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Abstract 

In this dissertation, we leverage on capabilities offered by the Network Softwarization 

paradigm and combine them with advanced data analysis techniques, i.e. Machine 

Learning (ML), towards the development of an integrated protection framework against 

cyberattacks. We focus on Distributed-Denial of Service (DDoS) attacks and implement 

mechanisms for efficient network data collection, fast and reliable anomaly detection and 

effective mitigation.  

Initially, we design a DDoS detection mechanism entirely offloaded in the data plane 

using the P4 language. Through traffic features computed and evaluated in-network, 

DDoS attacks victims are identified rapidly within short timeframes. Detection in the data 

plane is one step ahead of control plane mechanisms that stall real-time detection and 

mitigation of network attacks.   

Detecting the victim of network attacks is only the first step towards mitigating them and 

is followed by traffic classification procedures. Thus, in this dissertation we introduce a 

novel signature-based classification and mitigation schema based on softwarized data 

planes, i.e. eXpress Data Path (XDP). Supervised Learning algorithms (Random Forests, 

Multilayer-Perceptrons), applied to packet features (signatures), segregate malicious from 

benign packets. The employed features are pre-selected through an automated process 

that eliminates inconsequential features. To expedite mitigation performance and ease 

filtering rules management, source IP-agnostic rules tailored to the attack traffic are 

generated. This is achieved via a multi-objective optimization problem formulation that 

reduces filtering rules number with minimal effect on benign traffic. The proposed 

signature-based mechanism is evaluated in two broad categories of DDoS attacks, 

protocol (i.e. SYN Flood) and volumetric (i.e. DNS Amplification). Based on 

experimental evaluations, our innovative approach outperforms the state-of-the-art flow-

based protection mechanisms by (i) detecting attacks in shorter time-windows, (ii) 

optimizing the number and type of filtering rules, and (iii) achieving increased packet 

filtering performance. 

Finally, in this dissertation, we extend our signature-based schema to collaborative 

network environments. Collaborative DDoS detection relies on Federated Learning 

techniques that enable for cooperative and privacy-aware learning. Collaborative DDoS 
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mitigation is implemented in programmable XDP-based middleboxes featuring a 

scalable, cost-effective protection as-a-service mechanism. By contrast to traditional 

protection schemes, we allow data exchange amongst disjoint network domains with 

respect to data privacy legislations; moreover, we offer a flexible yet efficient firewall 

solution offloaded in Commercial-off-the-Shelf hardware.  

Our integrated protection framework is deployed in programmable network hardware and 

evaluated using production network data from diverse and heterogeneous network 

environments, featuring fully realistic experimentation. 

Keywords:  

DDoS attacks, Anomaly Detection, Attack Mitigation, Software-Defined Networking 

(SDN), Data Plane Programmability, P4, eXpress Data Path (XDP), Supervised Learning, 

Federated Learning 
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Περίληψη 

Η παρούσα διδακτορική διατριβή ερευνά τεχνολογίες αιχμής των σύγχρονων δικτύων 

υπολογιστών με έμφαση στις δυνατότητες προγραμματισμού τους και παράλληλα 

εξετάζει μεθοδολογίες και αλγορίθμους ευφυούς ανάλυσης δικτυακών δεδομένων. 

Συνδυάζοντας αυτές τις δύο πτυχές έχει ως στόχο την δημιουργία ενός ολοκληρωμένου 

μηχανισμού προστασίας ενάντια σε κυβερνοεπιθέσεις. Συγκεκριμένα, ασχολείται με τις 

κατανεμημένες επιθέσεις άρνησης παροχής υπηρεσιών και μελετά μεθόδους αποδοτικής 

συλλογής δεδομένων, τεχνικές άμεσης και αξιόπιστης ανίχνευσης και κλιμακώσιμους 

μηχανισμούς αντιμετώπισης επιθέσεων. 

Αρχικά παρουσιάζεται ένας μηχανισμός ανίχνευσης επιθέσεων σχεδιασμένος εξ' 

ολοκλήρου στο επίπεδο δεδομένων δικτυακών συσκευών. Μέσα από τη γλώσσα P4, 

υπολογίζονται μετρικές της δικτυακής κίνησης που μπορούν να υποδείξουν άμεσα το 

θύμα της εκάστοτε επίθεσης. Οι μηχανισμοί που υλοποιούνται στο επίπεδο δεδομένων 

επιφέρουν ταχύτερους χρόνους ανίχνευσης σε σχέση με τους παραδοσιακούς 

μηχανισμούς που βασίζονται στο επίπεδο ελέγχου και μπορούν να οδηγήσουν στην 

καίρια αντιμετώπιση των επιθέσεων. 

Ωστόσο, ο εντοπισμός του θύματος αποτελεί μόνο το πρώτο βήμα για την καταστολή 

μιας επίθεσης, αφού για να γίνει αυτό εφικτό απαιτείται ο διαχωρισμός της δικτυακής 

κίνησης σε καλόβουλη και κακόβουλη. Συνεπώς, στη συνέχεια της παρούσας 

διδακτορικής διατριβής προτείνεται ένας καινοτόμος μηχανισμός προστασίας από 

επιθέσεις που βασίζεται σε χαρακτηριστικά των πακέτων (signatures) και υλοποιείται σε 

γενικού τύπου εξοπλισμό αξιοποιώντας τις δυνατότητες του framework XDP. 

Αλγόριθμοι Επιβλεπόμενης Μάθησης αξιοποιούν μόνο τα σημαντικά χαρακτηριστικά 

των πακέτων και τα κατηγοριοποιούν σε καλόβουλα/κακόβουλα. Για την αντιμετώπιση 

των επιθέσεων, χρησιμοποιούνται τα ιδιαίτερα χαρακτηριστικά των κακόβουλων 

πακέτων, όπως αυτά προκύπτουν από μία διαδικασία μείωσης. Συγκεκριμένα, 

κατασκευάζονται κανόνες αποκοπής που περιγράφουν με όσο το δυνατόν μεγαλύτερη 

ακρίβεια την εκάστοτε επίθεση χωρίς να επηρεάζουν σημαντικά την καλόβουλη κίνηση. 

Ο προτεινόμενος μηχανισμός εφαρμόζεται σε δύο μεγάλες κατηγορίες κατανεμημένων 

επιθέσεων άρνησης παροχής υπηρεσιών, τις volumetric και τις protocol. Η πειραματική 

αξιολόγηση δείχνει την υπεροχή της συγκεκριμένης μεθοδολογίας έναντι των κλασικών 

μηχανισμών προστασίας που βασίζονται σε ροές πακέτων: (i) στην ταχύτητα ανίχνευσης 
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επιθέσεων, (ii) στην κατασκευή βέλτιστων φίλτρων απόρριψης της κακόβουλης κίνησης 

και (iii) στις αυξημένες επιδόσεις σε ρυθμούς απόρριψης πακέτων. 

Τέλος, ολοκληρώνοντας την παρούσα διατριβή επεκτείνουμε τον μηχανισμό προστασίας 

που βασίζεται σε χαρακτηριστικά των πακέτων σε συνεργατικά περιβάλλοντα 

αυτόνομων δικτύων. Η συνεργατική ανίχνευση επιτελείται με τη χρήση τεχνικών 

Ομόσπονδης Μάθησης που επιτρέπουν την συλλογική κατασκευή μοντέλων Μηχανικής 

Μάθησης χωρίς την άμεση χρήση των προσωπικών δεδομένων των συνεργαζόμενων. Η 

συνεργατική αντιμετώπιση βασίζεται και πάλι στο framework XDP και προσφέρεται σαν 

υπηρεσία στους συνεργαζόμενους φορείς δίνοντας τη δυνατότητα για αποδοτική και 

κλιμακώσιμη απόρριψη κακόβουλων πακέτων. Σε σύγκριση με τις παραδοσιακές 

μεθόδους συνεργατικής προστασίας, η μεθοδολογία που ακολουθούμε λαμβάνει υπόψιν 

της τόσο την ιδιωτικότητα των δεδομένων για την ανίχνευση αλλά και την ευελιξία όσον 

αφορά τους τύπους των κανόνων αλλά και τους υφιστάμενους πόρους. 

Αξίζει αναφοράς ότι ο μηχανισμός προστασίας που κατασκευάστηκε στα πλαίσια αυτής 

της διατριβής δοκιμάστηκε σε πραγματικό δικτυακό εξοπλισμό (έξυπνες κάρτες δικτύου) 

και οι επιδόσεις του αξιολογήθηκαν βάσει πραγματικών δικτυακών δεδομένων από 

ετερογενή δικτυακά περιβάλλοντα. 

Λέξεις Κλειδιά: 

Δίκτυα Οριζόμενα από Λογισμικό, Κατανεμημένες Επιθέσεις Άρνησης Παροχής 

Υπηρεσιών, Προγραμματισμός Επιπέδου Δεδομένων, Ανίχνευση Επιθέσεων, 

Αντιμετώπιση Επιθέσεων, Επιβλεπόμενη Μάθηση, Ομόσπονδη Μάθηση 
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1 Introduction 

1.1 Motivation & Problem Statement 

Internet services have been and still are an integral part of our lives with a plethora of 

everyday activities being highly dependent on them. These span from applications that 

facilitate online economic transactions, digital content exchange, social networking, but 

also extend to critical applications for the human life, e.g. remote surgery. COVID-19 

pandemic is one of the recent examples that illustrated the reliance of people on Internet 

services; during that period, huge Internet traffic growths were observed, since most 

people were self-isolated spending most of their time at home (e.g. remote working, 

extent usage of streaming services). This period is a prominent example illustrating that 

the stability and the guaranteed performance of computer networks can significantly 

affect our everyday lives. 

Network attacks provide the means for disrupting the stable/desired operation of 

computer networks. Especially, Distributed Denial-of-Service (DDoS) attacks [1] are the 

most common way for plaguing network infrastructures and overwhelming services 

offered on top. These attacks aim, using a wide spectrum of techniques, to render specific 

services and/or network infrastructures unreachable to their legitimate users. DDoS 

attacks have been commoditized and even offered as-a-service via platforms referred to 

as Booters [2]; in exchange of a small fee, attacks of high volume can be launched, 

capable to bring down from small enterprises up to large ICT (Information and 

Communications Technology) companies. The ease of initiating DDoS attacks combined 

with diverse motives (e.g. extortion, cyber warfare, boredom) have made them an 

everyday problem for network operators and as a consequence for the legitimate end-

users.  

The increasing frequency of DDoS attacks impacting critical and of paramount 

importance Internet services has paved the way for the development of a large DDoS 

protection industry [3]–[6]. These companies offer full-fledged traffic scrubbing on 

potential victim networks (e.g. Internet Service Providers, Content Delivery Networks, 

Academic Institutions) by providing two types of services: they (i) either offer on-demand 

protection by draining network traffic destined to victim networks, scrub it, and forward 

back the benign portion, (ii) and/or provide commercial scrubbing appliances [7], [8] for 
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on-premises protection; these are constantly protecting networks and services from 

malicious traffic. However, due to the costly fees introduced by commercial-based 

solutions, custom in-house alternatives are also considered instead. In both cases, DDoS 

protection frameworks should be able to adapt to the evolving landscape of network 

attacks and cope with the requirements posed by the ever-growing Internet traffic. 

Therefore, the protection mechanisms need to consider the following 

limitations/challenges: 

 Proprietary software/hardware - Limited flexibility: Typical DDoS protection 

solutions are either proprietary in terms of hardware equipment or software 

implementations. This poses difficulties on managing, troubleshooting or even 

extending such mechanisms while introducing vendor lock-ins.  

 Scalability/Performance: Protection services are required to cope with the ever-

increasing Internet traffic. Hardware implementations lack the elasticity of 

extending on-demand their resources while software-based approaches, although 

elastic, are not able to meet performance requirements imposed by emerging 

network infrastructures. 

 Adaptability to diverse & complicated traffic patterns: The increase of 

complicated and diverse Internet applications/services in the Big Data era creates 

constantly heterogeneous and complex traffic patterns. DDoS protection 

mechanisms need to deal with the evolving traffic patterns by providing accurate 

and rapid traffic classification. 

Deep network programmability realized by the advent of Network Softwarization in 

combination with the evolution/embracement of intelligent data-driven methods, i.e. 

Machine Learning, can act as key enablers to overcome the aforementioned 

limitations/challenges.  

Network Softwarization was firstly introduced by the OpenFlow protocol [9] (and similar 

efforts [10]) that enabled network operators to program the control plane of their networks 

in a unified way. Following that paradigm, a new era of programmability has raised 

awareness, offering high-performance programmable data planes. Two main efforts, P4 

[11] and eXpress Data Path (XDP) [12], introduced a revolution in computer networks 

management. Especially for DDoS protection services, these can act as the cornerstone 

of flexible, scalable, and programmable detection and mitigation pipelines. 
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Moreover, the evolution of high-performance computing alongside with the 

establishment of integrated Machine Learning frameworks allow the broad use of 

intelligent data-driven methods, i.e. Machine Learning. Traditional statistical approaches 

may be inadequate to analyze the diverse and complex patterns of network traffic. Thus, 

Machine Learning is a promising candidate for accurate, adaptable, and automated traffic 

classification. 

The aforementioned technologies can play a significant role in addressing DDoS 

protection research challenges. These are divided in two discrete but non-independent 

categories: DDoS (i) detection and (ii) mitigation. DDoS detection includes mechanisms 

for network data extraction and analysis towards the identification of (i) ongoing attacks, 

(ii) targeted victims, (iii) attack types, and (iv) malicious traffic portions. The key 

performance indicators of these tasks are the immediacy (in terms of time) and accuracy. 

The former affects the countermeasures reaction time while the latter the legitimate users’ 

quality of experience. DDoS mitigation includes methods/techniques to effectively filter 

out malicious traffic without impacting benign traffic. Scalability, flexibility, and 

performance are the key challenges to be considered by DDoS mitigation solutions. 

1.2 Contributions 

Based on the aforementioned challenges and innovative technologies, in this dissertation, 

we leverage on recent advances in computer networks and intelligent data-driven 

algorithms to architect an integrated scalable, fast, adaptable, and efficient DDoS 

protection mechanism. Our key contributions in comparison to the existing state-of-the-

art approaches are summarized below: 

Accurate & Rapid DDoS Detection Offloaded in the Data Plane: Contrary to typical 

control plane traffic monitoring and DDoS detection mechanisms (based on sFlow [13], 

NetFlow [14] or OpenFlow [9]), we introduce a rapid detection mechanism in the data 

plane. Especially, P4 language [11] enables us to design and implement line-rate data 

plane pipelines that can accurately detect network anomalies. DDoS attacks are identified 

within short timeframes providing the means for fast remediation of the anomaly.  

Intelligent Data-Driven Signature-based Traffic Classification: Traditionally, DDoS 

protection mechanisms classify network traffic based on packet data organized in network 

flows. This poses difficulties with regards to collection, processing, and storage hindering 
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real-time detection and mitigation. Unlike flow-based schemes, we employ packet 

signatures that instantly reveal DDoS traffic characteristics. These are identified via 

Machine Learning models providing rapid, automated, and adaptable traffic 

classification.  

Source-IP agnostic DDoS Mitigation driven by Smart Filtering Rules Reduction: Filtering 

rules are commonly applied in commodity network devices (switches, routers, firewalls) 

that impose limits to the number of entries they can support. To reduce their number, 

source-IP based filtering schemes employ aggregation techniques by organizing 

malicious IP addresses in subnets. In contrast, we introduce a filtering rule reduction 

mechanism tailored to the attack traffic characteristics. This identifies a concise set of 

filtering rules able to filter out the attack traffic, with minimal effect on benign traffic. 

High-performance Scalable Network Functions based on Programmable Middleboxes: In 

legacy network environments, traffic monitoring and filtering are implemented in rigid 

proprietary appliances. In contrast, we opted to use programmable COTS (Commercial 

off-the-shelf) hardware (i.e. low-cost NICs) powered by the XDP framework. This 

enables the design and implementation of Virtual Network Functions (VNFs) that can be 

instantiated on-demand and scaled according to traffic and application requirements, thus 

suitable for elastic scrubbing services. 

Privacy-preserving DDoS Detection and Scalable Mitigation tailored to Collaborative 

Network Environments: Autonomous Systems (AS’s) collaborations are instrumental in 

the Internet success story, but this is largely not extended to attack protection. 

Collaborative DDoS detection is hindered by strict data privacy legislations while 

mitigation by rigid firewall solutions. To address such concerns and limitations, we 

introduce a signature-based DDoS protection framework tailored to collaborative 

network environments. DDoS detection is performed in a privacy-preserving fashion via 

the Federated Learning technique and DDoS mitigation is offered to collaborating parties 

as a flexible/scalable service. 

Experimentation using Production Network Data on Real Computing and Network 

Hardware: We employ real computing and network resources to conduct high 

performance experiments assessing the applicability of the developed mechanisms in 

realistic network environments. Our experimentation is based on network traces from 
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production network environments, i.e. Campus networks, Internet Service Providers 

(ISPs) and Internet Exchanges (IXes), thus allowing us to evaluate our 

methods/algorithms using both real and heterogeneous network data. 

1.3 Outline 

The remainder of this dissertation is structured as follows: 

Section 2 provides a brief overview of computer networks and their evolution to meet the 

ever-increasing needs imposed by Internet advances. Initially, we briefly discuss 

computer networks and their operational characteristics; subsequently, the Network 

Softwarization paradigm is introduced covering the evolution of Software-Defined 

Networks from OpenFlow (OF) to programmable hardware (P4) and software data planes 

(eXpress Data Path). 

Section 3 presents concepts and technologies related to network monitoring. Monitoring 

protocols, techniques, and data are investigated both for legacy and programmable 

network environments. We put an emphasis on data that can be exported from network 

devices and focus on their use for anomaly detection tasks. 

Section 4 introduces the problem of Distributed-Denial of Service (DDoS) attacks and 

analyzes the different attack types with a focus on their specific characteristics. 

Subsequently, state-of-the-art DDoS attacks detection mechanisms/algorithms are 

elaborated and finally mitigation techniques are discussed. 

Section 5 explains our work on P4-based DDoS attack detection. The proposed approach 

attempts to address the problem of DDoS detection entirely in the data plane providing 

rapid and accurate coarse-grain DDoS alerts (pinpoints anomalies for hosts/subnetworks). 

Our mechanism is evaluated on network hardware (programmable P4-enabled Network 

Interface Cards) using production network data. 

Section 6 makes a step forward towards DDoS protection. We propose a framework that 

attempts not only to detect DDoS attacks but also to classify and filter malicious traffic. 

Specifically, we consider SYN Flood attacks (as an indicative use case of protocol 

attacks) and use packet signatures to classify and filter them. Our approach leverages on 

Machine Learning techniques for traffic classification and softwarized data planes for 
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efficient packet filtering. We use captured network attacks to compare our schema to the 

state-of-the-art mitigation approach SYN Cookies. 

Section 7 introduces a generic signature-based classification and filtering scheme for 

volumetric attacks, extending the concept presented in section 6. The proposed 

framework identifies the most important packet features for traffic classification and 

generates IP-agnostic filtering rules for effective packet filtering. Our approach is 

thoroughly evaluated against state-of-the-art source IP/flow-based approaches using real 

production network data. 

Section 8 extends the work presented in sections 6, 7 on signature-based DDoS protection 

to collaborative multi-domain network environments. We leverage on the Federated 

Learning paradigm to detect DDoS attacks in a privacy-aware fashion and design a 

scalable and programmable DDoS mitigation as a service tailored to collaborative 

network environments. Our schema is evaluated on multi-domain production network 

data. 

Section  9 summarizes the contributions of this dissertation and proposes future steps and 

directions on open problems with regards to DDoS attack protection.  

Section 10 provides an extended abstract of this dissertation in Greek, Section 11 

provides author's publications and finally Section 12 contains references/bibliography. 
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2 Computer Networks & Network Programmability 

2.1 Computer Networks 

Computer networks are and have always been the core ingredient of Internet 

infrastructures, enabling for user and service interconnection. Network devices (routers, 

switches, firewalls etc.) are the cornerstone of Internet infrastructures; these are used first 

and foremost for transferring information between users and services but also to protect 

them from malicious actors. In legacy network environments, packet forwarding is based 

on management/control decisions determined by each network device. Specifically, the 

network operations are categorized in the following planes (described below in a top-

down approach):  

Management Plane: The management plane embeds all the operations related to 

computer networks configuration and monitoring. The former may span from security 

policies for network devices protection to control plane configurations (e.g. routing 

protocols). The latter refers to network data collection and analysis that are useful for 

maintaining the desired state of networks while validating their proper functionality. 

Control Plane: The control plane defines switching/routing rules on network devices 

based on switching/routing processes; these rules are applied on packets as they traverse 

network devices and determine the way packets are forwarded in computer networks. 

Data/Forwarding Plane: The data plane processes network packets in real-time and 

applies the desired logic, specified by control/management operations. Indicative data 

plane operations include packet switching (destination port selection) based on MAC 

addresses, packet routing based on destination IP addresses and packet filtering based on 

Access Control Rules.  

In legacy computer network architectures, data, control and management planes are 

intertwined at the device level; such an approach was suitable for network management 

and operational processes in legacy environments. Emerging technologies evolved in the 

information and communication technology (ICT) domain, in particular, 5G, Cloud 

Computing, Big Data, Network Function Virtualization (NFV), Internet of Things (IoT), 

and Intent-based networking explicit the need of high bandwidth, ubiquitous accessibility, 

and dynamic management of computer networks [15]. 
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This explosion of Internet services, revealed new traffic requirements that legacy network 

architectures were unable to cope with. Key considerations were related to: (i) limited 

network/device programmability, (ii) the absence of open management standards and 

vendor lock-ins, and (iii) the complexity of network infrastructures posing management 

difficulties. These considerations led to a revolution in computer networks emerged by 

the Software-Defined Networking (SDN) paradigm. 

2.2 Software-Defined Networks 

The aforementioned considerations in parallel with advances in network hardware and 

software drove researchers and operators to rethink traditional network architectures. Key 

design principles for next-generation networks were deep network programmability, open 

and standardized interfaces for unified network management. 

2.2.1 OpenFlow Protocol 

OpenFlow (OF) [9] is considered one of the first and well-established protocols of the 

Software-Defined Networking (SDN) paradigm. OF created the pathway for innovative 

network (SDN) architectures by disaggregating the control from the data plane. In a 

nutshell, the purpose was to transfer the "intelligence" of computer networks from the 

network device to centralized controllers, as shown in Figure 2.1. This architecture 

provides (i) a wide centralized view of the network substrate, (ii) optimized performance 

through centralized decisions, and (iii) granular network-wide policy configuration and 

management. 

OF originally defined the communication protocol in SDN architectures that enabled 

external controllers to directly interact with the forwarding plane of network devices 

(switches, routers). The forwarding plane of OF-enabled devices consists of match/action 

tables that contain (i) a set of rules (based on packet fields spanning from L2 to L4) that 

match traversing packets and (ii) a set of possible actions, e.g. forward to specific port, 

drop the packet. These rules can be dynamically programmed by applications via OF's 

unified interface. OF was widely employed by researchers for various network 

applications considering use cases for network security [16], [17] but also by production 
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environments, e.g. in Google they designed a flexible and elastic software-defined Wide 

Area Network (WAN) [18].  

 

Figure 2.1: OpenFlow application, control, and infrastructure layer interactions [19]  

2.2.2 Hardware Data Planes 

Although OF created new pathways for programming network devices, "OpenFlow main 

goal was to make it easier for those who own and operate networks to write better control 

planes.", as N. McKeown mentions. OF was based on the hypothesis that switch chips 

are not programmable and attempted to fill the gap of unified programming interfaces 

across network devices. However, from recent advances in network hardware, 

programmable switch chips were designed that can achieve comparable performance to 

the typical fixed-function chips. This revealed new capabilities on programming network 

devices as their data plane could be directly programmed by specifying the journey of 

packets within the hardware pipeline. In a similar fashion with OF, the need for a common 

way to program data planes was required. Therefore, in 2014, a group of researchers 

introduced P4 (Programming Protocol-independent Packet Processors) language [11], a 

domain-specific language allowing developers to abstractly express packet forwarding 

logic and apply it directly to network devices. 

A consistent effort that followed the development of P4 language was the evolution of 

programmable packet processors, e.g. DPDK [20], XDP [12]. Softwarized programmable 
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data planes were incorporated in Linux systems presenting high packet processing 

capabilities. Programmable packet processors allow developers to program high-

performance applications on COTS Network Interface Cards (NICs). Softwarized data 

planes were mostly embraced by key players of the ICT industry [21] to design and 

implement scalable, flexible, and of high-performance applications [22]–[24].  

Both approaches (hardware data planes, software data planes) introduce the in-network 

computing paradigm [25] that enables offloading computing tasks (e.g. Network 

Functions) in programmable but of high-performance data planes; this creates a new 

surface for developing novel network applications suitable for use cases that require rapid 

decision making, e.g. anomaly detection tasks. More details related to the P4 framework 

and its architecture are provided in subsection 2.2.2.1; details about programmable packet 

processors and especially for the XDP framework are presented in subsection 2.2.3. 

2.2.2.1 Programming Protocol-independent Packet Processors (P4) 

P4 [11] is a high-level language for expressing how packets are processed by the data 

plane of programmable network devices (switches [26], NICs [27]). The core design 

principles of P4 are: 

 Reconfigurability: Network devices forwarding behavior should be able to be re-

programmed on the fly depending on the network application. 

 Protocol Independence: Network protocols change/evolve to meet new 

requirements; adding new or extending protocols should be able to be 

programmed on-demand without involving timely procedures (long lifecycles of 

vendors). 

 Target Independence: Network devices should be able to be programmed in a 

common way regardless of the specifics of the underlying hardware.  

2.2.2.2 P4 Overview  

In Figure 2.2 below, the lifecycle of deploying P4 programs at network devices (targets) 

is depicted. Device manufacturers provide the hardware or software implementation 

framework, an architecture definition, and a P4 compiler for that target. P4 programs are 

written for a specific architecture (P4 architecture model), which defines a set of P4-

programmable components on the target as well as their external data plane interfaces 

[28]. The compilation of a P4 program generates (i) a data plane program tailored to the 



 29 

employed hardware and (ii) an API that exposes read/write functionalities between the 

control and the data plane. In the next subsection, we will focus on the basic primitives 

of P4 programs development.  

 

Figure 2.2: Programming a network device (target) with P4 [28] 

2.2.2.3 Architecture Model  

The P4 architecture model is a crucial component for the development of P4 programs. It 

is a reference model that defines the programmable blocks of P4-enabled devices and 

their data plane interfaces. We will describe the v1model architecture to explain the 

components of a typical P4 architecture and the programming capabilities it offers 

(v1model was used as a reference architecture for designing a P4-based DDoS detection 

scheme presented in section 5). Note that, v1model is a well-established architecture 

model used in software switches, i.e. BMv2 [29] but also supported by NICs 

manufacturers [27]. 

 

Figure 2.3: P4 v1model architecture 

v1model architecture consists of a 6-stages data plane pipeline as depicted in Figure 2.3. 

The Parser defines all the available packet headers that are supported by the P4 program 

and the order of packet header parsing (e.g. from L2 to L4). Subsequently, the packet 
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passes to the Checksum-Verification stage, in which packets may be verified for corrupted 

packet headers. The Ingress Match-Action stage follows; typically, in that stage, the 

forwarding logic is applied (switching/routing) and the packet is assigned to the traffic 

manager (not programmable in the v1model architecture). The next stage is the Checksum 

Update stage that updates the checksum values of the packet which may be necessary due 

to altered packet fields on previous stages, e.g. in Ingress Match-Action. An Egress 

Match-Action stage follows, in which similar logic with the Ingress Match-Action table 

can be applied, and finally, the packet is passed to the Deparser stage, which emits the 

packet to the appropriate outgoing port. 

2.2.2.4 P4 Programming 

P4 programs are developed based on the architecture model supported by the 

manufacturer of the network device. P4 language provides a set of capabilities that 

illustrate similarities with common programming languages such as C. We describe 

below in detail the journey of a packet from the arrival in a network interface up to the 

departure from the P4-enabled device. In parallel, we also present the basic capabilities 

offered by the P4 language, describing its basic primitives (using v1model as the reference 

architecture model).  

The first stage, that packets are processed, is the Parser, in which developers define the 

packet headers that can be employed subsequently by the P4 program. Packet headers are 

structs that include simple data types (e.g. integers, bits, booleans); these can be used for 

the development of any network protocol using just a few lines of P4 code. After the 

definition of the available packet headers, an hierarchical tree structure with the possible 

packet headers combinations is defined. Incoming packets are matched to the defined 

packet headers in the Parser stage and the packet header values can in turn be used in the 

next stages of the P4 pipeline. 

The most important stage with regards to the desired logic of P4 programs is the Ingress 

Match-Action stage. This may incorporate combinations of the following primitives of 

the P4 language:  

 Mathematical operations: These include simple operations like additions, 

multiplication, and bit shifting and can be applied to the values of packet fields.  
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 Packet metadata: These may be categorized in (i) User-defined metadata and (ii) 

Intrinsic metadata: 

o User-defined metadata: These describe data structures defined by the 

programmer and are per-packet data, transferrable between the stages of 

P4 pipelines. 

o Intrinsic metadata: These are also defined at a per-packet level but 

correspond to special metadata provided by the architecture, e.g. packets' 

input port. 

 Match-action tables: These tables are similar to key-value stores. The key may be 

an arbitrary combination of packet metadata and/or headers while the value is 

associated with an action; actions are functions that set the packet metadata/header 

values. Note that match-action tables are defined in the data plane but are only 

populated by control plane functions. 

 Registers: These are also key-value stores (similar to single dimension arrays) that 

can be set both by control plane functions but also in the data plane. These are 

extremely useful for designing algorithms in the data plane that require per-packet 

state information.  

 Extern functions: These are special-purpose third-party functions offered by the 

underlying architecture/target. Indicative examples include hash functions and 

high-accuracy timestamping. 

Based on the aforementioned capabilities and constraints of the P4 language a wide 

spectrum of Network Functions can be implemented in the Ingress Match-Action stage. 

