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Περίληψη

Στην παρούσα διατριβή παρουσιάζουμε τον αναλυτικό υπολογισμό ολκληρωμάτων Feynman πολ-
λαπλών βρόχων, τα οποία συνεισφέρουν σε διάφορες 2 → 2 και 2 → 3 σωματιδιακές σκεδάσεις
στα πλαίσια της Κβαντικής Χρωμοδυναμικής.

Στο πρώτο μέρος παρουσιάζουμε μια επισκόπηση των μεθόδων που χρησιμοποιούνται επί του

παρόντος για τον αναλυτικό υπολογισμό ολοκληρωμάτων βρόχων καθώς και την επεξεργασία

των ειδικών συναρτήσεων που εμφανίζονται στις λύσεις τους. Χρησιμοποιώντας Ολοκλήρωση-

Κατά-Παράγοντες, μπορούμε να εκφράσουμε τα ολκληρώματα Feynman πολλαπλών βρόχων σε μια
πεπερασμένη βάση ολοκληρωμάτων, τα οποία αποκαλούνται ολοκληρώματα βάσης. Στη συνέχεια

διαμορφώνουμε ένα πλαίσιο για τον αναλυτικό υπολογισμό των ολοκληρωμάτων βάσης, το οποίο

συνδυάζει την μέθοδο των Απλοποιημένων Διαφορικών Εξισώσεων με τη χρήση συγκεκριμένων

ολοκληρωμάτων βάσης τα οποία ικανοποιούν κανονικές διαφορικές εξισώσεις. Για τον υπολογισμό

των συνοριακών τιμών χρησιμοποιούμε την μέθοδο της επέκτασης-κατά-περιοχές.

Στο δεύτερο μέρος παρουσιάζουμε αποτελέσματα για συγκεκριμένα ολοκληρώματα βάσης ε-

νός, δύο και τριών βρόχων. Αρχικά μελετούμε επίπεδα ολοκληρώματα βάσης τριών βρόχων που

σχετίζονται με σκεδάσεις 2 → 2 όπου ένα εξωτερικό σωματίδιο φέρει μάζα. Τα αποτελέσματα
αυτά συνεισφέρουν σε διορθώσεις τρίτης τάξης στα πλάτη σκέδασης για την διάσπαση ενός διανυ-

σματικού μποζονίου σε τρία αδρονικά jet ή στην παραγωγή ενός μποζονίου Higgs με την διάσπαση
gg → H + jet. Στη συνέχεια παρουσιάζουμε αποτελέσματα σε επίπεδο ενός και δύο βρόχων για
τη σκέδαση πέντε σωματιδίων όπου ένα εξωτερικό σωματίδια φέρει μάζα. Τα αποτελέσματα αυτά

συνεισφέρουν στον υπολογισμό διορθώσεων δεύτερης τάξης για διαδικασίες όπως η παραγωγή

W + 2 jets στον LHC. Τέλος, μελετούμε διαφορα ολοκληρώματα ενός βρόχου για σκέδαση πέντε
σωματιδίων, τα οποία περιλαμβάνουν άμαζους διαδότες και έως τρία έμαζα εξωτερικά σωματίδια,

καθώς και έναν έμαζο διαδότη και έως δύο έμαζα εξωτερικά σωματίδια.
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Abstract

In this thesis we present analytic results for the calculation of multiloop Feynman integrals
contributing to virtual corrections of various 2→ 2 and 2→ 3 scattering processes in Quantum
Chromodynamics.

The first part consists of an overview of the current methods and tools for the analytic
computation of loop integrals and the manipulation of the special functions that appear in their
results. Using Integration-By-Parts identities, one can reduce all multiloop Feynman integrals
to a so-called finite basis of master integrals. We construct a computational framework for the
analytic calculation of these master integrals, based on the Simplified Differential Equations
approach, in conjunction with the ideas of working with a specific basis of master integrals
that satisfies so-called canonical differential equations. The method of expansion-by-regions is
employed for the determination of the necessary boundary terms.

In the second part we present results for specific one-, two- and three-loop master integrals.
We first consider planar three-loop master integrals relevant to 2 → 2 scattering with one
external leg off-shell. These results contribute to the scattering amplitudes for a vector boson
decaying to 3-jets or gg → H + jet in gluon fusion at Next-to-Next-to-Next-to-Leading-Order
(N3LO). Furthermore we present one- and two-loop results for five-point scattering with on
off-shell leg that are relevant to NNLO corrections to scattering processes such as W + 2 jets
production at the LHC. Finally we study several one-loop five-point master integrals involving
massless propagators and up to three off-shell legs and one massive propagator with up to two
off-shell legs.

2



Contents

Prolegomenon 6

I Theoretical overview 7

1 Precision calculations in Quantum Chromodynamics (QCD) 8
1.1 Elements of Quantum Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 The QCD Lagrangian and Feynman rules . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Perturbative QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Master integrals 13
2.1 Integral families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Integration-by-parts identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Parametric representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Feynman parameter representation . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Baikov representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Analytical calculation of master integrals 20
3.1 Differential equations for master integrals . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Special functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.3 The shuffle algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Simplified differential equations approach . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Expansion by regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Computational framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.1 Simplified differential equations in canonical form . . . . . . . . . . . . . 27
3.5.2 Boundary terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.3 Scale reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 A pedagogical example: two-loop planar master integrals 31
4.1 Canonical basis and DE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Boundary terms and solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 From massive to massless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Comparison with the standard approach . . . . . . . . . . . . . . . . . . . . . . 40

II Results 41

5 Planar three-loop master integrals for the ladder-box topology 42
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3



5.2 General set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.1 Integral families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.2 Scattering kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Canonical differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3.1 Boundary terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4 Massless three-loop ladder-box . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4.1 The x → 1 limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4.2 From massive to massless . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4.3 Pure basis for the massless three-loop ladder-box . . . . . . . . . . . . . 49

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.5.1 Analytic continuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.5.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Pentagon integrals to arbitrary order in the dimensional regulator 53
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Construction of a pure basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.4 Massless pentagon family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.5 Numerical checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7 Two-loop planar Penta-Box master integrals with one massive leg 60
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.2 Integral families and kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.3 Canonical basis and Differential Equations . . . . . . . . . . . . . . . . . . . . . 62
7.4 Boundary conditions and analytic expressions . . . . . . . . . . . . . . . . . . . 64
7.5 Numerical Results and Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.6 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8 Two-loop non-planar Hexa-Box master integrals with one massive leg 70
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.2 Hexabox integral families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.2.1 Pure bases and simplified canonical differential equations . . . . . . . . . 72
8.3 Boundary terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8.4 Integral representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

9 Multiscale pentagon integrals involving internal masses 81
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.2 Notation and kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.3 Differential equations and pure solutions . . . . . . . . . . . . . . . . . . . . . . 84

9.3.1 Families C,E,G,H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.3.2 The alphabet in x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.3.3 Families D,F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
9.3.4 On the choice of integral families . . . . . . . . . . . . . . . . . . . . . . 91

9.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
9.5 Explicit results at weight three . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

9.5.1 Top sector of family C . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
9.5.2 Top sector of family H . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

9.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4



Epilogue 97

Acknowledgements 98

Bibliography 99

5



Prolegomenon

What is the world made of? This question has puzzled the mind of humans since the days
of ancient Greek philosophers. As centuries went on, the answer to this question was refined
several times, as our species reached a deeper understanding of Nature.

Our current knowledge of Nature at its most fundamental level is encoded in the mathe-
matical structure of the Standard Model (SM) of Particle Physics. One part of this theory
comprises our best understanding of electromagnetic interactions at the quantum level, de-
scribed by Quantum Electrodynamics (QED), which can be unified with the description of the
weak interactions into the electroweak theory. The second part of the SM provides a theoret-
ical description for the strong interactions, given by Quantum Chromodynamics (QCD). The
theories of electroweak interactions and QCD are formulated in the mathematical language of
Quantum Field Theory (QFT), a framework which has allowed us to produce the most precise
description of a physical phenomenon, the magnetic moment of the electron [1]–[3].

The discovery of the Higgs boson at the LHC [4], [5] solidified the mathematical consistency
of the SM of Particle Physics as our best fundamental description of Nature. And yet there
are still open questions that make us think that the SM is not the final answer to the initial
question about the nature of the world. The discovery of neutrino masses, the postulation by
astronomers and cosmologists of the existence of a new kind of matter, called Dark Matter
in lieu of a more accurate name that specifies its constituents, are only some of the many
indications that there might be physics beyond the SM.

However, experimental data coming from powerful colliders, such as the LHC, have so far
shed no light in these open questions. In the absence of any clear signals for physics beyond
the SM, a detailed study of the properties of the Higgs boson, along with a scrutinization of
key SM processes have spearheaded the endeavour to advance our understanding of Particle
Physics [6].

From a theory perspective, precision studies in collider physics means using current methods
and tools, as well as developing new ones, in order to provide predictions for the outcome of
particle collisions that take place in high energy accelerator experiments. This thesis is devoted
to a very specific part of this endeavour, more specifically to the study and computation of the
mathematical objects that we will later identify as Feynman integrals.

More specifically, in the first part of this thesis we will give an overview of the theoretical
methods, tools and ideas that allow us to produce precise theoretical predictions for scattering
processes studied at the LHC. In the second part we will present results stemming from original
research concerning the so-called virtual corrections at Next-to-Next-to Leading Order (NNLO)
and N3LO for various 2→ 2 and 2→ 3 processes.

Although the level of mathematical sophistication of our answer to the question about the
structure of our physical world has increased over the years, physics is not mathematics. The
ultimate goal of a physicist is to explain the world1 and all calculations presented in this thesis
are made with a mind to contribute to this noble endeavour.

1To Explain the World, the Discovery of Modern Science (2015), Steven Weinberg, Harper/HarperCollins
Publishers.
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Chapter 1

Precision calculations in Quantum
Chromodynamics (QCD)

1.1 Elements of Quantum Field Theory
Over the course of the twentieth century, collider physics emerged as a powerful approach for
the discovery of particles that exist in nature and the study of their properties and interactions.
Particle colliders provide a controlled environment for the study of fundamental interactions,
since they begin with initial states of fixed momenta and end up with final states with fixed
momenta as well. The measurement of the mapping from inital state momenta to final state
momenta is then compared to predictions coming from theoretical models formulated within
the framework of Quantum Field Theoy (QFT)1.

QFT is the result of combining Quantum Mechanics with Special Relativity. Each QFT
is usually characterised by a Lagrangian density L, which is a polynomial of the fundamental
quantum fields φi(x) and their derivatives. One of the main reasons for using Lagrangian
densities, is that they are manifestly Lorentz invariant. The dynamics of a QFT is determined
by the principle of least action, with the action being the integral of the Lagrangian density
over the four-dimensional space-time

S =

∫
d4x L[φi(x)]. (1.1)

In Quantum Mechanics, the experimental measurable quantities that one can predict are
differential probabilities, given by the modulus squared of inner products of states in a Hilbert
space. Since QFT is by construction based on Quantum Mechanics, the experimental quantities
we can predict are of the form

| 〈f | S |i〉 |2. (1.2)
The inner product 〈f | S |i〉 is known as the Scattering or S-matrix and contains all the infor-
mation about how the initial and final states evolve with time. S-matrix elements are the main
objects of interest in collider physics and QFT provides us with the necessary tools to compute
them.

In the absence of any interactions, i.e. when considering a free theory, the S-matrix is simply
the identity matrix 1. When interactions are present we have

S = 1 + iT (1.3)

with T known as the transfer matrix, encoding all deviations from the free theory. The transfer
matrix is defined as

〈f | T |i〉 = (2π)4δ4
(
Σp
)
〈f |M |i〉 (1.4)

1There is a plethora of QFT textbooks. We refer the interested reader to [7]–[10].
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where 〈f |M |i〉 is what we usually mean by matrix elements, and Σp = Σpµi − Σpµf . At the
end of the day one finds that the S-matrix elements are related to the total cross-section of the
scattering process as

σ ∝
∫

dΠLIPS |Mfi|2 (1.5)

where dΠLIPS is the Lorentz-invariant phase space and |Mfi|2 = | 〈f |M |i〉 |2. Mfi is also
referred to as scattering amplitude.

The complexity of the scattering amplitudes is such that their exact analytic calculation is
an insurmountable task for most theories. The only viable approach is through perturbation
theory, where the scattering amplitudes are written as an expansion in Feynman diagrams.
Given the Lagrangian density of a theory, one can obtain in a systematic way a set of math-
ematical rules, known as Feynman rules, which translate each diagram into a mathematical
formula. As one considers scattering processes of higher multiplicity, i.e. involving the interac-
tion of many particles, and/or higher orders in the perturbative expansion, the corresponding
Feynman diagrams become significantly more involved.

In what follows we will focus on a specific QFT, the one that describes the strong interac-
tions. Its name is Quantum Chromodynamics (QCD).

1.2 The QCD Lagrangian and Feynman rules
The fundamental principle of QCD is that hadronic matter is made of quarks2. Two of the
most known hadrons are the proton and neutron. The dynamics of the strong interaction that
is responsible for binding the protons and neutrons that form the nucleus of atoms is encoded
in the mathematical structure of the QCD Lagrangian density. The strong force is mediated
through the interaction of quarks and gluons, the latter being the bosonic force carriers of the
strong force. Quarks are spin-1/2 particles and through experiments we know that they exist
in at least six different kinds, the so-called flavours, namely: up (u), down (d), strange (s),
charm (c), bottom (b) and top (t).

The QCD Lagrangian density can be written as a sum of three terms

LQCD = Lclassic + Lgauge−fix + Lghost. (1.6)

The first term encodes the dynamics of quarks and reads

Lclassic =
∑
f

ψ̄f,i
(
i /Dij −mfδij

)
ψf,j −

1

4
F a
µνF

µν,a (1.7)

where f is the flavour index, i, j are the colour indices in the fundamental represenation and
a, b are the ones in the adjoint representation. The quark fields are represented as ψf,i and the
covariant derivative is given by

Dµ
ij = ∂µijδij − igsAija taij. (1.8)

The gluons are represented as Aija and the matrices taij are the generators of the fundamental
representation of SU(N), with N = 3 the number of colours. The generators taij fulfil the
algebra

[ta, tb] = ifabctc (1.9)
2Here we provide a schematic overview of QCD. We refer the interested reader to [11], [12] for a thorough

discussion of QCD in the context of collider physics.
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where fabc are the structure constants. The coupling strength of quarks to gluons is represented
by the coupling constant gs. The final term in (1.7) contains the gluonic field tensor

F a
µν = ∂µA

a
ν − ∂νAaµ + gsfabcA

b
µA

c
ν . (1.10)

The last two terms in (1.6) are required in order to be able to perform perturbation theory.
The gauge fixing term reads

Lgauge−fix =
1

2ξ
(∂µA

µ
a)2 (1.11)

and is needed in order to define the propagator for the gluon field. The parameter ξ is arbitrary
and is needed to specify the gauge in a covariant way. The so-called Feynman gauge ξ = 1
is a typical choice and the one that we will use in this thesis. Physical results are of course
independent of the specific value of ξ. In a non-Abelian theory such as QCD this gauge-fixing
term must be supplemented by a ghost Lagrangian density which is given by

Lghost = (∂µχ
∗
a) (∂µδab − gsfabcAµc )χb. (1.12)

The ghost fields χa are scalar fields which obey fermionic anticommutation relations. The
ghost fields cancel unphysical degrees of freedom which would otherwise propagate in covariant
gauges.

Eqs. (1.7), (1.11), (1.12) are sufficient to derive the Feynman rules of QCD. In the following
we will use straight lines for quarks, curly lines for gluons and dashed lines for ghosts. Taking all
momenta to be incoming for the vertices and using the Feynman slash-notation, i.e. /p = pµγµ,
with γµ being the Dirac gamma matrices satisfying the anticommutation relations {γµ, γν} =
2gµν , we have

iδij/(/p−m+ iε)

δab

[
−gµν + (1− ξ) pµpν

p2 + iε

]
i/
(
p2 + iε

)

iδab//
(
p2 + iε

)

− igstaijγµ

−gsfabc [(p1 − p2)ρ gµν + (p2 − p3)µ gνρ + (p3 − p1)ν gρµ]

10



− g2
sfeac febd [gµνgρσ − gµσgνρ]

− g2
sfead febc [gµνgρσ − gµρgνσ]

− g2
sfeab fecd [gµρgνσ − gµσgνρ]

gsfabcp
µ

In addition to these rules, one needs to introduce symmetry factors to avoid overcounting
diagrams, as well as properly treat loop diagrams using the following rules:

1. Each internal loop momentum k must be integrated over, with the integral measure being∫
ddk/(2π)d, where d is the number of space-time dimensions.

2. Every fermionic loop comes with a factor of (−1).

As can be seen, every vertex comes with its own power of the quark-gluon coupling gs. This
allows for each Feynman diagram constructed using these rules to be classified in terms of the
total number of powers of the coupling constant. As this number increases, diagrams containing
one or more closed loops can be drawn, which can be translated to the so-called Feynman
integrals, which are the main object of interest in this thesis. A problematic feature of these
integrals is that they often exhibit UV and IR divergences in d = 4 space-time dimensions.
The proper way to regulate these divergences is through dimensional regularisation [13]–[15],
working in d = 4 − 2ε space-time dimensions, where poles in the dimensional regulator ε
represent these UV and IR divergences.

1.3 Perturbative QCD
As we mentioned earlier, in most QFT’s the only viable method of calculating S-matrix ele-
ments is through perturbation theory. Having the Feynman rules as a starting point, one can
translate diagramatic expansion in the perturbative series into specific mathematical objects.
This approach yields a power tool for the production of precise phenomenological predictions,
if the coupling constant of the theory under consideration is small enough at the energy level
that is being studied.

In the case of QCD, the property of asymptotic freedom [16]–[20] states that the strong
coupling constant

as =
g2
s

4π
(1.13)

where gs is the quark-gluon coupling, decreases with the increase of energy. This means that
quarks interact weakly at high energies, which allows us to use perturbative methods in QCD
for the study oh hadrons at high energy colliders, such as the LHC.

Comparing QCD perturbative calculations with experimental data is a non-trivial task,
however the factorisation theorem [21] permits us to separate it into two stages:

• The hard scattering, described by perturbative QCD.
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• The hadronisation, which requires different methods that go beyond the scope of this
thesis.

At the level of the cross-section for the collision of two initial hadrons h1, h2 resulting in the
production of some final state X, we have

dσh1h2→X =
∑

a,b=q,q̄,g

∫ 1

x1,min

dx1

∫ 1

x2,min

dx2 Fa/h1
(
x1, µ

2
)
Fb/h2

(
x2, µ

2
)
σ̂ab→X

(
µ2
)

(1.14)

where Fa/h1 (x1, µ
2) and Fb/h2 (x2, µ

2) are the Parton Distribution Functions, σ̂ab→X is the
hard scattering cross-section, and µ2 is the factorization scale. The total cross-section for the
production of the final state X in perturbative QCD, σ̂(X) = σ̂h1h2→X can be expanded in
powers of as. Normalising to the number of powers of as of the born cross-section, we can write

σ̂(X) = σ̂(X)LO +
( as

2π

)
σ̂(X)NLO +

( as
2π

)2

σ̂(X)NNLO +
( as

2π

)3

σ̂(X)NNNLO + . . . (1.15)

where LO stands for Leading order, NLO stands for Next-to-Leading order, NNLO stands for
Next-to-Next-to-Leading order, etc.

Calculation of corrections up to NLO have reached a high level of maturity and have been
automated in public tools [22], [23]. Since most of the calculations presented in this thesis
concern NNLO corrections we will briefly discuss the various contributions that they receive.
More specifically we have:

1. Virtual corrections, which include 2-loop Feynman diagrams.

2. Mixed real-virtual corrections, which include 1-loop Feynman diagrams with an extra
particle which can become unresolved.

3. Double-real corrections, which include tree-level Feynman diagrams with two extra parti-
cles which can become unresolved.

Each of these contributions is individually divergent, with the divergences cancelling in the
sum (after renormalization for the UV and IR divergences) leaving behind a finite result for
the cross-section.
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Chapter 2

Master integrals

The material presented in this chapter is based on reviews such as [6], [24], [25].

2.1 Integral families
The modern approach of thinking about the calculation of Feynman integrals (FI) which are
required in the computation of a scattering amplitude, is through the notion of an integral
family.

If we consider a scattering process involving N external particles in d space-time dimensions,
then, assuming momentum conservation, only E = min(N − 1, d) external particles will be
linearly independent. We can associate to this process the following integral with L loops in d
dimensions with propagator powers νj

G(ν1, . . . , νn) =

∫ L∏
l=1

dd kl
iπd/2

n∏
j=1

1

D
νj
j

(
{k}, {p},m2

j

) (2.1)

where the propagators Dj({k}, {p},m2
j) depend on the loop momenta kl, the linearly indepen-

dent momenta {p1, . . . , pE} and, when present, on the propagator masses m2
j . We work on

the framework of dimensional regularisation with d = 4 − 2ε, to regulate both ultraviolet and
infrared divergences. This implies that the singularities in four dimensions manifest in the form
of 1/ε-terms to some power.

For various values of propagator powers νj, we see that (2.1) defines a set of integrals.
We define as an integral family the set of integrals G(ν1, . . . , νn) which contains all integrals
with propagator configurations such that any scalar product of a loop momentum with another
loop momentum or with an external momentum can be expressed as a linear combination of
inverse propagators contained in the same family. A scalar integral of an integral family with
no loop-momentum dependence in the numerator corresponds to νj ≥ 0 for all j. In general,
the integrals of an integral family are linearly dependent and form a vector space. Therefore
one can find a basis of integrals in terms of which all integrals of the integral family can be
expressed. This process is known as a reduction to master integrals. Finding a convenient basis
of master integrals is of great importance for their efficient calculation.

For an N -point integral family with L loops, the number n of genuinely different scalar
products of the type ki · kj and ki · pj is given by

n =
L(L+ 1)

2
+ L · E (2.2)

The first term comes from contracting the loop momenta with themselves, and the second
one comes from contracting the loop momenta with the external momenta. A useful way of
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organising the integrals of a family is through the use of integral sectors. A sector is defined
as a set of t propagators of an integral family. The number of different t-propagator sectors is(
n
t

)
and therefor in principle

∑n
t=0

(
n
t

)
= 2n sectors are contained in an integral family, however

many of them will be zero or related by symmetries.
To every t-propagator sector with propagator denominators Dj1 , . . . , Djt we can define a set

of integrals with different propagator powers by

I(t, r, s) =

∫ L∏
l=1

ddkl
iπd/2

DS1
jt+1

. . . D
Sn−t
jn

Dr1
j1
. . . Drt

jt

(2.3)

with integer exponents ri ≥ 1 and si ≥ 0. This allows us to characterise an integral of the
family by then numbers t, r, s and the indices {v1, . . . , vn} = {r1, . . . , rt,−s1, . . . ,−sn−t}, where
r =

∑t
i=1 ri and s =

∑n−t
i=1 si. Positive νi denote powers of regular propagators, i.e. propagators

in the denominator, negative νi denote powers of inverse propagators, i.e. they form non-trivial
numerators, and vνi = 0 means the absence of a propagator. The numbers t, r, s can be
calculated from the vector ~ν, so they are redundant once ~ν is given.

For a t-propagator sector of an n-propagator integral family, the number of integrals that
can be built for certain values of r and s is given by

N(n, t, r, s) =

(
r − 1

t− 1

)(
s+ n− t− 1

n− t− 1

)
(2.4)

The two binomial factors count all possible ways to arrange the exponents of the propagators
in the denominator and numerator respectively. The integral with r = t and s = 0 of some
sector is called the corner integral of this sector.

From (2.2) we can see that all topologies with a number of propagators np > n are re-
ducible, i.e. scalar products in the numerator can be expressed through linear combinations of
propagators of the same integral. For L = 1 one can show that the only irreducible numerators
are of the type ki · n, where nj denotes directions transverse to the hyperplane spanned by
the physical external momenta. These terms however vanish after integration over the loop
momenta (in integer dimensions). Starting from two loops, genuine irreducible numerators can
occur, the so-called irreducible scalar products or isp’s.

2.2 Integration-by-parts identities
It can be shown that for dimensionaly regulated FI, the integral over a total derivative is zero
[26]. If I is the integrand of an integral of the form (2.1), taking derivatives as follows

L∏
l=1

ddkl
∂

∂kµi

[
uµI(~ν)

]
= 0 (2.5)

leads to identities between different integrals, the so-called integration-by-parts (IBP) identities.
The term uµ can be a loop- or external momentum which can be chosen conveniently, for
example such that propagators with powers νi > 1 (known as propagators with dots) do not
occur. If there are L loop momenta and E independent external momenta, one can therefore
build L(L+ E) equations from one integral.

The system of IBP identities is in general over-constrained, such that most of the integrals
can be expressed as linear combinations of a small subset of integrals, the so-called master
integrals (MI). Another set of identities that also provide relations among integrals are the
Lorentz-invariance identities of the form

E∑
i=1

(
pνi

∂

∂pi µ
− pµi

∂

∂pi ν

)
G(~ν) = 0. (2.6)

14



Thees relations are redundant, but can help convergence in solving the linear system.
The choice of MI is not unique. A convenient choice of the basis can make a huge difference

in the calculation of integrals of a certain complexity. Further it is important to take symmetries
into account as well as shifts of the loop momenta that do not change the kinematic variables.

In complicated cases, an order relation among the integrals has to be introduced to be able
to solve the system for a set of MI. For example, an integral T1 is considered to be smaller than
an integral T2, if T1 can be obtained from T2 by omitting some of the propagators. Within the
same topology, the integrals can be ordered according to the powers of their propagators.

The first systematic approach of IBP reduction has been formulated by Laporta [27] and is
known as Laporta’s algorithm. Several packages exist that automate Laporta’s algorithm, such
as FIRE [28], KIRA [29], AZURITE [30], REDUZE [31], just to mention some of the currently most
used publicly available tools, as well as several private codes.

2.3 Parametric representations
The are several representations of Feynman integrals. Other than the one in momentum space
(2.1), the most widely used are the Feynman parameter representation and the Baikov repre-
sentation. The main advantage of these parametric representations over the one in momentum
space is that the integrations involve only scalar objects in Minkowski space.

2.3.1 Feynman parameter representation

Starting from (2.1) one can use Schwinger’s trick

1

D
νj
j

=
1

Γ(νj)

∫ ∞
0

dαj α
νj−1
j e−αDj (2.7)

for Dj > 0, Re(νj) > 0, to prove that

n∏
j=1

1

D
νj
j

= Γ(ν)
n∏
j=1

[∫ ∞
0

dxj
x
νj−1
j

Γ(νj)

]
δ

(
1−

n∑
j=1

xj

)
1(∑n

j=1 xjDj

)ν (2.8)

with ν =
∑n

j=1 νj and xi are the so-called Feynman parameters. Furthermore
∑n

j=1 xjDj is a
quadratic form in the loop momenta kl,

n∑
j=1

xjDj =
L∑

j,l=1

kj · klMjl − 2
L∑
j=1

kj ·Qj + J + iδ (2.9)

where kj · kl denotes the scalar product of two d-dimensional Lorentz vectors. We can perform
a shift in the loop momenta kj = lj +M−1

ij Ql and after defining

U = det(M) , F = det(M)

[
L∑

i,j=1

QiM
−1
ij Qj − J − iδ

]
(2.10)

we can arrive at

G(ν1, . . . , νn) = Γ

(
ν − Ld

2

) n∏
j=1

[∫ ∞
0

dxj
x
νj−1
j

Γ(νj)

]
δ

(
1−

n∑
j=1

xj

)Uν−(L+1)d/2

Fν−Ld/2 . (2.11)
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The polynomials U , F are known as first and second Symanzik polynomials and also admit
a graph-theoretic interpretation. The Cheng - Wu theorem [32] states that the same formula
(2.11) holds even when the delta function

δ

(
1−

n∑
j=1

xj

)
(2.12)

includes only a subset of xj ∈ {1, . . . , n}.

2.3.2 Baikov representation

The essence of the Baikov representation of Feynman integrals is that we change the integration
variables from the loop momenta to the propagators.

Every inverse Feynman propagator Da in (2.1) can be written as follows

Da = P 2
a −M2

a , a = 1, . . . , n (2.13)

with Pa being a linear combination of loop and external momenta and Ma the internal masses.
Defining qi = ki, i = 1, . . . , L as the loop momenta, qL+i = pi, i = 1, . . . , E as the indepen-

dent external momenta and M = L+E, sij = qi · qj1, allows us to write the propagators Da in
the form

Da =
L∑
i=1

M∑
j=i

Aija sij + fa

=
L∑
i=1

L∑
j=i

Aija ki · kj +
L∑
i=1

M∑
j=L+1

Aija ki · pj−L + fa (2.14)

where fa is a function depending on external kinematics and internal masses, Aija is a matrix
loosely associated with the topology of the graph with elements taken from the set {−2,−1, 0, 1, 2}
and a = 1, . . . , n. We may view Aija as an n× n matrix [33]. This allows us to solve (2.14) for
sij

sij =
n∑
a=1

Aaij
(
Da − fa

)
(2.15)

with Aaij =
(
Aija
)−1.

