq); 
P1(1) = 0; 
P1_chip = pchip(freq,P1,xq1); 
figure (3) 
plot(xq1,P1_chip)  
title('Single-Sided Amplitude Spectrum of Power(t)') 
xlabel('f (Hz)') 
ylabel('|P1(f)|') 
grid on 
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D. KDamper 
The figure below presents the fundamental concept of the KDamper. It can be seen 

that it uses a negative stiffness element kN in order to achieve better damping effect. 

The main requirement of the KDamper is that the overall static stiffness of the system 

is constant. 

 

Figure D-1: Schematic presentation of KDamper 

 

An example for an implementation of the KDamper is depicted in Figure D-2. It consists 

of a mass m which is connected with two parallel linear springs of stiffness kS and kP 

respectively and by a damper with constant damping coefficient cD. The damper cD 

and the spring kP are in turn connected to a mass mD.  To implement the negative 

stiffness spring, a set of two symmetric linear horizontal springs are used with 

constants kH, which support the mass mD by an articulated mechanism. The static 

equilibrium position of the system is depicted in Fig D-2(a), under the action of the 

gravity force. The perturbed position after an external dynamic excitation f(t) can be 

seen in Fig D-2(b). 
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Figure D-2: KDamper: (a) Static equilibrium under gravity force, (b) perturbed position after dynamic excitation 

For the enhancement of K-Damper’s performance, the use of hydraulic springs is being 

investigated. The hydraulic spring comprises of a bladder type accumulator connected 

with a hydraulic actuator which acts as a negative stiffness spring replacing the 

horizontal spring kH. 

 

Figure D-3: Conceptual configuration of the negative stiffness spring in KDamper 

 

From the above configuration it can be deduced that: 

 𝑣 = √𝐿2 − 𝑦2 (D-1) 

 

Assuming that the length x is zero when the configuration is horizontal (y = 0), the 

value of x is calculated as follows: 
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 𝑥 = 𝐿 − √𝐿2 − 𝑦2 (D-2) 

 

Deriving the above equation (D-2), the velocity and acceleration of the actuator piston 

are calculated: 

 
�̇� =

𝑦�̇�

√𝐿2 − 𝑦2
  

 

(D-3) 

 
�̈� =

𝑦(𝐿2 − 𝑦2)�̈� + 𝐿2�̇�2

(𝐿2 − 𝑦2)
3
2

 (D-4) 

 

 
Figure D-4: Simplified model of the hydraulic actuator 

 

Assuming that the gas inside the gas chamber is ideal, the following equation is being 

satisfied between two states of the accumulator: 

 𝑃𝑎𝑉𝑎
𝑛 = 𝑃𝑎0𝑉𝑎0

𝑛 = 𝐶 (D-5) 
 

where index 0 is used to denote the initial conditions of the accumulator and n is the 

gas constant. 

 

Deriving the above equation (D-5) results in: 

 𝑑𝑃𝑎
𝑑𝑡
𝑉𝑎
𝑛 + 𝑃𝑎𝑛𝑉𝑎

𝑛−1 𝑑𝑉𝑎
𝑑𝑡
= 0 ⟹

𝑑𝑉𝑎
𝑑𝑡
= −

𝑉𝑎
𝑛𝑃𝑎

𝑑𝑃𝑎
𝑑𝑡

= −
𝑉𝑎0
𝑛𝑃𝑎0

𝑑𝑃𝑎
𝑑𝑡

𝑙𝑎𝑝𝑙𝑎𝑐𝑒
⇒      
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𝑠𝑉𝑎(𝑠) − 𝑉𝑎0 = −

𝑉𝑎0
𝑛𝑃𝑎0

(𝑠𝑃𝑎(𝑠) − 𝑃𝑎0) ⟹ 𝑃𝑎(𝑠)

= −
𝑛𝑃𝑎0
𝑉𝑎0

𝑉𝑎(𝑠) +
(𝑛 + 1)

𝑠
𝑃𝑎0 

(D-6) 

 

The force of the gas inside the gas chamber is given by the equation: 

 
(𝑃𝑏 − 𝑃𝑎)𝐴𝑎 = 𝑘𝑔

𝑉𝑎
𝐴𝑎
+ 𝐵𝑔

1

𝐴𝑎

𝑑𝑉𝑎
𝑑𝑡
 ⟹ 𝑃𝑏 − 𝑃𝑎

= 𝑘𝑔
𝑉𝑎

𝐴𝑎
2 + 𝐵𝑔

1

𝐴𝑎
2

𝑑𝑉𝑎
𝑑𝑡

 
(D-7) 

where:  

 𝑃𝑏: oil pressure inside the accumulator  

 𝑃𝑎: gas pressure in the gas chamber  

 𝐴𝑎: cross-sectional area of the accumulator  

 𝑉𝑎: gas volume in the gas chamber  

 𝑘𝑔: gas stiffness coefficient  

 𝐵𝑔: gas damping coefficient. 

