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Abstract

In this dissertation, we leverage on capabilities offered by the Network Softwarization
paradigm and combine them with advanced data analysis techniques, i.e. Machine
Learning (ML), towards the development of an integrated protection framework against
cyberattacks. We focus on Distributed-Denial of Service (DDoS) attacks and implement
mechanisms for efficient network data collection, fast and reliable anomaly detection and

effective mitigation.

Initially, we design a DDoS detection mechanism entirely offloaded in the data plane
using the P4 language. Through traffic features computed and evaluated in-network,
DDoS attacks victims are identified rapidly within short timeframes. Detection in the data
plane is one step ahead of control plane mechanisms that stall real-time detection and

mitigation of network attacks.

Detecting the victim of network attacks is only the first step towards mitigating them and
is followed by traffic classification procedures. Thus, in this dissertation we introduce a
novel signature-based classification and mitigation schema based on softwarized data
planes, i.e. eXpress Data Path (XDP). Supervised Learning algorithms (Random Forests,
Multilayer-Perceptrons), applied to packet features (signatures), segregate malicious from
benign packets. The employed features are pre-selected through an automated process
that eliminates inconsequential features. To expedite mitigation performance and ease
filtering rules management, source [P-agnostic rules tailored to the attack traffic are
generated. This is achieved via a multi-objective optimization problem formulation that
reduces filtering rules number with minimal effect on benign traffic. The proposed
signature-based mechanism is evaluated in two broad categories of DDoS attacks,
protocol (i.e. SYN Flood) and volumetric (i.e. DNS Amplification). Based on
experimental evaluations, our innovative approach outperforms the state-of-the-art flow-
based protection mechanisms by (i) detecting attacks in shorter time-windows, (ii)
optimizing the number and type of filtering rules, and (iii) achieving increased packet

filtering performance.

Finally, in this dissertation, we extend our signature-based schema to collaborative
network environments. Collaborative DDoS detection relies on Federated Learning

techniques that enable for cooperative and privacy-aware learning. Collaborative DDoS
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mitigation is implemented in programmable XDP-based middleboxes featuring a
scalable, cost-effective protection as-a-service mechanism. By contrast to traditional
protection schemes, we allow data exchange amongst disjoint network domains with
respect to data privacy legislations; moreover, we offer a flexible yet efficient firewall

solution offloaded in Commercial-off-the-Shelf hardware.

Our integrated protection framework is deployed in programmable network hardware and
evaluated using production network data from diverse and heterogeneous network

environments, featuring fully realistic experimentation.
Keywords:

DDoS attacks, Anomaly Detection, Attack Mitigation, Software-Defined Networking
(SDN), Data Plane Programmability, P4, eXpress Data Path (XDP), Supervised Learning,

Federated Learning



Iepiinyn

H mapovca didaxtopikn dotpifny Epevva TeXVOAOYIES ALYUNG TWV GUYYPOVAOV IIKTO®OV
VTOAOYIOTM®V UE EUPACY] OTIS OUVATOTNTEG TPOYPOUUUOATICHOD TOVG KOl TOPOAANAQ
e€etdlel pebodoroyiec Kot aAyopiBuovg €veLODE aviAlvong SIKTLOK®OV dedOUEVOV.
2uvovalovtog avTég TIG 000 TTLYES EYEL MG GTOYO TNV ONIOVPYid EVOG OAOKANPOUEVOL
UNavicpol TPocTaciog eVAVTIo 6 KUPBEPVOETIOEGELS. ZVYKEKPIUEVO, AOYOAEITOL LUE TIG
KOTOVEUNUEVEG EMOBECELG APVNONG TOPOYNG VINPECIOV Kol LEAETH LeBOOOVE ATOJOTIKNG
GLALOYNG OEJOUEVMV, TEXVIKES QUEONG Kol aSOMIOTNG aViXVeELONG Kot KAUOKMOGILOVS

UNYOVIGLOVE OVTILETAOTIONG EMOECEWDV.

Apywd moapovotdletor évag pnyaviopds aviyvevong embBécemv oyedoouévog €€
OAOKANPOL GTO EMIMEOO JESOUEVMV SIKTLAK®V GLoKELAOV. Méoa and ™ yAnooa P4,
VROAOYILOVTOL HETPIKES TNG SIKTLOKNG KIVIIONG OV UTOPOVV VAL DTOSEIEOVY AUEGO TO
Bopa g ekdotote eniBeong. Ot unyavicpol mov vAoTooHVTaL 6T0 eminedo dedouévav
EMPEPOVY  TAYVTEPOLG YPOVOVLS OVIYVELONG GE OYEOM WHE TOVG TAPOIOCLAUKOVG
pnyovicpovg mov Pociloviar 6To EMmEdO EAEYYOVL Kol UTOPOHV VO 0ONYGOLV GTHV

KOiplo. OVTILETAOTION TOV ETOEGEDV.

Qc1000, 0 VTOMIGUOG TOV BOPATOG amoTeELEl LOVO TO TPAOTO PrIHa Yol TNV KATOGTOAN
pog emiBeong, agov yio v yiver autd eQIKTO amotteitol 0 Soy®Popdg TG OIKTVOKNG
kivnong oe KOAOPOVAN Kot KOKOPBOUAN. XVVET®MG, OTN GLVEYEW TNG TOPOVCHG
OWaKTOPIKNG OTpIPrg mpoteiveTal £vog KOUVOTOHOG UNYOVIGUOS TPOoTOGING oo
embéoelg mov PacileTon 6€ YOPOKTINPIOTIKA TOV TOKETMV (Signatures) Kot VAOTOEITOL GE
yevikobd TOmov efomMopd aflomowwvtag Tig dvvarotntes tov framework XDP.
AlyopiBpor EmPrenopevng Mdaonong a&tomotovv Hovo To STUOVTIKA YOPOKTNPLIoTIKG.
TOV TOKETOV KoL TO KOTYOPLomolovv og KaAdBovia/kakoBovia. Ta v aviipetomion
TV eMBOEGEMY, YPNOLOTOOVVTOL TO 1OWOHTEPO YOPOKTINPIOTIKA TV KOKOBOLA®V
ToKETOV, OM®G OoVTE TPOKLATOLV om0 Mo JdKAGIo HEIMONG. ZVYKEKPLUEVQ,
KATOoKEVALOVTOL KOVOVEG OITOKOTNG OV TTEPLYPAPOLY LE OGO TO SLVATOV PEYOADTEPT
axpifela tnv ekdotote enibeon ywpic va emmpedlovy onuavtikd v KaAdBovAn kivnon.
O mpoTeVOUEVOG UNYOVIGUOG EPAPUOLETOL GE OVO HEYAAEG KOTNYOPIEG KATAVEUNUEVOV
eMBEGEWV APYNONG TOPOYNS VINPESLAOV, TIG Volumetric Ko Tig protocol. H mepapatikn
a&lohdynon deiyvel v vIEPOYN TG GLYKEKPLUEVNS LeBOdOAOYING EVOVTL TOV KAUGIKOV
UNavicpov Tpoctaciog mov facilovial og poég makéTmv: (1) oty TaHTNTO AviYveELONS

6



emBécewv, (il) oV Kataokeun PEATIOTOV GIATp®V andpprymg g KoKOPovAng kivnong

Ko (1i1) ot avénuéveg emdOGELS G PLOLOVS ATOPPIYNG TOKETWV.

TéNog, OAOKANPOVOVTAG TV TAPOVGH SLUTPIPN EMEKTEIVOVLLE TOV UNYOVICUO TPOGTAGING
mov Poaociletor 6e YOUPOAKINPIOTIKA TOV TOKETOV OCE GLVEPYUTIKA TePPAArovia
avtoévopv Owtdmv. H ocuvvepyatikn aviyvevon emitedeiton pe tm ypHom TEXVIKOV
Opodcmovong Mdabnong mov nTpENOVY TNV GLAAOYIKY] KATOOCKELT] LOVTEA®Y Mnyavikng
Mdabnong xwpic TNV GUEST XPNON TOV TPOCOTIK®Y OEG0UEVOV TV cuvepyalopevov. H
ocvvepyatikn avipetdnion faciletot kot taAl oto framework XDP kot mpoceépetar ov
VINPEGIO 6TOVG GVVEPYALOUEVOLG POPEIC divovtag TN duVATOTNTO Yo OTOJOTIKY KO
KMUOKOOIUN omdppiyn KOKOBOLA®V TAKET®V. Xe GUYKPION UE TIG TOPAOOGLOKES
pneBdO0VG cuvEPYATIKNG TPpooTaciog, N Lebodoroyia mov akorovBoldpe AapPavel vedyv
MG TOGO TNV WIOTIKOTNTO TV dEGOUEVMV Y10, TNV 0viYveELST aAAd Kot TV eveMéia doov

aQOPE TOLG TVTOVG TOV KOAVOV®V AL KOl TOVG VPLGTAEVOVS TOPOLG.

A&ilelr avapopdg OTL 0 UNYaVICUOG TPOGTAGING TOV KATOGKEVAGTNKE GTA TAOIGLH QTG
g STtpPng SOKIUAGTNKE GE TPAYUOTIKO SIKTVOKO eE0TAMGUO (EVTTVES KAPTEG OIKTHOV)
Kot ot €mdocelg Tov aflohoyndnkav PAcEl TPAYUATIKOV SIKTVOK®V JESOUEVOV OO

€TEPOYEVN SIKTVOKA TTEPPAAAOVTAL.
AéCeic Kheona:

Aiktva Opilopeva amd Aoyiopko, Katovepnuéveg EmbBéceig Apvnong Ilapoyng
Ympeowov, Ilpoypappoticpnds Emmédov  Agdopévov, Avixvevon EmbBéoewv,

Avtyetomon Embécewv, EmPAenopevn Mabnon, Opdsmovon Mdabnon
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1 Introduction

1.1 Motivation & Problem Statement

Internet services have been and still are an integral part of our lives with a plethora of
everyday activities being highly dependent on them. These span from applications that
facilitate online economic transactions, digital content exchange, social networking, but
also extend to critical applications for the human life, e.g. remote surgery. COVID-19
pandemic is one of the recent examples that illustrated the reliance of people on Internet
services; during that period, huge Internet traffic growths were observed, since most
people were self-isolated spending most of their time at home (e.g. remote working,
extent usage of streaming services). This period is a prominent example illustrating that
the stability and the guaranteed performance of computer networks can significantly

affect our everyday lives.

Network attacks provide the means for disrupting the stable/desired operation of
computer networks. Especially, Distributed Denial-of-Service (DDoS) attacks [1] are the
most common way for plaguing network infrastructures and overwhelming services
offered on top. These attacks aim, using a wide spectrum of techniques, to render specific
services and/or network infrastructures unreachable to their legitimate users. DDoS
attacks have been commoditized and even offered as-a-service via platforms referred to
as Booters [2]; in exchange of a small fee, attacks of high volume can be launched,
capable to bring down from small enterprises up to large ICT (Information and
Communications Technology) companies. The ease of initiating DDoS attacks combined
with diverse motives (e.g. extortion, cyber warfare, boredom) have made them an
everyday problem for network operators and as a consequence for the legitimate end-

users.

The increasing frequency of DDoS attacks impacting critical and of paramount
importance Internet services has paved the way for the development of a large DDoS
protection industry [3]-[6]. These companies offer full-fledged traffic scrubbing on
potential victim networks (e.g. Internet Service Providers, Content Delivery Networks,
Academic Institutions) by providing two types of services: they (1) either offer on-demand
protection by draining network traffic destined to victim networks, scrub it, and forward

back the benign portion, (ii) and/or provide commercial scrubbing appliances [7], [8] for
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on-premises protection; these are constantly protecting networks and services from
malicious traffic. However, due to the costly fees introduced by commercial-based
solutions, custom in-house alternatives are also considered instead. In both cases, DDoS
protection frameworks should be able to adapt to the evolving landscape of network
attacks and cope with the requirements posed by the ever-growing Internet traffic.
Therefore, the protection mechanisms need to consider the following

limitations/challenges:

e Proprietary software/hardware - Limited flexibility: Typical DDoS protection

solutions are either proprietary in terms of hardware equipment or software
implementations. This poses difficulties on managing, troubleshooting or even
extending such mechanisms while introducing vendor lock-ins.

e Scalability/Performance: Protection services are required to cope with the ever-

increasing Internet traffic. Hardware implementations lack the elasticity of
extending on-demand their resources while software-based approaches, although
elastic, are not able to meet performance requirements imposed by emerging
network infrastructures.

e Adaptability to diverse & complicated traffic patterns: The increase of

complicated and diverse Internet applications/services in the Big Data era creates
constantly heterogeneous and complex traffic patterns. DDoS protection
mechanisms need to deal with the evolving traffic patterns by providing accurate

and rapid traffic classification.

Deep network programmability realized by the advent of Network Softwarization in
combination with the evolution/embracement of intelligent data-driven methods, i.e.
Machine Learning, can act as key enablers to overcome the aforementioned

limitations/challenges.

Network Softwarization was firstly introduced by the OpenFlow protocol [9] (and similar
efforts [10]) that enabled network operators to program the control plane of their networks
in a unified way. Following that paradigm, a new era of programmability has raised
awareness, offering high-performance programmable data planes. Two main efforts, P4
[11] and eXpress Data Path (XDP) [12], introduced a revolution in computer networks
management. Especially for DDoS protection services, these can act as the cornerstone

of flexible, scalable, and programmable detection and mitigation pipelines.
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Moreover, the evolution of high-performance computing alongside with the
establishment of integrated Machine Learning frameworks allow the broad use of
intelligent data-driven methods, i.e. Machine Learning. Traditional statistical approaches
may be inadequate to analyze the diverse and complex patterns of network traffic. Thus,
Machine Learning is a promising candidate for accurate, adaptable, and automated traffic

classification.

The aforementioned technologies can play a significant role in addressing DDoS
protection research challenges. These are divided in two discrete but non-independent
categories: DDoS (i) detection and (ii) mitigation. DDoS detection includes mechanisms
for network data extraction and analysis towards the identification of (i) ongoing attacks,
(i1) targeted victims, (iii) attack types, and (iv) malicious traffic portions. The key
performance indicators of these tasks are the immediacy (in terms of time) and accuracy.
The former affects the countermeasures reaction time while the latter the legitimate users’
quality of experience. DDoS mitigation includes methods/techniques to effectively filter
out malicious traffic without impacting benign traffic. Scalability, flexibility, and

performance are the key challenges to be considered by DDoS mitigation solutions.

1.2 Contributions

Based on the aforementioned challenges and innovative technologies, in this dissertation,
we leverage on recent advances in computer networks and intelligent data-driven
algorithms to architect an integrated scalable, fast, adaptable, and efficient DDoS
protection mechanism. Our key contributions in comparison to the existing state-of-the-

art approaches are summarized below:

Accurate & Rapid DDoS Detection Offloaded in the Data Plane: Contrary to typical

control plane traffic monitoring and DDoS detection mechanisms (based on sFlow [13],
NetFlow [14] or OpenFlow [9]), we introduce a rapid detection mechanism in the data
plane. Especially, P4 language [11] enables us to design and implement line-rate data
plane pipelines that can accurately detect network anomalies. DDoS attacks are identified

within short timeframes providing the means for fast remediation of the anomaly.

Intelligent Data-Driven Signature-based Traffic Classification: Traditionally, DDoS

protection mechanisms classify network traffic based on packet data organized in network

flows. This poses difficulties with regards to collection, processing, and storage hindering
21



real-time detection and mitigation. Unlike flow-based schemes, we employ packet
signatures that instantly reveal DDoS traffic characteristics. These are identified via
Machine Learning models providing rapid, automated, and adaptable traffic

classification.

Source-IP agnostic DDoS Mitigation driven by Smart Filtering Rules Reduction: Filtering

rules are commonly applied in commodity network devices (switches, routers, firewalls)
that impose limits to the number of entries they can support. To reduce their number,
source-IP based filtering schemes employ aggregation techniques by organizing
malicious IP addresses in subnets. In contrast, we introduce a filtering rule reduction
mechanism tailored to the attack traffic characteristics. This identifies a concise set of

filtering rules able to filter out the attack traffic, with minimal effect on benign traffic.

High-performance Scalable Network Functions based on Programmable Middleboxes: In

legacy network environments, traffic monitoring and filtering are implemented in rigid
proprietary appliances. In contrast, we opted to use programmable COTS (Commercial
off-the-shelf) hardware (i.e. low-cost NICs) powered by the XDP framework. This
enables the design and implementation of Virtual Network Functions (VNFs) that can be
instantiated on-demand and scaled according to traffic and application requirements, thus

suitable for elastic scrubbing services.

Privacy-preserving DDoS Detection and Scalable Mitigation tailored to Collaborative

Network Environments: Autonomous Systems (AS’s) collaborations are instrumental in
the Internet success story, but this is largely not extended to attack protection.
Collaborative DDoS detection is hindered by strict data privacy legislations while
mitigation by rigid firewall solutions. To address such concerns and limitations, we
introduce a signature-based DDoS protection framework tailored to collaborative
network environments. DDoS detection is performed in a privacy-preserving fashion via
the Federated Learning technique and DDoS mitigation is offered to collaborating parties

as a flexible/scalable service.

Experimentation using Production Network Data on Real Computing and Network

Hardware: We employ real computing and network resources to conduct high
performance experiments assessing the applicability of the developed mechanisms in

realistic network environments. Our experimentation is based on network traces from
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production network environments, i.e. Campus networks, Internet Service Providers
(ISPs) and Internet Exchanges (IXes), thus allowing us to evaluate our

methods/algorithms using both real and heterogeneous network data.

1.3 Outline

The remainder of this dissertation is structured as follows:

Section 2 provides a brief overview of computer networks and their evolution to meet the
ever-increasing needs imposed by Internet advances. Initially, we briefly discuss
computer networks and their operational characteristics; subsequently, the Network
Softwarization paradigm is introduced covering the evolution of Software-Defined
Networks from OpenFlow (OF) to programmable hardware (P4) and software data planes
(eXpress Data Path).

Section 3 presents concepts and technologies related to network monitoring. Monitoring
protocols, techniques, and data are investigated both for legacy and programmable
network environments. We put an emphasis on data that can be exported from network

devices and focus on their use for anomaly detection tasks.

Section 4 introduces the problem of Distributed-Denial of Service (DDoS) attacks and
analyzes the different attack types with a focus on their specific characteristics.
Subsequently, state-of-the-art DDoS attacks detection mechanisms/algorithms are

elaborated and finally mitigation techniques are discussed.

Section 5 explains our work on P4-based DDoS attack detection. The proposed approach
attempts to address the problem of DDoS detection entirely in the data plane providing
rapid and accurate coarse-grain DDoS alerts (pinpoints anomalies for hosts/subnetworks).
Our mechanism is evaluated on network hardware (programmable P4-enabled Network

Interface Cards) using production network data.

Section 6 makes a step forward towards DDoS protection. We propose a framework that
attempts not only to detect DDoS attacks but also to classify and filter malicious traffic.
Specifically, we consider SYN Flood attacks (as an indicative use case of protocol
attacks) and use packet signatures to classify and filter them. Our approach leverages on

Machine Learning techniques for traffic classification and softwarized data planes for
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efficient packet filtering. We use captured network attacks to compare our schema to the

state-of-the-art mitigation approach SYN Cookies.

Section 7 introduces a generic signature-based classification and filtering scheme for
volumetric attacks, extending the concept presented in section 6. The proposed
framework identifies the most important packet features for traffic classification and
generates [P-agnostic filtering rules for effective packet filtering. Our approach is
thoroughly evaluated against state-of-the-art source IP/flow-based approaches using real

production network data.

Section 8 extends the work presented in sections 6, 7 on signature-based DDoS protection
to collaborative multi-domain network environments. We leverage on the Federated
Learning paradigm to detect DDoS attacks in a privacy-aware fashion and design a
scalable and programmable DDoS mitigation as a service tailored to collaborative
network environments. Our schema is evaluated on multi-domain production network

data.

Section 9 summarizes the contributions of this dissertation and proposes future steps and

directions on open problems with regards to DDoS attack protection.

Section 10 provides an extended abstract of this dissertation in Greek, Section 11

provides author's publications and finally Section 12 contains references/bibliography.
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2 Computer Networks & Network Programmability

2.1 Computer Networks

Computer networks are and have always been the core ingredient of Internet
infrastructures, enabling for user and service interconnection. Network devices (routers,
switches, firewalls etc.) are the cornerstone of Internet infrastructures; these are used first
and foremost for transferring information between users and services but also to protect
them from malicious actors. In legacy network environments, packet forwarding is based
on management/control decisions determined by each network device. Specifically, the
network operations are categorized in the following planes (described below in a top-

down approach):

Management Plane: The management plane embeds all the operations related to

computer networks configuration and monitoring. The former may span from security
policies for network devices protection to control plane configurations (e.g. routing
protocols). The latter refers to network data collection and analysis that are useful for

maintaining the desired state of networks while validating their proper functionality.

Control Plane: The control plane defines switching/routing rules on network devices

based on switching/routing processes; these rules are applied on packets as they traverse

network devices and determine the way packets are forwarded in computer networks.

Data/Forwarding Plane: The data plane processes network packets in real-time and

applies the desired logic, specified by control/management operations. Indicative data
plane operations include packet switching (destination port selection) based on MAC
addresses, packet routing based on destination IP addresses and packet filtering based on

Access Control Rules.

In legacy computer network architectures, data, control and management planes are
intertwined at the device level; such an approach was suitable for network management
and operational processes in legacy environments. Emerging technologies evolved in the
information and communication technology (ICT) domain, in particular, 5G, Cloud
Computing, Big Data, Network Function Virtualization (NFV), Internet of Things (IoT),
and Intent-based networking explicit the need of high bandwidth, ubiquitous accessibility,
and dynamic management of computer networks [15].
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This explosion of Internet services, revealed new traffic requirements that legacy network
architectures were unable to cope with. Key considerations were related to: (i) limited
network/device programmability, (ii) the absence of open management standards and
vendor lock-ins, and (iii) the complexity of network infrastructures posing management
difficulties. These considerations led to a revolution in computer networks emerged by

the Software-Defined Networking (SDN) paradigm.
2.2 Software-Defined Networks

The aforementioned considerations in parallel with advances in network hardware and
software drove researchers and operators to rethink traditional network architectures. Key
design principles for next-generation networks were deep network programmability, open

and standardized interfaces for unified network management.
2.2.1 OpenFlow Protocol

OpenFlow (OF) [9] is considered one of the first and well-established protocols of the
Software-Defined Networking (SDN) paradigm. OF created the pathway for innovative
network (SDN) architectures by disaggregating the control from the data plane. In a
nutshell, the purpose was to transfer the "intelligence" of computer networks from the
network device to centralized controllers, as shown in Figure 2.1. This architecture
provides (1) a wide centralized view of the network substrate, (ii) optimized performance
through centralized decisions, and (ii1) granular network-wide policy configuration and

management.

OF originally defined the communication protocol in SDN architectures that enabled
external controllers to directly interact with the forwarding plane of network devices
(switches, routers). The forwarding plane of OF-enabled devices consists of match/action
tables that contain (i) a set of rules (based on packet fields spanning from L2 to L4) that
match traversing packets and (ii) a set of possible actions, e.g. forward to specific port,
drop the packet. These rules can be dynamically programmed by applications via OF's
unified interface. OF was widely employed by researchers for various network

applications considering use cases for network security [16], [17] but also by production
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environments, e.g. in Google they designed a flexible and elastic software-defined Wide

Area Network (WAN) [18].

APPLICATION
LAYER

CONTROL
LAYER

™

h OpenFlow

INFRASTRUCTURE
LAYER

Figure 2.1: OpenFlow application, control, and infrastructure layer interactions [19]

2.2.2 Hardware Data Planes

Although OF created new pathways for programming network devices, "OpenFlow main
goal was to make it easier for those who own and operate networks to write better control
planes.", as N. McKeown mentions. OF was based on the hypothesis that switch chips
are not programmable and attempted to fill the gap of unified programming interfaces
across network devices. However, from recent advances in network hardware,
programmable switch chips were designed that can achieve comparable performance to
the typical fixed-function chips. This revealed new capabilities on programming network
devices as their data plane could be directly programmed by specifying the journey of
packets within the hardware pipeline. In a similar fashion with OF, the need for a common
way to program data planes was required. Therefore, in 2014, a group of researchers
introduced P4 (Programming Protocol-independent Packet Processors) language [11], a
domain-specific language allowing developers to abstractly express packet forwarding

logic and apply it directly to network devices.

A consistent effort that followed the development of P4 language was the evolution of

programmable packet processors, e.g. DPDK [20], XDP [12]. Softwarized programmable
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data planes were incorporated in Linux systems presenting high packet processing
capabilities. Programmable packet processors allow developers to program high-
performance applications on COTS Network Interface Cards (NICs). Softwarized data
planes were mostly embraced by key players of the ICT industry [21] to design and
implement scalable, flexible, and of high-performance applications [22]-[24].

Both approaches (hardware data planes, software data planes) introduce the in-network
computing paradigm [25] that enables offloading computing tasks (e.g. Network
Functions) in programmable but of high-performance data planes; this creates a new
surface for developing novel network applications suitable for use cases that require rapid
decision making, e.g. anomaly detection tasks. More details related to the P4 framework
and its architecture are provided in subsection 2.2.2.1; details about programmable packet

processors and especially for the XDP framework are presented in subsection 2.2.3.

2.2.2.1 Programming Protocol-independent Packet Processors (P4)

P4 [11] is a high-level language for expressing how packets are processed by the data
plane of programmable network devices (switches [26], NICs [27]). The core design

principles of P4 are:

e Reconfigurability: Network devices forwarding behavior should be able to be re-
programmed on the fly depending on the network application.

e Protocol Independence: Network protocols change/evolve to meet new
requirements; adding new or extending protocols should be able to be
programmed on-demand without involving timely procedures (long lifecycles of
vendors).

o Target Independence: Network devices should be able to be programmed in a

common way regardless of the specifics of the underlying hardware.

2.2.2.2 P4 Overview

In Figure 2.2 below, the lifecycle of deploying P4 programs at network devices (targets)
is depicted. Device manufacturers provide the hardware or software implementation
framework, an architecture definition, and a P4 compiler for that target. P4 programs are
written for a specific architecture (P4 architecture model), which defines a set of P4-
programmable components on the target as well as their external data plane interfaces

[28]. The compilation of a P4 program generates (i) a data plane program tailored to the
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employed hardware and (ii) an API that exposes read/write functionalities between the
control and the data plane. In the next subsection, we will focus on the basic primitives

of P4 programs development.
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Figure 2.2: Programming a network device (target) with P4 [28]

2.2.2.3 Architecture Model

The P4 architecture model is a crucial component for the development of P4 programs. It
is a reference model that defines the programmable blocks of P4-enabled devices and
their data plane interfaces. We will describe the vimodel architecture to explain the
components of a typical P4 architecture and the programming capabilities it offers
(vImodel was used as a reference architecture for designing a P4-based DDoS detection
scheme presented in section 5). Note that, vimodel is a well-established architecture
model used in software switches, i.e. BMv2 [29] but also supported by NICs

manufacturers [27].
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Figure 2.3: P4 vimodel architecture

vImodel architecture consists of a 6-stages data plane pipeline as depicted in Figure 2.3.
The Parser defines all the available packet headers that are supported by the P4 program

and the order of packet header parsing (e.g. from L2 to L4). Subsequently, the packet
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passes to the Checksum-Verification stage, in which packets may be verified for corrupted
packet headers. The Ingress Match-Action stage follows; typically, in that stage, the
forwarding logic is applied (switching/routing) and the packet is assigned to the traffic
manager (not programmable in the v/model architecture). The next stage is the Checksum
Update stage that updates the checksum values of the packet which may be necessary due
to altered packet fields on previous stages, e.g. in Ingress Match-Action. An Egress
Match-Action stage follows, in which similar logic with the Ingress Match-Action table
can be applied, and finally, the packet is passed to the Deparser stage, which emits the
packet to the appropriate outgoing port.

2.2.2.4 P4 Programming

P4 programs are developed based on the architecture model supported by the
manufacturer of the network device. P4 language provides a set of capabilities that
illustrate similarities with common programming languages such as C. We describe
below in detail the journey of a packet from the arrival in a network interface up to the
departure from the P4-enabled device. In parallel, we also present the basic capabilities
offered by the P4 language, describing its basic primitives (using v/model as the reference

architecture model).

The first stage, that packets are processed, is the Parser, in which developers define the
packet headers that can be employed subsequently by the P4 program. Packet headers are
structs that include simple data types (e.g. integers, bits, booleans); these can be used for
the development of any network protocol using just a few lines of P4 code. After the
definition of the available packet headers, an hierarchical tree structure with the possible
packet headers combinations is defined. Incoming packets are matched to the defined
packet headers in the Parser stage and the packet header values can in turn be used in the

next stages of the P4 pipeline.

The most important stage with regards to the desired logic of P4 programs is the Ingress
Match-Action stage. This may incorporate combinations of the following primitives of

the P4 language:

e Mathematical operations: These include simple operations like additions,

multiplication, and bit shifting and can be applied to the values of packet fields.
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e Packet metadata: These may be categorized in (i) User-defined metadata and (i1)

Intrinsic metadata:

o User-defined metadata: These describe data structures defined by the

programmer and are per-packet data, transferrable between the stages of
P4 pipelines.

o Intrinsic metadata: These are also defined at a per-packet level but

correspond to special metadata provided by the architecture, e.g. packets'

input port.

e Match-action tables: These tables are similar to key-value stores. The key may be
an arbitrary combination of packet metadata and/or headers while the value is
associated with an action; actions are functions that set the packet metadata/header
values. Note that match-action tables are defined in the data plane but are only
populated by control plane functions.

e Registers: These are also key-value stores (similar to single dimension arrays) that
can be set both by control plane functions but also in the data plane. These are
extremely useful for designing algorithms in the data plane that require per-packet
state information.

e Extern functions: These are special-purpose third-party functions offered by the

underlying architecture/target. Indicative examples include hash functions and

high-accuracy timestamping.