These span from simple forwarding tasks, i.e. packet switching (selecting the outgoing 

port from a match-action table based on the destination MAC address) to complex 

algorithms such as Heavy-Hitter detection [30], DDoS detection [31], [32], and Active 

Queue Management (AQM) schemes [33]. Note that, the Egress Match-Action stage can 

also be employed for Network Functions implementation using the same primitives as the 

ones mentioned for the Ingress Match-Action stage. 

2.2.3 Software data planes - eXpress Data Path (XDP) 

Implementing services in hardware data planes enables for low-latency and high-

throughput, due to the native performance of switching Application-Specific Integrated 

Circuits (ASICs). With the advent of Network Function Virtualization (NFV) [34], 
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Network Functions (NFs), that were naturally operating at physical network appliances, 

were transformed to software-based solutions (Virtual Network Functions – VNF). This 

paradigm was initiated from service providers and mobile network operators in an attempt 

to decouple traditional NFs, e.g. Network Address Translation (NAT), Firewalling (FW), 

and Deep Packet Inspection (DPI), from proprietary hardware and instead substitute them 

with software-based solutions on COTS equipment. However, performance implications 

were expected after replacing hardware-based services/functions with software-based. To 

that end, Programmable Packet Processors came to the surface, that allow COTS 

equipment, such as programmable NICs, to achieve comparable performance to 

expensive ASICs, but with greater capabilities in terms of flexibility and 

programmability.  

Data Plane Development Kit (DPDK) [20] is probably the most well-known framework 

for programmable packet processing in Linux systems. Although it was initiated as an 

Intel's endeavor, currently it is supported by many NICs manufacturers. DPDK is a 

kernel-bypass framework, that removes the control of the networking hardware from the 

Linux kernel and transfers it to the networking application (bypasses the Linux kernel). 

A similar approach that also bypasses the Linux kernel is the PF_RING ZC framework 

[35]. Kernel bypass is a promising approach for developing high-performance VNFs [12], 

[36], [37] however, due to the non-involvement of the Linux kernel, it has significant 

management, maintenance, and security drawbacks [12].  

An alternative approach for programmable packet processing is the eXpress Data Path 

(XDP) [12], which harmonically co-exists with the Linux kernel. XDP is executed before 

heavy networking stack operations and can be seamlessly ported in Linux systems. It 

provides high-performance programmable packet processing in COTS hardware, thus 

enabling for the deployment of demanding network applications even within legacy 

servers. In this dissertation, we employed XDP to design and implement high-

performance yet programmable monitoring and filtering mechanisms for DDoS detection 

and mitigation tasks. XDP has been widely adopted in production network environments 

for various applications, e.g. Load-Balancing [23], Intrusion Detection [24], and DDoS 

protection [22].  

2.2.3.1 XDP Design Principles 

We present below the core design principles of the XDP framework: 
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 Coexistence with the existing Linux networking stack & transparency to user-

space applications: XDP can coexist with Linux networking stack while being 

transparent to applications running on hosts. This enables innovative deployment 

scenarios such as inline protection against denial of service attacks on commodity 

servers. 

 Programming of multi-vendor NICs in a unified way: XDP programs can be 

deployed in different (multi-vendor) NIC drivers; there are no special hardware 

features required, only the existing drivers to be modified for supporting XDP 

execution hooks. 

 Reusing of existing Linux kernel network stack features: XDP allows utilizing 

Linux network stack features such as the routing table and the TCP stack. This 

enables developers to focus mostly on the desired functionality of XDP programs 

without needing to recreate core functionalities of common network applications. 

 Online reprogrammability and on-demand scaling: Applications programmed in 

XDP, can be dynamically reconfigured without any service interruption. Desired 

features can be added on the fly or removed completely when they are not needed 

without network traffic interruption. Depending on the traffic loads received by 

XDP programs, dynamic scaling of the CPU resources (within a single server) 

may be considered. 

In the following subsection, we will delve into details related to the XDP programming 

model, analyzing in detail the practical aspects of the aforementioned design principles. 

2.2.3.2 Programming in XDP  

XDP programs, written in C, are executed either in software within the context of the 

network driver or even offloaded directly in Network Interface Cards (NICs), e.g. 

Netronome SmartNICs [27]. Their execution is initiated upon the arrival of packets at a 

network interface. In turn, packet data can be parsed, extracted, and stored in persistent 

memory referred to as Berkeley Packet Filter (BPF) Maps [12] (see Figure 2.4). These 

are key-value stores defined when the XDP program is loaded. XDP returns an action for 

each packet which defines how it should be handled. The packets can be either (i) dropped 

- XDP_DROP, (ii) passed to the network stack - XDP_PASS, (iii) redirected to another 

interface - XDP_REDIRECT or (iv) transmitted back - XDP_TX.  
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Figure 2.4: XDP integration with the Linux network stack [12] 

XDP programs are running in the kernel address space and thus can access (and 

potentially alter) Linux kernel's memory. For safety purposes, XDP programs before 

being loaded are analyzed by the eBPF Verifier; this component checks XDP programs 

memory accesses while ensures that the program will terminate. These checks are 

performed to guarantee that the user-supplied XDP program will not affect the operational 

status of Linux servers, e.g. kernel malfunction, however, they pose significant challenges 

on XDP applications implementation; indicative limitations include (i) bounded loops, 

(ii) fixed-size data structures, (iii) 4096 BPF instructions per program, and (iv) limited 

support of kernel functions. To that end, the design and implementation of XDP 

applications require significant attention due to the aforementioned limitations. In 

sections 6, 7, and 8, we discuss the limitations and challenges we faced on developing 

XDP-based monitoring and filtering components. 
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3 Network Monitoring 

Network operators configure and manage network infrastructures while receiving 

feedback from them via retrieving network monitoring data. Network monitoring is 

crucial for network management as it provides information related to the status of network 

infrastructures (health) and can be used to validate the desired operation/state, commonly 

driven by (pre-agreed) business requirements. Network monitoring includes a wide 

spectrum of technologies that are used to export information from network devices. These 

technologies follow the evolution of network infrastructures attempting to meet the ever-

growing requirements for accurate, reliable, and real-time network monitoring. 

3.1 Simple Network Management Protocol 

Simple Network Management Protocol (SNMP) was and may still be the flagship of 

network monitoring. SNMP is used to collect information from network devices in a 

client-server architecture. Typically, monitoring architectures include centralized 

Network Management Systems (NMS) that periodically poll network devices (agents) 

requesting information about their current status. The available information is defined in 

hierarchical data structures, referred to as Management Information Bases (MIBs). Each 

object in the MIB is identified by a unique Object Identifier (OID) and corresponds to 

data related to the network device; these may be either retrieved or modified. Available 

data provided by network devices are highly dependent on the existing MIBs, which may 

be either proprietary (vendor-specific) or standardized. 

SNMP is still used by network operators aiding them to detect, identify, and solve 

problems that occur in their networks. In typical use cases, centralized/distributed 

collectors request data (e.g. interfaces bandwidth utilization, device status) from network 

devices; these data can be employed for multiple purposes ranging from applications for 

DDoS detection [38] to network design procedures, e.g. capacity planning. Although 

SNMP seems an ideal protocol for managing and monitoring networks, it has plenty of 

limitations. SNMP proved to be inadequate for providing monitoring data in modern 

large-scale infrastructures [39]. Increased polling times (5-minute intervals), data 

collection scalability issues [40], unreliable delivery (UDP as the transport protocol) are 

only some of the drawbacks that forced network device vendors and operators to move 

towards different monitoring solutions, i.e. Streaming Telemetry. 
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3.2 Streaming Telemetry 

"Streaming telemetry is a new approach for network monitoring in which data is streamed 

from devices continuously with efficient, incremental updates"1. Streaming Telemetry 

mechanisms overcome limitations imposed by SNMP. Specifically, the data collection 

process does not rely on polling-based schemes but on a push-based/streaming fashion, 

allowing devices to send information to external collectors even upon data change. 

Reliable delivery is ensured via TCP while authentication/authorization is based on 

user/password schemes and/or TLS certificates. Data models (similarly to SNMP) can be 

vendor-neutral or vendor-specific and formatted in Yet Another Next Generation (YANG) 

models commonly serialized via highly compressed mechanisms, e.g. Protocol Buffers 

[41]. The main differences between SNMP and Streaming Telemetry mechanisms are 

summarized in the following table: 

Table 3.1:SNMP vs Streaming Telemetry 

 SNMP Streaming Telemetry 

Collect Model Poll Push - Stream 

Transport Layer UDP TCP 

Application Layer SNMP HTTP gRPC 

Data Model MIB 

proprietary/standardized 

Vendor-specific/neutral 

Data Format SMI / ASN-1 YANG 

Encoding BER Google Protocol Buffers 

(GPB) or JSON 

Security Communities or Keys (v3) User/Password or TLS 

certificate 

                                                 

1 https://www.openconfig.net/projects/telemetry/  

https://www.openconfig.net/projects/telemetry/
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Network monitoring architectures include a centralized collection engine 

(SUBSCRIBER) that retrieves data from network devices (PUBLISHER). There are two 

ways for subscribing to data: (i) DIAL-IN and (ii) DIAL-OUT. In the former, the collector 

subscribes to the data of interest, e.g. CPU utilization while in the latter data subscription 

is configured in the network device. DIAL-IN provides a flexible, scalable, and dynamic 

network monitoring approach while DIAL-OUT requires each network element to be 

configured for the data types that is going to populate to preselected collectors. Indicative 

data, that can be retrieved from network devices, may be found in [42] (for Juniper 

devices).  

Monitoring approaches relying on either SNMP or Streaming Telemetry usually gather 

information from network infrastructures related to their current state. This state includes 

information spanning from the current status of network interfaces/devices to complex 

service monitoring operations (e.g. TWAMP measurements [43]). As mentioned, this 

information is of paramount importance for network administrators aiding them to 

successfully monitor and manage their networks. However, such approaches do not 

provide insight into the actual network data, i.e. network packets/flows that traverse 

Internet infrastructures. In the following subsections, we discuss NetFlow [14] and sFlow 

[13] that provide packet and flow-level information of the network traffic exchanged 

between users/services. 

3.3 NetFlow 

NetFlow is a network protocol introduced by Cisco that enables network operators to gain 

insight into the network traffic sourced/destined from/to their network via the 

representation of network flows. A network flow, defined by the 5-tuple (source IP 

address, destination IP address, source port, destination port, protocol), provides 

information about the packets that were exchanged between endpoints/services within a 

specific time interval by aggregating related data, e.g. packet/bytes counters. This process 

is continuously conducted in network interfaces (either examining each packet or picking 

1 out of n samples – sampled NetFlow) as packets traverse network devices. Flow data 

are stored temporarily in the flow caches of network devices for preconfigured time 

intervals (based on active/inactive timeouts) and upon their expiry conveyed to external 

collectors (see Figure 3.1). These typically store data related to the observed flows that 

can be subsequently used for further analysis. Network administrators may use flow 
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information for network management tasks, e.g. network monitoring/troubleshooting, 

network capacity planning, customer billing, and/or network anomaly detection tasks. 

Especially for the latter, NetFlow has been and is still widely used for detecting and 

identifying DDoS attacks; this will be further discussed in section 4.  

 

Figure 3.1: NetFlow Architecture [44]   

3.4 sFlow 

sFlow stands for "sampled flow" and is an industry-standard mechanism for extracting 

packets from network devices at the data link layer. This mechanism allows network 

devices to push data (packet samples and/or interface counters) to external collection 

engines which can employ them for network monitoring operations. sFlow is typically 

configured with sampling rates based on the interface speed from which network packets 

are sampled. Although sampling appears as a limitation, in reality, sFlow is a scalable 

mechanism for network monitoring in high-speed switched or routed networks. This is 

validated from different use cases reported in the literature, e.g. network anomaly 

detection [16] but also from production environments, e.g. Cloudflare's DDoS protection 

framework [45]. 

The main characteristic of sFlow is that it gives access to packet (i) headers and (ii) 

payload. Packet headers can be used to aggregate packets in network flows in a similar 

fashion to NetFlow. In contrast, packet payload can be used directly for identifying 
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anomalies in packet data, e.g. malicious pattern identification. In section 4, we will 

discuss in detail how data provided by sFlow/NetFlow may be employed as data sources 

for DDoS detection pipelines. 

3.5 Deep Packet Inspection 

Deep Packet Inspection (DPI) refers to the process of inspecting the contents of all 

network packets that traverse network devices. Network packets should be first copied 

and redirected (e.g. via port mirroring or monitoring taps) to Deep Packet Inspectors that 

capture and analyze them. DPI may be used for various purposes: to baseline application 

behavior, analyze network usage, troubleshoot network performance, data validation, 

malicious code checks or DDoS attack detection. Especially in DDoS attack 

detection/prevention tools such as Snort [46] and Suricata [24], packets are compared 

against a set of rules (signatures) that correspond to pre-identified anomalous packet 

patterns. 

Deep Packet Inspection may be an intensive process both for the system that collects 

network packets but also for the network elements that copy the desired network streams. 

However, it may reveal packet characteristics that may not be available via the 

aforementioned network monitoring methods, i.e. unobserved packets due to sampling. 

3.6 Software-Defined Networks 

3.6.1 OpenFlow  

Monitoring OF-enabled networks provides a greater flexibility on the available 

information that could be exposed by network devices. As mentioned, OF uses flow tables 

that may include large numbers of packets fields. Each rule in the flow table is 

accompanied by network statistics (packets, bytes counters). This allows to retain 

aggregate data for arbitrary combinations of packet fields beyond the well-known 5-tuple 

(network flow). Customizing the monitoring data tailored to network applications is an 

appealing concept, however there are two major drawbacks. In OF, the forwarding logic 

is tightly coupled with network monitoring [16] and thus network data are only available 

for aggregations that have been included in the flow table due to the forwarding logic. 

This may present scalability limitations in case of large networks due to the massive 

number of packet field combinations that can be in parallel in the flow table [16]. The 
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second drawback is related to the fixed set of packet fields exposed by the device. This is 

highly related to the supported OF protocol version and the corresponding vendor 

implementation. Requesting new packet headers requires vendors' intervention, a timely 

procedure. 

3.6.2 Programmable Data Planes 

With programmable data planes, the drawbacks presented in OF environments can be 

overcome. Interestingly, in both hardware (P4) and softwarized (XDP) data planes 

mentioned in Section 2, network monitoring is disaggregated from the forwarding logic. 

This enables to monitor and collect fine-grained data disassociating the forwarding 

application from the monitoring logic. Except for this disaggregation, the holy grail of 

programmable data planes is the definition of the exact data that required to be monitored 

for each application. This simplifies network data storage and analysis as only data of 

interest are exported. Moreover, it allows to rapidly modify the monitored data adapting 

to possible protocol extensions or newly introduced network applications.  

In the following section, we delve into the main focus of this dissertation, the detection 

and mitigation of Distributed Denial-of-Service (DDoS) attacks. We (i) discuss their main 

characteristics, (ii) investigate useful monitoring data for network traffic analysis, (iii) 

analyze algorithms/methods for attack detection, and (iv) finally present mitigation 

techniques.  
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4 DDoS Attacks – Detection & Mitigation  

Distributed Denial-of-Service (DDoS) attacks still present a major threat faced by 

network operators [47]. These attacks plague network infrastructures by overwhelming 

their capacity and/or processing resources rendering them unable to serve legitimate 

users. DDoS attacks are typically orchestrated by malicious actors, e.g. hackers, that 

command bots (infected hosts) to generate malicious traffic targeting selected services 

and/or hosts, as depicted in Figure 4.1 below.  

 

Figure 4.1: Distributed Denial-of-Service Attacks Orchestration2 

These bots (or zombies) are typically vulnerable devices with IP connectivity 

compromised by malicious actors and employed not only for DDoS attacks but also for 

other malicious purposes, e.g. port scanning, email spam campaigns.  

DDoS attacks are categorized in three different attack types, each one with different 

characteristics; however, they all serve the same purpose, to harm the selected victim 

network/service. In the next subsection, we discuss in detail the different attack types.  

                                                 

2 https://trailhead.salesforce.com/en/content/learn/modules/aws-cloud-security/protect-against-dos-and-

ddos-attacks-with-aws-shield  

 

https://trailhead.salesforce.com/en/content/learn/modules/aws-cloud-security/protect-against-dos-and-ddos-attacks-with-aws-shield
https://trailhead.salesforce.com/en/content/learn/modules/aws-cloud-security/protect-against-dos-and-ddos-attacks-with-aws-shield
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4.1 Attack Types & Characteristics 

We may categorize DDoS attacks, based on the way they disrupt network 

infrastructures/services, in the following types: (i) volumetric, (ii) protocol, and (iii) 

application-layer attacks. 

Volumetric attacks create link congestion by consuming all available bandwidth 

between the targets (victims) and their upstream providers/peers. Enormous amount of 

data is sent to victim networks either via amplification techniques or other means of 

massive traffic generation. A typical example of such attacks is the 

Reflection/Amplification case, in which attackers exploit vulnerable protocols and 

services to generate attack traffic (their magnitude is measured in bits per second - bps). 

Attackers use the IP address of the selected victim and send specially crafted requests to 

“misconfigured” servers (reflectors). These respond to the falsified requests with packets 

of huge payload that consume victims network bandwidth. Note that a common side effect 

of such attacks is packet fragmentation since large responses, generated by reflectors, 

typically exceed the Maximum Transmission Unit (MTU) of transit links. Commonly 

exploited protocols/services for volumetric attacks include DNS, SNMP, CLDAP, NTP 

and SSDP [48]. 

Protocol attacks disrupt network services by overwhelming the resources of end-hosts 

and/or the resources of interim network devices (e.g. firewalls and load balancers). These 

attacks exploit "vulnerabilities" of the network and/or transport layer to increase the 

processing burden of the selected targets. Specifically, the selected victims constantly 

attempt to keep state information related to received requests (that may be even spoofed). 

This results to excessive resource consumption, preventing them from serving legitimate 

requests. These attacks are typically measured in packets per second – pps (since each 

packet increases the burden for the victim) and include a wide variety of techniques. 

Indicative attacks that exploit the 3-way handshake of TCP are SYN [49], ACK [50], 

SYN-ACK [51] floods. Similarly, ICMP and UDP packets are commonly used to flood 

victims and force them to waste their resources on responding to falsified/random 

requests.  

Application layer attacks, commonly referred to as layer 7 attacks, exhaust victims’ 

resources in a similar fashion to the protocol attacks. Contrary to them, layer 7 attacks 
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target the application layer of the protocol stack. They employ appropriately selected 

requests that force victims to consume significant resources to respond to them. These 

attacks are commonly related to web-based applications served over the HTTP/HTTPS 

protocol. Attackers flood servers with specially crafted requests that (i) are either 

CPU/memory intensive, e.g. loading multiple files and/or running database queries to 

return web pages, or (ii) make the server consume its network resources (e.g. sockets 

exhaustion). Indicative examples for the former category are HTTP GET/POST Floods 

[52] while for the latter low and slow attacks such as Slowloris [53]. Except for web-

based applications, DNS is a common target by application layer attacks. Indicative 

examples of DNS application layer attacks are DNS Flood/Water Torture attacks [54] that 

generate random/specially-crafted requests and force victim servers to utilize significant 

amount of resources to respond. In total, application layer attacks are difficult to be 

detected in interim network devices, since the attack traffic patterns present similarities 

to the benign traffic, however these attacks can be pinpointed on victim end-hosts. 

Multi-vector attacks refer to simultaneous combinations of the aforementioned attack 

types. Malicious actors launch multiple attacks against selected victims to (i) bypass 

network protections schemes, (ii) increase their possibilities to harm the victim, or (iii) 

hide attack vectors within the attack traffic of other attacks, e.g. launching application 

layer attacks in parallel with volumetric attacks. 

As thoroughly explained, each attack type has its own unique characteristics, however 

they all share a common goal: to disrupt network services. Integrated DDoS protection 

frameworks should consider these characteristics and provide fast/accurate attack 

detection and effective mitigation. In section 4.2, we discuss attacks detection techniques; 

in section 4.3, we provide details on the countermeasures that can be applied, i.e. 

mitigation mechanisms. 

4.2 Detection Techniques  

4.2.1 Overview 

As mentioned in the previous subsection, DDoS attacks attempt to impact selected 

networks/hosts (victims) in various manners, e.g. consume their system resources, 
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overload the available network bandwidth. The generation of attack traffic creates 

conditions in computer networks/systems that deviate from the expected/benign state;  

these conditions can be defined as anomalies. DDoS detection may be defined as the 

process of identifying such anomalies using as input network data. In general, DDoS 

detection can be mapped to the following tasks: 

 detect the existence of attacks (DDoS Existence) 

 identify attack victims (Attack Victim Identification) 

 identify the type of the attack (Attack Vector Identification) 

 pinpoint malicious flows/packets (Attack Traffic Classification) 

 

Figure 4.2: General DDoS Detection pipeline 
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In a nutshell, DDoS detection pipelines gather monitoring data from the network 

substrate, analyze them, and identify ongoing anomalies. Network monitoring data may 

include coarse-grained data (e.g. per-port packet/byte counters), flow-level, and packet-

level information. These data can be consumed by DDoS detection mechanisms in a 

streaming fashion and/or periodic time-intervals, depending on the monitoring 

mechanism (see section 3). The retrieved data are analyzed based on methods that span 

from simple statistical models (e.g. threshold-based) to more complex algorithms, i.e. 

Machine Learning (Supervised Learning, Unsupervised Learning). The outcome of this 

data analysis pertains to the task(s) mentioned above. In Figure 4.2, we illustrate the 

overall lifecycle of DDoS detection pipelines. 

Such pipelines should provide both fast and accurate DDoS detection. Regarding the 

former, timely detection leads to timely mitigation that can significantly reduce the impact 

of DDoS attacks. Regarding the latter, detection accuracy is crucial for the benign end-

users; benign traffic misclassification results to disallowed benign traffic while malicious 

traffic misclassification results to attack traffic portions reaching the victim. To that end, 

high True Positive Rates – TPR (e.g. malicious traffic classified as malicious) and in 

parallel, high True Negative Rates – TNR (e.g. benign traffic classified as benign) are of 

paramount importance to minimize the impact of DDoS attacks.  

4.2.2 Statistical methods 

Most DDoS attacks introduce sudden increases in the incoming traffic rate of the victim 

network; this is accompanied by abrupt changes in various network traffic metrics, e.g. 

the number of network flows or even abnormal packet field values. The use of 

appropriately selected thresholds on network metrics, that during an attack deviate from 

their expected values, is one of the most common methods for DDoS detection. Basically, 

this methodology assumes that network traffic characteristics, e.g. the number of flows in 

a network, follow specific distributions (e.g. Gaussian distribution3). The values that 

deviate from the expected behavior are considered anomalies. We present below 

indicative efforts that rely on this methodology to identify/combat DDoS attacks.  

                                                 

3 https://en.wikipedia.org/wiki/Normal_distribution  

https://en.wikipedia.org/wiki/Normal_distribution
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Indicatively, in [55]–[58], threshold-based detection schemes, within SDN (OpenFlow-

enabled) environments, were proposed; [55]–[57] focus on SYN flood attacks while [58] 

provides a generic detection scheme. In [55], [57], SYN packets counters are maintained 

for each IP source and if a predefined threshold value is reached, then the source is 

considered malicious. These approaches seek to identify malicious sources of TCP floods 

(Attack Traffic Classification task). In [56], SYN Floods are detected according to abrupt 

decreases of the entropy value of destination IP addresses. In case the entropy value is 

lower than a predefined threshold for consecutive time-windows, an active attack (DDoS 

existence) is assumed, and a victim identification process is initiated. Similarly to [56], 

in [58] the entropy values for destination IP addresses and ports are calculated; these are 

compared to preselected thresholds and DDoS attacks existence is indicated. 

Subsequently, a fine-grained detection scheme is initiated that pinpoints the victim of the 

attack. This is identified by comparing the number of flows that target each destination 

IP address to a selected threshold value (excessive values indicate highly asymmetric 

communication). Finally, thresholds for TCP/UDP packet symmetry ratio are used for 

malicious sources classification (these are defined according to well-known TCP/UDP 

traffic patterns). 

Threshold-based detection mechanisms have also been reported for programmable data 

planes. Specifically, in [31], [59] P4-based DDoS detection schemes were proposed. In 

the former, SYN flood attacks are detected by tracking the per-flow ratio of TCP SYN to 

regular TCP packets and comparing it to predefined thresholds. In the latter, entropy 

values of source and destination IP addresses are calculated in the data plane. These 

values are compared to thresholds and upon their violation a DDoS attack is considered 

active.  

In total, threshold-based methods are a well-established approach for DDoS detection 

(including all of its tasks) as reported in the literature [31], [55]–[59] but also as validated 

by tools [60] used in production environments. This approach is commonly preferred due 

to its interpretability and simplicity; however, it may struggle to follow the continuously 

evolving DDoS landscape accompanied by complex traffic patterns. Therefore, more 

sophisticated methods, i.e. Machine Learning (ML) algorithms, have raised awareness; 

these attempt to create generic models for DDoS detection tasks based on multiple 

features of network data. 
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4.2.3 Machine Learning  

In general, ML approaches are divided into three broad categories, based on the feedback 

that is returned to a learning system: 

 Supervised Learning: Example input data (training data) and their desired output 

values (labels) are provided to an algorithm; this searches for a general rule 

(function) that maps the given input to the desired output.  

 Unsupervised Learning: Example input data are provided to an algorithm, which 

searches for correlations/hidden patterns amongst them. 

 Reinforcement Learning: The learning system interacts with a dynamic 

environment and continuously performs actions. These provide rewards to the 

system, which aims to make the "best" decisions (actions) to maximize a 

cumulative reward. 

Within the context of DDoS detection, algorithms from the aforementioned categories 

(mainly from Supervised and Unsupervised Learning) have been widely used for 

pursuing the detection tasks mentioned above. Specifically, Supervised Learning methods 

use as input labelled network data and classify them to benign/malicious (binary 

classification4) or to attack categories (multiclass classification5). Unsupervised Learning 

methods use as input unlabeled network data and attempt to identify hidden correlations 

by either clustering them into categories or revealing anomalies (outliers). For the latter, 

the anomaly detection problem6 is typically transformed to a binary classification 

problem, in which outliers are considered DDoS attack traffic. Below we present various 

efforts reported in the literature that employ Machine Learning methods for DDoS attacks 

detection. 

In [61], a DDoS detection schema based on a Multilayer Perceptron (MLP) was 

introduced. Traffic metrics related to flows and packet rates (UDP, ICMP) are collected 

                                                 

4 https://en.wikipedia.org/wiki/Binary_classification#Statistical_binary_classification  

5 https://en.wikipedia.org/wiki/Multiclass_classification  

6 https://en.wikipedia.org/wiki/Anomaly_detection  

https://en.wikipedia.org/wiki/Binary_classification#Statistical_binary_classification
https://en.wikipedia.org/wiki/Multiclass_classification
https://en.wikipedia.org/wiki/Anomaly_detection


 48 

and used as input to an MLP, tasked with classifying network traffic to benign/malicious. 

In [17], OpenFlow (OF) entries are collected from network devices, flow-related features 

are extracted and classified via Self-Organizing Maps (SOM). In [62], an SDN DDoS 

detection and mitigation schema was proposed. Sharp increases in the rate of OF Packet-

In messages are considered as an indication of DDoS attacks (threshold-based detection); 

subsequently OpenFlow rules are collected from network devices and classified via an 

MLP that uses the same feature set as in [17]. In [63], a large set of flow-related features 

is extracted from packets and sent to OF Controllers. These are used as input to a Stacked 

Autoencoder, which provides feature reduction and traffic classification of the flow as 

benign or attack.  

In [64] ATLANTIC, an SDN framework for DDoS attack detection and mitigation, was 

proposed. Entropy changes for specific flow features within consecutive time windows 

indicate the existence of an attack. Network flows responsible for entropy changes are 

fed in a traffic classification component based on K-means and Support Vector Machines 

(SVM). K-means is used initially to create clusters of common flows and SVM is further 

used to identify malicious flows. In [65] DeepDefense, a DDoS detection schema based 

on Recurrent Neural Networks (RNN) was introduced. Traffic traces, collected within 

sliding time windows, are translated into arrays of packet features. These are fed to an 

RNN that segregates malicious from benign packets. Similarly, in [66] LUCID, network 

traffic classification also employs packet fields organized in network flows. Packet values 

are collected from different time windows and organized as arrays; subsequently these 

arrays are fed to a Convolutional Neural Network to identify time-dependent traffic 

patterns.  

In total, Machine Learning methods illustrate high accuracy for DDoS detection tasks, 

identifying complex attack traffic patterns while also achieving significant generalization 

capabilities (the ability to detect "unseen" anomalies, i.e. zero-day attacks [67]). In the 

following subsection, we discuss the main challenges that need to be considered by DDoS 

detection mechanisms. 

4.2.4 Challenges 

The key challenges with regards to DDoS detection may be categorized in the following: 

 Accuracy:  
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o Victim Identification: The accurate identification of DDoS attacks victim 

host/subnet is of vital significance since the instantiation of further 

protection procedures heavily relies on it. False alarms may lead to 

delayed identification of the actual victim worsening the impact of the 

attack. 

o Attack Vector Detection: The detection of the exact type of a DDoS attack 

determines the appropriate type of countermeasures. Falsely reported 

types can further delay the mitigation of the attack. 

o Benign/Malicious Traffic Classification: The accurate identification of 

benign/malicious traffic is crucial. Misclassified benign traffic affects the 

quality of experience of legitimate end-users by blocking them from 

reaching the desired network/service. Respectively, misclassification of 

malicious traffic allows attacks to flood the victim and consume its 

resources, downgrading legitimate users' quality of experience (benign 

and malicious traffic share victims' resources). 

 Promptness: Rapid detection of DDoS attacks is of paramount importance, since 

it enables for immediate enforcement of countermeasures increasing the uptime 

of targeted networks/services.  

 Adaptability: Detection mechanisms should be able to be used in diverse and 

complex network environments. Methods/algorithms employed for detection 

tasks need to conform both to the network environment (e.g. ISP) and to the 

evolution of the network traffic patterns. Robust, reliable, and adaptable detection 

mechanisms (i) enable for the classification of new (unseen) network traffic 

patterns and (ii) ease management operations by minimizing operators' manual 

intervention, i.e. reconfiguration/fine-tuning. 

