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Abstract
In this Thesis I shall attempt to present the main theoretical character-
istics of a (3+1)-dimensional string-inspired low-energy effective gravi-
tational theory with Chern-Simons anomalies and an axion field, called
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Kalb-Ramond (KR) or string-model-independent axion, which in four di-
mensions is the dual of the three form associated with the field strength
of the spin-one antisymmetric tensor field of the massless gravitational
multiplet of the underlying string theory. This field strength plays the
role of a totally antisymmetric torsion component. This this theory con-
tains both anomalies and torsion, whose presence is manifested through
the emergence of the pseudoscalar KR field, This theoretical framework
allows for the quantum fluctuations of the axion field to affect the gravi-
tational field and vise versa. We will construct the effective action of the
graviton and axion fields obtained in the low-energy limit of string the-
ories, and explain how the Chern-Simons couplings between the gravity
and the axion lead to the aforementioned phenomenon. Then we will
try to use this model to show that quantum axion perturbations lead
to time-dependent vacuum energy densities for this string-inspired cos-
mology, which is essential in driving the Universe evolution in a way
characterising the so-called “running-vacuum-model” framework of cos-
mology. We shall extract the form of this running (with the cosmic time)
vacuum energy density, and show that it contains terms proportional to
H2 and H4, where H is the Hubble parameter. We will show that,
at the inflationary era, the H4 term is dominant. Most importantly, we
shall demonstrate that the H4 terms arise from the gravitational anoma-
lies that characterize the theory, as a consequence of the formation of
condensates due to primordial gravitational wave perturbations of the
space-time. This means that this term lead to inflation in a dynamical
scenario whereby the role of the inflaton field is played be an effective
intrinsic scalar field (vacuumon), associated with the non-linearities due
to the H4 term of the vacuum energy density.
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Περίληψη

Σε αυτή τη διατριβή θα προσπαθήσω να παρουσιάσω τα κύρια θεω-

ρητικά χαρακτηριστικά μιας ενεργής (3+1)-διάστατης βαρυτικής θεωρίας
χαμηλής ενέργειας βαρύτητας με ανωμαλίες Chern-Simons και ένα πεδίο
άξιονίου, που ονομάζεται Kalb-Ramond (KR) ή αξιόνιο ανεξάρτητο από το
μοντέλο χορδής, το οποίο σε τέσσερις διαστάσεις είναι δυϊκό της έντασης
πεδίου του αντισυμμετρικού τανυστικού πεδίου με spin 1 που υπάρχει στην
άμαζη βαρυτική πολλαπλότητα της υποκείμενης θεωρίας χορδών. Αυτή
η ένταση πεδίου παίζει το ρόλο ενός πλήρως αντισυμμετρικού στοιχείου

στρέψης του χωρόχρονου. Αυτή η θεωρία περιέχει τόσο ανωμαλίες όσο
και στρέψη, η παρουσία των οποίων εκδηλώνεται μέσω της εμφάνισης του
ψευδοβαθμωτού πεδίου KR. Αυτό το θεωρητικό πλαίσιο επιτρέπει στις
κβαντικές διακυμάνσεις του πεδίου του αξιονίου να επηρεάζουν το βαρυ-

τικό πεδίο και το αντίστροφο. Θα κατασκευάσουμε την ενεργή δράση
των πεδίων βαρυτονίου και αξιονίου που λαμβάνονται στο όριο χαμηλής
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ενέργειας των θεωριών χορδών και θα εξηγήσουμε πώς οι συζεύξεις Chern-
Simons μεταξύ της βαρύτητας και του αξιονίου οδηγούν στο προαναφερθέν
φαινόμενο. Στη συνέχεια, θα προσπαθήσουμε να χρησιμοποιήσουμε αυτό
το μοντέλο για να δείξουμε ότι οι διαταραχές των κβαντικών αξιονίων

οδηγούν σε εξαρτώμενες από το χρόνο πυκνότητες ενέργειας κενού για

αυτήν την εμπνευσμένη από χορδές κοσμολογία, η οποία είναι απαραίτητη
για την οδήγηση της εξέλιξης του Σύμπαντος με τρόπο που χαρακτηρίζει το

κοσμολογικό πλαίσιο του λεγόμενου “μοντέλου του τρεχούμενου κενού”.
Θα εξαγάγουμε τη μορφή αυτής της τρέχουσας (με τον κοσμικό χρόνο)
πυκνότητας ενέργειας κενού και θα δείξουμε ότι περιέχει όρους ανάλογους

των H2
και H4, όπου η H είναι η παράμετρος Hubble. Θα δείξουμε ότι,

στην εποχή του πληθωρισμού, ο όρος H4
είναι κυρίαρχος. Το πιο σημαν-

τικό, όπως θα δείξουμε, είναι ότι οι όροι H4
προκύπτουν από τις βαρυτικές

ανωμαλίες που χαρακτηρίζουν τη θεωρία, ως συνέπεια του σχηματισμού
συμπυκνωμάτων λόγω των αρχέγονων διαταραχών των βαρυτικών κυμάτων

του χωροχρόνου. Αυτό σημαίνει ότι αυτός ο όρος οδηγεί σε πληθωρισμό
σε ένα δυναμικό σενάριο όπου ο ρόλος του πεδίου inflaton παίζεται από
ένα ενεργό και εγγενές βαθμωτό πεδίο (vacuumon), που σχετίζεται με τις
μη γραμμικότητες λόγω του όρου H4

της ενεργειακής πυκνότητας κενού.
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1 Introduction and Summary
Over the last two decades a plethora of cosmological observations [1] have
changed our perception of the universe.We know now that in our current
epoch the universe mostly consists of an unknown form of energy (dark
energy) ( 69% of the current energy budget) whose equation of state
is close to that of a spacetime characterized by a positive cosmological
constant (w ≃ −1).In addition 26% of the Universe’s current energy
budget consists of dark matter. Ordinary matter constitutes only 5%
of the observed Cosmos.The dominance of dark energy results in the
acceleration of the universe in later eras while due to the equation of
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state above leads at a new de Sitter phase (the first having occurred
during inflation).

All these cosmological data have been interpreted using the ΛCDM
model (cosmological constant λ plus cold dark matter (CDM)).In this
model data is fitted to the flat six-parameter canonical version of the
ΛCDM model the so-called base ΛCDM [1]. The ΛCDM paradigm is
not yet understood at a microscopic level, in that we do not know the
microscopic origin of the cosmological constant.

The simplicity of this model, however, and the excellent fit to the
plethora of the cosmological data, prompt physicists to accept it and at-
tempt to develop microscopic models that could approximate the λCDM
paradigm in the late Universe. However, recently there appear also to be
tensions between the Planck Collaboration [1] data concerning the Value
of the current-era Hubble parameter H0 = 67.27±0.60 km/s/Mpc based
on cosmic-microwave-background (CMB) observations and fits with the
ΛCDM model, and the value H0 = 73.24 ± 1.74 km/s/Mpc obtained
from direct local measurements (e.g. cepheid galaxy measurements [2]).
Although such tensions may accept more mundane astrophysical and/or
statistical-analysis explanations, nontheless several physics were prompted
to look for viable alternatives of the ΛCDM paradigm [3].

So the main question is whether the de sitter phase can be described
by this model or we need a time dependent vacuum energy density which
can describe better this phase and probably offers a resolution to the
observed tensions.

