
Shape and Topology Optimization using the
Cut-Cell Method and its Continuous Adjoint for

Single– and Two–phase Turbulent flows, in a
Multiprocessor Environment

Vrionis Panayiotis–Yiannis
Parrallel CFD & Optimization Unit (PCOpt)

Laboratory of Thermal Turbomachines

School of Mechanical Engineering

National Technical University of Athens

A thesis submitted for the degree of

Doctor of Philosophy

Athens, 2022

mailto:vrionis.yiannis@gmail.com
http://velos0.ltt.mech.ntua.gr/research/index.html
https://www.ltt.ntua.gr/index.php/en/
http://www.mech.ntua.gr
https://www.ntua.gr/en/

ii

National Technical University of Athens
School of Mechanical Engineering
Fluids Section
Laboratory of Thermal Turbomachines
Parallel CFD & Optimization Unit

Shape and Topology Optimization using the Cut-Cell Method and its
Continuous Adjoint for Single– and Two–phase Turbulent flows, in a

Multiprocessor Environment

Vrionis Panayiotis–Yiannis

Examination Committee:

1. Kyriakos Giannakoglou*(Supervisor),

Professor NTUA, School of Mechanical Engineering

2. Konstantinos Mathioudakis*,

Professor NTUA, School of Mechanical Engineering

3. Demetri Bouris*,

Associate Professor NTUA, School of Mechanical Engineering

4. Spyridon Voutsinas,

Professor NTUA, School of Mechanical Engineering

5. Ioannis Anagnostopoulos,

Professor NTUA, School of Mechanical Engineering

6. Kostas Belibassakis,

Professor NTUA, School of Naval Architecture and Marine Engineering

7. Georgios Papadakis,

Assistant Professor NTUA, School of Naval Architecture and Marine Engineering

*Member of the Advisory Committee

iii

mailto:vrionis.yiannis@gmail.com

Abstract

This PhD thesis focuses on developing a highly automated, general–purpose software

for the analysis and design of practical applications in the field of fluid mechanics

by exploiting the merits of the Cut–Cell method. The principal idea of the Cut–Cell

method lies in the generation of simple Cartesian meshes, subsequently modified by

discarding parts that reside in the solid region. This process creates cut cells that

conform to the body surface. The use of Cartesian meshes eases the mesh generation

process of the entire workflow, regardless of the body surface complexity. Emphasis

is laid on the extension of the existing Cut–Cell software, capable of numerically

solving laminar, incompressible single–phase flows, via the artificial compressibility

method, to turbulent, single– and two–phase flows exhibiting cavitation. In ad-

dition, the developed Cut–Cell method is applied in gradient–based optimization

using the continuous adjoint method.

The Cut–Cell software is extended to the RANS equations using the standard k− ε

turbulence model, solved coupled with the mean flow equations. The choice of this

turbulence model is its broad usage in two–phase flows. In addition, the Cut–Cell

method necessitates the use of a high Reynolds turbulence model, due to difficulties

in refining along the normal–to–the–wall direction to accurately resolve the tur-

bulent boundary layers, which results in impractical meshing requirements. Thus,

closure is realized via a modified wall functions technique, while also accounting for

varying first cell distances, normal to the wall.

The analysis of two–phase flows that include cavitation effects follows the homoge-

neous mixture assumption. Thus, a mixture pseudo–fluid is introduced, the prop-

erties of which arise based on the local composition of each constituent. These are

assumed to have a constant density. The RANS equations are, thus, expressed for

the mixture fluid and an additional species transport equation is included. Cav-

itation effects are introduced using the Kunz cavitation model, which quantifies

the appropriate mass transfer between constituents, to account for evaporation and

condensation. Numerically, a shock–capturing scheme is employed to account for

the large flow variable gradients present at the two–phase interfaces, opting for

their flexibility and the straightforward extension from the existing gas–dynamics

solver. In detail, the numerical solution process uses a cell–centered finite volume

method that computes inviscid numerical fluxes via the MUSCL scheme and Roe’s

approximate Riemann solver. Due to the homogeneous mixture assumption and

the involvement of additional transport equations for the species, the resulting gov-

erning equation need be appropriately preconditioned (Kunz preconditioner). The

resulting numerical scheme allows for the simulation of two–phase flows with large

density gradients and benefits from the localized mesh refinement from the Cut–Cell

method.

In the field of gradient–based optimization, the development of both shape and

topology optimization tools based on the Cut–Cell method is pursued. The contin-

uous adjoint equivalent to the described two–phase RANS equations and cavitation

model is mathematically formulated to compute objective function gradients at a

cost that is independent to the number of design variables. The method is inte-

grated into a shape optimization framework and applied to isolated air/hydrofoils

and ducts, parameterized using Bézier–Bernstein polynomials. The inclusion of the

Cut–Cell method in a shape optimization framework confines mesh changes at the

immediate vicinity of the body surface, circumventing the need for mesh displace-

ment techniques, and allows large displacements without aggravating the Cut–Cell

mesh quality.

The ability of the Cut–Cell method to automatically generate valid meshes around

rapidly changing solid boundaries inspired the development of a new topology op-

timization workflow. The new method overcomes the low near–wall accuracy of

porosity–based optimization methods by reconstructing the solid walls in each op-

timization cycle. This is achieved by modifying the process that generates the

Cut–Cells. Furthermore, the GCMMA algorithm is implemented to facilitate the

large number of bounded design variables and introduced constraint function, typ-

ically used in topology optimization. The developed method is assessed through

comparisons with a porosity–based topology optimization solver. For the sake of

fairness, porosity–based optimized solutions are re–evaluated on body–fitted Cut–

Cell meshes, using a utility tool developed herein.

The extensions are integrated into the existing Cut–Cell software and allow parallel

computations on many processors using the MPI protocol. Additionally, selected

computationally intensive tasks are locally parallelized using threads via OpenMP

directives.

Keywords: Computational Fluids Dynamics, Two–phase flow, Shape and Topology

Optimization, Continuous Adjoint Method, Cut–Cell Method.

Περίληψη

Η διδαkτοριkή αυτή διατριβή ασχολείται με την ανάπτυξη ενός ευρείας χρήσης λογι-
σμιkού ανάλυσης kαι σχεδιασμού πραkτιkών εφαρμογών της μηχανιkής των ρευστών
με βάση τη Μέϑοδο Τεμνόμενων Κυψελών. Η τελευταία βασίζεται στην τροποποίηση
Καρτεσιανών πλεγμάτων, αποkόπτοντας τμήματα που kαταλαμβάνονται από τα στε-
ρεά σώματα, ούτως ώστε να kατασkευάσει οριόδετα πλέγματα. Συνεπώς, το τελιkό
υπολογιστιkό πλέγμα αποτελείται kυρίως από Καρτεσιανές kυψέλες kαι εkείνες που
τέμνονται με το στερεό σώμα kαι τους έχει αποkοπεί ένα τμήμα. Η χρήση Καρτεσιανών
πλεγμάτων εισάγει αυτοματοποίηση στη διαδιkασία γένεσης πλέγματος kαι, συνεπώς,
η ανάπτυξη εξειδιkευμένων μεϑόδων που εkμεταλλεύονται αυτήν την ιδιότητα είναι
επίσης kύριος στόχος της διατριβής. Σημείο αναφοράς αποτελεί ένα υπάρχον λογι-
σμιkό που υλοποιεί τη Μέϑοδο Τεμνόμενων Κυψελών για την επίλυση ασυμπίεστων,
στρωτών, μονοφασιkών ροών, με τη χρήση της μεϑόδου της ψευδοσυμπιεστότητας, το
οποίο επεkτείνεται τυρβώδεις διφασιkές ροές που παρουσιάζουν σπηλαίωση kαι σε ε-
φαρμογές σχεδιασμού με τη χρήση της συνεχούς συζυγούς μεϑόδου για τον υπολογισμό
παραγώγων ευαισϑησίας.

Αρχιkά, η επέkταση σε τυρβώδεις ροές γίνεται με την υλοποίηση του μοντέλου τύρβης
k − ε των Launder kαι Spalding. Το σύστημα εξισώσεων (μέσης ροής kαι τυρβωδών
μεταβλητών) επιλύεται πεπλέγμενα. Η επιλογή του συγkεkριμένου μοντέλου τύρβης
βασίστηkε στην ευρεία χρήση του σε διφασιkές ροές, kαϑώς επίσης kαι στη δυσkολία
της Μεϑόδου Τεμνόμενων Κυψελών να δημιουργεί, τοπιkά, kυψέλες μεγάλου λόγου
διαστάσεων. Αυτό έχει ως αποτέλεσμα την αδυναμία χρήσης μοντέλων τύρβης χαμη-
λών αριϑμών Reynolds λόγω των τεράστιων απαιτήσεων πύkνωσης. ΄Ετσι, η χρήση
συναρτήσεων τοίχου αποτελεί, ουσιαστιkά, μονόδρομο. Παρόλα αυτά, η χρήση συ-
ναρτήσεων τοίχου παρουσιάζει επίσης kάποιες ιδιαιτερότητες λόγω της αρkετά μετα-
βαλλόμενης απόστασης των βαρύkεντρων των Τεμνόμενων Κυψελών από το στερεό
όριο kαι τροποποιείται kαταλλήλως.

΄Οσον αφορά την ανάπτυξη αριϑμητιkών μεϑόδων ανάλυση διφασιkών ροών που πα-
ρουσιάζουν σπηλαίωση, η αριϑμητιkή μέϑοδος βασίζεται στη ϑεώρηση ενός ομογενούς
μείγματος. Πραkτιkά, γίνεται η εισαγωγή ενός ψευδο–ρευστού, του οποίου η πυkνότη-
τα kαι μοριαkή συνεkτιkότητα προkύπτει βάσει της τοπιkής συγkέντρωσης των ουσιών
που το αποτελούν. ΄Ετσι, οι εξισώσεις ροής για τη διατήρηση όγkου–ορμής kαι τη με-
ταφορά των τυρβωδών μεταβλητών μπορούν να εkφραστούν ως προς το μείγμα kαι τη
μεταφορά της δευτερεύουσας φάσης, μειώνοντας το συνολιkό υπολογιστιkό kόστος.
Το φαινόμενο της σπηλαίωσης εισάγεται στην αριϑμητιkή μέϑοδο μέσω του μοντέλου

του Kunz, που μοντελοποιεί τις διαδιkασίες εξάτμισης kαι συμπύkνωσης. Η αριϑμη-
τιkή μέϑοδος που αναπτύχϑηkε για την επίλυση των εξισώσεων, βασίζεται στην ήδη
υπάρχουσα υποδομή της kεντροkυψελιkής διατύπωσης πεπερασμένων όγkων. Ο υ-
πολογισμός των ατριβών όρων γίνεται μέσω του σχήματος MUSCL kαι του kατά Roe
επιλύτη. Στο τμήμα αυτό απαιτείται η τροποποίηση του σχήματος το οποίο λαμβάνει
υπόψη τις επιπλέον ιδιοτιμές kαι προσταϑεροποίηση kατά Kunz. Συνολιkά, το α-
ριϑμητιkό σχήμα που υλοποιήϑηkε επιτρέπει την ανάλυση διφασιkών ροών μεγάλου
λόγου πυkνοτήτων kαι επωφελείται τοπιkών τεχνιkών πύkνωσης του Καρτεσιανού
πλέγματος.

Στο τμήμα της διατριβής που αφορά την ανάπτυξη μεϑόδων σχεδιασμού kαϑοδηγούμε-
νωναπό την kλίση της συνάρτησης–στόχου (παραγώγων ευαισϑησίας), έγινε ανάπτυξη
εργαλείων βελτιστοποίησης μορφής. Για τον υπολογισμό των παραγώγων ευαισϑησίας
έγινε η μαϑηματιkή διατύπωση kαι ανάπτυξη του συζυγούς προβλήματος, με βάση τη
συνεχή συζυγή μέϑοδο, που διέπεται από τις διφασιkές, τυρβώδεις εξισώσεις ροής που
μοντελοποιούν kαι φαινόμενα σπηλαίωσης. Η συζυγής μέϑοδος είναι η kυρίαρχη μέϑο-
δος υπολογισμού παραγώγων ευαισϑησίας αφού μπορεί να τις υπολογίζει με kόστος
ανεξάρτητο του πλήϑους των μεταβλητών σχεδιασμού, επιτρέποντας την εφαρμογή
του σε προβλήματα μεγάλης kλίμαkας. Η αναπτυχϑείσα μέϑοδος εντάσσεται σε ένα
πλαίσιο βελτιστοποίησης μορφής, kαι εφαρμόζεται σε μεμονωμένες αερο/υδροτομές
kαι αγωγούς, παραμετροποιημένες με τη χρήση πολυωνύμων Bézier–Bernstein. Πλε-
ονεkτήματα, που σχετίζονται με τη χρήση της Μεϑόδου των Τεμνόμενων Κυψελών,
είναι το ότι επιτρέπει μεγάλες μετατοπίσεις του υπό μελέτη σώματος, περιορίζει τις αλ-
λαγές του πλέγματος kοντά στο στερεό σώμα, kαι εγγυάται τη γένεση kαλής ποιότητας
πλεγμάτων kατά τη βελτιστοποίηση.

Η δυνατότητα της Μεϑόδου των Τεμνόμενων Κυψελών να παράγει kαλής ποιότητας
πλέγματα γύρω από στερεά σώματα που επιδέχονται μεγάλες αλλαγές, ενέπνευσε την
ανάπτυξη μιας διαδιkασίας βελτιστοποίησης τοπολογίας. Η αναπτυχϑείσα μέϑοδος
προσφέρει υψηλή αkρίβεια kατά τη διάρkεια επίλυσης του προβλήματος τοπολογίας,
μέσω της kατασkευής των στερεών ορίων. Για την υλοποίηση αυτής της μεϑόδου, ήταν,
αρχιkά, αναγkαία η τροποποίηση του τρόπου kατασkευής των Τεμνόμενων Κυψελών.
Τα προβλήματα βελτιστοποίησης τοπολογίας χαραkτηρίζονται από μεγάλο αριϑμό ο-
ριοϑετημένων μεταβλητών σχεδιασμού kαι την εισαγωγή συναρτήσεων περιορισμού.
Συνεπώς, ήταν απαραίτητη η υλοποίηση μιας μεϑόδου ανανέωσης των μεταβλητών
σχεδιασμού που να μπορεί να διαχειριστεί τέτοιου είδους προβλήματα βελτιστοποίη-
σης (GCMMA). Για την αξιολόγηση της νέας μεϑόδου, έγιναν συγkρίσεις με kλασιkή
μέϑοδο βελτιστοποίησης τοπολογίας, που βασίζεται στην τεχνιkή του πορώδους, για
να εξαχϑούν αποτελέσματα. Στο τμήμα αυτό, αναπτύχϑηkε εργαλείο επαναξιολόγη-
σης λύσεων, που προkύπτουν από την τεχνιkή του πορώδους σε οριόδετα πλέγματα,
ώστε να είναι πιο αντιπροσωπευτιkή η σύγkριση.

΄Ολα τα παραπάνω εντάχϑηkαν στο οιkείο λογισμιkό Τεμνόμενων Κυψελών kαι επι-

τρέπουν την παράλληλη εkτέλεση σε πολλούς επεξεργαστές μέσω του προτύπου MPI.
Επιπρόσϑετα, έγινε χρήση εντολών OpenMP που αξιοποιούν νήματα εντός των επε-
ξεργαστών για την παραλληλοποίηση υπολογιστιkά αkριβών διεργασιών.

Λέξεις kλειδιά:Μέϑοδοι Υπολογιστιkής Ρευστοδυναμιkής, Διφασιkές ροές, Βελτιστο-
ποίηση Μορφής kαι Τοπολογίας, Συνεχής Συζυγής Μέϑοδος, Μέϑοδος Τεμνόμενων
Κυψελών.

x

Acknowledgements

First and foremost, I would like to express my deepest appreciation to my supervisor,

Kyriakos Giannakoglou, Professor NTUA, for the opportunity to work under his

guidance, his patience, consistent support and involvement throughout this thesis

that were instrumental for the completion of this work.

I also wish to thank the other two members of the advisory committee Konstantinos

Mathioudakis, Professor NTUA, and Demetris Bouris, Associate Professor NTUA,

for their constructive remarks at the progress reports and presentation of this thesis.

I am also grateful to the State Scholarships Foundation (IKY) for funding this re-

search through the Operational Programme ”Human Resources Development, Edu-

cation and Lifelong Learning” in the context of the project ”Strengthening Human

Resources Research Potential via Doctorate Research – 2nd Cycle” (MIS–5000432),

co-financed by Greece and the European Union (European Social Fund–ESF).

I would like to extend my sincere thanks to Dr. Konstantinos Samouchos for his

invaluable help during my PhD research, the many thought–provoking discussions,

and, of course, his friendship that made this collaboration truly pleasant. I also sin-

cerely thank Dr. Evangelos–Papoutsis Kiachagias for his priceless advises, both of

technical and personal nature. Many thanks to Dr. Konstantinos Tsiakas, Dr. Kon-

stantinos Gkaragkounis, Dr. Morteza Monfaredi, PhD student Skamagkis Themis,

with whom I spent many hours together, for their friendly chats and company that

lightened the atmosphere during my PhD research.

Furthermore, I owe special thanks to my brother, Dr. Constantinos Vrionis for

always being there eager to listen and help, and my girlfriend, Ioanna, for her

understanding and the strength she has given me. I should also thank both of them

for enduring through my grumpiness.

Last, but not least, I am forever indebted to my parents, George and Beatrice,

for their unconditional support and their profound belief in my abilities that have

encouraged me through each step.

ii

Contents

Acronyms vii

1 Introduction 1
1.1 Immersed Boundary Methods . 2

1.1.1 Immersed Boundary Methods Approaches 3
1.1.2 The Cut–Cell Method . 5

1.2 Cavitating Flows . 8
1.3 Numerical Optimization Tools . 10
1.4 The Adjoint Method . 12

1.4.1 The Adjoint Cut–Cell Method for Shape Optimization 15
1.4.2 Topology Optimization in Fluid Mechanics 16

1.5 Thesis Outline . 19

2 The Cut–Cell method 23
2.1 Cartesian Mesh Generation . 24

2.1.1 Recursive Octree Generation . 24
2.1.2 Body Surface Subdivisions . 26
2.1.3 Cartesian Cell Post–refinement . 27

2.2 Cut–Cell Mesh Generation . 28
2.2.1 Construction of Cut–Cells . 30
2.2.2 Geometric Quantities of the generated Cut–Cells 31
2.2.3 Small Cell Treatment . 32

2.3 The Cut–Cell Data Structure . 33
2.3.1 Cut–Cell Mesh Decomposition for Parallel Computing 34

3 Single– and Two–phase Flow Models 37
3.1 The Navier–Stokes Equations For Single–Phase Incompressible Flows 37

3.1.1 Artificial Compressibility Method . 38
3.1.2 The Navier–Stokes Equations . 39

3.1.2.1 Discretization of the Inviscid Flux Vector 39
3.1.2.2 Implementation of Limiters . 41

iii

CONTENTS

3.1.2.3 Flow Variable Spatial Derivatives Computation 42
3.1.2.4 Discretization of the Viscous Flux Vector 44

3.1.3 Boundary Conditions . 45
3.1.3.1 Wall Boundary Conditions – SW 45
3.1.3.2 Inlet Boundary Conditions – SI 45
3.1.3.3 Outlet Boundary Conditions – SO 46
3.1.3.4 Farfield Boundary Conditions – S∞ 46

3.1.4 Numerical Solution of the Navier–Stokes Equations 46
3.2 Simulating Turbulent Flows using the Cut–Cell Method 49

3.2.1 Preliminaries . 49
3.2.2 The Standard k–ε Turbulence Model . 50

3.2.2.1 Transport Equations . 50
3.2.2.2 Solid Wall Boundary Conditions – Wall Functions 50
3.2.2.3 Inlet/Farfield Boundary Conditions – SI/S∞ 55
3.2.2.4 Outlet Boundary Conditions – SO 55

3.2.3 The RANS Equations . 55
3.2.3.1 Discretization of the Turbulence Model Source Terms 56

3.2.4 Cut–Cell based Single–phase Turbulent Flow Simulations 57
3.2.5 Flat Plate ReL = 5× 106 . 57
3.2.6 90◦ Curved Channel ReW = 1× 105 . 60

3.3 Simulation of Two–Phase Cavitating Flows . 63
3.3.1 The Two–phase Navier–Stokes Equations, with Cavitation Modeling . . . 64

3.3.1.1 Boundary Conditions . 66
3.3.2 Cavitation Modeling . 66
3.3.3 Discretization of the Cavitation Model Source Terms 67

3.4 Two–phase RANS Equations using the Cut–Cell Method 67
3.5 Cut-cell based Turbulent Flow Two–phase Simulations 68

3.5.1 NACA 66(MOD) hydrofoil Rec = 2× 106 68
3.5.2 Hemispherical Cavitator ReD = 136000 71

3.5.2.1 0◦ Angle of Attack . 73
3.5.2.2 10◦ Angle of Attack . 76

3.6 Concluding Remarks . 78

4 The Continuous Adjoint Method 79
4.1 Gradient–based Optimization . 80
4.2 Formulation of the Continuous Adjoint Method 81

4.2.1 Differentiation of the Inviscid Terms . 84
4.2.2 Differentiation of the Diffusive Terms . 84
4.2.3 Differentiation of Source Terms . 85
4.2.4 Field Adjoint Equations . 87
4.2.5 Adjoint Boundary Conditions . 88

iv

CONTENTS

4.2.5.1 Wall Boundaries – SW . 91
4.2.5.2 Inlet & Outlet Boundaries – SI & SO 93
4.2.5.3 Farfield Boundaries . 95

4.2.6 Expression of Sensitivity Derivatives . 95
4.3 Objective Functions and their Differentiation . 95

4.3.1 Volume–averaged Total Pressure Losses 96
4.3.2 Force . 96
4.3.3 Volume of Vapour in the Fluid Domain 97

4.4 Concluding Remarks . 97

5 Shape Optimization using the Cut–Cell Method 99
5.1 Shape Parameterization in the Cut–Cell method 100
5.2 Shape Optimization of Single–Phase Turbulent Flows 102

5.2.1 Channel Turbulent Flow – min JPt . 102
5.2.2 90◦ Curved Channel Turbulent Flow – min JPt

. 107
5.2.3 Turbulent Flow over the NACA 0012 – max JF 109

5.3 Shape Optimization of Two–Phase Cavitating Flows 113
5.3.1 Validation of Cut–Cell Two–Phase Flow Solver 115

5.3.1.1 Inviscid Cavitating Flow over the NACA 66(MOD) Hydrofoil . . 115
5.3.1.2 Laminar, Cavitating Flow over the NACA 0012 Hydrofoil 117

5.3.2 Two–phase Shape Optimizations . 119
5.3.2.1 Inviscid, Cavitating Flow over the NACA 66(MOD) Hydrofoil

– min JV . 119
5.3.2.2 Inviscid, Cavitating Flow over the NACA 66(MOD) Hydrofoil

– max JF . 122
5.3.2.3 Laminar, Cavitating Flow over the NACA 0012 Hydrofoil – min JV 125

5.4 Concluding Remarks . 129

6 Topology Optimization using the Cut–Cell Method 131
6.1 Topology Optimization Problem Definition . 131
6.2 Porosity–based Topology Optimization . 132

6.2.1 Example of SPTopO in a Single Inlet–Single Outlet 134
6.2.1.1 Motivation – A Closer Look at the SPTopO Main Weakness . . 137

6.3 The Cut–Cell TopO Algorithm and its Steps . 142
6.3.1 Computation of the Boundary Indicator Field ϕ 142
6.3.2 Generation of Cut–Cells based on ϕ . 144
6.3.3 Governing Equations . 147
6.3.4 Formulation of the Adjoint Problem . 147
6.3.5 Overview of the Cut–Cell Topology Optimization Algorithm 149
6.3.6 Parallelization of the Cut–Cell TopO Algorithm 149

6.4 Topology Optimization using the Cut–Cell Method 150
6.4.1 CCTopO – Single Inlet–Single Outlet Case 151

v

CONTENTS

6.4.2 Single Inlet–Single Outlet Case with Obstacle 154
6.4.2.1 Single Inlet–Single Outlet Case with Obstacle (δx, δy) = (0.25, 0.25)155
6.4.2.2 Single Inlet–Single Outlet with Obstacle (δx, δy) = (0.39, 0.29) . 157

6.4.3 Single Inlet–Two Outlet Case . 159
6.4.4 Two Inlet–Two Outlet Case . 162
6.4.5 3D Manifold TopO . 165

6.5 Concluding Remarks . 169

7 Closure 171
7.1 Novel Contributions . 173
7.2 Future Work . 174

A Inviscid Jacobian and Eigenvectors 177
A.1 Single–Phase Governing Equations . 177
A.2 Two–Phase Governing Equations . 178

B Adjoint Wall Functions and Linelets in the Cut–Cell Method 179

C The GCMMA Algorithm 183
C.1 (GC)MMA Implementation Details . 185

D Re–evaluation of the Porosity–based Optimized Solutions 189

Bibliography 193

vi

Acronyms

ABCs Adjoint Boundary Conditions

AD Algorithmic Differentiation

ALM Augmented Lagrangian Method

AoA angle of attack

CC Cut-Cell

CCTopO Cut–Cell Topology Optimization

CFD Computational Fluid Dynamics

CPs Control Points

EFS Equivalent Flow Solutions

FAEs Field Adjoint Equations

FDs Finite Differences

FEM Finite Element Method

FSI Fluid—Structure Interaction

FVM Finite Volume Method

GCMMA Globally Convergent Method of Moving
Asymptotes

GSs Geometric Sensitivities

HJE Hamilton–Jacobi Equation

IBM Immersed Boundary Method

IDW Inverse Distance Weighting

k–NNS k–Nearest Neighbors Search

KKT Karush—Kuhn—Tucker

MMA Method of Moving Asymptotes

MUSCL Monotonic Upstream–centered Scheme for
Conservation Laws

OOP Object–Oriented Programming

PCOpt Parallel CFD & Optimization unit

PDE Partial Differential Equation

r–SP re–evaluated Standard Porosity

RANS Reynolds–Averaged Navier–Stokes

SA Spalart–Allmaras

SDs Sensitivity Derivatives

ShpO Shape Optimization

SPTopO Standard Porosity (Brinkman) Topology
Optimization

STL STereoLithography

TEM Transport Equation Model

TopO Topology Optimization

TVD Total Variation Diminishing

VoF Volume of Fluid

WLSQ Weighted Least Squares

XFEM eXtended Finite Element Method

vii

Acronyms

viii

Chapter 1

Introduction

The simultaneous increase in computational power and the development of numerical meth-

ods for the solution of complex phenomena, governed by a system of Partial Differential

Equations (PDE), have made computer–aided numerical predictions commonplace. In the field

of fluid dynamics, Computational Fluid Dynamics (CFD) is commonly applied to provide in-

sight into real–life problems ranging from the analysis and design of aerospace, marine and

automotive applications to weather forecasting and chemical processes due to their time– and

cost–effectiveness, and ease of examining different flow conditions and body surfaces. As a

result, various sophisticated CFD and numerical optimization tools have been, and are contin-

uously being, developed to provide additional flexibility, accuracy, and robustness. The ability

to obtain superior designs at reduced costs by lowering the number of necessary experimental

validations during the design phase [236] are credited to these tools.

However, the advanced simulation, and optimization, capabilities are often hindered by

the mesh generation process. It constitutes one of the main bottlenecks in the simulation

workflow. Simulations of complex body surfaces require significant human intervention for the

body surface preprocessing and the mesh generation process to obtain accurate results and is a

tedious, costly task that also necessitates user experience [236]. A remedy can be found in the

Immersed Boundary Methods (IBM) that can potentially automate the entire mesh generation

process even in complex configurations. The Cut-Cell (CC) method, a subclass of IBMs, poses

the main method this thesis extends.

Following the trend for more advanced simulation capabilities, the extension of an existing

CC–based Navier–Stokes equations code, developed in a previous PhD thesis [214], is pursued to

support fluid problems governed by the Reynolds–Averaged Navier–Stokes (RANS) equations

1 of 219

1. INTRODUCTION

and two–phase fluid problems of liquid and vapour featuring cavitation. These extensions

introduce novelties not yet tackled in the associated literature, especially when considering

their incorporation into a numerical optimization tool.

The following sections document the theoretical background of the components addressed

throughout this thesis. More specifically, Section 1.1 establishes the concept of IBMs and, then,

focuses on the CC method. Section 1.2 presents the aspects of the numerical challenges related

to the simulation of cavitating flows and describes the commonly adopted numerical methods.

Section 1.3 is concerned with the methods used to perform CFD–based optimization. Then, in

section 1.4 the adjoint method is introduced and recounts its variations. Finally, Section 1.5

outlines this thesis structure.

1.1 Immersed Boundary Methods

The notion of IBMs was pioneered by Peskin [196] in his seminal work studying the blood flow

in the human heart. The unique attribute of IBMs lies in their usage of meshes, not aligned

with the body surface boundaries, but have them immersed within it. Instead of wrapping a

mesh around the body surfaces, a fixed Cartesian mesh is created that encompasses both the

fluid and solid regions. The presence of body surfaces in the flow is accounted for via force

functions, acting upon the governing equations in either the continuous or discrete sense.

The use of IBMs offers several advantages and disadvantages when compared with con-

ventional body–conforming approaches. The key feature of IBMs is the simplicity of mesh

generation. It offers increased automation and flexibility in the mesh generation process that

is absent when generating body–conformal structured or unstructured meshes. On the con-

trary, in such cases, the process is cumbersome and follows an iterative human–in–the–loop

workflow to obtain good–quality body–conforming meshes [24, 164, 236]. This advantage be-

comes evident in case simulations of moving bodies are considered. Typically, conventional

approaches require the deformation of the mesh to follow the body surface boundary in each

timestep [149]. However, when simulating large body motions, or multiple bodies in relative

motion, these mesh deformation techniques fail to provide good–quality meshes, necessitating

re–meshing and interpolating the flow solution to the new mesh. Overall, these requirements

lead to reduced accuracy and robustness and increase the computation cost of the simulation.

For this reason, overset (Chimera) meshes have been developed that can partly remedy these

drawbacks but still require advanced interpolation techniques between the meshes to maintain

conservation [50]. In the IBMs, the Cartesian mesh remains fixed, enabling large body motions

2 of 219

1.1 Immersed Boundary Methods

and, in principle, need not be deformed or regenerated.

The main disadvantage of IBMs lies in their difficulty to impose boundary conditions along

the body surfaces. The exact approach followed to incorporate the effects of the solid boundaries

is critical and separates the IBMs into two main subclasses with multiple variants [164]. Another

disadvantage of IBMs stems from their difficulty to control mesh resolution at the vicinity of

body surfaces, compared with conventional approaches. Since the mesh lines are not aligned

with the body boundary, creating the high–aspect ratio poses a challenge. As such, IBMs

require more dense Cartesian meshes to resolve the boundary layer. This problem becomes

more pronounced as the Reynolds number increases since the boundary layer thickness reduces

in size.

1.1.1 Immersed Boundary Methods Approaches

There is a multitude of ways in separating IBMs into subclasses. Mittal & Iaccarino [164]

approach separates IBMs based on the way the forcing function is implemented. Sotiropoulos

& Yang [238] classifies them based on the representation of the fluid–solid interface. Following

Sotiropoulos & Yang [238] approach, IBMs are broadly divided into Diffused and Sharp Interface

Methods. The former are characterized by the smearing of the immersed boundary and have

its effects act upon several computational cells in its vicinity, while the latter avoiding interface

smearing by tracking its exact location and applying its effect locally.

In diffused interface methods, the force functions are represented by discrete delta functions

or penalization methods. Their exact implementation further differentiates them. In case

these are introduced in the continuous form of the governing equations, the continuous forcing

approaches arise, whereas, in the discrete ones, the force functions are incorporated during the

discretization of the governing equations.

The continuous forcing approaches are ideally suited for Fluid—Structure Interaction (FSI)

problems with elastic bodies since the exerted body forces can be computed using the appropri-

ate law, for instance, Hooke’s. Therefore, this approach is widely used in the field of bio–fluid

mechanics; some indicative examples are the work of Peskin [196] and Griffith et al. [88], who

study the human heart interaction with the blood flow, and Eggleton & Popel [72], wherein

the deformation of red blood cells in shear flow is presented. The accuracy these methods is

significantly influenced by the smoothed functions choice used to distribute the exerted body

forces. An extensive review and applications on the continuous forcing approaches in the field

of bio–fluid mechanics can be found in Peskin [197]. However, continuous forcing approaches

3 of 219

1. INTRODUCTION

do not fare well when considering rigid bodies. The force functions significantly stiffen the

governing equations and cause numerical instabilities. Workarounds have been proposed, such

as approximating rigid bodies using stiff spring and, therefore, allowing a minute elasticity to

exist [140], constraining the solid region to perform rigid motion [84] or assuming a porous

medium [18]. Discrete forcing approaches were introduced by Mohd-Yusof [166]. The forcing

functions are incorporated during the discretization of the governing equations and are com-

puted based on the desired velocities at the body surfaces. They avoid the introduction of

user–specified parameters and exhibit better numerical characteristics and stability compared

to their continuous counterpart. Moreover, even though this approach is considered a diffused

interface method, it can retain a distinct representation of the immersed boundary [39, 238].

However, this amplifies non–physical spurious force oscillations in moving bodies, see Uhlmann

[258] and Breugem [39]. Fadlun et al. [74] extended the formulation to the finite differences

method. Additional improvements are documented in Sotiropoulos & Yang [238] and references

therein.

The main advantage of diffused interface methods lies in their implicit treatment of the

immersed boundary, i.e. it avoids computing sub–cell information and limits the additional nu-

merical requirements to the inclusion of the forcing function. However, their main disadvantage

is their inability to accurately predict the associated boundary layer. Sharp interface methods

explicitly track the body surface to overcome this and include it into the discretization scheme

next to the solid boundary.

The first main approach of sharp interface methods is the ghost–cell method [254]. In such

an approach, the solid boundaries are explicitly tracked and have the computational domain

extended keep an additional zone of cells inside the solid regions, namely the ghost cells. The

ghost–cells are then used to compute flux balances with cells in the fluid domain. Their val-

ues are computed using an interpolation scheme that implicitly incorporates the appropriate

boundary conditions. Thus, the interpolation used to compute the ghost–cell values is of high

importance and has led to the development of various techniques [76, 185, 231]. A consensus

used to compute the ghost–cell values lies in the use of image points [165], namely points in-

side the fluid domain whose location is computed by mirroring the ghost–cells along the solid

boundary.

Even though the above–mentioned IBMs have seen great success and application in a wide

range of fluid problems, none preserves the conservation properties in the vicinity of the im-

mersed boundary and, hence, the entire flow domain. Spurious production/loss of mass, mo-

4 of 219

1.1 Immersed Boundary Methods

mentum and energy can be observed at the immersed boundary [110, 122]. The conservative

issue is abolished with an alternative unique IBM that partly escapes this categorization but

can broadly be classified as a sharp interface IBM, namely the CC method [75]. The CC method

relies on the generation of Cartesian meshes that are subsequently modified to conform with the

immersed body surface, bridging IBMs and conventional body–fitted approaches. Figure 1.1

shows an illustration of the aforementioned meshing approaches. The CC method is exclusively

used and extended in this thesis and is, thus, presented separately in the following section.

(a) (b) (c)

Figure 1.1: Illustration of meshing approaches around a cylinder - In conventional body–fitted
approaches (a), the generated mesh is wrapped around the considered body surface. On the
contrary, in IBMs, a non body–conforming Cartesian mesh is generated having the body surface
immersed within it (b). In the CC method (c), a Cartesian mesh is generated and is subsequently
modified to exclude the solid part by reshaping the intersected Cartesian cells. This leads to
a body–conforming Cartesian mesh. Ciel coloring corresponds to the computational domain in
which the governing equations are solved.

1.1.2 The Cut–Cell Method

The higher accuracy and conservation properties near the interface and high level of automated

mesh generation capabilities make the CC method one of the most potent IBMs, suitable for

turbulent simulation [161, 238]. As it has been already alluded to, in the CC method, the

non–conforming Cartesian meshes are cut by the body surfaces, separating them into distinct

fluid and solid regions. To do so, computational cells that encompass the immersed boundary

retain only their fluid part to create finite volumes that conform with the boundary surface.

The resulting ‘Cartesian’ mesh consists of the interior Cartesian and the boundary cut cells.

Generating the cut cells poses one of the main challenges/drawbacks of the CC method due to

the complex Cartesian cell–body surface intersections that can arise, even in 2D.

5 of 219

1. INTRODUCTION

Firstly introduced by Clarke et al. [55] for 2D inviscid flows and extended to 3D by

Gaffney JR & Hassan [80], the CC method mainly focuses on finite volume discretizations

and has been benefited from decades of development. These early works identify a problem

that has since become synonymous to the CC method, the small cell problem. During the CC

mesh generation, arbitrarily small CCs may arise that harm the stability and performance of

the solution process. The presence of small CC has led to the development of several techniques

that identify these small CCs and either physically merge them with a neighboring cell to cre-

ate a hypercell [124, 279], or link/mix them by numerically connecting them with adjacent cells

[58, 92, 168]. Another alternative lies in the H–box method [95, 156] that, even though it is

second–order accurate, it is impeded by significant complexity and has not seen broad usage.

Following developments focused on adaptive mesh refinement techniques to avoid waste of

computational resources and introduce refinement at areas of interest. In Quirk [205] and

Pember et al. [194] mesh adaptation techniques are used to accurately capture shock waves,

while in Melton et al. [158] a geometry–based approach is presented, wherein the Cartesian

mesh progressively coarsens away from the body surface.

Extension of the CC method to the 2D Navier–Stokes equations was first attempted by

Coirier & Powell [57], who investigated two different viscous flux discretization. These are

applied in laminar flows with low to moderate Reynolds number to several test cases, including

a coordinate–aligned flat plate, a non aligned one, and a branched duct with cooling fins.

They conclude that the presence of the irregular CCs leads to a very oscillatory skin friction

coefficient distribution when non mesh–aligned cases are studied, and stability concerns are

raised, elucidating the challenges of extending the CC method to viscous flows. The stability

issues are mitigated by Ye et al. [279] who introduced a polynomial interpolating function at

the CCs to compute the required spatial derivatives to second–order accuracy, but is limited

to the 2D Navier–Stokes equations. Similarly, in Hartmann et al. [92] a different viscous flux

discretization is proposed that is second–order accurate, excluding the vicinity of the solid

boundaries and extends the CC method to the 3D Navier Stokes equations. However, the

challenge of computing a smoothly varying skin friction coefficient distribution is not tackled.

Several approaches have been developed to overcome this challenge ranging from the em-

ployment of strand meshes to altering the discretization scheme near the solid boundaries. The

use of strand meshes arises from the taxing number of cells required to accurately resolve the

boundary layer. This approach espouses the generation of a body–conforming mesh near the

body surfaces that couples with a background Cartesian mesh [115, 275], similar to the inflation

6 of 219

1.1 Immersed Boundary Methods

layers used in conventional body–conforming meshes. This approach seems potent as it over-

comes the accuracy issues mentioned and has seen significant improvements in automation and

mesh resolution requirements. However, several challenges that persist include their application

to complex/moving body surfaces, the automatic treatment of intersecting near–body meshes

in multi–component body surfaces, and the additional interpolations used for intra–mesh com-

munication [76, 115]. Approaches advocating using a Cartesian mesh up to the solid boundaries

favor the simple and highly automated mesh generation process. The increased accuracy near

the solid boundaries is pursued by increasing the discretization stencil [12], introducing polyno-

mial fits [11, 31], following the principle presented in Ye et al. [279], or both [168]. For example,

in Anagnostopoulos [11] different polynomials fits are suggested for the flow velocity and pres-

sure. In Berger & Aftosmis [31] the velocity spatial derivatives between the CCs are computed

using the recentering idea, proposed in [33, 109], and is coupled with a quadratic polynomial

fit that computes the CC velocities and their spatial derivatives. In their work, a comparative

accuracy study is performed comparing the recentering approach with the polynomial fit-based,

revealing the higher accuracy of the former. Another noteworthy, more recent attempt is that

of Muralidharan & Menon [168], in which they propose a new cell clustering algorithm that

numerically merges the CCs with neighboring cells and averages the unknown flow variables in

each cluster. This approach provides a smooth pressure and skin friction coefficient near the

solid boundaries.

Extension of the CC method, and IBMs in general, to turbulent flows has been realized in

the context of Wall–Modeled LES (WMLES) [85, 202, 269], DES [23], LES [52, 160, 162, 171],

and DNS [65, 69] that inherently require very fine resolution. Interestingly, in such simulations,

incorporating surface roughness is of high importance and, thus, the Cartesian–based methods

can offer great flexibility [69]. However, in the RANS equations, turbulence is modeled to pro-

vide a more economical alternative, avoiding the stringent mesh resolution requirements. Still,

a sufficiently fine refinement near the wall is required to resolve the turbulent boundary layer.

However, unlike conventional body–conforming approaches, the isotropically refined Cartesian–

based methods have difficulties in refining only along the wall–normal direction, leading to a

rampant increase of the required number of cells [61]. Thus, wall–resolved RANS simulations

become unjustifiably expensive [31, 32, 249]. The use of strand meshing can still be pursued

but introduces additional complexities to the mesh generation process [115]. For this reason,

approaches using pure Cartesian meshes, coupled with near–wall modeling, have seen significant

research interest, invigorating near–wall modeling interest as well. This approach is motivated

7 of 219

1. INTRODUCTION

by the reduced cell counts offered through the use of wall functions in body–fitted RANS and

WMLES methodologies [252]. Challenges arise due to the first cells’ irregular distances to the

solid walls, but several recent approaches have been promising, showing significant cell count

reduction, increased accuracy and smooth near–wall quantities. Limitations, such as those ob-

served in wall functions, exist [212, 249], leading to the development of more sophisticated wall

models [32, 46].

Hitherto the survey was limited to stationary body surfaces. In case moving objects are

simulated, several CC–specific challenges need to be addressed. The clipping of the Cartesian

mesh on the current body surface position leads to the emergence and disappearance of cells

during unsteady simulations and, thus, temporal derivative discontinuity. This can result in

mass loss and pressure spurious oscillations. Various attempts have been made to remedy this

challenge, such as distributing the disappearing cells mass to neighboring cells [29, 217, 218]

or developing space–time finite volumes [169], but a dominant technique benefiting from the

flexibility of the CC method still remains. The pursuit of more advanced techniques is also

being considered in the PhD thesis of Samouchos [214].

The CC method proves to be a powerful, scalable and flexible method that can deal with

modern CFD–related challenges, also mentioned in the 2030 vision study [236]. Therefore,

investing in the development of CC approaches that can handle flow problems of increased

complexity is innate.

1.2 Cavitating Flows

Cavitating flows occur in engineering applications involving pumps, water turbines, nozzles and

marine propellers. The continual bubble implosions that generate shockwaves and high-speed

liquid jets near the solid walls have detrimental effects in these applications and are the reason

for vibrations, load imbalances, material loss, noise pollution, and reduction in performance and

life cycle [79, 130]. In contrast, cavitation turns out to be beneficial in some other applications,

such as in drug delivery systems [241], underwater cleaning devices and vehicles. Cavitation has

received significant research interest in the past decades. Experimental cavitation studies are

challenging that require specialized equipment and measurement techniques to obtain reliable

data [2, 38, 130, 243]. In Acosta & Hamaguchi [2], cavitation, and more precisely its appearance

mechanism, is studied on the ITTC headform. Figure 1.2 exemplifies a case of sheet cavitation

on the ITTC headform.

Numerical predictions are a faster and cheaper alternative that can provide details about the

8 of 219

1.2 Cavitating Flows

Figure 1.2: Experimental investigation of cavitation [2] - Sheet cavitation on the ITTC headform.
The flow is from left to right with a speed of 12.2 m

s
and a cavitation number of 0.424. Image

reproduced after written permission from the Oxford University Press.

onset and evolution of cavitation. Modeling challenges arise due to the interfacial dynamics,

phase change and multiple time scales. Thus, single– or two–fluid numerical models with

various levels of complexity exist. Two–fluid models are the less common approach; they treat

the liquid and vapour phases as two different fluids [89] by adopting conservation laws (mass,

momentum, energy) for both phases, providing generality at the expense of their computational

cost [129]. The single–fluid, or homogeneous, models are based on conservation equations

governing the homogeneous mixture, with averaged properties [153]. Away from cavitation

bubbles, the mixture fluid behaves as a pure liquid. Instead, within them, its properties depend

on the presence of vapour. Homogeneous models can further be classified as the Transport

Equation Model (TEM), Barotropic [62] and Equilibrium [216] ones. For more details, interested

readers are referred to Koop [129] and the therein cited papers.

Herein, simulations of cavitating flows are pursued following the TEM approach, wherein

the mixture constituents (liquid and vapour) are considered incompressible fluids. The mass

transfer rates are determined by the Kunz cavitation model [137]. Its advantages are its ability

to generate baroclinic vorticity at the cavity closure region and its flexibility when dealing

with multicomponent species. In TEM, species transport equations are solved for each mixture

constituent mass or volume fraction, supplemented by the momentum conservation equations

9 of 219

1. INTRODUCTION

of the homogeneous mixture. Cavitation, and thereby vapour generation and destruction, are

modeled by explicit source terms in the transport equations. These are derived either from

the Rayleigh–Plesset equation (RPE) [204], such as the Bubble Two–phase Flow (BTF) [135]

and the Sauer [215] model, empirical approaches based on the evaporation and condensation

processes, e.g. the Merkle [159] and Kunz [138] model, or the empiricism-free cavitation model

based on interfacial dynamics of Senocak and Shy [223]. Cavitation models combining both

bubble dynamics (RPE) and empiricism, such as the Zwart [281] and the Full Cavitation [234]

model, exist too. The system of equations is solved in a coupled manner, using a preconditioner

[138] based on the artificial compressibility method of Chorin [54] and implemented on adaptive

CC meshes by extending the precursor software [214] to treat a mixture fluid with an additional

transport equation for the liquid volume fraction and the cavitation model.

The advantages of the CC method, and their ability to locally increase mesh resolution,

make it an attractive alternative to traditional body-fitted meshes. Furthermore, their ability

to guarantee conservation near the solid boundaries reinforces their application, considering the

sensitivity of cavity predictions to near–wall resolution [222]. In general, CFD simulations of

cavitating flows have gained enough maturity to predict cavitating flows in complex applications,

such as surface piercing hydrofoils [123], moving fuel injector control valves [180], water–jet

pumps [145], cavitating propellers [167], external gear pumps [163], and supercavitating spheres

[195]. However, relevant numerical optimization tools are rather limited, encouraging their

development through the present thesis.

1.3 Numerical Optimization Tools

The establishment of CFD tools for performance analysis has motivated the development of

numerical optimization procedures to facilitate industrial design needs. These can be classified

into two main categories based on the strategy followed to iteratively compute the optimal

design, namely the global (stochastic) [240] and local (deterministic) approaches [34, 178]. The

former, also named zero–order methods, can operate in a black–box framework avoiding the

computation of the objective function(s) gradient(s). These approaches are ideal for optimiza-

tion problems with a cheap objective function evaluation process and have seen great success in

constrained and multi–objective optimization problems. They are (mostly) population–based,

i.e. starting with several arbitrarily generated candidate solutions, new candidate solutions are

generated based on natural evolution operations, such as mutation and crossover, organized

in generations. The introduction of randomized perturbations allows for increased exploration

10 of 219

1.3 Numerical Optimization Tools

properties enabling them to find the global minimum/maximum, given that sufficient compu-

tational resources are provided. Representative such approaches are the Genetic Algorithms

(GAs), Evolutionary Strategies (ESs), Evolutionary Algorithms (EAs). The cost of these meth-

ods scales non–linearly with the number of design variables, i.e. degrees of freedom of the opti-

mization problem, and are, thus, plagued by the curse of dimensionality. In CFD applications,

the objective function is computed by solving a costly non–linear system of PDEs and often

exhibit a large number of design variables, making the use of ingenuous approaches problem-

atic. However, when refined, via surrogate or dimensionality–reduction models [112, 113], it

enables their selective application [111, 139]. Altogether, this thesis is exclusively concerned

with deterministic optimization methods. Hence, stochastic approaches shall not be further

discussed.

Deterministic approaches embody all optimization algorithms that rely on the computa-

tion of the (local) objective function gradient w.r.t. the design variables (also referred to as

Sensitivity Derivatives (SDs)), and in some cases second–order derivatives to obtain curvature

information (Hessian matrix), to direct the optimization problem towards extrema. The use

of local data, however, leads to their main disadvantage. They are dependent on the starting

guess, can become trapped at local extrema and, thus, an optimized, instead of the optimal,

solution. In addition, deterministic approaches have difficulties in multi–objective optimiza-

tion problems. These disadvantages, however, dwarf their primary advantage, especially for

CFD applications, due to the high–cost objective function evaluation. The additional informa-

tion makes these approaches significantly more computationally efficient per objective function

evaluation [78], since they march towards the extrema direction, continuously obtaining better

performing solutions. An extensive review on deterministic optimization methods can be found

in Nocedal & Wright [178].

The efficiency of deterministic approaches strongly relies on the objective function gradient

computation efficiency. In the field of fluid mechanics, the objective function gradient cannot

be computed analytically and requires the introduction of numerical methods [198]. The eas-

iest, most straightforward approach is Finite Differences (FDs). In an optimization problem

defined by its objective function J , controlled by the design variables b of size N , the objective

function gradient ∂J
∂b can be approximated by consecutively permuting each design variable (e)

infinitesimally by ϵ in both directions (±), i.e.

∂J (b)
∂bi

=
(
J (b+ eiϵ)− J (b− eiϵ)

2ϵ

)
+O(ϵ2), i = 1, ..., N (1.1)

11 of 219

1. INTRODUCTION

The main advantage of this method is its ease of implementation. Since the re–evaluation

of the objective function occurs with each design variable increase or decrease, this method

can be considered a black–box method. However, the total cost of computing the objective

function gradient scales linearly w.r.t. the number of design variables (2N Equivalent Flow

Solutions (EFS)), making it inefficient when considering multi–variable optimization problems.

In addition, the objective function gradient approximation is sensitive to the permutation size

selected. Large values lead to low accuracy approximations, while small ones can lead to

roundoff errors due to minute denominators. The silver lining is usually found through trial

and error, inadvertently increasing the total cost. Other alternatives exist that can overcome the

ϵ–dependency, such as the Complex Variable [15], and the Direct Differentiation [227] methods

but are hindered by significant implementation investment and linear, w.r.t. the number of

design variables, scaling (N EFS).

An alternative method for computing the objective function gradient is found in the adjoint

method, with a cost that is independent to the number of design variables. This independence

makes the adjoint method suitable for large–scale optimization problems, commonly seen in

CFD applications, outshining the aforementioned optimization methods. Thus, the adjoint

method has been in the spotlight over the past decades by relevant academic and industrial

communities. In the adjoint method, a dual problem is created by forming the Lagrangian,

namely converting the constrained (by the governing equations) optimization problem to an

unconstrained one that includes Lagrangian multipliers (adjoint variables). The Lagrangian

shares the same extrema as the objective function and, therefore, the required gradient expres-

sion, comprising flow and adjoint variables, results after differentiating the Lagragian w.r.t.

the design variables. To make the gradient expression independent of the derivatives of flow

quantities w.r.t. the design variables that are associated with immense computational effort,

a set of adjoint PDEs arises. The cost of solving the adjoint equations is similar to that of

the governing equations. As such, the total cost of computing the objective function gradi-

ent is approximately equal to numerically solving the governing equations twice (2 EFS) and

irrespective of the number of design variables.

1.4 The Adjoint Method

The adjoint method was first introduced by Lions [146] and was first applied in the field of fluid

dynamics by Pironneau [203], who studied potential flows problems. Then, the adjoint method

was formulated and applied to problems governed by the Euler equations [102, 105, 207]. In

12 of 219

1.4 The Adjoint Method

the following years, the method was progressively extended [104, 117, 177] and refined [116],

resulting in different objective function gradient expressions, and applied in fluid problems of

increasing complexity, such as aircraft [208], automotive [182, 192], turbomachinery [188], and

wind turbine [66] applications. A recent extensive review on adjoint methods can be found in

Kenway et al. [119].

The adjoint method can be classified into two main approaches based on how they define

the Lagrangian [48, 170, 198]. In the discrete approach [103], the Lagrangian is formulated

based on the discretized governing equations, necessitating the differentiation of the discretized

governing equations. This can be accomplished either by hand or using an Algorithmic Differ-

entiation (AD) tool [87], such as TAPENADE [100], ADIFOR [19], ADOL-C [270], etc. The

key benefits of the discrete approach lie in their consistency of computing the objective function

gradient regardless of the coarseness of the mesh and their capability of partially automating

the implementation of adjoint methods in CFD software [119]. Their main disadvantages spring

from their severe computational and memory demands that, in some cases, are prohibitive.