Now that we have set the stage, we will try at first to change the integration variables of
(2.1) from the loop momenta kµi to the scalar products sij. In order to do so, we start from kµ1
and write it in the form

kµ1 = kµ1 ‖ + kµ1⊥ (2.16)

where kµ1 ‖ is the projection of kµ1 on the hyper-plane spanned by the (M − 1) momenta
{kµ2 , . . . , kµL, p1, . . . , p

µ
E}, and kµ1⊥ is the transverse component to the above mentioned hyper-

plane. We apply this procedure to all loop momenta. For kµ2 for example we write

kµ2 = kµ2 ‖ + kµ2⊥ (2.17)

with kµ2 ‖, as in the case of kµ1 ‖, being the projection of kµ2 on the hyper-plane spanned by
{kµ3 , . . . , kµL, p1, . . . , p

µ
E} (M−2 components ). This procedure allows us to write the integration

measure as follows,

ddk1 . . . d
dkL = dM−1k1 ‖ dd−M+1k1⊥ . . . d

M−LkL ‖ dd−M+LkL⊥ (2.18)
1This definition of sij differs from the rest of the thesis. In later chapters we will use the notation sij =

(pi + pj)
2, with pi being the external momenta.
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As a first step, we will make the following change of variables starting from kµ1 ,

dM−1k1 ‖ → ds12 ds13 . . . ds1M (2.19)

Under such a change of integration variables, the measure of integration transforms as follows,

dM−1k1 ‖ = det

(
∂kµ1 ‖
∂s1j

)
ds12 ds13 . . . ds1M (2.20)

To proceed we make the following definitions

ζj = kl · qj, l = 1, 2, . . . , j = l + 1, . . . ,M and since kµl = kµl ‖ + kµl⊥ (2.21)

kl · qj = kl ‖ · qj + kl⊥ · qj = kl ‖ · qj = ζj (2.22)

From ζj = kl · qj we have for kµ1

ζj = k1 · qj = s1j = k1 ‖ · qj (2.23)

We may also write kµl ‖ = aiq
µ
i so we have

kl ‖ · qj = aiqi · qj = aisij = ζj (2.24)

therefore
ai = ζjs

−1
ij (2.25)

Finally we can write kµ1 ‖ as

kµ1 ‖ =
∑
i

aiq
µ
i =

∑
i,j

ζjs
−1
ij q

µ
i = s1js

−1
ij q

µ
i , i, j = 2, . . . ,M (2.26)

Following these manipulations, the Jacobian can take the form

det

(
∂kµ1 ‖
∂s1j

)
= det

(
s−1
ij q

µ
i

)
= det(sij)

−1 det
(
qµi
)

(2.27)

To continue notice that by definition, the Gram determinant is |G(q1, . . . , qn)| = det(qi · qj),
therefore for i, j = 2, . . . ,M

det(sij) = det(qi · qj) = |G(q2, . . . , qM)| (2.28)

and we can also have[
det
(
qµi
)]2

= det
(
qµi
)

det
(
qi µ
)

= det
(
qµi qi µ

)
= |G| (2.29)

which leads to
det
(
qµi
)

= |G(q2, . . . , qM)|1/2 (2.30)

Using (2.30), the Jacobian (2.27) can take the form

det

(
∂kµ1 ‖
∂s1j

)
=

1√
|G(q2, . . . , qM)|

(2.31)

Applying the above procedure to the rest of the ki ‖ yields

dM−1k1 ‖ =
ds12, ds13, . . . , ds1M

|G(k2, . . . , kL, p1, . . . , pE)|1/2
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dM−2k2 ‖ =
ds23, ds24, . . . , ds2M

|G(k3, . . . , kL, p1, . . . , pE)|1/2 (2.32)

...

dM−LkL ‖ =
dsLL+1, . . . , dsLM
|G(p1, . . . , pE)|1/2 (2.33)

For ki⊥ we change into spherical coordinates and integrate over the angular part

dnki⊥ =
1

2
Ωn k

n−2
i⊥ dk2

i⊥, Ωn =
2πn/2

Γ
(
n
2

) (2.34)

which allows us to write sii as follows

sii = k2
i = k2

i ‖ + k2
i⊥ → dk2

i⊥ = dsii (2.35)

This holds because kµl‖ = sljs
−1
ij q

µ
i and therefore

k2
l‖ = sljs

−1
ij q

µ
i slms

−1
nmqn,µ

= sljs
−1
ij slms

−1
nmsin = sljs

−1
ij slms

−1
nmδim

= sljs
−1
ij sli (2.36)

Then we can write k1⊥ as follows

k1⊥ =
√
s11 − k2

1 ‖ =
√
s11 − s1is

−1
ij s1j, i, j = 2, . . . ,M (2.37)

Using the definition for the determinant of block matrices, we can write for the ratio of the
following Gram determinants

|G(k1, . . . , kL, p1, . . . , pE)|
|G(k2, . . . , kL, p1, . . . , pE)| =

det

(
s11 s1j

s1j sij

)
det(sij)

=
det(sij) det

(
s11 − s1is

−1
ij s1j

)
det(sij)

= s11 − s1is
−1
ij s1j (2.38)

For the last step we used the fact that the determinant of a number is equal to the number
itself. Putting everything together leads to

k1⊥ =

√
|G(k1, . . . , kL, p1, . . . , pE)|
|G(k2, . . . , kL, p1, . . . , pE)| (2.39)

This allows us to write the integral measure dnk1⊥ as follows

dd−M+1k1⊥ =
1

2
Ωd−M+1

(
|G(k1, . . . , kL, p1, . . . , pE)|
|G(k2, . . . , kL, p1, . . . , pE)|

) (d−M+1)
2

ds11 (2.40)

Applying the above procedure to the rest of ki⊥ and replacing the resulting dnki⊥ and dnki ‖
all Gram determinants except |G(k1, . . . , kL, p1, . . . , pE)| and |G(p1, . . . , pE)| cancel, yielding

G(ν1, . . . , νn) =
π−

L(L−1)
4
−LE

2∏L
i=1 Γ

(
d−M+i

2

)[|G(p1, . . . , pE)|
]−d+E+1

2
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×
∫ L∏

i=1

M∏
j=1

dsij

[
|G(k1, . . . , kL, p1, . . . , pE)|

] d−M−1
2

Dν1
1 . . . Dνn

n

(2.41)

Now change integration variables from sij to xa = Da (baikov variables). Because of (2.15),
the Jacobian of this transformation will be det

(
Aaij
)
, which leads to the Baikov representation

of Feynman Integrals:

G(ν1, . . . , νn) = CL
n

[
|G(p1, . . . , pE)|

]−d+E+1
2

×
∫

dx1 . . . dxn
xa11 . . . xνnn

[
PLn (x1 − f1, . . . , xn − fn)

] d−M−1
2

(2.42)

with

CL
n =

π−
L(L−1)

4
−LE

2∏L
i=1 Γ

(
d−M+i

2

) det
(
Aaij
)

(2.43)

and
PLn (x1 − f1, . . . , xn − fn) = |G(k1, . . . , kL, p1, . . . , pE)| (2.44)

is the Baikov polynomial. Notice that in the rhs of (2.44) we impose (2.15) and we take sij = sji.
The integration region is defined so that

PLn (x1 − f1, . . . , xn − fn) ≥ 0 (2.45)

which practically means that the Baikov polynomial vanishes at the boundaries.
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Chapter 3

Analytical calculation of master integrals

In principle one can use the parametric representation of a MI and proceed to perform all the
necessary integrations analytically. However, as the number of loops and kinematic scales of the
MI increases, so does their mathematical complexity. In the last decade the established method
to obtain analytical results for MI is the method of Differential Equations (DE) [34]–[37]. In
this chapter we will give an introduction to this method, focusing on a variant called Simplified
Differential Equations approach (SDE) [38]. We will also build a computational framework that
will allow us to obtain in a systematic way analytical results for the integral families that will
be considered in the second part of this thesis. Dedicated reviews on the method of differential
equations can be found in [39], [40].

3.1 Differential equations for master integrals
The basic idea of the method of DE is to have a basis of MI, obtained after IBP reduction of a
given family of FI, and then taking derivatives of each MI with respect to kinematic invariants
and/or masses. The result of the differentiation is given in terms of FI of the same integral
family. Then one applies IBP reduction again, thus relating the derivatives of MI to MI of the
same integral family. This procedure leads to a system of linear differential equations for the
MI which can be solved when appropriate boundary terms are provided.

More specifically, consider an integral family F (~ν) and its basis of MI, which we will denote
as G(~ν). The dependence on the kinematics is given by invariants formed by external momenta
such as p2

i , (pi + pj)
2 = sij, and masses. To obtain DE with respect to these invariants, one can

use the following formulas [41],

∂

∂(pi · pj)
G(~ν) =

∑[
G−1

]
kj
pk · ∂piG(~ν) (3.1)

∂

∂(p2
i )

G(~ν) =
1

2

∑[
G−1

]
ki
pk · ∂piG(~ν) (3.2)

where G = {pi · pj} is a Gram matrix. After IBP reduction the right-hand side is expressed in
terms of MI. The resulting system of DE can be written in the following form,

∂

∂sij
G = A

(
ε, {sij}

)
G (3.3)

In general, the matrix A can be very complicated. In 2013 a remarkable observation was
made [42] that has since revolutionised the field of multiloop calculations. The main idea is
that one can look for a set of MI that can be expressed in terms of functions that exhibit certain
special properties upon differentiation.
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In order to properly discuss these function we must introduce the concept of the degree of
transcendentality T (f) of a function f [42]. T (f) is defined as the number of iterated integrals
needed to define the function f , e.g. T (log) = 1, T (Lin) = n, where Lin is the classical
polylogarithm, defined as

Lin(x) =

∫ x

0

Lin−1(t)

t
dt (3.4)

Further properties of transcendental functions are

T (f1 · f2) = T (f1) + T (f2) (3.5)
T
(
ζ(n)

)
= T

(
πn
)

= n (3.6)
T (r) = 0, for rational r (3.7)

The MI which will be of interest to us will be expressed in terms of uniformly transcendental
(UT) functions. A function f which is expressed as a sum of terms is called UT when all
summands have the same degree of transcendentality. Finally, we will call a function pure, if its
degree of transcendentality is lowered by taking a derivative, i.e. T (df) = T (f)− 1. This last
property implies that the coefficient of a pure function cannot be anything more than a rational
number, otherwise upon differentiation it would contribute additional terms which would have
greater degree of transcendentality than the remaining terms.

MI whose leading singularity is constant tend to be pure and UT [43]. Later we will have
more to say about how to go looking for such special MI, but for now let us assume that we
have such a basis. Their DE will be of dlog form, meaning that the integrand will be written
as a logarithmic differential form. What this practically means is that if we start with a basis
G of MI and based in them, start looking for a good basis of MI, g, we are essentially looking
for a transformation matrix T, which will take us from basis G to basis g.

g = TG (3.8)

Assuming now that basis G satisfies the DE (3.3), the new basis g will satisfy the DE

dg = ε
∑
a

Bad log
(
Wa(sij)

)
g = εB̃ (3.9)

This is the celebrated dlog form of the DE. The functions Wa are called letters and they form
the alphabet associated with the DE. The DE in (3.9) is also known as a canonical DE and the
basis g that satisfies it is known as a canonical or pure basis of MI.

The matrices A, B̃ in (3.3) and (3.9) respectively, are connected through the transformation
matrix T from (3.8) in the following way,

∂sijg = ∂sij
(
TG

)
= ∂sij

(
T
)
G + TAG

= ∂sij
(
T
)
T−1g + TAT−1g

=
[
∂sij
(
T
)
T−1 + TAT−1

]
g

= B̃g (3.10)

Notice the difference in the structure of A, B̃ when comparing (3.3) and (3.9). First of all,
the ε-dependence is fully factorised in the canonical DE. Next, all kinematic dependence is
included in the functions Wa, the letters of the alphabet, leaving the matrices Ba, known as
residue matrices. to consist solely of rational numbers.

In this canonical form, the system of DE can be iterated order by order in ε, with suitably
chosen boundary conditions. If this a canonical DE can be reached using only rational trans-
formations, then the letters are of the form Wa = χ− χa, where χ can be any of the kinematic
variables and χa are the locations of the singularities in the kinematic invariants.
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In general the letters can also be algebraic functions of the kinematic invariants, e.g. they
can include square roots. This complicates significantly their analytic integration, although
several methods have been developed to deal with this issue. The mathematical structure of
the set of letters, i.e. the alphabet, characterises the function class the solution can belong
to. If the alphabet can be written in terms of rational functions, one can write the solution
of the canonical DE in terms of a special class of functions known as Multiple or Goncharov
polylogarithms (GPLs) [44]–[47]. These functions will play a major role in the results presented
in the second part of this thesis, therefore the following section is devoted to their introduction
and review of several of their important properties.

3.2 Special functions
GPLs appear in the results of many calculations in perturbative Quantum Field Theory. More
specifically, they have been known to form part of the space of functions that arise in the solution
of several FI. In this section we will show that GPLs are generalisations of the logarithm and
the classical polylogarithm (3.4) and we will review several of their properties which will be of
use in the calculations presented in the the second part of this thesis.

3.2.1 Definitions

Like classical polylogarithms, GPLs can be defined recursively for n ≥ 0 via the iterated integral

G(a1, . . . , an; z) =

∫ z

0

dt

t− a1

G(a2, . . . , an; z) (3.11)

with G(z) = G(; z) = 1, ai ∈ C are constants and z is a complex variable. In the special case
where all ai’s are zero, we define

G(~0n; z) =
1

n!
logn(z) (3.12)

The vector ~an = (a1, . . . , an) is called the vector of singularities of the GPL and the number
of elements n is called the weight of the GPL. Working in dimensional regularisation, we will
need to obtain results in terms of GPLs up to weight 2l for an l-loop amplitude. In general, it
is not known if GPLs are transcendental, but we will assume that they are.

The definitions (3.11) and (3.12) show that GPLs contain the ordinary logarithm and the
classical polylogarithm as special cases,

G(~an; z) =
1

n!
logn

(
1− z

a

)
(3.13)

G(~0n−1, 1; z) = −Lin(z) (3.14)

GPLs are part of the more general family of iterated integrals. The notation used in the
mathematics literature is slightly different than the one used by physicists. In mathematics an
iterated integral is defined as,

I(a0; a1, . . . , an; an+1) =

∫ an+1

a0

dt

t− an
I(a0; a1, . . . , an−1; t) (3.15)

and I(a0; ; a1) = 1. The functions defined in (3.11) and those of (3.15) are related by

G(an, . . . , a1; an+1) = I(0; a1, . . . , an; an+1) (3.16)

Notice however the reversal of the arguments in the vector of singularities on the GPL.
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3.2.2 Basic properties

From the integral representation (3.11) of GPLs, we can see that G(a1, . . . , an; z) is divergent
whenever z = a1. Similarly G(a1, . . . , an; z) is analytic at z = 0 whenever an 6= 0.

If we consider the ai’s to be constant, then the GPLs have branch cuts in the complex z
plane at most extending from z = ai to z =∞. If the ai’s are allowed to vary, the branch cut
structure becomes much more complicated. Some specific examples are the following:

1. G(~an; z) = 1
n!

logn
(
1− z

a

)
has a simple branch cut in the complex z plane, extending from

z = a to z =∞.

2. G(0, 1; z) = −Li2(z) has a branch cut extending in the complex z plane from z = 1 to
z =∞. The branch cut starting at z = 0 is absent in this case.

If the rightmost index an of ~a is non-zero, then the function G(~a; z) is invariant under a
rescaling of all its arguments, i.e. for any k ∈ C∗ we have

G(k~a; kz) = G(~a; z), an 6= 0 (3.17)

GPLs also satisfy the Hölder convolution, i.e. whenever a1 6= 1 and an 6= 0, we have, ∀p ∈ C∗

G(a1, . . . , an; 1) =
n∑
k=0

(−1)kG(1− ak, . . . , 1− a1; 1− 1/p)

× G(ak+1, . . . , an; 1/p) (3.18)

In the limiting case where p→∞, this identity becomes

G(a1, . . . , an; 1) = (−1)nG(1− an, . . . , 1− a1; 1) (3.19)

Relations of the above kind are called functional equations.

3.2.3 The shuffle algebra

An important property of all iterated integrals thus of GPLs too, is that the product of two
GPLs defined with the same integration limits can be written as a linear combination of GPLs.
We may generalise this and see that the product of GPLs with weights n1 and n2 can always
be written as a sum of GPLs with weight n1 + n2,

G(a1, . . . , an1 ; z)G(an1+1, . . . , an1+n2 ; z) =
∑

σ∈
∑

(n1,n2)

G(aσ(1), . . . , aσ(n1+n2); z) (3.20)

where
∑

(n1, n2) denotes the set of all shuffles of n1 + n2 elements. This property turns the set
of all GPLs into a shuffle algebra, i.e. a vector space equipped with the shuffle multiplication.
The shuffle product preserves the weight of the GPLs and in this case the algebra is graded.

If an = 0 in G(a1, . . . , an; z) we may use the shuffle algebra to rewrite G(a1, . . . , an; z) in
terms of functions whose rightmost index of the vector of singularities is non-zero. E.g., for
a 6= 0

G(a, 0, 0; z) = G(a; z)G(0, 0; z)− G(0, a, 0; z)− G(0, 0, a; z)

= G(0, 0; z)G(a; z)− G(0, 0, a; z)−
[
G(0, a; z)G(0; z)− 2G(0, 0, a; z)

]
= G(0, 0; z)G(a; z) + G(0, 0, a; z)− G(0, a; z)G(0; z) (3.21)
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3.3 Simplified differential equations approach
In this section we will introduce a variant of the DE method, known as the Simplified Differential
Equations approach (SDE). The SDE approach [38] is an attempt to simplify and systemize,
as much as possible, the derivation of the appropriate system of DE satisfied by the MI.

Any l-loop integral can be written in the following form

Ga1,...,an({pj}, ε) =

∫ ( l∏
r=1

ddkr
iπd/2

)
1

Da1
1 . . . Dan

n

, Di = (cijkj + dijpj)
2, d = 4− 2ε (3.22)

with matrices {cij} and {dij} determined by the topology and the momentum flow of the graph,
and the denominators are defined in such a way that all scalar product invariants can be written
as a linear combination of them. The exponents ai are integers and may be negative in order
to accommodate irreducible numerators. Through the use of (IBP) identities, any integral of
the above form can be written as a linear combination of a finite subset of MI, with coefficients
depending on the independent scalar products, sij = pi · pj, and space-time dimension d.

In the SDE approach the external incoming momenta are parametrized linearly in terms of
x as pi(x) = pi + (1 − x)qi, where the qi’s are a linear combination of the momenta {pi} such
that

∑
i qi = 0. If p2

i = 0, the parameter x captures the off-shell-ness of the external leg. The
FI are now dependent on x through the external momenta:

Ga1,...,an({sij}, ε;x) =

∫ ( l∏
r=1

ddkr
iπd/2

)
1

Da1
1 . . . Dan

n

, Di = (cijkj + dijpj(x))2 (3.23)

By introducing the dimensionless parameter x, the array of MI, G({sij}, ε;x), which now de-
pends on x, satisfies

∂

∂x
G({sij}, ε;x) = M({sij}, ε;x)G({sij}, ε;x) (3.24)

a system of differential equations in one independent variable, where M is a matrix whose
elements are rational functions of the kinematics {sij ≡ pi · pj}, of x and of ε. The expected
benefit of this approach is that the integration of the DE naturally captures the expressibility
of MI in terms of GPLs and more importantly make the problem independent of the number of
kinematic scales (independent invariants) involved. Note that as x → 1, the original configu-
ration of the loop integrals (3.22) is reproduced, which corresponds to a simpler one with one
scale less.

The form (3.24) is such that MI with m denominators only depend on MI with at most m
denominators. This structure of the DE makes it possible to first solve the MI with m0 + 1
denominators, then those with m0 + 2 denominators and so forth. In other words, in practice
the DE may be solved in a bottom - up approach.

Let’s consider the DE for a single MI. Assume that all MI with m′ ≤ m denominators
are known and already expressed in the desired form, the meaning of which will become clear
below. The DE of MI with m+ 1 denominators can be written schematically in the form:

∂xGm+1 = H({sij}, ε;x)Gm+1 +
m∑

m′≥m0

R({sij}, ε;x)Gm′ (3.25)

i.e. the sum of a homogeneous and an inhomogeneous term. The functions H and R are
rational functions of their arguments. Equation (3.25) can be solved with the variation of con-
stants method by introducing the integrating factor S({sij}, ε;x), which satisfies the differential
equation ∂xS = −SH (dropping the arguments of the functions for brevity):
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∂x
(
SGm+1

)
= S

m∑
m′≥m0

R({sij}, ε;x)Gm′ (3.26)

Equation (3.26) could now be straightforwardly expanded in ε and integrated, provided that
the right-hand side is free of singularities at x → 0. If any such singularities are present, we
need to determine the re summed part of the solution in this limit.

The right-hand side of (3.26) can be rewritten schematically as a sum of a singular and a
regular term at x = 0:

S

m∑
m′≥m0

R({sij}, ε;x)Gm′ =
∑
i

x−1+βiεĨ
(i)
sin({sij}, ε) + Ĩreg({sij}, ε, x) (3.27)

with βi being typically rational numbers. The singular term is integrated exactly and the
solution of (3.26) becomes:

SGm+1 = C({sij}, ε) +
∑
i

xβiε

βiε
Ĩ

(i)
sin({sij}, ε) +

∫ x

0

dx′Ĩreg({sij}, ε, x′) (3.28)

where the first term C({sij}, ε) is a constant in x but may be dependent on the kinematical
invariants. The rightmost term in (3.28) is safely expanded in ε and expressed in terms of
GPLs. To this end, the integrating factors S in (3.26) should be rational functions of x in
the limit ε → 0. This is a sufficient condition for the chosen x-parametrization to result in a
differential equation solvable in terms of GPLs.

An important feature of the SDE approach is that in many cases the boundary terms are
naturally captured by the integrated singularities in the DE (3.28) themselves at x = 0, which
is precisely the lower integration boundary of the GPLs. Simply put the integrated singular
terms in (3.28) correctly describe the behaviour of SGm+1 as x → 0 and thus the constant
C({sij}, ε) vanishes. Due to this fact, the SDE approach is well suited for directly and efficiently
expressing the MI in terms of GPLs without the need for an independent evaluation of the MI
at the boundary x = 0.

For the original MI Gm+1, the resummed part is defined as follows:

Gm+1,res =
1

S

∑
i

xβiε

βiε
Ĩ

(i)
sin({sij}, ε) (3.29)

The integrand of the remaining integral in (3.28) is regular at the boundary x = 0. After
expanding in ε and performing partial fraction decomposition in x, the integral is directly
expressible in term of GPLs. Note that the integration boundary in (3.28) was chosen to be
x = 0 precisely in order to directly express the integrals in terms of GPLs. If another boundary
point x = x0 is chosen, the integrals in (3.28) result in slightly more complicated expressions
made of differences of GPLs. The SDE approach therefore directly expresses the MI in terms
of a well defined functional basis of GPLs, independently of the number of kinematic scales
involved.

When the DE are coupled, the homogeneous factor H is a matrix and Gm+1 is a vector in
(3.25). For all cases considered so far, proceeding in the same way as in the uncoupled case,
the diagonal elements are used to determine the integrating factor matrix, namely the diagonal
matrix SD satisfying ∂xSD = −SDHD, where HD is the diagonal part of H.

The homogeneous matrix H̃ ≡ SD
(
H−HD

)
S−1
D of the reduced system of DE is then strictly

triangular matrix at order ε0 and the system becomes effectively uncoupled, and may be easily
integrated order by order in ε. Furthermore, singularities at x = 0 in the inhomogeneous terms
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are integrated to determine the re-summed part of the solutions in exactly the same way as in
the uncoupled DE case.

In order to illustrate the above procedure for couples DE, let us consider the following
example. Let us assume that we have a system of two coupled DE for the vector Gm+i =(
Gm+1, Gm+2

)
,

∂xGm+i = H({sij}, ε;x)Gm+i +
m∑

m′≥m0

R({sij}, ε;x)Gm′

with the matrix H being H = HD+HND, where HD and HND are its diagonal and non-diagonal
parts respectively. The integrating factor SD is defined through HD as follows

∂xSD = −SDHD

Introducing SD in the DE results to

∂x
(
SDGm+i

)
= ∂x

(
SD
)
Gm+i + SD

(
∂xGm+i

)
= −SDHDGm+i + SD

(
HGm+i +

m∑
m′≥m0

R Gm′
)

= −SDHDGm+i + SDHGm+i + SD
m∑

m′≥m0

R Gm′

= SD
(
H−HD

)
Gm+i + SD

m∑
m′≥m0

R Gm′

=

[
SD
(
H−HD

)
S−1
D

](
SDGm+i

)
+ SD

m∑
m′≥m0

R Gm′

= H̃
(
SDGm+i

)
+ SD

m∑
m′≥m0

R Gm′

as expected from the above discussion.

3.4 Expansion by regions
The main method for obtaining boundary terms for the solution of DE that we will use is that
of expansion by regions [48]–[51]. Here we give a brief description of the method, which can be
used in its own right to compute Feynman integrals.

FI can be considered as functions depending on kinematic invariants and masses. If these
variables differ in scale, then one can expand a FI in rations of large and small parameters. As
a result, the integral is written as a series of simpler quantities than the original integral itself
and it can be substituted by a sufficiently large number of terms of such an expansion. This is
the essence of the method known as expansion by regions.

In the momentum representation of loop integrals the main steps of this method are:

1. Divide the space of the loop momenta into various regions and, in every region, expand
the integrand in a Taylor series with respect to the parameters that are considered small
there.

2. Integrate the integrand, expanded in the appropriate way in every region, over the whole
integration domain of the loop momenta.
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3. Set to zero any scaleless integral.

A geometric approach of this method was first introduced in [52]. In general it is more con-
venient to reveal all relevant regions and construct an algorithmic approach when one applies
expansion by regions to the Feynman parameter representation (2.11) of a FI. Public imple-
mentations are available in [51], [53].

3.5 Computational framework
So far we have introduced the method of DE for the analytic computation of MI. In addition
we saw that by using a pure basis of MI we can obtain a canonical DE whose form allows for a
straightforward solution in terms of GPLs, a special class of iterated integrals, in the case where
the alphabet of the canonical DE can be written in terms of rational functions of the kinematic
invariants. We have also introduced the SDE approach which greatly simplifies the derivation
of the DE satisfied by the chosen basis of MI. Also we saw that the method of expansion by
regions can be utilised to provide boundary terms for the SDE approach in a straightforward
manner.

In this section we will combine all the ideas and methods mentioned above and formulate a
framework which will allow us to solve several multiscale-multiloop integral families, the results
of which are presented in the second part of this thesis.

3.5.1 Simplified differential equations in canonical form

We will start with the assumption that we already have obtained a pure basis of MI. Then we
proceed by introducing an x-parametrization and using the SDE approach we derive a canonical
DE with respect to x. In the case where all letters of the alphabet are rational in x the canonical
DE will be of the form

∂xg = ε

(
lmax∑
i=1

Mi

x− li

)
g (3.30)

where g is the pure basis, Mi are the residue matrices corresponding to each letter li and lmax
is the length of the alphabet. Notice here that we follow a definition for the letters which
is different than the standard notation. As we saw previously, the d log form of a system of
canonical DE is given as

dg = ε
∑
a

Bad log
(
Wa(sij)

)
g = εB̃g

where the letters Wa(sij) are rational or algebraic functions of the independent kinematic vari-
ables. The standard d log form is equivalent to (3.30) for Wa = x − la. The kinematic depen-
dence is entirely contained within the letters li, leaving the residue matrices Mi to be solely
constructed by rational numbers.

3.5.2 Boundary terms

In order to solve (3.30) we need to provide boundary terms. As discussed earlier, in the SDE
approach we choose as boundary terms the asymptotic behaviour of the MI as x→ 0 in order
to obtain a straightforward representation of the solution in terms of GPLs. Since we are using
a pure basis of MI, we need to obtain the x→ 0 limit of each basis element.

To do so, we first exploit the canonical DE, which in the limit x→ 0 takes the form

∂xg = ε
1

x
M1 g0 +O(x0) (3.31)
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where M1 is the residue matrix for the letter l1 = 0. The solution of (3.31) is of the form

g0 = S eεD log(x) S−1 b (3.32)

where the matrices S, D are obtained through the Jordan decomposition of M1,

M1 = SDS−1 (3.33)

and b =
∑k

i=0 εi b
(i)
0 are the boundary constants we need to compute. With this information

at hand, we define the resummation matrix R as follows

R = SeεD log(x)S−1. (3.34)

The naming resummation matrix for R comes from the fact that when acting on b, it should
correctly describe the log(x) dependence of each basis element.

On the other hand, through IBP reduction, the elements of the canonical basis can be
related to a set of FI G,

g = TG. (3.35)

Furthermore using the expansion by regions method as implemented in the asy code which is
shipped along with FIESTA4, we can obtain information for the asymptotic behaviour of the
Feynman integrals in terms of which we express the pure basis of Master integrals (3.35) in the
limit x→ 0,

Gi =
x→0

∑
j

xbj+ajεG
(bj+ajε)
i (3.36)

where aj and bj are integers and Gi are the individual members of the basis G of Feynman
integrals in (3.35). Combining equations (3.32) and (3.35) yields

Rb = lim
x→0

TG
∣∣∣
O(x0+ajε)

(3.37)

where the right-hand side implies that, apart from the terms xaiε coming from (3.36), we
expand around x = 0, keeping only terms of order x0. Equation (3.37) allows us to determine
all boundary constants b.

More specifically, in the case where D in (3.33) is non-diagonal, we will get logarithmic terms
in x on the left-hand side of (3.37), in the form xajε log(x). Since no such terms appear on the
right-hand side of (3.37), a set of linear relations between elements of the array b are obtained
by setting the coefficient of xajε log(x) terms to zero. Furthermore, powers of xajε that appear
only on the left-hand side can also yield linear relations among elements of b, by setting their
coefficients to zero. We shall call these two sets of relations pure, since they are linear relations
among elements of b with rational numbers as coefficients. These pure relations account for the
determination of a significant part of the two components of the boundary array. Finally for the
undetermined elements of b, several regions usually need to be calculated coming from (3.36),
although as we will see later, in certain cases the pure relations can be enough to determine all
boundary constants. The b(i)

0 terms, with i indicating the corresponding weight, consist of Zeta
functions ζ(i), logarithms and GPLs of weight i which have as arguments rational functions of
the underline kinematic variables but not of x.

The above described method is general and straightforward to apply in all cases where a pure
basis is obtained. In practice however, one usually exploits known results for integral sectors
which have already been computed before and are available in the literature. The solution of
(3.30) after determining all boundary terms can be written up to weight four in the following
compact form,

g = ε0b(0)
0 + ε

(∑
GaMab

(0)
0 + b(1)

0

)
28



+ ε2
(∑

GabMaMbb
(0)
0 +

∑
GaMab

(1)
0 + b(2)

0

)
+ ε3

(∑
GabcMaMbMcb

(0)
0 +

∑
GabMaMbb

(1)
0 +

∑
GaMab

(2)
0 + b(3)

0

)
+ ε4

(∑
GabcdMaMbMcMdb

(0)
0 +

∑
GabcMaMbMcb

(1)
0

+
∑
GabMaMbb

(2)
0 +

∑
GaMab

(3)
0 + b(4)

0

)
(3.38)

were Gab... := G(la, lb, . . . ;x) represent the GPLs. Our results are presented in such a way that
each coefficient of εk has transcendental weight k. If we assign weight −1 to ε, then (3.38)
has uniform weight zero. Extending this solution to higher weights is trivial, assuming one has
obtained the relevant boundary terms up to the desired weight.

3.5.3 Scale reduction

As it was noted previously, the introduction of the x−parameterisation effectively captures the
off-shellness of one external particle. By taking the limit x → 1 we can obtain the solution to
a family of FI with one scale less.

Assuming that we have an integral family with m external massive particles whose solution
we have expressed in the form of (3.38), we can obtain the solution for a family with m − 1
external masses through the x→ 1 limit of the former.

