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Περίληψη

Στην παρούσα εργασία µελετάµε το πρόβληµα της εκµάθησης µιγµάτων κατανοµών κατά-

ταξης µε χρήση ϑορυβωδών ελλιπών δειγµάτων. Οι κατανοµές κατάταξης έχουν κερδίσει

ενδιαφέρον στα πεδία της ϑεωρίας των κοινωνικών επιλογών και της ϑεωρητικής µηχανικής

µάθησης εδώ και δεκαετίες. Πέρα από την εκτεταµένη ϑεωρητική έρευνα, οι κατανοµές

κατάταξης έχουν διάφορες εφαρµογές στον πραγµατικό κόσµο, όπως στο crowdsourcing,

στα συστήµατα ψηφοφορίας, τα recommendation systems και την αναζήτηση στο διαδίκ-

τυο. Κατά τη συνάθροιση δειγµάτων κατάταξης χρησιµοποιούµε µια συλλογή δειγµάτων

που προέρχονται από έναν συγκεκριµένο πληθυσµό και προσπαθούµε να εκτιµήσουµε το

υποκείµενο "ground truth" σχετικά µε τις προτιµήσεις του πληθυσµού πάνω σε ένα σύνολο

n στοιχείων. Τα δείγµατα είναι είτε πλήρη είτε ελλιπή. Στην πρώτη περίπτωση κάθε δείγµα

είναι µια µετάθεση του πλήρους συνόλου των n στοιχείων ενώ στη δεύτερη περίπτωση κάθε

δείγµα είναι µια µετάθεση κάποιου υποσυνόλου του πλήρους συνόλου των n στοιχείων. Το

πρώτο µας ϐήµα είναι να ϑεωρήσουµε ένα είδος µοντέλου που παράγει τα δείγµατα, ώστε το

πρόβληµά µας να είναι καλά διατυπωµένο και να είναι δυνατή η ϐελτιστοποίηση. ∆ηµοφιλή

µοντέλα είναι τα Mallows, Plackett Luce και το Repeated Insertion Model. Στην εργασία µας

εστιάζουµε στο µοντέλο Mallows και ιδιαίτερα στην selective εκδοχή του, όπου τα δείγµατα

είναι ελλιπή. Μια περαιτέρω γενίκευση του κλασικού µοντέλου Mallows είναι να υποθέσουµε

ότι η κατανοµή κατάταξης που παράγει τα δείγµατα είναι ένα µείγµα k µοντέλων Mallows

και όχι ένα µεµονωµένο. Αυτή η υπόθεση µοντελοποιεί την ετερογένεια των προτιµήσεων

ενός πληθυσµού διαιρώντας τον σε πολλές οµάδες (π.χ. γυναίκες και άνδρες). Σε αυτή την

εργασία µελετάµε την εφικτότητα εκµάθησης του selective µοντέλου Mallows και προτεί-

νουµε αλγόριθµους για την εκτίµηση της κατανοµής και (όποτε είναι δυνατόν) την εκτίµηση

των παραµέτρων. Προτείνουµε αλγόριθµους που λειτουργούν στη γενική περίπτωση και για

την ειδική περίπτωση όπου τα κέντρα είναι καλά διαχωρισµένα δείχνουµε ότι υπάρχουν πολύ

πιο αποδοτικοί αλγόριθµοι. Παρέχουµε εγγυήσεις για τη συµπεριφορά των προτεινόµενων

αλγορίθµων καθώς και πειραµατικά αποτελέσµατα.

Λέξεις Κλειδιά

Συνάθροιση ∆ειγµάτων Κατάταξης, Μίγµατα Κατανοµών Κατάταξης, Μάθηση από Ελλιπή

∆είγµατα, Εκµάθηση Κατανοµών, Εκτίµηση Παραµέτρων, Μέθοδος Ροπών, Συσταδοποίηση.
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Abstract

In this thesis we study the problem of learning mixtures of rankings using noisy incom-

plete samples. Ranking distributions have drawn interest in the fields of social choice

theory and theoretical machine learning for many decades. Apart from the extensive

theoretical research ranking distributions have various real world applications including

crowdsourcing, voting and recommendation systems and web search. Ranking aggrega-

tion is about using a collection of ranking samples drawn from a certain population in

order to estimate the underlying ground truth about the preferences of the population on

a set of n items. The samples are either complete or incomplete. In the first case each

sample is a permutation of the full range of n items whereas in the second case each sam-

ple is a permutation of some subset of the full set of n items. The first step in our setting

is to assume a generative model so our problem is well formulated and optimisation is

possible. Popular generative models are the Mallows Model, the Plackett Luce Model and

The Repeated Insertion Model. In our work we focus on the Mallows Model and partic-

ularly on its selective variation, where samples are incomplete. A further generalisation

of the classical Mallows model is to assume that the underlying ranking distribution is

a mixture of k Mallows models rather than a single one. This assumption models the

heterogeneity of the preferences of a population by dividing it into several clusters (e.g

women and men). In this work we study the identifiability of the Selective Mallow Mixture

Model and suggest algorithms for distribution estimation and (when possible) parameter

estimation. We suggest algorithms that work in the general case and for the specific

case where centers are well separated we show that there exist much more efficient ones.

We provide provable guarantees for the behavior of the suggested algorithms as well as

experimental results.

Keywords

Ranking Aggregation, Mallow Mixture Model, Selective Mallows Model, Distribution Learn-

ing , Parameter Estimation, Method Of Moments, Clustering.
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Εκτεταµένη Ελληνική Περίληψη

Συνάϑϱοιση ∆ειγµάτων Κατάταξης

Η ϑεωρία κοινωνικής επιλογής είναι ένα πλαίσιο για την ανάλυση της συνάϑϱοισης ατοµικών

απόψεων, προτιµήσεων, ενδιαφερόντων ή συµφερόντων για την επίτευξη µιας συλλογικής

απόφασης. Η ϑεωρία της κοινωνικής επιλογής χρονολογείται από τη διατύπωση του Μαρκή-

σιου ντε Κοντορσέ για το παράδοξο της ψήφου (τέλη 18ου αιώνα). Το παράδοξο Condorcet

είναι µια κατάσταση στην οποία οι κοινωνικές προτιµήσεις µποϱεί να είναι κυκλικές, ακόµα

κι αν οι προτιµήσεις των ατόµων είναι άκυκλες. Σε εκλογές µε δύο µόνο υποψηφίους, όπου

κάϑε ψηφοφόρος έχει προτίµηση για έναν υποψήφιο έναντι του άλλου, ο κανόνας επιλογής

της πλειοψηφίας λειτουργεί σωστά, δίνοντας µια κατάταξη των δύο υποψηφίων που συµ-

ϕωνεί µε τις προτιµήσεις της πλειοψηφίας των ψηφοφόρων και είναι συνεπής µε τον εαυτό

της. Ωστόσο, αυτό δεν είναι πάντα δυνατό όταν ο αριθµός των υποψηφίων υπερβαίνει τους

δύο. ΄Ενα παϱάδειγµα του παϱαδόξου είναι το εξής:

Ας υποθέσουµε ότι έχουµε τους υποψήφιους Α, Β και Γ και τϱεις ψηφοφόρους. Ο παϱακάτω

πίνακας παϱουσιάϹει τις ατοµικές προτιµήσεις των ψηφοφόρων.

Ατοµικές πϱοτιµήσεις

Ψηϕοϕόϱος Πϱώτη πϱοτίµηση ∆εύτεϱη πϱοτίµηση Τϱίτη πϱοτίµηση

Ψηϕοϕόϱος 1 Α Β Γ

Ψηϕοϕόϱος 2 B C A

Ψηϕοϕόϱος 3 C A B

Η πλειοψηφία των ψηφοφόρων προτιµά το Α από το Β, το Β από το Γ και το Γ από το Α. Η

προκύπτουσα συλλογική προτίµηση Α>Β>Γ>Α είναι κυκλική και εποµένως ασυνεπής. Αυτό

το παράδοξο αναδεικνύει την ανάγκη για πιο σύνθετους και ισχυϱούς µηχανισµούς ψηφο-

ϕορίας, όπως η ψηφοφορία µε σκοϱ. ΄Ενα άλλο ενδιαφέρον εϱώτηµα που πϱοκύπτει είναι

εάν ο µηχανισµός ψηφοφορίας είναι ϕιλαλήθης, δηλαδή εάν οι ψηφοφόροι έχουν κίνητρο

να δώσουν ψήϕο που δεν συµφωνεί πλήϱως µε τις ατοµικές τους πεποιθήσεις προκειµένου

να προωθήσουν ένα συγκεκριµένο αποτέλεσµα των εκλογών. Ωστόσο, αυτή η οπτική του

προβλήµατος της ψηφοφορίας σχετίζεται περισσότερο µε τη ϑεωρία παιγνίων και είναι εκτός

του πεδίου αυτής της εργασίας.

Ο κανόνας του Kemeny είναι ένας πιο ουσιαστικός και αποτελεσµατικός τϱόπος για τη

συνάϑϱοιση δειγµάτων κατάταξης. ∆εδοµένου ενός δείγµατικού πϱοϕίλ {σ1, σ2, ...σN } ∈ S
N

n
,
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Εκτεταµένη Ελληνική Περίληψη

ο κανόνας του Kemeny επιλέγει την ακόλουϑη κατάταξη τ ως εκτίµηση της συλλογικής προ-

τίµησης: τ = argminτ∈Sn

∑
N

i=1
dKT (τ, σi). Αυτή η πϱάξη µποϱούµε να πούµε ότι ϐϱίσκει τη

διάµεσο των δειγµάτων στον µετϱικό χώϱο του συνόλου Sn µε την απόσταση Kendall Tau ως

την l1-νόϱµα. ΄Εχει αποδειχθεί ότι το συγκεκριµένο πϱόϐληµα είναι NP-Hard. Επιπλέον, ο

κανόνας του Kemeny είναι ισοδύναµος µε την εύϱεση µιας εκτίµησης µέγιστης πιθανότη-

τας υποθέτοντας ότι οι παρατηρήσεις µας δηµιουϱγήϑηκαν από ένα µοντέλο Mallows. Το

dKT (σ, π) είναι µια µέτϱηση απόστασης στο Sn, το σύνολο των µεταθέσεων n στοιχείων, και

ισούται µε τον αριθµό των διµελών συγκρίσεων που είναι ασύµφωνες µεταξύ του σ και του

π. Το µοντέλο Mallows είναι µια κατανοµή κατάταξης στο Sn παραµετροποιηµένη από µια

κεντρική µετάθεση π
∗
που αποδίδει σε κάϑε µετάθεση σ µια πιθανότητα εκθετική ως πϱος

το −dKT (σ, π∗) (ϕθίνουσα).

΄Ενα άλλο σηµαντικό Ϲήτηµα στη συνάϑϱοιση δειγµάτων κατάταξης είναι η µη πληϱότητα

των ατοµικών προτιµήσεων. Για παϱάδειγµα ας ϑεωρήσουµε ένα σύνολο ταινιών και µια

οµάδα ατόµων που τις κατατάσσουν σε µια διαδικτυακή πλατφόρµα. Κάϑε χϱήστης πϱέπει

να δώσει µια σειϱά προτίµησης των ταινιών σύµφωνα µε το προσωπικό του γούστο. Ωστόσο,

ορισµένοι χϱήστες µποϱεί να µην έχουν ξεκάθαρη γνώµη για ορισµένες ταινίες ή να µην

τις έχουν δει καθόλου, µε αποτέλεσµα να µην µποϱούν να συµπεριλάβουν αυτές τις ταινίες

στη λίστα προτιµήσεών τους. Αυτό έχει ως αποτέλεσµα ηµιτελείς λίστες προτιµήσεων των

ατόµων. Επιπλέον, γίνεται όλο και πιο δύσκολο για τους χϱήστες να κατασκευάσουν µια ενι-

αία κατάταξη των ταινιών καθώς ο αριθµός των ταινιών αυξάνεται. Αντίθετα, ϑα προτιµούσαν

να σπάσουν τις αποφάσεις τους σε µικϱότεϱες συγκρίσεις (κατά Ϲεύγη, τϱιµελείς συγκρίσεις,

κ.λπ.). Και πάλι, µποϱεί να είναι αδύνατο για τους χϱήστες να αποφασίσουν για ορισµένες

από τις συγκρίσεις των ταινιών. Τέλος, δεν µποϱούµε να απαιτήσουµε από τους χϱήστες να

δώσουν µια κατάταξη κάϑε ταινίας που γνωρίζουν, καθώς αυτό ϑα ήταν πολύ κουϱαστικό για

αυτούς. Αυτοί οι περιορισµοί υπογραµµίζουν την ανάγκη ϑεώϱησης του λεγόµενου selective

µοντέλου, όπου κάϑε δείγµα είναι µια µετάθεση κάποιου τυχαία επιλεγµένου υποσυνόλου

του πλήϱους συνόλου στοιχείων ή ένα σύνολο συγκρίσεων ανά Ϲεύγη µεταξύ στοιχείων του

πλήϱους συνόλου.

Στη συνέχεια, ϑα εξηγήσουµε τη σηµασία της υπόθεσης µίγµατος κατανοµών κατάταξης

και όχι µεµονωµένων µοντέλων για ολόκληϱο τον πληθυσµό. Οι πληθυσµοί µποϱεί να είναι

ετερογενείς, πϱάγµα που σηµαίνει ότι πϱέπει να εκτιµηθούν περισσότερες από µία συλ-

λογικές προτιµήσεις, µία για κάϑε οµάδα. Επιστρέφοντας στο παϱάδειγµα των ταινιών, οι

γυναίκες µποϱεί να έχουν παρόµοιες προτιµήσεις ταινιών µεταξύ τους, όπως και οι άνδρες,

αλλά οι προτιµήσεις των ανδρών µποϱεί να είναι σηµαντικά διαφορετικές από τις προτιµή-

σεις των γυναικών. Σε αυτή την πεϱίπτωση, η εκτίµηση µιας κοινής συλλογικής προτίµησης

για ολόκληϱο τον πληθυσµό µε κάποια µέϑοδο όπως ο κανόνας του Kemeny ϑα αποτύχει

να εκφράσει το ground truth του πληθυσµού και σε πιο τεχνικό επίπεδο η εκτιµώµενη

κατανοµή που ϑα µοντελοποιήσει τη συµπεριφορά του πληθυσµού ϑα είναι υπερβολικά

απλοϊκή και έτσι ϑα αποτυγχάνει να κάνει fit στα δείγµατα µε επαϱκή ακϱίϐεια. Η ιδέα

των µιγµάτων έχει χρησιµοποιηθεί ευρέως και σε άλλα είδη δεδοµένων, για παϱάδειγµα στα

µείγµατα Γκαουσιανών για διανύσµατα χαρακτηριστικών. ΄Ενας αριθµός ϐασικών µοντέλων
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υπερτίθεται για την κατασκευή µιας πιο σύνθετης κατανοµής, µε περισσότερες ελεύθερες

παϱαµέτϱους (και εποµένως µεγαλύτεϱη εκφραστικότητα) που ϑα κάνουν fit στα δεδοµένα

του δείγµατος. Θεωρώντας ένα µείγµα αντί για ένα µεµονωµένο µοντέλο αυξάνει δϱαστικά τη

δυσκολία του προβλήµατός µας, επειδή για κάϑε δείγµα πϱέπει να µαντέψουµε την «ετικέτα»

του, δηλαδή τη συνιστώσα του µείγµατος από την οποία πϱοήλϑε, για να το αντιστοιχίσουµε

στη σωστή οµάδα παρόµοιων δείγµατα. ΄Οσο πιο κοντά είναι τα κέντρα και όσο µεγαλύτεϱη

διακύµανση έχουν τα δείγµατα γύϱω από αυτά τα κέντρα, τόσο πιο δύσκολο γίνεται η ταξ-

ινόµηση των δειγµάτων σε οµάδες. Το γεγονός ότι τα δείγµατα είναι ελλιπή παίϹει επίσης

σηµαντικό ϱόλο στη δυνατότητα διαχωρισµού καθιστώντας ακόµη και αδύνατη την αναγνώρ-

ιση των κϱυϕών κέντρων εάν τα δείγµατα είναι πολύ µικϱά, δηλαδή λύσεις µε διαφορετικές

παϱαµέτϱους ϑα ήταν ισοδύναµες ως πϱος το ιστόγραµµά τους.

Το µοντέλο Mallows και οι γενικεύσεις του

Το µοντέλο Mallows µοιάϹει µε την κανονική κατανοµή αλλά αντί για διανύσµατα ορίζε-

ται σε στοιχεία του Sn, του συνόλου δηλαδή των µεταθέσεων n αντικειµένων. ΄Οπως η

κανονική κατανοµή, το µοντέλο Mallows περιγράφεται από µια κεντρική παϱάµετϱο και

µια παϱάµετϱο διακύµανσης (spread). Η πιθανότητα που αποδίδεται σε κάϑε στοιχείο του

συνόλου support είναι αντιστρόφως ανάλογη µε µια εκθετική απόσταση µεταξύ του στοιχείου

και της κεντρικής παϱαµέτϱου και η ϐάση του εκθετικού εξαρτάται από την παϱάµετϱο

spread. Πιο συγκεκριµένα, εάν µια τυχαία µετάθεση π ∈ Sn ακολουθεί την κατανοµή Mal-

lowsM(π0, φ), τότε P[π = σ] =
φ
d(π0 ,σ)

Z (φ,n) .

• Το π0 ∈ Sn είναι η κεντϱική µετάϑεση του µοντέλου. ΕκϕϱάϹει το λανϑάνον ground

truth σχετικά µε τις πϱοτιµήσεις του πληϑυσµού και είναι η πιο πιϑανή µετάϑεση στο

σύνολο support.

• Το φ ∈ (0,1) είναι η παϱάµετϱος spread. ΄Οσο υψηλότεϱη είναι η τιµή του, τόσο πιο

διασκοϱπισµένα είναι τα δείγµατα γύϱω από την κεντϱική µετάϑεση. Στην ακϱαία

πεϱίπτωση όπου το φ πλησιάϹει το µηδέν, το µόνο δείγµα µε µη µηδενική πιϑανότητα

εµϕάνισης είναι η κεντϱική µετάϑεση, οπότε σχηµατίϹεται µια σταϑεϱή κατανοµή.

Στην αντίϑετη ακϱαία πεϱίπτωση, όπου το φ πλησιάϹει το ένα, όλες οι µεταϑέσεις στο

Sn έχουν την ίδια πιϑανότητα να εµϕανιστούν, έτσι το µοντέλο Mallows εκϕυλίϹεται σε

οµοιόµοϱϕη κατανοµή σε Sn .

• Το d : Sn × Sn → R είναι κάποια µετϱική απόστασης, για παϱάδειγµα η απόσταση KT,

ο κανόνας του Spearman ή η απόσταση Hamming. Σε αυτή την εϱγασία εστιάϹουµε

αποκλειστικά στην απόσταση ΚΤ.

• Το Z (φ, n) είναι η σταθερά κανονικοποίησης, η οποία κάνει τη συνάϱτηση πυκνότητας

να αθροίζεται σε 1 έτσι ώστε να εκφράζει πιθανότητα. Στην πεϱίπτωσή µας, όπου d

είναι η απόσταση KT, έχουµε Z (φ, n) =
n∏
i=1

Zi(φ) =
n∏
i=1

(
i−1∑
j=0

φ
i

)
= 1

(1−φ)n−1

n∏
i=2

(1 − φi).

Το µείγµα µοντέλων MallowsM παϱαµετϱοποιείται από το σύνολο των κεντϱικών µεταϑέσεων

πi , τα ϐάϱη wi και τις παϱαµέτϱους διακύµανσης φi που αντιστοιχούν στα κέντϱα πi . Η
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συνάϱτηση µάϹας πιϑανότητας του µείγµατος Mallows είναι η εξής:

M(π = σ) =

k∑
i=1

wi ·
φi
dKT (πi ,σ)

Z (φi , n)

Κάϑε κεντρική µετάθεση είναι µια µετάθεση n στοιχείων πi ∈ Sn και υποθέτουµε ότι τα

κέντρα διαφέρουν µεταξύ τους ανά δύο (πi , πj για i , j). Τα ϐάϱη wi δεν είναι αρνητικά

και αθροίζονται στο ένα (
∑
k

i=1
wi = 1 ). Η διαδικασία δειγµατοληψίας έχει δύο στάδια.

Αρχικά, επιλέγεται ένα κέντρο i ∈ [n] µε πιθανότητα wi . Στη συνέχεια, γίνεται δειγµα-

τοληψία µιας µετάθεσης από το µεµονωµένο µοντέλο MallowsM(πi , φi). Στο πλαίσιο αυτής

της εργασίας, συχνά ϑεωρούµε ότι όλες οι παϱάµετϱοι εξάπλωσης είναι ίσες (φi = φ∀i ∈ [n]).

Μια γενίκευση του Mallows µοντέλου είναι το selective µοντέλο Mallows. Η συνάϱτηση

µάϹας πιθανότητας αυτού του µοντέλου είναι η εξής: P[π = σ] = f (s) · φ
dKT (π0 ,σ)

Z (φ,|s|) , όπου s είναι

το σύνολο των στοιχείων που ϐρίσκονται στο σ. Κάϑε παϱατήϱηση π είναι µια µετάθεση των

στοιχείων που εµφανίζονται στο αντίστοιχο σύνολο επιλογής s. Το f(s) είναι ο µηχανισµός

επιλογής, µια συνάϱτηση πιθανότητας που αποδίδει µια πιθανότητα επιλογής σε κάϑε υπ-

οσύνολο s του πλήϱους συνόλου των στοιχείων [n]. Το π0 είναι η κεντρική µετάθεση του

µοντέλου και είναι πλήϱες (περιέχει όλα τα στοιχεία στο [n]). Το dKT (π0, π) είναι η απόσ-

ταση Tau του Kendall µεταξύ της κεντρικής µετάθεσης και του δείγµατος. Χρειάζεται να

επαναπροσδιοριστεί γιατί το δείγµα π είναι πιθανόν ελλιπές. Μια ϕυσική γενίκευση του

κλασικού ορισµού είναι η εξής:

dKT (π0, π) =
∑

a,b∈s∧a<b

1{(π0(a) − π0(b)) · (π(a) − π(b)) < 0}

Αυτό που διαϕέϱει είναι ότι το άϑϱοισµα µετϱάει τα ασύµϕωνα Ϲεύγη (a,b) όπου a, b ∈ s,

αντί για a, b ∈ [n], όπου s είναι το σύνολο επιλογής.

Ορισµός 1. ΄Ενας µηχανισµός επιλογής f(s) λέγεται ότι είναι p-frequent ως πϱος τις l-µελείς

συγκϱίσεις, εάν για όλα τα σύνολα x ⊆ {1, ..n} µε µήκος µικϱότεϱο ή ίσο του l P{x ⊆ s} ≥ p ⇔

∀x
∑
x∈s f (s) ≥ p.

Το selective µείγµα Mallows συνδυάϹει τις ιδιότητες του selective µοντέλου Mallows και

του Mixture Mallows µοντέλου. Είναι ένα µοντέλο µείγµατος, επειδή υποτίϑεται ότι µια

συλλογή από διακϱιτά κέντϱα {π1, ...πk} και όχι µια µεµονωµένη κεντϱική κατάταξη. Είναι

επίσης selective επειδή τα δείγµατα που παϱάγονται από αυτό το µοντέλο δεν πεϱιέχουν όλες

τις πιϑανές εναλλακτικές αλλά ένα τυχαίο υποσύνολο J αυτών, το οποίο δίνεται από έναν

µηχανισµό επιλογής f (J) για κάϑε δείγµα. Η συνάϱτηση µάϹας πιϑανότητας του µοντέλου

είναι η εξής:

M(π = σ) = f (J) ·
k∑
i=1

wi ·
φ
dKT (πi‖J ,σ)

Z (φ, |J |)

Η διαδικασία παραγωγής δείγµατος αποτελείται από τϱία στάδια. Στο πϱώτο ϐήµα, ο

µηχανισµός επιλογής f (J) επιλέγει ένα τυχαίο υποσύνολο J στοιχείων του [n] µε πιθανότητα

f (J). ΄Επειτα, µια από τις k συνιστώσες του µείγµατος ενεργοποιείται µε πιθανότητα που

16 Diploma Thesis



Εκτεταµένη Ελληνική Περίληψη

δίνεται από τα ϐάϱη ανάµειξης. Η συνιστώσα i έχει πιθανότητα wi να ενεργοποιηθεί κάϑε

ϕοϱά που παράγεται δείγµα. Τέλος, µια τυχαία µετάθεση π των στοιχείων στο J λαµβάνε-

ται από το µοντέλο Mallows Mi(π) =
φ
dKT (πi ‖J ,π)

Z (φ,|J |) , όπου i είναι ο δείκτης της ενεργοποιηµένης

συνιστώσας. Σηµειώνουµε ότι το κέντρο πi περιορίζεται στο J (πi‖J ) και η συνάϱτηση απόσ-

τασης KT µετϱάει ασύµφωνα Ϲεύγη µόνο σε στοιχεία που εµφανίζονται στο J .

Εκµάϑηση Κατανοµής και Εκτίµηση Παϱαµέτϱων

Μια κλάση κατανοµών C χαρακτηρίζεται efficiently learnable εάν για κάϑε ϸ > 0 και

0 < δ ≤ 1 έχοντας πρόσβαση σε ένα µαντείο GEN(D) που επιστϱέϕει δείγµατα από µια

άγνωστη κατανοµή D ∈ C, υπάρχει ένας πολυωνυµικός αλγόριθµος Α, που ονοµάζεται αλ-

γόριθµος εκµάθησης της C, παίϱνει ως είσοδο τα δείγµατα και δίνει µια εκτίµηση D
′
της

D έτσι ώστε Pr[d(D,D′) ≤ ϸ] geq1 − δ, όπου d είναι κάποια µετϱική απόστασης µεταξύ των

κατανοµών D και D
′
, όπως για παϱάδειγµα η απόσταση TV ή η απόκλιση KL, που ϑα συζητή-

σουµε αϱγότεϱα σε αυτό το κεφάλαιο. Στην εργασία αυτή χρησιµοποιούµε την απόσταση

TV, που στην πεϱίπτωση δύο διακριτών κατανοµών P και Q πάνω σε ένα δειγµατικό χώϱο

Ω γράφεται ως dTV (P, Q) = 1

2

∑
x∈Ω

|P(x) − Q(x)|. Σε ορισµένες περιπτώσεις, κάϑε κατανοµή

D ∈ C προσδιορίζεται µοναδικά από ένα σύνολο παϱαµέτϱων. Για παϱάδειγµα, η κλάση

µονοδιάστατων Γκαουσιανών κατανοµών N(µ, σ2) παραµετροποιείται από το Ϲεύγος (µ, σ).
∆ιαφορετικές τιµές του (µ, σ) δίνουν διαφορετικές κατανοµές D ∈ C, που όλες µαϹί καλύπ-

τουν ολόκληϱη την κλάση C. Σε αυτήν την πεϱίπτωση, ο αλγόριθµος Α ϑα πϱέπει να µποϱεί

να εκτιµήσει τις παϱαµέτϱους (µ, σ) και τον ονοµάϹαµε αλγόριθµο εκµάθησης παϱαµέτϱων.

΄Ενα εξαιρετικά χϱήσιµο εργαλείο για τη συγκεκριµένη εργασία και την εκµάθηση κατανοµών

γενικότεϱα είναι οι ανισότητες συγκέντρωσης κατανοµών, που ϕράσουν την πιθανότητα µια

τυχαία µεταβλητή να λάϐει τιµές µακϱιά από τη µέση τιµή της.Το ϑεώϱηµα 2 του [1] παϱέχει

εκθετικά tail bounds για αθροίσµατα ανεξάϱτητων ϕραγµένων µεταβλητών.

΄Εστω ανεξάϱτητες µεταβλητές X1, ...Xn και κάϑε Xi ϕράσεται στο διάστηµα [ai , bi]. ΄Εστω X̄

ο εµπειρικός µέσος όϱος αυτών των µεταβλητών, X̄ = 1

n
(X1 + ...+Xn). Τότε, για t > 0 έχουµε:

P{X̄ − E[X̄ ] ≥ t} ≤ exp
(
−

2n
2
t
2

sum
n

i=1
(bi − ai)2

)

P
{∣∣∣X̄ − E[X̄ ]

∣∣∣ ≥ t} ≤ 2exp

− frac2n2
t
2

n∑
i=1

(bi − ai)2


Σε αυτή την εργασία κάνουµε εκτενή χϱήση των ϕραγµάτων Hoeffding για διωνυµικές

κατανοµές.

΄Εστω X ∼ Bin(n, p). Τότε έχουµε:

P[X ≤ k] ≤ exp
(
−2n

(
p −

k

n

)2
)
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Τα ϕραγµατα Hoeffding αξιοποιούνται για τον υπολογισµό της δειγµατικής πολυπλοκότητας

εκτίµησης της κεντρικής κατάταξης του µοντέλου Mallows. Παραθέτουµε τα αποτέσµατα

των Caragiannis et al. στο [2]. ΄Εστω ότι µας δίνεται ένα σύνολο N δειγµάτων σ1, ...σN ,

που προέρχονται από ένα µοντέλο Mallows. Τα δείγµατα είναι πιθανώς ελλιπή. Θέλουµε

να χρησιµοποιήσουµε αυτά τα δείγµατα για να εκτιµήσουµε την κϱυϕή κεντρική κατάταξη

µε µεγάλη πιθανότητα. Για το σκοπό αυτό ϑα χρησιµοποιήσουµε έναν εκτιµητή που απο-

ϕασίζει πλειοψηφικά για κάϑε διµελή σύγκριση. Ο Εκτιµητής Θέσης π̂ υπολογίζει τη ϑέση

κάϑε αντικειµένου στην κϱυϕή κατάταξη ως εξής:

π̂[i] = 1 +
∑

j∈[n]\{i}

1

 N∑
k=1

1 {j > i in σk} >

N∑
k=1

1 {i > j in σk}

 , ∀i ∈ [n]

Αν πϱοκύψουν ισοπαλίες τις σπάµε οµοιόµοϱϕα από αϱιστεϱά πϱος τα δεξιά. Εάν το N είναι

αϱκετά µεγάλο, τότε ο εκτιµητής ϑέσης ανακτά τη σωστή κεντϱική κατάταξη π0 µε µεγάλη

πιϑανότητα, όπως ϑα δούµε στο επόµενο ϑεώϱηµα.

Θεώρηµα 1. ΄Εστω M(π0, φ) µια κατανοµή Mallows µε κεντϱική κατάταξη π0 ∈ Sn και

παϱάµετϱο spread φ ∈ (0,1). Για οποιοδήποτε ϸ > 0, δεδοµένου ενός δειγµατικού πϱοϕίλ

που πϱοέϱχεται από την από κατανοµή M(π0, φ)N για οποιοδήποτε N τουλάχιστον ίσο µε

κάποια τιµή O

(
log(n/ϸ)
(1−φ)2

)
, ο εκτιµητής ϑέσης ανακτά την κεντϱική κατάταξη π0 µε πιϑανότητα

τουλάχιστον 1 − ϸ.

Το παϱαπάνω άνω ϕϱάγµα για τη δειγµατική πολυπλοκότητα είναι tight, όπως µας δείχνει

το ακόλουϑο ϑεώϱηµα.

Θεώρηµα 2. Για κάϑε ϸ ∈ (0,1/2] και οποιονδήποτε εκτιµητή κεντρικής κατάταξης, υπάρχει

µια κεντρική κατάταξη π0 ∈ Sn έτσι ώστε, για κάϑε φ ∈ (0,1), ο εκτιµητής, δεδοµένου ενός

δειγµατικού πϱοϕίλ που προέρχεται από την από κατανοµή M(π0, φ)N , ανακτά το π0 µε πι-

ϑανότητα τουλάχιστον 1 − ϸ, µόνο εάν N = Ω
(
log(n/ϸ)
log(1/φ)

)
.

Οι Busa Fekete et al. στο [3] δίνουν έναν αλγόϱιϑµο για την εκτίµηση της παϱαµέτϱου φ.

Αϱχικά µε τον εκτιµητή ϑέσης ανακτούµε την κεντϱική διάταξη, όπως δείξαµε παϱαπάνω.

Στη συνέχεια καϑίσταται εϕικτή η ανάκτηση του φ µε αυϑαίϱετα µικϱό απόλυτο σϕάλµα.