 Scalability: As noted, detection mechanisms consume network data and analyze 

them to identify attacks. The ever-increasing Internet traffic leads to scalability 

problems in terms of monitoring data collection/analysis. Thus, such mechanisms 

should be able with few amounts of network data and within short time-windows 

to accurately pinpoint anomalies. 

Either using statistical methods or Machine Learning algorithms to cope with the 

aforementioned challenges, this is only the first step towards DDoS protection. The next 
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step is the enforcement of appropriate countermeasures to filter out the attack traffic; this 

process is defined as DDoS mitigation.  

4.3 Mitigation Mechanisms 

DDoS mitigation is tightly coupled with DDoS detection. In a nutshell, such schemes 

retrieve information about the network traffic from DDoS detection mechanisms and 

enforce filtering rules to block the malicious portion.  

We may categorize DDoS mitigation mechanisms based on their deployment location in 

the following types: (i) on-premises, (ii) on upstream/peer networks, and (iii) cloud-

based. On-premises approaches mitigate attacks within the network hosting the victim, 

either using constantly or on-demand protection (e.g. dedicated hardware appliances). 

This approach is effective for network attacks that do not exceed victim's network links 

capacity. In that case, one of the (ii), (iii) alternatives need to be considered. Filtering 

attack traffic on upstream/peer networks protects the victim network links, but requires 

pre-agreements between the victim network and its upstream providers/peers. These may 

range from typical blackholing [68] to granular filtering [69] techniques. Note that for 

both cases (i), (ii), the victim network should identify the ongoing anomaly and define 

the appropriate filtering rules.  

An alternative approach, relies on DDoS protection offered by cloud-based service 

providers; these, upon DDoS detection provided by the victim network, drain the network 

traffic destined to the victim, scrub it, and finally redirect back only the benign portion. 

BGP Anycast7 is one of the main techniques that enables cloud-based scrubbing providers 

to absorb massive amounts of traffic using dispersed points of presence (POPs) across the 

globe. Despite its effectiveness, cloud-based scrubbing may (i) raise privacy concerns, 

(ii) introduce additional latency, and (iii) require considerable costs.  

The aforementioned approaches can be combined to create hybrid protection schemes, 

e.g. on-premises mitigation for small-scale attacks and cloud-based scrubbing for massive 

attack scenarios; these should be optimized per network environment. 

                                                 

7 https://en.wikipedia.org/wiki/Anycast#Mitigation_of_denial-of-service_attacks  

https://en.wikipedia.org/wiki/Anycast#Mitigation_of_denial-of-service_attacks
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4.3.1 Filtering Methods  

We described in the previous subsection various DDoS mitigation services based on their 

deployment location. Despite this categorization, all of the aforementioned approaches 

share a common goal, to filter the offending traffic without impacting benign users. In a 

nutshell, DDoS filtering mechanisms employ one or more packet field values to 

appropriately distinguish malicious from benign traffic as packets traverse network 

devices (in the data plane). Matching and filtering capabilities rely heavily on the device 

type, e.g. router, switch, firewall, COTS server, dedicated hardware appliance. Thus, we 

present below DDoS filtering techniques emphasizing on their (i) matching capabilities, 

(ii) drawbacks, and (iii) limitations: 

Destination-based Remotely Triggered Black Hole (RTBH) Filtering [70] is a filtering 

mechanism primarily used to prevent potential collateral damage during DDoS attacks 

(e.g. bandwidth and CPU utilization, service degradation). It is a destination-based 

filtering mechanism, in which the traffic destined to the victim is redirected to null 

interfaces of edge routers and thus dropped. Victim networks use this mechanism for on-

premises mitigation to protect their network links. However, blackhole filtering is 

commonly enforced on upstream networks/peers to protect victim networks links from 

congestion. Note that, the main drawback of this mechanism is that both malicious and 

benign traffic destined to the victim is seamlessly dropped.  

Source-based Remotely Triggered Black Hole (RTBH) Filtering [70], unlike the 

destination-based RTBH, is a source-based alternative that drops packets from specific 

source IPs using the unicast Reverse Path Forwarding (uRPF) feature [70]. Source-based 

RTBH also relies on BGP updates that contain routes to malicious IP addresses/networks; 

attack packets from these sources are dropped on uRPF-enabled edge router interfaces. 

Although more granularity than the destination-based RTBH is offered, packets destined 

to legitimate destinations may be blocked in en route and fixed route spoofing scenarios 

[71]. 

Access Control Lists (ACLs) is another approach commonly used in switching/routing 

devices to implement firewall policies. Upon DDoS detection, appropriate ACLs are 

populated to network devices to block the attack traffic. Contrary to Source-based RTBH, 

ACLs allow more granular filtering (than source IP addresses). The packet fields that are 
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commonly used to match and block the offending traffic rely on the 5-tuple of network 

flows; this is based on the fact that typical detection mechanisms classify network flows 

to malicious/benign and therefore mitigation mechanisms employ the same set of fields 

for blocking. ACLs are an effective way for blocking DDoS attacks at the network edge, 

however they come with some limitations: (i) the number of ACLs is limited in network 

devices [72], (ii) the supported packet fields that can be used for packet matching are 

tightly dependent on vendors implementations, and (iii) increased complexity on 

managing ACLs in multi-vendor environments is introduced.  

Similar to ACLs, OpenFlow rules support a plethora of matching capabilities and 

actions/instructions, that may be used for packet rejection [58]. Although OF provides a 

large number of packet fields that can be used for packet matching, it faces almost the 

same limitations as the ones reported for the ACLs (except for the complexity of 

managing them due to the common interface offered by OpenFlow).  

BGP Flowspec [73] is a filtering mechanism that uses the Network Layer Reachability 

Information (NLRI) format of BGP Update packets to disseminate flow specification 

rules. These rules extend the capabilities of typical blackhole filtering mechanisms 

allowing for fine-grained traffic filtering. BGP Flowspec rules are one step ahead of 

typical ACLs, as they provide a 12-field tuple for matching malicious packets while being 

able to be propagated to network devices over a unified interface, the BGP protocol. 

Another filtering method for DDoS mitigation is based on packet signatures. These refer 

to specific packet field values commonly observed in malicious network packets. 

Signatures have already been classified as malicious and are employed as filtering rules 

in appropriate middleboxes (DPI is required). These match and block malicious network 

packets while not affecting benign network traffic. Although this approach is highly 

effective for well-known attack traffic patterns, it is not able to cope with new "unseen" 

attacks, i.e. zero-day threats. 

4.3.2 Challenges 

In a nutshell, DDoS mitigation mechanisms need to:  

 support various packet fields, capable to be used for accurate segregation of 

malicious from benign traffic (in the data plane) 
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 generate concise and small sets of filtering rules to address data plane memory 

limitations and simplify/facilitate their management 

 account for vertical and horizontal packet processing scalability for elastic on-

demand protection 

 enable for short filtering rules deployment time for immediate attack alleviation 
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5 DDoS Detection in Programmable Data Planes (P4)  

Data plane programmability is a promising technology that enables rapid control loops 

for the detection and mitigation of cyber-attacks. In this section, we propose an in-

network architecture for DDoS attack detection that combines important traffic metrics 

of malicious traffic. These pertain to number of flows and packet symmetry, maintained 

for protected subnets and utilized to identify anomalies. Appropriate alarms are triggered 

within time-based epochs and conveyed to external mitigation systems. We assess our 

DDoS detection schema in P4-enabled SmartNICs in terms of detection accuracy and 

packet processing performance. As input to our accuracy experiments we use real 

publicly available traffic traces. Furthermore, performance stress tests were conducted 

using high speed packet generators. Results exhibit that our approach is applicable in 

typical enterprise and/or carrier environments, featuring packet rates of 1-2 Mpps for 

10G links. 

5.1 Motivation 

As already mentioned, network environments are constantly plagued by massive 

Distributed Denial-of-Service (DDoS) attacks launched via infected hosts under the 

control of malicious actors. Accurate and timely DDoS detection is crucial for effective 

and efficient mitigation. Typical DDoS detection schemas rely on packet samples [74] or 

flow records [14], exported from agents within network devices (routers, switches). These 

are relayed for processing to external collectors (servers). Similarly, SDN setups e.g. 

OpenFlow [9] employ control plane signaling between network devices and controllers 

to trigger detection alarms and subsequent mitigation actions. Such detection mechanisms 

introduce added overhead on the communication between network devices and external 

monitoring platforms, thus stalling the attack detection and as a consequence the 

subsequent mitigation. 

In-network DDoS attack detection is a step ahead of legacy detection methods, as it 

operates directly in the data plane offering rapid attack detection, while enabling control 

plane triggers to external mitigation systems. To that end, we propose a P4 [75] DDoS 

detection schema that combines important traffic features to increase accuracy while 

adhering to performance penalties. In a nutshell, we: (i) inspect network traffic and 

compute related metrics (features), (ii) evaluate feature values to identify potential threats 
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and (iii) convey alarms to external systems as digests. These are conducted continuously 

in short-time intervals enabling timely detection of network anomalies.  

The remainder of this section is structured as follows: In section 5.2, we discuss related 

work; section 5.3 offers an architectural overview and presents the traffic features used; 

section 5.4 provides implementation details of the proposed solution pertaining to the P4 

language; section 5.5 presents experimental evaluations for processing performance and 

detection accuracy employing benign and malicious (DDoS) traffic traces. Finally, 

section 5.6 summarizes this section and presents our conclusions. 

5.2 Related Work & Contributions 

There are various efforts reported in the literature exploring performance capabilities of 

advanced network applications implemented in programmable data plane environments. 

In [12], an extensive analysis of the eXpress Data Path (XDP) framework is introduced; 

As mentioned, XDP is a novel approach towards high-performance programmable packet 

processing in Linux systems. The authors consider use cases such as Routing, DDoS 

Mitigation and Load Balancing and perform experimental comparisons. In [76], the 

impact of basic P4 operations (packet parsing, headers modifications) on packet 

processing performance is explored. Experiments are based on P4-enabled SmartNICs 

(Netronome Agilio CX) and illustrate the effect on processing latency introduced by 

various P4 constructs. Similarly, in [77], the impact of operations performed within the 

XDP framework on various system resources is investigated. Specifically, results 

demonstrate packet processing limitations and scaling capabilities (number of CPU cores) 

considering different flavors of XDP. Inspired by these approaches, we propose a P4-

enabled timely DDoS detection schema and explore its performance capabilities on a 

SmartNIC-based testbed. 

Recent research efforts on data plane programmability applied to detection of DDoS 

attacks are reported in [31], [59]. In the former, a P4-based DDoS detection approach is 

proposed; counting Bloom Filters are used to track the per-flow ratio of TCP SYN to 

regular TCP packets in order to detect SYN flood attacks. In the latter, a DDoS detection 

schema is presented that estimates entropy values of source and destination IP addresses. 

These values are compared to appropriately defined thresholds and upon their violation a 

DDoS attack is considered active.  
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Both approaches employ software switches for experimentation. In contrast we deploy 

our P4 schema in hardware, i.e. SmartNICs and assess its performance in terms of 

attainable packet processing rate and detection accuracy. Moreover, [59] focuses entirely 

on an important attack vector, SYN Floods while [31] detects the occurrence of an attack 

without indicating the victim. We provide an integrated framework able to promptly 

detect generic DDoS attacks to specific victim subnetwork, possibly alerting external 

DDoS mitigation systems via P4 digests. 

Note that data plane mechanisms can be employed to enable efficient and programmable 

filtering (mitigation) based on packet headers [78]. DDoS mitigation is beyond the scope 

of this section and will be discussed in the next sections. 

5.3 DDoS detection in the data plane - High-Level Overview  

Our schema is applicable either in transit provider networks (e.g. ISP, Research & 

Education Network backbones) or customer/edge network domains (e.g. Data Centers, 

Campus Networks). Upstream network providers may detect network anomalies aiming 

downstream organizations. Similarly, customer organizations may deploy the same 

functionality with fine granularity for specific internal subnetworks. Such an indicative 

architectural setup is presented in Figure 5.1: Traffic originating from various Internet 

sources is directed towards a P4-enabled edge domain, possibly via a P4-enabled transit 

provider. We precisely consider the use case of National Research and Education 

Networks (NRENs) and their Pan-European interconnection GÉANT. NRENs may offer 

DDoS Protection services to universities and data centers downstream. These services are 

implemented in P4-capable devices, placed at important vantage points to monitor traffic 

at different levels of granularity. Specifically, P4 devices: (i) forward network traffic, (ii) 

maintain important statistics for monitored (sub)networks, (iii) perform anomaly 

detection tasks and (iv) raise alarms to external mitigation systems. 

Our schema maintains a list of specific monitored (sub)networks and/or hosts, depending 

on the desired granularity level. DDoS attacks are detected by combining the following 

traffic features: (i) total number of incoming traffic flows (srcIP, dstIP, protocol, srcPort, 

dstPort), destined to monitored subnets in a distinct time interval henceforth denoted as 

"epoch", (ii) significance of a network, characterized by the percentage of flows directed 
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towards it out of the total incoming flows and (iii) symmetry ratio of incoming to outgoing 

packets. These features have correlated characteristics and may provide localized alarms 

for each protected network under generic DDoS attacks. 

 

Figure 5.1: High-Level Overview of P4 DDoS Detection Pipeline 

Typically, massive DDoS attacks consist of a considerable amount of flows. Thus, we 

consider the number of total flows as an attack indicator. We adopt a moving average 

approach as in [31] to track for each epoch n the number and the dispersion of Total 

Incoming Flows (TIFn). Specifically, we define Mn as the Exponentially Weighted 

Moving Average (EWMA) and Dn as the Exponentially Weighted Moving Difference 

(EWMD): 

𝑀𝑛 = 𝑎 · 𝑇𝐼𝐹𝑛 + (1 − 𝑎) · 𝑀𝑛−1 with  𝑀1 = 𝑇𝐼𝐹1  (5. 1) 

𝐷𝑛 = 𝑎 · | 𝑀𝑛 − 𝑇𝐼𝐹𝑛 | + (1 − 𝑎) · 𝐷𝑛−1 with 𝐷1 = 0 (5. 2) 
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The parameter a is a smoothing coefficient to dampen short-term fluctuations. Network 

anomalies are considered if TIFn exceeds a threshold that depends on Mn-1 and Dn-1: 

𝑇𝐼𝐹𝑛 > 𝑀𝑛−1 + 𝑘 · 𝐷𝑛−1 (5. 3)          

where 𝑘 ≥ 0 is a sensitivity coefficient that scales the detection threshold. 

In order to further pinpoint the victim destination subnetwork, we also incorporate two 

additional features, namely Subnet Significance and Packet Symmetry: 

(i) Subnet Significance is expressed as the percentage of Incoming Flows 𝑆𝐼𝐹𝑛
(𝑖)

destined 

to a subnet i in epoch n out of the Total Incoming Flows TIFn. We indicate an alert if this 

percentage exceeds a significance factor f that identifies major flow recipients as potential  

victims: 

𝑆𝐼𝐹𝑛
(𝑖)

𝑇𝐼𝐹𝑛
> 𝑓 (5. 4)       

(ii) Packet Symmetry is an insightful metric to avoid classification of a subnet as a victim 

while it may be a recipient of heavy benign traffic, to which it generates responses. The 

Current Packet Symmetry Ratio 𝐶𝑅𝑛
(𝑖)

 is defined as the fraction of incoming to outgoing 

packets for subnet i during epoch n. These are evaluated based on per subnet i counters 

and compared against a pre-computed Normal Packet Symmetry Ratio 𝑁𝑅(𝑖). We 

consider traffic to a subnetwork anomalous, in case the corresponding fraction exceeds a 

heuristic threshold r as described in the following condition: 

𝐶𝑅𝑛
(𝑖)

𝑁𝑅(𝑖)
> 𝑟 (5. 5) 

Values for f, r and 𝑁𝑅(𝑖) are defined based on operational experience under normal (non-

attack) network conditions. Note that, these parameters could be set by employing 

Machine Learning algorithms that learn from past traffic patterns. 

5.4 P4 DDoS Detection Pipeline – Implementation Details 

In this section we elaborate on implementation details of the proposed DDoS detection 

pipeline. Our mechanism utilizes P4 registers to implement counters, arrays and 

probabilistic data structures. We do not use P4 counters since their values are only 
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accessible via control plane signaling and may not be used directly in data plane 

interactions [75]. In Table 5.1, we present indicative register definitions. 

Table 5.1: P4 Registers Functionality, Indicative Definition and Usage 

Functionality Example Definition 
Usage 

Counters register<bit<32>>(1) epoch 
Epochs, Total Flows 

Arrays 
register<bit<16>>(256) 

flow_dst 

Per Subnet Flows, Packets 

Probabilistic Data Structures 
register<bit<32>>(65536) 

sketch 

Flow Tracking 

In Figure 5.2, we present our processing pipeline. Traffic arriving at the P4-enabled 

device is filtered to include only relevant packets. Subsequently, we apply our multi-

feature approach in distinct serial steps to identify potential attacks. In case all violations 

are observed, we generate alarms (i.e. P4 digests [75]) to an external mitigation system. 

 

Figure 5.2: Detailed P4 DDoS Detection Pipeline 

Step 1 selects only TCP or UDP packets to be considered within the DDoS detection 

pipeline, since they are typically utilized by most attack vectors. This is achieved using 

simple checks on parsed headers. 

Step 2 further isolates traffic originating from or destined to a monitored network 

(protected network). To that end, we employ a dedicated match-action table that contains 

one rule for each protected network. Each rule adds a unique identifier to matching 

packets as P4 metadata. The added metadata headers are used to access and update the 

equivalent memory areas of various registers e.g. per subnet measurements such as flows 

and packet statistics. Note that, traffic that does not meet the aforementioned criteria (i.e. 

TCP/UDP and source/destination in “monitored” networks), bypasses the DDoS 

detection pipeline and is appropriately forwarded. 
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Step 3a delimits time-based epochs, each defined by a start time and duration. Packets are 

associated with an epoch using the ingress_global_timestamp packet metadata. This 

denotes the exact time a packet arrived at the P4-enabled device. If a packet’s timestamp 

fits within the current time window [start_time, start_time + epoch duration), it is directly 

fed to Step 4. Otherwise, the packet is assigned to a new epoch and proceeds to Step 3b. 

The latter performs the following: (i) update the new epoch start time, (ii) increment the 

index tracking the current epoch, (iii) compute the new EWMA and EWMD values as 

described in (5.1), (5.2) and (iv) reset the number of total flows. 

Step 4 performs flow traffic analysis and maintains appropriate flow counters for packets 

exiting from either Step 3a or 3b. This operation is based on modified Bloom Filters [79], 

used to track unique active flows within an epoch. Specifically, we calculate hash values 

from the following packet headers (srcIP, dstIP, protocol, srcPort, dstPort) that identify 

a flow tuple. We employ hash functions available in the P4 pipeline, i.e. CRC32, CRC16 

and CSUM16. The resulting hash values are used as indices to access distinct memory 

areas of P4 registers. Each area stores the last epoch this flow was observed. A flow is 

considered “active” in the current epoch when all indices point to register areas containing 

values equal to the current epoch. Else, the flow is considered as newly observed within 

this epoch. Subsequently, the register contents for these indices are set to the value of the 

current epoch. When a new flow is observed, counters pertaining to total flows and per 

subnet flows are incremented. Based on these counters, conditions pertaining to 

inequalities (5.3), (5.4) are evaluated. In case a threshold is violated, the equivalent flag 

is stored in distinct packet metadata headers. 

Step 5 performs packet symmetry analysis employing incoming and outgoing packet 

counters from/to a monitored network. We maintain separate per-subnet packet counters 

for TCP and UDP traffic, as well as historical normal packet symmetry ratios for both 

protocols. These are used to evaluate the 𝐶𝑅𝑛
(𝑖)

against the 𝑁𝑅(𝑖) as depicted in inequality 

(5.5). In case this fraction exceeds the threshold r, a flag is raised similarly to the ones 

for threshold violations (5.3), (5.4). 

The final Step 6 of our pipeline checks packets for metadata headers corresponding to 

identified anomalies. In case all metadata headers are set to "True", an appropriate alarm 

is generated pinpointing the network under attack and the current epoch. These alarms 

were implemented as P4 packet digests that enable the communication between the data 
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plane and external systems; in our case appropriate mitigation mechanisms, able to 

enforce countermeasures. 

Note that, P4 is a programming language with specific restrictions, e.g. no support for 

floating point arithmetic or division operations. We needed to adapt to P4 limitations 

using various workarounds since our approach uses real values e.g. the smoothing 

coefficient a in EWMA, EWMD values and divisions e.g. 𝐶𝑅𝑛
(𝑖)

/𝑁𝑅(𝑖) for its calculations. 

Calculations that require floating point operations are approached by multiplying all 

elements of an equation with a power of 2 and subsequently dividing them by the same 

factor. Divisions are conducted via appropriate bitwise shifting operations. We present an 

example for the EWMA equation; specifically, for the smoothing coefficient a, we 

selected the value of 1/256 (~ 0.004):  

𝑀𝑛 =
1

256
· 𝑇𝐼𝐹𝑛 + (1 −

1

256
) · 𝑀𝑛−1 ⇔ 𝑀𝑛 = (𝑇𝐼𝐹𝑛 + 255 · 𝑀𝑛−1) ≫ 8 (5. 6) 

where eight bits right shifting corresponds to division by a factor 28 = 256. We 

satisfied requirements for division via a plain comparison between two numbers. Note 

that, we are not interested in the quotient of a fraction but whether it is greater or lower 

than another value. For example, the threshold evaluation in inequality (3) was 

implemented as: 

𝐶𝑅𝑛
(𝑖)

> 𝑟 · 𝑁𝑅(𝑖) (5. 7) 

5.5 Experimental Evaluation 

5.5.1 Experimental Setup 

In order to validate our DDoS detection framework, we implemented the proposed 

pipeline in P4 and evaluated it in the testbed illustrated in Figure 5.3. We used as a P4 

target the Netronome Agilio CX SmartNIC at 10GbE. Programs were developed and 

compiled via the Netronome Programmer Studio while the compiled program was loaded 

to the NIC. Additionally, we used two VMs operating as the Sender and the Receiver, 

equipped with 10GbE Intel NICs, able to generate and count packets in high packet rates. 

We assess our DDoS detection schema in terms of detection accuracy and packet 

processing performance. 
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Figure 5.3: Testbed equipped with P4-enabled SmartNICs  

5.5.2 DDoS Detection Accuracy  

In order to create realistic conditions for our experiments, we used publicly available 

network traces both for benign and malicious traffic. The benign traffic is based on traces 

available from the WIDE backbone [80]; specifically traffic from a 10G transit link 

between WIDE and DIX-IE, an experimental IX in Tokyo. The traces contain network 

traffic between 12:00 - 12:15 on 09/04/2019. For malicious traffic traces we used the 

fourth dataset as reported in [2]. This contains a DNS-based reflection attack generated 

by Booter services. The traces were captured during a controlled experiment conducted 

by the University of Twente, Netherlands, in collaboration with its upstream provider 

SURFnet (the Dutch NREN). Protected subnetworks were identified based on an analysis 

of the benign dataset. We selected the top 255 networks, assuming /24 prefixes, as ordered 

by the total number of packets traversing each subnetwork. 

The experimentation process considered 1-second epochs and was conducted as follows: 

We injected the benign traffic and ignored alarms for the first 30 seconds, considering 
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them as a "learning" period for the moving averages. Between seconds 30 and 60 we 

observed alarms for False Positives. At the 60th second, we launched the attack targeting 

an IP address within one of the 255 subnets that we monitor. Attack traces were injected 

between seconds 60 and 90. Packet digests were collected via the run time API offered 

by Netronome and used for the calculation of the detection accuracy. Accuracy in binary 

classification is defined as: 

𝐴𝐶𝐶𝑈𝑅𝐴𝐶𝑌 =
𝑇𝑃 + 𝑇𝑁 

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5. 8) 

where TP, TN, FP and FN are defined for each subnet in any given 1s epoch: 

 TP: Number of True Positives i.e. digests received for a subnet when the subnet 

was the victim of an attack 

 TN: Number of True Negatives with no digests generated in non-attack cases 

 FP: Number of False Positives i.e. digests received for a subnet when the subnet 

was not the victim of any attack 

 FN: Number of False Negatives with no digests generated in attack cases. 

Note that we configured for each subnet only a single digest to be sent during a given 

epoch.  

To showcase the detection capabilities of our mechanism the malicious traces were 

replayed at different rates. These correspond to three different attack scenarios: (i) an 

Underscaled attack, i.e. 10% of the reported Booter trace, (ii) the Booter trace as was 

originally reported and (iii) an Overscaled attack, comprised of 5 times the volume of the 

reported Booter trace. For all scenarios the benign traffic was injected as it was originally 

captured.  

In the charts of Figure 5.4 we depict accuracy of our framework, evaluated using (4), 

according to the following empirically inferred values α = 0.004, k = 3, f = 0.15 and r = 

2, for two cases: 

 Two-feature case (F2) that combines conditions (5.3), (5.4) corresponding to 

Flow Analysis features 

 Three-feature case (F3) that also incorporates the Packet Symmetry feature based 

on condition (5.5) 
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Figure 5.4: P4-based DDoS Detection Accuracy 

For the Underscaled attack scenario, F2 performs slightly better than the F3. The former 

is more sensitive and thus able to identify attacks that generate small fluctuations on the 

number of flows. The latter, due to the added traffic symmetry feature, misclassifies 

attack traffic as benign resulting in a considerable number of FNs. This occurs since this 

scenario contains a rather small amount of attack traffic (5% of benign traffic) and packet 

symmetry ratio does not significantly deviate from the normal (non-attack) values. 

For the original Booter trace scenario, both approaches detect the victim, with F3 

achieving higher detection accuracy as it has a reduced amount of FPs in comparison to 

F2. Finally, for the Overscaled Attack scenario FNs are eliminated due to the vast volume 

of the attack, achieving accuracy close to 100%. In general, using either two or three 

features (F2 or F3) we successfully detect ongoing attacks and identify the victim 

subnetwork within a single epoch. 

5.5.3 P4 SmartNIC Packet Processing Performance  

We further conducted stress test experiments to assess the processing capabilities of the 

Netronome cards. To that end, we synthesized traffic in various packet rates to (i) assess 

the performance capabilities of our pipeline and (ii) measure its impact on forwarding 

throughput. We use the same testbed setup but employ pf-send and pf-receive utilities of 
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the PF_RING framework [35] on the sender and the receiver respectively. In our 

experiments we considered the following use cases: 

 Plain forwarding case whereby, the target performs only switching (SW) 

 One-feature case (F1) that incorporates anomaly identification based on Total 

Flows evaluation using condition (5.3) only 

 Two-feature case (F2) that combines both Flow Analysis features based on 

conditions (5.3), (5.4) 

 Three-feature case (F3) that also incorporates the Packet Symmetry feature based 

on condition (5.3), (5.4), (5.5) 

Note that, the synthesized traffic we used does not bypass our DDoS detection pipeline, 

thus stressing to the limit the capabilities of the SmartNIC. 

 

Figure 5.5: Netronome SmartNIC Forwarding Capacity 

Figure 5.5 depicts the forwarding capacity of Netronome cards for various packet rates 

ranging from 0.1 to 5 Million packets per second (Mpps). The forwarding capacity is 

calculated as the fraction of traffic that successfully traverses the card. 

Traffic rates of 0.1, 0.5, 1 and 2 Mpps show no performance degradation for all four cases. 

A higher traffic rate of 5 Mpps exhibits considerable degradation of the Netronome 

SmartNIC for adding the DDoS detection pipeline in cases F1, F2 and F3. These amounts 
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to degradation between 35% to 45%. However, our detection pipeline is relevant in many 

enterprise and/or carrier networks since 10G links usually correspond to packet rates 

ranging between 1-2 Mpps according to observations on GRNET network traffic [81]. 

Our DDoS detection schema heavily depends on accurate packet measurements through 

SmartNICs. To assess the impact of adding the DDoS detection pipeline, we further 

investigated the packet counting measurements available in the data plane via P4 

registers. These were observed for all cases (SW, F1, F2 and F3) and attainable packet 

rates (from 0.1 to 5 Mpps), as depicted in Figure 5.6. 

For all cases even moderate packet rates of 0.5 Mpps start to exhibit degradation of 

measurement capabilities. Our DDoS pipeline successfully detects attacks with high 

accuracy despite measurement limitations of the SmartNICs. As also illustrated in Figure 

5.5 our schema does not degrade packet forwarding for rates up to 2 Mpps, typical for 

10G links. 

 

Figure 5.6: Netronome SmartNIC Measurement Capacity 

These measurement limitations are present only in P4 registers. We have performed 

additional experiments using P4 counters and observed significant performance 

improvement. However, as mentioned in Section 4.5, counters are only accessible from 

external controllers. We attribute this problem to simultaneous accesses of the memory 

area used for packet counting. 
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5.6 Summary & Concluding Remarks 

In this section we described an in-network DDoS detection schema that combines 

multiple traffic features. These features are based on typical metrics employed for DDoS 

detection such as incoming flows and packet symmetry ratio. Our mechanism yields 

accurate per subnet alarms implemented entirely in the data plane, without any 

involvement of external controllers, thus enabling rapid control loops. Our experiments 

for detection accuracy were based in realistic attack scenarios using publicly available 

traces. We further conducted stress tests using high-rate synthesized traffic to assess the 

performance of our P4 mechanism, implemented in SmartNICs. 

The proposed schema provides an accurate and fast in-network method for detecting 

DDoS attacks targeting selected victim networks. This can be considered as the first step 

towards DDoS protection. In the next section we will delve into attack specifics 

attempting to classify network traffic and filter out the malicious portion. These will be 

considered for SYN Flood attacks (as an indicative example of protocol-based attacks), a 

highly employed attack that plagues computer network infrastructures and services. 
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6 Signature-based Traffic Classification and Mitigation of 

SYN Flood Attacks using Supervised Learning and 

Programmable Data Planes  

TCP SYN Flood is one of the most common protocol-based DDoS attack that attempts to 

exhaust memory and processing resources of selected victims. Typical mitigation 

mechanisms, i.e. SYN cookies consume significant processing resources and generate 

large rates of backscatter traffic to block them. In this section, we propose a detection 

and mitigation schema that focuses on generating and optimizing signature-based rules. 

