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Περίληψη 
Η εργασία αυτή εξετάζει τις τεχνικές ανάλυσης δεδομένων με τις οποίες μπορεί να γίνει 

πρόβλεψη της παραγόμενης ενέργειας και εντοπισμός αστοχιών σε μια φωτοβολταϊκή μονάδα. 

Εξετάζονται οι μέθοδοι που χρησιμοποιήθηκαν σε πρόσφατες έρευνες και παρουσιάζεται μια 

προτεινόμενη μεθοδολογία για την πρόβλεψη της παραγωγή. 

Με τη χρήση αισθητήρων, ιστορικών και μετεωρολογικών δεδομένων, σε συνδυασμό 

με υπολογιστικές μεθόδους και μεθόδους μηχανικής μάθησης, μπορούν να γίνουν αναλύσεις 

που κάνουν προβλέψεις για την παραγωγή των φωτοβολταϊκών μονάδων σε διαφορετικούς 

χρονικούς ορίζοντες. Οι προβλέψεις αυτές είναι σημαντικές για τη διαχείριση της 

στοχαστικότητας της ηλιακής ενέργειας ώστε να μπορεί αυτή να αξιοποιηθεί σε μεγαλύτερο 

βαθμό στο ηλεκτρικό δίκτυο.  Πραγματοποιήθηκε βιβλιογραφική έρευνα στις μεθόδους που 

χρησιμοποιούνται και παρουσιάζονται οι πρόσφατες δημοσιεύσεις που πειραματίζονται πάνω 

στην τεχνολογία αυτή. Εξετάζονται οι στατιστικές μέθοδοι του ARMA, της Παλινδρόμησης, της 

Εκθετικής Εξομάλυνσης και της Φυσικής Μεθόδου. Εξετάζονται επίσης οι μέθοδοι Μηχανικής 

Μάθησης και της Βαθιάς Μάθησης (Deep Learning), συμπεριλαμβανομένων των Νευρωνικών 

Δικτυών, των Δέντρων Αποφάσεων, των Μηχανών Διανυσμάτων Υποστήριξης και υβριδικών 

μεθόδων. 

Αντίστοιχα, με μετρήσεις από διάφορους αισθητήρες και την ανάλυση των μετρήσεων 

αυτών στον υπολογιστή, μπορεί να γίνει εντοπισμός αστοχιών στα φωτοβολταϊκά στοιχεία 

ώστε να αποφευχθούν περαιτέρω ζημίες, να γίνουν οι απαραίτητες διορθώσεις και να 

εξασφαλιστεί η μέγιστη παραγωγικότητα της εγκατάστασης. Διεξήχθη αντίστοιχη έρευνα στις 

μεθόδους με τις όποιες γίνεται ο εντοπισμός αστοχιών και αναφέρονται δημοσιεύσεις που 

πειραματίζονται στο αντικείμενο αυτό. Εξετάζονται οι οπτικές μέθοδοι, οι μέθοδοι ηλεκτρικών 

χαρακτηριστικών, οι μέθοδοι απεικόνισης, οι μέθοδοι τεχνητής νοημοσύνης, οι μέθοδοι που 

στηρίζονται στη διάγνωση από εξειδικευμένες συσκευές, η προγνωστική συντήρηση με χρήση 

αισθητήρων σε πραγματικό χρόνο, καθώς και υβριδικές  μέθοδοι. 

Στην προτεινόμενη μεθοδολογία πρόβλεψης παραγωγής, αναπτύχθηκε λογισμικό στην 

γλώσσα Python το οποίο πραγματοποιεί προβλέψεις για την παραγωγή αξιοποιώντας 

μετεωρολογικά δεδομένα και ιστορικά δεδομένα παραγωγής από ένα ανώνυμο Case Study. 

Πραγματοποιήθηκε προ-επεξεργασία στα δεδομένα, διορθώνοντας τις εσφαλμένες τιμές και 

γεμίζοντας τις κενές τιμές. Έγινε προσαρμογή ώστε τα δεδομένα να μπορούν να εισαχθούν 

στους αλγορίθμους μηχανικής μάθησης. Χρησιμοποιήθηκαν οι μέθοδοι του Δένδρου 

Αποφάσεων, των Μηχανών Διανυσμάτων Υποστήριξης, της Γραμμικής Παλινδρόμησης και 

υβριδικός συνδυασμός αυτών. Αξιοποιήθηκε το λογισμικό scikit-learn. Χρησιμοποιήθηκε η 

μέθοδος VotingRegressor για τον συνδυασμό μεθόδων και η μέθοδος GridSearchCV για τη 

βελτιστοποίηση των παραμέτρων κάθε μοντέλου. Πραγματοποιήθηκαν εκτεταμένες δοκιμές 

στις οποίες προσδιορίστηκε η βέλτιστη επιλογή μεταβλητών εισόδου και η βέλτιστη επιλογή 

υπερπαραμέτρων σε κάθε μοντέλο. Τα μοντέλα δοκιμάστηκαν με δυο διαφορετικά μεγέθη 

δεδομένων εκπαίδευσης και συγκρίθηκε η ακρίβειά τους. Στην πρώτη δοκιμή τα δεδομένα 
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εκπαίδευσης ήταν το σύνολο των δεδομένων εκτός από την τελευταία εβδομάδα και στη 

δεύτερη δοκιμή αποτελούσαν το 50% των δεδομένων. 

Λέξεις κλειδιά: Ανανεώσιμες Πηγές Ενέργειας, Παραγωγή Φωτοβολταϊκών, Εντοπισμός 

αστοχιών, Βραχυπρόθεσμες προβλέψεις, Μηχανική Μάθηση, Ανάλυση δεδομένων 
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Abstract 
This thesis examines the data analysis techniques with which energy production 

forecasting and fault detection can be performed on a photovoltaic unit. Methods used in 

recent research are examined and a proposed methodology for production forecasting is 

presented. 

Using sensors, historical and meteorological data, combined with computational 

methods and machine learning methods, analysis can be performed to predict the productivity 

of solar cells in various time ranges. These predictions are important in order to be able to 

respond to the variation of solar energy in order for it to be usable on the electrical grid to a 

larger degree. Bibliographical research was done on the methods used for forecasting and 

recent publications experimenting on this technology are presented. Statistical Methods are 

examined, which includes ARMA, Regression, Exponential Smoothing Method and the Physical 

Method. Machine Learning and Deep Learning Methods are also examined, which includes 

Neural Networks, Decision Trees, Support Vector Machines and hybrid methods.  

Similarly, by collecting measurements from various sensors and analyzing these 

measurements on a computer, fault detection can be performed on Photovoltaic units in order 

to prevent further damage, perform the necessary maintenance and ensure the maximum 

productivity of the installation. Bibliographical research was done on the available fault 

detection methods and the publications experimenting on that field. The methods examined 

included the visual method, electrical characteristics methods, imaging techniques, artificial 

intelligence, device-based methods, predictive maintenance through real-time sensors and 

hybrid methods. 

In the proposed methodology for production forecasting, software was developed in 

Python, which can make production forecasts using meteorological and historical production 

data from an anonymized case study. The data was pre-processed, correcting erroneous values 

and filling in missing values. The data was formatted and adjusted in order to be inputted to the 

machine learning algorithms. The methods of Decision Tree, Support Vector Machines, Linear 

Regression and hybrid combination of them were used. The scikit-learn software was utilized. 

The VotingRegressor method was used for the ensemble methods and the GridSearchCV 

method was used for the optimization of the parameters in each model. Extended tests were 

performed to determine the optimal selection of input features as well as the optimal 

hyperparameters for each model. The models were tested with two different train set sizes to 

compare their accuracy. During the first test the train data were composed of all available data 

except the final week and during the second test they were composed of 50% of the data. 

Keywords: Renewable Energy Sources, Photovoltaic Production, Fault detection, Short-term 

Forecasting, Machine Learning, Data Analysis 
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Ευρεία Περίληψη 

 

Κεφάλαιο 1: Εισαγωγή 

Η ανάγκη για μορφές ενέργειας που να είναι φιλικότερες στο περιβάλλον έχει 

αναδείξει  την παραγωγή ενέργειας από φωτοβολταϊκά  στοιχεία κρίσιμη για την Ελληνική 

οικονομία. 

Μέχρι πρόσφατα που η ενέργεια προερχόταν μόνο από θερμοηλεκτρικά εργοστάσια, η 

διαθέσιμη ηλεκτρική ισχύς στο δίκτυο είχε μια καθορισμένη τιμή που οριζόταν από 

ανθρώπους. Με τα νέα δεδομένα της ηλεκτροπαραγωγής από φωτοβολταϊκά στοιχεία και 

ανεμογεννήτριες, αυτό έχει αλλάξει. Η ηλιακή ακτινοβολία, όπως και η ταχύτητα του ανέμου, 

αποτελούν στοχαστικές μεταβλητές, απρόβλεπτες σε μεγάλο βαθμό κατά τη διάρκεια της 

ημέρας.  

Κατά συνέπεια, είναι καταρχήν απρόβλεπτο πόση διαθέσιμη ισχύ θα έχει το ηλεκτρικό 

δίκτυο, και αν η ισχύς αυτή επαρκεί κάθε δεδομένη στιγμή για να καλύψει τη ζήτηση. Κατά 

συνέπεια, χωρίς κάποιο σύστημα υποστήριξης, η ηλεκτροπαραγωγή με Ανανεώσιμες Πηγές 

Ενέργειας αφήνει μια χώρα εκτεθειμένη σε διαρκείς απώλειες παροχής ρεύματος και πτώσεις 

τάσεις. Η πρόβλεψη της παραγωγής εξασφαλίζει ότι το δίκτυο θα λειτουργεί σταθερότερα σε 

διαφορετικές συνθήκες. Υπάρχει συνεπώς  ανάγκη να γίνονται εκ των προτέρων εκτιμήσεις για 

την ποσότητα της παραγόμενης ενέργειας. Αυτό δίνει τη δυνατότητα να ληφθούν μέτρα 

προσαρμογής της ζήτησης  του ρεύματος ώστε να ανταπεξέρχεται στην προσφορά. Τέτοιο 

μέτρο είναι η διακύμανση της τιμής του ρεύματος κατά τη διάρκεια της ημέρας. Η πρόβλεψη 

της παραγωγής δίνει επίσης τη δυνατότητα στο χειριστή του ηλεκτρικού δικτύου να 

αξιοποιήσει  διαφορετικές πηγές ενέργειας που έχει στη διάθεσή του ώστε να ανταποκριθεί σε 

αυξήσεις ή μειώσεις στη διαθέσιμη ισχύ (1). 

Η πρόγνωση καιρού είναι απαραίτητη για τον προσδιορισμό της διακύμανσης της 

παραγωγής, αλλά όχι καθ’ εαυτή αρκετή. Η έρευνα απέδειξε ότι τα μετεωρολογικά δεδομένα 

δεν έχουν γραμμική σχέση με την παραγωγή ενέργειας. Τα δεδομένα της πρόγνωσης καιρού 

χρειάζονται περαιτέρω επεξεργασία ώστε να γίνει εκτίμηση της μελλοντικής παραγωγής. 

Επίσης, η παροχή της ηλεκτρικής ενέργειας από τα φωτοβολταϊκά μπορεί να μειωθεί 

και από αστοχίες που μπορούν να προκύψουν στις διατάξεις των φωτοβολταϊκών καθώς και 

στους συλλέκτες. Τέτοιες αστοχίες πρέπει να προσδιοριστούν και να διορθωθούν εγκαίρως 

ώστε να εξασφαλιστεί η ομαλή λειτουργία του δικτύου. Είναι σημαντικό να εντοπίζονται 

εγκαίρως τα σφάλματα ώστε να ελαχιστοποιηθεί το κόστος συντήρησης και να μεγιστοποιηθεί 

η παραγωγή. Η πρόβλεψη της παραγωγής μπορεί επίσης να συνεισφέρει στον εντοπισμό 

αστοχιών. 

Τόσο στο πρόβλημα της στοχαστικότητας των μετεωρολογικών δεδομένων όσο και 

στον εντοπισμό των αστοχιών ανταπεξέρχεται η ανάλυση δεδομένων και η μηχανική μάθηση. 
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Με τη χρήση υπολογιστικών μεθόδων, τα μετεωρολογικά δεδομένα μπορούν να αξιοποιηθούν 

με τέτοιο τρόπο ώστε να γίνει μια προσεγγιστική αντιστοίχιση τους  με την παραγωγή 

ενέργειας. Επίσης, τα δεδομένα που συλλέγονται από αισθητήρες μπορούν να συγκριθούν με 

τις τιμές που έδειχναν οι αισθητήρες όταν είχε παρουσιαστεί ή επρόκειτο να παρουσιαστεί 

συγκεκριμένο σφάλμα, ώστε να γίνει εγκαίρως ο εντοπισμός και η διόρθωσή του όταν 

επανεμφανιστεί. 

Στόχος και αντικείμενο της διπλωματικής 

 Υπάρχει μια ποικιλία μεθόδων που χρησιμοποιούνται στην πρόβλεψη της παραγωγής 

και τον εντοπισμό αστοχιών στα φωτοβολταϊκά. Η απόδοση και η ακρίβειά τους ποικίλουν 

έντονα μεταξύ διαφορετικών μελετών περίπτωσης. 

 Το αντικείμενο της διπλωματικής αυτής είναι να εξεταστεί η εφαρμογή των διαφόρων 

μεθόδων πρόβλεψης και να προσφέρει ένα πλαίσιο με το οποίο να μπορεί να γίνει σύγκριση 

στις πρόσφατες έρευνες για την εφαρμογή και την επίδοση των μεθόδων αυτών. 

 Αντίστοιχη έρευνα διεξήχθη στις μεθόδους εντοπισμού σφαλμάτων, ώστε να υπάρχει 

μια βάση αναφοράς για το ποιες μέθοδοι είναι αποτελεσματικές στον εντοπισμό διαφορετικών 

τύπων αστοχιών. Ερευνώνται επίσης οι πρόσφατες δημοσιεύσεις στο αντικείμενο. 

 Επιπλέον, η διπλωματική αυτή περιλαμβάνει μια προτεινόμενη μεθοδολογία για 

πρόβλεψη παραγωγής φωτοβολταϊκών, η οποία αναπτύχθηκε στην Python. Αναπτύχθηκαν 

διάφορα μοντέλα, τα οποία βελτιστοποιήθηκαν και στη συνέχεια συγκρίθηκαν στην απόδοσή 

τους, χρησιμοποιώντας ανώνυμα δεδομένα για να γίνει μια μελέτη περίπτωσης. Η απόδοση της 

προτεινόμενης μεθοδολογίας συγκρίθηκε στη συνέχεια με τα μοντέλα που χρησιμοποιούνται 

στη βιβλιογραφία. 

Συνεισφορά και αξία της διπλωματικής 

 Η διπλωματική αυτή παρέχει μια καινούρια μεθοδολογία σχεδιασμένη να συγκρίνει 

διαφορετικά μοντέλα πρόβλεψης βάσει της απόδοσής τους και στη συνέχεια να παράγει 

προβλέψεις χρησιμοποιώντας ένα επιλεγμένο μοντέλο. Παρέχει μια βάση που επιτρέπει τη 

βελτιστοποίηση κάθε μοντέλου ώστε να μεγιστοποιήσει την απόδοσή του. Η βάση αυτή 

επιτρέπει επίσης να δοκιμαστεί κάθε μοντέλο με διαφορετικά δεδομένα. 

 Καταρχήν τα δεδομένα υπέστησαν κατάλληλη προ-επεξεργασία. Αναπτύχθηκε 

λογισμικό το οποίο διορθώνει τις εσφαλμένες τιμές και γεμίζει τις κενές τιμές στα δεδομένα. 

Στη συνέχεια, τα δεδομένα χρησιμοποιήθηκαν σε πέντε διαφορετικά μοντέλα, 

χρησιμοποιώντας Δέντρα Αποφάσεων, Μηχανές Διανυσμάτων Υποστήριξης , Γραμμική 

Παρεμβολή και δύο υβριδικά μοντέλα που χρησιμοποιούν συνδυασμό των προηγούμενων. 

Έγιναν εκτεταμένες δοκιμές για να προσδιοριστεί η βέλτιστη επιλογή των μεταβλητών εισόδου. 

Στη συνέχεια έγιναν περαιτέρω δοκιμές για να βελτιστοποιηθούν οι υπερπαράμετροι κάθε 

μοντέλου. Η απόδοση των μοντέλων σε κάθε δοκιμή καταγράφηκε και συγκρίθηκε με τα 

προηγούμενα αποτελέσματα με τη χρήση εξειδικευμένων δεικτών, συμπεριλαμβανομένης της 

τετραγωνικής ρίζας του μέσου τετραγωνικού σφάλματος (RMSE), του μέσου απόλυτου 

σφάλματος (MAE) και του συντελεστή προσδιορισμού (R-Squared). Δυο διαφορετικά μεγέθη 
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δεδομένων χρησιμοποιήθηκαν ως είσοδος στα μοντέλα. Η απόδοση των μοντέλων συγκρίθηκε 

με αυτόν τον τρόπο και για βραχυπρόθεσμες  προβλέψεις. 

 Επιπλέον, η διπλωματική αυτή παρέχει μια γενική εικόνα για τις μεθόδους που 

χρησιμοποιούνται στην πρόβλεψη παραγωγής και τον εντοπισμό σφαλμάτων στα 

φωτοβολταϊκά. Περιγράφονται οι πιο συνήθεις μέθοδοι, οι βασικές τους έννοιες, η τεχνική 

ορολογία, ο τρόπος λειτουργίας, τα πλεονεκτήματα και μειονεκτήματα καθεμίας, καθώς και η 

συμβατότητά τους σε διαφορετικές εφαρμογές. 

 Παρουσιάζεται μια εκτεταμένη έρευνα στις δημοσιεύσεις σχετικά με τη μεθοδολογία 

στις προβλέψεις παραγωγής των φωτοβολταϊκών. Για κάθε δημοσίευση αναφέρεται η μέθοδος 

που χρησιμοποιήθηκε, οι μεταβλητές εισόδου, το χρονικό εύρος της πρόβλεψης, άλλες τυχόν 

λεπτομέρειες της εφαρμογής, μαζί με την απόδοση και τα αποτελέσματα κάθε περίπτωσης. 

Αυτό παρέχει ένα σημείο αναφοράς για μελλοντική έρευνα, καθώς μπορεί να συγκριθεί εύκολα 

η απόδοση πολλών διαφορετικών εφαρμογών. 

 Αντίστοιχη έρευνα διεξήχθη στις μεθόδους εντοπισμού αστοχιών. Αναφέρονται οι 

βασικές έννοιες, ο τρόπος λειτουργίας και η συμβατότητά κάθε μεθόδου για τον εντοπισμό 

διαφορετικών σφαλμάτων, καθώς και τα αποτελέσματα πρόσφατων ερευνών στις μεθόδους 

αυτές. 

Δομή της διπλωματικής 

 Η διπλωματική έχει 6 κεφάλαια και 2 παραρτήματα. 

 Το κεφάλαιο 1 περιέχει μια εισαγωγή και τους λόγους που υπάρχει ανάγκη για έρευνα 

στο αντικείμενο αυτό. Εξηγείται ο στόχος και το αντικείμενο της διπλωματικής, μαζί με τη 

συνεισφορά και την αξία της. Τέλος, εξηγείται η δομή της διπλωματικής. 

 Το κεφάλαιο 2 περιέχει μια ανάλυση στις μεθόδους πρόβλεψης παραγωγής που 

περιγράφονται στη βιβλιογραφία, μαζί με μια έρευνα στις πρόσφατες δημοσιεύσεις  που 

έγιναν στην πρόβλεψη παραγωγής φωτοβολταϊκών, μαζί με τις μεθόδους και την απόδοση 

κάθε εφαρμογής. Αναλύονται η μέθοδος εμμονής, οι στατιστικές μέθοδοι και οι μέθοδοι 

μηχανικής μάθησης. 

 Το κεφάλαιο 3 περιγράφει τις μεθόδους εντοπισμού αστοχιών στους ηλιακούς 

συλλέκτες. Εξηγείται ο τρόπος λειτουργίας κάθε μεθόδου και το είδος των αστοχιών που 

μπορεί να εντοπίσει. Εξετάζονται οι εφαρμογές σε πρόσφατες δημοσιεύσεις. Περιγράφονται οι 

οπτικές μέθοδοι, οι μέθοδοι ηλεκτρικών χαρακτηριστικών, οι μέθοδοι απεικόνισης, οι μέθοδοι 

τεχνητής νοημοσύνης, οι μέθοδοι που βασίζονται σε εξειδικευμένες συσκευές, οι μέθοδοι που 

χρησιμοποιούν αισθητήρες σε πραγματικό χρόνο και οι υβριδικές μέθοδοι. 

 Το κεφάλαιο 4 παρουσιάζει την προτεινόμενη μεθοδολογία. Γίνονται προβλέψεις 

χρησιμοποιώντας ιστορικά δεδομένα παραγωγής και μετεωρολογικά δεδομένα, με τη χρήση 

Δέντρων αποφάσεων, Μηχανών Διανυσμάτων Υποστήριξης, Γραμμικής Παλινδρόμησης και δύο 

υβριδικών μοντέλων που χρησιμοποιούν συνδυασμούς των προηγούμενων. Εξηγείται ο τρόπος 

λειτουργίας των επιλεγμένων μοντέλων. Αναλύεται η σχετική θεωρία με κατάλληλα 

παραδείγματα, διαγράμματα και μαθηματικούς τύπους. Εξηγείται η μέθοδος προ-
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επεξεργασίας των δεδομένων. Εξετάζεται η συσχέτιση μεταξύ των διαθέσιμων δεδομένων και 

της μετρούμενης ισχύος εξόδου ώστε να γίνει εκτίμηση του ποιες μεταβλητές θα είναι χρήσιμες 

κατά τη διάρκεια των δοκιμών. 

 Το κεφάλαιο 5 αναφέρει αναλυτικά τις δοκιμές που έγιναν και τα αποτελέσματα που 

παράχθηκαν. Αυτό περιλαμβάνει μια σειρά δοκιμών με σκοπό να προσδιοριστεί η βέλτιστη 

επιλογή μεταβλητών εισόδου και μια σειρά δοκιμών με σκοπό να προσδιοριστούν οι βέλτιστες 

τιμές των υπερ-παραμέτρων για κάθε μοντέλο. Η βελτιστοποίηση έγινε καταρχήν χειροκίνητα, 

αναφέροντας την ακρίβεια κάθε μοντέλου σε κάθε δοκιμή και επιλέγοντας τις καλύτερες 

παραμέτρους χειροκίνητα. Στη συνέχεια έγιναν δοκιμές αυτοματοποιημένα, με τη βοήθεια του 

GridSearchCV, από τα εργαλεία του scikit-learn. Έγιναν δοκιμές με δύο διαφορετικά μεγέθη 

δεδομένων εισόδου. Αναλύονται λεπτομερώς τα αποτελέσματα . 

 Το κεφάλαιο 6 παρουσιάζει τα συμπεράσματα από τις δοκιμές και προτείνει 

μελλοντικές εργασίες με τις οποίες μπορεί να συνεχιστεί η έρευνα αυτής της διπλωματικής. 

 Το παράρτημα Α παρουσιάζει τον κώδικα που αναπτύχθηκε για να εφαρμοστεί η 

προτεινόμενη μεθοδολογία. Περιλαμβάνει στατιστική ανάλυση και μηχανική μάθηση με τη 

χρήση του scikit-learn. Ο κώδικας συνοδεύεται από σχόλια που εξηγούν τις λειτουργίες του. 

 Το παράρτημα Β παρουσιάζει τον κώδικα που χρησιμοποιήθηκε για την προ-

επεξεργασία των δεδομένων, που περιλάμβανε τις απαραίτητες προσαρμογές στη 

μορφοποίηση, το γέμισμα των κενών τιμών και τη διόρθωση των εσφαλμένων τιμών που 

προκλήθηκαν από το θόρυβο στο ηλεκτρικό δίκτυο. 

Κεφάλαιο 2 

 Στο κεφάλαιο αυτό αναλύονται οι μέθοδοι πρόβλεψης που υπάρχουν στη 

βιβλιογραφία. Εξηγείται η μέθοδος εμμονής και ο τρόπος που χρησιμοποιείται. Αναλύονται οι 

στατιστικές μέθοδοι, συμπεριλαμβανομένης της ARMA, της παλινδρόμησης,  της εκθετικής 

εξομάλυνσης και της φυσικής μεθόδου. Εξηγείται ο τρόπος λειτουργίας τους και οι συνθήκες 

στις οποίες αποδίδουν καλύτερα.  

 

Εξίσωση 1 – Μαθηματικός τύπος ARMA (2): 

 Περιγράφονται επίσης οι μέθοδοι μηχανικής μάθησης και βαθιάς μάθησης, όπως τα 

Νευρωνικά Δίκτυα, οι Μηχανές Διανυσμάτων Υποστήριξης και οι υβριδικές μέθοδοι. Γίνεται 

εκτεταμένη ανάλυση στις πρόσφατες έρευνες που χρησιμοποιούν διαφορετικές μεθόδους 

πρόβλεψης, αναφέροντας την ακρίβεια καθεμίας.  
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Figure 1 – Βασική δομή Νευρωνικού Δικτύου (3) 

Το κεφάλαιο αυτό οδήγησε στα παρακάτω συμπεράσματα: 

 Οι μέθοδοι μηχανικής μάθησης έχουν μεγαλύτερη ακρίβεια από τις καθαρά στατιστικές 

μεθόδους. 

 Οι πιο δημοφιλείς μέθοδοι μηχανικής μάθησης και βαθιάς μάθησης είναι οι διάφορες 

μορφές των Νευρωνικών Δικτύων, ακολουθούμενων από τις Μηχανές Διανυσμάτων 

Υποστήριξης και τις υβδρικές μεθόδους.  

 Στη βιβλιογραφία η μέγιστη ακρίβεια επιτεύχθηκε με τη χρήση Νευρωνικών Δικτύων 

(ANN), αλλά σε άλλες περιπτώσεις η μέθοδος αυτή είχε κακή απόδοση. 

 Οι περισσότερες προβλέψεις στη βιβλιογραφία είναι βραχυπρόθεσμες, μεταξύ τιμών 

κάτω της μίας ώρας μέχρι και μια ημέρα. 

 Η ακρίβεια των μοντέλων επηρεάζεται έντονα από τον καιρό. Ο ηλιόλουστος καιρός 

οδηγεί σε πολλές περιπτώσεις σε πιο ακριβείς προβλέψεις. 

 Η χρήση διαφορετικών μετεωρολογικών δεδομένων ποικίλει έντονα στη βιβλιογραφία. 

Κάποιοι ερευνητές βασίζονται αποκλειστικά στα ιστορικά δεδομένα παραγωγής και 

άλλοι χρησιμοποιούν διάφορες παραμέτρους, όπως την κάλυψη από τα σύννεφα ή τη 

θερμοκρασία, για να κάνουν προβλέψεις. Το συμπέρασμα ήταν ότι, για την έρευνα σε 

αυτή τη διπλωματική, έπρεπε να δοκιμαστούν διαφορετικές μεταβλητές εισόδου ώστε 

να προσδιοριστεί η μέγιστη απόδοση. Ο λόγος είναι ότι στη βιβλιογραφία δεν υπήρχε 

συμπέρασμα του ποιες μεταβλητές είναι χρήσιμες σε όλες τις περιπτώσεις. 

