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IlepiAnypn

Zinv mapouoa gpyacia peAetdpe to mpoBAnpa g eKPAdnong PIyHATov KAtavopdv Katd-
tadng pe xpron dopuBndov eAduov derypdtov. Ot katavopég katataing €xouv kepdioet
evoladepov ota nedia g Yerpiag IOV KOWOVIKOV EMMAOY®OV KAl TG SE®PNTIKNG HNXAVIKAG
pabnong €6e kat dekacetieg. [Iépa amo tnv exktetapévi) Je@PNTIKY €peuvd, Ol KATAVOUEG
ratdrtadng £xouv S1APopeg EPAPHOYEG OTOV MPAYHATIKO KOO0, Onwg oto crowdsourcing,
ota ouotpata yngodopiag, ta recommendation systems kat v avadiinon oto 6tadik-
wo. Katd wm ouvdBpolon deiypatev katdtadng Xpnotionolovpe pia ouldoyr) Setypatev
ITOU ITPOEPXOVIAL Ao €vav OUYKEKPIPEVO MANOUONO Kal Tpoortaboujle va EKTIPICOUNE TO
uniokeipevo "ground truth” oxetukd pe 11§ PO oelg T0U MANOUOHOU TAV® O £va GUVOAO
n otoxeiwv. Ta delypata eival eite mAHpn eite eAMI. 2V NPT nePintoon kabe deiypa
eival pa petabeon 10U MANPOUS CUVOAOU TV N OTOIXEIOV eve otr HeUtepn MePIMI®Oorn KAOs
Oetypa eival pa petabeon KAMO10U UTTIOCUVOAOU TOU ITAT)POUS GUVOAOU T@V N ototxeiwv. To
PAOTo pag Prpa sival va Sewpricouvpe £va 160G PoVIEAOU TTOU TIapayet ta delypata, ®ote 10
poBANpa pag va eivat kadd datuneopévo kat va ivat duvatr) n feAtiotonoinon. Anpogiar)
poviéda eivat ta Mallows, Plackett Luce kat to Repeated Insertion Model. Ztnv epyaoia pag
eotiadoupe oto poviedo Mallows kat 1dwaitepa otnv selective ekboyr| tou, ornou ta deiypata
etvat eAAutr). Mia epattépe yevikeuor) Tou KAao1koUu poviédou Mallows eivat va urtoBécoupie
ot 1] Katavopr] Katdartagng rou rnapdyet ta deiypata eivat éva peiypa k poviédov Mallows
Kal Oxl éva pePoveévo. Autr 1 urtobeor POVieAOIolel TV ETEPOYEVELD TOV TTPOTIHHOE®V
€vog AnOuopou dlalpoviag tov oe TIOAAEG opadeg (T1.X. yuvaikeg Kal avdpeg). Xe autr) v
epyaoia peAetape myv epkiotta ekpadnong tou selective poviédou Mallows kat mpotei-
voupe aAyopiBpoug yia v eKTipnon g Katavourg kat (érote eivatl duvatdv) v extipnon
0V apapétpev. Ipoteivoupe adydpiBpoug rmou Ae1toupyouv Otr YEVIKL IEPITI®OOT Kat yia
Vv 181K MEPITIOOT] OTTOU TA KEVIpa eival Kadd Siaxwpilopéva deiyxvoupie 0Tt UnIAPXOUV TTOAU
o arodotikoi adyopiBpot. Ilapéxoupie eyyuroeig yla ) CURIEPIPOPA TRV IIPOTEIVOLEVOV

aAyopibuev kabwg Kal melpapatika anotedéopard.

Aégerg KAedia

Zuvabpoton Astypdtev Katatagng, Miypata Katavopov Katdtagng, Mabnon ard EAAun
Agtypata, Expabnon Katavopov, Extipnon Iapapétpev, MéBodog Portwv, Zuctadoroinor.
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Abstract

In this thesis we study the problem of learning mixtures of rankings using noisy incom-
plete samples. Ranking distributions have drawn interest in the fields of social choice
theory and theoretical machine learning for many decades. Apart from the extensive
theoretical research ranking distributions have various real world applications including
crowdsourcing, voting and recommendation systems and web search. Ranking aggrega-
tion is about using a collection of ranking samples drawn from a certain population in
order to estimate the underlying ground truth about the preferences of the population on
a set of n items. The samples are either complete or incomplete. In the first case each
sample is a permutation of the full range of n items whereas in the second case each sam-
ple is a permutation of some subset of the full set of n items. The first step in our setting
is to assume a generative model so our problem is well formulated and optimisation is
possible. Popular generative models are the Mallows Model, the Plackett Luce Model and
The Repeated Insertion Model. In our work we focus on the Mallows Model and partic-
ularly on its selective variation, where samples are incomplete. A further generalisation
of the classical Mallows model is to assume that the underlying ranking distribution is
a mixture of k Mallows models rather than a single one. This assumption models the
heterogeneity of the preferences of a population by dividing it into several clusters (e.g
women and men). In this work we study the identifiability of the Selective Mallow Mixture
Model and suggest algorithms for distribution estimation and (when possible) parameter
estimation. We suggest algorithms that work in the general case and for the specific
case where centers are well separated we show that there exist much more efficient ones.
We provide provable guarantees for the behavior of the suggested algorithms as well as

experimental results.

Keywords

Ranking Aggregation, Mallow Mixture Model, Selective Mallows Model, Distribution Learn-

ing , Parameter Estimation, Method Of Moments, Clustering.
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Euyxaplotieg

Me v epyacia autr] 0AOKANP®VETAl 0 KUKAOG T@V TIIPOTITUXIAKAOV OTtoudev pou oto EMIT kat
gexvd pia véa nopeia, autr) tou Si16aktopikou. @a f1feda va euxaplotjowm Tov KUP1o POTAKT)
®g ermBAénovia g SUMAOPATIKLG aAAd Kal @¢ Kadnyntr mou péoa aro ta padnpata tou
He £Kave va ayarroe 1 Ye@pnukn ermotijun urodoyiotov. H otjpign kat kabodrjynon tou
Kou ®®TAKn addd kat 1ou Koota ZtauponovAou kat AAkn KaAaBdon katd tnv eknidvnorn mg
SIMAePATIKNG )Tav KAO0P10TIKEG YA TV EMTUYXE] OAOKANP®OOT] AUTOU TOU £YXEIPNHATOG TTOU
pou épnabe oAAd mpdypata Kat pe punoe ot 9e@pntiky €épeuva. O@a rfela va euxaploton
T0Ug mapandve Kabmg kat tov Apyuprn Mouddakn Kat yla 10 KOPPATl TV dltfOE®V, OTo
ortoio pe Por)Bnoav va mpooavatoAlotd Kdl va MAP® CONPAVIKEG anopdocels. ®a 116sAa
€MiONG va €KPPAC® TNV EUYVOUOOUVH] HoU ot 0Aa ta péAn tou Corelab yia 6ca kavouv
yla va Kpatdve {@vtavi) v Kowotnta Kal tv £peuva otn JempnTikn ITANPOPOPIKL] £€X0VIag
dnpoupyroet €va oAU opop@o Katl ermkoldopntko miaiolo (ouv)epyaoiag. Euxapiote ta
BE€AN g ermrporng, tov Ko Ilayouptdr) yia 6oa pou £8woe péoa armo ta padnpata t1ou adid
KAl y1a TOV KEVIPIKO POAO TOU OT0 €PYAOTP10 Kat tov Ko Ilanaocmiypou yia v e§aipeukr)
douleld 1ou ota pabrpata ou 618dokel aAAd KAl 00aA TIPOCPEPEL OE TEXVIKO KA1 OUVIOVIOTIKO
ertinedo oe H1apopa Separta g oxoArng. I'evikdtepa, Sa 6eda va euxaploTr)oe® T0 CUVOAO TV
kabnyntov tou EMII yia 10 uyiég akadnuaiko mveupad rmou KaAAlepyouv Katl 1 ouvelodpopd
Toug oty eknadeutikn Sadikaoia aAAd Katl IOV @OV ITOU avtariokpivoviat endagia oto
KdAeopa auto. Tédog, éva peyddo £uxaplot® otoug @IAOUG KAl TV OLKOYEVELd HOU Yid T
OUNITIAPACTAOT) TOUG O OA1 1) H1apKela TV OITouUd@V KAl TI§ OPOP(PES OTIYHEG TTOU TIEPATALE

padi avta ta xpovia.

Athens, March 2022

Pollatos Vasileios
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Extetapévn EAAnvikn IlepiAnyn

Zuvadpoilon Asypatwv Katataing

H 9ewpia kowvavikng emmAoyng eivat éva mAaiolo yia v avaduor g ouvadpolong atopikeV
AMOYERV, IIPOTINACE®V, eVOIAPEPOVIOV I) OURPEPOVIOV Y1a TNV EMMITEUSH P1ag OUAAOYIKNG
anépaong. H Sewpia g Kowevikrg ermAoyrg Xpovodoyeital arno 1) diatuneor tou Mapki)-
oou vie Koviopoe yia 1o tapddoo g wrigou (téAn 18ou awwva). To rapadogo Condorcet
£lval pia Kataotaon otV Oroia 01 KOW®VIKEG TIPOTIHN0ELS UITOPEL va €1val KUKAIKEG, aKOPd
K1 AV Ol TIPOTIHI0ELS TRV ATOP®V £lval AKUKAEG. Xe eKAOYEG pe SUo povo unoyndioug, Orou
KA9e Ynpodpopog £XEL TIPOTIPNOT Yid £vav UTIOWH P10 Evavil TOU AAAOU, 0 KAvOvag EIMAOYNS
g reoyneiag Acttoupyel owotd, Sivoviag pia katdatadn twv 6Uo unoyneiewv mouv oup-
P®VEl PE TIG TIPOTIINOELS NG TIAsloYPnPiag Twv YPndpodpopwv Kal £ival CUVETG PE TOV EQUTO
mg. Qotoco, auto dev eivatl mavia Guvatod otav o aplBpog TV unoyneiov urepBaivel 1oug

6v0. 'Eva napadetypa tou apadodou eival 1o eErg:

Ag urtoBéooupie 611 £xouie Toug urtownploug A, B kat I' kat tpeig ynpopopoug. O rapakdte

mivakag Tapouotadel T ATtOPIKEG MPOTIPNOELS TOV PWNPOPOPKV.

ATOoNKEG TTPOTINA OELG
Wneopopog [Mpwtn mpotipnon AeUteprn) mpotipnon Tpitn npotipunon
Wneopopog 1 A B r
Wnpopopog 2 B C A
Wnopopodpog 3 C A B

H mAsoyngia tov ynepodopev mpotiad 1o A arnd 1o B, 1o B anté 1o ' kat to T’ and 10 A. H
MPOKUIITOUca OUAAOYIKY) Tipotipnorn A>B>T>A eival KUKAIKI KAl EMTOPEVOSG ACUVETG. AUTO
10 TIapddogo avadelkvuel v avaykn yid rmo oUVOETIoUg Kal 10XUP0UG HUNXAVIOHOUS W po-
popiag, oniwg 1 Ynpogopia pe okop. 'Eva dAAo evdiadépov epdtna mou MPOKUITIEL ivatl
€Aav 0 Pnxaviopog yneodopiag eivat @Aaindng, dnAadr eav ot Ynpopopotl £€Xouv Kivntpo
va 6dcouv Yrjpo rou dev oUPPEVET TTANP®S HE TIS ATOMIKEG TOUG TETTO1ON0E1S TIPOKEIIEVOU
va nPomOooUV £va CUYKEKPIIEVO ATTOTEAEOHA TOV EKAOYOV. QO0TOCO, AUTH 1 OITTKI] TOU
ipoBAnatog g Pnpopopiag oxetidetal meploodtepo He ) Yemwpia mayviov kat ivat eKtog

tou nebiou autrg g epyaociag.

O kavovag tou Kemeny eival évag 1o oUolaoTiKOG KAl ATTOTEAEOPATIKOG TPOIIOG yid T

ouvadpoton Setypdtov Katatagng. Asdopévou evog deiypatikoy mpo@id {0y, 0, ...on} € SN,
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Extetapévn EAAnvikn ITepiAnuyn

0 xavovag tou Kemeny srudéyet tnv akoAoudn katdtaln T og eKTipnorn g OUAAOYIKAG ITPO-
Tipnong: T = argminyes,, Zli\il dgr(z, 0;). Aut) n pdgn propovpe va moupe Ot Bpioket
d1ape00 TV SEYPATOV OTOV PETPIKO X®PO TOU OUVOAOU S, pe v andotaon Kendall Tau wg
mv lj-voppa. 'Exet armodeixBei 011 10 ouykekpipévo nipoPfAnpa sivart NP-Hard. EmurAéov, o
ravovag tou Kemeny eivatl 1008Uvapog pe tyv €Upeon plag eKtipnong péylotng moavotn-
1ag uroBetoviag Ot o1 mapatnproelg pag dnpovpyndnkav and éva poviedo Mallows. To
dgr(o, ) ival pia pEtpnon andotacng oto S,, T0 CUVOAO TV HETAOE0E®V N OTOIXEI®MV, KAl
looutatl pe tov aplbpo v S1HeAdV OUYKPICE®V TOU £ival ACUPP®OVES PETASU TOU O KAl TOU
n. To poviédo Mallows eivatl pia katavopr) Katdatagng oto S, Mapaperporopév) amo Juia
KEVIPIKY] petdBeon ©* mou anodidel oe ka9e petdbeon o pa mbavotnta eKOUKY G TIP0G

10 —dkr(o, T¥) (pbivouoa).

‘Eva dAdo onpavuxko {fupa ot ouvadpolon Seypdtov katdradng eivatl n pn minpotnta
TOV ATOHIKGOV Ipotpnoenv. Ia nmapddetypa ag Sewprjooupe éva oUVOAO TAVIOV KAl pla
opada atopev mou 11§ Katataooouv os pa dadiktuakn nmdatdpoppa. KaSe xpriotng npémnet
va 60oEL [11a OE1pdA TIPOTINO0NG TOV TAVIOV OUPRPROVA HE TO TIPOCKITIKO TOU youoto. Qotooo,
OP1OJEVOL XPNOTEG PITOPEl va Pnv €xouv {ekabapn yvoun yla OPlopEVES TAVIEG 1) va PNV
11§ £xouv He1 kaBoOAou, [e amoTéAeoPa va PNV Propouv va oupreplAdBouv auteg T Tatvieg
ot Alota mpoTProe®V ToUug. AUTO £XEl ®G ArotéAeopia NUIteAeis AlOTeg TIPOTIPNOEDV TRV
atopev. Emumdéov, yivetat 0Ao kat rmo §UOKO0AO yia TOUG XP1)0TESG VA KATACKEUAOOUV 11d EVi-
aia katatagn v tawvieov Kadbmng o apdpog tov tawviov audavetat. Avtifeta, Sa rpoupovocav
va ortdaocouV 1§ aroddoelg ToUg oe PIKPOTEPES OUYKpioelg (katd {euyn, tpipedeig ouykpioelg,
k.Ar.). Kat maAy, pnopet va etvat aduvato yila toug Xprjoteg va arnopacicouv yia OplopEVES
amno 11§ ouyKpioelg tov tawviov. Tédog, dev pmopovpie va anaitjooupe and toug XPnoteg va
dmoouv pa katatagn kade tawviag rouv yvepitouv, kabmg autd Sa rtav rmoAu Koupaotko yia
autoug. Autot ot reploplopol unoypappidouv v avaykn dewpnong tou Aeyopevou selective
povtédou, orou kade delypa eival pia petdbeon KATO0U Tuxaia eMAEYHEVOU UTIOOUVOAOU
10U TALPOUG CUVOAOU OTOIXEI®V 1] éva oUvoAo ouykpioewv avd {eUyn Petady otoixeiov tou

MAN}pOUG OUVOAOU.

Y ouvéxewa, 9a egnyrjooupe tn onupacia tng unobsong Piypatog KATavopov KAtatadng
KAl OX1 HEPOVOHEVAOV POVIEA®V Yid OAOKANPO tov MANOBuopo. Ot mAnBuopol propet va sivat
etepoyevelg, mpdypa mou onpaivel Ot mPErMel va eKTPNO0UV meploodtepeg Ao pia GuA-
Aoyikég mpotipnoelg, pia yia kade opada. Emotpépoviag oto mmapddeypa tov tawvigv, ot
YUVaiKeg PITOpel va £X0UV MAaPO01EG TIPOTIHINOEIS TAVIOV PETagU ToUg, OM®G KAl o1 avopeg,
aAAd ot mpoTPAoelg TV avdpwv PIopet va eival onpavikd S1apopeTtikeg aro 11§ POTIHL)-
O€1G TOV YUVALK®V. L& AUTH) TV MEPUTIOOT, 1] EKTIPNOT P1ag KOG CUAAOYIKNG MPOTIPNOoNg
yla 0AOKANPo tov mAnBuopod pe karola pédodo orwg o kavovag tou Kemeny Sa arotuyet
va ekppdaocetl 1o ground truth tou MAnBucpoy kat o€ MO TEXVIKO €rinedo 1 EKTIPIOUEV
Katavopr] rou 9a HOoVIEAOTTO)oEl 1) OUUIEP1Popd tou rmAnduopou Sa sivat urepBoAika
ardoiky Kat €tot Sa arnotuyydavel va kavet fit ota detypata pe enapkn akpifeia. H 16¢a
TOV HIYRAT®V £XEL Xprotpornonfel eupémg Kat o adlda £i6n dedopévav, yia napadetypa ota

peiypata T'kaouowavov yia diavuopata xapakinploukov. 'Evag apibpog facik®v povieAdov
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Extetapévn EAAnvikr) ITepiAnyn

UTtepTiOETal Yla TV KATAOKEUT] Pag o oUVOETNG KATAVOULG, HE TIEPIO0OTEPES eAeUBePEg
MIAPAPETPOUS (KAl EMOPEVOS PEYAAUTEPT) eKPPAOTIKOTTA) Iou Sa kavouv fit ota dedopéva
tou deiypatog. Oewprviag eva peiypa avil yia éva pepoveopévo poviedo augdvel Spactikd
duokoAia Tou PoBAfIaTog pag, emeldr) yia Kade deiypa MPEMEL va PAVIEWOUHE TV «ETIKETA»
Tou, 6nAadn ) ocuvictOoa Tou pelypatog ano v oroia porjAde, yia va to avilotolkicouie
ot oot opdda napopowv detypata. ‘Oco o Kovid eival ta KEVIpa Kat 660 PeyaAutepn
Slaxkupavor €xouv ta Selypata yupe amd autd ta KEvipd, t0oo 1o dUoKodo yivetat n tag-
wopnon v detypateov os opadeg. To yeyovog ot ta Seiypata eival eAAnn nailetl emiong
onpavtko poédo oty duvatdnta dlax@plopou Kadiotwvtag akopun Kat aduvatn v avayvep-
101 T@V KPUP®V KEVIP@V £dv ta deiypata eivat moAu pikpd, dndadn Avoeig pe dradopetikeg

napapérpoug da frav 100duvapeg ®G rPog T0 10TOyPaAppd ToUG.
To povtédo Mallows Kat Ol YEVIKEUOELG TOU

To poviédo Mallows potddel pe v KAvoviki) kKatavopn aAda avii yia dwavuopata opile-
Tat o otoixeia tou S;,, tou cuvodou 6nAadrn v petabéoerv n avukelpévev. ‘Onwg n
KAVOVIKI] Katavopr), 1o poviédo Mallows meptypdgetal and pia KEVIPIKL MAPAPETPO Kat
Ha apaperpo Sakvpavong (spread). H mbBavownta nou anodidetal oe ka9e otoixeio 10U
OUVOAOU support £ivatl avilotpoP®g avaloyn e pia eKOETIKT] arnootacr] Petay Tou OTo1Xeiou
KAl g KEVIPIKAS MApAapétpou Kat 1 BAaorn tou ekBetikou efaptdtatl and tyv mapaperpo

spread. ITio ouykekpipéva, edv pia tuxaia petaBeon © € S, akodoubel v katavour) Mal-

i tpd(no,o)

lows M(mg, @), 10t P[ = 0] = Tom

e To my € Sj eivat n revipikn petadeon tou poviédou. Exepdalet to AavSavov ground
truth oyxetka pe 11§ potpr|oelg 1ou MAnSuUopou Kat eivat 1) o mdavr) petddeon oto

ouvoAo support.

e To ¢ € (0, 1) eival n apapetpog spread. '‘Oco uwnAdtepn eival n T 10U, TOOO IO
dlaokopriiopéva etvat ta delypata yupe anod v KeVIpKY petadeorn. Zinv akpaia
MePIMTon O1ou 10 @ MANoladel 1o Pndev, 1o povo delypa pe pn pndevikr) mdavotnta
EPPAVIONG €ival 1 Keviplkn petadeor), omote oxnuartidetat pia otadepr) KATAVOUL).
Zinv avtiden akpaia mepinm®or), Orou 10 ¢ MANoladet 10 €va, oAeg o1 PetadEoelg oto
Sn €xouv v 161a TSavotnta va epgaviotouyv, £tot 1o poviedo Mallows ek@uAiletal o

OHO10110P@T KAtavoun o S, .

e Tod:S,XS, — R eival kanowa perpikn anootaong, yla rapadetypa n anootaon KT,
0 Kavovag tou Spearman 1) n anéotacr; Hamming. Ze aut) v epyacia souiafoupe

anokAelotikd oty arootaon KT.

e To Z(p, n) eival n otaBepd KAVOVIKOIIOINONG, 1] Oroia KAVEL T CUVAPTHOT] TTUKVOTTAS

va aBpoiletal oe 1 €101 wote va ekPppdalel mbavotnta. Zinv rnepimoor] pag, ornou d

n n (i-1 n .
eivat n arootaon KT, éxoupe Z(@, n) = [] Zi(p) = [1 (/ (p‘) = W [T1(1 - @Y.
i=1 =0 i

i=1 =2

To peiypa poviédov Mallows M napapetportoieitat ard 1o oUVOAO TV KEVIPIKGOV PETAIECEDV

m;, Ta Bapn w; Kat g mMapapétpoug S1akupavong @; mou avilotolXouv ota Kévipa ;. H
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ouvaptnon padag rmdavotntag tou pelypatog Mallows eivat ) e§hg:

dKT(TIl o)

M(m =o0) = Zwl Z((pl,n)

Kda9e kevipikn) petabeon eivat pia petdbeon n oowxeiov m; € S, katl urobétoupe ot ta
Kévipa drapépouv petagy toug avd dvo (m; # m ya i # j). Ta Bdpn w; dev eival apvnuka
Kat aBpoidovial oto éva ( Zle w; = 1 ). H dwdikaocia derypatodnyiag €xel dvo otadua.
Apxikd, erdéystal éva keévipo i € [n] pe mbavointa w;. Xin ouvéxela, yivetat deiypa-
ToAnyia pag petabeong amo 1o pepovapévo poviédo Mallows M(m, ;). Zto mAaioclo autrg

g epyaociag, ouxva dempouiie Ot 0Aeg o1 tapdpetpot e§AnAnong eivat ioeg (¢; = @Vi € [n]).

Mua yevikeuon tou Mallows poviédou eival to selective poviédo Mallows. H ouvapinon

¢,dKT< 0:0)
“Z(plsh

10 0UVOAO T®V oTo1Xeiwv Tou Bpiokovial oto 0. Kade napatfjpnon © ivat pia petabeon tov

padag rubavotntag autou tou poviédou eivat 1) e€hg: Pl = o] = f(s) - OTIOU S givat
otolxelwv mmou epgavidovial oto avtiototxo ouvolo ermdoyrg s. To f(s) eivatl o pnxaviopog
ermioyng, pla ouvaptnon mbavotntag rmou arodidet pia mbavotnta ermAoyng os kKade un-
00UVOAO S TOU IMARPOUG OUVOAOU TV otoixeiov [n]. To my eival n kevipikn petdBOeon tou
poviédou kat ivatl mAnpeg (repiéxet 6Aa ta oroxeia oto [n]). To dgr(m, ) eival n aroo-
taon Tau tou Kendall petadu ng kevipikig petabeong kat tou delypatog. Xpeidletatl va
enavarnpoodiopiotel ylati to Setypa m eivatl mbavov eAMreg. Mia @UOIKY| YEVIKEUOT TOU

KAQO1KOU 0p10J0U givar 1) €€ g:

dgr(mo, ) = Z H(mo(a) — mo(b)) - (n(a) — (b)) < O}
a,besha<b
Auto Tou Sragépet givat ot 1o adpotlopa PeTpdel ta acupgeva (guyn (a,b) ornou a, b € s,

avti ywa a, b € [n], omou s givatl 1o oUVOAO €THAOYTS.

Opwopog 1. 'Evag unyaviouog emioyrg fls) Aeyetar ot givat p-frequent wg mpog tig lueeic
ouykploegig, eav yla oia ta ovvoda x C {1, ..n} ue unrog pikpotepo 1 ico ov IP{x C s} > p &
Vx 2xesf(s) 2 p.

To selective petypa Mallows cuvbudadet 11g 1610tn1eg 10U selective poviedou Mallows kat
tou Mixture Mallows povtédou. Eivai éva poviédo petypatog, eneidr) vnotidetat ot pa
ouldoyn ard Sakpita kévipa {1y, ... M} Kat 0X1 fia PEPOVOPEVT KeVIPIKT) Katatadn. Eivat
ertiong selective erme1dn ta delypata mou mapdyoviatl aro auto To PLoViEAo Sev TEPIEXOUV OAeg
11 T9aveég evadldaktikég adAd €va tuxaio uroouvolo J autov, 1o oroio Hiverat aro €vav
unxaviopo srmdoyng f(J) yua kade detypa. H ouvapinon padag mdavotntag tou PoviEAou
elvat ) €€ng:

dKT(ni”Jvo)

M(n = 0) = f(J) - Z W

H &wbikaoia napaywyng oeiypatog arotedeital amo tpia otada. X1o mpwio Pripa, o
unxaviopog ermdoyng f(J) ermmAéyet éva tuxaio uroouvolo J otoixeiwv tou [n] pe mbavotnta

f(J). Enewta, pla anod 11§ k oUuviot®oeg TOU Pelypatog evepyormoteitatl pe mbavotnta mou
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Sivetat ano ta Bapn avapegng. H cuvictdoa i éxel mbavouta w; va evepyortotnBei kade
popd rou rapayetat deiypa. Tédog, pia tuyaia petdbeon m tov otoxeiov oto J AapBave-
Tat ano 1o poviédo Mallows Mi(m) = %
ouUVIoTOOAG. ZNHEIMVOUHE OTL TO KEVIPO T; Tieplopidetatl oto J (ml|y) kat np ouvaptnon ando-

, OTI0U 1 €ivatl o HeiKINg NG EVEPYOITOUHIEVNG
taong KT petpast acupdmva {eUyn povo oe ototyeia mou epgavioviat oto J.
Expadnon Katavopng kat Extipnon Iapapétpav

Mua kAdon katavopov C yapaxmpiletatl efficiently learnable edv yia kade € > 0 kat
0 < 6 £ 1 &xoviag mpooBaon oe éva pavieio GEN(D) rou ermotpéget delypata amo pa
ayveotn katavopr) D € C, untapxel €vag MOAUGVUNIKOG alyopiBpog A, riou ovopadetat aA-
yop1Ouog exkpdbnong tng C, naipvel og icobo ta deiypata kat diver ma exktipnon D’ tng
D ¢tot wote Pr[d(D, D’) < €] geql — &, orou d eival KAmowa PeIPIKY] andotacng petasy tov
ratavopwv D kat D', 6nieg yia apddetypa n arootaon TV 1) n anoxkAon KL, rou Sa oulnt)-
OOUlE apyoTeEPA OE AUTO TO0 KePAAdalo. XinVv gpyacia autr] XPNolPoIoloUlE TV Amootaor)
TV, nou otnv nepintoon 600 dakpttov katavopev P kat Q ndve og éva Selypatiko Xwpo
Q ypagetat wg drv(P, Q) = % >, |P(x) — Q(x)|. Ze opilopéveg meputtioelg, Kade Katavoun
D € C mipoodiopidetat povaﬁu)é(eigané éva ouvolo mapapétpev. Ia mapddeiypa, n kAdon
povodidotatav T'kaouotavéov katavopmv N(u, 02) napapetponoteitat and 1o {euyog (i, 0).
Aapopetikeg TEG TOU (U, 0) Sivouv dlapopetikég katavopég D € C, ou 0Aeg padi KaAur-
TOUV 0AOKAN P TNV KAdon C. Ze auty v NMEPIUTIOOT, 0 aAyopiBpog A Sa mpénet va prnopet

Va EKTIPNOEL TIG TTAPAPETPoUS (K, 0) KAl Tov ovopadapie aAyoplOpo ekpdabnong nmapapéTpwy.

"Eva e§a1petikd Xpr)otio epyaleio yia ) OUYKEKPIPEVH £pyacia Kat tnyv eKudtnon Katavopuaov
YEVIKOTEPA £1val 01 AVIGOTNTEG OCUYKEVIPMOTG KATAVOI®V, TIOU (PACOUV TNV mbavotnta pa
tuxaia petaBAnt va Aafet Tipég pakpld and ) péon 1 te.To Seopnua 2 tou [1] mapéxet
exBetika tail bounds yia abpoiopata aveidpiniov epaypévey PetaBAntov.

'Eote ave§aptnteg petabAntés X, ... X, xkat kade X; ppdostal oto Swdotnpua [a;, b;]. Eote X

0 EUMEIPIKOG NECOG OPOG AUTHV TV PetaBAntav, X = %(Xl +...+X,). Tote, yia t > 0 €xoupe:

_ _ 2n?t?
P{X -EB[X] >t} < -
{ [ ] } exp( Sumi’ll(bi _ ai)z)

P{|X - E[X]| > t} < 2exp (— frac2n2t22(bi - ai)Z)

i=1
Ye aut v epyacia KAvoupe ektevny xpnon tov @paypdtov Hoeflding yia Siovupikég
KATAVOIEG.