To that end, network traffic is monitored and appropriate packet-level data are processed 

to form signatures, i.e. unique combinations of packet field values. These are fed to 

Supervised Learning models that classify them to malicious/benign. Malicious signatures 

corresponding to specific destinations identify potential victims. TCP traffic to victims is 

redirected to high-performance programmable XDP-enabled firewalls that filter 

offending traffic according to signatures classified as malicious. To enhance mitigation 

performance malicious signatures are subjected to a reduction process, formulated as a 

multi-objective optimization problem. Minimization objectives are (i) the number of 

malicious signatures and (ii) collateral damage on benign traffic. We evaluate our 

approach in terms of detection accuracy and packet filtering performance employing 

traces from production environments and high rate attack traffic. We showcase that our 

approach achieves high detection accuracy, significantly reduces the number of filtering 

rules and outperforms the SYN cookies mechanism in high-speed traffic scenarios. 

6.1 Motivation 

SYN Flood (attack) is a major part of the evolving DDoS landscape [82], [83]. This attack 

exploits the widely employed TCP protocol and especially the 3-way handshake, flooding 

with SYN packets targeted victims. These exhaust their memory and processing 

resources, failing to serve legitimate requests. SYN Flood attacks are difficult to counter 

via commonly used IP-based mitigation schemas. IP-based rules, required to block the 

attack traffic, increase proportionally to the number of malicious sources. This demands 

network devices/firewalls to store thousands/millions of filtering rules, which is 

unattainable due to memory resources limitations [72]. Notably, when spoofing is 

employed, IP-based filtering is totally ineffective. An alternative mitigation method for 
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SYN Floods, relies on the SYN cookies [84] technique. This approach, instead of blocking 

malicious SYN packets, generates appropriately crafted SYN-ACK packets. Although, 

this method protects the victim from the launched attack, it consumes significant 

processing resources and introduces large rates of backscatter traffic [85]. 

Inspired by the aforementioned challenges, we propose a signature-based mechanism for 

SYN Floods detection and mitigation. Our mechanism collects network data and extracts 

appropriate packet fields, forming packet signatures. Subsequently, these signatures are 

used as input to Supervised Learning models tasked with classifying them to 

malicious/benign. Malicious signatures corresponding to specific destinations identify 

potential victims. TCP traffic to victims is redirected to high-performance programmable 

XDP-enabled firewalls that filter offending traffic according to signatures classified as 

malicious. To enhance mitigation performance malicious signatures are subjected to a 

reduction process, formulated as a multi-objective optimization problem.  

The remainder of this section is structured as follows: In Section 6.2 we discuss 

background information and related work; Section 6.3 presents a high-level overview of 

the proposed mechanism and its core design principles; Section 6.4 provides 

implementation details for the SYN Flood detection and mitigation architecture; Section 

6.5 presents experimental evaluations for detection accuracy and packet filtering 

performance using both benign and malicious traffic captured in real network 

environments. Finally, Section 6.6 summarizes our work and discusses further extensions. 

6.2 Related Work & Contributions 

There are many efforts reported in the literature related to SYN Flood mitigation. In [55]–

[57], SDN controllers act as proxies protecting servers targeted by SYN Flood attacks. 

Specifically, they respond to each received benign or malicious SYN packet with a SYN-

ACK packet. Legitimate ACK responses are correlated with previously observed SYN 

packets and henceforth validated clients can initiate TCP connections. In such approaches 

SDN controllers store SYN packet monitoring data (e.g. source IP, destination IP, source 

port, destination port) that may lead to memory exhaustion; added latency is also 

introduced due to network traffic interception by the controller.  

An alternative method for mitigating SYN Flood attacks is based on the SYN cookies 

technique [49], [84], [86]. In this approach, for each SYN a SYN-ACK response is 
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generated using as sequence number a specially crafted value (cookie). This value is 

calculated based on hashing operations on IP and TCP packet fields of the received 

packet, combined with timestamp values. Subsequently, legitimate clients send an ACK 

as a response to the SYN-ACK setting the acknowledgement number equal to the cookie 

(sequence number) value increased by one. The acknowledgement number of the ACK is 

compared to the cookie value, calculated based on the IP and TCP header fields of the 

ACK. If these values are equal, the client is considered legitimate and henceforth 

connections from this client are accepted, else the ACK is dropped. Instead of consuming 

memory resources to store details related to the client, this approach saves information in 

the sequence number of the SYN-ACK packet via the SYN cookies mechanism. Notably, 

in [87] the SYN cookies mechanism was implemented in P4 and tested in various hardware 

targets, e.g. NetFPGA, SmartNICs; such approaches achieved remarkable SYN Flood 

mitigation performance. 

Despite SYN cookies mitigation effectiveness, there are two major drawbacks: it (i) wastes 

significant packet processing resources for SYN cookies calculation to respond to 

malicious SYN packets and (ii) floods Internet with SYN-ACK responses equal in rate to 

the malicious SYN packets. The latter may lead to further network congestion. 

Considering the aforementioned drawbacks and inspired by Cloudflare's mitigation 

approach [22], [85], we propose a signature-based detection and mitigation mechanism 

for SYN Flood attacks, where: 

 Unique combinations of packet field values, i.e. signatures, are dynamically 

classified based on Supervised Learning algorithms; signatures are used to 

identify ongoing attacks. 

 Malicious signatures are used as filtering rules for mitigation purposes. Mitigation 

performance is enhanced via a rule reduction process formulated as a multi-

objective optimization problem. 

 The reduced set of filtering rules is deployed on high performance programmable 

firewalls (XDP) to efficiently mitigate SYN Flood attacks. 
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6.3 High-Level Overview & Design Principles 

We present a high-level overview of the proposed architecture for detection and 

mitigation of SYN Flood attacks. Our mechanism consists of the (i) Signature 

Classification, (ii) Signature Reduction and (iii) Anomaly Mitigation components.  

As illustrated in Figure 6.1, traffic monitoring mechanisms continuously extract packets 

(Monitoring Data) from the border (edge) router. These are aggregated, within 

configurable time windows based on distinct signatures, i.e. IP and TCP header values. 

In the Signature Classification component, packet signatures are fed to supervised ML 

models, that classify them as benign or malicious. The classified signatures are used to 

(i) detect ongoing SYN Flood attacks, (ii) identify the victim and redirect corresponding 

TCP traffic and (iii) create appropriate filtering rules to mitigate the anomaly. 

Meanwhile, TCP packets destined to the victim, are redirected at the border router via the 

Attack Redirection mechanism to the Mitigation component. To improve the mitigation 

performance, malicious signatures are subjected to a reduction process (Signature 

Reduction) before being used as filtering rules. This reduction is formulated as an 

optimization problem, in which combinations of packet features are explored, that 

minimize simultaneously (i) the number of signatures required to block the attack traffic 

and (ii) collateral damage on the benign traffic.   

 

Figure 6.1: SYN Flood Detection and Mitigation Architecture 
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Initially, the Mitigation component employs temporarily the SYN Cookies technique to 

prevent malicious traffic to reach the victim. When signature reduction is completed, the 

reduced set of signatures is installed to the Mitigation component. These rules match and 

drop the offending traffic while benign traffic is appropriately forwarded to the victim. 

We present below the core design principles of the proposed architecture: 

Signature-based filtering: Our approach identifies malicious signatures and redirects TCP 

traffic destined to the victim for fine-grained filtering enabled by software data planes 

(XDP). In contrast to this approach, commonly used mitigation mechanisms rely on the 

SYN Cookies technique that employs significant processing resources to respond to 

malicious SYN packets and generates backscatter traffic.  

Supervised Machine Learning traffic classification: Signature classification is conducted 

based on Supervised Learning models trained a priori with benign and malicious traffic. 

This enables SYN Flood detection and malicious signature identification based on 

previously observed benign and attack traffic patterns. 

Signature reduction: We introduce a signature reduction mechanism that identifies the 

signatures required to fully block an attack, minimizing simultaneously their number and 

collateral damage on benign traffic. This approach attempts to reduce the number of 

filtering rules. These are stored within network devices that typically impose limits to the 

number of rules they can support. 

High-performance programmable firewalls: We leverage capabilities offered by 

softwarized programmable data planes (XDP) to design and implement high-performance 

firewalls. These can be tuned and optimized based on the identified malicious signatures 

to block SYN Floods in an efficient and flexible manner. 

6.4 SYN Flood Detection and Mitigation Architecture 

The proposed schema for SYN Flood detection and mitigation consists of the following 

components: (i) Signature Classification, (ii) Signature Reduction and (iii) Mitigation 

Mechanism. These are described in detail in the following subsections. 
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6.4.1 Signature Classification 

This component receives and analyzes TCP packet-based data from external monitoring 

mechanisms to identify malicious signatures. Packet-based data extraction may be 

conducted either via (i) dedicated XDP mechanisms deployed in-line across the 

forwarding path, (ii) passive methods such as monitor ports and optical taps, or (iii) data 

export protocols such as sFlow [74]. Note that (i), (ii) may account for all network traffic 

while (iii) is based on packet sampling. The exact implementation of monitoring data 

extraction is not the main focus of this work; our only requirement is access to L3-L4 

packet headers.  

Extracted data are aggregated within configurable time windows, based on appropriate 

packet fields (features) forming signatures. Our scheme focuses on the relevant features 

for SYN Flood traffic classification. Specifically, we removed features that have the same 

value for both benign and malicious packets (zero variance). From the remaining features, 

we also excluded IP and TCP header length and checksum fields as irrelevant to the 

classification process. Finally, we excluded TCP sequence number as this value is 

randomly generated by each client. The final set of features that we employed are: 

Table 6.1: Packet fields (features) for TCP SYN packet classification 

Packet Field Short Description 

ip.src Source IP Address 

ip.dst Destination IP Address 

ip.dsfield.ecn Network Congestion Notification 

ip.id IP Fragment Identification 

ip.flags.df Do not Fragment Bit 

ip.ttl Time To Live 

tcp.srcport Source Port of TCP Segment 

tcp.dstport Destination Port of TCP Segment 

tcp.window_size TCP Receive Window Size 
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Although these features correspond to numerical values, we employed them as categorical 

variables considering that their actual values are not relevant to TCP SYN traffic 

classification. These categorical data should be encoded before being used in ML 

methods. To that end, we used an encoding scheme that for each signature, calculates the 

frequency of each feature. In the following Table we illustrate an example of the 

employed frequency encoding scheme considering 5 packets and 2 features (ip.ttl, ip.dst). 

Table 6.2: Frequency encoding for categorical features 

ip.ttl ip.dst #Packets ip.ttl_freq ip.dst_freq 

239 192.168.1.1 3 60% 80% 

62 192.168.1.1 1 20% 80% 

61 10.1.1.1 1 20% 20% 

Frequencies are calculated as the number of times a packet field value (e.g. ip.ttl 239, 

ip.dst 192.168.1.1) is observed in a time window, divided by the total number of packets 

observed in the same time window. This may reveal packet field values that are 

abnormally frequent during ongoing attacks (or the opposite). The frequency encoded 

features (e.g. ip.ttl_freq, ip.dst_freq) are used as input to supervised ML models (Random 

Forest - RF or Multilayer Perceptron - MLP), that classify them as benign or malicious. 

Signatures are in turn labeled based on the classification of their corresponding frequency 

encoded features. 

If a single signature is classified as malicious, the Signature Classification component 

notifies the Attack Redirection mechanism. This triggers the border router to redirect 

traffic destined to the victim (information obtained from the destination IP) to the 

Mitigation component. Simultaneously, benign and malicious signatures are processed to 

generate the appropriate number of filtering rules for attack mitigation.  

Note that traffic may be redirected either using Policy Based Routing or BGP (Flowspec) 

[69]. Further implementation details are beyond the scope of this work. 
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6.4.2 Signature Reduction 

Signatures classified as malicious, are going to be employed as filtering rules for attack 

mitigation purposes. These rules are stored in memory resources, i.e. BPF Maps that 

enable packet matching at line-rate. Their number significantly affects the deployment 

and lookup time in the BPF Map, which in turn degrades the overall mitigation 

performance. Therefore, the Signature Reduction component is tasked with providing a 

concise set of signatures (filtering rules) that can block all the offending traffic, without 

significantly affecting the benign traffic.  

We formulated this signature reduction as a multi-objective optimization (feature 

selection) problem, in which we search for feature combinations 𝐹′ = {𝐹1, 𝐹2, … 𝐹𝑗}, 

subsets of the initial feature set 𝐹 = {𝐹1, 𝐹2, … 𝐹𝑛}, where 𝑗 < 𝑛, that simultaneously 

minimize:  

i. the number of malicious signatures (filtering rules) that block all the attack traffic 

(Count-distinct problem8) 

ii. the percentage of benign traffic that is dropped  

We define as 𝑀 and 𝐵 the sets of malicious and benign signatures respectively, based on 

features from 𝐹 (see Table 6.1). For each combination 𝐹′, we calculate 𝑀′ and 𝐵′, that 

correspond to sets 𝑀 and 𝐵 using only the features of 𝐹′. The first objective (i) is 

calculated as the number of unique signatures (cardinality) in 𝑀′. For the second objective 

(ii), we calculate the number of benign packets that correspond to the signatures in 𝑀′ ∩

𝐵′ and divide it with the number of benign packets that correspond to the signatures in 

𝐵′. This provides the percentage of benign traffic that would be dropped if we used as 

filtering rules the signatures in 𝑀′. Note that the intersection 𝑀 ∩ 𝐵 is an empty set, 

however, the intersection 𝑀′ ∩ 𝐵′ may result to non-empty sets in the reduced feature 

space 𝐹′. 

The proposed optimization problem leads to multiple Pareto optimal solutions. However, 

due to stringent time constraints for attack mitigation (DDoS attacks should be blocked 

                                                 

8 https://en.wikipedia.org/wiki/Count-distinct_problem  

https://en.wikipedia.org/wiki/Count-distinct_problem
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as early as possible), brute-force algorithms may not be able to identify optimal solutions. 

We opted for a fast evolutionary approach based on Non-dominated Sorting Genetic 

Algorithm II (NSGA-II) [88]. The algorithm starts with arbitrary subsets 𝐹′ ⊂ 𝐹, and 

iteratively attempts to enhance the solutions quality, i.e. minimize further the objectives. 

At each iteration (generation), new subsets of 𝐹 are generated based on random 

combinations of 𝐹′ that correspond to the best solutions produced in the previous 

iteration. The algorithm stops when a time limit is reached thus generating suboptimal 

subsets.  

As mentioned, more than one solution may be generated but only one of them can be 

selected for blocking the attack traffic. This selection should be tuned per network 

environment to depict network operator preferences e.g. acceptable percentage of 

dropped benign traffic. Finally, from the selected solution, signatures of 𝑀′ are conveyed 

to the Mitigation component to be applied as filtering rules. 

6.4.3 Anomaly Mitigation 

This XDP-based component inspects TCP traffic and prevents malicious TCP SYN 

packets to reach the victim. As a first level of protection, it filters malicious SYN packets 

based on the signatures emerged from the reduction process. Packets not filtered at this 

level, are processed and handled appropriately by the SYN cookies mechanism. 

The Anomaly Mitigation component parses and isolates TCP packets. Subsequently, it 

extracts from TCP SYN packets appropriate TCP/IP packet fields which are compared to 

the signatures stored in a BPF Map (hash table). If the extracted signature exists in the 

BPF Map, the packet is considered malicious and is dropped, else it is conveyed to the 

SYN cookies mechanism. This is used: (i) as an initial countermeasure upon the detection 

of SYN attacks, until signature reduction is completed, (ii) as a fallback mechanism to 

our signature-based approach for malicious traffic falsely classified as benign and (iii) to 

validate and allow benign TCP traffic to be forwarded to the victim.  

The SYN cookies mechanism was implemented within the XDP framework according to 

the description provided in section 6.2. Further implementation details for the Mitigation 

component are available in our code repository [89]. 



 77 

6.5 Experimental Evaluation 

In order to evaluate our framework, we implemented all software components of the 

proposed architecture and deployed them in our laboratory testbed. Supervised Learning 

models of the Signature Classification component were based on the sklearn and pytorch 

python libraries. The Signature Reduction mechanism was based on the Platypus 

framework [90], used for solving our multi-objective optimization problem. The 

Mitigation Mechanism was deployed on a physical machine equipped with a 10G XDP-

enabled SmartNIC Netronome Agilio CX. This was directly connected to a Virtual 

Machine employed as a high-speed packet generator based on the PF_RING ZC 

framework [35]. 

We assessed our mechanism detection accuracy and packet filtering performance using 

both benign and malicious network traces. In subsection 6.5.1, we provide details for the 

datasets we used. In subsection 6.5.2, we compare the detection accuracy of two 

commonly used Supervised Learning methods (Random Forest, Multilayer Perceptron). 

In subsection 6.5.3, we showcase our signature reduction mechanism and in subsection 

6.5.4, we compare the performance of our approach to the SYN cookies mechanism. 

6.5.1 Datasets Description 

As benign traffic, we used traffic traces from a 1G transit link between WIDE and an 

upstream provider [80]. We isolated TCP SYN packets captured at 12:15 and 12:29 on 

08/04/2020; these are respectively referred to as B1 and B2 for the remainder of this 

subsection. As malicious traffic, we used 5 different TCP SYN attacks that targeted our 

infrastructure (May – September 2020). The characteristics mentioned in Table 6.1 for 

the five attack datasets (i.e. A1, A2, A3, A4 and A5) as well as their packet rate (Kilo 

packets per second – Kpps), are presented in Table 6.3 and Figure 6.2 below: 

Table 6.3: Packet Feature Cardinality for A1-A5 SYN Flood attacks 

Attack ip.src tcp.srcport tcp.dstport ip.id ip.ttl 

A1 15 65535 65535 1 3 

A2 760863 65534 65534 1 4 

A3 839660 65535 65535 1 4 

A4 3415575 65536 1 65535 2 

A5 1493948 65536 1 65535 3 
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Figure 6.2: Packet Rate of SYN Flood Attacks 

As illustrated in the Table above, all attacks except A1 emanate from a vast amount of 

unique IP sources. A1, A2 and A3 are using all available source and destination ports and 

have a single value related to the ip.id (IP fragment identification). In contrast, A4 and A5 

are using a single destination port and have multiple values related to the ip.id. All attacks 

have a small number of unique ip.ttl values and a single value for each of the following 

packet fields: ip.dst, ip.dsfield.ecn, ip.flags.df and tcp.window_size. 

6.5.2 Signature Classification Accuracy 

In this subsection, we evaluate the detection accuracy of the proposed Signature 

Classification mechanism using two different Supervised Learning alternatives: (i) 

Random Forests (RF) consisting of 100 decision trees with default parameters of the 

sklearn library for tree structure and stopping [91] and (ii) Multilayer Perceptron (MLP) 

of 9 input neurons corresponding to the selected features, 19 hidden and a single output 

node for classification. The MLP was trained using sigmoid as the activation function, 

early stopping for the number of epochs, batches equal to 2048 and Adam method [92] 

for weight updates with learning rate α = 0.01. The validation dataset was set equal to the 

30% of the training dataset. 

We considered various training scenarios (in total 30) using each unique combination of 

benign and malicious traffic datasets for: 
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 Each method (RF, MLP) 

 Each attack dataset Ai, where i = 1...5  

 The benign dataset B1 

 Each time window (5s, 10s, 30s) 

Resulting trained models were used to test the accuracy of our schema for the same time 

window. The test datasets consist of the benign dataset B2 not used for training and the 

attack datasets Ai. This correspond to a total of 5 testing scenarios. 

 

 

 

 

 

 

 

 

 

Figure 6.3: True Positive Rate for training/testing scenarios combining benign and malicious TCP SYN traffic 

In Figure 6.3, we present results for the aforementioned training and testing scenarios. 

Specifically, we illustrate the True Positive Rate - TPR, which is the percentage of the 

attack traffic that was classified as malicious. We do not present results for the True 
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Negative Rate - TNR (the percentage of benign traffic classified as benign), as the TNR 

for both ML methods and all time windows was above 99%. The results presented in 

Figure 6.3 correspond to average values of 100 training-testing experiments to account 

for random variations in our supervised ML methods. This number was selected based on 

our experience as a reasonable choice to dampen statistical outlier values. 

As illustrated in Figure 6.3, when a model is trained with one of {A1, A2, A3} attack 

datasets, it can accurately detect attacks in the same group, regardless of the time window. 

This also happens for the group of {A4, A5} since attacks of the same group have common 

characteristics as mentioned earlier (see Table 6.3). Moreover, when both classification 

algorithms (RF, MLP) are trained with A5, they can accurately identify all attacks. This 

is attributed to A5 characteristics; namely, low packet rate (compared to the other attacks), 

that enables both algorithms to identify greater frequencies of packet features as attacks. 

In general, RF is a consistent method to identify TCP SYN attacks, provided the training 

dataset is similar to the test dataset (e.g. training dataset A2 - test dataset A1 or A3). The 

accuracy of this model increases as the duration of the time window increases; however, 

it does not always detect attacks that deviate from the training dataset (e.g. training dataset 

A1 - test dataset A4 or A5). In contrast, the MLP model identifies for every training 

scenario all other attacks with high accuracy, illustrating significant generalization 

capabilities. Notably, it achieves remarkable accuracy even within shorter time windows, 

e.g. 5s. 

In total, our signature classification mechanism achieves high TPR identifying almost all 

malicious signatures without significant benign traffic misclassification (this was lower 

than 1% in all our experiments). 

6.5.3 Signature Reduction Evaluation 

In this subsection, we evaluate our signature reduction mechanism based on the solutions 

generated by NSGA-II. All signatures were extracted from each attack dataset Ai and 

benign dataset B1. Each combination (Ai+B1) was used as an input to the proposed 

signature reduction mechanism. In Table 6.4, we present for each dataset combination all 

solutions that resulted from 100 different executions of the NSGA-II. The maximum 

processing time for each execution was limited to 20s. 
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For each solution in Table 6.4, we illustrate the percentage of dropped benign traffic (%), 

the number of reduced signatures and the total signature reduction (%) based on the total 

number of signatures of each attack Ai. Note that bold values in the following Table 

correspond to Pareto-optimal solutions.  

Table 6.4: Signature Reduction solutions provided by NSGA-II 

Datasets 
Benign Traffic 

Dropped (%) 

Total 

Signatures 

Signatures 

(reduced) 

Signature 

Reduction (%) 

A1 + B1 

0 

758078 

1 

99.999 
0.0002 1 

0 3 

0.0006 3 

0 15 

A2 + B1 
0 

1070311 
1 

99.999 
0.0006 1 

0 4 

A3 + B1 

0 

1331799 

1 

99.999 0.0006 1 

0 4 

0.0002 4 

A4 + B1 

0.151 

3417663 

1 

99.999 

0.17 1 

1.398 1 

1.401 1 

2.123 1 

2.126 1 

0.031 2 

0.177 2 

0.229 2 

0.643 2 

A5 + B1 

0 

1494425 

1 

99.999 
0.001 1 

0 3 

The results Table 6.4 demonstrate that our mechanism significantly reduced the number 

of signatures (ranging from hundreds of thousands to millions) to a small set of filtering 

rules (99.99% reduction). The generated solutions provide signatures that can fully block 

the offending traffic, without affecting significant portions of the benign traffic. 
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Note that our experiments demonstrated a dramatic signature reduction. This is due to 

specific packet field values of the attacks we captured and may vary under different attack 

scenarios. Similar observations have been reported by Cloudflare in [93]. 

6.5.4 SYN Flood Mitigation Performance 

In this subsection, we assess the packet filtering performance of the proposed Mitigation 

mechanism using two variants: (i) BPF MAP and (ii) STATIC. The former employs a BPF 

Map for storing signatures while the latter constructs signatures via appropriate static if-

else statements [22]. These were compared in terms of packet filtering performance to 

(iii) the SYN Cookies approach, that we also implemented in XDP. 

Synthesized traffic was generated based on attack dataset A1 and replayed at 10 Million 

packets per second (Mpps). We compare the performance of each approach (i), (ii), and 

(iii) based on the percentage of traffic that they can successfully drop. Note that we used 

a single core for packet filtering in our experiments. For the two variants of our 

mechanism, we employed 3 signatures (see third row of Table 6.4). 

Table 6.5: SYN Flood mitigation performance 

XDP Implementation Packets blocked (%) out of 10Mpps 

BPF MAP 70% 

STATIC 92% 

SYN cookies 47% 

Both variants of our approach achieve greater packet filtering performance than the SYN 

cookies (from 47% to 70% and 92%). This is attributed to the complex operations that are 

required to be done for each SYN packet in the SYN cookies technique, i.e. cookie 

calculation, IP/TCP checksums. In contrast, our signature-based approach matches 

specific packet fields and drops the offending traffic. In case signatures are constructed 

via appropriate if-else statements, memory lookups are fully avoided and thus packet 

filtering performance increases even further. Note that, our approach apart from 

significantly outperforming the SYN Cookies mechanism, does not generate backscatter 

traffic that may introduce further congestion. 
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6.6 Summary & Concluding Remarks 

In this section we proposed a signature-based detection and mitigation schema for SYN 

Flood attacks. Our schema collects and analyzes, within time windows, appropriate 

packet data forming signatures. These are subsequently used as input to supervised 

Machine Learning models that detect SYN attacks, identify victims, and isolate malicious 

signatures. TCP traffic to the victim is redirected to high-performance programmable 

XDP-enabled firewalls that mitigate identified attacks. Malicious signatures are 

employed to block the offending traffic, after being subjected to a reduction process to 

enhance mitigation performance. Signature reduction was formulated as a multi-objective 

optimization problem that attempts to simultaneously minimize the number of filtering 

rules and collateral damage on benign traffic.  

Our approach was evaluated both in terms of detection accuracy and packet filtering 

performance. The conducted experiments illustrated high detection accuracy for real 

benign and malicious traffic. Notably, our mechanism dramatically reduced the number 

of signatures (filtering rules) required to block the considered attack datasets. Moreover, 

our approach outperformed the state-of-the-art SYN Flood mitigation mechanism, i.e. 

SYN cookies. 

In the next section, we extend the work proposed in this section to volumetric attacks. 

Moreover, we consider an automated way for selecting packet fields for signature 

formulation, minimizing the human intervention in the initial feature selection. Finally, 

we perform a thorough comparison between signature-based and the state-of-the-art flow-

based classification/filtering mechanisms. 
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7 Signature-Based Traffic Classification and Mitigation: 

Volumetric DDoS Attacks 

Distributed Denial-of-Service (DDoS) attacks mitigation typically relies on source IP-

based filtering rules; these may present scaling issues due to the vast number of involved 

sources. In this section, we propose a source IP-agnostic DDoS traffic classification and 

filtering schema for volumetric attacks that identifies malicious packet signatures via 

supervised Machine Learning methods and subsequently generates signature-based 

filtering rules. To accelerate packet processing, our schema utilizes XDP middleboxes 

operating as programmable Deep Packet Inspectors. Signatures are extracted from 

network traffic as unique combinations of the most significant packet features; these are 

subsequently fed to supervised Machine Learning algorithms that classify them as 

malicious or benign. Malicious signatures undergo a reduction process tailored to the 

attack vector to generate a concise set of filtering rules, thus expediting mitigation 

performance. Our schema was implemented as a proof-of-concept and evaluated for DNS 

volumetric attacks in terms of signature classification accuracy and packet filtering 

throughput. Experiments were based on benign and malicious traffic datasets recorded 

in production network environments. Our approach was compared to source-based 

mechanisms in terms of (i) malicious traffic identification, (ii) filtering rules cardinality, 

and (iii) packet processing throughput required in modern high-speed networks. The 

experimental results demonstrate that our signature-based approach outperforms IP-

based alternatives, achieving high detection accuracy and significant generalization 

capabilities. 

7.1 Motivation 

Distributed Denial-of-Service (DDoS) attacks originate from compromised hosts and/or 

exploited vulnerable systems producing traffic from a large number of sources [94]. Such 

attacks are continuously increasing in frequency and magnitude [95].  

Legacy DDoS protection mechanisms maintain statistics based on source IP or network 

flows to detect and ultimately mitigate malicious traffic. Maintaining flow/IP-based 

metrics requires data from lengthy time-windows that may hinder real-time identification 

of malicious traffic and the subsequent mitigation. Moreover, traditional filtering 

mechanisms rely on IP-based rules that increase proportionally to the number of alleged 
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malicious sources. In massive attacks that may include millions of source IPs [94], such 

a filtering approach raises scalability issues [72], [96].  

To counter the shortcomings of IP-based schemes, we propose a source IP-agnostic DDoS 

protection mechanism that classifies and mitigates network attacks based on packet 

signatures, i.e. unique combinations of packet field values. Motivated by our effort on 

SYN Flood attacks in section 6, we consider DDoS Amplification (volumetric) attacks, 

commonly used to overwhelm network infrastructures. The proposed approach relies on 

the widely observed fact that these attacks may be characterized by a modest number of 

salient packet characteristics [94]. Consequently, our schema attempts to dynamically 

reveal related packet characteristics (signatures) and use them as filters to block the attack 

traffic in a scalable fashion. 

In a nutshell, the proposed mechanism continuously monitors the network traffic and 

extracts packet signatures based on the most important features tailored to an attack vector 

(e.g. DNS or NTP Amplification attacks). Packet signatures are classified via supervised 

Machine Learning (ML) algorithms, appropriately trained with benign and malicious 

traffic, focusing on distinct packet fields (features). Malicious signatures are further 

subjected to a reduction process before being employed as filtering rules to expedite 

mitigation performance. The reduced set of signatures is finally deployed on high-

performance programmable scrubbing middleboxes. 

The remainder of this section is structured as follows: Section 7.2 contains background 

information and discusses related work; Section 7.3 offers an overview of the proposed 

architecture; Section 7.4 provides implementation details of the proposed Signature-based 

Traffic Classification and Mitigation schema; Section 7.5 provides experimental 

evaluations for volumetric DNS attacks regarding processing performance and detection 

accuracy. Finally, Section 7.6 summarizes this section and discusses future steps. 