Firstly, we will exploit the shuffle properties of GPLs to write solution (3.38) as an expansion
in terms of log(1− x) as follows

g =
∑
n≥0

εn
n∑
i=0

1

i!
c(n)
i logi(1− x) (3.39)

with all c(n)
i being finite in the limit x→ 1. The next step is to define the regular part of (3.39)

at x = 1
greg =

∑
n≥0

εnc(n)
0 (3.40)

and after setting x = 1 explicitly in (3.40) we may define the truncated part of (3.39),

gtrunc = greg(x = 1) (3.41)

Having done that, we utilise the residue matrix that corresponds to the letter {1}, M2, and
define the resummation matrix R̃ as follows

R̃ = S̃eεD̃ log(1−x)S̃
−1

(3.42)

were S̃, D̃ are constructed through the Jordan decomposition of M2, i.e. M2 = S̃D̃S̃
−1
. The

resummation matrix R̃ has terms of (1 − x)aiε, with ai being the eigenvalues of M2. After
setting all terms (1− x)aiε equal to zero, we define the purely numerical matrix R̃0. Obtaining
the x→ 1 limit of (3.38) amounts to acting with R̃0 on (3.41)

gx→1 = R̃0gtrunc (3.43)

Up to now we have calculated the x→ 1 limit of the basis of MI g which fully characterises
the integral family with m external massive legs. This special limit however should give us the
solution for the integral family with m − 1 external masses. In general when considering an
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integral family with m− 1 scales we anticipate that it will have fewer MI than the one with m
scales. Therefore, if the integral family with m external masses, denoted as gm, has Nm MI,
then gm−1 is expected to have Nm−1 MI, with Nm > Nm−1.

In order to determine which of the Nm integrals are the MI for the gm−1 family, i.e. which
of the Nm are linearly independent in the x→ 1 limit, there are two ways to proceed:

1. Use IBP identities for the gm−1 integral family.

2. Consider the properties of R̃0 and study its action on the gm basis at its x→ 1 limit.

Whereas an IBP reduction is a more straightforward path, it is interesting to study the R̃0

matrix in more detail. It turns out that R̃0 is an idempotent matrix. Idempotent matrices have
the following properties, all of which are satisfied by R̃0:

1. X = X2

2. singular except the identity matrix I

3. eigenvalues of X = 0, 1

4. Trace
(
X
)

= Rank
(
X
)

5. I−X also idempotent

Since R̃0 = R̃
2

0, acting with R̃0 on gx→1 yields

R̃0gx→1 = R̃
2

0gtrunc
= R̃0gtrunc
= gx→1 (3.44)

This relation, solved as an equation for each row, produces relations that allow us to determine
linearly independent basis elements for the gm−1 family. It should be noted that the outcome
of this method is influenced by the x-parametrization that one uses regarding the number of
linearly independent integrals that one finds. So far we have used two different parametrizations
in all published results, with one x and with two x’s1. Our results so far indicate that the
choice of two x’s is the most optimal for the application of this method, since after defining the
resummation matrix and obtaining its purely numerical form, (3.44) yields a number of linearly
independent basis elements exactly equal to the number of MI of the problem with one scale
less, i.e. we do not need to perform an IBP reduction to determine the new basis elements.
This can also be seen by computing the rank of the numerical resummation matrix. Exploiting
this fact drastically simplifies the process of extracting a canonical basis for the problem with
one scale less, however it is still yet not clear why the two parametrizations yield so different
results.

1By one and two x’s we mean that in the first case, only one external momentum is parametrized as xpi,
whereas in the latter case we have two external momenta parametrized as xpi.
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Chapter 4

A pedagogical example: two-loop planar
master integrals

In order to showcase the applicability of the computational framework developed in chapter 4
and clarify all arguments made there, we revisit the calculation of the planar family of two-loop
MI with one off-shell leg. This integral family was solved two decades ago [54] and it was among
the first results which exemplified the power of the DE method for multiloop calculations.

4.1 Canonical basis and DE
Our first task is to define the integral family which we will study. For the doublebox with one
massive leg we will use the following configuration:

Ga1,...,a9 = e2γEε

∫
ddk1

iπd/2
ddk2

iπd/2
1

k2a1
1 (k1 + q1)2a2(k1 + q12)2a3(k1 + q123)2a4

× 1

k2a5
2 (k2 − q1)2a6(k2 − q12)2a7(k2 − q123)2a8(k1 + k2)2a9

(4.1)

with the kinematics being
S ≡ q2

12, T ≡ q2
23, m2 ≡ q2

2 (4.2)

We use the abbreviations qij = qi + qj and qijk = qi + qj + qk and similarly for p later. The
top-sector diagram is shown in figure 4.1.

q1

q2 q3

−q123

Figure 4.1: The doublebox graph with one massive leg. All momenta are taken to be incoming.
The double line represents the massive particle.
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We choose the following x-parametrisation for this family:

q1 = xp1, q2 = p12 − xp1, q3 = p3, q4 = −p123, p2
i = 0,

∑
i

pi = 0,

s12 ≡ p2
12 = 2p1p2, s23 ≡ p2

23 = 2p2p3, S = s12, T = s23x, m2 = s12(1− x) (4.3)

With this x-parametrisation the doublebox graph is depicted in figure 4.2 and (4.1) becomes

Ga1,...,a9 = e2γEε

∫
ddk1

iπd/2
ddk2

iπd/2
1

k2a1
1 (k1 + xp1)2a2(k1 + p12)2a3(k1 + p123)2a4

× 1

k2a5
2 (k2 − xp1)2a6(k2 − p12)2a7(k2 − p123)2a8(k1 + k2)2a9

(4.4)

xp1

p12 − xp1 p3

−p123

Figure 4.2: The doublebox graph with one massive leg in the SDE parametrisation.

Now that we have defined our integral family we use IBP identities, implemented in auto-
mated tools like KIRA and FIRE, to identify a pre-canonical basis G of MI. Doing so yields 18
linearly independent MI for this family:

G1 =
{
G0,0,1,0,1,0,0,0,1, G0,1,0,0,0,0,1,0,1, G0,1,0,0,0,0,0,1,1, G0,1,1,0,1,0,0,0,1, G1,0,1,0,0,0,0,1,1,

G0,1,1,0,0,0,0,1,1, G0,1,0,0,1,0,1,0,1, G1,0,1,0,1,0,1,0,0, G0,1,1,0,1,0,1,0,0, G1,1,1,0,0,0,0,1,1,

G1,1,0,0,0,0,1,1,1, G0,1,1,0,1,0,0,1,2, G0,1,1,0,1,0,0,1,1, G0,1,1,0,1,0,1,0,1, G0,1,0,0,1,0,1,1,1,

G0,1,1,0,1,0,1,1,1, G1,1,1,0,1,0,1,1,1, G1,1,1,−1,1,0,1,1,1

}
(4.5)

The next step is to identify a canonical basis by studying the leading singularity of the pre-
canonical MI. This task can be performed by studying the maximal cuts of these integrals in
their Baikov representation. Looking for integrals with constant leading singularity yields the
following basis:

g1 = −s12ε
2G0,0,2,0,1,0,0,0,2 (4.6)

g2 = −s12(x− 1)ε2G0,1,0,0,0,0,2,0,2 (4.7)
g3 = −s23xε

2G0,1,0,0,0,0,0,2,2 (4.8)
g4 = −s12xε

3G0,1,1,0,1,0,0,0,2 (4.9)
g5 = −s12ε

3G1,0,1,0,0,0,0,1,2 (4.10)
g6 = ε3(−s12(x− 1)− s23x)G0,1,1,0,0,0,0,1,2 (4.11)
g7 = −s12xε

3G0,1,0,0,1,0,1,0,2 (4.12)
g8 = s2

12ε
2G2,0,1,0,2,0,1,0,0 (4.13)
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g9 = s2
12(x− 1)ε2G0,2,1,0,2,0,1,0,0 (4.14)

g10 = s12s23xε
3G1,1,1,0,0,0,0,1,2 (4.15)

g11 = xε4(−s12 − s23)G1,1,0,0,0,0,1,1,1 (4.16)
g12 = s12s23xε

3G0,1,1,0,1,0,0,1,2 (4.17)
g13 = ε4(−s12 − s23x)G0,1,1,0,1,0,0,1,1 (4.18)
g14 = −s12xε

4G0,1,1,0,1,0,1,0,1 (4.19)
g15 = s12s23xε

3G0,1,0,0,1,0,1,1,2 (4.20)
g16 = s12ε

4(s12(x− 1) + s23x)G0,1,1,0,1,0,1,1,1 (4.21)
g17 = −s2

12s23xε
4G1,1,1,0,1,0,1,1,1 (4.22)

g18 = s2
12xε

4G1,1,1,−1,1,0,1,1,1 (4.23)

which is expressed in terms of a different set of FI than the pre-canonical ones in (4.5), namely:

G2 =
{
G0,0,2,0,1,0,0,0,2, G0,1,0,0,0,0,2,0,2, G0,1,0,0,0,0,0,2,2, G0,1,1,0,1,0,0,0,2, G1,0,1,0,0,0,0,1,2,

G0,1,1,0,0,0,0,1,2, G0,1,0,0,1,0,1,0,2, G2,0,1,0,2,0,1,0,0, G0,2,1,0,2,0,1,0,0, G1,1,1,0,0,0,0,1,2,

G1,1,0,0,0,0,1,1,1, G0,1,1,0,1,0,0,1,2, G0,1,1,0,1,0,0,1,1, G0,1,1,0,1,0,1,0,1, G0,1,0,0,1,0,1,1,2,

G0,1,1,0,1,0,1,1,1, G1,1,1,0,1,0,1,1,1, G1,1,1,−1,1,0,1,1,1

}
(4.24)

The two sets of integrals are connected of course through IBP identities.
The ultimate test that a basis of MI is indeed canonical is if it satisfies a canonical DE. We

proceed therefore by differentiating (4.6) with respect to x, which yields,

∂xg = ε

(
4∑

a=1

Ma

(x− la)

)
g (4.25)

with g being the array of the 18 canonical basis elements in (4.6), Ma are the purely numerical
residue matrices and x− la the letters of the alphabet, with la = {0, 1, s12/(s12 +s23),−s23/s12}.

M1 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −3

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−3

4
0 −3

4
−3 0 3 0 0 0 0 0 −1

2
−3 0 0 0 0 0

−5
8

0 3
8
−3

2
0 5

2
0 0 0 0 0 1

4
−5

2
0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
0 0 −3

2
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0

3
4
−3

2
−3

4
3 0 −3 −3 0 −2 0 0 −1

2
−3 0 1 2 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 −2 0 0 0
0 0 0 2 0 0 −1 0 0 0 0 0 0 2 0 0 0 0



(4.26)
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M2 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1

2
0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1

2
0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 1
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 3

2
0 0 3 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3
4

0 3
4

3 0 3 0 0 0 0 0 1
2

3 0 0 0 0 0
1
8

0 1
8
−1

2
0 −1

2
0 0 0 0 0 −1

4
−3

2
0 0 0 0 0

1
2
−1

2
0 2 0 0 −2 0 −1 0 0 0 0 −2 0 0 0 0

0 −3
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−3

8
3
4

3
8
−1

2
0 3

2
1 0 1 0 0 3

4
3
2

1 −1 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 2 2 0 0
3
8
−3

4
−3

8
1
2

0 −3
2
−1 0 −1 0 0 1

4
−3

2
−1 −1 −1 0 0


(4.27)

M3 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0
0 −1

2
−1

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −6 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 3

2
3
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



(4.28)
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M4 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



(4.29)

4.2 Boundary terms and solution
In order to find boundary terms for solving (4.25) we proceed by computing the resummation
matrix R, as discussed in (3.31)-(3.34). The non-zero parts of the matrix read,

R1,1 = 1, R2,2 = 1, R3,3 = x−2ε, R4,4 = x−ε, R5,5 = 1, R6,3 =
1

4
− x−2ε

4
, R6,6 = 1, R7,7 = x−ε,

R8,8 = 1, R9,9 = 1, R10,3 =
3

4

(
x−2ε − 1

)
, R10,10 = 1, R11,11 = 1, R12,1 = −3

4
x−2ε (xε − 1) ,

R12,3 = −3

4
x−2ε (xε − 1) , R12,4 = −3x−2ε (xε − 1) , R12,6 = 3x−2ε (xε − 1) ,

R12,12 =
1

2
x−2ε (3xε − 1) , R12,13 = −3x−2ε (xε − 1) , R13,1 = −1

8
x−2ε

(
xε + 2x2ε − 3

)
,

R13,3 =
1

8
x−2ε (xε − 1) (2xε + 1) , R13,4 = −3

2
x−2ε (xε − 1) , R13,6 =

1

2
(xε − 3)x−2ε + 1,

R13,12 =
1

4
x−2ε (xε − 1) , R13,13 = −1

2
x−2ε (xε − 3) , R14,14 = x2ε, R15,3 = −3

2
x−2ε (xε − 1) ,

R15,15 = x−ε, R16,1 =
1

8
x−2ε

((
−6xε + 5x3ε − 2

)
xε + 3

)
, R16,2 = −3

4

(
x2ε − 1

)
,

R16,3 =
1

8
x−2ε

(
xε
(
6xε − 5x3ε + 2

)
− 3
)
, R16,4 =

3

2
x−2ε

(
−2xε + x4ε + 1

)
,

R16,6 = 3− 1

2
x−2ε

(
−2xε + 5x4ε + 3

)
, R16,7 = x−ε − x2ε, R16,9 = 1− x2ε,

R16,12 = −1

4
x−2ε

(
−2xε + x4ε + 1

)
, R16,13 = −1

2
x−2ε

(
2xε + x4ε − 3

)
, R16,15 =

1

3
x−ε

(
x3ε − 1

)
,

R16,16 = x2ε, R17,1 = −3

8
x−2ε (xε − 1)2 , R17,3 =

9

8
x−2ε (xε − 1)2 , R17,4 = −3

2
x−2ε (xε − 1)2 ,

R17,6 =
3

2
x−2ε (xε − 1)2 , R17,12 =

1

4

(
x−2ε − 6x−ε + 5

)
, R17,13 = −3

2
x−2ε (xε − 1)2 ,

R17,15 = 2x−ε − 2, R17,17 = 1, R18,4 = 2− 2x−ε, R18,7 = x−ε − 1, R18,14 = x2ε − 1, R18,18 = 1
(4.30)
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Having the R matrix at hand, we can construct the left-hand side of (3.37). From the definition
of the canonical basis we can extract the T matrix and using expansion-by-regions construct
the right-hand side of (3.37). As discussed there, this equation yields two sets of relations. The
so-called pure relations are,

b4 = 0, b7 = 0, b10 =
3b3

4
, b11 = 0, b13 = −b1

4
− b3

4
+ b6 +

b12

2
, b14 = 0, b15 =

3b3

2
,

b16 = −3b1

4
+

3b2

4
+ 3b6 + b9 +

b12

2
, b17 =

3b3

2
− b12

2
, b18 = 0 (4.31)

These results leave the following boundary terms undetermined,

{b1, b2, b3, b5, b6, b8, b9, b12} (4.32)

However most of them involve integrals which are already computed using other methods, e.g.
direct integration in the Feynman parameter representation, and are readily available in the
literature, namely

b1 = −e
2γε(3ε− 2)(3ε− 1)(−s12)−2εΓ(1− ε)3Γ(2ε+ 1)

Γ(3− 3ε)
(4.33)

b2 = −s12e
2γε(3ε− 2)(3ε− 1)(−s12)−2ε−1Γ(1− ε)3Γ(2ε+ 1)

Γ(3− 3ε)
(4.34)

b3 = −e
2γε(3ε− 2)(3ε− 1)(−s23)−2εΓ(1− ε)3Γ(2ε+ 1)

Γ(3− 3ε)
(4.35)

b5 = −e
2γε(3ε− 1)(−s12)−2εΓ(1− 2ε)Γ(1− ε)2Γ(ε+ 1)Γ(2ε+ 1)

4Γ(2− 3ε)
(4.36)

b8 =
s2

12e
2γε(−s12)−2(ε+1)Γ(1− ε)4Γ(ε+ 1)2

Γ(1− 2ε)2
(4.37)

b9 = −s
2
12e

2γε(−s12)−2(ε+1)Γ(1− ε)4Γ(ε+ 1)2

Γ(1− 2ε)2
(4.38)

This leaves only two boundary terms undetermined, b6 and b12. From the second set of relations
produced by (3.37) we have

b6 = s12ε
3G0

0,1,1,0,0,0,0,1,2 +
1

4
A(3)s23ε

2 (4.39)

b12 = −1

2
s12s23ε

3G−2ε−1
0,1,1,0,1,0,0,1,2 − 3s12ε

4G−2ε
0,1,1,0,1,0,0,1,1 − 3s12ε

3G−2ε
0,1,1,0,0,0,0,1,2

− 3

4
A(3)s23ε

2 (4.40)

where A(3) is given by

A(3) =
e2γε(3ε− 2)(3ε− 1) (−s23) −2εΓ(1− ε)3Γ(2ε+ 1)

s23ε2Γ(3− 3ε)
(4.41)

This means that we have to compute the following four regions{
G0

0,1,1,0,0,0,0,1,2, G
−2ε
0,1,1,0,0,0,0,1,2, G

−2ε
0,1,1,0,1,0,0,1,1, G

−2ε−1
0,1,1,0,1,0,0,1,2

}
(4.42)

These are easily computed in the Feynman parameter representation and their result reads

G0
0,1,1,0,0,0,0,1,2 =

π2e2γε (−s12) −2ε csc(πε) csc(2πε)Γ(−ε)
2s12Γ(1− 3ε)

(4.43)
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G−2ε
0,1,1,0,0,0,0,1,2 =

e2γε (−s23) −2εΓ(−ε)3Γ(2ε)

6s12Γ(−3ε)
(4.44)

G−2ε
0,1,1,0,1,0,0,1,1 =

e2γε (−s23) −2εΓ(−ε)3Γ(2ε+ 1) 3F2(1, 1, 1− ε; 2− 2ε, 2ε+ 1; 1)

4s12(2ε− 1)Γ(1− 3ε)

− π2e2γεε 2F1(1− 3ε, 1− 2ε; 2− 4ε; 1) (−s23) −2ε csc2(2πε)Γ(−ε)2

s12Γ(2− 4ε)
(4.45)

G−2ε−1
0,1,1,0,1,0,0,1,2 =

3π5/222εe2γε (−s23) −2ε csc(πε) csc(2πε)Γ(−ε) 3F2(1,−2ε,−ε; 1− 2ε, ε+ 1; 1)

s12s23Γ(1− 3ε)Γ
(

1
2
− ε
)

Γ(ε+ 1)

+
2π2e2γε (−s23) −2ε csc(πε) csc(2πε)Γ(2ε)

s12s23

(4.46)

We now have determined all necessary boundary terms. A nice by-product in this case is
that all boundary terms are in closed form in ε. This allows us to obtain their expansion in ε
up to any desired order. The hyper-geometric functions present in the boundary terms can be
expanded to any order in ε using the HypExp [55], [56] package.

In general, for more complicated integral families obtaining all boundary terms in closed
form is a non-trivial task due to the large number and complexity of the regions that are
required to be computed. In those cases we will use results which are already available in the
literature.

For the problem at hand, we can readily obtain an expansion in ε up to order O(ε4), which
allows us to obtain solutions of (4.25) up to weight four. The full result of basis element g17

which involves the top-sector scalar integral reads,1

g17 =− 1 + ε

(
2Gl1 − 2Gl2 + 2L2

)
+ ε2

(
− 4Gl1,l1 + Gl1,l2 + 3Gl2,l1 + Gl3,l1 − Gl3,l2 − 4L2Gl1 + 3L2Gl2 + L2Gl3

+ L1Gl2 − L1Gl3 − 2L2
2 +

π2

12

)
+ ε3

(
8Gl1,l1,l1 − 2Gl1,l1,l2 + Gl1,l2,l1 − 4Gl1,l2,l2 − 3Gl1,l3,l1 + 3Gl1,l3,l2 − 6Gl2,l1,l1

+ 2Gl2,l1,l2 − 3Gl2,l2,l1 + 4Gl2,l2,l2 + 5Gl2,l3,l1 − 5Gl2,l3,l2 − 2Gl3,l1,l1 + 2Gl3,l2,l1
− 2Gl3,l3,l1 + 2Gl3,l3,l2 + 8L2Gl1,l1 + L2Gl1,l2 − 3L2Gl1,l3 − 6L2Gl2,l1 − 3L2Gl2,l2
+ 5L2Gl2,l3 − 2L2Gl3,l1 + 2L2Gl3,l2 − 2L2Gl3,l3 − 3L1Gl1,l2 + 3L1Gl1,l3 + 3L1Gl2,l2
− 5L1Gl2,l3 + 2L1Gl3,l3 −

1

6
π2Gl1 −

1

6
π2Gl2 +

1

3
π2Gl3 + 4L2

2Gl1 − 3L2
2Gl2

− L2
2Gl3 − L2

1Gl2 + L2
1Gl3 +

4L3
2

3
− π2L2

6
+

43ζ(3)

6

)
+ ε4

(
− 2L4

2

3
− 8

3
Gl1L3

2 + 2Gl2L3
2 +

2

3
Gl3L3

2 − 8Gl1,l1L2
2 − Gl1,l2L2

2 + 3Gl1,l3L2
2

+ 6Gl2,l1L2
2 + 3Gl2,l2L2

2 − 5Gl2,l3L2
2 + 2Gl3,l1L2

2 − 2Gl3,l2L2
2 + 2Gl3,l3L2

2 +
1

6
π2L2

2

+
1

3
π2Gl1L2 −

1

2
π2Gl2L2 +

1

6
π2Gl3L2 − 16Gl1,l1,l1L2 − 2Gl1,l1,l2L2 + 6Gl1,l1,l3L2

− 2Gl1,l2,l1L2 − Gl1,l2,l2L2 + 3Gl1,l2,l3L2 + 6Gl1,l3,l1L2 + 3Gl1,l3,l2L2 − 3Gl1,l3,l3L2

+ 12Gl2,l1,l1L2 − 2Gl2,l1,l3L2 + 6Gl2,l2,l1L2 + 3Gl2,l2,l2L2 − 5Gl2,l2,l3L2 − 10Gl2,l3,l1L2

1We use the abbreviations L1 = log(−s12), L2 = log(−s23), Gla,lb,... := G(la, lb, . . . ;x).
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+ Gl2,l3,l2L2 − Gl2,l3,l3L2 + 4Gl3,l1,l1L2 + 2Gl3,l1,l2L2 − 4Gl3,l1,l3L2 − 4Gl3,l2,l1L2

− 2Gl3,l2,l2L2 + 2Gl3,l2,l3L2 + 4Gl3,l3,l1L2 − 4Gl3,l3,l2L2 + 4Gl3,l3,l3L2 −
43ζ(3)L2

3

+
2

3
L3

1Gl2 +
5

6
π2L1Gl2 −

2

3
L3

1Gl3 −
5

6
π2L1Gl3 +

1

3
π2Gl1,l1 + 3L2

1Gl1,l2 −
1

3
π2Gl1,l2

− 3L2
1Gl1,l3 +

1

2
π2Gl1,l3 −

1

2
π2Gl2,l1 − 3L2

1Gl2,l2 +
1

2
π2Gl2,l2 + 5L2

1Gl2,l3 +
1

6
π2Gl2,l3

+
1

6
π2Gl3,l1 −

1

6
π2Gl3,l2 − 2L2

1Gl3,l3 −
2

3
π2Gl3,l3 + 6L1Gl1,l1,l2 − 6L1Gl1,l1,l3 + 9L1Gl1,l2,l2

− 3L1Gl1,l2,l3 − 9L1Gl1,l3,l2 + 3L1Gl1,l3,l3 − 4L1Gl2,l1,l2 + 2L1Gl2,l1,l3 − 11L1Gl2,l2,l2
+ 5L1Gl2,l2,l3 + 9L1Gl2,l3,l2 + L1Gl2,l3,l3 − 2L1Gl3,l1,l2 + 4L1Gl3,l1,l3 + 2L1Gl3,l2,l2
− 2L1Gl3,l2,l3 − 4L1Gl3,l3,l3 − 16Gl1,l1,l1,l1 + 4Gl1,l1,l1,l2 − 2Gl1,l1,l2,l1 + 5Gl1,l1,l2,l2
+ 6Gl1,l1,l3,l1 − 6Gl1,l1,l3,l2 − 2Gl1,l2,l1,l1 − Gl1,l2,l1,l2 − Gl1,l2,l2,l1 + 10Gl1,l2,l2,l2 + 3Gl1,l2,l3,l1
− 3Gl1,l2,l3,l2 + 6Gl1,l3,l1,l1 + 3Gl1,l3,l2,l1 − 9Gl1,l3,l2,l2 − 3Gl1,l3,l3,l1 + 3Gl1,l3,l3,l2 + 12Gl2,l1,l1,l1
− 2Gl2,l1,l1,l2 − 3Gl2,l1,l2,l2 − 2Gl2,l1,l3,l1 + 2Gl2,l1,l3,l2 + 6Gl2,l2,l1,l1 − Gl2,l2,l1,l2 + 3Gl2,l2,l2,l1
− 12Gl2,l2,l2,l2 − 5Gl2,l2,l3,l1 + 5Gl2,l2,l3,l2 − 10Gl2,l3,l1,l1 + Gl2,l3,l2,l1 + 9Gl2,l3,l2,l2 − Gl2,l3,l3,l1
+ Gl2,l3,l3,l2 + 4Gl3,l1,l1,l1 − 2Gl3,l1,l1,l2 + 2Gl3,l1,l2,l1 − 2Gl3,l1,l2,l2 − 4Gl3,l1,l3,l1 + 4Gl3,l1,l3,l2
− 4Gl3,l2,l1,l1 + 2Gl3,l2,l1,l2 − 2Gl3,l2,l2,l1 + 2Gl3,l2,l2,l2 + 2Gl3,l2,l3,l1 − 2Gl3,l2,l3,l2 + 4Gl3,l3,l1,l1
− 4Gl3,l3,l2,l1 + 4Gl3,l3,l3,l1 − 4Gl3,l3,l3,l2 −

43Gl1ζ(3)

3
+

19Gl2ζ(3)

3
+ 8Gl3ζ(3) +

π4

180

)
(4.47)

4.3 From massive to massless
Taking the x→ 1 limit in the case of the doublebox family with one massive leg is the only way
to get a solution for the fully massless doublebox family using the computational framework
that we have developed so far. This serves not only as way of obtaining a solution for a separate
integral family but also as a non-trivial cross-check of our full solution, in case the massless
family is known. For the case at hand, the massless doublebox has also been solved a long time
ago, and a canonical basis was presented for it in [42].

To get the x→ 1 limit, we follow at first the steps outlined in eqs. (3.39)-(3.42) in order to
compute the truncated part of our solution at x = 1 and the numerical resummation matrix
R̃0.
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R̃0 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1
4

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 3

2
0 0 3 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
3
4

0 3
4

3 0 3 0 0 0 0 0 3
2

3 0 0 0 0 0
1
8

0 1
8
−1

2
0 −1

2
0 0 0 0 0 −1

4
−1

2
0 0 0 0 0

−1
4
−1

4
0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

0 −3
4

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
3
8

3
4

3
8

3
2

0 3
2

0 0 0 0 0 3
4

3
2

0 −1 0 0 0
−3

4
−3

4
0 −2 0 0 1 0 1 0 0 −1 0 1 2 2 1 0

3
8

0 −3
8

1
2

0 −3
2
−1 0 −1 0 0 1

4
−3

2
−1 −1 −1 0 1


(4.48)

Then, according to (3.43), the x → 1 limit for the doublebox family with one massive leg is
the result of R̃0 acting on the truncated part of the solution g at x = 1. As we have already
discussed, this special limit allows us to obtain the massless doublebox family. In order to get
the canonical basis for the massless family from the massive one, we exploit the fact that R̃0 is
an idempotent matrix, and through (3.44) we obtain the following relations

g̃2 = 0 (4.49)

g̃4 = − g̃1

2
(4.50)

g̃6 = − g̃3

2
(4.51)

g̃9 = 0 (4.52)

g̃12 =
3

2
(g̃1 + g̃3 − 4g̃13) (4.53)

g̃14 =
1

4
(−g̃1 − 4g̃7) (4.54)

g̃16 =
1

4
(3g̃1 + 3g̃3 − 12g̃13 − 4g̃15) (4.55)

where we denote as g̃i the x → 1 limit of the i-th basis element. This operation leaves 11
integrals that can form the basis of the massless doublebox, namely

{g̃1, g̃3, g̃5, g̃7, g̃8, g̃10, g̃11, g̃13, g̃15, g̃17, g̃18} (4.56)

However as is it known, or as one can easily find out using KIRA[29] or FIRE[28], the massless
doublebox family has 8 MI. In this particular case, the resulting formulas are compact enough
and one can easily see that the following identities hold

g̃7 = g̃5 (4.57)
g̃13 = g̃11 (4.58)
g̃15 = g̃10 (4.59)
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This leaves exactly 8 linearly independent MI that form the basis for the massless doublebox,
namely

s12

(
−ε2
)
G0,0,2,0,1,0,0,0,2 (4.60)

s23

(
−ε2
)
G0,1,0,0,0,0,0,2,2 (4.61)

s12

(
−ε3
)
G1,0,1,0,0,0,0,1,2 (4.62)

s2
12ε

2G2,0,1,0,2,0,1,0,0 (4.63)
s12s23ε

3G1,1,1,0,0,0,0,1,2 (4.64)
(−s12 − s23) ε4G1,1,0,0,0,0,1,1,1 (4.65)
s2

12s23

(
−ε4
)
G1,1,1,0,1,0,1,1,1 (4.66)

s2
12ε

4G1,1,1,−1,1,0,1,1,1 (4.67)

Relations (4.49) and (4.57) can also be verified using IBP identities.
All the results presented here have been cross-checked against results available in the liter-

ature and against numerical results obtained by pySecDec[57] and FIESTA[58].

4.4 Comparison with the standard approach
It is interesting to compare the solution presented here with the one obtained using the standard
DE method, i.e. by differentiating with respect to all kinematic invariants. A canonical basis
of MI for the doublebox with one off-shell leg was first presented in [59]. There, an alphabet of
six letters was found, involving two variables constructed out of ratios of kinematic variables.
In our analysis we obtained an alphabet with four letters. This reduction in the number of
letters has been observed to all cases where the SDE approach has been applied so far, however
the origin of this behaviour has yet to be determined.
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Chapter 5

Planar three-loop master integrals for the
ladder-box topology

In this chapter we revisit the calculation of the so-called three-loop ladder-box topology with
one off-shell leg, whose MI contribute to scattering amplitudes concerning for example a vector
boson decaying to 3-jets or gg → H + jet in gluon fusion at N3LO. This chapter presents
original research done in collaboration with D. D. Canko and is based mainly on [60], as well
as on [61] for the section regarding the analytic continuation of our results.

5.1 Introduction
It has been twenty years since the calculation of the two-loop FI for 2→ 2 processes involving
massless propagators and one off-shell external particle [54], [62] which established the method
of DE as a powerful technique for the analytic computation of multiloop FI. These studies
developed an approach which in essence is still used today, i.e. using Integration-By-Parts
(IBP) identities [26], [27] to identify a minimal set of FI, known as master integrals (MI),
deriving DE for these integrals by differentiating with respect to kinematic invariants and, if
present, internal masses, and then using IBP identities again to recast the derivatives of the
MI in terms of MI of equal or lower number of propagators.