The vacuum energy is probably a result of quantum gravity effects
and so the understanding of its microscopic nature will have to wait,until
a better theory of quantum gravity is available.Nonetheless,it might be
an effective theory (a theory that does not care about the internal in-
teraction of the building blocks of the system but only for the external
effects which can be verified by observational data). Such an attempt is
the running vacuum model (RVM) of cosmology [4], which are going to
analyze in this work. Apart from a smooth cosmological evolution of a
Universe with a time-dependent vacuum energy [5], this framework also
provides a correct phenomenology in the current era of the Universe [6]
and a potential resolution of the cosmic tensions [7]. In [8] a derivation
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of a RVM from a string-inspired cosmology was given. The model is
characterised by gravitational anomalies and torsion, the latter corre-
sponding to a pseudoscalar (axion-like) degree of freedom which couple
to the anomaly terms in a non trivial way. This anomalous coupling
is crucial, under certain circumstances we shall discuss in detail below,
in providing the non-linear terms necessary for the RVM framework to
induce inflation in early stages, without inflaton fields. This is the main
topic of this dissertation.

The structure of the thesis is as follows. In the next section 2, we
review the basic features of the RVM model. In section 3 we discuss
the string-inspired anomalous gravitational theory that will be the basic
model which will lead to an effective RVM cosmology, In section 4 we
discuss some important mathematical properties of the anomalous grav-
itational theory, related to the anomalous coupling of the axion “matter”
to the Chern-Simons gravitational anomaly term. In section 5 we discuss
the effects of gravitational waves on the gravitational anomaly Chern-
Simons terms, which become non trivial in the presence of the former,
while in section 6 we present an alternative method to calculate those
terms, using the covariant derivative of the Cotton tensor. In section 7
we compute the condensate of the anomalous terms, which will be crucial
for our analysis in the following section 8, where we demonstrate that
the above gravitational anomalous system, leads to a running vacuum
model cosmology and inflation due to the associated quartic terms in the
Hubble parameter, which are dominant in the early Universe and lead to
inflation without inflaton fields. Final, section 9 contains our conclusions
and outlook.

2 Brief description of the Running Vacuum
Model Cosmology

An important feature of this model is its departure from the classical
phenomenological framework of cosmology, the LCDM model in which
the cosmological constant Λ is truly constant and, as a result, the vacuum
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energy density is also constant

ρΛ =
Λ

8πG
. (1)

In contrast, our cosmological theory will be of the type provided in the
so-cxalled the running vacuum model (RVM) of the Universe [4, 5], in
which Λ and ρ are both time dependent.

The reason is that running vacuum is gravitationaly induced and as
we shall show below gravitational anomalies in our theory create this
dependence [8]. The main object of this theory is the running vaccuum
energy density which, as the name hints, expresses the time dependent
energy modification that gravitational anomalies creates with the vac-
cuum being the mediator.The ρRVM is given by the renormalised equa-
tion as a function of Hubble rate [4] H = ȧ

a

dρRVM

dlnH2
=

1

(4π)2

∑
i

[aiM
2
i H

2 + biH
4 + ci

H6

M 2
i

] (2)

where the right-hand side consists only of even powers of H2, on account
of general covariance (that is, it should depend on terms involving posi-
tive integer powers of the Riemann tensor and its contractions, the latter
being proportional to H2). In general there could be dependence on Ḣ
as well, however this quantity can be expressed in terms of the cosmic
acceleration q = − ȧ a

(ȧ)2 = − ȧ
a H

−2 during each era

Ḣ = −(1 + q2)H2 (3)

Making the approximation, sufficient for the phenomenology in our
case, that in each era q is approximately constant, we can then express
Ḣ in terms of H2 as above. In this way, by integrating (2) we have

ρRVM(H, Ḣ) = a0 + a1Ḣ + a2H
2 + a3Ḣ

2 + a4H
4 + a5ḢH2... (4)

In our situation (4) we have a1 = a3 = a5 = 0 and so the final
equation is of the form [4]

ρRVM =
3

κ2
(c0 + vH2 + α

H4

H2
I

) + . . . (5)
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By considering a spatially flat FLRW space the main cosmological evo-
lution equation for ρRVM is provided by [5]

Ḣ +
3

2
(1 + ω)H(1− v − c0

H2
− a

H2

H2
I

) (6)

in which ω = ρm
pm

denotes the equation of state of matter and/or radiation.
For all practical purposes, the expansion in power of the Hubble

parameter can be truncated to order H4, as this suffices to describe the
cosmology of the entire universe [4, 8]. A solution of (6) is given by

H(a) =

(
1− ν

α

)1/2
HI√

Da3(1−ν)(1+ω) + 1
, (7)

where D > 0 is an integration constant. It is easy to check from (7)
that for Da4(1−ν) ≪ 1 the universe starts from an unstable de Sitter era
H2 = (1− ν)H2

I /α which is powered by the H4 term in (5).
The H4 term is dominant in the early Universe, and as we we will

see in the next chapters of this thesis is associated with the coupling
between the KR axion field which is the generalization of the matter
field and the gravitational anomalies which are expressed in the low en-
ergy sting framework as an effective Chern-Simons term. As we shall
discuss later on, there is a condensate of anomalies, powered by primor-
dial gravitational-wave perturbations, and the this leads to violation of
Lorentz symmetry, via an axion background satisfying ḃ = constant. As
discussed in [8], such constant axion backgrounds couple to axial fermion
currents, and result in CPT violation, which may produce a lepton asym-
metry during the radiation era. The H4 term, due to the anomalies, will
lead to inflation in the early de Sitter eralaton, but this inflation will
not be induced by an external inflaton field, but through these non-
linear quartic terms in the Hubble parameter, which organically hide an
effective scalar mode. The situation is reminiscent of Starobinski infla-
tion [9], but it is different from it, as it involves here higher curvature
terms that are due to gravitational anomalies. This will be the main
point of research in this report.
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3 Anomalous string effective action with grav-
itational anomalies

In the low energy string theory which we use there is three fundimental
vibrational modes of a string,a traceless, symmetric ,dimensionless ,spin-
2 field gµν which is the gravitational field a spin-2 scalar gravitational
field the dilaton Φ with gs = eΦ and the spin-1 antisymmetric tensor field
the KR axion field with Bµν = −Bνµ.the dilaton we will see that plays
the central role in the effective theory because it binds the gravitational
and the axion field together in an extra dimensional manifold with metric
g̃µν.Spesifically,it alters the gravitational field equation to (g̃µν,Φ) so the
GR field is now expressed in 4 + d dimensions.Also it appears naturally
in the action of the matter axion field.Finally,the dilaton characterizes
the size of the new manifold.

Now we are going to extract the effective action.in order to do do
that we are going to asume te form of the action of the bosonic part and
we are going to calculate the path integrnal integrating over H.Then we
are going to reveal a δ functional constraint which is a product of the
Bianchi identity.

