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Abstract
For almost half a century the performance of processors has been improving
exponentially, closely following the observations made by Gordon Moore and
Robert Dennard. One after the other, both predictions have come to a halt due
to the increased complexity in transistor manufacturing, the power and thermal
limitations at extremely small-scale technology nodes, and the implications of
Amdahl’s law to multiprocessing . Nowadays, more than ever, the path to high
performance passes through meticulous software optimization, fine tuning, and
the design of domain-specific hardware architectures and accelerators.

Within the scope of this thesis, we approach High-Performance Comput-
ing from two different standpoints. In the first part of the thesis, we bridge
the gap between productivity-oriented, high-level programming languages and
high-performance computing techniques. The domain of focus is particle accel-
erator physics, and more specifically beam dynamics. The state-of-art Beam
Longitudinal Dynamics simulator BLonD was developed at CERN in 2014, and
since then, BLonD has been driving the baseline choices for key-parameters re-
lated to the daily operation of the largest circular particle accelerators and their
upgrades, as well the research for future machines. We develop a single-node op-
timized, multi-threaded version of BLonD to accommodate design-space explo-
ration oriented simulation studies. Then, we build a hybrid, MPI-over-OpenMP
version to bring the run-time of previously week-long or even month-long sim-
ulations down to a few hours. To achieve that, techniques such as intelligent
dynamic load-balancing and approximate computing were employed. Finally,
to anticipate the demand for ever-growing simulation workloads, we design a
distributed, GPU-accelerated version of the code, which delivers more than two
orders of magnitude improved latency and throughput compared to the previ-
ous state-of-art. All the above technologies and optimizations are developed in
a user-friendly way. The dramatic reduction in execution time enables scientists
to simulate beam longitudinal dynamics scenarios that combine more complex
physics phenomena with finer resolution and larger number of simulated parti-
cles. These complex, accurate and fast simulations are essential in the field of
beam dynamics to overcome current technological limitations, plan the upcom-
ing upgrades of particle accelerators, and design future machines that will help
science advance further.

The second part of the thesis is focused on hardware customization to ac-
commodate the needs of modern applications. GPUs, once used for the accelera-
tion of graphic workloads, have now become the dominant platform for general
purpose application acceleration. Their processing power and cost-efficiency
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have led to their adoption in almost every computing domain, including ma-
chine learning, scientific computing, and databases. Monitoring the behavior
of multiple, GPU-accelerated workloads, the existence of a significant class of
kernels was detected, which, due to limited data parallelism fail to support
a large degree of Thread-Level Parallelism and hide the latency of memory
operations. These kernels seek for more aggressive Instruction-Level Paral-
lelism strategies to improve stall hiding and fill the execution pipeline. This
inefficiency is addressed by designing a novel, light-weight Out-Of-Order GPU
(LOOG) micro-architecture. LOOG is designed to re-use and re-purpose exist-
ing hardware components to minimize the power and area overheads. By ex-
ploiting Instruction-Level Parallelism to complement the existing Thread-Level
Parallelism execution model, LOOG surpasses both traditional GPU platforms
and other prior-art policies. A thorough discussion of LOOG internals and the
key design tradeoffs that had to be considered are provided in the thesis. More-
over, an extensive design space exploration is performed to fine tune LOOG and
demonstrate its effectiveness when applied on top of a variety of GPU platforms.
The LOOGmechanism outperforms conventional platforms by 27.6% and 22.4%
in terms of run-time and energy efficiency, respectively. This is a strong indi-
cation that LOOG is a promising alternative GPU micro-architecture, which is
capable of expanding the applicability of future GPU platforms even further,
to new application domains.

To summarize, this thesis proposes two approaches to improve the per-
formance in terms of execution time and energy efficiency, anticipating the
ever-increasing computing requirements of modern applications. Firstly, we
discuss meticulous software customization to take advantage of existing multi-
processors and hardware accelerators, while providing an easy-to-use interface
to the user-base. Secondly, we explore micro-architectural specializations to
adjust to the needs of modern workloads.

