
National Technical University of Athens
School of Mechanical Engineering
Fluids Section
Parallel CFD & Optimization Unit

On the Optimal Use of Metamodel-Assisted Evolutionary Algorithms in
Aerodynamic Applications

Diploma Thesis

Michalis Dimitrios

Advisor: Kyriakos C. Giannakoglou, Professor NTUA

Athens, 2022

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my professor, K.
Giannakoglou for guiding me during the process of completing this diploma thesis
and for trusting me with this particular subject. I would further like to thank him
for his undying trust in me throughout this strenuous process. I would also like to
thank Dr. Varvara Asouti who provided me with her valuable help and constant
support, despite her busy schedule.

Finally, I thank all my friends for being there for me throughout my studies and
my family for supporting me for all those years.

iii

National Technical University of Athens
School of Mechanical Engineering
Fluids Section
Parallel CFD & Optimization Unit

On the Optimal Use of Metamodel-Assisted Evolutionary Algorithms in
Aerodynamic Applications

Diploma Thesis

Michalis Dimitrios

Advisor: Kyriakos C. Giannakoglou, Professor NTUA

Athens, 2022

Abstract

In this diploma thesis, the implementation of Metamodel-Assisted Evolutionary
Algorithms (MAEAs) in the optimization process of various common engineering
cases is tested. Two main MAEA-based optimization methods are utilized and are
affiliated with the approach followed in the training of the metamodels, i.e. on-
line and off-line training. Both these methods are implemented using an external,
Python-based software, called Surrogate Model Toolbox (SMT), and are compared
to plain EAs in terms of efficiency and computational cost. The optimization is
carried out using EASY (Evolutionary Algorithm SYstem) in-house software that is
developed by the Parallel CFD & Optimization (PCOpt) Unit of NTUA. From the
various built-in surrogate models found in EASY, Radial Basis Functions (RBFs)
are utilized in this thesis. However, the optimization via the use of EASY can be
additionally assisted by external metamodels, which are found in SMT software.
From those external surrogate models, namely Kriging, its applications in reduced
design space using Partial Least Squares, i.e. KPLS and KPLSK, and RBFs are
utilized in this thesis. Each optimization method is initially implemented in two
simple pseudo-engineering optimizattion problems, i.e. welded beam and speed re-
ducer case, and subsequently in the shape optimization of a 2D isolated airfoil. The
Reynolds Averaged Navier-Stokes equations of compressible flows are solved using
PUMA (Parallel solver, for Unstructured grids, for Multi-blade row computations,
including Adjoint) CFD solver that is developed by PCOpt/NTUA.

v

Eθνικό Μετσόβιο Πολυτεχνείο
Σχολή Μηχανολόγων Μηχανικών

Τομέας Ρευστών

Μονάδα Παράλληλης Υπολογιστικής Ρευστο-

δυναμικής & Βελτιστοποίησης

Περί Βέλτιστης Χρήσης Μεταπροτύπων στους Εξελικτικούς

Αλγορίθμους με Εφαρμογές στην Αεροδυναμική

Διπλωματική Εργασία

Μιχάλης Δημήτριος

Επιβλέπων: Kυριάκος Χ. Γιαννάκογλου, Καθηγητής ΕΜΠ

Αθήνα, 2022

Περίληψη

Στο πλαίσιο αυτής της διπλωματικής εργασίας μελετάται η εφαρμογή εξελικτικών

αλγορίθμων (EAs) υποβοηθούμενων απο μεταμοντέλα (Metamodel-Assisted Evolu-
tionary Algorithms MAEAs) σε διάφορες εφαρμογές μηχανολογικού ενδιαφέροντος.
Δύο είναι οι κύριες μέθοδοι βελτιστοποίησης με εφαρμογή των MAEAs και σχετί-
ζονται με τον τρόπο εκπαίδευσης των μεταμοντέλων, δηλαδή συνδεδεμένα (on-line)
και αποσυνδεδεμένα (off-line) από την εξέλιξη. Και οι δύο αυτοί μέθοδοι εφαρμόζον-
ται με τη βοήθεια ενός εξωτερικού λογισμικού με βάση την Python, που ονομάζε-
ται Surrogate Model Toolbox (SMT), και συγκρίνονται με τους κοινούς ΕΑs με
βάση την αποτελεσματικότητα και το υπολογιστικό κόστος που προκύπτει από τη

χρήση τους. Η βελτιστοποίηση σε κάθε περίπτωση πραγματοποιείται με τη χρήση του
EASY (Evolutionary Algorithm SYstem), ενός λογισμικού που αναπτύχθηκε από τη
Μονάδα Παράλληλης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης (ΜΠΥΡΒ)
του ΕΜΠ. Από τα διάφορα ενσωματωμένα μεταμοντέλα που υπάρχουν στον EASY, οι
συναρτήσεις ακτινικής βάσης (Radial Basis Functions (RBFs) χρησιμοποιούνται στην
παρούσα διπλωματική εργασία. Ωστόσο, η βελτιστοποίηση μέσω του EASY μπορεί
να υποβοηθηθεί από εξωτερικά μεταπρότυπα, τα οποία είναι διαθέσιμα στο SMT. Από
αυτά τα εξωτερικά μεταμοντέλα, σε αυτή τη διπλωματική εργασία γίνεται χρήση κυρίως
του Kriging, των παραλλαγών του για χώρο σχεδιασμού μειωμένων διαστάσεων χάρη
στην εφαρμογή της μεθόδου μερικών ελαχίστων τετραγώνων (Partial Least Squares),
κυρίως του KPLS και του KPLSK, καθώς και των RBFs. Κάθε μια απο τις μεθόδους
βελτιστοποίησης εφαρμόζεται σε πρώτο στάδιο σε απλά προβλήματα ψευδο-μηχανικής,
κυρίως στην περίπτωση της συγκολλητής δοκού και του μειωτήρα ταχύτητας, ενώ στη
συνέχεια στη βελτιστοποίηση μορφής μιας διδιάστατης αεροτομής. Η επίλυση των εξ-
ισώσεων Reynolds-Averaged Navier-Stokes συμπιεστού ρευστού γύρω από την αερο-
τομή γίνεται με τη χρήση ενός CFD επιλύτη, που ονομάζεται PUMA και αναπτύχθηκε
από τη ΜΠΥΡΒ/ΕΜΠ.

vi

Acronyms

EA Evolutionary Algorithm

SOO Single Objective Optimization

MOO Multi Objective Optimization

CFD Computational Fluid Dynamics

MAEA Metamodel Assisted Evolutionary Algorithm

PSM Problem-Specific Model

DoE Desing of Experiments

LCPE Low-Cost Pre-Evaluation

EASY Evolutionary Algorithm SYstem

PCOpt Parallel CFD & Optimization unit

NTUA National Technical University of Athens

PUMA Parallel solver, for Unstructured grids,
a for Multi-blade row computations, including Adjoint

RBF Radial Basis Function

PLS Partial Least Squares

SMT Surrogate Model Toolbox

DB Database

MDB Metamodel Database

LH Latin Hypercube

LHD Latin Hypercube Design

vii

LHS Latin Hypercube Sampling

ESE Enhanced Stochastic Evolutionary

FFD Full Factorial Design

RMSE Root Mean Squared Error

NRMSE Normalised Root Mean Squared Error

BLUP Best Linear Unbiased Predictor

MSE Mean Squared Error

COBYLA Constrained Optimization BY Linear Approximation

RNG Random Number Generator

RANS Reynolds Averaged Navier Stokes

GPU Graphic Processing Unit

NURBS Non Uniform Rational B-Splines

LTT Lab of Thermal Turbomachines

CUDA Compute Unified Device Architecture

MAE Mean Absolute Error

viii

Contents

1 Introduction 1
1.1 Optimization . 3
1.2 Evolutionary Algorithms . 4

2 MAEAs with off-line training 8
2.1 Design of Experiments (DoE) . 11

2.1.1 Comparison between DoE construction schemes 16
2.2 Communication between EASY and SMT in MAEAs with off-line

training . 19

3 MAEAs with on-line training 21
3.1 Communication between EASY and SMT in MAEAs with on-line

training . 24

4 Surrogate Models 26
4.1 Kriging . 26
4.2 KPLS . 32
4.3 KPLSK . 34
4.4 Radial Basis Function (RBF) . 35

5 Numerical Cases 38
5.1 Welded Beam Design . 38

5.1.1 MOO of Welded Beam Design 50
5.2 Speed Reducer Design . 52
5.3 Analysis of the SOO outcome . 62

6 Airfoil Shape Optimization 64
6.1 Mesh and parametrization . 64
6.2 RANS flow equations . 66
6.3 Turbulence model . 68
6.4 Optimization cases . 69

6.4.1 MOO optimization at take-off conditions 69
6.4.2 SOO optimization at take-off conditions 73
6.4.3 SOO optimization at cruise conditions 76

7 Conclusions and Future Work 79
7.1 Overview . 79
7.2 Conclusions . 80
7.3 Future Work . 81

i

CONTENTS

A Tests in Metamodel Fitting 82
A.1 3 design variable aircraft wing equation 82
A.2 8 design variable aircraft wing equation 84
A.3 Optimal construction method . 85
A.4 Metamodel comparison . 87

B SMT 89
B.1 DoE techniques in SMT . 89
B.2 Metamodel Training . 91

C EASY 93

Bibliography 95

ii

Chapter 1

Introduction

Optimization problems arise in every ripple of the scientific spectrum, from eco-
nomics to engineering. The art of mimicking nature’s ability to select the optimal
candidate solution from a larger population has captivated the entire scientific field
for centuries and, thus, the Evolutionary Algorithms (EAs) were created. EAs are
metaheuristic population-based search methods and are inspired by Darwinian evo-
lution. They fall under the greater category of stochastic optimization and do not
require the computation of derivatives, unlike the deterministic or gradient-based
methods, which allows them to calculate the global minimum more efficiently re-
gardless of the continuity or the differentiability of the objective function. More-
over, stochastic methods and therefore EAs, can be used with great success in both
single-objective (SOO) and multi-objective optimization (MOO). The latter is im-
plemented uniquely via stochastic methods with the computation of the Pareto front,
which serves as an optical representation of non-dominated candidate solutions.

The merit of EAs lies in the ability to effectively and effortlessly accommo-
date the problem-specific evaluation software, e.g. Computational Fluid Dynamics
(CFD). However, such software is commonly expensive in terms of computational
cost and thus the optimization time is severely prolonged. In an attempt to reduce
the wall clock time of the optimization the use of surrogate models, or metamodels,
is introduced. Metamodels approximate, as accurately as possible, the initial eval-
uation model/objective function by using a data-driven approach, which is based
on statistical analysis of the observed data. They tend to have considerably lower
computational cost, although generally they lack in accuracy. The introduction of
metamodels results in Metamodel-Assisted EAs (MAEAs)[1].

In order for the surrogate models to be utilized by the evaluation software, they
must first be trained to fit the problem-specific evaluation model and are, therefore,
classified in two main categories accordingly. Off-line trained surrogate models are
built and updated statically, i.e. separately from the evolution. The termination or
continuation of the optimization depends on a process which assesses the deviation
between the optimal candidate solution obtained by the surrogate model and the
one obtained using the exact problem-specific model (PSM). The necessary patterns
for the training of this global model are collected via the use of various Design of
Experiments (DoE)[3] schemes, e.g. Random [12], Factorial [24, 26, 25] and Latin
Hypercube [13, 14].

On the other hand, on-line trained surrogate models are built dynamically, i.e.
both metamodels and the exact PSM are implemented in the entirety of the EA

1

population during the evolution in a well coordinated scheme, which results in the
training of a separate metamodel for each individual to be evaluated. Responsible
for the selection of promising individuals is the surrogate model, either global or
local, via a Low-Cost Pre-Evaluation (LCPE) [28] process that determines which
individuals are fit for exact reevaluation using the costly CFD evaluation software.
The training process ceases when a user-defined number of evaluations has been
performed. In this thesis, optimization via both MAEA methods, i.e. off-line and on-
line, is facilitated by EASY (Evolutionary Algorithm SYstem)[27] that is developed
by the Parallel CFD & Optimization Unit of NTUA (PCOpt/NTUA).

The effectiveness of both methods, i.e. on-line and off-line, depends heavily
on the efficacy of both the selected surrogate model and the training process, i.e.
complexity of the process, quality and adequacy of the training data. Therefore,
selected metamodels will be evaluated based on various criteria, such as goodness
of fit, estimated computational cost, complexity of training and overall robustness.
These criteria will be implemented individually in a plethora of surrogate models,
namely Radial Basis Functions (RBFs) [43, 44, 45] and Kriging[30, 32], along with
its variations in reduced design space using Partial Least Squares (PLS) regression,
e.g KPLS[39] and KPLSK[42]. Responsible for the metamodel training, is a Python-
based, open-source software called Surrogate Modelling Toolbox (SMT)[2], which is
highly efficient in deterministic methods since it offers gradient prediction modules.
However, its ability to work just as efficiently with stochastic methods and more
importantly with EASY software, makes SMT suitable for accommodating the pro-
cess of training surrogate models with the potential to replace or update the library
of built-in metamodels available in EASY.

The purpose of this diploma thesis is to assess the performance (and way of im-
plementation) of MAEA-based optimization in various applications. The first part
of the study is focused on observing the performance of MAEAs w.r.t. conventional
stochastic optimization methods; particularly in comparison to EAs. The second
part is focused on improving the implementation of MAEAs by selecting surrogate
models with enhanced qualities, e.g. reduced training time, improved response and
overall model fitting. The quality of each metamodel is tested on various optimiza-
tion problems of scaling difficulty, ranging from low-dimensional pseudo-engineering
optimization roblems, i.e. welded beam and speed reducer case, to airfoil shape op-
timization with aerodynamic criteria using the CFD solver, called PUMA (Parallel
solver, for Unstructured grids, for Multi-blade row computations, including Adjoint)
and developed by PCOpt/NTUA.

2

1.1. OPTIMIZATION

1.1 Optimization

An optimization process aims at maximizing or minimizing a mathematical function
via stochastic or deterministic methods w.r.t nc constraints. This mathematical
function is called objective function and is commonly denoted by ~f(~β) ∈ Rn. For n
objectives a constrained optimization problem can be described as follows:

min ~f(~β) = min
¶
f1(~β), f2(~β), . . . , fn(~β)

©
subject to cj(~β) ≤ cthresj , j = 1, nc

(1.1)

where cthresj is the nominal threshold of each constraint imposed by the user for the
purpose of the optimization. The input values to the objective function are called
design variables and are commonly denoted by:

~β =
[
β1, β2, . . . , βnβ

]
(1.2)

where nβ is their number or interchangeably the number of problem dimensions.
Multi-objective optimization (MOO) consists of n objectives:

~f(~β) =
î
f1(~β), f2(~β), . . . , fn(~β)

ó
(1.3)

which are often conflicting and thus the minimization of each objective does not
yield the optimal minimization of the objective function vector ~f(~β) ∈ Rn. The
most common approach for solving such a problem w.r.t. two objectives is the
depiction of the entirety of ~f(~β) component values in a mutual plot. The vertical
and horizontal axis of such a plot correspond to the range of values of the respective
objective and the resulting plot is called Pareto front. A solution in Pareto front
is called non-dominated if none of the objectives can be improved in value without
degrading some of the other objective. The set of all the non-dominated solutions
is the Pareto frontier.

In single objective optimization (SOO), the output of the objective function to

a single design variable vector ~β ∈ Rnβ input is a scalar quantity:

~f(~β) = f(~β) = f (1.4)

3

1.2. EVOLUTIONARY ALGORITHMS

1.2 Evolutionary Algorithms

Evolutionary algorithms are inspired by the Darwinian evolutionary theory and they
have therefore assimilated its key elements. In complete correspondence the evolu-
tionary process revolves around selecting the predominant/elite individuals from a
greater sample. This sample consists of λ offspring which were created by µ par-
ents during a generation of the evolutionary algorithm. The population involved
in a generation, denoted by g, is classified in the three aforementioned categories
that are denoted by P g

a , P g
λ or P g

µ to refer to elites, offspring or parents respectively.
EAs constantly form new generations by updating the three main population groups
until convergence is reached. The optimal candidate solution in SOO or the non-
dominated ones in MOO are included in the elite population set P g

a . In order to
gain better insight into (μ,λ) ΕΑs, their structure is further decomposed[4]:

EAs-1. Initialization
The generation counter g is set to zero, marking the initialization of the algo-
rithm. The main objective of EAs is selecting the optimal candidate in SOO
or a set of non-dominated individuals in MOO problems from the offspring
population set P g

λ in each generation. This set is initialized randomly at start
of the evolution.

EAs-2. Offspring evaluation
Each individual ~β in the offspring population P g

λ is evaluated on the PSM.

The outcome of the evaluation ~f(~β) is archived in the database (DB).

EAs-3. Computation of cost/fitness function

Every individual ~β ∈ P g ⊂Rnβ with P g = P g
a ∪ P

g
λ ∪ P g

µ , is assigned a scalar

value Φ(~β), where Φ(~β) is a cost or fitness function computed as such:

Φ(~β) = Φ
Ä
~f(~β), {~f(~z) | ~z ∈ P g \ {~β}}

ä
∈ R (1.5)

In MOO problems sorting algorithms are implemented, namely NSGA[5],
SPEA[6], NSGA-ΙΙ[7] and SPEA-ΙΙ[8]. Such algorithms assign a cost value

Φ(~β) to every vector ~f(~β) based on dominance criteria in the objective space.
In SOO problems such methods are redundant, since it suffices to compare the
values obtained from a single objective function and hence Φ(~β)≡f(~β).

EAs-4. Identification of elites
The cost/fitness function serves as a metric for the selection of the optimal can-

didate solution, where lower Φ(~β) values indicate a more suitable candidate

solution ~β in minimization problems; the opposite applies in maximization
problems. Depending on the number of objectives, the currently optimal solu-
tion in SOO or a set of non-dominated candidate solutions in MOO are stored
in the temporary set Pe.

4

1.2. EVOLUTIONARY ALGORITHMS

EAs-5. Elitism
The elite population set of the next generation is updated via a process of
elitism that is applied to the set Pe,a = P g

α ∪ Pe. This process dictates the
number of of elite individuals to replace the worst offspring in the current
population P g

λ along with the probability for a random elite to be selected as
a parent.

EAs-6. Parent selection
The parents in the next generation P g+1

µ are selected from the wider set P g
µ,λ =

P g
λ ∪ P g

µ after they have outperformed other parents in a tournament.

EAs-7. Crossover and mutation
The set of offspring in the next generation P g+1

λ is subsequently formed via the
use of operators that mimic natural evolution, i.e. crossover/ recombination
and mutation. Crossover is responsible for the generation of a new offspring
by using a recombination of the prominent genetic features of each parent.
Mutation on the other hand, alters one or more genetic features in order to
introduce diversity in the selected population.

EAs-8. Termination
The next generation is now fully formed and the convergence of the process is
tested. If the convergence criteria are not yet met, then g ← g+ 1 and the op-
timization is repeated beginning from step EAs-2. If however, a predetermined
threshold of PSM evaluations has been reached or the elite population remains
unchanged for a user-selected number of iterations, then EA terminates.

The aforementioned steps outline the function of EAs and will be subsequently
combined into the flowchart form of figure 1.1.

5

1.2. EVOLUTIONARY ALGORITHMS

Start

g = 0
Initialize P g

λ

Evaluate P g
λ on PSM

Assign Φ(~β)

Update elites→P g+1
α

Parent
selection →P g+1

µ

Crossover and
mutation→P g+1

λ

Termination
criteria

Stop

yes

g = g + 1

no

Figure 1.1: Flowchart of Evolutionary Algorithms

6

1.2. EVOLUTIONARY ALGORITHMS

Most optimization problems are usually subject to constraints, which EAs handle
via one of the following ways or a combination of those:

1. Penalty functions

2. Conversion of constraints into objectives

3. Correlation operators

EASY in particular, mainly uses the first method, which penalizes any value that
exceeds a certain threshold. That upper bound of acceptable constraint values is
called nominal threshold value cthresj and is firstly introduced in equation 1.1. Once a

constraint exceeds this value (cj(~β) > cthresj), an exponential penalty function fl(~β)
is triggered for each objective function l∈ [1, n]:

fn(~β) = fn(~β) +
nc∏
j=1

exp

Ç
αj

cj − cthresj

crelaxj − cthresj

å
(1.6)

where n and nc is the number of optimization objectives and constraints respectively,
αj a user-defined positive constant and crelaxj a user-defined constraint value that
is called relaxation threshold value. It is by definition larger than the nominal
threshold value crelaxj > cthresj and is introduced in order to prompt the evolution
process from terminating in its early stages, when the candidate solutions commonly
defy the imposed constraints. When a candidate solution exceeds the relaxation
threshold its fitness function Φ(~β) receives a death penalty i.e. an almost infinitely
large value that practically renders the solution unsuitable for further evolution.
Equation 1.6 operates when the candidate solutions reside in the cthresj <cj < crelaxj

range and penalizes them depending on their distance from the nominal threshold
value cthresj (see figure 1.2). Nominal threshold determines, therefore, which solutions
are feasible and which are not.

cj

Φ(cj)

cthresj crelaxj

feasible
solutions

fl(~β)

Figure 1.2: Penalisation of feasible and infeasible solutions in EASY

7

Chapter 2

MAEAs with off-line training

Off-line trained surrogate models are built prior to the evolution and are trained pri-
marily on a dataset of training patterns, which cover the entirety of the design space
and are collected via the implementation of various DoE techniques. The training
process is disconnected from the evolution and, thus, this method is described as
static. MAEAs with off-line training can be decomposed in the following steps:

OFFL-1. Design of Experiments (DoE)
One of the various DoE techniques is applied and the sampling process initi-
ates, which involves the selection of ndoe observations ~χ∈Rnβ from within the
imposed bounds of the design space. Subsequently, the necessary objective
function values ~f(~χ) are computed on the PSM. Consequently, the resulting

ndoe (~χ, ~f(~χ)) observed pairs are archived in a database reserved for the train-
ing of the metamodels which is referred to as metamodel database (MDB).
Any untried point in the design space that is not archived in the MDB, i.e.
each candidate solution, is denoted by ~β ∈ Rnβ .

OFFL-2. Training of the metamodel
The nt archived (~χ, ~f(~χ)) pairs are used in the training of the metamodel.
In the first optimization cycle, the number of training patterns nt is equal
to the ndoe observations. DoE techniques are applied mainly in MAEAs with
off-line training and are used to collect training patterns from the entirety of
the design space, resulting in the construction of a global metamodel.

OFFL-3. Implementation of EAs
The optimization process initiates subsequently via the use of the EASY soft-
ware that implements EAs. The evolution follows the process described in
section 1.2 with one main variation; the offspring evaluation in step 2 (EAs-
2) is performed via the use of the trained surrogate model. The metamodel
serves as a black box that approximates λ individuals, where λ is the number
of offspring in the P g

λ set, and provides the corresponding prediction of the

objective function value ~̂f(~β), ∀~β ∈ P g
λ . Each prediction ~̂f(~β) is assigned a

scalar fitness function value Φ̂(~β), which in MOO problems is based on domi-

nance criteria and Φ̂(~β)≡ f̂(~β) in SOO. The criterion that prohibits EAs from
exceeding a selected number of evaluations is accordingly modified to fit the
trivial computational cost of the metamodel.

8

OFFL-4. Re-evaluation on the PSM
The re-evaluation process initiates once the evolution has been completed and
the optimal candidate solutions have been found. The best candidate solution
in SOO or a set of λ

(i)
α non-dominated solutions in MOO, residing in the P

(i)
e

temporary set, are re-evaluated using the exact PSM. Index i is used to denote
the current cycle of the MAEA algorithm using off-line training.

OFFL-5. Termination
The deviation between the metamodel and the PSM evaluated objective func-
tion values determines the convergence of the MAEA-based optimization. In
case the convergence criteria are not met, the optimal candidate solution/s

residing in the P
(i)
e set at the end of the evolution or some others arbitrarily

selected individuals are used to update the existing MDB. The outcome of their
evaluation, i.e. ~f(~β), ∀~β ∈ P (i)

e , is subsequently added to the updated MDB
and the ith evolution terminates. The next cycle of the optimization initiates
starting from step 1 (OFFL-1) and index i is set to i ← i + 1. The evolu-
tion’s inability to yield an optimal solution is indicative of a poorly trained
surrogate model and, therefore, an improved metamodel needs to be trained.
Consequently in step 1 (OFFL-1) of the (i + 1)th cycle, DoE techniques are
implemented to select nnew doe new points and in the following step (OFFL-2)
a new metamodel is built on nt training patterns, where:

nt = ndoe +
i∑
i=0

Ä
λ(i)α + nnew doe

ä
(2.1)

where λ
(i)
α is the number of elites selected in the ith generation and nnew doe

a user-defined number of sample points that is sampled via DoE techniques
at the start of each optimization cycle in order to fill the MDB and improve
the fitting of the metamodel. The updated number of sample points will be
denoted by n

′

doe for simplicity, where:

n
′

doe = ndoe +
i∑
i=0

(nnew doe) (2.2)

The aforementioned steps outline the function of MAEAs with off-line trained
metamodels and will be subsequently combined into the flowchart form of
figure 2.1.

9

Start

i = 0

DoE → X

g = 0
Evaluation on the PSM →
nt (~χ, ~f(~χ)) pairs in MDB
→ train metamodel

Initialize P g
λ

Compute ~̂f(~β)

j < λ

Computation of Φ̂(~β)

Update elites →P g+1
α

Parent
selection →P g+1

µ

Crossover and
mutation →P g+1

λ

EA
Termination

Evaluation of
Pe on the PSM

Convergence

Update MDB
with Pe

Stop

yes

g = g + 1

no

yes

no

EA loop

i = i+ 1

j = j + 1

no

yes

Figure 2.1: Flowchart of MAEAs using off-line trained metamodels

10

2.1. DESIGN OF EXPERIMENTS (DOE)

2.1 Design of Experiments (DoE)

The predominant characteristic of off-line trained MAEAs is the construction of
a single global surrogate model [9]. The majority of necessary patterns for the
training of this global metamodel are collected via the use of various Design of
Experiments (DoE) techniques that sample the entirety of the design space. DoE
is a statistical tool used for analyzing the interactions between the parameters that
effect the performance of a system and controlling them in order to optimize its
performance[3, 10, 11]. The most commonly used DoE techniques and the ones
studied in this thesis are the following:

1. Random sampling
The most common technique of removing bias from a design is randomization,
which gives each sample point ~χ=[χ1, χ2, . . . , χnβ] ∈ Rnβ equal probability of
being selected from the design space [12], as shown in figure 2.2.

0 1 2 3 4 5 6 7 8 9 10
x1

0

1

2

3

4

5

6

7

8

9

10

x2

Figure 2.2: Random design in 2D space for ndoe=10 sample points

2. Latin Hypercube Sampling (LHS)
A square grid containing a single sample point ~χ ∈ R2 per row and col-
umn is called a Latin Square. The generalization of this design in nβ > 2
dimensions results in the creation of a Latin Hypercube (LH)[13]. A Latin
Hypercube Design (LHD) aims to improve the coverage of the design space
and eliminate the probability of two coinciding sample points and is created
via the implementation of LHS[14, 15] scheme. In LHDs, the design space
in each dimension is stratified into ndoe

1 equiprobable and non-overlapping
intervals[14], called strata. Subsequently, ndoe distinct values are selected, one
from each stratum, and are paired to form the components χ1, χ2, . . . , χnβ of
each sample vector ~χ ∈ Rnβ . As a result of the stratification, the LHD con-
sists of ndoe distinct sample points and can be written as a ndoe × nβ matrix
X = [~χ1, ~χ2, . . . , ~χndoe]

T , where each component ~χi = [χi,1, χi,2, . . . , χi,nβ] rep-
resents an observation ~χ ∈ Rnβ . LHDs can be enhanced with several optimality
construction criteria, some of which are presented here [2, 71]:

1The original design (i = 0) consists of nt = ndoe points, while a separate design is constructed
for every nnew doe points sampled. Without loss of generality, we assume from this point forward
that in the description of DoE we refer to the original design of ndoe points.

11

2.1. DESIGN OF EXPERIMENTS (DOE)

(a) Centered LHD
This construction criterion centers the selected values from within each
hypercube, as shown in figure 2.3.

0 1 2 3 4 5 6 7 8 9 10
x1

0

1

2

3

4

5

6

7

8

9

10

x2

Figure 2.3: Centered LHD in 2D space. The grid has been modified to facilitate the
visualization of ndoe = 10 strata in each dimension.

(b) Maximin LHD
This construction criterion was introduced by Johnson et al. [16] based
on the idea that the Euclidean distance between sample points should be
used as a metric for design construction. A maximin design, denoted by
SMm, guarantees that every pair of points will never coincide by maxi-
mizing the minimum distance between them [17].

max
S⊂Rnβ

min
~χi,~χj∈S

d(~χi, ~χj) = min
~χi,~χj∈SMm

d(~χi, ~χj) ,∀i, j ∈ [1, ndoe] (2.3)

Each selected point ~χ∈S, where S the selected design set, is the center of
a sphere, the radius of which is calculated by the algorithm that produces
the maximin design described by eq. 2.3. Consequently, the final design
contains ndoe non-overlapping spheres. In a maximin LHD, the sample
points must furthermore be selected from within within each hypercube,
as shown in figure 2.4.

0 1 2 3 4 5 6 7 8 9 10
x1

0

1

2

3

4

5

6

7

8

9

10

x2

Figure 2.4: Maximin LHD in 2D space for ndoe = 10 sample points

12

2.1. DESIGN OF EXPERIMENTS (DOE)

(c) Maximin Centered LHD
Similar to maximin LHD with the exception that the selected sample
points are centered within each hypercube, as shown in figure 2.5.

