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MepAnn

H epyaocia autr e€eTalel TIG TEXVIKEG AVAAUONG SE8OUEVWV HE TIG OTOLEG HmopEel va yivel
TPOPAEYN TNC MAPAYOUEVNG EVEPYELOC KOL EVIOTILOMOG 0.0TOXLWY O pla dwTtofoAtaiky povada.
E€etalovtal oL péBobdol mou xpnolponolndnkav os MPOodATEG EPEVUVEC KAl MAPOUCLALETOL [l
nipotelvopevn pebodoloyia yia tnv mpdPAedn TnG mapaywyn.

Me tn Xpron aodnTripwy, LOTOPLKWY Kol UETEWPOAOYLKWY SeSoUéVwyY, g€ CUVEUAOUO
LE UTIOAOYLOTIKEG UEBOSOUC Kal HeBOSoUC UNXavikng Hadnong, umopouv va yivouv avaAUoELg
TIou KAavouv MpoBAEPELg yla TNV mapaywyr Twv PwtoBoAtaikwyv povadwv oe SladopeTikolg
XpovikoUG opilovteg. OL TpoPAEPEL QUTEG €ilval ONUAVIIKEG yla TN Slaxeiplon 1ng
OTOXOOTIKOTNTAG TNG NALOKNG EVEPYELOG WOTE va UMopel autr va aflomolndel oe peyohltepo
BaBuo oto nAektpikd Siktuo. MpaypatomnoBnke BiBAloypadikn €peuva otig peBodoug mou
XPNOLLOTIOLOUVTAL KAl Ttapouatdlovtal oL Tpoodpateg SNUOCLEVOELS TIOU TIELpAMATI{OVTOL TTAVW
otnv texvoloyia auth. E€etalovral ol otatlotkég pEBodol Tou ARMA, tng MaAvdpounong, tng
ExBetikng E€opdAuvong kat tng Ouokng MeBodou. E€etalovtal eniong ol peBodol Mnxavikng
MaBnong kat tng Bablag Mabnong (Deep Learning), cupnepAapBavopévwy Twv NEUPWVIKWY
Atuwy, Twv Aévipwv Anodpdcswy, Twv Mnxavwy Alavuopdatwy YmootnplEng Katl uppLsikwv
pneBOdwv.

AvtioTolya, e HeTpAoeLs amo Sladopout aodNTpeG KAl TNV avaluon TwV LETPROEWY
OUTWV OTOV UTIOAOYLOTH, UTTOPEL va YIVEL EVTOTILOMOC aoToXlwv ota dpwrtoBoAtaika otolxeia
wote va anodeuxbouv mepaltépw Inuieg, va yivouv ol amapaitnteg SlopBwoelg kol va
e€aodpalilotel N PEYLOTN TTAPAYWYLKOTNTA TNG eyKataotaong. As€nydn avtiotolxn €peuva oOTig
HEBOSOUG UE TIG OTOLEC YIVETAL O EVIOTIOUOC OOTOXLWV KoL avodpEpovial SNUOCLEVCELG TIOU
TelpapaTi{oVTalL OTO QVTIKE(UEVO auTO. E€eTdlovtal ol ontikeég HEBodol, oL pEBodol NAEKTPLKWV
XOPAKTNPLOTIKWY, oL péBodol amelkoviong, ot péBodol texvntig vonuoouvng, oL uéBodol mou
otnpilovtal otn Slayvwaon amo eElOIKEUUEVEG OUOKEVEG, N TIPOYVWOTLKN GUVTAPNON LE XPNon
aLoOnNTHpwWVY o MPAYUATIKO XpOvo, kabwg Kal uPBpLdikéc péBobdol.

JTnv mpotewvopevn pebodoloyia mpoBAeYng mapaywyng, avantuxdnke AoylopLkd otnv
vAwooa Python Tto omoio mpayuatomnolel TPoPAEPELC yla TNV TMopoaywyn oELOTIOLWVTAG
HETEWPOAOYLKA Sebopéva Kal LoTopLka dedopéva mapaywyng amo éva avwvupo Case Study.
Mpayuatomnol6nke mpo-enefepyacia ota dedopéva, dlopBwvovtag TG e0PAAUEVES TIUEC Kall
YeULlovTag TIG KEVEG TIUEG. Eylve Mpooapuoyn wote ta Sedopéva va pnopolv va sloaxbolv
OTouG aAyopiBuoug pnxaviknic padnong. XpnowomouiBnkav ot péBodol tou Aévdpou
Anoddoswy, Twv Mnyavwv Alovuopdtwyv YmootnpEng, tne Mpappkng MNoAwdpopnong Kat
UBPLELIKOG cuvduaopog autwy. AflomoltiBnke To Aoylopiko scikit-learn. Xpnowpomownbnke n
nEBodog VotingRegressor yla tov cuvbuaopud pebodwv kal n puéBodog GridSearchCV yia tn
BeAtotonoinon Twv MOPAUETPWY KABOE povTEAOU. MpayHOTOMOINONKOY EKTETOUEVEG SOKLUEG
oTLC omoieg mpoadloplotnke n BEéATiotn emloyn petaBAntwy eloodou kal n BEATLOTN emhoyn
UTIEPTIOPOUETPWY O KABe poviélo. Ta povtéAda Soklpaotnkav pe duo SLadopeTikA HeYEDN
Sebopévwy ekmaibeuong kal cuykpiBnke n akpifeld toug. Itnv mpwtn Sokiun ta dsdopéva
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ekTaldeuong Atav to ocUVolo Twv dedopévwy eKTOC amd TV teAsutaia gfSopdda kal oth
Seltepn dokiun amotehovoav to 50% Twv Sedopuévwy.

Né€elg kAelbla: Avavewolpeg MMnyég Evépyelag, Moapaywynn DwrtofoAtaikwv, Evtomiopoc
ootoxlwyv, BpaxumpdBeopeg mpoPAéPelg, Mnxaviky Mabnon, Avaluon dedopévwy
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Abstract

This thesis examines the data analysis techniques with which energy production
forecasting and fault detection can be performed on a photovoltaic unit. Methods used in
recent research are examined and a proposed methodology for production forecasting is
presented.

Using sensors, historical and meteorological data, combined with computational
methods and machine learning methods, analysis can be performed to predict the productivity
of solar cells in various time ranges. These predictions are important in order to be able to
respond to the variation of solar energy in order for it to be usable on the electrical grid to a
larger degree. Bibliographical research was done on the methods used for forecasting and
recent publications experimenting on this technology are presented. Statistical Methods are
examined, which includes ARMA, Regression, Exponential Smoothing Method and the Physical
Method. Machine Learning and Deep Learning Methods are also examined, which includes
Neural Networks, Decision Trees, Support Vector Machines and hybrid methods.

Similarly, by collecting measurements from various sensors and analyzing these
measurements on a computer, fault detection can be performed on Photovoltaic units in order
to prevent further damage, perform the necessary maintenance and ensure the maximum
productivity of the installation. Bibliographical research was done on the available fault
detection methods and the publications experimenting on that field. The methods examined
included the visual method, electrical characteristics methods, imaging techniques, artificial
intelligence, device-based methods, predictive maintenance through real-time sensors and
hybrid methods.

In the proposed methodology for production forecasting, software was developed in
Python, which can make production forecasts using meteorological and historical production
data from an anonymized case study. The data was pre-processed, correcting erroneous values
and filling in missing values. The data was formatted and adjusted in order to be inputted to the
machine learning algorithms. The methods of Decision Tree, Support Vector Machines, Linear
Regression and hybrid combination of them were used. The scikit-learn software was utilized.
The VotingRegressor method was used for the ensemble methods and the GridSearchCV
method was used for the optimization of the parameters in each model. Extended tests were
performed to determine the optimal selection of input features as well as the optimal
hyperparameters for each model. The models were tested with two different train set sizes to
compare their accuracy. During the first test the train data were composed of all available data
except the final week and during the second test they were composed of 50% of the data.

Keywords: Renewable Energy Sources, Photovoltaic Production, Fault detection, Short-term
Forecasting, Machine Learning, Data Analysis
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Eupela NepiAnyn

Kedpdalaio 1: Eloaywyn

H avdaykn ywa popdEg evépyelag mou vo eival GAkOTepeg oto TepLBAAAov £XeL
avadeiel TNV mapaywyn evépyelog and dwrtoPolAtaikd otolxeia kpiowun yla tnv EAANVIKN
olkovopulia.

MéxpL TpOodaTA TTOU N EVEPYELO TIPOEPXOTAV LOVO Ao BEPUONAEKTPLKA EPYOOTACLA, N
SlaBéoun NnAEKTPKN LoXUG oto Oiktuo eixe ula koBoplopévn TR Tou oplotav amo
avBpwrnoug. Me ta véa Sebouéva tng nAektpomapaywyns ano dwrtofoAtaikd otolyeia kot
OVELLOYEVVNTPLEG, AUTO €XeL alagel. H nAlakn aktwvoBolia, Omwe Kal n TaxuTnTa ToU aVEUOU,
armoteAoUV OTOXOOTIKEG UETAPANTEG, ampOPAsmteg o peyGAo PBabud katd tn SLApKELA TNG
nuépas.

Katd ouvénela, sival katapynv anpoBAento noon Stabeotpn Loxl Ba €xeL To NAEKTPLKO
Siktuo, Kal av n oxV¢ auth emapkel kaBs dedopévn otypn yla va kaAvel tn ntnon. Kata
OUVENELN, XWwpPLg KAMOoLo cuoTnUa UTOoTAPLENG, N NAEKTpomapaywyn Ue Avavewoldes MnyEg
Evépyelac adnvel pia xwpa ektebeluévn og SLOPKELG OMWAELEG TTAPOXAG PEVLATOC KAl TITWOELG
taoelc. H mpoPAsdn tng napaywyng e€aodalilel otL to diktuo Ba Asttoupyel otabepotepa ot
SlabOopeTIKEG CUVONKEC. YITAPXEL CUVENWE QVAYKN Va YIVOVTOL K TWV MPOTEPWVY EKTIUNOELG yLa
TNV TooOTNTA TNG TAPAYOUEVNG evépyelag. Autd Slvel tn Suvatotnta va AndBolv pétpa
T(POCOPUOYNG TNG {ATNONG TOU PEUMOTOC WOTE VA avIameEEpXeTal otnv npoodopd. TETolo
UETPO €lval n Sltakupavon TG TG ToU PEVUATOC KATA TN SLApKeLa TNG nuépag. H mpoBAsdn
™¢ mopaywyng Oivel emiong tn SuvatdTNTa OTO XELPLOTH TOU NhAEKTPIKOU SiKTUoU va
aflomoloel SLadOpPETIKEG TINYEC EVEPYELOC TIOU £XEL 0T SLAOE0T TOU WoTe va avtanokplOel o
auénoelg N Yelwoelg otn StaBéoun woyv (1).

H mpoyvwon kalpou eival amopaitntn ywa tov mpocdloplopd tng Slakluovong g
mapaywyng, oAAG oxL kab’ sauth apketn. H épeuva amnédelfe OTL Ta PETEWPOAOYIKA dedouéva
O&v €X0UV YPOULLKN OXEON HE TNV Mapaywyn evépyelag. Ta Sedopéva tng mpoyvwaong Kapol
Xpelalovtal mepaltépw eneepyooia wote va yivel ekTipnon TG LEANOVTLKAG TTapaywync.

Eniong, n mapoxn Tng NAEKTPLKAC EVEPYELOC ATO Ta GwTOBOATAIKA Unopel va pelwBetl
KOL OO AoTOXlEG TTOU HrmopoUV va mpokUPouv ot Statdlelg Twv dwrtofoAtaikwy kabwe Kal
OTOUG OUAAEKTEC. TETOLEC OOTOXIEC TIPEMEL va POGSLOPLOTOUV Kol va dLopBwBolv eykaipwg
wote va etaodpalilotel n opaAn Asttoupyia Tou Siktuou. Elval onpaviiko va evtomilovral
gyKalpwe To opAaApata wote va ehaLloTonolnBel To KOOTOC GUVTAPNONG KAl va UeylotonolnBel
n mapaywyn. H mpoBAedn tng mapaywyng UMOpPel emiong va CUVELOPEPEL OTOV EVIOMLOUO
OOTOXLWV.

Tooo oto MPOPANUA TNG OTOXOOTLKOTNTAG TWV UETEWPOAOYLKWY SedouEvwy 000 Kal
OTOV EVTOTILOUO TWV AoTOXLWV avtameEépyetal n avaluon SeSo0UEVWY KOl N UNXOVLKN Ladnon.

loannis Choustoulakis 13
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Me Tn Xprion UTOAOYLOTIKWY PEBOSWY, Ta petewporoyka Sedopéva unmopouv va aflomotnBouv
LE TETOLO TPOTIO WOTE va YIVEL WLOL TIPOCEYYLOTIKI OVTLOTOIXLON TOUG HE TRV Tapaywyn
gvepyelac. Emiong, ta 6edopéva mou cuAAEyovTOL amo alobntrpeg wmopolV va cuyKplBouv Ue
TIG TIMEG TTIOU £6€lyvav OL aALoBNTPEG OTaV £l MAPOUCLAOTEL I EMPOKELTO VA TIAPOUGCLAOTEL
OUVKEKPLUEVO OPAAUA, WOTE va YIVEL EYKALPWG O EVIOTILOMOC Kal n S1opBwor tou otav
enaveudaviotel.

ITOXOG KOl OVTLKELUEVO TNEC SUTAWHOTIKNG

Yriapxel pa molkidia pebodwv mou xpnoionolouvtal otnv PoPAedn TG MOPAywyng
KOL TOV EVTIOTILOMO aoToxlwy ota pwtoBoAtaikd. H amodoon kat n akpifeld toug moikilouv
€vtova PeTafl SLadopeTIKWY LEAETWY TEPLTTTWONG.

To avtikeipevo tng SUTAWHATIKAC autn¢ sival va e€staotel n edappoyn Twv Sladopwy
neBOdwv TPOPAEPNC Kal va TIpoodEpEL £va MAALCLO LE TO OTIOLO va UTOpPEL va yivel cUyKpLon
OTLC TPOOodATEG EPEUVEG yLa TNV edapUoyn KAl ThV enidoon Twv HeBOSdwY auTwv.

Avtiotolyn £peuva SLe€nxdn otig pebodoug evtomiopol oPpaApATWY, WOTE VA UTIAPXEL
pLa Baon avadopdg yia to moleg pEBodol eival amoTeEAECUATIKEG OTOV EVIOTILOMO SLadOPETIKWY
TUTIWY aotoXlwyv. Epeuvwvral eniong ol mpocodates SNUOCLEVCELG OTO OVTLKELEVO.

EmutAéov, n SUMAwPOTIKA auth TieplAappAvel pla mpotewvopevn pebodoloyia yla
npoPAedn mapaywyng ¢wrtoPfoAtaikwy, n omoila avamtuxbnke otnv Python. Avamtuxbnkav
Sladopa povtéAa, Ta omola BeATioTomolBnKkav Kal ot cuvéXela ouykpilBnkav otnv amnodoor)
TOUG, XPNOLLOTIOLWVTAC avwVUpa dedopéva yla va YIVEL pLa LEAETN iepimtwong. H amodoon tng
TpoTEWVOUEVNC peBodohoylag cuykpiBnNKe OTn CUVEXELO UE TOL LOVTEAQ TIOU XPNOLUOToLoUvTalL
otn BLBAloypadia.

Juvelodopad kat afia TG SUTAWUATLKAG

H SUTAWHATIKA Ut TIOPEXEL UL kawvoupla peBodoloyia oxeSlaopévn va GUYKpLveL
Sladopetikad povtéha mpoPAedng Baocsl g amddoong TOUG KOl OTn CUVEXELD va TIAPAYEL
TIPOPAEPELG XPNOLLOTIOLWVTAG €va ETUAEYUEVO MOVTEAO. MapEXel (i BAON TOU ETUTPEMEL TN
BeAtiotonoinon kAdBe HOVIEAOU WOTE va HEYLOTOmolnosl thv amodoon tou. H Bdon auth
ETUTPEMEL eMiong va SoKIPaoTel KABe povtélo pe Sladopetikd Sedopéva.

Katopxnv toa O6ebopéva uméotnoav KAtaAAnAn mpo-enefepyacio. Avamtuxbnke
AOYLOULKO TO omoio SlopBwvel TG e0DAAUEVES TUUEG KOl YEULITEL TIG KEVEC TIUEG oTa debSopéva.
Jtn  ouvéxela, Ta Oedopéva xpnowdomowibnkav oe  TEvte  SLAdOPETIKA  HOVTEAQ,
xpnolgorowwvtag Aévipa Amnoddoswv, Mnxavég Alavuopdtwy Ymootnpleng , TPoppLKA
MNapepuPoAn kot dU0 UPPLOIKA HOVTEAQ TIOU XPNOLUOTIOLOUV GUVOUAOUO TWV TIPONYOUUEVWV.
‘Eywvav eKTETOUEVEG SOKLUEC yLa va TIPOoodLopLoTEeL N BEATLOTN emAoyr] Twv peTaBAnTwy eloddou.
ITNn OUVEXELA €ylvav TEPOLTEPW OOKIUEG yla va BeAtiotomolnBolv oL UTEPTMOPAUETPOL KAOE
povtélou. H amddoon Twv HovtEAwv ot KABe Soklun kataypddnke Kol ouykpiBnke Ue ta
T(PONYOUEVA QMOTEAECUATA LE TN XPNON EEEBIKEVUEVWY SEIKTWY, CUUTEPAAUPBAVOUEVNG TNC
TETPAYWVIKAG pillag Tou HEoOU TETpaywvikol oddipato¢ (RMSE), tou péoou amoAutou
odaApatog (MAE) kot tou ouvteleoth mpoobloplopou (R-Squared). Auo SladopeTika peyEdn
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Sebopévwy xpnaotpomodBnkav wg elcodog ota povtéda. H anddoon twv LoVTEAWY cuykpiBnke
LE QLUTOV TOV TPOTIO Kal yLo. BpaxumpoBeopes mPoBALYELG.

EmutAéov, n OSUTAWHATIKA aUTA TAPEXEL LA YEVIKA €KOVA yla TIG peBodoug mou
xpnotgorolouvtal otnv  TPOPBAedn Tmopaywyrng KoL TOV EVIOMIONO OGOAPATWY OTo
dwroPoAtaika. MNeplypadovral oL o ouvnBelg pEBodol, oL BACLKEG TOUG EVVOLEC, N TEXVLKNA
opoloyia, o TpOTMOoG AELTOUPYLOG, TO TTAEOVEKTHLATA KOl LELOVEKTAUATA KaBeulog, KaBwg Kal n
CUMBOTOTNTA TOUG 0 SLADOPETIKEG EPAPLOYEC.

MapouclAeTAL YLO EKTETAUEVN EPEUVA OTLG SNUOCLEUOELS OXETIKA Ue Tn peBodoloyia
oTLC poPAEPELS Tapaywyns Twv dwToPoAtaikwy. Ma kdbe dnuoocicuon avadépetal n pEBodog
TIOU XpnoluomoL)Bnke, ol LETAPBANTEG L0080V, TO XPOVIKO £UpOg TNG TMPOPBAsPNG, AAAEG TUXOV
Aemtopépeleg NG edappoyng, Hall pe Tnv amodoon Kal Ta anoteAéopata Kabe mepimtwong.
AUTO mapéxel éva onpeio avadopdg yia LeANOVTIKY €peuva, KaBwE UImopel va cuyKpLlBel eUKkoAa
n anédoon MoAAWV SL0POPETIKWY EDAPUOYWV.

Avtiotolyn £peuva SLe€nxbn otig pebodoug evromiopol actoxlwv. Avadépovtal ol
Baolkég €vvoleg, o TPOMOG Asttoupyiag Kal n cupPatdtnTd kabe peBOSou yla TOV EVIOTLOUO
SLadpopeTikwy ohoAPATWY, KABWG Kal Ta amoTteAéoHaTa MPOCPATWY EPEUVWY OTLG MEBOSOUG
OUTEC.

Aopn NG SUTAWUATIKAG
H SumAwpatikn €xeL 6 kebahata Kot 2 TapaptraTa.

To kedaAalo 1 MepLEXEL L ELOAYWYI) KOL TOUG AOYOUG TIOU UTTAPXEL AVAYKN YLa EpEUVA
OTO OVTIKEIPEVO auTO. E€nyeital o otoxog Kol To avTKe(pevo TNG SUTAWHATIKAG, Hall Pe TN
ouvelodopa kat tnv afia tng. TEAoC, e€nyeital n doun TNG SUTAWUATIKAC.

To keddlalo 2 mepléxel pla avaAuon ot uebodoug mpoPAedng mapaywyng mou
nieplypadovtal otn PBiPAloypadia, pall pe pa €peuva ot TPOCPATEG SNUOCLEUCEL TIOU
gywav otnv mpoPAePn mapaywyng pwrtoBoAtaikwy, pall pe g pebddoug Kal tnv amodoon
kKGaBe edappoyng. Avohlovtal n péEBodog eUpovnG, Ol OTATIOTIKEG PEBodoL kal oL péBodol
HNXaVLKrG Habnong.

To keddalawo 3 mneplypadel TIg peBOSOUG EVIOMIOUOU OOTOXLWV OTOUG NALAKOUC
OUM\EKTEG. EEnyeital o tpomog Aettoupyiag kabe pueBoOdou Kal To €l60G TwWV QAOTOXLWV TOU
umopel va evtomnioel. E¢stalovral ol epappoyég os mpoodateg dnpootevoelg. Mepypddovral ot
OTITLKEC UEBOBOL, OL LEBOSOL NAEKTPIKWVY XOPAKTNPLOTIKWY, oL LEBodol amelkdviong, ol pébodot
TEXVNTNG vonuooLvng, ol péBodol mou Bacilovtal o e€elSIKEVUEVEC CUCKEUEC, oL LEBoSoL TTou
XPNOoLomoloUV aloBnTtrpeg o€ MPAyUATIKO XpOvo Kot ot UBpLSIKEG péBodbol.

To kedpalalo 4 mopoucldlel tnv TPoTewvopevn peBodoloyia. Tivovtal mpoPAéPelg
XPNOLLOTIOLWVTOG LOTOPLKA SeSopéva Mapaywyneg Kal HETewpPoAoyLlka SeSopéva, Pe T Xpnon
Aévtpwy anodpdcewv, Mnxavwy Alavuopdatwy YrnootnplEng, Mpappikng Naivdpopnong kat dUo
UBPLEIKWY HOVTEAWYV TIOU XpNGOLUOTIoloUV cuvSuaopolg Twy Tiponyolevwy. EEnyeital o Tpomog
Aeltoupylog Twv eAEyMEVWY  HOVTEAWV. AvalUetal n OXeTkn Bewpla pe KatdAAnAo
napadelypota, OSlaypdppota  Kal  padnuotikol¢ tumouc. Efnyeitat n  péBodog mpo-
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enefepyaoiag Twv dedopévwy. EEeTaletal n cuoXETion UeTady Twv Slabéoipwyv SeSopévwy Katl
NG LETPOUHEVNC LOXVOG 060U WOTE VA YIVEL EKTINGN TOU TIOLEG HETABANTEC Ba elval XpriOLUEG
KOTA TN SLAPKELX TWV SOKLUWV.

To kedpdlato 5 avadépel avoAUTIKA TIG SOKIUEG TTOU €yLVaV KOl Ta ONMOTEAECUATA TIOU
napaxdnkav. Autd mepAapuBAavel pLa oelpd SOKLUWY E OKOTO va TPocdLoploTtel n BEATLOTN
emAoyn HeTafANTwWY 10060V KAl ULO OELPA SOKLUWYV LE OKOTIO VA TPOCSLOPLOTOUV oL BEATLOTES
TIUEG TWV UTIEP-TIOPAUETPWY Yl KABe povtélo. H BeAtiotomoinon €ylve Katapxnv Xelpokivnta,
avadépovtag tnv akpifela kABe poviédou oe KABe SOkl Kol EMAEYOVTOC TG KOAUTEPEG
TLOPOUETPOUG XELPOKIVNTA. 2T CUVEXELA £ylvav SOKLUEG oUTOUATOMOLNUEVA, UE T BonBela Tou
GridSearchCV, anoé ta epyaleia tou scikit-learn. Eywvav Sokipég pe SUo SladopeTika HeyEDn
Sebopévwy eloddou. Avallovtal AEMTOUEPWG T OMOTEAECHATA .

To keddhalo 6 mapouclalel TA CUUTIEPACHATA OATMO TLC OOKLMEG Kal TPOTElvel
MEAAOVTIKEC EpYACLEG JIE TIG OTIOLEG UTTOPEL VA OUVEXLOTEL N €pEUVA AUTAC TNG SUTAWUATIKAC.

To mapaptnpa A mopouctdlel Tov KWSLKA Tou avamtuxbnke ylo va ehpopUooTel N
TPOTEWVOUEVN HeBoboloyia. MeplhapPAvel OTOTIOTIKI) AvAAUGCN KAl UNXAVIKA PHABnon He tn
xpnon tou scikit-learn. O kwdkag cuvodeVeTal Ao oxOALa Tou €€nyouV TIG AsLlToupyleg Tou.

To mapdptnua B mapouctdlel tov KwoIKA TIOU XPNOLUOTOLRONKE yla TNV Tpo-
enefepyaocia Twv Oebopévwy, TOU TEPAAUPAVE TIG AMOPOLTNTEG TPOCOPUOYEG OTN
popdomnoinon, To YEULOUO TWV KEVWV TIHWV Kol Tn d10pBwon Twv £0PaApévwy TIUWY TIOU
npokAROnkav amno to 66puBo oto NAeKTPLKO SikTuO.