A few years ago, a first step was taken towards the extension of these results at the three-
loop level, with the calculation of the so-called planar ladder-box topology involving massless
propagators and one off-shell leg [59]. This calculation was made possible through the adoption
of the by now established method of canonical DE [42]. In [42] an observation was made that
one can choose a good basis of MI, such that the DE that they satisfy have only logarithmic
singularities and the dimensional regulator ε is fully factorised. The conjecture made in [42]
was that FI with constant leading singularities [43] are good candidates for the construction of
such a basis, which is known as a pure basis of MI.

In [59] a basis of 85 MI was obtained and a canonical DE was derived based on Magnus
series expansions [63]. In this chapter, we will re-calculate the three-loop ladder-box topology
using a variant of the standard DE method, known as the Simplified Differential Equations
(SDE) approach [38]. Our results are given in terms of real-valued GPLs of up to weight six
for Euclidean and physical regions of phase-space. We also present the solution of the massless
ladder-box family as a special limit of the ladder-box family with one massive leg.
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5.2 General set up

5.2.1 Integral families

We begin this section by defining the integral family that will be treated in this chapter. For
the sake of brevity we will call F1 the ladder-box topology 5.1.

q4q1

q2 q3

Figure 5.1: The F1 top-sector diagram. The double line represents the massive particle and all
external momenta are taken to be incoming.

The corresponding FI are defined through1

GF1
a1···a15 :=

∫ ( 3∏
l=1

eγEε
ddkl
iπd/2

)
(k1 + q123) −2a11 (k2 + q123) −2a12

(k1 + q12) 2a1 (k2 + q12) 2a2 (k3 + q12) 2a3 (k1 − k2) 2a4

× (k2 + q1) −2a13 (k3 + q1) −2a14 (k1 − k3) −2a15

(k2 − k3) 2a5 (k3 + q123) 2a6 k2a7
1 k2a8

2 k2a9
3 (k1 + q1) 2a10

(5.1)

with ai being integers and ai ≤ 0 for i = 11, . . . , 15. The external momenta of the considered
families obey the following kinematics:

∑4
i=1 qi = 0, q2

2 = m2, q2
i = 0 for i = 1, 3, 4 and

S12 = (q1 + q2)2, S23 = (q2 + q3)2, S13 = m2 − S12 − S23.
In this chapter we employ the SDE approach [38] for the analytic computation of family

F1. To do so we parametrise the external momenta by introducing a dimensionless parameter
x in the following manner

q1 = xp1, q2 = p1 + p2 − xp1, q3 = p3, q4 = p4 (5.2)

where the new momenta pi are all massless. This parametrisation produces the following
mapping for the kinematic invariants between the two momentum configurations

S12 = s12, S23 = s23x, m2 = s12(1− x) (5.3)

with s12 = (p1 + p2)2, s23 = (p2 + p3)2.

5.2.2 Scattering kinematics

When considering the analytic solution of multiloop FI in dimensional regularisation, one usu-
ally solves these integrals in the Euclidean region, where all FI are free of branch cuts, and then
analytically continues the results to the physical regions of phase-space. This is the approach
that we will follow as well.

At first, by studying the second Symanzik polynomial [64] for the top-sector integral2 of
family F1 in its Feynman parameter representation, we can identify the Euclidean region in
terms of the kinematic variables S12, S23, m

2 such that

S12 < 0, S23 < 0, m2 < 0. (5.4)
1Where we use the abbreviation q12 = q1 + q2 and q123 = q1 + q2 + q3.
2By top-sector we mean the integrals with ai = 1 for i = 1, . . . 10 and ai = 0 for i = 11, . . . 15 in (5.1).
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For scattering kinematics we have three physical regions when considering 2 → 2 processes
with one massive particle. For convenience we will denote them as the s, t and u channels
appropriately:

s-channel : m2 > 0, S12 ≥ m2, S23 ≤ 0, S13 ≤ 0 (5.5)
t-channel : m2 > 0, S12 ≤ 0, S23 ≥ m2, S13 ≤ 0 (5.6)
u-channel : m2 > 0, S12 ≤ 0, S23 ≤ 0, S13 ≥ m2. (5.7)

Since we will use the SDE approach for the solution of (5.1), we would like to have the cor-
responding limits for each region of phase-space expressed in terms of the x, s12, s23 variables.
The mapping of (5.3) allows us to do so, although for reasons that will become clear at a later
stage, we define the ratio y = s23

s12
and use the variables x, y, s12. Our approach therefore will

be to compute all MI in terms of real-valued GPLs in the Euclidean region

0 < x < 1, s12 < 0, 0 < y < 1 (5.8)

and then, using tools such as HyperInt[65] and PolyLogTools[66], analytically continue our
solutions in the physical regions

s-channel : 0 < x < 1, s12 > 0, −1 ≤ y ≤ 0 (5.9)
t-channel : 1 < x, s12 < 0, y ≤ −1 (5.10)
u-channel : 1 < x, s12 < 0, y ≥ 0. (5.11)

Performing the reduction to MI using modern IBP tools such as FIRE6 [28] and KIRA2 [29], we
found for this family a set of 83 MI in contrast with [59], where a set of 85 MI was presented.
The two extra MI contained in the set of 85 MI were found to be equal from IBP relations with
two other integrals of the same set, namely T7 = T8 and T45 = T46 of [59]. These relations can
also be verified by checking the solutions for the corresponding basis elements, as presented in
[59].

5.3 Canonical differential equations
Having a canonical basis for the studied family [59] we obtained a DE with respect to x which
is of canonical form

∂xg = ε

(
4∑
i=1

Mi

x− li

)
g (5.12)

where g is the pure basis and Mi are the residue matrices corresponding to each letter li. All
kinematic dependence is included in the letters li, leaving the matrices Mi to consist solely of
rational numbers. We have found an alphabet consisting of the four following letters

l1 = 0, l2 = 1, l3 =
1

1 + y
, l4 = −1

y
. (5.13)

The simplicity of the alphabet (5.13) in x allows for a straightforward solution of (5.12) in
terms of GPLs. The solution can be written in the following compact form up to weight six:

g = ε0b(0)
0 + ε

(∑
GiMib

(0)
0 + b(1)

0

)
+ ε2

(∑
GijMiMjb

(0)
0 +

∑
GiMib

(1)
0 + b(2)

0

)
+ . . .

+ ε6
(
b(6)
0 +

∑
GijklmnMiMjMkMlMmMnb

(0)
0 +

∑
GijklmMiMjMkMlMmb(1)

0

+
∑
GijklMiMjMkMlb

(2)
0 +

∑
GijkMiMjMkb

(3)
0 +

∑
GijMiMjb

(4)
0 +

∑
GiMib

(5)
0

) (5.14)
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were Gab... := G(la, lb, . . . ;x) represent the GPLs. The b(i)
0 terms represent the boundary terms

that need to be determined, with i indicating the corresponding weight, and consist of Zeta
functions ζ(i) and logarithms {log(−s12), log(y)} of weight i. Our results are presented in such
a way that each coefficient of εi has transcendental weight i. If we assign weight −1 to ε, then
(5.14) has uniform weight zero.

5.3.1 Boundary terms

In general we need to calculate the x→ 0 limit of each pure basis element. Our first step is to
exploit the canonical SDE at the limit x→ 0 and define through it the resummation matrix

R = SeεD log(x)S−1 (5.15)

where the matrices S, D are obtained through the Jordan decomposition3 of the residue matrix
for the letter l1 = 0, M1,

M1 = SDS−1. (5.16)

On the other hand, through IBP reduction, the elements of the pure basis can be related to a
set of FI G,

g = TG. (5.17)

Furthermore using the expansion by regions method [51] as implemented in the asy code which
is shipped along with FIESTA4 [58], we can obtain information for the asymptotic behaviour of
the FI in terms of which we express the pure basis of MI (5.17) in the limit x→ 0,

Gi =
x→0

∑
j

xbj+ajεG
(bj+ajε)
i (5.18)

where aj and bj are integers and Gi are the individual members of the basis G of FI in (5.17).
This analysis allows us to construct the following relation

Rb = lim
x→0

TG
∣∣∣
O(x0+ajε)

(5.19)

where the right-hand side implies that, apart from the terms xaiε coming from (5.18), we
expand around x = 0, keeping only terms of order x0. Equation (5.19) allows us in principle to
determine all boundary constants b =

∑6
i=0 εi b(i)

0 .
More specifically, equation (5.19) produces two kinds of relations. The first one, called pure

relations in [60], is in the form of linear relations with numerical rational coefficients between
boundary terms b and the second one is in the form of linear relations that contain boundary
terms b and region-integrals G(bj+ajε)

i in the Feynman parameter representation.
The pure relations usually determine the boundary terms for the top-sector basis elements,

which are the most non-trivial to compute since they involve the most complicated region-
integrals. For the case of family F1 these pure relations for the three top-sector basis elements
are

b81 = − b1

18
− 7b2

18
− 2b7

3
+
b12

2
+
b13

12
+

2b16

3
+ 2b32 − b39 + b41 (5.20)

b82 = 0 (5.21)
b83 = 0. (5.22)

3For an earlier use of the Jordan decomposition method see [67], [68].
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Similar relations are obtained for 59 basis elements in total, leaving the following basis elements
undetermined,{

b1, b2, b3, b4, b5, b6, b7, b8, b9, b12, b13, b16, b17, b18, b19, b20, b27, b29, b32, b39, b41, b44, b51, b56

}
. (5.23)

Out of those boundary terms, 11 of them are known from the massless solution,

{b1, b2, b3, b4, b5, b6, b7, b17, b18, b19, b44} (5.24)

leaving the following 13 genuinely unknown boundary terms to be determined,

{b8, b9, b12, b13, b16, b20, b27, b29, b32, b39, b41, b51, b56} (5.25)

The second kind of relations allow us to compute the above from expressions such as

b41 = G−3ε
41 s12ε

5 + b2/9− b13/12− 2b16/3 . (5.26)

Thus the problem of computing the remaining boundary terms is reduced to the calculation of
the following 13 region-integrals

{Ghard
8 , Ghard

9 , Ghard
12 , Ghard

13 , Ghard
16 , Ghard

20 , Ghard
27 , Ghard

29 , Ghard
51 , Ghard

56 }, (5.27)
{G−3ε

32 , G−3ε
39 , G−3ε

41 }. (5.28)

where with "hard" we denote the contribution from the x0 region.
From the set of the asymptotic limits the calculation of the hard limits was performed in

momentum space with the use of the method of expansion-by-regions and IBP reduction. The
SDE parametrization of the propagators makes it significantly easier in this case. In fact, the
hard asymptotic limits are equal to some of the known MI and thus plugging them back into
the relations between boundaries and asymptotic limits we found some extra relations between
boundaries.

Regarding the x−3ε limits, we employed a strategy depending on the Feynman - parameter
representation of the integrals under consideration, as well as a technique of integrating out
bubble subintegrals inspired by [69]. For the case in point, the three integrals whose regions
we want to compute, contain bubble subintegrals, i.e. each one can be written as a two-loop
integral with a bubble insertion. As explained in [69], one can always integrate out bubble
subintegrals and obtain a lower loop integral with some powers shifted by ε. More specifically
we have ∫

ddk

iπd/2
1

(k2)a1((k + p)2)a2
=

Γ(a− d/2)Γ(d/2− a1)Γ(d/2− a2)

Γ(a1)Γ(a2)Γ(d− a)
(p2)d/2−a (5.29)

where a = a1 + a2. For the cases that we are interested in, a1 = 2 and a2 = 1, and according
to [69], after integrating out the bubble subintegral we arrive at a two-loop integral with one
index shifted from 1 to 1 + ε.

In the following, we explain in detail the computation of the required region for G32. The
remaining regions can be computed in a similar manner. G32 can be written as

G32 =

∫
ddk1d

dk2d
dk3

(iπd/2)3

e3εγE

k2
2(k1 − k2)2(k2 − k3)2(k1 + p12)2(k1 + xp1)2(k3 + p123)4

. (5.30)

The bubble subintegral is ∫
ddk3

iπd/2
1

(k2 − k3)2(k3 + p123)4
. (5.31)
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By making the shift k3 → k−p123 we may write it as in (5.29). What is left is a two-loop integral
with five propagators. The departure from the usual case is the fact that one propagator is
raised to the power of 1+ε. If one tries to find the regions contributing to the x→ 0 limit of this
integral we see that there are two regions, namely (x0, x−3ε) as for the full three-loop integral.
We are interested in the x−3ε region, which now is significantly less complicated than the one
resulting from the full three-loop integral analysis. After performing the necessary integrations,
we may assemble the final result by multiplying the result of the bubble integration, namely
(5.29) for a1 = 2 and a2 = 1, with the result of the two-loop region and expand up to the
desired power in the dimensional regulator.

The above steps allow us to fix all remaining boundary terms in a purely analytical way.
Interestingly, we find that a general ansatz for all boundary terms can be constructed,

bi = c(i, 0) + ε log(y)c(i, 1) + ε2
(

1

2
log2(y)c(i, 2, 2) +

1

6
π2c(i, 2, 1)

)
+ ε3

(
1

6
log3(y)c(i, 3, 2) +

1

6
π2 log(y)c(i, 3, 1) + ζ(3)c(i, 3, 3)

)
+ ε4

(
ζ(3) log(y)c(i, 4, 4) +

1

24
log4(y)c(i, 4, 3) +

1

12
π2 log2(y)c(i, 4, 2) +

1

90
π4c(i, 4, 1)

)
+ ε5

(
1

2
ζ(3) log2(y)c(i, 5, 5) +

1

120
log5(y)c(i, 5, 3) +

1

36
π2 log3(y)c(i, 5, 2) (5.32)

+
1

90
π4 log(y)c(i, 5, 1) + ζ(5)c(i, 5, 6) +

1

6
π2ζ(3)c(i, 5, 4)

)
+ ε6

(
1

6
ζ(3) log3(y)c(i, 6, 6) + log(y)

(
1

6
π2ζ(3)c(i, 6, 5) + ζ(5)c(i, 6, 8)

)
+

1

720
log6(y)c(i, 6, 4)

+
1

144
π2 log4(y)c(i, 6, 3) +

1

180
π4 log2(y)c(i, 6, 2) + ζ(3)2c(i, 6, 7) +

1

945
π6c(i, 6, 1)

)
where we have multiplied by (−s12)(3ε) and expanded up to ε6 to make the ansatz more compact.

5.4 Massless three-loop ladder-box
It is interesting to see how we can extract the pure basis and solution for the massless three-loop
ladder-box using our results from the massive one. An important feature of the SDE approach
is that by correctly taking the x→ 1 limit [60], [70] of the solution of a specific integral family
with n scales, one can arrive at the solution of the corresponding family with n− 1 scales. In
this particular case, taking the x → 1 limit of the one-mass ladder-box will yield the solution
for the massless one.

5.4.1 The x → 1 limit

Taking the x → 1 limit of the one-mass three-loop ladder-box amounts to performing the
following manipulations. First, we rewrite our solution as an expansion in log(1− x) in the
following form [60]

g =
∑
n≥0

εn
n∑
i=0

1

i!
c(n)
i logi(1− x) (5.33)

where all coefficients c(n)
i are finite in the limit x→ 1. This can be straightforwardly achieved,

starting from the original solution (5.14) and transporting all letters l = 1 of GPLs to the right,
according to their known shuffle properties. Having done that, we may define the regular part
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of g at x = 1 as
greg =

∑
n≥0

εnc(n)
0 (5.34)

and through greg, the truncated part of g as

gtrunc = greg(x = 1). (5.35)

If we return to the canonical DE (5.12) and single out the part singular at x = 1, then the full
solution of the problem can be written schematically as follows

g = eεM1 log(1−x)greg. (5.36)

Because M1 is by definition a square matrix, we can always find its Jordan matrix decomposition

M1 = S1D1S−1
1 . (5.37)

We may then define the resummation matrix R̃ as follows

R̃ = eεM1 log(1−x) = S1e
εD1 log(1−x)S−1

1 . (5.38)

It is clear from (5.36) that when (5.38) acts on (5.34) we get the full solution of the problem.
The resummation matrix R̃ has terms (1− x)aiε, with ai the eigenvalues of M1. Setting these
terms equal to zero results in a purely numerical matrix R̃0

R̃→ R̃0. (5.39)

Now, finding the x→ 1 limit of the original solution (5.14) amounts to R̃0 acting on gtrunc.

gx→1 = R̃0gtrunc. (5.40)

5.4.2 From massive to massless

Remember that our goal is to find a pure basis for the massless three-loop ladder-box. From
the massive one, the result of

lim
x→ 1

g(x)

is an array of 83 pure basis elements. If we look at this result from the perspective of the
massless three-loop ladder-box, some of these basis elements will be the 26 basis elements
for the massless three-loop ladder-box and the rest will be reducible to the 26 massless basis
elements or zero. We may distinguish them using IBP relations but first we may exploit an
interesting feature of the R̃0 matrix in order to simplify the procedure.

It turns out that R̃0 is an idempotent matrix. Idempotent matrices have the following
properties, all of which are satisfied by R̃0:

1. X = X2

2. singular except the identity matrix I

3. eigenvalues of X = 0, 1

4. Trace
(
X
)

= Rank
(
X
)

5. I−X also idempotent
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Since R̃0 = R̃
2

0, if we act with R̃0 on gx→1 yields

R̃0gx→1 = R̃
2

0gtrunc
= R̃0gtrunc
= gx→1. (5.41)

This relation, solved as an equation for each row, will yield the relations between the reducible
pure basis elements and the massless basis elements as well as those who are equal to zero.
We found 36 relations, which is expected since the rank of the purely numerical resummation
matrix is 36, e.g.4

g̃24 = 0, (5.42)

g̃49 =
1

2
(2g̃35 − g̃33), (5.43)

g̃80 =
1

36
(4g̃1 − 6g̃4 − 48g̃5 + 192g̃10 + 128g̃14 − 72g̃15 − 96g̃22

− 12g̃33 − 192g̃36 + 3g̃40 − 12g̃42 − 9g̃43 − 8g̃48 − 24g̃53

− 12g̃55 + 36g̃72 − 6g̃75 − 108g̃76 − 12g̃77). (5.44)

The resulting relations can be verified in two ways.

1. Using IBP relations.

2. Using the analytic expressions for the x→ 1 limit.

These 36 relations leave 47 basis elements as potential candidates for the 26 basis elements of
the massless three-loop ladder-box, namely

{g̃1, g̃2, g̃4, g̃5, g̃6, g̃7, g̃10, g̃14, g̃15, g̃17, g̃18, g̃19, g̃22, g̃30, g̃31, g̃33, g̃35, g̃36, g̃37, g̃38, g̃40, g̃42, g̃43, g̃44, g̃46,

g̃48, g̃53, g̃55, g̃58, g̃59, g̃62, g̃63, g̃64, g̃65, g̃66, g̃67, g̃68, g̃69, g̃70, g̃71, g̃72, g̃75, g̃76, g̃77, g̃81, g̃82, g̃83}

To distinguish among them we may perform an IBP reduction. Since we want to extract the
basis elements for the massless three-loop ladder-box from the basis elements of the massive
one, we first substitute each b̃i with its corresponding gi and we set x = 1 explicitly. We now
have a set of 47 pure basis elements written in terms of certain FI. Via IBP reduction, we may
reduce these FI to a set of MI for the massless three-loop ladder-box, and we can see that there
are 26 linearly independent pure basis elements.

5.4.3 Pure basis for the massless three-loop ladder-box

The resulting pure basis for the massless three-loop ladder-box in terms of the ones from the
massive three-loop ladder-box are

{g̃1, g̃2, g̃4, g̃5, g̃6, g̃7, g̃17, g̃18, g̃19, g̃30, g̃31, g̃35, g̃36, g̃37, g̃44, g̃53, g̃55, g̃62, g̃63, g̃64, g̃65, g̃68, g̃69, g̃81, g̃82, g̃83}

which can be written in terms of 26 MI as follows

g0
1 = s12ε

3G0,0,2,2,2,0,1,0,0,0,0,0,0,0,0,

g0
2 = s23ε

3G0,0,0,2,2,1,0,0,0,2,0,0,0,0,0,

g0
3 = s2

12ε
3G0,2,2,1,0,0,2,0,1,0,0,0,0,0,0,

4In the following we use the notation g̃i to indicate the x→ 1 limit of the corresponding gi.
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g0
4 = s12ε

3(2ε+ 1)G0,1,0,1,1,0,2,0,2,0,0,0,0,0,0,

g0
5 = s12ε

4G1,0,0,2,1,2,1,0,0,0,0,0,0,0,0,

g0
6 = s12ε

4G0,1,0,2,1,2,1,0,0,0,0,0,0,0,0,

g0
7 = s3

12ε
3G2,2,2,0,0,0,1,1,1,0,0,0,0,0,0,

g0
8 = s12(1− 2ε)ε4G1,0,1,2,1,0,1,0,1,0,0,0,0,0,0,

g0
9 = s2

12ε
4G2,1,0,0,1,2,1,1,0,0,0,0,0,0,0,

g0
10 = s12s23ε

4G1,0,0,2,1,2,1,0,0,1,0,0,0,0,0,

g0
11 = ε5(−s12 − s23)G0,1,0,1,1,2,1,0,0,1,0,0,0,0,0,

g0
12 = s12s23ε

4G0,1,0,2,1,2,0,1,0,1,0,0,0,0,0,

g0
13 =

1

4
s12ε

3

(
4ε(2ε− 1)G0,1,0,2,1,2,−1,1,0,1,0,0,0,0,0

ε− 1
+G0,0,0,2,2,1,0,0,0,2,0,0,0,0,0

)
,

g0
14 = ε5(−s12 − s23)G0,0,1,1,2,1,1,0,0,1,0,0,0,0,0,

g0
15 = s12ε

6G1,0,1,1,1,1,1,1,0,0,0,0,0,0,0,

g0
16 = −s2

12ε
5G1,0,1,1,1,1,0,2,0,1,0,0,0,0,0,

g0
17 = s12s23ε

5G1,0,1,2,1,1,0,1,0,1,0,0,0,0,0,

g0
18 = s2

12s23ε
5G1,1,0,1,1,2,1,1,0,1,0,0,0,0,0,

g0
19 = s2

12ε
5(2ε− 1)G1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,

g0
20 = −s12ε

6(s12 + s23)G1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,

g0
21 = s2

12s23ε
5G1,0,1,1,2,1,1,1,0,1,0,0,0,0,0,

g0
22 = s2

12ε
5(2ε− 1)G1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,

g0
23 = s2

12s23ε
5G1,0,1,1,2,1,1,0,1,1,0,0,0,0,0,

g0
24 = s3

12s23ε
6G1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,

g0
25 = −s3

12ε
6G1,1,1,1,1,1,1,1,1,1,−1,0,0,0,0,

g0
26 = −s3

12ε
6G1,1,1,1,1,1,1,1,1,1,0,−1,0,0,0. (5.45)

The chosen normalisation of the FI is

Ga1,...,a15 ({pj} , ε) = (−s12)3ε

∫ ( 3∏
l=1

ddkl
iπd/2

)
e3εγE

Da1
1 . . . Da15

15

with d = 4− 2ε (5.46)

with the propagators being the x→ 1 limit of (5.1).

5.5 Results

5.5.1 Analytic continuation

As already mentioned, our results are expressed in terms of GPLs up to weight six and thus can
be numerically computed at high precision using automated tools, like GinaC [71]. The weight
W=1 . . . 6 is identified as the number of letters li in G(li, . . . ;x). For the evaluations to be
fast and efficient the GPLs should not contain letters li along the integration path connecting
the origin and the argument x, i.e. li /∈ [0, x]. Although this holds true in the Euclidean
region, this is not the case in the physical regions anymore. One can get over this problem by
using fibration-basis techniques [65], [66] for changing appropriately the arguments of GPLs at
each physical region and making them real-valued. We followed this procedure using HyperInt
[65], aiming to obtain results in terms of real-valued GPLs which can be efficiently evaluated
numerically, thus making them well-suited for phenomenological applications.
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Regions Letters Argument Letters Argument
Euclidean {0, 1,−1/y, 1/(1 + y)} x − −
s-channel {0, 1,−1/y, 1/(1 + y)} x − −
t-channel {0, 1, 1 + y,−y} 1/x {0, 1} −1/y
u-channel {0, 1, 1 + y,−y} 1/x {0,−1} y

Table 5.1: Structure of GPLs appearing in each of the 4 kinematic regions.

In order to make more clear the form of our solutions, we present in table 5.1 the arguments
and the letters of the GPLs in the Euclidean and each of the physical regions after using
HyperInt. Note that prior to the use of fibration-basis techniques, no GPLs with arguments
depending on y are present. However, casting each GPL in a fibration basis which contains
real-valued GPLs and explicit imaginary terms, produces GPLs with y-dependent argument as
well.

In table 5.2 we provide an analysis regarding the number of GPLs that appear in each
transcendental weight, for each kinematic region. In the same table we quote also the total
number of GPLs and the timing for their numerical evaluation using GinaC. The number of
GPLs is the same for the Euclidean and the s-channel due to the fact that the GPLs of the
Euclidean region are already real valued in the s-channel and thus their is no need of using
fibration-basis techniques for them.

Regions W = 1 W = 2 W = 3 W = 4 W = 5 W = 6 Total Timings (sec)
Euclidean 4 14 50 124 367 692 1251 39.0225769
s-channel 4 14 50 124 367 692 1251 39.2172529
t-channel 6 18 58 155 419 603 1259 62.0567800
u-channel 5 16 54 147 403 572 1197 55.1049640

Table 5.2: Number of GPLs per transcendental weight and per kinematic region, and timings
for the numerical evaluation of the total GPLs. The quoted timings are obtained using the
Ginsh command of PolyLogTools, running 1-core in a personal laptop (i7 processor, 8-core,
16GB RAM).

5.5.2 Validation

For the validation of our results we have performed various numerical checks in the Euclidean
and physical regions. More specifically, for the Euclidean region we compared numerically every
MI of each family with pySecDec [57] and Fiesta [58] and the analytic results of mastrolia for
the point

s12 → −7, y → 3/7, x→ 1/4 (5.47)

finding perfect agreement within the numerical accuracy provided by these programs.
Regarding our results for physical regions, obtaining numerical results for all MI using

pySecDec or Fiesta can be rather challenging, and in some cases even impossible. To that
end, in order to check that the analytic continuation was correct, we determined a specific set
of low-sector MI (with up to 7 propagators), which contained the total set of GPLs at each
region and we numerically compared them with pySecDec and Fiesta for the points

s-channel : s12 → 2, y → −1/2, x→ 1/4 (5.48)
t-channel : s12 → −2, y → −3/2, x→ 5/3 (5.49)
u-channel : s12 → −2, y → 3/2, x→ 5/3. (5.50)
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After properly choosing the branch of the analytic continuation, i.e. fixing the values of the
auxiliary functions {δ(1/x), δ(−1/y), δ(y)} either equal to 1 or -1 coming from HyperInt, perfect
agreement was found for every MI that we checked.

Analytic checks were performed against [69] at the limit x → 1 in the Euclidean regions.
The variable y = s23

s12
introduced earlier is equal to the dimensionless variable x = t

s
used therein.
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Chapter 6

Pentagon integrals to arbitrary order in
the dimensional regulator

We analytically calculate one-loop five-point MI, pentagon integrals, with up to one off-shell leg
to arbitrary order in the dimensional regulator in d = 4−2ε space-time dimensions. A pure basis
of MI is constructed for the pentagon family with one off-shell leg, satisfying a single-variable
canonical differential equation in the SDE approach. The relevant boundary terms are given in
closed form, including a hypergeometric function which can be expanded to arbitrary order in
the dimensional regulator using the Mathematica package HypExp [56]. Thus one can obtain
solutions of the canonical differential equation in terms of GPLs of arbitrary transcendental
weight. As a special limit of the one-mass pentagon family, we obtain a fully analytic result for
the massless pentagon family in terms of pure and universally transcendental functions. For
both families we provide explicit solutions in terms of GPLs up to weight four. This chapter is
based on original research that first appeared in [72].

6.1 Introduction
The study of one-loop five-point Feynman diagrams, known as pentagon integrals, has a long
history. Their calculation has been treated using various methods and techniques, with results
presented in several different forms. In [73], analytic results for pentagon integrals with up
to one massive leg were given in d = 4 − 2ε space-time dimensions in terms of transcendental
functions of up to weight two. In [74], the pentagon integral with fully massless legs was studied
in d = 6 − 2ε space-time dimensions in the multi-Regge limit and analytic expressions up to
O(ε2) were obtained. Analytic results in terms of Appell hypergeometric functions and Gauss
hypergeometric functions were obtained in [75] for the pentagon with massless internal and
external lines. First results in d = 4 − 2ε space-time dimensions in terms of GPLs [44] of up
to weight three (or O(ε)) were obtained in [38] for the pentagon with up to one off-shell leg.
One-fold integral representations were obtained in [76] in arbitrary space-time dimensions for
the massless pentagon and in [77] for the pentagon with one off-shell leg in d = 6 − 2ε space-
time dimensions. More recently the massless pentagon has been implemented as part of the
so-called pentagon functions up to weight four in [78], [79] and numerical results up to weight
four in terms of generalised power-series expansion for the pentagon with one off-shell leg were
presented in [80] for various phase-space points.

In this chapter we analytically calculate pentagon integrals with up to one off-shell leg in
d = 4 − 2ε space-time dimensions and express them in terms of GPLs of higher weights. We
start with the pentagon with one massive leg and employ the method of differential equations
in its modern, canonical incarnation [42], in conjunction with the SDE approach (SDE) [38].
This is achieved by constructing a pure basis of MI [40] for the pentagon with one massive
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leg family. We find that all relevant boundary terms required for the solution of the canonical
differential equation are given in closed form. This allows us to straightforwardly express
our results in terms of GPLs of arbitrary transcendental weight. Having the solution of the
pentagon with one off-shell leg at hand, we can obtain in an algorithmic way a fully analytical
solution for the massless pentagon by taking the x→ 1 limit of the former result, with x being
a dimensionless parameter that is introduced in the SDE approach. This is a special feature of
the SDE approach first described in [38], [81] and in more details in [60].

With a mind to phenomenological applications of our results, we present explicit solutions
up to transcendental weight four. Our results are complementary to [82], where analytic expres-
sions for all two-loop planar pentabox families with one massive leg were recently presented.
The combination of these results provides a key ingredient for the calculation of two-loop planar
amplitudes for W+2 jets production at the LHC [83], [84].