Figure 2.5: Maximin centered LHD in 2D space for ndoe = 10 sample points

(d) Maxent LHD
Information entropy as proposed by Shannon [18] is directly associated to
the level of information available from a design. Shewry and Wynn [19]
showed that maximizing the entropy of the response distribution at the
sampled design sites X is equivalent to maximizing the gain of information
of the response distribution at any untried location of the design space. If
the response distribution is given by a stationary Gaussian process Y (·)
with mean µY , variance σ2 and correlation function R(·), then the optimal
design S⊂Rnβ can be found by maximizing the simplified entropy of the
distribution of the responses at the design sites, as such:

max
~χi,~χj∈S

−ln [detR(~χi, ~χj)] (2.4)

where R(~χi, ~χj) =
∏nχ

l=1 exp(−θl |χi,l − χj,l|
q) and q a positive integer

with values 1 or 2, corresponding to an exponential or a Gaussian kernel,
respectively. The parameters θl denote the degree of correlation between
training points w.r.t. each design dimension l∈ [1, nβ]. In a maxent LHD,
the sample points must furthermore be selected from within within each
hypercube, as shown in figure 2.6.

0 1 2 3 4 5 6 7 8 9 10
x1

0

1

2

3

4

5

6

7

8

9

10

x2

Figure 2.6: Entropy LHD in 2D space for ndoe = 10 sample points

13

2.1. DESIGN OF EXPERIMENTS (DOE)

(e) Enhanced Stochastic Evolutionary (ESE) LHD
This criterion is an enhancement to the existing global search, stochastic
evolutionary (SE) algorithm, originally developed by Saab and Rao[20].
The need to further reduce the computational cost of SE resulted in
the creation of Enhanced Stochastic Evolutionary algorithm (ESE)[21].
This new approach is based on utilizing efficient methods for evaluating
various space-filling criteria, namely ϕp, entropy and centered L2 discrep-
ancy criterion. The first criterion was proposed by Morris and Mitchel
(1995)[22] and is an extension of the maximin criterion. L2 discrepancy is
the most common expression of Lp discrepancy, which is a metric of non-
uniformity of a DoE. The formula used to describe centered L2 or CL2

discrepancy was proposed by Hickernell (1998)[23]. The minimization of
CL2 discrepancy results in a uniform design. ESE combines these three
aforementioned space-filling criteria to construct an optimal design. In a
ESE LHD, the sample points must furthermore be selected from within
within each hypercube, as shown in figure 2.7.

0 1 2 3 4 5 6 7 8 9 10
x1

0

1

2

3

4

5

6

7

8

9

10

x2

Figure 2.7: ESE LHD in 2D space for ndoe = 10 sample points

The quality of the LHD affects the convergence of the MAEA-based opti-
mization process and therefore selecting the most cost-efficient construction
criterion of an LHD is essential for the success of this method. An analysis
performed in appendix A.3, concluded that ESE LHDs are the most suitable
for the purpose of this thesis and therefore the LHS scheme is modified ac-
cordingly to produce such designs.

14

2.1. DESIGN OF EXPERIMENTS (DOE)

3. Factorial sampling
In a factorial design, the relative importance of each design variable (factor)
on the objective function is tested by replicating all the possible combinations
of the factors. Each possible combination is replicated in a run of the design
with a total of ndoe runs being performed. Each factor is assigned a number of
discrete values in the [-1,1] range, called levels, where high and low influence
are assigned a level of 1 and -1 respectively[24]. The change in response caused
by an alteration in the level of each factor can, therefore, be correlated with
the relative importance of each factor. The complete replicate of a factorial
design that contains all possible combinations between nβ factors is called a
Full Factorial Design (FFD). A conventional FFD is performed at 2 levels, i.e
1 and -1, which results in ndoe = 2nβ possible combinations[25]. However, the
number of factorial runs ndoe is user-defined, i.e. ndoe 6=2nβ or ndoe 6= 3nβ , and
the cost of constructing a FFD grows exponentially as the number of factors
increases. In order to overcome the imposed restrictions, interactions between
factors that yield the lowest response are neglected. The resulting design is a
fractional factorial design[26]; such a design is depicted in the following case
for ndoe = 10 sample points in figure 2.8:

Levels -1 -0.5 0 0.5 1

χ1 6 7.33 - 8.66 10
χ2 150 - 175 - 200

0 1 2 3 4 5 6 7 8 9 10
x1

0
1
2
3
4
5
6
7
8
9

10

x2

Figure 2.8: Example of Factorial design for 2 design variables with ndoe = 10 sample
points

15

2.1. DESIGN OF EXPERIMENTS (DOE)

2.1.1 Comparison between DoE construction schemes

The selection of a suitable design is an essential step to the training of a surrogate
model. For that reason the available DoE construction schemes are evaluated w.r.t.
their effect on the training process of the metamodel. The comparison is limited to
Factorial and LH designs, since they tend to be the most reliable in overall coverage
of the design space and especially in the selection of a representative sample from the
total population set. Random designs are eliminated from the assessment process,
since they are considered unfit for large population sets due to equiprobable selection
of each individual. Optimality space-filling criteria are not utilized in random designs
and the outcome is a design that either contains a number of similar sample points
or omits significant sample points that are of great importance to the training of
the surrogate model [12].

The first difference between the two remaining DoE construction schemes is
detected in the selection process of sample points. In both full and fractional factorial
designs, the sample points are distributed as evenly as possible in the nβ-dimensional
design space, utilizing its full capacity. In LHDs, the design space is stratified and
the sample points are selected from within the created intervals via the use of some
space-filling construction criterion. For up to nβ = 3 design variables the resulting
designs can be replicated in 3D space as depicted in figure 2.9; in this example the
design space is created by the bounds of each design variable in eq. A.2.

1

120
130

140
150

160
170

2

2.0
2.5

3.0
3.5

4.0
4.5

5.0
5.5

6.0

3

6
7

8

9

10

11

Latin Hypercube
Factorial

(a) 3D design space

120 130 140 150 160 170
1

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

2

(b) 2D contour surface along χ1, χ2 plane

120 130 140 150 160 170
1

6

7

8

9

10

11

3

(c) 2D contour surface along χ1, χ3 plane

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
1

6

7

8

9

10

11

2

(d) 2D contour surface along χ2, χ3 plane

Figure 2.9: Factorial and LH designs in 3D design space

16

2.1. DESIGN OF EXPERIMENTS (DOE)

The implementation of factorial sampling in 3D space for ndoe = 20 runs results
in the creation of a fractional factorial design, which disregards a large section of
the design space. For the same number of runs, on the other hand, LHS scheme
spreads sample points optimally across the design space and yields, for this reason,
better designs. In LHDs furthermore, the MDB is more diverse and complete, since
it consists of ndoe distinct values, unlike in factorial designs where the influence
of each design variable is tested on κl < ndoe levels each. The responses of ndoe
sample points can be written as a ndoe × n matrix F = [~f1, ~f2, . . . , ~fndoe]

T , where

each component ~fi = [fi,1, fi,2, . . . , fi,n] represents a response ~f ∈ Rn. The responses
of ndoe = 20 sample points in eq. A.2 (see appendix chapter A.1) are depicted in
figure 2.10.

Figure 2.10: Comparison between F(~χ) responses to samples created via Factorial
and LHS DoE scheme

The two DoE schemes yield similar objective function values, as seen in figure
2.10). However, a similarity in objective function responses cannot lead to any
definite conclusions on the quality of the respective models. One of many metrics
for metamodel quality is the Root Mean Square Error (RMSE) (see appendix chapter
A.3). This metric depends on the order of magnitude of the observed values and
the size of the sample, so it is merely used in the comparison of various metamodels
when approximating the same PSM and trained on the same dataset. Consequently,
a high RMSE is a characteristic of a model that has been selectively trained for only
a narrow set of sample points, therefore lacking in robustness. This concept is tested
in a KPLS model with fitting shown in figure 2.11.

(a) LHD, NRMSE = 0.003818

200 300 400 500 600 700 800 900
f

200

300

400

500

600

700

800

900

f

Validation of KPLS model trained on a LHD

f
f

(b) Factorial design, NRMSE = 0.010939

300 400 500 600 700
f

300

400

500

600

700

f

Validation of KPLS model trained on a factorial design

f
f

Figure 2.11: NRMSE of metamodels trained on a LHD and a factorial design

17

2.1. DESIGN OF EXPERIMENTS (DOE)

The RMSE is calculated using the following equation:

RMSE =

Ã∑nval
i=1

Ä
f̂i − fi

ä2
nval

(2.5)

where nval is the number of validation points and ~χi =
[
χi,1, . . . , χi,nβ

]
∈ Rnβ the

vector of the ith training point. Validation points are selected from the design space
via the implementation of any DoE technique and are used in the evaluation of
the model[2]. Every set of sample points different than the one used to train the
metamodel is considered a set of validations point. The values obtained via the
use of the trained surrogate model are denoted by f̂ and referred to as estimated
values. In equation 2.5 the existence of a single objective is assumed and the both
f and f̂ are scalar quantities. In MOO problems, the RMSE is computed w.r.t.
to each objective iteratively. In order to remove the dependency on the order of
magnitude Normalised Root Mean Square Error (NRMSE) is introduced, which can
be calculated from the following formula:

NRMSE =

Ã
1

nval

nval∑
i=1

Ç
f̂i − fi
fi

å2

(2.6)

NRMSE is dimensionless and assumes values in the R+, with values closer to zero
indicating a well-trained metamodel. NRMSE is not restricted in a specific dataset
but can rather be generalised to compare models of various orders of magnitude.

In addition to inferior metamodel quality, factorial designs are imposed with se-
vere limitations when sampling high-dimensional design spaces. Even in its simplest
form a FFD must consist of ndoe = 2nβ possible combinations. In 10 dimensions,
the number of runs required to fully replicate the design is:

ndoe = (2)10 = 1024

If moreover the case in study is that of a 3D airfoil, then each set of design variable
values ~β would correspond to a different airfoil shape. That results in 1024 different
shapes and therefore to a beyond sustainability computational cost. The number of
factorial runs needed for the creation of a factorial design in 10-dimensional space is
ndoe > 600, which results experimentally from the implementation Python software.
On the other hand, LHS scheme is suitable for creating high-dimensional designs
and offers a better coverage of the design space combined with minimal impact on
the computational cost, which leads to its selection as the main sampling scheme
used in this thesis.

18

2.2. COMMUNICATION BETWEEN EASY AND SMT IN MAEAS WITH
OFF-LINE TRAINING

2.2 Communication between EASY and SMT in

MAEAs with off-line training

In the evaluation phase of MAEAs with off-line training the PSM is replaced by a
surrogate model, which is trained on nt training patterns that are collected via the
use of various DoE techniques. The creation of DoE, the training of the metamodel
and the prediction of the objective function value are performed via the use of SMT.
However, in order for SMT to facilitate the evolution performed by EASY (see
appendix C), a set of modifications must be applied in order for the two programs
to be compatible. Responsible for the establishment of a line of communication
between the two software is a Python script, which is manually created and can be
decomposed in the following sections:

1. Sampling (Code 1)
The design space is defined, i.e. upper and lower bound of each design vari-
able, along with the magnitude of the design, denoted by n

′

doe, and the DoE
technique utilized to construct it. The n

′

doe collected training patterns X are
subsequently written in an ASCII text file sample points.dat, prior to the ter-
mination of Code 1.

2. Evaluation of sample points on the PSM (Code 2)
Code 2 contains the exact PSM. Both the input to the PSM, i.e. the observa-

tions X∈Rn
′
doe×nβ contained in sample points.dat, and the yielded responses

F(~χ)∈Rn
′
doe×n are written in a plain ASCII text file model values.dat, along

with the constraints C(~χ) = [~c1,~c2, . . . ,~cnt]
T , in case the optimization prob-

lem is constrained. Each component ~ci = [ci,1, ci,2, . . . , ci,nc] corresponds to the
constraint vector ~c(~χ) of the ith sample point ~χ ∈ Rnβ .

3. Training of metamodel (Code 3)
Codes 1 through 3 are incorporated in the preprocessor.exe executable. Code 3
in particular is responsible for training the selected surrogate model. In order
to accomplish that, first n

′

doe (~χ, ~f(~χ)) observed pairs must be imported from
model values.dat. At the end of each off-line optimization cycle the MDB is
updated with λe elites that are contained in the Pe set. Consequently, Code
3 is also responsible for incorporating λe (~β, ~f(~β)) pairs in the training of the
metamodel, after importing them from a plain ASCII text file out.log that
is created by Code 6. Once the MDB is complete, a new surrogate model is
trained at the start of each optimization cycle using nt training pairs (~χ, ~f(~χ))
(see eq. 2.1).

In the case of a constrained optimization, the matrix of constraints C(~χ) is
imported into Code 3 along with the objective function values matrix F(~χ),
and a distinct metamodel is trained on each constraint or a single metamodel
is trained for the entirety of the imposed constraints. Metamodels trained on
constraints require nt (~χ,~c(~χ)) training pairs to be built.

Once the training is complete, the parameters of each trained metamodel are
witten in a binary text file using the Python module .pickle(); in this way, it
can be utilized in the evaluation of prominent solutions in each generation of
the evolution. For some metamodels, however, .pickle() is not applicable, e.g.

19

2.2. COMMUNICATION BETWEEN EASY AND SMT IN MAEAS WITH
OFF-LINE TRAINING

RBF. In that case, a folder containing the cached data that are produced via
the training process is used in order to store and reuse the saved surrogate
model.

4. Evaluation using the trained metamodel (Code 4)
The current script uses as input the file task.dat, which EASY creates, and con-
tains a single offspring ~β ∈P g

λ . A metamodel prediction f̂(~β) is subsequently

computed for every offspring ~β ∈ P g
λ ⊂ Rnβ by utilizing the stored metamodel

via the use of .pickle() module. Code 4 is identical in form to evaluation.exe,
but the PSM is replaced by a surrogate hence it is called prediction.exe.

5. Selection of objectives and constraints (Code 5)
In order to establish the communication between EASY and the user, post-
processor.exe is manually created. This script is responsible for writing the
objectives and the imposed constraints of the optimization in a task.cns and
a task.res file, respectively. Text files task.res and task.cns contain the predic-

tions ~̂f(~β) and ~̂c(~β), respectively, of a single individual ~β∈P g
λ and are read by

EASY.

6. Evaluation of elites using the trained metamodel (Code 6)
Code 6 performs the evaluation of the elite population Pe using the exact PSM.

The only difference with Code 2 is that the inputs (~β, ~̂f(~β)), (~β, ~̂c(~β)), ∀~β ∈ Pe
are imported from out L1.log, which is created by EASY at the end of each
optimization cycle, and the corresponding exact PSM evaluations (~β, ~f(~β)),

(~β,~c(~β)) are written in out.log. Both these files follow ASCII text format.

20

Chapter 3

MAEAs with on-line training

On-line trained surrogate models are built in each generation of the evolution and
hence this MAEAs method is described as dynamic. The most common approach is
one that involves the implementation of a Low-Cost Pre-Evaluation (LCPE) process.
LCPE is responsible for the selection of promising individuals via the implementation
of local or global metamodels. The former are however more widely used, since they
tend to approximate complex objectives function more effectively. MAEAs with
metamodels trained on-line via LCPE phase can subsequently decomposed in the
following discrete steps:

ONL-1. Implementation of EAs
The initialization of LCPE phase requires the implementation of conventional
EAs for a number of generations. Each untried individual ~β ∈ P g

λ is evalu-
ated on the PSM and subsequently archived in the DB. Once a user-defined
minimum number of individuals has been stored in the DB, LCPE[28] phase
initiates.

ONL-2. Low-cost Pre-evaluation
LCPE phase initiates by training on the fly a local surrogate model for each
untried individual ~β ∈ P g

λ . The training of each metamodel in SOO problems
requires the selection of an appropriate set of training patterns from the vicin-
ity of each individual ~β. In MOO problems more sophisticated algorithms are
required. Such a method is developed by PCOpt/NTUA and is called Training
Pattern Selection (TPS)[29]. Using the trained local metamodels, the objec-
tive function value of each offspring s subsequently predicted and denoted by

~̂f(~β),∀~β ∈ P g
λ .

ONL-3. Computation of fitness function
This step is identical to step EAs-3. Each candidate solution ~β ∈ P g

λ , is as-
signed a scalar value. Depending on the process implemented to evaluate each
candidate solution, i.e. PSM or LCPE using local metamodels, the fitness
function is either exactly calculated (Φ(~β)) or predicted (Φ̂(~β)), respectively.

Φ(~βi) = Φ(~f(~βi), {~f(~z) | ~z ∈ P g
λ \ {~βi}}) ∈ R , for i = 1, λ (3.1)

or

Φ̂(~βi) = Φ̂(~̂f(~βi), { ~̂f(~z) | ~z ∈ P g
λ \ {~βi}}) ∈ R , for i = 1, λ (3.2)

21

ONL-4. Identification of elites
The values of the fitness function assigned to each candidate solution are used
to update the temporary set of elites Pe. In SOO problems Φ(~β) ≡ f(~β),

Φ̂(~β) ≡ f̂(~β) and there is only one optimal solution λe=1. In MOO problems
the best λe<λ offspring are selected to populate the Pe set. In the latter cat-
egory due to the large number of data the fitness function values are assigned
via the implementation of the simplest sorting algorithm, e.g. NSGA[5] or
SPEA[6], or via a simple ranking of non-dominated Pareto fronts. The final
Pe set is formed as such:

Pe , {~βi : Φ̂(~βi) < Φ̂(~z), ~z ∈ P g
λ \ Pe} , for i = 1, λe (3.3)

The process of populating the Pe set continues until:

λe,min < λe < λe,max (3.4)

where λe,min, λe,max are user-defined lower and upper bounds of the number of
elites λe, respectively.

ONL-5. CFD evaluation
Subsequently, λe elite candidate solutions contained in the Pe set are re-
evaluated on the PSM and are stored in the DB. Depending on the deviation
between metamodel and psm evaluated outcome, denoted by εPe , either the
evolution continues or new elites are selected (step ONL-4) and re-evaluated
(step ONL-5). This criterion can be expressed mathematically as such:

εPe =

∣∣∣∣∣∣ ~f(~β)− ~̂f(~β)

~f(~β)

∣∣∣∣∣∣ < ελ ,∀~β ∈ Pe (3.5)

where ελ a user-defined value upon which the criterion is satisfied.

ONL-6. Elitism
The temporary set Pe is used to update the population of the current gen-
eration P g

α . The process of elitism subsequently commences and leads to the
formation of P g+1

α set. This step is identical to step EAs-5.

ONL-7. Crossover and mutation
Crossover and mutation operators are applied to form the set P g+1

λ , similarly
to step EAs-6.

ONL-8. Termination
Once the process of implementing evolution operators is complete, the con-
vergence of the on-line training process is tested. If a user-defined number of
generations has been formed the process terminates, alternatively, the next
generation initiates by setting g = g + 1. If a user-defined number of idle
generations nidle has been performed using metamodels in LCPE phase, then
plain EAs are utilized and the counter of idle LCPE generations cidle is reset
to zero, as shown in figure 3.1.

22

Start

g = 0
Initialize P g

λ

cidle ≤ nidle
or adequate
data in DB

PSM evaluation
of P g

λ
DB DB

i = 1

Train local
metamodel

Compute ~̂f(~β)

i < λ

Assign Φ̂(~β)

Select λe → Pe

PSM evaluation of Pe → ~f(~β)

εPe < ελ
λe,min<λe<λe,max

Update elites → P g+1
α

Parent
selection → P g+1

µ

Crossover and
mutation → P g+1

λ

Assign Φ(~β)

Update elites →P g+1
α

Parent
selection → P g+1

µ

Crossover and
mutation → P g+1

λ

Termination
criteria

Stop

yes

g = g + 1

no

no

yes

no

i = i + 1

yes

yes

no

Figure 3.1: Flowchart of MAEAs using on-line trained metamodels

23

3.1. COMMUNICATION BETWEEN EASY AND SMT IN MAEAS WITH
ON-LINE TRAINING

3.1 Communication between EASY and SMT in

MAEAs with on-line training

The optimization based on MAEAs via the use of EASY[27] software is primarily
focused on training metamodels on-line and therefore a number of metamodels are
already archived in the database of EASY. In order to provide EASY with exter-
nal metamodels trained on SMT software, the following Python scripts must be
deployed:

1. Evaluation of offspring using the exact model (Code 1)
This script contains the exact PSM and is responsible for computing the exact
objective function vector ~f(~β), ∀~β ∈ P g

λ . Each one of those candidate solutions
is imported from the file task.dat. The script is subsequently converted to an
executable process, called evaluation.exe, and executed via task.bat batch file,
which has the following structure:

1 @echo off

2 erase results.dat

3 evaluation.exe > nul

4 postprocessor.exe > nul

Listing 3.1: Structure of task.bat file that initiates the exact evaluation of offspring

2. Training of metamodel (Code 2)

LCPE phase initiates by training a local metamodel for each individual ~β ∈ P g
λ .

Both the nt training patterns X and their corresponding exact model values
F(~χ) are imported from a plain ASCII text file, which is called meta.db and
is created by EASY. Code 2 is converted to train.exe and executed via a user-
created batch file meta train.bat that has the following structure:

1 @echo off

2 train.exe > nul

Listing 3.2: Structure of meta train.bat file that initiates training of the metamodel

3. Evaluation of offspring using the metamodel (Code 3)
Code 3 utilises each local metamodel, which is built in the vicinity of the ith

individual ~βi∈P g
λ , in order to produce the evaluation ~̂f(~βi). Each individual

is contained in a plain ASCII text file meta.dat, which is structured similarly
to task.dat. Consequently, after converting the script to an executable predic-
tion.exe Code 3 is executed iteratively for λ offspring via meta use.bat batch
file, which has the following structure:

1 @echo off

2 erase results.dat

3 prediction.exe > nul

4 postprocessor.exe > nul

Listing 3.3: Structure of meta use.bat file that initiates the evaluation of some
candidate solution ~β∈P g

λ based on its personalised local metamodel

24

3.1. COMMUNICATION BETWEEN EASY AND SMT IN MAEAS WITH
ON-LINE TRAINING

4. Objectives and constraints (Code 4)
Code 4, which is called postprocessor.exe, is executed alternately via task.bat
and meta use.bat batch files in order to provide EASY with the exact ~f(~β) or

predicted ~̂f(~β) objective function value of each individual ~β ∈ P g
λ , respectively.

EASY expects to read this value, or values if there are more than one objective,
in task.res file. Any constraint ~c(~β) is subsequently written in a task.cns file.

In EASY, the MAEA-based on-line construction process consists of the same
fundamental steps, i.e. evaluation based on the PSM, training of the surrogate
model and prediction based on the trained model, but no additional user-constructed
scripts are needed to utilize the built-in metamodels of EASY, in contrast to SMT.

25

Chapter 4

Surrogate Models

Metamodels approximate the initial evaluation model by utilising a data-driven ap-
proach, which is based on statistical analysis of the observed data. Consequently,
the selection of a suitable surrogate model is essential in the optimal utilization
of MAEA-based optimization. In attempt to achieve homogeneity throughout this
thesis, it is reminded that the observations’ matrix formed of nt training patterns is
denoted by X = [~χ1, ~χ2, . . . , ~χnt]

T , where each component ~χi = [χi,1, χi,2, . . . , χi,nβ]
represents an observation ~χ ∈ Rnβ . Their corresponding objective function val-
ues are included in matrix F(~χ) = [~f1, ~f2, . . . , ~fnt]

T , where each component ~fi =

[fi,1, fi,2, . . . , fi,n] represents a response ~f ∈ Rnβ . In order to simplify the mathemat-
ical equations describing the surrogate models, F(~χ) is reduced to an 1-dimensional
matrix by assuming, without loss in generality, that the optimization process has a
single objective. From there, the respective equations describing a MOO can be eas-
ily formulated by combining the SOO equations iteratively for n objectives. In SOO,
therefore, F(~χ) = F = [f1, f2, . . . , fnt]

T ∈Rnt . Surrogate models are used to predict

the objective function value f(~β) at any untried location of the design space, i.e. at

each candidate solution ~β ∈ Rnβ . The theoretical background of every metamodel
utilized via SMT in this thesis is subsequently presented.

4.1 Kriging

Kriging[30] is a surrogate model used for predicting the objective function value at

any candidate solution ~β ∈ Rnβ in the design space. In order to make the prediction
Kriging uses an interpolation method that combines a deterministic term with the
realization of stochastic process. The former is replaced by a regression model and
the latter is the realization of the stationary process Gaussian z(~β)vN(0, C) with

a zero mean and a covariance kernel C(~β) of the observations:

C(~χi, ~χj) = σ2R(~χi, ~χj) (4.1)

where σ2 the variance of the process and R(~χi, ~χj) the correlation between any two
observations ~χi, ~χj∈Rnβ , ∀i, j ∈ [1, nt]. In order to improve the fitting of the Kriging
model the distribution of training patterns in each problem dimension is normalized:

~χnorm =
~χ− µ~χ(j)

σ~χ(j)

(4.2)

26

4.1. KRIGING

where ~χ(j) =[χ1,j, χ2,j, . . . , χnt,j]
T ∈Rnt is the column vector of the nt×nβ matrix

X and µ~χ(j) , σ~χ(j) the mean value and the standard deviation of the jth observation,
respectively. The correlation between any normalized training point ~χnorm∈S⊂Rnβ ,
where S is the design set, can be computed using one of the following correlation
kernels 1 [2, 31]:

� Exponential Ornstein-Uhlenbeck process

R (~χi, ~χj) =

nβ∏
l=1

exp (−θl |χi,l − χj,l|) (4.3)

� Gaussian

R (~χi, ~χj) =

nβ∏
l=1

exp
Ä
−θl (χi,l − χj,l)2

ä
(4.4)

� Matérn 5/2

R (~χi, ~χj) =

nβ∏
l=1

Å
1 +
√

5 |χi,l − χj,l|+
5

3
θ2l (χi,l − χj,l)2

ã
exp
Ä
−
√

5θl |χi,l − χj,l|
ä

(4.5)

� Matérn 3/2

R (~χi, ~χj) =

nβ∏
l=1

Ä
1 +
√

3θl |χi,l − χj,l|
ä
exp
Ä
−
√

3θl |χi,l − χj,l|
ä

(4.6)

where θl are parameters that denote the degree of correlation between training points
w.r.t. each design dimension l ∈ [1, nβ]. Kriging assumes that the estimated value
of each correlation parameter θ is constant for each independent design variable and
therefore for each design dimension, leading to the creation of an isotropic model[32].
The correlation patterns of the observed data and their corresponding covariance
can be stated in the form of an orthogonal matrix R and C, respectively:

R =

R(~χ1, ~χ1) . . . R(~χ1, ~χnt)
...

. . .
...

R(~χnt , ~χ1) . . . R(~χnt , ~χnt)

 , C =

C(~χ1, ~χ1) . . . C(~χ1, ~χnt)
...

. . .
...

C(~χnt , ~χ1) . . . C(~χnt , ~χnt)

 (4.7)

Under the assumption of a SOO problem, the Kriging model computes the ob-
jective function value at any normalized point ~β ∈ Rnβ outside the sampled design
as such:

f(~β) = µK + z(~β) (4.8)

where the deterministic term µK is expressed as a constant, linear or quadratic
regression model:

µK =
k∑
j=1

wjpj(~β) (4.9)

1In all Kriging models from this point on, the notation of normalization will not be used for
sampled points but will be implied for simplicity, so ~χ ≡ ~χnorm and ~χ ≡ ~χnorm

27

4.1. KRIGING

where wj is the jth regression coefficient and pj : Rnβ 7→ R are k chosen functions.
The parameter k assumes various values to denote a constant, a linear or a quadratic
regression model [33]. In a constant regression model, k = 1 and p1(~β) = 1. In a
linear regression model, k = nβ + 1 and the corresponding functions assume the
following values:

p1(~β) = 1, p2(~β) = β1, . . . , pk(~β) = βnβ (4.10)

In a quadratic regression model, k =
1

2
(nβ + 1)(nβ + 2) and the functions pj assume

the following values:

p1(~β) = 1, p2(~β) = β1, . . . ,

pnβ+1(~β) = βnβ , pnβ+2(~β) = β2
1 , . . . ,

p2nβ+1(~β) = β1βnβ , p2nβ+2(~β) = β2
2 , . . . ,

p3nβ(~β) = β2βnβ , . . .

pk(~β) = β2
nβ

(4.11)

where βj∈R is the component of any untried point ~β w.r.t. the jth design dimension
for j∈ [1, nβ].

� Prediction with noise-free observations

Kriging, when provided with the observed data that are collected via the imple-
mentation of DoE, can predict the value of any individual at any untried location of
the design space accompanied by the measure of confidence of the prediction at that
location. Under the assumption of a SOO problem, consider the linear predictor
f̂(~β) of the objective function at any untried point ~β, given the prior observations

F = [~f1, ~f2, . . . , ~fnt]
T :

f̂(~β) = ~c T (β)F (4.12)

where ~c(β) ∈ Rnt is the nt × 1 vector of coefficients. Then the deviation between
the predictor and the true objective function value:

f̂(~β)− f(~β) = ~c T (~β)F− (µK + z(~β))
(4.8)−−→
(4.9)

= ~c T (~β) (P~w + Z)− (~p T (~β)~w + z(~β))

= ~c T (~β)Z− z(~β) + (PT~c(~β)− ~p(~β))T ~w

(4.13)

where Z = [z1, z2, . . . , znt]
T is the nt × 1 vector of errors at the observed points,

z(~β) is the error at the untried location, ~p(~β) = [p1(~β), p2(~β), . . . , pk(~β)]T is the

k×1 vector of the chosen functions at any untried input ~β and P the corresponding
nt × k matrix for the complete design of observed data, which for i = 1, nt training
patterns ~χi=[χi,1, χi,2, . . . , χi,nβ]∈S⊂Rnβ is expressed as:

28

4.1. KRIGING

P =

p1(~χ1) p2(~χ1) . . . pk(~χ1)
p1(~χ2) p2(~χ2) . . . pk(~χ2)

...
...