Κεφάλαιο 3 

Σε αυτό το κεφάλαιο εξετάζονται οι μέθοδοι εντοπισμού αστοχιών στα φωτοβολταϊκά. 

Περιγράφεται ο τρόπος λειτουργίας κάθε μεθόδου και το είδος των αστοχιών που μπορεί να 

εντοπίσει. Ερευνήθηκαν και εξηγούνται εφαρμογές κάθε μεθόδου σε πρόσφατες έρευνες. 
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Εξηγείται η οπτική μέθοδος, που συνήθως περιλαμβάνει τον εντοπισμό αστοχιών με 

ανθρώπινη παρατήρηση. Εξηγούνται τα πρότυπα της διαδικασίας, τα είδη των λαθών που 

μπορούν να εντοπιστούν και τα μειονεκτήματα της μεθόδου.  

Αναλύονται οι μέθοδοι που βασίζονται στην ανάλυση ηλεκτρικών χαρακτηριστικών των 

φωτοβολταϊκών εγκαταστάσεων. Αυτό περιλαμβάνει την MBDM, την RDM, τη μέτρηση I-V, την 

OSA, PLA και CDI. Αναφέρονται τα αποτελέσματα πρόσφατων ερευνών.  

 

Figure 2 – Διαδικασία RDM για εντοπισμό αστοχιών (4) 

 

Περιγράφονται οι τεχνικές απεικόνισης, που περιλαμβάνουν τη χρήση υπερύθρων, 

υπερήχων, ηλεκτροφωταύγεια και τη μέθοδο Lock in Thermography.  

Αναλύονται οι μέθοδοι που χρησιμοποιούν τεχνητή νοημοσύνη και δεδομένα 

αισθητήρων για να εντοπίσουν αστοχίες. Αυτό περιλαμβάνει μεθόδους μηχανικής μάθησης, 

όπως Μηχανές Διανυσμάτων υποστήριξης, Deep Learning και συνελικτικά νευρωνικά δίκτυα. 

Περιγράφονται οι μέθοδοι που χρησιμοποιούν εξειδικευμένες συσκευές και τα είδη των 

συσκευών που υπάρχουν για τον εντοπισμό διαφορετικών αστοχιών. Εξηγούνται οι μέθοδοι 

που χρησιμοποιούν αισθητήρες που παρακολουθούνται σε πραγματικό χρόνο, ώστε να 

εντοπιστεί ένα πιθανό σφάλμα προτού προκύψει. Περιγράφονται τέλος και οι υβδρικές 

μέθοδοι που συνδυάζουν έναν αριθμό τεχνικών από τις παραπάνω. 

Το κεφάλαιο αυτό κατέληξε στα παρακάτω συμπεράσματα: 

 Ο οπτικός έλεγχος είναι χρήσιμος σαν προκαταρκτικός για να εντοπιστεί αν χρειάζεται 

περαιτέρω έλεγχος. 

 Οι μετρήσεις ηλεκτρικών χαρακτηριστικών εντοπίζουν αστοχίες ανοικτού και κλειστού 

κυκλώματος, hotspots, αστοχίες γείωσης, ηλεκτρικού τόξου, σκίασης και σφάλματα 

γήρανσης. 
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 Οι μέθοδοι απεικόνισης μπορούν να εντοπίσουν ρωγμές και μικρό-ρωγμές, αστοχίες 

διασύνδεσης και καλωδίωσης, hotspots, αύξηση αντίστασης σειράς, ελλαττωματικές 

διόδους παράκαμψης, μη-ομοιόμορφο ρεύμα και διαφορές στην ενεργειακή απόδοση 

μεταξύ συλλεκτών. 

 Η μηχανική μάθηση αξιοποιεί δεδομένα τόσο από απεικόνιση όσο και ηλεκτρικές 

μετρήσεις και μπορεί να εντοπίσει και αστοχίες που έχουν ήδη προκύψει αλλά και 

αστοχίες που θα προκύψουν στο μέλλον. 

 Για κάθε κατηγορία αστοχιών υπάρχει μια εξειδικευμένη συσκευή που μπορεί να την 

εντοπίσει. 

Κεφάλαιο 4 

Σε αυτό το κεφάλαιο παρουσιάζεται η προτεινόμενη μεθοδολογία. Αναπτύχθηκε ένα 

πρόγραμμα στην Python με το οποίο έγιναν προβλέψεις για την παραγωγή με τη χρήση 

ιστορικών δεδομένων παραγωγής και μετεωρολογικών δεδομένων.  

Χρησιμοποιήθηκαν οι μέθοδοι του Δέντρου Αποφάσεων, των Μηχανών Διανυσμάτων 

Υποστήριξης, της Γραμμικής Παλινδρόμησης και δύο υβριδικών συνδυασμών των 

προηγουμένων. Εξηγείται ο τρόπος λειτουργίας των μοντέλων αυτών αναλύοντας τη σχετική 

θεωρία και παρουσιάζοντας παραδείγματα, διαγράμματα και τους μαθηματικούς τύπους κάθε 

μοντέλου. 

Αναλύεται βήμα προς βήμα η μέθοδος προ-επεξεργασίας των δεδομένων. Τα δεδομένα  

έπρεπε να καθαριστούν από κάποια σφάλματα μέτρησης και να μορφοποιηθούν κατάλληλα 

για να είναι χρησιμοποιήσιμα από τα μοντέλα μηχανικής μάθησης. 

Ελέγχθηκε η συσχέτιση μεταξύ των διαθέσιμων δεδομένων και της μετρούμενης ισχύος 

εξόδου ώστε να εκτιμηθεί ποιες μεταβλητές θα είναι χρήσιμες σαν δεδομένα εισόδου κατά τη 

διάρκεια των δοκιμών.  

Επιλέχθηκαν τα μοντέλα του Δέντρου Αποφάσεων, των Μηχανών Διανυσμάτων 

Υποστήριξης και της Γραμμικής Παλινδρόμησης για διάφορους λόγους. Ένας σημαντικός 

παράγοντας ήταν τα διαθέσιμα εργαλεία του scikit-learn που έχουν καλή υποστήριξη στο 

διαδίκτυο και προσφέρουν πρόσβαση στα μοντέλα αυτά. Ένας άλλος λόγος για τη χρήση του 

Δέντρου Αποφάσεων και των Μηχανών Διανυσμάτων Υποστήριξης ήταν η ποικιλία των 

υπερπαραμέτρων που διαθέτουν, καθώς αυτό δίνει τη δυνατότητα να βελτιστοποιηθούν τα 

αποτελέσματα. Υπάρχει επίσης έλλειψη στη βιβλιογραφία από εφαρμογές Δέντρου 

Αποφάσεων και Γραμμικής παλινδρόμησης για προβλέψεις παραγωγής φωτοβολταϊκών. 

Ένας ακόμα λόγος ήταν η ανάγκη να ελεγχθεί η γραμμικότητα του εξεταζόμενου 

προβλήματος. Από άποψη φυσικής, η σχέση μεταξύ άμεσης ηλιακής ακτινοβολίας και 

παραγόμενης ισχύος από τα φωτοβολταϊκά θα έπρεπε θεωρητικά να είναι γραμμική. Αν 

προστίθεντο και άλλες μεταβλητές εισόδου, αυτό θα άλλαζε. Οι Μηχανές Διανυσμάτων 

Υποστήριξης μπορούν να λειτουργήσουν και με γραμμικό και με μη γραμμικό kernel. Το Δέντρο 

Αποφάσεων είναι μη-γραμμικός αλγόριθμος, ενώ η Γραμμική Παλινδρόμηση είναι γραμμική. 
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Με διαφορετικές δοκιμές, συγκρίνοντας τις μεθόδους αυτές, μπορεί να βρεθεί η βέλτιστη λύση 

είτε το πρόβλημα είναι τελικά γραμμικό είτε όχι. Ο συνδυασμός ενός γραμμικού και ενός μη 

γραμμικού μοντέλου μπορεί ενδεχομένως να αντιμετωπίσει ένα πρόβλημα που περιέχει και 

γραμμικές και μη-γραμμικές τάσεις. 

Η ηλιακή ακτινοβολία των προηγούμενων ωρών έδειξε πολύ υψηλή συσχέτιση με την 

παραγωγή ενέργειας. Το αποτέλεσμα αυτό ταιριάζει με το γεγονός ότι η αυτοσυσχέτιση της 

ακτινοβολίας ήταν υψηλή μέχρι και 4 ώρες πριν. Αυτό οδήγησε στο συμπέρασμα ότι οι τιμές 

της ηλιακής ακτινοβολίας των περασμένων 4 με 5 ωρών πρέπει να εξεταστούν στις δοκιμές. Η 

κάλυψη από σύννεφα είχε σχεδόν μηδενική συσχέτιση με την παραγωγή και εξαιρέθηκε από 

τις δοκιμές. 

Η χρονοσειρά των δεδομένων εμφάνισε έναν εποχιακό παράγοντα, πράγμα που 

οδήγησε στο συμπέρασμα ότι στοιχεία της ημερομηνίας, όπως η εποχή ή ο μήνας, πρέπει να 

συμπεριληφθούν στις δοκιμές ως μεταβλητές εισόδου. 

Κεφάλαιο 5 

Σε αυτό το κεφάλαιο αναφέρονται οι δοκιμές που έγιναν στα πλαίσια αυτής της 

έρευνας και σχολιάζονται τα αποτελέσματα. Έγινε καταρχήν μια σειρά δοκιμών για να 

προσδιοριστεί η βέλτιστη επιλογή μεταβλητών εισόδου για κάθε μοντέλο. Η απόδοση κάθε 

μοντέλου εμφανίζεται για κάθε δοκιμή με τους ακόλουθους δείκτες: 1) Την τετραγωνική ρίζα 

του μέσου τετραγωνικού σφάλματος, 2) Το μέσο απόλυτο σφάλμα και 3) Το συντελεστή 

προσδιορισμού (R-Squared), με δύο διαφορετικούς τρόπους υπολογισμού. 

Έγιναν στη συνέχεια δοκιμές για τη βελτιστοποίηση των υπερπαραμέτρων κάθε μοντέλου. Η 

βελτιστοποίηση έγινε καταρχήν χειροκίνητα, αναφέροντας την ακρίβεια κάθε μοντέλου και 

επιλέγοντας τις καλύτερες παραμέτρους με το χέρι, καθώς και αυτόματα, με τη χρήση της 

λειτουργίας GridSearchCV του scikit-learn. 

Χρησιμοποιήθηκαν οι καλύτερες παράμετροι που βρέθηκαν από τις προηγούμενες 

δοκιμές για να δοκιμαστούν τα μοντέλα με μικρότερο πλήθος δεδομένων εισόδου, εξετάζοντας 

την απόδοσή τους όταν υπάρχουν λιγότερες πληροφορίες. Τα αποτελέσματα συγκρίθηκαν με 

αυτά των προηγούμενων δοκιμών. 

Τα συμπεράσματα από τις δοκιμές ήταν τα ακόλουθα: 

 Τα μετεωρολογικά δεδομένα εκτός της ηλιακής ακτινοβολίας δεν φάνηκαν να είναι 

χρήσιμα για να γίνουν προβλέψεις στη συγκεκριμένη μελέτη περίπτωσης. 

Επιβεβαιώνεται από τη βιβλιογραφία ότι η χρησιμότητα των διάφορων 

μετεωρολογικών παραμέτρων εξαρτάται από τη συγκεκριμένη περίπτωση, ανάλογα με 

διάφορες συνθήκες. Τα δεδομένα που συνείσφεραν στην πρόβλεψη ήταν οι τιμές της 

ηλιακής ακτινοβολίας των προηγούμενων ωρών, η ώρα και ο μήνας. 
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 Για τα συγκεκριμένα δεδομένα της μελέτης περίπτωσης, το Δέντρο Αποφάσεων 

παρατηρήθηκε πως ήταν το πιο ακριβές μοντέλο όταν έγιναν οι προβλέψεις με 

λιγότερα δεδομένα (50% των δεδομένων, περίπου ενάμισι έτος), ενώ ο συνδυασμός 

Μηχανών Διανυσμάτων Υποστήριξης και Δέντρου Αποφάσεων ήταν το πιο ακριβές 

μοντέλο όταν υπήρχαν περισσότερα δεδομένα (3 έτη περίπου). Στη δοκιμή με το 

μικρότερο σύνολο δεδομένων εισόδου, η διακύμανση της ακρίβειας μεταξύ των 

διαφορετικών μοντέλων γίνεται μικρότερη. Η Γραμμική Παλινδρόμηση έχει σχεδόν την 

ίδια ακρίβεια και για τα δύο μεγέθη εισόδου, πράγμα που είναι αναμενόμενο καθώς 

δεν μαθαίνει από μεγαλύτερες ποσότητες δεδομένων από ένα σημείο και πέρα. 

 

 Τα βέλτιστα αποτελέσματα για κάθε μοντέλο ήταν τα ακόλουθα: 

 

 

Δέντρο 
Αποφάσεων 

SVM 
Γραμμική 

Παλινδρόμηση 
Δέντρο & 

Παλινδρόμηση 
Δέντρο & 

SVM 

 
Μεγάλο Dataset 

   nRMSE 17,11% 24,34% 51,15% 23,06% 15,56% 

 

Μικρότερο Dataset 

   nRMSE 24,78% 25,71% 34,27% 25,71% 25,62% 
 

 

 Η μέση τιμή της παραγωγής ενέργειας στα δεδομένα ήταν 58973 Wh ενώ το 

βελτιστοποιημένο δέντρο αποφάσεων είχε Μέσο Απόλυτο Σφάλμα 6901 Wh όταν το 

50% των δεδομένων χρησιμοποιήθηκαν σαν είσοδος, που σημαίνει ότι παρουσιάζει 

ένα μέσο σφάλμα της τάξης του 11,7 %. Όταν έγιναν προβλέψεις μόνο για την 

τελευταία εβδομάδα, αξιοποιώντας σχεδόν το σύνολο των διαθέσιμων δεδομένων, η 

μέση τιμή παραγωγής των πραγματικών δεδομένων εξόδου ήταν 38953 Wh και ο 

συνδυασμός Μηχανών Διανυσμάτων Υποστήριξης και Δέντρου Αποφάσεων είχε Μέσο 

Απόλυτο Σφάλμα 3144, δίνοντας ένα μέσο σφάλμα 8,3%. 

 Τα αποτελέσματα της προτεινόμενης μεθοδολογίας ήταν ικανοποιητικά σε σύγκριση με 

αυτά της βιβλιογραφίας, που σε ορισμένες περιπτώσεις φτάνουν και τις τιμές της τάξης 

του 41,20% RMSE. 

Κεφάλαιο 6 

Όσον αφορά τη συγκεκριμένη μελέτη περίπτωσης, μπορούν να γίνουν περισσότερες 

εκτεταμένες δοκιμές, αξιοποιώντας ένα ακόμη μικρότερο μέγεθος δεδομένων εισόδου, ώστε 

να δοκιμαστεί η αξιοπιστία των μοντέλων όταν υπάρχουν ακόμα λιγότερες πληροφορίες. 

Μπορούν επίσης να γίνουν δοκιμές στα συνδυαστικά μοντέλα με άλλες μεταβλητές εισόδου 

από τις βέλτιστες των Μηχανών Διανυσμάτων Υποστήριξης ώστε να συγκριθεί η απόδοσή τους. 
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Θα μπορούσαν να είναι χρήσιμα επίσης και διαφορετικά μοντέλα σε περαιτέρω 

δοκιμές, όπως οι αλγόριθμοι Deep Learning. Τα δεδομένα θα μπορούσαν να παράξουν ακριβείς 

προβλέψεις και με άλλα μοντέλα από αυτά που χρησιμοποιήθηκαν. 

Θα μπορούσε επίσης να αναπτυχθεί λογισμικό είτε σαν διαδικτυακή εφαρμογή είτε 

σαν συμβατική εφαρμογή offline, ώστε να δημιουργηθεί ένα διαδραστικό περιβάλλον  που να 

προσφέρει πρόσβαση στις λειτουργίες του προγράμματος σε κάποιον που δεν ξέρει να 

χειρίζεται την Python. 
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Chapter 1: Introduction 

1.1 Introduction 

The need for energy sources that are more friendly to the environment has made 

energy production from photovoltaics critical for the Greek economy. 

Until recently, with energy coming just from thermal power plants, the amount of 

available electric power on the grid had a fixed value that was defined by humans. This has 

changed, as the energy is now produced by PV and wind turbines. Solar radiation and wind 

speed are stochastic variables and are to a large degree unpredictable through the duration of 

the day. 

Because of that, it cannot be initially predicted how much power will the electric grid 

have available, and whether that power is enough in a given moment to satisfy the demand. As 

such, if no support system exists, power generation using Renewable Energy Sources leaves a 

country exposed to constant blackouts and voltage drops. Production forecast can ensure that 

the electric grid will be more reliable under a variety of conditions. Consequently, there is a 

need for predictions on the energy that will be produced in the near future. That way 

appropriate measures can be taken to adjust the energy demand so it can match the energy 

supply. One such measure is adjusting the energy price during the day. Energy forecasts also 

give the grid operator the ability to utilize different energy sources to respond to increases or 

decreases in the available power (1). 

Weather forecasting is necessary to determine the fluctuation of energy production, but 

not enough by itself. Research has shown that weather data do not have a linear relationship 

with the energy production. Weather forecast data require further processing in order to make 

an assessment of the future energy production. 

Also, power generation from photovoltaics can be decreased by faults that can occur in 

PV strings, including the collectors themselves. Such failures need to be determined and 

corrected in time to ensure the smooth operation of the grid. Timely detection of faults is 

important in order to minimize maintenance costs and maximize productivity. 

Both the issue of production variance due to the weather as well as the issue of fault 

detection can be addressed with data analysis and machine learning. Using computational 

methods, weather data can be utilized in such a way that they can be linked to energy 

production. Additionally, data collected from various sensors can be compared with their values 

when a particular failure had occurred or was about to occur, in order to detect and fix future 

failures in time. Forecasting can also contribute to fault detection. 

There is a need to determine the optimal methods for both production forecasting and 

fault detecting in PV in order to maximize their efficiency. 
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1.2 Thesis Target and Objective 
 There is a variety of methods that are used for PV production forecasting and fault 

detection. Their efficiency and accuracy vary greatly in each case study. 

 The subject of this thesis is to investigate the application of the various methods in 

production forecasting and provide a frame of reference on recent research on their application 

performance.  

A similar investigation is made on PV fault detection methods, in order to provide a 

general frame of reference for which techniques are efficient in detecting different types of 

faults. The findings of recent research on the subject are also reported. 

Additionally, this thesis presents a proposed methodology for PV production 

forecasting, which was implemented in Python. Different models were developed, optimized 

and then compared, using anonymized data as a case study. The performance of the proposed 

methodology was then compared with the models used in literature. 

1.3 Thesis Contribution and Value 
 This thesis provides an original methodology designed to compare different forecasting 

models on their efficiency and subsequently produce forecasts using a chosen model. It provides 

a framework that can optimize each model in order to maximize its performance. It also has the 

ability to test each model using different data sets. 

 First, the data was pre-processed appropriately. Software for correcting erroneous 

values and missing values was developed. Then, the data was used in five different models, 

using Decision Tree, Support Vector Machines, Linear Regression, and two hybrid models of the 

aforementioned. Extended tests were made to determine the optimal set of input features. 

Afterwards, more testing was performed to optimize the hyperparameters of each model. The 

performance of the models in each test was recorded and compared to the previous results 

using specialized indicators such as Root Mean Squared Error, Mean Absolute Error and 

Coefficient of determination. Two different dataset sizes were tested as input. This way the 

efficiency of the models was compared for different amounts of information available. 

 Additionally, this thesis provides a general overview of the methods used in PV 

production forecasting as well as fault detection. The most commonly used methods are 

described in their basic concept, technical terminology and way of operation, their advantages 

and shortcomings, as well as their suitability for different applications. 

 An extensive review on literature is provided on the methodology used for PV 

production forecasting. For each research paper, the method is reported, along with the input 

features, forecast time range, and other specifics of the application, together with the 

performance and results in each case. This provides a frame of reference for future research, as 

the performance of many different applications can be quickly compared. 

 A similar review was performed on the methods used for fault detection in PV. Basic 

concepts, way of operation and suitability for detecting different faults are reported for each 

method, as well as the results of recent research on it. 
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1.4 Thesis Structure 
 This thesis is comprised of 6 chapters and 2 appendices. 

 Chapter 1 provides an introduction and the reasons that research is needed on the 

subject. The thesis target and objective are explained, together with its contribution and value. 

Finally, the thesis structure is explained. 

 Chapter 2 provides an analysis of forecasting methods described in literature as well as a 

review of recent research papers in PV production forecasting, together with the methods used 

and performance of each application. Persistence method, statistical methods and machine 

learning methods are discussed. 

Chapter 3 describes the methods for detecting faults in Solar Cells. The way each 

method works and the type of faults that can be detected by it are explained. Applications in 

recent research are reviewed. Visual, electrical characteristics, imaging, artificial intelligence, 

device-based, hybrid methods, as well as methods using real-time sensors, are described. 

Chapter 4 presents the proposed methodology. Forecasting is performed using collected 

historical energy production and weather data, using Decision Trees, SVM, Linear Regression, 

and two hybrid models using a combination of the above. The way the selected models work is 

explained. The related theory is analyzed with the appropriate examples, diagrams and 

formulas. The method of pre-processing the data is explained step-by-step. The correlation 

between the available data and the measured power output is examined in order to assess 

which variables will be useful as input features during the testing. 

Chapter 5 reports in detail the tests performed and results obtained. This includes a 

series of tests to determine the best set of input features and tests to optimize the 

hyperparameters of each model. The optimization was performed both manually, reporting the 

accuracy of each model and selecting the best set by hand, as well as automatically, with the 

help of the GridSearchCV function of the scikit-learn tools. Tests using two different input set 

sizes were made. The results are discussed in detail. 

Chapter 6 presents the conclusions made by the results and proposes future work to 

continue the research of this thesis. 

Appendix A presents the source code that was developed to apply the proposed 

methodology. It includes statistical analysis and machine learning utilizing sci-kit learn. It is 

accompanied by comments explaining the functions. 

Appendix B presents the source code that was used for pre-processing the data, which 

included making the necessary formatting adjustments, filling in missing values and correcting 

erroneous values caused by noise in the electrical grid. 
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Chapter 2: Review of PV Production Forecasting methods 

2.1. Introduction 

 In this chapter the forecasting methods described in literature are discussed. Each 

section describes a different category of methods. 

 Section 2.2 briefly describes the Persistence method and its applicability. 

 Section 2.3 analyses methods utilizing statistical analysis, including ARMA, Regression, 

exponential smoothing and the physical method. Their way of working is described as well as 

the conditions in which they perform well. 

 Section 2.4 describes Machine-Learning methods, such as ANN, SVM and hybrid 

methods.  

 Section 2.5 contains a literature review over a large number of papers utilizing different 

methods for PV power forecasting, displaying the accuracy in each case. 

 Section 2.6 includes the conclusions made from the gathered information. 

 Forecasting methods for PV power generation are divided to direct and indirect models. 

In Indirect models, solar irradiance is forecasted by using techniques such as numerical weather 

prediction (NWP), image-based methods and hybrid artificial neural networks (ANN) (3). The 

forecasted solar irradiance is inputted to software such as TRNSYSM, PVFORM and HOMER (5) 

(3) to get the power generation forecast (3). In direct models, instead of forecasting solar 

irradiance, historical data samples of the power output and the weather data are used to 

directly forecast PV power generation. A study by Mitsuru e al. (6) implemented both indirect 

and direct methods for PV power to forecast production in a 1-day scope and concluded that 

the direct method is better (3). 

 The accuracy of the forecasting depends greatly on the forecasting horizon. Short-term 

horizons used are the following (7): 

 Intra-hour Intra-day Day Ahead 

Time range 15-120 minutes 1 to 6 hours 1 to 3 days 

Time step 30 sec to 5 min 1 hour 1 hour 

Used for 

Anticipating large 

short-term 

fluctuations 

Anticipating grid load Schedule Drafting 

Model used 
Timeseries/Total sky 

imager 
NWP/Satellite image NWP/Satellite image 

 

 PV production depends mainly on solar irradiance. Other weather parameters, like 

temperature, humidity and wind speed, are potential factors influencing production and 

subsequently potential input features to be used in a forecast, but their impact and correlation 
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with PV production depends on geographical location (3). For that reason, each of them needs 

to be examined in every case study to determine whether it should be used or not in the 

forecast. For example, wind speed does not affect PV power output when the temperature is 

very low. Solar radiation has high correlation with PV production in any weather conditions, 

even though the correlation is smaller in cloudy or rainy conditions (8). 

 It’s important to preprocess the input data, because historical data can have outlier 

values, non-stationary components due to the weather, or missing values due to recording 

errors, all of which can result in a lower forecast accuracy. Preprocessing methods include 

historical lag identification, normalization (9), trend-free time series, wavelet transform (WT) 

and self-organizing map (SOM) (3). Normalization is the most commonly used preprocessing 

method in PV production forecasting (3), and it consists of converting each of the individual data 

values into the ratio of their value divided by the difference between the maximum and 

minimum value of the data (deviation). In case of pre-processing, post-processing is also 

required before the accuracy of the forecasting model can be estimated. Most common 

methods include anti-normalization, if normalization was used in the forecasting model, (9) and 

wavelet construction, if wavelet decomposition was used. 

 PV production forecasting methods are categorized based by the way the forecast 

horizon and the data are used. Based on the forecast horizon, forecasting is divided to short-

term (1 hour up to 7 days), medium-term (one week to one month) and long-term (one month 

to one year). The forecast error increases together with the forecast horizon. Short-term 

forecasting is used for energy management and scheduling of electrical power. Medium-term 

forecasting is used for planning the power system and maintenance schedule. Long-term 

forecasting is used for planning the electricity generation. Almost all of the literature analyzed in 

this study concerns short-term forecasting. Categorization is also based on the way historical 

data of the PV output and weather data are used. This includes the persistence, statistical, 

machine-learning and hybrid method models.  

2.2 Persistence model 

 The persistence model doesn’t use weather data and equates the forecasted power 

output to the value of the previous day at the same time of that day. This model is used for 

benchmarking in order to compare other methods’ efficiency. It is used generally to forecast the 

power output for the next hour, and the model’s accuracy depends on how stable the weather 

conditions are. If the weather conditions are the same as the previous day, the power output of 

the previous day at the same time is a good indicator of the currently expected output. When 

making forecasts on a longer time range, the accuracy decreases (10). 

2.3 Statistical methods 

 These methods use statistical analysis on the data, using previous time-series data. They 

are normally used for short-term forecasting. Using more recent data as input increases the 

accuracy of the prediction.  
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 Such a method is the Autoregressive moving average (ARMA) model, which uses a 

combination of the autoregression and moving average models to forecast PV generation from a 

defined time-series. The formula for the ARMA model is the following (2): 

 

In the above formula X(t) is the forecasted PV output, adding together the AR and MA functions. 