KedbaAaio 2

Jto kedpdlalo autd avoAlovtal ol péEBodol TPOPAsdnC TOU UTMAPXOUV OTN
BBAoypadia. EEnyeital n pEBOSOC EUUOVAC KoL O TPOTIOC TTOU XpnoLyomnoleital. Avaluovtal ot
OTaTIOTIKEG pEBOSOL, oupmneplhapPBavopévng tng ARMA, tng maAwdpounong, NG eKBETKNAC
gfopaiuvong kot TG puotkng pebodou. EEnyeital o tpomog Asttoupylag TOug Kal oL CUVONRKEG
oTLC onoieg amodidouv KaAUTepa.

" g

X(t) = Z a X (1—i)+ Z Pielt—j)

|i= | ||'= |

E§iowon 1 — MaOnuatikog tumog ARMA (2):

Mepypadovtal eniong ot péBodol pnxavikng pabnong kat Babldag pabnong, onwg ta
Neupwvika Aiktua, ot Mnxavég Alavuoudtwy Yrmootnpléng kot oL uPBpLokég péBodol. Tvetal
EKTETAUEVN AVAAUCN OTL{ TPOOHATEC EPEUVEG TIOU XPNOLUOTOLOUV SLadopeTIKEG HeBOSOUC
npoPAePnc, avadépovrag tnv akpifela kabepuiag.
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Figure 1 — Baown 6oun Neupwvikou Atktuou (3)

To kedpalalo auto odrynoe oTa MAPAKATW CUUNEPACUATA:

Ol péBoboL unxavikng Labnong €xouv LeyaAutepn akpifela amo tig kabapd oTATIOTLKES
puebodoug.

Ot o dnpodheic pEBobdoL pnYavikng pabnong kot Bablag padnong eivat ol Stadopeg
popdéC Twv Neupwvikwv AlKTUwv, akoAouBoUpevwy amod TG Mnxavég AlavuouaTwy
YrootpEng kat TG uBSpLkeG ueBoSoug.

Ztn BBAoypadia n péylotn akpifela emttevxOnke pe tn xprnon Nevupwvikwv AlKTUwWV
(ANN), aAAd o dAAeg epUTTWOELG N HEB0SOG auth ixe kakn anddoon.

OL neploootepec mpoPAEPelg otn BLPAoypadia eival BpoayxumpoBeoueg, HETALY TIHWY
KATW TNG KOG WP LEXPL KOL L0 NUEPAQL.

H akpifela Twv HOVTEAWV emnpedletal £vtova amo tov Katpd. O NALOAOUOTOC KALPOG
o0nyel oe MTOAEG MEpUTTWOELG O€ TILo aKpLBeic TpoPAEYELG.

H xprion dLopopeTikwv LETEWPOAOYIKWY SeSouévwY TToLKIAeL Evtova otn BLBAloypadia.
Kamolol gpeuvntég Bacilovtal amoKAELOTIKA oTa LOTopLkA SeSopéva mapaywyng Kot
aAAol xpnotuormnololv Sladopeg MapapETPOUG, ONwE TV KAAU YN and ta cuvveda N T
Bepuokpacia, yla va kavouv poPALP L. To cuumEpacpa ATAV OTL, YLO TV EPEUVA OF
auTh TN SUTAWUATLKY, EMPETE VO SOKLULAOTOUV SLadOpPETIKEG LETAPBANTEG EL0OSOU WOTE
va tpoadloplotel n péylotn anddoaon. O Adyog eival 6tL otn BiBAloypadia Sev unnpxe
OUUMEPOOLO TOU TIOLEG UETABANTECG Elval XPHOLUEG O OAEC TIC TTEPLITTWOELC.

Keddaiato 3

Y& auTo Tto Kedalailo e€etalovral oL PEBoSOL EVIOTMIOUOU aoToXLWV oTa GpwTtoPBoATaika.

Meplypadetal o TpOmog Asttoupylag kABe peBodou Kal To €160G TWV ACTOXLWV TIOU UMOpPEL va

evromnioel. EpeuvnBnkav kat e€nyouvtal epapuoyEg kabe pebBodou os mpdodateg EPEUVEG.
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E€nyeital n ontikn péBodog, mou ocuvnBwe mepA\apBAvVEL TOV EVIOTUOUO QCTOXLWV UE
avBpwrivn mapatnpnon. EEnyouvtal ta mpotumna tng Stadwaciag, ta £6n twv Aabwv mou
UTTOPOUV VO EVTOTILOTOUV Kall TOL LELOVEKTN AT TNG HeBodou.

Avallovtal ol péBodol ou Bacifovtal otnv avaAuon NAEKTPLKWY XOPAKTNPLOTIKWY TWV
dwtoPoAtalkwy eykataotdcewv. Auto nepthapPavel tny MBDM, tnv RDM, tn pétpnon |-V, tnv
OSA, PLA kot CDI. AvadEpovrtal ta anoteAéouota TpoohaTwy EPEVVWV.

Compute
Detection
Variable
ot s A v
; Expcnmcimal : Decision
: Analysis
chef;l:zn OFF UNF Set Threshold | :
; ANAYSIS Limits :
: Variable :
Simulation
: Analysis

Figure 2 — Atadikacio RDM yia evtoniopo aoctoyiwv (4)

Meplypddovtal oL TEXVIKEG amelkoviong, mou mepllapBdavouv tn xprnon umeplBpwy,
umepnxwv, nAektpodwtavyesta katl tn pEBodo Lock in Thermography.

Avallovtal ot péBodolL Tou XpnolpomoloUv TexXvNT vonuoouvn Kot Sedopéva
aLoBNTAPWY ylo VA EVTOTIIOOUV a0ToXieC. AUuTO TeplAapBavel peBodoucg punxavikng padnong,
onMw¢ Mnxaveg Alavuoudtwy umootrplEng, Deep Learning Kol OUVEALKTIKA VEUPWVIKA SikTua.
Meplypddovtal ol péBodoL mMou XPNOLUOTOLOUY eEELOIKEUUEVEGC CUOKEUEC Kal Ta €idn twv
OUGKEUWV TIOU UTIAPYOUV YLOL TOV EVIOTILOUO SLadOpETIKWV aoTtoxlwy. EEnyouvtal ol pébodot
TIOU XPNOLUOTIOLoUV aloBntrpeg Tou TapakoAouBolvTalL O TMPAYMOTIKO XPOVO, WOTE va
evtoriotel éva mbavo oddApa mpotou mpokUPel. Meplypadovtal TEAOG Kol ol UBSPLKEG
pnEBodol tou cuvdualouv Evav apLBPO TEXVIKWY ATO TIG MOPATIAVW.

To kedpalalo auTto KATEANEE oTA MAPAKATW CUUMEPACHOTA:

e O OmTIKOC EAEYXOG £lval XprOLUOG 0OV TIPOKATAPKTIKOG YLOL VO EVIOTILOTEL av xpelaletal
TIEPALTEPW EAEYXOC.

e Ol YUETPNOELG NAEKTPLKWV XOPOKTNPLOTIKWY EVIOTI{OUV 0OTOXIEG AVOLKTOU Kol KAELOTOU
KUKAwpoatog, hotspots, aotoxieg yelwong, nAektplkol TOfou, okiaong kal odpalpata
ynpavong.
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e OL p£Bodol amelkdviong UmopolV va EVIOTIIOOUV PpWYUEG KOl ULKPO-pWYUEG, ACTOXIEG
Slaolvdeong kat kahwdiwong, hotspots, avénon avtiotaong oslpdg, EAAATTWUATIKEG
S81060u¢ mapakapng, un-opoldopopdo pevpa Kot SladopEg oTNY EVEPYELOKNA amodoon
METAEY CUAAEKTWV.

e H unxavikn pabnon aflomolel SeSopéva TOOO AMO ATMELKOVION OCO KoL NAEKTPLKEC
UETPHOELC KOl UITOPEL va eVIOMIOEL Kal aoToXleg mou £xouv &N mpokLPel aAAd Kall
ootoyieg mou Ba mpokUuPouv oto pHEANOV.

o Lo KABe KATNyoplO OOTOXLWY UTIAPXEL Lo €EELOIKEUEVN CUOKEUN TIOU UTopel va Tnv
EVTOTILOEL.

KedaAaio 4

Y& aUTO TO KedAAalo Tapouctaletal n mpotelvopevn pebodoloyia. AvamtuxBbnke éva
Mpoypappa otnv Python pe to omoio €ywav mpPoPAEPELS ylo TNV TOpOywyn HE Tn XpHon
LOTOPLKWV S£60UEVWV TIOPAYWYN G KAL LETEWPOAOYIKWY SES0UEVWV.

Xpnowpomnobnkav ot péBodol Tou Aévtpou Anoddaccwyv, Twv Mnxavwv AlavuopAaTwy
Yrootnpng, TG Ipappikng MaAwvdpopnong kat 600 UBPWOIKWY CUVSUACUWY TWV
Tiponyoupévwy. E€nyeital o Tpomog AelToupylog TwV HOVIEAWV QUTWY avoAUOVTOC TN OXETIKN
Bewpla kat mapouoialovrag mapadelypata, StaypAppata Kol Toug Habnuatikol TUmoug Kabe
MOVTEAOU.

AvaAletal Brpa npog Bripa n péBodog npo-enetepyaciog twv Sedopévwy. Ta dedopéva
Enpemne va kaBaplotolv and KAmola obAApaTa HETPNONG Kol va popdomnotnbouv katdAAnAa
yla va eival XpnoLUOTIOLOLUA Ao Ta LOVTEAQ UNXOVIKAG Labnong.

EAéyxOnke n cuoxetion PeTafl Twv Slabéoiuwy SeSoUEVWY Kal TNG LETPOUHEVNG LoXVOG
£€660u wote va ektunBel moleg petafAntég Ba eival xprotueg oav Sedopéva e1l0080U KOTA TN
SLApKELX TWV SOKLUWV.

EmAéxOnkav ta poviéda tou Aévitpou Amoddcswv, Twv Mnxavwyv Alavuopatwy
Yrootnpne kat tng Mpapukng MaAwvdpounong yia diwadopoug Adyoug. Evag onpAvVTIKOG
napayovtag Atav ta Stabéopa epyaleia tou scikit-learn mou €xouv kaAn umootnplen oto
Slabiktuo kal mpoodépouv pocBacn ota povtéda autd. Evag aAAog Adyog yla T Xprion tou
Aévtpou Amodaocswv kal Twv Mnyavwv Alavuopdtwv YmootnplEng Atav n molklia twv
UTLEPTIOPOUETPWY TIOU SlaBétouv, kabwg autd Sivel tn Suvatotnta va PBeAtiotonolnbouyv ta
oamoteAéopata. Ymapxel emiong EMewpn otn BBAloypadia amd edappoyég Afvrpou
Anodadoewv Kal Mpapptkng maAlvdépounong yia mpoBAEPelg mapaywyr¢ dwtoBoAtaikwy.

‘Evag akopo Adyog Atav n avaykn va eleyxBel n ypoppLKOTNTA TOU efeTalOpEVOU
npoPAnuatoc. Amo amoyn ¢uailkng, n oxeon HeTtofl Apeong nNALOKNAG aKTWoPOoAlag Kal
TIAPAYOUEVNG LoXUoCg amo ta pwrtofoAtaikd Ba Empemne Bewpntikd va eival ypappikn. Av
npootiBevto kol GAAeC peTaBAntég ewoodou, autd Ba aMlale. OL Mnxaveég AlOVUCUATWY
YrootnpEng Umopouv va AELTOUPYNOOUV KOl UE YPAUULKO KOL UE N YPAUULKO kernel. To Aévtpo
Anoddcewyv elval pUn-ypapuikog aAyoplopog, evw n Mpapptkn MaAvdpounon elvol YpopLLK.
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Me SLadopeTikéG SOKLUESG, ouyKpivovTag TIG HeBodouc auTeg, umopel va Bpebel n BEATiotn Auon
elte 1o mMPOPBANUA elval TeEAKA ypappikd gite Oxt. O cuvOUACUOG EVOC YPAUULKOU KoL EVOC N
VPOUULIKOU HOVTEAOU UITOPEL EVOEXOUEVWG VO QVTLUETWITIOEL £va TIPOPANUA TIOU TIEPLEXEL Kall
VPOLLKEC KOLL UN-YPOAUULKEG TAOELG.

H nAtakn aktwvoBolio Twv mponyoUpevwy wpwv £6€1€e TIOAU LPNAN CUCXETLON HE TV
Tlapaywyrn eVEPYELOC. TO QTMOTEAECUO AUTO TALPLAEL PE TO YEYOVOC OTL N QLUTOCUCYETLON TNG
aktwoBoAiag ntav vPnAn péEXPL Kal 4 wpeg MpLv. AUTO 06YNOE OTO CUUMEPACHO OTL OL TUUEC
NG NALOKAC aKTWVOBOALG TwV MEPACUEVWY 4 e 5 wPWV TIPETEL val €EETAOTOUV OTLC SOKLUEG. H
KAAuyn and clvvveda eixe oxedov Undevik CUCXETION LE TNV Tlapaywyn Kat e€alpédnke and
TLG SOKLUEG,.

H Xxpovooelpd twv Sedopévwyv eudavics €vav emoxlako Tapdyovia, MPAyUd Tou
06nynoe oto cuumépacpa OTL OTOLXELO TNG NUEPOUNVIOG, OMWE N EMOXA A O UAVAC, TIPEMEL VOl
ouUTEPIANGBOUV OTLG SOKLUEG WG HETABANTEG ELGOSOU.

Keddahato 5

e autO To Kedpdalalo avadEpovral ol SOKLUEG TIOU €ylvav ota TAALoL AUTAG TNG
£€peuvog Kal oxohlalovtal Ta amoteAéopota. Eywve KotopxnVv MO Oelpd SOKLMWV yla va
npoodloplotel n BEATotn emdoyn petaPAntwy €l06dou yla kabe povtélo. H anddoon kabe
povtélou epdaviletal yia kaBe Sokiun pe Toug akoAouBoug Seikteg: 1) Tnv teTpaywvikn pila
TOU HEOOU TeTpaywvVikoU odaipatog, 2) To péco amoluto odpdApa Kat 3) To cuvieAeoTi
npoodloplopou (R-Squared), pe dVo dladopetikolg TpOMOUC UTTOAOYLOUOU.

‘Eywvav otn ouvéxela SOKLUEC yla TN BeATLOTONMOLNON TWV UTIEPTIOPAUETPWY KABe povtédou. H
BeAtwotomoinon €ywve katapxnv Xelpokivnta, avadépoviag tnv akpifela kaBe povtéAou Kot
ETUAEYOVTOC TIC KAAUTEPEC TOPOUETPOUG LE TO XEPL, KABWC KAl QUTOMATA, HE TN XPNon tng
Aettoupyiag GridSearchCV tou scikit-learn.

Xpnotwuomotbnkav oL KaAUTEPeC TMAPAUETPOL TIOU PpEOnKav amod TIC TPONYOUUEVEG
SOKLUEG yLa va SOKLUOOTOUV T LOVTEAQ PE PLKPOTEPO TTANB0G Sedouévwy elcddou, e€etalovtag
NV anodoaor] Toug Otav UTIapxouv Alyotepeg Anpodopies. Ta amoteAéopata cuykplBnkav pe
QUTA TWV TIPONYOUUEVWY SOKLUWV.

To GUUTMEPAOUATO ATTO TLG SOKLUEG NTaV TOL akoAouBa:

e Ta PETEWPOAOYIKA SebSopéva €KTOC TNG NALAKNG akTwvoBoAiag dev davnkav va eival
XPNolwa yla va  yivouv TIpOPAEYELS OTn  OUYKEKPLUEVN UEAETN Tepimtwong.
EmPBeBalwvetal amé Tt PBAloypadia OTL n  xpnowotnta Twv  Sladopwv
UETEWPOAOYIKWY TIOPAUETPWY EEAPTATAL ATTO TN CUYKEKPLUEVN TIEPITTTWON, avAaAoya LE
Sladopec ouvbnkes. Ta dedopéva mou cuveiodepav otnv MPOBAsdNn ATAV OL TIHES TNC
NALAKN G akTvoBoALaC TWV TPONYOUUEVWY WPWVY, N WPA KAL O LAVAG.
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e [l Ta OUykekpluéva Oedopéva tnC HEAETNG TMepimTwong, to Aévipo Amoddcswv
mapatnENONKe Twe ATOV To TiLo OKPLBEG HOVTEAO OTav €ywvov ol TPOoBAEPEL He
Ayotepa Sebopéva (50% twv Sedouévwy, Tieplmou evdapLol €Tog), evw 0 CUVSUOUOG
Mnxavwv Alovuopdtwy YrmootnplEng kot Aévtpou AmoddAcswv NTAV TO TIO aKpLBEC
MOVTEAO OTaV UTNpXaV TepLocotepa dedopéva (3 €tn mepimou). ITn SOKWUN HE TO
ULKPOTEPO oUVOAO Oebopévwy eloodou, n Slakupavon tng akpifelag petafld twv
Sladopetikwy povtéAwy yivetal pikpotepn. H Mpappkn NoaAwwdpounon €xel oxedov tnv
16la akpifela kat yla ta SU0 PeyEON £L0060U, TPAYUA TIOU ELVOL OVOEVOUEVO KOBWG
Sev pabaivel anod peyalltepeg mocotTnTeg SedoUEVWY Ao Eva onueio Kol TéEpal.

e Ta BEATIOTO amOTEAEOUATA YIa KAOE LOVTEAO TV TO 0kOAouOa:

Aévtpo SVM FpOapLKN Aévtpo & Aévtpo &
Anoddaoswv NoaAwdpounon MaAwdpounon SVM
Meyalo Dataset
nRMSE 17,11% 24,34% 51,15% 23,06% 15,56%
Muwkpotepo Dataset
nRMSE 24,78% 25,71% 34,27% 25,71% 25,62%

e H péon TR NG Mapaywyng evépyelag ota SeSopéva ntav 58973 Wh evw 1O
BeAtiotonownpuévo Sévipo anodpaocewv eixe Méco AnoAuto Idpaipa 6901 Wh otav to
50% twv dedopévwy xpnolpomolnonkav oav £(0060¢, TOU CNUALVEL OTL TTApPOoUGCLAlEL
g€va péoco oddApa TnG TdEng tou 11,7 %. Otav éywav mpoPAEPelg povo yla tnv
televtaio efdopdda, aflomolwvtag oxedov To cUvolo Twv Slabéopwyv dedopévwy, n
MECN TIUN TTOPOYWYNAG TwV TpayHatikwyv dedouévwy €66ou ntav 38953 Wh kal o
ouUVOLOOUOC Mnxavwy Alavuopdtwy YIootnplEng Kat Aévtpou Antodacewv eixe Méoo
AmoAuto ZddaApa 3144, Sivovtag éva oo opaipa 8,3%.

e Ta anmoteAéopaTa TNG MPOTEWVOUEVNC HeBodohoyilag ATav LKAVOTIONTIKA o cUYKPLoN UE
auta ¢ BLBAloypadiag, Tou o€ OpLOPEVEC TEPLITTWOELG GTAVOUV KAl TIC TIHEG TNG TAENG
Ttou 41,20% RMSE.

Kedahoaio 6

‘Ocov adopd TN CUYKEKPLUEVN UEAETN TIEPIMTWONG, UMOPOUV VO YIVOUV TTEPLOCOTEPES
EKTETOUEVEG SOKLUEG, OELOTIOLWVTOC VO AKOUN UIKPOTEPO HEyeBOC SeSoUEVWV EL0OSOU, WOTE
va Soklpaotel n aflomotia Twv HOVTEAwV OTAV UTMAPXOUV OKOUO ALyOTEPEG TIANPodopled.
MrmopoUv emiong va yivouv SOKIUEG oTa CUVOUAOTIKA HOVTEAD PE GANEC HeTABANTEC El0060U
amo Tig BEATIOTEG TV Mnxavwv Alavuopdtwy YooThpLENG wote va cuykplBel n anddoor) Toug.
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Oa pmopoloav va eival XpAolpa emiong Kal SLopopeTIKA HOVIEAA O TIEPALTEPW
SOKLUEC, OTWC oL aAyoplBpol Deep Learning. Ta 6edopéva Ba pmopovcav va apdéouv akpLBeig
TIPOPAEPELG KOl UE GANQ LOVTEAQ OTTO ALUTA TTOU XpNoLomoL)fnkav.

Oa umopouoe emiong vo avamtuxBel Aoylouiko site cav Stadiktuakn edappoyn eite
ocav ocupPatikn edpappoyn offline, wote va dnuloupynBel éva SLadpaoTikd meplBaAiov Tou va
npoodépel mMPOOPach OTIC AELTOUPYIEG TOU TPOYPAUUATOC O KAmolov Tou ev E£pel va
Xelpiletal tnv Python.
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Chapter 1: Introduction

1.1 Introduction
The need for energy sources that are more friendly to the environment has made
energy production from photovoltaics critical for the Greek economy.

Until recently, with energy coming just from thermal power plants, the amount of
available electric power on the grid had a fixed value that was defined by humans. This has
changed, as the energy is now produced by PV and wind turbines. Solar radiation and wind
speed are stochastic variables and are to a large degree unpredictable through the duration of
the day.

Because of that, it cannot be initially predicted how much power will the electric grid
have available, and whether that power is enough in a given moment to satisfy the demand. As
such, if no support system exists, power generation using Renewable Energy Sources leaves a
country exposed to constant blackouts and voltage drops. Production forecast can ensure that
the electric grid will be more reliable under a variety of conditions. Consequently, there is a
need for predictions on the energy that will be produced in the near future. That way
appropriate measures can be taken to adjust the energy demand so it can match the energy
supply. One such measure is adjusting the energy price during the day. Energy forecasts also
give the grid operator the ability to utilize different energy sources to respond to increases or
decreases in the available power (1).

Weather forecasting is necessary to determine the fluctuation of energy production, but
not enough by itself. Research has shown that weather data do not have a linear relationship
with the energy production. Weather forecast data require further processing in order to make
an assessment of the future energy production.

Also, power generation from photovoltaics can be decreased by faults that can occur in
PV strings, including the collectors themselves. Such failures need to be determined and
corrected in time to ensure the smooth operation of the grid. Timely detection of faults is
important in order to minimize maintenance costs and maximize productivity.

Both the issue of production variance due to the weather as well as the issue of fault
detection can be addressed with data analysis and machine learning. Using computational
methods, weather data can be utilized in such a way that they can be linked to energy
production. Additionally, data collected from various sensors can be compared with their values
when a particular failure had occurred or was about to occur, in order to detect and fix future
failures in time. Forecasting can also contribute to fault detection.

There is a need to determine the optimal methods for both production forecasting and
fault detecting in PV in order to maximize their efficiency.
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1.2 Thesis Target and Objective
There is a variety of methods that are used for PV production forecasting and fault
detection. Their efficiency and accuracy vary greatly in each case study.

The subject of this thesis is to investigate the application of the various methods in
production forecasting and provide a frame of reference on recent research on their application
performance.

A similar investigation is made on PV fault detection methods, in order to provide a
general frame of reference for which techniques are efficient in detecting different types of
faults. The findings of recent research on the subject are also reported.

Additionally, this thesis presents a proposed methodology for PV production
forecasting, which was implemented in Python. Different models were developed, optimized
and then compared, using anonymized data as a case study. The performance of the proposed
methodology was then compared with the models used in literature.

1.3 Thesis Contribution and Value

This thesis provides an original methodology designed to compare different forecasting
models on their efficiency and subsequently produce forecasts using a chosen model. It provides
a framework that can optimize each model in order to maximize its performance. It also has the
ability to test each model using different data sets.

First, the data was pre-processed appropriately. Software for correcting erroneous
values and missing values was developed. Then, the data was used in five different models,
using Decision Tree, Support Vector Machines, Linear Regression, and two hybrid models of the
aforementioned. Extended tests were made to determine the optimal set of input features.
Afterwards, more testing was performed to optimize the hyperparameters of each model. The
performance of the models in each test was recorded and compared to the previous results
using specialized indicators such as Root Mean Squared Error, Mean Absolute Error and
Coefficient of determination. Two different dataset sizes were tested as input. This way the
efficiency of the models was compared for different amounts of information available.

Additionally, this thesis provides a general overview of the methods used in PV
production forecasting as well as fault detection. The most commonly used methods are
described in their basic concept, technical terminology and way of operation, their advantages
and shortcomings, as well as their suitability for different applications.

An extensive review on literature is provided on the methodology used for PV
production forecasting. For each research paper, the method is reported, along with the input
features, forecast time range, and other specifics of the application, together with the
performance and results in each case. This provides a frame of reference for future research, as
the performance of many different applications can be quickly compared.

A similar review was performed on the methods used for fault detection in PV. Basic
concepts, way of operation and suitability for detecting different faults are reported for each
method, as well as the results of recent research on it.
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1.4 Thesis Structure
This thesis is comprised of 6 chapters and 2 appendices.

Chapter 1 provides an introduction and the reasons that research is needed on the
subject. The thesis target and objective are explained, together with its contribution and value.
Finally, the thesis structure is explained.

Chapter 2 provides an analysis of forecasting methods described in literature as well as a
review of recent research papers in PV production forecasting, together with the methods used
and performance of each application. Persistence method, statistical methods and machine
learning methods are discussed.

Chapter 3 describes the methods for detecting faults in Solar Cells. The way each
method works and the type of faults that can be detected by it are explained. Applications in
recent research are reviewed. Visual, electrical characteristics, imaging, artificial intelligence,
device-based, hybrid methods, as well as methods using real-time sensors, are described.