. . .
...

p1(~χnt) p2(~χnt) . . . pk(~χnt)

 (4.14)

The best linear unbiased predictor (BLUP) is obtained by selecting the vector

~c(~β) that minimizes the mean squared error (MSE). In order to keep the predictor
unbiased, we demand that the expected value of the predictor and objective function
coincides at the design sites X [35]:

E[f̂(~β)− f(~β)] = 0
(4.13)−−−→ E[~c T (~β)Z− z(~β) + (PT~c(~β)− ~p(~β))T ~w] = 0→

~c T (~β)E[Z]− E[z(~β)] + E[(PT~c(~β)− ~p(~β))T ~w] = 0
E[z(~β)]=µz=0−−−−−−−−→

E[(PT~c(~β)− ~p(~β))T]~w = 0→ PT~c(~β)− ~p(~β) = 0

(4.15)

Consequently, the MSE of the predictor is calculated as such:

E[f̂(~β)] = E[f̂(~β)− f(~β)]2 = E[(~c T (~β)Z− z(~β))2]

= E[~c T (~β)ZZT~c(~β)]− 2~c T (~β)Zz(~β) + z2(~β)]

= σ2
Ä
~c T (~β)R~c(~β)− 2~c T (~β)~rXβ + 1

ä (4.16)

where ~rXβ = [R(~χ1, ~β), R(~χ2, ~β), . . . , R(~χnt , ~β)]T is the nt × 1 matrix denoting the

correlation between the nt observations and any untried candidate solution ~β∈Rnβ .
E[f̂(~β)] is minimized w.r.t. c(~β) and subject to the equality constraint PT~c(~β) −
~p(~β) = 0 stated in eq. 4.15, when the Kriging BLUP at some untried point ~β ∈ Rnβ

is given by equation 4.17:

f̂(~β) = ~p T (~β)~̂w + ~rXβR
−1
Ä
F−P~̂w

ä
(4.17)

The regression coefficients of the BLUP are estimated at the observed design sites
using generalised least-squares method. The k × 1 vector ~̂w = [w1,w2, . . . ,wk]

T of
the estimates of ~w are given by:

~̂w =
(
PTR−1P

)−1
PTR−1F (4.18)

The MSE of the Kriging predictor can be computed using equation 4.19:

MSE(~β) = σ̂2(1− ~r TXβR−1~rXβ) (4.19)

which can be solved by adopting generalised least-squares estimates for the variance:

σ̂2 =
1

nt
(F−P~̂w)TR−1(F−P~̂w) (4.20)

29

4.1. KRIGING

The computation of the Kriging predictor requires the inversion of the symmetric
matrix of correlations R, so the computational cost depends on the size of the
training sample nt. The calculation of R = R(~θ) requires the computation of nβ
correlation parameters θ, assuming an isotropic design, which are estimated using
either maximum likelihood or cross validation method. The former method is more
commonly used and dictates the selection of those parameters θ that maximize
the likelihood function lF (~θ|F) given the responses F, which is a function of ~θ =
[θ1, θ2, . . . , θnβ] mathematically expressed as [34]:

lF (~θ|F) =
1

(2π)nt/2(σ2)nt/2detR1/2
exp

ñ
−(F−P~̂w)TR−1(F−P~̂w)

σ2

ô
(4.21)

Intuitively, this process tries to infer the design space population that is most likely
to have generated the responses F. The complexity of the previous equation de-
creases by computing ln(lF (~θ|F)), since ln(·) is monotonous:

ln(lF (~θ|F)) =− nt
2
ln(2π)− nt

2
ln(σ2)− 1

2
ln(detR)

− (F−P~̂w)TR−1(F−P~̂w)

σ2

(4.22)

After inserting equations 4.18 and 4.20 in eq. 4.22, the latter can be written in the
concentrated ln-likelihood form where any constant terms are ignored:

ln(lF (~θ|F)) =− nt
2
ln

ï
1

nt

(
F−P(PTR−1P)−1PTR−1F

)T
× R−1

Ä
F−P

(
PTR−1P

)−1
PTR−1F

äó
+ ln(detR)

(4.23)

Due to the dependency on the correlation R(~θ) on the number of training patterns nt,

the cost of maximizing ln(lF (~θ|F)), and therefore lF (~θ|F), increases as the number of
observations nt increases. In order to reduce the cost of solving this computationally
expensive equation, a variety of algorithms are utilized, the most common of which
is COBYLA algorithm (Constrained Optimization By Linear Approximation) [36],
which uses linear approximations for the objective and constraint functions.

30

4.1. KRIGING

� Prediction with noisy observations

In the case of noisy predictions, the correlation matrix R∈Rnt×nt is no longer
orthogonal, since the values in the leading diagonal of the matrix are not equal to
1 due to the introduced errors. In such a case, the least squares estimate given by
equations 4.18 and 4.20 will produce values that do not correspond to the phys-
ical model. In order to filter the noise, a parameter λR, referred to as nugget,
is added to the leading diagonal of the matrix [37]. The nugget can be a vector
~λR = [λR1 , λR2 , . . . , λRnt] and vary for each observation or a scalar value λR and be
constant for all observations. Consequently, the correlation matrix R is replaced by
the term R + ~λRI as such:

f̂(~β) = ~p T (~β)~̂w + ~rXβ(R + ~λRI)−1
Ä
F−P~̂w

ä
MSE(~β) = σ̂2(1− ~r TXβ(R + λ̃RI)−1~rXβ)

~̂w =
Ä
PT (R + ~λRI)−1P

ä−1
PT (R + ~λRI)−1F

σ̂2 =
1

nt
(F−P~̂w)T (R + ~λRI)−1(F−P~̂w)

(4.24)

where I is the nt × nt identity matrix.

31

4.2. KPLS

4.2 KPLS

In an attempt to decrease the construction time of Kriging model in high-dimensional
design spaces, the number of parameters ~θ is decreased via the use of Partial Least
Squares (PLS) method[38]. PLS is a statistical method used for observing the
correlation between the design variables and the objective function by projecting
the former in a design space of reduced dimensions h. This space is formed by h
parameters, which are called principal components or latent variables, and are linear
combinations of the design variables. In KPLS [39], the principal components Pc =
[~pc

(1), ~pc
(2), . . . , ~pc

(h)] are retained via the implementation of the PLS method which

seeks the best direction ~D(l) that maximizes iteratively for h reduced dimensions the
covariance between ~p(l) and F(l−1), where F(l−1) are the responses at the observed
design sites X(l−1) for the (l − 1)th principal component.

~D(l) = argmax
~D(l)

~D(l)TX(l−1)TF(l−1)F(l−1)TX(l−1) ~D(l) , for l = 1, h (4.25)

which is maximized when ~D(l)T ~D(l) = 1, i.e. ~D(l) = [D
(l)
1 , D

(l)
2 , . . . , D

(l)
nβ]T is the

nβ × 1 eigenvector that corresponds to the scalar eigenvalue λeig ∈ R with the
largest absolute value, which is estimated using the power iteration method pro-
posed by Lanczos[40]. Let ∆(l−1) ≡ X(l−1)TF(l−1)F(l−1)TX(l−1), then each principal

direction vector ~D(l) maximizes the covariance of ∆(l−1). For the first iteration of
the algorithm, X(0) ≡X ∈Rnt×nβ and F(0) ≡F ∈Rnt , assuming a SOO. With D(l)

known, the principal component for the lth iteration can be calculated:

~pc
(l) = X(l−1) ~D(l) (4.26)

where ~pc
(l) = [p

(l)
c1 , p

(l)
c2 , . . . , p

(l)
cnt]

T is the nt× 1 principal component vector for the lth
principal dimension. Subsequently, the matrices of the design space and its response
are calculated and will be used to compute the values in the next iteration.

X(l) = X(l−1) − ~pc
(l)~w(l)

x

F(l) = F(l−1) − w
(l)
F ~pc

(l)
(4.27)

where ~w
(l)
x and w

(l)
F are the regression coefficients of the lth principal component for

the local regression of X and F, respectively, with the former being a 1×nβ matrix
and the latter a scalar. Prior to the initialisation of the iterative process, matrices
X,F have been scaled and centered on the origin point of the initial coordinate sys-
tem O(0, 0, . . . , 0); this has no impact on the correlation matrix R. In addition, each
resulting principal component is orthogonal to all the other principal components,
since they compose the axes of the new coordinate system.

The completion of the iterative process results in the creation of a formatted
design space of h < nβ dimensions, which is defined by the coordinate system that
the principal components form and is created by rotation of the original design
space. This rotation can be quantified by the definition of a new matrix[41]:

D∗ = D
(
W T

x D
)−1

(4.28)

32

4.2. KPLS

In the previous equation, Wx = [~wx
(1)T , ~wx

(2)T , . . . , ~wx
(h)T] is the nβ × h matrix

containing the regression coefficients of h principal components for the local regres-
sion of X and D = [~D(1), ~D(2), . . . , ~D(h)] is the nβ × h matrix of principal direction

vectors. D∗=[~D
(1)
∗ , ~D

(2)
∗ , . . . , ~D

(h)
∗]∈ Rnβ×h is obtained by restating eq. 4.26 as such:

~pc
(l) = X(l−1) ~D(l) = X(0)D(l)

∗ (4.29)

where the scalar elements D
(l)
∗1 , D

(l)
∗2 , . . . , D

(l)
∗nβ in each vector ~D

(l)
∗ measure the im-

portance of each corresponding dimension in the construction of the lth principal
component, where its correlation with the response ~f is maximized. Respectively,
the correlation parameters ~θ ∈Rnβ in Kriging quantify the importance of each di-
mension in the calculation of the respective response ~f . The estimation of such
parameters via maximization of the likelihood function in eq. 4.23 is the most
costly process of constructing the Kriging model. By assuming an isotropic and
stationary process Rl : S × S 7→ R, ∀l ∈ [1, h], we can construct the KPLS kernel

by using the scalar elements D
(l)
∗1 , D

(l)
∗2 , . . . , D

(l)
∗nβ to replace ~θ when measuring the

importance of each one of the nβ dimensions for the lth principal component.

R1:h (~χi, ~χj) =
h∏
l=1

Rl

Ä
f (l)
c (~χi), f

(l)
c (~χj)

ä
, with f (l)

c : S 7→ S

and
~χi 7−→

î
D

(l)
∗1χi,1, D

(l)
∗2χi,2, . . . , D

(l)
∗nβχi,nβ

ó
~χj 7−→

î
D

(l)
∗1χj,1, D

(l)
∗2χj,2, . . . , D

(l)
∗nβχj,nβ

ó (4.30)

where f
(l)
c denotes some correlation function defined in the rotated nβ-dimensional

design space of h principal components. This approach can be used to reconstruct
two correlation kernels in order to decrease the number of parameters θ ∈ Rh:

� Exponential Ornstein-Uhlenbeck process

R (~χi, ~χj) =
h∏
l=1

nβ∏
k=1

exp
(
−θl

∣∣∣D(l)
∗kχi,k −D

(l)
∗kχj,k

∣∣∣) (4.31)

� Gaussian

R (~χi, ~χj) =
h∏
l=1

nβ∏
k=1

exp
(
−θl
Ä
D

(l)
∗kχi,k −D

(l)
∗kχj,k

ä2)
(4.32)

The maximum likelihood given by eq.4.23 is subsequently estimated w.r.t. θ ∈
Rh, thus significantly decreasing the computational cost. With θ ∈Rh known, the
correlation matrix is calculated and inserted in equations 4.17 and 4.19 that provide
the KPLS prediction and the corresponding MSE.

33

4.3. KPLSK

4.3 KPLSK

The KPLSK model is used for improving the maximum likelihood function of Kriging
described by equation 4.23. This improved maximum likelihood function is obtained
by following the construction process of KPLS model with one variation. After the
values of parameters θ have been calculated in the h-dimensional space via the use
of KPLS model, KPLSK performs a local optimization of the likelihood function
of Kriging by making it equivalent to the KPLS one [42]. The idea is to express
the KPLS kernels, which are defined in a subset of the nβ-dimensional space, in the
entirety of the nβ-dimensional space. In the subset S ⊂ Rnβ , the equivalence of the
KPLS and Kriging kernels eq. 4.32 can be proved for exponential kernels of order
q. In this case, q = 2 to refer to the Gaussian correlation kernel:

R (~χi, ~χj) =
h∏
l=1

nβ∏
k=1

exp
(
−θl
Ä
D

(l)
∗kχi,k −D

(l)
∗kχj,k

ä2)
=

h∏
l=1

nβ∏
k=1

exp
Ä
−θlD(l)2

∗k (χi,k − χj,k)2
ä

= exp

(
nβ∑
k=1

h∑
l=1

Ä
−θlD(l)2

∗k (χi,k − χj,k)2
ä)

= exp

(
nβ∑
k=1

Ä
− ηk (χi,l − χj,l)2

ä)
=

nβ∏
k=1

exp
Ä
−ηk (χi,k − χj,k)2

ä
(4.33)

Consequently, ηk =
∑h

l=1 θlD
(l)2

∗k for k = 1, 2, . . . , nβ aids in the transition to the
nβ-dimensional space, where it serves as a starting point for the local optimization
of the Kriging likelihood function based on the values of parameters θ(l) obtained
via the use of the KPLS method for l = 1, 2 . . . , h.

34

4.4. RADIAL BASIS FUNCTION (RBF)

4.4 Radial Basis Function (RBF)

The comprehension of α RBF interpolation model initially requires defining radial
functions. A function ϕ : Rnβ → R is called a radial function when its value at any
given point ~β ∈ Rnβ depends on the distance r between that point and some other
fixed point, called the center of the RBF and denoted by ce[43].

ϕ(~β) = g(‖~β − ~ce‖) = g(r) (4.34)

where ‖·‖ denotes the Euclidean norm ‖·‖2 and g : [0,∞)→ R is a univariate radial
basis function that depends solely on the distance r. The approximating model uses
the nt observed pairs (~χ, f(~χ)) to yield the interpolant s(~β) at an untried point
~β ∈ Rnβ , which is a linear combination of RBFs[44] g(rj), ∀j ∈ [1, nt].

s(~β) =
nt∑
j=1

wtjg
Ä
‖~β − ~χj‖

ä
=

nt∑
j=1

wtjg(rj)

such that s(~χi) = F (~χi) = Fi , for i = 1, nt

(4.35)

where each observation ~χj serves as a center point for the RBF g(rj), with the
distance between the jth interpolation center and the ith observation being equal to

rj =
»

(β1 − χj,1)2 + (β2 − χj,2)2 + . . .+ (βnβ − χj,nβ)2. Each RBF is additionally

weighted by an interpolation coefficient wti . The system described by eq. 4.35 is
linear and solvable ∀i, j ∈ [1, nt]:

nt∑
j=1

wtjg (‖~χi − ~χj‖) = Fi , for i = 1, nt (4.36)

which in matrix form is written as follows:

G~wt = F⇔

g‖~χ1 − ~χ1‖ g‖~χ2 − ~χ1‖ . . . g‖~χnt − ~χ1‖
g‖~χ1 − ~χ2‖ g‖~χ2 − ~χ2‖ . . . g‖~χnt − ~χ2‖

...
...

. . .
...

g‖~χ1 − ~χnt‖ g‖~χ2 − ~χnt‖ . . . g‖~χnt − ~χnt‖

wt1

wt2
...

wtnt

 =

F1

F2
...
Fnt

(4.37)

Consequently, the solution of the linear system results in the calculation of the
interpolation coefficients ~wt and is executed during the training phase. This is the
simplest method of implementing multivariate RBF interpolation.

It is often useful, however, to use a linear combination of conventional RBFs and
a linear regression model consisting of low order polynomials, denoted by p(~β), and
given by[45]:

s(~β) =
nt∑
j=1

wtjg
Ä
‖~β − ~χj‖

ä
+

k∑
i=1

wipi(~β) (4.38)

where wi is the coefficient of the ith polynomial and k is their number. The polyno-
mial term

∑k
i=1 wipi(~β) is identical to the one used in Kriging model. Consequently,

the distinction between Kriging and this method lays in the approach of the stochas-
tic term, which in this case is expressed as the linear combination of RBFs.

35

4.4. RADIAL BASIS FUNCTION (RBF)

Equation 4.38 can then be restated in matrix form as a linear system of the
following form:

G~wt + P~w = F (4.39)

where P is the matrix of known polynomials for the complete design presented in eq.
4.14. In order to form a solvable linear system one complementary equation must be
added. By arbitrarily assuming that the objective function can be described by the
same polynomial matrix P and a different coefficient matrix wd, as such F = P~wd.
Consequently, eq. 4.39 can be restated as follows:

G~wt + P~w = P~wd →

G~wt = P (~wd − ~w) = 0
×~wTt−−−→

~wT
t G~wt = ~wT

t P (~wd − ~w) = 0

(4.40)

The left hand side must be zero if the following constraint is applied.

~wT
t P =

(
PT ~wt

)T
= 0 (4.41)

If subsequently this constraint is incorporated in eq. 4.39, the linear system takes
the following form: ï

G P
PT 0

ò ï
~wt

~w

ò
=

ï
F
0

ò
(4.42)

The solution of the linear system results in the calculation of the interpolation
coefficients wt, w and is part of the training process. The polynomials used to
facilitate the RBF interpolation can be of order 0,1 or 2 corresponding to a constant,
linear or quadratic trend respectively.

Another variation of plain RBFs uses a constant trend that can be obtained from
eq. 4.38 by setting k = 1 and p1(~β) = 1.

s(~β) =
nt∑
j=1

wtjg
Ä
‖~β − ~χj‖

ä
+ w1 (4.43)

The previous equation for nt training patterns can be written in matrix form as
follows: ñ

G ~P
~P T 0

ô ï
~wt

w1

ò
=

ï
F
0

ò
(4.44)

where ~P is the nt × 1 matrix:

~P =

 p1(~χ1)
...

p1(~χnt)

 =

1
...
1

 (4.45)

36

4.4. RADIAL BASIS FUNCTION (RBF)

In order to perform the interpolation of nt sample points, a plethora of radial
basis functions g(r) can be used. Some of the most common are presented in the
following table:

RBF g(r) Scaling pa-
rameters

Order

Gaussian e(−αr)
2

a > 0 0

Multiquadratic
√
r2 + α2 a > 0 1

Inverse Multiquadratic (1+(rα)2)−1/2 a > 0 0
Inverse Quadratic (1 + (rα)2)−1 a > 0 0
Thin Plate Spline r2clog(r) c ∈ N c
Polyharmonic Spline r2c−1 c ∈ N c− 1

Table 4.1: Common radial basis functions

Gaussian basis functions are most commonly implemented with the scaling pa-
rameter α often being replaced by the parameter d0 > 0, where a = 1/d0. The
restated formula that describes Gaussian RBFs is the following:

g(r) = g (‖~χi − ~χj‖) = exp

Å
−‖~χi − ~χj‖2

d20

ã
(4.46)

where the scaling parameter d0 is used to adjust the shape of the radial basis function
g(r) and can therefore affect the accuracy of the RBF interpolation. This parameter
can be adjusted via the modifying the parameter d0. The effect of this parameter
on the shape of the radial basis function g(r) is presented in the following figure.

	0

	0.2

	0.4

	0.6

	0.8

	1

-20 -15 -10 -5 	0 	5 	10 	15 	20

g(
r)

x

d0=0.1
d0=0.5
d0=1.0
d0=5.0

d0=10.0
d0=20.0
d0=40.0
d0=80.0
d0=100

Figure 4.1: g(χ) RBF shape for various d0 values when χ ∈ [−20, 20]

EASY built-in RBFs are described by equation 4.35. In SMT,

37

Chapter 5

Numerical Cases

The efficacy of the selected metamodels is tested on a pair of pseudo-engineering
optimization problems. The study involves a comparison between MAEA-based
optimization using the metamodels selected in this thesis, MAEAs using EASY
built-in RBF models and plain EAs. The entirety of the evaluations are performed
on the multi-processor platform of the PCOpt/NTUA that consists of 3 clusters
with combined computational power of 62 Teraflop. The outcome of the evaluation
will provide important feedback regarding the potential of the selected surrogate
models.

5.1 Welded Beam Design

The first case is a welded beam design [46], a SOO optimization problem where
a beam is welded onto a rigid body (see figure 5.1). In this optimization case,
the dimensions of the beam and the weld are modified in order for the overall
construction cost to be minimized subject to constraints on shear stress, bending
stress, buckling load and the end deflection. The design variables to be modified are
four, i.e. the thickness of the welds h, the length of the welds l, the height of the
beam t and the width of the beam b. Consequently, the vector of design variables
assumes the following form ~β = (β1, β2, β3, β4) = (h, l, t, b) ∈ R4.

Figure 5.1: Welded beam design

38

5.1. WELDED BEAM DESIGN

The beam is made of 1010 steel and must be supported by an upper and a lower
weld when a constant load P = 6000 lb is applied at distance L = 14 in from the
rigid body. The fabrication cost of the welds is given by the equation:

fw = (c1 + c2)h
2l

where c1 is the cost per unit volume of the weld material, c2 the labour cost per unit
weld volume and Vw = h2l the volume of the weld material.

The fabrication cost of the beam is proportional to the amount of material in
the beam:

fb = c3tb(L+ l) = c3tb(14.0 + l)

where c3 is the cost per unit volume of the beam and Vb = tb(L + l) the respective
volume. The construction costs c1, c2, c3 have been estimated:

� For the welds:

c1 = 0.10471
$

in3
and c2 = 1

$

in3

� For the beam:

c3 = 0.04811
$

in3

The overall fabrication cost can be written as:

ftot = fw + fb = 1.10471h2l + 0.04811tb(14.0 + l) (5.1)

The stress states that describe the optimization case are subsequently defined and
will serve as the imposed constraints. The first is the shear stress of the welds that
must not exceed the maximum allowable shear stress of the material τmax ≤ 13600
psi. The shear stress of the welds is defined as such:

τ =
»
τ 2p + 2τpτtcosθ + τ 2t

cosθ=l/2R−−−−−−→
…
τ 2p +

lτpτt
R

+ τ 2t (5.2)

where R is the distance from the center of the cross-section of the beam, τp the
primary stress of the weld throat and τt the torsional stress developed on the beam
due to the torque M developed by the applied load P at its end. The equations
describing the aforementioned static mechanical phenomena are the following:

R =

l 2

4
+

Å
h+ t

2

ã2
τp =

P√
2hl

=
6000√

2hl

τt =
MR

J

M = P

Å
L+

l

2

ã
= 6000

Å
14.0 +

l

2

ã (5.3)

39

5.1. WELDED BEAM DESIGN

In torsional stress equation, the variable J is the polar moment of inertia of the
weld:

J = 2
√

2hl

ñ
l 2

12
+

Å
h+ t

2

ã2ô
The second stress that affects the quality of the design is the normal bending stress
of the beam that must not exceed the maximum yield strength of the material
σmax ≤ 30000 psi and is equal to:

σ =
6PL

bt2
=

504000

bt2
(5.4)

The deflection at the end of the beam is the next constraint that must be incorpo-
rated into the optimization of the welded beam. The deflection of a cantilever beam
of length L = 14 in must not exceed δmax ≤ 0.25 in and is calculated as such:

δ =
4PL3

Ebt3
=

2.1952

bt3
(5.5)

where E is the Young’s modulus; for 1010 steel is equal to 30× 106 psi.
Additionally, the structural integrity of the beam requires that the buckling load

in the vertical direction must be greater than the applied load P = 6000 psi. The
critical buckling load of the beam is calculated as such:

Pc =
4.013

…
EGt2b6

36
L2

Ç
1− t

2L

…
E

4G

å
(5.6)

where G is shearing modulus; for steel 1010 is equal to G = 12× 106 psi.
It is evident that the thickness of the welds h should not exceed the width

of the beam and therefore the last imposed constraint is h ≤ b. Consequently,
the optimization of the welded beam design requires the minimization of a single
objective, i.e. the fabrication cost of the structural design, in the 4-dimensional space
formed by the design variables ~β = (β1, β2, β3, β4)=(h, l, t, b) ∈ R4 and bounded by
the 5 imposed constraints.

min f(~β) = 1.10471β2
1β2 + 0.04811β3β4(14.0 + β2)

subject to c1(~β) = τ(~β)− τmax ≤ 0

c2(~β) = σ(~β)− σmax ≤ 0

c3(~β) = β1 − β4 ≤ 0

c4(~β) = δ(~β)− δmax ≤ 0

c5(~β) = P − Pc(~β) ≤ 0

(5.7)

where the bounds of each design variable are 0.125 ≤ β1 ≤ 10.0, 0.1 ≤ β2 ≤ 10.0,
0.1 ≤ β3 ≤ 10.0 and 0.1 ≤ β4 ≤ 10.0. The formulas that describe τ(~β), σ(~β), δ(~β)

and Pc(~β) can be found in equations 5.2, 5.4, 5.5 and 5.6, respectively.

40

5.1. WELDED BEAM DESIGN

� Optimization using EAs

First, the welded beam design is optimized using plain EAs that utilise the
problem-specific evaluation model. The optimization is performed using EASY soft-
ware in order to identify the most suitable values for the parameters of the evolu-
tion, e.g. offspring and parents population size, mutation probability and crossover
scheme. The evolution parameters identified via the use of EAs are later used to
facilitate the evolution in MAEA-based optimization. The number of offspring and
parent population is set to (µ, λ) = (20, 60) where 4 parents are combined to create
a single offspring with one-point crossover. Gray binary encoding is used and 15 bits
are assigned to each design variable. The optimization phase terminates after 27000
PSM evaluations have been performed and is repeated for 5 randomly initialised
offspring populations P 0

λ via the use of a Random Number Generator (RNG). The
results are presented in table 5.1 and in figure 5.2.

Welded beam case

(µ, λ)
popu-
lation

Best Worst Average Average
PSM
eval.

EAs (20, 60) 2.38 2.49 2.43 27000

Table 5.1: Optimization of welded beam design using EAs

(a) Comparison between the convergence
histories of 5 different λ initializations

	2

	4

	8

	16

	32

	64

	0 	5000 	10000 	15000 	20000 	25000

f(
β)

Number	of	evaluations

RNG1
RNG2
RNG3
RNG4
RNG5

(b) Convergence history of the optimal run

	2

	4

	8

	16

	0 	5000 	10000 	15000 	20000 	25000

f(
β)

Number	of	evaluations

RNG1

Figure 5.2: Convergence history of welded beam optimization case using EAs

The design variable vector that minimizes the construction cost of the welded
beam using plain EAs initialized via RNG1 is ~β = [0.244, 6.194, 8.329, 0.244].

41

5.1. WELDED BEAM DESIGN

� Optimization using MAEAs with off-line trained metamodels

In MAEAs using off-line trained metamodels, both the objective F(~β) and the

imposed constraints C(~β) = [~c1,~c2, . . . ,~cnt]
T , where ~ci = [ci,1, ci,2, . . . , ci,nc], are

approximated using surrogate models. Specifically, a global metamodel is built on
the single objective and nc unique metamodels on each imposed constraint. In this
case, the objective function is approximated by a KPLS model, while each constraint
is approximated via the use of Kriging model; responsible for the construction of
the aforementioned metamodels is SMT software. Alternatively, a single surrogate
model can be trained to approximate the entirety of the constraints but this approach
resulted in a poorly trained surrogate model. However, even the first approach
resulted in surrogate models with poor overall fitting, especially when approximating
a function with design variables in the denominator that tend to zero. To solve this
issue an approach is proposed where constraints with denominators that tend to 0
are reduced to polynomials. Let the original approach of unmodified constraints be
case 1 and let the modified approach be case 2, then:

c1(~β) =

…
τ 2p +

τpτtβ2
R

+ τ 2t − τmax ≤ 0⇒ τ 2p +
τpτtβ2
R

+ τ 2t ≤ τ 2max
R>0−−→

τpτtβ2 ≤ −R
[
τ 2p + τ 2t − τ 2max

] τpτtβ2>0−−−−−→ c1(~β)new =
R
[
τ 2p + τ 2t − τ 2max

]
τpτtβ2

− 1 ≤ 0

(5.8)

c2(~β) =
6PL

β4β2
3

− σmax ≤ 0
β3,β4>0−−−−→ c2(~β)new = 6PL− σmaxβ4β2

3 ≤ 0 (5.9)

c4(~β) =
4PL3

Eβ4β3
3

− δmax ≤ 0
β3,β4>0−−−−→ c4(~β)new = 4PL3 − δmaxEβ4β3

3 ≤ 0 (5.10)

(a) Case 1: Comparison between c4(~β) and
ĉ4(~β)

(b) Case 2: Comparison between c4(~β) and
ĉ4(~β)

	0	1	2	3	4	5	6	7	8	9	10

	0 	1 	2 	3	4 	5	6 	7	8 	9	10

-4×1010
-3.5×1010
-3×1010

-2.5×1010
-2×1010

-1.5×1010
-1×1010
-5×109

	0

exact	model
metamodel

β3

β4

Figure 5.3: Error of the metamodel when approximating the original NRMSE =
1.206111 (left) and the modified NRMSE = 1.182408 ·10−6 (right) equation c4(~β)
using an LHD composed of nt = 240 training patterns

42

5.1. WELDED BEAM DESIGN

(a) Case 1: c2(~β) function

	0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10
β3

	0

	1

	2

	3

	4

	5

	6

	7

	8

	9

	10

β4

-500000

	0

	500000

	1x106

	1.5x106

	2x106

	2.5x106

(b) Case 2: c2(~β) function

	0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10
β3

	0

	1

	2

	3

	4

	5

	6

	7

	8

	9

	10

β4

-2x107
-1.8x107
-1.6x107
-1.4x107
-1.2x107
-1x107
-8x106
-6x106
-4x106
-2x106
	0

	2x106

(c) Case 1: Prediction ĉ2(~β) function

	0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10
β3

	0

	1

	2

	3

	4

	5

	6

	7

	8

	9

	10

β4

-500000

	0

	500000

	1x106

	1.5x106

	2x106

	2.5x106

	3x106

(d) Case 2: Prediction ĉ2(~β)

	0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10
β3

	0

	1

	2

	3

	4

	5

	6

	7

	8

	9

	10

β4

-2x107
-1.8x107
-1.6x107
-1.4x107
-1.2x107
-1x107
-8x106
-6x106
-4x106
-2x106
	0

	2x106

Figure 5.4: Contour projections to 2D plane for the original (left) and modified
(right) function of the 2nd constraint

In both figures, i.e. 5.3 and 5.4, the visualization of the constraint function justi-
fies the initial assumption of underfitted metamodels built ∀~β ∈ Rn

β when β1, β4 → 0;
such metamodels are trained in case 1. In case 2, the modification in constraints
c(~β1), c(~β2) and c(~β4) results in a better model fitting, NRMSE = 1.182408·10−6 com-
pared to NRMSE = 1.206111 of case 1. The minimization of the welded beam case
that through 5 runs is presented in table 5.2, where a maximum of 5000 evaluations
per cycle are performed using MAEAs with off-line trained metamodels:

Case 2

(µ, λ)
popu-
lation

Best Worst Average Avg.
metamodel
eval./cycle

Avg.
cycles

MAEAs, off-line (20, 60) 2.35 2.56 2.44 3168 3

Table 5.2: Optimization of welded beam design using MAEAs with off-line training

43

5.1. WELDED BEAM DESIGN

The optimal candidate solution obtained via this method is ~β = [0.336, 5.067,
7.323, 0.338]. The corresponding value of each constraint and objective is presented
in table 5.3.