Based on the aforementioned capabilities and constraints of the P4 language a wide
spectrum of Network Functions can be implemented in the Ingress Match-Action stage.
These span from simple forwarding tasks, i.e. packet switching (selecting the outgoing
port from a match-action table based on the destination MAC address) to complex
algorithms such as Heavy-Hitter detection [30], DDoS detection [31], [32], and Active
Queue Management (AQM) schemes [33]. Note that, the Egress Match-Action stage can
also be employed for Network Functions implementation using the same primitives as the

ones mentioned for the Ingress Match-Action stage.
2.2.3 Software data planes - eXpress Data Path (XDP)

Implementing services in hardware data planes enables for low-latency and high-

throughput, due to the native performance of switching Application-Specific Integrated

Circuits (ASICs). With the advent of Network Function Virtualization (NFV) [34],
31



Network Functions (NFs), that were naturally operating at physical network appliances,
were transformed to software-based solutions (Virtual Network Functions — VNF). This
paradigm was initiated from service providers and mobile network operators in an attempt
to decouple traditional NFs, e.g. Network Address Translation (NAT), Firewalling (FW),
and Deep Packet Inspection (DPI), from proprietary hardware and instead substitute them
with software-based solutions on COTS equipment. However, performance implications
were expected after replacing hardware-based services/functions with software-based. To
that end, Programmable Packet Processors came to the surface, that allow COTS
equipment, such as programmable NICs, to achieve comparable performance to
expensive ASICs, but with greater capabilities in terms of flexibility and

programmability.

Data Plane Development Kit (DPDK) [20] is probably the most well-known framework
for programmable packet processing in Linux systems. Although it was initiated as an
Intel's endeavor, currently it is supported by many NICs manufacturers. DPDK is a
kernel-bypass framework, that removes the control of the networking hardware from the
Linux kernel and transfers it to the networking application (bypasses the Linux kernel).
A similar approach that also bypasses the Linux kernel is the PF_ RING ZC framework
[35]. Kernel bypass is a promising approach for developing high-performance VNFs [12],
[36], [37] however, due to the non-involvement of the Linux kernel, it has significant

management, maintenance, and security drawbacks [12].

An alternative approach for programmable packet processing is the eXpress Data Path
(XDP) [12], which harmonically co-exists with the Linux kernel. XDP is executed before
heavy networking stack operations and can be seamlessly ported in Linux systems. It
provides high-performance programmable packet processing in COTS hardware, thus
enabling for the deployment of demanding network applications even within legacy
servers. In this dissertation, we employed XDP to design and implement high-
performance yet programmable monitoring and filtering mechanisms for DDoS detection
and mitigation tasks. XDP has been widely adopted in production network environments
for various applications, e.g. Load-Balancing [23], Intrusion Detection [24], and DDoS

protection [22].

2.2.3.1 XDP Design Principles

We present below the core design principles of the XDP framework:
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e Coexistence with the existing Linux networking stack & transparency to user-

space applications: XDP can coexist with Linux networking stack while being

transparent to applications running on hosts. This enables innovative deployment
scenarios such as inline protection against denial of service attacks on commodity
servers.

e Programming of multi-vendor NICs in a unified way: XDP programs can be

deployed in different (multi-vendor) NIC drivers; there are no special hardware
features required, only the existing drivers to be modified for supporting XDP
execution hooks.

e Reusing of existing Linux kernel network stack features: XDP allows utilizing

Linux network stack features such as the routing table and the TCP stack. This
enables developers to focus mostly on the desired functionality of XDP programs
without needing to recreate core functionalities of common network applications.

e Online reprogrammability and on-demand scaling: Applications programmed in

XDP, can be dynamically reconfigured without any service interruption. Desired
features can be added on the fly or removed completely when they are not needed
without network traffic interruption. Depending on the traffic loads received by
XDP programs, dynamic scaling of the CPU resources (within a single server)

may be considered.

In the following subsection, we will delve into details related to the XDP programming

model, analyzing in detail the practical aspects of the aforementioned design principles.

2.2.3.2 Programming in XDP

XDP programs, written in C, are executed either in software within the context of the
network driver or even offloaded directly in Network Interface Cards (NICs), e.g.
Netronome SmartNICs [27]. Their execution is initiated upon the arrival of packets at a
network interface. In turn, packet data can be parsed, extracted, and stored in persistent
memory referred to as Berkeley Packet Filter (BPF) Maps [12] (see Figure 2.4). These
are key-value stores defined when the XDP program is loaded. XDP returns an action for
each packet which defines how it should be handled. The packets can be either (i) dropped
- XDP_DROP, (i1) passed to the network stack - XDP PASS, (iii) redirected to another
interface - XDP_REDIRECT or (iv) transmitted back - XDP TX.
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Figure 2.4: XDP integration with the Linux network stack [12]

XDP programs are running in the kernel address space and thus can access (and
potentially alter) Linux kernel's memory. For safety purposes, XDP programs before
being loaded are analyzed by the eBPF Verifier; this component checks XDP programs
memory accesses while ensures that the program will terminate. These checks are
performed to guarantee that the user-supplied XDP program will not affect the operational
status of Linux servers, e.g. kernel malfunction, however, they pose significant challenges
on XDP applications implementation; indicative limitations include (i) bounded loops,
(1) fixed-size data structures, (iii) 4096 BPF instructions per program, and (iv) limited
support of kernel functions. To that end, the design and implementation of XDP
applications require significant attention due to the aforementioned limitations. In
sections 6, 7, and 8, we discuss the limitations and challenges we faced on developing

XDP-based monitoring and filtering components.
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3 Network Monitoring

Network operators configure and manage network infrastructures while receiving
feedback from them via retrieving network monitoring data. Network monitoring is
crucial for network management as it provides information related to the status of network
infrastructures (health) and can be used to validate the desired operation/state, commonly
driven by (pre-agreed) business requirements. Network monitoring includes a wide
spectrum of technologies that are used to export information from network devices. These
technologies follow the evolution of network infrastructures attempting to meet the ever-

growing requirements for accurate, reliable, and real-time network monitoring.
3.1 Simple Network Management Protocol

Simple Network Management Protocol (SNMP) was and may still be the flagship of
network monitoring. SNMP is used to collect information from network devices in a
client-server architecture. Typically, monitoring architectures include centralized
Network Management Systems (NMS) that periodically poll network devices (agents)
requesting information about their current status. The available information is defined in
hierarchical data structures, referred to as Management Information Bases (MIBs). Each
object in the MIB is identified by a unique Object Identifier (OID) and corresponds to
data related to the network device; these may be either retrieved or modified. Available
data provided by network devices are highly dependent on the existing MIBs, which may

be either proprietary (vendor-specific) or standardized.

SNMP is still used by network operators aiding them to detect, identify, and solve
problems that occur in their networks. In typical use cases, centralized/distributed
collectors request data (e.g. interfaces bandwidth utilization, device status) from network
devices; these data can be employed for multiple purposes ranging from applications for
DDoS detection [38] to network design procedures, e.g. capacity planning. Although
SNMP seems an ideal protocol for managing and monitoring networks, it has plenty of
limitations. SNMP proved to be inadequate for providing monitoring data in modern
large-scale infrastructures [39]. Increased polling times (5-minute intervals), data
collection scalability issues [40], unreliable delivery (UDP as the transport protocol) are
only some of the drawbacks that forced network device vendors and operators to move

towards different monitoring solutions, i.e. Streaming Telemetry.
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3.2 Streaming Telemetry

"Streaming telemetry is a new approach for network monitoring in which data is streamed
from devices continuously with efficient, incremental updates™. Streaming Telemetry
mechanisms overcome limitations imposed by SNMP. Specifically, the data collection
process does not rely on polling-based schemes but on a push-based/streaming fashion,
allowing devices to send information to external collectors even upon data change.
Reliable delivery is ensured via TCP while authentication/authorization is based on
user/password schemes and/or TLS certificates. Data models (similarly to SNMP) can be
vendor-neutral or vendor-specific and formatted in Yet Another Next Generation (Y ANG)
models commonly serialized via highly compressed mechanisms, e.g. Protocol Buffers
[41]. The main differences between SNMP and Streaming Telemetry mechanisms are

summarized in the following table:

Table 3.1:SNMP vs Streaming Telemetry

Push - Stream

UDP TCP
SNMP HTTP gRPC

MIB Vendor-specific/neutral

proprietary/standardized
SMI/ ASN-1 YANG
BER Google Protocol Buffers
(GPB) or JSON
Communities or Keys (v3) User/Password or TLS
certificate

! https://www.openconfig.net/projects/telemetry/
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Network monitoring architectures include a centralized collection engine
(SUBSCRIBER) that retrieves data from network devices (PUBLISHER). There are two
ways for subscribing to data: (i) DIAL-IN and (i1) DIAL-OUT. In the former, the collector
subscribes to the data of interest, e.g. CPU utilization while in the latter data subscription
is configured in the network device. DIAL-IN provides a flexible, scalable, and dynamic
network monitoring approach while DIAL-OUT requires each network element to be
configured for the data types that is going to populate to preselected collectors. Indicative
data, that can be retrieved from network devices, may be found in [42] (for Juniper

devices).

Monitoring approaches relying on either SNMP or Streaming Telemetry usually gather
information from network infrastructures related to their current state. This state includes
information spanning from the current status of network interfaces/devices to complex
service monitoring operations (e.g. TWAMP measurements [43]). As mentioned, this
information is of paramount importance for network administrators aiding them to
successfully monitor and manage their networks. However, such approaches do not
provide insight into the actual network data, i.e. network packets/flows that traverse
Internet infrastructures. In the following subsections, we discuss NetFlow [14] and sFlow
[13] that provide packet and flow-level information of the network traffic exchanged

between users/services.

3.3 NetFlow

NetFlow 1s a network protocol introduced by Cisco that enables network operators to gain
insight into the network traffic sourced/destined from/to their network via the
representation of network flows. A network flow, defined by the 5-tuple (source IP
address, destination IP address, source port, destination port, protocol), provides
information about the packets that were exchanged between endpoints/services within a
specific time interval by aggregating related data, e.g. packet/bytes counters. This process
is continuously conducted in network interfaces (either examining each packet or picking
1 out of n samples — sampled NetFlow) as packets traverse network devices. Flow data
are stored temporarily in the flow caches of network devices for preconfigured time
intervals (based on active/inactive timeouts) and upon their expiry conveyed to external
collectors (see Figure 3.1). These typically store data related to the observed flows that
can be subsequently used for further analysis. Network administrators may use flow
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information for network management tasks, e.g. network monitoring/troubleshooting,
network capacity planning, customer billing, and/or network anomaly detection tasks.
Especially for the latter, NetFlow has been and is still widely used for detecting and
identifying DDoS attacks; this will be further discussed in section 4.

Internet

Remote
Site #2

Remote
Site #1

NetFlow Queries
Packets

NetFlow NetFlow Analysis
Exporter Colfector Console

2  Flow Storage
LAN E - -ﬂ

Figure 3.1: NetFlow Architecture [44]

3.4 sFlow

sFlow stands for "sampled flow" and is an industry-standard mechanism for extracting
packets from network devices at the data link layer. This mechanism allows network
devices to push data (packet samples and/or interface counters) to external collection
engines which can employ them for network monitoring operations. sFlow is typically
configured with sampling rates based on the interface speed from which network packets
are sampled. Although sampling appears as a limitation, in reality, sFlow is a scalable
mechanism for network monitoring in high-speed switched or routed networks. This is
validated from different use cases reported in the literature, e.g. network anomaly
detection [16] but also from production environments, e.g. Cloudflare's DDoS protection

framework [45].

The main characteristic of sFlow is that it gives access to packet (i) headers and (i)
payload. Packet headers can be used to aggregate packets in network flows in a similar

fashion to NetFlow. In contrast, packet payload can be used directly for identifying
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anomalies in packet data, e.g. malicious pattern identification. In section 4, we will
discuss in detail how data provided by sFlow/NetFlow may be employed as data sources

for DDoS detection pipelines.
3.5 Deep Packet Inspection

Deep Packet Inspection (DPI) refers to the process of inspecting the contents of all
network packets that traverse network devices. Network packets should be first copied
and redirected (e.g. via port mirroring or monitoring taps) to Deep Packet Inspectors that
capture and analyze them. DPI may be used for various purposes: to baseline application
behavior, analyze network usage, troubleshoot network performance, data validation,
malicious code checks or DDoS attack detection. Especially in DDoS attack
detection/prevention tools such as Snort [46] and Suricata [24], packets are compared
against a set of rules (signatures) that correspond to pre-identified anomalous packet

patterns.

Deep Packet Inspection may be an intensive process both for the system that collects
network packets but also for the network elements that copy the desired network streams.
However, it may reveal packet characteristics that may not be available via the

aforementioned network monitoring methods, i.e. unobserved packets due to sampling.

3.6 Software-Defined Networks

3.6.1 OpenFlow

Monitoring OF-enabled networks provides a greater flexibility on the available
information that could be exposed by network devices. As mentioned, OF uses flow tables
that may include large numbers of packets fields. Each rule in the flow table is
accompanied by network statistics (packets, bytes counters). This allows to retain
aggregate data for arbitrary combinations of packet fields beyond the well-known 5-tuple
(network flow). Customizing the monitoring data tailored to network applications is an
appealing concept, however there are two major drawbacks. In OF, the forwarding logic
is tightly coupled with network monitoring [16] and thus network data are only available
for aggregations that have been included in the flow table due to the forwarding logic.
This may present scalability limitations in case of large networks due to the massive
number of packet field combinations that can be in parallel in the flow table [16]. The
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second drawback is related to the fixed set of packet fields exposed by the device. This is
highly related to the supported OF protocol version and the corresponding vendor
implementation. Requesting new packet headers requires vendors' intervention, a timely

procedure.
3.6.2 Programmable Data Planes

With programmable data planes, the drawbacks presented in OF environments can be
overcome. Interestingly, in both hardware (P4) and softwarized (XDP) data planes
mentioned in Section 2, network monitoring is disaggregated from the forwarding logic.
This enables to monitor and collect fine-grained data disassociating the forwarding
application from the monitoring logic. Except for this disaggregation, the holy grail of
programmable data planes is the definition of the exact data that required to be monitored
for each application. This simplifies network data storage and analysis as only data of
interest are exported. Moreover, it allows to rapidly modify the monitored data adapting

to possible protocol extensions or newly introduced network applications.

In the following section, we delve into the main focus of this dissertation, the detection
and mitigation of Distributed Denial-of-Service (DDoS) attacks. We (i) discuss their main
characteristics, (ii) investigate useful monitoring data for network traffic analysis, (iii)
analyze algorithms/methods for attack detection, and (iv) finally present mitigation

techniques.
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4 DDoS Attacks — Detection & Mitigation

Distributed Denial-of-Service (DDoS) attacks still present a major threat faced by
network operators [47]. These attacks plague network infrastructures by overwhelming
their capacity and/or processing resources rendering them unable to serve legitimate
users. DDoS attacks are typically orchestrated by malicious actors, e.g. hackers, that
command bots (infected hosts) to generate malicious traffic targeting selected services

and/or hosts, as depicted in Figure 4.1 below.

v
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Target

)

Attacker

00

Bots

Figure 4.1: Distributed Denial-of-Service Attacks Orchestration?

These bots (or zombies) are typically vulnerable devices with IP connectivity
compromised by malicious actors and employed not only for DDoS attacks but also for

other malicious purposes, e.g. port scanning, email spam campaigns.

DDoS attacks are categorized in three different attack types, each one with different
characteristics; however, they all serve the same purpose, to harm the selected victim

network/service. In the next subsection, we discuss in detail the different attack types.

2 https://trailhead.salesforce.com/en/content/learn/modules/aws-cloud-security/protect-against-dos-and-

ddos-attacks-with-aws-shield
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4.1 Attack Types & Characteristics

We may categorize DDoS attacks, based on the way they disrupt network
infrastructures/services, in the following types: (i) volumetric, (ii) protocol, and (iii)

application-layer attacks.

Volumetric _attacks create link congestion by consuming all available bandwidth

between the targets (victims) and their upstream providers/peers. Enormous amount of
data is sent to victim networks either via amplification techniques or other means of
massive traffic generation. A typical example of such attacks is the
Reflection/Amplification case, in which attackers exploit vulnerable protocols and
services to generate attack traffic (their magnitude is measured in bits per second - bps).
Attackers use the IP address of the selected victim and send specially crafted requests to
“misconfigured” servers (reflectors). These respond to the falsified requests with packets
of huge payload that consume victims network bandwidth. Note that a common side effect
of such attacks is packet fragmentation since large responses, generated by reflectors,
typically exceed the Maximum Transmission Unit (MTU) of transit links. Commonly
exploited protocols/services for volumetric attacks include DNS, SNMP, CLDAP, NTP
and SSDP [48].

Protocol attacks disrupt network services by overwhelming the resources of end-hosts

and/or the resources of interim network devices (e.g. firewalls and load balancers). These
attacks exploit "vulnerabilities" of the network and/or transport layer to increase the
processing burden of the selected targets. Specifically, the selected victims constantly
attempt to keep state information related to received requests (that may be even spoofed).
This results to excessive resource consumption, preventing them from serving legitimate
requests. These attacks are typically measured in packets per second — pps (since each
packet increases the burden for the victim) and include a wide variety of techniques.
Indicative attacks that exploit the 3-way handshake of TCP are SYN [49], ACK [50],
SYN-ACK [51] floods. Similarly, ICMP and UDP packets are commonly used to flood
victims and force them to waste their resources on responding to falsified/random

requests.

Application layer attacks, commonly referred to as layer 7 attacks, exhaust victims’

resources in a similar fashion to the protocol attacks. Contrary to them, layer 7 attacks
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target the application layer of the protocol stack. They employ appropriately selected
requests that force victims to consume significant resources to respond to them. These
attacks are commonly related to web-based applications served over the HTTP/HTTPS
protocol. Attackers flood servers with specially crafted requests that (i) are either
CPU/memory intensive, e.g. loading multiple files and/or running database queries to
return web pages, or (ii) make the server consume its network resources (e.g. sockets
exhaustion). Indicative examples for the former category are HTTP GET/POST Floods
[52] while for the latter low and slow attacks such as Slowloris [53]. Except for web-
based applications, DNS is a common target by application layer attacks. Indicative
examples of DNS application layer attacks are DNS Flood/Water Torture attacks [54] that
generate random/specially-crafted requests and force victim servers to utilize significant
amount of resources to respond. In total, application layer attacks are difficult to be
detected in interim network devices, since the attack traffic patterns present similarities

to the benign traffic, however these attacks can be pinpointed on victim end-hosts.

Multi-vector attacks refer to simultaneous combinations of the aforementioned attack

types. Malicious actors launch multiple attacks against selected victims to (i) bypass
network protections schemes, (ii) increase their possibilities to harm the victim, or (iii)
hide attack vectors within the attack traffic of other attacks, e.g. launching application

layer attacks in parallel with volumetric attacks.

As thoroughly explained, each attack type has its own unique characteristics, however
they all share a common goal: to disrupt network services. Integrated DDoS protection
frameworks should consider these characteristics and provide fast/accurate attack
detection and effective mitigation. In section 4.2, we discuss attacks detection techniques;
in section 4.3, we provide details on the countermeasures that can be applied, i.e.

mitigation mechanisms.
4.2 Detection Techniques

4.2.1 Overview

As mentioned in the previous subsection, DDoS attacks attempt to impact selected

networks/hosts (victims) in various manners, e.g. consume their system resources,
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overload the available network bandwidth. The generation of attack traffic creates
conditions in computer networks/systems that deviate from the expected/benign state;

these conditions can be defined as anomalies. DDoS detection may be defined as the
process of identifying such anomalies using as input network data. In general, DDoS

detection can be mapped to the following tasks:

e detect the existence of attacks (DDoS Existence)
e identify attack victims (Attack Victim Identification)
e identify the type of the attack (Attack Vector Identification)

e pinpoint malicious flows/packets (Attack Traffic Classification)
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Figure 4.2: General DDoS Detection pipeline
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In a nutshell, DDoS detection pipelines gather monitoring data from the network
substrate, analyze them, and identify ongoing anomalies. Network monitoring data may
include coarse-grained data (e.g. per-port packet/byte counters), flow-level, and packet-
level information. These data can be consumed by DDoS detection mechanisms in a
streaming fashion and/or periodic time-intervals, depending on the monitoring
mechanism (see section 3). The retrieved data are analyzed based on methods that span
from simple statistical models (e.g. threshold-based) to more complex algorithms, i.e.
Machine Learning (Supervised Learning, Unsupervised Learning). The outcome of this
data analysis pertains to the task(s) mentioned above. In Figure 4.2, we illustrate the

overall lifecycle of DDoS detection pipelines.

Such pipelines should provide both fast and accurate DDoS detection. Regarding the
former, timely detection leads to timely mitigation that can significantly reduce the impact
of DDoS attacks. Regarding the latter, detection accuracy is crucial for the benign end-
users; benign traffic misclassification results to disallowed benign traffic while malicious
traffic misclassification results to attack traffic portions reaching the victim. To that end,
high True Positive Rates — TPR (e.g. malicious traffic classified as malicious) and in
parallel, high True Negative Rates — TNR (e.g. benign traffic classified as benign) are of

paramount importance to minimize the impact of DDoS attacks.
4.2.2 Statistical methods

Most DDoS attacks introduce sudden increases in the incoming traffic rate of the victim
network; this is accompanied by abrupt changes in various network traffic metrics, e.g.
the number of network flows or even abnormal packet field values. The use of
appropriately selected thresholds on network metrics, that during an attack deviate from
their expected values, is one of the most common methods for DDoS detection. Basically,
this methodology assumes that network traffic characteristics, e.g. the number of flows in
a network, follow specific distributions (e.g. Gaussian distribution®). The values that
deviate from the expected behavior are considered anomalies. We present below

indicative efforts that rely on this methodology to identify/combat DDoS attacks.

3 https://en.wikipedia.org/wiki/Normal_distribution
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Indicatively, in [55]-[58], threshold-based detection schemes, within SDN (OpenFlow-
enabled) environments, were proposed; [55]-[57] focus on SYN flood attacks while [58]
provides a generic detection scheme. In [55], [57], SYN packets counters are maintained
for each IP source and if a predefined threshold value is reached, then the source is
considered malicious. These approaches seek to identify malicious sources of TCP floods
(Attack Traffic Classification task). In [56], SYN Floods are detected according to abrupt
decreases of the entropy value of destination IP addresses. In case the entropy value is
lower than a predefined threshold for consecutive time-windows, an active attack (DDoS
existence) is assumed, and a victim identification process is initiated. Similarly to [56],
in [58] the entropy values for destination IP addresses and ports are calculated; these are
compared to preselected thresholds and DDoS attacks existence is indicated.
Subsequently, a fine-grained detection scheme is initiated that pinpoints the victim of the
attack. This is identified by comparing the number of flows that target each destination
IP address to a selected threshold value (excessive values indicate highly asymmetric
communication). Finally, thresholds for TCP/UDP packet symmetry ratio are used for
malicious sources classification (these are defined according to well-known TCP/UDP

traffic patterns).

Threshold-based detection mechanisms have also been reported for programmable data
planes. Specifically, in [31], [59] P4-based DDoS detection schemes were proposed. In
the former, SYN flood attacks are detected by tracking the per-flow ratio of TCP SYN to
regular TCP packets and comparing it to predefined thresholds. In the latter, entropy
values of source and destination IP addresses are calculated in the data plane. These
values are compared to thresholds and upon their violation a DDoS attack is considered

active.

In total, threshold-based methods are a well-established approach for DDoS detection
(including all of its tasks) as reported in the literature [31], [55]-[59] but also as validated
by tools [60] used in production environments. This approach is commonly preferred due
to its interpretability and simplicity; however, it may struggle to follow the continuously
evolving DDoS landscape accompanied by complex traffic patterns. Therefore, more
sophisticated methods, i.e. Machine Learning (ML) algorithms, have raised awareness;
these attempt to create generic models for DDoS detection tasks based on multiple

features of network data.
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4.2.3 Machine Learning

In general, ML approaches are divided into three broad categories, based on the feedback

that is returned to a learning system:

o  Supervised Learning: Example input data (training data) and their desired output

values (labels) are provided to an algorithm; this searches for a general rule
(function) that maps the given input to the desired output.

o Unsupervised Learning: Example input data are provided to an algorithm, which

searches for correlations/hidden patterns amongst them.

o Reinforcement Learning: The learning system interacts with a dynamic

environment and continuously performs actions. These provide rewards to the
system, which aims to make the "best" decisions (actions) to maximize a

cumulative reward.

Within the context of DDoS detection, algorithms from the aforementioned categories
(mainly from Supervised and Unsupervised Learning) have been widely used for
pursuing the detection tasks mentioned above. Specifically, Supervised Learning methods
use as input labelled network data and classify them to benign/malicious (binary
classification?) or to attack categories (multiclass classification®). Unsupervised Learning
methods use as input unlabeled network data and attempt to identify hidden correlations
by either clustering them into categories or revealing anomalies (outliers). For the latter,
the anomaly detection problem® is typically transformed to a binary classification
problem, in which outliers are considered DDoS attack traffic. Below we present various
efforts reported in the literature that employ Machine Learning methods for DDoS attacks

detection.

In [61], a DDoS detection schema based on a Multilayer Perceptron (MLP) was
introduced. Traffic metrics related to flows and packet rates (UDP, ICMP) are collected

4 https://en.wikipedia.org/wiki/Binary_classification#Statistical binary classification

5 https://en.wikipedia.org/wiki/Multiclass_classification

® https://en.wikipedia.org/wiki/Anomaly_detection
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and used as input to an MLP, tasked with classifying network traffic to benign/malicious.
In [17], OpenFlow (OF) entries are collected from network devices, flow-related features
are extracted and classified via Self-Organizing Maps (SOM). In [62], an SDN DDoS
detection and mitigation schema was proposed. Sharp increases in the rate of OF Packet-
In messages are considered as an indication of DDoS attacks (threshold-based detection);
subsequently OpenFlow rules are collected from network devices and classified via an
MLP that uses the same feature set as in [17]. In [63], a large set of flow-related features
is extracted from packets and sent to OF Controllers. These are used as input to a Stacked
Autoencoder, which provides feature reduction and traffic classification of the flow as

benign or attack.

In [64] ATLANTIC, an SDN framework for DDoS attack detection and mitigation, was
proposed. Entropy changes for specific flow features within consecutive time windows
indicate the existence of an attack. Network flows responsible for entropy changes are
fed in a traffic classification component based on K-means and Support Vector Machines
(SVM). K-means is used initially to create clusters of common flows and SVM is further
used to identify malicious flows. In [65] DeepDefense, a DDoS detection schema based
on Recurrent Neural Networks (RNN) was introduced. Traffic traces, collected within
sliding time windows, are translated into arrays of packet features. These are fed to an
RNN that segregates malicious from benign packets. Similarly, in [66] LUCID, network
traffic classification also employs packet fields organized in network flows. Packet values
are collected from different time windows and organized as arrays; subsequently these
arrays are fed to a Convolutional Neural Network to identify time-dependent traffic

patterns.

In total, Machine Learning methods illustrate high accuracy for DDoS detection tasks,
identifying complex attack traffic patterns while also achieving significant generalization
capabilities (the ability to detect "unseen" anomalies, i.e. zero-day attacks [67]). In the
following subsection, we discuss the main challenges that need to be considered by DDoS

detection mechanisms.
4.2.4 Challenges

The key challenges with regards to DDoS detection may be categorized in the following:

e Accuracy:
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o Victim Identification: The accurate identification of DDoS attacks victim

host/subnet is of vital significance since the instantiation of further
protection procedures heavily relies on it. False alarms may lead to
delayed identification of the actual victim worsening the impact of the
attack.

o Attack Vector Detection: The detection of the exact type of a DDoS attack

determines the appropriate type of countermeasures. Falsely reported
types can further delay the mitigation of the attack.

o Benign/Malicious Traffic Classification: The accurate identification of

benign/malicious traffic is crucial. Misclassified benign traffic affects the
quality of experience of legitimate end-users by blocking them from
reaching the desired network/service. Respectively, misclassification of
malicious traffic allows attacks to flood the victim and consume its
resources, downgrading legitimate users' quality of experience (benign
and malicious traffic share victims' resources).

e Promptness: Rapid detection of DDoS attacks is of paramount importance, since
it enables for immediate enforcement of countermeasures increasing the uptime
of targeted networks/services.

e Adaptability: Detection mechanisms should be able to be used in diverse and
complex network environments. Methods/algorithms employed for detection
tasks need to conform both to the network environment (e.g. ISP) and to the
evolution of the network traffic patterns. Robust, reliable, and adaptable detection
mechanisms (i) enable for the classification of new (unseen) network traffic
patterns and (ii) ease management operations by minimizing operators' manual
intervention, i.e. reconfiguration/fine-tuning.

e Scalability: As noted, detection mechanisms consume network data and analyze
them to identify attacks. The ever-increasing Internet traffic leads to scalability
problems in terms of monitoring data collection/analysis. Thus, such mechanisms
should be able with few amounts of network data and within short time-windows

to accurately pinpoint anomalies.

Either using statistical methods or Machine Learning algorithms to cope with the

aforementioned challenges, this is only the first step towards DDoS protection. The next

49



step is the enforcement of appropriate countermeasures to filter out the attack traffic; this

process is defined as DDoS mitigation.
4.3 Mitigation Mechanisms

DDoS mitigation is tightly coupled with DDoS detection. In a nutshell, such schemes
retrieve information about the network traffic from DDoS detection mechanisms and

enforce filtering rules to block the malicious portion.