Chapter 4 presents the proposed methodology. Forecasting is performed using collected
historical energy production and weather data, using Decision Trees, SVM, Linear Regression,
and two hybrid models using a combination of the above. The way the selected models work is
explained. The related theory is analyzed with the appropriate examples, diagrams and
formulas. The method of pre-processing the data is explained step-by-step. The correlation
between the available data and the measured power output is examined in order to assess
which variables will be useful as input features during the testing.

Chapter 5 reports in detail the tests performed and results obtained. This includes a
series of tests to determine the best set of input features and tests to optimize the
hyperparameters of each model. The optimization was performed both manually, reporting the
accuracy of each model and selecting the best set by hand, as well as automatically, with the
help of the GridSearchCV function of the scikit-learn tools. Tests using two different input set
sizes were made. The results are discussed in detail.

Chapter 6 presents the conclusions made by the results and proposes future work to
continue the research of this thesis.

Appendix A presents the source code that was developed to apply the proposed
methodology. It includes statistical analysis and machine learning utilizing sci-kit learn. It is
accompanied by comments explaining the functions.

Appendix B presents the source code that was used for pre-processing the data, which
included making the necessary formatting adjustments, filling in missing values and correcting
erroneous values caused by noise in the electrical grid.
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Chapter 2: Review of PV Production Forecasting methods

2.1. Introduction
In this chapter the forecasting methods described in literature are discussed. Each
section describes a different category of methods.

Section 2.2 briefly describes the Persistence method and its applicability.

Section 2.3 analyses methods utilizing statistical analysis, including ARMA, Regression,
exponential smoothing and the physical method. Their way of working is described as well as
the conditions in which they perform well.

Section 2.4 describes Machine-Learning methods, such as ANN, SVM and hybrid
methods.

Section 2.5 contains a literature review over a large number of papers utilizing different
methods for PV power forecasting, displaying the accuracy in each case.

Section 2.6 includes the conclusions made from the gathered information.

Forecasting methods for PV power generation are divided to direct and indirect models.
In Indirect models, solar irradiance is forecasted by using techniques such as numerical weather
prediction (NWP), image-based methods and hybrid artificial neural networks (ANN) (3). The
forecasted solar irradiance is inputted to software such as TRNSYSM, PVFORM and HOMER (5)
(3) to get the power generation forecast (3). In direct models, instead of forecasting solar
irradiance, historical data samples of the power output and the weather data are used to
directly forecast PV power generation. A study by Mitsuru e al. (6) implemented both indirect
and direct methods for PV power to forecast production in a 1-day scope and concluded that
the direct method is better (3).

The accuracy of the forecasting depends greatly on the forecasting horizon. Short-term
horizons used are the following (7):

Intra-hour Intra-day Day Ahead
Time range 15-120 minutes 1to 6 hours 1to 3 days
Time step 30 sec to 5 min 1 hour 1 hour

Anticipating large
Used for short-term Anticipating grid load Schedule Drafting
fluctuations
Timeseries/Total sky

Model used i NWP/Satellite image NWP/Satellite image
imager

PV production depends mainly on solar irradiance. Other weather parameters, like
temperature, humidity and wind speed, are potential factors influencing production and
subsequently potential input features to be used in a forecast, but their impact and correlation
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with PV production depends on geographical location (3). For that reason, each of them needs
to be examined in every case study to determine whether it should be used or not in the
forecast. For example, wind speed does not affect PV power output when the temperature is
very low. Solar radiation has high correlation with PV production in any weather conditions,
even though the correlation is smaller in cloudy or rainy conditions (8).

It's important to preprocess the input data, because historical data can have outlier
values, non-stationary components due to the weather, or missing values due to recording
errors, all of which can result in a lower forecast accuracy. Preprocessing methods include
historical lag identification, normalization (9), trend-free time series, wavelet transform (WT)
and self-organizing map (SOM) (3). Normalization is the most commonly used preprocessing
method in PV production forecasting (3), and it consists of converting each of the individual data
values into the ratio of their value divided by the difference between the maximum and
minimum value of the data (deviation). In case of pre-processing, post-processing is also
required before the accuracy of the forecasting model can be estimated. Most common
methods include anti-normalization, if normalization was used in the forecasting model, (9) and
wavelet construction, if wavelet decomposition was used.

PV production forecasting methods are categorized based by the way the forecast
horizon and the data are used. Based on the forecast horizon, forecasting is divided to short-
term (1 hour up to 7 days), medium-term (one week to one month) and long-term (one month
to one year). The forecast error increases together with the forecast horizon. Short-term
forecasting is used for energy management and scheduling of electrical power. Medium-term
forecasting is used for planning the power system and maintenance schedule. Long-term
forecasting is used for planning the electricity generation. Almost all of the literature analyzed in
this study concerns short-term forecasting. Categorization is also based on the way historical
data of the PV output and weather data are used. This includes the persistence, statistical,
machine-learning and hybrid method models.

2.2 Persistence model

The persistence model doesn’t use weather data and equates the forecasted power
output to the value of the previous day at the same time of that day. This model is used for
benchmarking in order to compare other methods’ efficiency. It is used generally to forecast the
power output for the next hour, and the model’s accuracy depends on how stable the weather
conditions are. If the weather conditions are the same as the previous day, the power output of
the previous day at the same time is a good indicator of the currently expected output. When
making forecasts on a longer time range, the accuracy decreases (10).

2.3 Statistical methods

These methods use statistical analysis on the data, using previous time-series data. They
are normally used for short-term forecasting. Using more recent data as input increases the
accuracy of the prediction.
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Such a method is the Autoregressive moving average (ARMA) model, which uses a
combination of the autoregression and moving average models to forecast PV generation from a
defined time-series. The formula for the ARMA model is the following (2):

n

i
X(t) = Z oy X (1—i )+ Z'ﬁ.ff{'r_j}

|i= | ||'= |

In the above formula X(t) is the forecasted PV output, adding together the AR and MA functions.
P and q indicate the order, a; is the AR coefficient, §; the MA coefficient, e(t) produces random
variables with zero mean and constant variance (white noise) (11). The reasons for this model’s
popularity are that: 1) it adopts the Box-Jenkins method and 2) it has the ability to extract
statistical properties (12). An extension of this model, the AR integrated MA (ARIMA), removes
any non-stationarity from the input (13). Its disadvantage is that the time series data have to be
stationary (14).

Another statistical method is the regression method, which is used to establish a
relationship between the input and output data. In this case the weather data is considered to
be a set of explanatory variables and the forecasted PV output is set as the dependent variable.
The PV power forecast can be calculated with either a simple linear regression or with multiple
linear regressions (15). Using both temperature and solar irradiance as input gives a better
regression model than using either on its own, although the efficiency in using temperature as
an input depends on the geographical location. In order to use this method, a mathematical
model and a number of explanatory variables are needed.

The exponential smoothing method makes forecasts by smoothing time series data
using the exponential window function, in which weights are assigned on past data and diminish
exponentially the further they go into the past. The simple exponential smoothing method
(EWMA) has the following formula (3):

o1 = a¥+(1 = @)Y, = Yta(¥-¥)
In the above formula, a is the smoothing constant, ranging from 0 to 1. An initial ¥ value needs
to be set by estimation to begin the iterations. EWMA is similar to the Moving Average method
and is best used with time series that are trendless (stationary), as the forecast would show
earlier values instead of the actual trend otherwise.

The physical method uses mathematical formulas and Numerical Weather Prediction
models (NWP) that relate weather conditions to the PV production, using parameters such as
the geographical location, the orientation of the panels and weather variables (3). This model
can be either simple or complicated, depending on the number of weather variables it uses. It is
more accurate in good weather.
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2.4 Machine-learning methods
Machine-learning methods require a larger dataset than statistical methods in order to
be accurate, but can make predictions using linear, non-linear and non-stationary input data.

2.4.1 Artificial Neural Network

The Artificial Neural Network (ANN) is a machine learning method. It is the most
effective method for PV production forecasting, and it is used in most research papers when the
weather data is non-linear, as statistical methods are less accurate when there is a complicated
non-linear bonding between the data (3). An ANN consists of input layers, hidden layers, output
layers, connections and neurons. The input layer takes in the input information, which is
analyzed by the hidden layer. The output layer provides the output, having received the
analyzed results from the hidden layer. The connections link together the neurons between
different layers, as shown in Figure 3. A neuron cell consists of the combination function, which
adds the inputs together, and the activation function, which transfers the input in the form of an
output. The general ANN formula is the following (16):

N
= b+ Y (WxI))

i=1

In the above formula Uy is the final network output, b the bias weight, N the number of inputs,
W; the connection weight and /; and the network input.

1.’—4 )

'\
7
L—( )} -
- VA X { )\ _Outpur
= x .. ~— —
Is <L/ \ —~ Output Layer
Y1)
Te T Y Hidden Layer

Input Layer (a)

Figure 3 - Basic ANN architecture (3)

The two basic functions of a Neural Network are Training and Testing. During Training,
the learning algorithm tries to discover the relationship between the input and the output by
changing the weight values of the synapses. After comparing the actual output with the

predicted output, the error is calculated and the weight and bias values of the NN are updated
based on that error. This is repeated until the predicted and actual output match. The final
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output is calculated from the weight values and input data that was used for the testing, and
varies when the input, the activation function or the architecture change.

The most common activation functions for PV forecasting are the Gaussian radial basis,
the sigmoid and the hyperbolic tangent sigmoid functions (3). They are differentiable,
continuous and non-linear (17). While most problems can be solved by single layer Neural
Networks, when more complicated relationships are present between the input and output
variables, other types of NN are needed, such as the Multilayer Perceptron, the Radial Basis
function NN, the Multi-Layer Feed-Forward NN, the Recurrent Neural Network (RNN), the
Adaptive Neuro-Fuzzy Interface Systems (ANFIS) and the General Regression Neural Network.

The Multilayer Perceptron Neural Network (MLPNN) is composed of one or more hidden
layers, the number of which can be adjusted depending on how complex a problem is, although
more than two are rarely needed (18). It is a supervised feed forward ANN (19) and it is used for
PV power forecasting, among other applications.

The Radial Basis Function Neural Network has two layers and the training process is
divided into two stages. It needs less computing time than other Neural Networks and has good
accuracy. It is simple in structure and it is also used in PV power forecasting (20).

A Multi-Layer Feed-Forward Neural Network is relatively less complex than MLPNN, as
the information is transferred from the input to the direction of the output only, without a
feedback loop. It is used in several forecasting applications (21).

The Recurrent Neural Network is good for time-series data forecasting, as it is suitable
for predicting complex relationships between input and output variables (20). It is more
accurate than feed-forward neural networks (22).

Adaptive Neuro-Fuzzy Interface Systems are a type of adaptive Multi-Layer Feed-
Forward Neural Network. They are the most commonly used fuzzy system as they are
transparent and require less computational power. Their drawback is that they require a large
amount of data and their predictions have a tendency of overfitting.

The General Regression Neural Network is also effective in solving non-linear problems
but requires a lot computational power as it grows in size. As the name suggests, it is designed
for regression tasks.

The Back-propagation Neural Network is also commonly used because it can solve
complex regression problems. It is a very accurate supervised learning algorithm (23). A
modified version exists to fix certain limitations of its original version.

2.4.2 Support Vector Machine (SVM)

SVM is a supervised machine learning method that was originally designed for
classification, but was expanded to be used in regression problems as well. It is based on the
structural risk minimization principle and can minimize the error of the training data by
minimizing an upper boundary of the expected risk.
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Support Vector Regression (SVR) is the application of SVM in a time series regression,
which is used in PV power forecasting (24). It maps the time series data into a higher
dimensional feature space using non-linear mapping and then performs linear regression on
that space (3), converting the non-linear regression to linear regression, as shown in Figure 4.

Y Y

x o y(x)

a . ]

X h(X)

Figure 4 - Converting non-linear regression to linear regression (3)
The estimation function for SVR is as follows (25):
yr=f)=w x ¢p(x)+ b

In the above function x is the input weather data, y is the PV power output, w is the weight
vector and b is the bias term. These values are approximated through minimization of the
regularized risk function (25):

N

1 1o

R(C) = €3 ) L0 f) +5 Wl
i=1
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are user-defined parameters, y; is the real value at period | and f; is its respective forecasted

is the e-insensitive loss function, C and €

o . 1
value. If the forecasted value is within the e-tube the loss will be zero. The term E”WHZ

measures how flat the function is.

The accuracy of SVR depends greatly on the choice of the kernel function and the
corresponding parameters (9). The most common functions include: a) the linear function,
which can only be used when the training data has only small fluctuations, b) the polynomial,
which represents how similar the training samples are in a feature space, c) the Gaussian RBF,
which can be used to an infinite dimensional feature space and has been extensively used for PV
power forecasting, and d) the sigmoid function. The kernel parameters control the complexity of
the model and set how the high dimensional feature space is structured. For PV forecasting, the
parameters that need to be defined in an SVR model include the tube radius &, which
determines the range of data which are not to be taken into account for the regression, the
penalty C, which defines the penalties for the estimation errors, and the kernel function’s
parameter (3). These parameters determine how accurate the model will be (3).
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2.4.3 Hybrid Models

Hybrid models use of a combination of the methods like the ones described above.
Hybrid models are more accurate as they combine the advantages of different models and
overcome the limitations of their stand-alone versions. Hybrid models are also more accurate
specifically in PV power forecasting. Such a model is the Fuzzy inference model with RNN (26).
The fuzzy inference model is used to smoothen the input weather data. The hybrid fuzzy-GA
forecasting model is also very accurate in PV power forecasting (27). Wavelet transform (WT) is
also used in many hybrid models in order to de-noise the input data, followed by the application
of ANN and SVM models, resulting in a minimized prediction error (28).

Utilizing more than one model makes the technique more complicated for the computer
to process, increasing computational power requirements. The accuracy of the hybrid model
depends on the performance of the consisting models. Should a consisting single model have
inadequate performance, the total performance of the hybrid model suffers (3).
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2.5 Research done recently on PV power forecasting

Authors and Forecast Forecasting Forecast error

References horizon model

Mayer and Grof (29) Up to 48h  Physical model nRMSE 16,8%

Theocharides et al. 1dahead SVR, BN, RT NRMSE 4,53%,

(30) MAPE 3,17%

Nespoli et al. (31) 24h ANN, Hybrid ANN  NMAE 1-2% for

ahead ANN, 2-5,3% for

HANN in Sunny
days

Soumyabrata et al 20 min Triple exponential 0,13 MAE

(32) ahead smoothing

Theocharides (33) 1dahead ANN,SVR, RT nRMSE 0,76%

ANN, 1,13% SVR
and 1,33% RT

Alfadda et al. (34) 1h ahead SVR, Polynomial RMSE 5,3%
Regression and
Lasso

loannis Choustoulakis

Year

2021

2021

2019

2018

2018

2017

Description of contribution

Physical PV forecasting from NWP data.

Input features for the forecast included the historical PV
power production, irradiance and ambient temperature,
NWP, solar elevation and azimuth angles.

This study compared an ANN and a Hybrid ANN method,
the first using only historical climatic and PV system
parameters, the second also using the daily weather
forecast. The hybrid model has better accuracy on some
days but the results vary more.

Input features for the forecast included time-series data
of the measured solar irradiance and the clear-sky solar
irradiance.

In this study, ANN outperformed SVR and RT. The input
variables were global irradiance, ambient temperature,
relative humidity, Azimuth, Elevation and wind direction.

Input features included weather conditions (sky
condition, weather temperature, module temperature,
solar irradiance, wind velocity, wind direction, dew point,
relative humidity, visibility and cloud cover), power
generated in the last few hours, as well as day and time
information. Not all features improved accuracy. This
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Authors and Forecast Forecasting

References horizon model

Cervone et al. (35) 72 h ANN and Analog
ahead Ensemble

Grimmaciaetal. (36) 1dahead PHANN

Kumar Das et al (37) 1dahead SVR, ANN

Theocharides et al. 1dahead ANN
(38)
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Forecast error

RMSE 8,66%

NMAE 12,6 %

3,08 % nRMSE

0,71% nRMSE

Year

2017

2017

2017

2017

Description of contribution

study found SVR to be more accurate than PR and Lasso.

This study presented a method combining ANN and AnEn
which performed better than using either method
individually. Statistical analysis was made based on
observations of the PV solar farm output and
atmospheric NWP model data. The analysis was done
based on simulated solar farms.

This study concluded that the settings minimizing the
NMAE were an ensemble composed of 10 trials and 120
neurons in a single layer ANN configuration. The input
dataset included one year of PV power output
measurements and corresponding weather data
including ambient temperature, global horizontal solar
radiation wind, etc. as well as the deterministic global
solar radiation under clear sky conditions.

Input features used were the historical PV power output
and corresponding meteorological data. Weather was
categorized as either normal (clear sky) or abnormal
(cloudy or rainy). The study concluded that the SVR
model was more accurate than the corresponding ANN
one.

Input Variables used were the Numerical Weather
Prediction (NWP), Satellite images and Sky images. A
conventional Feedforward NN was designed, consisting
of 7 inputs and 12 hidden nodes. An ensemble meta-
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Authors and Forecast
References horizon
Fentis et al. (39) Short-
term
Vagropoulos et at. 1d ahead
(40) and
hourly
Wolff et al. (41) 15 min
and 2 h
Zhaoxuan Lietal. (42) 15min, 1
h and 24
h ahead
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Forecasting
model

SVR

SARIMAX,
SARIMA, modified
SARIMA and ANN

SVR, Physical
model

ANN and SVR

Forecast error

RRMSE 15,23 %,
R-squared 0,96%

NRMSE 12,89%
for SARIMA,
11,12% for
modified SARIMA,
10,25% for
optimized
combined model

RMSE 10,5%

15 min: ANN
13,2% RMSE, SVR
13,3 %, 24h:
41,2%

Year

2016

2016

2016

2016

Description of contribution

algorithm was developed based on the optimally
identified network and was used to increase accuracy.

Input features included samples of solar radiation every
15 minutes and the plate temperature. Three months’
worth of samples were used.

The SARIMAX, SARIMA, modified SARIMA and ANN
models were compared, using solar radiation data (real
measurements and forecasts) obtained from a weather
station.

Input features used were the PV power measurements,
numerical weather prediction and cloud motion data.

Input data used were the ambient temperature, wind
speed, wind direction, solar zenith angle (without
atmospheric correction), solar zenith angle, degrees
from zenith, refracted, cosine of solar incidence angle on
panel, cosine refraction corrected solar zenith angle,
solar elevation (no atmospheric correction) and the solar
elevation angle (degrees from horizon, refracted).
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1d ahead
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ahead

1d ahead

24 h
ahead

1dahead
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Forecasting
model

Non—parametric

model

GA optimized
ANN

v-SVR

Physical model

Physical Hybrid
ANN

Forecast error Year
cv-Mean bias 2015
error (cv MBE)

<1.3%

Minimum mean 2015
absolute error

(MAE) 21.02%

11,43% MAPE 2015
Normalized MAE 2015
(NMAE) < 1%, and
weighted MAE

(WMAE) < 2%

NRMSE 4,98% on 2015

a sunny day, 17,9
on an unstable
day, 33,30na
cloudy day

Description of contribution

A non-parametric forecasting model was developed using
NWP data, treating the PV system as a black box.

This study proposed an ANN-based real-time smart
reforecasting model, using GA optimization for better
accuracy, to make forecasts within 1 hour and less. GA
defined the optimized input features, the number of
hidden layers and neurons per layer. The results showed
that the proposed model had better results than the
cloud tracking-based deterministic model, the ARMA
model, and the k-nearest neighbor (kNN) model.

Input features included the historical data on solar
irradiance, the environmental temperature and past
energy production.

This study proposed three physical models for forecasting
using recorded weather data. The accuracy of the model
depends on the calculation of the cell temperature and
the data used for its calibration. Unlike the ANN-based
forecasting models, it did not need a training period.

A Physical model and a Clear Sky Solar Radiation Model
were combined with ANN. The theoretical Solar Radiation
was calculated and used as input along with weather
forecast data (Temperature, Humidity, etc).
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Forecast
horizon

24 h
ahead

24 h
ahead

24 h
ahead

30 min

Solar Production Forecasting using Data Analysis and Machine Learning

Forecasting
model

ANN

Back-propagation
(BP) based ANN
model

Stepwise
regression,
GRNN, FFNN, and
MLR

NN, X-Means
algorithm, and an
iterative
methodology

Forecast error Year
Normalized RMSE 2015
12,5% -36,9%

Mean absolute 2015
percentage error

(MAPE) 7,65%

RMSE 2,74% 2015
Mean relative 2015

error (MRE)
16,92%-17,58%

Description of contribution

The PV forecast was made with an ANN-based model.
The model’s performance was analyzed during several
days of varying cloud coverage. The study showed that
the model’s accuracy depends strictly on the pre-
processing of the input data and how accurate the input
dataset is.

An innovative PV forecast model was developed that
added aerosol index (Al) as an input factor. Al was used
together with seasonal weather classification and a BP-
based ANN model to predict the PV power generation of
the next 24h. The conclusion was that the new model
outperformed the conventional ANN model.

This study used a model based on Stepwise regression to
determine which input features had the strongest
correlation with the PV output. Then, inputs were used in
models using GRNN, FFNN, MLR, and their respective
hybrid models. The stepwise regression-FFNN hybrid
model outperformed the other models. All the hybrid
models slightly outperformed their respective single-
stage models.

Three models were developed based on ensembles of NN
to predict the 30-min PV power generation for the next
day. One model was iterative and two were non-iterative.
They were compared using four yearly solar datasets. The
iterative model was the most accurate. The ensemble NN
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Forecast
horizon

1-2h
ahead

Monthly

1d ahead

24 h
ahead
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Forecasting
model

Spatial and
temporal
correlations

Exponential
Smoothing
method with
decompositions

Hybrid model

(wavelet
decomposition
(WD) and ANN)

Physical Hybrid
ANN

Forecast error

RMSE- 81.5 for 1
h ahead and

136.3for2 h
ahead

nNRMSE 11,99% to
22,35%

RMSE
7.193%-19.663%

nRMSE 10,51%

Year

2015

2015

2015

2014

Description of contribution

models were also found to be more accurate than a
single NN.

An innovative multiple time-scale, data-driven
forecasting model was developed, using ARX-based ST.
Spatial and temporal correlations were made between
neighboring solar sites. The new model outperformed the
conventional persistence model.

Input variables used included the time series of the
Global horizontal irradiance and the cloud cover index.
Each was tested separately.

A hybrid model using wavelet decomposition and ANN
was proposed to a make forecasts using less computing
power. Wavelet decomposition was used on recorded PV
output data which was then used on ANN.

This study proposed a Physical Hybrid Artificial Neural
Network, based on ANN and basic Physical constraints of
the PV plant. Input variables used were the Day, Hour,
Environmental Temperature, Wind Speed, Humidity,
Pressure and Cloud cover. The proposed method was
more accurate than a simple ANN.
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Forecast
horizon

1-24 h
ahead

24 h
ahead

24 h
ahead

1d ahead
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Forecasting
model

Statistical
methods based
on multiple
regression (MR)
analysis and
Elman ANN

SVR and principal
component
analysis (PCA)

GA-based NN

SOM, learning
vector
guantization
(LvQ), SVR, and
fuzzy inference

Forecast error

NMAE
6,50%-19,49%,

nRMSE
10,91%-23,99%

RMSE 10,24%

Error 8.00%

MRE 3,295%

Year

2014

2014

2014

2014

Description of contribution

In the study, multiple regression was used examining
different input features. Elman ANN was used for
forecasting. The model is most accurate when all weather
data and the power output are used as input features.

Three models were tested using past PV output data and
SVR to make daily forecasts. Preprocessing with PCA was
found to improve performance significantly.

In this study the weights and thresholds of back-
propagation NN (BPNN) were optimized using the GA
approach to make the model more accurate. The results
of the model were better than the BPNN-based
forecasting model.

A hybrid forecasting model based on meteorological data
was proposed in this study. Historical data was
categorized using SOM and LVQ based on the weather.
The model was trained using SVR. Sub-models were
chosen using fuzzy inference. The results of the new
model were more accurate than those of the simple SVR
and ANN.
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Forecasting
model

ARMAX

Exponential
Smoothing
method

WT, fuzzy
ARTMAP (FA),
and firefly (FF)

Kalman predictor

Fuzzy theory (FT)
and NN

WT and RBFNN

Forecast error

MAPE 38,88% for
training data and
82,69 for
validation data

nRMSE 26,5% for
5 min 49,5% for
60 min

MAPE
3.38%-11.83%,
nRMSE
12.11%-13.13%

N/A

Maximum MAE
2,76 kW

MAPE 2,38%
(sunny day) and

Year

2014

2013

2013

2013

2013

2012

Description of contribution

The proposed model is based on ARIMA and uses
temperature, precipitation, insolation duration and
humidity. It does not use a forecast for solar irradiance.

This study proposed a Fourier trend model along with a
KPSS test.

A hybrid model for PV power forecasting was proposed,
making a daily forecast based on meteorological data in
which a seasonal classification was performed. WT was
used to filter out the outlier values in the data. FA was
used for forecasting, and firefly was wused for
optimization.

A model was proposed based on real-time forecasting
from a multiple-rate Kalman predictor. This model
applied statistical analysis on historical data. One model
provided steady-state variance and a second provided
transient-following capability.

Models using FT and RNN were proposed for forecasting
in this study. The forecasted solar irradiance and weather
data were used. FT used irradiance forecast data to
smoothen the RNN training stage.

A forecasting model was proposed combining RBFNN and
WT. The correlation between solar irradiance,
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ahead

lhand?2
h ahead

1d ahead
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Hybrid Method
(generalized RBF
network,
Deterministic
annealing, and
evolutionary
particle swarm
optimization
(EPSQ))

ANNSs optimized
by GA (GAs/ANN)

Weather
classification and
SVM

4,08% (cloudy
day)

Maximum error 2012

0,228 pu

nRMSE 13,07% 2012
for 1 h and

18,71% for 2 h

ahead

MRE 8,64% 2012

temperature and PV output was calculated. WT was used
to remove the outliers in the time-series of the PV output
and weather. RBFNN tracked the nonlinearity of PV
power data. The proposed model was more accurate
than the single RBFNN, although it was not as accurate
for rainy days.