Case 2 c1(~β) c2(~β) c3(~β) c4(~β) c5(~β) f(~β)

MAEAs -0.412243 -29020.84 -0.019 -1065388211 -276.80 2.35
PSM 1129.41 -1633.52 -0.019 -0.235446 -261.95 2.35

Table 5.3: C, F responses to ~β found via MAEAs with off-line training in case 2

MAEAs with off-line training utilizing the approach of modified constraints (case

2) converge in candidate solutions that violate the first constraint c1(~β). In order to
determine the extent to which the design space has changed, the aforementioned ap-
proach is implemented in plain EAs that utilize the modified problem-specific model,
denoted by PSM

′
for simplicity. If PSM

′
-based EAs converge to an optimal solution

that lies in the design space of the original PSM, then the modification in constraints
did not lead to a significant change in the design space of candidate solutions and
the unsatisfactory solutions are contributed to metamodel-related flaws. EAs using
PSM

′
find the optimal solution ~β = [0.272, 4.300, 7.856, 0.272]. The corresponding

value of each constraint and objective is presented in table 5.4

Case 2 c1(~β) c2(~β) c3(~β) c4(~β) c5(~β) f(~β)

PSM
′

-0.000037 -273.75 0 -963206327 -529.75 2.15
PSM 3445.91 -16.286 0 -0.234001 -529.75 2.15

Table 5.4: C, F responses to ~β found via EAs using the PSM
′

The implemented modifications seem to distort the design space significantly,
since the optimal solution results in a design with welds that undergo massive shear
stress c1(~β) = 17045.91 psi. Consequently, optimal solutions found in case 2 do not
satisfy the constraints imposed on the design space and result in a unsatisfactory
welded beam design. However, metamodels trained off-line on the PSM do not
converge to an optimal solution due to poor constraint model fitting. For this
reason, a new approach is proposed, referred to as case 3, and is based on the
observation that the entirety of optimal solutions found via the use both the PSM

′

and metamodels trained on the PSM
′
(case 2) do not satisfy the first constraint

c1(~β). In case 3, therefore, constraints c2, c4 are modified according to equations
5.9 and 5.10, respectively, and the corresponding problem- specific model is denoted
by PSM

′′
. The implementation of EAs via the use of PSM

′′
yields the optimal

solution ~β= [0.279, 5.679, 7.698, 0.284]. The corresponding value of each constraint
and objective is presented in table 5.5.

Case 3 c1(~β) c2(~β) c3(~β) c4(~β) c5(~β) f(~β)

PSM
′′

-13.645 -355.91 -0.004 -904782848 -2906.86 2.56
PSM -13.645 -21.170 -0.004 -0.233038 -2906.86 2.56

Table 5.5: C, F responses to ~β found via EAs using the PSM
′′

44

5.1. WELDED BEAM DESIGN

Unlike previous approaches, PSM
′′
-based EAs converge to an optimal solution

that satisfies the entirety of the constraints imposed to the original model. Meta-
models trained off-line on the PSM

′′
through 5 runs yield the outcome shown in

table 5.6.

Case 3

(µ, λ)
popu-
lation

Best Worst Average Average
metamodel
eval./cycle

Avg.
cycles

MAEAs, off-line (20, 60) 2.90 3.55 3.12 2883 8

Table 5.6: Optimization of welded beam design using MAEAs with off-line training

The best solution ~β = [0.336, 5.067, 7.323, 0.338] obtained via MAEAs with off-
line training, produces the constraint and objective function values shown in table
5.7 when evaluated on the PSM.

Case 3 c1(~β) c2(~β) c3(~β) c4(~β) c5(~β) f(~β)

MAEAs -469.56 -39385.13 -0.002 -928918812 -8492.04 2.90
PSM -797.35 -2194.43 -0.002 -0.233450 -8522.98 2.90

Table 5.7: C, F responses to ~β found via MAEAs with off-line training in case 3

Consequently, the MAEA-based optimization of the welded beam case is per-
formed by utilizing metamodels built off-line exclusively on PSM

′′
, since MAEAs

with surrogate models trained off-line on PSM
′

and PSM either converge to prohib-
ited by the constraints solutions or they do not converge after performing 20 opti-
mization cycles, respectively. The convergence histories of EAs using PSM, PSM

′

and PSM
′′

are subsequently presented in figure 5.5 all EA methods are initialized
with the same offspring population set P 0

λ corresponding to best solution.

	2

	2.5

	3

	4

	8

	16

	1000 	3000 	5000 	10000 	20000

f(β
)

Number	of	evaluations

PSM
PSM'
PSM''

Figure 5.5: Welded beam design. Comparison between the convergence history of
EAs performing evaluations on the PSM, PSM

′
and PSM

′′

45

5.1. WELDED BEAM DESIGN

The deviation between metamodel predicted values and evaluated ones, using
the PSM

′′
of either objective function or some constraint, can be observed in figures

5.6, 5.7 and 5.8. The surrogate models are trained on nt = ndoe = 240 patterns X
collected via the implementation of LHS that makes use of the ESE algorithm to
construct an optimal space-filling design. At the end of each optimization loop, a
new random design of nnew doe=20 points and 1 elite are added to the initial LHD.
The optimization process converged after 10 cycles and, therefore, at the end of
the optimization the metamodels are retrained on nt = n

′

doe = 429 patterns. Each

individual ~β ∈ P 0
λ selected in the first of the 5 total runs is used to validate both

metamodels and calculate the NRMSE.

(a) Initial f , NRMSE=0.00000269

0 200 400 600 800
f()

0

200

400

600

800

f(
)

f()
f()

(b) Final f , NRMSE=0.00000042

0 200 400 600 800
f()

0

200

400

600

800

f(
)

f()
f()

Figure 5.6: Case 3, welded beam case with RNG1. Deviation between exact PSM
′′

values of the objective function ~f(~β) and KPLS predictions ~̂f(~β). The initial KPLS
model is trained on ndoe=240 and the final on n

′

doe=429 training patterns.

(a) Initial c1, NRMSE=0.7773964

0 20000 40000 60000
Constraint 1

25000

0

25000

50000

75000

100000

125000

150000

Co
ns

tra
int

 1

c()
c()

(b) Final c1, NRMSE=0.55329077

0 20000 40000 60000
Constraint 1

20000

0

20000

40000

60000

80000

100000

120000

Co
ns

tra
int

 1

c()
c()

(c) Initial c2, NRMSE=0.00000249

2.0 1.5 1.0 0.5 0.0
Constraint 2 1e7

2.0

1.5

1.0

0.5

0.0

Co
ns

tra
int

 2

1e7

c()
c()

(d) Final c2, NRMSE=0.00000063

2.0 1.5 1.0 0.5 0.0
Constraint 2 1e7

2.0

1.5

1.0

0.5

0.0

Co
ns

tra
int

 2

1e7

c()
c()

Figure 5.7: Case 3, welded beam case with RNG1. Deviation between exact PSM
′′

constraint values ~c(~β) and Kriging predictions ~̂c(~β) given via the implementation of
SMT. The initial Kriging model, which approximates the first two constraint func-
tions, is trained on ndoe=240 and the final on n

′

doe=429 training patterns.

46

5.1. WELDED BEAM DESIGN

(a) Initial c3, NRMSE=0.00000008

8 6 4 2 0 2 4 6 8
Constraint 3

8

6

4

2

0

2

4

6

8

Co
ns

tra
int

 3

c()
c()

(b) Final c3, NRMSE=0.00000003

8 6 4 2 0 2 4 6 8
Constraint 3

8

6

4

2

0

2

4

6

8

Co
ns

tra
int

 3

c()
c()

(c) Initial c4, NRMSE=0.00000617

5 4 3 2 1 0
Constraint 4 1e10

5

4

3

2

1

0

Co
ns

tra
int

 4

1e10

c()
c()

(d) Initial c4, NRMSE=0.00000131

5 4 3 2 1 0
Constraint 4 1e10

5

4

3

2

1

0

Co
ns

tra
int

 4

1e10

c()
c()

(e) Final c5, NRMSE=0.00000053

3.0 2.5 2.0 1.5 1.0 0.5 0.0
Constraint 5 1e8

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Co
ns

tra
int

 5

1e8

c()
c()

(f) Final c5, NRMSE=0.00000014

3.0 2.5 2.0 1.5 1.0 0.5 0.0
Constraint 5 1e8

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Co
ns

tra
int

 5

1e8

c()
c()

Figure 5.8: Case 3, welded beam case with RNG1. Deviation between exact PSM
constraint values ~c(~β) and RBF predictions ~̂c(~β) given via the implementation of
SMT. The initial Kriging model, which approximates the remaining three constraint
functions, is trained on ndoe=240 and the final on n

′

doe=429 training patterns.

The NRMSE calculates the mean normalised deviation between the predicted
and exactly evaluated on the PSM

′′
values on λ= 60 untried design sites B, where

~β= ~βi=[βi,1, βi,2, . . . , βi,nβ] ∈ P 0
λ is any untried point in the design space contained in

the initial offspring population set. NRMSE serves as a metric of model fitting and
indicates that all trained metamodels are well-fitted, except from the one built on
the 1st constraint function c1(~β). This underfitted surrogate model hinders the con-
vergence of the optimization process, which reaches an satisfactory optimal solution
after 8 cycles.

47

5.1. WELDED BEAM DESIGN

� Optimization using MAEAs with on-line trained matamodels

In the MAEA-based optimization of welded beam design using on-line trained
metamodels, the LCPE phase is set to initiate once 480 exact evaluations are per-
formed. In LCPE, personalised local metamodels are trained on 20 ≤ nt ≤ 21
training patterns and subsequently 2 ≤ λe ≤ 4 individuals are re-evaluated using
the exact evaluation model. A total of 10000 PSM evaluations are performed, un-
less 75 generations are formed without improving the current outcome, in which
case the optimization terminates. Local metamodels are built by utilizing either
the assisting software SMT or EASY. The former accommodates the use of Kriging,
KPLS, KPLSK and RBFs, while the latter relies on Kriging and most often RBFs.
In order to identify the most suitable metamodel in SMT for the welded beam opti-
mization case, a comparison between each respective model is performed w.r.t. the
convergence history and the produced outcome; the results of each comparison are
presented in table figure 5.9 and table 5.8, respectively.

	2

	2.5

	3

	4

	6

	8

	16

	0 	1000 	2000 	3000 	4000 	5000

f(
β)

Number	of	evaluations

KPLS
KPLSK
Kriging

RBFs	in	SMT
EAs

	2

	4

	8

	16

	0 	2000 	4000 	6000 	8000 	10000

f(
β)

Number	of	evaluations

KPLS
KPLSK
Kriging

RBFs	in	SMT
EAs

Figure 5.9: Welded beam design with RNG1. Comparison between the convergence
history of EAs and MAEAs with metamodels trained on-line via SMT

Welded beam case

MAEAs,
on-line

(µ, λ)
popula-
tion

KPLS KPLSK Kriging RBFs

SMT (30, 100) 2.45 2.74 2.72 2.62

Table 5.8: Welded beam case with RNG1. Optimal candidate solution found using
metamodels trained on-line via SMT

The comparison between convergence histories of the SMT built-in metamodels,
depicted in figure 5.9, indicates that KPLS model is most suitable to facilitate the
optimization of the welded beam case due to its fast convergence to the threshold
of both 5000 and 10000 PSM evaluations. In plain EAs, RNG1 yields the best op-
timization outcome and for that reason MAEAs with on-line training are initialized
with the same offspring population P 0

λ .

48

5.1. WELDED BEAM DESIGN

KPLS is yet to be compared to EASY built-in RBFs and plain EAs; the results
are presented in table 5.9.

Welded beam design

MAEAs,
on-line

(µ, λ)
popu-
lation

Best Worst Average Avg.
exact
eval.

Avg. meta-
model eval.

SMT (20, 60) 2.45 2.62 2.54 10000 11579
EASY (20, 60) 2.38 2.82 2.53 10000 10738
Plain EAs (20, 60) 2.42 3.05 2.59 10000 -

Table 5.9: Welded beam case. Comparison between the outcome of the optimization
using MAEAs with on-line training and plain EAs

The design variable vector that minimizes the construction cost of the welded
beam via the implementation of KLPS is ~β=[0.234, 5.717, 9.276, 0.239]. For MAEAs

utilizing EASY built-in RBFs the respective optimal design variable vector is ~β =
[0.255, 5.664, 8.527, 0.260].

	2

	4

	8

	16

	0 	2000 	4000 	6000 	8000 	10000

f(β
)

Number	of	evaluations

KPLS
RBFs	in	EASY

EAs

Figure 5.10: Welded beam case with RNG1. Comparison between the convergence
histories of the optimization using EAs and MAEAs with metamodels trained on-line
via SMT and EASY

In the comparison of convergence histories depicted in figure 5.10, EASY built-in
RBFs are seemingly more accurate than KPLS model and yield a faster convergence.
The impact of MAEAs on the computational cost is evident, since they outperform
conventional EAs prior to the threshold of 10000 exact PSM evaluations.

49

5.1. WELDED BEAM DESIGN

5.1.1 MOO of Welded Beam Design

The welded beam case appears in the majority of the scholar literature as SOO
problem, where the single objective is the minimization of the fabrication cost of
the design. However, a variation of this optimization case also exists where the
welded beam design is optimized w.r.t. to two objectives, which are the fabrication
cost of the design and the deflection δ(~β) of the beam. In this case, the deflection of
the beam does not bound the design space of possible candidate solutions and the
optimization problem assumes the following mathematical expression:

min f1(~β) = 1.10471β2
1β2 + 0.04811β3β4(14.0 + β2)

f2(~β) =
2.1952

β4β3
3

subject to c1(~β) = τ(~β)− τmax ≤ 0

c2(~β) = σ(~β)− σmax ≤ 0

c3(~β) = β1 − β4 ≤ 0

c4(~β) = P − Pc(~β) ≤ 0

(5.11)

where the bounds of each design variable are 0.125 ≤ β1 ≤ 10.0, 0.1 ≤ β2 ≤ 10.0,
0.1 ≤ β3 ≤ 10.0 and 0.1 ≤ β4 ≤ 10.0. The formulas that describe τ(~β), σ(~β)

and Pc(~β) can be found in equations 5.2, 5.4 and 5.6, respectively. In this case, the
objectives are conflicting and their corresponding values are presented in figure 5.11.

	0

	10

	20

	30

	40

	50

	60

	70

	80

	0 	0.002 	0.004 	0.006 	0.008 	0.01 	0.012 	0.014 	0.016 	0.018

f 1(
β)

f2(β)

KPLS
RBFs	in	EASY

EAs

Figure 5.11: Pareto front of 15 non-dominated candidate solutions found in the
MOO welded beam case for 1000 exact PSM evaluations

The first two fronts are obtained by optimizing the MOO welded beam case via
the use of MAEAs with on-line training, namely EASY built-in RBFs and the KPLS
model found in SMT. The LCPE phase is set to initiate once 240 exact evaluations
are performed on the PSM. In LCPE, personalised local metamodels are trained
on 20 ≤ nt ≤ 21 training patterns and subsequently 2 ≤ λe ≤ 6 individuals are
re-evaluated using the exact evaluation model. The comparison is completed by the
front that results from the optimization of the MOO case via the use of plain EAs.

50

5.1. WELDED BEAM DESIGN

Since all fronts are seemingly overlapping, it is not evident which method yielded
the best outcome. A way to determine this, is by calculating the hypervolume
indicator [47] of each front F ⊂ Rn, which is defined as the measure of the region
weakly dominated by F and bound by a reference point ~xr ∈ Rn and expressed as:

H(F) = Λ ({~p ∈ Rn| ∃~q ∈ F : ~q ≤ ~p and ~p ≤ ~xr}) (5.12)

where H(·) denotes the Lebesgue measure which is a way of assigning measure to
subsets F of n-dimensional Euclidean space. In the 2D space, which is the case
here, the Lebesgue measure H(F) is equivalent to the area defined by each ~q ∈ F
and the reference point ~xr ∈ Rn. The coordinates (xr1 , xr2) of the reference point in
2D space are defined as:

xr1 ={q1 ∈ Fi : q1 ≥ ξ, ∀ξ ∈ Fi,∀i ∈ [1, nf]}+ ξ1

xr2 ={q2 ∈ Fi : q2 ≥ ξ, ∀ξ ∈ Fi,∀i ∈ [1, nf]}+ ξ2
(5.13)

where q1, q2 are the coordinates of ~q ∈ F point in 2D space, nf is the number
of compared fronts and ξ1, ξ2 user-defined values. In this case, the parameters as-
sume the values (ξ1, ξ2) = (0.002, 20) and (xr1 , xr2) = (0.0181, 98.27) and yield the
hypervolume indicators for each Pareto front shown in figure 5.12.

(a) KPLS, H=1.6222

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
f1()

0

20

40

60

80

100

f 2
(

)

xr

(b) RBFs in EASY, H=1.6215

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
f1()

20

40

60

80

100

f 2
(

)

xr

(c) EAs, H=1.6061

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
f1()

20

40

60

80

100

f 2
(

)

xr

Figure 5.12: MOO welded beam case. Hypervolume indicator H for fronts formed
via the use of EAs, on-line trained KPLS and RBFs in EASY

According to the H value, the best front is the one formed via the use of on-line
trained KPLS. Consequently, ~β = [0.481, 3.383, 6.572, 0.481] is selected that yields
the response (f1, f2)=(6.41, 0.0031), since a minor increase in beam deflection yields
a significant decrease in the fabrication cost.

51

5.2. SPEED REDUCER DESIGN

5.2 Speed Reducer Design

The second optimization case is the SOO problem of minimizing the overall weight
of a speed reducer. This design is used to reduce the output speed by increasing
the output torque via the use two gears that are mounted to two separate shafts
of diameter d1 and d2. The structure is enclosed within a housing, while a pair
of pairings is used at the connection point of each shaft in order to reduce friction
produced by the rotation movement of the shafts (see figure 5.13). The minimization
of the overall weight of the structure is, therefore, refers to the minimization of the
total weight of both gears and shafts. The speed reducer case[49] is optimized w.r.t.
the following design variables:

� Face width of the gear b in [cm], where 2.6 ≤ β1 ≤ 3.6

� Teeth module m in [cm], where 0.7 ≤ β2 ≤ 0.8

� Number of pining teeth Nteeth, where 17 ≤ β3 ≤ 28

� Length between bearings of the first shaft L1 in [cm], where 7.3 ≤ β4 ≤ 8.3

� Length between bearings of the second shaft L2 in [cm], where 7.3 ≤ β5 ≤ 8.3

� Diameter of the first shaft d1 in [cm], where 2.9 ≤ β6 ≤ 3.9

� Diameter of the second shaft d2 in [cm], where 5.0 ≤ β7 ≤ 5.5

Figure 5.13: Speed reducer design

52

5.2. SPEED REDUCER DESIGN

The volume of the speed reducer in [cm3] can be calculated using the following
equation [48], which multiplied by the density of the material yields the weight of
the speed reducer:

Wspr = c1bm
2
(
c2N

2
teeth + c3Nteeth − c4

)
− c5

(
d 2
1 + d 2

2

)
c6
(
d 3
1 + d 3

2

)
+ c1

(
L1d

2
1 + L2d

2
2

) (5.14)

where the occurring parameters are calculated by Golinski [49]:

� c1 = 0.7854

� c2 = 3.3333

� c3 = 14.9334

� c4 = 43.0934

� c5 = 1.508

� c6 = 7.4777

and thus the previous equation can be restated as such:

Wspr = 0.7854bm2
(
3.3333N2

teeth + 14.9334Nteeth − 43.0934
)
− 1.508

(
d 2
1 + d 2

2

)
7.4777

(
d 3
1 + d 3

2

)
+ 0.7854

(
L1d

2
1 + L2d

2
2

)
(5.15)

The volume function is optimized in R7 space formed by the design variables
{b,m,Nteeth, L1, L2, d1, d2}. The design space is bound by the imposed constraints
that are associated with limitations on the bending stress of gear teeth, surface
stresses, transverse deflections of the shafts due to transmitted force and stresses in
shafts. Subsequently the imposed constraints are presented analytically. The upper
bound on the bending stress of a gear tooth is given by the following formula:

σg =
2Mg

Y bm2Nteeth

≤ σgmax ⇒
27

bm2Nteeth

≤ 1 (5.16)

where Y = 0.3937 is the Lewis tooth form factor, Mg the bending moment for the
gear teeth and σgmax = 900 g/cm2 is the maximum bending stress of the gear teeth.
Similarly the upper bound of the compressive stress of a gear tooth for both gears
is defined as such:

Pg1,2 =
2BMg

bm2N2
teeth

≤ Pgmax1,2 ⇒
397.5

bm2N2
teeth

≤ 1 (5.17)

where Pgmax1,2 = 5800 g/cm2 is the maximum surface compressive stress for both
gears and B is a coefficient dependent on Young’s modulus of elasticity E.

53

5.2. SPEED REDUCER DESIGN

The transverse deflections of the shafts due to the transmitted load P are required
to not exceed the following bounds:

Shaft 1: δ1 =
1

48

PL2
1

EI1
≤ δ1max ⇒

1.93L3
1

mNteethd 4
1

≤ 1 (5.18)

Shaft 2: δ2 =
1

48

PL2
2

EI2
≤ δ2max ⇒

1.93L3
2

mNteethd 4
2

≤ 1 (5.19)

where I is the moment of inertia of the shafts and δ1max, δ2max the maximum per-
missible transverse deflections of shaft 1 and 2 respectively.
Subsequently, the bending stress conditions for the shafts are limited based on the
following formulas:

Shaft 1: σg1 =
Mz1

Wx1

≤ σg1max ⇒

 Å
745L1

mNteeth

ã2

+ 16.9× 106

0.1d 3
1

≤ 1100 (5.20)

Shaft 2: σg2 =
Mz2

Wx2

≤ σg2max ⇒

 Å
745L2

mNteeth

ã2

+ 157.5× 106

0.1d 3
2

≤ 850 (5.21)

where σg1max = 1100 g/cm2, σg2max = 850 g/cm2 are the maximum permissible
bending stresses for shaft 1 and 2, respectively. Wx is strength section modulus if
each shaft and Mz is moment of each shaft formulated by the equation:

Mz =
»
M2

g + 0.75M2
s

where Ms is the torsional moment of each shaft.
In order to improve the optimization process, various dimensional restrictions are
applied based on experience:

i)
mNteeth

40
≤ 1 ii)

5m

b
≤ 1 iii)

b

12m
≤ 1 (5.22)

Similarly a pair of restrictions are applied on the dimensions of shafts based on
previous experience:

1.5d1 + 1.9 ≤ L1

1.1d2 + 1.9 ≤ L2

(5.23)

54

5.2. SPEED REDUCER DESIGN

The final optimization case is formulated as such:

min f(~β) = 0.7854bm2
(
3.3333N2

teeth + 14.9334Nteeth − 43.0934
)
− 1.508

(
d 2
1 + d 2

2

)
7.4777

(
d 3
1 + d 3

2

)
+ 0.7854

(
L1d

2
1 + L2d

2
2

)
subject to c1(~β) =

27

β1β 2
2 β3
− 1 ≤ 0

c2(~β) =
397.5

β1β 2
2 β

2
3

− 1 ≤ 0

c3(~β) =
1.93β 3

4

β2β3β 4
6

− 1 ≤ 0

c4(~β) =
1.93β 3

5

β2β3d 4
7

− 1 ≤ 0

c5(~β) =

 Å
745β4
β2β3

ã2
+ 16.9× 106

110β 3
6

− 1 ≤ 0

c6(~β) =

 Å
745β5
β2β3

ã2
+ 16.9× 106

85β 3
7

− 1 ≤ 0

c7(~β) =
β2β3
40
− 1 ≤ 0

c8(~β) =
5β2
β1
− 1 ≤ 0

c9(~β) =
β1

12β2
− 1 ≤ 0

c10(~β) =
1.5β6 + 1.9

β4
− 1 ≤ 0

c11(~β) =
1.5β7 + 1.9

β5
− 1 ≤ 0

(5.24)

where the bounds of each design variable are 2.6 ≤ β1 ≤ 3.6, 0.7 ≤ β2 ≤ 0.8,
17 ≤ β3 ≤ 28, 7.3 ≤ β4 ≤ 8.3, 7.3 ≤ β5 ≤ 8.3, 2.9 ≤ β6 ≤ 3.9, and 5.0 ≤ β7 ≤ 5.5

55

5.2. SPEED REDUCER DESIGN

� Optimization using EAs

The optimization of the speed reducer design is performed via the use of plain
EAs that utilize the PSM. Multiple experiments concluded that the optimal number
of offspring and parent population is (µ, λ) = (30, 100) where 5 parents are combined
to create a single offspring with two-point crossover. Gray binary encoding is used
where 12 bits are assigned to each design variable, except for β2, β3 and β7 that are
assigned 8, 8 and 11 bits respectively. The optimization process terminates after
52000 total PSM evaluations have been performed and is repeated for 5 randomly
initialised offspring populations P 0

λ via the use of a RNG. The results are presented
in in table 5.10 and figure 5.14.

Speed reducer design

(µ, λ)
popula-
tion

Best Worst Average Exact
model
eval.

Average
exact
eval.

EAs (30, 100) 2994.91 3001.97 2997.74 52207 40246

Table 5.10: Optimization of speed reducer design using EAs

(a) Comparison between the convergence
histories of 5 different P 0

λ initializations

	2500

	3000

	3500

	4000

	4500

	5000

	5500

	500 	1000 	1500 	2000 	2500 	3000 	3500 	4000 	4500 	5000

f(β
)

Number	of	evaluations

RNG1
RNG2
RNG3
RNG4
RNG5

(b) Comparison between the convergence
histories if f(~β) range is narrowed

	2980

	3000

	3020

	3040

	3060

	3080

	5000 	10000 	15000 	20000

f(β
)

Number	of	evaluations

RNG1
RNG2
RNG3
RNG4
RNG5

(c) Convergence history of the optimal run

	2500

	3000

	3500

	4000

	4500

	5000

	5500

	500 	1000 	5000 	10000 	23000 	52000

f(β
)

Number	of	evaluations

RNG1

Figure 5.14: Convergence history of speed reducer optimization case using EAs

In 3 of the runs depicted in the previous figures, all evaluated individuals violate
the imposed constraints in the first few generations and therefore their corresponding
objective function values are penalised and do not appear in the range shown here.

56

5.2. SPEED REDUCER DESIGN

� Optimization using MAEAs with metamodels trained off-line

In MAEA-based optimization using off-line trained metamodels, both the ob-
jectives F(~β) and the imposed constraints C(~β) are approximated using surrogate
models. Specifically, a global metamodel is built on the single objective and nc
unique metamodels on each imposed constraint. Alternatively, a single surrogate
model can be trained to approximate the entirety of the constraints with the same
efficacy. In this case, the objective function is approximated by a KPLS model, while
each constraint is approximated via the use of RBFs; responsible for the construction
of the aforementioned metamodels is SMT software. In addition, the optimization
of the speed reducer requires the formation of a mixed-integer design, since the num-
ber of teeth of the gear nteeth assumes strictly integer values. The outcome of the
optimization through 5 runs is presented in table 5.11, where 20000 evaluations per
optimization cycle are performed utilizing the trained metamodel.

Speed reducer design

(µ, λ)
popula-
tion

Best Worst Average Average
metamodel
eval./cycle

Avg.
cycles

MAEAs,
off-line

(30, 100) 3000.95 3017.68 3006.01 20000 1

Table 5.11: Optimization of speed reducer design using MAEAs with off-line training

The best candidate solution ~β = [3.502, 0.7, 17, 7.578, 7.779, 3.357, 5.287] ob-
tained via MAEAs with off-line training, produces the constraint and objective
function values shown in table 5.12 when evaluated on the PSM.

Speed reducer design

MAEAs,
off-line

PSM Relative
Error

c1(~β) -0.077830 -0.074335 0.045478

c2(~β) -0.202314 -0.198362 0.019438

c3(~β) -0.442547 -0.444165 0.003865

c4(~β) -0.902293 -0.902275 0.000004

c5(~β) -0.004910 -0.005490 0.120189

c6(~β) -0.000146 -0.000187 0.204286

c7(~β) -0.702511 -0.702500 0.000015

c8(~β) -0.000203 -0.000453 0.645450

c9(~β) -0.584013 -0.583144 0.001573

c10(~β) -0.084767 -0.084822 0.000209

c11(~β) -0.008184 -0.008183 0.005690

f(~β) 3000.95 3000.95 0

Table 5.12: C, F responses to optimal ~β found via MAEAs with off-line training

57

5.2. SPEED REDUCER DESIGN

The deviation between metamodel predicted values and evaluated ones, using
the exact PSM of either objective function or some constraint, can be observed
in figures 5.15, 5.16, 5.17. The surrogate models are trained on nt = ndoe = 150
patterns X collected via the implementation of LHS scheme that makes use of the
ESE algorithm to construct an optimal space-filling design. Each individual ~β ∈ P 0

λ

selected via RNG1 is used to validate the trained model and calculate the NRMSE.