In the continuous adjoint approach [14], which is the chosen approach in this thesis, the

Lagrangian is formulated by the governing equations in continuous form and results in a set

of (linear) adjoint PDEs that share similar numerical aspects with the governing equations.

It enables the use of the same numerical solution process for the adjoint equations, reducing

implementation and memory requirements. Development of the adjoint problem, in its con-

tinuous form, can result in different objective function gradient expressions. Employing the

Leibnitz rule during the differentiation of the Lagrangian, the resulting gradient expression is

dependent only on Surface Integrals (SI approach) [187] that have a negligible cost to com-

pute. The SI approach is shown to provide lower accuracy computations since it only accounts

for displacement variations at the boundaries [101]. Instead, if the Leibnitz rule is not used,

the resulting expression is also dependent on Field Integrals (FI approach) [190] that require

the computation of the computationally intensive mesh displacement variations throughout the

computational domain but yield higher accuracy. The accuracy difference of the two approaches

is attributed to the difficulty of computing boundary terms that arise from the Leibnitz rule.

However, this is circumvented in Kavvadias et al. [118] wherein the Enhanced-Surface Integral

(E–SI approach) is proposed that accounts for the mesh displacement variations via the concept

of adjoint mesh displacement and solving an additional adjoint equation. Since, the CC method

is used, for which mesh displacement variations exist only at the CCs, this thesis focuses on

the SI approach.

13 of 219

1. INTRODUCTION

Significant research has been invested in the implications of accounting for eddy viscosity

variations when extending the adjoint method to turbulent flows. The inclusion of the turbu-

lence models is often associated with significant implementation requirements that initially lead

to the frozen turbulence assumption, purporting that eddy viscosity variations can be neglected

and avoid its differentiation. Investigations of one– and two–equation turbulence models reveals

that, in some flow problems, this assumption could lead to inaccurate gradient computations, in

both magnitude and sign, significantly affecting the optimization path [71]. However, cases have

also been reported in which differentiating the turbulence model could potentially be avoided,

such as [154] wherein the frozen turbulence assumption has a minute impact on gradient ac-

curacy. Overall, even though the effects of this assumption have been documented in both

the continuous [42, 189, 282, 283] and discrete [120, 121] approach, it is yet not possible to a

priori evaluate the impact of the frozen turbulence assumption. In light of the aforementioned,

the development of the adjoint formulation in turbulent flows includes the differentiation of

the turbulence model, implemented specifically in the CC method, to avoid cases of inaccurate

gradient computations. Due to the intricate extension of the CC method to turbulent flows,

several different/new aspects arise and are presented in this thesis.

In the literature, the development of the adjoint method is focused mainly on single–phase

flows, whereas its application to two–phase flows is relatively limited. Adjoint two–phase meth-

ods incorporating cavitation effects are even fewer [36]. Early efforts applying the adjoint

methods in two–phase flows focus on free–surface potential flows, minimizing wave resistance of

ships and submarines [206]. In Palacios et al. [183], the continuous adjoint method to the two–

phase Euler equations supported by the level set method is presented; these are extended to the

RANS equations in Palacios et al. [184] and are applied in obstacles in free surface channel flows

to minimize the wave generated by the obstacle at the free surface. More recently, a hybrid

adjoint approach focusing on the derivation of the adjoint Volume of Fluid (VoF) equation is

proposed [134, 136] and employed for the resistance minimization of a 3D container ship hull.

Furthermore, in Alexias & Giannakoglou [7] the continuous adjoint method is implemented

and applied in the optimization of a static mixing device. Applications of adjoint methods in

cavitating flows can be found in Boger & Paterson [36], wherein they develop the continuous

adjoint method for the barotropic mixture model to compute gradients of various objective

functions for inviscid, cavitating flows. Moreover, in [35] a quasi−1D TEM, the continuous ad-

joint formulation is derived for several objective functions, investigated in terms of suitability

and effectiveness for a series minimization problems. More recently, relative work can be found

14 of 219

1.4 The Adjoint Method

in Anevlavi & Belibassakis [17], in which the continuous adjoint method is introduced through

an inverse problem to improve upon the predicted cavity features of panel method potential

flow solutions. Based on the above, the derivation of a continuous adjoint method for inviscid

and laminar flows exhibiting cavitation, modeled by a TEM using the cut-cell method, has yet

to be formulated and implemented for Shape Optimization (ShpO). Thus far, ShpO methods

accounting for cavitation, excluding [35, 36], are treated using a single–phase approach with an

objective function that quantifies areas of pressure below the vapour pressure. However, in such

approaches, much of the underlying physics is neglected since cavitation does not physically

occur, rather, it is inferred. The single–phase approach introduces limitations with regards to

the objective function expression, as well as the inability to quantify two–phase effects. The

arising challenges are two–fold. Firstly, mass transfer rates must be differentiated according to

the selected cavitation model and included in the adjoint two-phase solver. Secondly, variations

of the molecular density and viscosity that appear due to the two-phase nature of the flow need

to be incorporated.

1.4.1 The Adjoint Cut–Cell Method for Shape Optimization

Typically, during the ShpO algorithm, the computed objective function gradient guides the

design variables that control the considered body surface to provide better performing designs.

In each subsequent optimization cycle, the current body surfaces change along with the gener-

ated body–conforming mesh, similar to problems with moving objects. Thus, mesh deformation

techniques are necessary to adjust body–conforming mesh for subsequent simulations. How-

ever, they come with limitations, namely the inability to deal with large displacements and

gradually worsening mesh quality. On the contrary, in the CC method, and IBMs in general,

the mesh generation process enables a fully automated re–meshing procedure and facilitates

displacements of arbitrary magnitude. Indeed, modifying the body surface in ShpO is effortless

when compared to cases with moving objects since the appearance and disappearance of finite

volumes need not be treated. Additionally, the absence of mesh deformation techniques cir-

cumvents the necessity of computing mesh deformation variations away from the body surface

and the accompanying increase in computational cost.

Even though adjoint CC–based implementations can provide significant advantages, the re-

lated literature is relatively sparse and confined to a single research group. The first adjoint

CC–based application is realized in Nemec et al. [175] who implemented the discrete approach

by hand–differentiation and studied transonic and supersonic steady–state flow problems gov-

15 of 219

1. INTRODUCTION

erned by the 3D Euler equations. Their work mainly focuses on validating the discrete adjoint

formulation by comparing the obtained objective function gradient with finite differences but

performed no ShpO. In a subsequent study by the same group [173], shape sensitivities are

computed by differentiating the CC generator and are incorporated into the adjoint formula-

tion to perform ShpO. A later study [174] focuses on the implications of neglecting the gradient

limiter in the discrete adjoint formulations by assessing the gradient accuracy in test cases that

require no limiting and show good agreement with FDs, and test cases that require the use of a

limiter and exhibit significant deviations. These deviations are, thus, construed as the omission

of the limiter in the adjoint formulation and signifying its importance.

1.4.2 Topology Optimization in Fluid Mechanics

Topology Optimization (TopO) [28] involves the pursuit of obtaining a better–qualified design

for a specific application by altering the material composition within its design space while also

satisfying the governing equations and design constraints. Introduced and flourished in solid

mechanics by Bendsøe & Kikuchi [27], TopO has been extended to various scientific fields due

to the flexibility it offers, as it is not bounded by an a priori defined connectivity. Instead of

explicitly modifying the shape of a given body surface as in ShpO, its main idea is to modify

the material composition of the computational domain (density, for instance) to describe solid

and void (empty) regions. In fluid mechanics in particular, TopO approaches are first realized

by Borrvall & Petersson [37] and deal with Stokes flows, but have been extended and applied

to laminar [148, 181], and turbulent [68, 128], steady, and unsteady [63, 176, 264] flows. The

predominant method used for TopO in fluid mechanics is analogous to that in solid mechanics,

namely via the porosity–based approach (or else the Brinkman penalization method). In this

approach, a porous material is introduced and has its permeability α in each computational

cell or node controlled. Solid regions are characterized by low porosity or high impermeability,

impeding fluid flow by enforcing a zero velocity, whereas fluid regions are characterized by high

porosity, allowing the fluid to move freely. TopO, seeks to answer which computational cells

should solidify and which should remain porous by altering their porosity in a finite range,

usually 0 ≤ α ≤ 1, to minimize the objective function. This is illustrated in Figure 1.3.

As such, in TopO, the design variables consist of the porosity of every cell or node of the

computational domain, making adjoint methods ideal. Furthermore, the optimization problem

is usually subject to additional (in)equality constraints, such as the maximum allowable fluid

region volume or specific massflow at the outlets [191, 264]. Numerically, TopO problems are

16 of 219

1.4 The Adjoint Method

characterized by a very high number of bounded design variables and additional constraints,

leading to a complex optimization process that calls for more advanced optimizing procedures.

Figure 1.3: Schematic representation of the porosity–based approach - The dark region cor-
responds to areas with low porosity (high impermeability) that imitate the presence of solid,
while gray regions are characterized by high porosity (low impermeability) and, thus, imitate
fluid regions∗. Note however that the interface between the two regions is implicitly described
and requires additional post–processing to extract the shape of the resulting duct. Taken from
Papoutsis-Kiachagias [191].

The ability to radically change the topology of the solution during the optimization cycles

and the relatively simple implementation are the main advantages of porosity–based TopO. Its

main weakness relates to accuracy issues, as it cannot account for the accurate effect of solid

walls on the computed flow solution and regions of intermediate porosity (partly fluid/solid) can

appear, breaking the distinction between the two. Usually, (porosity) interpolation functions

are introduced to partly mitigate this weakness. Furthermore, stair–case effects instead of

smooth curved boundaries can appear, influencing the solution accuracy. Another difficulty of

∗Without being pedantic, the design variables α in porosity–based approaches characterize the porosity of
each cell (or node) by describing its impermeability. As such, high α suggest an impermeable material that does
not allow the fluid to pass through it and, thus, absence of porosity.

17 of 219

1. INTRODUCTION

porosity–based approaches lies in the inability to simulate narrow solid regions with accuracy

as pressure diffuses through them [131, 151]. For these reasons, optimized solutions computed

by porosity–based TopO are usually followed by a re–evaluation process using flow solvers

running on body–fitted meshes. However, the extraction of the body shape from the optimized

porosity field is not trivial and may, among others, impair the quality of the optimized solution.

This process usually leads to a (slightly) different performance value that is, however, more

accurate. For this reason, combined methods, such as Koch et al. [127], are being developed

that can parameterize the so–extracted boundaries and follow–up a ShpO to further refine the

topology–optimized solution.

The shortcomings of the porosity–based approaches in conjunction with the demand of run-

ning more complex TopO applications that necessitate sharp fluid–solid interfaces [107, 114, 151,

268], have rejuvenated surface–capturing approaches. In these approaches, solid boundaries are

reconstructed during the optimization process rather than upon its completion, usually via level-

set computations on fixed background meshes [49, 70, 131]. Capturing the solid surface anew

within each optimization cycle introduces several benefits. Firstly, it enables the imposition

of accurate boundary conditions. Secondly, it can improve upon turbulent TopO applications

for which near–wall accuracy is of the essence. Thirdly, it enables objective functions to be

expressed directly at the solid boundaries, such as heat transfer or boundary deformation. In

level–set TopO methods, the SDs, expressed w.r.t. the distance to the interface (ϕ), are com-

puted and used to convect the zero–level iso–surfaces; these support topological changes such

as boundary merging, splitting and disappearance [43, 259]. However, for the generation of

new solid boundaries, i.e. the appearance of new fluid–solid interfaces inside the fluid domain,

additional treatment is required [10, 213]. Naturally, level–set approaches are also afflicted

with some disadvantages. For instance, they generally require the solution of the Eikonal, or

Hamilton–Jacobi Equation (HJE), to compute the signed–distance function that describes the

fluid–solid interface exact position, which translates to numerically solving a stiff PDE that

is well–known for its strict stability properties and small timestep requirements. This process

introduces computational overhead and can lead to slow optimization convergence rates. The

associated computational costs can be reduced via a Narrow Band technique that updates the

level–set to a Signed–Distance function at a small zone near the fluid–solid interface [127, 224].

Other alternatives also exist, such as the use of parametric level–set formulations that entirely

circumvent the need of numerically solving a PDE [60, 201, 273].

A more traditional usage of TopO application has led to advanced Finite Element Method

18 of 219

1.5 Thesis Outline

(FEM)–based TopO approaches combining the IBMs and CC concepts with FEM discretiza-

tions, in an attempt to circumvent mesh generation of complex body surfaces and have seen

application in the field of fluid mechanics. Such approaches are found in the eXtended Finite

Element Method (XFEM) [81, 108, 131] and CutFEM [44, 45, 264] approaches, which are the

IBMs and CC method counterparts adapted for FEM discretization. These approaches were

developed to overcome mesh generation challenges for complex body surfaces and have found

extensive TopO applications in both fluid and structural mechanics (and FSI problems) as an

alternative to the porosity– and density–based approaches. In XFEM, the interface conditions

along the intersection are accurately enforced by locally using enrichment functions to capture

the discontinuous solutions within the finite elements. In CutFEM face–oriented penalty meth-

ods are also included to stabilize the formulation of the flow equations. Their use in TopO

applications is combined with a level–set description of the fluid–solid interface, allowing them

to solve the governing equations only in the fluid domain to reduce the associated computational

cost. However, such TopO approaches that are based on the Finite Volume Method (FVM)

discretization have not been yet developed and constitutes another contribution of the current

thesis.

1.5 Thesis Outline

The CC method proves to be a powerful and flexible method that can overcome modern CFD–

related challenges by introducing automation in the analysis and optimization framework for

both ShpOs and TopOs. Motivated by the literature gap that exists regarding the application

of the CC method to turbulent and cavitating flows and their adjoint–based counterparts, the

development of computational methods are pursued to extend their applicability to these flow

types. The integration and parallelization of the wall functions technique along the irregular

CCs is investigated and assessed along with the usage of a cavitation model. Furthermore, to

utilize the CC method in TopO applications, a novel accurate method that relies on a modified

CC mesh generation process is developed and assessed. The new method is prompted by a

preliminary comparative study between two flow analysis methods, namely the Brinkmann and

CC, that illustrates the need for more accurate TopO formulations, especially when near–wall

effects are of interest. The Globally Convergent Method of Moving Asymptotes (GCMMA)

that proved to be superior to the Augmented Lagrangian Method (ALM) in both convergence

rate and ease of constraint satisfaction performs the design variable updates. A byproduct of

the development of a new TopO method that had to be assessed through fair comparisons with

19 of 219

1. INTRODUCTION

porosity–based approaches is a porosity–field re–evaluation tool that can track the fluid–solid

interfaces. All of the above are integrated on the precursor CC–based software to provide a

general CFD–oriented analysis and ShpO and TopO tool. The thesis is structured as follows:

In Chapter 2, a brief, high–level description of the main components that constitute the CC

method are presented. These include the method used to recursively decompose the computa-

tional domain into non body–conforming Cartesian cells that exhibits low memory requirements

and to generate and describe valid body–conforming CCs of any complexity, both to be used as

finite volumes during the flow solution process. Furthermore, details about adaptive techniques

used to refine the resulting CC mesh quality are presented along with the cell–merging used to

treat the small cell problem. Finally, this chapter describes the resulting mesh decomposition

approach that allows for a parallel flow solution process and touches upon several parallelization

aspects.

Chapter 3 is concerned with the flow models employed for the analysis of fluid problems

throughout this thesis. Initially, the governing equations for single–phase, incompressible flows

are described to acquaint readers with the existing FVM discretization aspects and numerical

solution process employed in the CC method. These are used as the baseline methods for the

extension to turbulent and two–phase cavitating flows. A brief theoretical background and the

approach used to integrate these extensions follows. To this end, the necessary modifications,

such as the CC–specific wall function technique used or the choice of cavitation model are also

reasoned. Finally, 2D/3D test cases are studied that aim to assess and validate all of the CC

software extensions.

In Chapter 4, the mathematical formulation of the continuous adjoint method for turbulent,

two–phase flows exhibiting cavitation based on the CC method is presented. Initially, the ob-

jective function is augmented to form the Lagrangian and introduce the adjoint variables using

a general objective function expression. Subsequently, a term–by–term analysis is carried out

to derive the PDEs and boundary conditions for the adjoint problem and leads to a computa-

tionally cheap objective gradient expression that consists of only boundary integrals. Finally,

the objective function expressions considered in this thesis are documented, along with their

differentiation that is included in the adjoint problem.

Chapter 5 is concerned with the application of the developed continuous adjoint formulation

in a ShpO workflow. Initially, a method that links the body–conforming Cartesian mesh with

the discretized body surface description is described; this enables the accurate computation of

geometric sensitivities without perturbing the body surface. Then, the ability to accurately

20 of 219

1.5 Thesis Outline

compute the considered objective function gradient is demonstrated through comparisons with

FDs, and ShpOs are performed that also exemplify benefits of a CC approach.

Finally, in Chapter 6, a new CC–based TopO approach is proposed that is inspired by the

independent, from the body surface, mesh generation process of the CC method. The new

approach is also motivated by the ability of the CC method to enforce boundary conditions

precisely on the fluid–solid interface, illustrated through comparative flow analysis accuracy

study between the CC and porosity–based method. In the CC–based TopO, an optimization

problem, similar to that used in typical porosity–based approaches, is defined but has the

design variables mapped onto intermediate variables that can implicitly describe the fluid–

solid interfaces. Hence, since in TopO no body surface description is provided, the process

of generating the CCs is completely modified to cut on the fluid–solid interfaces. Aiming to

assess the developed CC–based TopO, a standard porosity–based approach is used to make

comparisons on several benchmark cases. Finally, a 3D TopO problem is studied, with an

intent to showcase its ability to deal with large scale applications.

Additionally, 4 appendices support the theoretical background and implementation details.

More precisely, Appendix A supplements Chapter 3 by providing the forms of the inviscid Ja-

cobian matrices and eigenvectors for the employed flow models. Appendix B is concerned with

the mathematical development of the boundary term that arises during the adjoint formula-

tion in Chapter 4 that requires the differentiation of the implemented wall functions technique.

Appendix C exemplifies the concept and provides implementation details of the GCMMA algo-

rithm that proved to be indispensable for the iterative solution of the TopO problems in Chapter

6. Finally, in Appendix D, the process of re–evaluating porosity–based optimized solutions on

CC–based body–fitted meshes, used in Chapter 6, is presented.

21 of 219

1. INTRODUCTION

22 of 219

Chapter 2

The Cut–Cell method

This chapter outlines the unique features of the CC method [164], a subclass of IBMs, being

one of the core aspects this thesis builds upon. It refrains, however, from entering into

deep algorithmic descriptions since these were developed in the PhD thesis by Samouchos [214]

which has recently been accomplished by the same group (Parallel CFD & Optimization unit

(PCOpt)). The chapter focuses on the fundamental building blocks that result in an automati-

cally generated, geometry–adapted Cartesian mesh, suitable for solving the governing equations

around bodies of arbitrary complexity using the FVM. These include the decomposition of the

computational domain into Cartesian cells, extra refinement techniques used to improve upon

the generated CC mesh quality, and the cell–cutting procedure followed to create the CCs from

the Cartesian cells intersected by the body surface. In addition, CC–specific challenges con-

cerning mesh generation robustness, accurate representation of the boundary surfaces, handling

of tiny CCs, and adaptive mesh refinement that significantly reduces the number of cells [47]

are discussed. Finally, several remarks regarding the relevant data structure and the mesh

decomposition process for the purpose of parallel computations are made.

The CC mesh generation process initially defines and decomposes the computational domain

using a uniform Cartesian mesh. Cartesian cells close to the body surface are then refined,

leading to a non–uniform Cartesian mesh that progressively coarsens away from it. CCs are

created by demarcating the non–fluid parts of Cartesian cells intersected by the body surface.

The CC mesh comprises the so–defined CCs and the Cartesian cells lying entirely into the fluid

domain.

23 of 219

2. THE CUT–CELL METHOD

2.1 Cartesian Mesh Generation

The generation of the Cartesian mesh begins, assuming that the body surface is given in STere-

oLithography (STL) format. The rectangular cuboid (hyper–rectangular) computational do-

main that encompasses the provided body surface, is defined by its barycenter C0 and dimen-

sions d0 and coincides with the root Cartesian cell. In the next step, the root cell, and all

subsequently generated Cartesian cells, are isotropically subdivided into child cells of higher

refinement level (4 cells in 2D and 8 in 3D) with the same aspect ratio, creating a hierarchical

parent–child tree structure. Initially, all Cartesian cells should reach a predefined refinement

level, corresponding to a uniform Cartesian mesh. All subsequent divisions either depend on

the body surface discretization by limiting each Cartesian cell to encompass at most two surface

nodes or the user–defined cell lower volume bound. In the latter case, cells that are intersected

by the body surface must subdivide until the lower volume bound be nearly met, but not out-

stepped, since in most cases the isotropic refinement makes the exact lower bound unreachable.

Similarly, non–intersected cells must subdivide until the upper bound is no longer exceeded,

except for cases in which neighboring cells’ refinement levels differ by more than one. This

is necessary to both balance the generated tree structure and to avoid steep changes in mesh

resolution. This process finally creates Cartesian meshes, which are adequately refined close to

the immersed solid bodies and coarsen progressively far from them.

To further clarify the 3D Cartesian mesh generation process, the mechanism recursively

generating the tree structure and the additional conditions imposed to refine the generated

Cartesian mesh are briefly discussed.

2.1.1 Recursive Octree Generation

One of the main aspects of the Cartesian Mesh generator is its use of an Octree (Quadtree in

2D) data structure [51] to automatically decompose the computational domain into Cartesian

cells of different refinement levels, Figure 2.1. Starting from the root Cartesian cell, isochoric

subdivisions create smaller Cartesian cells, referred to as children cells. To accomplish that,

during the decomposition of the computational domain, each Cartesian cell is labeled using

a special integer indexing system (i, j, k) [4, 47, 214], used to traverse the hierarchical tree

structure, locate the position of each Cartesian cell, and compute the necessary geometrical

quantities.

The root Cartesian cell is given the index (1, 1, 1) and, then, each child’s unique index is

24 of 219

2.1 Cartesian Mesh Generation

root

C1 C2 C3 C4

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

C5 C6 C7 C8

(a) (b)

Figure 2.1: Octree Data Structure - (a) Graphical and (b) visual representation of the recursive
subdivisions occurring when generating the Octree data structure. The root cell (black) is subdi-
vided into eight children (green). For illustrative purposes, the fourth child C4 is then subdivided
into eight more children (ciel).

obtained considering its local position w.r.t. its parent cell and its parent index. As shown in

Figure 2.2, each cell is divided into 8 octants and appointed a local index (il, jl, kl) that is used

compute its (unique) global index (ic, jc, kc). The exact recursive rule that computes unique

indices for each child is

(ic, jc, kc) = (2ip + il, 2jp + jl, 2kp + kl) (2.1)

where subscripts c, p, l denote child, parent, and local, respectively. As a result, the index of

each cell’s parent is found using

(ip, jp, kp) =
(⌊

ic
2

⌋
,

⌊
jc
2

⌋
,

⌊
kc
2

⌋)
(2.2)

where ⌊x⌋ = max (n ∈ Z | n ≤ x) denotes the floor function, i.e. the greatest integer less than

or equal to x. Considering that, at each subdivision, the parent cell indices are computed by

dividing by 2, Eq. (2.2), it follows that the refinement level L of each Cartesian cell, i.e. the

necessary subdivisions starting from the root cell to reach that descendant, is given by

L = ⌊log2 (i)⌋ = ⌊log2 (j)⌋ = ⌊log2 (k)⌋ (2.3)

Eqs (2.1), (2.2), and (2.3) arise from the recursive nature of the tree structure, and are useful

since the connectivity of each Cartesian cell can be found by its index. Building upon the last

25 of 219

2. THE CUT–CELL METHOD

Figure 2.2: Subdivision of a Cartesian cell - The local position of each subcell/child used to
compute their unique index.

remark, the integer indexing also allows for the computation of several geometrical quantities

of the Cartesian cells. The edge size ∆x and barycenter xc of each cell can be computed using

∆x = 1
2Ld0 (2.4)

xc = C0 −
3
2d0 +

 i+ 1
2

j + 1
2

k + 1
2

 ◦∆x (2.5)

where C0,d0 are, respectively, the root cell barycenter and dimensions and ◦ denotes element–

wise multiplication (Hadamard product). Subsequently, additional geometrical quantities such

as the Cartesian cell volume, edge area and barycenter, and the coordinates of its vertices can

be computed in a straightforward manner.

2.1.2 Body Surface Subdivisions

The procedure dictating the body surface subdivisions follows a fast and robust tagging al-

gorithm. Starting from the root cell, a list containing all body surface triangles that are

encompassed within or intersected, following a series of single–elimination geometric checks,

is generated. After each subdivision, the same series of checks is performed on the inherited

list for each subcell, discarding triangles that are not encompassed or intersected. Thus, after

26 of 219

2.1 Cartesian Mesh Generation

each division, the inherited list decreases in size until either the list is emptied or the Carte-

sian cell volume reaches the lower size bound, terminating the process. The benefit of using

the hierarchical data structure is evident since the list of triangles quickly wanes based on the

refinement level, minimizing the subsequent geometric checks. A thorough description of the

involved geometric checks along with the method used to prioritize the computationally less

intensive ones is given in Samouchos [214].

2.1.3 Cartesian Cell Post–refinement

The resulting Cartesian mesh, generated when considering only intersections of the Cartesian

cells with the body surface, does not account for a number of features that are natural in con-

ventional body–conforming computational meshes. More specifically, the generated Cartesian

mesh shown in Figure 2.3 does not feature a smooth cell size change; the cell size increases

by a factor of 2 in each direction between refinement levels. Therefore, the shown mesh could

introduce notable numerical errors in the presence of large flow gradients that can appear,

for instance, in the wake of solid bodies, the development of the boundary layer, or at shock

waves [5, 47]. To overcome these issues, two additional refinement conditions, that can act

independently or synergistically, are used.

Figure 2.3: Generated Cartesian mesh around a sphere - Extracted yz–plane slice of the Cartesian
mesh using body surface refinement only.

The first condition implements a distance–based sensor that requires the additional refine-

27 of 219

2. THE CUT–CELL METHOD

ment of Cartesian cells close to the body surface. For this step, Cartesian cells that are not

intersected by the body surface are required to be decomposed into smaller ones to meet a

new cell upper volume bound Vl, computed based on their distance to the body surface. This

ensures a smooth transition between the refinement levels up to a cut–off distance r0. Vl is

computed for each cell through a cubic interpolation between the volume of the Cartesian cells

intersected by the body surface and the original cell upper volume bound. Computing the exact

distance of each Cartesian cell barycenter from the body surface is associated with a high com-

putational cost and offers no significant advantage. Thus, the distance between each Cartesian

cell barycenter and the body surface is approximated using a marching front technique. The

initial front is formed by the intersected Cartesian cells, that have their distance from the body

surface prescribed to zero. Then, the front is marched to their neighboring cells, which have

yet approximated their distance from the body surface. These cells find their closest neighbor,

that belongs to the previous front and has its distance from the body surface already computed,

and cumulatively adds the Euclidean distance between their barycenters to approximate their

distance from the body surface. Even though the cell size change between refinement levels still

remains the same, the additional subdivisions regularize the smoothness of the Cartesian mesh

by creating ordered buffer zones of equivolume cells [5], shown in Figure 2.4. The additional

mesh resolution allows for more accurate computations of large flow gradients close to the body

surface [47].

The second condition applies a window–based refinement to impose subdivision on the

encompassed Cartesian cells. In effect, a bounding box is prescribed inside the computational

domain, with a new upper and lower volume bound overriding the original ones (Section 2.1).

Thus, Cartesian cells within the bounding box must split into smaller cells to reach the new

volume bounds. This condition is used to accurately simulate the wake behind a body or to

increase mesh resolution locally [47], Figure 2.5. In this thesis, the window–based refinement is

used to capture the wake of air/hydrofoils and at the location of the expected cavity locations.

2.2 Cut–Cell Mesh Generation

The creation of the CCs, starting from the previously generated Cartesian mesh, is a key

part of the CC method. As already mentioned, the CC method is appealing since its mesh

generation process can facilitate a high level of automation, even when considering complicated

body surfaces. It is, therefore, only natural that the cell–cutting procedure is robust and fail–

safe. Typically, and especially in 2D, the majority of cell(plane)–triangle intersections lead

28 of 219

2.2 Cut–Cell Mesh Generation

Figure 2.4: Generated Cartesian mesh around a sphere - Application of the distance–based
condition results in the additional refinement of the Cartesian cells in some ordered zones of
equivolume Cartesian cells (cf. Figure 2.3). Extracted slices of the Cartesian mesh along the
yz–plane (red), zx–plane (black), and xy–plane (blue).

Figure 2.5: Generated Cartesian mesh around a sphere - Application of the window–based
condition results in the increase of mesh resolution at the specified boxed region (cf. Figure 2.3).
Extracted slices of the Cartesian mesh along the yz–plane (red), zx–plane (black), and xy–plane
(blue).

29 of 219

2. THE CUT–CELL METHOD

to few additional faces and nodes resulting in CCs that are characterized by a rather simple

topology. However, several cases often arise that result in very complex CC topology and require

special attention [157, 180]. For instance, cases arise where the intersected cell leads to the

creation of two separate CCs. These cases are usually treated with additional refinement that

inadvertently leads to increased computational resources requirements without fully resolving

the problem or by simplifying (smoothening) the body surface [56, 161, 162]. The CC mesh

generation process developed in [214], and employed in this thesis, recognized limitations of such

approaches and aims to handle intersections of arbitrary complexity, accurately representing

the provided body surface. Inability to do so would lead to non–watertight meshes, blowing–up

the mesh generation process, or even erroneous representations of the body surfaces.

2.2.1 Construction of Cut–Cells

The cell–cutting algorithm that creates the CCs follows a two–step procedure. First, each

intersecting triangle is clipped inside the Cartesian cell. To do so, the Sutherland–Hodgman

algorithm [5, 244] is used to compute the new polygon that is entirely encompassed within

the Cartesian cell. In this algorithm, the faces of the Cartesian cell act as clippers that create

two half–spaces. By successively evaluating each face, a new polygon is created consisting of

the nodes that share the same half–space with the Cartesian cell and the intersection points

of the current polygon with the current clipper. This process requires the relative position of

each node w.r.t. each clipper. Space is split into 3 regions per dimension, viz. 9 in 2D and

27 in 3D and each region is represented by an outcode encoding that positions each node into

one region, similar to the one used in the Cohen–Sutherland algorithm [77], to avoid multiple

spatial comparisons. This step is repeated for each intersecting triangle and results in adjoining

polygons that also constitute the solid faces of the CCs. This procedure is illustrated in Figure

2.6, where a Cartesian cell is intersected by 7 STL triangles at different angles.

In the next step, the CC is created first by identifying the solid and fluid parts of the

Cartesian cell. Fluid and solid faces are created by connecting the computed intersection points

with the Cartesian cell edge points. To do this, fluid polylines are created along the Cartesian

faces comprising subsequent line segments of intersection points that arise from clipping the

same intersecting triangle until a Cartesian edge is reached. These ordered polylines stand for

the exact intersection of the provided triangulated body surface with the Cartesian cell face. At

this point, duplicate intersection points, if any, are removed. Then, the Cartesian cell vertices

lying in the fluid part of the CC are identified as ’fluid’ using the obtained polylines, while the

30 of 219

2.2 Cut–Cell Mesh Generation

(a)

=⇒

(b)

Figure 2.6: Implementation of the Sutherland–Hodgman polygon clipping algorithm - (a) The
Cartesian cell is intersected by 7 differently shaded triangles. The dotted part of the triangle edges
resides inside the Cartesian cell. (b) The clipping algorithm is performed for each triangle that
results in 7 adjoining polygons, encompassed within the Cartesian cell. Each of these polygons
represents a solid face of the CC.

remaining are identified as ’solid’. Finally, the CC fluid faces are created by connecting Cartesian

cell fluid vertices and polylines on the same Cartesian cell face. This process results in CCs of

arbitrary size and number of faces that can facilitate cases of split cells, non–convex polyhedra,

as well as void cuboids. More details regarding the implementation of the aforementioned can

be found in Samouchos [214] along with several illustrative examples.

2.2.2 Geometric Quantities of the generated Cut–Cells

The generated CCs will subsequently be used as finite volumes to solve the flow equations

numerically. This necessitates the computation of several face–related geometric quantities,

Xf , where Xf =
{

xf , n̂f , Sf
}

refers to the barycenter, unit normal vector, and area of each

non–Cartesian face comprising the CC, as well as the CC volume Ωc and barycenter xc. The

geometric quantities of Cartesian faces (that can also exist in CCs), i.e. faces that coincide

with those of the original Cartesian cells, can be straightforwardly computed using Eqs. (2.4)

and (2.5), exploiting the cuboid topology. Thus, the following apply to faces generated due to

intersections with the considered body surface.

Considering that the CC faces can have both convex or concave polygons with an arbitrary

number of vertices vn, n = 1, .., N their geometric quantities are computed by triangulating

the face into N triangles that share a common (Steiner) point s at the arithmetic mean of the

coordinates of the face vertices. Then, the normal vector of each triangle nt, with a magnitude

31 of 219

2. THE CUT–CELL METHOD

equal to its area, is computed using the cross product of the two vectors originating from the

said Steiner point. The normal vector of the considered face is the sum of the constituent

triangles normal vectors, i.e.

nf =
N∑
1

nt nt = 1
2t1 × t2 (2.6)

The area and the unit normal vector of the face are then computed as S = |n| and n̂ = n
S .

The face barycenter follows the same approach, i.e. the barycenters of comprising triangles

xt are computed separately and are, then, area–averaged to give the face barycenter. This is

expressed as

xf = 1
Sf

N∑
1

xtSt xt = 1
3 (v1 + v2 + s) (2.7)

Following an identical approach, the CC volume and barycenter are computed by decomposing

the generated CC with P faces into P pyramids. The pyramids are created by connecting each

CC face with a common Steiner point sc at the arithmetic mean of the CC vertices. Thus, the

CC volume is the sum of all comprising pyramid volumes Ωp, while its barycenter is computed

by volume–averaging the comprising pyramid barycenters xp. Their expressions are given by

Ωc =
P∑
1

Ωp Ωp = 1
3S

f
(
xf − sc

)
· n̂f (2.8)

xc =
P∑
1

Ωpxp xp = 3
4
(
xf − sc)+ sc (2.9)

2.2.3 Small Cell Treatment

The cell–cutting procedure overviewed in Section 2.2.1 may result in arbitrary small CCs neigh-

boring larger–sized cut or Cartesian cells. In the CC–related literature, this is commonly re-

ferred to as the small cell problem, as the appearance of such cases is inevitable and necessitates

exceedingly small timesteps for stable explicit time–integration schemes, or it results in a stiff

discretized system that can cause convergence issues in implicit schemes [124]. In both cases,

the presence of small cells leads to increased simulation times, and thus several techniques

have been developed to treat them. Such techniques include cell–merging [124, 279], in which

the small cells are merged geometrically to create hypercells, cell linking/mixing [58, 92, 168],

wherein small cells are connected with adjacent cells numerically, and special CC–specific dis-

32 of 219

2.3 The Cut–Cell Data Structure

cretizations [95, 156]. Their differences are their implementation complexity and obtained order

of accuracy [156]. In this thesis, the cell–merging approach is followed.

The cell–merging algorithm identifies CCs that are considered small, i.e. exhibit a relative

to a neighboring cell volume ratio of less than a threshold value; herein the value of 5% is used.

It then requires them to merge with a neighboring cell to create a hypercell. To this end, each

small cell locates a suitable neighbor, prioritizing, if possible, those which have not already

been selected by other small cells to avoid the creation of elongated hypercells. All connectivity

information and geometrical data are unified and passed on to the hypercell that now acts as

a single CC. This process is illustrated in Figure 2.7.

Figure 2.7: 2D schematic of the cell–merging algorithm for the treatment of small cells - Part
of a CC mesh close to the body surface. The small cell is merged with its neighbor to create a
cut–hypercell (ciel). After the merge, constituent cells are discarded and the merged cell is used
instead. The created merged cell is treated similarly to a common CC (brown).

2.3 The Cut–Cell Data Structure

Even though the thus–far generated data structure can be used to create the necessary connec-

tivity for flow simulations, it is associated with increased computational overhead due to tree

traversal since it contains all descendants originating from the root cell [5, 47]. Instead, the tree

33 of 219

2. THE CUT–CELL METHOD

data structure is used to create a new face–based data structure, typically used in unstructured

meshes, which results in a compact structure. To this end, Cartesian cells lying entirely inside

the fluid domain are identified and have hanging nodes and faces created between Cartesian

cells of different refinement levels. Then, fluid cells have their faces globally numbered, and

each face is associated with the two corresponding cells it resides on, excluding those lying over

the domain boundary and the body surface.

2.3.1 Cut–Cell Mesh Decomposition for Parallel Computing

The recursive nature of the Octree data structure and its growth–dependency on the inputted

body surface make the parallelization of the CC mesh generation process significantly complex.

Parallelization on distributed memory architectures, namely each processor generating their CC

mesh in situ, would require a substantial amount of time investment to accomplish [96]. The

main reasons are the complexity of impromptu balancing the generated tree and enforcing the

locality of the generated subdomains (refined areas could be scattered among the processors).

On the other hand, the associated data structures can be generated following a master–slave

model, decompose the generated CC mesh and partition the resulting subdomains into the slave

processors (including the appointed master) for the subsequent flow simulations. Even though

this model is sub–optimal, the mesh generation process takes a small fraction of the total simu-

lation time and proves to be very efficient (O(106) cells/min), [214]. Throughout the extensions

made in this thesis, the parallel behavior of the slave processors is retained, while the master

processor is enriched following a shared memory paradigm. Extensions, executed by the master

processor, are parallelized locally using OpenMP directives to utilize its threads. OpenMP

directives avoid the need to exchange data among processors, allow significant speed–up of

selected computationally intensive tasks but are limited to hardware specifications; hardware

made available for use in this PhD thesis by the PCOpt allows the use of up to 24 threads. The

underlying extensions that are parallelized using OpenMP directives are mentioned along with

their implementations (see Sections 3.2.2.2, 6.3.6 and Appendix D).

Thus, in the existing software, the (master) generated CC mesh is decomposed into over-

lapping subdomains to exploit the benefits of parallel programming on distributed memory

architectures. The MPI protocol is used to communicate between these subdomains when

performing flow simulations. Domain decomposition is achieved via the Hilbert Space–Filling

Curve [97], wherein the 3(2)–dimensional space is mapped onto a 1D space. Then, dividing

the 1D space into equally weighted sub–spaces of any number is straightforward, favoring load

34 of 219

2.3 The Cut–Cell Data Structure

balancing and locality [9]. After decomposing the CC mesh into subdomains, these are associ-

ated with different processors, along with the necessary data structure, to initiate the numerical

solution process of the governing equations using the FVM, described in Chapter 3.

Mesh decomposition using the Hilbert curve is exemplified in a dummy CC mesh over the

isolated NACA 0012 airfoil. Figure 2.8a shows the resulting Hilbert curve on the non–uniform

mesh, while in Figures 2.8b and 2.8c the same mesh is decomposed into 4 and 13 subdomains,

respectively.

(a) (b) (c)

Figure 2.8: Mesh Decomposition using the Hilbert curve - (a) Hilbert curve on the generated
CC mesh, colored by its length (blue → green). The curve starts at the south–west corner, passes
through each Cartesian cell, and ends at the south–east corner. Mesh decomposition into (b) 4
and (c) 13 subdomains, with different colors for each subdomain.

35 of 219

2. THE CUT–CELL METHOD

36 of 219

Chapter 3

Flow Models for Single– and
Two–Phase Incompressible Flows

The main purpose of this chapter is to describe the flow model(s) used to perform aero/hydro-

dynamic simulations using the CC mesh generation method for single– and cavitating

two–phase flows. The presented flow models and numerical solution process subsequently serve

as the building blocks to formulate their continuous adjoint counterpart (Chapter 4), to be

integrated into a numerical optimization workflow based on the CC method.

Initially, the governing equations for single–phase laminar flows of incompressible fluids are

presented, accompanied by details regarding the discretization scheme used, the enforcement

of boundary conditions and the numerical solution process. These also describe the precursor

CC solver that was developed in a recently accomplished PhD thesis [214]. Then, the extension

to turbulent flows using the standard k − ε model is presented, along with the CC–specific

implementation of the wall functions technique that utilizes a pure Cartesian mesh [31, 249].

This is followed by the equations governing laminar two-phase flows that exhibit cavitation with

the associated theoretical background. Finally, the extension to turbulent two–phase flows is

described.

3.1 The Navier–Stokes Equations For Single–Phase Incompressible Flows

This section presents the steady–state governing equations of motion for incompressible flows,

i.e. with constant density ϱ, that express the conservation of mass and momentum in each

37 of 219

3. SINGLE– AND TWO–PHASE FLOW MODELS

direction of the Cartesian space xj , j = 1, 2 (, 3), for a fluid with dynamic viscosity µ as

∂uj
∂xj

= 0 (3.1)

∂ (ukuj)
∂xj

+ ∂p̆

∂xk
= ∂

∂xj

(
µ

ϱ

[
∂uk
∂xj

+ ∂uj
∂xk

])
, k = 1, 2 (, 3) (3.2)

where p̆ = p
ϱ is the kinematic pressure, p is the static pressure, and u the fluid velocity vector.

3.1.1 Artificial Compressibility Method

In incompressible flows, the mass conservation equation is reduced to a divergence–free flow

velocity constraint due to the constant density. Furthermore, an equation of state no longer

holds, i.e. pressure changes do not affect the density and, thus, directly applying time–marching

techniques to solve the incompressible Navier–Stokes equations numerically is not possible. To

circumvent this difficulty, Chorin [54] defined an artificial equation of state, p = ϱβ2, coupling

pressure and density using an artificial compressibility parameter β2. The definition of an

artificial equation of state and the corresponding speed of sound renders the system of PDEs

hyperbolic in time and space that allows for the application of a time–marching solution method

such as the one used in compressible flows [253]. Thus, the modified system of equations

is marched in the pseudo(artificial)–time τ to asymptotically reach the steady–state solution.

Once the said solution is reached, this artificial term vanishes.

According to the artificial compressibility method, the modified mass conservation equation

becomes

1
β2

∂p̆

∂τ
+ ∂uj
∂xj

= 0 (3.3)

In 3D, the modified system of equations Eqs. (3.2) and (3.3) can be written in vector form as

Ri := Γin
∂Un
∂τ

+
∂f Iij
∂xj

−
∂fVij
∂xj

= 0 (3.4)

where R is the residual vector and

Γ =


1
β2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , f Ij =


uj

u1 uj + δ1
j p̆

u2 uj + δ2
j p̆

u3 uj + δ3
j p̆

 , fVj =


0
τ̆1j
τ̆2j
τ̆3j

 (3.5)

In Eq. (3.5), Γ is the artificial compressibility preconditioner matrix [54], U =
[
p̆ u1 u2 u3

]T the

38 of 219

3.1 The Navier–Stokes Equations For Single–Phase Incompressible Flows

vector of unknown flow variables, and f Ij , fVj the inviscid and viscous flux vectors, respectively.

Furthermore, δkj denotes the Kronecker delta and τ̆kj = 1
ϱτkj = µ

ϱ

(
∂uk

∂xj
+ ∂uj

∂xk

)
the viscous

stress tensor. In the literature, several recommended values for the artificial compressibility

parameter β can be found, based on either the local velocity [152, 257], or the flow problem

reference velocity U∞ [138, 251]. Herein, the latter is opted and, thus, β =
√

10U∞ is usually

used.

3.1.2 The Navier–Stokes Equations

The governing equations (Eq. (3.4)) are discretized using a cell–centered FVM to be solved on

the generated CC meshes. The finite volumes coincide with the cut and Cartesian cells and

have the vector of unknown variables U stored at their barycenter, Figure 3.2. In 2D, finite

volumes can be rectangles or polygons with an arbitrary number of faces, while in 3D, these

become cuboids or polyhedrons.

In the FVM, the governing equations are integrated over each finite volume ΩP . The flux

integrals are transformed to surface integrals, computed over the cell faces, using the Gauss

divergence theorem. Therefore, Eq. (3.4) becomes∫
ΩP

Γin
∂Un
∂τ

dΩ +
∫
S(ΩP)

(
f Iij − fVij

)
n̂jdS = 0 (3.6)

where n̂ is the outwards–facing unit normal vector along the surface dS.

Different discretization approaches are followed for the inviscid and viscous terms, based

on stability criteria [253]. Ideally, both terms would be discretized using the central difference

scheme, but it is well–known that the inviscid terms prove to be unconditionally unstable and,

thus, require an upwind scheme.

3.1.2.1 Discretization of the Inviscid Flux Vector

The inviscid flux vector is discretized using a second–order accurate Total Variation Diminishing

(TVD) Monotonic Upstream–centered Scheme for Conservation Laws (MUSCL) scheme [260],

in which the flux vectors at the finite volume boundaries are computed using slope–limited

reconstructed states UL/R [248]. The discretized inviscid flux vector for ΩP reads

∫
S(ΩP)

f Iij n̂jdS ≈
Nei(P)∑
Q

f̃PQi +
B(P)∑
B

f̃Bi (3.7)

39 of 219

3. SINGLE– AND TWO–PHASE FLOW MODELS

where B (P) are the faces of ΩP lying on the domain boundaries and f̃ numerical flux vectors.

R

P

Q1

Q2

Q3Q4

Q5

Q6

L

R

L r

r

Figure 3.1: Example of the neighborhood of a Cartesian cell in 2D. Numerical flux vectors f̃
are computed between each neighbor via the Roe solver using reconstructed states, extrapolated
from the neighboring finite volumes. Extrapolation may use either the same (P,Q1), or different
(P,Q4) level neighbors.

Let P and Q denote two neighboring finite volumes (Figure 3.1). The (intercell) numerical

flux vector f̃ is computed via the Roe solver [209] by exactly solving an approximate Riemann

problem

f̃i := 1
2

(
f Iij

L + f Iij
R
)
nj −

1
2D̃in

(
URn − ULn

)
(3.8)

where nj = n̂j∆SPQ,B is the normal vector with magnitude equal to the area of their interface.

The dissipation matrix D̃ is a matrix that shares the same eigenvectors with the Jacobian

matrix Aj = ∂fI
j

∂U (given in Appendix A.1), and the absolute values of its eigenvalues. This is

computed using Roe–averaged quantities Ũ as

D̃in = Γ̃im|ÃΓ
mnjnj | (3.9)

|ÃΓ
mnjnj | = Γ̃−1

mlM̃lq

∣∣Λ̃qr∣∣ M̃−1
rn (3.10)

with Λ̃ = diag (ũn, ũn, ũn + c̃, ũn − c̃) being a diagonal matrix containing the eigenvalues of

A and c =
√
u2
n + β2njnj the artificial speed of sound. Matrices M̃ , M̃−1 hold the linearly

40 of 219

3.1 The Navier–Stokes Equations For Single–Phase Incompressible Flows

independent right and left eigenvectors, as columns and rows respectively, and are provided in

Appendix A.1.

The inviscid flux vectors at the finite volume faces in Eq. (3.8) are computed using recon-

structed states stemming from the adjacent cell flow variables (see Figure 3.1), i.e.

f Iij
L/R = f Iij

(
Ui
L/R

)
(3.11)

Ui
L/R = Ui

P/Q + ϕ
∂Ui
∂xk

P/Q

∆xk (3.12)

where ϕ is the limiter value and ∂Ui

∂xk

P/Q is the flow variable spatial derivatives tensor computed

at each cell center using a linear Weighted Least Squares (WLSQ) method.

The computation of the numerical flux f̃ differs on boundary faces that lie on solid walls

SW , than the remaining type of boundary faces, i.e. those lying at the inlets SI , outlets SO,

or farfield boundaries S∞. For faces that lie on SW , f̃ is computed by extrapolating the flow

variables from the CC cell center and applying solid wall boundary conditions, i.e

f̃SW
i = f Iij

(
Ui
SW
)
nj (3.13)

where USW denotes the extrapolated flow variable values after the boundary condition is ap-

plied. For the remaining type of boundary faces, Eq. (3.8) is used to compute f̃ , where UR is

obtained using the specified boundary conditions. Details about the computation of USW and

UR at the boundaries are discussed in Section 3.1.3.

3.1.2.2 Implementation of Limiters

In flows that exhibit strong flow variable spatial gradients, limiters are used to suppress spurious

oscillations and maintain monotonicity by locally introducing additional numerical dissipation

to the scheme. They are applied when reconstructing the L/R states of the finite volumes

to ensure its boundness by truncating part of the computed flow variable spatial derivatives,

Eq. (3.12). When non–uniform meshes are used, they can also have an impact on the solu-

tion accuracy even in smooth solutions [3, 33]. The CC solver employs two different limiting

functions, namely the Barth–Jespersen and the Venkatakrishnan limiters [26, 263].

In the Barth–Jespersen scheme for unstructured meshes [26], the limiter value, used to

compute the reconstructed states, corresponds to the minimum value computed at all faces, i.e.

41 of 219

3. SINGLE– AND TWO–PHASE FLOW MODELS

ϕ = min (ϕf). Face limiter values are computed as

ϕf =


F
(
Umax

i −Ui

U∗
i

−Ui

)
U∗
i > Ui

F
(
Ui−Umin

i

U∗
i

−Ui

)
U∗
i < Ui

1 U∗
i = Ui

(3.14)

with U∗ being the non–limited reconstructed state at each face and

F = min(x, 1) (3.15)

The Venkatakrishnan limiter [263] is a modified version of the Barth–Jespersen one [26], in

which F is replaced by the differentiable limiting function

F = x2 + 2x+ ε2

x2 + x+ 2 + ε2 (3.16)

to avoid convergence stall often seen when the Barth–Jespersen limiter is used [3, 33]. ε = (Kh)3

is a constant value based on the finite volume edge size h =
√

∆xj∆xj , Eq. (2.4), and the

parameter K (usually K = 0.3, [263]) determines the activation/deactivation threshold.

3.1.2.3 Flow Variable Spatial Derivatives Computation

The computation of the reconstructed states requires ∂U
∂x at the cell center of each finite volume,

Eq. (3.12). These are computed via the WLSQ method, favoring its higher order of accuracy

at the expense of increased computational cost, as compared to the Green–Gauss formulation

[155]. The spatial derivatives of an arbitrary flow quantity ϕ are computed by solving a linear

system of equations arising from the sum of squares of the differences between the l = 1, L direct

neighbors values and the ones extrapolated using a Taylor expansion from the finite volume cell

center (Figure 3.1). By defining the extrapolation error E

E2 :=
L∑
l

W 2
lm

(
∆ϕm − ∂ϕ

∂xj
∆xmj

)2
=
(
Wlm∆ϕm −Hlj

∂ϕ

∂xj

)(
Wln∆ϕn −Hlj

∂ϕ

∂xj

)
(3.17)

with

Hlj = Wlm∆xmj (3.18)

where W = diag (w), wl = 1
d(l, P) are the weight factor and d(l, P) =

√(
xlj − xPj

) (
xlj − xPj

)
the distance between the cell center of P and its lth neighbor, the system of equations is

42 of 219

3.1 The Navier–Stokes Equations For Single–Phase Incompressible Flows

formulated by minimizing the error function w.r.t. the computed spatial derivatives values, i.e.

∂E2

∂
(
∂ϕ
∂xk

) = 2
(
Wlm∆ϕm −Hlj

∂ϕ

∂xj

)
∂

∂
(
∂ϕ
∂xk

) (−Hln
∂ϕ

∂xn

)
(3.19)

⇔
(
Wlm∆ϕm −Hlj

∂ϕ

∂xj

)
Hlnδ

k
n = 0 (3.20)

which leads to

HT
klHlj

∂ϕ

∂xj
= HT

klWlm∆ϕm (3.21)

to be solved using the Gauss–Jordan method.

A more convenient way of computing the spatial derivatives in Eq. (3.21) is by separating

the geometric and flow quantities to pre–compute the geometric quantities and avoid their

computation during the flow solution process. Rearranging Eq. (3.21) in the form of Ax = b

where all geometric quantities (and weights) are included in the L× 3 matrix A, x = ∂ϕ
∂xk

and

b = ∆ϕm, a solution is obtained by computing the pseudo–inverse matrix A†, of size 3 × L,

that also contains only geometric quantities, i.e.

x = A†b (3.22)

The pseudo–inverse matrix is computed by solving the following linear system

HT
kmHmjA

†
jl = WmlHmk (3.23)

and stored to subsequently compute the spatial derivatives in each (pseudo) time step by up-

dating flow variables difference vector b using Eq. (3.22).