The action of the bosonic part is:

SB = −
∫

d4x
√
−g(

1

2κ2
R +

1

6
HλµνH

λµν...) (8)

It is known [10] that the KR field strength terms H2 in (8) can be ab-
sorbed (up to an irrelevant total divergence) into a contorted generalised
curvature R(Γ), with a “torsional connection” [11] Γ, corresponding to a
contorsion tensor proportional to Hρ

µν field strength,

Γ
ρ
µν = Γρ

µν +
κ√
3
Hρ

µν ̸= Γ
ρ
νµ , (9)

where Γρ
µν = Γρ

νµ is the torsion-free Christoffel symbol. As we shall
demonstrate below, there is an axion degree of freedom associated via
a duality transformation to the torsion [12]. This is the so-called KR
axion, or string-model-independent axion [13].
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Now I calculate the path integral over H:∫
dH exp iS (10)

using the δ functional constraint associated with the Bianchi identity:

Πxδ(ε
µνρσHνρσ(χ);µ −G(ω,A)) =∫

Db exp[i

∫
d4x

√
−g

1√
3
b(x)(εµνρσHνρσ(χ);µ −G(ω,A))] (11)

Integrating by parts we obtain:

Πχδ(...) =

∫
Db exp[−i

∫
d4x

√
−g(∂µb(x)

1√
3
εµνρσH

νρσ

+
b(x)√

3
G(ω,A)] (12)

So the path integral becomes:∫
DbdH exp[−i

∫
d4x

√
−g(

1

2κ2
R +

1

6
HλµνH

λµν

+ ∂µb(x)
1√
3
εµνρσH

νρσ +
b(x)√

3
G(ω,A)] (13)

We observe that we can complete the square in the integral by adding
and subtructing the term 1

2∂µb∂
µb So the path integral becomes:∫

DbdH exp[−i

∫
d4x

√
−g(

1

2κ2
R + (

1√
6
εµνρσH

µνσ

+
1√
2
∂µb)

2 − 1

2
∂µb∂

µb+
b(x)√

3
G(ω,A)] (14)

The integration with the dH gives a functional Gaussian integral which
is not part of the action. Now we are going to replace the tensor notation
of the Bianchi constraint, which is:

G(ω,A) =
α′

32κ
(RµνρσR

µνρσ − FµνF
µν) (15)

11



In the last equation by changing the constant in order the action to be
renormalisable we have that the effective action is:

Seff
B =

∫
d4x

√
−g[− 1

2κ2
R +

√
2

3

α′

96κ
(RµνρσR

µνρσ

− FµνF
µν) + ...] (16)

Were dots denote to gauge and higher derivative terms appearing in the
action.And so we see that the KR axion field couples to the gravitational
and gauge field.A very important term in this action is the Hirzebruch-
Pontryagin term:

√
−g(

α′

96κ
(RµνρσR

µνρσ − FµνF
µν) (17)

In the model of [8], which we adopt for our purposes here, it is assumed
that only fields from the massless gravitational bosonic string multiplet
appear as external fields in the early Universe, that is only gravitons,
dilatons and antisymmetric tensor KR axions. The dilatons are self
consistently assumed to be constant [8], and as such are set to zero,
without loss of generality. Hence, from now on we ignore gauge fields in
our discussion.

4 Analysis of the properties of Cotton ten-
sor

In this section we are going to extract the form and the basic property of
cotton tensor.this is a traceless antisymmetric tensor which is ensensial
for the expration of pertubations at a macroscopic level Now we can
write the effective action as a sum of 3 actions its of which express the
contributions of the field modes that we have studied before.

Seff
B = Sgrav + Sb + Sb−grav (18)

The Sgrav express the pure gravity scalar action,the Sb express the action
of the KR axion matter field b(x) (ignoring its anomalous gravitational
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coupling) and

Sb−grav = −
√

2

3

α′

96κ

∫
d4x

√
−g(∂µb(x)K

µ)

=

√
2

3

α′

96κ

∫
d4x

√
−gbRµνρσR̃

µνρσ

describes the interactions between the KR axion gravitational anomaly
term. Now by calculating the variation of the KR axion term we can
extract the Cotton tensor.

δ[

∫
d4x

√
−gbRµνρσR̃

µνρσ] = 4

∫
d4x

√
−gCµνδgµν

= −4

∫
d4x

√
−gCµνδg

µν (19)

Now we have:

δ[

∫
d4x

√
−gbRµνρσR̃

µνρσ] = δ[

∫
d4x

√
−g(∂µb(x)K

µ)]

=

∫
d4x(∂µb(x)δ(

√
−g)Kµ)) (20)

The (
√
−g)Kµ term is called Chern-Simons anomaly current term

and is equal to:

√
−gKµ = 2εµαβγ[

1

2
Γσ
ατ∂βΓ

τ
γσ +

1

3
Γσ
ατΓ

τ
βηΓ

η
γσ] (21)

The variation of this term is:

δ(
√
−gKµ) = 2εµαβγ[δ(Γσ

ατ)∂βΓ
τ
γσ + Γσ

ατδ(∂βΓ
τ
γσ)

+ δ(Γσ
ατ)Γ

τ
βηΓ

η
γσ + Γσ

ατδ(Γ
τ
βη)Γ

η
γσ + Γσ

ατΓ
τ
βηδ(Γ

η
γσ)] (22)

We write the second term as a derivative:

Γσ
ατδ(∂βΓ

τ
γσ) = ∂β(Γ

σ
ατδ(Γ

τ
γσ))− δ(Γτ

γσ)∂β(Γ
σ
ατ).
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The first term inside the integral gives 0. For the second tern at first we
change the silent markers by τ↔ σ.the non silent markers obeys the rule
of cyclic translations so γ↔ α, β↔ γ so the term becomes: δ(Γσ

ατ)∂γΓ
τ
βσ

For the term δ(Γσ
ατΓ

τ
βηΓ

η
γσ) we keep the first of the terms that we

found as it is and in the other two we do the necessary translations in
order to extract the variation term as common. Due to the symmetry
of those terms we need to multiply with 1

2 after we do the translations.
Hence:

Γσ
ατδ(Γ

τ
βη)Γ

η
γσ = −1

2
δ(Γσ

ατ)Γ
η
βσΓ

τ
γη

in which we did the translations: τ → σ,σ→η,η→τ for the silent markers
and α↔β for the non silent.And:

Γσ
ατΓ

τ
βηδ(Γ

η
γσ) = −1

2
δ(Γσ

ατ)Γ
η
βσΓ

τ
γη

in which we did the translations: η→σ,σ→τ, τ→η for the silent markers
and α↔γ for the non silent. in conclusion the vatiation of the Chern Shi-
mons term becomes equal to the riemman tensor multiply by δ(Γσ

ατ).So
the initial integral (20) becomes:

2

∫
d4xεµαβγ∂µbR

τ
σγβδ(Γ

σ
ατ) (23)

The variation of the Christoffel symbol is given as:

δΓσ
ατ =

gσν

2
(Dαδgντ +Dτδgνα −Dνδgατ)

so the integral becomes:∫
d4εµαβγ∂µbR

τν
γβ(Dαδgντ +Dτδgνα −Dνδgατ)

Τhe Riemann tensor is antisymmetric in [τ,ν] and because δgντ is sym-
metric their tensor product gives 0.for the last 2 term we do the necessary
translations (we do τ↔ν on the Riemann and the third term and then

14



because Riemann is antisymmetric gives a "-" and also g is symmetric)
and we combine them.∫

d4x
√
−gεµαβγ∂µbR

τν
γβDτδgνα

Now we integrate by parts to obtain:∫
d4x(εµαβγ∂µbDτR

τν
γβ + ∂µτbε

µαβγRτν
γβ)δgνα

Finally by using the Bianchi identity DτR
τν
γβ = DγR

ν
β − DβR

ν
γ and the

definition of the dual Riemann tensorR̃τµνα = 1
2ε

µαβγRτν
γβ and by doing

the necessary translation after the combination with ε (we do β↔γ and
then we have an odd translation on ε so it gives a "-" and the two terms
becomes the same) so we end up with:

−2

∫
d4x(εµαβγ∂µbDγR

ν
β + ∂µτbR̃

τµνα)δgνα

because we want the cotton tensor to be symmetric under [μ,ν] we do the
same process but instead of μ from the beginning we have ν and then we
simply add all the terms. So the final form of the cotton tensor is:

Cµν = −1

2
[uσ(ε

σµαβRν
β;α + εσναβRµ

β;α + uστ(R̃
τµσν

+ R̃τνσµ] (24)

Another important property we need to discuss is the apparent break-
ing of diffeomorfism invariance in the presence of gravitational anomalies,
which will manifest itself as a failure of the covariant conservation law
for the stress tensor of matter in spacetime backgrounds characterised by
a non trivial Cotton tensor (such as the ones with gravitational waves).