 

 

 

The gas damping coefficient is calculated by the following equation: 

 
𝐵𝑔 = 8𝜋𝜇𝑔

𝑉𝑎
𝐴𝑎

 (D-8) 

where 𝜇𝑔 is the viscosity coefficient of the gas. 

 

The gas stiffness coefficient is a variable that describes the change in gas volume as 

pressure changes and is calculated as: 

 
𝑘𝑔 =

𝛥𝐹

𝛥𝑋
=
𝛥𝑃𝐴𝑎
𝛥𝑉/𝐴𝑎

= 𝐴𝑎
2 𝑑𝑃

𝑑𝑉
= −𝐴𝑎

2 𝑛𝑃𝑎0𝑉𝑎0
𝑛

𝑉𝑎
𝑛+1  (D-9) 

 

The hydraulic oil inside the liquid chamber is very difficult to compress because of its 

high rigidity and thus it can be assumed that the hydraulic oil is practically 

incompressible. Therefore, the change of gas volume in the gas chamber is equal to 

the flow rate of the oil entering or exiting the accumulator. 

 
𝑄 =

𝑑𝑉𝑎
𝑑𝑡

 (D-10) 
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The force of the hydraulic oil inside the accumulator is calculated as: 

 
𝑃1𝐴𝑛 − 𝑃𝑏𝐴𝑎 = 𝑚𝑎𝑐

1

𝐴𝑎

𝑑2𝑉𝑎
𝑑𝑡2

+ 𝐵𝑒
1

𝐴𝑎

𝑑𝑉𝑎
𝑑𝑡

 (D-11) 

where:  

 𝑃1: pressure of the oil in the inlet of the accumulator 

 𝐴𝑛: cross-sectional area of the inlet of the accumulator  

 𝑚𝑎𝑐: mass of the oil inside the accumulator  

 𝐵𝑒: viscous damping coefficient of the hydraulic oil 

 

The viscous damping coefficient of the hydraulic fluid is given by the following 

equation: 

 𝐵𝑒 = 8𝜋𝜇𝑜𝑥𝑎 (D-12) 
where:  

 𝜇𝑜: dynamic viscosity of the hydraulic oil  

 𝑥𝑎: length of the oil in the accumulator. 

 

Assuming that: 

 𝐴𝑛 = 𝑘𝐴𝑎 (D-13) 
and combining equations (D-11) and (D-13), the general equation that describes the 

accumulator is: 

 
𝑘𝑃1 − 𝑃𝑎 =

1

𝐴𝑎
2 (𝑚𝑎𝑐

𝑑2𝑉𝑎
𝑑𝑡2

+ 𝐵𝑒
𝑑𝑉𝑎
𝑑𝑡
+ 𝐵𝑔

𝑑𝑉𝑎
𝑑𝑡
+ 𝑘𝑔𝑉𝑎) (D-14) 

 

The pressure for the connection line between the accumulator and the hydraulic 

actuator is given by the equation: 

 
𝑃2 − 𝑃1 =

8𝜋𝜇𝑑𝑥𝑛

𝐴𝑛
2 𝑄 +

𝜌𝑥𝑛
𝐴𝑛
�̇� (D-15) 

where:  

 𝑃2: oil pressure inside the hydraulic actuator 

 𝑥𝑛: length of the pipeline  

 𝜇𝑑: dynamic viscosity of the oil inside the pipeline  

 𝜌: oil density 

 

The force applied by the hydraulic actuator, neglecting the friction losses, is given by 

the following equation: 



98 
 

 𝐹 = 𝑃2𝐴𝑝 +𝑚
′�̈� (D-16) 

where:  

 𝐴𝑝: piston area  

 𝑚′: mass of the hydraulic oil inside the hydraulic cylinder plus the mass of the 

piston  

 �̈�: piston acceleration 

 

Since the hydraulic oil is considered to be incompressible, the velocity of the piston 

can be expressed as: 

 
�̇� =

𝑄

𝐴𝑝
=
1

𝐴𝑝

𝑑𝑉𝑎
𝑑𝑡

 (D-17) 

 

Combining equations (D-16) and (D-17) results in: 