We may categorize DDoS mitigation mechanisms based on their deployment location in
the following types: (i) on-premises, (ii) on upstream/peer networks, and (iii) cloud-
based. On-premises approaches mitigate attacks within the network hosting the victim,
either using constantly or on-demand protection (e.g. dedicated hardware appliances).
This approach is effective for network attacks that do not exceed victim's network links
capacity. In that case, one of the (ii), (iii) alternatives need to be considered. Filtering
attack traffic on upstream/peer networks protects the victim network links, but requires
pre-agreements between the victim network and its upstream providers/peers. These may
range from typical blackholing [68] to granular filtering [69] techniques. Note that for
both cases (i), (ii), the victim network should identify the ongoing anomaly and define

the appropriate filtering rules.

An alternative approach, relies on DDoS protection offered by cloud-based service
providers; these, upon DDoS detection provided by the victim network, drain the network
traffic destined to the victim, scrub it, and finally redirect back only the benign portion.
BGP Anycast’ is one of the main techniques that enables cloud-based scrubbing providers
to absorb massive amounts of traffic using dispersed points of presence (POPs) across the
globe. Despite its effectiveness, cloud-based scrubbing may (i) raise privacy concerns,

(11) introduce additional latency, and (iii) require considerable costs.

The aforementioned approaches can be combined to create hybrid protection schemes,
e.g. on-premises mitigation for small-scale attacks and cloud-based scrubbing for massive

attack scenarios; these should be optimized per network environment.

7 https://en.wikipedia.org/wiki/Anycast#Mitigation_of denial-of-service attacks
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4.3.1 Filtering Methods

We described in the previous subsection various DDoS mitigation services based on their
deployment location. Despite this categorization, all of the aforementioned approaches
share a common goal, to filter the offending traffic without impacting benign users. In a
nutshell, DDoS filtering mechanisms employ one or more packet field values to
appropriately distinguish malicious from benign traffic as packets traverse network
devices (in the data plane). Matching and filtering capabilities rely heavily on the device
type, e.g. router, switch, firewall, COTS server, dedicated hardware appliance. Thus, we
present below DDoS filtering techniques emphasizing on their (i) matching capabilities,

(i1) drawbacks, and (iii) limitations:

Destination-based Remotely Triggered Black Hole (RTBH) Filtering [70] is a filtering

mechanism primarily used to prevent potential collateral damage during DDoS attacks
(e.g. bandwidth and CPU utilization, service degradation). It is a destination-based
filtering mechanism, in which the traffic destined to the victim is redirected to null
interfaces of edge routers and thus dropped. Victim networks use this mechanism for on-
premises mitigation to protect their network links. However, blackhole filtering is
commonly enforced on upstream networks/peers to protect victim networks links from
congestion. Note that, the main drawback of this mechanism is that both malicious and

benign traffic destined to the victim is seamlessly dropped.

Source-based Remotely Triggered Black Hole (RTBH) Filtering [70], unlike the

destination-based RTBH, is a source-based alternative that drops packets from specific
source IPs using the unicast Reverse Path Forwarding (uRPF) feature [70]. Source-based
RTBH also relies on BGP updates that contain routes to malicious IP addresses/networks;
attack packets from these sources are dropped on uRPF-enabled edge router interfaces.
Although more granularity than the destination-based RTBH is offered, packets destined
to legitimate destinations may be blocked in en route and fixed route spoofing scenarios

[71].

Access Control Lists (ACLs) is another approach commonly used in switching/routing

devices to implement firewall policies. Upon DDoS detection, appropriate ACLs are
populated to network devices to block the attack traffic. Contrary to Source-based RTBH,

ACLs allow more granular filtering (than source IP addresses). The packet fields that are
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commonly used to match and block the offending traffic rely on the 5-tuple of network
flows; this is based on the fact that typical detection mechanisms classify network flows
to malicious/benign and therefore mitigation mechanisms employ the same set of fields
for blocking. ACLs are an effective way for blocking DDoS attacks at the network edge,
however they come with some limitations: (i) the number of ACLs is limited in network
devices [72], (ii) the supported packet fields that can be used for packet matching are
tightly dependent on vendors implementations, and (iii) increased complexity on

managing ACLs in multi-vendor environments is introduced.

Similar to ACLs, OpenFlow rules support a plethora of matching capabilities and

actions/instructions, that may be used for packet rejection [58]. Although OF provides a
large number of packet fields that can be used for packet matching, it faces almost the
same limitations as the ones reported for the ACLs (except for the complexity of

managing them due to the common interface offered by OpenFlow).

BGP Flowspec [73] is a filtering mechanism that uses the Network Layer Reachability

Information (NLRI) format of BGP Update packets to disseminate flow specification
rules. These rules extend the capabilities of typical blackhole filtering mechanisms
allowing for fine-grained traffic filtering. BGP Flowspec rules are one step ahead of
typical ACLs, as they provide a 12-field tuple for matching malicious packets while being

able to be propagated to network devices over a unified interface, the BGP protocol.

Another filtering method for DDoS mitigation is based on packet signatures. These refer

to specific packet field values commonly observed in malicious network packets.
Signatures have already been classified as malicious and are employed as filtering rules
in appropriate middleboxes (DPI is required). These match and block malicious network
packets while not affecting benign network traffic. Although this approach is highly
effective for well-known attack traffic patterns, it is not able to cope with new "unseen"

attacks, 1.e. zero-day threats.
4.3.2 Challenges
In a nutshell, DDoS mitigation mechanisms need to:

e support various packet fields, capable to be used for accurate segregation of

malicious from benign traffic (in the data plane)
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generate concise and small sets of filtering rules to address data plane memory
limitations and simplify/facilitate their management

account for vertical and horizontal packet processing scalability for elastic on-
demand protection

enable for short filtering rules deployment time for immediate attack alleviation
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5 DDoS Detection in Programmable Data Planes (P4)

Data plane programmability is a promising technology that enables rapid control loops
for the detection and mitigation of cyber-attacks. In this section, we propose an in-
network architecture for DDoS attack detection that combines important traffic metrics
of malicious traffic. These pertain to number of flows and packet symmetry, maintained
for protected subnets and utilized to identify anomalies. Appropriate alarms are triggered
within time-based epochs and conveyed to external mitigation systems. We assess our
DDoS detection schema in P4-enabled SmartNICs in terms of detection accuracy and
packet processing performance. As input to our accuracy experiments we use real
publicly available traffic traces. Furthermore, performance stress tests were conducted
using high speed packet generators. Results exhibit that our approach is applicable in
typical enterprise and/or carrier environments, featuring packet rates of 1-2 Mpps for

10G links.
5.1 Motivation

As already mentioned, network environments are constantly plagued by massive
Distributed Denial-of-Service (DDoS) attacks launched via infected hosts under the
control of malicious actors. Accurate and timely DDoS detection is crucial for effective
and efficient mitigation. Typical DDoS detection schemas rely on packet samples [74] or
flow records [ 14], exported from agents within network devices (routers, switches). These
are relayed for processing to external collectors (servers). Similarly, SDN setups e.g.
OpenFlow [9] employ control plane signaling between network devices and controllers
to trigger detection alarms and subsequent mitigation actions. Such detection mechanisms
introduce added overhead on the communication between network devices and external
monitoring platforms, thus stalling the attack detection and as a consequence the

subsequent mitigation.

In-network DDoS attack detection is a step ahead of legacy detection methods, as it
operates directly in the data plane offering rapid attack detection, while enabling control
plane triggers to external mitigation systems. To that end, we propose a P4 [75] DDoS
detection schema that combines important traffic features to increase accuracy while
adhering to performance penalties. In a nutshell, we: (i) inspect network traffic and

compute related metrics (features), (i1) evaluate feature values to identify potential threats
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and (iii) convey alarms to external systems as digests. These are conducted continuously

in short-time intervals enabling timely detection of network anomalies.

The remainder of this section is structured as follows: In section 5.2, we discuss related
work; section 5.3 offers an architectural overview and presents the traffic features used;
section 5.4 provides implementation details of the proposed solution pertaining to the P4
language; section 5.5 presents experimental evaluations for processing performance and
detection accuracy employing benign and malicious (DDoS) traffic traces. Finally,

section 5.6 summarizes this section and presents our conclusions.

5.2 Related Work & Contributions

There are various efforts reported in the literature exploring performance capabilities of
advanced network applications implemented in programmable data plane environments.
In [12], an extensive analysis of the eXpress Data Path (XDP) framework is introduced,
As mentioned, XDP is a novel approach towards high-performance programmable packet
processing in Linux systems. The authors consider use cases such as Routing, DDoS
Mitigation and Load Balancing and perform experimental comparisons. In [76], the
impact of basic P4 operations (packet parsing, headers modifications) on packet
processing performance is explored. Experiments are based on P4-enabled SmartNICs
(Netronome Agilio CX) and illustrate the effect on processing latency introduced by
various P4 constructs. Similarly, in [77], the impact of operations performed within the
XDP framework on various system resources is investigated. Specifically, results
demonstrate packet processing limitations and scaling capabilities (number of CPU cores)
considering different flavors of XDP. Inspired by these approaches, we propose a P4-
enabled timely DDoS detection schema and explore its performance capabilities on a

SmartNIC-based testbed.

Recent research efforts on data plane programmability applied to detection of DDoS
attacks are reported in [31], [59]. In the former, a P4-based DDoS detection approach is
proposed; counting Bloom Filters are used to track the per-flow ratio of TCP SYN to
regular TCP packets in order to detect SYN flood attacks. In the latter, a DDoS detection
schema is presented that estimates entropy values of source and destination IP addresses.
These values are compared to appropriately defined thresholds and upon their violation a

DDoS attack is considered active.
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Both approaches employ software switches for experimentation. In contrast we deploy
our P4 schema in hardware, i.e. SmartNICs and assess its performance in terms of
attainable packet processing rate and detection accuracy. Moreover, [59] focuses entirely
on an important attack vector, SYN Floods while [31] detects the occurrence of an attack
without indicating the victim. We provide an integrated framework able to promptly
detect generic DDoS attacks to specific victim subnetwork, possibly alerting external

DDoS mitigation systems via P4 digests.

Note that data plane mechanisms can be employed to enable efficient and programmable
filtering (mitigation) based on packet headers [78]. DDoS mitigation is beyond the scope

of this section and will be discussed in the next sections.
5.3 DDoS detection in the data plane - High-Level Overview

Our schema is applicable either in transit provider networks (e.g. ISP, Research &
Education Network backbones) or customer/edge network domains (e.g. Data Centers,
Campus Networks). Upstream network providers may detect network anomalies aiming
downstream organizations. Similarly, customer organizations may deploy the same
functionality with fine granularity for specific internal subnetworks. Such an indicative
architectural setup is presented in Figure 5.1: Traffic originating from various Internet
sources is directed towards a P4-enabled edge domain, possibly via a P4-enabled transit
provider. We precisely consider the use case of National Research and Education
Networks (NRENSs) and their Pan-European interconnection GEANT. NRENs may offer
DDoS Protection services to universities and data centers downstream. These services are
implemented in P4-capable devices, placed at important vantage points to monitor traffic
at different levels of granularity. Specifically, P4 devices: (i) forward network traffic, (ii)
maintain important statistics for monitored (sub)networks, (ii1) perform anomaly

detection tasks and (iv) raise alarms to external mitigation systems.

Our schema maintains a list of specific monitored (sub)networks and/or hosts, depending
on the desired granularity level. DDoS attacks are detected by combining the following
traffic features: (i) total number of incoming traffic flows (srcIP, dstIP, protocol, srcPort,
dstPort), destined to monitored subnets in a distinct time interval henceforth denoted as

"epoch", (ii) significance of a network, characterized by the percentage of flows directed
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towards it out of the total incoming flows and (iii) symmetry ratio of incoming to outgoing
packets. These features have correlated characteristics and may provide localized alarms

for each protected network under generic DDoS attacks.

Internet
Sources

Transit Network
Provider

Anomaly
Detection
Pipeline

Anomaly
Detection
Pipeline

Data Center

Figure 5.1: High-Level Overview of P4 DDoS Detection Pipeline

Typically, massive DDoS attacks consist of a considerable amount of flows. Thus, we
consider the number of total flows as an attack indicator. We adopt a moving average
approach as in [31] to track for each epoch n the number and the dispersion of Total
Incoming Flows (71Fy). Specifically, we define M, as the Exponentially Weighted
Moving Average (EWMA) and D, as the Exponentially Weighted Moving Difference
(EWMD):

M, =a-TIE, + (1 —a) - M,_, with M, = TIF, (5.1)

D,=a-|M,—TIE, | +(1—a) D, withD; =0 (5.2)
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The parameter a is a smoothing coefficient to dampen short-term fluctuations. Network

anomalies are considered if 77F, exceeds a threshold that depends on M,.; and D,.;:
TIE,> M, +k-D,_, (5.3)
where k > 0 is a sensitivity coefficient that scales the detection threshold.

In order to further pinpoint the victim destination subnetwork, we also incorporate two

additional features, namely Subnet Significance and Packet Symmetry:

(1) Subnet Significance is expressed as the percentage of Incoming Flows S/ Fn(i)destined
to a subnet i in epoch # out of the Total Incoming Flows 7T1F,. We indicate an alert if this

percentage exceeds a significance factor fthat identifies major flow recipients as potential

victims:

SIE® .
TIE,

(5.4)

(1) Packet Symmetry is an insightful metric to avoid classification of a subnet as a victim

while it may be a recipient of heavy benign traffic, to which it generates responses. The
Current Packet Symmetry Ratio C R,(li) is defined as the fraction of incoming to outgoing
packets for subnet i during epoch n. These are evaluated based on per subnet i counters
and compared against a pre-computed Normal Packet Symmetry Ratio NR®. We
consider traffic to a subnetwork anomalous, in case the corresponding fraction exceeds a
heuristic threshold 7 as described in the following condition:

CRY
NR®

>7r (5.5)

Values for f,  and NR® are defined based on operational experience under normal (non-
attack) network conditions. Note that, these parameters could be set by employing

Machine Learning algorithms that learn from past traffic patterns.
5.4 P4 DDoS Detection Pipeline — Implementation Details

In this section we elaborate on implementation details of the proposed DDoS detection
pipeline. Our mechanism utilizes P4 registers to implement counters, arrays and

probabilistic data structures. We do not use P4 counters since their values are only
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accessible via control plane signaling and may not be used directly in data plane

interactions [75]. In Table 5.1, we present indicative register definitions.

Table 5.1: P4 Registers Functionality, Indicative Definition and Usage

Usage
Functionality Example Definition
. ) Epochs, Total Flows
Counters register<bit<32>>(1) epoch
register<bit<16>>(256) Per Subnet Flows, Packets
Arrays
flow_dst
i i Flow Trackin
Probabilistic Data Structures reg1ster<b;‘{{<502; >(65536) 8

In Figure 5.2, we present our processing pipeline. Traffic arriving at the P4-enabled
device is filtered to include only relevant packets. Subsequently, we apply our multi-
feature approach in distinct serial steps to identify potential attacks. In case all violations

are observed, we generate alarms (i.e. P4 digests [75]) to an external mitigation system.

R1 Anomaly Detection Pipeline

No No

New Epoch

e i At Outgoing
Initializations
. Epoch
lnC()?mg . . . poc & Updates .Packet . port
packet Yes Yes
K rgrr Yoot Yo it @ L s — qam D)
Analysis
Same % Flow Analysis
Epoch

Figure 5.2: Detailed P4 DDoS Detection Pipeline

Step 1 selects only TCP or UDP packets to be considered within the DDoS detection
pipeline, since they are typically utilized by most attack vectors. This is achieved using

simple checks on parsed headers.

Step 2 further isolates traffic originating from or destined to a monitored network
(protected network). To that end, we employ a dedicated match-action table that contains
one rule for each protected network. Each rule adds a unique identifier to matching
packets as P4 metadata. The added metadata headers are used to access and update the
equivalent memory areas of various registers e.g. per subnet measurements such as flows
and packet statistics. Note that, traffic that does not meet the aforementioned criteria (i.e.
TCP/UDP and source/destination in “monitored” networks), bypasses the DDoS

detection pipeline and is appropriately forwarded.
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Step 3a delimits time-based epochs, each defined by a start time and duration. Packets are
associated with an epoch using the ingress global timestamp packet metadata. This
denotes the exact time a packet arrived at the P4-enabled device. If a packet’s timestamp
fits within the current time window [start time, start time + epoch duration), it is directly
fed to Step 4. Otherwise, the packet is assigned to a new epoch and proceeds to Step 3b.
The latter performs the following: (i) update the new epoch start time, (ii) increment the
index tracking the current epoch, (iii) compute the new EWMA and EWMD values as
described in (5.1), (5.2) and (iv) reset the number of total flows.

Step 4 performs flow traffic analysis and maintains appropriate flow counters for packets
exiting from either Step 3a or 3b. This operation is based on modified Bloom Filters [79],
used to track unique active flows within an epoch. Specifically, we calculate hash values
from the following packet headers (srcIP, dstIP, protocol, srcPort, dstPort) that identify
a flow tuple. We employ hash functions available in the P4 pipeline, i.e. CRC32, CRC16
and CSUM16. The resulting hash values are used as indices to access distinct memory
areas of P4 registers. Each area stores the last epoch this flow was observed. A flow is
considered “active” in the current epoch when all indices point to register areas containing
values equal to the current epoch. Else, the flow is considered as newly observed within
this epoch. Subsequently, the register contents for these indices are set to the value of the
current epoch. When a new flow is observed, counters pertaining to total flows and per
subnet flows are incremented. Based on these counters, conditions pertaining to
inequalities (5.3), (5.4) are evaluated. In case a threshold is violated, the equivalent flag

is stored in distinct packet metadata headers.

Step 5 performs packet symmetry analysis employing incoming and outgoing packet
counters from/to a monitored network. We maintain separate per-subnet packet counters

for TCP and UDP traffic, as well as historical normal packet symmetry ratios for both
protocols. These are used to evaluate the C R,(li)against the NR® as depicted in inequality

(5.5). In case this fraction exceeds the threshold r, a flag is raised similarly to the ones

for threshold violations (5.3), (5.4).

The final Step 6 of our pipeline checks packets for metadata headers corresponding to
identified anomalies. In case all metadata headers are set to "True", an appropriate alarm
is generated pinpointing the network under attack and the current epoch. These alarms

were implemented as P4 packet digests that enable the communication between the data
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plane and external systems; in our case appropriate mitigation mechanisms, able to

enforce countermeasures.

Note that, P4 is a programming language with specific restrictions, e.g. no support for
floating point arithmetic or division operations. We needed to adapt to P4 limitations

using various workarounds since our approach uses real values e.g. the smoothing

coefficient a in EWMA, EWMD values and divisions e.g. C R,(li)/N R® for its calculations.

Calculations that require floating point operations are approached by multiplying all
elements of an equation with a power of 2 and subsequently dividing them by the same
factor. Divisions are conducted via appropriate bitwise shifting operations. We present an
example for the EWMA equation; specifically, for the smoothing coefficient a, we
selected the value of 1/256 (~ 0.004):

1 1
My = ez TIF, + (1 — ﬁ) My_; & M, = (TIF, +255-M,_;) »8  (5.6)

where eight bits right shifting corresponds to division by a factor 28 = 256. We
satisfied requirements for division via a plain comparison between two numbers. Note
that, we are not interested in the quotient of a fraction but whether it is greater or lower
than another value. For example, the threshold evaluation in inequality (3) was

implemented as:

CRY > 7. NR® (5.7)
5.5 Experimental Evaluation

5.5.1 Experimental Setup

In order to validate our DDoS detection framework, we implemented the proposed
pipeline in P4 and evaluated it in the testbed illustrated in Figure 5.3. We used as a P4
target the Netronome Agilio CX SmartNIC at 10GbE. Programs were developed and
compiled via the Netronome Programmer Studio while the compiled program was loaded
to the NIC. Additionally, we used two VMs operating as the Sender and the Receiver,
equipped with 10GbE Intel NICs, able to generate and count packets in high packet rates.
We assess our DDoS detection schema in terms of detection accuracy and packet

processing performance.
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Figure 5.3: Testbed equipped with P4-enabled SmartNICs

5.5.2 DDoS Detection Accuracy

In order to create realistic conditions for our experiments, we used publicly available
network traces both for benign and malicious traffic. The benign traffic is based on traces
available from the WIDE backbone [80]; specifically traffic from a 10G transit link
between WIDE and DIX-IE, an experimental IX in Tokyo. The traces contain network
traffic between 12:00 - 12:15 on 09/04/2019. For malicious traffic traces we used the
fourth dataset as reported in [2]. This contains a DNS-based reflection attack generated
by Booter services. The traces were captured during a controlled experiment conducted
by the University of Twente, Netherlands, in collaboration with its upstream provider
SURFnet (the Dutch NREN). Protected subnetworks were identified based on an analysis
of the benign dataset. We selected the top 255 networks, assuming /24 prefixes, as ordered

by the total number of packets traversing each subnetwork.

The experimentation process considered 1-second epochs and was conducted as follows:

We injected the benign traffic and ignored alarms for the first 30 seconds, considering
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them as a "learning" period for the moving averages. Between seconds 30 and 60 we
observed alarms for False Positives. At the 60th second, we launched the attack targeting
an [P address within one of the 255 subnets that we monitor. Attack traces were injected
between seconds 60 and 90. Packet digests were collected via the run time API offered
by Netronome and used for the calculation of the detection accuracy. Accuracy in binary

classification is defined as:

ACCURACY = TP+ TN (5.8)
" TP+TN+FP+FN '

where 7P, TN, FP and FN are defined for each subnet in any given 1s epoch:

e TP: Number of True Positives i.e. digests received for a subnet when the subnet
was the victim of an attack

e TN: Number of True Negatives with no digests generated in non-attack cases

e FP: Number of False Positives i.e. digests received for a subnet when the subnet
was not the victim of any attack

e FN: Number of False Negatives with no digests generated in attack cases.

Note that we configured for each subnet only a single digest to be sent during a given

epoch.

To showcase the detection capabilities of our mechanism the malicious traces were
replayed at different rates. These correspond to three different attack scenarios: (i) an
Underscaled attack, i.e. 10% of the reported Booter trace, (ii) the Booter trace as was
originally reported and (ii1) an Overscaled attack, comprised of 5 times the volume of the
reported Booter trace. For all scenarios the benign traffic was injected as it was originally

captured.

In the charts of Figure 5.4 we depict accuracy of our framework, evaluated using (4),
according to the following empirically inferred values a = 0.004, k=3, f=0.15 and r =

2, for two cases:

e Two-feature case (F2) that combines conditions (5.3), (5.4) corresponding to
Flow Analysis features
e Three-feature case (F3) that also incorporates the Packet Symmetry feature based

on condition (5.5)
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Figure 5.4: P4-based DDoS Detection Accuracy

For the Underscaled attack scenario, F2 performs slightly better than the F3. The former
1s more sensitive and thus able to identify attacks that generate small fluctuations on the
number of flows. The latter, due to the added traffic symmetry feature, misclassifies
attack traffic as benign resulting in a considerable number of F'Ns. This occurs since this
scenario contains a rather small amount of attack traffic (5% of benign traffic) and packet

symmetry ratio does not significantly deviate from the normal (non-attack) values.

For the original Booter trace scenario, both approaches detect the victim, with F3
achieving higher detection accuracy as it has a reduced amount of FPs in comparison to
F2. Finally, for the Overscaled Attack scenario FNs are eliminated due to the vast volume
of the attack, achieving accuracy close to 100%. In general, using either two or three
features (F2 or F3) we successfully detect ongoing attacks and identify the victim

subnetwork within a single epoch.
5.5.3 P4 SmartNIC Packet Processing Performance

We further conducted stress test experiments to assess the processing capabilities of the
Netronome cards. To that end, we synthesized traffic in various packet rates to (i) assess
the performance capabilities of our pipeline and (i1) measure its impact on forwarding

throughput. We use the same testbed setup but employ pf-send and pf-receive utilities of
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the PF RING framework [35] on the sender and the receiver respectively. In our

experiments we considered the following use cases:

e Plain forwarding case whereby, the target performs only switching (SW)

e One-feature case (F1) that incorporates anomaly identification based on Total
Flows evaluation using condition (5.3) only

e Two-feature case (F2) that combines both Flow Analysis features based on
conditions (5.3), (5.4)

e Three-feature case (F3) that also incorporates the Packet Symmetry feature based
on condition (5.3), (5.4), (5.5)

Note that, the synthesized traffic we used does not bypass our DDoS detection pipeline,
thus stressing to the limit the capabilities of the SmartNIC.
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Figure 5.5: Netronome SmartNIC Forwarding Capacity

Figure 5.5 depicts the forwarding capacity of Netronome cards for various packet rates
ranging from 0.1 to 5 Million packets per second (Mpps). The forwarding capacity is

calculated as the fraction of traffic that successfully traverses the card.

Traffic rates 0f 0.1, 0.5, 1 and 2 Mpps show no performance degradation for all four cases.
A higher traffic rate of 5 Mpps exhibits considerable degradation of the Netronome
SmartNIC for adding the DDoS detection pipeline in cases F1, F2 and F3. These amounts
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to degradation between 35% to 45%. However, our detection pipeline is relevant in many
enterprise and/or carrier networks since 10G links usually correspond to packet rates

ranging between 1-2 Mpps according to observations on GRNET network traffic [81].

Our DDoS detection schema heavily depends on accurate packet measurements through
SmartNICs. To assess the impact of adding the DDoS detection pipeline, we further
investigated the packet counting measurements available in the data plane via P4
registers. These were observed for all cases (SW, F1, F2 and F3) and attainable packet
rates (from 0.1 to 5 Mpps), as depicted in Figure 5.6.

For all cases even moderate packet rates of 0.5 Mpps start to exhibit degradation of
measurement capabilities. Our DDoS pipeline successfully detects attacks with high
accuracy despite measurement limitations of the SmartNICs. As also illustrated in Figure
5.5 our schema does not degrade packet forwarding for rates up to 2 Mpps, typical for

10G links.
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Figure 5.6: Netronome SmartNIC Measurement Capacity

These measurement limitations are present only in P4 registers. We have performed
additional experiments using P4 counters and observed significant performance
improvement. However, as mentioned in Section 4.5, counters are only accessible from
external controllers. We attribute this problem to simultaneous accesses of the memory

area used for packet counting.
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5.6 Summary & Concluding Remarks

In this section we described an in-network DDoS detection schema that combines
multiple traffic features. These features are based on typical metrics employed for DDoS
detection such as incoming flows and packet symmetry ratio. Our mechanism yields
accurate per subnet alarms implemented entirely in the data plane, without any
involvement of external controllers, thus enabling rapid control loops. Our experiments
for detection accuracy were based in realistic attack scenarios using publicly available
traces. We further conducted stress tests using high-rate synthesized traffic to assess the

performance of our P4 mechanism, implemented in SmartNICs.

The proposed schema provides an accurate and fast in-network method for detecting
DDoS attacks targeting selected victim networks. This can be considered as the first step
towards DDoS protection. In the next section we will delve into attack specifics
attempting to classify network traffic and filter out the malicious portion. These will be
considered for SYN Flood attacks (as an indicative example of protocol-based attacks), a

highly employed attack that plagues computer network infrastructures and services.
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6 Signature-based Traffic Classification and Mitigation of
SYN Flood Attacks using Supervised Learning and
Programmable Data Planes

TCP SYN Flood is one of the most common protocol-based DDoS attack that attempts to
exhaust memory and processing resources of selected victims. Typical mitigation
mechanisms, i.e. SYN cookies consume significant processing resources and generate
large rates of backscatter traffic to block them. In this section, we propose a detection
and mitigation schema that focuses on generating and optimizing signature-based rules.
To that end, network traffic is monitored and appropriate packet-level data are processed
to form signatures, i.e. unique combinations of packet field values. These are fed to
Supervised Learning models that classify them to malicious/benign. Malicious signatures
corresponding to specific destinations identify potential victims. TCP traffic to victims is
redirected to high-performance programmable XDP-enabled firewalls that filter
offending traffic according to signatures classified as malicious. To enhance mitigation
performance malicious signatures are subjected to a reduction process, formulated as a
multi-objective optimization problem. Minimization objectives are (i) the number of
malicious signatures and (ii) collateral damage on benign traffic. We evaluate our
approach in terms of detection accuracy and packet filtering performance employing
traces from production environments and high rate attack traffic. We showcase that our
approach achieves high detection accuracy, significantly reduces the number of filtering

rules and outperforms the SYN cookies mechanism in high-speed traffic scenarios.
6.1 Motivation

SYN Flood (attack) is a major part of the evolving DDoS landscape [82], [83]. This attack
exploits the widely employed TCP protocol and especially the 3-way handshake, flooding
with SYN packets targeted victims. These exhaust their memory and processing
resources, failing to serve legitimate requests. SYN Flood attacks are difficult to counter
via commonly used IP-based mitigation schemas. IP-based rules, required to block the
attack traffic, increase proportionally to the number of malicious sources. This demands
network devices/firewalls to store thousands/millions of filtering rules, which is
unattainable due to memory resources limitations [72]. Notably, when spoofing is

employed, IP-based filtering is totally ineffective. An alternative mitigation method for

68



SYN Floods, relies on the SYN cookies [84] technique. This approach, instead of blocking
malicious SYN packets, generates appropriately crafted SYN-ACK packets. Although,
this method protects the victim from the launched attack, it consumes significant

processing resources and introduces large rates of backscatter traffic [85].

Inspired by the aforementioned challenges, we propose a signature-based mechanism for
SYN Floods detection and mitigation. Our mechanism collects network data and extracts
appropriate packet fields, forming packet signatures. Subsequently, these signatures are
used as input to Supervised Learning models tasked with classifying them to
malicious/benign. Malicious signatures corresponding to specific destinations identify
potential victims. TCP traffic to victims is redirected to high-performance programmable
XDP-enabled firewalls that filter offending traffic according to signatures classified as
malicious. To enhance mitigation performance malicious signatures are subjected to a

reduction process, formulated as a multi-objective optimization problem.