6.2 Construction of a pure basis
We define the pentagon family with one off-shell leg as

Ga1a2a3a4a5 =

∫
ddk1

iπ(d/2)

eεγE

Da11 Da22 Da33 Da44 Da55

(6.1)

with

D1 = −(k1)2, D2 = −(k1 + q1)2, D3 = −(k1 + q1 + q2)2

D4 = −(k1 + q1 + q2 + q3)2, D5 = −(k1 + q1 + q2 + q3 + q4)2. (6.2)

The kinematics consist of the massive momentum {q3, q
2
3 = m2} and four massless momenta

{qi, q2
i = 0, for i = 1, 2, 4, 5}. In the SDE notation, we parametrise the external momenta by

inserting a dimensionless variable x in the following way1

q1 = xp1, q2 = xp2, q3 = p123 − xp12, q4 = −p123, q5 = −p1234 (6.3)

where all pi momenta are now massless. The kinematics of the two momentum configurations
are connected as follows2

m2 = (x− 1) (S12x− S45) , s12 = S12x
2, s23 = S23x− S45x+ S45,

s34 = x (S12(x− 1) + S34) , s45 = S45, s51 = S51x. (6.4)

For reasons that will become clear shortly, we also define the square root of the Gram deter-
minant of the external momenta as

∆5 =
√

det[qi · qj]. (6.5)

Using FIRE6 [28] for the IBP reduction we find that we need 13 MI to completely describe
the vector space which consists of all FI that are included in (6.1). For the construction of the
pure basis, the only non-trivial basis element is that of the top sector. The remaining basis
elements can be constructed through the knowledge of the leading singularities of the relevant
one-loop integrals. For the construction of the top sector basis element we follow the consensus
developed in [80], [85], expressed here in the language of the Baikov representation of FI [86],
[87]. More specifically, we choose as a candidate top sector basis element the following

ε2
P11111

∆5

G̃11111 (6.6)

1We use the abbreviations pij = pi + pj and pijk = pi + pj + pk and similarly for q later.
2We use the abbreviations sij = q2ij , Sij = p2ij .
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where P11111 is the Baikov polynomial of G11111 and G̃11111 is the integrand of G11111. By
studying the maximal cut of (6.6) in the Baikov represenation [88], we can see that it has the
desired properties of being pure and universally transcendental. This result is a strong indicator
that the uncut (6.6) will satisfy a canonical differential equation. This is due to the fact that
as shown in [40], since cut and uncut integrals satisfy the same system of IBP identities and
hence the same system of differential equations, if one is looking for a system of canonical
differential equations, then the same canonical differential equations have to be satisfied both
by the cut and the uncut integrals. Therefore, a pure master integral of uniform weight that
satisfies a canonical differential equation, has to preserve these properties on its maximal cut.
Thus, when one has identified an integral, or a combination of integrals, which in its maximal
cut is expressed in terms of pure functions of uniform weight, then this integral, or combination
of integrals, is a strong candidate for an element of the desired pure basis.

In [80], a pure basis for the pentagon family with one off-shell leg is given in the ancillary
files. The top sector basis element (6.6) is the same as the one given in [80], albeit in a different
notation.

For convenience we choose to express our pure basis in terms of specific FI in the form

g = TG (6.7)

where g is the pure basis, G is our specific choice of FI and T is the matrix that connects the
two bases. The pure basis g is

g1 = xεS51G0,2,0,0,1 (6.8)
g2 = xε ((x− 1)S12 + S34)G0,0,2,0,1 (6.9)
g3 = x2εS12G2,0,1,0,0 (6.10)
g4 = εS45G2,0,0,1,0 (6.11)
g5 = ε (xS23 − xS45 + S45)G0,2,0,1,0 (6.12)
g6 = (x− 1)ε (xS12 − S45)G0,0,2,1,0 (6.13)
g7 = x3ε2S12S51G1,1,1,0,1 (6.14)
g8 = xε2S45S51G1,1,0,1,1 (6.15)
g9 = xε2 ((x− 1)S12 + S34)S45G1,0,1,1,1 (6.16)
g10 = xε2

(
− xS23S34 + (x− 1)S45S34 − (x− 1)S45S51

+ (x− 1)S12 (x (−S23 + S45 + S51)− S45)
)
G0,1,1,1,1 (6.17)

g11 = xε2 (S12 − S45)G1,0,1,1,0 (6.18)
g12 = x2ε2S12 (xS23 − xS45 + S45)G1,1,1,1,0 (6.19)

g13 =
xε2

32
√

∆̂

(
A1G0,1,1,1,1 + A2G1,0,1,1,1 + A3G1,1,0,1,1 + A4G1,1,1,0,1 + A5G1,1,1,1,0 + A6G1,1,1,1,1

)
(6.20)

with

∆̂ = S2
12 (S23 − S51) 2 + (S23S34 + S45 (S51 − S34)) 2

+ 2S12

(
S34S45S23 + (S34 + S45)S51S23 − S2

23S34 + S45 (S34 − S51)S51

)
(6.21)

and

A1 = (S12S23 − S34S23 + S34S45 − (S12 + S45)S51)

× (S34 (S23x− S45x+ S45) + S45S51(x− 1)− S12(x− 1) ((−S23 + S45 + S51)x− S45)) (6.22)

A2 = S45

(
S34 (S23S34 + S45 (S51 − S34))− S2

12 (S23 − S51) (x− 1)

55



+ S12 (S23S34(x− 2) + S34 (− (S45 + 2S51)x+ S45 + S51)− S45S51(x− 1))
)

(6.23)
A3 = −S45S51 (S12 (S23(2x− 1)− 2 (S45 + S51)x+ 2S45 + S51) + S23S34 + S45 (S51 − S34)) (6.24)
A4 = S12S51(−x) (S23S34x− S45S34(x− 2) + 2S12S45(x− 1) + S45S51(x− 2) + S12 (S51 − S23)x)

(6.25)

A5 = S12x
(
S34S

2
23x+ S2

45 (S34 − S51) (x− 1) + S23S45 (−2S34x+ S51(x− 2) + S34)

+ S12

(
S2

23(−x) + (S45 + S51)S23x+ S45S51(x− 1)− S45S23

) )
(6.26)

A6 = −2S12S45S51x (S34 (S23x− S45x+ S45) + S45S51(x− 1)− S12(x− 1) ((−S23 + S45 + S51)x− S45)) .
(6.27)

The particular choice of FI in terms of which the above pure basis is written is the following

G =
{
G0,2,0,0,1, G0,0,2,0,1, G2,0,1,0,0, G2,0,0,1,0, G0,2,0,1,0, G0,0,2,1,0,

G1,1,1,0,1, G1,1,0,1,1, G1,0,1,1,1, G0,1,1,1,1, G1,0,1,1,0, G1,1,1,1,0, G1,1,1,1,1

}
. (6.28)

6.3 Results
The ultimate check that a candidate pure basis of MI has the desired properties is the derivation
of its differential equation [42]. In the SDE approach [38], we derive differential equations with
respect to the dimensionless parameter x, regardless of the number of scales of the problem.
In this particular case, the candidate pure basis which was constructed in the previous section
leads to the following canonical differential equation

∂xg = ε

(
11∑
i=1

Mi

x− li

)
g (6.29)

where g is the array of 13 pure MI, Mi are the residue matrices which consist solely of rational
numbers and li are the letters of the alphabet. The alphabet of the pentagon family with one
off-shell leg has the following 11 letters,

l1 → 0, l2 →
S12 − S34

S12

, l3 →
S45

S45 − S23

, l4 → 1, l5 →
S45

S12

, l6 →
S12 − S34 + S51

S12

,

l7 →
S45

−S23 + S45 + S51

, l8 →
S45

S34 + S45

, l9 →
S12 + S23

S12

,

l10 →
√

∆ + S12S23 − S23S34 − 2S12S45 + S34S45 − S12S51 − S45S51

2S12 (S23 − S45 − S51)
,

l11 →
−
√

∆ + S12S23 − S23S34 − 2S12S45 + S34S45 − S12S51 − S45S51

2S12 (S23 − S45 − S51)
(6.30)

with ∆ being

∆ = (S23S34 + S45 (S51 − S34) + S12 (−S23 + 2S45 + S51)) 2

− 4S12S45 (S12 − S34 + S51) (−S23 + S45 + S51) . (6.31)

Notice that here we follow [60], [81], [82] for the definition of the letters of the alphabet,
which is different from the standard notation [45]–[47]. Usually the so-called d log form of a

system of canonical differential equations is given as dg(~x, ε) = ε

(∑
iMid logWi(~x)

)
g(~x, ε),

where the alphabet Wi(~x) is in terms of rational or algebraic functions of the independent
variables. The standard d log form is equivalent to (6.29) for Wi(~x) = x− li.
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This differential equation can be solved through recursive iterations up to the desired order
in the dimensional regulator ε. The only further input that is required are the boundary terms.
In the SDE approach, we choose as a lower integration boundary x = 0, so that the result can
be expressed directly in terms of GPLs. Thus the necessary boundary terms are given by the
limit x→ 0 of our chosen basis of MI.

Using the methods described in chapter 3, we define the resummation matrix R as follows

R = SeεD log(x)S−1 (6.32)

where D, S are defined through the Jordan decomposition3 of the residue matrix corresponding
to the letter {0}, M1,

M1 = SDS−1 (6.33)

Furthermore, using the expansion-by-regions method [51] we obtain information for the x→ 0
limit of the FI in terms of which we express the pure basis of MI (6.7),

Gi =
x→0

∑
j

xbj+ajεG
(bj+ajε)
i . (6.34)

where aj and bj are integers and Gi are the individual members of the basis G of FI in (6.7),
by making use of the publicly available FIESTA4 [58] code. As explained in chapter 3, we can
construct the relation

Rb = lim
x→0

TG
∣∣∣
O(x0+ajε)

(6.35)

where b =
∑n

i=0 ε
ib(i)

0 are the boundary terms that we need to compute. The right-hand-
side of (6.35) implies that, apart from the terms xaiε coming from (6.34), we expand around
x = 0, keeping only terms of order x0. From (6.35) we can straightforwardly obtain all but
one boundary terms without any further computation. This is due to the fact that all but one
boundary terms are either given in terms of two-point functions or zero. The seventh basis
element requires the computation of the leading region for G11101 which corresponds to G−3−2ε

7

in the notation of (6.34). Through its Feynman parametrization this region can be computed
in terms of a hypergeometric function. All boundary terms in closed form are as follows

b1 =
eγEε (−S51) −εΓ(1− ε)2Γ(ε+ 1)

Γ(1− 2ε)
(6.36)

b2 =
eγEε (S12 − S34) −εΓ(1− ε)2Γ(ε+ 1)

Γ(1− 2ε)
(6.37)

b3 =
eγEε (−S12) −εΓ(1− ε)2Γ(ε+ 1)

Γ(1− 2ε)
(6.38)

b4 =
eγEε (−S45) −εΓ(1− ε)2Γ(ε+ 1)

Γ(1− 2ε)
(6.39)

b5 =
eγEε (−S45) −εΓ(1− ε)2Γ(ε+ 1)

Γ(1− 2ε)
(6.40)

b6 =
eγEε (−S45) −εΓ(1− ε)2Γ(ε+ 1)

Γ(1− 2ε)
(6.41)

b7 = −
eγEεε (−S12) −εΓ(−ε)2Γ(ε+ 1) 2F1

(
1,−ε; 1− ε; S12−S34+S51

S51

)
Γ(−2ε)

(6.42)

3For an earlier use of the Jordan decomposition method see also [67], [68]. We thank Prof. P. Mastrolia for
bringing these references to our attention.
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b8 =
2eγEε (−S51) −εΓ(1− ε)2Γ(ε+ 1)

Γ(1− 2ε)
(6.43)

b9 =
eγEε (−S12) −ε (2 (−S12) ε − (S12 − S34) ε) (S12 − S34) −εΓ(1− ε)2Γ(ε+ 1)

Γ(1− 2ε)
(6.44)

b10 =
2eγEε (S12 − S34) −ε ((S12 − S34) ε − (−S51) ε) (−S51) −εΓ(1− ε)2Γ(ε+ 1)

Γ(1− 2ε)
(6.45)

b11 = 0 (6.46)

b12 =
eγEε (−S12) −εΓ(1− ε)2Γ(ε+ 1)

Γ(1− 2ε)
(6.47)

b13 = 0. (6.48)

Using standard algorithms as implemented in e.g. Mathematica, and with the additional
help of the public package HypExp [56] for the series expansion of the hypergeometric function,
we can obtain exact expressions for all boundary terms up to arbitrary order in ε. Therefore
we can trivially obtain solutions of (6.29) in terms of GPLs up to arbitrary weight.

In this particular work, we present explicit results up to weight four, which can be written
in compact form as

g = ε0b(0)
0 + ε

(∑
GaMab

(0)
0 + b(1)

0

)
+ ε2

(∑
GabMaMbb

(0)
0 +

∑
GaMab

(1)
0 + b(2)

0

)
+ ε3

(∑
GabcMaMbMcb

(0)
0 +

∑
GabMaMbb

(1)
0 +

∑
GaMab

(2)
0 + b(3)

0

)
+ ε4

(∑
GabcdMaMbMcMdb

(0)
0 +

∑
GabcMaMbMcb

(1)
0

+
∑
GabMaMbb

(2)
0 +

∑
GaMab

(3)
0 + b(4)

0

)
(6.49)

Gab... := G(la, lb, . . . ;x)

with the generalisation to higher orders in ε being straightforward.

6.4 Massless pentagon family
Using the methods described in chapter 3, we can readily obtain a pure basis of 11 MI for the
massless pentagon family from the x → 1 limit of (6.49). The results are by construction in
terms of GPLs up to weight four, however following the arguments of the last section, we can
obtain results in terms of GPLs of arbitrary weight.

To be more specific, the x→ 1 limit of the solution for the pentagon with one off-shell leg
can be given by the following formula

gx→1 = R̃0gtrunc (6.50)

with R̃0 being a purely numerical matrix which is constructed from the resummation matrix

R̃ = S̃eεD̃ log(1−x)S̃
−1

(6.51)

after setting all terms of (1 − x)aiε in R̃ equal to zero4. The matrices S̃, D̃ are constructed
through the Jordan decomposition of the residue matrix corresponding to the letter {1}, which
in this case is M4, i.e. M4 = S̃D̃S̃

−1
.

4Here ai = {−1, 0} are the eigenvalues of M4.
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The second input in (6.50), gtrunc, is just the regular part of the solution (6.49) at x → 1
where we have set x = 1 explicitly [60].

6.5 Numerical checks
We have performed various numerical checks of our results. Firstly, for the pentagon family
with one leg off-shell we compared our results with pySecDec [57] for the Euclidean point

S12 → −2, S23 → −3, S34 → −5, S45 → −7, S51 → −11, x→ 1

4
(6.52)

For numerical results in physical regions, we refer to the detailed discussion in section 7.5 of
chapter 7. Using the methods described therein, we managed to analytically continue our
results for the pentagon family with one-off shell leg and compare with the numerical results
of [80] for all the physical points that are provided there.

For the massless pentagon family, we have performed numerical checks against pySecDec [57]
for the Euclidean point

S12 → −2, S23 → −3, S34 → −5, S45 → −7, S51 → −11 (6.53)

For the numerical evaluation of the relevant GPLs, we utilised Ginac [71], [89] through
the Mathematica interface provided by PolyLogTools [66]. The latter package was also used
extensively for the manipulation of the resulting GPLs. For all checks that were carried out we
report excellent agreement.

6.6 Conclusions
In this chapter we have presented the analytic calculation of pentagon integrals with up to
one off-shell leg in d = 4 − 2ε space-time dimensions in terms of GPLs of higher weights. We
constructed a candidate pure basis of MI for the pentagon family with one off-shell leg following
the ideas of [80], [85] and we verified that it satisfies a canonical differential equation [42] in
the SDE approach [38].

We have demonstrated that all relevant boundary terms are either zero or given in closed
form. This allows one to straightforwardly obtain analytic solutions of the canonical differential
equation for the pentagon family with one off-shell leg in terms of GPLs [44] of arbitrary tran-
scendental weight. As a by-product of this result, we were able to obtain analytic expressions
for the massless pentagon family in terms of GPLs, as well as a pure basis of MI, after taking
the x→ 1 limit of the former result in an algorithmic way [60].
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Chapter 7

Two-loop planar Penta-Box master
integrals with one massive leg

We present analytic expressions in terms of polylogarithmic functions for all three families of
planar two-loop five-point Master Integrals with one off-shell leg. The calculation is based on
the Simplified Differential Equations approach. The results are relevant to the study of many
2 → 3 scattering processes of interest at the LHC, especially for the leading-color W + 2 jets
production. This chapter is based on original research done in collaboration with D.D. Canko
and C. G. Papadopoulos and appeared first in [82].

7.1 Introduction
As we advance on the third decade of the 21st century, the established Standard Model of
Particle Physics faces serious and interesting challenges from the domains of Cosmology and
Astrophysics. One of those challenges for example is the particle nature of Dark Matter, and
whether its dynamics can be described through the introduction of one or several new particles,
thus imposing the need to extend our understanding of Particle Physics. The major experiments
of Particle Physics however, spearheaded by the LHC program at CERN, have yet to reveal
any clear signs of New Physics that would require the extension of the established Standard
Model.

To make progress in the current situation, a precision [6] program has been initiated, in
part because it is clear by now that any New Physics at the LHC data will appear in the
form of small deviations from theoretical predictions, but also due to the increased precision
of the accumulated experimental data. Thus the need arises for equally precise theoretical
predictions, in order to be able to exploit the full discovery potential of the LHC and its future
High Luminosity upgrade.

From a theoretical standpoint, it is estimated that the LHC Run 3 and the High Luminos-
ity Run scheduled to commence after it, will require at least Next-to-Next-to-Leading-Order
(NNLO) corrections for the QCD dominated processes [90]–[92]. A major ingredient of these
higher order perturbative corrections is the calculation of the relevant scattering amplitudes
for specific scattering processes, and within these amplitudes, complicated two-loop Feynman
Diagrams need to be computed. Through the Feynman rules of quantum field theory, we can
relate these two-loop Feynman Diagrams to two-loop Feynman Integrals, which are the topic
of this contribution.

The current frontier in two-loop calculations is in 2→ 3 scattering processes. For massless
external particles and massless internal propagators, all planar [81] and non-planar Feynman
Integrals have been calculated [93]. First results for 2 → 3 scattering processes involving one
massive external particle for planar topologies were presented in [81] a few years ago, with
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the full list of all two-loop planar Feynman Integrals relevant to 2 → 3 scattering processes
with one off-shell leg appearing recently using a numerical approach [80]. Here, we will present
analytic results for all planar two-loop Feynman Integrals with one off-shell leg in terms of
polylogarithmic functions up to transcendental weight four [82].

7.2 Integral families and kinematics
There are three families of Master Integrals, labelled as P1, P2 and P3, see Fig. 7.1, associ-
ated to planar two-loop five-point amplitudes with one off-shell leg. We adopt the definition
of the scattering kinematics following [80], where external momenta qi, i = 1 . . . 5 satisfy∑5

1 qi = 0, q2
1 ≡ p1s, q2

i = 0, i = 2 . . . 5, and the six independent invariants are given by
{q2

1, s12, s23, s34, s45, s15}, with sij := (qi + qj)
2.

In the SDE approach [38] the momenta are re-parametrized by introducing a dimensionless
variable x, as follows

q1 → p123 − xp12, q2 → p4, q3 → −p1234, q4 → xp1 (7.1)

where the new momenta pi, i = 1 . . . 5 satisfy now
∑5

1 pi = 0, p2
i = 0, i = 1 . . . 5, whereas

pi...j := pi + . . . + pj. The set of independent invariants is given by {S12, S23, S34, S45, S51, x},
with Sij := (pi + pj)

2. The explicit mapping between the two sets of invariants is given by

q2
1 = (1− x)(S45 − S12x), s12 = (S34 − S12(1− x))x, s23 = S45, s34 = S51x,

s45 = S12x
2, s15 = S45 + (S23 − S45)x (7.2)

and as usual the x = 1 limit corresponds to the on-shell kinematics.
The corresponding Feynman Integrals are defined through

GP1
a1···a11 := e2γEε

∫
ddk1

iπd/2
ddk2

iπd/2
1

k2a1
1 (k1 + q1)2a2(k1 + q12)2a3(k1 + q123)2a4

× 1

k2a5
2 (k2 + q123)2a6(k2 + q1234)2a7(k1 − k2)2a8(k1 + q1234)2a9(k2 + q1)2a10(k2 + q12)2a11

, (7.3)

GP2
a1···a11 := e2γEε

∫
ddk1

iπd/2
ddk2

iπd/2
1

k2a1
1 (k1 − q1234)2a2(k1 − q234)2a3(k1 − q34)2a4

× 1

k2a5
2 (k2 − q34)2a6(k2 − q4)2a7(k1 − k2)2a8(k2 − q1234)2a9(k2 − q234)2a10(k1 − q4)2a11

, (7.4)

GP3
a1···a11 := e2γEε

∫
ddk1

iπd/2
ddk2

iπd/2
1

k2a1
1 (k1 + q2)2a2(k1 + q23)2a3(k1 + q234)2a4

× 1

k2a5
2 (k2 + q234)2a6(k2 − q1)2a7(k1 − k2)2a8(k1 − q1)2a9(k2 + q2)2a10(k2 + q23)2a11

, (7.5)

where qi...j := qi + . . .+ qj.
The P1 family consists of 74 Master integrals. For P2 and P3 the corresponding numbers are

75 and 86. This can easily be verified using standard IBP reduction software, such as FIRE6 [28]
and KIRA [29], [94]. The top-sector integrals are shown in Fig. 7.1.
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xp1

xp2

−p1234

p123 − xp12

p4

xp1 xp2

−p1234

p123 − xp12

p4

xp2

p123 − xp12

xp1

p4

−p1234

Figure 7.1: The two-loop diagrams representing the top-sector of the planar pentabox family
P1, P2 and P3. All external momenta are incoming.

7.3 Canonical basis and Differential Equations
In order to express all integrals given by Eqs.(7.3-7.5), the easiest way is to define a basis
that satisfy a canonical differential equation. By basis we mean a combination of Feynman
Integrals with coefficients depending on the set of invariants and the dimensionality of space-
time d = 4− 2ε. Let us assume that such a basis is known, then the DE is written in general
as

d~g = ε
∑
a

d log (Wa) M̃a~g (7.6)

where ~g represents a vector containing all elements of the canonical basis, Wa are functions of
the kinematics and M̃a are matrices independent of the kinematical invariants, whose matrix
elements are pure rational numbers. Notice that Eq. (7.6) is a multi-variable equation and in the
case under consideration the differentiation is understood with respect to the six-dimensional
array of independent kinematical invariants, {q2

1, s12, s23, s34, s45, s15}. Since Wa are in general
algebraic functions of the kinematical invariants a straightforward integration of Eq. (7.6) in
terms of generalized poly-logarithms is not an easy task.

In the SDE approach though, Eq. 7.6 takes the much simpler form

d~g

dx
= ε

∑
b

1

x− lb
Mb~g (7.7)

whereMb are again rational matrices independent of the kinematics, and the so-called letters, lb,
are independent of x, depending only on the five invariants, {S12, S23, S34, S45, S51}. Notice that
the number of letters in x is generally smaller than the number of letters in Eq.(7.6). Since
the Eq. (7.7) is a Fuchsian system of ordinary differential equations, it is straightforwardly
integrated in terms of Goncharov poly-logarithms, G (lb1 , lb2 , . . . ;x).

Over the last years much effort has been devoted to construct the canonical basis, or at least
an educated guess of it, and then verify the form of Eq. 7.6 through standard differentiation
and IBP reduction. We refer to section 4 of reference [80] for a thorough discussion of relevant
work in the literature. In principle the knowledge of the canonical basis is enough within
the SDE approach to derive the form of the corresponding canonical differential equation,
Eq. (7.7), by explicitly differentiating with respect to x and using IBP identities to express
the resulting combinations of Feynman integrals in terms of basis elements. In fact, as we will
show later, since the matrices entering in Eq. (7.7) are independent of the kinematics, one can
use solutions of IBP identities derived by assigning integer values to the kinematics, except x.
Using nowadays packages such as FIRE6 and KIRA the above-mentioned IBP-reduction becomes
a computationally trivial exercise. Notice that there is no need to use rational reconstruction
methods, as far as the derivation of Eq. (7.7) is concerned.

Knowing from reference [80], the explicit form of the matrices M̃a and of the letters Wa in
terms of the variables p1s, s12, s23, s34, s45, s15 (p1s ≡ q2

1), in Eq. (7.6), we simply derive the data
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p123 − xp12

p4

xp1

−p1234

xp2

Figure 7.2: The two-loop diagram representing the decoupling basis element.

needed in Eq. (7.7), based on the following identity,∑
a

d log (Wa)

dx
M̃a ≡

∑
b

1

x− lb
Mb (7.8)

making use of Eq. (7.2). For P2 and P3 families Eq. (7.8) is applicable after eliminating a
special element basis whose leading singularity is proportional to a non-rationalizable square
root in terms of x. The corresponding integral is shown in Fig. 7.2 and it is the same for
the two families. It is already known from the double-box families with two off-shell legs [95],
P23. Since our task is to evaluate all basis elements up to O(ε4) and since the basis element
expansion of the above integral starts at O(ε4), it effectively decouples from the differential
equation Eq. (7.7).

The alphabet for the three planar families considered in this chapter consists of 32 letters
in total, namely

l1 → 0, l2 → 1, l3 →
S12 + S23

S12

, l4 → 1− S34

S12

, l5 →
S45

S12

, l6 → −
S45

S23 − S45

,

l7 →
S45 − S23

S12

, l8 →
S45

S34 + S45

, l9 → −
S51

S12

, l10 →
S12 − S34 + S51

S12

,

l11 →
S45

−S23 + S45 + S51

, l12 →
√

∆1 + S12S23 − S23S34 + S34S45 − S12S51 − S45S51

2S12S23 + 2S12S34 − 2S12S51

,

l13 →
√

∆1 + S12S23 − S23S34 − 2S12S45 + S34S45 − S12S51 − S45S51

2S12S23 − 2S12S45 − 2S12S51

,

l14 →
−√∆1 − S23S34 + S34S45 − S45S51 − S12 (S51 − S23)

2S12 (S23 + S34 − S51)
,

l15 →
−√∆1 − S23S34 + S34S45 − S45S51 − S12 (−S23 + 2S45 + S51)

2S12 (S23 − S45 − S51)
, l16 →

S12S45 −
√

∆2

S12S34 + S12S45

,

l17 →
√

∆2 + S12S45

S12S34 + S12S45

, l18 →
√

∆3 + S12S23 − S23S34 − S12S45 + S34S45 − S12S51 − S45S51

2S12S23 − 2S12S45 − 2S12S51

,

l19 →
−√∆3 − S23S34 + S34S45 − S45S51 − S12 (−S23 + S45 + S51)

2S12 (S23 − S45 − S51)
, l20 →

S45

S12 − S34

,

l21 → −
S45

S51

, l22 →
−√∆1 − S12S23 + S23S34 − S34S45 + S12S51 + S45S51

2S12S51

,

l23 →
√

∆1 + S23S34 − S34S45 + S45S51 + S12 (S51 − S23)

2S12S51

,

l24 →
−√∆4 + S23S34 − S34S45 + S45S51 + S12 (−S23 + S45 + S51)

2S12S51

,

l25 →
√

∆4 + S23S34 − S34S45 + S45S51 + S12 (−S23 + S45 + S51)

2S12S51

,
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l26 →
−√∆1 + S23S34 − S34S45 + S45S51 + S12 (−S23 + 2S45 + S51)

2S12 (S12 − S34 + S51)
,

l27 →
√

∆1 + S23S34 − S34S45 + S45S51 + S12 (−S23 + 2S45 + S51)

2S12 (S12 − S34 + S51)
,

l28 →
√

∆5 + S12S45

S12 (S45 − S23)
, l29 →

√
∆5 − S12S45

S12 (S23 − S45)
, l30 →

(S23 − S45)S45

S12S23 + (S23 − S45)S45

,

l31 →
−2S3

45 + 2S23S
2
45 − S34S

2
45 − S51S

2
45 + S23S34S45 − S12 (S51 − S23)S45 −

√
∆6

2 (S12S23 (S34 + S45) + (S23 − S45)S45 (S34 + S45)− S12S45S51)
,

l32 →
−2S3

45 + 2S23S
2
45 − S34S

2
45 − S51S

2
45 + S23S34S45 + S12 (S23 − S51)S45 +

√
∆6

2 (S12S23 (S34 + S45) + (S23 − S45)S45 (S34 + S45)− S12S45S51)
(7.9)

with

∆1 =S2
12 (S23 − S51) 2 + (S23S34 + S45 (S51 − S34)) 2

+ 2S12

(
S45S51S23 + S34 (S45 + S51)S23 − S2

23S34 + S45 (S34 − S51)S51

)
, (7.10)

∆2 =S12S34S45 (−S12 + S34 + S45) , (7.11)
∆3 =S2

12 (−S23 + S45 + S51) 2 + (S23S34 + S45 (S51 − S34)) 2

− 2S12 (S23 − S45 − S51) (S23S34 − S45 (S34 + S51)) , (7.12)
∆4 =

(
S2

23 − 2 (S45 + S51)S23 + (S45 − S51) 2
)
S2

12 + (S23S34 + S45 (S51 − S34)) 2

− 2
(
S34S

2
23 + S45S51S23 − S34 (2S45 + S51)S23 + S45 (S34 − S51) (S45 − S51)

)
S12, (7.13)

∆5 =S12S23 (S12 + S23 − S45)S45, (7.14)
∆6 =S2

45∆1. (7.15)

Each family is characterised by a subset of the full set of letters. In P1 the following 19
letters appear,

{l1, l2, l3, l4, l5, l6, l7, l8, l9, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19} , (7.16)

in P2 the following 25 letters appear,

{l1, l2, l3, l4, l5, l6, l7, l8, l9, l10, l11, l12, l13, l14, l15, l18, l19, l20, l21, l22, l23, l24, l25, l26, l27} , (7.17)

and finally in P3 the following 25 letters appear,

{l1, l2, l3, l4, l5, l6, l7, l8, l10, l11, l13, l15, l20, l21, l22, l23, l24, l25, l26, l27, l28, l29, l30, l31, l32} . (7.18)

7.4 Boundary conditions and analytic expressions
Obtaining boundary terms for the solution of the canonical SDE requires the computation of
the x → 0 limit for all basis elements. Following the computational framework as described
in chapter 3, we define the resummation matrix R for each planar family. For families P2

and P3, despite the fact that two basis elements effectively decouple and are already known in
the literature, we calculate their boundary terms as well, since they contribute to other basis
elements.

Through IBP reduction, we can express the pure basis g in terms of a specific choice of MI
G,

g = TG (7.19)
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Using the method of expansion-by-regions, we can obtain information for the asymptotic be-
haviour of the Feynman integrals in terms of which we express the pure basis of Master integrals
(7.19) in the limit x→ 0,

Gi =
x→0

∑
j

xbj+ajεG
(bj+ajε)
i (7.20)

where aj and bj are integers and Gi are the individual members of the basis G of Feynman
integrals in (7.19). We thus arrive at

Rb = lim
x→0

TG
∣∣∣
O(x0+ajε)

(7.21)

where the right-hand side implies that, apart from the terms xaiε coming from (7.20), we
expand around x = 0, keeping only terms of order x0. Notice that since the left-hand side
of the equation contains pure functions with rational coefficients that are independent of the
underlying kinematics ~S := {S12, S23, S34, S45, S51}, the determination of the matrix T, as a
function of x and d, is based on solutions of IBP identities, using integer values for ~S. This
results to a significant reduction in complexity and CPU time, taking into account that several
basis elements are given in terms of Baikov polynomials, µ11, µ22, µ12, and containing FI with
up to fourth power of irreducible inverse propagators.