Cells located at the computational domain boundaries have a reduced number of direct

neighbors. For them, the WLSQ stencil is enriched with halo nodes, positioned outside the

computational domain, to avoid an ill–conditioned WLSQ system (Eq. (3.23)) and maintain a

second–order accurate gradient reconstruction [25, 91, 155].

Halo node coordinates xDj are computed using an averaged solid face comprising all the CC

solid faces, as shown in Figure 3.2a, or using the boundary face normal vector via

xDj = xj + 2n̂jrkn̂k (3.24)

where xj are the coordinates of the boundary cell barycenter, rk is the vector connecting the

43 of 219

3. SINGLE– AND TWO–PHASE FLOW MODELS

face and cell barycenters, and n̂k is the normal unit vector of either the boundary face or the

solid faces averaged one. The flow variable differences are then computed based on the imposed

boundary conditions. For Dirichlet conditionsn the halo nodal values are ϕD = 2ϕW −ϕB with

ϕW being the specified flow variable value at the boundary and ϕB the boundary cell value,

while for zero Neumann conditions, ϕD = ϕB .

3.1.2.4 Discretization of the Viscous Flux Vector

Discretizing the viscous flux vector in Eq. (3.6) one obtains

∫
S(ΩP)

fVij n̂jdS ≈
Nei(P)∑
Q

(
f
V

i

)PQ
+

B(P)∑
B

(
f
V

i

)B
(3.25)

where f i
V = fVij nj and, thus, requires the computation of the shear stress tensor on the

finite volumes’ faces, Eq. (3.5). The spatial derivatives of an arbitrary variable ϕ between two

neighboring finite volumes P and Q is distance–weighted from the corresponding face barycenter

LR as

∂ϕ

∂xk
= w

∂ϕ

∂xk

P

+ (1− w) ∂ϕ

∂xk

Q

(3.26)

with

w = d (Q, LR)
d (Q, LR) + d (P, LR) (3.27)

Term ∂ϕ
∂xk

P/Q refers to the spatial derivatives computed at each cell center using the WLSQ

method as described in Section 3.1.2.3. The viscous surface fluxes are computed by performing

a spatial derivative correction in the direction of the connecting cell centers, i.e.

∂ϕ

∂xk

LR

= ∂ϕ

∂xk
−
[
∂ϕ

∂xj
r̂j −

ϕQ − ϕP

d (P, Q)

]
r̂k (3.28)

where r is the vector connecting PQ (Figure 3.1) and r̂ = r
d(P,Q) the corresponding unit vector.

In the uniform areas of the CC mesh, r̂ becomes a single element vector and, thus, Eq. (3.28)

replaces the averaged WLSQ derivative with centered differences between the P,Q cells along

that direction [31]. Overall, the resulting discretization is equivalent to a second–order central

differencing scheme and incorporates all immediate neighbors [276].

44 of 219

3.1 The Navier–Stokes Equations For Single–Phase Incompressible Flows

(a) (b)

Figure 3.2: Illustration of 2D finite volumes in the CC method - (a) The presence of the body
surface results in the creation finite volume with 6 boundary surfaces dS. The additional halo
(dummy) nodes added outside the computation domain that partakes in the WLSQ stencil is also
shown and (b) typical (non–cut) finite volume. The normal vectors n along each face are also
illustrated.

3.1.3 Boundary Conditions

In the CC method, boundary conditions are imposed along faces aligned with the domain

boundaries and, thus, a similar approach to conventional body–fitted solvers is followed. The

boundary flow variables US are computed based on the imposed conditions. Along the solid

walls, these are used to directly compute the surface fluxes while, at the remaining boundaries,

they provide the reconstructed states UR of the halo nodes.

3.1.3.1 Wall Boundary Conditions – SW

In case of a slip wall, a no–penetration condition is applied, i.e. the normal velocity component

of the boundary velocity vector is set to zero, i.e. uWj = uj − ukn̂kn̂j . For a no–slip wall, the

velocity vector at the wall is zeroed, uWj = 0 and p̆ is extrapolated from the boundary cell.

3.1.3.2 Inlet Boundary Conditions – SI

Inlet oundary conditions are imposed by either specifying the velocity magnitude √ujuj or the

total pressure pt = p + 1
2ϱujuj . In either case, two angles that define the inlet flow velocity

vector must be specified too. Then, inlet conditions are imposed by extrapolating the kinematic

45 of 219

3. SINGLE– AND TWO–PHASE FLOW MODELS

pressure from the boundary cell, and computing the velocity vector at the boundary face as

uS1 = √ujuj sin θZX cos θXY (3.29)

uS2 = √ujuj sin θZX sin θXY (3.30)

uS3 = √ujuj cos θZX (3.31)

with θZX and θXY being the angle of the velocity vector from the Cartesian plane denoted

by its subscript. If the total pressure is specified, the velocity magnitude is computed at each

pseudo–time step using the kinematic pressure extrapolated from the interior of the domain.

3.1.3.3 Outlet Boundary Conditions – SO

At the outlet boundaries, the static pressure is specified and is used to compute the kinematic

pressure, while the remaining variables are extrapolated from the interior domain.

3.1.3.4 Farfield Boundary Conditions – S∞

In external aerodynamics, the flow variables at the farfield boundary faces are computed from

the imposed reference flow variables U∞.

3.1.4 Numerical Solution of the Navier–Stokes Equations

The governing equations Eq. (3.6), expressed for finite volume P , can be written in semi–discrete

form at each pseudo–time step as

ΩPΓPin
(
∂Un
∂τ

)P
= −RPi (3.32)

with

RPi =
Nei(P)∑
Q

(
f̃i − f

V

i

)PQ
+

B(P)∑
B

(
f̃i − f

V

i

)B
(3.33)

Applying Taylor expansion on the right–hand–side of Eq. (3.32) and discretizing the pseudo–

temporal term, the discretized system of equations, in ∆–form, becomes[
ΓPin

(
ΩP

∆τP

)
+ ∂RPi
∂Un

]
∆UPn = −RPi (3.34)

where ∆τ is the local pseudo–time step and ∆Unτ+1 = Uτ+1
n −Uτ

n the flow variables correction.

The local pseudo–time step is defined based on a combination of the inviscid, the spectral radii

46 of 219

3.1 The Navier–Stokes Equations For Single–Phase Incompressible Flows

of Γ−1A, and viscous terms, i.e.

∆τP = CFL min
(
∆τ Ij + ∆τVj

)
= CFL min

(
∆xPj∣∣uPj ∣∣+ cP

+
∆x2

j
P

2µϱ

)
(3.35)

where CFL is the Courant number [59]; typically, CFL = 5 is used.

Eq. (3.34) is iteratively solved by means of a point implicit n× n block symmetric Gauss–

Seidel method by decomposing the left–hand–side into diagonal and off–diagonal matrix terms

and rearranging, i.e.

DP
in ∆UP,τ+1

n = −

RP,τi +
Nei(P)∑
Q∈L

Z
PQ
in ∆UQ,τ+1

n +
Nei(P)∑
Q∈U

Z
PQ
in ∆UQ,τn

 (3.36)

Din = ΓPin
ΩP

∆τP
+ ∂RPi
∂UPn

Zin = ∂RPi

∂UQn
(3.37)

In Eq. (3.36), L refers to the set of neighbors whose flow variables correction has already been

updated, while U the opposite. In each pseudo–time step, five sweeps of the symmetric Gauss–

Seidel method are performed before updating the finite volume flow variables and recomputing

R, D, and Z.

47 of 219

3. SINGLE– AND TWO–PHASE FLOW MODELS

Initialization

Compute R, D, Z

Forward Sweep to
compute ∆U

Backward Sweep to
compute ∆U

Max sweeps?

Update U

Converged?

End

Yes

no

no

Yes

Figure 3.3: Flowchart of the numerical process - Solution of the Navier–Stokes equations using
time–marching techniques. The symmetric Gauss–Seidel method consists of a forward and a
backward sweep.

48 of 219

3.2 Simulating Turbulent Flows using the Cut–Cell Method

3.2 Simulating Turbulent Flows using the Cut–Cell Method

Up to this point, the precursor CC solver has been presented for which minor additions and

modifications were attempted. In this section, the approach that facilitates single–phase turbu-

lent flow simulations is described. The overviewed numerical solution process and discretization

scheme are also utilized for the numerical solution of the turbulence model transport equations.

Challenges arise due to the irregular finite volumes near the body surface and the inability of the

CC method, and IBMs in general, to create high aspect finite volumes along the wall–normal

direction [32, 46, 90, 250] effectively depriving wall–resolved simulations. In the following, the

implications, and reasoning, that necessitate a wall model are discussed in more detail and a

method to simulate flows governed by the RANS equations using the CC method is presented.

3.2.1 Preliminaries

The simulation of turbulent flows is closely associated with the generation of inflation layers

near the solid walls, or in other words, the existence of very high aspect ratio finite volumes

at these areas. These inflation layers rapidly increase the mesh resolution requirements to

accurately resolve the thin boundary layer present in high Reynolds number flows. However, in

the CC method, and the IBMs in general, the isotropically refined Cartesian meshes demand an

unjustifiably large number of cells to accurately resolve the boundary layer and, thus, become

impractical for wall–resolved turbulent simulations. The most obvious way to overcome this

difficulty is to combine the background Cartesian meshes with inflation layers next to the wall,

namely strand meshes [115, 274, 275]. However, this aberrates the cornerstone of the IBMs,

i.e. simple and automatic mesh generation for complex geometries. For pure Cartesian and

CC meshes, the use of a wall model can provide wall closure and alleviate the near-wall mesh

resolution requirements. Thus, developments of such models have seen an increased research

interest in both Cartesian–based and conventional body–fitted solvers [23, 52, 202, 210].

In light of the aforementioned, the extension of the CC method to turbulent flows is pursued

using a high–Reynolds number turbulence model that inherently models the boundary layer next

to the walls, namely the standard k− ε model [143]. An additional reason for this choice lies in

its extensive use when two–phase flows are considered [138, 222, 234, 280]. Near–wall modeling

is achieved through analytic wall functions due to their maturity, wide application and well–

understood limitations. Building on the last remark, one of their main limitations lies in their

sensitivity to the first cell distance that calls for special treatment considering the irregular CC

49 of 219

3. SINGLE– AND TWO–PHASE FLOW MODELS

finite volumes next to the walls [171].

3.2.2 The Standard k–ε Turbulence Model

The two-equation k-ε turbulence model was developed by Launder & Spalding [143] to provide

turbulence closure to the RANS equations. Throughout the years, various additions [53, 193,

230, 278] have led to the refinement of the k-ε turbulence model and enabled its applicability

in flows of increased complexity. Due to its maturity and relatively simple implementation,

it is one of the most commonly used turbulence models, applicable to a variety of turbulent

flows. In the following, the turbulence model equations are given in their compressible form to

facilitate the extension towards two–phase turbulent flows that exhibit density variations. In

addition, the implementation of wall functions specifically in the CC method is presented.

3.2.2.1 Transport Equations

The two-equation turbulence model solves the transport equations (PDEs) for the turbulent

kinetic energy k and turbulent dissipation rate ε

∂ (ϱk uj)
∂xj

− ∂

∂xj

[(
µ+ µt

σk

)
∂k

∂xj

]
= P − ϱε

∂ (ϱε uj)
∂xj

− ∂

∂xj

[(
µ+ µt

σε

)
∂ε

∂xj

]
= (C1εP − C2εϱε)

ε

k

j = 1, 2 (, 3) (3.38)

in order to compute the eddy viscosity

µt = Cµϱk
k

ε
(3.39)

with model constants Cµ = 0.09, σk = 1.0, σε = 1.3, and C1ε = 1.44, C2ε = 1.92 [143]. The

production of turbulent kinetic energy is defined as

P = µt

(
∂ui
∂xj

+ ∂uj
∂xi
− 2

3
∂uk
∂xk

δij

)
∂ui
∂xj

(3.40)

3.2.2.2 Solid Wall Boundary Conditions – Wall Functions

Wall functions are based on analytic solutions that describe the flow of a zero pressure gradient

flat plate to avoid resolving the boundary layer [237]. Contrary to the outer flow, where iner-

tial forces dominate, the near-wall flow is governed by viscous stresses and, therefore, can be

50 of 219

3.2 Simulating Turbulent Flows using the Cut–Cell Method

described using the 1D boundary layer equation [126, 272] using only the diffusive terms, i.e.

∂

∂y

(
(µ+ µt)

∂ut
∂y

)
= 0 (3.41)

where here ut denotes the streamwise velocity and y the wall–normal direction. Integrating

Eq. (3.41) and scaling with the friction velocity uτ and the kinematic viscosity ν = µ
ϱ leads to

a universal expression, valid for attached flows between the outer flow and the solid wall,

(
1 + ν+

t

) du+

dy+ = 1 (3.42)

with u+ = ut

uτ
, y+ = yuτ

ν , ν+
t = µt

ϱν .

 0

 5

 10

 15

 20

 25

 30

100 101 102 103 104

u
+

y
+

SA wall model
Spalding formula

Figure 3.4: Universal wall function profile - Comparison of the SA wall model and the Spalding
formula Eqs. (3.44) and (3.43). The linear and logarithmic are depicted with dashed lines in the
region of their validity.

The viscous sublayer, ν+
t << 1, is described by the linear correlation u+ = y+, while the

logarithmic layer, ν+
t >> 1, is described by u+ = 1

κ log(y+) + B and ν+
t = κy+, with κ being

the von Kármán constant and B ≈ 5.033. Universal formulas that correlate u+ with y+ in both

51 of 219

3. SINGLE– AND TWO–PHASE FLOW MODELS

layers exist, such as the Spalding’s formula [239], given by

y+ = u+ + e−κB

(
eκu+

−
N=3∑
n=0

1
n!
(
κu+)n) (3.43)

and the Spalart–Allmaras (SA) wall model

u+ (y+) = B + c1 log
((

y+ + a1
)2 + b2

1

)
− c2 log

((
y+ + a2

)2 + b2
2

)
− c3 arctan

(
b1

y+ + a1

)
− c4 arctan

(
b2

y+ + a2

) (3.44)

with its many constants being, as presented in Allmaras & Johnson [8],

a1 = 8.148221580024245
b1 = 7.4600876082527945
c1 = 2.5496773539754747

a2 = −6.9287093849022945
b2 = 7.468145790401841
c2 = 1.3301651588535228

c3 = 3.599459109332379
c4 = 3.6397531868684494

(3.45)

The two formulas are shown in Figure 3.4 along with the linear and logarithmic correlations

showing their discrepancy at the buffer region.

However, the aforementioned cannot be directly implemented in the CC method since the

first cell distances exhibit are highly irregular. Thus, a regularization of the considered wall–

normal distances is first required to obtain an accurate description of the turbulent boundary

layer. Following [32, 46, 210, 250], this is done using linelets, wherein forcing points xF (Figure

3.5) are introduced normal to the solid walls inside the fluid domain, at a constant distance

dF =
√
d×min(∆x), i.e.

xF = xf − dF n̂f (3.46)

with xf , n̂f are the originating solid face barycenter and outwards facing unit normal vector,

d = 2 in 2D and d = 3 in 3D, and ∆x is the Cartesian cell edge size, Eq. (2.4), to ensure

the forcing point resides outside the CC. The linelets act as a two–layer subgrid governed by

the 1D boundary layer equation Eq. (3.41) and are coupled with the outer RANS solution to

obtain the friction velocity uτ and, subsequently, the wall shear stress.

Tangential velocities ut at the forcing points are reconstructed from the background RANS

solution using the already computed velocity spatial derivatives of the finite volume that en-

compasses them. Then, they are used to solve either Eq. (3.43) or Eq. (3.44) to obtain uτ . In

this thesis, the SA wall model formula, viz. Eq. (3.44), is iteratively solved using a Newton

52 of 219

3.2 Simulating Turbulent Flows using the Cut–Cell Method

method, scaling
(
ut, d

F
)

to (u+, y+). The iterative method used is described by

un+1
τ = unτ −

f(uτ)
f ′(uτ)

f(uτ) = B + c1 log
((

y+ + a1
)2 + b2

1

)
− c2 log

((
y+ + a2

)2 + b2
2

)
− c3 arctan

(
b1

y+ + a1

)
− c4 arctan

(
b2

y+ + a2

)
− u+ = 0

f ′(uτ) = df

duτ
(uτ) = y+

uτ

[
c3b1 + 2c1 (y+ + a1)

(y+ + a1)2 + b2
1

+ c4b2 − 2c2 (y+ + a2)
(y+ + a2)2 + b2

2

]
+ u+

uτ

(3.47)

Intersection Points:
Fluid Cell Centers:

Solid Domain:
Forcing Points:

Figure 3.5: Generation of linelets - Illustration of the forcing points positioned at a constant
distance dF from the solid wall inside the fluid domain to create the linelets. The velocity vector
is extrapolated from the cell centers of the finite volumes the forcing points reside in and projected
along the tangential direction.

The viscous flux at the solid faces is computed through τw = ϱu2
τ , and the appropriate

boundary conditions for the turbulent variables are imposed on the CCs based on their barycen-

53 of 219

3. SINGLE– AND TWO–PHASE FLOW MODELS

ter normal distance to the wall y.

If the said point resides in the log layer, y+ > y+
cr, P ≈ ϱε is assumed leading to

k = u2
τ√
Cµ

, ε = u3
τ

κy
(3.48)

In contrast, if it resides in the viscous sublayer, y+ ≤ y+
cr,

k = u2
τ√
Cµ

(
y+

y+
cr

)2
, ε = k

√
ky + 5.3ν
κC

− 3
4

µ y2
(3.49)

where y+
cr = 1

κ log(y+
cr) +B.

Finally, the velocity spatial derivatives of the CCs, previously computed by the WLSQ

method, are replaced by the velocity spatial derivatives of the wall function profile using [249]

du+

dy+ = ν

u2
τ

dut
dy

(3.50)

The implemented method requires additional connectivity information; forcing points can

reside in Cartesian cells that are not immediate neighbors of the CCs. In parallel computations,

these might as well not reside in the overlapping domain. As such, an auxiliary data structure

is created to provide the necessary data. These comprise the solid faces, the Cartesian cells

that encompass the forcing points and the coordinates of the forcing points, used for subsequent

velocity reconstruction. For this reason, the forcing points are created on the master processor

during the CC mesh generation process using multiple threads via OpenMP directives, and

the associated data structure is then computed and provided to the slave processors along

with their mesh subdomain for the subsequent flow solutions. The additional inter–processor

communications occur after each flow variable and spatial derivatives update to provide the

new extrapolated velocity vector. It is more convenient to reconstruct the velocity vectors at

the forcing point in the processor they reside in and provide it to the CC so that the tangential

velocity can natively be computed using the already available unit normal vector of the CC.

On a further note regarding the implementation of the forcing points , initially, a linelet was

created for every solid face residing in the CC. The finite volume uτ was computed by averaging

the uτ of each solid face. However, the accuracy gain was negligible since uτ differences within

the finite volume were minute. Currently, each CC creates an average solid face, similarly to

Figure 3.2a, and the forcing point coordinates arise using Eq. (3.46) and the averaged solid

face unit normal vector to compute a single uτ . As such, the additional memory requirements

54 of 219

3.2 Simulating Turbulent Flows using the Cut–Cell Method

and computations that are associated with storing forcing points and solving Eq. (3.47) are

significantly reduced.

3.2.2.3 Inlet/Farfield Boundary Conditions – SI/S∞

Explicitly computing/guessing realistic turbulent variables values at SI/S∞ can be challenging

and requires delicate handling. A common alternative is to estimate some turbulence–related

flow properties that are used to compute the required boundary turbulent variables values and

are closer to human intuition. Herein, the turbulent intensity I is used to compute k, which is

then used to compute ε based on a provided eddy viscosity ratio µt

µ , i.e.

kS = 3
2I

2uSj u
S
j (3.51)

εS = Cµϱ

(
kS
)2

µ

(
µt
µ

)−1
(3.52)

where the typical turbulent intensity inside a pipe corresponds to 1% < I < 5%, while for

external flows it can be even lower. The eddy viscosity ratio directly relates to how strong the

eddy viscosity is and it is usually set between 1< µt

µ <30.

3.2.2.4 Outlet Boundary Conditions – SO

At the outlet boundaries, zero Neumann boundary conditions are imposed for both turbulence

variables and, thus, the field turbulence variables are extrapolated from the interior domain.

3.2.3 The RANS Equations

The RANS equations are solved in a coupled manner with the unknown flow variables being

U =
[
p u1 u2 u3 ϱk ϱε

]T for 3D problems [67]. Even though there are different opinions

in the literature and some observations could be attributed to case dependency, the coupled

formulation was opted partly due to its potential to facilitate better stability and convergence

by being more mathematically consistent [141, 142, 147, 235]. An additional factor that also led

to the coupled formulation was that it was more convenient to implement it in the precursor

software; a similar to the Navier–Stokes solution procedure can be followed (Figure 3.3) by

extending the preconditioner matrix and the inviscid and viscous flux vectors of Eq. (3.5) to

incorporate the two additional transport equations. For the RANS equations, these become

Ri := Γin
∂Un
∂τ

+
∂f Iij
∂xj

−
∂fVij
∂xj

− Si = 0 (3.53)

55 of 219

3. SINGLE– AND TWO–PHASE FLOW MODELS

with

Γ =

[Γ]NS 0 0
0 1 0
0 0 1

,f Ij =

f I,NSj

ϱkuj
ϱεuj

,fVj =


fV,NSj(

µ+ µt

σk

)
∂k
∂xj(

µ+ µt

σε

)
∂ε
∂xj

,S=

 0
P − ϱε

(C1εP − C2εϱε) εk


(3.54)

where the superscript NS denotes the expression used in the Navier–Stokes equations. The

shear stress is now computed as τ̆kj = (µ+µt)
ϱ

(
∂uk

∂xj
+ ∂uj

∂xk

)
, following Boussinesq hypothesis,

and S refers to the source term vector introduced due to the turbulence model.

The inviscid Jacobian matrix is formed as follows

Aj =

 [
Aj

]NS 0 0
0 ϱk δ1

j ϱk δ2
j ϱk δ3

j uj 0
0 ϱε δ1

j ϱε δ2
j ϱε δ3

j 0 uj

 (3.55)

where
[
Aj
]NS is given in Appendix A.1. This results in two additional eigenvalues, Λ̃ =

diag (ũn, ũn, ũn + c̃, ũn − c̃, ũn, ũn), and an eigensystem of the form

M =


[
M
]NS 0 0

0 1 0

0 0 1

 , M−1 =


[
M−1]NS 0 0

0 1 0

0 0 1

 (3.56)

The turbulence model inviscid and viscous fluxes are computed to second–order accuracy using

the approach presented in Sections 3.1.2.1 and 3.1.2.1.

3.2.3.1 Discretization of the Turbulence Model Source Terms

The turbulence model introduces source terms to be discretized. Their values are considered

to be constant within each finite volume, therefore∫
ΩP

SidΩ ≈ SiΩP (3.57)

and are included in the discretized residual vector (Section 3.1.4)

RPi = R
NS,P
i − SPi ΩP (3.58)

The source terms split into source (Production) and sink (Destruction) components, to incorpo-

rate them in the ∆-form and increase diagonal dominance [67, 261]. Specifically, the negative

56 of 219

3.2 Simulating Turbulent Flows using the Cut–Cell Method

component of the source terms is treated implicitly, i.e. added to the diagonal term in Eq. (3.37),

while the positive explicitly. As such,

S = S+ + S− (3.59)

∂S−

∂U
=

0 0 0
0 −2Cµ ϱkµt

0

0 C2ε

(
ϱε
ϱk

)2
−2C2ε

ϱε
ϱk

 (3.60)

where the expression ϱε = Cµ
(ϱk)2

µt
is used for the destruction term for the k-equation.

3.2.4 Cut–Cell based Single–phase Turbulent Flow Simulations

Single–phase turbulent flow simulations are limited to the following two 2D examples since

additional validation/verification cases are also performed for two–phase turbulent flows in

Section 3.5. The purpose of the simulated examples is to assess the implemented standard k−ε

turbulence model along with the described wall function technique in the CC solver. The first

example considers a flat plate and is used to validate the CC turbulent solver, while in the

second, a 90◦ curved channel is simulated to assess the forcing point technique in the presence

of curved surfaces.

3.2.5 Flat Plate ReL = 5 × 106

The first case involves the turbulent flow over a flat plate, at ReL = 5× 106, and comparisons

with numerical [256] and experimental [277] data, to assess the accuracy of the implemented

approach. For the simulation, the velocity magnitude (5ms) and direction (θXY = 0◦), turbulent

intensity (1%), and eddy viscosity ratio (µt

µref
= 20) are specified at the inlet, while for the outlet

only the static pressure (0Pa) is prescribed. For the comparison, two Cartesian meshes, refined

near the solid wall, are generated consisting of 25K cells (coarse) and 50K cells (fine). The

simulation is terminated when the maximum flow equation residuals are below ||Ri||∞ < 10−12.

The artificial compressibility parameter is set to β = 10.

In Figure 3.6a, the residual history of the simulation for the fine mesh is shown, wherein

a reduction of approximately 12 orders is observed after 4000 iterations. This translates to

about 20 minutes on 48 AMD EPYC 7401 (2.0 Ghz) processors and includes the generation of

the CC mesh, shown in Figure 3.6b, forcing points and associated data structure, as well as

its simulation. As seen in Figure 3.6b, all Cartesian cells have the same aspect ratio (1 : 1),

excluding the CCs, that are cut by the flat plate at the southern border.

57 of 219

3. SINGLE– AND TWO–PHASE FLOW MODELS

−20

−15

−10

−5

 0

 5

 0 1000 2000 3000 4000 5000

lo
g 1

0(
|

|
R

|
|

2)

Iterations

ρε

ρk
u2

u1

p

(a)

−0.5

−0.4

−0.3

−0.2

−0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
y[

m
]

x[m]

(b)

Figure 3.6: Turbulent flow over a flat plate, ReL = 5 × 106 - (a) Flow equations residual history
where a convergence of more than 10 orders of magnitude is observed and (b) CC mesh used for
the simulation consisting of approximately 50K cells. The cell refinement levels are highest near
the flat plate and progressively coarsen to reduce the total number of cells.

Figure 3.7 presents the non–dimensionalized eddy viscosity iso–areas as in the Turbulence

Modeling Resource [256], i.e. the y–axis is expanded to show the area of interest, to allow

immediate comparisons. A very good agreement is observed overall, with minor differences at

the edge of the boundary layer, which were expected because of the different mesh sizes. The

observed curved iso–areas at the edge of the boundary layer become more pronounced due to

the expanded y–axis and the cell refinement level. It should be noted, however, that in the

reference figure, a much finer mesh of 545× 385 is used.

Figure 3.8 compares the computed skin friction coefficient distribution along the flat plate

with numerical and experimental data. Also here, an excellent agreement is observed, with just

minor discrepancies. For both simulations, the computed y+ distribution shown in Figure 3.9

lies well inside the recommended bounds, 30 < y+ < 300.

Based on the obtained results, the forcing point technique allows for the simulation of tur-

bulent flows with substantially relaxed mesh resolution requirements and a good representation

of the turbulent boundary layer.

58 of 219

3.2 Simulating Turbulent Flows using the Cut–Cell Method

Figure 3.7: Turbulent flow over a flat plate, ReL = 5×106 - Non–dimensionalized eddy viscosity
iso–areas. The y–axis is expanded based on the same iso–areas given in [256]. The curved iso–
areas observed are intensified due to the expanded y–axis.

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0 2×106 4×106 6×106 8×106 1×107

C
f

Rex

Coarse
Fine

CFL3D
Wieghardt

(a)

 0.002

 0.0025

 0.003

 0.0035

 0.004

 2.5×106 5×106

C
f

Rex

Coarse
Fine

CFL3D

(b)

Figure 3.8: Turbulent flow over a flat plate, ReL = 5×106 - (a) Comparison of the obtained skin
friction coefficient with numerical [256] and experimental [277] results along the flat plate. (b)
Close–up view of the computed skin friction coefficient for a coarse and fine CC mesh. Note that
the reference values are computed using a 4× larger mesh than the fine CC mesh of this study.

59 of 219

3. SINGLE– AND TWO–PHASE FLOW MODELS

 60

 80

 100

 120

 140

 160

 180

 200

 0 2.5×10
6

 5×10
6

 7.5×10
6

 1×10
7

y
+

Re
x

Coarse

Fine

Figure 3.9: Turbulent flow over a flat plate, ReL = 5 × 106 - y+ distribution for the coarse and
fine CC meshes. Simulations using the wall function technique should ideally place the first point
inside the logarithmic region.

3.2.6 90◦ Curved Channel ReW = 1 × 105

In the second case, a turbulent flow inside a curved channel is considered to assess the wall

function technique over curved surfaces. For the simulation, the total pressure (0.5Pa), velocity

direction (θXY = 0◦), turbulent intensity (2%) and eddy viscosity ratio (µt

µref
= 2) are specified

at the inlet. At the outlet, the static pressure is zero. The Reynolds number ReW = 1× 105 is

based on the inlet width. The artificial compressibility parameter, in this case, is set to β = 2

due to the smaller velocities inside the channel. A Cartesian mesh consisting of approximately

75K cells is generated with finer refinement close to the solid walls and is shown in Figure 3.10.

The close–up view of the CC mesh in Figure 3.10 near the curved body surface also depicts

the positioning of the forcing points used for the wall function technique previously described.

It can be seen that the forcing points are positioned at constant distances from the solid walls

lying in the immediate (or diagonal) neighbors of the CCs. The computed y+ distribution along

the solid walls averaged at a value of 60.

Figure 3.11a shows the residual history of the simulation of the curved channel. Good

convergence is observed as the flow equations residuals are reduced by more than 12 orders of

magnitude after 14000 iterations. Due to the higher number of iterations, the total simulation

time amounted to approximately 95 minutes on 48 AMD EPYC 7401 (2.0 Ghz) processors that

60 of 219

3.2 Simulating Turbulent Flows using the Cut–Cell Method

Figure 3.10: Turbulent flow over a 90◦ curved channel, ReW = 1 × 105 - The resulting CC mesh
consisted of approximately 75K cells with additional refinement near the solid walls. A close–up
view of the CC mesh, where the position of the forcing points along the solid walls is depicted, is
also provided.

again includes the CC mesh generation process. In Figure 3.11b, the y+ distributions for the

inner and outer walls is presented. A smooth distribution is observed due to the forcing point

technique that remedies the severely fluctuating y+ values reported in the literature when no

treatment is performed [31, 171].

In Figure 3.12, the non–dimensionalized eddy viscosity iso–areas in the curved channel case

are depicted. An increase is observed at the outer wall of the curved section. Figures 3.13a

and 3.13b show the distribution of the turbulent variables along the cross–section of the curved

channel (dashed line in Figure 3.12). Near the solid walls the turbulent variable increases in

magnitude, while at the bulk flow, these are minimal. At the outer wall, a reduced turbulent

dissipation rate ε leads to the largest eddy viscosity values observed.

61 of 219

3. SINGLE– AND TWO–PHASE FLOW MODELS

−16

−14

−12

−10

−8

−6

−4

−2

 0

 2

 0 2000 4000 6000 8000 10000 12000 14000

lo
g 1

0(
|

|
R

|
|

2)

Iterations

ρε

ρk
u2

u1

p

(a)

 30

 40

 50

 60

 70

 80

 90

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
y

+

x[m]

Inner Wall
Outer Wall

(b)

Figure 3.11: Turbulent flow over a 90◦ curved channel, ReW = 1 × 105 - (a) Flow equations
residual history, where a convergence of more than 12 orders of magnitude is observed after 14000
iterations. (b) y+ distribution for the inner and outer walls of the curved channel. The forcing
point technique implemented recovers a smooth y+ distribution.

Figure 3.12: Turbulent flow over a 90◦ curved channel, ReW = 1 × 105 - Non–dimensionalized
eddy viscosity iso–areas. The curved solid walls of the channel add an additional challenge to the
wall function technique.

62 of 219

3.3 Simulation of Two–Phase Cavitating Flows

(a) (b)

Figure 3.13: Turbulent flow over a 90◦ curved channel, ReW = 1 × 105 - Distribution of the
k − ε flow variables along the cross–section shown in Figure 3.12. riw denotes the distance from
the inner wall.

3.3 Simulation of Two–Phase Cavitating Flows

The CC solver was extended to facilitate two–phase cavitating flows by implementing a homo-

geneous TEM method. This method, commonly employed in these flows due to its reduced

computational cost [6, 20, 138, 280], assumes a homogeneous mixture of liquid and vapour, i.e.

a pseudo–fluid with averaged properties. It is based on the local kinematic and thermodynamic

equilibrium between the two species, i.e. the constituents share common velocities, pressure and

temperature. Even though the constituent phases are (usually) assumed to be incompressible,

the mixture fluid is treated as a compressible fluid with a considerably varying density [129].

The governing equations express the conservation of momentum for the mixture fluid and

the conservation of volume for each constituent, through the use of transport equations, to track

them. Numerically, their interface is handled using a shock–capturing approach (pseudo–VoF,

[98]), opting its higher flexibility (relaxed Courant number constraints, innate mass transfer

handling) and simpler implementation, as compared to a (true) VoF method that can introduce

additional difficulties when resolving foamy parts of the developed cavity [123]. Extension to

cavitating flows is accomplished by additional source terms, derived from a cavitation model that

quantifies the mass transfer between each constituent. Overall, the homogeneity assumption

remains valid for a large range of cavitating flows, avoiding the need for slip velocities, as both

63 of 219

3. SINGLE– AND TWO–PHASE FLOW MODELS

phases tend to remain relatively separate [123]. This makes the homogeneous–mixture method

a very popular choice when simulating cavitating flows since it allows for the prediction of

important cavity features such as large scale re–entrance jets, jet–cavity interactions [219], as

well as the generation of baroclinic vorticity at the cavity closure region [220].

3.3.1 The Two–phase Navier–Stokes Equations, with Cavitation Modeling

In the homogeneous TEM method, the mixture has its properties altered throughout the com-

putational domain based on the species concentration at each finite volume, namely

1 = al + av (3.61)

ρm = alϱl + (1− al)ϱv (3.62)

µm = alµl + (1− al)µv (3.63)

where a denotes the volume fraction and subscripts m, l, v refer to the mixture, liquid

and vapour phase, respectively. The equations of motion in the 2D(3D) Cartesian space

xj , j = 1, 2 (, 3) consisting of each constituent volume conservation equation and the mixture

momentum conservation equations are

∂ (αvuj)
∂xj

= − 1
ϱv
ṁ

∂ (αluj)
∂xj

= 1
ϱl
ṁ

∂ (ρmukuj)
∂xj

+ ∂p

∂xk
= ∂

∂xj

(
µm

[
∂uk
∂xj

+ ∂uj
∂xk
− 2

3
∂uℓ
∂xℓ

δjk

])
, k = 1, 2 (, 3)

(3.64)

where ṁ represents the interphase mass transfer rate due to cavitation. Similarly to the single–

phase formulation, the system of equation Eq. (3.64) is preconditioned to render it hyperbolic

and allow for time–marching techniques. Preconditioning (presented in Kunz et al. [138]) is

specifically derived to yield an eigensystem that is independent of the constituent phases density

ratio ϱl

ϱv
. Thus, the artificial speed of sound c =

√
u2
n + β2njnj still stands and leads to a similar

numerical behavior for a large range of density ratios [138]. The preconditioned governing

64 of 219

3.3 Simulation of Two–Phase Cavitating Flows

equations become(
αv
ρmβ2

)
∂p

∂τ
+ ∂αv

∂τ
+ ∂ (αvuj)

∂xj
= − 1

ϱv
ṁ (3.65)(

αl
ρmβ2

)
∂p

∂τ
+ ∂αl

∂τ
+ ∂ (αluj)

∂xj
= 1

ϱl
ṁ (3.66)

∂ (ρmuk)
∂τ

+ ∂ (ρmukuj)
∂xj

+ ∂p

∂xk
= ∂

∂xj

(
µm

[
∂uk
∂xj

+ ∂uj
∂xk
− 2

3
∂uℓ
∂xℓ

δjk

])
(3.67)

The governing equations are re–arranged by adding the species transport equations to obtain

the volume conservation equation for the whole mixture to bring the system of equations closer

to the single–phase structure. Combining Eqs. (3.65) and (3.66) and considering Eq. (3.61)

yields, (
[αv + αl]
ρmβ2

)
∂p

∂τ
+ ∂ ([αv + αl])

∂τ
+ ∂ ([αv + αl]uj)

∂xj
=
(

1
ϱl
− 1
ϱv

)
ṁ (3.68)

⇔
(

1
ρmβ2

)
∂p

∂τ
+ ∂uj
∂xj

=
(

1
ϱl
− 1
ϱv

)
ṁ (3.69)

which closely resembles the mass conservation equation of single–phase flows (Eq. (3.3)), with

the only difference being the addition of the interphase mass transfer rates and the mixture

density. The governing two–phase equations of motion in 3D can, thus, be written as

Ri := Γin
∂Un
∂τ

+
∂f Iij
∂xj

−
∂fVij
∂xj

− Si = 0 (3.70)

where

Γ =



(
1

ϱmβ2

)
0 0 0 0

0 ρm 0 0 u1∆ϱ
0 0 ρm 0 u2∆ϱ
0 0 0 ρm u3∆ϱ(
al

ϱmβ2

)
0 0 0 1

 (3.71)

and

f Ij =


uj

ρmu1 uj + δ1
j p

ρmu2 uj + δ2
j p

ρmu3 uj + δ3
j p

aluj

 , fVj =


0
τ1j
τ2j
τ3j
0

 , S = ṁ



(
1
ϱl
− 1

ϱv

)
0
0
0
1
ϱl

 (3.72)

with the vector of unknown flow variables being U =
[
p u1 u2 u3 al

]T . Note that, in the

simulation of two–phase flows, mixture density ρm (and viscosity µm) can vary based on the

65 of 219

3. SINGLE– AND TWO–PHASE FLOW MODELS

species concentration (al) and, thus, the unknown flow variables include the static pressure p

instead of the kinematic pressure p̆. Accordingly, τkj = µm

(
∂uk

∂xj
+ ∂uj

∂xk
− 2

3
∂uℓ

∂xℓ
δjk

)
.

The introduction of the liquid volume fraction transport equation modifies the inviscid eigen-

system by introducing one additional eigenvalue, i.e. Λ̃ = diag (ũn, ũn, ũn + c̃, ũn − c̃, ũn),

and the corresponding eigenvector matrix (Appendix A.2).

3.3.1.1 Boundary Conditions

The introduced unknown variable al requires additional conditions to be specified at each

domain boundary. Faces along the inlet and farfield boundaries impose a Dirichlet condition to

the value of the liquid volume fraction, i.e. the mixture concentration is specified. Along the

outlet wall boundaries, zero Neumann conditions are imposed by copying the interior domain

variables to the boundary faces.

The boundary conditions imposed for the remaining unknown variables are identical to those

of single–phase flows, see Section 3.1.3.

3.3.2 Cavitation Modeling

Several cavitation models can be used to quantify mass transfer due to cavitation Kunz et al.

[138], Merkle [159], Senocak & Shyy [223], Singhal et al. [234], Zwart et al. [281]; a description

of these models and their differences is given in Chapter 1. In this thesis, interphase mass

transfer between liquid and vapour is modeled via an empirical finite rate cavitation model

[137] wherein evaporation manifests when the local static pressure drops below the vapour

pressure pv. Condensation is based on a power series following the Ginzburg–Landau potential

(Hohenberg & Halperin [99]). In more detail, the mass transfer rate is computed as

ṁ = Cdestϱv
1
2ϱlU

2
∞t∞

al min(0, p− pv)

evaporation (ṁ−)

+ Cprodϱv
t∞

al
2 (1− al)

condensation (ṁ+)

(3.73)

The empirical time rate constants Cdest, Cprod are non–dimensionalized with respect to the

mean-flow time scale, t∞ = L
U∞

, L being the characteristic length and U∞ a reference velocity.

To track the onset of cavitation, the non–dimensional cavitation number σ is used that

expresses the potential of the flow to cavitate. It is defined as the non–dimensionalized difference

of the local and vapour pressure, i.e.

σ = p∞ − pv
1
2ϱlU

2
∞

(3.74)

66 of 219

3.4 Two–phase RANS Equations using the Cut–Cell Method

where p∞ is the reference static pressure.

3.3.3 Discretization of the Cavitation Model Source Terms

To solve the two–phase governing equation Eq. (3.70) a similar approach, used to extend the

laminar solver to turbulent flows, presented in Section 3.2.3, is followed. The preconditioner

matrix, inviscid, and viscous flux vectors are extended accordingly to account for the additional

species transport equation. Furthermore, the cavitation model source terms are also included

in the numerical solution algorithm 3.34, as per the turbulence model source terms. Following

Vankateswaran et al. [262], the source term is split to enforce diagonal dominance. Its contri-

butions to the diagonal matrix terms only exist if p − pv < 0, i.e. evaporation is occurs and

are

∂S−

∂U
= Cdestϱv

1
2ϱlU

2
∞t∞


(

1
ϱl
− 1

ϱv

)
0
1
ϱl


 al

0
p− pv

T (3.75)

The explicit source term S+ can cause instabilities to the numerical solution process at early

iterations and is, therefore, under–relaxed [138].

3.4 Two–phase RANS Equations using the Cut–Cell Method

Following the methods presented in Sections 3.2 and 3.3, two–phase cavitating flows are sim-

ulated by coupling the standard k − ε model with the governing equations, i.e. Eq. (3.70).

Densities and viscosities existing in the turbulence model now refer to the mixture. Similarly,

the mixture eddy viscosity reads [138, 222]

µm,t = Cµρmk
k

ε
(3.76)

When 3D two–phase turbulent flows are simulated, the vector of unknown flow variables be-

comes U =
[
p u1 u2 u3 al, ρmk, ρmε

]T . Discretization aspects of the specific eigensystem,

preconditioning matrix, inviscid and viscous flux vectors, and source vector follows that pre-

sented in Sections 3.2.3 and 3.3.1 and will be overviewed very briefly.

The 3D equations of motion governing turbulent, two–phase flows, that include cavitating

phenomena, can be expressed as

Ri := Γin
∂Un
∂τ

+
∂f Iij
∂xj

−
∂fVij
∂xj

− Si = 0 (3.77)

67 of 219

3. SINGLE– AND TWO–PHASE FLOW MODELS

with

Γ =

[Γ]2ϕ 0 0
0 1 0
0 0 1

,f Ij =

 f I,2ϕj

ϱmkuj
ϱmεuj

,fVj =


fV,2ϕj(

µm + µm,t

σk

)
∂k
∂xj(

µm + µm,t

σε

)
∂ε
∂xj

,S=

 S2ϕ

P − ϱmε
(C1εP − C2εϱmε) εk


(3.78)

where S2ϕ includes the cavitation model source terms. Similarly, the mixture shear stress tensor

is computed based on the mixture properties, viz. τkj = (µm + µm,t)
(
∂uk

∂xj
+ ∂uj

∂xk
− 2

3
∂uℓ

∂xℓ

)
.

As per the inviscid eigensystem, two additional eigenvalues are introduced, compared to

the NS equations, leading to Λ̃ = diag (ũn, ũn, ũn + c̃, ũn − c̃, ũn, ũn, ũn). The linearly

independent eigenvectors are constructed as in the single–phase formulation, i.e.

M =


[
M
]2ϕ 0 0

0 1 0

0 0 1

 , M−1 =


[
M−1]2ϕ 0 0

0 1 0

0 0 1

 (3.79)

where
[
M
]2ϕ is the corresponding two–phase eigenvector matrix given in Appendix A.2.

3.5 Cut-cell based Turbulent Flow Two–phase Simulations

In the following examples, the two–phase turbulent CC method is assessed in both 2D and

3D cases. This also allows the assessment of the forcing point technique in 3D, as well as the

accuracy of the implemented cavitation model, the effect of different cavitation numbers on the

resulting flow, and the implemented turbulence model in the event of two–phase flows simulated

using a CC–based solver.

3.5.1 NACA 66(MOD) hydrofoil Rec = 2 × 106

The first case considers the turbulent flow around the NACA 66(MOD) hydrofoil [40] which

has a camber ratio of 0.02, a mean line of 0.8, a thickness ratio of 0.09, and a chord length of

0.1524m. The hydrofoil was previously investigated both experimentally [228] and numerically

[6, 167]. For example, in Morgut & Nobile [167] a stochastic optimization strategy is used to

fine–tune the mass transfer rates under cavitating conditions. Herein, the hydrofoil is studied

for three cavitation numbers σ =∞, 0.91, 0.84 at Rec = 2× 106, based on the hydrofoil chord

length, and an angle of attack (AoA) of α∞ = 4◦. The density ratio between the two phases

is ϱl

ϱv
= 1000. A Cartesian mesh, refined near the hydrofoil contour, consists of approximately

68 of 219

3.5 Cut-cell based Turbulent Flow Two–phase Simulations

80K cells, as shown in Figure 3.14 along with a close–up view of the generated forcing points,

with an average y+ ≈ 50.

Figure 3.14: Turbulent, cavitating flow over the NACA 66(MOD) hydrofoil, Rec = 2 × 106

- Close–up view of the generated CC mesh that also the forcing points (orange dots) near the
hydrofoil walls. The total number of cells is approximately 80K.

The best value–set of the mass transfer rates are found to be Cdest = 1.5× 103 and Cprod =

135 after several simulations [265]. To perform the said simulations, free–stream boundary

conditions are imposed at the domain boundaries: a velocity magnitude (10ms) and its direction

(θXY = 4◦), the static pressure (105Pa), a fully liquid phase (al = 1), the turbulent intensity

(1%) and the mixture eddy viscosity ratio (µm,t

µl
= 20). The simulations were performed in

parallel on 48 AMD EPYC 7401 (2.0 Ghz) processors that required about 110 minutes to

create the CC mesh with the forcing point substructure and solve the governing equations.

In Figure 3.15a, the computed surface pressure distribution is compared with the experi-

mental data of Shen & Dimotakis [228] for non–cavitating canditions σ =∞. A good agreement

is observed verifying the adequacy of the generated CC mesh and the accuracy of the single–

phase CC solver. Under cavitating conditions σ = 0.84 and 0.91, the computed surface pressure

distributions compare favorably with both experimental [228] and numerical data [167], Fig-

ure 3.15b. The observed surface pressure distributions flattening on the hydrofoil suction side,

signifies the presence of a vapour bubble.

Figure 3.16a shows the liquid phase iso–areas, and thus, the generated cavity for the σ = 0.91

case, while in Figure 3.16b the corresponding iso–bar areas are shown. Accordingly, in Figures

3.17a and 3.17b the same iso–areas are shown for σ = 0.84. Reducing the cavitation number

increases the cavitation intensity, which in turn results in larger cavities around the hydrofoil

69 of 219

3. SINGLE– AND TWO–PHASE FLOW MODELS

−2.5

−2

−1.5

−1

−0.5

 0

 0.5

 1

 1.5
 0 0.2 0.4 0.6 0.8 1

C
p

x/c

Present−σ = ∞
Exp = ∞

(a)

−1.5

−1

−0.5

 0

 0.5

 1
 0 0.2 0.4 0.6 0.8 1

Present−
CFD−
Exp−

C
p

x/c

σ = 0.91
σ = 0.91
σ = 0.91

σ = 0.84
σ = 0.84
σ = 0.84

(b)

Figure 3.15: Turbulent flow over the NACA 66(MOD) hydrofoil, Rec = 2 × 106, α∞ = 4◦,
σ = (∞, 0.91, 0.84) - Computed surface pressure distributions compared with (a) experimental
data [228] for the non–cavitating (σ = ∞) case and (a) both experimental (black points) [228] and
numerical (light blue and orange points) [167] for two cavitating cases (with σ = 0.91 and 0.84).

70 of 219

3.5 Cut-cell based Turbulent Flow Two–phase Simulations

that manifest on a greater extent.

(a) (b)

Figure 3.16: Turbulent, cavitating flow over the NACA 66(MOD) hydrofoil, Rec = 2 × 106,
α∞ = 4◦, σ = 0.91 - Computed iso–areas of (a) the liquid volume fraction and (a) pressure.

(a) (b)

Figure 3.17: Turbulent, cavitating flow over the NACA 66(MOD) hydrofoil, Rec = 2 × 106,
α∞ = 4◦, σ = 0.84 - Computed iso–areas of (a) the liquid volume fraction and (a) pressure.

3.5.2 Hemispherical Cavitator ReD = 136000

To validate the CC two–phase solver in 3D cavitating flows, a hemispherical cavitator is con-

sidered. For the study, a ReD = 136000, based on the diameter of the cavitator, is defined

to be able to compare with the experimental data of Rouse & McNown [211], where different

cavitator shapes are studied at various flow conditions. The inlet boundary conditions consist

of the velocity magnitude (10ms), its direction, a fully liquid phase (al = 1), the turbulent

intensity (2%), and the eddy viscosity ratio of the mixture (µm,t

µl
= 20) at the inlet, while at the

outlet the static pressure (105Pa) is defined. The liquid–vapour density ratio is ϱl

ϱv
= 100. After

71 of 219

3. SINGLE– AND TWO–PHASE FLOW MODELS

several evaluations the mass transfer rates required to properly capture the incepted cavity are

found to be Cdest = 9× 103 and Cprod = 80.

Figure 3.18: Turbulent, cavitating flow over a hemispherical cavitator, ReD = 136000 - Close–up
view of the hemispherical cavitator depicting two slices of the generated CC mesh, the discretized
cavitator and the generated forcing points (orange dots). The total number of cells is approxi-
mately 450K.

The generated CC mesh, progressively refined closer to the cavitator, that provided mesh

independent solutions resulted in a computational mesh of approximately 450K cells and is

comparable to the structured mesh used in Kunz et al. [137] to simulate the same cavitating

flow. In Figure 3.18, a close–up view of the discretized cavitator, the CC mesh, and the

generated forcing points, used for the wall function technique, are shown. Note that, properly

capturing the curved surface of the cavitator is inherently challenging for the CC method and,

thus, required a sufficiently dense discretized geometry. However, it can be seen that the CC

method captures the curved surfaces, indicated by the generated forcing points that require

the normal vectors along the solid walls. Figure 3.19 depicts an xy–slice of the generated

72 of 219

3.5 Cut-cell based Turbulent Flow Two–phase Simulations

mesh. Additional refinement is introduced close to the cavitator head using the window–based

refinement (Figure 2.5) to accurately resolve the inception of the cavity.

Figure 3.19: Turbulent, cavitating flow over a hemispherical cavitator, ReD = 136000 - Close–up
view of the mesh along the xy–plane showing the additional local refinement at the head of the
cavitator, where large flow gradients are expected to appear.

3.5.2.1 0◦ Angle of Attack

Three different cavitating flows with σ = ∞, 0.4, 0.3 are simulated with an AoA of α∞ = 0◦

for the oncoming liquid flow, i.e. θZX = θXY = 0◦. In Figure 3.20a, the residual history of

the governing equations is shown for σ = 0.4, where a convergence is obtained after about 4000

iterations, while Figure 3.20b these are shown for the non–cavitating case σ =∞. Comparison

of the two figures reveals that the cavitating case requires more iterations to converge due to

the appearance of a recirculation zone and the stiff mass transfer source terms. The simulations

were performed on 48 AMD EPYC 7401 (2.0 Ghz) processors and required approximately 6

hours to complete. This includes the generation of the CC mesh and the forcing points, and

the satisfaction of the governing equations. Figure 3.21 shows the computed surface pressure

distribution over a meridional plane and is compared with the experimental data of [211]. The

same trend can be seen, namely with lower cavitation numbers, larger cavities manifest and

thus, the flattening of the surface pressure has a greater extent. At the cavity closure, a pressure

overshoot is observed due to the local stagnation at the bubble closure, creating a recirculation

zone as seen in Figure 3.22 where the iso–bar areas are shown along the same plane with

73 of 219

3. SINGLE– AND TWO–PHASE FLOW MODELS

−12

−10

−8

−6

−4

−2

 0

 2

 4

 0 1000 2000 3000 4000 5000 6000

lo
g(

|
r|

)

Iterations

ρmε

ρmk
al

u3

u2

u1

p

(a)

−12

−10

−8

−6

−4

−2

 0

 2

 4

 0 1000 2000 3000 4000 5000 6000
lo

g(
|

r|
)

Iterations

ρε

ρk
u3

u2

u1

p

(b)

Figure 3.20: Turbulent, cavitating flow over a hemispherical cavitator, ReD = 136000, α∞ = 0◦,
σ = 0.4 - Flow variable equations residual history for the cavitating σ = 0.4 and non–cavitating
σ = ∞case.

streamlines.