Θεώρηµα 3. Αν η κεντϱική κατάταξη π0 είναι γνωστή, τότε µε N = Ω
(
log(1/δ)
nϸ2

)
δείγµατα

µποϱούµε να ϐϱούµε σε πολυωνυµικό χϱόνο µια εκτίµηση φ̂ του άγνωστου φ
*
τέτοια ώστε:

P
Π∼MN

φ*,π0

[∣∣∣φ̂(Π) − φ*
∣∣∣ ≤ ϸ] ≥ 1 − δ

Μάϑηση του µείγµατος Mallows

Στο paper του Zagier [4] εµφανίζεται ένα αποτέλεσµα καθοριστικής σηµασίας για τη µελέτη

της µάϑησης µειγµάτων Mallows. Θεωρούµε τον n!×n! πίνακα An(φ), του οποίου οι γραµµές

και στήλες δεικτοδοτούνται απο τις διάφορες µεταθέσεις π, σ της συλλογής n αντικειµένων

[n] και του οποίου τα στοιχεία Aπσ είναι ίσα µε φ
dKT (π,σ)

. Μποϱούµε εύκολα να δούµε ότι
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κάϑε γϱαµµή του πίνακα αυτού αντιστοιχεί στο vectorization ενός Mallows µοντέλου. Κάϑε

κυϱτός συνδυασµός k γραµµών αντιστοιχεί σε ένα µείγµα Mallows. Ο Zagier υπολόγισε

την ορίζουσα αυτού του πίνακα και κατέληξε σε ένα κλειστό τύπο που παίϱνει πάντοτε µη

µηδενική τιµή. Το αποτέλεσµα αυτό είναι σηµαντικό για το πϱόϐληµα µας γιατί δείχνει ότι

οποιεσδήποτε k γραµµές είναι γραµµικά ανεξάϱτητες µεταξύ τους και άϱα αν δύο γραµµικοί

συνδυασµοί k στηλών (δηλαδή δύο µείγµατα Mallows) είναι ίσα σαν διανύσµατα (δηλαδή

αν τα δυο µείγµατα έχουν ίδια ιστογράµµατα) τότε οι δύο συνδυασµοί αποτελούνται από

τις ίδιες γραµµές του πίνακα An(φ) µε τα ίδια αντίστοιχα ϐάϱη (δηλαδή τα δύο µείγµατα

έχουν τα ίδια κέντρα και τα ίδια αντίστοιχα ϐάϱη πρόσµιξης). Αυτή η ιδιότητα εξασφαλίζει

το identifiability του µείγµατος Mallows πάνω σε πλήϱη δείγµατα, δηλαδή τη δυνατότητα να

συµπεράνουµε µε µοναδικό τϱόπο τις παϱαµέτϱους του αν γνωρίζουµε τη µάϹα πιθανότητας

σε κάϑε σηµείο. Επίσης, η τιµή της ορίζουσας µποϱεί να χρησιµοποιηθεί για να δειχθεί ότι το

µέτϱο της πϱοϐολής µιας γραµµής πάνω στο ορθογώνιο συµπλήρωµα άλλων k-1 γραµµών δε

µποϱεί να είναι πολύ µικϱό. Με ϐάση αυτό το κάτω ϕϱάγµα αποδεικνύονται κάτω ϕράγµατα

για την TV απόσταση µεταξύ δύο µειγµάτων µε διαφορετικές παϱαµέτϱους. Αυτό αποτελεί

µια εύρωστη και ποσοτική διατύπωση του identifiability που µποϱεί να χρησιµοποιηθεί στο

learning.

Οι Liu και Moitra στο [5] χρησιµοποιώντας τις παραπάνω ιδέες δίνουν ένα πολυωνυµικό

αλγόριθµο για τη µάϑηση µειγµάτων Mallows, κάνοντας µόνο αναγκαίες υποθέσεις για το

µείγµα (οι συνιστώσες να διαφέρουν ανά δύο µεταξύ τους και κάϑε µια να διαφέρει από την

οµοιόµορφη κατανοµή)

Θεώρηµα 4. ΄Εστω ότι το µείγµα είναι µ-µη εκφυλισµένο, δηλαδή ∀i, j ∈ [k] i , j ⇒

dTV (Mi ,Mj) > µ και ∀i ∈ [k] dTV (Mi , Uniform) > µ. Τότε υπάρχει αλγόριθµος µε χϱονική

και δειγµατική πολυπλοκότητα polyk(n, 1

µ
,

1

wmin
,

1

,θ
, log(1

δ
)) που µαθαίνει τα κέντρα του µείγµα-

τος επακϱιϐώς και τις παϱαµέτϱους φi , wi µε απόλυτο σϕάλµα το πολύ θ.

Οι Mao et al. στο [6] ϐελτιώνουν την εξάϱτηση από τον αριθµό n των αντικειµένων κάνον-

τάς τη λογαριθµική και γεφυρώνοντας το κενό που υπήρχε µεταξύ της πεϱίπτωσης του ενός

κέντρου και της πεϱίπτωσης µείγµατος. Επίσης δίνουν ένα αλγόριθµο µάϑησης που χρησι-

µοποιεί queries ελάχιστου µήκους. ΄Ενας περιορισµός ϐέϐαια της συγκεκριµένης δουλειάς

είναι ότι υποθέτει πως όλες οι παϱάµετϱοι spread είναι ίσες και γνωστές εκ των προτέρων.

Ας δούµε κάποιες ϐασικές έννοιες που χρησιµοποιούνται στο paper. Καταρχάς, γίνεται

χϱήση της µεθόδου των ϱοπών. Στα µείγµατα Mallows ένας ϕυσικός τϱόπος να οριστούν οι

ϱοπές τάξης l είναι οι οµάδες l διµελών συγκρίσεων ή παρόµοια οι l-µελείς συγκρίσεις. Θα

εστιάσουµε στην πεϱίπτωση των δεύτεϱων, οι οποίες υπερκαλύπτουν την πϱώτη πεϱίπτωση

από άποψη προσεφερόµενης πληροφορίας. Οι συγκρίσεις αυτές µας δίνουν τις περιθώριες

κατανοµές του µοντέλου πάνω σε υποσύνολα των αντικειµένων.

Για µια µετάθεση π n αντικειµένων ϑεωρούµε δύο είδη περιορισµού της πάνω σε ένα υπ-

οσύνολο J των n αντικειµένων. Πρώτον τον injective (1-1 αλλά όχι επί) που τον συµβολίζουµε

µε π|J και δεύτεϱον τον bĳective (1-1 και επί) που τον συµβολίζουµε µε π‖J . Στον injective
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διατηρείται η πληροφορία για τη ϑέση των αντικειµέων στο πλήϱες ranking π, ενώ στον bĳec-

tive µόνο η κατάταξη µεταξύ των επιλεγµένων αντικειµένων. Για παϱάδειγµα, για το ranking

π = (3,2,4,6,1,5) και το σύνολο επιλογής J = {1,4,5} έχουµε για το injection π|J(1) = 5,

π|J(4) = 3 και π|J(5) = 6 και για το bĳection π‖J = (4,1,5).

Μια άλλη σηµαντική έννοια είναι τα µαντεία (oracles). Αυτά προσφέρουν πληροφορίες χωϱίς

ϑόϱυϐο για το µοντέλο, σε αντίθεση µε τα δείγµατα που είναι ϑοϱυϐώδη. Απώτερος στόχος

είναι να χρησιµοποιηθούν τα δείγµατα από κάποιο αλγόριθµο που µε µεγάλη πιθανότητα

κάνει simulate τα µαντεία, χρησιµοποποιώντας πολυωνυµικό αριθµό δειγµάτων.

Ορισµός 2. ΄Εστω ένα µείγµα M µε κέντϱα {c1, c2, ...ck}. Το "ασϑενές" µαντείο µε είσοδο

ένα εϱώτηµα για κάποιο σύνολο J επιστϱέϕει το σύνολο των πεϱιοϱισµών των κέντϱων του

µείγµατος πάνω στο J: {c1, c2, ...ck}. Το σύνολο αυτό πεϱιέχει µόνο διαϕοϱετικά µεταξύ τους

στοιχεία, οπότε ενδέχεται ο πληϑάϱιϑµός του να είναι µικϱότεϱος του k. Το "ισχυϱό" µαντείο

επιστϱέϕει την κατανοµή του π|J, όπου π τυχαίο ranking που ακολουϑεί την κατανοµή M.

Μια τελευταία έννοια που ϑα χϱειαστεί να δούµε πϱιν προχωρήσουµε στους αλγορίθµους

µάϑησης είναι η "υπογραφή" (signature) των κέντρων του µείγµατος. Signature ονοµάζουµε

µια οµάδα διµελών συγκρίσεων που αποµονώνει ένα κέντρο. Μποϱούµε να ϐϱούµε ένα

µοναδικό signature set που ξεχωρίζει ταυτόχϱονα όλα τα κέντρα και χρησιµοποιεί k − 1

συγκρίσεις. Επίσης υπάρχει πάντα τουλάχιστον ένα κέντρο που µποϱεί να αποµονωθεί

χρησιµοποιώντας O(log(k)) συγκρίσεις. Ωστόσο κάποια κέντρα µποϱεί να χρειάζονται O(k)
συγκρίσεις για να αποµονωθούν. Τα signatures µποϱούµε να τα δούµε σαν decision trees

που στα ϕύλλα τους έχουν τα κέντρα που αποµονώνονται.

Στη συνέχεια παρουσιάζουµε έναν αλγόριθµο µάϑησης των κέντρων και των αντίστοιχων

ϐαϱών του µείγµατος που χρησιµοποεί κλήσεις στο ισχυϱό µαντείο και χρησιµοποεί τα sig-

natures που είδαµε παραπάνω. Ο αλγόριθµος που παρουσιάζεται εφαρµόζεται σε µείγµα

µε κοινά spread parameters, ωστόσο εύκολα γενικεύεται στην πεϱίπτωση των διαφορετικών
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spread parameters, αϱκεί να έχουµε κι εκεί διαθέσιµο µαντείο. Επίσης, υπάρχει µια παρό-

µοια παραλλαγή του αλγορίθµου που χρησιµοποιεί κλήσεις στο ασθενές µαντείο και µα-

ϑαίνει µόνο τα κέντρα του µείγµατος. Ο αλγόριθµος που χρησιµοποιεί το ισχυϱό µαντείο

κάνει queries ελάχιστου µήκους (O(log(k)), ενώ ο αλγόριθµος που χρησιµοποιεί το ασθενές

µαντείο κάνει queries µήκους O(k).

Ο αλγόριθµος µαθαίνει το µείγµα επαγωγικά ως πϱος το πλήϑος των αντικειµένων. Για

n=2 αντικείµενα λαµβάνονται άµεσα οι παϱάµετϱοι της περιθώριας κατανοµής πάνω στα αν-

τικείµενα αυτά µε µια κλήση στο ισχυϱό µαντείο.

for n in [3, nmax ] :

∗ C := το σύνολο των διαφορετικών στοιχείων του (πολυ)συνόλου {π1|[n−1], ..., πk |[n−1]}.

∗ l=0

do{

∗ Υπάρχει πs∗ |[n−1] = [e1, e2, ...en−1] ∈ C που µποϱεί να αποµονωθεί

από ένα signature sig µήκους το πολύ l ≤ blog2(k)c
for r in [2, n − 1] :

∗ J := το σύνολο των αντικειµένων του sig συνένωση µε το {er−1, er , n}

∗ Παίϱνουµε από το ισχυϱό µαντείο τις παϱαµέτϱους της κατανοµής

MJ (π) =
∑
k
′

j=1
w
′
j
·
φ
dKT (π′

j
,π)

Z (φ,|J |)

∗ ΄Ενα από τα διαφορετικά κέντρα π
′
j∗

ισούται µε πs∗ |J .

∗ Αν το π
′
j∗

περιέχει τη διατεταγµένη τϱιπλέτα (er−1, n, er),
έχουµε µάθει ένα νέο κέντρο cl στο Sn, που ισούται µε

[e1, e2, ..., er−1, n, er , ..., en−1],
και το αντίστοιχο ϐάϱος του wtl=w

′
j∗

-
∑
m:cm |J=cl |J wtm .

∗ Πράττουµε όµοια για κέντρα που αρχίζουµε µε ή τελειώνουν σε n

∗ ∆ιγράφουµε το πs∗ |[n−1] από το C.

∗ l+=1

}while Το C δεν είναι κενό

Τώϱα µένει να υλοποιήσουµε κάπως το µαντείο. Αυτό γίνεται µέσω της µεθόδου SubOrder, η

οποία κάνει εξαντλητική αναϹήτηση πάνω στο χώϱο των υποψήφιων περιθώριων κατανοµών.

Κάϑε υποψήφιο µοντέλο συγκρίνεται µε το το εµπειρικό µοντέλο που πϱοκύπτει από τα δια-

ϑέσιµα δείγµατα και αν η απόσταση είναι αρκετά µικϱή επιστρέφονται οι παϱάµετϱοι του υπ-

οψήφιου µοντέλου. Ο χώϱος των υποψήφιων µοντέλων είναι πολυωνυµικά (και όχι εκθετικά)

µεγάλος αν ϑεωρήσουµε το k σταθερά, καθώς τα υποψήφια µοντέλα ορίζονται πάνω σε ένα

υποσύνολο µεγέϑους O(k) του πλήϱους συνόλου των n αντικειµένων. Παϱακάτω παρουσιάζε-

ται η SubOrder που κάνει simulate το ασθενές µαντείο, ωστόσο µποϱεί να ϕτιαχτεί όµοια και

ϱουτίνα που κάνει simulate το ισχυϱό µαντείο, επιστρέφοντας ϱητές προσεγγίσεις των ϐαϱών

µε κάποιο ϐαθµό ακϱίϐειας, µιας και τα ϐάϱη είναι συνεχείς µεταβλητές που δε µποϱούµε

να τις εκτιµήσουµε επακϱιϐώς. ΄Ετσι επιτυγχάνεται η µάϑηση, καθώς υπάρχουν guarantees

ότι µε µεγάλη πιθανότητα η SubOrder κάνει σωστά simulate το µαντείο.
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Συνάϱτηση SubOrder

Είσοδος: Οι παρατηρήσεις σ1, . . . , σN ∈ Sn, ένα υποσύνολο J ⊂ [n], ` := |J | και
L = d3k/ηe όπου η = polyk,`,(φ, γ)

∗M :=
{∑

k

i=1

ri

L
M

(
πρi , φ

)
: ρi ∈ Sn,J , ri ∈ [L], ri ≥ γL,

∑
k

i=1
ri = L

}
∗ Για κάϑε µείγµα MallowsM′ ∈M , πάϱαξε N

′
i.i.d.

τυχαία permutations σ
′
1
, . . . , σ

′
N ′

από τοM′.

Υπολόγισε την εµπειρική περιθώρια κατανοµή M′
N ′

∣∣∣
J

= 1

N ′

∑
N
′

m=1
δσ′m |J

.

∗ Αν για κάποιοM′ =
∑
k

i=1

ri

L
M

(
πρi , φ

)
∈M ισχύει ότι

TV
(
M′

N ′

∣∣∣
J
,MN |J

)
≤ η/2,

επίστρεψε το σύνολο των σχετικών κατατάξεων

{
πρi ‖J : i ∈ [k]

}
.

Μάϑηση Selective µειγµάτων Mallows

Παϱαπάνω είδαµε πώς γίνεται η µάϑηση µειγµάτων Mallows από πλήϱη δείγµατα. ΄Οταν τα

δείγµατα είναι ελλιπή το πϱόϐληµα δυσκολεύει και µάλιστα µποϱεί να γίνει µη επιλύσιµο.

Συγκεκριµένα µποϱεί να παραβιαστεί το identifiability που ίσχυε στην πεϱίπτωση των πλήϱων

δειγµάτων. Επιστρέφουµε στην ορίζουσα του Zagier µε ένα παϱάδειγµα που αναδεικνύει το

πϱόϐληµα αυτό.

Θεωϱούµε την πεϱίπτωση τϱιών αντικειµένων. Πϱώτα υποθέτουµε ότι τα δείγµατα είναι

πλήϱη. Τότε έχουµε:

A =



1 φ φ φ
2

φ
2

φ
3

φ 1 φ
2

φ
3

φ φ
2

φ φ
2

1 φ φ
3

φ
2

φ
2

φ
3

φ 1 φ
2

φ

φ
2

φ φ
3

φ
2

1 φ

φ
3

φ
2

φ
2

φ φ 1


det(A) = −(φ2 − 1)7(φ2 − φ + 1)(φ2 + φ + 1) , 0 ∀φ ∈ (0,1)

Στη συνέχεια υποθέτουµε ότι τα δείγµατα είναι ελλιπή. ∆εδοµένου ότι έχουµε µόνο 3 αντικεί-

µενα, τα ηµιτελή δείγµατα µποϱούν να είναι µόνο συγκρίσεις ανά Ϲεύγη. Κατασκευάζουµε

τον πίνακα A µε γραµµές που αντιστοιχούν σε µεταθέσεις στο Sn και στήλες σε συγκρίσεις

κατά Ϲεύγη στοιχείων του 1,2,3.
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A =



1 1 φ φ 1 φ

1 1 1 φ φ φ

φ φ 1 1 φ 1

1 φ 1 1 φ φ

φ φ φ 1 1 1

φ 1 φ φ 1 1


det(A) = 0 ∀φ ∈ (0,1) ⇒ το identifiability παραβιάζεται.

Το επόµενο ϑεώϱηµα συνοψίϹει τα αποτελέσµατά µας ως πϱος το identifiability στο σενάϱιο

ελλιπών δειγµάτων. Κάνουµε την υπόθεση των Mao et al. ότι τα spread parameters είναι

όλα ίσα µεταξύ τους.

Θεώρηµα 5. (Identifiability)

• Αν για όλα τα ελλιπή rankings π µήκους 2 · blog2(k)c + 3 ισχύει ότι

1. f (J) , 0, όπου J το σύνολο των αντικειµένων του π και

2. M1(π) = M2(π)⇔
∑
k

i=1
w1,i ·

φ
dKT (π1,i |J ,π)

Z (φ,|J |) =
∑
k

i=1
w2,i ·

φ
dKT (π2,i |J ,π)

Z (φ,|J |)

τότε το {(w1,1, π1,1), (w1,2, π1,2), ...(w1,k , π1,k)} και το {(w2,1, π2,1), (w2,2, π2,2), ...(w2,k , π2,k)}
είναι ίσα σαν σύνολα.

• Αν l < 2(blog2(k)c +1), τότε υπάϱχουν δύο µείγµατα M1, M2 µε διαϕοϱετικά σύνολα

κεντϱικών rankings και M1(π) = M2(π),∀π µε µήκος µικϱότεϱο ίσο του l.

Το παραπάνω ϑεώϱηµα µας εγγυάται ότι µποϱούµε να µάϑουµε το µείγµα παρατηρών-

τας δείγµατα λογαριθµικού µήκους ως πϱος k. Ιδανικά ϑα ϑέλαµε να αϱκούσαν οι απλές

διµελείς συγκρίσεις αλλά αυτό δεν είναι πάντα εϕικτό. Στην απλή αλλά ενδιαφέρουσα

πεϱίπτωση των δύο κέντρων είναι η εϕικτή η µάϑηση από διµελείς συγκρίσεις.

Θεώρηµα 6. (Μάϑηση Μείγµατος ∆ύο Κέντρων Από ∆ιµελείς Συγκρίσεις)

΄Εστω µείγµα δύο κέντρων µε κοινή παϱάµετϱο φ. Υποθέτουµε ότι το µείγµα είναι a−µη

εκφυλισµένο, δηλαδή |wi − 0.5| > a, wi > a, για i=1,2 και φ < 1 − a. Τότε µποϱούµε να

µάϑουµε τα δύο κεντρικά rankings επακϱιϐώς µε πιθανότητα τουλάχιστον 1−ϸ, χρησιµοποιών-

τας O

(
nlog(n)·log(n/ϸ)

a4

)
δείγµατα διµελών συγκρίσεων.

Επιστϱέϕουµε στην πεϱίπτωση των k κέντρων. Μια εναλλακτική µέϑοδος του parameter

cover που επιχειϱεί η suborder µέϑοδος που είδαµε παραπάνω είναι να δοκιµάζουµε εξ-

αντλητικά διαφορετικoύς τϱόπους να συσταδοποιήσουµε τα δείγµατα σε k οµάδες. Αν η

κάϑε οµάδα περιέχει τον αριθµό δειγµάτων που απαιτεί ο εκτιµητής ϑέσης των Caragiannis

et al. τότε κάποια από τις υποψήφιες συσταδοποιήσεις ϑα δώσει το σωστό σύνολο κεντρικών

rankings αν εφαρµόσουµε εσωτεϱικά σε κάϑε συστάδα τον εκτιµητή ϑέσης. Η µέϑοδος αυτή

είναι µάλιστα ϕιλική ως πϱος τα ελλιπή δείγµατα αϕού ο positional estimator λειτουργεί και

µε είσοδο ελλιπή δείγµατα. Το παϱακάτω ϑεώϱηµα συνοψίϹει το αποτέλεσµά µας.
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Θεώρηµα 7. (Sample Grouping vs Parameter Cover)

΄Εστω ένα µείγµα M µε κέντϱα {c1, c2, ...ck}. ∆εδοµένων N = O

(
r

γ
+
ln(k/ϸ)
γ2

)
δειγµάτων του M,

όπου r = O

(
log(k·n/ϸ)

(1−φ)2

)
και γ = min{wi}, µποϱούµε να κατασκευάσουµε ένα σύνολο C ⊆ Sk

n

σε χϱόνο O

(
N
k(r+1)

(r!)k

)
, το οποίο µε πιϑανότητα τουλάχιστον 1 − ϸ πεϱιέχει το σωστό συνδυασµό

κέντϱων {c1, c2, ...ck}.

Μια µέϑοδος cover ϑα έκανε αντ’αυτού (n!)k ελέγχους υποψήφιων µοντέλων. Η εξάϱτηση της

δικής µας µεθόδου από το n είναι πολύ πιο ήπια, ενώ ο αριθµός των ελέγχων παραµετροποιεί-

ται και από άλλες παϱαµέτϱους εκτός του n και του k. Αν για παϱάδειγµα το φ είναι µικϱό

ο χώϱος αναϹήτησης της µεθόδου µας συρρικνώνεται, ενώ η µέϑοδος cover των Mao et al.

δεν προσαρµόζει την πολυπλοκότητα της στο φ.

Τέλος, παρουσιάζουµε δύο αποτελέσµατα µας που αϕοϱούν διαχωρίσιµα µείγµατα. Το

πϱώτο ϑεώϱηµα αξιοποιεί τη διαχωρισιµότητα που επιϕέϱει η µικϱή διασπορά (µικϱό spread

parameter) ενώ το δεύτεϱο τη διαχωρισιµότητα µε την έννοια ότι οι αποστάσεις µεταξύ δι-

αφορετικών συνιστωσών είναι επαϱκώς µικϱές σε σχέση µε τις "ακτίνες" των συνιστωσών του

µείγµατος.

Θεώρηµα 8. ΄Εστω µείγµα µε ϐάϱη ανάµιξης w1, ...wk και παϱάµετϱο φ τέτοια ώστε min{wi}−

φ = g > 0, µε το g να ϑεωϱείται γνωστό. Τότε εκτελώντας n
2 · k adaptive queries πάνω σε

υποσύνολα µήκους O(k) των αντικειµένων και δεδοµένου ότι το σύνολο επιλογής του κάϑε

query εκπϱοσωπείται σε τουλάχιστον N δείγµατα, όπου N = O(log(n · k/ϸ)/(g2)), µαϑαίνουµε

τα κέντϱα του µείγµατος επακϱιϐώς µε πιϑανότητα τουλάχιστον 1 − ϸ .

Θεώρηµα 9. ΄Εστω ένας µηχανισµός επιλογής που αϕαιϱεί m αντικείµενα µε πιϑανότητα

p(m). Υποϑέτουµε ότι διαϑέτουµε N = O

(
r

γ
+ L

γ2

)
δείγµατα, όπου L = ln

(
k

ϸ

)
, γ = mini{wi}

και r = O

(
log(k·n/ϸ)

(1−φ)2

)
. Επίσης, ϑεωϱούµε ένα πιϑανοτικό άνω ϕϱάγµα mcr για τον αϱιϑµό των

αϕαιϱούµενων αντικειµένων, για το οποίο
∑mcr

m=0
p(m) > ϸ/N. Αν η ελάχιστη ΚΤ απόσταση a

µεταξύ δύο κέντϱων του µείγµατος ικανοποιεί τη συνϑήκη a > (2n − mcr + 1)mcr/2 + 4dmax ,

όπου dmax = O

(
[log(N) + nlog(n) − log(ϸ)] /log( 1

φ
)
)
, τότε µποϱούµε να µάϑουµε τα κέντϱα του

µείγµατος επακϱιϐώς µε πιϑανότητα τουλάχιστον 1 − ϸ.
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Chapter 1

Introduction

Social choice theory is a framework for analysis of combining individual opinions, prefer-

ences, interests, or welfares to reach a collective decision or social welfare in some sense.

Social choice theory dates from Marquis de Condorcet’s formulation of the voting paradox

(late 18th century). The Condorcet paradox is a situation in which societal preferences

can be cyclic (conflicting) , even if individuals’ preferences are acyclic (transitive). In an

election with only two candidates, where each voter has a preference for one candidate

over the other, the majority selection rule works fine, giving an order of the two candidates

that agrees with the majority of the voters preferences and is self-consistent. However

this is not always possible when the number of candidates exceeds two. An example of

the paradox is the following:

Suppose we have candidates A,B and C and three voters. The following table presents

the individual preferences of the voters.

Individual Preferences

Voter First preference Second preference Third preference

Voter 1 A B C

Voter 2 B C A

Voter 3 C A B

The majority of the voters prefer A to B, B to C and C to A. The resulting collective

preference A>B>C>A is cyclic and thus inconsistent. This paradox indicates the need

for more complex and robust voting mechanisms like score voting. Another interesting

question arising is whether the voting mechanism is truthful, that is whether the voters

have an incentive to give a vote that doesn’t fully agree with their individual beliefs in or-

der to promote a specific outcome of the election. However, this perspective of the voting

problem is rather game theoretic and is out of the scope of this work.

Kemeny’s rule is a more meaningful and effective way of aggregating ranking samples.

Given a sample profile {σ1, σ2, ...σN } ∈ S
N

n
, Kemeny’s rule chooses the following ranking τ

as an estimation of the collective preference: τ = argminτ∈Sn

∑
N

i=1
dKT (τ, σi). This calcula-

tion can be viewed as finding the median of the samples in the metric space of the set
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Sn with the Kendall Tau distance as the l1 norm and has been proved to be an NP-Hard

problem. Moreover Kemeny’s rule is equivalent to finding a maximum likelihood estima-

tion assuming that our observations were generated by a Mallows Model. dKT (σ, π) is a

distance metric in Sn, the set of permutations of n items, and is equal to the number of

pairwise comparisons that are discordant between σ and π. Mallows Model is a ranking

distribution in Sn parametrised by a central permutation π
∗

that assigns to each permu-

tation σ a probability exponentially proportional (decreasing) to dKT (σ, π∗).

Another important issue in ranking aggregation is the incompleteness of the individ-

ual preferences. Take for example a set of movies and a group of people ranking them

on an online platform. Each user has to give a preference order of the movies accord-

ing to their personal taste. However, some users might not have a clear opinion about

some movies or they might have not seen them at all, making them unable to include

these movies in their preference list. This results in incomplete preference lists of the

individuals. Apart from that, it gets increasingly difficult for the users to construct a

single ranking of the movies as the number of the movies increases. Instead they would

rather break their decisions into smaller comparisons (pairwise, 3-wise, etc). Again, it

might be impossible for the users to decide for some of the movie comparisons. Finally

we simply can’t demand the users to give a ranking of every single movie they know,

as this would be too burdensome for them. These limitations underline the need for a

so-called selective model where each sample is a permutation of some randomly selected

subset of the full set of items or a set of pairwise comparisons between items of the full set.

Next, we are going to explain the importance of assuming mixtures of ranking models

rather than single models for the whole population. Populations may be heterogeneous,

which implies that more than one collective preferences should be estimated, one for each

cluster. Women for example might have similar movie tastes with each other and men

might have similar tastes as well but the taste of men might be significantly different than

the taste of women. In this case, estimating a single collective preference for the whole

population with some method like Kemeny’s rule would fail to express the ground truth

of the population and on a more technical level the estimated distribution that should

model the behaviour of the population would be too simplistic and thus fail to fit the sam-

ples with adequate accuracy. The idea of mixtures has been widely used to other kind of

data as well, for example mixtures of Gaussians for feature vectors. A number of simple

base models are superimposed to construct a more complex distribution, with more free

parameters (and thus greater expressivity) to be fitted into the sampled data. Assuming

a mixture rather than a single generative model drastically increases the difficulty of our

problem because for each sample we have to guess its ’label’, the id of the underlying

cluster it has come from in order to assign it to its correct group of similar samples. The

closer the underlying centers are and the more variance the samples have around these

centers, the more difficult it becomes to classify the samples into clusters. Incomplete-

ness of the samples also plays a major role in separability making it even impossible to

identify the latent centers if the samples are too short meaning that different clustering
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solutions would be equivalent in fitting the observed incomplete data.

Probabilistic models on rank data have been widely studied in the last decades. The

following surveys cover much of the progress in this field : [7], [8] and [9]. Many ranking

generative models have been proposed, such as the Mallows model [10] and its gener-

alisations and the parametric models of [11],[12], [13], [14] and [15]. In this work we

focus on the Mallows model. The Mallows model has been studied extensively in the last

decades and this research led to various theoretical results. Braverman and Mossel in

[16] proposed an efficient algorithm for computing the MLE of the central ranking with

small error and high probability. We will present their work in detail in chapter 3. Tang

in [17] studies the statistical properties of the MLE for the classical Mallows’ φ model, as

well as the Infinite Generalised Mallows model. He proves the biasedness of the spread

parameter for the Mallows’ φmodel and the IGM with a single parameter. He also provides

an upper and a lower bound for the convergence rate of the MLE of the central ranking to

the correct value, in the case of the classical Mallows’ φ model. Both bounds concern the

probability that the MLE is different than the central ranking and they are exponentially

decreasing on the number of samples. Another direction is exactly recovering the central

ranking with high probability using an adequately large sample collection ([2], [18]) and

estimating the spread parameters [3]. The authors provide lower and upper bounds for

the sample complexity of the reconstruction. We will see some of these results in chapter

3.

In this work we consider two ways of generalising the classical Kendall-Mallows’ φ model.

Firstly, we assume that samples are incomplete in the sense of [19]. In fact, we consider

the random selection mechanism of [20]. Secondly, we assume that the latent model is a

mixture rather than a single Mallows model. We will first review research in the direction

of incomplete samples. Fotakis, Kalavasis and Stavropoulos in [19] generalise the results

of [16] and [2] to the setting of incomplete samples. They show that the positional esti-

mator, which effectively applies to incomplete samples, can replace the average position

estimator that requires complete samples, sharing similar convergence identities. This

way, the central ranking reconstruction problem can be solved and a good initialisation

can be found for the local search for the MLE calculation, similarly to [16]. Moreover, the

authors study the problem of learning the top-k alternatives of the central ranking using

incomplete samples. The task breaks down into learning the identities and the relative

order of these items. Asymptotically tight upper and lower bounds are provided for the

sample complexity of this task. Hajek et al. in [21] study a selection mechanism that se-

lects subsets of a fixed length uniformly at random. They analyze a rank-breaking scheme

that decomposes partial rankings into pairwise comparisons. They show that even if one

applies the mismatched maximum likelihood estimator that assumes independence (on

pairwise comparisons that are now dependent due to rank-breaking), minimax optimal

performance is still achieved up to a logarithmic factor. In this work as well as in [22]

the estimator error depends on the spectral gap of the Laplacian of the comparison graph

constructed by the samples (nodes correspond to items, edges to pairwise comparisons
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and edges are appropriately computed from the samples). The authors in [22] study dif-

ferent comparison graph topologies and examine their optimality. A graph is considered

optimal if for a given budget n on the number of samples the minimax risk is the smallest

(up to constants) among all graphs. It is worth mentioning that in contrast to our setting,

in the above setting the MLE problem is proved to be convex.

Now we will present related work from the field of Mallows mixtures. Awasthi, Blum

et al. in [23] were the first to provide theoretical guarantees for the efficiency of learn-

ing the mallows mixture. They provide an algorithm with polynomial sample and time

complexity that learns the parameters of a mixture of two Mallows models. Except for

the number of components, no other significant assumption is made about the model.

Chierichetti et al. in [24] study mixtures of Mallows with more than two centers, com-

mon spread parameters and arbitrary close distance between centers. They construct a

n! × n! matrix where each row corresponds to the vectorisation of a Mallows model and

each column to a different ranking on the domain of the Mallows model on n items. They

show that the determinant of this matrix is non-zero thus establishing identifiability for

an arbitrary number of components, but their proposed algorithm requires a sample com-

plexity exponential on n. They also study separable Mallows Mixtures. Liu and Moitra

in [5] establish the polynomial identifiability of the Mallows mixture making minimal as-

sumptions. They prove that learning the centers exactly and estimating the weights and

spread parameters up to some degree of precision can be done using a polynomial num-

ber of samples. The sample complexity is exponential only to the number of components,

however this parameter is generally assumed to be a small constant. Mao et al. in [6]

improve the dependency on the number of items, making it logarithmic and thus bridging

the gap between learning a single Mallows and learning a Mallows mixture, it terms of

the number of items. They also prove an optimal dependency on the spread parameter,

however working on the special case when all spread parameters are equal.

There are also many heuristic approaches to the problem. Brendan Murphy and Donal

Martin in [25] studied mixtures of Mallows models with various distance metrics (Kendall,Cayley

and Spearman). They implemented an EM variant for the fitting problem and considered

two criteria for choosing an appropriate model hypothesis class (e.g. the number of com-

ponents and the distance metric). The model choice criteria were the Bayesian information

criterion (BIC) and integrated complete likelihood (ICL). Experiments were conducted on

synthetic data. Lu Tyler and Boutilier Craig in [26] applied the EM approach proposed

by Neal and Hinton in [27] and exploited a novel Generalised Repeated Insertion Model

approach for efficient sampling from Mallows posterior distributions. This allowed them

to avoid working directly with the intractable posterior required in the E-step of the al-

gorithm and perform Gibbs sampling instead. In [28] the Affinity Propagation clustering

algorithm introduced in [29] is used to cluster the ranking samples of a Mallows Mix-

ture. Once the clustering is performed, methods for single Mallows learning are applied

inside each cluster. For the central ranking estimation, the Local Kemenization method,

which was proposed in [30], is applied. For the spread parameter estimation the authors
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propose several EM variants. The case of incomplete samples is also studied and the

Local Kemenization method is adopted in this case as well. The authors in [31] assume a

Dirichlet process mixture of Generalised Mallows Models. Samples are incomplete in the

sense of top-k observations. The authors study two Gibbs sampling inference techniques

for estimating posterior clusterings.