3000 3500 4000 4500 5000 5500 6000
f()

3000

3500

4000

4500

5000

5500

6000
f(

)

f()
f()

Figure 5.15: Speed reducer case with RNG1. Deviation between exact PSM values of

the objective function ~f(~β) and KPLS predictions ~̂f(~β) with NRMSE = 0.0000847

(a) 1st constraint, NRMSE=0.0082325

0.5 0.4 0.3 0.2 0.1 0.0
Constraint 1

0.5

0.4

0.3

0.2

0.1

0.0

Co
ns

tra
in

t 1

c()
c()

(b) 2nd constraint,NRMSE=0.0043814

0.7 0.6 0.5 0.4 0.3 0.2 0.1
Constraint 2

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Co
ns

tra
in

t 2

c()
c()

(c) 3rd constraint, NRMSE=0.0116700

0.8 0.6 0.4 0.2 0.0
Constraint 3

0.8

0.6

0.4

0.2

0.0

Co
ns

tra
in

t 3

c()
c()

(d) 4th constraint, NRMSE=0.0002237

0.95 0.94 0.93 0.92 0.91 0.90 0.89 0.88
Constraint 4

0.95

0.94

0.93

0.92

0.91

0.90

0.89

0.88

Co
ns

tra
in

t 4

c()
c()

Figure 5.16: Deviation between exact PSM constraint values ~c(~β) and RBF predic-

tions ~̂c(~β) given via the implementation of SMT. The results refer to the first four
constraints in speed reducer case with RNG1.

58

5.2. SPEED REDUCER DESIGN

(a) 5th constraint, NRMSE=0.02209353

0.4 0.2 0.0 0.2 0.4
Constraint 5

0.4

0.2

0.0

0.2

0.4

Co
ns

tra
int

 5

c()
c()

c

(b) 6th constraint, NRMSE=0.0031924

0.10 0.05 0.00 0.05 0.10 0.15
Constraint 6

0.10

0.05

0.00

0.05

0.10

0.15

Co
ns

tra
int

 6

c()
c()

(c) 7th constraint, NRMSE=0.0000092

0.70 0.65 0.60 0.55 0.50 0.45
Constraint 7

0.70

0.65

0.60

0.55

0.50

0.45

Co
ns

tra
int

 7

c()
c()

(d) 8th constraint, NRMSE=0.0042978

0.0 0.1 0.2 0.3 0.4 0.5
Constraint 8

0.0

0.1

0.2

0.3

0.4

0.5

Co
ns

tra
int

 8

c()
c()

(e) 9th constraint, NRMSE=0.0006251

0.72 0.70 0.68 0.66 0.64 0.62 0.60 0.58
Constraint 9

0.72

0.70

0.68

0.66

0.64

0.62

0.60

0.58

Co
ns

tra
int

 9

c()
c()

(f) 10th constraint, NRMSE=0.0006814

0.20 0.15 0.10 0.05 0.00 0.05
Constraint 10

0.20

0.15

0.10

0.05

0.00

0.05

Co
ns

tra
int

 10

c()
c()

(g) 11th constraint, NRMSE=0.0011311

0.5 0.4 0.3 0.2 0.1 0.0
Constraint 1

0.5

0.4

0.3

0.2

0.1

0.0

Co
ns

tra
int

 1

c()
c()

Figure 5.17: Deviation between exact PSM constraint values ~c(~β) and RBF predic-

tions ~̂c(~β) given via the implementation of SMT. The results refer to the remaining
seven constraints in speed reducer case with RNG1.

The NRMSE calculates the mean normalised deviation between the predicted
and exactly evaluated on the PSM values on λ = 100 untried design sites B, where
~β= ~βi=[βi,1, βi,2, . . . , βi,nβ] ∈ P 0

λ is any untried point in the design space contained
in the initial offspring population set. NRMSE serves as a metric of model fitting
and indicates that all trained metamodels are well-fitted, which explains why the
optimization process converges after 1 cycle.

59

5.2. SPEED REDUCER DESIGN

� Optimization using MAEAs with metamodels trained on-line

In the MAEA-based optimization of welded beam design using on-line trained
metamodels, the LCPE phase is set to initiate once 100 exact PSM evaluations are
performed. In LCPE, personalised local metamodels are trained on 15 ≤ nt ≤ 30
training patterns and subsequently 2 ≤ λe ≤ 4 individuals are re-evaluated using
the exact evaluation model; a total of 20000 PSM evaluations are performed. Local
metamodels are built by utilising either the assisting software SMT or EASY. The
former accommodates the use of Kriging, KPLS, KPLSK and RBFs, while the
latter relies on Kriging and most often RBFs. In order to identify the most suitable
metamodel in SMT for the speed reducer optimization case, a comparison between
each respective model is performed w.r.t. the convergence history and the produced
outcome; the results of each comparison are presented in table figure 5.18 and table
5.13, respectively.

	3000

	3500

	4000

	4500

	5000

	5500

	0 	1000 	2000 	3000 	4000 	5000

f(β
)

Number	of	evaluations

KPLSK
KPLS

Kriging
RBFs	in	SMT

EAs

	2980

	3000

	3020

	3040

	3060

	3080

	0 	5000 	10000 	15000 	20000

f(β
)

Number	of	evaluations

KPLSK
KPLS

Kriging
RBFs	in	SMT

EAs

Figure 5.18: Comparison between the convergence histories of speed reducer case
using EAs and MAEAs with metamodels trained on-line via SMT

Speed reducer case

MAEAs,
on-line

(µ, λ)
popula-
tion

KPLS KPLSK Kriging RBFs

SMT (30, 100) 3002.44 2997.06 3001.38 3002.14

Table 5.13: Speed reducer case with RNG1. Optimal candidate solution found using
MAEAs with metamodels trained on-line via SMT

The comparison between convergence histories of the SMT built-in metamodels,
depicted in figure 5.18, indicates that KPLSK model is most suitable to facilitate the
optimization of the speed reducer case due to its fast convergence to the threshold
of both 10000 and 20000 PSM evaluations. In plain EAs, RNG1 yields the best op-
timization outcome and for that reason MAEAs with on-line training are initialized
with the same offspring population P 0

λ .

60

5.2. SPEED REDUCER DESIGN

KPLSK is yet to be compared to EASY built-in RBFs and plain EAs; the results
are presented in table 5.14.

Speed reducer case

MAEAs,
on-line

(µ, λ)
popula-
tion

Best Worst Average Average
exact
eval.

Avg. meta-
model eval.

SMT (30, 100) 2997.06 3005.35 3002.68 20000 22792
EASY (30, 100) 2998.53 3011.25 3005.46 20000 24775
Plain EAs (30, 100) 2999.32 3008.35 3004.34 20000 -

Table 5.14: Speed reducer case. Comparison between the outcome of the optimization
using MAEAs with on-line training and plain EAs

The design variable vector that minimizes the weight of the speed reducer via
the implementation of KLPSK is ~β = [3.501, 0.7, 17, 7.348, 7.769, 3.352, 5.287]. For
MAEAs utilizing EASY built-in RBFs the respective optimal design variable vector
is ~β = [3.503, 0.7, 17, 7.499, 7.750, 3.352, 5.287].

	3000

	3500

	4000

	4500

	5000

	5500

	0 	1000 	2000 	3000 	4000 	5000

f(β
)

Number	of	evaluations

KPLSK
RBFs	in	EASY

EAs

	2980

	3000

	3020

	3040

	3060

	3080

	0 	5000 	10000 	15000 	20000

f(β
)

Number	of	evaluations

KPLSK
RBFs	in	EASY

EAs

Figure 5.19: Speed reducer case with RNG1. Comparison between the convergence
of the optimization using MAEAs with on-line training and plain EAs

In speed reducer optimization case, both MAEA methods outperform EAs and
converge to a better optimal solution when compared prior to the threshold of 20000
PSM evaluations, as depicted in figure 5.19. Out of the two on-line trained MAEAs,
KPLSK is seemingly the better option in the optimization of the speed reducer
case, despite the fast convergence of EASY built-in RBFs for the first 6000 PSM
evaluations. The optimization of the speed reducer case using MAEAs with on-line
trained KPLSK model resulted on average in a smaller speed reducer weight, in
comparison to conventional EAs and MAEAs with EASY built-in, on-line trained
RBFs.

61

5.3. ANALYSIS OF THE SOO OUTCOME

5.3 Analysis of the SOO outcome

The results and observations made during the study will subsequently be included in
the analysis of the performance of each MAEA method and each utilized metamodel.
The performance of each model or method is measured by two conflicting objectives,
i.e. model/method efficacy and computational cost. The former can be quantified
by observing the convergence of each model, while the latter can be measured via
the wall clock time needed to preform each process related to the optimization. The
results regarding these two objectives are presented subsequently.

� Convergence
The plot of convergence histories can be used in the comparison of methods
that evaluate the evolution individuals on the exact PSM, therefore, MAEAs
with off-line training cannot effectively be compared using this method. For
this reason, the yielded outcome of each method is compared. In welded beam
case, MAEAs with on-line training perform significantly better than the ones
with off-line training due to poor fitting of the metamodels approximating
the constraint functions. MAEAs with EASY built-in RBFs trained on-line
outperform plain EAs and MAEAs using metamodels trained on-line via SMT
when compared prior to the threshold of 10000 PSM evaluations.

In the speed reducer case MAEA-based optimization, off-line trained meta-
models well-fitted and yield a similar average outcome compared to plain EAs
after 5 runs. MAEAs with on-line training, however, outperform both meth-
ods, i.e. EAs and MAEAs with off-line training.

� Total function calls
The total wall clock time depends heavily on the number of exact PSM eval-
uations performed, so it is necessary to calculate the total amount of PSM
evaluations performed by each optimization method. In MAEAs with off-line
training, the number of initial sample points selected via DoE techniques is
equal to ndoe = 240 and ndoe = 150 for the welded beam and the speed re-
ducer design, respectively, while the average number of PSM evaluations is
calculated as such:

nPSM = ndoe + (ncycles − 1)n
′

doe + nelites (5.25)

In the previous formula, nelites is the total number of elite individuals selected
throughout the optimization process, which for SOO problems is equal to the
number of cycles performed, since a single elite individual is selected in each
cycle. In welded beam optimization case, an average of nPSM ′′ = 240 + 7 ·
20 + 8 = 388 PSM

′′
evaluations were performed, while in speed reducer case

the respective PSM evaluations are nPSM = 151. In comparison, EAs and
MAEAs with on-line training used for the minimization of welded beam case
perform an average of nPSM =10000 evaluations respectively. In speed reducer
case, the corresponding exact PSM evaluations performed are nPSM = 20000.
This decrease in exact evaluations, when compared to conventional EAs and
MAEAs with on-line training, yields a proportional reduction in computational
cost, making MAEAs with off-line training the most cost-efficient optimization
method.

62

5.3. ANALYSIS OF THE SOO OUTCOME

In MAEAs with on-line or off-line training, metamodel approximation is used,
which contributes in an insignificant increase in the total wall clock time compared
to the exact evaluation performed by the PSM. Consequently, the total function
calls must account for the number of times the Python or C++ function that is
responsible for the metamodel prediction was called; the corresponding number is
denoted by nmeta. The total number of function calls, i.e. nPSM and nmeta, along
with the average outcome of each optimization method, is presented in table 5.15.

Average outcome

Welded beam nPSM nmeta Speed reducer nPSM nmeta

MAEAs, on-line
training via SMT

2.54 10000 11579 3002.68 20000 22792

MAEAs, on-line
training via EASY

2.53 10000 14422 3005.46 20000 24775

EAs 2.59 10000 - 3004.34 20000 -
MAEAs, off-line
training via SMT

3.12 388 23064 3006.01 151 18239

Table 5.15: Comparison between the average optimization outcome using plain EAs,
MAEAs with on-line and off-line training after 5 runs

MAEAs using metamodels trained on-line via SMT yield the best optimization
outcome, increase significantly, however, the computational cost of the process. The
high computational cost, also observed in MAEAs trained off-line via SMT, is con-
tributed to the implementation of Python in the optimization process. Python is
built dynamically, i.e. the data types are determined at run time, on an interpreter,
unlike other coding languages that are pre-compiled, e.g. C++ that EASY is based
on. Both these attributes, along with the use of several custom functions, prolong
the wall clock time needed for each process to be executed. Another factor in the
increase of the computational cost is the evaluation of each offspring individually;
if the entirety of the population in a generation was being evaluated, then the cost
would decrease λ-fold. Consequently, the implementation of SMT and any other
Python-based package that utilizes metamodels is not recommended for pseudo-
engineering applications with low-order objective functions. MAEAs with on-line
trained RBFs found in EASY are based on C++ and their use does not increase the
computational cost of the optimization significantly. They additionally converge
faster than conventional EAs and MAEAs using SMT metamodels trained either
on-line or off-line, and their use is preferred in simple pseudo-engineering cases.

63

Chapter 6

Airfoil Shape Optimization

The efficacy of the selected metamodels has been tested on a pair of pseudo-engineering
optimization problems, where the exact PSM is cheap in terms of computational
cost. The study now focuses on performing a comparison between MAEAs, i.e.
both the methods and the metamodels will be evaluated, and plain EAs when imple-
mented in the shape optimization of a 2D airfoil. The parameters of the optimization
are computed by solving the steady-state Reynolds-Averaged Navier-Stokes (RANS)
equations for compressible flows via the use of the one-equation turbulence model
Spalart-Allmaras [50]. Consequently in this case, the exact PSM model is a CFD
model, which is solved using PUMA software (Parallel solver, for Unstructured grids,
for Multi-blade row computations, including Adjoint) [51] developed by the PCOp-
t/NTUA. The entirety of the CFD evaluations are performed on Nvidia Tesla K40
12 GB GPUs, using a GPU-enabled variant [52] of PUMA programmed in CUDA.

6.1 Mesh and parametrization

The accuracy and the computational cost of CFD evaluations highly depends on
the type and quality of the airfoil mesh. There are three types of grids regarding
their structure; structured, unstructured and hybrid. Due to the formation of un-
structured grids, unstructured solvers are commonly slower then structured ones.
However, the constant increase of computational power, along with the high adapt-
ability to any geometry and the fast construction time, lead to the widespread use of
unstructured grids in CFD applications. In this diploma thesis, a structured C-type
grid is generated for the purpose of the study, as seen in figure 6.1, which is handled
by PUMA as a hybrid grid of tetrahedral cells. C-type grids are preferred due to
their shape that matches the trailing edge curvature, thus effectively capturing the
wake in viscous flows.

The second parameter that affects the accuracy and the computational cost of
CFD evaluations is the quality of the mesh. The higher the resolution of the mesh,
the greater the accuracy of the outcome. The construction of a high-resolution
mesh would, however, severely increase the number of nodes where the RANS need
to be solved. In a steady-state compressible flow, turbulence is developed near the
walls, i.e. in the viscous sublayer, and in the wake of the airfoil, where a finer
mesh is needed in order to account for the small fluctuations in the values of flow
components. Consequently, a mesh of ranging resolution is implemented; coarse in
the far field and fine near the walls and in the wake of the airfoil.

64

6.1. MESH AND PARAMETRIZATION

Figure 6.1: 2D C-type structured mesh

flow
The optimization process aims at yielding the airfoil shape that minimizes or

maximizes the flow properties, e.g. CL, CD, under certain imposed flow conditions
and constraints. The modification of the airfoil shape is performed via univariate
Non Uniform Rational B-Splines (NURBS). The used NURBS are built via the
interpolation of 15 control points in 2D space and produce the curves of the airfoil.
Subsequently, the nodes contained in the front patch of the grid are shifted in order
to adapt to the new airfoil shape using the spring analogy method, according to
which the grid is modelled as net of linear springs with elasticity proportional to
the inverse of mesh edge length. The control points of the volumetric NURBS
are displaced in the y direction during the optimization and the airfoil shape is
modified accordingly. Consequently, the 13 y coordinates of the control points are
set as the design variables of the optimization; the y coordinates of the control
points corresponding to the leading edge and trailing edge points are kept fixed, as
depicted in figure 6.2.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

0.2

0.1

0.0

0.1

0.2

y/
c

Figure 6.2: Design of NACA 4318. Parametrization of the baseline airfoil geometry
using volumetric NURBS with control points that have one (red) or none (black)
degree of freedom.

65

6.2. RANS FLOW EQUATIONS

6.2 RANS flow equations

indicates Reynolds averaging. If Favre averaging is applied to all flow quantities,
then the continuity, momentum and energy RANS equations can be formulated as
such1:

∂ρ

∂t
+

∂

∂xj
(ρũj) = 0

∂

∂t
(ρũi) +

∂

∂xj
(ρũiũj + pδij − τ̃ totij) = 0, for i = 1, 2

∂

∂t
(ρẼ) +

∂

∂xj
(ρũjE + ũjp− q̃totj − ũiτ̃ totij) = 0

(6.1)

where Reynolds averaging is indicated by the overline. The RANS equations can be
also written in conservative form:

∂~U

∂t
+
∂ ~f invj

∂xj
−
∂ ~f visj

∂xj
= 0 (6.2)

where in 2D flow j = 1, 2 and ~U = [ρ, ρũ, ρṽ, ρẼ]T is the conservative flow variable
vector with components the averaged terms in the continuity, momentum and energy
Navier-Stokes equations for compressible flows. The inviscid and viscous fluxes
denoted by ~f invi and ~f visj , respectively, and expressed as:

~f invj =

ρũj

ρũ1ũj + pδij
ρũ2ũj + pδij
ũj(Ẽt + p)

 , ~f visj =

0
τ̃ tot1j

τ̃ tot2j

q̃totj + ũiτ̃
tot
ij

 (6.3)

where:

Ẽt =
p

γ − 1
+

1

2

Ç
ũiũi +

ρu′′i u
′′
i

p

å
τ̃ totij =

µ+ µt
Re

Å
∂ũi
∂xj

+
∂ũj
∂xi

ã
− 1

3Re
δij
ρu′′i u

′′
i

p

q̃totj =
Cp

Re

Å
µ

Pr
+

µt
Prt

ã
∂T̃s
∂xj

(6.4)

where µt the turbulent or eddy viscosity and Pr, Prt the Prandtl and the turbu-
lent Prandtl number, respectively. The stress tensor depends on the molecular or
dynamic viscosity of the fluid, denoted by µ, and the Reynolds number Re given by:

Re =
ρul

µ
(6.5)

1For brevity, the Einstein summation convention for repeated indices is applied in all flow-
related equations

66

6.2. RANS FLOW EQUATIONS

where l the characteristic length of the airfoil, which in this case is normalized
using the chord length c, so l∈ [0, 1]. The term qj that appears in energy equation
denotes the jth component of the heat flux and T̃s is the static temperature, which
for an ideal gas is given by:

T̃s =
p

ρRg

(6.6)

where Rg is the specific gas constant, which for air is Rg = 287 J/kgK. The gas

specific heat ratio is equal to γ =
Cp
Cv

= 1.4. The constant parameters Cp, Cv denote

the specific heat under constant pressure and constant volume, respectively. The
term τij that appears in momentum and energy equation, denotes the viscous stress
tensor.

The RANS steady-state equations are discretized using finite volume method
and intergraded in pseudo-time and can be subsequently solved using a 3rd order
Runge-Kutta scheme with residual smoothing, in this case flux Jacobian technique,
developed by the Lab of Thermal Turbomachines (LTT), is used to smooth the
residuals. The smoothing process requires the implementation of a linear algebra
solver and, in this case, Gauss-Seidel method is applied. The process of calculating
the RANS residuals is iterative and converges after the residuals have reached a
user-defined value or a user-defined number of pseudo-time steps has been reached.

The no-penetration condition is applied, i.e. the normal component of the rela-
tive to the wall velocity is set to zero ~̃u ·~n = 0 for stationary walls. The no-slip wall
condition is applied in Spalart Allmaras transport equation and ν̃ is set to zero near
the wall. The solid walls of the airfoil are subsequently modelled as adiabatic and
the normal component of the relative to the wall heat flux is set to zero ~̃qtotj · ~n = 0.

67

6.3. TURBULENCE MODEL

6.3 Turbulence model

In order to improve the boundary layer prediction in the presence of adverse pres-
sure gradients various turbulence models are employed. In this thesis, one-equation
Spalart-Allmaras turbulence model is implemented, which is based on the observa-
tion that on a flat plate in the log-law region of the boundary layer (y+ > 30) the
profile of turbulence kinematic viscosity νt with y+ is linear, while in the viscous
sublayer (y+ < 5) the profile is quartic. If however we assume a new variable ν̃,
similar to νt, with linear profile w.r.t. y+ in the entirety of the sublayer region,
then we can produce more stable results near the solid wall while simultaneously
reducing the computational cost that arises from constructing a fine mesh near the
solid wall. In order to account for any geometry and possible flow conditions, ν̃ is
calculated by solving the modelled transport equation for compressible flows [55]:

∂

∂t
(ρν̃) +

∂

∂xj
(ρν̃uj) =

ρ

σwRe

ï
∂

∂xj

Å
(ν̃ + ν)

ν̃

∂xj

ã
+ cb2

∂ν̃

∂xj

∂ν̃

∂xj

ò
+ ρcb1(1− ft2)S̃hν̃ −

ρ

Re

(
cw1fw −

cb1
K2

ft2

)Å ν̃
ds

ã2 (6.7)

where ds is the distance from the closest solid wall and S̃h is the modelled vorticity,
which is connected with the vorticity via the following formula:

S̃h = Sh +
ν̃

(Kds)2
fv2 , fv2 = 1− os

1 + osfv1
(6.8)

where fv1 a function that models damping effects near the solid walls:

fv1 =
o3s

o3s + cv31
, os =

ν̃

ν
(6.9)

The remaining functions are given by:

fw = gw

ñ
1 + c6w3

g6w + c6w3

ô1/6
, gw = rs + cw2(r

6
s + rs), rs = min

Ç
ν̃

ReS̃hK2d2s
, 10

å
ft2 = ct3e

−ct4o
2
s , ct3 = 1.2, ct3 = 0.5, K = 0.41, cw2 = 0.3, cw3 = 2.0

cw1 =
cb1
K2

+
1 + cb2
σw

, cb1 = 0.1355, cb2 = 0.622, σw = 0.6667, cv1 = 7.1

(6.10)

Solving equation 6.7 yields a ν̃ value, which is then utilized to calculate the
turbulent kinematic viscosity via the equation:

νt = ν̃fv1 (6.11)

With νt known, the eddy viscosity µt can be calculated and used to update the
RANS equations.

68

6.4. OPTIMIZATION CASES

6.4 Optimization cases

For the purposes of this thesis, the selected metamodels and the respective MAEA
methods are tested on the optimization of a NACA 4318 airfoil. The study will
focus on optimizing the airfoil shape w.r.t. one or two objectives, namely the aero-
dynamic lift and drag force. These parameters are commonly contradicting, so each
is alternatively used as an objective or an imposed constraint to the optimization
problem. The entirety of the CFD evaluations are performed on Nvidia Tesla K40
12 GB GPUs, using a GPU-enabled variant of PUMA running on CUDA language.

6.4.1 MOO optimization at take-off conditions

The first optimization case simulates the conditions governing the take-off stage of
an aircraft flight, which are characterized by low free-stream velocity U = 51 m/s,
high angle of attack a=10o and fluid properties at sea level given in table 6.1. The
flow field quantities of the initial baseline geometry at take-off conditions can be
seen in figure 6.3.

Fluid properties at sea level h = 0 m

ρ [kg/m3] p [bar] T [K]
Air 1.225 1.01325 288

Table 6.1: Air properties at sea level

(a) Mach field (b) Pressure field

Figure 6.3: Flow field quantities of the baseline airfoil geometry

The airfoil is subsequently optimized w.r.t. two objectives, minimization of the
produced drag force and maximization of the produced lift force, while no constraint
is imposed. The optimization problem solved is the following:

max f1(~β) = L

min f2(~β) = D
(6.12)

where the bounds of the design variables shaping the pressure side of the airfoil are
−0.26 ≤ β1−5 ≤ −0.24, while the design variables shaping the camber line and the
suction side are −0.01 ≤ β6−8 ≤ 10.0 and 0.24 ≤ β9−13 ≤ 0.26, respectively.

69

6.4. OPTIMIZATION CASES

The optimization is performed via the use EAs and MAEAs, where λ = 40
offspring are evaluated in each generation and µ=20 parents are retained, 3 of which
are combined to create a new offspring at the start of every new generation. In the
optimization of the airfoil using MAEAs with on-line training, the LCPE phase is
initialized after 60 CFD evaluations and uses KPLS and RBFs metamodels that are
trained via SMT and EASY, respectively. Both methods terminate after 400 CFD
evaluations have been performed and are subsequently compared with to MAEAs
using KPLS trained off-line on ndoe = 80 initial training patterns. The evolution in
all methods retains 15 prominent solutions that are stored in the temporary elite set
Pe, which at the end of the evolution stores the Pareto frontier of non-dominated
solutions. Three Pareto fronts are produced via the use of a RNG seed number that
corresponds to a different offspring population P 0

λ and are presented in figure 6.4;
the set P 0

λ contains the baseline airfoil geometry.

(a) RNG1

	1080

	1100

	1120

	1140

	1160

	1180

	1200

	1220

	14 	14.5 	15 	15.5 	16 	16.5 	17

f 1
(β
)

f2(β)

MAEAs	trained	on-line	via	SMT
MAEAs	trained	on-line	via	EASY
MAEAs	trained	off-line	via	SMT

EAs
baseline	geometry

(b) RNG2

	1080

	1100

	1120

	1140

	1160

	1180

	1200

	1220

	14.2 	14.4 	14.6 	14.8 	15 	15.2 	15.4 	15.6 	15.8 	16 	16.2

f 1
(β
)

f2(β)

MAEAs	trained	on-line	via	SMT
MAEAs	trained	on-line	via	EASY
MAEAs	trained	off-line	via	SMT

EAs
baseline	geometry

(c) RNG3

	1080

	1100

	1120

	1140

	1160

	1180

	1200

	1220

	14.2 	14.4 	14.6 	14.8 	15 	15.2 	15.4 	15.6 	15.8 	16 	16.2

f 1
(β
)

f2(β)

MAEAs	trained	on-line	via	SMT
MAEAs	trained	on-line	via	EASY
MAEAs	trained	off-line	via	SMT

EAs
baseline	geometry

Figure 6.4: NACA 4318 optimization at take-off flow conditions. Comparison of
the Pareto fronts of 15 non-dominated solutions computed via the implementation of
plain EAs, MAEAs with off-line and on-line trained KPLS and MAEAs with EASY
built-in, on-line trained RBFs for 400 CFD evaluations

70

6.4. OPTIMIZATION CASES

The optimization initialized with seed number RNG1 is allowed to perform more
CFD evaluations and for this reason the corresponding Pareto front contains slightly
better non-dominated individuals. In each case, the Pareto fronts formed via the im-
plementation of each optimization method do not reveal which method is dominant
and therefore a hypervolume indicator is assigned to each front F ⊂ Rn.

In the 2D space, which is the case here, the hypervolume indicator H(F) is
equivalent to the area defined by each ~q ∈ F and the reference point ~xr ∈ Rn is
defined as such:

xr1 ={q1 ∈ Fi : q1 ≥ ξ, ∀ξ ∈ Fi,∀i ∈ [1, nf]}+ ξ1

xr2 ={q2 ∈ Fi : q2 ≥ ξ, ∀ξ ∈ Fi,∀i ∈ [1, nf]}+ ξ2
(6.13)

In this case, the parameters assume the values (ξ1, ξ2) = (0.25, 20) and the outcome
is presented in the table 6.2.

Hypervolume indicator H(F)

RNG1 RNG2 RNG3
MAEAs, on-line training via SMT 274.588 222.513 224.786
MAEAs, on-line training via EASY 257.987 206.800 211.937
MAEAs, off-line training via SMT 252.866 213.701 216.461
EAs 257.512 200.114 204.289

Table 6.2: NACA 4318 optimization at take-off flow conditions. Hypervolume indi-
cator of Pareto fronts formed via the implementation of various optimization meth-
ods

The Pareto front generated by the implementation of MAEAs with metamodels
trained on-line via SMT assumes the highest hypervolume indicator value for every
RNG. On the contrary, the lowest hypervolume indicator is observed when the
optimization is performed via the use plain EAs. MAEAs with off-line training
perform better than MAEAs with metamodels trained on-line via the use of EASY
for RNG2, RNG3. For those RNG seed numbers, each optimization cycle converges
after 1000 evaluations have been performed on the trained metamodel, while for
RNG1 only 520 metamodel evaluations are performed. This increase in metamodel
evaluations has a cost-efficient impact in the efficacy of the method and is retained
in the following optimization cases.

71

6.4. OPTIMIZATION CASES

At take-off conditions the main objective is generating an airfoil design that
produces the maximum lift force; such designs are compared in figure 6.5.

(a) MAEAs, on-line training via SMT,
L=1217.45 N and D=16.14 N

(b) MAEAs, on-line training via EASY,
L=1207.19 N and D=15.87 N

(c) MAEAs, off-line training,
L=1216.79 N and D=16.12 N (d) EAs, L=1201.47 N and D=16.07 N

Figure 6.5: NACA 4318 optimization at take-off conditions with RNG3. Compari-
son between airfoil desings that yield the highest lift force in the Pareto front (red)
compared to the baseline design (black).

The use of MAEAs with metamodels trained on-line via SMT result in both the
optimal Pareto front and the best optimal solution. In the relative ranking of each
method, MAEAs using metamodels trained off-line via SMT finish second when
considering their reduced computational cost.