In Figure 3.23, two different computed skin friction coefficient Csf = ρsu2
τ

1
2ϱlU2

∞
, s = {m, l}

are depicted over a meridional plane. Even though only the mixture skin friction coefficient

Cmf is true to the performed simulation, remarks w.r.t. the mixture density distribution along

the geometry surface and its effect of the presence of vapour can be made, by quantitatively

comparing the two surface distributions. It is evident that the presence of vapour significantly

reduces the skin friction at the cavity location due to its smaller, compared to liquid, density,

while away from the cavity, where pure liquid exists, the same skin friction is recovered, since

the mixture density equals the liquid density. At the cavity closure region, the flow is stagnated

locally, resulting in an almost zero skin friction coefficient for both cases. Note that a smooth

skin friction distribution is obtained in the presence of curved surfaces, which is challenging

when performing simulations using the CC method in high Reynolds numbers [31, 32, 249], due

to the approach presented in Section 3.2.

74 of 219

3.5 Cut-cell based Turbulent Flow Two–phase Simulations

−0.8

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
p

s/d

Present−σ = ∞
Present−σ = 0.3

Present−σ = 0.4

Exp−σ = 0.3
Exp−σ = 0.4
Exp−σ = ∞

Figure 3.21: Turbulent, cavitating flow over a hemispherical cavitator, ReD = 136000, α∞ = 0◦,
σ = 0.4 - Comparison of the computed surface pressure distribution over a meridional plane plane
of the cavitator with the experimental data of Rouse & McNown [211].

Figure 3.22: Turbulent, cavitating flow over a hemispherical cavitator, ReD = 136000, α∞ = 0◦,
σ = 0.4 - Iso–bar areas along the x = 0 plane with the al = 0.9 iso–surface. Included streamlines
show the recirculation areas aft the cavity.

75 of 219

3. SINGLE– AND TWO–PHASE FLOW MODELS

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

s/d

Cf
m

Cf
l

Figure 3.23: Turbulent, cavitating flow over a hemispherical cavitator, ReD = 136000, α∞ = 0◦,
σ = 0.4 - Computed skin friction coefficient over a meridional plane. A sudden reduction is
observed at the cavity location 0.6 < s/d < 1.2 indicating the presence of vapour, followed by
an almost zero skin friction coefficient due to the recirculation aft the cavity. Cm

f refers to the
computed skin friction coefficient, while Cl

f assumes a pure liquid phase to quantitatively illustrate
the effect of the presence of vapour on the skin friction.

3.5.2.2 10◦ Angle of Attack

The same hemispherical cavitator is simulated for an AoA of α∞ = 10◦ (θXY = 10◦) at

cavitation number σ = 0.30. In this case, the asymmetry of the resulting flow solution required

a larger computational domain, which is elongated along the meridional direction. This leads

to an approximately 15% increase in the total number of cells. In Figure 3.24, the computed

surface pressure distribution is depicted along the z = 0 plane, revealing the existence of a

small cavity at the bottom side and a significantly larger one at the top side of the cavitator.

Figure 3.25 shows the resulting cavity with selected streamlines, colored by the flow velocity

magnitude, that pinpoint the recirculation zone at the top side. As noted in Kunz et al. [137],

the flow is highly 3D, and the cavity is largest off the z = 0 plane. At the top side, the

large recirculation zone weakens the associated pressure recovery resulting in the more gradual

surface pressure distribution observed in Figure 3.24. The said recirculation also causes the

collapse of the cavity at the top side. The recirculation zone weakens off the z = 0 plane,

allowing the cavity to extend longer, which leads to the depicted cavity shape. At the bottom

side, the generated vapour is convected toward the top side due to the non–zero AoA, resulting

in a much smaller cavity.

76 of 219

3.5 Cut-cell based Turbulent Flow Two–phase Simulations

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6 7 8

C
p

s/d

TopSide
BottomSide

Figure 3.24: Turbulent, cavitating flow over a hemispherical cavitator, ReD = 136000, α∞ = 10◦,
σ = 0.3 - Computed surface pressure distribution along the z = 0 plane. The non–zero AoA result
in the generation of an asymmetric cavity occurs which is elongated along the top side.

Figure 3.25: Turbulent, cavitating flow over a hemispherical cavitator, ReD = 136000, α∞ = 10◦,
σ = 0.3 - The isosurface of al = 0.9 reveals the developed cavity location. The selected streamlines
show the occurring recirculation zone aft the cavity at the top side of the cavitator and are colored
by the velocity magnitude. The extracted slice along the yz–plane shows the iso–bar areas. At
the bottom side, a much smaller cavity occurs.

77 of 219

3. SINGLE– AND TWO–PHASE FLOW MODELS

3.6 Concluding Remarks

In this chapter, flow models extending the CC–based solver to turbulent and cavitating two–

phase flows were presented. These include the implementation of the standard k− ε model, the

CC–specific use of linelets (forcing points) that enable the use of the wall functions technique.

In addition, two–phase cavitating flows are simulated via the homogeneous mixture assump-

tion and a cavitation model. Its extension to the RANS equations is performed by expressing

the turbulence model w.r.t. the mixture. The above–mentioned are integrated into the pre-

cursor software following Object–Oriented Programming (OOP) and can now flexibly alternate

between different flow models.

The single–phase RANS solver is demonstrated in two examples; a flat plate in which the

computed skin friction coefficient showed excellent agreement with numerical and experimental

data, and a curved channel verifying that the forcing point technique can compute smoothly

varying friction velocities on curved surfaces. Furthermore, the implemented linelet technique,

cavitation model and two–phase RANS solver are assessed using 2D and 3D test cases from the

literature. In the examples presented, good agreement is observed with affordable mesh require-

ments. As per the implemented cavitation model, relative sensitivity and case–dependency to

the empirical terms is observed that requires calibration [265].

Regarding the computational resources footprint of each extension: the ability to simulate

turbulent flows using the CC method requires the storage of additional connectivity informa-

tion and iteratively solving algebraic equations at the solid walls. The former is a unique CC

requirement to allow modeling the turbulent boundary layer with relative accuracy and sig-

nificantly alleviating mesh resolution requirements; as an example, in [31], the 2D flat–plate

turbulent simulations presented without wall functions and a y+ ≈ 10 (which is still high

for Low–Reynolds turbulence models) requires O(106) cells. The cost of solving the algebraic

equations is presumably similar to that of conventional body–fitted solvers. The simulation of

two–phase cavitating flows in the 3D case requires approximately 2× more iterations to reach

a converged solution, compared to the single–phase simulation σ = ∞ that needs about 1600

more iterations using the same mesh, Figure 3.20. This increase can be attributed to the stiff

cavitation–related source terms, the lower CFL requirements and the introduced cavitation

dynamics that influence both the numerical solution process and the resulting flow features.

78 of 219

Chapter 4

The Continuous Adjoint Method
in Single– and Two–phase flows

This chapter presents the development of the adjoint counterparts of the flow models pre-

sented in Chapter 3. The adjoint method can be formulated following either the continuous

or discrete approach [103]. In the former [186, 191, 255, 282], the adjoint equations are derived

by differentiating the PDEs governing the flow and are then discretized and numerically solved.

In the latter [13, 172, 174], the adjoint equations emerge by differentiating the discretized form

of the governing PDEs and directly result in an adjoint problem in discrete form.

Herein, the continuous adjoint problem is formulated based on the SI approach [187], ben-

efiting from the use of the CC that exhibits zero internal volume mesh variations and aims

at the gradient–based optimization of aero/hydrodynamic applications that incorporate turbu-

lence and two–phase effects. Concerning the inclusion of turbulence effects, the implemented

turbulence model is differentiated to obtain the exact objective function gradient expression,

avoiding the frozen turbulence assumption. This choice follows related literature indicating

that this assumption can potentially lead to significantly inaccurate objective function gradi-

ent, likely affecting the optimization path [71, 189, 191, 282–284]. Concerning two–phase adjoint

formulations, relatively scarce literature exists, and some applications are found for free–surface

flows [134, 183, 184, 242]; regarding two–phase flows featuring cavitating, or mass transfer in

general, even fewer exist [17, 35]. Hitherto, the commonly followed approach is to perform opti-

mization studies in flows featuring cavitation via a single–phase flow and an objective function

that quantify areas below the vapour pressure.

In Boger [35], the continuous adjoint method was derived for the barotropic model, wherein

79 of 219

4. THE CONTINUOUS ADJOINT METHOD

a barotropic state law is algebraically connecting density with pressure and, thus, avoids the

introduction of species transport equations and mass transfer source terms. This approach

introduces several limitations, for instance, no baroclinic vorticity can be generated [86] due to

the introduction of an artificial equation of state that coupled density with pressure. Instead,

herein, a TEM approach is followed, wherein species transport equations and mass transfer

source terms are introduced and require additional differentiation when formulating the adjoint

problem. Thus, the mathematical development of the continuous adjoint problem for cavitating

two–phase flows using a TEM approach in conjunction with the CC method [266] has several

novel aspects and is pursued throughout this thesis.

Initially, a brief introduction to the adjoint–based optimization is given, followed by the

derivation of the adjoint problem when considering turbulent cavitating two–phase flows. The

differentiation of k − ε turbulence models has been presented for single–phase incompressible

flows (with constant density) in [189, 283] by PCOpt. However, in two–phase flows, the mixture

density varies greatly and, thus, is incorporated and differentiated to derive the adjoint coun-

terpart. This results in additional terms appearing in the adjoint problem arising from mixture

density and viscosity. Concerning the two–phase mean–flow equations, the same remarks apply,

with the additional differentiation of the cavitation model source terms, presented in [266].

This chapter focuses on the mathematical formulation of the continuous adjoint problem.

In addition, the objective functions used in this thesis to perform gradient–based optimization

are presented and differentiated.

4.1 Gradient–based Optimization

In gradient–based optimization, the gradient of the objective function J w.r.t. a set of design

variables bi, i = 1, ..., N must be computed. In the most general case, the objective function J

may include an integral quantity that is the entire or part of the boundary of the domain (SJ)

and/or a field integral over the entire computational domain (Ω), i.e.

J =
∫
SJ

jSdS +
∫

Ω
jΩdΩ (4.1)

Differentiating the objective function w.r.t. the design variables and applying the Leibniz theo-

rem for integral variations yields the sought objective function gradient, also referred to as SDs

80 of 219

4.2 Formulation of the Continuous Adjoint Method

[116, 186, 191],

δJ

δbi
=
∫

Ω

∂jΩ
∂Un

∂Un
∂bi

dΩ +
∫
S

jΩn̂k
δxk
δbi

dS +
∫
SJ

∂jS
∂Un

δUn
δbi

dS

+
∫
SJ

∂jS
∂ (τkj n̂kn̂j)

δ (τkj n̂kn̂j)
δbi

dS +
∫
SJ

∂jS

∂
(
τkj n̂k t̂j

) δ (τkj n̂k t̂j)
δbi

dS

+
∫
SJ

∂jS
∂n̂m

δ(n̂mdS)
δbi

+
∫
SJ

∂jS
∂xk

δxk
δbi

dS

(4.2)

where δ()
δbi
, ∂()
∂bi

refer to the total and partial derivatives, and xk, k = 1, 2(, 3) is the position in

space. The total derivative accounts for the effect caused by the position change of a mesh node

(in the discrete sense), whereas the partial derivative accounts only for flow variable variations.

The two are correlated as follows

δ()
δbi

= ∂()
∂bi

+ ∂()
∂xk

δxk
δbi

(4.3)

In Eq. (4.2) derivatives of flow quantities w.r.t. the design variables δUn

δbi
,
δτkj

δbi
are associated

with high computational cost. For example, if the SDs are to be approximated using FDs to

avoid additional implementation aspects regarding the computation of these terms, say using

central differences for second–order accuracy, the total cost corresponds to 2N EFS. The reason

for this is that each design variable has to be modified by an infinitesimally small increment in

both directions to compute the corresponding J values and approximate its derivative w.r.t. the

corresponding design variable, through subtraction and division by twice the increment used.

Alternatively, the adjoint problem circumvents the computation of derivatives (δUn

δbi
,
δτkj

δbi
). This

makes the cost of solving the adjoint problem independent to the number of design variables

and the total cost to 2 EFS, since solving the adjoint problem costs approximately 1 EFS.

4.2 Formulation of the Continuous Adjoint Method

In the continuous adjoint method, the objective function is augmented by the field (over Ω)

integral of the product of Lagrangian multipliers ψ (adjoint variables) and the residuals R of

the governing equations; this gives rise to the so–called Lagrangian

L = J +
∫

Ω
ψnRndΩ (4.4)

where an adjoint variable field is introduced for each governing equation. Upon convergence

of the governing equations R = 0, L = J , δL
δbi

= δJ
δbi

stand and, thus, the objective function

81 of 219

4. THE CONTINUOUS ADJOINT METHOD

gradient can be computed by differentiating Eq. (4.4).

The continuous adjoint method is formulated for 3D turbulent, cavitating two–phase flows

that are solved similarly to the governing equations Eq. (3.77), i.e. a coupled adjoint system

of PDEs is derived and simultaneously solved. For convenience, the vector of unknown flow

variables is reiterated U =
[
p u1 u2 u3 al, ρmk, ρmε

]T . Thus, the emerging vector of unknown

adjoint variables ψ consists of the adjoint pressure ψ1, (adjoint) velocity components ψj , j =

2, 3(, 4), (adjoint) liquid fraction ψ5, and (adjoint) turbulent kinetic energy ψ6 and dissipation

rate ψ7, both multiplied by the fluid density. The adjoint formulation for flows that are a subset

of the presented one, i.e. other combinations of 2D/3D inviscid/laminar/turbulent single–/two–

phase flows, arise by omitting the appropriate terms in the following subsections. For example,

for 2D inviscid, cavitating two–phase flows, the viscous vector and terms involving turbulence

variables are zero, the cavitation model source terms remain, U =
[
p u1 u2 al

]T and, thus,

ψ =
[
ψ1 ψ2 ψ3 ψ5

]T .

The adjoint problem to incompressible flows, solved via the artificial compressibility method,

can be formulated following two different (though equivalent) approaches. The first approach

derives the preconditioned adjoint equations using the non–preconditioned governing equations

as a point of reference. The arising adjoint problem requires preconditioning to facilitate time–

marching techniques [255]. In the second one, the governing equations are multiplied by the

inverse preconditioning matrix and are subsequently differentiated. This results in the adjoint

to the preconditioned equations problem that inherently has the same eigensystem (but with

opposite eigenvalues) of the governing equations. This approach is most convenient when the

governing equations are solved in a similar fashion [22].

Their equivalence can briefly be shown for either single– or two–phase flows as follows.

Let R̃ := Γ−1R be the preconditioned residual vector, Γ is the preconditioner matrix

and R is the non–preconditioned residual vector, (see Eq. (3.71)). In the first approach, the

differentiation of the field integral in Eq. (4.4) results in

δ

δbi

∫
Ω
ψnRndΩ =

∫
Ω
ψn

∂Rn

∂bi
dΩ +

∫
S

ψnRnn̂k
δxk
δbi

dS (4.5)

whereas in the second approach

δ

δbi

∫
Ω
ψnR̃ndΩ =

∫
Ω
ψn

∂R̃n

∂bi
dΩ +

∫
S

ψnR̃nn̂k
δxk
δbi

dS

82 of 219

4.2 Formulation of the Continuous Adjoint Method

=
∫

Ω
ψn

∂
(
Γ−1
nmRm

)
∂bi

dΩ +
∫

Ω
ψn

∂Γ−1
nm

∂bi
RmdΩ︸ ︷︷ ︸

=0

+
∫
S

ψnΓ−1
nmRmn̂k

δxk
δbi

dS

=
∫

Ω
ψnΓ−1

nm

∂Rm

∂bi
dΩ +

∫
S

ψnΓ−1
nmRmn̂k

δxk
δbi

dS

=
∫

Ω
ψ̃m

∂Rm

∂bi
dΩ +

∫
S

ψ̃mRmn̂k
δxk
δbi

dS (4.6)

where ψ̃ = Γ−Tψ was used. Therefore, in Eq. (4.6) the adjoint equations are derived and solved

for the preconditioned adjoint variables. On the contrary, in Eq. (4.5) the non–preconditioned

adjoined equations are derived and require to be preconditioned. A more thorough discussion

and analysis, showing the equivalence of the two formulations, in terms of SD computation

accuracy, can be found in Asouti et al. [21], Asouti [22]. Herein, preconditioned adjoint equations

are derived, ergo using Eq. (4.5), and require preconditioning to obtain an eigensystem with

opposite eigenvalues to the governing equations. Based on the aforementioned, differentiation

of the Lagrangian results in

δL

δbi
= δJ

δbi
+
∫

Ω
ψn

∂Rn

∂bi
dΩ +

∫
S

ψnRnn̂k
δxk
δbi

dS

= δJ

δbi
+
∫

Ω
ψn

∂

∂bi

∂f Inj∂xj︸ ︷︷ ︸
TI

−
∂fVnj
∂xj︸ ︷︷ ︸
TD

−Sn︸︷︷︸
TS

 dΩ +
∫
S

ψnRnn̂k
δxk
δbi

dS

(4.7)

In the following sections, the convective TI (Section 4.2.1), diffusive TD (Section 4.2.2) and

source TS (Section 4.2.3) terms in Eq. (4.7) are developed separately to identify terms that

contribute to the Field Adjoint Equations (FAEs), Adjoint Boundary Conditions (ABCs) and

the expression computing the SDs.

The FAEs define a new system of PDEs, obtained by circumventing the computationally

intensive task of computing the derivatives of flow variables w.r.t. the design variables ∂U
∂bi

thought Ω. To do so, all volume integrals containing the said derivatives are collected and

have their multiplier set to zero, i.e.
∫

Ω (FAE)n︸ ︷︷ ︸
=0

∂Un

∂bi
dΩ. Boundary integrals are treated using

a similar approach. In this case, partial derivatives are first transformed to total derivatives

using Eq. (4.3), to account for geometric changes as well. Boundary terms multiplied by the

total derivatives of flow variables δU
δbi

are eliminated, and this gives rise to the ABCs, while the

remaining terms, boundary integrals containing geometric derivatives, contribute to the SDs

expression. The computation of geometric derivatives at the boundaries is a relatively low–cost

83 of 219

4. THE CONTINUOUS ADJOINT METHOD

process and is discussed in Section 5.1, especially for the CC method.

4.2.1 Differentiation of the Inviscid Terms

Term TI in Eq. (4.7), containing the inviscid terms multiplied by the adjoint variables, is

expanded as follows

TI :=
∫

Ω
ψn

∂

∂bi

(
∂f Inj
∂xj

)
dΩ =

∫
Ω
ψn

∂

∂xj

(
∂f Inj
∂bi

)
dΩ

=
∫

Ω

∂

∂xj

(
ψn

∂f Inj
∂bi

)
dΩ−

∫
Ω

∂ψn
∂xj

∂f Inj
∂bi

dΩ

=
∫

Ω

∂

∂xj

(
ψn

∂f Inj
∂bi

)
dΩ−

∫
Ω

∂ψn
∂xj

∂f Inj
∂Um

∂Um
∂bi

dΩ

=
∫
S

ψnn̂j
∂f Inj
∂bi

dS −
∫

Ω

∂ψn
∂xj

Anmj
∂Um
∂bi

dΩ (4.8)

since partial derivatives can interchange. The resulting volume integral will be included in the

expression of FAEs, while the boundary integral will further be expanded to isolate ABCs and

SD contributions.

4.2.2 Differentiation of the Diffusive Terms

The diffusive terms in the momentum and turbulence model equations arise due to both the

molecular and eddy viscosity. Following the same procedure, these can be expanded as

TD :=−
∫

Ω
ψn

∂

∂bi

(
∂fVnj
∂xj

)
dΩ = −

∫
S

ψnn̂j
∂fVnj
∂bi

dS +
∫

Ω

∂ψn
∂xj

∂fVnj
∂bi

dΩ

=−
∫
S

ψnn̂j
∂fVnj
∂bi

dS +
∫

Ω

∂ψk+1
∂xj

∂τkj
∂bi︸ ︷︷ ︸

TSS

dΩ

+
∫

Ω

∂ψ6
∂xj

∂

∂bi

(
µ̃(k) ∂k

∂xj

)
+ ∂ψ7
∂xj

∂

∂bi

(
µ̃(ε) ∂ε

∂xj

)
︸ ︷︷ ︸

TT D

dΩ (4.9)

where µ̃(k) =
(
µm + µm,t

σk

)
and µ̃(ε) =

(
µm + µm,t

σε

)
.

Term TSS is developed by expanding the stress tensor and applying the divergence theorem

once more as

TSS :=
∫

Ω

∂ψk+1
∂xj

∂τkj
∂bi

dΩ =
∫

Ω

∂ψk+1
∂xj

∂

∂bi

[
(µm + µm,t)

(
∂uk
∂xj

+ ∂uj
∂xk
− 2

3
∂uℓ
∂xℓ

δjk

)]
dΩ

84 of 219

4.2 Formulation of the Continuous Adjoint Method

=
∫

Ω

∂ψk+1
∂xj

(µm + µm,t)
∂

∂bi

(
∂uk
∂xj

+ ∂uj
∂xk
− 2

3
∂uℓ
∂xℓ

δjk

)
dΩ

+
∫

Ω

∂ψk+1
∂xj

(
∂uk
∂xj

+ ∂uj
∂xk
− 2

3
∂uℓ
∂xℓ

δjk

)
∂

∂bi
(µm + µm,t) dΩ

=
∫
S

τψkj n̂k
∂uj
∂bi

dS −
∫

Ω

∂τψkj
∂xk

∂uj
∂bi

dΩ

+
∫

Ω

∂ψk+1
∂xj

τkj
µm + µm,t

[
∂µm
∂Up

∂Up
∂bi

+ ∂µm,t
∂Up

∂Up
∂bi

]
dΩ (4.10)

with τψkj = (µm + µm,t)
(
∂ψk+1
∂xj

+ ∂ψj+1
∂xk

− 2
3
∂ψℓ+1
∂xℓ

δjk

)
. The last integral in Eq. (4.10) includes

terms that are introduced due to variations in the mixture molecular (Eq. (3.63)) and eddy

(Eq. (3.76)) viscosity and contribute to the FAEs for the adjoint liquid volume fraction and

turbulence variables. The turbulence model diffusion terms are similarly expanded resulting in

TTD :=
∫

Ω

∂ψ6
∂xj

∂

∂bi

(
µ̃(k) ∂k

∂xj

)
+ ∂ψ7
∂xj

∂

∂bi

(
µ̃(ε) ∂ε

∂xj

)
dΩ

=
∫

Ω

∂ψ6
∂xj

(
∂µ̃(k)

∂bi

∂k

∂xj
+ µ̃(k) ∂

∂bi

(
∂k

∂xj

))
dΩ

+
∫

Ω

∂ψ7
∂xj

(
∂µ̃(ε)

∂bi

∂ε

∂xj
+ µ̃(ε) ∂

∂bi

(
∂ε

∂xj

))
dΩ

=
∫

Ω

∂ψ6
∂xj

µ̃(k) ∂

∂bi

(
∂k

∂xj

)
+ ∂ψ7
∂xj

µ̃(ε) ∂

∂bi

(
∂ε

∂xj

)
dΩ

+
∫

Ω

∂ψ6
∂xj

∂k

∂xj

∂µ̃(k)

∂bi
+ ∂ψ7
∂xj

∂ε

∂xj

∂µ̃(ε)

∂bi
dΩ

=
∫
S

[
µ̃(k) ∂ψ6

∂xj
n̂j

∂k

∂Up

∂Up
∂bi

+ µ̃(ε) ∂ψ7
∂xj

n̂j
∂ε

∂Up

∂Up
∂bi

]
dS

−
∫

Ω

∂

∂xj

(
µ̃(k) ∂ψ6

∂xj

)
∂k

∂Up

∂Up
∂bi

+ ∂

∂xj

(
µ̃(ε) ∂ψ7

∂xj

)
∂ε

∂Up

∂Up
∂bi

dΩ

+
∫

Ω

(
∂ψ6
∂xj

∂k

∂xj
+ ∂ψ7
∂xj

∂ε

∂xj

)
∂µm
∂Up

∂Up
∂bi

dΩ

+
∫

Ω

(
1
σk

∂ψ6
∂xj

∂k

∂xj
+ 1
σε

∂ψ7
∂xj

∂ε

∂xj

)
∂µm,t
∂Up

∂Up
∂bi

dΩ (4.11)

4.2.3 Differentiation of Source Terms

The source terms TS is split into contributions associated with the interphase mass transfer

due to cavitation (Eq. (3.73)) and the turbulence model source terms (Eq. (3.54)), namely

TS :=−
∫

Ω
ψn

∂Sn
∂bi

dΩ = −
∫

Ω
ψn

(
∂SCAVn

∂bi
+ ∂SKEn

∂bi

)
dΩ (4.12)

85 of 219

4. THE CONTINUOUS ADJOINT METHOD

Further expanding the cavitation source term leads to

−
∫

Ω
ψn

∂SCAVn

∂bi
dΩ = −

∫
Ω
B1

∂ṁ

∂Up

∂Up
∂bi

dΩ (4.13)

where B1 = ψ1
ϱl−ϱv

+ ψ5
ϱl

was used. The differentiation of the interphase mass transfer term ṁ

w.r.t. the flow variables yields

∂ṁ

∂U
=
[
H 0 0 0 G 0 0

]
(4.14)

with

H := ∂ṁ

∂p
=
{

Cdestϱv
1
2ϱlU2

∞t∞
al , p− pv < 0

0, otherwise
(4.15)

G := ∂ṁ

∂al
=
{
Cprodϱv

t∞
al (2− 3al) + Cdestϱv

1
2ϱlU2

∞t∞
(p− pv) , p− pv < 0

Cprodϱv

t∞
al (2− 3al) , otherwise

(4.16)

The differentiation of the turbulence model source term w.r.t. the design variables takes place

by first splitting it into source and sink components, i.e.

−
∫

Ω
ψn

∂SKEn
∂bi

dΩ =−
∫

Ω
ψT

∂

∂bi

 0
1

C1ε
ρmε
ρmk

P −

 0
ρmε

C2ε
(ρmε)2

ρmk

 dΩ

=−
∫

Ω
ψT

 ∂

∂bi

 0
1

C1ε
ρmε
ρmk

P +

 0
1

C1ε
ρmε
ρmk

 ∂P
∂bi
− ∂

∂bi

 0
1

C2ε
(ρmε)2

ρmk

 dΩ

(4.17)

The differentiation of each term appearing in Eq. (4.17) w.r.t. the design variable is pre-

sented separately. Starting from the turbulence model production of turbulent kinetic energy

(Eq. (3.40)), its differentiation results in

∂P

∂bi
= ∂µm,t

∂bi

P

µm,t
+ µm,t

∂

∂bi

(
P

µm,t

)
= P

µm,t

∂µm,t
∂Up

∂Up
∂bi

+ µm,t

(
∂uk
∂xj

+ ∂uj
∂xk

)[
∂

∂xj

(
∂uk
∂bi

)
+ ∂

∂xk

(
∂uj
∂bi

)]
− µm,t

4
3
∂uℓ
∂xℓ

δkj
∂

∂xj

(
∂uk
∂bi

)
= P

µm,t

∂µm,t
∂Up

∂Up
∂bi

+ 2µm,t
(
∂uk
∂xj

+ ∂uj
∂xk
− 2

3
∂uℓ
∂xℓ

δkj

)
∂

∂xj

(
∂uk
∂bi

)
(4.18)

86 of 219

4.2 Formulation of the Continuous Adjoint Method

where
(
∂uk

∂xj
+ ∂uj

∂xk

)
∂uk

∂xj
= 1

2

(
∂uk

∂xj
+ ∂uj

∂xk

)2
. For the remaining terms, these are

∂

∂bi

(
C1ε

ρmε

ρmk

)
= C1ε
ρmk

(
∂ρmε

∂bi
− ρmε

ρmk

∂ρmk

∂bi

)
(4.19)

∂

∂bi

(
C2ε

(ρmε)2

ρmk

)
= C2ε

ρmε

ρmk

(
2∂ρmε
∂bi

− ρmε

ρmk

∂ρmk

∂bi

)
(4.20)

∂µm,t
∂bi

= Cµ

(
2ρmk
ρmε

∂ρmk

∂bi
−
(
ρmk

ρmε

)2
∂ρmε

∂bi

)
= 2µm,t

ρmk

∂ρmk

∂bi
− µm,t
ρmε

∂ρmε

∂bi
(4.21)

Additionally, an auxiliary variable is defined

B2 := ψT

 0
1

C1ε
ρmε
ρmk

 = ψ6 + C1ε
ρmε

ρmk
ψ7 (4.22)

Taking into account Eqs. (4.13)-(4.22), the differentiation of the source term TS w.r.t. the design

variables results in

TS =−
∫

Ω
B1H

∂p

∂bi
+ B1G

∂al
∂bi

dΩ

−
∫

Ω

[
2µm,tB2

(
∂uk
∂xj

+ ∂uj
∂xk

)
− 2

3
∂uℓ
∂xℓ

δkj

]
∂

∂xj

(
∂uk
∂bi

)
dΩ︸ ︷︷ ︸

TP

−
∫

Ω

P

µm,t

[
B2

∂µm,t
∂Up

∂Up
∂bi

+ µm,tψ7
C1ε
ρmk

(
∂ρmε

∂bi
− ρmε

ρmk

∂ρmk

∂bi

)]
dΩ

+
∫

Ω
ψ6
∂ρmε

∂bi
+ ψ7C2ε

ρmε

ρmk

(
2∂ρmε
∂bi

− ρmε

ρmk

∂ρmk

∂bi

)
dΩ

(4.23)

What remains is to further expand term TP that contains ∂
∂xj

(
∂uk

∂bi

)
by applying the divergence

theorem as

TP =−
∫
S

2µm,tB2

(
∂uk
∂xj

+ ∂uj
∂xk
− 2

3
∂uℓ
∂xℓ

δkj

)
n̂j
∂uk
∂bi

dS

+
∫

Ω

∂

∂xj

[
2µm,tB2

(
∂uk
∂xj

+ ∂uj
∂xk
− 2

3
∂uℓ
∂xℓ

δkj

)]
∂uk
∂bi

dΩ (4.24)

4.2.4 Field Adjoint Equations

The FAEs are derived by collecting all volume integrals containing derivatives w.r.t. the flow

variables, i.e. ∂U
∂bi

and eliminating their multipliers. The new system of PDEs should have

similar properties to the governing equations and are solved following a similar method to

the one presented in Section 3.1.4. Since the preconditioned adjoint equations are derived,

87 of 219

4. THE CONTINUOUS ADJOINT METHOD

appropriate pseudo–time derivatives are introduced to obtain an eigensystem with the opposite

eigenvalues of the governing equations. This is achieved using the transposed preconditioner of

the governing equations.

The FAEs, obtained by collecting terms from Eqs. (4.2), (4.8), (4.10), (4.11) and (4.23),

read

ΓTni
∂ψi
∂τ
− ∂ψn
∂xj

Anmj −
∂hψnj
∂xj

− Sψn − Zψn + ∂jΩ
∂Un

= 0 (4.25)

with

hψj =



0
τψ1j − 2µm,tB2

(
∂u1
∂xj

+ ∂uj

∂x1
− 2

3
∂uℓ

∂xℓ δ
1
j

)
τψ2j − 2µm,tB2

(
∂u2
∂xj

+ ∂uj

∂x2
− 2

3
∂uℓ

∂xℓ δ
2
j

)
τψ3j − 2µm,tB2

(
∂u3
∂xj

+ ∂uj

∂x3
− 2

3
∂uℓ

∂xℓ δ
3
j

)
−∆ϱ
ρm

(
kµ̃(k) ∂ψ6

∂xj
+ εµ̃(ε) ∂ψ7

∂xj

)
µ̃(k)

ϱm

∂ψ6
∂xj

µ̃(ε)

ϱm

∂ψ7
∂xj


,Sψ=



B1H

0

0

0

B1G

2
ρmk

Pψ6 + ρmε
(ρmk)2 (C1εP + C2ερmε)ψ7

− 1
ρmε

(P + ρmε)ψ6 − 2C2ε
ρmε
ρmk

ψ7



Zψ =



0
0
0
0

∆µ
(

τkj

µm+µm,t

∂ψk+1
∂xj

+ ∂ψ6
∂xj

∂k
∂xj

+ ∂ψ7
∂xj

∂ε
∂xj

)
2µm,t

ρmk

(
τkj

µm+µm,t

∂ψk+1
∂xj

+ 1
σk

∂ψ6
∂xj

∂k
∂xj

+ 1
σε

∂ψ7
∂xj

∂ε
∂xj

)
−µm,t

ρmε

(
τkj

µm+µm,t

∂ψk+1
∂xj

+ 1
σk

∂ψ6
∂xj

∂k
∂xj

+ 1
σε

∂ψ7
∂xj

∂ε
∂xj

)


(4.26)

where vector hψ contains the adjoint viscous flux vector terms originating from the differentia-

tion of the diffusive terms and turbulence model production, vector Sψ = Sψ(ψ) contains source

terms due to the cavitation and turbulence model source vector, while vector Zψ = Zψ
(
∂ψ
∂x

)
contains source terms resulting from the differentiation of the mixture molecular and eddy

viscosity.

4.2.5 Adjoint Boundary Conditions

The remaining terms in the objective function gradient expression are boundary integrals.

Aiming at obtaining a SDs expression that does not require the computation of flow vari-

88 of 219

4.2 Formulation of the Continuous Adjoint Method

ables’ derivatives along the boundaries, terms containing ∂U
∂bi

, and terms that can be expressed

w.r.t. the said derivative, are further expanded. To do so, partial derivatives of the flow vari-

ables are transformed to total derivatives of the flow variables and geometric quantities. Total

derivatives of the flow variables are first collected and, then, have their multiplier set to zero,

by also taking into account the boundary condition of the problem; this leads to the ABCs.

The remaining surface integrals (SI) are summarized as

δL

δbi
=
∫
S

[
ψnn̂j

∂f Inj
∂bi

− ψnn̂j
∂fVnj
∂bi

+ τψkj n̂k
∂uj
∂bi

]
dS

−
∫
S

2µm,tB2

(
∂uk
∂xj

+ ∂uj
∂xk
− 2

3
∂uℓ
∂xℓ

δkj

)
n̂j
∂uk
∂bi

dS

+
∫
S

[
µ̃(k) ∂ψ6

∂xj
n̂j

∂k

∂Up

∂Up
∂bi

+ µ̃(ε) ∂ψ7
∂xj

n̂j
∂ε

∂Up

∂Up
∂bi

]
dS

+
∫
S

ψnRnn̂k
δxk
δbi

dS + δJ

δbi
(4.27)

Substitution of the viscous flux vector expression and some re–arrangement results in

δL

δbi
=
∫
S

ψnn̂j
∂f Inj
∂bi︸ ︷︷ ︸

SI1

−ψk+1n̂j
∂τjk
∂bi︸ ︷︷ ︸

SI2

+
(
τψkj − 2µm,tB2

(
∂uk
∂xj

+ ∂uj
∂xk
− 2

3
∂uℓ
∂xℓ

δkj

))
n̂k
∂uj
∂bi︸ ︷︷ ︸

SI3

dS

−
∫
S

ψ6n̂j

(
∂µ̃(k)

∂bi

∂k

∂xj
+ µ̃(k) ∂

∂bi

(
∂k

∂xj

))
︸ ︷︷ ︸

SI4

+ψ7n̂j

(
∂µ̃(ε)

∂bi

∂ε

∂xj
+ µ̃(ε) ∂

∂bi

(
∂ε

∂xj

))
︸ ︷︷ ︸

SI5

dS

+
∫
S

µ̃(k)

ϱm

∂ψ6
∂xj

n̂j
∂ρmk

∂bi︸ ︷︷ ︸
SI6

dS +
∫
S

µ̃(ε)

ϱm

∂ψ7
∂xj

n̂j
∂ρmε

∂bi︸ ︷︷ ︸
SI7

dS

−
∫
S

∆ϱ
[
kµ̃(k) ∂ψ6

∂xj
+ εµ̃(ε) ∂ψ7

∂xj

]
n̂j
∂al
∂bi︸ ︷︷ ︸

SI8

dS +
∫
S

ψnRnn̂k
δxk
δbi

dS + δJ

δbi
(4.28)

A term–by–term analysis to extract the contributions to the ABCs and the SDs from the surface

integrals follows.

The inviscid boundary term SI1 is re–written as

SI1 :=
∫
S

ψnn̂j
∂f Inj
∂bi

dS =
∫
S

ψnn̂j

(
δf Inj
δbi
−
∂f Inj
∂xl

δxl
δbi

)
dS

=
∫
S

ψn

(
δ
(
f Inj n̂j

)
δbi

− f Inj
δn̂j
δbi
− n̂j

∂f Inj
∂xl

δxl
δbi

)
dS

89 of 219

4. THE CONTINUOUS ADJOINT METHOD

=
∫
S

ψn
δ
(
f Inj n̂j

)
δbi

dS︸ ︷︷ ︸
ABCs

−
∫
S

ψnf
I
nj

δn̂j
δbi

dS︸ ︷︷ ︸
SDs

−
∫
S

ψnAnpj n̂j
∂Up
∂xl

δxl
δbi

dS︸ ︷︷ ︸
SDs

(4.29)

Similarly, the stress tensor term SI2 is expanded as follows

SI2 := −
∫
S

ψk+1n̂j
∂τkj
∂bi

dS

= −
∫
S

ψk+1
δ (τkj n̂j)
δbi

dS︸ ︷︷ ︸
AEBC+SDs

+
∫
S

ψk+1τkj
δn̂j
δbi

dS︸ ︷︷ ︸
SDs

+
∫
S

ψk+1n̂j
∂τkj
∂xl

δxl
δbi

dS︸ ︷︷ ︸
SDs

(4.30)

Term SI3 is developed as follows

SI3 :=
∫
S

(
τψkj − 2µm,tB2

(
∂uk
∂xj

+ ∂uj
∂xk
− 2

3
∂uℓ
∂xℓ

δkj

))
n̂k
∂uj
∂bi

dS =
∫
S

T
ψSS
j

∂uj
∂bi

dS

=
∫
S

T
ψSS
j

δuj
δbi

dS︸ ︷︷ ︸
ABCs

−
∫
S

T
ψSS
j

∂uj
∂xl

δxl
δbi

dS︸ ︷︷ ︸
SDs

(4.31)

The differentiation of the diffusion term in the k–equation, SI4, yields

SI4
∗ :=−

∫
S

ψ6n̂j

(
∂µ̃(k)

∂bi

∂k

∂xj
+ µ̃(k) ∂

∂bi

(
∂k

∂xj

))
dS

=−
∫
S

ψ6n̂j
∂k

∂xj

δµ̃(k)

δbi
dS︸ ︷︷ ︸

ABCs

+
∫
S

ψ6n̂j
∂k

∂xj

∂µ̃(k)

∂xl

δxl
δbi︸ ︷︷ ︸

SDs

dS

−
∫
S

ψ6n̂j µ̃
(k) δ

δbi

(
∂k

∂xj

)
dS︸ ︷︷ ︸

ABCs

+
∫
S

ψ6n̂j µ̃
(k) ∂

∂xl

(
∂k

∂xj

)
δxl
δbi

dS︸ ︷︷ ︸
SDs

(4.32)

Following the same procedure for the ε–equation, SI5 becomes

SI5
∗ :=−

∫
S

ψ7n̂j

(
∂µ̃(ε)

∂bi

∂ε

∂xj
+ µ̃(ε) ∂

∂bi

(
∂ε

∂xj

))
dS

=−
∫
S

ψεn̂j
∂k

∂xj

δµ̃(ε)

δbi
dS︸ ︷︷ ︸

ABCs

+
∫
S

ψ7n̂j
∂ε

∂xj

∂µ̃(ε)

∂xl

δxl
δbi︸ ︷︷ ︸

SDs

dS

−
∫
S

ψ7n̂j µ̃
(ε) δ

δbi

(
∂ε

∂xj

)
dS︸ ︷︷ ︸

ABCs

+
∫
S

ψ7n̂j µ̃
(ε) ∂

∂xl

(
∂ε

∂xj

)
δxl
δbi

dS︸ ︷︷ ︸
SDs

(4.33)

90 of 219

4.2 Formulation of the Continuous Adjoint Method

Some more terms’ expansion follow:

SI6 :=
∫
S

µ̃(k)

ϱm

∂ψ6
∂xj

n̂j
∂ρmk

∂bi
dS

=
∫
S

µ̃(k)

ϱm

∂ψ6
∂xj

n̂j
δρmk

δbi
dS︸ ︷︷ ︸

ABCs

−
∫
S

µ̃(k)

ϱm

∂ψ6
∂xj

n̂j
∂ρmk

∂xl

δxl
δbi

dS︸ ︷︷ ︸
SDs

(4.34)

SI7 :=
∫
S

µ̃(ε)

ϱm

∂ψ7
∂xj

n̂j
∂ρmε

∂bi
dS

=
∫
S

µ̃(ε)

ϱm

∂ψ7
∂xj

n̂j
δρmε

δbi
dS︸ ︷︷ ︸

ABCs

−
∫
S

µ̃(ε)

ϱm

∂ψ7
∂xj

n̂j
∂ρmε

∂xl

δxl
δbi

dS︸ ︷︷ ︸
SDs

(4.35)

and, finally, the last term to further be developed gives

SI8 :=−
∫
S

∆ϱ
[
kµ̃(k) ∂ψ6

∂xj
+ εµ̃(ε) ∂ψ7

∂xj

]
n̂j
∂al
∂bi

dS

= −
∫
S

∆ϱ
[
kµ̃(k) ∂ψ6

∂xj
+ εµ̃(ε) ∂ψ7

∂xj

]
n̂j
δal
δbi

dS︸ ︷︷ ︸
ABCs

+
∫
S

∆ϱ
[
kµ̃(k) ∂ψ6

∂xj
+ εµ̃(ε) ∂ψ7

∂xj

]
n̂j
∂al
∂xl

δxl
δbi

dS︸ ︷︷ ︸
SDs

(4.36)

In order to derive the final expressions of ABCs at each boundary, the conditions imposed on

the governing equations are considered. This is done in the following sections.

4.2.5.1 Wall Boundaries – SW

Along the wall boundaries, the no–slip boundary (uj = 0) condition is imposed. As such, the

ABCs term in Eq. (4.29) can be re-written as∫
SW

ψn
δ
(
f Inj n̂j

)
δbi

dS =
∫
SW

ψk+1n̂k
δp

δbi
dS︸ ︷︷ ︸

ABCs

+
∫
SW

ψk+1p
δn̂k
δbi

dS︸ ︷︷ ︸
SDs

(4.37)

∗Terms SI4,5 can further be developed by using δµ̃(k,ε) = ∆ϱ δal + 2
σ(k,ε)

µm,t

ρmk
δρmk − 1

σ(k,ε)

µm,t

ρmε
δρmε,

∂k
∂xj

= 1
ϱm

(
∂ρmk
∂xj

− k∆ϱ
∂al
∂xj

)
and ∂ε

∂xj
= 1

ϱm

(
∂ρmε
∂xj

− ε∆ϱ
∂al
∂xj

)
. However, as shown in the following sec-

tions, these terms need to be eliminated through the adjoint boundary conditions to avoid the computation of
δ

δbi

(
∂ρmk
∂xj

)
and δ

δbi

(
∂ρmε
∂xj

)
.

91 of 219

4. THE CONTINUOUS ADJOINT METHOD

Considering that (k = 0, ε = ϵ), the ABCs terms in Eqs. (4.34), (4.35), and (4.36) vanish

automatically, since the flow boundary conditions lead to δuj

δbi
= 0, δρmk

δbi
= 0, and δρmε

δbi
= 0.

Since the wall function technique is employed, the wall shear stress is computed using the

law of the wall and, thus, the ABCs term in Eq. (4.30) needs to further be developed by

differentiating the entire procedure. The development builds upon the concept of adjoint wall

functions, initially introduced in Zymaris et al. [283], but is adapted to two–phase flows and the

introduced CC–specific linelets, overviewed in Section 3.2.2.2. A detailed derivation is given in

Appendix B. The corresponding term now becomes

−
∫
S

ψk+1
δ (τkj n̂j)
δbi

dS =−
∫
SW

Ψn
δ (n̂kτkj n̂j)

δbi
dS︸ ︷︷ ︸

ABCs

−
∫
SW

Ψz
δ (ẑkτkj n̂j)

δbi
dS︸ ︷︷ ︸

ABCs

(4.38)

+
∫
SW

τkj n̂j

(
Ψn

δn̂k
δbi

+ Ψt
δt̂k
δbi

+ Ψz
δẑk
δbi

)
dS︸ ︷︷ ︸

SDs

(4.39)

+
∫
SW

uτΨt

[
uτ∆ϱ+ 2uτ

∂uτ
∂νm

(∆µ− νm∆ϱ)
]
∂aFl
∂bi

dS︸ ︷︷ ︸
ST

(4.40)

−
∫
SW

uτΨt

[
uτ∆ϱ+ 2uτ

∂uτ
∂νm

(∆µ− νm∆ϱ)
]
∂aFl
∂xl

δxl
δbi

dS︸ ︷︷ ︸
SDs

(4.41)

+
∫
SW

BWF

(
t̂k + uFi MijPjk

) ∂uFk
∂bi

dS︸ ︷︷ ︸
ST

(4.42)

−
∫
SW

BWF

(
t̂k + uFi MijPjk

) ∂uFk
∂xl

δxl
δbi

dS︸ ︷︷ ︸
SDs

(4.43)

−
∫
SW

BWFu
F
i MijQjk

δn̂k
δbi

dS︸ ︷︷ ︸
SDs

(4.44)

whereas, terms denoted by ST are included in the FAEs and act upon the Cartesian cells that

encompass the forcing points as source terms. Computing these source terms introduces ad-

ditional implementation complexities, especially when considering parallel computations. In

detail, the forcing points can reside on different subdomains and require additional communi-

cations to obtain the associated data. Interestingly, in the adjoint method, data are in reversed

order compared to the flow solution, i.e. data from the solid wall need to be transferred to the

Cartesian cell to compute the associated terms (see Section 3.2.2.2). On a final note regard-

92 of 219

4.2 Formulation of the Continuous Adjoint Method

ing the code implementation, an assumption is made regarding the emerging source terms, i.e.

the reconstruction process between the cell center and the forcing points is neglected. In case

this assumption is not made, Eq. (3.22) must be included in the differentiation, resulting in

additional source terms in the neighboring to the cell encompassing the forcing point, cells.

The remaining ABCs terms over the solid walls in Eqs. (4.2), (4.32), (4.33), (4.37), and

(4.38) are eliminated by imposing [191, 255]

ψk+1n̂k = −∂jS
∂p

(4.45)

ψk+1t̂k = ∂jS

∂
(
τij n̂it̂j

) (4.46)

ψk+1ẑk = ∂jS
∂ (τij n̂iẑj)

(4.47)

ψ6 = 0 (4.48)

ψ7 = 0 (4.49)

4.2.5.2 Inlet & Outlet Boundaries – SI & SO

The ABCs at the inlet and outlet boundaries are used to compute the adjoint boundary variables

based on the following system of equations:

ψi (Aimkn̂kQmn) + (1− κ)hψnkn̂k + ∂jS
∂Un

= 0, n = 1, ..., 7 (4.50)

where Q = ∂UBC

∂U is the matrix containing the partial derivatives of the imposed boundary

conditions w.r.t. the flow variables, and its form is given separately for each imposed boundary

condition. Two different cases are considered for the inlet boundaries depending on whether

the total pressure or the velocity magnitude is specified. The latter, this results in δuj

δbi
= 0 at

the inlet, automatically eliminating the ABC terms containing the adjoint viscous flux vector

terms. As such, in Eq. (4.50) κ = 1 when the velocity magnitude is imposed at the inlet,

whereas κ = 0 when the total pressure is imposed.

It should also be noted that the inlet and outlet boundaries are assumed to be fixed/unparameterized,

therefore, all geometric derivatives are zero there, i.e. δxl

δbi
= δn̂k

δbi
= 0. This results in no addi-

tional SDs terms along the inlet and outlet.

93 of 219

4. THE CONTINUOUS ADJOINT METHOD

Inlet Boundaries – Specified Velocity Magnitude In case the inlet velocity magnitude

is specified, the Q matrix is defined as

Q =
[

1 0
0 0

]
(4.51)

since all unknown flow variables, excluding the pressure, are fixed due to the Dirichlet condition

(δUn

δbi
= 0, n = 2, ..., 7). Thus, the ABC terms in Eqs. (4.31), (4.34), (4.35), and (4.36) vanish

automatically. An additional condition needs to be imposed to eliminate the remaining ABCs

terms in Eqs. (4.32) and (4.33), namely

ψ6 = 0 (4.52)

ψ7 = 0 (4.53)

Inlet Boundaries – Specified Total Pressure As mentioned in Section 3.1.3.2, the inlet

velocity magnitude is computed based on the extrapolated static pressure, when imposing

the total pressure. This results in δuj

δbi
̸= 0, and, thus the adjoint viscous flux is included in

Eq. (4.50) (κ = 0). Furthermore, this leads to dependencies of the imposed flow variables w.r.t.

the static pressure
(
∂UBC

∂p

)
; for instance the imposed velocity at the inlet results from the

dynamic pressure there. These dependencies are expressed through the Q matrix with non–

zero elements arising in its first column, which after some development using Eqs. (3.29)-(3.31)

and (3.51), becomes

Q = 1
ujuj

[
ujuj −uS1 −uS2 −uS3 0 −2kS −4εS

0 0 0 0 0 0 0

]T
(4.54)

The remaining ABCs terms (Eqs. (4.32) and (4.33)) are eliminated again by additionally

imposing Eqs. (4.52) and (4.53), as in the previous case.

Outlet Boundaries Zero Neuman conditions are imposed on all flow variables (κ = 0) but

the pressure at the outlet boundaries. This results in the elimination of the ABC terms in Eqs.

(4.32) and (4.33) since δ
δbi

(
∂ρmk
∂xk

n̂k

)
= δ

δbi

(
∂ρmε
∂xk

n̂k

)
= 0 and, thus, requires no additional

boundary conditions. The Q matrix becomes a diagonal matrix given as

Q = diag (0, 1, 1, 1, 1, 1, 1) (4.55)

94 of 219

4.3 Objective Functions and their Differentiation

4.2.5.3 Farfield Boundaries

Dirichlet boundary conditions are imposed on all flow variables such that δUn

δbi
= 0 at the

farfield boundaries. This also leads to Q =
[
0
]
. Spatial derivatives in the direction normal to

the boundary can be neglected by assuming a uniform flow at the farfield boundaries (κ = 1),

which leads to the elimination of all ABCs terms. The corresponding adjoint boundary flux is

computed using only quantities extrapolated from the interior of the flow domain.

4.2.6 Expression of Sensitivity Derivatives

After satisfying the FAEs and imposing the ABCs, the SD expression contains only boundary

terms that are multiplied with total derivatives of geometric quantities w.r.t. the design vari-

ables, marked with SDs in the previous formulas. The SDs are computed at the solid walls SW
where k = µm,t = 0, ε = ϵ resulting in

δJ

δbi
=
∫
SW

[
ψk+1p− ψnf Ink + ψj+1τjk

] δn̂k
δbi

dS

+
∫
SW

[
−ψnAnpj n̂j

∂Up
∂xl

+ ψk+1n̂j
∂τkj
∂xl

− T
ψSS
j

∂uj
∂xl

]
δxl
δbi

dS

−
∫
SW

µm
ρm

(
∂ψ6
∂xj

n̂j
∂ρmk

∂xl
+ ∂ψ7
∂xj

n̂j
∂ρmε

∂xl

)
δxl
δbi

dS

+
∫
SW

τkj n̂j

(
Ψn

δn̂k
δbi

+ Ψt
δt̂k
δbi

+ Ψz
δẑk
δbi

)
dS −

∫
SW

BWFu
F
i MijQjk

δn̂k
δbi

dS

−
∫
SW

BWF

(
t̂k + uFi MijPjk

) ∂uFk
∂xl

δxl
δbi

dS

−
∫
SW

uτΨt

[
uτ∆ϱ+ 2uτ

∂uτ
∂νm

(∆µ− νm∆ϱ)
]
∂aFl
∂xl

δxl
δbi

dS

+
∫
SW

(
ψnRnn̂k + jΩn̂k + ∂jS

∂xk

)
δxk
δbi

dS +
∫
SW

∂jS
∂n̂m

δ(n̂mdS)
δbi

(4.56)

where the first two integrals are obtained from differentiating the mean flow equations, the

third one due to the turbulence model, the next four arise from the differentiation of the law of

the wall (Appendix B), and the last two are obtained from the differentiation of the objective

function.

4.3 Objective Functions and their Differentiation

The continuous adjoint method developed in the previous sections is employed to perform

gradient–based optimization for three different objective functions. In the following sections,

95 of 219

4. THE CONTINUOUS ADJOINT METHOD

the objective functions expressions are provided along with their differentiation w.r.t. the design

variables.