P and q indicate the order,    is the AR coefficient,    the MA coefficient, e(t) produces random 

variables with zero mean and constant variance (white noise) (11). The reasons for this model’s 

popularity are that: 1) it adopts the Box-Jenkins method and 2) it has the ability to extract 

statistical properties (12). An extension of this model, the AR integrated MA (ARIMA), removes 

any non-stationarity from the input (13). Its disadvantage is that the time series data have to be 

stationary (14). 

 Another statistical method is the regression method, which is used to establish a 

relationship between the input and output data. In this case the weather data is considered to 

be a set of explanatory variables and the forecasted PV output is set as the dependent variable. 

The PV power forecast can be calculated with either a simple linear regression or with multiple 

linear regressions (15). Using both temperature and solar irradiance as input gives a better 

regression model than using either on its own, although the efficiency in using temperature as 

an input depends on the geographical location. In order to use this method, a mathematical 

model and a number of explanatory variables are needed. 

 The exponential smoothing method makes forecasts by smoothing time series data 

using the exponential window function, in which weights are assigned on past data and diminish 

exponentially the further they go into the past. The simple exponential smoothing method 

(EWMA) has the following formula (3): 

 

In the above formula, α is the smoothing constant, ranging from 0 to 1. An initial    value needs 

to be set by estimation to begin the iterations. EWMA is similar to the Moving Average method 

and is best used with time series that are trendless (stationary), as the forecast would show 

earlier values instead of the actual trend otherwise. 

 The physical method uses mathematical formulas and Numerical Weather Prediction 

models (NWP) that relate weather conditions to the PV production, using parameters such as 

the geographical location, the orientation of the panels and weather variables (3). This model 

can be either simple or complicated, depending on the number of weather variables it uses. It is 

more accurate in good weather. 
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2.4 Machine-learning methods 

 Machine-learning methods require a larger dataset than statistical methods in order to 

be accurate, but can make predictions using linear, non-linear and non-stationary input data.  

2.4.1 Artificial Neural Network 

 The Artificial Neural Network (ANN) is a machine learning method. It is the most 

effective method for PV production forecasting, and it is used in most research papers when the 

weather data is non-linear, as statistical methods are less accurate when there is a complicated 

non-linear bonding between the data (3). An ANN consists of input layers, hidden layers, output 

layers, connections and neurons. The input layer takes in the input information, which is 

analyzed by the hidden layer. The output layer provides the output, having received the 

analyzed results from the hidden layer. The connections link together the neurons between 

different layers, as shown in Figure 3. A neuron cell consists of the combination function, which 

adds the inputs together, and the activation function, which transfers the input in the form of an 

output. The general ANN formula is the following (16): 

 

In the above formula    is the final network output, b the bias weight, N the number of inputs, 

   the connection weight and    and the network input. 

 

Figure 3 - Basic ANN architecture (3) 

 The two basic functions of a Neural Network are Training and Testing. During Training, 

the learning algorithm tries to discover the relationship between the input and the output by 

changing the weight values of the synapses. After comparing the actual output with the 

predicted output, the error is calculated and the weight and bias values of the NN are updated 

based on that error. This is repeated until the predicted and actual output match. The final 
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output is calculated from the weight values and input data that was used for the testing, and 

varies when the input, the activation function or the architecture change. 

 The most common activation functions for PV forecasting are the Gaussian radial basis, 

the sigmoid and the hyperbolic tangent sigmoid functions (3). They are differentiable, 

continuous and non-linear (17). While most problems can be solved by single layer Neural 

Networks, when more complicated relationships are present between the input and output 

variables, other types of NN are needed, such as the Multilayer Perceptron, the Radial Basis 

function NN, the Multi-Layer Feed-Forward NN, the Recurrent Neural Network (RNN), the 

Adaptive Neuro-Fuzzy Interface Systems (ANFIS) and the General Regression Neural Network. 

 The Multilayer Perceptron Neural Network (MLPNN) is composed of one or more hidden 

layers, the number of which can be adjusted depending on how complex a problem is, although 

more than two are rarely needed (18). It is a supervised feed forward ANN (19) and it is used for 

PV power forecasting, among other applications. 

 The Radial Basis Function Neural Network has two layers and the training process is 

divided into two stages. It needs less computing time than other Neural Networks and has good 

accuracy. It is simple in structure and it is also used in PV power forecasting (20). 

 A Multi-Layer Feed-Forward Neural Network is relatively less complex than MLPNN, as 

the information is transferred from the input to the direction of the output only, without a 

feedback loop. It is used in several forecasting applications (21). 

 The Recurrent Neural Network is good for time-series data forecasting, as it is suitable 

for predicting complex relationships between input and output variables (20). It is more 

accurate than feed-forward neural networks (22). 

 Adaptive Neuro-Fuzzy Interface Systems are a type of adaptive Multi-Layer Feed-

Forward Neural Network. They are the most commonly used fuzzy system as they are 

transparent and require less computational power. Their drawback is that they require a large 

amount of data and their predictions have a tendency of overfitting. 

 The General Regression Neural Network is also effective in solving non-linear problems 

but requires a lot computational power as it grows in size. As the name suggests, it is designed 

for regression tasks. 

 The Back-propagation Neural Network is also commonly used because it can solve 

complex regression problems. It is a very accurate supervised learning algorithm (23). A 

modified version exists to fix certain limitations of its original version. 

2.4.2 Support Vector Machine (SVM) 

 SVM is a supervised machine learning method that was originally designed for 

classification, but was expanded to be used in regression problems as well. It is based on the 

structural risk minimization principle and can minimize the error of the training data by 

minimizing an upper boundary of the expected risk. 
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 Support Vector Regression (SVR) is the application of SVM in a time series regression, 

which is used in PV power forecasting (24). It maps the time series data into a higher 

dimensional feature space using non-linear mapping and then performs linear regression on 

that space (3), converting the non-linear regression to linear regression, as shown in Figure 4. 

 

Figure 4 - Converting non-linear regression to linear regression (3) 

The estimation function for SVR is as follows (25): 

                    

In the above function x is the input weather data, y is the PV power output, w is the weight 

vector and b is the bias term. These values are approximated through minimization of the 

regularized risk function (25): 

      
 

 
           

 

 
    

 

   

 

In the above,            
                      

           
  is the ε-insensitive loss function, C and ε 

are user-defined parameters,    is the real value at period I and    is its respective forecasted 

value. If the forecasted value is within the ε-tube the loss will be zero. The term  
 

 
     

measures how flat the function is.  

 The accuracy of SVR depends greatly on the choice of the kernel function and the 

corresponding parameters (9). The most common functions include: a) the linear function, 

which can only be used when the training data has only small fluctuations, b) the polynomial, 

which represents how similar the training samples are in a feature space, c) the Gaussian RBF, 

which can be used to an infinite dimensional feature space and has been extensively used for PV 

power forecasting, and d) the sigmoid function. The kernel parameters control the complexity of 

the model and set how the high dimensional feature space is structured.  For PV forecasting, the 

parameters that need to be defined in an SVR model include the tube radius ε, which 

determines the range of data which are not to be taken into account for the regression, the 

penalty C, which defines the penalties for the estimation errors, and the kernel function’s 

parameter (3). These parameters determine how accurate the model will be (3). 
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2.4.3 Hybrid Models 

 Hybrid models use of a combination of the methods like the ones described above. 

Hybrid models are more accurate as they combine the advantages of different models and 

overcome the limitations of their stand-alone versions. Hybrid models are also more accurate 

specifically in PV power forecasting. Such a model is the Fuzzy inference model with RNN (26). 

The fuzzy inference model is used to smoothen the input weather data. The hybrid fuzzy-GA 

forecasting model is also very accurate in PV power forecasting (27). Wavelet transform (WT) is 

also used in many hybrid models in order to de-noise the input data, followed by the application 

of ANN and SVM models, resulting in a minimized prediction error (28). 

 Utilizing more than one model makes the technique more complicated for the computer 

to process, increasing computational power requirements. The accuracy of the hybrid model 

depends on the performance of the consisting models. Should a consisting single model have 

inadequate performance, the total performance of the hybrid model suffers (3).  
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2.5 Research done recently on PV power forecasting 
 

Authors and 

References 

Forecast 

horizon 

Forecasting 

model 

Forecast error Year Description of contribution 

Mayer and Grof (29) Up to 48h Physical model nRMSE 16,8% 2021 Physical PV forecasting from NWP data. 

Theocharides et al. 

(30) 

1 d ahead SVR, BN, RT nRMSE 4,53%, 

MAPE 3,17% 

2021 Input features for the forecast included the historical PV 

power production, irradiance and ambient temperature, 

NWP, solar elevation and azimuth angles. 

Nespoli et al. (31) 24h 

ahead 

ANN, Hybrid ANN NMAE 1-2% for 

ANN, 2-5,3% for 

HANN in Sunny 

days 

2019 This study compared an ANN and a Hybrid ANN method, 

the first using only historical climatic and PV system 

parameters, the second also using the daily weather 

forecast. The hybrid model has better accuracy on some 

days but the results vary more. 

Soumyabrata et al 

(32) 

20 min 

ahead 

Triple exponential 

smoothing 

0,13 MAE 2018 Input features for the forecast included time-series data 

of the measured solar irradiance and the clear-sky solar 

irradiance. 

Theocharides (33) 1 d ahead ANN, SVR, RT nRMSE 0,76% 

ANN, 1,13% SVR 

and 1,33% RT 

2018 In this study, ANN outperformed SVR and RT. The input 

variables were global irradiance, ambient temperature, 

relative humidity, Azimuth, Elevation and wind direction. 

Alfadda et al. (34) 1h ahead SVR, Polynomial 

Regression and 

Lasso 

RMSE 5,3% 2017 Input features included weather conditions (sky 

condition, weather temperature, module temperature, 

solar irradiance, wind velocity, wind direction, dew point, 

relative humidity, visibility and cloud cover), power 

generated in the last few hours, as well as day and time 

information. Not all features improved accuracy. This 
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Authors and 

References 

Forecast 

horizon 

Forecasting 

model 

Forecast error Year Description of contribution 

study found SVR to be more accurate than PR and Lasso. 

Cervone et al. (35) 72 h 

ahead 

ANN and Analog 

Ensemble 

RMSE 8,66% 2017 This study presented a method combining ANN and AnEn 

which performed better than using either method 

individually. Statistical analysis was made based on 

observations of the PV solar farm output and 

atmospheric NWP model data. The analysis was done 

based on simulated solar farms. 

Grimmacia et al. (36) 1 d ahead PHANN NMAE 12,6 % 2017 This study concluded that the settings minimizing the 

NMAE were an ensemble composed of 10 trials and 120 

neurons in a single layer ANN configuration. The input 

dataset included one year of PV power output 

measurements and corresponding weather data 

including ambient temperature, global horizontal solar 

radiation wind, etc. as well as the deterministic global 

solar radiation under clear sky conditions. 

Kumar Das et al (37) 1 d ahead SVR, ANN 3,08 % nRMSE 2017 Input features used were the historical PV power output 

and corresponding meteorological data. Weather was 

categorized as either normal (clear sky) or abnormal 

(cloudy or rainy). The study concluded that the SVR 

model was more accurate than the corresponding ANN 

one. 

Theocharides et al. 

(38) 

1 d ahead ANN 0,71% nRMSE 2017 Input Variables used were the Numerical Weather 

Prediction (NWP), Satellite images and Sky images. A 

conventional Feedforward NN was designed, consisting 

of 7 inputs and 12 hidden nodes. An ensemble meta-
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Authors and 

References 

Forecast 

horizon 

Forecasting 

model 

Forecast error Year Description of contribution 

algorithm was developed based on the optimally 

identified network and was used to increase accuracy. 

Fentis et al. (39) Short-

term 

SVR RRMSE 15,23 %, 

R-squared 0,96% 

2016 Input features included samples of solar radiation every 

15 minutes and the plate temperature. Three months’ 

worth of samples were used. 

Vagropoulos et at. 

(40) 

1 d ahead 

and 

hourly 

SARIMAX, 

SARIMA, modified 

SARIMA and ANN 

 

nRMSE 12,89% 

for SARIMA, 

11,12% for 

modified SARIMA, 

10,25% for 

optimized 

combined model 

2016 The SARIMAX, SARIMA, modified SARIMA and ANN 

models were compared, using solar radiation data (real 

measurements and forecasts) obtained from a weather 

station. 

 

Wolff et al. (41) 15 min 

and 2 h 

SVR, Physical 

model 

RMSE 10,5% 2016 Input features used were the PV power measurements, 

numerical weather prediction and cloud motion data. 

Zhaoxuan Li et al. (42) 

  

15 min, 1 

h and 24 

h ahead 

ANN and SVR 15 min: ANN 

13,2% RMSE, SVR  

13,3 %, 24h: 

41,2% 

2016 Input data used were the ambient temperature, wind 

speed, wind direction, solar zenith angle (without 

atmospheric correction),  solar zenith angle, degrees 

from zenith, refracted,  cosine of solar incidence angle on 

panel, cosine refraction corrected solar zenith angle, 

solar elevation (no atmospheric correction) and the solar 

elevation angle (degrees from horizon, refracted). 

 

 

https://sciprofiles.com/profile/author/YmVpY2VYQWRxK2hkT0tpUUZuUzRVMDVEU2lGVDZ1M2RxaWg4bkZLWkRMWT0=
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Authors and 

References 

Forecast 

horizon 

Forecasting 

model 

Forecast error Year Description of contribution 

Almeida et al. (43) 1 d ahead Non–parametric 

model 

cv-Mean bias 

error (cv MBE) 

< 1.3% 

2015 A non-parametric forecasting model was developed using 

NWP data, treating the PV system as a black box. 

Chu et al. (44) 5, 10, and 

15 min 

ahead 

GA optimized 

ANN 

Minimum mean 

absolute error 

(MAE) 21.02% 

2015 This study proposed an ANN-based real-time smart 

reforecasting model, using GA optimization for better 

accuracy, to make forecasts within 1 hour and less. GA 

defined the optimized input features, the number of 

hidden layers and neurons per layer. The results showed 

that the proposed model had better results than the 

cloud tracking-based deterministic model, the ARMA 

model, and the k-nearest neighbor (kNN) model. 

De Leone (45) 1 d ahead v-SVR 11,43% MAPE 2015 Input features included the historical data on solar 

irradiance, the environmental temperature and past 

energy production. 

Dolara et al. (46) 24 h 

ahead 

Physical model Normalized MAE 

(NMAE) < 1%, and 

weighted MAE 

(WMAE) < 2% 

2015 This study proposed three physical models for forecasting 

using recorded weather data. The accuracy of the model 

depends on the calculation of the cell temperature and 

the data used for its calibration. Unlike the ANN-based 

forecasting models, it did not need a training period.  

Dolara et al. (47) 1 d ahead Physical Hybrid 

ANN 

nRMSE 4,98% on 

a sunny day, 17,9 

on an unstable 

day, 33,3 on a 

cloudy day 

2015 A Physical model and a Clear Sky Solar Radiation Model 

were combined with ANN. The theoretical Solar Radiation 

was calculated and used as input along with weather 

forecast data (Temperature, Humidity, etc). 



Solar Production Forecasting using Data Analysis and Machine Learning 

Ioannis Choustoulakis  37 

Authors and 

References 

Forecast 

horizon 

Forecasting 

model 

Forecast error Year Description of contribution 

Leva et al. (48) 24 h 

ahead 

ANN Normalized RMSE 

12,5% -36,9% 

2015 The PV forecast was made with an ANN-based model. 

The model’s performance was analyzed during several 

days of varying cloud coverage. The study showed that 

the model’s accuracy depends strictly on the pre-

processing of the input data and how accurate the input 

dataset is. 

Liu et al. (49) 24 h 

ahead 

Back-propagation 

(BP) based ANN 

model 

Mean absolute 

percentage error 

(MAPE) 7,65% 

2015  An innovative PV forecast model was developed that 

added aerosol index (AI) as an input factor. AI was used 

together with seasonal weather classification and a BP-

based ANN model to predict the PV power generation of 

the next 24h. The conclusion was that the new model 

outperformed the conventional ANN model. 

Ramsami and Oree 

(50) 

24 h 

ahead 

Stepwise 

regression, 

GRNN, FFNN, and 

MLR 

RMSE 2,74% 2015 This study used a model based on Stepwise regression to 

determine which input features had the strongest 

correlation with the PV output. Then, inputs were used in 

models using GRNN, FFNN, MLR, and their respective 

hybrid models. The stepwise regression-FFNN hybrid 

model outperformed the other models. All the hybrid 

models slightly outperformed their respective single-

stage models. 

Rana et al. (51) 30 min NN, X-Means 

algorithm, and an 

iterative 

methodology 

Mean relative 

error (MRE) 

16,92%-17,58% 

2015 Three models were developed based on ensembles of NN 

to predict the 30-min PV power generation for the next 

day. One model was iterative and two were non-iterative. 

They were compared using four yearly solar datasets. The 

iterative model was the most accurate. The ensemble NN 
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Authors and 

References 

Forecast 

horizon 

Forecasting 

model 

Forecast error Year Description of contribution 

models were also found to be more accurate than a 

single NN. 

Yang et al. (52) 1–2 h 

ahead 

Spatial and 

temporal 

correlations 

RMSE- 81.5 for 1 

h ahead and 

136.3 for 2 h 

ahead 

2015 An innovative multiple time-scale, data-driven 

forecasting model was developed, using ARX-based ST. 

Spatial and temporal correlations were made between 

neighboring solar sites. The new model outperformed the 

conventional persistence model. 

Yang et al. (53) Monthly Exponential 

Smoothing 

method with 

decompositions 

nRMSE 11,99% to 

22,35% 

2015 Input variables used included the time series of the 

Global horizontal irradiance and the cloud cover index. 

Each was tested separately. 

Zhu et al. (54) 1 d ahead Hybrid model 

(wavelet 

decomposition 

(WD) and ANN) 

RMSE 

7.193%−19.663% 

2015 A hybrid model using wavelet decomposition and ANN 

was proposed to a make forecasts using less computing 

power. Wavelet decomposition was used on recorded PV 

output data which was then used on ANN. 

A. Gandelli et al. (55) 24 h 

ahead 

Physical Hybrid 

ANN 

nRMSE 10,51% 2014 This study proposed a Physical Hybrid Artificial Neural 

Network, based on ANN and basic Physical constraints of 

the PV plant. Input variables used were the Day, Hour, 

Environmental Temperature, Wind Speed, Humidity, 

Pressure and Cloud cover. The proposed method was 

more accurate than a simple ANN. 
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Authors and 

References 

Forecast 

horizon 

Forecasting 

model 

Forecast error Year Description of contribution 

De Giorgi et al. (56) 1–24 h 

ahead 

Statistical 

methods based 

on multiple 

regression (MR) 

analysis and 

Elman ANN 

NMAE 

6,50%−19,49%, 

nRMSE 

10,91%−23,99% 

2014 In the study, multiple regression was used examining 

different input features. Elman ANN was used for 

forecasting. The model is most accurate when all weather 

data and the power output are used as input features. 

 

Junior et al. (57) 24 h 

ahead 

SVR and principal 

component 

analysis (PCA) 

RMSE 10,24% 2014 Three models were tested using past PV output data and 

SVR to make daily forecasts. Preprocessing with PCA was 

found to improve performance significantly. 

Tao and Chen (58) 24 h 

ahead 

GA-based NN Error 8.00% 2014 In this study the weights and thresholds of back-

propagation NN (BPNN) were optimized using the GA 

approach to make the model more accurate. The results 

of the model were better than the BPNN-based 

forecasting model. 

Yang et al. (59) 1 d ahead SOM, learning 

vector 

quantization 

(LVQ), SVR, and 

fuzzy inference 

MRE 3,295% 2014 A hybrid forecasting model based on meteorological data 

was proposed in this study. Historical data was 

categorized using SOM and LVQ based on the weather. 

The model was trained using SVR. Sub-models were 

chosen using fuzzy inference. The results of the new 

model were more accurate than those of the simple SVR 

and ANN. 
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Authors and 

References 

Forecast 

horizon 

Forecasting 

model 

Forecast error Year Description of contribution 

Yantig et al. (60) 1 d ahead ARMAX MAPE 38,88% for 

training data and 

82,69 for 

validation data 

2014 The proposed model is based on ARIMA and uses 

temperature, precipitation, insolation duration and 

humidity. It does not use a forecast for solar irradiance. 

Dong (61) 5 to 60 

min 

Exponential 

Smoothing 

method 

nRMSE 26,5% for 

5 min 49,5% for 

60 min  

2013 This study proposed a Fourier trend model along with a 

KPSS test. 

Haque et al. (62) 1 d ahead WT, fuzzy 

ARTMAP (FA), 

and firefly (FF) 

MAPE 

3.38%−11.83%, 

nRMSE 

12.11%−13.13% 

2013 A hybrid model for PV power forecasting was proposed, 

making a daily forecast based on meteorological data in 

which a seasonal classification was performed. WT was 

used to filter out the outlier values in the data. FA was 

used for forecasting, and firefly was used for 

optimization. 

Tuyishimire et al. (63) 1 d ahead Kalman predictor N/A 2013 A model was proposed based on real-time forecasting 

from a multiple-rate Kalman predictor. This model 

applied statistical analysis on historical data. One model 

provided steady-state variance and a second provided 

transient-following capability. 

Yona et al. (64) 24 h 

ahead 

Fuzzy theory (FT) 

and NN 

Maximum MAE 

2,76 kW 

2013 Models using FT and RNN were proposed for forecasting 

in this study. The forecasted solar irradiance and weather 

data were used. FT used irradiance forecast data to 

smoothen the RNN training stage. 

Mandal et al. (65) 1 h ahead WT and RBFNN MAPE 2,38% 

(sunny day) and 

2012 A forecasting model was proposed combining RBFNN and 

WT. The correlation between solar irradiance, 
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4,08% (cloudy 

day) 

temperature and PV output was calculated. WT was used 

to remove the outliers in the time-series of the PV output 

and weather. RBFNN tracked the nonlinearity of PV 

power data. The proposed model was more accurate 

than the single RBFNN, although it was not as accurate 

for rainy days. 

Mori and Takahashi 

(66) 

24 h 

ahead 

Hybrid Method 

(generalized RBF 

network, 

Deterministic 

annealing, and 

evolutionary 

particle swarm 

optimization 

(EPSO)) 

Maximum error 

0,228 pu 

2012 In this study, the center and width of the RBF was 

calculated in a GRBFN using DA. Because the data was 

non-linear, a weight decay technique was used to avoid 

overfitting. Evolutionary particle swarm optimization was 

used for selecting the optimal neuron weights in GRBFN. 

GRBFN was applied for forecasting. The model 

outperformed the MLP, RBFN, and GRBFN and other ANN 

models. 

Pedro and Coimbra 

(67) 

1 h and 2 

h ahead 

ANNs optimized 

by GA (GAs/ANN) 

nRMSE 13,07% 

for 1 h and 

18,71% for 2 h 

ahead 

2012 Five models were compared using ARIMA, persistent, 

ANN, ANN optimized by GA and kNN. Input features 

outside the system, like solar radiation telemetry, were 

not used. ANN models had the best accuracy, particularly 

GAs/ANN. All the models’ performance was heavily 

affected by the seasonality of the solar irradiance. 

Shi et al. (68) 1 d ahead Weather 

classification and 

SVM 

MRE 8,64% 2012 A forecasting model was proposed using SVM and 

weather classification. Four SVM sub-models were 

created, each for a different classification of the weather 

conditions.  
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Authors and 

References 

Forecast 

horizon 

Forecasting 

model 

Forecast error Year Description of contribution 

Xu et al. (69) 1 h ahead Similar day 

selection 

algorithm and 

weighted SVM 

(WSVM) 

Mean square 

error (MSE) 

21,8 

2012 The proposed forecasting model used weighted SVM. 

Five days which were the most similar to the day ahead 

were used for the training, using the similarities to set 

the weights for the weighted SVM. The model was shown 

to outperform the ANN. 

Chen et al. (70) 24 h 

ahead 

SOM and RBFNN MAPE 

8,29%−10,80% 

(sunny day) 

2011 This study proposed a model using RBFNN for 

forecasting. The accuracy of the model depended on 

cloud cover conditions, for which classification was made 

using SOM. This model had good accuracy in forecasting 

in sunny and cloudy days and acceptable accuracy in 

rainy days. 

Chupong and 

Plangklang (71) 

1 d ahead Elman NN MAPE 16,83% 2011 A PV forecasting model using Elman NN. Used as inputs 

of this model were the calculated solar irradiance in 

sunny weather and the predicted meteorological data. 

Solar radiation was calculated instead of measured due 

to lower cost. 

Cococcioni et al. (72) 24 h 

ahead 

Time series 

analysis and feed-

forward NN 

(FFNN) with 

tapped delay 

lines 

MAPE < 5,0% 2011 A model for daily forecast was proposed based on an 

ANN with tapped delay lines. This model used a NARX 

time-series analysis model and had good performance 

during experimentation. 
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Authors and 

References 

Forecast 

horizon 

Forecasting 

model 

Forecast error Year Description of contribution 

Ding et al. (73) 24 h 

ahead 

ANN and similar 

day selection 

algorithm 

MAPE 10,06% 

(sunny day) and 

18,89% (rainy 

day) 

2011 An ANN model based on an improved BP learning 

algorithm was proposed in this study to overcome the 

shortcomings of the standard BP learning algorithm, 

which has slow convergence and a tendency to fall into 

the local minimum. The technique does not need 

complex modeling or complex calculations. The Similar 

day selection algorithm was used to improve 

performance. 

Kang et al. (74) 24 h 

ahead 

K-means 

clustering 

method 

MAPE 11% 2011 This study used at the first stage the K-means clustering 

method. Analysis and classification were performed on 

weather data concerning the chance of rain. The data 

was then used in a forecasting model to make 

predictions. In order to monitor cloud coverage, the use 

of a camera was recommended.  
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2.6 Conclusions 

The following conclusions were made: 

 According to the gathered literature, machine learning methods outperform statistical 

methods in general.  

 Variations of Neural Networks are the most popular method, followed by SVR and 

hybrid models. 

 The best performance was displayed by ANN in certain papers, although in others ANN 

methods performed poorly. 

 Most forecasts in literature are generally short-term, usually ranging from less than an 

hour up to one day.  

 The effectiveness of a model greatly varies with the weather. Sunny weather gives much 

better accuracy in several cases. 

 The usage of different weather data greatly varies in literature. Some researchers rely 

solely on historical production data and others utilize parameters such as cloud 

coverage or temperature to make forecasts. It was concluded that, for the purposes of 

this research, different sets of input features needed to be tested to determine the best 

performance, because, in the literature, there was no conclusion of particular variables 

being helpful in every case. 
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Chapter 3: Review of PV Fault detection methods 

3.1 Introduction 

In this chapter the methods for detecting faults in Solar Cells are examined. Each section 

describes the way a method works and the type of faults that can be detected by it. Applications 

of each method in recent research have been investigated and explained. 

Section 3.2 describes the visual method for detecting faults, which primarily includes 

detecting a failure by manual observation. Procedure standards, detectable fault types and 

shortcomings of the method are explained. 