In this study, the center and width of the RBF was
calculated in a GRBFN using DA. Because the data was
non-linear, a weight decay technique was used to avoid
overfitting. Evolutionary particle swarm optimization was
used for selecting the optimal neuron weights in GRBFN.
GRBFN was applied for forecasting. The model
outperformed the MLP, RBFN, and GRBFN and other ANN
models.

Five models were compared using ARIMA, persistent,
ANN, ANN optimized by GA and kNN. Input features
outside the system, like solar radiation telemetry, were
not used. ANN models had the best accuracy, particularly
GAs/ANN. All the models’ performance was heavily
affected by the seasonality of the solar irradiance.

A forecasting model was proposed using SVM and
weather classification. Four SVM sub-models were
created, each for a different classification of the weather
conditions.
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Forecast
horizon

1 h ahead

24 h
ahead

1d ahead

24 h
ahead
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Forecasting
model

Similar day
selection
algorithm and
weighted SVM
(WSVM)

SOM and RBFNN

Elman NN

Time series
analysis and feed-
forward NN
(FFNN) with
tapped delay
lines

Forecast error
Mean square

error (MSE)

21,8

MAPE
8,29%-10,80%
(sunny day)

MAPE 16,83%

MAPE < 5,0%

Year

2012

2011

2011

2011

Description of contribution

The proposed forecasting model used weighted SVM.
Five days which were the most similar to the day ahead
were used for the training, using the similarities to set
the weights for the weighted SVM. The model was shown
to outperform the ANN.

This study proposed a model using RBFNN for
forecasting. The accuracy of the model depended on
cloud cover conditions, for which classification was made
using SOM. This model had good accuracy in forecasting
in sunny and cloudy days and acceptable accuracy in

rainy days.

A PV forecasting model using ElIman NN. Used as inputs
of this model were the calculated solar irradiance in
sunny weather and the predicted meteorological data.
Solar radiation was calculated instead of measured due
to lower cost.

A model for daily forecast was proposed based on an
ANN with tapped delay lines. This model used a NARX
time-series analysis model and had good performance
during experimentation.
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Forecasting
model

ANN and similar
day selection
algorithm

K-means
clustering
method

Forecast error Year

MAPE 10,06% 2011
(sunny day) and

18,89% (rainy

day)

MAPE 11% 2011

Description of contribution

An ANN model based on an improved BP learning
algorithm was proposed in this study to overcome the
shortcomings of the standard BP learning algorithm,
which has slow convergence and a tendency to fall into
the local minimum. The technique does not need
complex modeling or complex calculations. The Similar
day selection algorithm was wused to improve
performance.

This study used at the first stage the K-means clustering
method. Analysis and classification were performed on
weather data concerning the chance of rain. The data
was then used in a forecasting model to make
predictions. In order to monitor cloud coverage, the use
of a camera was recommended.
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2.6 Conclusions

The following conclusions were made:

e According to the gathered literature, machine learning methods outperform statistical
methods in general.

e Variations of Neural Networks are the most popular method, followed by SVR and
hybrid models.

e The best performance was displayed by ANN in certain papers, although in others ANN
methods performed poorly.

e Most forecasts in literature are generally short-term, usually ranging from less than an
hour up to one day.

e The effectiveness of a model greatly varies with the weather. Sunny weather gives much
better accuracy in several cases.

e The usage of different weather data greatly varies in literature. Some researchers rely
solely on historical production data and others utilize parameters such as cloud
coverage or temperature to make forecasts. It was concluded that, for the purposes of
this research, different sets of input features needed to be tested to determine the best
performance, because, in the literature, there was no conclusion of particular variables
being helpful in every case.
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Chapter 3: Review of PV Fault detection methods

3.1 Introduction

In this chapter the methods for detecting faults in Solar Cells are examined. Each section
describes the way a method works and the type of faults that can be detected by it. Applications
of each method in recent research have been investigated and explained.

Section 3.2 describes the visual method for detecting faults, which primarily includes
detecting a failure by manual observation. Procedure standards, detectable fault types and
shortcomings of the method are explained.

Section 3.3 describes the methods based on analyzing the electrical characteristics of PV
installations. This includes MBDM, RDM, Electrical -V measurement, OSA, PLA and CDI. Each
method is explained along with related diagrams and the basic formulas each method uses. The
results of related research are discussed.

Section 3.4 describes imaging techniques, including Thermal/IR, Ultrasonic,
Electroluminescence and Lock in Thermography.

Section 3.5 analyses methods based on artificial intelligence, which analyze sensor data
to detect failures. This includes Machine learning methods, such as SVM, and Deep Learning
methods, such as Convolutional Neural Networks (CNN).

Section 3.6 describes Device-based methods, and the specialized devices that exist to
diagnose different types of failures.

Section 3.7 describes methods using real-time sensors connected to computer software
to detect a possible failure before it occurs.

Section 3.8 describes hybrid techniques, combining a number of methods described in
the previous sections.

Section 3.9 lists the conclusions reached from this chapter.

3.2 Visual method

Visual inspections are the first step for fault detection in order to determine whether
further tests are needed. They are usually conducted regularly (75). A checklist for the visual
inspection of fielded modules has been developed by NREL/IEA and the US Department of
Energy (76). IEC-61215 standards (International Electrotechnical Commission, 1987) state that
the inspection should be conducted at 1000 lux and from different angles to avoid reflections, as
they can give defective images (77). Faults that can be detected this way include discoloration,
bubbles, burning marks, delamination, browning, cracked glass or cells, dirt point, loose wiring
or wiring exposed to damage, rusted or corroded interconnections, snail tails and damaged
pieces, as well as soiling by e.g. snow or fallen leaves (78). The shortcoming of visual inspection
is that it depends on human capabilities, which can be unreliable. Also, faults may be detected
too late (75). Visual inspections also include shade analysis, which can be performed by tools
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like the Solmetric Suneye and can detect possible mismatch issues due to e.g.new trees growing
or new buildings constructed (79).

3.3 Electrical Characteristics Methods

3.3.1 Model-Based Difference Measurement (MBDM)

PV modeling emulates virtually the real-time operating characteristics of a PV system
(4). MBDM works by comparing real-time parameters with the results predicted in the model, in
order to detect faults in the system (80). Real-time output parameters like the operating voltage
and current change during faulty operation (81). Theoretical parameters are calculated using
real-time measurements of irradiance and temperature, which are compared to the actual
measured parameters, in order to detect faults. The most commonly used models are the single
diode (SD) and double diode (DD) models (82) (83) (84). The accuracy of the model depends on
the accuracy of the method used for the extraction of the model parameters (85) (86) (87). The
procedure is displayed on Figure 5.

A number of techniques based on MBDM have been developed. A method for automatic
failure detection in units connected to the grid was developed by Chine et al. (88), which was
based on MBDM. The method compared the forecasted power ratio with the power ratio
measured in real-time. The difference between the two was utilized to calculate the absolute
power ratio error (APRE) to perform fault detection. Kymakis et al. (89) used the error in Rc and
Rv in order to detect whether there is an inverter fault, a string fault or a general fault. The
string current was divided by the AC power and the result was used to find the location of the
fault. Also, Silvestre et al. (90) used the difference between the real-time system losses and the
ones predicted by the model in order to detect faults, and compared the real with the predicted
DC current and DC voltage to distinguish between shading faults and other system faults.
Davarifar et al. (91) used only the difference between the actual and the forecasted power as a
parameter for detecting open circuit faults, hotspots and ground faults, utilizing a Wald test to
prevent false positives. The faults were diagnosed using a flash test device that can inspect |-V
and P-V curves.

Real time output
Parameters

Sensors

1

Temperature

Comparison ---#{  Decision

‘\ MATLAB
PV model Predicted output

Figure 5 - MBDM-based fault detection (80)
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3.3.2. Real-time difference measurement (RDM)

RDM detects faults by comparing real-time values with their threshold limits (4). The
threshold limits are set by using either PV modeling or real-time experimentations. It is similar
to MBDM, but doesn’t need a real-time PV model to detect faults. RDM detects faults more
quickly than MBDM, which is important in order to isolate and repair faulty panels in time (4).
The accuracy of the threshold limits determine how accurate RDM is. The limits are set based on
a PV model, so the accuracy of the model determines the accuracy of RDM. A diagram of the
procedure is displayed on Figure 6.

Shimakage et al. (92) used three ways to detect faults using RDM: 1) By measuring the
AC output power and comparing it with the threshold limit, 2) By calculating the difference in
power between the present and previous instant and 3) By calculating the performance ratio
and comparing it with the previous instant. The most critical is the third way as the performance
ratio has a strong correlation with the environmental variations (93). Fault detection is needed if
the output power of the PV system has more than 6% loss (92) (94). Xu et al (95) developed a
method for detecting shading faults. In this method the module voltages as well as the current
between particular groups of panels were measured using several sensors. The momentary
difference between current and voltage values was used as the detection criteria. The severity
of faults was measured using a three-level alarm system.

< Compute
e g Detection
T ',‘.‘ - Variable ‘
: Experimental : : i
: Analvis : Comparison f——® Decision
A
Deﬁn'e OFF LINE Set Threshold
Detection ANAYSIS Lt
)i o s mits
Variable
Simulation
Analysis

Figure 6 - RDM for fault detection (4)

3.3.3 Electrical current—voltage (I-V) Measurement

Electrical I-V measurements are usually done at the PV strings, as the PV array generally
has several parallel PV strings connecting at the junction box which can be measured
individually (75). The voltage and current of the string output is checked at the junction box to
detect faults such as disconnection or degradation, as such faults reduce the string output
power or affect the string |-V curve (96). The actual location of the fault cannot be determined
using methods like I-V or Voc measurement (97), so a method for automatic fault detection was
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developed, which compared the measured |-V characteristics of the string with its
characteristics under various fault cases. Miwa et al. (98) determined the (-dI/DV)-V
characteristic using the |-V characteristics. The peak appearance of the calculated characteristics
was used to detect the partial shadow phenomenon (75). The values of series resistances, shunt
resistances (Rs and Rsh) and fill factor (FF) were calculated from the I-V characteristics and then
used to estimate the performance of the PV system (99). The fill factor is determined by the
formula below:

FF — Pi‘]‘lﬂx

Isc.Vac

3.3.4 Output Signal Analysis (OSA)

OSA methods analyze the output signal on the time domain to detect faults. They can
detect various faults, including shade faults, short-circuit faults and ground faults (81), but are
primarily used for detecting arc faults. Failures in the PV system can be detected by the terminal
output characteristics, especially when distortions appear in the output current and voltage (4).
This is possible regardless of the environmental conditions. Threshold limits are calculated and
fault check is performed when they are exceeded (80). Oscillations and distortions in the voltage
and current waveforms can indicate arcing faults. The anomalies can be detected in the
waveform by using Fast Fourier Transforms (FFT). A diagram of the procedure is displayed on
Figure 7.

Signal Detection
Analysis Variables

A

Generate
Measurement
Signal

Decision

Theoretical Threshold
Analysis ) limits

Figure 7 - OSA method for fault detection (4)

Zhao et al. (100) used OSA to analyze the output current signal of a PV string to detect
outliers (101). The outlier detection rules that were tested included the Three Sigma Rule,
Hampel Identifier and Box Plot Rule. Box Plot Rule was found to be the most accurate in
detecting faults for all operating conditions. A quantitative approach based on Local Outlier
Factor (LOF) was proposed to improve accuracy in outlier detection so that line to line faults can
be detected (102) (103). This helped to filter out false positives that occur when basic statistical
outlier rules are used.
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3.3.5 Power loss analysis (PLA)

This method analyzes power losses in the system to detect and classify faults (75). Real-
time PV system behavior is simulated by using climate data and PV system parameters
calculated from monitored data. The simulated data are compared to the monitored data in
order to detect power losses in the system and determine the type of a fault. A method to
automatically monitor and detect faults based on PLA has been developed (75). The method
defined two indicators, the current ratio and the voltage ratio, to compare the monitored DC
variables with the corresponding simulated values. The ratios are calculated as follows:

Hl'_': — fpy=simulated
Ipy-measured
RY = Ypv-simulated
Vpy—measured

The method was proven effective in detecting partial shading faults, faulty modules and
strings, aging and MPPT errors (104). Another method includes comparing real-time monitored
data with the simulated values, analyzing the DC current and voltage losses and comparing them
with defined error thresholds to classify an error (90). Madeti and Singh (105) proposed a fault
detection technique which analyzes the values at the terminals in order to determine
inconsistencies on faulty PV strings and their corresponding array. The algorithm of the
approach compared the monitored values with the voltage of a healthy PV string in order to
detect unhealthy strings and faulty modules. The method embeds voltage sensors in key
locations instead of using current sensors. The method was proven to be effective.

3.3.6 Climatic Data Independent (CDI)

The most commonly used CDI methods are the time domain reflector (TDR) and the
earth capacitor measurement (ECM) (75). As the name implies, CDI methods do not use climate
data (such as solar irradiance, temperature, humidity and wind speed) for fault detection. PV
circuit parameters are measured with devices like the LCR meter (inductance (L), capacitance (C)
and resistance (R)). In TDR, faults like the increase of the series resistance between modules and
PV string positions are detected by the delay between the injected and the reflected signal in
waveform changes. It measures the electrical characteristics of the transmission line to locate
faults and impedance change from degradation (106). TDR should be used in set time intervals
to detect array degradation. Takashima et al. (107) did experimental work using TDR. A different
study by Takashima et al. (97) used ECM to detect the location where the PV string was
disconnected. The location of the disconnected module n in a string of M modules can be
approximated by the following formula:

n = (Cy/Cp)M
In the above Cj is the normal string capacitance and Cy is the capacitance of the defective

string. ECM was to be used when the inspection was complete. Vergura et al. (108) developed a
statistical method based on analysis of variance (ANOVA) and non-parametric Kruskale Wallis
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(KW) (105). The method analyses the behavior of the individual parts of the PV system to detect
faults and abnormal operation.

3.4 Imaging Techniques

3.4.1 Infrared (IR) or thermal imaging

In Infrared (IR) or thermal imaging, an infrared camera scans the PV array during
operation. It measures differences in temperature on the surfaces of cells and modules, which
can be the result of failures such as interconnection failures, module wiring failures, hot spots
from internal short circuits, defective bypass diodes, change in the series resistance value, snail
trails, cell mismatch and cell cracks (75). Localized heat generation can be due to shunted cells,
poor contacts and short circuits. Also, when PV cells are connected in series, cells generating
less power than others become reverse biased, act as a resistor and dissipate heat (105).
Thermal imaging is divided into forward bias (FBI) and reverse bias (RBI). In FBI the PV module is
connected to a power supply in a forward biased condition. Then a current twice as large as the
short circuit current of the module (which is defined by the manufacturer) is passed through the
module, causing it to heat up. Then, images are captured with an IR camera and future image
processing is performed to detect and classify failures. This method reliably detects faults like
hot spot, loose connections and increases in series resistance. In RBI, the procedure is the same
but the power supply is in reversed biased condition, which can help detect ohmic shunts (105).

Thermal imaging is better for inspecting large PV installations, and is often used in
combination with unmanned aerial vehicles (UAVs) (78). Aerial IR thermography costs more,
but it is more accurate in assessing the performance of PV panels (109). Methods combining
thermal imaging and visual cameras have been developed, and they are cheaper and more
reliable than other methods (110). Thermal imaging is also used in most PV panel manufacturing
processes to detect potential issues (111). Automated procedures for fault detection and
classification (FDC) using thermal imaging have been proposed (112). Aerial thermal images
have some issues confirming when a failure is actually detected or not from a visual perspective.
There are also image quality issues caused by UAV altitude, observation angle and velocity (113).

Vergura et al. (114) and Guerriero et al. (115) researched FDC using thermal imaging,
where an IR camera captures images that are processed to locate and classify failures. Vergura
et al. calculate the mean value and deviation of the temperature for each cell and classify cells
based on their temperature mean in order to detect faulty cells. Guerriero et al. used thermal
gradient analysis and developed a method to recognize the edges of PV modules by spotting
sharp differences between the temperatures of the metal frame and the nearby solar cells.
Aspects that affected the performance of FDC using this method were the positioning of the IR
camera, the distance from the PV array and the overlapping between consecutive pictures (75).

3.4.2 Ultrasonic Inspection
This method analyses ultrasonic vibrations that follow an excitation, in order to detect
cracks and micro-cracks in the cells of a PV-module (105). It can detect unbounded cells and is
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also used during the production phase to detect voids and de-bonded lamination structures
(75). The PV module is scanned with a moving ultrasonic transducer along with the X-Y indicator.
There are two types of ultrasonic inspection, the pulse-echo method and the transmission
method.

In the pulse-echo method the PV module is scanned with ultrasonic pulses and the
defects reflected back are recorded. This provides the location of a defect in all three
dimensions and determines the causes of the degradation (75). This method can detect
debonding of cells (105) and it is the most commonly used for this purpose.

The transmission method entails recording the attenuated ultrasonic signal. This
method can also detect the size and location of a defect. Hund and King (116) proposed a failure
analysis of PV modules which had field exposure for a long time. The study helped to identify
the causes of module degradation. Both methods are shown in Figure 8.
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Figure 8 - Ultrasonic inspection methods (75)

3.4.3 Electroluminescence Imaging

In Electroluminescence imaging (EL imaging), ramped voltage is injected to the module
and the resulting electroluminescence shows any defects. It is based on recording the photons
emitted when excited carriers recombine into a PV cell (117). This can also be achieved by a
radiation emission over the PV cell, where the light comes from photoluminescence (PL) (118).
The larger the density of the current and the lifetime of the carrier, the more intense the
emission of the EL images is. For that reason, it is used frequently for failure analysis (105). It
can reveal non-uniform current, broken gates, small cracks and differences in conversion
efficiency between cells. In the case of a crack in a cell, the image appears dark and it doesn’t
extend through the whole cell. It is a costly method and cannot be conducted while the module
is in operation (75). The steps in EL analysis are displayed in Figure 9.
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Figure 9 - Electroluminescence analysis (75)

3.4.4 Lock in Thermography (LIT)

In lock-in thermography the PV cells are checked for power loss (75). An excitation
device together with a power supply inject pulse current in the PV module. Cells with defected
shunts heat up from the current and then located using a thermographic camera. Alternations in
the duration or magnitude of the electric pulses can help detect different types of shunt defects.
This method detects small defects (119) and is generally not performed on modules while in
operation. The test is performed either in the dark or under illumination (105).

3.5 Artificial Intelligence Methods

3.5.1 Machine Learning (ML)

Machine learning is commonly included in FDC for PV systems. This includes diagnosis
and predictive diagnosis. Predictive modeling includes a) Data preparation, b) Training, c)
Results post-processing and d) Validation (120). The steps are shown in more detail in Figure 10.
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Figure 10 - Flow diagram for setting up a ML predictive model (120)

The type of the training model needed depends on how complex to problem is (121).
Theoretically, an accurate predictive model must have training and testing data from the same
probability distribution, but that is not possible in real-life applications (120). Machine learning
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models are divided into a) Conventional ML, b) Advanced deep learning and c) Recent-
knowledge driven methods like TL or GANs. All methods use different learning principles, like
reinforcement learning, hybrid and ensemble. The classification is shown in Figure 11.

Conventional ML predictive models are created aiming to make the closest achievable
approximation between the inputs and the outputs. They have ordinary representation and they
have no deeper nonlinear abstractions. Such models are the Multilayer Perceptron (MLP), the
Support Vector Machine (SVM) and the K-nearest Neighbor (KNN) (122). PV condition
monitoring using conventional ML is divided to ordinary sensor-based and image acquisition-
based (120).

Ordinary sensors include I-V, P-V, radiation and temperature sensors, and they are
popular in applications with conventional ML for PV condition monitoring. For example, a
Probabilistic Neural Network (PNN) was developed to detect irregular operating conditions
(2123). I-V signals from the DC converter were used to detect if they deviate when compared
with previously recorded values. Learning data was collected from a simulation model. This
study (123) analyzed four types of short-circuit fault modes.

‘Conventional ML . Deeplearning = Knowledge-driven’
Ensemble, hybrid, reinforcement learning
S‘MMLP' L\\”mm © LSTM,CNN,DBNs, | { Generative models such as: |

autoencoders, etc : GANS, transefer learning, etc ;

Figure 11 - ML tools classification (120)

Conventional ML for image acquisition requires analysis on larger datasets than the
ones based used on ordinary sensor analysis. Few studies have been made on the use of
conventional ML for higher dimensional image processing (120). Ali et al. (124) proposed the use
of infrared thermographic images to detect degradation and shading faults from hotspots on PV
modules. Several methods for extracting features have been proposed to get cleaner data. Data
preprocessing includes image processing patterns, like RGB, texture, local binary pattern (LBP)
and Oriented Gradient Histogram (OGH). SVM has shown the best results in this study (124).

3.5.2 Deep Learning (DL)

Deep learning (DL) is a type of Machine Learning with focus on representations and
feature mappings. The representations become more meaningful as the improved feature space
enlarges (120). Fault detection and diagnosis (FDD) using big data becomes more effective and

loannis Choustoulakis 53



Solar Production Forecasting using Data Analysis and Machine Learning

automated using the representation learning ability of DL (125). Its effectiveness relies on the
mathematical tool used as well as the process models of the plant (126). Deep networks extract
abstract and high-level features from the input data. The results become more accurate when
the effective feature representation in the data is extracted (124).

Convolutional Neural Networks (CNN) are composed of a convolutional layer, a pooling
layer and a fully connected layer (127), as shown in Figure 12. In the convolutional layer,
features from the input data are extracted, matrix element multiplication is added to them in
the perceptual field and then the deviation is added (128). The extraction of local spatial
correlation features in the input data depends on the size of the convolution kernel, and can
enhance the features of the signal and reduce the noise (127). The pooling layer reduces the
spatial size of the convolved feature. It uses dimensionality reduction schemes to decrease the
computational power needed and it can also extract relevant features that have no variation in
rotation or in position, so it can train the model effectively (129). A fully connected layer can be
added to train the model in non-linear combinations of the high-level features. Using CNN in
fault diagnosis has the benefit that the data comes from many sources (130), as CNN inputs can
be spectrograms (131), images (132) or time series (133). Another benefit is that the extracted
CNN input has translation invariance (134) which is important for the generalization of the
algorithm as complex systems can have high temperatures and magnetic interference (125).
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Figure 12 - Architecture of a CNN (125)

In Recurrent Neural Networks (RNN), the nodes are linked in a chain and the input
features are time series (135). RNNs use previous states of the network in order to learn
sequences that change over time (136). Popular RNNs include Gated Recurrent Unit (GRU)
networks and Long Short-Term Memory networks (LSTM) (125), which are designed for long
sequence prediction, as RNN itself has a length limit (137). Gates allow the recurrent units to
learn how different time scales are dependent, in order to avoid long-term dependence (138).
The benefit of the RNN in PV fault detection is that it is capable of making predictions for
dynamic systems, as the input features are time-series and the depth is proportionate to the
input length (125). Also, the sampling in PV systems varies in length; the predictions need to be
unaffected by that; RNN has that advantage (125). Another benefit is that RNN can properly
work with dynamic non-linear systems because it is Turing complete (125).

Stacked Auto Encoder networks are neural networks with multiple hidden layers, which
are stacked together (139). The layers’ inputs and outputs are connected in chain (140).
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Networks consist of: 1) An encoder, which converts the input into the hidden layer
representation, and 2) a decoder, which turns the representation back into an input (125).
These networks use multiple nonlinear mappings to calculate higher order input representations
(141). Their advantages for PV fault diagnosis include: 1) That they are capable of processing 1D
signals like the data from PV systems, 2) that they are capable of unsupervised training needed
for unlabeled PV data and 3) that SAE networks’ layer-chaining way of operation can deal with
high order nonlinear input without dispersing the deep network (125).

Deep Belief Networks (DBN) are models composed of 1) multiple hidden layers within
Restricted Boltzmann Machines (RBM) (which are networks composed of a visible and a hidden
layer) as well as 2) an output layer. An RBM has independent activation conditions 1) for each
hidden layer, when features are inputted, as well as 2) for the visible layers, when the hidden
state is inputted (142). An RBM uses an energy function to show the high order interaction
between variables (125). A DBN in PV fault diagnostics has the benefit that it can predict
probability distributions without restrictive assumptions. It is also capable of simulating
nonlinear systems with multiple variables as it uses feature grouping sequences for activation
value sets. Finally, it is capable of generating more samples, in case the number of samples is
limited, because it uses unsupervised learning.

3.6 Device-based Techniques
There are several standard devices for protection and fault detection in PV systems.
Each can detect specific types of faults and has its own advantages and disadvantages.

Ground Fault Detector Interrupters (GFDI) analyze the DC rating of the inverter and can
detect single and double ground faults. They are cheap and easy to implement but they are
sensitive to leakage currents and are unable to see blind spots (4).

Overcurrent protective devices (OCPD) analyze the current rating of a PV string and can
detect double ground faults and line-to-line faults. They are also cheap and operate passively,
but they are only effective for grounded PV units and do not respond fast enough to dangerous
fault currents (4).

A Residual Current Device (RCD) analyzes both the current and the voltage of a PV string
or array to measure residual current. It can detect single ground faults. Unlike OCPD, it can
operate in ungrounded PV systems as well as grounded ones, and it is also sensitive to high
impedance faults. Its disadvantages include that it can exhibit false positives due to external
noise, it is only accurate when combined with a GFDI, and it also consists a shock hazard (4).

