

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

DIVISION OF COMMUNICATION, ELECTRONIC AND INFORMATION ENGINEERING

NETWORK MANAGEMENT AND OPTIMAL DESIGN LABORATORY

Intelligent Services for Detection and Mitigation of

Distributed Denial-of-Service Attacks in

Programmable Network Environments

Doctoral Dissertation

of

Marinos I. Dimolianis

Advisory Committee: Vasilis Maglaris, Emeritus Professor, NTUA

Athens, April 2022

 2

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΔΙΑΧΕΙΡΙΣΗΣ ΚΑΙ ΒΕΛΤΙΣΤΟΥ ΣΧΕΔΙΑΣΜΟΥ ΔΙΚΤΥΩΝ ΤΗΛΕΜΑΤΙΚΗΣ

Ευφυείς Μηχανισμοί Ανίχνευσης και Αντιμετώπισης

Κατανεμημένων Επιθέσεων Άρνησης Παροχής

Υπηρεσιών σε Προγραμματιζόμενες Δικτυακές

Υποδομές

Διδακτορική Διατριβή

του

Μαρίνου Ι. Δημολιάνη

Συμβουλευτική Επιτροπή: Βασίλειος Μάγκλαρης, Καθηγητής ΕΜΠ (Επιβλέπων)

Ευστάθιος Συκάς, Καθηγητής ΕΜΠ

Νεκτάριος Κοζύρης, Καθηγητής ΕΜΠ

………………………..

Ευστάθιος Συκάς

Καθηγητής, ΕΜΠ

………………………..

Νεκτάριος Κοζύρης

Καθηγητής, ΕΜΠ

………………………..

Συμεών Παπαβασιλείου

Καθηγητής, ΕΜΠ

………………………..

Γεώργιος Στάμου

Καθηγητής, ΕΜΠ

………………………..

John Baras

Professor, UMD

………………………..

Χρυσούλα Παπαγιάννη

Assistant Professor, UvA

 ………………………..

Δημήτριος Καλογεράς

Ερευνητής ‘A, ΕΠΙΣΕΥ

Εγκρίθηκε από την επταμελή εξεταστική επιτροπή την 19η Απριλίου 2022.

Αθήνα, Απρίλιος 2022

 3

………………………………

Μαρίνος Ι. Δημολιάνης

Διδάκτωρ Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright © Μαρίνος Ι. Δημολιάνης, 2022

Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ

ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση,

αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής

φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το

παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό

σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον

συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του

Εθνικού Μετσόβιου Πολυτεχνείου.

 4

Abstract

In this dissertation, we leverage on capabilities offered by the Network Softwarization

paradigm and combine them with advanced data analysis techniques, i.e. Machine

Learning (ML), towards the development of an integrated protection framework against

cyberattacks. We focus on Distributed-Denial of Service (DDoS) attacks and implement

mechanisms for efficient network data collection, fast and reliable anomaly detection and

effective mitigation.

Initially, we design a DDoS detection mechanism entirely offloaded in the data plane

using the P4 language. Through traffic features computed and evaluated in-network,

DDoS attacks victims are identified rapidly within short timeframes. Detection in the data

plane is one step ahead of control plane mechanisms that stall real-time detection and

mitigation of network attacks.

Detecting the victim of network attacks is only the first step towards mitigating them and

is followed by traffic classification procedures. Thus, in this dissertation we introduce a

novel signature-based classification and mitigation schema based on softwarized data

planes, i.e. eXpress Data Path (XDP). Supervised Learning algorithms (Random Forests,

Multilayer-Perceptrons), applied to packet features (signatures), segregate malicious from

benign packets. The employed features are pre-selected through an automated process

that eliminates inconsequential features. To expedite mitigation performance and ease

filtering rules management, source IP-agnostic rules tailored to the attack traffic are

generated. This is achieved via a multi-objective optimization problem formulation that

reduces filtering rules number with minimal effect on benign traffic. The proposed

signature-based mechanism is evaluated in two broad categories of DDoS attacks,

protocol (i.e. SYN Flood) and volumetric (i.e. DNS Amplification). Based on

experimental evaluations, our innovative approach outperforms the state-of-the-art flow-

based protection mechanisms by (i) detecting attacks in shorter time-windows, (ii)

optimizing the number and type of filtering rules, and (iii) achieving increased packet

filtering performance.

Finally, in this dissertation, we extend our signature-based schema to collaborative

network environments. Collaborative DDoS detection relies on Federated Learning

techniques that enable for cooperative and privacy-aware learning. Collaborative DDoS

 5

mitigation is implemented in programmable XDP-based middleboxes featuring a

scalable, cost-effective protection as-a-service mechanism. By contrast to traditional

protection schemes, we allow data exchange amongst disjoint network domains with

respect to data privacy legislations; moreover, we offer a flexible yet efficient firewall

solution offloaded in Commercial-off-the-Shelf hardware.

Our integrated protection framework is deployed in programmable network hardware and

evaluated using production network data from diverse and heterogeneous network

environments, featuring fully realistic experimentation.

Keywords:

DDoS attacks, Anomaly Detection, Attack Mitigation, Software-Defined Networking

(SDN), Data Plane Programmability, P4, eXpress Data Path (XDP), Supervised Learning,

Federated Learning

 6

Περίληψη

Η παρούσα διδακτορική διατριβή ερευνά τεχνολογίες αιχμής των σύγχρονων δικτύων

υπολογιστών με έμφαση στις δυνατότητες προγραμματισμού τους και παράλληλα

εξετάζει μεθοδολογίες και αλγορίθμους ευφυούς ανάλυσης δικτυακών δεδομένων.

Συνδυάζοντας αυτές τις δύο πτυχές έχει ως στόχο την δημιουργία ενός ολοκληρωμένου

μηχανισμού προστασίας ενάντια σε κυβερνοεπιθέσεις. Συγκεκριμένα, ασχολείται με τις

κατανεμημένες επιθέσεις άρνησης παροχής υπηρεσιών και μελετά μεθόδους αποδοτικής

συλλογής δεδομένων, τεχνικές άμεσης και αξιόπιστης ανίχνευσης και κλιμακώσιμους

μηχανισμούς αντιμετώπισης επιθέσεων.

Αρχικά παρουσιάζεται ένας μηχανισμός ανίχνευσης επιθέσεων σχεδιασμένος εξ'

ολοκλήρου στο επίπεδο δεδομένων δικτυακών συσκευών. Μέσα από τη γλώσσα P4,

υπολογίζονται μετρικές της δικτυακής κίνησης που μπορούν να υποδείξουν άμεσα το

θύμα της εκάστοτε επίθεσης. Οι μηχανισμοί που υλοποιούνται στο επίπεδο δεδομένων

επιφέρουν ταχύτερους χρόνους ανίχνευσης σε σχέση με τους παραδοσιακούς

μηχανισμούς που βασίζονται στο επίπεδο ελέγχου και μπορούν να οδηγήσουν στην

καίρια αντιμετώπιση των επιθέσεων.

Ωστόσο, ο εντοπισμός του θύματος αποτελεί μόνο το πρώτο βήμα για την καταστολή

μιας επίθεσης, αφού για να γίνει αυτό εφικτό απαιτείται ο διαχωρισμός της δικτυακής

κίνησης σε καλόβουλη και κακόβουλη. Συνεπώς, στη συνέχεια της παρούσας

διδακτορικής διατριβής προτείνεται ένας καινοτόμος μηχανισμός προστασίας από

επιθέσεις που βασίζεται σε χαρακτηριστικά των πακέτων (signatures) και υλοποιείται σε

γενικού τύπου εξοπλισμό αξιοποιώντας τις δυνατότητες του framework XDP.

Αλγόριθμοι Επιβλεπόμενης Μάθησης αξιοποιούν μόνο τα σημαντικά χαρακτηριστικά

των πακέτων και τα κατηγοριοποιούν σε καλόβουλα/κακόβουλα. Για την αντιμετώπιση

των επιθέσεων, χρησιμοποιούνται τα ιδιαίτερα χαρακτηριστικά των κακόβουλων

πακέτων, όπως αυτά προκύπτουν από μία διαδικασία μείωσης. Συγκεκριμένα,

κατασκευάζονται κανόνες αποκοπής που περιγράφουν με όσο το δυνατόν μεγαλύτερη

ακρίβεια την εκάστοτε επίθεση χωρίς να επηρεάζουν σημαντικά την καλόβουλη κίνηση.

Ο προτεινόμενος μηχανισμός εφαρμόζεται σε δύο μεγάλες κατηγορίες κατανεμημένων

επιθέσεων άρνησης παροχής υπηρεσιών, τις volumetric και τις protocol. Η πειραματική

αξιολόγηση δείχνει την υπεροχή της συγκεκριμένης μεθοδολογίας έναντι των κλασικών

μηχανισμών προστασίας που βασίζονται σε ροές πακέτων: (i) στην ταχύτητα ανίχνευσης

 7

επιθέσεων, (ii) στην κατασκευή βέλτιστων φίλτρων απόρριψης της κακόβουλης κίνησης

και (iii) στις αυξημένες επιδόσεις σε ρυθμούς απόρριψης πακέτων.

Τέλος, ολοκληρώνοντας την παρούσα διατριβή επεκτείνουμε τον μηχανισμό προστασίας

που βασίζεται σε χαρακτηριστικά των πακέτων σε συνεργατικά περιβάλλοντα

αυτόνομων δικτύων. Η συνεργατική ανίχνευση επιτελείται με τη χρήση τεχνικών

Ομόσπονδης Μάθησης που επιτρέπουν την συλλογική κατασκευή μοντέλων Μηχανικής

Μάθησης χωρίς την άμεση χρήση των προσωπικών δεδομένων των συνεργαζόμενων. Η

συνεργατική αντιμετώπιση βασίζεται και πάλι στο framework XDP και προσφέρεται σαν

υπηρεσία στους συνεργαζόμενους φορείς δίνοντας τη δυνατότητα για αποδοτική και

κλιμακώσιμη απόρριψη κακόβουλων πακέτων. Σε σύγκριση με τις παραδοσιακές

μεθόδους συνεργατικής προστασίας, η μεθοδολογία που ακολουθούμε λαμβάνει υπόψιν

της τόσο την ιδιωτικότητα των δεδομένων για την ανίχνευση αλλά και την ευελιξία όσον

αφορά τους τύπους των κανόνων αλλά και τους υφιστάμενους πόρους.

Αξίζει αναφοράς ότι ο μηχανισμός προστασίας που κατασκευάστηκε στα πλαίσια αυτής

της διατριβής δοκιμάστηκε σε πραγματικό δικτυακό εξοπλισμό (έξυπνες κάρτες δικτύου)

και οι επιδόσεις του αξιολογήθηκαν βάσει πραγματικών δικτυακών δεδομένων από

ετερογενή δικτυακά περιβάλλοντα.

Λέξεις Κλειδιά:

Δίκτυα Οριζόμενα από Λογισμικό, Κατανεμημένες Επιθέσεις Άρνησης Παροχής

Υπηρεσιών, Προγραμματισμός Επιπέδου Δεδομένων, Ανίχνευση Επιθέσεων,

Αντιμετώπιση Επιθέσεων, Επιβλεπόμενη Μάθηση, Ομόσπονδη Μάθηση

 8

Acknowledgments/Ευχαριστίες

Κατά τη διάρκεια της ολοκλήρωσης της διδακτορικής μου διατριβής νιώθω την ανάγκη

να ευχαριστήσω όλους τους ανθρώπους που με βοήθησαν αλλά και μου

συμπαραστάθηκαν σε αυτό το δύσκολο και συνάμα εκπαιδευτικό ταξίδι. Άνθρωποι που

τόσο με την υποστήριξη σε τεχνικά ζητήματα όσο και με τις πρωτότυπες ιδέες τους

αποτέλεσαν ακρογωνιαίο λίθο αυτής της προσπάθειας. Πέραν τούτου, δεν θα μπορούσα

να μην συμπεριλάβω και ανθρώπους που στάθηκαν δίπλα μου, με ανέχτηκαν αλλά όποτε

και όσες φορές χρειάστηκε μου έδωσαν δύναμη να συνεχίσω.

Θέλω πραγματικά και εγκάρδια να ευχαριστήσω τον επιβλέποντα καθηγητή μου κ.

Βασίλη Μάγκλαρη, για τη συνεχή και ουσιαστική υποστήριξη που μου προσέφερε όλα

αυτά τα χρόνια, από προπτυχιακό φοιτητή στο εργαστήριο NETMODE, μέχρι και την

ολοκλήρωση των διδακτορικών μου σπουδών. Πέραν όμως των τεχνικών συμβουλών και

της καθοδήγησης του, θα ήθελα να τον ευχαριστήσω για την εμπιστοσύνη που μου έδειξε

αλλά και τα μαθήματα που μου έδωσε ως άνθρωποꞏ μαθήματα ανεκτίμητης αξίας που θα

με οδηγούν σε όλη μου την ζωή.

Παράλληλα θα ήθελα να ευχαριστήσω τους συνεπιβλέποντες καθηγητές κ. Ευστάθιο

Συκά και κ. Νεκτάριο Κοζύρη καθώς και τα υπόλοιπα μέλη της επιτροπής μου για τα

εποικοδομητικά σχόλια και τις πρωτότυπες ιδέες τους που συνδιαμόρφωσαν σημαντικά

την τρέχουσα διδακτορική διατριβή.

Το ταξίδι αυτό παρότι αρκετά μοναχικό, είχε αρκετούς συνοδοιπόρους που δεν μπορώ

να μην τους ευχαριστήσω τον καθένα ξεχωριστά για τη συμβολή τους. Θα ήθελα να

ευχαριστήσω ιδιαίτερα τον Δρ. Αδάμ Παυλίδη για την αμέριστη βοήθεια και τις αέναες

συζητήσεις μας που με έκαναν να βελτιωθώ τόσο σε τεχνικό όσο και σε ανθρώπινο

επίπεδο. Επίσης θα ήθελα να ευχαριστήσω από τα βάθη της καρδιάς μου τον Δρ.

Δημήτρη Καλογερά για την άριστη συνεργασία μας και την βοήθεια που μου έδωσε σε

πολυποίκιλα επίπεδα. Σημαντική ήταν ακόμη η υποστήριξη της Δρ. Μαίρης

Γραμματικού όπως και η συνεργασία μου με τον Δ. Πανταζάτο και Ν. Κωστόπουλο όπου

και όποτε χρειάστηκε. Επίσης, θα ήθελα να ευχαριστήσω την κ. Χρύσα Παπαγιάννη για

την άριστη συνεργασία μας και τη συμβολή της στη διατριβή μου. Τέλος, θα ήθελα να

ευχαριστήσω όλα τα μέλη του εργαστηρίου NETMODE για τις ιδιαίτερα ενδιαφέρουσες

συζητήσεις μας αλλά και γενικότερα για όλες τις ωραίες στιγμές.

 9

Ακόμη, θα ήθελα να ευχαριστήσω τους φίλους μου για την αμέριστη υποστήριξη και για

όλες τις δύσκολες φορές ήταν εκεί για εμένα, αναπτερώνοντας το ηθικό και την

ψυχολογία μου.

Τέλος δεν θα μπορούσα να μην ευχαριστήσω την οικογένεια μου, τους γονείς μου Γιάννη

και Μαρία για όλα αυτά που απλόχερα μου προσφέρουν όλα τα χρόνια της ζωής μου,

αλλά και τη δίδυμη αδερφή μου, Μαριάνθη, που δίχως δεύτερη σκέψη ήταν και είναι

πάντα εκεί για εμένα. Τους αγαπώ και τους ευχαριστώ για την ανιδιοτελή τους αγάπη.

 10

Table of Contents

1 Introduction ... 19

1.1 Motivation & Problem Statement .. 19

1.2 Contributions ... 21

1.3 Outline ... 23

2 Computer Networks & Network Programmability ... 25

2.1 Computer Networks ... 25

2.2 Software-Defined Networks .. 26

2.2.1 OpenFlow Protocol ... 26

2.2.2 Hardware Data Planes .. 27

2.2.2.1 Programming Protocol-independent Packet Processors (P4) 28

2.2.2.2 P4 Overview .. 28

2.2.2.3 Architecture Model ... 29

2.2.2.4 P4 Programming .. 30

2.2.3 Software data planes - eXpress Data Path (XDP) 31

2.2.3.1 XDP Design Principles.. 32

2.2.3.2 Programming in XDP .. 33

3 Network Monitoring .. 35

3.1 Simple Network Management Protocol .. 35

3.2 Streaming Telemetry ... 36

3.3 NetFlow ... 37

3.4 sFlow ... 38

3.5 Deep Packet Inspection ... 39

3.6 Software-Defined Networks .. 39

3.6.1 OpenFlow ... 39

3.6.2 Programmable Data Planes ... 40

4 DDoS Attacks – Detection & Mitigation ... 41

4.1 Attack Types & Characteristics ... 42

4.2 Detection Techniques .. 43

4.2.1 Overview .. 43

4.2.2 Statistical methods .. 45

4.2.3 Machine Learning ... 47

4.2.4 Challenges .. 48

4.3 Mitigation Mechanisms ... 50

4.3.1 Filtering Methods ... 51

4.3.2 Challenges .. 52

5 DDoS Detection in Programmable Data Planes (P4) ... 54

5.1 Motivation ... 54

5.2 Related Work & Contributions .. 55

5.3 DDoS detection in the data plane - High-Level Overview 56

5.4 P4 DDoS Detection Pipeline – Implementation Details 58

5.5 Experimental Evaluation ... 61

5.5.1 Experimental Setup .. 61

5.5.2 DDoS Detection Accuracy ... 62

5.5.3 P4 SmartNIC Packet Processing Performance ... 64

5.6 Summary & Concluding Remarks ... 67

6 Signature-based Traffic Classification and Mitigation of SYN Flood Attacks

using Supervised Learning and Programmable Data Planes 68

6.1 Motivation ... 68

 11

6.2 Related Work & Contributions .. 69

6.3 High-Level Overview & Design Principles... 71

6.4 SYN Flood Detection and Mitigation Architecture ... 72

6.4.1 Signature Classification .. 73

6.4.2 Signature Reduction ... 75

6.4.3 Anomaly Mitigation ... 76

6.5 Experimental Evaluation ... 77

6.5.1 Datasets Description ... 77

6.5.2 Signature Classification Accuracy.. 78

6.5.3 Signature Reduction Evaluation ... 80

6.5.4 SYN Flood Mitigation Performance... 82

6.6 Summary & Concluding Remarks ... 83

7 Signature-Based Traffic Classification and Mitigation: Volumetric DDoS

Attacks .. 84

7.1 Motivation ... 84

7.2 Related Work & Contributions .. 85

7.2.1 Flow-based Classification and Filtering ... 86

7.2.2 Signature-based Classification and Filtering .. 87

7.2.3 Key Contributions .. 87

7.3 Design Principles & Architectural Overview .. 88

7.3.1 Design Principles .. 88

7.3.2 Architectural Overview .. 89

7.4 Packet Feature Selection & DDoS Protection Detailed Architecture 91

7.4.1 Packet Feature Selection Methodology .. 91

7.4.2 Signature Extraction ... 92

7.4.3 Signature Classification .. 93

7.4.4 Signature Reduction ... 94

7.4.5 Anomaly Mitigation ... 96

7.5 Experimental Evaluation: DNS Amplification attacks 96

7.5.1 Datasets Description/Testbed ... 96

7.5.2 Packet Field (Feature) Selection for DNS Amplification attacks............. 98

7.5.3 Signature Classification Accuracy.. 101

7.5.4 IP-based vs Signature-based Protection Mechanisms 104

7.5.4.1 Malicious Traffic Identification and Filtering 104

7.5.4.2 Filtering Rules Cardinality .. 106

7.5.4.3 Mitigation Performance... 107

7.6 Summary & Concluding Remarks ... 109

8 Collaborative DDoS Attack Detection and Mitigation via Privacy-aware

Federated Learning and Programmable Data Planes.. 111

8.1 Motivation ... 111

8.2 Related Work & Contributions .. 113

8.2.1 Collaborative DDoS Detection ... 113

8.2.2 Collaborative DDoS Mitigation ... 113

8.2.3 Federated Learning for DDoS Attacks ... 114

8.2.4 Key Contributions .. 114

8.3 Design Principles & High Level Overview ... 115

8.3.1 Design Principles .. 115

8.3.2 High-level Overview .. 115

8.4 Collaborative DDos Detection and Mitigation Architecture 117

8.4.1 DDoS Detection via Federated Learning.. 117

 12

8.4.2 DDoS Mitigation .. 119

8.4.3 Collaboration Manager ... 121

8.5 Experimental Evaluation ... 122

8.5.1 Datasets Description ... 123

8.5.2 DDoS Detection Accuracy ... 123

8.5.3 DDoS Mitigation Packet Filtering Performance 126

8.6 Summary & Concluding Remarks ... 127

9 Conclusions & Future Directions ... 129

9.1 Summary & Concluding Remarks ... 129

9.2 Future Directions ... 130

10 Extended Abstract in Greek – Εκτεταμένη Περίληψη στα Ελληνικά 132

11 Publications .. 145

11.1 Articles in Scientific Journals .. 145

11.2 Papers in Conferences ... 145

12 References... 147

 13

List of Figures

FIGURE 2.1: OPENFLOW APPLICATION, CONTROL, AND INFRASTRUCTURE LAYER

INTERACTIONS [19] 27

FIGURE 2.2: PROGRAMMING A NETWORK DEVICE (TARGET) WITH P4 [28] 29

FIGURE 2.3: P4 V1MODEL ARCHITECTURE 29

FIGURE 2.4: XDP INTEGRATION WITH THE LINUX NETWORK STACK [12] 34

FIGURE 3.1: NETFLOW ARCHITECTURE [44] 38

FIGURE 4.1: DISTRIBUTED DENIAL-OF-SERVICE ATTACKS ORCHESTRATION 41

FIGURE 4.2: GENERAL DDOS DETECTION PIPELINE 44

FIGURE 5.1: HIGH-LEVEL OVERVIEW OF P4 DDOS DETECTION PIPELINE 57

FIGURE 5.2: DETAILED P4 DDOS DETECTION PIPELINE 59

FIGURE 5.3: TESTBED EQUIPPED WITH P4-ENABLED SMARTNICS 62

FIGURE 5.4: P4-BASED DDOS DETECTION ACCURACY 64

FIGURE 5.5: NETRONOME SMARTNIC FORWARDING CAPACITY 65

FIGURE 5.6: NETRONOME SMARTNIC MEASUREMENT CAPACITY 66

FIGURE 6.1: SYN FLOOD DETECTION AND MITIGATION ARCHITECTURE 71

FIGURE 6.2: PACKET RATE OF SYN FLOOD ATTACKS 78

FIGURE 6.3: TRUE POSITIVE RATE FOR TRAINING/TESTING SCENARIOS COMBINING

BENIGN AND MALICIOUS TCP SYN TRAFFIC 79

FIGURE 7.1: HIGH-LEVEL OVERVIEW OF THE SIGNATURE-BASED TRAFFIC

CLASSIFICATION AND FILTERING ARCHITECTURE 90

FIGURE 7.2: SIGNATURE-BASED TRAFFIC CLASSIFICATION AND FILTERING DETAILED

ARCHITECTURE 94

FIGURE 7.3: PROOF-OF-CONCEP TESTBED SETUP 97

FIGURE 7.4: FEATURE IMPORTANCE PROVIDED BY RANDOM FOREST CLASSIFIERS FOR

DNS TRAFFIC 99

FIGURE 7.5: TRUE NEGATIVE AND TRUE POSITIVE RATES FOR VARIOUS TRAINING

SCENARIOS USING BOOTERS COMBINED WITH THE BENIGN DATASETS WIDE-F,

WIDE-G AND TU CAMPUS 102

FIGURE 7.6: COMPARISON BETWEEN SOURCE-BASED AND SIGNATURE-BASED

PROTECTION MECHANISMS FOR BOOTERS 105

FIGURE 7.7: COMPARISON BETWEEN SOURCE-BASED AND SIGNATURE-BASED FILTERING

RULES FOR BOOTERS 106

FIGURE 7.8: PACKET THROUGHPUT FOR IP-BASED AND SIGNATURE-BASED FILTERING

MECHANISMS 108

FIGURE 8.1: COLLABORATIVE DDOS DETECTION & MITIGATION ARCHITECTURE 116

FIGURE 8.2: FEDERATED LEARNING ARCHITECTURE FOR COLLABORATING AS'S 119

FIGURE 8.3: DDOS MITIGATION APPLICATION ARCHITECTURE 120

FIGURE 8.4: TRUE POSITIVE RATE FOR DNS AMPLIFICATION ATTACKS (BOOTERS) 125

FIGURE 8.5: TRUE NEGATIVE RATE FOR BENIGN DNS PACKETS 125

 14

FIGURE 8.6: AVERAGE TPR AND TNR OF INDIVIDUALS MODELS AND FEDERATED MODEL

 125

FIGURE 8.7: DDOS MITIGATION SCALABILITY 127

 15

List of Tables

TABLE 3.1:SNMP VS STREAMING TELEMETRY 36

TABLE 5.1: P4 REGISTERS FUNCTIONALITY, INDICATIVE DEFINITION AND USAGE 59

TABLE 6.1: PACKET FIELDS (FEATURES) FOR TCP SYN PACKET CLASSIFICATION 73

TABLE 6.2: FREQUENCY ENCODING FOR CATEGORICAL FEATURES 74

TABLE 6.3: PACKET FEATURE CARDINALITY FOR A1-A5 SYN FLOOD ATTACKS 77

TABLE 6.4: SIGNATURE REDUCTION SOLUTIONS PROVIDED BY NSGA-II 81

TABLE 6.5: SYN FLOOD MITIGATION PERFORMANCE 82

TABLE 7.1: PACKET HEADER FIELDS (FEATURES) FOR DNS TRAFFIC CLASSIFICATION 98

TABLE 7.2: MOST IMPORTANT PACKET FIELDS FOR DNS TRAFFIC CLASSIFICATION 100

TABLE 8.1: SIGNATURE-BASED FILTERING RULE (EXAMPLE) 121

TABLE 8.2: PACKET FIELDS (FEATURES) FOR DNS PACKET CLASSIFICATION 124

 16

List of Abbreviations

Acronym Definition

ACK Acknowledgement

ACL Access Control List

AE Autoencoder

AI Artificial Intelligence

AM Anomaly Mitigation

API Application Programming Interface

AQM Active Queue Management

AS Autonomous System

ASIC Application-Specific Integrated Circuit

ASN Abstract Syntax Notation

ASR Aggregation Services Routers

BER Basic Encoding Rules

BGP Border Gateway Protocol

BPF Berkeley Packet Filter

CBN Communications Blockchain Network

CDN Content Delivery Network

CLDAP Connection-less Lightweight Directory Access Protocol

CM Collaboration Manager

CNN Convolutional Neural Network

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CSUM Checksum

DDoS Distributed Denial-of-Service

DNS Domain Name System

DPDK Data Plane Development Kit

DPI Deep Packet Inspection

ETSI European Telecommunication Standards Institute

EWMA Exponentially Weighted Moving Average

EWMD Exponentially Weighted Moving Difference

FD File Descriptor

FI Firewall Instance

FL Federated Learning

FM Federated Model

FN False Negative

FP False Positive

FPGA Field Programmable Gate Array

FW Firewalling

GB Gigabyte

GDPR General Data Protection Regulation

GÉANT Gigabit European Academic Network

 17

GPB Google Protocol Buffer

GRNET Greek Research and Technology Network

HTM Hierarchical Temporal Memory

HTTP(S) HyperText Transfer Protocol (Secure)

ICMP Internet Control Message Protocol

ICT Information and Communication Technologies

ID Identifier

IDS Intrusion Detection System

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

IPS Intrusion Prevention System

ISP Internet Service Provider

IX Internet Exchange

JSON JavaScript Object Notation

LDAP Lightweight Directory Access Protocol

LPM Longest Prefix Match

LSTM Long Short-Term Memory

MAC Media Access Control

MIB Management Information Base

ML Machine Learning

MLP Multi-layer Perceptron

MTU Maximum Transmission Unit

NAT Network Address Translation

NF Network Function

NFV Network Function Virtualization

NIC Network Interface Card

NLRI Network Layer Reachability Information

NMS Network Management System

NREN National Research and Education Network

NSGA Non-dominated Sorting Genetic Algorithm

NTP Network Time Protocol

NTUA National Technical University of Athens

OF OpenFlow

OID Object Identifier

OOB Out-of-Bag

POP Point of Presence

RAM Random Access Memory

RF Random Forest

RFC Requests For Comments

RNN Recurrent Neural Network

RPC Remote Procedure Call

RPF Reverse Path Forwarding

RPKI Resource Public Key Infrastructure

RR Resource Record

 18

RTBH Remotely Triggered Black Hole

SC Signature Classification

SDN Software-Defined Networking

SE Signature Extraction

SLA Service-level Agreement

SMI Structure of Management Information

SNMP Simple Network Management Protocol

SOM Self-Organizing Map

SR Signature Reduction

SSDP Simple Service Discovery Protocol

SVM Support-Vector Machine

SW Switching

SYN Synchronization

TCAM Ternary Content-Addressable Memory

TCP Transmission Control Protocol

TLS Transport Layer Security

TNR True Negative Rate

TP True Positive

TPR True Positive Rate

TU Thapar University

TW Time-Window

TWAMP Two-Way Active Measurement Protocol

UDP User Datagram Protocol

URI Uniform Resource Identifier

VM Virtual Machine

VNF Virtual Network Function

VPN Virtual Private Network

WAN Wide Area Network

WIDE Widely Integrated Distributed Environment

XDP eXpress Data Path

YANG Yet Another Next Generation

ZC Zero-Copy

 19

1 Introduction

1.1 Motivation & Problem Statement

Internet services have been and still are an integral part of our lives with a plethora of

everyday activities being highly dependent on them. These span from applications that

facilitate online economic transactions, digital content exchange, social networking, but

also extend to critical applications for the human life, e.g. remote surgery. COVID-19

pandemic is one of the recent examples that illustrated the reliance of people on Internet

services; during that period, huge Internet traffic growths were observed, since most

people were self-isolated spending most of their time at home (e.g. remote working,

extent usage of streaming services). This period is a prominent example illustrating that

the stability and the guaranteed performance of computer networks can significantly

affect our everyday lives.

Network attacks provide the means for disrupting the stable/desired operation of

computer networks. Especially, Distributed Denial-of-Service (DDoS) attacks [1] are the

most common way for plaguing network infrastructures and overwhelming services

offered on top. These attacks aim, using a wide spectrum of techniques, to render specific

services and/or network infrastructures unreachable to their legitimate users. DDoS

attacks have been commoditized and even offered as-a-service via platforms referred to

as Booters [2]; in exchange of a small fee, attacks of high volume can be launched,

capable to bring down from small enterprises up to large ICT (Information and

Communications Technology) companies. The ease of initiating DDoS attacks combined

with diverse motives (e.g. extortion, cyber warfare, boredom) have made them an

everyday problem for network operators and as a consequence for the legitimate end-

users.

The increasing frequency of DDoS attacks impacting critical and of paramount

importance Internet services has paved the way for the development of a large DDoS

protection industry [3]–[6]. These companies offer full-fledged traffic scrubbing on

potential victim networks (e.g. Internet Service Providers, Content Delivery Networks,

Academic Institutions) by providing two types of services: they (i) either offer on-demand

protection by draining network traffic destined to victim networks, scrub it, and forward

back the benign portion, (ii) and/or provide commercial scrubbing appliances [7], [8] for

 20

on-premises protection; these are constantly protecting networks and services from

malicious traffic. However, due to the costly fees introduced by commercial-based

solutions, custom in-house alternatives are also considered instead. In both cases, DDoS

protection frameworks should be able to adapt to the evolving landscape of network

attacks and cope with the requirements posed by the ever-growing Internet traffic.

Therefore, the protection mechanisms need to consider the following

limitations/challenges:

 Proprietary software/hardware - Limited flexibility: Typical DDoS protection

solutions are either proprietary in terms of hardware equipment or software

implementations. This poses difficulties on managing, troubleshooting or even

extending such mechanisms while introducing vendor lock-ins.

 Scalability/Performance: Protection services are required to cope with the ever-

increasing Internet traffic. Hardware implementations lack the elasticity of

extending on-demand their resources while software-based approaches, although

elastic, are not able to meet performance requirements imposed by emerging

network infrastructures.

 Adaptability to diverse & complicated traffic patterns: The increase of

complicated and diverse Internet applications/services in the Big Data era creates

constantly heterogeneous and complex traffic patterns. DDoS protection

mechanisms need to deal with the evolving traffic patterns by providing accurate

and rapid traffic classification.

Deep network programmability realized by the advent of Network Softwarization in

combination with the evolution/embracement of intelligent data-driven methods, i.e.

Machine Learning, can act as key enablers to overcome the aforementioned

limitations/challenges.

Network Softwarization was firstly introduced by the OpenFlow protocol [9] (and similar

efforts [10]) that enabled network operators to program the control plane of their networks

in a unified way. Following that paradigm, a new era of programmability has raised

awareness, offering high-performance programmable data planes. Two main efforts, P4

[11] and eXpress Data Path (XDP) [12], introduced a revolution in computer networks

management. Especially for DDoS protection services, these can act as the cornerstone

of flexible, scalable, and programmable detection and mitigation pipelines.

 21

Moreover, the evolution of high-performance computing alongside with the

establishment of integrated Machine Learning frameworks allow the broad use of

intelligent data-driven methods, i.e. Machine Learning. Traditional statistical approaches

may be inadequate to analyze the diverse and complex patterns of network traffic. Thus,

Machine Learning is a promising candidate for accurate, adaptable, and automated traffic

classification.

The aforementioned technologies can play a significant role in addressing DDoS

protection research challenges. These are divided in two discrete but non-independent

categories: DDoS (i) detection and (ii) mitigation. DDoS detection includes mechanisms

for network data extraction and analysis towards the identification of (i) ongoing attacks,

(ii) targeted victims, (iii) attack types, and (iv) malicious traffic portions. The key

performance indicators of these tasks are the immediacy (in terms of time) and accuracy.

The former affects the countermeasures reaction time while the latter the legitimate users’

quality of experience. DDoS mitigation includes methods/techniques to effectively filter

out malicious traffic without impacting benign traffic. Scalability, flexibility, and

performance are the key challenges to be considered by DDoS mitigation solutions.

1.2 Contributions

Based on the aforementioned challenges and innovative technologies, in this dissertation,

we leverage on recent advances in computer networks and intelligent data-driven

algorithms to architect an integrated scalable, fast, adaptable, and efficient DDoS

protection mechanism. Our key contributions in comparison to the existing state-of-the-

art approaches are summarized below:

Accurate & Rapid DDoS Detection Offloaded in the Data Plane: Contrary to typical

control plane traffic monitoring and DDoS detection mechanisms (based on sFlow [13],

NetFlow [14] or OpenFlow [9]), we introduce a rapid detection mechanism in the data

plane. Especially, P4 language [11] enables us to design and implement line-rate data

plane pipelines that can accurately detect network anomalies. DDoS attacks are identified

within short timeframes providing the means for fast remediation of the anomaly.

Intelligent Data-Driven Signature-based Traffic Classification: Traditionally, DDoS

protection mechanisms classify network traffic based on packet data organized in network

flows. This poses difficulties with regards to collection, processing, and storage hindering

 22

real-time detection and mitigation. Unlike flow-based schemes, we employ packet

signatures that instantly reveal DDoS traffic characteristics. These are identified via

Machine Learning models providing rapid, automated, and adaptable traffic

classification.

Source-IP agnostic DDoS Mitigation driven by Smart Filtering Rules Reduction: Filtering

rules are commonly applied in commodity network devices (switches, routers, firewalls)

that impose limits to the number of entries they can support. To reduce their number,

source-IP based filtering schemes employ aggregation techniques by organizing

malicious IP addresses in subnets. In contrast, we introduce a filtering rule reduction

mechanism tailored to the attack traffic characteristics. This identifies a concise set of

filtering rules able to filter out the attack traffic, with minimal effect on benign traffic.

High-performance Scalable Network Functions based on Programmable Middleboxes: In

legacy network environments, traffic monitoring and filtering are implemented in rigid

proprietary appliances. In contrast, we opted to use programmable COTS (Commercial

off-the-shelf) hardware (i.e. low-cost NICs) powered by the XDP framework. This

enables the design and implementation of Virtual Network Functions (VNFs) that can be

instantiated on-demand and scaled according to traffic and application requirements, thus

suitable for elastic scrubbing services.

Privacy-preserving DDoS Detection and Scalable Mitigation tailored to Collaborative

Network Environments: Autonomous Systems (AS’s) collaborations are instrumental in

the Internet success story, but this is largely not extended to attack protection.

Collaborative DDoS detection is hindered by strict data privacy legislations while

mitigation by rigid firewall solutions. To address such concerns and limitations, we

introduce a signature-based DDoS protection framework tailored to collaborative

network environments. DDoS detection is performed in a privacy-preserving fashion via

the Federated Learning technique and DDoS mitigation is offered to collaborating parties

as a flexible/scalable service.