Learning the Mallows mixture without any assumptions is provably a difficult problem.

Thus, it is common to consider special instances that are solved with much more ef-

ficient algorithms. In [32] Chierichetti et al. studied the problem of learning uniform

mixtures of top-k Mallows models with a common spread parameter. The authors as-

sume that centers are far from each other and single-linkage clustering succeeds with

high probability for all samples. Thus, the problem is reduced to learning a single top-k

Mallows model. Fabien et al. in [33] studied concentric mixtures of Mallows models,

that is Mallows models with the same central ranking but different spread parameters.

This models a heterogeneous population in terms of confidence about a ranking opinion

(e.g. a population consisting of experts and non-experts). Interestingly, mixtures of con-

centric Gaussians are proved to be non-identifiable. The authors provide an algorithm

for clustering the samples of a mixture of two concentric Mallows models under some

separation condition of the spread parameters. They also extend the Borda algorithm of

[2] for estimating the central ranking to the case of concentric Mixtures and top-k samples.

The problem of mixture learning has been studied in ranking models other than Kendall

Mallows as well. Zhao et al. in [34] provide necessary conditions for the identifiability and

of finite mixtures of Plackett-Luce models and sufficient conditions for generic identifia-

bility. They also propose an efficient generalized method of moments (GMM) algorithm to

learn the mixture of two Plackett-Luce models and show that the algorithm is consistent.

Zhang et al. in [35] prove the generic identifiability of a range of ranking models with

two components (Plackett-Luce, multinomial logistic model with slates of size 3 and BTL).

They also provide a framework for verifying the number of solutions in a general family of

polynomial systems using algebraic geometry. Anindya et al. in [36] consider a range of

different noise models: the symmetric noise, the Heat kernel random walk under Cayley

distance and the Cayley-Mallows model. They propose an algorithm that under certain

mild assumptions applies to each of the above models and learns the unknown mixture

to high accuracy, running in O(nlogk) time.

The (polynomial) identifiability of mixture models has been studied in other kinds of

distributions as well. Teicher in [37] and [38] obtained sufficient conditions for the iden-

tifiability of a wide class of finite mixtures but these conditions do not apply in the setting

of Mallows Mixtures. Another important direction of research is learning Gaussian mix-

tures. The Mallows model is closely related to the Gaussian Distribution as they both

belong to the location-scale family. Thus, it is interesting to compare the methods and

results in the field of learning Gaussian Mixtures to those in Mallows Mixtures.
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Moitra and Valiant in [39] settled the polynomial learnability of Gaussian Mixtures, mak-

ing minimal assumptions. The authors first solve the problem of learning mixtures of

univariate Gaussian Mixtures and use this tool to tackle the multidimensional problem.

A series of projections down to one dimension is considered. An important first step is to

bring the multidimensional mixture in isotropic position, where the mean value is the all

zero vector and the variance is 1 in every direction. This way, for each random direction,

there exist two components whose projections have a polynomially large parameter dis-

tance, with high probability, and the univariate algorithm does not have to be executed

with extreme precision in this direction to distinguish them. The univariate learning al-

gorithm is applied in each projection and the estimates in different projections are used

as constraints for the multidimensional parameters, making a linear system of equations

that can be (robustly) backsolved to get estimations for the original multidimensional pa-

rameters. All projections are made on directions close to some random initial direction. In

each projection the direction changes slightly and the parameters of the mixture change

continuously. This way, one can match the components learned in one direction to those

learned in another and the equations of the system are correctly aligned.

The univariate algorithm uses the method of moments and a brute-force gridsearch over

candidate parameters. Each candidate model is compared with the samples in terms of

the first 4k-2 moments. This number of moments is proved to be sufficient because it

is connected to the number of the zero crossings of the mixture density. The univariate

algorithm performs hierarchical clustering. Initially, some Gaussians may become very

close when projected to the selected direction and they will appear as a single Gaussian.

However, in this case the variance of the single Gaussian should be very small and thus

this phenomenon can be detected. The solution is to isolate each Gaussian with small

variance and bring it to isotropic position, revealing the subcomponents.

The authors conclude that given any n dimensional mixture of k Gaussians F that is

ϸ-statistically learnable, we can output an ϸ-close (in parameter distance) estimate F̂

and the running time and data requirements of the learning algorithm (for any fixed k)

are polynomial in n, and 1/ϸ. They also prove that an exponential dependence on k is

inevitable. Recent work (e.g. [40]) focuses on sufficient conditions to overcome this de-

pendence.
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Chapter 2

Permutations and Ranking Distributions

2.1 Permutations As Mathematical Objects

2.1.1 Permutations as Functions

Definition 2.1.1 (Permutation). A permutation is an arrangement of objects in a definite

order. Technically, a permutation of a set S is defined as a bĳection from S to itself. That is,

it is a function from S to S for which every element occurs exactly once as an image value.

For example consider the set S={1,2,3}. (3,1,2) is a permutation of S and it can be written

as a function π where π(1) = 3, π(2) = 1, π(3) = 2. The inverse function π
−1

gives the

position of each element of S in the list representation of sequence π. We can also define

partial permutations, which are ordered arrangements of k distinct elements selected

from a set A, where 2 ≤ k ≤ |A|. When k is equal to the size of the set, these are the

(complete) permutations of the set. Let n = |A|. The number of (partial) permutations of S

of length k is equal to
n!

(n−k)! . Let A be some non empty set. SA is the set of all (complete)

permutations of A. If A is equal to {1,2,3, ..n} we write SA as Sn.

2.1.2 Permutations as Groups

Definition 2.1.2 (Group). Let G , ∅ and ∗ : G × G → G be a binary operation. (G, ∗) is a

group if the following three requirements, known as group axioms, are satisfied:

• Operation ∗ is associative ⇐⇒ ∀a, b, c ∈ G it holds that a ∗ (b ∗ c) = (a ∗ b) ∗ c.
• G has an identity element ⇐⇒ ∃e ∈ G : ∀a ∈ G a ∗ e = e ∗ a = a

• Every element of G has an inverse ⇐⇒ ∀a ∈ G ∃ a−1 ∈ G : a ∗ a−1 = a
−1 ∗ a = e

Three important properties, which can be derived from the above axioms are the unique-

ness of the identity element, the uniqueness of the inverse of each element and the exis-

tence of a unique solution to the equation a ∗ x = b with respect to x, where a, b, x ∈ G.

Proposition 2.1.1. Let A be a nonempty set, SA the set of all its permutations and ◦ be the

function composition operation. The structure (SA, ◦) is a group.

Proof. First we show that permutation composition is an internal operation in SA. We

consider two permutations π, σ and we want to show that the composition π ◦σ is injective
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and onto. Let x1, x2 ∈ SA. If (π ◦ σ)(x1) = (π ◦ σ)(x2) ⇒ π(σ(x1)) = π(σ(x2)) ⇒ σ(x1)) =

σ(x2)(because π is 1 − 1) ⇒ x1 = x2(because σ is 1 − 1). This implies that permutation

composition injective. We will now show that it is surjective as well. Given a permutation

y ∈ SA and the composition π ◦ σ it is possible to find x ∈ SA, such that π(σ(x)) = y,

by setting x = σ
−1
π
−1(y). Associativity is a direct consequence of the fact that function

composition is associative. The identity element of the group is the identity function

π(x) = x. As for the existence of inverse permutations this follows from the definition of

permutations as bĳective functions.

2.2 Distance Metrics

In this section we are going to present distance metrics between permutations. These

metrics are functions Sn × Sn → R that receive as argument a pair of permutations and

output a value that measures the similarity between the two permutations. The higher

the value the less similar the two permutations are. For example, consider permutations

π1 = [1,2,3,4] and π2 = [1,3,4,2]. We can easily see that the two permutations differ

but how dissimilar are they? Also, does π1 differ more from π2 than it does from another

permutation, for example π3 = [4,3,2,1]? There is no unique answer to these questions

because different permutation distance metrics can be considered, all of which make

sense intuitively, but are not equivalent. We are now going to discuss the most important

ones of these metrics.

2.2.1 Kendall Tau Distance

This distance metric is equal to the number of pairs on which the two permutations dis-

cord. More formally this can be written as follows:

dKT (π1, π2) =
∑

1≤i<j≤n

1{(π1(i) − π1(j))(π2(i) − π2(j)) < 0}

KT distance satisfies the fundamental metric axioms:

1. It is a non-negative real-valued function : dKT (π1, π2) ≥ 0

2. The identity of indiscernibles holds: dKT (π1, π2) = 0⇔ π1 = π2

3. It is symmetric: dKT (π1, π2) = dKT (π2, π1).

4. The triangular inequality is satisfied: dKT (π1, π3) ≤ dKT (π1, π2) + dKT (π2, π3).

The KT distance is minimised at 0, when the two permutations are equal and it is

minimised at
n(n−1)

2
, when the two permutations are reversals. It can be computed in

O(n2) using a naive algorithm. By employing divide and conquer it can be sped up to

O(n · log(n)). Using the Van Emde Boas tree data structure the computation can be done

in O(n ·
√

(log(n))).

• One important property of the KT distance is its independence of relabeling. In partic-

ular dKT (π1, π2) = dKT (π1σ, π2σ), where π1, π2, σ ∈ Sn and πσ(i) = π(σ(i)),∀i ∈ [n].
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• Another important property of the KT distance is swap increasingness.

That is dKT (πi↔j, σ) ≥ dKT (π, σ) + 1, where i, j ∈ [n] are items , such that the pair(i,j) is the

same order in π as in σ.

To prove this property we consider two cases. Firstly, if i and j are adjacent in π,

then this pair becomes discordant and all the other pairs preserve their order. Thus,

dKT (πi↔j, σ) = dKT (π, σ) + 1. If i and j are not adjacent in π, then pair (i,j) becomes discor-

dant. However, some pairs that involve either i or j and some alternative k that is ordered

between them in π, might become concordant (with respect to σ) after the swap, while

they were previously discordant. We will show that for each such pair another pair that

was previously concordant becomes discordant, so in total these pairs do not decrease the

distance. WLOG we assume that i>j in both π and σ. Consider an item k such that i>k>j

in π and after the swap (i,k) becomes concordant. This means that k>i in σ and since

i>j in σ then k>j in σ. Consequently, (j,k) becomes discordant after the swap. Similar

arguments hold for the pairs (k,j) that become concordant.

One interesting question concerning the KT distance is how many permutations lie of the

hypercircle of radius r. Consider a fixed permutation of reference π ∈ Sn. We would like

to know the number A(n,d) of permutations σ ∈ Sn that satisfy the equation dKT (π, σ) = d.

This is a combinatorial problem and the solution has been proved to be the following:

A(n, k) =


1 n = 1, k = 0

0 n < 0, k < 0 or k >
n(n−1)

2∑
n−1

j=0
A(n − 1, k − j) otherwise

The recursion step can be done in an equivalent but more efficient way:

A(n,k) = A(n,k-1) + A(n-1,k) - A(n-1,k-n).

Unfortunately, no closed form expression can be derived for the two-dimensional sequence

A(n,k), which is called the Triangle of Mahonian numbers.

In chapter 5 we discuss some useful properties of the Mahonian numbers, for example

symmetry and we try to provide some convenient closed form bounds for these num-

bers. One property of the Mahonian numbers that is worth mentioning (although it falls

outside the scope of our contribution) is the relation to the "Major Index". In particular

A(n,k) is also equal to the number of permutations π = (π(1), ..., π(n)) of {1..n} such that∑
i:π(i)>π(i+1) = k. In this case k is called the Major index of π. For more information on

the Mahonian numbers one can visit the The On-Line Encyclopedia of Integer Sequences

(OEIS) and look up sequence number A008302.

2.2.2 Other distances

Hamming distance

This distance metric counts the number of positions at which the two permutations differ.

dHam(π1, π2) =
n∑
i=1

1{π1
−1(i) , π2

−1(i)}

This metric fails to capture how great the displacement of each element is. It only con-
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siders the existence of a displacement. For example, rotating a permutation by one step

to the right, or swapping adjacent elements (item2i−1 ↔ item2i ,∀i ∈ [n/2]) has the same

effect as reversing the permutation. However, in most cases this is counter-intuitive be-

cause the former actions lead to rankings similar to the initial one, while the latter gives

a permutation utterly different from the initial. We will now present a metric that takes

the dislocation of each element into account.

Spearman’s footrule

This metric sums the absolute dislocations of the items between their position in the first

permutation and their position in the second permutation.

dSf (π1, π2) =
n∑
i=1

|π1(i) − π2(i)|

An important inequality holds for the KT distance and the Spearman’s footrule as shown

in [41]. The inequality is the following: dKT (π1, π2) ≤ dSf (π1, π2) ≤ 2dKT (π1, π2),∀π1, π2 ∈

Sn and it is tight.

2.3 Ranking Distributions

2.3.1 The Mallows Model

This model resembles the normal distribution but instead of vectors it is defined on ele-

ments of Sn. Like the normal distribution, the Mallows model is described by a central

parameter and a spread parameter. The probability assigned to each element in the sup-

port set is inversely proportional to an exponential of the distance between the element

and the central parameter and the base of this exponential depends on the spread pa-

rameter. More formally, if a random permutation π ∈ Sn follows the Mallows distribution

M(π0, φ), then P[π = σ] =
φ
d(π0 ,σ)

Z (φ,n) .

• π0 ∈ Sn is the central permutation of the model. It expresses the underlying "ground

truth" about the preferences of the population and it is the most probable permu-

tation in the support set (the mode of the model).

• φ ∈ (0,1) is the spread parameter. The higher its value, the more dispersed the sam-

ples are around the central permutation. In the extreme case where φ approaches

zero, the only sample with a non zero probability of appearance is the central per-

mutation, so a constant distribution is formed. In the opposite extreme case, where

φ approaches one, all permutations in Sn have the same probability to appear, so

the Mallows model degenerates into a uniform distribution over Sn.

• d : Sn×Sn → R is some distance metric, for example the KT distance, the Spearman’s

footrule or the Hamming distance. In this work we focus exclusively on the KT

distance.

• Z (φ, n) is the normalisation constant, which makes the density function sum to 1

so that it expresses probability. In our case, where d is the KT distance, Z (φ, n) =
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n∏
i=1

Zi(φ) =
n∏
i=1

(
i−1∑
j=0

φ
i

)
= 1

(1−φ)n−1

n∏
i=2

(1 − φi).

We will now discuss two generating mechanisms, which produce permutations that follow

the Mallows distribution. This concept is interesting for two reasons. Firstly, the Mallows

Model is proved to be equivalent to some other models, which do not seem similar to it at

first glance. Secondly, two sampling algorithms are provided, one of which is an efficient

one that is used in practice in order to generate synthetic samples from a Mallows Model.

Nicolas de Condorcet studied probabilistic rankings two centuries earlier than Mallows

and Kemeny, in the context of collective political decision making (Condorcet, 1785). Ac-

cording to Condorcet, members of society, or voters, express their opinion in the form

of a ranking over choices. These choices (e.g policies) affect the society and one has to

judge them by their benefits and consequences. Condorcet assumed that some (latent)

objective ranking orders choices from most to least beneficial to society and that each

voter is able to provide an independent, random comparison of any pair of choices: if a

> b, in the objective ranking, a voter will (correctly) vote for a against b with probability

1-p, or (erroneously) vote for b against a with probability p, where p<1/2.

Pairwise Comparison Sampling of Mallows

(Condorcet noisy ranking process)

1. Let π0 be the reference ranking and 0 ≤ p ≤ 1/2.

2. Initialize v ← ∅.

3. For each pair of items x, y in A, such that x>y in π0:

(a) with probability 1-p add x>y to v,

(b) otherwise add x<y to v.

4. If v is intransitive, go back to step 1 and start over.

5. v is transitive and corresponds to a ranking.

The distribution deriving from the above procedure is the following:

P(v |π0, p) =
1

Z ′

∏
{x,y}⊆A

 p if v and π0 disagree on x, y

1 − p otherwise

P(v |π0, p) = 1

Z ′
p
d(v,π0)(1 − p)s(v,π0) = 1

Z ′
p
d(v,π0)(1 − p)(

n

2
)−d(v,π0) = 1

Z ′
(1 − p)(

n

2
)
(
p

1−p

)d(v,π0)
.

We set φ =
p

1−p
and notice that

Z
′ = (1 − p)(

n

2
)
(
1 +

p

1 − p

) 1 +
p

1 − p
+

(
p

1 − p

)2
 ... 1 + ...

(
p

1 − p

)n−1
 (2.1)

= (1 − p)(
n

2
)
Z

(
p

1 − p
, n

)
(2.2)

Thus, P(v |π0, p) =M(π0, φ)(v).
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The Condorcet/Mallows sampling procedure did not originate from a demand of efficient

sampling algorithms but an attempt to model voting procedures. As a result, it happens

to be computationally inefficient, since it relies on rejection of partially constructed rank-

ings as soon as a single circular triad (a > b > c > a) is drawn. The Repeated Insertion

Sampling method provides an efficient alternatives and shows the relation between the

Mallows and the RIM model, which we will discuss later.

RIM Sampling of Mallows

1. Let π0 be the reference ranking and φ the spread parameter.

2. Start with an empty ranking r.

3. For i = 1..n:

• Insert π0[i] into r at rank position j ≤ i with probability φ
i−j
/(1 + φ + ... + φi−1)

The above algorithm produces a sample r that follows the Mallows distributionM(π0, φ).
The complexity of the algorithm is equal to the total number of Bernoulli draws that

take place. The worst case complexity is O(n2), the same as insertion sort). However,

the average-case time complexity can be much smaller, since insertions at each stage

of the algorithm are likely to occur near the bottom of the partial ranking. The ex-

pected time complexity of the algorithm is proportional to

n∑
i=1

(∑
i−1

j=0
(j+1)φj∑
i−1

j=0
φj

)
=

n∑
i=1

(
1

1−φ
− iφi

)
≤

n(1+φn+1)
1−φ

−
φ(1−φn)
(1−φ)2 . Thus the average complexity is O

(
min

{
n(1+φn+1)

1−φ
−
φ(1−φn)
(1−φ)2 , n

2

})
.

2.3.2 The Mallows Mixture Model

The Mallows Mixture ModelM is parameterized by its set of central permutations πi , the

weights wi and spread parameters φi corresponding the the centers πi . The probability

mass function of the Mallows mixture is:

M(π = σ) =

k∑
i=1

wi ·
φi
dKT (πi ,σ)

Z (φi , n)

Each central permutation πi is a distinct permutation of n items (πi ∈ Sn and πi , πj for

i , j ). The weights wi are non negative and sum to one (
∑
k

i=1
wi = 1 ). The sampling

process has two steps. Firstly, a center i ∈ [n] is chosen with probability wi . Then, a

permutation is sampled from the single Mallows ModelM(πi , φi) as analysed in previous

chapters. In the scope of this work all spread parameters are supposed to be equal

(φi = φ∀i ∈ [n]).

2.3.3 The Selective Mallows Model

The probability mass function of this model is P[π = σ] = f (s) · φ
dKT (π0 ,σ)

Z (φ,|s|) , where s is the set

of items found in σ. Each observation π is a permutation of the items appearing in its
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corresponding selection set s. f(s) is the selection mechanism, a probability function that

assigns a probability of selection to each subset of the full set of items [n]. π0 is the central

permutation of the model and it is complete (it contains all the items in [n]). dKT (π0, π) is

the Kendall’s Tau distance between the central permutation and the sample. It needs to

be redefined because the sample is possibly incomplete. A natural generalisation of the

classical definition is the following:

dKT (π0, π) =
∑

a,b∈s∧a<b

1{(π0(a) − π0(b)) · (π(a) − π(b)) < 0}

What differs is that the sum counts discordant pairs (a,b) where a, b ∈ s, rather than

a, b ∈ [n], where s is the selection set.

There is also another (less realistic) version of the selective Mallows Model, where the

sampling process first draws a complete sample from the latent Mallows Model M and

then projects it into some random selection set s. In this case the pmf is written as

follows:

fM |s(π) = Pσ∼M {σ |s = π} · f (s)

Definition 2.3.1. A selection mechanism f(s) is said to be p-frequent with respect to l-

wise comparisons for some order l, if for all sets x ⊆ {1, ..n} with length less or equal to l

P{x ⊆ s} ≥ p ⇔ ∀x
∑
x∈s f (s) ≥ p.

2.3.4 The Selective Mallows Mixture Model

This model combines the properties of the selective Mallows model and the Mixture Mal-

lows model. It is a mixture model, because a collection of distinct centers {π1, ...πk} rather

than a single central ranking is assumed. It is also selective because samples generated

by this model do not contain all possible alternatives but a random subset J of them,

which is given by a selection mechanism f (J) for each sample. The probability mass

function of the model is the following:

M(π = σ) = f (J) ·
k∑
i=1

wi ·
φ
dKT (πi‖J ,σ)

Z (φ, |J |)

The sample generating process consists of three steps. In the first step, selection mech-

anism f (J) selects a random subset J of items in [n] with probability f (J). Then one

of the k components of the mixture is activated with probability given by the mixing

weights. Component i has probability wi to be activated each time a sample is drawn.

Finally, a random permutation π of the items in J is drawn from the Mallows Model

Mi(π) =
φ
dKT (πi ‖J ,π)

Z (φ,|J |) , where i is the index of the activated component. Notice that center πi is

restricted on J (πi‖J ) and the KT distance function counts discordant pairs only on items

appearing in J .

We can also define a version of the Selective Mixture model that first draws a complete

sample from a latent complete Mallows Mixture Model M and then projects it into some
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random selection set s. The pmf is written as follows:

fM |s(π) = Pσ∼M {σ |s = π} · f (s)

2.3.5 The RIM Model

In this model samples are generated by an iterative procedure that inserts alternatives

into the constructed permutation one after another. The position at which each new

element is placed follows Multinoulli distribution. The probabilities of these position dis-

tributions are parameters of the model, along with the central ranking.

We consider the model RIM(π0,Π). π0 ∈ Sn is the latent "ground truth" permutation.

Parameter Π is called insertion probability function and it assigns a probability Π(i, j) to

each pair of indices (i, j), 1 ≤ j ≤ i ≤ n, such that
∑
i

j=1
Π(i, j) = 1 for all i in {1,2, ...n}. A

random ranking r ∼ RIM(π0,Π) is generated by the following randomized process:

RIM Sampling

1. Let π0 be the reference ranking and φ the spread parameter.

2. Start with an empty ranking r.

3. For i = 1..n:

• Insert π0[i] into r at rank position j ≤ i with probability Π(i, j)

Note that the insertion position of each π0[i] is probabilistically independent of the po-

sitions of the previous items π0[1], ..., π0[i − 1]. We also observe that every insertion

sequence results to a unique ranking.

2.3.6 The Plackett-Luce Model

The Plackett-Luce model was introduced independently by the two scientists it is named

after, [14],[15]. It is different from the aforementioned models in the sense that no ref-

erence permutation is assumed. Instead the alternatives are assumed to have different

values wi and the probability they are chosen is proportional to these values. The model

is parameterized by the vector of weights W = (w1, ...wn) ∈ [0,1]n, such that
∑
n

i=1
wi = 1.

The sample generation process is performed in n rounds. In i-th round the alterna-

tive that will be placed in position i is picked with probability that is proportional to its

weight. The probability mass function of the model is:

P[π = σ] =

n∏
i=1

 wσ−1(i)∑
n

j=i wσ−1(j)


The mode of this distribution is the ranking that places the alternatives in decreasing

order of weights. σ
∗ = argsorti∈[n]{w1, ..., wn}. An interesting property is that P[π(i) <

π(j)] =
wi

wi+wj
, for π ∼ PL(w). In this model dispersion is related to the variance of the

weights. The closer the weights are to a uniform vector [ 1

n
, ...

1

n
], the closer the ranking

distribution is to a uniform over Sn.
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Chapter 3

Distribution Learning

3.1 Definition of Learnability and Parameter Estimation

A class of distributions C is called efficiently learnable if for every ϸ > 0 and 0 < δ ≤ 1 given

access to an oracle GEN(D) that returns samples from an unknown distribution D ∈ C,

there exists a polynomial time algorithm A, called learning algorithm of C, that outputs a

generator or an evaluator of a distribution D
′
such that Pr[d(D,D′) ≤ ϸ] ≥ 1−δ, where d is

some distance metric between distributions D and D
′
, for example the TV distance or the

KL divergence, which we will discuss later in this chapter.If we know that D
′ ∈ C then A

is called a proper learning algorithm, otherwise it is called an improper learning algorithm.

In some cases each distribution D ∈ C is uniquely identified by a set of parameters.

For example, the class of univariate Gaussian distributions N(µ, σ2) is parameterized by

the pair (µ, σ). Different values of (µ, σ) give different distributions D ∈ C, covering the

whole class C. In this case algorithm A should be able to estimate the parameters (µ, σ)
and we would call it a parameter learning algorithm.

3.2 PAC Learning

PAC-learning is a theoretical framework introduced by Valiant in [42] to study learning

problems. In learning problems one aims to find the way in which elements of one set

X are mapped on another set Y, the label set. We assume that a function f : X → Y

performs this mapping and we aim to approximate this function by using a finite number

of samples as input to a learning algorithm. The input consists of pairs (x,y), where

x ∈ X and y = f (x) ∈ Y . If no assumption is made about f all we can infer is what the

sample data directly suggest and no generalisation is possible. The assumption we have

to make is that f has a particular form and is in a particular class H of functions, called

a hypothesis class, H ⊆ YX . We also assume that there is an unknown distribution D

over the domain X which generates the samples and the samples are iid, so for each

independent pair (x,y) x ∼ D and y=f(x). In order to quantify how good an estimation h of

the function f is, we define loss functions LD,f (h) which output a non negative real number.

The smaller this number is, the better the estimation of f. For example a loss function

could be LD,f (h) = Prx∼D[h(x) , f (x)]. We can also define the loss function l empirically
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on a group S of samples (l : H × S → <+
). In this case the theoretical framework focuses

on the expected value of the loss over the distribution D of samples S. We are interested

in hypothesis classes H that allow us to approximate f with as small error ϸ we want with

probability at least 1 − δ, given enough samples. Then H is called PAC-learnable.

Definition 3.2.1 (PAC Learnability). Let H ⊆ {0,1}X be a hypothesis class of functions

f : X → {0,1}. H is called PAC learnable with respect to a loss function L, if there exists a

sample complexity N = N(H, ϸ, δ), where ϸ, δ ∈ (0,1) such that for any ϸ, δ ∈ (0,1), every

distribution D over X and every labeling function f : X → {0,1}, there exists an algorithm

that given an input of size at least N(H, ϸ, δ) of i.i.d. samples generated by D and labeled

by f, returns with probability at least 1 − δ a hypothesis h ∈ H with LD,f (h) ≤ ϸ

3.3 Information Theory

3.3.1 KL Divergence and TV Distance

The Total Variation Distance between two discrete distributions P an Q is defined as

dTV (P, Q) = sup{|P(A)−Q(A)| : A ∈ F }, where F is a sigma-algebra of subsets of the sample

space Ω.

A sigma-algebra on a set Ω is a collection Σ of subsets of Ω satisfying the following condi-

tions :

(1) it includes Ω itself,

(2) it is closed under complement,

(3) it is closed under countable unions and

(4) it is closed under countable intersections.

The supremum is achieved at either A = {x : P(x) ≥ Q(x)} or its complementary set

A
c
.

But P(A) − Q(A) + P(Ac) − Q(Ac) = 0.

Thus, dTV (P, Q) =
∑
x∈A

(P(x) − Q(x)) = 1

2

( ∑
x∈A

(P(x) − Q(x)) +
∑
x∈Ac

(Q(x) − P(x))
)

=

1

2

( ∑
x∈A

|P(x) − Q(x)| +
∑
x∈Ac
|P(x) − Q(x)|)

)
= 1

2

∑
x∈Ω

|P(x) − Q(x)|

In conclusion, an alternative expression for the TV distance between two discrete dis-

tributions P and Q is dTV (P, Q) = 1

2

∑
x∈Ω

|P(x) − Q(x)|, which is more practical than the

formal definition that states that the TV distance between two distributions is the largest

possible difference between the probabilities that the two distributions can assign to the

same event.

Another distribution distance metric is the Kullback–Leibler divergence. It is defined

as the relative entropy from the one distribution to the other:

DKL(P ||Q) =
∑
x∈Ω

P(x)
P(x)
Q(x)
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We observe that KL divergence is not a proper distance metric, because it is not symmet-

ric. DKL(P ||Q) can be different from DKL(Q||P). We also observe that it is defined only if for

all x in sample space Ω, Q(x) = 0 implies P(x) = 0. However P(x) can be zero without Q(x)
being zero at the same time, because lim

P(x)→0+
P(x)log(P(x)) = 0. So, whenever P(x) = 0 the

corresponding term of distance is interpreted as zero. It can be proved that KL divergence

takes non negative values and that it is equal to zero if and only if the two distributions

it takes as input are equal.

Viewing the KL divergence from an information theoretical perspective, it is the expected

number of extra bits required to code samples from distribution P using a code optimized

for distribution Q rather than the code optimized for P.

In the context of Bayesian inference, it can be interpreted as the amount of information

lost when Q is used to approximate P. P is considered the "ground truth" distribution of

data, while Q represents a model approximating P.

Two important properties of the KL divergence are the following:

• The chain rule says that DKL(P(x, y)||Q(x, y)) = DKL(P(x)||Q(x))+DKL(P(x |y)||Q(x |y)). Con-

sequently, if P(x, y) = P1(x)P2(y), where P1, P2 are independent and similarly Q(x, y) =

Q1(x)Q2(y), where Q1, Q2 are independent, then the KL divergence is additive over the two

variables x and y: DKL(P ||Q) = DKL(P1||Q1) + DKL(P2||Q2).
•KL divergence is convex in the pair of probability mass functions (p, q), i.e. if (p1, q1) and

(p2, q2) are two pairs of probability mass functions and λ is some constant in [0,1] then

DKL(λp1 + (1 − λ)p2 || λq1 + (1 − λ)q2) ≤ λDKL(p1||q1) + (1 − λ)DKL(p2||q2).

TV distance and KL are connected by Pinsker’s inequality [43]:

dTV (P, Q) ≤

√
1

2
DKL(P ||Q)

This inequality is tight up to constant factors. However, it is trivial when DKL(P ||Q) > 2.

Bretagnolle and Huber in [44] proved a sharper inequality :

dTV (P, Q) ≤
√

1 − e−DKL (P ||Q)

3.3.2 Fano’s Inequality

Fano’s Inequality bounds the error of approximating some random variable Y using

knowledge of the correlated random variable X . The inequality involves the conditional

entropy entropy H(X |Y ). H(X |Y ) = −
∑
i,j

p(xi , yj)log
(
p(xi ,yj)
p(yj)

)
, where p(xi , yj) is the probabil-

ity that X = xi and Y = yi and p(yj) is the probability that Y = yi . Conditional entropy

expresses the amount of randomness in the random variable X given the random variable

Y .For example, if X = f (Y ), then H(X |Y ) = 0.

Let X be a random variable following distribution p(x) and let Y be a random variable
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related to X through conditional distribution p(y|x). We make an estimation X̂ of X using

function g and Y : X̂ = g(Y ). We observe that {X, X̂ , Y } form a Markov chain X → Y → X̂ .

We define error probability Pe = P{X , X̂ }. Fano’s Inequality states that:

H(Pe) + Pelog|X| ≥ H(X |X̂ ) ≥ H(X |Y )

where X denotes the support domain of X and H(Pe) is the error binary entropy:

H(Pe) = −Pe · log(Pe) − (1 − Pe) · log(1 − Pe).

A weaker version of the inequality is the following:

1 + Pelog|X| ≥ H(X |Y )

More material on the topic can be found in Fano’s textbook [45].

3.4 Concentration Inequalities

3.4.1 Markov’s Inequality

Let X be a non negative random variable and a > 0 a positive constant. It holds that:

P{X > a · E[X ]} ≤
1

a

This inequality gives a measure of the concentration of a random variable around its

expected value without making any assumption about the distribution family. The prob-

ability of drawing samples that are multiples of the expected value is inversely proportional

to the multiplication factor applied to the expected value. These bounds do not require

knowledge of any of the parameters of the distribution, except the expected value, however

this may lead to relatively loose bounds.

3.4.2 Chebyshev’s Inequality

Chebyshev’s inequality bounds the probability that a random variable deviates far from

its mean value. While Markov’s inequality only required knowledge of the expected value,

Chebyshev’s inequality also requires knowledge of the variance. However, it does not

make the assumption that the random variable is non negative, as Markov did.

Chebyshev’s inequality can be derived from Markov’s inequality by considering the ran-

dom variable Y = (X − E[X ])2
. E[Y ] = Var(X ), by definition of variance.
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We apply Markov’s inequality on Y with a scaling of a
2

on the expected value, a > 0:

P{Y > a2 · E[Y ]} ≤
1

a2
⇔

P{(X − E[X ])2
> a

2 · Var(X )} ≤
1

a2
⇔

P{|X − E[X ]| > a · σX } ≤
1

a2

The final inequality is Chebyshev’s inequality for random variable X . Note that E[X ] must

be finite and σX non zero.