As indicated in chapter 3, Eq. (7.21) is a powerful framework allowing to determine all
boundary constants b. First of all in the case the left-hand side contains a logarithmic term in
x, a set of linear relations between elements of the array b are obtained by setting the coefficient
of log (x) to zero. Secondly, powers of xaε that appear only in the left-hand side do also produce
relations among elements of b. These two sets of relations account for the determination of a
significant part of the components of the boundary array. The last set of equations requires
the determination of some regions of Master Integrals, G(j)

i , in the limit x → 0. Expressions
of these integral-regions in terms of Feynman parameters are obtained using SDExpandAsy in
FIESTA4 [58]. Their calculation is straightforwardly achieved either by direct integration in
Feynman-parameter space and then by using HypExp [55], [56] to expand the resulting 2F1

hypergeometric functions, or in a very few cases, by Mellin-Barnes techniques using the MB [96],
[97], MBSums [98] and XSummer [99] packages1. All the boundary values are analytically expressed
in terms of poly-logarithmic functions, namely logarithms and Goncharov poly-logarithms as
functions of the reduced kinematical variables {S12, S23, S34, S45, S51}.

Although the above described method is general and straightforward, in practice many of
the components of b are obtained by exploiting the known representations of the elements of
the canonical basis as given in the double-box families [95], [100].

After obtaining all boundary terms, the solution of the canonical SDE can be written in the
following compact form up to order O (ε4)

g = ε0b(0)
0 + ε

(∑
GaMab

(0)
0 + b(1)

0

)
+ ε2

(∑
GabMaMbb

(0)
0 +

∑
GaMab

(1)
0 + b(2)

0

)
+ ε3

(∑
GabcMaMbMcb

(0)
0 +

∑
GabMaMbb

(1)
0 +

∑
GaMab

(2)
0 + b(3)

0

)
+ ε4

(∑
GabcdMaMbMcMdb

(0)
0 +

∑
GabcMaMbMcb

(1)
0

1The in-house Mathematica package Gsuite, that automatically process the MBSums output through XSummer,
written by A. Kardos, is used.
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+
∑
GabMaMbb

(2)
0 +

∑
GaMab

(3)
0 + b(4)

0

)
(7.22)

Gab... := G(la, lb, . . . ;x).

In order to get an idea of the actual structure of the solutions, we give explicit results for the
non-zero top-sector basis element for each family up to order O (ε1),

gP1
72 =

3

2
+ ε

[
G
(
S45

S12

;x

)
− G

(
S12 − S34

S12

;x

)
− 3G(0;x) + G(1;x)− log (S12 − S34)− 2 log (−S51)

]
, (7.23)

gP2
73 = ε

[
3G
(
S12 + S23

S12

;x

)
− 3G

(
S12 − S34

S12

;x

)
− 3G

(
S45

S12

;x

)
+ 3G(1;x)− 3 log (S12 − S34) + 3 log (−S51)

]
, (7.24)

gP3
84 =

1

2
+ ε

[
5

2
G
(
S45

S12

;x

)
− 3

2
G
(
S12 − S34

S12

;x

)
− 5

2
G
(
− S45

S23 − S45

;x

)
− 2G(0;x) +

5

2
G(1;x)− log (−S12)− 3

2
log (S12 − S34) +

3

2
log (−S51)

]
. (7.25)

7.5 Numerical Results and Validation
In order to numerically evaluate the solution given in Eq. (7.22), Goncharov poly-logarithms
up to weight 4 need to be computed. To understand the complexity of the expressions at hand,
we present in Table 7.1, the number of poly-logarithmic functions entering in the solution. In
parenthesis we give the corresponding number for the non-zero top-sector basis elements. The
weight W=1 . . . 4 is identified as the number of letters la in GP G(la, . . . ;x).

Family W=1 W=2 W=3 W=4
P1 (g72) 17 (14) 116 (95) 690 (551) 2740 (2066)
P2 (g73) 25 (14) 170 (140) 1330 (1061) 4950 (3734)
P3 (g84) 22 (12) 132 (90) 1196 (692) 4566 (2488)

Table 7.1: Number of GPLs entering in the solution, as explained in the text.

The computation of GPLs is performed using their implementation in Ginac. This imple-
mentation is capable to evaluate the GPLs at an arbitrary precision. The computational cost
to numerically evaluate a GPL function, depends of course on the number of significant digits
required as well as on their weight and finally on their structure, namely how many of its letters,
Eq. (7.7), satisfy lb ∈ [0, x]. We refer to reference [71] for more details.

For the following Euclidean point

S12 → −2, S23 → −3, S34 → −5, S45 → −7, S51 → −11, x→ 1

4
(7.26)

all GPL functions with real letters are real, namely no letter is in [0, x], and moreover the
boundary terms are by construction all real. The result is given in Table 7.2 with timings,
running the GiNaC Interactive Shell ginsh, given by 1.9, 3.3, and 2 seconds for P1, P2 and P3
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P1 g72

ε0: 3/2
ε1: -2.2514604753379400332169314784961
ε2: -17.910593443812320786572184851867
ε3: -26.429770706459534336624681550003
ε4: 21.437938934510558345847354772412

P2 g73

ε1: 2.8124788185742741402751457351382
ε2: 5.4813042746593704203645729908938
ε3: 11.590234540689191439870956817546
ε4: -5.9962816226829136730734255754596

P3 g84

ε0: 1/2
ε1: 3.2780415861887284967738281876762
ε2: 0.11455863130537720411162743574627
ε3: -16.979642659429606120982671925458
ε4: -48.101985355625914648042310964575

Table 7.2: Numerical results for the non-zero top sector element of each family with 32 signifi-
cant digits.

respectively and for a precision of 32 significant digits. As can be seen also from Table 7.1, the
timing for the evaluation of all GPs in a family, is of the same order as its top-sector element.

In order to obtain results for scattering kinematics, we need to properly analytically continue
the GPs and logarithms involved in our solution. In general, the kinematic variables p1s and
sij, acquire an infinitesimal imaginary part [101]. This means that Sij as well as the parameter
x, through Eq. (7.1), acquire also an infinitesimal imaginary part, i.e. Sij → Sij + iδijη,
x→ x+ iδxη, with η → 0 [81], [95]. Notice that Eq. (7.1) implies that for a given assignment of
the kinematic variables p1s and sij, there are two solutions in Sij and x. In general δij and δx
should also satisfy the analyticity constraints stemming from the one-scale integrals, known in
closed form in ε. These integrals are proportional to (−sij)nε, (−p1s)

nε, n = −1,−2, and must
be consistently expressed in terms of Sij and x, through the following equations:

(−s34)−ε = (−S51)−εx−ε

(−s45)−ε = (−S12)−εx−4ε

(−s15)−ε = (−S45)−ε
(

1− S45 − S23

S45

x

)−ε
(−p1s)

−ε = (1− x)−ε(−S45)−ε
(

1− S12

S45

x

)−ε
(−s12)−ε = x−ε(S12 − S34)−ε

(
1− S12

S12 − S34

x

)−ε
, (7.27)

which constrain the values of δij and δx.
In Table 7.3 we present results for all top-sector integrals at W = 4, for the first physical

point provided in reference [80], namely

s12 → −
22

5
, s15 →

249

50
, s23 →

241

25
, s34 → −

377

100
, s45 →

13

50
, p1s→ 137

50
. (7.28)

The timings, running the GiNaC Interactive Shell ginsh, are 5.95 (2.33), 11.98 (4.94) and 8.49
(3.32) seconds for P1, P2 and P3 respectively, for Ndigits = 32 (16). We have also compared
our results for all families, all basis elements and all physical points with those of reference [80]
and found perfect agreement to the precision used, (Ndigits = 16, 32). We also checked our
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results, not only at the level of basis elements but also at the level of Master Integrals, against
FIESTA4 [58] and found agreement within the numerical integration errors provided by it.

P1 g72
29.802763651793108812023893217593
+i 273.86627846266515113913295225572

mzz I3
29.802763651793108812023893217593
+i 273.86627846266515113913295225572

P2 g73
44.162165744735300867233118554183
-i 46.218746133850339969944403077557

zmz I3
44.162165744735300867233118554183
-i 46.218746133850339969944403077557

P3 g84
11.908529680841593329567378444341
-i 143.83838235097336513553728991658

zzz I3
11.908529680841593329567378444341
-i 143.83838235097336513553728991658

Table 7.3: Numerical results for the non-zero top sector element of each family at weight 4 with
32 significant digits. The notation Ii is used in accordance with Table 2 of [80].

For the other physical points, beyond the first one, the number of letters in [0, x] is not
anymore zero. As a consequence the running time is increasing, up to two orders of magnitude,
with the last physical point being the worst case, as for this point the number of letters in [0, x]
amounts to 19 out of a total of 24 letters involved in the non-zero top-sector basis elements. It is
therefore worthwhile to thoroughly investigate the structure of the analytic result, with the aim
to provide alternative representations in terms of Goncharov poly-logarithmic functions that are
manifestly real-valued and thus much faster to compute. Notice that, from the structure of the
analytic representation studied in this chapter (see for instance Table 7.1), the computational
time is entirely determined by the W = 4 functions. Therefore, as experience shows [70],
[78], [79], [102], the use of one-dimensional integral representations at W = 4, may lead to a
significant reduction in CPU time.

7.6 Conclusions and outlook
In this chapter we have presented analytic expressions in terms of poly-logarithmic functions,
Goncharov Polylogarithms, of all planar two-loop five-point integrals with a massive external
leg. This has been achieved by using the Simplified Differential Equations approach and the
data for the canonical basis provided in reference [80]. Moreover, the necessary boundary values
of all basis elements have been computed, based mainly on the form of the canonical differential
equation, Eq. (7.7) and, in few cases, on the expansion by regions approach. The ability to
straightforwardly compute the boundary values at x = 0 and to even more straightforwardly
express the solution in terms of Goncharov Polylogarithms, is based on the unique property of
the SDE approach that the scattering kinematics is effectively simplified and rationalized with
respect to x, in noticeable contradistinction with the standard differential equation approach,
where such an analytic realisation of the solution is prohibitively difficult.

Obviously, the next step, is to extend the work of this chapter in the case of the remaining five
non-planar families, shown in Fig. 8.1. Since on top of the planar penta-box families presented
in this chapter, we have already computed the pure-function solutions in SDE approach, for all
double-box families, planar and non-planar, with up to two external massive legs, we expect
that the construction of the canonical basis of the few remaining non-planar Master Integrals
will be plausible in the near future. Having the corresponding equation, Eq. (7.7), for the
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non-planar families, it should be straightforward to extend the work of this chapter and to
complete the full list of two-loop five-point Feynman Integrals with one massive external leg.
We remind that within the SDE approach, having the analytic representations of two-loop five-
point Master Integrals with one massive external leg in terms of Goncharov poly-logarithmic
functions, allows also to straightforwardly obtain the result for massless external legs in terms
of Goncharov poly-logarithmic functions, by taking the limit x = 1 [70], [81] and making use of
the resummed matrix corresponding to lb = 1 term in Eq. (7.7). In summary, when this next
step is completed, a library of all two-loop Master Integrals with internal massless particles and
up to five (four) external legs, among which one (two) massive legs will be provided: this will
constitute a significant milestone towards the knowledge of the full basis of two-loop Feynman
Integrals.

We have also shown how to obtain numerical results for all kinematic configurations, includ-
ing Euclidean and physical regions. With regard to the expected progress in the calculation of
2→ 3 scattering process [83], [102], [103], it would be desirable to adapt our results in different
kinematic regions, using for instance fibration-basis techniques [65], [66].
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Chapter 8

Two-loop non-planar Hexa-Box master
integrals with one massive leg

Based on the Simplified Differential Equations approach, we present results for the two-loop
non-planar hexa-box families of master integrals. We introduce a new approach to obtain the
boundary terms and establish a one-dimensional integral representation of the master integrals
in terms of Generalised Polylogarithms, when the alphabet contains non-factorisable square
roots. The results are relevant to the study of NNLO QCD corrections forW,Z and Higgs-boson
production in association with two hadronic jets. This chapter is based on original research
which appeared first in [104], done in collaboration with A. Kardos, C.G. Papadopoulos, A.V.
Smirnov and C. Wever.

8.1 Introduction
The computation of higher order corrections to Standard Model (SM) scattering processes
and their comparison against data coming from collider experiments remains one of the best
approaches for the study of Nature at its most fundamental level. The discovery of the Higgs
boson at the LHC [4], [5] solidified the mathematical consistency of the SM of Particle Physics
as our best fundamental description of Nature. In the absence of any clear signals for physics
beyond the SM, a detailed study of the properties of the Higgs boson along with a scrutinization
of key SM processes have spearheaded the endeavour to advance our understanding of Particle
Physics [6].

The upcoming High Luminosity upgrade of the LHC will provide us with experimental data
of unprecedented precision. Making sense of the data and exploiting the machine’s full potential
will require theoretical predictions of equally high precision. In recent years, the theoretical
community has made tremendous effort to meet the challenge of performing notoriously difficult
perturbative calculations in Quantum Field Theory. The current precision frontier for the QCD
dominated processes studied at the LHC lies at the Next-to-Next-to-Leading-Order (NNLO)
for massless 2→ 3 scattering with one off-shell external particle [90], [105].

A typical NNLO calculation involves, among other things, the computation of two-loop
Feynman diagrams [106]. The established method for performing such calculations is by solving
first-order differential equations (DE) satisfied by the relevant Feynman integrals (FI) [34]–[37].
Working within dimensional regularisation in d = 4 − 2ε dimensions, allows the derivation of
linear relations in the form of Integration-By-Parts (IBP) identities satisfied by these integrals
[26], which allows one to obtain a minimal and finite set of FI for a specific scattering process,
known as master integrals (MI).

It has been conjectured that FI with constant leading singularities in d dimensions satisfy
a simpler class of DE [40], known as canonical DE [42]. A basis of MI satisfying canonical DE
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Figure 8.1: The five non-planar families with one external massive leg. The first row corresponds
to the so-called hexabox topologies, whereas the diagrams of the second row are known as
double-pentagons. We label them as follows: N1 (top left), N2 (top middle), N3 (top right), N4

(bottom left), N5 (bottom right). All diagrams have been drawn using Jaxodraw [115].

is known as a pure basis. The study of the special functions which appear in the solutions of
such DE has provided a deeper understanding of their mathematical properties. These special
functions often admit a representation in the form of Chen iterated integrals [107]. For a large
class of FI, their result can be written in terms of a well studied class of special functions,
known as Multiple of Goncharov polylogarithms (GPLs) [44]–[47]. Several computational tools
have been developed for their algebraic manipulation [66] and numerical evaluation [71], [108].

For the case of two-loop five-point MI with one massive leg, pure bases of MI have been
recently presented in [80] for the planar topologies, which we will call one-mass pentaboxes,
and more recently in [109] for some of the non-planar topologies, which we will call one-
mass hexaboxes. All one-mass pentaboxes have been computed both numerically [80], using
generalised power-series expansions [110], [111], as well as analytically in terms of GPLs [82],
by employing the Simplified Differential Equations (SDE) approach [38]. Recently, analytic
results were also obtained in the form of Chen iterated integrals and have been implemented
into the so-called one-mass pentagon functions [112], similar to the two-loop five-point massless
results [78], [79]. These results, along with fully analytic solutions for the relevant one-loop
integral family [72], have lead to the production of the first phenomenological studies at the
leading-colour approximation for 2 → 3 scattering processes involving one massive particle at
the LHC [84], [113], [114]. For the one-mass hexabox topologies, numerical results were first
presented in [70], using a method which emulates the Feynman parameter technique, for one
of the non-planar integral families. All three integral families were treated numerically in [109]
using the same methods as in [80].

In this chapter, we employ the SDE approach and obtain semi-analytic results for all one-
mass hexaboxes, using the pure bases presented in [109]. More specifically, we obtain fully
analytic expressions in terms of GPLs of up to weight 4 for the first non-planar family, denoted
as N1 in figure 8.1. For families N2 and N3, we obtain analytic results for the unknown non-
planar integrals up to weight 2, whereas for weights 3 and 4 we introduce a one-fold integral
representation in terms of GPLs allowing for a straightforward numerical evaluation of our
expressions.

8.2 Hexabox integral families
There are three non-planar families of MI that correspond to the one-mass hexabox topologies,
labelled as N1, N2 and N3, see figure 8.1. We adopt the definition of the scattering kinematics
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following [109], where external momenta qi, i = 1 . . . 5 satisfy
∑5

1 qi = 0, q2
1 ≡ p1s, q2

i =
0, i = 2 . . . 5, and the six independent invariants are given by {q2

1, s12, s23, s34, s45, s15}, with
sij := (qi + qj)

2.
In the SDE approach [38] the momenta are parametrized by introducing a dimensionless

variable x, as follows

q1 → p123 − xp12, q2 → p4, q3 → −p1234, q4 → xp1 (8.1)

where the new momenta pi, i = 1 . . . 5 satisfy now
∑5

1 pi = 0, p2
i = 0, i = 1 . . . 5, whereas

pi...j := pi + . . . + pj. The set of independent invariants is given by {S12, S23, S34, S45, S51, x},
with Sij := (pi + pj)

2. The explicit mapping between the two sets of invariants is given by

q2
1 = (1− x)(S45 − S12x), s12 = (S34 − S12(1− x))x, s23 = S45, s34 = S51x,

s45 = S12x
2, s15 = S45 + (S23 − S45)x (8.2)

and as usual the x = 1 limit corresponds to the on-shell kinematics.
The corresponding Feynman Integrals are defined through

FN1
a1···a11 := e2γEε

∫
ddk1

iπd/2
ddk2

iπd/2
1

k2a1
1 (k1 + q1)2a2(k1 + q12)2a3(k1 + q123)2a4

× 1

(k1 + k2 + q1234)2a5(k1 + k2)2a6k2a7
2 (k2 + q4)2a8(k2 + q1)2a9(k1 + q4)2a10(k2 + q12)2a11

, (8.3)

FN2
a1···a11 := e2γEε

∫
ddk1

iπd/2
ddk2

iπd/2
1

k2a1
1 (k1 − q1234)2a2(k1 − q234)2a3(k1 − q34)2a4

× 1

(k1 + k2 − q4)2a5(k1 + k2)2a6k2a7
2 (k2 + q3)2a8(k2 − q1234)2a9(k1 + q3)2a10(k2 − q234)2a11

, (8.4)

FN3
a1···a11 := e2γEε

∫
ddk1

iπd/2
ddk2

iπd/2
1

k2a1
1 (k1 + q2)2a2(k1 + q23)2a3(k1 + q234)2a4

× 1

(k1 + k2 + q1234)2a5(k1 + k2)2a6k2a7
2 (k2 + q1)2a8(k2 + q2)2a9(k1 + q1)2a10(k2 + q23)2a11

, (8.5)

where qi...j := qi + . . .+ qj.
Using FIRE6 [28] we found that the N1 family consists of 86 MI out of which 10 MI are

genuinely new, the rest being known from the one-mass planar pentabox [82] or the non-planar
double-box families [95]. For N2 and N3 the corresponding numbers are 86, 13 and 135, 21.

8.2.1 Pure bases and simplified canonical differential equations

We adopt the pure bases presented in [109]. As was the case for the pure bases of the planar
families presented in [80], a d log form of the relevant differential equations was achieved, whose
alphabet involves several square roots of the kinematic invariants {q2

1, s12, s23, s34, s45, s15}. More
specifically, the following six square roots that appear in the alphabets of the one-mass hexabox
integral families are

r1 =
√
λ(p1s, s23, s45) (8.6)
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r2 =
√
λ(p1s, s24, s35) (8.7)

r3 =
√
λ(p1s, s25, s34) (8.8)

r4 =
√

detG(q1, q2, q3, q4) (8.9)

r5 =

√
Σ

(1)
5 (8.10)

r6 =

√
Σ

(2)
5 (8.11)

with λ(x, y, z) = x2−2xy−2xz+y2−2yz+z2 representing the Källen function, G(q1, q2, q3, q4) =

{2qi ·qj} being the the Gram matrix of the external momenta, and Σ
(1)
5 , Σ

(2)
5 are the polynomials

Σ
(1)
5 = s2

12 (s15 − s23) 2 + (s23s34 + (s15 − s34) s45) 2

+ 2s12

(
−s45s

2
15 + s23s34s15 + (s23 + s34) s45s15 + s23s34 (s45 − s23)

)
(8.12)

Σ
(2)
5 = (s12 (p1s − s15 + s23)− s23s34) 2 + s2

45 (p1s − s15 + s34) 2

− 2s45

(
s34 ((s12 + s23) p1s − s15s23 − s12 (s15 + s23)) + s12 (p1s − s15) (p1s − s15 + s23) + s23s

2
34

)
.

(8.13)

For topology N1, the square roots r1 and r4 appear in its alphabet given in [109]. Introducing
the dimensionless variable x rationalises these two roots through the mapping of (8.2). This
allows us to derive a SDE in canonical form for N1,

∂xg = ε

(
lmax∑
i=1

Mi

x− li

)
g (8.14)

where g is the pure basis of N1, Mi are the residue matrices corresponding to each letter li and
lmax is the length of the alphabet, which for N1 is lmax = 21. It is interesting to note here the
significant reduction in the number of letters in comparison with the alphabet of N1 given in
[109], where the relevant length of the alphabet is 39. The form of (8.14) allows for a direct
iterative solution order-by-order in ε in terms of GPLs, assuming that the relevant boundary
terms are obtained.

For topologies N2 and N3, the square roots appearing in their respective alphabets [109]
are {r1, r2, r4, r5} and {r1, r3, r4, r6}. In general all the square roots with the exception of
{r5, r6} can be rationalised using either the mapping given in (8.2) or a variant of it [38], [82].
Nevertheless, in order to write an equation in the form of (8.14) a simultaneous rationalisation
of all square roots is necessary. In fact, the mapping (8.2) allows for the rationalisation of
r1 and r4 in terms of x, but this is not the case for {r2, r3, r5, r6}. It is thus not possible to
achieve a canonical SDE in the form of (8.14) for families N2 and N3 using the parametrisation
(8.1). This does not mean that the basis elements cannot be cast in the form of GPLs, but
just that such a representation is not straightforwardly obtained based on the simple equation
(8.14). The more general form of the SDE takes the form:

∂xg = ε

(
lmax∑
a=1

dLa
dx

Ma

)
g (8.15)

where most of the La are simple rational functions of x, as in (8.14), whereas the rest are
algebraic functions of x involving the non-rationalisable square roots.

A detailed analysis of (8.15) reveals that these non-rationalisable square roots start ap-
pearing at weight two. In practise this means that we can use the mapping (8.2) and solve
the respective canonical DE for N2 and N3 by integrating with respect to x up to weight one
in terms of ordinary logarithms. For weight two, analytic expressions in terms of GPLs can
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be achieved due to the fact that the non-rationalisable square roots {r2, r3, r5, r6} appear
decoupled in the DE. In fact, most of the basis elements are straightforwardly expressed in
terms of GPLs by integrating the corresponding DE. For the rest, an educated ansatz can be
constructed involving only specific weight-two GPLs, which are identified by inspecting the DE
in each case where square roots {r2, r3, r5, r6} appear, modulo the boundary terms that one
needs to compute. Thus analytic expressions in terms of GPLs up to weight two are obtained
for all elements belonging in these families.

To further elaborate on this point let us analyse a rather simple case of a 3-point integral
sector with three off-shell legs, that appears in both N2 and N3 families. This sector comprises
two basis elements and the DE satisfied by those elements includes also two-point MI that are
known in closed form. For instance, inN2, the 3-point integrals appear as basis elements number
10 and 11 (see the ancillary file). The element 10 at weight 2, g(2)

10 , can straightforwardly be
obtained by integrating the (8.15) and it is expressible in terms of GPLs in the form G(a, b;x)

where a, b are independent of x. On the contrary the element 11 at weight 2, g(2)
11 , is obtained by

construction of an ansatz. Let us mention that all elements in question, except those involving
the square roots {r5, r6}, namely element 73 in N2 and 114 in N3, are known in terms of GPLs
up to weight 4 [82], [95], based though on different variants of the parametrization (8.1). For
instance element 11 of N2 is given as

g
(2)
11 = 8

(
2G(0,−y)

(
G (1, y)− G

(
S̃45

S̃12

, y

))
+ 2G

(
0,
S̃45

S̃12

, y

)
− G (1, y) log

(
S̃45

S̃12

)

+ log

(
S̃45

S̃12

)
G
(
S̃45

S̃12

, y

)
− 2G (0, 1, y)

)
(8.16)

where the new parametrization of the external momenta is given by

q1 → p̃123 − yp̃12, q2 → yp̃2, q3 → −p̃1234, q4 → yp̃1 (8.17)

with the new momenta p̃i, i = 1 . . . 5 satisfying as usual,
∑5

1 p̃i = 0, p̃2
i = 0, i = 1 . . . 5, with

p̃i...j := p̃i + . . . + p̃j. The set of independent invariants is given by {S̃12, S̃23, S̃34, S̃45, S̃51, y},
with S̃ij := (p̃i + p̃j)

2. The explicit mapping between the two sets of invariants is given by

q2
1 = (1− y)(S̃45 − S̃12y), s12 = S̃45(1− y) + S̃23y, s23 = −y

(
S̃12 − S̃34 + S̃51

)
,

s34 = S̃51y, s45 = y
(
S̃23 − S̃45 − S̃51

)
, s15 = y

(
S̃34 − S̃12(1− y)

)
. (8.18)

Notice that the result of (8.16) is obtained through SDE approach in the parametrization of
(8.17). By identifying f− = y and f+ = y S̃12

S̃45
, which in terms of (8.2) are given as

f± =
S45 + x (−S23 − S34 + 2S51 + S12x)± r2

2 (S12 − S34 + S51)x

we can write the DE for this element in the simple and compact form

d

dx
g

(2)
11 = −8

(
dlog

(
f+ − 1

f− − 1

)
log (f−f+)− dlog

(
f+

f−

)
log ((f− − 1) (f+ − 1))

)
.

The form of the DE makes the determination of the ansatz rather straightforward, with the
result

g
(2)
11 = −8

(
− log(f−f+)

(
G(1, f−)− G(1, f+)

)
+ 2G(0, 1, f−)− 2G(0, 1, f+)

)
. (8.19)
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Concerning the other non-rationalisable square root in the family N2, r5, it also appears
for the first time at weight 2 in the basis element 73 only (see the ancillary file), which is one
of the new integrals to be calculated. Following the same procedure as for the element 11,
namely writing the corresponding DE in a similar form, we find that the expression at weight
2 is similar to that of (8.19),

g
(2)
73 = 16 log (f−f+)

(
G(1, f−)− G(1, f+)

)
− 32

(
G(0, 1, f−)− G(0, 1, f+)

)
(8.20)

with
f± =

S45 (2S12x− S34x+ S51) + x (S23S34 − S12S23 + xS12S51)± r5

2S45 (S12 − S34 + S51)

Regarding family N3, there are two 3-point integral sectors with three off-shell legs that
involve square root r4, which is not rationalised in terms of x by (8.1), and consist of elements
12, 13 and 16, 17. Similarly to element 11 of family N2, elements 12 and 16 cannot be expressed
in terms of GPLs through a straightforward integration of their respective DE. However, we
can achieve a GPL representation for them at weight 2 similar to (8.19), where now the f−, f+

functions involve the square root r4 instead of r2. Square root r6 appears for the first time at
weight 2 in element 114 similarly to the way square root r5 appears in element 73 in the N2

family, allowing us to obtain an expression at weight 2 as in (8.20), with the f−, f+ functions
involving r6 instead of r5.

Studying basis elements that are known in terms of GPLs up to weight 4, proved useful
in constructing an educated ansatz for the unknown integrals at weight 2. It would be very
interesting to further pursue this direction, with the aim to establish a systematic way to
construct representations in terms of GPLs for weights higher than 2. This will allow to
extend the SDE approach to cases where the letters La in (8.15) assume a general algebraic
form. Constructing analytic expressions in terms of GPLs beyond weight 2 by applying a more
general procedure following the ideas of [116], [117] is also possible, but it requires a significant
amount of resources and it might well result to a proliferation of GPLs. A more practical
and direct approach, introducing a one-dimensional integral representation will be presented in
detail in section 8.4.

8.3 Boundary terms
In this section we will describe the analytic computation of all necessary boundary terms in
terms of GPLs with rational functions of the underline kinematic invariants Sij up to weight 4.
We perform this task for all three non-planar families.

Our main approach is the one introduced in [82] and elaborated in detail in [60]. In general
we need to calculate the x→ 0 limit of each pure basis element. At first we exploit the canonical
SDE at the limit x→ 0 and define through it the resummation matrix

R = SeεD log(x)S−1 (8.21)

where the matrices S, D are obtained through the Jordan decomposition of the residue matrix
for the letter l1 = 0, M1,

M1 = SDS−1. (8.22)

Secondly, we can relate the elements of the pure basis to a set of MI G through IBP reduction,

g = TG. (8.23)
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Using the expansion by regions method [51] as implemented in the asy code which is shipped
along with FIESTA4 [58], we can obtain the x→ 0 limit of the MI in terms of which we express
the pure basis (8.23),

Gi =
x→0

∑
j

xbj+ajεG
(bj+ajε)
i (8.24)

where aj and bj are integers and Gi are the individual members of the basis G of MI in (8.23).
This analysis allows us to construct the following relation

Rb = lim
x→0

TG
∣∣∣
O(x0+ajε)

(8.25)

where the right-hand side implies that, apart from the terms xaiε coming from (8.24), we
expand around x = 0, keeping only terms of order x0. Equation (8.25) allows us in principle to
determine all boundary constants b =

∑6
i=0 εi b(i)

0 .
More specifically, in the case where D in (8.22) is non-diagonal, we will get logarithmic

terms in x on the left-hand side of (8.25), in the form xajε log(x). Since no such terms appear
on the right-hand side of (8.25), a set of linear relations between elements of the array b are
obtained by setting the coefficient of xajε log(x) terms to zero. Furthermore, powers of xajε
that appear only on the left-hand side can also yield linear relations among elements of b,
by setting their coefficients to zero. We shall call these two sets of relations pure, since they
are linear relations among elements of b with rational numbers as coefficients. These pure
relations account for the determination of a significant part of the two components of the
boundary array. Finally for the undetermined elements of b, several region-integrals G(bj+ajε)

i

usually need to be calculated coming from (8.24).Their calculation is straightforwardly achieved
either by direct integration in Feynman-parameter space and then by using HypExp [55], [56]
to expand the resulting 2F1 hypergeometric functions, or in a very few cases, by Mellin-Barnes
techniques using the MB [96], [97], MBSums [98] and XSummer [99] packages1. The b(i)

0 terms,
with i indicating the corresponding weight, consist of Zeta functions ζ(i), logarithms and GPLs
of weight i which have as arguments rational functions of the underline kinematic variables
{S12, S23, S34, S45, S51}.