Experimentation using Production Network Data on Real Computing and Network

Hardware: We employ real computing and network resources to conduct high

performance experiments assessing the applicability of the developed mechanisms in

realistic network environments. Our experimentation is based on network traces from

 23

production network environments, i.e. Campus networks, Internet Service Providers

(ISPs) and Internet Exchanges (IXes), thus allowing us to evaluate our

methods/algorithms using both real and heterogeneous network data.

1.3 Outline

The remainder of this dissertation is structured as follows:

Section 2 provides a brief overview of computer networks and their evolution to meet the

ever-increasing needs imposed by Internet advances. Initially, we briefly discuss

computer networks and their operational characteristics; subsequently, the Network

Softwarization paradigm is introduced covering the evolution of Software-Defined

Networks from OpenFlow (OF) to programmable hardware (P4) and software data planes

(eXpress Data Path).

Section 3 presents concepts and technologies related to network monitoring. Monitoring

protocols, techniques, and data are investigated both for legacy and programmable

network environments. We put an emphasis on data that can be exported from network

devices and focus on their use for anomaly detection tasks.

Section 4 introduces the problem of Distributed-Denial of Service (DDoS) attacks and

analyzes the different attack types with a focus on their specific characteristics.

Subsequently, state-of-the-art DDoS attacks detection mechanisms/algorithms are

elaborated and finally mitigation techniques are discussed.

Section 5 explains our work on P4-based DDoS attack detection. The proposed approach

attempts to address the problem of DDoS detection entirely in the data plane providing

rapid and accurate coarse-grain DDoS alerts (pinpoints anomalies for hosts/subnetworks).

Our mechanism is evaluated on network hardware (programmable P4-enabled Network

Interface Cards) using production network data.

Section 6 makes a step forward towards DDoS protection. We propose a framework that

attempts not only to detect DDoS attacks but also to classify and filter malicious traffic.

Specifically, we consider SYN Flood attacks (as an indicative use case of protocol

attacks) and use packet signatures to classify and filter them. Our approach leverages on

Machine Learning techniques for traffic classification and softwarized data planes for

 24

efficient packet filtering. We use captured network attacks to compare our schema to the

state-of-the-art mitigation approach SYN Cookies.

Section 7 introduces a generic signature-based classification and filtering scheme for

volumetric attacks, extending the concept presented in section 6. The proposed

framework identifies the most important packet features for traffic classification and

generates IP-agnostic filtering rules for effective packet filtering. Our approach is

thoroughly evaluated against state-of-the-art source IP/flow-based approaches using real

production network data.

Section 8 extends the work presented in sections 6, 7 on signature-based DDoS protection

to collaborative multi-domain network environments. We leverage on the Federated

Learning paradigm to detect DDoS attacks in a privacy-aware fashion and design a

scalable and programmable DDoS mitigation as a service tailored to collaborative

network environments. Our schema is evaluated on multi-domain production network

data.

Section 9 summarizes the contributions of this dissertation and proposes future steps and

directions on open problems with regards to DDoS attack protection.

Section 10 provides an extended abstract of this dissertation in Greek, Section 11

provides author's publications and finally Section 12 contains references/bibliography.

 25

2 Computer Networks & Network Programmability

2.1 Computer Networks

Computer networks are and have always been the core ingredient of Internet

infrastructures, enabling for user and service interconnection. Network devices (routers,

switches, firewalls etc.) are the cornerstone of Internet infrastructures; these are used first

and foremost for transferring information between users and services but also to protect

them from malicious actors. In legacy network environments, packet forwarding is based

on management/control decisions determined by each network device. Specifically, the

network operations are categorized in the following planes (described below in a top-

down approach):

Management Plane: The management plane embeds all the operations related to

computer networks configuration and monitoring. The former may span from security

policies for network devices protection to control plane configurations (e.g. routing

protocols). The latter refers to network data collection and analysis that are useful for

maintaining the desired state of networks while validating their proper functionality.

Control Plane: The control plane defines switching/routing rules on network devices

based on switching/routing processes; these rules are applied on packets as they traverse

network devices and determine the way packets are forwarded in computer networks.

Data/Forwarding Plane: The data plane processes network packets in real-time and

applies the desired logic, specified by control/management operations. Indicative data

plane operations include packet switching (destination port selection) based on MAC

addresses, packet routing based on destination IP addresses and packet filtering based on

Access Control Rules.

In legacy computer network architectures, data, control and management planes are

intertwined at the device level; such an approach was suitable for network management

and operational processes in legacy environments. Emerging technologies evolved in the

information and communication technology (ICT) domain, in particular, 5G, Cloud

Computing, Big Data, Network Function Virtualization (NFV), Internet of Things (IoT),

and Intent-based networking explicit the need of high bandwidth, ubiquitous accessibility,

and dynamic management of computer networks [15].

 26

This explosion of Internet services, revealed new traffic requirements that legacy network

architectures were unable to cope with. Key considerations were related to: (i) limited

network/device programmability, (ii) the absence of open management standards and

vendor lock-ins, and (iii) the complexity of network infrastructures posing management

difficulties. These considerations led to a revolution in computer networks emerged by

the Software-Defined Networking (SDN) paradigm.

2.2 Software-Defined Networks

The aforementioned considerations in parallel with advances in network hardware and

software drove researchers and operators to rethink traditional network architectures. Key

design principles for next-generation networks were deep network programmability, open

and standardized interfaces for unified network management.

2.2.1 OpenFlow Protocol

OpenFlow (OF) [9] is considered one of the first and well-established protocols of the

Software-Defined Networking (SDN) paradigm. OF created the pathway for innovative

network (SDN) architectures by disaggregating the control from the data plane. In a

nutshell, the purpose was to transfer the "intelligence" of computer networks from the

network device to centralized controllers, as shown in Figure 2.1. This architecture

provides (i) a wide centralized view of the network substrate, (ii) optimized performance

through centralized decisions, and (iii) granular network-wide policy configuration and

management.

OF originally defined the communication protocol in SDN architectures that enabled

external controllers to directly interact with the forwarding plane of network devices

(switches, routers). The forwarding plane of OF-enabled devices consists of match/action

tables that contain (i) a set of rules (based on packet fields spanning from L2 to L4) that

match traversing packets and (ii) a set of possible actions, e.g. forward to specific port,

drop the packet. These rules can be dynamically programmed by applications via OF's

unified interface. OF was widely employed by researchers for various network

applications considering use cases for network security [16], [17] but also by production

 27

environments, e.g. in Google they designed a flexible and elastic software-defined Wide

Area Network (WAN) [18].

Figure 2.1: OpenFlow application, control, and infrastructure layer interactions [19]

2.2.2 Hardware Data Planes

Although OF created new pathways for programming network devices, "OpenFlow main

goal was to make it easier for those who own and operate networks to write better control

planes.", as N. McKeown mentions. OF was based on the hypothesis that switch chips

are not programmable and attempted to fill the gap of unified programming interfaces

across network devices. However, from recent advances in network hardware,

programmable switch chips were designed that can achieve comparable performance to

the typical fixed-function chips. This revealed new capabilities on programming network

devices as their data plane could be directly programmed by specifying the journey of

packets within the hardware pipeline. In a similar fashion with OF, the need for a common

way to program data planes was required. Therefore, in 2014, a group of researchers

introduced P4 (Programming Protocol-independent Packet Processors) language [11], a

domain-specific language allowing developers to abstractly express packet forwarding

logic and apply it directly to network devices.

A consistent effort that followed the development of P4 language was the evolution of

programmable packet processors, e.g. DPDK [20], XDP [12]. Softwarized programmable

 28

data planes were incorporated in Linux systems presenting high packet processing

capabilities. Programmable packet processors allow developers to program high-

performance applications on COTS Network Interface Cards (NICs). Softwarized data

planes were mostly embraced by key players of the ICT industry [21] to design and

implement scalable, flexible, and of high-performance applications [22]–[24].

Both approaches (hardware data planes, software data planes) introduce the in-network

computing paradigm [25] that enables offloading computing tasks (e.g. Network

Functions) in programmable but of high-performance data planes; this creates a new

surface for developing novel network applications suitable for use cases that require rapid

decision making, e.g. anomaly detection tasks. More details related to the P4 framework

and its architecture are provided in subsection 2.2.2.1; details about programmable packet

processors and especially for the XDP framework are presented in subsection 2.2.3.

2.2.2.1 Programming Protocol-independent Packet Processors (P4)

P4 [11] is a high-level language for expressing how packets are processed by the data

plane of programmable network devices (switches [26], NICs [27]). The core design

principles of P4 are:

 Reconfigurability: Network devices forwarding behavior should be able to be re-

programmed on the fly depending on the network application.

 Protocol Independence: Network protocols change/evolve to meet new

requirements; adding new or extending protocols should be able to be

programmed on-demand without involving timely procedures (long lifecycles of

vendors).

 Target Independence: Network devices should be able to be programmed in a

common way regardless of the specifics of the underlying hardware.

2.2.2.2 P4 Overview

In Figure 2.2 below, the lifecycle of deploying P4 programs at network devices (targets)

is depicted. Device manufacturers provide the hardware or software implementation

framework, an architecture definition, and a P4 compiler for that target. P4 programs are

written for a specific architecture (P4 architecture model), which defines a set of P4-

programmable components on the target as well as their external data plane interfaces

[28]. The compilation of a P4 program generates (i) a data plane program tailored to the

 29

employed hardware and (ii) an API that exposes read/write functionalities between the

control and the data plane. In the next subsection, we will focus on the basic primitives

of P4 programs development.

Figure 2.2: Programming a network device (target) with P4 [28]

2.2.2.3 Architecture Model

The P4 architecture model is a crucial component for the development of P4 programs. It

is a reference model that defines the programmable blocks of P4-enabled devices and

their data plane interfaces. We will describe the v1model architecture to explain the

components of a typical P4 architecture and the programming capabilities it offers

(v1model was used as a reference architecture for designing a P4-based DDoS detection

scheme presented in section 5). Note that, v1model is a well-established architecture

model used in software switches, i.e. BMv2 [29] but also supported by NICs

manufacturers [27].

Figure 2.3: P4 v1model architecture

v1model architecture consists of a 6-stages data plane pipeline as depicted in Figure 2.3.

The Parser defines all the available packet headers that are supported by the P4 program

and the order of packet header parsing (e.g. from L2 to L4). Subsequently, the packet

 30

passes to the Checksum-Verification stage, in which packets may be verified for corrupted

packet headers. The Ingress Match-Action stage follows; typically, in that stage, the

forwarding logic is applied (switching/routing) and the packet is assigned to the traffic

manager (not programmable in the v1model architecture). The next stage is the Checksum

Update stage that updates the checksum values of the packet which may be necessary due

to altered packet fields on previous stages, e.g. in Ingress Match-Action. An Egress

Match-Action stage follows, in which similar logic with the Ingress Match-Action table

can be applied, and finally, the packet is passed to the Deparser stage, which emits the

packet to the appropriate outgoing port.

2.2.2.4 P4 Programming

P4 programs are developed based on the architecture model supported by the

manufacturer of the network device. P4 language provides a set of capabilities that

illustrate similarities with common programming languages such as C. We describe

below in detail the journey of a packet from the arrival in a network interface up to the

departure from the P4-enabled device. In parallel, we also present the basic capabilities

offered by the P4 language, describing its basic primitives (using v1model as the reference

architecture model).

The first stage, that packets are processed, is the Parser, in which developers define the

packet headers that can be employed subsequently by the P4 program. Packet headers are

structs that include simple data types (e.g. integers, bits, booleans); these can be used for

the development of any network protocol using just a few lines of P4 code. After the

definition of the available packet headers, an hierarchical tree structure with the possible

packet headers combinations is defined. Incoming packets are matched to the defined

packet headers in the Parser stage and the packet header values can in turn be used in the

next stages of the P4 pipeline.

The most important stage with regards to the desired logic of P4 programs is the Ingress

Match-Action stage. This may incorporate combinations of the following primitives of

the P4 language:

 Mathematical operations: These include simple operations like additions,

multiplication, and bit shifting and can be applied to the values of packet fields.

 31

 Packet metadata: These may be categorized in (i) User-defined metadata and (ii)

Intrinsic metadata:

o User-defined metadata: These describe data structures defined by the

programmer and are per-packet data, transferrable between the stages of

P4 pipelines.

o Intrinsic metadata: These are also defined at a per-packet level but

correspond to special metadata provided by the architecture, e.g. packets'

input port.

 Match-action tables: These tables are similar to key-value stores. The key may be

an arbitrary combination of packet metadata and/or headers while the value is

associated with an action; actions are functions that set the packet metadata/header

values. Note that match-action tables are defined in the data plane but are only

populated by control plane functions.

 Registers: These are also key-value stores (similar to single dimension arrays) that

can be set both by control plane functions but also in the data plane. These are

extremely useful for designing algorithms in the data plane that require per-packet

state information.

 Extern functions: These are special-purpose third-party functions offered by the

underlying architecture/target. Indicative examples include hash functions and

high-accuracy timestamping.

Based on the aforementioned capabilities and constraints of the P4 language a wide

spectrum of Network Functions can be implemented in the Ingress Match-Action stage.

These span from simple forwarding tasks, i.e. packet switching (selecting the outgoing

port from a match-action table based on the destination MAC address) to complex

algorithms such as Heavy-Hitter detection [30], DDoS detection [31], [32], and Active

Queue Management (AQM) schemes [33]. Note that, the Egress Match-Action stage can

also be employed for Network Functions implementation using the same primitives as the

ones mentioned for the Ingress Match-Action stage.

2.2.3 Software data planes - eXpress Data Path (XDP)

Implementing services in hardware data planes enables for low-latency and high-

throughput, due to the native performance of switching Application-Specific Integrated

Circuits (ASICs). With the advent of Network Function Virtualization (NFV) [34],

 32

Network Functions (NFs), that were naturally operating at physical network appliances,

were transformed to software-based solutions (Virtual Network Functions – VNF). This

paradigm was initiated from service providers and mobile network operators in an attempt

to decouple traditional NFs, e.g. Network Address Translation (NAT), Firewalling (FW),

and Deep Packet Inspection (DPI), from proprietary hardware and instead substitute them

with software-based solutions on COTS equipment. However, performance implications

were expected after replacing hardware-based services/functions with software-based. To

that end, Programmable Packet Processors came to the surface, that allow COTS

equipment, such as programmable NICs, to achieve comparable performance to

expensive ASICs, but with greater capabilities in terms of flexibility and

programmability.

Data Plane Development Kit (DPDK) [20] is probably the most well-known framework

for programmable packet processing in Linux systems. Although it was initiated as an

Intel's endeavor, currently it is supported by many NICs manufacturers. DPDK is a

kernel-bypass framework, that removes the control of the networking hardware from the

Linux kernel and transfers it to the networking application (bypasses the Linux kernel).

A similar approach that also bypasses the Linux kernel is the PF_RING ZC framework

[35]. Kernel bypass is a promising approach for developing high-performance VNFs [12],

[36], [37] however, due to the non-involvement of the Linux kernel, it has significant

management, maintenance, and security drawbacks [12].

An alternative approach for programmable packet processing is the eXpress Data Path

(XDP) [12], which harmonically co-exists with the Linux kernel. XDP is executed before

heavy networking stack operations and can be seamlessly ported in Linux systems. It

provides high-performance programmable packet processing in COTS hardware, thus

enabling for the deployment of demanding network applications even within legacy

servers. In this dissertation, we employed XDP to design and implement high-

performance yet programmable monitoring and filtering mechanisms for DDoS detection

and mitigation tasks. XDP has been widely adopted in production network environments

for various applications, e.g. Load-Balancing [23], Intrusion Detection [24], and DDoS

protection [22].

2.2.3.1 XDP Design Principles

We present below the core design principles of the XDP framework:

 33

 Coexistence with the existing Linux networking stack & transparency to user-

space applications: XDP can coexist with Linux networking stack while being

transparent to applications running on hosts. This enables innovative deployment

scenarios such as inline protection against denial of service attacks on commodity

servers.

 Programming of multi-vendor NICs in a unified way: XDP programs can be

deployed in different (multi-vendor) NIC drivers; there are no special hardware

features required, only the existing drivers to be modified for supporting XDP

execution hooks.

 Reusing of existing Linux kernel network stack features: XDP allows utilizing

Linux network stack features such as the routing table and the TCP stack. This

enables developers to focus mostly on the desired functionality of XDP programs

without needing to recreate core functionalities of common network applications.

 Online reprogrammability and on-demand scaling: Applications programmed in

XDP, can be dynamically reconfigured without any service interruption. Desired

features can be added on the fly or removed completely when they are not needed

without network traffic interruption. Depending on the traffic loads received by

XDP programs, dynamic scaling of the CPU resources (within a single server)

may be considered.

In the following subsection, we will delve into details related to the XDP programming

model, analyzing in detail the practical aspects of the aforementioned design principles.

2.2.3.2 Programming in XDP

XDP programs, written in C, are executed either in software within the context of the

network driver or even offloaded directly in Network Interface Cards (NICs), e.g.

Netronome SmartNICs [27]. Their execution is initiated upon the arrival of packets at a

network interface. In turn, packet data can be parsed, extracted, and stored in persistent

memory referred to as Berkeley Packet Filter (BPF) Maps [12] (see Figure 2.4). These

are key-value stores defined when the XDP program is loaded. XDP returns an action for

each packet which defines how it should be handled. The packets can be either (i) dropped

- XDP_DROP, (ii) passed to the network stack - XDP_PASS, (iii) redirected to another

interface - XDP_REDIRECT or (iv) transmitted back - XDP_TX.

 34

Figure 2.4: XDP integration with the Linux network stack [12]

XDP programs are running in the kernel address space and thus can access (and

potentially alter) Linux kernel's memory. For safety purposes, XDP programs before

being loaded are analyzed by the eBPF Verifier; this component checks XDP programs

memory accesses while ensures that the program will terminate. These checks are

performed to guarantee that the user-supplied XDP program will not affect the operational

status of Linux servers, e.g. kernel malfunction, however, they pose significant challenges

on XDP applications implementation; indicative limitations include (i) bounded loops,

(ii) fixed-size data structures, (iii) 4096 BPF instructions per program, and (iv) limited

support of kernel functions. To that end, the design and implementation of XDP

applications require significant attention due to the aforementioned limitations. In

sections 6, 7, and 8, we discuss the limitations and challenges we faced on developing

XDP-based monitoring and filtering components.

 35

3 Network Monitoring

Network operators configure and manage network infrastructures while receiving

feedback from them via retrieving network monitoring data. Network monitoring is

crucial for network management as it provides information related to the status of network

infrastructures (health) and can be used to validate the desired operation/state, commonly

driven by (pre-agreed) business requirements. Network monitoring includes a wide

spectrum of technologies that are used to export information from network devices. These

technologies follow the evolution of network infrastructures attempting to meet the ever-

growing requirements for accurate, reliable, and real-time network monitoring.

3.1 Simple Network Management Protocol

Simple Network Management Protocol (SNMP) was and may still be the flagship of

network monitoring. SNMP is used to collect information from network devices in a

client-server architecture. Typically, monitoring architectures include centralized

Network Management Systems (NMS) that periodically poll network devices (agents)

requesting information about their current status. The available information is defined in

hierarchical data structures, referred to as Management Information Bases (MIBs). Each

object in the MIB is identified by a unique Object Identifier (OID) and corresponds to

data related to the network device; these may be either retrieved or modified. Available

data provided by network devices are highly dependent on the existing MIBs, which may

be either proprietary (vendor-specific) or standardized.

SNMP is still used by network operators aiding them to detect, identify, and solve

problems that occur in their networks. In typical use cases, centralized/distributed

collectors request data (e.g. interfaces bandwidth utilization, device status) from network

devices; these data can be employed for multiple purposes ranging from applications for

DDoS detection [38] to network design procedures, e.g. capacity planning. Although

SNMP seems an ideal protocol for managing and monitoring networks, it has plenty of

limitations. SNMP proved to be inadequate for providing monitoring data in modern

large-scale infrastructures [39]. Increased polling times (5-minute intervals), data

collection scalability issues [40], unreliable delivery (UDP as the transport protocol) are

only some of the drawbacks that forced network device vendors and operators to move

towards different monitoring solutions, i.e. Streaming Telemetry.

 36

3.2 Streaming Telemetry

"Streaming telemetry is a new approach for network monitoring in which data is streamed

from devices continuously with efficient, incremental updates"1. Streaming Telemetry

mechanisms overcome limitations imposed by SNMP. Specifically, the data collection

process does not rely on polling-based schemes but on a push-based/streaming fashion,

allowing devices to send information to external collectors even upon data change.

Reliable delivery is ensured via TCP while authentication/authorization is based on

user/password schemes and/or TLS certificates. Data models (similarly to SNMP) can be

vendor-neutral or vendor-specific and formatted in Yet Another Next Generation (YANG)

models commonly serialized via highly compressed mechanisms, e.g. Protocol Buffers

[41]. The main differences between SNMP and Streaming Telemetry mechanisms are

summarized in the following table:

Table 3.1:SNMP vs Streaming Telemetry

 SNMP Streaming Telemetry

Collect Model Poll Push - Stream

Transport Layer UDP TCP

Application Layer SNMP HTTP gRPC

Data Model MIB

proprietary/standardized

Vendor-specific/neutral

Data Format SMI / ASN-1 YANG

Encoding BER Google Protocol Buffers

(GPB) or JSON

Security Communities or Keys (v3) User/Password or TLS

certificate

1 https://www.openconfig.net/projects/telemetry/

https://www.openconfig.net/projects/telemetry/

 37

Network monitoring architectures include a centralized collection engine

(SUBSCRIBER) that retrieves data from network devices (PUBLISHER). There are two

ways for subscribing to data: (i) DIAL-IN and (ii) DIAL-OUT. In the former, the collector

subscribes to the data of interest, e.g. CPU utilization while in the latter data subscription

is configured in the network device. DIAL-IN provides a flexible, scalable, and dynamic

network monitoring approach while DIAL-OUT requires each network element to be

configured for the data types that is going to populate to preselected collectors. Indicative

data, that can be retrieved from network devices, may be found in [42] (for Juniper

devices).

Monitoring approaches relying on either SNMP or Streaming Telemetry usually gather

information from network infrastructures related to their current state. This state includes

information spanning from the current status of network interfaces/devices to complex

service monitoring operations (e.g. TWAMP measurements [43]). As mentioned, this

information is of paramount importance for network administrators aiding them to

successfully monitor and manage their networks. However, such approaches do not

provide insight into the actual network data, i.e. network packets/flows that traverse

Internet infrastructures. In the following subsections, we discuss NetFlow [14] and sFlow

[13] that provide packet and flow-level information of the network traffic exchanged

between users/services.

3.3 NetFlow

NetFlow is a network protocol introduced by Cisco that enables network operators to gain

insight into the network traffic sourced/destined from/to their network via the

representation of network flows. A network flow, defined by the 5-tuple (source IP

address, destination IP address, source port, destination port, protocol), provides

information about the packets that were exchanged between endpoints/services within a

specific time interval by aggregating related data, e.g. packet/bytes counters. This process

is continuously conducted in network interfaces (either examining each packet or picking

1 out of n samples – sampled NetFlow) as packets traverse network devices. Flow data

are stored temporarily in the flow caches of network devices for preconfigured time

intervals (based on active/inactive timeouts) and upon their expiry conveyed to external

collectors (see Figure 3.1). These typically store data related to the observed flows that

can be subsequently used for further analysis. Network administrators may use flow

 38

information for network management tasks, e.g. network monitoring/troubleshooting,

network capacity planning, customer billing, and/or network anomaly detection tasks.

Especially for the latter, NetFlow has been and is still widely used for detecting and

identifying DDoS attacks; this will be further discussed in section 4.

Figure 3.1: NetFlow Architecture [44]

3.4 sFlow

sFlow stands for "sampled flow" and is an industry-standard mechanism for extracting

packets from network devices at the data link layer. This mechanism allows network

devices to push data (packet samples and/or interface counters) to external collection

engines which can employ them for network monitoring operations. sFlow is typically

configured with sampling rates based on the interface speed from which network packets

are sampled. Although sampling appears as a limitation, in reality, sFlow is a scalable

mechanism for network monitoring in high-speed switched or routed networks. This is

validated from different use cases reported in the literature, e.g. network anomaly

detection [16] but also from production environments, e.g. Cloudflare's DDoS protection

framework [45].

The main characteristic of sFlow is that it gives access to packet (i) headers and (ii)

payload. Packet headers can be used to aggregate packets in network flows in a similar

fashion to NetFlow. In contrast, packet payload can be used directly for identifying

 39

anomalies in packet data, e.g. malicious pattern identification. In section 4, we will

discuss in detail how data provided by sFlow/NetFlow may be employed as data sources

for DDoS detection pipelines.

3.5 Deep Packet Inspection

Deep Packet Inspection (DPI) refers to the process of inspecting the contents of all

network packets that traverse network devices. Network packets should be first copied

and redirected (e.g. via port mirroring or monitoring taps) to Deep Packet Inspectors that

capture and analyze them. DPI may be used for various purposes: to baseline application

behavior, analyze network usage, troubleshoot network performance, data validation,

malicious code checks or DDoS attack detection. Especially in DDoS attack

detection/prevention tools such as Snort [46] and Suricata [24], packets are compared

against a set of rules (signatures) that correspond to pre-identified anomalous packet

patterns.

Deep Packet Inspection may be an intensive process both for the system that collects

network packets but also for the network elements that copy the desired network streams.

However, it may reveal packet characteristics that may not be available via the

aforementioned network monitoring methods, i.e. unobserved packets due to sampling.

3.6 Software-Defined Networks

3.6.1 OpenFlow

Monitoring OF-enabled networks provides a greater flexibility on the available

information that could be exposed by network devices. As mentioned, OF uses flow tables

that may include large numbers of packets fields. Each rule in the flow table is

accompanied by network statistics (packets, bytes counters). This allows to retain

aggregate data for arbitrary combinations of packet fields beyond the well-known 5-tuple

(network flow). Customizing the monitoring data tailored to network applications is an

appealing concept, however there are two major drawbacks. In OF, the forwarding logic

is tightly coupled with network monitoring [16] and thus network data are only available

for aggregations that have been included in the flow table due to the forwarding logic.

This may present scalability limitations in case of large networks due to the massive

number of packet field combinations that can be in parallel in the flow table [16]. The

 40

second drawback is related to the fixed set of packet fields exposed by the device. This is

highly related to the supported OF protocol version and the corresponding vendor

implementation. Requesting new packet headers requires vendors' intervention, a timely

procedure.

3.6.2 Programmable Data Planes

With programmable data planes, the drawbacks presented in OF environments can be

overcome. Interestingly, in both hardware (P4) and softwarized (XDP) data planes

mentioned in Section 2, network monitoring is disaggregated from the forwarding logic.

This enables to monitor and collect fine-grained data disassociating the forwarding

application from the monitoring logic. Except for this disaggregation, the holy grail of

programmable data planes is the definition of the exact data that required to be monitored

for each application. This simplifies network data storage and analysis as only data of

interest are exported. Moreover, it allows to rapidly modify the monitored data adapting

to possible protocol extensions or newly introduced network applications.

In the following section, we delve into the main focus of this dissertation, the detection

and mitigation of Distributed Denial-of-Service (DDoS) attacks. We (i) discuss their main

characteristics, (ii) investigate useful monitoring data for network traffic analysis, (iii)

analyze algorithms/methods for attack detection, and (iv) finally present mitigation

techniques.

 41

4 DDoS Attacks – Detection & Mitigation

Distributed Denial-of-Service (DDoS) attacks still present a major threat faced by

network operators [47]. These attacks plague network infrastructures by overwhelming

their capacity and/or processing resources rendering them unable to serve legitimate

users. DDoS attacks are typically orchestrated by malicious actors, e.g. hackers, that

command bots (infected hosts) to generate malicious traffic targeting selected services

and/or hosts, as depicted in Figure 4.1 below.

Figure 4.1: Distributed Denial-of-Service Attacks Orchestration2

These bots (or zombies) are typically vulnerable devices with IP connectivity

compromised by malicious actors and employed not only for DDoS attacks but also for

other malicious purposes, e.g. port scanning, email spam campaigns.

DDoS attacks are categorized in three different attack types, each one with different

characteristics; however, they all serve the same purpose, to harm the selected victim

network/service. In the next subsection, we discuss in detail the different attack types.

2 https://trailhead.salesforce.com/en/content/learn/modules/aws-cloud-security/protect-against-dos-and-

ddos-attacks-with-aws-shield

https://trailhead.salesforce.com/en/content/learn/modules/aws-cloud-security/protect-against-dos-and-ddos-attacks-with-aws-shield
https://trailhead.salesforce.com/en/content/learn/modules/aws-cloud-security/protect-against-dos-and-ddos-attacks-with-aws-shield

 42

4.1 Attack Types & Characteristics

We may categorize DDoS attacks, based on the way they disrupt network

infrastructures/services, in the following types: (i) volumetric, (ii) protocol, and (iii)

application-layer attacks.

Volumetric attacks create link congestion by consuming all available bandwidth

between the targets (victims) and their upstream providers/peers. Enormous amount of

data is sent to victim networks either via amplification techniques or other means of

massive traffic generation. A typical example of such attacks is the

Reflection/Amplification case, in which attackers exploit vulnerable protocols and

services to generate attack traffic (their magnitude is measured in bits per second - bps).

Attackers use the IP address of the selected victim and send specially crafted requests to

“misconfigured” servers (reflectors). These respond to the falsified requests with packets

of huge payload that consume victims network bandwidth. Note that a common side effect

of such attacks is packet fragmentation since large responses, generated by reflectors,

typically exceed the Maximum Transmission Unit (MTU) of transit links. Commonly

exploited protocols/services for volumetric attacks include DNS, SNMP, CLDAP, NTP

and SSDP [48].

Protocol attacks disrupt network services by overwhelming the resources of end-hosts

and/or the resources of interim network devices (e.g. firewalls and load balancers). These

attacks exploit "vulnerabilities" of the network and/or transport layer to increase the

processing burden of the selected targets. Specifically, the selected victims constantly

attempt to keep state information related to received requests (that may be even spoofed).

This results to excessive resource consumption, preventing them from serving legitimate

requests. These attacks are typically measured in packets per second – pps (since each

packet increases the burden for the victim) and include a wide variety of techniques.

Indicative attacks that exploit the 3-way handshake of TCP are SYN [49], ACK [50],

SYN-ACK [51] floods. Similarly, ICMP and UDP packets are commonly used to flood

victims and force them to waste their resources on responding to falsified/random

requests.

Application layer attacks, commonly referred to as layer 7 attacks, exhaust victims’

resources in a similar fashion to the protocol attacks. Contrary to them, layer 7 attacks

 43

target the application layer of the protocol stack. They employ appropriately selected

requests that force victims to consume significant resources to respond to them. These

attacks are commonly related to web-based applications served over the HTTP/HTTPS

protocol. Attackers flood servers with specially crafted requests that (i) are either

CPU/memory intensive, e.g. loading multiple files and/or running database queries to

return web pages, or (ii) make the server consume its network resources (e.g. sockets

exhaustion). Indicative examples for the former category are HTTP GET/POST Floods

[52] while for the latter low and slow attacks such as Slowloris [53]. Except for web-

based applications, DNS is a common target by application layer attacks. Indicative

examples of DNS application layer attacks are DNS Flood/Water Torture attacks [54] that

generate random/specially-crafted requests and force victim servers to utilize significant

amount of resources to respond. In total, application layer attacks are difficult to be

detected in interim network devices, since the attack traffic patterns present similarities

to the benign traffic, however these attacks can be pinpointed on victim end-hosts.

Multi-vector attacks refer to simultaneous combinations of the aforementioned attack

types. Malicious actors launch multiple attacks against selected victims to (i) bypass

network protections schemes, (ii) increase their possibilities to harm the victim, or (iii)

hide attack vectors within the attack traffic of other attacks, e.g. launching application

layer attacks in parallel with volumetric attacks.

As thoroughly explained, each attack type has its own unique characteristics, however

they all share a common goal: to disrupt network services. Integrated DDoS protection

frameworks should consider these characteristics and provide fast/accurate attack

detection and effective mitigation. In section 4.2, we discuss attacks detection techniques;

in section 4.3, we provide details on the countermeasures that can be applied, i.e.

mitigation mechanisms.

4.2 Detection Techniques

4.2.1 Overview

As mentioned in the previous subsection, DDoS attacks attempt to impact selected

networks/hosts (victims) in various manners, e.g. consume their system resources,

 44

overload the available network bandwidth. The generation of attack traffic creates

conditions in computer networks/systems that deviate from the expected/benign state;

these conditions can be defined as anomalies. DDoS detection may be defined as the

process of identifying such anomalies using as input network data. In general, DDoS

detection can be mapped to the following tasks:

 detect the existence of attacks (DDoS Existence)

 identify attack victims (Attack Victim Identification)

 identify the type of the attack (Attack Vector Identification)

 pinpoint malicious flows/packets (Attack Traffic Classification)

Figure 4.2: General DDoS Detection pipeline

DDoS

Detection

Attack

Traffic

Classification

DDoS

Existence

Victim

Identification

Attack

Vector

Identification

Data

Analysis

Network

Monitoring
Flow-level

information

Packet-level

information

Coarse-

grained

metrics

Statistical

methods

Machine

Learning

 45

In a nutshell, DDoS detection pipelines gather monitoring data from the network

substrate, analyze them, and identify ongoing anomalies. Network monitoring data may

include coarse-grained data (e.g. per-port packet/byte counters), flow-level, and packet-

level information. These data can be consumed by DDoS detection mechanisms in a

streaming fashion and/or periodic time-intervals, depending on the monitoring

mechanism (see section 3). The retrieved data are analyzed based on methods that span

from simple statistical models (e.g. threshold-based) to more complex algorithms, i.e.

Machine Learning (Supervised Learning, Unsupervised Learning). The outcome of this

data analysis pertains to the task(s) mentioned above. In Figure 4.2, we illustrate the

overall lifecycle of DDoS detection pipelines.

Such pipelines should provide both fast and accurate DDoS detection. Regarding the

former, timely detection leads to timely mitigation that can significantly reduce the impact

of DDoS attacks. Regarding the latter, detection accuracy is crucial for the benign end-

users; benign traffic misclassification results to disallowed benign traffic while malicious

traffic misclassification results to attack traffic portions reaching the victim. To that end,

high True Positive Rates – TPR (e.g. malicious traffic classified as malicious) and in

parallel, high True Negative Rates – TNR (e.g. benign traffic classified as benign) are of

paramount importance to minimize the impact of DDoS attacks.

4.2.2 Statistical methods

Most DDoS attacks introduce sudden increases in the incoming traffic rate of the victim

network; this is accompanied by abrupt changes in various network traffic metrics, e.g.

the number of network flows or even abnormal packet field values. The use of

appropriately selected thresholds on network metrics, that during an attack deviate from

their expected values, is one of the most common methods for DDoS detection. Basically,

this methodology assumes that network traffic characteristics, e.g. the number of flows in

a network, follow specific distributions (e.g. Gaussian distribution3). The values that

deviate from the expected behavior are considered anomalies. We present below

indicative efforts that rely on this methodology to identify/combat DDoS attacks.

3 https://en.wikipedia.org/wiki/Normal_distribution

https://en.wikipedia.org/wiki/Normal_distribution

 46

Indicatively, in [55]–[58], threshold-based detection schemes, within SDN (OpenFlow-

enabled) environments, were proposed; [55]–[57] focus on SYN flood attacks while [58]

provides a generic detection scheme. In [55], [57], SYN packets counters are maintained

for each IP source and if a predefined threshold value is reached, then the source is

considered malicious. These approaches seek to identify malicious sources of TCP floods

(Attack Traffic Classification task). In [56], SYN Floods are detected according to abrupt

decreases of the entropy value of destination IP addresses. In case the entropy value is

lower than a predefined threshold for consecutive time-windows, an active attack (DDoS

existence) is assumed, and a victim identification process is initiated. Similarly to [56],

in [58] the entropy values for destination IP addresses and ports are calculated; these are

compared to preselected thresholds and DDoS attacks existence is indicated.

Subsequently, a fine-grained detection scheme is initiated that pinpoints the victim of the

attack. This is identified by comparing the number of flows that target each destination

IP address to a selected threshold value (excessive values indicate highly asymmetric

communication). Finally, thresholds for TCP/UDP packet symmetry ratio are used for

malicious sources classification (these are defined according to well-known TCP/UDP

traffic patterns).

Threshold-based detection mechanisms have also been reported for programmable data

planes. Specifically, in [31], [59] P4-based DDoS detection schemes were proposed. In

the former, SYN flood attacks are detected by tracking the per-flow ratio of TCP SYN to

regular TCP packets and comparing it to predefined thresholds. In the latter, entropy

values of source and destination IP addresses are calculated in the data plane. These

values are compared to thresholds and upon their violation a DDoS attack is considered

active.

In total, threshold-based methods are a well-established approach for DDoS detection

(including all of its tasks) as reported in the literature [31], [55]–[59] but also as validated

by tools [60] used in production environments. This approach is commonly preferred due

to its interpretability and simplicity; however, it may struggle to follow the continuously

evolving DDoS landscape accompanied by complex traffic patterns. Therefore, more

sophisticated methods, i.e. Machine Learning (ML) algorithms, have raised awareness;

these attempt to create generic models for DDoS detection tasks based on multiple

features of network data.