72

6.4. OPTIMIZATION CASES

6.4.2 SOO optimization at take-off conditions

The second optimization case focuses on the maximization of the produced lift force
when the airfoil operates at take-off conditions. In this case, however, the maxi-
mization of the lift force is the only objective of the optimization and the design
space solutions is bounded by a user-imposed demand of a less than 8% increase in
drag force produced compared to the initial baseline geometry, where Dbsl = 15.53
N. The constrained SOO can be expressed as such:

max f(~β) = L

subject to c1(~β) = D − 1.08Dbsl ≤ 0
(6.14)

with bounds of the design variables identical to the ones used in the MOO case.
The optimization is performed via the use EAs and MAEAs, where λ = 40

offspring are evaluated in each generation and µ = 20 parents are retained, 3 of
which are combined to create a new offspring at the start of every new generation.
In the optimization of the airfoil using MAEAs with on-line training, the LCPE
phase is initialized after 40 CFD evaluations. Both optimization methods terminate
after 400 CFD evaluations have been performed. Based on the outcome of the
MOO optimization case, the initial offspring population P 0

λ is produced via the use
of a RNG2 and RNG3 seed; the set P 0

λ contains the baseline airfoil geometry. The
convergence history of RNG3 optimization using plain EAs and MAEAs with on-line
training is presented in figure 6.6.

	1150

	1160

	1170

	1180

	1190

	1200

	1210

	1220

	1230

	0 	50 	100 	150 	200 	250 	300 	350 	400

f(β
)

Number	of	evaluations

KPLS
RBFs	in	EASY

EAs

Figure 6.6: Maximizing NACA 4318 lift force at take-off conditions using RNG3.
Comparison between the convergence histories of plain EAs and MAEAs with meta-
models trained on-line via SMT and EASY

Both MAEA methods outperform conventional EAs in the number of CFD eval-
uations performed. The optimization facilitated by MAEAs with surrogate models
trained on-line via SMT, however, has seemingly the best convergence speed, since
it converges to the optimal solution after performing circa 150 CFD evaluations.

73

6.4. OPTIMIZATION CASES

Both methods are subsequently compared with to MAEAs using KPLS trained
off-line on ndoe=80 initial training patterns, in order to determine which method is
more efficient. The optimization processin MAEAs with off-line training converges
after 1000 evaluations per cycle have been perfomed on the surrogate model, in this
case KPLS. At the end of each cycle nnew doe = 5 random training patterns are
sampled.

(a) MAEAs, on-line training via SMT,
L=1222.52 N and D=16.54 N

(b) MAEAs, on-line training via EASY,
L=1222.06 N and D=16.44 N

(c) MAEAs, off-line training via SMT,
L=1221.02 N and D=16.29 N (d) EAs, L=1211.35 N and D=16.25 N

Figure 6.7: NACA 4318 optimization at take-off conditions with RNG3. Comparison
between optimal airfoil desings.

All optimized designs in figure 6.7 result in a positive displacement of the camber
line. In the suction side, the increase in curvature near the leading edge of the
airfoil results in an increase of the favourable pressure gradient dp/dx < 0. The
adverse pressure gradient dp/dx > 0 in the suction side, which is responsible for the
turbulence generation, remains relatively unchanged to prevent the flow separation
in the boundary layer. In the pressure side, an increase in the pressure gradient is
desired and is achieved via an increase in the airfoil curvature. The pressure field
of the optimized airfoil is presented next, where the optimized airfoil shows a 6.1%
increase in lift force L and a 4.5% increase in drag force D, as shown in figure 6.8.

(a) Baseline
(b) Optimized via MAEAs with metamodels
trained off-line

Figure 6.8: Comparison between baseline and optimized airfoil

74

6.4. OPTIMIZATION CASES

In the current airfoil shape optimization cases, the PSM is the CFD solver.
A single CFD evaluation, which is combined with some subprocess related to the
adaptation of the mesh around the new airfoil design, is far more costly than any
PSM evaluation performed in previous pseudo-engineering optimization cases and
metamodel predictions. For this reason, nPSM alone significantly increases the com-
putational cost. For the sake of completeness, however, the total functions calls,
i.e. nPSM and nmeta, and the average outcome produced via the implementation of
each method are presented in table 6.3, in order to ensure that the best possible
optimization method is selected.

NACA 4318 optimization at take-off conditions

Average~f nPSM nmeta

MAEAs, on-line training via SMT 1222.33 400 2988
MAEAs, on-line training via EASY 1221.90 400 4000
MAEAs, off-line training via SMT 1221.27 81 1000
EAs 1211.54 400 -

Table 6.3: Comparison between all implemented optimization methods

The total wall clock time of the optimization is significantly decreased when
MAEAs with off-line training are implemented and their corresponding outcome is
similar to the one obtained via the implementation of MAEAs with on-line training.
Consequently, the lift force L of the NACA 4318 at take-off conditions is maximized
when MAEAs with off-line training are implemented, followed closely by MAEAs
with surrogate models trained on-line via SMT that yield an optimal solution after
circa 150 CFD evaluations have been performed.

75

6.4. OPTIMIZATION CASES

6.4.3 SOO optimization at cruise conditions

The last optimization case simulates the conditions governing the cruise stage of an
aircraft flight, which are characterized by high free-stream velocity U=206.64 m/s,
low angle of attack a=2o and fluid properties at sea level given in table 6.4.

Fluid properties at h = 11000 m

ρ [kg/m3] p [bar] T [K]
Air 0.364805 0.227 216.8

Table 6.4: Air properties at cruise height

In this case, the minimization of the produced drag force is the only objective of
the optimization and the design space is bounded by a user-imposed demand of a
less than 8% decrease in lift force compared to the initial baseline geometry, where
Lbsl=1123.81 N. The constrained SOO can be expressed as such:

min f(~β) = D

subject to c1(~β) = L− 0.92Lbsl ≥ 0
(6.15)

with bounds of the design variables identical to the ones used in the MOO case.
The optimization is performed via the use EAs and MAEAs, where λ = 40

offspring are evaluated in each generation and µ = 20 parents are retained, 3 of
which are combined to create a new offspring at the start of every new generation.
In the MAEA-based optimization of the airfoil using on-line training, the LCPE
phase is initialized after 40 CFD evaluations. Both optimization methods terminate
after 400 CFD evaluations have been performed. The initial population set P 0

λ is
produced via the use of a RNG2 and RNG3 seed; the set P 0

λ contains the baseline
airfoil geometry. The convergence history of RNG3 optimization using plain EAs
and MAEAs with on-line training is presented in figure 6.9.

	140

	150

	160

	170

	180

	190

	200

	210

	0 	50 	100 	150 	200 	250 	300 	350 	400

f(β
)

Number	of	evaluations

KPLS
RBFs	in	EASY

EAs

Figure 6.9: Minimizing NACA 4318 drag force at cruise conditions with RNG3.
Comparison between the convergence histories of plain EAs and MAEAs with meta-
models trained on-line via SMT and EASY

76

6.4. OPTIMIZATION CASES

Both MAEA methods outperform conventional EAs in the number of CFD eval-
uations performed. The optimization facilitated by MAEAs with surrogate models
trained on-line via SMT, however, has seemingly the best convergence speed, since
it converges to the optimal solution after performing circa 150 CFD evaluations.

Both methods subsequently compared with to MAEAs using KPLS trained off-
line on ndoe = 80 initial training patterns, in order to determine which method is
more efficient. The optimization process in MAEAs with off-line training converges
after 1000 evaluations have been perfomed per cycle on the surrogate model, in this
case KPLS. At the end of each cycle nnew doe = 5 random training patterns are
sampled.

(a) MAEAs, on-line training via SMT,
D=148.87 N and D=1373.12 N

(b) MAEAs, on-line training via EASY,
D=149.24 N and D=1383.62 N

(c) MAEAs, off-line training via SMT,
D=150.06 N and L=1367.56 N (d) EAs, D=155.25 N and L=1429.83N

Figure 6.10: NACA 4318 take-off conditions with RNG3. Comparison between air-
foil desings that resulted after the implementation of each optimization methods.

The streamline flow of Mach=0.7 is accelerated in the suction side and becomes
supersonic, reaching its peak Mach = 1.3 for the baseline airfoil as seen in figure
6.11. As a result, a shock wave is formed that interacts with the boundary layer
and leads to flow separation. The aim of the optimization is to delay the formation
of the shock wave and by extension the flow separation. As depicted in figure 6.10,
this can be achieved by decreasing the curvature near the leading edge of the airfoil,
and therefore the favourable pressure gradient dp/dx < 0. On the other hand, the
adverse pressure gradient dp/dx > 0 is increased by an increase of curvature. The
pressure side of the optimized airfoil forms a slightly concave surface that is formed
due to the negative displacement of the camber line and results in high pressure
region. Flow separation is mostly responsible for the induced drag force and thus
the optimized airfoil designs reduce the flow separation region while simultaneously
increasing the pressure coefficient around the airfoil and by extension the produced
lift force L. In the baseline geometry, the flow separation initiates at x/c = 0.33,
while in the optimized designs the flow separation initiates at x/c = 0.43 of the
normalized characteristic length. As a result the optimized designs show a 26.3%
decrease in drag force D, combined with a 21.8% increase in lift force L.

77

6.4. OPTIMIZATION CASES

(a) Baseline Mach field
(b) Optimized Mach field via MAEAs with
metamodels trained off-line

Figure 6.11: Comparison between baseline and optimized airfoil

In the current airfoil shape optimization cases, the PSM is the CFD solver.
A single CFD evaluation, which is combined with some subprocess related to the
adaptation of the mesh around the new airfoil design, is far more costly than any
PSM evaluation performed in previous pseudo-engineering optimization cases and
metamodel predictions. For this reason, nPSM alone significantly increases the com-
putational cost. For the sake of completeness, however, the total functions calls,
i.e. nPSM and nmeta, and the average outcome produced via the implementation of
each method are presented in table 6.5, in order to ensure that the best possible
optimization method is selected.

NACA 4318 optimization at cruise conditions

Average~f nPSM nmeta

MAEAs, on-line training via SMT 148.86 400 2988
MAEAs, on-line training via EASY 149.57 400 4000
MAEAs, off-line training via SMT 149.60 87 2000
EAs 154.63 400 -

Table 6.5: Comparison between all implemented optimization methods

The total wall clock time of the optimization is significantly decreased when
MAEAs with off-line training are implemented and their corresponding outcome is
similar to the one obtained via the implementation of MAEAs with on-line training.
Consequently, the induced drag force D of the NACA 4318 at cruise conditions is
minimized when MAEAs with off-line training are implemented, followed closely
by MAEAs with surrogate models trained on-line via SMT that yield an optimal
solution after circa 150 CFD evaluations have been performed.

78

Chapter 7

Conclusions and Future Work

7.1 Overview

In this diploma thesis, the implementation of Metamodel-Assisted EAs (MAEAs) in
the optimization process of various common engineering cases is tested. MAEAs are
introduced due to the increased computational cost observed in CFD applications
optimized via the use of conventional EAs. In the entirety of methods utilized, the
optimization process is accommodated by EASY. Two main MAEA-based optimiza-
tion methods are used in this thesis and are based on the approach followed in the
training of the metamodels, i.e. on-line and off-line training.

In the former, a global surrogate model is built prior to the evolution on n
′

doe

training patterns X that are collected via the implementation of a DoE scheme. The
most commonly used DoE techniques and the ones used in this thesis are accom-
modated by a Python package, called PyDOE, and result in the construction of a
random, a LH or a factorial design. According to the construction method imple-
mented, LHDs can be further categorized in centered, maximin, maximin centered,
maxent or ESE LHDs. A comparison between the attributes of LH and factorial
designs led to the conclusion that LHS with ESE construction criterion will be the
main sampling method in this thesis. In MAEAs with off-line training, responsible
for the training of the metamodels and the DoE construction is a Python- based,
open-source software, called SMT. In SMT software, a variety of surrogate models
can be found; in this thesis, namely Kriging, its applications in reduced design space
using PLS, i.e. KPLS and KPLSK, and RBFs are utilized. The structure of MAEA-
based optimization with off-line training and the Python codes written needed to
implement it, are subsequently presented.

In optimization using MAEAs with on-line training, an LCPE phase is introduced
where metamodels are utilized. The structure of MAEA-based optimization with
on-line training and the Python codes written needed to implement it using SMT,
are subsequently presented. In this method, EASY built-in RBFs can be utilized in
order to perform the optimization and this built-in metamodel is therefore compared
to the surrogate models provided by SMT.

Both these methods are compared to plain EAs in terms of efficacy and com-
putational cost. Each optimization method is initially implemented in two simple
pseudo-engineering optimization problems, i.e. welded beam and speed reducer
case. The first optimization case requires the minimization of the fabrication cost
of a welded beam design w.r.t. 4 design variables ~β and the design space is bound

79

7.2. CONCLUSIONS

by 5 imposed constraints c(~β). The second optimization problem dictates the mini-

mization of the weight of a speed reducer w.r.t. 7 design variables ~β and the design
space is bound by 11 imposed constraints c(~β)

Once the optimization methods have been tested on these simple pseudo-engineering
cases, they are implemented in the shape optimization of a 2D NACA 4318 airfoil.
The RANS equations of compressible flows are solved using PUMA CFD solver.
The flow field is simulated at take-off and cruise conditions, where the former are
used in the MOO optimization and constrained maximization of the lift force L of
the airfoil and the latter in the constrained minimization of the drag force D.

7.2 Conclusions

By completing the studies in this diploma thesis, the following conclusions are drawn:

� In pseudo-engineering applications of low computational cost the implementa-
tion of MAEAs using metamodels trained off-line or on-line via SMT severely
prolongs the wall clock time of the optimization. This is contributed to na-
ture of SMT, which is Python-based, and the communication between EASY
and SMT. Consequently, in low fidelity models the use of MAEAs with surro-
gate models trained via SMT are not recommended. However, MAEA-based
optimization using EASY built-in RBFs that are trained on-line is a more
cost-effective solution and are generally preferred.

� In the shape optimization of the naca 4318, MAEAs using off-line and on-
line training outperform conventional EAs and MAEAs using on-line trained,
EASY built-in RBFs. In S00 cases in particular, the use of MAEAs with KPLS
trained-on line via SMT results in the convergence of the optimization after
circa 150 CFD evaluations have been performed. Consequently, MAEA with
off-line and on-line training yield a 80% and 60% decrease in the computational
cost of CFD applications, respectively. For this reason, MAEAs with surrogate
models trained via SMT are generally preferred in such applications.

� Almost in all tested applications KPLS is seemingly the model with the better
fitting and the best overall performance, followed by the KPLSK model. EASY
built-in RBFs are placed third in the overall metamodel ranking, followed by
Kriging and RBFs found in SMT.

� Overall MAEAs using on-line trained surrogate models perform better than
off-line trained ones, since the latter are heavily dependent on the fitting and
the accuracy of the metamodel.

� The uncertainty of the results leads to the conclusion that the use of each op-
timization method and surrogate models heavily depends on the optimization
problem. Consequently, a conclusion that applies to every application cannot
be extracted, since the user must be the judge of the situation.

80

7.3. FUTURE WORK

7.3 Future Work

Based on the results of this investigation the following can be proposed for future
work:

� The efficacy of MAEAs degrades in high-dimensional optimization problems
and commonly a plethora of methods are used to facilitate EAs implemen-
tation. Most common are distributed search models, e.g. Distributed EAs
(DEAs)[56, 57], that distribute the individuals of any population in multi-
ple semi-isolated subpopulations which are called demes. In computationally
expensive problems, DEAs are assisted by metamodels (DMAEAs)[58]. It is
common to combine DEAs with Hierarchical EAs (HEAs)[57, 59], thus cre-
ating HDEAs[60]. If then metamodels are used, HDMAEAs[61] are formed.
HEAs have an hierarchical topology structure that resembles a binary tree
that expands in two or more rarely three layers. Alternatively, Memetic Algo-
rithms (MAs)[62], which are regarded as hybrid EAs and are similar to HEAs,
combine conventional EAs with methods of refining individuals usually in the
form of local search heuristics. When combined with metamodels, Metamodel
Assisted MAs (MAMAs)[63, 64] are formed. Finally, the synchronization gap
during each evolution of HEAs or DEAs led to the creation of Asynchronous
EAs (AEAs)[65, 66] and AMAEAs[67]. Some of these methods are available
in EASY, e.g. HEAs and DEAs, and can be utilized in future work.

� The prolonged wall clock time that resulted from the implementation of MAEA-
based optimization with metamodels trained via SMT is attributed to the use
of Python. However, the code responsible for the communication between
EASY and SMT could be optimized via the use of Python in-house modules
and packages. Alternatively, any Python function can be rewritten in C++ in
order to drastically reduce the computational cost of the optimization.

81

Appendix A

Tests in Metamodel Fitting

The fitting of SMT metamodels is tested on a pair of low-fidelity models that are
used as conceptual level estimate of the wing weight of an aircraft. The testing
phase initiates by creating a DoE design w.r.t. a semi-arbitrarily imposed lower and
upper bound for each design variable. This DoE design consists of nt training data,
which are subsequently evaluated on the problem-specific low-fidelity model, i.e. the
exact evaluation model. The resulting nt (~β, ~f(~β) pairs are used for the training of a
selected surrogate model. After the training process has been completed, a new set of
sample points is selected from the design space via the use of DoE techniques. These
are called validation points, are equal in number to training points, i.e. nt=nval=40
and are used to validate the accuracy of the trained metamodel. Validation points
are evaluated using both the exact evaluation model and the trained metamodel
resulting in F and F̂ values, respectively. The deviation between these values for
the nt training data is calculated by the use of NRMSE, which serves as a metric for
metamodel accuracy. The computations have been performed on a i7-9750H, 2.60
GHz CPU.

A.1 3 design variable aircraft wing equation

The quality of each metamodel is tested in a simplistic 3 design variable wing weight
equation that is used for the conceptual design of light, low performance aircrafts.
This equation applies to cantilever wings and includes the weight of wing tip and
flight control surfaces, i.e. ailerons, while it excludes fuel tank weight, the effect
of sweep angle and spar flight loads from wing and fuselage. The wing weight is
determined from the following equation[68]:

Wwing = 0.0467W 0.397
TO S0.397N0.360

z AR1.712 (A.1)

where WTO is the aircraft take-off weight, Nz the ultimate load factor, S the wing
area and AR the wing aspect ratio. The search of a low-performance, light utility
aircraft with maximum speed Vflight < 200 kn resulted in the selection of Evektor
VUT1OO-131i Cobra[69]. The aforementioned aircraft is used as a template and
its design values are set as a baseline for the range of each design variable in the
previous equation.

82

A.1. 3 DESIGN VARIABLE AIRCRAFT WING EQUATION

VUT1OO-131i Cobra

MTOW [lb] S [ft2] Nz AR
3,197 141.1 3.8 8.4

Table A.1: Design values for VUT100-131i Cobra

By making the assumption that take-off weight is a constant parameter arbi-
trarily set equal to WTO = 2, 500 lb, then the previous equation can be restated as
such:

Wwing = 1.043S0.397N0.360
z AR1.712 (A.2)

The design space under study now consists of three independent design variables
S,Nz, AR that define the design variable vector ~β = [S,Nz, AR]. The range of each
design variable is set arbitrarily as such:

� 120 < S < 170

� 2 < Nz < 6

� 6 < AR < 11

The deviation between the predicted and the exact model value for nval validation
points is subsequently depicted in the following figures:

83

A.2. 8 DESIGN VARIABLE AIRCRAFT WING EQUATION

A.2 8 design variable aircraft wing equation

With the testing of the first objective function now complete, the ability of SMT
metamodels to handle high-dimensional problems is still in question. For this rea-
son, the software’s capabilities will now be tested in an objective function consisting
of 8 design variables. An increase in the number of design variables is expected
to increase the complexity of the problem and therefore the computational cost.
Consequently, an increase in design variables is a good metric of the software re-
sponsiveness to problems of higher dimensionality.

The second weight equation is used for the conceptual design of cargo/transport
aircrafts. This equation accounts for the effect of sweep angle and excludes fuel tank
weight and spar flight loads from wing and fuselage. The wing weight is determined
from the following equation [68]:

Wwing = 0.0051(WdgNz)
0.557S0.649AR0.0035

Å
t

c

ã−0.4
root

(1 + λ)0.1(cosΛ)−1S0.1
c (A.3)

where Wdg is the flight design gross weight, Nz the ultimate load factor, S is the
wing area, AR the aspect ratio, λr the taper ratio, Λ the quarter-chord sweep, (t/c)
the airfoil thickness to cord ratio at the root of the wing and Sc flight control surface
area. A search for a cargo aircraft resulted in the selection of Airbus A400M Atlas.
Its design values are presented in the following table:

A400M Atlas

Wdg 264555 [lb]
Nz - -
S 2384 [ft2]
AR 8.1 -
(t/c)root - -
λr - -
Λ 15 [degrees]
Sc 867 [ft2]

Table A.2: Airbus A400M Atlas design values

where the constrictions for each variable involved are:

� 220000 ≤ Wdg ≤ 280000

� 2.5 ≤ Nz ≤ 10

� 2000 ≤ S ≤ 3000

� 6 ≤ AR ≤ 10

� 0.08 ≤ tc ≤ 0.18

� 0.5 ≤ λ ≤ 1

� −20 ≤ Λ ≤ 20

� 400 ≤ Sc ≤ 2000

84

A.3. OPTIMAL CONSTRUCTION METHOD

A.3 Optimal construction method

The main parameter affecting the quality of an LHD is the construction criterion,
denoted as criterion in Python. The fitting of the trained metamodel is used as a
metric for the quality of the profuced design. The parametric analysis is applied
on eq. A.3 that consists of 8 objective variables. The surrogate model utilized here
is KPLS with regression model (denoted as poly) and correlation function (denoted
as corr) set to their default values, i.e ’constant’ and ’squar exp’ respectively. The
design space is reduced to n comp = 3 dimensions. The constructed designs consist
of ndoe=25 sample points.

NRMSE

Criterion average maximum minimum Standard
deviation

c 0.03724422 0.06002596 0.01691305 0.00860906
m 0.03731406 0.06309695 0.02201805 0.00823468
cm 0.03661358 0.08129392 0.00645364 0.01377246
corr 0.03634474 0.05715466 0.02144811 0.00869950
ese 0.03177641 0.04580328 0.01379077 0.00736666

Table A.3: Average NRMSE of each construction criterion that resulted from the
use of KPLS model for ntest = 50 times

NRMSE =

Ã
1

nval

nval∑
i=1

Ç
f̂i − fi
fi

å2

(A.4)

where nval is the number of validation points, in this case nval = 25, while the average
NRMSE in each case was calculated from the values that were collected from ntest =
evaluations. The entirety of the analysis is executed using an objective function
~f : nβ → Rn. Consequently, ~f(~β) = f(~β) is the scalar value of the objective function

with inputs the validation points, while. f̂(~β) is the predicted objective function
value using the trained surrogate model with inputs, yet again, the validation points.
NRMSE is used as a metric for model validation and therefore measures the accuracy
of the metamodel. In contrast to regular RMSE, this metric does not depend on the
order of magnitude of the observed values and the size of the sample, so it can be
used in the comparison of various metamodels when approximating different PSMs
and trained on different datasets. However, it is not the only option; the other two
types of regression error most often used are:

1. R2/Adjusted R2 often called the coefficient of determination, measures how
much of variability in dependent variable can be explained by the model[70]:

R2 = 1−
∑nval

i=1 (yi − ŷi)2∑nval
i=1 (yi − yi)

2 (A.5)

where y = F (~β) and y is the mean of the observed objective function values:

y =
1

nval

nval∑
i=1

ŷ (A.6)

85

A.3. OPTIMAL CONSTRUCTION METHOD

R2 value ranges in the span of [∞, 1]. R2 is negative when the model does not
follow the trend of the data, equal to zero when the calculated model value is
constant, disregarding the inputs and closer to 1 when the fit between predic-
tion and actual model value is more accurate. R2 indicates a goodness of fit
and expresses the proportion of variance σ2 of Fi that has been described by
the independent design variables. However, it does not take into consideration
overfitting of the problem. Consequently, a regression model that has many
independent variables, due to its complexity, may fit well to the sample points
but perform poorly for validation points. That is why Adjusted R2 is intro-
duced because it will penalise additional independent variables added to the
model and adjust the metric to prevent overfitting issue. However, variance is
dataset dependent and therefore the comparison between R2 metrics obtained
from different datasets is fruitful.

2. Mean Absolute Error (MAE) takes the sum of absolute value of error[70]:

MAE =
1

nval

N∑
i=1

∣∣∣f̂i − fi∣∣∣ (A.7)

NRMSE is considered to be the optimal metric of displaying and comparing a
model’s goodness of fit. This metric is chosen by a process of elimination, since
adjusted R2 is not ideal for comparing different models, nor is it directly available
in Python, and MAE does not indicate underperformance or overperformance of the
model. A NRMSE closer to zero is considered to depict a well-constructed design,
while the opposite is indicative of a poor design, which ignores important points in
the process and/or includes outliers. The quality of the design is the most decisive
factor in the selection of the most suitable LHD construction criterion, since the
time needed to construct a design is negligible in MAEAs with off-line training.
Consequently, criterion ’ese’ is selected in LHS method, which results in ESE LHDs
with the lowest NRMSE value among all LHDs. The time needed to construct each
LHD is subsequently presented in the following table:

Average DoE implementation time

c m cm corr ese
time [s] 0.0003 0.0007 0.0007 0.0016 1.4079

Table A.4: Average LHD construction time, the process is repeated ntest = 50 times
evaluations

86

A.4. METAMODEL COMPARISON

A.4 Metamodel comparison

Now that the tests are complete, a vague impression for some of the surrogate
models has already been formed. However, the accuracy of each model must be
tested more thoroughly. In addition, accuracy is not by itself a decisive factor in
the selection of the optimal surrogate model. Unlike the DoE construction phase,
the training process is far more costly, especially in MAEA-based optimization with
on-line trained surrogaet models, and therefore the required time must be taken into
consideration. In order for the selection to be more discernible and indisputable,
the analysis is performed on both eq. A.2 and eq. A.3, all the surrogate models
are trained and validated on ESE LHDs of ndoe=nval = 25 sample points; the same
number of training patterns is used in MAEAs with on-line training.

Average NRMSE

3 design variables 8 design variables
Kriging 0.00041113 0.03102203
KPLS 0.00088127 0.03177641
KPLSK 0.00042970 0.02945811
RBF 0.00509959 0.04157616

Table A.5: Average NRMSE, the validation process is repeated ntest=50 times

Average training time [s]

3 design variables 8 design variables
Kriging 0.0812 0.2156
KPLS 0.0536 0.0797
KPLSK 0.1368 0.2995
RBF 0.0007 0.0003

Table A.6: Average training time, the validation process is repeated ntest=50 times

Due to the fact that every surrogate model has been trained using the same
sampling method, leads to the conclusion that the generally lower NRMSE observed
in RBF is a direct correlation to the poorer model fitting. Additionally, KPLSK
displays increased training time,which is contributed to the optimization of the
parameters θ calculation, combined with a goodness of fit similar to that of KPLS.
Kriging has the best fitting in all applications but has the longest training time.
KPLS is the most cost-efficient Kriging-based model and displays slightly inferior
fitting in comparison.

87

A.4. METAMODEL COMPARISON

Figure A.1: Efficiency analysis on eq. A.2

Figure A.2: Efficiency analysis on eq. A.3

88

Appendix B

SMT

B.1 DoE techniques in SMT

The implementation of the sampling process is facilitated by a Python-based, open-
source software, called SMT. The DoE sampling techniques available in SMT are
implemented in the 3D design space defined by the bounds of the 3 design variables
in equation A.2, i.e. ~β = [β1, β2, β3]=[S,Nz, AR], where 120 < S < 170, 2 < Nz < 6
and 6 < AR < 11. The constructed designs consist of ndoe = 40 samples; the
corresponding Python scripts are presented subsequently.

� Random sampling
The creation of a randomly generated design can be accomplished in SMT by
executing a Python script with the following form:

1 import numpy as np

2 from smt.sampling_methods import Random

3

4 ndoe = 40 #number of sample points

5 betalimits = np.array([[120.0,170.0], [2.0,6.0], [6.0,11.0]])

6 sampling = Random(xlimits = betalimits)

7 beta = sampling(ndoe)

Listing B.1: Implementation of Random sampling

� Latin Hypercube Sampling (LHS)
LHS is a stratified sampling approach with the restriction that each of the
input variables has its range well sampled following a probability distribution.
In SMT, the creation of a LHD is performed by executing a Python script as
such:

1 import numpy as np

2 from smt.sampling_methods import LHS

3

4 ndoe = 40 #number of sample points

5 betalimits = np.array([[120.0,170.0], [2.0,6.0], [6.0,11.0]])

6 sampling = LHS(xlimits = betalimits, criterion = ’ese’)

7 beta = sampling(ndoe)

Listing B.2: Implementation of LHS

The Python function LHS assumes various input values depending on the
scheme used to construct the LHD. The process of constructing such a design

89

B.1. DOE TECHNIQUES IN SMT

is facilitated by PyDOE[71], where the construction criterion is denoted by ’c’,
’m’, ’cm’, ’corr ’ and ’ese’ to refer to Centered, Maximin, Maximin Centered,
Maxent and ESE LHD, respectively, as depicted in the following script:

1 import numpy as np

2 from smt.sampling_methods import LHS

3

4 ndoe = 40 #number of sample points

5 betalimits = np.array([[120.0,170.0], [2.0,6.0], [6.0,11.0]])

6 crit = [’c’, ’m’, ’cm’, ’corr’, ’ese’]

7 i = int(input(’Define criterion between 0 and 4:’))

8 sampling = LHS(xlimits = betalimits, criterion = crit[i])

9 beta = sampling(ndoe)

Listing B.3: Various construction criteria

In SMT, the LHDs can be further optimized by expanding the initial design
by a multiple of the initial number of sample points. The expanded design
is implemented by setting the parameter method equal to either ’basic’ or
’ese’. The former applies to centered, maximin, centered maximin and entropy
LHDs, while the latter to ESE LHDs. The process of creating expanded LHDs
is performed via the use of a Python script of the following format:

1 import numpy as np

2 from smt.sampling_methods import LHS

3

4 #Initial LHD

5 ndoe = 40 #number of sample points

6 betalimits=np.array([[120.0,170.0], [2.0,6.0], [6.0,11.0]])

7 sampling = LHS(xlimits = betalimits, criterion = ’ese’, random_state = 1)

8 beta = sampling(ndoe)

9 #Expanded LHD

10 n_newdoe=ndoe #Points to be added

11 beta_new = sampling.expand_lhs(beta, n_newdoe, method = ’basic’)

Listing B.4: Expanded LHD

where random state is a keyword argument that is used to control the Mersenne
Twister pseudo-random number generator If the input value can be an integer
between 0 and 232 − 1, an array of integer values, or type None that is the
default setting. As long as the argument assumes the same input value, it pro-
duces the same outcome and therefore this method is used for reproducibility.