The inequality can be used to construct confidence intervals. For example, to ensure

that an interval centered on the mean value includes at least 95% of the total probability

mass, the interval must have length at least 10 times the standard deviation (a = 5).

Of course, if we had more information about the distribution of the random variable bet-

ter bounds might be provided. For example, on a univariate Gaussian it suffices to take

an interval of length 4 times the standard deviation centered on the mean to achieve a

confidence of 95% , not 10 as the Chebyshev inequality would imply. This is due to the

strong concentration property of the Gaussian. However, all random variables have some

concentration tendency according to Chebyshev’s inequality.

3.4.3 Chernoff Bounds

Other bounds derived by the the Markov inequality are the Chernoff Bounds (first ap-

peared in [46]). In particular, we consider random variable e
tX

and apply the Markov

inequality on it. Thinking of this variable as a Taylor expansion series, it captures all

orders of moments of the distribution. The more moments used the better the tail bounds

derived, because we use more information about the distribution. Under certain con-

ditions the sequence of moments can uniquely determine the distribution, through the

characteristic function φX (a) = E[exp(i · aX )], as long as the characteristic function has

an infinite radius of convergence. We observe that the characteristic equation is very

similar to the function used to derive the Chernoff bounds. The only difference is the

introduction of the imaginary unit.

The inequalities we discussed earlier used lower moments of the distribution of X so

the bounds were less tight. Markov’s inequality that only used the first moment (the

mean) provided bounds with a linear dependency on the error. Chebyshev’s inequality

used the first two moments( mean and variance) and guaranteed a tail decay inversely

proportional to the squared deviation from the mean value. The Chernoff bounds provide

exponentially decreasing bounds but require knowledge of the expected value of an expo-

nential function of the random distribution.

We will now present the way in which generic Chernoff bounds are derived.

For every t > 0 we have that P{X ≥ a} = P{etX ≥ et·a} ≤ E[etX ]
et·a

. Calculating the quantity
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E[etX ] we can minimize the RHS of the inequality with respect to t to achieve tight bounds.

An interesting case is when X is a sum of n i.i.d. random variables Xi .

Then E[etX ] =
n∏
i=1

E[etXi ], so P{X ≥ a} ≤ mint>0

{
e
−t·a

n∏
i=1

E[etXi ]
}
.

For left tail bounds we work with variable e
−tX

and yield

P{X ≤ a} ≤ mint>0

{
e
t·a

n∏
i=1

E[e−tXi ]
}
.

3.4.4 Hoeffding Bounds

In [1] the Chernoff–Hoeffding theorem is proposed, which provides exponentially decreas-

ing tail bounds for sums of independent Bernoulli variables.

Suppose X1, ...Xn are i.i.d. Bernoulli variables and X =
n∑
i=1

Xi with E[X ] = p. Then for all

a ∈ (0, n − p):
P[X ≥ p + a] ≤ e−n·DKL ( p+a

n
||
p

n
)

and for all a ∈ (0, p):
P[X ≤ p − a] ≤ e−n·DKL (1− p−a

n
||1−

p

n
)

where DKL(x ||y) = x · ln( x
y

) + (1 − x)ln
(

1−x
1−y

)
is the Kullback–Leibler divergence between

two Bernoulli distributions with parameters x and y respectively.

Theorem 2 of [1] provides exponential tail bounds for sums of independent bounded

variables.

Let X1, ...Xn be independent variables and each Xi is bounded by interval [ai , bi]. Let X̄

be the empirical mean of these variables, X̄ = 1

n
(X1 + ... + Xn). Then for t > 0:

P{X̄ − E[X̄ ] ≥ t} ≤ exp
(
−

2n
2
t
2∑

n

i=1
(bi − ai)2

)

P
{∣∣∣X̄ − E[X̄ ]

∣∣∣ ≥ t} ≤ 2exp

(
−

2n
2
t
2∑

n

i=1
(bi − ai)2

)
In this work we make extensive use of Hoeffding bounds for binomial distributions.

Let X ∼ Bin(n, p). Then:

P[X ≤ k] ≤ exp
(
−2n

(
p −

k

n

)2
)

Proof

P{X ≤ k} = P{Y ≥ n−k}, where Y is the complementary binomial variable of X (Y = n−X ).

Hoeffding inequality can be applied for binomial variable Y because it is a sum of inde-
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pendent Bernoulli variables Yi . Bernoulli variables are bounded in [0,1].

P{X ≤ k} = P{Y ≥ n − k} = P{Y − E[Y ] ≥ n − k − (1 − p)n} =

P

 n∑
i=1

Yi − E

 n∑
i=1

Yi

 ≥ pn − k
 =

P

1

n

n∑
i=1

Yi − E

1

n

n∑
i=1

Yi

 ≥ p − k
n

 ≤ exp
−2n

2
(
p − k

n

)2
n

 = exp

(
−2n

(
p −

k

n

)2
)

3.5 Learning the Mallows Model

3.5.1 Reconstructing the Central Ranking

In this section we will present some important results of [2]. Suppose we are given

a set of N samples σ1, ...σN , drawn from a Mallows Model. The samples are possibly

incomplete. We want to use these samples to estimate the latent central permutation

with high probability. For this purpose we will use a kind of pairwise majority consistent

(PM-c) estimator, called the Positional Estimator, π̂.

π̂[i] = 1 +
∑

j∈[n]\{i}

1

 N∑
k=1

1 {j > i in σk} >

N∑
k=1

1 {i > j in σk}

 , ∀i ∈ [n]

π̂ estimates the position of each item in the latent central permutation. Ties may arise,

which are broken uniformly from left to right. If N is sufficiently large, then the positional

estimator retrieves the correct latent central permutation π0 with high probability, as we

will see in the next theorem.

Theorem 3.5.1. LetM(π0, φ) be a Mallows distribution with central ranking π0 ∈ Sn and

spread parameter φ ∈ (0,1). For any ϸ > 0, given a sample profile drawn fromM(π0, φ)N

for any N at least equal to some value O

(
log(n/ϸ)
(1−φ)2

)
, the positional estimator retrieves the

central ranking π0 with probability at least 1 − ϸ.

Proof.

Samples are assumed to be complete. However a similar analysis can be made in the

selective setting. The difference is that each pairwise comparison has its own sample

complexity rather than a common complexity N . Introducing the notion of p-frequency,

N can be replaced by p · N in the analysis, where p is the frequency of the least frequent

pair in the samples.

For each pair of alternatives i, j, we let q(i � j) be the number of rankings in the sample

set, which place item i before item j. Let π̂ be the estimation of the central ranking re-

turned by the positional estimator. WLOG we assume that the latent central ranking π0

is the identity ranking and we bound the probability of the event π̂ , π0 from above.

Prr [π̂(I) , π0] ≤ Pr[∃i < j : q(i � j) ≤ q(j � i)] ≤
∑
i<j

Pr[q(i � j) ≤ q(j � i)]
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The value of Pr[q(i � j) ≤ q(j � i)] depends on the distance of items i and j in the central

ranking (or the restriction of the central ranking on the selection sets in the selective

setting). Items that are closer in the central ranking have a greater probability to swap.

The probability of swapping i and j also increases as the selection mechanism drops items

that are placed between i and j in the central ranking. To bound the probability of swap

from above we consider the worst case, where i and j are adjacent. In this case the event

of swap follows the Bernoulli distribution with parameter
φ

1+φ
. We consider N variables

X` ∼ Be
(
φ

1+φ

)
, one for each sample. Since samples are iid, Xl are also iid. We also consider

the complementary variables Yl = 1 − Xl . Then we have:

Pr[q(i � j) ≤ q(j � i)] ≤ Pr
[ ∑
l∈[N]

(Xl − Yl) ≥ 0

]
=

Pr
[

1

N

∑
l∈[N]

(Xl − Yl) −
φ−1

1+φ
≥

1−φ

1+φ

]
≤ exp

(
−2N

(
1−φ

1+φ

)2)

where the last step follows from Hoeffding’s inequality. We set ζ :=
(

1−φ

1+φ

)2
. Returning to

the overall probability of error we have:

Pr [π̂ , π0] ≤ n2 exp(−2Nζ )

We set n
2 exp(−2Nζ ) equal to the tolerance of error probability ϸ and solve for N . This

way, the desired result is obtained.

The bound for the sample complexity is in fact tight, as the following theorem states.

Theorem 3.5.2. For any ϸ ∈ (0,1/2] and any central ranking estimator, there exists a

central ranking π0 ∈ Sn such that, for any φ ∈ (0,1), the estimator, given a sample profile

drawn fromM(π0, φ)N , retrieves π0 with probability at least 1 − ϸ, only if N = Ω
(
log(n/ϸ)
log(1/φ)

)
.

Proof.

The proof is based on the idea that any estimator could mistake the latent central ranking

for some other ranking close to it, with non negligible probability.

Let π̃ be any (possibly randomized) estimator of the. central ranking. Assume that:

Pr
Π∼(Mπ0 ,φ

)N [π̃(Π) = π0] ≥ 1 − ϸ,∀π0 ∈ Sn

Let π0 ∈ Sn. We define the neighbourhood of π0 as the setN(π0) = {σ0 ∈ Sn : dKT (σ0, π0) = 1}.

The cardinality of this set is |N(π0)| = n − 1. In this proof π0 plays the role of the latent

central ranking and set N(π0) is a set of hard instances, that is instances that the esti-

mator has high to output instead of the correct one.

Moreover, for each observation π in Πob and σ0 ∈ N(π0) we have from triangle inequality

that dKT (π, σ0) ≤ dKT (π, π0) + dKT (σ0, π0) = dKT (π, π0) + 1. Thus, for any σ0 ∈ N(π0) it

holds that Pr[Πob | σ0] ≥ φN Pr[Πob | π0].
We start from the assumption about the high accuracy of the estimator and use the above

observations to obtain a lower bound about the sample complexity.
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Pr
Πob∼(Mπ0 ,φ

)N [π̃(Πob) = π0] ≥ 1 − ϸ ⇔∑
Π∈SN

n

Pr
Πob∼(Mπ0 ,φ

)N [Π = Πob] · Pr [π̃(Π) = π0] ≥ 1 − ϸ ⇔

1 −

∑
Π∈SN

n

Pr
Πob∼(Mπ0 ,φ

)N [Π = Πob] · Pr [π̃(Π) , π0] ≥ 1 − ϸ ⇔

1 −

∑
Π∈SN

n

Pr
Πob∼(Mπ0 ,φ

)N [Π = Πob] ·

 ∑
σ0∈N(π0)

Pr [π̃(Π) = σ0] +
∑

σ0∈(Sn−N(π0)−{π0})

Pr [π̃(Π) = σ0]

 ≥ 1 − ϸ ⇒

1 −

∑
Π∈SN

n

Pr
Πob∼(Mπ0 ,φ

)N [Π = Πob] ·
∑

σ0∈N(π0)

Pr [π̃(Π) = σ0] ≥ 1 − ϸ ⇒

1 −

∑
σ0∈N(π0)

∑
Π∈SNn

φ
N Pr

Πob∼(Mσ0 ,φ)
N [Π = Πob] · Pr [π̃(Π) = σ0] ≥ 1 − ϸ ⇔

1 − φN
∑

σ0∈N(π0)

Pr
Πob∼(Mσ0 ,φ)

N [π̃(Πob) = σ0] ≥ 1 − ϸ ⇒

1 − φN (n − 1)(1 − ϸ) ≥ 1 − ϸ

The final inequality implies that N is Ω
(
log

(
n

ϸ

))
for all estimators.

This lower bound is tight with respect to the upper bound of the sample complexity,

because for φ→ 1
1

(1−φ)2 = O( 1

log(1/φ)2 ).

3.5.2 MLE of the Central Ranking in the Mallows Model

Braverman and Mossel in [47] give an efficient algorithm for computing a maximum

likelihood estimation for the Mallows Model. The goal is to find a permutation π
∗

that

best fits a sample set of r independent observations π1, . . . , πr drawn from the Mallows

Model.

Definition 3.5.1. The Mallow Reconstruction Problem (MRP) is the problem of finding a

permutation π
∗

maximizing the quantity

r∏
k=1

Π
[
πk | π

∗] =
1

Z (φ)r
φ

∑
r

k=1
dKT (πk ,π∗)

or equivalently minimizing

d
(
π
∗) :=

r∑
k=1

dKT

(
πk , π

∗)
.

The optimization problem without any assumptions on the generating process is NP hard.

However, leveraging the concentration properties of the Mallows Model, we can reduce the

search space. The general idea is the following:

Firstly, apply a simple estimator that ranks the items according to their average index in
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the samples. In the produced estimation, with high probability, all elements lie close to

their true positions according to the latent central ranking. That is they lie O(log(n) places

away from their correct position, with constants depending on the spread parameter and

the sample complexity. We also know that the MLE solution indices are close to the

indices of the latent central ranking (again the displacement is O(log(n), with constants

depending on the spread parameter and the sample complexity). Thus, we expect the

MLE solution to be close to the average index estimation π , in the sense that all items

in π are placed at most L places away from their position in the MLE, where L is O(log(n)

with constants depending on the spread parameter and the sample complexity. The final

step is to use a dynamic programming algorithm that finds an MLE searching locally in

the space defined by the constraint that all items lie at most L places away from their

average position in the samples. Typically, the time complexity is an increasing function

of the input size, however in this case the contrary holds. As the input size grows (more

samples are used) the time complexity decreases (because L decreases and the search

space shrinks).

Now we are going to formulate the above ideas more strictly, presenting the results of

[47].

We begin with a basic lemma that guarantees a geometric concentration of the location

of each item around the "correct" location, that is the location of the item in the latent

central ranking. The proof is based on the Mallows RIM sampling and it is omitted for

brevity.

Lemma 3.5.1. Let a be an element that is ranked k-th by π
∗
. In other words, π

∗(a) = k.

Then for π ∼ M(π∗, φ) holds that P[|π(a) − k| ≥ i] < 2 · φi/ (1 − φ) , for all i.

The next lemma analyses the behaviour of the average index estimator using the geometric

concentration of indices in the samples.

Lemma 3.5.2. Suppose that the permutations π1, . . . , πr are drawn from M(π∗, φ). Let

a = k be the element ranked k-th by π
∗
. Let π(a) be the average index of a under the

permutations π1, . . . , πr :

π(a) =
1

r

r∑
i=1

πi(a)

Then

P[|π(a) − k| ≥ i] ≤ 2 ·

(
(5i + 1) · φi

1 − φ

)r
for all i.

Proof

For a vector b = (b1, . . . , br) of non-negative integers let Ab denote the event that πj(a) ≤
k − bj for j = 1, . . . , r for which bj > 0. By Lemma 3.5.1 we have

P [Ab] <
φ

∑
r

j=1
bj

(1 − φ)r
.
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Next, we note that the event [π(a) ≤ k − i] is covered by

⋃
∑
r

j=1
bj=r−i

[Ab] .

Hence

P[π(a) ≤ k − i] < #
{
b :

∑
r

j=1
bj = ri

}
·

φ
ri

(1−φ)r = ri + r − 1

r − 1

 · φ
ri

(1−φ)r <
(5i+1)r ·φri

(1−φ)r

Taking the symmetric bound for P[π(a) ≥ k + i] completes the proof.

Next we consider the error probability tolerance and we express it in terms of n as ϸ = n
−a

,

where a is some positive constant. Also, set e
−� = φ. Lemma 3.5.1 can be directly ap-

plied to derive a bound for the displacement of the items that holds with high probability

(1 − n−a).

Proposition 3.5.1. Let α > 0. Then for sufficiently large n,

P
[
|π(k) − k| ≥

α + 2

� · r
logn for some k

]
< n

−α

The margin of error for each element is inversely proportionally to the sample complexity

r. The above proposition guarantees that the average index estimator is pointwise close

to the central ranking. Moreover, it can be proved (the proof is omitted) that the MLE

solution π
m

is close to the central ranking π
∗

with high probability.

We consider quantity L = max
(
6 · α+2

�·r
logn,6 · α+2+1/�

�

)
, which is a measure of item dis-

placement that appears in the following lemma.

Lemma 3.5.3. For any optimal π
m

the probability that there is some item k, such that

|πm(k) − π∗(k)| > 32L, is less than 2n
−a

.

Combining the above results we get that with high probability the pointwise distance be-

tween the MLE solution π
m

and the average index estimator π̄ is less than 33L.

This way the search space for the MLE solution is restricted to a zone around π̄, where

the pointwise distance from π̄ is less than k = 33L. A brute force search would require

time k
θ(n)

. Instead we use dynamic programming to reduce the running time.

Lemma 3.5.4. Let [n] be n elements together with a scoring function q. Suppose that we

are given that there is an optimal ordering σ(1), σ(2), . . . , σ(n), that maximizes the score

s(σ) =
∑

σ(i)<σ(j)

q(i < j),

such that |σ(i) − i | ≤ k for all i. Then we can find such an optimal σ in time O

(
n · k2 · 26k

)
.

In our setting k = 33L is O(logn). When k is small (o(logn)), the algorithm tends to linear.
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We can use Lemma 3.5.4 to give an efficient algorithm that finds the maximum likeli-

hood permutation π
m

given π1, . . . , πr . Recall that such a π
m

minimizes

r∑
k=1

dK

(
πk , π

m
)

=

r∑
k=1

∑
πm (i)<πm (j)

1πk (i)>πk (j) =
∑

πm (i)<πm (j)

# {k : πk(i) > πk(j)} .

Considering the score function q(i < j) := # {k : πk(i) < πk(j)} we have that minimizing the

above cost is equivalent to maximizing

s
(
π
m
)

=
∑

πm (i)<πm (j)

q(i < j).

and thus Lemma 3.5.4 can be employed for the MLE calculation. This leads us to the

final theorem:

Theorem 3.5.3. Let π1, . . . , πr be rankings on n elements independently generated by a

Mallows model with spread parameter � = log(1/φ), and let α > 0. Then a maximum

probability order π
m

can be computed in time

T (n) = O

(
n

1+O
(
α

�r

)
· 2

O

(
α

�
+ 1

�2

)
· log2

n

)
.

except with probability < n
−α

.

Note that the algorithm tends to almost linear as r grows.

3.5.3 Spread Parameter Estimation

Busa-Fekete et al. in [3] study the sample complexity of the estimation of the Mallows

spread parameter as well as the maximum likelihood estimation of the spread parameter.

To tackle these problems they consider a more general model, the Generalized Kendall-

Mallows model. In this model the KT-distance is decomposed into terms corresponding to

single items, with the i-th term being equal to the number of discordant pairs that contain

item ei . Each item has its own spread parameter. The term corresponding to the i-th

item is Vi(π, π0) =
i−1∑
j=0

1{(π(i) − π(j))(π0(i) − π0(j)) < 0} and the total KT-distance is written

as dKT (π, π0) =
n∑
i=1

Vi(π, π0) The pmf of the Generalized Mallows model is the following:

P
π∼M(φ,π0)

[π = σ] =

m∏
i=1

φ
Vi (σ,π0)
i

Zi (φi)

We see that the random variables Yi are independent, since their joint probability distri-

bution is written as the product of their pmfs. For the estimation of the spread parameters

we focus on the marginals of the random variables Yi = Vi (π, π0), that follow the truncated

geometric distribution:

P
π∼M(φ,π0)

[Yi = ki] =
φ
ki
i

Zi (φi)
, ki ∈ {0,1, . . . i − 1}
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The truncated geometric distribution is parameterised by its probability of failure φi and

its truncation parameter i − 1 and it is denoted as TG (φi , i − 1)) . It belongs to the ex-

ponential family of distributions, which is a very important class of distributions, with

algebraic properties that help derive useful results. It includes many famous distribu-

tions such as the normal, exponential, gamma, chi-squared, beta, Dirichlet, Bernoulli,

categorical, Poisson and the (truncated) geometric distribution.

We will briefly describe the general form of these distributions, before studying the special

case of the truncated geometric distribution. The pdf (or pmf) of these distributions is

written in the form fX (x |η) = h(x) · exp[η · T (x) − A(η)].
•T(x) is a sufficient statistic of the distribution. For exponential families, the sufficient

statistic is a function of the data that holds all information the data x provides with re-

gard to the unknown parameter values. This means that, for any data sets x and y, the

likelihood ratio is the same:
f (x;η1)
f (x;η2) =

f (y;η1)
f (y;η2) , if T (x) = T (y).

• η is called the natural parameter. The set of values of η for which the function fX (x; η)
is finite is called the natural parameter space.

• A(η) is called the log-partition function, because it is the logarithm of a normal-

ization factor, without which fX (x; η) would not be a probability distribution: A(η) =

log

(∫
X
h(x) · exp[η · T (x)]dx

)
. The function A is also important, because the mean, vari-

ance and other moments of the sufficient statistic T(x) can be derived simply by differen-

tiating A(η). For example, E[T (x)] = ∇A(η) and Var(T (x)) = ∇2
A(η)

In the case of the truncated geometric distribution TG (φi , i − 1)) we have:

pηi (x) = exp
(
ηiT (x) − A(ηi)

)
, x ∈ {0,1, . . . i − 1}

ηi = ln (φi)

T (x) = x

A
(
ηi

)
= ln (Zi (eηi ))

The Generalized Kendall-Mallows model also belongs to the exponential family:

pη(π) = exp
(
θ
T
T (x) − A(η)

)
, π ∈ Sn

η = (ln (φ1) , . . . , ln (φn))

T (π) = (V1 (π, π0) , . . . , Vn (π, π0))

A(η) =

n∑
i=1

Ai

(
ηi

)
=

n∑
i=1

ln (Zi (eηi ))

The maximum likelihood estimation of the spread parameters of the (Generalized) Mal-

lows Model is equivalent to the maximum likelihood estimation of the φ parameter of

each truncated geometric derived by marginalising the Mallows Model. The solution to

the MLE problem of TG(φ̂, i − 1) given the truncation parameter i − 1 and a collection

of N iid samples X = [X1, X2, ...XN ] of the unknown distribution is described below. For

simplicity, since i is known, we denote φi by φ and Zi(.) by Z (.).
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φ̂ = argmax
φ

{L(φ | X)} = argmax
φ


N∏
j=1

φ
Xj

Z (φ)

 = argmax
φ

φ
∑
N

j=1
Xi

Z (φ)N

 =

= argmax
φ


 N∑
j=1

Xi

 ln(φ) − N ln Z (φ)


We set the derivative with respect to φ equal to zero: N∑

j=1

Xj

 1

φ̂
− N

Z
′(φ̂)
Z (φ̂)

= 0⇔ φ̂
Z
′(φ̂)
Z (φ̂)

=
1

N

 N∑
j=1

Xj


Quantity φ̂

Z
′(φ̂)
Z (φ̂) is equal to

d

dη̂
(A(η̂)), thus it is the expected value of TG(φ̂, i − 1). We

want to find a value for φ̂ (or equivalently for η̂ = ln(φ̂)), such that the (theoretical) ex-

pected value of TG(φ̂, i − 1) is equal to the empirical mean. The theoretical expected

value is an increasing function of η̂, since its derivative with respect to η̂ is equal to

d
2

dη̂2 (A(η̂)) = Var
X∼TG(φ̂,i−1)

(X ) > 0. The fact that it is increasing allows us to perform binary

search and find an approximation of φ̂ in logarithmic steps with respect to the reciprocal

of the absolute error.

We complete this section with two theorems on the sample complexity of the spread

parameter estimation given in [3].

Theorem 3.5.4. For any π0 ∈ Sn, φ
∗ ∈ [0,1− γ], ϸ, δ > 0, given N = Ω

(
log(1/δ)
nϸ2 +

log(n/δ)
γ

)
iid

samples fromMφ∗,π0
, we can compute in polynomial time estimates π̂ and φ̂ such that:

P
Π∼MN

φ∗ ,π0

[
(π̂(Π) = π0) ∧

(∣∣∣φ̂(Π) − φ*
∣∣∣ ≤ ϸ)] ≥ 1 − δ

If π0 is known, then with N = Ω
(
log(1/δ)
nϸ2

)
we have:

P
Π∼MN

φ*,π0

[∣∣∣φ̂(Π) − φ*
∣∣∣ ≤ ϸ] ≥ 1 − δ

Theorem 3.5.5. Given a single sample from Kendall-Mallows distribution Mφ*,π0
with

known central ranking π0 and unknown spread parameters φ
*
, we can estimate φ̂ so that:

P
π∼Pφ∗ ,π0

∣∣∣φ̂(π) − φ*
∣∣∣ ≤ O 

√
log(1/δ)

n

 ≥ 1 − δ

Note that, as n goes to infinity, a single sample is enough for the estimation.
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Related Work

In this chapter we will present three papers that achieved breakthroughs in learning

Mallows Mixtures. The presentation is organised in chronological order.

4.1 The Work of Awasthi, Blum et al.

This paper was the first to provide theoretical guarantees for the efficiency of learning

the mallows mixture learning. In [23] Awasthi, Blum et al. worked on the case of two

components. They used a method of moments, where the order k moment is defined as

the vector that contains for all sets of k items the probabilities that these items are the

top k. A rank 2 decomposition is possible in the third moment tensor. This tensor can

be decomposed into two rank-1 terms, so that each term provides information for one of

the base models. This information includes estimations of the mixing weights, the spread

parameters and the prefixes of the centers. A first step is to construct an empirical es-

timation of the third moment of the mixture using the available samples. Then, tensor

decomposition of the empirical third moment provides estimations of the weights, spread

parameters and prefixes for each of the two base models.

Having those estimations we proceed to the second phase of the learning algorithm that

uses this information to cluster the samples, assigning each sample to the correct base

model that generated it. If this clustering is possible, then the task of obtaining the rest of

the base permutations is an easy one, studied extensively in previous work. If the prefixes

are not distinct enough to provide a pivot element, that is an element that is ranked in

significantly higher positions in the one base ranking than the other, then decomposition

is again required, in form of a linear system of equations that give the probabilities of

assigning each of the items in each of the positions of each of the two centers. Then for

each center and each item the most probable position is chosen as an estimation of its

true position.

The proposed algorithm runs in polynomial time with respect to the parameters of the

mixture and the accuracy parameter. It is worth mentioning that the proposed algorithm

has practical value as well, as it outperforms the EM both in accuracy and speed, as

shown in the experiments conducted in [23].
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4.1.1 Notation and Important Properties

Tensors are a key tool in the techniques of this paper. Tensors are derived from a set of

vectors. They are multidimensional objects. The number of dimensions is equal to the

number of vectors combined. In this paper vectors of dimension at most 3 are used. In

subsequent papers, that we will discuss later, higher dimensional tensors are used to

learn the mixture of k Mallows models. Given two vectors u ∈ Rn1 and v ∈ Rn2 . Tensor

u ⊗ v ∈ Rn1×n2 is equal to uv
T
. Given three vectors u ∈ Rn1 , v ∈ Rn2 and z ∈ Rn3 tensor

u ⊗ v ⊗ z ∈ Rn1×n2×n3 is a matrix P with Pijk = ui · vj · zk.

The notion of tensors is used to define the Moments of the Mallows Mixture Model. There

is no obvious way to define the moments of a probabilistic ranking model. Awasthi, Blum

et al. defined the first three moments of the Mallows Mixture Model on items {e1, ...en}as

follows:

• The first moment is a 1-tensor P such that Pi = P[pos(ei) = 1]. It contains the

probabilities of ranking each element at the first position.

• The second moment is a 2-tensor P such that Pij = P[{pos(ei), pos(ej)} = {1,2}]. It

contains the probabilities of ranking each pair of element at the first two positions

(in any order).

• The third moment is a 3-tensor P such that Pijk = P[{pos(ei), pos(ej), pos(ek)} =

{1,2,3}]. It contains the probabilities of ranking each triplet of element at the first

three positions (in any order).

The first moment of a single Mallows M(φ, π) model is called representative vector of

the model because it holds information that uniquely determine the parameters of the

model. It can be proved that the formula for the i-th coordinate of this vector is equal to

φ
posπ (ei )−1

/Zn. Returning to the case of a mixture of two Mallows modelsM1 = M(φ1, π1)
andM2 = M(φ2, π2) we denote x and y as their representative vectors (first moments).

The mathematical expressions for the first three moments of the mixture in terms of

the representative vectors x and y of the base models are the following:

* First moment: Pi = w1xi +w2yi

* Second moment: Pij = w1 · c2(φ1) · xi · xj +w2 · c2(φ2) ·yi ·yj, where c2(φ) =
Z (n,φ)
Z (n−1,φ)

φ+1

φ

* Third moment: Pijk = w1 · c3(φ1) · xi · xj · xk + w2 · c3(φ2) · yi · yj · yk, where c3(φ) =
Z

2(n,φ)
Z (n−1,φ)Z (n−2,φ)

1+2φ+2φ
2+φ3

φ3 .

The third moment is non trivial only if the three coordinates i, j, k are all distinct. Thus a

partition is made on the set of items into three groups Sa , Sb, Sc. We consider the third
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moment of the mixture on this partition: T
abc = (Pijk)i∈Sa ,j∈Sb,k∈Sc .

Tensor T
abc

has a rank-2 decomposition into two rank-1 terms, each one corresponding

to a base model:

T
abc = w1 · c3(φ1) · x (a) ⊗ x (b) ⊗ x (c) +w2 · c3(φ2) · y(a) ⊗ y(b) ⊗ y(c)

where x
(a)
, x

(b)
, x

(c)
are the restrictions of representative vector x of base model M1 =

M(φ1, π1) into subsets Sa , Sb, Sc of items. The same goes for y.

4.1.2 Algorithms

We present the main algorithm for learning Mixtures of two Mallows Models. The algo-

rithm invokes several subroutines, which we present separately.

Learning Algorithm For Mixtures of two Mallows Models

Repeat O(log(n)) times:

∗ Make a random partition of [n], the full set of options into three subsets Sa , Sb, Sc.

∗ Compute P̂, the empirical estimation of the third moment on the partition set.

This yields a tensor T
abc = (P̂ijk)i∈Sa ,j∈Sb,k∈Sc .

∗ Perform TENSOR DECOMPOSITION to express T
abc

as u
(a)⊗u(b)⊗u(c)+v(a)⊗v(b)⊗v(c)

Next we apply a decomposition success criterion

Let σ2(A) denote the second largest singular value of matrix A.

If min{σ2(u(a); v(a)), σ2(u(b); v(b)), σ2(u(c); v(c))} > ϸ2 = poly( 1

n
, ϸ, φmin, wmin)

∗ Obtain parameter estimations for the weights, spread parameters

and top k prefixes of the centers of the mixture by invoking routine

INFER-TOP-K(P̂, (u(a); v(a)), (u(b); v(b)), (u(c); v(c))).
∗ Invoke RECOVER-REST routine to reconstruct the rest of the centers.

∗ Return Success message and output the mixture parameter estimations.

Handle Degenerate cases

The guarantee for the successful execution of the main algorithm is stated in the next

theorem.

Theorem 4.1.1. Let w1M (φ1, π1)⊕w2M (φ2, π2) be a mixture of two Mallows models and

let wmin = min {w1, w2} and φmax = max {φ1, φ2} and similarly φmin = min {φ1, φ2} . Denote

ϸ0 =
w

2

min(1−φmax)10

16n22φ
2
max

. Then, given any 0 < ϸ < ϸ0, suitably small ϸ2 = poly

(
1

n
, ϸ, φmin, wmin

)
and N = poly

(
n,

1

min{ϸ,ϸ0}
,

1

φ1(1−φ1) ,
1

φ2(1−φ2) ,
1

w1

,
1

w2

)
i.i.d samples from the mixture model,

Algorithm 1 recovers, in poly-time and with probability ≥ 1 − n−3
, the model’s parameters

with w1, w2, φ1, φ2 recovered up to ϸ-accuracy.
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The authors use the algorithm of [48] for tensor decomposition. The algorithm works

when the factor matrices Ma , Mb, Mc have polynomially bounded condition number (that

is their second largest singular values σ2(·) is lower bounded by a polynomial in the input

parameters). If this condition is satisfied the tensor T
(abc)

has a unique rank-2 decom-

position and the algorithm achieves to find it. The factor matrices are passed to the

INFER-TOP-K procedure and this way the top few elements of both π1 and π2 are esti-

mated correctly and we can also infer the parameters w
′
s and φ

′
s to good accuracy ϸ. If

all log(n) random partition Sa , Sb, Sc fail to produce a tensor T
(abc)

with well-conditioned

factor matrices, then we are in a special case and it can be shown that in this case, the

scaling parameters φ1 ≈ φ2 with high probability.

The second part of the algorithm is implemented in the RECOVER-REST procedure. It

is based on the observation that the probability of an element ei going to position j can

be written as a weighted combination of the corresponding probabilities under π1 and π2.

In addition, the reduced distribution obtained by conditioning on a particular element ej

going to position 1 is again a mixture of two Mallows models with the same parameters.

Hence, by conditioning on a particular element which appears in the initial learned prefix,

we get a system of linear equations. We use estimates so the linear system is correct up

to some small error δ (inversely polynomial). Solving the system robustly we can infer

good estimates for the probability of every other element ei going to position j in both π1

and π2. This allows us to infer the entire rankings by choosing for each element the most

probable position.
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RECOVER-REST Procedure

Input: Sample Set S drawn from the latent mixture,

parameter estimations ŵ1, ŵ2, φ̂1, φ̂2 and prefixes π̂1, π̂2

∗Compute representative vectors (probabilities of appearing in the first position)

x̂ and ŷ for elements in π̂1 and π̂2 respectively.