Section 3.3 describes the methods based on analyzing the electrical characteristics of PV 

installations. This includes MBDM, RDM, Electrical I-V measurement, OSA, PLA and CDI. Each 

method is explained along with related diagrams and the basic formulas each method uses. The 

results of related research are discussed.  

Section 3.4 describes imaging techniques, including Thermal/IR, Ultrasonic, 

Electroluminescence and Lock in Thermography.  

Section 3.5 analyses methods based on artificial intelligence, which analyze sensor data 

to detect failures. This includes Machine learning methods, such as SVM, and Deep Learning 

methods, such as Convolutional Neural Networks (CNN).  

Section 3.6 describes Device-based methods, and the specialized devices that exist to 

diagnose different types of failures.  

Section 3.7 describes methods using real-time sensors connected to computer software 

to detect a possible failure before it occurs.  

Section 3.8 describes hybrid techniques, combining a number of methods described in 

the previous sections.  

Section 3.9 lists the conclusions reached from this chapter. 

3.2 Visual method 

 Visual inspections are the first step for fault detection in order to determine whether 

further tests are needed. They are usually conducted regularly (75). A checklist for the visual 

inspection of fielded modules has been developed by NREL/IEA and the US Department of 

Energy (76). IEC-61215 standards (International Electrotechnical Commission, 1987) state that 

the inspection should be conducted at 1000 lux and from different angles to avoid reflections, as 

they can give defective images (77). Faults that can be detected this way include discoloration, 

bubbles, burning marks, delamination, browning, cracked glass or cells, dirt point, loose wiring 

or wiring exposed to damage, rusted or corroded interconnections, snail tails and damaged 

pieces, as well as soiling by e.g. snow or fallen leaves (78). The shortcoming of visual inspection 

is that it depends on human capabilities, which can be unreliable. Also, faults may be detected 

too late (75). Visual inspections also include shade analysis, which can be performed by tools 
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like the Solmetric Suneye and can detect possible mismatch issues due to e.g.new trees growing 

or new buildings constructed (79). 

3.3 Electrical Characteristics Methods 

3.3.1 Model-Based Difference Measurement (MBDM) 

 PV modeling emulates virtually the real-time operating characteristics of a PV system 

(4). MBDM works by comparing real-time parameters with the results predicted in the model, in 

order to detect faults in the system (80). Real-time output parameters like the operating voltage 

and current change during faulty operation (81). Theoretical parameters are calculated using 

real-time measurements of irradiance and temperature, which are compared to the actual 

measured parameters, in order to detect faults. The most commonly used models are the single 

diode (SD) and double diode (DD) models (82) (83) (84). The accuracy of the model depends on 

the accuracy of the method used for the extraction of the model parameters (85) (86) (87). The 

procedure is displayed on Figure 5.  

 A number of techniques based on MBDM have been developed. A method for automatic 

failure detection in units connected to the grid was developed by Chine et al. (88), which was 

based on MBDM. The method compared the forecasted power ratio with the power ratio 

measured in real-time. The difference between the two was utilized to calculate the absolute 

power ratio error (APRE) to perform fault detection. Kymakis et al. (89)  used the error in Rc and 

Rv in order to detect whether there is an inverter fault, a string fault or a general fault. The 

string current was divided by the AC power and the result was used to find the location of the 

fault. Also, Silvestre et al. (90) used the difference between the real-time system losses and the 

ones predicted by the model in order to detect faults, and compared the real with the predicted 

DC current and DC voltage to distinguish between shading faults and other system faults. 

Davarifar et al. (91) used only the difference between the actual and the forecasted power as a 

parameter for detecting open circuit faults, hotspots and ground faults, utilizing a Wald test to 

prevent false positives. The faults were diagnosed using a flash test device that can inspect I-V 

and P-V curves. 

 

Figure 5 - MBDM-based fault detection (80) 
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3.3.2. Real-time difference measurement (RDM) 

 RDM detects faults by comparing real-time values with their threshold limits (4). The 

threshold limits are set by using either PV modeling or real-time experimentations. It is similar 

to MBDM, but doesn’t need a real-time PV model to detect faults. RDM detects faults more 

quickly than MBDM, which is important in order to isolate and repair faulty panels in time (4). 

The accuracy of the threshold limits determine how accurate RDM is. The limits are set based on 

a PV model, so the accuracy of the model determines the accuracy of RDM. A diagram of the 

procedure is displayed on Figure 6. 

 Shimakage et al. (92) used three ways to detect faults using RDM: 1) By measuring the 

AC output power and comparing it with the threshold limit, 2) By calculating the difference in 

power between the present and previous instant and 3) By calculating the performance ratio 

and comparing it with the previous instant. The most critical is the third way as the performance 

ratio has a strong correlation with the environmental variations (93). Fault detection is needed if 

the output power of the PV system has more than 6% loss (92) (94). Xu et al (95) developed a 

method for detecting shading faults. In this method the module voltages as well as the current 

between particular groups of panels were measured using several sensors. The momentary 

difference between current and voltage values was used as the detection criteria. The severity 

of faults was measured using a three-level alarm system. 

 

Figure 6 - RDM for fault detection (4) 

 

3.3.3 Electrical current–voltage (I-V) Measurement 

 Electrical I-V measurements are usually done at the PV strings, as the PV array generally 

has several parallel PV strings connecting at the junction box which can be measured 

individually (75). The voltage and current of the string output is checked at the junction box to 

detect faults such as disconnection or degradation, as such faults reduce the string output 

power or affect the string I-V curve (96). The actual location of the fault cannot be determined 

using methods like I-V or Voc measurement (97), so a method for automatic fault detection was 
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developed, which compared the measured I-V characteristics of the string with its 

characteristics under various fault cases. Miwa et al. (98) determined the (-dI/DV)-V 

characteristic using the I-V characteristics. The peak appearance of the calculated characteristics 

was used to detect the partial shadow phenomenon (75). The values of series resistances, shunt 

resistances (Rs and Rsh) and fill factor (FF) were calculated from the I-V characteristics and then 

used to estimate the performance of the PV system (99). The fill factor is determined by the 

formula below: 

 

3.3.4 Output Signal Analysis (OSA)  

OSA methods analyze the output signal on the time domain to detect faults. They can 

detect various faults, including shade faults, short-circuit faults and ground faults (81), but are 

primarily used for detecting arc faults. Failures in the PV system can be detected by the terminal 

output characteristics, especially when distortions appear in the output current and voltage (4). 

This is possible regardless of the environmental conditions. Threshold limits are calculated and 

fault check is performed when they are exceeded (80). Oscillations and distortions in the voltage 

and current waveforms can indicate arcing faults. The anomalies can be detected in the 

waveform by using Fast Fourier Transforms (FFT). A diagram of the procedure is displayed on 

Figure 7. 

 

Figure 7 - OSA method for fault detection (4) 

Zhao et al. (100) used OSA to analyze the output current signal of a PV string to detect 

outliers (101). The outlier detection rules that were tested included the Three Sigma Rule, 

Hampel Identifier and Box Plot Rule. Box Plot Rule was found to be the most accurate in 

detecting faults for all operating conditions. A quantitative approach based on Local Outlier 

Factor (LOF) was proposed to improve accuracy in outlier detection so that line to line faults can 

be detected (102) (103). This helped to filter out false positives that occur when basic statistical 

outlier rules are used. 
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3.3.5 Power loss analysis (PLA)  

This method analyzes power losses in the system to detect and classify faults (75). Real-

time PV system behavior is simulated by using climate data and PV system parameters 

calculated from monitored data. The simulated data are compared to the monitored data in 

order to detect power losses in the system and determine the type of a fault. A method to 

automatically monitor and detect faults based on PLA has been developed (75). The method 

defined two indicators, the current ratio and the voltage ratio, to compare the monitored DC 

variables with the corresponding simulated values. The ratios are calculated as follows: 

 

The method was proven effective in detecting partial shading faults, faulty modules and 

strings, aging and MPPT errors (104). Another method includes comparing real-time monitored 

data with the simulated values, analyzing the DC current and voltage losses and comparing them 

with defined error thresholds to classify an error (90). Madeti and Singh (105) proposed a fault 

detection technique which analyzes the values at the terminals in order to determine 

inconsistencies on faulty PV strings and their corresponding array. The algorithm of the 

approach compared the monitored values with the voltage of a healthy PV string in order to 

detect unhealthy strings and faulty modules. The method embeds voltage sensors in key 

locations instead of using current sensors. The method was proven to be effective. 

3.3.6 Climatic Data Independent (CDI)  

The most commonly used CDI methods are the time domain reflector (TDR) and the 

earth capacitor measurement (ECM) (75). As the name implies, CDI methods do not use climate 

data (such as solar irradiance, temperature, humidity and wind speed) for fault detection. PV 

circuit parameters are measured with devices like the LCR meter (inductance (L), capacitance (C) 

and resistance (R)). In TDR, faults like the increase of the series resistance between modules and 

PV string positions are detected by the delay between the injected and the reflected signal in 

waveform changes. It measures the electrical characteristics of the transmission line to locate 

faults and impedance change from degradation (106). TDR should be used in set time intervals 

to detect array degradation. Takashima et al. (107) did experimental work using TDR. A different 

study by Takashima et al. (97) used ECM to detect the location where the PV string was 

disconnected. The location of the disconnected module n in a string of M modules can be 

approximated by the following formula: 

 

In the above    is the normal string capacitance and    is the capacitance of the defective 

string. ECM was to be used when the inspection was complete. Vergura et al. (108) developed a 

statistical method based on analysis of variance (ANOVA) and non-parametric Kruskale Wallis 
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(KW) (105). The method analyses the behavior of the individual parts of the PV system to detect 

faults and abnormal operation. 

3.4 Imaging Techniques 

3.4.1 Infrared (IR) or thermal imaging 

In Infrared (IR) or thermal imaging, an infrared camera scans the PV array during 

operation. It measures differences in temperature on the surfaces of cells and modules, which 

can be the result of failures such as interconnection failures, module wiring failures, hot spots 

from internal short circuits, defective bypass diodes, change in the series resistance value, snail 

trails, cell mismatch and cell cracks (75). Localized heat generation can be due to shunted cells, 

poor contacts and short circuits. Also, when PV cells are connected in series, cells generating 

less power than others become reverse biased, act as a resistor and dissipate heat (105). 

Thermal imaging is divided into forward bias (FBI) and reverse bias (RBI). In FBI the PV module is 

connected to a power supply in a forward biased condition. Then a current twice as large as the 

short circuit current of the module (which is defined by the manufacturer) is passed through the 

module, causing it to heat up. Then, images are captured with an IR camera and future image 

processing is performed to detect and classify failures. This method reliably detects faults like 

hot spot, loose connections and increases in series resistance. In RBI, the procedure is the same 

but the power supply is in reversed biased condition, which can help detect ohmic shunts (105). 

Thermal imaging is better for inspecting large PV installations, and is often used in 

combination with unmanned aerial vehicles (UAVs) (78).  Aerial IR thermography costs more, 

but it is more accurate in assessing the performance of PV panels (109). Methods combining 

thermal imaging and visual cameras have been developed, and they are cheaper and more 

reliable than other methods (110). Thermal imaging is also used in most PV panel manufacturing 

processes to detect potential issues (111). Automated procedures for fault detection and 

classification (FDC) using thermal imaging have been proposed (112). Aerial thermal images 

have some issues confirming when a failure is actually detected or not from a visual perspective. 

There are also image quality issues caused by UAV altitude, observation angle and velocity (113). 

Vergura et al. (114) and Guerriero et al. (115) researched FDC using thermal imaging, 

where an IR camera captures images that are processed to locate and classify failures. Vergura 

et al. calculate the mean value and deviation of the temperature for each cell and classify cells 

based on their temperature mean in order to detect faulty cells. Guerriero et al. used thermal 

gradient analysis and developed a method to recognize the edges of PV modules by spotting 

sharp differences between the temperatures of the metal frame and the nearby solar cells. 

Aspects that affected the performance of FDC using this method were the positioning of the IR 

camera, the distance from the PV array and the overlapping between consecutive pictures (75).  

 3.4.2 Ultrasonic Inspection 

This method analyses ultrasonic vibrations that follow an excitation, in order to detect 

cracks and micro-cracks in the cells of a PV-module (105). It can detect unbounded cells and is 
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also used during the production phase to detect voids and de-bonded lamination structures 

(75). The PV module is scanned with a moving ultrasonic transducer along with the X-Y indicator. 

There are two types of ultrasonic inspection, the pulse-echo method and the transmission 

method. 

In the pulse-echo method the PV module is scanned with ultrasonic pulses and the 

defects reflected back are recorded. This provides the location of a defect in all three 

dimensions and determines the causes of the degradation (75). This method can detect 

debonding of cells (105) and it is the most commonly used for this purpose.  

The transmission method entails recording the attenuated ultrasonic signal. This 

method can also detect the size and location of a defect. Hund and King (116) proposed a failure 

analysis of PV modules which had field exposure for a long time. The study helped to identify 

the causes of module degradation.  Both methods are shown in Figure 8. 

 

Figure 8 - Ultrasonic inspection methods (75) 

3.4.3 Electroluminescence Imaging 

In Electroluminescence imaging (EL imaging), ramped voltage is injected to the module 

and the resulting electroluminescence shows any defects. It is based on recording the photons 

emitted when excited carriers recombine into a PV cell (117). This can also be achieved by a 

radiation emission over the PV cell, where the light comes from photoluminescence (PL) (118). 

The larger the density of the current and the lifetime of the carrier, the more intense the 

emission of the EL images is. For that reason, it is used frequently for failure analysis (105).  It 

can reveal non-uniform current, broken gates, small cracks and differences in conversion 

efficiency between cells. In the case of a crack in a cell, the image appears dark and it doesn’t 

extend through the whole cell. It is a costly method and cannot be conducted while the module 

is in operation (75). The steps in EL analysis are displayed in Figure 9. 
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Figure 9 - Electroluminescence analysis (75) 

3.4.4 Lock in Thermography (LIT) 

In lock-in thermography the PV cells are checked for power loss (75). An excitation 

device together with a power supply inject pulse current in the PV module. Cells with defected 

shunts heat up from the current and then located using a thermographic camera. Alternations in 

the duration or magnitude of the electric pulses can help detect different types of shunt defects. 

This method detects small defects (119) and is generally not performed on modules while in 

operation. The test is performed either in the dark or under illumination (105). 

3.5 Artificial Intelligence Methods 

3.5.1 Machine Learning (ML)  

Machine learning is commonly included in FDC for PV systems. This includes diagnosis 

and predictive diagnosis. Predictive modeling includes a) Data preparation, b) Training, c) 

Results post-processing and d) Validation (120). The steps are shown in more detail in Figure 10. 

 

Figure 10 - Flow diagram for setting up a ML predictive model (120) 

The type of the training model needed depends on how complex to problem is (121). 

Theoretically, an accurate predictive model must have training and testing data from the same 

probability distribution, but that is not possible in real-life applications (120). Machine learning 
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models are divided into a) Conventional ML, b) Advanced deep learning and c) Recent-

knowledge driven methods like TL or GANs. All methods use different learning principles, like 

reinforcement learning, hybrid and ensemble. The classification is shown in Figure 11. 

Conventional ML predictive models are created aiming to make the closest achievable 

approximation between the inputs and the outputs. They have ordinary representation and they 

have no deeper nonlinear abstractions. Such models are the Multilayer Perceptron (MLP), the 

Support Vector Machine (SVM) and the K-nearest Neighbor (KNN) (122). PV condition 

monitoring using conventional ML is divided to ordinary sensor-based and image acquisition-

based (120). 

Ordinary sensors include I-V, P-V, radiation and temperature sensors, and they are 

popular in applications with conventional ML for PV condition monitoring. For example, a 

Probabilistic Neural Network (PNN) was developed to detect irregular operating conditions 

(123). I-V signals from the DC converter were used to detect if they deviate when compared 

with previously recorded values. Learning data was collected from a simulation model. This 

study (123) analyzed four types of short-circuit fault modes. 

 

Figure 11 - ML tools classification (120) 

Conventional ML for image acquisition requires analysis on larger datasets than the 

ones based used on ordinary sensor analysis. Few studies have been made on the use of 

conventional ML for higher dimensional image processing (120). Ali et al. (124) proposed the use 

of infrared thermographic images to detect degradation and shading faults from hotspots on PV 

modules. Several methods for extracting features have been proposed to get cleaner data. Data 

preprocessing includes image processing patterns, like RGB, texture, local binary pattern (LBP) 

and Oriented Gradient Histogram (OGH). SVM has shown the best results in this study (124). 

3.5.2 Deep Learning (DL)  

Deep learning (DL) is a type of Machine Learning with focus on representations and 

feature mappings. The representations become more meaningful as the improved feature space 

enlarges (120). Fault detection and diagnosis (FDD) using big data becomes more effective and 
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automated using the representation learning ability of DL (125). Its effectiveness relies on the 

mathematical tool used as well as the process models of the plant (126). Deep networks extract 

abstract and high-level features from the input data. The results become more accurate when 

the effective feature representation in the data is extracted (124). 

Convolutional Neural Networks (CNN) are composed of a convolutional layer, a pooling 

layer and a fully connected layer (127), as shown in Figure 12. In the convolutional layer, 

features from the input data are extracted, matrix element multiplication is added to them in 

the perceptual field and then the deviation is added (128). The extraction of local spatial 

correlation features in the input data depends on the size of the convolution kernel, and can 

enhance the features of the signal and reduce the noise (127). The pooling layer reduces the 

spatial size of the convolved feature. It uses dimensionality reduction schemes to decrease the 

computational power needed and it can also extract relevant features that have no variation in 

rotation or in position, so it can train the model effectively (129). A fully connected layer can be 

added to train the model in non-linear combinations of the high-level features. Using CNN in 

fault diagnosis has the benefit that the data comes from many sources (130), as CNN inputs can 

be spectrograms (131), images (132) or time series (133). Another benefit is that the extracted 

CNN input has translation invariance (134) which is important for the generalization of the 

algorithm as complex systems can have high temperatures and magnetic interference (125). 

 

Figure 12 - Architecture of a CNN (125) 

In Recurrent Neural Networks (RNN), the nodes are linked in a chain and the input 

features are time series (135). RNNs use previous states of the network in order to learn 

sequences that change over time (136). Popular RNNs include Gated Recurrent Unit (GRU) 

networks and Long Short-Term Memory networks (LSTM) (125), which are designed for long 

sequence prediction, as RNN itself has a length limit (137). Gates allow the recurrent units to 

learn how different time scales are dependent, in order to avoid long-term dependence (138). 

The benefit of the RNN in PV fault detection is that it is capable of making predictions for 

dynamic systems, as the input features are time-series and the depth is proportionate to the 

input length (125). Also, the sampling in PV systems varies in length; the predictions need to be 

unaffected by that; RNN has that advantage (125). Another benefit is that RNN can properly 

work with dynamic non-linear systems because it is Turing complete (125). 

Stacked Auto Encoder networks are neural networks with multiple hidden layers, which 

are stacked together (139). The layers’ inputs and outputs are connected in chain (140). 
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Networks consist of: 1) An encoder, which converts the input into the hidden layer 

representation, and 2) a decoder, which turns the representation back into an input (125). 

These networks use multiple nonlinear mappings to calculate higher order input representations 

(141). Their advantages for PV fault diagnosis include: 1) That they are capable of processing 1D 

signals like the data from PV systems, 2) that they are capable of unsupervised training needed 

for unlabeled PV data and 3) that SAE networks’ layer-chaining way of operation can deal with 

high order nonlinear input without dispersing the deep network (125). 

Deep Belief Networks (DBN) are models composed of 1) multiple hidden layers within 

Restricted Boltzmann Machines (RBM) (which are networks composed of a visible and a hidden 

layer) as well as 2) an output layer. An RBM has independent activation conditions 1) for each 

hidden layer, when features are inputted, as well as 2) for the visible layers, when the hidden 

state is inputted (142). An RBM uses an energy function to show the high order interaction 

between variables (125). A DBN in PV fault diagnostics has the benefit that it can predict 

probability distributions without restrictive assumptions. It is also capable of simulating 

nonlinear systems with multiple variables as it uses feature grouping sequences for activation 

value sets. Finally, it is capable of generating more samples, in case the number of samples is 

limited, because it uses unsupervised learning. 

3.6 Device-based Techniques 

There are several standard devices for protection and fault detection in PV systems. 

Each can detect specific types of faults and has its own advantages and disadvantages. 

Ground Fault Detector Interrupters (GFDI) analyze the DC rating of the inverter and can 

detect single and double ground faults. They are cheap and easy to implement but they are 

sensitive to leakage currents and are unable to see blind spots (4). 

Overcurrent protective devices (OCPD) analyze the current rating of a PV string and can 

detect double ground faults and line-to-line faults. They are also cheap and operate passively, 

but they are only effective for grounded PV units and do not respond fast enough to dangerous 

fault currents (4). 

A Residual Current Device (RCD) analyzes both the current and the voltage of a PV string 

or array to measure residual current. It can detect single ground faults. Unlike OCPD, it can 

operate in ungrounded PV systems as well as grounded ones, and it is also sensitive to high 

impedance faults. Its disadvantages include that it can exhibit false positives due to external 

noise, it is only accurate when combined with a GFDI, and it also consists a shock hazard (4). 

Insulation monitoring devices measure insulation resistance based on the rated voltage 

of the PV array. It can detect double ground faults. They are reliable and can perform tests 

during the night as well as during the day. However, the insulation resistance can vary with the 

environmental conditions and any inverters and fuses need to be isolated to be tested in 

grounded systems (4).  
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Arc fault detector (AFD) and Arc Fault Circuit Interrupter (AFCI) devices analyze the 

waveform of the output current and voltage. They can reliably detect series arc faults and 

protect a PV unit against them. They cannot, however, detect parallel arcs, and can show false 

positives due to interference from the converter switching (4). 

Earth capacitor measurement (ECM) is a technique that analyzes capacitance to detect 

open circuit faults. It is accurate and doesn’t depend on the level of solar irradiance to work but 

the PV system needs to be offline for the experiment to be performed. A Line checker can also 

detect open circuit faults without the need for the unit to go offline. However, it is more time 

consuming (4). 

3.7 Predictive Maintenance through Real-time Sensors 

Predictive maintenance through real-time sensors is the most accurate and most costly 

fault detection method (78). In this case, fault detection is performed through real time sensors, 

which can also be wireless (143). Proposed systems used sensors to measure temperature 

(ambient and on the module), solar irradiance, open circuit voltage, short-circuit current, fill 

factor and panel efficiency (78), (144), (143). The sensors that are used include the 

thermocouple for temperature, pyranometer for irradiance, shunt resistor for current, and 

voltage divider for voltage (78). The use of the sensors gives a global view of the PV system and 

a view of the way the inverter interacts when a shadow is present. Software used included 

Visual Basic (144) and LabVIEW (145). A PV analyzer must be used, like the Solmetric I-V curve 

tracer. An Arduino can be used as a PV analyzer with similar results (146). FDD algorithms are 

also used, which compare a number of parameters with the limits observed in a healthy system, 

in order to detect partial and total loss of productivity (90). A system for FDD using wireless 

sensors has also been proposed (147) which analyzes the data in MATLAB, allowing efficiency 

optimization. 

3.8 Hybrid detection techniques (HDT) 

Hybrid detection methods are a combination of two separate methods and are 

developed to increase accuracy, reduce demands in computing power, give the ability to tell 

between two different failures with the same signature, and detect when more than one fault 

occurs at once. 

Chine et al. (148) proposed a combination of RDM with MLT for fault detection. When 

failures with unique fault signatures were detected, RDM was used, and when failures sharing 

the same signature were detected, MLT using ANN was used. Hu et al (149) developed a model 

using energy balance with the conventional cell model to correlate the electrical and thermal 

properties of a system. The ITH method was used to make the hybrid model. The model was 

used to measure panel temperature in order to make predictions. The criterion to detect a fault 

was how much     changed among different panels. Kase and Nishikawa (150) used ITH to 

locate hotspots and injected reverse DC bias voltage in the PV string to detect open circuit 

failures. Yi and Etemadi (151) used SVM to detect line to line faults, combining OSA and MLT. 

https://solar.huawei.com/en-GB/download?p=%2F-%2Fmedia%2FSolar%2Fnews%2Fwhitepaper%2FAFCI-whitepaper.pdf
https://solar.huawei.com/en-GB/download?p=%2F-%2Fmedia%2FSolar%2Fnews%2Fwhitepaper%2FAFCI-whitepaper.pdf
https://solar.huawei.com/en-GB/download?p=%2F-%2Fmedia%2FSolar%2Fnews%2Fwhitepaper%2FAFCI-whitepaper.pdf
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MSD wavelet packets were used for the SVM training stage. The method did not detect 

accurately line to line faults that had less than 20% mismatch level (4). 

3.9 Conclusions 
 The conclusions reached in this chapter were the following: 

 Visual inspections are useful as a preliminary test to determine whether further testing 

is needed. 

 Electrical Characteristics measurements detect open and short-circuit faults, hotspots, 

ground faults, arc faults, shade faults and aging errors. 

 Imaging methods can detect cracks and micro-cracks, interconnection and wiring 

failures, hotspots, increase in series resistance, defective bypass diodes, non-uniform 

current and differences in conversion efficiency between cells. 

 Machine learning uses data collected from both imaging and electrical measurements 

and can detect both failures that have already occurred and failures that can occur in 

the future. 

 Specialized devices exist to detect specific types of failures. 
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Chapter 4: Proposed methodology 

4.1 Intro 

In this chapter, the proposed methodology for this research is explained. A program was 

developed in Python to perform forecasting using collected data from historical energy 

production and weather data. The models used were the Decision Tree, SVM, Linear Regression, 

and two hybrid models using a combination of the above. 

In section 4.2, the way the selected models work is explained. The related theory is 

analyzed with the appropriate examples, diagrams and formulas. 

In section 4.3, the method of pre-processing the data is explained step-by-step. The data 

needed to be filtered of some measurement errors and formatted appropriately in order to be 

usable by the machine learning models. 

In section 4.4, the correlation between the available data and the measured power 

output is examined in order to assess which variables will be useful as input features during the 

testing. 

In section 4.5, conclusions are made on the preliminary analysis of the data and 

reasoning is provided for the selection of the models. 

The proposed methodology can be summarized in the following flow diagram: 

 

Figure 13 - Flow Chart of the Proposed methodology 

4.2 Utilized ML models 

4.2.1 Decision trees 

Decision trees are a supervised learning method (152). It can be applied for regression, 

as is the case in this study, as well as classification tasks. It is based on the idea of partitioning a 
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complex decision into multiple simpler decisions. It uses a structure similar to a tree in the steps 

performed to make decisions. The tree is composed of nodes. At the root node, all data is 

included. In each following internal node, a binary decision is made to split the data between 

different classes or groups of classes. In the case of a regression task the split is made so that 

the data in the separate classes will have the minimum deviation from the mean value in their 

respective class (153). This is repeated until the terminal, “leaf” nodes are reached, which 

represent the final separate classes. In the case of regression, leaf nodes are defined by the 

number of training samples at the node. This is the top-down approach. In order to optimize the 

cost function, a bottom-up approach and a hybrid approach can also be used. 