7.2  Related Work & Contributions 

There are various efforts reported in the literature that attempt to classify and filter DDoS 

attacks. In subsections 7.2.1, 7.2.2 below, we present related flow-based and signature-

based schemes accordingly. Subsection 7.2.3 emphasizes on our key contributions with 

regards to the state-of-the-art mechanisms. 
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7.2.1 Flow-based Classification and Filtering 

In [61], a DDoS traffic classification schema based on a Multilayer Perceptron (MLP) 

was introduced. Traffic metrics related to flows and packet rates (UDP, ICMP) are 

collected and used as input to an MLP, tasked with classifying network traffic to 

benign/malicious.  

In [17], an OpenFlow (OF) DDoS detection mechanism was presented. This collects 

periodically entries from OF-enabled network devices, extracts flow-related features and 

classifies them using Self-Organizing Maps (SOM). In [62], an SDN DDoS detection and 

mitigation schema was proposed. Sharp increases in the rate of Packet-In messages are 

considered as an indication of DDoS attacks; subsequently a mitigation pipeline is 

triggered. OpenFlow rules are collected from network devices and classified via an 

appropriate MLP that uses the same feature set as in [17]. Malicious flows are then 

blocked via appropriate mitigation entries in OF-enabled devices.  

In [63], a large set of flow-related features is extracted from packets and sent to OF 

Controllers. These features are used as input to a Stacked Autoencoder (AE), which 

classifies flow as benign or malicious. Authors highlight processing limitations in 

Controller-based packet collection and feature extraction. 

In [58], a two-level protection schema was introduced. Initially, entropy values are 

calculated for the number of destination IPs and ports, with sudden changes indicating an 

ongoing attack. The victim is identified and traffic destined towards its IP is redirected to 

an OF-enabled switch. This device acts as a second, more refined level of detection, that 

uses packet symmetry to identify malicious flows. Malicious flows are subjected to 

source IP-based aggregation to reduce the required blocking rules. Finally, filtering rules 

are deployed to the OF switch while benign traffic is redirected back. 

In [64] ATLANTIC, an SDN framework for DDoS attack detection and mitigation, was 

proposed. Entropy changes for specific flow features within consecutive time-windows 

indicate the existence of an attack. Network flows responsible for entropy changes are 

fed in a traffic classification component based on K-means and Support Vector Machines 

(SVM). K-means is used initially to create clusters of common flows and SVM is further 

used to identify malicious flows. Subsequently, drop rules are installed for malicious 

flows.  
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A flow-based traffic classification mechanism was suggested in LUCID [66]. Flow values 

are collected from different time windows and represented as arrays; subsequently these 

arrays are fed to a Convolutional Neural Network (CNN) to identify time-dependent 

traffic patterns. Attack mitigation was not addressed in the LUCID paper. 

7.2.2 Signature-based Classification and Filtering 

Signature-based traffic classification and filtering is commonly featured in Intrusion 

Detection/Prevention Systems (IDS/IPS), e.g. Suricata [97]. Network packets are 

monitored and their packet field values are compared to predefined sets of malicious 

signatures. Notably, the widely employed DDoS detection tool FastNetMon [60], relies 

on static rules to identify Amplification attacks. Although these approaches are able to 

instantly identify previously observed attack patterns, they are not able to detect zero-day 

threats.  

By contrast, in [98] a tool for extracting zero-day attack signatures was proposed; upon 

the detection of an attack, their system analyzes both benign and attack packets. 

Signatures suddenly appearing in high frequency in the network traffic are attack 

indicators, while evenly distributed signatures usually characterize benign traffic.  

In [65] DeepDefense, a DDoS detection schema based on Recurrent Neural Networks 

(RNN) was introduced. Traffic traces, collected within sliding time windows, are 

translated into arrays of packet features. These are fed to an RNN that segregates 

malicious from benign packets. 

Finally, Cloudflare, currently one of the largest Content Delivery Networks (CDN) that 

also offers DDoS protection services, employs packet signatures to filter malicious traffic 

[93]. To the best of our knowledge, the exact methods for traffic classification and 

signature-based filtering are not publicly available and thus we cannot compare our 

approach with them. 

7.2.3 Key Contributions 

Our key contributions can be summarized as follows: 

 Most of the reported efforts in the literature employ metrics aggregated by IP 

addresses or network flows for traffic classification [17], [61]–[64]. In contrast, 
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we focus on the most appropriate packet features to identify malicious signatures 

based on Supervised Learning algorithms. Due to their enhanced generalization 

capabilities, these can accurately identify zero-day (unseen) attacks 

(outperforming static approaches [60]). 

 We exploit common characteristics observed in the attack traffic to generate 

appropriate signature-based filtering rules. These are subjected to a reduction 

process that minimizes their number and expedites the mitigation performance. 

 Our approach does not require collection of data over lengthy time-windows and 

corresponding time references as in [65], [98]. Instead, current packet field values 

are used, thus expediting detection and mitigation of attack traffic with no 

significant deterioration of classification accuracy.  

 We propose a dynamic, tunable yet high-performance scrubbing mechanism 

based on programmable software data planes (XDP). Unlike proprietary 

monolithic solutions, our approach offers programmable monitoring and filtering 

functionalities without compromising on packet processing performance. 

 We conducted detailed experiments focusing on volumetric DNS attacks; we 

employed high packet rates and real network data (benign and malicious) to 

illustrate the applicability of our mechanism in production network environments. 

7.3 Design Principles & Architectural Overview 

In this section, we outline design principles and present a baseline overview of the 

proposed Signature-based Traffic Classification and Mitigation architecture. 

7.3.1 Design Principles 

The main design principles of our mechanism are summarized below: 

Signature-based filtering: We opt to surgically mitigate DDoS attacks focusing on 

distinct packet feature combinations (signatures) exhibited by offending traffic. Unlike 

traditional DDoS defense mechanisms that rely on blocking a massive number of IP 

sources, our approach attempts to generate IP-agnostic filtering rules. 

Filtering rules reduction: Filtering rules are stored within network devices (switches, 

routers, firewalls) that typically impose limits to the number of entries they can support. 

To reduce their number, source-IP based procedures [58], [72] employ IP aggregation 
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techniques. Our signature reduction mechanism identifies instead a concise set of rules 

required to block an attack, with minimal effect on benign traffic. 

Traffic classification based on supervised Machine Learning (ML) algorithms: Our 

approach is trained using packet characteristics from normal (benign) traces and past 

attack incidents. The learning process can be tailored to specific network environments, 

thus enhancing classification accuracy. To that end, the employed features should be 

carefully selected and tuned depending on anticipated attack vectors. 

High performance scalable Network Functions based on programmable middleboxes: 

Typically, traffic monitoring and filtering functionalities are implemented by monolithic 

appliances. In contrast, we opted to use COTS hardware (i.e. low-cost NICs) as data plane 

programmable appliances powered by the XDP framework. This enables online packet 

handling without imposing control plane processing overhead. XDP-enabled appliances 

can be instantiated on-demand and scaled according to traffic and application 

requirements, thus providing a suitable mechanism for cloud-based scrubbing services. 

7.3.2 Architectural Overview 

In Figure 7.1, we present a high-level overview of the proposed architecture for DDoS 

protection, applicable either in transit provider networks or customer/edge network 

domains. Our mechanism consists of four separate components that offer: (a) Signature 

Extraction, (b) Signature Classification, (c) Signature Reduction and (d) Anomaly 

Mitigation. In what follows, we outline the DDoS detection and mitigation workflow 

referring to steps i – vi illustrated in Figure 7.1. 

Benign and malicious traffic originating from various Internet sources traverses through 

a network infrastructure equipped with programmable devices. Network traffic is 

continuously monitored (step i) in the data plane by the Signature Extraction component. 

This component employs high-performance programmable mechanisms (e.g. XDP) to 

extract appropriate packet fields, i.e. signatures, pertaining to different attack vectors. 

Note that these fields should be selected after careful examination of benign and malicious 

traffic for a specific exploited protocol. Our methodology for selecting the most important 

packet fields (features) will be presented in subsection 7.4.1; note that the proposed 

method is not limited to a specific attack vector. 
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Figure 7.1: High-Level Overview of the Signature-based Traffic Classification and Filtering Architecture 

Extracted monitoring data (signatures) are organized per destination IP address and 

relayed (step ii) to the Signature Classification component, a control plane module that 

categorizes them as either benign or malicious. This component relies on classification 

methods based on supervised ML algorithms that have been trained with attack and 

benign traffic. Malicious signatures identify ongoing attacks targeting specific IP 

addresses (victims). Classified signatures are subsequently employed for mitigation rule 

generation (step iii) via the Signature Reduction component that expedites mitigation 

performance. This reduction process is formulated as a multi-objective (Pareto) 

optimization problem. Specifically, combinations of the most important packet features 

are explored to identify a smaller feature set that minimizes the number of malicious 

signatures for an acceptable level of benign traffic drops. The selection of a Pareto optimal 

pair is based on DDoS Protection service operator preferences.  

Finally, the reduced set of signatures is conveyed (step iv) to the Anomaly Mitigation 

component, that acts as a traffic scrubbing mechanism in the data plane. Data packets 
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destined to the victim IP are redirected to this component (step v) via appropriate traffic 

diversion techniques. Malicious packets are dropped while benign traffic is returned back 

to the router (step vi) to be forwarded to the destination IPs. 

Extraction, classification and reduction of signatures, as well as mitigation rule 

generation, are performed continuously in distinct intervals (time-windows). Selected 

intervals should be small (e.g. 10 seconds) to enable rapid propagation of information and 

ultimately prompt accurate traffic scrubbing. 

7.4 Packet Feature Selection & DDoS Protection Detailed Architecture 

Our methodology for packet feature selection and implementation details of the 

components shown in Figure 7.1 are presented in the following subsections. 

7.4.1  Packet Feature Selection Methodology 

Packet header fields forming signatures are of paramount importance for our mechanism. 

They are used to (i) classify packets to malicious/benign and (ii) create filtering rules for 

blocking the offending traffic.  

In DDoS Amplification attacks, vulnerable protocols and services are exploited in a very 

specific manner for generating massive amounts of traffic. This traffic exhibits packet 

characteristics that typically deviate from benign network traffic. In order to identify the 

most important characteristics pertaining to a specific attack vector, we select the relevant 

packet header fields (features) of each abused protocol. For that purpose, we employ the 

methodology described below.  

We start with an initial set of 𝑛 features 𝐹 = {𝐹1, 𝐹2, … 𝐹𝑛}, that includes (i) packet 

header fields of an abused protocol (e.g. DNS) and (ii) IP packet Total Length and UDP 

datagram Length fields (these values may differ in cases of IP fragmentation of large UDP 

packets). The former may reveal packet field values that are employed for generating 

large payloads in such attacks. The latter may correspond to large values, typical for 

DDoS Amplification [2].  

The packet header field selection algorithm uses both benign and malicious traffic for an 

attack vector to train a Random Forest (RF) classifier based on a training dataset T of 

examples with 𝐹 features. The RF training process provides (i) the Out-Of-Bag (OOB) 
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score, a metric that shows the accuracy achieved on examples that were not included in 

the training process of each decision tree [99] and (ii) the importance of each feature [91]. 

High values of OOB score illustrate that the employed fields can be used to accurately 

classify benign and malicious packets. The feature selection pseudocode is:  

Packet Header Field Selection Algorithm 

Input: Training Dataset T, Packet Features  F={F1, F2, …Fn} 

 

Output: Packet Features F'={F1, F2, …Fm} 

1: (OOB𝑛, Franked)←Random Forest (T, F) 

2: Franked←sort_descending(Franked ) 

3: for each q ∈ [1, n) do: 

 

4:        m = n-q 

5:        F' = TOP m entries from Franked 

 

6:        OOB𝑚←Random Forest (T, F') 

 

7:        if (OOB𝑛 - OOB𝑚) ≥ ε  then 

 

 

8:              return F' 

9: end for 

The RF feature importance metric enables the selection of 𝑚 < 𝑛 important features 

according to the above iterative process, see also [100]. As a result, we obtain a reduced 

set of features 𝐹′ = {𝐹1, 𝐹2, … 𝐹𝑚} that are used for packet monitoring, traffic 

classification, signature reduction and attack mitigation purposes. 

The elimination of non-important features (selecting 𝑚 most important ones) has the 

following benefits for our schema: (i) increased packet throughput of Signature 

Extraction and Anomaly Mitigation components of Figure 7.1 since fewer packet fields 

are required to be parsed and stored; (ii) enhanced accuracy and shorter training times of 

Supervised Learning algorithms; (iii) lower complexity of the Signature Reduction 

component due to the lower dimensionality of its input. 

7.4.2 Signature Extraction 

The Signature Extraction (SE) component is a high-performance monitoring mechanism 

based on the XDP framework. It collects mirrored network traffic, extracts appropriate 

packet fields, and conveys monitoring data to the Signature Classification (SC) 

component, as illustrated in Figure 7.2. 

The combination of packet feature values can be represented by the signature vector X = 

[x1 x2 … xm]T, where xi is the value for packet field i. Each unique signature X corresponds 
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to a row in the Monitoring Data Table of Figure 7.2. Every observed packet signature 

pertains to a counter stored within an appropriate BPF Map (i.e. hash table).  

SE consists of various instances, each associated with a specific attack vector. They all 

contain a Data Extractor and a Data Exporter module: 

 The Data Extractor is a kernel space XDP (data plane) program that extracts and 

stores packet header values for the preselected fields 𝐹′, including the destination 

IP address. Destination IPs are required for the identification of the victim and 

subsequent traffic scrubbing (redirection and filtering).  

 The Data Exporter is a user space program that periodically retrieves the contents 

(i.e. signatures) of the BPF Map and conveys them to the SC component. 

Note that the SE component could be implemented using any approach that provides 

access to packet fields such as sFlow [74]. We opted for XDP since it provides cost-

effective high-throughput monitoring of all packets (no sampling) and does not exhibit 

limitations on the available packet fields to be collected.  

7.4.3 Signature Classification 

The Signature Classification (SC) component collects monitoring data and classifies them 

using supervised Machine Learning (ML) methods to identify malicious signatures. It 

consists of the Data Handler and the ML Classifier module. The Data Handler module 

collects the different signatures X relayed by the SE component and preprocesses them 

(if needed) in a data normalization step. In turn, the set of X is used as input to the ML 

Classifier module which classifies them as benign/malicious. This module is trained with 

malicious and benign traffic datasets related to a specific protocol (e.g. DNS attacks and 

benign DNS traffic).  

Malicious signatures correspond to ongoing attacks targeting specific IP addresses 

(victims). The mitigation process for the victim IP addresses is initiated by conveying 

malicious and benign signatures to the Signature Reduction (SR) component to generate 

filtering rules (see the following subsection).  
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Figure 7.2: Signature-based Traffic Classification and Filtering Detailed Architecture  

7.4.4 Signature Reduction 

The Signature Reduction (SR) component receives both malicious and benign signatures 

from the SC component and reduces the number of malicious signatures to expedite the 

mitigation performance of the Anomaly Mitigation (AM) component. As mentioned, 

malicious signatures will be used to generate filtering rules. These are stored in memory 

resources (i.e. BPF Maps in the XDP context) that enable packet matching in the data 

plane. Their number significantly affects the deployment and lookup time in the BPF 

Map, which is ultimately related to the AM packet processing performance (throughput).  
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The SR component searches for a concise set of signatures that can block offending 

traffic, with minimal effect on the benign traffic. This was formulated as a multi-objective 

(Pareto) optimization problem, in which we search for feature subsets 𝐹′′ =

{𝐹1, 𝐹2, … 𝐹𝑘} of the feature set 𝐹′ = {𝐹1, 𝐹2, … 𝐹𝑚}, 𝑘 < 𝑚, to identify operating points 

that simultaneously minimize: 

(i) the number of malicious signatures (filtering rules) 

(ii) the percentage of benign traffic drops  

Let 𝑀′ and 𝐵′ be the sets of malicious and benign signatures respectively based on 

features from 𝐹′. For each subset 𝐹′′, we similarly define 𝑀′′ and 𝐵′′ using only the 

features in 𝐹′′. Objective (i) is calculated as the number (cardinality) of unique signatures 

in 𝑀′′. Objective (ii) is the number of benign packets that correspond to the signatures in 

𝑀′′ ∩ 𝐵′′ divided by the number of benign packets that correspond to signatures in 𝐵′′. 

This provides the percentage of benign traffic that would be dropped (False Positive Rate) 

if we used as filtering rules the signatures in 𝑀′′. Note that the intersection 𝑀′ ∩ 𝐵′ is an 

empty set; however, the intersection 𝑀′′ ∩ 𝐵′′ may result to non-empty sets in the reduced 

feature space 𝐹′′, corresponding to False Positive cases. 

The proposed optimization problem points to Pareto optimal solutions (referred to as 

Pareto-optimal front). However, due to stringent time constraints for attack mitigation, 

related algorithms would typically stop prior to Pareto-optimal front identification. We 

opted for a fast evolutionary approach based on Non-dominated Sorting Genetic 

Algorithm-II (NSGA-II) [88]. The algorithm starts with arbitrary subsets 𝐹′′ ⊂ 𝐹′ and 

iteratively attempts in each step to further reduce the objectives. At each iteration 

(generation), new subsets of 𝐹′ are generated based on random combinations of 𝐹′′ that 

correspond to the best solutions produced so far in previous iterations. The algorithm 

stops when a time limit is reached thus generating suboptimal subsets.  

As stated above, the proposed approach will generate several solutions near the Pareto-

optimal front. Naturally, only one of them can be ultimately selected for mitigating the 

attack. This selection should be tuned per customer network profile to depict network 

operator preferences, e.g. acceptable percentage of dropped benign traffic (False Positive 

Rate). Finally, from the selected solution, signatures of 𝑀′′ are conveyed to the AM 

component to generate filtering rules. 
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7.4.5 Anomaly Mitigation 

The Anomaly Mitigation (AM) component is a high-performance programmable firewall 

based on the XDP framework. It consists of two modules: the Rule Handler and the 

Packet Filter. The former receives a list of malicious signatures associated with a victim 

IP, installs them as filtering rules in a BPF Map and triggers traffic redirection for the 

targeted victim IP. The latter is an XDP kernel space program similar to the Data 

Extractor module of the SE component. The Packet Filter receives traffic destined to the 

victim IP and extracts the packet fields based on the reduced set of signatures 𝐹′′. The 

extracted packet fields values are subsequently compared to the filtering rules within the 

BPF Map. If the combination of packet fields (i.e. signature) of the received packet is 

contained in the BPF Map, the packet is dropped (XDP_DROP). Otherwise, the packet 

is considered benign and transmitted back (XDP_TX) to the edge router to be normally 

forwarded to the victim IP. For implementation options related to traffic redirection and 

reinjection see [69]. 

Note that SE can be implemented with alternate monitoring solutions (e.g. sFlow) that 

can extract packet characteristics. However, the AM component is tightly coupled with 

programmable data planes solutions, such as XDP, able to perform inline packet filtering 

based on selected packet fields. 

7.5 Experimental Evaluation: DNS Amplification attacks 

We selected as a case study volumetric DNS attacks, one of the most common DDoS 

Amplification attack vectors. We evaluate our schema in an experimental testbed, 

employing real datasets and synthetic network traces as detailed in subsection 7.5.1 

below. In short, our experiments attempt to: (i) identify and select the most important 

features for DNS traffic classification, (ii) assess the signature classification accuracy of 

Supervised Learning algorithms, and (iii) compare the proposed signature-based 

approach to source IP/flow-based alternatives. 

7.5.1 Datasets Description/Testbed 

Our proof-of-concept testbed is illustrated in Figure 7.3. The experimental setup was used 

to evaluate packet monitoring, signature classification, signature reduction, and packet 

filtering capabilities. The SE and AM components were implemented within the XDP 
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framework in the data plane. They were deployed on a physical machine (XDP-enabled 

node) equipped with a Netronome Agilio CX 2x10G SmartNIC. For packet generation 

purposes, we used a Virtual Machine (VM), equipped with an Intel X520 NIC 2x10G, 

able to generate packets at high rates using the PF_RING ZC framework. The SC 

component was implemented using the scikit-learn and PyTorch libraries while the SR 

component was based on the Platypus framework [90]. They were both deployed as 

control plane modules on a VM equipped with 12 vCPUs and 12GB RAM.  

 

Figure 7.3: Proof-of-concep testbed setup  

Real network traces were used to assess the signature classification accuracy of our 

schema, whereas synthesized traffic was used for stress testing packet filtering 

capabilities. As benign traffic, we used DNS responses from: (i) a 10G transit link 

between WIDE and DIX-IE (an experimental Internet Exchange), henceforth WIDE-G 

[80], (ii) a 1G transit link between WIDE and an upstream provider, henceforth WIDE-F 

[80], and (iii) Thapar University Campus Network, henceforth TU Campus [101]. As 

malicious traffic, we used the Booters datasets. These datasets, henceforth individually 

referred to as B1, B2, … B7 or collectively as Booters, contain seven different DNS-based 

Amplification attacks generated by DDoS-for-Hire services. The attacks [2] were 

captured during a controlled experiment conducted between the University of Twente and 

SURFnet, the Dutch Research and Education Network.  

All Booters attacks apart from B4 and B5 used type ANY DNS responses, a commonly 

used method for DNS Amplification attacks that returns every available Resource Record 
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(RR) for a given fully qualified domain name. In B4 and B5 attacks, the attackers 

attempted to use type A requests. Specifically, B4 contains multiple responses for the 

domain packetdevil.com, a domain name that resolves into a very large number of IP 

addresses in the DNS response payload. By contrast, B5 corresponds to a type A attack, 

that could not generate responses with heavy payload. 

7.5.2 Packet Field (Feature) Selection for DNS Amplification attacks 

In this subsection, we evaluate the packet header field selection algorithm for three 

different combinations of benign and malicious DNS traffic. Initially, we selected the 20 

packet fields (features) presented in the Table below: 

Table 7.1: Packet header fields (features) for DNS Traffic Classification 

Packet Fields Short Description Packet Fields Short Description 

ip.length IP packet size in bytes 
dns.flags. 

recdesired 

specifies whether recursion is 

desired (1) or not (0) 

udp.length UDP datagram size in bytes dns.flags. recavail 

specifies whether recursive query 

support is available (1) in the name 

server or not (0) 

dns.id 
identifies uniquely a DNS 

transaction 
dns.flags.z reserved field for future use 

dns.flags. 

response 

specifies whether the message is 

a query (0) or a response (1) 

dns.flags. 

authenticated 

indicates in a response that all data 

included in the answer and 

authority portion of the response 

has been authenticated by the server 

(1) or not (0) 
dns.flags. opcode 

specifies the kind of the query 

e.g. standard DNS query 

dns.flags.   

checkdisable 

indicates in a query that non-

authenticated data is acceptable to 

the resolver sending the query (1) 

or not (0) 

dns.flags. 

authoritative 

specifies whether the 

responding DNS server is 

authoritative (1) or not (0) for 

the requested domain name 

dns.flags. rcode 

indicates the response code for the 

specified request e.g. the name 

server refused to respond 
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dns.flags. 

truncated 

specifies whether the message is 

truncated (1) or not (0) 

dns.count. add_rr number of RRs in the additional 

records section 

dns.count. 

queries 

number of entries in the 

question section 

dns.qry.name variable length field terminated by 

the zero-length byte, specifying the 

requested domain name 

dns.count. 

answers 

number of Resource Records 

(RRs) in the answer section 

dns.qry.type specifies the type of the query 

dns.count. 

auth_rr 

number of name server RRs in 

the authority records section 

dns.qry.class specifies the class of the query e.g. 

IN for the Internet class 

Employing the features of Table 7.1, we trained three different Random Forest (RF) 

classifiers consisting of 100 decision trees with default parameters of the scikit-learn 

library for tree structure and stopping [91]; 

 

Figure 7.4: Feature Importance provided by Random Forest Classifiers for DNS Traffic 

each one includes all Booters traffic and a particular benign dataset (WIDE-G, WIDE-F, 

TU Campus). The selected features except for dns.qry.name correspond to numerical 
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values and were fed directly to the RF classifiers; dns.qry.name was transformed to a 

numerical value via hash encoding. In Figure 7.4, we depict the importance of each 

feature for the different combinations of datasets, as computed by the scikit-learn library. 

The reported values correspond to the average feature importance for multiple training 

iterations.  

In order to identify the most important features, we employed for each dataset 

combination the iterative process described in subsection 7.4.1. The threshold ε (line 7 in 

Packet Header Field Selection Algorithm pseudocode) was set equal to zero. In Table 

below, we present the most important features that the algorithm produced for each 

dataset: 

Table 7.2: Most important packet fields for DNS Traffic Classification 

Booters+WIDE-G Booters+WIDE-F Booters+TU Campus 

dns.qry.type dns.flags.recdesired dns.qry.type 

dns.count.answers dns.flags.recavail udp.length 

dns.flags.recdesired dns.flags.authoritative dns.count.answers 

udp.length dns.count.answers ip.length 

ip.length dns.qry.type dns.count.add_rr 

dns.count.add_rr udp.length dns.qry.name 

dns.qry.name ip.length - 

- dns.qry.name - 

One of the dominant features in all cases is the type of the query (dns.qry.type) since most 

attacks in the Booters dataset rely on DNS type ANY messages to generate large volumes 

of malicious traffic. The length of the IP packet and the UDP datagram are also important 

features; benign DNS traffic mainly consists of small packets while DNS Amplification 

attacks consist of large responses. Similarly, dns.count.answers and dns.count.add_rr can 

also be used to identify malicious traffic, as these counters significantly increase in attack 

cases. Furthermore, some of the attacks used the same dns.qry.name (root-servers.net for 

B1, B2, B3, and anonsc.com for B6, B7) to generate large DNS packets, thus the hashed 
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dns.qry.name may also enhance the accuracy of the resulting classification. Interestingly, 

dns.flags.recdesired, dns.flags.recavail, and dns.flags.authoritative are of high 

importance for the Booters+WIDE-F dataset combination. This follows from the fact that 

most DNS responses in WIDE-F dataset (benign) were generated by iterative queries on 

authoritative DNS servers, while in Booters (malicious) by recursive queries in non-

authoritative servers.   

As expected, dns.flags.response, dns.flags.z, dns.count.queries, dns.qry.class, 

dns.flags.opcode are of low importance for DNS traffic classification. These had almost 

the same value for every packet, malicious or benign. In addition, based on our 

experimental observations the features dns.flags.authenticated, dns.flags.truncated, 

dns.flags.rcode, dns.id, dns.count.auth_rr and dns.flags.checkdisable do not improve the 

Out-Of-Bag (OOB) score of the RF classifiers and thus have been removed.  

In summary, the proposed packet field (feature) selection algorithm identifies a small set 

of features out of the 20 initially chosen. These are used to accurately classify both benign 

and malicious DNS traffic patterns. The classification results are based on diverse and 

realistic traffic scenarios sourced from heterogeneous network environments. 

7.5.3 Signature Classification Accuracy  

In this subsection, we evaluate the signature classification accuracy of the proposed 

mechanism, using two different Supervised Learning methods. We implemented two 

classifiers: (i) Random Forests (RF) with 100 decision trees and (ii) an N x (2N+1) x 1 

Multilayer Perceptron (MLP), with sigmoid activation functions, as suggested in [61]; N 

is the number of features (see Table 7.2). The MLP was trained with examples of batch 

size equal to 4096 and MLP weights were updated based on Adam method [92] with 

learning rate α = 0.01. We used a single epoch with a validation dataset comprising 30% 

of the training dataset. The training procedure was conducted separately for each unique 

combination of the following: 

 Each classifier (RF, MLP) 

 Each benign dataset (WIDE-G, WIDE-F, TU Campus) 

 Each set Ai = {Booters - Bi}, where i = 1 … 7, e.g. A4 = {B1, B2, B3, B5, B6, B7} 
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There are 42 different dataset combinations. Each trained model is evaluated against a 

mix of traffic (test dataset) based on the excluded attack dataset Bi and benign traffic from 

the same origin (e.g. WIDE-G). Specifically, for WIDE-G and WIDE-F, we employed 

two 15-minute traces for training and eight 15-minute traces as test dataset. Similarly, for 

TU Campus we used two 1-hour traces for training and eight 1-hour traces as test dataset 

respectively. 

For MLP we employed undersampling techniques on the attack datasets as they contain 

more signatures than benign datasets. Training data for MLP were also normalized in the 

range of [0,1] to enhance classification capabilities. In Figure 7.5, we illustrate the True 

Negative Rate (TNR) of all combinations, which is the percentage of benign traffic that 

was classified as benign and the True Positive Rate (TPR), which is the percentage of 

attack traffic classified as malicious.  

   

   

   

Figure 7.5: True Negative and True Positive Rates for various training scenarios using Booters combined with 

the benign datasets WIDE-F, WIDE-G and TU Campus 
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As illustrated in Figure 7.5, RF is a reliable method to identify both benign (WIDE-G, 

WIDE-F, TU Campus) and attack traffic (Booters) patterns, provided it is trained with 

diverse attack data. However, RF is not able to recognize attacks that significantly deviate 

from the training attack pattern. This is clearly illustrated when the model is trained with 

A4, which does not include B4 of the test dataset. Recall that B4 contains large DNS 

responses with multiple type A RR for a domain name, while the training dataset (A4) 

contains attack traces with type ANY DNS responses.  

Similar to RF, MLP can identify benign and attack traffic with high accuracy for all 

combinations of training data. However, MLP identified B4 as an attack, illustrating 

significant generalization capabilities on detecting "unseen" (zero-day) attacks. 

Note that B5 was not identified by any classifier as an attack trace. As already mentioned, 

it corresponds to a failed attack that did not produce heavy payload, thus exhibiting 

similarities to benign traffic. Interestingly, all classification mechanisms in our 

experiments discovered attack data within the benign datasets (WIDE-F, WIDE-G). A 

closer inspection of the original network traces revealed modest attack traffic, i.e. 

consecutive type ANY responses from specific IP sources to the same destination IP. 

These data were manually removed and are not included in Figure 7.5. 