We consider the lengths r1, r2 of prefixes π̂1 and π̂2 respectively. Wlog suppose r1 ≥ r2.

If there exists an element ei , such that posπ̂1
(ei) > r1 and posπ̂2

(ei) > r2/2

(or in the symmetric case):

Let S1 be the subset of samples having ei ranked in the first position.

∗ Learn a single Mallows model on S1 to complete the estimation π̂1.

∗ Use dynamic programming to find a complete estimation π̂2 for the other center.

∗ Return the complete estimations.

The above was the simple case. Now we handle the difficult one, where no such

pivot ei exists.

Let ei∗ be the first element in π̂1 having its probabilities of appearing in first place in

π1 and π2 differ by at least ϸ. Let ŵ1
′ =

(
1 +

ŵ2ŷ(ei∗ )
ŵ1x̂(ei∗ )

)−1

, ŵ2
′ = 1 − ŵ1

′
and S1 be the

subset of samples with ei∗ ranked at the first position.

For each ei that does not appear in π̂1 nor π̂2 and any possible ranking position j:

∗ Use sample set S to estimate f̂ (i → j) = P[ei goes to position j] and

S1 to estimate f̂ (i → j|ei∗ → 1) = P[ei goes to position j given that ei∗ goes to position 1].
∗ Solve the system

f̂ (i → j) = ŵ1f
(1)(i → j) + ŵ2f

(2)(i → j)

f̂ (i → j|ei∗ → 1) = ŵ1
′
f

(1)(i → j) + ŵ2
′
f

(2)(i → j)

This yields probabilities f
(1)(i → j) and f

(1)(i → j) of ei going to position j in

base modelsM1 andM2 respectively.

∗ Complete π̂1 by assigning each ei to position argmaxj{f
(1)(i → j)}.

∗ Complete π̂2 by assigning each ei to position argmaxj{f
(2)(i → j)}.

∗ Return π̂1, π̂2
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INFER TOP-K Procedure

Input: P̂, M
′
a

= (u(a); v(a)), M ′
b

= (u(b); v(b)), M ′
c

= (u(c); v(c)).
P̂ is the empirical estimation of the third moment.

u
(τ)

is close to proportional (from tensor decomposition guarantees) to the restriction

of the empirical first moment of base modelM1 on partition Sτ, where τ ∈ {a, b, c}.

The same holds for v
(τ)

andM2.

Let P̂τ = P̂(i ∈ τ), τ ∈ {a, b, c}.
∗ Set (ατ , �τ)T = M

′
τ

†
P̂τ for all τ ∈ {a, b, c}.

∗ Set ŵ1 = ‖αau
(a)‖1 + ‖αbu

(b)‖1 + ‖αcu
(c)‖1 and ŵ2 = 1 − ŵ1

Let u =
(
αa

ŵ1

u
(a)
,
αb

ŵ1

u
(b)
,
αc

ŵ1

u
(c)

)
and

v =
(
�a

ŵ2

v
(a)
,
�b

ŵ2

v
(b)
,
�c

ŵ2

v
(c)

)
∗ Sort vectors u and v in decreasing order. Let U = sort(u), V = sort(v).
∗ Set φ̂1 =

U2

U1

and φ̂2 =
V2

V1

Let γ =
(1−φ̂max )2

4nφ̂max
.

∗ Set r1 = log1/φ̂1

(
n

10

w
2
minγ

2

)
and r2 = log1/φ̂2

(
n

10

w
2
minγ

2

)
∗ Return prefixes π̂1 = U [: r1] , π̂2 = V [: r2]

4.2 The Work of Liu and Moitra

Liu and Moitra in [5] were the first to solve the problem in the general case of k cen-

ters. They leveraged the results of Zagier et al. in [4] and established the polynomial

identifiability of the Mallows Mixture model. Firstly, they worked on the general setting

M = w1M

(
φ1, π

∗
1

)
+ · · ·+wkM

(
φk , π

∗
k

)
, with minimal assumptions (no components coincide

with each other in TV distance and no component is completely uniform). They provide

upper bounds for the sample complexity as well as information-theoretic lower bounds

and lower bounds against restricted families of algorithms that make only local queries.

Moreover they make a beyond worst case analysis of the Mallows Mixture learning prob-

lem.

On a technical level, they define distribution moments as groups of pairwise compar-

isons, define the block structure based on this notion of moments and prove that two

models satisfying the same block structure do not differ much from each other. They pro-

vide upper bounds for the TV distance between an empirical model and its corresponding

latent generative model and bounds that translate TV-distance closeness to parameter

closeness. Their learning algorithm uses these results and constructs test functions to

peel off one component at a time.
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4.2.1 Block Structures and Tensors

First, we define three different kinds of structures, the block structure, the order structure

and the ordered block structure.

Definition 4.2.1. A block structure B = S1, S2, · · · , Sj is an ordered collection of disjoint

subsets of [n]. We say that a permutation π satisfies B as a block structure if for each i,

the elements of Si occur consecutively (i.e. in positions ai , ai + 1, . . . , ai + |Si | − 1 for some

ai ) in π and moreover the blocks occur in the order S1, S2, · · · , Sj. Finally we let SB denote

the set of permutations satisfying B as a block structure.

Definition 4.2.2. An order structure O = S1, S2, · · · , Sj is a collection of ordered subsets of

[n]. We say a permutation π satisfies O as an order structure if for each i, the elements of

Si occur in π in the same relative order as they do in Si .

Definition 4.2.3. An ordered block structure A = S1, S2, · · · , Sj is an ordered collection of

ordered disjoint subsets of [n]. We say a permutation π satisfies A as an ordered block

structure if it satisfies S1, S2, · · · , Sj both as a block structure and as an order structure.

From the above definitions we see that we forget the order within each Si when we treat the

structure as a block structure and we forget the order among the Si ’s when we treat it as

an order structure. For example, let n = 7 and consider B = (1,2), (4,5,6). The permuta-

tion (1,2,3,7,6,5,4) satisfies B as a block structure. The permutation (1,3,4,2,5,6,7)
satisfies B as an order structure and the permutation (1,2,3,4,5,6,7) satisfies B as an

ordered block structure.

Next we define a special tensor that helps us express the conditional distribution on

permutations that satisfy a given block structure.

Definition 4.2.4. Given a Mallows model M (φ, π∗) and a block structureB = S1, S2, · · · , Sj,

we define a |S1|! × |S2|! × · · · ×
∣∣∣Sj∣∣∣! dimensional TM,B as follows: Each entry corresponds

to orderings π1, π2, · · · , πj of S1, S2, · · · , Sj respectively and in it, we put the probability that

a ranking drawn from M satisfies B and for each i, the elements in Si occur in the order

specified by πi

Tensor TM,B has rank one and it can be written as the following product:

TM,B = PrM [π ∈ SB] · v
(
M

(
φ, π|S1

))
⊗ · · · ⊗ v

(
M

(
φ, π|Sj

))
, where v (M (φ, π∗)) denotes the

vectorisation of the Mallows distribution M (φ, π∗).

In the expression of TM,B the factor PrM [π ∈ SB] is the least convenient because it has

no explicit formula. A convenient lower bound can be derived, considering the Mal-

lows repeated insertion sampling process and the fact that
1

1+φ+···+φi
≥ 1

n
. This yields

that PrM [π ∈ SB] ≥ 1

n2`
. To better understand the definition of TM,B we give a sim-

ple example. Consider M(φ, π) for π = (1,2,3,5,4) and let B = (1,2), (4,5). Then

TM,B ∼
(

1

1+φ
,

φ

1+φ

)
⊗

(
φ

1+φ
,

1

1+φ

)
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4.2.2 Robust Linear Independence

The authors consider a determinant calculated in [4]. Let An(φ) be the n! × n! matrix

whose rows and columns are indexed by permutations π, σ on [n] and whose entries Aπσ

are φ
dKT (π,σ)

. It holds that det (An(φ)) =

n−1∏
i=1

(
1 − φi

2+i
) n!(n−i)

i2+i
. This result is important be-

cause it implies that all rows ci of this matrix (that is all vectorisations of Mallows models

with spread parameter φ defined on [n]) are linearly independent. Thus, if two mixtures

with spread parameter φ have the same pmf, then their centers and weights are identical

(up to a relabeling). This is guaranteed because the determinant is non zero. Knowing the

exact formula of the determinant we can prove "robust" linear independence, by bounding

the `
1

norm of any linear combination of distinct rows ‖z1c1 + · · · + zkck‖1 from below.

A first step is using the determinant evaluation to bound the projection of any column

onto the orthogonal complement of the span of any k − 1 other columns.

Lemma 4.2.1. Suppose φ < 1 − ϸ and consider k columns of An(φ). The projection of one

column onto the orthogonal complement of the other k − 1 has euclidean length at least(
ϸ
n

√
n!

)k
.

This identity is useful, but it is not strong enough to establish polynomial identifiability,

as there is an exponential dependence on n. Apart from that, the rows in An(φ) correspond

to non-normalised Mallows mass functions. To overcome the exponential dependence on

n, the authors make use of block structures and choose the sets appropriately so that

their total length depends on k rather than n. They prove the following lemma:

Lemma 4.2.2. Let Bn(φ) be obtained from An(φ) by normalizing its columns to sum to one.

Suppose φ < 1 − ϸ and consider any k columns c1, c2, . . . , ck of Bn(φ). Then

‖z1c1 + · · · + zkck‖1 ≥
1

n4k

ϸ
2k

2

(k + 1)k2+2k

provided that max (|z1| , |z2| , . . . , |zk |) ≥ 1.

The results for the case of equal spread parameters are generalised to the case of spread

non equal but close to each other. The general case, where spread parameters might be

very different from each other, is reduced to the case of similar spread parameters, by

using test functions to peel off components with |φ1 − φi | non negligible. The remaining

ones are all close to each other. The final identifiability result is the following:

Lemma 4.2.3. Consider any k (not necessarily distinct) permutations π1, π2, · · · , πk and

scaling parameters φ1, φ2, · · · , φk. Set Mi = M (φi , πi) and suppose that the collection

of Mallows models is µ-non degenerate (that is ∀i, j ∈ [k] i , j ⇒ TV (Mi ,Mj) > µ and

∀i ∈ [k]TV (Mi , Uniform) > µ). Then for any coefficients zi with max (|z1| , |z2| , . . . , |zk |) ≥ 1

we have

‖z1v (M1) + · · · + zkv (Mk)‖1 ≥
(

µ
2

10n4k

)20k
3
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In the above lemma we should think of real coefficients zis as weight differences wi −w
′
i
.

This way, the bounded quantity is equal to the TV distance between two Mallows Mixture

models with different parameters.

4.2.3 Test Functions and Learning Algorithm

The learning algorithm performs a brute force search over the spread parameters and

mixing weights. It also considers different test functions with the goal to find appropriate

test functions that isolate some component. It suffices to look at O(k) positions to distin-

guish k permutations (we will see this in more detail in the next chapter, where we discuss

the work of Mao et al.). Thus, to form candidate test functions we exhaustively consider

groups of O(k) items. The number of different test functions is polyk(n). The algorithm

first peels off components with small spread parameters, based on the intuition that these

components frequently generate their central permutation. Then, the algorithm tries to

isolate a single component, peel it off and continue iteratively.

Suppose for example that we have a mixture of three Mallows Models. The components

of the mixture are the following:

φ1 < φ2 < φ3, π1 = (1,2,3,4,5), π2 = (2,4,1,3,5), π3 = (5,1,2,3,4).
We consider the block structure B = {{1,2}, {3,4}}.

It holds that

TM2,B ∼

(
φ2

1 + φ2

,
1

1 + φ2

)
⊗

(
φ2

1 + φ2

,
1

1 + φ2

)
TM3,B ∼

(
1

1 + φ3

,
φ3

1 + φ3

)
⊗

(
1

1 + φ3

,
φ3

1 + φ3

)
We construct the test function

X =

(
1

1 + φ2

,
−φ2

1 + φ2

)
⊗

(
φ3

1 + φ3

,
−1

1 + φ3

)
We have that 〈X, TM2,B〉 = 0, 〈X, TM3,B〉 = 0 but〈X, TM1,B〉 , 0. This way the test function

isolates information from the first component.

The method used in the example is generalised to mixtures of k Mallows models.

4.2.4 Lower Bounds and Beyond Worst Case Analysis

Fist the authors prove that any algorithm for learning the components of a mixture of

k Mallows models within µ in total variation distance must take at least (1/mu)2k−1

samples.

Lemma 4.2.4. For any µ ≤ 1

40k2 and n ≥ 40k
2

there are two mixture of at most k Mallows

models M and M
′

with the following properties:

1. Each mixture is

(
µ,

1

10·22k

)
-non degenerate

2. dTV (M,M ′) ≤ 4(8µk)2k−1
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3. M and M
′

are not component-wise µ-close

The proof considers a concentric mixture with spread parameters constructed by an arith-

metic sequence.

Then, the authors study a restricted model of learning, the local query model and bound

its cost.

Definition 4.2.5. In the local query model, the learner queries a subset of elements

x1, x2, · · · , xc and locations i1, i2, · · · , ic with a tolerance parameter τ and is answered with

the probability, up to an additive τ, that a sample from the mixture has xj in position ij for

all 1 ≤ j ≤ c. The cost of the query is
1

τ2
and the total cost of an algorithm is the sum of its

query costs.

Summarizing the results into an informal theorem we have that any algorithm for learning

a mixture of k Mallows models through local queries must incur cost at least n
logk

.

Finally we present the beyond worst case results. Essentially, the only assumption is that

spread parameters differ from each other, so the analysis and algorithm design provide

an alternative expression for the complexity, in terms of the minimal spread parameter

difference and the minimal distance of a spread parameter from 1.

Theorem 4.2.1. Given samples from a mixture of k Mallows models with all spread pa-

rameters γ separated from each other and from 1 and n ≥ 10k, there is an algorithm whose

running time and sample complexity are

poly(1/γk
2

,1/θ
k

2

,1/wm in
k

2

) · poly(n, log(1/δ))

for learning each center πi exactly and the mixing weights and spread parameters to within

an additive θ, with probability at least 1 − δ.

The algorithm, similarly to [23], first tries to estimate the prefixes and spread parameters.

Then, it recovers the rest of the centers and finally it estimates the mixing weights, condi-

tioning on the event that centers have been recovered correctly. In this case, similarly to

the general one, candidate parameters from a polynomial size list are tested. The spread

parameters and weights candidates are produced with simple gridsearch. The prefix can-

didates are taken from the observations using a frequency threshold (we examine the most

common prefixes) and prefix length is set to 10k. The prefixes are used as signatures of

the corresponding centers. Then, the center reconstruction process is similar to that in

[6] and a detailed implementation of this process can be found in Algorithm for learning

the Mallows mixture performing noiseless queries. Candidate models are tested with the

tensor test function criteria we described earlier.

4.3 The Work of Mao et al.

Mao et al. in [6] study the problem of learning mixtures of Mallows models. The general

case of k centers is considered as in the paper of Moitra et al, that was published two
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years earlier, in 2018. However in contrast to the paper of Moitra et al. in this paper

the spread parameters of the mixed models are assumed to be equal and known. Most

techniques used are similar to those of Moitra et al. but some improvements are made.

In particular, the sample complexity depends logarithmically on the number of items n

while in previous work it scaled polynomially on n. Another contribution was proving an

optimal dependency of the sample complexity on φ, the scaling parameter of the models,

in the high noise regime.

4.3.1 Noiseless Oracles And Noiseless Learning Algorithms

In this paper, similar to previous work both on Mallows and Gaussian Mixtures, moments

of the latent distribution are considered. The authors define the moments of order m as

groups of m pairwise comparisons, that are simultaneously submitted to the model via

some oracle. "Simultaneously" means that all answers correspond to the same center, the

one that is activated (randomly following Multinoulli on the mixing weights). There are

two kinds of oracles, the "strong" and the "weak". Both oracles are noiseless, that is they

are not empirical depending on a collection of samples. Instead, they provide accurate

information about the restriction of the model on a group of pairwise comparisons. The

weak oracle reveals the restriction of each distinct central permutation on the group

of pairwise comparisons and the strong oracle returns the distribution of the group of

pairwise comparisons, viewed as a random vector.We will now give the formal definitions

of the two oracles.

Definition 4.3.1. Consider a distribution M on Sn and a random permutation π ∼ M. For

m ∈ N, let I be the tuple of m pairs of distinct indices (i1, j1) , . . . , (im , jm) ∈ [n]2
. Upon a

query on I, the (strong) oracle of group of m pairwise comparisons returns the distribution

of the random vector χ(π,I) in {0,1}m , whose rth coordinate is defined by

χ(π,I)r := 1 {π (ir) < π (jr)} for r ∈ [m]

Definition 4.3.2. Consider a set {π1, . . . , πk} of k permutations in Sn. For m ∈ N, let I be

a tuple of m pairs of distinct indices in [n]. Upon a query on I, the weak oracle of group of

m pairwise comparisons returns the set of binary vectors {χ (πi ,I) : i ∈ [k]}, where

χ(πi ,I)r := 1 {πi (ir) < πi (jr)} for r ∈ [m]

We will now demonstrate why groups of m pairwise comparisons are similar to the order-

m moments of distributions defined on vectors of real numbers. Let X
π

i,j
:= 1{π(i) < π(j)}

be a pairwise comparison. Also let

fχ(π,I)(v) := P{χ(π,I) = v} for each v ∈ {0,1}m

This is the distribution returned by the strong oracle. This pmf has similar form with the
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classical moments that we define for example in Gaussians.

fχ(π,I)(v) = E[1{χ(π,I) = v}] = E

 m∏
r=1

1

{
X
π

ir ,jr
= vr

}
= E

 m∏
r=1

(
X
π

ir ,jr

)vr (
1 − Xπ

ir ,jr

)1−vr  = m(π,I)v.

Thus, the strong oracle in fact returns moments of the latent distribution and a learning

algorithm that uses this oracle can be viewed as a combinatorial method of moments.

Another notion of moment for ranking distributions are the marginals on subsets of

items (referred to as l-wise comparisons). In this work we consider two different ways of

marginalising a ranking π ∈ Sn an a subset J of [n]. Firstly, let π|J denote the restriction

of π on J , which is an injection from J to [n]. This marginalisation keeps the information

about the positions of selected items in the complete ranking. Moreover, let π‖J denote

the bĳection from J to [|J |] induced by π|J . This marginalisation is equivalent to an object

in S|J |, which is achieved by reindexing the selecting items, assigning them ids in |J |. The

second way of marginalising is less informative but more natural and corresponds to the

selection mechanism that we gave on selective Mallows Models. For example, in the case

of π = (3,2,4,6,1,5) and J = {1,4,5} we have for the injection π|J(1) = 5, π|J(4) = 3 and

π|J(5) = 6 and for the bĳection π‖J = (4,1,5).
The weak and the strong oracle can be defined on l-wise comparisons as well and are

more informative than oracles on groups of l/2 comparisons.Below we give the formal

definitions of these oracles.

Definition 4.3.3. Consider a distribution M on Sn and a random permutation π ∼ M. For

` ∈ N, let J be a subset of [n] of cardinality |J | = `. Upon a query on J, the (strong) oracle of

`-wise comparison returns the distribution of the relative order π‖J .

Definition 4.3.4. Consider a set {π1, . . . , πk} of k permutations in Sn. For ` ∈ N, let J be a

subset of [n] of cardinality |J | = `. Upon a query on J, the weak oracle of `-wise comparison

returns the set of relative orders {πi‖J : i ∈ [k]}.

The noiseless oracles we defined above are used by learning algorithms that aim to learn

the parameters of the latent Mallows Mixture. The authors aim to minimise the order of

the moments they use, that is they try to use small selection sets. In their setting this

reduces the complexity but in our selective setting it also allows learning in the regime of

strict selectivity.

• The algorithm that uses the weak oracle has the advantage of being independent of the

estimation of the mixing weights and the spread parameters. However, it requires bigger

selection sets (higher order moments). It uses moments of order k, where k is the number

of central permutations. The optimality in terms of query length has not been proved.

• The algorithm that uses the strong oracle depends on the knowledge of the mixing

weights and the assumption of common spread parameters. However, once it has this ex-

tra information it can perform more effective queries which require smaller selection sets

of size logarithmic on k, where k is the number of central permutations. The optimality
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in terms of query length is proved and it matches the bounds of identifiability.

Theorem 4.3.1. (Learning algorithm using minimal length queries to the strong oracle)

Let m
∗
k

:=
⌊
log

2
k
⌋

+ 1.

For any mixture M =
∑
k

i=1
wiδπi of permutations in Sn, there is a poly (n, k)-time algorithm

that recovers M from groups of m
∗
k

pairwise comparisons, with at most 1 + k

2
(n − 2)(n + 1)

adaptive queries to the weak oracle.

Conversely, for n ≥ 2m
∗
k

and ` ≤ 2m
∗
k
− 1, there exist distinct mixtures M = 1

k

∑
k

i=1
δπi

and M′ = 1

k

∑
k

i=1
δπ′i of permutations in Sn, which cannot be distinguished even if all

(
n

`

)
`-wise comparisons are queried from the strong oracle.

Since the oracle of `-wise comparison is stronger than the oracle of group of `/2 pairwise

comparisons, the above theorem implies that the oracle of `-wise comparison is sufficient

for identifying the k mixture if and only if ` ≥ 2m
∗
k
. We will prove this later more formally.

Next we present the results on learning from the weak oracle.

Theorem 4.3.2. (Learning algorithm using queries to the weak oracle)

Consider a set {π1, . . . , πk} of k permutations in Sn. There is a poly (n, k)-time algorithm

that learns the set {π1, . . . , πk} from queries on groups of k + 1 pairwise comparisons to the

weak oracle, using at most 1 + k

2
(n − 2)(n + 3) adaptive queries.

As for the implementation, both algorithms try to build the central permutations induc-

tively on the number n of items. Each query consists of a "signature" set of pairwise

comparisons, that aims to isolate a particular center, and one or two more comparisons

that aim to detect the position of n − th item in the isolated central ranking.

In the weak oracle a single signature set has to be able to isolate each distinct marginalised

center. The signature contains pairwise comparisons that create a decision tree and each

leaf of the tree corresponds to a single distinct center. The height of this tree is at most

k, so the length of the signature is at most k pairwise comparisons.

In the strong oracle weights are also returned, apart from marginalised centers. Be-

cause of this extra information the signature set does not have to isolate each and every

center but it suffices to isolate only one of them at a time. In this case the signature set

length is logarithmic on k.

We present the details of the algorithm that learns from the strong oracle in the next

chapter.

Diploma Thesis 65



Chapter 4. Related Work

4.3.2 Using Noisy Samples to Simulate Noiseless Oracles-The Subroutine

Now we will see what happens when noise is introduced. Noisy samples are collected

and they are used by the "subroutine" that simulates the noiseless oracle. In each query

samples are projected on the queried subset of items and aggregated into an empirical

marginal distribution. A cover is made on the space of all possible marginals and the one

closest to the empirical one is selected. The parameters of the selected marginal provide

the information needed by the oracle.

Given i.i.d. observations σ1, . . . , σN from M =
∑
k

i=1
wiM (πi), the goal of SubOrder(J) is

to learn the set of relative orders π1 ‖J , . . . , πk‖J for a given subset J ⊂ [n].
To study the SubOrder we have to define the marginalization of the Mallows mixture, as

well as the observations, as follows. Note that the authors use the injective version of

marginalisation in the models and samples, that is they require that information about

the position in the complete samples is preserved. For any distribution M on Sn and a

set of indices J ⊂ [n], we let M|J denote the marginal distribution of σ |J where σ ∼ M.

That is, the PMF of M|J is given by

fM|J (ρ) = Pσ∼M {σ |J = ρ}

Moreover, given N i.i.d. observations σ1, . . . , σN from M, the empirical version of M|J is

given by

fMN |J
(ρ) =

1

N

N∑
m=1

1 {σm |J = ρ} .

In the bĳective definition of marginalisation, classical identifiability results guarantee

that if the central permutations (and weights) are equal as sets in two mixtures, then the

mixture have the same pmf on the projection set (because they form a Mallows Mixture

distribution on this set). However, the distribution on injective marginals is not a Mallows

Mixture, so classical identifiability results are not applicable. The following lemma guar-

antees that identribiability holds in the injective marginalisation similarly to the bĳective

one.

Lemma 4.3.1. For any subset J ⊂ [n], if the central permutations π, π
′ ∈ Sn satisfy

π|J = π
′|J , then the marginalized Mallows models M(π, φ)|J and M (π′, φ)|J coincide for all

φ ∈ (0,1).

Next, the authors provide a guarantee about the identifiability of the marginalised Mal-

lows Mixture with respect to the central rankings. The result guarantees that two

marginal Mallows Mixtures can not be too close in TV distance if the corresponding sets

of marginalised central rankings are not equal.

Proposition 4.3.1. Consider Mallows mixturesM =
∑
k

i=1
wiM (πi) andM′ =

∑
k

i=1
w
′
i
M

(
π
′
i

)
on Sn with a common noise parameter φ ∈ (0,1). Let γ := mini∈[k]

(
wi ∧w

′
i

)
> 0. Fix a

set of indices J ⊂ [n] and let ` := |J |. Suppose that the two sets of central permutations

{π1 ‖J , . . . , πk‖J } and

{
π
′
1

∥∥∥J , . . . , π′k∥∥∥J } are not equal (as sets). Then
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TV
(
M|J ,M

′
∣∣∣
J

)
≥ η(k, `, φ, γ) :=

(
γ

6k

)(3`)`+1 (
1 − φ

`

)(4`)`+2k`
2

(4.1)

The proof uses the notion of the "block structure" and bounds the probability of different

models satisfying the same block structure.

The final tool needed to analyse the "Subroutine" is the following proposition, that bounds

the TV-distance between the latent marginalised Mallows mixture model and its empirical

version constructed by N iid samples. The upper bound decreases exponentially on N

and will be used to derive a polynomial sample complexity sufficient to approximate the

PMF with an empirical histogram.

Proposition 4.3.2. For J ⊂ [n], let M|J and MN |J be the marginalized Mallows mixture

and the marginalized empirical distribution. Then for any s ∈ (0,1), we have:

P {TV (M|J ,MN |J ) > s} ≤ exp
(
−N

3s

10

)
+ 2(2kq)` exp

(
−N

s
2

(2kq)2`

)
where ` := |J | and q := 1 + 1

1−φ
log 8`

s(1−φ) .

The proof is based on the observation that the TV-distance is defined on a domain of size

n
`
, which can be divided into two parts. The first part contains rankings that are close

to all central permutations. Samples in this set have a relatively high probability of ap-

pearance, but their cardinality is small, due to the constraint of being close to all central

rankings. The other (complementary) part of the domain has a relatively big cardinality

but its elements have small probabilities of appearance. In both cases, the empirical

frequency of a sample is connected with the theoretical one with strong, exponentially

decreasing bounds (applying the Hoeffding and Bernstein inequalities).

An important identity of the TV-distance bounds provided in the last two propositions

is that the bounds do not depend on the total number n of items, only on `, the number

of selected items.

The above propositions are used to develop the SubOrder(.) function that simulates

the weak oracle. SubOrder performs a brute-force search over candidate marginals and

outputs the parameters of the one that better fits the available samples in terms of TV-

distance. The brute-force is made on all possible marginalised central ranking combina-

tions and on the corresponding mixing weights. The weights are continuous parameters

so a discretization is performed with a grid step equal to 1/L. However, the weak oracle

only expects the marginalised central rankings, so in this step estimated weights are not

returned.

A key step in the search procedure is that candidate models are not directly compared to

the empirical on the sample set in terms of TV-distance. This is due to the fact that the

marginalized distribution M′|J does not have an explicit formula (it is defined on injec-

tions rather than bĳections). To overcome this problem, fake samples are generated from
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each candidate model (in O(n2) time per sample using RIMf) and the empirical distribu-

tion of these samples is compared to the empirical of the real samples in TV-distance.

Due to the triangle inequality, if the two empiricals are close, then the candidate model

is close to the latent model, given that the two models are close to their empirical ver-

sions as stated in Proposition 4.3.2. The closeness in TV-distance between the optimal

candidate model and the latent model means that their sets of central permutations are

equal due to Proposition 4.3.1. Thus, the central permutations of the latent model are

correctly estimated with high probability, given enough samples and the weak oracle is

successfully simulated. We will now give the formal definition of SubOrder.

We define a set of polynomially many candidate models (polyk(n)). Let Sn,J denote the set

of injections ρ : J → [n], which has cardinality at most n
`
where ` = |J |. For each ρ ∈ Sn,J ,

fix an arbitrary permutation πρ in Sn such that πρ|J = ρ. Let L be a positive integer to be

determined later. For φ ∈ (0,1) and γ ∈ (0,1/k], we define a set of Mallows mixtures by

discretizing the weights:

M ≡M (n, k, φ, γ, J, L) :=

 k∑
i=1

ri

L
M

(
πρi , φ

)
: ρi ∈ Sn,J , ri ∈ [L], ri ≥ γL,

k∑
i=1

ri = L

 . (4.2)

Parameter γ corresponds to the minimal mixing weight and 1/L to the step of the grid

search over mixing weights. The weights ri/L sum to 1 and each weight is at least γ.

Since there are at most L choices for each weight and at most

∣∣∣Sn,J ∣∣∣ ≤ n` choices for each

ρi , we have |M | ≤ Lknk`. We remind that ` is O(k).

SubOrder Function

Input: observations σ1, . . . , σN ∈ Sn, a subset J ⊂ [n], ` := |J |, and parameters k ∈ N,

φ ∈ (0,1), γ ∈ (0,1/k], N ′ ∈ N, and L = d3k/ηe where η = η(k, `, φ, γ) is defined

in 4.1

∗ For each Mallows mixtureM′ ∈M , where M is defined in 4.2, generate N
′

i.i.d.

random permutations σ
′
1
, . . . , σ

′
N ′

fromM′. Compute the marginalized empirical

distribution M′
N ′

∣∣∣
J

= 1

N ′

∑
N
′

m=1
δσ′m |J

.

∗ If for someM′ =
∑
k

i=1

ri

L
M

(
πρi , φ

)
∈M it holds that TV

(
M′

N ′

∣∣∣
J
,MN |J

)
≤ η/2,

return the set of relative orders

{
πρi ‖J : i ∈ [k]

}
. If there are multiple modelsM′

in M satisfying the condition, an arbitraryM′ is chosen. If no models inM satisfy

this condition, then return "error".
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The following theorem states that a polynomial sample complexity suffices to guaran-

tee that SubOrder(J) successfully simulates the weak oracle on query set J with high

probability.

Theorem 4.3.3. Suppose we are given N i.i.d. observations σ1, . . . , σN from the Mallows

mixture M =
∑
k

i=1
wiM (πi) on Sn with a noise parameter φ ∈ (0,1). Fix a set of indices

J ⊂ [n] and let ` := |J |. Fix γ > 0 such that γ ≤ mini∈[k]wi . Fix a probability of error

δ ∈ (0,1). If the sample size satisfies N ≥ poly k,`

(
1

1−φ
,

1

γ

)
· log 1

δ
and we choose an integer

N
′ ≥ poly k,`

(
1

1−φ
,

1

γ

)
· log n

δ
, then SubOrder(J) returns the set of relative orders {πi‖J : i ∈ [k]}

with probability at least 1 − δ.

To analyse the time complexity of SubOrder we first observe that the set of candidate

models is of polynomial size and the sample complexity of both original and fake sam-

ples is polynomial as well. Moreover, sampling from each candidate model is performed

efficiently in polynomial time (e.g. using the RIM sampling method). Calculating the TV-

distance between the empirical models can be performed in time linear to the number of

samples. Thus, the time complexity of SubOrder is polynomial on the spread parameter,

minimal mixing weight, number of items and error probability tolerance. The complexity

is exponential on the number k of central rankings but we assume that this parameter is

constant.

4.3.3 Recovering the Central Rankings and the Corresponding Weights

To recover the central rankings of a latent mixture, using noisy samples drawn from the

mixture, we could use the algorithm presented in 4.3.2, simulating the weak oracle with

the SubOrder. The time complexity of the noiseless algorithm is O(n2 · k) and the time

complexity of each SubOrder call is polynomial on all parameters except k. SubOrder(J)

will be called on O(n2 ·k) sets J , where |J | is at most 2k+2. Since there are less than n
2k+2

possible subsets of [n] that have cardinality 2k + 2, we can set δ = n
−2k−12

in Theorem

4.3.3 and take a union bound to ensure that with high probability (n−10) all SubOrder

calls will be successful and thus the central permutations will be exactly recovered.This

yields the following result:

Theorem 4.3.4. Given N i.i.d. observations from the Mallows mixtureM =
∑
k

i=1
wiM (πi)

on Sn with a known noise parameter φ ∈ (0,1). Suppose we are given γ > 0 such that

γ ≤ mini∈[k]wi . Then there exists a poly k

(
n,

1

1−δ
,

1

γ

)
-time algorithm that exactly recovers

the set of central permutations {π1, . . . , πk} with probability at least 1 − n−10
, provided that

N ≥ poly
k

(
1

1−φ
,

1

γ

)
· logn.

Having recovered the central rankings of the mixture we will try to approximate the

corresponding weights with small absolute error. The tool that will be used to this end is a

proposition that bounds from below the TV-distance between two marginalised mixtures

that have the same centers but different corresponding weights.