Decision trees assume that the relationship between the input and output variables is 

either linear or non-linear. This method is suitable for handling non-linear relationships. The 

inputs that possess the most information are used for the classification and the rest are 

rejected. As such, only a small amount of inputs is used in the procedure. The size of the tree 

needs to be carefully adjusted to avoid over-fitting as well as under-fitting. In order to avoid 

overfitting, pruning is also performed to reduce the variance of the output variable (153). 

The tree structure also makes the output easy to interpret, unlike the output of Neural 

Networks. The trees can also be visualized. The input does not need standardization or 

extensive preparation, although the input may need to be balanced or it can result in biased 

predictions (152). It can be used for problems that have multiple dependent variables. The 

results can be tested using statistics. On the negative side, decision trees are sensitive to small 

variations in the data, producing very different trees a result of such variations. They are also 

unsuited for extrapolating as their predictions are not continuous. Decision trees are best used 

in an ensemble as they are not reliable in calculating the optimal tree on their own.  

 

Figure 14 - Over-fitting in decision tree regression as seen in the green line (152) 

4.2.2 Support Vector Machines 

Support Vector Machines are also a supervised learning method for classification, 

regression and outlier detection. It is based on the concept that each class must have the 
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maximum possible distance from the rest.  When used for regression, it is called Support Vector 

Regression (SVR) (154). SVR is a machine learning method in which a model learns the 

importance of a variable by defining the relationship between the input features and the 

dependent variable (155). Depending on the kernel function used, it can be linear or non-linear 

(154). Linear kernel functions for SVR are like support vector machines, but use an 

approximation tolerance margin (ε). 

 

Figure 15 - Support Vector Linear Regression (154) 

The kernel function for linear SVR is: 

        

Where y is the input space, w.x is the vector product and b is a constant. The error function is: 
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The figure and the kernel for non-linear vector regression are presented below: 

 

Figure 16 Support Vector Non-Linear Regression (154) 
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With the limitations:        
       

         
    

SVM is effective in high dimensional spaces as well as in cases where the samples are 

fewer than the dimensions. Out of all the training points, it only uses the support vectors, so it 

uses less memory than other algorithms. There is a tendency for over-fitting when there are 

more inputs than samples, which requires fine-tuning in choosing kernel functions and 

regularization to compensate (156). 

4.2.3 Linear regression 

Linear regression uses the Least Squares method to minimize the error in the correlation 

between the inputs with the output in a linear relationship. A number of coefficients are used 

for that purpose (157). The general concept of a linear model is expressed in the following 

equation: 

                       

where y is the output,    are the inputs and    the coefficients. In linear regression using the 

Least Squares method, the aim is to minimize the following function: 

             
  

 

Figure 17 – Simple Linear Regression (157) 

Linear regression models, like decision trees, can be trained quickly and are easy to 

interpret (158). The input features’ deviation affects the model’s accuracy, and the output 

variable needs to follow Gaussian distribution in relation to each input feature. This model 

cannot handle non-linear relationships between input and output variables. Categorical 

variables need to be converted to binary or constant in order to be used in linear regression. The 

coefficients assume the inputs are independent from each other; if they are correlated the 

results would deviate greatly due to random errors (157). It is also required that the variables 

are continuous with no significant outliers. 
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4.3 Data pre-processing 
The weather and energy production data received required some pre-processing to be 

used in forecasting. The meter measuring the production data presented errors which resulted 

in missing values in the data, and in two cases that extended to a range of several months. 

Another error resulted in some values in a particular date to repeat twice for specific times. In 

the original dataset, negative production values due to reverse power flow were present, as the 

meters are connected to the grid. Also, due to noise from the grid, non-zero values were present 

at night, which do not represent actual energy production and therefore needed to be trimmed 

out. The weather data had also some individual missing values. Another issue was that the 

weather data were given in hourly values, while the production data were given in values with 

10-minute intervals. 

 

Figure 18 - PV production data before pre-processing 

 

Figure 19 PV production data after pre-processing 

The biggest gaps in production data were too large to fill in, so their respective time 

ranges were omitted from this analysis. However, the timing is checked for hourly consistency in 

the code, so in order to omit the time range with the missing values, the data was split into two 

parts, which were pre-processed separately and then joined together at the end of the 

procedure. 
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for i in range(89222): # Seperate the part before the missing values 

    pvdata1.append(pvdata[i]) 

for j in range(112310, len(pvdata)): # Separate the part after the 

missing values 

    pvdata2.append(pvdata[j]) 

 

The gaps that last only a few days were filled in with the average value between the 

next and the previous week at the same hour and day of each value. In one case, where the gap 

lasted 16 days, the average value between the previous and the next month was used. The gaps 

appeared as a set of days with zero energy production and were manually detected, as 

automatic detection could potentially fill in values where there was actually no actual 

production. As such, large ranges in which data was to be filled were defined manually in the 

code:  

if datetime.datetime.fromisoformat('2019-09-09 00:00:00') >= 

datetime.datetime.fromtimestamp(time.mktime(bhour[i][0])) >= 

datetime.datetime.fromisoformat('2019-08-23 00:00:00') and correctingpv 

== 1: # If specific dates with known missing values match, use the 

average data from the previous and next month 

                

bhournew.append([(datetime.datetime.fromtimestamp(time.mktime(bho

ur[i][0]))).timetuple(),(bhour[i-30*24][1]+bhour[i+30*24][1])/2]) 

 

elif datetime.datetime.fromisoformat('2018-08-27 00:00:00') >= 

datetime.datetime.fromtimestamp(time.mktime(bhour[i][0])) >= 

datetime.datetime.fromisoformat('2018-08-22 00:00:00') and correctingpv 

== 1: # If specific dates with known missing values match, use the 

average data from the previous and next week 

                

bhournew.append([(datetime.datetime.fromtimestamp(time.mktime(bho

ur[i][0]))).timetuple(),(bhour[i-7*24][1]+bhour[i+7*24][1])/2]) 

 

elif datetime.datetime.fromisoformat('2021-05-09 00:00:00') >= 

datetime.datetime.fromtimestamp(time.mktime(bhour[i][0])) >= 

datetime.datetime.fromisoformat('2021-05-05 00:00:00') and correctingpv 

== 1: # If specific dates with known missing values match, use the 

average data from the previous and next week 

                

bhournew.append([(datetime.datetime.fromtimestamp(time.mktime(bho

ur[i][0]))).timetuple(),(bhour[i-7*24][1]+bhour[i+7*24][1])/2]) 

 

Any zero values besides those manually detected as abnormal were treated as normal. 

However, there were also missing time ranges in smaller ranges, in which the entire timestamp 

was missing and there was no value at all for a particular time. In order to correct that, the 

dataset was initially converted from 10-minute intervals to hourly values - which was necessary 

anyway because the timestamps need to match with the weather data. To perform the 
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conversion, all 10-minute values of a particular hour are added together and divided by the 

amount of values they consist of. Normally that would be six, but the code was designed to 

calculate the average with less in case a number of values was missing. This way individual 10-

minute values are compensated for in case they are missing. 

for i in range(len(btime)-1): # Omit the last element of the list to 

solve the out of index on btime[i+1] error 

hourlyproduction += buildingdata[i][2] 

hourcounter += 1 # Some elements are missing, not always 6 per 

hour, so they are counted to calculate Wh 

    if btime[i].tm_hour != btime[i+1].tm_hour: 

       currenthour = list(btime[i]) 

       currenthour[4] = 0 # Set the timestamp minutes to zero 

       currenthour[5] = 0 # Set the timestamp seconds to zero 

               

bhourly.append([time.struct_time(tuple(currenthour)),hourly

production/hourcounter]) 

       hourcounter = 0 

       hourlyproduction = 0 

 

Afterwards the entire dataset is checked for coherence. Every single value must have 

the previous hour as its previous value and the next hour as its next value. If this is not the case, 

the value is filled in, if the gap is smaller than 24 hours. Otherwise, the code will display an error, 

allowing the user to manually handle the issue: 

if ((datetime.datetime.fromtimestamp(time.mktime(bhour[i+1][0])) - 

datetime.datetime.fromtimestamp(time.mktime(bhour[i][0])))  > 

datetime.timedelta(days=1)): 

     print('Error, missing values!', bhour[i][0]) 

     print(bhour[i][0], 'is where the value is missing') 

     sys.exit("Error message") 

 

In case it is smaller than 24 hours, there are two ways to handle it: 

A) If the current time is the same as the previous time and the next time is two hours later, 

that means the gap only appears because of the Daylight-Savings Time and the way 

Python handles it, so it should be left as is. 

if bhour[i][0] == bhour[i-1][0] and 

((datetime.datetime.fromtimestamp(time.mktime(bhour[i][0])) - 

datetime.datetime.fromtimestamp(time.mktime(bhour[i+1][0]))) == 

datetime.timedelta(hours=2)): 

 

bhournew.append([(datetime.datetime.fromtimestamp(time.mktime(bhour[

i][0])) + datetime.timedelta(hours=1)).timetuple(),bhour[i][1]]) 
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B) If A) is not the case, each missing value is filled with the average between the value 

appearing 24 hours before and 24 hours after. This is repeated until there is no gap 

between the current and the next timestamp. 

if ((datetime.datetime.fromtimestamp(time.mktime(bhour[i+1][0])) - 

datetime.datetime.fromtimestamp(time.mktime(bhour[i][0])))  > 

datetime.timedelta(hours=2)): 

hours_missing = 

datetime.datetime.fromtimestamp(time.mktime(bhour[i+1][0])) - 

datetime.datetime.fromtimestamp(time.mktime(bhour[i][0])) - 

datetime.timedelta(hours=1) 

counter1 = 0 

bhournew.append(bhour[i]) 

while hours_missing > datetime.timedelta(hours=0): 

fillervalue = 

[(datetime.datetime.fromtimestamp(time.mktime(bhour[i][0])) 

+ 

datetime.timedelta(hours=1+counter1)).timetuple(),(bhour[i-

24+counter1][1]+bhour[i+24+counter1][1])/2] 

       bhournew.append(fillervalue)  

       counter1 += 1 

       hours_missing -= datetime.timedelta(hours=1) 

 

In the original dataset, cleanup was also performed for non-zero values at night as well 

as negative values. An updated dataset was provided later on which had performed this clean-

up beforehand: 
 

for i in range(len(pv)): 

if pv[i][2] < 0: 

pv[i][2] = -pv[i][2] # Retrieve absolute power values to 

correct reverse power flow values 

if pv[i][2] < 100 and ( pvtime[i].tm_hour > 17 or  

pvtime[i].tm_hour < 7 ): 

pv[i][2] = 0 # Eliminates noise - Power produced after 5pm 

and before 7am less than 100 Watt is set to zero 

 

 

The weather data did not have missing timestamps, only individual NaN values at 

specific times, which were filled using the value of the previous hour: 
 

if np.isnan(weatdata[i][j]): 

    weatdata[i][j] = weatdata[i-1][j] 

 

The time range of the weather data did not overlap entirely with that of the PV 

production data. Only the time range existing in both datasets could be used. So, for each of the 

PV datasets, a weather dataset was selected with the same time range: 
 



Solar Production Forecasting using Data Analysis and Machine Learning 

Ioannis Choustoulakis  66 

def keepmatchingdatesonly(pvhour,wdata): # Keep only the data for each 

set corresponding to the same dates and times 

     

    pvcommondata = [] 

    wcommondata = [] 

    lateststart = 0 

    earliestfinish = 0 

lateststart = 

max(time.mktime(pvhour[1][0]),time.mktime(wdata[1][0])) 

earliestfinish = min(time.mktime(pvhour[-1][0]),time.mktime(wdata[-

1][0])) 

 

    for i in range(len(pvhour)): 

        if earliestfinish >= time.mktime(pvhour[i][0]) >= lateststart: 

            pvcommondata.append(pvhour[i]) 

    for i in range(len(wdata)): 

        if earliestfinish >= time.mktime(wdata[i][0]) >= lateststart: 

            wcommondata.append(wdata[i]) 

    return pvcommondata, wcommondata 

 

# Get weather timestamps 

weatherdata1 = weatherdata 

weatherdata2 = weatherdata 

 

# Keep only the common dates among all data sets 

pvhourly1, weatherdata1 = keepmatchingdatesonly(pvhourly1, 

weatherdata1) 

pvhourly2, weatherdata2 = keepmatchingdatesonly(pvhourly2, 

weatherdata2) 

 

A detail which was important to the processing of the data was the way the time and 

date was stored. The timestamp data was converted to a time structure in order to process it 

further. The weather data did not have time zone information while the PV production data did, 

which presented an incompatibility between the two. It was assumed that the weather data had 

the same time zone as the production data, +01:00. As such, the timestamps for the weather 

were imported using: 
 

wtimestring = str(int(weatdata[i][0])) + "+01:00" 

weatdata[i][0] = 

datetime.datetime.strptime(wtimestring,"%Y%m%d%H%M%z").timetuple() 

 

And the production data were imported using: 
 

btime.append(datetime.datetime.strptime(btimestring,"%Y-%m-

%dT%H:%M:%S%z").timetuple()) 
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In order to prepare the input features for the prediction process, the timestamps of the 

weather data were cross-referenced with the production data to ensure the input of each value 

corresponds to the same timestamp for both sets. If a mismatch is detected, the program stops 

displaying an error, showing the time where the mismatch was detected. The input features that 

were prepared included humidity, wind speed, cloud cover, solar radiation, time, day of the 

month, month, season, hour and weekday. 

if pvhourly[i][0] == weatherdata[i][0]: 

    try: # Will raise an error when trying the time when DST starts, 

ignore that value -will omit a (erroneous) value of the original index 

wvalues2humid.append(weatherdata[i][2])  

wvalues3wind.append(weatherdata[i][3]) 

wvalues4cloud.append(weatherdata[i][4]) 

wvalues5rad.append(weatherdata[i][5]) 

             

     datesinstring.append(time.strftime('%Y-%m-%d %H:%M:%S', 

pvhourly[i][0])) 

      day.append(time.strftime('%d', pvhourly[i][0])) 

      month.append(time.strftime('%m', pvhourly[i][0])) 

            # Season 

      if 3 > int(time.strftime('%m', pvhourly[i][0])) >= 6: 

          season.append(2) #Spring 

      elif 6 > int(time.strftime('%m', pvhourly[i][0])) >= 9: 

          season.append(1) #Summer 

      elif 9 > int(time.strftime('%m', pvhourly[i][0])) >= 12: 

          season.append(3) #Autumn 

      else: 

          season.append(4) #Winter 

      year.append(time.strftime('%Y', pvhourly[i][0])) 

      hour.append(time.strftime('%H', pvhourly[i][0])) 

      weekday.append(time.strftime('%w', pvhourly[i][0])) 

      pvvalues.append(pvhourly[i][1]) 

             

      wvalues1temp.append(weatherdata[i][1]) 

else: 

      print("Error: Date mismatch") 

      print(pvhourly[i][0]) 
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The pre-processing methodology can be summarized in the following flow diagram:  

 

Figure 20 - Pre-processing methodology flow chart 

4.4 Investigating input feature correlations 

Autocorrelation was tested in the energy production data using the following script: 

plt.figure(3) 

plt.title("Autocorrelation of PV energy production") 

plt.acorr(pvvalues,maxlags=10) 

 

 

Figure 21 Autocorrelation of PV energy production 
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It was observed that autocorrelation is over 0,5 for up to 4 lags/hours. As such, up to 4 

hours lag elements were to be investigated as possible input features for the forecasting. 

In order to select which input features should be used for prediction, the correlation of 

each with the output variable should be checked. The following code was used to draw a 

correlation matrix: 

correlation_mat = data.corr() 

ax = sns.heatmap(correlation_mat, annot = True,fmt='.2f') 

ax.figure.subplots_adjust(left = 0.3, bottom = 0.3) 

plt.show() 
 

The result was the following: 

 

Figure 22 - Correlation matrix of the available variables 

 

For a more aimed analysis at the PV output, the numpy command corrcoef was used. 

So, for example, the following command: 

 np.corrcoef(wvalues1temp,pvvalues)[0, 1] 
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was used to calculate the correlation between the ambient temperature and PV energy output. 

The following results were retrieved: 

Temperature-PV Production Correlation 0,436661 

Humidity-PV Production Correlation -0,6306 

Wind Speed-PV Production Correlation 0,527246 

Cloud Cover-PV Production Correlation -0,09673 

Solar radiation-PV Production Correlation 0,85641 

Solar radiation – Previous hour 0,89107 

Solar radiation – 2 hours before 0,82966 

Solar radiation – 3 hours before 0,69894 

Solar radiation – 4 hours before 0,52197 

Solar radiation – 5 hours before 0,32232 

 

It was observed from these results that cloud cover has next to zero correlation so it 

should not be used for predictions. The Temperature also appears to be poorly correlated to PV 

output in this case study. Solar radiation, as expected, has very high correlation with the output.  

Time series decomposition was also performed to identify trend and seasonal 

components on the PV production data. 

seasonalpv = stm.tsa.seasonal.seasonal_decompose(pvvalues, 

period=24*30) # Monthly intervals 

statsmodels.tsa.seasonal.DecomposeResult.plot(seasonalpv, 

observed=True, seasonal=True, trend=True, resid=True, weights=False) 

 

 

Figure 23 - Time series decomposition of PV production data 
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It was observed that the displayed trend was actually a seasonal loop throughout each 

year. Production peaks during summertime and is reduced in winter. It was concluded that the 

categorical features of Season and Month should be included in the input variables that were to 

be tested. Season was also tested, derived from the Month of the Year; for example, 

measurements with Month values 4, 5 and 6 (April, May and June) were assigned a Season value 

of “Spring”. The Hour of the day, ranging from 0 to 23, was also used as an input feature. 

The Hour and Month features were tested both as an integer and as a categorical 

feature using OneHotEnconder. 

4.5 Conclusions 
Decision Tree, SVR and Linear regression were selected for this research for several 

reasons. An important factor was the well-supported tools available in scikit-learn which provide 

the ability to use those models reliably. Another factor was the large range of hyperparameters 

of the Decision Tree and SVR, which provided the ability to optimize the results. 

While publications utilizing a form of ANN were common in literature, research utilizing 

Decision Trees and Linear Regression was uncommon. Testing their efficiency against the more 

commonly used SVR was deemed to contribute to a subject less explored in literature. 

Another factor was the need to test the linearity of the problem that is being 

investigated. From a physics standpoint, the relation between direct solar radiation and PV 

power output could theoretically be linear. If other input features are added, that would 

change. SVM can operate both in a linear and a non-linear kernel. Decision Tree is a non-linear 

algorithm, while Linear Regression is linear. Different tests comparing all three models can 

ensure an optimal model is found both for the eventuality of the problem being linear and 

otherwise. An ensemble of a linear and a non-linear model can potentially tackle a problem that 

contains both linear and non-linear components. 

Radiation data of the previous hours showed a very high correlation with the energy 

output. This is supported by the fact that the production autocorrelation was high for up to 4 

hours before. This led to the conclusion that the solar radiation values of the past 4 to 5 hours 

must be examined in the test. Cloud cover had almost zero correlation and was excluded from 

testing. 

The time series decomposition displayed a seasonal factor that determined that 

elements of the timestamp, such as month or season, must be included as input features. 
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Chapter 5: Results 

5.1 Introduction 

In this chapter, the series of tests performed in this research is reported and 

commented on. 

In section 5.2, a series of tests is performed to determine the best set of input features 

for each model. The performance of each model in each case is displayed using different 

indicators. 

In section 5.3, tests were performed to optimize the hyperparameters of each model. 

The optimization was performed first manually, reporting the accuracy of each model and 

selecting the best set by hand. Afterwards it was performed automatically, with the help of the 

GridSearchCV function of the scikit-learn tools. 

In section 5.4, tests using the best parameters are repeated using a smaller test set and 

the results are compared with those of the models using the larger dataset. 

In section 5.5, the collected results are discussed and conclusions are made. 

5.2 Input feature optimization 

Three error values were used to assess the results: Root Mean Square Error (RMSE), mean 

absolute error (MAE), and the coefficient of determination (   or R2). Using scikit-learn, there 

were two ways to calculate R2: Either using sklearn.metrics.r2_score, or using the “score” 

method of the individual prediction models, such as sklearn.tree.DecisionTreeRegressor.score. 

Both results are included here as they sometimes varied significantly. The metrics result is 

referred to as R2 1 and the result from the individual models is referred to as R2 2. The methods 

that were used for the first tests were:  

1) A Decision Tree Regression model with squared error criterion, maximum depth of the 

tree set to 15, the minimum number of samples required to split an internal node set to 

4 and the minimum number of samples required to be at a leaf node set to 1. The rest of 

the values were set at default. 

2) A Support Vector Regression model with C (Regularization parameter) set to 20, epsilon 

set to 0,1 and a linear kernel. 

3) A Linear Regression model. 

For the models 2 and 3 the input features were normalized using StandardScaler. The 

available data was divided to a train set and a test set. For the first part of the testing, the train 

set was comprised of all the data except the final week (168 hourly values). The final week was 

used as a test set. The results are presented below. 
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Using Solar Radiation alone as an input feature: 

 
Decision Tree Method 

 
SVR 

 

Linear 

Regression 

RMSE 13453 W 

 

12236 W 

 

20874 W 

MAE 6511 W 

 

6047 W 

 

13661 W 

R2 1 0,767 

 

0,686 

 

0,698 

R2 2 0,780 

 

0,818 

 

0,470 

 

Using Solar Radiation and Temperature as input features: 

 
Decision Tree Method 

 
SVR 

 

Linear 

Regression 

RMSE 17636 Wh 

 

12236 Wh 

 

20696 Wh 

MAE 7472 Wh 

 

6047 Wh 

 

13661 Wh 

R2 1 0,708 

 

0,686 

 

0,702 

R2 2 0,622 

 

0,818 

 

0,480 

 

It is observed that using Temperature as an input feature makes the results of the 

Decision Tree much worse, does not affect SVR and very marginally improves Linear Regression. 

Therefore, it was concluded that it should not be used for the tests that followed. 

Using Solar Radiation and Humidity as input features: 

 
Decision Tree Method 

 
SVR 

 

Linear 

Regression 

RMSE 19755 Wh 

 

12236 Wh 

 

20401 Wh 

MAE 8569 Wh 

 

6047 Wh 

 

14491 Wh 

R2 1 0,351 

 

0,686 

 

0,701 

R2 2 0,526 

 

0,818 

 

0,494 

 

Similar to Temperature, Humidity is not helpful for the forecasting. This is not out of the 

ordinary, as the literature states the correlation of weather data with PV production varies 

depending on the case study. 

 

Using Solar Radiation and Wind as input features: 

 
Decision Tree Method 

 
SVR 

 

Linear 

Regression 

RMSE 21576 Wh 

 

12235 Wh 

 

22144 Wh 

MAE 9442 Wh 

 

6056 Wh 

 

14483 Wh 

R2 1 0,414 

 

0,686 

 

0,672 

R2 2 0,435 

 

0,818 

 

0,404 
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Similar to the previous weather data, it reduces the accuracy of the models. 

 

Using Solar Radiation for the current and previous hour: 

 
Decision Tree Method 

 
SVR 

 

Linear 

Regression 

RMSE 13986 Wh 

 

9771 Wh 

 

19925 Wh 

MAE 5905 Wh 

 

4864 Wh 

 

13331 Wh 

R2 1 0,843 

 

0,812 

 

0,749 

R2 2 0,762 

 

0,884 

 

0,518 

 

While the Radiation of the previous hour does not affect the Decision Tree significantly, 

it considerably improves the results of the other models. This is expected from the correlation 

values. As such, this variable was included in all following tests. 

 

Using Radiation for the current hour, 1 hour and 2 hours before: 

 
Decision Tree Method 

 
SVR 

 

Linear 

Regression 

RMSE 10628 Wh 

 

9913 Wh 

 

20070 Wh 

MAE 4505 Wh 

 

5086 Wh 

 

13338 Wh 

R2 1 0,888 

 

0,807 

 

0,744 

R2 2 0,863 

 

0,881 

 

0,511 

 

This time the Decision Tree model is improved while the other two models have slightly 

reduced accuracy. Still the improvement is considerable so the variable was included. 

 

Using Radiation for the current hour, 1, 2 and 3 hours before: 

 

Decision 

Tree 

Method 
 

SVR 
 

Linear 

Regression 

 

SVR & Linear 

 

Dec. Tree & 

SVR 

RMSE 10225 Wh 

 

9770 Wh 

 

20059 Wh 

 

9378 Wh 

 

7847 Wh 

MAE 4155 Wh 

 

4985 Wh 

 

13331 Wh 

 

5410 Wh 

 

3753 Wh 

R2 1 0,891 

 

0,814 

 

0,747 

 

0,838 

 

0,912 

R2 2 0,873 

 

0,884 

 

0,511 

 

-0,238 

 

-0,238 

 

At this point the ensembles using a combination of the original models were also used, 

initially using equal weights. Using the radiation data from 3 hours ago also appears to improve 
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accuracy. The ensemble of the Decision Tree model and the SVR model greatly outperformed 

the rest of the models. 

Using Radiation for the current hour, 1, 2, 3 and 4 hours before: 

 

Decision 

Tree 

Method 
 

SVR 
 

Linear 

Regression 

 

SVR & Linear 

 

Dec. Tree & 

SVR 

RMSE 9778 Wh 

 

9619 Wh 

 

20226 Wh 

 

9040 Wh 

 

6497 Wh 

MAE 4293 Wh 

 

4946 Wh 

 

13642 Wh 

 

5457 Wh 

 

3253 Wh 

R2 1 0,919 

 

0,822 

 

0,751 

 

0,853 

 

0,948 

R2 2 0,884 

 

0,888 

 

0,503 

 

-0,224 

 

-0,238 

 

Adding more of the previous hours’ radiation as features further improves all models’ 

accuracy except for Linear Regression. 

Using Radiation for the current hour, 1, 2, 3, 4 and 5 hours before: 

 

Decision 

Tree 

Method 
 

SVR 
 

Linear 

Regression 

 

SVR & Linear 

 

Dec. Tree & 

SVR 

RMSE 8849 Wh 

 

9640 Wh 

 

20762 Wh 

 

9008 Wh 

 

6063 Wh 

MAE 3920 Wh 

 

4999 Wh 

 

14441 Wh 

 

5725 Wh 

 

3144 Wh 

R2 1 0,932 

 

0,822 

 

0,746 

 

0,856 

 

0,954 

R2 2 0,905 

 

0,887 

 

0,476 

 

-0,207 

 

-0,238 

 

Using Radiation for the current hour, as well as 1 to 6 hours before: 

 

Decision 

Tree 

Method 
 

SVR 
 

Linear 

Regression 

 

SVR & Linear 

 

Dec. Tree & 

SVR 

RMSE 9055 Wh 

 

9641 Wh 

 

21331 Wh 

 

9197 Wh 

 

6844 Wh 

MAE 4021 Wh 

 

4999 Wh 

 

15110 Wh 

 

6040 Wh 

 

3428 Wh 

R2 1 0,924 

 

0,822 

 

0,736 

 

0,851 

 

0,939 

R2 2 0,9 

 

0,887 

 

0,447 

 

-0,193 

 

-0,238 

 

Using the radiation value for 6 hours before as an input feature decreased the accuracy, 

unlike the hours after it. As such, only the first 5 hours before the current time were used for 

further tests.  