Insulation monitoring devices measure insulation resistance based on the rated voltage
of the PV array. It can detect double ground faults. They are reliable and can perform tests
during the night as well as during the day. However, the insulation resistance can vary with the
environmental conditions and any inverters and fuses need to be isolated to be tested in
grounded systems (4).
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Arc fault detector (AFD) and Arc Fault Circuit Interrupter (AFCl) devices analyze the
waveform of the output current and voltage. They can reliably detect series arc faults and
protect a PV unit against them. They cannot, however, detect parallel arcs, and can show false
positives due to interference from the converter switching (4).

Earth capacitor measurement (ECM) is a technique that analyzes capacitance to detect
open circuit faults. It is accurate and doesn’t depend on the level of solar irradiance to work but
the PV system needs to be offline for the experiment to be performed. A Line checker can also
detect open circuit faults without the need for the unit to go offline. However, it is more time
consuming (4).

3.7 Predictive Maintenance through Real-time Sensors

Predictive maintenance through real-time sensors is the most accurate and most costly
fault detection method (78). In this case, fault detection is performed through real time sensors,
which can also be wireless (143). Proposed systems used sensors to measure temperature
(ambient and on the module), solar irradiance, open circuit voltage, short-circuit current, fill
factor and panel efficiency (78), (144), (143). The sensors that are used include the
thermocouple for temperature, pyranometer for irradiance, shunt resistor for current, and
voltage divider for voltage (78). The use of the sensors gives a global view of the PV system and
a view of the way the inverter interacts when a shadow is present. Software used included
Visual Basic (144) and LabVIEW (145). A PV analyzer must be used, like the Solmetric |-V curve
tracer. An Arduino can be used as a PV analyzer with similar results (146). FDD algorithms are
also used, which compare a number of parameters with the limits observed in a healthy system,
in order to detect partial and total loss of productivity (90). A system for FDD using wireless
sensors has also been proposed (147) which analyzes the data in MATLAB, allowing efficiency
optimization.

3.8 Hybrid detection techniques (HDT)

Hybrid detection methods are a combination of two separate methods and are
developed to increase accuracy, reduce demands in computing power, give the ability to tell
between two different failures with the same signature, and detect when more than one fault
occurs at once.

Chine et al. (148) proposed a combination of RDM with MLT for fault detection. When
failures with unique fault signatures were detected, RDM was used, and when failures sharing
the same signature were detected, MLT using ANN was used. Hu et al (149) developed a model
using energy balance with the conventional cell model to correlate the electrical and thermal
properties of a system. The ITH method was used to make the hybrid model. The model was
used to measure panel temperature in order to make predictions. The criterion to detect a fault
was how much U,, changed among different panels. Kase and Nishikawa (150) used ITH to
locate hotspots and injected reverse DC bias voltage in the PV string to detect open circuit
failures. Yi and Etemadi (151) used SVM to detect line to line faults, combining OSA and MLT.
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MSD wavelet packets were used for the SVM training stage. The method did not detect
accurately line to line faults that had less than 20% mismatch level (4).

3.9 Conclusions
The conclusions reached in this chapter were the following:

e Visual inspections are useful as a preliminary test to determine whether further testing
is needed.

e Electrical Characteristics measurements detect open and short-circuit faults, hotspots,
ground faults, arc faults, shade faults and aging errors.

e |maging methods can detect cracks and micro-cracks, interconnection and wiring
failures, hotspots, increase in series resistance, defective bypass diodes, non-uniform
current and differences in conversion efficiency between cells.

e Machine learning uses data collected from both imaging and electrical measurements
and can detect both failures that have already occurred and failures that can occur in
the future.

e Specialized devices exist to detect specific types of failures.

loannis Choustoulakis 57



Solar Production Forecasting using Data Analysis and Machine Learning

Chapter 4: Proposed methodology

4.1 Intro

In this chapter, the proposed methodology for this research is explained. A program was
developed in Python to perform forecasting using collected data from historical energy
production and weather data. The models used were the Decision Tree, SVM, Linear Regression,
and two hybrid models using a combination of the above.

In section 4.2, the way the selected models work is explained. The related theory is
analyzed with the appropriate examples, diagrams and formulas.

In section 4.3, the method of pre-processing the data is explained step-by-step. The data
needed to be filtered of some measurement errors and formatted appropriately in order to be
usable by the machine learning models.

In section 4.4, the correlation between the available data and the measured power
output is examined in order to assess which variables will be useful as input features during the
testing.

In section 4.5, conclusions are made on the preliminary analysis of the data and
reasoning is provided for the selection of the models.

The proposed methodology can be summarized in the following flow diagram:
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Figure 13 - Flow Chart of the Proposed methodology

4.2 Utilized ML models

4.2.1 Decision trees
Decision trees are a supervised learning method (152). It can be applied for regression,
as is the case in this study, as well as classification tasks. It is based on the idea of partitioning a
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complex decision into multiple simpler decisions. It uses a structure similar to a tree in the steps
performed to make decisions. The tree is composed of nodes. At the root node, all data is
included. In each following internal node, a binary decision is made to split the data between
different classes or groups of classes. In the case of a regression task the split is made so that
the data in the separate classes will have the minimum deviation from the mean value in their
respective class (153). This is repeated until the terminal, “leaf” nodes are reached, which
represent the final separate classes. In the case of regression, leaf nodes are defined by the
number of training samples at the node. This is the top-down approach. In order to optimize the
cost function, a bottom-up approach and a hybrid approach can also be used.

Decision trees assume that the relationship between the input and output variables is
either linear or non-linear. This method is suitable for handling non-linear relationships. The
inputs that possess the most information are used for the classification and the rest are
rejected. As such, only a small amount of inputs is used in the procedure. The size of the tree
needs to be carefully adjusted to avoid over-fitting as well as under-fitting. In order to avoid
overfitting, pruning is also performed to reduce the variance of the output variable (153).

The tree structure also makes the output easy to interpret, unlike the output of Neural
Networks. The trees can also be visualized. The input does not need standardization or
extensive preparation, although the input may need to be balanced or it can result in biased
predictions (152). It can be used for problems that have multiple dependent variables. The
results can be tested using statistics. On the negative side, decision trees are sensitive to small
variations in the data, producing very different trees a result of such variations. They are also
unsuited for extrapolating as their predictions are not continuous. Decision trees are best used
in an ensemble as they are not reliable in calculating the optimal tree on their own.

Decision Tree Regression

154 C] data
© —
max_depth=2
max_depth=5
1.0 1 o (@ - dep
o - °
& e
0.5 1 & “®
< o o
1] %
” & .
g 0.0 q
= -
& [V h Q’q\\un
-0.5 1 o ‘u
(-}
® -
-1.0 4 o Oglze
(<
-1.5 4
Q
T
0 1 2 3 4 5

data
Figure 14 - Over-fitting in decision tree regression as seen in the green line (152)

4.2.2 Support Vector Machines
Support Vector Machines are also a supervised learning method for classification,
regression and outlier detection. It is based on the concept that each class must have the
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maximum possible distance from the rest. When used for regression, it is called Support Vector
Regression (SVR) (154). SVR is a machine learning method in which a model learns the
importance of a variable by defining the relationship between the input features and the
dependent variable (155). Depending on the kernel function used, it can be linear or non-linear
(154). Linear kernel functions for SVR are like support vector machines, but use an
approximation tolerance margin (g).

— Hyper plane

Figure 15 - Support Vector Linear Regression (154)
The kernel function for linear SVR is:
y=w.x+b

Where y is the input space, w.x is the vector product and b is a constant. The error function is:
n
1 .
min [w?l] +¢ ) (6 + &)
i=1

Where:
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w.x)+b—z;<e+¢
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The figure and the kernel for non-linear vector regression are presented below:

Hyperplane

Figure 16 Support Vector Non-Linear Regression (154)
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SVM is effective in high dimensional spaces as well as in cases where the samples are
fewer than the dimensions. Out of all the training points, it only uses the support vectors, so it
uses less memory than other algorithms. There is a tendency for over-fitting when there are
more inputs than samples, which requires fine-tuning in choosing kernel functions and
regularization to compensate (156).

4.2.3 Linear regression

Linear regression uses the Least Squares method to minimize the error in the correlation
between the inputs with the output in a linear relationship. A number of coefficients are used
for that purpose (157). The general concept of a linear model is expressed in the following
equation:

yw,x) =wy +wixg + -+ +wyx,

where y is the output, x; are the inputs and w; the coefficients. In linear regression using the
Least Squares method, the aim is to minimize the following function:

min || Xw — y||3

Figure 17 — Simple Linear Regression (157)

Linear regression models, like decision trees, can be trained quickly and are easy to
interpret (158). The input features’ deviation affects the model’s accuracy, and the output
variable needs to follow Gaussian distribution in relation to each input feature. This model
cannot handle non-linear relationships between input and output variables. Categorical
variables need to be converted to binary or constant in order to be used in linear regression. The
coefficients assume the inputs are independent from each other; if they are correlated the
results would deviate greatly due to random errors (157). It is also required that the variables
are continuous with no significant outliers.
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4.3 Data pre-processing

The weather and energy production data received required some pre-processing to be
used in forecasting. The meter measuring the production data presented errors which resulted
in missing values in the data, and in two cases that extended to a range of several months.
Another error resulted in some values in a particular date to repeat twice for specific times. In
the original dataset, negative production values due to reverse power flow were present, as the
meters are connected to the grid. Also, due to noise from the grid, non-zero values were present
at night, which do not represent actual energy production and therefore needed to be trimmed
out. The weather data had also some individual missing values. Another issue was that the
weather data were given in hourly values, while the production data were given in values with
10-minute intervals.
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Figure 18 - PV production data before pre-processing

Data After Pre-processing
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Figure 19 PV production data after pre-processing

The biggest gaps in production data were too large to fill in, so their respective time
ranges were omitted from this analysis. However, the timing is checked for hourly consistency in
the code, so in order to omit the time range with the missing values, the data was split into two
parts, which were pre-processed separately and then joined together at the end of the
procedure.
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for i in range(89222): # Seperate the part before the missing values
pvdatal.append(pvdatal[i])
for j in range (112310, len(pvdata)): # Separate the part after the
missing values
pvdata?2.append(pvdataljl)

The gaps that last only a few days were filled in with the average value between the
next and the previous week at the same hour and day of each value. In one case, where the gap
lasted 16 days, the average value between the previous and the next month was used. The gaps
appeared as a set of days with zero energy production and were manually detected, as
automatic detection could potentially fill in values where there was actually no actual
production. As such, large ranges in which data was to be filled were defined manually in the
code:

if datetime.datetime.fromisoformat('2019-09-09 00:00:00") >=
datetime.datetime.fromtimestamp (time.mktime (bhour[i][0])) >=
datetime.datetime.fromisoformat ('2019-08-23 00:00:00") and correctingpv
== 1: # If specific dates with known missing values match, use the
average data from the previous and next month

bhournew.append ([ (datetime.datetime.fromtimestamp (time.mktime (bho
ur[i1]1[0]))) .timetuple (), (bhour[i-30*24] [1]+bhour[i+30%*24]1[1])/2])

elif datetime.datetime.fromisoformat ('2018-08-27 00:00:00") >=
datetime.datetime.fromtimestamp (time.mktime (bhour[i][0])) >=
datetime.datetime.fromisoformat ('2018-08-22 00:00:00") and correctingpv
== 1: # If specific dates with known missing values match, use the
average data from the previous and next week

bhournew.append ([ (datetime.datetime.fromtimestamp (time.mktime (bho
ur[1][0]))) .timetuple (), (bhour[i-7*24] [1]+bhour [i+7*24]1[1]1)/2]1)

elif datetime.datetime.fromisoformat ('2021-05-09 00:00:00") >=
datetime.datetime.fromtimestamp (time.mktime (bhour[i][0])) >=
datetime.datetime.fromisoformat ('2021-05-05 00:00:00") and correctingpv
== 1: # If specific dates with known missing values match, use the
average data from the previous and next week

bhournew.append ([ (datetime.datetime.fromtimestamp (time.mktime (bho
ur[i1]1[0]))) .timetuple (), (bhour[i-7*24] [1]+bhour[1+7*24]1[1])/2])

Any zero values besides those manually detected as abnormal were treated as normal.
However, there were also missing time ranges in smaller ranges, in which the entire timestamp
was missing and there was no value at all for a particular time. In order to correct that, the
dataset was initially converted from 10-minute intervals to hourly values - which was necessary
anyway because the timestamps need to match with the weather data. To perform the
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conversion, all 10-minute values of a particular hour are added together and divided by the
amount of values they consist of. Normally that would be six, but the code was designed to
calculate the average with less in case a number of values was missing. This way individual 10-
minute values are compensated for in case they are missing.

for i in range(len(btime)-1): # Omit the last element of the list to
solve the out of index on btime[i+l] error
hourlyproduction += buildingdatal[i][2]
hourcounter += 1 # Some elements are missing, not always 6 per
hour, so they are counted to calculate Wh
if btime[i].tm hour '= btime[i+1].tm hour:
currenthour = list(btime[i])
0 # Set the timestamp minutes to zero
0 # Set the timestamp seconds to zero

currenthour[4]

currenthour[5]

bhourly.append([time.struct time(tuple(currenthour))  hourly
production/hourcounter])

hourcounter = 0

hourlyproduction = 0

Afterwards the entire dataset is checked for coherence. Every single value must have
the previous hour as its previous value and the next hour as its next value. If this is not the case,
the value is filled in, if the gap is smaller than 24 hours. Otherwise, the code will display an error,
allowing the user to manually handle the issue:

if ((datetime.datetime.fromtimestamp (time.mktime (bhour[i+1][0])) -
datetime.datetime.fromtimestamp (time.mktime (bhour[i][0]))) >
datetime.timedelta (days=1)):

print('Error, missing values!', bhour[i][0])

print (bhour[i][0], 'is where the value is missing')

sys.exit ("Error message')

In case it is smaller than 24 hours, there are two ways to handle it:

A) If the current time is the same as the previous time and the next time is two hours later,
that means the gap only appears because of the Daylight-Savings Time and the way
Python handles it, so it should be left as is.

if bhour[i][0] == bhour[i-1][0] and
((datetime.datetime. fromtimestamp (time.mktime (bhour[i][0])) -
datetime.datetime.fromtimestamp (time.mktime (bhour[i+1][0]))) ==
datetime.timedelta (hours=2)):

bhournew.append ([ (datetime.datetime.fromtimestamp (time.mktime (bhour [
i]1[0])) + datetime.timedelta (hours=1)).timetuple(),bhour[i][1]])
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B) If A)is not the case, each missing value is filled with the average between the value
appearing 24 hours before and 24 hours after. This is repeated until there is no gap
between the current and the next timestamp.

if ((datetime.datetime.fromtimestamp (time.mktime (bhour[i+1][0])) -
datetime.datetime.fromtimestamp (time.mktime (bhour[i][0]))) >
datetime.timedelta (hours=2)):
hours missing =
datetime.datetime. fromtimestamp (time.mktime (bhour[i+1][0])) -
datetime.datetime.fromtimestamp (time.mktime (bhour[i][0])) -
datetime.timedelta (hours=1)
counterl = 0
bhournew.append (bhour[i])
while hours missing > datetime.timedelta (hours=0):
fillervalue =
[ (datetime.datetime.fromtimestamp (time.mktime (bhour[i][0]))
+
datetime.timedelta (hours=1l+counterl)) .timetuple (), (bhour[i-
244counterl] [1]+bhour [i+24+counter1][1])/2]

bhournew.append(fillervalue)
counterl += 1
hours missing -= datetime.timedelta(hours=l)

In the original dataset, cleanup was also performed for non-zero values at night as well
as negative values. An updated dataset was provided later on which had performed this clean-

up beforehand:

for i in range(len(pv)):

if pv[i]l[2] < O:
pv[il[2] = -pv[i][2] # Retrieve absolute power values to
correct reverse power flow values

if pv[i]l[2] < 100 and ( pvtime[i].tm hour > 17 or

pvtime[i].tm hour < 7 ):
pv[i]l[2] = 0 # Eliminates noise - Power produced after 5pm
and before 7am less than 100 Watt is set to zero

The weather data did not have missing timestamps, only individual NaN values at
specific times, which were filled using the value of the previous hour:

if np.isnan(weatdatal[i][j]):
weatdata[i]l[jJ] = weatdatal[i-1]1[7]

The time range of the weather data did not overlap entirely with that of the PV
production data. Only the time range existing in both datasets could be used. So, for each of the
PV datasets, a weather dataset was selected with the same time range:
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def keepmatchingdatesonly(pvhour,wdata): # Keep only the data for each
set corresponding to the same dates and times

pvcommondata = []
wcommondata = []
lateststart = 0
earliestfinish = 0
lateststart =

max (time.mktime (pvhour[1][0]),time.mktime (wdata[1][0]))
earliestfinish = min(time.mktime (pvhour[-1][0]),time.mktime (wdatal[-

11101))

for i in range(len(pvhour)):
if earliestfinish >= time.mktime (pvhour[i][0]) >= lateststart:
pvcommondata.append (pvhour([i])
for i in range(len(wdata)):
if earliestfinish >= time.mktime(wdata[i][0]) >= lateststart:
wcommondata.append(wdata[i])
return pvcommondata, wcommondata

# Get weather timestamps
weatherdatal = weatherdata
weatherdata?2 = weatherdata

# Keep only the common dates among all data sets
pvhourlyl, weatherdatal = keepmatchingdatesonly(pvhourlyl,
weatherdatal)

pvhourly?2, weatherdata2 = keepmatchingdatesonly(pvhourly?2,
weatherdata?2)

A detail which was important to the processing of the data was the way the time and
date was stored. The timestamp data was converted to a time structure in order to process it
further. The weather data did not have time zone information while the PV production data did,
which presented an incompatibility between the two. It was assumed that the weather data had
the same time zone as the production data, +01:00. As such, the timestamps for the weather
were imported using:

wtimestring = str(int (weatdata[i][0])) + "+01:00"
weatdatal[i] [0] =
datetime.datetime.strptime(wtimestring,"sYsmsdsHSM%2") .timetuple ()

And the production data were imported using:

btime.append(datetime.datetime.strptime (btimestring,"sY-%m-
SATSH:$M:55%2") .timetuple ())
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In order to prepare the input features for the prediction process, the timestamps of the
weather data were cross-referenced with the production data to ensure the input of each value
corresponds to the same timestamp for both sets. If a mismatch is detected, the program stops
displaying an error, showing the time where the mismatch was detected. The input features that
were prepared included humidity, wind speed, cloud cover, solar radiation, time, day of the
month, month, season, hour and weekday.

if pvhourly[i][0] == weatherdata[i][0]:
try: # Will raise an error when trying the time when DST starts,
ignore that wvalue -will omit a (erroneous) value of the original index
wvalues2humid. append(weatherdatal[i] [2])
wvalues3wind.append (weatherdatal[i][3])
wvaluesdcloud. append (weatherdatal[i][4])
wvaluesbrad.append (weatherdatal[i] [5])

datesinstring.append(time.strftime('sY-%m-%d SH:%M:%5",
pvhourly[i][0]))
day.append(time.strftime('%d', pvhourly[i][0]))
month.append(time.strftime('*m', pvhourly[i][0]))
# Season
if 3 > int(time.strftime('%m', pvhourly[i][0])) >= 6:
season.append(2) #Spring
elif 6 > int(time.strftime('%m', pvhourly[i][0])) >= 9:
season.append (1) #Summer
elif 9 > int(time.strftime('%m', pvhourly[i][0])) >= 12:
season.append(3) #Autumn
else:
season.append(4) #Winter
year.append(time.strftime('sY', pvhourly[i][0]))
hour.append(time.strftime ('%H', pvhourly[i][0]))
weekday.append(time.strftime('%w', pvhourly[i]1[0]))
pvvalues.append (pvhourly[i][1])

wvaluesltemp.append(weatherdatal[i][1])
else:

print("Error: Date mismatch™)

print (pvhourly[i][0])
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The pre-processing methodology can be summarized in the following flow diagram:

C Data Pre-processing )

| :

Import weather data and PV Fill missing values of less
output data than 24h using the average
i of 24h before and after
c . ¥
onvert text to time tuples .
Fill missing values that last a
l few days with the average
Turn negative output values of previous and next week
to positive at the same time
| |
Set to zero output values Fill missing values that more
after 5pm and before 7 am than a week with the
! average of previous and
Convert 10-min values to next month at the same
hourly time
.+ .
Keap only o valuos Remove missing values
present at both the weather larger thar amonth

data and outEut data

Export Excel File
< End )

Figure 20 - Pre-processing methodology flow chart

4.4 Investigating input feature correlations

Autocorrelation was tested in the energy production data using the following script:

plt.figure(3)
plt.title("Autocorrelation of PV energy production")
plt.acorr (pvvalues,maxlags=10)

Autocorrelation of PV energy production
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Figure 21 Autocorrelation of PV energy production
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It was observed that autocorrelation is over 0,5 for up to 4 lags/hours. As such, up to 4
hours lag elements were to be investigated as possible input features for the forecasting.

In order to select which input features should be used for prediction, the correlation of
each with the output variable should be checked. The following code was used to draw a
correlation matrix:

correlation mat = data.corr()

ax = sns.heatmap(correlation mat, annot = True,fmt='.2f{")
ax.figure.subplots adjust(left = 0.3, bottom = 0.3)
plt.show()

The result was the following:
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Figure 22 - Correlation matrix of the available variables

For a more aimed analysis at the PV output, the numpy command corrcoef was used.
So, for example, the following command:

np.corrcoef (wvaluesltemp,pvvalues) [0, 1]
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was used to calculate the correlation between the ambient temperature and PV energy output.
The following results were retrieved:

Temperature-PV Production Correlation 0,436661
Humidity-PV Production Correlation -0,6306
Wind Speed-PV Production Correlation 0,527246
Cloud Cover-PV Production Correlation -0,09673
Solar radiation-PV Production Correlation 0,85641
Solar radiation — Previous hour 0,89107
Solar radiation — 2 hours before 0,82966
Solar radiation — 3 hours before 0,69894
Solar radiation — 4 hours before 0,52197
Solar radiation — 5 hours before 0,32232

It was observed from these results that cloud cover has next to zero correlation so it
should not be used for predictions. The Temperature also appears to be poorly correlated to PV
output in this case study. Solar radiation, as expected, has very high correlation with the output.

Time series decomposition was also performed to identify trend and seasonal
components on the PV production data.

seasonalpv = stm.tsa.seasonal.seasonal decompose(pvvalues,
period=24*30) # Monthly intervals
statsmodels.tsa.seasonal.DecomposeResult.plot (seasonalpv,
observed=True, seasonal=True, trend=True, resid=True, weights=False)
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Figure 23 - Time series decomposition of PV production data
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It was observed that the displayed trend was actually a seasonal loop throughout each
year. Production peaks during summertime and is reduced in winter. It was concluded that the
categorical features of Season and Month should be included in the input variables that were to
be tested. Season was also tested, derived from the Month of the Year; for example,
measurements with Month values 4, 5 and 6 (April, May and June) were assigned a Season value
of “Spring”. The Hour of the day, ranging from 0 to 23, was also used as an input feature.

The Hour and Month features were tested both as an integer and as a categorical
feature using OneHotEnconder.

4.5 Conclusions

Decision Tree, SVR and Linear regression were selected for this research for several
reasons. An important factor was the well-supported tools available in scikit-learn which provide
the ability to use those models reliably. Another factor was the large range of hyperparameters
of the Decision Tree and SVR, which provided the ability to optimize the results.

While publications utilizing a form of ANN were common in literature, research utilizing
Decision Trees and Linear Regression was uncommon. Testing their efficiency against the more
commonly used SVR was deemed to contribute to a subject less explored in literature.

Another factor was the need to test the linearity of the problem that is being
investigated. From a physics standpoint, the relation between direct solar radiation and PV
power output could theoretically be linear. If other input features are added, that would
change. SVM can operate both in a linear and a non-linear kernel. Decision Tree is a non-linear
algorithm, while Linear Regression is linear. Different tests comparing all three models can
ensure an optimal model is found both for the eventuality of the problem being linear and
otherwise. An ensemble of a linear and a non-linear model can potentially tackle a problem that
contains both linear and non-linear components.

Radiation data of the previous hours showed a very high correlation with the energy
output. This is supported by the fact that the production autocorrelation was high for up to 4
hours before. This led to the conclusion that the solar radiation values of the past 4 to 5 hours
must be examined in the test. Cloud cover had almost zero correlation and was excluded from
testing.

The time series decomposition displayed a seasonal factor that determined that
elements of the timestamp, such as month or season, must be included as input features.
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Chapter 5: Results

5.1 Introduction

In this chapter, the series of tests performed in this research is reported and
commented on.

In section 5.2, a series of tests is performed to determine the best set of input features
for each model. The performance of each model in each case is displayed using different
indicators.

In section 5.3, tests were performed to optimize the hyperparameters of each model.
The optimization was performed first manually, reporting the accuracy of each model and
selecting the best set by hand. Afterwards it was performed automatically, with the help of the
GridSearchCV function of the scikit-learn tools.

In section 5.4, tests using the best parameters are repeated using a smaller test set and
the results are compared with those of the models using the larger dataset.

In section 5.5, the collected results are discussed and conclusions are made.