An interesting topic pertaining to ML algorithms are the training and test runtimes. With 

regards to the former, i.e. training runtime, has limited impact to our mechanism since the 

training process is conducted offline and the values are in any case in the order of seconds 

for both models. Qualitatively, training runtimes for MLP were on average 11 times faster 

than RF. The most important metric for us is the test runtime since it corresponds to real-

time signature classification (inference). These values were in the order of milliseconds 

with MLP runtimes being on average 17 times faster than RFs. Such values are negligible 

compared to the overall time-window during which our mechanism identifies and 

mitigates DDoS attacks. This time-window (several seconds) includes packet monitoring, 

signature classification and filtering rule deployment. To our knowledge, such time-

windows are consistent with production solutions offered by major security service 

providers.  

In summary, the proposed approach provides accurate classification of DNS 

Amplification attacks and benign traffic. This was validated for 42 different 
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training/testing scenarios utilizing real data from heterogeneous network environments. 

Notably, MLPs achieved detection of "unseen" attack traffic patterns (not used in the 

training process), illustrating better generalization capabilities compared to RF 

classification algorithms. However, RF is still a reliable classification method, provided 

that it is trained with diverse attack data. 

7.5.4 IP-based vs Signature-based Protection Mechanisms 

In the following subsections, we compare our signature-based schema to legacy IP-based 

mechanisms e.g. [16], [17], [61]–[64]. We evaluate both approaches considering their (i) 

ability to identify and filter malicious traffic, (ii) filtering rules cardinality, and (iii) packet 

filtering performance. 

7.5.4.1 Malicious Traffic Identification and Filtering 

Typically, DDoS protection mechanisms collect monitoring data within time-windows 

(TW) and utilize them to classify network traffic. Based on this classification, filtering 

rules are generated and used to block the attack traffic. In this subsection, we compare 

our signature-based protection mechanism to the optimal IP-based approach, that is able 

to identify all malicious IP sources of an attack.  

In our comparisons, we analyzed network traffic from the first time-window of each 

attack dataset Bi and extracted the malicious DNS signatures (based on WIDE-F features) 

and source IP addresses. Subsequently, we calculated from the whole attack dataset Bi 

the traffic (in bytes) that corresponds to the extracted DNS signatures and IP sources 

divided by the total attack traffic. This illustrates the percentage of the attack traffic that 

is blocked by each approach based on monitoring data from the first time-window of the 

attack. In Figure 7.6, we present for every Bi the dropped attack traffic (%) considering 

various time-windows and packet sampling rates. Short TWs (e.g. 1s) allow for rapid 

detection and mitigation. Sampling rate 1:1 corresponds to our XDP-based monitoring 

approach (SE), while lower values correspond to sparse packet sampling, typically 

employed in monitoring mechanisms e.g. sFlow [102]. 

Our signature-based approach outperforms the source IP-based alternative for all attack 

scenarios and combinations of time-windows (TW) and sampling rates. This is attributed 

to the fact that the attack traffic is characterized by a few number of DNS signatures, 

typically distributed to multiple IP addresses. Decreasing the sampling rate reduces 
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Figure 7.6: Comparison between source-based and signature-based protection mechanisms for Booters  

significantly the effectiveness of the source-based mechanism especially for highly 

distributed attacks (e.g. B1, B4, B6, B7). In contrast, our approach is not affected and is 

able to successfully block most of the attack traffic (e.g. TW 1s - B3: 90%) even for the 

lowest sampling rate 1:2000. As expected, increasing the time-window duration enables 

both mechanisms to observe more data and thus filter more attack traffic. Notably, our 

signature-based approach is able to filter a greater portion of the attack traffic (for packet 

sampling cases lower than 1:1) than the IP-based counterpart, while using data from 

shorter time-windows (grey bars – IP 10s vs yellow – signatures 1s bars). Note that, the 

total blocked attack traffic using WIDE-G and TU Campus feature sets is on average for 

all scenarios ~ 0.06% greater than WIDE-F and thus the corresponding results are not 

reported. 
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In summary, packet signatures are associated with larger amounts of attack packets 

compared to source IP addresses. This supports the observation that signature-based 

schemes may provide faster detection and more efficient filtering of DDoS Amplification 

attacks than conventional source IP-based mechanisms. 

7.5.4.2 Filtering Rules Cardinality 

In this subsection, the number of filtering rules required by IP-based schemes is compared 

to our signature-based approach. Specifically, we extracted the total number of unique 

sources for each Booter dataset (Bi) and the DNS signatures (WIDE-F features) that 

characterize all the malicious traffic. Subsequently, we employed our Signature 

Reduction (SR) component to calculate the reduced number of signatures that can match 

and block the malicious traffic (DNS signatures - reduced). SR, for all Booters and benign 

datasets combinations, concluded that dns.qry.name and dns.qry.type could be used to 

block all the offending traffic without blocking benign traffic portions.  

 

Figure 7.7: Comparison between source-based and signature-based filtering rules for Booters  

In Figure 7.7, we compare (in logarithmic scale) the number of the source IP filtering 

rules to the signatures that would be required to fully block the seven DNS attacks of the 

Booters datasets without signature reduction (DNS signatures) and with signature 

reduction (DNS signatures – reduced).  
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As illustrated in Figure 7.7, the number of the required rules is decreased considerably 

(on average ~91% for DNS signatures and ~99% for DNS signatures – reduced). The 

benefits are: (i) we do not rely on source-based filters that are tough to maintain due to 

the extremely large cardinality of unique IPs; (ii) we are not affected by dynamic IP 

changes during an attack, e.g. introduced in case of rotating attackers and (iii) we 

significantly reduce the memory consumed in the filtering process. Note that, the total 

number of DNS signatures for all Booters using WIDE-G and TU Campus feature sets is 

on average ~0.6% less than WIDE-F and thus not included in Figure 7.7. 

In total, our signature-based approaches require significantly less filtering rules to 

mitigate the total attack traffic than IP-based alternatives. As mentioned, this benefits our 

schema since large memory utilization results to increased lookup times in software data 

planes (BPF Maps - XDP). Hardware-based implementation may also face similar issues 

due to memory constraints (scarce TCAM resources). 

7.5.4.3 Mitigation Performance 

In this subsection, the packet filtering performance (throughput) of our approach is 

compared to source IP filtering alternatives. We implemented three different XDP-based 

mechanisms: (i) DROP_IP, an IP-based firewall that filters packets based on their source 

IP address, (ii) AM, that filters packets according to DNS signatures of eight features 

(WIDE-F features) and (iii) AM_REDUCED, that filters packets according to DNS 

signatures (reduced) of two features (dns.qry.name, dns.qry.type). 

For stress testing, we employed synthesized network traces DNS_TRACE(n). These 

contain 𝑛 unique IP sources, 𝑛/30 unique combinations of DNS signatures of eight 

features and 𝑛/850 unique DNS signatures (reduced) of two features. The proportions 

were based on the experiments of the previous subsection. Note that, recent DNS 

Amplification attacks that targeted our University Campus, exhibited a greater proportion 

of IP attack sources to DNS signatures than the ones mentioned above. Thus, we 

anticipate that our signature-based mitigation mechanism will perform even better with 

network traffic profiles evolution. 

We replayed various synthesized DNS traffic traces at high-speed rates (10 Million 

packets per second - Mpps) and measured (using the NIC drivers counters [103]) the 
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packets filtered by each XDP mechanism. In Figure 7.8, we present the percentage of 

blocked packets to the transmitted packets for various traffic traces.  

DROP_IP performs better than AM and slightly better than AM_REDUCED for the 

DNS_TRACE(1,000) and (10,000); however, it faces scaling issues as the number of IP 

sources further increases. Specifically, DROP_IP packet processing performance 

(throughput) decreases from 72% to 37% as the number of IPs increases from 1,000 to 

1,000,000. This validates that the number of entries in a BPF Map are significantly 

affecting its lookup time [96]. In contrast, both our AM and AM_REDUCED are scaling 

better in terms of packet throughput as the number of sources increases, since few DNS 

signatures are used to drop the attack traffic. Notably, AM_REDUCED achieves on 

average ~10% higher packet processing rate than the AM, presenting the added 

performance gain provided by reducing the number of DNS signatures. This is mainly 

attributed to the fewer number of entries contained in the BPF Map and fewer packet 

fields required to be parsed and processed compared to AM.  

 

Figure 7.8: Packet throughput for IP-based and signature-based filtering mechanisms 

Overall, our signature-based approach outperforms the source IP-based alternative due to 

the fact that the attack traffic can be described by a modest number of signatures. This is 

even more beneficial in massive attack scenarios where our approach achieves almost two 
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times greater packet filtering performance than IP-based alternatives, utilizing the same 

set of resources. 

7.6 Summary & Concluding Remarks 

In this section we presented an integrated schema for protection against volumetric DDoS 

attacks that employs packets signatures for traffic classification and filtering. It leverages 

on XDP to create performant monitoring and filtering middleboxes, tailored to different 

attack vectors. These operate either (i) as programmable Deep Packet Inspectors (DPI) to 

extract monitoring data or (ii) as flexible firewalls. Our approach does not rely on IP-

sources but employs appropriate traffic signatures. This was based on the widely observed 

fact that volumetric DDoS attacks, especially UDP-based, may be characterized by a 

modest number of salient characteristics, thus enabling efficient Machine Learning 

algorithms (RF, MLP). Note that we did not consider temporal correlations since these 

may require network data from lengthy time-windows, thus hindering near real-time 

anomaly detection and mitigation.  

In our proof-of-concept, we experimented with benign DNS traffic and malicious DNS 

Amplification attacks recorded in production network environments. The experimental 

results were promising and drew interesting conclusions: (i) we were able to 

automatically identify the most important features for DNS traffic classification for 

various network traffic profiles; (ii) XDP-based middleboxes were able to expediently 

monitor and filter network traffic; (iii) RF and MLP illustrated high classification 

accuracy, with the latter achieving significant generalization capabilities on detecting 

unknown attacks; (iv) our signature-based approach outperformed traditional IP-based 

schemes in terms of malicious traffic identification, filtering rules cardinality, and packet 

processing throughput required in modern high speed networks. 

Our experimental evaluation focused on volumetric DNS attacks; however, the proposed 

approach is based on a generic packet feature selection methodology, and can be 

seamlessly extended to DDoS Amplification attacks. This follows from the fact that such 

attacks abuse vulnerable protocols and services in a very specific manner to generate 

massive amounts of traffic targeting the selected victim. Indicatively, they may exploit 

messages generated by SNMP GetBulk, NTP monlist and SSDP SEARCH requests [94]. 

Selecting the most important packet features (i.e. signatures) that are related to the 
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aforementioned attack vectors will enable implementation of protection mechanisms 

similar to the one proposed in this section. 

Signature-based protection based on Machine Learning algorithms is promising for 

DDoS attack detection and mitigation as presented in this section. However, there are still 

two major challenges: 

 From the perspective of a single network domain (e.g. an ISP network), the 

available data for training affect significantly the accuracy of the proposed 

classification mechanism. Thus, acquiring potentially diverse data from other 

(collaborating) domains (with respect to privacy restrictions) would possibly 

enhance the total classification accuracy.   

 Despite the effectiveness of signature-based packet filtering at victims' 

premises, DDoS attacks may overwhelm upstream network links rendering the 

victim unreachable from its legitimate users. Thus, mitigating DDoS attacks in 

upstream networks (collaborative DDoS mitigation) before reaching the victim 

network would properly protect it. 

Therefore, in the next section we will center on collaborative detection and cost-effective 

mitigation of malicious traffic across network federations.  
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8 Collaborative DDoS Attack Detection and Mitigation via 

Privacy-aware Federated Learning and Programmable 

Data Planes 

Distributed Denial-of-Service (DDoS) attacks are delivered to their targeted victims via 

interconnected network domains, i.e. Autonomous Systems (AS's) of the global Internet. 

Although AS collaborations were instrumental in the Internet success story (e.g. global 

routing, peering agreements), this is largely not extended to attack protection. 

Collaborative DDoS detection is hindered by strict data privacy legislations while 

mitigation by rigid firewall solutions. In this section, we present a signature-based 

collaborative DDoS detection and mitigation framework. Our schema consists of a 

detection and mitigation application mounted in collaborating domains. The former 

identifies malicious packet signatures, i.e. combinations of packet field values, using 

Multi-layer Perceptrons (MLPs); these are cooperatively trained without exposing 

private data via the Federated Learning method. The latter filters malicious packets using 

XDP-enabled firewalls deployed in the victim AS; mitigation can also be activated on-

demand within collaborating transit AS's. Our approach was evaluated both in terms of 

packet classification accuracy and packet processing performance using both real and 

synthetic network traces. The Federated Learning scheme enabled collaborators to 

accurately classify benign and attack packets, thereby improving individual domain 

accuracy without compromising privacy concerns. Collaborative on-demand mitigation 

is based on programmable data planes firewalls, thus providing a signature-based in-

network DDoS filtering mechanism tailored to evolving federated SDN infrastructures. 

8.1 Motivation 

As already mentioned, Distributed Denial-of-Service (DDoS) attacks are a major threat 

that need to be accurately detected and rapidly mitigated. These attacks are delivered to 

their targeted victims via interconnected network domains, i.e. Autonomous Systems 

(AS's) of the global Internet. 

Although AS collaborations are instrumental in the Internet success story (e.g. global 

routing, peering agreements), they are not extended to coordinated DDoS detection. This 

is mainly hindered by network operators reluctance on sharing potentially sensitive 

network data but also by strict data privacy legislations, i.e. GDPR [104]. Federated 
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Learning (FL) [105] is a promising approach to address such privacy 

concerns/regulations. It allows collaborating parties to cooperatively train Machine 

Learning (ML) models without exposing private data. FL has been proposed for various 

use cases like word prediction [105], healthcare applications [106] and image recognition 

[107]. To the best of our knowledge, few efforts [108], [109] consider collaborative DDoS 

detection but do not address multi-domain network environments (AS's). 

In contrast to collaborative DDoS detection, collaborative mitigation has been widely 

employed in production network environments. Specifically, DDoS attacks are mitigated 

by filters enforced by collaborating AS's. These filters are typically implemented in 

routing devices and discard either all traffic (BGP blackholing [70]) or the malicious 

portion via a limited number of source IP/flow-based rules. In sections 6, 7, we illustrated 

that source IP/flow-based filtering schemes are not as effective as signature-based for 

DDoS mitigation. To that end, we extend the programmable firewall implemented in 

sections 6, 7, to provide an integrated signature-based DDoS filtering mechanism tailored 

to evolving federated SDN infrastructures. 

Inspired by the aforementioned challenges, we extend in this section the work presented 

in sections 6, 7 to collaborative multi-domain network environments. Our schema detects 

malicious packet signatures using Multi-layer Perceptrons (MLPs); these are 

cooperatively trained without exposing private data. Subsequently, malicious packets are 

filtered in XDP-enabled [12] firewalls deployed in the victim network domain. For large-

scale attacks, mitigation can also be activated on-demand in collaborating transit AS's, 

presumably within attack paths. 

The remainder of this section is structured as follows: In Section 8.2 we discuss related 

efforts on collaborative DDoS protection and outline our key contributions; Section 8.3 

presents a high-level overview of our mechanism and its core design principles; Section 

8.4 provides implementation details for the proposed DDoS detection and mitigation 

framework; Section 8.5 presents experimental evaluations for DDoS detection accuracy 

and mitigation performance on DNS Amplification attacks. Finally, Section 8.6 

summarizes our work. 
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8.2 Related Work & Contributions 

DDoS detection and mitigation for collaborative network domains, i.e. AS's, have been 

widely investigated in the literature but also being employed in operational network 

environments. The former refers to mechanisms that allow network domains to share data 

for enhancing their attack detection capabilities. The latter refers to filters raised on-

demand by collaborators to drop the attack traffic before reaching a victim network. 

Related efforts are analyzed in subsection 8.2.1 and 8.2.2 accordingly; in subsection 8.2.3 

Federated Learning schemes for DDoS protection are presented. Finally, in 8.2.4, we 

present our key contributions compared to similar efforts. 

8.2.1 Collaborative DDoS Detection  

In [110], network traffic is monitored in disperse points of multiple network domains in 

an attempt to concurrently detect attacks targeting subnetworks. Attacks are identified by 

concurrent alerts generated by collaborating network domains. In [111], Internet Service 

Providers (ISPs) collaborate to detect ongoing DDoS attacks; based on predefined static 

rules, they exchange belief scores for suspected DDoS attacks. In [112], security events 

are exchanged between collaborating ISPs to validate ongoing attacks and provide 

appropriate countermeasures. The main focus of this work is on the communication 

process between collaborators. In [113], an effort for creating a European Federation of 

Internet Service Providers (ISPs), Internet Exchanges (IX) and Academic Networks is 

made; the members are exchanging attack traffic characteristics via a centralized platform 

without exposing victim IP addresses for privacy concerns. 

8.2.2 Collaborative DDoS Mitigation  

BGP blackholing [70] is the most common way for collaborative DDoS filtering. Victim 

networks request from upstream/peer networks to drop all traffic destined to them to 

protect their internal infrastructures. Although this protects network links and devices, 

benign traffic is also dropped. In [114], a collaborative schema for DDoS mitigation in 

SDN-domains is proposed. Upon the detection of the attack, specialized reports with the 

detected malicious sources and the victim IPs are generated; these are transferred to 

network domains located in the attack path, that enforce filtering rules based on the 

reputation of the victim domain. We extended [114] in [115], in which signaling, 
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coordination, and orchestration of the collaborative mitigation is based on Blockchain 

technologies; the proposed framework was tailored to federated trusted environments of 

wholesale network providers (Tier 1 providers) [116]. 

8.2.3 Federated Learning for DDoS Attacks 

In [108], a DDoS detection and mitigation framework for Internet of things (IoT) 

environments is proposed. IoT nodes collaborate to train a common ML model via the 

Federated Averaging technique to accurately detect malicious traffic. This is 

subsequently filtered in a distributed fashion at multiple IoT nodes. In [109], a DDoS 

detection schema based on Federated Averaging is presented. It uses flow-based features 

to identify various DDoS attack types; DDoS mitigation was considered out of scope. 

Similarly in [117], a multi-task Federated Learning model is proposed. It concurrently 

performs DDoS detection, VPN/Tor traffic recognition and network application 

identification. This reduces the management overhead and the training times of individual 

ML models while respecting network data privacy.  

8.2.4 Key Contributions 

We present below how our proposed schema compares to currently suggested 

approaches: 

 In related efforts, collaborators exchange either coarse-grained data for DDoS 

detection [110], [112], or predefined static rules [111], [113]; they also focus only 

on attack data [112]–[115]. In contrast, our Federated Learning scheme (i) 

enables for DDoS detection using both benign and attack data without exposing 

private information and (ii) creates ML models with generalization capabilities 

able to identify "unseen" (not trained with) benign and attack packets. 

 Most FL schemes [108], [109], [117] simulate multi-domain data by splitting 

single datasets into multiple parts. Instead, we employ real network traffic 

aggregated by disjoint network domains, i.e. AS's, to perform fully realistic 

experimental evaluation. 

 Typical filtering mechanisms employed in collaborative DDoS mitigation [114], 

[115] have the following drawbacks: they (i) support packet filtering based on 

predefined packet field combinations and (ii) pose limitations on the supported 
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number of rules. In contrast, we consider an XDP-based programmable firewall 

that enables packet filtering based on arbitrary packet field combinations (packet 

signatures) and scales its performance with the number of cores. 

8.3 Design Principles & High Level Overview 

8.3.1 Design Principles 

We present below the core design principles of the proposed architecture: 

Collaborative DDoS Detection via Federated Learning: Network traffic is classified to 

malicious or benign, based on Supervised Learning models trained via the Federated 

Averaging technique [105]. Thus, collaborating domains converge to Machine Learning 

configurations without sharing private data. This enables them to learn from diverse 

benign and attack packets without having direct access to them. 

DDoS Mitigation via cloud-native scalable programmable firewalls based on the eXpress 

Data Path framework: We employ softwarized programmable data planes (XDP) to 

design high-performance Commercial off-the-shelf (COTS) firewalls for SDN 

infrastructures. In contrast to legacy router-based filters, these can be programmed to 

match and block arbitrary packet field combinations (e.g. DNS payloads as shown in 

Table 8.1) while scaling their resources on-demand in a vertical cloud-native fashion. 

Upstream propagation of DDoS filtering requests: Our scheme enables the dissemination 

of filtering rules (packet signatures tailored to the attack traffic) among collaborating 

Autonomous Systems (cAS's). These can be used to effectively block attacks before 

reaching the victim AS, extending the limited filtering capabilities of blackholing or flow-

based protection mechanisms. 

8.3.2 High-level Overview 

A high-level design of the proposed architecture for collaborative DDoS detection and 

mitigation is depicted below in Figure 8.1. 
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Figure 8.1: Collaborative DDoS Detection & Mitigation Architecture 

Malicious actors launch DDoS attacks attempting to overwhelm the network bandwidth 

and/or processing resources of a host IP/subnet located in the victim AS (vAS). Both 

malicious and benign traffic reach vAS via interconnected Autonomous Systems, e.g. 

cAS(1), cAS(2). Monitoring (packet-based) data are exported by network devices (e.g. 

edge routers) and organized in packet signatures; these are in turn used as input to the 

DDoS Detection app. There, pre-trained Multilayer-Perceptrons (MLPs) classify packet 

signatures to malicious or benign (step i). MLPs training process has been conducted via 

Federated Learning (FL) techniques that enable distributed and privacy-preserving 

learning amongst collaborating Autonomous Systems (cAS's). The training process is 

coordinated by the Collaboration Manager (step a) in pre-agreed time-periods.  
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The DDoS Detection app conveys to the DDoS Mitigation app the identified malicious 

signatures and the corresponding victim IP/subnet (step ii). In turn, a Firewall Instance 

(FI) is created (step iii) that uses the identified malicious signatures as filtering rules. 

After FI instantiation, the DDoS mitigation app notifies the edge router to redirect traffic 

destined to the victim to the corresponding FI (step iv). Malicious traffic is dropped while 

benign traffic is bounced back and forwarded to its original destination (step v). 

The DDoS Detection app based on traffic/system metrics e.g. increased link utilization, 

can request help from upstream/peer networks to protect its network/compute resources. 

The Collaboration Manager identifies adjacent cAS's that forward attack traffic [114] and 

populates the identified malicious signatures coupled with the victim IP address. cAS's, 

willing to filter malicious traffic, receive the requested signatures and signal their own 

DDoS Mitigation app (step b) to on-demand mitigate the offending traffic. 

In our approach collaborative DDoS detection is performed in a privacy-preserving 

fashion without exposing collaborators private data. In contrast, collaborative mitigation 

requires vAS to share sensitive data, i.e. the victim IP coupled with additional specific 

attack characteristics (malicious signatures). 

8.4 Collaborative DDos Detection and Mitigation Architecture  

Our framework consists of three distinct applications (apps): (i) DDoS Detection, (ii) 

DDoS Mitigation, and (iii) Collaboration Manager. These are detailed in subsections 

8.4.1, 8.4.2, and 8.4.3 accordingly. 

8.4.1 DDoS Detection via Federated Learning 

The DDoS Detection app retrieves packet-based data from external monitoring 

mechanisms and identifies malicious packet signatures. Signature classification is 

conducted by Multilayer-Perceptrons (MLPs) trained via Federated Learning techniques.  

Monitoring data are collected within time-windows and aggregated based on preselected 

packet fields, forming packet signatures. Packet signatures may be represented by a vector 

X = [x1 x2 … xi], where xi corresponds to packet field value i. Vectors X are used as input 

to Multilayer-Perceptrons (MLPs), that classify them to malicious or benign. Signatures, 

identified as malicious, are organized per destination IP address to generate filtering rules 
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at the DDoS Mitigation app of the vAS (these can also be conveyed on-demand to transit 

cAS's – see subsection 8.4.3 below). 

The accuracy of the MLP model affects significantly the identification of malicious 

packets and the subsequent mitigation (since filtering rules are based on the identified 

malicious signatures). To improve the accuracy of the MLP model without compromising 

privacy, we considered a collaborative learning approach based on Federated Averaging 

[105]. 

Prerequisite for training a Federated Model (FM) is the use of a common MLP model 

coordinated by a neutral third party. We consider that FM may reside in a neutral 

independent coordinator. Such understanding is common in Internet architectures e.g. 

Tier-1 Providers forums [116] and major Internet eXchanges (IXes) [118].  

Initially, packet fields (features) relevant to an attack vector must be selected [119]. To 

reduce training times and the FM complexity, inconsequential features may be 

eliminated. This can be achieved by not considering packet fields whose values are (i) 

identical in attack and benign packets or (ii) protocol specific (e.g. DNS ID, TCP 

sequence number). These types of features (i), (ii) are not able to enhance the 

classification accuracy of Machine Learning (ML) models and can be safely ignored upon 

collaborators agreements. In Section V, we evaluate our approach for DNS Amplification 

attacks. 

Participating domains agree on common MLP hyperparameters (e.g. FM architecture, 

learning rates). The training process starts with an initial FM weight vector (the 

corresponding bias vector has been excluded for simplicity). In each iteration a new set 

of weights wFM is evaluated and distributed amongst the k collaborating AS's9. Each 

collaborator i = 1…k uses wFM as initial weights and subsequently updates its local 

weights wi based on its private training data Ni. These are conveyed to the FM third party 

coordinator that calculates the new weights wFM based on the following equation: 

                                                 

9 In FL, the hyperparameter k may influence the accuracy of the generated model and can be smaller than 

the number of all collaborators. In our experiments, this number was equal to the total number of 

collaborating AS's, as we did not consider a large number of participants. 
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𝑘
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(8. 1) 

A training iteration is completed after wFM calculation with new weights distributed to 

the cAS's. Finally, each cAS adopts the FM update that achieves the highest accuracy on 

its local validation dataset (subset of the total dataset not used for training but for 

hyperparameter selection). In case collaborators share their local accuracies per round, a 

common FM may be universally adopted once the (weighted) average accuracy for all 

participants reaches an acceptable level. 

 

Figure 8.2: Federated Learning architecture for collaborating AS's 

8.4.2 DDoS Mitigation  

The DDoS Mitigation app receives requests for active attacks either from the DDoS 

Detection app (attacks targeting hosts of the victim AS) or the Collaboration Manager 

(attacks targeting other cAS's). Subsequently, this app may raise appropriate mitigation 

countermeasures. 

Typical filtering mechanisms e.g. Access Control Lists (ACLs), OpenFlow (OF) rules 

[9], BGP Flowspec rules [73], are able to match and drop packets based on combinations 

of multiple but predefined packet fields. These rules are stored in network devices with 

stringent memory limitations [120]. Thus, offloading DDoS filtering to an external 
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firewall should (i) support any packet field combination (signature) that can match and 

block malicious DDoS packets, (ii) have no limit on the number of filtering rules, and 

(iii) allow dynamic filtering rules creation, read, update, and deletion (CRUD). 

We implemented the proposed mitigation app based on the eXpress Data Path (XDP) 

framework. XDP memory structures for storing packet signatures are Berkeley Packet 

Filter (BPF) Maps (details about XDP are available in 2.2.3.1); these do not allow ternary 

packet field matching, i.e. the use of wildcards on packet fields. Therefore, for developing 

an XDP firewall program that supports various types of signatures, a BPF MAP per 

signature type would be required. This would (i) degrade the total packet processing 

performance due to multiple memory lookups [96], [119] (proportional to the signature 

types) and (ii) introduce downtime since for each BPF Map addition/removal, the XDP 

program needs to be reloaded.  

The DDoS Mitigation app was designed to conform with the aforementioned XDP 

limitations. As depicted in Figure 8.3, it is based on a user space and a data plane program. 

The former manages signatures installation while the latter performs packet filtering.  

 

Figure 8.3: DDoS Mitigation Application Architecture 

The user space program receives filtering requests from vAS and/or cAS’s e.g. victim 

IP/network, signatures. If there are no signatures, a unique identifier IP ID is created 

(Firewall Instances Catalog). Packet signatures are transformed into XDP programs, i.e. 
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Firewall Instances (FIs), via appropriate Jinja templates [121] (Firewall Instance 

Generation). Each FI parses packet fields and their corresponding values that form the 

requested signatures. Subsequently, it contains if-then-else conditions to match and drop 

malicious packets. Each generated FI is indexed by a unique File Descriptor (FD) and 

can be accessed, updated or deleted dynamically, without affecting the packet processing 

operations of other FIs. After FI instantiation, the user space program signals the edge 

router to redirect the network traffic destined to the victim IP/subnet. 

The data plane program receives the redirected packets, parses their destination IP, and 

performs a lookup on a LPM (Longest Prefix Match) TRIE BPF Map; this matches IP 

addresses/subnets to their corresponding IP ID. Subsequently, the IP ID is used as input 

to a special memory structure BPF PROG ARRAY, that passes the packet to its 

corresponding FI. According to the FIs signatures, malicious packets are blocked while 

benign packets are bounced back to the router to be appropriately forwarded. 

8.4.3 Collaboration Manager 

The Collaboration Manager (CM) is an application that (i) handles filtering requests 

for/from collaborators and (ii) coordinates the Federated Learning training process. 

CM employs the BGP protocol to serialize and convey filtering requests. We needed to 

overcome the limitation of the predefined packet fields imposed by BGP Flowspec. To 

that end, victim's CM BGP Speaker initializes a BGP session with collaborators CM 

advertising the support of the Content-URI address family [122], similar to [114]. This 

allows the advertisement of specialized BGP Update messages that include URIs pointing 

to the requested filtering rules (signatures) organized in JSON representations. A filtering 

rule example may be found below: 

Table 8.1: Signature-based filtering rule (Example) 

Filtering Rule for DNS Amplification attack 

{  

  "ip_dst": "1.2.3.4/32" 

  "protocol": 17  

  "port": 53  

  "application_protocol": "DNS" 

  "payload_fields": 

 { 
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 "dns.qry.type" = 255 

  "dns.qry.name" = 0x0 

 } 

} 

Note that, the use of BGP enables our scheme to leverage on well-established tools such 

as Resource Public Key Infrastructure (RPKI) to check collaborators (peers) eligibility 

on announcing IP prefixes/addresses.  