The remainder of this section is structured as follows: In Section 6.2 we discuss
background information and related work; Section 6.3 presents a high-level overview of
the proposed mechanism and its core design principles; Section 6.4 provides
implementation details for the SYN Flood detection and mitigation architecture; Section
6.5 presents experimental evaluations for detection accuracy and packet filtering
performance using both benign and malicious traffic captured in real network

environments. Finally, Section 6.6 summarizes our work and discusses further extensions.

6.2 Related Work & Contributions

There are many efforts reported in the literature related to SYN Flood mitigation. In [55]—
[57], SDN controllers act as proxies protecting servers targeted by SYN Flood attacks.
Specifically, they respond to each received benign or malicious SYN packet with a SYN-
ACK packet. Legitimate ACK responses are correlated with previously observed SYN
packets and henceforth validated clients can initiate TCP connections. In such approaches
SDN controllers store SYN packet monitoring data (e.g. source IP, destination IP, source
port, destination port) that may lead to memory exhaustion; added latency is also

introduced due to network traffic interception by the controller.

An alternative method for mitigating SYN Flood attacks is based on the SYN cookies

technique [49], [84], [86]. In this approach, for each SYN a SYN-ACK response is
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generated using as sequence number a specially crafted value (cookie). This value is
calculated based on hashing operations on IP and TCP packet fields of the received
packet, combined with timestamp values. Subsequently, legitimate clients send an ACK
as a response to the SYN-ACK setting the acknowledgement number equal to the cookie
(sequence number) value increased by one. The acknowledgement number of the ACK is
compared to the cookie value, calculated based on the IP and TCP header fields of the
ACK. If these values are equal, the client is considered legitimate and henceforth
connections from this client are accepted, else the ACK is dropped. Instead of consuming
memory resources to store details related to the client, this approach saves information in
the sequence number of the SYN-ACK packet via the SYN cookies mechanism. Notably,
in [87] the SYN cookies mechanism was implemented in P4 and tested in various hardware
targets, e.g. NetFPGA, SmartNICs; such approaches achieved remarkable SYN Flood

mitigation performance.

Despite SYN cookies mitigation effectiveness, there are two major drawbacks: it (i) wastes
significant packet processing resources for SYN cookies calculation to respond to
malicious SYN packets and (i) floods Internet with SYN-ACK responses equal in rate to

the malicious SYN packets. The latter may lead to further network congestion.

Considering the aforementioned drawbacks and inspired by Cloudflare's mitigation
approach [22], [85], we propose a signature-based detection and mitigation mechanism

for SYN Flood attacks, where:

e Unique combinations of packet field values, i.e. signatures, are dynamically
classified based on Supervised Learning algorithms; signatures are used to
identify ongoing attacks.

e Malicious signatures are used as filtering rules for mitigation purposes. Mitigation
performance is enhanced via a rule reduction process formulated as a multi-
objective optimization problem.

e The reduced set of filtering rules is deployed on high performance programmable

firewalls (XDP) to efficiently mitigate SYN Flood attacks.
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6.3 High-Level Overview & Design Principles

We present a high-level overview of the proposed architecture for detection and
mitigation of SYN Flood attacks. Our mechanism consists of the (i) Signature

Classification, (ii) Signature Reduction and (iii) Anomaly Mitigation components.

As illustrated in Figure 6.1, traffic monitoring mechanisms continuously extract packets
(Monitoring Data) from the border (edge) router. These are aggregated, within
configurable time windows based on distinct signatures, i.e. I[P and TCP header values.
In the Signature Classification component, packet signatures are fed to supervised ML
models, that classify them as benign or malicious. The classified signatures are used to
(1) detect ongoing SYN Flood attacks, (i1) identify the victim and redirect corresponding

TCP traffic and (iii) create appropriate filtering rules to mitigate the anomaly.

Meanwhile, TCP packets destined to the victim, are redirected at the border router via the
Attack Redirection mechanism to the Mitigation component. To improve the mitigation
performance, malicious signatures are subjected to a reduction process (Signature
Reduction) before being used as filtering rules. This reduction is formulated as an
optimization problem, in which combinations of packet features are explored, that
minimize simultaneously (i) the number of signatures required to block the attack traffic

and (ii) collateral damage on the benign traffic.
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Figure 6.1: SYN Flood Detection and Mitigation Architecture
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Initially, the Mitigation component employs temporarily the SYN Cookies technique to
prevent malicious traffic to reach the victim. When signature reduction is completed, the
reduced set of signatures is installed to the Mitigation component. These rules match and
drop the offending traffic while benign traffic is appropriately forwarded to the victim.
We present below the core design principles of the proposed architecture:

Signature-based filtering: Our approach identifies malicious signatures and redirects TCP

traffic destined to the victim for fine-grained filtering enabled by software data planes
(XDP). In contrast to this approach, commonly used mitigation mechanisms rely on the
SYN Cookies technique that employs significant processing resources to respond to

malicious SYN packets and generates backscatter traffic.

Supervised Machine Learning traffic classification: Signature classification is conducted

based on Supervised Learning models trained a priori with benign and malicious traffic.
This enables SYN Flood detection and malicious signature identification based on

previously observed benign and attack traffic patterns.

Signature reduction: We introduce a signature reduction mechanism that identifies the

signatures required to fully block an attack, minimizing simultaneously their number and
collateral damage on benign traffic. This approach attempts to reduce the number of
filtering rules. These are stored within network devices that typically impose limits to the

number of rules they can support.

High-performance programmable firewalls: We leverage capabilities offered by

softwarized programmable data planes (XDP) to design and implement high-performance
firewalls. These can be tuned and optimized based on the identified malicious signatures

to block SYN Floods in an efficient and flexible manner.
6.4 SYN Flood Detection and Mitigation Architecture

The proposed schema for SYN Flood detection and mitigation consists of the following
components: (i) Signature Classification, (ii) Signature Reduction and (iii) Mitigation

Mechanism. These are described in detail in the following subsections.
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6.4.1 Signature Classification

This component receives and analyzes TCP packet-based data from external monitoring
mechanisms to identify malicious signatures. Packet-based data extraction may be
conducted either via (i) dedicated XDP mechanisms deployed in-line across the
forwarding path, (ii) passive methods such as monitor ports and optical taps, or (iii) data
export protocols such as sFlow [74]. Note that (i), (i1) may account for all network traffic
while (iii) is based on packet sampling. The exact implementation of monitoring data
extraction is not the main focus of this work; our only requirement is access to L3-L4

packet headers.

Extracted data are aggregated within configurable time windows, based on appropriate
packet fields (features) forming signatures. Our scheme focuses on the relevant features
for SYN Flood traffic classification. Specifically, we removed features that have the same
value for both benign and malicious packets (zero variance). From the remaining features,
we also excluded IP and TCP header length and checksum fields as irrelevant to the
classification process. Finally, we excluded TCP sequence number as this value is

randomly generated by each client. The final set of features that we employed are:

Table 6.1: Packet fields (features) for TCP SYN packet classification

Packet Field Short Description
ip.src Source IP Address
ip.dst Destination IP Address
ip.dsfield.ecn Network Congestion Notification
ip.id IP Fragment Identification
ip.flags.df Do not Fragment Bit
ip.ttl Time To Live
tep.sreport Source Port of TCP Segment
tep.dstport Destination Port of TCP Segment
tep.window _size TCP Receive Window Size
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Although these features correspond to numerical values, we employed them as categorical
variables considering that their actual values are not relevant to TCP SYN traffic
classification. These categorical data should be encoded before being used in ML
methods. To that end, we used an encoding scheme that for each signature, calculates the
frequency of each feature. In the following Table we illustrate an example of the

employed frequency encoding scheme considering 5 packets and 2 features (ip.ttl, ip.dst).

Table 6.2: Frequency encoding for categorical features

ip.ttl ip.dst #Packets ip.ttl_freq ip.dst_freq
239 192.168.1.1 3 60% 80%

62 192.168.1.1 1 20% 80%

61 10.1.1.1 1 20% 20%

Frequencies are calculated as the number of times a packet field value (e.g. ip.ttl 239,
ip.dst 192.168.1.1) is observed in a time window, divided by the total number of packets
observed in the same time window. This may reveal packet field values that are
abnormally frequent during ongoing attacks (or the opposite). The frequency encoded
features (e.g. ip.ttl_freq, ip.dst_freq) are used as input to supervised ML models (Random
Forest - RF or Multilayer Perceptron - MLP), that classify them as benign or malicious.
Signatures are in turn labeled based on the classification of their corresponding frequency

encoded features.

If a single signature is classified as malicious, the Signature Classification component
notifies the Attack Redirection mechanism. This triggers the border router to redirect
traffic destined to the victim (information obtained from the destination IP) to the
Mitigation component. Simultaneously, benign and malicious signatures are processed to

generate the appropriate number of filtering rules for attack mitigation.

Note that traffic may be redirected either using Policy Based Routing or BGP (Flowspec)

[69]. Further implementation details are beyond the scope of this work.
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6.4.2 Signature Reduction

Signatures classified as malicious, are going to be employed as filtering rules for attack
mitigation purposes. These rules are stored in memory resources, i.e. BPF Maps that
enable packet matching at line-rate. Their number significantly affects the deployment
and lookup time in the BPF Map, which in turn degrades the overall mitigation
performance. Therefore, the Signature Reduction component is tasked with providing a
concise set of signatures (filtering rules) that can block all the offending traffic, without

significantly affecting the benign traffic.

We formulated this signature reduction as a multi-objective optimization (feature
selection) problem, in which we search for feature combinations F' = {Fy, F, ... F}},
subsets of the initial feature set F = {Fy, F,, ... F,}, where j < n, that simultaneously

minimize;:

i.  the number of malicious signatures (filtering rules) that block all the attack traffic
(Count-distinct problem?®)
ii.  the percentage of benign traffic that is dropped

We define as M and B the sets of malicious and benign signatures respectively, based on
features from F (see Table 6.1). For each combination F’, we calculate M’ and B’, that
correspond to sets M and B using only the features of F'. The first objective (i) is
calculated as the number of unique signatures (cardinality) in M. For the second objective
(ii), we calculate the number of benign packets that correspond to the signatures in M' N
B’ and divide it with the number of benign packets that correspond to the signatures in
B'. This provides the percentage of benign traffic that would be dropped if we used as
filtering rules the signatures in M'. Note that the intersection M N B is an empty set,
however, the intersection M’ N B’ may result to non-empty sets in the reduced feature

space F'.

The proposed optimization problem leads to multiple Pareto optimal solutions. However,

due to stringent time constraints for attack mitigation (DDoS attacks should be blocked

8 https://en.wikipedia.org/wiki/Count-distinct_problem
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as early as possible), brute-force algorithms may not be able to identify optimal solutions.
We opted for a fast evolutionary approach based on Non-dominated Sorting Genetic
Algorithm IT (NSGA-II) [88]. The algorithm starts with arbitrary subsets F' c F, and
iteratively attempts to enhance the solutions quality, i.e. minimize further the objectives.
At each iteration (generation), new subsets of F are generated based on random
combinations of F’ that correspond to the best solutions produced in the previous
iteration. The algorithm stops when a time limit is reached thus generating suboptimal

subsets.

As mentioned, more than one solution may be generated but only one of them can be
selected for blocking the attack traffic. This selection should be tuned per network
environment to depict network operator preferences e.g. acceptable percentage of
dropped benign traffic. Finally, from the selected solution, signatures of M’ are conveyed

to the Mitigation component to be applied as filtering rules.
6.4.3 Anomaly Mitigation

This XDP-based component inspects TCP traffic and prevents malicious TCP SYN
packets to reach the victim. As a first level of protection, it filters malicious SYN packets
based on the signatures emerged from the reduction process. Packets not filtered at this

level, are processed and handled appropriately by the SYN cookies mechanism.

The Anomaly Mitigation component parses and isolates TCP packets. Subsequently, it
extracts from TCP SYN packets appropriate TCP/IP packet fields which are compared to
the signatures stored in a BPF Map (hash table). If the extracted signature exists in the
BPF Map, the packet is considered malicious and is dropped, else it is conveyed to the
SYN cookies mechanism. This is used: (i) as an initial countermeasure upon the detection
of SYN attacks, until signature reduction is completed, (ii) as a fallback mechanism to
our signature-based approach for malicious traffic falsely classified as benign and (iii) to

validate and allow benign TCP traffic to be forwarded to the victim.

The SYN cookies mechanism was implemented within the XDP framework according to
the description provided in section 6.2. Further implementation details for the Mitigation

component are available in our code repository [89].
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6.5 Experimental Evaluation

In order to evaluate our framework, we implemented all software components of the
proposed architecture and deployed them in our laboratory testbed. Supervised Learning
models of the Signature Classification component were based on the sklearn and pytorch
python libraries. The Signature Reduction mechanism was based on the Platypus
framework [90], used for solving our multi-objective optimization problem. The
Mitigation Mechanism was deployed on a physical machine equipped with a 10G XDP-
enabled SmartNIC Netronome Agilio CX. This was directly connected to a Virtual
Machine employed as a high-speed packet generator based on the PF RING ZC

framework [35].

We assessed our mechanism detection accuracy and packet filtering performance using
both benign and malicious network traces. In subsection 6.5.1, we provide details for the
datasets we used. In subsection 6.5.2, we compare the detection accuracy of two
commonly used Supervised Learning methods (Random Forest, Multilayer Perceptron).
In subsection 6.5.3, we showcase our signature reduction mechanism and in subsection

6.5.4, we compare the performance of our approach to the SYN cookies mechanism.
6.5.1 Datasets Description

As benign traffic, we used traffic traces from a 1G transit link between WIDE and an
upstream provider [80]. We isolated TCP SYN packets captured at 12:15 and 12:29 on
08/04/2020; these are respectively referred to as By and B; for the remainder of this
subsection. As malicious traffic, we used 5 different TCP SYN attacks that targeted our
infrastructure (May — September 2020). The characteristics mentioned in Table 6.1 for
the five attack datasets (i.e. A1, A2, Az, A4 and As) as well as their packet rate (Kilo
packets per second — Kpps), are presented in Table 6.3 and Figure 6.2 below:

Table 6.3: Packet Feature Cardinality for A1-AS5 SYN Flood attacks

Attack ip.src tep.srcport tep.dstport ip.id ip.ttl
Ay 15 65535 65535 1 3
A, 760863 65534 65534 1 4
As 839660 65535 65535 1 4
Ay 3415575 65536 1 65535 2
As 1493948 65536 1 65535 3
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Figure 6.2: Packet Rate of SYN Flood Attacks

As illustrated in the Table above, all attacks except A1 emanate from a vast amount of
unique IP sources. A1, Az and A3z are using all available source and destination ports and
have a single value related to the ip.id (IP fragment identification). In contrast, A4 and As
are using a single destination port and have multiple values related to the ip.id. All attacks
have a small number of unique ip.##/ values and a single value for each of the following

packet fields: ip.dst, ip.dsfield.ecn, ip.flags.df and tcp.window _size.
6.5.2 Signature Classification Accuracy

In this subsection, we evaluate the detection accuracy of the proposed Signature
Classification mechanism using two different Supervised Learning alternatives: (i)
Random Forests (RF) consisting of 100 decision trees with default parameters of the
sklearn library for tree structure and stopping [91] and (i1) Multilayer Perceptron (MLP)
of 9 input neurons corresponding to the selected features, 19 hidden and a single output
node for classification. The MLP was trained using sigmoid as the activation function,
early stopping for the number of epochs, batches equal to 2048 and Adam method [92]
for weight updates with learning rate oo = 0.01. The validation dataset was set equal to the

30% of the training dataset.

We considered various training scenarios (in total 30) using each unique combination of

benign and malicious traffic datasets for:
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e Each method (RF, MLP)

o Each attack dataset Ai, wherei=1...5
e The benign dataset B,

e Each time window (5s, 10s, 30s)

Resulting trained models were used to test the accuracy of our schema for the same time
window. The test datasets consist of the benign dataset B2 not used for training and the
attack datasets A;. This correspond to a total of 5 testing scenarios.
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Figure 6.3: True Positive Rate for training/testing scenarios combining benign and malicious TCP SYN traffic

In Figure 6.3, we present results for the aforementioned training and testing scenarios.
Specifically, we illustrate the True Positive Rate - TPR, which is the percentage of the

attack traffic that was classified as malicious. We do not present results for the True
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Negative Rate - TNR (the percentage of benign traffic classified as benign), as the TNR
for both ML methods and all time windows was above 99%. The results presented in
Figure 6.3 correspond to average values of 100 training-testing experiments to account
for random variations in our supervised ML methods. This number was selected based on

our experience as a reasonable choice to dampen statistical outlier values.

As illustrated in Figure 6.3, when a model is trained with one of {Ai, A2, A3} attack
datasets, it can accurately detect attacks in the same group, regardless of the time window.
This also happens for the group of {A4, As} since attacks of the same group have common
characteristics as mentioned earlier (see Table 6.3). Moreover, when both classification
algorithms (RF, MLP) are trained with As, they can accurately identify all attacks. This
is attributed to As characteristics; namely, low packet rate (compared to the other attacks),

that enables both algorithms to identify greater frequencies of packet features as attacks.

In general, RF is a consistent method to identify TCP SYN attacks, provided the training
dataset is similar to the test dataset (e.g. training dataset A» - test dataset A or As). The
accuracy of this model increases as the duration of the time window increases; however,
it does not always detect attacks that deviate from the training dataset (e.g. training dataset
Aj - test dataset A4 or As). In contrast, the MLP model identifies for every training
scenario all other attacks with high accuracy, illustrating significant generalization
capabilities. Notably, it achieves remarkable accuracy even within shorter time windows,

e.g. 5s.

In total, our signature classification mechanism achieves high TPR identifying almost all
malicious signatures without significant benign traffic misclassification (this was lower

than 1% in all our experiments).
6.5.3 Signature Reduction Evaluation

In this subsection, we evaluate our signature reduction mechanism based on the solutions
generated by NSGA-II. All signatures were extracted from each attack dataset A; and
benign dataset Bi. Each combination (Ai+B1) was used as an input to the proposed
signature reduction mechanism. In Table 6.4, we present for each dataset combination all
solutions that resulted from 100 different executions of the NSGA-II. The maximum

processing time for each execution was limited to 20s.
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For each solution in Table 6.4, we illustrate the percentage of dropped benign traffic (%),
the number of reduced signatures and the total signature reduction (%) based on the total
number of signatures of each attack Ai. Note that bold values in the following Table

correspond to Pareto-optimal solutions.

Table 6.4: Signature Reduction solutions provided by NSGA-II
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1070311 99.999
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The results Table 6.4 demonstrate that our mechanism significantly reduced the number
of signatures (ranging from hundreds of thousands to millions) to a small set of filtering
rules (99.99% reduction). The generated solutions provide signatures that can fully block
the offending traffic, without affecting significant portions of the benign traffic.
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Note that our experiments demonstrated a dramatic signature reduction. This is due to
specific packet field values of the attacks we captured and may vary under different attack

scenarios. Similar observations have been reported by Cloudflare in [93].
6.5.4 SYN Flood Mitigation Performance

In this subsection, we assess the packet filtering performance of the proposed Mitigation
mechanism using two variants: (i) BPF MAP and (ii) STATIC. The former employs a BPF’
Map for storing signatures while the latter constructs signatures via appropriate static if-
else statements [22]. These were compared in terms of packet filtering performance to

(ii1) the SYN Cookies approach, that we also implemented in XDP.

Synthesized traffic was generated based on attack dataset A1 and replayed at 10 Million
packets per second (Mpps). We compare the performance of each approach (1), (ii), and
(ii1) based on the percentage of traffic that they can successfully drop. Note that we used
a single core for packet filtering in our experiments. For the two variants of our

mechanism, we employed 3 signatures (see third row of Table 6.4).

Table 6.5: SYN Flood mitigation performance

XDP Implementation Packets blocked (%) out of 10Mpps
BPF MAP 70%
STATIC 92%
SYN cookies 47%

Both variants of our approach achieve greater packet filtering performance than the SYN
cookies (from 47% to 70% and 92%). This is attributed to the complex operations that are
required to be done for each SYN packet in the SYN cookies technique, i.e. cookie
calculation, IP/TCP checksums. In contrast, our signature-based approach matches
specific packet fields and drops the offending traffic. In case signatures are constructed
via appropriate if-else statements, memory lookups are fully avoided and thus packet
filtering performance increases even further. Note that, our approach apart from
significantly outperforming the SYN Cookies mechanism, does not generate backscatter

traffic that may introduce further congestion.
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6.6 Summary & Concluding Remarks

In this section we proposed a signature-based detection and mitigation schema for SYN
Flood attacks. Our schema collects and analyzes, within time windows, appropriate
packet data forming signatures. These are subsequently used as input to supervised
Machine Learning models that detect SYN attacks, identify victims, and isolate malicious
signatures. TCP traffic to the victim is redirected to high-performance programmable
XDP-enabled firewalls that mitigate identified attacks. Malicious signatures are
employed to block the offending traffic, after being subjected to a reduction process to
enhance mitigation performance. Signature reduction was formulated as a multi-objective
optimization problem that attempts to simultaneously minimize the number of filtering

rules and collateral damage on benign traffic.

Our approach was evaluated both in terms of detection accuracy and packet filtering
performance. The conducted experiments illustrated high detection accuracy for real
benign and malicious traffic. Notably, our mechanism dramatically reduced the number
of signatures (filtering rules) required to block the considered attack datasets. Moreover,
our approach outperformed the state-of-the-art SYN Flood mitigation mechanism, i.e.

SYN cookies.

In the next section, we extend the work proposed in this section to volumetric attacks.
Moreover, we consider an automated way for selecting packet fields for signature
formulation, minimizing the human intervention in the initial feature selection. Finally,
we perform a thorough comparison between signature-based and the state-of-the-art flow-

based classification/filtering mechanisms.
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7 Signature-Based Traffic Classification and Mitigation:
Volumetric DDoS Attacks

Distributed Denial-of-Service (DDoS) attacks mitigation typically relies on source IP-
based filtering rules; these may present scaling issues due to the vast number of involved
sources. In this section, we propose a source IP-agnostic DDoS traffic classification and
filtering schema for volumetric attacks that identifies malicious packet signatures via
supervised Machine Learning methods and subsequently generates signature-based
filtering rules. To accelerate packet processing, our schema utilizes XDP middleboxes
operating as programmable Deep Packet Inspectors. Signatures are extracted from
network traffic as unique combinations of the most significant packet features, these are
subsequently fed to supervised Machine Learning algorithms that classify them as
malicious or benign. Malicious signatures undergo a reduction process tailored to the
attack vector to generate a concise set of filtering rules, thus expediting mitigation
performance. Our schema was implemented as a proof-of-concept and evaluated for DNS
volumetric attacks in terms of signature classification accuracy and packet filtering
throughput. Experiments were based on benign and malicious traffic datasets recorded
in production network environments. Our approach was compared to source-based
mechanisms in terms of (i) malicious traffic identification, (ii) filtering rules cardinality,
and (iii) packet processing throughput required in modern high-speed networks. The
experimental results demonstrate that our signature-based approach outperforms IP-
based alternatives, achieving high detection accuracy and significant generalization

capabilities.
7.1 Motivation

Distributed Denial-of-Service (DDoS) attacks originate from compromised hosts and/or
exploited vulnerable systems producing traffic from a large number of sources [94]. Such

attacks are continuously increasing in frequency and magnitude [95].

Legacy DDoS protection mechanisms maintain statistics based on source IP or network
flows to detect and ultimately mitigate malicious traffic. Maintaining flow/IP-based
metrics requires data from lengthy time-windows that may hinder real-time identification
of malicious traffic and the subsequent mitigation. Moreover, traditional filtering

mechanisms rely on IP-based rules that increase proportionally to the number of alleged
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malicious sources. In massive attacks that may include millions of source IPs [94], such

a filtering approach raises scalability issues [72], [96].

To counter the shortcomings of IP-based schemes, we propose a source [P-agnostic DDoS
protection mechanism that classifies and mitigates network attacks based on packet
signatures, i.e. unique combinations of packet field values. Motivated by our effort on
SYN Flood attacks in section 6, we consider DDoS Amplification (volumetric) attacks,
commonly used to overwhelm network infrastructures. The proposed approach relies on
the widely observed fact that these attacks may be characterized by a modest number of
salient packet characteristics [94]. Consequently, our schema attempts to dynamically
reveal related packet characteristics (signatures) and use them as filters to block the attack

traffic in a scalable fashion.

In a nutshell, the proposed mechanism continuously monitors the network traffic and
extracts packet signatures based on the most important features tailored to an attack vector
(e.g. DNS or NTP Amplification attacks). Packet signatures are classified via supervised
Machine Learning (ML) algorithms, appropriately trained with benign and malicious
traffic, focusing on distinct packet fields (features). Malicious signatures are further
subjected to a reduction process before being employed as filtering rules to expedite
mitigation performance. The reduced set of signatures is finally deployed on high-

performance programmable scrubbing middleboxes.

The remainder of this section is structured as follows: Section 7.2 contains background
information and discusses related work; Section 7.3 offers an overview of the proposed
architecture; Section 7.4 provides implementation details of the proposed Signature-based
Traffic Classification and Mitigation schema; Section 7.5 provides experimental
evaluations for volumetric DNS attacks regarding processing performance and detection

accuracy. Finally, Section 7.6 summarizes this section and discusses future steps.

7.2 Related Work & Contributions

There are various efforts reported in the literature that attempt to classify and filter DDoS
attacks. In subsections 7.2.1, 7.2.2 below, we present related flow-based and signature-
based schemes accordingly. Subsection 7.2.3 emphasizes on our key contributions with

regards to the state-of-the-art mechanisms.
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7.2.1 Flow-based Classification and Filtering

In [61], a DDoS traffic classification schema based on a Multilayer Perceptron (MLP)
was introduced. Traffic metrics related to flows and packet rates (UDP, ICMP) are
collected and used as input to an MLP, tasked with classifying network traffic to

benign/malicious.

In [17], an OpenFlow (OF) DDoS detection mechanism was presented. This collects
periodically entries from OF-enabled network devices, extracts flow-related features and
classifies them using Self-Organizing Maps (SOM). In [62], an SDN DDoS detection and
mitigation schema was proposed. Sharp increases in the rate of Packet-In messages are
considered as an indication of DDoS attacks; subsequently a mitigation pipeline is
triggered. OpenFlow rules are collected from network devices and classified via an
appropriate MLP that uses the same feature set as in [17]. Malicious flows are then

blocked via appropriate mitigation entries in OF-enabled devices.

In [63], a large set of flow-related features is extracted from packets and sent to OF
Controllers. These features are used as input to a Stacked Autoencoder (AE), which
classifies flow as benign or malicious. Authors highlight processing limitations in

Controller-based packet collection and feature extraction.

In [58], a two-level protection schema was introduced. Initially, entropy values are
calculated for the number of destination IPs and ports, with sudden changes indicating an
ongoing attack. The victim is identified and traffic destined towards its IP is redirected to
an OF-enabled switch. This device acts as a second, more refined level of detection, that
uses packet symmetry to identify malicious flows. Malicious flows are subjected to
source IP-based aggregation to reduce the required blocking rules. Finally, filtering rules

are deployed to the OF switch while benign traffic is redirected back.

In [64] ATLANTIC, an SDN framework for DDoS attack detection and mitigation, was
proposed. Entropy changes for specific flow features within consecutive time-windows
indicate the existence of an attack. Network flows responsible for entropy changes are
fed in a traffic classification component based on K-means and Support Vector Machines
(SVM). K-means is used initially to create clusters of common flows and SVM is further
used to identify malicious flows. Subsequently, drop rules are installed for malicious

flows.
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A flow-based traffic classification mechanism was suggested in LUCID [66]. Flow values
are collected from different time windows and represented as arrays; subsequently these
arrays are fed to a Convolutional Neural Network (CNN) to identify time-dependent
traffic patterns. Attack mitigation was not addressed in the LUCID paper.

7.2.2 Signature-based Classification and Filtering

Signature-based traffic classification and filtering is commonly featured in Intrusion
Detection/Prevention Systems (IDS/IPS), e.g. Suricata [97]. Network packets are
monitored and their packet field values are compared to predefined sets of malicious
signatures. Notably, the widely employed DDoS detection tool FastNetMon [60], relies
on static rules to identify Amplification attacks. Although these approaches are able to
instantly identify previously observed attack patterns, they are not able to detect zero-day

threats.

By contrast, in [98] a tool for extracting zero-day attack signatures was proposed; upon
the detection of an attack, their system analyzes both benign and attack packets.
Signatures suddenly appearing in high frequency in the network traffic are attack

indicators, while evenly distributed signatures usually characterize benign traffic.

In [65] DeepDefense, a DDoS detection schema based on Recurrent Neural Networks
(RNN) was introduced. Traffic traces, collected within sliding time windows, are
translated into arrays of packet features. These are fed to an RNN that segregates

malicious from benign packets.