 

Using Radiation for the current hour, as well as 1 to 4 hours before, as well as Hour of the day as 

a categorical feature: 
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Decision 

Tree 

Method 

 

 
SVR 

 

Linear 

Regression 

 

SVR & Linear 

 

Dec. Tree & 

SVR 

RMSE 8792 Wh  

 

11444 Wh 

 

Error 

 

11712 Wh 

 

9486 Wh 

MAE 3975 Wh  

 

5947 Wh 

 

Error 

 

6429 Wh 

 

4793 Wh 

R2 1 0,929  

 

0,873 

 

0 

 

0,870 

 

0,914 

R2 2 0,906  

 

0,841 

 

Error 

 

Error 

 

0,071 

 

In this test, the Hour was added as a categorical feature, converted into a sparse matrix 

using OneHotEncoder. Linear regression displayed erroneous 12-digit numbers for results which 

were deemed not to have any meaning. The R2 2 value of the Linear & Decision Tree ensemble 

model had the same error. Compared to the model using the same data except the Hour, this 

model shows improved accuracy for the decision tree model but greatly reduced accuracy for 

the Ensemble, which greatly outperformed the Decision Tree in the previous test. 

Using Radiation for the current hour, as well as 1 to 4 hours before, plus Hour of the day and 

Month of the year as categorical features: 

 

Decision 

Tree 

Method 
 

SVR 
 

Linear 

Regression 

 

SVR & Linear 

 

Dec. Tree & 

SVR 

RMSE 8795 Wh 

 

11444 Wh 

 

Error 

 

11712 Wh 

 

9489 Wh 

MAE 3992 Wh 

 

5947 Wh 

 

Error 

 

6429 Wh 

 

4801 Wh 

R2 1 0,929 

 

0,873 

 

0 

 

0,870 

 

0,914 

R2 2 0,906 

 

0,841 

 

Error 

 

Error 

 

0,071 

 

Adding the Month as a categorical feature changes the results negligibly compared with 

the previous test. 

Using Radiation for the current hour, as well as 1 to 5 hours before, plus Hour of the day and 

Month of the year as categorical features: 

 

Decision 

Tree 

Method 
 

SVR 
 

Linear 

Regression 

 

SVR & Linear 

 

Dec. Tree & 

SVR 

RMSE 8504 Wh 

 

11443 Wh 

 

Error 

 

11710 Wh 

 

9321 Wh 

MAE 3745 Wh 

 

5946 Wh 

 

Error 

 

6429 Wh 

 

4722 Wh 

R2 1 0,932 

 

0,873 

 

0 

 

0,870 

 

0,916 

R2 2 0,912 

 

0,841 

 

Error 

 

Error 

 

0,071 
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Consistently with the previous test, the addition of the Hour and Month improve the 

Decision Tree model but decrease the accuracy of the ensembles. Adding the data from 5 hours 

before improves only the Decision Tree model by a considerable amount. 

Season was also tested as a feature. However, only the Decision tree displayed any 

results at all when both the Season and the Hour were used as categorical features.  

Using Radiation for the current hour, as well as 1 to 4 hours before, plus Hour and Season as 

categorical features, declaring Season using string data: 

 

Decision 

Tree 

Method 
 

SVR 
 

Linear 

Regression 

 

SVR & Linear 

 

Dec. Tree & 

SVR 

RMSE 8366 Wh 

 

Error 

 

Error 

 

Error 

 

Error 

MAE 3810 Wh 

 

Error 

 

Error 

 

Error 

 

Error 

R2 1 0,925 

 

Error 

 

Error 

 

Error 

 

Error 

R2 2 0,915 

 

Error 

 

Error 

 

Error 

 

Error 

 

Using Radiation for the current hour, as well as 1 to 5 hours before plus Hour and Season as 

categorical features, declaring Season using string data: 

 

Decision 

Tree 

Method 
 

SVR 
 

Linear 

Regression 

 

SVR & Linear 

 

Dec. Tree & 

SVR 

RMSE 9102 Wh 

 

11443 Wh 

 

Error 

 

Error 

 

Error 

MAE 4087 Wh 

 

5946 Wh 

 

Error 

 

Error 

 

Error 

R2 1 0,917 

 

0,873 

 

0 

 

Error 

 

Error 

R2 2 0,899 

 

0,841 

 

Error 

 

Error 

 

Error 

 

Adding the fifth hour, unlike in the previous tests, decreased the model’s accuracy. For 

that reason, it was not used in the next test. 

Using Radiation for the current hour, as well as 1 to 5 hours before, plus Hour and Season as 

categorical features, declaring Season as an integer: 

 

Decision 

Tree 

Method 
 

SVR 
 

Linear 

Regression 

 

SVR & Linear 

 

Dec. Tree & 

SVR 

RMSE 8599 Wh 

 

Error 

 

Error 

 

Error 

 

Error 

MAE 3894 Wh 

 

Error 

 

Error 

 

Error 

 

Error 

R2 1 0,921 

 

Error 

 

Error 

 

Error 

 

Error 

R2 2 0,910 

 

Error 

 

Error 

 

Error 

 

Error 
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The results also had decreased accuracy compared to when Season was declared as a 

string. 

These tests were performed again, testing different hyperparameters for the models. 

The decision tree was set to have a max depth of 22 and min_leaf of 20, leaving other 

parameters the same. SVR was set with C=30. Using radiation at the current time and up to 2 

hours before as input features, the results were the following: 

 

Decision 

Tree 

Method 
 

SVR 
 

Linear 

Regression 

 

SVR & Linear 

 

Dec. Tree & 

SVR 

RMSE 9159 Wh 

 

9783 Wh 

 

20066 Wh 

 

9516 Wh 

 

6827 Wh 

MAE 3981 Wh 

 

5007 Wh 

 

13338 Wh 

 

5465 Wh 

 

3401 Wh 

R2 1 0,925 

 

0,815 

 

0,744 

 

0,832 

 

0,94 

R2 2 0,898 

 

0,883 

 

0,510 

 

-0,244 

 

-0,260 

 

It is observed that increasing C to 30 in SVR increases accuracy, while reducing it to 10 in 

an individual test reduced it. The Decision Tree model also increased in accuracy using the new 

parameters when compared to the test that used the same input features. 

Using the new hyperparameters and, radiation for the current hour, as well as 1 to 3 hours 

before as input features: 

 

Decision 

Tree 

Method 
 

SVR 
 

Linear 

Regression 

 

SVR & Linear 

 

Dec. Tree & 

SVR 

RMSE 8662 Wh 

 

9602 Wh 

 

20059 Wh 

 

9303 Wh 

 

6683 Wh 

MAE 3856 Wh 

 

4882 Wh 

 

13331 Wh 

 

5361 Wh 

 

3359 Wh 

R2 1 0,930 

 

0,824 

 

0,747 

 

0,842 

 

0,942 

R2 2 0,909 

 

0,888 

 

0,511 

 

-0,238 

 

-0,260 

 

The SVR and Ensemble models can be compared in the following graphs, with orange 

representing the real values and blue representing the predicted values. 
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Figure 24 SVR Prediction vs Real values using radiation for the current hour, as well as 1 to 3 hours before as input 

features 

 

Figure 25 Decision Tree and SVR Ensemble Prediction vs Real values using radiation for the current hour, as well as 

1 to 3 hours before as input features 

Accuracy is also increased using this set of features. 

Using radiation for the current hour and 1 to 4 hours before as input features: 
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Decision 

Tree 

Method 
 

SVR 
 

Linear 

Regression 

 

SVR & Linear 

 

Dec. Tree & 

SVR 

RMSE 8072 Wh 

 

9481 Wh 

 

20226 Wh 

 

8981 Wh 

 

6788 Wh 

MAE 3749 Wh 

 

4864 Wh 

 

13642 Wh 

 

5423 Wh 

 

3405 Wh 

R2 1 0,936 

 

0,83 

 

0,751 

 

0,856 

 

0,938 

R2 2 0,921 

 

0,891 

 

0,503 

 

-0,224 

 

-0,260 

 

During this test, it was observed that while the individual models keep increasing in 

accuracy with the new parameters, the ensemble model of the Decision Tree and SVR, which 

outperforms the rest, actually reduces in accuracy, both compared to the test that used less 

features and the test that used the same features with different hyperparameters. 

Using as input features: Radiation for the current hour and 1 to 3 hours before, Hour of the day 

as integer: 

 

Decision 

Tree 

Method 
 

SVR 
 

Linear 

Regression 

 

SVR & Linear 

 

Dec. Tree & 

SVR 

RMSE 9163 Wh 

 

9602 Wh 

 

20060 Wh 

 

9303 Wh 

 

6647 Wh 

MAE 4178 Wh 

 

4882 Wh 

 

13331 Wh 

 

5362 Wh 

 

3324 Wh 

R2 1 0,924 

 

0,824 

 

0,747 

 

0,842 

 

0,943 

R2 2 0,898 

 

0,888 

 

0,511 

 

-0,237 

 

-0,260 

 

Adding the hour of the day as an integer reduces the precision of the decision tree but 

marginally improves the ensemble. 

 

Using as input features the Radiation for the current hour and 1 to 3 hours before, Hour and 

Month as integers: 

 

Decision 

Tree 

Method 
 

SVR 
 

Linear 

Regression 

 

SVR & Linear 

 

Dec. Tree & 

SVR 

RMSE 9098 Wh 

 

9602 Wh 

 

20031 Wh 

 

9327 Wh 

 

6941 Wh 

MAE 3859 Wh 

 

4882 Wh 

 

13331 Wh 

 

4859 Wh 

 

3500 Wh 

R2 1 0,922 

 

0,824 

 

0,748 

 

0,841 

 

0,937 

R2 2 0,899 

 

0,888 

 

0,513 

 

-0,192 

 

-0,277 

 

Inversely, adding the Month as an integer decreases the accuracy of the ensemble and 

improves the decision tree. 
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Using as input features the Radiation for the current hour, and 1 to 3 hours before and Month as 

categorical using a sparse matrix: 

 

Decision 

Tree 

Method 
 

SVR 
 

Linear 

Regression 

 

SVR & Linear 

 

Dec. Tree & 

SVR 

RMSE 8566 Wh 

 

9583 Wh 

 

20876 Wh 

 

9244 Wh 

 

6979 Wh 

MAE 3898 Wh 

 

4892 Wh 

 

13331 Wh 

 

5643 Wh 

 

3626 Wh 

R2 1 0,927 

 

0,826 

 

0,742 

 

0,849 

 

0,934 

R2 2 0,911 

 

0,888 

 

0,471 

 

-0,264 

 

-0,265 

 

Similarly to its use as an integer, Month marginally improves the singular models and 

reduces the accuracy of the ensemble. 

 

Using as input features the Radiation for the current hour, and 1 to 3 hours before, and Hour as 

categorical: 

 

Decision 

Tree 

Method 
 

SVR 
 

Linear 

Regression 

 

SVR & Linear 

 

Dec. Tree & SVR 

RMSE 8449 Wh 

 

11800 Wh 

 

Error 

 

11885 Wh 

 

9422 Wh 

MAE 3811 Wh 

 

6079 Wh 

 

Error 

 

6497 Wh 

 

4748 Wh 

R2 1 0,933 

 

0,868 

 

0 

 

0,867 

 

0,915 

R2 2 0,913 

 

0,831 

 

Error 

 

Error 

 

0,230 

 

Inversely from when it was used as an integer, Hour marginally improves the decision 

tree and reduces the performance of the rest of the models. The same occurred with the 

previous hyperparameters. 

 

Using as input features the Radiation for the current hour and 1 to 3 hours before, and Season 

as categorical: 

 

Decision 

Tree 

Method 
 

SVR 
 

Linear 

Regression 

 

SVR & Linear 

 

Dec. Tree & 

SVR 

RMSE 7442 Wh 

 

9602 Wh 

 

20543 Wh 

 

9287 Wh 

 

7006 Wh 

MAE 3535 Wh 

 

4882 Wh 

 

13329 Wh 

 

5783 Wh 

 

3550 Wh 

R2 1 0,941 

 

0,824 

 

0,744 

 

0,845 

 

0,931 

R2 2 0,933 

 

0,888 

 

0,487 

 

-0,247 

 

-0,277 

 

Season affects the models in a way similar to the hour. 
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Using as input features the Radiation for the current hour and 1 to 3 hours before, month and 

season as categorical: 

 

Decision 

Tree 

Method 
 

SVR 
 

Linear 

Regression 

 

SVR & Linear 

 

Dec. Tree & 

SVR 

RMSE 8030 Wh 

 

9582 Wh 

 

20857 Wh 

 

9244 Wh 

 

7363 Wh 

MAE 3813 Wh 

 

4892 Wh 

 

13330 Wh 

 

5643 Wh 

 

3703 Wh 

R2 1 0,931 

 

0,826 

 

0,742 

 

0,849 

 

0,924 

R2 2 0,922 

 

0,888 

 

0,471 

 

-0,263 

 

-0,282 

 

Using both month and season as inputs lowers the performance of all models, possibly 

because season is derived from month data. 

 

Using as input features the Radiation for the current hour and 1 to 3 hours before, hour and 

season as categorical: 

 

Decision 

Tree 

Method 
 

SVR 
 

Linear 

Regression 

 

SVR & Linear 

 

Dec. Tree & 

SVR 

RMSE 6667 Wh 

 

N/A 

 

N/A 

 

N/A 

 

N/A 

MAE 3299 Wh 

 

N/A 

 

N/A 

 

N/A 

 

N/A 

R2 1 0,952 

 

N/A 

 

N/A 

 

N/A 

 

N/A 

R2 2 0,946 

 

N/A 

 

N/A 

 

N/A 

 

N/A 

 

While during this test only the decision tree model displayed any results at all, it had the 

best performance for this particular model, which was also close to the best performance of all 

tests. 

The optimal input features from the results of the manual tests were the following: 

Model Input Features 

Decision Tree Solar Radiation from current up to 3 hours before (hourly), hour of 
the day and season as categorical 

SVR Solar Radiation from current up to 4 hours before (hourly) 

Linear Regression Solar Radiation from current and previous hour 

SVR & Linear Solar Radiation from current up to 4 hours before (hourly) 

SVR & Decision Tree Solar Radiation from current up to 5 hours before (hourly) 

 

It was observed from the tests that using different hyperparameters did not significantly 

affect the way the models reacted to different combinations of input features in most cases. 

There were exceptions however. The combination that gave the best performance using manual 

tests was found to be: 1) Radiation values from current time to 5 hours before, for the ensemble 
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model, and 2) Radiation value from current time to 3 hours before together with hour and 

season as categorical values, for the Decision tree.  

5.3 Optimizing the forecasting models 

GridSearchCV was used to find the optimal hyperparameters for each model. The model 

using the Decision tree was tested using the optimal input features set as described above. 

Different parameter ranges were tested in several tests instead of just one, in order to cut back 

on computational requirements.  

5.3.1 Optimizing the Decision Tree model 

The parameters tested were defined as following: 

                   'random_state':[0], 

                   'criterion':['squared_error'], 

                   'splitter':['best','random'], 

                   'max_depth': [ 50, 70, 75, 80, 100 ], 

                   'min_samples_split': [ 8, 11, 12, 13, 16 ], 

                   'min_samples_leaf': [20, 40], 
 

GridSearchCV returned the optimal hyperparameters to be: 
 

{'criterion': 'squared_error', 'max_depth': 50, 'min_samples_leaf': 20, 

'min_samples_split': 8, 'random_state': 0, 'splitter': 'random'} 

 

These parameters gave an R-squared score equal to 0,888. More hyperparameters were 

tested, specifically: 
 'random_state':[0], 

 'criterion':['squared_error', 'friedman_mse',    

'absolute_error', 'poisson'], 

                   'splitter':['best', 'random'], 

                   'max_depth': [ 5, 10, 20, 22, 40, 50 ], 

                   'min_samples_split': [ 2, 4, 8 ], 

                   'min_samples_leaf': [1, 10, 20, 40], 

Returned the best parameters as: 
{'criterion': 'friedman_mse', 'max_depth': 40, 'min_samples_leaf': 20, 

'min_samples_split': 2, 'random_state': 0, 'splitter': 'random'} 

R-squared: 0,889 
 

Testing the values:            
 'random_state':[0], 

                   'criterion':['squared_error', 'friedman_mse'], 

                   'splitter':['best', 'random'], 

                   'max_depth': [ 40, 50, 100 ], 

                   'min_samples_split': [ 2, 4, 8, 13 ], 

                   'min_samples_leaf': [18, 20, 22] 
 

Returned: 
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{'criterion': 'friedman_mse', 'max_depth': 40, 'min_samples_leaf': 20, 

'min_samples_split': 2, 'random_state': 0, 'splitter': 'random'} 

R-squared: 0,889 

 

Testing the values:            

                   'random_state':[0], 

                   'criterion':['squared_error', 'friedman_mse'], 

                   'splitter':['best', 'random'], 

                   'max_depth': [ 38, 40, 42 ], 

                   'min_samples_split': [ 2, 4, 6, 8 ], 

                   'min_samples_leaf': [19, 20, 21], 

 

Returned: 

{'criterion': 'squared_error', 'max_depth': 38, 'min_samples_leaf': 21, 

'min_samples_split': 2, 'random_state': 0, 'splitter': 'random'} 

R-squared: 0,890 
 

Testing the values:            

 'random_state':[0], 

                   'criterion':['squared_error', 'friedman_mse'], 

                   'splitter':['best', 'random'], 

                   'max_depth': [ 

9,10,11,12,13,14,15,16,17,18,19,20,21,22, 24, 26, 28, 30, 32, 34, 35, 

36, 37 ,38, 39 ], 

                   'min_samples_split': [ 2 ], 

                   'min_samples_leaf': [21] 

 

Returned the final values of: 

{'criterion': 'squared_error', 'max_depth': 15, 'min_samples_leaf': 21, 

'min_samples_split': 2, 'random_state': 0, 'splitter': 'random'} 

R-squared: 0,890   

 

The last test was concluded to determine the best parameters for the decision tree 

model, as the values tested were continuous. For example, for maximum depth, the values of 

14, 15 and 16 were all tested and the algorithm specifically chose 15; it did not select the upper 

limit of the range selected or a value of which the neighboring values were not tested. As such, 

for random state 0, this set of values were the optimal. It was observed that if the random state 

is not defined, the optimal values can vary. 
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5.3.2. Optimizing the SVR model 

The best set of input features for SVR was found to be the Radiation values from current 

time up to 4 hours before. That set was used for the tests. In the case of SVR, the data had to be 

standardized, so in order to use GridSearchCV a pipeline integrating StandardScaler was used. 

grid_svr = 

Pipeline(steps=[('scaler',preprocessing.StandardScaler()),('svr', 

svm.SVR())])              

 

Testing the values: 

  'svr__C': [1, 10, 30, 100],   

              'svr__epsilon': [1, 0.2, 0.1],  

              'svr__gamma':['scale', 'auto'], 

              'svr__kernel': ['linear','poly', 'rbf', 'sigmoid', 

'precomputed'] 

 

Returned the optimal values: 

{'svr__C': 100, 'svr__epsilon': 1, 'svr__gamma': 'auto', 'svr__kernel': 

'rbf'} 

R-squared: 0,825  

 

Since the optimal C and epsilon were the maximum values, a range of larger values were 

tested in the following test.  

Testing the values: 

  'svr__C': [90, 100,500,1000,10000,100000],   

              'svr__epsilon': [2, 1, 0.2, 0.1],  

              'svr__gamma':['auto'], 

              'svr__kernel': ['linear', 'rbf'] 

 

Returned the optimal values: 

{'svr__C': 100000, 'svr__epsilon': 0.2, 'svr__gamma': 'auto', 

'svr__kernel': 'rbf'} 

R-squared: 0,877 

 

Testing the values: 

  'svr__C': [90000,100000, 200000,1000000,2000000],   

              'svr__epsilon': [1,0.8,0.4, 0.2],  

              'svr__gamma':['auto'], 

              'svr__kernel': ['linear', 'rbf'] 

 

 

 

Returned the optimal values: 



Solar Production Forecasting using Data Analysis and Machine Learning 

Ioannis Choustoulakis  86 

{'svr__C': 200000, 'svr__epsilon': 0.2, 'svr__gamma': 'auto', 

'svr__kernel': 'rbf'} 

R-squared: 0,878 

 

Notably, the computation for the last test lasted about 24 hours, unlike the previous 

tests. 

 

Testing the values: 

  'svr__C': [180000, 200000,220000],   

              'svr__epsilon': [0.25, 0.2, 0.15],  

              'svr__gamma':['auto'], 

              'svr__kernel': ['rbf'] 

 

Returned the optimal values: 

{'svr__C': 220000, 'svr__epsilon': 0.15, 'svr__gamma': 'auto', 

'svr__kernel': 'rbf'} 

R-squared: 0,878 

 

Testing the values: 

  'svr__C': [210000,220000,230000,240000],   

              'svr__epsilon': [0.2],  

              'svr__gamma':['auto'], 

              'svr__kernel': ['rbf'] 

 

Returned the optimal values: 

{'svr__C': 220000, 'svr__epsilon': 0.2, 'svr__gamma': 'auto', 

'svr__kernel': 'rbf'} 

R-squared: 0,878 

 

Since the values tested were not at the end of the range, it was concluded that they are 

the optimal for this model. 

5.3.3 Optimizing the Linear Regression model 

The Linear regression model does not have any parameters to optimize in GridSearchCV. 

It also performed much worse compared to the other models. Its optimal input set was found to 

be the current and previous hour solar radiation values. 

5.3.4 Optimizing the ensemble models 

The optimization of the ensemble models included using the optimized models of the 

previous tests, trying to determine the optimal weights for each. 

For the SVR-Linear regression model, tests were made using the optimal input features 

for SVR. 



Solar Production Forecasting using Data Analysis and Machine Learning 

Ioannis Choustoulakis  87 

Testing the weights: 

'weights': [(0.5, 0.5),(0.25, 0.75),(0.75, 0.25)] 

 

Returned the results: 

{'weights': (0.75, 0.25)} 

R-squared: 0,874 

 

Testing the weights: 

'weights': [(0.625, 0.375),(0.75, 0.25),(0.875, 0.125)] 

 

Returned the results: 

{'weights': (0.875, 0.125)} 

R-squared: 0,878 

 

Testing the weights: 

'weights': [(0.875, 0.125),(0.9, 0.1),(1, 0)] 

 

Returned the results: 

{'weights': (1, 0)} 

R-squared: 0,878 

 

It is concluded that the SVR-Linear Ensemble is inferior to the plain SVR model, because 

the Linear Regression model is much more inaccurate. The optimal setting is to ignore the Linear 

Regression model and give 100% weight on SVR. 

The SVR-Decision Tree Ensemble was then tested, using the optimal input set for SVR. 

Testing the weights: 

'weights': [(0.5, 0.5),(0.25, 0.75),(0.75, 0.25)] 

 

Returned the results: 

{'weights': (0.75, 0.25)}, with the greater weight on the SVR model 

R-squared: 0,880 

 

Testing the weights: 

'weights': [(0.625, 0.375),(0.75, 0.25),(0.875, 0.125),(1, 0)] 

 

Returned the results: 

{'weights': (0.75, 0.25)} 
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R-squared: 0,880 

 

The optimal setting for the SVR-Decision Tree model was 0,75 weight on SVR and 0,25 

on the Decision Tree. 

5.4 Tests with a smaller train set 

After determining the optimal parameters both manually and using GridSearchCV, tests 

were performed to assess the accuracy of the model when the train data set was comprised of 

the first 50% of the available data and the rest were used as the test set. The sets used were 

three of the manual tests for each model that gave the best results, plus the optimal set derived 

from GridSearchCV. 

The sets are presented in descending order based on their accuracy. For the Decision 

Tree model, the sets used and the corresponding results were the following: 

Using max_depth=22, min_samples=4, min_leaf=20, 

1) Input set: Current and up to 3 hours before radiation values, hour and season as 

categorical: 

RMSE 15054 

MAE 7151 

R2 1 0,879 

R2 2 0,879 

 

Using the previous data set, the model had less than half the RMSE (6666) and 0,946 R-

squared. This is within expectations as this model tries to predict a much larger set of data and 

knows much less. 

2) Input set: Current and up to 3 hours before radiation values and season as 

categorical: 

RMSE 16209 

MAE 7947 

R2 1 0,858 

R2 2 0,86 

 

3) Input set: Current and up to 3 hours before radiation values, hour as integer and 

season as categorical: 

RMSE 14616 

MAE 6901 

R2 1 0,886 

R2 2 0,886 
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4) Using the GridSearchCV determined hyperparameters of: 

{'criterion': 'squared_error', 'max_depth': 15, 'min_samples_leaf': 21, 

'min_samples_split': 2, 'random_state': 0, 'splitter': 'random'} 

 

Input set: Current and up to 3 hours before radiation values, hour and season as categorical: 

RMSE 15224 

MAE 7284 

R2 1 0,873 

R2 2 0,876 

 

It is observed that the accuracy reduction varies compared to the models using the 

larger input dataset. Model 3, which in the previous case was the least accurate of the 3, is now 

the most accurate model. The model determined by GridSearchCV is comparatively more 

accurate than before, which is expected, as it was meant to optimize accuracy in reference to 

the input set, unlike the manual models, which were defined by the accuracy with which they 

predicted the last week of the dataset only. 

For the SVR model: 

The following hyperparameters were used in the manual tests: 

{kernel='linear',C=30, epsilon=0.2,gamma='auto'} 

 

1) Input set:  Radiation from current to 4 hours before as input: 
 

RMSE 20180 

MAE 10736 

R2 1 0,712 

R2 2 0,782 

 

2) Input set: Current and up to 3 hours before radiation values, month and season as 

categorical: 

RMSE 20126 

MAE 10741 

R2 1 0,715 

R2 2 0,783 
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3) Input set: Current and up to 3 hours before radiation values and month as 

categorical: 

RMSE 20126 

MAE 10741 

R2 1 0,715 

R2 2 0,783 

 

4) Using the GridSearchCV determined hyperparameters of:  
{'svr__C': 220000, 'svr__epsilon': 0.2, 'svr__gamma': 'auto', 

'svr__kernel': 'rbf'} 

 

And using the input feature set of 1), which had been determined to be the most accurate 

before, the results were: 

RMSE 15160 

MAE 7325 

R2 1 0,870 

R2 2 0,877 
 

In this case, the GridSearchCV-determined model greatly outperformed all manually 

defined models, as the C parameter was selected too conservatively in the latter. 

For the Linear Regression: 

1) Input set: Current and previous hour radiation: 

RMSE 20212 

MAE 12138 

R2 1 0,755 

R2 2 0,782 

  2) Input set: Current and up to 3 hours before radiation values, month and hour as 

integers: 

RMSE 20264 

MAE 12072 

R2 1 0,756 

R2 2 0,780 

  3) Input set: Current and up to 3 hours before radiation values: 

RMSE 20312 

MAE 12120 

R2 1 0,754 

R2 2 0,779 
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The accuracy of the Linear Regression model is almost unaffected by the reduction of 

the Input data size. Because of the comparative decrease in accuracy of the other models, this 

model’s results appear more useful than before, although it is still less accurate than the rest. 