As mentioned, CM coordinates also the Federated Averaging training process. This is an 

offline procedure between the collaborators and a neutral third party hosting the Federated 

Model. CM retrieves the generated weights from each training round and publishes them 

to the FM via a message broker (e.g. RabbitMQ [123]) . Subsequently, it receives the 

generated weights calculated as the average of collaborators weights. The proposed 

message broker scheme enables for collaborators authentication, inter-collaborators 

private agreements (e.g. sharing accuracy results on their local datasets) and reliable 

delivery of MLP weights.  

Note that typical Federated Learning use cases [105], [108] consider as collaborating 

nodes low throughput devices. By contrast, in our case the total size of MLPs weights 

that are exchanged between cAS's have negligible impact on the high-throughput links 

that interconnect them. 

8.5 Experimental Evaluation 

We implemented all software applications of the proposed architecture and deployed 

them in our laboratory testbed. The DDoS Detection app was based on pytorch and pysyft 

python libraries. The Collaboration Manager was based on Ryu's SDN Controller BGP 

Speaker [124] and RabbitMQ message broker [123]. The DDoS Mitigation app was 

deployed on a physical machine equipped with an Intel i7-2600 CPU and a 10G 

SmartNIC Netronome Agilio CX [27] (XDP-enabled). This was directly connected to a 

Virtual Machine that offers high-speed packet generation using the PF_RING ZC 

framework [35] in a similar fashion to the testbeds employed in previous sections. 

To assess the detection accuracy and mitigation performance of our mechanism, we 

considered DNS Amplification attacks. In subsection 8.5.1below we provide details for 

the employed DNS datasets. In subsection 8.5.2 we compare the classification accuracy 
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of the proposed Federated Model to individual (non-collaborative) approaches. Finally, 

in subsection 8.5.3 we showcase the packet processing performance of our mitigation 

mechanism. 

8.5.1 Datasets Description 

We focused our experiments on a commonly encountered attack vector, DNS 

Amplification attacks. As benign traffic, we used DNS traffic traces from a 10G transit 

link between the WIDE Japanese backbone and DIX-IE Internet Exchange [80]. Benign 

DNS traffic was aggregated per destination AS using publicly available BGP data [125]. 

In turn, AS's were sorted in descending order based on the total received packets; dataset 

B(i) contains benign traffic destined to AS's ranked by incoming traffic, i.e. B(1) 

corresponds to the AS with the highest number of DNS packets.  

As malicious traffic, we used seven publicly available DNS Amplification attacks 

contained in the Booters dataset [2], henceforth referred to as A(i). Attacks in A(1), A(2), 

A(3), A(6) and A(7) generated type ANY DNS responses. By contrast, in A(4) and A(5), 

attackers generated type A DNS responses. Specifically, A(4) contains responses for a 

single domain name that resolved into a very large number of IP addresses. A(5) 

corresponds also to a type A attack, in which attackers could not generate responses with 

heavy payload. Consequently, A(5) did not succeed to generate more than few Mbps 

while all other attacks generated hundreds of Mbps of malicious traffic. 

8.5.2 DDoS Detection Accuracy  

In this subsection, we evaluate the classification accuracy of our Federated Learning 

approach and compare it to individual (non-collaborative) approaches. Specifically, we 

considered seven collaborating AS's, henceforth referred to as cAS(i), where  

i=1…7. Each cAS(i) has access to its own private traffic mix M(i) that contains attack 

dataset A(i) combined with a benign dataset B(i). 

We trained each cAS(i) model individually based on dataset M(i) using a Multilayer 

Perceptron (MLP) of 13 input neurons, 27 (13x2+1) hidden and a single output node for 

classification, as suggested in [61]. MLP weights were updated based on the Adam [92] 
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algorithm. The features employed for the MLP model are based on a subset of the packet 

fields of Table 7.1 according to the methodology presented in subsection 8.4.1: 

Table 8.2: Packet fields (features) for DNS packet classification 

Packet Fields (Features) 

ip.length dns.flags.checkdisable 

udp.length dns.count.answers 

dns.flags.authoritative dns.count.auth_rr 

dns.flags.truncated dns.count.add_rr 

dns.flags.recdesired dns.qry.name 

dns.flags.recavail dns.qry.type 

dns.flags.authenticated 

The Federated Model (FM) was trained using the same MLP architecture with weights 

conveyed from all collaborators, as prescribed by the Federated Averaging technique 

[105]. The hyperparameters for cAS(i) models and FM were tuned based on grid search 

[126], using validation datasets comprising of 30% of datasets M(i).  

We evaluated the trained models using as test datasets A(i) and B(i). Each bar in Figure 

8.4 illustrates the True Positive Rate – TPR, i.e. the percentage of the attack traffic A(i) 

that was classified as malicious by each model. Respectively, each bar in Figure 8.5 

illustrates the True Negative Rate – TΝR, i.e. the percentage of the benign traffic B(i) that 

was classified as benign. Figure 8.4 and Figure 8.5 present the accuracy individually 

achieved by each cAS(i) model based on its private training data M(i) and on "unseen" 

datasets A(j) and B(j) of other domains j (j≠i). We also include the corresponding 

accuracy of the common Federated Model (FM). In Figure 8.6, we depict the TPR and 

TNR achieved by each AS(i) averaged for all datasets, A(1), A(2),…, A(7) and B(1), 

B(2),…, B(7) accordingly. Note that we excluded A(5) from the average TPR calculation, 

since it introduced insignificant malicious traffic (~ 6 Mbps). 

As shown in Figure 8.5, cAS(1), cAS(2) and cAS(4) achieve high TNR for all benign 

datasets; however, they are not able to detect different (not trained with) attack traffic 

patterns, i.e. cAS(1) is not able to detect A(4), while cAS(4) is not able to detect any other 

attack that deviates from A(4). By contrast as depicted in Figure 8.4, cAS(3), cAS(5), 
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cAS(6) and cAS(7) achieve high TPR for all attack datasets, but fail to detect diverse 

benign DNS traffic. 

 

Figure 8.4: True Positive Rate for DNS Amplification attacks (Booters) 

 

Figure 8.5: True Negative Rate for benign DNS packets 

 

Figure 8.6: Average TPR and TNR of Individuals Models and Federated Model  

The FM achieves on average the highest combination of TPR and TNR amongst 

individual cAS's models, as shown in Figure 8.6. Note that FM did not use private data 

of individual collaborators, relying only on their MLP weights. In total, the Federated 
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Learning approach enabled collaborators to identify benign and attack packets that as 

individuals would misclassify them. 

8.5.3 DDoS Mitigation Packet Filtering Performance  

In this subsection, we assess the packet filtering performance of the DDoS Mitigation 

app. Specifically, we evaluate the packet processing performance of our mechanism 

considering its CPU scalability capabilities and the number of supported Firewall 

Instances (FIs) within federated environments. 

We generated synthesized DNS traffic consisting of packets that can be matched and 

dropped by a single signature per FI. This is formed by dns.qry.type and dns.qry.name 

packet fields based on the following condition:  

if (dns.qry.type=255 and dns.qry.name=<Root>) 

then DROP 

This signature can block all the attack traffic contained in datasets A(1), A(2) and A(3). 

More details about our signature reduction technique, that enables us to filter attack 

packets using a subset of the features presented in Table 8.2, are available in 6.4.2 and 

7.4.4. 

We launched multiple concurrent attacks ranging from 10 to 1000 that target different 

collaborators with accumulated throughput of 10 Million packets per second (Mpps). To 

evaluate the packet processing performance, we counted the number of packets that were 

processed by the XDP and subsequently filtered out. This enables us to assess our firewall 

mechanism as a service offered to collaborating AS's. In Figure 8.7, we assess firewall 

scalability in terms of the deployed FIs implemented with 1, 2 or 3 CPU cores. 

Τhe packet processing performance of our mechanism scales almost linearly with the 

number of cores. Such behavior is also validated in [12], [77]. As expected, increasing 

the number of collaborators, hence the number of deployed FIs, decreases the overall 

packet processing rate of our firewall. Specifically, this is reduced linearly between 10 

and 200 FIs and from that point it remains the same despite the increase of FIs. The 

enhanced performance for the small number of FIs is attributed to level one (L1) 

instruction cache hits while after a specific number of FIs the L1 instruction cache misses 
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do not affect the overall performance. These conclusions were validated using the perf 

tool [127] that provides CPU performance statistics for user-defined time intervals. 

 

Figure 8.7: DDoS Mitigation Scalability 

In total, our approach can handle successfully up to 1000 concurrent attacks targeting an 

equal number of collaborators. Note that these correspond to the number of concurrent 

blackholed IP prefixes announced in a large European IX [128]. Thus, the proposed 

firewall can be considered as a scalable filtering mechanism tailored to large-scale 

federated SDN infrastructures.  

8.6 Summary & Concluding Remarks 

In this section we proposed a DDoS protection framework for collaborating network 

domains, i.e. Autonomous Systems (AS's). Our approach leverages on the Federated 

Learning paradigm for collaborative and privacy-aware DDoS detection in SDN 

infrastructures. Attack mitigation is based on scalable and programmable firewalls that 

can be instantiated on-demand by the victim. Specifically, our schema analyzes, within 

time windows, packet-based data forming signatures. These are used as input to 

supervised Machine Learning models, trained cooperatively via the Federated Averaging 

technique. Suspicious traffic is redirected to scalable programmable (XDP-based) 

firewalls to be filtered out. During massive attacks, our schema enables victim AS's to 

raise filtering requests on collaborating AS's to block them, presumably early in attack 

paths. 

Our framework was evaluated both in terms of detection accuracy and mitigation 

performance for typical DNS Amplification DDoS attacks. The conducted experiments 
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considered real benign and malicious network traffic. The Federated Learning approach 

enabled collaborators to accurately classify benign and attack packets improving their 

individual accuracy. Based on the achieved packet processing performance, the proposed 

programmable firewall provides a scalable filtering mechanism for evolving federated 

SDN infrastructures. 
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9 Conclusions & Future Directions 

9.1 Summary & Concluding Remarks 

In this dissertation, we delved into the problem of detecting and mitigating Distributed 

Denial-of-Service (DDoS) attacks, an everyday and of high impact problem for network 

operators and end-users. Specifically, we designed/implemented methodologies, 

algorithms, and tools for rapid detection and efficient mitigation. In a nutshell, our 

approach relied on emerging network technologies, i.e. high-performance programmable 

data planes (P4, XDP), to efficiently collect and filter DDoS attacks using intelligent data-

driven algorithms to detect and classify them.  

Firstly, in Section 5, we introduced a P4-based DDoS detection schema offloaded entirely 

in the data plane. In contrast to the state-of-the-art approaches that employ external 

network detection mechanisms (in the control plane), our approach detects network 

attacks within few seconds and pinpoints the under-attack subnetwork/IP. The success of 

our approach relies on the generation of monitoring data tailored to DDoS attacks enabled 

by the data plane programmability paradigm. 

In Section 6, we made a step further towards DDoS protection, focusing on traffic 

classification mechanisms to segregate malicious from benign traffic. We considered 

SYN Flood attacks, as an indicative use case of protocol attacks, and proposed a 

signature-based classification and mitigation mechanism to counter them. Our approach 

employs packet signatures as input to Supervised Learning algorithms to classify network 

traffic. Subsequently, it generates an optimal set of filtering rules to use as 

countermeasure against SYN Flood attacks; these are deployed on programmable 

firewalls (XDP-enabled) for high-performance yet flexible packet dropping. Our 

mechanism illustrated high accuracy on real network traffic data and outperformed the 

state-of-the-art SYN Flood mitigation mechanism (SYN Cookies). 

Inspired by the approach presented in section 6 and the challenges we faced, in Section 

7, we extended our signature-based classification and mitigation mechanism to 

volumetric DDoS attacks. We relied on the widely observed fact that these attacks may 

be characterized by a modest number of salient packet characteristics. To that end, we 

employed a generic methodology for packet feature selection (signatures) and 
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subsequently used the most important packet fields to classify volumetric DDoS attacks. 

In a similar fashion to the effort described in section 6, the proposed mechanism optimizes 

the number of signatures required to block the attack traffic and deploys them on XDP-

based programmable firewalls. Our approach was evaluated on common volumetric 

attacks, i.e. DNS Amplification. In our experimental evaluation, our approach identified 

the most important packet characteristics for traffic classification and based on them 

managed to accurately detect real benign and malicious DNS traffic. The proposed 

signature-based mechanism outperformed the state-of-the-art flow-based mechanisms in 

terms of traffic identification, filtering rules cardinality, and mitigation throughput. 

Finally, in Section 8 we extended the signature-based DDoS protection approach 

(presented in sections 6, 7) to collaborative multi-domain network environments. The 

proposed framework employs Federated Learning techniques for privacy-aware 

cooperative DDoS detection and incorporates a scalable yet programmable DDoS 

mitigation as a service mechanism tailored to collaborative network environments. Our 

approach was evaluated on multi-domain production network data illustrating high DDoS 

detection accuracy and efficient packet filtering. 

9.2 Future Directions 

DDoS attacks are continuously evolving to overcome the intelligent 

methods/algorithms/techniques employed by DDoS protection frameworks. Thus, more 

sophisticated methods are expected to be considered by the attackers in the future. 

Moreover, ever-growing attack traffic rates will be observed as the number of devices 

connected to the Internet is constantly increasing. To that end, DDoS protection 

frameworks need to consider the evolution of network attacks both in terms of scale and 

sophistication and be able to provide accurate and timely protection. 

As illustrated in this dissertation, offloading DDoS protection tasks in the data plane is 

possible, featuring rapid identification and accurate mitigation of network attacks. 

Although appealing as a concept, packet processing limitations were faced in P4-enabled 

NICs. Similar hardware resource constraints are also observed in physical P4-enabled 

network switches [129]. Therefore, mechanisms that combine programmable (i.e. P4-

enabled) hardware switches with COTS programmable (e.g. XDP-enabled) servers for 

DDoS detection and mitigation tasks would be of paramount interest. Especially, for 
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cloud-based scrubbing providers that need to offer flexible and scalable services without 

compromising their ability to re-program on-demand their software/hardware appliances. 

With regards to network traffic classification, we showcased the existence of specific 

packet signatures in protocol and volumetric DDoS attacks. An interesting future 

direction would be the investigation of signature-based detection and mitigation 

approaches for application-layer attacks. The methods employed in this dissertation could 

be extended to incorporate the temporal characteristics of application-layer attacks. 

Indicatively, Supervised and/or Unsupervised Learning algorithms, e.g. Long Short-term 

Memory (LSTM) Neural Networks [130], Hierarchical Temporal Memory (HTM) 

systems [131] could be explored. Additionally, Reinforcement Learning techniques [132] 

could be also considered in cases where malicious traffic presents similarities with the 

benign traffic. An interesting aspect of Machine Learning techniques that requires further 

investigation for broader use in production networks is explainability/interpretability.  

Finally, as mentioned in section 8, the collaboration of disjoint network domains, i.e. 

AS’s, is crucial for protecting networks against DDoS attacks. Federated Learning 

allowed collaborating parties to exchange network metadata without revealing their actual 

values. However, the cooperation of multiple domains arises some interesting challenges 

within Federated Learning setups. The independent selection of diverse (potentially the 

most important) features by each participant (concept drift) should be incorporated to 

Federated models, as it depicts the knowledge of each participant for a specific task, e.g. 

DDoS classification. Additionally, multi-task learning architectures [117] seem 

promising as they enable to concurrently perform more than one tasks, e.g. to identify 

simultaneously more than one attack vector. This could reduce training times and the 

complexity of the Federated models. Finally, trust-based schemes [133] could be further 

investigated to improve performance, robustness, and security of Federated Learning 

schemes. 
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10 Extended Abstract in Greek – Εκτεταμένη Περίληψη στα 

Ελληνικά 

Οι σύγχρονες κοινωνίες ολοένα και περισσότερο βασίζονται σε υπηρεσίες που 

προσφέρονται μέσω του Διαδικτύου (Internet). Ποικίλες δραστηριότητες του ανθρώπου 

εξαρτώνται από αυτές τις υπηρεσίες και είτε αφορούν απλές καθημερινές ανάγκες του 

όπως η διευκόλυνση της επικοινωνίας (π.χ. μέσα από τη χρήση των μέσων κοινωνικής 

δικτύωσης) είτε επεκτείνεται ακόμα και σε περιπτώσεις που αφορούν την ίδια την 

ανθρώπινη ζωή, π.χ. απομακρυσμένη χειρουργική. Συνεπώς, μία από τις αδιαμφισβήτητα 

βασικότερες απαιτήσεις που εγείρεται, είναι η εξασφάλιση της σταθερότητας και της 

ορθής λειτουργίας τόσο των υποδομών όσο και των υπηρεσιών που συνιστούν τον 

ακρογωνιαίο λίθο του Διαδικτύου. 

Ένα από τα πιο συνηθισμένα και κυριότερα προβλήματα που αντιμετωπίζουν οι 

διαχειριστές και επηρεάζει σημαντικά τη λειτουργία των δικτύων είναι οι κατανεμημένες 

επιθέσεις άρνησης παροχής υπηρεσιών (Distributed Denial-of-Service attacks - DDoS). 

Αυτές έχουν ως κύριο στόχο τη διακοπή της ορθής λειτουργίας των διαδικτυακών 

υπηρεσιών (Internet services), με αποτέλεσμα να μην καθίσταται εφικτή η εξυπηρέτηση 

των καλόβουλων χρηστών. Οι επιθέσεις αυτές οφείλονται σε ποικίλα και διαφορετικού 

τύπου κίνητρα και χρησιμοποιούν ένα μεγάλο εύρος μεθόδων/τεχνικών για να πετύχουν 

τον σκοπό τους. Το πρόβλημα των επιθέσεων έχει πάρει σημαντικές διαστάσεις, καθώς 

υπάρχουν πλατφόρμες (Booters) που έναντι μικρού χρηματικού αντιτίμου δίνουν τη 

δυνατότητα εξαπόλυσης γιγαντιαίων επιθέσεων. Η κλίμακα τους είναι ικανή να θέσει 

εκτός λειτουργίας από μικρά επιχειρησιακά δίκτυα και κυβερνητικές υποδομές μέχρι και 

τεχνολογικούς κολοσσούς.  

Η συνεχής ύπαρξη αλλά και η εξέλιξη αυτών των επιθέσεων έχουν οδηγήσει στην 

ανάπτυξη τόσο στρατηγικών όσο και μηχανισμών για την καταστολή τους. Στόχος αυτών 

των μηχανισμών προστασίας είναι η άμεση και με ακρίβεια ανίχνευση των επιθέσεων 

και εν συνεχεία η έγκαιρη αντιμετώπιση τους. Η συνεχής βελτίωση των μηχανισμών 

προστασίας αποτελεί βασική ανάγκη για την προσαρμογή σε νέους τύπους επιθέσεων 

αλλά και στην ολοένα αυξανόμενη κλίμακα τους. Βασικές απαιτήσεις των μηχανισμών 

αυτών είναι η ευελιξία, η απόδοση, η ακρίβεια και η κλιμακωσιμότητα. Βάσει αυτών των 

προδιαγραφών οι μηχανισμοί προστασίας ενσωματώνουν τόσο καινοτόμες τεχνολογίες 
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όσο και ευφυέστερες μεθοδολογίες για την αποτελεσματικότερη ανίχνευση και την 

αποδοτικότερη αντιμετώπιση των επιθέσεων. 

Η άνθιση των δικτύων οριζόμενων από λογισμικό (Software-defined Networks) έθεσε 

νέες βάσεις στις αρχιτεκτονικές των δικτύων και κατ’ επέκταση και στους μηχανισμούς 

προστασίας από επιθέσεις. Αρχικά, με το πρωτόκολλο OpenFlow (ΟF) δόθηκε η 

δυνατότητα για ενιαία κεντρικοποιημένη και ευέλικτη διαχείριση των δικτυακών 

συσκευών. Ειδικότερα, η δυνατότητα προγραμματισμού των δικτυακών συσκευών (στο 

επίπεδο ελέγχου) επέτρεπε την εγκατάσταση κανόνων προώθησης, παρακολούθησης, 

αλλά και αποκοπής σε συμβατικούς μεταγωγείς, δημιουργώντας πρωτότυπες 

αρχιτεκτονικές προστασίας από επιθέσεις.  

Καινοτόμες εξελίξεις στην ανάπτυξη του υλικού (hardware) αλλά και του λογισμικού 

(software) των δικτυακών συσκευών, έφεραν στο προσκήνιο την τεχνολογία των 

προγραμματιζόμενων συσκευών στο επίπεδο δεδομένων (programmable data planes). 

Mέσω αυτής της τεχνολογίας δίνεται η δυνατότητα για προγραμματισμό του επιπέδου 

δεδομένων δικτυακών συσκευών χωρίς να επηρεάζεται σημαντικά (ή και καθόλου) η 

απόδοση τους. Θα μπορούσαμε να διακρίνουμε δύο βασικούς πυλώνες των 

programmable data planes στους οποίους δώσαμε έμφαση στην παρούσα διδακτορική 

διατριβή:  

 τη γλώσσα P4, που προτάθηκε για τον προγραμματισμό μεταγωγεών και 

δικτυακών καρτών με ενιαίο τρόπο και 

 το eXpress Data Path (XDP), μια προσέγγιση που ξεκίνησε από μεγάλους 

τεχνολογικούς κολοσσούς με στόχο την υλοποίηση ενός framework που επιτρέπει 

την ενιαία περιγραφή υψηλής απόδοσης εφαρμογών σε γενικού τύπου εξοπλισμό. 

Οι παραπάνω καινοτόμες τεχνολογίες δίνουν τη δυνατότητα για συλλογή γενικού τύπου 

μετρικών, αλλά και ειδικών χαρακτηριστικών της δικτυακής κίνησης. Παράλληλα, 

προσφέρονται για σχεδιασμό και υλοποίηση υψηλών προδιαγραφών αποδοτικών 

μηχανισμών απόρριψης επιθέσεων. 

Η έγκαιρη και με ακρίβεια ανίχνευση των επιθέσεων απαιτεί την ανάλυση της δικτυακής 

κίνησης σε πραγματικό χρόνο με τη χρήση κατάλληλων μεθοδολογιών/αλγορίθμων 

υπόδειξης ανωμαλιών. Απλές μέθοδοι στατιστικής χρησιμοποιούνταν κατά κόρον για 

τέτοιου τύπου αναλύσεις, ωστόσο με την ραγδαία αύξηση του όγκου των δεδομένων (big 
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data) αλλά και την αύξηση της πολυπλοκότητας των μοτίβων της δικτυακής κίνησης 

(λόγω της εξελικτικής τάσης του Διαδικτύου), οι μέθοδοι απλής στατιστικής δεν 

απέδιδαν τόσο ικανοποιητικά. Μεθοδολογίες εφαρμοσμένης στατιστικής και 

συγκεκριμένα αλγόριθμοι Μηχανικής Μάθησης έχουν πρωτοστατήσει το ενδιαφέρον για 

τις αποδόσεις τους σε πλείστους τομείς, π.χ. αναγνώριση εικόνων, προβλέψεις τιμών. Η 

ευρεία χρήση τους σε συνδυασμό με τις υψηλές ακρίβειες που πετυχαίνουν, την θέτουν 

σαν μια πολλά υποσχόμενη μεθοδολογία για ανίχνευση επιθέσεων και κατηγοριοποίηση 

της δικτυακής κίνησης. 

Στόχος της παρούσας διατριβής είναι η ανάπτυξη ενός ολοκληρωμένου μηχανισμού 

ανίχνευσης και αντιμετώπισης επιθέσεων χρησιμοποιώντας τις δυνατότητες των 

σύγχρονων προγραμματιζόμενων δικτύων σε συνδυασμό με ευφυείς τεχνικές ανάλυσης 

δεδομένων. Στα προβλήματα που συναντώνται στην ανίχνευση και αντιμετώπιση 

επιθέσεων ενσωματώνονται η αποδοτική εξαγωγή δεδομένων και η ανάλυση τους, η 

ανίχνευση ανωμαλιών (τουτέστιν η ύπαρξη επίθεσης, η αναγνώριση του τύπου και του 

θύματος της επίθεσης), η κατηγοριοποίηση της δικτυακής κίνησης σε καλόβουλη και 

κακόβουλη και τέλος η αντιμετώπιση της επίθεσης μέσα από κατασκευή και 

εγκατάσταση κατάλληλων κανόνων αποκοπής. 

Με γνώμονα την κατασκευή ενός ολοκληρωμένου μηχανισμού προστασίας από 

επιθέσεις DDoS, η συνεισφορά της παρούσας διατριβής οργανώνεται στα κεφάλαια 5, 

6, 7 και 8, όπου συνοπτικά περιγράφονται τα κάτωθι: 

 Στο κεφάλαιο 5, προτείνουμε ένα μηχανισμό ανίχνευσης επιθέσεων υλοποιημένο 

στο επίπεδο δεδομένων με τη χρήση της γλώσσας P4. Ο μηχανισμός αυτός 

υλοποιείται στα άκρα του δικτύου (edge devices) και αναγνωρίζει άμεσα την 

ύπαρξη, τους τύπους και τα θύματα επιθέσεων DDoS. Η αξιολόγηση του 

μηχανισμού βασίζεται σε πραγματικά δεδομένα με γνώμονα την ακρίβεια και την 

επίδοση του. 

 Στο κεφάλαιο 6, προσπαθούμε βάσει των γενικών συμπερασμάτων που 

λαμβάνουμε από τον μηχανισμό του προηγούμενου κεφαλαίου να διακρίνουμε 

πιο συγκεκριμένα χαρακτηριστικά της κακόβουλης κίνησης. Χρησιμοποιώντας 

τις επιθέσεις πλημμύρας SYN Flood ως μία ενδεικτική επίθεση protocol-based 

κατασκευάζουμε έναν μηχανισμό κατηγοριοποίησης και αποκοπής της δικτυακής 

κίνησης βασισμένο σε ιδιαίτερα χαρακτηριστικά των πακέτων (packet 
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signatures). Συγκρίνουμε την προτεινόμενη λύση με τον ευρέως 

χρησιμοποιούμενο μηχανισμό για SYN Flood επιθέσεις, SYN Cookies. 

 Στο κεφάλαιο 7, επεκτείνουμε την λογική της κατηγοριοποίησης και 

αντιμετώπισης επιθέσεων βάσει χαρακτηριστικών των πακέτων σε μια μεγάλη 

οικογένεια επιθέσεων που προκαλούν μεγάλο όγκο κίνησης (volumetric). 

Προτείνουμε μια μεθοδολογία επιλογής χαρακτηριστικών και εφαρμόζουμε τον 

μηχανισμό μας στον πιο συνηθισμένο τύπο τέτοιων επιθέσεων, τις επιθέσεις DNS 

Amplification. Για την αξιολόγηση της μεθοδολογίας μας, συγκρίνουμε τον 

προτεινόμενο τρόπο προστασίας με την κατά κόρον χρησιμοποιούμενη τεχνική 

που βασίζεται σε δικτυακές ροές/ διεύθυνση πηγής IP. 

 Τέλος στο κεφάλαιο 8, επεκτείνουμε την κατηγοριοποίηση και αποκοπή 

επιθέσεων βάσει χαρακτηριστικών των πακέτων σε συνεργατικά περιβάλλοντα. 

Ο μηχανισμός που προτείνεται βασίζεται σε συνεργασίες αυτόνομων δικτυακών 

συστημάτων (Autonomous Systems) και κατηγοριοποιεί τη δικτυακή κίνηση, 

χωρίς όμως να χρησιμοποιεί τα προσωπικά δεδομένα των συνεργαζόμενων. 

Παράλληλα, δίνει τη δυνατότητα για αποδοτική και κλιμακώσιμη αποκοπή 

επιθέσεων DDoS κατ’ απαίτηση των συνεργαζόμενων. 

Στη συνέχεια του συγκεκριμένου κεφαλαίου θα αναλυθεί με μεγαλύτερη λεπτομέρεια η 

συνεισφορά της παρούσας διατριβής περιγράφοντας εν συντομία τις μεθοδολογίες που 

ακολουθήθηκαν στα κεφάλαια 5, 6, 7 και 8.  

Στο κεφάλαιο 5 παρουσιάζεται ένας μηχανισμός ανίχνευσης επιθέσεων στο επίπεδο 

δεδομένων βασισμένος στη γλώσσα P4. Οι συμβατικοί (legacy) μηχανισμοί ανίχνευσης 

βασίζονται σε πρωτόκολλα όπως το NetFlow, το sFlow ή ακόμα και το OpenFlow, μέσω 

των οποίων εξάγονται πληροφορίες σχετικές με την διερχόμενη κίνηση σε ένα δίκτυο. Οι 

μηχανισμοί ανίχνευσης συλλέγουν δεδομένα από δικτυακές συσκευές, τα αναλύουν και 

καταλήγουν σε συμπεράσματα σχετικά με την ύπαρξη επιθέσεων DDoS. Το βασικό 

μειονέκτημα τους είναι: (i) οι υψηλές απαιτήσεις σε επεξεργαστική ισχύ για την ανάλυση 

μεγάλου όγκου δεδομένων, (ii) ο υπολογιστικός φόρτος που υπεισέρχεται στην 

επικοινωνία μεταξύ των δικτυακών συσκευών και των μηχανισμών συλλογής δεδομένων 

(ιδιαίτερα κατά τη διάρκεια μιας επίθεσης) και (iii) οι περιορισμοί στους διαθέσιμους 

τύπους δεδομένων που παρέχονται από τον εκάστοτε κατασκευαστή/λειτουργικό. Όλα 
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αυτά αθροιστικά οδηγούν σε καθυστέρηση της ανίχνευσης των επιθέσεων, γεγονός που 

τελικά καθυστερεί και την τελική αντιμετώπιση τους. 

Αντίθετα με τις υπάρχουσες προσεγγίσεις, εμείς σχεδιάσαμε έναν μηχανισμό ανίχνευσης 

επιθέσεων στο επίπεδο δεδομένων. Αυτός επιτρέπει την έγκαιρη ανίχνευση επιθέσεων 

μέσα σε λίγα δευτερόλεπτα, τον εντοπισμό του θύματος της επίθεσης και δίνει τη 

δυνατότητα άμεσης ενημέρωσης για εκκίνηση διαδικασιών αντιμετώπισης. Το βασικό 

πλεονέκτημα που δίνεται από τη γλώσσα P4, είναι η δυνατότητα προγραμματισμού των 

δικτυακών συσκευών ώστε να επεξεργάζονται και να συλλέγουν συγκεκριμένες μετρικές 

ενδιαφέροντος, που εν προκειμένω σχετίζονται με τον εντοπισμό επιθέσεων. 