Finally, Cloudflare, currently one of the largest Content Delivery Networks (CDN) that
also offers DDoS protection services, employs packet signatures to filter malicious traffic
[93]. To the best of our knowledge, the exact methods for traffic classification and
signature-based filtering are not publicly available and thus we cannot compare our

approach with them.
7.2.3 Key Contributions
Our key contributions can be summarized as follows:

e Most of the reported efforts in the literature employ metrics aggregated by IP

addresses or network flows for traffic classification [17], [61]-[64]. In contrast,
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we focus on the most appropriate packet features to identify malicious signatures
based on Supervised Learning algorithms. Due to their enhanced generalization
capabilities, these can accurately identify =zero-day (unseen) attacks
(outperforming static approaches [60]).

e We exploit common characteristics observed in the attack traffic to generate
appropriate signature-based filtering rules. These are subjected to a reduction
process that minimizes their number and expedites the mitigation performance.

e Our approach does not require collection of data over lengthy time-windows and
corresponding time references as in [65], [98]. Instead, current packet field values
are used, thus expediting detection and mitigation of attack traffic with no
significant deterioration of classification accuracy.

e We propose a dynamic, tunable yet high-performance scrubbing mechanism
based on programmable software data planes (XDP). Unlike proprietary
monolithic solutions, our approach offers programmable monitoring and filtering
functionalities without compromising on packet processing performance.

e We conducted detailed experiments focusing on volumetric DNS attacks; we
employed high packet rates and real network data (benign and malicious) to

illustrate the applicability of our mechanism in production network environments.
7.3 Design Principles & Architectural Overview

In this section, we outline design principles and present a baseline overview of the

proposed Signature-based Traffic Classification and Mitigation architecture.
7.3.1 Design Principles
The main design principles of our mechanism are summarized below:

Signature-based filtering: We opt to surgically mitigate DDoS attacks focusing on

distinct packet feature combinations (signatures) exhibited by offending traffic. Unlike
traditional DDoS defense mechanisms that rely on blocking a massive number of IP

sources, our approach attempts to generate IP-agnostic filtering rules.

Filtering rules reduction: Filtering rules are stored within network devices (switches,
routers, firewalls) that typically impose limits to the number of entries they can support.
To reduce their number, source-IP based procedures [58], [72] employ IP aggregation
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techniques. Our signature reduction mechanism identifies instead a concise set of rules

required to block an attack, with minimal effect on benign traffic.

Traffic classification based on supervised Machine Learning (ML) algorithms: Our

approach is trained using packet characteristics from normal (benign) traces and past
attack incidents. The learning process can be tailored to specific network environments,
thus enhancing classification accuracy. To that end, the employed features should be

carefully selected and tuned depending on anticipated attack vectors.

High performance scalable Network Functions based on programmable middleboxes:

Typically, traffic monitoring and filtering functionalities are implemented by monolithic
appliances. In contrast, we opted to use COTS hardware (i.e. low-cost NICs) as data plane
programmable appliances powered by the XDP framework. This enables online packet
handling without imposing control plane processing overhead. XDP-enabled appliances
can be instantiated on-demand and scaled according to traffic and application

requirements, thus providing a suitable mechanism for cloud-based scrubbing services.

7.3.2 Architectural Overview

In Figure 7.1, we present a high-level overview of the proposed architecture for DDoS
protection, applicable either in transit provider networks or customer/edge network
domains. Our mechanism consists of four separate components that offer: (a) Signature
Extraction, (b) Signature Classification, (c) Signature Reduction and (d) Anomaly
Mitigation. In what follows, we outline the DDoS detection and mitigation workflow

referring to steps 7 — vi illustrated in Figure 7.1.

Benign and malicious traffic originating from various Internet sources traverses through
a network infrastructure equipped with programmable devices. Network traffic is
continuously monitored (step 7) in the data plane by the Signature Extraction component.
This component employs high-performance programmable mechanisms (e.g. XDP) to
extract appropriate packet fields, i.e. signatures, pertaining to different attack vectors.
Note that these fields should be selected after careful examination of benign and malicious
traffic for a specific exploited protocol. Our methodology for selecting the most important
packet fields (features) will be presented in subsection 7.4.1; note that the proposed

method is not limited to a specific attack vector.
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Figure 7.1: High-Level Overview of the Signature-based Traffic Classification and Filtering Architecture

Extracted monitoring data (signatures) are organized per destination IP address and
relayed (step ii) to the Signature Classification component, a control plane module that
categorizes them as either benign or malicious. This component relies on classification
methods based on supervised ML algorithms that have been trained with attack and
benign traffic. Malicious signatures identify ongoing attacks targeting specific IP
addresses (victims). Classified signatures are subsequently employed for mitigation rule
generation (step iii) via the Signature Reduction component that expedites mitigation
performance. This reduction process is formulated as a multi-objective (Pareto)
optimization problem. Specifically, combinations of the most important packet features
are explored to identify a smaller feature set that minimizes the number of malicious
signatures for an acceptable level of benign traffic drops. The selection of a Pareto optimal

pair is based on DDoS Protection service operator preferences.

Finally, the reduced set of signatures is conveyed (step iv) to the Anomaly Mitigation
component, that acts as a traffic scrubbing mechanism in the data plane. Data packets
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destined to the victim IP are redirected to this component (step v) via appropriate traffic
diversion techniques. Malicious packets are dropped while benign traffic is returned back

to the router (step vi) to be forwarded to the destination IPs.

Extraction, classification and reduction of signatures, as well as mitigation rule
generation, are performed continuously in distinct intervals (time-windows). Selected
intervals should be small (e.g. 10 seconds) to enable rapid propagation of information and

ultimately prompt accurate traffic scrubbing.
7.4 Packet Feature Selection & DDoS Protection Detailed Architecture

Our methodology for packet feature selection and implementation details of the

components shown in Figure 7.1 are presented in the following subsections.
7.4.1 Packet Feature Selection Methodology

Packet header fields forming signatures are of paramount importance for our mechanism.
They are used to (i) classify packets to malicious/benign and (ii) create filtering rules for

blocking the offending traffic.

In DDoS Amplification attacks, vulnerable protocols and services are exploited in a very
specific manner for generating massive amounts of traffic. This traffic exhibits packet
characteristics that typically deviate from benign network traffic. In order to identify the
most important characteristics pertaining to a specific attack vector, we select the relevant
packet header fields (features) of each abused protocol. For that purpose, we employ the
methodology described below.

We start with an initial set of n features F = {F;, F,, ... F,,}, that includes (i) packet
header fields of an abused protocol (e.g. DNS) and (ii) IP packet Total Length and UDP
datagram Length fields (these values may differ in cases of IP fragmentation of large UDP
packets). The former may reveal packet field values that are employed for generating
large payloads in such attacks. The latter may correspond to large values, typical for

DDoS Amplification [2].

The packet header field selection algorithm uses both benign and malicious traffic for an

attack vector to train a Random Forest (RF) classifier based on a training dataset 7" of

examples with F features. The RF training process provides (i) the Out-Of-Bag (OOB)
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score, a metric that shows the accuracy achieved on examples that were not included in
the training process of each decision tree [99] and (ii) the importance of each feature [91].
High values of OOB score illustrate that the employed fields can be used to accurately

classify benign and malicious packets. The feature selection pseudocode is:

Packet Header Field Selection Algorithm

Input: Training Dataset 7, Packet Features F={F, F>, ...F,}
Output: Packet Features F'={F, F>, ...F,,}
1: (OOB,,, Fznxeq)<—Random Forest (7, F)
2: Frankeq<—sort_descending(Fipxeq )

3: for each q € [1, n) do:

4: m =n-q

5: F'=TOP m entries from Fypyeq

6: OOB,,<—Random Forest (7, F")

7: if (OOB,, - OOB,,) > ¢ then

8 return £’

9: end for

The RF feature importance metric enables the selection of m < n important features
according to the above iterative process, see also [100]. As a result, we obtain a reduced
set of features F' = {F,,F,,..F,,} that are used for packet monitoring, traffic

classification, signature reduction and attack mitigation purposes.

The elimination of non-important features (selecting m most important ones) has the
following benefits for our schema: (i) increased packet throughput of Signature
Extraction and Anomaly Mitigation components of Figure 7.1 since fewer packet fields
are required to be parsed and stored; (ii) enhanced accuracy and shorter training times of
Supervised Learning algorithms; (ii1) lower complexity of the Signature Reduction

component due to the lower dimensionality of its input.
7.4.2 Signature Extraction

The Signature Extraction (SE) component is a high-performance monitoring mechanism
based on the XDP framework. It collects mirrored network traffic, extracts appropriate
packet fields, and conveys monitoring data to the Signature Classification (SC)

component, as illustrated in Figure 7.2.

The combination of packet feature values can be represented by the signature vector X =

[x1x2 ... xm] ', where x; is the value for packet field i. Each unique signature X corresponds
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to a row in the Monitoring Data Table of Figure 7.2. Every observed packet signature

pertains to a counter stored within an appropriate BPF Map (i.e. hash table).

SE consists of various instances, each associated with a specific attack vector. They all
contain a Data Extractor and a Data Exporter module:
e The Data Extractor is a kernel space XDP (data plane) program that extracts and
stores packet header values for the preselected fields F’, including the destination
IP address. Destination IPs are required for the identification of the victim and
subsequent traffic scrubbing (redirection and filtering).
e The Data Exporter is a user space program that periodically retrieves the contents

(i.e. signatures) of the BPF Map and conveys them to the SC component.

Note that the SE component could be implemented using any approach that provides
access to packet fields such as sFlow [74]. We opted for XDP since it provides cost-
effective high-throughput monitoring of all packets (no sampling) and does not exhibit

limitations on the available packet fields to be collected.
7.4.3 Signature Classification

The Signature Classification (SC) component collects monitoring data and classifies them
using supervised Machine Learning (ML) methods to identify malicious signatures. It
consists of the Data Handler and the ML Classifier module. The Data Handler module
collects the different signatures X relayed by the SE component and preprocesses them
(if needed) in a data normalization step. In turn, the set of X is used as input to the ML
Classifier module which classifies them as benign/malicious. This module is trained with
malicious and benign traffic datasets related to a specific protocol (e.g. DNS attacks and

benign DNS traffic).

Malicious signatures correspond to ongoing attacks targeting specific IP addresses
(victims). The mitigation process for the victim IP addresses is initiated by conveying
malicious and benign signatures to the Signature Reduction (SR) component to generate

filtering rules (see the following subsection).
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Figure 7.2: Signature-based Traffic Classification and Filtering Detailed Architecture

7.4.4 Signature Reduction

The Signature Reduction (SR) component receives both malicious and benign signatures
from the SC component and reduces the number of malicious signatures to expedite the
mitigation performance of the Anomaly Mitigation (AM) component. As mentioned,
malicious signatures will be used to generate filtering rules. These are stored in memory
resources (i.e. BPF Maps in the XDP context) that enable packet matching in the data
plane. Their number significantly affects the deployment and lookup time in the BPF
Map, which is ultimately related to the AM packet processing performance (throughput).
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The SR component searches for a concise set of signatures that can block offending
traffic, with minimal effect on the benign traffic. This was formulated as a multi-objective
(Pareto) optimization problem, in which we search for feature subsets F'' =
{F1, F,, ... F .} of the feature set F' = {F{, F,, ... F,,}, k < m, to identify operating points

that simultaneously minimize:

(1)  the number of malicious signatures (filtering rules)

(i)  the percentage of benign traffic drops

Let M’ and B’ be the sets of malicious and benign signatures respectively based on
features from F'. For each subset F'', we similarly define M" and B'' using only the
features in F"'. Objective (i) is calculated as the number (cardinality) of unique signatures
in M"'. Objective (ii) is the number of benign packets that correspond to the signatures in
M" n B" divided by the number of benign packets that correspond to signatures in B".
This provides the percentage of benign traffic that would be dropped (False Positive Rate)
if we used as filtering rules the signatures in M"'. Note that the intersection M' N B’ is an
empty set; however, the intersection M’ N B"' may result to non-empty sets in the reduced

feature space F'', corresponding to False Positive cases.

The proposed optimization problem points to Pareto optimal solutions (referred to as
Pareto-optimal front). However, due to stringent time constraints for attack mitigation,
related algorithms would typically stop prior to Pareto-optimal front identification. We
opted for a fast evolutionary approach based on Non-dominated Sorting Genetic
Algorithm-II (NSGA-II) [88]. The algorithm starts with arbitrary subsets F'' < F’ and
iteratively attempts in each step to further reduce the objectives. At each iteration
(generation), new subsets of F' are generated based on random combinations of F'’ that
correspond to the best solutions produced so far in previous iterations. The algorithm

stops when a time limit is reached thus generating suboptimal subsets.

As stated above, the proposed approach will generate several solutions near the Pareto-
optimal front. Naturally, only one of them can be ultimately selected for mitigating the
attack. This selection should be tuned per customer network profile to depict network
operator preferences, e.g. acceptable percentage of dropped benign traffic (False Positive
Rate). Finally, from the selected solution, signatures of M’ are conveyed to the AM

component to generate filtering rules.
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7.4.5 Anomaly Mitigation

The Anomaly Mitigation (AM) component is a high-performance programmable firewall
based on the XDP framework. It consists of two modules: the Rule Handler and the
Packet Filter. The former receives a list of malicious signatures associated with a victim
IP, installs them as filtering rules in a BPF Map and triggers traffic redirection for the
targeted victim IP. The latter is an XDP kernel space program similar to the Data
Extractor module of the SE component. The Packet Filter receives traffic destined to the
victim IP and extracts the packet fields based on the reduced set of signatures F’. The
extracted packet fields values are subsequently compared to the filtering rules within the
BPF Map. 1f the combination of packet fields (i.e. signature) of the received packet is
contained in the BPF Map, the packet is dropped (XDP_DROP). Otherwise, the packet
is considered benign and transmitted back (XDP_TX) to the edge router to be normally
forwarded to the victim IP. For implementation options related to traffic redirection and

reinjection see [69].

Note that SE can be implemented with alternate monitoring solutions (e.g. sFlow) that
can extract packet characteristics. However, the AM component is tightly coupled with
programmable data planes solutions, such as XDP, able to perform inline packet filtering

based on selected packet fields.
7.5 Experimental Evaluation: DNS Amplification attacks

We selected as a case study volumetric DNS attacks, one of the most common DDoS
Amplification attack vectors. We evaluate our schema in an experimental testbed,
employing real datasets and synthetic network traces as detailed in subsection 7.5.1
below. In short, our experiments attempt to: (i) identify and select the most important
features for DNS traffic classification, (ii) assess the signature classification accuracy of
Supervised Learning algorithms, and (ii1) compare the proposed signature-based

approach to source IP/flow-based alternatives.
7.5.1 Datasets Description/Testbed

Our proof-of-concept testbed is illustrated in Figure 7.3. The experimental setup was used
to evaluate packet monitoring, signature classification, signature reduction, and packet

filtering capabilities. The SE and AM components were implemented within the XDP
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framework in the data plane. They were deployed on a physical machine (XDP-enabled
node) equipped with a Netronome Agilio CX 2x10G SmartNIC. For packet generation
purposes, we used a Virtual Machine (VM), equipped with an Intel X520 NIC 2x10G,
able to generate packets at high rates using the PF RING ZC framework. The SC
component was implemented using the scikit-learn and PyTorch libraries while the SR
component was based on the Platypus framework [90]. They were both deployed as
control plane modules on a VM equipped with 12 vCPUs and 12GB RAM.

Signature Reduction (SR)
Signature Classification (SC)

.feum

Platypus
s O PyTorch

Control Plane g"l G

Netronome
Signature Extraction (SE)
Anomaly Mitigation (AM)

Packet Generator

Server Virtual Machine (VM) @ Network Interface Card (NIC)

Figure 7.3: Proof-of-concep testbed setup

Real network traces were used to assess the signature classification accuracy of our
schema, whereas synthesized traffic was used for stress testing packet filtering
capabilities. As benign traffic, we used DNS responses from: (i) a 10G transit link
between WIDE and DIX-IE (an experimental Internet Exchange), henceforth WIDE-G
[80], (ii) a 1G transit link between WIDE and an upstream provider, henceforth WIDE-F
[80], and (ii1) Thapar University Campus Network, henceforth TU Campus [101]. As
malicious traffic, we used the Booters datasets. These datasets, henceforth individually
referred to as By, Ba, ... B7 or collectively as Booters, contain seven different DNS-based
Amplification attacks generated by DDoS-for-Hire services. The attacks [2] were
captured during a controlled experiment conducted between the University of Twente and

SURFnet, the Dutch Research and Education Network.

All Booters attacks apart from B4 and Bs used #ype ANY DNS responses, a commonly

used method for DNS Amplification attacks that returns every available Resource Record
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(RR) for a given fully qualified domain name. In B4 and Bs attacks, the attackers
attempted to use fype A requests. Specifically, B4 contains multiple responses for the
domain packetdevil.com, a domain name that resolves into a very large number of IP
addresses in the DNS response payload. By contrast, Bs corresponds to a #ype A attack,

that could not generate responses with heavy payload.
7.5.2 Packet Field (Feature) Selection for DNS Amplification attacks

In this subsection, we evaluate the packet header field selection algorithm for three
different combinations of benign and malicious DNS traffic. Initially, we selected the 20

packet fields (features) presented in the Table below:

Table 7.1: Packet header fields (features) for DNS Traffic Classification

Packet Fields Short Description Packet Fields Short Description
o dns.flags. specifies whether recursion is
ip.length IP packet size in bytes )
recdesired desired (1) or not (0)

specifies whether recursive query
udp.length UDP datagram size in bytes dns.flags. recavail | support is available (1) in the name

server or not (0)

identifies uniquely a DNS
dns.id ) dns.flags.z reserved field for future use
transaction

indicates in a response that all data

dns.flags. specifies whether the message is dns.flags.
included in the answer and
response a query (0) or a response (1) authenticated
authority portion of the response
has been authenticated by the server
. . indicates in a query that non-
specifies the kind of the query dns.flags.
dns.flags. opcode authenticated data is acceptable to
e.g. standard DNS query checkdisable
the resolver sending the query (1)
or not (0)
specifies whether the indicates the response code for the
dns.flags.
o responding DNS server is dns.flags. rcode specified request e.g. the name
authoritative
authoritative (1) or not (0) for server refused to respond

the requested domain name
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. . dns.count. add _rr number of RRs in the additional
dns.flags. specifies whether the message is
records section
truncated truncated (1) or not (0)
dns.count. number of entries in the dns.qry.name variable length field terminated by
queries question section the zero-length byte, specifying the
requested domain name
dns.count. number of Resource Records dns.qry.type specifies the type of the query
answers (RRs) in the answer section
dns.count. number of name server RRs in dns.qry.class specifies the class of the query e.g.
auth_rr the authority records section IN for the Internet class

Employing the features of Table 7.1, we trained three different Random Forest (RF)
classifiers consisting of 100 decision trees with default parameters of the scikit-learn

library for tree structure and stopping [91];

Feature Importance
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dns.count.auth_rr
dns.id
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Figure 7.4: Feature Importance provided by Random Forest Classifiers for DNS Traffic

each one includes all Boofers traffic and a particular benign dataset (WIDE-G, WIDE-F,

TU Campus). The selected features except for dns.qry.name correspond to numerical
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values and were fed directly to the RF classifiers; dns.qry.name was transformed to a
numerical value via hash encoding. In Figure 7.4, we depict the importance of each
feature for the different combinations of datasets, as computed by the scikit-learn library.
The reported values correspond to the average feature importance for multiple training

iterations.

In order to identify the most important features, we employed for each dataset
combination the iterative process described in subsection 7.4.1. The threshold € (line 7 in
Packet Header Field Selection Algorithm pseudocode) was set equal to zero. In Table
below, we present the most important features that the algorithm produced for each

dataset:

Table 7.2: Most important packet fields for DNS Traffic Classification

Booters+tWIDE-G

Booters+WIDE-F

Booters+TU Campus

dns.qry.type

dns.flags.recdesired

dns.qry.type

dns.count.answers

dns.flags.recavail

udp.length

dns.flags.recdesired

dns.flags.authoritative

dns.count.answers

udp.length dns.count.answers ip.length
ip.length dns.qry.type dns.count.add _rr
dns.count.add rr udp.length dns.qry.name
dns.qry.name ip.length -

- dns.qry.name -

One of the dominant features in all cases is the type of the query (dns.gry.type) since most
attacks in the Booters dataset rely on DNS #ype ANY messages to generate large volumes
of malicious traffic. The length of the IP packet and the UDP datagram are also important
features; benign DNS traffic mainly consists of small packets while DNS Amplification
attacks consist of large responses. Similarly, dns.count.answers and dns.count.add_rr can
also be used to identify malicious traffic, as these counters significantly increase in attack
cases. Furthermore, some of the attacks used the same dns.gry.name (root-servers.net for

Bi1, B2, B3, and anonsc.com for Bs, B7) to generate large DNS packets, thus the hashed

100



dns.qry.name may also enhance the accuracy of the resulting classification. Interestingly,
dns.flags.recdesired, dns.flags.recavail, and dns.flags.authoritative are of high
importance for the Booters+WIDE-F dataset combination. This follows from the fact that
most DNS responses in WIDE-F dataset (benign) were generated by iterative queries on
authoritative DNS servers, while in Booters (malicious) by recursive queries in non-

authoritative servers.

As expected, dns.flags.response, dns.flags.z, dns.count.queries, dns.qry.class,
dns.flags.opcode are of low importance for DNS traffic classification. These had almost
the same value for every packet, malicious or benign. In addition, based on our
experimental observations the features dns.flags.authenticated, dns.flags.truncated,
dns.flags.rcode, dns.id, dns.count.auth_rr and dns.flags.checkdisable do not improve the

Out-Of-Bag (OOB) score of the RF classifiers and thus have been removed.

In summary, the proposed packet field (feature) selection algorithm identifies a small set
of features out of the 20 initially chosen. These are used to accurately classify both benign
and malicious DNS traffic patterns. The classification results are based on diverse and

realistic traffic scenarios sourced from heterogeneous network environments.
7.5.3 Signature Classification Accuracy

In this subsection, we evaluate the signature classification accuracy of the proposed
mechanism, using two different Supervised Learning methods. We implemented two
classifiers: (i) Random Forests (RF) with 100 decision trees and (ii) an N x (2N+1) x 1
Multilayer Perceptron (MLP), with sigmoid activation functions, as suggested in [61]; N
1s the number of features (see Table 7.2). The MLP was trained with examples of batch
size equal to 4096 and MLP weights were updated based on Adam method [92] with
learning rate oo = 0.01. We used a single epoch with a validation dataset comprising 30%
of the training dataset. The training procedure was conducted separately for each unique

combination of the following:

e Each classifier (RF, MLP)
e Each benign dataset (WIDE-G, WIDE-F, TU Campus)
e Each set Aj= {Booters - Bi}, wherei=1 ... 7, e.g. As= {B1, B2, B3, Bs, Bs, B7}
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There are 42 different dataset combinations. Each trained model is evaluated against a
mix of traffic (test dataset) based on the excluded attack dataset B; and benign traffic from
the same origin (e.g. WIDE-G). Specifically, for WIDE-G and WIDE-F, we employed
two 15-minute traces for training and eight 15-minute traces as test dataset. Similarly, for
TU Campus we used two 1-hour traces for training and eight 1-hour traces as test dataset

respectively.

For MLP we employed undersampling techniques on the attack datasets as they contain
more signatures than benign datasets. Training data for MLP were also normalized in the
range of [0,1] to enhance classification capabilities. In Figure 7.5, we illustrate the True
Negative Rate (TNR) of all combinations, which is the percentage of benign traffic that
was classified as benign and the True Positive Rate (TPR), which is the percentage of

attack traffic classified as malicious.

RF - WIDE-F MLP - WIDE-F
= TNR TPR = TNR TPR
100% 100%
80% 80%
60% 60%
40% 40%
20% 20%
0% 0%
Bl B2 B3 B4 B5 B6 B7 Bl B2 B3 B4 B5 B6 B7
Test Dataset Test Dataset
RF - WIDE-G MLP - WIDE-G
ETNR TPR u TNR TPR
100% 100%
80% 80%
60% 60%
40% 40%
20% 20%
0% 0%
Bl B2 B3 B4 B5 B6 B7 Bl B2 B3 B4 B5 B6 B7
Test Dataset Test Dataset
RF - TU Campus MLP - TU Campus
B TNR TPR B TNR TPR
100% 100%
80% 80%
60% 60%
40% 40%
20% 20%
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Bl B2 B3 B4 B5 B6 B7 Bl B2 B3 B4 B5 B6 B7
Test Dataset Test Dataset

Figure 7.5: True Negative and True Positive Rates for various training scenarios using Booters combined with

the benign datasets WIDE-F, WIDE-G and TU Campus
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As illustrated in Figure 7.5, RF is a reliable method to identify both benign (WIDE-G,
WIDE-F, TU Campus) and attack traffic (Booters) patterns, provided it is trained with
diverse attack data. However, RF is not able to recognize attacks that significantly deviate
from the training attack pattern. This is clearly illustrated when the model is trained with
A4, which does not include B4 of the test dataset. Recall that B4 contains large DNS
responses with multiple zype A RR for a domain name, while the training dataset (A4)

contains attack traces with #ype ANY DNS responses.

Similar to RF, MLP can identify benign and attack traffic with high accuracy for all
combinations of training data. However, MLP identified B4 as an attack, illustrating

significant generalization capabilities on detecting "unseen" (zero-day) attacks.

Note that Bs was not identified by any classifier as an attack trace. As already mentioned,
it corresponds to a failed attack that did not produce heavy payload, thus exhibiting
similarities to benign traffic. Interestingly, all classification mechanisms in our
experiments discovered attack data within the benign datasets (WIDE-F, WIDE-G). A
closer inspection of the original network traces revealed modest attack traffic, i.e.
consecutive type ANY responses from specific IP sources to the same destination IP.

These data were manually removed and are not included in Figure 7.5.

An interesting topic pertaining to ML algorithms are the training and test runtimes. With
regards to the former, i.e. training runtime, has limited impact to our mechanism since the
training process is conducted offline and the values are in any case in the order of seconds
for both models. Qualitatively, training runtimes for MLP were on average 11 times faster
than RF. The most important metric for us is the test runtime since it corresponds to real-
time signature classification (inference). These values were in the order of milliseconds
with MLP runtimes being on average 17 times faster than RFs. Such values are negligible
compared to the overall time-window during which our mechanism identifies and
mitigates DDoS attacks. This time-window (several seconds) includes packet monitoring,
signature classification and filtering rule deployment. To our knowledge, such time-
windows are consistent with production solutions offered by major security service

providers.

In summary, the proposed approach provides accurate classification of DNS

Amplification attacks and benign traffic. This was validated for 42 different
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training/testing scenarios utilizing real data from heterogeneous network environments.
Notably, MLPs achieved detection of "unseen" attack traffic patterns (not used in the
training process), illustrating better generalization capabilities compared to RF
classification algorithms. However, RF is still a reliable classification method, provided

that it is trained with diverse attack data.
7.5.4 1P-based vs Signature-based Protection Mechanisms

In the following subsections, we compare our signature-based schema to legacy IP-based
mechanisms e.g. [16], [17], [61]-[64]. We evaluate both approaches considering their (i)
ability to identify and filter malicious traffic, (ii) filtering rules cardinality, and (iii) packet

filtering performance.

7.5.4.1 Malicious Traffic Identification and Filtering

Typically, DDoS protection mechanisms collect monitoring data within time-windows
(TW) and utilize them to classify network traffic. Based on this classification, filtering
rules are generated and used to block the attack traffic. In this subsection, we compare
our signature-based protection mechanism to the optimal IP-based approach, that is able

to identify all malicious IP sources of an attack.

In our comparisons, we analyzed network traffic from the first time-window of each
attack dataset Bj and extracted the malicious DNS signatures (based on WIDE-F features)
and source IP addresses. Subsequently, we calculated from the whole attack dataset B;
the traffic (in bytes) that corresponds to the extracted DNS signatures and IP sources
divided by the total attack traffic. This illustrates the percentage of the attack traffic that
is blocked by each approach based on monitoring data from the first time-window of the
attack. In Figure 7.6, we present for every B; the dropped attack traffic (%) considering
various time-windows and packet sampling rates. Short TWs (e.g. 1s) allow for rapid
detection and mitigation. Sampling rate 1:1 corresponds to our XDP-based monitoring
approach (SE), while lower values correspond to sparse packet sampling, typically

employed in monitoring mechanisms e.g. sFlow [102].

Our signature-based approach outperforms the source IP-based alternative for all attack
scenarios and combinations of time-windows (TW) and sampling rates. This is attributed
to the fact that the attack traffic is characterized by a few number of DNS signatures,

typically distributed to multiple IP addresses. Decreasing the sampling rate reduces
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Figure 7.6: Comparison between source-based and signature-based protection mechanisms for Booters

significantly the effectiveness of the source-based mechanism especially for highly
distributed attacks (e.g. Bi, B4, Be, B7). In contrast, our approach is not affected and is
able to successfully block most of the attack traffic (e.g. TW 1s - B3: 90%) even for the
lowest sampling rate 1:2000. As expected, increasing the time-window duration enables
both mechanisms to observe more data and thus filter more attack traffic. Notably, our
signature-based approach is able to filter a greater portion of the attack traffic (for packet
sampling cases lower than 1:1) than the IP-based counterpart, while using data from
shorter time-windows (grey bars — IP 10s vs yellow — signatures 1s bars). Note that, the
total blocked attack traffic using WIDE-G and TU Campus feature sets is on average for
all scenarios ~ 0.06% greater than WIDE-F and thus the corresponding results are not

reported.
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In summary, packet signatures are associated with larger amounts of attack packets
compared to source IP addresses. This supports the observation that signature-based
schemes may provide faster detection and more efficient filtering of DDoS Amplification

attacks than conventional source IP-based mechanisms.

7.5.4.2 Filtering Rules Cardinality

In this subsection, the number of filtering rules required by IP-based schemes is compared
to our signature-based approach. Specifically, we extracted the total number of unique
sources for each Booter dataset (Bi) and the DNS signatures (WIDE-F features) that
characterize all the malicious traffic. Subsequently, we employed our Signature
Reduction (SR) component to calculate the reduced number of signatures that can match
and block the malicious traffic (DNS signatures - reduced). SR, for all Booters and benign
datasets combinations, concluded that dns.qry.name and dns.qry.type could be used to

block all the offending traffic without blocking benign traffic portions.