'Eotw X ~ Bin(n, p). Tote €xoupe:

PIX < k] < exp (—Zn (p - Y—I:)Z)

Diploma Thesis



Extetapévn EAAnvikn ITepiAnuyn

Ta gpaypata Hoeffding aglorototviat yia tov uroAoyiopo g Se1ylatikng roAurAokottag
EKTIINONG NG KEVIPIKNG Katdtagng tou poviédou Mallows. ITapabétoupe ta arotéopata
tov Caragiannis et al. oto [2]. 'Eotw éu pag Sivetar éva ouvodo N derypdatev oy, ...0n,
mou Tpoépxoviatl anod éva poviedo Mallows. Ta Seiypata sival mbaveg edAunr). @&loupe
Va XP1OHOoojo0UHE autd ta deiypata yia va eKTP00UHE TV KPU@n KEVIPIKY Katdtadn
pe peydAn mbavotnta. I'a 1o okord auto 9a XP1otporotrjooupe Evay EKTIINTL ITOU AITo-
@aoilel mMisloPnPika ya kade dipedr ouykpion. O Exupuntig ®éong it urtodoyidel ) 9¢on

KAG9e avukepévou otV KpuEr Katatadn og eEHg:

N N
Alil=1+ ) ]l{ZIL{j>iinok}>Z]l{i>jinok}}, Vie [n]
k=1

Jeln\{#} k=1

Av TIPOKUWOUV 100TTaA{eg TI§ OTIAPE OPO0HoP@A artd aplotepd rpog ta Setia. Eav to N eivat
APKETA Peyado, TOTe 0 eKUPNTS I€0NG AVAKTIA T 0®OTY] KEVIPIKY KATATtadn Ty PE PEYAAn

mdavownta, onwg da doupe oto enopevo Sewpnua.

Ocsopnpa 1. 'Eotw M(my, ¢) wa karavour; Mallows ue kevipikny katdraln mg € S, kat
napapetpo spread ¢ € (0,1). I'a omowobnmote € > 0, debousvou evog deryuatikov PO

mou mpoépyetar and mu and katavourn M(mo, )N yia omowdnmote N touAdyiotov ico ue
log(n/e)
(1-9)
touAdyiotov 1 — e.

Kanowa Tun O( ) o extuuntig 9éong avakta mv Kevpikn kataraln my pe mdavomnia

To nmapandve ave @Epaypa yla ) detypatikn noAuvrnioxkotta eivat tight, oneg pag deixvet

10 akoAoudo Sewpnua.

Osopnpa 2. Ia kdde € € (0, 1/2] kat onoovdrmote eKTiunty KeVIPUKNg Kardtalng, umdoyet
ua kevtpwkn karataln mo € S, €0t wote, yia kade ¢ € (0, 1), o ekuunmig, dedousvou evog

Seypatikol mpogifl mou mpoépyetal amd mu and katavour; M(m, ¢)N, avaktd 10 mo pe m-

log(n/e) )
log(1/@) /"

9avornta woviayiotov 1 — €, uovo eav N = Q(

Ot Busa Fekete et al. oto [3] &ivouv évav aAyopt9po yia v eKTpnon g mapapérpou ¢.
Apx1kd pe tov ekupnt 9€ong avaktoupe v Kevipikn) d1atadn, onwg Seiape napandve.
Z1n ouvéxela kadiotatal QKT 1) AvaKon tou @ pe audaipeta Pkpo andAuto opdlpa.
log(1/6)
ne2

Oewpnpa 3. Av n kevipwkn kararaln my elvat yvwot), tote ue N = Q( ) beiyuata

r ’ I3 I3 I3 A ’ * ' .
umopouue va Beove o TOAVDVUUIKO XpO0V0 Ula eKTIUNON @ TOU dyV@OTOU ¢ TETolA OTE:

H~/\]§N*4 20D - ¢ s e[21-6

Madnon tou peiypatog Mallows

Zto paper tou Zagier [4] epgpavidetal éva anotédeopa Kaboplotkng onpaciag yia ) PeAé
g pddnong petypatev Mallows. @swpoupie tov n!xn! rivaka A, (@), TOU ortoiou ot ypapég
Katl otrjAeg deikrodotouvial ano g S1dpopeg PeTabEoelg T, 0 TG OUAAOYNS N AVUIKEIPEVOV

[n] Kat tou oroiou ta otowxeia Aqg eivat ioa pe @™ Mnopoune evkoda va Soupe ot
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kAa9e ypappr tou mivaka autou avilotolXel oto vectorization evog Mallows poviédou. Kade
KUptog ouvbuaonog k ypappov avuotorxel oe éva petypa Mallows. O Zagier unoAoyioe
Vv opiouca autou Tou Iivakd Kal KAtéAnge oe éva KAL10TO TUTIO ITOU MAiPVEL TIAVIOTE U
pndevikr) Tipr). To amotéAeopa autod eival onpaviiko yla 1o ipoRAnua pag yati deixvet ot
ortotecdrnote k ypappég sivat ypappikd ave§dptnteg petadu toug kat dpa av o ypappikoi
ouvbuaopot k otmdov (6nAadr) duo petypata Mallows) eivatl ioa cav diavuopata (6nAadn
av ta duo petypata €xouv idia totoypappata) tote ot dUo ocuvbuaopoi armotedouvial aro
TG 161eg ypappég tou mivaka An(@) pe ta idwa avtiotoxa Bapn (6nAadr ta dvo petypata
£xouv ta 161a kévipa kat ta i6ia aviiotoxa Bapn mpoopi€ng). Autr) n 8iotta e§aodpaiidet
1o identifiability tou petypatog Mallows nave oe mAnpn 6etypata, dndadn ) duvatdta va
OUUITEPAVOUE PE PovadiKO TPOTo T1G IAPAPEIPOUS TOU av yvepidoupne ) pada mbavotntag
oe ka9 onpeio. Emiong, n tpn g opidouocag propet va xpnowpornoinOet yia va deixOetl o6t 1o
PETP0 G TIPOPOANS Plag Ypapung ave oto opboymvio cuprinpopa dAdev k-1 ypappov &
propet va eivat moAu pikpo. Me Bdon autd 10 KAT® @paypa anodeikvuovial KATe gpaypata
yvia v TV andotaon petady 600 petypdtov pe S1agopetikég mapap€rpous. Autd arotedet
Hla e¥pwotn Kat moooTiky diatunwor) tou identifiability mou pnopet va xpnowporown et oto

learning.

O1 Liu kat Moitra oto [5] xpnowyonowviag 11§ napandve 16éeg divouv éva MOAUGVUHIKO
aAyopiBpo ya 1) padnon peypatev Mallows, kdvoviag 110vo avaykaieg urtob£oeig yia 1o
petypa (o1 ouviotdoeg va Stadpépouv ava o petady toug kat kade pa va Stapépet amno v

opolopopdr KAtavopr)

Ozwpnpa 4. 'Eoww Ou 10 peiyua sivar pu-un exguiiopévo, éniadn Yij € [kl i # j =
drv(Mi,M;) > u kar Vi € [k]| drv(M;, Uniform) > u. Tote undpyet ajllyopiduogs Ue Xpovikn
Kat derypatkn nojuriorxotnta poly(n, i w;mm la log(%)) TOU Uadaivel 1a KEVTpa 10U Uelyua-

10¢ EMaKPYBOS Kal TI¢ TAaPaueTPous @i, W; Ue andAvto ogdiua to mou 8.

O1 Mao et al. oto [6] BeAttwvouv v e&dptnon ard Tov aplfpd N TV AVIIKEIPEVEOV KAVOV-
T4g ) AoyaplOpiKy] KAl YEQUPROVOVIAG TO KEVO ITOU UMHPXE HETASU TG MEPIMTIOOTG TOU EVOG
KEVIPOU Kal NG repinmoong peiypatog. Emiong 6ivouv éva adyopiBpo padnong rou xpnot-
porotet queries sAayiotou pnkous. ‘Evag mieplopiopog BePata tng ouykekpipévng Soudeiag

etvat ot urobétel g O6Aeg o1 mapdpetpot spread eival 10eg Katl YVOOTEG EK TV IIPOTEPGV.

Ag doUpe kamoleg PBacikEG €vvoleg TOU Xprotporiolovvial oto paper. Katapxdag, yiverat
Xpron g pebodou twv portwv. Xta petypata Mallows €vag uoikog TpOTI0g va 0plotouV ot
porig tagng 1 eivat ot opadeg 1 Siyppedwv ouykpioenv 1 mapopola ot 1-pedeig ouykpiosg. ®a
€0TIACOUIE OTNV MEPIUTINON TOV SEVTEP®V, Ol OMOIEg UTIEPKAAUTIITOUV TV MPATI MEPITTOON
and anoyrn npooepepopevng minpogpopiag. Ot cuykpioelg autég pag ivouv g neplOwpieg

KATAVOPEG TOU HOVIEAOU TAV® OF UTIOOUVOAQ TV AVIIKEIHEVOV.

IMa pua petdBeon m n avukelpéveov Seopoupe dUo €1dn meploplopoy g nMAve og £va UTT-
ooUvolo J TV n avukepévav. Ilpotov tov injective (1-1 aAAd oxt emi) mou tov cupBoAiloupie

pe mlJ kat devtepov tov bijective (1-1 xat erti) rmou tov cupBoAidoupe pe njlJ. Ztov injective
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dratnpeital n mAnpogopia yia tn 9éon tev avukep€émv oto rAnpeg ranking m, evod otov bijec-
tive povo n katdtadn petady v emdeypévev avukelpévey. a napddetypa, yia to ranking
m=(3,2,4,6,1,5) kat 1o ouvodo ermdoyng J = {1, 4, 5} éxoupe yila 1o injection n|J(1) = 5,
n|lJ(4) = 3 xat |J(5) = 6 ka1 ya 1o bijection n||J = (4, 1, 5).

Mua dAAn onpavukr évvola ivat ta pavteia (oracles). Autd ipoodEpouv AN Popopieg XwPig
9opufo yia 1o poviédo, o aviiBeon pe ta Setypata mmou eivatl SopuPwdn. AndTEPOG OTOX0G
etvatl va xpnotporniownBouv ta Seiypata arno KAmolo adyopiOpo mou pe peydin mbavotnta

Kavel simulate ta pavieia, Xpnoponono®viag MOAUOVUNIKO aptdpo dsiypdatov.

Opopog 2. 'Ecww éva peiypua M ue kevipa {c1, ca, ...ci}. To "ao9eveg” pavieio ue eicodo
gva gpatua yia kamoto ouvojlo J emotpépel 10 OUVOI0 TOV TEPIOPIOUDY TOV KEVIPOU TOU
uetyuarog mave oto J: {cy, ca, ...ci}. To ovvoAo autd mepigxet uovo Siapopetikd uetalt Toug
ototyeia, ondte evdéyetar o miAnIaprduog ou va sivat pukpotepog tou k. To "toxupd” uavisio

EMOTPEREL TNV Katavour] tou TilJ, onou 1t tuyaio ranking mou axoiovdel v katavour) M.

Mua teAeutaia évvola mmou 9a Xpelaotel va doupe mpiv MPOX®PICOURE 0ToUg aAyopibpioug
1da9nong eivat i) "unoypaon)” (signature) tov kévipev tou petypartog. Signature ovopddoupie
Pa opdda S1peddv OUYKpPIoE®V TIOU ATTOPOVMVEL €va KEVIpO. Mrmopoupe va Bpoupe éva
povadiko signature set mou exwpilel tautoxpova 6da ta Kévipa Kat xprowaorotet k — 1
ouykpioelg. Ermiong umdpyet mavia touldyiotov €va KEVIPO IOU UIOPEl va anopovedet
xpnowornowwvrag O(log(k)) ouykpioelg. Qotooo karnowa kévipa propel va xpeiddoviat O(k)
ouykpioeig yla va armopovobouv. Ta signatures propoupe va ta dovpe oav decision trees

ITOU OTd UAAA TOUG £X0UV Td KEVIPA TOU ATOIOVAOVOVTAL.

222//"“\\§:2

=1 5=6
1=7
6>5
' . ; 422 254
5=6 6=5 . .
_ 12745136 T ;
. " 7651342 : :
: 1753624 2765134 :
1234675 2765143

I ouvéxela napouotaloupe €vav alyopifpo padnong teov KEVIPOV Kal T®V AVIIOTOX®V
Bapwv tou pelypatog rmou Xpnotporost KANOE1G 010 10XUP0 Pavieio KAl Xp1otornost ta sig-
natures rou €idape nmapandave. O aAdyopiBpog mou napouotddetal epappodetal os petypa

e kowva spread parameters, ®OTOC0O €UKOAA YEVIKEVUETAL OTNV MEPITTIOOT TV S1aPOPETIKOV
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spread parameters, apkei va £€xoupe ki ekel StaBeopo pavieio. Emiong, unidpyet pa apo-
pota rmapaAdayrn tou aAyopiBuou rou xprnotpornolel KANoelg oto acBeveég pavieio Kat pa-
Saivel povo ta kévipa tou petypatog. O aAyoplOpog mou Xprolponolel 10 10XUpo pavieio
Kavel queries edayiotou prkoug (O(log(k)), eve 0 adydp1B110G TTOU XPNOHIOTTOEL TO A0DEVES

pavteio kdvetl queries prikoug O(k).

O alAyopiBpog pabaivel 10 pelypa enmaywylka oG 1pog 1o rmArndog tov avikelpeveav. [a
n=2 aviukeipeva AapBavoviatl apeca ol IIapApPETPOol TG EPIO®PLAG KATAVORG TIAVE® OTd av-
TIKElPEVA AUTA PE 1A KANon OTo 10XUPO Pavieio.
for n in [3, Ny :
* C 1= 10 0UVOAO TWV H1aPOPETKAV OTOXEIOV TOU (IOAV)oUVOAOU {1t |[r-1] --.s Tcl[n—1]}-
* 1=0
do{
* YIApXet g |[n—1] = [€1. €2, ...en—1] € C mou pnopet va anopovebet
arno éva signature sig prkoug to oAU [ < |loga (k)]
forrin[2,n—-1]:
* J := 10 OUVOAO TRV AVUKEIPEVOV TOU Sig OUVEVWON He 10 {eq—1, e, n}
* [Taipvoupe aro 1o 10)/(Upé pavteio TG apapétpoug g KAtavoung
, A () ,m)
M) = B2 ] - Sy
* 'Eva arno ta Stapopetika KEvipa th’ 100UTAl PE Tgt|J.
% AV 10O nj’ niepiéxet ) diatetaypévn putdéta (e, n, er),
£€xoupe nabet éva vEo KEVIPO ¢ OTO S, IOV 100UTal Pe
[ei, e, ....,er_1,n, e, ...,en1],
Kdat 1o avtiototxo Bdapog tou wtl=wJL - Xmiepld=cld Wn.
* [Ipdttoupe opola yia Kévipa rmou apyxi¢oupe e 1) TeEAE1@VouV oe n
* AlyPAPOUNE 1O Trgx|[n—1] aro to C.
* 1+=1

}while To C 6ev eivatl kevo

Topa pével va uAormor)ooupe KANKOG To pavieio. Auto yiverat péow g pebodou SubOrder, n
oroia KAavel eEaviANUKI avadr]tor) mave Ot0 XOPO0 TRV UIoWHPlav MEPfNP1ov KATAVOU®OV.
KdaSe unoyn 1o poviédo ouykpivetatl pe 10 10 EPIEIPIKO POVIEAO ITOU IIPOKUITIEL amnod ta dia-
Yéopa delypata kat av n anootaot) eivat apKetd PKpn mMotpePoviat ol apdpeTpot ToU UIT-
oy plou poviedou. O X®Pog IOV UTOWPHPLeV POVIEA®V £1val TIOAU@VUHIKA (KAt 0X1 eKOeTIKA)
peyaldog av Sewprjooupie 10 k otabepd, kabwg ta uroyndla povieda opidovial mave os €va
untoouvolo peyédoug O() Tou TAN)POUG CUVOAOU TV N avikelpévev. [apakdte rapovotale-
tat n SubOrder ou kavet simulate 1o acBevég pavieio, ®OTO00 PIOPEl va @Tiaytel opola Kat
poutiva rou Kavet simulate to 10xUpPo pavieio, emMoTpEPoviag PNTEG IIPOOEYYIoEIS TV Bapav
e raroo Pabpo axkpifelag, plag kat ta Papn ival ouvexeig PetaBAniég mou s priopouie
va 11§ ektipnoovpe enakpfog. 'Etol ermtuyyavetatl n padnor, kabog unapyouv guarantees

ot pe peyaldn mbavotnta n SubOrder kdvel owota simulate to pavteio.
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Extetapévn EAAnvikn ITepiAnuyn

Zuvaptnon SubOrder

Eicodog: Ot mapatnpnoeig oy, ..., oy € Sp, éva urtoouvodo J C [n], £ := |J| xat

L = [3k/n] émov n = polyy., (@, y)
* M = { le %M(npi, qo) 101 € Sny.ri €[L], 1 = YL, Z’le r = L}

* Ma kade petypa Mallows M’ € .#, napade N’ i.i.d.
tuxaia permutations o7, ..., oy, amno 1o M'.

’
_ 1 N 5

. . . s A
Yroddyioe v epnelpikr) nepibopla katavoprn M | ;= 7 Zm=10d,,

* Av yia kadrowo M’ = Y, &M (npi, tp) € M 1ox0et 611

TV (M|, . Maly) < n/2.

EMOTPEYE TO OUVOAO TRV OXETKMOV KATATASEDV {TfpiHJ 1ie [k]}

Madnon Selective perypatov Mallows

[Mapandve eibape nog yivetatl n padnon petypateov Mallows ano mArpn detypata. 'Otav ta
delypata eivatl eAAunr) 1o poPAnpa SuokoAeuel Kal pdaAtlota propet va yivel pn ermiuvotpo.
Zuykekppéva propet va riapabiaotet to identifiability rou ioxue oty nepinoon tov mAnpev
detypdtov. Ermotpépoupe oty opidouoa tou Zagier pe éva napddetypia rmou avadeikvuel 1o
npoBAnpa auvto.

Bepoupe TV MepPlmeon TPV avikelpévav. Ilpota uvnmobétoupe ot ta detypata eivai

mAnpn. Tote éxoupe:

37

N

2

(1 9o 9 ¢* ¢ ¢

o 1 ¢ ¢ o9 ¢
A|® 21 9 @ ¢
) 3 2

»® P o 1 @ @

»® 9o ¢ ¢ 1 o9

¢° ¢* ¢* ¢ ¢ 1]

det(A) = —(¢?> - 1) (@®> —p+ 1)(@* +p+ 1) #0V¥p < (0,1)

It ouvéyela urtobetoupie o1t Ta Setypata eivat eAAur). AsGopévou 0Tt £Xoulie HOvo 3 aviikei-
Heva, ta nutteAr) detypata priopouv va eivat povo ouykpioslg ava {euyn. Kataokeuddoupe
1oV Iivaka A Jie Ypappég mou avilotolXouv os PeTabEoelg oto S, Kal OTHAeg 08 GUYKPIoELg

Kata {euyn otoixeiov tou 1,2,3.
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Extetapévn EAAnvikr) ITepiAnyn

S = = = 9 9
e T = Y = Y < S ]
- —~ 8 ~ 9 ®

‘-Q S = 9 = ,_.‘
- 9 9 8 = =
S 8§ = = = 9

det(A) =0 Vg € (0,1) = 1o identifiability nmapaBidetar.

To emopevo Sedpnpa ocuvowiletl ta anotedéopatd pag &g rpog to identifiability oto oevapio
eAAmov derypatev. Kdvoupe v undBeon twv Mao et al. éu ta spread parameters eivat

OAa ioa petadu toug.
Ocwpnpa 5. (Identifiability)
e Av ywa 6/a ta gfdumn rankings m unroug 2 - | logs (k)] + 3 woxvet ou

1. f(J) # 0, omou J 10 OUVOA0 TOV AVTIKEUEV®V TOU TT Kat

(deT("lﬂJv”) (deT("Z‘i'Jv")

_ K _ vk
2. My(m) = Ma(m) & )i Wi i- N C Qe Wo i o

10te 10 {(Wwr 1, 71,1), (W12, M1 2), ..(W1 k. T 1)} KALTO (W21, T2,1), (W2, T2 2), ...(W2 1, T2 1)}

elvat ioa oav ovvoAla.

o Avl < 2(lloge(k)] +1), o1 UTGE)XOUV bUO peiyuata My, My pe Siagopeticd ouvoia

Kevtpkav rankings rkait My () = My(1), V1T pe pnrog puikpotepo ioo tou L.

To mapandave Sedpnpa pag eyyudtal 0tl propoupe va pdadoupe 1o peiypa mapatnpov-
tag deiypata AoyapiOpikou prkoug g npog k. Idavika Sa 9¢Aape va apkouoav ot arAég
dipedeig ouykpioelg adda autd Sev eival mavia e@iktd. Zinv amdn addda evdiapépouoa

nepintoon v 6o KéEVIp®v elval n e@ikty) 1 padnon anod dipedeig ouykploeg.

Ocwpnpa 6. (Ma9non Meiyuaroc Avo Keévpwv Ano Auefeic Zuykpioeg)

‘Eote pesiypa 6U0 KEVIPOU Ue KOWN TAPAUETPO @. YTOIEToUUE OTL T0 MUElyUa ivar a—un
expuiioucvo, dniadn lw; — 0.5 > a, w; > a, yia i=1,2 kat ¢ < 1 — a. Tote unopovue va
ua9ouue ta 6vo kevtpuka rankings enaxpiBwg pue mdavotnta tovAaytotov 1 —e, xpnoyonolwv-

tag O (%ﬁ’g(n/e)) Oeiypuata diuefwv ovykpioewv.

Emotpépoupe oy nepimwon v k kévipav. Mia evaddaktikr pédodog tou parameter
cover 1ou eryelpei n suborder pédodog mou eibape mapandve sivat va doxkipdloupe 8-
aviAnukd Sagpopetikoug 1pomnoug va ocuctadorioirjooupe ta deiypata oe k opadeg. Av 1)
kAa9e opdada mepiéxetl Tov aptdpo derypdtev mou anattel o ekupng 9€ong twv Caragiannis
et al. 16te kamola and g vroywnedieg ouotadoror|oelg 9a 6MOOEL T0 CHOOTO CUVOAO KEVIPIKOV
rankings av epappoocoupe eomtepKd oe Kade cuotdada tov ekupmnty Yéong. H péSodog avtn
eival pdliota @Ak g rpog ta eAAinn) deiypata agou o positional estimator Asitoupyet kat

e ei0obo Al Setypata. To nmapaxkdte Sewpnpia cuvowilel 1o anotéAeond pag.
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Extetapévn EAAnvikn ITepiAnuyn

Osapnpa 7. (Sample Grouping vs Parameter Couver)

'Eotw éva peiyua M e kévipa {cy, co, ...ci}. Acbouévov N = O(‘—r/ + %2/6))

Sderyuatov tov M,

. log(k-n , ' . . ,

onou r = O(O%T’))ée)) Kary = mm{wi}, UTTOpOUUE Va KATaoKeEUAOOUUE Eva ovvojlo C C Sﬁ
. k(r+1) , . . , . .

ge Xpovo O(N(rT) 70 omoio ue mIavotnta toufaxiotov 1 — € mepLEy el 10 0WOTO oUVSUACUO

KEVTPWU {C1, Cg, ...C}.

Mta 1¢9080g cover 9a £éxave avr'autov (n!)* eAéyxoug urnoyneiav poviédav. H e€apton g
kg pag peBo6doU aro 1o N ivatl oAU 1o 1ITd, VR 0 AP1OOG TOV EAEYX®V IIAPAIETPOITOLE -
Tal KAl aro dAAeg apapéTpoug EKTOG TOU N Katl Tou k. Av yia napddetypa 1o ¢ eivatl pikpo
0 Xwpog avalninong g pebodou pag cuppikvavetat, eve n PEJodog cover towv Mao et al.

bev mMpooappodel TNV IIOAUTIAOKOTTA TG OT0 ¢.

Tédog, mapouotddoupe Vo arotedéopata pag mou agopouv dwaxwpiowa petypata. To
npato Yempnua a§lornoiei ) S1ax@EICIROTNTA TTOU EMIPEPEL 1] PIKPT] Sraoropd (Likpo spread
parameter) eve 10 Utepo ) dlaxwpElooOTTa P v €vvola 0Tl Ol arootdoelg petady o1-

APOPETIKOV OUVIOTOOMV £1val EMAPKOS PIKPEG O OXEOT) HE TG "aKTiveg" T®V CUVIOT®O®V TOU

petypatog.

Oewpnpa 8. 'Eotw ueiyua pe Bapn avauilng wy, ... Wy Kat Tapduetpo ¢ térota wote min{w;} —
@ = g > 0, ue 10 g va Yewpeitar yvoord. Tote exteAoviag n? - k adaptive queries mdve os
vnoouvofa unkoug O(k) TV avtikeluevov Kat 6e50UEVOU OTL T0 oUVOAO emtiloyrg Tou Kade
query skmpoowneital o Toufdytotov N Seiypata, émou N = O(log(n - k/€)/(g?)). nadaivovus

Ta KEVTPA TOU UEyUATOS emakpyBag pe m9avotnta tovfaytotov 1 — e .

Oewpnpa 9. 'Eoctw gvag unyaviouog emifoyng mou aeaipel m aviikeipeva pe mdavotnia
p(m). Ymo9stouue ot ra9stovue N = O(}—r/ + y%) detyuata, omov L = ln(%) .y = ming{wy}
Karr = O(%). Emiong, 9ewpovpe éva mIavotikd dve epadyua My yla v aptdud tov
AealPOUUEVOV AVTIKEUEVDV, Yl TO OTOIO Zxo p(m) > ¢/N. Av n efayiom KT andotaon a
uetat 6U0 KEVIP@U TOU UElyatog tcavomolet m ouvdnkn a > (2n — me + 1)Mer /2 + 4dmax.,
onov dpax = O ([log(N ) + nlog(n) — log(e)] / log(é)), 10Te Umopouue va Ladouue 1a KEVTpa tou

uetyuatrog emaxpiBag ue m9avornia rouvfayiotov 1 — e.
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Chapter E

Introduction

Social choice theory is a framework for analysis of combining individual opinions, prefer-
ences, interests, or welfares to reach a collective decision or social welfare in some sense.
Social choice theory dates from Marquis de Condorcet’s formulation of the voting paradox
(late 18th century). The Condorcet paradox is a situation in which societal preferences
can be cyclic (conflicting) , even if individuals’ preferences are acyclic (transitive). In an
election with only two candidates, where each voter has a preference for one candidate
over the other, the majority selection rule works fine, giving an order of the two candidates
that agrees with the majority of the voters preferences and is self-consistent. However
this is not always possible when the number of candidates exceeds two. An example of

the paradox is the following:

Suppose we have candidates A,B and C and three voters. The following table presents

the individual preferences of the voters.

Individual Preferences
Voter First preference Second preference Third preference
Voter 1 A B C
Voter 2 B C A
Voter 3 C A B

The majority of the voters prefer A to B, B to C and C to A. The resulting collective
preference A>B>C>A is cyclic and thus inconsistent. This paradox indicates the need
for more complex and robust voting mechanisms like score voting. Another interesting
question arising is whether the voting mechanism is truthful, that is whether the voters
have an incentive to give a vote that doesn’t fully agree with their individual beliefs in or-
der to promote a specific outcome of the election. However, this perspective of the voting

problem is rather game theoretic and is out of the scope of this work.

Kemeny’s rule is a more meaningful and effective way of aggregating ranking samples.
Given a sample profile {01, 09, ...0y} € S’,‘{ , Kemeny’s rule chooses the following ranking t
as an estimation of the collective preference: t = argmins, Zli\il dkr(t, 0;). This calcula-

tion can be viewed as finding the median of the samples in the metric space of the set
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Chapter 1. Introduction

S, with the Kendall Tau distance as the [} norm and has been proved to be an NP-Hard
problem. Moreover Kemeny’s rule is equivalent to finding a maximum likelihood estima-
tion assuming that our observations were generated by a Mallows Model. dkr(o, ) is a
distance metric in S,, the set of permutations of n items, and is equal to the number of
pairwise comparisons that are discordant between o and . Mallows Model is a ranking
distribution in S, parametrised by a central permutation n* that assigns to each permu-

tation o a probability exponentially proportional (decreasing) to dgr(o, T¥).

Another important issue in ranking aggregation is the incompleteness of the individ-
ual preferences. Take for example a set of movies and a group of people ranking them
on an online platform. Each user has to give a preference order of the movies accord-
ing to their personal taste. However, some users might not have a clear opinion about
some movies or they might have not seen them at all, making them unable to include
these movies in their preference list. This results in incomplete preference lists of the
individuals. Apart from that, it gets increasingly difficult for the users to construct a
single ranking of the movies as the number of the movies increases. Instead they would
rather break their decisions into smaller comparisons (pairwise, 3-wise, etc). Again, it
might be impossible for the users to decide for some of the movie comparisons. Finally
we simply can’t demand the users to give a ranking of every single movie they know,
as this would be too burdensome for them. These limitations underline the need for a
so-called selective model where each sample is a permutation of some randomly selected

subset of the full set of items or a set of pairwise comparisons between items of the full set.

Next, we are going to explain the importance of assuming mixtures of ranking models
rather than single models for the whole population. Populations may be heterogeneous,
which implies that more than one collective preferences should be estimated, one for each
cluster. Women for example might have similar movie tastes with each other and men
might have similar tastes as well but the taste of men might be significantly different than
the taste of women. In this case, estimating a single collective preference for the whole
population with some method like Kemeny’s rule would fail to express the ground truth
of the population and on a more technical level the estimated distribution that should
model the behaviour of the population would be too simplistic and thus fail to fit the sam-
ples with adequate accuracy. The idea of mixtures has been widely used to other kind of
data as well, for example mixtures of Gaussians for feature vectors. A number of simple
base models are superimposed to construct a more complex distribution, with more free
parameters (and thus greater expressivity) to be fitted into the sampled data. Assuming
a mixture rather than a single generative model drastically increases the difficulty of our
problem because for each sample we have to guess its label’, the id of the underlying
cluster it has come from in order to assign it to its correct group of similar samples. The
closer the underlying centers are and the more variance the samples have around these
centers, the more difficult it becomes to classify the samples into clusters. Incomplete-
ness of the samples also plays a major role in separability making it even impossible to

identify the latent centers if the samples are too short meaning that different clustering
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solutions would be equivalent in fitting the observed incomplete data.