In order to do that we have to take the covariant derivative of cotton
tensor in the form:

Cµν = −1

2
[Dλ(uσR̃

λµσν) +Dλ(uσR̃
λνσµ)] (25)
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And the derivative is:

DµC
µν = −1

2
(uµσλR̃

λµσν + uµσλR̃
λνσµ+

uσλDµR̃
λµσν + uσλDµR̃

λνσµ + uσDµλR̃
λµσν + uσDµλR̃

λνσµ+

uµσDλR̃
λµσν + uµσDλR̃

λνσµ)

Now by regrouping the derivatives ans by considering that [λ,μ] antisym-
metric so that [Dλ, Dµ] = 2Dµλ(uσR̃

λµσν) and the other is DµDλ(uσR̃
λνσµ) =

[Dλ, Dµ]uσR̃
λνσµ −DλDµ(uσR̃

λνσµ) So the derivative of cotton ends up
as follows:

DµC
µν =

1

2
(−DλDµuσR̃

λνσµ

+ [Dλ, Dµ](uσR̃
λνσµ +

1

2
uσR̃

λµσν)) (26)

The first term becomes:

DµuσR̃
λνσµ = uσµR̃

τνσµ + uσε
σαβγDτR

τν
αβ

For this the first term is 0 because is the product of a symmetric and
antisymmetric tensor and the other is also 0 due to the bianchi indentity.
So the remainder of the cotton derivative becomes by using the formula of
the communicator of covariant derivatives of the riemman tensor which
is:

[Dλ, Dµ]R̃
λνσµ = Rλ

τλµR̃
τνσµ +Rν

τλµR̃
λτσµ +Rµ

τλµR̃
λνστ

And after we do the same job for the other we have:

DµC
µν = uσ[(R̃

τνσµ +
1

2
R̃τµσν)Rλ

τλµ +Rν
τλµR̃

λτσµ+

Rµ
τλµR̃

λνστ +
1

2
Rµ

τµλR̃
λµσν +

1

2
Rν

τµλR̃
λµστ

Now we do the nesesary contractions in order to reveal the Ricci tensor

16



so:

DµC
µν =

1

2
uσ[−(R̃τνσµ +

1

2
R̃τµσν)Rτµ + (R̃λνστ

+
1

2
R̃λτσν)Rτλ + (R̃λτσµ +

1

2
R̃λµστ)Rν

τµλ]

because the Ricci tensor is symmetric and Riemmann antisymmetric
the product gives 0 and the two first terms vanishes.for the last term
the first Riemmann is antisymmetric on the [λ, τ ] so we can write that
R̃λτσµ = 1

2(R̃
λτσµ − R̃τλσµ) So we have:

DµC
µν =

1

4
uσ[R̃

λτσµRν
τµλ − R̃τλσµRν

τµλ + R̃λµστRν
τµλ]

In the second term we do the translation τ < − > λ so we have:

DµC
µν =

1

4
uσ[R̃

λτσµ(Rν
τµλ −Rν

λµτ) + R̃λµστRν
τµλ]

Now by using the Bianchi identity Rν
τµλ−Rν

λµτ −Rν
µλτ = 0 we have that:

DµC
µν =

1

4
uσ[R̃

λτσµRν
µλτ + R̃λµστRν

τµλ]

Now by using the identity R̃λτσµRν
µλτ =

1
4δ

σ
ν R̃R we end up with:

DµC
µν =

1

8
uνR̃R , (27)

where we remind the reader uµ = ∂µb, is the derivative of the axion field.
This shows us that the Cotton tensor is not covariantly conserved,

and, as a result, affects the diffeomorphism invariance, since as we shall
demonstrate below the property (27) implies non conservation of the
matter stress-energy tensor, something that should not happened in GR.

One would think that, in order to solve that problem, we should
work only in specific gravitational backgrounds (specific manifolds) like
the FLRW space-time with axion field b(t) in which, in the non per-
turbed case, the Cotton tensor vanishes. However we can in general
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make sense of gravitational anomalies,such as, for instance, the cosmol-
ogy with gravitational waves, as follows: in order for the Einstein equa-
tion to be diffeomorphism invariant we need to modify the stress energy
tensor of the axion field by including the Cotton tensor, as expressing
an exchange of energy between the matter (axion) and the gravitational
sector. So:T µν ⇒ T µν

b+Λ+gCS and

κ2T̃ µν
b+Λ+gCS =

√
2

3

ακ

12
Cµν + κ2T µν

b + Λgµν. (28)

The Einstein equations in the presence of gravitational anomalies (that
is in the presence of a non trivial Cµν ̸= 0, are then given

Rµν −
1

2
gµνR = κ2T̃ µν

b+Λ+gCS (29)

This is consistent with the Bianchi identity of the Einstein tensor,
(
Rµν−

1
2gµνR

)
;ν
= 0, from which we obtain the generalised conservation

T̃ µν
b+Λ+gCS;µ = 0 . (30)

In this sense, the apparent failure of non conservation of the matter
stress tensor in the presence of gravitational anomalies does not signal
any fundamental breaking of diffeomorphism invariance, nor requires the
selection of only specific metric backgrounds without this anomalies. As
mentioned previously, the presence of anomalies signifies the exchange
of energy between axion matter and the gravitational environment, and
we can absorb this into the modified stress-energy tensor (28) in order
to leave the gravity field invariant.As we are going to see later if we have
quantum anomalies which stems from the axion field those modify the
gravitational field and not the stress-energy tensor and so the invariance
breaks and so they effect in in the specific cosmological era which they
act(inflationary era).
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5 Calculation of the effect of Chiral anoma-
lies in the FLRW spacetime due to gravi-
tational waves

In this section we will explain the mechanism that creates inflation
due to the effect of gravitational waves of primordial black holes. this
gravitational waves affects the axion field and especially the chirality
which creates anomalies at the initial CP violation through the po-
larization of GW. The backround spacetime is the FRW with metric
dS2 = −dt2 + a(t)2(dx2 + dy2 + dz2) and the metric of the GW is

ds2 = dt2 − a2[(1− h+(t, z))dx
2 + (1 + h+(t, z))dy

2+

2hx(t, z)dxdy + dz2 (31)

The total metric is the linear comdination of this two metrics thus
gµν = g0µν + hµν and gµν = gµν0 − hµν.Now we want to calculate the
term RµνρσR̃

µνρσ.this is the term of the effective action that express the
Hirzebruch-Pontryagin density of the axion field which as we will see it
going to birth the inflation term.for the total riemman tensor we have:

Rµνρσ = R0
µνρσ +Rgw

µνρσ

so the RR̃ becomes:

RµνρσR̃
µνρσ = R0

µνρσR̃
µνρσ
0 +Rgw

µνρσR̃
µνρσ
0

+R0
µνρσR̃

µνρσ
gw +Rgw

µνρσR̃
µνρσ
gw (32)

the first term is 0 because it express purely the FRW and this is un-
pertubed.For the rest terms by using the expression for the dual Riem-
mann and by doing the usual transformations with the metric in order
to bring the Riemmann tensor components in the form that we are going

19



to calculate them we have:

RµνρσR̃
µνρσ =

1

2
√
−g

[R0
µνρσε

ρσπλhκνRµ
gmκπλ

+R0
iκπλg

κν
0 gµi0 ερσπλhµζR

ζ
gmνρσ

+ hµζR
ζ
gmνρσ

ερσπλhκνRµ
gmκπλ

] (33)

The term 1
2
√
−g

comes from the need the ε be covariant. Now we
need to calculate the Christoffel symbols.for the FRW spacetime we
can take them directly from the bibliography so: Γt

ij = α2Hδij,Γi
jt =

Γi
tj = Hδij,Γi

jk = Γ̃i
jk and the Riemman tensors are: Ritjt = −(Ḣ +

H2)α2δij,Rijkl = α4H2(δikδlj − δilδkj) were i, j, k, l = x, y, z
Now for the GW metric the cristoffel symbols are more complicated.so

we have: Γt
tt = Γt

ti = 0,Γt
xx = 1

2∂ta
2 − 1

2a
2∂th+ − 1

2∂ta
2h+,Γt

yy =
1
2∂ta

2 + 1
2a

2∂th+ + 1
2∂ta

2h+,Γt
xy = Γt

yx = ∂ta
2hx + a2∂thx,Γt

zz =
1
2∂ta

2.

For Γχ
ij we have:Γχ

χχ = Γχ
xy = Γχ

yy = Γχ
zz = Γχ

tt = 0.

For Γχ
ti we have:Γχ

tx = −1
2a

2∂ta
2h++

1
2a

2∂ta
2+ 1

2a
4∂th+−2a2h2

x∂ta
2−

a4∂th
2
x +

1
2a

2∂ta
2h2

+ − a4∂t∂th
2
+.

Γχ
ty = −2a2∂ta

2hx − a4∂thx + a4h+∂thx − a2hx∂th+.

For Γx
iz we have

Γx
yz = −a4∂zhx + a4h+∂zhx + a4Hx∂zH+

Γx
xz =

1
2a

4∂zh+− 1
2a

4h+∂zh+ − 2a4hx∂zhx

For Γy
ij we have:Γy

χχ = Γy
xy = Γy

yy = Γy
zz = Γy

tt = 0

For Γy
ti we have:Γy

yt = −1
2a

2∂ta
2h+− 1

2a
2∂ta

2− 1
2a

4∂th+− 1
2a

2∂ta
2h2

t −
−1

2a
4h+∂th+− 2a2∂ta

2h2
x − a4∂th

2
x
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Γy
xt = −2a2∂ta

2hx − a4∂thx − a4h+∂thx + a4hx∂th+.

Γy
yz = −1

2a
4∂zh+ − 1

2a
4h+∂zh+ + 2a4hx∂zhx.

Γy
xz = −a4∂zhx − a4h+∂zhx − a4hx∂zh+.

Γz
ij = 0 for i, j = t, x, y, z accept Γz

zt = −1
2a

2∂ta
2.

Now by expressing the polarizasions of gw in the chiral graviton basis
h+ = 1√

2
(hL + hR), h+ = 1√

2
i(hL − hR) in the symbols and substitute

those to the mixed riemmanian tensor in the equation(30) we have an
expression with first order and higher orde terms for hL andhR.We keep
only the first order terms because those are the ones that contribute
more so the final expration of equation (32) is:

RµνρσR̃
µνρσ = 4i

1

a3
[∂2

zhR∂t∂zhL + a2∂2
t hR∂t∂zhL+

1

2
∂2
t (a

2)∂thR∂t∂zhL − ∂2
zhL∂t∂zhR − a2∂2

t hL∂t∂zhR−
1

2
∂2
t (a

2)∂thL∂t∂zhR (34)

which we shall make use of later on when we evaluate the gravitational-
wave-induced condensate.

6 Conformal method of extaction of RµνρσR̃
µνρσ

Another way to extract the above result is by using the equation of GR
and exploit the fact that field perturbation can be expressed inside it
through the Cotton tensor. Someone could say that this is not possible
because this is a macroscopic equation of motion and we add quantum
fluctuations of the axion field. The reason that this method is valid,
hoever, is that, even if we used the action at first in order to calculate
the Cotton tensor, the latter is not a field term. It is a product of the
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variation of the Chern-Simons term, which is a string theory term. As a
result, the Cotton tensor can be expressed with the same ease in terms
of both gravitational and quantum fluctuations due to the unification in
the string theory level. Now we come to the GR equation and substitute
the total Ricci tensor Rµν = Rµν

0 +Rµν
gw and the Ricci scalar by

R = gµνR
µν = g0µνR

µν
0 + g0µνR

µν
gw + hµνR

µν
0 + hµνR

µν
gw

so the equation of GR is:

Rµν
0 +Rµν

gw + (gµν0 − hµν)(g0µνR
µν
0 + g0µνR

µν
gw + hµνR

µν
0 +

hµνR
µν
gw) = Λgµν +

√
2

3

a′κ

12
Cµν + κ2T µ

matter (35)

and from that we find the covariant derivative. Here instead of modifying
the stress tensor we leave it as is, and though the covariant derivative the
terms that express purely the FLRW space-time background give zero,
while the rest are used equation (26). The b(t) term is extracted by the
Chern Simons term and expresses the graviton quantum fluctuation in
the axion field.The equation of this term is given below (cf. (36), but we
are going to extract it property in later sections. The variation of this
term is the energy density of the axion field.

In order to calculate the

ḃ(t) =

√
2

3

a′

96κ
K0 (36)

we use the expression of the Chern-Simons term (21). We need to be
careful that we do not want h-dependent terms in that quantity, because
it is a macroscopic one and h are quantum, which exhibit fully space-
time dependence, and we only need t dependence for a description of
isotropic and homogeneous quantities.

This method in my opinion is much more suitable to show the special
characteristics of the effective field duo to the breaking of the differen-
tial invariance.the macroscopic quantities that the quantum fluctuations
induced (which part of it is inflation)are characteristics of this and end
only this cosmological era because we cannot do any conformal transfor-
mation in order to go to another.
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7 Calculation of < RR̃ >

In order to calculate < RR̃ > we need to find the eq of motion of the of
the chiral fluctuations. This can be done by solving the Einstein action
for the total metric that we have.this given by the equations:

∆hL = −2i
Θ

α
ḣL

′
, ∆hR = 2i

Θ

α
ḣR

′
.

The Θ parameter is associated with the anomalous interactions and
we are going to see is the reason we the mean value isn’t 0 something
that would have happened if the perturbations was symmetric.

We transform the t to the proper time trough the relation η = exp−Ht
H

, 1dt = a(t) 1
dη .We can see that proper time and cosmic time t have oposite

sings so when the cosmic time increase the proper decrease.this means
that now we have actualy a countdown which becomes 0 when t is near
the infinite future and express the end of the action of the < RR̃ >.