 47

4.2.3 Machine Learning

In general, ML approaches are divided into three broad categories, based on the feedback

that is returned to a learning system:

 Supervised Learning: Example input data (training data) and their desired output

values (labels) are provided to an algorithm; this searches for a general rule

(function) that maps the given input to the desired output.

 Unsupervised Learning: Example input data are provided to an algorithm, which

searches for correlations/hidden patterns amongst them.

 Reinforcement Learning: The learning system interacts with a dynamic

environment and continuously performs actions. These provide rewards to the

system, which aims to make the "best" decisions (actions) to maximize a

cumulative reward.

Within the context of DDoS detection, algorithms from the aforementioned categories

(mainly from Supervised and Unsupervised Learning) have been widely used for

pursuing the detection tasks mentioned above. Specifically, Supervised Learning methods

use as input labelled network data and classify them to benign/malicious (binary

classification4) or to attack categories (multiclass classification5). Unsupervised Learning

methods use as input unlabeled network data and attempt to identify hidden correlations

by either clustering them into categories or revealing anomalies (outliers). For the latter,

the anomaly detection problem6 is typically transformed to a binary classification

problem, in which outliers are considered DDoS attack traffic. Below we present various

efforts reported in the literature that employ Machine Learning methods for DDoS attacks

detection.

In [61], a DDoS detection schema based on a Multilayer Perceptron (MLP) was

introduced. Traffic metrics related to flows and packet rates (UDP, ICMP) are collected

4 https://en.wikipedia.org/wiki/Binary_classification#Statistical_binary_classification

5 https://en.wikipedia.org/wiki/Multiclass_classification

6 https://en.wikipedia.org/wiki/Anomaly_detection

https://en.wikipedia.org/wiki/Binary_classification#Statistical_binary_classification
https://en.wikipedia.org/wiki/Multiclass_classification
https://en.wikipedia.org/wiki/Anomaly_detection

 48

and used as input to an MLP, tasked with classifying network traffic to benign/malicious.

In [17], OpenFlow (OF) entries are collected from network devices, flow-related features

are extracted and classified via Self-Organizing Maps (SOM). In [62], an SDN DDoS

detection and mitigation schema was proposed. Sharp increases in the rate of OF Packet-

In messages are considered as an indication of DDoS attacks (threshold-based detection);

subsequently OpenFlow rules are collected from network devices and classified via an

MLP that uses the same feature set as in [17]. In [63], a large set of flow-related features

is extracted from packets and sent to OF Controllers. These are used as input to a Stacked

Autoencoder, which provides feature reduction and traffic classification of the flow as

benign or attack.

In [64] ATLANTIC, an SDN framework for DDoS attack detection and mitigation, was

proposed. Entropy changes for specific flow features within consecutive time windows

indicate the existence of an attack. Network flows responsible for entropy changes are

fed in a traffic classification component based on K-means and Support Vector Machines

(SVM). K-means is used initially to create clusters of common flows and SVM is further

used to identify malicious flows. In [65] DeepDefense, a DDoS detection schema based

on Recurrent Neural Networks (RNN) was introduced. Traffic traces, collected within

sliding time windows, are translated into arrays of packet features. These are fed to an

RNN that segregates malicious from benign packets. Similarly, in [66] LUCID, network

traffic classification also employs packet fields organized in network flows. Packet values

are collected from different time windows and organized as arrays; subsequently these

arrays are fed to a Convolutional Neural Network to identify time-dependent traffic

patterns.

In total, Machine Learning methods illustrate high accuracy for DDoS detection tasks,

identifying complex attack traffic patterns while also achieving significant generalization

capabilities (the ability to detect "unseen" anomalies, i.e. zero-day attacks [67]). In the

following subsection, we discuss the main challenges that need to be considered by DDoS

detection mechanisms.

4.2.4 Challenges

The key challenges with regards to DDoS detection may be categorized in the following:

 Accuracy:

 49

o Victim Identification: The accurate identification of DDoS attacks victim

host/subnet is of vital significance since the instantiation of further

protection procedures heavily relies on it. False alarms may lead to

delayed identification of the actual victim worsening the impact of the

attack.

o Attack Vector Detection: The detection of the exact type of a DDoS attack

determines the appropriate type of countermeasures. Falsely reported

types can further delay the mitigation of the attack.

o Benign/Malicious Traffic Classification: The accurate identification of

benign/malicious traffic is crucial. Misclassified benign traffic affects the

quality of experience of legitimate end-users by blocking them from

reaching the desired network/service. Respectively, misclassification of

malicious traffic allows attacks to flood the victim and consume its

resources, downgrading legitimate users' quality of experience (benign

and malicious traffic share victims' resources).

 Promptness: Rapid detection of DDoS attacks is of paramount importance, since

it enables for immediate enforcement of countermeasures increasing the uptime

of targeted networks/services.

 Adaptability: Detection mechanisms should be able to be used in diverse and

complex network environments. Methods/algorithms employed for detection

tasks need to conform both to the network environment (e.g. ISP) and to the

evolution of the network traffic patterns. Robust, reliable, and adaptable detection

mechanisms (i) enable for the classification of new (unseen) network traffic

patterns and (ii) ease management operations by minimizing operators' manual

intervention, i.e. reconfiguration/fine-tuning.

 Scalability: As noted, detection mechanisms consume network data and analyze

them to identify attacks. The ever-increasing Internet traffic leads to scalability

problems in terms of monitoring data collection/analysis. Thus, such mechanisms

should be able with few amounts of network data and within short time-windows

to accurately pinpoint anomalies.

Either using statistical methods or Machine Learning algorithms to cope with the

aforementioned challenges, this is only the first step towards DDoS protection. The next

 50

step is the enforcement of appropriate countermeasures to filter out the attack traffic; this

process is defined as DDoS mitigation.

4.3 Mitigation Mechanisms

DDoS mitigation is tightly coupled with DDoS detection. In a nutshell, such schemes

retrieve information about the network traffic from DDoS detection mechanisms and

enforce filtering rules to block the malicious portion.

We may categorize DDoS mitigation mechanisms based on their deployment location in

the following types: (i) on-premises, (ii) on upstream/peer networks, and (iii) cloud-

based. On-premises approaches mitigate attacks within the network hosting the victim,

either using constantly or on-demand protection (e.g. dedicated hardware appliances).

This approach is effective for network attacks that do not exceed victim's network links

capacity. In that case, one of the (ii), (iii) alternatives need to be considered. Filtering

attack traffic on upstream/peer networks protects the victim network links, but requires

pre-agreements between the victim network and its upstream providers/peers. These may

range from typical blackholing [68] to granular filtering [69] techniques. Note that for

both cases (i), (ii), the victim network should identify the ongoing anomaly and define

the appropriate filtering rules.

An alternative approach, relies on DDoS protection offered by cloud-based service

providers; these, upon DDoS detection provided by the victim network, drain the network

traffic destined to the victim, scrub it, and finally redirect back only the benign portion.

BGP Anycast7 is one of the main techniques that enables cloud-based scrubbing providers

to absorb massive amounts of traffic using dispersed points of presence (POPs) across the

globe. Despite its effectiveness, cloud-based scrubbing may (i) raise privacy concerns,

(ii) introduce additional latency, and (iii) require considerable costs.

The aforementioned approaches can be combined to create hybrid protection schemes,

e.g. on-premises mitigation for small-scale attacks and cloud-based scrubbing for massive

attack scenarios; these should be optimized per network environment.

7 https://en.wikipedia.org/wiki/Anycast#Mitigation_of_denial-of-service_attacks

https://en.wikipedia.org/wiki/Anycast#Mitigation_of_denial-of-service_attacks

 51

4.3.1 Filtering Methods

We described in the previous subsection various DDoS mitigation services based on their

deployment location. Despite this categorization, all of the aforementioned approaches

share a common goal, to filter the offending traffic without impacting benign users. In a

nutshell, DDoS filtering mechanisms employ one or more packet field values to

appropriately distinguish malicious from benign traffic as packets traverse network

devices (in the data plane). Matching and filtering capabilities rely heavily on the device

type, e.g. router, switch, firewall, COTS server, dedicated hardware appliance. Thus, we

present below DDoS filtering techniques emphasizing on their (i) matching capabilities,

(ii) drawbacks, and (iii) limitations:

Destination-based Remotely Triggered Black Hole (RTBH) Filtering [70] is a filtering

mechanism primarily used to prevent potential collateral damage during DDoS attacks

(e.g. bandwidth and CPU utilization, service degradation). It is a destination-based

filtering mechanism, in which the traffic destined to the victim is redirected to null

interfaces of edge routers and thus dropped. Victim networks use this mechanism for on-

premises mitigation to protect their network links. However, blackhole filtering is

commonly enforced on upstream networks/peers to protect victim networks links from

congestion. Note that, the main drawback of this mechanism is that both malicious and

benign traffic destined to the victim is seamlessly dropped.

Source-based Remotely Triggered Black Hole (RTBH) Filtering [70], unlike the

destination-based RTBH, is a source-based alternative that drops packets from specific

source IPs using the unicast Reverse Path Forwarding (uRPF) feature [70]. Source-based

RTBH also relies on BGP updates that contain routes to malicious IP addresses/networks;

attack packets from these sources are dropped on uRPF-enabled edge router interfaces.

Although more granularity than the destination-based RTBH is offered, packets destined

to legitimate destinations may be blocked in en route and fixed route spoofing scenarios

[71].

Access Control Lists (ACLs) is another approach commonly used in switching/routing

devices to implement firewall policies. Upon DDoS detection, appropriate ACLs are

populated to network devices to block the attack traffic. Contrary to Source-based RTBH,

ACLs allow more granular filtering (than source IP addresses). The packet fields that are

 52

commonly used to match and block the offending traffic rely on the 5-tuple of network

flows; this is based on the fact that typical detection mechanisms classify network flows

to malicious/benign and therefore mitigation mechanisms employ the same set of fields

for blocking. ACLs are an effective way for blocking DDoS attacks at the network edge,

however they come with some limitations: (i) the number of ACLs is limited in network

devices [72], (ii) the supported packet fields that can be used for packet matching are

tightly dependent on vendors implementations, and (iii) increased complexity on

managing ACLs in multi-vendor environments is introduced.

Similar to ACLs, OpenFlow rules support a plethora of matching capabilities and

actions/instructions, that may be used for packet rejection [58]. Although OF provides a

large number of packet fields that can be used for packet matching, it faces almost the

same limitations as the ones reported for the ACLs (except for the complexity of

managing them due to the common interface offered by OpenFlow).

BGP Flowspec [73] is a filtering mechanism that uses the Network Layer Reachability

Information (NLRI) format of BGP Update packets to disseminate flow specification

rules. These rules extend the capabilities of typical blackhole filtering mechanisms

allowing for fine-grained traffic filtering. BGP Flowspec rules are one step ahead of

typical ACLs, as they provide a 12-field tuple for matching malicious packets while being

able to be propagated to network devices over a unified interface, the BGP protocol.

Another filtering method for DDoS mitigation is based on packet signatures. These refer

to specific packet field values commonly observed in malicious network packets.

Signatures have already been classified as malicious and are employed as filtering rules

in appropriate middleboxes (DPI is required). These match and block malicious network

packets while not affecting benign network traffic. Although this approach is highly

effective for well-known attack traffic patterns, it is not able to cope with new "unseen"

attacks, i.e. zero-day threats.

4.3.2 Challenges

In a nutshell, DDoS mitigation mechanisms need to:

 support various packet fields, capable to be used for accurate segregation of

malicious from benign traffic (in the data plane)

 53

 generate concise and small sets of filtering rules to address data plane memory

limitations and simplify/facilitate their management

 account for vertical and horizontal packet processing scalability for elastic on-

demand protection

 enable for short filtering rules deployment time for immediate attack alleviation

 54

5 DDoS Detection in Programmable Data Planes (P4)

Data plane programmability is a promising technology that enables rapid control loops

for the detection and mitigation of cyber-attacks. In this section, we propose an in-

network architecture for DDoS attack detection that combines important traffic metrics

of malicious traffic. These pertain to number of flows and packet symmetry, maintained

for protected subnets and utilized to identify anomalies. Appropriate alarms are triggered

within time-based epochs and conveyed to external mitigation systems. We assess our

DDoS detection schema in P4-enabled SmartNICs in terms of detection accuracy and

packet processing performance. As input to our accuracy experiments we use real

publicly available traffic traces. Furthermore, performance stress tests were conducted

using high speed packet generators. Results exhibit that our approach is applicable in

typical enterprise and/or carrier environments, featuring packet rates of 1-2 Mpps for

10G links.

5.1 Motivation

As already mentioned, network environments are constantly plagued by massive

Distributed Denial-of-Service (DDoS) attacks launched via infected hosts under the

control of malicious actors. Accurate and timely DDoS detection is crucial for effective

and efficient mitigation. Typical DDoS detection schemas rely on packet samples [74] or

flow records [14], exported from agents within network devices (routers, switches). These

are relayed for processing to external collectors (servers). Similarly, SDN setups e.g.

OpenFlow [9] employ control plane signaling between network devices and controllers

to trigger detection alarms and subsequent mitigation actions. Such detection mechanisms

introduce added overhead on the communication between network devices and external

monitoring platforms, thus stalling the attack detection and as a consequence the

subsequent mitigation.

In-network DDoS attack detection is a step ahead of legacy detection methods, as it

operates directly in the data plane offering rapid attack detection, while enabling control

plane triggers to external mitigation systems. To that end, we propose a P4 [75] DDoS

detection schema that combines important traffic features to increase accuracy while

adhering to performance penalties. In a nutshell, we: (i) inspect network traffic and

compute related metrics (features), (ii) evaluate feature values to identify potential threats

 55

and (iii) convey alarms to external systems as digests. These are conducted continuously

in short-time intervals enabling timely detection of network anomalies.

The remainder of this section is structured as follows: In section 5.2, we discuss related

work; section 5.3 offers an architectural overview and presents the traffic features used;

section 5.4 provides implementation details of the proposed solution pertaining to the P4

language; section 5.5 presents experimental evaluations for processing performance and

detection accuracy employing benign and malicious (DDoS) traffic traces. Finally,

section 5.6 summarizes this section and presents our conclusions.

5.2 Related Work & Contributions

There are various efforts reported in the literature exploring performance capabilities of

advanced network applications implemented in programmable data plane environments.

In [12], an extensive analysis of the eXpress Data Path (XDP) framework is introduced;

As mentioned, XDP is a novel approach towards high-performance programmable packet

processing in Linux systems. The authors consider use cases such as Routing, DDoS

Mitigation and Load Balancing and perform experimental comparisons. In [76], the

impact of basic P4 operations (packet parsing, headers modifications) on packet

processing performance is explored. Experiments are based on P4-enabled SmartNICs

(Netronome Agilio CX) and illustrate the effect on processing latency introduced by

various P4 constructs. Similarly, in [77], the impact of operations performed within the

XDP framework on various system resources is investigated. Specifically, results

demonstrate packet processing limitations and scaling capabilities (number of CPU cores)

considering different flavors of XDP. Inspired by these approaches, we propose a P4-

enabled timely DDoS detection schema and explore its performance capabilities on a

SmartNIC-based testbed.

Recent research efforts on data plane programmability applied to detection of DDoS

attacks are reported in [31], [59]. In the former, a P4-based DDoS detection approach is

proposed; counting Bloom Filters are used to track the per-flow ratio of TCP SYN to

regular TCP packets in order to detect SYN flood attacks. In the latter, a DDoS detection

schema is presented that estimates entropy values of source and destination IP addresses.

These values are compared to appropriately defined thresholds and upon their violation a

DDoS attack is considered active.

 56

Both approaches employ software switches for experimentation. In contrast we deploy

our P4 schema in hardware, i.e. SmartNICs and assess its performance in terms of

attainable packet processing rate and detection accuracy. Moreover, [59] focuses entirely

on an important attack vector, SYN Floods while [31] detects the occurrence of an attack

without indicating the victim. We provide an integrated framework able to promptly

detect generic DDoS attacks to specific victim subnetwork, possibly alerting external

DDoS mitigation systems via P4 digests.

Note that data plane mechanisms can be employed to enable efficient and programmable

filtering (mitigation) based on packet headers [78]. DDoS mitigation is beyond the scope

of this section and will be discussed in the next sections.

5.3 DDoS detection in the data plane - High-Level Overview

Our schema is applicable either in transit provider networks (e.g. ISP, Research &

Education Network backbones) or customer/edge network domains (e.g. Data Centers,

Campus Networks). Upstream network providers may detect network anomalies aiming

downstream organizations. Similarly, customer organizations may deploy the same

functionality with fine granularity for specific internal subnetworks. Such an indicative

architectural setup is presented in Figure 5.1: Traffic originating from various Internet

sources is directed towards a P4-enabled edge domain, possibly via a P4-enabled transit

provider. We precisely consider the use case of National Research and Education

Networks (NRENs) and their Pan-European interconnection GÉANT. NRENs may offer

DDoS Protection services to universities and data centers downstream. These services are

implemented in P4-capable devices, placed at important vantage points to monitor traffic

at different levels of granularity. Specifically, P4 devices: (i) forward network traffic, (ii)

maintain important statistics for monitored (sub)networks, (iii) perform anomaly

detection tasks and (iv) raise alarms to external mitigation systems.

Our schema maintains a list of specific monitored (sub)networks and/or hosts, depending

on the desired granularity level. DDoS attacks are detected by combining the following

traffic features: (i) total number of incoming traffic flows (srcIP, dstIP, protocol, srcPort,

dstPort), destined to monitored subnets in a distinct time interval henceforth denoted as

"epoch", (ii) significance of a network, characterized by the percentage of flows directed

 57

towards it out of the total incoming flows and (iii) symmetry ratio of incoming to outgoing

packets. These features have correlated characteristics and may provide localized alarms

for each protected network under generic DDoS attacks.

Figure 5.1: High-Level Overview of P4 DDoS Detection Pipeline

Typically, massive DDoS attacks consist of a considerable amount of flows. Thus, we

consider the number of total flows as an attack indicator. We adopt a moving average

approach as in [31] to track for each epoch n the number and the dispersion of Total

Incoming Flows (TIFn). Specifically, we define Mn as the Exponentially Weighted

Moving Average (EWMA) and Dn as the Exponentially Weighted Moving Difference

(EWMD):

𝑀𝑛 = 𝑎 · 𝑇𝐼𝐹𝑛 + (1 − 𝑎) · 𝑀𝑛−1 with 𝑀1 = 𝑇𝐼𝐹1 (5. 1)

𝐷𝑛 = 𝑎 · | 𝑀𝑛 − 𝑇𝐼𝐹𝑛 | + (1 − 𝑎) · 𝐷𝑛−1 with 𝐷1 = 0 (5. 2)

 58

The parameter a is a smoothing coefficient to dampen short-term fluctuations. Network

anomalies are considered if TIFn exceeds a threshold that depends on Mn-1 and Dn-1:

𝑇𝐼𝐹𝑛 > 𝑀𝑛−1 + 𝑘 · 𝐷𝑛−1 (5. 3)

where 𝑘 ≥ 0 is a sensitivity coefficient that scales the detection threshold.

In order to further pinpoint the victim destination subnetwork, we also incorporate two

additional features, namely Subnet Significance and Packet Symmetry:

(i) Subnet Significance is expressed as the percentage of Incoming Flows 𝑆𝐼𝐹𝑛
(𝑖)

destined

to a subnet i in epoch n out of the Total Incoming Flows TIFn. We indicate an alert if this

percentage exceeds a significance factor f that identifies major flow recipients as potential

victims:

𝑆𝐼𝐹𝑛
(𝑖)

𝑇𝐼𝐹𝑛
> 𝑓 (5. 4)

(ii) Packet Symmetry is an insightful metric to avoid classification of a subnet as a victim

while it may be a recipient of heavy benign traffic, to which it generates responses. The

Current Packet Symmetry Ratio 𝐶𝑅𝑛
(𝑖)

 is defined as the fraction of incoming to outgoing

packets for subnet i during epoch n. These are evaluated based on per subnet i counters

and compared against a pre-computed Normal Packet Symmetry Ratio 𝑁𝑅(𝑖). We

consider traffic to a subnetwork anomalous, in case the corresponding fraction exceeds a

heuristic threshold r as described in the following condition:

𝐶𝑅𝑛
(𝑖)

𝑁𝑅(𝑖)
> 𝑟 (5. 5)

Values for f, r and 𝑁𝑅(𝑖) are defined based on operational experience under normal (non-

attack) network conditions. Note that, these parameters could be set by employing

Machine Learning algorithms that learn from past traffic patterns.

5.4 P4 DDoS Detection Pipeline – Implementation Details

In this section we elaborate on implementation details of the proposed DDoS detection

pipeline. Our mechanism utilizes P4 registers to implement counters, arrays and

probabilistic data structures. We do not use P4 counters since their values are only

 59

accessible via control plane signaling and may not be used directly in data plane

interactions [75]. In Table 5.1, we present indicative register definitions.

Table 5.1: P4 Registers Functionality, Indicative Definition and Usage

Functionality Example Definition
Usage

Counters register<bit<32>>(1) epoch
Epochs, Total Flows

Arrays
register<bit<16>>(256)

flow_dst

Per Subnet Flows, Packets

Probabilistic Data Structures
register<bit<32>>(65536)

sketch

Flow Tracking

In Figure 5.2, we present our processing pipeline. Traffic arriving at the P4-enabled

device is filtered to include only relevant packets. Subsequently, we apply our multi-

feature approach in distinct serial steps to identify potential attacks. In case all violations

are observed, we generate alarms (i.e. P4 digests [75]) to an external mitigation system.

Figure 5.2: Detailed P4 DDoS Detection Pipeline

Step 1 selects only TCP or UDP packets to be considered within the DDoS detection

pipeline, since they are typically utilized by most attack vectors. This is achieved using

simple checks on parsed headers.

Step 2 further isolates traffic originating from or destined to a monitored network

(protected network). To that end, we employ a dedicated match-action table that contains

one rule for each protected network. Each rule adds a unique identifier to matching

packets as P4 metadata. The added metadata headers are used to access and update the

equivalent memory areas of various registers e.g. per subnet measurements such as flows

and packet statistics. Note that, traffic that does not meet the aforementioned criteria (i.e.

TCP/UDP and source/destination in “monitored” networks), bypasses the DDoS

detection pipeline and is appropriately forwarded.

 Anomaly Detection Pipeline

Yes

Incoming
packet Yes

New
Epoch

Same
Epoch

TCP/UDP
Parser

Epoch
Initializations

& Updates

Protected
Network

Epoch
Processing

No No

Flow Analysis

Outgoing
port

Packet
Symmetry
Analysis

Alarm
Checking

1 2 3a

3b

4

5 6

 60

Step 3a delimits time-based epochs, each defined by a start time and duration. Packets are

associated with an epoch using the ingress_global_timestamp packet metadata. This

denotes the exact time a packet arrived at the P4-enabled device. If a packet’s timestamp

fits within the current time window [start_time, start_time + epoch duration), it is directly

fed to Step 4. Otherwise, the packet is assigned to a new epoch and proceeds to Step 3b.

The latter performs the following: (i) update the new epoch start time, (ii) increment the

index tracking the current epoch, (iii) compute the new EWMA and EWMD values as

described in (5.1), (5.2) and (iv) reset the number of total flows.

Step 4 performs flow traffic analysis and maintains appropriate flow counters for packets

exiting from either Step 3a or 3b. This operation is based on modified Bloom Filters [79],

used to track unique active flows within an epoch. Specifically, we calculate hash values

from the following packet headers (srcIP, dstIP, protocol, srcPort, dstPort) that identify

a flow tuple. We employ hash functions available in the P4 pipeline, i.e. CRC32, CRC16

and CSUM16. The resulting hash values are used as indices to access distinct memory

areas of P4 registers. Each area stores the last epoch this flow was observed. A flow is

considered “active” in the current epoch when all indices point to register areas containing

values equal to the current epoch. Else, the flow is considered as newly observed within

this epoch. Subsequently, the register contents for these indices are set to the value of the

current epoch. When a new flow is observed, counters pertaining to total flows and per

subnet flows are incremented. Based on these counters, conditions pertaining to

inequalities (5.3), (5.4) are evaluated. In case a threshold is violated, the equivalent flag

is stored in distinct packet metadata headers.

Step 5 performs packet symmetry analysis employing incoming and outgoing packet

counters from/to a monitored network. We maintain separate per-subnet packet counters

for TCP and UDP traffic, as well as historical normal packet symmetry ratios for both

protocols. These are used to evaluate the 𝐶𝑅𝑛
(𝑖)

against the 𝑁𝑅(𝑖) as depicted in inequality

(5.5). In case this fraction exceeds the threshold r, a flag is raised similarly to the ones

for threshold violations (5.3), (5.4).

The final Step 6 of our pipeline checks packets for metadata headers corresponding to

identified anomalies. In case all metadata headers are set to "True", an appropriate alarm

is generated pinpointing the network under attack and the current epoch. These alarms

were implemented as P4 packet digests that enable the communication between the data

 61

plane and external systems; in our case appropriate mitigation mechanisms, able to

enforce countermeasures.

Note that, P4 is a programming language with specific restrictions, e.g. no support for

floating point arithmetic or division operations. We needed to adapt to P4 limitations

using various workarounds since our approach uses real values e.g. the smoothing

coefficient a in EWMA, EWMD values and divisions e.g. 𝐶𝑅𝑛
(𝑖)

/𝑁𝑅(𝑖) for its calculations.

Calculations that require floating point operations are approached by multiplying all

elements of an equation with a power of 2 and subsequently dividing them by the same

factor. Divisions are conducted via appropriate bitwise shifting operations. We present an

example for the EWMA equation; specifically, for the smoothing coefficient a, we

selected the value of 1/256 (~ 0.004):

𝑀𝑛 =
1

256
· 𝑇𝐼𝐹𝑛 + (1 −

1

256
) · 𝑀𝑛−1 ⇔ 𝑀𝑛 = (𝑇𝐼𝐹𝑛 + 255 · 𝑀𝑛−1) ≫ 8 (5. 6)

where eight bits right shifting corresponds to division by a factor 28 = 256. We

satisfied requirements for division via a plain comparison between two numbers. Note

that, we are not interested in the quotient of a fraction but whether it is greater or lower

than another value. For example, the threshold evaluation in inequality (3) was

implemented as:

𝐶𝑅𝑛
(𝑖)

> 𝑟 · 𝑁𝑅(𝑖) (5. 7)

5.5 Experimental Evaluation

5.5.1 Experimental Setup

In order to validate our DDoS detection framework, we implemented the proposed

pipeline in P4 and evaluated it in the testbed illustrated in Figure 5.3. We used as a P4

target the Netronome Agilio CX SmartNIC at 10GbE. Programs were developed and

compiled via the Netronome Programmer Studio while the compiled program was loaded

to the NIC. Additionally, we used two VMs operating as the Sender and the Receiver,

equipped with 10GbE Intel NICs, able to generate and count packets in high packet rates.

We assess our DDoS detection schema in terms of detection accuracy and packet

processing performance.

 62

Figure 5.3: Testbed equipped with P4-enabled SmartNICs

5.5.2 DDoS Detection Accuracy

In order to create realistic conditions for our experiments, we used publicly available

network traces both for benign and malicious traffic. The benign traffic is based on traces

available from the WIDE backbone [80]; specifically traffic from a 10G transit link

between WIDE and DIX-IE, an experimental IX in Tokyo. The traces contain network

traffic between 12:00 - 12:15 on 09/04/2019. For malicious traffic traces we used the

fourth dataset as reported in [2]. This contains a DNS-based reflection attack generated

by Booter services. The traces were captured during a controlled experiment conducted

by the University of Twente, Netherlands, in collaboration with its upstream provider

SURFnet (the Dutch NREN). Protected subnetworks were identified based on an analysis

of the benign dataset. We selected the top 255 networks, assuming /24 prefixes, as ordered

by the total number of packets traversing each subnetwork.

The experimentation process considered 1-second epochs and was conducted as follows:

We injected the benign traffic and ignored alarms for the first 30 seconds, considering

Bare
Metal

Intel NICs
Netronome NICs

Servers VMs
(NIC Passthrough)

QEMU/KVM

QEMU/KVM

Compile/Deploy P4
programs to Targets

Programmer
Studio

P4 Target

Receiver

Sender

SFP+ 10GbE

 63

them as a "learning" period for the moving averages. Between seconds 30 and 60 we

observed alarms for False Positives. At the 60th second, we launched the attack targeting

an IP address within one of the 255 subnets that we monitor. Attack traces were injected

between seconds 60 and 90. Packet digests were collected via the run time API offered

by Netronome and used for the calculation of the detection accuracy. Accuracy in binary

classification is defined as:

𝐴𝐶𝐶𝑈𝑅𝐴𝐶𝑌 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5. 8)

where TP, TN, FP and FN are defined for each subnet in any given 1s epoch:

 TP: Number of True Positives i.e. digests received for a subnet when the subnet

was the victim of an attack

 TN: Number of True Negatives with no digests generated in non-attack cases

 FP: Number of False Positives i.e. digests received for a subnet when the subnet

was not the victim of any attack

 FN: Number of False Negatives with no digests generated in attack cases.

Note that we configured for each subnet only a single digest to be sent during a given

epoch.

To showcase the detection capabilities of our mechanism the malicious traces were

replayed at different rates. These correspond to three different attack scenarios: (i) an

Underscaled attack, i.e. 10% of the reported Booter trace, (ii) the Booter trace as was

originally reported and (iii) an Overscaled attack, comprised of 5 times the volume of the

reported Booter trace. For all scenarios the benign traffic was injected as it was originally

captured.

In the charts of Figure 5.4 we depict accuracy of our framework, evaluated using (4),

according to the following empirically inferred values α = 0.004, k = 3, f = 0.15 and r =

2, for two cases:

 Two-feature case (F2) that combines conditions (5.3), (5.4) corresponding to

Flow Analysis features

 Three-feature case (F3) that also incorporates the Packet Symmetry feature based

on condition (5.5)

 64

Figure 5.4: P4-based DDoS Detection Accuracy

For the Underscaled attack scenario, F2 performs slightly better than the F3. The former

is more sensitive and thus able to identify attacks that generate small fluctuations on the

number of flows. The latter, due to the added traffic symmetry feature, misclassifies

attack traffic as benign resulting in a considerable number of FNs. This occurs since this

scenario contains a rather small amount of attack traffic (5% of benign traffic) and packet

symmetry ratio does not significantly deviate from the normal (non-attack) values.

For the original Booter trace scenario, both approaches detect the victim, with F3

achieving higher detection accuracy as it has a reduced amount of FPs in comparison to

F2. Finally, for the Overscaled Attack scenario FNs are eliminated due to the vast volume

of the attack, achieving accuracy close to 100%. In general, using either two or three

features (F2 or F3) we successfully detect ongoing attacks and identify the victim

subnetwork within a single epoch.

5.5.3 P4 SmartNIC Packet Processing Performance

We further conducted stress test experiments to assess the processing capabilities of the

Netronome cards. To that end, we synthesized traffic in various packet rates to (i) assess

the performance capabilities of our pipeline and (ii) measure its impact on forwarding

throughput. We use the same testbed setup but employ pf-send and pf-receive utilities of

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

Underscaled Attack B4 Booter Trace Overscaled Attack

A
cc

u
ra

cy

(%

)

DDoS Detection Accuracy

F2 F3

 65

the PF_RING framework [35] on the sender and the receiver respectively. In our

experiments we considered the following use cases:

 Plain forwarding case whereby, the target performs only switching (SW)

 One-feature case (F1) that incorporates anomaly identification based on Total

Flows evaluation using condition (5.3) only

 Two-feature case (F2) that combines both Flow Analysis features based on

conditions (5.3), (5.4)

 Three-feature case (F3) that also incorporates the Packet Symmetry feature based

on condition (5.3), (5.4), (5.5)

Note that, the synthesized traffic we used does not bypass our DDoS detection pipeline,

thus stressing to the limit the capabilities of the SmartNIC.

Figure 5.5: Netronome SmartNIC Forwarding Capacity

Figure 5.5 depicts the forwarding capacity of Netronome cards for various packet rates

ranging from 0.1 to 5 Million packets per second (Mpps). The forwarding capacity is

calculated as the fraction of traffic that successfully traverses the card.

Traffic rates of 0.1, 0.5, 1 and 2 Mpps show no performance degradation for all four cases.

A higher traffic rate of 5 Mpps exhibits considerable degradation of the Netronome

SmartNIC for adding the DDoS detection pipeline in cases F1, F2 and F3. These amounts

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0.1 0.5 1 2 5

F
o

rw
ar

d
ed

 P
ac

k
te

s
(%

)

Mpps

Forwarding Capacity

SW

F1

F2

F3

 66

to degradation between 35% to 45%. However, our detection pipeline is relevant in many

enterprise and/or carrier networks since 10G links usually correspond to packet rates

ranging between 1-2 Mpps according to observations on GRNET network traffic [81].

Our DDoS detection schema heavily depends on accurate packet measurements through

SmartNICs. To assess the impact of adding the DDoS detection pipeline, we further

investigated the packet counting measurements available in the data plane via P4

registers. These were observed for all cases (SW, F1, F2 and F3) and attainable packet

rates (from 0.1 to 5 Mpps), as depicted in Figure 5.6.

For all cases even moderate packet rates of 0.5 Mpps start to exhibit degradation of

measurement capabilities. Our DDoS pipeline successfully detects attacks with high

accuracy despite measurement limitations of the SmartNICs. As also illustrated in Figure

5.5 our schema does not degrade packet forwarding for rates up to 2 Mpps, typical for

10G links.

Figure 5.6: Netronome SmartNIC Measurement Capacity

These measurement limitations are present only in P4 registers. We have performed

additional experiments using P4 counters and observed significant performance

improvement. However, as mentioned in Section 4.5, counters are only accessible from

external controllers. We attribute this problem to simultaneous accesses of the memory

area used for packet counting.

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0.1 0.5 1 2 5

M
ea

su
re

d
 P

ac
k
te

s
(%

)

Mpps

Measurement Capacity

SW

F1

F2

F3

 67

5.6 Summary & Concluding Remarks

In this section we described an in-network DDoS detection schema that combines

multiple traffic features. These features are based on typical metrics employed for DDoS

detection such as incoming flows and packet symmetry ratio. Our mechanism yields

accurate per subnet alarms implemented entirely in the data plane, without any

involvement of external controllers, thus enabling rapid control loops. Our experiments

for detection accuracy were based in realistic attack scenarios using publicly available

traces. We further conducted stress tests using high-rate synthesized traffic to assess the

performance of our P4 mechanism, implemented in SmartNICs.

The proposed schema provides an accurate and fast in-network method for detecting

DDoS attacks targeting selected victim networks. This can be considered as the first step

towards DDoS protection. In the next section we will delve into attack specifics

attempting to classify network traffic and filter out the malicious portion. These will be

considered for SYN Flood attacks (as an indicative example of protocol-based attacks), a

highly employed attack that plagues computer network infrastructures and services.

 68

6 Signature-based Traffic Classification and Mitigation of

SYN Flood Attacks using Supervised Learning and

Programmable Data Planes

TCP SYN Flood is one of the most common protocol-based DDoS attack that attempts to

exhaust memory and processing resources of selected victims. Typical mitigation

mechanisms, i.e. SYN cookies consume significant processing resources and generate

large rates of backscatter traffic to block them. In this section, we propose a detection

and mitigation schema that focuses on generating and optimizing signature-based rules.

To that end, network traffic is monitored and appropriate packet-level data are processed

to form signatures, i.e. unique combinations of packet field values. These are fed to

Supervised Learning models that classify them to malicious/benign. Malicious signatures

corresponding to specific destinations identify potential victims. TCP traffic to victims is

redirected to high-performance programmable XDP-enabled firewalls that filter

offending traffic according to signatures classified as malicious. To enhance mitigation

performance malicious signatures are subjected to a reduction process, formulated as a

multi-objective optimization problem. Minimization objectives are (i) the number of

malicious signatures and (ii) collateral damage on benign traffic. We evaluate our

approach in terms of detection accuracy and packet filtering performance employing

traces from production environments and high rate attack traffic. We showcase that our

approach achieves high detection accuracy, significantly reduces the number of filtering

rules and outperforms the SYN cookies mechanism in high-speed traffic scenarios.

6.1 Motivation

SYN Flood (attack) is a major part of the evolving DDoS landscape [82], [83]. This attack

exploits the widely employed TCP protocol and especially the 3-way handshake, flooding

with SYN packets targeted victims. These exhaust their memory and processing

resources, failing to serve legitimate requests. SYN Flood attacks are difficult to counter

via commonly used IP-based mitigation schemas. IP-based rules, required to block the

attack traffic, increase proportionally to the number of malicious sources. This demands

network devices/firewalls to store thousands/millions of filtering rules, which is

unattainable due to memory resources limitations [72]. Notably, when spoofing is

employed, IP-based filtering is totally ineffective. An alternative mitigation method for

 69

SYN Floods, relies on the SYN cookies [84] technique. This approach, instead of blocking

malicious SYN packets, generates appropriately crafted SYN-ACK packets. Although,

this method protects the victim from the launched attack, it consumes significant

processing resources and introduces large rates of backscatter traffic [85].