Probabilistic models on rank data have been widely studied in the last decades. The
following surveys cover much of the progress in this field : [7], [8] and [9]. Many ranking
generative models have been proposed, such as the Mallows model [10] and its gener-
alisations and the parametric models of [11],[12], [13], [14] and [15]. In this work we
focus on the Mallows model. The Mallows model has been studied extensively in the last
decades and this research led to various theoretical results. Braverman and Mossel in
[16] proposed an efficient algorithm for computing the MLE of the central ranking with
small error and high probability. We will present their work in detail in chapter 3. Tang
in [17] studies the statistical properties of the MLE for the classical Mallows’ ¢ model, as
well as the Infinite Generalised Mallows model. He proves the biasedness of the spread
parameter for the Mallows’ ¢ model and the IGM with a single parameter. He also provides
an upper and a lower bound for the convergence rate of the MLE of the central ranking to
the correct value, in the case of the classical Mallows’ ¢ model. Both bounds concern the
probability that the MLE is different than the central ranking and they are exponentially
decreasing on the number of samples. Another direction is exactly recovering the central
ranking with high probability using an adequately large sample collection ([2], [18]) and
estimating the spread parameters [3]. The authors provide lower and upper bounds for
the sample complexity of the reconstruction. We will see some of these results in chapter
3.

In this work we consider two ways of generalising the classical Kendall-Mallows’ ¢ model.
Firstly, we assume that samples are incomplete in the sense of [19]. In fact, we consider
the random selection mechanism of [20]. Secondly, we assume that the latent model is a
mixture rather than a single Mallows model. We will first review research in the direction
of incomplete samples. Fotakis, Kalavasis and Stavropoulos in [19] generalise the results
of [16] and [2] to the setting of incomplete samples. They show that the positional esti-
mator, which effectively applies to incomplete samples, can replace the average position
estimator that requires complete samples, sharing similar convergence identities. This
way, the central ranking reconstruction problem can be solved and a good initialisation
can be found for the local search for the MLE calculation, similarly to [16]. Moreover, the
authors study the problem of learning the top-k alternatives of the central ranking using
incomplete samples. The task breaks down into learning the identities and the relative
order of these items. Asymptotically tight upper and lower bounds are provided for the
sample complexity of this task. Hajek et al. in [21] study a selection mechanism that se-
lects subsets of a fixed length uniformly at random. They analyze a rank-breaking scheme
that decomposes partial rankings into pairwise comparisons. They show that even if one
applies the mismatched maximum likelihood estimator that assumes independence (on
pairwise comparisons that are now dependent due to rank-breaking), minimax optimal
performance is still achieved up to a logarithmic factor. In this work as well as in [22]
the estimator error depends on the spectral gap of the Laplacian of the comparison graph

constructed by the samples (nodes correspond to items, edges to pairwise comparisons
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Chapter 1. Introduction

and edges are appropriately computed from the samples). The authors in [22] study dif-
ferent comparison graph topologies and examine their optimality. A graph is considered
optimal if for a given budget n on the number of samples the minimax risk is the smallest
(up to constants) among all graphs. It is worth mentioning that in contrast to our setting,

in the above setting the MLE problem is proved to be convex.

Now we will present related work from the field of Mallows mixtures. Awasthi, Blum
et al. in [23] were the first to provide theoretical guarantees for the efficiency of learn-
ing the mallows mixture. They provide an algorithm with polynomial sample and time
complexity that learns the parameters of a mixture of two Mallows models. Except for
the number of components, no other significant assumption is made about the model.
Chierichetti et al. in [24] study mixtures of Mallows with more than two centers, com-
mon spread parameters and arbitrary close distance between centers. They construct a
n! X n! matrix where each row corresponds to the vectorisation of a Mallows model and
each column to a different ranking on the domain of the Mallows model on n items. They
show that the determinant of this matrix is non-zero thus establishing identifiability for
an arbitrary number of components, but their proposed algorithm requires a sample com-
plexity exponential on n. They also study separable Mallows Mixtures. Liu and Moitra
in [5] establish the polynomial identifiability of the Mallows mixture making minimal as-
sumptions. They prove that learning the centers exactly and estimating the weights and
spread parameters up to some degree of precision can be done using a polynomial num-
ber of samples. The sample complexity is exponential only to the number of components,
however this parameter is generally assumed to be a small constant. Mao et al. in [6]
improve the dependency on the number of items, making it logarithmic and thus bridging
the gap between learning a single Mallows and learning a Mallows mixture, it terms of
the number of items. They also prove an optimal dependency on the spread parameter,

however working on the special case when all spread parameters are equal.

There are also many heuristic approaches to the problem. Brendan Murphy and Donal
Martin in [25] studied mixtures of Mallows models with various distance metrics (Kendall,Cayley
and Spearman). They implemented an EM variant for the fitting problem and considered
two criteria for choosing an appropriate model hypothesis class (e.g. the number of com-
ponents and the distance metric). The model choice criteria were the Bayesian information
criterion (BIC) and integrated complete likelihood (ICL). Experiments were conducted on
synthetic data. Lu Tyler and Boutilier Craig in [26] applied the EM approach proposed
by Neal and Hinton in [27] and exploited a novel Generalised Repeated Insertion Model
approach for efficient sampling from Mallows posterior distributions. This allowed them
to avoid working directly with the intractable posterior required in the E-step of the al-
gorithm and perform Gibbs sampling instead. In [28] the Affinity Propagation clustering
algorithm introduced in [29] is used to cluster the ranking samples of a Mallows Mix-
ture. Once the clustering is performed, methods for single Mallows learning are applied
inside each cluster. For the central ranking estimation, the Local Kemenization method,

which was proposed in [30], is applied. For the spread parameter estimation the authors
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propose several EM variants. The case of incomplete samples is also studied and the
Local Kemenization method is adopted in this case as well. The authors in [31] assume a
Dirichlet process mixture of Generalised Mallows Models. Samples are incomplete in the
sense of top-k observations. The authors study two Gibbs sampling inference techniques

for estimating posterior clusterings.

Learning the Mallows mixture without any assumptions is provably a difficult problem.
Thus, it is common to consider special instances that are solved with much more ef-
ficient algorithms. In [32] Chierichetti et al. studied the problem of learning uniform
mixtures of top-k Mallows models with a common spread parameter. The authors as-
sume that centers are far from each other and single-linkage clustering succeeds with
high probability for all samples. Thus, the problem is reduced to learning a single top-k
Mallows model. Fabien et al. in [33] studied concentric mixtures of Mallows models,
that is Mallows models with the same central ranking but different spread parameters.
This models a heterogeneous population in terms of confidence about a ranking opinion
(e.g. a population consisting of experts and non-experts). Interestingly, mixtures of con-
centric Gaussians are proved to be non-identifiable. The authors provide an algorithm
for clustering the samples of a mixture of two concentric Mallows models under some
separation condition of the spread parameters. They also extend the Borda algorithm of

[2] for estimating the central ranking to the case of concentric Mixtures and top-k samples.

The problem of mixture learning has been studied in ranking models other than Kendall
Mallows as well. Zhao et al. in [34] provide necessary conditions for the identifiability and
of finite mixtures of Plackett-Luce models and sufficient conditions for generic identifia-
bility. They also propose an efficient generalized method of moments (GMM) algorithm to
learn the mixture of two Plackett-Luce models and show that the algorithm is consistent.
Zhang et al. in [35] prove the generic identifiability of a range of ranking models with
two components (Plackett-Luce, multinomial logistic model with slates of size 3 and BTL).
They also provide a framework for verifying the number of solutions in a general family of
polynomial systems using algebraic geometry. Anindya et al. in [36] consider a range of
different noise models: the symmetric noise, the Heat kernel random walk under Cayley
distance and the Cayley-Mallows model. They propose an algorithm that under certain
mild assumptions applies to each of the above models and learns the unknown mixture

to high accuracy, running in O(n'9) time.

The (polynomial) identifiability of mixture models has been studied in other kinds of
distributions as well. Teicher in [37] and [38] obtained sufficient conditions for the iden-
tifiability of a wide class of finite mixtures but these conditions do not apply in the setting
of Mallows Mixtures. Another important direction of research is learning Gaussian mix-
tures. The Mallows model is closely related to the Gaussian Distribution as they both
belong to the location-scale family. Thus, it is interesting to compare the methods and

results in the field of learning Gaussian Mixtures to those in Mallows Mixtures.
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Moitra and Valiant in [39] settled the polynomial learnability of Gaussian Mixtures, mak-
ing minimal assumptions. The authors first solve the problem of learning mixtures of
univariate Gaussian Mixtures and use this tool to tackle the multidimensional problem.
A series of projections down to one dimension is considered. An important first step is to
bring the multidimensional mixture in isotropic position, where the mean value is the all
zero vector and the variance is 1 in every direction. This way, for each random direction,
there exist two components whose projections have a polynomially large parameter dis-
tance, with high probability, and the univariate algorithm does not have to be executed
with extreme precision in this direction to distinguish them. The univariate learning al-
gorithm is applied in each projection and the estimates in different projections are used
as constraints for the multidimensional parameters, making a linear system of equations
that can be (robustly) backsolved to get estimations for the original multidimensional pa-
rameters. All projections are made on directions close to some random initial direction. In
each projection the direction changes slightly and the parameters of the mixture change
continuously. This way, one can match the components learned in one direction to those
learned in another and the equations of the system are correctly aligned.

The univariate algorithm uses the method of moments and a brute-force gridsearch over
candidate parameters. Each candidate model is compared with the samples in terms of
the first 4k-2 moments. This number of moments is proved to be sufficient because it
is connected to the number of the zero crossings of the mixture density. The univariate
algorithm performs hierarchical clustering. Initially, some Gaussians may become very
close when projected to the selected direction and they will appear as a single Gaussian.
However, in this case the variance of the single Gaussian should be very small and thus
this phenomenon can be detected. The solution is to isolate each Gaussian with small
variance and bring it to isotropic position, revealing the subcomponents.

The authors conclude that given any n dimensional mixture of k Gaussians F that is
e-statistically learnable, we can output an e-close (in parameter distance) estimate F
and the running time and data requirements of the learning algorithm (for any fixed k)
are polynomial in n, and 1/e. They also prove that an exponential dependence on Kk is
inevitable. Recent work (e.g. [40]) focuses on sufficient conditions to overcome this de-

pendence.
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Chapter E

Permutations and Ranking Distributions

2.1 Permutations As Mathematical Objects

2.1.1 Permutations as Functions

Definition 2.1.1 (Permutation). A permutation is an arrangement of objects in a definite
order. Technically, a permutation of a set S is defined as a bijection from S to itself. That is,

it is a_function from S to S for which every element occurs exactly once as an image value.

For example consider the set S={1, 2, 3}. (3,1,2) is a permutation of S and it can be written

as a function © where (1) = 3,n(2) = 1,n(3) = 2. The inverse function n~! gives the

position of each element of S in the list representation of sequence m. We can also define

partial permutations, which are ordered arrangements of k distinct elements selected

from a set A, where 2 < k < |A]. When k is equal to the size of the set, these are the

(complete) permutations of the set. Let n = |A]. The number of (partial) permutations of S
n!

of length k is equal to C=rie Let A be some non empty set. S, is the set of all (complete)

permutations of A. If A is equal to {1, 2, 3,..n} we write S5 as S,.

2.1.2 Permutations as Groups

Definition 2.1.2 (Group). Let G # 0 and = : G X G — G be a binary operation. (G, %) is a
group if the following three requirements, known as group axioms, are satisfied:

e Operation * is associative <= VYa,b,c € G it holds that a = (b*c) = (a * b) * c.

e G has anidentity element = de€ G:VYa€eGaxe=exa=a

e Every element of G has an inverse <=VacGda'leG:a*xal=al*a=e

Three important properties, which can be derived from the above axioms are the unique-
ness of the identity element, the uniqueness of the inverse of each element and the exis-

tence of a unique solution to the equation a * x = b with respect to x, where a, b, x € G.

Proposition 2.1.1. Let A be a nonempty set, S, the set of all its permutations and o be the

function composition operation. The structure (S, o) is a group.

Proof. First we show that permutation composition is an internal operation in S;. We

consider two permutations r, 0 and we want to show that the composition o o is injective
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Chapter 2. Permutations and Ranking Distributions

and onto. Let x1,x5 € Sap. If (mo 0)(x1) = (mo 0)(xe) = m(o(xy)) = n(o(xe)) = o(xy)) =
o(xy)(because mis 1 — 1) = x; = xp(because o is 1 — 1). This implies that permutation
composition injective. We will now show that it is surjective as well. Given a permutation
y € Sa and the composition 7 o o it is possible to find x € S,, such that n(o(x)) = y,
by setting x = o~ !n"!(y). Associativity is a direct consequence of the fact that function
composition is associative. The identity element of the group is the identity function
n(x) = x. As for the existence of inverse permutations this follows from the definition of

permutations as bijective functions.

2.2 Distance Metrics

In this section we are going to present distance metrics between permutations. These
metrics are functions S, X S; — R that receive as argument a pair of permutations and
output a value that measures the similarity between the two permutations. The higher
the value the less similar the two permutations are. For example, consider permutations
m = [1,2,3,4] and mp = [1,3,4,2]. We can easily see that the two permutations differ
but how dissimilar are they? Also, does m; differ more from my than it does from another
permutation, for example w3 = [4, 3,2, 1]? There is no unique answer to these questions
because different permutation distance metrics can be considered, all of which make
sense intuitively, but are not equivalent. We are now going to discuss the most important

ones of these metrics.

2.2.1 Kendall Tau Distance

This distance metric is equal to the number of pairs on which the two permutations dis-

cord. More formally this can be written as follows:
dgr(m,m) = 2 UH(m() — m())(m() — m()) < 0}
1<i<j<n
KT distance satisfies the fundamental metric axioms:
1. It is a non-negative real-valued function : dgr(m;, m2) > 0
2. The identity of indiscernibles holds: dkgr(m;, m2) =0 © T = ™o
3. It is symmetric: dgr(m, me) = dgr(me, mp).

4. The triangular inequality is satisfied: dgr(m;, ms) < dgr(m1, M) + dgr(me, T3).

The KT distance is minimised at 0, when the two permutations are equal and it is

n(n-1)
2

O(n?) using a naive algorithm. By employing divide and conquer it can be sped up to

minimised at , when the two permutations are reversals. It can be computed in

O(n - log(n)). Using the Van Emde Boas tree data structure the computation can be done

in O(n - V(log(n))).

e One important property of the KT distance is its independence of relabeling. In partic-

ular dgr(my, mp) = dgr(m 0, Ty 0), where 1y, o, 0 € S,; and no(i) = n(o(i)), Vi € [n].
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e Another important property of the KT distance is swap increasingness.

That is dgr(miej, 0) > dgr(m, 0) + 1, where i,j € [n] are items , such that the pair(i,j) is the
same order in 7 as in o.

To prove this property we consider two cases. Firstly, if i and j are adjacent in m,
then this pair becomes discordant and all the other pairs preserve their order. Thus,
dgr(Tiej, 0) = dgr(m, o) + 1. If i and j are not adjacent in m, then pair (i,j) becomes discor-
dant. However, some pairs that involve either i or j and some alternative k that is ordered
between them in w, might become concordant (with respect to o) after the swap, while
they were previously discordant. We will show that for each such pair another pair that
was previously concordant becomes discordant, so in total these pairs do not decrease the
distance. WLOG we assume that i>j in both © and o. Consider an item k such that i>k>j
in m and after the swap (i,k) becomes concordant. This means that k>i in o and since
i>j in o then k>j in 0. Consequently, (j,k) becomes discordant after the swap. Similar

arguments hold for the pairs (k,j) that become concordant.

One interesting question concerning the KT distance is how many permutations lie of the
hypercircle of radius r. Consider a fixed permutation of reference € S,,. We would like
to know the number A(n,d) of permutations o € S, that satisfy the equation dgr(m, 0) = d.

This is a combinatorial problem and the solution has been proved to be the following:

1 n=1,k=0
Ank)={ 0 n<0,k<O0 or k>@
> JT:OI A(n—-1,k—j) otherwise

The recursion step can be done in an equivalent but more efficient way:
An,k) = An,k-1) + A(n-1,k) - A(n-1,k-n).
Unfortunately, no closed form expression can be derived for the two-dimensional sequence

A(n,k), which is called the Triangle of Mahonian numbers.

In chapter 5 we discuss some useful properties of the Mahonian numbers, for example
symmetry and we try to provide some convenient closed form bounds for these num-
bers. One property of the Mahonian numbers that is worth mentioning (although it falls
outside the scope of our contribution) is the relation to the "Major Index". In particular
A(n,k) is also equal to the number of permutations © = (7(1), ..., m(n)) of {1..n} such that
Yini)>n(i+1) = k. In this case k is called the Major index of . For more information on
the Mahonian numbers one can visit the The On-Line Encyclopedia of Integer Sequences
(OEIS) and look up sequence number AO08302.

2.2.2 Other distances

Hamming distance

This distance metric counts the number of positions at which the two permutations differ.

n
dram(T1, T2) = -21 MmN (1) # m~ (D)
i=
This metric fails to capture how great the displacement of each element is. It only con-
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Chapter 2. Permutations and Ranking Distributions

siders the existence of a displacement. For example, rotating a permutation by one step
to the right, or swapping adjacent elements (itemg;—, <> itemy;, Vi € [n/2]) has the same
effect as reversing the permutation. However, in most cases this is counter-intuitive be-
cause the former actions lead to rankings similar to the initial one, while the latter gives
a permutation utterly different from the initial. We will now present a metric that takes

the dislocation of each element into account.

Spearman’s footrule
This metric sums the absolute dislocations of the items between their position in the first

permutation and their position in the second permutation.

dsy(m, 1) = 3 I (1) = ()

An important inequality holds for the KT distance and the Spearman’s footrule as shown
in [41]. The inequality is the following: dgr(m;, m2) < dgp(m1, M) < 2dkr(Ty, M), VL1, T2 €
Sn and it is tight.

2.3 Ranking Distributions

2.3.1 The Mallows Model

This model resembles the normal distribution but instead of vectors it is defined on ele-
ments of S,. Like the normal distribution, the Mallows model is described by a central
parameter and a spread parameter. The probability assigned to each element in the sup-
port set is inversely proportional to an exponential of the distance between the element
and the central parameter and the base of this exponential depends on the spread pa-
rameter. More formally, if a random permutation © € S,, follows the Mallows distribution

_ _ ¢d(n0,(7)
M(m, @), then P[r = o] = o

e 1y € S, is the central permutation of the model. It expresses the underlying "ground
truth" about the preferences of the population and it is the most probable permu-

tation in the support set (the mode of the model).

e ¢ € (0, 1)is the spread parameter. The higher its value, the more dispersed the sam-
ples are around the central permutation. In the extreme case where ¢ approaches
zero, the only sample with a non zero probability of appearance is the central per-
mutation, so a constant distribution is formed. In the opposite extreme case, where
¢ approaches one, all permutations in S, have the same probability to appear, so

the Mallows model degenerates into a uniform distribution over S,,.

o d: S;xS, — Rissome distance metric, for example the KT distance, the Spearman’s
footrule or the Hamming distance. In this work we focus exclusively on the KT

distance.

e Z(¢p, n) is the normalisation constant, which makes the density function sum to 1

so that it expresses probability. In our case, where d is the KT distance, Z(¢, n) =
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—s

,_.
1l
—

Z(o) = f[ C;l ¢>i) = Gy f[(l - o).
i=1 \j=0 =2
We will now discuss two generating mechanisms, which produce permutations that follow
the Mallows distribution. This concept is interesting for two reasons. Firstly, the Mallows
Model is proved to be equivalent to some other models, which do not seem similar to it at
first glance. Secondly, two sampling algorithms are provided, one of which is an efficient

one that is used in practice in order to generate synthetic samples from a Mallows Model.

Nicolas de Condorcet studied probabilistic rankings two centuries earlier than Mallows
and Kemeny, in the context of collective political decision making (Condorcet, 1785). Ac-
cording to Condorcet, members of society, or voters, express their opinion in the form
of a ranking over choices. These choices (e.g policies) affect the society and one has to
judge them by their benefits and consequences. Condorcet assumed that some (latent)
objective ranking orders choices from most to least beneficial to society and that each
voter is able to provide an independent, random comparison of any pair of choices: if a
> b, in the objective ranking, a voter will (correctly) vote for a against b with probability

1-p, or (erroneously) vote for b against a with probability p, where p<1/2.

Pairwise Comparison Sampling of Mallows

(Condorcet noisy ranking process)

1. Let mp be the reference ranking and 0 < p < 1/2.

2. Initialize v « 0.

3. For each pair of items x, y in A, such that x>y in ny:
(a) with probability 1-p add x>y to v,
(b) otherwise add x<y to v.

4. If v is intransitive, go back to step 1 and start over.

5. v is transitive and corresponds to a ranking.

The distribution deriving from the above procedure is the following:

1
PoImo.p) = | |

{x.y}JcA

p if v and my disagree on x, y
1 - p otherwise

P(v |mo. p) = 5 pd®m)(1 = p)m) = L pdmo)(q - p)G)-dwem) = L1 - p)G)(L

1_p)al(v,no).

We set ¢ = l%p and notice that

2 n-1
' — 1 —® b b p b
Z'=(1-p) (1+1_p)(1+1_p+(1_p))...(1+...(—1_p) ) (2.1)

=u—m@2hp

,n) (2.2)

Thus, P(v |mo, p) = M(mo., ¢)(v).

Diploma Thesis m



Chapter 2. Permutations and Ranking Distributions

The Condorcet/Mallows sampling procedure did not originate from a demand of efficient
sampling algorithms but an attempt to model voting procedures. As a result, it happens
to be computationally inefficient, since it relies on rejection of partially constructed rank-
ings as soon as a single circular triad (a > b > ¢ > a) is drawn. The Repeated Insertion
Sampling method provides an efficient alternatives and shows the relation between the

Mallows and the RIM model, which we will discuss later.

RIM Sampling of Mallows
1. Let mp be the reference ranking and ¢ the spread parameter.
2. Start with an empty ranking r.
3. Fori=1l.n:
e Insert my[i] into r at rank position j < i with probability ¢'7 /(1 + @ + ... + ' 1)

The above algorithm produces a sample r that follows the Mallows distribution M(mg, ¢).
The complexity of the algorithm is equal to the total number of Bernoulli draws that
take place. The worst case complexity is O(n?), the same as insertion sort). However,
the average-case time complexity can be much smaller, since insertions at each stage

of the algorithm are likely to occur near the bottom of the partial ranking. The ex-

oG+ D! L L
pected time complexity of the algorithm is proportional to Z e )= = (m —ip ) <
i=1 4j=0 i=1
n(1+0™) _ g(i-¢") 2
1-¢ 1-9)* )

n(1+9™')  p(1-¢")
1-¢ (1-9)?

. Thus the average complexity is O (min{

2.3.2 The Mallows Mixture Model

The Mallows Mixture Model M is parameterized by its set of central permutations w;, the
weights w; and spread parameters ¢; corresponding the the centers m;. The probability

mass function of the Mallows mixture is:

dKT(TTz 0)

M(w=o0)= Zwl Z(cpl,n)

Each central permutation m; is a distinct permutation of n items (m; € S, and m; # m; for
i # j ). The weights w; are non negative and sum to one ( Zf‘: L w; = 1). The sampling
process has two steps. Firstly, a center i € [n] is chosen with probability w;. Then, a
permutation is sampled from the single Mallows Model M(m;, ¢;) as analysed in previous
chapters. In the scope of this work all spread parameters are supposed to be equal
(¢ = @¥i € [n]).

2.3.3 The Selective Mallows Model

q)dKT("O :0)
“Zplsh
of items found in 0. Each observation © is a permutation of the items appearing in its

The probability mass function of this model is P[ = o] = f(s) - where s is the set
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corresponding selection set s. f(s) is the selection mechanism, a probability function that
assigns a probability of selection to each subset of the full set of items [n]. mp is the central
permutation of the model and it is complete (it contains all the items in [n]). dgr(m, 7) is
the Kendall’s Tau distance between the central permutation and the sample. It needs to
be redefined because the sample is possibly incomplete. A natural generalisation of the

classical definition is the following:

dkr(mo, ) = Z H(mo(a) — mo(b)) - (m(a) — n(b)) < 0}

a,besha<b

What differs is that the sum counts discordant pairs (a,b) where a, b € s, rather than

a, b € [n], where s is the selection set.

There is also another (less realistic) version of the selective Mallows Model, where the
sampling process first draws a complete sample from the latent Mallows Model M and
then projects it into some random selection set s. In this case the pmf is written as
follows:

fMIs(n) = Ps.mlols = m} - f(s)

Definition 2.3.1. A selection mechanism f{(s) is said to be p-frequent with respect to l-

wise comparisons for some order l, if for all sets x C {1, ..n} with length less or equal to 1
PixCs}>2p e Vx Yiesf(s) 2 p.

2.3.4 The Selective Mallows Mixture Model

This model combines the properties of the selective Mallows model and the Mixture Mal-
lows model. It is a mixture model, because a collection of distinct centers {my, ...m} rather
than a single central ranking is assumed. It is also selective because samples generated
by this model do not contain all possible alternatives but a random subset J of them,
which is given by a selection mechanism f(J) for each sample. The probability mass

function of the model is the following:

I

M(n=0)=f(J)‘;wi'm

(deT(ni”JvU)

The sample generating process consists of three steps. In the first step, selection mech-
anism f(J) selects a random subset J of items in [n] with probability f(J). Then one
of the k components of the mixture is activated with probability given by the mixing
weights. Component i has probability w; to be activated each time a sample is drawn.
Finally, ad rfuﬁd())m permutation m of the items in J is drawn from the Mallows Model
Mi(m) = L5

Z(p.J))
restricted on J (m;|;) and the KT distance function counts discordant pairs only on items

, where i is the index of the activated component. Notice that center mw; is
appearing in J.

We can also define a version of the Selective Mixture model that first draws a complete

sample from a latent complete Mallows Mixture Model M and then projects it into some
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random selection set s. The pmf is written as follows:
Juis(m) = Poomiols = m} - f(s)

2.3.5 The RIM Model

In this model samples are generated by an iterative procedure that inserts alternatives
into the constructed permutation one after another. The position at which each new
element is placed follows Multinoulli distribution. The probabilities of these position dis-

tributions are parameters of the model, along with the central ranking.

We consider the model RIM(mp,Il). my € S, is the latent "ground truth" permutation.
Parameter II is called insertion probability function and it assigns a probability I1(i, ) to
each pair of indices (i,j), 1 <j < i < n, such that ijl II(i,j) = 1 for all i in {1,2,...n}. A

random ranking r ~ RIM(mp, II) is generated by the following randomized process:

RIM Sampling
1. Let mp be the reference ranking and ¢ the spread parameter.
2. Start with an empty ranking r.
3. Fori=1l.n:
e Insert mp[i] into r at rank position j < i with probability I1(i, j)

Note that the insertion position of each mp[i] is probabilistically independent of the po-
sitions of the previous items mp[1], ..., mp[i — 1]. We also observe that every insertion

sequence results to a unique ranking.

2.3.6 The Plackett-Luce Model

The Plackett-Luce model was introduced independently by the two scientists it is named
after, [14],[15]. It is different from the aforementioned models in the sense that no ref-
erence permutation is assumed. Instead the alternatives are assumed to have different
values w; and the probability they are chosen is proportional to these values. The model

is parameterized by the vector of weights W = (w, ...wy) € [0, 1]", such that }}'; w; = 1.

The sample generation process is performed in n rounds. In i-th round the alterna-
tive that will be placed in position i is picked with probability that is proportional to its

weight. The probability mass function of the model is:

Plr = o] = ﬁ _Wol)
2jki Wor1()

i=1

The mode of this distribution is the ranking that places the alternatives in decreasing

*

order of weights. ¢ = argsortin{ws, ..., w,}. An interesting property is that P[n(i) <

n(j)] = w:’rfwj, for t ~ PL(w). In this model dispersion is related to the variance of the
weights. The closer the weights are to a uniform vector [rll, rll] the closer the ranking

distribution is to a uniform over S,.
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Chapter B

Distribution Learning

3.1 Definition of Learnability and Parameter Estimation

A class of distributions C is called efficiently learnable if for every e > O and 0 < § < 1 given
access to an oracle GEN(D) that returns samples from an unknown distribution D € C,
there exists a polynomial time algorithm A, called learning algorithm of C, that outputs a
generator or an evaluator of a distribution D’ such that Pr[d(D,D’) < €] > 1-6, where d is
some distance metric between distributions D and D', for example the TV distance or the
KL divergence, which we will discuss later in this chapter.If we know that D’ € C then A

is called a proper learning algorithm, otherwise it is called an improper learning algorithm.

In some cases each distribution D € C is uniquely identified by a set of parameters.
For example, the class of univariate Gaussian distributions N(u, 02) is parameterized by
the pair (i, 0). Different values of (i, o) give different distributions D € C, covering the
whole class C. In this case algorithm A should be able to estimate the parameters (u, o)

and we would call it a parameter learning algorithm.

3.2 PAC Learning

PAC-learning is a theoretical framework introduced by Valiant in [42] to study learning
problems. In learning problems one aims to find the way in which elements of one set
X are mapped on another set Y, the label set. We assume that a function f : X - Y
performs this mapping and we aim to approximate this function by using a finite number
of samples as input to a learning algorithm. The input consists of pairs (x,y), where
x € Xand y = f(x) € Y. If no assumption is made about f all we can infer is what the
sample data directly suggest and no generalisation is possible. The assumption we have
to make is that f has a particular form and is in a particular class H of functions, called
a hypothesis class, H C YX. We also assume that there is an unknown distribution D
over the domain X which generates the samples and the samples are iid, so for each
independent pair (x,y) x ~ D and y=f(x). In order to quantify how good an estimation h of
the function fis, we define loss functions Lp s(h) which output a non negative real number.
The smaller this number is, the better the estimation of f. For example a loss function

could be Lps(h) = Pry.p[h(x) # f(x)]. We can also define the loss function 1 empirically
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on a group S of samples (1 : H X S — R*). In this case the theoretical framework focuses
on the expected value of the loss over the distribution D of samples S. We are interested
in hypothesis classes H that allow us to approximate f with as small error ¢ we want with

probability at least 1 — 6, given enough samples. Then H is called PAC-learnable.

Definition 3.2.1 (PAC Learnability). Let H C {0, 1}* be a hypothesis class of functions
f :X — {0, 1}. His called PAC learnable with respect to a loss function L, if there exists a
sample complexity N = N(H, ¢, 6), where €, 6 € (0, 1) such that for any €, 6 € (0, 1), every
distribution D over X and every labeling function f : X — {0, 1}, there exists an algorithm
that given an input of size at least N(H, ¢, 6) of i.i.d. samples generated by D and labeled
by f, returns with probability at least 1 — 6 a hypothesis h € H with Lps(h) < €

3.3 Information Theory

3.3.1 KL Divergence and TV Distance

The Total Variation Distance between two discrete distributions P an Q is defined as
drv(P, Q) = sup{|P(A)— Q(A)| : A € F}, where F is a sigma-algebra of subsets of the sample
space Q.