5.2 Input feature optimization

Three error values were used to assess the results: Root Mean Square Error (RMSE), mean
absolute error (MAE), and the coefficient of determination (R? or R2). Using scikit-learn, there
were two ways to calculate R2: Either using sklearn.metrics.r2_score, or using the “score”
method of the individual prediction models, such as sklearn.tree.DecisionTreeRegressor.score.
Both results are included here as they sometimes varied significantly. The metrics result is
referred to as R2 1 and the result from the individual models is referred to as R2 2. The methods
that were used for the first tests were:

1) A Decision Tree Regression model with squared error criterion, maximum depth of the
tree set to 15, the minimum number of samples required to split an internal node set to
4 and the minimum number of samples required to be at a leaf node set to 1. The rest of
the values were set at default.

2) A Support Vector Regression model with C (Regularization parameter) set to 20, epsilon
set to 0,1 and a linear kernel.

3) A Linear Regression model.

For the models 2 and 3 the input features were normalized using StandardScaler. The
available data was divided to a train set and a test set. For the first part of the testing, the train
set was comprised of all the data except the final week (168 hourly values). The final week was
used as a test set. The results are presented below.
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Using Solar Radiation alone as an input feature:

. . Linear
Decision Tree Method SVR .
Regression
RMSE 13453 W 12236 W 20874 W
MAE 6511 W 6047 W 13661 W
R21 0,767 0,686 0,698
R22 0,780 0,818 0,470
Using Solar Radiation and Temperature as input features:
L. Linear
Decision Tree Method SVR .
Regression
RMSE 17636 Wh 12236 Wh 20696 Wh
MAE 7472 Wh 6047 Wh 13661 Wh
R21 0,708 0,686 0,702
R22 0,622 0,818 0,480

It is observed that using Temperature as an input feature makes the results of the
Decision Tree much worse, does not affect SVR and very marginally improves Linear Regression.
Therefore, it was concluded that it should not be used for the tests that followed.

Using Solar Radiation and Humidity as input features:

.. Linear
Decision Tree Method SVR .
Regression
RMSE 19755 Wh 12236 Wh 20401 Wh
MAE 8569 Wh 6047 Wh 14491 Wh
R21 0,351 0,686 0,701
R2 2 0,526 0,818 0,494

Similar to Temperature, Humidity is not helpful for the forecasting. This is not out of the
ordinary, as the literature states the correlation of weather data with PV production varies
depending on the case study.

Using Solar Radiation and Wind as input features:

. . Linear
Decision Tree Method SVR .
Regression
RMSE 21576 Wh 12235 Wh 22144 Wh
MAE 9442 Wh 6056 Wh 14483 Wh
R21 0,414 0,686 0,672
R22 0,435 0,818 0,404
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Similar to the previous weather data, it reduces the accuracy of the models.

Using Solar Radiation for the current and previous hour:

L. Linear
Decision Tree Method SVR .
Regression
RMSE 13986 Wh 9771 Wh 19925 Wh
MAE 5905 Wh 4864 Wh 13331 Wh
R21 0,843 0,812 0,749
R2 2 0,762 0,884 0,518

While the Radiation of the previous hour does not affect the Decision Tree significantly,
it considerably improves the results of the other models. This is expected from the correlation
values. As such, this variable was included in all following tests.

Using Radiation for the current hour, 1 hour and 2 hours before:

. . Linear
Decision Tree Method SVR .
Regression
RMSE 10628 Wh 9913 Wh 20070 Wh
MAE 4505 Wh 5086 Wh 13338 Wh
R21 0,888 0,807 0,744
R2 2 0,863 0,881 0,511

This time the Decision Tree model is improved while the other two models have slightly
reduced accuracy. Still the improvement is considerable so the variable was included.

Using Radiation for the current hour, 1, 2 and 3 hours before:

Decision .
Linear
Tree SVR . SVR & Linear Dec. Tree &
Regression
Method SVR
RMSE 10225 Wh 9770 Wh 20059 Wh 9378 Wh 7847 Wh

MAE 4155 Wh 4985 Wh 13331 Wh 5410 Wh 3753 Wh
R21 0,891 0,814 0,747 0,838 0,912
R2 2 0,873 0,884 0,511 -0,238 -0,238

At this point the ensembles using a combination of the original models were also used,
initially using equal weights. Using the radiation data from 3 hours ago also appears to improve
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accuracy. The ensemble of the Decision Tree model and the SVR model greatly outperformed
the rest of the models.

Using Radiation for the current hour, 1, 2, 3 and 4 hours before:

Decision )
Linear )
Tree SVR i SVR & Linear Dec. Tree &
Regression
Method SVR
RMSE 9778 Wh 9619 Wh 20226 Wh 9040 Wh 6497 Wh

MAE 4293 Wh 4946 Wh 13642 Wh 5457 Wh 3253 Wh
R21 0,919 0,822 0,751 0,853 0,948
R22 0,884 0,888 0,503 -0,224 -0,238

Adding more of the previous hours’ radiation as features further improves all models’
accuracy except for Linear Regression.

Using Radiation for the current hour, 1, 2, 3, 4 and 5 hours before:

Decision .
Linear .
Tree SVR . SVR & Linear Dec. Tree &
Regression
Method SVR
RMSE 8849 Wh 9640 Wh 20762 Wh 9008 Wh 6063 Wh
MAE 3920 Wh 4999 Wh 14441 Wh 5725 Wh 3144 Wh
R21 0,932 0,822 0,746 0,856 0,954
R22 0,905 0,887 0,476 -0,207 -0,238
Using Radiation for the current hour, as well as 1 to 6 hours before:
Decision )
Linear )
Tree SVR . SVR & Linear Dec. Tree &
Regression
Method SVR
RMSE 9055 Wh 9641 Wh 21331 Wh 9197 Wh 6844 Wh
MAE 4021 Wh 4999 Wh 15110 Wh 6040 Wh 3428 Wh
R21 0,924 0,822 0,736 0,851 0,939
R2 2 0,9 0,887 0,447 -0,193 -0,238

Using the radiation value for 6 hours before as an input feature decreased the accuracy,
unlike the hours after it. As such, only the first 5 hours before the current time were used for
further tests.

Using Radiation for the current hour, as well as 1 to 4 hours before, as well as Hour of the day as
a categorical feature:
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Decision i
Linear .
Tree SVR . SVR & Linear Dec. Tree &
Regression
Method SVR
RMSE 8792 Wh 11444 Wh Error 11712 Wh 9486 Wh

MAE 3975 Wh 5947 Wh Error 6429 Wh 4793 Wh
R21 0,929 0,873 0 0,870 0,914
R2 2 0,906 0,841 Error Error 0,071

In this test, the Hour was added as a categorical feature, converted into a sparse matrix
using OneHotEncoder. Linear regression displayed erroneous 12-digit numbers for results which
were deemed not to have any meaning. The R2 2 value of the Linear & Decision Tree ensemble
model had the same error. Compared to the model using the same data except the Hour, this
model shows improved accuracy for the decision tree model but greatly reduced accuracy for
the Ensemble, which greatly outperformed the Decision Tree in the previous test.

Using Radiation for the current hour, as well as 1 to 4 hours before, plus Hour of the day and
Month of the year as categorical features:

Decision .
Linear .
Tree SVR . SVR & Linear Dec. Tree &
Regression
Method SVR
RMSE 8795 Wh 11444 Wh Error 11712 Wh 9489 Wh
MAE 3992 Wh 5947 Wh Error 6429 Wh 4801 Wh
R21 0,929 0,873 0 0,870 0,914
R2 2 0,906 0,841 Error Error 0,071

Adding the Month as a categorical feature changes the results negligibly compared with
the previous test.

Using Radiation for the current hour, as well as 1 to 5 hours before, plus Hour of the day and
Month of the year as categorical features:

Decision .
Linear )
Tree SVR . SVR & Linear Dec. Tree &
Regression
Method SVR
RMSE 8504 Wh 11443 Wh Error 11710 Wh 9321 Wh

MAE 3745 Wh 5946 Wh Error 6429 Wh 4722 Wh
R21 0,932 0,873 0 0,870 0,916
R22 0,912 0,841 Error Error 0,071
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Consistently with the previous test, the addition of the Hour and Month improve the
Decision Tree model but decrease the accuracy of the ensembles. Adding the data from 5 hours

before improves only the Decision Tree model by a considerable amount.

Season was also tested as a feature. However, only the Decision tree displayed any
results at all when both the Season and the Hour were used as categorical features.

Using Radiation for the current hour, as well as 1 to 4 hours before, plus Hour and Season as

categorical features, declaring Season using string data:

Decision )

Linear )
Tree SVR . SVR & Linear
Regression
Method

RMSE 8366 Wh Error Error Error
MAE 3810 Wh Error Error Error
R21 0,925 Error Error Error
R22 0,915 Error Error Error

Dec. Tree &
SVR
Error
Error
Error
Error

Using Radiation for the current hour, as well as 1 to 5 hours before plus Hour and Season as

categorical features, declaring Season using string data:

Decision

Linear .
Tree SVR . SVR & Linear
Regression
Method

RMSE 9102 Wh 11443 Wh Error Error
MAE 4087 Wh 5946 Wh Error Error
R21 0,917 0,873 0 Error
R22 0,899 0,841 Error Error

Dec. Tree &
SVR
Error
Error
Error
Error

Adding the fifth hour, unlike in the previous tests, decreased the model’s accuracy. For

that reason, it was not used in the next test.

Using Radiation for the current hour, as well as 1 to 5 hours before, plus Hour and Season as

categorical features, declaring Season as an integer:

Decision .
Linear
Tree SVR . SVR & Linear
Regression
Method
RMSE 8599 Wh Error Error Error
MAE 3894 Wh Error Error Error
R21 0,921 Error Error Error
R2 2 0,910 Error Error Error
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The results also had decreased accuracy compared to when Season was declared as a
string.

These tests were performed again, testing different hyperparameters for the models.
The decision tree was set to have a max depth of 22 and min_leaf of 20, leaving other
parameters the same. SVR was set with C=30. Using radiation at the current time and up to 2
hours before as input features, the results were the following:

Decision )
Linear .
Tree SVR i SVR & Linear Dec. Tree &
Regression
Method SVR
RMSE 9159 Wh 9783 Wh 20066 Wh 9516 Wh 6827 Wh

MAE 3981 Wh 5007 Wh 13338 Wh 5465 Wh 3401 Wh
R21 0,925 0,815 0,744 0,832 0,94
R22 0,898 0,883 0,510 -0,244 -0,260

It is observed that increasing C to 30 in SVR increases accuracy, while reducing it to 10 in
an individual test reduced it. The Decision Tree model also increased in accuracy using the new
parameters when compared to the test that used the same input features.

Using the new hyperparameters and, radiation for the current hour, as well as 1 to 3 hours
before as input features:

Decision )
Linear )
Tree SVR . SVR & Linear Dec. Tree &
Regression
Method SVR
RMSE 8662 Wh 9602 Wh 20059 Wh 9303 Wh 6683 Wh

MAE 3856 Wh 4882 Wh 13331 Wh 5361 Wh 3359 Wh
R21 0,930 0,824 0,747 0,842 0,942
R2 2 0,909 0,888 0,511 -0,238 -0,260

The SVR and Ensemble models can be compared in the following graphs, with orange
representing the real values and blue representing the predicted values.
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SVR: Prediction vs real values to PV production
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Figure 24 SVR Prediction vs Real values using radiation for the current hour, as well as 1 to 3 hours before as input
features

Ensemble: Prediction vs real values to PV production
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Figure 25 Decision Tree and SVR Ensemble Prediction vs Real values using radiation for the current hour, as well as
1 to 3 hours before as input features

Accuracy is also increased using this set of features.

Using radiation for the current hour and 1 to 4 hours before as input features:
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Decision .
Linear .
Tree SVR . SVR & Linear Dec. Tree &
Regression
Method SVR
RMSE 8072 Wh 9481 Wh 20226 Wh 8981 Wh 6788 Wh

MAE 3749 Wh 4864 Wh 13642 Wh 5423 Wh 3405 Wh
R21 0,936 0,83 0,751 0,856 0,938
R22 0,921 0,891 0,503 -0,224 -0,260

During this test, it was observed that while the individual models keep increasing in
accuracy with the new parameters, the ensemble model of the Decision Tree and SVR, which
outperforms the rest, actually reduces in accuracy, both compared to the test that used less
features and the test that used the same features with different hyperparameters.

Using as input features: Radiation for the current hour and 1 to 3 hours before, Hour of the day
as integer:

Decision .
Linear
Tree SVR . SVR & Linear Dec. Tree &
Regression
Method SVR
RMSE 9163 Wh 9602 Wh 20060 Wh 9303 Wh 6647 Wh

MAE 4178 Wh 4882 Wh 13331 Wh 5362 Wh 3324 Wh
R21 0,924 0,824 0,747 0,842 0,943
R22 0,898 0,888 0,511 -0,237 -0,260

Adding the hour of the day as an integer reduces the precision of the decision tree but
marginally improves the ensemble.

Using as input features the Radiation for the current hour and 1 to 3 hours before, Hour and
Month as integers:

Decision )
Linear )
Tree SVR i SVR & Linear Dec. Tree &
Regression
Method SVR
RMSE 9098 Wh 9602 Wh 20031 Wh 9327 Wh 6941 Wh

MAE 3859 Wh 4882 Wh 13331 Wh 4859 Wh 3500 Wh
R21 0,922 0,824 0,748 0,841 0,937
R2 2 0,899 0,888 0,513 -0,192 -0,277

Inversely, adding the Month as an integer decreases the accuracy of the ensemble and
improves the decision tree.
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Using as input features the Radiation for the current hour, and 1 to 3 hours before and Month as
categorical using a sparse matrix:

Decision .
Linear .
Tree SVR . SVR & Linear Dec. Tree &
Regression
Method SVR
RMSE 8566 Wh 9583 Wh 20876 Wh 9244 Wh 6979 Wh

MAE 3898 Wh 4892 Wh 13331 Wh 5643 Wh 3626 Wh
R21 0,927 0,826 0,742 0,849 0,934
R22 0,911 0,888 0,471 -0,264 -0,265

Similarly to its use as an integer, Month marginally improves the singular models and
reduces the accuracy of the ensemble.

Using as input features the Radiation for the current hour, and 1 to 3 hours before, and Hour as
categorical:

Decision .
Linear
Tree SVR . SVR & Linear
Regression
Method Dec. Tree & SVR
RMSE 8449 Wh 11800 Wh Error 11885 Wh 9422 Wh

MAE 3811 Wh 6079 Wh Error 6497 Wh 4748 Wh
R21 0,933 0,868 0 0,867 0,915
R2 2 0,913 0,831 Error Error 0,230

Inversely from when it was used as an integer, Hour marginally improves the decision
tree and reduces the performance of the rest of the models. The same occurred with the
previous hyperparameters.

Using as input features the Radiation for the current hour and 1 to 3 hours before, and Season
as categorical:

Decision )
Linear
Tree SVR . SVR & Linear Dec. Tree &
Regression
Method SVR
RMSE 7442 Wh 9602 Wh 20543 Wh 9287 Wh 7006 Wh

MAE 3535 Wh 4882 Wh 13329 Wh 5783 Wh 3550 Wh
R21 0,941 0,824 0,744 0,845 0,931
R2 2 0,933 0,888 0,487 -0,247 -0,277

Season affects the models in a way similar to the hour.
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Using as input features the Radiation for the current hour and 1 to 3 hours before, month and
season as categorical:

Decision .
Linear .
Tree SVR . SVR & Linear Dec. Tree &
Regression
Method SVR
RMSE 8030 Wh 9582 Wh 20857 Wh 9244 Wh 7363 Wh

MAE 3813 Wh 4892 Wh 13330 Wh 5643 Wh 3703 Wh
R21 0,931 0,826 0,742 0,849 0,924
R22 0,922 0,888 0,471 -0,263 -0,282

Using both month and season as inputs lowers the performance of all models, possibly
because season is derived from month data.

Using as input features the Radiation for the current hour and 1 to 3 hours before, hour and
season as categorical:

Decision .
Linear
Tree SVR . SVR & Linear Dec. Tree &
Regression

Method SVR
RMSE 6667 Wh N/A N/A N/A N/A
MAE 3299 Wh N/A N/A N/A N/A
R21 0,952 N/A N/A N/A N/A
R22 0,946 N/A N/A N/A N/A

While during this test only the decision tree model displayed any results at all, it had the
best performance for this particular model, which was also close to the best performance of all
tests.

The optimal input features from the results of the manual tests were the following:

Model Input Features
Decision Tree Solar Radiation from current up to 3 hours before (hourly), hour of
the day and season as categorical
SVR Solar Radiation from current up to 4 hours before (hourly)
Linear Regression Solar Radiation from current and previous hour
SVR & Linear Solar Radiation from current up to 4 hours before (hourly)
SVR & Decision Tree Solar Radiation from current up to 5 hours before (hourly)

It was observed from the tests that using different hyperparameters did not significantly
affect the way the models reacted to different combinations of input features in most cases.
There were exceptions however. The combination that gave the best performance using manual
tests was found to be: 1) Radiation values from current time to 5 hours before, for the ensemble
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model, and 2) Radiation value from current time to 3 hours before together with hour and

season as categorical values, for the Decision tree.

5.3 Optimizing the forecasting models

GridSearchCV was used to find the optimal hyperparameters for each model. The model
using the Decision tree was tested using the optimal input features set as described above.
Different parameter ranges were tested in several tests instead of just one, in order to cut back

on computational requirements.

5.3.1 Optimizing the Decision Tree model
The parameters tested were defined as following:

'random_state':[0],
'criterion':['squared error'],

'splitter':['best', 'random'],
'max depth': [ 50, 70, 75, 80, 100 1],
'min_samples split': [ 8, 11, 12, 13, 16 1],

'min_samples leaf': [20, 40],
GridSearchCV returned the optimal hyperparameters to be:

{'criterion': 'squared error', 'max depth': 50, 'min samples leaf': 20,
'min samples split': 8, 'random state': 0, 'splitter': 'random'}

These parameters gave an R-squared score equal to 0,888. More hyperparameters were

tested, specifically:
'random_state':[0],
'criterion':['squared error', 'friedman mse',
'absolute error', 'poisson'],
'splitter':['best', 'random'],
'max_depth': [ 5, 10, 20, 22, 40, 50 7,
'min samples split': [ 2, 4, 8 ],
'min_ samples leaf': [1, 10, 20, 40],
Returned the best parameters as:
{'criterion': 'friedman mse', 'max depth': 40, 'min samples leaf': 20,
'min samples split': 2, 'random state': 0, 'splitter': 'random'}

R-squared: 0,889

Testing the values:
'random_state':[0],
'criterion':['squared error', 'friedman mse'],

'splitter':['best', 'random'],
'max_depth': [ 40, 50, 100 ],
'min_samples split': [ 2, 4, 8, 13 1,

'min_samples leaf': [18, 20, 22]

Returned:
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{'criterion': 'friedman mse', 'max depth': 40, 'min samples leaf': 20,
'min samples split': 2, 'random state': 0, 'splitter': 'random'}

R-squared: 0,889

Testing the values:

'random_state':[0],
'criterion':['squared error', 'friedman mse'],
'splitter':['best', 'random'],

'max_depth': [ 38, 40, 42 7,

'min samples split': [ 2, 4, 6, 8 ],

'min samples leaf': [19, 20, 21],

Returned:
{'criterion': 'squared error', 'max depth': 38, 'min samples leaf': 21,
'min samples split': 2, 'random state': 0, 'splitter': 'random'}

R-squared: 0,890

Testing the values:

'random_state':[0],

'criterion':['squared error', 'friedman mse'],

'splitter':['best', 'random'],

'max _depth': [
9,10,11,12,13,14,15,16,17,18,19,20,21,22, 24, 26, 28, 30, 32, 34, 35,
36, 37 ,38, 391,

'min_samples split': [ 2 ],

'min_samples leaf': [21]

Returned the final values of:
{'criterion': 'squared error', 'max depth': 15, 'min samples leaf': 21,

'min_samples split': 2, 'random state': 0, 'splitter': 'random'}

R-squared: 0,890

The last test was concluded to determine the best parameters for the decision tree
model, as the values tested were continuous. For example, for maximum depth, the values of
14, 15 and 16 were all tested and the algorithm specifically chose 15; it did not select the upper
limit of the range selected or a value of which the neighboring values were not tested. As such,
for random state 0, this set of values were the optimal. It was observed that if the random state
is not defined, the optimal values can vary.
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5.3.2. Optimizing the SVR model

The best set of input features for SVR was found to be the Radiation values from current
time up to 4 hours before. That set was used for the tests. In the case of SVR, the data had to be
standardized, so in order to use GridSearchCV a pipeline integrating StandardScaler was used.

grid svr =
Pipeline(steps=[('scaler' ,preprocessing.StandardScaler()),('svr',
svm.SVR()) 1)

Testing the values:

'svr C': [1, 10, 30, 100],

'svr epsilon': [1, 0.2, 0.1],

'svr gamma':['scale', 'auto'],

'svr kernel': ['linear', 'poly', 'rbf', 'sigmoid',
'precomputed’]

Returned the optimal values:

{'svr C': 100, 'svr epsilon': 1, 'svr gamma': 'auto', 'svr kernel':
"rbf'}
R-squared: 0,825

Since the optimal C and epsilon were the maximum values, a range of larger values were
tested in the following test.

Testing the values:

'svr C': [90, 100,500,1000,10000,1000007,
'svr epsilon': [2, 1, 0.2, 0.11,

'svr gamma':['auto'l],

'svr kernel': ['linear', 'rbf'l]

Returned the optimal values:

{'svr_ C': 100000, 'svr epsilon': 0.2, 'svr gamma': 'auto',
'svr kernel': 'rbf'}

R-squared: 0,877

Testing the values:

'svr C': [90000,100000, 200000,1000000,20000007,
'svr epsilon': [1,0.8,0.4, 0.2],

'svr gamma':['auto'l],

'svr kernel': ['linear', 'rbf'l]

Returned the optimal values:
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{'svr_ C': 200000, 'svr epsilon': 0.2, 'svr gamma': 'auto',
'svr kernel': 'rbf'}

R-squared: 0,878

Notably, the computation for the last test lasted about 24 hours, unlike the previous
tests.

Testing the values:

svr__C': [180000, 200000,2200007,
'svr epsilon': [0.25, 0.2, 0.15],
'svr gamma':['auto'],
'svr kernel': ['rbf']

Returned the optimal values:

{'svr_ C': 220000, 'svr epsilon': 0.15, 'svr gamma': 'auto',
'svr kernel': 'rbf'}

R-squared: 0,878

Testing the values:

'svr__C': [210000,220000,230000,24000017,
'svr epsilon': [0.2],
'svr gamma':['auto'l],
'svr kernel': ['rbf']

Returned the optimal values:

{'svr_ C': 220000, 'svr epsilon': 0.2, 'svr gamma': 'auto',
'svr kernel': 'rbf'}

R-squared: 0,878

Since the values tested were not at the end of the range, it was concluded that they are
the optimal for this model.

5.3.3 Optimizing the Linear Regression model

The Linear regression model does not have any parameters to optimize in GridSearchCV.
It also performed much worse compared to the other models. Its optimal input set was found to
be the current and previous hour solar radiation values.

5.3.4 Optimizing the ensemble models
The optimization of the ensemble models included using the optimized models of the
previous tests, trying to determine the optimal weights for each.

For the SVR-Linear regression model, tests were made using the optimal input features
for SVR.
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Testing the weights:

'weights': [(0.5, 0.5),(0.25, 0.75),(0.75, 0.25)]

Returned the results:
{'weights': (0.75, 0.25)}
R-squared: 0,874

Testing the weights:

'weights': [(0.625, 0.375),(0.75, 0.25),(0.875, 0.125)]

Returned the results:

{'weights': (0.875, 0.125)}
R-squared: 0,878

Testing the weights:

'weights': [(0.875, 0.125),(0.9, 0.1),(1, 0)]

Returned the results:

{'weights': (1, 0)}
R-squared: 0,878

It is concluded that the SVR-Linear Ensemble is inferior to the plain SVR model, because
the Linear Regression model is much more inaccurate. The optimal setting is to ignore the Linear
Regression model and give 100% weight on SVR.

The SVR-Decision Tree Ensemble was then tested, using the optimal input set for SVR.

Testing the weights:

'weights': [(0.5, 0.5),(0.25, 0.75),(0.75, 0.25)]

Returned the results:

{'weights': (0.75, 0.25)}, withthe greater weight on the SVR model
R-squared: 0,880

Testing the weights:

'weights': [(0.625, 0.375),(0.75, 0.25),(0.875, 0.125),(1, 0)]

Returned the results:

{'weights': (0.75, 0.25)}
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R-squared: 0,880

The optimal setting for the SVR-Decision Tree model was 0,75 weight on SVR and 0,25
on the Decision Tree.

5.4 Tests with a smaller train set

After determining the optimal parameters both manually and using GridSearchCV, tests
were performed to assess the accuracy of the model when the train data set was comprised of
the first 50% of the available data and the rest were used as the test set. The sets used were
three of the manual tests for each model that gave the best results, plus the optimal set derived
from GridSearchCV.

The sets are presented in descending order based on their accuracy. For the Decision
Tree model, the sets used and the corresponding results were the following:

Using max_depth=22, min_samples=4, min_leaf=20,

1) Input set: Current and up to 3 hours before radiation values, hour and season as

categorical:
RMSE 15054
MAE 7151
R21 0,879
R22 0,879

Using the previous data set, the model had less than half the RMSE (6666) and 0,946 R-
squared. This is within expectations as this model tries to predict a much larger set of data and
knows much less.