Inspired by the aforementioned challenges, we propose a signature-based mechanism for

SYN Floods detection and mitigation. Our mechanism collects network data and extracts

appropriate packet fields, forming packet signatures. Subsequently, these signatures are

used as input to Supervised Learning models tasked with classifying them to

malicious/benign. Malicious signatures corresponding to specific destinations identify

potential victims. TCP traffic to victims is redirected to high-performance programmable

XDP-enabled firewalls that filter offending traffic according to signatures classified as

malicious. To enhance mitigation performance malicious signatures are subjected to a

reduction process, formulated as a multi-objective optimization problem.

The remainder of this section is structured as follows: In Section 6.2 we discuss

background information and related work; Section 6.3 presents a high-level overview of

the proposed mechanism and its core design principles; Section 6.4 provides

implementation details for the SYN Flood detection and mitigation architecture; Section

6.5 presents experimental evaluations for detection accuracy and packet filtering

performance using both benign and malicious traffic captured in real network

environments. Finally, Section 6.6 summarizes our work and discusses further extensions.

6.2 Related Work & Contributions

There are many efforts reported in the literature related to SYN Flood mitigation. In [55]–

[57], SDN controllers act as proxies protecting servers targeted by SYN Flood attacks.

Specifically, they respond to each received benign or malicious SYN packet with a SYN-

ACK packet. Legitimate ACK responses are correlated with previously observed SYN

packets and henceforth validated clients can initiate TCP connections. In such approaches

SDN controllers store SYN packet monitoring data (e.g. source IP, destination IP, source

port, destination port) that may lead to memory exhaustion; added latency is also

introduced due to network traffic interception by the controller.

An alternative method for mitigating SYN Flood attacks is based on the SYN cookies

technique [49], [84], [86]. In this approach, for each SYN a SYN-ACK response is

 70

generated using as sequence number a specially crafted value (cookie). This value is

calculated based on hashing operations on IP and TCP packet fields of the received

packet, combined with timestamp values. Subsequently, legitimate clients send an ACK

as a response to the SYN-ACK setting the acknowledgement number equal to the cookie

(sequence number) value increased by one. The acknowledgement number of the ACK is

compared to the cookie value, calculated based on the IP and TCP header fields of the

ACK. If these values are equal, the client is considered legitimate and henceforth

connections from this client are accepted, else the ACK is dropped. Instead of consuming

memory resources to store details related to the client, this approach saves information in

the sequence number of the SYN-ACK packet via the SYN cookies mechanism. Notably,

in [87] the SYN cookies mechanism was implemented in P4 and tested in various hardware

targets, e.g. NetFPGA, SmartNICs; such approaches achieved remarkable SYN Flood

mitigation performance.

Despite SYN cookies mitigation effectiveness, there are two major drawbacks: it (i) wastes

significant packet processing resources for SYN cookies calculation to respond to

malicious SYN packets and (ii) floods Internet with SYN-ACK responses equal in rate to

the malicious SYN packets. The latter may lead to further network congestion.

Considering the aforementioned drawbacks and inspired by Cloudflare's mitigation

approach [22], [85], we propose a signature-based detection and mitigation mechanism

for SYN Flood attacks, where:

 Unique combinations of packet field values, i.e. signatures, are dynamically

classified based on Supervised Learning algorithms; signatures are used to

identify ongoing attacks.

 Malicious signatures are used as filtering rules for mitigation purposes. Mitigation

performance is enhanced via a rule reduction process formulated as a multi-

objective optimization problem.

 The reduced set of filtering rules is deployed on high performance programmable

firewalls (XDP) to efficiently mitigate SYN Flood attacks.

 71

6.3 High-Level Overview & Design Principles

We present a high-level overview of the proposed architecture for detection and

mitigation of SYN Flood attacks. Our mechanism consists of the (i) Signature

Classification, (ii) Signature Reduction and (iii) Anomaly Mitigation components.

As illustrated in Figure 6.1, traffic monitoring mechanisms continuously extract packets

(Monitoring Data) from the border (edge) router. These are aggregated, within

configurable time windows based on distinct signatures, i.e. IP and TCP header values.

In the Signature Classification component, packet signatures are fed to supervised ML

models, that classify them as benign or malicious. The classified signatures are used to

(i) detect ongoing SYN Flood attacks, (ii) identify the victim and redirect corresponding

TCP traffic and (iii) create appropriate filtering rules to mitigate the anomaly.

Meanwhile, TCP packets destined to the victim, are redirected at the border router via the

Attack Redirection mechanism to the Mitigation component. To improve the mitigation

performance, malicious signatures are subjected to a reduction process (Signature

Reduction) before being used as filtering rules. This reduction is formulated as an

optimization problem, in which combinations of packet features are explored, that

minimize simultaneously (i) the number of signatures required to block the attack traffic

and (ii) collateral damage on the benign traffic.

Figure 6.1: SYN Flood Detection and Mitigation Architecture

 72

Initially, the Mitigation component employs temporarily the SYN Cookies technique to

prevent malicious traffic to reach the victim. When signature reduction is completed, the

reduced set of signatures is installed to the Mitigation component. These rules match and

drop the offending traffic while benign traffic is appropriately forwarded to the victim.

We present below the core design principles of the proposed architecture:

Signature-based filtering: Our approach identifies malicious signatures and redirects TCP

traffic destined to the victim for fine-grained filtering enabled by software data planes

(XDP). In contrast to this approach, commonly used mitigation mechanisms rely on the

SYN Cookies technique that employs significant processing resources to respond to

malicious SYN packets and generates backscatter traffic.

Supervised Machine Learning traffic classification: Signature classification is conducted

based on Supervised Learning models trained a priori with benign and malicious traffic.

This enables SYN Flood detection and malicious signature identification based on

previously observed benign and attack traffic patterns.

Signature reduction: We introduce a signature reduction mechanism that identifies the

signatures required to fully block an attack, minimizing simultaneously their number and

collateral damage on benign traffic. This approach attempts to reduce the number of

filtering rules. These are stored within network devices that typically impose limits to the

number of rules they can support.

High-performance programmable firewalls: We leverage capabilities offered by

softwarized programmable data planes (XDP) to design and implement high-performance

firewalls. These can be tuned and optimized based on the identified malicious signatures

to block SYN Floods in an efficient and flexible manner.

6.4 SYN Flood Detection and Mitigation Architecture

The proposed schema for SYN Flood detection and mitigation consists of the following

components: (i) Signature Classification, (ii) Signature Reduction and (iii) Mitigation

Mechanism. These are described in detail in the following subsections.

 73

6.4.1 Signature Classification

This component receives and analyzes TCP packet-based data from external monitoring

mechanisms to identify malicious signatures. Packet-based data extraction may be

conducted either via (i) dedicated XDP mechanisms deployed in-line across the

forwarding path, (ii) passive methods such as monitor ports and optical taps, or (iii) data

export protocols such as sFlow [74]. Note that (i), (ii) may account for all network traffic

while (iii) is based on packet sampling. The exact implementation of monitoring data

extraction is not the main focus of this work; our only requirement is access to L3-L4

packet headers.

Extracted data are aggregated within configurable time windows, based on appropriate

packet fields (features) forming signatures. Our scheme focuses on the relevant features

for SYN Flood traffic classification. Specifically, we removed features that have the same

value for both benign and malicious packets (zero variance). From the remaining features,

we also excluded IP and TCP header length and checksum fields as irrelevant to the

classification process. Finally, we excluded TCP sequence number as this value is

randomly generated by each client. The final set of features that we employed are:

Table 6.1: Packet fields (features) for TCP SYN packet classification

Packet Field Short Description

ip.src Source IP Address

ip.dst Destination IP Address

ip.dsfield.ecn Network Congestion Notification

ip.id IP Fragment Identification

ip.flags.df Do not Fragment Bit

ip.ttl Time To Live

tcp.srcport Source Port of TCP Segment

tcp.dstport Destination Port of TCP Segment

tcp.window_size TCP Receive Window Size

 74

Although these features correspond to numerical values, we employed them as categorical

variables considering that their actual values are not relevant to TCP SYN traffic

classification. These categorical data should be encoded before being used in ML

methods. To that end, we used an encoding scheme that for each signature, calculates the

frequency of each feature. In the following Table we illustrate an example of the

employed frequency encoding scheme considering 5 packets and 2 features (ip.ttl, ip.dst).

Table 6.2: Frequency encoding for categorical features

ip.ttl ip.dst #Packets ip.ttl_freq ip.dst_freq

239 192.168.1.1 3 60% 80%

62 192.168.1.1 1 20% 80%

61 10.1.1.1 1 20% 20%

Frequencies are calculated as the number of times a packet field value (e.g. ip.ttl 239,

ip.dst 192.168.1.1) is observed in a time window, divided by the total number of packets

observed in the same time window. This may reveal packet field values that are

abnormally frequent during ongoing attacks (or the opposite). The frequency encoded

features (e.g. ip.ttl_freq, ip.dst_freq) are used as input to supervised ML models (Random

Forest - RF or Multilayer Perceptron - MLP), that classify them as benign or malicious.

Signatures are in turn labeled based on the classification of their corresponding frequency

encoded features.

If a single signature is classified as malicious, the Signature Classification component

notifies the Attack Redirection mechanism. This triggers the border router to redirect

traffic destined to the victim (information obtained from the destination IP) to the

Mitigation component. Simultaneously, benign and malicious signatures are processed to

generate the appropriate number of filtering rules for attack mitigation.

Note that traffic may be redirected either using Policy Based Routing or BGP (Flowspec)

[69]. Further implementation details are beyond the scope of this work.

 75

6.4.2 Signature Reduction

Signatures classified as malicious, are going to be employed as filtering rules for attack

mitigation purposes. These rules are stored in memory resources, i.e. BPF Maps that

enable packet matching at line-rate. Their number significantly affects the deployment

and lookup time in the BPF Map, which in turn degrades the overall mitigation

performance. Therefore, the Signature Reduction component is tasked with providing a

concise set of signatures (filtering rules) that can block all the offending traffic, without

significantly affecting the benign traffic.

We formulated this signature reduction as a multi-objective optimization (feature

selection) problem, in which we search for feature combinations 𝐹′ = {𝐹1, 𝐹2, … 𝐹𝑗},

subsets of the initial feature set 𝐹 = {𝐹1, 𝐹2, … 𝐹𝑛}, where 𝑗 < 𝑛, that simultaneously

minimize:

i. the number of malicious signatures (filtering rules) that block all the attack traffic

(Count-distinct problem8)

ii. the percentage of benign traffic that is dropped

We define as 𝑀 and 𝐵 the sets of malicious and benign signatures respectively, based on

features from 𝐹 (see Table 6.1). For each combination 𝐹′, we calculate 𝑀′ and 𝐵′, that

correspond to sets 𝑀 and 𝐵 using only the features of 𝐹′. The first objective (i) is

calculated as the number of unique signatures (cardinality) in 𝑀′. For the second objective

(ii), we calculate the number of benign packets that correspond to the signatures in 𝑀′ ∩

𝐵′ and divide it with the number of benign packets that correspond to the signatures in

𝐵′. This provides the percentage of benign traffic that would be dropped if we used as

filtering rules the signatures in 𝑀′. Note that the intersection 𝑀 ∩ 𝐵 is an empty set,

however, the intersection 𝑀′ ∩ 𝐵′ may result to non-empty sets in the reduced feature

space 𝐹′.

The proposed optimization problem leads to multiple Pareto optimal solutions. However,

due to stringent time constraints for attack mitigation (DDoS attacks should be blocked

8 https://en.wikipedia.org/wiki/Count-distinct_problem

https://en.wikipedia.org/wiki/Count-distinct_problem

 76

as early as possible), brute-force algorithms may not be able to identify optimal solutions.

We opted for a fast evolutionary approach based on Non-dominated Sorting Genetic

Algorithm II (NSGA-II) [88]. The algorithm starts with arbitrary subsets 𝐹′ ⊂ 𝐹, and

iteratively attempts to enhance the solutions quality, i.e. minimize further the objectives.

At each iteration (generation), new subsets of 𝐹 are generated based on random

combinations of 𝐹′ that correspond to the best solutions produced in the previous

iteration. The algorithm stops when a time limit is reached thus generating suboptimal

subsets.

As mentioned, more than one solution may be generated but only one of them can be

selected for blocking the attack traffic. This selection should be tuned per network

environment to depict network operator preferences e.g. acceptable percentage of

dropped benign traffic. Finally, from the selected solution, signatures of 𝑀′ are conveyed

to the Mitigation component to be applied as filtering rules.

6.4.3 Anomaly Mitigation

This XDP-based component inspects TCP traffic and prevents malicious TCP SYN

packets to reach the victim. As a first level of protection, it filters malicious SYN packets

based on the signatures emerged from the reduction process. Packets not filtered at this

level, are processed and handled appropriately by the SYN cookies mechanism.

The Anomaly Mitigation component parses and isolates TCP packets. Subsequently, it

extracts from TCP SYN packets appropriate TCP/IP packet fields which are compared to

the signatures stored in a BPF Map (hash table). If the extracted signature exists in the

BPF Map, the packet is considered malicious and is dropped, else it is conveyed to the

SYN cookies mechanism. This is used: (i) as an initial countermeasure upon the detection

of SYN attacks, until signature reduction is completed, (ii) as a fallback mechanism to

our signature-based approach for malicious traffic falsely classified as benign and (iii) to

validate and allow benign TCP traffic to be forwarded to the victim.

The SYN cookies mechanism was implemented within the XDP framework according to

the description provided in section 6.2. Further implementation details for the Mitigation

component are available in our code repository [89].

 77

6.5 Experimental Evaluation

In order to evaluate our framework, we implemented all software components of the

proposed architecture and deployed them in our laboratory testbed. Supervised Learning

models of the Signature Classification component were based on the sklearn and pytorch

python libraries. The Signature Reduction mechanism was based on the Platypus

framework [90], used for solving our multi-objective optimization problem. The

Mitigation Mechanism was deployed on a physical machine equipped with a 10G XDP-

enabled SmartNIC Netronome Agilio CX. This was directly connected to a Virtual

Machine employed as a high-speed packet generator based on the PF_RING ZC

framework [35].

We assessed our mechanism detection accuracy and packet filtering performance using

both benign and malicious network traces. In subsection 6.5.1, we provide details for the

datasets we used. In subsection 6.5.2, we compare the detection accuracy of two

commonly used Supervised Learning methods (Random Forest, Multilayer Perceptron).

In subsection 6.5.3, we showcase our signature reduction mechanism and in subsection

6.5.4, we compare the performance of our approach to the SYN cookies mechanism.

6.5.1 Datasets Description

As benign traffic, we used traffic traces from a 1G transit link between WIDE and an

upstream provider [80]. We isolated TCP SYN packets captured at 12:15 and 12:29 on

08/04/2020; these are respectively referred to as B1 and B2 for the remainder of this

subsection. As malicious traffic, we used 5 different TCP SYN attacks that targeted our

infrastructure (May – September 2020). The characteristics mentioned in Table 6.1 for

the five attack datasets (i.e. A1, A2, A3, A4 and A5) as well as their packet rate (Kilo

packets per second – Kpps), are presented in Table 6.3 and Figure 6.2 below:

Table 6.3: Packet Feature Cardinality for A1-A5 SYN Flood attacks

Attack ip.src tcp.srcport tcp.dstport ip.id ip.ttl

A1 15 65535 65535 1 3

A2 760863 65534 65534 1 4

A3 839660 65535 65535 1 4

A4 3415575 65536 1 65535 2

A5 1493948 65536 1 65535 3

 78

Figure 6.2: Packet Rate of SYN Flood Attacks

As illustrated in the Table above, all attacks except A1 emanate from a vast amount of

unique IP sources. A1, A2 and A3 are using all available source and destination ports and

have a single value related to the ip.id (IP fragment identification). In contrast, A4 and A5

are using a single destination port and have multiple values related to the ip.id. All attacks

have a small number of unique ip.ttl values and a single value for each of the following

packet fields: ip.dst, ip.dsfield.ecn, ip.flags.df and tcp.window_size.

6.5.2 Signature Classification Accuracy

In this subsection, we evaluate the detection accuracy of the proposed Signature

Classification mechanism using two different Supervised Learning alternatives: (i)

Random Forests (RF) consisting of 100 decision trees with default parameters of the

sklearn library for tree structure and stopping [91] and (ii) Multilayer Perceptron (MLP)

of 9 input neurons corresponding to the selected features, 19 hidden and a single output

node for classification. The MLP was trained using sigmoid as the activation function,

early stopping for the number of epochs, batches equal to 2048 and Adam method [92]

for weight updates with learning rate α = 0.01. The validation dataset was set equal to the

30% of the training dataset.

We considered various training scenarios (in total 30) using each unique combination of

benign and malicious traffic datasets for:

0

20

40

60

80

100

0 10 20 30 40 50 60

K
p
p
s

Time (s)

TCP SYN Attacks Packet Rate

A1 A2 A3 A4 A5

 79

 Each method (RF, MLP)

 Each attack dataset Ai, where i = 1...5

 The benign dataset B1

 Each time window (5s, 10s, 30s)

Resulting trained models were used to test the accuracy of our schema for the same time

window. The test datasets consist of the benign dataset B2 not used for training and the

attack datasets Ai. This correspond to a total of 5 testing scenarios.

Figure 6.3: True Positive Rate for training/testing scenarios combining benign and malicious TCP SYN traffic

In Figure 6.3, we present results for the aforementioned training and testing scenarios.

Specifically, we illustrate the True Positive Rate - TPR, which is the percentage of the

attack traffic that was classified as malicious. We do not present results for the True

0%

20%

40%

60%

80%

100%

A1/B1 A2/B1 A3/B1 A4/B1 A5/B1

T
P

R
 (
%

)

Training Dataset

RF - TPR (5s)

A1/B2

A2/B2

A3/B2

A4/B2

A5/B2

Test

Dataset

0%

20%

40%

60%

80%

100%

A1/B1 A2/B1 A3/B1 A4/B1 A5/B1

T
P

R
 (
%

)

Training Dataset

MLP - TPR (5s)

A1/B2

A2/B2

A3/B2

A4/B2

A5/B2

Test

Dataset

0%

20%

40%

60%

80%

100%

A1/B1 A2/B1 A3/B1 A4/B1 A5/B1

T
P

R
 (
%

)

Training Dataset

RF - TPR (10s)

A1/B2

A2/B2

A3/B2

A4/B2

A5/B2

Test

Dataset

0%

20%

40%

60%

80%

100%

A1/B1 A2/B1 A3/B1 A4/B1 A5/B1

T
P

R
 (
%

)

Training Dataset

MLP - TPR (10s)

A1/B2

A2/B2

A3/B2

A4/B2

A5/B2

Test

Dataset

0%

20%

40%

60%

80%

100%

A1/B1 A2/B1 A3/B1 A4/B1 A5/B1

T
P

R
 (
%

)

Training Dataset

RF - TPR (30s)

A1/B2

A2/B2

A3/B2

A4/B2

A5/B2

Test

Dataset

0%

20%

40%

60%

80%

100%

A1/B1 A2/B1 A3/B1 A4/B1 A5/B1

T
P

R
 (
%

)

Training Dataset

MLP - TPR (30s)

A1/B2

A2/B2

A3/B2

A4/B2

A5/B2

Test

Dataset

 80

Negative Rate - TNR (the percentage of benign traffic classified as benign), as the TNR

for both ML methods and all time windows was above 99%. The results presented in

Figure 6.3 correspond to average values of 100 training-testing experiments to account

for random variations in our supervised ML methods. This number was selected based on

our experience as a reasonable choice to dampen statistical outlier values.

As illustrated in Figure 6.3, when a model is trained with one of {A1, A2, A3} attack

datasets, it can accurately detect attacks in the same group, regardless of the time window.

This also happens for the group of {A4, A5} since attacks of the same group have common

characteristics as mentioned earlier (see Table 6.3). Moreover, when both classification

algorithms (RF, MLP) are trained with A5, they can accurately identify all attacks. This

is attributed to A5 characteristics; namely, low packet rate (compared to the other attacks),

that enables both algorithms to identify greater frequencies of packet features as attacks.

In general, RF is a consistent method to identify TCP SYN attacks, provided the training

dataset is similar to the test dataset (e.g. training dataset A2 - test dataset A1 or A3). The

accuracy of this model increases as the duration of the time window increases; however,

it does not always detect attacks that deviate from the training dataset (e.g. training dataset

A1 - test dataset A4 or A5). In contrast, the MLP model identifies for every training

scenario all other attacks with high accuracy, illustrating significant generalization

capabilities. Notably, it achieves remarkable accuracy even within shorter time windows,

e.g. 5s.

In total, our signature classification mechanism achieves high TPR identifying almost all

malicious signatures without significant benign traffic misclassification (this was lower

than 1% in all our experiments).

6.5.3 Signature Reduction Evaluation

In this subsection, we evaluate our signature reduction mechanism based on the solutions

generated by NSGA-II. All signatures were extracted from each attack dataset Ai and

benign dataset B1. Each combination (Ai+B1) was used as an input to the proposed

signature reduction mechanism. In Table 6.4, we present for each dataset combination all

solutions that resulted from 100 different executions of the NSGA-II. The maximum

processing time for each execution was limited to 20s.

 81

For each solution in Table 6.4, we illustrate the percentage of dropped benign traffic (%),

the number of reduced signatures and the total signature reduction (%) based on the total

number of signatures of each attack Ai. Note that bold values in the following Table

correspond to Pareto-optimal solutions.

Table 6.4: Signature Reduction solutions provided by NSGA-II

Datasets
Benign Traffic

Dropped (%)

Total

Signatures

Signatures

(reduced)

Signature

Reduction (%)

A1 + B1

0

758078

1

99.999
0.0002 1

0 3

0.0006 3

0 15

A2 + B1
0

1070311
1

99.999
0.0006 1

0 4

A3 + B1

0

1331799

1

99.999 0.0006 1

0 4

0.0002 4

A4 + B1

0.151

3417663

1

99.999

0.17 1

1.398 1

1.401 1

2.123 1

2.126 1

0.031 2

0.177 2

0.229 2

0.643 2

A5 + B1

0

1494425

1

99.999
0.001 1

0 3

The results Table 6.4 demonstrate that our mechanism significantly reduced the number

of signatures (ranging from hundreds of thousands to millions) to a small set of filtering

rules (99.99% reduction). The generated solutions provide signatures that can fully block

the offending traffic, without affecting significant portions of the benign traffic.

 82

Note that our experiments demonstrated a dramatic signature reduction. This is due to

specific packet field values of the attacks we captured and may vary under different attack

scenarios. Similar observations have been reported by Cloudflare in [93].

6.5.4 SYN Flood Mitigation Performance

In this subsection, we assess the packet filtering performance of the proposed Mitigation

mechanism using two variants: (i) BPF MAP and (ii) STATIC. The former employs a BPF

Map for storing signatures while the latter constructs signatures via appropriate static if-

else statements [22]. These were compared in terms of packet filtering performance to

(iii) the SYN Cookies approach, that we also implemented in XDP.

Synthesized traffic was generated based on attack dataset A1 and replayed at 10 Million

packets per second (Mpps). We compare the performance of each approach (i), (ii), and

(iii) based on the percentage of traffic that they can successfully drop. Note that we used

a single core for packet filtering in our experiments. For the two variants of our

mechanism, we employed 3 signatures (see third row of Table 6.4).

Table 6.5: SYN Flood mitigation performance

XDP Implementation Packets blocked (%) out of 10Mpps

BPF MAP 70%

STATIC 92%

SYN cookies 47%

Both variants of our approach achieve greater packet filtering performance than the SYN

cookies (from 47% to 70% and 92%). This is attributed to the complex operations that are

required to be done for each SYN packet in the SYN cookies technique, i.e. cookie

calculation, IP/TCP checksums. In contrast, our signature-based approach matches

specific packet fields and drops the offending traffic. In case signatures are constructed

via appropriate if-else statements, memory lookups are fully avoided and thus packet

filtering performance increases even further. Note that, our approach apart from

significantly outperforming the SYN Cookies mechanism, does not generate backscatter

traffic that may introduce further congestion.

 83

6.6 Summary & Concluding Remarks

In this section we proposed a signature-based detection and mitigation schema for SYN

Flood attacks. Our schema collects and analyzes, within time windows, appropriate

packet data forming signatures. These are subsequently used as input to supervised

Machine Learning models that detect SYN attacks, identify victims, and isolate malicious

signatures. TCP traffic to the victim is redirected to high-performance programmable

XDP-enabled firewalls that mitigate identified attacks. Malicious signatures are

employed to block the offending traffic, after being subjected to a reduction process to

enhance mitigation performance. Signature reduction was formulated as a multi-objective

optimization problem that attempts to simultaneously minimize the number of filtering

rules and collateral damage on benign traffic.

Our approach was evaluated both in terms of detection accuracy and packet filtering

performance. The conducted experiments illustrated high detection accuracy for real

benign and malicious traffic. Notably, our mechanism dramatically reduced the number

of signatures (filtering rules) required to block the considered attack datasets. Moreover,

our approach outperformed the state-of-the-art SYN Flood mitigation mechanism, i.e.

SYN cookies.

In the next section, we extend the work proposed in this section to volumetric attacks.

Moreover, we consider an automated way for selecting packet fields for signature

formulation, minimizing the human intervention in the initial feature selection. Finally,

we perform a thorough comparison between signature-based and the state-of-the-art flow-

based classification/filtering mechanisms.

 84

7 Signature-Based Traffic Classification and Mitigation:

Volumetric DDoS Attacks

Distributed Denial-of-Service (DDoS) attacks mitigation typically relies on source IP-

based filtering rules; these may present scaling issues due to the vast number of involved

sources. In this section, we propose a source IP-agnostic DDoS traffic classification and

filtering schema for volumetric attacks that identifies malicious packet signatures via

supervised Machine Learning methods and subsequently generates signature-based

filtering rules. To accelerate packet processing, our schema utilizes XDP middleboxes

operating as programmable Deep Packet Inspectors. Signatures are extracted from

network traffic as unique combinations of the most significant packet features; these are

subsequently fed to supervised Machine Learning algorithms that classify them as

malicious or benign. Malicious signatures undergo a reduction process tailored to the

attack vector to generate a concise set of filtering rules, thus expediting mitigation

performance. Our schema was implemented as a proof-of-concept and evaluated for DNS

volumetric attacks in terms of signature classification accuracy and packet filtering

throughput. Experiments were based on benign and malicious traffic datasets recorded

in production network environments. Our approach was compared to source-based

mechanisms in terms of (i) malicious traffic identification, (ii) filtering rules cardinality,

and (iii) packet processing throughput required in modern high-speed networks. The

experimental results demonstrate that our signature-based approach outperforms IP-

based alternatives, achieving high detection accuracy and significant generalization

capabilities.

7.1 Motivation

Distributed Denial-of-Service (DDoS) attacks originate from compromised hosts and/or

exploited vulnerable systems producing traffic from a large number of sources [94]. Such

attacks are continuously increasing in frequency and magnitude [95].

Legacy DDoS protection mechanisms maintain statistics based on source IP or network

flows to detect and ultimately mitigate malicious traffic. Maintaining flow/IP-based

metrics requires data from lengthy time-windows that may hinder real-time identification

of malicious traffic and the subsequent mitigation. Moreover, traditional filtering

mechanisms rely on IP-based rules that increase proportionally to the number of alleged

 85

malicious sources. In massive attacks that may include millions of source IPs [94], such

a filtering approach raises scalability issues [72], [96].

To counter the shortcomings of IP-based schemes, we propose a source IP-agnostic DDoS

protection mechanism that classifies and mitigates network attacks based on packet

signatures, i.e. unique combinations of packet field values. Motivated by our effort on

SYN Flood attacks in section 6, we consider DDoS Amplification (volumetric) attacks,

commonly used to overwhelm network infrastructures. The proposed approach relies on

the widely observed fact that these attacks may be characterized by a modest number of

salient packet characteristics [94]. Consequently, our schema attempts to dynamically

reveal related packet characteristics (signatures) and use them as filters to block the attack

traffic in a scalable fashion.

In a nutshell, the proposed mechanism continuously monitors the network traffic and

extracts packet signatures based on the most important features tailored to an attack vector

(e.g. DNS or NTP Amplification attacks). Packet signatures are classified via supervised

Machine Learning (ML) algorithms, appropriately trained with benign and malicious

traffic, focusing on distinct packet fields (features). Malicious signatures are further

subjected to a reduction process before being employed as filtering rules to expedite

mitigation performance. The reduced set of signatures is finally deployed on high-

performance programmable scrubbing middleboxes.

The remainder of this section is structured as follows: Section 7.2 contains background

information and discusses related work; Section 7.3 offers an overview of the proposed

architecture; Section 7.4 provides implementation details of the proposed Signature-based

Traffic Classification and Mitigation schema; Section 7.5 provides experimental

evaluations for volumetric DNS attacks regarding processing performance and detection

accuracy. Finally, Section 7.6 summarizes this section and discusses future steps.

7.2 Related Work & Contributions

There are various efforts reported in the literature that attempt to classify and filter DDoS

attacks. In subsections 7.2.1, 7.2.2 below, we present related flow-based and signature-

based schemes accordingly. Subsection 7.2.3 emphasizes on our key contributions with

regards to the state-of-the-art mechanisms.

 86

7.2.1 Flow-based Classification and Filtering

In [61], a DDoS traffic classification schema based on a Multilayer Perceptron (MLP)

was introduced. Traffic metrics related to flows and packet rates (UDP, ICMP) are

collected and used as input to an MLP, tasked with classifying network traffic to

benign/malicious.

In [17], an OpenFlow (OF) DDoS detection mechanism was presented. This collects

periodically entries from OF-enabled network devices, extracts flow-related features and

classifies them using Self-Organizing Maps (SOM). In [62], an SDN DDoS detection and

mitigation schema was proposed. Sharp increases in the rate of Packet-In messages are

considered as an indication of DDoS attacks; subsequently a mitigation pipeline is

triggered. OpenFlow rules are collected from network devices and classified via an

appropriate MLP that uses the same feature set as in [17]. Malicious flows are then

blocked via appropriate mitigation entries in OF-enabled devices.

In [63], a large set of flow-related features is extracted from packets and sent to OF

Controllers. These features are used as input to a Stacked Autoencoder (AE), which

classifies flow as benign or malicious. Authors highlight processing limitations in

Controller-based packet collection and feature extraction.

In [58], a two-level protection schema was introduced. Initially, entropy values are

calculated for the number of destination IPs and ports, with sudden changes indicating an

ongoing attack. The victim is identified and traffic destined towards its IP is redirected to

an OF-enabled switch. This device acts as a second, more refined level of detection, that

uses packet symmetry to identify malicious flows. Malicious flows are subjected to

source IP-based aggregation to reduce the required blocking rules. Finally, filtering rules

are deployed to the OF switch while benign traffic is redirected back.

In [64] ATLANTIC, an SDN framework for DDoS attack detection and mitigation, was

proposed. Entropy changes for specific flow features within consecutive time-windows

indicate the existence of an attack. Network flows responsible for entropy changes are

fed in a traffic classification component based on K-means and Support Vector Machines

(SVM). K-means is used initially to create clusters of common flows and SVM is further

used to identify malicious flows. Subsequently, drop rules are installed for malicious

flows.

 87

A flow-based traffic classification mechanism was suggested in LUCID [66]. Flow values

are collected from different time windows and represented as arrays; subsequently these

arrays are fed to a Convolutional Neural Network (CNN) to identify time-dependent

traffic patterns. Attack mitigation was not addressed in the LUCID paper.

7.2.2 Signature-based Classification and Filtering

Signature-based traffic classification and filtering is commonly featured in Intrusion

Detection/Prevention Systems (IDS/IPS), e.g. Suricata [97]. Network packets are

monitored and their packet field values are compared to predefined sets of malicious

signatures. Notably, the widely employed DDoS detection tool FastNetMon [60], relies

on static rules to identify Amplification attacks. Although these approaches are able to

instantly identify previously observed attack patterns, they are not able to detect zero-day

threats.

By contrast, in [98] a tool for extracting zero-day attack signatures was proposed; upon

the detection of an attack, their system analyzes both benign and attack packets.

Signatures suddenly appearing in high frequency in the network traffic are attack

indicators, while evenly distributed signatures usually characterize benign traffic.

In [65] DeepDefense, a DDoS detection schema based on Recurrent Neural Networks

(RNN) was introduced. Traffic traces, collected within sliding time windows, are

translated into arrays of packet features. These are fed to an RNN that segregates

malicious from benign packets.

Finally, Cloudflare, currently one of the largest Content Delivery Networks (CDN) that

also offers DDoS protection services, employs packet signatures to filter malicious traffic

[93]. To the best of our knowledge, the exact methods for traffic classification and

signature-based filtering are not publicly available and thus we cannot compare our

approach with them.

7.2.3 Key Contributions

Our key contributions can be summarized as follows:

 Most of the reported efforts in the literature employ metrics aggregated by IP

addresses or network flows for traffic classification [17], [61]–[64]. In contrast,

 88

we focus on the most appropriate packet features to identify malicious signatures

based on Supervised Learning algorithms. Due to their enhanced generalization

capabilities, these can accurately identify zero-day (unseen) attacks

(outperforming static approaches [60]).

 We exploit common characteristics observed in the attack traffic to generate

appropriate signature-based filtering rules. These are subjected to a reduction

process that minimizes their number and expedites the mitigation performance.

 Our approach does not require collection of data over lengthy time-windows and

corresponding time references as in [65], [98]. Instead, current packet field values

are used, thus expediting detection and mitigation of attack traffic with no

significant deterioration of classification accuracy.

 We propose a dynamic, tunable yet high-performance scrubbing mechanism

based on programmable software data planes (XDP). Unlike proprietary

monolithic solutions, our approach offers programmable monitoring and filtering

functionalities without compromising on packet processing performance.

 We conducted detailed experiments focusing on volumetric DNS attacks; we

employed high packet rates and real network data (benign and malicious) to

illustrate the applicability of our mechanism in production network environments.

7.3 Design Principles & Architectural Overview

In this section, we outline design principles and present a baseline overview of the

proposed Signature-based Traffic Classification and Mitigation architecture.

7.3.1 Design Principles

The main design principles of our mechanism are summarized below:

Signature-based filtering: We opt to surgically mitigate DDoS attacks focusing on

distinct packet feature combinations (signatures) exhibited by offending traffic. Unlike

traditional DDoS defense mechanisms that rely on blocking a massive number of IP

sources, our approach attempts to generate IP-agnostic filtering rules.

Filtering rules reduction: Filtering rules are stored within network devices (switches,

routers, firewalls) that typically impose limits to the number of entries they can support.

To reduce their number, source-IP based procedures [58], [72] employ IP aggregation

 89

techniques. Our signature reduction mechanism identifies instead a concise set of rules

required to block an attack, with minimal effect on benign traffic.

Traffic classification based on supervised Machine Learning (ML) algorithms: Our

approach is trained using packet characteristics from normal (benign) traces and past

attack incidents. The learning process can be tailored to specific network environments,

thus enhancing classification accuracy. To that end, the employed features should be

carefully selected and tuned depending on anticipated attack vectors.

High performance scalable Network Functions based on programmable middleboxes:

Typically, traffic monitoring and filtering functionalities are implemented by monolithic

appliances. In contrast, we opted to use COTS hardware (i.e. low-cost NICs) as data plane

programmable appliances powered by the XDP framework. This enables online packet

handling without imposing control plane processing overhead. XDP-enabled appliances

can be instantiated on-demand and scaled according to traffic and application

requirements, thus providing a suitable mechanism for cloud-based scrubbing services.

7.3.2 Architectural Overview

In Figure 7.1, we present a high-level overview of the proposed architecture for DDoS

protection, applicable either in transit provider networks or customer/edge network

domains. Our mechanism consists of four separate components that offer: (a) Signature

Extraction, (b) Signature Classification, (c) Signature Reduction and (d) Anomaly

Mitigation. In what follows, we outline the DDoS detection and mitigation workflow

referring to steps i – vi illustrated in Figure 7.1.

Benign and malicious traffic originating from various Internet sources traverses through

a network infrastructure equipped with programmable devices. Network traffic is

continuously monitored (step i) in the data plane by the Signature Extraction component.

This component employs high-performance programmable mechanisms (e.g. XDP) to

extract appropriate packet fields, i.e. signatures, pertaining to different attack vectors.

Note that these fields should be selected after careful examination of benign and malicious

traffic for a specific exploited protocol. Our methodology for selecting the most important

packet fields (features) will be presented in subsection 7.4.1; note that the proposed

method is not limited to a specific attack vector.

 90

Figure 7.1: High-Level Overview of the Signature-based Traffic Classification and Filtering Architecture

Extracted monitoring data (signatures) are organized per destination IP address and

relayed (step ii) to the Signature Classification component, a control plane module that

categorizes them as either benign or malicious. This component relies on classification

methods based on supervised ML algorithms that have been trained with attack and

benign traffic. Malicious signatures identify ongoing attacks targeting specific IP

addresses (victims). Classified signatures are subsequently employed for mitigation rule

generation (step iii) via the Signature Reduction component that expedites mitigation

performance. This reduction process is formulated as a multi-objective (Pareto)

optimization problem. Specifically, combinations of the most important packet features

are explored to identify a smaller feature set that minimizes the number of malicious

signatures for an acceptable level of benign traffic drops. The selection of a Pareto optimal

pair is based on DDoS Protection service operator preferences.