A sigma-algebra on a set Q is a collection X of subsets of Q satisfying the following condi-
tions :

(1) it includes Q itself,

(2) it is closed under complement,

(8) it is closed under countable unions and

(4) it is closed under countable intersections.

The supremum is achieved at either A = {x : P(x) > Q(x)} or its complementary set
A°.

But P(A) — Q(A) + P(A®) — Q(A°) = 0.

Thus, drv(P,Q) = ¥ (P(x) - Q(x)) = 5 ( ZA(P(X) - QX)) + Z/}\ (900 - P(x))) =

X€EA

%(Z IP(x) — Q)+ 2 |P(x)— Q(X)I)) =3 2 IP(x) - Q(x)|
X€A X€EAC xeQ

In conclusion, an alternative expression for the TV distance between two discrete dis-
tributions P and Q is drv(P, Q) = % >, |P(x) — Q(x)|, which is more practical than the
formal definition that states that the ’I)E;Q distance between two distributions is the largest
possible difference between the probabilities that the two distributions can assign to the

same event.
Another distribution distance metric is the Kullback-Leibler divergence. It is defined
as the relative entropy from the one distribution to the other:

_ P(x)
Dy (PlIQ) = ;Pm 000
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We observe that KL divergence is not a proper distance metric, because it is not symmet-
ric. Dk (P||Q) can be different from Dk (Q||P). We also observe that it is defined only if for
all x in sample space Q, Q(x) = 0 implies P(x) = 0. However P(x) can be zero without Q(x)
being zero at the same time, because p()l(i)rl)l0+ P(x)log(P(x)) = 0. So, whenever P(x) = O the
corresponding term of distance is interpreted as zero. It can be proved that KL divergence
takes non negative values and that it is equal to zero if and only if the two distributions

it takes as input are equal.

Viewing the KL divergence from an information theoretical perspective, it is the expected
number of extra bits required to code samples from distribution P using a code optimized
for distribution @ rather than the code optimized for P.

In the context of Bayesian inference, it can be interpreted as the amount of information
lost when Q is used to approximate P. P is considered the "ground truth" distribution of

data, while Q represents a model approximating P.

Two important properties of the KL divergence are the following:

e The chain rule says that Dg.(P(x, Y)l|Q(x, y)) = Dgr(P(x)[|Q(x)) + Dkr(P(x|y)l|Q(x|y)). Con-
sequently, if P(x,y) = P1(x)P2(y), where P;, P, are independent and similarly Q(x, y) =
1 (x)Q2(y), where Q1, Qs are independent, then the KL divergence is additive over the two
variables x and y: Dgr(P||Q) = Dgr(P11Q1) + Dkr(P2||Q2).

oKL divergence is convex in the pair of probability mass functions (p, q), i.e. if (p;, q;) and
(p2, g2) are two pairs of probability mass functions and A is some constant in [0, 1] then
Dk (Ap1 + (1 = Ap2 || Aqy + (1 = Mge) < ADkL(p1llq1) + (1 — A)Dkr(p2llge)-

TV distance and KL are connected by Pinsker’s inequality [43]:

1
drv(P,Q) < 4/ EDKL(P”Q)

This inequality is tight up to constant factors. However, it is trivial when Dg; (P||Q) > 2.

Bretagnolle and Huber in [44] proved a sharper inequality :

drv(P, Q) < \/m

3.3.2 Fano’s Inequality

Fano’s Inequality bounds the error of approximating some random variable Y using
knowledge of the correlated random variable X. The inequality involves the conditional

entropy entropy H(X|Y). H(X|Y) = -}’ p(x;, yj)log (%) where p(x;, y;) is the probabil-
ij J

ity that X = x; and Y = y; and p(y;) is the probability that Y = y;. Conditional entropy

expresses the amount of randomness in the random variable X given the random variable

Y .For example, if X = f(Y), then H(X|Y) = 0.

Let X be a random variable following distribution p(x) and let Y be a random variable
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related to X through conditional distribution p(y|x). We make an estimation Xof X using
function g and Y: X = g(Y). We observe that {X, X, Y} form a Markov chain X - Y — X.
We define error probability P, = P{X # X}. Fano’s Inequality states that:

H(P.) + P.loglX| > H(X|X) > H(X|Y)

where X denotes the support domain of X and H(P,) is the error binary entropy:
H(Pe) = =P, - log(Pe) — (1 — Pe) - log(1 — Pe).

A weaker version of the inequality is the following:

1 + P.log|X| > H(X|Y)

More material on the topic can be found in Fano’s textbook [45].

3.4 Concentration Inequalities

3.4.1 Markov’s Inequality

Let X be a non negative random variable and a > O a positive constant. It holds that:

P{X> a-E[X]} <

Ql+

This inequality gives a measure of the concentration of a random variable around its
expected value without making any assumption about the distribution family. The prob-
ability of drawing samples that are multiples of the expected value is inversely proportional
to the multiplication factor applied to the expected value. These bounds do not require
knowledge of any of the parameters of the distribution, except the expected value, however

this may lead to relatively loose bounds.

3.4.2 Chebyshev’s Inequality

Chebyshev’s inequality bounds the probability that a random variable deviates far from
its mean value. While Markov’s inequality only required knowledge of the expected value,
Chebyshev’s inequality also requires knowledge of the variance. However, it does not

make the assumption that the random variable is non negative, as Markov did.

Chebyshev’s inequality can be derived from Markov’s inequality by considering the ran-
dom variable Y = (X — E[X])2. E[Y] = Var(X), by definition of variance.
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We apply Markov’s inequality on Y with a scaling of a? on the expected value, a > O:

1
Ply>a® E[Y]}< — &
a

P{(X - E[X])? > a? - Var(X)} < % &

1
PIX-E[X]>a-ox} < —
a
The final inequality is Chebyshev’s inequality for random variable X. Note that E[X] must

be finite and ox non zero.

The inequality can be used to construct confidence intervals. For example, to ensure
that an interval centered on the mean value includes at least 95% of the total probability
mass, the interval must have length at least 10 times the standard deviation (a = 5).

Of course, if we had more information about the distribution of the random variable bet-
ter bounds might be provided. For example, on a univariate Gaussian it suffices to take
an interval of length 4 times the standard deviation centered on the mean to achieve a
confidence of 95% , not 10 as the Chebyshev inequality would imply. This is due to the
strong concentration property of the Gaussian. However, all random variables have some

concentration tendency according to Chebyshev’s inequality.

3.4.3 Chernoff Bounds

Other bounds derived by the the Markov inequality are the Chernoff Bounds (first ap-
peared in [46]). In particular, we consider random variable eX and apply the Markov
inequality on it. Thinking of this variable as a Taylor expansion series, it captures all
orders of moments of the distribution. The more moments used the better the tail bounds
derived, because we use more information about the distribution. Under certain con-
ditions the sequence of moments can uniquely determine the distribution, through the
characteristic function ¢x(a) = E[exp(i - aX)], as long as the characteristic function has
an infinite radius of convergence. We observe that the characteristic equation is very
similar to the function used to derive the Chernoff bounds. The only difference is the

introduction of the imaginary unit.

The inequalities we discussed earlier used lower moments of the distribution of X so
the bounds were less tight. Markov’s inequality that only used the first moment (the
mean) provided bounds with a linear dependency on the error. Chebyshev’s inequality
used the first two moments( mean and variance) and guaranteed a tail decay inversely
proportional to the squared deviation from the mean value. The Chernoff bounds provide
exponentially decreasing bounds but require knowledge of the expected value of an expo-

nential function of the random distribution.

We will now present the way in which generic Chernoff bounds are derived.

For every t > 0 we have that P{X > a} = P{e®X > "%} < E[eff]. Calculating the quantity
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E[e™] we can minimize the RHS of the inequality with respect to t to achieve tight bounds.

An interesting case is when X is a sum of n i.i.d. random variables X;.

n n
Then E[e%] = [| E[e*], so  P(X > a} < min..o {e-m I1 E[e%]}.
i=1 i=1

£

For left tail bounds we work with variable e" and yield

n
P{X < a} < mingo {et'a I E[etXi]}.
i=1

3.4.4 Hoeffding Bounds

In [1] the Chernoff-Hoeffding theorem is proposed, which provides exponentially decreas-

ing tail bounds for sums of independent Bernoulli variables.

n
Suppose X, ...X, are i.i.d. Bernoulli variables and X = )| X; with E[X] = p. Then for all
i=1
ac0,n-p):
P[X > p+a] < e PRI
and for all a € (0, p):

P[X < p - a] < e Pre(-5F =0

where Dk (x|ly) = x - ln(ﬁ) + (1 - x)ln(i%;) is the Kullback-Leibler divergence between

two Bernoulli distributions with parameters x and y respectively.

Theorem 2 of [1] provides exponential tail bounds for sums of independent bounded
variables.

Let Xj,...X, be independent variables and each X; is bounded by interval [a;, b;]. Let X
be the empirical mean of these variables, X = rll(Xl + ...+ X,). Then for t > O:

) B 2n?t?
P{X - E[X] 2 t} < exp(—m)
) i 2n2¢?
P {|X - E[X]| > t} < 2exp (_W)

In this work we make extensive use of Hoeffding bounds for binomial distributions.
Let X ~ Bin(n, p). Then:

PIX < k] <exp (—2n(p - r_lz)z)

Proof

P{X < k} = P{Y > n—k}, where Y is the complementary binomial variable of X (Y = n—X).

Hoeffding inequality can be applied for binomial variable Y because it is a sum of inde-

m Diploma Thesis



3.5 Learning the Mallows Model

pendent Bernoulli variables Y;. Bernoulli variables are bounded in [0, 1].

PX<kj=P{Y>n-k}=P(Y -E[Y]>n-k-(1-pn}=

3.5 Learning the Mallows Model

3.5.1 Reconstructing the Central Ranking

In this section we will present some important results of [2]. Suppose we are given
a set of N samples 0y, ...0y, drawn from a Mallows Model. The samples are possibly
incomplete. We want to use these samples to estimate the latent central permutation
with high probability. For this purpose we will use a kind of pairwise majority consistent

(PM-c) estimator, called the Positional Estimator, .

N N
Ali] =1+ Z H{Z]l{j>iin o) > Z]l{i>jinok}}, Vie[n]
jermMg =1 k=1
7t estimates the position of each item in the latent central permutation. Ties may arise,
which are broken uniformly from left to right. If N is sufficiently large, then the positional
estimator retrieves the correct latent central permutation my with high probability, as we

will see in the next theorem.

Theorem 3.5.1. Let M(mg, @) be a Mallows distribution with central ranking ny € S, and

spread parameter ¢ € (0, 1). For any e > 0, given a sample profile drawn from M(mo, )N
log(n/e)
(1-9)*
central ranking my with probability at least 1 — e.

Jor any N at least equal to some value O( ) the positional estimator retrieves the

Proof.

Samples are assumed to be complete. However a similar analysis can be made in the
selective setting. The difference is that each pairwise comparison has its own sample
complexity rather than a common complexity N. Introducing the notion of p-frequency,
N can be replaced by p - N in the analysis, where p is the frequency of the least frequent

pair in the samples.

For each pair of alternatives i, j, we let q(i > j) be the number of rankings in the sample
set, which place item i before item j. Let &t be the estimation of the central ranking re-
turned by the positional estimator. WLOG we assume that the latent central ranking mg

is the identity ranking and we bound the probability of the event & # my from above.

Pr [f(I) # mo] < Pr[di<j:q(i>Jj) < q(G> 1] < ZPr[q(i >7) < q( > 1]

i<j
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The value of Pr[q(i > j) < q(j > i)] depends on the distance of items i and j in the central
ranking (or the restriction of the central ranking on the selection sets in the selective
setting). Items that are closer in the central ranking have a greater probability to swap.
The probability of swapping i and j also increases as the selection mechanism drops items
that are placed between i and j in the central ranking. To bound the probability of swap
from above we consider the worst case, where i and j are adjacent. In this case the event
of swap follows the Bernoulli distribution with parameter %p. We consider N variables
Xy ~ Be (ﬁ) one for each sample. Since samples are iid, X; are also iid. We also consider

1+¢
the complementary variables Y; = 1 — X;. Then we have:

Pr[q(i > j) < q( > )] < Pr[ Y (X -Y) > o] -
1€[N]

1 -1 _ 1-9 1-¢\2
Pr [N le%\[] (Xl - Yl) - m > m} < eXp (_2N(T¢) )

—o\2
where the last step follows from Hoeffding’s inequality. We set { := (}TZ) . Returning to

the overall probability of error we have:
Pr[ft # mo] < n? exp(—=2NQ)

We set n? exp(—2NQ) equal to the tolerance of error probability € and solve for N. This

way, the desired result is obtained.

The bound for the sample complexity is in fact tight, as the following theorem states.

Theorem 3.5.2. For any ¢ € (0,1/2] and any central ranking estimator, there exists a

central ranking my € S, such that, for any ¢ € (0, 1), the estimator, given a sample profile

log(n/e) )

drawn from M(mg, p)V, retrieves my with probability at least 1 — ¢, only if N = Q(log(l 72)

Proof.
The proof is based on the idea that any estimator could mistake the latent central ranking
for some other ranking close to it, with non negligible probability.

Let 7T be any (possibly randomized) estimator of the. central ranking. Assume that:

P [t]) = mp] > 1 — ¢, Vg € S,

1~ (047 )"
Let mp € S;,. We define the neighbourhood of my as the set N(mp) = {0p € S, : dgr(00, To) = 1}.
The cardinality of this set is [N (mp)| = n — 1. In this proof ny plays the role of the latent
central ranking and set N(mp) is a set of hard instances, that is instances that the esti-
mator has high to output instead of the correct one.

Moreover, for each observation r in Il,, and oy € N(mp) we have from triangle inequality
that dgr (1, 09) < dgr (1, M) + dgr (09, Mo) = dgr (7, M) + 1. Thus, for any oy € N(mp) it
holds that Pr[I1,, | 0g] > @ Pr[Ilp | mo].

We start from the assumption about the high accuracy of the estimator and use the above

observations to obtain a lower bound about the sample complexity.
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PO (Mg o) [ZIp) = o] > 1 - &

Z PRI o~ (Mg )Y T = Top] - PrIf(D = mo] 21— € &
Mesy

1- Z Py, -,y (1= Top] - PrI(ID) # mo] 2 1~ € &

Mesy

1- Z P -(any oy 1= Moo [ Z Pr[#(IT) = 0] + Z Pr(() =oo]|>1- €=

s 00N (m0) 00€(Sn—N (10}~ {0})

1- Z PrnobN(an)N [T =Typ] - Z PrilD=0p]>21-€e=

Tesy c0€N (o)
N _ ~ —
1- Z Z ) PrHob~(Mao,¢)N [M=1,] -Pr[i)=0p] > 1-€e&
0peN (mp) MeSY

N = —
1 - (p Z PrHob"(Mgo,(p)N [n(Hob) — OO] 2 1 — €=
00N (o)

1-9"(n-1)(1-e)>1-¢
The final inequality implies that N is Q (log ('—;)) for all estimators.

This lower bound is tight with respect to the upper bound of the sample complexity,

1 — 1
o7 =~ igti/er)

because for ¢ — 1

3.5.2 MLE of the Central Ranking in the Mallows Model

Braverman and Mossel in [47] give an efficient algorithm for computing a maximum
likelihood estimation for the Mallows Model. The goal is to find a permutation n* that
best fits a sample set of r independent observations my, ..., 7, drawn from the Mallows
Model.

Definition 3.5.1. The Mallow Reconstruction Problem (MRP) is the problem of finding a

permutation ¥ maximizing the quantity

r

1 r .

H Ty | 7[* = —¢2k:1 dgr (T, )
D | ] Z(p)

or equivalently minimizing

d(n") =) dgr (me, ).
k=1

The optimization problem without any assumptions on the generating process is NP hard.
However, leveraging the concentration properties of the Mallows Model, we can reduce the

search space. The general idea is the following:

Firstly, apply a simple estimator that ranks the items according to their average index in
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the samples. In the produced estimation, with high probability, all elements lie close to
their true positions according to the latent central ranking. That is they lie O(log(n) places
away from their correct position, with constants depending on the spread parameter and
the sample complexity. We also know that the MLE solution indices are close to the
indices of the latent central ranking (again the displacement is O(log(n), with constants
depending on the spread parameter and the sample complexity). Thus, we expect the
MLE solution to be close to the average index estimation 7 , in the sense that all items
in 7 are placed at most L places away from their position in the MLE, where L is O(log(n)
with constants depending on the spread parameter and the sample complexity. The final
step is to use a dynamic programming algorithm that finds an MLE searching locally in
the space defined by the constraint that all items lie at most L places away from their
average position in the samples. Typically, the time complexity is an increasing function
of the input size, however in this case the contrary holds. As the input size grows (more
samples are used) the time complexity decreases (because L decreases and the search

space shrinks).

Now we are going to formulate the above ideas more strictly, presenting the results of
[47].

We begin with a basic lemma that guarantees a geometric concentration of the location
of each item around the "correct" location, that is the location of the item in the latent
central ranking. The proof is based on the Mallows RIM sampling and it is omitted for
brevity.

Lemma 3.5.1. Let a be an element that is ranked k-th by n*. In other words, n*(a) = k.
Then for m ~ M(w*, ¢) holds that P[|n(a) — k| > i] < 2- ¢'/(1 — ¢), for all i.

The next lemma analyses the behaviour of the average index estimator using the geometric

concentration of indices in the samples.

Lemma 3.5.2. Suppose that the permutations my, ..., n, are drawn from M(n*, ¢). Let
a = k be the element ranked k-th by n*. Let n(a) be the average index of a under the
permutations 1y, ..., ! .
@ = L D m(@
=

Then ‘ o

Plf(@) — I > 1] < 2-(%)
foralli.

Proof

For a vector b = (by, ..., b;) of non-negative integers let A, denote the event that mj(a) <

kk—bjforj=1,...,r for which b; > 0. By Lemma 3.5.1 we have

S b,

(leJ
PlAp] < —.
G S
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Next, we note that the event [n(a) < k — i] is covered by

L A

2}:1 bj=r—i

Hence

Pln(a) < k-i] < #{b P b= ri} ‘ _<1(f:>)f -

ri+r—1 ] [pri (5i+1)r.¢ri
r—1 (1-@) (1-¢)"

Taking the symmetric bound for P[n(a) > k + i] completes the proof.

Next we consider the error probability tolerance and we express it in terms of nas e = n™ 4,
where a is some positive constant. Also, set e# = ¢. Lemma 3.5.1 can be directly ap-
plied to derive a bound for the displacement of the items that holds with high probability
(1-n"9).

Proposition 3.5.1. Let a > 0. Then for sufficiently large n,

+2
a log n _for some k
B-r

a

P <n

|7(ic) — K] >

The margin of error for each element is inversely proportionally to the sample complexity
r. The above proposition guarantees that the average index estimator is pointwise close
to the central ranking. Moreover, it can be proved (the proof is omitted) that the MLE
solution ™ is close to the central ranking n* with high probability.

We consider quantity L = max (6 . %’f logn,6- W) which is a measure of item dis-

placement that appears in the following lemma.

Lemma 3.5.3. For any optimal ™ the probability that there is some item k, such that
|[t™ (k) — (k)| > 32L, is less than 2n™ <.

Combining the above results we get that with high probability the pointwise distance be-

tween the MLE solution ™ and the average index estimator 7 is less than 33L.

This way the search space for the MLE solution is restricted to a zone around 7, where
the pointwise distance from 7 is less than k = 33L. A brute force search would require

time k™. Instead we use dynamic programming to reduce the running time.

Lemma 3.5.4. Let [n] be n elements together with a scoring function q. Suppose that we

are given that there is an optimal ordering o(1), 6(2), ..., a(n), that maximizes the score

s()= > ai<j),
o(i)<o(j)

such that |o(i) — i| < k_for all i. Then we can find such an optimal ¢ in time O (n k2 - 26k).

In our setting k = 33L is O(log n). When k is small (o(log n)), the algorithm tends to linear.
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We can use Lemma 3.5.4 to give an efficient algorithm that finds the maximum likeli-

hood permutation '™ given n, ..., 7. Recall that such a ™ minimizes
r r
Z dg (me, ©™) = Z Z Lo (d>meG) = Z #{k : me(D) > m()}
k=1 k=1 T™(i)<m™(j) ()< m™(j)

Considering the score function q(i < j) := #{k : m(i) < m(j)} we have that minimizing the

above cost is equivalent to maximizing

s@M = ) ali<).
(D) <m™(j)
and thus Lemma 3.5.4 can be employed for the MLE calculation. This leads us to the

final theorem:

Theorem 3.5.3. Let my, ..., n, be rankings on n elements independently generated by a
Mallows model with spread parameter 8 = log(1/¢), and let a > 0. Then a maximum

probability order 1™ can be computed in time
T(n) = O(n”o(ﬁar) . 20(%+ﬁ) . log2 n).

except with probability < n™%.

Note that the algorithm tends to almost linear as r grows.

3.5.3 Spread Parameter Estimation

Busa-Fekete et al. in [3] study the sample complexity of the estimation of the Mallows
spread parameter as well as the maximum likelihood estimation of the spread parameter.
To tackle these problems they consider a more general model, the Generalized Kendall-
Mallows model. In this model the KT-distance is decomposed into terms corresponding to
single items, with the i-th term being equal to the number of discordant pairs that contain
item e;. Each item has its own spread parameter. The term corresponding to the i-th

i-1
item is Vi(m, mp) = X, 1{(n(i) — m(j))(mo(i) — mo(j)) < 0} and the total KT-distance is written
Jj=0

n
as dgr(m, mg) = ), Vi(w, mp) The pmf of the Generalized Mallows model is the following:
i=1

Vi(o.1m0)

7
P = =
ST l;[ Zi (1)

1 14

We see that the random variables Y; are independent, since their joint probability distri-
bution is written as the product of their pmfs. For the estimation of the spread parameters
we focus on the marginals of the random variables Y; = V; (1, mp), that follow the truncated

geometric distribution:
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The truncated geometric distribution is parameterised by its probability of failure ¢; and
its truncation parameter i — 1 and it is denoted as 7 G (¢;,i— 1)). It belongs to the ex-
ponential family of distributions, which is a very important class of distributions, with
algebraic properties that help derive useful results. It includes many famous distribu-
tions such as the normal, exponential, gamma, chi-squared, beta, Dirichlet, Bernoulli,

categorical, Poisson and the (truncated) geometric distribution.

We will briefly describe the general form of these distributions, before studying the special
case of the truncated geometric distribution. The pdf (or pmf) of these distributions is
written in the form fx(x|n) = h(x) - exp[n - T(x) — A(n)].

oT(x) is a sufficient statistic of the distribution. For exponential families, the sufficient
statistic is a function of the data that holds all information the data x provides with re-
gard to the unknown parameter values. This means that, for any data sets x and y, the
likelihood ratio is the same: 2081 — JWm) ¢ T(x) = T(y).

Jeme) T f(yime)’
e 7 is called the natural parameter. The set of values of n for which the function fx(x; n)

is finite is called the natural parameter space.

e A(n) is called the log-partition function, because it is the logarithm of a normal-
ization factor, without which fx(x;7n) would not be a probability distribution: A(n) =
log ( fx h(x) - exp[n - T(x)]dx). The function A is also important, because the mean, vari-
ance and other moments of the sufficient statistic T(x) can be derived simply by differen-
tiating A(n7). For example, E[T(x)] = VA(n) and Var(T(x)) = V?A(n)

In the case of the truncated geometric distribution 7 G (¢;, i — 1)) we have:

Pr(x) = exp (n;T(x) — A(ny)) . x € {0, 1,...i— 1}
ni = In ()
T(x) = x
A(ny) = In(Z; ("))

The Generalized Kendall-Mallows model also belongs to the exponential family:

py(m) = exp (87 T(x) ~ A(m) . € Sy
n=>Un(p1).....In(en))
T(T[) = (Vl (T[, TEO) L] Vn (T[’ TEO))

Am) = ) An) = ) In(zi(e")
i=1 i=1

The maximum likelihood estimation of the spread parameters of the (Generalized) Mal-
lows Model is equivalent to the maximum likelihood estimation of the ¢ parameter of
each truncated geometric derived by marginalising the Mallows Model. The solution to
the MLE problem of 7G(¢,i — 1) given the truncation parameter i — 1 and a collection
of N iid samples X = [X;, X5, ...Xy] of the unknown distribution is described below. For

simplicity, since i is known, we denote ¢; by ¢ and Z;(.) by Z(.).
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N
o= argmax{L(cp | X)} = argma 1—[

Jj=1

¢ J L X
= argmax =
(9) o | Z@N
N
= argmax [Z Xi] In(¢p) — N1n Z(p)
] j=1
We set the derivative with respect to ¢ equal to zero:

S o)1 7@ 23 1w
[ZXJ]E_NZ(@) =0 d75 = | 2%

=1 J=1

Quantity @ Z((;’)) is equal to —(A(n)) thus it is the expected value of 7 G(¢,i — 1). We
want to find a value for ¢ (or equivalently for 7} = In(®)), such that the (theoretical) ex-
pected value of T G(¢,i — 1) is equal to the empirical mean. The theoretical expected
value is an increasing function of 7}, since its derivative with respect to 7 is equal to

C{‘1—1A122(A(1A1)) = T\gfar (X) > 0. The fact that it is increasing allows us to perform binary

search and ﬁnd an approximation of @ in logarithmic steps with respect to the reciprocal

of the absolute error.

We complete this section with two theorems on the sample complexity of the spread

parameter estimation given in [3].

Theorem 3.5.4. Forany ng € Sp, ¢* € [0,1—-vy]l, e, 6 > 0, given N = Q(log(l/ﬁ) + %:/6)) tid

samples from My .. we can compute in polynomial time estimates ft and ¢ such that:

e |(R(IT) = mo) A (|6 - @] < )| 21~
If mp is known, then with N = ) (M) we have:
HNEN* |a0D) - ¢'| < e|21-6
@ .o

Theorem 3.5.5. Given a single sample from Kendall-Mallows distribution Mq, m, With

known central ranking my and unknown spread parameters ¢, we can estimate ¢ so that:

|p(m) - 9| < O(\/—log(i/é))} >1-6

Note that, as n goes to infinity, a single sample is enough for the estimation.

P

n~¢’¢*.no
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Related Work

In this chapter we will present three papers that achieved breakthroughs in learning

Mallows Mixtures. The presentation is organised in chronological order.

4.1 The Work of Awasthi, Blum et al.

This paper was the first to provide theoretical guarantees for the efficiency of learning
the mallows mixture learning. In [23] Awasthi, Blum et al. worked on the case of two
components. They used a method of moments, where the order k moment is defined as
the vector that contains for all sets of k items the probabilities that these items are the
top k. A rank 2 decomposition is possible in the third moment tensor. This tensor can
be decomposed into two rank-1 terms, so that each term provides information for one of
the base models. This information includes estimations of the mixing weights, the spread
parameters and the prefixes of the centers. A first step is to construct an empirical es-
timation of the third moment of the mixture using the available samples. Then, tensor
decomposition of the empirical third moment provides estimations of the weights, spread

parameters and prefixes for each of the two base models.

Having those estimations we proceed to the second phase of the learning algorithm that
uses this information to cluster the samples, assigning each sample to the correct base
model that generated it. If this clustering is possible, then the task of obtaining the rest of
the base permutations is an easy one, studied extensively in previous work. If the prefixes
are not distinct enough to provide a pivot element, that is an element that is ranked in
significantly higher positions in the one base ranking than the other, then decomposition
is again required, in form of a linear system of equations that give the probabilities of
assigning each of the items in each of the positions of each of the two centers. Then for
each center and each item the most probable position is chosen as an estimation of its

true position.

The proposed algorithm runs in polynomial time with respect to the parameters of the
mixture and the accuracy parameter. It is worth mentioning that the proposed algorithm
has practical value as well, as it outperforms the EM both in accuracy and speed, as

shown in the experiments conducted in [23].
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4.1.1 Notation and Important Properties

Tensors are a key tool in the techniques of this paper. Tensors are derived from a set of
vectors. They are multidimensional objects. The number of dimensions is equal to the
number of vectors combined. In this paper vectors of dimension at most 3 are used. In
subsequent papers, that we will discuss later, higher dimensional tensors are used to
learn the mixture of k Mallows models. Given two vectors u € R™ and v € R™. Tensor

T

u® v e RM*™ jg equal to uv'. Given three vectors u € R™, v € R™ and z € R™ tensor

uU®v® z e RM™X™ js a matrix P with Py = u; - v; - 2.

The notion of tensors is used to define the Moments of the Mallows Mixture Model. There
is no obvious way to define the moments of a probabilistic ranking model. Awasthi, Blum
et al. defined the first three moments of the Mallows Mixture Model on items {e1, ...e,}as

follows:

e The first moment is a 1-tensor P such that P; = P[pos(e;) = 1]. It contains the

probabilities of ranking each element at the first position.

e The second moment is a 2-tensor P such that P; = P[{pos(e;), pos(ej)} = {1,2}]. It
contains the probabilities of ranking each pair of element at the first two positions

(in any order).

e The third moment is a 3-tensor P such that Py. = P[{pos(e;). pos(e;), pos(er)} =
{1,2,3}]. It contains the probabilities of ranking each triplet of element at the first

three positions (in any order).

The first moment of a single Mallows M(¢, ) model is called representative vector of
the model because it holds information that uniquely determine the parameters of the
model. It can be proved that the formula for the i-th coordinate of this vector is equal to
@rosw(e-1 /7. Returning to the case of a mixture of two Mallows models M; = M(¢1, m;)

and My = M(¢., m) we denote x and y as their representative vectors (first moments).