� Full Factorial
Although this sampling method is referred to as Full Factorial in SMT doc-
umentation, it creates either Full or Fractional Factorial Designs and can be
used by executing a Python script that resembles the following form:

1 import numpy as np

2 from smt.sampling_methods import FullFactorial

3

4 ndoe = 40 #number of sample points

5 betalimits = np.array([[120.0,170.0], [2.0,6.0], [6.0,11.0]])

6 sampling = FullFactorial(xlimits = betalimits)

7 beta = sampling(ndoe)

Listing B.5: Implementation of Full Factorial sampling

90

B.2. METAMODEL TRAINING

B.2 Metamodel Training

� Kriging
The four correlation functions in SMT are declared in the corresponding
Python function as an additive parameter corr, which is set to ’abs exp’ (ex-
ponential), ’squar exp’ (Gaussian), ’matern52’ and ’matern32’, respectively.
Additionally, it is possible to alternate between regression models by defining
an extra input parameter in Python; that parameter is poly and can be set to
’constant’, ’linear’ or ’quadratic’, which corresponds to a constant, linear or
quadratic model as the notation implies. The correlation parameters θ∈Rnβ

are computed via the maximum likelihood estimation of equation 4.23, which
is minimized via the use of COBYLA algorithm [36], provided by the open-
source Python library sciPy[72]. A typical Python script that performs the
training of Kriging model has the following form:

1 import numpy as np

2 from smt.surrogate_models import KPLS, KRG, KPLSK, RBF

3

4

5 ndim = 3 #number of problem dimensions

6 list0 = [’constant’, ’linear’, ’quadratic’]

7 list1 = [’abs_exp’, ’squar_exp’, ’matern52’, ’matern32’]

8

9 polynomial = int(input(’Define regression model between 0 and 3:’))

10 correlation = int(input(’Define correlation function between 0 and 4:’))

11 th_range = np.array(([1e-8, 1e+3]))

12 t = KRG(theta0 = [1e-2]*ndim, theta_bounds = th_range, poly = list0[

polynomial], corr = list1[correlation], eval_noise = False)

13 t.set_training_values(beta,F)

14 t.train()

Listing B.6: Training of Kriging model with noise-free observations via SMT

In order for the Python to account for the existing noise the parameter eval noise
must be set to ’True’. In addition, the lower bound for nugget must be defined
by using the parameter nugget and the value of the initial noise parameters
must be defined via the parameter noise0. The default values of nugget and
noise0 are 2.220446049250313 · 10−14 and 0 for each design variable, respec-
tively.

1 import numpy as np

2 from smt.surrogate_models import KRG

3

4

5 ndim = 3 #number of problem dimensions

6 th_range = np.array(([1e-8, 1e+3]))

7 t = KRG(theta0 = [1e-2]*ndim, theta_bounds = th_range, poly = ’constant’,

corr = ’squar_exp’, eval_noise = True, noise0 = [1e-2])

8 t.set_training_values(beta,F)

9 t.train()

Listing B.7: Training of Kriging model with noisy observations via SMT

91

B.2. METAMODEL TRAINING

� KPLS
The number of principal components in SMT is declared in the corresponding
Python function via the additive parameter n comp. All the other parameters
are defined similarly to Kriging model.

1 import numpy as np

2 from smt.surrogate_models import KPLS

3

4

5 n_com = 2 #number of principal components

6 th_range = np.array(([1e-8, 1e+3]))

7 t = KPLS(n_comp = n_com, theta0 = [1e-2]*n_com, theta_bounds = th_range,

poly = ’constant’, corr = ’squar_exp’)

8 t.set_training_values(beta,F)

9 t.train()

Listing B.8: Training of KPLS model with noisy observations via SMT

� KPLSK
All the necessary parameters in KPLSK model are declared in Python script
similarly to KPLS and Kriging.

1 import numpy as np

2 from smt.surrogate_models import KPLSK

3

4

5 n_com = 2 #number of principal components

6 th_range = np.array(([1e-8, 1e+3]))

7 t = KPLSK(n_comp = n_com, theta0 = [1e-2]*n_com, theta_bounds = th_range,

poly = ’constant’, corr = ’squar_exp’)

8 t.set_training_values(beta,F)

9 t.train()

Listing B.9: Training of KPLSK model with noisy observations via SMT

� RBF
In SMT, the degree and the existence of polynomials can be determined by
modifying the value of the Python parameter poly degree. Consequently, a
value of -1, 0 or 1 is used to denote the absence of a polynomial trend, a con-
stant trend and a linear trend respectively. If no polynomial trend is used, i.e.
poly degree=−1, multivariate RBF interpolation is performed by solving the
linear system described by equations 4.36 and 4.37. If however poly degree=1,
then RBF interpolation is performed by solving the linear system described
by eq. 4.42.

1 import numpy as np

2 from smt.surrogate_models import RBF

3

4

5 t = RBF(d0 = 100, poly_degree = 1)

6 t.set_training_values(beta,F)

7 t.train()

Listing B.10: Training of KPLSK model with noisy observations via SMT

92

Appendix C

EASY

In order to gain a better grasp of how the communication channel between SMT and
EASY[27] software is established, first, it is important to analyze the way EASY
optimization software works.

� EASY and EAs

In EASY menu, the parameters of the optimization and both the bounds and
the codification of the design variables can be modified. The evolutionary process
via the use of EASY is performed as follows:

1. To perform an evaluation EASY writes and saves an ASCII text file task.dat
that consists of nβ + 1 lines. The first line corresponds to the selected number
of design variables nβ, while the remaining lines contain the values of each
design variable and are listed according to the sequence declared by the user
in EASY.

2. EASY executes the batch file task.bat and then halts all other processes until
task.bat is finished. In EASY, this batch file is responsible for executing all
processes responsible for the evaluation of candidate solutions (EAs-2). A
typical task.bat has the following structure:

1 @echo off

2 erase results.dat

3 preprocessor.exe > nul

4 evaluation.exe > nul

5 postprocessor.exe > nul

Listing C.1: Structure of task.bat file

where @echo off in Windows OS, prevents the the system terminal from print-
ing any optimization-related results. The > nul command uses as output of
the respective executable process the temporary file nul.

3. After the results of the previous run have been deleted, preprocessor.exe is ex-
ecuted. This executable is responsible for reading task.bat file and transforms
the collected data in a readable format for the next process.

93

4. The evaluation of any untried candidate solution ~β ∈ P g
λ ⊂Rnβ is performed

via the execution of process evaluation.exe that contains the problem-specific
model, in most cases a CFD tool.

5. The value of each objective and design variable value is then written in a
ASCII text file results.dat ; each line of that file contains a single value.

6. Subsequently, postprocessor.exe is executed. This executable reads the output
of evaluation.exe, i.e. results.dat file, and allows the user to denote the neces-
sary objectives and constraints of the optimization via the creation of task.res
and task.cns, respectively.

7. After task.bat has finished, EASY expects to read a plain ASCII text file,
task.res, which contains as many lines as the number of objectives. Each line
of that file contains the value of the corresponding objective.

8. Most optimization problems are confronted w.r.t. a set of imposed constraints.
In EASY, these constraints are declared in a plain ASCII text file, task.cns,
which contains as many lines as the number of constraints imposed.

94

Bibliography

[1] Y.S. Ong, P.B. Nair, and A.J. Keane. Evolutionary optimization of computation-
ally expensive problems via surrogate modeling. AIAA Journal, 41(4): 687–696,
2003.

[2] M.A. Bouhlel, J.T. Hwang, N. Bartoli, R. Lafage, J. Morlier, and J.R.R.A.
Martins. A Python surrogate modeling framework with derivatives. Advances in
Engineering Software, 135, 2019.

[3] D.C. Montgomery. Design and Analysis of Experiments. John Wiley & Sons,
New York, USA, 6th edition, 2005.

[4] Κ. Χ. Γιαννάκογλου. Μέθοδοι Βελτιστοποίησης στην Αεροδυναμική. Πανεπιστη-
μιακές Εκδόσεις Ε.Μ.Π., Αθήνα, σελίδες 125-130, 2006.

[5] N. Srinivas and K. Deb. Multiobjective optimization using nondominated sorting
in genetic algorithms. Evolutionary Computation, 2(3): 221–248, 1995.

[6] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A comparative
case study and the Strength Pareto approach. IEEE Transactions on Evolution-
ary Computation, 3(4): 257–271, November 1999.

[7] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: NSGA-II. In Parallel
Problem Solving from Nature – PPSN VI, Paris, France, 2000.

[8] E. Zitzler, M. Laumans, and L. Thiele. SPEA2: Improving the strength Pareto
evolutionary algorithm for multiobjective optimization. In Eurogen 2001, Evo-
lutionary Methods for Design, Optimisation and Control with Applications to
Industrial Problems, Barcelona, pp. 19-26, 2002.

[9] M. Farina. A neural network based generalized response surface multiobjective
evolutionary algorithm. In 2002 Congress on Evolutionary Computation – CEC
’02, Honolulu, HI, USA, May 2002.

[10] J.R. Wagner, E.M. Mount, and H.F. Giles. Plastics Design Library, Volume:
Extrusion, chapter Design of Experiments, Elsevier Science, 2nd edition, pp.
291-308, 2014.

[11] A. Sethuramiah and R. Kumar. Modeling of Chemical Wear, chapter Statistics
and Experimental Design in Perspective, Elsevier Science, pages 129-159, 2016.

[12] R. Mead, S. Gilmour, and A. Mead. Statistical principles for the design of
experiments. Cambridge University Press, 1st ed., pp. 233-271, 2012.

95

BIBLIOGRAPHY

[13] M. Stein. Large Sample Properties of Simulations Using Latin Hypercube Sam-
pling. Technometrics, 29: 143-151, 1987.

[14] I. Ronald. Latin Hypercube Sampling. ResearchGate, January 1999.

[15] M. McKay, R. Beckman, and W. Conover. A comparison of three methods for
selecting values of input variables in the analysis of output from a computer
code. Technometrics, 21: 239–245, 1979.

[16] M. Johnson, L. Moore and D. Ylvisaker. Minimax and maximin distance de-
signs, Journal of Statistical Planning and Inference, 26(2): 131-148, 1990.

[17] T. Santner, B. Williams, and W. Notz. The Design and analysis of computer
experiments. Springer, 2nd edition, pp. 145-200, 2018.

[18] C.E. Shannon, A mathematical theory of communication. Bell System Technical
Journal, 27(3): 379-423, 1948.

[19] M.C. Shewry and H.P. Wynn. Maximum entropy sampling. Journal of Applied
Statistics, 14(2): 165-170, 1987.

[20] Y.G. Saab, Y.B. Rao. Combinatorial optimization by stochastic evolution IEEE
Trans. Computer-Aided Design, pp. 525-535, September 1991,

[21] R. Jin , W. Chen, and A. Sudjianto. An efficient algorithm for constructing
optimal design of computer experiments. Journal of Statistical Planning and
Inference, 134(1): 268-287, 2005.

[22] M.D. Morris and T.J. Mitchell. Exploratory Designs for Computational Exper-
iments. Journal of statistical planning and inference, 43: 381-402, 1995.

[23] F.J. Hickernell. A generalized discrepancy and quadrature error bound. Math-
ematics of Computation, 67: 299-322, 1998.

[24] D.C. Montgomery. Design and Analysis of Experiments. Wiley, 9th edition, pp.
179-229, 2017.

[25] J. Antony. Design of Experiments for Engineers and Scientists, chapter Full
Factorial Designs. Elsevier Science, 2nd edition, pp. 63-85, 2014.

[26] D.C. Montgomery. Design and Analysis of Experiments. Wiley, 9th edition, pp.
351-384, 2017.

[27] EASY - The Evolutionary Algorithms SYstem Home, 2012. Retrieved from
http://velos0.ltt.mech.ntua.gr/EASY

[28] M.K. Karakasis and K.C. Giannakoglou. On the use of metamodel-
assisted, multi-objective evolutionary algorithms. Engineering Optimization,
38(8):941–957, 2006.

[29] M.K. Karakasis and K.C. Giannakoglou. On the use of metamodel-assisted,
multi-objective evolutionary algorithms. Engineering Optimization, 38(8): 941-
957, 2006.

96

http://velos0.ltt.mech.ntua.gr/EASY

BIBLIOGRAPHY

[30] A. Keane, A. Forrester, and A. Sóbester. Engineering Design via Surrogate
Modelling: A Practical Guide. Wiley, 1st edition, 2008.

[31] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning,
the MIT Press, 2006.

[32] G. Giangaspero, D. MacManus, and I. Goulos. Surrogate models for the pre-
diction of the aerodynamic performance of exhaust systems. Aerospace Science
and Technology, 92: 77-90, 2019.

[33] S.N. Lophaven, H.B. Nielsen, J. Søndergaard. DACE: a MatLab Kriging Tool-
box. Technical Report IMM-TR-2002-12, 2002.

[34] D.R. Jones. A Taxonomy of Global Optimization Methods Based on Response
Surfaces. Journal of Global Optimization, 21(4): 345–383, 2001.

[35] J. Sacks, S.B. Schiller, and W.J. Welch. Designs for computer experi-
ments.Technometrics, 31(1): 41-47, 1989.

[36] M.J.D. Powell. A direct search optimization method that models the objec-
tive and constraint functions by linear interpolation. In S. Gomez and J-P Hen-
nart, Advances in Optimization and Numerical Analysis, Kluwer Academic (Dor-
drecht), pp. 51-67, 1994.

[37] A.E. Hoerl. (1962). Application of ridge analysis to regression problems. Chem-
ical Engineering Progress 58, 54-59, 1962.

[38] I. Helland. On structure of Partial Least Squares re- gression. Communication
in Statistics - Simulation and Computation 17: 581–607, 1988.

[39] M.A. Bouhlel, N. Bartoli, A. Otsmane, and J. Morlier. Improving kriging sur-
rogates of high-dimensional design models by Partial Least Squares dimension
reduction. Structural and Multidisciplinary Optimization, 53(5): 935-952, 2016.

[40] C. Lanczos. An iteration method for the solution of the eigenvalue problem
of linear differential and integral operators. Journal of Research of the National
Bureau of Standards, 45(4): 255-282, 1950.

[41] R. Manne. Analysis of two Partial-Least-Squares algorithms for multivariate
calibration. Chemometrics and Intelligent Laboratory Systems, 2(1-3): 187-197,
1987.

[42] M.A. Bouhlel, N. Bartoli, J. Morlier, and A. Otsmane. An improved approach
for estimating the hyperparameters of the kriging model for high-dimensional
problems through the partial least squares method. Mathematical Problems in
Engineering, 2016.

[43] M.J.D. Powell. The Theory of Radial Basis Function Approximation. Oxford
University Press, pp. 105-210, 1992.

[44] M. N. Oqielat. Scattered data approximation using radial basis function with
a cubic polynomial reproduction for modelling leaf surface. Journal of Taibah
University for Science, 12(3): 331-337, 2018.

97

BIBLIOGRAPHY

[45] V. Bayona. An insight into RBF-FD approximations augmented with polyno-
mials. Computers & Mathematics with Applications, 77(9): 2337-2353, 2019.

[46] T. Ray and K. M. Liew. A Swarm Metaphor for Multiobjective Design Opti-
mization. Engineering Optimization 34: 141-153, 2002.

[47] J.D. Knowles, D.W. Corne, and M. Fleischer. Bounded Archiving using the
Lebesgue Measure. Congress on Evolutionary Computation, 4: 2490–2497, 2003.

[48] S.S. Rao. Engineering Optimization: Theory and Practice. Wiley, 5th ed., pp.
434-435, 2020.

[49] J. Golinski. Optimal synthesis problems solved by means of nonlinear program-
ming and random methods. Journal Of Mechanisms, 5(3), 287-309, 1970.

[50] P.R. Spalart and S.R. Allmaras. A One-Equation Turbulence Model for Aero-
dynamic Flows. 30th Aerospace Sciences Meeting and Exhibit, 1992.

[51] K. Tsiakas. Development of shape parameterization techniques, a flow solver
and its adjoint, for optimization on GPUs. Turbomachinery and external aero-
dynamics applications. PhD thesis, Laboratory of Thermal Turbomachines,
NTUA, Athens, 2019.

[52] I.C. Kampolis, X.S Trompoukis, V.G. Asouti, K.C. Giannakoglou. CFD-based
analysis and two-level aerodynamic optimization on graphics processing units.
Computer Methods in Applied Mechanics and Engineering, 199(9–12): 712–722,
2010.

[53] A.J.A Favre. Equations des gaz turbulents compressibles. Journal de
Mecanique, 4, 1965.

[54] G. Kalitzin, G. Medic, G. Iaccarino and P. Durbin. Near-wall behaviour of
RANS turbulence models and implications for wall functions. Journal of Com-
putational Physics, 204: 265-291, 2005.

[55] S. Allmaras, F. Johnson, and P. Spalart. Modifications and clarifications for
the implementation of the Spalart-Allmaras turbulence model. 7th International
Conference on Computational Fluid Dynamics, 2012.

[56] F. Herrera, M. Lozano, and C. Moraga. Hierarchical distributed genetic algo-
rithms. International Journal of Intelligent Systems, 14(11): 1099–1121, 1999.

[57] Y.-J. Gong, W.-N. Chen, Z.-H. Zhan, J. Zhang, Y. Li, Q. Zhang, and J.-J Li.
Distributed evolutionary algorithms and their models: A survey of the state-of-
the-art. Applied Soft Computing, 34: 286–300, 2015.

[58] W. Annicchiarico. Metamodel-assisted distributed genetic algorithms applied to
structural shape optimization problems. Engineering Optimization, 39(7): 757-
772, 2007.

[59] J.F. Wang and J. Periaux and M. Sefrioui. Parallel evolutionary algorithms for
optimization problems in aerospace engineering. Journal of Computational and
Applied Mathematics, 149(1): 155-169, 2002.

98

BIBLIOGRAPHY

[60] I.C. Kampolis and K.C. Giannakoglou. Distributed evolutionary algorithms
with hierarchical evaluation. Engineering Optimization, 41(11): 1037–1049, 2009.

[61] M. K. Karakasis, D. G Koubogiannis, and K. C Giannakoglou. Hierarchical
distributed metamodel-assisted evolutionary algorithms in shape optimization.
International Journal for Numerical Methods in Fluids, 53(3): 455–469, 2006.

[62] N. Krasnogor and J. Smith. A tutorial for competent memetic algorithms:
model, taxonomy, and design issues. IEEE Transactions on Evolutionary Com-
putation, 9(5): 474–488, 2005.

[63] C.A. Georgopoulou and K.C. Giannakoglou. Memetic Algorithms. Springer Se-
ries, 2009.

[64] C.A. Georgopoulou and K.C. Giannakoglou. A multi-objective metamodel-
assisted memetic algorithm with strength-based local refinement. Engineering
Optimization, 41(10): 909–923, 2009.

[65] E.O. Scott and K.A De Jong. Understanding Simple Asynchronous Evolution-
ary Algorithms. Proceedings of the 2015 ACM Conference on Foundations of
Genetic Algorithms XIII. FOGA ’15: Foundations of Genetic Algorithms XIII,
2015.

[66] V.G. Asouti and K.C. Giannakoglou. Aerodynamic optimization using a parallel
asynchronous evolutionary algorithm controlled by strongly interacting demes.
Engineering Optimization, 41(3): 241–257, 2009.

[67] V.G. Asouti, I.C. Kampolis, and K.C. Giannakoglou. A grid-enabled asyn-
chronous metamodel-assisted evolutionary algorithm for aerodynamic optimiza-
tion. Genetic Programming and Evolvable Machines (SI:Parallel and Distributed
Evolutionary Algorithms, Part One), 10(3): 373–389, 2009.

[68] D.P. Raymer. Aircraft Design: A Conceptual Approach. AIAA Education Se-
ries, 6th edition, pp. 559-584, 2018.

[69] A. Pistek and R. Popela. The VUT 100/200 General Aviation Aircraft Family:
Project and Realization. Proceedings of the Institution of Mechanical Engineers,
Part G: Journal of Aerospace Engineering, 221(2): 193-197, 2007.

[70] 3.3. Metrics and scoring: quantifying the quality of predictions —
scikit-learn 0.24.1 documentation. Retrieved January 17, 2021 from
https://scikit-learn.org/stable/modules/model_evaluation.html#

regression-metrics.

[71] pyDOE: The experimental design package for python — pyDOE 0.3.6 docu-
mentation. Retrieved February 2021 from https://pythonhosted.org/pyDOE/

index.html.

[72] scipy.optimize.fmin cobyla — SciPy v1.6.1 Reference Guide. Retrieved 17 Jan-
uary, 2021 from https://docs.scipy.org/doc/scipy/reference/generated/

scipy.optimize.fmin_cobyla.html.

99

https://scikit-learn.org/stable/modules/ model_evaluation.html#regression-metrics
https://scikit-learn.org/stable/modules/ model_evaluation.html#regression-metrics
https://pythonhosted.org/pyDOE/index.html
https://pythonhosted.org/pyDOE/index.html
https://docs.scipy.org/doc/scipy/reference/generated/ scipy.optimize.fmin_cobyla.html
https://docs.scipy.org/doc/scipy/reference/generated/ scipy.optimize.fmin_cobyla.html

BIBLIOGRAPHY

Eθνικό Μετσόβιο Πολυτεχνείο
Σχολή Μηχανολόγων Μηχανικών

Τομέας Ρευστών

Μονάδα Παράλληλης Υπολογιστικής Ρευστο-

δυναμικής & Βελτιστοποίησης

Περί Βέλτιστης Χρήσης Μεταπροτύπων στους Εξελικτικούς

Αλγορίθμους με Εφαρμογές στην Αεροδυναμική

Διπλωματική Εργασία

Μιχάλης Δημήτριος

Επιβλέπων: Kυριάκος Χ. Γιαννάκογλου, Καθηγητής ΕΜΠ

Αθήνα, 2022

ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΑ

Στο πλαίσιο αυτής της διπλωματικής εργασίας μελετάται η εφαρμογή εξελικτικών

αλγορίθμων υποβοηθούμενων από μεταμοντέλα (Metamodel-Assisted EAs MAEAs)
σε διάφορες εφαρμογές μηχανολογικού ενδιαφέροντος. Δύο είναι οι κύριες μέθοδοι
βελτιστοποίησης με εφαρμογή των MAEAs και σχετίζονται με τον τρόπο εκπαίδευσης
των μεταμοντέλων, δηλαδή συνδεδεμένα (on-line) και αποσυνδεδεμένα (off-line) από
την εξέλιξη. Και οι δύο αυτοί μέθοδοι εφαρμόζονται με τη βοήθεια ενός εξωτερικού
λογισμικού με βάση την Python, που ονομάζεται Surrogate Model Toolbox (SMT)
[1], και συγκρίνονται με τους κοινούς ΕΑs με βάση την αποτελεσματικότητα και το
υπολογιστικό κόστος που προκύπτει από τη χρήση τους. Η βελτιστοποίηση σε κάθε
περίπτωση πραγματοποιείται με τη χρήση του EASY[2] (Evolutionary Algorithm SYs-
tem), ενός λογισμικού που αναπτύχθηκε από τη Μονάδα Παράλληλης Υπολογισ-
τικής Ρευστοδυναμικής & Βελτιστοποίησης (ΜΠΥΡΒ) του ΕΜΠ. Από τα διάφορα
ενσωματωμένα μεταμοντέλα που υπάρχουν στον EASY, οι συναρτήσεις ακτινικής βάσης
[3] (Radial Basis Functions RBFs) χρησιμοποιούνται στην παρούσα διπλωματική ερ-
γασία. Ωστόσο, η βελτιστοποίηση μέσω του EASY μπορεί να υποβοηθηθεί από εξω-
τερικά μεταπρότυπα, τα οποία είναι διαθέσιμα στο SMT. Από αυτά τα εξωτερικά μετα-
μοντέλα, σε αυτή τη διπλωματική εργασία γίνεται χρήση κυρίως του Kriging[4], των
παραλλαγών του για χώρο σχεδιασμού μειωμένων διαστάσεων χάρη στην εφαρμογή

της μεθόδου μερικών ελαχίστων τετραγώνων (Partial Least Squares PLS), κυρίως
του KPLS[6] και του KPLSK[7], καθώς και των RBFs. Κάθε μια απο τις μεθόδους
βελτιστοποίησης εφαρμόζεται σε πρώτο στάδιο σε απλά προβλήματα ψευδο-μηχανικής,
κυρίως στην περίπτωση της συγκολλητής δοκού και του μειωτήρα ταχύτητας, ενώ στη
συνέχεια στη βελτιστοποίηση μορφής μιας δισδιάστατης αεροτομής. Η επίλυση των εξ-
ισώσεων Reynolds Averaged Navier-Stokes (RANS) συμπιεστού ρευστού γύρω από
την αεροτομή γίνεται με τη χρήση ενός CFD επιλύτη, που ονομάζεται PUMA[8] και
αναπτύχθηκε από τη ΜΠΥΡΒ/ΕΜΠ.

i

BIBLIOGRAPHY

� Εξελικτικοί Αλγόριθμοι (ΕΑ)

Οι ΕΑs[9] έχουν τη βάση τους στην εξελικτική θεωρία του Δαρβίνου που ορίζει
την κυριαρχία λα ατόμων σε κάθε πληθυσμιακή γενιά (μ,λ). Σε κάθε γενιά αξι-
ολογούνται λ παιδιά στο PSM, τα οποία βρίσκονται στο προσωρινό πληθυσμιακό

σύνολο Pe, και τους ανατίθεται μια τιμή από μια συνάρτηση κόστους Φ(~β). Με
βάση την τιμή που έχει το κάθε υποψήφιο άτομο διαλέγονται οι ελίτ της συγ-

κεκριμένης γενιάς και ανανεώνεται το πληθυσμιακό σύνολο των ελίτ P g+1
α μέσω

μιας διαδικασίας ελιτισμού. Στη συνέχεια σχηματίζεται το σύνολο των γονιών
της επόμενης γενιάς P g+1

µ , καθώς και των νέων παιδιών μέσω μιας διαδικασίας
ανάμειξης των γονιών µ που συνοδεύεται από μια διαδικασία μετάλλαξης.

� MAEAs με off-line εκπαίδευση

Στην βελτιστοποίηση με χρήση MAEAs με off-line εκπαίδευση, ένα καθολικό
μεταμοντέλο εκπαιδεύεται αποκομμένα από την εξέλιξη, με βάση n

′

doe σημείων

X που επιλέχθηκαν χάρη στην εφαρμογή κάποιας DoE μεθόδου δειγματοληψίας.
Στη συνέχεια, η εξέλιξη πραγματοποιείται παρόμοια με τη μέθοδο των απλών
εξελικτικών, με τη μόνη διαφορά ότι η αξιολόγηση των παιδιών πλέον γίνεται με
τη χρήση των εκπαιδευμένων μεταμοντέλων. Η σύγκλιση της μεθόδου βασίζεται
στην ακρίβεια του καθολικού μεταμοντέλου. Οι μέθοδοι DoE του SMT με βάση
των οποίων πραγματοποιείται η δειγματοληψία είναι εξής:

– Τυχαία δειγματοληψία (Random sampling)[10]

– Latin Hypercube Sampling (LHS)[11]

* Centered

* Maximin[12]

* Maximin centered

* Maxent[13]

* Enhanched Stochastic Evolutionary (ESE)[14]

– Παραγοντική δειγματοληψία (πλήρης ή μερική)(Factorial sampling)[15]

� MAEAs με on-line εκπαίδευση

Η εκπαίδευση των μεταμοντέλων σε αυτή τη μέθοδο γίνεται αποτελεί μέρος

της εξέλιξης μέσω μιας διαδικασίας προσεγγιστικής προ-αξιολόγησης (Low-Cost
Pre-Evaluation LCPE [5]). Στο πλαίσιο της διαδικασίας αυτής γίνεται η επιλογή

κατάλληλων μοτίβων εκπαίδευσης στην γειτονιά του κάθε υπο-αξιολόγησή ~β
βάση των οποίων εκπαιδεύονται τοπικά, προσωποποιημένα μεταμοντέλα.