Proposition 4.3.3. Consider Mallows mixturesM =
∑
k

i=1
wiM (πi) andM′ =

∑
k

i=1
w
′
i
M (πi)

on Sn with a common noise parameter φ ∈ (0,1). Suppose that ξ , maxi∈[k]
∣∣∣wi −w

′
i

∣∣∣ > 0.
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Let J be a subset of [n] such that πi

∥∥∥J , πj∥∥∥
J

for any distinct i, j ∈ [k]. Define ` , |J | and

define η(k/2, `, φ,1) as in 4.3.1. Then we have:

TV
(
M|J ,M

′
∣∣∣
J

)
≥ ξ · η(k/2, `, φ,1)

The authors propose the following algorithm for learning the weights assuming that the

centers have been correctly estimated. The main idea is to perform marginalisation on a

set J such that all k central permutations have distinct projections on J . This ensures

that each one of the k mixing weights will appear individually as the weight of a single

component and no merging will be made. Such a J can be easily computed using a

decision tree that performs a split in each node, according to some pairwise comparison,

partitioning the set of permutations of the node into two non-empty subsets. The root

node contains the full set of k central permutations. Each leaf contains a single center

and the total number of splits is k−1. Each split is a pairwise comparison and J is the set

of all distinct elements appearing in these comparisons. A brute force search is performed

on candidate combinations of mixing weights, using a precision (step size) equal to 1/L

per weight. The choosing criterion is TV-distance minimization between the candidate

model and the empirical of the latent model. Similarly with the algorithm that estimates

the central rankings, the weight retrieval algorithm computes the TV-distance between

the empirical of the latent model and the empirical of each candidate model computed on

fake samples.

Weights Retrieval

Input: π̂1, . . . , π̂k, which are the central permutations returned by the algorithm

in Theorem 4.3.4, L, N
′

and a set of N i.i.d. observations σ1, . . . , σN .

∗ Find in polynomial time a tuple I of k − 1 pairs of distinct indices in [n] such that

χ (π̂i ,I) , χ
(
π̂j,I

)
for any distinct i, j ∈ [k].

∗ Set J equal to the set of all indices appearing in the pairs in I.

∗ Define a set of integer-valued vectors R(L) :=
{
r ∈ [L]k : ri ≥ γL,

∑
k

i=1
ri = L

}
.

∗ For each r ∈ R(L):
∗ Generate N

′
i.i.d. random permutations σ

′
1
, . . . , σ

′
N ′

from the Mallows

mixtureM′(r) =
∑
k

i=1

ri

L
M (π̂i , φ).

∗ Compute the marginalized empirical distribution M′
N ′

(r)
∣∣∣
J

of the generated

sample set.

∗ Compute the marginalized empirical distribution MN |J of samples σ1, . . . , σN .

∗ Return the estimator ŵ ∈ Rk given by: ŵ = 1

L
argmin
r∈R(L)

TV
(
M′

N ′
(r)

∣∣∣
J
,MN |J

)
.
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The above algorithm is guaranteed to estimate the weights with high probability up to

some desired degree of precision, as long as the number N of observations and N
′

of fake

samples per candidate model are big enough and the step size 1/L is small enough.

Let ξ > 0 denote the aimed accuracy of estimating each weight wi . We apply Proposi-

tion 4.3.2 with s = ξη/6 where η = η(k/2, `, φ,1) and we have that:

TV (M|J ,MN |J ) ≤ ξη/6 (4.3)

with probability at least 1 − n−11
, if N ≥ 1

ξ2

(
log 1

ξ

)2`+1

poly k

(
1

1−φ

)
· logn. Similarly, if

we choose N
′ ≥ N · k log L, then Proposition 4.3.2 together with a union bound over all

r ∈ R(L) implies that with probability at least 1 − n−11
. it holds for all r ∈ R(L) that:

TV
(
M′(r)

∣∣∣
J
,M′

N ′
(r)

∣∣∣
J

)
≤ ξη/6 (4.4)

In the sequel, we condition on the event E of probability at least 1 − n−10
that both of the

above bounds hold.

Moreover, if we choose L ≥ 3k

ξη
, then there exists r ∈ R(L) for which

∣∣∣ ri
L
−wi

∣∣∣ ≤ ξη

3k
for

any i ∈ [k]. For this r it holds that:

TV
(
M|J ,M

′(r)
∣∣∣
J

)
≤ ξη/6 (4.5)

Applying the triangle inequality on the distances in relations 4.3, 4.4 and 4.5 we obtain:

TV
(
M′

N ′
(r)

∣∣∣
J
,MN |J

)
≤ ξη/2

On the other hand, for any r
′ ∈ R(L), for which there exists i ∈ [k]

∣∣∣ ri
L
−wi

∣∣∣ ≥ ξ , we obtain

from Proposition 4.3.3 that

TV
(
M′

N ′
(r)

∣∣∣
J
,MN |J

)
≥ 2ξη/3

on the event E. r
′
cannot be equal to Lŵ because weight vector r defined earlier exists and

achieves a better TV-distance score. We conclude that ŵ must satisfy that |ŵi −wi | ≤ ξ

for each i ∈ [k].

To satisfy the bound in 4.3 with high probability, we demand that the sample complexity

is at least
1

ξ2

(
log 1

ξ

)2`+1

poly k

(
1

1−φ

)
· logn. Thus, for the weight accuracy ξ we have:

ξ ≤
(logN)`+1

N1/2

(
poly

k

(
1

1−φ

)
· logn

)1/2

≤
(logN)2k−1

N1/2

(
poly

k

(
1

1−φ

)
· logn

)1/2

.

The results of this paper on central ranking and weight estimation are summed up in

the following theorem:

Theorem 4.3.5. Given N i.i.d. observations from the Mallows mixtureM =
∑
k

i=1
wiM (πi)
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on Sn with distinct central permutations π1, . . . , πk and a known noise parameter φ ∈ (0,1).
Suppose we are given γ > 0 such that γ ≤ mini∈[k] wi. If N ≥ poly k

(
1

1−φ
,

1

γ

)
· logn, then

there exists a poly k

(
n,

1

1−φ
,

1

γ

)
-time algorithm which returns a mixture M̂ =

∑
k

i=1
ŵiM (π̂i)

such that the following holds with probability at least 1 − 2n
−10 : Up to a relabeling, we

have π̂i = πi and |ŵi −wi | ≤ N
−1/2(logN)2k−1(logn)1/2

poly k

(
1

1−φ

)
for each i ∈ [k].

Note that the authors achieve a logarithmic dependency of the sample complexity on n,

generalising the result of the single Mallows case.
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Chapter 5

Learning Selective Mallows Mixture Models

5.1 Identifiability of the Selective Mallows Mixture Model

In this work our goal is to estimate the parameters of the Mallows Mixture using in-

complete samples. We would like small selection sets (ideally pairwise comparisons) to

be sufficient for this purpose. Practically, a selection mechanism implies identifiablity if

given enough incomplete samples supported by this mechanism, that is samples that have

non zero probability to be drawn, the latent parameters of the mixture can be uniquely

estimated. We will now provide some formal definition of the identifiability.

Suppose models M and M’ are identical. This means that they are supported on the same

set of (possibly incomplete) permutations and M(π) = M
′(π) ∀π in the support set.

M(π) = f (s) ·
k∑
i=1

wi ·
φ
dKT (πi ,π)

Z (φ, |s|)

M
′(π) = f

′(s) ·
k∑
i=1

w
′
i
·
φ
dKT (π′

i
,π)

Z (φ, |s|)

We suppose that the base models of the mixture have all the same spread parameter φ.

The rankings observed are incomplete and f is the selection mechanism. The full set of

items is [n]. The probability that some set s of items, s ⊆ [n], is selected is equal to f(s).

Definition 5.1.1. We say that the mixture of k distinct Mallows models is identifiable on

a support set S if 2 mallows mixtures being identical implies that the two sets of central

permutations must coincide, and so do the corresponding weights.

Note that the selection mechanism is assumed to be the same among all candidate models.

However even if this assumption is not made it can be easily derived that two identical

models have the same selection mechanism.

If models M and M’ are identical then ∀s ⊆ [n] : ∀π supported on s : M(π) = M
′(π) .
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For each selection set s we sum over all permutations supported on s and we obtain

∑
π supported on s

k∑
i=1

wi ·
φ
dKT (πi ,π)

Z (φ, |s|)
=

∑
π supported on s

k∑
i=1

w
′
i
·
φ
dKT (π′

i
,π)

Z (φ, |s|)
= 1

∑
π supported on s

M(π) =
∑

π supported on s

M
′(π) ⇒ f (s) = f

′(s)

We remind that [5] used a determinant calculated in [4] to show that if two complete

mallows mixtures are equal on every permutation in Sn, then they have the same (dis-

tinct) centers and the same corresponding weights. We can generalize this concept to

selective mixtures. In particular we can construct a range I containing all permutations

of n items and a range J containing all partial permutations of n items supported by

selection mechanism f(s). We then construct an N × M matrix A, where the i-th row (ci )

corresponds to the i-th permutation in I and the j-th column (πj) corresponds to the j-th

selective permutation in J. Rows play the role of the central permutation of the mixture.

Columns correspond to supported inputs to the mixture. The element A[i][j] is set equal

to f (s) · φ
dKT (ci ,πj )

Z (φ,|s|) , where s is the set of items found in πj and is equal to the density of the

selective mallows distribution with center ci and selection mechanism f(s) calculated at

point πj. The i-th row of A is the vectorization of the selective mallows distribution with

center ci and selection mechanism f(s). Any linear combination of k rows of matrix A is

the vectorization of a selective mallows mixture. So the problem of identifiability can be

reduced to an algebraic problem of linear independence. The k-mixture subject to a selec-

tion mechanism f(s) is identifiable iff any set of k rows of matrix A is linearly independent.

In the case of complete mixtures f(s)=0 for all incomplete sets s and f(s)=1 for the full

set of n items. In this case the normalisation constant Z (φ, |s|) can be factored out of A

and does not affect the rank of A so it can be completely skipped. Moreover, if samples

are complete the determinant of A can be calculated using the results of [4] and is non

zero. This implies that any number of k rows of A is linearly independent so any complete

mallows mixture is identifiable.

The size of A grows superexponentially with n, so brute forcing over it is impractical.

We provide the example of A on 3 items. Firstly, we suppose that samples are complete.

In this case normalisation constant Z (φ, |s|) can be factored out so we omit it.

A =



1 φ φ φ
2

φ
2

φ
3

φ 1 φ
2

φ
3

φ φ
2

φ φ
2

1 φ φ
3

φ
2

φ
2

φ
3

φ 1 φ
2

φ

φ
2

φ φ
3

φ
2

1 φ

φ
3

φ
2

φ
2

φ φ 1


det(A) = −(φ2−1)7(φ2−φ+1)(φ2 +φ+1) , 0 ∀φ ∈ (0,1)

74 Diploma Thesis



5.1 Identifiability of the Selective Mallows Mixture Model

Then we suppose that samples are incomplete. Since we only have 3 items, incomplete

samples can only be pairwise comparisons. We construct A with rows corresponding to

permutations in Sn and columns to pairwise comparisons of items 1,2,3.

A =



1 1 φ φ 1 φ

1 1 1 φ φ φ

φ φ 1 1 φ 1

1 φ 1 1 φ φ

φ φ φ 1 1 1

φ 1 φ φ 1 1


det(A) = 0 ∀φ ∈ (0,1) ⇒ no identifiability.

We will now see what the identifiability of the complete mixture implies about the se-

lective mixture.For each selection set s supported by f(s) models M and M’ are projected

on s and these projections are complete mixtures so the identifiability theorem of [5] holds.

k∑
i=1

wi ·
φ
dKT (πi ,π)

Z (φ, |s|)
=

k∑
i=1

w
′
i
·
φ
dKT (π′

i
,π)

Z (φ, |s|)
∀π supported on s

This implies that projected models M |s and M
′|s have the same distinct projected permu-

tations πj, j ∈ [k′], k′ ≤ k and

∑
πi ||s=πj

wi =
∑

π
′
i ||s=πj

w
′
i
∀j ∈ [k′]

These equations do not always ensure identifiability of the latent complete centers and

even when they do, subtle manipulation of the equations obtained by different selection

sets s is needed.

Let’s examine how strict a selection mechanism can be without stopping to preserve

identifiability.

5.1.1 Pairwise Comparisons and k=2, the General Case:

Unfortunately, even in the simple case when the mixture consists of two centers pairwise

comparisons may fail to preserve identifiability. In particular, when we have a mixture of

two equally weighted reversals, then the observed density on all pairwise comparisons is

1

2
, irrespective of what exactly those reversal permutations are.

Suppose π1, π2 are and reversals, w1 = w2 = 1/2. Then for every pairwise comparison (i,j)

P{i < j} = 1

2

φ

1+φ
+ 1

2

1

1+φ
= 1

2
because either i < j in π1 and i > j in π2 or i > j in π1 and i < j

in π2 . Thus all equally weighted mixtures of 2 reversals have the same distribution over

pairwise comparisons and can not be distinguished from each other only using pairwise

comparisons.
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5.1.2 Pairwise Comparisons, k=2, Non Equal Weights

The case when weights are equal is degenerate. If the weights are not equal then pairwise

comparisons preserve identifiability. The reason for this is that non equal weights can be

used as a "signature" of each one of the two centers. That is, in pairwise comparisons

on which the two centers disagree with each other, we can conclude what the result of

the pairwise comparison is on each of the centers. In the case when mixing weights are

equal, we could only know that the two centers disagreed but we could not match the

two different answers to the query to the correct components. We will now analyse this

situation more formally.

Selection mechanism f only selects pairs of elements and we have a mixture of π1, π2.

M(π) = f (s) · [w1 ·
φ
dKT (π1 ,π)

Z (φ,|s|) +w2 ·
φ
dKT (π2 ,π)

Z (φ,|s|) ]

M
′(π) = f (s) · [w′

1
·
φ
dKT (π′

1
,π)

Z (φ,|s|) +w′
2
·
φ
dKT (π′

2
,π)

Z (φ,|s|) ]

The marginalised model on each pair s=(i,j) is the following:

M(i < j) = w1 ·
φ
1{π1(i)<π1(j)}

φ+1
+w2 ·

φ
1{π2(i)<π2(j)}

φ+1

We suppose M(i < j) = M
′(i < j) for all available pairs (i,j).∣∣∣∣∣∣∣1/(1 + φ) φ/(1 + φ)

φ/(1 + φ) 1/(1 + φ)

∣∣∣∣∣∣∣ = (1 − φ)/(1 + φ) > 0⇒the marginalised model is identifiable.

There are 4 cases for s=(i,j).

1) π1(i) < π1(j) and π2(i) < π2(j)⇒ M(i<j)=w1 ·
φ

φ+1
+w2 ·

φ

φ+1
=

φ

φ+1

2) π1(i) > π1(j) and π2(i) > π2(j)⇒ M(i<j)=w1 ·
1

φ+1
+w2 ·

1

φ+1
= 1

φ+1

3) π1(i) < π1(j) and π2(i) > π2(j)⇒ M(i<j)=w1 ·
φ

φ+1
+w2 ·

1

φ+1

4) π1(i) > π1(j) and π2(i) < π2(j)⇒ M(i<j)=w1 ·
1

φ+1
+w2 ·

φ

φ+1

If there is a pair s0 with f (s0) , 0 and π1||s0 , π2||s0 (cases 3, 4) then for this pair

k
′ = 2 ⇒ {w1, w2} is equal to {w′

1
, w
′
2
} as sets. Either (w1, w2) = (w′

1
, w
′
2
) or (w1, w2) =

(w′
2
, w
′
1
) as tuples.

WLOG Suppose we were in case 3 for the pair s0 = (i0, j0). Then M(i0 < j0) = w1 ·
φ

φ+1
+

w2 ·
1

φ+1
= M

′(i0 < j0).
If (w1, w2) = (w′

1
, w
′
2
) then π

′
1
(i0) < π′

1
(j0) (CASE I)

If (w1, w2) = (w′
2
, w
′
1
) then π

′
2
(i0) < π′

2
(j0) (CASE II)

WLOG we can suppose that w1 = w
′
1
, w2 = w

′
2

because a relabeling of the components

does not change a mixture.

Now we can use every available pair (i,j) to construct comparison graphs for π1 and π2.

Since {w1, w2} = {w′
1
, w
′
2
} both M |(i,j) and M

′|(i,j) take values in the set {
φ

φ+1
,

1

φ+1
, w1 ·

φ

φ+1
+

w2 ·
1

φ+1
, w1 ·

1

φ+1
+w2 ·

φ

φ+1
}. Since w1 , w2 all these four values are different from each

other.
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We have supposed M and M’ are identical, so M(i<j)=M’(i<j).

• If models M and M’ both assign probability
φ

φ+1
to i<j, then we know that π1(i) < π1(j) ,

π2(i) < π2(j) , π
′
1
(i) < π′

1
(j) and π

′
2
(i) < π′

2
(j).

• If models M and M’ both assign probability
1

φ+1
to i<j, then we know that π1(i) > π1(j) ,

π2(i) > π2(j) , π
′
1
(i) > π′

1
(j) and π

′
2
(i) > π′

2
(j).

• If models M and M’ both assign probability w1 ·
φ

φ+1
+w2 ·

1

φ+1
to i<j, then we know that

π1(i) < π1(j) , π2(i) > π2(j), π′
1
(i) < π

′
1
(j) and π

′
2
(i) > π

′
2
(j) because if the relation between

i and j in the central permutations was different than the relation between i0 and j0 a

different probability would have been assigned to i < j than the probability of i0 < j0.

• If models M and M’ both assign probability w1 ·
1

φ+1
+ w2 ·

φ

φ+1
to i<j, then we know

that π1(i) > π1(j) , π2(i) < π2(j), π′
1
(i) > π

′
1
(j) and π

′
2
(i) < π

′
2
(j) The centers in each model

are in a discord with each other because the probability is neither
φ

φ+1
nor

1

φ+1
. If the

relation between i and j in the central permutations was the same as the relation between

i0 and j0 the same probability would have been assigned to i < j as the probability of i0 < j0.

Thus the only possible case is π1(i) > π1(j) , π2(i) < π2(j), π′
1
(i) > π′

1
(j) and π

′
2
(i) < π′

2
(j).

In each case, the pairwise comparisons in π1 agree with those in π
′
1

and the compar-

isons in π2 agree with those in π
′
2
. As a result the comparison graph for π1 is the same

as π
′
1

and the comparison graph for π2 is the same as π
′
2
. If the support set contains

enough pairs, the constructed comparison graphs give total order and π
′
1
, π
′
2

are unique

and equal to π1, π2 respectively and identifiability is preserved. On the contrary, if some

graph gives only partial order then multiple possible central permutations can be derived

from this graph and identifiability does not hold.

5.1.3 Sufficient Conditions for Identifiability

We consider two selective Mallows mixture models M1 and M2 :

M1(π) = f (J) ·
∑
k

i=1
w1,i ·

φ
dKT (π1,i |J ,π)

Z (φ,|J |) ,

M2(π) = f (J) ·
∑
k

i=1
w2,i ·

φ
dKT (π2,i |J ,π)

Z (φ,|J |) ,

where the argument π is some incomplete ranking and J is the set of items found in π.

The central permutations of M1 {π1,1, π1,2, ... π1,k} are all distinct. The same holds for

the centers of M2. Each central permutation π1,i is a complete permutation of n items

(π1,i ∈ Sn). The same holds for each center π2,i .

A key ingredient for the analysis of identifiability is the following lemma found in [6].

This lemma guarantees that a small (logarithmic on k) "signature" set I of pairwise com-

parisons can always be found for one of the distinct permutations of a permutation set

Σ. Set I is characterised as the "signature" of the corresponding permutation π
∗
, because

the way in which the items found in I compare with each other is unique in π
∗

and differs

from all the other permutations in Σ. For the analysis of identifiability only the existence
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of the pair (I, π
∗
) matters, however the proof of the lemma provides a construction algo-

rithm for I, which will be utilised by an algorithm discussed in the next chapter, which

reconstructs a Mallows Mixture using small (logarithmic on k) noiseless queries. Note

that this lemma only provides a way to isolate one permutation of the set Σ through its

signature. It does not find a signature for each one of the elements of Σ. This limitation

will need careful manipulation as we will see later.

Lemma 5.1.1 (Mao et al. 2020). Let χ(π, I) be a vector st χ(π, I)
r

= 1{π(ir) < π(jr)} and

I = [(i1, j1), ..., (il , jl)]. ∀ set Σ of k distinct permutations in Sn, n ≥ 2, there exist π
∗ ∈ Σ and

I = [(i1, j1), ..., (il , jl)], st l ≤ blog2(k)c and (π , π∗ ⇒ χ(π, I) , χ(π∗, I)), ∀π ∈ Σ.

Proof (construction procedure):

Σ0 := Σ, r=1

while |Σr−1| > 1:

find (ir , jr ) st:

Σ+
r

= {π ∈ Σr−1 : π(ir) > π(jr)} , {}
Σ−
r

= {π ∈ Σr−1 : π(ir) < π(jr)} , {}
Σr := the smallest between Σ+

r
and Σ−

r

r+=1

|Σr | ≤ k/2
k ⇒ l ≤ blog2(k)c

The above procedure is similar to a binary search. The initial set Σ is bisected in each step,

based on the result of a pairwise comparison. The resulting set contains a single element

π∗, the permutation we succeed to isolate, and the sequence of pairwise comparisons that

lead as to this element are its signature.
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Theorem 5.1.1. If for all incomplete permutations π of length l, where l in {2,3, ...,2 ·

blog2(k)c + 3} it holds that

1. f (J) , 0, where J is the set of items in π and

2. M1(π) = M2(π)⇔
∑
k

i=1
w1,i ·

φ
dKT (π1,i |J ,π)

Z (φ,|J |) =
∑
k

i=1
w2,i ·

φ
dKT (π2,i |J ,π)

Z (φ,|J |)

then {(w1,1, π1,1), (w1,2, π1,2), ...(w1,k , π1,k)} and {(w2,1, π2,1), (w2,2, π2,2), ...(w2,k , π2,k)} are

equal as sets.

Proof.

The theorem can be proved by induction on n, the number of items.

Base case: for n = l = 2 · blog2(k)c + 3, J is the full set of items, so no selection is

made and we can apply the identifiability theorem for Mallows mixture models on com-

plete rankings that has been proved in previous work.

Induction Hypothesis:

Set C
1

n−1
contains the distinct elements of the set {π1,1|[n−1], ..., π1,k |[n−1]}, that is the pro-

jections of the centers of M1 on items {1,2...n − 1}. Some centers might have the same

projections. However C
1

n−1
is not a multiset. We consider the distinct elements of this set.

C
1

n−1
= {πc

1,1
, ..., π

c

1,kc
}, where π

c

1,i
are all distinct and their cardinality kc is at most k

(kc < k if some centers have the same projections).

We also consider the set WC
1

n−1
that contains the tuples (πc

1,j
,

∑
i:π1,i |[n−1]=πc

1,j

w1,i) of dis-

tinct centers paired with their cumulative weight.

WC
1

n−1
:= {(πc

1,1
,
∑
i:π1,i |[n−1]=πc

1,1

w1,i), ... , (πc1,kc ,
∑
i:π1,i |[n−1]=πc

1,kc

w1,i)}

We now consider the same quantities for mixture M2.

Set C
2

n−1
contains the distinct elements of the set {π2,1|[n−1], ..., π2,k |[n−1]}

C
2

n−1
= {πc

2,1
, ..., π

c

2,kc
}

WC
2

n−1
:= {(πc

2,1
,
∑
i:π2,i |[n−1]=πc

2,1

w2,i), ... , (πc2,kc ,
∑
i:π2,i |[n−1]=πc

2,kc

w2,i)}

We suppose WC
1

n−1
= WC

2

n−1
.

Induction Step:

{(c1,1, wt1,1), (c1,2, wt1,2), ..., (c1,k1
, wt1,k1

)} := WC
1

n

{(c2,1, wt2,1), (c2,2, wt2,2), ..., (c2,k2
, wt2,k2

)} := WC
2

n

We will show that WC
1

n
= WC

2

n
.

From induction hypothesis it holds that WC
1

n−1
= WC

2

n−1
but we only need the fact that
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C
1

n−1
= C

2

n−1
.

Wlog we suppose that the order of the elements π
c

2,1
, ..., π

c

2,kc
is such that π

c

1,i
= π

c

2,i
, ∀ i ∈

[kc].
Also, wlog, we suppose that the order of the elements π

c

1,1
, ..., π

c

1,kc
is such that if we apply

Lemma 5.1.1 on them, permutation π
c

1,1
and its ’signature’ set of comparisons will be re-

turned, if we delete it and apply the lemma on the remaining ones π
c

1,2
(and its signature)

will be returned and generally if we apply the lemma on the subset {πc
1,i
, π

c

1,i+1
, ..., π

c

1,kc
},

i ∈ [kc], πc1,i will be returned.

We apply Lemma 5.1.1 on the set C
1

n−1
. There exists I, an l-tuple of pairwise compar-

isons st:

l ≤ blog2(k)c and (j , 1⇒ χ(πc
1,j
, I) , χ(πc

1,1
, I))

We consider the centers c1,lc1,lc1,l in WC
1

n
that satisfy the restriction c1,l |[n − 1] = π

c

1,1
=

[e1, e2, ...en−1].
There are 3 cases for c1,l :

c1,lc1,lc1,l = [e1, e2, ..., er−1, n, er , ..., en−1], for some r in [2, n − 1] (I) or

c1,lc1,lc1,l = [e1, e2, ..., en−1, n] (II) or

c1,lc1,lc1,l = [n, e1, e2, ..., en−1] (III)

In each of the 3 cases it suffices to know the relative order among er−1, er and n to

fully determine c1,l (given the fact that c1,l |[n − 1] = π
c

1,1
= [e1, e2, ...en−1]).

We take the set of indices J := set of elements appearing in I union {er−1, er , n}. |J | ≤

2 · blog2(k)c + 3

M1|J (π) =
∑
k

i=1
w1,i ·

φ
dKT (π1,i |J ,π)

Z (φ,|J |) =
∑
k
′

j=1
w
′
j
·
φ
dKT (π′

j
,π)

Z (φ,|J |) ,

The centers π
′
j

are distinct permutations of the elements in J .

w
′
j

=
∑
π1,i |J=π′

j

w1,i .

M2|J (π) =
∑
k

i=1
w2,i ·

φ
dKT (π2,i |J ,π)

Z (φ,|J |)

M1|J (π) = M2|J (π) ∀ permutation π of the items of J . The identifiability theorem for com-

plete mallows mixtures implies that M1|J , M2|J have the same distinct centers and the

same corresponding weights. So M2|J (π) is also equal to
∑
k
′

j=1
w
′
j
·
φ
dKT (π′

j
,π)

Z (φ,|J |) .

For M1|J we have:

One of the distinct centers π
′
j

is equal to c1,l |Jc1,l |Jc1,l |J . We name it π
′
j∗
.

Since J contains all the elements of I, the set S1 = {π1,i : π1,i |J = π
′
j∗
} is a subset of

{π1,i : π1,i |[n−1] = π
c

1,1
}. In fact S1 = {π1,i : π1,i |[n−1] = π

c

1,1
and the relative order among

er−1, er and n is the same in π1,i and π
′
j∗
}.

This yields that S1 = {π1,i : π1,i |[n] = c1,lc1,lc1,l}.

For the weights we have: S1 = {π1,i : π1,i |J = π
′
j∗
} = {π1,i : π1,i |[n] = c1,lc1,lc1,l} ⇒ w

′
j∗

=∑
π1,i |J=π′

j∗
w1,i =

∑
i:π1,i |[n]=c1,l w1,i = wt1,l .

We make a similar analysis for M2|J :
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π
′
j∗

= c1,l |J .

I is such that (j , 1 ⇒ χ(πc
1,j
, I) , χ(πc

1,1
, I)). But π

c

1,j
= π

c

2,j
, so it holds that (j , 1 ⇒

χ(πc
2,j
, I) , χ(πc

2,1
, I)) S2 = {π2,i : π2,i |J = π

′
j∗
} = {π2,i : π2,i |[n−1] = π

c

1,1
and the relative order

among er−1, er and n is the same in π2,i and π
′
j∗
} = {π2,i : π2,i |[n] = c1,l}

w
′
j∗

=
∑
π2,i |J=π′

j∗
w2,i =

∑
i:π2,i |[n]=c1,l w2,i = wt1,l

The set {i : π2,i |[n] = c1,l} is non empty, so for some l
′

in [k2] it holds that c2,l′ = c1,l . We

also have that wt1,l =
∑
i:π2,i |[n]=c1,l w2,i =

∑
i:π2,i |[n]=c2,l′ w2,i = wt2,l′ .

We have shown that ∀(c1,l , wt1,l) ∈ WC1

n
s.t. c1,l |[n − 1] = π

c

1,1
there exists (c2,l′ , wt2,l′) ∈

WC
2

n
s.t. (c2,l′ , wt2,l′) = (c1,l , wt1,l).

Working symmetrically, we can prove that ∀(c2,l , wt2,l) ∈ WC2

n
s.t. c2,l |[n − 1] = π

c

1,1
there

exists (c1,l′ , wt1,l′) ∈ WC1

n
s.t. (c1,l′ , wt1,l′) = (c2,l , wt2,l).

We now have to show the same for the centers c1,l in WC
1

n
that satisfy the restriction

c1,l |[n − 1] = π
c

1,i
, where i ≥ 2. We remind that if we apply Lemma 5.1.1 on the sub-

set {πc
1,i
, π

c

1,i+1
, ..., π

c

1,kc
}, i ∈ [kc], πc1,i and its signature I will be returned. In each case

I contains l pairwise comparisons, where l ≤ blog2(k)c, but I does only work as a sig-

nature on the subset {πc
1,i
, π

c

1,i+1
, ..., π

c

1,kc
}. On the full set C

1

n−1
there may be π

c

1,j
s.t.

j , i but χ(πc
1,j
, I) = χ(πc

1,i
, I)). In this case wt1,l=w

′
j∗

-
∑
m:c1,m |J=c1,l |J wt1,m . The set

c1,m : c1,m |J = c1,l |J contains centers c1,m in Sn s.t. c1,m |[n − 1] = π
c

1,j
, j < i. Induc-

tively we yield that the sets WC
1

n
and WC

2

n
are equal constrained on{c1,m : c1,m |[n − 1] =

π
c

1,j
, j < i} and {c2,m : c2,m |[n − 1] = π

c

2,j
, j < i}. So wt1,l=w

′
j∗

-
∑
m:c1,m |J=c1,l |J wt1,m=

w
′
j∗

-
∑
m:c2,m |J=c1,l |J wt2,m=wt2,l′ for some l

′
. This way we show again like the case of

π
c

1,1
, that ∀(c1,l , wt1,l) ∈ WC1

n
s.t. c1,l |[n − 1] = π

c

1,i
, i ∈ [kc] there exists (c2,l′ , wt2,l′) ∈

WC
2

n
s.t. (c2,l′ , wt2,l′) = (c1,l , wt1,l) and reversely ∀(c2,l , wt2,l) ∈ WC2

n
s.t. c2,l |[n−1] = π

c

1,i
, i ∈

[kc] there exists (c1,l′ , wt1,l′) ∈ WC1

n
s.t. (c1,l′ , wt1,l′) = (c2,l , wt2,l).

WC
1

nmax
= {(w1,1, π1,1), (w1,2, π1,2), ...(w1,k , π1,k)} and WC

1

nmax
= WC

2

nmax
. So we have shown

that {(w1,1, π1,1), (w1,2, π1,2), ...(w1,k , π1,k)} and

{(w2,1, π2,1), (w2,2, π2,2), ...(w2,k , π2,k)} are equal as sets.

In fact, one comparison can be saved from the query length, when we try to place the

i-th item in the correct position on the centers restricted on items 1,2,..i-1. This can be

achieved by checking the possible positions in a specific order, starting from item i-1 and

continuing up to item 1. We make use of the fact that the total weight of the centers that

place the i-th item between the consecutive items a and a+1 in the projected center is

equal to the total weight of the centers that place it before a+1 minus the total weight of

the centers that place it before a. Therefore, we only need to add pairwise comparisons

(a,i), (b,i) to the signature rather than a 3-wise comparison (a,b,i). This way the queries

to the strong oracle have length at most 2 · blog2(k)c + 2.

The above analysis assumes that spread parameters are equal in all components. This
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in fact is the most difficult case in terms of identifiability, due to [5]. In this paper the

authors show that given enough samples and assuming n ≥ 10k we can learn the central

rankings exactly and the corresponding weights and spread parameters with an absolute

error arbitrarily small (thus approaching zero given infinite samples). Thus, the identi-

fiability result for complete mixtures of Mallows models with equal spread parameters,

following from the determinant of Zagier et al., extends to the case of non equal spread

parameters, with the condition n ≥ 10k. For the selective Mallows mixture, in the case of

non equal spread parameters, the proof of identifiability would be very similar to the case

of equal spread parameters, with the different spread parameters functioning as part of

the "signature" of each component, making its isolation easier. In conclusion, based on

the current literature, the bottleneck for the selectivity in the case of non equal spread

parameters is the minimal number of items m
∗
k

required to learn the complete mixture of

k components with non equal spread parameters. Currently, m
∗
k

= 10k. Generally, the

identifiability condition in the case where spread parameters are not necessarily equal is

that selection sets J should have length |J | ≥ max(m∗
k
,2 · blog2(k)c + 2

In the case of equal spread parameters, the conditions for the length of the selections are

actually tight. If the selection sets contain less than 2 · blog2(k)c + 2 items, then certain

k-mixtures are not identifiable.