Finally, the reduced set of signatures is conveyed (step iv) to the Anomaly Mitigation

component, that acts as a traffic scrubbing mechanism in the data plane. Data packets

 91

destined to the victim IP are redirected to this component (step v) via appropriate traffic

diversion techniques. Malicious packets are dropped while benign traffic is returned back

to the router (step vi) to be forwarded to the destination IPs.

Extraction, classification and reduction of signatures, as well as mitigation rule

generation, are performed continuously in distinct intervals (time-windows). Selected

intervals should be small (e.g. 10 seconds) to enable rapid propagation of information and

ultimately prompt accurate traffic scrubbing.

7.4 Packet Feature Selection & DDoS Protection Detailed Architecture

Our methodology for packet feature selection and implementation details of the

components shown in Figure 7.1 are presented in the following subsections.

7.4.1 Packet Feature Selection Methodology

Packet header fields forming signatures are of paramount importance for our mechanism.

They are used to (i) classify packets to malicious/benign and (ii) create filtering rules for

blocking the offending traffic.

In DDoS Amplification attacks, vulnerable protocols and services are exploited in a very

specific manner for generating massive amounts of traffic. This traffic exhibits packet

characteristics that typically deviate from benign network traffic. In order to identify the

most important characteristics pertaining to a specific attack vector, we select the relevant

packet header fields (features) of each abused protocol. For that purpose, we employ the

methodology described below.

We start with an initial set of 𝑛 features 𝐹 = {𝐹1, 𝐹2, … 𝐹𝑛}, that includes (i) packet

header fields of an abused protocol (e.g. DNS) and (ii) IP packet Total Length and UDP

datagram Length fields (these values may differ in cases of IP fragmentation of large UDP

packets). The former may reveal packet field values that are employed for generating

large payloads in such attacks. The latter may correspond to large values, typical for

DDoS Amplification [2].

The packet header field selection algorithm uses both benign and malicious traffic for an

attack vector to train a Random Forest (RF) classifier based on a training dataset T of

examples with 𝐹 features. The RF training process provides (i) the Out-Of-Bag (OOB)

 92

score, a metric that shows the accuracy achieved on examples that were not included in

the training process of each decision tree [99] and (ii) the importance of each feature [91].

High values of OOB score illustrate that the employed fields can be used to accurately

classify benign and malicious packets. The feature selection pseudocode is:

Packet Header Field Selection Algorithm

Input: Training Dataset T, Packet Features F={F1, F2, …Fn}

Output: Packet Features F'={F1, F2, …Fm}

1: (OOB𝑛, Franked)←Random Forest (T, F)

2: Franked←sort_descending(Franked)

3: for each q ∈ [1, n) do:

4: m = n-q

5: F' = TOP m entries from Franked

6: OOB𝑚←Random Forest (T, F')

7: if (OOB𝑛 - OOB𝑚) ≥ ε then

8: return F'

9: end for

The RF feature importance metric enables the selection of 𝑚 < 𝑛 important features

according to the above iterative process, see also [100]. As a result, we obtain a reduced

set of features 𝐹′ = {𝐹1, 𝐹2, … 𝐹𝑚} that are used for packet monitoring, traffic

classification, signature reduction and attack mitigation purposes.

The elimination of non-important features (selecting 𝑚 most important ones) has the

following benefits for our schema: (i) increased packet throughput of Signature

Extraction and Anomaly Mitigation components of Figure 7.1 since fewer packet fields

are required to be parsed and stored; (ii) enhanced accuracy and shorter training times of

Supervised Learning algorithms; (iii) lower complexity of the Signature Reduction

component due to the lower dimensionality of its input.

7.4.2 Signature Extraction

The Signature Extraction (SE) component is a high-performance monitoring mechanism

based on the XDP framework. It collects mirrored network traffic, extracts appropriate

packet fields, and conveys monitoring data to the Signature Classification (SC)

component, as illustrated in Figure 7.2.

The combination of packet feature values can be represented by the signature vector X =

[x1 x2 … xm]T, where xi is the value for packet field i. Each unique signature X corresponds

 93

to a row in the Monitoring Data Table of Figure 7.2. Every observed packet signature

pertains to a counter stored within an appropriate BPF Map (i.e. hash table).

SE consists of various instances, each associated with a specific attack vector. They all

contain a Data Extractor and a Data Exporter module:

 The Data Extractor is a kernel space XDP (data plane) program that extracts and

stores packet header values for the preselected fields 𝐹′, including the destination

IP address. Destination IPs are required for the identification of the victim and

subsequent traffic scrubbing (redirection and filtering).

 The Data Exporter is a user space program that periodically retrieves the contents

(i.e. signatures) of the BPF Map and conveys them to the SC component.

Note that the SE component could be implemented using any approach that provides

access to packet fields such as sFlow [74]. We opted for XDP since it provides cost-

effective high-throughput monitoring of all packets (no sampling) and does not exhibit

limitations on the available packet fields to be collected.

7.4.3 Signature Classification

The Signature Classification (SC) component collects monitoring data and classifies them

using supervised Machine Learning (ML) methods to identify malicious signatures. It

consists of the Data Handler and the ML Classifier module. The Data Handler module

collects the different signatures X relayed by the SE component and preprocesses them

(if needed) in a data normalization step. In turn, the set of X is used as input to the ML

Classifier module which classifies them as benign/malicious. This module is trained with

malicious and benign traffic datasets related to a specific protocol (e.g. DNS attacks and

benign DNS traffic).

Malicious signatures correspond to ongoing attacks targeting specific IP addresses

(victims). The mitigation process for the victim IP addresses is initiated by conveying

malicious and benign signatures to the Signature Reduction (SR) component to generate

filtering rules (see the following subsection).

 94

Figure 7.2: Signature-based Traffic Classification and Filtering Detailed Architecture

7.4.4 Signature Reduction

The Signature Reduction (SR) component receives both malicious and benign signatures

from the SC component and reduces the number of malicious signatures to expedite the

mitigation performance of the Anomaly Mitigation (AM) component. As mentioned,

malicious signatures will be used to generate filtering rules. These are stored in memory

resources (i.e. BPF Maps in the XDP context) that enable packet matching in the data

plane. Their number significantly affects the deployment and lookup time in the BPF

Map, which is ultimately related to the AM packet processing performance (throughput).

 95

The SR component searches for a concise set of signatures that can block offending

traffic, with minimal effect on the benign traffic. This was formulated as a multi-objective

(Pareto) optimization problem, in which we search for feature subsets 𝐹′′ =

{𝐹1, 𝐹2, … 𝐹𝑘} of the feature set 𝐹′ = {𝐹1, 𝐹2, … 𝐹𝑚}, 𝑘 < 𝑚, to identify operating points

that simultaneously minimize:

(i) the number of malicious signatures (filtering rules)

(ii) the percentage of benign traffic drops

Let 𝑀′ and 𝐵′ be the sets of malicious and benign signatures respectively based on

features from 𝐹′. For each subset 𝐹′′, we similarly define 𝑀′′ and 𝐵′′ using only the

features in 𝐹′′. Objective (i) is calculated as the number (cardinality) of unique signatures

in 𝑀′′. Objective (ii) is the number of benign packets that correspond to the signatures in

𝑀′′ ∩ 𝐵′′ divided by the number of benign packets that correspond to signatures in 𝐵′′.

This provides the percentage of benign traffic that would be dropped (False Positive Rate)

if we used as filtering rules the signatures in 𝑀′′. Note that the intersection 𝑀′ ∩ 𝐵′ is an

empty set; however, the intersection 𝑀′′ ∩ 𝐵′′ may result to non-empty sets in the reduced

feature space 𝐹′′, corresponding to False Positive cases.

The proposed optimization problem points to Pareto optimal solutions (referred to as

Pareto-optimal front). However, due to stringent time constraints for attack mitigation,

related algorithms would typically stop prior to Pareto-optimal front identification. We

opted for a fast evolutionary approach based on Non-dominated Sorting Genetic

Algorithm-II (NSGA-II) [88]. The algorithm starts with arbitrary subsets 𝐹′′ ⊂ 𝐹′ and

iteratively attempts in each step to further reduce the objectives. At each iteration

(generation), new subsets of 𝐹′ are generated based on random combinations of 𝐹′′ that

correspond to the best solutions produced so far in previous iterations. The algorithm

stops when a time limit is reached thus generating suboptimal subsets.

As stated above, the proposed approach will generate several solutions near the Pareto-

optimal front. Naturally, only one of them can be ultimately selected for mitigating the

attack. This selection should be tuned per customer network profile to depict network

operator preferences, e.g. acceptable percentage of dropped benign traffic (False Positive

Rate). Finally, from the selected solution, signatures of 𝑀′′ are conveyed to the AM

component to generate filtering rules.

 96

7.4.5 Anomaly Mitigation

The Anomaly Mitigation (AM) component is a high-performance programmable firewall

based on the XDP framework. It consists of two modules: the Rule Handler and the

Packet Filter. The former receives a list of malicious signatures associated with a victim

IP, installs them as filtering rules in a BPF Map and triggers traffic redirection for the

targeted victim IP. The latter is an XDP kernel space program similar to the Data

Extractor module of the SE component. The Packet Filter receives traffic destined to the

victim IP and extracts the packet fields based on the reduced set of signatures 𝐹′′. The

extracted packet fields values are subsequently compared to the filtering rules within the

BPF Map. If the combination of packet fields (i.e. signature) of the received packet is

contained in the BPF Map, the packet is dropped (XDP_DROP). Otherwise, the packet

is considered benign and transmitted back (XDP_TX) to the edge router to be normally

forwarded to the victim IP. For implementation options related to traffic redirection and

reinjection see [69].

Note that SE can be implemented with alternate monitoring solutions (e.g. sFlow) that

can extract packet characteristics. However, the AM component is tightly coupled with

programmable data planes solutions, such as XDP, able to perform inline packet filtering

based on selected packet fields.

7.5 Experimental Evaluation: DNS Amplification attacks

We selected as a case study volumetric DNS attacks, one of the most common DDoS

Amplification attack vectors. We evaluate our schema in an experimental testbed,

employing real datasets and synthetic network traces as detailed in subsection 7.5.1

below. In short, our experiments attempt to: (i) identify and select the most important

features for DNS traffic classification, (ii) assess the signature classification accuracy of

Supervised Learning algorithms, and (iii) compare the proposed signature-based

approach to source IP/flow-based alternatives.

7.5.1 Datasets Description/Testbed

Our proof-of-concept testbed is illustrated in Figure 7.3. The experimental setup was used

to evaluate packet monitoring, signature classification, signature reduction, and packet

filtering capabilities. The SE and AM components were implemented within the XDP

 97

framework in the data plane. They were deployed on a physical machine (XDP-enabled

node) equipped with a Netronome Agilio CX 2x10G SmartNIC. For packet generation

purposes, we used a Virtual Machine (VM), equipped with an Intel X520 NIC 2x10G,

able to generate packets at high rates using the PF_RING ZC framework. The SC

component was implemented using the scikit-learn and PyTorch libraries while the SR

component was based on the Platypus framework [90]. They were both deployed as

control plane modules on a VM equipped with 12 vCPUs and 12GB RAM.

Figure 7.3: Proof-of-concep testbed setup

Real network traces were used to assess the signature classification accuracy of our

schema, whereas synthesized traffic was used for stress testing packet filtering

capabilities. As benign traffic, we used DNS responses from: (i) a 10G transit link

between WIDE and DIX-IE (an experimental Internet Exchange), henceforth WIDE-G

[80], (ii) a 1G transit link between WIDE and an upstream provider, henceforth WIDE-F

[80], and (iii) Thapar University Campus Network, henceforth TU Campus [101]. As

malicious traffic, we used the Booters datasets. These datasets, henceforth individually

referred to as B1, B2, … B7 or collectively as Booters, contain seven different DNS-based

Amplification attacks generated by DDoS-for-Hire services. The attacks [2] were

captured during a controlled experiment conducted between the University of Twente and

SURFnet, the Dutch Research and Education Network.

All Booters attacks apart from B4 and B5 used type ANY DNS responses, a commonly

used method for DNS Amplification attacks that returns every available Resource Record

 98

(RR) for a given fully qualified domain name. In B4 and B5 attacks, the attackers

attempted to use type A requests. Specifically, B4 contains multiple responses for the

domain packetdevil.com, a domain name that resolves into a very large number of IP

addresses in the DNS response payload. By contrast, B5 corresponds to a type A attack,

that could not generate responses with heavy payload.

7.5.2 Packet Field (Feature) Selection for DNS Amplification attacks

In this subsection, we evaluate the packet header field selection algorithm for three

different combinations of benign and malicious DNS traffic. Initially, we selected the 20

packet fields (features) presented in the Table below:

Table 7.1: Packet header fields (features) for DNS Traffic Classification

Packet Fields Short Description Packet Fields Short Description

ip.length IP packet size in bytes
dns.flags.

recdesired

specifies whether recursion is

desired (1) or not (0)

udp.length UDP datagram size in bytes dns.flags. recavail

specifies whether recursive query

support is available (1) in the name

server or not (0)

dns.id
identifies uniquely a DNS

transaction
dns.flags.z reserved field for future use

dns.flags.

response

specifies whether the message is

a query (0) or a response (1)

dns.flags.

authenticated

indicates in a response that all data

included in the answer and

authority portion of the response

has been authenticated by the server

(1) or not (0)
dns.flags. opcode

specifies the kind of the query

e.g. standard DNS query

dns.flags.

checkdisable

indicates in a query that non-

authenticated data is acceptable to

the resolver sending the query (1)

or not (0)

dns.flags.

authoritative

specifies whether the

responding DNS server is

authoritative (1) or not (0) for

the requested domain name

dns.flags. rcode

indicates the response code for the

specified request e.g. the name

server refused to respond

 99

dns.flags.

truncated

specifies whether the message is

truncated (1) or not (0)

dns.count. add_rr number of RRs in the additional

records section

dns.count.

queries

number of entries in the

question section

dns.qry.name variable length field terminated by

the zero-length byte, specifying the

requested domain name

dns.count.

answers

number of Resource Records

(RRs) in the answer section

dns.qry.type specifies the type of the query

dns.count.

auth_rr

number of name server RRs in

the authority records section

dns.qry.class specifies the class of the query e.g.

IN for the Internet class

Employing the features of Table 7.1, we trained three different Random Forest (RF)

classifiers consisting of 100 decision trees with default parameters of the scikit-learn

library for tree structure and stopping [91];

Figure 7.4: Feature Importance provided by Random Forest Classifiers for DNS Traffic

each one includes all Booters traffic and a particular benign dataset (WIDE-G, WIDE-F,

TU Campus). The selected features except for dns.qry.name correspond to numerical

0 0.05 0.1 0.15 0.2 0.25 0.3

dns.flags.response

dns.flags.z

dns.count.queries

dns.qry.class

dns.flags.opcode

dns.flags.authenticated

dns.flags.truncated

dns.flags.rcode

dns.id

dns.count.auth_rr

dns.flags.checkdisable

dns.flags.authoritative

dns.qry.name

dns.flags.recavail

dns.count.add_rr

ip.length

udp.length

dns.flags.recdesired

dns.count.answers

dns.qry.type

Importance

F
ea

tu
re

s

Feature Importance

TU Campus WIDE - G WIDE - F

 100

values and were fed directly to the RF classifiers; dns.qry.name was transformed to a

numerical value via hash encoding. In Figure 7.4, we depict the importance of each

feature for the different combinations of datasets, as computed by the scikit-learn library.

The reported values correspond to the average feature importance for multiple training

iterations.

In order to identify the most important features, we employed for each dataset

combination the iterative process described in subsection 7.4.1. The threshold ε (line 7 in

Packet Header Field Selection Algorithm pseudocode) was set equal to zero. In Table

below, we present the most important features that the algorithm produced for each

dataset:

Table 7.2: Most important packet fields for DNS Traffic Classification

Booters+WIDE-G Booters+WIDE-F Booters+TU Campus

dns.qry.type dns.flags.recdesired dns.qry.type

dns.count.answers dns.flags.recavail udp.length

dns.flags.recdesired dns.flags.authoritative dns.count.answers

udp.length dns.count.answers ip.length

ip.length dns.qry.type dns.count.add_rr

dns.count.add_rr udp.length dns.qry.name

dns.qry.name ip.length -

- dns.qry.name -

One of the dominant features in all cases is the type of the query (dns.qry.type) since most

attacks in the Booters dataset rely on DNS type ANY messages to generate large volumes

of malicious traffic. The length of the IP packet and the UDP datagram are also important

features; benign DNS traffic mainly consists of small packets while DNS Amplification

attacks consist of large responses. Similarly, dns.count.answers and dns.count.add_rr can

also be used to identify malicious traffic, as these counters significantly increase in attack

cases. Furthermore, some of the attacks used the same dns.qry.name (root-servers.net for

B1, B2, B3, and anonsc.com for B6, B7) to generate large DNS packets, thus the hashed

 101

dns.qry.name may also enhance the accuracy of the resulting classification. Interestingly,

dns.flags.recdesired, dns.flags.recavail, and dns.flags.authoritative are of high

importance for the Booters+WIDE-F dataset combination. This follows from the fact that

most DNS responses in WIDE-F dataset (benign) were generated by iterative queries on

authoritative DNS servers, while in Booters (malicious) by recursive queries in non-

authoritative servers.

As expected, dns.flags.response, dns.flags.z, dns.count.queries, dns.qry.class,

dns.flags.opcode are of low importance for DNS traffic classification. These had almost

the same value for every packet, malicious or benign. In addition, based on our

experimental observations the features dns.flags.authenticated, dns.flags.truncated,

dns.flags.rcode, dns.id, dns.count.auth_rr and dns.flags.checkdisable do not improve the

Out-Of-Bag (OOB) score of the RF classifiers and thus have been removed.

In summary, the proposed packet field (feature) selection algorithm identifies a small set

of features out of the 20 initially chosen. These are used to accurately classify both benign

and malicious DNS traffic patterns. The classification results are based on diverse and

realistic traffic scenarios sourced from heterogeneous network environments.

7.5.3 Signature Classification Accuracy

In this subsection, we evaluate the signature classification accuracy of the proposed

mechanism, using two different Supervised Learning methods. We implemented two

classifiers: (i) Random Forests (RF) with 100 decision trees and (ii) an N x (2N+1) x 1

Multilayer Perceptron (MLP), with sigmoid activation functions, as suggested in [61]; N

is the number of features (see Table 7.2). The MLP was trained with examples of batch

size equal to 4096 and MLP weights were updated based on Adam method [92] with

learning rate α = 0.01. We used a single epoch with a validation dataset comprising 30%

of the training dataset. The training procedure was conducted separately for each unique

combination of the following:

 Each classifier (RF, MLP)

 Each benign dataset (WIDE-G, WIDE-F, TU Campus)

 Each set Ai = {Booters - Bi}, where i = 1 … 7, e.g. A4 = {B1, B2, B3, B5, B6, B7}

 102

There are 42 different dataset combinations. Each trained model is evaluated against a

mix of traffic (test dataset) based on the excluded attack dataset Bi and benign traffic from

the same origin (e.g. WIDE-G). Specifically, for WIDE-G and WIDE-F, we employed

two 15-minute traces for training and eight 15-minute traces as test dataset. Similarly, for

TU Campus we used two 1-hour traces for training and eight 1-hour traces as test dataset

respectively.

For MLP we employed undersampling techniques on the attack datasets as they contain

more signatures than benign datasets. Training data for MLP were also normalized in the

range of [0,1] to enhance classification capabilities. In Figure 7.5, we illustrate the True

Negative Rate (TNR) of all combinations, which is the percentage of benign traffic that

was classified as benign and the True Positive Rate (TPR), which is the percentage of

attack traffic classified as malicious.

Figure 7.5: True Negative and True Positive Rates for various training scenarios using Booters combined with

the benign datasets WIDE-F, WIDE-G and TU Campus

0%

20%

40%

60%

80%

100%

B1 B2 B3 B4 B5 B6 B7

Test Dataset

RF - WIDE-F
TNR TPR

0%

20%

40%

60%

80%

100%

B1 B2 B3 B4 B5 B6 B7

Test Dataset

MLP - WIDE-F
TNR TPR

0%

20%

40%

60%

80%

100%

B1 B2 B3 B4 B5 B6 B7

Test Dataset

RF - WIDE-G
TNR TPR

0%

20%

40%

60%

80%

100%

B1 B2 B3 B4 B5 B6 B7

Test Dataset

MLP - WIDE-G
TNR TPR

0%

20%

40%

60%

80%

100%

B1 B2 B3 B4 B5 B6 B7

Test Dataset

RF - TU Campus
TNR TPR

0%

20%

40%

60%

80%

100%

B1 B2 B3 B4 B5 B6 B7

Test Dataset

MLP - TU Campus
TNR TPR

 103

As illustrated in Figure 7.5, RF is a reliable method to identify both benign (WIDE-G,

WIDE-F, TU Campus) and attack traffic (Booters) patterns, provided it is trained with

diverse attack data. However, RF is not able to recognize attacks that significantly deviate

from the training attack pattern. This is clearly illustrated when the model is trained with

A4, which does not include B4 of the test dataset. Recall that B4 contains large DNS

responses with multiple type A RR for a domain name, while the training dataset (A4)

contains attack traces with type ANY DNS responses.

Similar to RF, MLP can identify benign and attack traffic with high accuracy for all

combinations of training data. However, MLP identified B4 as an attack, illustrating

significant generalization capabilities on detecting "unseen" (zero-day) attacks.

Note that B5 was not identified by any classifier as an attack trace. As already mentioned,

it corresponds to a failed attack that did not produce heavy payload, thus exhibiting

similarities to benign traffic. Interestingly, all classification mechanisms in our

experiments discovered attack data within the benign datasets (WIDE-F, WIDE-G). A

closer inspection of the original network traces revealed modest attack traffic, i.e.

consecutive type ANY responses from specific IP sources to the same destination IP.

These data were manually removed and are not included in Figure 7.5.

An interesting topic pertaining to ML algorithms are the training and test runtimes. With

regards to the former, i.e. training runtime, has limited impact to our mechanism since the

training process is conducted offline and the values are in any case in the order of seconds

for both models. Qualitatively, training runtimes for MLP were on average 11 times faster

than RF. The most important metric for us is the test runtime since it corresponds to real-

time signature classification (inference). These values were in the order of milliseconds

with MLP runtimes being on average 17 times faster than RFs. Such values are negligible

compared to the overall time-window during which our mechanism identifies and

mitigates DDoS attacks. This time-window (several seconds) includes packet monitoring,

signature classification and filtering rule deployment. To our knowledge, such time-

windows are consistent with production solutions offered by major security service

providers.

In summary, the proposed approach provides accurate classification of DNS

Amplification attacks and benign traffic. This was validated for 42 different

 104

training/testing scenarios utilizing real data from heterogeneous network environments.

Notably, MLPs achieved detection of "unseen" attack traffic patterns (not used in the

training process), illustrating better generalization capabilities compared to RF

classification algorithms. However, RF is still a reliable classification method, provided

that it is trained with diverse attack data.

7.5.4 IP-based vs Signature-based Protection Mechanisms

In the following subsections, we compare our signature-based schema to legacy IP-based

mechanisms e.g. [16], [17], [61]–[64]. We evaluate both approaches considering their (i)

ability to identify and filter malicious traffic, (ii) filtering rules cardinality, and (iii) packet

filtering performance.

7.5.4.1 Malicious Traffic Identification and Filtering

Typically, DDoS protection mechanisms collect monitoring data within time-windows

(TW) and utilize them to classify network traffic. Based on this classification, filtering

rules are generated and used to block the attack traffic. In this subsection, we compare

our signature-based protection mechanism to the optimal IP-based approach, that is able

to identify all malicious IP sources of an attack.

In our comparisons, we analyzed network traffic from the first time-window of each

attack dataset Bi and extracted the malicious DNS signatures (based on WIDE-F features)

and source IP addresses. Subsequently, we calculated from the whole attack dataset Bi

the traffic (in bytes) that corresponds to the extracted DNS signatures and IP sources

divided by the total attack traffic. This illustrates the percentage of the attack traffic that

is blocked by each approach based on monitoring data from the first time-window of the

attack. In Figure 7.6, we present for every Bi the dropped attack traffic (%) considering

various time-windows and packet sampling rates. Short TWs (e.g. 1s) allow for rapid

detection and mitigation. Sampling rate 1:1 corresponds to our XDP-based monitoring

approach (SE), while lower values correspond to sparse packet sampling, typically

employed in monitoring mechanisms e.g. sFlow [102].

Our signature-based approach outperforms the source IP-based alternative for all attack

scenarios and combinations of time-windows (TW) and sampling rates. This is attributed

to the fact that the attack traffic is characterized by a few number of DNS signatures,

typically distributed to multiple IP addresses. Decreasing the sampling rate reduces

 105

Figure 7.6: Comparison between source-based and signature-based protection mechanisms for Booters

significantly the effectiveness of the source-based mechanism especially for highly

distributed attacks (e.g. B1, B4, B6, B7). In contrast, our approach is not affected and is

able to successfully block most of the attack traffic (e.g. TW 1s - B3: 90%) even for the

lowest sampling rate 1:2000. As expected, increasing the time-window duration enables

both mechanisms to observe more data and thus filter more attack traffic. Notably, our

signature-based approach is able to filter a greater portion of the attack traffic (for packet

sampling cases lower than 1:1) than the IP-based counterpart, while using data from

shorter time-windows (grey bars – IP 10s vs yellow – signatures 1s bars). Note that, the

total blocked attack traffic using WIDE-G and TU Campus feature sets is on average for

all scenarios ~ 0.06% greater than WIDE-F and thus the corresponding results are not

reported.

0%

20%

40%

60%

80%

100%

1:1 1:200 1:500 1:1000 1:2000
Id

e
n
ti

fi
e
d

a
tt

a
c
k
 t

ra
ff

ic
 (

%
)

Sampling rate

B1

IP-based (TW 1s) IP-based (TW 5s) IP-based (TW 10s) Signature-based (TW 1s) Signature-based (TW 5s) Signature-based (TW 10s)

0%

20%

40%

60%

80%

100%

1:1 1:200 1:500 1:1000 1:2000A
tt

ac
k
 T

ra
ff

ic
 B

lo
ce

k
d

 (
%

)

Sampling rate

B1

0%

20%

40%

60%

80%

100%

1:1 1:200 1:500 1:1000 1:2000A
tt

ac
k
 T

ra
ff

ic
 B

lo
ce

k
d

 (
%

)

Sampling rate

B2

0%

20%

40%

60%

80%

100%

1:1 1:200 1:500 1:1000 1:2000A
tt

ac
k
 T

ra
ff

ic
 B

lo
ce

k
d

 (
%

)

Sampling rate

B3

0%

20%

40%

60%

80%

100%

1:1 1:200 1:500 1:1000 1:2000A
tt

ac
k
 T

ra
ff

ic
 B

lo
ce

k
d

 (
%

)

Sampling rate

B4

0%

20%

40%

60%

80%

100%

1:1 1:200 1:500 1:1000 1:2000A
tt

ac
k
 T

ra
ff

ic
 B

lo
ce

k
d

 (
%

)

Sampling rate

B5

0%

20%

40%

60%

80%

100%

1:1 1:200 1:500 1:1000 1:2000A
tt

ac
k
 T

ra
ff

ic
 B

lo
ce

k
d

 (
%

)

Sampling rate

B6

0%

20%

40%

60%

80%

100%

1:1 1:200 1:500 1:1000 1:2000A
tt

ac
k
 T

ra
ff

ic
 B

lo
ce

k
d

 (
%

)

Sampling rate

B7

 106

In summary, packet signatures are associated with larger amounts of attack packets

compared to source IP addresses. This supports the observation that signature-based

schemes may provide faster detection and more efficient filtering of DDoS Amplification

attacks than conventional source IP-based mechanisms.

7.5.4.2 Filtering Rules Cardinality

In this subsection, the number of filtering rules required by IP-based schemes is compared

to our signature-based approach. Specifically, we extracted the total number of unique

sources for each Booter dataset (Bi) and the DNS signatures (WIDE-F features) that

characterize all the malicious traffic. Subsequently, we employed our Signature

Reduction (SR) component to calculate the reduced number of signatures that can match

and block the malicious traffic (DNS signatures - reduced). SR, for all Booters and benign

datasets combinations, concluded that dns.qry.name and dns.qry.type could be used to

block all the offending traffic without blocking benign traffic portions.

Figure 7.7: Comparison between source-based and signature-based filtering rules for Booters

In Figure 7.7, we compare (in logarithmic scale) the number of the source IP filtering

rules to the signatures that would be required to fully block the seven DNS attacks of the

Booters datasets without signature reduction (DNS signatures) and with signature

reduction (DNS signatures – reduced).

1

10

100

1000

10000

B1 B2 B3 B4 B5 B6 B7

F
ilt

er
in

g

R

u
le

s
(l

o
g
ar

it
h
m

ic

sc

al
e)

Filtering Rules for Booters dataset

Source IPs DNS signatures DNS signatures - reduced

 107

As illustrated in Figure 7.7, the number of the required rules is decreased considerably

(on average ~91% for DNS signatures and ~99% for DNS signatures – reduced). The

benefits are: (i) we do not rely on source-based filters that are tough to maintain due to

the extremely large cardinality of unique IPs; (ii) we are not affected by dynamic IP

changes during an attack, e.g. introduced in case of rotating attackers and (iii) we

significantly reduce the memory consumed in the filtering process. Note that, the total

number of DNS signatures for all Booters using WIDE-G and TU Campus feature sets is

on average ~0.6% less than WIDE-F and thus not included in Figure 7.7.

In total, our signature-based approaches require significantly less filtering rules to

mitigate the total attack traffic than IP-based alternatives. As mentioned, this benefits our

schema since large memory utilization results to increased lookup times in software data

planes (BPF Maps - XDP). Hardware-based implementation may also face similar issues

due to memory constraints (scarce TCAM resources).

7.5.4.3 Mitigation Performance

In this subsection, the packet filtering performance (throughput) of our approach is

compared to source IP filtering alternatives. We implemented three different XDP-based

mechanisms: (i) DROP_IP, an IP-based firewall that filters packets based on their source

IP address, (ii) AM, that filters packets according to DNS signatures of eight features

(WIDE-F features) and (iii) AM_REDUCED, that filters packets according to DNS

signatures (reduced) of two features (dns.qry.name, dns.qry.type).

For stress testing, we employed synthesized network traces DNS_TRACE(n). These

contain 𝑛 unique IP sources, 𝑛/30 unique combinations of DNS signatures of eight

features and 𝑛/850 unique DNS signatures (reduced) of two features. The proportions

were based on the experiments of the previous subsection. Note that, recent DNS

Amplification attacks that targeted our University Campus, exhibited a greater proportion

of IP attack sources to DNS signatures than the ones mentioned above. Thus, we

anticipate that our signature-based mitigation mechanism will perform even better with

network traffic profiles evolution.

We replayed various synthesized DNS traffic traces at high-speed rates (10 Million

packets per second - Mpps) and measured (using the NIC drivers counters [103]) the

 108

packets filtered by each XDP mechanism. In Figure 7.8, we present the percentage of

blocked packets to the transmitted packets for various traffic traces.

DROP_IP performs better than AM and slightly better than AM_REDUCED for the

DNS_TRACE(1,000) and (10,000); however, it faces scaling issues as the number of IP

sources further increases. Specifically, DROP_IP packet processing performance

(throughput) decreases from 72% to 37% as the number of IPs increases from 1,000 to

1,000,000. This validates that the number of entries in a BPF Map are significantly

affecting its lookup time [96]. In contrast, both our AM and AM_REDUCED are scaling

better in terms of packet throughput as the number of sources increases, since few DNS

signatures are used to drop the attack traffic. Notably, AM_REDUCED achieves on

average ~10% higher packet processing rate than the AM, presenting the added

performance gain provided by reducing the number of DNS signatures. This is mainly

attributed to the fewer number of entries contained in the BPF Map and fewer packet

fields required to be parsed and processed compared to AM.

Figure 7.8: Packet throughput for IP-based and signature-based filtering mechanisms

Overall, our signature-based approach outperforms the source IP-based alternative due to

the fact that the attack traffic can be described by a modest number of signatures. This is

even more beneficial in massive attack scenarios where our approach achieves almost two

0%

10%

20%

30%

40%

50%

60%

70%

80%

DROP_IP AM AM_REDUCED

P
ac

k
et

s
b
lo

ck
ed

 (
%

)

Packet Filtering Performance

DNS_TRACE(1k) DNS_TRACE(10k) DNS_TRACE(100k) DNS_TRACE(1M)

 109

times greater packet filtering performance than IP-based alternatives, utilizing the same

set of resources.

7.6 Summary & Concluding Remarks

In this section we presented an integrated schema for protection against volumetric DDoS

attacks that employs packets signatures for traffic classification and filtering. It leverages

on XDP to create performant monitoring and filtering middleboxes, tailored to different

attack vectors. These operate either (i) as programmable Deep Packet Inspectors (DPI) to

extract monitoring data or (ii) as flexible firewalls. Our approach does not rely on IP-

sources but employs appropriate traffic signatures. This was based on the widely observed

fact that volumetric DDoS attacks, especially UDP-based, may be characterized by a

modest number of salient characteristics, thus enabling efficient Machine Learning

algorithms (RF, MLP). Note that we did not consider temporal correlations since these

may require network data from lengthy time-windows, thus hindering near real-time

anomaly detection and mitigation.

In our proof-of-concept, we experimented with benign DNS traffic and malicious DNS

Amplification attacks recorded in production network environments. The experimental

results were promising and drew interesting conclusions: (i) we were able to

automatically identify the most important features for DNS traffic classification for

various network traffic profiles; (ii) XDP-based middleboxes were able to expediently

monitor and filter network traffic; (iii) RF and MLP illustrated high classification

accuracy, with the latter achieving significant generalization capabilities on detecting

unknown attacks; (iv) our signature-based approach outperformed traditional IP-based

schemes in terms of malicious traffic identification, filtering rules cardinality, and packet

processing throughput required in modern high speed networks.

Our experimental evaluation focused on volumetric DNS attacks; however, the proposed

approach is based on a generic packet feature selection methodology, and can be

seamlessly extended to DDoS Amplification attacks. This follows from the fact that such

attacks abuse vulnerable protocols and services in a very specific manner to generate

massive amounts of traffic targeting the selected victim. Indicatively, they may exploit

messages generated by SNMP GetBulk, NTP monlist and SSDP SEARCH requests [94].

Selecting the most important packet features (i.e. signatures) that are related to the

 110

aforementioned attack vectors will enable implementation of protection mechanisms

similar to the one proposed in this section.

Signature-based protection based on Machine Learning algorithms is promising for

DDoS attack detection and mitigation as presented in this section. However, there are still

two major challenges:

 From the perspective of a single network domain (e.g. an ISP network), the

available data for training affect significantly the accuracy of the proposed

classification mechanism. Thus, acquiring potentially diverse data from other

(collaborating) domains (with respect to privacy restrictions) would possibly

enhance the total classification accuracy.

 Despite the effectiveness of signature-based packet filtering at victims'

premises, DDoS attacks may overwhelm upstream network links rendering the

victim unreachable from its legitimate users. Thus, mitigating DDoS attacks in

upstream networks (collaborative DDoS mitigation) before reaching the victim

network would properly protect it.

Therefore, in the next section we will center on collaborative detection and cost-effective

mitigation of malicious traffic across network federations.

 111

8 Collaborative DDoS Attack Detection and Mitigation via

Privacy-aware Federated Learning and Programmable

Data Planes

Distributed Denial-of-Service (DDoS) attacks are delivered to their targeted victims via

interconnected network domains, i.e. Autonomous Systems (AS's) of the global Internet.

Although AS collaborations were instrumental in the Internet success story (e.g. global

routing, peering agreements), this is largely not extended to attack protection.

Collaborative DDoS detection is hindered by strict data privacy legislations while

mitigation by rigid firewall solutions. In this section, we present a signature-based

collaborative DDoS detection and mitigation framework. Our schema consists of a

detection and mitigation application mounted in collaborating domains. The former

identifies malicious packet signatures, i.e. combinations of packet field values, using

Multi-layer Perceptrons (MLPs); these are cooperatively trained without exposing

private data via the Federated Learning method. The latter filters malicious packets using

XDP-enabled firewalls deployed in the victim AS; mitigation can also be activated on-

demand within collaborating transit AS's. Our approach was evaluated both in terms of

packet classification accuracy and packet processing performance using both real and

synthetic network traces. The Federated Learning scheme enabled collaborators to

accurately classify benign and attack packets, thereby improving individual domain

accuracy without compromising privacy concerns. Collaborative on-demand mitigation

is based on programmable data planes firewalls, thus providing a signature-based in-

network DDoS filtering mechanism tailored to evolving federated SDN infrastructures.

8.1 Motivation

As already mentioned, Distributed Denial-of-Service (DDoS) attacks are a major threat

that need to be accurately detected and rapidly mitigated. These attacks are delivered to

their targeted victims via interconnected network domains, i.e. Autonomous Systems

(AS's) of the global Internet.