The mathematical expressions for the first three moments of the mixture in terms of

the representative vectors x and y of the base models are the following:

* First moment: P; = w;x; + Wway;

Zng) @+1
Zin-1.9) @

* Second moment: Py = wy - Co(@1) - X; - Xj+ wa - Co(@P2) - Y; - Yj, where co(@) =

* Third moment: Py = wi - c3(@1) - X; - Xj - X + Wa - c3(P2) * Yi - Yj - Yk, Where c3(@) =
Z2(n.g) 1+29+2¢+¢°
Z(n-1,9)Z(n-2,9) @ )

The third moment is non trivial only if the three coordinates i, j, Ik are all distinct. Thus a

partition is made on the set of items into three groups Sg, Sp, S.. We consider the third
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moment of the mixture on this partition: Tabe — (Pyjkc)ieS, jeSy keSe -
Tensor T has a rank-2 decomposition into two rank-1 terms, each one corresponding

to a base model:
T = w; - c3(¢1) - XV ©xP @ XV + wy - cs(g2) - Y'Y @y @y

where x(@, x(P x(© are the restrictions of representative vector x of base model M; =

M(¢,, 1) into subsets Sg, Sy, S of items. The same goes for y.

4.1.2 Algorithms

We present the main algorithm for learning Mixtures of two Mallows Models. The algo-

rithm invokes several subroutines, which we present separately.

Learning Algorithm For Mixtures of two Mallows Models

Repeat O(log(n)) times:
*+ Make a random partition of [n], the full set of options into three subsets S, Sy, Sc.
* Compute P, the empirical estimation of the third moment on the partition set.
This yields a tensor Tabe — (ﬁijk)iesa JESh,kES, -
* Perform TENSOR DECOMPOSITION to express T as uY@u®ou'® + v @guvPgu(©
Next we apply a decomposition success criterion
Let 05(A) denote the second largest singular value of matrix A.
If min{oo(u'@; v@), 02 (u®; VP), 09(u'?; VD)) > e = poly(L. €. Pmin. Winin)
* Obtain parameter estimations for the weights, spread parameters
and top k prefixes of the centers of the mixture by invoking routine
INFER-TOP-K(P, (u'¥; v'@), (u®; v®), (u'®; 1)),
* Invoke RECOVER-REST routine to reconstruct the rest of the centers.

* Return Success message and output the mixture parameter estimations.

Handle Degenerate cases

The guarantee for the successful execution of the main algorithm is stated in the next

theorem.

Theorem 4.1.1. Let wi M (@1, 1) ® wa M (@2, m2) be a mixture of two Mallows models and

let Wpin = min {w;, ws} and Pmax = max {@;, g2} and similarly @i, = min{@;, ¢s}. Denote
wﬁﬂn(l_(pmax)lo

€ = 16n22 ‘P%lax

. Then, given any 0 < € < ¢y, suitably small e5 = poly (rll €, ®min» wmin)

1 1 1 1 1
minfe.e0)’ P1(1-¢1)" @2(1-92)” w1’ Wy
Algorithm 1 recovers, in poly-time and with probability > 1 — n=3, the model’s parameters

and N = poly (n, ) i.i.d samples from the mixture model,

with wy, we, @1, @2 recovered up to e-accuracy.
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The authors use the algorithm of [48] for tensor decomposition. The algorithm works
when the factor matrices M, My, M, have polynomially bounded condition number (that
is their second largest singular values os(-) is lower bounded by a polynomial in the input
parameters). If this condition is satisfied the tensor T(*»° has a unique rank-2 decom-
position and the algorithm achieves to find it. The factor matrices are passed to the
INFER-TOP-K procedure and this way the top few elements of both m; and m, are esti-
mated correctly and we can also infer the parameters w’ s and ¢’ s to good accuracy e. If
all log(n) random partition Sg, Sp, S, fail to produce a tensor T(**® with well-conditioned
factor matrices, then we are in a special case and it can be shown that in this case, the

scaling parameters ¢, = ¢, with high probability.

The second part of the algorithm is implemented in the RECOVER-REST procedure. It
is based on the observation that the probability of an element e; going to position j can
be written as a weighted combination of the corresponding probabilities under m; and my.
In addition, the reduced distribution obtained by conditioning on a particular element e;
going to position 1 is again a mixture of two Mallows models with the same parameters.
Hence, by conditioning on a particular element which appears in the initial learned prefix,
we get a system of linear equations. We use estimates so the linear system is correct up
to some small error 6 (inversely polynomial). Solving the system robustly we can infer
good estimates for the probability of every other element e; going to position j in both m;
and my. This allows us to infer the entire rankings by choosing for each element the most

probable position.
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RECOVER-REST Procedure

Input: Sample Set S drawn from the latent mixture,

parameter estimations 1, tg, @1, ¢ and prefixes fty, fip

x*Compute representative vectors (probabilities of appearing in the first position)
X and { for elements in 1, and 7, respectively.
We consider the lengths r;, rp of prefixes ; and 1%y respectively. Wlog suppose | > 1.
If there exists an element e;, such that posy (e;) > r; and posg,(e;) > ro /2
(or in the symmetric case):
Let S; be the subset of samples having e; ranked in the first position.
* Learn a single Mallows model on S; to complete the estimation ;.
* Use dynamic programming to find a complete estimation 7, for the other center.

* Return the complete estimations.

The above was the simple case. Now we handle the difficult one, where no such
pivot e; exists.
Let e+ be the first element in 7; having its probabilities of appearing in first place in
m; and m differ by at least e. Let 1), = (1 + 25—225)71 o’ = 1 -1’ and S; be the
subset of samples with e ranked at the first position.
For each e; that does not appear in ©; nor 7y and any possible ranking position j:

* Use sample set S to estimate j”(i — j) = Ple; goes to position j] and

S, to estimate f(i — Jjlex — 1) = Ple; goes to position j given that e goes to position 1].

* Solve the system

J— ) = i fP> - Jj) + waf (i — )
J— jlex — 1) = ' fVi — j) + wo P - J)

This yields probabilities f° Wi — Jj) and f Wi — J) of e; going to position j in
base models M; and Ms respectively.

* Complete 7; by assigning each e; to position argmax;{f Wi - j)).

* Complete 1, by assigning each e; to position argmax;{f @(i - j)).

x Return my, 1y
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INFER TOP-K Procedure

Input: P, M/, = (u'@; v(a)),M;; = (u®; ™), M = (u©@; '),
P is the empirical estimation of the third moment.
u® is close to proportional (from tensor decomposition guarantees) to the restriction
of the empirical first moment of base model M; on partition S;, where t € {a, b, c}.
The same holds for v® and M.
Let B, = P(ie1),1€{ab,c}.
* Set (a;, B)T = M/TP, for all 1 € {a, b, c}.
« Set Wy = [laqu'@|ly + llapu®|ly + lacu'®|l; and We =1 -y
Let u = (%u(a), g—k;u(b), g—’;u(c)) and

V= (g—‘;v(a), %U(b)’ g—;v(c))

* Sort vectors u and v in decreasing order. Let U = sort(u), V = sort(v).

*Set?plz%and@g:%
1-Pmax)”
Let y = Cpet

wrzru‘ny2
* Return prefixes ) = U[: 1], 2 = V[: ]

10 10
* Set r; = logy /5, (#) and ry = log /, (”—)

4.2 The Work of Liu and Moitra

Liu and Moitra in [5] were the first to solve the problem in the general case of k cen-
ters. They leveraged the results of Zagier et al. in [4] and established the polynomial
identifiability of the Mallows Mixture model. Firstly, they worked on the general setting
M =w M ((pl, nj)+- o +uwieM (gbk, rc;g) with minimal assumptions (no components coincide
with each other in TV distance and no component is completely uniform). They provide
upper bounds for the sample complexity as well as information-theoretic lower bounds
and lower bounds against restricted families of algorithms that make only local queries.
Moreover they make a beyond worst case analysis of the Mallows Mixture learning prob-

lem.

On a technical level, they define distribution moments as groups of pairwise compar-
isons, define the block structure based on this notion of moments and prove that two
models satisfying the same block structure do not differ much from each other. They pro-
vide upper bounds for the TV distance between an empirical model and its corresponding
latent generative model and bounds that translate TV-distance closeness to parameter
closeness. Their learning algorithm uses these results and constructs test functions to

peel off one component at a time.
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4.2.1 Block Structures and Tensors

First, we define three different kinds of structures, the block structure, the order structure

and the ordered block structure.

Definition 4.2.1. A block structure 8 = S;,S;,---,S; is an ordered collection of disjoint
subsets of [n]. We say that a permutation © satisfies B as a block structure if for each i,
the elements of S; occur consecutively (i.e. in positions a;, a; + 1,...,a; +|S;| — 1 for some
a; ) in m and moreover the blocks occur in the order S, Sy, - -+ , S;. Finally we let Sg denote

the set of permutations satisfying B as a block structure.

Definition 4.2.2. An order structure O = Sy, Sy, -+, Sj is a collection of ordered subsets of
[n]. We say a permutation nt satisfies O as an order structure if for each i, the elements of

S; occur in w in the same relative order as they do in S;.

Definition 4.2.3. An ordered block structure A = S, Sy, -+, S; is an ordered collection of
ordered disjoint subsets of [n]. We say a permutation  satisfies A as an ordered block

structure if it satisfies Si, Sa, - -+ , S; both as a block structure and as an order structure.

From the above definitions we see that we forget the order within each S; when we treat the
structure as a block structure and we forget the order among the S; ’s when we treat it as
an order structure. For example, let n = 7 and consider 8 = (1, 2), (4, 5, 6). The permuta-
tion (1,2, 3,7, 6, 5, 4) satisfies B as a block structure. The permutation (1,3,4,2,5,6,7)
satisfies B as an order structure and the permutation (1,2, 3,4, 5, 6, 7) satisfies B as an

ordered block structure.

Next we define a special tensor that helps us express the conditional distribution on

permutations that satisfy a given block structure.

Definition 4.2.4. Given a Mallows model M (¢, n*) and a block structure 8 = Sy, S, -+ , S;,
we define a |S|! X |Sa|! X -+ X ‘SJ" dimensional Ty g as follows: Each entry corresponds
to orderings my, o, - -+ , W of S1,Se, * -+ , Sj respectively and in it, we put the probability that
a ranking drawn from M satisfies 8 and for each i, the elements in S; occur in the order

specified by m;

Tensor Ty g has rank one and it can be written as the following product:
Tus = Pry[me Sg] - v(M ((p, 7T|sl)) Q- ® v(M (cp, nlsj)), where v(M (¢, t*)) denotes the

vectorisation of the Mallows distribution M (¢, ¥).

In the expression of Ty g the factor Pry [ € Sg] is the least convenient because it has
no explicit formula. A convenient lower bound can be derived, considering the Mal-
. . . 1 1 . .
lows repeated insertion sampling process and the fact that S Ew—— > . This yields
that Pry [m € Sg] > iﬂ To better understand the definition of Ty g we give a sim-
n :

ple example. Consider M(¢, ) for = = (1,2,3,5,4) and let B = (1,2),(4,5). Then
1 9 ® 1
Tus ~ (7 %) @ (%5 o5)
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4.2.2 Robust Linear Independence

The authors consider a determinant calculated in [4]. Let A,(¢) be the n! X n! matrix

whose rows and columns are indexed by permutations m, 0 on [n] and whose entries Ay,
n-1 n!(n—i)

are (™9 It holds that det(An(¢)) = l_l (1 - ¢>i2+i) @+ This result is important be-
i=1

cause it implies that all rows ¢; of this matrix (that is all vectorisations of Mallows models

with spread parameter ¢ defined on [n]) are linearly independent. Thus, if two mixtures
with spread parameter ¢ have the same pmf, then their centers and weights are identical
(up to a relabeling). This is guaranteed because the determinant is non zero. Knowing the
exact formula of the determinant we can prove "robust" linear independence, by bounding

the ?! norm of any linear combination of distinct rows ||z;c; + - - - + z,cill; from below.

A first step is using the determinant evaluation to bound the projection of any column

onto the orthogonal complement of the span of any k — 1 other columns.

Lemma 4.2.1. Suppose ¢ < 1 — ¢ and consider k columns of A,(¢). The projection of one

column onto the orthogonal complement of the other Ik — 1 has euclidean length at least

e ke
()

This identity is useful, but it is not strong enough to establish polynomial identifiability,

as there is an exponential dependence on n. Apart from that, the rows in A,(¢) correspond
to non-normalised Mallows mass functions. To overcome the exponential dependence on
n, the authors make use of block structures and choose the sets appropriately so that

their total length depends on k rather than n. They prove the following lemma:

Lemma 4.2.2. Let B,(¢) be obtained from A,(¢) by normalizing its columns to sum to one.

Suppose ¢ < 1 — € and consider any k columns cy, Cg, . . ., Cic of Bp(@). Then

2
€2k

zicp++zkeplly 22— —————
l ieCll1 n4k (o + 1)k2+2k

provided that max (|z,], 12|, . ... |z]) > 1.

The results for the case of equal spread parameters are generalised to the case of spread
non equal but close to each other. The general case, where spread parameters might be
very different from each other, is reduced to the case of similar spread parameters, by
using test functions to peel off components with |¢; — ¢;| non negligible. The remaining

ones are all close to each other. The final identifiability result is the following:

Lemma 4.2.3. Consider any k (not necessarily distinct) permutations m;, mg, -+ , e and
scaling parameters @1, ¢o, -, @. Set M; = M (¢;, m;)) and suppose that the collection

of Mallows models is p-non degenerate (that is Yi,j € [k] i # j = TV(M;M;) > p and

Vi € [k]TV(M;, Uniform) > u). Then for any coefficients z; with max (|z;],|za|,...,|zi]) = 1
we have
9 \20K®
ziv(My) + -+ + ziv (M, > —
llzy v (M) 1V (Mio)lly (10n4k)
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In the above lemma we should think of real coefficients z;s as weight differences w; — wj.
This way, the bounded quantity is equal to the TV distance between two Mallows Mixture

models with different parameters.

4.2.3 Test Functions and Learning Algorithm

The learning algorithm performs a brute force search over the spread parameters and
mixing weights. It also considers different test functions with the goal to find appropriate
test functions that isolate some component. It suffices to look at O(k) positions to distin-
guish k permutations (we will see this in more detail in the next chapter, where we discuss
the work of Mao et al.). Thus, to form candidate test functions we exhaustively consider
groups of O(k) items. The number of different test functions is poly(n). The algorithm
first peels off components with small spread parameters, based on the intuition that these
components frequently generate their central permutation. Then, the algorithm tries to

isolate a single component, peel it off and continue iteratively.

Suppose for example that we have a mixture of three Mallows Models. The components
of the mixture are the following:

1 < @ < @3, M =(1,2,3,4,5), ;3 =(2,4,1,3,5), i3 = (5, 1,2, 3,4).

We consider the block structure 8 = {{1, 2}, {3, 4}}.

It holds that ) )
P2 @2
Tw, 8 ~ , ® ,
1+(p2 1+(p2 1+¢2 1+¢)2

1 @3 ® 1 P3
1+¢3 1+ @3 1+¢3 1+ @3

Ty, 8 ~ (
We construct the test function
1 - -1
X = , P2 ® @3 ’
1+Cp2 1+¢72 1+(;D3 1+(,'D3

We have that (X, Ty, 8) = 0, (X, Ty, 8) = 0 but(X, Ty, 8) # 0. This way the test function

isolates information from the first component.

The method used in the example is generalised to mixtures of k Mallows models.

4.2.4 Lower Bounds and Beyond Worst Case Analysis

Fist the authors prove that any algorithm for learning the components of a mixture of

k Mallows models within p in total variation distance must take at least (1/ mu)?k!

samples.

1
401c?

models M and M’ with the following properties:

Lemma 4.2.4. Forany u < and n > 40I? there are two mixture of at most k Mallows

1. Each mixture is (u, W)—non degenerate
2. dqpv (M, M’) < 4(8uk)?*!
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3. M and M’ are not component-wise u-close

The proof considers a concentric mixture with spread parameters constructed by an arith-

metic sequence.

Then, the authors study a restricted model of learning, the local query model and bound

its cost.

Definition 4.2.5. In the local query model, the learner queries a subset of elements
X1,X9, -+ ,Xe and locations iy, iy, - - - , i, With a tolerance parameter t and is answered with
the probability, up to an additive t, that a sample from the mixture has x; in position i; for
all 1 £ j < c. The cost of the query is Iiz and the total cost of an algorithm is the sum of its
query costs.

Summarizing the results into an informal theorem we have that any algorithm for learning

a mixture of k Mallows models through local queries must incur cost at least n'.

Finally we present the beyond worst case results. Essentially, the only assumption is that
spread parameters differ from each other, so the analysis and algorithm design provide
an alternative expression for the complexity, in terms of the minimal spread parameter

difference and the minimal distance of a spread parameter from 1.

Theorem 4.2.1. Given samples from a mixture of k Mallows models with all spread pa-
rameters y separated from each other and from 1 and n > 10k, there is an algorithm whose

running time and sample complexity are
I I .
poly(1/y* ,1/8° ,1/wnin") - poly(n,log(1/6))

for learning each center m; exactly and the mixing weights and spread parameters to within
an additive 8, with probability at least 1 — 6.

The algorithm, similarly to [23], first tries to estimate the prefixes and spread parameters.
Then, it recovers the rest of the centers and finally it estimates the mixing weights, condi-
tioning on the event that centers have been recovered correctly. In this case, similarly to
the general one, candidate parameters from a polynomial size list are tested. The spread
parameters and weights candidates are produced with simple gridsearch. The prefix can-
didates are taken from the observations using a frequency threshold (we examine the most
common prefixes) and prefix length is set to 10k. The prefixes are used as signatures of
the corresponding centers. Then, the center reconstruction process is similar to that in
[6] and a detailed implementation of this process can be found in Algorithm for learning
the Mallows mixture performing noiseless queries. Candidate models are tested with the

tensor test function criteria we described earlier.

4.3 The Work of Mao et al.

Mao et al. in [6] study the problem of learning mixtures of Mallows models. The general

case of k centers is considered as in the paper of Moitra et al, that was published two
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years earlier, in 2018. However in contrast to the paper of Moitra et al. in this paper
the spread parameters of the mixed models are assumed to be equal and known. Most
techniques used are similar to those of Moitra et al. but some improvements are made.
In particular, the sample complexity depends logarithmically on the number of items n
while in previous work it scaled polynomially on n. Another contribution was proving an
optimal dependency of the sample complexity on ¢, the scaling parameter of the models,

in the high noise regime.

4.3.1 Noiseless Oracles And Noiseless Learning Algorithms

In this paper, similar to previous work both on Mallows and Gaussian Mixtures, moments
of the latent distribution are considered. The authors define the moments of order m as
groups of m pairwise comparisons, that are simultaneously submitted to the model via
some oracle. "Simultaneously" means that all answers correspond to the same center, the
one that is activated (randomly following Multinoulli on the mixing weights). There are
two kinds of oracles, the "strong" and the "weak". Both oracles are noiseless, that is they
are not empirical depending on a collection of samples. Instead, they provide accurate
information about the restriction of the model on a group of pairwise comparisons. The
weak oracle reveals the restriction of each distinct central permutation on the group
of pairwise comparisons and the strong oracle returns the distribution of the group of
pairwise comparisons, viewed as a random vector.We will now give the formal definitions

of the two oracles.

Definition 4.3.1. Consider a distribution M on S, and a random permutation m ~ M. For
m € N, let I be the tuple of m pairs of distinct indices (i1,j1), ..., (in.jm) € [n]%>. Upon a
query on I, the (strong) oracle of group of m pairwise comparisons returns the distribution

of the random vector x(m, I) in {0, 1}, whose rth coordinate is defined by

x(m, D) = H{n(iy) < ()} forre[m]

Definition 4.3.2. Consider a set {my, ..., m} of k permutations in S,,. Form € N, let I be
a tuple of m pairs of distinct indices in [n]. Upon a query on I, the weak oracle of group of

m pairwise comparisons returns the set of binary vectors {x (n;, I) : i € [k]}, where
x(m, D) = 1{m (ip) < m (jr)}  forr € [m]

We will now demonstrate why groups of m pairwise comparisons are similar to the order-
m moments of distributions defined on vectors of real numbers. Let Xi’fj = K¥{n(i) < n())

be a pairwise comparison. Also let
Jxn)(v) :=P{x(m. I) = v} foreachve {0, 1}™
This is the distribution returned by the strong oracle. This pmf has similar form with the
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classical moments that we define for example in Gaussians.

Semn@) =E[lx(m, I) =v}]] = E [ﬂ 1{xr, = vr}}

r=1

UJr i Jjr

m
- E[ (xr,)" (1 - x7 )1_”'l = m(, 1),
r=1
Thus, the strong oracle in fact returns moments of the latent distribution and a learning
algorithm that uses this oracle can be viewed as a combinatorial method of moments.
Another notion of moment for ranking distributions are the marginals on subsets of
items (referred to as l-wise comparisons). In this work we consider two different ways of
marginalising a ranking © € S, an a subset J of [n]. Firstly, let n|J denote the restriction
of m on J, which is an injection from J to [n]. This marginalisation keeps the information
about the positions of selected items in the complete ranking. Moreover, let r||J denote
the bijection from J to [|J|] induced by n|J. This marginalisation is equivalent to an object
in Sy, which is achieved by reindexing the selecting items, assigning them ids in |J|. The
second way of marginalising is less informative but more natural and corresponds to the
selection mechanism that we gave on selective Mallows Models. For example, in the case
of t=(3,2,4,6,1,5) and J = {1, 4, 5} we have for the injection n|J(1) = 5, n|J(4) = 3 and
n]J(5) = 6 and for the bijection n||J = (4, 1, 5).

The weak and the strong oracle can be defined on 1-wise comparisons as well and are
more informative than oracles on groups of /2 comparisons.Below we give the formal

definitions of these oracles.

Definition 4.3.3. Consider a distribution M on §,, and a random permutation &t ~ M. For
? e N, let J be a subset of [n] of cardinality |J| = £. Upon a query on J, the (strong) oracle of

L-wise comparison returns the distribution of the relative order m|| ;.

Definition 4.3.4. Consider a set {my, ..., m} of k permutations in S,,. For? € N, letJ be a
subset of [n] of cardinality |J| = £. Upon a query ond, the weak oracle of {-wise comparison

returns the set of relative orders {m;||; : i € [k]}.

The noiseless oracles we defined above are used by learning algorithms that aim to learn
the parameters of the latent Mallows Mixture. The authors aim to minimise the order of
the moments they use, that is they try to use small selection sets. In their setting this
reduces the complexity but in our selective setting it also allows learning in the regime of
strict selectivity.

e The algorithm that uses the weak oracle has the advantage of being independent of the
estimation of the mixing weights and the spread parameters. However, it requires bigger
selection sets (higher order moments). It uses moments of order k, where k is the number
of central permutations. The optimality in terms of query length has not been proved.

e The algorithm that uses the strong oracle depends on the knowledge of the mixing
weights and the assumption of common spread parameters. However, once it has this ex-
tra information it can perform more effective queries which require smaller selection sets

of size logarithmic on k, where k is the number of central permutations. The optimality
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in terms of query length is proved and it matches the bounds of identifiability.

Theorem 4.3.1. (Learning algorithm using minimal length queries to the strong oracle)
Let m; := |log, k] + 1.

For any mixture M = Zﬁ‘: | Wby, of permutations in Sy, there is a poly (n, k)-time algorithm
that recovers M from groups of m,_ pairwise comparisons, with at most 1 + g(n -2)(n+1)

adaptive queries to the wealk oracle.

Conversely, for n > 2m; and ¢ < 2m; — 1, there exist distinct mixtures M = %Zﬁl O,
and M’ = i Zle 6y of permutations in Sy, which cannot be distinguished even if all (';)

?-wise comparisons are queried from the strong oracle.

Since the oracle of £-wise comparison is stronger than the oracle of group of £/2 pairwise
comparisons, the above theorem implies that the oracle of /-wise comparison is sufficient
for identifying the k mixture if and only if £ > 2m;.. We will prove this later more formally.

Next we present the results on learning from the weak oracle.

Theorem 4.3.2. (Learning algorithm using queries to the weak oracle)
Consider a set {my, ..., m} of k permutations in S,,. There is a poly (n, k)-time algorithm
that learns the set {m1, . .., m} from queries on groups of k + 1 pairwise comparisons to the

weal oracle, using at most 1 + g(n —2)(n + 3) adaptive queries.

As for the implementation, both algorithms try to build the central permutations induc-
tively on the number n of items. Each query consists of a "signature" set of pairwise
comparisons, that aims to isolate a particular center, and one or two more comparisons

that aim to detect the position of n — th item in the isolated central ranking.

In the weak oracle a single signature set has to be able to isolate each distinct marginalised
center. The signature contains pairwise comparisons that create a decision tree and each
leaf of the tree corresponds to a single distinct center. The height of this tree is at most

k, so the length of the signature is at most k pairwise comparisons.

In the strong oracle weights are also returned, apart from marginalised centers. Be-
cause of this extra information the signature set does not have to isolate each and every
center but it suffices to isolate only one of them at a time. In this case the signature set

length is logarithmic on k.

We present the details of the algorithm that learns from the strong oracle in the next

chapter.
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4.3.2 Using Noisy Samples to Simulate Noiseless Oracles-The Subroutine

Now we will see what happens when noise is introduced. Noisy samples are collected
and they are used by the "subroutine" that simulates the noiseless oracle. In each query
samples are projected on the queried subset of items and aggregated into an empirical
marginal distribution. A cover is made on the space of all possible marginals and the one
closest to the empirical one is selected. The parameters of the selected marginal provide

the information needed by the oracle.

Given i.i.d. observations o1,...,o0y from M = Zle w;M (m;), the goal of SubOrder(J) is
to learn the set of relative orders m ||y, . . ., m||; for a given subset J C [n].

To study the SubOrder we have to define the marginalization of the Mallows mixture, as
well as the observations, as follows. Note that the authors use the injective version of
marginalisation in the models and samples, that is they require that information about
the position in the complete samples is preserved. For any distribution M on S,, and a
set of indices J C [n], we let M|; denote the marginal distribution of o|; where o ~ M.
That is, the PMF of M|; is given by

Im,(e) = Poupmioly = p}

Moreover, given N i.i.d. observations oy, ..., oy from M, the empirical version of M|; is

given by

1 N
I = 5 mzl 1{omly = ).

In the bijective definition of marginalisation, classical identifiability results guarantee
that if the central permutations (and weights) are equal as sets in two mixtures, then the
mixture have the same pmf on the projection set (because they form a Mallows Mixture
distribution on this set). However, the distribution on injective marginals is not a Mallows
Mixture, so classical identifiability results are not applicable. The following lemma guar-
antees that identribiability holds in the injective marginalisation similarly to the bijective

one.

Lemma 4.3.1. For any subset J C [n], if the central permutations m, @' € S, satisfy
|y = ©'|;, then the marginalized Mallows models M(m, ¢)|; and M (1, ¢)|; coincide for all
¢ <(0,1).

Next, the authors provide a guarantee about the identifiability of the marginalised Mal-
lows Mixture with respect to the central rankings. The result guarantees that two
marginal Mallows Mixtures can not be too close in TV distance if the corresponding sets

of marginalised central rankings are not equal.

Proposition 4.3.1. Consider Mallows mixtures M = Zif:l w;M () and M’ = ?:1 wiM (1))
on S, with a common noise parameter ¢ € (0,1). Let y := minpq (w; A w;) > 0. Fix a
set of indices J C [n] and let ¢ := |J|. Suppose that the two sets of central permutations

{mllgs - .. melly} and {n; ||J el niqu} are not equal (as sets). Then
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BOH ] — g \@D +2Ke
Y) ( ‘P) @.1)

TV(Miy . M) = n(k. 2. 9.7) = (a z

The proof uses the notion of the "block structure" and bounds the probability of different

models satisfying the same block structure.

The final tool needed to analyse the "Subroutine" is the following proposition, that bounds
the TV-distance between the latent marginalised Mallows mixture model and its empirical
version constructed by N iid samples. The upper bound decreases exponentially on N
and will be used to derive a polynomial sample complexity sufficient to approximate the

PMF with an empirical histogram.

Proposition 4.3.2. For J C [n], let M|; and My|; be the marginalized Mallows mixture

and the marginalized empirical distribution. Then for any s € (0, 1), we have:

3s s? _
P{TV (Mly, Myly) > s} < exp (—N ﬁ) +2(2kq)" exp (_N(qu)”)

8¢
s(1-¢)*

where ! :=|J|land q:= 1+ ﬁ) log
The proof is based on the observation that the TV-distance is defined on a domain of size
n’, which can be divided into two parts. The first part contains rankings that are close
to all central permutations. Samples in this set have a relatively high probability of ap-
pearance, but their cardinality is small, due to the constraint of being close to all central
rankings. The other (complementary) part of the domain has a relatively big cardinality
but its elements have small probabilities of appearance. In both cases, the empirical
frequency of a sample is connected with the theoretical one with strong, exponentially

decreasing bounds (applying the Hoefflding and Bernstein inequalities).

An important identity of the TV-distance bounds provided in the last two propositions
is that the bounds do not depend on the total number n of items, only on £, the number

of selected items.

The above propositions are used to develop the SubOrder(.) function that simulates
the weak oracle. SubOrder performs a brute-force search over candidate marginals and
outputs the parameters of the one that better fits the available samples in terms of TV-
distance. The brute-force is made on all possible marginalised central ranking combina-
tions and on the corresponding mixing weights. The weights are continuous parameters
so a discretization is performed with a grid step equal to 1/L. However, the weak oracle
only expects the marginalised central rankings, so in this step estimated weights are not

returned.

A key step in the search procedure is that candidate models are not directly compared to
the empirical on the sample set in terms of TV-distance. This is due to the fact that the
marginalized distribution M’|; does not have an explicit formula (it is defined on injec-

tions rather than bijections). To overcome this problem, fake samples are generated from
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each candidate model (in O(n?) time per sample using RIMf) and the empirical distribu-
tion of these samples is compared to the empirical of the real samples in TV-distance.
Due to the triangle inequality, if the two empiricals are close, then the candidate model
is close to the latent model, given that the two models are close to their empirical ver-
sions as stated in Proposition 4.3.2. The closeness in TV-distance between the optimal
candidate model and the latent model means that their sets of central permutations are
equal due to Proposition 4.3.1. Thus, the central permutations of the latent model are
correctly estimated with high probability, given enough samples and the weak oracle is

successfully simulated. We will now give the formal definition of SubOrder.

We define a set of polynomially many candidate models (polyy(n)). Let S, denote the set
of injections p : J — [n], which has cardinality at most n! where ¢ = |J|. For each 0 €S,
fix an arbitrary permutation n, in S, such that m,|; = p. Let L be a positive integer to be
determined later. For ¢ € (0, 1) and y € (0, 1/k], we define a set of Mallows mixtures by

discretizing the weights:

I

k
M= Mk @y L) = {Z %M(npi, ®):pi € Spa.ri € [LL T 2 YL Z r = L} )

=1 i=1
Parameter y corresponds to the minimal mixing weight and 1/L to the step of the grid
search over mixing weights. The weights r;/L sum to 1 and each weight is at least y.