This approach was efficient enough for the determination of all boundary terms for families
N1 and N2. Specifically for family N1, where a canonical SDE can be achieved (8.14), we can
write a solution in terms of GPLs up to weight 4 in the following compact form

g = ε0b(0)
0 + ε

(∑
GaMab

(0)
0 + b(1)

0

)
+ ε2

(∑
GabMaMbb

(0)
0 +

∑
GaMab

(1)
0 + b(2)

0

)
+ ε3

(∑
GabcMaMbMcb

(0)
0 +

∑
GabMaMbb

(1)
0 +

∑
GaMab

(2)
0 + b(3)

0

)
+ ε4

(∑
GabcdMaMbMcMdb

(0)
0 +

∑
GabcMaMbMcb

(1)
0

+
∑
GabMaMbb

(2)
0 +

∑
GaMab

(3)
0 + b(4)

0

)
(8.26)

were Gab... := G(la, lb, . . . ;x) represent the GPLs. These results are presented in such a way that
each coefficient of εi has transcendental weight i. If we assign weight −1 to ε, then (8.26) has
uniform weight zero.

1The in-house Mathematica package Gsuite, that automatically process the MBSums output through XSummer
is used.
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For family N3, eq. (8.25) resulted in a proliferation of region-integrals, more than 200, that
one would have to calculate in order to obtain boundary terms for several higher-sector basis
elements. More specifically, in order to obtain the following boundary terms

{b101, b103, b104, b106, b113, b117, b118, b124, b125, b126, b130, b131, b132, b133} (8.27)

one would have to calculate 208 region-integrals, with 17 of them having seven Feynman param-
eters to be integrated, making their direct integration highly non-trivial. For all basis elements
apart from (8.27) we were able to obtain boundary terms through (8.25).

To reduce the number of region-integrals for the computation of (8.27) we have investigated
a different approach. The idea is rather simple and straightforward. The pure basis elements
can be written in general as follows:

g = C

∫
ddk1

iπd/2
ddk2

iπd/2
P ({Di} , {Sij, x})∏

i∈S̃
Dai
i

(8.28)

where Di, i = 1...11, represent the inverse scalar propagators, S̃ the set of indices corresponding
to a given sector, Sij, x the kinematic invariants, P is a polynomial, ai are positive integers and
C a factor depending on Sij, x. This form is usually decomposed in terms of FI, Fi,

g = C
∑

ci ({Sij, x})Fi

with ci being polynomials in Sij, x. The limit x = 0, is then obtained, after IBP reduction,
through Feynman parameter representation of the individual MI, as described in the previous
paragraphs. An alternative approach, would be to build-up the Feynman parameter represen-
tation for the whole basis element, by considering the integral in (8.28) as a tensor integral and
making use of the formulae from the references [118], [119], to bring it in its Feynman parameter
representation. Then, by using the expansion by regions approach [51], [58], we determine the
regions2 in the limit x = 0. Rescaling the Feynman parameters by appropriate powers of x,
keeping the leading power in x, we then obtain the final result that can be written as follows:

b =
∑
I

NI

∫ ∏
i∈SI

dxi U
aI
I F

bi
I ΠI

where I runs over the set of contributing regions, UI and FI are the limits of the usual Symanzik
polynomials, ΠI is a polynomial in the Feynman parameters, xi, and the kinematic invariants
Sij, and SI the subset of surviving Feynman parameters in the limit. In this way a significant
reduction of the number of regions to be calculated is achieved. Notice that in contrast to the
approach described in the previous paragraphs, only the regions x−2ε and x−4ε contribute to
the final result. Moreover, this approach overpasses the need for an IBP reduction of the basis
elements in terms of MI.

8.4 Integral representation
After obtaining all boundary terms in section 8.3 and constructing analytic expressions for
families N2 and N3 up to O(ε2) in terms of GPLs up to weight two, we will now introduce an
one-fold integral representation for O(ε3) and O(ε4). This representation will allow us to obtain
numerical results through direct numerical integration [78], [120].

2Only the corresponding scalar integral of (8.28) determines the regions.
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Weight 3: The differential equation (8.15) can be written in the form:

∂xg
(3)
I =

∑
a

(
∂x logLa

)∑
J

caIJg
(2)
J (8.29)

where a runs over the set of contributing letters, I, J run over the set of basis elements, caIJ are
Q−number coefficients read off from the matrices Ma and g

(2)
J are the basis elements at weight

2, known in terms of GPLs. Since the lower limit of integration corresponds to x = 0, we need
to subtract the appropriate term so that the integral is explicitly finite. This is achieved as
follows:

∂xg
(3)
I =

∑
a

la
x

∑
J

caIJg
(2)
J,0 +

(∑
a

(
∂x logLa

)∑
J

caIJg
(2)
J −

∑
a

la
x

∑
J

caIJg
(2)
J,0

)
(8.30)

where g
(2)
I,0 are obtained by expanding g

(2)
I around x = 0 and keeping terms up to order

O
(

log(x)2), and la ∈ Q are defined through

∂x logLa =
la
x

+O
(
x0
)
. (8.31)

The DE (8.30) can now be integrated from x = 0 to x = x̄, and the result is given by

g
(3)
I = g

(3)
I,G + b

(3)
I +

∫ x̄

0

dx

(∑
a

(
∂x logLa

)∑
J

caIJg
(2)
J −

∑
a

la
x

∑
J

caIJg
(2)
J,0

)
(8.32)

with b(3)
I being the boundary terms at O(ε3) and

g
(3)
I,G =

∫ x̄

0

dx
∑
a

la
x

∑
J

caLJg
(2)
J,0

∣∣∣∣∣
G

(8.33)

with the subscript G, indicating that the integral is represented in terms of GPLs (see ancillary
file), following the convention

x̄∫
0

dx
1

x
G

0, ...0︸ ︷︷ ︸
n

;x

 = G

0, ...0︸ ︷︷ ︸
n+1

; x̄

 . (8.34)

Weight 4: At weight 4, the differential equation (8.15) can be written in the form:

∂xg
(4)
I =

∑
a

(
∂x logLa

)∑
J

caIJg
(3)
J (8.35)

which after doubly-subtracting, in order to obtain integrals that are explicitly finite as in (8.30),
is written as

∂xg
(4)
I =

∑
a

∂x(logLa − LLa)
∑
J

caIJg
(3)
J +

∑
a

∂x(LLa)
∑
J

caIJ(g
(3)
J − g

(3)
J,0) +

∑
a

la
x

∑
J

caIJg
(3)
J,0

(8.36)
where LLa are obtained by expanding log(La) around x = 0 and keeping terms up to order
O
(

log(x)
)
, and

g
(3)
I,0 = g

(3)
I,G + b

(3)
I . (8.37)
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Now, by integrating by parts and using (8.30) we can write the final result as follows:

g
(4)
I =g

(4)
I,G + b

(4)
I +

(∑
a

logLa
∑
J

caIJg
(3)
J

)
−
(∑

a

LLa
∑
J

caIJg
(3)
J,0

)

−
∫ x̄

0

dx
∑
a

(logLa − LLa)
∑
J

caIJ
∑
b

lb
x

∑
K

cbJKg
(2)
K,0

−
∫ x̄

0

dx
∑
a

logLa
∑
J

caIJ

(∑
b

(∂x logLb)
∑
K

cbJKg
(2)
K −

∑
b

lb
x

∑
K

cbJKg
(2)
K,0

)
(8.38)

with a, b running over the set of contributing letters, I, J,K running over the set of basis
elements, b(4)

I being the boundary terms at O(ε4) and

g
(4)
I,G =

∫ x̄

0

dx

(∑
a

la
x

∑
J

caIJg
(3)
J,0

)∣∣∣∣∣
G

(8.39)

where the subscript G indicates that the integral is represented in terms of GPLs (see ancillary
file), following (8.34).

Implementation: We have implemented the final formulae (8.32) and (8.38) in a Mathe-
matica notebook included in the ancillary file. We use NIntegrate to perform the one-
dimensional integrals appearing in the (8.32) and (8.38), after expressing all weight-2 func-
tions in terms of classical polylogarithms following reference [121]. For the evaluation of
the terms expressed as GPLs, (8.33) and (8.39), we use GiNaC [71], [89] as implemented in
PolyLogTools [66]. We have checked against basis elements known in terms of GPLs up to
weight 4, that with this setup, we can obtain numerical results with 32 digit-precision. For
kinematic configurations where there are no singularities in the domain of integration (0, x̄),
we have checked the new basis elements against numerical results provided by the authors of
reference [109] and found full agreement. For kinematic configurations with singularities in the
domain of integration, we use the standard iε−prescription and obtain again full agreement.
The performance of this simple implementation is quite encouraging: in all cases a few hundreds
of evaluations of the integrand are enough to achieve the 32 digit-precision. Notice that the
integrand expressions involve logarithms and classical polylogarithms Li2, that are evaluated
using very little CPU time, even within our simple Mathematica setup without any optimisa-
tion. We plan to address an optimised implementation, in line with references [79], [112], in a
forthcoming publication.

8.5 Conclusions
The frontier of precision calculations at NNLO currently concerns 2 → 3 scattering process
involving massless propagators and one massive external particle. At the level of FI, all planar
two-loop MI have been recently computed through the solution of canonical DE both numer-
ically [80], via generalised power series expansions, and analytically in terms of GPLs up to
weight 4 [82], using the SDE approach [38]. More recently, results in terms of Chen iterated
integrals were presented and implemented in the so-called pentagon functions [112].

Concerning the two-loop non-planar topologies, these can be classified into the three so-
called hexabox topologies and two so-called double-pentagons, see figure 8.1. One of the hex-
abox topologies, denoted as N1 in figure 8.1, was calculated numerically a few years ago using
an approach which introduces a Feynman parameter and uses analytic results for the sub-
topologies that are involved [70]. More recently, pure bases for the three hexabox topologies
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satisfying DE in d log form were presented in reference [109] and solved numerically using the
same methods as in [80].

In this chapter we addressed the calculation of the three two-loop hexabox topologies,
N1, N2, N3 in figure 8.1, using the SDE approach. For the N1 family results up to weight
4 in terms of GPLs are obtained. For the N2 and N3 families we have established an one-
dimensional integral representation involving up to weight-2 GPLs. This allows to extend the
scope of the SDE approach when non-factorisable square roots appear in the alphabet. We have
also introduced a new approach to compute the boundary terms directly for the basis elements,
that significantly reduces the complexity of the problem. With these new developments, we
hope to complete the full set of five-point one-mass two-loop MI families in the near future and
provide a solid implementation for their numerical evaluation.
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Chapter 9

Multiscale pentagon integrals involving
internal masses

We study several multiscale one-loop five-point families of Feynman integrals. More specifically,
we employ the SDE approach to obtain results in terms of GPLs of up to transcendental weight
four for families with two and three massive external legs and massless propagators, as well as
with one massive internal line and up to two massive external legs. This is the first time this
computational approach is applied to cases involving internal masses. This chapter is based on
original research which first appeared in [122].

9.1 Introduction
In recent years the field of precision calculations in collider physics has emerged as a vibrant
and fruitful line of research in our attempt to understand Nature at its most fundamental
level [6]. The basic principle of this research endeavour is to have very precise experimental
measurements of cross sections for Standard Model scattering processes compared against theo-
retical predictions of equally high precision and search for any deviations between them. Should
any such deviations be established, their analysis and physical explanation would require New
Physics, giving us an idea of what lies beyond the Standard Model.

The ever increasing demand for highly precise theoretical predictions for scattering processes
relevant to LHC searches poses a challenge in our ability to perform higher order calculations in
perturbative Quantum Field Theory [90]. Multiloop scattering amplitudes play a fundamental
role in such calculations, encoding within their mathematical structure key information con-
cerning the nature of particle interactions. One major aspect of the calculation of multiloop
scattering amplitudes is the calculation of the relevant Feynman diagrams that are involved,
which can be associated through the corresponding Feynman rules to the so-called Feynman
integrals. In the following we will use the notion of diagrams and integrals interchangeably.

The standard approach for the calculation of these integrals involves obtaining a complete
set of MI through the use of Integration-By-Part identities [26], constructing a pure basis of MI
[40] and then deriving and solving differential equations in canonical form [42]. This approach
has yielded numerous results [123], in part due to the fact that we have a solid understanding
of the special class of functions, known as multiple or GPLs [44]–[47], in terms of which many
Feynman integrals can be expressed. In more complicated cases however, this class of functions
is not enough and important steps have been made in getting a better understanding of a more
general class of functions, Elliptic integrals [124]–[130], which appear in solutions of multiloop
Feynman integrals with many scales, especially when several internal masses are introduced.

When considering multiloop Feynman integrals involving many external particles, the cur-
rent frontier lies at two-loop five-point integrals with up to one off-shell leg and massless internal
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lines. For the fully massless case, all MI are by now known up to transcendental weight four
[78], [81], [85], [93], [131]–[133] and their solutions have been implemented in a fast C++ library
known as pentagon functions [79]. When one of the external particles is considered off-shell,
the planar topologies have been recently solved using two different computational approaches
for the solution of canonical differential equations, numerically [80] and analytically [82]. The
numerical calculation was performed using a generalised power-series method [110], [111], while
the analytical solution was achieved through the use of the SDE approach [38], with the results
given in terms of GPLs of up to transcendental weight four. These results are relevant to many
2 → 3 scattering processes studied experimentally at the LHC, e.g. W + 2 jets production.
For the computation of the relevant scattering amplitudes, one-loop five-point Feynman inte-
grals with one off-shell leg also have to be known up to transcendental weight four [72]. These
results were recently used for the calculation of two-loop QCD corrections to Wbb̄ production
[84]. First results for one of the non-planar topologies have also appeared using a numerical
approach [70]. More recently the three hexabox topologies were calculated in [109] using the
same approach as in [80].

While staying at the level of five-point Feynman integrals, at some point we will have
to introduce internal masses and consider more than one massive external particle. Judging
from the level of complexity of the so far accumulated results, these Feynman integrals are
expected to be highly non-trivial to be solved using current approaches, especially the genuine
two-loop ones. To that end, we believe that it is instructive to consider first the relevant
one-loop five-point Feynman integrals with more than one off-shell leg and/or with internal
masses. The interest of these Feynman integrals is twofold. From a more formal point of view,
it is interesting to see what kind of functions appear as solutions of the relevant canonical
differential equations and study their structure. This will give us a glimpse of the minimum
mathematical complexities and difficulties we should expect when we consider their two-loop
counterparts. From a phenomenological standpoint, these one-loop integrals will be required
for the computation of two-loop corrections for 2→ 3 scattering processes involving more than
one massive external particle and/or internal massive particles.

In line with the arguments presented above, we consider in this chapter the analytical
calculation of several multiscale one-loop five-point Feynman integrals. More specifically, we
present analytical results in terms of GPLs of up to transcendental weight four for families
with two and three off-shell legs and massless internal lines, as well as for families with one
massive propagator and up to two external massive particles. Our calculation is based on the
SDE approach [38] which introduces an external dimensionless parameter x in such a way that
captures the off-shellness of one massive leg. The system of canonical differential equations
is constructed by differentiating a pure basis of MI in terms of x, regardless of the number
of scales involved in the problem. One special feature of this approach is that by taking the
limit of x → 1 [81] for a family with n massive legs, we can obtain the result for a family
with n − 1 massive legs in an algorithmic way [60]. In Figure 9.1 we present the families of
Feynman integrals computed through the solution of SDE in canonical form, while in Figure
9.2 we present the families of integrals computed through the x→ 1 limit.

The rest of our chapter is structured as follows: in section 9.2 we introduce basic notation
and the kinematic configuration for each of the studied families of Feynman integrals, in section
9.3 we construct pure bases and derive and solve SDE in canonical form for all integral families
depicted in Figure 9.1, we present some of the resulting alphabets in x and study their structure,
and solve all integral families depicted in Figure 9.2 through the x→ 1 limit in terms of GPLs
of up to transcendental weight four. In section 9.4 we provide an analysis of our results, as
well as numerical checks for Euclidean points and in section 9.6 we summarise our findings and
discuss their key features. To the best of our knowledge these families have never before been
considered in the literature, thus their solution constitutes an original contribution. This is
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Figure 9.1: Top-sector diagrams for families computed with the SDE approach. All external
particles are incoming. Bold external (internal) lines represent massive particles.
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Figure 9.2: Top-sector diagrams for families computed through the x → 1 limit. All external
particles are incoming. Bold external (internal) lines represent massive particles.

also the first time that a calculation with the SDE approach involving MI with internal masses
is reported. Along with this chapter we provide all of our results in ancillary files. Explicit
weight-three expressions for the top-sector basis elements of families C and H are given in
appendix 9.5.

9.2 Notation and kinematics
The integral families are defined through the following parametrization,

Ga1a2a3a4a5 =

∫
ddk1

iπ(d/2)

eεγE

Da11 Da22 Da33 Da44 Da55

, d = 4− 2ε (9.1)

with

D1 = (k1)2 − n1 m
2, D2 = (k1 + q1)2, D3 = (k1 + q1 + q2)2

D4 = (k1 + q1 + q2 + q3)2 − n4 m
2, D5 = (k1 + q1 + q2 + q3 + q4)2. (9.2)

For the families C,D and E we have n1 = n4 = 0, for the families F and G n1 = 0, n4 = 1 and
finally for the family H n1 = 1, n4 = 0. The kinematics for the families depicted in Figure 9.1
is as follows,
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• C&H:
∑5

i=1 qi = 0, q2
i = 0, i = 1, 2, 4, q2

3 = m2
3, q

2
5 = m2

5

• E:
∑5

i=1 qi = 0, q2
i = 0, i = 2, 4, q2

1 = m̄2
1, q

2
3 = m2

3, q
2
5 = m2

5

• G:
∑5

i=1 qi = 0, q2
i = 0, i = 1, 2, 4, 5, q2

3 = m2
3.

We introduce the following x-parametrization1

q1 = xp1, q2 = xp2, q3 = p123 − xp12, q4 = p4, q5 = −p1234. (9.3)

The kinematics in this underline momentum parametrization is

• C&H:
∑5

i=1 pi = 0, p2
i = 0, i = 1, 2, 3, 4, p2

5 = m2
5

• E:
∑5

i=1 pi = 0, p2
i = 0, i = 2, 3, 4, p2

1 = m2
1, p

2
5 = m2

5

• G:
∑5

i=1 pi = 0, p2
i = 0, i = 1, 2, 3, 4, 5.

Introducing (9.3) results in a mapping between the kinematic invariants in the original momen-
tum parametrization, qi, and the underline momentum parametrization {x, pi} for each of the
families C,E,G,H.2

C&H : m2
3 = (x− 1) (S12x− S45) , s12 = S12x

2, s23 = S23x− S45x+ S45

s34 = m2
5(−x) +m2

5 + x (S12(x− 1) + S34) , s45 = S45, s15 = m2
5(−x) +m2

5 + S15x

E : s12 = S12x
2, s23 = x

(
m2

1(x− 1) + S23

)
− S45x+ S45,

s34 = m2
5(−x) +m2

5 + x (S12(x− 1) + S34) , s45 = S45,

s15 = x
(
m2

1(x− 1) + S15

)
+m2

5(−x) +m2
5, m̄

2
1 = m2

1x
2,m2

3 = (x− 1) (S12x− S45)

G : s12 = S12x
2, s23 = S23x− S45x+ S45, s34 = x (S12(x− 1) + S34) , s45 = S45,

s15 = S15x,m
2
3 = (x− 1) (S12x− S45) . (9.4)

For the families depicted in Figure 9.2 their definition through (9.1)&(9.2) is obtained by taking
(9.3) and setting x = 1, and their kinematic configuration is effectively the one produced by
the underline momentum parametrization of the families through which we will calculate them
with the x→ 1 limit, therefore we have

• D (x→ 1 of E):
∑5

i=1 pi = 0, p2
i = 0, i = 2, 3, 4, p2

1 = m2
1, p

2
5 = m2

5

• F (x→ 1 of G):
∑5

i=1 pi = 0, p2
i = 0, i = 1, 2, 3, 4, 5.

9.3 Differential equations and pure solutions
In this section we will describe the analytical calculation of the integral families considered in
this chapter. We will construct pure bases for the families C,E,G,H and use the SDE approach
[38] to compute them in terms of GPLs. We will show how to obtain boundary terms [60], [82]
for these canonical differential equations and present explicit results up to transcendental weight
four. A discussion on the structure of the alphabets in x for families C and H is also provided,
along with their explicit expressions.

We will also show how by taking the x → 1 limit of the analytic solution of families E
and G, one can obtain in an algorithmic way analytic results in terms of GPLs for the families
D and F respectively. Additionally, this procedure will allow us to obtain pure bases for the

1We use the abbreviations pij = pi + pj and pijk = pi + pj + pk and similarly for q later.
2We use the abbreviations sij = q2ij , Sij = p2ij .
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families D and F in a straightforward manner [60]. The results presented here for these last
two families are up to transcendental weight four as well.

It is important to note that introducing one internal mass does not appear to have any effect
on the efficiency of the methods that have been developed for the determination of boundary
terms, as well as taking the x→ 1 limit within the SDE approach.

9.3.1 Families C,E,G,H

Constructing pure bases for the families C,E,G,H is by now a trivial exercise. Following the
reasoning of [80], [85], the top sector basis element at the integrand level is of the form

ε2
P11111√

∆5

G̃11111 (9.5)

where P11111 is the Baikov polynomial corresponding to the top sector integral G11111 for each
family, G̃11111 is the top sector integrand of each family and ∆5 = det[qi · qj] is the Gram deter-
minant of the external momenta. The remaining pure basis elements can be constructed through
the study of the leading singularities of their corresponding diagrams [40]. Using Azurite [30]
and KIRA2 [29] we identify 15, 18, 16 and 18 MI for the families C,E,G,H respectively.

When considering five-point scattering, a number of square roots of the kinematic invariants
enter the differential equations of the corresponding pure bases. These square roots originate
from leading singularities of triangles with three massive legs3 which are represented by square
roots of the Källen function λ(x, y, z) = x2 − 2xy − 2xz + y2 − 2yz + z2 and from square roots
of the Gram determinants of the five-point external momenta. The existence of these square
roots poses a challenge if one wishes to solve the differential equations analytically in terms of
GPLs.

For the families considered in this subsection the following square roots appear:

r1 =
√
λ(s12,m2

3, s45) (9.6)

r2 =
√
λ(s12, s34,m2

5) (9.7)

r3 =
√
λ(m̄2

1, s23, s45) (9.8)

r4 =
√
λ(m̄2

1,m
2
5, s15) (9.9)

r5 =
√

∆C
5 =

√
∆H

5 (9.10)

r6 =
√

∆E
5 (9.11)

r7 =
√

∆G
5 . (9.12)

We should note at this point that not all square roots appear in every family at the same time.
More specifically, in families C and H we encounter r1, r2, r5, in family E r1, r2, r3, r4, r6 and in
family G r1, r7.

If one tries to compute these families using the standard differential equations approach, i.e.
by differentiating with respect to all kinematic invariants, then the algebraic structure of the
alphabet (i.e. the square roots appearing as letters) of the canonical differential equation for
each family prohibits a straightforward solution in terms of GPLs. In order to achieve a result

3For all integral families considered in this chapter the most complicated triangle Feynman integrals are the
ones with fully massive legs and one massive propagator. This one internal mass however has no effect in the
calculation of the leading singularity of the corresponding integral.
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in such a form we need to find a way to deal with these square roots. Several ideas have been
put forward recently that are able to circumvent this problem and provide solutions in terms of
GPLs [116], [134]–[136] for specific cases, however a universal method to treat the problem of
square roots appearing in the alphabet of canonical differential equations for multiscale families
of Feynman integrals is still missing.

It turns out that for the families C,E,G,H the x-parametrization introduced in (9.3) and
the resulting mapping of the kinematic invariants (9.4) rationalises all square roots with respect
to x. This allows us to obtain a canonical differential equation in x for each of the four families
considered in this subsection,

∂xg = ε

(
lmax∑
i=1

Mi

x− li

)
g (9.13)

where g is the pure basis for each family, Mi are the residue matrices corresponding to each
letter li and lmax is the length of the alphabet4. The kinematic dependence is entirely contained
within the letters li, leaving the residue matrices Mi to be solely constructed by rational
numbers. The length of the alphabet for each of the four families considered in this subsection
is lCmax = 14, lEmax = 19, lGmax = 22, lHmax = 30. The explicit form of the alphabet for each
of the four families is provided in the ancillary files that accompany this chapter. In the next
subsection we will study more closely some of these alphabets.

In order to solve (9.13) we need to provide boundary terms. We will follow closely the
computational framework developed in [60], [82] for the determination of the relevant boundary
terms. We start with the residue matrix corresponding to the letter {0}, M1 and through its
Jordan Decomposition we rewrite it as follows,

M1 = SDS−1. (9.14)

Then we define the resummation matrix R as follows

R = SeεD log(x)S−1. (9.15)

The next step is to use IBP identities to write the pure basis g in the following form

g = TG. (9.16)

The list of Feynman integrals G is also provided in electronic form. Furthermore, using the
expansion-by-regions method [51] implemented in the asy code which is shipped along with
FIESTA4 [58], we can obtain information for the asymptotic behaviour of the Feynman integrals
in terms of which we express the pure basis of MI (9.16) in the limit x→ 0,

Gi =
x→0

∑
j

xbj+ajεG
(bj+ajε)
i (9.17)

where aj and bj are integers and Gi are the individual members of the basis G of Feynman
integrals in (9.16). As explained in [82], we can construct the relation

Rb = lim
x→0

TG
∣∣∣
O(x0+ajε)

(9.18)

where b =
∑n

i=0 ε
ib(i)

0 are the boundary terms that we need to compute. The right-hand-side
of (9.18) implies that, apart from the terms xaiε coming from (9.17), we expand around x = 0,
keeping only terms of order x0.

4Note here that we are following the notation of [60], [72], [82] when talking about the letters of the alphabet.
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Equation (9.18) allows us to fix all the necessary boundary terms without the need of
any further computation for the families C,E,H while for family G a few regions had to be
computed. Similarly to [72], the resulting boundary terms for all of the four families considered
in this subsection are in closed form, including some 2F1 Hypergeometric functions which can be
easily expanded to arbitrary powers of the dimensional regulator using HypExp [56]. Therefore
we are able to trivially obtain solutions of (9.13) for the families C,E,G,H in terms of GPLs
of arbitrary weight.

In this chapter we present explicit results for the families C,E,G,H in terms of GPLs of
up to transcendental weight four, which can be written in the following compact form,

g = ε0b(0)
0 + ε

(∑
GaMab

(0)
0 + b(1)

0

)
+ ε2

(∑
GabMaMbb

(0)
0 +

∑
GaMab

(1)
0 + b(2)

0

)
+ ε3

(∑
GabcMaMbMcb

(0)
0 +

∑
GabMaMbb

(1)
0 +

∑
GaMab

(2)
0 + b(3)

0

)
+ ε4

(∑
GabcdMaMbMcMdb

(0)
0 +

∑
GabcMaMbMcb

(1)
0

+
∑
GabMaMbb

(2)
0 +

∑
GaMab

(3)
0 + b(4)

0

)
(9.19)

were Gab... := G(la, lb, . . . ;x) represent the GPLs. The b(i)
0 terms, with i indicating the corre-

sponding weight, consist of Zeta functions ζ(i), logarithms and GPLs of weight i which have
as arguments rational functions of the underline kinematic variables Sij.

Our results are presented in such a way that each coefficient of εk has transcendental weight
k. If we assign weight −1 to ε, then (9.19) has uniform weight zero. The closed-form expressions
of the boundary terms trivialise the extension of (9.19) to higher transcendental weights (or
higher orders in ε).

9.3.2 The alphabet in x

It is instructive to have a closer look at the alphabets for some of these families and see what
lessons can be learned. We will study the alphabets of families C and H. We choose these
families because they have the same external kinematics but differ on the fact that family H
has one internal mass. Thus it is interesting to see how the introduction of an internal mass
effects the alphabet. The conclusions drawn from the study of these families’ alphabets are
similar to what can be learned from the alphabets of the rest of the families considered in this
chapter.

Family C

The alphabet for this family is

l1 → 0, l2 → 1, l3 →
m2

5

m2
5 − S15

, l4 →
S12 + S23

S12

, l5 →
S12 + S15 − S34

S12

,

l6 →
−√∆1 +m2

5 + S12 − S34

2S12

, l7 →
√

∆1 +m2
5 + S12 − S34

2S12

, l8 →
m2

5 − S45

m2
5 − S15 + S23 − S45

,

l9 →
m2

5 − S45

m2
5 − S34 − S45

, l10 →
S45

S12

, l11 →
S45

S45 − S23

, l12 →
m2

5S12 − S45S12 + S34S45

m2
5S12 − S12S45

,
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l13 → −
√

∆2 − 2m2
5S12 −m2

5S23 + S15S12 − S23S12 + 2S45S12 + S23S34 + S15S45 − S34S45

2S12 (m2
5 − S15 + S23 − S45)

,

l14 →
√

∆2 + 2m2
5S12 +m2

5S23 − S15S12 + S23S12 − 2S45S12 − S23S34 − S15S45 + S34S45

2S12 (m2
5 − S15 + S23 − S45)

.

(9.20)

We notice that two square roots appear,
√

∆1,
√

∆2, where ∆1, ∆2 are given by the following
expressions

∆1 =− 2m2
5 (S12 + S34) +

(
m2

5

)2
+ (S12 − S34) 2, (9.21)

∆2 =
(
m2

5S23 − S34S23 + (S34 − S15)S45

)
2 + S2

12 (S15 − S23) 2

+ 2S12

(
m2

5S23 (S15 − S23 − 2S34)− S45S
2
15 + S23S34S15 + (S23 + S34)S45S15

+ S23S34 (S45 − S23)
)
. (9.22)

These square roots are directly associated with r2 and r5 respectively. We would expect a third
square root to appear, namely r1, as mentioned in the previous subsection. However, after
introducing the x-parametrization (9.3), r1 is rational in all variables. More specifically, if we
express these square roots using the first set of relations from (9.4), we get

r1 = (S12 − S45)x (9.23)

r2 =
√

∆1 x (9.24)

r5 =
√

∆2 x
2. (9.25)

The structure of this alphabet is similar in terms of its complexity with the alphabet for the
one-mass pentagon studied in [72]. The difference of course is the presence of an additional
square root of the underline kinematic variables Sij in the present case.