Although AS collaborations are instrumental in the Internet success story (e.g. global

routing, peering agreements), they are not extended to coordinated DDoS detection. This

is mainly hindered by network operators reluctance on sharing potentially sensitive

network data but also by strict data privacy legislations, i.e. GDPR [104]. Federated

 112

Learning (FL) [105] is a promising approach to address such privacy

concerns/regulations. It allows collaborating parties to cooperatively train Machine

Learning (ML) models without exposing private data. FL has been proposed for various

use cases like word prediction [105], healthcare applications [106] and image recognition

[107]. To the best of our knowledge, few efforts [108], [109] consider collaborative DDoS

detection but do not address multi-domain network environments (AS's).

In contrast to collaborative DDoS detection, collaborative mitigation has been widely

employed in production network environments. Specifically, DDoS attacks are mitigated

by filters enforced by collaborating AS's. These filters are typically implemented in

routing devices and discard either all traffic (BGP blackholing [70]) or the malicious

portion via a limited number of source IP/flow-based rules. In sections 6, 7, we illustrated

that source IP/flow-based filtering schemes are not as effective as signature-based for

DDoS mitigation. To that end, we extend the programmable firewall implemented in

sections 6, 7, to provide an integrated signature-based DDoS filtering mechanism tailored

to evolving federated SDN infrastructures.

Inspired by the aforementioned challenges, we extend in this section the work presented

in sections 6, 7 to collaborative multi-domain network environments. Our schema detects

malicious packet signatures using Multi-layer Perceptrons (MLPs); these are

cooperatively trained without exposing private data. Subsequently, malicious packets are

filtered in XDP-enabled [12] firewalls deployed in the victim network domain. For large-

scale attacks, mitigation can also be activated on-demand in collaborating transit AS's,

presumably within attack paths.

The remainder of this section is structured as follows: In Section 8.2 we discuss related

efforts on collaborative DDoS protection and outline our key contributions; Section 8.3

presents a high-level overview of our mechanism and its core design principles; Section

8.4 provides implementation details for the proposed DDoS detection and mitigation

framework; Section 8.5 presents experimental evaluations for DDoS detection accuracy

and mitigation performance on DNS Amplification attacks. Finally, Section 8.6

summarizes our work.

 113

8.2 Related Work & Contributions

DDoS detection and mitigation for collaborative network domains, i.e. AS's, have been

widely investigated in the literature but also being employed in operational network

environments. The former refers to mechanisms that allow network domains to share data

for enhancing their attack detection capabilities. The latter refers to filters raised on-

demand by collaborators to drop the attack traffic before reaching a victim network.

Related efforts are analyzed in subsection 8.2.1 and 8.2.2 accordingly; in subsection 8.2.3

Federated Learning schemes for DDoS protection are presented. Finally, in 8.2.4, we

present our key contributions compared to similar efforts.

8.2.1 Collaborative DDoS Detection

In [110], network traffic is monitored in disperse points of multiple network domains in

an attempt to concurrently detect attacks targeting subnetworks. Attacks are identified by

concurrent alerts generated by collaborating network domains. In [111], Internet Service

Providers (ISPs) collaborate to detect ongoing DDoS attacks; based on predefined static

rules, they exchange belief scores for suspected DDoS attacks. In [112], security events

are exchanged between collaborating ISPs to validate ongoing attacks and provide

appropriate countermeasures. The main focus of this work is on the communication

process between collaborators. In [113], an effort for creating a European Federation of

Internet Service Providers (ISPs), Internet Exchanges (IX) and Academic Networks is

made; the members are exchanging attack traffic characteristics via a centralized platform

without exposing victim IP addresses for privacy concerns.

8.2.2 Collaborative DDoS Mitigation

BGP blackholing [70] is the most common way for collaborative DDoS filtering. Victim

networks request from upstream/peer networks to drop all traffic destined to them to

protect their internal infrastructures. Although this protects network links and devices,

benign traffic is also dropped. In [114], a collaborative schema for DDoS mitigation in

SDN-domains is proposed. Upon the detection of the attack, specialized reports with the

detected malicious sources and the victim IPs are generated; these are transferred to

network domains located in the attack path, that enforce filtering rules based on the

reputation of the victim domain. We extended [114] in [115], in which signaling,

 114

coordination, and orchestration of the collaborative mitigation is based on Blockchain

technologies; the proposed framework was tailored to federated trusted environments of

wholesale network providers (Tier 1 providers) [116].

8.2.3 Federated Learning for DDoS Attacks

In [108], a DDoS detection and mitigation framework for Internet of things (IoT)

environments is proposed. IoT nodes collaborate to train a common ML model via the

Federated Averaging technique to accurately detect malicious traffic. This is

subsequently filtered in a distributed fashion at multiple IoT nodes. In [109], a DDoS

detection schema based on Federated Averaging is presented. It uses flow-based features

to identify various DDoS attack types; DDoS mitigation was considered out of scope.

Similarly in [117], a multi-task Federated Learning model is proposed. It concurrently

performs DDoS detection, VPN/Tor traffic recognition and network application

identification. This reduces the management overhead and the training times of individual

ML models while respecting network data privacy.

8.2.4 Key Contributions

We present below how our proposed schema compares to currently suggested

approaches:

 In related efforts, collaborators exchange either coarse-grained data for DDoS

detection [110], [112], or predefined static rules [111], [113]; they also focus only

on attack data [112]–[115]. In contrast, our Federated Learning scheme (i)

enables for DDoS detection using both benign and attack data without exposing

private information and (ii) creates ML models with generalization capabilities

able to identify "unseen" (not trained with) benign and attack packets.

 Most FL schemes [108], [109], [117] simulate multi-domain data by splitting

single datasets into multiple parts. Instead, we employ real network traffic

aggregated by disjoint network domains, i.e. AS's, to perform fully realistic

experimental evaluation.

 Typical filtering mechanisms employed in collaborative DDoS mitigation [114],

[115] have the following drawbacks: they (i) support packet filtering based on

predefined packet field combinations and (ii) pose limitations on the supported

 115

number of rules. In contrast, we consider an XDP-based programmable firewall

that enables packet filtering based on arbitrary packet field combinations (packet

signatures) and scales its performance with the number of cores.

8.3 Design Principles & High Level Overview

8.3.1 Design Principles

We present below the core design principles of the proposed architecture:

Collaborative DDoS Detection via Federated Learning: Network traffic is classified to

malicious or benign, based on Supervised Learning models trained via the Federated

Averaging technique [105]. Thus, collaborating domains converge to Machine Learning

configurations without sharing private data. This enables them to learn from diverse

benign and attack packets without having direct access to them.

DDoS Mitigation via cloud-native scalable programmable firewalls based on the eXpress

Data Path framework: We employ softwarized programmable data planes (XDP) to

design high-performance Commercial off-the-shelf (COTS) firewalls for SDN

infrastructures. In contrast to legacy router-based filters, these can be programmed to

match and block arbitrary packet field combinations (e.g. DNS payloads as shown in

Table 8.1) while scaling their resources on-demand in a vertical cloud-native fashion.

Upstream propagation of DDoS filtering requests: Our scheme enables the dissemination

of filtering rules (packet signatures tailored to the attack traffic) among collaborating

Autonomous Systems (cAS's). These can be used to effectively block attacks before

reaching the victim AS, extending the limited filtering capabilities of blackholing or flow-

based protection mechanisms.

8.3.2 High-level Overview

A high-level design of the proposed architecture for collaborative DDoS detection and

mitigation is depicted below in Figure 8.1.

 116

Figure 8.1: Collaborative DDoS Detection & Mitigation Architecture

Malicious actors launch DDoS attacks attempting to overwhelm the network bandwidth

and/or processing resources of a host IP/subnet located in the victim AS (vAS). Both

malicious and benign traffic reach vAS via interconnected Autonomous Systems, e.g.

cAS(1), cAS(2). Monitoring (packet-based) data are exported by network devices (e.g.

edge routers) and organized in packet signatures; these are in turn used as input to the

DDoS Detection app. There, pre-trained Multilayer-Perceptrons (MLPs) classify packet

signatures to malicious or benign (step i). MLPs training process has been conducted via

Federated Learning (FL) techniques that enable distributed and privacy-preserving

learning amongst collaborating Autonomous Systems (cAS's). The training process is

coordinated by the Collaboration Manager (step a) in pre-agreed time-periods.

 117

The DDoS Detection app conveys to the DDoS Mitigation app the identified malicious

signatures and the corresponding victim IP/subnet (step ii). In turn, a Firewall Instance

(FI) is created (step iii) that uses the identified malicious signatures as filtering rules.

After FI instantiation, the DDoS mitigation app notifies the edge router to redirect traffic

destined to the victim to the corresponding FI (step iv). Malicious traffic is dropped while

benign traffic is bounced back and forwarded to its original destination (step v).

The DDoS Detection app based on traffic/system metrics e.g. increased link utilization,

can request help from upstream/peer networks to protect its network/compute resources.

The Collaboration Manager identifies adjacent cAS's that forward attack traffic [114] and

populates the identified malicious signatures coupled with the victim IP address. cAS's,

willing to filter malicious traffic, receive the requested signatures and signal their own

DDoS Mitigation app (step b) to on-demand mitigate the offending traffic.

In our approach collaborative DDoS detection is performed in a privacy-preserving

fashion without exposing collaborators private data. In contrast, collaborative mitigation

requires vAS to share sensitive data, i.e. the victim IP coupled with additional specific

attack characteristics (malicious signatures).

8.4 Collaborative DDos Detection and Mitigation Architecture

Our framework consists of three distinct applications (apps): (i) DDoS Detection, (ii)

DDoS Mitigation, and (iii) Collaboration Manager. These are detailed in subsections

8.4.1, 8.4.2, and 8.4.3 accordingly.

8.4.1 DDoS Detection via Federated Learning

The DDoS Detection app retrieves packet-based data from external monitoring

mechanisms and identifies malicious packet signatures. Signature classification is

conducted by Multilayer-Perceptrons (MLPs) trained via Federated Learning techniques.

Monitoring data are collected within time-windows and aggregated based on preselected

packet fields, forming packet signatures. Packet signatures may be represented by a vector

X = [x1 x2 … xi], where xi corresponds to packet field value i. Vectors X are used as input

to Multilayer-Perceptrons (MLPs), that classify them to malicious or benign. Signatures,

identified as malicious, are organized per destination IP address to generate filtering rules

 118

at the DDoS Mitigation app of the vAS (these can also be conveyed on-demand to transit

cAS's – see subsection 8.4.3 below).

The accuracy of the MLP model affects significantly the identification of malicious

packets and the subsequent mitigation (since filtering rules are based on the identified

malicious signatures). To improve the accuracy of the MLP model without compromising

privacy, we considered a collaborative learning approach based on Federated Averaging

[105].

Prerequisite for training a Federated Model (FM) is the use of a common MLP model

coordinated by a neutral third party. We consider that FM may reside in a neutral

independent coordinator. Such understanding is common in Internet architectures e.g.

Tier-1 Providers forums [116] and major Internet eXchanges (IXes) [118].

Initially, packet fields (features) relevant to an attack vector must be selected [119]. To

reduce training times and the FM complexity, inconsequential features may be

eliminated. This can be achieved by not considering packet fields whose values are (i)

identical in attack and benign packets or (ii) protocol specific (e.g. DNS ID, TCP

sequence number). These types of features (i), (ii) are not able to enhance the

classification accuracy of Machine Learning (ML) models and can be safely ignored upon

collaborators agreements. In Section V, we evaluate our approach for DNS Amplification

attacks.

Participating domains agree on common MLP hyperparameters (e.g. FM architecture,

learning rates). The training process starts with an initial FM weight vector (the

corresponding bias vector has been excluded for simplicity). In each iteration a new set

of weights wFM is evaluated and distributed amongst the k collaborating AS's9. Each

collaborator i = 1…k uses wFM as initial weights and subsequently updates its local

weights wi based on its private training data Ni. These are conveyed to the FM third party

coordinator that calculates the new weights wFM based on the following equation:

9 In FL, the hyperparameter k may influence the accuracy of the generated model and can be smaller than

the number of all collaborators. In our experiments, this number was equal to the total number of

collaborating AS's, as we did not consider a large number of participants.

 119

𝑤𝐹𝑀 = ∑
𝑁𝑖

𝑁
𝑤𝑖, 𝑤ℎ𝑒𝑟𝑒 𝑁 =

𝑘

𝑖=1

 ∑ 𝑁𝑖

𝑘

𝑖=1

(8. 1)

A training iteration is completed after wFM calculation with new weights distributed to

the cAS's. Finally, each cAS adopts the FM update that achieves the highest accuracy on

its local validation dataset (subset of the total dataset not used for training but for

hyperparameter selection). In case collaborators share their local accuracies per round, a

common FM may be universally adopted once the (weighted) average accuracy for all

participants reaches an acceptable level.

Figure 8.2: Federated Learning architecture for collaborating AS's

8.4.2 DDoS Mitigation

The DDoS Mitigation app receives requests for active attacks either from the DDoS

Detection app (attacks targeting hosts of the victim AS) or the Collaboration Manager

(attacks targeting other cAS's). Subsequently, this app may raise appropriate mitigation

countermeasures.

Typical filtering mechanisms e.g. Access Control Lists (ACLs), OpenFlow (OF) rules

[9], BGP Flowspec rules [73], are able to match and drop packets based on combinations

of multiple but predefined packet fields. These rules are stored in network devices with

stringent memory limitations [120]. Thus, offloading DDoS filtering to an external

 120

firewall should (i) support any packet field combination (signature) that can match and

block malicious DDoS packets, (ii) have no limit on the number of filtering rules, and

(iii) allow dynamic filtering rules creation, read, update, and deletion (CRUD).

We implemented the proposed mitigation app based on the eXpress Data Path (XDP)

framework. XDP memory structures for storing packet signatures are Berkeley Packet

Filter (BPF) Maps (details about XDP are available in 2.2.3.1); these do not allow ternary

packet field matching, i.e. the use of wildcards on packet fields. Therefore, for developing

an XDP firewall program that supports various types of signatures, a BPF MAP per

signature type would be required. This would (i) degrade the total packet processing

performance due to multiple memory lookups [96], [119] (proportional to the signature

types) and (ii) introduce downtime since for each BPF Map addition/removal, the XDP

program needs to be reloaded.

The DDoS Mitigation app was designed to conform with the aforementioned XDP

limitations. As depicted in Figure 8.3, it is based on a user space and a data plane program.

The former manages signatures installation while the latter performs packet filtering.

Figure 8.3: DDoS Mitigation Application Architecture

The user space program receives filtering requests from vAS and/or cAS’s e.g. victim

IP/network, signatures. If there are no signatures, a unique identifier IP ID is created

(Firewall Instances Catalog). Packet signatures are transformed into XDP programs, i.e.

 121

Firewall Instances (FIs), via appropriate Jinja templates [121] (Firewall Instance

Generation). Each FI parses packet fields and their corresponding values that form the

requested signatures. Subsequently, it contains if-then-else conditions to match and drop

malicious packets. Each generated FI is indexed by a unique File Descriptor (FD) and

can be accessed, updated or deleted dynamically, without affecting the packet processing

operations of other FIs. After FI instantiation, the user space program signals the edge

router to redirect the network traffic destined to the victim IP/subnet.

The data plane program receives the redirected packets, parses their destination IP, and

performs a lookup on a LPM (Longest Prefix Match) TRIE BPF Map; this matches IP

addresses/subnets to their corresponding IP ID. Subsequently, the IP ID is used as input

to a special memory structure BPF PROG ARRAY, that passes the packet to its

corresponding FI. According to the FIs signatures, malicious packets are blocked while

benign packets are bounced back to the router to be appropriately forwarded.

8.4.3 Collaboration Manager

The Collaboration Manager (CM) is an application that (i) handles filtering requests

for/from collaborators and (ii) coordinates the Federated Learning training process.

CM employs the BGP protocol to serialize and convey filtering requests. We needed to

overcome the limitation of the predefined packet fields imposed by BGP Flowspec. To

that end, victim's CM BGP Speaker initializes a BGP session with collaborators CM

advertising the support of the Content-URI address family [122], similar to [114]. This

allows the advertisement of specialized BGP Update messages that include URIs pointing

to the requested filtering rules (signatures) organized in JSON representations. A filtering

rule example may be found below:

Table 8.1: Signature-based filtering rule (Example)

Filtering Rule for DNS Amplification attack

{

 "ip_dst": "1.2.3.4/32"

 "protocol": 17

 "port": 53

 "application_protocol": "DNS"

 "payload_fields":

 {

 122

 "dns.qry.type" = 255

 "dns.qry.name" = 0x0

 }

}

Note that, the use of BGP enables our scheme to leverage on well-established tools such

as Resource Public Key Infrastructure (RPKI) to check collaborators (peers) eligibility

on announcing IP prefixes/addresses.

As mentioned, CM coordinates also the Federated Averaging training process. This is an

offline procedure between the collaborators and a neutral third party hosting the Federated

Model. CM retrieves the generated weights from each training round and publishes them

to the FM via a message broker (e.g. RabbitMQ [123]) . Subsequently, it receives the

generated weights calculated as the average of collaborators weights. The proposed

message broker scheme enables for collaborators authentication, inter-collaborators

private agreements (e.g. sharing accuracy results on their local datasets) and reliable

delivery of MLP weights.

Note that typical Federated Learning use cases [105], [108] consider as collaborating

nodes low throughput devices. By contrast, in our case the total size of MLPs weights

that are exchanged between cAS's have negligible impact on the high-throughput links

that interconnect them.

8.5 Experimental Evaluation

We implemented all software applications of the proposed architecture and deployed

them in our laboratory testbed. The DDoS Detection app was based on pytorch and pysyft

python libraries. The Collaboration Manager was based on Ryu's SDN Controller BGP

Speaker [124] and RabbitMQ message broker [123]. The DDoS Mitigation app was

deployed on a physical machine equipped with an Intel i7-2600 CPU and a 10G

SmartNIC Netronome Agilio CX [27] (XDP-enabled). This was directly connected to a

Virtual Machine that offers high-speed packet generation using the PF_RING ZC

framework [35] in a similar fashion to the testbeds employed in previous sections.

To assess the detection accuracy and mitigation performance of our mechanism, we

considered DNS Amplification attacks. In subsection 8.5.1below we provide details for

the employed DNS datasets. In subsection 8.5.2 we compare the classification accuracy

 123

of the proposed Federated Model to individual (non-collaborative) approaches. Finally,

in subsection 8.5.3 we showcase the packet processing performance of our mitigation

mechanism.

8.5.1 Datasets Description

We focused our experiments on a commonly encountered attack vector, DNS

Amplification attacks. As benign traffic, we used DNS traffic traces from a 10G transit

link between the WIDE Japanese backbone and DIX-IE Internet Exchange [80]. Benign

DNS traffic was aggregated per destination AS using publicly available BGP data [125].

In turn, AS's were sorted in descending order based on the total received packets; dataset

B(i) contains benign traffic destined to AS's ranked by incoming traffic, i.e. B(1)

corresponds to the AS with the highest number of DNS packets.

As malicious traffic, we used seven publicly available DNS Amplification attacks

contained in the Booters dataset [2], henceforth referred to as A(i). Attacks in A(1), A(2),

A(3), A(6) and A(7) generated type ANY DNS responses. By contrast, in A(4) and A(5),

attackers generated type A DNS responses. Specifically, A(4) contains responses for a

single domain name that resolved into a very large number of IP addresses. A(5)

corresponds also to a type A attack, in which attackers could not generate responses with

heavy payload. Consequently, A(5) did not succeed to generate more than few Mbps

while all other attacks generated hundreds of Mbps of malicious traffic.

8.5.2 DDoS Detection Accuracy

In this subsection, we evaluate the classification accuracy of our Federated Learning

approach and compare it to individual (non-collaborative) approaches. Specifically, we

considered seven collaborating AS's, henceforth referred to as cAS(i), where

i=1…7. Each cAS(i) has access to its own private traffic mix M(i) that contains attack

dataset A(i) combined with a benign dataset B(i).

We trained each cAS(i) model individually based on dataset M(i) using a Multilayer

Perceptron (MLP) of 13 input neurons, 27 (13x2+1) hidden and a single output node for

classification, as suggested in [61]. MLP weights were updated based on the Adam [92]

 124

algorithm. The features employed for the MLP model are based on a subset of the packet

fields of Table 7.1 according to the methodology presented in subsection 8.4.1:

Table 8.2: Packet fields (features) for DNS packet classification

Packet Fields (Features)

ip.length dns.flags.checkdisable

udp.length dns.count.answers

dns.flags.authoritative dns.count.auth_rr

dns.flags.truncated dns.count.add_rr

dns.flags.recdesired dns.qry.name

dns.flags.recavail dns.qry.type

dns.flags.authenticated

The Federated Model (FM) was trained using the same MLP architecture with weights

conveyed from all collaborators, as prescribed by the Federated Averaging technique

[105]. The hyperparameters for cAS(i) models and FM were tuned based on grid search

[126], using validation datasets comprising of 30% of datasets M(i).

We evaluated the trained models using as test datasets A(i) and B(i). Each bar in Figure

8.4 illustrates the True Positive Rate – TPR, i.e. the percentage of the attack traffic A(i)

that was classified as malicious by each model. Respectively, each bar in Figure 8.5

illustrates the True Negative Rate – TΝR, i.e. the percentage of the benign traffic B(i) that

was classified as benign. Figure 8.4 and Figure 8.5 present the accuracy individually

achieved by each cAS(i) model based on its private training data M(i) and on "unseen"

datasets A(j) and B(j) of other domains j (j≠i). We also include the corresponding

accuracy of the common Federated Model (FM). In Figure 8.6, we depict the TPR and

TNR achieved by each AS(i) averaged for all datasets, A(1), A(2),…, A(7) and B(1),

B(2),…, B(7) accordingly. Note that we excluded A(5) from the average TPR calculation,

since it introduced insignificant malicious traffic (~ 6 Mbps).

As shown in Figure 8.5, cAS(1), cAS(2) and cAS(4) achieve high TNR for all benign

datasets; however, they are not able to detect different (not trained with) attack traffic

patterns, i.e. cAS(1) is not able to detect A(4), while cAS(4) is not able to detect any other

attack that deviates from A(4). By contrast as depicted in Figure 8.4, cAS(3), cAS(5),

 125

cAS(6) and cAS(7) achieve high TPR for all attack datasets, but fail to detect diverse

benign DNS traffic.

Figure 8.4: True Positive Rate for DNS Amplification attacks (Booters)

Figure 8.5: True Negative Rate for benign DNS packets

Figure 8.6: Average TPR and TNR of Individuals Models and Federated Model

The FM achieves on average the highest combination of TPR and TNR amongst

individual cAS's models, as shown in Figure 8.6. Note that FM did not use private data

of individual collaborators, relying only on their MLP weights. In total, the Federated

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

cAS(1) & M(1) cAS(2) & M(2) cAS(3) & M(3) cAS(4) & M(4) cAS(5) & M(5) cAS(6) & M(6) cAS(7) & M(7) FM

T
P

R

Collaborating AS(i) & Training Mix M(i)

TPR: Collaborators Models vs Federated Model

A(1)

A(2)

A(3)

A(4)

A(5)

A(6)

A(7)

Test

DataSet

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

cAS(1) & M(1) cAS(2) & M(2) cAS(3) & M(3) cAS(4) & M(4) cAS(5) & M(5) cAS(6) & M(6) cAS(7) & M(7) FM

T
N

R

Collaborating AS(i) & Training Mix M(i)

TNR: Collaborators Models vs Federated Model

B(1)

B(2)

B(3)

B(4)

B(5)

B(6)

B(7)

Test

DataSet

20%

30%

40%

50%

60%

70%

80%

90%

100%

TPR TNR

Individual collaborators cAS(i) Models vs Federated Model (FM)

Average TPR & TNR

cAS(1)

cAS(2)

cAS(3)

cAS(4)

cAS(5)

cAS(6)

cAS(7)

FM

 126

Learning approach enabled collaborators to identify benign and attack packets that as

individuals would misclassify them.

8.5.3 DDoS Mitigation Packet Filtering Performance

In this subsection, we assess the packet filtering performance of the DDoS Mitigation

app. Specifically, we evaluate the packet processing performance of our mechanism

considering its CPU scalability capabilities and the number of supported Firewall

Instances (FIs) within federated environments.

We generated synthesized DNS traffic consisting of packets that can be matched and

dropped by a single signature per FI. This is formed by dns.qry.type and dns.qry.name

packet fields based on the following condition:

if (dns.qry.type=255 and dns.qry.name=<Root>)

then DROP

This signature can block all the attack traffic contained in datasets A(1), A(2) and A(3).

More details about our signature reduction technique, that enables us to filter attack

packets using a subset of the features presented in Table 8.2, are available in 6.4.2 and

7.4.4.

We launched multiple concurrent attacks ranging from 10 to 1000 that target different

collaborators with accumulated throughput of 10 Million packets per second (Mpps). To

evaluate the packet processing performance, we counted the number of packets that were

processed by the XDP and subsequently filtered out. This enables us to assess our firewall

mechanism as a service offered to collaborating AS's. In Figure 8.7, we assess firewall

scalability in terms of the deployed FIs implemented with 1, 2 or 3 CPU cores.

Τhe packet processing performance of our mechanism scales almost linearly with the

number of cores. Such behavior is also validated in [12], [77]. As expected, increasing

the number of collaborators, hence the number of deployed FIs, decreases the overall

packet processing rate of our firewall. Specifically, this is reduced linearly between 10

and 200 FIs and from that point it remains the same despite the increase of FIs. The

enhanced performance for the small number of FIs is attributed to level one (L1)

instruction cache hits while after a specific number of FIs the L1 instruction cache misses

 127

do not affect the overall performance. These conclusions were validated using the perf

tool [127] that provides CPU performance statistics for user-defined time intervals.

Figure 8.7: DDoS Mitigation Scalability

In total, our approach can handle successfully up to 1000 concurrent attacks targeting an

equal number of collaborators. Note that these correspond to the number of concurrent

blackholed IP prefixes announced in a large European IX [128]. Thus, the proposed

firewall can be considered as a scalable filtering mechanism tailored to large-scale

federated SDN infrastructures.

8.6 Summary & Concluding Remarks

In this section we proposed a DDoS protection framework for collaborating network

domains, i.e. Autonomous Systems (AS's). Our approach leverages on the Federated

Learning paradigm for collaborative and privacy-aware DDoS detection in SDN

infrastructures. Attack mitigation is based on scalable and programmable firewalls that

can be instantiated on-demand by the victim. Specifically, our schema analyzes, within

time windows, packet-based data forming signatures. These are used as input to

supervised Machine Learning models, trained cooperatively via the Federated Averaging

technique. Suspicious traffic is redirected to scalable programmable (XDP-based)

firewalls to be filtered out. During massive attacks, our schema enables victim AS's to

raise filtering requests on collaborating AS's to block them, presumably early in attack

paths.

Our framework was evaluated both in terms of detection accuracy and mitigation

performance for typical DNS Amplification DDoS attacks. The conducted experiments

0%

20%

40%

60%

80%

100%

0 100 200 300 400 500 600 700 800 900P
a
c
k

e
ts

 B
lo

c
k

e
d

 (
%

)

Firewall Instances (FIs)

Packet Dropping Performance

1 CPU 2 CPUs 3 CPUs

 128

considered real benign and malicious network traffic. The Federated Learning approach

enabled collaborators to accurately classify benign and attack packets improving their

individual accuracy. Based on the achieved packet processing performance, the proposed

programmable firewall provides a scalable filtering mechanism for evolving federated

SDN infrastructures.

 129

9 Conclusions & Future Directions

9.1 Summary & Concluding Remarks

In this dissertation, we delved into the problem of detecting and mitigating Distributed

Denial-of-Service (DDoS) attacks, an everyday and of high impact problem for network

operators and end-users. Specifically, we designed/implemented methodologies,

algorithms, and tools for rapid detection and efficient mitigation. In a nutshell, our

approach relied on emerging network technologies, i.e. high-performance programmable

data planes (P4, XDP), to efficiently collect and filter DDoS attacks using intelligent data-

driven algorithms to detect and classify them.

Firstly, in Section 5, we introduced a P4-based DDoS detection schema offloaded entirely

in the data plane. In contrast to the state-of-the-art approaches that employ external

network detection mechanisms (in the control plane), our approach detects network

attacks within few seconds and pinpoints the under-attack subnetwork/IP. The success of

our approach relies on the generation of monitoring data tailored to DDoS attacks enabled

by the data plane programmability paradigm.

In Section 6, we made a step further towards DDoS protection, focusing on traffic

classification mechanisms to segregate malicious from benign traffic. We considered

SYN Flood attacks, as an indicative use case of protocol attacks, and proposed a

signature-based classification and mitigation mechanism to counter them. Our approach

employs packet signatures as input to Supervised Learning algorithms to classify network

traffic. Subsequently, it generates an optimal set of filtering rules to use as

countermeasure against SYN Flood attacks; these are deployed on programmable

firewalls (XDP-enabled) for high-performance yet flexible packet dropping. Our

mechanism illustrated high accuracy on real network traffic data and outperformed the

state-of-the-art SYN Flood mitigation mechanism (SYN Cookies).

Inspired by the approach presented in section 6 and the challenges we faced, in Section

7, we extended our signature-based classification and mitigation mechanism to

volumetric DDoS attacks. We relied on the widely observed fact that these attacks may

be characterized by a modest number of salient packet characteristics. To that end, we

employed a generic methodology for packet feature selection (signatures) and

 130

subsequently used the most important packet fields to classify volumetric DDoS attacks.

In a similar fashion to the effort described in section 6, the proposed mechanism optimizes

the number of signatures required to block the attack traffic and deploys them on XDP-

based programmable firewalls. Our approach was evaluated on common volumetric

attacks, i.e. DNS Amplification. In our experimental evaluation, our approach identified

the most important packet characteristics for traffic classification and based on them

managed to accurately detect real benign and malicious DNS traffic. The proposed

signature-based mechanism outperformed the state-of-the-art flow-based mechanisms in

terms of traffic identification, filtering rules cardinality, and mitigation throughput.

Finally, in Section 8 we extended the signature-based DDoS protection approach

(presented in sections 6, 7) to collaborative multi-domain network environments. The

proposed framework employs Federated Learning techniques for privacy-aware

cooperative DDoS detection and incorporates a scalable yet programmable DDoS

mitigation as a service mechanism tailored to collaborative network environments. Our

approach was evaluated on multi-domain production network data illustrating high DDoS

detection accuracy and efficient packet filtering.

9.2 Future Directions

DDoS attacks are continuously evolving to overcome the intelligent

methods/algorithms/techniques employed by DDoS protection frameworks. Thus, more

sophisticated methods are expected to be considered by the attackers in the future.

Moreover, ever-growing attack traffic rates will be observed as the number of devices

connected to the Internet is constantly increasing. To that end, DDoS protection

frameworks need to consider the evolution of network attacks both in terms of scale and

sophistication and be able to provide accurate and timely protection.

As illustrated in this dissertation, offloading DDoS protection tasks in the data plane is

possible, featuring rapid identification and accurate mitigation of network attacks.

Although appealing as a concept, packet processing limitations were faced in P4-enabled

NICs. Similar hardware resource constraints are also observed in physical P4-enabled

network switches [129]. Therefore, mechanisms that combine programmable (i.e. P4-

enabled) hardware switches with COTS programmable (e.g. XDP-enabled) servers for

DDoS detection and mitigation tasks would be of paramount interest. Especially, for

 131

cloud-based scrubbing providers that need to offer flexible and scalable services without

compromising their ability to re-program on-demand their software/hardware appliances.

With regards to network traffic classification, we showcased the existence of specific

packet signatures in protocol and volumetric DDoS attacks. An interesting future

direction would be the investigation of signature-based detection and mitigation

approaches for application-layer attacks. The methods employed in this dissertation could

be extended to incorporate the temporal characteristics of application-layer attacks.

Indicatively, Supervised and/or Unsupervised Learning algorithms, e.g. Long Short-term

Memory (LSTM) Neural Networks [130], Hierarchical Temporal Memory (HTM)

systems [131] could be explored. Additionally, Reinforcement Learning techniques [132]

could be also considered in cases where malicious traffic presents similarities with the

benign traffic. An interesting aspect of Machine Learning techniques that requires further

investigation for broader use in production networks is explainability/interpretability.

Finally, as mentioned in section 8, the collaboration of disjoint network domains, i.e.

AS’s, is crucial for protecting networks against DDoS attacks. Federated Learning

allowed collaborating parties to exchange network metadata without revealing their actual

values. However, the cooperation of multiple domains arises some interesting challenges

within Federated Learning setups. The independent selection of diverse (potentially the

most important) features by each participant (concept drift) should be incorporated to

Federated models, as it depicts the knowledge of each participant for a specific task, e.g.

DDoS classification. Additionally, multi-task learning architectures [117] seem

promising as they enable to concurrently perform more than one tasks, e.g. to identify

simultaneously more than one attack vector. This could reduce training times and the

complexity of the Federated models. Finally, trust-based schemes [133] could be further

investigated to improve performance, robustness, and security of Federated Learning

schemes.

 132

10 Extended Abstract in Greek – Εκτεταμένη Περίληψη στα

Ελληνικά

Οι σύγχρονες κοινωνίες ολοένα και περισσότερο βασίζονται σε υπηρεσίες που

προσφέρονται μέσω του Διαδικτύου (Internet). Ποικίλες δραστηριότητες του ανθρώπου

εξαρτώνται από αυτές τις υπηρεσίες και είτε αφορούν απλές καθημερινές ανάγκες του

όπως η διευκόλυνση της επικοινωνίας (π.χ. μέσα από τη χρήση των μέσων κοινωνικής

δικτύωσης) είτε επεκτείνεται ακόμα και σε περιπτώσεις που αφορούν την ίδια την

ανθρώπινη ζωή, π.χ. απομακρυσμένη χειρουργική. Συνεπώς, μία από τις αδιαμφισβήτητα

βασικότερες απαιτήσεις που εγείρεται, είναι η εξασφάλιση της σταθερότητας και της

ορθής λειτουργίας τόσο των υποδομών όσο και των υπηρεσιών που συνιστούν τον

ακρογωνιαίο λίθο του Διαδικτύου.

Ένα από τα πιο συνηθισμένα και κυριότερα προβλήματα που αντιμετωπίζουν οι

διαχειριστές και επηρεάζει σημαντικά τη λειτουργία των δικτύων είναι οι κατανεμημένες

επιθέσεις άρνησης παροχής υπηρεσιών (Distributed Denial-of-Service attacks - DDoS).

Αυτές έχουν ως κύριο στόχο τη διακοπή της ορθής λειτουργίας των διαδικτυακών

υπηρεσιών (Internet services), με αποτέλεσμα να μην καθίσταται εφικτή η εξυπηρέτηση

των καλόβουλων χρηστών. Οι επιθέσεις αυτές οφείλονται σε ποικίλα και διαφορετικού

τύπου κίνητρα και χρησιμοποιούν ένα μεγάλο εύρος μεθόδων/τεχνικών για να πετύχουν

τον σκοπό τους. Το πρόβλημα των επιθέσεων έχει πάρει σημαντικές διαστάσεις, καθώς

υπάρχουν πλατφόρμες (Booters) που έναντι μικρού χρηματικού αντιτίμου δίνουν τη

δυνατότητα εξαπόλυσης γιγαντιαίων επιθέσεων. Η κλίμακα τους είναι ικανή να θέσει

εκτός λειτουργίας από μικρά επιχειρησιακά δίκτυα και κυβερνητικές υποδομές μέχρι και

τεχνολογικούς κολοσσούς.

Η συνεχής ύπαρξη αλλά και η εξέλιξη αυτών των επιθέσεων έχουν οδηγήσει στην

ανάπτυξη τόσο στρατηγικών όσο και μηχανισμών για την καταστολή τους. Στόχος αυτών

των μηχανισμών προστασίας είναι η άμεση και με ακρίβεια ανίχνευση των επιθέσεων

και εν συνεχεία η έγκαιρη αντιμετώπιση τους. Η συνεχής βελτίωση των μηχανισμών

προστασίας αποτελεί βασική ανάγκη για την προσαρμογή σε νέους τύπους επιθέσεων

αλλά και στην ολοένα αυξανόμενη κλίμακα τους. Βασικές απαιτήσεις των μηχανισμών

αυτών είναι η ευελιξία, η απόδοση, η ακρίβεια και η κλιμακωσιμότητα. Βάσει αυτών των

προδιαγραφών οι μηχανισμοί προστασίας ενσωματώνουν τόσο καινοτόμες τεχνολογίες

 133

όσο και ευφυέστερες μεθοδολογίες για την αποτελεσματικότερη ανίχνευση και την

αποδοτικότερη αντιμετώπιση των επιθέσεων.

Η άνθιση των δικτύων οριζόμενων από λογισμικό (Software-defined Networks) έθεσε

νέες βάσεις στις αρχιτεκτονικές των δικτύων και κατ’ επέκταση και στους μηχανισμούς

προστασίας από επιθέσεις. Αρχικά, με το πρωτόκολλο OpenFlow (ΟF) δόθηκε η

δυνατότητα για ενιαία κεντρικοποιημένη και ευέλικτη διαχείριση των δικτυακών

συσκευών. Ειδικότερα, η δυνατότητα προγραμματισμού των δικτυακών συσκευών (στο

επίπεδο ελέγχου) επέτρεπε την εγκατάσταση κανόνων προώθησης, παρακολούθησης,

αλλά και αποκοπής σε συμβατικούς μεταγωγείς, δημιουργώντας πρωτότυπες

αρχιτεκτονικές προστασίας από επιθέσεις.