Since there are at most L choices for each weight and at most |Sn,J| < n! choices for each
pi, we have |.#| < L*n. We remind that 2 is O(k).

SubOrder Function

Input: observations oy,...,0y € S,, a subset J C [n], £ := |J|, and parameters k € N,
@€(0,1),ye(0,1/k],N’ e N, and L = [3k/n] where 1 = n(k, £, ¢, y) is defined
in4.1

* For each Mallows mixture M’ € .#, where .# is defined in 4.2, generate N’ i.i.d.
random permutations o7, ..., oy, from M’. Compute the marginalized empirical

. . . ’ _ 1 N’
distribution MN,| g = W Zm=10a,

« If for some M’ = 3¢ %M(npi, (,D) € ./ it holds that TV(M;V,LI, MNIJ) <n/2,
return the set of relative orders { Ty llg i i€ [k]}. If there are multiple models M’
in ./ satisfying the condition, an arbitrary M’ is chosen. If no models in M satisfy

this condition, then return "error".
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The following theorem states that a polynomial sample complexity suffices to guaran-
tee that SubOrder(J) successfully simulates the weak oracle on query set J with high
probability.

Theorem 4.3.3. Suppose we are given N i.i.d. observations oy, ..., oy from the Mallows
mixture M = Zﬁ‘zl w;M (1;) on S, with a noise parameter ¢ € (0, 1). Fix a set of indices
J C [n] and let ¢ := |J|. Fixy > O such that y < minx w;. Fix a probability of error
6 € (0, 1). If the sample size satisfies N > poly ., (ﬁo %) - log %5 and we choose an integer
N’ > poly i, (ﬁp l) -log %, then SubOrder(J) returns the set of relative orders {m|y : i € [k]}

Y
with probability at least 1 — 6.

To analyse the time complexity of SubOrder we first observe that the set of candidate
models is of polynomial size and the sample complexity of both original and fake sam-
ples is polynomial as well. Moreover, sampling from each candidate model is performed
efficiently in polynomial time (e.g. using the RIM sampling method). Calculating the TV-
distance between the empirical models can be performed in time linear to the number of
samples. Thus, the time complexity of SubOrder is polynomial on the spread parameter,
minimal mixing weight, number of items and error probability tolerance. The complexity
is exponential on the number k of central rankings but we assume that this parameter is

constant.

4.3.3 Recovering the Central Rankings and the Corresponding Weights

To recover the central rankings of a latent mixture, using noisy samples drawn from the
mixture, we could use the algorithm presented in 4.3.2, simulating the weak oracle with
the SubOrder. The time complexity of the noiseless algorithm is O(n? - k) and the time
complexity of each SubOrder call is polynomial on all parameters except k. SubOrder(J)
will be called on O(n?-k) sets J, where |J| is at most 2kc+2. Since there are less than n?<*2
possible subsets of [n] that have cardinality 2k + 2, we can set § = n~2%"12 in Theorem
4.3.3 and take a union bound to ensure that with high probability (n”10) all SubOrder
calls will be successful and thus the central permutations will be exactly recovered.This

yields the following result:

Theorem 4.3.4. Given N i.i.d. observations from the Mallows mixture M = Zi‘zl w;M (1)
on S, with a known noise parameter ¢ € (0,1). Suppose we are given y > 0 such that
y < mine[) w;. Then there exists a poly i (n, 1%6, %)—time algorithm that exactly recovers
the set of central permutations {m;. . . ., m.} with probability at least 1 — n='°, provided that

N > poly; (ﬁ) %) -log n.

Having recovered the central rankings of the mixture we will try to approximate the
corresponding weights with small absolute error. The tool that will be used to this end is a
proposition that bounds from below the TV-distance between two marginalised mixtures

that have the same centers but different corresponding weights.

Proposition 4.3.3. Consider Mallows mixtures M = Zle wiM (1) and M’ = ﬁ‘: L WiM (1)

on §,, with a common noise parameter ¢ € (0, 1). Suppose that § = maXe[i] |wi - w{| > 0.
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Let J be a subset of [n] such that m; ||J * ”J'”J for any distinct i,j € [k]|. Define ! = |J| and
define n(k/2,¢, ¢, 1) as in 4.3.1. Then we have:

TV (M. M) 2 € nlic/2.2.9. 1)

The authors propose the following algorithm for learning the weights assuming that the
centers have been correctly estimated. The main idea is to perform marginalisation on a
set J such that all k central permutations have distinct projections on J. This ensures
that each one of the k mixing weights will appear individually as the weight of a single
component and no merging will be made. Such a J can be easily computed using a
decision tree that performs a split in each node, according to some pairwise comparison,
partitioning the set of permutations of the node into two non-empty subsets. The root
node contains the full set of k central permutations. Each leaf contains a single center
and the total number of splits is k—1. Each split is a pairwise comparison and J is the set
of all distinct elements appearing in these comparisons. A brute force search is performed
on candidate combinations of mixing weights, using a precision (step size) equal to 1/L
per weight. The choosing criterion is TV-distance minimization between the candidate
model and the empirical of the latent model. Similarly with the algorithm that estimates
the central rankings, the weight retrieval algorithm computes the TV-distance between
the empirical of the latent model and the empirical of each candidate model computed on

fake samples.

Weights Retrieval

Input: 7,..., Ty, which are the central permutations returned by the algorithm

in Theorem 4.3.4, L, N’ and a set of N i.i.d. observations oy, ..., oy.

* Find in polynomial time a tuple J of k — 1 pairs of distinct indices in [n] such that

X (7, 1) # X(fcj Z) for any distinct i,j € [k].
* Set J equal to the set of all indices appearing in the pairs in 7.
* Define a set of integer-valued vectors R(L) := {r e[l :r>yL Yk = L} .

* For each r € R(L):
* Generate N’ i.i.d. random permutations o7, ..., oy, from the Mallows
mixture M'(r) = 2, LM (f. ¢).
* Compute the marginalized empirical distribution M; ,(r)|  of the generated

sample set.
* Compute the marginalized empirical distribution My]|; of samples o1, ..., oy.

* Return the estimator € R given by: i = %arngl&i)n TV (M;V,(r)’ 5 MN|J) .
re
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The above algorithm is guaranteed to estimate the weights with high probability up to
some desired degree of precision, as long as the number N of observations and N’ of fake

samples per candidate model are big enough and the step size 1/L is small enough.

Let ¢ > O denote the aimed accuracy of estimating each weight w;. We apply Proposi-
tion 4.3.2 with s = &n/6 where 7 = n(k/2, ¢, ¢, 1) and we have that:

TV M|y, Mnly) < én/6 (4.3)

. o ~11 s 1 1 20+1
with probability at least 1 — n™"", if N > =2 (log s_“)

we choose N’ > N - klog L, then Proposition 4.3.2 together with a union bound over all
r € R(L) implies that with probability at least 1 — n" 11, it holds for all r € R(L) that:

poly &« (ﬁ) -logn. Similarly, if

V(M @), My (1)) < &n/6 (4.4)

In the sequel, we condition on the event & of probability at least 1 — n~!° that both of the

above bounds hold.

Moreover, if we choose L > % then there exists r € R(L) for which |% - wi| < % for
any i € [k]. For this r it holds that:
TV (M. M(r)|,) < &n/6 (4.5)

Applying the triangle inequality on the distances in relations 4.3, 4.4 and 4.5 we obtain:
TV ( My (1), . Maly) < §1/2

On the other hand, for any r’ € R(L), for which there exists i € [Ik] % — wi| > &, we obtain

from Proposition 4.3.3 that
TV ( My ()], . Mul,) > 26n/3

on the event . r’ cannot be equal to Lib because weight vector r defined earlier exists and
achieves a better TV-distance score. We conclude that {0 must satisfy that |(; — wy| <
for each i € [k].

To satisfy the bound in 4.3 with high probability, we demand that the sample complexity
20+1
) " poly i (ﬁ) -log n. Thus, for the weight accuracy ¢ we have:

)% < e (oly  (25) Togn) .

. 1 1
is at least =2 (log E

&< N (poly o (145) - logn

The results of this paper on central ranking and weight estimation are summed up in

the following theorem:
Theorem 4.3.5. Given N i.i.d. observations from the Mallows mixture M = Zi‘zl w;M (1)
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on S, with distinct central permutations my, . . . , m and a known noise parameter ¢ € (0, 1).

Suppose we are given y > 0 such that y < minseq wi. If N > poly k( %) - logn, then

1
=2
, ﬁ, %)—time algorithm which returns a mixture M = Zﬁ‘zl ;M (;)
such that the following holds with probability at least 1 — 2n~1° : Up to a relabeling, we

have 7t; = m; and |(; — wy| < N‘l/z(log N)Zk_l(log n)l/2 poly i (ﬁp)for each i € [k].

there exists a poly i (n

Note that the authors achieve a logarithmic dependency of the sample complexity on n,

generalising the result of the single Mallows case.
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Chapter E

Learning Selective Mallows Mixture Models

5.1 Identifiability of the Selective Mallows Mixture Model

In this work our goal is to estimate the parameters of the Mallows Mixture using in-
complete samples. We would like small selection sets (ideally pairwise comparisons) to
be sufficient for this purpose. Practically, a selection mechanism implies identifiablity if
given enough incomplete samples supported by this mechanism, that is samples that have
non zero probability to be drawn, the latent parameters of the mixture can be uniquely

estimated. We will now provide some formal definition of the identifiability.

Suppose models M and M’ are identical. This means that they are supported on the same

set of (possibly incomplete) permutations and M(w) = M’(t) Y in the support set.

=19 Y w- Lot
M(m) =f(s)- » w;- ———
24" 2o
k dgr(m],m)

/ / / ¢ '
M@= Y- L
; Z(g,|s)

We suppose that the base models of the mixture have all the same spread parameter ¢.
The rankings observed are incomplete and f is the selection mechanism. The full set of

items is [n]. The probability that some set s of items, s C [n], is selected is equal to {(s).

Definition 5.1.1. We say that the mixture of k distinct Mallows models is identifiable on
a support set S if 2 mallows mixtures being identical implies that the two sets of central

permutations must coincide, and so do the corresponding weights.

Note that the selection mechanism is assumed to be the same among all candidate models.
However even if this assumption is not made it can be easily derived that two identical
models have the same selection mechanism.

If models M and M’ are identical then Vs C [n]: Vn supportedons: M(rn)= M'(r)
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For each selection set s we sum over all permutations supported on s and we obtain

ke q)dKT(T[i II) dKT(T[ TE)

Z Zwi' Z(@.Is) Z Z Zps)

m supported on s i=1 m supported on s i=1

YoooMm o= Y Mm = =19

T supported on s T supported on s

We remind that [5] used a determinant calculated in [4] to show that if two complete
mallows mixtures are equal on every permutation in S,, then they have the same (dis-
tinct) centers and the same corresponding weights. We can generalize this concept to
selective mixtures. In particular we can construct a range I containing all permutations
of n items and a range J containing all partial permutations of n items supported by
selection mechanism f(s). We then construct an N X M matrix A, where the i-th row (c¢;)
corresponds to the i-th permutation in I and the j-th column () corresponds to the j-th
selective permutation in J. Rows play the role of the central permutation of the mixture.
Columns correspond to supported inputs to the mixture. The element A[i][j] is set equal
to f(s) - ;I((;(lclslr; ), where s is the set of items found in m; and is equal to the density of the
selective mallows distribution with center ¢; and selection mechanism f(s) calculated at
point m;. The i-th row of A is the vectorization of the selective mallows distribution with
center ¢; and selection mechanism f(s). Any linear combination of k rows of matrix A is
the vectorization of a selective mallows mixture. So the problem of identifiability can be
reduced to an algebraic problem of linear independence. The k-mixture subject to a selec-

tion mechanism {(s) is identifiable iff any set of k rows of matrix A is linearly independent.

In the case of complete mixtures f(s)=0 for all incomplete sets s and f(s)=1 for the full
set of n items. In this case the normalisation constant Z(g, |s|) can be factored out of A
and does not affect the rank of A so it can be completely skipped. Moreover, if samples
are complete the determinant of A can be calculated using the results of [4] and is non
zero. This implies that any number of k rows of A is linearly independent so any complete

mallows mixture is identifiable.

The size of A grows superexponentially with n, so brute forcing over it is impractical.
We provide the example of A on 3 items. Firstly, we suppose that samples are complete.

In this case normalisation constant Z(g, |s|) can be factored out so we omit it.

(1 o ¢ ¢ ¢* ¢
1 ¢* ¢ o ¢°
o ¢ 1 ¢ ¢ ¢ o 7o )
A= 2o o 1 P o det(A) = —(¢* - 1) (¢* -+ 1)(@* +9+1) #0Vp € (0,1)
P o ¢ P 1 ¢
o 9* »* ¢ o 1)
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Then we suppose that samples are incomplete. Since we only have 3 items, incomplete
samples can only be pairwise comparisons. We construct A with rows corresponding to

permutations in S, and columns to pairwise comparisons of items 1,2,3.

(1 1 ¢ 90 1 ¢
111 ¢ 0 ¢
¢ 1 1 ¢ 1
A= det(A) =0 V¢ € (0,1) = no identifiability.
1 ¢ 1 1 ¢ o
o ¢ ¢ 1 1 1
o 1 ¢ 9o 1 1

We will now see what the identifiability of the complete mixture implies about the se-
lective mixture.For each selection set s supported by f(s) models M and M’ are projected

on s and these projections are complete mixtures so the identifiability theorem of [5] holds.

dgr (1, m) dgr(m,m)
Zwi-(p— =Zw§-¢— VY1 supported on s
Z(g.|s]) Z(g.|s])

i=1 i=1
This implies that projected models M|s and M’|s have the same distinct projected permu-

tations mj;, j € [IK'], kK’ < k and

Dowi= ) wf VjelK]

m||s=m; mi|ls=m;

These equations do not always ensure identifiability of the latent complete centers and
even when they do, subtle manipulation of the equations obtained by different selection

sets s is needed.

Let’s examine how strict a selection mechanism can be without stopping to preserve
identifiability.

5.1.1 Pairwise Comparisons and k=2, the General Case:

Unfortunately, even in the simple case when the mixture consists of two centers pairwise
comparisons may fail to preserve identifiability. In particular, when we have a mixture of
two equally weighted reversals, then the observed density on all pairwise comparisons is

1 jrrespective of what exactly those reversal permutations are.

5
Suppose 11, Ty are and reversals, w; = wy = 1/2. Then for every pairwise comparison (i,j)

4 _ 1. ¢ 1.1 _1 . .
Pli<j} = 2T T 2Tip = 2 because either i < jin my and i>jin mp or i > jin m; and i < j

in my . Thus all equally weighted mixtures of 2 reversals have the same distribution over
pairwise comparisons and can not be distinguished from each other only using pairwise

comparisons.

Diploma Thesis



Chapter 5. Learning Selective Mallows Mixture Models

5.1.2 Pairwise Comparisons, k=2, Non Equal Weights

The case when weights are equal is degenerate. If the weights are not equal then pairwise
comparisons preserve identifiability. The reason for this is that non equal weights can be
used as a "signature" of each one of the two centers. That is, in pairwise comparisons
on which the two centers disagree with each other, we can conclude what the result of
the pairwise comparison is on each of the centers. In the case when mixing weights are
equal, we could only know that the two centers disagreed but we could not match the
two different answers to the query to the correct components. We will now analyse this

situation more formally.

Selection mechanism f only selects pairs of elements and we have a mixture of w1, n2.

B . ‘ @AKT(T1 ™) ) @aKT(T2,™)
M(m) = f(s) - [w1 - o + W2 Z50m
(deT(n'l ) , quKT(né )

M'(m) = f(s) - [W) - g + Wa " "z

The marginalised model on each pair s=(i,j) is the following:
¢1(n1(i)<n1(j)! ¢1ﬁn2(i)<n2(i))

S e T

We suppose M(i < j) = M’ (i < j) for all available pairs (i,j).

M(i<j)=w; -

1/1+9) o/(1+9)

=(1-@)/(1 + ¢) > 0 =the marginalised model is identifiable.
p/(1+9) 1/(1+¢)

There are 4 cases for s=(i,j).

1) m(i) < m() and m(i) < () = Mi<)=w: - 57 +wa - 357 = 5
2) m(i) > m(j) and m() > m() = Mi<)=w: - 55 + W2 * 577 = 517
3) m(d) < m()) and me(i) > m(j) = Mli<j)=w; - % + wy - ﬁ
4) m(i) > m() and m () < m(j) = M<j=w: - 5 + w2 - 55

If there is a pair sg with f(sg) # 0 and m||sg # msl|sp (cases 3, 4) then for this pair
k' =2 = {w, ws} is equal to {w], wj} as sets. Either (w;, wyp) = (W}, w)) or (wy, wg) =
(w), w)) as tuples.

WLOG Suppose we were in case 3 for the pair sg = (ip,jo). Then M(iy < jo) = w; - +

wo - ﬁ = M'(ip < jo)-

If (wy, wo) = (W}, wy) then m)(ip) < ] (jo) (CASE I)
If (w1, we) = (W), w)) then m,(ip) < m5(jo) (CASE II)

WLOG we can suppose that w; = w}, wy; = wj, because a relabeling of the components

@
o+1

does not change a mixture.

Now we can use every available pair (i,j) to construct comparison graphs for m; and mp.

[ 1 @ +

Since {w;, wo} = {w], wy} both M| and M’|;; take values in the set {m, 2 WL o

woy - ﬁ, wi - ﬁ + wy - %}. Since w; # wy all these four values are different from each

other.
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We have supposed M and M’ are identical, so M(i<j)=M’(i<j).

e If models M and M’ both assign probability % to i<j, then we know that m; (i) < m(j) ,
mo(i) < mp(j) , (1) < m)(j) and m (i) < m(j).

e If models M and M’ both assign probability ﬁ to i<j, then we know that m;(i) > m;(j) ,
mo(i) > me(j) , (i) > ) (j) and my (i) > w5 (j).

e If models M and M’ both assign probability w; - % + wy - ﬁ to i<j, then we know that
m (1) < m () , me(i) > m(j), () < m;(j) and my (i) > m)(j) because if the relation between
i and j in the central permutations was different than the relation between iy and jo a

different probability would have been assigned to i < j than the probability of iy < jo.

1
o+l

that m (1) > m(j) , me(i) < m(j), n} (D) > m;(j) and my (i) < m,(j) The centers in each model

o If models M and M’ both assign probability w; - + wo - % to i<j, then we know

are in a discord with each other because the probability is neither % nor ﬁ. If the
relation between i and j in the central permutations was the same as the relation between

ip and jo the same probability would have been assigned to i < j as the probability of iy < jo.
Thus the only possible case is m; (i) > m1(j) , ma(i) < m(j), 7 (i) > m;(j) and (i) < m(j).

In each case, the pairwise comparisons in m; agree with those in 7] and the compar-
isons in my agree with those in ). As a result the comparison graph for m; is the same
as m; and the comparison graph for m; is the same as mj. If the support set contains
enough pairs, the constructed comparison graphs give total order and n}, m, are unique
and equal to m;, mp respectively and identifiability is preserved. On the contrary, if some
graph gives only partial order then multiple possible central permutations can be derived

from this graph and identifiability does not hold.

5.1.3 Sufficient Conditions for Identifiability

We consider two selective Mallows mixture models M; and M :
¢dKT(n1,i\J.n)

My(m) = f(J) - Z?:l Wi~ Zpmn
My(m) = f(0) - B, wa - Loroot™,
where the argument © is some incomplete ranking and J is the set of items found in n.
The central permutations of M; {m ;, m 2, ... m i} are all distinct. The same holds for
the centers of My. Each central permutation m; ; is a complete permutation of n items

(m1,; € Sp). The same holds for each center my ;.

A key ingredient for the analysis of identifiability is the following lemma found in [6].
This lemma guarantees that a small (logarithmic on k) "signature" set I of pairwise com-
parisons can always be found for one of the distinct permutations of a permutation set
X. Set I is characterised as the "signature" of the corresponding permutation 7*, because
the way in which the items found in I compare with each other is unique in 7* and differs

from all the other permutations in 2. For the analysis of identifiability only the existence
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of the pair (I, ©*) matters, however the proof of the lemma provides a construction algo-
rithm for I, which will be utilised by an algorithm discussed in the next chapter, which
reconstructs a Mallows Mixture using small (logarithmic on k) noiseless queries. Note
that this lemma only provides a way to isolate one permutation of the set £ through its
signature. It does not find a signature for each one of the elements of X. This limitation

will need careful manipulation as we will see later.

Lemma 5.1.1 (Mao et al. 2020). Let y(m, I) be a vector st x(w, I), = 1{n(i.) < n(j;)} and
I =1[(i1,j1), ..., (i, jp)l. ¥ set X of k distinct permutations in S,,, n > 2, there exist t* € X and
I =[(i1,j1), ..., (. j)], st1 < [logs(k)]| and (r # nw* = x(m, 1) # x(n*, 1)), Vi € X.

Proof (construction procedure):

20:=2, r=1
while |2, 4| > 1:
find (i, j,) st:
I ={m e X o nliy) > n(n} # {}
X ={meX:n(iy) <n@r)} # {}
%, := the smallest between X; and X

r+=1
=] < k/2% = 1 < |loga (k)]
The above procedure is similar to a binary search. The initial set X is bisected in each step,
based on the result of a pairwise comparison. The resulting set contains a single element

n*, the permutation we succeed to isolate, and the sequence of pairwise comparisons that

lead as to this element are its signature.
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5.1 Identifiability of the Selective Mallows Mixture Model

Theorem 5.1.1. If for all incomplete permutations m of length 1|, where l in {2,3,...,2 -
Llogs (k)] + 3} it holds that

1. f(J) # 0, where J is the set of items in & and

_ I q)dKT(nl,iL]vn) _ k (deT(nZ,iL]vn)
2. My(m) = Ma(m) © 32, Wri- Zoun = Qi Wai Zoh

then {(wn,1. m1,1), (W12, M1 2), ...(Wi k. T )} and {(wa1. m21), (W2, T 2), ...(W2 . T2 i)} are

equal as sets.

Proof.
The theorem can be proved by induction on n, the number of items.

Base case: for n = | = 2 : |logs(k)] + 3, J is the full set of items, so no selection is
made and we can apply the identifiability theorem for Mallows mixture models on com-

plete rankings that has been proved in previous work.

Induction Hypothesis:

Set Crll_1 contains the distinct elements of the set {m; 1ljn-17, ---» T1.kl[n-17}, that is the pro-
jections of the centers of M) on items {1,2...n — 1}. Some centers might have the same
projections. However Crll_1 is not a multiset. We consider the distinct elements of this set.
Crll_1 = {n‘f’l, n‘f’kc}, where nf’i are all distinct and their cardinality k. is at most k

(l; < k if some centers have the same projections).

We also consider the set WCrll_1 that contains the tuples (7] 7 Zi:nl,il[n—l]:nfj wy ;) of dis-
tinct centers paired with their cumulative weight.

1 — c c
WC,_, = 1{(n] Zi:m‘i\[n—I]:nfl Wy, e (Y Zi:m,il[n—llznf,kc wy, )}
We now consider the same quantities for mixture M,.

Set C?l_l contains the distinct elements of the set {mg 1l[n-17, --., T2 klfn-17}
2 _
C._ = {ngil, n;kc}

W2 = {5 1, Bemy in-t1en, W2.0r oo (M8 g+ Tiemy - 11n, 2.0}
We suppose WCrll_1 = WCTZI_l.

Induction Step:
{(c11, Wty 1), (c12, W 2), ..., (C1 1, W i, )} := WCH

{(co1, Wi 1), (C22, Wia o), ..., (Co i, Wi k,)} := WC2
We will show that WC! = WC2.

From induction hypothesis it holds that WCrll_1 = WC?L_1 but we only need the fact that
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Wlog we suppose that the order of the elements m; |, ..., ;. K
[kl

Also, wlog, we suppose that the order of the elements ny |, ...

issuchthatn{, =mnj ., Vi €

. Ty 1, is such that if we apply
Lemma 5.1.1 on them, permutation 7] , and its ’signature’ set of comparisons will be re-
turned, if we delete it and apply the lemma on the remaining ones n{ , (and its signature)
will be returned and generally if we apply the lemma on the subset {r] ;, 7] ;. ..., nikc},

i € [ke], n{; will be returned.

We apply Lemma 5.1.1 on the set C}l_l. There exists I, an l-tuple of pairwise compar-
isons st:

l<|loga(k)]and (j# 1 = x(an,I) # x(n] 1. D)

We consider the centers ¢;; in WC,l1 that satisfy the restriction c;,|[n — 1] = nil =
[e1,es,...en1].

There are 3 cases for ¢ ;:

cg=1le.e,...,e.-1,n,6,...,eq1], for some rin [2,n - 1] () or

¢ = [er. e, ....en1,n] (II) or

ap=[ne e, .. e 1] 1)

In each of the 3 cases it suffices to know the relative order among e,_;,e, and n to
fully determine c; ; (given the fact that ¢; j|[n— 1] = nil = le1,es,...en1]).

We take the set of indices J := set of elements appearing in I union {e,_1, e,,n}. |J| <
2 - [loga (k)] + 3

Ay 1ly.m) , dgr(n].m)
_ I 9 KT (71, ilJ _ I r.Q J
Mily(m) = 2y Wi o = 2=t Wz

The centers nj’ are distinct permutations of the elements in J .

u)J,' = an,i|J=Tfj’ Wy,
AR (7, ilg. ™)
Moly(m) = X, way; - q)Z(W
M |s(1t) = Ma|s(m) ¥ permutation 7 of the items of J. The identifiability theorem for com-

plete mallows mixtures implies that M;|;, Ms|; have the same distinct centers and the

, dgr(n].m)
same corresponding weights. So Ms|;(7) is also equal to ZJ’FZI wjf . [pz(zp—ljll)‘

For M,|; we have:

One of the distinct centers an is equal to ¢;,1ly. We name it ch’

Since J contains all the elements of I, the set S; {m @ mgy = nJL} is a subset of

{mi @ mdin-1) = 7 ). Infact Sy = {m; @ mln-1) = 77, and the relative order among
er_1, e, and n is the same in m; ; and nj’}
This yields that S; = {m; ; : 71 iljn) = €1,1}-
For the weights we have: S; = {m; : m s = nJ’} = {m,; : Myl = o) = W, =

J
Zm‘ilJﬁr}* Wi = Xy lln)=c;; Wi = Wt 1.

We make a similar analysis for Ms|;:
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5.1 Identifiability of the Selective Mallows Mixture Model

757* = cply.

Iissuch that j # 1 = X(an,I) # x(nj ,.1)). But an. = rcgd., so it holds that (j # 1 =
x(n:gd.,l) # x(mg 1, D) Sp = {me; @ maly = nJ;} = {ma, : ma,il;n-1) = 7 ; and the relative order
among e,_1, e, and n is the same in my; and njf*} ={mo,; : Ma,ilfn] = C1.1}

wJ/* = ZHZ‘ilJ:n;* Wai = Z‘41'27'52,1'|[ﬂ]=01,1 Wa,i = Wi 1

The set {i : mo|[n] = c1;} is non empty, so for some U’ in [ks] it holds that coy = ¢1,;. We

also have that wt; | = Yi.x, ((nj=c,, W2.i = Zi:nzd[n]:%, Wwo ;= Wiy p.

We have shown that Y(c;;, wt; ;) € WC,ll s.t. cyyl[n—1] = ”f,1 there exists (cop, Wty ) €
WC2 s.t. (cor. whyy) = (c1,1, Wty ).
Working symmetrically, we can prove that Y(cg, witz ;) € WC% s.t. cogl[n—1] = 7‘(1:,1 there

exists (c1.p, wty ) € WCL s.t. (c1p, wty p) = (cap, Wha ).

We now have to show the same for the centers c;; in WC} that satisfy the restriction
crilln— 1] = n7,, where i > 2. We remind that if we apply Lemma 5.1.1 on the sub-
set {nf,i, nf’iﬂ, nf’kc}, i € [k, nii and its signature I will be returned. In each case
I contains 1 pairwise comparisons, where | < |logs(k)], but I does only work as a sig-
nature on the subset {nf,i, nfi 1 n‘f’kc}. On the full set C}i_1 there may be n] J s.t.
Jj # i but X(an.,I) = x(ni ;D). In this case wt1,1=wJ’.* - Xmeermbi=c s Whom.  The set
C1.m : C1.m|lJ = c1lJ contains centers c; ,, in S, s.t. cym|[n— 1] = ni].,j < i. Induc-
tively we yield that the sets WC,lI and WC% are equal constrained on{c; ,, : ¢ nl[n—1] =
an, j<itand {com : Comln—1] = ngJ, j < i}. So wt1,1=wj’.* - Xmics mid=ct g WH,m=
wJ’ - Xmicymld=ci jJ Wh.m=wla 1 for some ! . This way we show again like the case of
nf’l, that Y(cy, wt; 1) € WC,l1 s.t. cpl[n - 1] = nii,i € [k.] there exists (coy, wlay) €
WC% S.t. (cor, Wiy p) = (c1,1, Wty 1) and reversely Y(cg 1, Wiy ;) € WC,% s.t. e |[n—1] = ch'i, i€

[k.] there exists (c; r, Wt y) € WC,}l s.t. (cyp, wty ) = (cop, Wiy p).

we = {(wi1,m,1), (Wi2, m2), -..(W k. T k) and WC, = WC?2 . So we have shown
that {(w1,1. m1,1), (W12, M1 2), -..(W1 k. T 1)} and

{(wa.1,m9,1), (We9,M2), ...(Wak, T2 i)} are equal as sets.

In fact, one comparison can be saved from the query length, when we try to place the
i-th item in the correct position on the centers restricted on items 1,2,..i-1. This can be
achieved by checking the possible positions in a specific order, starting from item i-1 and
continuing up to item 1. We make use of the fact that the total weight of the centers that
place the i-th item between the consecutive items a and a+1 in the projected center is
equal to the total weight of the centers that place it before a+1 minus the total weight of
the centers that place it before a. Therefore, we only need to add pairwise comparisons
(a,i), (b.i) to the signature rather than a 3-wise comparison (a,b,i). This way the queries
to the strong oracle have length at most 2 - [ logs (k)] + 2.