Filtering Rules for Booters dataset
10000

1000
100
] i \
1
Bl B2 B3 B4 B5 B6 B7

B Source [IPs W DNS signatures DNS signatures - reduced

(e}

Filtering Rules (logarithmic scale)

Figure 7.7: Comparison between source-based and signature-based filtering rules for Booters

In Figure 7.7, we compare (in logarithmic scale) the number of the source IP filtering
rules to the signatures that would be required to fully block the seven DNS attacks of the
Booters datasets without signature reduction (DNS signatures) and with signature

reduction (DNS signatures — reduced).
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As illustrated in Figure 7.7, the number of the required rules is decreased considerably
(on average ~91% for DNS signatures and ~99% for DNS signatures — reduced). The
benefits are: (i) we do not rely on source-based filters that are tough to maintain due to
the extremely large cardinality of unique IPs; (ii) we are not affected by dynamic IP
changes during an attack, e.g. introduced in case of rotating attackers and (iii) we
significantly reduce the memory consumed in the filtering process. Note that, the total
number of DNS signatures for all Booters using WIDE-G and TU Campus feature sets is
on average ~0.6% less than WIDE-F and thus not included in Figure 7.7.

In total, our signature-based approaches require significantly less filtering rules to
mitigate the total attack traffic than [P-based alternatives. As mentioned, this benefits our
schema since large memory utilization results to increased lookup times in software data
planes (BPF Maps - XDP). Hardware-based implementation may also face similar issues

due to memory constraints (scarce TCAM resources).

7.5.4.3 Mitigation Performance

In this subsection, the packet filtering performance (throughput) of our approach is
compared to source IP filtering alternatives. We implemented three different XDP-based
mechanisms: (i) DROP_IP, an [P-based firewall that filters packets based on their source
IP address, (i1) AM, that filters packets according to DNS signatures of eight features
(WIDE-F features) and (i11) AM_REDUCED, that filters packets according to DNS
signatures (reduced) of two features (dns.gry.name, dns.qry.type).

For stress testing, we employed synthesized network traces DNS TRACE(n). These
contain n unique IP sources, n/30 unique combinations of DNS signatures of eight
features and n/850 unique DNS signatures (reduced) of two features. The proportions
were based on the experiments of the previous subsection. Note that, recent DNS
Amplification attacks that targeted our University Campus, exhibited a greater proportion
of IP attack sources to DNS signatures than the ones mentioned above. Thus, we
anticipate that our signature-based mitigation mechanism will perform even better with

network traffic profiles evolution.

We replayed various synthesized DNS traffic traces at high-speed rates (10 Million
packets per second - Mpps) and measured (using the NIC drivers counters [103]) the
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packets filtered by each XDP mechanism. In Figure 7.8, we present the percentage of

blocked packets to the transmitted packets for various traffic traces.

DROP IP performs better than AM and slightly better than AM_REDUCED for the
DNS TRACE(1,000) and (10,000); however, it faces scaling issues as the number of IP
sources further increases. Specifically, DROP_IP packet processing performance
(throughput) decreases from 72% to 37% as the number of IPs increases from 1,000 to
1,000,000. This validates that the number of entries in a BPF Map are significantly
affecting its lookup time [96]. In contrast, both our AM and AM_REDUCED are scaling
better in terms of packet throughput as the number of sources increases, since few DNS
signatures are used to drop the attack traffic. Notably, AM_REDUCED achieves on
average ~10% higher packet processing rate than the AM, presenting the added
performance gain provided by reducing the number of DNS signatures. This is mainly
attributed to the fewer number of entries contained in the BPF Map and fewer packet

fields required to be parsed and processed compared to AM.

Packet Filtering Performance
80%

70%

60%
50%
40%
30%
20%
10%

0%

DROP_IP AM_ REDUCED
mDNS_TRACE(1k) W DNS_TRACE(10k) = DNS_TRACE(100k) ~ DNS_TRACE(1M)

Packets blocked (%)

Figure 7.8: Packet throughput for IP-based and signature-based filtering mechanisms

Overall, our signature-based approach outperforms the source [P-based alternative due to
the fact that the attack traffic can be described by a modest number of signatures. This is

even more beneficial in massive attack scenarios where our approach achieves almost two
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times greater packet filtering performance than IP-based alternatives, utilizing the same

set of resources.
7.6 Summary & Concluding Remarks

In this section we presented an integrated schema for protection against volumetric DDoS
attacks that employs packets signatures for traffic classification and filtering. It leverages
on XDP to create performant monitoring and filtering middleboxes, tailored to different
attack vectors. These operate either (i) as programmable Deep Packet Inspectors (DPI) to
extract monitoring data or (ii) as flexible firewalls. Our approach does not rely on IP-
sources but employs appropriate traffic signatures. This was based on the widely observed
fact that volumetric DDoS attacks, especially UDP-based, may be characterized by a
modest number of salient characteristics, thus enabling efficient Machine Learning
algorithms (RF, MLP). Note that we did not consider temporal correlations since these
may require network data from lengthy time-windows, thus hindering near real-time

anomaly detection and mitigation.

In our proof-of-concept, we experimented with benign DNS traffic and malicious DNS
Amplification attacks recorded in production network environments. The experimental
results were promising and drew interesting conclusions: (i) we were able to
automatically identify the most important features for DNS traffic classification for
various network traffic profiles; (ii) XDP-based middleboxes were able to expediently
monitor and filter network traffic; (ii1)) RF and MLP illustrated high classification
accuracy, with the latter achieving significant generalization capabilities on detecting
unknown attacks; (iv) our signature-based approach outperformed traditional IP-based
schemes in terms of malicious traffic identification, filtering rules cardinality, and packet

processing throughput required in modern high speed networks.

Our experimental evaluation focused on volumetric DNS attacks; however, the proposed
approach is based on a generic packet feature selection methodology, and can be
seamlessly extended to DDoS Amplification attacks. This follows from the fact that such
attacks abuse vulnerable protocols and services in a very specific manner to generate
massive amounts of traffic targeting the selected victim. Indicatively, they may exploit
messages generated by SNMP GetBulk, NTP monlist and SSDP SEARCH requests [94].

Selecting the most important packet features (i.e. signatures) that are related to the
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aforementioned attack vectors will enable implementation of protection mechanisms

similar to the one proposed in this section.

Signature-based protection based on Machine Learning algorithms is promising for
DDoS attack detection and mitigation as presented in this section. However, there are still

two major challenges:

e From the perspective of a single network domain (e.g. an ISP network), the
available data for training affect significantly the accuracy of the proposed
classification mechanism. Thus, acquiring potentially diverse data from other
(collaborating) domains (with respect to privacy restrictions) would possibly
enhance the total classification accuracy.

o Despite the effectiveness of signature-based packet filtering at victims'
premises, DDoS attacks may overwhelm upstream network links rendering the
victim unreachable from its legitimate users. Thus, mitigating DDoS attacks in
upstream networks (collaborative DDoS mitigation) before reaching the victim

network would properly protect it.

Therefore, in the next section we will center on collaborative detection and cost-effective

mitigation of malicious traffic across network federations.

110



8 Collaborative DDoS Attack Detection and Mitigation via
Privacy-aware Federated Learning and Programmable

Data Planes

Distributed Denial-of-Service (DDoS) attacks are delivered to their targeted victims via
interconnected network domains, i.e. Autonomous Systems (AS's) of the global Internet.
Although AS collaborations were instrumental in the Internet success story (e.g. global
routing, peering agreements), this is largely not extended to attack protection.
Collaborative DDoS' detection is hindered by strict data privacy legislations while
mitigation by rigid firewall solutions. In this section, we present a signature-based
collaborative DDoS detection and mitigation framework. Our schema consists of a
detection and mitigation application mounted in collaborating domains. The former
identifies malicious packet signatures, i.e. combinations of packet field values, using
Multi-layer Perceptrons (MLPs); these are cooperatively trained without exposing
private data via the Federated Learning method. The latter filters malicious packets using
XDP-enabled firewalls deployed in the victim AS; mitigation can also be activated on-
demand within collaborating transit AS's. Our approach was evaluated both in terms of
packet classification accuracy and packet processing performance using both real and
synthetic network traces. The Federated Learning scheme enabled collaborators to
accurately classify benign and attack packets, thereby improving individual domain
accuracy without compromising privacy concerns. Collaborative on-demand mitigation
is based on programmable data planes firewalls, thus providing a signature-based in-

network DDoS filtering mechanism tailored to evolving federated SDN infrastructures.
8.1 Motivation

As already mentioned, Distributed Denial-of-Service (DDoS) attacks are a major threat
that need to be accurately detected and rapidly mitigated. These attacks are delivered to
their targeted victims via interconnected network domains, i.e. Autonomous Systems

(AS's) of the global Internet.

Although AS collaborations are instrumental in the Internet success story (e.g. global
routing, peering agreements), they are not extended to coordinated DDoS detection. This
is mainly hindered by network operators reluctance on sharing potentially sensitive

network data but also by strict data privacy legislations, i.e. GDPR [104]. Federated
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Learning (FL) [105] is a promising approach to address such privacy
concerns/regulations. It allows collaborating parties to cooperatively train Machine
Learning (ML) models without exposing private data. FL has been proposed for various
use cases like word prediction [105], healthcare applications [106] and image recognition
[107]. To the best of our knowledge, few efforts [ 108], [ 109] consider collaborative DDoS

detection but do not address multi-domain network environments (AS's).

In contrast to collaborative DDoS detection, collaborative mitigation has been widely
employed in production network environments. Specifically, DDoS attacks are mitigated
by filters enforced by collaborating AS's. These filters are typically implemented in
routing devices and discard either all traffic (BGP blackholing [70]) or the malicious
portion via a limited number of source IP/flow-based rules. In sections 6, 7, we illustrated
that source IP/flow-based filtering schemes are not as effective as signature-based for
DDoS mitigation. To that end, we extend the programmable firewall implemented in
sections 6, 7, to provide an integrated signature-based DDoS filtering mechanism tailored

to evolving federated SDN infrastructures.

Inspired by the aforementioned challenges, we extend in this section the work presented
in sections 6, 7 to collaborative multi-domain network environments. Our schema detects
malicious packet signatures using Multi-layer Perceptrons (MLPs); these are
cooperatively trained without exposing private data. Subsequently, malicious packets are
filtered in XDP-enabled [12] firewalls deployed in the victim network domain. For large-
scale attacks, mitigation can also be activated on-demand in collaborating transit AS's,

presumably within attack paths.

The remainder of this section is structured as follows: In Section 8.2 we discuss related
efforts on collaborative DDoS protection and outline our key contributions; Section 8.3
presents a high-level overview of our mechanism and its core design principles; Section
8.4 provides implementation details for the proposed DDoS detection and mitigation
framework; Section 8.5 presents experimental evaluations for DDoS detection accuracy
and mitigation performance on DNS Amplification attacks. Finally, Section 8.6

summarizes our work.
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8.2 Related Work & Contributions

DDoS detection and mitigation for collaborative network domains, i.e. AS's, have been
widely investigated in the literature but also being employed in operational network
environments. The former refers to mechanisms that allow network domains to share data
for enhancing their attack detection capabilities. The latter refers to filters raised on-
demand by collaborators to drop the attack traffic before reaching a victim network.
Related efforts are analyzed in subsection 8.2.1 and 8.2.2 accordingly; in subsection 8.2.3
Federated Learning schemes for DDoS protection are presented. Finally, in 8.2.4, we

present our key contributions compared to similar efforts.
8.2.1 Collaborative DDoS Detection

In [110], network traffic is monitored in disperse points of multiple network domains in
an attempt to concurrently detect attacks targeting subnetworks. Attacks are identified by
concurrent alerts generated by collaborating network domains. In [111], Internet Service
Providers (ISPs) collaborate to detect ongoing DDoS attacks; based on predefined static
rules, they exchange belief scores for suspected DDoS attacks. In [112], security events
are exchanged between collaborating ISPs to validate ongoing attacks and provide
appropriate countermeasures. The main focus of this work is on the communication
process between collaborators. In [113], an effort for creating a European Federation of
Internet Service Providers (ISPs), Internet Exchanges (IX) and Academic Networks is
made; the members are exchanging attack traffic characteristics via a centralized platform

without exposing victim IP addresses for privacy concerns.
8.2.2 Collaborative DDoS Mitigation

BGP blackholing [70] is the most common way for collaborative DDoS filtering. Victim
networks request from upstream/peer networks to drop all traffic destined to them to
protect their internal infrastructures. Although this protects network links and devices,
benign traffic is also dropped. In [114], a collaborative schema for DDoS mitigation in
SDN-domains is proposed. Upon the detection of the attack, specialized reports with the
detected malicious sources and the victim IPs are generated; these are transferred to
network domains located in the attack path, that enforce filtering rules based on the

reputation of the victim domain. We extended [114] in [115], in which signaling,
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coordination, and orchestration of the collaborative mitigation is based on Blockchain
technologies; the proposed framework was tailored to federated trusted environments of

wholesale network providers (Tier 1 providers) [116].
8.2.3 Federated Learning for DDoS Attacks

In [108], a DDoS detection and mitigation framework for Internet of things (IoT)
environments is proposed. IoT nodes collaborate to train a common ML model via the
Federated Averaging technique to accurately detect malicious traffic. This is
subsequently filtered in a distributed fashion at multiple IoT nodes. In [109], a DDoS
detection schema based on Federated Averaging is presented. It uses flow-based features
to identify various DDoS attack types; DDoS mitigation was considered out of scope.
Similarly in [117], a multi-task Federated Learning model is proposed. It concurrently
performs DDoS detection, VPN/Tor traffic recognition and network application
identification. This reduces the management overhead and the training times of individual

ML models while respecting network data privacy.
8.2.4 Key Contributions

We present below how our proposed schema compares to currently suggested

approaches:

e In related efforts, collaborators exchange either coarse-grained data for DDoS
detection [110], [112], or predefined static rules [111], [113]; they also focus only
on attack data [112]-[115]. In contrast, our Federated Learning scheme (i)
enables for DDoS detection using both benign and attack data without exposing
private information and (ii) creates ML models with generalization capabilities
able to identify "unseen" (not trained with) benign and attack packets.

e Most FL schemes [108], [109], [117] simulate multi-domain data by splitting
single datasets into multiple parts. Instead, we employ real network traffic
aggregated by disjoint network domains, i.e. AS's, to perform fully realistic
experimental evaluation.

e Typical filtering mechanisms employed in collaborative DDoS mitigation [114],
[115] have the following drawbacks: they (i) support packet filtering based on

predefined packet field combinations and (ii) pose limitations on the supported
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number of rules. In contrast, we consider an XDP-based programmable firewall
that enables packet filtering based on arbitrary packet field combinations (packet

signatures) and scales its performance with the number of cores.
8.3 Design Principles & High Level Overview
8.3.1 Design Principles

We present below the core design principles of the proposed architecture:

Collaborative DDoS Detection via Federated Learning: Network traffic is classified to

malicious or benign, based on Supervised Learning models trained via the Federated
Averaging technique [105]. Thus, collaborating domains converge to Machine Learning
configurations without sharing private data. This enables them to learn from diverse

benign and attack packets without having direct access to them.

DDoS Mitigation via cloud-native scalable programmable firewalls based on the eXpress

Data Path framework: We employ softwarized programmable data planes (XDP) to
design high-performance Commercial off-the-shelf (COTS) firewalls for SDN

infrastructures. In contrast to legacy router-based filters, these can be programmed to
match and block arbitrary packet field combinations (e.g. DNS payloads as shown in

Table 8.1) while scaling their resources on-demand in a vertical cloud-native fashion.

Upstream propagation of DDoS filtering requests: Our scheme enables the dissemination

of filtering rules (packet signatures tailored to the attack traffic) among collaborating
Autonomous Systems (cAS's). These can be used to effectively block attacks before
reaching the victim AS, extending the limited filtering capabilities of blackholing or flow-

based protection mechanisms.
8.3.2 High-level Overview

A high-level design of the proposed architecture for collaborative DDoS detection and

mitigation is depicted below in Figure 8.1.
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Figure 8.1: Collaborative DDoS Detection & Mitigation Architecture

Malicious actors launch DDoS attacks attempting to overwhelm the network bandwidth

and/or processing resources of a host IP/subnet located in the victim AS (VAS). Both

malicious and benign traffic reach vAS via interconnected Autonomous Systems, e.g.

cAS(1), cAS(2). Monitoring (packet-based) data are exported by network devices (e.g.

edge routers) and organized in packet signatures; these are in turn used as input to the

DDoS Detection app. There, pre-trained Multilayer-Perceptrons (MLPs) classify packet

signatures to malicious or benign (step 1). MLPs training process has been conducted via

Federated Learning (FL) techniques that enable distributed and privacy-preserving

learning amongst collaborating Autonomous Systems (cAS's). The training process is

coordinated by the Collaboration Manager (step a) in pre-agreed time-periods.
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The DDoS Detection app conveys to the DDoS Mitigation app the identified malicious
signatures and the corresponding victim IP/subnet (step ii). In turn, a Firewall Instance
(FI) is created (step iii) that uses the identified malicious signatures as filtering rules.
After FI instantiation, the DDoS mitigation app notifies the edge router to redirect traffic
destined to the victim to the corresponding FI (step iv). Malicious traffic is dropped while

benign traffic is bounced back and forwarded to its original destination (step v).

The DDoS Detection app based on traffic/system metrics e.g. increased link utilization,
can request help from upstream/peer networks to protect its network/compute resources.
The Collaboration Manager identifies adjacent cAS's that forward attack traffic [114] and
populates the identified malicious signatures coupled with the victim IP address. cAS's,
willing to filter malicious traffic, receive the requested signatures and signal their own

DDoS Mitigation app (step b) to on-demand mitigate the offending traffic.

In our approach collaborative DDoS detection is performed in a privacy-preserving
fashion without exposing collaborators private data. In contrast, collaborative mitigation
requires VAS to share sensitive data, i.e. the victim IP coupled with additional specific

attack characteristics (malicious signatures).
8.4 Collaborative DDos Detection and Mitigation Architecture

Our framework consists of three distinct applications (apps): (i) DDoS Detection, (ii)
DDoS Mitigation, and (iii) Collaboration Manager. These are detailed in subsections

8.4.1, 8.4.2, and 8.4.3 accordingly.
8.4.1 DDoS Detection via Federated Learning

The DDoS Detection app retrieves packet-based data from external monitoring
mechanisms and identifies malicious packet signatures. Signature classification is

conducted by Multilayer-Perceptrons (MLPs) trained via Federated Learning techniques.

Monitoring data are collected within time-windows and aggregated based on preselected
packet fields, forming packet signatures. Packet signatures may be represented by a vector
X =[x1x2 ... xi], where x; corresponds to packet field value i. Vectors X are used as input
to Multilayer-Perceptrons (MLPs), that classify them to malicious or benign. Signatures,

identified as malicious, are organized per destination IP address to generate filtering rules
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at the DDoS Mitigation app of the VAS (these can also be conveyed on-demand to transit

cAS's — see subsection 8.4.3 below).

The accuracy of the MLP model affects significantly the identification of malicious
packets and the subsequent mitigation (since filtering rules are based on the identified
malicious signatures). To improve the accuracy of the MLP model without compromising
privacy, we considered a collaborative learning approach based on Federated Averaging

[105].

Prerequisite for training a Federated Model (FM) is the use of a common MLP model
coordinated by a neutral third party. We consider that FM may reside in a neutral
independent coordinator. Such understanding is common in Internet architectures e.g.

Tier-1 Providers forums [116] and major Internet eXchanges (IXes) [118].

Initially, packet fields (features) relevant to an attack vector must be selected [119]. To
reduce training times and the FM complexity, inconsequential features may be
eliminated. This can be achieved by not considering packet fields whose values are (i)
identical in attack and benign packets or (ii) protocol specific (e.g. DNS ID, TCP
sequence number). These types of features (i), (ii) are not able to enhance the
classification accuracy of Machine Learning (ML) models and can be safely ignored upon
collaborators agreements. In Section V, we evaluate our approach for DNS Amplification

attacks.

Participating domains agree on common MLP hyperparameters (e.g. FM architecture,
learning rates). The training process starts with an initial FM weight vector (the
corresponding bias vector has been excluded for simplicity). In each iteration a new set
of weights wrwm is evaluated and distributed amongst the k collaborating AS's’. Each
collaborator i = 1...k uses wrm as initial weights and subsequently updates its local
weights wi based on its private training data Ni. These are conveyed to the FM third party

coordinator that calculates the new weights wrm based on the following equation:

% In FL, the hyperparameter k£ may influence the accuracy of the generated model and can be smaller than
the number of all collaborators. In our experiments, this number was equal to the total number of

collaborating AS's, as we did not consider a large number of participants.
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A training iteration is completed after wrm calculation with new weights distributed to
the cAS's. Finally, each cAS adopts the FM update that achieves the highest accuracy on
its local validation dataset (subset of the total dataset not used for training but for
hyperparameter selection). In case collaborators share their local accuracies per round, a
common FM may be universally adopted once the (weighted) average accuracy for all

participants reaches an acceptable level.
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Figure 8.2: Federated Learning architecture for collaborating AS's

8.4.2 DDoS Mitigation

The DDoS Mitigation app receives requests for active attacks either from the DDoS
Detection app (attacks targeting hosts of the victim AS) or the Collaboration Manager
(attacks targeting other cAS's). Subsequently, this app may raise appropriate mitigation

countermeasures.

Typical filtering mechanisms e.g. Access Control Lists (ACLs), OpenFlow (OF) rules
[9], BGP Flowspec rules [73], are able to match and drop packets based on combinations
of multiple but predefined packet fields. These rules are stored in network devices with

stringent memory limitations [120]. Thus, offloading DDoS filtering to an external
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firewall should (i) support any packet field combination (signature) that can match and
block malicious DDoS packets, (ii) have no limit on the number of filtering rules, and

(ii1) allow dynamic filtering rules creation, read, update, and deletion (CRUD).

We implemented the proposed mitigation app based on the eXpress Data Path (XDP)
framework. XDP memory structures for storing packet signatures are Berkeley Packet
Filter (BPF) Maps (details about XDP are available in 2.2.3.1); these do not allow ternary
packet field matching, i.e. the use of wildcards on packet fields. Therefore, for developing
an XDP firewall program that supports various types of signatures, a BPF MAP per
signature type would be required. This would (i) degrade the total packet processing
performance due to multiple memory lookups [96], [119] (proportional to the signature
types) and (ii) introduce downtime since for each BPF' Map addition/removal, the XDP

program needs to be reloaded.

The DDoS Mitigation app was designed to conform with the aforementioned XDP
limitations. As depicted in Figure 8.3, it is based on a user space and a data plane program.

The former manages signatures installation while the latter performs packet filtering.

DDoS Mitigation Application
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Figure 8.3: DDoS Mitigation Application Architecture

The user space program receives filtering requests from vAS and/or cAS’s e.g. victim
IP/network, signatures. If there are no signatures, a unique identifier /P ID is created

(Firewall Instances Catalog). Packet signatures are transformed into XDP programs, i.e.
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Firewall Instances (FIs), via appropriate Jinja templates [121] (Firewall Instance
Generation). Each FI parses packet fields and their corresponding values that form the
requested signatures. Subsequently, it contains if-then-else conditions to match and drop
malicious packets. Each generated FI is indexed by a unique File Descriptor (#D) and
can be accessed, updated or deleted dynamically, without affecting the packet processing
operations of other FIs. After FI instantiation, the user space program signals the edge

router to redirect the network traffic destined to the victim IP/subnet.

The data plane program receives the redirected packets, parses their destination IP, and
performs a lookup on a LPM (Longest Prefix Match) TRIE BPF Map; this matches 1P
addresses/subnets to their corresponding /P ID. Subsequently, the /P ID is used as input
to a special memory structure BPF PROG ARRAY, that passes the packet to its
corresponding FI. According to the FIs signatures, malicious packets are blocked while

benign packets are bounced back to the router to be appropriately forwarded.
8.4.3 Collaboration Manager

The Collaboration Manager (CM) is an application that (i) handles filtering requests

for/from collaborators and (ii) coordinates the Federated Learning training process.

CM employs the BGP protocol to serialize and convey filtering requests. We needed to
overcome the limitation of the predefined packet fields imposed by BGP Flowspec. To
that end, victim's CM BGP Speaker initializes a BGP session with collaborators CM
advertising the support of the Content-URI address family [122], similar to [114]. This
allows the advertisement of specialized BGP Update messages that include URIs pointing
to the requested filtering rules (signatures) organized in JSON representations. A filtering

rule example may be found below:

Table 8.1: Signature-based filtering rule (Example)

Filtering Rule for DNS Amplification attack
{

"ip_dst": "1.2.3.4/32"

"protocol": 17

"port": 53

"application_protocol": "DNS"

"payload fields":

{

121



"dns.qry.type" = 255
"dns.qry.name" = 0x0

}

Note that, the use of BGP enables our scheme to leverage on well-established tools such
as Resource Public Key Infrastructure (RPKI) to check collaborators (peers) eligibility

on announcing IP prefixes/addresses.

As mentioned, CM coordinates also the Federated Averaging training process. This is an
offline procedure between the collaborators and a neutral third party hosting the Federated
Model. CM retrieves the generated weights from each training round and publishes them
to the FM via a message broker (e.g. RabbitMQ [123]) . Subsequently, it receives the
generated weights calculated as the average of collaborators weights. The proposed
message broker scheme enables for collaborators authentication, inter-collaborators
private agreements (e.g. sharing accuracy results on their local datasets) and reliable

delivery of MLP weights.

Note that typical Federated Learning use cases [105], [108] consider as collaborating
nodes low throughput devices. By contrast, in our case the total size of MLPs weights
that are exchanged between cAS's have negligible impact on the high-throughput links

that interconnect them.
8.5 Experimental Evaluation

We implemented all software applications of the proposed architecture and deployed
them in our laboratory testbed. The DDoS Detection app was based on pyforch and pysyft
python libraries. The Collaboration Manager was based on Ryu's SDN Controller BGP
Speaker [124] and RabbitM(Q message broker [123]. The DDoS Mitigation app was
deployed on a physical machine equipped with an Intel 17-2600 CPU and a 10G
SmartNIC Netronome Agilio CX [27] (XDP-enabled). This was directly connected to a
Virtual Machine that offers high-speed packet generation using the PF RING ZC

framework [35] in a similar fashion to the testbeds employed in previous sections.

To assess the detection accuracy and mitigation performance of our mechanism, we
considered DNS Amplification attacks. In subsection 8.5.1below we provide details for

the employed DNS datasets. In subsection 8.5.2 we compare the classification accuracy
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of the proposed Federated Model to individual (non-collaborative) approaches. Finally,
in subsection 8.5.3 we showcase the packet processing performance of our mitigation

mechanism.
8.5.1 Datasets Description

We focused our experiments on a commonly encountered attack vector, DNS
Amplification attacks. As benign traffic, we used DNS traffic traces from a 10G transit
link between the WIDE Japanese backbone and DIX-IE Internet Exchange [80]. Benign
DNS traffic was aggregated per destination AS using publicly available BGP data [125].
In turn, AS's were sorted in descending order based on the total received packets; dataset
B(i) contains benign traffic destined to AS's ranked by incoming traffic, i.e. B(1)
corresponds to the AS with the highest number of DNS packets.

As malicious traffic, we used seven publicly available DNS Amplification attacks
contained in the Booters dataset [2], henceforth referred to as A(i). Attacks in A(1), A(2),
A(3), A(6) and A(7) generated type ANY DNS responses. By contrast, in A(4) and A(5),
attackers generated fype A DNS responses. Specifically, A(4) contains responses for a
single domain name that resolved into a very large number of IP addresses. A(5)
corresponds also to a type A4 attack, in which attackers could not generate responses with
heavy payload. Consequently, A(5) did not succeed to generate more than few Mbps

while all other attacks generated hundreds of Mbps of malicious traffic.
8.5.2 DDoS Detection Accuracy

In this subsection, we evaluate the classification accuracy of our Federated Learning
approach and compare it to individual (non-collaborative) approaches. Specifically, we

considered seven collaborating AS's, henceforth referred to as cAS(i), where

i=1...7. Each cAS(1) has access to its own private traffic mix M(i) that contains attack

dataset A(i) combined with a benign dataset B(i).

We trained each cAS(i) model individually based on dataset M(i) using a Multilayer
Perceptron (MLP) of 13 input neurons, 27 (13x2+1) hidden and a single output node for
classification, as suggested in [61]. MLP weights were updated based on the Adam [92]
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algorithm. The features employed for the MLP model are based on a subset of the packet
fields of Table 7.1 according to the methodology presented in subsection 8.4.1:

Table 8.2: Packet fields (features) for DNS packet classification

Packet Fields (Features)

ip.length

dns.flags.checkdisable

udp.length

dns.count.answers

dns.flags.authoritative

dns.count.auth_rr

dns.flags.truncated

dns.count.add rr

dns.flags.recdesired

dns.qry.name

dns.flags.recavail dns.qry.type

dns.flags.authenticated

The Federated Model (FM) was trained using the same MLP architecture with weights
conveyed from all collaborators, as prescribed by the Federated Averaging technique
[105]. The hyperparameters for cAS(i) models and FM were tuned based on grid search
[126], using validation datasets comprising of 30% of datasets M(i).

We evaluated the trained models using as test datasets A(i) and B(i). Each bar in Figure
8.4 illustrates the True Positive Rate — TPR, i.e. the percentage of the attack traffic A(i)
that was classified as malicious by each model. Respectively, each bar in Figure 8.5
illustrates the True Negative Rate — TNR, i.e. the percentage of the benign traffic B(i) that
was classified as benign. Figure 8.4 and Figure 8.5 present the accuracy individually
achieved by each cAS(i) model based on its private training data M(i) and on "unseen"
datasets A(j) and B(j) of other domains j (j#1). We also include the corresponding
accuracy of the common Federated Model (FM). In Figure 8.6, we depict the TPR and
TNR achieved by each AS(1) averaged for all datasets, A(1), A(2),..., A(7) and B(1),
B(2),..., B(7) accordingly. Note that we excluded A(5) from the average TPR calculation,

since it introduced insignificant malicious traffic (~ 6 Mbps).