Καινοτόμες εξελίξεις στην ανάπτυξη του υλικού (hardware) αλλά και του λογισμικού

(software) των δικτυακών συσκευών, έφεραν στο προσκήνιο την τεχνολογία των

προγραμματιζόμενων συσκευών στο επίπεδο δεδομένων (programmable data planes).

Mέσω αυτής της τεχνολογίας δίνεται η δυνατότητα για προγραμματισμό του επιπέδου

δεδομένων δικτυακών συσκευών χωρίς να επηρεάζεται σημαντικά (ή και καθόλου) η

απόδοση τους. Θα μπορούσαμε να διακρίνουμε δύο βασικούς πυλώνες των

programmable data planes στους οποίους δώσαμε έμφαση στην παρούσα διδακτορική

διατριβή:

 τη γλώσσα P4, που προτάθηκε για τον προγραμματισμό μεταγωγεών και

δικτυακών καρτών με ενιαίο τρόπο και

 το eXpress Data Path (XDP), μια προσέγγιση που ξεκίνησε από μεγάλους

τεχνολογικούς κολοσσούς με στόχο την υλοποίηση ενός framework που επιτρέπει

την ενιαία περιγραφή υψηλής απόδοσης εφαρμογών σε γενικού τύπου εξοπλισμό.

Οι παραπάνω καινοτόμες τεχνολογίες δίνουν τη δυνατότητα για συλλογή γενικού τύπου

μετρικών, αλλά και ειδικών χαρακτηριστικών της δικτυακής κίνησης. Παράλληλα,

προσφέρονται για σχεδιασμό και υλοποίηση υψηλών προδιαγραφών αποδοτικών

μηχανισμών απόρριψης επιθέσεων.

Η έγκαιρη και με ακρίβεια ανίχνευση των επιθέσεων απαιτεί την ανάλυση της δικτυακής

κίνησης σε πραγματικό χρόνο με τη χρήση κατάλληλων μεθοδολογιών/αλγορίθμων

υπόδειξης ανωμαλιών. Απλές μέθοδοι στατιστικής χρησιμοποιούνταν κατά κόρον για

τέτοιου τύπου αναλύσεις, ωστόσο με την ραγδαία αύξηση του όγκου των δεδομένων (big

 134

data) αλλά και την αύξηση της πολυπλοκότητας των μοτίβων της δικτυακής κίνησης

(λόγω της εξελικτικής τάσης του Διαδικτύου), οι μέθοδοι απλής στατιστικής δεν

απέδιδαν τόσο ικανοποιητικά. Μεθοδολογίες εφαρμοσμένης στατιστικής και

συγκεκριμένα αλγόριθμοι Μηχανικής Μάθησης έχουν πρωτοστατήσει το ενδιαφέρον για

τις αποδόσεις τους σε πλείστους τομείς, π.χ. αναγνώριση εικόνων, προβλέψεις τιμών. Η

ευρεία χρήση τους σε συνδυασμό με τις υψηλές ακρίβειες που πετυχαίνουν, την θέτουν

σαν μια πολλά υποσχόμενη μεθοδολογία για ανίχνευση επιθέσεων και κατηγοριοποίηση

της δικτυακής κίνησης.

Στόχος της παρούσας διατριβής είναι η ανάπτυξη ενός ολοκληρωμένου μηχανισμού

ανίχνευσης και αντιμετώπισης επιθέσεων χρησιμοποιώντας τις δυνατότητες των

σύγχρονων προγραμματιζόμενων δικτύων σε συνδυασμό με ευφυείς τεχνικές ανάλυσης

δεδομένων. Στα προβλήματα που συναντώνται στην ανίχνευση και αντιμετώπιση

επιθέσεων ενσωματώνονται η αποδοτική εξαγωγή δεδομένων και η ανάλυση τους, η

ανίχνευση ανωμαλιών (τουτέστιν η ύπαρξη επίθεσης, η αναγνώριση του τύπου και του

θύματος της επίθεσης), η κατηγοριοποίηση της δικτυακής κίνησης σε καλόβουλη και

κακόβουλη και τέλος η αντιμετώπιση της επίθεσης μέσα από κατασκευή και

εγκατάσταση κατάλληλων κανόνων αποκοπής.

Με γνώμονα την κατασκευή ενός ολοκληρωμένου μηχανισμού προστασίας από

επιθέσεις DDoS, η συνεισφορά της παρούσας διατριβής οργανώνεται στα κεφάλαια 5,

6, 7 και 8, όπου συνοπτικά περιγράφονται τα κάτωθι:

 Στο κεφάλαιο 5, προτείνουμε ένα μηχανισμό ανίχνευσης επιθέσεων υλοποιημένο

στο επίπεδο δεδομένων με τη χρήση της γλώσσας P4. Ο μηχανισμός αυτός

υλοποιείται στα άκρα του δικτύου (edge devices) και αναγνωρίζει άμεσα την

ύπαρξη, τους τύπους και τα θύματα επιθέσεων DDoS. Η αξιολόγηση του

μηχανισμού βασίζεται σε πραγματικά δεδομένα με γνώμονα την ακρίβεια και την

επίδοση του.

 Στο κεφάλαιο 6, προσπαθούμε βάσει των γενικών συμπερασμάτων που

λαμβάνουμε από τον μηχανισμό του προηγούμενου κεφαλαίου να διακρίνουμε

πιο συγκεκριμένα χαρακτηριστικά της κακόβουλης κίνησης. Χρησιμοποιώντας

τις επιθέσεις πλημμύρας SYN Flood ως μία ενδεικτική επίθεση protocol-based

κατασκευάζουμε έναν μηχανισμό κατηγοριοποίησης και αποκοπής της δικτυακής

κίνησης βασισμένο σε ιδιαίτερα χαρακτηριστικά των πακέτων (packet

 135

signatures). Συγκρίνουμε την προτεινόμενη λύση με τον ευρέως

χρησιμοποιούμενο μηχανισμό για SYN Flood επιθέσεις, SYN Cookies.

 Στο κεφάλαιο 7, επεκτείνουμε την λογική της κατηγοριοποίησης και

αντιμετώπισης επιθέσεων βάσει χαρακτηριστικών των πακέτων σε μια μεγάλη

οικογένεια επιθέσεων που προκαλούν μεγάλο όγκο κίνησης (volumetric).

Προτείνουμε μια μεθοδολογία επιλογής χαρακτηριστικών και εφαρμόζουμε τον

μηχανισμό μας στον πιο συνηθισμένο τύπο τέτοιων επιθέσεων, τις επιθέσεις DNS

Amplification. Για την αξιολόγηση της μεθοδολογίας μας, συγκρίνουμε τον

προτεινόμενο τρόπο προστασίας με την κατά κόρον χρησιμοποιούμενη τεχνική

που βασίζεται σε δικτυακές ροές/ διεύθυνση πηγής IP.

 Τέλος στο κεφάλαιο 8, επεκτείνουμε την κατηγοριοποίηση και αποκοπή

επιθέσεων βάσει χαρακτηριστικών των πακέτων σε συνεργατικά περιβάλλοντα.

Ο μηχανισμός που προτείνεται βασίζεται σε συνεργασίες αυτόνομων δικτυακών

συστημάτων (Autonomous Systems) και κατηγοριοποιεί τη δικτυακή κίνηση,

χωρίς όμως να χρησιμοποιεί τα προσωπικά δεδομένα των συνεργαζόμενων.

Παράλληλα, δίνει τη δυνατότητα για αποδοτική και κλιμακώσιμη αποκοπή

επιθέσεων DDoS κατ’ απαίτηση των συνεργαζόμενων.

Στη συνέχεια του συγκεκριμένου κεφαλαίου θα αναλυθεί με μεγαλύτερη λεπτομέρεια η

συνεισφορά της παρούσας διατριβής περιγράφοντας εν συντομία τις μεθοδολογίες που

ακολουθήθηκαν στα κεφάλαια 5, 6, 7 και 8.

Στο κεφάλαιο 5 παρουσιάζεται ένας μηχανισμός ανίχνευσης επιθέσεων στο επίπεδο

δεδομένων βασισμένος στη γλώσσα P4. Οι συμβατικοί (legacy) μηχανισμοί ανίχνευσης

βασίζονται σε πρωτόκολλα όπως το NetFlow, το sFlow ή ακόμα και το OpenFlow, μέσω

των οποίων εξάγονται πληροφορίες σχετικές με την διερχόμενη κίνηση σε ένα δίκτυο. Οι

μηχανισμοί ανίχνευσης συλλέγουν δεδομένα από δικτυακές συσκευές, τα αναλύουν και

καταλήγουν σε συμπεράσματα σχετικά με την ύπαρξη επιθέσεων DDoS. Το βασικό

μειονέκτημα τους είναι: (i) οι υψηλές απαιτήσεις σε επεξεργαστική ισχύ για την ανάλυση

μεγάλου όγκου δεδομένων, (ii) ο υπολογιστικός φόρτος που υπεισέρχεται στην

επικοινωνία μεταξύ των δικτυακών συσκευών και των μηχανισμών συλλογής δεδομένων

(ιδιαίτερα κατά τη διάρκεια μιας επίθεσης) και (iii) οι περιορισμοί στους διαθέσιμους

τύπους δεδομένων που παρέχονται από τον εκάστοτε κατασκευαστή/λειτουργικό. Όλα

 136

αυτά αθροιστικά οδηγούν σε καθυστέρηση της ανίχνευσης των επιθέσεων, γεγονός που

τελικά καθυστερεί και την τελική αντιμετώπιση τους.

Αντίθετα με τις υπάρχουσες προσεγγίσεις, εμείς σχεδιάσαμε έναν μηχανισμό ανίχνευσης

επιθέσεων στο επίπεδο δεδομένων. Αυτός επιτρέπει την έγκαιρη ανίχνευση επιθέσεων

μέσα σε λίγα δευτερόλεπτα, τον εντοπισμό του θύματος της επίθεσης και δίνει τη

δυνατότητα άμεσης ενημέρωσης για εκκίνηση διαδικασιών αντιμετώπισης. Το βασικό

πλεονέκτημα που δίνεται από τη γλώσσα P4, είναι η δυνατότητα προγραμματισμού των

δικτυακών συσκευών ώστε να επεξεργάζονται και να συλλέγουν συγκεκριμένες μετρικές

ενδιαφέροντος, που εν προκειμένω σχετίζονται με τον εντοπισμό επιθέσεων.

Ειδικότερα, καθώς διέρχεται δικτυακή κίνηση σε συσκευές (π.χ. μεταγωγείς) που

υποστηρίζουν την γλώσσα P4, αναλύονται συγκεκριμένα χαρακτηριστικά της.

Επιλέχθηκαν τρία βασικά χαρακτηριστικά τα οποία υποδεικνύουν την ύπαρξη επιθέσεων

και μπορούν να μας συγκεκριμενοποιήσουν το εκάστοτέ θύμα της. Αυτά τα

χαρακτηριστικά αξιολογούνται μέσα σε χρονικά παράθυρα, όπου αποτελούν και το

διάστημα όπου αναμένεται να εντοπιστεί η επίθεση. Οι μετρικές ενδιαφέροντος που

εξετάζουμε είναι:

 Η συνολική αύξηση των δικτυακών ροών, υπολογίζοντας τον τρέχοντα αριθμό

τους και συγκρίνοντας τον με τον εκθετικά κινούμενο μέσο όρο του

προηγούμενου χρονικού παραθύρου επαυξημένο κατά k φορές της αντίστοιχης

απόκλισης.

 Το πλήθος των ροών ανά υποδίκτυο/διεύθυνση IP ενδιαφέροντος συγκριτικά με

το συνολικό πλήθος ροών. Η αύξηση αυτής της τιμής αυτής μας υποδεικνύει

ανωμαλία όσον αφορά το πλήθος ροών ανά υποδίκτυο/διεύθυνση IP.

 Τη συμμετρία κίνησης ανά υποδίκτυο/διεύθυνση IP και το πόσο αποκλίνει από

την «αναμενόμενη» της συμπεριφορά.

Αν και οι τρείς μετρικές ενδιαφέροντος ξεπεράσουν όρια που τίθενται από το διαχειριστή,

τότε παράγονται κατάλληλα μηνύματα από το επίπεδο δεδομένων που υποδεικνύουν την

ύπαρξη επίθεσης.

Η προτεινόμενη λύση υλοποιήθηκε και δοκιμάστηκε σε πραγματικές κάρτες δικτύου

Netronome με διεπαφές των 10Gbit. Επίσης, χρησιμοποιήθηκαν κάρτες δικτύου Intel για

παραγωγή υψηλού ρυθμού κίνησης. Για την αξιολόγηση του μηχανισμού

 137

χρησιμοποιήθηκαν πραγματικά δεδομένα επιθέσεων καθώς και καλόβουλη κίνηση από

ένα Internet Exchange στην Ιαπωνία. Στόχος ήταν να εξετάσουμε την ακρίβεια αλλά και

την επεξεργαστική απόδοση του μηχανισμού. Ο προτεινόμενος μηχανισμός πέτυχε

υψηλές ακρίβειες ανίχνευσης της τάξης του 95% για επιθέσεις διαφορετικής κλίμακας.

Παράλληλα, η επεξεργαστική του δυνατότητα ήταν επαρκής για δικτυακή κίνηση

υψηλών ταχυτήτων (2 εκατομμύρια πακέτα το δευτερόλεπτο). Αθροιστικά αυτές οι δύο

πτυχές καθιστούν την προσέγγιση μας κατάλληλη για ανίχνευση επιθέσεων σε σύγχρονα

δικτυακά περιβάλλοντα.

Συνολικά στο κεφάλαιο 5, κατασκευάσαμε ένα μηχανισμό ανίχνευσης επιθέσεων στο

επίπεδο δεδομένων με χρήση της γλώσσας P4. Ο μηχανισμός μας χαρακτηρίζεται από

έγκαιρους χρόνους ανίχνευσης δίνοντας τη δυνατότητα για άμεση αντιμετώπιση των

επιθέσεων DDoS. Παράλληλα, συνοδεύεται από υψηλές ακρίβειες με μικρό αριθμό από

ψευδοθετικά ποσοστά (False Positive Rates), ενώ βάσει της απόδοσης του είναι

κατάλληλος για σύγχρονα δικτυακά περιβάλλοντα. Όσων αφορά την ανίχνευση

επιθέσεων DDoS, ο μηχανισμός που σχεδιάσαμε αποτελεί ένα πρώτο βήμα για να

εντοπίσουμε την ύπαρξη επίθεσης, τον τύπο της καθώς και το θύμα που αυτή στοχεύει.

Ωστόσο για να καταφέρουμε να αντιμετωπίσουμε τις επιθέσεις καθίσταται αναγκαίο να

εισχωρήσουμε σε πιο λεπτομερή ανάλυση της δικτυακής κίνησης, διακρίνοντας την

καλόβουλη από την κακόβουλη και στη συνέχεια να αναπτύξουμε τα κατάλληλα φίλτρα

για την αποκοπή της επίθεσης.

Για την κατηγοριοποίηση της δικτυακής κίνησης αλλά και την αποκοπή του κακόβουλου

μέρους της καλούμαστε να εισχωρήσουμε σε πιο λεπτομερή ανάλυση των

χαρακτηριστικών της κίνησης σε σύγκριση με τις γενικές μετρικές που χρησιμοποιήσαμε

στο κεφάλαιο 5. Στο κεφάλαιο 6, επιλέξαμε να ασχοληθούμε με μια από τις

κλασικότερες επιθέσεις DDoS, την SYN Flood, που αποτελεί σημαντικό πρόβλημα για

τις σύγχρονες δικτυακές υποδομές. Στην επίθεση SYN Flood οι επιτιθέμενοι στέλνουν

μαζικά πακέτα TCP SYN σε κόμβους θύματα κατασπαταλώντας τόσο τους πόρους των

ίδιων αλλά και ενδιάμεσων δικτυακών συσκευών, π.χ. δρομολογητές (routers) ή τείχη

προστασίας (firewalls). Η κύρια προσέγγιση ανίχνευσης των επιθέσεων αυτών βασίζεται

στη χρήση δικτυακών ροών (network flows), ωστόσο λόγω της τεχνικής απόκρυψης της

διεύθυνσης πηγής (source IP spoofing), η ακριβής σκιαγράφηση των επιτιθέμενων

κρίνεται εξαιρετικά δύσκολη. Πέραν της ανίχνευσης, το βασικό πρόβλημα έγκειται στην

 138

αντιμετώπιση της επίθεσης, καθώς η αποκοπή των επιτιθέμενων βάσει της source IP δεν

είναι εφικτή λόγω IP spoofing ή λόγω γιγαντιαίων λιστών από διευθύνσεις IP. Ο κύριος

μηχανισμός που χρησιμοποιείται για την αντιμετώπιση τους βασίζεται στα SYN Cookies,

μία τεχνική που κατασκευάζει κατάλληλα διαμορφωμένα μηνύματα SYN ACK που

έχουν ως σκοπό να επιβεβαιώσουν την source IP του αρχικού πακέτου SYN. Παρότι ο

μηχανισμός αυτός είναι αποδοτικός και προστατεύει τα θύματα από την κακόβουλη

κίνηση, απαιτεί σημαντικό πλήθος πόρων για την κατασκευή των μηνυμάτων SYN-ACK

ενώ παράλληλα δημιουργεί αντίρροπη κίνηση ίση με την επίθεση. Αυτό αν

αναλογιστούμε μεγάλες επιθέσεις μπορεί να δημιουργήσει περαιτέρω συμφόρηση αντί

να εξομαλύνει το πρόβλημα.

Παρατηρήσαμε ότι οι επιθέσεις αυτές εμφανίζουν συγκεκριμένα μοτίβα/χαρακτηριστικά

στα πακέτα, δηλαδή είδαμε τη χρήση συγκεκριμένων τιμών σε διάφορα πεδία των

πακέτων τα οποία ορίζονται ως signatures. Αυτή η συμπεριφορά μπορεί να οφείλεται είτε

σε χρήση στατικών τιμών σε υλοποιήσεις κακόβουλων (hackers) είτε σε

προκαθορισμένες τιμές προγραμμάτων αποστολής κίνησης. Επομένως, σκεφτήκαμε να

κατασκευάσουμε έναν μηχανισμό που κατηγοριοποιεί την κίνηση TCP και την αποκόπτει

χρησιμοποιώντας αυτά τα ιδιαίτερα χαρακτηριστικά τους. Ο μηχανισμός χρησιμοποιεί

Επιβλεπόμενη Μάθηση (Supervised Learning) για να κατηγοριοποιήσει την κίνηση σε

καλόβουλη και κακόβουλη. Στη συνέχεια κατασκευάζει κατάλληλους κανόνες αποκοπής

που περιγράφουν συνεκτικά την κακόβουλη κίνηση. Τέλος, οι κανόνες εγκαθίστανται σε

υψηλής απόδοσης προγραμματιζόμενα τείχη προστασίας που βασίζονται στο framework

XDP. Ένα από τα πλεονεκτήματα που μας δίνει η δυνατότητα προγραμματισμού στο

επίπεδο δεδομένων είναι η αξιοποίηση του μηχανισμού SYN Cookies ως εναλλακτική

λύση για περιπτώσεις κακόβουλων signatures που δεν μπορούν να εντοπιστούν.

Για να εξετάσουμε τις δυνατότητες της προτεινόμενης λύσης κατασκευάσαμε ένα testbed

υψηλών ταχυτήτων που απαρτίζεται από προγραμματιζόμενες κάρτες δικτύου (XDP)

των 10Gbit καθώς και από κάρτες Intel με δυνατότητα αποστολής πακέτων σε υψηλούς

ρυθμούς. Τα δεδομένα πειραματισμού μας βασίστηκαν σε πέντε πραγματικές επιθέσεις

που καταγράψαμε εντός του δικτύου παραγωγής του Ε.Μ.Π., τις οποίες τις αναμείξαμε

με καλόβουλη κίνηση από το δίκτυο WIDE της Ιαπωνίας. Στόχος μας ήταν να

εξετάσουμε την ακρίβεια κατηγοριοποίησης της κίνησης, τις δυνατότητες μείωσης των

 139

signatures καθώς και την απόδοση του μηχανισμού στην αποκοπή επιθέσεων σε

σύγκριση με τον μηχανισμό των SYN Cookies.

Ο προτεινόμενος μηχανισμός κατάφερε να εντοπίσει με μεγάλη ακρίβεια τόσο τις

επιθέσεις όσο και την καλόβουλη κίνηση. Παράλληλα, κατάφερε να μειώσει σε

σημαντικό βαθμό το πλήθος των κανόνων που απαιτούνται για την αποκοπή των

επιθέσεων. Το μικρό αυτό πλήθος μας επέτρεψε να αυξήσουμε κατά δύο φορές την

επεξεργαστική δυνατότητα του προγραμματιζόμενου μηχανισμού αντιμετώπισης σε

σύγκριση με τη προσέγγιση SYN Cookies.

Με βάση τα συμπεράσματα αυτά αναρωτηθήκαμε αν η τεχνική που βασίζεται σε

signatures μπορεί να γενικευτεί και να χρησιμοποιηθεί και σε άλλου τύπου επιθέσεις

όπως οι volumetric. Επίσης, κρίθηκε αναγκαία η σκιαγράφηση ενός μεθοδικού τρόπου

επιλογής μόνο των σημαντικών χαρακτηριστικών της κίνησης για την κατηγοριοποίηση

της. Τέλος, ήταν επιθυμητή η σύγκριση της προτεινόμενης προσέγγισης με τους de facto

μηχανισμούς ανίχνευσης και αντιμετώπισης επιθέσεων που αναγράφονται στην

βιβλιογραφία (αλλά και που χρησιμοποιούνται σε πραγματικά περιβάλλοντα), οι οποίοι

βασίζονται σε δικτυακές ροές (διεύθυνση πηγής).

Βάσει των προκλήσεων που αναφέρθηκαν, στο κεφάλαιο 7 επεκτείναμε τη δουλειά μας

με τα signatures και σε ένα άλλο μεγάλο σύνολο επιθέσεων, τις volumetric επιθέσεις. Οι

επιθέσεις αυτές βασίζονται στην ακόλουθη τεχνική: κακόβουλοι (hackers) στέλνουν

κατάλληλα κατασκευασμένα μηνύματα σε κόμβους (reflectors) που φιλοξενούν

συγκεκριμένους τύπους υπηρεσιών, π.χ. LDAP, DNS, MEMCACHED, με αποτέλεσμα

αυτοί με τη σειρά τους να βομβαρδίζουν το επιλεχθέν θύμα με μεγάλο πλήθος και όγκο

πακέτων. Οι κλασικοί μηχανισμοί προστασίας απέναντι σε αυτές τις επιθέσεις βασίζονται

στην κατηγοριοποίηση δικτυακών ροών σε κακόβουλες ή καλόβουλες και στη χρήση της

αντίστοιχης διεύθυνσης πηγής IP ως αναγνωριστικό για την αποκοπή της επίθεσης. Η

συλλογή, αποθήκευση και ανάλυση των ροών καθυστερεί αρκετά την κατηγοριοποίηση

της κίνησης, που τελικά καθυστερεί και την αντιμετώπιση της επίθεσης. Παράλληλα, η

χρήση γιγαντιαίων λιστών από κακόβουλες IP για την αποκοπή της επίθεσης εμφανίζει

προβλήματα κλιμακωσιμότητας τόσο στην χρήση τους σε πραγματικό εξοπλισμό όσο και

στη διαχείριση τους.

 140

Για αυτό στο κεφάλαιο 7 σχεδιάσαμε έναν μηχανισμό που βασίζεται στα ιδιαίτερα

χαρακτηριστικά που εμφανίζουν τα κακόβουλα πακέτα (δηλαδή τα signatures), τα οποία

χρησιμοποιούνται για την κατηγοριοποίηση και αποκοπή της κακόβουλης κίνησης. Ο

μηχανισμός μας συλλέγει μόνο τα σημαντικά χαρακτηριστικά για κατηγοριοποίηση των

signatures χρησιμοποιώντας και πάλι τεχνικές Επιβλεπόμενης Μάθησης (Supervised

Learning). Με αυτόν τον τρόπο προσφέρει άμεση ανίχνευση της κακόβουλης κίνησης

κατευθείαν από τις επικεφαλίδες των πακέτων. Βάσει της κατηγοριοποίησης,

κατασκευάζονται φίλτρα αποκοπής, που δεν βασίζονται στην διεύθυνση πηγής (source

IP-agnostic) αλλά στα πεδία που ομαδοποιούν με συνεκτικό τρόπο την κακόβουλη

κίνηση. Αυτό έχει ως αποτέλεσμα τη σημαντική μείωση του πλήθους των κανόνων

απόρριψης που αυξάνει συνολικά την επεξεργαστική απόδοση του μηχανισμού

αποκοπής. Η συλλογή των κατάλληλων πεδίων των πακέτων καθώς και η αποκοπή της

κακόβουλης κίνησης υλοποιήθηκαν χρησιμοποιώντας γενικού τύπου (Commercial-Off-

the-Shelf) εξοπλισμό, κατάλληλο για σύγχρονα περιβάλλοντα υπολογιστικού νέφους

(cloud computing).

Για να αξιολογήσουμε τον προτεινόμενο μηχανισμό επιλέξαμε τις επιθέσεις DNS

Amplification, αφού αποτελούν έναν από τους πιο ευρέως χρησιμοποιούμενους τύπους

volumetric επιθέσεων. Στόχος του πειραματισμού μας ήταν να δείξουμε τη δυνατότητα

του προτεινόμενου μηχανισμού να επιλέγει χαρακτηριστικά των πακέτων σημαντικά για

την κατηγοριοποίηση των signatures, να διακρίνει με ακρίβειά καλόβουλα από

κακόβουλα signatures και τέλος την απόδοση του μηχανισμού μας έναντι κλασικών

μηχανισμών προστασίας που βασίζονται σε δικτυακές ροές. Για την αξιολόγηση όλων

των παραπάνω, χρησιμοποιήσαμε 7 επιθέσεις DNS, καταγεγραμμένες από το

πανεπιστήμιο του Twente σε συνεργασία με το ολλανδικό NREN SurfNET, ενώ ως

καλόβουλη κίνηση χρησιμοποιήσαμε DNS κίνηση από τρεις διαφορετικές πηγές.

Ο μηχανισμός κατηγοριοποίησης και αντιμετώπισης που προτάθηκε ήταν ικανός να:

 επιλέγει με αυτοματοποιημένο τρόπο πεδία των πακέτων που απαιτούνται για

την κατασκευή των signatures

 πετυχαίνει ακρίβειες κατηγοριοποίησης της τάξης του 99%, όσον αφορά τον

εντοπισμό καλόβουλων και κακόβουλων πακέτων

 141

 αντιμετωπίζει πιο σύντομα (χρονικά) αλλά και πιο αποδοτικά volumetric

επιθέσεις σε σύγκριση με τους κλασικούς μηχανισμούς (που χρησιμοποιούν

δικτυακές ροές).

Παρότι οι τεχνικές που βασίζονται σε signatures κατάφεραν να διακρίνουν με ακρίβεια

την καλόβουλη από την κακόβουλη κίνηση προϋποθέτουν την ύπαρξη μεγάλου πλήθους

από ετερογενή δεδομένα για την εκπαίδευση μοντέλων Επιβλεπόμενης Μάθησης. Όπως

γίνεται αντιληπτό εντός ενός αυτόνομου δικτύου δεν είναι πάντα εφικτή η ύπαρξη

ετερογενών δεδομένων με αποτέλεσμα την μειωμένη ακρίβεια ανίχνευσης. Επίσης, η

αντιμετώπιση της επίθεσης (ακόμη και με τη χρήση signatures) από το δίκτυο θύμα δεν

είναι πάντα εφικτή, όπως σε περιπτώσεις όπου οι επιθέσεις υπερκαλύπτουν την

χωρητικότητα των γραμμών του. Οι δύο αυτοί λόγοι μας οδήγησαν στον σχεδιασμό ενός

ολοκληρωμένου μηχανισμού συνεργατικής ανίχνευσης και αντιμετώπισης επιθέσεων.

Στο κεφάλαιο 8 παρουσιάζουμε τον συνεργατικό μηχανισμό προστασίας, ο οποίος

επεκτείνει τους μηχανισμούς που παρουσιάστηκαν στα κεφάλαια 6 και 7.

Το Διαδίκτυο όπως λειτουργεί σήμερα αποτελεί μια συνεργασία μεταξύ αυτόνομων

οντοτήτων (δικτύων), ωστόσο αυτή η συνεργασία δεν επεκτείνεται de facto σε

μηχανισμούς προστασίας από επιθέσεις. Το βασικό πρόβλημα όσον αφορά τους

μηχανισμούς ανίχνευσης είναι η ανταλλαγή (εν δυνάμει) απόρρητων δεδομένων, το

οποίο είτε απαγορεύεται από κανονισμούς προστασίας δεδομένων, είτε αποφεύγεται

λόγω της διστακτικότητας των διαχειριστών δικτύου. Εν αντιθέσει με τη συνεργατική

ανίχνευση, η συνεργατική αντιμετώπιση επιθέσεων είναι περισσότερο διαδεδομένη.

Ωστόσο, οι περισσότεροι μηχανισμοί που χρησιμοποιούνται βασίζονται σε κανόνες

αποκοπής υλοποιημένους σε δικτυακές συσκευές και είτε αποκόπτουν όλη την κίνηση

(τόσο την καλόβουλη όσο και την κακόβουλη) είτε χρησιμοποιούν δικτυακές ροές. Αυτές

οι τακτικές εμφανίζουν περιορισμούς όσον αφορά την κλιμακώσιμότητα, την ευελιξία

και την απόδοση τους.

Με γνώμονα τις προαναφερθείσες προκλήσεις, στο κεφάλαιο 8 προτείνεται ένας

μηχανισμός συνεργατικής ανίχνευσης και αντιμετώπισης που βασίζεται σε signatures.

Συγκεκριμένα, ο μηχανισμός ανίχνευσης εκμεταλλεύεται τεχνικές Ομόσπονδης

Μάθησης (Federated Learning), που επιτρέπουν την συνεργατική εκπαίδευση μοντέλων

Μηχανικής Μάθησης χωρίς την ανταλλαγή δεδομένων αλλά με την ανταλλαγή βαρών

Νευρωνικών Δικτύων (Neural Networks). Από την άλλη, ο μηχανισμός αντιμετώπισης

 142

βασίζεται σε προγραμματιζόμενες κάρτες δικτύου (XDP) και δίνει τη δυνατότητα για

αποκοπή κακόβουλης κίνησης τόσο για ιδία χρήση όσο και για αιτήματα από

συνεργαζόμενους φορείς. Η προτεινόμενη λύση παρέχει κλιμακωσιμότητα για αύξηση

των επιδόσεων κατ’ απαίτηση, υψηλές αποδόσεις αλλά και ευελιξία στην αποκοπή της

κίνησης.

Για την αξιολόγηση του μηχανισμού χρησιμοποιήθηκε testbed υψηλών ταχυτήτων αλλά

και πραγματική δικτυακή κίνηση. Ειδικότερα χρησιμοποιήθηκαν δεδομένα καλόβουλης

κίνησης από το ιαπωνικό δίκτυο WIDE τα οποία διαχωρίστηκαν καταλλήλως για την

προσομοίωση διακριτών αυτόνομων δικτύων. Αντίστοιχα χρησιμοποιήθηκαν οι

επιθέσεις από το σύνολο δεδομένων Booters που αναφέρθηκε στα προηγούμενα

κεφάλαια. Στόχος του πειραματισμού ήταν η αξιολόγηση της συνεργατικής τεχνικής

Ομόσπονδης Μάθησης σε πραγματικά δεδομένα και η σύγκριση της με τις ακρίβειες που

θα πετύχαινε κάθε αυτόνομο δίκτυο μόνο του. Στα πλαίσια της συνεργατικής

αντιμετώπισης, στόχος ήταν η αξιολόγηση της απόδοσης σε υψηλούς ρυθμούς πακέτων

για πολλαπλά αιτήματα αποκοπής επιθέσεων υπό το πρίσμα της κλιμακωσιμότητας σε

επίπεδο υπολογιστικών πυρήνων (CPU cores).

Από την πειραματική διαδικασία προέκυψαν τα παρακάτω συμπεράσματα:

 Η συνεργατική ανίχνευση επιθέσεων με τη χρήση της τεχνικής της Ομόσπονδης

Μάθησης επέτρεψε σε συνεργαζόμενα δίκτυα να πετύχουν υψηλότερες ακρίβειες

από αυτές που πετύχαιναν αν δεν συνεργαζόντουσαν, χωρίς όμως να εκθέτουν

απόρρητα δεδομένα.

 Η υλοποίηση του μηχανισμού συνεργατικής αντιμετώπισης επιθέσεων κατάφερε

να απορρίψει πολλαπλές επιθέσεις με αθροιστικά υψηλό ρυθμό πακέτων ανά

δευτερόλεπτο και να κλιμακώσει κατ’ απαίτηση τους υπολογιστικούς του πόρους.

Έπειτα από την ανασκόπηση των επιμέρους κεφαλαίων της διατριβής, μπορούμε να

συνοψίσουμε παρακάτω τις κύριες συνεισφορές της:

Άμεση και με ακρίβεια ανίχνευση επιθέσεων στο επίπεδο δεδομένων: Ο μηχανισμός που

προτάθηκε σε αυτή τη διατριβή χρησιμοποιεί τη γλώσσα P4 για να κατασκευάσει ένα

σύστημα ανίχνευσης επιθέσεων στο επίπεδο δεδομένων. Συγκριτικά με τους κλασικούς

μηχανισμούς που εκτελούνται στο επίπεδο ελέγχου, η προτεινόμενη λύση ανιχνεύει

άμεσα και ακρίβεια επιθέσεις καθώς η δικτυακή κίνηση διέρχεται από

 143

μεταγωγείς/δρομολογητές. Αυτό επιτρέπει την δημιουργία άμεσων αντίμετρων για την

έγκαιρη καταστολή της επίθεσης.

Κατηγοριοποίηση ιδιαίτερων χαρακτηριστικών των δικτυακών πακέτων με τη χρήση

ευφυών μηχανισμών τεχνητής νοημοσύνης: Οι κλασικοί μηχανισμοί προστασίας

χρησιμοποιούν ως πηγή δεδομένων δικτυακές ροές. Η συγκεκριμένη τακτική εμφανίζει

δυσκολίες όσον αφορά τη συλλογή, επεξεργασία αλλά ακόμα και αποθήκευση των

δεδομένων αυτών και μπορεί να επιβραδύνει σημαντικά την ανίχνευση και την

αντιμετώπιση επιθέσεων DDoS. Αντίθετα με αυτή τη στρατηγική, στη συγκεκριμένη

διατριβή προτείναμε έναν μηχανισμό κατηγοριοποίησης που χρησιμοποιεί τα ιδιαίτερα

χαρακτηριστικά των κακόβουλων πακέτων (signatures) για να ανιχνεύσει έγκαιρα

επιθέσεις DDoS. Αυτά τα χαρακτηριστικά παράγονται με αυτοματοποιημένο τρόπο μέσα

από τη χρήση ευφυών μοντέλων Μηχανικής Μάθησης που προσφέρουν δυνατότητες

γενίκευσης της γνώσης που έχουν λάβει.

Αντιμετώπιση επιθέσεων με τη χρήση συνεκτικών κανόνων αποκοπής βάσει ιδιαίτερων

χαρακτηριστικών των πακέτων: Οι κανόνες αποκοπής που χρησιμοποιούνται κατά κόρον

για την αποσόβηση επιθέσεων DDoS εφαρμόζονται κατά κύριο λόγο σε δικτυακές

συσκευές όπως τείχη προστασίας, δρομολογητές. Αυτές οι δικτυακές συσκευές

εμφανίζουν περιορισμούς στο πλήθος των κανόνων που μπορούν να υποστηρίξουν αλλά

και στους τύπους των κανόνων. Στη διατριβή αυτή παρουσιάσαμε ένα μηχανισμό

κατασκευής κανόνων αποκοπής που δημιουργεί συνεκτικά σύνολα κανόνων που

περιγράφουν με μεγάλη ακρίβεια τον τύπο της επίθεσης, χωρίς να επηρεάζονται

σημαντικές ποσότητες της καλόβουλης κίνησης.

Υψηλής απόδοσης κλιμακώσιμες εικονικές δικτυακές λειτουργίες υλοποιημένες σε

προγραμματιζόμενες υποδομές: Η παρακολούθηση αλλά και η αποκοπή της δικτυακής

κίνησης σε legacy δικτυακά περιβάλλοντα υλοποιούνταν συνήθως από ειδικού τύπου

εξοπλισμό. Στη διατριβή αυτή προτείναμε την υλοποίηση αυτών των δικτυακών

λειτουργιών σε γενικού τύπου εξοπλισμό με τη χρήση του framework XDP. Με αυτό τον

τρόπο δίνεται η δυνατότητα για σχεδιασμό κλιμακώσιμων και αποδοτικών εικονικών

δικτυακών λειτουργιών κατάλληλες για τη χρήση σε σύγχρονα δικτυακά περιβάλλοντα

υπολογιστικού νέφους.