 
𝐹 = (𝑃1 +

8𝜋𝜇𝑑𝑙𝑛

𝐴𝑛
2 𝑄 +

𝜌𝑙𝑛
𝐴𝑛
�̇�)𝐴𝑝 +𝑚

′
1

𝐴𝑝
�̇� =  

 
= (𝑃1 +

8𝜋𝜇𝑑𝑙𝑛

𝐴𝑛
2

𝑑𝑉𝑎
𝑑𝑡
+
𝜌𝑙𝑛
𝐴𝑛

𝑑2𝑉𝑎
𝑑𝑡2

)𝐴𝑝 +𝑚
′
1

𝐴𝑝

𝑑2𝑉𝑎
𝑑𝑡2

 (D-18) 

 

 

Using equations (D-14) and (D-18), the following equation for the force applied by the 

hydraulic actuator is obtained: 

 
𝐹 = [

1

𝑘𝐴𝑎
2 (𝑚𝑎𝑐

𝑑2𝑉𝑎
𝑑𝑡2

+ 𝐵𝑒
𝑑𝑉𝑎
𝑑𝑡
+ 𝐵𝑔

𝑑𝑉𝑎
𝑑𝑡
+ 𝑘𝑔𝑉𝑎) +

𝑃𝑎
𝑘

+
8𝜋𝜇𝑑𝑥𝑛

𝐴𝑛
2

𝑑𝑉𝑎
𝑑𝑡
+
𝜌𝑥𝑛
𝐴𝑛

𝑑2𝑉𝑎
𝑑𝑡2

] 𝐴𝑝 +𝑚
′
1

𝐴𝑝

𝑑2𝑉𝑎
𝑑𝑡2

⟹ 

 

 

 
⟹ 𝐹 = (

𝑚𝑎𝑐𝐴𝑝

𝑘𝐴𝑎
2 +

𝜌𝑥𝑛𝐴𝑝

𝐴𝑛
+
𝑚′

𝐴𝑝
)
𝑑2𝑉𝑎
𝑑𝑡2

+ (
(𝐵𝑒 + 𝐵𝑔)𝐴𝑝

𝑘𝐴𝑎
2 +

8𝜋𝜇𝑑𝑥𝑛𝐴𝑝

𝐴𝑛
2 )

𝑑𝑉𝑎
𝑑𝑡
+
𝑘𝑔𝐴𝑝

𝑘𝐴𝑎
2 𝑉𝑎

+
𝐴𝑝

𝑘
𝑃𝑎 = 𝑚𝑒𝑞

𝑑2𝑉𝑎
𝑑𝑡2

+ 𝐵𝑒𝑞
𝑑𝑉𝑎
𝑑𝑡
+
𝑘𝑔𝐴𝑝

𝑘𝐴𝑎
2 𝑉𝑎 +

𝐴𝑝

𝑘
𝑃𝑎 

(D-19) 

 

 

Applying the Laplace transformation on equation (D-19) results in: 
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 𝐹(𝑠) = 𝑚𝑒𝑞(𝑉𝑎(𝑠)𝑠
2 − 𝑉𝑎0𝑠 − �̇�𝑎0) + 𝐵𝑒𝑞(𝑉𝑎(𝑠)𝑠 − 𝑉𝑎0)

+
𝑘𝑔𝐴𝑝

𝑘𝐴𝑎
2 𝑉𝑎(𝑠) +

𝐴𝑝

𝑘
𝑃𝑎(𝑠) 

(D-20) 

 

Combining equations (D-6) and (D-20): 

 𝐹(𝑠) = 𝑚𝑒𝑞(𝑉𝑎(𝑠)𝑠
2 − 𝑉𝑎0𝑠 − �̇�𝑎0) + 𝐵𝑒𝑞(𝑉𝑎(𝑠)𝑠 − 𝑉𝑎0)

+
𝑘𝑔𝐴𝑝

𝑘𝐴𝑎
2 𝑉𝑎(𝑠) + 

 

 
+
𝐴𝑝

𝑘
(−
𝑛𝑃𝑎0
𝑉𝑎0

𝑉𝑎(𝑠) +
(𝑛 + 1)

𝑠
𝑃𝑎0) =  

 = 𝑚𝑒𝑞(𝑉𝑎(𝑠)𝑠
2 − 𝑉𝑎0𝑠 − �̇�𝑎0) + 𝐵𝑒𝑞(𝑉𝑎(𝑠)𝑠 − 𝑉𝑎0)