Now we have for the hL(similar for the other) that:

d2

dη2
hL − 2

1

η

d

dη
hL − d2

dz2
hL = −2iΘ

d2

dηdz
hL (37)

for Θ = 0(something we are going to need later) we have that the positive
frequency solution:

h+
L(k, η) = exp ik(η + z)(1− ikη) (38)

and the negative is the complex conjugate of the positive.For the general
solution we have that:

hL = exp ikz(−ikη) exp(kΘη)g(η) (39)

The function g(η) satisfies the equation

d2

dη2
g + [k2(1−Θ2)− 2

η2
− 2kΘ

η
]g = 0
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this gives:

g(η) = exp[ik(1−Θ2)η(1 + α(η))] (40)

The hR relations are the complex cojugate of hL so

hR = exp−ikz(ikη) exp(kΘη)g∗(η) (41)

h+
L = h−

R, h−
L = h+

R Now we are going to insert those values in RR̃ after
we do the proper time transformation so:

RµνρσR̃
µνρσ = 4i

1

a3
[a∂2

zhR∂η∂zhL + a5∂2
ηhR∂η∂zhL+

a4
1

2
∂2
η(a

2)∂ηhR∂η∂zhL − a∂2
zhL∂η∂zhR − a5∂2

ηhL∂η∂zhR−

a4
1

2
∂2
η(a

2)∂ηhL∂η∂zhR] (42)

After the substitution (38),(39),(40) we have:

RµνρσR̃
µνρσ = 4i

1

a3
[[−ik3a(F ∗(η)− F (η)) + ika5((|F (η)|2)′

+ (F ∗(η)− F (η))|F (η)|2) + ika4(ȧ2 + aä)|F (η)|2]hRhL] (43)

where F (η) = (1η + kΘ + ik(1 − Θ2)(1 + a + ȧ) and F (η)′ = (− 1
η2 +

ik(1−Θ2)(ȧ+ ä) and the complex conjugates respectively.
Now as we can see the computation of the mean value is about the

< hLhR >. in this problem we actually want to compute the mean value
in relation of the spacial coordinates and live the time coordinate free.this
because we want the general macroscopic effect of the anomalous spacial
part of the perturbation and at the same time to be able to see how this
term will evolve through time.Mathematically the reason that we can
separate the spacial from the time part is that the coordinates are not
entangled .As a result we can see the term as the product of a spacial
and a time function. For the calculation of the term we use the Green’s
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function and after we do a Fourier transformation. We thus have:

G(x, t;x′t′) =< hL(x, t)hR(x
′, t′) >

=

∫
d3k

(2π)3
eik(x−x′)Gk(η, η

′) (44)

The Green’s function (44) satisfies the equation:

[
d2

dη2
− 2(

1

η
+ kΘ)

d

dη
− k2]Gk(η, η

′) = −i
(Hη)2

M 2
PI

δ(η − η′)

The general solution has an exponential dependence over Θ so :

Gk = e−kΘηGk0e
kΘη (45)

the Gk0 is the solution for Θ = 0 which is:

Gk0(η, η
′) = (

H2

2k3M2
PI

)h+
L(k, η)h

−
R(−k, η′) for η < η′

Gk0(η, η
′) = (

H2

2k3M2
PI

)h−
L(k, η)h

+
R(−k, η′) for η′ < η (46)

Were h+
L(k, η) = h−

R(k, η) and h+
R(k, η)+ = h−

L(k, η) because the h+
R

need to have positive frequency and the frequency of the hR equation
has opposite sign so the initial positive solution due to −k becomes
negative and vise versa.This means h+

L(k, η) = h+
R(−k, η) and h−

L(k, η) =
h−
R(−k, η) even if they are conjugate relation between them

So the solution of (45) is:

Gk0(η, η
′) = (

H2

2k3M 2
PI

)e−ik(η′−η)(1− ikη)(1 + ikη′) for η < η′ (47)

Gk0(η, η
′) = (

H2

2k3M 2
PI

)e−ik(η−η′)(1 + ikη)(1− ikη′) for η′ < η. (48)

Now we put the the Gk in the Green’s function (43) and then in
equation (42) and after taking the ⟨. . . ⟩ and doing the calculation using
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mathematica, we find a relation with a first order term in Θ as well as
higher-order (cubic and higher) terms of Θ. We keep the first order, as
we asre dealing with weak gravitational-wave perturbations, so we finally
have:

< RR̃ >
16

a4

∫
d3k

(2π)3
H2

2k3M 2
PI

k4Θ(η) +O(Θ3) (49)

Were Θ is:

Θ =
2

3

a′κ

12
H ˙̃b(η) (50)

We shall use now the above result to extra a running vacuum model
behaviour for this Universe, in the phase where there exist condensation
of gravitational waves, that in turn produce the condensate (49) and
induce inflation without the need for inflaton fields.

8 Extraction of the running vacuum energy
density and inflation coefficients

The connection of the above approach to the running vacuum model can
be achieved by demonstrating that the following total energy vacuum
density :

ρRVM = ρb + ρgCS + ρΛ (51)

acquires a running vacuum model form, that is the form (5).
In (51), the ρb is the energy density of the axion field ,the ρgCS

is the density due to the KR axion gravitational term which expresses
the coupling of the axion field with the gravitational anomalous terms
and ρΛ denotes the pure gravitational contribution associated with the
condensate (48). This latter term is the dominant de-Sitter contribution
which induces and sets the scale of inflation. Let us see how we achoeve
this.
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Our starting point is the effective action for the KR axion and gravi-
ton fields in the presence of a condensate:

Seff
B =

∫
d4x

√
−g

[
− 1

2κ2
R +

1

2
∂µb ∂

µb

+

√
2

3

α′

96κ
b(x)Rµνρσ R̃

µνρσ + . . .
]

=

∫
d4x

√
−g

[
− 1

2κ2
R +

1

2
∂µb ∂

µb

−
√

2

3

α′

96κ
Kµ(ω) ∂µb(x) + . . .

]
, (52)

where in the second line we used the anomaly equation, which expresses
the Chern-Simons anomaly as the gravitational covariant derivative of
the anomaly current K (21).

The axion equation of motion obtained from (52) yields

1√
−g

∂µ

(√
−g

[
∂µb−

√
2

3

α′

96κ
Kµ

])
= 0 (53)

admits as an isotropic and homogeneous solution (which had been pren-
nounced in (36))

ḃ(t) =

√
2

3

α′

96κ
K0, (54)

assuming that the dominant components of the anomaly current in a
FLRW background are the temporal ones.

Writing the anomaly equation (21) for the condensate under the as-
sumption of homogeneity and isotropy of the FLRW Universe, as

d

dt
K0 + 3HK0 =< Rµνρσ R̃

µνρσ >= constant, (55)

which will thus play the rôle of a slow-roll parameter.
Finally, contrary to the conventional wisdom, it is not the axion field

b that drives inflation, but the non-linearities of the total energy density
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of the vacuum (51) in terms of the Hubble parameter, in particular its
quartic term H4 due to the gravitational anomalies condensate, which
we next proceed to demonstrate.

Let us start by calculating the density of the axion field

ρb =
1

2
(˙̃b)2 (56)

. this satisfying a stiff equation of state

pb = ρb (57)

To this end, we need to calculate the Chern Simons term for time de-
pendence. This is worked out in the paper [], and below we shall sketch
the most basic features and results for the analysis that will be crucial
in our approach.