For the SVR-Linear Regression Ensemble, GridSearchCV determined that the best setting 

is to use SVR alone. Weights were equal for each model (0,5 and 0,5). 

1) Using the SVR hyperparameters: 

{kernel='linear',C=30, epsilon=0.2,gamma='auto'} 

Input set:  Radiation from current to 4 hours before: 

RMSE 19915 

MAE 11151 

R2 1 0,734 

R2 2 -0,363 

2) The C parameter is set to 20, with an input set of: Radiation from current to 5 hours 

before as input: 

RMSE 19742 

MAE 11307 

R2 1 0,736 

R2 2 -0,35 

  3) The C parameter is set to 20, with an input set of:  Radiation from current to 4 hours 

before as input: 

RMSE 19952 

MAE 11190 

R2 1 0,73 

R2 2 -0,363 

 

4) The SVR model using the optimal parameters gave the following results: 

RMSE 15160 

MAE 7325 

R2 1 0,870 

R2 2 0,877 

 

The Ensemble’s accuracy has decreased proportionally in the same way as the SVR model. 

For the Decision Tree-SVR Ensemble: 

1) Using the hyperparameters: 

svm.SVR(kernel='linear',C=20, epsilon=0.2,gamma='auto') 
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DecisionTreeRegressor(criterion='squared_error', random_state = 0, 

max_depth = 15, min_samples_split=4, 

min_samples_leaf=1,splitter='random') 

 

Weights were equal for each model (0,5 and 0,5). 

Input set:  Radiation from current to 5 hours before: 

 

RMSE 17100 

MAE 8866 

R2 1 0,813 

R2 2 -0,383 

 

2) Using the same hyperparameters as in 1).  

Input set:  Radiation from current to 4 hours before: 

 

RMSE 17518 

MAE 9025 

R2 1 0,803 

R2 2 -0,388 

 

3) Using the hyperparameters: 

svm.SVR(kernel='linear',C=30, epsilon=0.2,gamma='auto') 

 
DecisionTreeRegressor(criterion='squared_error', random_state = 0, 

max_depth = 22, min_samples_split=4, 

min_samples_leaf=20,splitter='random') 

 

Weights were also equal for each model (0,5 and 0,5). 

Input set: Current and up to 3 hours before radiation values, and hour as integer: 

RMSE 16075 

MAE 8357 

R2 1 0,833 

R2 2 -0,389 

 

4) Using the GridSearchCV determined hyperparameters of:  
{'svr__C': 220000, 'svr__epsilon': 0.2, 'svr__gamma': 'auto', 

'svr__kernel': 'rbf'} 

{'criterion': 'squared_error', 'max_depth': 15, 'min_samples_leaf': 21, 

'min_samples_split': 2, 'random_state': 0, 'splitter': 'random'} 

 

Weights were set to 0,75 for SVR and 0,25 for the Decision Tree. 
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Input set:  Radiation from current to 4 hours before: 

RMSE 15107 

MAE 7403 

R2 1 0,87 

R2 2 -0,398 

 

The GridSearch-defined Ensemble model is comparatively more accurate than the 

manually optimized models, unlike when the test set was smaller. However, it is observed that 

the single Decision Tree model outperforms the Ensemble when the test set is bigger. 

5.5 Results 

The optimized models were found to be the following: 

1) Decision Tree: 

Input Features Solar Radiation from current up to 3 hours before (hourly), hour of the day 
and season as categorical 

Hyperparameters Large Input Dataset 
{'criterion': 'squared_error', 'max_depth': 22, 

'min_samples_leaf': 20, 'min_samples_split': 4, 

'random_state': 0, 'splitter': 'random'} 

Small Input Dataset 
{'criterion': 'squared_error', 'max_depth': 15, 

'min_samples_leaf': 21, 'min_samples_split': 2, 

'random_state': 0, 'splitter': 'random'} 

 

Results  

Large Input Dataset        Small Input Dataset 

RMSE 6666 Wh RMSE 14616 Wh 

MAE 3299 Wh MAE 6901 Wh 

R2 1 0,952 R2 1 0,886 

R2 2 0,946 R2 2 0,886 
 

 

2) SVM: 

Input Features Solar Radiation from current up to 4 hours before (hourly) 

Hyperparameters Large Input Dataset 
{'svr__C': 30, 'svr__epsilon': 0.2, 'svr__gamma': 

'auto', 'svr__kernel': 'linear'} 

Small Input Dataset 
{'svr__C': 220000, 'svr__epsilon': 0.2, 'svr__gamma': 

'auto', 'svr__kernel': 'rbf'} 
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Results  

Large Input Dataset        Small Input Dataset 

RMSE 9481 Wh RMSE 15160 Wh 

MAE 4864 Wh MAE 7325 Wh 

R2 1 0,830 R2 1 0,870 

R2 2 0,890 R2 2 0,877 
 

 

3) Linear Regression: 

Input Features Solar Radiation from current and previous hour 

Hyperparameters N/A 

Results  

Large Input Dataset        Small Input Dataset 

RMSE 19925 Wh RMSE 20212 Wh 

MAE 13331 Wh MAE 12138 Wh 

R2 1 0,749 R2 1 0,755 

R2 2 0,517 R2 2 0,782 
 

 

4) SVR & Linear: 

Input Features Solar Radiation from current up to 4 hours before (hourly) 

Hyperparameters Large Input Dataset: 
{'svr__C': 30, 'svr__epsilon': 0.2, 'svr__gamma': 

'auto', 'svr__kernel': 'linear'} 

{'weight': 0.5, 'weight': 0.5} 

Small Input Dataset: 
{'svr__C': 220000, 'svr__epsilon': 0.2, 'svr__gamma': 

'auto', 'svr__kernel': 'rbf'} 

{'weight': 1.00, 'weight': 0.00} 

 

Results  

Large Input Dataset        Small Input Dataset 

RMSE 8981 Wh RMSE 15160 Wh 

MAE 5423 Wh MAE 7325 Wh 

R2 1 0,856 R2 1 0,870 

R2 2 -0,224 R2 2 0,877 
 

 
 

 

5) SVR & Decision Tree: 

Input Features Solar Radiation from current up to 5 hours before (hourly) 

Hyperparameters Large Input Dataset: 
{'criterion': 'squared_error', 'max_depth': 15, 

'min_samples_leaf': 1, 'min_samples_split': 4, 

'random_state': 0, 'splitter': 'random'} 

{'svr__C': 20, 'svr__epsilon': 0.2, 'svr__gamma': 

'auto', 'svr__kernel': 'linear'} 

{'weight': 0.5, 'weight': 0.5} 
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Small Input Dataset: 
{'criterion': 'squared_error', 'max_depth': 15, 

'min_samples_leaf': 21, 'min_samples_split': 2, 

'random_state': 0, 'splitter': 'random'}  

{'svr__C': 220000, 'svr__epsilon': 0.2, 'svr__gamma': 

'auto', 'svr__kernel': 'rbf'} 

{'weight': 0.75, 'weight': 0.25} 

 

Results  

Large Input Dataset        Small Input Dataset 

RMSE 6063 Wh RMSE 15107 Wh 

MAE 3144 Wh MAE 7403 Wh 

R2 1 0,954 R2 1 0,870 

R2 2 -0,238 R2 2 -0,398 
 

 

The models’ relative performance can be compared in the following table: 

Large Input Dataset 
    

 

Decision Tree 
Method 

SVR 
Linear 

Regression 
Dec. Tree & 

Linear 
Dec. Tree & 

SVR 

RMSE 6666 Wh 9481 Wh 19925 Wh 8981 6063 Wh 

MAE 3299 Wh 4864 Wh 13331 Wh 5423 Wh 3144 Wh 

R2 1 0,952 0,83 0,749 0,856 0,954 

R2 2 0,946 0,89 0,517 -0,224 -0,238 

      Small Input Dataset     

RMSE 14616 Wh 15160 Wh 20212 Wh 15160 Wh 15107 Wh 

MAE 6901 Wh 7325 Wh 12138 Wh 7325 Wh 7403 Wh 

R2 1 0,886 0,87 0,755 0,87 0,87 

R2 2 0,886 0,877 0,782 0,877 -0,398 
 

The average production value in the dataset was 58973 Wh. When making forecasts for 

the final week only, the average value of the test data was 38953 Wh. As such, nRMSE is 

calculated as follows: 

Decision 
Tree 

Method 
SVR 

Linear 
Regression 

Dec. 
Tree & 
Linear 

Dec. 
Tree & 

SVR 

 
Large Input Dataset 

   nRMSE 17,11% 24,34% 51,15% 23,06% 15,56% 

 

Small Input Dataset 

   nRMSE 24,78% 25,71% 34,27% 25,71% 25,62% 
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Chapter 6: Conclusions and Future work 

6.1 Conclusions 
The weather data aside from Solar Radiation were not found to be useful for making 

forecasts for this particular case study. The use Humidity, temperature and wind speed as input 

reduced the accuracy of the models. The literature confirms that the utility of different weather 

parameters varies on each individual case, depending on various circumstances. The data that 

contributed to the forecasting were the radiation values of the previous hours and the values of 

hour and month. 

For this particular dataset, Linear Regression was clearly inferior to the rest of the 

models, indicating that the problem that was being examined was non-linear. SVR tended to 

underestimate the data in size, predicting values that were much smaller than the real value. 

The ensemble using both Linear Regression and SVR slightly improved the accuracy compared to 

standalone SVR when making predictions using the larger dataset, but SVR outperformed it 

when the smaller dataset was used. 

The Decision Tree model has been observed to be the most accurate when making 

predictions using a smaller dataset, while the SVR-Decision Tree Ensemble was the most 

accurate when making forecasts using the larger dataset. When making use of the smaller 

dataset, the variation of accuracy between the different models becomes smaller. The Linear 

Regression model has nearly the same accuracy for both dataset sizes, which is within 

expectations as it is a linear model. 

The optimized Decision Tree had a MAE of 6901 Wh when 50% of the dataset was used 

as input, indicating a 11,7 % normalized Mean Average Error rate and a 24,78% nRMSE. When 

using the larger dataset, the MAE of the SVR-Decision Tree Ensemble was 3144, giving a 

normalized Mean Average Error rate of 8,3% and an nRMSE of 15,56%. 

The performance of the models can be deemed to be satisfactory compared to the 

results found in literature, as results up to 41,20% nRMSE were published. 

This thesis provides an insight on the efficiency of Decision Tree and Linear Regression 

as forecasting models compared to the frequently used SVR. Such an insight was not commonly 

found in literature concerning PV forecasting. The results are noteworthy as in this case study 

the Decision Tree and the Decision Tree ensemble outperformed the standalone SVR model, 

providing the notion that Decision Tree may be useful in PV forecasting. 

6.2 Future Work 
For the particular case study, more extensive tests can be made, utilizing an even 

smaller dataset, in order to test the models’ reliability when less data are available. Forecasts 

using ensemble models utilizing different input parameters than the SVR-optimized may also be 

made to compare their performance. 
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 Different models can also be useful in further testing.  The dataset can produce accurate 

forecasts using different models than the ones selected. This particularly includes tests with 

Deep Learning models, which are the most popular group of methods in literature for PV 

forecasts. 

 Different datasets can also be used to test the models to assess how they perform in 

other case studies. 

 The software developed can also be deployed either as a web application or offline 

software. An interface can be developed to provide access to the functions of the software to 

someone who is not familiar with Python. 

  



Solar Production Forecasting using Data Analysis and Machine Learning 

Ioannis Choustoulakis  98 

Appendix A – Code used for statistics analysis and machine learning 
 

import pandas as pd 

import datetime 

import time 

import matplotlib.pyplot as plt 

import matplotlib.dates as mdates 

import statistics as stat 

import xlsxwriter 

import math 

import numpy as np 

from matplotlib import interactive 

interactive(True) 

import statsmodels as stm 

import statsmodels.tsa.seasonal 

from sklearn.tree import DecisionTreeRegressor 

from sklearn.metrics import mean_squared_error, r2_score, 

mean_absolute_error 

from sklearn import svm 

from sklearn import preprocessing 

from sklearn.pipeline import make_pipeline 

from sklearn.pipeline import Pipeline 

import sklearn.linear_model 

import os 

import pickle 

from sklearn.ensemble import VotingRegressor 

from sklearn.preprocessing import OneHotEncoder 

from sklearn.model_selection import GridSearchCV 

 

try: # For offline execution 

    data = 

pd.read_excel(r'C:\python\CorrectedDataNew.xlsx',sheet_name="Data") 

    buildingdata = data.values.tolist() 

except: # For Google Colab  

    data = pd.read_excel(r'/content/drive/MyDrive/Colab 

Notebooks/CorrectedDataNew.xlsx',sheet_name="Data") 

    buildingdata = data.values.tolist() 

 

#Fix outliers 

def fixoutliers(buildingdata): 

    bq99 = [] 

    for i in range(len(buildingdata)): 

        bq99.append(buildingdata[i][6]) 

 

    q99 = np.quantile(bq99,0.99) 

    for i in range(len(buildingdata)): 

        if buildingdata[i][6] > q99: 

            buildingdata[i][6] = q99 

    return buildingdata      

 

def datetotimestamp(buildingdata):# Convert date columns into timestamp 

    btime = [] # List of timestamps 

    btimestring = "" 

    for i in range(len(buildingdata)): 



Solar Production Forecasting using Data Analysis and Machine Learning 

Ioannis Choustoulakis  99 

        #btimestring =(str(buildingdata[i][2]) + "/" + 

str(buildingdata[i][1]) + "/" + str(buildingdata[i][0]) + " " + 

str(buildingdata[i][3]).split("+",1)[0] ) 

        btimestring =(str(buildingdata[i][2]) + "/" + 

str(buildingdata[i][1]) + "/" + str(buildingdata[i][0]) + " " + 

str(buildingdata[i][3]).split("+",1)[0] + "+0" + 

str(buildingdata[i][3]).split("+",1)[1] + ":00" ) 

        btime.append(datetime.datetime.strptime(btimestring,"%d/%m/%Y 

%H:%M:%S%z").timetuple()) 

    return btime 

 

def wdatetotimestamp(buildingdata):# Convert date column into timestamp 

    btime = [] # List of timestamps 

    btimestring = "" 

    for i in range(len(buildingdata)): 

        btimestring = buildingdata[i][1] + "+01:00" 

        btime.append(datetime.datetime.strptime(btimestring,"%Y-%m-%d 

%H:%M:%S%z").timetuple()) 

    return btime 

 

def testmissingdata(bhour): #Print all values which do not follow 

hourly sequence - Should only print DST changes in March if all is OK 

    bhournew = [] 

    for i in range(1,len(bhour)): 

        if datetime.datetime.fromtimestamp(time.mktime(bhour[i][0])) - 

datetime.datetime.fromtimestamp(time.mktime(bhour[i-1][0])) != 

datetime.timedelta(hours=1): 

            print(datetime.datetime.fromtimestamp(time.mktime(bhour[i-

1][0]))) 

            

print(datetime.datetime.fromtimestamp(time.mktime(bhour[i][0]))) 

 

        

def bplot(bhour,title="empty"): #Plot the data 

    bhourly1 = [] 

    for i in range(len(bhour)):     

        bhourly1.append(time.mktime(bhour[i][0])) #conversion to epoch 

time 

 

    plotpvx = [] 

    plotpvy = [] 

    for i in range(len(bhour)):   

        

plotpvx.append(mdates.date2num(datetime.datetime.utcfromtimestamp(bhour

ly1[i])))# Convert timestamp to a format matplotlib can handle 

        plotpvy.append(bhour[i][1]) 

    plt.title(title) 

    plt.plot(plotpvy) 

 

def hourlymeans(bhourly, season='Yearly'): # Calculate hourly means 

    hmeans = [] 

    hcount = [] 

    hourly = [] 

 

    for j in range(24): 

        hmeans.append(0) 

        hcount.append(0) 
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        for i in range(len(bhourly)): 

            if season == "Yearly": 

                if bhourly[i][0].tm_hour==j: 

                   hmeans[j] += bhourly[i][1] 

                   hcount[j] += 1 

            elif season == "Summer": 

                if bhourly[i][0].tm_hour==j and (bhourly[i][0].tm_mon > 

3 and bhourly[i][0].tm_mon < 10): 

                   hmeans[j] += bhourly[i][1] 

                   hcount[j] += 1 

            elif season == "Winter": 

                if bhourly[i][0].tm_hour==j and (bhourly[i][0].tm_mon 

<= 3 or bhourly[i][0].tm_mon >= 10): 

                   hmeans[j] += bhourly[i][1] 

                   hcount[j] += 1 

            else: 

                print('Error: Season not defined') 

    for j in range(24): 

        if hcount[j] != 0: 

            hmeans[j] = hmeans[j]/hcount[j] # Divide the sum of 

elements by the number of elements in each 

        else: 

            hmeans[j] = 0 

    return hmeans 

 

def standarddeviation(bhourly, season='Yearly'): # Calculate hourly 

standard deviation 

    listbyhour = [] 

    std = [] 

    for j in range(24): 

        listbyhour.append([]) 

        for i in range(len(bhourly)): 

            if season == "Yearly": 

                if bhourly[i][0].tm_hour==j: 

                    listbyhour[j].append(bhourly[i][1]) 

            elif season == "Summer": 

                if bhourly[i][0].tm_hour==j and (bhourly[i][0].tm_mon > 

3 and bhourly[i][0].tm_mon < 10): 

                    listbyhour[j].append(bhourly[i][1]) 

            elif season == "Winter": 

                if bhourly[i][0].tm_hour==j and (bhourly[i][0].tm_mon 

<= 3 or bhourly[i][0].tm_mon >= 10): 

                    listbyhour[j].append(bhourly[i][1]) 

            else: 

                print('Error: Season not defined') 

 

    for j in range(24): 

        if len(listbyhour[j]) > 1: 

            std.append(stat.stdev(listbyhour[j])) 

        else: 

            std.append(0) 

 

    return std 
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def display_ml_error_indicators(test_sety,predicted_y): 

    print("RMSE", format(mean_squared_error(predicted_y, test_sety, 

squared=False), ".0f"))     

    print("MAE", format(mean_absolute_error(predicted_y, test_sety), 

".0f")) 

    print("r_square", format(r2_score(predicted_y, test_sety), ".3f")) 

    

#Trim production values over 99% of the rest of the data - not used 

#buildingdata = fixoutliers(buildingdata) 

 

pvhourly = [] 

weatherdata = [] 

btime = wdatetotimestamp(buildingdata) 

 

for i in range(len(buildingdata)): # Create a list containting the 

timestamp and production for each hour 

    pvhourly.append([btime[i],buildingdata[i][6]]) 

 

# Hourly statistics for PV production 

hourlystatslabel = 'Hourly Statistics' 

pvhmeansyearly = hourlymeans(pvhourly) # Hourly mean production for the 

whole year 

pvhstdevyearly = standarddeviation(pvhourly) # Hourly deviation of 

production for the whole year 

 

pvhmeanssummer = hourlymeans(pvhourly, 'Summer') # Hourly mean 

production for summer months 

pvhstdevsummer = standarddeviation(pvhourly, 'Summer') # Hourly 

deviation of production for summer months 

 

pvhmeanswinter = hourlymeans(pvhourly, 'Winter') # Hourly mean 

production for winter months 

pvhstdevwinter = standarddeviation(pvhourly, 'Winter') # Hourly 

deviation of production for winter months 

 

# Prepeare legend table 

blegend = (hourlystatslabel, 

           'pvhmeansyearly: Hourly mean production for the whole year', 

           'pvhstdevyearly: Hourly deviation of production for the 

whole year', 

           'pvhmeanssummer: Hourly mean production for summer months', 

           'pvhstdevsummer: Hourly deviation of production for summer 

months', 

           'pvhmeanswinter: Hourly mean production for winter months', 

           'pvhstdevwinter: Hourly deviation of production for winter 

months') 

 

 

datesinstring = [] 

day = [] 

month = [] 

season = [] 

year = [] 

hour = [] 

weekday = [] 

pvvalues = [] 

wvalues = [] 



Solar Production Forecasting using Data Analysis and Machine Learning 

Ioannis Choustoulakis  102 

wvalues1temp = [] 

wvalues2humid = [] 

wvalues3wind = [] 

wvalues4cloud = [] 

wvalues5rad = [] 

wvalues5rad_previoushour = [] 

wvalues5rad_preprevioushour = [] 

wvalues5rad_3hoursbefore = [] 

wvalues5rad_4hoursbefore = [] 

wvalues5rad_5hoursbefore = [] 

wvalues5rad_6hoursbefore = [] 

for i in range(len(pvhourly)): # Check if dates match and prepare the 

lists for each value 

    try: 

        wvalues2humid.append(buildingdata[i][8])  

        wvalues3wind.append(buildingdata[i][9]) 

        wvalues4cloud.append(buildingdata[i][10]) 

        wvalues5rad.append(buildingdata[i][11]) 

        if i > 6: 

            wvalues5rad_previoushour.append(wvalues5rad[i-1]) 

            wvalues5rad_preprevioushour.append(wvalues5rad[i-2]) 

            wvalues5rad_3hoursbefore.append(wvalues5rad[i-3]) 

            wvalues5rad_4hoursbefore.append(wvalues5rad[i-4]) 

            wvalues5rad_5hoursbefore.append(wvalues5rad[i-5]) 

            wvalues5rad_6hoursbefore.append(wvalues5rad[i-6]) 

        else: 

            wvalues5rad_previoushour.append(wvalues5rad[i]) 

            wvalues5rad_preprevioushour.append(wvalues5rad[i]) 

            wvalues5rad_3hoursbefore.append(wvalues5rad[i]) 

            wvalues5rad_4hoursbefore.append(wvalues5rad[i]) 

            wvalues5rad_5hoursbefore.append(wvalues5rad[i]) 

            wvalues5rad_6hoursbefore.append(wvalues5rad[i]) 

        datesinstring.append(time.strftime('%Y-%m-%d %H:%M:%S', 

pvhourly[i][0])) 

        day.append(time.strftime('%d', pvhourly[i][0])) 

        month.append(time.strftime('%m', pvhourly[i][0])) 

         

        currentmonth = int(time.strftime('%m', pvhourly[i][0])) 

        # Season 

        if 3 < currentmonth and currentmonth <= 6: 

            season.append('Spring') #Spring 

        elif 6 < currentmonth and currentmonth <= 9: 

            season.append('Summer') #Summer 

        elif 9 < currentmonth and currentmonth <= 12: 

            season.append('Autumn') #Autumn 

        elif 0 < currentmonth and currentmonth <= 3: 

            season.append('Winter') #Winter 

        else: 

            print("error") 

             

        year.append(time.strftime('%Y', pvhourly[i][0])) 

        hour.append(time.strftime('%H', pvhourly[i][0])) 

        weekday.append(time.strftime('%w', pvhourly[i][0])) 

        pvvalues.append(pvhourly[i][1]) 

             

        wvalues1temp.append(buildingdata[i][7]) 
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    except: 

        print('error') 

 

encmonth = OneHotEncoder(categories='auto',handle_unknown='ignore') 

enchour = OneHotEncoder(categories='auto',handle_unknown='ignore') 

encseason = OneHotEncoder(categories='auto',handle_unknown='ignore') 

 

month_cat = encmonth.fit_transform(np.array(month).reshape(-1, 1)) 

month_cat = month_cat.toarray() 

hour_cat = enchour.fit_transform(np.array(hour).reshape(-1, 1)) 

hour_cat = hour_cat.toarray() 

season_cat = encseason.fit_transform(np.array(season).reshape(-1, 1)) 

season_cat = season_cat.toarray() 

 

s1 = pd.Series(datesinstring, name='Date/Time') 

s2 = pd.Series(day, name='Day') 

s3 = pd.Series(month, name='Month') 

s4 = pd.Series(year, name='Year') 

s5 = pd.Series(hour, name='Hour') 

s7 = pd.Series(pvvalues, name='pvvalues') 

s8 = pd.Series(wvalues1temp, name='air temperature [Β°C]') 

s9 = pd.Series(wvalues2humid, name='relative humidity [%]') 

s10 = pd.Series(wvalues3wind, name='wind speed[m/s]') 

s11 = pd.Series(wvalues4cloud, name='cloudcover [%]') 

s12 = pd.Series(wvalues5rad, name='global radiation [W/m^2]') 

s12_1 = pd.Series(wvalues5rad_previoushour, name='rvalues2') 

s12_2 = pd.Series(wvalues5rad_preprevioushour, name='rvalues3') 

s12_3 = pd.Series(wvalues5rad_3hoursbefore, name='rvalues4') 

s13 = pd.Series(season, name='Season') 

#Different input sets of numerical features - the sets not used in the 

current test are commented out 

'''df = pd.DataFrame({ 

                    

'rvalues2':wvalues5rad_previoushour,'rvalues3':wvalues5rad_preprevioush

our, 

                    

'rvalues4':wvalues5rad_3hoursbefore,'h':hour,'globalradiation':wvalues5

rad 

                    } 

                )''' 

df = pd.DataFrame({ 

                    

'rvalues2':wvalues5rad_previoushour,'rvalues3':wvalues5rad_preprevioush

our, 

                    

'rvalues4':wvalues5rad_3hoursbefore,'rvalues5':wvalues5rad_4hoursbefore

,'globalradiation':wvalues5rad 

                    } 

                ) 

'''df = pd.DataFrame({ 

                    

'rvalues2':wvalues5rad_previoushour,'rvalues3':wvalues5rad_preprevioush

our, 

                    

'rvalues4':wvalues5rad_3hoursbefore,'globalradiation':wvalues5rad 

                    } 

                )''' 
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'''df = pd.DataFrame({ 

                    

'rvalues2':wvalues5rad_previoushour,'rvalues3':wvalues5rad_preprevioush

our, 

                    

'rvalues4':wvalues5rad_3hoursbefore,'globalradiation':wvalues5rad, 

                    

'rvalues5':wvalues5rad_4hoursbefore,'rvalues6':wvalues5rad_5hoursbefore 

                    } 

                )''' 

 

# Categorical input features - the variables not used in the current 

test are commented out 

#df[encmonth.categories_[0]]= month_cat # Use month as a categorical 

feature 

#df[enchour.categories_[0]]= hour_cat # Use hour as a categorical 

feature 

#df[encseason.categories_[0]]= season_cat # Use season as a categorical 

feature 

 

df2 = pd.DataFrame(pvvalues) 

df_time = pd.DataFrame(datesinstring) 

 

test_set_index = int(len(wvalues1temp)*0.5) # The size of the test set 

- set to 50% of the dataset 

 

train_setx = df.iloc[:len(wvalues1temp)-test_set_index,:] 

test_setx = df.iloc[len(wvalues1temp)-test_set_index:,:] 

train_sety = df2.iloc[:len(wvalues1temp)-test_set_index,:] 

test_sety = df2.iloc[len(wvalues1temp)-test_set_index:,:] 

train_time = df_time.iloc[:len(wvalues1temp)-test_set_index,:] 

test_time = df_time.iloc[len(wvalues1temp)-test_set_index:,:] 

 

train_setx= train_setx.to_numpy() 

test_setx = test_setx.to_numpy() 

 

#Plots for statistics - not used for machine learning tests 

plt.figure(2) 

bplot(pvhourly,'production') # Plot historical energy production 

plt.show 

 