4.3.1 Volume–averaged Total Pressure Losses

The objective function used to quantify the volume–averaged total pressure losses takes the

following form

JPt
=
∫
SJ

jSdS = −
∫
SI

ptukn̂k dS −
∫
SO

ptukn̂k dS (4.57)

where the negative sign used at the inlet boundary arises due to the outward facing unit normal

vector. This objective function is defined at the fixed inlet(s) and outlet(s) and therefore,
δnj

δbi
= δxk

δbi
= 0. JPt

is differentiated for when the total pressure or velocity magnitude is defined

at the inlet and results in objective function contributions only to the ABCs, Eq. (4.50). More

specifically, its differentiation yields

δJPt

δbi
=
∫
SJ

∂jS
∂U

δU

δbi
= −

∫
SI

φ
δp

δbi
dS −

∫
SO

ukn̂k
δp

δbi
dS −

∫
SO

(ukn̂kuj + ptn̂j)
δuj
δbi

dS (4.58)

where

φ =
{
ukn̂k if velocity magnitude is specified
uS

k n̂k

ujuj
pt if total pressure is specified

(4.59)

4.3.2 Force

The objective function that calculates the force exerted on the surface of the studied body,

projected on a predefined direction r̂, is defined as

JF =
∫
SJ

jSdS =
∫
SW

(pn̂k − τkj n̂j) r̂kdS (4.60)

In case the lift force is considered, r̂ is the appropriately signed unit vector normal to the free–

stream velocity. With reference Eq. (4.2), the differentiation of the objective function yields

δJF
δbi

=
∫
SW

n̂kr̂k
δp

δbi
dS −

∫
SW

r̂ln̂l
δ (τkj n̂kn̂j)

δbi
dS −

∫
SW

r̂lt̂l
δ
(
τkj n̂k t̂j

)
δbi

dS

+
∫
SW

(
pδkj − τkj

)
r̂k
δ(n̂jdS)
δbi

+
∫
SW

∂jS
∂xk

δxk
δbi

dS

(4.61)

96 of 219

4.4 Concluding Remarks

The first 3 terms in Eq. (4.61) are objective function contributions to the ABCs, see Eqs. (4.45)–

(4.47), while the remaining two to the SDs, namely Eq. (4.56).

4.3.3 Volume of Vapour in the Fluid Domain

An objective function is used that quantifies the presence of the vapour phase throughout the

entire computational domain, aiming at the minimization of the intensity of a cavitating flow.

Reducing the total vapour in the computational domain results in smaller/less intense cavitation

bubbles. The objective function is expressed as

JV =
∫

Ω
jΩdΩ = 1

2

∫
Ω
α2
vdΩ = 1

2

∫
Ω

(1− αl)2
dΩ (4.62)

and its derivative w.r.t. the design variables

δJV
δbi

=
∫

Ω
(αl − 1) ∂αl

∂bi
dΩ + 1

2

∫
S

(1− αl)2
n̂k
δxk
δbi

dS (4.63)

Therefore, the field integral contributes to the FAEs in Eq. (4.25), while the second to the SDs

in Eq. (4.56).

4.4 Concluding Remarks

In this chapter, the mathematical formulation of the adjoint problem for turbulent, cavitating

two–phase flows was presented using the continuous approach. The resulting SDs expression

is dependent solely on boundary integrals (SI approach). The flow model, whose adjoint coun-

terpart was derived (FAEs, ABCs), consists of PDEs that express the volume and momentum

conservation for the mixture, the volume conservation for the secondary (liquid) phase and the

mixture turbulent variables transport equations (k − ε).

The formulation extends existing literature regarding the differentiation of the turbulence

model, which was limited to single–phase incompressible flows (density variations are not in-

cluded). Therefore, additional variations arise due to the mixture density and molecular viscos-

ity. Furthermore, the special treatment of the wall functions, via linelets, employed in the CC

method required additional considerations when deriving the adjoint wall functions. Further-

more, distance variations of the forcing points are axiomatically zero δdF = 0 since the linelets

are always constructed at the same wall–normal distance dF .

In the presented TEM formulation, an additional PDE and the cavitation model were in-

troduced and had their variations included in the adjoint problem as well. This leads to the

97 of 219

4. THE CONTINUOUS ADJOINT METHOD

adjoint liquid volume fraction PDE and the adjoint cavitation model, respectively. Overall,

the derived adjoint problem introduces terms that do not appear when single–phase flows with

constant density and viscosity are considered. The mixture density variation terms that arise

in homogeneous mixtures are similar to those in compressible flows, where density variations

also exist but are, however, directly expressed w.r.t. the liquid volume fraction due to their

algebraic relation Eq. (3.62). The same remarks also stand regarding mixture molecular vis-

cosity variation; the arising terms share similarities with terms appearing if viscosity laws are

considered [255].

98 of 219

Chapter 5

Shape Optimization of Single–
and Two–Phase Flows using the
Continuous Adjoint and the
Cut–Cell method

The adjoint method presented in Chapter 4 is used to compute the SDs in order to perform

aero/hydrodynamic ShpO. In ShpO, the design variables control the surface of the body

surface to be optimized. Thus, by updating the design variables, new better–designed body

surfaces are created in each optimization cycle. However, computing the SDs (Eq. (4.56))

requires the derivatives of geometric quantities w.r.t. the design variables δXs

δbi
, the so–called

Geometric Sensitivities (GSs).

The geometric quantities under consideration are the solid faces barycenter x, their unit

normal vector n̂, and area dS, i.e.

Xs =
{

x, n̂, dS
}

(5.1)

The GSs can be computed either analytically, by differentiating the corresponding closed–form

expressions w.r.t. the face vertices Eqs. (2.6), (2.7), or via FDs; this procedure involves purely

geometric quantities defined over the body surface resulting in computationally cheap process

[191].

The simplest approach in performing ShpO is by assuming that each discretized body sur-

99 of 219

5. SHAPE OPTIMIZATION USING THE CUT–CELL METHOD

face node∗ xs
g, g ∈ G is allowed to move independently and, therefore, each node coordinate

becomes a design variable. This approach is usually followed to compute a sensitivity map

on the body surface to be optimized since it provides information about the impact of in-

finitesimally displacing the body surface nodes along the normal direction to the considered

objective function. ShpO runs using this approach can result in optimized body surfaces with

crude/wavy boundaries and could, eventually, complicate the optimization process by leading

the algorithm to non–realistic or non–manufacturable shapes. As a result, such approaches are

usually combined with displacement/SDs smoothing or filtering techniques that may harm the

optimization algorithm accuracy, as only the general trends of the computed SDs are obtained

[106, 191, 225, 242]. Alternatively, parameterization techniques can be used that reduce the

number of design variables by creating geometric dependencies between the body surface nodes

that ensure smoothness and, to a certain level, plasticity to the parameterized shape [255].

5.1 Shape Parameterization in the Cut–Cell method

The aforementioned briefly describe the typical approach used in optimization tools that act

upon traditional body–fitted meshes. In the CC method, these cannot be applied as–is. In

the CC method, the mesh is generated by computing its intersections points xs
n, n ∈N with

the studied body surface, as described in Chapter 2. After each design variables update, new

intersection points, constrained along the newly–created CCs edges, arise. Bearing this in mind,

computing the GSs using FDs should be avoided in the CC method since infinitesimally per-

turbing the discretized body surface could lead to the emergence or disappearance of boundary

faces and, thus, discontinuity in GSs [172, 226].

To overcome this, analytical expressions of the geometric quantities are, instead, differenti-

ated. The intersection points at the CC edges are expressed w.r.t. the discretized body surface

nodes and introduce additional dependencies and constraints (intersection points always lie

along the CC edges). Taking into account the aforementioned, the GSs in the CC method are

computed using

δXs
δbi
≡ δXs
δxsg

δxs
g

δbi
= δXs
δxsm

δxs
m

δxsg
δxs

g

δbi
, m ∈ (G ∪N) (5.2)

where (G ∪N) refers to the combined set of discretized body surface nodes G and the additional

intersection points N. The intersection points are accounted for through matrix δxs
m

δxsg and is zero

∗xs is used to refer to coordinates of nodes lying on the body surface

100 of 219

5.1 Shape Parameterization in the Cut–Cell method

for the majority of (m, g) pairs. δxs
g

δbi
is included to facilitate cases where part of the discretized

body surface defines the design variables (not all nodes or their components) . Otherwise, the

last term is non–zero only when the body surface node coordinate coincides with the associated

design variable.

The necessity of the additional matrix in Eq. (5.2) is illustrated using the explanatory 2D

example of Figure 5.1a, showing a blow–up view close to the solid boundary. The part of the

discretized body surface shown, consists of nodes vg = (xg, yg) , g = 1, .., 4, the intersection

points a = (xa, ya) ,b =
(
xb, yb

)
that are created during the generation of the CC and lead to

the additional boundary faces. Focusing on the boundary face f , the additional dependencies

can be seen by infinitesimally displacing node v1 (or v2) that leads to the displacement of the

intersection point a′ =
(
xa, ya

′
)

along the CC edge, as shown in Figure 5.1b.

For this example, Eq. (5.2) can be rewritten without any simplifications as

δXs
δbi

= δXfs
δv1

δv1

δv1
δv1

δbi
+ δXfs

δa
δa
δv1

δv1

δbi
+ δXfs

δa
δa
δv2

δv2

δbi
(5.3)

and since a and a′ are constrained along the same abscissa,

δa
δv1 =

[
0 0

−x
a−x2

x1−x2
y1−y2

x1−x2
xa−x2

x1−x2

]
(5.4)

Similar expressions are obtained for δa
δv2 and intersection points that are constrained along

the same ordinate, such as point b. The geometric derivatives δXf
s

δv1 in Eq. (5.3) can then be

computed by differentiating their analytical expressions. For instance, the geometric derivatives

of the midpoint of the 2D boundary face are δx
δxsg

f = 1
2

(
δv

1

m + δam

)
I, since xf = 1

2
(
v1 + a

)
.

When considering 3D GSs, the same approach is followed that results in similar expressions and

can also be found in Samouchos [214]. In this way, GSs can be computed efficiently and without

perturbing the discretized body surface, limiting the additional geometric computations entirely

to the solid faces of the CC.

In this thesis, ShpO is performed on 2D body surfaces parameterized using Bézier–Bernstein

polynomials [199]. The Bézier curves Control Points (CPs) coordinates Xc define the design

variables, and are used to create the discretized body surface nodes (xg) by inserting nodes

along its curve. To compute the GSs using Bézier curves, the chain rule is employed leading to

δXs
δbi
≡ δXs
δXc

δXc

δbi
= δXs
δxsm

δxs
m

δxsg
δxs

g

δXc

δXc

δbi
(5.5)

where δxs
g

δXc can be computed by differentiating their parametric expressions [191, 255, 282].

101 of 219

5. SHAPE OPTIMIZATION USING THE CUT–CELL METHOD

(a) (b)

Figure 5.1: Computation of GSs in the CC method - (a) Part of the discretized body surface
intersecting a CC. G = {v1, v2, v3, v4}: set containing the nodes of the discretized body surface;
N = {a, b}: set containing the additional intersection points along the CC edges; v1, v2: body
surface nodes; a, b: intersection points; f: solid face lying between v1 and a. (b) Displacement
(exaggerated) of node v1 results in the displacement of the intersection point along the same
abscissa.

5.2 Shape Optimization of Single–Phase Turbulent Flows

The developed continuous adjoint method and the shape parameterization technique mentioned

above are implemented in three 2D single–phase turbulent flow cases. The objective functions

applicable to single–phase flows are examined. These are the minimization of the volume–

averaged total pressure losses JPt in 2 duct flows and the maximization of lift over an airfoil

JF . The baseline body surfaces are parameterized using Bézier curves; their CPs’ coordinates

that are allowed to change are the design variables of the optimization problem.

The ShpO algorithm iterates through optimization cycles, wherein the RANS, Eq. (3.54),

and FAEs, Eq. (4.25), are successively solved with the appropriate boundary conditions (Section

4.2.5) to compute the SDs, Eq. (4.56). The GSs are computed using Eq. (5.5). The design

variables are updated using steepest descent with a constant step size, computed at the first

optimization cycle using a prescribed maximum allowable displacement and the maximum norm

of the computed SDs.

5.2.1 Channel Turbulent Flow – min JPt

The first example concerns the ShpO of an initially straight channel, exhibiting turbulent

flow, aiming at the minimization of the volume–averaged total pressure losses (Section 4.3.1).

102 of 219

5.2 Shape Optimization of Single–Phase Turbulent Flows

The Reynolds number is ReW = 1 × 105, based on the channel width. Inlet conditions are:

the velocity magnitude (1ms), the velocity direction (θXY = 0◦), turbulent intensity (1%)

and eddy viscosity ratio (µt

µ = 5). At the outlet, the static pressure is zero. The CC mesh

created in the initial simulation amounts to approximately 60K cells and results in a maximum

y+ ≈ 27 based on the examined flow conditions. Part of the upper and lower channel walls are

symmetrically parameterized using two Bézier curves giving rise to 20 design variables, Figure

5.2. These ensure that the width of the channel at the inlet/outlet remains constant throughout

the optimization, with no effect on the computed objective function.

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6

−3 −2 −1 0 1 2 3

y[
m

]

x[m]

Channel Walls
Bezier1
Bezier2

(22, 23)(24, 25)(26, 27)(28, 29)(30, 31)

(4, 5) (6, 7) (8, 9) (10, 11)(12, 13)

Moveable CPs

Figure 5.2: ShpO of a channel turbulent flow, ReW = 1 × 105 - Symmetrically placed Bézier
curves along with their CPs that parameterize the channel walls. Displacing a CP modifies the
part of the shape it controls.

In Figure 5.3, the flow and adjoint equation residuals are shown for the initial channel. The

SDs are also computed using FDs, to be used as reference values and verify the accuracy of the

implemented continuous adjoint method. The use of FDs method required a substantial amount

of resources, compared to the adjoint method, since computing the SDs for 20 design variable

required 40 flow simulations. Figure 5.4a shows the comparison between the two, where the

anti–symmetric nature of the SDs between the upper and lower channel walls is visible. The

x–coordinate SDs are seen to have zero value and shows that displacing the CPs along the

103 of 219

5. SHAPE OPTIMIZATION USING THE CUT–CELL METHOD

−16

−14

−12

−10

−8

−6

−4

−2

 0

 2

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

lo
g 1

0(
|

|
R

|
|

2)

Iterations

ρε

ρk
u2

u1

p

(a)

−14

−12

−10

−8

−6

−4

−2

 0

 0 500 1000 1500 2000 2500 3000 3500 4000
lo

g 1
0(

|
|

R
|

|
2)

Iterations

ψ7

ψ6

ψ3

ψ2

ψ1

(b)

Figure 5.3: ShpO of a channel turbulent flow, ReW = 1 × 105 - Colors correspond to the (a)
flow and (b) adjoint equations residual history at the first optimization cycle, i.e. ψ1 refers to
the adjoint pressure, ψ2,3 to the adjoint velocity components and ψ6,7 to the adjoint turbulence
variables. A convergence of more than 10 orders is observed in both residuals. The run time for
the solution of the flow and adjoint system of equations, altogether, is approximately 200 min on
24 AMD EPYC 7401 (2.0 Ghz) processors.

x–axis has no effect on the objective function value on the first optimization cycle, as this does

not change the channel walls shape.

The optimization is performed for 7 cycles in which the objective function (JPt
) was reduced

by approximately 40%. Figure 5.4b shows the evolution of the JPt throughout the optimization

cycles. During the optimization, the channel width gradually increased at the parameterized

sections. Increasing the channel width reduces the bulk fluid velocity, which leads to smaller

stresses at the larger portion of the solid walls. This translates to a reduction of mechanical

losses inside the channel. In Figure 5.6, part of the initial (blue) and final (red) CC meshes

generated during the ShpO can be seen. In each optimization cycle, the CC mesh automatically

adapts on the current surface introducing new finite volumes at the expanded part. In contrast

to conventional body–fitted meshes, this also allows significantly large displacements since the

generated mesh does not need to be modified using mesh deformation techniques that can

progressively deteriorate the mesh quality. In addition, the increase in the channel width leads

to previously intersected Cartesian cells to reduce their resolution, i.e. reach a lower refinement

level, saving computational resources. Finally, in Figure 5.5, the eddy viscosity iso–areas are

plotted for the initial and optimized channel walls.

104 of 219

5.2 Shape Optimization of Single–Phase Turbulent Flows

−0.025

−0.02

−0.015

−0.01

−0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 5 10 15 20 25 30 35

S
en

si
ti

vi
ty

 D
er

iv
at

iv
e

Design Variable

FD(5)
Adjoint

(a)

 0.016

 0.017

 0.018

 0.019

 0.02

 0.021

 0.022

 0.023

 0.024

 0.025

 0.026

 0 1 2 3 4 5 6 7

J P
t [

W
/m

]

Optimization Cycle
(b)

Figure 5.4: ShpO of a channel turbulent flow, ReW = 1 × 105 - (a) Comparison of the SDs
computed using the continuous adjoint method and central FDs with a step–size of 10−5. (b)
Evolution of JPt through the optimization cycles.

105 of 219

5. SHAPE OPTIMIZATION USING THE CUT–CELL METHOD

Figure 5.5: ShpO of a channel turbulent flow, ReW = 1 × 105 - Eddy viscosity iso–areas of the
initial and optimized channel walls.

Figure 5.6: ShpO of a channel turbulent flow, ReW = 1 × 105 - Close–up view of the CC mesh
generated for the initial (blue) and optimized (red) channel walls. The optimization algorithm
expands the parameterized areas of the straight channel leading to the appearance of new cells.
The inner mesh resolution automatically adapts to the new channel walls.

106 of 219

5.2 Shape Optimization of Single–Phase Turbulent Flows

5.2.2 90◦ Curved Channel Turbulent Flow – min JPt

The second example concerns the ShpO of a turbulent flow in a 90◦ curved channel targeting

the minimization of JPt
. This case is used to assess the adjoint linelet technique developed

especially for the CC method in the presence of curved surfaces and, therefore, irregular CC.

The Reynolds number is equal to ReW = 1×104. The CC mesh created in the initial simulation

amounts to approximately 12K cells and results in a maximum y+ ≈ 40, based on the specified

flow conditions. These consist of specifying the total pressure (0.5Pa), the velocity vector

direction (θXY = 0◦), the turbulent intensity (2%), and the eddy viscosity ratio
(
µt

µ = 2
)

along the inlet and the static pressure (0Pa) at the outlet.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

y[
m

]

x[m]

Cut−Cell mesh
Solid Wall

Control Points
SD Direction

Figure 5.7: ShpO of a 90◦ curved channel turbulent flow, ReW = 1 × 104 - Close–up view of
the curved channel showing the generated CC mesh of the initial channel walls along with the
two Bézier curves used generate them. Vectors originating from the Bézier curves’ CPs show the
direction of displacement that leads to a reduced JPt in the first optimization cycle.

In Figure 5.7, a close–up view of the curved channel walls is shown along with the generated

CC mesh. In the same figure, the computed SDs at the first optimization cycle are plotted for

all CPs using the computed x– and y– SDs components to create the depicted vectors; note

that the CPs with x = 0 or y = 0 are anchored. These vectors, in effect, show that in order to

minimize the objective, the parameterized part of the channel needs to be expanded, similarly

to the previous case.

107 of 219

5. SHAPE OPTIMIZATION USING THE CUT–CELL METHOD

 0.011

 0.0112

 0.0114

 0.0116

 0.0118

 0.012

 0.0122

 0 2 4 6 8 10 12 14

J P
t [

W
/m

]

Optimization Cycle

Figure 5.8: ShpO of a 90◦ curved channel in turbulent flow, ReW = 1 × 104 - Evolution of JPt

through the optimization cycles.

The optimization is performed for 14 cycles throughout which the JPt
was progressively

reduced by a total of ∼10% (Figure 5.8). In Figure 5.9 the velocity magnitude iso–areas of the

initial and final curved channel are shown. The fluid velocity is reduced at the expanded part of

the channel, which leads to the reduced JPt
values. Similar remarks can be made regarding the

CC mesh generation process. However, this case demonstrates the ability of the CC method to

optimize bodies featuring curved surfaces in turbulent flows, using the presented wall function

technique. Furthermore, this allows for the use of relatively coarser computational meshes

respecting the wall functions’ y+ limitations. Overall, the run time for the solution of both the

flow and adjoint equations required about 30 minutes running on 24 AMD EPYC 7401 (2.0

Ghz) processors while the optimization time totaled about 7 hours.

108 of 219

5.2 Shape Optimization of Single–Phase Turbulent Flows

(a) (b)

Figure 5.9: ShpO of a 90◦ curved channel turbulent flow, ReW = 1 × 104 - Velocity magnitude
iso–areas of the initial and optimized curved channel.

5.2.3 Turbulent Flow over the NACA 0012 – max JF

The next example concerns the ShpO of the NACA 0012 airfoil targeting the maximization

of lift force, i.e. r̂ =
[
− sinα∞ cosα∞

]T in Section 4.3.2, using the NACA 0012 airfoil as

the baseline shape to be optimized. A Reynolds number of Rec = 2 × 106 is specified. The

free–stream conditions imposed are p∞ = 0Pa, U∞ = 10ms , θXY = 2◦, I∞ = 2% and µt

µ = 10.

The initial CC mesh generated for the solution of the flow and adjoint equations consists of

approximately 45K cells and yields a maximum y+ ≈ 150.

Two Bézier curves are used to parameterize the pressure and suction side of the airfoil. Since

the initial airfoil shape is symmetric, the first Bézier curve, consisting of 8 CPs, is mirrored

along the y–axis to create the second Bézier curve giving rise to a total of 16 CPs as shown

in Figure 5.10. The CPs at the leading and trailing edge of the airfoil are fixed to their initial

position, to maintain the same chord length c throughout the optimization. Thus, the design

variables in the ShpO amount to 24.

In Figure 5.11, the evolution of JF is shown during the optimization cycles, where a sig-

nificant increase in the objective function is observed (> 10×). This increase is expected due

to the low–lift initial configuration. Starting with a symmetric airfoil shape at low AoA, small

displacements break this symmetry leading to significant lift gains. In Figure 5.11, the change

in drag force induced by the airfoil is also monitored, computed using r̂ =
[
cosα∞ sinα∞

]T
in Eq. (4.60). Interestingly, even though the ShpO successfully leads to designs with better

109 of 219

5. SHAPE OPTIMIZATION USING THE CUT–CELL METHOD

−0.1

−0.05

 0

 0.05

 0.1

 0 0.2 0.4 0.6 0.8 1

y/
c

x/c

Bezier 1(CP)
Bezier 2(CP)

BezierFit
NACA 0012

Figure 5.10: ShpO of the NACA 0012 airfoil, Rec = 2 × 106, α∞ = 2◦ - Bézier curves used to
parameterize the pressure and suction side of the airfoil (x and y not in scale). CPs at the leading
and trailing edge are anchored.

objective function values, drag force is seen to increase. Specifically, the drag of the optimized

design almost doubles compared to the initial shape. The entire ShpO requires approximately

10 hours on 48 AMD EPYC 7401 (2.0 Ghz) processors .

Figure 5.13 shows a comparison of the initial and optimized airfoil shapes. The key features

of the optimized airfoil shape are the development of a cambered suction side and the convex

shape at the airfoil pressure side near the trailing edge. These features change the performance

of the optimized airfoil by decreasing the pressure along the suction side and increasing it along

the pressure side. This is evident in Figure 5.12a, where the iso–bar areas of the initial and

optimized airfoil shapes are presented. In Figure 5.12b the corresponding eddy viscosity iso–

areas are depicted revealing a relative increase at the location of the appearance of the convex

shape along the suction side that also contributes to the induced drag force.

Figure 5.14 focuses on the location where the convex feature appears over the optimized

airfoil shape. The CC mesh generated for the initial (blue) NACA 0012 is superposed on

that of the optimized one (red). During the ShpO, a significant displacement of the airfoil

contours is observed that causes the appearance and disappearance of multiple finite volumes

along with the pressure and suction side, respectively. In addition, the generated CC mesh is

refined accordingly since Cartesian cells of higher refinement level appear at the top side (and

Cartesian cells of lower refinement level at the bottom side) of the close–up view shown due to

the displacement of the airfoil contour.

110 of 219

5.2 Shape Optimization of Single–Phase Turbulent Flows

 0

 5

 10

 15

 20

 0 1 2 3 4 5 6
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

J F
 [

N
]

D
ra

g
[N

]

Optimization Cycle

Lift Force (J)
Drag Force

Figure 5.11: ShpO of the NACA 0012 airfoil, Rec = 2×106, α∞ = 2◦ - Evolution of JF through
the optimization cycles, while also monitoring the drag force.

(a) (b)

Figure 5.12: ShpO of the NACA 0012 airfoil, Rec = 2 × 106, α∞ = 2◦ - (a) Pressure and (a)
eddy viscosity iso–areas of the initial and optimized airfoil shapes.

111 of 219

5. SHAPE OPTIMIZATION USING THE CUT–CELL METHOD

−0.08

−0.06

−0.04

−0.02

 0

 0.02

 0.04

 0.06

 0.08

 0 0.2 0.4 0.6 0.8 1

y/
c

x/c

Initial
Optimized

Figure 5.13: ShpO of the NACA 0012 airfoil, Rec = 2 × 106, α∞ = 2◦ - Comparison of the
initial and optimized airfoil shapes.

Figure 5.14: ShpO of the NACA 0012 airfoil, Rec = 2×106, α∞ = 2◦ - Close–up view of the CC
mesh generated for the initial and optimized airfoil shapes. The additional/reduced refinement
due to the displacement of the airfoil shape can be seen.

112 of 219

5.3 Shape Optimization of Two–Phase Cavitating Flows

5.3 Shape Optimization of Two–Phase Cavitating Flows

In case two–phase flows are considered, additional dependencies in the governing equations

due to the introduction of the liquid volume fraction transport equation, the cavitation model

that accounts for the phase transition, and the volume–averaged mixture properties due to the

homogeneous model (Eqs. (3.62), (3.63)), arise. These lead to additional source terms in the

FAEs, and two–phase specific terms in the expression of SDs, overviewed in Chapter 4 (c.f.

[191, 214, 255]).

In this section, the derived continuous adjoint method is implemented for the ShpO of

two well–known test cases, for which both numerical and experimental data are available, in

inviscid and viscous flows over hydrofoils at cavitating conditions [36, 64, 223]. Initially, the two–

phase flow solver accuracy is assessed by comparing results obtained with experimental and/or

numerical data, and then, the adjoint two-phase solver accuracy is verified by comparing the

SDs of the adjoint method against central FDs. Then, ShpOs are performed for the implemented

objective functions, as overviewed in Section 4.3.

The studies concern the NACA 66(MOD) [40] and the NACA 0012 hydrofoils and are used

as the baseline shapes for the subsequent ShpOs. Each hydrofoil contour is formed by two Bézier

curves, with common control points at the leading and trailing edges. The coordinates of the

initial Bézier curve control points are computed using a curve fitting technique by pre–defining

the number of control points in each curve. Along the suction side, the number of control points

is higher to increase the number of design variables close to the expected location of the cavity.

This provides additional degrees of freedom to the hydrofoils’ suction side parameterization.

Figure 5.15 presents the fitted Bézier curves with their control points, along with the reference

contours. For the ShpO, the x–coordinates of the CPs parameterizing the NACA 66(MOD)

hydrofoil are fixed and, thus, only the y–coordinates are numbered.

113 of 219

5. SHAPE OPTIMIZATION USING THE CUT–CELL METHOD

−0.1

−0.05

 0

 0.05

 0.1

 0 0.2 0.4 0.6 0.8 1

y/
c

x/c

Bezier 1(CP)
Bezier 2(CP)

BezierFit
NACA 0012

(0,13)

(1,14)
(2,15)

(3,16)(4,17)

(6,19)

(7,20)

(8,21)

(9,22)

(10,23)

(11,24) (12,25)

(5,18)

(a)

−0.04

−0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

y[
m

]

x[m]

Bezier 1(CP)
Bezier 2(CP)

BezierFit
Naca66(MOD)

(0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9) (10) (11)
(12)

(13)
(14)

(b)

Figure 5.15: Baseline hydrofoil shapes used for ShpO runs in two–phase cavitating flows -
Hydrofoil shape (x and y not in scale) along with the fitted Bézier curves for the (a) NACA
0012 and (b) NACA 66(MOD) hydrofoils. The numbering of the design variables shown for each
hydrofoil helps identify the computed SDs in subsequent figures.

114 of 219

5.3 Shape Optimization of Two–Phase Cavitating Flows

5.3.1 Validation of Cut–Cell Two–Phase Flow Solver

5.3.1.1 Inviscid Cavitating Flow over the NACA 66(MOD) Hydrofoil

The first case considered to further validate the two–phase CC flow solver, concerns the simula-

tion of an inviscid cavitating flow over the NACA 66(MOD) hydrofoil. A cavitation number of

σ = 0.38 and an AoA of α∞ = 1◦ are specified, along with a freestream velocity of U∞ = 10.0ms
and a density ratio of ρl

ρv
= 100. At these flow conditions, a mid–chord cavity appears and is

convected downstream up until its closure. The cavitation model mass transfer time rate con-

stants are set to Cdest = 1 × 103 and Cprod = 40. Mesh–independent solutions were obtained

using a CC mesh of ∼30K cells after a parametric study was conducted using three CC meshes

of different resolution. A close-up view of the resulting mesh is shown in Figure 5.16, where the

additional mesh refinement using the distance–based and window–based conditions. In Figure

5.17a, the computed surface pressure distribution is presented for the three CC meshes gener-

ated during the parametric study along with the experimental data of Shen & Dimotakis [228].

Figure 5.16: Inviscid flow over the NACA 66(MOD) hydrofoil, α∞ = 1◦, σ = (∞, 0.38) - Close–
up of the hydrofoil showing the generated CC mesh with ∼30K cells. An extended cell refinement
at the hydrofoil wake and expected cavity location is visible due to the application of the window–
based refinement.

The comparisons are performed in terms of computed surface pressure distributions against

experimental data, which are depicted in Figure 5.17b. Good agreement is observed in terms of

the location of the cavity inception point and its length, being consistent with numerical results

115 of 219

5. SHAPE OPTIMIZATION USING THE CUT–CELL METHOD

−0.6

−0.4

−0.2

 0

 0.2

 0.4
 0 0.2 0.4 0.6 0.8 1

C
p

x/c

Coarse
Med

Fine
Exp σ = ∞

(a)

−0.6

−0.4

−0.2

 0

 0.2

 0.4
 0 0.2 0.4 0.6 0.8 1

C
p

x/c

Present−σ = 0.38
Exp σ = 0.38

(b)

Figure 5.17: Inviscid flow over the NACA 66(MOD) hydrofoil, α∞ = 1◦, σ = (∞, 0.38) - Com-
parison of the computed surface pressure distributions with measurements of Shen & Dimotakis
[228] for (a) the non–cavitating (σ = ∞) and (b) cavitating (σ = 0.38) case.

obtained in the literature [35, 64, 73]. The most apparent discrepancies exist near the cavity

closure region, that as stated in Deshpande et al. [64], cannot be exactly pinpointed from the

measured experimental data.

(a) (b)

Figure 5.18: Inviscid, cavitating flow over the NACA 66(MOD) hydrofoil, α∞ = 1◦, σ = 0.38 -
Iso–areas of (a) liquid volume fraction and (b) pressure with streamlines over the hydrofoil with
a mid–chord cavity.

The CC flow solver successfully predicts the mid–chord cavity when simulating the cavitating

case (σ = 0.38). At approximately 30% from the hydrofoil leading edge, the liquid phase starts

to evaporate, and this generates a thin pocket of vapour further downstream, as shown in Figure

5.18a. Figure 5.18b depicts the corresponding pressure iso–lines revealing that at the cavity

location, a relatively constant pressure, approximately equal to the vapour pressure (pv), is

116 of 219

5.3 Shape Optimization of Two–Phase Cavitating Flows

observed. Finally, at the cavity closure region, no recirculation exists [221].

5.3.1.2 Laminar, Cavitating Flow over the NACA 0012 Hydrofoil

The second case deals with a laminar cavitating flow over the NACA 0012 hydrofoil. Two

different cavitation numbers are considered, namely σ = ∞ (non-cavitating) and σ = 0.5, at

an AoA of α∞ = 4◦, a density ratio of ρl

ρv
= 1000, and a Reynolds number of Rec = 500,

to be able to compare with numerical results presented in [93]. The mass transfer time rate

constants of the cavitation model are set to Cdest = 2 × 104 and Cprod = 200. The two–phase

solver is compared with numerical results shown in Hejranfar et al. [93], that are obtained using

the barotropic approach, i.e. phase transition is regulated by a barotropic state law instead

of a cavitation model. The straightforward comparison of the results obtained with the two

approaches is possible since both have been validated with experimental data [36, 167], and

shown to yield similar results in similar numerical comparisons [94].

Figure 5.19: Laminar, cavitating flow over the NACA 0012 hydrofoil, Rec = 500, α∞ = 4◦, σ =
0.5 - Close–up of the hydrofoil showing the CC mesh with ∼30K cells. The application of the
additional refinement conditions lead to denser Cartesian mesh near the expected cavity location
that progressively coarsens.

For the simulations, a CC mesh, consisting of approximately 30K cells, was generated with

sufficient resolution close to the hydrofoil and expected cavity location, as shown in the close–up

view in Figure 5.19. In Figure 5.20, the computed surface pressure distributions are presented

for both cases showing very good agreement with the numerical data. In the cavitating case,

117 of 219

5. SHAPE OPTIMIZATION USING THE CUT–CELL METHOD

a large cavity appears at the suction side of the hydrofoil depicted in Figure 5.21a. The CC

solver accurately captures the expected length and inception point, while at the cavity location,

the vapour pressure is recovered. Figures 5.21a and 5.21b respectively show the liquid volume

fraction iso-areas and iso-bar areas for the cavitating case with selected streamlines revealing a

big recirculation region aft the cavity.

−1

−0.5

 0

 0.5

 1
 0 0.2 0.4 0.6 0.8 1

C
p

x/c

Present σ = ∞
Present−σ = 0.5

Hejranfar et al. σ = ∞
Hejranfar et al. σ = 0.5

Figure 5.20: Laminar flow over the NACA 0012 hydrofoil, Rec = 500, α∞ = 4◦ - Comparison
of the computed surface pressure distributions with numerical data [93] for the non–cavitating
(σ = ∞) and cavitating (σ = 0.5) case.

(a) (b)

Figure 5.21: Laminar, cavitating flow over the NACA 0012 hydrofoil, Rec = 500, α∞ = 4◦, σ =
0.5 - Iso–areas of (a) liquid volume fraction and (b) pressure with streamlines over the cavitating
hydrofoil.

118 of 219

5.3 Shape Optimization of Two–Phase Cavitating Flows

5.3.2 Two–phase Shape Optimizations

5.3.2.1 Inviscid, Cavitating Flow over the NACA 66(MOD) Hydrofoil – min JV

The first two–phase ShpO aims at minimizing the presence of cavitation by reducing the total

vapour volume fraction throughout the computational domain (see Section 4.3.3). For validation

purposes, the gradients of the JV objective function are computed using the implemented

adjoint method and FDs and are presented in Figure 5.22 for the first optimization cycle. This

comparison reveals that the SDs computed by the adjoint method are in excellent agreement

with FDs for both hydrofoil sides. The largest discrepancy exists at the design variable b0, which

corresponds to the CP at the trailing edge and could be attributed to the highly irregular CCs

that are created due to the hydrofoil sharp edge.

−1

−0.8

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

S
en

si
ti

vi
ty

 D
er

iv
at

iv
es

Design Variable

Adjoint
FD(6)
FD(5)

−0.04
−0.02

 0
 0.02
 0.04
 0.06

 1 2 3 4 5 6 7 8

Figure 5.22: ShpO of the NACA 66(MOD) hydrofoil targeting minimization of vapour volume
fraction (min JV), α∞ = 1◦, σ = 0.38 - Comparison of the JV SDs obtained by the continuous
adjoint method and FDs, with a close-up view near the suction side. For reference to the design
variable numbering see Figure 5.15b.

The entire ShpO required approximately 6 hours on 48 AMD EPYC 7401 (2.0 Ghz) pro-

cessors to perform 10 optimization cycles. During the optimization, the lift force values of

intermediate designs is also monitored using r̂ =
[
− sinα∞ cosα∞

]T in Eq. (4.60). Figure

5.23 shows the objective function and lift force values in each optimization cycle starting from

the NACA 66(MOD) hydrofoil. A very good convergence of the objective function is observed

119 of 219

5. SHAPE OPTIMIZATION USING THE CUT–CELL METHOD

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 2 4 6 8 10
 13.5

 14

 14.5

 15

 15.5

 16

 16.5

 17

 17.5

 18

 18.5

J V
 (

×
10

−
4)

L
if

t
fo

rc
e

[N
]

Optimization Cycle

Vapour Presence (J)
Lift Force

Figure 5.23: ShpO of the NACA 66(MOD) hydrofoil targeting minimization of vapour volume
fraction (min JV), α∞ = 1◦, σ = 0.38 - Evolution of the JV values through the optimization
cycles, while also monitoring the lift force.

as the cavitation is effectively eliminated after 5 optimization cycles. Afterwards, the objec-

tive function value asymptotically tends to zero. It appears that a minimum has been almost

reached (flow with no vapour) and, therefore, the adjoint equations provide a more or less

zero-field solution associated with practically negligible SDs and design variable updates.

Comparison of the evolution of the hydrofoil lift and the objective function JV in the same

figure reveals a similar trend. This can be explained by comparing the surface pressure dis-

tributions of the initial and optimized hydrofoil shape in Figure 5.25a. In an effort to reduce

the presence of vapour around the hydrofoil, the optimization algorithm ought to increase the

pressure above the vapour pressure. As such, the pressure along the suction side is increased,

reaching the vapour pressure to a lesser extent and inadvertently reducing the hydrofoil lift

force, Figure 5.24b. This trend, where the lift induced by a hydrofoil follows the cavity length,

was also documented by Knapp et al. [125] and Shen & Dimotakis [228]. Their findings sug-

gest that the increase in lift induced by the hydrofoil follows the cavity length up to a certain

point where lift breakdown happens. For reference, the lift breakdown for the NACA 66(MOD)

hydrofoil occurs when the cavity length covers ∼83% of the chord [228]

In the optimized shape, the vapour pressure is barely reached at approximately 50% of the

chord from the leading edge, resulting in the almost vapour–free flow shown in Figure 5.24a. A

120 of 219

5.3 Shape Optimization of Two–Phase Cavitating Flows

(a) (b)

Figure 5.24: ShpO of the NACA 66(MOD) hydrofoil targeting minimization of vapour volume
fraction (min JV), α∞ = 1◦, σ = 0.38 - Iso–areas of (a) liquid fraction and (b) pressure with
streamlines over the optimized hydrofoil.

−0.6

−0.4

−0.2

 0

 0.2

 0.4
 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
p

x/c

Initial
Optimized

(a)

−0.02

 0

 0.02

 0.04

 0.06

 0.08

 0 0.2 0.4 0.6 0.8 1

y

x

Initial
Optimized

(b)

Figure 5.25: ShpO of the NACA 66(MOD) hydrofoil targeting minimization of vapour volume
fraction (min JV), α∞ = 1◦, σ = 0.38 - Comparison of (a) the computed surface pressure
distributions for the (b) initial and optimized hydrofoil shapes (x and y not in scale).

comparison of the initial and optimized hydrofoil shapes, Figure 5.25b, shows that the design

variable changes are more pronounced at the trailing edge, displacing it towards the free–stream

flow angle. The observed increased sensitivity and displacement of the hydrofoil leading and

trailing edges are also reported by Boger & Paterson [36], where a two–phase optimization

algorithm is developed using the continuous adjoint method to the barotropic approach and

examines similar configurations.

121 of 219

5. SHAPE OPTIMIZATION USING THE CUT–CELL METHOD

5.3.2.2 Inviscid, Cavitating Flow over the NACA 66(MOD) Hydrofoil – max JF

The second two–phase ShpO example aims at the maximization of the lift force induced by a

hydrofoil at cavitating conditions. Again, the NACA 66(MOD) hydrofoil, previously validated

for the said conditions, is used as the baseline shape. The lift force in each design is computed

via the projection vector r̂ =
[
− sinα∞ cosα∞

]T (Eq. (4.60)). The CPs at the leading and

trailing edge are fixed to avoid localized changes in the hydrofoil shape that appeared in the

previous case. Therefore, the design variables consist of the y–coordinates of the remaining

control points defining the hydrofoil shape (1− 7, 9− 14).

−100

−50

 0

 50

 100

 150

 200

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

S
en

si
ti

vi
ty

 D
er

iv
at

iv
es

Design Variable

Adjoint
FD(6)
FD(5)

Figure 5.26: ShpO of the NACA 66(MOD) hydrofoil targeting maximization of the lift force
exerted on the hydrofoil surface (max JF), α∞ = 1◦, σ = 0.38 - Comparison of the JF SDs ob-
tained by the continuous adjoint method and FDs. For reference to the design variable numbering
see Figure 5.15b.

Prior to performing the ShpO, the SDs were computed using FDs to compare them with

those computed using the continuous adjoint method, Figure 5.26. The adjoint method SDs

computed by the adjoint method match the outcome of FDs at all but three design variables

defined at control points (b1, b2, b9). Figure 5.27 presents the adjoint liquid volume fraction

ψ5 for the baseline shape when lift maximization is considered.

The optimization termination criterion is based on a pre–specified number of optimization

cycles (40), requiring approximately 30 hours to complete on 48 AMD EPYC 7401 (2.0 Ghz)

processors due to the higher number of optimization cycles. The pre–specified number of

122 of 219

5.3 Shape Optimization of Two–Phase Cavitating Flows

Figure 5.27: ShpO of the NACA 66(MOD) hydrofoil targeting maximization of the lift force
exerted on the hydrofoil surface (max JF), α∞ = 1◦, σ = 0.38 - Initial adjoint liquid volume
fraction field ψ5 for max JF . Streamlines of the adjoint velocity (ψ2, ψ3) are also drawn.

optimization cycles is defined to focus on the validation of the computed SDs and the two–

phase optimization algorithm aiming at the maximization of JF , and to avoid the creation

of unrealistic hydrofoil shapes. Alternatively, using constraints, such as a volume equality

constraint, would make JF converge to a specific value but add complexity to the optimization

algorithm. The optimization is performed without constraints and leads to a new design that

features ∼25% JF value. The evolution of JF is shown in Figure 5.28. In the same figure,

the vapour presence in the domain (Eq. (4.62)) is also monitored. Initially, it features a slight

increase, making the hydrofoil cavitation more intense, while in the following optimization

cycles, this is mildly reduced. The initial increase can be explained by observing Figure 5.29a,

where the liquid fraction iso–areas are depicted for the optimized shape. Specifically, the local

pressure reaches the vapour pressure along the suction side closer to the leading edge, elongating

the incepted cavity and is noticeable in Figure 5.30a that compares the initial and optimized

computed surface pressure distributions. The reduction in vapour volume fraction could be

credited to the increased velocities close to the less campered suction side that convect the

cavity further downstream, causing it to condensate more. Overall, a thin cavity is observed

that is thickest just before the trailing edge, where the hydrofoil’s contour begins to camper.

Based on the above, the comparison of the initial and optimized hydrofoil shapes in Figure

5.30b reveals that the optimized design tends to a more flow-aligned suction side, while the

123 of 219

5. SHAPE OPTIMIZATION USING THE CUT–CELL METHOD

 18

 19

 20

 21

 22

 23

 24

 0 5 10 15 20 25 30 35 40
 7.6

 7.7

 7.8

 7.9

 8

 8.1

 8.2

 8.3

 8.4

 8.5
J F

 [
N

]

V
ol

u
m

e−
A

ve
ra

ge
d

V
ap

ou
r

(×
10

−
4)

Optimization Cycle

Lift Force (J)
Vapour

Figure 5.28: ShpO of the NACA 66(MOD) hydrofoil targeting maximization of the lift force
exerted on the hydrofoil surface (max JF), α∞ = 1◦, σ = 0.38 - Evolution of the JF values
through the optimization cycles.

pressure side exhibits the same features arising in single–phase optimizations (cf. Figure 5.13).

Note that pressure along the suction side cannot pass the vapour pressure. Thus, once this value

is reached along the suction side, changes in JF are solely caused by modifying the hydrofoil’s

purely liquid pressure side.

(a) (b)

Figure 5.29: ShpO of the NACA 66(MOD) hydrofoil targeting maximization of the lift force
exerted on the hydrofoil surface (max JF), α∞ = 1◦, σ = 0.38 - Iso–areas of (a) liquid fraction
and (b) pressure with streamlines over the optimized hydrofoil.

124 of 219

5.3 Shape Optimization of Two–Phase Cavitating Flows

−0.6

−0.4

−0.2

 0

 0.2

 0.4
 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
p

x/c

Initial
Optimized

(a)

−0.02

 0

 0.02

 0.04

 0.06

 0.08

 0 0.2 0.4 0.6 0.8 1

y

x

Initial
Optimized

(b)

Figure 5.30: Lift maximization (max JF) of the NACA 66(MOD) hydrofoil, α∞ = 1◦, σ = 0.38
- Comparison of (a) the computed surface pressure distributions for the (b) initial and optimized
hydrofoil shapes (x and y not in scale).

5.3.2.3 Laminar, Cavitating Flow over the NACA 0012 Hydrofoil – min JV

Next, the accuracy of the adjoint method for the ShpO of a laminar, cavitating flow over the

NACA 0012 hydrofoil targeting the minimization of the vapour volume fraction is assessed.

Similar to the previous examples, the SDs obtained by the adjoint method are compared with

FDs to verify their accuracy in laminar flows and are shown in Figure 5.31. The SDs refer to the

x−coordinates of the CPs of the suction and the pressure side, followed by the y−coordinates in

the same order. Good agreement is observed overall, except for the design variables correspond-

ing to control points residing close to the leading edge and the cavity onset area (β19, β20).

Figure 5.32 depict the adjoint liquid volume fraction iso–areas computed for JV .

The ShpO is performed for a total of 30 optimization cycles, requiring approximately 25

hours on 48 AMD EPYC 7401 (2.0 Ghz) processors and leads to a new hydrofoil shape that

is barely cavitating at these conditions. The evolution of the JV through the optimization

cycles is presented in Figure 5.33. After 25 cycles, the vapour generated in the new design

is negligible and, thereafter, asymptotically tends to a zero value, as in the NACA 66(MOD)

hydrofoil case (cf. Figure 5.23). The lift force exerted by the hydrofoil follows the same trend

with JV , implying that the remarks made in the inviscid case may stand true here as well. In

Figure 5.35a, where the computed surface pressure distributions of the initial and optimized

hydrofoil shapes are shown, reveal the location of lift loss due to the reduction of cavitation.

Since the pressure along the pressure side does not practically change, lift loss is caused due

to its increase along the suction side as a side–effect of avoiding evaporation. Local pressure

125 of 219

5. SHAPE OPTIMIZATION USING THE CUT–CELL METHOD

−0.15

−0.1

−0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20 25

S
en

si
ti

vi
ty

 D
er

iv
at

iv
es

Design Variable

Adjoint
FD(5)
FD(4)

Figure 5.31: ShpO of the NACA 0012 hydrofoil targeting minimization of vapour volume fraction
(min JV), Rec = 500, α∞ = 4◦, σ = 0.5 - Comparison of the JV SDs obtained by the continuous
adjoint method and FDs. For the design variable numbering see Figure 5.15a.

differences between the baseline and optimized hydrofoil occur mainly at the cavity inception

and onset area.

Figures 5.34b and 5.34a present the iso–bar areas and liquid volume fraction iso–areas of

the optimized hydrofoil shape, respectively. The new hydrofoil is almost cavitation–free and

features no recirculation, demonstrating the efficacy of the ShpO algorithm in laminar flows.

Furthermore, in Figure 5.35b, a comparison of the initial and optimized hydrofoil shapes is

given.

126 of 219

5.3 Shape Optimization of Two–Phase Cavitating Flows

Figure 5.32: ShpO of the NACA 0012 hydrofoil targeting minimization of vapour volume fraction
(min JV), Rec = 500, α∞ = 4◦, σ = 0.5 - Initial adjoint liquid volume fraction field ψ5 for min JV .
Streamlines of the adjoint velocity (ψ2, ψ3) are also drawn.

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30
 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 3.1

J V
 (

×
10

−
3)

L
if

t
fo

rc
e

[N
]

Optimization Cycle

Vapour Presence (J)
Lift Force

 0

 0.001

 0.002

 0.003

 22 24 26 28 30

Figure 5.33: ShpO of the NACA 0012 hydrofoil targeting minimization of vapour volume fraction
(min JV), Rec = 500, α∞ = 4◦, σ = 0.5 - Evolution of the JV values through the optimization
cycles, by also monitoring lift force.

127 of 219

5. SHAPE OPTIMIZATION USING THE CUT–CELL METHOD

(a) (b)

Figure 5.34: ShpO of the NACA 0012 hydrofoil targeting minimization of vapour volume fraction
(min JV), Rec = 500, α∞ = 4◦, σ = 0.5 - Iso–areas of (a) liquid volume fraction and (b) pressure
with streamlines over the optimized hydrofoil.

−0.8

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1
 0 0.2 0.4 0.6 0.8 1

C
p

x/c

Initial
Optimized

(a)

−0.06

−0.04

−0.02

 0

 0.02

 0.04

 0.06

 0 0.2 0.4 0.6 0.8 1

y

x

Initial
Optimized

(b)

Figure 5.35: ShpO of the NACA 0012 hydrofoil targeting minimization of vapour volume fraction
(min JV), Rec = 500, α∞ = 4◦, σ = 0.5 - Comparison of (a) the computed surface pressure
distributions for the (b) initial and optimized hydrofoil shapes (x and y not in scale).

128 of 219

5.4 Concluding Remarks

5.4 Concluding Remarks

In this chapter, the developed continuous adjoint method presented in Chapter 4 is implemented

to support a ShpO algorithm for single– and two–phase flows. The ShpO algorithm combines

the merits of the CC method by accounting for the variations of eddy viscosity and the adjoint

counterpart of the two–phase formulation (homogeneous mixture model) that also incorporates

the effects of cavitating flows, presented for the first time in the literature [266].

The use of the CC method requires special attention when linking the arising intersection

points along the CC edges with the discretized body surface nodes but provides a versatile tool

that enables large displacements during the optimization. The generated CC meshes, created

throughout the optimization, are always valid and share the same quality. Furthermore, the

entire optimization framework is fully automated and is limited only by the plasticity of the

chosen parameterization, i.e. the range of shapes it can generate.

The significance of avoiding the frozen turbulence assumption by differentiating the tur-

bulence model has been presented several times in the literature. The implemented ShpO

algorithm was assessed on both internal and external aerodynamic cases for different objective

functions and was able to obtain better–suited designs.

The extension of the optimization algorithm to incorporate cavitation was assessed on

isolated hydrofoils and showed the accuracy of the implemented continuous adjoint method

w.r.t. reference values computed using FDs. The comparisons show very good agreement but

also reveal slight, localized deterioration of the SDs accuracy near the leading and trailing edges

of the hydrofoils, as well as the immediate vicinity of the cavity onset area. The former is to be

expected and can be attributed to the highly irregular CCs that often appear in those areas and

damage the flow solution accuracy. Regarding the latter, these areas appear to have large flow

and adjoint liquid volume fraction spatial derivatives (see Figures 5.21a and 5.32) and could

potentially benefit from higher, localized mesh refinement. Overall, the optimization algorithm

proves to be effective since, in the performed ShpOs, the evolution of the objective functions

showed good convergence, optimizing the baseline hydrofoils in all cases. Furthermore, it al-

lows for additional objective functions to be considered and enables the monitoring of relative

quantities of interest.

129 of 219

5. SHAPE OPTIMIZATION USING THE CUT–CELL METHOD

130 of 219

Chapter 6

Topology Optimization using the
Cut–Cell Method

In the following chapter, a novel CC–based method for performing TopO presented [267]. The

new method builds on the CC method to extract fluid–solid interfaces that are used to create

body–conforming CC meshes, overcoming shortcomings of porosity–based TopO methods. To

this end, the CC generation algorithm, described in Chapter 2, is modified. In addition, the

continuous adjoint method is augmented to facilitate the new design variables. Furthermore,

the new TopO algorithm is extended to handle constraints, as they are commonly used in

TopO, using the GCMMA [247]. The developed method is assessed via comparisons with the

traditional porosity–based TopO method.

Overall, the essence of the CC–based TopO method lies in extracting the fluid–solid inter-

faces, generating computational meshes in the fluid domain, and solving the governing equa-

tions by accurately imposing solid wall boundary conditions, as opposed to other TopO methods

[37, 70, 127, 181].