5.1.4 Tight Examples for the sufficient Conditions for Identifiability

Theorem 5.1.2. If l < 2(blog2(k)c +1), then there exist two mixtures M1, M2 with different

sets of central permutations and M1(π) = M2(π),∀π with length less or equal to l.

Proof.

For n = 2m, k = 2
m−1

we can always construct two sets S1, S2 of distinct permutations,

st. |S1| = |S2| = k = 2
m−1

and the projections of the two sets on any selection of n-1 items

are equal. For each v ∈ {0,1}m we define a unique permutation πv ∈ S2m as follows:

πv(2j − 1) = 2j − 1, πv(2j) = 2j, if vj = 0

πv(2j − 1) = 2j, πv(2j) = 2j − 1, if vj = 1

∀j ∈ [m]

We define

S1 = {πv : v ∈ {0,1}m , sum(v) is odd}

S2 = {πv : v ∈ {0,1}m , sum(v) is even}

∀J ⊂ [n], |J | = n−1 : {πv‖J : v ∈ {0,1}m , sum(v) is odd} = {πv‖J : v ∈ {0,1}m , sum(v) is even}
Proof: Sps the missing element is j1. For every permutation π1 in S1 we find j1’s pair,

which might be (j1, j2) or (j2, j1), j2 adjacent to j1, and we change the order between j1,j2.

The resulting permutation π2 is in S2. j1 is not in J so the pair simplifies to the single
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element j2 and π1‖J= π2‖J .

M1(π) = f (J) ·
k∑
i=1

1

k
·
φ
dKT (π1,i‖J ,π‖J )

Z (φ, |J |)

M2(π) = f (J) ·
k∑
i=1

1

k
·
φ
dKT (π2,i‖J ,π‖J )

Z (φ, |J |)

{π1,i} , {π2,i} but M1(π) = M2(π) for every π supported on a strict subset of [n].
For n > 2m we can extend the permutations if S1,S2 with identity permutations over the

extra elements and the theorem for S1, S2 continues to hold.

Example for n=8

v πv

(0, 0, 0, 0) [1, 2, 3, 4, 5, 6, 7, 8]

(0, 0, 0, 1) [1, 2, 3, 4, 5, 6, 8, 7]

(0, 0, 1, 0) [1, 2, 3, 4, 6, 5, 7, 8]

(0, 0, 1, 1) [1, 2, 3, 4, 6, 5, 8, 7]

(0, 1, 0, 0) [1, 2, 4, 3, 5, 6, 7, 8]

(0, 1, 0, 1) [1, 2, 4, 3, 5, 6, 8, 7]

(0, 1, 1, 0) [1, 2, 4, 3, 6, 5, 7, 8]

(0, 1, 1, 1) [1, 2, 4, 3, 6, 5, 8, 7]

(1, 0, 0, 0) [2, 1, 3, 4, 5, 6, 7, 8]

(1, 0, 0, 1) [2, 1, 3, 4, 5, 6, 8, 7]

(1, 0, 1, 0) [2, 1, 3, 4, 6, 5, 7, 8]

(1, 0, 1, 1) [2, 1, 3, 4, 6, 5, 8, 7]

(1, 1, 0, 0) [2, 1, 4, 3, 5, 6, 7, 8]

(1, 1, 0, 1) [2, 1, 4, 3, 5, 6, 8, 7]

(1, 1, 1, 0) [2, 1, 4, 3, 6, 5, 7, 8]

(1, 1, 1, 1) [2, 1, 4, 3, 6, 5, 8, 7]

Suppose we exclude element 3.

S1=[1, 2, 4, 5, 6, 8, 7], [1, 2, 4, 6, 5, 7, 8], [1, 2, 4, 5, 6, 7, 8], [1, 2, 4, 6, 5, 8, 7], [2, 1, 4,

5, 6, 7, 8], [2, 1, 4, 6, 5, 8, 7], [2, 1, 4, 5, 6, 8, 7], [2, 1, 4, 6, 5, 7, 8]

S2=[1, 2, 4, 5, 6, 7, 8], [1, 2, 4, 6, 5, 8, 7], [1, 2, 4, 5, 6, 8, 7], [1, 2, 4, 6, 5, 7, 8],

[2, 1, 4, 5, 6, 8, 7], [2, 1, 4, 6, 5, 7, 8], [2, 1, 4, 5, 6, 7, 8], [2, 1, 4, 6, 5, 8, 7]

S1=S2 as sets
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5.2 Algorithm for learning the Mallows mixture performing noise-

less queries.

Here we present an algorithm for learning the parameters of a mallows mixture given all

its marginals on 2 · blog2(k)c + 3 items.

For n=2 we can learn the restricted mixture with one query to the strong oracle.

for n in [3, nmax ] :

Consider the set C containing the distinct elements of the set {π1|[n−1], ..., πk |[n−1]}.

l=0

do{

Apply Lemma 5.1.1 on C.

There exist s
∗ ∈ [k] and I l-tuple of pairwise comparisons st:

l ≤ blog2(k)c and (πs|[n−1] , πs∗ |[n−1] ⇒ χ(πs, I) , χ(πs∗ , I))
πs∗ |[n−1] is a permutation of the items [1,2, .. n-1]. We express it as a

sequence: πs∗ |[n−1] = [e1, e2, ...en−1]
for r in [2, n − 1] :

J := set of elements appearing in I union {er−1, er , n}

We obtain the distribution M(π) =
∑
k

i=1
wi ·

φ
dKT (πi |J ,π)

Z (φ,|J |) =∑
k
′

j=1
w
′
j
·
φ
dKT (π′

j
,π)

Z (φ,|J |) , where π is in the set that contains

all permutations of the items of J.

The centers π
′
j

are distinct permutations of the elements in J .

From the identifiability theorem for complete ranking mixtures we

can identify each distinct center π
′
j

and its total weight

w
′
j

=
∑
πi |J=π′

j

wi . One of the distinct centers π
′
j∗

is equal to πs∗ |J .

Since J contains all the elements of I, the set S={πi : πi |J = π
′
j∗
} is a

subset of {πi : πi |[n−1] = πs∗ |[n−1]}.

In fact S = {πi : πi |[n−1] = πs∗ |[n−1] and the relative order among

er−1, er and n is the same in πi and πs∗}.

If π
′
j∗

contains the ordered triplet (er−1, n, er), then we have learned

a new center cl in Sn, which is equal to [e1, e2, ..., er−1, n, er , ..., en−1],
and its corresponding weight wtl=w

′
j∗

-
∑
m:cm |J=cl |J wtm .

Else if π
′
j∗

ends in (en−1, n), then we have learned a

new center cl in Sn, which is equal to [e1, e2, ..., en−1, n],
and its corresponding weight wtl=w

′
j∗

-
∑
m:cm |J=cl |J wtm .

Else if π
′
j∗

starts with (n, e1), then we have learned a

new center cl in Sn, which is equal to [n, e1, e2, ..., en−1],
and its corresponding weight wtl=w

′
j∗

-
∑
m:cm |J=cl |J wtm .

Remove πs∗ |[n−1] from C.

l+=1

}while C not empty
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The above algorithm is based on the work of [6], filling in some important details missing

from their description. It has been tested successfully on various synthetic mixtures. We

will now present an example of the execution of the algorithm. Suppose the latent Mixture

has the following parameters:

π1 = [8,7,6,5,1,3,4,2], w1 = 0.3,

π2 = [1,2,3,4,6,7,8,5], w2 = 0.1,

π3 = [1,7,5,3,6,8,2,4], w3 = 0.1,

π4 = [2,7,8,4,5,1,3,6], w4 = 0.2,

π5 = [2,7,8,6,5,1,3,4], w5 = 0.25,

π6 = [2,7,8,6,5,1,4,3], w6 = 0.05

We start from the restriction of the mixture on items {1,2}. Collection C of marginalised

centers contains both [1,2] (stemming from π1, π2, π3) and [2,1] (stemming from π4, π5, π6).

Signature set {1,2} is incorporated in the first query, along with the third item. The

full query set is J = {1,2,3}. The marginalised model on these items is the following:

{([1,2,3],0.1), ([1,3,2],0.4), ([2,1,3],0.5)}. In this case the query set was big enough to

derive the marginalised mixture on items 1,2, ...n explicitly.

The algorithm goes on to learn the marginal on items 1,2,3,4. Collection C of marginalised

centers on this items is equal to {[1,2,3], [1,3,2], [2,1,3]}. Signature I = {1,2} isolates

the third element of C: πs∗ |[3] = [2,1,3].
Item 4 along with signature I constitute the first query set J = {1,2,4}. This query aims

to detect centers deriving from πs∗ |[3], where item 4 lies in the first place, right before 2,

or between 2 and 1. The marginal mixture on J is the following:

{([1,2,4],0.2), ([1,4,2],0.3), ([2,1,4],0.3), ([2,4,1],0.2)}.
Component ([2,4,1],0.2), satisfies the search condition, because item 4 lies between 2

and 1. So we conclude that ([2,4,1,3],0.2) is a component of the mixture on items

1,2,3,4.

The next query is somewhat trivial. Possible insertion positions are considered for item 4,

either between 2 and 3 or after 3. This requires the addition of item 3 to J , so J trivially

covers the full set of items 1,2,3,4. From this query components ([2,1,4,3], 0.05) and

([2,1,3,4] 0.25) are learned. At this step all components derived from [2,1,3] are identi-

fied. We delete this element from C and continue to the next candidate.

After the deletion C is equal to {[1,2,3], [1,3,2]}. Signature I = {2,3} isolates the first

element of C: πs∗ |[3] = [1,2,3].
In order to detect candidate centers [4,1,2,3, ] or [1,4,2,3, ] both items 1 and 4 are added

to the signature so J covers the full range of items and the query is trivial again. None of

these candidate centers is detected so we continue to candidates where 4 is either placed

between 2 and 3 or after 3. In this case J = {2,3,4}. The marginal mixture on J is the
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following: {([2,3,4],0.35), ([2,4,3],0.25), ([3,2,4],0.1), ([3,4,2],0.3)}. From these only

the first two satisfy the restriction of the signature (2<3). The first one gives a new compo-

nent of the mixture on four items, that is ([1,2,3,4] 0.1). The weight of this component

is 0.1 = 0.35 − 0.25, not 0.35 as it appears on the marginal mixture on J. The reason

for this is that ([2,3,4],0.35) includes the already learned component ([2,1,3,4] 0.25).
We need to exclude the weight of previously learned components in order to learn new

ones. The signature I = {2,3} only works on the diminished set C. On the full set it also

corresponds to [2,1,3], apart from [1,2,3].
Similarly, the second component of the marginal ([2,4,3],0.25) appears to give a new

component on four items, with weight 0.25. However this weight corresponds to previ-

ously learned components ([2,4,1,3],0.2) and ([2,1,4,3],0.05). Thus no new component

is derived. At this point we have learned all the components derived from [1,2,3]. We

delete it from C.

Now C contains a single element, that is [1,3,2]. No signature is needed. Queries only

contain new item 4 and its candidate neighbours (1,4,3) or (3,4,2). Query J = {1,4,3}

gives no new components. Query J = {3,4,2} detects the centers [1, 3, 2, 4] and [1, 3, 4,

2] with weights 0.1 and 0.3 respectively.

At this point the algorithm has successfully learned the marginal mixture on the first

four items. In the next iterations the mixture is learned on items 1,2,..i, until the 8-th

iteration, when the full mixture is learned.

To demonstrate a more interesting case of signature calculation we jump to the start

of 8-th iteration. The collection C of centers on items 1,2,.. 7 is the following:

C = {[7,6,5,1,3,4,2]
[1,2,3,4,6,7,5]
[1,7,5,3,6,2,4]
[2,7,4,5,1,3,6]
[2,7,6,5,1,3,4]
[2,7,6,5,1,4,3]}

Firstly, we use pairwise comparison (1,2). This way C is split into two halves. The

first half contains permutations that place item 1 before item 2. In the second half 2 < 1.

We keep the first half:

C1 = {[7,6,5,1,3,4,2]
[1,2,3,4,6,7,5]
[1,7,5,3,6,2,4]}

Then we use pairwise comparison (1,5). This comparison splits C1 into two parts. C
−
1

=

{[7,6,5,1,3,4,2]}, where 5 is placed before 1 and C
+
1

= {[1,2,3,4,6,7,5], [1,7,5,3,6,2,4]},
where 5 is placed after 1. C2 = C

−
1

is a unit set, so the procedure terminates. The isolated

center πs∗ |[7] is [7, 6, 5, 1, 3, 4, 2] and the signature set I deriving from comparisons (1,2)

and (1,5) is {1,2,5}.
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5.3 Learning Mixtures of Two Mallows Models Using Pairwise

Comparisons

Awasthi, Blum et al. in [23] give an algorithm for learning Mixtures of two Mallows Models

using complete samples. Mao et al. in [6] propose an algorithm for learning mixtures of

k Mallows Models that uses groups of pairwise comparisons. In the case of two centers

each sample should contain at least two pairwise comparisons sampled simultaneously

from the same center, or a 4-wise comparison. However, if as we saw earlier in the iden-

tifiability section pairwise comparisons should suffice. We will extend the ideas of the

identifiability section to the setting of noisy oracles. We will try to simulate the strong

noiseless oracle using samples of the noisy oracle.

We have seen that the cases where φ = 1 or w1 = w2 = 0.5 are degenerate. We con-

sider the level of degeneracy of the mixture.

Definition 5.3.1. We say that the mixture w1 ·M(φ, π1)+w2 ·M(φ, π2) is a−non degenerate

iff |wi − 0.5| > a, wi > a, for i=1,2 and φ < 1 − a, where a is some positive constant less

than 1.

We suppose that the mixture is a−non degenerate. Also, wlog we suppose that w1 < w2.

Then we have a < w1 < 0.5 − a < 0.5 + a < w2 < 1 − a.

The probability mass function of the mixture takes values in the set {p1, p2, p3, p4}, where

p1 =
φ

φ+1
,

p2 = w1 ·
1

φ+1
+w2 ·

φ

φ+1
,

p3 = w1 ·
φ

φ+1
+w2 ·

1

φ+1
,

p4 = 1

φ+1

These four numbers are distinct and their order is p1 < p2 < p3 < p4 Depending on how

items ei , ej compare with each other in each of the two central rankings, the query on the

pairwise comparison (ei , ej) follows one of the four possible Bernoulli distributions Be(pl),
l in {1,2,3,4}.

For each pairwise comparison we will try to detect which Bernoulli it follows by esti-

mating the Bernoulli parameter pl empirically from the samples. We want the estimation

to be close to the correct value of the parameter so that the detection (classification) is

correct. The more samples we use for the estimation, the closer it gets to the correct

value, with high probability. Another important factor is how close the latent parameters

{p1, p2, p3, p4} are to each other. The closer they are, the more difficult the detection.

The non degeneracy condition allows us to bound the difference between the latent pa-

rameters. In particular we have:

p2 − p1 = w1 ·
1

φ+1
+w2 ·

φ

φ+1
−

φ

φ+1
=

w1(1−φ)
φ+1

>
a

2

2

p4 − p3 = 1

φ+1
−w1 ·

φ

φ+1
−w2 ·

1

φ+1
=

w1(1−φ)
φ+1

>
a

2

2

p3 − p2 =
2(1−φ)(0.5−w1)

φ+1
> a

2

Diploma Thesis 87



Chapter 5. Learning Selective Mallows Mixture Models

Learning Algorithm For Mixtures of Two Mallows Models using pairwise

comparisons

Given our sample set Π consisting of pairwise comparisons {c1, c2, ...cN },

where each cl is of the form (ei < ej), we compute the quantities q(i < j)
for all i, j ∈ [n] × [n]: q(i < j) =

∑
c∈Π

1{c = (ei < ej)}

for (i,j) in [n] × [n] and i , j:

p̂i,j := q(i<j)
q(i<j)+q(i>j)

We define two parallel lists of clusters, one for the empirical frequencies

and one for the corresponding pairwise comparisons.

frequency_clusters=[[p̂1,2]]
comparison_clusters=[[(e1 < e2)]]
threshold=a

2
/4

k=1

for (i,j) in [n] × [n] and i , j:

for l in [1, k] :

choose a random element p
′
l

in frequency_cluster l

dl := |p̂i,j − p′l |
if min{d} >threshold:

k+=1

frequency_clusters.append([p̂i,j])

comparison_clusters.append([(ei < ej)])
else:

frequency_clusters[argmin{d}].append(p̂i,j)

comparison_clusters[argmin{d}].append((ei < ej))

If the algorithm has executed correctly, that is all empirical frequencies

are close to their theoretical values, then we expect either k=2 (if central

permutations are reversals) or k=4 (if central permutations are not reversals)

WLOG we assume that frequency_clusters list is sorted in increasing

order. If not, we sort it and ensure that comparison_clusters stays

parallel to it.

if k=2:

first cluster has comparisons (ei < ej) st. π1(ei) < π1(ej) and π2(ei) > π2(ej)
second cluster has comparisons (ei < ej) st. π1(ei) > π1(ej) and π2(ei) < π2(ej)

if k=4:

first cluster has comparisons (ei < ej) st. π1(ei) > π1(ej) and π2(ei) > π2(ej)
second cluster has comparisons (ei < ej) st. π1(ei) < π1(ej) and π2(ei) > π2(ej)
third cluster has comparisons (ei < ej) st. π1(ei) > π1(ej) and π2(ei) < π2(ej)
fourth cluster has comparisons (ei < ej) st. π1(ei) < π1(ej) and π2(ei) < π2(ej)
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The proposed algorithm succeeds to reconstruct the latent central permutations as long

as each used pairwise comparison has an empirical frequency p̂i,j close to the theoretical

expected frequency pi,j. It suffices to hold that for all pairwise comparisons the sample

frequency has a difference of at most a
2
/8 from the corresponding theoretical value. As

we will see below this can be achieved using enough samples from each pairwise com-

parison. Let Ni,j be the number of samples containing items i, j and N be the minimum of

these numbers. That is, all pairwise comparisons are represented in at least N samples.

Then, using the union bound and Hoeffding’s inequality we obtain:

P{incorrect centers reconstruction} ≤ P{
⋃

(i,j)∈[n]2

{|p̂i,j − pi,j | > a
2
/8}

≤
∑

(i,j)∈[n]2

P{|p̂i,j − pi,j | > a
2
/8}

≤
∑

(i,j)∈[n]2

2exp

(
−2Ni,j

a
4

64

)

≤ 2n
2
exp

(
−2N

a
4

64

)

We demand 2n
2
exp

(
−2N

a
4

64

)
≤ ϸ ⇔ N ≥

32log

(
2n

2

ϸ

)
a4 .

If we suppose that queries are adaptive, then we can use an optimal number of compar-

isons (for example via Mergesort), so the total sample complexity will be O(nlog(n) · N).
There are also more sophisticated methods to perform the estimation using noisy com-

parisons, e.g. Feige et al. in [49] and Davidson et al. in [50].

The weights and the spread parameter can be computed by solving the system

p1 =
φ

φ+1
, p2 = w1 ·

1

φ+1
+ w2 ·

φ

φ+1
. The system has a unique solution as long as p1 is

known, that is central rankings agree on some comparisons, which means that they are

not reversals. p1, p2 are computed in the learning algorithm with an error tolerance of a
2
.

If greater precision is sought, then more samples should be used. Note that pis could be

calculated by aggregating the frequencies of different comparisons as long as they follow

the same Bernoulli (this is detected by the clustering threshold with high probability).

Then, tail bounds get tighter as more samples are used.

5.4 Learning Selective Mallows Mixtures-The General Case

5.4.1 The Effect of Selectivity On The Sample Complexity

In this section we try to perform parameter estimation of the Mallows Mixture, so identifi-

ablity conditions must be satisfied. First we focus on the work of Mao et al. so we assume

common spread parameters. To ensure identifiability we suppose all subsets of items

with length l = 2 · blog2(k)c + 3, are p-frequent. This means that for each such set the
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probability that either the set or a superset of it is selected is greater than p. We use the

framework proposed by [6], where the "subroutine" aggregates samples in an empirical

distribution and searches over a cover of the space of marginalised mixtures finds the

correct marginalised mixture with high probability. This way it effectively simulates the

noiseless oracle used by a meta-algorithm to inductively reconstruct the central permu-

tation and approximate the corresponding weights with small error.

If the subroutine is proved to simulate the strong oracle, where both the marginalised

centers and the corresponding weights are estimated, then the meta-algorithm performs

optimal size queries, that fit the identifiablity conditions (l = 2 · blog2(k)c + 3). If the sub-

routine is only assumed to retrieve the marginalised centers with high probability and

not the weights, then the query length grows and in [6] a meta-algorithm is proposed that

uses queries of length l=2k-2 in the worst case, which is not tight with respect to the

identiability conditions. However, Corollary 3 in [5] provides a stopping criterion, that if

it were used by the subroutine it would guarantee that both the marginalised centers and

the corresponding weights are θ-close estimated.

The subroutine responds to the queries set by the meta-algorithm. Each query involves

only a small subset of the items (0(log(k) or O(k) depending on the algorithm) so the sam-

ples are marginalised into this set of items. Even if samples are originally complete they

are truncated in each call of the subroutine to match the queried subset. So the frame-

work proposed in [6] is selection friendly. In particular, it is compatible with the version

of the selective model that applies the selection mechanism after the (complete) Mallows

sampling, that is selection that preserves the positions in the complete sample.

In the work of [6] and [5] sample complexity N is calculated on complete samples that

are used in each call of the subroutine. In [6] N is found to be polyk( 1

1−φ
,

1

γ
) · log(n). In our

setting the sample complexity is modified so that in each call of the subroutine enough

samples of the corresponding subset are present. We assume that the required subsets

are p-frequent so in each call of the subroutine we have to find an appropriate sample

complexity N’ so that N samples contain the queried subset. This is a case of binomial

distribution, where p is the probability of success, N’ is the total number of trials, N is the

number of successful outcomes and the required probability of the event is set to 1− δ

k·n2 ,

because all calls of the subroutine must be successful and there are at most k · n2
such

calls.

Let Ei be the event that less than N samples contain the subset Ji queried in i-th call of

the subroutine and pi =
∑
s contains Ji

f (s). P[Ei] =
∑
N−1

j=0

(
N
′

j

)
· pi

j · (1 − pi)N
′−j

. Applying Ho-

effding’s inequality we yield P[Ei] ≤ exp[−2N
′(pi − N

N ′
)2]. But for all i pi ≥ p. Then P[Ei] ≤

exp[−2N(p − N

N ′
)2], ∀i. P{each Ji is contained in at least N samples } = 1 − P{

⋃
i Ei} ≥

1−
∑
k·n2

i=1
P[Ei] ≥ 1−k ·n2 ·exp[−2N

′(p− N

N ′
)2]. Setting δ = k ·n2 ·exp[−2N

′(p− N

N ′
)2]⇔ N

′ =
√
L2+8·p·N ·L+L+4·p·N

4p2 , L = ln(k·n
2

δ
), we achieve our goal. N

′
<

√
8·p·N ·L+2L+4·p·N

4p2 <
2(2L+4·p·N)

4p2 =

90 Diploma Thesis



5.4 Learning Selective Mallows Mixtures-The General Case

O(N
p

+ L

p2 ), where N = polyk( 1

1−φ
,

1

γ
) · log(n), using the results of [6].

The above results simulate the noiseless oracle with the Subroutine function of [6]. The

problem is that this function requires marginalised samples to preserve the information of

the position of each item in the complete ranking. We are more interested in the selective

mechanism that is bĳective. In this case, we would use the complete learning algorithm

(of Mao et al. or Moitra et al.) to simulate the noiseless oracle. If we assume common

spread parameters we use the algorithm of Mao et al. (see theorem 4.3.5) and invoke it for

a total of k ·n2
selection sets with length logarithmic on k. The error probability tolerance

in theorem 4.3.5 is set to 2n
−10

. We will demand it to be k ·n2
times smaller, so that from

union bound we can ensure that all oracle calls will be successful. Even with the new er-

ror probability tolerance, the sample complexity for each call remains polyk( 1

1−φ
,

1

γ
)·log(n).

We assume that selection sets of length 2log(k) + 3 are p-frequent. To ensure that for

each queried subset the required number of samples will be available, it suffices to have

a total sample complexity which is O

(
polyk ( 1

1−φ
,
1

γ
)·log(n)

p
+ L

p2

)
, where L = ln(k·n

2

δ
) as shown

earlier. This way, with probability at least 1-δ, the learning algorithm succeeds.

If we assume that spread parameters are not known and not equal to each other, then we

will use the algorithm of Moitra et al. to simulate the noiseless oracle (we use the algorithm

given in 4.2.1, because the main algorithm has an unnecessary demand that n > 10k
2
).

The algorithm in 4.2.1 demands that the number of items is at least equal to 10k. Thus,

selection sets will have to be at least that long. Having selection sets this long, we can

use the algorithm in 4.3.2, which has the advantage to not depend on mixing weights es-

timations. The algorithm has to be slightly modified because of the non common spread

parameters. It will use the pairwise comparisons signature to distinguish distinct centers

but it will also have to use spread parameters as signatures for concentric components.

Concentric components might arise that can not be merged as in the case of equal spread

parameters. To distinguish these components we have to use the spread parameter esti-

mations as a signature. Thus, the spread parameter estimations have to be accurate to

avoid confusion between different concentric components. In particular, the additive error

for each spread parameter should be at most ∆φ/4, where ∆φ = mini,j{|φi − φj |}. We can

build the centers inductively in the logic of algorithm 4.3.2 with the requirement that in

each query the returned marginalised centers are correct and the additive error for each

spread parameter is at most ∆φ/4 . Weights should be correct (up to a small additive θ)

only in one query, as the reconstruction algorithm does not depend on them. We decrease

the error probability of the algorithm of Moitra et al. from δ to
δ

kn2 , because it will be in-

voked at most kn
2

times and this way a union bound ensures that, with probability at least

1 − δ, all queries will be successful. We also set the additive error equal to min{∆φ/4, θ}

to ensure that the user-defined additive error tolerance θ will be achieved and the im-

plementation defined precision ∆φ/4 for the spread parameters will be achieved as well.

Let µ = min{mini,j{|φi − φj |}, mini{|φi − 1|}}. Then, the sample complexity for each queried

selection set is polyk(n, 1

µ
,

1

γ
,

1

min{∆φ/4,θ}
, log(kn

2

δ
)) = polyk(n, 1

µ
,

1

γ
,

1

θ
, log(1

δ
)),since ∆φ < µ,
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where µ is the non degeneracy condition. We assume that selection sets of length 10k + 3

are p-frequent.To ensure that for each queried subset the required of samples will be

available, it suffices to have a total sample complexity which is O

(
polyk (n, 1

µ
,
1

γ
,
1

θ
,log( 1

δ
))

p
+ L

p2

)
,

where L = ln(k·n
2

δ
) as shown earlier. With this sample complexity we can learn the centers

exactly and the weights and spread parameters up to an additive error θ with probability

at least 1 − δ, assuming that selection sets of length 10k + 3 are p-frequent.

5.4.2 Learning the Selective Mallows Mixture Model in TV Distance

In this chapter we define an empirical distribution based on selective samples drawn from

the latent Mallows Mixture. Then we find the sample complexity needed to bound the TV

distance between the empirical and the latent model.

We begin with the definition of the selective empirical model. One option is to keep the

definition of [6], which isMN (π) = 1

N

∑
N

i=1
1{π = σi}. The argument π as well as the samples

σi can be incomplete. Let S be the support set of selection mechanism f(s). For each s in S

we define Ns as the number of samples that are permutations of the elements of s. Then

MN can be analysed into selections sets as follows: MN (π) =
∑
s∈S

Ns

N
· 1

Ns

∑
i:set(σi )=s 1{π = σi}.

The factor
Ns

N
accounts for the term f(s) in the density of the Selective Mallows Mixture

Model and quantity MNs |s = 1

Ns

∑
i:set(σi )=s 1{π = σi} is equal to the empirical distribution of

the complete (non selective) marginal of the latent mixture on set s. MNs |s is compatible

with the definition of the empirical mixture model given in [6], so the results of Proposition

3.3 and Theorem 3.4 in [6] can be applied for MNs |s, for all s in S.

Now we will find an analytical expression for the TV distance between the empirical model

consisting of samples and the latent model that generated these samples.

2TV (M,MN |J ) =
∑
σ∈Sn,J

| M(σ) −MN |J (σ) | =
∑
s∈S

∑
σ∈Sn,J∩s

| M(σ) −MN |J∩s(σ) | =∑
s∈S

∑
σ∈Sn,J∩s

| f (J ∩ s) ·M |J∩s(σ) − NJ∩s

N
· 1

NJ∩s

∑
i:set(σi )=J∩s 1{σ = σi} |

By increasing the sample complexity N the TV distance between the latent model and

its empirical decreases. In particular quantity
NJ∩s

N
approximates f (J ∩ s) and M |J∩s(σ)

approximates
1

NJ∩s

∑
i:set(σi )=J∩s 1{σ = σi}.

If we suppose that the selection mechanism f is known, then the empirical distribu-

tion can be defined as a function of f as follows : MN (π) =
∑
s∈S f (s) · 1

Ns

∑
i:set(σi )=s 1{π = σi}.

Then 2TV (M,MN |J ) =
∑
σ∈Sn,J

| M(σ) −MN |J (σ) | =∑
s∈S f (J ∩ s) ·

∑
σ∈Sn,J∩s

| M |J∩s(σ) − 1

NJ∩s

∑
i:set(σi )=J∩s 1{σ = σi} |

We will use Proposition 3.3 of [6] to bound the TV distance on each subset J∩s. According

to this proposition P{TV (M |J , MN |J ) > d} ≤ exp
(
−N 3d

10

)
+ 2(2kq)l · exp

(
−N d

2

(2kq)2l

)
, where l =

|J | and q = 1 + 1

1−φ
log

(
8l

d(1−φ)

)
. By setting N = N0(d, ϸ) = max

{
10log( 2

ϸ
)

3d
,

4
l (kq)2l

log(2l+2(kq)l/ϸ)
d2

}
we achieve P{TV (M |J , MN |J ) > d} ≤ ϸ.

Let ND be the number of selection sets s such that J ∩ s , ∅. For each such set we

demand that P{TV (M |J∩s, MNJ∩s |J∩s) >
d

ND ·f (J∩s) } ≤ ϸ/ND. Then by union bound we achieve
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to bound the TV distance between the selective mixture model and its empirical with high

probability: P{TV (M,MN |J ) ≤ d} ≥ 1−ϸ. To meet the demand for each selection set we need

NJ∩s ≥ N0

(
d

ND ·f (J∩s) ,
ϸ

ND

)
. The number of samples drawn from each selection set follows

binomial distribution B(N, f (J ∩ s)), where N is the total sample complexity and f (J ∩ s)
is the probability of selection of the set. We want that with high probability (1 − δ) all

subsets are adequately represented in the samples. It suffices to demand for each subset

that the probability it is underrepresented is less that δ/ND.

Let Ei be the event that less than N1(si) = N0

(
d

ND ·f (J∩si )
,
ϸ

ND

)
samples contain the sub-

set si , i ∈ [ND] and pi = f (J ∩ si).
P[Ei] =

∑N1(si )−1

j=0

(
N

j

)
· pi

j · (1 − pi)N−j. P{each si is contained in at least N1(si) samples } =

1 − P{
⋃
i Ei} ≥ 1 −

∑ND

i=1
P[Ei].

In order to bound this probability from below by 1 − δ we demand that P[Ei] ≤ δ

ND
for all

i ∈ [ND]. Hoeffding bounds for binomial variables Ei yield P[Ei] ≤ exp
[
−2N

(
pi −

N1(si )
N

)2]
.

Thus, it suffices to demand exp

[
−2N

(
pi −

N1(si )
N

)2]
≤ δ

ND
for all i ∈ [ND]. This is equivalent

to N ≥

√
L2+8·pi ·N1(si )·L+L+4·pi ·N1(si )

4pi
2 , L = ln

(
ND

δ

)
, for all i ∈ [ND]. (1).

The RHS of inequality (1) is O

(
N1(si )
pi

+ L

pi
2

)
. Thus, N is O

(
maxi∈[ND]

{
N1(si )
pi

+ L

pi
2

})
.

We substitute N1(si) with its formula and turn the max operator in the formula of N0(d, ϸ)
into a summation because adding two quantities is asymptotically the same as taking the

maximum of them.

Then, sample complexity N is O

(
maxi∈[ND]

{
log

(
2ND

ϸ

)
·ND

d
+

4
l (kq)2l

log(2
l (kq)lND/ϸ)·N2

D
·pi

d2 +
log

(
ND

ϸ

)
pi

2

})
.

In this work, as well as in the literature, the length l of selection sets and the num-

ber k of distinct centers are supposed to be small. As a result, ND, the number of possible

selection sets is poly(n) and polynomial quantities raised to the power of l remain polyno-

mial. Thus, sample complexity N is poly(n, 1

ϸ
,

1

d
,

1

p
), where n is the number of items, d is

the TV-distance error margin, ϸ is the error probability margin and selection mechanism

f (s) is assumed to be p-frequent.

5.4.3 Sample Grouping vs Parameter Cover

All known methods for learning the Mallows Mixture in the general case involve some kind

of exhaustive search over candidate models. For each candidate a criterion is applied that

compares the candidate model with the latent mixture model in terms of TV distance. Be-

cause the parameters of the hidden model are unknown, the TV distance is calculated

between empirical models, constructed from samples of the latent model and synthetic

samples generated from the candidate model. There are theoretical guarantees that if the

candidate and the latent model are close in terms of the empirical TV distance, then they

are also close in terms of their parameters. One way to generate a set of candidate models

that includes some model that is appropriately close to the latent model is to perform a

cover over the space of k-mixtures, considering all possible combinations of central per-
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mutations and gridsearching over the mixing weights using a step that is determined by

the sensitivity we aim at. Here we propose an alternative method of exhaustive search

that combines samples rather than candidate parameters.