To leading order in the small parameter Θ, the computation of the
condensate, using an UV cutoff for the momentum modes µ yields:

⟨Rµνρσ R̃
µνρσ⟩ = 1

π2

( H

MPl

)2

µ4Θ

=
2

3π2

1

96× 12

( H

MPl

)3 ( µ

Ms

)4

MPl × K0(t). (58)

In which we use the eq (48) for Θ. Above, Ms = 1/
√
α′ is the string

scale. We the need large string mass scales, near the Planck scale, such
that α′H2 << 1 during inflation in this model.

Using this result in the anomaly-current evolution equation (55), we
easily obtain:

d

dt

(√
−g K0(t(η))

)
= −(ηH)

d

dη

(√
−g K0(t(η))

)
=

[ 1

3π2 × 6× 96

( H

MPl

)3 ( µ

Ms

)4

MPl

]
×

(√
−g K0(t(η))

)
. (59)

Taking into account that H remains approximately constant during
the inflation period, (59) can then be integrated over the entire duration
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of inflation, to yield

K0(t) ∼ K0
begin(t = 0) ×

exp
[
− 3H t

(
1− 1

3π2×18×96

(
H
MPl

)2 (
µ
Ms

)4)]
,

(60)

where we assume the beginning of inflation at t = 0.

K0(t(η)) = K0
begin(t(η = H−1))exp[−2Ht(η)A] (61)

with A being:

A =
(
1− 1

3π2 × 18× 96

( H

MPl

)2 ( µ

Ms

)4)
(62)

The value K0
begin(t = 0) corresponds, on account of (54), to an initial

condition for the cosmic time derivative of the KR axion, ḃ(0), and thus
is a boundary condition to be determined phenomenologically.

The presence of gravitational waves during the inflationary phase
may lead to a decrease in general, or even complete elimination, of the
exponential washing out effects of inflation as t → +∞.So due to the
slow running of H during inflation A is approximately constant and we
may assume

A = 0 ⇒ H

MPI
= (15.06)(

Ms

µ
)2 (63)

by fixing the string scale. And so K0 in eq. (60) is constant during the
inflationary era. On using the eq (53) we then have that

˙̄b = constant (64)

which violates spontaneously Lorentz symmetry.
Since phenomenologically Planck Collaboration results [1] have indi-

cated H/MPl ∼ 10−5, one obtains from (63) that

µ ∼ 5× 103Ms. (65)
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The UV cutoff µ can be taken as high as the Planck scale, in agreement
with the transplanckian conjecture. This provides a self-consistent and
necessary condition for ḃ to be approximately constant during inflation,

Now because of (64), the slow roll parameter for the single field in-
flation ε is linked to ḃ. We therefore have from observations [1] that

ε ∼ 1

2

1

(HMPI)2
(˙̃b)2 ∼ >(˙̃b) =

√
2εMPIH (66)

and so K0
begin(t(η = H−1)) ∼ HM 2

PI and K0(t(η)) ∼ K0
begin(t(η =

H−1)) from the relations(54),(56) and,(66) we have that

ρb = vM 4
PI(

H

MPI
)2 (67)

For the ρΛ as we say the Λ parameter express the gravitational anomaly
condensate which satisfy a de sitter eq of state pcond = −ρcond. This can
be seen by the action:

SΛ =

∫
d4x|ρΛ| =

∫
d4
√
−g(5.86× 107

√
2ε[

b̃(0)

MPI

+
√
2εN ]H4) = −

∫
d4x

√
−g

Λ

κ2
(68)

Were the N is the number of e-fold and for ε 10−2 we have that the
N term is negligible so

ρΛ = 5.86× 107
√
2ε

|b̃(0)|
MPI

H4 (69)

This term cannot arise by classical general relativistic treatment and so
is an essential component of the total density.

Now he have to calculate the density due to the coupling.The equa-
tion of state that the ρgCS obeys is radiation like so :

pgCS =
1

3
ρgCS (70)
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in which the pressure is asosiated with the diagonal spacial components
of the cotton tensor and the density with the diagonal temporal one. now
because we work with weak pertubation due to their string nature.implies
that the metric component which the product with the cotton tensor
gives the physical quantities above is the metric of the FRLW.this is
very important in order to find the relation between the ρgCS and ρb also
the sign of those. Now in order to do that we are going to use the second
methodology in which we extract the RR̃.the reason is that the equation
of the density is

ρgCS =
2

3

a′

96κ
C00 (71)

the main difference with the axion density is that we wanted the pure
expression of the quantum fluctuations but now we want the effect of
those on the gravitational field something that is expressed with the
cotton tensor.Because we want the density to be purely time dependent
we have to calculate the C00

;0 term which:

C00
;0 =

d

dt
C00 + 4HC00 = −1

8
uν < RR̃ > (72)

We calculate the < RR̃ > in the eq (58) and we had:

< RR̃ >=
1

π2
(
H

MPI
)2µ4Θ

Αnd by substituting Θ (50) we have:

C00
;0 = −1

8

2

3

a′κ

12
H

1

π2
(
H

MPI
)2µ4(˙̃b(η))2 (73)

so by using the ˙̃b we found in (54) and the assumtion that C00 is constant
in time we have:

C00 = −ε
2

3

a′κ

192

1

π2
µ4H4 (74)
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Therefore, the density is

ρgCS = −2.932χ10−5ε(
µ

Ms
)H4 (75)

and from the relation for the factor A (61):
H

MPI
(MPI

µ )2 > ( µ
MPI

)2 MPI

H
we found before gives the order of magnitute:

ρgCS = −1.484eMPIH
2 (76)

By substitute the total time dependent cotton tensor(73) in the mod-
ified einstein (28) and taking into account that we have to use the FRLW
metric we have that:

d

dt
(ρb + ρgCS) + 3H((1 + wb)ρ

b +
4

3
ρgCS) = 0

=> ρb = −2

3
ρgCS (77)

the last result holds for d
dt(ρ

b + ρgCS) = 0 which implies that the contri-
bution of the anomalies to the density is constant.Also because we have
pure b fluid wb = 1

Now fom the eqs (77),(78) we have that:

ρb = −2

3
ρgCS => ρb + ρgCS =

1

3
ρgCS = −0.496eMPIH

2 (78)

From the (76) we see that ρgCS < 0 and so from eq.(70) pgCS < 0 so
we have negative pressure and from (77) we have: ρb + ρgCS < 0 and by
using the (57),(70) we also have:

pb + pgCS = ρb +
1

3
ρgCS = −1

3
ρgCS > 0 (79)

this is very weird because the energy is negative and presure positive.This
leads to exotic state but as we will see the contribution of this term to
the total ρRVM is very small in relation to the condensate
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By substituting the necessary coefficients that stem from the above
analysis into(69)-(78) we have therefore for the total vacuum energy den-
sity :

ρRVM = 3M 4
PI [−1.7x10−3(

H

MPI
)2

+

√
2

3
5.86× 106

|b̃(0)|
MPI

(
H

MPI
)4] (80)

which is of the form of the RVM energy density (5), but with c0 = 0 and
the coefficient of the H2 term being negative. This latter feature is due
to the negative contributions of the Chern-Simons gravitational anomaly
terms to the stress-energy tensor [8]. The evolution equation of the RVM
model (6), then, implies the early de Sitter era (7), in a self consistent way
with our analysis so far, where we assumed a constant Hubble parameter
to evaluate the condensate of the gravitational anomalies.