The above analysis assumes that spread parameters are equal in all components. This
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in fact is the most difficult case in terms of identifiability, due to [5]. In this paper the
authors show that given enough samples and assuming n > 10k we can learn the central
rankings exactly and the corresponding weights and spread parameters with an absolute
error arbitrarily small (thus approaching zero given infinite samples). Thus, the identi-
fiability result for complete mixtures of Mallows models with equal spread parameters,
following from the determinant of Zagier et al., extends to the case of non equal spread
parameters, with the condition n > 10k. For the selective Mallows mixture, in the case of
non equal spread parameters, the proof of identifiability would be very similar to the case
of equal spread parameters, with the different spread parameters functioning as part of
the "signature" of each component, making its isolation easier. In conclusion, based on
the current literature, the bottleneck for the selectivity in the case of non equal spread
parameters is the minimal number of items m, required to learn the complete mixture of
k components with non equal spread parameters. Currently, m, = 10k. Generally, the
identifiability condition in the case where spread parameters are not necessarily equal is
that selection sets J should have length |J| > max(m, 2 - [loga (k)] + 2

In the case of equal spread parameters, the conditions for the length of the selections are
actually tight. If the selection sets contain less than 2 - |logs (k)| + 2 items, then certain

k-mixtures are not identifiable.

5.1.4 Tight Examples for the sufficient Conditions for Identifiability

Theorem 5.1.2. Ifl < 2(|logs(k)]| +1), then there exist two mixtures M;, My, with different

sets of central permutations and M, () = My (), Vit with length less or equal to L.

Proof.
For n = 2m k = 2™ ! we can always construct two sets S;, Sy of distinct permutations,
st. |S1] = |Se| = k = 2™ ! and the projections of the two sets on any selection of n-1 items

are equal. For each v € {0, 1}"" we define a unique permutation m, € Sy, as follows:
T(2-1) =2~ 1, m(2)=2j, f =0

m(2j— 1) =2j, m(2))=2j-1, ify=1
Yj € [m]
We define
Sy ={m,: ve (0,1}, sum(v) is odd)
Sy ={m: ve{0,1}", sum(v) is even}

YJ C [n], |J| = n—-1: {mly: ve{0,1}", sum(v)isodd} = {mll;: veE {0, 1}, sum(v) is even}
Proof: Sps the missing element is j;. For every permutation m; in S; we find j;’s pair,
which might be (j1,j2) or (j2.j1), jo adjacent to j;, and we change the order between j ,jo.

The resulting permutation my is in Sy. j; is not in J so the pair simplifies to the single
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element j, and m|ly= mo|ly.

(deT(nl,i”J-n”J)

k
1
My(m) = f(J)- )~
' ik Z(p, )

(deT(ﬂz,iHJ-’IHJ)

Z(@.|J))

el ey

k
My(m) = f(I)- )
i=1

{1 i} # {mo.;} but M; (1) = My(w) for every m supported on a strict subset of [n].
For n > 2m we can extend the permutations if S;,S; with identity permutations over the

extra elements and the theorem for S;, Sy continues to hold.

Example for n=8 ‘

[~ m |
(0,0,0,00 [1,2,3,4,5,6,7, 8]
(0,0,0,1) [1,2,3,4,5,6,8,7]
(0,0,1,00 [1,2,3,4,6,5,7, 8]
(0,0,1,1) [1,2,3,4,6,5,8,7]
0,1,0,0 [1,2,4,3,5 6,7, 8]
(0,1,0,1) [1,2,4,3,5,6,8,7]
0,1,1,00 [1,2,4,3,6,5,7, 8]
0,1,1,1) [1,2,4,3,6,5,8,7]
(1,0,0,00 [2,1,3,4,5,6,7, 8]
(1,0,0,1) [2,1,3,4,5,6,8,7]
(1,0,1,00 [2,1,3,4,6,5,7, 8]
(1,0,1,1) [2,1,3,4,6,5,8,7]
(1,1,0,0 [2,1,4,3,5,6,7, 8]
(1,1,0,1) [2,1,4,3,5,6,8,7]
(1,1,1,0 [2,1,4,3,6,5,7, 8]
(1,1,1,1) [2,1,4,3,6,5,8,7]

Suppose we exclude element 3.
S1=[1,2,4,5,6,8,7],11,2,4,6,5,7,8],[1,2,4,5,6,7,8],[1, 2,4, 6,5, 8, 7], [2, 1, 4,
5,6,7,8],[12,1,4,6,5,8,7],12,1,4,5,6,8,7],[2, 1, 4,6, 5, 7, 8]

S2=[1, 2, 4, 5,6,7, 8], 11, 2, 4,6,5,8,7,I1, 2,4, 5,6, 8 7], [1, 2, 4, 6, 5, 7, 8],
[29 1’ 49 5! 67 8’ 7]’ [2’ 19 4’ 69 5’ 79 8]9 [2’ 1’ 4’ 5’ 69 7’ 8]’ [29 1’ 4? 6’ 5’ 8’ 7]

S1=S2 as sets
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5.2 Algorithm for learning the Mallows mixture performing noise-

less queries.

Here we present an algorithm for learning the parameters of a mallows mixture given all
its marginals on 2 - |logs (k)| + 3 items.
For n=2 we can learn the restricted mixture with one query to the strong oracle.
for n in [3, Nyl :
Consider the set C containing the distinct elements of the set {m;ljn-17, ..., Tkln-11}-
1=0
dof
Apply Lemma 5.1.1 on C.
There exist s* € [k] and I I-tuple of pairwise comparisons st:
L < loga(k)] and (wtslin-1] # Tstlin-1] = x(7s, I) # x(7s+, 1))
Ts+|[n-1] is a permutation of the items [1,2, .. n-1]. We express it as a
sequence: Tg|n-1] = le1, ez, ...en—1]
forrin[2,n-1]:
J := set of elements appearing in I union {e,_;, e, n}
We obtain the distribution M(r) = Z:‘:l w; - % =
W, gt o _
> j=1 Wi o where 7 is in the set that contains
all permutations of the items of J.

The centers nj’ are distinct permutations of the elements in J .

From the identifiability theorem for complete ranking mixtures we
can identify each distinct center nJ’ and its total weight

wa = Dim J=n) Wi- One of the distinct centers nj’ is equal to mey.
Since J contains all the elements of I, the set S={m; : m|; = TIJL} isa
subset of {m; : Tljn-1] = Ts*ln-17}-

In fact S = {m; : m|[p—1] = Ts*|[n—1] and the relative order among

er_1, e and n is the same in w; and s }.

If rcj’ contains the ordered triplet (e,_1, n, e;), then we have learned
a new center ¢; in S,, which is equal to [e;, e, ...,e,_1, L, €, ..., €0-1],
and its corresponding weight wtl=wa* - Ymien=cls Whn-
Else if nJL ends in (e,_1, n), then we have learned a
new center ¢; in S,,, which is equal to [e], es, ..., en—1, 1],
and its corresponding weight wt=wy. - 3 m.c, u=¢js Whn-
Else if nj& starts with (n, e;), then we have learned a
new center ¢ in S, which is equal to [n, e}, e, ..., en-1],
and its corresponding weight wt=w}. - Y., ju=cjs Whn-

Remove ms|[n—1] from C.

I+=1

}while C not empty
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5.2 Algorithm for learning the Mallows mixture performing noiseless queries.

The above algorithm is based on the work of [6], filling in some important details missing
from their description. It has been tested successfully on various synthetic mixtures. We
will now present an example of the execution of the algorithm. Suppose the latent Mixture

has the following parameters:

m =1[8,7,6,5,1,3,4,2], w; =0.3,
e =1[1,2,3,4,6,7,8,5], wy =0.1,
n3=[1,7,5,3,6,8,2,4], ws =0.1,
my=1[2,7,8,4,5,1,3,6], wy =0.2,
s =1[2,7,8,6,5,1,3,4], ws = 0.25,
e =1[2,7,8,6,5,1,4,3], wsg =0.05

We start from the restriction of the mixture on items {1, 2}. Collection C of marginalised
centers contains both [1, 2] (stemming from r1, ms, ws) and [2, 1] (stemming from 4, ©s, 76).
Signature set {1,2} is incorporated in the first query, along with the third item. The
full query set is J = {1,2,3}. The marginalised model on these items is the following:
{([1,2,3],0.1), ([1,3,2],0.4), ([2,1,3],0.5)}. In this case the query set was big enough to

derive the marginalised mixture on items 1, 2, ...n explicitly.

The algorithm goes on to learn the marginal on items 1, 2, 3, 4. Collection C of marginalised
centers on this items is equal to {[1, 2, 3],[1, 3,2],[2, 1, 3]}. Signature I = {1,2} isolates
the third element of C: w3 = [2, 1, 3].

Item 4 along with signature I constitute the first query set J = {1, 2, 4}. This query aims
to detect centers deriving from m:|[3), where item 4 lies in the first place, right before 2,
or between 2 and 1. The marginal mixture on J is the following:

{([1,2,4],0.2), ([1,4,2],0.3), ([2,1,4].0.3), ([2,4.1],0.2)}.

Component ([2,4, 1],0.2), satisfies the search condition, because item 4 lies between 2
and 1. So we conclude that ([2,4,1,3],0.2) is a component of the mixture on items
1,2,3,4.

The next query is somewhat trivial. Possible insertion positions are considered for item 4,
either between 2 and 3 or after 3. This requires the addition of item 3 to J, so J trivially
covers the full set of items 1,2, 3,4. From this query components ([2, 1,4, 3], 0.05) and
([2,1,3,4] 0.25) are learned. At this step all components derived from [2, 1, 3] are identi-

fied. We delete this element from C and continue to the next candidate.

After the deletion C is equal to {[1,2,3],[1, 3,2]}. Signature I = {2, 3} isolates the first
element of C: me |3 = [1,2,3].

In order to detect candidate centers [4,1,2,3,] or [1,4,2,3,] both items 1 and 4 are added
to the signature so J covers the full range of items and the query is trivial again. None of
these candidate centers is detected so we continue to candidates where 4 is either placed

between 2 and 3 or after 3. In this case J = {2, 3,4}. The marginal mixture on J is the
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following: {([2, 3, 4],0.35), ([2,4, 3],0.25), ([3,2,4],0.1), ([3,4,2],0.3)}. From these only
the first two satisfy the restriction of the signature (2<3). The first one gives a new compo-
nent of the mixture on four items, that is ([1,2, 3,4] 0.1). The weight of this component
is 0.1 = 0.35 — 0.25, not 0.35 as it appears on the marginal mixture on J. The reason
for this is that ([2, 3, 4], 0.35) includes the already learned component ([2, 1, 3,4] 0.25).
We need to exclude the weight of previously learned components in order to learn new
ones. The signature I = {2, 3} only works on the diminished set C. On the full set it also
corresponds to [2, 1, 3], apart from [1, 2, 3].

Similarly, the second component of the marginal ([2, 4, 3], 0.25) appears to give a new
component on four items, with weight 0.25. However this weight corresponds to previ-
ously learned components ([2, 4, 1, 3],0.2) and ([2, 1, 4, 3], 0.05). Thus no new component
is derived. At this point we have learned all the components derived from [1,2,3]. We
delete it from C.

Now C contains a single element, that is [1, 3,2]. No signature is needed. Queries only
contain new item 4 and its candidate neighbours (1,4,3) or (3,4,2). Query J = {1,4, 3}
gives no new components. Query J = {3, 4, 2} detects the centers [1, 3, 2, 4] and [1, 3, 4,
2] with weights 0.1 and 0.3 respectively.

At this point the algorithm has successfully learned the marginal mixture on the first
four items. In the next iterations the mixture is learned on items 1,2,..i, until the 8-th

iteration, when the full mixture is learned.

To demonstrate a more interesting case of signature calculation we jump to the start
of 8-th iteration. The collection C of centers on items 1,2,.. 7 is the following:
C= {7,6,5,1,3,4,2]
[1.2,3,4,6,7,5]
[1,7,5,3,6,2,4]
[2,7,4,5,1, 3, 6]
[2,7,6,5,1,3,4]
[2,7,6,5,1,4,3]}

Firstly, we use pairwise comparison (1,2). This way C is split into two halves. The
first half contains permutations that place item 1 before item 2. In the second half 2 < 1.
We keep the first half:
C = {[7,6,5,1,3,4,2]

[1,2,3,4,6,7,5]

[1,7,5,3,6,2,4]}
Then we use pairwise comparison (1,5). This comparison splits C; into two parts. C] =
{{7.6,5,1,3,4,2]}, where 5 is placed before 1 and C;r ={[1,2,3,4,6,7,5],[1,7,5,3,6,2, 4]},
where 5 is placed after 1. C; = C] is a unit set, so the procedure terminates. The isolated
center my:|[7) is [7, 6, 5, 1, 3, 4, 2] and the signature set I deriving from comparisons (1,2)
and (1,5) is {1, 2, 5}.
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5.3 Learning Mixtures of Two Mallows Models Using Pairwise Comparisons

5.3 Learning Mixtures of Two Mallows Models Using Pairwise

Comparisons

Awasthi, Blum et al. in [23] give an algorithm for learning Mixtures of two Mallows Models
using complete samples. Mao et al. in [6] propose an algorithm for learning mixtures of
k Mallows Models that uses groups of pairwise comparisons. In the case of two centers
each sample should contain at least two pairwise comparisons sampled simultaneously
from the same center, or a 4-wise comparison. However, if as we saw earlier in the iden-
tifiability section pairwise comparisons should suffice. We will extend the ideas of the
identifiability section to the setting of noisy oracles. We will try to simulate the strong

noiseless oracle using samples of the noisy oracle.

We have seen that the cases where ¢ = 1 or w; = wy = 0.5 are degenerate. We con-

sider the level of degeneracy of the mixture.

Definition 5.3.1. We say that the mixture w; - M(¢, m;) + wsy - M(@, 1) is a—non degenerate
iff lw; — 0.5 > a, w; > a, fori=1,2 and ¢ < 1 — a, where a is some positive constant less
than 1.

We suppose that the mixture is a—non degenerate. Also, wlog we suppose that w; < ws.
Then we have a< w; < 0.5-a<05+a<wy <1-a.

The probability mass function of the mixture takes values in the set {p;, ps, ps, ps}, where

—__9
P = o
1
P2 =W -7 +Wa- (pfl,
= .2 L
b3 = w; o+1 + Wo 1’
_ 1
Ps =507

These four numbers are distinct and their order is p; < ps < ps < ps Depending on how
items e;, ¢; compare with each other in each of the two central rankings, the query on the
pairwise comparison (e;, ;) follows one of the four possible Bernoulli distributions Be(py),
lin {1, 2, 3, 4}.

For each pairwise comparison we will try to detect which Bernoulli it follows by esti-
mating the Bernoulli parameter p; empirically from the samples. We want the estimation
to be close to the correct value of the parameter so that the detection (classification) is
correct. The more samples we use for the estimation, the closer it gets to the correct
value, with high probability. Another important factor is how close the latent parameters

{p1, P2, p3. pa} are to each other. The closer they are, the more difficult the detection.

The non degeneracy condition allows us to bound the difference between the latent pa-

rameters. In particular we have:

_ _ o1 L9 9 _w(d-9) _ a®
P2=—P1 =W g T W2 07 ~ 557 =~ or1 ) > 2
= L L = w9 o
Pa—P3=gq - Wi gq - W2 g7 =~ 2
_ 2(1-9)(0.5-w,) 2
p3s —p2 = o+l >a
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Chapter 5. Learning Selective Mallows Mixture Models

Learning Algorithm For Mixtures of Two Mallows Models using pairwise

comparisons

Given our sample set I1 consisting of pairwise comparisons {c, cs, ...cy},
where each ¢ is of the form (e; < ¢;), we compute the quantities g(i < j)

for all i,j € [n] X [n]: qii<j) = X Il{c=(e < ¢)}
cell

for (i,j) in [n] X [n] and i #j:
A q(i<j)

Pij = Qo
We define two parallel lists of clusters, one for the empirical frequencies
and one for the corresponding pairwise comparisons.
frequency_clusters=[[p; 2]]
comparison_clusters=[[(e; < e2)]]
threshold=a? /4
k=1
for (i,j) in [n] X [n] and © # j:
forlin [1,k]:

choose a random element p; in frequency_cluster 1

d := |pij — pl
if min{d} >threshold:
k+=1

frequency_clusters.append([p;;])

comparison_clusters.append([(e; < €))])
else:

frequency_clusters[argmin{d}].append(p;;)

comparison_clusters[argmin{d}].append((e; < ¢;))

If the algorithm has executed correctly, that is all empirical frequencies
are close to their theoretical values, then we expect either k=2 (if central

permutations are reversals) or k=4 (if central permutations are not reversals)

WLOG we assume that frequency_clusters list is sorted in increasing

order. If not, we sort it and ensure that comparison_clusters stays

parallel to it.

if k=2:
first cluster has comparisons (e; < ¢)) st. m(e;) < mi(ej) and ma(e;) > ma(e))
second cluster has comparisons (e; < ¢)) st. m(e;) > m(g)) and my(e;) < ma(e))

if k=4:
first cluster has comparisons (e; < ¢)) st. mi(e;) > mi(ej) and ma(e;) > ma(e))
second cluster has comparisons (e; < ¢) st. m () < m(gj) and my(e;) > ma(e))
third cluster has comparisons (e; < ¢)) st. m(e;) > mi(ej) and ma(e;) < ma(e))

fourth cluster has comparisons (e; < €j) st. m(e;) < mi(ej) and ma(e;) < ma(e))
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5.4 Learning Selective Mallows Mixtures-The General Case

The proposed algorithm succeeds to reconstruct the latent central permutations as long
as each used pairwise comparison has an empirical frequency p;; close to the theoretical
expected frequency p;;. It suffices to hold that for all pairwise comparisons the sample
frequency has a difference of at most a?/8 from the corresponding theoretical value. As
we will see below this can be achieved using enough samples from each pairwise com-
parison. Let N;; be the number of samples containing items i, j and N be the minimum of
these numbers. That is, all pairwise comparisons are represented in at least N samples.

Then, using the union bound and Hoeffding’s inequality we obtain:

P{incorrect centers reconstruction} < IP{ U {Ibij — pijl > a?/8)

(i)eln]?
< >, Plby—pyl > a*/8)
(ij)e[n]?
a4
< Z 2€Xp (—2Nlda)
(if)e[n]?

4
< 2n2exp (—2Na—)
- 64

n2
We demand 2nzexp(—2Ng—1) <es N2> %&26)

If we suppose that queries are adaptive, then we can use an optimal number of compar-
isons (for example via Mergesort), so the total sample complexity will be O(nlog(n) - N).
There are also more sophisticated methods to perform the estimation using noisy com-

parisons, e.g. Feige et al. in [49] and Davidson et al. in [50].

The weights and the spread parameter can be computed by solving the system

p1 = %, p2 = w - ﬁ + woy - (p;fl. The system has a unique solution as long as p; is
known, that is central rankings agree on some comparisons, which means that they are
not reversals. p;, ps are computed in the learning algorithm with an error tolerance of a?.
If greater precision is sought, then more samples should be used. Note that p;s could be
calculated by aggregating the frequencies of different comparisons as long as they follow
the same Bernoulli (this is detected by the clustering threshold with high probability).

Then, tail bounds get tighter as more samples are used.

5.4 Learning Selective Mallows Mixtures-The General Case

5.4.1 The Effect of Selectivity On The Sample Complexity

In this section we try to perform parameter estimation of the Mallows Mixture, so identifi-
ablity conditions must be satisfied. First we focus on the work of Mao et al. so we assume
common spread parameters. To ensure identifiability we suppose all subsets of items

with length 1 = 2 - [loga(k)] + 3, are p-frequent. This means that for each such set the
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Chapter 5. Learning Selective Mallows Mixture Models

probability that either the set or a superset of it is selected is greater than p. We use the
framework proposed by [6], where the "subroutine" aggregates samples in an empirical
distribution and searches over a cover of the space of marginalised mixtures finds the
correct marginalised mixture with high probability. This way it effectively simulates the
noiseless oracle used by a meta-algorithm to inductively reconstruct the central permu-

tation and approximate the corresponding weights with small error.

If the subroutine is proved to simulate the strong oracle, where both the marginalised
centers and the corresponding weights are estimated, then the meta-algorithm performs
optimal size queries, that fit the identifiablity conditions (I = 2 - [logs(k)] + 3). If the sub-
routine is only assumed to retrieve the marginalised centers with high probability and
not the weights, then the query length grows and in [6] a meta-algorithm is proposed that
uses queries of length 1=2k-2 in the worst case, which is not tight with respect to the
identiability conditions. However, Corollary 3 in [5] provides a stopping criterion, that if
it were used by the subroutine it would guarantee that both the marginalised centers and

the corresponding weights are 8-close estimated.

The subroutine responds to the queries set by the meta-algorithm. Each query involves
only a small subset of the items (0(log(k) or O(k) depending on the algorithm) so the sam-
ples are marginalised into this set of items. Even if samples are originally complete they
are truncated in each call of the subroutine to match the queried subset. So the frame-
work proposed in [6] is selection friendly. In particular, it is compatible with the version
of the selective model that applies the selection mechanism after the (complete) Mallows

sampling, that is selection that preserves the positions in the complete sample.

In the work of [6] and [5] sample complexity N is calculated on complete samples that
1 1
-9’y
setting the sample complexity is modified so that in each call of the subroutine enough

are used in each call of the subroutine. In [6] N is found to be poly;( )-log(n). In our
samples of the corresponding subset are present. We assume that the required subsets
are p-frequent so in each call of the subroutine we have to find an appropriate sample
complexity N’ so that N samples contain the queried subset. This is a case of binomial

distribution, where p is the probability of success, N’ is the total number of trials, N is the

_6_
Ieen2’

because all calls of the subroutine must be successful and there are at most k - n? such

number of successful outcomes and the required probability of the event is set to 1 —
calls.

Let E; be the event that less than N samples contain the subset J; queried in i-th call of
the subroutine and p; = S contains 5./ (9)- PIE] = o' (V) p/ - (1~ p)"' 7. Applying Ho-
effding’s inequality we yield P[E;] < exp[—-2N’(p; — %)2]. But for all i p; > p. Then P[E;]
exp[-2N(p - %)2], Vi. P{each J; is contained in at least N samples } = 1 — P{lJ; E;}

1 —Zﬁqz P[E;] > 1—Ik-n?-exp[-2N'(p— % 2]. Setting 6 = k-n?-exp[-2N’'(p— %)2] o N

IA

\%

\/L2+8~p~N-L+L+4~p~N 2 . V8- p-N-L+2L+4-p-N 2(2L+4-p-N
= L = ln(kT”), we achieve our goal. N/ < =L P e A 4p2p ) =
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5.4 Learning Selective Mallows Mixtures-The General Case

1 1

O(% + L), where N = poly(X;, 3

) - log(n), using the results of [6].

The above results simulate the noiseless oracle with the Subroutine function of [6]. The
problem is that this function requires marginalised samples to preserve the information of
the position of each item in the complete ranking. We are more interested in the selective
mechanism that is bijective. In this case, we would use the complete learning algorithm
(of Mao et al. or Moitra et al.) to simulate the noiseless oracle. If we assume common
spread parameters we use the algorithm of Mao et al. (see theorem 4.3.5) and invoke it for
a total of k- n? selection sets with length logarithmic on k. The error probability tolerance
in theorem 4.3.5 is set to 2n!°. We will demand it to be k- n? times smaller, so that from
union bound we can ensure that all oracle calls will be successful. Even with the new er-
ror probability tolerance, the sample complexity for each call remains polyk(%[p, %)- log(n).
We assume that selection sets of length 2log(k) + 3 are p-frequent. To ensure that for
each queried subset the required number of samples will be available, it suffices to have

Wi( 125 3)-log(n) :
a total sample complexity which is O i i A ) where L = ln(kfgz) as shown

P )
earlier. This way, with probability at least 1-6, the learning algorithm succeeds.

If we assume that spread parameters are not known and not equal to each other, then we
will use the algorithm of Moitra et al. to simulate the noiseless oracle (we use the algorithm
given in 4.2.1, because the main algorithm has an unnecessary demand that n > 10k?).
The algorithm in 4.2.1 demands that the number of items is at least equal to 10k. Thus,
selection sets will have to be at least that long. Having selection sets this long, we can
use the algorithm in 4.3.2, which has the advantage to not depend on mixing weights es-
timations. The algorithm has to be slightly modified because of the non common spread
parameters. It will use the pairwise comparisons signature to distinguish distinct centers
but it will also have to use spread parameters as signatures for concentric components.
Concentric components might arise that can not be merged as in the case of equal spread
parameters. To distinguish these components we have to use the spread parameter esti-
mations as a signature. Thus, the spread parameter estimations have to be accurate to
avoid confusion between different concentric components. In particular, the additive error
for each spread parameter should be at most Ag/4, where Ap = mini{|lp; — ;). We can
build the centers inductively in the logic of algorithm 4.3.2 with the requirement that in
each query the returned marginalised centers are correct and the additive error for each
spread parameter is at most A¢/4 . Weights should be correct (up to a small additive 8)

only in one query, as the reconstruction algorithm does not depend on them. We decrease

o
kn?’

voked at most kn? times and this way a union bound ensures that, with probability at least

the error probability of the algorithm of Moitra et al. from 6 to because it will be in-

1 — &, all queries will be successful. We also set the additive error equal to min{A¢/4, 8}
to ensure that the user-defined additive error tolerance & will be achieved and the im-
plementation defined precision A¢/4 for the spread parameters will be achieved as well.
Let u = min{min{|@; — @;|}, mini{|g; — 1|}}. Then, the sample complexity for each queried
111

= log(%)),since Ap < u,

. . 2
selection set is poly(n, L % m, log(k%)) = polyi(n, Wy s

u
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where u is the non degeneracy condition. We assume that selection sets of length 10k + 3

are p-frequent.To ensure that for each queried subset the required of samples will be
11 179,001
(polyk(n,u.y,a,loy(ﬁ)) + L)

available, it suffices to have a total sample complexity which is O > 2
where L = ln(k'—(;.lz) as shown earlier. With this sample complexity we can learn the centers
exactly and the weights and spread parameters up to an additive error 8 with probability

at least 1 — 6, assuming that selection sets of length 10k + 3 are p-frequent.

5.4.2 Learning the Selective Mallows Mixture Model in TV Distance

In this chapter we define an empirical distribution based on selective samples drawn from
the latent Mallows Mixture. Then we find the sample complexity needed to bound the TV

distance between the empirical and the latent model.

We begin with the definition of the selective empirical model. One option is to keep the
definition of [6], which is My() = ﬁ Zli\il 1I{m = o0;}. The argument © as well as the samples
o; can be incomplete. Let S be the support set of selection mechanism f(s). For each sin S
we define N as the number of samples that are permutations of the elements of s. Then
My can be analysed into selections sets as follows: My(7) = s % . Nis Diiset(op)=s LT = 03}
The factor % accounts for the term f(s) in the density of the Selective Mallows Mixture
Model and quantity My, |s = NLS Di:set(op=s 1{T = 0} is equal to the empirical distribution of
the complete (non selective) marginal of the latent mixture on set s. My,|s is compatible
with the definition of the empirical mixture model given in [6], so the results of Proposition

3.3 and Theorem 3.4 in [6] can be applied for My |s, for all s in S.

Now we will find an analytical expression for the TV distance between the empirical model
consisting of samples and the latent model that generated these samples.

2TV(M, Mnly) = Yoes,, | M(0) = Mn|5(0) | = Xses Dioes,ns | M(0) — Myluns(0) | =

Tses Zoesuns | ST N'8) - Mlyns(0) = B o 30 omgns 1o = ai} |

By increasing the sample complexity N the TV distance between the latent model and

its empirical decreases. In particular quantity % approximates f(J N s) and M|;ns(0)

. 1
approximates 5 — Diset(op=Jns 1{O = 0y}

If we suppose that the selection mechanism f is known, then the empirical distribu-
tion can be defined as a function of f as follows : My(71) = )5 f(S)- le Diset(oy)=s LT = 03}
Then 2TV(M, Mnly) = Yoes,, | M(0) — Myly(0) | =

ZSES JJns)- ZUGSMQS | Ml|yns(0) — ﬁ Zi:set(ai):Jﬂs I{o = ai} |
We will use Proposition 3.3 of [6] to bound the TV distance on each subset JNs. According

to this proposition P{TV (M|, My|y) > d} < exp (—N‘(f—‘oi) +2(2kq)! - exp (—N(m‘f—;m), where | =
. 10log(2)  4!(kq)®log(21+2 (kq)"
|[Jland g = 1 + ﬁplog(d(f;_l@). By setting N = No(d, €) = max{ o (q) 09((12 (kq) /e)}

we achieve P{TV(M|;, Myls) > d} < €.

Let Np be the number of selection sets s such that J N's # (0. For each such set we

demand that P{TV(M|;ns, My, luns) > m} < €/Np. Then by union bound we achieve

m Diploma Thesis
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to bound the TV distance between the selective mixture model and its empirical with high
probability: P{TV(M, My|,) < d} > 1—e. To meet the demand for each selection set we need
Njyns = Np (m N—GD) The number of samples drawn from each selection set follows
binomial distribution B(N, f(J N s)), where N is the total sample complexity and f(J N s)
is the probability of selection of the set. We want that with high probability (1 — §) all
subsets are adequately represented in the samples. It suffices to demand for each subset

that the probability it is underrepresented is less that 6/Np.

Let E; be the event that less than Ni(s;) =
set s;, i € [Np] and p; = f(J N sy).
[E-] = ZJNlés‘) ! ( ) p? - (1 = p)NJ. P{each s; is contained in at least N;(s;) samples } =
P{U; E) = 1 - 307 PIE].

In order to bound this probability from below by 1 — 6 we demand that P[E;] < - for all
2N(pl Nl(sl)) :|
Thus, it suffices to demand exp[ 2N (pl Nl(s‘)) ] < iD for all i € [Np]. This is equivalent
L5 T 15 13 .
to N > VL?+8-peNi (s LtL+4 p Nl(s) ( ) for all i € [Np]. (1).
L

D
4p; 6
The RHS of 1nequaf1ty (1) is O( ) Thus, N is O(maxle[ND] {Nl(s‘) + #})

We substitute N;(s;) with its formula and turn the max operator in the formula of Ny(d, €)

(ND Sfnsy)’ 1\7,3) samples contain the sub-

i € [Np]. Hoeffding bounds for binomial variables E; yield P[E;] < exp

N (SL)

into a summation because adding two quantities is asymptotically the same as taking the

maximum of them.