This method has some advantages compared to the method of cover. It directs the search

only to candidate centers than are implied from the samples. For example, if no samples

contain the comparison ei < ej, then no candidate central permutation containing this

comparison will be considered. Moreover it effectively parameterizes the size of the search

space in terms of the spread parameter φ and the minimal weight γ. If φ is small or γ is

big, then the search space is decreased, taking these parameters into consideration. On

the other hand the cover fails to adapt to these parameters and searches over the same

space irrespective of them. The proposed method also features a better dependency on

the number of items n that is O

(
log(n)k

log(k·n/ϸ)
(1−φ)2

)
compared to that of the cover method that

is n!k.

We will now describe the proposed method of generating candidate models.Using the

results of Caragiannis et al (2013) we have that given O

(
log(k·n/ϸ3)

(1−φ)2

)
samples from a mal-

lows model on Sn we can retrieve its central ranking with probability at least 1− ϸ using a

positional estimator. The time complexity of the pos. est. is O(r · n2) where r is the num-

ber of samples drawn from the mallows model.Suppose we draw N (complete) samples

from a mallows mixture model and the number ri of samples drawn from the i-th cluster,

i ∈ [k], is at least equal to some value r which is O

(
log(k·n/ϸ3)

(1−φ)2

)
. Then we could perform an

exhaustive search over all possible k-tuples of disjoint subsets of the samples of length r.

For each such k-tuple we will assume that its i-th element is a set that contains samples

drawn the same cluster and we will try to retrieve each cluster via a positional estimator.

We will assume that this holds ∀i ∈ [k] and different sets contain samples from differ-

ent clusters. For some k-tuple this assumption will be true and then with probability

1 − P{
⋃
k

i=1
πi is wrongly estimated} ≥ 1 − k · ϸ/k = 1 − ϸ all central permutations of the

mixture will be correctly estimated.

It remains to find a value for N, such that with probability at least 1 − δ, the num-

ber ri of samples drawn from the i-th cluster, is at least equal to r for all clusters and

r is O

(
log(k·n/ϸ3)

(1−φ)2

)
. Let Ei be the event that less than r samples are drawn from clus-

ter i. P[Ei] =
∑
r−1

j=0

(
N

j

)
· wi

j · (1 −wi)N−j. Applying Hoeffding’s inequality we yield P[Ei] ≤
exp

[
−2N(wi −

r

N
)2

]
. Let γ be the weightwi that maximizes the quantity exp

[
−2N(wi −

r

N
)2

]
.

Then P[Ei] ≤ exp
[
−2N(γ − r

N
)2

]
, ∀i ∈ [k]. P{at least r samples are drawn from each cluster} =

1−P{
⋃
k

i=1
Ei} ≥ 1−

∑
k

i=1
P[Ei] ≥ 1−k ·exp

[
−2N(γ − r

N
)2

]
. Setting δ = k ·exp

[
−2N(γ − r

N
)2

]
⇔

N =

√
L2+8·γ·r·L+L+4·γ·r

4γ2 , L = ln

(
k

δ

)
, we achieve our goal. N <

√
8·γ·r·L+2L+4·γ·r

4γ2 <
2(2L+4·γ·r)

4γ2 =

O

(
r

γ
+ L

γ2

)
.

We want the proposed algorithm to retrieve the set of central permutations of the mix-

ture with probability at least 1 − ϸ0 ⇔ P{algorithm fails} ≤ ϸ0. The algorithm could fail
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either because there are not enough samples in some cluster (less than r) or because

some estimator fails despite at least r samples are drawn. Summing over those two cases

we have: P{algorithm fails} ≤ δ+(1−δ) ·ϸ. We could set δ = ϸ = ϸ0/2 and achieve our goal.

Now we will analyse the time complexity of this algorithm. The number of all possible k-

tuples of disjoint subsets of length r is equal to
N!

(N−r)!r! ·
(N−r)!

(N−2r)!r! · ...
(N−(k−1)r)!

(N−kr)!r! = N!
(N−kr)!·(r!)k =

(N−kr+1)·(N−kr+2)·...N
(r!)k <

N
kr

(r!)k . For every such k-tuple we apply k positional estimators. The

pos. est. takes O(r · n2) time, so the total time complexity is O

(
k · r · n2 · N

kr

(r!)k

)
.

5.5 Learning Separable Mallows Mixture Models

5.5.1 Learning Clusters Based On Empirical Modes

We assume that a separation condition of the form (dKT (πi , πj) > a,∀i , j) is satisfied for

the the central permutations of the mixture. We will try to detect the central permutations

by looking at the modes of the empirical distribution (the local maxima of the empirical

pdf). We know that the pdf of a mallows model is maximised at its center. We want to

find a value for a such that ∀j ∈ [k] wj · φ
dKT (πj ,π) −

∑
i,jwi · φ

dKT (πi ,π)
> p(d), for π in the

neighbourhood of πj, that is π st dKT (πj, π) ≤ d. This condition implies that the density

of a component of the mixture in an area close to the center of the component (called the

neighbourhood of that center) is significantly higher that the total density of all the other

components summed in this particular area. Their difference is a function of d, the dis-

tance from the center of the component. As d increases the rest of the components may

dominate over the single component. We will now find a lower bound p(d) for the density

domination of a single component over the rest of the components in the neighbourhood

of width d of the single component.

From the triangle inequality we have dKT (πi , π) ≥ dKT (πi , πj) − dKT (πj, π) > a − dKT (πj, π).
So we obtain the following lower bound for the density domination of j-th component:

wj · φ
dKT (πj ,π) −

∑
i,jwi · φ

dKT (πi ,π)
> wj · φ

dKT (πj ,π) −
∑
i,jwi · φ

a · φ−dKT (πj ,π)
. (1)

But the RHS of (1) is equal to wj · φ
dKT (πj ,π) − φa · φ−dKT (πj ,π) ·

∑
i,jwi =

wj ·φ
dKT (πj ,π) −φa ·φ−dKT (πj ,π) · (1−wj) > wj ·φ

d +φa ·φ−d · (wj −1) > γ ·φd +φa ·φ−d · (γ −1),
for π in the neighbourhood of πj (we name γ the minimal weight of the mixture).
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Returning to (1) we obtain wj · φ
dKT (πj ,π) −

∑
i,jwi · φ

dKT (πi ,π)
> γ · φd + φa · φ−d · (γ − 1), for

π in the neighbourhood of πj. We set p(d) = γ · φd + φa · φ−d · (γ − 1).

We want local maxima to only exist at the neighbourhoods of the centers. We express

this as follows: for all π st
a

2
> dKT (πj∗ , π) > d , where j

∗
is the central permutation closet

to π, it holds that
∑
k

i=1
wi · φ

dKT (πi ,π)
< min{π:dKT (πj∗ ,π)≤d }(

∑
k

i=1
wi · φ

dKT (πi ,π)).

For π st
a

2
> dKT (πj∗ , π) > d , where j

∗
is the central permutation closet to π, we have that∑

k

i=1
wi ·φ

dKT (πi ,π)
< wj∗ ·φ

dKT (πj∗ ,π) +
∑
i,j∗ wi ·φ

a ·φ−dKT (πj∗ ,π) ≤ wj∗ ·φ
d+1 +

∑
i,j∗ wi ·φ

a ·φ−a/2 =

wj∗ · φ
d+1 + (1 −wj∗) · φa/2

.

We also have that min{π′:dKT (πj∗ ,π′)≤d}(
∑
k

i=1
wi · φ

dKT (πi ,π′)) > wj∗ · φ
d + (1 −wj∗) · φa+d

.

For values of a such that wj∗ · φ
d+1 + (1 − wj∗) · φa/2 ≤ wj∗ · φ

d + (1 − wj∗) · φa+d ⇔

φ
d((φa + φ − 1)wj∗ − φ

a) ≤ φa/2(wj∗ − 1) (2) the local maxima requirement is satisfied.

(2) can only be true if (φa+φ−1)wj∗−φ
a
< 0, because the RHS of the inequality is negative

and φ
d

is positive. But this constraint is always satisfied because (φa + φ − 1)wj∗ − φ
a =

(wj∗ − 1)φa + (φ − 1)wj∗ < 0, as 0 < wj∗ < 1, 0 < φ < 1.

Thus, (2) is equivalent to φ
d ≥

φ
a/2(wj∗−1)

(φa+φ−1)wj∗−φa
. (2

′
)

The greatest possible value of φ
d

is 1, so a must be such that 1 ≥
φ
a/2(wj∗−1)

(φa+φ−1)wj∗−φa
⇔

(φa + φ − 1)wj∗ − φ
a ≤ φa/2(wj∗ − 1)⇔

0 ≤ (1 −wj∗)φa + (wj∗ − 1)φa/2 + (1 − φ)wj∗ . (3)

This is a quadratic expression of φ
a/2

. If the determinant is negative, then the expression

is always positive and (3) is satisfied.

If the determinant is non negative, then two solutions exist for the corresponding quadratic

equation. φ
a/2

should either be above the greater of the two solutions or below the smaller

one. In the second case a restriction of the form a > amin arises. If we tighten the restric-

tion in (2
′
) by considering values of d greater than zero then the restriction for a becomes

more strict (amin increases).

At this point we are going to introduce the observations about the modes into the frame-

work proposed in [6]. The learning algorithm that uses noiseless queries to the "weak

oracle" can be used to reconstruct the central permutations as long as there is some

way to simulate the noiseless "weak oracle" using noisy samples. In the general case the

weak oracle is simulated using an exhaustive algorithm that checks all possible candi-

date models and selects the one that is closest in TV distance to the available samples.

This computationally expensive procedure could be bypassed if a simple criterion could

be applied to detect target subpermutations.

In particular we would like the probability mass of the mixture to be higher at samples that

are fully concordant to one of the central rankings than at samples that do not fully agree
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with neither of the central rankings. The queries used by the weak oracle contain a "signa-

ture" set of items, such that all centers (marginalised on items [1,2..., n] have different im-

ages on this set. As a result, it is guaranteed that at most one of the marginalised centers

could agree with some sample on the queried set. The query set also includes three more

items that are used to infer the position of an item in a latent marginalised center isolated

by the "signature". Two of these items are consecutive in the target (marginalised) center

and the third is a new item (item id equals n + 1) that is checked as to whether it can be

placed in between the two consecutives in some latent center extending the marginalised

one. If the guess of the position of the new item is correct, then a sample is produced that

is totally concordant to a latent center on items [1,2, .., n+1]. The sample is a permutation

of the items in set J = {items in signature set} ∪ {the two consecutive items} ∪ {item n + 1}.

Without a condition about the spread parameters we need to check all samples supported

on set J in order to effectively simulate the weak oracle (we have to learn the marginal

mixture on set J ). However, if the spread parameters are small enough, then we can only

check the probability mass on the sample that consists of the signature ranking, the two

consecutive items in the correct relevant position to the signature and the new item (n+1)

placed between the consecutive items. If the probability mass on this sample is above

some threshold, then the guess is correct and the position of item (n+1) in a latent center

has been learned. Now we will formulate the condition for the spread parameters and the

threshold.

Suppose that we know that there is some constant a such that φ < a and wi > a

for all i ∈ [k]. Also suppose that this constant is known to us.

• For the samples π
∗

that contain a correct guess for the position of item n + 1 the

(theoretical) probability mass is M(π∗) = wi∗ +
∑
i,i∗

wi · φ
di , where i

∗
is the index of the

center for which we made the correct guess. π
∗

is in total agreement with this center,

so their KT-distance is zero and the corresponding term of the mixture is equal to wi∗ ,

which is its maximal value. The other terms are equal to wi ·φ
di , where di is at least one,

because of the disagreements on the signature ranking. Ignoring these terms we have

M(π∗) > wi∗ > a.

• For the samples π that do not contain a correct guess for the position of item n + 1 the

(theoretical) probability mass is M(π) =
∑
i

wi ·φ
di , where each di is at least one, either due

to disagreement on the signature ranking or because of incorrect guess of the position of

item n + 1. Thus, we have M(π) ≤
∑
i

wi · φ <
∑
i

wi · a = a

Using the above observation we could set the threshold equal to a and decide that a

guess is correct iff the frequency of the corresponding sample is at least equal to a. The

absolute difference between the sample frequency and the theoretical probability mass

decreases exponentially to the number of samples due to Hoeffding’s inequality, so us-

ing enough samples and assuming that there is a non zero gap g between min{wi} and

φ the above greedy rule is correct with high probability. In particular, if we have at
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least log(2/ϸ)/(2g2) samples from some selection set that contains the signature, the two

consecutive items and item n + 1 then with probability at least 1 − ϸ the greedy rule

frequency >? a/Z (|J |) for finding the correct position of item n + 1 in some latent center

in [n + 1] works correctly. We assume that queries are adaptive. The greedy rule has to

be applied O(n2 ·k) times so for an overall error tolerance ϸ the sample complexity should

be log(2n2 · k/ϸ)/(2g2) for the subset used in each query, so n
2 · k · log(2n2 · k/ϸ)/(2g2) in

total.

Note that this analysis is relevant to the selective Mallows Mixture setting, because the

required samples have length J = O(k) and because longer samples can also be used, as

long as there are enough samples from the corresponding selection set. The low spread

parameter condition helps us avoid costly histogram approximation methods and bridge

the gap between the single and the mixture Mallows learning. The majority rule on pair-

wise comparisons is replaced by a "dominance" rule on samples that are subpermutations

of some latent central ranking.

5.5.2 Clustering Algorithm for Learning Separable Mallows Mixtures and

Conditions for the Success of the Algorithm

We assume that a separation condition of the form (dKT (πi , πj) > a,∀i , j) is satisfied for

the the central permutations of the mixture. We have a set Π of N complete samples drawn

from a mixture of k Mallows models. We aim to divide them into k groups (clusters), such

that permutations that belong to the same group come from the same component of the

mixture. Firstly, we propose a simple clustering algorithm and analyse the probability of

success of the algorithm. A sufficient separation condition is provided that guarantees

the success of the clustering algorithm with high probability. Then we use the clustered

samples to estimate the central rankings of the mixture. The required sample complexity

for this estimation is calculated.

Clustering Algorithm For Separable Mallows Mixtures

clusters=[[Π[0]]]
threshold=a/2

k=1

for n in [1, N − 1] :

π = Π[n]
for i in [0, k − 1] :

choose a random element σi in cluster i

di := DKT (σi , π)
if min{d} >threshold:

k+=1

clusters.append([π])

else:

clusters[argmin{d}].append(π)
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We suppose that the above algorithm has performed a correct clustering of the sam-

ples 1,2 .. n-1. We will study the probability of error on sample π = Π[n].

If π comes from a cluster j already seen (j ≤ k) we have:

DKT (π, σj) ≤ DKT (πj, σj) + DKT (πj, π), where πj is the latent central permutation of cluster j.

P[DKT (πj, σj) ≥ a/2] =
∑ n(n−1)

2

d=a/2

A(n,d)·φd
Z (φ) ≤

∑ n(n−1)
2

d=a/2

A(n,d)·φa/2

Z (φ) =
φ
a/2

Z (φ) ·
∑ n(n−1)

2

d=a/2
A(n, d) ≤ φ

a/2

Z (φ) · n!

Similarly we have P[DKT (πj, π) > a/2] < φ
a/2

Z (φ) · n! ,

so P[DKT (πj, σj) +DKT (πj, π) > a/2] < 2
φ
a/2

Z (φ) · n! . We want DKT (π, σj) ≤ a/2 with probability

greater than 1 − δ/k, so we demand δ/k > 2
φ
a/2

Z (φ) · n!⇒ a > amin = 2 ·
log

(
δ·Z (φ)
2k·n!

)
log(φ) .

We also have that DKT (π, σj′) ≥ DKT (πj′ , πj) − DKT (πj′ , σj′) − DKT (πj, π) ≥ a − DKT (πj′ , σj′) −
DKT (πj, π) and with probability at least 1 − δ/k it holds that DKT (π, σj′) > a/2=threshold,

where j
′

are the cluster ids of the other clusters seen so far (j
′ , j).

The algorithm could perform a misclassification of π either by creating a new cluster con-

taining π or by assigning it to a false existing cluster (there are at most k-1 such clusters).

Taking a union bound over all the error events we have that with probability at least 1−δ

the algorithm assigns π to its correct cluster.

If π comes from a cluster j that has not been seen by the algorithm so far (j = k) we

have:

DKT (π, σj′) ≥ DKT (πj′ , πk) − DKT (πj′ , σj′) − DKT (πk , π) ≥ a − DKT (πj′ , σj′) − DKT (πk , π) and with

probability at least 1 − δ/k it holds that DKT (π, σj′) > a/2=threshold, j
′
< k. Again with

union bound over all j
′

we get that with probability at least 1 − δ the algorithm correctly

creates a new cluster containing π.

Pn = P{no errors in the first n iterations} =

P{no errors in the first n iterations}·P{ no error at iteration n | no errors in the first n-1 iterations} ≥

(1 − δ)Pn−1

P0 = 1

Pn ≥ (1 − δ)n

P{clustering algorithm succeeds } = PN−1 ≥ (1 − δ)N−1

We want P{clustering algorithm succeeds } ≥ 1 − ϸ2 so we set 1 − ϸ2 = (1 − δ)N−1 ⇔ δ =

1 − (1 − ϸ2)
1

N−1 .

amin = 2 ·
log

(
δ·Z (φ)
2k·n!

)
log(φ) = 2 ·

log

(
1−(1−ϸ2)

1

N−1

)
+log(Z (φ))−log(2k·n!)

log(φ)

Once we finish the clustering of the samples we apply the positional estimator on each

cluster to estimate the central permutations of the mixture.

• By setting the value for N equal to

√
L2+8·γ·r·L+L+4·γ·r

4γ2 = O

(
r

γ
+ L

γ2

)
, L = ln

(
k

ϸ1

)
, γ = mini{wi}

we ensure that with probability at least 1 − ϸ1 the number ri of samples drawn from the

i-th cluster, is at least equal to r for all clusters (it has been proved previously in this
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work).

• If r is at least equal to some value which is O

(
log(k·n/ϸ3)

(1−φ)2

)
, and we have at least r correctly

labeled samples from each cluster, then with probability at least 1 −
ϸ3

k
i-th center is cor-

rectly estimated and thus, from union bound, with probability at least 1 − ϸ3 all central

permutations of the mixture are correctly estimated.

• If a ≥ 2 ·
log

(
1−(1−ϸ2)

1

N−1

)
+log(Z (φ))−log(2k·n!)

log(φ) , then with probability at least 1−ϸ2 the clustering

algorithm successfully partitions the set of N samples into their correct clusters.

The above analysis focuses on the probability of success in each step of the algorithm.

This analysis is too detailed for the simple algorithm we proposed. A more elegant analysis

will be made in the next paragraph . However the above analysis would make more sense

in some other more complicated version of the algorithm. For example, an improvement of

the algorithm would be to construct an estimator of the latent center of each cluster using

the samples that have been assigned to the cluster so far. Then, new samples would be

compared to the estimations of the centers rather than random samples from the cluster.

Supposing that no (or few) misclassifications have been made at the first t steps of the al-

gorithm, the expected distance between each estimator and its corresponding center falls

as t increases, so the probability of misclassification of the remaining samples decreases.

The above analysis could take this decrease into consideration and be useful in such a

scenario. However for the simple algorithm we proposed the following simpler analysis is

more suitable.

An alternative way to guarantee the success of the algorithm at each step is to demand

that with high probability all samples lie within a radius equal to a/4 around their cor-

responding central permutation. This is a sufficient condition for the success of the

clustering algorithm because the distance between points of the same cluster is bounded

above by 2d < a/2 and the distance between points that belong to different clusters is

bounded below by a − 2d > a/2. Let π be a sample generated by center πi . We want that

with probability at least 1 −
ϸ2

N
distance DKT (π, πi) is not greater than

a

4
. We know that

P[DKT (π, πi) ≥ a/4] ≤ φ
a/4

Z (φ) · n! so we set
ϸ2

N
=

φ
amin/4

Z (φ) · n! ⇒ log

(
ϸ2·Z (φ)
N ·n!

)
= log(φ) · amin/4 ⇒

amin = 4 · log
(
ϸ2·Z (φ)
N ·n!

)
/log(φ) = 4 · log

(
N ·n!
ϸ2·Z (φ)

)
/log( 1

φ
) =

O([log(N) + nlog(n) − log(ϸ2) − (n − 1)log(φ + 1)]/log( 1

φ
))

From union bound over N samples we yield:
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P[learning algorithm fails] ≤ P[not enough samples are drawn from some cluster]+P[clustering

algorithm fails]+P[central permutation estimator fails in some cluster] ≤ ϸ1 + ϸ2 + ϸ3. Set-

ting ϸ1 = ϸ2 = ϸ3 = ϸ/3 we bound the error probability of the learning algorithm by

ϸ.

5.5.3 Robustness of Learning Separable Mallows Mixture Models Under Se-

lection Noise

In this chapter we extend the work of the previous chapter to the case where samples are

incomplete. We suppose that a selection mechanism p(m) drops m items with probability

p(m). The selection affects the distance between dissimilar rankings, because discordant

pairs may be discarded and the resulting permutations may be closer to each other than

the initial complete ones. The effect of selectivity should be taken into account into the

separation condition.

Let J be the selection set and m be the number of missing items. m = n − |J |.

A lower bound for the distance after selection would be the following:

DKT (π|J, σ |J) ≥ DKT (π, σ) − n − (n − 1) − ... − (n −m + 1) = DKT (π, σ) − (2n −m + 1)m/2.

The first item that gets dropped by the selection mechanism gives at most n discordant

pairs between π and σ. The second gives at most n −1 new pairs, and in general the m-th

gives n − (m−) new pairs. The m-th item is in n discordant pairs at most, but at least

m − 1 are common with the previous m − 1 items. Thus, the effect of selectivity on the KT

distance is a decrease less or equal to
(2n−m+1)m

2
.

An upper bound for the distance after selection would be:

DKT (π|J, σ |J) ≤ DKT (π, σ).
This would be the case if all discarded items participated only in concordant comparisons,

so the total number of discordant pairs would remain unchanged.

Let d be the maximal radius of the clusters. For all pairs (i,j) of clusters with latent

centers (πi , πj) we require that with high probability DKT (σi,1|J, σi,2|J) < DKT (σi,1|J, σj |J),
where σi,1, σi,2 are random samples drawn from cluster i and σj is a random sample drawn

from cluster j.

Using the lower and upper bounds discussed above we have:

DKT (σi,1|J, σi,2|J) ≤ DKT (σi,1, σi,2) ≤ 2d

DKT (σi,1|J, σj |J) ≥ DKT (σi,1, σj) − n − (n − 1)... − (n −m + 1) ≥ a − 2d − (2n −m + 1)m/2.

To guarantee that DKT (σi,1|J, σi,2|J) < DKT (σi,1|J, σj |J) with high probability, with demand

that with high probability it holds that 2d < a − 2d − (2n −m + 1)m/2

⇔ (2n −m + 1)m/2 < a − 4d ⇔ a > (2n −m + 1)m/2 + 4d (1).

We know that P[DKT (π, πi) ≥ d] =
∑ n(n−1)

2

l=d
A(n,l)·φl
Z (φ) ≤

φ
d

Z (φ) ·
∑ n(n−1)

2

l=d A(n, l) ≤ φ
d

Z (φ) · n!
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We want that with high probability (at least 1 − ϸ1) all samples lie within a radius dmax of

the center that generated them. If the probability that one samples violates the condition

is less than
ϸ1

N
, then from union bound over all N samples the total condition is satisfied

with probability at least 1 − ϸ1. We set

ϸ1

N
=

φ
dmax

Z (φ) · n! =
φ
dmax

Z (φ) · n!⇒
log

(
ϸ1·Z (φ)
N ·n!

)
= log(φ) · dmax ⇒

dmax = log

(
ϸ1·Z (φ)
N ·n!

)
/log(φ) = log

(
N ·n!
ϸ1·Z (φ)

)
/log

(
1

φ

)
=

O

(
[log(N) + nlog(n) − log(ϸ1) − (n − 1)log(φ + 1)] /log( 1

φ
)
)

p(m) depends on the selection mechanism. For example if each element is dropped inde-

pendently from the others with probability pd, then p(m) =
(
n

m

)
· pd

m · (1 − pd)n−m .

In order to guarantee that (1) is satisfied for all samples with high probability (at least

1 − ϸ2) we demand that a > (2n − mcr + 1)mcr/2 + 4dmax , where mcr is a critical se-

lection length, such that P[m ≤ mcr] > ϸ2/N ⇔
∑mcr

m=0
p(m) > ϸ2/N . This way, from

union bound we yield that with probability at least 1 − ϸ2 it holds for all samples σi that

a > (2n −mi + 1)mi/2 + 4dmax , where mi is the number of missing items from sample σi .

We we set ϸ1 = ϸ2 = ϸ/2. Then the clustering algorithm succeeds with probability greater

than 1 − (ϸ1 + ϸ2) = 1 − ϸ.

5.5.4 Concentration of Mass of the Mallows Distribution Inside the Sphere

of Radius d

In this chapter we study the way in which the mass of a Mallows model is distributed

at different distances around the central ranking. This analysis is connected with the

analysis of separable mixtures in this work, because the latter demands that each com-

ponent is restricted inside a sphere with a small radius compared to the distance between

different centers of the mixture. Thus, we need to know how large the radius of a Mallows

hyper-sphere should be in order to enclose a high proportion of the total mass of the

model.

The probability that a sample drawn from a Mallows model M(π0, φ) lies within a hy-

persphere of radius a is equal to
∑
a

d=0

A(n,d)
Z (φ,n)φ

d
, where n is the number of items in π0

and A(n, d) is the sequence of Mahonian numbers, introduced in subsection 2.2.1 . We

observe that this probability only depends on n, φ and a. If we see it as a function of the

radius x, then p(x) =
∑
x

d=0

A(n,d)
Z (φ,n)φ

d
and p(x) is parameterized by n and φ. We would like

to know how these parameters affect the form of p(x). The only obstacle to this is the

absence of a closed form formula for the Mahonian numbers A(n, d). Thus, we will need

to find closed form bounds for A(n, d). In this chapter we provide such bounds and we

also study the figure of p(x) experimentally to gain intuition.

Theoretical Bounds

Lemma 5.5.1. Mahonian numbers A(n,k) are symmetric on k: A(n, k) = A

(
n,

(
n

2

)
− k

)
.
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Proof. Base case: A(2,0) = A(2,1) = 1

Induction hypothesis:

A(n − 1, k) = A

(
n − 1,

(
n−1

2

)
− k

)
∀k ∈

{
0,1, ...

(
n−1

2

)}
, n > 2

Induction step:

For all k ∈
{
0,1, ...

(
n

2

)}
we have: A

(
n,

(
n

2

)
− k

)
=

∑
n−1

j=0
A

(
n − 1,

(
n

2

)
− k − j

)
=∑

n−1

j=0
A

(
n − 1,

(
n−1

2

)
−

(
n

2

)
+ k + j

)
=

∑
n−1

j=0
A(n − 1,1 − n + k + j) =∑

0

j′=1−n A(n − 1, k + j′) =
∑
n−1

i=0
A(n − 1, k − i) = A(n, k).

Note that for k < 0 or k >

(
n−1

2

)
A(n − 1, k) = A

(
n − 1,

(
n−1

2

)
− k

)
= 0 from the recursive

formula of the Mahonian numbers, so we only make use of the induction hypothesis for non

trivial values of k

(
0 ≤ k ≤

(
n−1

2

))
. �

Lemma 5.5.2. Mahonian numbers A(n,k) are increasing on k for k ≤
⌈(
n

2

)
/2

⌉
.

Proof. Base case: A(3,0) = 1 < A(3,1) = 2

Induction hypothesis:

A(n − 1, k) < A(n − 1, k + 1), ∀k ∈
{
0,1, ...

⌈(
n−1

2

)
/2

⌉
− 1

}
, n > 3

Induction step:

For all k ∈
{
0,1, ...

⌈(
n

2

)
/2

⌉
− 1

}
we have: A(n, k + 1) =

∑
n−1

j=0
A(n − 1, k + 1 − j) >

∑
n−1

j=0
A(n −

1, k − j) = A(n, k), because A(n − 1, k + 1 − j) > A(n − 1, k − j) for j ≤ k from the induction

hypothesis and A(n − 1, k + 1 − j) ≥ 0 = A(n − 1, k − j) for j > k. �

Combining the two above lemmas we can see that the Mahonian numbers are decreasing

for k >

⌊(
n

2

)
/2

⌋
and are maximised at k =

⌈(
n

2

)
/2

⌉
. Moreover, a random permutation (uni-

form distribution on Sn) has expected distance from another fixed permutation equal to⌈(
n

2

)
/2

⌉
.

Lemma 5.5.3. Mahonian numbers A(n,k) are greater than

(
n

k

)
for k > 2 and n > 2. For all

n and k A(n, k) ≥
(
n

k

)
− 1.

From the above lemma we have for the probability mass inside the Mallows sphere of

radius d=n: P[d ≤ n] =
∑
n

d=0

A(n,d)
Z (φ,n)φ

d ≥ 1

Z (φ,n)

(∑
n

d=0

(
n

d

)
φ
d − 1 − φ − φ2

)
=

1

Z (φ,n)

(
(φ + 1)n − 1 − φ − φ2

)
Lemma 5.5.4. Mahonian numbers A(n,d) are greater than n · (n − 1)... · (n − (d

n
− 1)) for

d ≤
n(n−1)

4

Proof. A(n, d) > n · (n −1)... · (n − x), where x is some recursion depth such that recursion

tree is complete (each node has only non zero children ). Restrictions for x:

0 ≤ d − x · n + (x + 1)x/2 < (n − x)(n − x − 1)/2
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0 < n − x

d < (n − x)(n − x − 1)/2

xmax = n − 1 −

√
(n − 1

2
)2 − 2d, d ≤

n(n−1)
4

We set a = n − 1

2
, b = 2d.

xmax + 1

2
= a −

√
a2 − b = b

a+
√
a2−b

>
b

2a

So we yield xmax >
d

n− 1

2

− 1

2
.

Plugging this into the inequality A(n, d) > n · (n − 1)... · (n − xmax ) completes the proof. �

From the above lemma we have for the probability mass inside the Mallows sphere of

radius d=x: P[d ≤ x] =
∑
x

d=0

A(n,d)
Z (φ,n)φ

d ≥ 1

Z (φ,n)

(∑
x

d=0
n · (n − 1)... ·

(
n − (d

n
− 1)

)
φ
d
)
.

Experimental Results

We plot the area of concentration of the Mallows model as a function of n and φ. When

we say "area of concentration" we mean a distance interval [dmin, dmax ], such that with

high probability a random sample drawn from the Mallows model has distance d, with

dmin ≤ d ≤ dmax from the central permutation. Both dmin and dmax seem to scale almost

linearly on n. The slope of these two linear functions depends on the spread parameter

φ. The higher the spread parameter, the greater the values of dmin and dmax , leading to a

more diffuse area of concentration.
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(a) n=7 | n=15

(b) n=31 | n=62

(c) n=125 | n=250

(d) n=500 | n=1000

Figure 5.1. Area of concentration of the Mallows mass for φ = 0.3 and different values of

n
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(a) φ = 0.3

(b) φ = 0.5

(c) φ = 0.6

Figure 5.2. range of concentration as a function of n for different values of φ
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Chapter 6

Conclusion-Future Work

In this thesis we presented the most important theoretical results in the field of Mallows

Mixture Learning. Building on previous work, we prove a tight condition on the minimal

sample length that preserves identifiability. We propose an algorithm that learns mixtures

of two Mallows models using exclusively pairwise comparisons, which is the most extreme

case of selectivity. We show how the existing algorithms that use complete samples can

be used as a subroutine for a learning algorithm that uses incomplete samples. Then

we focus on separable mixtures, where we can detect central permutations by looking

at the pmf modes or most strongly when components are so far from each other, that

samples from one component are most likely closer to each other than to samples from

another component. In the general case, the sample and time complexity are proved to

be polynomial on all parameters except the number k of components and in the case of

separable mixtures it is polynomial to k as well.

One important limitation of our results is that in the non separable case we can not use

samples from a specific selection set, unless many other samples from this selection set

are present, so that an empirical histogram on the selection set is formed. One potential

solution would be to replace the histogram criterion (such as 4.3.1) with a bayesian like-

lihood criterion. In particular, given a collection of incomplete samples we could choose

the candidate model that maximises the likelihood of the sample collection. This could

definitely work as a heuristic and it could work theoretically if we find an upper bound

for the likelihood of the samples under a candidate model with different parameters than

the original ones and a lower bound for the likelihood under the correct candidate model

that is greater than the aforementioned upper bound.

Another direction would be finding a tight condition on the minimal sample length that

preserves identifiability in mixtures with different spread parameters. Using the results

of [5] we show that it suffices to have samples from all subsets of length 10k + 3. There is

gap between this bound and the bound 2log(k) + 3 that holds in the case of equal spread

parameters. The problem arises from the fact that in the case of equal spread parameters

the complete mixture of k distinct components is identifibale for all numbers n of items,

due to the non zero determinant of Zagier. However, in the case of non equal spread

parameters the existing literature proves identifiability assuming that n ≥ 10k. It would
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be interesting to reduce this bound to O(log(k)).
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