As we can see in our string inspired model c0 = 0 in the inflationary
era. Also we see that the contributions of the Cotton tensor is actually
very small compared to those of the actual quantum fluctuations of the
anomalies. The reason is that the Cotton tensor does not express the
effect of those flux in the gravitational field but the effect of the GWs
themselves.That sound very strange at first because we said that the
Cotton tensor express the effect of those in the field.The reason of this is
that the the resonant amplification of the quantum fluctuations happened
at the radiation era before the inflation one by preexisting GWs and they
transfer all the way through the inflation era due to a mechanism that
called two field theory which is not the subject of this paper. Also as
we said the contribution of the anomalous density terms −1.7 ∗ 10−3 is
negative and this could cause problems due to the exotic nature of this
state. Lucky for us,the coefficient of the condensate-induced term ρΛ is
positive a =

√
2
3 × 5.86× 106 |b̃(0)|MPI

( H
MPI

)2 = 2.8× 10−2 |b̃(0)|
MPI

and bigger and
by using the necessary GUT-like potential we have that ρtotal ≃ ρΛ which
means that the inflation happened due to the Λ de sitter contribution.

Finally I am going to say some thing about the nature of this Λ
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condensate.This is actually a composite scalar field consisting by the
superposition of quantum b-axion and graviton modes.this means that
the effect bosonic string modes that express the gravitons and fermionic
sting modes of the axion binds together on the background that the
dilaton creates ,that is why is a scalar field,and through that affect the
gravitational field by creating the inflation.the mapping of the H4 in this
scalar field is called vacuumon [14].To do that mapping of the RVM in
the vacuumon picture we follow the following corespodence between the
total density and pressure:

ρtot = ρφ =
φ̇2

2
+ V (φ), ptot = pφ =

φ̇2

2
− V (φ) (81)

with

φ̇2 = − 2

κ2
Ḣ (82)

and the vacuumon potential is [14]:

V =
3H2

κ2
(1 +

Ḣ

3H2
) =

3H2

κ2
(1 +

α

6H2

dH2

dα
). (83)

The scalar field φ is a classical field which can be used to described the
temporal evolution of RVM. Using the eq. (83) we can compute the
potential assosiated to the RVM density:

U(φ) =
H2

I

ακ2

2 + cosh2(κφ)

cosh4(κφ)
(84)

This potential in our scenario would have been used in the calculation of
the density but there is a problem. The potential (84) is classical and,
thus, it cannot express the quantum fluctuation inside the condensate
which needs the proper string theory framework for their calculation.As
a result, the true vacuumon-field effective potential stemming from these
fluctuations might be very different from (83), (84).
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9 Conclusions and Outlook
In this paper we tried to explain the emergence of the running vacuum
model of cosmology RVM as a low-energy limit of string cosmologies
with anomalies and totally antisymmetric space-time torsion, which are
based on the effective gravitational theory of the fields belonging to the
massless gravitational multiplet of the string. The fields that enter our
(3+1)-dimensional construction, after appropriate string compactifica-
tion, which we did not discuss here, are the graviton and the KR axion.
The four dimensional KR axion field is dual to the field strength of the
spin-1 antisymmetric tensor Kalb-Ramond field of the massless string
gravitational multiplet, which also provides a totally antisymmetric com-
ponent of space-time torsion in this theory.

The dilaton was assumed constant throughout our analysis. The full
dynamics of the dilaton, whose exponential determines the coupling of
the string interactions, is non trivial and belongs to the realm of the
fully quantum string theory. In the present dissertation, as already men-
tioned, we assumed the dilaton as stabilised during inflation, somehow
due to its dynamics, via minimisation of an appropriate potential, in-
duced by string loops(like virtual masses). Further brief discussion on
future projects on the potential effects of a non trivial dilaton on thd
current cosmological model is given in the outlook paragraphs at the
end of the concluding section.

By considering condensation of primordial gravitational waves, we
have argued in favour of the emergence of condensates of the gravita-
tional Chern-Simons (CP-violating) anomaly terms, which couple to the
axion field, which can then drive an early de Sitter era of RVM type,
leading to inflation. It is worthy of remarking at this point that the
existence of the condensate of the Chern-Simons anomaly term, leads,
through its coupling with the KR axion, to an effective linear axion
potential. This leads to a slow-roll evolution of the KR axion, during in-
flation. The slow-roll parameter in this inflationary scenario is provided
by the time derivative of the KR axion, which is proportional to the
(approximately constant) condensate (vacuum expectation value) of the
temporal component of the gravitational anomaly current. However, it
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is not the axion that drives inflation, but rather the non-linear H4 terms
in the resulting RVM energy density of the cosmological vacuum, which
owe their existence to the anomaly condensates and dominate at early
epochs.

On exploiting properties of the Cotton tensor that characterises the
gravitational variation of the anomaly terms, we have shown that the
equation of state of this cosmological fluid, in the epoch of domination
of the gravitational-wave condensate, is that of the RVM vacuum. Fur-
thermore,we have described the basic characteristics of the Cotton tensor
(19),(27) and shown that the presence of gravitational anomalies lead,
through it, to the modification of the stress-energy tensor in order for the
diffeomorphism invariance to be preserved. In this way, one does not have
to restrict themselves only to anomaly-free specific metric backgrounds.
We were able to calculate the gravitational-wave-induced Hirzebruch-
Pontryagin term RR̃ (17), sourced by the KR axion field (49). After
that, we have managed to demonstrate that the vacuum energy density
is of a running vacuum model (RVM) type, (5), and we showed that the
dominant H4 term at early epochs, due to the condensate, leads to an al-
most de-Sitter-like dark-energy gravitational term. Finally we described
briefly the condensate itself through an effective, non linear scalar field,
the vacuumon, and discussed how it yields a classical picture of the RVM
potential which is expected to be different though from the (yet uknown)
one, due to the (full) quantum fluctuations of the condensate.

In this work we did not discuss the potential rôle of world-sheet in-
stantons (non-perturbative stringy effects), which may lead to the emer-
gence of periodic potentials for the KR axion [8, 12], as well as the other
axion fields that exist in string theory, as a result of compactification.
Such instanton-induced periodic potentials may affect the densities of
the primordial black holes in such cosmologies, and eventually the pro-
file of the gravitational waves during the inflationary epoch. This latter
phenomenon may have phenomenological implications for the radiation-
era profile of the gravitational waves, which we did not explore in this
thesis, but is a feature of the model worthy of future exploration.

Another issue to be looked at in detail in the future is the rôle of
potentially non-trivial dilaton fields that might exist at the end of the
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RVM inflationary era. In the picture of [8], adopted here, the dilaton
is assumed stabilised by an appropriate (yet unspecified in our effective
approach here) potential, which is assumed to be generated at a full
quantum string theory level. Incorporation of time dependent dilatons
at the end of the RVM inflationary era might be possible, as a way of
providing an explicit description of the decay of the running vacuum, first
to a brief phase with just gravitons, KR axions and slow-moving dilatons,
still in the presence of a (now slowly-decreasing in value with the cosmic
time) anomaly condensate. This brief phase is then succeeded by the
generation of massless chiral fermionic matter and radiation, also due
to the decay of the running vacuum. After this second stage, the chiral
fermions generate their own gravitational anomalies, which can cancel
the primordial ones, paving the way for the passage to the anomaly-free
post-inflationary radiation and matter dominated eras, as explained in
[8].
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