Η σύζευξη SMT και EASY απαιτεί τη σύνταξη των εξής κωδίκων στην Python
που εκτελούν τις παρακάτω ενέργειες:

1. Αξιολόγηση των δειγμάτων με το PSM

2. Εκπαίδευση του μεταμοντέλου

3. Πρόβλεψη με βάση το εκπαιδευμένο μεταμοντέλο

ii

BIBLIOGRAPHY

Η ιδιαιτερότητα και η καινοτομία του EASY βρίσκεται στην on-line εκπαίδευση,
όπου η επέμβαση του χρήστη στην περίπτωση των εξωτερικών μεταμοντέλων γίνεται

με την κλήση των ανωτέρω κωδίκων. Οι κώδικες αυτοί καλούνται στην συνέχεια από
τον EASY μέσω κατάλληλα διαμορφωμένων batch αρχείων. Η χρήση εσωτερικών
μεταμοντέλων απαιτεί τη σύνταξη μόνο ενός κώδικα που είναι υπεύθυνος για την αξι-

ολόγηση των υποψήφιων λύσεων.
Στους MAEAs με off-line εκπαίδευση όλες οι διεργασίες της βελτιστοποίησης

καλούνται μέσα από ένα καθολικό κώδικα της Python και επιπρόσθετα συντάσσεται
ένας κώδικας που εκτελεί τη δειγματοληψία, καθώς και ένας για την επαναξιολόγηση
της ’βέλτιστης’ λύσης με το PSM. Η off-line εκπαίδευση είναι δυνατό να πραγματοποι-
ηθεί από εσωτερικά μεταμοντέλα του EASY, ωστόσο δεν ενδείκνυται.
Στην βελτιστοποίηση μέσω του EASY μεMAEAs με off-line και on-line εκπαίδευση

γίνεται χρήση εξωτερικών μεταμοντέλων που είναι διαθέσιμα στο SMT. Αυτά είναι τα
ακόλουθα:

� Kriging

Στο Kriging η προσέγγιση της επιθυμητής λύσης γίνεται μέσω της συνάρτησης:

f̂(~β) = ~p T (~β)~̂w + ~rXβR
−1
Ä
F−P~̂w

ä
(C.1)

όπου µK = ~p T (~β)~̂w είναι ένας ντετερμινιστικός όρος που μπορεί να εκφραστεί
ως σταθερό, γραμμικό ή τετραγωνικό μοντέλο παλινδρόμησης. Ο 2ος όρος είναι

πραγματοποίηση μιας Gaussian διεργασίας z(~β) v N(0, C) με μηδενική μέση

τιμή και συνδιακύμανση C(~β) = σ2R(~χi, ~χj) των παρατηρούμενων μεγεθών. Η
συσχέτιση μεταξύ των μεγεθών δίνεται στο SMT από την εκθετική συνάρτηση:

R (~χi, ~χj) =

nβ∏
l=1

exp (−θl |χi,l − χj,l|) (C.2)

ενώ διατίθενται και οι συναρτήσεις Gaussian, Matérn 5/2 και Matérn 3/2.
Στο Kriging δίνεται η δυνατότητα δυνατότητα να υπολογιστεί και η σχετική
αβεβαιότητα της πρόβλεψης από τη σχέση:

MSE(~β) = σ̂2(1− ~r TXβR−1~rXβ) (C.3)

Η επίλυση των παραπάνω εξισώσεων απαιτεί τον υπολογισμό των παραμέτρων

συσχέτισης θ ∈ Rnβ που προκύπτουν από τη μεγιστοποίηση της συνάρτησης

πιθανοφάνειας που δίνεται από την εξίσωση:

ln(lF (~θ|F)) =− nt
2
ln

ï
1

nt

(
F−P(PTR−1P)−1PTR−1F

)T
× R−1

Ä
F−P

(
PTR−1P

)−1
PTR−1F

äó
+ ln(detR)

(C.4)

iii

BIBLIOGRAPHY

� KPLS

Σε μια προσπάθεια να ελαττωθεί ο χρόνος κατασκευής του Kriging σε χώρους
σχεδιασμού υψηλής διαστατικότητας γίνεται εφαρμογή της μεθόδου PLS, που
οδηγεί σε αναγωγή του χώρου σχεδιασμού σε h<nβ διαστάσεις. Η χρήση του
KPLS μοντέλου οδηγεί σε προσαρμογή της εκθετικής (καιGaussian) συσχέτισης
ως εξής:

R (~χi, ~χj) =
h∏
l=1

nβ∏
k=1

exp
(
−θl

∣∣∣D(l)
∗kχi,k −D

(l)
∗kχj,k

∣∣∣) (C.5)

όπου το μητρώο D∗= [~D
(1)
∗ , ~D

(2)
∗ , . . . , ~D

(h)
∗]∈ Rnβ×h εκφράζει την επιρροή κάθε

διάστασης k ∈ [1, nβ] στην κατασκευή της l-ης μετασχηματισμένης διάστασης,
έτσι ώστε το θ∈Rh.

� KPLSK

Οι μετασχηματισμένες συναρτήσεις συσχέτισης του KPLS είναι ορισμένες σε
υποσύνολο του nβ-διάστατου χώρου. Η ιδέα πίσω από το KPLSK είναι να
εκφραστούν οι συναρτήσεις αυτές στην ολότητα του nβ-διάστατου χώρου όπου
είναι εκφρασμένο το Kriging. Αυτό επιτυγχάνεται στη Gaussian συνάρτηση, η
οποία γράφεται στη μορφή:

R (~χi, ~χj) =
h∏
l=1

nβ∏
k=1

exp
(
−θl
Ä
D

(l)
∗kχi,k −D

(l)
∗kχj,k

ä2)
=

nβ∏
k=1

exp
Ä
−ηk (χi,k − χj,k)2

ä
(C.6)

όπου ο όρος ηk =
∑h

l=1 θlD
(l)2

∗k για k = 1, 2, . . . , nβ δρα ως αρχικό σημείο για
την τοπική βελτιστοποίηση της συνάρτησης πιθανοφάνειας του Kriging με βάση
τις τιμές των παραμέτρων θ(l) που προκύπτουν από την εφαρμογή του KPLS για
l = 1, 2 . . . , h.

� RBFs

Το μεταμοντέλο των RBFs, χρησιμοποιεί nt παρατηρούμενα ζεύγη (~χ, f(~χ)) για
να εκφράσει τη συνάρτηση προσέγγισης σε κάποιο σημείο β ∈ Rnβ ως γραμ-

μικό συνδυασμό συναρτήσεων βάσης με κέντρα το εκάστοτε σημείο (~χξ, που
εκφράζεται μαθηματικά ως:

s(~β) =
nt∑
j=1

wtjg
Ä
‖~β − ~χj‖

ä
=

nt∑
j=1

wtjg(rj)

έτσι ώστε s(~χi) = F (~χi) = Fi , for i = 1, nt

(C.7)

Οι μέθοδος αυτή είναι δυνατόν να συνδυαστεί και με ένα γραμμικό μοντέλο

παλινδρόμησης:

s(~β) =
nt∑
j=1

wtjg
Ä
‖~β − ~χj‖

ä
+

k∑
i=1

wipi(~β) (C.8)

iv

BIBLIOGRAPHY

� Εφαρμογή σε προβλήματα ψευδο-βελτιστοποίησης

H αποτελεσματικότητα των μεταμοντέλων δοκιμάζεται αρχικά σε δυο απλές εφαρ-
μογές ψευδο-μηχανικής χαμηλού υπολογιστικού κόστους. Η πρώτη εφαρμογή αφορά
τη μείωση του κόστους κατασκευής μια συγκολλητής ράβδου σε [$][16] και η δεύτερη
τη μείωση του βάρους ενός μειωτήρα ταχύτητας σε [g][17]. Η μελέτη σε αυτή τη διπλω-
ματική επικεντρώθηκε στη σύγκριση μεταξύ των αποτελεσμάτων που προέκυψαν από

τη βελτιστοποίηση με χρήση απλών εξελικτικών, MAEAs με off-line εκπαίδευση και
MAEA με on-line εκπαιδευμένα μεταμοντέλα τα οποία εκαπιδεύονται μέσω του SMT
και του EASY. Τα αποτελέσματα της μελέτης παρουσιάζονται στη συνέχεια:

1. Περίπτωση συγκολλητής δοκού ενός στόχου

Πρόβλημα 4 μεταβλητών σχεδιασμού ~β = (β1, β2, β3, β4) = (h, l, t, b) ∈ R4
με 5

περιορισμούς:

min f(~β) = 1.10471β2
1β2 + 0.04811β3β4(14.0 + β2)

subject to c1(~β) = τ(~β)− τmax ≤ 0

c2(~β) = σ(~β)− σmax ≤ 0

c3(~β) = β1 − β4 ≤ 0

c4(~β) = δ(~β)− δmax ≤ 0

c5(~β) = P − Pc(~β) ≤ 0

(C.9)

Ακολουθεί η σύγκριση μεταξύ των διαθέσιμων μεταμοντέλων του SMT 5 αρ-
χικοποιήσεις RNG και τερματισμό στις 10000 PSM αξιολογήσεις:

Περίπτωση συγκολλητής δοκού

MAEAs,
on-line

(µ, λ)
popula-
tion

KPLS KPLSK Kriging RBFs

SMT (30, 100) 2.45 2.74 2.72 2.62

Table C.1: Περίπτωση συγκολλητής δοκού με RNG1. Η βέλτιστη λύση βρέθηκε από
ΜΑΕΑ με on-line εκπαιδευμένων μεταμοντέλων μέσω του SMT

	2

	2.5

	3

	4

	6

	8

	16

	0 	1000 	2000 	3000 	4000 	5000

f(β
)

Number	of	evaluations

KPLS
KPLSK
Kriging

RBFs	in	SMT
EAs

	2

	4

	8

	16

	0 	2000 	4000 	6000 	8000 	10000

f(β
)

Number	of	evaluations

KPLS
KPLSK
Kriging

RBFs	in	SMT
EAs

Figure C.1: Περίπτωση συγκολλητής δοκού με RNG1. Σύγκριση μεταξύ της σύγκ-
λισης EAs and MAEAs με on-line εκπαιδευμένων μεταμοντέλων μέσω SMT

v

BIBLIOGRAPHY

Το πόρισμα της μελέτης είναι ότι η χρήση του KPLS οδηγεί σε βέλτιστη σύγκ-
λιση του προβλήματος της συγκολλητής δοκού, επομένως το KPLS συγκρίνεται
στη συνέχεια με τις on-line εκπαιδευμένες RBFs που διαθέτει ο EASY.

	2

	4

	8

	16

	0 	2000 	4000 	6000 	8000 	10000

f(β
)

Number	of	evaluations

KPLS
RBFs	in	EASY

EAs

Figure C.2: Περίπτωση συγκολλητής δοκού με RNG1. Σύγκριση μεταξύ του ισ-
τορικού σύγκλισης απλών EAs and MAEAs με χρήση on-line εκπαιδευμένων μετα-
μοντέλων μέσω SMT και του EASY

Το ιστορικό σύγκλισης φανερώνει την υπεροχή MAEAs με χρήση των on-line
εκπαιδευμένων και ενσωματωμένων στον EASY RBFs έναντι των υπόλοιπων
μεθόδων βελτιστοποίησης.

2. Περίπτωση συγκολλητής δοκού δύο στόχων
Σε αυτή την περίπτωση τίθεται ως δεύτερος στόχος η μείωση της παραμόρφωσης

δ στο άκρο της δοκού και η βελτιστοποίηση πραγματοποιείται με MAEA με on-
line εκπαίδευση για 1000 PSM αξιολογήσεις:

	0

	10

	20

	30

	40

	50

	60

	70

	80

	0 	0.002 	0.004 	0.006 	0.008 	0.01 	0.012 	0.014 	0.016 	0.018

f 1(
β)

f2(β)

KPLS
RBFs	in	EASY

EAs

Figure C.3: Μέτωπο Pareto των 15 μη-κυριαρχούμενων υποψήφιων λύσεων που
βρέθηκαν μετά την πραγματοποίηση 1000 PSM αξιολογήσεων

Δείκτης υπερόγκου για RNG1 H(F)

MAEAs, on-line, SMT 1.6222
MAEAs, on-line, EASY 1.6215
EAs 1.6061

Table C.2: Περίπτωση συγκολλητής δοκού. Δείκτης υπερόγκου των μετώπων Pareto
που προέκυψαν από την εφαρμογή των διαφόρων μεθόδων βελτιστοποίησης

vi

BIBLIOGRAPHY

Σε αυτή την περίπτωση φαίνεται πως τα MAEA με χρήση on-line εκπαιδευμένων
μεταμοντέλων μέσω του SMT οδηγούν στη δημιουργία του καλύτερου μετώπου
Pareto συγκριτικά με τις υπόλοιπες μεθόδους.

3. Περίπτωση μειωτήρα ταχύτητας ενός στόχου
Πρόβλημα ελαχιστοποίησης του βάρους σε [g] ενός μειωτήρα ταχύτητας με 7
μεταβλητές σχεδιασμού και 11 κατασκευαστικούς περιορισμούς:

min f(~β) = 0.7854bm2
(
3.3333N2

teeth + 14.9334Nteeth − 43.0934
)
− 1.508

(
d 2
1 + d 2

2

)
7.4777

(
d 3
1 + d 3

2

)
+ 0.7854

(
L1d

2
1 + L2d

2
2

)
(C.10)

Αρχικά έγινε σύγκριση μεταξύ της σύγκλισης MAEA με on-line εκπαιδευμένων
μεταμοντέλων μέσω του SMT. H βελτιστοποίηση με ΕΑs και MAEAs έχει
σε κάθε περίπτωση ως κριτήριο τερματισμού τις 20000 PSM αξιολογήσεις και
επαναλήφθηκε με 5 RNG τιμές.

	3000

	3500

	4000

	4500

	5000

	5500

	0 	1000 	2000 	3000 	4000 	5000

f(β
)

Number	of	evaluations

KPLSK
KPLS

Kriging
RBFs	in	SMT

EAs

	2980

	3000

	3020

	3040

	3060

	3080

	0 	5000 	10000 	15000 	20000

f(β
)

Number	of	evaluations

KPLSK
KPLS

Kriging
RBFs	in	SMT

EAs

Figure C.4: Περίπτωση μειωτήρα ταχύτητας με RNG1. Σύγκριση μεταξύ του ισ-
τορικού σύγκλισης EA και ΜΑΕΑ με on-line εκπαίδευση μέσω του SMT

H σύγκλιση του KPLSK συγκρίνεται στη συνέχεια με τις on-line εκπαιδευμένες
RBFs που διαθέτει ο EASY.

	3000

	3500

	4000

	4500

	5000

	5500

	0 	1000 	2000 	3000 	4000 	5000

f(β
)

Number	of	evaluations

KPLSK
RBFs	in	EASY

EAs

	2980

	3000

	3020

	3040

	3060

	3080

	0 	5000 	10000 	15000 	20000

f(β
)

Number	of	evaluations

KPLSK
RBFs	in	EASY

EAs

Figure C.5: Περίπτωση μειωτήρα ταχύτητας με RNG1. Σύγκριση μεταξύ του ισ-
τορικού σύγκλισης EA και ΜΑΕΑ με on-line εκπαιδευμένων μεταμοντέλων

vii

BIBLIOGRAPHY

4. Περαιτέρω ανάλυση των δύο εφαρμογών ενός στόχου
Για την λήψη ορθότερης απόφασης στην επιλογή της καταλληλότερης μεθόδου

βελτιστοποίησης συμπεριλήφθηκε στην ανάλυση ο συνολικός αριθμός κλήσεων

του PSM και των μεταμοντέλων, όπου το υπολογιστικό κόστος του δεύτερου
είναι αμελητέο σε σχέση με το πρώτο.

Μέσο αποτέλεσμα

Συγκολλητή

δοκός

nPSM nmeta Μειωτήρας

ταχύτητας

nPSM nmeta

MAEAs, on-line, SMT 2.54 10000 11579 3002.68 20000 22792
MAEAs, on-line, EASY 2.53 10000 14422 3005.46 20000 24775
EAs 2.59 10000 - 3004.34 20000 -
MAEAs, off-line, SMT 3.12 388 23064 3006.01 151 18239

Table C.3: Σύγκριση μεταξύ των τελικών αποτελεσμάτων

Από τον ανώτερο πίνακα διαφαίνεται πως η βελτιστοποίηση μεMAEAs με χρήση
on-line εκπαιδευμένων RBFs μέσω του EASY είναι η πιο αποδοτική μέθοδος σε
προβλήματα ψευδο-μηχανικής χαμηλού υπολογιστικού κόστους.

� Βελτιστοποίηση μορφής στη NACA 4318

Η ίδια διαδικασία επαναλαμβάνεται, αυτή τη φορά στη βελτιστοποίηση μορφής μιας
δισδιάστατης NACA 4318. Αυτό το πρόβλημα βελτιστοποίησης είναι υψηλού υπολο-
γιστικού κόστους, αφού απαιτείται η επίλυση των εξισώσεων RANS για μόνιμη και
συμπιεστή ροή. Για την επίλυση γίνεται χρήση του CFD επιλύτη PUMA που αναπ-
τύχθηκε από τη ΜΠΥΡΒ/ΕΜΠ. Η μελέτη επικεντρώνεται στη βελτιστοποίηση της
γεωμετρίας της εν λόγω αεροτομής με αεροδυναμικά κριτήρια. Συγκεκριμένα, μελετά-
ται η βελτιστοποίηση της αεροτομής σε συνθήκες απογείωσης και ευθείας πτήσης, από
τις οποίες προέκυψαν τα ακόλουθα αποτελέσματα.

1. Βελτιστοποίηση δύο στόχων σε συνθήκες απογείωσης

Στόχοι τις βελτιστοποίησης είναι η μείωση της παραγόμενης οπισθέλκουσας D
και αύξηση της παραγόμενης άνωσης σε συνθήκες απογείωσης με ταχύτητα U =
51m/s, γωνία πρόσπτωσης α = 10o και συνθήκες αέρα:

Ιδιότητες ρευστού σε υψόμετρο h = 0 m

ρ [kg/m3] p [bar] T [K]
Αέρας 1.225 1.01325 288

Table C.4: Ιδιότητες ρευστού σε μηδενικό υψόμετρο

Η βελτιστοποίηση επαναλήφθηκε για 3 τιμές RNG. EAs και MAEAs με on-line
εκπαίδευση πραγματοποίησαν 400 CFD αξιολογήσεις, ενώ η βελτιστοποίηση με
MAEAs off-line εκπαίδευση συνέκλινε μετά από 1000 εκτιμήσεις ανά κύκλο.

viii

BIBLIOGRAPHY

(a) RNG2

	1080

	1100

	1120

	1140

	1160

	1180

	1200

	1220

	14.2 	14.4 	14.6 	14.8 	15 	15.2 	15.4 	15.6 	15.8 	16 	16.2

f 1(
β)

f2(β)

MAEAs	trained	on-line	via	SMT
MAEAs	trained	on-line	via	EASY
MAEAs	trained	off-line	via	SMT

EAs
baseline	geometry

(b) RNG3

	1080

	1100

	1120

	1140

	1160

	1180

	1200

	1220

	14.2 	14.4 	14.6 	14.8 	15 	15.2 	15.4 	15.6 	15.8 	16 	16.2

f 1(
β)

f2(β)

MAEAs	trained	on-line	via	SMT
MAEAs	trained	on-line	via	EASY
MAEAs	trained	off-line	via	SMT

EAs
baseline	geometry

Figure C.6: Βελτιστοποίηση της NACA 4318 σε συνθήκες απογείωσης. Σύγκριση
μεταξύ των μετώπων Pareto 15 μη-κυριαρχούμενων λύσεων που προέκυψαν από την
εφαρμογή EAs, MAEA με off-line και on-line εκπαιδευμένου KPLS και MAEA με
on-line εκπαιδευμένων RBFs μέσω του EASY για 400 CFD αξιολογήσεις

Ακολουθεί χρήση της μεθόδου δείκτη υπερόγκου για το προσδιορισμό του κυρίαρ-

χου μετώπου Pareto.

Δείκτης υπερόγκου H(F)

RNG1 RNG2 RNG3
MAEAs, on-line, SMT 274.588 222.513 224.786
MAEAs, on-line, EASY 257.987 206.800 211.937
MAEAs, off-line, SMT 252.866 213.701 216.461
EAs 257.512 200.114 204.289

Table C.5: Βελτιστοποίηση της NACA 4318 σε συνθήκες απογείωσης. Σύγκριση
των δεικτών υπερόγκου των μετώπων Pareto που σχηματίστηκαν από τη χρήση
διάφορων μεθόδων βελτιστοποίησης

2. Βελτιστοποίηση ενός στόχου σε συνθήκες απογείωσης

Στη δεύτερη περίπτωση ως στόχος της βελτιστοποίησης τίθεται η μεγιστοποίηση

της άνωσης σε συνθήκες απογείωσης με ένα περιορισμό που αφορά την αύξηση

της οπισθέλκουσας της αρχικής αεροτομής Dbsl=15.53 N:

max f(~β) = L

subject to c1(~β) = D − 1.08Dbsl ≤ 0
(C.11)

Βελτιστοποίηση της NACA 4318 σε συνθήκες απογείωσης

Μέσο~f nPSM nmeta

MAEAs, on-line, SMT 1222.33 400 2988
MAEAs, on-line, EASY 1221.90 400 4000
MAEAs, off-line, SMT 11221.27 81 1000
EAs 1211.54 400 -

Table C.6: Σύγκριση μεταξύ των εφαρμοσμένων μεθόδων βελτιστοποίησης

ix

BIBLIOGRAPHY

(a) MAEAs, on-line, SMT,
L=1222.52 N and D=16.54 N

(b) MAEAs, on-line, EASY,
L=1222.06 N and D=16.44 N

(c) MAEAs, off-line, SMT,
L=1221.02 N and D=16.29 N

(d) EAs, L= 1211.35 N and D= 16.25
N

Figure C.7: Βελτιστοποίηση της NACA 4318 σε συνθήκες απογείωσης με RNG3.
Σύγκριση μεταξύ των βέλτιστων αποτελεσμάτων.

(a) Αρχική γεωμετρία (b) Βελτιστοποιημένη γεωμετρία

Figure C.8: Σύγκριση μεταξύ του πεδίου πίεσης αρχικής και της βελτιστοποιημένης
γεωμετρίας με χρήση MAEA με off-line εκπαίδευση

3. Βελτιστοποίηση ενός στόχου σε συνθήκες ευθείας πτήσης

Στη τελευταία περίπτωση ως στόχος της βελτιστοποίησης τίθεται η ελαχιστοποίηση

της οπισθέλκουσας σε συνθήκες ευθείας πτήσης με ένα περιορισμό που αφορά

την μείωση της άνωσης της αρχικής αεροτομής Lbsl=1123.81 N:

min f(~β) = D

subject to c1(~β) = L− 0.92Lbsl ≥ 0
(C.12)

H βελτιστοποίηση πραγματοποιείται σε συνθήκες ευθείας πτήσης με ταχύτητα
U = 206.64m/s, γωνία πρόσπτωσης α = 2o και συνθήκες αέρα:

Fluid properties at h = 11000 m

ρ [kg/m3] p [bar] T [K]
Αέρας 0.364805 0.227 216.8

Table C.7: Ιδιότητες ρευστού σε ύψος ευθείας πτήσης

x

BIBLIOGRAPHY

Βελτιστοποίηση της NACA 4318 σε συνθήκες ευθείας πτήσης

Μέσο~f nPSM nmeta

MAEAs, on-line, SMT 148.86 400 2988
MAEAs, on-line, EASY 149.57 400 4000
MAEAs, off-line, SMT 149.60 87 2000
EAs 154.63 400 -

Table C.8: Σύγκριση μεταξύ των εφαρμοσμένων μεθόδων βελτιστοποίησης

(a) MAEAs, on-line, SMT,
D=148.87 N and D=1373.12 N

(b) MAEAs, on-line, EASY,
D=149.24 N and D=1383.62 N

(c) MAEAs, off-line, SMT,
D=150.06 N and L=1367.56 N

(d) EAs, D = 155.25 N and L =
1429.83N

Figure C.9: Βελτιστοποίηση της NACA 4318 σε συνθήκες ευθείας πτήσης με RNG3.
Σύγκριση μεταξύ των βέλτιστων αποτελεσμάτων.

(a) Αρχική γεωμετρία (b) Βελτιστοποιημένη γεωμετρία

Figure C.10: Σύγκριση μεταξύ του πεδίου Mach αρχικής και της βελτιστοποιημένης
γεωμετρίας με χρήση MAEA με off-line εκπαίδευση

xi

BIBLIOGRAPHY

� Σύνοψη-Συμπεράσματα

Σε αυτή διπλωματική εργασία μελετήθηκε η βέλτιστη χρήση εξελικτικών αλγο-

ρίθμων υποβοηθούμενων από μεταμοντέλα σε εφαρμογές χαμηλού (εφαρμογές ψευδο-
βελτιστοποίησης) και υψηλού (βελτιστοποίηση αεροτομής με αεροδυναμικά χαρακτηρισ-
τικά) υπολογιστικού κόστους. Βρέθηκε ότι στην πρώτη περίπτωση, η χρήση MAEAs
με on-line εκπαιδευμένων RBFs που διαθέτει ο EASY έχει το μικρότερο αντίκτυπο
στο υπολογιστικό κόστος σε συνδυασμό με γρήγορη σύγκλιση της βελτιστοποίησης.
Η επιλογή αυτή βασίζεται τόσο στην κακή εκπαίδευση (off-line) που συναντάται σε
προβλήματα πολλών στόχων, όσο και στην επιβάρυνση της βελτιστοποίησης λόγω της
χρήσης της αργής Python.
Στην δεύτερη περίπτωση που απαιτείται η επίλυση των RANS εξισώσεων και το υπ-

ολογιστικό κόστος είναι υψηλό, η εφαρμογή των ΜΑΕΑ με χρήση off-line και on-line
εκπαιδευμένων μεταμοντέλων μέσω του SMT οδηγεί σε 60 − 80% μείωση του υπολ-
ογιστικού κόστους. Συνεπώς, σε αεροδυναμικές εφαρμογές υψηλού υπολογιστικού
κόστους και λίγων περιορισμών ενδείκνυται η χρήση εξωτερικών μεταμοντέλων.
Με βάση τις εφαρμογές που εξετάστηκαν σε αυτή τη διπλωματική εργασία, προκύπτει

η διαφαινόμενη υπεροχή τουKPLS μεταξύ τόσο των εξωτερικών όσο και των εσωτερικών
μεταμοντέλων που χρησιμοποιήθηκαν. Ακόμα, η βελτιστοποίηση με χρήση MAEAs με
on-line εκπαίδευση διαφαίνεται ως η επικρατέστερη μέθοδος βελτιστοποίησης.

xii

BIBLIOGRAPHY

Βιβλιογραφία

1. M.A. Bouhlel, J.T. Hwang, N. Bartoli, R. Lafage, J. Morlier, and J.R.R.A.
Martins. A Python surrogate modeling framework with derivatives. Advances
in Engineering Software, 135, 2019.

2. EASY - The Evolutionary Algorithms SYstem Home, 2012. Retrieved from
http://velos0.ltt.mech.ntua.gr/EASY

3. M.J.D. Powell. The Theory of Radial Basis Function Approximation. Oxford
University Press, pp. 105-210, 1992.

4. A. Keane, A. Forrester, and A. Sóbester. Engineering Design via Surrogate
Modelling: A Practical Guide. Wiley, 1st edition, 2008.

5. M.K. Karakasis and K.C. Giannakoglou. On the use of metamodel-assisted,
multi-objective evolutionary algorithms. Engineering Optimization, 38(8):941–957,
2006.

6. M.A. Bouhlel, N. Bartoli, A. Otsmane, and J. Morlier. Improving kriging
surrogates of high-dimensional design models by Partial Least Squares dimen-
sion reduction. Structural and Multidisciplinary Optimization, 53(5): 935-952,
2016.

7. M.A. Bouhlel, N. Bartoli, J. Morlier, and A. Otsmane. An improved approach
for estimating the hyperparameters of the kriging model for high-dimensional
problems through the partial least squares method. Mathematical Problems
in Engineering, 2016.

8. K. Tsiakas. Development of shape parameterization techniques, a flow solver
and its adjoint, for optimization on GPUs. Turbomachinery and external aero-
dynamics applications. PhD thesis, Laboratory of Thermal Turbomachines,
NTUA, Athens, 2019.

9. Κ.Χ. Γιαννάκογλου. Μέθοδοι Βελτιστοποίησης στην Αεροδυναμική. Πανεπιστη-
μιακές Εκδόσεις Ε.Μ.Π., Αθήνα, σελίδες 125-130, 2006.

10. R. Mead, S. Gilmour, and A. Mead. Statistical principles for the design of
experiments. Cambridge University Press, 1st ed., pp. 233-271, 2012.

11. I. Ronald. Latin Hypercube Sampling. ResearchGate, January 1999.

12. M. Johnson, L. Moore and D. Ylvisaker. Minimax and maximin distance
designs, Journal of Statistical Planning and Inference, 26(2): 131-148, 1990.

13. M.C. Shewry and H.P. Wynn. Maximum entropy sampling. Journal of Applied
Statistics, 14(2): 165-170, 1987.

14. R. Jin , W. Chen, and A. Sudjianto. An efficient algorithm for constructing
optimal design of computer experiments. Journal of Statistical Planning and
Inference, 134(1): 268-287, 2005.

15. D.C. Montgomery. Design and Analysis of Experiments. Wiley, 9th edition,
pp. 179-229, 2017.

xiii

http://velos0.ltt.mech.ntua.gr/EASY

BIBLIOGRAPHY

16. T. Ray and K. M. Liew. A Swarm Metaphor for Multiobjective Design Opti-
mization. Engineering Optimization 34: 141-153, 2002.

17. S.S. Rao. Engineering Optimization: Theory and Practice. Wiley, 5th ed., pp.
434-435, 2020.

xiv

	Introduction
	Optimization
	Evolutionary Algorithms

	MAEAs with off-line training
	Design of Experiments (DoE)
	Comparison between DoE construction schemes

	Communication between EASY and SMT in MAEAs with off-line training

	MAEAs with on-line training
	Communication between EASY and SMT in MAEAs with on-line training

	Surrogate Models
	Kriging
	KPLS
	KPLSK
	Radial Basis Function (RBF)

	Numerical Cases
	Welded Beam Design
	MOO of Welded Beam Design

	Speed Reducer Design
	Analysis of the SOO outcome

	Airfoil Shape Optimization
	Mesh and parametrization
	RANS flow equations
	Turbulence model
	Optimization cases
	MOO optimization at take-off conditions
	SOO optimization at take-off conditions
	SOO optimization at cruise conditions

	Conclusions and Future Work
	Overview
	Conclusions
	Future Work

	Tests in Metamodel Fitting
	3 design variable aircraft wing equation
	8 design variable aircraft wing equation
	Optimal construction method
	Metamodel comparison

	SMT
	DoE techniques in SMT
	Metamodel Training

	EASY
	Bibliography