6.1 Topology Optimization Problem Definition

The TopO algorithm is used to compute the optimal connection between fixed inlets (SI)

and outlets (SO) with fluid paths. A suitable objective function to be minimized that can

incorporate the mechanical energy losses due to friction forces on the solid walls and among

fluid particles inside the fluid domain is the volume-averaged total pressure losses (JPt
), see

Eq. (4.57). Furthermore, as it is common in TopO, a fluid volume constraint gV should also

be satisfied to avoid trivial solutions of enlarged fluid paths. As seen in the ShpO problems in

131 of 219

6. TOPOLOGY OPTIMIZATION USING THE CUT–CELL METHOD

Sections 5.2.1, 5.2.2, minimizing JPt
in ducted flows tends to expand the fluid paths to reduce

friction losses. The volume constraint permits only the most rewarding parts of the design

space to remain fluid. The volume in 3D (or area in 2D) occupied by the fluid Ωf should not

exceed a pre–defined volume ratio (Vtar) of the computational domain Ω, i.e

gV =
∫

Ωf
dΩf∫

Ω dΩ − Vtar ≤ 0 (6.1)

Finally, the following TopO examples of this chapter share the same type of boundary

conditions, namely a fixed velocity at SI and pressure at SO. At the evolving solid walls, the

no–slip boundary condition is imposed. The choice of a uniform velocity at SI was favored

because it was found that imposing a total pressure at SI would sometimes lead to convergence

difficulties of the flow solution during the optimization. Due to the rapidly changing fluid

domain, the kinematic pressure near the inlets would substantially increase, leading to backflow

problems.

6.2 Porosity–based Topology Optimization

Before continuing to the CC–based TopO method, the Standard Porosity (Brinkman) Topology

Optimization (SPTopO) is presented to be used as reference when assessing the performance of

the developed TopO method. In SPTopO, the governing flow equations arise by extending the

incompressible Navier–Stokes equations, Eq. (3.4), with the so–called Brinkman Term, i.e.

R
SPTopO
i := Ri + SBRi = 0 (6.2)

with

SBR = αpenαb


0
u1
u2
u3

 (6.3)

where αl
b ∈ [0, 1] ,l ∈ L. L denotes all finite volumes existing in the computational domain

and αl
b characterizes the porosity of each finite volume l and αpen is a global (pre–defined)

penalization parameter. Solid and fluid regions are approximated based on their permeability,

namely impermeable finite volumes (high αl
b values) infer solid, while porous regions (low αl

b

values) fluid regions. The penalization parameter αpen is used to amplify the effect of the source

term and causes the solid regions to become (almost) impermeable. Its value is defined based on

132 of 219

6.2 Porosity–based Topology Optimization

the non–dimensional Darcy number that express the ratio of viscous to porous friction forces.

For a problem with a characteristic length L, an almost impermeable solid region is recovered

for Da = ν
αpenL2 ≤ 10−5, [179].

Numerically, the introduction of term SBR in Eqs. (6.2) calls for the enforcement of a zero

fluid velocity at the solid regions, emulating the absence of a fluid path. In fluid regions, this

term is zero. However, fluid–solid interfaces, or else solid walls, are not explicitly defined and,

thus, solid wall boundary conditions cannot be imposed. Furthermore, during the SPTopO,

αl
b can also take intermediate values smearing the effect of the source terms across several

computational cells, leading to potential inaccuracies in the obtained flow and, subsequently,

adjoint solutions.

In the context of SPTopO [68, 127, 128, 179, 191], the design variables are the porosity values

of each finite volume and, thus, the outcome of a SPTopO is a αb distribution that minimizes

the objective function. Therefore, the adjoint problem is formulated by differentiating the

governing equation w.r.t. αl
b , instead of xs

m. The differentiation of Eq. (6.2) is similar to that

presented in Chapter 4 with two key differences. First, the porosity field is independent of

the computational domain boundaries S and, therefore, boundary terms are obtained only by

differentiating the objective function, and second, the differentiation of the Brinkman term is

required. Since this term is linear, an adjoint Brinkman term emerges that acts on the adjoint

solution in a similar manner, i.e. enforcing a zero adjoint velocity in the solid regions. Thus,

the FAEs for the porosity–based approach are

Γin
∂ψi
∂τ
− ∂ψn
∂xj

Anmj −
∂fVnj

ψ

∂xj
+ Sψn = 0 (6.4)

with

Sψ = αpenαb


0
ψ2
ψ3
ψ4

 (6.5)

Differentiation of the augmented objective function (4.4) w.r.t. the porosity value of each

finite volume yields

δL

δαl
b

= δJ

δαbl
+ δRSPTopO

n

δαl
b

ψn (6.6)

133 of 219

6. TOPOLOGY OPTIMIZATION USING THE CUT–CELL METHOD

with

δJ

δαl
b

= −
∫
SI


ukn̂k

0
0
0


T

δU

δαl
b

dS −
∫
SO


ukn̂k

u1ukn̂k + pt n̂1
u2ukn̂k + pt n̂2
u3ukn̂k + pt n̂3


T

δU

δαl
b

dS (6.7)

δRSPTopO
n

δαl
b

ψn = αpenu
l
kψ

l
k+1Ωl (6.8)

Eq. (6.6) contributes to the ABCs at SI and SO to eliminate dependencies on δU
δαl

b

, while the

second term defines the SDs of the SPTopO problem.

Finally, to impose the inequality constraint, the volume/area of the fluid region is approxi-

mated based on the volume–averaged sum of the porosity field

Ωf ≈
∫

Ω
(1− αb)dΩ (6.9)

The (constant) derivative of the volume constraint, Eq. (6.1), of each finite volume l can

be then computed as

δgV
δαl

b

= − 1∫
Ω Ω (6.10)

At each optimization cycle, the SPTopO flow and adjoint equations, Eqs. (6.2) and (6.4), are

solved to compute the objective and constraint function derivatives, Eqs. (6.8) and (6.10). Then,

by employing the GCMMA algorithm [246], an optimizer that successively solves a number of

approximate convex sub-problems (see Appendix C), the design variables are updated.

6.2.1 Example of SPTopO in a Single Inlet–Single Outlet

This example demonstrates the implemented SPTopO algorithm to find the optimal fluid

path in a TopO problem where an inlet channel exists at the west and an outlet channel

at the south, shown in Figure 6.1. The objective and constraint functions previously described

(Eqs. (4.57),(6.1))are used to define the optimization problem. The optimization is performed

in a laminar flow with Reynolds number ReW = 200, based on the inlet width, and αpen = 100.

This case will subsequently be used as a reference to compare with the new CC–based TopO

method. During the optimization, the design variables values are allowed to change only in the

highlighted area ΩD. The area constraint defined requires the fluid paths to encompass only

25% of the highlighted area, ergo Ωf
∗

ΩD
= 0.25. When accounting for the fluid paths of the inlet

and outlet channels, it corresponds to Vtar = 0.155. The optimization stopping criteria were

134 of 219

6.2 Porosity–based Topology Optimization

based on changes in αb, namely |∆αb|∞ < 10−3, and the satisfaction of the area constraint,

gV ≤ 0.

Figure 6.1: SPTopO – Single Inlet–Single Outlet case, ReW = 200 - A fluid path is sought
connecting a single inlet with a single outlet. The inlet is positioned at the western side of the
domain Ω, while the outlet at its southern side. The highlighted area specifies the domain in which
αb is allowed to change during the optimization and defines the design domain ΩD. Dimensions
are in m.

The TopO was perform on 24 AMD EPYC 7401 (2.0 Ghz) processors and required ap-

proximately 130 minutes to complete. Figure 6.2 presents the evolution of the objective and

constraint functions. The SPTopO algorithm successfully obtains a feasible solution with

gV ≈ O
(
10−8) and an objective value of JSPTopO = 1.603× 10−4W

m .

Starting from a fully fluid design domain, the initial JPt
value is very low since the fluid is

rapidly decelerating in the open fluid areas resulting in large recirculating areas of low–velocity

fluid that reduce the shear stresses near the solid walls, Figure 6.3a. The obtained solution

is infeasible as the area constraint is not satisfied. The fluid areas begin to solidify to satisfy

the area constraint, i.e. have their αb values increased (Figure 6.3b), and a duct with almost

impermeable solid regions comes up. In Figure 6.4, the velocity vectors of an intermediate

(infeasible) solution are depicted. Even though no boundary conditions are imposed between

135 of 219

6. TOPOLOGY OPTIMIZATION USING THE CUT–CELL METHOD

0.00008

0.00010

0.00012

0.00014

0.00016

0.00018

 0 10 20 30 40 50 60 70
−0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

O
bj

ec
ti

ve
 F

u
n

ct
io

n
 [

W
/m

]

A
re

a
C

on
st

ra
in

t

Optimization Cycle

J (ReW=200)
gV (ReW=200)

Figure 6.2: SPTopO – Single Inlet–Single Outlet case - Evolution of objective and constraint
functions converging to JSP T opO = 1.603 × 10−4 W

m
and gV ≈ O

(
10−8) for ReW = 200.

(a) (b) (c)

Figure 6.3: SPTopO – Single Inlet–Single Outlet case, ReW = 200 - Iso–areas of αb for different
optimization cycles. Plots correspond to (a) initial, (b) cycle 8, and (c) final cycle.

the fluid and solid regions, the αpen value is sufficient to approximate the solid wall effects.

Overall, the principal advantages of SPTopO lie in its minor implementation burden, owing

to the independence of αb to geometric quantities that simplifies the adjoint problem formulation

and its ability to rapidly change the design domain. The latter can also be seen in Figure 6.3b

where αb is changed throughout the design domain due to its ability to extract SDs contributions

from each finite volume.

136 of 219

6.2 Porosity–based Topology Optimization

Figure 6.4: SPTopO – Single Inlet–Single Outlet case, ReW = 200 - Velocity magnitude iso–
areas of an intermediate solution. At the solidified areas, a minute velocity exists showing the
effectiveness of the method in simulating solid regions.

6.2.1.1 Motivation – A Closer Look at the SPTopO Main Weakness

The most noticeable weakness of SPTopO is its inability to impose (exact) boundary conditions

along the sought solid walls. This is well–known in the literature and multiple studies were

conducted investigating its effect on the obtained flow solution accuracy compared to those

on body-fitted meshes. For example, in Kreissl et al. [133], the SPTopO method is used in

unsteady flows revealing that errors in the pressure fields over the solid areas of Ω can arise

when insufficiently refined meshes are used that can significantly affect the TopO path. Also,

in Kreissl & Maute [131], where a U–bend duct is optimized using a SPTopO approach, it

is shown that the narrow wall between the incoming and outgoing flow leads to non–physical

designs. They illustrate, through a parametric study, the difficulty of the Brinkman method

to prevent flow from passing through the said narrow wall. Furthermore, they also note that

spurious pressure diffusion is observed, resulting in erroneous objective function computations.

In Koch et al. [127], the transition from an optimized porosity field using SPTopO to ShpO is

presented that also illustrated differences in the computed objective function values when the

137 of 219

6. TOPOLOGY OPTIMIZATION USING THE CUT–CELL METHOD

solution is re–evaluated using body–fitted meshes.

A comparative study of the accuracy of the obtained flow solutions using the porosity–

(Eq. (6.2)) and the CC–based (Eq. (3.4)) flow solvers is performed to showcase this weakness

of the porosity–based approach. With that intention, the incompressible laminar channel flow

with two identical rectilinear internal bodies is considered, Figure 6.5. Furthermore, two slightly

different cases are examined to investigate the porosity–based flow solver dependency upon αpen
and the effect of intermediate αb values. In the first case, the internal bodies are positioned

having their boundaries coinciding with the Cartesian mesh lines, resulting in a binary αb
distribution, whereas, in the second case, the bodies are shifted by half the size of the cell edge

in both dimensions so that some finite volumes take on intermediate αb values, Figures 6.6a

and 6.6b.

d

H

L

0.5Hc

0.5L 0.1L

Figure 6.5: Comparative accuracy study between the porosity–based and CC method - Channel
flow with two rectilinear internal bodies problem description.

A steady–state flow solution is obtained for Reynolds number ReH = um H
ν = 50, blockage

ratio r = H
Hc

= 0.125 and gap parameter γ = d
H = 2.0 and 2.04 for cases (i) and (ii), respectively

[1]. um is the velocity at the inlet, Hc the height of the channel, H the height of the bodies,

and d the distance of the solid bodies from the closest channel wall. The comparative study

includes four simulations using the porosity–based flow solver with different αpen values and a

single solution using the CC flow solver for each case.

The computed flow fields are compared in terms of volume-averaged total pressure losses

JPt
for both flow solvers, shown in Figure 6.7. The value of αpen greatly affects the obtained

flow fields, as small penalization values lead to a porous body failing to enforce zero velocities in

its interior, damaging the accuracy of flow predictions. On the other hand, penalization cannot

be excessively high as it might cause convergence issues or stall the TopO algorithm [131].

Furthermore, from Figure 6.7, one may conclude that for the same αpen values, the SPTopO

flow solutions in cases (i) and (ii) have noticeable differences in the computed quantity of

interest, contrary to the CC–based flow solutions that show an expected minute difference.

138 of 219

6.2 Porosity–based Topology Optimization

(a)

(b)

Figure 6.6: Comparative accuracy study between the porosity–based and CC method - (a) Close-
up view of the computational domain and generated mesh. (b) Positioning detail for case (i) in
which the body contour (red line) coincides with mesh lines to give an ideal 0/1 porosity field and
the shifted contour (blue line) for case (ii) in which the porosity at some finite volumes takes on
intermediate values.

 2.5

 3

 3.5

 4

 4.5

 5

 1 10 100 1000

J
[W

/m
]

apen

SPTopO Flow Solver Case (i)
CC Flow Solver Case (i)

SPTopO Flow Solver Case (ii)
CC Flow Solver Case (ii)

Figure 6.7: Comparative accuracy study between the porosity–based and CC method - Com-
parison of the computed JPt values with the two flow solvers for an incompressible, laminar flow
inside a straight channel with two rectilinear internal bodies, ReH = um H

ν
= 50. The accuracy

of the porosity–based flow solver seems to be significantly influenced by the specified αpen values,
as well as the positioning of the internal bodies.

139 of 219

6. TOPOLOGY OPTIMIZATION USING THE CUT–CELL METHOD

The porosity–based solver flow fields with αpen = 1000 in cases (i) and (ii) are further

compared with the CC–based flow fields by extracting transversal pressure profiles at predefined

locations. Starting with case (i), Figures 6.8a and 6.8b show the velocity magnitude iso–areas

along with pressure iso–lines, while in Figures 6.9a and 6.9b the two pressure profiles at x = −1m

and x = 0.8m are plotted. At x = −1m, Figure 6.9a, the pressure profiles are comparable,

despite some minor differences near the bodies. At x = 0.8m, Figure 6.9b, the porosity–based

flow solver consistently over–estimates the pressure, compared to the CC–based flow solver.

The same pressure profiles are also shown for case (ii) in Figures 6.9c and 6.9d. With the

introduction of intermediate porosity values, differences from the CC–based flow solution at

x = −1m become pronounced and are not isolated near the bodies anymore. At x = 0.8m,

pressure differences are smaller but the pressure transversal derivatives are different.

(a)

(b)

Figure 6.8: Comparative accuracy study between the porosity–based and CC method - Velocity
magnitude iso-areas along with pressure iso-lines obtained using the (a) psorosity (αpen = 1000)
and (b) CC–based flow solvers for the aligned case (i).

140 of 219

6.2 Porosity–based Topology Optimization

(a) (b)

(c) (d)

Figure 6.9: Comparative accuracy study between the porosity–based and CC method - Transver-
sal pressure profiles at (a),(c) x = −1m and (b), (d) x = 0.8m for case (i) (top) and case (ii)
(bottom). pref is the reference pressure defined at the outlet. Cross–sections, where pressure
profiles are plotted, are shown by white vertical lines in Figures 6.8a and 6.8b.The porosity–based
solution corresponds to αpen = 1000.

141 of 219

6. TOPOLOGY OPTIMIZATION USING THE CUT–CELL METHOD

6.3 The Cut–Cell TopO Algorithm and its Steps

To alleviate the aforementioned weaknesses of the porosity–based approach, a new TopO

method, with the CC flow solver at its core, is implemented wherein the solid walls are ex-

plicitly defined and allows for exact solid boundary conditions to be imposed. As such, the

governing equations Eq. (3.4) are solved only in the evolving fluid domain, avoiding the intro-

duction of the Brinkman term and the pertinent assumption of a porous material. To that end,

a method of extracting the fluid domain in each optimization cycle is introduced, in which a

CC mesh is generated.

In the Cut–cell TopO algorithm, henceforth referred to as Cut–Cell Topology Optimization

(CCTopO), a bounded material field 0 ≤ αm ≤ 1, ∀m = 1, ...,M , that exists on the M nodes

of a background Cartesian mesh and serves as the design variables of the optimization problem,

is introduced. This material field α is an auxiliary field∗ that, before each flow solution, is

mapped onto boundary indicator variables ϕ to track the fluid–solid interfaces, compute their

intersections with the background mesh over Ω and, create the CCs. Therefore, flow and adjoint

equations are solved on the CC mesh with clearly defined solid walls, formed by CCs and Carte-

sian cells entirely residing in the fluid domain as shown in Figure 6.10. In contrast to SPTopO,

flow and adjoint equations need to be satisfied only in the fluid domain Ωf . Furthermore, due

to dependencies of the solid walls to the design variables α, the adjoint problem is formulated

by differentiating JPt
w.r.t. the coordinates of points on the solid boundaries of the CCs (xs

m),

similar to Section 5.1. The principal difference is that G = ∅ since no body surface is defined.

The adjoint solution provides a sensitivity map on the currently defined solid walls, and the α

field is updated accordingly. The background Cartesian mesh is used for both storing α and

creating the CCs for the following flow and adjoint equations solution. The constituents of the

CCTopO method are analyzed, one–by–one, below.

6.3.1 Computation of the Boundary Indicator Field ϕ

The nodal material field α is mapped onto the boundary indicator variables ϕ using a two–step

approach, based on filtering techniques commonly used in TopO [232, 271], instead of solving a

HJE to displace/march the zero–ϕ interface. This approach circumvents several challenges of

the HJE such as the time–consuming re–initialization step of the Level–Set function to Signed

∗The physical meaning of the auxiliary field α arises as a result of the determined mapping function. The
mapping function used herein suggests that low and high α values tend to indicate fluid and solid nodes,
respectively

142 of 219

6.3 The Cut–Cell TopO Algorithm and its Steps

φ>0: Fluid domain (Ωf):φ<0: φ=0:

Figure 6.10: Extraction of the fluid domain in CCTopO - Based on the nodal ϕm values the
fluid domain, along with the fluid–solid interfaces, can be extracted prior to the flow solution. The
fluid–solid interfaces coincide with the zero–ϕ iso–line.

Distance function required after several timesteps [43] and the restrictive CFL condition used

when solving the HJE, that can lead to slow convergence of the optimization problem. In

addition, one advantage of the decided approach is that it offers provides increased flexibility

when defining the optimization problem and the design variables, since new ones can easily be

included or excluded [264].

In the first step, αm is projected onto a smoothed intermediate variable, α̃m, [41, 233],

α̃m =

∑
n
αnwn∑
n
wn

, wn = r − d(n,m) (6.11)

where the summation is performed over all nodes lying within an r–sphere with radius r = drh,

wn ≥ 0, centered at node m. dr is a user-defined multiplier and h is the length of a Cartesian cell

edge (Eq. (2.4)). These can easily be found by traversing the generated Octree data structure

143 of 219

6. TOPOLOGY OPTIMIZATION USING THE CUT–CELL METHOD

in Section 2.1.1. The purpose of this step is to accelerate the convergence of the optimization

by increasing the zone of influence of the design variables, to avoid checkerboard patterns in

the design variables, as well as to avoid the generation of crude solid boundaries [232, 259, 264].

Following, the second step is performed in which the smoothed variable α̃m is steepened

using an approximate Heaviside function, [233],

ϕm = 1
2 −

tanh(0.5β) + tanh(β(α̃m − 0.5))
2 tanh(0.5β) (6.12)

centered at α̃m = 0.5, and mapped onto the boundary indicator field, such that ϕm > 0 refers

to fluid, ϕm < 0 to solid, and ϕm = 0 to the fluid–solid interface. The performed studies

showed that β = 12 and 3 ≤ dr ≤ 6 lead to sufficiently smooth boundaries and facilitate the

convergence of the optimization [16, 132].

6.3.2 Generation of Cut–Cells based on ϕ

Having obtained the nodal ϕm values, intersection points of the zero–ϕ contour can be computed

along edges of the Cartesian cell. These are located on edges whose nodes have ϕ values with

opposite signs. The CCs are generated by computing these intersection points and connecting

them with the Cartesian cell nodes that correspond to the fluid region (have ϕm > 0), similarly

to the marching cubes algorithm [150] but with interpolations between the cell vertices. The

necessary geometric quantities of CCs, such as cell volume, surface areas and unit vectors

normal to faces, can then be computed based on the points that surround the fluid part inside

the Cartesian cell, as described in Chapter 2. Based on the above, the coordinates of the

intersection points xs
n and their derivatives w.r.t. ϕm are computed as

xs
n = xA

(n)
− xB(n) − xA(n)

ϕB(n) − ϕA(n) ϕ
A(n)

(6.13)

∂xs

∂ϕi

n

= xB(n) − xA(n)(
ϕB(n) − ϕA(n))2

(
ϕA

(n) ∂ϕB
(n)

∂ϕi
− ϕB

(n) ∂ϕA
(n)

∂ϕi

)
, i = A(n), B(n) (6.14)

where A(n) and B(n) are the two mesh nodes used to compute the nth intersection point,

connected by an edge with ϕA
(n)
ϕB

(n) ≤ 0. In Figure 6.11, an illustrative 2D example is given

where a triangular CC is created based on the given ϕ values of the Cartesian cell nodes.

The above–mentioned can be easily extended to three dimensions, Figure 6.12a. However,

in 3D, Cartesian cells having more than 3 intersection points along their edges occur frequently.

Steiner points are introduced at the arithmetic mean of the computed intersection points inside

144 of 219

6.3 The Cut–Cell TopO Algorithm and its Steps

Figure 6.11: CC creation based on nodal ϕ values - 2D Cartesian cell with ϕ values on its nodes,
(K1, K2, K3, K4). The opposite ϕ signs at K1, K2, and K1, K3 lead to the zero-ϕ intersection
points xs

1 and xs
2. The resulting CC is a triangle with its vertices at K1,xs

1 and xs
2.

the Cartesian cell to avoid the creation of faces defined by points that are not co–planar on the

solid boundary that could compromise the solution accuracy. These additional points are then

connected with the computed intersection points along the cell edges to triangulate the solid

boundary, Figure 6.12b. In case a Cartesian cell is intersected twice by the solid boundary,

double–cut cells are formed, Figure 6.12c; for them, the intersection points are split into two

clusters, and a Steiner point is introduced for each cluster. To identify them, an attempt to

edge–connect the Cartesian cell solid nodes (ϕ <0) is made during the CC generation process.

Finally, contrary to the standard CC generation method for a given body surface (Chapter 2)

CCs intersected by the solid boundary more than twice cannot exist, as in such a case, the solid

boundaries would have merged.

145 of 219

6. TOPOLOGY OPTIMIZATION USING THE CUT–CELL METHOD

(a)

(b)

(c)

Cut−Cell Cartesian Cell Solid Node(s) Cluster 1 Cluster 2 Steiner Point(s)

Figure 6.12: Indicative examples of generated 3D CCs for which the volume encompassed by the
blue lines is considered fluid - In (a), no additional point is introduced since the intersection points
form a triangular solid face. In (b), having 4 non–co–planar intersection points, a Steiner point is
introduced to triangulate the solid boundary into 4 solid faces leading to a CC with 10 faces in
total. In (c), a double–cut cell is identified since the solid nodes of the Cartesian cell cannot be
edge–connected. The intersection points split into two separate clusters with two Steiner points,
and a CC with 14 faces in total is created.

146 of 219

6.3 The Cut–Cell TopO Algorithm and its Steps

In practice, the resulting CCs can be very small, and this may negatively impact stability.

Thus, the cell merging algorithm, overviewed in Chapter 2 is also used to merge small CCs with

a neighbouring cell, Figure 6.13. Again, connectivity information and geometric quantities pass

on to the merged supercell that replaces the constituent cells.

Figure 6.13: 2D schematic of the near–wall topology used in the geometry–free mesh generation
process - Part of the solid boundary, the intersection points, some non–merged CCs (brown), and
a merged CC (ciel). Black filled squares stand for the Cartesian mesh nodes where the α and ϕ
field is stored, whereas all flow and adjoint variables are stored at cell centers (blue filled circles).

6.3.3 Governing Equations

The CCTopO algorithm is used on single–phase, laminar flows of a incompressible fluid. There-

fore, the Navier–Stokes equations (Eq. (3.4)) are solved in Ωf , as defined by the available αm

field, in each optimization cycle. For clarity, these are repeated below

Ri := Γin
∂Un
∂τ

+
∂f Iij
∂xj

−
∂fVij
∂xj

= 0 (6.15)

6.3.4 Formulation of the Adjoint Problem

The adjoint method is employed to compute a sensitivity map, i.e. the derivative of the objective

function on the solid boundary points δJPt

δxsn , by solving the appropriate FAEs Eq. (4.25) in the

147 of 219

6. TOPOLOGY OPTIMIZATION USING THE CUT–CELL METHOD

fluid domain Ωf and imposing the ABCs along its boundaries, as derived in Section 4.2.5.

Due to the sole dependency of the solid boundary points w.r.t. the boundary indicator field

Eq. (6.13), the chain rule is used to obtain the derivatives of the objective function w.r.t. the

boundary indicator variables δJPt

δϕ and, then, considering Eqs. (6.12) and (6.11) w.r.t. the αm

field. Thus, in the CCTopO method, a sensitivity map is computed on the reconstructed, by

the CC method, solid surfaces and, then, transformed to derivatives of JPt
w.r.t. the αm field,

i.e. the design variables that implicitly describe the solid surfaces.

The ABCs imposed make δJPt

δxsn independent of the derivatives of the flow variables w.r.t. xs
n

along SI , SO and SW , as overviewed in Chapter 4. The differentiation of JPt introduces

additional terms along SI and SO, 4.3.1. Based on the aforementioned imposed flow boundary

conditions, these are

δJPt

δxsn
= −

∫
SI


un
0
0
0


T

δU

δxsn
dS −

∫
SO


un

u1un + pt n1
u2un + pt n2
u3un + pt n3


T

δU

δxsn
dS (6.16)

By satisfying the adjoint boundary conditions, the sensitivity map is obtained using

δL

δxsn
= −

∫
Sw

(
ψ1 nk + τψik ni

) ∂uj
∂xm

δxm
δxsn

dS (6.17)

Then, the computation of the gradient of JPt w.r.t. αm requires the use of the chain rule to

transform the sensitivity map computed at the solid boundary points xs
n to the expression of

SDs at the mesh nodes of Ω, as follows

δJPt

δαm
=
∑
l

∑
n

δL

δxsn
∂xs

n

∂ϕl
∂ϕl

∂α̃l
∂α̃l

∂αm
(6.18)

where the first summation (l) considers all nodes within the selected smoothing radius according

to Eq. (6.11) and the second (n) all solid boundary points. Term ∂xs
n

∂ϕl is given in Eq. (6.14),

while terms ∂ϕl

∂α̃l and ∂α̃l

∂αm are computed as

∂ϕl

∂α̃l
= −β

2

(
1− tanh2 (β (α̃l − 0.5

)))
tanh (0.5β) (6.19)

∂α̃l

∂αm
= wl∑

n
wn

(6.20)

Similarly to the SPTopO algorithm, the differentiation of the constraint function is also

necessary. The derivatives of the fluid volume of CCs w.r.t. xs
n can be computed analytically,

148 of 219

6.3 The Cut–Cell TopO Algorithm and its Steps

resulting in the corresponding derivatives of the constraint function

δgV
δxsn

= 1∫
Ω dΩ

∑
l

δΩcl
δxsn

(6.21)

Summation is performed over the CCs of which point n lies on their solid boundary face; δΩc
l

δxsn

is the derivative of the lth CC volume w.r.t. the coordinates of boundary point n, computed

using expression Eq. (5.2). Note that, in contrast to the SPTopO, the volume constraint is not

constant since the fluid volume of the CCs changes during the optimization process. Geometric

derivatives δxk

δxsn and δΩc

δxsn , required by Eqs. (6.17) and (6.21), are again computed as closed–form

expressions (Section 5.1), [174, 214, 266].

6.3.5 Overview of the Cut–Cell Topology Optimization Algorithm

All constrained optimization problems are solved using the GCMMA algorithm [246] (Appendix

C). The termination criterion is based on the maximum change in ϕ optimization cycle, namely√
∆ϕ∞ < 10−3, and the requirement of a feasible solution, gV ≤ 0.

The developed CCTopO algorithm can be summarized in the following steps:

1. Initialize the nodal material field αm on the fixed background mesh Ω.

2. Map αm onto boundary indicator variables ϕm, using Eqs. (6.11) and (6.12).

3. Compute coordinates of intersection points xs
n between the Cartesian cell edges, and the

zero–ϕ iso–line using Eq. (6.13) and create CCs corresponding to the body–fitted mesh

in Ωf .

4. Solve the flow and adjoint equations.

5. Compute derivatives of JPt
and gV w.r.t. xs

n, based on Eqs. (6.17) and (6.21).

6. Use Eq. (6.18) to compute derivatives w.r.t. αm.

7. Employ GCMMA to update αm.

8. Go to step 2 unless convergence criteria are met.

6.3.6 Parallelization of the Cut–Cell TopO Algorithm

The computation of the boundary indicator variable takes place on the master processor and

can be parallelized due to the absence of any race conditions; having a αm field, sequential

149 of 219

6. TOPOLOGY OPTIMIZATION USING THE CUT–CELL METHOD

computations lead to the computation of the nodal values of ϕm, using Eqs. (6.11) and (6.12).

First, this requires finding and storing the neighboring nodes within the specified r–sphere

utilizing the Octree data structure. Even though this process occurs only once, it is associated

with a notable computational effort that scales w.r.t. the mesh size and dr [144, 271]. Hence,

OpenMP directives are introduced to parallelize these tasks. Similarly, parallelism is introduced

for the computation of SDs (Eq. (6.18)) using OpenMP directives, as it obtains contributions

from each node inside its r–sphere, Eq. (6.20). Furthermore, the cell–cutting procedure (Section

6.3.2) occurs multiple times during the CCTopO and benefits from additional parallelization

using OpenMP directives. Overall, the achieved gain scales linearly w.r.t. the number of threads

for the parallelized tasks. For example, on a background mesh consisting of approximately 2.2M

nodes, the task of finding the neighboring nodes in a sphere of dr = 5 would take about 15

minutes, however, when this task is parallelized and executed on a hardware with 12 available

threads, it requires approximately 75 seconds, which translates to 12× reduced time (Section

6.4.5).

6.4 Topology Optimization using the Cut–Cell Method

In the following Section, the CCTopO algorithm is used on benchmark TopO cases and is com-

pared with solutions obtained using the SPTopO approach (Section 6.2). The comparisons

both illustrate the capabilities of the CC–based method and highlight its differences from SP-

TopO approaches due to the solid boundary tracking and imposition of accurate solid boundary

conditions in each optimization cycle. For the comparisons to be as clear as possible, the op-

timized SPTopO solutions, henceforth referred to as re–evaluated Standard Porosity (r–SP)

solutions, are first re–evaluated by tracking the solid–fluid interfaces, similarly to the CCTopO

approach. The re–evaluation procedure is briefly described in Appendix D. In detail, the opti-

mized porosity field is mapped onto nodal material values and, then, onto boundary indicator

variables. Then, the CCs can be created to extract the fluid domain and solve the governing

equations using the CC flow solver. The described re–evaluation process is fully automated.

Contrarily, using traditional body–fitted meshes would first require the extraction of an explicit

representation of the solid wall segments, c.f. [127].

In all cases considered, the optimal connection (in terms of JPt
, Eq. (4.57)) of the fixed

inlets and outlets with fluid path(s) is targeted. The volume constraints are imposed to match

the ones specified in the literature, Ωf
∗

ΩD
. The Vtar values of the volume constraint (Eq. (6.1))

are adjusted to exclude the fluid volume that exists at the I/O fluid channels.

150 of 219

6.4 Topology Optimization using the Cut–Cell Method

6.4.1 CCTopO – Single Inlet–Single Outlet Case

The first case revisits the case optimized by SPTopO, Section 6.2.1. The area constraint specified

is Vtar = 0.155, which corresponds to a fluid volume in the design space of Ωf
∗

ΩD
= 0.25. The

optimization is performed on a background mesh with 16.5K nodes at three Reynolds numbers

ReW = 2, 20, 200, computed based on the inlet width W , and a smoothing radius of dr = 4.

The optimization wall–clock time amounted to approximately 200 minutes on 24 AMD EPYC

7401 (2.0 Ghz) processors for all three ReW . This includes all additional CCTopO requirements,

such as extraction of the solid walls, CC mesh generation and solution of both the flow and

adjoint equations in each optimization cycle.

 0

 1

 0 1

y
[m

]

x [m]

ReW=2
ReW=20

ReW=200

Figure 6.14: CCTopO – Single Inlet–Single Outlet case - Solid boundaries of the optimized fluid
paths for ReW = 2, 20, 200.

The optimized designs are shown in Figure 6.14 and agree well with observations made in the

literature [82, 132, 200]. By increasing the ReW , minor losses become more pronounced favoring

a longer, more round duct. In contrast, in lower ReW a shorter, wider duct is preferred due to

smaller shear stresses that reduce the dominating major losses. In Figure 6.15, the evolution

of the objective function value and area inequality constraint is presented for ReW = 2. The

reduced initial objective value corresponds to an infeasible design since the constraint is not

satisfied. The fluid region is constricted by attempting to satisfy the constraint, leading to

increased pipe losses and, thus, objective function values. However, once a feasible solution

151 of 219

6. TOPOLOGY OPTIMIZATION USING THE CUT–CELL METHOD

is obtained, Figure 6.16b, the GCMMA algorithm leads the optimization to better qualified

feasible designs. The optimized designs in Figure 6.14 correspond to JPt
= 8.86 × 10−3W

m for

ReW = 2, JPt = 9.39× 10−4W
m for ReW = 20, and JPt = 1.11× 10−4W

m for ReW = 200, while

gV is satisfied.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 10 20 30 40 50 60
−0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

O
bj

ec
ti

ve
 F

u
n

ct
io

n
 [

W
/m

]

A
re

a
C

on
st

ra
in

t
Optimization Cycle

J (ReW=2)
gV (ReW=2)

Figure 6.15: CCTopO – Single Inlet–Single Outlet case, ReW = 2, dr = 4 - Evolution of objective
and constraint functions converging to JPt = 8.86 × 10−3 W

m
and gV ≈ O(10−5).

(a) (b) (c)

Figure 6.16: CCTopO – Single Inlet–Single Outlet case, ReW = 2 - Velocity magnitude iso–areas
of different optimization cycles. Plots correspond to (a) initial, (b) cycle 30, and (c) final cycle.

Following, the optimized design of CCTopO for ReW = 200 is compared with the outcome

of SPTopO. The optimized SPTopO solution exhibited a binary porosity distribution, and is

shown in Figure 6.17a along with the generated solid walls after the re–evaluation process.

The generated CC mesh in Ωf had practically the same area as the SPTopO optimized solution(
∆Ωf ≤ 10−3ΩfSPTopO

)
. The computed JPt

values in both cases read JSPTopOPt
= 1.6×10−4W

m

152 of 219

6.4 Topology Optimization using the Cut–Cell Method

and Jr−SP
Pt

= 1.2 × 10−4W
m . Their difference illustrates the importance of imposing accurate

boundary conditions along the solid walls, since objective function values computed by SPTopO

may have differences from that computed by generating a body–fitted mesh and re–evaluating

the obtained design on it.

(a)

 0

 1

 0 1

r−SP
CCTopO

(b)

Figure 6.17: Comparison of SPTopO and CCTopO in the Single Inlet–Single Outlet case at
ReW = 200 - (a) r–SP solid boundaries (green line) with the area with ab = 1 in red and that
with ab = 0 in blue. (b) Comparison of the CCTopO and r–SP solid boundaries.

Comparison of the re–evaluated solution Jr−SP
Pt

and the outcome of CCTopO, JCCTopOPt
=

1.11×10−4W
m , shows that the design optimized by CCTopO exhibits 8% extra reduction in JPt .

The solid boundaries of the CCTopO design, Figure 6.17b, corresponds to a slightly shorter

and wider duct that could explain the difference in the JPt
value.

Figures 6.18a–6.18d show the computed SDs, w.r.t. the porosity field αmb (Figures 6.18a–

6.18c) and w.r.t. the material field αm (Figures 6.18b–6.18d), at the first and last optimization

cycle for SPTopO and CCTopO, respectively. The main difference between them becomes

clear. In SPTopO, the SDs are computed throughout ΩD, whereas in CCTopO, a sensitivity

map is obtained along the solid walls which is then, transformed, to nodal sensitivities of the

material field. Thus, the sensitivity derivatives exist only in the vicinity of the current fluid–

solid interface and depend on the smoothing radius dr. Furthermore, the design variables in the

two methods influence the objective function differently and, thus, an immediate comparison

of scale should not be performed.

153 of 219

6. TOPOLOGY OPTIMIZATION USING THE CUT–CELL METHOD

(a) (b)

(c) (d)

Figure 6.18: Comparison of SPTopO and CCTopO in the Single Inlet–Single Outlet case at
ReW = 200 - Initial and final sensitivity field, w.r.t. the porosity field αm

b in (a),(c) and w.r.t. the
material field αm in (b), (d), computed using SPTopO and CCTopO. Derivatives at the gray areas
of (b) and (d) are not computed.

6.4.2 Single Inlet–Single Outlet Case with Obstacle

In TopO applications, several manufacturing constraints can arise. The most common one is

limiting the total volume of the fluid domain Eq. (6.1), since, in this way, optimized solutions

become area efficient, i.e. only the most beneficial fluid regions remain. However, cases in

which regions cannot become fluid can also arise. Several such cases could appear in cross–

154 of 219

6.4 Topology Optimization using the Cut–Cell Method

flow heat exchanges. To incorporate simplified such applications in the CCTopO algorithm, an

impassable region (orange square in Figure 6.19) is introduced imitating the cross–flow duct.

TopO is performed for two different obstacle positions for, ReW = 2 and the same Vtar = 0.155.

In the two cases, the obstacle is positioned at (δx, δy) = (0.25, 0.25) and (δx, δy) = (0.39, 0.29)

and leads to different optimized solutions.

Figure 6.19: CCTopO – Single Inlet–Single Outlet case with additional obstacle - The orange
square imitates an impassable region that remains solidified. Thus, the arising fluid path needs
to circumvent the obstacle. The highlighted area specifies part of the domain in which the design
variables are allowed to change during the optimization and defines the design domain ΩD. Di-
mensions are in m.

6.4.2.1 Single Inlet–Single Outlet Case with Obstacle (δx, δy) = (0.25, 0.25)

In the first case, the obstacle is positioned at equal distances from the domain boundaries. The

evolution of JPt and gV shows similarities with the case where no obstacle is included, Figure

6.20. Starting from an infeasible design with a low JPt
value, the optimization rapidly decreased

the constraint function value, leading to an increase in JPt
. After a feasible design is found,

the JPt is seen to decrease up to the value of JPt = 8.97× 10−3W
m .

In Figure 6.21 four different snapshots of the TopO are shown. In the initial solution,

155 of 219

6. TOPOLOGY OPTIMIZATION USING THE CUT–CELL METHOD

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 10 20 30 40 50 60 70 80
−0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

O
bj

ec
ti

ve
 F

u
n

ct
io

n
 [

W
/m

]

A
re

a
C

on
st

ra
in

t

Optimization Cycle

J (ReW=2)
gV (ReW=2)

Figure 6.20: CCTopO – Single Inlet–Single Outlet case with additional obstacle, (δx, δy) =
(0.25, 0.25) - Evolution of the objective and constraint functions converging to J = 8.97 × 10−3 W

m

and gV ≈ O(10−5) for the ReW = 2 and dr = 4.

Figure 6.21a, the presence of the obstacle forces the fluid paths to split. In Figure 6.21b, even

though a feasible solution is obtained (see Figure 6.20), the solid boundaries are rather crude,

and the duct consists of two steep bends that cause a relatively high JPt
value. After 11 more

optimization cycles, Figure 6.21c, the duct geometry observed starts to straighten and form, but

some roughness still exists at the solid boundaries. Then, the optimization algorithm performs

some fine–tuning of the geometry boundaries up until the termination criterion is met, leading

to the smoother, optimized duct shown in Figure 6.21d. Comparison of the computed JPt
with

the case without the obstacle reveals an increase of approximately 1%.

156 of 219

6.4 Topology Optimization using the Cut–Cell Method

(a) (b)

(c) (d)

Figure 6.21: CCTopO – Single Inlet–Single Outlet case with additional obstacle, (δx, δy) =
(0.25, 0.25) - Velocity magnitude iso–areas of different optimization cycles. Plots correspond to
(a) initial, (b) cycle 15, (c) cycle 26, and (d) final cycle.

6.4.2.2 Single Inlet–Single Outlet with Obstacle (δx, δy) = (0.39, 0.29)

In the second case, the obstacle is placed off–centered to try and obtain a fluid path that passes

over the obstacle. In Figure 6.22 the evolution of the objective and constraint functions is

presented for the performed TopO. Again, the same trend as in the previous cases is observed.

After the TopO is terminated, the objective function value is JPt
= 1.0105× 10−2W

m .

In Figure 6.22, several snapshots of the TopO are shown. Starting from the same fully fluid

design domain, Figure 6.23a, the presence of the obstacle again forces the flow to split into

two different paths, Figure 6.23b. However, the majority of the fluid seems to go through the

’outer’ fluid path resulting in the gradual closing/solidification of the ’inner’ path due to the

157 of 219

6. TOPOLOGY OPTIMIZATION USING THE CUT–CELL METHOD

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 20 40 60 80 100 120
−0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

O
bj

ec
ti

ve
 F

u
n

ct
io

n
 [

W
/m

]

A
re

a
C

on
st

ra
in

t

Optimization Cycle

J (ReW=2)
gV (ReW=2)

Figure 6.22: CCTopO – Single Inlet–Single Outlet case with additional obstacle, (δx, δy) =
(0.39, 0.29) - Evolution of the objective and constraint functions converging to JPt = 1.0105 ×
10−2 W

m
and gV ≈ O(10−7) for the ReW = 2 and dr = 4.

area constraint, Figure 6.22c. Finally, in Figure 6.22d a smooth, elongated duct is obtained

that passes over the obstacle and, compared to the previous case, has a 12% higher objective

function value.

(a) (b)

158 of 219

6.4 Topology Optimization using the Cut–Cell Method

(c) (d)

Figure 6.22: CCTopO – Single Inlet–Single Outlet case with additional obstacle, (δx, δy) =
(0.39, 0.29) - Velocity magnitude iso–areas of different optimization cycles. Plots correspond to
(a) initial, (b) cycle 4, (c) cycle 9, and (d) final cycle.

6.4.3 Single Inlet–Two Outlet Case

The next TopO case consists of obtaining the fluid paths connecting a single inlet with two

outlets, Figure 6.23. The CCTopO is performed on a background mesh of 66K nodes at

ReW = 200 and Vtar = 0.15, Koch et al. [127], in which a porosity–based method is used for

the same TopO problem. The area constraint requires at most 30% of the design domain to be

fluid, i.e. Ωf
∗

ΩD
= 0.3. The so–optimized design is performed on 24 AMD EPYC 7401 (2.0 Ghz)

processors for 35 hours and results in a JCCTopOPt
= 0.109Wm after 100 cycles.

In Figure 6.24, the evolution of the objective and area inequality constraint function of

CCTopO is presented. In the first cycles, designs fails to meet the area constraint. Thus, the

fluid domain is restricted, leading to an increase in the JPt values. The reduction in JPt starts

once a feasible design is found. At the 40th cycle, the optimized design shape was mostly settled,

with slight changes occurring at the area where the duct splits. Due to the higher sensitivities

in that area, changes in the design variables alter the splitting angle affecting the obtained JPt

values. The optimal porosity distribution, obtained by SPTopO, is used to trace the solid walls

to re–evaluate this solution using the CC method. The r–SP fluid area is again essentially the

same as that of SPTopO, i.e.
(

∆Ωf ≈ 10−3ΩfSPTopO
)

.

Comparison of the computed velocity fields for both the SPTopO and r–SP, Figures 6.26a

and 6.26b, leads to a few interesting observations. First, a separation zone manifests in both

solutions near the right outlet due to the steepness of the connecting duct, Figure 6.26c. Fur-

159 of 219

6. TOPOLOGY OPTIMIZATION USING THE CUT–CELL METHOD

Figure 6.23: Single Inlet–Two Outlet case TopO problem description - A fluid path is sought
connecting a single inlet with two outlets. The inlet is positioned at the western side of the
computational domain Ω, while the outlets are non–equidistantly positioned at its southern and
eastern side. The highlighted area specifies the domain in which the nodal material field αm is
allowed to change during the optimization and defines the design domain ΩD. Dimensions are in
m.

 0.105

 0.11

 0.115

 0.12

 0.125

 0.13

 0.135

 0.14

 0.145

 0.15

 0.155

 0.16

 0 20 40 60 80 100
−0.02

−0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

O
bj

ec
ti

ve
 F

u
n

ct
io

n
 [

W
/m

]

A
re

a
C

on
st

ra
in

t

Optimization Cycle

J (CCTopO)
gV(CCTopO)

J (r−SP)

Figure 6.24: CCTopO – Single Inlet–Two Outlet case, ReW = 200, dr = 5 - Evolution of the
objective and constraint functions converging to JCCT opO = 0.109 W

m
and gCCT opO

V ≈ O(10−6).

160 of 219

6.4 Topology Optimization using the Cut–Cell Method

(a) (b) (c)

Figure 6.25: CCTopO – Single Inlet–Two Outlet case, ReW = 200, dr = 5 - Velocity magnitude
iso–areas of different optimization cycles. Plots correspond to (a) initial, (b) cycle 70, and (c) final
cycle.

thermore, in the r–SP solution, a second separation zone, non–existent in the SPTopO solution,

can be seen in Figure 6.26d due to the accurate boundary conditions imposed along the solid

walls. This variation in the obtained flow patterns reflects upon the difference (by approxi-

mately 3%) in JPt
, since JSPTopOPt

= 0.115Wm and Jr−SP
Pt

= 0.112Wm . Comparing the JPt
values

of r–SP and CCTopO, Figure 6.24, a small improvement of 2% in JPt is observed. However,

the attained designs, shown in Figures 6.25c and 6.26b, are quite different. The shape obtained

by r–SP, the first part of the duct is inclined towards the bottom outlet, giving rise to the

steepened duct that connects to the right outlet and causes flow separation. In contrast, the

CCTopO retains an almost horizontal first part that splits into a wider lower and a narrower

upper duct. The part connecting to the right outlet changes gradually, avoiding thus flow sepa-

ration. Furthermore, the first part splits into two parts much earlier and is wider near the inlet,

decelerating the bulk flow. Overall, the optimal design of the CCTopO is more inline with the

optimized design presented in [127], using ShpO, on a much denser body–fitted mesh, after tran-

sitioning from a TopO to ShpO. This highlights the ability of CCTopO to solve TopO problems

while retaining the accuracy of CFD simulations that impose accurate boundary conditions, as

is usually the case in ShpO.

161 of 219

6. TOPOLOGY OPTIMIZATION USING THE CUT–CELL METHOD

(a) (b)

(c) (d)

Figure 6.26: Comparison of the SPTopO and the r–SP flow solutions - Velocity magnitude iso–
areas computed by the (a) SPTopO and (b) r–SP. (c) Flow separation close to the right outlet.
(d) Second flow separation zone appearing only in r–SP solution.

6.4.4 Two Inlet–Two Outlet Case

The two inlet–two outlet TopO case is optimized for two different δ values, Figure 6.27, both

at ReW = 17 and a Vtar = 0.33. This problem has been also studied in [37, 148, 200] and,

depending on δ, different fluid path layouts emerge, demonstrating TopO’s flexibility in find-

ing topologically different designs. Since δ describes the width–to–height ratio, there exists a

sufficiently small δ value for which the two fluid paths favor a short and wide duct and remain

separate. For larger δ values, it is favorable to merge the two fluid paths to create a joined

duct. CCTopO is performed for δ = 1 in which the two flow paths remain separate, and for

δ = 1.5 in which they merge into a joined duct.

In Figure 6.28, the evolution of the objective and constraint functions are shown for both

cases. The stopping criterion is reached after 120 (δ = 1) and 47 (δ = 1.5) cycles, while in

162 of 219

6.4 Topology Optimization using the Cut–Cell Method

Figure 6.27: Two Inlet–Two Outlet case problem description - A fluid path is sought connecting
two inlets positioned at the west side with two outlets positioned at the west side. Based on the
distance between the inlets and outlets δ, topologically different optimized solutions arise. The
highlighted area specifies the domain in which the nodal material field αm is allowed to change
during the optimization and defines the design domain ΩD. Dimensions are in m.

both cases the area constraint is satisfied gV ≤ 10−5. In the δ = 1 case a larger number of

optimization cycles is required, since the solid boundaries between the inlets need to merge

with those between the outlets to form two separate fluid paths [148], Figure 6.29b. This is

also reflected upon the total optimization time which amounts to approximately 30/16 hours

on 24 AMD EPYC 7401 (2.0 Ghz) processors .

In Figure 6.29, different snapshots of the velocity magnitude iso–areas for the δ = 1 TopO are

shown, with its initial infeasible solution in Figure 6.29a. Figure 6.29b presents an intermediate

solution, in which the solid boundaries between inlets and outlets constrict toward the center

to merge and, then, separate into two distinct fluid paths leading to the optimized solution of

Figure 6.29c.

Figure 6.30 shows the corresponding snapshots of the velocity magnitude iso–areas for the

merging TopO case (δ = 1.5). The initially fully fluid design domain is shown in Figure 6.30a.

The fluid domain is constricted due to the area constraint, leading to the merged, intermediate

flow paths shown in Figure 6.30b. Even though they correspond to an infeasible solution,

the difference with the separating case is obvious. Finally, a feasible, symmetric design is

obtained after 47 optimization cycles, Figure 6.30c. Both optimized designs presented, match

those of [37, 148, 200]. The computed objective function values were Jδ=1 = 1.82Wm and

Jδ=1.5 = 1.84Wm .

163 of 219

6. TOPOLOGY OPTIMIZATION USING THE CUT–CELL METHOD

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100 120
−0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

O
bj

ec
ti

ve
 F

u
n

ct
io

n
 [

W
/m

]

A
re

a
C

on
st

ra
in

t

Optimization Cycle

J (δ=1)
gV(δ=1)
J (δ=1.5)
gV(δ=1.5)

Figure 6.28: CCTopO – Two Inlet–Two Outlet case, ReW = 17, dr = 4 - Evolution of objective
and constraint functions for two different δ values.

(a) (b) (c)

Figure 6.29: CCTopO – Two Inlet–Two Outlet case, ReW = 17, δ = 1 - Velocity magnitude
iso–areas of different optimization cycles. Plots correspond to (a) initial, (b) cycle 30, and (c) final
cycle.

(a) (b) (c)

Figure 6.30: CCTopO – Two Inlet–Two Outlet case, ReW = 17, δ = 1.5 - Velocity magnitude
iso–areas of different optimization cycles. Plots correspond to (a) initial, (b) cycle 25, and (c) final
cycle.

164 of 219

6.4 Topology Optimization using the Cut–Cell Method

6.4.5 3D Manifold TopO

Figure 6.31: 3D manifold case problem description - A fluid path is sought connecting a single
inlet positioned at the top with four symmetrically place outlets along the z–plane. The inlet and
outlet channels are excluded from the design space, thus the αm field is allowed to change only in
the highlighted cubic domain, ΩD. Dimensions are in m.

In this section, the CCTopO method is used for the design of a 3D manifold. The case

consists of a single inlet at the top and four symmetrically placed outlets on the z = 0 plane,

Figure 6.31. The Reynolds number is ReD = 4, based on the inlet diameter D. The problem

is setup with Vtar = 0.05 target, corresponding to Ωf
∗

ΩD
= 0.2. The initial design domain ΩD is

defined as fluid. The background Ω mesh consists of approximately 2.2M nodes, resulting in

an initial Ωf mesh with approximately 250K cells.

In Figure 6.32, the evolution of the objective and constraint functions are shown for the

3D manifold case. Due to the increased size of the TopO problem, more than two million

design variables and relatively costly flow solutions, a more aggressive GCMMA algorithm

is set up so that a reduced number of optimization cycles is obtained. This translated to

an optimization time of about 5 days on 48 AMD EPYC 7401 (2.0 Ghz) processors . The

optimization termination criteria was met after 29 cycles with JPt
= 3.49 × 10−3W and a

gV≈ O
(
10−6), obtaining the design shown in Figures 6.33 and 6.34 that show different views

on the obtained flow solution.