Family H

The alphabet for this family is

l1 → 0, l2 → 1, l3 →
m2

S12

, l4 → −
√
m2

√
S12

, l5 →
√
m2

√
S12

, l6 →
S12 + S23

S12

,

l7 →
m2

5 + S12 − S34 −
√

∆̂1

2S12

, l8 →
m2

5 + S12 − S34 +
√

∆̂1

2S12

, l9 →
m2
(
m2

5 + S12 − S34 −
√

∆̂1

)
2m2

5S12

,

l10 →
m2
(
m2

5 + S12 − S34 +
√

∆̂1

)
2m2

5S12

, l11 → −
m2

S23 − S45

, l12 →
m2

5 − S45

m2
5 − S34 − S45

, l13 →
m2

S45

,

l14 →
S45

S12

, l15 → −
S45

S23 − S45

, l16 →
−S12m

2 − S12S45 +
√

∆̂2

2S12 (S23 − S45)
, l17 → −

S12m
2 + S12S45 +

√
∆̂2

2S12 (S23 − S45)
,

l18 → −
−m2

5m
2 + S34m

2 + S45m
2 −m2

5S12 + S12S45 − S34S45 +
√

∆̂3

2S12 (m2
5 − S45)

,

l19 →
m2

5m
2 − S34m

2 − S45m
2 +m2

5S12 − S12S45 + S34S45 +
√

∆̂3

2S12 (m2
5 − S45)

,

l20 →
m2

m2
5 − S15

, l21 →
m2

5

m2
5 − S15

, l22 →
m2

5 − S45

m2
5 − S15 + S23 − S45

, l23 →
S12 + S15 − S34

S12

,

l24 →
m2 (m2

5 − S45)

(m2
5 − S15 + S23 − S45)m2 −m2

5S23 + S15S45

, l25 →
S12m

2 +m2
5S12 −

√
∆̂4

2S12 (m2
5 − S15)

,
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l26 →
S12m

2 +m2
5S12 +

√
∆̂4

2S12 (m2
5 − S15)

,

l27 →
−S12S15m

2 +m2
5S23m

2 + S12S23m
2 − S23S34m

2 − S15S45m
2 + S34S45m

2 +
√

∆̂5

2S12 (m2
5S23 − S15S45)

,

l28 → −
S12S15m

2 −m2
5S23m

2 − S12S23m
2 + S23S34m

2 + S15S45m
2 − S34S45m

2 +
√

∆̂5

2S12 (m2
5S23 − S15S45)

,

l29 →
2m2

5S12 − S15S12 + S23S12 − 2S45S12 +m2
5S23 − S23S34 − S15S45 + S34S45 +

√
∆̂6

2S12 (m2
5 − S15 + S23 − S45)

,

l30 → −
−2m2

5S12 + S15S12 − S23S12 + 2S45S12 −m2
5S23 + S23S34 + S15S45 − S34S45 +

√
∆̂6

2S12 (m2
5 − S15 + S23 − S45)

.

(9.26)

The first remark that we can make for this alphabet is that we have six square roots in the
underline kinematic variables Sij, namely

√
∆̂i, i = 1, . . . 6. The explicit expressions for the

arguments of these square roots are as follows,

∆̂1 =− 2m2
5 (S12 + S34) +m4

5 + (S12 − S34) 2, (9.27)

∆̂2 =S12

(
m4S12 + 4m2S23 (S12 + S23)− 2m2 (S12 + 2S23)S45 + S12S

2
45

)
, (9.28)

∆̂3 =m4
(
−m2

5 + S34 + S45

)
2 +

(
m2

5S12 + (S34 − S12)S45

)
2

+ 2m2
(
m2

5 (−S12)
(
m2

5 + S34

)
+m2

5 (2S12 + S34)S45 − (S12 + S34)S2
45

+
(
S12 − S34

)
S34S45

)
, (9.29)

∆̂4 =S12

(
m4S12 − 2m2

5m
2 (S12 + 2S15 − 2S34) + 4m2S15 (S12 + S15 − S34) +m4

5S12

)
, (9.30)

∆̂5 =m4 ∆̂6, (9.31)

∆̂6 =
(
m2

5S23 − S23S34 + (S34 − S15)S45

)
2 + S2

12 (S15 − S23) 2

+ 2S12

(
m2

5S23 (S15 − S23 − 2S34) + S15S23S34 − S2
15S45 + S15 (S23 + S34)S45

+ S23S34 (S45 − S23)
)
. (9.32)

In comparison with (9.20), we see the same two square roots associated with the leading singu-
larities of the massive three-point functions, r2 and with the Gram determinant of the external
momenta, r5, namely

r2 =
√

∆1 x =

√
∆̂1 x (9.33)

r5 =
√

∆2 x
2 =

√
∆̂6 x

2. (9.34)

We have however four more square roots,
√

∆̂2,
√

∆̂3,
√

∆̂4,
√

∆̂5, which involve the internal
mass m2, and are not directly associated with any leading singularities of any diagram from
this family. We see therefore that the introduction of an internal mass has a major impact on
the complexity of the resulting alphabet.

Final remarks and comparison with other methods

We have seen that introducing an internal mass can significantly increase the complexity of
the algebraic structure of an alphabet. It would be interesting to find an explanation for
the appearance of the additional square roots in (9.26) which are not directly associated with
a leading singularity. Normally, one would expect that the square roots that appear in the
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alphabet also appear in the definition of the pure basis elements, although in the case of family
H the extra square roots do not appear in the pure basis definition.

On a more general note, whenever the SDE approach has been applied in conjunction with
a pure basis [60], [72], [82], we have observed a reduction in the number of letters that appear
when compared with the alphabets that arise through the usual method of differential equations,
i.e. when one differentiates with respect to all kinematic invariants. It would be interesting to
see the structure of the alphabets for the families studied here when one uses the usual method
of differential equations and whether this feature of alphabets in x with fewer letters still holds.

9.3.3 Families D,F

For these families we will obtain analytic expressions through the results of the families E and
G. We will follow the procedure of taking the x → 1 limit of our solution for a family with n
massive legs to obtain a pure basis and analytic solution of a family with n − 1 massive legs,
as described in detail in [60].

For families E and G we exploit the shuffle properties of GPLs to write their solution (9.19)
as an expansion in terms of log(1− x) as follows

g =
∑
n≥0

εn
n∑
i=0

1

i!
c(n)
i logi(1− x) (9.35)

with all c(n)
i being finite in the limit x→ 1. The next step is to define the regular part of (9.35)

at x = 1
greg =

∑
n≥0

εnc(n)
0 (9.36)

and after setting x = 1 explicitly in (9.36) we may define the truncated part of (9.35),

gtrunc = greg(x = 1). (9.37)

Having done that, we utilise the residue matrix that corresponds to the letter {1}, M2, and
define the resummation matrix R̃ as follows

R̃ = S̃eεD̃ log(1−x)S̃
−1

(9.38)

were S̃, D̃ are constructed through the Jordan decomposition of M2, i.e. M2 = S̃D̃S̃
−1
. The

resummation matrix R̃ has terms of (1 − x)aiε, with ai being the eigenvalues of M2. After
setting all terms (1− x)aiε equal to zero, we define the purely numerical matrix R̃0. Obtaining
the x→ 1 limit of (9.19) amounts to acting with R̃0 on (9.37)

gx→1 = R̃0gtrunc. (9.39)

Up to now we have calculated the x → 1 limit for families E and G. This operation not
only yields the result for a given family of MI with n massive legs at a special limit, but also
allows us to obtain results for an independent family of MI with n− 1 massive legs. In the case
of family E for example, taking the x → 1 limit makes q3 to become massless through (9.3),
thus yielding the kinematics for family D. However, having the x → 1 limit of E means that
we have explicit solutions for the 18 pure basis elements of that family, whereas family D has
16 basis elements. This means that out of the 18 basis elements of family E at this limit, we
need to find the 16 of them that form the pure basis and result for family D, i.e. at x → 1
only 16 of the 18 basis elements of family E should remain linearly independent. The same
reasoning holds for family G which has 16 basis elements while family F has 15.
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In order to find the pure bases for families D and F we can either use Integration-By-Part
identities to do the reduction or follow the approach described in [60]. We shall use the latter
method in the following.

In all cases that we have considered so far, R̃0 is always an idempotent matrix which means
that, among others, it has the following very useful property

R̃
2

0 = R̃0. (9.40)

Acting with R̃0 on (9.39) and using (9.40) yields the following relation

R̃0gx→1 = R̃
2

0gtrunc
= R̃0gtrunc
= gx→1. (9.41)

This relation, solved as an equation for each row, produces relations that allow us to determine
the linearly independent basis elements for families D and F . Therefore, applying (9.41) to the
pure basis of E and G yields in an algorithmic way the pure bases for families D and F .

9.3.4 On the choice of integral families

The basic rule for choosing which five-point family to consider is to have the one-mass result
[72] as a starting point and add masses, with the condition that their SDE in canonical form
have alphabets rational in x, when one uses parametrization (9.3). If the resulting alphabet is
not rational in x, then calculating the integral family through the x → 1 limit of another is
considered. The exception to the above rule is the five-point family with one internal mass and
massless external legs, which in the framework of the SDE can only be calculated through the
x→ 1 limit of its corresponding one-mass family.

More specifically, if one tries to calculate family D using (9.3) and deriving differential
equations in x, then the resulting alphabet is not rational in x. Nevertheless, family D can be
expressed in terms of GPLs through the x → 1 limit of family E. Apart from family E there
is another family with massless propagators and three massive legs, the one which all three
masses are adjacent. However, the alphabet of this family is not rational in x, if one uses (9.3)
to parametrize it.

Introducing an internal mass allows for many more families to be considered. Apart from
the ones presented in this chapter, a family with one internal mass and three massive legs
(i.e. take family H and regard q1 as massive) was considered, however its alphabet in x is not
rational using (9.3).

If the families with non-rational alphabets in x can be rationalised using a parametrization
other than (9.3) remains an open question.

9.4 Validation
For all families computed in this chapter we have made heavy use of the Mathematica package
PolyLogTools [66] for the manipulation of the resulting GPLs. As shown in (9.19), we provide
explicit results up to order O(ε4). In Table 9.1 we provide an analysis of our results for each
family, regarding the number of GPLs that appear in each transcendental weight, where the
weight is counted as the number of li indices of G(la, lb, . . . ;x). These numbers are obtained by
gathering all GPLs that appear up to order O(ε4) in each integral family, and distinguishing
them according to their corresponding weight. For comparison, we perform the same task for
the top-sector basis element of each family.
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A common feature of our results is that our solutions are dominated by the number of
weight-four polylogarithmic functions. Due to the universally transcendental feature of our
solutions, the O(ε4) part is expected to be the most cumbersome to calculate numerically, since
weight-four GPLs take longer to calculate than lower-weight ones. To avoid any misconceptions,
it should be noted that each top-sector basis element starts from O(ε3), despite containing
lower-weight polylogarithms.

In section 9.5 we present explicit formulas for the weight-three part of the pure top-sector
basis elements of families C and H in order to give an idea of the structure and length of the
resulting expressions, as well as the way the letters of the alphabets studied in subsection 9.3.2
are introduced in the relevant solutions.

Family W=1 W=2 W=3 W=4 Total
C 9 (0) 54 (16) 204 (106) 605 (272) 872 (394)
E 13 (0) 87 (24) 349 (172) 1033 (432) 1482 (628)
G 21 (4) 163 (50) 878 (329) 2160 (884) 3222 (1267)
H 19 (0) 195 (42) 1527 (616) 5914 (2732) 7655 (3390)
D 11 (0) 83 (24) 393 (192) 1445 (656) 1932 (872)
F 19 (4) 151 (50) 872 (349) 2356 (1042) 3398 (1445)

Table 9.1: Number of GPLs entering the solution. Results for the respective top-sector basis
elements are in parenthesis.

Regarding the validation of our results, we have performed numerical checks of our solution
for each family against pySecDec [57] for Euclidean points. All GPLs have been computed
numerically using the Ginsh command of PolyLogTools [66], as well as handyG [108], which
is a Fortran implementation of the algorithms developed in [71]. For all checks that we have
performed we have found perfect agreement. In Table 9.2 we also provide numerical results
and timing for the top-sector basis element for each corresponding family. We include timings
using handyG since we found that it is in general faster, although it is restrictive in its precision
compared to PolyLogTools.

Top-Sector Time (sec) Result
C 0.146897 −0.314547ε4 − 0.120811ε3

E 0.248436 −0.0332408ε4 − 0.0215131ε3

G 0.475048 −0.439003ε4 − 0.130267ε3

H 1.89365 −0.0165223ε4 − 0.0192393ε3

D 2.15734 −0.127286ε4 − 0.162439ε3

F 0.730996 −0.528266ε4 − 0.33331ε3

Table 9.2: Numerical computation of GPLs using handyG with double precision. The compu-
tations were performed on a 1,6 GHz Intel Core i5 laptop using a single CPU core.

9.5 Explicit results at weight three
In this appendix we provide explicit results for families C and H for the weight-three part of
each top-sector pure basis element. Assuming that each top-sector basis element is expressed
in the following manner,

gfamily
i =

4∑
w=3

εw g̃family
i,w (9.42)
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we give the explicit expression for the g̃family
i,3 part. We introduce the following shorthand

notations for brevity,

Ga,b,... = G(la, lb, . . . ;x) (9.43)
L1 = log (−S12) , L2 = log (−S45) , L3 = log

(
−m2

5

)
, (9.44)

L4 = log
(
m2
)
, L5 = log

(
m2 − S45

m2

)
, L6 = log

(
m2 −m2

5

m2

)
(9.45)

9.5.1 Top sector of family C

In the following formula note that letters li, i = {6, 7, 13, 14} contain square roots in the
underline kinematic variables Sij, as shown explicitly in (9.20).

g̃C15, 3 =
1

4
L1G13,2 −

1

4
L2G13,2 +

1

4
L1G13,3 −

1

4
L3G13,3 −

1

4
L1G13,6 +

1

4
L3G13,6 −

1

4
L1G13,7

+
1

4
L3G13,7 −

1

4
L2G13,8 +

1

4
L3G13,8 +

1

4
L2G13,9 −

1

4
L3G13,9 +

1

4
L1G13,10 −

1

4
L2G13,10

− 1

4
L1G13,11 +

1

4
L2G13,11 −

1

4
L1G14,2 +

1

4
L2G14,2 −

1

4
L1G14,3 +

1

4
L3G14,3 +

1

4
L1G14,6

− 1

4
L3G14,6 +

1

4
L1G14,7 −

1

4
L3G14,7 +

1

4
L2G14,8 −

1

4
L3G14,8 −

1

4
L2G14,9 +

1

4
L3G14,9

− 1

4
L1G14,10 +

1

4
L2G14,10 +

1

4
L1G14,11 −

1

4
L2G14,11 +

1

2
G13,2,1 +

1

2
G13,3,1 +

1

4
G13,3,3

− 1

4
G13,3,6 −

1

4
G13,3,7 −

1

4
G13,4,2 −

1

4
G13,4,10 +

1

4
G13,4,11 −

1

4
G13,5,3 +

1

4
G13,5,6

+
1

4
G13,5,7 −

1

2
G13,6,1 −

1

2
G13,7,1 +

1

4
G13,8,3 −

1

4
G13,8,11 +

1

4
G13,9,2 −

1

4
G13,9,6

− 1

4
G13,9,7 +

1

4
G13,9,10 +

1

2
G13,10,1 −

1

2
G13,11,1 +

1

4
G13,11,2 +

1

4
G13,11,10 −

1

4
G13,11,11

− 1

4
G13,12,2 +

1

4
G13,12,6 +

1

4
G13,12,7 −

1

4
G13,12,10 −

1

2
G14,2,1 −

1

2
G14,3,1 −

1

4
G14,3,3

+
1

4
G14,3,6 +

1

4
G14,3,7 +

1

4
G14,4,2 +

1

4
G14,4,10 −

1

4
G14,4,11 +

1

4
G14,5,3 −

1

4
G14,5,6

− 1

4
G14,5,7 +

1

2
G14,6,1 +

1

2
G14,7,1 −

1

4
G14,8,3 +

1

4
G14,8,11 −

1

4
G14,9,2 +

1

4
G14,9,6

+
1

4
G14,9,7 −

1

4
G14,9,10 −

1

2
G14,10,1 +

1

2
G14,11,1 −

1

4
G14,11,2 −

1

4
G14,11,10

+
1

4
G14,11,11 +

1

4
G14,12,2 −

1

4
G14,12,6 −

1

4
G14,12,7 +

1

4
G14,12,10 (9.46)

9.5.2 Top sector of family H

In the following formula note that letters li, i = {7, 8, 9, 10, 16, 17, 18, 19, 25, 26, 27, 28, 29, 30}
contain square roots in the underline kinematic variables Sij, as shown explicitly in (9.26).

gH18, 3 =
1

4
L2G27,3 −

1

4
L4G27,3 −

1

4
L5G27,3 −

1

4
L3G27,9 +

1

4
L4G27,9 +

1

4
L6G27,9 −

1

4
L3G27,10

+
1

4
L4G27,10 +

1

4
L6G27,10 −

1

4
L2G27,11 +

1

4
L4G27,11 +

1

4
L5G27,11 +

1

4
L2G27,13 −

1

4
L4G27,13

− 1

4
L5G27,13 −

1

4
L2G27,18 +

1

4
L3G27,18 +

1

4
L5G27,18 −

1

4
L6G27,18 −

1

4
L2G27,19 +

1

4
L3G27,19
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+
1

4
L5G27,19 −

1

4
L6G27,19 +

1

4
L3G27,20 −

1

4
L4G27,20 −

1

4
L6G27,20 +

1

4
L2G27,24 −

1

4
L3G27,24

− 1

4
L5G27,24 +

1

4
L6G27,24 −

1

4
L2G28,3 +

1

4
L4G28,3 +

1

4
L5G28,3 +

1

4
L3G28,9 −

1

4
L4G28,9

− 1

4
L6G28,9 +

1

4
L3G28,10 −

1

4
L4G28,10 −

1

4
L6G28,10 +

1

4
L2G28,11 −

1

4
L4G28,11 −

1

4
L5G28,11

− 1

4
L2G28,13 +

1

4
L4G28,13 +

1

4
L5G28,13 +

1

4
L2G28,18 −

1

4
L3G28,18 −

1

4
L5G28,18 +

1

4
L6G28,18

+
1

4
L2G28,19 −

1

4
L3G28,19 −

1

4
L5G28,19 +

1

4
L6G28,19 −

1

4
L3G28,20 +

1

4
L4G28,20 +

1

4
L6G28,20

− 1

4
L2G28,24 +

1

4
L3G28,24 +

1

4
L5G28,24 −

1

4
L6G28,24 +

1

4
L5G29,2 −

1

4
L6G29,7 −

1

4
L6G29,8

− 1

4
L2G29,12 +

1

4
L3G29,12 +

1

4
L5G29,14 −

1

4
L5G29,15 +

1

4
L2G29,18 −

1

4
L3G29,18 −

1

4
L5G29,18

+
1

4
L6G29,18 +

1

4
L2G29,19 −

1

4
L3G29,19 −

1

4
L5G29,19 +

1

4
L6G29,19 +

1

4
L6G29,21 +

1

4
L2G29,22

− 1

4
L3G29,22 −

1

4
L2G29,24 +

1

4
L3G29,24 +

1

4
L5G29,24 −

1

4
L6G29,24 −

1

4
L5G30,2 +

1

4
L6G30,7

+
1

4
L6G30,8 +

1

4
L2G30,12 −

1

4
L3G30,12 −

1

4
L5G30,14 +

1

4
L5G30,15 −

1

4
L2G30,18 +

1

4
L3G30,18

+
1

4
L5G30,18 −

1

4
L6G30,18 −

1

4
L2G30,19 +

1

4
L3G30,19 +

1

4
L5G30,19 −

1

4
L6G30,19 −

1

4
L6G30,21

− 1

4
L2G30,22 +

1

4
L3G30,22 +

1

4
L2G30,24 −

1

4
L3G30,24 −

1

4
L5G30,24 +

1

4
L6G30,24 +

1

4
G27,3,2

− 1

4
G27,3,4 −

1

4
G27,3,5 +

1

4
G27,3,14 +

1

4
G27,9,4 +

1

4
G27,9,5 −

1

4
G27,9,7 −

1

4
G27,9,8

+
1

4
G27,10,4 +

1

4
G27,10,5 −

1

4
G27,10,7 −

1

4
G27,10,8 −

1

4
G27,11,15 +

1

4
G27,13,2 −

1

4
G27,13,4

− 1

4
G27,13,5 +

1

4
G27,13,14 −

1

4
G27,16,2 +

1

4
G27,16,4 +

1

4
G27,16,5 −

1

4
G27,16,14 +

1

4
G27,16,15

− 1

4
G27,17,2 +

1

4
G27,17,4 +

1

4
G27,17,5 −

1

4
G27,17,14 +

1

4
G27,17,15 −

1

4
G27,18,2 +

1

4
G27,18,7

+
1

4
G27,18,8 −

1

4
G27,18,14 −

1

4
G27,19,2 +

1

4
G27,19,7 +

1

4
G27,19,8 −

1

4
G27,19,14 +

1

4
G27,20,21

+
1

4
G27,24,15 −

1

4
G27,24,21 −

1

4
G27,25,4 −

1

4
G27,25,5 +

1

4
G27,25,7 +

1

4
G27,25,8 −

1

4
G27,25,21

− 1

4
G27,26,4 −

1

4
G27,26,5 +

1

4
G27,26,7 +

1

4
G27,26,8 −

1

4
G27,26,21 +

1

4
G27,29,2 −

1

4
G27,29,7

− 1

4
G27,29,8 +

1

4
G27,29,14 −

1

4
G27,29,15 +

1

4
G27,29,21 +

1

4
G27,30,2 −

1

4
G27,30,7 −

1

4
G27,30,8

+
1

4
G27,30,14 −

1

4
G27,30,15 +

1

4
G27,30,21 −

1

4
G28,3,2 +

1

4
G28,3,4 +

1

4
G28,3,5 −

1

4
G28,3,14

− 1

4
G28,9,4 −

1

4
G28,9,5 +

1

4
G28,9,7 +

1

4
G28,9,8 −

1

4
G28,10,4 −

1

4
G28,10,5 +

1

4
G28,10,7

+
1

4
G28,10,8 +

1

4
G28,11,15 −

1

4
G28,13,2 +

1

4
G28,13,4 +

1

4
G28,13,5 −

1

4
G28,13,14 +

1

4
G28,16,2

− 1

4
G28,16,4 −

1

4
G28,16,5 +

1

4
G28,16,14 −

1

4
G28,16,15 +

1

4
G28,17,2 −

1

4
G28,17,4 −

1

4
G28,17,5

+
1

4
G28,17,14 −

1

4
G28,17,15 +

1

4
G28,18,2 −

1

4
G28,18,7 −

1

4
G28,18,8 +

1

4
G28,18,14 +

1

4
G28,19,2

− 1

4
G28,19,7 −

1

4
G28,19,8 +

1

4
G28,19,14 −

1

4
G28,20,21 −

1

4
G28,24,15 +

1

4
G28,24,21 +

1

4
G28,25,4
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+
1

4
G28,25,5 −

1

4
G28,25,7 −

1

4
G28,25,8 +

1

4
G28,25,21 +

1

4
G28,26,4 +

1

4
G28,26,5 −

1

4
G28,26,7

− 1

4
G28,26,8 +

1

4
G28,26,21 −

1

4
G28,29,2 +

1

4
G28,29,7 +

1

4
G28,29,8 −

1

4
G28,29,14 +

1

4
G28,29,15

− 1

4
G28,29,21 −

1

4
G28,30,2 +

1

4
G28,30,7 +

1

4
G28,30,8 −

1

4
G28,30,14 +

1

4
G28,30,15 −

1

4
G28,30,21

− 1

4
G29,2,4 −

1

4
G29,2,5 +

1

4
G29,6,2 +

1

4
G29,6,14 −

1

4
G29,6,15 +

1

4
G29,7,4 +

1

4
G29,7,5

+
1

4
G29,8,4 +

1

4
G29,8,5 −

1

4
G29,12,2 +

1

4
G29,12,7 +

1

4
G29,12,8 −

1

4
G29,12,14 −

1

4
G29,14,4

− 1

4
G29,14,5 −

1

4
G29,16,2 +

1

4
G29,16,4 +

1

4
G29,16,5 −

1

4
G29,16,14 +

1

4
G29,16,15 −

1

4
G29,17,2

+
1

4
G29,17,4 +

1

4
G29,17,5 −

1

4
G29,17,14 +

1

4
G29,17,15 +

1

4
G29,18,2 −

1

4
G29,18,7 −

1

4
G29,18,8

+
1

4
G29,18,14 +

1

4
G29,19,2 −

1

4
G29,19,7 −

1

4
G29,19,8 +

1

4
G29,19,14 +

1

4
G29,22,15 −

1

4
G29,22,21

− 1

4
G29,23,7 −

1

4
G29,23,8 +

1

4
G29,23,21 −

1

4
G29,24,15 +

1

4
G29,24,21 −

1

4
G29,25,4 −

1

4
G29,25,5

+
1

4
G29,25,7 +

1

4
G29,25,8 −

1

4
G29,25,21 −

1

4
G29,26,4 −

1

4
G29,26,5 +

1

4
G29,26,7 +

1

4
G29,26,8

− 1

4
G29,26,21 +

1

4
G30,2,4 +

1

4
G30,2,5 −

1

4
G30,6,2 −

1

4
G30,6,14 +

1

4
G30,6,15 −

1

4
G30,7,4

− 1

4
G30,7,5 −

1

4
G30,8,4 −

1

4
G30,8,5 +

1

4
G30,12,2 −

1

4
G30,12,7 −

1

4
G30,12,8 +

1

4
G30,12,14

+
1

4
G30,14,4 +

1

4
G30,14,5 +

1

4
G30,16,2 −

1

4
G30,16,4 −

1

4
G30,16,5 +

1

4
G30,16,14 −

1

4
G30,16,15

+
1

4
G30,17,2 −

1

4
G30,17,4 −

1

4
G30,17,5 +

1

4
G30,17,14 −

1

4
G30,17,15 −

1

4
G30,18,2 +

1

4
G30,18,7

+
1

4
G30,18,8 −

1

4
G30,18,14 −

1

4
G30,19,2 +

1

4
G30,19,7 +

1

4
G30,19,8 −

1

4
G30,19,14 −

1

4
G30,22,15

+
1

4
G30,22,21 +

1

4
G30,23,7 +

1

4
G30,23,8 −

1

4
G30,23,21 +

1

4
G30,24,15 −

1

4
G30,24,21 +

1

4
G30,25,4

+
1

4
G30,25,5 −

1

4
G30,25,7 −

1

4
G30,25,8 +

1

4
G30,25,21 +

1

4
G30,26,4 +

1

4
G30,26,5 −

1

4
G30,26,7

− 1

4
G30,26,8 +

1

4
G30,26,21 (9.47)

9.6 Conclusions
The current frontier in the calculation of multiscale multiloop Feynman integrals for 2 → 3
scattering processes relevant to LHC searches lies at two-loop five-point Feynman integrals
with one off-shell leg and massless internal lines. As of this writing, results for all planar two-
loop five-point MI have been obtained using a numerical [80], as well as an analytical approach
[82]. Regarding the analytical results, all planar MI were expressed in terms of GPLs of up to
transcendental weight four. These results, along with analytic results for the relevant one-loop
five-point MI with one off-shell leg [72], were recently used to perform the first fully analytic
calculation of a two-loop scattering amplitude for Wbb̄ production [84]. Furthermore, using
a new method for calculating MI, the authors of [70] have computed numerically one of the
non-planar two-loop five-point families. More recently, some of the authors of [80] presented
the three hexabox topologies in [109] using the same techniques as in [80].

Looking ahead, at some point we will have to consider more complicated Feynman integrals,
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involving more massive external particles and/or massive propagators. One of the expected
challenges when considering such integrals is the introduction of many square roots in the
alphabet of the resulting canonical differential equations. It remains a non-trivial exercise to
find a universal way to handle these roots and achieve a result in terms of GPLs, however
several ideas have been put forward in recent times [116], [134]–[136]. One should also keep
in mind that even if a so-called dlog form of the differential equations is achieved, it does not
guarantee that its solution will be in terms of GPLs [137].

In order to get a glimpse of the complexities that lie beyond the frontier of five-point
scattering involving one off-shell leg and massless internal lines, in this chapter we studied
families of one-loop five-point Feynman integrals with two and three massive external legs and
massless propagators, as well as one-loop five-point families with one massive internal line and
up to two massive external legs.

We used the SDE approach for the construction of canonical differential equations for pure
bases of the families of Figure 9.1 and as a special limit we obtained results for the families of
Figure 9.2. As it turned out, the parametrization (9.3) was enough to rationalise all square roots
introduced in the alphabet of families C,E,G,H of Figure 9.1. For these families we were also
able to obtain boundary terms for the canonical differential equations in closed form, allowing
us to trivially derive solutions for these families in terms of GPLs of arbitrary transcendental
weight.

For families D,F of Figure 9.2 we obtained analytic results through a special limit of our
solutions for families E and G respectively. For all families studied in this chapter we provide
explicit results in terms of GPLs of up to transcendental weight four.

Regarding the structure of the resulting alphabets in x, we saw that when one internal mass
is introduced, square roots involving this mass arise, which are not present in the definition of
the pure basis. Further study of these alphabets is required to pin-point the origin of these
additional square roots, which we leave for future work. It is also interesting to explore in the
future the structure of these alphabets when one employs the standard method of differential
equations, i.e. differentiating with respect to all kinematic variables. A comparison between
the two approaches might further elucidate the effectiveness of the SDE approach in providing
solutions to multiscale Feynman integrals in terms of GPLs, as well as provide an idea of
whether the representation of these integrals in terms of polylogarithmic functions is the best
one for phenomenological applications.
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Epilogue

In this thesis we have presented analytic results for multiloop multiscale Feynman integrals
regarding mostly NNLO virtual corrections to various 2→ 3 scattering processes which are the
subject of experimental studies at the LHC. We also presented a 3-loop calculation for one the
planar families that are relevant to 2→ 2 scattering processes with up to one external massive
particle.

The frontier of precision calculations in perturbative QCD is rapidly expanding. Particularly
in the subject of Feynman integrals, more and more analytical as well as numerical results are
becoming available. Still, there are open problems to consider, such as the calculation of the two
remaining 2-loop 5-point non-planar topologies with one off-shell leg, as well as the calculation
of the as of yet unknown 3-loop 4-point non-planar topologies with one off-shell leg. These
are important problems that need to be addressed in order to increase the precision of the
theoretical predictions for key QCD scattering processes. It is the intent of the author to
contribute to these outstanding problems in the near future.

The mathematical complexity of these problems poses a great challenge in our ability to
provide solutions that are suited for fast and efficient evaluation at the level that is needed
for phenomenological studies. The success of the past years gives us confidence that new
methods and ideas will be developed, allowing us to overcome all issues that may currently
seem insurmountable.
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