+ (
𝑘𝑔𝐴𝑝

𝑘𝐴𝑎
2 −

𝑛𝑃𝑎0𝐴𝑝

𝑉𝑎0𝑘
)𝑉𝑎(𝑠) +

(𝑛 + 1)𝐴𝑝

𝑘𝑠
𝑃𝑎0⟹ 

 

 

 𝐹(𝑠) = 𝑚𝑒𝑞(𝑉𝑎(𝑠)𝑠
2 − 𝑉𝑎0𝑠 − �̇�𝑎0) + 𝐵𝑒𝑞(𝑉𝑎(𝑠)𝑠 − 𝑉𝑎0)

+ 𝐾𝑒𝑞𝑉𝑎(𝑠) + 
(𝑛 + 1)𝐴𝑝

𝑘𝑠
𝑃𝑎0⟹ 

 

 

 𝐹(𝑠) = 𝑚𝑒𝑞𝑉𝑎(𝑠)𝑠
2 + 𝐵𝑒𝑞𝑉𝑎(𝑠)𝑠 + 𝐾𝑒𝑞𝑉𝑎(𝑠) −𝑚𝑒𝑞𝑉𝑎0𝑠 − 𝑚𝑒𝑞�̇�𝑎0

− 𝐵𝑒𝑞𝑉𝑎0 +
(𝑛 + 1)𝐴𝑝

𝑘𝑠
𝑃𝑎0 

(D-21) 

 

Considering that the flow at the initial moment is zero, the final equation that 

describes the force applied by the hydraulic actuator is: 

 𝐹(𝑠) = 𝑚𝑒𝑞𝑉𝑎(𝑠)𝑠
2 + 𝐵𝑒𝑞𝑉𝑎(𝑠)𝑠 + 𝐾𝑒𝑞𝑉𝑎(𝑠) −𝑚𝑒𝑞𝑉𝑎0𝑠 − 𝐵𝑒𝑞𝑉𝑎0

+ 
(𝑛 + 1)𝐴𝑝

𝑘𝑠
𝑃𝑎0  ⟹ 

 

 𝐹(𝑠) = (𝑚𝑒𝑞𝑠
2 + 𝐵𝑒𝑞𝑠 + 𝐾𝑒𝑞)𝑉𝑎(𝑠) − (𝑚𝑒𝑞𝑠 + 𝐵𝑒𝑞)𝑉𝑎0

+
(𝑛 + 1)𝐴𝑝

𝑘𝑠
𝑃𝑎0 

(D-22) 

where: 

 𝑚𝑒𝑞 =
𝑚𝑎𝑐𝐴𝑝

𝑘𝐴𝑎
2 +

𝜌𝑥𝑛𝐴𝑝

𝐴𝑛
+
𝑚′

𝐴𝑝
 

 𝐵𝑒𝑞 =
(𝐵𝑒+𝐵𝑔)𝐴𝑝

𝑘𝐴𝑎
2 +

8𝜋𝜇𝑑𝑥𝑛𝐴𝑝

𝐴𝑛
2  

 𝐾𝑒𝑞 =
𝑘𝑔𝐴𝑝

𝑘𝐴𝑎
2 −

𝑛𝑃𝑎0𝐴𝑝

𝑉𝑎0𝑘
 

 

The proposed configuration is a closed hydraulic circuit and hence the total mass of 

the hydraulic oil remains practically the same. Nevertheless, the oil mass in each of 



100 
 

the individual components is variable. The oil mass inside the pipeline can be 

calculated as follows: 

 𝑚𝑙𝑛 = 𝜌𝑥𝑛𝐴𝑛 (D-23) 
 

Next, the oil mass in the hydraulic cylinder is calculated: 

 𝑚𝑐𝑦𝑙 = 𝜌𝑥𝑡𝑜𝑡𝐴𝑝 = 𝜌(𝑥𝑑 + 𝑥)𝐴𝑝 (D-24) 
where 𝑥𝑑 is the dead length of the cylinder. 

 

Finally, the oil mass in the accumulator is calculated: 

 𝑚𝑎𝑐 = 𝜌𝑥𝑎𝐴𝑎 (D-25) 
 

𝑥𝑎 =
𝑉𝑡𝑜𝑡 − 𝑉𝑎
𝐴𝑎

 (D-26) 

 𝑉𝑎 = 𝑥𝐴𝑝 + 𝑉𝑎0 (D-27) 
 

Combing equations (D-25), (D-26) and (D-27) the oil mass inside the accumulator is: 

 𝑚𝑎𝑐 = 𝜌(𝑉𝑡𝑜𝑡 − 𝑥𝐴𝑝 − 𝑉𝑎0) (D-28) 

 