# Plot autocorrelation 

 

plt.figure(3) 

plt.title("Autocorrelation of PV energy production") 

plt.acorr(pvvalues,maxlags=10) 

 

 

# Time Series Decomposition to identify trend and seasonal components 

try: 

    seasonalpv = stm.tsa.seasonal.seasonal_decompose(pvvalues, 

period=24*30) # Monthly intervals 

    statsmodels.tsa.seasonal.DecomposeResult.plot(seasonalpv, 

observed=True, seasonal=True, trend=True, resid=True, weights=False) 

except: # Normal syntax is not compatible with colab, an exception is 

raised and I resolve it by writing the colab comatible syntax 
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    seasonalpv = stm.tsa.seasonal.seasonal_decompose(pvvalues, 

freq=24*30) # Monthly intervals 

    statsmodels.tsa.seasonal.DecomposeResult.plot(seasonalpv) 

 

weather_regr = [] 

 

# Prepare the lists of the output data and timestamps for machine 

learning 

train_sety = [] 

test_sety = [] 

train_time = [] 

test_time = [] 

for i in range(len(wvalues1temp)):  

    if i < len(wvalues1temp)-test_set_index: 

        train_sety.append(pvvalues[i]) 

        train_time.append(datesinstring[i]) 

    else: 

        test_sety.append(pvvalues[i]) 

        test_time.append(datesinstring[i]) 

 

sc_x = preprocessing.StandardScaler() 

train_setx_norm = sc_x.fit_transform(train_setx) #Normalized input data 

test_setx_norm = sc_x.fit_transform(test_setx) 

 

# Decision tree Regressor - Predict values 

#regr_1 = DecisionTreeRegressor(criterion='squared_error', random_state 

= 0, max_depth = 22, min_samples_split=4, min_samples_leaf=20) # If 

max_depth is too low it won't take into account all the input features 

regr_1 = make_pipeline(preprocessing.StandardScaler(), 

DecisionTreeRegressor(criterion='squared_error', random_state = 0, 

max_depth = 15, min_samples_split=2, 

min_samples_leaf=21,splitter='random')) 

 

regr_1.fit(train_setx, train_sety) 

 

y_1 = regr_1.predict(test_setx) 

 

plt.figure() 

plt.title("Decision Tree: Prediction vs real values to PV production") 

plt.plot(test_time, test_sety, color="darkorange", label="real values", 

linewidth=2) 

plt.plot(test_time, y_1, color="cornflowerblue", label="max_depth=2", 

linewidth=2) 

 

print("Decision Tree Method:") 

display_ml_error_indicators(test_sety,y_1) 

rscore = regr_1.score(test_setx, test_sety) 

print("R-squared:", format(rscore, ".3f")) # R-Squared 

 

# SVM - Predict values 

 

regr_2 = make_pipeline(preprocessing.StandardScaler(), 

svm.SVR(kernel='rbf',C=220000, epsilon=0.2,gamma='auto')) 

#regr_2 = make_pipeline(preprocessing.StandardScaler(), 

svm.SVR(kernel='linear',C=30, epsilon=0.2,gamma='auto')) 

 

regr_2.fit(train_setx, train_sety) 
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y_2 =  regr_2.predict(test_setx) 

 

print("SVR:") 

display_ml_error_indicators(test_sety,y_2) 

rscore = regr_2.score(test_setx, test_sety) 

print("R-squared:", format(rscore, ".3f")) # R-Squared 

 

plt.figure() 

plt.title("SVR: Prediction vs real values to PV production") 

plt.plot(test_time, test_sety, color="darkorange", label="real values", 

linewidth=2) 

plt.plot(test_time, y_2, color="cornflowerblue", label="predicted", 

linewidth=2) 

 

# Linear Regression - Predict values 

 

regr_3 = sklearn.linear_model.LinearRegression().fit(train_setx_norm, 

train_sety) 

y_3 =  regr_3.predict(test_setx_norm) 

 

 

print("Linear Regression:") 

display_ml_error_indicators(test_sety,y_3) 

test_setx_norm = np.array(test_setx_norm, dtype=float) # Need to 

explicitly convert to numeric or the score function gives a warning 

test_sety = np.array(test_sety, dtype=float) 

rscore = regr_3.score(test_setx_norm, test_sety) 

print("R-squared:", format(rscore, ".3f")) # R-Squared 

 

 

plt.figure() 

plt.title("Linear Regression: Prediction vs real values to PV 

production") 

plt.plot(test_time, test_sety, color="darkorange", label="real values", 

linewidth=2) 

plt.plot(test_time, y_3, color="cornflowerblue", label="predicted", 

linewidth=2) 

 

# Ensemble of Linear regression and SVR 

print("Ensemble of Linear regression and SVR:") 

weights = [0.5, 0.5] 

models = [] 

models.append(('r1',regr_2)) 

models.append(('r2',regr_3)) 

ensemble = VotingRegressor(estimators=models, weights=weights) 

ensemble.fit(train_setx, train_sety) 

 

y_4 = ensemble.predict(test_setx) 

display_ml_error_indicators(test_sety,y_4) 

 

print("R-squared:", format(ensemble.score(test_setx_norm, test_sety), 

".3f")) 

 

print("Ensemble of Decision tree and SVR:") 

#weights = [0.5, 0.5] 

weights = [0.75, 0.25] 

models = [] 
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models.append(('r1',regr_2)) 

models.append(('r2',regr_1)) 

ensemble = VotingRegressor(estimators=models, weights=weights) 

ensemble.fit(train_setx, train_sety) 

 

y_5 = ensemble.predict(test_setx) 

display_ml_error_indicators(test_sety,y_5) 

 

print("R-squared:", format(ensemble.score(test_setx_norm, test_sety), 

".3f")) 

 

plt.figure() 

plt.title("Ensemble: Prediction vs real values to PV production") 

plt.plot(test_time, test_sety, color="darkorange", label="real values", 

linewidth=2) 

plt.plot(test_time, y_5, color="cornflowerblue", label="predicted", 

linewidth=2) 

 

#Grid search 

 

# SVR Hyperparameter Tests 

param_grid_svr = {'svr__C': [210000,220000,230000,240000],   

              'svr__epsilon': [0.2],  

              'svr__gamma':['auto'], 

              'svr__kernel': ['rbf']}   

 

grid_svr = 

Pipeline(steps=[('scaler',preprocessing.StandardScaler()),('svr', 

svm.SVR())])              

 

#Decision Tree Regressor hyperparameter tests 

param_grid_tree = {'tree__criterion':['squared_error', 'friedman_mse', 

'absolute_error', 'poisson'], 

                   'tree__splitter':['best', 'random'], 

                   'tree__max_depth': [ 5, 10, 20, 22, 40, 50 ], 

                   'tree__min_samples_split': [ 2, 4, 8 ], 

                   'tree__min_samples_leaf': [1, 10, 20, 40], 

                                   

                   } 

param_grid_tree1 = {'criterion':['squared_error', 'friedman_mse', 

'absolute_error', 'poisson'], 

                   'splitter':['best', 'random'], 

                   'max_depth': [ 5, 10, 20, 22, 40, 50 ], 

                   'min_samples_split': [ 2, 4, 8 ], 

                   'min_samples_leaf': [1, 10, 20, 40], 

                                   

                   } 

param_grid_tree2 = {'tree__criterion':['squared_error'], 

                   'tree__splitter':['best'], 

                    'tree__random_state':[0], 

                   'tree__max_depth': [ 8, 9, 10,11,12,13, 22, 40, 80, 

120 ], 

                   'tree__min_samples_split': [ 4 ], 

                   'tree__min_samples_leaf': [20] 

                                   

                   } 

param_grid_tree3 = {'random_state':[0], 
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                    'criterion':['squared_error', 'friedman_mse'], 

                   'splitter':['best', 'random'], 

                   'max_depth': [ 9 ], 

                   'min_samples_split': [ 2 ], 

                   'min_samples_leaf': [21], 

                                   

                   } 

extra_tree_features = { 

                       'tree__max_features':['None','auto', 'sqrt', 

'log2'], 

                   #'tree__min_impurity_decrease':[0,0.1,0.2,1], 

                   #'tree__ccp_alpha':[0,0.1,0.5,1] 

                       } 

grid_params_voting = { #Tests for Ensemble Models 

               'weights': [(0.625, 0.375),(0.75, 0.25),(0.875, 

0.125),(1, 0)]} 

  

grid_tree = DecisionTreeRegressor()        

#grid_tree = 

Pipeline(steps=[('scaler',preprocessing.StandardScaler()),('tree', 

DecisionTreeRegressor())])   

 

#The selection of the above parameters can be typed here to perform the 

corresponding test 

grid = GridSearchCV(VotingRegressor(estimators=[('regr2', 

regr_2),('regr1', regr_1)]), param_grid=grid_params_voting, refit = 

True, verbose = 3,n_jobs=-1)  

# Fitting the model for grid search  

grid.fit(train_setx, train_sety) 

  

# Print best parameter after tuning  

print(grid.best_params_)  

grid_predictions = grid.predict(test_setx)  

    

# print the Score of the best parameters 

print("R-squared:", format(grid.best_score_, ".3f")) 

 

#End of Gridsearch 

 

# Prediction 1 Model Saving  

filename = 'adegapalmela_temp_solar.sav' 

pickle.dump(regr_1, open(filename, 'wb')) 

 

# Export Correlation Data 

 

s1 = pd.Series(np.corrcoef(wvalues1temp,pvvalues)[0, 

1],name='Temperature-PV Production Correlation') 

s2 = pd.Series(np.corrcoef(wvalues2humid,pvvalues)[0, 

1],name='Humidity-PV Production Correlation') 

s3 = pd.Series(np.corrcoef(wvalues3wind,pvvalues)[0, 1],name='Wind 

Speed-PV Production Correlation') 

s4 = pd.Series(np.corrcoef(wvalues4cloud,pvvalues)[0, 1],name='Cloud 

Cover-PV Production Correlation') 

s5 = pd.Series(np.corrcoef(wvalues5rad,pvvalues)[0, 1],name='Solar 

radiation-PV Production Correlation') 

 

exportcorrdata = pd.concat([s1,s2,s3,s4,s5], axis=1) 
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# Export data to Excel 

exporthourlystats = pd.DataFrame({ 

                                      

'pvhmeansyearly':pvhmeansyearly,'pvhstdevyearly':pvhstdevyearly, 

                                      

'pvhmeanssummer':pvhmeanssummer,'pvhstdevsummer':pvhstdevsummer, 

                                      

'pvhmeanswinter':pvhmeanswinter,'pvhstdevwinter':pvhstdevwinter 

                                      }) # Hourly statistics 

 

exportdatalegend = pd.DataFrame({'Legend':blegend}) # Legend explaining 

the statistics page 

 

# Export Arranged Data 

 

exportbdata = pd.concat([s1,s2,s3,s4,s5,s7,s8,s9,s10,s11,s12,s13], 

axis=1) # Must be written like this to allow different size lists in 

the same worksheet 

 

# Create a Pandas Excel writer using XlsxWriter as the engine. 

try:  

    bwriter = pd.ExcelWriter('Exported_Data.xlsx', engine='xlsxwriter') 

except: 

    # Colab version 

    bwriter = pd.ExcelWriter('/content/drive/MyDrive/Colab 

Notebooks/ExportedData.xlsx', engine='xlsxwriter') 

 

# Saving the Excel file 

exportbdata.to_excel(bwriter, sheet_name='Data') 

 

exportcorrdata.to_excel(bwriter, sheet_name='Correlation Data') 

exporthourlystats.to_excel(bwriter, sheet_name='Hourly statistics') 

exportdatalegend.to_excel(bwriter, sheet_name='Legend') 

 

bwriter.save() 
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Appendix B – Code for Pre-processing data 
 

import pandas as pd 

import datetime 

import time 

import matplotlib.pyplot as plt 

import matplotlib.dates as mdates 

import statistics as stat 

import xlsxwriter 

import math 

import numpy as np 

 

try: # Normal offline run 

    wdata = pd.read_csv (r'BD4NRG.csv', delimiter=';') 

    weatherdata = wdata.values.tolist() 

    data = 

pd.read_excel(r'BD4NRG_Pilot3_ASM_Headquarters_Power_Profiles.xlsx',she

et_name="Building") 

    buildingdata = data.values.tolist() 

    data = 

pd.read_excel(r'BD4NRG_Pilot3_ASM_Headquarters_Power_Profiles.xlsx',she

et_name="Photovoltaic") 

    pvdata = data.values.tolist() 

except: # For Colab  

    wdata = pd.read_csv (r'/content/drive/MyDrive/Colab 

Notebooks/BD4NRG.csv', delimiter=';') 

    weatherdata = wdata.values.tolist() 

    data = pd.read_excel(r'/content/drive/MyDrive/Colab 

Notebooks/BD4NRG_Pilot3_ASM_Headquarters_Power_Profiles.xlsx',sheet_nam

e="Building") 

    buildingdata = data.values.tolist() 

    data = pd.read_excel(r'/content/drive/MyDrive/Colab 

Notebooks/BD4NRG_Pilot3_ASM_Headquarters_Power_Profiles.xlsx',sheet_nam

e="Photovoltaic") 

    pvdata = data.values.tolist() 

 

def datetotimestamp(buildingdata):# Convert date columns into timestamp 

    btime = [] # List of timestamps 

    btimestring = "" 

    for i in range(len(buildingdata)): 

        #btimestring =(str(buildingdata[i][2]) + "/" + 

str(buildingdata[i][1]) + "/" + str(buildingdata[i][0]) + " " + 

str(buildingdata[i][3]).split("+",1)[0] ) 

        btimestring =(str(buildingdata[i][2]) + "/" + 

str(buildingdata[i][1]) + "/" + str(buildingdata[i][0]) + " " + 

str(buildingdata[i][3]).split("+",1)[0] + "+0" + 

str(buildingdata[i][3]).split("+",1)[1] + ":00" ) 

        btime.append(datetime.datetime.strptime(btimestring,"%d/%m/%Y 

%H:%M:%S%z").timetuple()) 

    return btime 

 

def wdatetotimestamp(weatdata):# Convert date columns into timestamp 

from weather data and fix NaN values 

 

    wtimestring = "" 

    for i in range(len(weatdata)): 
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        wtimestring = str(int(weatdata[i][0])) + "+01:00" 

        weatdata[i][0] = 

datetime.datetime.strptime(wtimestring,"%Y%m%d%H%M%z").timetuple() 

 

        for j in range(1,len(weatdata[i])): 

            if np.isnan(weatdata[i][j]): 

                weatdata[i][j] = weatdata[i-1][j] 

 

    return weatdata 

 

def pvcleanup(pv,pvtime): # Clean up power data 

    for i in range(len(pv)): 

        if pv[i][4] < 0: 

            pv[i][4] = -pv[i][4] # Retrieve absolute power values to 

correct reverse power flow values 

        if pv[i][4] < 100 and ( pvtime[i].tm_hour > 17 or 

pvtime[i].tm_hour < 7 ): 

            pv[i][4] = 0 # Eliminates noise - Power produced after 5pm 

and before 7am less than 100 Watt is set to zero 

    return pv 

 

def add10mintohourly(buildingdata, btime): # Convert 10-minute values 

to hourly Wh values 

    bhourly = [] #List Containing the timestamp and the energy consumed 

    hourcounter = 0 

    hourlyproduction = 0 

    currenthour = 0 

    for i in range(len(btime)-1): # Omit the last element of the list 

to solve the out of index on btime[i+1] error 

        hourlyproduction += buildingdata[i][4] 

        hourcounter += 1 # Some elements are missing, not always 6 per 

hour, so they are counted to calculate Wh 

        if btime[i].tm_hour != btime[i+1].tm_hour: 

            currenthour = list(btime[i]) 

            currenthour[4] = 0 # Set the timestamp minutes to zero 

            currenthour[5] = 0 # Set the timestamp seconds to zero 

            

bhourly.append([time.struct_time(tuple(currenthour)),hourlyproduction/h

ourcounter]) 

            hourcounter = 0 

            hourlyproduction = 0 

 

    return bhourly 

 

def keepmatchingdatesonly(bhour,pvhour,wdata): # Keep only the data for 

each set corresponding to the same dates and times 

     

    pvcommondata = [] 

    bcommondata = [] 

    wcommondata = [] 

    lateststart = 0 

    earliestfinish = 0 

    lateststart = 

max(time.mktime(bhour[1][0]),time.mktime(pvhour[1][0]),time.mktime(wdat

a[1][0])) 

    earliestfinish = min(time.mktime(bhour[-1][0]),time.mktime(pvhour[-

1][0]),time.mktime(wdata[-1][0])) 
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    for i in range(len(bhour)): 

        if earliestfinish >= time.mktime(bhour[i][0]) >= lateststart: 

            bcommondata.append(bhour[i]) 

    for i in range(len(pvhour)): 

        if earliestfinish >= time.mktime(pvhour[i][0]) >= lateststart: 

            pvcommondata.append(pvhour[i]) 

    for i in range(len(wdata)): 

        if earliestfinish >= time.mktime(wdata[i][0]) >= lateststart: 

            wcommondata.append(wdata[i]) 

    return bcommondata, pvcommondata, wcommondata 

 

def fixtimedata(bhour,correctingpv = 0): 

    bhournew = [] 

    fillervalue = [] 

    meanval = [] 

    for i in range(1,len(bhour)-1): 

        if (datetime.datetime.fromtimestamp(time.mktime(bhour[i+1][0])) 

- datetime.datetime.fromtimestamp(time.mktime(bhour[i][0])) != 

datetime.timedelta(hours=1)): 

            if bhour[i][0] == bhour[i-1][0] and 

((datetime.datetime.fromtimestamp(time.mktime(bhour[i][0])) - 

datetime.datetime.fromtimestamp(time.mktime(bhour[i+1][0]))) == 

datetime.timedelta(hours=2)): 

               # If the time is the same as the previous cell and two 

hours later in the one after that then it is just DST so add the value 

normally 

             

bhournew.append([(datetime.datetime.fromtimestamp(time.mktime(bhour[i][

0])) + datetime.timedelta(hours=1)).timetuple(),bhour[i][1]]) 

            if bhour[i][0] != bhour[i-1][0] and 

((datetime.datetime.fromtimestamp(time.mktime(bhour[i+1][0])) - 

datetime.datetime.fromtimestamp(time.mktime(bhour[i][0])))  == 

datetime.timedelta(hours=2)): 

                #print(bhour[i][0]) 

                fillervalue = 

[(datetime.datetime.fromtimestamp(time.mktime(bhour[i][0])) + 

datetime.timedelta(hours=1)).timetuple(),bhour[i-24][1]] 

                ''' For using weekly averages to replace the value - 

not working 

                for j in range(-7,7): 

                    meanval.append(bhour[i + j*24][1]) 

                print(meanval) 

                meanval = stat.mean(meanval) 

                fillervalue = 

[(datetime.datetime.fromtimestamp(time.mktime(bhour[i][0])) + 

datetime.timedelta(hours=1)).timetuple(),meanval] 

                print(fillervalue) 

                ''' 

                bhournew.append(bhour[i]) 

                bhournew.append(fillervalue) # Fill in the value of the 

previous day for the missing data 

            if 

((datetime.datetime.fromtimestamp(time.mktime(bhour[i+1][0])) - 

datetime.datetime.fromtimestamp(time.mktime(bhour[i][0])))  > 

datetime.timedelta(hours=2)): 

            # Fill missing values if the hours missing are over 2 but 

less than 24     
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                hours_missing = 

datetime.datetime.fromtimestamp(time.mktime(bhour[i+1][0])) - 

datetime.datetime.fromtimestamp(time.mktime(bhour[i][0])) - 

datetime.timedelta(hours=1) 

                counter1 = 0 

                bhournew.append(bhour[i]) 

                while hours_missing > datetime.timedelta(hours=0): 

                    fillervalue = 

[(datetime.datetime.fromtimestamp(time.mktime(bhour[i][0])) + 

datetime.timedelta(hours=1+counter1)).timetuple(),(bhour[i-

24+counter1][1]+bhour[i+24+counter1][1])/2] 

                    bhournew.append(fillervalue) # Fill in the value of 

the previous day for the missing data 

 

                    counter1 += 1 

                    hours_missing -= datetime.timedelta(hours=1) 

            if 

((datetime.datetime.fromtimestamp(time.mktime(bhour[i+1][0])) - 

datetime.datetime.fromtimestamp(time.mktime(bhour[i][0])))  > 

datetime.timedelta(days=1)): 

                print('Error, missing values!', bhour[i][0]) 

                print(bhour[i][0], 'is where the value is missing') 

                sys.exit("Error message") 

                 

        # If the timedifference is over 24 hours, the value is not 

added and an error is displayed 

        # If the time is the same and the time difference with the next 

is not 2 hours, the value is also not added 

        else: 

            if datetime.datetime.fromisoformat('2019-09-09 00:00:00') 

>= datetime.datetime.fromtimestamp(time.mktime(bhour[i][0])) >= 

datetime.datetime.fromisoformat('2019-08-23 00:00:00') and correctingpv 

== 1: 

            # If specific dates with known missing values match, use 

the average data from the previous and next month 

                

bhournew.append([(datetime.datetime.fromtimestamp(time.mktime(bhour[i][

0]))).timetuple(),(bhour[i-30*24][1]+bhour[i+30*24][1])/2]) 

            elif datetime.datetime.fromisoformat('2018-08-27 00:00:00') 

>= datetime.datetime.fromtimestamp(time.mktime(bhour[i][0])) >= 

datetime.datetime.fromisoformat('2018-08-22 00:00:00') and correctingpv 

== 1: 

            # If specific dates with known missing values match, use 

the average data from the previous and next week 

                

bhournew.append([(datetime.datetime.fromtimestamp(time.mktime(bhour[i][

0]))).timetuple(),(bhour[i-7*24][1]+bhour[i+7*24][1])/2]) 

            elif datetime.datetime.fromisoformat('2021-05-09 00:00:00') 

>= datetime.datetime.fromtimestamp(time.mktime(bhour[i][0])) >= 

datetime.datetime.fromisoformat('2021-05-05 00:00:00') and correctingpv 

== 1: 

            # If specific dates with known missing values match, use 

the average data from the previous and next week 

                

bhournew.append([(datetime.datetime.fromtimestamp(time.mktime(bhour[i][

0]))).timetuple(),(bhour[i-7*24][1]+bhour[i+7*24][1])/2]) 
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            else: # In any other case, add the value normally 

                bhournew.append(bhour[i]) 

    return bhournew 

  
  

 

def testmissingdata(bhour): #Print all values which do not follow 

hourly sequence - Should only print DST changes in March if all is OK 

    bhournew = [] 

    for i in range(1,len(bhour)): 

        if datetime.datetime.fromtimestamp(time.mktime(bhour[i][0])) - 

datetime.datetime.fromtimestamp(time.mktime(bhour[i-1][0])) != 

datetime.timedelta(hours=1): 

            print(datetime.datetime.fromtimestamp(time.mktime(bhour[i-

1][0]))) 

            

print(datetime.datetime.fromtimestamp(time.mktime(bhour[i][0]))) 

 

# Get weather timestamps 

weatherdata = wdatetotimestamp(weatherdata) 

 

# Data for building consumption 

hourlystatslabel = 'Hourly Statistics' 

btime = datetotimestamp(buildingdata) 

bhourly = add10mintohourly(buildingdata, btime) 

 

# Data for PV 

pvtime = datetotimestamp(pvdata) 

pvcleanup(pvdata,pvtime) 

pvhourly = add10mintohourly(pvdata, pvtime) 

 

# Keep only the common dates among all data sets 

bhourly, pvhourly, weatherdata = keepmatchingdatesonly(bhourly, 

pvhourly, weatherdata) 

 

# Fill in blank hours 

weatherdata = fixtimedata(weatherdata) 

bhourly = fixtimedata(bhourly) 

pvhourly = fixtimedata(pvhourly) 

 

datesinstring = [] 

day = [] 

month = [] 

season = [] 

year = [] 

hour = [] 

weekday = [] 

bvalues = [] 

pvvalues = [] 

wvalues = [] 

wvalues1temp = [] 

wvalues2humid = [] 

wvalues3wind = [] 

wvalues4cloud = [] 

wvalues5rad = [] 
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for i in range(len(bhourly)): # Check if dates match and prepare the 

lists for each value 

    if bhourly[i][0] == pvhourly[i][0] == weatherdata[i][0]: 

        try: # Will raise an error when trying the time when DST 

starts, ignore that value -will omit a (erroneous) value of the 

original index 

            wvalues2humid.append(weatherdata[i][2])  

            wvalues3wind.append(weatherdata[i][3]) 

            wvalues4cloud.append(weatherdata[i][4]) 

            wvalues5rad.append(weatherdata[i][5]) 

             

            datesinstring.append(time.strftime('%Y-%m-%d %H:%M:%S', 

bhourly[i][0])) 

            day.append(time.strftime('%d', bhourly[i][0])) 

            month.append(time.strftime('%m', bhourly[i][0])) 

            # Season 

            if 3 > int(time.strftime('%m', bhourly[i][0])) >= 6: 

                season.append(2) #Spring 

            elif 6 > int(time.strftime('%m', bhourly[i][0])) >= 9: 

                season.append(1) #Summer 

            elif 9 > int(time.strftime('%m', bhourly[i][0])) >= 12: 

                season.append(3) #Autumn 

            else: 

                season.append(4) #Winter 

            year.append(time.strftime('%Y', bhourly[i][0])) 

            hour.append(time.strftime('%H', bhourly[i][0])) 

            weekday.append(time.strftime('%w', bhourly[i][0])) # 

Weekday needs to be taken into account for consumption - it is not 

exported to excel 

            bvalues.append(bhourly[i][1])  

            pvvalues.append(pvhourly[i][1]) 

             

            wvalues1temp.append(weatherdata[i][1]) 

 

        except: 

            pass 

 

    else: 

        print("Error: Date mismatch") 

 

# Export Arranged Data 

 

s1 = pd.Series(datesinstring, name='Date/Time') 

s2 = pd.Series(day, name='Day') 

s3 = pd.Series(month, name='Month') 

s4 = pd.Series(year, name='Year') 

s5 = pd.Series(hour, name='Hour') 

s6 = pd.Series(bvalues, name='bvalues') 

s7 = pd.Series(pvvalues, name='pvvalues') 

s8 = pd.Series(wvalues1temp, name='air temperature [Β°C]') 

s9 = pd.Series(wvalues2humid, name='relative humidity [%]') 

s10 = pd.Series(wvalues3wind, name='wind speed[m/s]') 

s11 = pd.Series(wvalues4cloud, name='cloudcover [%]') 

s12 = pd.Series(wvalues5rad, name='global radiation [W/m^2]') 
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exportbdata = pd.concat([s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12], 

axis=1) # Must be written like this to allow different size lists in 

the same worksheet 

 

 

# Create a Pandas Excel writer using XlsxWriter as the engine. 

try:  

    bwriter = pd.ExcelWriter('Exported_Data.xlsx', engine='xlsxwriter') 

except: 

    # Colab version 

    bwriter = pd.ExcelWriter('/content/ExportedData.xlsx', 

engine='xlsxwriter') 

 

# Saving the Excel file 

exportbdata.to_excel(bwriter, sheet_name='Data') 

 

bwriter.save() 
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