As shown in Figure 8.5, cAS(1), cAS(2) and cAS(4) achieve high TNR for all benign
datasets; however, they are not able to detect different (not trained with) attack traffic
patterns, i.e. cAS(1) is not able to detect A(4), while cAS(4) is not able to detect any other
attack that deviates from A(4). By contrast as depicted in Figure 8.4, cAS(3), cAS(5),
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cAS(6) and cAS(7) achieve high TPR for all attack datasets, but fail to detect diverse
benign DNS traffic.
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Figure 8.4: True Positive Rate for DNS Amplification attacks (Booters)
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Figure 8.5: True Negative Rate for benign DNS packets
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Figure 8.6: Average TPR and TNR of Individuals Models and Federated Model

cAS(1)
cAS(2)
cAS(3)
m cAS(4)
B cAS(S)
m cAS(6)
B cAS(7)

The FM achieves on average the highest combination of TPR and TNR amongst
individual cAS's models, as shown in Figure 8.6. Note that FM did not use private data
of individual collaborators, relying only on their MLP weights. In total, the Federated
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Learning approach enabled collaborators to identify benign and attack packets that as

individuals would misclassify them.
8.5.3 DDoS Mitigation Packet Filtering Performance

In this subsection, we assess the packet filtering performance of the DDoS Mitigation
app. Specifically, we evaluate the packet processing performance of our mechanism
considering its CPU scalability capabilities and the number of supported Firewall

Instances (FIs) within federated environments.

We generated synthesized DNS traffic consisting of packets that can be matched and
dropped by a single signature per FI. This is formed by dns.gry.type and dns.qry.name

packet fields based on the following condition:
if (dns.qry.type=255 and dns.qry.name=<Root>)
then DROP

This signature can block all the attack traffic contained in datasets A(1), A(2) and A(3).
More details about our signature reduction technique, that enables us to filter attack

packets using a subset of the features presented in Table 8.2, are available in 6.4.2 and

7.4.4.

We launched multiple concurrent attacks ranging from 10 to 1000 that target different
collaborators with accumulated throughput of 10 Million packets per second (Mpps). To
evaluate the packet processing performance, we counted the number of packets that were
processed by the XDP and subsequently filtered out. This enables us to assess our firewall
mechanism as a service offered to collaborating AS's. In Figure 8.7, we assess firewall

scalability in terms of the deployed FIs implemented with 1, 2 or 3 CPU cores.

The packet processing performance of our mechanism scales almost linearly with the
number of cores. Such behavior is also validated in [12], [77]. As expected, increasing
the number of collaborators, hence the number of deployed Fls, decreases the overall
packet processing rate of our firewall. Specifically, this is reduced linearly between 10
and 200 FIs and from that point it remains the same despite the increase of FIs. The
enhanced performance for the small number of Fls is attributed to level one (L1)

instruction cache hits while after a specific number of FIs the L1 instruction cache misses
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do not affect the overall performance. These conclusions were validated using the perf

tool [127] that provides CPU performance statistics for user-defined time intervals.
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Figure 8.7: DDoS Mitigation Scalability

In total, our approach can handle successfully up to 1000 concurrent attacks targeting an
equal number of collaborators. Note that these correspond to the number of concurrent
blackholed IP prefixes announced in a large European IX [128]. Thus, the proposed
firewall can be considered as a scalable filtering mechanism tailored to large-scale

federated SDN infrastructures.
8.6 Summary & Concluding Remarks

In this section we proposed a DDoS protection framework for collaborating network
domains, i.e. Autonomous Systems (AS's). Our approach leverages on the Federated
Learning paradigm for collaborative and privacy-aware DDoS detection in SDN
infrastructures. Attack mitigation is based on scalable and programmable firewalls that
can be instantiated on-demand by the victim. Specifically, our schema analyzes, within
time windows, packet-based data forming signatures. These are used as input to
supervised Machine Learning models, trained cooperatively via the Federated Averaging
technique. Suspicious traffic is redirected to scalable programmable (XDP-based)
firewalls to be filtered out. During massive attacks, our schema enables victim AS's to
raise filtering requests on collaborating AS's to block them, presumably early in attack

paths.

Our framework was evaluated both in terms of detection accuracy and mitigation

performance for typical DNS Amplification DDoS attacks. The conducted experiments
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considered real benign and malicious network traffic. The Federated Learning approach
enabled collaborators to accurately classify benign and attack packets improving their
individual accuracy. Based on the achieved packet processing performance, the proposed
programmable firewall provides a scalable filtering mechanism for evolving federated

SDN infrastructures.
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9 Conclusions & Future Directions

9.1 Summary & Concluding Remarks

In this dissertation, we delved into the problem of detecting and mitigating Distributed
Denial-of-Service (DDoS) attacks, an everyday and of high impact problem for network
operators and end-users. Specifically, we designed/implemented methodologies,
algorithms, and tools for rapid detection and efficient mitigation. In a nutshell, our
approach relied on emerging network technologies, i.e. high-performance programmable
data planes (P4, XDP), to efficiently collect and filter DDoS attacks using intelligent data-

driven algorithms to detect and classify them.

Firstly, in Section 5, we introduced a P4-based DDoS detection schema offloaded entirely
in the data plane. In contrast to the state-of-the-art approaches that employ external
network detection mechanisms (in the control plane), our approach detects network
attacks within few seconds and pinpoints the under-attack subnetwork/IP. The success of
our approach relies on the generation of monitoring data tailored to DDoS attacks enabled

by the data plane programmability paradigm.

In Section 6, we made a step further towards DDoS protection, focusing on traffic
classification mechanisms to segregate malicious from benign traffic. We considered
SYN Flood attacks, as an indicative use case of protocol attacks, and proposed a
signature-based classification and mitigation mechanism to counter them. Our approach
employs packet signatures as input to Supervised Learning algorithms to classify network
traffic. Subsequently, it generates an optimal set of filtering rules to use as
countermeasure against SYN Flood attacks; these are deployed on programmable
firewalls (XDP-enabled) for high-performance yet flexible packet dropping. Our
mechanism illustrated high accuracy on real network traffic data and outperformed the

state-of-the-art SYN Flood mitigation mechanism (SYN Cookies).

Inspired by the approach presented in section 6 and the challenges we faced, in Section
7, we extended our signature-based classification and mitigation mechanism to
volumetric DDoS attacks. We relied on the widely observed fact that these attacks may
be characterized by a modest number of salient packet characteristics. To that end, we

employed a generic methodology for packet feature selection (signatures) and
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subsequently used the most important packet fields to classify volumetric DDoS attacks.
In a similar fashion to the effort described in section 6, the proposed mechanism optimizes
the number of signatures required to block the attack traffic and deploys them on XDP-
based programmable firewalls. Our approach was evaluated on common volumetric
attacks, i.e. DNS Amplification. In our experimental evaluation, our approach identified
the most important packet characteristics for traffic classification and based on them
managed to accurately detect real benign and malicious DNS traffic. The proposed
signature-based mechanism outperformed the state-of-the-art flow-based mechanisms in

terms of traffic identification, filtering rules cardinality, and mitigation throughput.

Finally, in Section 8 we extended the signature-based DDoS protection approach
(presented in sections 6, 7) to collaborative multi-domain network environments. The
proposed framework employs Federated Learning techniques for privacy-aware
cooperative DDoS detection and incorporates a scalable yet programmable DDoS
mitigation as a service mechanism tailored to collaborative network environments. Our
approach was evaluated on multi-domain production network data illustrating high DDoS

detection accuracy and efficient packet filtering.

9.2 Future Directions

DDoS attacks are continuously evolving to overcome the intelligent
methods/algorithms/techniques employed by DDoS protection frameworks. Thus, more
sophisticated methods are expected to be considered by the attackers in the future.
Moreover, ever-growing attack traffic rates will be observed as the number of devices
connected to the Internet is constantly increasing. To that end, DDoS protection
frameworks need to consider the evolution of network attacks both in terms of scale and

sophistication and be able to provide accurate and timely protection.

As illustrated in this dissertation, offloading DDoS protection tasks in the data plane is
possible, featuring rapid identification and accurate mitigation of network attacks.
Although appealing as a concept, packet processing limitations were faced in P4-enabled
NICs. Similar hardware resource constraints are also observed in physical P4-enabled
network switches [129]. Therefore, mechanisms that combine programmable (i.e. P4-
enabled) hardware switches with COTS programmable (e.g. XDP-enabled) servers for

DDoS detection and mitigation tasks would be of paramount interest. Especially, for
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cloud-based scrubbing providers that need to offer flexible and scalable services without

compromising their ability to re-program on-demand their software/hardware appliances.

With regards to network traffic classification, we showcased the existence of specific
packet signatures in protocol and volumetric DDoS attacks. An interesting future
direction would be the investigation of signature-based detection and mitigation
approaches for application-layer attacks. The methods employed in this dissertation could
be extended to incorporate the temporal characteristics of application-layer attacks.
Indicatively, Supervised and/or Unsupervised Learning algorithms, e.g. Long Short-term
Memory (LSTM) Neural Networks [130], Hierarchical Temporal Memory (HTM)
systems [131] could be explored. Additionally, Reinforcement Learning techniques [132]
could be also considered in cases where malicious traffic presents similarities with the
benign traffic. An interesting aspect of Machine Learning techniques that requires further

investigation for broader use in production networks is explainability/interpretability.

Finally, as mentioned in section 8, the collaboration of disjoint network domains, i.e.
AS’s, is crucial for protecting networks against DDoS attacks. Federated Learning
allowed collaborating parties to exchange network metadata without revealing their actual
values. However, the cooperation of multiple domains arises some interesting challenges
within Federated Learning setups. The independent selection of diverse (potentially the
most important) features by each participant (concept drift) should be incorporated to
Federated models, as it depicts the knowledge of each participant for a specific task, e.g.
DDoS classification. Additionally, multi-task learning architectures [117] seem
promising as they enable to concurrently perform more than one tasks, e.g. to identify
simultaneously more than one attack vector. This could reduce training times and the
complexity of the Federated models. Finally, trust-based schemes [133] could be further
investigated to improve performance, robustness, and security of Federated Learning

schemes.
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10 Extended Abstract in Greek — Extetapévn Ilepiinyn ota
EAnvika

Ot ovyypoveg Kowmviec oloéva kot meplocotepo Poacilovtor oe vanpeciec mov
npoceépovtal PEcm tov Atadiktvov (Internet). [Towiieg dpactnproTTEG TOV OVOPDOTOL
e€apTOVTOL OO OVTEG TIC VINPEGIES Kot EITE APOPOVV OTAES KOOMNUEPIVES OVAYKES TOV
OT®G M O1EVKOAVVOT TG emKOVOVIoG (.. Lo amd TN YPNoN TOV HECHV KOWVWOVIKNG
OTHmoNG) eite emekteiveTtonl OKOUO KOl OE TEPUTTOCEIS TOV OPOPOLV TNV idwa TNV
avBpomvn (o1, .. ATOUAKPVCUEVT) YEPOVPYIKT. ZVVETMS, Lo oo TIG adlauelopnTnTa
Baocwkdtepeg amantioelg mov gyeipetal, eivar n eEac@AAon ™G oTafEPOTNTOG Kot TNG
opOng Aettovpyiag 1060 T®V LIOSOUMV OGO KOl TOV VINPECUDY TOL GLVIGTOLV TOV

axpoywviaio AiBo tov AtadiktHov.

‘Eva and 1o mo cvvnbiopéva kot kuptotepa TPOPANUOTO TOL OVTILETOTILOVYV Ot
Lo EPIOTEG Kot EMNPEALEL ONUOVTIKA TN AELTOVPYio TOV SIKTO®V EIVaL O1 KOATAVEUNUEVES
embéaelg apvnong mapoyng vanpeosiwv (Distributed Denial-of-Service attacks - DDoS).
AVTéc épouv ¢ KUPLO 6THY0 TN Olakomn TG opBng Aettovpyiag TV OLUOIKTLOK®OV
vanpectov (Internet services), pe amotélecpa va punv Kabictator gkt 1 eEumnpétnon
TV KaAOBovAwv ypnotmv. Ot embécelg avtég opeiloviat og TOKIAO Kot SLOPOPETIKOD
TOTOL KIVITPOL KOl YPNGLULOTOL00V £va, LEYAAO €0pOG LEBOIMV/TEYVIKDV Y10 VO TETVYOVV
ToV 6Kk0mo ToVG. To TPOPANUA TV emBécemv €xel TAPEL GNUAVTIKEG SUGTAGELS, KOOMG
VILAPYOVY TAATQOPUES (Booters) mOv &vavTl HIKPOD ¥PNUOTIKOD avTitipov divovv
dvvatdtta eEomdivong yryovtiaiov embécewv. H kAipoka tovg givarl tkavn va 0écet
€KTOG AE1TOVPYIOG amd LUKPE ETLYEPNGLOKA STKTVO KO KUPBEPVNTIKEG VITOOOWES LLEYPL KO

TEYVOLOYIKOVG KOAOGGOVG.

H ocvveyng dmapén aArd ko 1 e£€MEN avtdv TV emBEcE®V £(OVV 0ONYNGEL GTNV
avAnTTLEN TOGO GTPATNYIKAOV OGO KOl LNXAVIGULAOV Y10, TV KOTOGTOAN TOVG. XTOY0G QVTMV
TOV UNYOVICULAOV TPOoTaciag elval 1 aueon kot pe akpifelo aviyvevon tov embécewv
Kol €V ovveyela 1 €ykalpn avipetonion tovs. H ovveyng Peitioon tov unyovicuov
TpooTaciog omoteAel factkn avaykn Yo TV TPOSAPUOYN GE VEOLG TOTOVG EMBECEDY
aALG KoL 6TV oAoéva av&avopevn KALoKa Toug. Baotkés amaitloels Tov Unyovic oy
avtov elvar ) eveMéia, n arddoon, n akpifela Ko 1 KMpokooipodTo. Bdost avtdv tov

TPOOLALYPOPAOV Ol UNYOVIGHLOT TPOCTUGIOG EVOMUATMVOVY TOCO KOIVOTOUES TEYVOAOYIES
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000 Kol gvELECTEPES HEBOOOAOYIEG YIOL TNV OMOTEAEGUOTIKOTEPT OVIXVELOT KOl TNV

QOO0 TIKOTEPT] OVTIUETAOTION TOV EMOECEDV.

H &vBion tov diktowv opildpevov amd Aoyiopkod (Software-defined Networks) é0ece
véeg PAGELS 0TI OPYLTEKTOVIKEG TOV OIKTOMV Kol KOT  EMEKTOCT KOl GTOVS UNYOVICUOVS
npootaciog and embéoelg. Apywd, pe 1o mpwtoékoAlo OpenFlow (OF) d60nke
duvatoTNTO Yoo evioio. KEVIPIKOTOMUEVT Kol €VEMKTN Olayeiplon ToV SIKTLOKOV
ovokev®v. Edikdtepa, 1 duvatdTTo TPOYPUUUATIGHOD TOV JIKTLOK®OV GLCKELOV (GTO
EMMEDO EAEYYOV) EMETPEME TNV EYKOTAGTOOT KOVOV®V TpomOnong, mapakolovOnong,
OALQ Kol OmOKOMNG O€ OLUPATIKODG UETAYMOYELS, ONUIOVPYDVTIOS TPOTOTVTES

OPYLTEKTOVIKEG TPOCTAUGIOG atd EMOEELS.

Kowvotopeg e&gligelg oy avamtuén tov vAikov (hardware) aAld kol TOL AOYIGUIKOD
(software) T@V SIKTLOK®OV GLOKELOV, £PEPOV GTO TPOGKNVIO TNV TEYVOAOYiDL TV
TPOYPOUUOTILOUEVOV CLOKEVMV GTO emimedo dedopévov (programmable data planes).
Méow avtig g TeXvoroyiag divetatl 1 dSuvaTOHTNTO Y10 TPOYPOUUUOTIGUO TOV ETUTEIOV
O0edOUEVOV JIKTVOKAOV GLOKELAOV Y®PIc va ennpedleton onuovikd (1 Kot kaboAov) 1
amddoon Tove. Ba pmopovcape vo  dokpivovpe V0 Pactkods TLADVES T®V
programmable data planes 6ToVg 0m010VG dMGAE EUPACT] GTNV TOPOVGA S1OAKTOPIKN

SwTppn:

e 1 yYAoooo P4, mov mpotdbnke Yoo TOV TPOYPUUUOTIGUO UETOYOYEDV Kol
OIKTLOKOV KOPTOV LE EVIOT0 TPOTO Ko

e 10 eXpress Data Path (XDP), mo mpocéyyion mov Eexivnoe amd peydiovg
TEXVOAOYIKOVG KOAOGGOVG e 6TOYO TNV LAOTOIN oM £vOg framework wov emtpémet

NV eviaio TEPLY PP VYNANG OTOO00TG EPUPLOYDV GE YEVIKOD TOTOV EE0TAMGO.

Ot mopamdve Kovotdpeg Texvoroyieg divouy T duvatdHTNTO Y10, GLAAOYN YEVIKOL TOHTOV
HETPIKAOV, OAAE KOl EWIKOV YOPOKINPIOTIKOV NG dkTvakng kivnong. [HapdAinia,
TPOGPEPOVTOL YIOL GYEOIOOUO KO VAOTOINGCT LYNADV TPOSAYPUPDV  OTOOOTIKAOV

UNYOVIGL®V amdppymg emBécemv.

H éyxaipn ko pe axpifeta aviyvevon tov emBEce®V amottel TNV avaAvom g OIKTLOKNG
kivnong oe mpaypatikd ypdévo pe TN xpnom katdiiniov pebodoroyidv/aiyopiBuwv
VOO avopaM®Y. ATAEC nEBOSOL GTATIGTIKNG XPNCUYLOTOOVVTIOAY KATO KOPOV Yo

TETOLOL TUTTOL AVOADGELS, MOTOCO LE TNV parydaio adENon Tov OYKoL TV dedopuévmy (big
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data) aAAd Kot TV odénon g TOALTAOKOTNTAG TOV HOTIPwV TG SIKTLOKNG Kivnong
(Moyo g eelkTikng téong tov Atadiktoov), ot péBodol OmANG OTATIGTIKNG OeV
amédday  TOco  KavomoTikd. MeBodohoyieg €QOPUOCUEVNG  OTOTIOTIKNG Kol
oVYKEKPIEVA alyop1Oot Mnyovikng Mdabnong £xovv TpmTOCTATHCEL TO EVOLOPEPOV Y10
TIG OMOJOCELS TOVG € MAEIGTOVG TOUELS, .Y, AVAYVOPLoN EKOVAOV, TPoPAEyelc Tudv. H
EVPELN YPNON TOVS GE GLVIVOAGHO UE TIS VYNAES akpifeleg mTov meTvyaivovy, Ty Bétovy
ooV o TOAAG vITooyOpevn pebodoroyia Yo aviyvevon emBECEDV Kol KOTNYOPLOTOinon

NG OIKTLOKNG KivNomC.

210%0¢ G Tapovoag dtpiPng etvar n avdmtuén evog OAOKANP®UEVOL UNYAVIGHOD
avViYveLoNG KOl OVIYETOMIONG £MOECEMY  YPNOUOTOIDOVTIOS TIG OVVATOTNTES TOV
GLYYPOVOV TPOYPAUUATILOUEVOV OIKTO®V GE GLVIVOAGUO LE EVEVELS TEYVIKES avdAvong
dgdopévov. Xta TPOPANUATO OV GLUVOVTIAOVIOL GTNV OVIYVELON KOl OVTLLETMOTION
EMOECEDV EVOOUATOVOVTOL 1 ATOd0TIKY e€orymyn OE00UEVOV KOl 1 AVAALGT TOVC, 1|
aviyvevon avoORoAOV (TOLTéoTv 1 VTTaPEN miBeong, N avayvdPLIoT TOV TUTOV Kol TOV
Bopatog g emiBeong), n KaTNYoplomoinom e OIKTLOKNG Kivnong o KoAOBovAnN Kot
KOKOBOLAN KOl TEAOC 1M OVIIUETOMION TNG emifeong HécO om0 KOTOUOKELN Kot

EYKATAOTOON KATAAANA®V KAVOVAOV OTOKOTNG,.

Me yvopovo TNV KOTOOKELT] €VOG OAOKANPOUEVOL UNYOVIGHOV TPOGTAGING Omtd
emBéceic DDoS, 1 cuvelopopd g mapovcag datpiPrg opyovaveTal 6To KEQ@aiora S,

6, 7 ko 8, 6OV GLVOTTIKA TTEPTYPAPOVTOL TO KATMOL:

e XT0 KEPAANLO 5, TpoTEIVOLLE £Vl UNXAVIGUO OViYVELONG EMBECEDY VAOTOINUEVO
OTO EMMEOO OEOOUEVOV pE TN ¥pNon TG YAwocag P4. O unyovicpdc avtdg
vAomoteitar otor Akpa tov dikTvov (edge devices) kot avayvopilel quesa v
omapén, tovg TOmovg kKou ta Bvuata embBécewv DDoS. H a&oddynon tov
pnyoviopob Pacileton oe mpaypatikd dedopéva e yvoova Ty akpifela Kot tnv
enidoomn Tov.

e X710 Ke@drowo 6, mpoomabovpe PAcEl TOV YEVIKOV GLUTEPACUATOV TOV
Aappdvovpe and TOV UNYOVIGUO TOL TPOTYOVUEVOL KEPOANIOVL Vo, dtaKpivove
O GLYKEKPIUEVO YOPUKTNPLOTIKE NG KakOBovAng kivnong. Xpnolomoldvtag
T1¢ emBéoeig mnuuopag SYN Flood wg pia evoewctikn eniBeon protocol-based
KATOOKEVALOVE EVOV UNYOVIGUO KOTIYOPLOTTOINGNG KO OTOKOTNG TG SIKTVOKNG

kivnong Paciopévo oe  1daitEPA  YOPAKTNPIOTIKA TV Tokétowv (packet
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signatures). Xvykpivoope Vv TpotewoOuEV  ADON  HE  TOV  ELPEMG
ypnooroovpevo punyaviopd oo SYN Flood emBéoeig, SYN Cookies.

o X710 KeQAGAOWO 7, emektelvovpe TNV AOYIKN] NG KOTNYOPLOTOINoNG Kot
OVTILETOTIONG EMOEGEDOV PACEL YOPAKTNPICTIKOV TOV TOKETOV G L0 LEYOAN
owkoyéveln emBEécewv TOv TPOKOAOVV HeEYAAO OyKo Kivnomg (volumetric).
[Tpoteivoupe pia peBodoroyior ETAOYNG YAPAKTNPLOTIKOV Kot EQOPUOLOVUE TOV
UNYOVIGHO OGS GTOV 0 GLVNOIGUEVO TUTO TETOL®V EMBECEWV, TIG emBEcelg DNS
Amplification. T'io v a&ordynon g pebodoroyiog pog, cvykpivovpe tov
TPOTEWVOUEVO TPOTO TPOGTAGIOG LE TNV KATA KOPOV YPNGLULOTOLOVLEVT] TEYVIKN
nov PBaociletal oe dikTvakéc poég/ devbuvon mnyng IP.

e Télog oto ke@droro 8, emekteivovpe TNV KOTINYOPLOTOINOCT KOU OTOKOTN
eMBEcEDV PAGEL YOPUKTNPIOTIKOV TOV TOKETOV GE GLUVEPYUTIKA TEPPAALOVTAL.
O unyavicpdg mov poteivetarl Paciletar oe cuvePyasies AVTOVOL®Y SIKTLOKOV
ocvotnudtov (Autonomous Systems) Kot KaTnyoplomolel tn Siktvokn kivnon,
YOpic OUMG va. YpNCULOTTOLEl TO TPOCWOTIKA JedOUEVA TV GLVEPYALOUEVOV.
[Mopdiinio, diver ) SuvatdTNTA Yo OTOOOTIKY Kol KAYUOKOGUN OTOKOMTN

embBéoewv DDoS kat’ anaitnon tov cvuvepyaldpevov.

21N GLVEYXELN TOV GLYKEKPIUEVOL KePaAaiov Oa avalvbel pe peyaldtepn AewTopépeia n
GLVELGQOPE TG Tapovsas dtatpiPrg meptypdpovtas v cuvtopia Tig pebodoroyieg mov

akolovOnOnkav oto kedroa 5, 6, 7 kot 8.

210 KEPAAOO 5 moapovcldleTor £vog UNYovicpog aviyvevong embécemv 6to eminedo
dedopévov Paciopévog ot YAwooa P4. O cupPartikot (legacy) unyaviopoi aviyvevong
BaciCovtat oe TpmtdéKoira OTws t0 NetFlow, to sFlow 1 akdpa kot to OpenFlow, nécwm
TV onoiwv e£QyovTol TANPOPopieg GYETIKES e TNV dlepyoevn Kivnon o€ €va diktvo. Ot
unyaviopol aviyvevong GVAAEYOLV dEO0UEVO OO SIKTVOKES CLOKEVEG, TO OLVOADOVY Kol
KOTOANYOUV G€ GLUmEPAcUATo oYeTkd pe v vropén embécemv DDoS. To PBaocikd
LELOVEKTT L TOVG etvat: (1) o1 VYNAES amalTNoElg o€ emegepyaoTikn 1oyD Yo TV avdAvon
peyaiov Oykov oedopévav, (ii) 0 VTOAOYIOTIKOG POPTOC MOV VLAEIGEPYETAL CTNV
EMKOWVOVIO HETAED TOV SIKTVOKAOV GLGKELAOV KO TV UNYOUVIGLLOY GUAAOYTNG 0EO00UEVOV
(Wwitepa Katd ™ odpkela pog eniBeonc) kot (iil) ol meplopiopol 6Tovg dbEGILOVg

TOTOVG SEGOUEVOV OV TTOPEYOVTOL OO TOV EKAGTOTE KATACKELAGTH/Aettovpytkd. Oa
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avTd aBpoiloTikd 0dnyohv o€ KaBvoTEPNOT TG Aviyvevons Tov emBécemv, YeYovOg TOv

TEAMKA KBLOTEPEL KOt TNV TEMKY] OVTILETOTLON TOVG.

Avtifeta pe TIg VTAPYOVGES TPOGEYYIGELS, EUEIG OYEOIACALE EVOV UNYAVICUO OVIXVEVONG
embéoemv 610 eMmedo dedouEvmv. AVTOC EMTPENEL TV EyKOupT aviyvevon embécewmv
péca oe Alya devTEPOAEMTO, TOV EVIOMIGUO TOL Bduatog tng emifeong kot diver
duvaTOHTNTO APESNS EVNUEPMONG Y10 EKKIVIOT O100IKOGIOV avTILET®TIoNG. To Pacikd
TAEOVEKTN IO, TTOV diveTan amd TN YA®cooa P4, sivat 1 dSuvatodTnTo TPOYPOUUATICUOD TMV
OIKTLOK®DOV CLOKEVOV DGTE VO, ETeCePYALOVTOL KO VO GUAAEYOLV GUYKEKPIUEVEG LETPIKEG

EVOLIPEPOVTOC, TOV €V TPOKELUEVM GYETIOVTOL LLE TOV EVIOTIGUO EMBECEWV.

Ewdwkotepa, kobmg Siépyetar SKTLOK) Kivom o€ GLOKEVLEG (TY. UETOYWYELG) 7OV
vrootpifovv v YA®ooa P4, avoidovtol GLYKEKPUEVA YOPOKTINPIOTIKE  TNG.
EmiéyOnkav tpio factkd xopakTtnpiotikd to 0moio brodekvuovy Ty Vtapén embécemv
KOl HITOPOVV VO OGS GUYKEKPLUEVOTOMCOVV TO €kAoToTé Odpa e Avtd To
YOPAKTNPIOTIKA 0ELOAOYOVVTOL HEGO GE YPOVIKA Tapdbupa, OOV OTOTEAOVV Kol TO
dwotnuo émov avapévetol va evromotel N emibeorn. O PETPKEG EVOLPEPOVTOS TTOV

e€etdlovpe gtvat:

e H cvvoiin avénomn tov diktvak®v podv, vrtoroyilovtag tov Tpéxovta aptipuo
TOUG KOl OGLYKPIVOVTOG TOV pe TOV €KOeTIKA Kwvodpevo HEGO OpPO  TOV
TPONYOVLEVOL YPOVIKOV TTopafipov emavEnpévo Katd k @OpEG TG AVTIGTOYNG
amoKAoNG.

e To mAn0og tov podv avd vtodiktvo/o1evbuvvon IP evdlapEépovtog cuykpitikd pe
T0 cLVOoAIKO TANBoc pomdv. H adénon avtng g TIUng oTng HoG VITOOEIKVOEL
avopaiio 66ov apopd to TANB0G podv avd vrodiktvo/devbuvon IP.

e Tn ovppetpio Kivnong avd vrodiktvo/o1evBvvon IP kot 10 660 amokAivel amd

TNV «OVOPEVOUEVI TNG CUUTEPLPOPEL.

Av ko1 o1 Tpeic PeTPIKEG EVOLAPEPOVTOG Eemepdoovy Opta oL TiBevTot amd To JSayEPLoTN,
tOTE MOPAYOVTAL KOTAAANAQ UVOLOT OO TO EMITESO OEGOUEVAOV TOV DITOOEIKVOOLV TNV

vmapén emifeong.

H mpotewvdpevn Avon viomomdnke kol SOKIUAGTNKE GE TPAYUATIKES KAPTES SIKTVOV

Netronome pe dienoéc tov 10Gbit. Eniong, ypnotpomomOnkay képteg ductdov Intel yio

mopaym®yn vyniod pvBuod kivmong. T v afloAdynon ToL  UNYOVIGHOD
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APNOCLOTOMONKOV TPaYUATIKAE dedopEVO EMBEGEMV KOOGS Kot KaAOBoVAN kivnon amod
éva Internet Exchange oty lamwvia. Ztdyog nrav va egtdoovpe v akpifeto oAhd Kot
™V eme€ePYNoTIKY] amdOd0oT TOL UNYOVIGHOV. O TPOTEWVOUEVOS UNYOVICUOG TETLYE
vynAég akpifeteg aviyvevong g TaENg tov 95% yro emBEcES dSoPOPETIKNG KAILOKOG.
[Mopdiinio, n emnelepyaoTikn TOV SLVATOTNTO NTOV ETOPKNG Yol OIKTLOKY Kivnom
VYNAGV TayuTTOV (2 eKatoppdplo TakETo To 0eVTEPOAENTO). ABPOIoTIKG QLTS O1 dVO
TTUYEC KAGTOOV TNV TPOCEYYIoT HOG KOTAAANAN Yo aviyvevor embécewmv o€ Ghyypova

dtvakd teptPdAiovra.