! N, {(kq)?og(24(kq)! N2p | log("2
Then, sample complexity N is O(maxie[ND] { o 5 2o + 40eq)"iog (2 (df Yo/ e) Ny + il 5 )})

Di

In this work, as well as in the literature, the length [ of selection sets and the num-
ber k of distinct centers are supposed to be small. As a result, Np, the number of possible
selection sets is poly(n) and polynomial quantities raised to the power of [ remain polyno-

mial. Thus, sample complexity N is poly(n, 1) where n is the number of items, d is

€’ d p
the TV-distance error margin, ¢ is the error probability margin and selection mechanism

f(s) is assumed to be p-frequent.

5.4.3 Sample Grouping vs Parameter Cover

All known methods for learning the Mallows Mixture in the general case involve some kind
of exhaustive search over candidate models. For each candidate a criterion is applied that
compares the candidate model with the latent mixture model in terms of TV distance. Be-
cause the parameters of the hidden model are unknown, the TV distance is calculated
between empirical models, constructed from samples of the latent model and synthetic
samples generated from the candidate model. There are theoretical guarantees that if the
candidate and the latent model are close in terms of the empirical TV distance, then they
are also close in terms of their parameters. One way to generate a set of candidate models
that includes some model that is appropriately close to the latent model is to perform a

cover over the space of k-mixtures, considering all possible combinations of central per-
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mutations and gridsearching over the mixing weights using a step that is determined by
the sensitivity we aim at. Here we propose an alternative method of exhaustive search

that combines samples rather than candidate parameters.

This method has some advantages compared to the method of cover. It directs the search
only to candidate centers than are implied from the samples. For example, if no samples
contain the comparison e; < ¢;, then no candidate central permutation containing this
comparison will be considered. Moreover it effectively parameterizes the size of the search
space in terms of the spread parameter ¢ and the minimal weight y. If ¢ is small or y is
big, then the search space is decreased, taking these parameters into consideration. On
the other hand the cover fails to adapt to these parameters and searches over the same

space irrespective of them. The proposed method also features a better dependency on
log(k-n/€)

the number of items n that is O (log(n) (1-9 ) compared to that of the cover method that

is n!k.

We will now describe the proposed method of generating candidate models.Using the
log(k-n/es3)
(1-9y
lows model on S,, we can retrieve its central ranking with probability at least 1 — ¢ using a

results of Caragiannis et al (2013) we have that given O( ) samples from a mal-

positional estimator. The time complexity of the pos. est. is O(r - n?) where r is the num-

ber of samples drawn from the mallows model.Suppose we draw N (complete) samples

from a mallows mixture model and the number r; of samples drawn from the i-th cluster,

log(l'n/e3)
(1-9

exhaustive search over all possible k-tuples of disjoint subsets of the samples of length r.

i € [k], is at least equal to some value r which is O( ) Then we could perform an
For each such k-tuple we will assume that its i-th element is a set that contains samples
drawn the same cluster and we will try to retrieve each cluster via a positional estimator.
We will assume that this holds Vi € [k] and different sets contain samples from differ-
ent clusters. For some k-tuple this assumption will be true and then with probability
1 - P 5(:1 m; is wrongly estimated} > 1 — k- ¢/k = 1 — € all central permutations of the

mixture will be correctly estimated.

It remains to find a value for N, such that with probability at least 1 — §, the num-

ber r; of samples drawn from the i-th cluster, is at least equal to r for all clusters and
. log(k-n/es3)
r is O(—(1—¢)2

ter i. P[E;] = jr:_(} (IJV ) ~w¢ - (1 = w)NJ. Applying Hoeffding’s inequality we yield P[E;] <

exp [—2N (w; — ﬁ)z]. Let y be the weight w; that maximizes the quantity exp [—2N (w; — ﬁ)z].

). Let E; be the event that less than r samples are drawn from clus-

Then P[E;] < exp [—ZN(y - ﬁ)z] , Vi € [k]. P{at least r samples are drawn from each cluster} =
1-P(UE, Ei} 2 1-3E, PIE] 2 1-k-exp|-2N(y — £)?|. Setting 6 = k-exp|-2N(y - £)*| &

VL2+8-y-r-L+L+4yr 8y L+2L+4-yr 2(2L+4-y-r)
N = 4y? L 4y? ST T

O(i + %)

= ln(%‘), we achieve our goal. N <

<
-

We want the proposed algorithm to retrieve the set of central permutations of the mix-

ture with probability at least 1 — ¢y & P{algorithm fails} < ¢;. The algorithm could fail

m Diploma Thesis



=

5.5 Learning Separable Mallows Mixture Models

either because there are not enough samples in some cluster (less than r) or because
some estimator fails despite at least r samples are drawn. Summing over those two cases

we have: P{algorithm fails} < §+(1—6)-e. We could set 6 = € = ¢ /2 and achieve our goal.

Now we will analyse the time complexity of this algorithm. The number of all possible k-
Nl (N-D!  (N=(e=Dn)! _ N! -
(N=n)!r! (N=-2pn)!r! = (N=kr)!rl = (N=kr)!-(rhk —

For every such k-tuple we apply k positional estimators. The

tuples of disjoint subsets of length r is equal to
(N—kr+1)-(N—kr+2)-...N Nk
(r))F e

pos. est. takes O(r - n?) time, so the total time complexity is O(k r-n?. (If,l;c)

5.5 Learning Separable Mallows Mixture Models

5.5.1 Learning Clusters Based On Empirical Modes

We assume that a separation condition of the form (dgr(m;, mj) > a, Vi # j) is satisfied for
the the central permutations of the mixture. We will try to detect the central permutations
by looking at the modes of the empirical distribution (the local maxima of the empirical
pdf). We know that the pdf of a mallows model is maximised at its center. We want to
find a value for a such that Vj € [k] wj- (T _ iz Wi pdr(mm ~ p(d), for 7 in the
neighbourhood of m;, that is m st dgr(m;, m) < d. This condition implies that the density
of a component of the mixture in an area close to the center of the component (called the
neighbourhood of that center) is significantly higher that the total density of all the other
components summed in this particular area. Their difference is a function of d, the dis-
tance from the center of the component. As d increases the rest of the components may
dominate over the single component. We will now find a lower bound p(d) for the density
domination of a single component over the rest of the components in the neighbourhood

of width d of the single component.

From the triangle inequality we have dgr(m;, ) > dgr(m;, ) — dgr(m, m) > a — dgr(m;, 7).
So we obtain the following lower bound for the density domination of j-th component:

wj - (deT(Trj»TE) _ Zi;&j w; - (deT(TfiJf) > w; - (deT(Tfj-Tf) _ Zi;&j w; - ¢% - (p_dKT(nj’n)' (1)

But the RHS of (1) is equal to w - @ar(mm _ g . g=dir(mm) iz Wi =
wy - @I — @t - @ AT (1 —wy) > wy- @+ 9% @7 (wy = 1) > y- @+ 9% @7 (v - 1),

for m in the neighbourhood of m; (we name y the minimal weight of the mixture).
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Returning to (1) we obtain w - @r(m.m) iz Wi plr(mm ~ . pd 4 g = . (y = 1), for
m in the neighbourhood of m;. We set p(d) =y - o+ %4 (y-1).

We want local maxima to only exist at the neighbourhoods of the centers. We express
this as follows: for all m st % > dgr(m+, ™) > d , where j* is the central permutation closet

to m, it holds that Y1 | w; - pdr(mm < TN dyep (e m)<d {(OK | w; - per(mem)y,

For m st g > dgr(m-, ™) > d , where j* is the central permutation closet to m, we have that
Iic:1 w; - (deT(TEivTE) < wj* . (deT(TFj* ,T) + Zi;ﬁj* w;- (Pa . (p_dKT(”j* ,T0) < wj* . ¢,d+1 + Z#j* w;- (pa . ¢,—a/2 -

wye -+ (1= wy) - 92,
We also have that min{n/:dKT(,g*,n/)sd}(Zﬁil w; - @)y S @ 4+ (1 — wy) - @t

For values of a such that wy - ¢! + (1 — wy) - P2 < wp - et + (1 - wp) - ™ o
(% + @ — Dwy — %) < q:a/ 2(wj* — 1) (2) the local maxima requirement is satisfied.

(2) can only be true if (¢ + ¢— 1)w;- — @® < 0, because the RHS of the inequality is negative
and ¢4 is positive. But this constraint is always satisfied because (¢ + ¢ — Dw; — ¢% =

(wp =D+ (- Dwp <0,as0<wr <1,0< p < 1.

a/2 e
e 2)

Thus, (2) is equivalent to ¢@ > o o-Dw—a7
J

/2 (o —

The greatest possible value of ¢? is 1, so a must be such that 1 > %

(@ +o-Dwy—g
(@ + ¢ - Dwp — 9" < o’ (wp - 1) &
0<(1-w)e" + (wp — DY + (1 - Pwy. (3)
This is a quadratic expression of 47“/ 2. If the determinant is negative, then the expression
is always positive and (3) is satisfied.
If the determinant is non negative, then two solutions exist for the corresponding quadratic

@/2 should either be above the greater of the two solutions or below the smaller

equation. ¢
one. In the second case a restriction of the form a > a;, arises. If we tighten the restric-
tion in (2) by considering values of d greater than zero then the restriction for a becomes

more strict (a;;, increases).

At this point we are going to introduce the observations about the modes into the frame-
work proposed in [6]. The learning algorithm that uses noiseless queries to the "weak
oracle" can be used to reconstruct the central permutations as long as there is some
way to simulate the noiseless "weak oracle" using noisy samples. In the general case the
weak oracle is simulated using an exhaustive algorithm that checks all possible candi-
date models and selects the one that is closest in TV distance to the available samples.
This computationally expensive procedure could be bypassed if a simple criterion could
be applied to detect target subpermutations.

In particular we would like the probability mass of the mixture to be higher at samples that

are fully concordant to one of the central rankings than at samples that do not fully agree
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with neither of the central rankings. The queries used by the weak oracle contain a "signa-
ture" set of items, such that all centers (marginalised on items [1, 2..., n] have different im-
ages on this set. As a result, it is guaranteed that at most one of the marginalised centers
could agree with some sample on the queried set. The query set also includes three more
items that are used to infer the position of an item in a latent marginalised center isolated
by the "signature". Two of these items are consecutive in the target (marginalised) center
and the third is a new item (item id equals n + 1) that is checked as to whether it can be
placed in between the two consecutives in some latent center extending the marginalised
one. If the guess of the position of the new item is correct, then a sample is produced that
is totally concordant to a latent center on items [1, 2, .., n+1]. The sample is a permutation
of the items in set J = {items in signature set} U {the two consecutive items} U {item n + 1}.
Without a condition about the spread parameters we need to check all samples supported
on set J in order to effectively simulate the weak oracle (we have to learn the marginal
mixture on set J). However, if the spread parameters are small enough, then we can only
check the probability mass on the sample that consists of the signature ranking, the two
consecutive items in the correct relevant position to the signature and the new item (n+1)
placed between the consecutive items. If the probability mass on this sample is above
some threshold, then the guess is correct and the position of item (n+ 1) in a latent center
has been learned. Now we will formulate the condition for the spread parameters and the
threshold.

Suppose that we know that there is some constant a such that ¢ < a and w; > a

for all i € [k]. Also suppose that this constant is known to us.

e For the samples ©* that contain a correct guess for the position of item n + 1 the
(theoretical) probability mass is M(w*) = wy + Z* w; - %, where i* is the index of the
center for which we made the correct guess. n’lflis in total agreement with this center,
so their KT-distance is zero and the corresponding term of the mixture is equal to wy,
which is its maximal value. The other terms are equal to wj - <pdf, where d; is at least one,
because of the disagreements on the signature ranking. Ignoring these terms we have
M(*) > wy > a.

e For the samples © that do not contain a correct guess for the position of item n + 1 the
(theoretical) probability mass is M(m) = Z w; - <pdl', where each d; is at least one, either due
to disagreement on the signature rankinlg or because of incorrect guess of the position of
item n+ 1. Thus, we have M(n) < Y w;- ¢ < Y w;-a=a

i i

Using the above observation we could set the threshold equal to a and decide that a
guess is correct iff the frequency of the corresponding sample is at least equal to a. The
absolute difference between the sample frequency and the theoretical probability mass
decreases exponentially to the number of samples due to Hoeffding’s inequality, so us-
ing enough samples and assuming that there is a non zero gap g between min{w;} and

¢ the above greedy rule is correct with high probability. In particular, if we have at
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least log(2/€)/(2g°) samples from some selection set that contains the signature, the two
consecutive items and item n + 1 then with probability at least 1 — € the greedy rule
frequency >? a/Z(]J|) for finding the correct position of item n + 1 in some latent center
in [n + 1] works correctly. We assume that queries are adaptive. The greedy rule has to
be applied O(n? - k) times so for an overall error tolerance € the sample complexity should
be log(2n? - k/€)/(2g?) for the subset used in each query, so n? - k- log(2n? - k/e)/(2g?) in
total.

Note that this analysis is relevant to the selective Mallows Mixture setting, because the
required samples have length J = O(k) and because longer samples can also be used, as
long as there are enough samples from the corresponding selection set. The low spread
parameter condition helps us avoid costly histogram approximation methods and bridge
the gap between the single and the mixture Mallows learning. The majority rule on pair-
wise comparisons is replaced by a "dominance" rule on samples that are subpermutations

of some latent central ranking.

5.5.2 Clustering Algorithm for Learning Separable Mallows Mixtures and
Conditions for the Success of the Algorithm

We assume that a separation condition of the form (dgr(m;, m;) > a, Vi # j) is satisfied for
the the central permutations of the mixture. We have a set Il of N complete samples drawn
from a mixture of k Mallows models. We aim to divide them into k groups (clusters), such
that permutations that belong to the same group come from the same component of the
mixture. Firstly, we propose a simple clustering algorithm and analyse the probability of
success of the algorithm. A sufficient separation condition is provided that guarantees
the success of the clustering algorithm with high probability. Then we use the clustered
samples to estimate the central rankings of the mixture. The required sample complexity

for this estimation is calculated.

Clustering Algorithm For Separable Mallows Mixtures

clusters=[[I1[0]]]
threshold=a/2

k=1
fornin[1,N-1]:
m = II[n]

foriin [0,k—1]:
choose a random element o; in cluster i
d; := Dgr(0o;, )
if min{d} >threshold:
k+=1
clusters.append([x])
else:

clusterslargmin{d}].append(mn)
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We suppose that the above algorithm has performed a correct clustering of the sam-

ples 1,2 .. n-1. We will study the probability of error on sample = = [I[n].

If = comes from a cluster j already seen (j < k) we have:

Dkr(m, o)) < Dgr(m;, 0j) + Dgr(m;, m), where m; is the latent central permutation of cluster j.
n(n—-1) n(n-1)

n(n-1) a /2 /2 nn=-1) a/2
o _ 5— A(nd)-¢ 7 And)o® _ ¢Y* 2 "
PDkr(my, o) 2 /21 = 3,2 1o T2t~ < Zacase ~ 2oy~ = 2@ " Sdmase AL D) < 755 - 1!
2

Similarly we have P[Dgr(m;, m) > a/2] < % -n!,

so P[Dgr(m;, 0j) + Dgr(m;, m) > a/2] < 2% -n!. We want Dgr(m, 0;) < a/2 with probability
greater than 1 — 6/k, so we demand 6/k > 2% ‘n!'=a> amn=2" %

We also have that Dgr(m, 07) > Dgr(my, mj) — Dgr(my, 0y) — Dgr(mj, ) > a — Dgr(my, oy) —
Dgr(m;, m) and with probability at least 1 — 6/k it holds that Dgr(m, 0y) > a/2=threshold,

where j’ are the cluster ids of the other clusters seen so far (j’ # j).

The algorithm could perform a misclassification of r either by creating a new cluster con-
taining m or by assigning it to a false existing cluster (there are at most k-1 such clusters).
Taking a union bound over all the error events we have that with probability at least 1 — 6

the algorithm assigns m to its correct cluster.

If = comes from a cluster j that has not been seen by the algorithm so far (j = k) we
have:

Dgr(m, 0y) = Dgr(my, m) — Dgr(my, 07) — Dgr(Tie, ©) =2 a — Dgr(my, 0y) — Dgr(me, m) and with
probability at least 1 — §/k it holds that Dgr(m, oy) > a/2=threshold, j’ < k. Again with
union bound over all j* we get that with probability at least 1 — § the algorithm correctly

creates a new cluster containing .

P,, = P{no errors in the first n iterations} =

P{no errors in the first n iterations}-P{ no error at iteration n | no errors in the first n-1 iterations} >
(1= 6)Pn1

Po=1

P> (1-6"

P{clustering algorithm succeeds } = Py_; > (1 — §)¥~!

We want P{clustering algorithm succeeds } > 1 — e soweset 1 —e = (1 -8V & 6 =

1= (1 - ey)¥T.

o log(‘;f,(:?) B log(l—(l—eQ)ﬁ)+log(Z(<p))—log(2k-n!)

Amin = £ Toglg)  — <~ 10g(@)

Once we finish the clustering of the samples we apply the positional estimator on each

cluster to estimate the central permutations of the mixture.

VL?+8-y-r-L+L+4-y-r
=0

e By setting the value for N equal to poe (;’/ + #) ,L = ln(%) .y = ming{w;}

we ensure that with probability at least 1 — ¢; the number r; of samples drawn from the

i-th cluster, is at least equal to r for all clusters (it has been proved previously in this
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work).

log(k-n/e3)
(1-9)

labeled samples from each cluster, then with probability at least 1 — e—;f i-th center is cor-

e If r is at least equal to some value which is O( ) and we have at least r correctly

rectly estimated and thus, from union bound, with probability at least 1 — e3 all central

permutations of the mixture are correctly estimated.

tog(1-(1-e2) ¥ ) +log(Z(¢)-log(2lc-n!)
log(¢)

algorithm successfully partitions the set of N samples into their correct clusters.

elfa>2-

, then with probability at least 1 — ¢, the clustering

The above analysis focuses on the probability of success in each step of the algorithm.
This analysis is too detailed for the simple algorithm we proposed. A more elegant analysis
will be made in the next paragraph . However the above analysis would make more sense
in some other more complicated version of the algorithm. For example, an improvement of
the algorithm would be to construct an estimator of the latent center of each cluster using
the samples that have been assigned to the cluster so far. Then, new samples would be
compared to the estimations of the centers rather than random samples from the cluster.
Supposing that no (or few) misclassifications have been made at the first t steps of the al-
gorithm, the expected distance between each estimator and its corresponding center falls
as t increases, so the probability of misclassification of the remaining samples decreases.
The above analysis could take this decrease into consideration and be useful in such a
scenario. However for the simple algorithm we proposed the following simpler analysis is

more suitable.

An alternative way to guarantee the success of the algorithm at each step is to demand
that with high probability all samples lie within a radius equal to a/4 around their cor-
responding central permutation. This is a sufficient condition for the success of the
clustering algorithm because the distance between points of the same cluster is bounded
above by 2d < a/2 and the distance between points that belong to different clusters is
bounded below by a — 2d > a/2. Let n be a sample generated by center ;. We want that
with probability at least 1 — % distance Dkr(m, ;) is not greater than §. We know that
a/4 amin /4 .

P[Dgr(m, m) > a/4] < g(—@ -n! so we set 2 = sz(@ -n! = log(%rgf’)) = log(®) - amin/4 =
Qpnin = 4 - log(%éf)) /log(¢) = 4 - log(eg'z'ap)) /log(é) =

O([log(N) + nlog(n) — log(ez) — (n — 1log(g + 1)1/1og(3;))

From union bound over N samples we yield:
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P[learning algorithm fails] < P[not enough samples are drawn from some cluster]+P[clustering
algorithm fails]+P[central permutation estimator fails in some cluster] < €; + €2 + €3. Set-
ting e = e = e3 = ¢/3 we bound the error probability of the learning algorithm by

€.

5.5.3 Robustness of Learning Separable Mallows Mixture Models Under Se-
lection Noise

In this chapter we extend the work of the previous chapter to the case where samples are
incomplete. We suppose that a selection mechanism p(m) drops m items with probability
p(m). The selection affects the distance between dissimilar rankings, because discordant
pairs may be discarded and the resulting permutations may be closer to each other than
the initial complete ones. The effect of selectivity should be taken into account into the

separation condition.
Let J be the selection set and m be the number of missing items. m = n — |J|.

A lower bound for the distance after selection would be the following:

Dgr(mld, olJ) > Dgr(m,0)—-n—(n—1)—...—(n—m+ 1) = Dgr(w, 0) — (2n—m+ 1)m/2.
The first item that gets dropped by the selection mechanism gives at most n discordant
pairs between m and o. The second gives at most n— 1 new pairs, and in general the m-th
gives n — (m—) new pairs. The m-th item is in n discordant pairs at most, but at least
m — 1 are common with the previous m — 1 items. Thus, the effect of selectivity on the KT
distance is a decrease less or equal to W

An upper bound for the distance after selection would be:

Dkr(m|J, olJ) £ Dgr(m, o).

This would be the case if all discarded items participated only in concordant comparisons,

so the total number of discordant pairs would remain unchanged.

Let d be the maximal radius of the clusters. For all pairs (i,j) of clusters with latent
centers (m;, ;) we require that with high probability Dkr(0;1lJ, 0i2lJ) < Dgr(01lJ. ojlJ),
where 01, 0y are random samples drawn from cluster i and ¢; is a random sample drawn
from cluster j.

Using the lower and upper bounds discussed above we have:

Dkr(0i,1lJ, 02|J) < Dgr(0y1, 012) < 2d

Dkr(0i1lJ, gjlJ) > Dgr(0i1.0) —n—(n—1)... —(n—-m+ 1) >a-2d - (2n-m+ 1)m/2.

To guarantee that Dkr(0j1|J, 0i2|J) < Dgr(oy1lJ, ojlJ) with high probability, with demand
that with high probability it holds that 2d < a —2d — (2n— m+ 1)m/2
s@2n-m+1)m/2<a-4d S a>2n-m+1)m/2+4d (1).

D Angl _ g ) 9t
We know that P[DKT(T[, TIi) > d] = Zl:d Z(,q)) < Z(@) . Zl:d A(Tl, l) < Z(@) -n!
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We want that with high probability (at least 1 — ¢;) all samples lie within a radius dqy of
the center that generated them. If the probability that one samples violates the condition
is less than % then from union bound over all N samples the total condition is satisfied

with probability at least 1 — ¢;. We set

a _ 0 Ly o

N Zé‘(p)) n: = Z(@) n! =
.

log (%A2) = log(@) - dimax =

o~ o9 (S22 o9 = o 255 o (2) -
O([log(N) + nlog(n) — log(e;) — (n — 1)log(¢ + 1)] /log(q%))

p(m) depends on the selection mechanism. For example if each element is dropped inde-

pendently from the others with probability pg, then p(m) = (;‘1) “pa™ (1 —pg)m ™.

In order to guarantee that (1) is satisfied for all samples with high probability (at least
1 — &) we demand that a > (2n — mg + 1)me-/2 + 4dmax. Where m, is a critical se-
lection length, such that P[m < my] > & /N & Zﬁz’o p(m) > e /N . This way, from
union bound we yield that with probability at least 1 — ¢, it holds for all samples o; that
a> (2n—m; + 1)m;/2 + 4dmax, where m; is the number of missing items from sample o;.
We we set €1 = e = €/2. Then the clustering algorithm succeeds with probability greater
than1-(e;+e)=1-—c¢.

5.5.4 Concentration of Mass of the Mallows Distribution Inside the Sphere
of Radius d

In this chapter we study the way in which the mass of a Mallows model is distributed
at different distances around the central ranking. This analysis is connected with the
analysis of separable mixtures in this work, because the latter demands that each com-
ponent is restricted inside a sphere with a small radius compared to the distance between
different centers of the mixture. Thus, we need to know how large the radius of a Mallows
hyper-sphere should be in order to enclose a high proportion of the total mass of the
model.

The probability that a sample drawn from a Mallows model M(mp, ¢) lies within a hy-
A(n,d)
Z(p.n)
and A(n, d) is the sequence of Mahonian numbers, introduced in subsection 2.2.1 . We

persphere of radius a is equal to }7_, ¢, where n is the number of items in m

observe that this probability only depends on n, ¢ and a. If we see it as a function of the

x And)
d=0 Z(p.n)

to know how these parameters affect the form of p(x). The only obstacle to this is the

% and p(x) is parameterized by n and ¢. We would like

radius x, then p(x) =

absence of a closed form formula for the Mahonian numbers A(n, d). Thus, we will need
to find closed form bounds for A(n, d). In this chapter we provide such bounds and we

also study the figure of p(x) experimentally to gain intuition.

Theoretical Bounds

Lemma 5.5.1. Mahonian numbers A(n, k) are symmetric on k: A(n, k) = A (n, ('21) - k).
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Proof. Base case: A(2,0) =A(2,1)=1

Induction hypothesis:

An-1,10=A(n-1.("") -k VkepJ“(gﬂ}n>2

Induction step:

For all k € {O, 1, (;‘)} we have: A(n, (;‘) - k) = JV:_OIA(n -1, (;l) -k —j) =

Yo A(n-L () - (5)+k+j)= Sy An- L1 -n+k+)) =
2ﬂﬂAM—Lkﬁﬁz}ﬁ3&n—Lk—02Amk)

Note that for k < 0 or k > (”;1) An—-1,k) = A(n -1, (”;1) - k) = 0 from the recursive

Jormula of the Mahonian numbers, so we only malke use of the induction hypothesis_for non

trivial values of k (O <k< (";1)) ]

Lemma 5.5.2. Mahonian numbers A(n,k) are increasing on k for k < [(g) / 2-|.

Proof. Base case: A(3,0)=1<A(3,1)=2

Induction hypothesis:
A(n-1.k) <A(n-1k+1), Vke{o,1...[("%;'")/2]-1}.n>3

Induction step:

For all k € {O, 1,... [(;)/21 - 1} we have: A(n,k+1) = JT:OI An-1,k+1-j) > ZJT‘:_OI A(n -
1,k —j) = A(n, k), because A(n— 1,k +1—j) > A(n— 1, k —j) for j < k from the induction
hypothesis and A(n—1,k+1—-j)>0=A(n—-1,k—j) forj> k. ]

Combining the two above lemmas we can see that the Mahonian numbers are decreasing
for k > [(;) / ZJ and are maximised at k = [(;) / 2-|. Moreover, a random permutation (uni-

form distribution on S,) has expected distance from another fixed permutation equal to

[G)/2]

Lemma 5.5.3. Mahonian numbers A(n, k) are greater than (Z) Jork>2and n > 2. For all
nand k A(n, k) > () - 1.

From the above lemma we have for the probability mass inside the Mallows sphere of
radius d=n: P[d < n] = Y]}, 22;‘3 o > Z(;’n) (ZZZO (g)qid -1-¢p- (])2) =
e ((@+ D - 1-9-¢?)

Lemma 5.5.4. Mahonian numbers A(n,d) are greater than n - (n— 1)... - (n — (% — 1)) for
d< n(n-1)
= "2

Proof. A(n,d) > n-(n—1)...-(n—x), where x is some recursion depth such that recursion
tree is complete (each node has only non zero children ). Restrictions for x:
0<d-xn+(x+1x/2<n-x)(n-x-1)/2
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O<n-x
d<(n-x)(n-x-1)/2
Xmax =N —1— (n—%)2—2d,dgw

Weseta:n—%,b:Zd.
xmax+%:a—\/a2—b:—b >%

d 1a+ a’-b
So we yleld Xmax > E — 3

Plugging this into the inequality A(n,d) > n-(n— 1)... - (n — Xmqx) completes the proof. O

From the above lemma we have for the probability mass inside the Mallows sphere of

radius d=x: P[d < x] = Y}, 2((;‘;3 P > Z(;”n) ( Yeon-(n—=1)... (n - (% - 1)) (,Dd).

Experimental Results

We plot the area of concentration of the Mallows model as a function of n and ¢. When
we say "area of concentration” we mean a distance interval [dmin, dmax], such that with
high probability a random sample drawn from the Mallows model has distance d, with
dmin £ d < dmgx from the central permutation. Both dp;n and dmge seem to scale almost
linearly on n. The slope of these two linear functions depends on the spread parameter
¢. The higher the spread parameter, the greater the values of dp;, and dngy, leading to a

more diffuse area of concentration.
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Figure 5.1. Area of concentration of the Mallows mass for ¢ = 0.3 and different values of
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Chapter E

Conclusion-Future Work

In this thesis we presented the most important theoretical results in the field of Mallows
Mixture Learning. Building on previous work, we prove a tight condition on the minimal
sample length that preserves identifiability. We propose an algorithm that learns mixtures
of two Mallows models using exclusively pairwise comparisons, which is the most extreme
case of selectivity. We show how the existing algorithms that use complete samples can
be used as a subroutine for a learning algorithm that uses incomplete samples. Then
we focus on separable mixtures, where we can detect central permutations by looking
at the pmf modes or most strongly when components are so far from each other, that
samples from one component are most likely closer to each other than to samples from
another component. In the general case, the sample and time complexity are proved to
be polynomial on all parameters except the number k of components and in the case of

separable mixtures it is polynomial to k as well.

One important limitation of our results is that in the non separable case we can not use
samples from a specific selection set, unless many other samples from this selection set
are present, so that an empirical histogram on the selection set is formed. One potential
solution would be to replace the histogram criterion (such as 4.3.1) with a bayesian like-
lihood criterion. In particular, given a collection of incomplete samples we could choose
the candidate model that maximises the likelihood of the sample collection. This could
definitely work as a heuristic and it could work theoretically if we find an upper bound
for the likelihood of the samples under a candidate model with different parameters than
the original ones and a lower bound for the likelihood under the correct candidate model

that is greater than the aforementioned upper bound.

Another direction would be finding a tight condition on the minimal sample length that
preserves identifiability in mixtures with different spread parameters. Using the results
of [5] we show that it suffices to have samples from all subsets of length 10k + 3. There is
gap between this bound and the bound 2log(k) + 3 that holds in the case of equal spread
parameters. The problem arises from the fact that in the case of equal spread parameters
the complete mixture of k distinct components is identifibale for all numbers n of items,
due to the non zero determinant of Zagier. However, in the case of non equal spread

parameters the existing literature proves identifiability assuming that n > 10k. It would
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be interesting to reduce this bound to O(log(k)).
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