2) Input set: Current and up to 3 hours before radiation values and season as

categorical:
RMSE 16209
MAE 7947
R21 0,858
R22 0,86

3) Input set: Current and up to 3 hours before radiation values, hour as integer and
season as categorical:

RMSE 14616
MAE 6901
R21 0,886
R22 0,886
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4) Using the GridSearchCV determined hyperparameters of:

15,
'splitter':

{'criterion': 'squared error', 'min samples leaf': 21,

2y

'max depth':

'min samples split': 'random state': O, 'random'}

Input set: Current and up to 3 hours before radiation values, hour and season as categorical:

RMSE 15224
MAE 7284
R21 0,873
R22 0,876

It is observed that the accuracy reduction varies compared to the models using the
larger input dataset. Model 3, which in the previous case was the least accurate of the 3, is now
the most accurate model. The model determined by GridSearchCV is comparatively more
accurate than before, which is expected, as it was meant to optimize accuracy in reference to
the input set, unlike the manual models, which were defined by the accuracy with which they

predicted the last week of the dataset only.

For the SVR model:

The following hyperparameters were used in the manual tests:

{kernel="linear',C=30, epsilon=0.2,gamma="auto"}

1) Inputset: Radiation from current to 4 hours before as input:

RMSE 20180
MAE 10736
R21 0,712
R22 0,782

2) Input set: Current and up to 3 hours before radiation values, month and season as

categorical:
RMSE 20126
MAE 10741
R21 0,715
R22 0,783
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3) Input set: Current and up to 3 hours before radiation values and month as

categorical:

RMSE
MAE
R21
R2 2

20126
10741
0,715
0,783

4) Using the GridSearchCV determined hyperparameters of:

{'sv riiC' :

'svr kernel':

220000, 'svr epsilon':
'Ibf'}

0.2,

'svr gamma': 'auto',

And using the input feature set of 1), which had been determined to be the most accurate

before, the results were:
RMSE
MAE
R21
R22

15160

7325
0,870
0,877

In this case, the GridSearchCV-determined model greatly outperformed all manually

defined models, as the C parameter was selected too conservatively in the latter.

For the Linear Regression:

1) Input set: Current and previous hour radiation:

RMSE
MAE
R21
R2 2

20212
12138
0,755
0,782

2) Input set: Current and up to 3 hours before radiation values, month and hour as

integers:

RMSE
MAE
R21
R2 2

20264
12072
0,756
0,780

3) Input set: Current and up to 3 hours before radiation values:

RMSE
MAE
R21
R2 2
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The accuracy of the Linear Regression model is almost unaffected by the reduction of
the Input data size. Because of the comparative decrease in accuracy of the other models, this
model’s results appear more useful than before, although it is still less accurate than the rest.

For the SVR-Linear Regression Ensemble, GridSearchCV determined that the best setting
is to use SVR alone. Weights were equal for each model (0,5 and 0,5).

1) Using the SVR hyperparameters:
{kernel="linear',C=30, epsilon=0.2,gamma="auto"}

Input set: Radiation from current to 4 hours before:
RMSE 19915

MAE 11151
R21 0,734
R2 2 -0,363

2) The C parameter is set to 20, with an input set of: Radiation from current to 5 hours
before as input:

RMSE 19742
MAE 11307
R21 0,736
R22 -0,35

3) The C parameter is set to 20, with an input set of: Radiation from current to 4 hours
before as input:

RMSE 19952

MAE 11190
R21 0,73
R2 2 -0,363

4) The SVR model using the optimal parameters gave the following results:

RMSE 15160
MAE 7325
R21 0,870
R22 0,877

The Ensemble’s accuracy has decreased proportionally in the same way as the SVR model.

For the Decision Tree-SVR Ensemble:

1) Using the hyperparameters:

svm.SVR (kernel="linear',C=20, epsilon=0.2,gamma="auto")
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DecisionTreeRegressor(criterion='squared error', random state = 0,
max depth = 15, min samples split=4,
min samples leaf=l,splitter='random’)

Weights were equal for each model (0,5 and 0,5).
Input set: Radiation from current to 5 hours before:

RMSE 17100

MAE 8866
R21 0,813
R2 2 -0,383

2) Using the same hyperparameters as in 1).
Input set: Radiation from current to 4 hours before:

RMSE 17518

MAE 9025
R21 0,803
R2 2 -0,388

3) Using the hyperparameters:

svm.SVR (kernel="linear',C=30, epsilon=0.2,gamma="auto")

DecisionTreeRegressor(criterion='squared error', random state = 0,
max depth = 22, min samples split=4,

min samples leaf=20,splitter='random')

Weights were also equal for each model (0,5 and 0,5).

Input set: Current and up to 3 hours before radiation values, and hour as integer:

RMSE 16075

MAE 8357
R21 0,833
R2 2 -0,389

4) Using the GridSearchCV determined hyperparameters of:

{'svr_ C': 220000, 'svr epsilon': 0.2, 'svr gamma': 'auto',

'svr kernel': 'rbf'}

{'criterion': 'squared error', 'max depth': 15, 'min samples leaf': 21,
'min_samples split': 2, 'random state': 0, 'splitter': 'random'}

Weights were set to 0,75 for SVR and 0,25 for the Decision Tree.
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Input set: Radiation from current to 4 hours before:

RMSE
MAE
R21
R2 2

15107
7403
0,87
-0,398

The GridSearch-defined Ensemble model is comparatively more accurate than the

manually optimized models, unlike when the test set was smaller. However, it is observed that

the single Decision Tree model outperforms the Ensemble when the test set is bigger.

5.5 Results

The optimized models were found to be the following:

1) Decision Tree:

Input Features

Hyperparameters

Results

2) SVM:

Input Features
Hyperparameters

Solar Radiation from current up to 3 hours before (hourly), hour of the day

and season as categorical
Large Input Dataset

{'criterion': 's

'min samples leaf':
'random state': O,
Small Input Dataset

{'criterion': 's

'min samples leaf':
'random state': O,

Large Input Dataset

RMSE 6666 Wh
MAE 3299 Wh
R21 0,952
R2 2 0,946

Solar Radiation from current up to 4 hours before (hourly)

Large Input Dataset

{'svr C': 30,
'auto', ' -
Small Input Dataset

{'svr_C': 220000,

'auto',
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svr kernel':

'svr kernel':

quared_error', 'max_depth': 22,
20, 'min_ samples split': 4,
'splitter': 'random'}
quared _error', 'max_depth': 15,
21, 'min_ samples split': 2,
'splitter': 'random'}
Small Input Dataset
RMSE 14616 Wh
MAE 6901 Wh
R21 0,886
R2 2 0,886
'svr epsilon': 0.2, 'svr gamma':

'linear'}

'svr epsilon':
"rbf'}

0.2,

'svr gamma':
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Results
Large Input Dataset Small Input Dataset
RMSE 9481 Wh RMSE 15160 Wh
MAE 4864 Wh MAE 7325 Wh
R21 0,830 R21 0,870
R22 0,890 R22 0,877

3) Linear Regression:

Input Features Solar Radiation from current and previous hour
Hyperparameters N/A

Results
Large Input Dataset Small Input Dataset
RMSE 19925 Wh RMSE 20212 Wh
MAE 13331 Wh MAE 12138 Wh
R21 0,749 R21 0,755
R2 2 0,517 R2 2 0,782

4) SVR & Linear:

Input Features Solar Radiation from current up to 4 hours before (hourly)

Hyperparameters Large Input Dataset:
{'svr C': 30, 'svr epsilon': 0.2, 'svr gamma':

'auto', 'svr kernel': 'linear'}
{'weight': 0.5, 'weight': 0.5}
Small Input Dataset:

{'svr_ C': 220000, 'svr epsilon': 0.2, 'svr gamma':

'auto'j 'svr kernel': 'rbf'}
{'weight': 1.00, 'weight': 0.00}

Results
Large Input Dataset Small Input Dataset
RMSE 8981 Wh RMSE 15160 Wh
MAE 5423 Wh MAE 7325 Wh
R21 0,856 R21 0,870
R22 -0,224 R22 0,877

5) SVR & Decision Tree:

Input Features Solar Radiation from current up to 5 hours before (hourly)
Hyperparameters Large Input Dataset:

{'criterion': 'squared error', 'max depth': 15,
'min samples leaf': 1, 'min samples split': 4,
'random state': 0, 'splitter': 'random'}

{'svr_C': 20, 'svr epsilon': 0.2, 'svr_ gamma':
'auto', 'svr kernel': 'linear'}

{'weight': 0.5, 'weight': 0.5}
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Small Input Dataset:

{'criterion': 'squared error', 'max depth': 15,

'min samples leaf': 21, 'min samples split': 2,
'random state': 0, 'splitter': 'random'}

{'svr C': 220000, 'svr epsilon': 0.2, 'svr gamma':
'auto', 'svr kernel': 'rbf'}

{'weight': 0.75, 'weight': 0.25}

Results
Large Input Dataset

RMSE 6063 Wh
MAE 3144 Wh
R21 0,954
R2 2 -0,238

Small Input Dataset

RMSE 15107 Wh
MAE 7403 Wh
R21 0,870
R2 2 -0,398

The models’ relative performance can be compared in the following table:

Large Input Dataset

Decision Tree SVR Linear
Method Regression
RMSE 6666 Wh 9481 Wh 19925 Wh
MAE 3299 Wh 4864 Wh 13331 Wh
R21 0,952 0,83 0,749
R22 0,946 0,89 0,517
Small Input Dataset
RMSE 14616 Wh 15160 Wh 20212 Wh
MAE 6901 Wh 7325 Wh 12138 Wh
R21 0,886 0,87 0,755
R22 0,886 0,877 0,782

Dec. Tree & Dec. Tree &
Linear SVR
8981 6063 Wh

5423 Wh 3144 Wh
0,856 0,954
-0,224 -0,238

15160 Wh 15107 Wh

7325 Wh 7403 Wh

0,87 0,87
0,877 -0,398

The average production value in the dataset was 58973 Wh. When making forecasts for
the final week only, the average value of the test data was 38953 Wh. As such, nRMSE is

calculated as follows:

Decision Linear
Tree SVR Regression
Method &
Large Input Dataset
nRMSE 17,11% 24,34% 51,15%
Small Input Dataset
nRMSE 24,78% 25,71% 34,27%
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Dec. Dec.
Tree & Tree &
Linear SVR
23,06%  15,56%
25,71%  25,62%
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Chapter 6: Conclusions and Future work

6.1 Conclusions

The weather data aside from Solar Radiation were not found to be useful for making
forecasts for this particular case study. The use Humidity, temperature and wind speed as input
reduced the accuracy of the models. The literature confirms that the utility of different weather
parameters varies on each individual case, depending on various circumstances. The data that
contributed to the forecasting were the radiation values of the previous hours and the values of
hour and month.

For this particular dataset, Linear Regression was clearly inferior to the rest of the
models, indicating that the problem that was being examined was non-linear. SVR tended to
underestimate the data in size, predicting values that were much smaller than the real value.
The ensemble using both Linear Regression and SVR slightly improved the accuracy compared to
standalone SVR when making predictions using the larger dataset, but SVR outperformed it
when the smaller dataset was used.

The Decision Tree model has been observed to be the most accurate when making
predictions using a smaller dataset, while the SVR-Decision Tree Ensemble was the most
accurate when making forecasts using the larger dataset. When making use of the smaller
dataset, the variation of accuracy between the different models becomes smaller. The Linear
Regression model has nearly the same accuracy for both dataset sizes, which is within
expectations as it is a linear model.

The optimized Decision Tree had a MAE of 6901 Wh when 50% of the dataset was used
as input, indicating a 11,7 % normalized Mean Average Error rate and a 24,78% nRMSE. When
using the larger dataset, the MAE of the SVR-Decision Tree Ensemble was 3144, giving a
normalized Mean Average Error rate of 8,3% and an nRMSE of 15,56%.

The performance of the models can be deemed to be satisfactory compared to the
results found in literature, as results up to 41,20% nRMSE were published.

This thesis provides an insight on the efficiency of Decision Tree and Linear Regression
as forecasting models compared to the frequently used SVR. Such an insight was not commonly
found in literature concerning PV forecasting. The results are noteworthy as in this case study
the Decision Tree and the Decision Tree ensemble outperformed the standalone SVR model,
providing the notion that Decision Tree may be useful in PV forecasting.

6.2 Future Work

For the particular case study, more extensive tests can be made, utilizing an even
smaller dataset, in order to test the models’ reliability when less data are available. Forecasts
using ensemble models utilizing different input parameters than the SVR-optimized may also be
made to compare their performance.

loannis Choustoulakis 96



Solar Production Forecasting using Data Analysis and Machine Learning

Different models can also be useful in further testing. The dataset can produce accurate
forecasts using different models than the ones selected. This particularly includes tests with
Deep Learning models, which are the most popular group of methods in literature for PV
forecasts.

Different datasets can also be used to test the models to assess how they perform in
other case studies.

The software developed can also be deployed either as a web application or offline
software. An interface can be developed to provide access to the functions of the software to
someone who is not familiar with Python.
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Appendix A — Code used for statistics analysis and machine learning

import pandas as pd

import datetime

import time

import matplotlib.pyplot as plt

import matplotlib.dates as mdates

import statistics as stat

import xlsxwriter

import math

import numpy as np

from matplotlib import interactive

interactive (True)

import statsmodels as stm

import statsmodels.tsa.seasonal

from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import mean squared error, r2 score,
mean absolute error

from sklearn Import svm

from sklearn import preprocessing

from sklearn.pipeline import make pipeline

from sklearn.pipeline import Pipeline

import sklearn.linear model

import os

import pickle

from sklearn.ensemble import VotingRegressor
from sklearn.preprocessing import OneHotEncoder
from sklearn.model selection import GridSearchCVv

try: # For offline execution
data =
pd.read excel(r'C:\python\CorrectedDataNew.xlsx',sheet name="Data'")
buildingdata = data.values.tolist()
except: # For Google Colab
data = pd.read excel(r'/content/drive/MyDrive/Colab
Notebooks/CorrectedDataNew.xlsx',sheet name="Data")
buildingdata = data.values.tolist()

#Fix outliers
def fixoutliers(buildingdata):
bg99 = []
for i in range(len(buildingdata)) :
bg99.append(buildingdatal[i] [6])

g99 = np.quantile(bg99,0.99)
for i in range(len(buildingdata)) :
if buildingdata[i][6] > g99:
buildingdata[i] [6] = g99
return buildingdata

def datetotimestamp(buildingdata) :# Convert date columns into timestamp
btime = [] # List of timestamps
btimestring = ""
for i in range(len(buildingdata)):
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fbtimestring =(str (buildingdatali][2]) + "/" +
str (buildingdatali] [1]) + "/" + str(buildingdatali][0]) + ™ " +
str(buildingdatal[i] [3]) .split("+",1) [0] )

btimestring =(str(buildingdatali]l[2]) + "/" +
str(buildingdata[i][1]) + "/" + str(buildingdata[i][0]) + " " +
str(buildingdatal[i] [3]) .split ("+",1)[0] + "+0" +
str(buildingdata[i] [3]) .split ("+",1) [1] + ":00" )

btime.append(datetime.datetime.strptime(btimestring,"%d/sm/%Y
SH:3M:%5%z") .timetuple ())

return btime

def wdatetotimestamp(buildingdata) :# Convert date column into timestamp
btime = [] # List of timestamps
btimestring = ""
for 1 in range(len(buildingdata)):
btimestring = buildingdatal[i][1] + "+01:00"
btime.append(datetime.datetime.strptime (btimestring,"sY-2m-%d
SH:3M:%5%2z") .timetuple ())
return btime

def testmissingdata(bhour): #Print all values which do not follow
hourly sequence - Should only print DST changes in March if all is OK
bhournew = []
for i in range(l,len(bhour)):
if datetime.datetime.fromtimestamp (time.mktime (bhour[1i][0])) -
datetime.datetime.fromtimestamp (time.mktime (bhour[i-1]1[0])) !'=
datetime.timedelta (hours=1l):
print(datetime.datetime.fromtimestamp (time.mktime (bhour[i-

11101)))

print (datetime.datetime.fromtimestamp (time.mktime (bhour[i]1[0])))

def bplot(bhour,title="empty"): #Plot the data
bhourlyl = []
for i in range(len(bhour)):
bhourlyl.append(time.mktime (bhour[i][0])) f#conversion to epoch
time

plotpvx = []
plotpvy = []
for i in range(len(bhour)):

plotpvx.append(mdates.date2num(datetime.datetime.utcfromtimestamp (bhour
1y1[i])))# Convert timestamp to a format matplotlib can handle
plotpvy.append(bhour[i] [1])
plt.title(title)
plt.plot(plotpvy)

def hourlymeans (bhourly, season='Yearly'): # Calculate hourly means
hmeans = []
hcount =
hourly =

[
o
[y —Y

for 7 in range(24):
hmeans.append (0)
hcount.append (0)
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for i in range(len(bhourly)):

if season == "VYearly":
if bhourly[i][0].tm hour==j:
hmeans[j] += bhourly[i][1]

hcount[j] += 1
elif season == "Summer":
if bhourly[i][0].tm hour==j and (bhourly[i][0].tm mon >

3 and bhourly[i][0].tm mon < 10):
hmeans[j] += bhourly[i][1]
1

hcount[j] +=
elif season == "Winter":
if bhourly[i][0].tm hour==j and (bhourly[i][0].tm mon
10):

<= 3 or bhourly[i][0].tm mon >=
hmeans[j] += bhourly[i][1]
1

hcount[j] +=

else:
print('Error: Season not defined')

for j in range(24):

if hcount[j] '= 0:
hmeans[j] = hmeans[j]/hcount[j] # Divide the sum of

elements by the number of elements in each

else:
hmeans[]j] =

return hmeans

0

season='Yearly'): # Calculate hourly

def standarddeviation (bhourly,
standard deviation

listbyhour = []

std = []

for j in range(24):
listbyhour.append([])
for i in range(len(bhourly)):

if season == "VYearly":
if bhourly[i][0].tm hour==j:
listbyhour[j].append(bhourly[i][1])
elif season == "Summer":
if bhourly[i][0].tm hour==j and (bhourly[i][0].tm mon >
3 and bhourly[i][0].tm mon < 10):
listbyhour[j].append(bhourly[i][1])
elif season == "Winter":
if bhourly[i][0].tm hour==j and (bhourly[i][0].tm mon
<= 3 or bhourly[i][0].tm mon >= 10):
listbyhour[j].append(bhourly[i][1])

else:
print('Error: Season not defined')

for j in range(24):
if len(listbyhour[j]) > 1:
std.append(stat.stdev (listbyhour[j]))

else:
std.append(0)

return std

100
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def display ml error indicators(test sety,predicted y):

print ("RMSE'", format(mean squared error(predicted y, test sety,
squared=False), ".0f"))

print("MAE", format (mean absolute error(predicted y, test sety),

ll'Ofll))
print("r square", format(r2 score(predicted y, test sety), ".3f"))
#Trim production values over 99% of the rest of the data - not used

#buildingdata = fixoutliers (buildingdata)

pvhourly = []
weatherdata = []
btime = wdatetotimestamp (buildingdata)

for 1 in range(len(buildingdata)): # Create a list containting the
timestamp and production for each hour
pvhourly.append([btime[i] ,buildingdata[i][6]1])

# Hourly statistics for PV production

hourlystatslabel = 'Hourly Statistics'

pvhmeansyearly = hourlymeans (pvhourly) # Hourly mean production for the
whole year

pvhstdevyearly = standarddeviation(pvhourly) # Hourly deviation of
production for the whole year

pvhmeanssummer = hourlymeans (pvhourly, 'Summer') # Hourly mean
production for summer months

pvhstdevsummer = standarddeviation (pvhourly, 'Summer') # Hourly
deviation of production for summer months

pvhmeanswinter = hourlymeans (pvhourly, 'Winter') # Hourly mean
production for winter months

pvhstdevwinter = standarddeviation (pvhourly, 'Winter') # Hourly
deviation of production for winter months

# Prepeare legend table
blegend = (hourlystatslabel,
'pvhmeansyearly: Hourly mean production for the whole year',
'pvhstdevyearly: Hourly deviation of production for the
whole year',
'pvhmeanssummer: Hourly mean production for summer months',
'ovhstdevsummer: Hourly deviation of production for summer
months',
'pvhmeanswinter: Hourly mean production for winter months',
'pvhstdevwinter: Hourly deviation of production for winter
months"')

datesinstring = []
day = []

month = []

season = []

year = []

hour = []

weekday = []
pvvalues = []
wvalues = []
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wvaluesltemp = []

wvalues2humid = []

wvalues3wind = []

wvaluesd4cloud = []

wvaluesbrad = []

wvaluesbrad previoushour = []
wvaluesbrad preprevioushour = []

wvaluesbSrad 3hoursbefore
wvaluesbrad 4hoursbefore =
wvaluesSrad Shoursbefore
wvaluesbrad 6hoursbefore = []
for i in range(len(pvhourly)): # Check if dates match and prepare the
lists for each wvalue
try:
wvalues2humid. append(buildingdatal[i][8])
wvalues3wind.append(buildingdatal[i][9])
wvaluesdcloud.append(buildingdata[i][10])
wvaluesSrad.append(buildingdatal[i][11])
if 1 > 6:
wvaluesbrad previoushour.append(wvalues5Srad[i-1])
wvaluesbrad preprevioushour.append(wvaluesbSrad[i-2])
wvaluesbrad 3hoursbefore.append(wvalues5rad[i-3])
wvaluesbSrad 4hoursbefore.append(wvaluesSrad[i-4])
wvaluesbSrad 5Shoursbefore.append(wvalues5rad[i-5])
wvaluesbrad 6hoursbefore.append(wvaluesSrad[i-6])
else:
wvaluesbrad previoushour.append(wvalues5rad[i])
wvaluesbrad preprevioushour.append(wvalues5rad[i])
wvaluesbSrad 3hoursbefore.append(wvalues5rad[i])
wvaluesbrad 4hoursbefore.append(wvalues5Srad[i])
wvaluesbrad 5Shoursbefore.append(wvalues5rad[i])
wvaluesbrad 6hoursbefore.append(wvalues5rad[i])
datesinstring.append(time.strftime('sY-%m-%d SH:%M:%5",
pvhourly[i][0]))
day.append(time.strftime('%d', pvhourly[i][0]))
month.append(time.strftime('*m', pvhourly[i][0]))

(L |
o
—t e

currentmonth = int(time.strftime('%m', pvhourly[i][0]))

# Season

if 3 < currentmonth and currentmonth <= 6:
season.append('Spring') #Spring

elif 6 < currentmonth and currentmonth <= 9:
season.append('Summer ') #Summer

elif 9 < currentmonth and currentmonth <= 12:
season.append('Autumn') #Autumn

elif 0 < currentmonth and currentmonth <= 3:
season.append('Winter') #Winter

else:
print("error")

year.append(time.strftime('sY', pvhourly[i][0]))
hour.append(time.strftime ('%H', pvhourly[i][0]))
weekday.append(time.strftime('%w', pvhourly[i]1[0]))
pvvalues.append (pvhourly[i][1])

wvaluesltemp.append(buildingdatal[i][7])
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except:
print('error'")

encmonth = OneHotEncoder (categories='auto',handle unknown='ignore')
enchour = OneHotEncoder (categories='auto',handle unknown='ignore')
encseason = OneHotEncoder (categories='auto',handle unknown='ignore')

month cat = encmonth.fit transform(np.array(month).reshape(-1, 1))
month cat = month cat.toarray()

hour cat = enchour.fit transform(np.array(hour) .reshape(-1, 1))
hour cat = hour cat.toarray()

season_cat = encseason.fit transform(np.array(season).reshape(-1, 1))
season_cat = season cat.toarray()

sl = pd.Series(datesinstring, name='Date/Time")

s2 = pd.Series(day, name='Day')

s3 = pd.Series(month, name='Month')

s4 = pd.Series(year, name='Year')

s5 = pd.Series (hour, name='Hour')

s7 = pd.Series(pvvalues, name='pvvalues')

s8 = pd.Series(wvaluesltemp, name='air temperature [B°C]")

]
s9 = pd.Series(wvalues2humid, name='relative humidity [%]")
sl0 = pd.Series(wvalues3wind, name='wind speed[m/s]")
sll = pd.Series(wvalues4cloud, name='cloudcover [%]")
sl2 = pd.Series(wvalues5rad, name='global radiation [W/m"2]")
sl2 1 = pd.Series(wvaluesbSrad previoushour, name='rvalues2')
= pd.Series(wvaluesbSrad preprevioushour, name='rvalues3')
sl2 3 = pd.Series(wvaluesbSrad 3hoursbefore, name='rvalues4')
s1l3 = pd.Series(season, name='Season')
#Different input sets of numerical features - the sets not used in the
current test are commented out
''"'df = pd.DataFrame ({

0]
-
N
N
|

v v

'rvalues2':wvaluesbrad previoushour, 'rvalues3':wvaluesbSrad preprevioush

our,
'rvaluesd':wvaluesbSrad 3hoursbefore, 'h':hour, 'globalradiation':wvaluesb
rad

}

)VVV

df = pd.DataFrame ({

'rvalues2':wvaluesbSrad previoushour,'rvalues3':wvaluesbrad preprevioush
our,

'rvalues4d':wvaluesSrad 3hoursbefore, 'rvaluesb5':wvaluesbrad 4hoursbefore
,'globalradiation' :wvaluesbrad

}
)

'''df = pd.DataFrame ({

v

w

'rvalues?2':wvaluesbSrad previoushour, 'rvalues :wvaluesbrad preprevioush

our,
'rvalues4':wvaluesbrad 3hoursbefore, 'globalradiation':wvaluesbrad

}
)vvv
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'''df = pd.DataFrame ({

'rvalues2':wvaluesbrad previoushour, 'rvalues3':wvaluesbSrad preprevioush
our,

'rvaluesd':wvaluesbrad 3hoursbefore, 'globalradiation':wvaluesbrad,
'rvaluesb5':wvaluesbrad 4hoursbefore, 'rvalues6':wvaluesbrad 5Shoursbefore