2UVOMKE 0TO KEQPAAULO 5, KATOCKELAGOUE EVOL UNXOVIGUO aviXVEVOTG EMBECEDV GTO
eninedo dedopévmv pe ypnon g YAwocsoc P4. O unyaviopdc pog yapoktnpiletor amod
£€yKopovg ypovovg aviyvevong otvovtag tn duvaTdTNTA Yo GUECT] OVIIUETOMION TMOV
emBésewv DDoS. TTapdAinia, cuvodevetar and vyniég akpifeteg pe pikpd apfpd and
yevdobetikd mocootd (False Positive Rates), evdd Pdacel tg amddoong tov givan
KOTAAANAOG Yo oOyypova dwktvoakd mepiParrovia. Ocwv agopd tnv aviyvevon
emBéoemv DDoS, o punyavicpog mov oyedidoape omoterel Eva mpdTO Pripae Yoo vo
gvromicovpe v vmapén enibeong, Tov THmo g kabmg Kot To B TOV AVTH CTOYEVEL.
QGTOCO Y10 VO KOTOPEPOVLE VO AVTILETOTIGOVE TIG emBéoelg kabiotatol avaykaio va
EICYWPNOOLVLE CE TO AETTOUEPT OVOAVOT TNG OIKTLOKNG Kivnong, dtakpivovioag tnv
KAAOBOLAN o TNV KAKOBOVAT Kol 6T GLVEXELD VAL AVOTTOEOVIE T KATAAANAL QiATpOl

Yo TV OTOKOTN NG €miBeomg.

[Ma v Katnyopromoinon g O1KTLOKNG Kiviiong aAAd Kol TV orokonY| ToV KaKOBovAov
HEPOVG TNG KOAODUOOTE VO EIGYWPNCOVUE OCE MO AETTOUEPYT] avAALON TOV
YOPUKTNPIOTIKOV TNG KIVI|GNG GE GUYKPLON LE TIG YEVIKES LETPIKEG TTOV YPT|CLLOTO|GAUE
0TO0 KeQAAO0 5. 210 kKeQdlorwo 6, emAélope va acyoAnbovpe pe por amd TIG
Khaowotepeg emBéoeic DDoS, v SYN Flood, mov anotelel onpovtikd mpdfanua yo
TIG oVYYPOVES dKTLOKEG LTOdOpES. v enifeon SYN Flood o1 emtiBépevol otédvouy
polued woakéto TCP SYN og kopupovg Bdpoto Kotaortataldviog 1060 TouS TOPOVS TMV
010V aAAG Kol EVOLAUES®Y OIKTVOKADV CLGKELMV, T.X. dOPOHOAOYNTEG (Touters) 1 Telym
npootaciog (firewalls). H kbpia mpocéyyion aviyvevong tov enbécemv avtov Paciletot
o711 xpNon SKTLaKOV podv (network flows), ®oTOG0 AOY® TNG TEYVIKNG ATOKPLYNG TG
otevbuvong myng (source IP spoofing), n axpifrg okiaypdaenomn towv emtifépevov

Kkpiveton e€onpetikd dvokoAn. [Iépav g aviyvevong, To Pacikd TPOPANUa £yKeLTol 6TV
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QVTILETOTION TNG EMiBeoNC, KaODS 1 amokonn TV emtifépevav Bdoet g source IP dev
elvar et Adyo IP spoofing 1 Loyw yryavtaiov Motodv and dievboveeig IP. O khpiog
UNYOVICUOG TTOV YPTCLOTOLEITAL YL TNV ovTIET™TIoN Tovg Paciletar ota SYN Cookies,
pior TeXVIKN oV KATOOoKELALEL KaTAAANA Olapopeouévo punvopota SYN ACK mov
&xovv wg okond va emPefardcovy v source IP tov apyuod makétov SYN. ITapdti o
UNYOVIGHOG avTdg eivol amodoTiKOG Kol TPooTatedel To. Bopata amd TV KaKOBOLAN
Kkivnon, amottel onpavtikod TAN00g TOPp®V Yo TNV Kataokevun twv unvopdtov SYN-ACK
EVD TapAAANAc  Onpiovpyel avtipponn kivnon ion pe v emiBeon. Avtd av
avoAoyloTovUE PEYAAEG emBEcELS TOopEl Vo ONUIOVPYNOEL TEPUTEP® CLUPOPNON OVTL

va eEOHOADVEL TO TTPOPAN LLOL.

[Mopatmpnoape 6t o1 emBéoelg avtéc epavilovy GLYKEKPLULEVA LOTIPO/YOPOKTNPIOTIKE
OTO TOKETO, OMAGON €ldape TN YPNON CLYKEKPWEVOV TGOV G€ O1dpopa media TV
Tak€TOV T omoio opilovtal mg signatures. AVTN 1 GLUTEPIPOPA Hopel va opeileTa gite
o€ YPNOYN OTATIKOV TWWOV o6& vAomowmoelg Kokoéfoviwv (hackers) eite og
TPOKAOOPIGUEVES TILES TPOYPOUUATOV amooTOANG Kivnong. Eropévac, okeptrope vo
KOTOUGKELAGOVLE Evay unxavico mov Katnyoplorotet tnv kivion TCP kot tnv amokdntel
YPNOCLOTOIDVTAG AVTA T WO10UTEPA YOPAKTNPIOTIKA TOVS. O Unyavicrog ypnoIonotel
EmiPienopevn MdaOnon (Supervised Learning) yio. va KOTYOPLOTOU|CEL TNV Kivnon G€
KaAOBOLAN Kot KOKOBOVAN. 211 GuVEXELD KATACKEVALEL KATAAANAOVG KAVOVES ATTOKOTNG
OV TEPLYPAPOVY GLVEKTIKA TNV KoKOBovAn kivnomn. Télog, ot kavdves eykobictavtal o
VYNNG amddoomg Tpoypappatiiopeva teiyn tpootaciog mov Pacilovrol oto framework
XDP. 'Eva and tor TAEOVEKTUATO TOL WOG Oivel M duvaTOTNTO TPOYPULUUATIGHOD GTO
eninedo dedopévov givar n aglomoinon tov unyoavicpod SYN Cookies @ eVOALAKTIKT

Ao Y10 TEPIMTAOGELG KOKOBOVA®Y signatures mov dgv UTOPOVV VO EVTOTIGTOVV.

[Mo va e&gTdoov e TIg SuVATOTNTES TNG TPOTEWVOLEVTG ADOTG KaTaoKevdoape Eva testbed
VYNAOV TOLTNTOV oL omaptiletal and mpoypopupatilopeveg Kapteg owktvov (XDP)
tov 10Gbit kabhg Ko amd Kapteg Intel pe SuvATOTNTA ATOGTOANG TAKETWV GE VYNAOVG
pvOpove. Ta dedopéva Tepapatiopol pog Paciotnkay 6€ TEVTE TPAUYUATIKES EMOEGELS
OV KaTaypayape evtdg Tov dikTvov Tapaymyng tov E.MLIL, 11g omoleg T1g avapeiape
pe kaAoPovin kivnon amd to oiktvo WIDE g lamwviag. Xtoéxog pog frav va

eEetaoovpe v akpifela Katnyopromoinong g kivnong, tig duvatdTnTeg pelmong Tmv
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signatures kafd¢ Kot TV amdOS0CN TOL UNYOVICUOD GTNV OTOKOTMY €MOECEWV OF

ovykpion pe tov unyaviopd tov SYN Cookies.

O TPOTEWOUEVOG UNYOVIOUOS KOTAPEPE VO EVTOTIGEL e UEYAAN axpifela TOGO TIG
embéoelg 6060 kar Vv KaAOBovAn kivnom. I[MoapdAinia, Kotdeepe Vo HEUDOEL GE
onuavtikd Pabpd 1o mAR0og TOV KAVOV®OV TOL GTOLTOVVTOL YO TNV OTOKOM TV
emBécewv. To pikpd avtd mAnbog pog emétpeye vo avEnoovpe Katd 600 Popég v
eneEepyaoTIK) SLVOTOTNTO TOV TPOYPUUUATICOUEVOD UNYOVICUOD OVTIUETOTIONG GE

ovykplon pe ) tpocéyyion SYN Cookies.

Me Bdon to cvumepdopoata avtd avopomOiKope av 1 teyvikn mov Pociletor og
signatures Umopel va yevikevtel kot va ypnoyoronel Kot 6e GAAov tHmov emBEcELS
omwg o1 volumetric. Emiong, kpiOnke avaykaio n okiaypdenon evog pnebodukod tpdmov
EMAOYNG LOVO TOV CTLOVTIKAOV YOPAUKTNPIGTIK®V TNG KIvnong yio Ty KoTnyoplonoinon
g Télog, tav emBuunT 1 GVYKPLoT TG TPOTEWVOUEVNG TTPOGEYYIoNG e Tovg de facto
UNXOVICHOVG  OVIXVELONG KOl OVTIUETOTIONG €MOECEOV TOL  AVAYPAPOVTAL GTNV
Broypapio (aAAd Kot TOL YPNGULOTOOVVTOL GE TPAYUOTIKG TEPPAALOVTA), Ol OTToioL

Bacilovtar o dikTvakég poég (d1evBvvon TYNQ).

Bdoel tov mpokAncemy mov avaeiéptnkoy, 6To KEQAAO0 7 TEKTEIVAE TN SOVAELN Lag
e T signatures Kol o€ v GALO PeYAAO GUVOAO emBEcemV, TIC volumetric embéoelg. Ot
emBéoelg avtég Pacilovror omv akdAovdn teyvikn: kakdPfovrot (hackers) otéhvouv
KatdAANAa Kotaokevaopéva pnvopate oe kKopPovg (reflectors) mov @rAo&gvoiv
oLYKEKPIEVOLS TOTTOVG vanpeciav, w.y. LDAP, DNS, MEMCACHED, pe anotéiecpo
avtoli pe ™ ogpd Tovg va PopPapdilovv to emaeyBEv Bopa pe peydro TANn00g Ko dyko
akétomv. Ot kAacikol pnyavicpol Tpoctaciag amévavt o avTég Tig embéoelg Pacilovtan
GTNV KOTNYOPLOTOINOT| SIKTVAK®Y pO®V 6 KAKOBOLAES 1] KAAOBOVAES Kot TN XPNOT TNG
avtiotoryng devbvvone yng IP og avayvopiotikd yio v amoxonn ¢ enifeong. H
GLAAOYN, amofnKeVoT Kot avaAVLGT) TOV Po®V KaBLGTEPEL APKETE TNV KOTTYOplomToinom
¢ kivnong, mov teAkd Kabvotepel Kot TNV avtipeTdmion g enifeonc. Tlapdiinia, n
xpNoN yryovtioimv Motdv and kakdBovieg IP yio v amokony| g eniBeong speavilet
TPOPANLATO KAUAKOGIUOTNTAG TOGO GTNV XPTOT| TOVG GE TPAYLATIKO EE0TAMGLO OGO Kol

o711 OLOXEIPIOT TOVG.
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Mo avtd oto kePararo 7 oyeddoape Evav punyoviopd mov Paciletor ota Wwitepa
YOPOKTNPIOTIKAE TOV gppavilovy To KakdPovia Takéta (dnAadr| Ta signatures), To omoio
YPNOLOTOLOVVTOL Y10 TV KOTIYOPLOTOINGN KOl OTOKOTY| TG KakOBovAng kivnong. O
UNYOVICUOG OGS CLAAEYEL LOVO TO ONULOVTIKG XOPOKTNPIOTIKA Y10 KOTYOPLOTOiNoT TV
signatures ypNOYOTOIMOVTOG Kot oAl texViKEG EmPrenopevng Mdabnong (Supervised
Learning). Mg avtdv 10V TpOTO TPOCSOEPEL ApESN aviyvevon Tng KakOBovAng kivnong
katevBeioy omd TIC emkepoAideg Tov mokéteov. Bdost g xoatnyopromoinong,
Kataokevalovion eidtpa amokonnc, mov dev Pacilovrol oy dievbuvon myng (source
[P-agnostic) aAAd oto medion TOV OUAGOTOIOVV HE GLVEKTIKO TPOTO TNV KAKOBOLAN
Kivnon. Avtd €xel oG amotéAeopa T ONUOVTIKY pHeiwon Tov TANBovg TV KavOvVeV
amoppyng mov ov&aver cLVoMKkd TNV emeepyaocTiKy OmAS00T TOVL UNYOVIGHLOD
amokomc. H cuAloyn| Tov KatdAANA®mV Tediov Tov TokETov KaOMG Kol 1) 0TOKOT TNG
KaKOBOLANG Kivnong vAomomonkay ypnoiorotdvtag yevikov tomov (Commercial-Off-
the-Shelf) eEomhopd, KatdAAnio vy cOyypova TEPPAAAOVTA VTOAOYIGTIKOD VEPOLS

(cloud computing).

o va a&oroynocovpe tov mpotevopevo unyoviopd emiédape tig embéosig DNS
Amplification, a@o0 amoteAOVV Evay Ao TOVG MO EVPEMG YPTCLULOTOLOVUEVOVS TOTTOVG
volumetric emiBéoemv. LtOY0G TOV TEWPAUATIGHOD Hog NTav vo deiovpe T duvotdtTnTa
TOV TPOTEWVOLEVOL UNYAVIGLOD VOl EMAEYEL YOPOKTNPIOTIKE TOV TOKETOV CUAVTIKE Y10,
MV Kotnyoplomoinon twv signatures, vao Olokpivel pe axpifeid kadofovia amd
KoKOBovAa signatures kol TEAOG TNV AOO0GT TOV UNXAVICUOD HOG EVOVTL KAUCIKOV
unyaviocpov tpootaciog wov Paciloviar oe diktvakég poéc. [Ma v agloAdynon OAwv
TOV TOpAmave, ypnowwonomooape 7 embBéoelg DNS, koatayeypoppéves omd 10
navemomuo tov Twente oe cuvepyacia pe to oAlavowd NREN SurfNET, evo g

KaAOBovAN kivnon ypnoiponomoape DNS kivinon and tpelg dtopopeticés mnyEc.
O unNyavIGOg KT YOPLOoTOiNoMG Kol OVTILETOTIONG TOV TPOTAONKE NTAV IKOVOS VOL:

® cmMALYEL UE AVTOUOTOTOMUEVO TPOTO TESIO TOV TOKETWV TOV OTOLTOVVTOL Yol
TNV KOTOOKELT T®V signatures
e metvyaivel axkpifeleg Katnyopromoinong g taéng tov 99%, 6cov apopd Tov

EVIOTIOUO KOAOPOVA®MV Kol KOKOBOLA®Y TOKETMV
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o avryetomiler mo obvvropa (Xpovikd) OAAG Kol o omodoTikd volumetric
eMOECELS GE GUYKPION HE TOVG KAUGIKOVUG UNYOVIGUOVE (TOL YPNCUYLOTO00V

OIKTVOKEG POEG).

[Mopott o1 teyvikég mov Pacifovion oe signatures Kotdeepav vo dtakpivouy pe axpifeta
™V KOAOPOVAN amd TV KakOBovAn Kivnon npovmofétovv v vmapén peydiov TAn0ovg
amd etepoyevn dedopéva Yo TNV ekmaidcvon poviédwv EmiPrendopevne Madnong. Onwg
yivetor avTiAnmtd evtdg evog autdvopov SIKTOoL Ogv gival mhvto epikty M Vmapén
ETEPOYEVOV dedOUEVOV HE OmOTELESHO TV HEtpéEVN akpifela aviyvevong. Emiong, 1
AVTILETOTION NG emifeonc (akoOun Kot pe Tn ypnon signatures) amd to dikTvo Bopa dev
elvar mhvto €QIKT, OMMG O MEPWMTMGES OMOL Ol €MBECELS LVIEPKAADTTOLV TNV
YOPNTIKOTNTO TOV YPOUU®V TOV. O1 600 awTol AdYOot Hog 00NYNGaV GTOV GYESUGHO EVOG
OAOKANPOUEVOL UNYAVIGLOD GUVEPYOTIKNG OVIXVELONG KOl OVIIUETAOTIONG EMOECEWV.
210 KePAAoo 8 mapovGLALOVUE TOV GUVEPYATIKO UNYOVICUO TPOCTOGinG, O Omoiog

EMEKTEIVEL TOVG UNYOVIGLLOVG TTOL TALPOLGLACTNKAY 6T KEQAAO 6 Kot 7.

To Awdiktvo 6mmwg Aettovpyel onuepa amoteAel o cvvepyacio HETOED AVTOVOU®V
ovtottov (SikTH®mV), ®oTOGO ovTH 1 cvvepyacio dgv emekteivetar de facto oe
pnyoviopovg mpootacioag amd embéoelg. To Pacwkd mpdfinua dcov agopd TOLG
pnyoviopovs aviyvevong etvon m oviaAloyn (gv duvdpel) amdppnT®V OEO0OUEVMV, TO
omoio &ite amayopeveTOl OO KOVOVIGHOVG TPOGTAGING OEOOUEVMV, E1TE amo@evyeTI
AOY® ™G O1I0TOKTIKOTNTOS TOV dlaXEPloTdVv 0kTvov. Ev avtiBéoetl pe ) cuvepyotikn
aviYvevuon, 1 GLUVEPYATIKY| OVIWETMOMION emMBEcemV gival TEPIGGOTEPO OLAOEOOUEVT).
Qo61660, 01 TEPIOCHTEPOL UNYOVIGHOL OV Ypnoiponmoovvtol Pacifoviol 6e KavOVES
OTOKOTNG VAOTOMUEVOLG GE OIKTLOKEG GUOKEVEG Ko €(TE OTOKOTTOLV OAN TNV Kivnon
(600 ™V KOAOPOVAN OGO KoL TNV KAKOPOVAN) £1TE ¥PNOIUOTOIOVV OIKTVAKES POEC. AVTEG
01 TOKTIKEG EPLPAVICOVV TEPLOPIGHOVS OGOV QPOPE TNV KAMUOKOCILOTNTO, TNV gveMEia

Kot TNV amdO06T TOVG.

Me yvopova T1g mpoavapepfeiceg TPOKANCES, 010 Ke@aAolo 8 mpoteiveton €vog
UNYXOVICUOG GLVEPYOTIKTG Oviyvevong kot avtipetmmiong mov Paciletor o€ signatures.
JUYKEKPIUEVO, O UNYOVIGUOG aviyvevong ekpetaAledeton texvikés Oupdomovong
MdaOnong (Federated Learning), Tov EMTPENOVV TNV GUVEPYATIKY| EKTAIOEVLOT LOVTEAWDV
Mnyavikng Mdabnong yopic v avtaidayn 0ed0UEVOV 0ALA LE TNV avToAloyn Papdv
Nevpovikov Awtdov (Neural Networks). ATd tnv GAAN, 0 UNYOVIGUOG OVTILETDOTIONG
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Baciletar o mpoypappatilopeves kapteg dwktvov (XDP) ko diver ) duvatdtnta yio
amoKomy KokOBovAng kivnong toOco yuw Wio ypnon OG0 Kol Yoo OTHHOTO oo
ovvepyalouevoug eopeic. H mpotevopevn Ao mopéyel KMUOKOGILOTNTO Yo, avéEnon
TOV EMOOGEMY KAT amaitnor, VYNAEC amoddcelg oAAd Kot eveMElo TNV ATOKOT TG

Kivnong.

Mo v a&oAdynon Tov unNxavicrov ypnotporomonke testbed vymidv ToyvTTOV OAAL
Kol Tpoypatiky Otktvakn kivinon. Ewdwotepa ypnopomomdnkay dedopéva KaAdBovAng
kivnong amd 1o wmwviko diktvo WIDE ta omoia daywpiomnkayv KaTtaAAA®S Yo TV
TPOCOUOi®moN  SlokpItdV  ovTOVOU®V  dIKTO®V. Avtiotorya ypnopomomdnkay ot
emfécelc amd 10 obvoro dedopévav Booters mov ovagépOnKe oto. TPONYOVUEVA
KePdAao. XTOY0C TOV TEWPAUATICHOD NTav 1 AE0AGYNOT TNG GLVEPYOTIKNG TEYVIKNG
Opodcmovong Mabnong oe mpaypatikd dedopéva Kot 1 cOYKPLoN TG LE TIS oKpiPeles mov
o metvyave kGBe owtOvVOopo OiKTLO HOVO TOVL. XTO TAGIGLOL TNG GLUVEPYOTIKNG
OVTILETOTIONG, 0TOY0G NTOV 1 a&loddynon g amdd0ong 6€ LYNAOVG PLOOVS TOKETOV
Y10 TOAAOTTAG OUTHLOTO, ATOKOTNG EMBEGEWV VIO TO TPICUA TNG KAMUOKOGILOTNTOS GE

eninedo vroloylotikdv tuprivev (CPU cores).
A6 TV TEWPAPATIKY S1001KAGT0 TPOEKVYAV TO TOPUKAT® GUUTEPAGLLOTOL:

e H ocvvepyotikn aviyvevon embécewv pe ) ypron g texvikng s Opdomovong
Mabnong enétpeye o€ cuvepyaloOUeEVa dIKTLO VO TETVYOLY LYNAOTEPESG OKPIPELES
amd aVTEG TOL TETVYALVAY AV Ogv cuvepyaldvtovsav, yYmpis OLmMS va ekBETovy
AmOPPNTO OEOOUEVOL.

e H viomoinomn Tov unyoavicpod GUVEPYOTIKNG OVTILETOTIONG EMOECEDV KATAPEPE
va amoppiyel moALOmALG emBEcelg e aBpoloTikd LYNAO puBud TakéTmV ovd

OELTEPOLETTO KOl VO, KALLOKMGEL KAT ATO{TION TOVS VITOAOYIGTIKOVS TOV TOPOLG.

‘Enerto and v avookOTNon Tov eMUEPOVS KEQOAMIOV TNG STPPNS, LWITOPOVUE VO

GLVOYICOVE TOPAKAT® TIC KUPLEG GLVEIGPOPES TNG:

Apeon ko pe akpifela aviyvevon embécewv 010 eninedo dedopévav: O unyavicpds mov

TpoTAbnke og avty T dwtpPn ypnoponotel ™ YAwooso P4 yio va kotackevdoet £va
GUOTNHO aviyveLoNG eMBECEMY GTO EMIMESO OESOUEVOV. ZVYKPITIKA IE TOVG KAOGIKOVG
UNYaVIoHoDG TOV EKTEAOVVTOL GTO EMMEOO EAEYXOV, 1| TPOTEWVOUEVI] AVON OVIXVEVEL

dueco kor axpifelo  embéoelg kKaBdS M Oktvoakn kivion  Oépyetor  amd
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HETAYOYELG/OpOpoAoYNTEG. AVTO EMTPEMEL TV ONUOLPYIL AUECHOV AVTILETPOV Yol TNV

£yKopn KatacsToA NG enifeonc.

Kotnyoplomoinon 101oitepmv YOpUKTNPICTIKOV TOV OIKTLOKOV TAKETOV UE TN YPNON

ELOLAV UNYOVICU®OV TEYYNTNS vonuoouwng: Ot KAaotkol pnyovicpot mpootaciog

YPNOLOTOOVV MG TNY 0ESOUEVOV SIKTLOKES poéG. H ouykekpiuévrn taktikn speoavilet
dvokorieg 6Gov a@opd TN GLAAOYN, emeEepyacioo oAAG akOHO KOl OmOONKEVOT TV
O0edopévev avTtdVv Kol pmopel vo emPpadiVEL CNUOVTIIKA TNV aviyvVELST KOl TNV
avipuetonion emBécewv DDoS. Avtifeta pe avt ™ oTpaTnyiky, 6T GLYKEKPIUEVN
SwTp1Pn] Tpoteivape Evav UNYOVIGUO KATYOPLOToinong Tov ¥pnoonotel ta waitepa
YOPOKTNPIOTIKE TV KokOBOLA®V TakéTmv (signatures) yio vo oviyveLGEL £yKalpol
emBéceic DDoS. Avtd to yopakInploTikd TopdyovTot LLe QUTOUATOTOUEVO TPOTO HECH
amd TN XPNoN €LPLAOV HOVTEA®V Mnyavikng Mdabnong mov TPocEEpovy duvaTOHTNTEG

yevikevong g yvoong mov £xovv AaPet.

Avtwetonion emBéoemv Ue TH YPNON CLVEKTIKAOV KOVOVOV amoKomne BAcel daitepmv

YOPOKTINPICTIKAV TOV TAKETOV: O KOVOVEG ATOKOTTG TOV YPTGUYLOTOLOVVTOL KOTA KOPOV

Yo Vv arocdPnon embécewv DDoS gpappolovior katd kOpPo AOY0 GE OIKTLOKEG
OLCOKEVEC OMMG Telyn MPOoTAGing, OPOMOAOYNTEC. AVTEG Ol OIKTLOKES GULOKEVEG
epeavifovv meplopiopots 6to TAN00g TOV KOVOVMY TOL UTOPOLYV VO LITOGTNPIEOLY OAAY
Kol 6TOuG TOMOVG TV KavOVeV. 2T JTpin 0UTH TOPOLGLAGOUE £VOL UNYOVIGHLO
KOTOOKEVTG KOVOVOV OTOKOTNG 7OV ONUIovpyel cuvektikd cOVOAo KovOv@Vv mTov
mepLypeovy pe peydAn axpifew tov tomo ¢ emifeong, ywpic vo emnpealovron

ONUOVTIKES TOCOTNTEG TNG KAAOPOVANG Kivnomg.

Yyninc omddoonc KAMUOKOOILEC EIKOVIKEC OIKTLOKES Agrtovpyiec vAomomuévee o€

npoypappotiioueves vrodoués: H mapakorovOnomn aAld Kot 1 amokomny TG SIKTLOKTG

kivnong oe legacy dwtvaxd mepipdrrovta vAoroovviay cuvROS and £1W1KOV THTOV
eEomMopd. X dwtpiPf] avty mPoTEivapRE TNV LAOTOINGCT CLTOV TOV OIKTLOK®V
AELTOVPYIDV GE YEVIKOD TOTTOV £E0TAGUO pe T xprion Tov framework XDP. Mg avtd tov
TPOTO divetar 1 SLVATOTNTO Y10, GYESOACUO KAUOKMOGUL®Y KOl OTOS0TIKAOV EIKOVIKOV
OIKTLAK®V AEITOVPYIDV KOTAAANAEG Yo TN ¥pNoN G€ cOyypova SkTvaKd mepPdriovTa

VTOAOYLGTIKOV VEPOUG.
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YUVEPYOTIKT OVIYVELGT) KOl OVTILETOTIOT EMOECE@MV UE YVOUOVO TNV TPOCTUGIo TMV

TPOooOTIK®OV dedopévav: To onuepvd S10diKTLo €lvar amdPpolo GVVEPYACIDOV UETAED

avTOVOL®V SIkTO®V (Autonomous Systems). H cuvepyacio avth dev emexteivetor OU®G
KOl Y10 OKOTIOVG TPOoTociog Tov diktvmv and embécels. H ouvepyatikn aviyvevon
nepopiletar amd OoTOKTIKOTNTO OAAG Kol VOLOLG TOL OPOPOVV TNV OVTOAAGYT
TPOCOTIKMV dEJOUEVOV. ATO TNV GAAN 1) GLVEPYOTIKN OVTILETOTIOT OEV €QPUOLETAL GE
UEYAAN KAILOKO AOY® EYYEVAV TEPLOPIOUDY TOV OIKTVUK®Y GLOKEVOV TOL £PAPUOLoVV
TOL KOVOVEC OTOKOMNG. XZTNV TOpovco  OTplPn] mpoteivape £vav  UNYOvVIGHO
GULVEPYOTIKNG OVIYVELONG KO AVTILETMTIONS ToV PacileTol og 11aitep YOPAKTNPIOTIKA
tov mokétov. H aviyvevon tov esmbécewmv yivetor pe unyoviopovg Opdomovong
MéOnong, (o texvikn mov dev omoutel TNV AVTOAAQYT AmOPPNTO®V JEGOUEVOV EVOD M
QVTILETMOMION WE TN YPNoN YEVIKOD TOHTOV Tpoypappatilopeveov cvokevmv (XDP) mov

Tap€xovv eveMEia, KMPOKOOUOTNTO Kot VYNAN omddooT).

YAomoinon 6e Tpayuotikd SIKTLoKO Kol VIToAoYLoTiKO eEomAioud ko aéloAdynon tov

uefodoroyldv pe T ypNomN MPOYUOTIKGOV JEO0UEVMV: XT0 TAOICO TNG TPEYOVCOG

STp1P1g, o1 TPOTEWVOLEVEG VAOTOGELS doKILAoTNKAY o€ testbed vyMA®VY TayLTNTOV pE
otoyo Vv aflohdynon 1oV o  peaAloTikég ovvOnkes. Ta  dedopéva  TOL
YPNOOTOMONKAY yioL TV a&loAOYNoN TOV TPOTEWVOUEVOV HEBOSWV TPOEPYOVTAL ATTO
TPAYUOTIKG ETEPOYEVT] SIKTVOKA TEPPAAAOVTO EMTPEMOVTOG OGS VO, OOKIUAGOVUE TIG

TPOCEYYIGEIS LOG GE TPOAYLOTIKEG GLVOTKEG.
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