Ειδικότερα, καθώς διέρχεται δικτυακή κίνηση σε συσκευές (π.χ. μεταγωγείς) που 

υποστηρίζουν την γλώσσα P4, αναλύονται συγκεκριμένα χαρακτηριστικά της. 

Επιλέχθηκαν τρία βασικά χαρακτηριστικά τα οποία υποδεικνύουν την ύπαρξη επιθέσεων 

και μπορούν να μας συγκεκριμενοποιήσουν το εκάστοτέ θύμα της. Αυτά τα 

χαρακτηριστικά αξιολογούνται μέσα σε χρονικά παράθυρα, όπου αποτελούν και το 

διάστημα όπου αναμένεται να εντοπιστεί η επίθεση. Οι μετρικές ενδιαφέροντος που 

εξετάζουμε είναι: 

 Η συνολική αύξηση των δικτυακών ροών, υπολογίζοντας τον τρέχοντα αριθμό 

τους και συγκρίνοντας τον με τον εκθετικά κινούμενο μέσο όρο του 

προηγούμενου χρονικού παραθύρου επαυξημένο κατά k φορές της αντίστοιχης 

απόκλισης. 

 Το πλήθος των ροών ανά υποδίκτυο/διεύθυνση IP ενδιαφέροντος συγκριτικά με 

το συνολικό πλήθος ροών. Η αύξηση αυτής της τιμής αυτής μας υποδεικνύει 

ανωμαλία όσον αφορά το πλήθος ροών ανά υποδίκτυο/διεύθυνση IP. 

 Τη συμμετρία κίνησης ανά υποδίκτυο/διεύθυνση IP και το πόσο αποκλίνει από 

την «αναμενόμενη» της συμπεριφορά. 

Αν και οι τρείς μετρικές ενδιαφέροντος ξεπεράσουν όρια που τίθενται από το διαχειριστή, 

τότε παράγονται κατάλληλα μηνύματα από το επίπεδο δεδομένων που υποδεικνύουν την 

ύπαρξη επίθεσης. 

Η προτεινόμενη λύση υλοποιήθηκε και δοκιμάστηκε σε πραγματικές κάρτες δικτύου 

Netronome με διεπαφές των 10Gbit. Επίσης, χρησιμοποιήθηκαν κάρτες δικτύου Intel για 

παραγωγή υψηλού ρυθμού κίνησης. Για την αξιολόγηση του μηχανισμού 
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χρησιμοποιήθηκαν πραγματικά δεδομένα επιθέσεων καθώς και καλόβουλη κίνηση από 

ένα Internet Exchange στην Ιαπωνία. Στόχος ήταν να εξετάσουμε την ακρίβεια αλλά και 

την επεξεργαστική απόδοση του μηχανισμού. Ο προτεινόμενος μηχανισμός πέτυχε 

υψηλές ακρίβειες ανίχνευσης της τάξης του 95% για επιθέσεις διαφορετικής κλίμακας. 

Παράλληλα, η επεξεργαστική του δυνατότητα ήταν επαρκής για δικτυακή κίνηση 

υψηλών ταχυτήτων (2 εκατομμύρια πακέτα το δευτερόλεπτο). Αθροιστικά αυτές οι δύο 

πτυχές καθιστούν την προσέγγιση μας κατάλληλη για ανίχνευση επιθέσεων σε σύγχρονα 

δικτυακά περιβάλλοντα. 

Συνολικά στο κεφάλαιο 5, κατασκευάσαμε ένα μηχανισμό ανίχνευσης επιθέσεων στο 

επίπεδο δεδομένων με χρήση της γλώσσας P4. Ο μηχανισμός μας χαρακτηρίζεται από 

έγκαιρους χρόνους ανίχνευσης δίνοντας τη δυνατότητα για άμεση αντιμετώπιση των 

επιθέσεων DDoS. Παράλληλα, συνοδεύεται από υψηλές ακρίβειες με μικρό αριθμό από 

ψευδοθετικά ποσοστά (False Positive Rates), ενώ βάσει της απόδοσης του είναι 

κατάλληλος για σύγχρονα δικτυακά περιβάλλοντα. Όσων αφορά την ανίχνευση 

επιθέσεων DDoS, ο μηχανισμός που σχεδιάσαμε αποτελεί ένα πρώτο βήμα για να 

εντοπίσουμε την ύπαρξη επίθεσης, τον τύπο της καθώς και το θύμα που αυτή στοχεύει. 

Ωστόσο για να καταφέρουμε να αντιμετωπίσουμε τις επιθέσεις καθίσταται αναγκαίο να 

εισχωρήσουμε σε πιο λεπτομερή ανάλυση της δικτυακής κίνησης, διακρίνοντας την 

καλόβουλη από την κακόβουλη και στη συνέχεια να αναπτύξουμε τα κατάλληλα φίλτρα 

για την αποκοπή της επίθεσης. 

Για την κατηγοριοποίηση της δικτυακής κίνησης αλλά και την αποκοπή του κακόβουλου 

μέρους της καλούμαστε να εισχωρήσουμε σε πιο λεπτομερή ανάλυση των 

χαρακτηριστικών της κίνησης σε σύγκριση με τις γενικές μετρικές που χρησιμοποιήσαμε 

στο κεφάλαιο 5. Στο κεφάλαιο 6, επιλέξαμε να ασχοληθούμε με μια από τις 

κλασικότερες επιθέσεις DDoS, την SYN Flood, που αποτελεί σημαντικό πρόβλημα για 

τις σύγχρονες δικτυακές υποδομές. Στην επίθεση SYN Flood οι επιτιθέμενοι στέλνουν 

μαζικά πακέτα TCP SYN σε κόμβους θύματα κατασπαταλώντας τόσο τους πόρους των 

ίδιων αλλά και ενδιάμεσων δικτυακών συσκευών, π.χ. δρομολογητές (routers) ή τείχη 

προστασίας (firewalls). Η κύρια προσέγγιση ανίχνευσης των επιθέσεων αυτών βασίζεται 

στη χρήση δικτυακών ροών (network flows), ωστόσο λόγω της τεχνικής απόκρυψης της 

διεύθυνσης πηγής (source IP spoofing), η ακριβής σκιαγράφηση των επιτιθέμενων 

κρίνεται εξαιρετικά δύσκολη. Πέραν της ανίχνευσης, το βασικό πρόβλημα έγκειται στην 
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αντιμετώπιση της επίθεσης, καθώς η αποκοπή των επιτιθέμενων βάσει της source IP δεν 

είναι εφικτή λόγω IP spoofing ή λόγω γιγαντιαίων λιστών από διευθύνσεις IP. Ο κύριος 

μηχανισμός που χρησιμοποιείται για την αντιμετώπιση τους βασίζεται στα SYN Cookies, 

μία τεχνική που κατασκευάζει κατάλληλα διαμορφωμένα μηνύματα SYN ACK που 

έχουν ως σκοπό να επιβεβαιώσουν την source IP του αρχικού πακέτου SYN. Παρότι ο 

μηχανισμός αυτός είναι αποδοτικός και προστατεύει τα θύματα από την κακόβουλη 

κίνηση, απαιτεί σημαντικό πλήθος πόρων για την κατασκευή των μηνυμάτων SYN-ACK 

ενώ παράλληλα δημιουργεί αντίρροπη κίνηση ίση με την επίθεση. Αυτό αν 

αναλογιστούμε μεγάλες επιθέσεις μπορεί να δημιουργήσει περαιτέρω συμφόρηση αντί 

να εξομαλύνει το πρόβλημα. 

Παρατηρήσαμε ότι οι επιθέσεις αυτές εμφανίζουν συγκεκριμένα μοτίβα/χαρακτηριστικά 

στα πακέτα, δηλαδή είδαμε τη χρήση συγκεκριμένων τιμών σε διάφορα πεδία των 

πακέτων τα οποία ορίζονται ως signatures. Αυτή η συμπεριφορά μπορεί να οφείλεται είτε 

σε χρήση στατικών τιμών σε υλοποιήσεις κακόβουλων (hackers) είτε σε 

προκαθορισμένες τιμές προγραμμάτων αποστολής κίνησης. Επομένως, σκεφτήκαμε να 

κατασκευάσουμε έναν μηχανισμό που κατηγοριοποιεί την κίνηση TCP και την αποκόπτει 

χρησιμοποιώντας αυτά τα ιδιαίτερα χαρακτηριστικά τους. Ο μηχανισμός χρησιμοποιεί 

Επιβλεπόμενη Μάθηση (Supervised Learning) για να κατηγοριοποιήσει την κίνηση σε 

καλόβουλη και κακόβουλη. Στη συνέχεια κατασκευάζει κατάλληλους κανόνες αποκοπής 

που περιγράφουν συνεκτικά την κακόβουλη κίνηση. Τέλος, οι κανόνες εγκαθίστανται σε 

υψηλής απόδοσης προγραμματιζόμενα τείχη προστασίας που βασίζονται στο framework 

XDP. Ένα από τα πλεονεκτήματα που μας δίνει η δυνατότητα προγραμματισμού στο 

επίπεδο δεδομένων είναι η αξιοποίηση του μηχανισμού SYN Cookies ως εναλλακτική 

λύση για περιπτώσεις κακόβουλων signatures που δεν μπορούν να εντοπιστούν. 

Για να εξετάσουμε τις δυνατότητες της προτεινόμενης λύσης κατασκευάσαμε ένα testbed 

υψηλών ταχυτήτων που απαρτίζεται από προγραμματιζόμενες κάρτες δικτύου (XDP) 

των 10Gbit καθώς και από κάρτες Intel με δυνατότητα αποστολής πακέτων σε υψηλούς 

ρυθμούς. Τα δεδομένα πειραματισμού μας βασίστηκαν σε πέντε πραγματικές επιθέσεις 

που καταγράψαμε εντός του δικτύου παραγωγής του Ε.Μ.Π., τις οποίες τις αναμείξαμε 

με καλόβουλη κίνηση από το δίκτυο WIDE της Ιαπωνίας. Στόχος μας ήταν να 

εξετάσουμε την ακρίβεια κατηγοριοποίησης της κίνησης, τις δυνατότητες μείωσης των 
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signatures καθώς και την απόδοση του μηχανισμού στην αποκοπή επιθέσεων σε 

σύγκριση με τον μηχανισμό των SYN Cookies. 

Ο προτεινόμενος μηχανισμός κατάφερε να εντοπίσει με μεγάλη ακρίβεια τόσο τις 

επιθέσεις όσο και την καλόβουλη κίνηση. Παράλληλα, κατάφερε να μειώσει σε 

σημαντικό βαθμό το πλήθος των κανόνων που απαιτούνται για την αποκοπή των 

επιθέσεων. Το μικρό αυτό πλήθος μας επέτρεψε να αυξήσουμε κατά δύο φορές την 

επεξεργαστική δυνατότητα του προγραμματιζόμενου μηχανισμού αντιμετώπισης σε 

σύγκριση με τη προσέγγιση SYN Cookies. 

Με βάση τα συμπεράσματα αυτά αναρωτηθήκαμε αν η τεχνική που βασίζεται σε 

signatures μπορεί να γενικευτεί και να χρησιμοποιηθεί και σε άλλου τύπου επιθέσεις 

όπως οι volumetric. Επίσης, κρίθηκε αναγκαία η σκιαγράφηση ενός μεθοδικού τρόπου 

επιλογής μόνο των σημαντικών χαρακτηριστικών της κίνησης για την κατηγοριοποίηση 

της. Τέλος, ήταν επιθυμητή η σύγκριση της προτεινόμενης προσέγγισης με τους de facto 

μηχανισμούς ανίχνευσης και αντιμετώπισης επιθέσεων που αναγράφονται στην 

βιβλιογραφία (αλλά και που χρησιμοποιούνται σε πραγματικά περιβάλλοντα), οι οποίοι 

βασίζονται σε δικτυακές ροές (διεύθυνση πηγής). 

Βάσει των προκλήσεων που αναφέρθηκαν, στο κεφάλαιο 7 επεκτείναμε τη δουλειά μας 

με τα signatures και σε ένα άλλο μεγάλο σύνολο επιθέσεων, τις volumetric επιθέσεις. Οι 

επιθέσεις αυτές βασίζονται στην ακόλουθη τεχνική: κακόβουλοι (hackers) στέλνουν 

κατάλληλα κατασκευασμένα μηνύματα σε κόμβους (reflectors) που φιλοξενούν 

συγκεκριμένους τύπους υπηρεσιών, π.χ. LDAP, DNS, MEMCACHED, με αποτέλεσμα 

αυτοί με τη σειρά τους να βομβαρδίζουν το επιλεχθέν θύμα με μεγάλο πλήθος και όγκο 

πακέτων. Οι κλασικοί μηχανισμοί προστασίας απέναντι σε αυτές τις επιθέσεις βασίζονται 

στην κατηγοριοποίηση δικτυακών ροών σε κακόβουλες ή καλόβουλες και στη χρήση της 

αντίστοιχης διεύθυνσης πηγής IP ως αναγνωριστικό για την αποκοπή της επίθεσης. Η 

συλλογή, αποθήκευση και ανάλυση των ροών καθυστερεί αρκετά την κατηγοριοποίηση 

της κίνησης, που τελικά καθυστερεί και την αντιμετώπιση της επίθεσης. Παράλληλα, η 

χρήση γιγαντιαίων λιστών από κακόβουλες IP για την αποκοπή της επίθεσης εμφανίζει 

προβλήματα κλιμακωσιμότητας τόσο στην χρήση τους σε πραγματικό εξοπλισμό όσο και 

στη διαχείριση τους. 
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Για αυτό στο κεφάλαιο 7 σχεδιάσαμε έναν μηχανισμό που βασίζεται στα ιδιαίτερα 

χαρακτηριστικά που εμφανίζουν τα κακόβουλα πακέτα (δηλαδή τα signatures), τα οποία 

χρησιμοποιούνται για την κατηγοριοποίηση και αποκοπή της κακόβουλης κίνησης. Ο 

μηχανισμός μας συλλέγει μόνο τα σημαντικά χαρακτηριστικά για κατηγοριοποίηση των 

signatures χρησιμοποιώντας και πάλι τεχνικές Επιβλεπόμενης Μάθησης (Supervised 

Learning). Με αυτόν τον τρόπο προσφέρει άμεση ανίχνευση της κακόβουλης κίνησης 

κατευθείαν από τις επικεφαλίδες των πακέτων. Βάσει της κατηγοριοποίησης, 

κατασκευάζονται φίλτρα αποκοπής, που δεν βασίζονται στην διεύθυνση πηγής (source 

IP-agnostic) αλλά στα πεδία που ομαδοποιούν με συνεκτικό τρόπο την κακόβουλη 

κίνηση. Αυτό έχει ως αποτέλεσμα τη σημαντική μείωση του πλήθους των κανόνων 

απόρριψης που αυξάνει συνολικά την επεξεργαστική απόδοση του μηχανισμού 

αποκοπής. Η συλλογή των κατάλληλων πεδίων των πακέτων καθώς και η αποκοπή της 

κακόβουλης κίνησης υλοποιήθηκαν χρησιμοποιώντας γενικού τύπου (Commercial-Off-

the-Shelf) εξοπλισμό, κατάλληλο για σύγχρονα περιβάλλοντα υπολογιστικού νέφους 

(cloud computing). 

Για να αξιολογήσουμε τον προτεινόμενο μηχανισμό επιλέξαμε τις επιθέσεις DNS 

Amplification, αφού αποτελούν έναν από τους πιο ευρέως χρησιμοποιούμενους τύπους 

volumetric επιθέσεων. Στόχος του πειραματισμού μας ήταν να δείξουμε τη δυνατότητα 

του προτεινόμενου μηχανισμού να επιλέγει χαρακτηριστικά των πακέτων σημαντικά για 

την κατηγοριοποίηση των signatures, να διακρίνει με ακρίβειά καλόβουλα από 

κακόβουλα signatures και τέλος την απόδοση του μηχανισμού μας έναντι κλασικών 

μηχανισμών προστασίας που βασίζονται σε δικτυακές ροές. Για την αξιολόγηση όλων 

των παραπάνω, χρησιμοποιήσαμε 7 επιθέσεις DNS, καταγεγραμμένες από το 

πανεπιστήμιο του Twente σε συνεργασία με το ολλανδικό NREN SurfNET, ενώ ως 

καλόβουλη κίνηση χρησιμοποιήσαμε DNS κίνηση από τρεις διαφορετικές πηγές. 

Ο μηχανισμός κατηγοριοποίησης και αντιμετώπισης που προτάθηκε ήταν ικανός να: 

 επιλέγει με αυτοματοποιημένο τρόπο πεδία των πακέτων που απαιτούνται για 

την κατασκευή των signatures 

 πετυχαίνει ακρίβειες κατηγοριοποίησης της τάξης του 99%, όσον αφορά τον 

εντοπισμό καλόβουλων και κακόβουλων πακέτων  
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 αντιμετωπίζει πιο σύντομα (χρονικά) αλλά και πιο αποδοτικά volumetric 

επιθέσεις σε σύγκριση με τους κλασικούς μηχανισμούς (που χρησιμοποιούν 

δικτυακές ροές). 

Παρότι οι τεχνικές που βασίζονται σε signatures κατάφεραν να διακρίνουν με ακρίβεια 

την καλόβουλη από την κακόβουλη κίνηση προϋποθέτουν την ύπαρξη μεγάλου πλήθους 

από ετερογενή δεδομένα για την εκπαίδευση μοντέλων Επιβλεπόμενης Μάθησης. Όπως 

γίνεται αντιληπτό εντός ενός αυτόνομου δικτύου δεν είναι πάντα εφικτή η ύπαρξη 

ετερογενών δεδομένων με αποτέλεσμα την μειωμένη ακρίβεια ανίχνευσης. Επίσης, η 

αντιμετώπιση της επίθεσης (ακόμη και με τη χρήση signatures) από το δίκτυο θύμα δεν 

είναι πάντα εφικτή, όπως σε περιπτώσεις όπου οι επιθέσεις υπερκαλύπτουν την 

χωρητικότητα των γραμμών του. Οι δύο αυτοί λόγοι μας οδήγησαν στον σχεδιασμό ενός 

ολοκληρωμένου μηχανισμού συνεργατικής ανίχνευσης και αντιμετώπισης επιθέσεων. 

Στο κεφάλαιο 8 παρουσιάζουμε τον συνεργατικό μηχανισμό προστασίας, ο οποίος 

επεκτείνει τους μηχανισμούς που παρουσιάστηκαν στα κεφάλαια 6 και 7. 

Το Διαδίκτυο όπως λειτουργεί σήμερα αποτελεί μια συνεργασία μεταξύ αυτόνομων 

οντοτήτων (δικτύων), ωστόσο αυτή η συνεργασία δεν επεκτείνεται de facto σε 

μηχανισμούς προστασίας από επιθέσεις. Το βασικό πρόβλημα όσον αφορά τους 

μηχανισμούς ανίχνευσης είναι η ανταλλαγή (εν δυνάμει) απόρρητων δεδομένων, το 

οποίο είτε απαγορεύεται από κανονισμούς προστασίας δεδομένων, είτε αποφεύγεται 

λόγω της διστακτικότητας των διαχειριστών δικτύου. Εν αντιθέσει με τη συνεργατική 

ανίχνευση, η συνεργατική αντιμετώπιση επιθέσεων είναι περισσότερο διαδεδομένη. 

Ωστόσο, οι περισσότεροι μηχανισμοί που χρησιμοποιούνται βασίζονται σε κανόνες 

αποκοπής υλοποιημένους σε δικτυακές συσκευές και είτε αποκόπτουν όλη την κίνηση 

(τόσο την καλόβουλη όσο και την κακόβουλη) είτε χρησιμοποιούν δικτυακές ροές. Αυτές 

οι τακτικές εμφανίζουν περιορισμούς όσον αφορά την κλιμακώσιμότητα, την ευελιξία 

και την απόδοση τους. 

Με γνώμονα τις προαναφερθείσες προκλήσεις, στο κεφάλαιο 8 προτείνεται ένας 

μηχανισμός συνεργατικής ανίχνευσης και αντιμετώπισης που βασίζεται σε signatures. 

Συγκεκριμένα, ο μηχανισμός ανίχνευσης εκμεταλλεύεται τεχνικές Ομόσπονδης 

Μάθησης (Federated Learning), που επιτρέπουν την συνεργατική εκπαίδευση μοντέλων 

Μηχανικής Μάθησης χωρίς την ανταλλαγή δεδομένων αλλά με την ανταλλαγή βαρών 

Νευρωνικών Δικτύων (Neural Networks). Από την άλλη, ο μηχανισμός αντιμετώπισης 
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βασίζεται σε προγραμματιζόμενες κάρτες δικτύου (XDP) και δίνει τη δυνατότητα για 

αποκοπή κακόβουλης κίνησης τόσο για ιδία χρήση όσο και για αιτήματα από 

συνεργαζόμενους φορείς. Η προτεινόμενη λύση παρέχει κλιμακωσιμότητα για αύξηση 

των επιδόσεων κατ’ απαίτηση, υψηλές αποδόσεις αλλά και ευελιξία στην αποκοπή της 

κίνησης. 

Για την αξιολόγηση του μηχανισμού χρησιμοποιήθηκε testbed υψηλών ταχυτήτων αλλά 

και πραγματική δικτυακή κίνηση. Ειδικότερα χρησιμοποιήθηκαν δεδομένα καλόβουλης 

κίνησης από το ιαπωνικό δίκτυο WIDE τα οποία διαχωρίστηκαν καταλλήλως για την 

προσομοίωση διακριτών αυτόνομων δικτύων. Αντίστοιχα χρησιμοποιήθηκαν οι 

επιθέσεις από το σύνολο δεδομένων Booters που αναφέρθηκε στα προηγούμενα 

κεφάλαια. Στόχος του πειραματισμού ήταν η αξιολόγηση της συνεργατικής τεχνικής 

Ομόσπονδης Μάθησης σε πραγματικά δεδομένα και η σύγκριση της με τις ακρίβειες που 

θα πετύχαινε κάθε αυτόνομο δίκτυο μόνο του. Στα πλαίσια της συνεργατικής 

αντιμετώπισης, στόχος ήταν η αξιολόγηση της απόδοσης σε υψηλούς ρυθμούς πακέτων 

για πολλαπλά αιτήματα αποκοπής επιθέσεων υπό το πρίσμα της κλιμακωσιμότητας σε 

επίπεδο υπολογιστικών πυρήνων (CPU cores). 

Από την πειραματική διαδικασία προέκυψαν τα παρακάτω συμπεράσματα: 

 Η συνεργατική ανίχνευση επιθέσεων με τη χρήση της τεχνικής της Ομόσπονδης 

Μάθησης επέτρεψε σε συνεργαζόμενα δίκτυα να πετύχουν υψηλότερες ακρίβειες 

από αυτές που πετύχαιναν αν δεν συνεργαζόντουσαν, χωρίς όμως να εκθέτουν 

απόρρητα δεδομένα. 

 Η υλοποίηση του μηχανισμού συνεργατικής αντιμετώπισης επιθέσεων κατάφερε 

να απορρίψει πολλαπλές επιθέσεις με αθροιστικά υψηλό ρυθμό πακέτων ανά 

δευτερόλεπτο και να κλιμακώσει κατ’ απαίτηση τους υπολογιστικούς του πόρους. 

Έπειτα από την ανασκόπηση των επιμέρους κεφαλαίων της διατριβής, μπορούμε να 

συνοψίσουμε παρακάτω τις κύριες συνεισφορές της: 

Άμεση και με ακρίβεια ανίχνευση επιθέσεων στο επίπεδο δεδομένων: Ο μηχανισμός που 

προτάθηκε σε αυτή τη διατριβή χρησιμοποιεί τη γλώσσα P4 για να κατασκευάσει ένα 

σύστημα ανίχνευσης επιθέσεων στο επίπεδο δεδομένων. Συγκριτικά με τους κλασικούς 

μηχανισμούς που εκτελούνται στο επίπεδο ελέγχου, η προτεινόμενη λύση ανιχνεύει 

άμεσα και ακρίβεια επιθέσεις καθώς η δικτυακή κίνηση διέρχεται από 
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μεταγωγείς/δρομολογητές. Αυτό επιτρέπει την δημιουργία άμεσων αντίμετρων για την 

έγκαιρη καταστολή της επίθεσης. 

Κατηγοριοποίηση ιδιαίτερων χαρακτηριστικών των δικτυακών πακέτων με τη χρήση 

ευφυών μηχανισμών τεχνητής νοημοσύνης: Οι κλασικοί μηχανισμοί προστασίας 

χρησιμοποιούν ως πηγή δεδομένων δικτυακές ροές. Η συγκεκριμένη τακτική εμφανίζει 

δυσκολίες όσον αφορά τη συλλογή, επεξεργασία αλλά ακόμα και αποθήκευση των 

δεδομένων αυτών και μπορεί να επιβραδύνει σημαντικά την ανίχνευση και την 

αντιμετώπιση επιθέσεων DDoS. Αντίθετα με αυτή τη στρατηγική, στη συγκεκριμένη 

διατριβή προτείναμε έναν μηχανισμό κατηγοριοποίησης που χρησιμοποιεί τα ιδιαίτερα 

χαρακτηριστικά των κακόβουλων πακέτων (signatures) για να ανιχνεύσει έγκαιρα 

επιθέσεις DDoS. Αυτά τα χαρακτηριστικά παράγονται με αυτοματοποιημένο τρόπο μέσα 

από τη χρήση ευφυών μοντέλων Μηχανικής Μάθησης που προσφέρουν δυνατότητες 

γενίκευσης της γνώσης που έχουν λάβει.  

Αντιμετώπιση επιθέσεων με τη χρήση συνεκτικών κανόνων αποκοπής βάσει ιδιαίτερων 

χαρακτηριστικών των πακέτων: Οι κανόνες αποκοπής που χρησιμοποιούνται κατά κόρον 

για την αποσόβηση επιθέσεων DDoS εφαρμόζονται κατά κύριο λόγο σε δικτυακές 

συσκευές όπως τείχη προστασίας, δρομολογητές. Αυτές οι δικτυακές συσκευές 

εμφανίζουν περιορισμούς στο πλήθος των κανόνων που μπορούν να υποστηρίξουν αλλά 

και στους τύπους των κανόνων. Στη διατριβή αυτή παρουσιάσαμε ένα μηχανισμό 

κατασκευής κανόνων αποκοπής που δημιουργεί συνεκτικά σύνολα κανόνων που 

περιγράφουν με μεγάλη ακρίβεια τον τύπο της επίθεσης, χωρίς να επηρεάζονται 

σημαντικές ποσότητες της καλόβουλης κίνησης. 

Υψηλής απόδοσης κλιμακώσιμες εικονικές δικτυακές λειτουργίες υλοποιημένες σε 

προγραμματιζόμενες υποδομές: Η παρακολούθηση αλλά και η αποκοπή της δικτυακής 

κίνησης σε legacy δικτυακά περιβάλλοντα υλοποιούνταν συνήθως από ειδικού τύπου 

εξοπλισμό. Στη διατριβή αυτή προτείναμε την υλοποίηση αυτών των δικτυακών 

λειτουργιών σε γενικού τύπου εξοπλισμό με τη χρήση του framework XDP. Με αυτό τον 

τρόπο δίνεται η δυνατότητα για σχεδιασμό κλιμακώσιμων και αποδοτικών εικονικών 

δικτυακών λειτουργιών κατάλληλες για τη χρήση σε σύγχρονα δικτυακά περιβάλλοντα 

υπολογιστικού νέφους. 
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Συνεργατική ανίχνευση και αντιμετώπιση επιθέσεων με γνώμονα την προστασία των 

προσωπικών δεδομένων: Το σημερινό διαδίκτυο είναι απόρροια συνεργασιών μεταξύ 

αυτόνομων δικτύων (Autonomous Systems). Η συνεργασία αυτή δεν επεκτείνεται όμως 

και για σκοπούς προστασίας των δικτύων από επιθέσεις. Η συνεργατική ανίχνευση 

περιορίζεται από διστακτικότητα αλλά και νόμους που αφορούν την ανταλλαγή 

προσωπικών δεδομένων. Από την άλλη η συνεργατική αντιμετώπιση δεν εφαρμόζεται σε 

μεγάλη κλίμακα λόγω εγγενών περιορισμών των δικτυακών συσκευών που εφαρμόζουν 

του κανόνες αποκοπής. Στην παρούσα διατριβή προτείναμε έναν μηχανισμό 

συνεργατικής ανίχνευσης και αντιμετώπισης που βασίζεται σε ιδιαίτερα χαρακτηριστικά 

των πακέτων. Η ανίχνευση των επιθέσεων γίνεται με μηχανισμούς Ομόσπονδης 

Μάθησης, μια τεχνική που δεν απαιτεί την ανταλλαγή απόρρητων δεδομένων ενώ η 

αντιμετώπιση με τη χρήση γενικού τύπου προγραμματιζόμενων συσκευών (XDP) που 

παρέχουν ευελιξία, κλιμακωσιμότητα και υψηλή απόδοση. 

Υλοποίηση σε πραγματικό δικτυακό και υπολογιστικό εξοπλισμό και αξιολόγηση των 

μεθοδολογιών με τη χρήση πραγματικών δεδομένων: Στα πλαίσια της τρέχουσας 

διατριβής, οι προτεινόμενες υλοποιήσεις δοκιμάστηκαν σε testbed υψηλών ταχυτήτων με 

στόχο την αξιολόγηση τους σε ρεαλιστικές συνθήκες. Τα δεδομένα που 

χρησιμοποιήθηκαν για την αξιολόγηση των προτεινόμενων μεθόδων προέρχονται από 

πραγματικά ετερογενή δικτυακά περιβάλλοντα επιτρέποντας μας να δοκιμάσουμε τις 

προσεγγίσεις μας σε πραγματικές συνθήκες. 
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