}
)VVV

# Categorical input features - the variables not used in the current
test are commented out

#df [encmonth.categories [0]]= month cat # Use month as a categorical
feature

#df [enchour.categories [0]]= hour cat # Use hour as a categorical
feature

#df [encseason.categories [0]]= season cat # Use season as a categorical
feature

df2 = pd.DataFrame (pvvalues)
df time = pd.DataFrame(datesinstring)

test set index = int(len(wvaluesltemp)*0.5) # The size of the test set
- set to 50% of the dataset

train setx = df.iloc[:len(wvaluesltemp)-test set index, :]

test setx = df.iloc[len(wvaluesltemp)-test set index:,:]

train sety = df2.iloc[:len(wvaluesltemp)-test set index, :]
test sety = df2.iloc[len(wvaluesltemp)-test set index:,:]
train time = df time.iloc[:len(wvaluesltemp)-test set index,:]
test time = df time.iloc[len(wvaluesltemp)-test set index:,:]

train setx= train setx.to numpy ()
test setx = test setx.to numpy ()

#Plots for statistics - not used for machine learning tests
plt.figure(2)

bplot (pvhourly, 'production') # Plot historical energy production
plt.show

# Plot autocorrelation

plt.figure(3)
plt.title("Autocorrelation of PV energy production")
plt.acorr(pvvalues,maxlags=10)

# Time Series Decomposition to identify trend and seasonal components
try:

seasonalpv = stm.tsa.seasonal.seasonal decompose(pvvalues,
period=24*30) # Monthly intervals

statsmodels.tsa.seasonal.DecomposeResult.plot (seasonalpv,
observed=True, seasonal=True, trend=True, resid=True, weights=False)
except: # Normal syntax is not compatible with colab, an exception is
raised and I resolve it by writing the colab comatible syntax
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seasonalpv = stm.tsa.seasonal.seasonal decompose (pvvalues,
freg=24*30) # Monthly intervals
statsmodels.tsa.seasonal.DecomposeResult.plot (seasonalpv)

weather regr = []

# Prepare the lists of the output data and timestamps for machine
learning
train_ sety = []
test sety = []
train_time = []
test time = []
for i in range(len(wvaluesltemp)) :
if 1 < len(wvaluesltemp)-test set index:
train sety.append(pvvalues[i])
train time.append(datesinstring[il])
else:
test sety.append(pvvalues[i])
test time.append(datesinstring[i])

sc_x = preprocessing.StandardScaler ()
train setx norm = sc x.fit transform(train setx) #Normalized input data
test setx norm = sc _x.fit transform(test setx)

# Decision tree Regressor - Predict values

#regr 1 = DecisionTreeRegressor (criterion='squared error', random state
= 0, max depth = 22, min samples split=4, min samples leaf=20) # If

max depth is too low it won't take into account all the input features
regr 1 = make pipeline(preprocessing.StandardScaler(),
DecisionTreeRegressor(criterion='squared error', random state = 0,

max depth = 15, min samples split=2,

min samples leaf=21,splitter='random'))

regr 1.fit(train setx, train sety)
y_ 1 = regr l.predict(test setx)

plt.figure()

plt.title("Decision Tree: Prediction vs real values to PV production™)
plt.plot(test time, test sety, color="darkorange'", label="real values",
linewidth=2)

plt.plot(test time, y 1, color="cornflowerblue'", label="max depth=2",
linewidth=2)

print("Decision Tree Method:")

display ml error indicators(test sety,y 1)

rscore = regr_ l.score(test setx, test sety)

print ("R-squared:", format(rscore, ".3f")) # R-Squared

# SVM - Predict values

regr 2 = make pipeline(preprocessing.StandardScaler(),
svm.SVR (kernel="rbf',C=220000, epsilon=0.2,gamma="auto"))
#regr 2 = make pipeline (preprocessing.StandardScaler(),

svm.SVR (kernel="linear',C=30, epsilon=0.2,gamma="auto'))

regr 2.fit(train setx, train sety)
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y 2 = regr 2.predict(test setx)

print ("SVR:")

display ml error indicators(test sety,y 2)

rscore = regr 2.score(test setx, test sety)
print("R-squared:", format(rscore, ".3f")) # R-Squared

plt.figure()

plt.title("SVR: Prediction vs real values to PV production™)
plt.plot(test time, test sety, color="darkorange", label="real values",
linewidth=2)

plt.plot(test time, y 2, color="cornflowerblue'", label="predicted",
linewidth=2)

# Linear Regression - Predict values

regr 3 = sklearn.linear model.LinearRegression().fit(train setx norm,
train sety)
y 3 = regr 3.predict(test setx norm)

print("Linear Regression:'")

display ml error indicators(test sety,y 3)

test setx norm = np.array(test setx norm, dtype=float) # Need to
explicitly convert to numeric or the score function gives a warning
test sety = np.array(test sety, dtype=float)

rscore = regr 3.score(test setx norm, test sety)

print ("R-squared:", format(rscore, ".3f")) # R-Squared

plt.figure()

plt.title("Linear Regression: Prediction vs real values to PV
production")

plt.plot(test time, test sety, color="darkorange", label="real values",
linewidth=2)

plt.plot(test time, y 3, color="cornflowerblue'", label="predicted",
linewidth=2)

# Ensemble of Linear regression and SVR

print("Ensemble of Linear regression and SVR:")

weights = [0.5, 0.5]

models = []

models.append(('rl',regr 2))

models.append(('r2',regr 3))

ensemble = VotingRegressor (estimators=models, weights=weights)
ensemble.fit(train setx, train sety)

y 4 = ensemble.predict(test setx)
display ml error indicators(test sety,y 4)

print ("R-squared:", format(ensemble.score(test setx norm, test sety),
ll.3fll))

print("Ensemble of Decision tree and SVR:")
#weights = [0.5, 0.5]

weights = [0.75, 0.25]

models = []
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models.append(('rl',regr 2))

models.append(('r2',regr 1))

ensemble = VotingRegressor (estimators=models, weights=weights)
ensemble.fit (train setx, train sety)

y 5 = ensemble.predict(test setx)
display ml error indicators(test sety,y 5)

print("R-squared:", format (ensemble.score(test setx norm, test sety),
ll.3fll))

plt.figure()

plt.title("Ensemble: Prediction vs real values to PV production™)
plt.plot(test time, test sety, color="darkorange", label="real values",
linewidth=2)

plt.plot(test time, y 5, color="cornflowerblue'", label="predicted",
linewidth=2)

#Grid search

# SVR Hyperparameter Tests

param grid svr = {'svr C': [210000,220000,230000,2400007,
'svr epsilon': [0.2],
'svr gamma':['auto'],
'svr kernel': ['rbf']l}

grid svr =
Pipeline(steps=[('scaler' ,preprocessing.StandardScaler()),('svr',
svm.SVR()) 1)

#Decision Tree Regressor hyperparameter tests
param grid tree = {'tree criterion':['squared error', 'friedman mse',
'absolute error', 'poisson'],
'tree splitter':['best', 'random'],
'tree max depth': [ 5, 10, 20, 22, 40, 50 1,
'tree  min samples split': [ 2, 4, 8 1,
'tree min samples leaf': [1, 10, 20, 40],

}

{'criterion':['squared error', 'friedman mse',
poisson'],

'splitter':['best', 'random'],

'max depth': [ 5, 10, 20, 22, 40, 50 ],

'min samples split': [ 2, 4, 8 ],

'min samples leaf': [1, 10, 20, 407,

param grid treel

'absolute error', '

}
{'tree criterion':['squared error'],
'tree splitter':['best'],
'tree random state':[0],
'tree max depth': [ 8, 9, 10,11,12,13, 22, 40, 80,

param grid tree2

120 1,
'tree min samples split': [ 4 ],
'tree min samples leaf': [20]
}

param grid tree3 = {'random state':[0],
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'criterion':['squared error', 'friedman mse'],
'splitter':['best', 'random'],
'max _depth': [ 9 1,
'min samples split': [ 2 ],

'min samples leaf': [21],
}
extra tree features = {
'tree  max features':['None', 'auto', 'sqgrt',
"log2'],
#'tree min impurity decrease':[0,0.1,0.2,1],
#'tree ccp alpha':[0,0.1,0.5,1]
}
grid params_voting = { #Tests for Ensemble Models

'weights': [(0.625, 0.375),(0.75, 0.25),(0.875,
0.125),(1, 0)1}

grid tree = DecisionTreeRegressor()
#grid tree =
Pipeline (steps=[('scaler',preprocessing.StandardScaler()), ('tree',

DecisionTreeRegressor())])

#The selection of the above parameters can be typed here to perform the
corresponding test

grid = GridSearchCV (VotingRegressor (estimators=[('regr2’',

regr 2),('regrl', regr 1)]), param grid=grid params_ voting, refit =
True, verbose = 3,n jobs=-1)

# Fitting the model for grid search

grid.fit(train setx, train sety)

# Print best parameter after tuning
print(grid.best params )

grid predictions = grid.predict(test setx)

# print the Score of the best parameters
print ("R-squared:", format(grid.best score , ".3f"))

#End of Gridsearch
# Prediction 1 Model Saving
filename = 'adegapalmela temp solar.sav'

pickle.dump(regr 1, open(filename, 'wb'))

# Export Correlation Data

sl = pd.Series(np.corrcoef (wvaluesltemp,pvvalues) [0,
1] ,name="'Temperature-PV Production Correlation')
s2 = pd.Series(np.corrcoef (wvalues2humid,pvvalues) [0,

1] ,name="Humidity-PV Production Correlation')

s3 = pd.Series(np.corrcoef (wvalues3wind,pvvalues) [0, 1],name='Wind
Speed-PV Production Correlation')

s4 = pd.Series(np.corrcoef (wvaluesd4cloud,pvvalues) [0, 1],name='Cloud
Cover-PV Production Correlation')

s5 = pd.Series(np.corrcoef (wvaluesbrad,pvvalues) [0, 1],name='Solar
radiation-PV Production Correlation')

exportcorrdata = pd.concat([sl,s2,s3,s4,s5], axis=l)
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# Export data to Excel
exporthourlystats = pd.DataFrame ({

'pvhmeansyearly' :pvhmeansyearly, 'pvhstdevyearly' :pvhstdevyearly,
'pvhmeanssummer ' :pvhmeanssummer, 'pvhstdevsummer' :pvhstdevsummer,

'pvhmeanswinter ' :pvhmeanswinter, 'pvhstdevwinter' :pvhstdevwinter
}) # Hourly statistics

exportdatalegend = pd.DataFrame ({'Legend':blegend}) # Legend explaining
the statistics page

# Export Arranged Data

exportbdata = pd.concat([sl,s2,s3,s4,s5,s7,s8,s9,s10,s11,s12,s13],
axis=1l) # Must be written like this to allow different size lists in
the same worksheet

# Create a Pandas Excel writer using XlsxWriter as the engine.
try:

bwriter = pd.ExcelWriter ('Exported Data.xlsx', engine='xlsxwriter')
except:

# Colab version

bwriter = pd.ExcelWriter('/content/drive/MyDrive/Colab
Notebooks/ExportedData.xlsx', engine='xlsxwriter')

# Saving the Excel file
exportbdata.to excel (bwriter, sheet name='Data')

exportcorrdata.to_excel (bwriter, sheet name='Correlation Data')
exporthourlystats.to excel(bwriter, sheet name='Hourly statistics')

exportdatalegend.to excel (bwriter, sheet name='Legend')

bwriter.save ()
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Appendix B — Code for Pre-processing data

import pandas as pd

import datetime

import time

import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import statistics as stat

import xlsxwriter

import math

import numpy as np

try: # Normal offline run

wdata = pd.read csv (r'BD4NRG.csv', delimiter=';")

weatherdata = wdata.values.tolist ()

data =
pd.read excel (r'BD4NRG Pilot3 ASM Headquarters Power Profiles.xlsx',she
et name="Building")

buildingdata = data.values.tolist()

data =
pd.read excel (r'BD4NRG Pilot3 ASM Headquarters Power Profiles.xlsx',she
et name="Photovoltaic")

pvdata = data.values.tolist()
except: # For Colab

wdata = pd.read csv (r'/content/drive/MyDrive/Colab
Notebooks/BDANRG.csv', delimiter=';")

weatherdata = wdata.values.tolist ()

data = pd.read excel(r'/content/drive/MyDrive/Colab
Notebooks/BD4NRG Pilot3 ASM Headquarters Power Profiles.xlsx',sheet nam
e="Building")

buildingdata = data.values.tolist()

data = pd.read excel(r'/content/drive/MyDrive/Colab
Notebooks/BD4NRG Pilot3 ASM Headquarters Power Profiles.xlsx',sheet nam
e="Photovoltaic")

pvdata = data.values.tolist ()

def datetotimestamp (buildingdata) :# Convert date columns into timestamp
btime = [] # List of timestamps
btimestring = ""
for i in range(len(buildingdata)) :
fbtimestring =(str (buildingdatali][2]) + "/" +
str(buildingdata[i] [1]) + "/" + str(buildingdatal[i][0]) + ™ " +
str (buildingdata[i] [3]) .split ("+",1) [0] )
btimestring =(str(buildingdatali]l[2]) + "/" +
str(buildingdata[i][1]) + "/" + str(buildingdata[i][0]) + " " +
str(buildingdatal[i] [3]) .split ("+",1)[0] + "+0" +
str(buildingdatal[i] [3]) .spldit("+",1)[1] + ":00" )
btime.append(datetime.datetime.strptime (btimestring,"%d/sm/%Y
TH:3M:%5%2z") .timetuple ())
return btime

def wdatetotimestamp (weatdata) :# Convert date columns into timestamp
from weather data and fix NaN values

wtimestring = ""
for i in range(len(weatdata)):
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wtimestring = str(int (weatdatal[i][0])) + "+01:00"
weatdata[i] [0] =
datetime.datetime.strptime (wtimestring,"$YemsdsHEMS2z") . timetuple ()

for j in range(l,len(weatdatal[il])):
if np.isnan(weatdatal[i]l[j]):
weatdata[i] [jJ] = weatdatali-1]1[7]

return weatdata

def pvcleanup(pv,pvtime): # Clean up power data
for i in range(len(pv)):
if pv[i]l[4] < O:
pv[il[4] = -pv[i][4] # Retrieve absolute power values to
correct reverse power flow values
if pv[i][4] < 100 and ( pvtime[i].tm hour > 17 or
pvtime[i].tm hour < 7 ):
pv[il[4] = 0 # Eliminates noise - Power produced after 5pm
and before 7am less than 100 Watt is set to zero
return pv

def addlOmintohourly(buildingdata, btime): # Convert 10-minute values
to hourly Wh values

bhourly = [] #List Containing the timestamp and the energy consumed
hourcounter = 0

hourlyproduction = 0

currenthour = 0

for i in range(len(btime)-1): # Omit the last element of the list
to solve the out of index on btime[i+l] error
hourlyproduction += buildingdatali][4]
hourcounter 4= 1 # Some elements are missing, not always 6 per
hour, so they are counted to calculate Wh

if btime[i].tm hour !'= btime[i+l].tm hour:
currenthour = list(btime[i])
currenthour[4] = 0 # Set the timestamp minutes to zero
currenthour[5] = 0 # Set the timestamp seconds to zero

bhourly.append([time.struct time(tuple (currenthour))  hourlyproduction/h
ourcounter])

hourcounter = 0

hourlyproduction = 0

return bhourly

def keepmatchingdatesonly (bhour,pvhour,wdata): # Keep only the data for
each set corresponding to the same dates and times

pvcommondata = []

bcommondata = []

wcommondata []

lateststart = 0

earliestfinish = 0

lateststart =
max (time.mktime (bhour[1][0]),time.mktime (pvhour[1][0]),time.mktime (wdat
all11l01))

earliestfinish = min(time.mktime (bhour[-1][0]),time.mktime (pvhour[-
11[0]),time.mktime (wdata[-1]1[0]))
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for i in range(len(bhour)):
if earliestfinish >= time.mktime (bhour[i][0]) >= lateststart:
bcommondata.append (bhour[i])
for i in range(len(pvhour)):
if earliestfinish >= time.mktime (pvhour[i][0]) >= lateststart:
pvcommondata.append (pvhour[i])
for i in range(len(wdata)):
if earliestfinish >= time.mktime(wdata[i][0]) >= lateststart:
wcommondata.append (wdatal[i])
return bcommondata, pvcommondata, wcommondata

def fixtimedata (bhour,correctingpv = 0):

bhournew = []
fillervalue = []
meanval = []

for i in range(l,len(bhour)-1):

if (datetime.datetime.fromtimestamp (time.mktime (bhour[i+1][0]))
- datetime.datetime.fromtimestamp (time.mktime (bhour[i][0])) !'=
datetime.timedelta (hours=1l)):

if bhour[i][0] == bhour[i-1][0] and
((datetime.datetime. fromtimestamp (time.mktime (bhour[i][0])) -
datetime.datetime.fromtimestamp (time.mktime (bhour[i+1][0]))) ==
datetime.timedelta (hours=2)):
# If the time is the same as the previous cell and two

hours later in the one after that then it is just DST so add the wvalue
normally

bhournew.append([ (datetime.datetime.fromtimestamp (time.mktime (bhour[i] [
0])) + datetime.timedelta (hours=1)).timetuple() ,bhour[i][1]1])
if bhour[i][0] '= bhour[i-1][0] and

((datetime.datetime.fromtimestamp (time.mktime (bhour[i+1][0])) -
datetime.datetime.fromtimestamp (time.mktime (bhour[i] [0]))) ==
datetime.timedelta (hours=2)):

#fprint (bhour[i][0])

fillervalue =
[ (datetime.datetime. fromtimestamp (time.mktime (bhour[i][0])) +
datetime.timedelta (hours=1)) .timetuple() ,bhour[i-24]1[1]]

''"'" For using weekly averages to replace the value -
not working

for j in range(-7,7):

wwval.append (bhour[i + 3*24][1])

val)

value
[ (datetime.datetime.fromtimestamp (time.mktime (bhour[1i][0])) +
datetime.timedelta (hours=1)) .timetuple (), meanval]
print (fillervalue)

v

bhournew.append (bhour[i])
bhournew.append(fillervalue) # Fill in the value of the
previous day for the missing data
if
((datetime.datetime.fromtimestamp (time.mktime (bhour [i+1][0])) -
datetime.datetime.fromtimestamp (time.mktime (bhour[i][0]))) >
datetime.timedelta (hours=2)):
# Fill missing values if the hours missing are over 2 but
less than 24
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hours missing =
datetime.datetime.fromtimestamp (time.mktime (bhour[i+1][0])) -
datetime.datetime.fromtimestamp (time.mktime (bhour[i][0])) -
datetime.timedelta (hours=1)
counterl = 0
bhournew.append (bhour[i])
while hours missing > datetime.timedelta (hours=0):
fillervalue =
[ (datetime.datetime. fromtimestamp (time.mktime (bhour[i][0])) +
datetime.timedelta (hours=l+counterl)) .timetuple (), (bhour[i-
24+counterl] [1]+bhour[i+244counterl][1])/2]
bhournew.append(fillervalue) # Fill in the value of
the previous day for the missing data

counterl += 1
hours missing -= datetime.timedelta (hours=l)
if
((datetime.datetime.fromtimestamp (time.mktime (bhour[i+1][0])) -
datetime.datetime.fromtimestamp (time.mktime (bhour[i] [0]))) >
datetime.timedelta (days=1)):
print('Error, missing values!', bhour[i][0])
print (bhour[i][0], 'is where the value is missing')
sys.exit("Error message')

# If the timedifference is over 24 hours, the value is not
added and an error i1s displayed
# If the time is the same and the time difference with the next
is not 2 hours, the value is also not added
else:
if datetime.datetime.fromisoformat ('2019-09-09 00:00:00")
>= datetime.datetime.fromtimestamp (time.mktime (bhour[i][0])) >=
datetime.datetime.fromisoformat ('2019-08-23 00:00:00") and correctingpv
# If specific dates with known missing values match, use
the average data from the previous and next month

bhournew.append ([ (datetime.datetime.fromtimestamp (time.mktime (bhour[i] [
01))) .timetuple (), (bhour[1-30*24] [1]+bhour [1+30*24]1[1]1)/2])
elif datetime.datetime.fromisoformat ('2018-08-27 00:00:00")
>= datetime.datetime.fromtimestamp (time.mktime (bhour[1][0])) >=
datetime.datetime.fromisoformat ('2018-08-22 00:00:00"'") and correctingpv
# If specific dates with known missing values match, use
the average data from the previous and next week

bhournew.append ([ (datetime.datetime.fromtimestamp (time.mktime (bhour[i] [
01))) .timetuple (), (bhour[i-7*24] [1]+4+bhour [i+7*24]1[1])/2])

elif datetime.datetime.fromisoformat ('2021-05-09 00:00:00")
>= datetime.datetime.fromtimestamp (time.mktime (bhour[1][0])) >=
datetime.datetime.fromisoformat ('2021-05-05 00:00:00") and correctingpv

# If specific dates with known missing values match, use
the average data from the previous and next week

bhournew.append ([ (datetime.datetime.fromtimestamp (time.mktime (bhour[i] [
01))) .timetuple (), (bhour[i-7*24] [1]+bhour [i+7*24]1([1])/2])
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else: # In any other case, add the value normally
bhournew. append (bhour[i])
return bhournew

def testmissingdata(bhour): #Print all values which do not follow
hourly sequence - Should only print DST changes in March if all is OK
bhournew = []
for i in range(l,len(bhour)):
if datetime.datetime.fromtimestamp (time.mktime (bhour[i][0])) -
datetime.datetime.fromtimestamp (time.mktime (bhour[i-1][0])) !=
datetime.timedelta (hours=1l):
print(datetime.datetime.fromtimestamp (time.mktime (bhour[i-

111001)))

print(datetime.datetime.fromtimestamp (time.mktime (bhour[i][0])))

# Get weather timestamps
weatherdata = wdatetotimestamp (weatherdata)

# Data for building consumption
hourlystatslabel = 'Hourly Statistics'

btime = datetotimestamp (buildingdata)

bhourly = addlOmintohourly(buildingdata, btime)

# Data for PV

pvtime = datetotimestamp (pvdata)

pvcleanup (pvdata,pvtime)

pvhourly = addlOmintohourly(pvdata, pvtime)

# Keep only the common dates among all data sets
bhourly, pvhourly, weatherdata = keepmatchingdatesonly(bhourly,
pvhourly, weatherdata)

# Fill in blank hours

weatherdata = fixtimedata (weatherdata)
bhourly = fixtimedata (bhourly)
pvhourly = fixtimedata (pvhourly)

datesinstring = []
day = []

month = []

season = []

year = []

hour = []

weekday = []
bvalues = []
pvvalues = []
wvalues = []
wvaluesltemp = []
wvalues2humid = []
wvalues3wind = []
wvaluesdcloud = []
wvaluesbrad = []
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for i in range(len(bhourly)): # Check if dates match and prepare the
lists for each wvalue
if bhourly[i][0] == pvhourly[i][0] == weatherdata[i][0]:
try: # Will raise an error when trying the time when DST
starts, ignore that value -will omit a (erroneous) value of the
original index
wvalues2humid. append (weatherdatal[i][2])
wvalues3wind.append (weatherdatal[i][3])
wvaluesdcloud. append (weatherdatal[i][4])
wvalues5Srad.append (weatherdatal[i][5])

datesinstring.append(time.strftime('%Y-%m-%d SH:%M:%5",
bhourly[i]1[0]1))
day.append(time.strftime('%d', bhourly[i][0]))
month.append(time.strftime('%m', bhourly[i][0]))
# Season
if 3 > int(time.strftime('%m', bhourly[i][0])) >= 6:
season.append(2) #Spring
elif 6 > int(time.strftime('%m', bhourly[i][0])) >= 9:
season.append (1) #Summer
elif 9 > int(time.strftime('%m', bhourly[i][0])) >= 12:
season.append(3) #Autumn
else:
season.append(4) #Winter
year.append(time.strftime ('Y ', bhourly[i][0]))
hour.append(time.strftime('%H"', bhourly[i][0]))
weekday.append(time.strftime ('%w', bhourly[i][0])) #
Weekday needs to be taken into account for consumption - it is not
exported to excel
bvalues.append (bhourly[i]1[1])
pvvalues.append (pvhourly[i][1])

wvaluesltemp.append(weatherdatal[i][1])

except:
pass

else:
print("Error: Date mismatch™)

# Export Arranged Data

sl = pd.Series(datesinstring, name='Date/Time")

s2 = pd.Series(day, name='Day')

s3 = pd.Series(month, name='Month")

s4 = pd.Series(year, name='Year')

s5 = pd.Series (hour, name='Hour')

s6 = pd.Series(bvalues, name='bvalues')

s7 = pd.Series(pvvalues, name='pvvalues')

s8 = pd.Series(wvaluesltemp, name='air temperature [B°C]")
s9 = pd.Series(wvalues2humid, name='relative humidity [%]")
sl0 = pd.Series(wvalues3wind, name='wind speed[m/s]")

sll = pd.Series(wvalues4cloud, name='cloudcover [%]")

sl2 = pd.Series(wvalues5rad, name='global radiation [W/m"2]")
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exportbdata = pd.concat([sl,s2,s3,s4,s85,s86,s7,s8,s9,s10,s11,s12],
axis=1l) # Must be written like this to allow different size lists in
the same worksheet

# Create a Pandas Excel writer using XlsxWriter as the engine.
try:

bwriter = pd.ExcelWriter ('Exported Data.xlsx', engine='xlsxwriter')
except:

# Colab version

bwriter = pd.ExcelWriter('/content/ExportedData.xlsx',
engine="'xlsxwriter")

# Saving the Excel file
exportbdata.to excel (bwriter, sheet name='Data')

bwriter.save ()
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