In Figure 6.33, the isometric view is presented, showing the velocity field inside the optimized

165 of 219

6. TOPOLOGY OPTIMIZATION USING THE CUT–CELL METHOD

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 0.011

 0.012

 0 5 10 15 20 25 30
−0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07
O

bj
ec

ti
ve

 F
u

n
ct

io
n

 [
W

]

V
ol

u
m

e
C

on
st

ra
in

t

Optimization Cycle

J
gV

Figure 6.32: CCTopO – 3D manifold case, ReD = 4 - Evolution of objective and constraint
functions for min JPt .

shape, while in Figure 6.34 several pressure iso–surfaces are shown, colored by the velocity field

revealing the symmetry of the optimized design. A closer look at the evolution of JPt
and

gV , Figure 6.32, shows a similar evolution with the 2D cases. The initial solution corresponds

to an infeasible design with quite a low JPt value, as ΩD (Figure 6.31) was initialized as

fluid. Similarly to the previous cases, the violation of the volume constraints leads to increased

JPt
values by restricting the fluid domain. Once it is no more violated, GCMMA focuses on

minimizing JPt
by obtaining continuously better–suited feasible designs. This was achieved by

eliminating stagnated flow areas by allocating their ’effective’ volume near the inlet and outlet

positions, resulting in the obtained tuboid design. In the optimized design, the flow is attached

and equally distributed to the four outlets.

Figure 6.33 shows the velocity magnitude iso–areas of the optimized design along the x = 0.5

and y = 0.5 planes, indicating the absence of flow recirculation. Figures 6.35a and 6.35b present

xy and yz planar views of the optimized design showing the resulting fluid path connections.

In Figure 6.36 the solid boundary of the optimized design at the bottom side is shown, with

a close–up view of some solid faces created during the CC mesh generation. Each triangle

corresponds to a solid face on which no–slip boundary conditions are imposed.

166 of 219

6.4 Topology Optimization using the Cut–Cell Method

Figure 6.33: CCTopO – 3D manifold case, ReD = 4 - Velocity magnitude iso–areas of the
optimized manifold along the x = 0.5, y = 0.5 planes.

Figure 6.34: CCTopO – 3D manifold case, ReD = 4 - Pressure iso–surfaces [0.02, 0.07, 0.16] of
the optimized manifold colored by the velocity magnitude, showing a symmetric flow solution.

167 of 219

6. TOPOLOGY OPTIMIZATION USING THE CUT–CELL METHOD

(a) (b)

Figure 6.35: CCTopO – 3D manifold case, ReD = 4 - Different views of the 3D manifold
optimized design. View normal to the (a) xy−plane and (b) yz−plane for the optimized design
with selected velocity streamlines, showing the symmetrical solution.

Figure 6.36: CCTopO – 3D manifold case, ReD = 4 - Bottom view of the xy−plane with a
close–up on some solid faces of the generated CC mesh during the last optimization cycle.

168 of 219

6.5 Concluding Remarks

6.5 Concluding Remarks

In this chapter, a new CC–based TopO algorithm that reconstructs the sought solid boundaries

and enforces accurate boundary conditions during the optimization, was presented. First, a

comparative study of the accuracy of flow solutions obtained using the Brinkman and the

CC method revealed that the Brinkman method’s ability to approximate solid walls effects is

significantly influenced by both the penalization parameter and the existence of intermediate

porosity values.

The new TopO algorithm relies on an auxiliary background field that defines the design

variables of the optimization. The boundary indicator field, which implicitly describes the fluid,

solid regions and their interface, can be computed using the said field in each optimization cycle.

This enables topological changes to occur and circumvents the need of numerically solving a

HJE. To create the CC mesh based on the boundary indicator field, Cartesian cells that have

part of the interface immersed within them are cut, have their fluid part isolated and in turn,

create CCs along the solid walls. However, since no geometry is explicitly defined, the CC mesh

generation method presented in Chapter 2 needed to be modified accordingly.

In the context of gradient–based TopO, the algorithm is supported by the flow solver de-

scribed in Section 3.1 and the continuous adjoint method presented in Chapter 4. TopO dictates

the use of constraints; this was realized by the GCMMA algorithm that proved to be very ef-

ficient despite the large number of design variables. CCTopO was compared with SPTopO, a

method that avoids the reconstruction of solid walls, to assess its performance. To make fair

comparisons, a porosity distribution post–processing tool (Appendix D) that extract the solid

walls and re–evaluate the optimized solutions on a body–conforming mesh was developed. In

the studied examples, the higher flow solution accuracy of CCTopO, compared to SPTopO,

translated into finding better performing designs, at the expense of an increased computational

cost. For example, in the Single Inlet–Single Outlet Case SPTopO and CCTopO require 130

and 200 minutes, respectively.

Overall, CCTopO provides additional flexibility in terms of considered design criteria and

extensions. The solid boundary reconstruction using the CC method can enable design criteria,

defined specifically on solid walls, or the inclusion of turbulence, where near–wall effects are

of the essence, to be better considered. The crisp fluid–solid interface can also aid to further

extend TopO in multidisciplinary applications such as aero–structural, conjugate heat transfer

problems or any other problem with two disciplines strongly interacting along their interface.

169 of 219

6. TOPOLOGY OPTIMIZATION USING THE CUT–CELL METHOD

170 of 219

Chapter 7

Closure

This PhD thesis aimed at the development of a highly automated numerical framework

for the analysis, and shape and topology optimization of aero/hydrodynamic bodies uti-

lizing Cartesian meshes, and more precisely, the Cut-Cell (CC) method. Research focused on

extending the scope of a baseline in–house CC software to areas in which the application of

the CC method is challenging but also rewarding. To this end, the development of numerical

methods that allow for the simulation of two–phase and turbulent flows exhibiting cavitation

and numerical optimization tools based on the continuous adjoint method has been presented.

Extension to the Reynolds–Averaged Navier–Stokes (RANS) equations was realized using

the standard k − ε model, solved coupled with the mean flow equations, opting for better

stability and convergence properties. Wall closure was achieved via a modified wall function

technique, defined on linelets protruding towards the interior computational domain due to

the irregular wall–normal distances of the first cells near the solid surface. Method’s accuracy

was assessed on 2D single–phase, turbulent flows over a flat plate, wherein comparisons with

experimental and numerical data showed excellent agreement and a curved channel, showing

its ability to compute a smooth skin friction coefficient along the curved surfaces.

The CC method was also developed to enable the simulation of two–phase flows and flows

exhibiting cavitation, using the homogeneous mixture model. This model allows for the sim-

ulation of a wide range of two–phase flows with high–density ratios at a relatively low–cost,

absence of interface momentum exchange terms that are difficult to quantify numerically. Cav-

itating phenomena were introduced using a cavitation model that describes the evaporation

and condensation processes. The flow model was initially validated for inviscid and laminar

flows over isolated hydrofoils exhibiting sheet cavitation. The CC solver was then extended to

171 of 219

7. CLOSURE

turbulent flows, using the implemented linelets technique, and compared with data available in

the literature on 2D and 3D benchmark cases for several cavitation numbers. Overall, a very

good agreement was observed regarding the developed cavity lengths and computed surface

pressure distributions. In addition, the 3D cavitator case showcased the ability of the linelets

technique to accurately model the turbulent boundary layer with a reasonable and affordable

cell–count. The use of the CC method for these types of flows permitted the a–priori mesh

refinement at areas of interest, increasing flow simulation accuracy and simultaneously avoiding

wasting computational resources.

Part of this thesis dealt with the development of numerical optimization tools for the design

of aero/hydrodynamic bodies. This was achieved using a gradient–based method, and more

specifically, the continuous adjoint method that enables the computation of the sought objective

function gradient at an independent, to the number of design variables, cost. Based on relative

work in the PCOpt, the variations of eddy viscosity are incorporated by differentiating the

implemented turbulence model. n addition, the CC–specific wall closure technique, based on

linelets, was differentiated to provide the adjoint counterpart, viz. the adjoint linelets. In

contrast to the work presented in Papoutsis-Kiachagias [191], Zymaris et al. [283], wherein

the adjoint counterpart acts directly upon the boundary finite volumes, the adjoint linelets

introduce source terms at the forcing points that lie in the interior of the domain and have

zero distance variation. With regards to the development of the two–phase adjoint formulation,

the homogeneous mixture assumption results in mixture density and molecular viscosity being

expressed w.r.t. the liquid volume fraction, introducing additional terms to the Field Adjoint

Equations (FAEs) and Adjoint Boundary Conditions (ABCs). The extra unknown flow variable

(al) gives rise to an additional adjoint variable (ψ5) and PDE. Furthermore, the cavitation model

needed also to be differentiated to incorporate it in the adjoint problem, resulting in new source

terms. The development of a two–phase flow model, and its adjoint, provided flexibility and

enabled the investigation and optimization using a two–phase specific objective function (JV).

The above components were vital to obtain a consistent adjoint problem, capable of accurately

computing objective function gradients.

The optimization problems studied in this thesis are two–fold. First, the developed contin-

uous adjoint method was integrated into a Shape Optimization (ShpO) framework to optimize

baseline shapes using the CC method. In the ShpO runs performed, the objective function

showed good convergence, optimizing the baseline shape in all cases presented. For exam-

ple, in the single–phase turbulent flows, the optimized design of the initially straight channel

172 of 219

7.1 Novel Contributions

has 40% reduced volume–averaged total pressure losses, while the NACA 0012 case targeting

lift maximization led to a design that induces 10× more lift. These cases also illustrated the

main benefit of introducing the CC method to a ShpO framework: the ability to perform large

displacements. Regarding two–phase ShpO runs, the cases targeting the minimization of the

vapour present in the domain lead to practically cavitation–free designs. Simultaneously, they

showed that lift force evolution follows a similar trend with the presence of vapour in each

new design. This trend, however, is not observed when the maximization of the lift force is

targeted. The second part dealt with the development of a Topology Optimization (TopO)

framework, fundamentally built on the ability of the CC method to enforce accurate bound-

ary conditions during the optimization process, without mass and momentum loss. Thus, a

TopO problem was formulated based on design variables that can describe the fluid–solid in-

terfaces and allows for topological changes to occur. Several observations were made during

the comparisons between the porosity– and CC–based TopO methods. Firstly, it was made

clear that porosity–based optimized designs need be re–evaluated on body–fitted meshes to

accurately compute the concerned quantity of interest. Therefore, the developed utility tool

that can re–evaluate porosity–based optimized solutions and provide an STL description of the

solid boundaries can single–handedly be of great value. Secondly, these comparisons showed

that CCTopO could provide better–performing designs with reduced, by approximately 8%

(Single Inlet–Single Outlet) and 2% (Single Inlet–Two Outlet), objective function values, when

compared to the re–evaluated ones at the expense of additional computational cost. In the

Single Inlet–Two Outlet case, the obtained design is more inline with results obtained after

a ShpO is performed starting from the topologically porosity–optimized design. Furthermore,

CCTopO was successfully applied on benchmark TopO problems demonstrating its versatil-

ity and a large–scale 3D case that featured approximately 2.2M design variables. Hence, the

CC–based TopO was shown to be a versatile competitor/alternative of porosity–based method

that can also further help extend TopO applications to problems where near–walls effects are

of paramount importance.

7.1 Novel Contributions

Novel contributions of this PhD thesis are:

• The simulation of two–phase flows that feature cavitation effects is modeled using a TEM

with a cavitation model, based on a homogeneous mixture. The derivation and devel-

opment of the continuous adjoint equations for 2D and 3D problems is novel and was

173 of 219

7. CLOSURE

presented for the first time on isolated hydrofoils [266]. Furthermore, its implementation

using the CC method may also be considered new.

• The development of the continuous adjoint to the k − ε turbulence model was primarily

based on its incompressible formulation, avoiding underlying density or viscosity varia-

tions. The presented development includes these variations, that are directly expressed

w.r.t. the liquid volume fraction due to their closed–form expression.

• Another novel contribution, arising from the differentiation of the turbulence model,

was the development of the adjoint linelet technique (the analogous to the adjoint wall–

functions concept for body–fitted formulations [191, 283]) that were implemented for the

CC method.

• The development of a highly accurate CC–based TopO method that reconstructs the

fluid–solid interface without the need of solving a Hamilton–Jacobi Equation (HJE) is

novel and was presented for the first time [267].

• A CC–based utility tool that can post–process optimized porosity fields to provide re–

evaluations or STL descriptions of the resulting body surface.

Publications and Conference Presentations

• Vrionis, Y.P., Samouchos, K.D. & Giannakoglou, K.C. (2021). Topology opti-

mization in fluid mechanics using continuous adjoint and the cut-cell method. Computers

& Mathematics with Applications, 97, 286–297

• Vrionis, Y.P., Samouchos, K.D. & Giannakoglou, K.C. (2021). The continuous

adjoint cut-cell method for shape optimization in cavitating flows. Computers & Fluids,

224, 104974

• Vrionis, Y.P., Samouchos, K.D. & Giannakoglou, K.C. (2019). Implementation

of a conservative cut–cell method for the simulation of two–phase cavitating flows. In 10th

International Conference on Computational Methods (ICCM2019), 440–452, Singapore

7.2 Future Work

The CC method is seen to have significant strengths and potency that can be utilized to

provide sophisticated, versatile, general–purpose CFD and numerical optimization tools. In the

174 of 219

7.2 Future Work

following, some areas that may be investigated further, based on the experience of the current

work, are listed below:

• The extension to different high Reynolds turbulence models, such as the Spalart–Allmaras,

that has seen extensive application in PCOpt, or other k–family turbulence models could

be pursued. On a related note, the use of more sophisticated wall models, such as the

ODE–based one implemented in Berger & Aftosmis [32], that can further alleviate wall

functions limitations could be implemented.

• The extension to unsteady cavitating phenomena could exploit the benefits of the CC

method (such as cloud cavitation, being an unsteady phenomenon). The CC method uti-

lizing flow adaptation techniques could provide a versatile tool to study such phenomena.

• The extension to unsteady two–phase/turbulent flows using the CC method with moving

boundaries, developed in a recently accomplished thesis [214], could be an engaging area of

research. The study of such complex applications could further showcase the capabilities

of the developed software.

• The extension of TopO methods to turbulent flows is also challenging due to the difficulty

of porosity–based methods to capture near–wall effects. The application of CCTopO to

turbulent flows could be pursued.

• Building on the last suggestion, the application of CCTopO to two–phase flows, with

different objective functions, expressed directly at the solid walls, or multidisciplinary

applications such as conjugate heat transfer problems [83] or FSI should be formulated.

• Based on relative work in PCOpt [255], the integration of shape parameterization tech-

niques for 3D problems, such as NURBS surfaces, can allow for the ShpO of parameterized

3D applications that ensure the smoothness of the optimized design.

• The CC software could also benefit from simulation time speedup. These could arise

from geometric multigrid methods that can accelerate flow solution convergence rates or

by programming the corresponding solvers on Graphics Processing Units (GPUs). The

existing experience at PCOpt could aid in materializing the latter more easily [255].

175 of 219

7. CLOSURE

176 of 219

Appendix A

Inviscid Jacobian and
Eigenvectors

A.1 Single–Phase Governing Equations

Considering the system of equation for 3D single–phase flows of incompressible fluids in Eq. (3.4),

with U =
[
p̆ u1 u2 u3

]T and f Ij =
[
uj u1uj + δ1

j p̆ u2uj + δ2
j p̆ u3uj + δ3

j p̆
]T .

The inviscid Jacobian matrix is obtained as A1ϕ
j = ∂fI

j

∂U , leading to

Aj
1ϕ =


0 δ1

j δ2
j δ3

j

δ1
j uj + u1δ

1
j u1δ

2
j u1δ

3
j

δ2
j u2δ

1
j uj + u2δ

2
j u2δ

3
j

δ3
j u3δ

1
j u3δ

2
j uj + u3δ

3
j

 (A.1)

The right and left eigenvector matrices M , M−1 that diagonalize the Jacobian matrix

AΓ
jnj = MΛM−1 are given by

M1ϕ =



0 0 c −c

tI1 tII1 n1 + u1λ3
β2 n1 + u1λ4

β2

tI2 tII2 n2 + u2λ3
β2 n2 + u2λ4

β2

tI3 tII3 n3 + u3λ3
β2 n3 + u3λ4

β2

 , (A.2)

[
M−1]1ϕ = 1

c2



w · n β2tI1 + unw1 β2tI2 + unw2 β2tI3 + unw3

−v · n β2tII1 − unv1 β2tII2 − unv2 β2tII3 − unv3

1
2 (c− un) β2

2 n1
β2

2 n2
β2

2 n3

1
2 (−c− un) β2

2 n1
β2

2 n2
β2

2 n3

 (A.3)

177 of 219

A. INVISCID JACOBIAN AND EIGENVECTORS

where λ3,4 = un ± c, c =
√
u2
n + β2njnj is the artificial speed of sound, v = t̂I × u, and

w = t̂II × u.

The unit vectors t̂I , t̂II in Eqs. (A.2), (A.3) satisfy

t̂I×t̂II = n̂ (A.4)

A.2 Two–Phase Governing Equations

For the system of equation for 3D two–phase flows of incompressible constituents in Eq. (3.70),

with U =
[
p u1 u2 u3 al

]T and f Ij =
[
uj ϱmu1uj + δ1

j p ϱmu2uj + δ2
j p ϱmu3uj + δ3

j p aluj
]T ,

the inviscid Jacobian matrix A2ϕ
j = ∂fI

j

∂U is given as

Aj
2ϕ =


0 δ1

j δ2
j δ3

j 0
δ1
j ϱm

(
uj + u1δ

1
j

)
ϱmu1δ

2
j ϱmu1δ

3
j u1uj∆ϱ

δ2
j ϱmu2δ

1
j ϱm

(
uj + u2δ

2
j

)
ϱmu2δ

3
j u2uj∆ϱ

δ3
j ϱmu3δ

1
j ϱmu3δ

2
j ϱm

(
uj + u3δ

3
j

)
u3uj∆ϱ

0 δ1
jal δ2

jal δ3
jal uj

 (A.5)

where ∆ϱ = ρl − ρv and subscripts m, l, v refer to the mixture, liquid and vapour, respectively.

The corresponding right and left eigenvector matrices are obtained using

M2ϕ =

[K]−1 [
M1ϕ] 0

0 1

 , [
M2ϕ]−1 =

[M1ϕ]−1 [
K
]

0

0 1

 (A.6)

where

K =
[1
ρm

0
0 I4×4

]
(A.7)

178 of 219

Appendix B

Adjoint Wall Functions and
Linelets in the Cut–Cell Method

In this Appendix, the necessary development of the boundary term containing the derivative

of the stress tensor w.r.t. the design variables is presented, Eq. (4.38). In the governing equa-

tions, this term is computed using the wall function formulation presented in Section 3.2 and,

therefore, needs to be differentiated accordingly to formulate the adjoint problem.

To proceed with the development of the said term, several variables, auxiliary projection

matrices and total differentials must be defined specifically for the wall functions method,

as implemented in the CC method. In detail, the velocity vector at the forcing points is

extrapolated using the Taylor expansion from the cell center of the Cartesian cell it lies in, i.e.

uFk = uCk + ∂uk

∂xj
|C
(
xFj − xCj

)
with superscript C referring to the Cartesian cell and F to the

forcing point.

The projection of the forcing point velocity vector uF along the solid wall tangential direction

t̂ is computed by decomposing it into parallel and perpendicular, to the solid wall, vector

components uF = u∥
F + u⊥

F and subtracting its perpendicular vector component, i.e.

u∥
F
j

= uFj −
(
uFk n̂k

)
n̂j =

(
δkj − n̂kn̂j

)
uFj = PkjuFj (B.1)

t̂j =
u∥
F
j√

u∥
F
k u∥

F
k

(B.2)

Thus, the (scalar) component of uF with respect to t̂ provides the tangential velocity ut, which

179 of 219

B. ADJOINT WALL FUNCTIONS AND LINELETS IN THE CUT–CELL
METHOD

can be equivalently computed using

ut = uFj t̂j ≡ uFj
u||j

√
u||ku||k

≡√u||ku||k (B.3)

Aiming to differentiate the law of the wall, the total differentials of Eqs. (B.3), (B.2), and (B.1)

are sought. Since ut = ut
(
uF , t̂

)
, t̂ = t̂

(
u∥
F
)

and u∥
F = u∥

F
(
uF , n̂

)
, their total differentials

respectively yield

δut = δuFj t̂j + uFj δt̂j (B.4)

δt̂i = 1√
u∥
F
j
u∥
F
j

(
δij − t̂it̂j

)
δu∥

F
j

= Mijδu∥
F
j

(B.5)

δu∥
F
i

=
(
δij − n̂in̂j

)
δuFj −

(
uFk n̂kδ

i
j + n̂iu

F
j

)
δn̂j = PijδuFj −Qijδn̂j (B.6)

The total differential of the tangential velocity can further be expanded by combining the above

equations and, after some rearrangement, leads to

δut =
(
t̂k + uFi MijPjk

)
δuFk − uFi MijQjkδn̂k (B.7)

The final step requires the differentiation of the friction velocity expression and, thus, the law

of the wall. This is carried out by first identifying its independent variables. Reverting to

Eqs. (3.44) and (B.7), the friction velocity can be written as

uτ = f
(
u+, y+) = f

(
ut, νm, d

F
)

= f
(
ut, νm, d

F
)

= f
(
uF , n̂, al, dF

)
(B.8)

where u+ = ut

uτ
, y+ = dF uτ

ν and νm = µm

ρm
is introduced to incorporate two–phase cases.

However, in the CC method, the forcing points are positioned at a constant distance from the

solid wall to create the linelets, axiomatically implying that δdF = 0. Thus, the total differential

of the friction velocity gives

δuτ = ∂f

∂ut

∂ut
∂uFj

δuFj + ∂f

∂ut

∂ut
∂n̂j

δn̂j + ∂f

∂νm

1
ϱm

(∆µ− νm∆ϱ) δal (B.9)

The partial derivatives of f depend on the formula used to correlate u+ with y+. In the

implemented method, the SA model is used, Eq. (3.44), solved using Eq. (3.47). The partial

derivatives are obtained as

∂f

∂ut
= 1
Gy+ + u+ (B.10)

180 of 219

∂f

∂νm
= (y+)2

dF
G

Gy+ + u+ (B.11)

with

G =∂u+

∂y+ = c3b1 + 2c1 (y+ + a1)
(y+ + a1)2 + b2

1
+ c4b2 − 2c2 (y+ + a2)

(y+ + a2)2 + b2
2

(B.12)

The wall viscous flux for the momentum equations is computed using the wall function technique

as

t̂iτij n̂j = −ϱmu2
τ (B.13)

The corresponding term appearing at the solid walls (SW) can be re–written by defining the

adjoint velocity Ψk = ψk+1, k = 1, 2, 3 as

SIWF := −
∫
SW

ψk+1
δ (τkj n̂j)
δbi

dS = −
∫
SW

(
Ψnn̂k + Ψtt̂k + Ψz ẑk

) δ (τkj n̂j)
δbi

dS (B.14)

where Ψn = Ψ · n̂, Ψt = Ψ · t̂, Ψz = Ψ · ẑ and ẑ = n̂× t̂. Further expanding each term yields

SIWF =−
∫
SW

Ψn

(
δ (n̂kτkj n̂j)

δbi
− τkj n̂j

δn̂k
δbi

)
dS −

∫
SW

Ψt

(
δ
(
−ϱmu2

τ

)
δbi

− τkj n̂j
δt̂k
δbi

)
dS

−
∫
SW

Ψz

(
δ (ẑkτkj n̂j)

δbi
− τkj n̂j

δẑk
δbi

)
dS

(B.15)

and can further be developed to obtain contributions to the ABCs and SDs as

SIWF =−
∫
SW

Ψn
δ (n̂kτkj n̂j)

δbi
dS −

∫
SW

Ψz
δ (ẑkτkj n̂j)

δbi
dS

+
∫
SW

τkj n̂j

(
Ψn

δn̂k
δbi

+ Ψt
δt̂k
δbi

+ Ψz
δẑk
δbi

)
dS

+
∫
SW

Ψt

(
u2
τ∆ϱδa

F
l

δbi
+ 2uτϱm

δuτ
δbi

)
dS

=−
∫
SW

Ψn
δ (n̂kτkj n̂j)

δbi
dS︸ ︷︷ ︸

ABCs

−
∫
SW

Ψz
δ (ẑkτkj n̂j)

δbi
dS︸ ︷︷ ︸

ABCs

+
∫
SW

τkj n̂j

(
Ψn

δn̂k
δbi

+ Ψt
δt̂k
δbi

+ Ψz
δẑk
δbi

)
dS︸ ︷︷ ︸

SDs

181 of 219

B. ADJOINT WALL FUNCTIONS AND LINELETS IN THE CUT–CELL
METHOD

+
∫
SW

uτΨt

[
uτ∆ϱ+ 2uτ

∂uτ
∂νm

(∆µ− νm∆ϱ)
]
∂aFl
∂bi

dS︸ ︷︷ ︸
ST

−
∫
SW

uτΨt

[
uτ∆ϱ+ 2uτ

∂uτ
∂νm

(∆µ− νm∆ϱ)
]
∂aFl
∂xl

δxl
δbi

dS︸ ︷︷ ︸
SDs

+
∫
SW

BWF

(
t̂k + uFi MijPjk

) ∂uFk
∂bi

dS︸ ︷︷ ︸
ST

−
∫
SW

BWF

(
t̂k + uFi MijPjk

) ∂uFk
∂xl

δxl
δbi

dS︸ ︷︷ ︸
SDs

−
∫
SW

BWFu
F
i MijQjk

δn̂k
δbi

dS︸ ︷︷ ︸
SDs

(B.16)

with BWF = 2uτϱm∂uτ

∂ut
Ψt.

Overall, the differentiation of the wall function technique results in additional source terms

(ST) at the Cartesian cells that encompass the forcing points and SD contributions that are

computed using the geometric derivatives of the boundary face each linelet originates from.

182 of 219

Appendix C

The GCMMA Algorithm

The Method of Moving Asymptotes (MMA) [245], upon which the GCMMA variant is built,

is an iterative method used to solve constrained optimization problems by replacing the ob-

jective and constraint functions at the current iteration point with strictly convex, explicit

approximations and, instead, solves these subproblems. These have more desirable properties,

for instance, the existence of a unique, optimal solution, and can be efficiently solved using

quadratic programming. However, this requires the computation of the objective function Hes-

sian matrix, namely its second–order derivatives, that requires significant computational effort,

especially when a large number of design variables is considered. The Hessian matrix can

be approximated by accumulating gradient information from previous iterations points (SQP

methods). Contrarily, in MMA the objective function curvature approximation is controlled by

introducing lower and upper asymptotes, that are based on the feasible solution space (lower

and upper bounds).

In Figure C.1, several different convex approximations of a univariant objective function

(blue line, f(x)) are depicted, created based on the same iteration point, and, thus, objective

function value and gradient. As observed, the distance between the asymptotes changes the

validity of the approximation near the iteration point and, ultimately, the optimizer behavior.

Larger distances between the asymptotes lead to smaller curvature approximation and, thus,

larger steps. Conversely, smaller distances lead to more conservative behaviors. During the

optimization iterations, the asymptotes position is adjusted to facilitate convergence. For ex-

ample, if stabilization is needed due to objective function oscillations, the asymptotes converge

towards the iteration point, whereas if a slow evolution is observed, more aggressive behavior

is opted by moving them away from it. This concept is illustrated in Figure C.2.

183 of 219

C. THE GCMMA ALGORITHM

-3

-2

-1

 0

 1

 2

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

x

f(x)
 f(x)

~

 f(x)
~

 f(x)

~

 f(x)
~

Figure C.1: MMA method - Example of different convex approximations of the objective function
(blue line). The vertical dashed lines correspond to the corresponding upper and lower asymptotes’
position.

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

x

f(x)
 f(x)

~

Figure C.2: MMA method - Concept of adapting the asymptotes position, based on the conver-
gence behavior of the objective function.

184 of 219

C.1 (GC)MMA Implementation Details

C.1 (GC)MMA Implementation Details

This section describes in brief the basic implementation details regarding the GCMMA [247]

employed to solve constrained optimization problems of the form

min f0(bj), j = 0, ..., N

subject to fi(bj) ≤ 0, i = 1, ...,M

bminj ≤ bj ≤ bmaxj

(C.1)

where f0(b) is the objective function, fi(b) are the M − 1 constraint functions, b the design

variables of size N , and bmax/min their corresponding upper and lower bounds. This form,

however, does not restrict its range of applications, since maximization problems can be treated

by minimizing −f0(b), logical dummy bounds can be the user for unbounded design variables

based on the user intuition, and equality constraints can be satisfied by introducing lower and

upper limits, i.e. −ϵ ≤ fi(b) ≤ ϵ =⇒ fi(b) ≈ 0, where the value of ϵ should be carefully chosen

to avoid convergence stall.

The GCMMA algorithm is a variant of MMA that employs both inner and outer iterations

to solve the constrained optimization problem of Eq. (C.1) by approximating the objective

and constraint functions with certain convex functions f̃(b) and introducing several shadow

parameters (artificial optimization variables). The additional inner iterations, compared to

MMA, are used to further refine approximating functions that can lead to an optimal solution

that violates a constraint or leads to an increase in the objective function, by making a more

conservative approximation. If no violation occurs, the GCMMA is simply reduced to the MMA

algorithm. The GCMMA subproblem reads

min f̃
(k,v)
0 (bj) + a0z +

M∑
i=1

(
ciyi + 1

2diy
2
i

)
, j = 0, ..., N

subject to f̃
(k,v)
i (bj)− aiz − yi ≤ 0, i = 1, ...,M

α
(k)
j ≤ bj ≤ β(k)

j

yi ≥ 0

z ≥ 0.

(C.2)

where k and v denote the outer and inner iteration, and ai, ci, di and z the positive artificial

parameters.

185 of 219

C. THE GCMMA ALGORITHM

The approximating functions f (k,v)
i (bj) are computed as

f̃
(k,v)
i (bj) =

N∑
j=1

(
p

(k,v)
ij

u
(k)
j − bj

+
q

(k,v)
ij

bj − l(k)
j

)
+ r

(k,v)
i , i = 0, 1, ...,M (C.3)

with

p
(k,v)
ij =

(
u

(k)
j − b

(k)
j

)2
[

1.001 ϕ+ + 0.001 ϕ− + ρ
(k,v)
i

bmaxj − bminj

]
(C.4)

q
(k,v)
ij =

(
b

(k)
j − l

(k)
j

)2
[

0.001 ϕ+ + 1.001 ϕ− + ρ
(k,v)
i

bmaxj − bminj

]
(C.5)

r
(k,v)
i = fi

(
b(k)

)
−

N∑
j=1

(
p

(k,v)
ij

u
(k)
j − bj

+
q

(k,v)
ij

bj − l(k)
j

)
(C.6)

ϕ+ = max
(

∂fi
∂bj

(
b(k)

)
, 0
)

(C.7)

ϕ− = max
(
−∂fi
∂bj

(
b(k)

)
, 0
)

(C.8)

The design variables bounds α(k)
j and β

(k)
j and lower and upper asymptotes l(k)

j and u
(k)
j

are updated in each outer iteration k as

α
(k)
j = max

{
bminj , l

(k)
j + 0.1

(
b

(k)
j − l

(k)
j

)
, b

(k)
j − 0.5

(
bmaxj − bminj

)}
(C.9)

β
(k)
j = max

{
bmaxj , u

(k)
j − 0.1

(
u

(k)
j − b

(k)
j

)
, b

(k)
j + 0.5

(
bmaxj − bminj

)}
(C.10)

l
(k)
j =

{
b

(k)
j − 0.5

(
bmaxj − bminj

)
, k < 3,

b
(k)
j − γ

(k)
j

(
bk−1
j − lk−1

j

)
, otherwise

(C.11)

u
(k)
j =

{
b

(k)
j + 0.5

(
bmaxj − bminj

)
, k < 3

b
(k)
j + γ

(k)
j

(
bk−1
j − lk−1

j

)
, otherwise

(C.12)

where

γ
(k)
j =


0.7,

(
b

(k)
j − b

(k−1)
j

)(
b

(k−1)
j − b(k−2)

j

)
< 0,

1.2,
(
b

(k)
j − b

(k−1)
j

)(
b

(k−1)
j − b(k−2)

j

)
> 0,

1, otherwise

(C.13)

Finally, term ρ
(k,v)
i in Eqs. (C.4) and (C.5) is computed during the first inner iteration as

ρ
(k,0)
i = max

0.1
N

N∑
j=1

[(∣∣∣∣∂fi∂bj

(
b(k)

)∣∣∣∣ (bmaxj − bminj

))]
, 10−6

 (C.14)

186 of 219

C.1 (GC)MMA Implementation Details

and subsequently using

ρ
(k,v+1)
i =

{
min

{
1.1
(
ρ

(k,v)
i + δ

(k,v)
i

)
, 10ρ(k,v)

i

}
, δ

(k,v)
i > 0

ρ
(k,v)
i , otherwise

(C.15)

δ
(k,v)
i =

fi

(
b∗(k,v)

)
− f̃i

(
b∗(k,v)

)
d(k) (b∗)(k,v) (C.16)

d(k) (b) =
N∑
j=1


(
u

(k)
j − l

(k)
j

)(
bj − b(k)

j

)2

(
u

(k)
j − bj

)(
bj − l(k)

j

) (
bmaxj − bminj

)
 (C.17)

In each inner iteration, a dual interior point method is employed in which the relaxed

Karush—Kuhn—Tucker (KKT) conditions are solved using a Newton method to obtain the

subproblem optimal solution b∗. The condition to terminate inner iterations is f̃i (b∗) ≥ fi (b∗).

In case this does not hold, δ(k,v)
i ≤ 0 holds (Eq. (C.16)), and, thus, more conservative approxi-

mate functions are computed for the violated cases using the updated ρi value in Eq. (C.3).

Overall, each outer GCMMA iteration requires the computation of a single set of objective

and constraint function gradients, whereas each inner iteration requires the re–evaluation of the

objective and constraint functions. In most cases, a small number of inner iterations is required,

reducing the associated cost. Comparing GCMMA with MMA, the use of inner iterations

results in higher computational cost per objective function gradient evaluation. However, it is

more robust and allows for better adapatation of the asymptotes that usually leads to a faster

convergence.

187 of 219

C. THE GCMMA ALGORITHM

188 of 219

Appendix D

Re–evaluation of the
Porosity–based Optimized
Solutions

This appendix is concerned with the method followed to re–evaluate SPTopO optimized solu-

tions on automatically generated CC meshes. Successful termination of an SPTopO run results

in an optimized porosity field α∗
b that determines the permeability of each cell and, therefore,

the fluid and solid regions. However, it does not define an explicit fluid–solid interface. In

order to re–evaluate the solution, must clearly be defined. Here, the same principle, as with the

CCTopO, is followed to construct the fluid–solid interfaces. Essentially, the optimized porosity

field is mapped onto nodal boundary indicator variables ϕ of a background mesh, and the CC

mesh generation process, Section 6.4, is used to create the CC mesh. Thus, in the following,

the mapping of an arbitrary set of N known data points of the form
{(

x1, α
∗
b1
)
, ...,

(
xN , α∗

bN

)}
onto the M nodal coordinates of a background mesh, denoted as xi, i = 1, ...,M , is presented,

assuming non–coinciding, unordered points of meshes ({x1, ...,xN} ≠ {x, ...,xM}).

The interpolated nodal porosity values are computed using Shepard’s Inverse Distance

Weighting (IDW) approach [229] with only the K nearest neighbors that lie within an r–

Sphere, to avoid computing pairwise distances between the N known data points and M nodal

coordinates. The porosity value at the nodal coordinate is, thus, computed as

α∗
b(xm) =


∑K

k
wkα

∗
b k∑K

k
wk

d (xm,xk) ≤ R

α∗
bk, d (xm,xk) ≤ ϵ

, wk =
(
R− d (xm,xk)
R d (xm,xk)

)2
(D.1)

189 of 219

D. RE–EVALUATION OF THE POROSITY–BASED OPTIMIZED
SOLUTIONS

where ϵ is a user–defined tolerance that assumes the two points coincide and R the r–sphere

radius.

Eq. (D.1) requires performing a k–Nearest Neighbors Search (k–NNS) for each node to

find the data points that lie within the specified r–sphere. This is efficiently achieved using a

k−d(imensional) tree [30] that creates cloud points of data points lying in close proximity∗. As

such, the nearest neighbors of each node are focused on a small subset of the entire data point

leading to very fast searches. Then, Eq. (D.1) can be used to compute the optimized porosity

values at each node of the background mesh. What remains is mapping the nodal porosity

values to boundary indicator variables (using Eqs. (6.11), (6.12)) to compute the intersection

points, create the CCs and solve the governing equations on a body–fitted mesh. This process is

identical to the one described in Section 6.3. The interpolation and mapping steps can massively

be parallelized to accelerate the entire process. In the current implementation, this is achieved

via OpenMP directives.

Algorithms 1 and 2 present the main aspects involved with creating the k − d tree and

the subsequent IDW interpolations of the data set to the nodal coordinates of the background

mesh. In more detail, the k− d tree is generated using the data points, having been associated

with an index list. On each level, the domain splits into two half–spaces in alternate directions

based on the average value of the included points, i.e. on level 1, the space splits along the

x–axis, on level 2, along the y–axis, etc. On each level, the index list size splits in half and is

recursively appointed to a sub–node, until a limit is reached. In the current implementation, a

limit of 10 points is found to be adequate to avoid excessive tree searches in neighboring leaf

nodes. However, this number depends on the resolution of the data points, background mesh

and the prescribed radius. With the computed tree data structure, fast proximity searches

are performed by traversing the tree nodes and comparing their average positions. Then, the

leaf nodes that have part of the r–sphere encompassed within them are retained. At the final

step, the distances of the unknown point are computed and stored to be used for the IDW

interpolation of the nodal porosity values.

∗In Section 6.3 a k–NNS is also performed. However, in that case, an Octree data structure is available to
quickly traverse and find the candidate neighboring nodes.

190 of 219

Algorithm 1: k − d tree construction
Input: list of points pointList, list of indexes idxList, int depth
Output: list of nodes nodeList
Global: k, limit

1 Function kdtree(pointList, idxList, depth)
2 // if the points in the list are less than the limit create a leafNode
3 if idxList.size() < limit then
4 return leafNode(idxList)
5 else
6 // find axis to split half-space
7 axis ← depth mod k
8 // compute average of points to split
9 x ← computeAveragePositionOfPoints(idxList)

10 // find points on left and right half-space
11 leftPointsIdxList ←(indexes of points in pointList < x[axis])
12 rightPointsIdxList ←(indexes of points in pointList > x[axis])
13 // create splitNode and build subtree
14 splitNode.position ← x
15 splitNode.leftChild ← kdtree(pointList, leftPointsIdxList, depth+1)
16 splitNode.rightChild ← kdtree(pointList, rightPointsIdxList, depth+1)
17 return splitNode
18 end
19 end

Algorithm 2: Nodal Porosity computation
Input: list of nodes treeList, list of tuples dataPoints, list of points pList, value r
Output: list of tuples poroList

1 Function computeNodalPorosity(treeList, dataPoints, pList, r)
2 do in parallel
3 for x ∈ pList do
4 // traverse the tree to find a leafNodes that include part of the r-sphere
5 leafList ← kdtreeSearch(r, treeList, x)
6 // compute and store distances of dataPoints in leafNodes
7 for n ∈ leafList do dList ← computeDistances(leafList, dataPoints, x)
8 // find the points of leafNodes that are inside the r-sphere
9 idxInRadiusList ← idxOfPointsInRadius(r, dList, leafList, x)

10 //interpolate porosity values at the unknown locations x
11 // IDW weights are computed based on dList (x is not needed)
12 poroInterpolated ← interpolateIDW(r, idxInRadiusList, dList, dataPoints)
13 // create pairs of (x, a) and add to list
14 poroList ← addToList(x, poroInterpolated)
15 end
16 end
17 return poroList
18 end

191 of 219

D. RE–EVALUATION OF THE POROSITY–BASED OPTIMIZED
SOLUTIONS

192 of 219

Bibliography

[1] Abassi, W., Aloui, F., Ben Nasrallah, S., Keirsbulck, L. & Legrand, J. (2014).

Flow behaviour around square and circular obstacles in 2D and 3D configurations using

Lattice Boltzmann Method. In Fluids Engineering Division Summer Meeting, vol. 46223,

V01BT14A004, American Society of Mechanical Engineers, Chicago, Illinois, U.S.A.

[2] Acosta, A.J. & Hamaguchi, H. (1967). Cavitation inception on the ITTC standard

head form. Tech. Rep. E-149.1, California Institute of Technology.

[3] Aftosmis, M.J., Gaitonde, D. & Tavares, T.S. (1994). On the accuracy, stability,

and monotonicity of various reconstruction algorithms for unstructured meshes. AIAA

Paper 94-0415 .

[4] Aftosmis, M.J., Berger, M.J. & Melton, J.E. (1998). Adaptive Cartesian mesh

generation. Handbook of Mesh Generation (Contributed Chapter). CRC Press. ISBN

9780849326875.

[5] Aftosmis, M.J., Berger, M.J. & Melton, J.E. (1998). Robust and efficient Cartesian

mesh generation for component-based geometry. AIAA Journal, 36, 952–960.

[6] Ahuja, V., Hosangadi, A. & Arunajatesan, S. (2001). Simulations of cavitating

flows using hybrid unstructured meshes. Journal of Fluids Engineering, 123, 331–340.

[7] Alexias, P. & Giannakoglou, K.C. (2020). Optimization of a static mixing device

using the continuous adjoint to a two-phase mixing model. Optimization and Engineering,

21, 631–650.

[8] Allmaras, S.R. & Johnson, F.T. (2012). Modifications and clarifications for the im-

plementation of the Spalart–Allmaras turbulence model. In 7th International Conference

on Computational Fluid Dynamics (ICCFD7), 1–11, Big Island, Hawai, U.S.A.

193 of 219

BIBLIOGRAPHY

[9] Aluru, S. & Sevilgen, F. (1997). Parallel domain decomposition and load balanc-

ing using space-filling curves. In Fourth International Conference on High-Performance

Computing, 230–235, Bangalore, India.

[10] Amstutz, S. & Andrä, H. (2006). A new algorithm for topology optimization using a

level-set method. Journal of Computational Physics, 216, 573–588.

[11] Anagnostopoulos, J. (2007). A Cartesian grid method for the simulation of flows in

complex geometries. In 3rd International Conference on Adaptive Modeling and Simula-

tion, ADMOS , Göteborg, Sweden.

[12] Anagnostopoulos, J.S. (2003). Discretization of transport equations on 2D Cartesian

unstructured grids using data from remote cells for the convection terms. International

Journal for Numerical Methods in Fluids, 42, 297–321.

[13] Anderson, W.K. & Bonhaus, D.L. (1999). Airfoil design on unstructured grids for

turbulent flows. AIAA Journal, 37, 185–191.

[14] Anderson, W.K. & Venkatakrishnan, V. (1999). Aerodynamic design optimization

on unstructured grids with a continuous adjoint formulation. Computers & Fluids, 28,

443–480.

[15] Anderson, W.K., Newman, J.C., Whitfield, D.L. & Nielsen, E.J. (2001). Sen-

sitivity analysis for Navier-Stokes equations on unstructured meshes using complex vari-

ables. AIAA Journal, 39, 56–63.

[16] Andreasen, C.S., Elingaard, M.O. & Aage, N. (2020). Level set topology and shape

optimization by density methods using cut elements with length scale control. Structural

and Multidisciplinary Optimization, 62, 685–707.

[17] Anevlavi, D. & Belibassakis, K. (2021). An adjoint optimization prediction method

for partially cavitating hydrofoils. Journal of Marine Science and Engineering, 9.

[18] Angot, P., Bruneau, C.H. & Fabrie, P. (1999). A penalization method to take into

account obstacles in incompressible viscous flows. Numerische Mathematik, 81, 497–520.

[19] Argonne National Laboratory Computer Science Mathematics Division and

Rice University Center for Research on Parallel Computation (ADIFOR

Homepage). https://www.mcs.anl.gov/research/projects/adifor/.

194 of 219

https://www.mcs.anl.gov/research/projects/adifor/

BIBLIOGRAPHY

[20] Asnaghi, A., Feymark, A. & Bensow, R. (2017). Improvement of cavitation mass

transfer modeling based on local flow properties. International Journal of Multiphase

Flow, 93, 142–157.

[21] Asouti, V., Zymaris, A., Papadimitriou, D. & Giannakoglou, K. (2008). Con-

tinuous and discrete adjoint approaches for aerodynamic shape optimization with low

Mach number preconditioning. International Journal for Numerical Methods in Fluids,

57, 1485–1504.

[22] Asouti, V.G. (2009). Aerodynamic analysis and design methods at high and low speed

flows, on multiprocessor platforms. Ph.D. Thesis, National Technical University of Athens.

[23] Bai, W., Mingham, C., Causon, D. & Qian, L. (2016). Detached eddy simulation of

turbulent flow around square and circular cylinders on Cartesian cut cells. Ocean Engi-

neering, 117, 1–14.

[24] Baker, T.J. (2005). Mesh generation: Art or science? Progress in Aerospace Sciences,

41, 29–63.

[25] Barth, T. (1993). Recent developments in high order k-exact reconstruction on unstruc-

tured meshes. In 31st Aerospace Sciences Meeting, 668, Reno, Nevada, U.S.A.

[26] Barth, T. (2003). Numerical methods and error estimation for conservation laws on

structured and unstructured meshes. Tech. Rep., VKI Computational Fluid Dynamics

Lecture Series.

[27] Bendsøe, M.P. & Kikuchi, N. (1988). Generating optimal topologies in structural

design using a homogenization method. Computer Methods in Applied Mechanics and

Engineering, 71, 197–224.

[28] Bendsøe, M.P. & Sigmund, O. (2011). Topology optimization: Theory, methods, and

applications. Springer, Berlin, Heidelberg. ISBN 9783642076985.

[29] Bennett, W., Nikiforakis, N. & Klein, R. (2018). A moving boundary flux stabi-

lization method for Cartesian cut-cell grids using directional operator splitting. Journal

of Computational Physics, 368, 333–358.

[30] Bentley, J.L. (1975). Multidimensional binary search trees used for associative search-

ing. Communications of the ACM , 18, 509–517.

195 of 219

BIBLIOGRAPHY

[31] Berger, M. & Aftosmis, M. (2012). Progress towards a Cartesian cut-cell method for

viscous compressible flow. In 50th AIAA Aerospace Sciences Meeting Including the New

Horizons Forum and Aerospace Exposition, 1301, Nashville, Tennessee, U.S.A.

[32] Berger, M.J. & Aftosmis, M.J. (2018). An ODE–based wall model for turbulent flow

simulations. AIAA Journal, 56, 700–714.

[33] Berger, M.J., Aftosmis, M.J. & Muman, S. (2005). Analysis of slope limiters on

irregular grids. In 43rd AIAA Aerospace Sciences Meeting and Exhibit, 490, Reno, Nevada,

U.S.A.

[34] Bertsekas, D.P. (1996). Constrained optimization and Lagrange multiplier methods.

Athena Scientific. ISBN 9781886529045.

[35] Boger, D. (2013). A continuous adjoint approach to design optimization in multiphase

flow. Ph.D. Thesis, The Pennsylvania State University.

[36] Boger, D.A. & Paterson, E.G. (2014). A continuous adjoint approach to design

optimization in cavitating flow using a barotropic model. Computers & Fluids, 101, 155–

169.

[37] Borrvall, T. & Petersson, J. (2003). Topology optimization of fluids in Stokes flow.

International Journal for Numerical Methods in Fluids, 41, 77–107.

[38] Brennen, C.E. (2013). Cavitation and bubble dynamics. Cambridge University Press.

ISBN 9781107644762.

[39] Breugem, W.P. (2012). A second-order accurate immersed boundary method for fully

resolved simulations of particle-laden flows. Journal of Computational Physics, 231, 4469–

4498.

[40] Brockett, T. & David Taylor Model Basin Hydromechanics Laboratory

(1966). Minimum pressure envelopes for modified NACA-66 sections with NACA a =

0.8 camber and buships type I and type II sections. Tech. Rep. AD0629379, Defense

Technical Information Center.

[41] Bruns, T.E. & Tortorelli, D.A. (2001). Topology optimization of non-linear elas-

tic structures and compliant mechanisms. Computer Methods in Applied Mechanics and

Engineering, 190, 3443–3459.

196 of 219

BIBLIOGRAPHY

[42] Bueno-Orovio, A., Castro, C., Palacios, F. & Zuazua, E. (2012). Continuous

adjoint approach for the Spalart–Allmaras model in aerodynamic optimization. AIAA

Journal, 50, 631–646.

[43] BURGER, M. & OSHER, S.J. (2005). A survey on level set methods for inverse prob-

lems and optimal design. European Journal of Applied Mathematics, 16, 263–301.

[44] Burman, E., Claus, S., Hansbo, P., Larson, M.G. & Massing, A. (2015). Cut-

FEM: Discretizing geometry and partial differential equations. International Journal for

Numerical Methods in Engineering, 104, 472–501.

[45] Burman, E., Elfverson, D., Hansbo, P., Larson, M.G. & Larsson, K. (2019).

Cut topology optimization for linear elasticity with coupling to parametric nondesign

domain regions. Computer Methods in Applied Mechanics and Engineering, 350, 462–

479.

[46] Capizzano, F. (2011). Turbulent wall model for immersed boundary methods. AIAA

Journal, 49, 2367–2381.

[47] Capizzano, F. (2018). Automatic generation of locally refined Cartesian meshes: Data

management and algorithms. International Journal for Numerical Methods in Engineer-

ing, 113, 789–813.

[48] Carnarius, A., Thiele, F., Oezkaya, E. & Gauger, N.R. (2010). Adjoint ap-

proaches for optimal flow control. In 5th Flow Control Conference, 5088, Chicago, Illinois,

U.S.A.

[49] Challis, V.J. & Guest, J.K. (2009). Level set topology optimization of fluids in Stokes

flow. International Journal for Numerical Methods in Engineering, 79, 1284–1308.

[50] Chan, W.M. (2009). Overset grid technology development at NASA AMES Research

Center. Computers & Fluids, 38, 496–503.

[51] Charlton, E.F. (1997). An octree solution to conservation laws over arbitrary regions

(OSCAR) with applications to aircraft aerodynamics. Ph.D. Thesis, University of Michi-

gan.

[52] Chen, Z.L., Hickel, S., Devesa, A., Berland, J. & Adams, N.A. (2014). Wall

modeling for implicit large-eddy simulation and immersed-interface methods. Theoretical

and Computational Fluid Dynamics, 28, 1–21.

197 of 219

BIBLIOGRAPHY

[53] Chien, K.Y. (1982). Predictions of channel and boundary–layer flows with a low–

Reynolds–number turbulence model. AIAA Journal, 20, 33–38.

[54] Chorin, A.J. (1967). A numerical method for solving incompressible viscous flow prob-

lems. Journal of Computational Physics, 2, 12–26.

[55] Clarke, D.K., Salas, M. & Hassan, H. (1986). Euler calculations for multielement

airfoils using Cartesian grids. AIAA Journal, 24, 353–358.

[56] Coirier, W.J. (1994). An adaptively-refined, Cartesian, cell-based scheme for the Euler

and Navier-Stokes equations. Ph.D. Thesis, University of Michigan.

[57] Coirier, W.J. & Powell, K.G. (1996). Solution-adaptive Cartesian cell approach for

viscous and inviscid flows. AIAA Journal, 34, 938–945.

[58] Colella, P., Graves, D.T., Keen, B.J. & Modiano, D. (2006). A Cartesian grid

embedded boundary method for hyperbolic conservation laws. Journal of Computational

Physics, 211, 347–366.

[59] Courant, R., Friedrichs, K. & Lewy, H. (1928). Über die partiellen differenzengle-

ichungen der mathematischen physik. Mathematische annalen, 100, 32–74.

[60] De Ruiter, M. & Van Keulen, F. (2004). Topology optimization using a topology

description function. Structural and Multidisciplinary Optimization, 26, 406–416.

[61] de Tullio, M., De Palma, P., Iaccarino, G., Pascazio, G. & Napolitano, M.

(2007). An immersed boundary method for compressible flows using local grid refinement.

Journal of Computational Physics, 225, 2098–2117.

[62] Delannoy, Y. (1990). Two phase flow approach in unsteady cavitation modelling. In

Proceedings of Cavitation and Multiphase Flow Forum, ASME-FED, vol. 98, 153–158,

Toronto, Canada.