 144

Συνεργατική ανίχνευση και αντιμετώπιση επιθέσεων με γνώμονα την προστασία των

προσωπικών δεδομένων: Το σημερινό διαδίκτυο είναι απόρροια συνεργασιών μεταξύ

αυτόνομων δικτύων (Autonomous Systems). Η συνεργασία αυτή δεν επεκτείνεται όμως

και για σκοπούς προστασίας των δικτύων από επιθέσεις. Η συνεργατική ανίχνευση

περιορίζεται από διστακτικότητα αλλά και νόμους που αφορούν την ανταλλαγή

προσωπικών δεδομένων. Από την άλλη η συνεργατική αντιμετώπιση δεν εφαρμόζεται σε

μεγάλη κλίμακα λόγω εγγενών περιορισμών των δικτυακών συσκευών που εφαρμόζουν

του κανόνες αποκοπής. Στην παρούσα διατριβή προτείναμε έναν μηχανισμό

συνεργατικής ανίχνευσης και αντιμετώπισης που βασίζεται σε ιδιαίτερα χαρακτηριστικά

των πακέτων. Η ανίχνευση των επιθέσεων γίνεται με μηχανισμούς Ομόσπονδης

Μάθησης, μια τεχνική που δεν απαιτεί την ανταλλαγή απόρρητων δεδομένων ενώ η

αντιμετώπιση με τη χρήση γενικού τύπου προγραμματιζόμενων συσκευών (XDP) που

παρέχουν ευελιξία, κλιμακωσιμότητα και υψηλή απόδοση.

Υλοποίηση σε πραγματικό δικτυακό και υπολογιστικό εξοπλισμό και αξιολόγηση των

μεθοδολογιών με τη χρήση πραγματικών δεδομένων: Στα πλαίσια της τρέχουσας

διατριβής, οι προτεινόμενες υλοποιήσεις δοκιμάστηκαν σε testbed υψηλών ταχυτήτων με

στόχο την αξιολόγηση τους σε ρεαλιστικές συνθήκες. Τα δεδομένα που

χρησιμοποιήθηκαν για την αξιολόγηση των προτεινόμενων μεθόδων προέρχονται από

πραγματικά ετερογενή δικτυακά περιβάλλοντα επιτρέποντας μας να δοκιμάσουμε τις

προσεγγίσεις μας σε πραγματικές συνθήκες.

 145

11 Publications

11.1 Articles in Scientific Journals

 M. Dimolianis, A. Pavlidis & V. Maglaris, "Signature-based Traffic

Classification and Mitigation for DDoS Attacks using Programmable Network

Data Planes", in IEEE Access, vol. 9, pp. 113061-113076, 2021

 H. Harkous, C. Papagianni, K.D. Schepper, M. Jarschel, M. Dimolianis & R.

Preis, "Virtual queues for p4: A poor man’s programmable traffic manager", in

IEEE Transactions on Network and Service Management, vol. 18, no. 3, pp. 2860-

2872, 2021

 A. Pavlidis, M. Dimolianis, K. Giotis, L. Anagnostou, N. Kostopoulos, T.

Tsigkritis, I. Kotinas, D. Kalogeras & V. Maglaris "Orchestrating DDoS

Mitigation via Blockchain-based Network Provider Collaborations", in The

Knowledge Engineering Review, vol. 35, pp. 1–17, 2020

 P. Vuletić, B. Bosak, M. Dimolianis, P. Mérindol, D. Schmitz & H.

Wessing,"Localization of network service performance degradation in multi-

tenant networks", in Computer Networks, vol. 168, 2019

11.2 Papers in Conferences

 M. Dimolianis, A. Pavlidis & V. Maglaris, "SYN Flood Attack Detection and

Mitigation using Machine Learning Traffic Classification and Programmable

Data Plane Filtering", in Proceedings of the Conference on Innovation in Clouds,

Internet and Networks and Workshops, 2021

 M. Dimolianis, A. Pavlidis &V. Maglaris, "A Multi-Feature DDoS Detection

Schema on P4 Hardware", in Proceedings of the Conference on Innovation in

Clouds, Internet and Networks and Workshops, 2020

 N. Kostopoulos, A. Pavlidis, M. Dimolianis, D. Kalogeras & V. Maglaris, "A

Privacy-Preserving Schema for the Detection and Collaborative Mitigation of

DNS Water Torture Attacks in Cloud Infrastructures", in Proceedings of the

International Conference on Cloud Networking, 2019

 A. Pavlidis, M. Dimolianis, D. Kalogeras & V. Maglaris, "Automated

Distribution of Access Control Rules in Defense Layers of an Enterprise

https://dx.doi.org/10.1109/ACCESS.2021.3104115
https://dx.doi.org/10.1109/ACCESS.2021.3104115
https://dx.doi.org/10.1109/ACCESS.2021.3104115
https://dx.doi.org/10.1109/TNSM.2021.3077051
https://dx.doi.org/10.1017/S0269888920000259
https://dx.doi.org/10.1017/S0269888920000259
https://dx.doi.org/10.1016/j.comnet.2019.107050
https://dx.doi.org/10.1016/j.comnet.2019.107050
https://doi.org/10.1109/ICIN51074.2021.9385540
https://doi.org/10.1109/ICIN51074.2021.9385540
https://doi.org/10.1109/ICIN51074.2021.9385540
https://doi.org/10.1109/ICIN48450.2020.9059327
https://doi.org/10.1109/ICIN48450.2020.9059327
https://doi.org/10.1109/CloudNet47604.2019.9064119
https://doi.org/10.1109/CloudNet47604.2019.9064119
https://doi.org/10.1109/CloudNet47604.2019.9064119
https://ieeexplore.ieee.org/document/8717852
https://ieeexplore.ieee.org/document/8717852

 146

Network", in Proceedings of the Symposium on Integrated Network and Service

Management, 2019

 M. Dimolianis, A. Pavlidis, D. Kalogeras & V. Maglaris, "Mitigation of Multi-

vector Network Attacks via Orchestration of Distributed Rule Placement", in

Proceedings of the Symposium on Integrated Network and Service Management,

2019

 K. Giotis, A. Pavlidis, L. Anagnostou, M. Dimolianis, T. Tsigkritis, D. Kalogeras,

N. Kostopoulos, I. Kotinas & V. Maglaris, "Blockchain-based Federation of

Network Providers for Collaborative DDoS Mitigation", in Proceedings of the 3rd

Symposium on Distributed Ledger Technology, 2018

https://ieeexplore.ieee.org/document/8717852
https://ieeexplore.ieee.org/document/8717838
https://ieeexplore.ieee.org/document/8717838
https://drive.google.com/file/d/11NCj4vE-su2-ELfJmtt6B1rpn31fhnb2/view?usp=sharing
https://drive.google.com/file/d/11NCj4vE-su2-ELfJmtt6B1rpn31fhnb2/view?usp=sharing

 147

12 References

[1] “Denial-of-service attack - Wikipedia,” available at:

https://en.wikipedia.org/wiki/Denial-of-service_attack [accessed February 18,

2022]

[2] J. J. Santanna et al., “Booters - An analysis of DDoS-as-a-service attacks,” in

Proceedings of the International Symposium on Integrated Network

Management, pp. 243–251, 2015, DOI:

https://dx.doi.org/10.1109/INM.2015.7140298

[3] “Arbor DDoS Protection Solutions,” available at:

https://www.netscout.com/arbor-ddos [accessed February 15, 2022]

[4] “Imperva DDoS Protection 3-Second SLA,” available at:

https://www.imperva.com/products/ddos-protection-services/ [accessed February

15, 2022]

[5] “Cloudflare DDoS Protection & Mitigation,” available at:

https://www.cloudflare.com/ddos/ [accessed February 15, 2022]

[6] “F5 DDoS Hybrid Defender,” available at:

https://www.f5.com/products/security/ddos-hybrid-defender [accessed February

15, 2022]

[7] “A10 Networks DDoS Detection & Mitigation: Thunder TPS,” available at:

https://www.a10networks.com/products/thunder-tps/ [accessed February 18,

2022]

[8] “FortiDDoS DDoS Protection Solution,” available at:

https://www.fortinet.com/products/ddos/fortiddos [accessed February 18, 2022]

[9] N. McKeown et al., “OpenFlow: enabling innovation in campus networks,” in

Computer Communication Review, vol. 38, no. 2, pp. 69–74, 2008, DOI:

https://dx.doi.org/10.1145/1355734.1355746

[10] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker,

“Ethane: taking control of the enterprise,” in Computer Communication Review,

vol. 37, no. 4, pp. 1–12, 2007, DOI: https://dx.doi.org/10.1145/1282427.1282382

[11] P. Bosshart et al., “P4: Programming protocol-independent packet processors,” in

Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014, DOI:

https://dx.doi.org/10.1145/2656877.2656890

[12] T. Høiland-Jørgensen et al., “The eXpress data path: Fast programmable packet

 148

processing in the operating system kernel,” in Proceedings of the International

Conference on Emerging Networking EXperiments and Technologies, pp. 54–66,

2018, DOI: https://dx.doi.org/10.1145/3281411.3281443

[13] P. Phaal, S. Panchen, and N. McKee, “InMon Corporation’s sFlow: A Method

for Monitoring Traffic in Switched and Routed Networks,” available at:

https://tools.ietf.org/html/rfc3176 [accessed March 17, 2022]

[14] B. Claise, “Cisco Systems NetFlow Services Export Version 9,” available at:

https://datatracker.ietf.org/doc/html/rfc3954 [accessed March 17, 2022]

[15] S. Kaur, K. Kumar, and N. Aggarwal, “A review on P4-Programmable data

planes: Architecture, research efforts, and future directions,” in Computer

Communications, vol. 170, pp. 109–129, 2021, DOI:

https://dx.doi.org/10.1016/j.comcom.2021.01.027

[16] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and V. Maglaris,

“Combining OpenFlow and sFlow for an effective and scalable anomaly

detection and mitigation mechanism on SDN environments,” in Computer

Networks, vol. 62, pp. 122–136, 2014, DOI:

https://dx.doi.org/10.1016/j.bjp.2013.10.014

[17] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding attack detection

using NOX/OpenFlow,” in Proceedings of the Local Computer Network

Conference, pp. 408–415, 2010, DOI:

https://dx.doi.org/10.1109/LCN.2010.5735752

[18] S. Jain et al., “B4: Experience with a globally-deployed software defined WAN,”

in Computer Communication Review, vol. 43, no. 4, pp. 3–14, 2013, DOI:

https://dx.doi.org/10.1145/2534169.2486019

[19] “Software-Defined Networking (SDN) Definition - Open Networking

Foundation,” available at: https://opennetworking.org/sdn-definition/ [accessed

June 8, 2021]

[20] “Data Plane Development Kit - DPDK,” available at: https://www.dpdk.org/

[accessed March 17, 2022]

[21] “Facebook, Google, Isovalent, Microsoft, and Netflix announce eBPF

Foundation,” available at: https://isovalent.com/blog/post/2021-08-ebpf-

foundation-announcement [accessed September 7, 2021]

[22] A. Fabre, “L4Drop: XDP DDoS Mitigations,” available at:

https://blog.cloudflare.com/l4drop-xdp-ebpf-based-ddos-mitigations/ [accessed

 149

October 14, 2020]

[23] “Katran: A high performance layer 4 load balancer,” available at:

https://github.com/facebookincubator/katran [accessed March 17, 2022]

[24] “eBPF and XDP - Suricata,” available at:

https://suricata.readthedocs.io/en/latest/capture-hardware/ebpf-xdp.html

[accessed March 17, 2022]

[25] “In-Network Computing,” available at: https://www.sigarch.org/in-network-

computing-draft/ [accessed September 9, 2021]

[26] “Tofino 2 - Barefoot,” available at:

https://www.intel.com/content/www/us/en/products/network-io/programmable-

ethernet-switch/tofino-2-series.html [accessed June 16, 2020]

[27] “Netronome Agilio SmartNICs,” available at:

https://www.netronome.com/products/agilio-cx/ [accessed March 17, 2022]

[28] “P4-16 Language Specification,” available at: https://p4.org/p4-spec/docs/P4-16-

v1.2.0.html [accessed March 17, 2022]

[29] “BEHAVIORAL MODEL (BMv2): The reference P4 software switch,” available

at: https://github.com/p4lang/behavioral-model [accessed September 9, 2021]

[30] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and J. Rexford,

“Heavy-hitter detection entirely in the data plane,” in Proceedings of the

Symposium on SDN Research, pp. 164–176, 2017, DOI:

https://dx.doi.org/10.1145/3050220.3063772

[31] A. C. Lapolli, J. Adilson Marques, and L. P. Gaspary, “Offloading real-time

DDoS attack detection to programmable data planes,” in Proceedings of the

Symposium on Integrated Network Management, pp. 19–27, 2019

[32] M. Dimolianis, A. Pavlidis, and V. Maglaris, “A Multi-Feature DDoS Detection

Schema on P4 Network Hardware,” in Proceedings of the Conference on

Innovation in Clouds, Internet and Networks and Workshops, pp. 1–6, 2020,

DOI: https://dx.doi.org/10.1109/ICIN48450.2020.9059327

[33] H. Harkous, C. Papagianni, K. De Schepper, M. Jarschel, M. Dimolianis, and R.

Preis, “Virtual Queues for P4: A Poor Man’s Programmable Traffic Manager,” in

IEEE Transactions on Network and Service Management, vol. 18, no. 3, pp.

2860–2872, 2021, DOI: https://dx.doi.org/10.1109/TNSM.2021.3077051

[34] “Network Functions Virtualisation (NFV); Architectural Framework Group

Specification - ETSI GS NFV 002 V1.1.1,” 2013, available at:

 150

https://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v01

0101p.pdf [accessed March 17, 2022]

[35] “PF_RING – ntop,” available at: https://www.ntop.org/products/packet-

capture/pf_ring/ [accessed March 17, 2022]

[36] L. Deri, “Using nDPI over DPDK to Classify and Block Unwanted Network

Traffic Traffic Classification : an Overview,” available at:

https://www.dpdk.org/wp-

content/uploads/sites/35/2018/12/LUCADERI_NDPI.pdf [accessed November 9,

2021]

[37] B. Perlman and E. Networks, “Accelerating Telco NFV Deployments with

DPDK and SmartNICs,” 2018, available at: https://www.dpdk.org/wp-

content/uploads/sites/35/2018/12/Kalimani-and-Barak-Accelerating-NFV-with-

DPDK-and-SmartNICs.pdf [accessed November 9, 2021]

[38] “Can SNMP (Still) Be Used to Detect DDoS Attacks?,” available at:

https://blog.radware.com/security/2018/08/snmp-ddos-attack-detection/ [accessed

December 18, 2020]

[39] “SNMP is dead – Google Research NANOG 2018,” available at:

https://research.google/pubs/pub47773/ [accessed December 18, 2020]

[40] A. Douitsis and V. Maglaris, “Towards a scalable management collector,” in

Proceedings of the Global Information Infrastructure and Networking

Symposium, pp. 1–6, 2016, DOI: https://dx.doi.org/10.1109/GIIS.2016.7814939

[41] “Google Protocol Buffers,” available at: https://developers.google.com/protocol-

buffers [accessed February 22, 2022]

[42] “Juniper - Streaming Telemetry,” available at:

https://www.juniper.net/documentation/en_US/junos/topics/reference/general/jun

os-telemetry-interface-grpc-sensors.html [accessed December 21, 2020]

[43] P. Vuletic, M. Dimolianis, V. Olifer, and I. Golub, “Zero-Footprint Monitoring -

GÉANT White Paper,” 2020, available at: https://about.geant.org/wp-

content/uploads/2021/12/Zero-Footprint-Monitoring.pdf [accessed March 18,

2022]

[44] “NetFlow - Wikipedia,” available at: https://en.wikipedia.org/wiki/NetFlow

[accessed April 7, 2022]

[45] B. Rashidi, C. Fung, and E. Bertino, “A Collaborative DDoS Defence

Framework Using Network Function Virtualization,” in IEEE Transactions on

 151

Information Forensics and Security, vol. 12, no. 10, pp. 2483–2497, 2017, DOI:

https://dx.doi.org/10.1109/TIFS.2017.2708693

[46] “Snort - Network Intrusion Detection & Prevention System,” available at:

https://www.snort.org/ [accessed March 18, 2022]

[47] M. Prince, “The DDoS That Knocked Spamhaus Offline (And How We

Mitigated It) - Cloudflare,” available at: https://blog.cloudflare.com/the-ddos-

that-knocked-spamhaus-offline-and-ho/ [accessed March 18, 2022]

[48] M. Majkowski, “Reflections on reflection (attacks),” available at:

https://blog.cloudflare.com/reflections-on-reflections/ [accessed March 18, 2022]

[49] W. Eddy, “RFC 4987 - TCP SYN Flooding Attacks and Common Mitigations,”

available at: https://tools.ietf.org/html/rfc4987 [accessed March 18, 2022]

[50] “What Is an ACK Flood?,” available at:

https://www.cloudflare.com/learning/ddos/what-is-an-ack-flood/ [accessed

January 11, 2021]

[51] “Anatomy of a SYN-ACK attack - Akamai Security Intelligence and Threat

Research Blog,” available at: https://blogs.akamai.com/sitr/2019/07/anatomy-of-

a-syn-ack-attack.html [accessed January 11, 2021]

[52] “HTTP Flood DDoS Attack - Cloudflare,” available at:

https://www.cloudflare.com/learning/ddos/http-flood-ddos-attack/ [accessed

January 11, 2021]

[53] “Slowloris DDoS Attack - Cloudflare,” available at:

https://www.cloudflare.com/learning/ddos/ddos-attack-tools/slowloris/ [accessed

January 11, 2021]

[54] “How to Defend DNS Services from All Types of DDoS Attacks - A10

Networks,” available at: https://www.a10networks.com/blog/how-to-defend-dns-

services-from-all-types-of-ddos-attacks/ [accessed January 11, 2021]

[55] S. Fichera, L. Galluccio, S. C. Grancagnolo, G. Morabito, and S. Palazzo,

“OPERETTA: An OPEnflow-based REmedy to mitigate TCP SYNFLOOD

Attacks against web servers,” in Computer Networks, vol. 92, pp. 89–100, 2015,

DOI: https://dx.doi.org/10.1016/j.comnet.2015.08.038

[56] P. Kumar, M. Tripathi, A. Nehra, M. Conti, and C. Lal, “SAFETY: Early

Detection and Mitigation of TCP SYN Flood Utilizing Entropy in SDN,” in IEEE

Transactions on Network and Service Management, vol. 15, no. 4, pp. 1545–

1559, 2018, DOI: https://dx.doi.org/10.1109/TNSM.2018.2861741

 152

[57] R. Mohammadi, R. Javidan, and M. Conti, “SLICOTS: An SDN-based

lightweight countermeasure for TCP SYN flooding attacks,” in IEEE

Transactions on Network and Service Management, vol. 14, no. 2, pp. 487–497,

2017, DOI: https://dx.doi.org/10.1109/TNSM.2017.2701549

[58] K. Giotis, G. Androulidakis, and V. Maglaris, “A scalable anomaly detection and

mitigation architecture for legacy networks via an OpenFlow middlebox,” in

Security and Communication Networks, vol. 9, no. 13, pp. 422–437, 2015, DOI:

https://dx.doi.org/10.1002/sec.1368

[59] J. Hill, M. Aloserij, and P. Grosso, “Tracking network flows with P4,” in

Proceedings of the Innovating the Network for Data-Intensive Science, pp. 23–

32, 2018, DOI: https://dx.doi.org/10.1109/INDIS.2018.00006

[60] “FastNetMon DDoS detection tool,” available at: https://fastnetmon.com/

[accessed September 5, 2020]

[61] C. Siaterlis and V. Maglaris, “Detecting incoming and outgoing DDoS attacks at

the edge using a single set of network characteristics,” in Proceedings of the

Symposium on Computers and Communications, pp. 469–475, 2005, DOI:

https://dx.doi.org/10.1109/ISCC.2005.50

[62] Y. Cui et al., “SD-Anti-DDoS: Fast and efficient DDoS defense in software-

defined networks,” in Journal of Network and Computer Applications, vol. 68,

pp. 65–79, 2016, DOI: https://dx.doi.org/10.1016/j.jnca.2016.04.005

[63] Q. Niyaz, W. Sun, and A. Y. Javaid, “A Deep Learning Based DDoS Detection

System in Software-Defined Networking (SDN),” in ICST Transactions on

Security and Safety, vol. 4, no. 12, 2017, DOI: https://dx.doi.org/10.4108/eai.28-

12-2017.153515

[64] A. Santos da Silva, J. A. Wickboldt, L. Z. Granville, and A. Schaeffer-Filho,

“ATLANTIC: A framework for anomaly traffic detection, classification, and

mitigation in SDN,” in Proceedings of the IEEE/IFIP Network Operations and

Management Symposium, pp. 27–35, 2016, DOI:

https://dx.doi.org/10.1109/NOMS.2016.7502793

[65] X. Yuan, C. Li, and X. Li, “DeepDefense: Identifying DDoS Attack via Deep

Learning,” in Proceedings of the International Conference on Smart Computing,

pp. 1–8, 2017, DOI: https://dx.doi.org/10.1109/SMARTCOMP.2017.7946998

[66] R. Doriguzzi-Corin, S. Millar, S. Scott-Hayward, J. Martinez-del-Rincon, and D.

Siracusa, “LUCID: A Practical, Lightweight Deep Learning Solution for DDoS

 153

Attack Detection,” in IEEE Transactions on Network and Service Management,

vol. 17, no. 2, pp. 876–889, 2020, DOI:

https://dx.doi.org/10.1109/TNSM.2020.2971776

[67] “Zero-Day Exploits & Zero-Day Attacks,” available at:

https://www.kaspersky.com/resource-center/definitions/zero-day-exploit

[accessed February 24, 2022]

[68] C. Dietzel, A. Feldmann, and T. King, “Blackholing at IXPs: On the

Effectiveness of DDoS Mitigation in the Wild,” in Proceedings of the

International Conference on Passive and Active Network Measurement, pp. 319–

332, 2016, DOI: https://dx.doi.org/10.1007/978-3-319-30505-9_24

[69] L. Serodio, “Traffic Diversion Techniques for DDoS Mitigation using BGP

Flowspec Distributed Denial of Service (DDoS) Attacks,” available at:

https://archive.nanog.org/sites/default/files/wed.general.trafficdiversion.serodio.1

0.pdf [accessed March 18, 2022]

[70] W. Kumari and D. McPherson, “RFC 5635 - Remote Triggered Black Hole

Filtering with Unicast Reverse Path Forwarding (uRPF),” available at:

https://datatracker.ietf.org/doc/html/rfc5635 [accessed March 18, 2022]

[71] J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and DDoS defense

mechanisms,” in Computer Communication Review, vol. 34, no. 2, pp. 39–53,

2004, DOI: https://dx.doi.org/10.1145/997150.997156

[72] F. Soldo, K. Argyraki, and A. Markopoulou, “Optimal source-based filtering of

malicious traffic,” in IEEE/ACM Transactions on Networking, vol. 20, no. 2, pp.

381–395, 2012, DOI: https://dx.doi.org/10.1109/TNET.2011.2161615

[73] P. Marques, N. Sheth, R. Raszuk, B. Greene, J. Mauch, and P. McPherson, “RFC

5575 - Dissemination of Flow Specification Rules,” available at:

https://datatracker.ietf.org/doc/html/rfc5575 [accessed March 18, 2022]

[74] P. Phaal, S. Panchen, and N. McKee, “InMon Corporation’s sFlow: A Method

for Monitoring Traffic in Switched and Routed Networks,” Rfc 3176, 2001,

available at: https://tools.ietf.org/html/rfc3176 [accessed March 17, 2022]

[75] “P4-16 Language Specification version 1.2.1,” available at: https://p4.org/p4-

spec/docs/P4-16-v1.2.1.html [accessed March 18, 2022]

[76] H. Harkous, M. Jarschel, M. He, R. Priest, and W. Kellerer, “Towards

Understanding the Performance of P4 Programmable Hardware,” in Proceedings

of the ACM/IEEE Symposium on Architectures for Networking and

 154

Communications Systems, pp. 1–6, 2019, DOI:

https://dx.doi.org/10.1109/ANCS.2019.8901881

[77] O. Hohlfeld, J. Krude, J. H. Reelfs, J. Ruth, and K. Wehrle, “Demystifying the

Performance of XDP BPF,” in Proceedings of the Conference on Network

Softwarization, pp. 208–212, 2019, DOI:

https://dx.doi.org/10.1109/NETSOFT.2019.8806651

[78] G. Bertin, “XDP in practice: integrating XDP in our DDoS mitigation pipeline,”

available at:

https://legacy.netdevconf.info/2.1/papers/Gilberto_Bertin_XDP_in_practice.pdf

[accessed March 18, 2022]

[79] A. Broder and M. Mitzenmacher, “Network applications of bloom filters: A

survey,” in Internet Mathematics, vol. 1, no. 4, pp. 485–509, 2004, DOI:

https://dx.doi.org/10.1080/15427951.2004.10129096

[80] K. Cho, K. Mitsuya, and A. Kato, “Traffic data repository at the WIDE project,”

in Proceedings of the Annual Conference on USENIX Annual Technical

Conference, 2000

[81] “Monitoring Tools - GRNET,” available at: https://mon.grnet.gr/ [accessed May

16, 2020]

[82] “Cloudflare - Network-layer DDoS attack trends for Q2 2020,” available at:

https://blog.cloudflare.com/network-layer-ddos-attack-trends-for-q2-2020/

[accessed October 21, 2020]

[83] “Imperva mitigates largest DDoS attacks of 2020 so far,” available at:

https://www.imperva.com/blog/imperva-mitigates-largest-ddos-attacks-of-2020-

so-far/ [accessed October 21, 2020]

[84] D. Bernstein, “SYN cookies,” available at: http://cr.yp.to/syncookies.html

[accessed March 18, 2022]

[85] M. Majkowski, “SYN packet handling in the wild,” available at:

https://blog.cloudflare.com/syn-packet-handling-in-the-wild/ [accessed June 26,

2020]

[86] “Fortinet - Configuring a TCP SYN flood protection policy,” available at:

https://docs.fortinet.com/document/fortiadc/5.4.0/handbook/832593/configuring-

a-tcp-syn-flood-protection-policy [accessed October 14, 2020]

[87] D. Scholz, S. Gallenmueller, H. Stubbe, B. Jaber, M. Rouhi, and G. Carle, “Me

Love (SYN-) Cookies : SYN Flood Mitigation in Programmable Data Planes,”

 155

in arXiv preprint, 2020, DOI: https://dx.doi.org/10.48550/arXiv.2003.03221

[88] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist

multiobjective genetic algorithm: NSGA-II,” in IEEE Transactions on

Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002, DOI:

https://dx.doi.org/10.1109/4235.996017

[89] “TCP SYN Flood mitigation via XDP,” available at:

https://github.com/doup123/syn_flood_xdp [accessed October 22, 2020]

[90] “Platypus - Multiobjective Optimization in Python,” available at:

https://platypus.readthedocs.io/en/latest/ [accessed October 14, 2020]

[91] “RandomForestClassifier - scikit-learn,” available at: https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.ht

ml [accessed November 1, 2020]

[92] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” in

Proceedings of the 3rd International Conference on Learning Representations,

pp. 1–15, 2015

[93] G. Bertin, “Introducing the p0f BPF compiler,” available at:

https://blog.cloudflare.com/introducing-the-p0f-bpf-compiler/ [accessed October

23, 2020]

[94] C. Rossow, “Amplification Hell: Revisiting Network Protocols for DDoS

Abuse,” in in Proceedings of the Network and Distributed System Security

Symposium, 2014, DOI: https://dx.doi.org/10.14722/ndss.2014.23233

[95] “Global DDoS Summary - NETSCOUT Cyber Threat Horizon,” available at:

https://horizon.netscout.com/?atlas=summary [accessed September 17, 2020]

[96] S. Miano, R. Doriguzzi-Corin, F. Risso, D. Siracusa, and R. Sommese,

“Introducing SmartNICs in Server-Based Data Plane Processing: The DDoS

Mitigation Use Case,” in IEEE Access, vol. 7, pp. 107161–107170, 2019, DOI:

https://dx.doi.org/10.1109/access.2019.2933491

[97] “Suricata Open Source IDS/IPS,” available at: https://suricata.io/ [accessed

March 18, 2022]

[98] Y. Afek, A. Bremler-Barr, and S. L. Feibish, “Zero-Day Signature Extraction for

High-Volume Attacks,” in IEEE/ACM Transactions on Networking, vol. 27, no.

2, pp. 691–706, 2019, DOI: https://dx.doi.org/10.1109/TNET.2019.2899124

[99] “What is Out of Bag (OOB) score in Random Forest?,” available at:

https://towardsdatascience.com/what-is-out-of-bag-oob-score-in-random-forest-

 156

a7fa23d710 [accessed April 21, 2021]

[100] R. Genuer, J.-M. Poggi, and C. Tuleau-Malot, “Variable selection using random

forests,” in Pattern Recognition Letters, vol. 31, no. 14, pp. 2225–2236, 2010,

DOI: https://dx.doi.org/10.1016/j.patrec.2010.03.014

[101] M. M. Singh, M. M. Singh, and S. Kaur, “10 Days DNS Network Traffic from

April-May 2016,” available at: https://data.mendeley.com/datasets/zh3wnddzxy/1

[accessed March 18, 2022]

[102] “sFlow: Sampling rates,” available at: https://blog.sflow.com/2009/06/sampling-

rates.html [accessed March 18, 2022]

[103] “Netronome Flow Processor (NFP) Kernel Drivers,” available at:

https://www.kernel.org/doc/html/latest/networking/device_drivers/ethernet/netro

nome/nfp.html [accessed March 18, 2022]

[104] “General Data Protection Regulation - GDPR,” available at: https://gdpr-info.eu/

[accessed January 7, 2022]

[105] H. Brendan McMahan, E. Moore, D. Ramage, S. Hampson, and B. Agüera y

Arcas, “Communication-efficient learning of deep networks from decentralized

data,” in Proceedings of the International Conference on Artificial Intelligence

and Statistics, pp. 1273–1282, 2017

[106] T. S. Brisimi, R. Chen, T. Mela, A. Olshevsky, I. C. Paschalidis, and W. Shi,

“Federated learning of predictive models from federated Electronic Health

Records,” in International Journal of Medical Informatics, vol. 112, pp. 59–67,

2018, DOI: https://dx.doi.org/10.1016/j.ijmedinf.2018.01.007

[107] A. Nilsson, S. Smith, G. Ulm, E. Gustavsson, and M. Jirstrand, “A performance

evaluation of federated learning algorithms,” in Proceedings of the Workshop on

Distributed Infrastructures for Deep Learning, pp. 1–8, 2018, DOI:

https://dx.doi.org/10.1145/3286490.3286559

[108] J. Li, L. Lyu, X. Liu, X. Zhang, and X. Lyu, “FLEAM: A Federated Learning

Empowered Architecture to Mitigate DDoS in Industrial IoT,” in IEEE

Transactions on Industrial Informatics, vol. 18, no. 6, pp. 4059–4068, 2022,

DOI: https://dx.doi.org/10.1109/TII.2021.3088938

[109] Q. Tian, C. Guang, C. Wenchao, and W. Si, “A lightweight residual networks

framework for DDoS attack classification based on federated learning,” in

Proceedings of the Conference on Computer Communications Workshops, 2021,

DOI: https://dx.doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484622

 157

[110] Y. Chen, K. Hwang, and W.-S. Ku, “Collaborative Detection of DDoS Attacks

over Multiple Network Domains,” in IEEE Transactions on Parallel and

Distributed Systems, vol. 18, no. 12, pp. 1649–1662, 2007, DOI:

https://dx.doi.org/10.1109/TPDS.2007.1111

[111] J. François, I. Aib, and R. Boutaba, “FireCol: A collaborative protection network

for the detection of flooding DDoS attacks,” in IEEE/ACM Transactions on

Networking, vol. 20, no. 6, pp. 1828–1841, 2012, DOI:

https://dx.doi.org/10.1109/TNET.2012.2194508

[112] J. Steinberger, B. Kuhnert, A. Sperotto, H. Baier, and A. Pras, “Collaborative

DDoS defense using flow-based security event information,” in Proceedings of

the Network Operations and Management Symposium, pp. 516–522, 2016, DOI:

https://dx.doi.org/10.1109/NOMS.2016.7502852

[113] C. Hesselman and R. Yazdani, “CONCORDIA Cyber security cOmpeteNCe fOr

Research anD InnovAtion DDoS Clearing House for Europe Cross-sector Pilot

Demo,” available at:

https://www.sidnlabs.nl/downloads/2deJudioEsd0oFWufTXdV9/099fa8c92f7d60

1e0669bec73b2fa272/NEW-20200123-CONCORDIA-T3.2-demo-review-

final.pdf [accessed December 8, 2021]

[114] K. Giotis, M. Apostolaki, and V. Maglaris, “A reputation-based collaborative

schema for the mitigation of distributed attacks in SDN domains,” in

Proceedings of the Network Operations and Management Symposium, pp. 495–

501, 2016, DOI: https://dx.doi.org/10.1109/NOMS.2016.7502849

[115] A. Pavlidis et al., “Orchestrating DDoS mitigation via blockchain-based network

provider collaborations,” in Knowledge Engineering Review, vol. 35, pp. 1–17,

2020, DOI: https://dx.doi.org/10.1017/S0269888920000259

[116] “The Global Leaders’ Forum launches Communications Blockchain Network

(CBN) - Deutsche Telekom Global Carrier,” available at:

https://globalcarrier.telekom.com/newsroom/news/news-pages/global-leaders-

forum-launches-communications-blockchain-network [accessed January 13,

2022]

[117] Y. Zhao, J. Chen, D. Wu, J. Teng, and S. Yu, “Multi-Task Network Anomaly

Detection using Federated Learning,” in in Proceedings of the International

Symposium on Information and Communication Technology, pp. 273–279, 2019,

DOI: https://dx.doi.org/10.1145/3368926.3369705

 158

[118] “DE-CIX – Deutscher Commercial Internet Exchange,” available at:

https://www.de-cix.net/ [accessed January 11, 2022]

[119] M. Dimolianis, A. Pavlidis, and V. Maglaris, “Signature-Based Traffic

Classification and Mitigation for DDoS Attacks Using Programmable Network

Data Planes,” in IEEE Access, vol. 9, pp. 113061–113076, 2021, DOI:

https://dx.doi.org/10.1109/ACCESS.2021.3104115

[120] “Cisco ASR 9000 Series Aggregation Services Router - Implementing BGP

Flowspec,” available at:

https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-

2/routing/configuration/guide/b_routing_cg52xasr9k/b_routing_cg52xasr9k_cha

pter_011.html [accessed January 7, 2022]

[121] “Jinja Documentation,” available at: https://jinja.palletsprojects.com/en/3.0.x/

[accessed December 2, 2021]

[122] A. Narayanan, S. Previdi, and F. Brian, “BGP Advertisements for Content

URIs,” available at: https://slideplayer.com/slide/8149985/ [accessed December

13, 2021]

[123] “RabbitMQ message broker,” available at: https://www.rabbitmq.com/ [accessed

December 9, 2021]

[124] “Ryu component-based software defined networking framework,” available at:

https://github.com/faucetsdn/ryu [accessed January 7, 2022]

[125] “BGP Routing Table Analysis - IPv4 prefixes and their origin ASNs,” available

at: https://thyme.apnic.net/current/ [accessed December 2, 2021]

[126] “Hyperparameter optimization - Grid search,” available at:

https://en.wikipedia.org/wiki/Hyperparameter_optimization#Grid_search

[accessed January 12, 2022]

[127] “perf (Linux) - Wikipedia,” available at:

https://en.wikipedia.org/wiki/Perf_(Linux) [accessed January 5, 2022]

[128] M. Nawrocki, J. Blendin, C. Dietzel, T. C. Schmidt, and M. Wählisch, “Down

the black hole: Dismantling operational practices of BGP blackholing at IXPS,”

in Proceedings of the Internet Measurement Conference, pp. 435–448, 2019,

DOI: https://dx.doi.org/10.1145/3355369.3355593

[129] Z. Liu et al., “Jaqen: A high-performance switch-native approach for detecting

and mitigating volumetric DDoS attacks with programmable switches,” in

Proceedings of the USENIX Security Symposium, pp. 3829–3846, 2021

 159

[130] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” in Neural

Computation, vol. 9, no. 8, pp. 1735–1780, 1997, DOI:

https://dx.doi.org/10.1162/neco.1997.9.8.1735

[131] J. Hawkins and S. Blakeslee, On Intelligence: How a New Understanding of the

Brain will Lead to the Creation of Truly Intelligent Machines. Times Books,

2004

[132] Y. Feng, J. Li, and T. Nguyen, “Application-Layer DDoS Defense with

Reinforcement Learning,” in Proceedings of the International Symposium on

Quality of Service, 2020, DOI:

https://dx.doi.org/10.1109/IWQoS49365.2020.9213026

[133] A. Gholami, N. Torkzaban, and J. S. Baras, “On the Importance of Trust in Next-

Generation Networked CPS Systems: An AI Perspective,” in arXiv preprint,

2021, DOI: https://dx.doi.org/10.48550/arXiv.2104.07853