[63] Deng, Y., Liu, Z., Zhang, P., Liu, Y. & Wu, Y. (2011). Topology optimization

of unsteady incompressible Navier–Stokes flows. Journal of Computational Physics, 230,

6688–6708.

[64] Deshpande, M., Feng, J. & Merkle, C.L. (1994). Cavity flow predictions based on

the Euler equations. Journal of Fluids Engineering, 116, 36–44.

198 of 219

BIBLIOGRAPHY

[65] Desjardins, O., McCaslin, J., Owkes, M. & Brady, P. (2013). Direct numerical

and large-eddy simulation of primary atomization in complex geometries. Atomization

and Sprays, 23, 11.

[66] Dhert, T., Ashuri, T. & Martins, J.R. (2017). Aerodynamic shape optimization

of wind turbine blades using a Reynolds-Averaged Navier–Stokes model and an adjoint

method. Wind Energy, 20, 909–926.

[67] Dick, E. & Steelant, J. (1997). Coupled solution of the steady compressible Navier-

Stokes equations and the k-ε turbulence equations with a multigrid method. Applied

Numerical Mathematics, 23, 49–61.

[68] Dilgen, C.B., Dilgen, S.B., Fuhrman, D.R., Sigmund, O. & Lazarov, B.S.

(2018). Topology optimization of turbulent flows. Computer Methods in Applied Mechan-

ics and Engineering, 331, 363–393.

[69] Duan, L., Wang, X. & Zhong, X. (2010). A high-order cut-cell method for numerical

simulation of hypersonic boundary-layer instability with surface roughness. Journal of

Computational Physics, 229, 7207–7237.

[70] Duan, X., Li, F. & Qin, X. (2016). Topology optimization of incompressible Navier–

Stokes problem by level set based adaptive mesh method. Computers & Mathematics with

Applications, 72, 1131–1141.

[71] Dwight, R.P. & Brezillon, J. (2006). Effect of approximations of the discrete adjoint

on gradient-based optimization. AIAA Journal, 44, 3022–3031.

[72] Eggleton, C.D. & Popel, A.S. (1998). Large deformation of red blood cell ghosts in

a simple shear flow. Physics of Fluids, 10, 1834–1845.

[73] Erney, R.W. (2009). Verification and validation of single phase and cavitating flows

using an open source CFD tool. Master’s thesis, The Pennsylvania State University.

[74] Fadlun, E., Verzicco, R., Orlandi, P. & Mohd-Yusof, J. (2000). Combined

immersed-boundary finite-difference methods for three-dimensional complex flow simu-

lations. Journal of Computational Physics, 161, 35–60.

[75] Falcovitz, J., Alfandary, G. & Hanoch, G. (1997). A two–dimensional conservation

laws scheme for compressible flows with moving boundaries. Journal of Computational

Physics, 138, 83–102.

199 of 219

BIBLIOGRAPHY

[76] Ferziger, J.H., Perić, M. & Street, R.L. (2002). Computational methods for fluid

dynamics. Springer, Berlin, Heidelberg. ISBN 9783319996912.

[77] Foley, J.D., Van, F.D., Van Dam, A., Feiner, S.K., Hughes, J.F. & Hughes,

J. (1996). Computer graphics: Principles and practice, vol. 12110. Pearson Education

Limited. ISBN 9780201121100.

[78] Foster, N.F. & Dulikravich, G.S. (1997). Three-dimensional aerodynamic shape

optimization using genetic and gradient search algorithms. Journal of Spacecraft and

Rockets, 34, 36–42.

[79] Franc, J.P. & Michel, J.M. (2005). Fundamentals of cavitation. Springer, Dordrecht.

ISBN 9781402022326.

[80] Gaffney JR, R. & Hassan, H. (1987). Euler calculations for wings using Cartesian

grids. In 25th AIAA Aerospace Sciences Meeting, 356, Hampton, Virginia, U.S.A.

[81] Geiss, M.J., Barrera, J.L., Boddeti, N. & Maute, K. (2019). A regularization

scheme for explicit level–set XFEM topology optimization. Frontiers of Mechanical En-

gineering, 14, 153–170.

[82] Gersborg-Hansen, A., Sigmund, O. & Haber, R.B. (2005). Topology optimization

of channel flow problems. Structural and Multidisciplinary Optimization, 30, 181–192.

[83] Gkaragkounis, K.T. (2020). The continuous adjoint method in aerodynamic and con-

jugate heat transfer shape optimization, for turbulent flows. Ph.D. Thesis, National Tech-

nical University of Athens.

[84] Glowinski, R., Pan, T.W. & Periaux, J. (1994). A fictitious domain method for

Dirichlet problem and applications. Computer Methods in Applied Mechanics and Engi-

neering, 111, 283–303.

[85] Gokhale, N.B. (2019). A dimensionally split Cartesian cut cell method for computa-

tional fluid dynamics. Ph.D. Thesis, University of Cambridge.

[86] Gopalan, S. & Katz, J. (2000). Flow structure and modeling issues in the closure

region of attached cavitation. Physics of Fluids, 12, 895–911.

[87] Griewank, A. & Walther, A. (2008). Evaluating derivatives: Principles and tech-

niques of algorithmic differentiation. SIAM. ISBN 9780898716597.

200 of 219

BIBLIOGRAPHY

[88] Griffith, B.E., Hornung, R.D., McQueen, D.M. & Peskin, C.S. (2007). An adap-

tive, formally second order accurate version of the immersed boundary method. Journal

of Computational Physics, 223, 10–49.

[89] Grogger, H. & Alajbegovic, A. (1998). Calculation of the cavitating flow in venturi

geometries using two fluid model. ASME Paper, FEDSM99-7364 .

[90] Harada, M., Tamaki, Y., Takahashi, Y. & Imamura, T. (2016). A novel simple

cut-cell method for robust flow simulation on Cartesian grids. In 54th AIAA Aerospace

Sciences Meeting, 0601, San Diego, California, U.S.A.

[91] Hartmann, D., Meinke, M. & Schröder, W. (2008). An adaptive multilevel multi-

grid formulation for Cartesian hierarchical grid methods. Computers & Fluids, 37, 1103–

1125.

[92] Hartmann, D., Meinke, M. & Schröder, W. (2011). A strictly conservative Carte-

sian cut-cell method for compressible viscous flows on adaptive grids. Computer Methods

in Applied Mechanics and Engineering, 200, 1038–1052.

[93] Hejranfar, K., Ezzatneshan, E. & Hesary, K. (2009). A dual-time implicit

preconditioned Navier-Stokes method for solving 2D steady/unsteady laminar cavitat-

ing/noncavitating flows using a barotropic model. In 7th International Symposium on

Cavitation, Ann Arbor, Michigan, U.S.A.

[94] Hejranfar, K., Ezzatneshan, E. & Fattah-Hesari, K. (2015). A comparative study

of two cavitation modeling strategies for simulation of inviscid cavitating flows. Ocean

Engineering, 108, 257–275.

[95] Helzel, C., Berger, M.J. & LeVeque, R.J. (2005). A high-resolution rotated grid

method for conservation laws with embedded geometries. SIAM Journal on Scientific

Computing, 26, 785–809.

[96] Hereth, E.A. (2016). Automatic parallel octree grid generation software with an ex-

tensible solver framework and a focus on urban simulation. Ph.D. Thesis, University of

Tennessee at Chattanooga.

[97] Hilbert, D. (1935). Über die stetige abbildung einer linie auf ein flächenstück. In Dritter

Band: Analysis· Grundlagen der Mathematik· Physik Verschiedenes, 1–2, Springer.

201 of 219

BIBLIOGRAPHY

[98] Hirt, C.W. & Nichols, B.D. (1981). Volume of fluid (VOF) method for the dynamics

of free boundaries. Journal of Computational Physics, 39, 201–225.

[99] Hohenberg, P.C. & Halperin, B.I. (1977). Theory of dynamic critical phenomena.

Reviews of Modern Physics, 49, 435.

[100] INRIA Sophia-Antipolis. TAPENADE. (TAPENADE Homepage). https://

www-sop.inria.fr/tropics/tapenade.html.

[101] Jakobsson, S. & Amoignon, O. (2007). Mesh deformation using radial basis functions

for gradient-based aerodynamic shape optimization. Computers & Fluids, 36, 1119–1136.

[102] Jameson, A. (1988). Aerodynamic design via control theory. Journal of Scientific Com-

puting, 3.

[103] Jameson, A. (1995). Optimum aerodynamic design using CFD and control theory. In

12th Computational Fluid Dynamics Conference, 1729, San Diego, California, U.S.A.

[104] Jameson, A. (2001). A perspective on computational algorithms for aerodynamic anal-

ysis and design. Progress in Aerospace Sciences, 37, 197–243.

[105] Jameson, A. & Reuther, J. (1994). Control theory based airfoil design using the

Euler equations. In 5th Symposium on Multidisciplinary Analysis and Optimization, 4272,

Panama City Beach, Florida, U.S.A.

[106] Jameson, A. & Vassberg, J.C. (2000). Studies of alternative numerical optimization

methods applied to the brachistochrone problem. Computational Fluid Dynamics Journal,

9, 281–296.

[107] Jenkins, N. & Maute, K. (2015). Level set topology optimization of stationary fluid–

structure interaction problems. Structural and Multidisciplinary Optimization, 52, 179–

195.

[108] Jenkins, N. & Maute, K. (2016). An immersed boundary approach for shape and

topology optimization of stationary fluid-structure interaction problems. Structural and

Multidisciplinary Optimization, 54, 1191–1208.

[109] Ji, H., Lien, F.S. & Yee, E. (2006). An efficient second-order accurate cut-cell method

for solving the variable coefficient Poisson equation with jump conditions on irregular

domains. International Journal for Numerical Methods in Fluids, 52, 723–748.

202 of 219

https://www-sop.inria.fr/tropics/tapenade.html
https://www-sop.inria.fr/tropics/tapenade.html

BIBLIOGRAPHY

[110] Kang, S., Iaccarino, G. & Moin, P. (2009). Accurate immersed-boundary recon-

structions for viscous flow simulations. AIAA Journal, 47, 1750–1760.

[111] Kapsoulis, D. (2019). Low-cost metamodel-assisted evolutionary algorithms with applica-

tion in shape optimization in fluid dynamics. Ph.D. Thesis, National Technical University

of Athens.

[112] Kapsoulis, D., Tsiakas, K., Trompoukis, X., Asouti, V. & Giannakoglou, K.

(2018). Evolutionary multi-objective optimization assisted by metamodels, kernel PCA

and multi-criteria decision making techniques with applications in aerodynamics. Applied

Soft Computing, 64, 1–13.

[113] Karakasis, M.K. & Giannakoglou, K.C. (2006). On the use of metamodel-assisted,

multi-objective evolutionary algorithms. Engineering Optimization, 38, 941–957.

[114] Karpouzas, G. & De Villiers, E. (2014). Level-set based topology optimization using

the continuous adjoint method. In OPT-I International Conference on Engineering and

Applied Sciences Optimization, Kos, Greece.

[115] Katz, A., Wissink, A.M., Sankaran, V., Meakin, R.L. & Chan, W.M. (2011). Ap-

plication of strand meshes to complex aerodynamic flow fields. Journal of Computational

Physics, 230, 6512–6530.

[116] Kavvadias, I. (2016). Continuous adjoint methods for steady and unsteady turbulent

flows with emphasis on the accuracy of sensitivity derivatives. Ph.D. Thesis, National

Technical University of Athens.

[117] Kavvadias, I., Papoutsis-Kiachagias, E., Dimitrakopoulos, G. & Gian-

nakoglou, K. (2015). The continuous adjoint approach to the k–ω SST turbulence model

with applications in shape optimization. Engineering Optimization, 47, 1523–1542.

[118] Kavvadias, I., Papoutsis-Kiachagias, E.M. & Giannakoglou, K.C. (2015). On

the proper treatment of grid sensitivities in continuous adjoint methods for shape opti-

mization. Journal of Computational Physics, 301, 1–18.

[119] Kenway, G.K., Mader, C.A., He, P. & Martins, J.R. (2019). Effective adjoint ap-

proaches for computational fluid dynamics. Progress in Aerospace Sciences, 110, 100542.

203 of 219

BIBLIOGRAPHY

[120] Kim, C.S., Kim, C. & Rho, O.H. (2002). Effects of constant eddy viscosity assumption

on gradient-based design optimization. AIAA 2002-262. 40th AIAA Aerospace Sciences

Meeting & Exhibit.

[121] Kim, C.S., Kim, C. & Rho, O.H. (2003). Feasibility study of constant eddy-viscosity

assumption in gradient-based design optimization. Journal of Aircraft, 40, 1168–1176.

[122] Kim, J., Kim, D. & Choi, H. (2001). An immersed-boundary finite-volume method

for simulations of flow in complex geometries. Journal of Computational Physics, 171,

132–150.

[123] Kinzel, M.P. (2008). Computational techniques and analysis of cavitating-fluid flows.

Ph.D. Thesis, The Pennsylvania State University.

[124] Kirkpatrick, M., Armfield, S. & Kent, J. (2003). A representation of curved bound-

aries for the solution of the Navier–Stokes equations on a staggered three-dimensional

Cartesian grid. Journal of Computational Physics, 184, 1–36.

[125] Knapp, R.T., Daily, J.W. & Hammit, F.G. (1970). Cavitation. McGraw-Hill. ISBN

9780070350809.

[126] Knopp, T., Alrutz, T. & Schwamborn, D. (2006). A grid and flow adaptive wall–

function method for RANS turbulence modelling. Journal of Computational Physics, 220,

19–40.

[127] Koch, J., Papoutsis-Kiachagias, E. & Giannakoglou, K. (2017). Transition from

adjoint level set topology to shape optimization for 2D fluid mechanics. Computers &

Fluids, 150, 123–138.

[128] Kontoleontos, E., Papoutsis-Kiachagias, E., Zymaris, A., Papadimitriou, D.

& Giannakoglou, K. (2013). Adjoint–based constrained topology optimization for vis-

cous flows, including heat transfer. Engineering Optimization, 45, 941–961.

[129] Koop, A. (2008). Numerical simulation of unsteady three-dimensional sheet cavitation.

Ph.D. Thesis, University of Twente.

[130] Koukouvinis, F. & Gavaises, M., eds. (2021). Cavitation and Bubble Dynamics: Fun-

damentals and Applications. Academic Press. ISBN 9780128233887.

204 of 219

BIBLIOGRAPHY

[131] Kreissl, S. & Maute, K. (2012). Levelset based fluid topology optimization using

the extended finite element method. Structural and Multidisciplinary Optimization, 46,

311–326.

[132] Kreissl, S., Pingen, G. & Maute, K. (2011). An explicit level set approach for

generalized shape optimization of fluids with the Lattice Boltzmann method. International

Journal for Numerical Methods in Fluids, 65, 496–519.

[133] Kreissl, S., Pingen, G. & Maute, K. (2011). Topology optimization for unsteady

flow. International Journal for Numerical Methods in Engineering, 87, 1229–1253.

[134] Kröger, J., Kühl, N. & Rung, T. (2018). Adjoint volume-of-fluid approaches for the

hydrodynamic optimisation of ships. Ship Technology Research, 65, 47–68.

[135] Kubota, A., Kato, H., Yamaguchi, H. et al. (1992). A new modelling of cavitating

flows: A numerical study of unsteady cavitation on a hydrofoil section. Journal of Fluid

Mechanics, 240, 59–96.

[136] Kühl, N. (2021). Adjoint-based shape optimization constraint by turbulent two-phase

Navier-Stokes systems. Ph.D. Thesis, Technische Universität Hamburg.

[137] Kunz, R.F., Boger, D.A., Chyczewski, T.S., Stinebring, D., Gibeling, H. &

Govindan, T. (1999). Multi–phase CFD analysis of natural and ventilated cavitation

about submerged bodies. In Proceedings of the 3rd ASME-JSME Joint Fluids Engineering

Conference, San Francisco, California, U.S.A.

[138] Kunz, R.F., Boger, D.A., Stinebring, D.R., Chyczewski, T.S., Lindau, J.W.,

Gibeling, H.J., Venkateswaran, S. & Govindan, T. (2000). A preconditioned

Navier–Stokes method for two–phase flows with application to cavitation prediction. Com-

puters & Fluids, 29, 849–875.

[139] Kyriakou, S. (2013). Evolutionary algorithm-based design-optimization methods in tur-

bomachinery. Ph.D. Thesis, National Technical University of Athens.

[140] Lai, M.C. & Peskin, C.S. (2000). An immersed boundary method with formal second-

order accuracy and reduced numerical viscosity. Journal of Computational Physics, 160,

705–719.

205 of 219

BIBLIOGRAPHY

[141] Langer, S. (2013). Application of a line implicit method to fully coupled system of

equations for turbulent flow problems. International Journal of Computational Fluid Dy-

namics, 27, 131–150.

[142] Langer, S. & Suarez, G. (2022). Loosely coupled and coupled solution methods for

the RANS equations and a one-equation turbulence model. Computers & Fluids, 232,

105186.

[143] Launder, B. & Spalding, D. (1974). The numerical computation of turbulent flows.

Computer Methods in Applied Mechanics and Engineering, 3, 269–289.

[144] Lazarov, B.S. & Sigmund, O. (2011). Filters in topology optimization based on

Helmholtz-type differential equations. International Journal for Numerical Methods in

Engineering, 86, 765–781.

[145] Lindau, J.W., Pena, C., Baker, W.J., Dreyer, J.J., Moody, W.L., Kunz, R.F.

& Paterson, E.G. (2012). Modeling of cavitating flow through waterjet propulsors.

International Journal of Rotating Machinery, 2012.

[146] Lions, J. (1971). Optimal Control of Systems Governed by Partial Differential Equations.

Springer, Berlin, Heidelberg. ISBN 9783540051152.

[147] Liu, F. & Zheng, X. (1996). A strongly coupled time-marching method for solving the

Navier–Stokes and k-ω turbulence model equations with multigrid. Journal of Computa-

tional Physics, 128, 289–300.

[148] Liu, G., Geier, M., Liu, Z., Krafczyk, M. & Chen, T. (2014). Discrete adjoint

sensitivity analysis for fluid flow topology optimization based on the generalized Lattice

Boltzmann method. Computers & Mathematics with Applications, 68, 1374–1392.

[149] Löhner, R. (1989). Adaptive remeshing for transient problems. Computer Methods in

Applied Mechanics and Engineering, 75, 195–214.

[150] Lorensen, W.E. & Cline, H.E. (1987). Marching cubes: A high resolution 3D surface

construction algorithm. ACM SIGGRAPH Computer Graphics, 21, 163–169.

[151] Lundgaard, C., Alexandersen, J., Zhou, M., Andreasen, C.S. & Sigmund,

O. (2018). Revisiting density-based topology optimization for fluid-structure-interaction

problems. Structural and Multidisciplinary Optimization, 58, 969–995.

206 of 219

BIBLIOGRAPHY

[152] Malan, A., Lewis, R. & Nithiarasu, P. (2002). An improved unsteady, unstructured,

artificial compressibility, finite volume scheme for viscous incompressible flows: Part i.

Theory and implementation. International Journal for Numerical Methods in Engineer-

ing, 54, 695–714.

[153] Manninen, M., Taivassalo, V. & Kallio, S. (1996). On the mixture model for

multiphase flow. VTT PUBLICATIONS 288 .

[154] Marta, A.C. & Shankaran, S. (2013). On the handling of turbulence equations in

RANS adjoint solvers. Computers & Fluids, 74, 102–113.

[155] Mavriplis, D. (2003). Revisiting the least-squares procedure for gradient reconstruction

on unstructured meshes. In 16th AIAA Computational Fluid Dynamics Conference, 3986,

Orlando, Florida, U.S.A.

[156] May, S. & Berger, M.J. (2017). An explicit implicit scheme for cut cells in embedded

boundary meshes. Journal of Scientific Computing, 71, 919–943.

[157] Meinke, M., Schneiders, L., Günther, C. & Schröder, W. (2013). A cut-cell

method for sharp moving boundaries in Cartesian grids. Computers & Fluids, 85, 135–

142.

[158] Melton, J.E., Enomoto, F. & Berger, M.J. (1993). 3D automatic Cartesian grid

generation for Euler flows. In 11th Computational Fluid Dynamics Conference, 3386,

Orlando, Florida, U.S.A.

[159] Merkle, C.L. (1998). Computational modelling of the dynamics of sheet cavitation. In

Proceedings of 3rd International Symposium on Cavitation.

[160] Merlin, C., Domingo, P. & Vervisch, L. (2013). Immersed boundaries in large eddy

simulation of compressible flows. Flow, turbulence and combustion, 90, 29–68.

[161] Meyer, M., Devesa, A., Hickel, S., Hu, X. & Adams, N.A. (2010). A conservative

immersed interface method for large-eddy simulation of incompressible flows. Journal of

Computational Physics, 229, 6300–6317.

[162] Meyer, M., Hickel, S. & Adams, N. (2010). Assessment of implicit large-eddy simu-

lation with a conservative immersed interface method for turbulent cylinder flow. Inter-

national Journal of Heat and Fluid Flow, 31, 368–377.

207 of 219

BIBLIOGRAPHY

[163] Mithun, M.G., Koukouvinis, P., Karathanassis, I.K. & Gavaises, M. (2019). Nu-

merical simulation of three-phase flow in an external gear pump using immersed boundary

approach. Applied Mathematical Modelling, 72, 682–699.

[164] Mittal, R. & Iaccarino, G. (2005). Immersed boundary methods. Annual Review of

Fluid Mechanics, 37, 239–261.

[165] Mittal, R., Dong, H., Bozkurttas, M., Najjar, F., Vargas, A. &

Von Loebbecke, A. (2008). A versatile sharp interface immersed boundary method

for incompressible flows with complex boundaries. Journal of Computational Physics,

227, 4825–4852.

[166] Mohd-Yusof, J. (1997). Combined immersed-boundary/b-spline methods for simula-

tions of flow in complex geometries. Center for Turbulence Research Annual Research

Briefs, 161, 317–327.

[167] Morgut, M. & Nobile, E. (2012). Numerical predictions of cavitating flow around

model scale propellers by CFD and advanced model calibration. International Journal of

Rotating Machinery, 1–11.

[168] Muralidharan, B. & Menon, S. (2016). A high-order adaptive Cartesian cut-cell

method for simulation of compressible viscous flow over immersed bodies. Journal of

Computational Physics, 321, 342–368.

[169] Murman, S., Aftosmis, M. & Berger, M. (2003). Implicit approaches for moving

boundaries in a 3-d Cartesian method. In 41st Aerospace Sciences Meeting and Exhibit,

1119, Reno, Nevada, U.S.A.

[170] Nadarajah, S. & Jameson, A. (2000). A comparison of the continuous and discrete

adjoint approach to automatic aerodynamic optimization. In 38th Aerospace Sciences

Meeting and Exhibit, 667, Reno, Nevada, U.S.A.

[171] Nam, J. & Lien, F. (2015). Assessment of ghost-cell based cut-cell method for large-

eddy simulations of compressible flows at high Reynolds number. International Journal

of Heat and Fluid Flow, 53, 1–14.

[172] Nemec, M. & Aftosmis, M. (2005). Adjoint algorithm for CAD–based shape optimiza-

tion using a Cartesian method. In 17th AIAA Computational Fluid Dynamics Conference,

4987, Toronto, Ontario, Canada.

208 of 219

BIBLIOGRAPHY

[173] Nemec, M. & Aftosmis, M. (2006). Aerodynamic shape optimization using a Cartesian

adjoint method and CAD geometry. In 24th AIAA Applied Aerodynamics Conference,

3456, San Francisco, California, U.S.A.

[174] Nemec, M. & Aftosmis, M.J. (2008). Adjoint sensitivity computations for an

embedded-boundary Cartesian mesh method. Journal of Computational Physics, 227,

2724–2742.

[175] Nemec, M., Aftosmis, M., Murman, S. & Pulliam, T. (2005). Adjoint formulation

for an embedded-boundary Cartesian method. In 43rd AIAA Aerospace Sciences Meeting

and Exhibit, 877, Reno, Nevada, U.S.A.

[176] Nguyen, T., Isakari, H., Takahashi, T., Yaji, K., Yoshino, M. & Matsumoto,

T. (2020). Level-set based topology optimization of transient flow using Lattice Boltz-

mann method considering an oscillating flow condition. Computers & Mathematics with

Applications, 80, 82–108.

[177] Nielsen, E.J. & Anderson, W.K. (1999). Aerodynamic design optimization on un-

structured meshes using the Navier-Stokes equations. AIAA Journal, 37, 1411–1419.

[178] Nocedal, J. & Wright, S. (2006). Numerical optimization. Springer, New York, NY.

ISBN 9780387303031.

[179] Olesen, L.H., Okkels, F. & Bruus, H. (2006). A high-level programming-language

implementation of topology optimization applied to steady-state Navier–Stokes flow. In-

ternational Journal for Numerical Methods in Engineering, 65, 975–1001.

[180] Örley, F., Pasquariello, V., Hickel, S. & Adams, N.A. (2015). Cut-element

based immersed boundary method for moving geometries in compressible liquid flows

with cavitation. Journal of Computational Physics, 283, 1–22.

[181] Othmer, C. (2008). A continuous adjoint formulation for the computation of topological

and surface sensitivities of ducted flows. International Journal for Numerical Methods in

Fluids, 58, 861–877.

[182] Othmer, C. (2014). Adjoint methods for car aerodynamics. Journal of Mathematics in

Industry, 4, 1–23.

209 of 219

BIBLIOGRAPHY

[183] Palacios, F., Alonso, J. & Jameson, A. (2012). Shape sensitivity of free-surface

interfaces using a level set methodology. In 42nd AIAA Fluid Dynamics Conference and

Exhibit, 3341, New Orleans, Louisiana, U.S.A.

[184] Palacios, F., Alonso, J.J. & Jameson, A. (2013). Design of free-surface interfaces

using RANS equations. In 43rd AIAA Fluid Dynamics Conference, 3210, San Diego,

California, U.S.A.

[185] Pan, D. & Shen, T.T. (2009). Computation of incompressible flows with immersed

bodies by a simple ghost cell method. International Journal for Numerical Methods in

Fluids, 60, 1378–1401.

[186] Papadimitriou, D. (2007). Adjoint formulations for the analysis and design of turbo-

machinery cascades and optimal grid adaptation using aposteriori error analysis. Ph.D.

Thesis, National Technical University of Athens.

[187] Papadimitriou, D. & Giannakoglou, K. (2007). A continuous adjoint method with

objective function derivatives based on boundary integrals, for inviscid and viscous flows.

Computers & Fluids, 36, 325–341.

[188] Papoutsis-Kiachagias, E., Kyriacou, S. & Giannakoglou, K. (2014). The con-

tinuous adjoint method for the design of hydraulic turbomachines. Computer Methods in

Applied Mechanics and Engineering, 278, 621–639.

[189] Papoutsis-Kiachagias, E., Zymaris, A., Kavvadias, I., Papadimitriou, D. &

Giannakoglou, K. (2015). The continuous adjoint approach to the k–ε turbulence

model for shape optimization and optimal active control of turbulent flows. Engineering

Optimization, 47, 370–389.

[190] Papoutsis-Kiachagias, E., Asouti, V., Giannakoglou, K., Gkagkas, K.,

Shimokawa, S. & Itakura, E. (2019). Multi-point aerodynamic shape optimization

of cars based on continuous adjoint. Structural and Multidisciplinary Optimization, 59,

675–694.

[191] Papoutsis-Kiachagias, E.M. (2013). Adjoint methods for turbulent flows, applied to

shape or topology optimization and robust design. Ph.D. Thesis, National Technical Uni-

versity of Athens.

210 of 219

BIBLIOGRAPHY

[192] Papoutsis-Kiachagias, E.M. & Giannakoglou, K.C. (2016). Continuous adjoint

methods for turbulent flows, applied to shape and topology optimization: Industrial ap-

plications. Archives of Computational Methods in Engineering, 23, 255–299.

[193] Patel, V.C., Rodi, W. & Scheuerer, G. (1985). Turbulence models for near–wall

and low Reynolds number flows–A review. AIAA Journal, 23, 1308–1319.

[194] Pember, R.B., Bell, J.B., Colella, P., Curtchfield, W.Y. & Welcome, M.L.

(1995). An adaptive Cartesian grid method for unsteady compressible flow in irregular

regions. Journal of Computational Physics, 120, 278–304.

[195] Pendar, M.R. & Roohi, E. (2018). Cavitation characteristics around a sphere: An

LES investigation. International Journal of Multiphase Flow, 98, 1–23.

[196] Peskin, C.S. (1972). Flow patterns around heart valves: A numerical method. Journal

of Computational Physics, 10, 252–271.

[197] Peskin, C.S. (2002). The immersed boundary method. Acta Numerica, 11, 479–517.

[198] Peter, J.E. & Dwight, R.P. (2010). Numerical sensitivity analysis for aerodynamic

optimization: A survey of approaches. Computers & Fluids, 39, 373–391.

[199] Piegl, L. & Tiller, W. (1997). The NURBS book. Springer, Berlin, Heidelberg. ISBN

9783540615453.

[200] Pingen, G., Evgrafov, A. & Maute, K. (2007). Topology optimization of flow do-

mains using the Lattice Boltzmann method. Structural and Multidisciplinary Optimiza-

tion, 34, 507–524.

[201] Pingen, G., Waidmann, M., Evgrafov, A. & Maute, K. (2010). A parametric level-

set approach for topology optimization of flow domains. Structural and Multidisciplinary

Optimization, 41, 117–131.

[202] Piomelli, U. & Balaras, E. (2002). Wall-layer models for large-eddy simulations.

Annual Review of Fluid Mechanics, 34, 349–374.

[203] Pironneau, O. (1982). Optimal Shape Design for Elliptic Systems. Springer, Berlin,

Heidelberg. ISBN 9783642877247.

211 of 219

BIBLIOGRAPHY

[204] Plesset, M.S. (1949). The dynamics of cavitation bubbles. Journal of Applied Mechan-

ics, 16, 277–282.

[205] Quirk, J.J. (1994). An alternative to unstructured grids for computing gas dynamic flows

around arbitrarily complex two-dimensional bodies. Computers & Fluids, 23, 125–142.

[206] Ragab, S. (2001). Shape optimization in free surface potential flow using an adjoint

formulation-surface ships. In 15th AIAA Computational Fluid Dynamics Conference,

3042, Anaheim, California, U.S.A.

[207] Reuther, J. & Jameson, A. (1995). Aerodynamic shape optimization of wing and

wing-body configurations using control theory. In 33rd Aerospace Sciences Meeting and

Exhibit, 123, Reno, Nevada, U.S.A.

[208] Reuther, J., Jameson, A., Farmer, J., Martinelli, L. & Saunders, D. (1996).

Aerodynamic shape optimization of complex aircraft configurations via an adjoint formu-

lation. In 34th Aerospace Sciences Meeting and Exhibit, 94, Reno, Nevada, U.S.A.

[209] Roe, P.L. (1981). Approximate riemann solvers, parameter vectors, and difference

schemes. Journal of Computational Physics, 43, 357–372.

[210] Roman, F., Armenio, V. & Fröhlich, J. (2009). A simple wall-layer model for large

eddy simulation with immersed boundary method. Physics of Fluids, 21, 101701.

[211] Rouse, H. & McNown, J.S. (1948). Cavitation and pressure distribution: head forms

at zero angle of yaw. State University of Iowa Studies in Engineering, State University of

Iowa, Iowa City.

[212] Ruffin, S.M. & Lee, J. (2009). Adaptation of a k-epsilon model to a Cartesian grid

based methodology. International Journal of Mathematical Models and Methods in Applied

Sciences, 3, 238–245.

[213] Sá, L., Amigo, R., Novotny, A. & Silva, E. (2016). Topological derivatives ap-

plied to fluid flow channel design optimization problems. Structural and Multidisciplinary

Optimization, 54, 249–264.

[214] Samouchos, K. (2022). The cut-cell method for the prediction of 2D/3D flows in complex

geometries and the adjoint-based shape optimization. Ph.D. Thesis, National Technical

University of Athens.

212 of 219

BIBLIOGRAPHY

[215] Sauer, J. & Schnerr, G.H. (2000). Unsteady cavitating flow-a new cavitation model

based on a modified front capturing method and bubble dynamics. In Proceedings of

2000 ASME Fluid Engineering Summer Conference, vol. 251, 1073–1079, Boston, Mas-

sachusetts, U.S.A.

[216] Saurel, R., Cocchi, J.P. & Butler, P.B. (1999). Numerical study of cavitation in

the wake of a hypervelocity underwater projectile. Journal of Propulsion and Power , 15,

513–522.

[217] Schneiders, L., Hartmann, D., Meinke, M. & Schröder, W. (2013). An accurate

moving boundary formulation in cut-cell methods. Journal of Computational Physics,

235, 786–809.

[218] Schneiders, L., Günther, C., Meinke, M. & Schröder, W. (2016). An efficient

conservative cut-cell method for rigid bodies interacting with viscous compressible flows.

Journal of Computational Physics, 311, 62–86.

[219] Semenenko, V.N. & Ukrainian Academy of Sciences Kiev Institute of Hy-

dromechanics (2001). Artificial supercavitation. Physics and calculation. Tech. Rep.

ADP012080, Defense Technical Information Center.

[220] Senocak, I. (2002). A computational methodology for the simulation of turbulent cavi-

tating flows. Ph.D. Thesis, University of Florida.

[221] Senocak, I. & Shyy, W. (2001). Numerical simulation of turbulent flows with sheet

cavitation. In CAV 2001: Fourth International Symposium on Cavitation, Pasadena, Cal-

ifornia, U.S.A.

[222] Senocak, I. & Shyy, W. (2002). A pressure-based method for turbulent cavitating flow

computations. Journal of Computational Physics, 176, 363–383.

[223] Senocak, I. & Shyy, W. (2004). Interfacial dynamics-based modelling of turbulent

cavitating flows, part-1: Model development and steady-state computations. International

Journal for Numerical Methods in Fluids, 44, 975–995.

[224] Sethian, J.A. (1999). Fast marching methods. SIAM Reviews, 41, 199–235.

[225] Shankaran, S. & Jameson, A. (2003). Numerical analysis and design of upwind sails.

In 21st AIAA Applied Aerodynamics Conference, 3501, Orlando, Florida, U.S.A.

213 of 219

BIBLIOGRAPHY

[226] Sharma, A., Villanueva, H. & Maute, K. (2017). On shape sensitivities with

heaviside-enriched XFEM. Structural and Multidisciplinary Optimization, 55, 385–408.

[227] Sharp, H.T. & Sirovich, L. (1989). Constructing a continuous parameter range of

computational flows. AIAA Journal, 27, 1326–1331.

[228] Shen, Y. & Dimotakis, P.E. (1989). The influence of surface cavitation on hydrody-

namic forces. In 22nd American Towing Tank Conference (ATTC’89), 45–53, St. John’s,

Newfoundland, Canada.

[229] Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced

data. In Proceedings of the 1968 23rd ACM National Conference, 517–524, New York,

USA.

[230] Shih, T.H., Liou, W.W., Shabbir, A., Yang, Z. & Zhu, J. (1995). A new k-ε

eddy viscosity model for high Reynolds number turbulent flows. Computers & Fluids, 24,

227–238.

[231] Shinn, A., Goodwin, M. & Vanka, S. (2009). Immersed boundary computations of

shear-and buoyancy-driven flows in complex enclosures. International Journal of Heat and

Mass Transfer , 52, 4082–4089.

[232] Sigmund, O. (2007). Morphology–based black and white filters for topology optimization.

Structural and Multidisciplinary Optimization, 33, 401–424.

[233] Sigmund, O. & Maute, K. (2013). Topology optimization approaches. Structural and

Multidisciplinary Optimization, 48, 1031–1055.

[234] Singhal, A.K., Athavale, M.M., Li, H. & Jiang, Y. (2002). Mathematical basis and

validation of the full cavitation model. Journal of Fluids Engineering, 124, 617–624.

[235] Sinha, K. & Candler, G. (1998). Convergence improvement of two-equation turbu-

lence model calculations. In 29th AIAA Computational Fluid Dynamics Conference, 2649,

Albuquerque, New Mexico, U.S.A.

[236] Slotnick, J.P., Khodadoust, A., Alonso, J., Darmofal, D., Gropp, W., Lurie,

E. & Mavriplis, D.J. (2014). CFD vision 2030 study: A path to revolutionary compu-

tational aerosciences. Tech. Rep. CR-2014-218178, NASA.

214 of 219

BIBLIOGRAPHY

[237] Sondak, D.L. (1992). Wall functions for the k–[epsilon] turbulence model in generalized

nonorthogonal curvilinear coordinates. Ph.D. Thesis, Iowa State University.

[238] Sotiropoulos, F. & Yang, X. (2014). Immersed boundary methods for simulating

fluid–structure interaction. Progress in Aerospace Sciences, 65, 1–21.

[239] Spalding, D.B. (1961). A single formula for the “law of the wall”. Journal of Applied

Mechanics, 28, 455.

[240] Spall, J.C. (2003). Introduction to stochastic search and optimization: Estimation, sim-

ulation, and control, vol. 65. John Wiley & Sons. ISBN 9780471330523.

[241] Stride, E. & Coussios, C. (2019). Nucleation, mapping and control of cavitation for

drug delivery. Nature Reviews Physics, 1, 495–509.

[242] Stück, A. (2012). Adjoint Navier-Stokes methods for hydrodynamic shape optimisation.

Ph.D. Thesis, Technische Universität Hamburg.

[243] Stutz, B. & Reboud, J.L. (1997). Two-phase flow structure of sheet cavitation. Physics

of Fluids, 9, 3678–3686.

[244] Sutherland, I.E. & Hodgman, G.W. (1974). Reentrant polygon clipping. Communi-

cations of the ACM , 17, 32–42.

[245] Svanberg, K. (1987). The method of moving asymptotes—A new method for structural

optimization. International Journal for Numerical Methods in Engineering, 24, 359–373.

[246] Svanberg, K. (2002). A class of globally convergent optimization methods based on

conservative convex separable approximations. SIAM Journal on Optimization, 12, 555–

573.

[247] Svanberg, K. (2007). MMA and GCMMA-two methods for nonlinear optimization.

Tech. Rep., Optimization and Systems Theory, KTH, Stockholm, Sweden.

[248] Sweby, P.K. (1984). High resolution schemes using flux limiters for hyperbolic conser-

vation laws. SIAM Journal on Numerical Analysis, 21, 995–1011.

[249] Takahashi, Y. & Imamura, T. (2014). High Reynolds number steady state flow simu-

lation using immersed boundary method. In 52nd Aerospace Sciences Meeting, National

Harbor, Maryland, U.S.A.

215 of 219

BIBLIOGRAPHY

[250] Tamaki, Y., Harada, M. & Imamura, T. (2017). Near-wall modification of Spalart–

Allmaras turbulence model for immersed boundary method. AIAA Journal, 55, 3027–

3039.

[251] Tamamidis, P., Zhang, G. & Assanis, D.N. (1996). Comparison of pressure-based

and artificial compressibility methods for solving 3D steady incompressible viscous flows.

Journal of Computational Physics, 124, 1–13.

[252] Tessicini, F., Iaccarino, G., Fatica, M., Wang, M. & Verzicco, R. (2002).

Wall modeling for large-eddy simulation using an immersed boundary method. Center

for Turbulence Research Annual Research Briefs, 2002, 181–187.

[253] Toro, E.F. (2010). Riemann solvers and numerical methods for fluid dynamics: A prac-

tical introduction. Springer, Berlin, Heidelberg. ISBN 9783642064388.

[254] Tseng, Y.H. & Ferziger, J.H. (2003). A ghost-cell immersed boundary method for

flow in complex geometry. Journal of Computational Physics, 192, 593–623.

[255] Tsiakas, K.T. (2019). Development of shape parameterization techniques, a flow solver

and its adjoint, for optimization on GPUs. Turbomachinery and external aerodynamics

applications. Ph.D. Thesis, National Technical University of Athens.

[256] Turbulence Modeling Resource (Langley Research Center). 2DZP: 2D zero pressure

gradient flat plate validation case. https://turbmodels.larc.nasa.gov/flatplate_

val.html.

[257] Turkel, E. (1987). Preconditioned methods for solving the incompressible and low speed

compressible equations. Journal of Computational Physics, 72, 277–298.

[258] Uhlmann, M. (2005). An immersed boundary method with direct forcing for the simu-

lation of particulate flows. Journal of Computational Physics, 209, 448–476.

[259] Van Dijk, N.P., Maute, K., Langelaar, M. & Van Keulen, F. (2013). Level-set

methods for structural topology optimization: A review. Structural and Multidisciplinary

Optimization, 48, 437–472.

[260] Van Leer, B. (1979). Towards the ultimate conservative difference scheme. V. A second-

order sequel to Godunov’s method. Journal of Computational Physics, 32, 101–136.

216 of 219

https://turbmodels.larc.nasa.gov/flatplate_val.html
https://turbmodels.larc.nasa.gov/flatplate_val.html

BIBLIOGRAPHY

[261] Vandromme, D. (1993). Turbulence modeling for compressible flows and implementation

in Navier-Stokes solvers. Tech. Rep., VKI An Introduction to Modeling Turbulence.

[262] Vankateswaran, S., Deshpande, M. & Merkle, C. (1995). The application of pre-

conditioning to reacting flow computations. In 12th Computational Fluid Dynamics Con-

ference, 1673, San Diego, California, U.S.A.

[263] Venkatakrishnan, V. (1995). Convergence to steady state solutions of the Euler equa-

tions on unstructured grids with limiters. Journal of Computational Physics, 118, 120–

130.

[264] Villanueva, C.H. & Maute, K. (2017). CutFEM topology optimization of 3D laminar

incompressible flow problems. Computer Methods in Applied Mechanics and Engineering,

320, 444–473.

[265] Vrionis, Y.P., Samouchos, K.D. & Giannakoglou, K.C. (2019). Implementation

of a conservative cut–cell method for the simulation of two–phase cavitating flows. In 10th

International Conference on Computational Methods (ICCM2019), 440–452, Singapore.

[266] Vrionis, Y.P., Samouchos, K.D. & Giannakoglou, K.C. (2021). The continuous

adjoint cut-cell method for shape optimization in cavitating flows. Computers & Fluids,

224, 104974.

[267] Vrionis, Y.P., Samouchos, K.D. & Giannakoglou, K.C. (2021). Topology opti-

mization in fluid mechanics using continuous adjoint and the cut-cell method. Computers

& Mathematics with Applications, 97, 286–297.

[268] Vu-Huu, T., Phung-Van, P., Nguyen-Xuan, H. & Wahab, M.A. (2018). A

polytree-based adaptive polygonal finite element method for topology optimization of

fluid-submerged breakwater interaction. Computers & Mathematics with Applications,

76, 1198–1218.

[269] WALL-MODELED LARGE EDDY SIMULATION RESOURCE (WMLES Home-

page). https://wmles.umd.edu/.

[270] Walther, A. (2009). Getting Started with ADOL-C. Combinatorial Scientific Comput-

ing.

217 of 219

https://wmles.umd.edu/

BIBLIOGRAPHY

[271] Wang, F., Lazarov, B.S. & Sigmund, O. (2011). On projection methods, conver-

gence and robust formulations in topology optimization. Structural and Multidisciplinary

Optimization, 43, 767–784.

[272] Wang, M. & Moin, P. (2002). Dynamic wall modeling for large–eddy simulation of

complex turbulent flows. Physics of Fluids, 14, 2043–2051.

[273] Wang, M.Y. & Wang, S. (2006). Parametric shape and topology optimization with

radial basis functions. In IUTAM symposium on topological design optimization of struc-

tures, machines and materials, 13–22, Springer, Dordrecht.

[274] Wang, Z. (1998). A Quadtree–based adaptive Cartesian/Quad grid flow solver for

Navier–Stokes equations. Computers & Fluids, 27, 529–549.

[275] Wang, Z. & Chen, R. (2002). Anisotropic solution–adaptive viscous Cartesian grid

method for turbulent flow simulation. AIAA Journal, 40, 1969–1978.

[276] Weiss, J.M., Maruszewski, J.P. & Smith, W.A. (1999). Implicit solution of precon-

ditioned Navier-Stokes equations using algebraic multigrid. AIAA Journal, 37, 29–36.

[277] Wieghardt, K. & Tillmann, W. (1951). On the turbulent friction layer for rising

pressure. Tech. Rep. TM-1314, NACA.

[278] Yakhot, V., Orszag, S., Thangam, S., Gatski, T. & Speziale, C. (1992). Devel-

opment of turbulence models for shear flows by a double expansion technique. Physics of

Fluids A: Fluid Dynamics, 4, 1510–1520.

[279] Ye, T., Mittal, R., Udaykumar, H. & Shyy, W. (1999). An accurate Cartesian grid

method for viscous incompressible flows with complex immersed boundaries. Journal of

Computational Physics, 156, 209–240.

[280] Zhou, H., Xiang, M., Zhao, S. & Zhang, W. (2019). Development of a multiphase

cavitation solver and its application for ventilated cavitating flows with natural cavitation.

International Journal of Multiphase Flow, 115, 62–74.

[281] Zwart, P., Gerber, A. & Belamri, T. (2004). A two-phase flow model for predict-

ing cavitation dynamics. In 5th International Conference on Multiphase Flow, vol. 152,

Yokohama, Japan.

218 of 219

BIBLIOGRAPHY

[282] Zymaris, A., Papadimitriou, D., Giannakoglou, K. & Othmer, C. (2009). Con-

tinuous adjoint approach to the Spalart–Allmaras turbulence model for incompressible

flows. Computers & Fluids, 38, 1528–1538.

[283] Zymaris, A., Papadimitriou, D., Giannakoglou, K.C. & Othmer, C. (2010).

Adjoint wall functions: A new concept for use in aerodynamic shape optimization. Journal

of Computational Physics, 229, 5228–5245.

[284] Zymaris, A.S. (2010). Adjoint methods for the design of shapes with optimal aerodynamic

performance in laminar and turbulent flows. Ph.D. Thesis, National Technical University

of Athens.

219 of 219

	Acronyms
	1 Introduction
	1.1 Immersed Boundary Methods
	1.1.1 Immersed Boundary Methods Approaches
	1.1.2 The Cut–Cell Method

	1.2 Cavitating Flows
	1.3 Numerical Optimization Tools
	1.4 The Adjoint Method
	1.4.1 The Adjoint Cut–Cell Method for Shape Optimization
	1.4.2 Topology Optimization in Fluid Mechanics

	1.5 Thesis Outline

	2 The Cut–Cell method
	2.1 Cartesian Mesh Generation
	2.1.1 Recursive Octree Generation
	2.1.2 Body Surface Subdivisions
	2.1.3 Cartesian Cell Post–refinement

	2.2 Cut–Cell Mesh Generation
	2.2.1 Construction of Cut–Cells
	2.2.2 Geometric Quantities of the generated Cut–Cells
	2.2.3 Small Cell Treatment

	2.3 The Cut–Cell Data Structure
	2.3.1 Cut–Cell Mesh Decomposition for Parallel Computing

	3 Single– and Two–phase Flow Models
	3.1 The Navier–Stokes Equations For Single–Phase Incompressible Flows
	3.1.1 Artificial Compressibility Method
	3.1.2 The Navier–Stokes Equations
	3.1.2.1 Discretization of the Inviscid Flux Vector
	3.1.2.2 Implementation of Limiters
	3.1.2.3 Flow Variable Spatial Derivatives Computation
	3.1.2.4 Discretization of the Viscous Flux Vector

	3.1.3 Boundary Conditions
	3.1.3.1 Wall Boundary Conditions – SW
	3.1.3.2 Inlet Boundary Conditions – SI
	3.1.3.3 Outlet Boundary Conditions – SO
	3.1.3.4 Farfield Boundary Conditions – S

	3.1.4 Numerical Solution of the Navier–Stokes Equations

	3.2 Simulating Turbulent Flows using the Cut–Cell Method
	3.2.1 Preliminaries
	3.2.2 The Standard k– Turbulence Model
	3.2.2.1 Transport Equations
	3.2.2.2 Solid Wall Boundary Conditions – Wall Functions
	3.2.2.3 Inlet/Farfield Boundary Conditions – SI/S
	3.2.2.4 Outlet Boundary Conditions – SO

	3.2.3 The RANS Equations
	3.2.3.1 Discretization of the Turbulence Model Source Terms

	3.2.4 Cut–Cell based Single–phase Turbulent Flow Simulations
	3.2.5 Flat Plate ReL=5106
	3.2.6 90 Curved Channel ReW=1105

	3.3 Simulation of Two–Phase Cavitating Flows
	3.3.1 The Two–phase Navier–Stokes Equations, with Cavitation Modeling
	3.3.1.1 Boundary Conditions

	3.3.2 Cavitation Modeling
	3.3.3 Discretization of the Cavitation Model Source Terms

	3.4 Two–phase RANS Equations using the Cut–Cell Method
	3.5 Cut-cell based Turbulent Flow Two–phase Simulations
	3.5.1 NACA 66(MOD) hydrofoil Rec = 2106
	3.5.2 Hemispherical Cavitator ReD = 136000
	3.5.2.1 0 Angle of Attack
	3.5.2.2 10 Angle of Attack

	3.6 Concluding Remarks

	4 The Continuous Adjoint Method
	4.1 Gradient–based Optimization
	4.2 Formulation of the Continuous Adjoint Method
	4.2.1 Differentiation of the Inviscid Terms
	4.2.2 Differentiation of the Diffusive Terms
	4.2.3 Differentiation of Source Terms
	4.2.4 Field Adjoint Equations
	4.2.5 Adjoint Boundary Conditions
	4.2.5.1 Wall Boundaries – SW
	4.2.5.2 Inlet & Outlet Boundaries – SI & SO
	4.2.5.3 Farfield Boundaries

	4.2.6 Expression of Sensitivity Derivatives

	4.3 Objective Functions and their Differentiation
	4.3.1 Volume–averaged Total Pressure Losses
	4.3.2 Force
	4.3.3 Volume of Vapour in the Fluid Domain

	4.4 Concluding Remarks

	5 Shape Optimization using the Cut–Cell Method
	5.1 Shape Parameterization in the Cut–Cell method
	5.2 Shape Optimization of Single–Phase Turbulent Flows
	5.2.1 Channel Turbulent Flow – minJPt
	5.2.2 90 Curved Channel Turbulent Flow – minJPt
	5.2.3 Turbulent Flow over the NACA 0012 – maxJF

	5.3 Shape Optimization of Two–Phase Cavitating Flows
	5.3.1 Validation of Cut–Cell Two–Phase Flow Solver
	5.3.1.1 Inviscid Cavitating Flow over the NACA 66(MOD) Hydrofoil
	5.3.1.2 Laminar, Cavitating Flow over the NACA 0012 Hydrofoil

	5.3.2 Two–phase Shape Optimizations
	5.3.2.1 Inviscid, Cavitating Flow over the NACA 66(MOD) Hydrofoil – minJV
	5.3.2.2 Inviscid, Cavitating Flow over the NACA 66(MOD) Hydrofoil – maxJF
	5.3.2.3 Laminar, Cavitating Flow over the NACA 0012 Hydrofoil – minJV

	5.4 Concluding Remarks

	6 Topology Optimization using the Cut–Cell Method
	6.1 Topology Optimization Problem Definition
	6.2 Porosity–based Topology Optimization
	6.2.1 Example of SPTopO in a Single Inlet–Single Outlet
	6.2.1.1 Motivation – A Closer Look at the SPTopO Main Weakness

	6.3 The Cut–Cell TopO Algorithm and its Steps
	6.3.1 Computation of the Boundary Indicator Field
	6.3.2 Generation of Cut–Cells based on
	6.3.3 Governing Equations
	6.3.4 Formulation of the Adjoint Problem
	6.3.5 Overview of the Cut–Cell Topology Optimization Algorithm
	6.3.6 Parallelization of the Cut–Cell TopO Algorithm

	6.4 Topology Optimization using the Cut–Cell Method
	6.4.1 CCTopO – Single Inlet–Single Outlet Case
	6.4.2 Single Inlet–Single Outlet Case with Obstacle
	6.4.2.1 Single Inlet–Single Outlet Case with Obstacle (x, y) = (0.25, 0.25)
	6.4.2.2 Single Inlet–Single Outlet with Obstacle (x, y) = (0.39, 0.29)

	6.4.3 Single Inlet–Two Outlet Case
	6.4.4 Two Inlet–Two Outlet Case
	6.4.5 3D Manifold TopO

	6.5 Concluding Remarks

	7 Closure
	7.1 Novel Contributions
	7.2 Future Work

	A Inviscid Jacobian and Eigenvectors
	A.1 Single–Phase Governing Equations
	A.2 Two–Phase Governing Equations

	B Adjoint Wall Functions and Linelets in the Cut–Cell Method
	C The GCMMA Algorithm
	C.1 (GC)MMA Implementation Details

	D Re–evaluation of the Porosity–based Optimized Solutions
	Bibliography