Keywords: High Performance Computing, Distributed Computing, Ap-
proximate Calculations, Load Balancing, GPU Micro-Architecture.
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Περίληψη

Τον τελευταίο μισό αιώνα η απόδοση των επεξεργαστών αυξάνεται εκθετικά, α-

κολουθώντας πιστά τις προβλέψεις των Gordon Moore και Robert Dennard. Η
μία μετά την άλλη, αμφότερες οι προβλέψεις έχουν σταματήσει να ισχύουν λόγω

της αυξημένης πολυπλοκότητας στην κατασκευή τρανζίστορ, των θερμικών πε-

ριορισμών και περιορισμών ισχύος σε εξαιρετικά μικρές κλίμακες, καθώς και του

νόμου του Amdahl σχετικά με την πολυεπεξεργασία. Σήμερα, περισσότερο από
ποτέ άλλοτε, η πορεία για την υψηλή απόδοση συνοδεύεται από σχολαστική βελ-

τιστοποίηση λογισμικού, ακριβή παραμετροποίηση και σχεδιασμό εξειδικευμένων

αρχιτεκτονικών και επιταχυντών.

Στα πλαίσια αυτής της διατριβής, εξετάζεται ο Υπολογισμός Υψηλών Επι-

δόσεων από δύο σκοπιές. Στο πρώτο μέρος της διατριβής, γεφυρώνεται το χάσμα

μεταξύ γλωσσών προγραμματισμού υψηλού επιπέδου με κύριο προσανατολισμό την

παραγωγικότητα και τεχνικών υψηλής απόδοσης. Ο τομέας εστίασης είναι η φυσι-

κή των επιταχυντών σωματιδίων, και πιο συγκεκριμένα της φυσικής που περιγράφει

την κίνηση μία δέσμης σωματιδίων μέσα σε κυκλικούς επιταχυντές σωματιδίων. Ο

υπερσύγχρονος προσομοιωτής Beam Longitudinal Dynamics BLonD αναπτύχθη-
κε στον Ευρωπαϊκό Συμβούλιο Πυρηνικής ΄Ερευνας (CERN) το 2014, και έκτοτε
καθοδηγεί τον καθορισμό βασικών παραμέτρων σχετικά με την καθημερινή λει-

τουργία των μεγαλύτερων κυκλικών επιταχυντών, τις αναβαθμίσεις τους, καθώς

και την έρευνα για μελλοντικά μηχανήματα. Αρχικά, αναπτύξαμε μία βελτιστοποι-

ημένη για ένα κόμβο πολυνηματική έκδοση του BLonD για να φιλοξενήσει μελέτες
προσομοίωσης προσανατολισμένες στην εξερεύνηση του χώρου σχεδιασμού. Στη

συνέχεια, κατασκευάσαμε μια υβριδική, MPI-over-OpenMP έκδοση που επέτυχε
την μείωση του χρόνο εκτέλεσης προσομοιώσεων που προηγουμένως διαρκούσαν

μια εβδομάδα ή ακόμα και έναν μήνα σε μερικές ώρες. Για να επιτευχθεί αυτό, χρη-

σιμοποιήθηκαν τεχνικές όπως η δυναμική εξισορρόπηση φορτίου και οι προσεγγι-

στικοί υπολογισμοί. Τέλος, λόγω της συνεχούς ζήτησης για συνεχώς αυξανόμενα

μεγέθη προσομοίωσης, σχεδιάζουμε μια κατανεμημένη, επιταχυνόμενη με Μονάδες

Επεξεργασίας Γραφικών (GPU) έκδοση του κώδικα, η οποία παρέχει περισσότερες
από δύο τάξεις μεγέθους βελτιωμένη απόδοση σε σύγκριση με την προηγούμενη

έκδοση. ΄Ολες οι παραπάνω τεχνολογίες και βελτιστοποιήσεις αναπτύχθηκαν με

φιλικό τρόπο προς τον χρήστη, ώστε να χρειάζονται ελάχιστες επεμβάσεις για την

χρήση της κατανεμημένης ή GPU έκδοσης. Η δραματική μείωση του χρόνου ε-
κτέλεσης επιτρέπει στους επιστήμονες να προσομοιώνουν σενάρια που συνδυάζουν

πιο πολύπλοκα φυσικά φαινόμενα, με πιο λεπτομερή ανάλυση και μεγαλύτερο αριθ-

μό σωματιδίων. Αυτές οι πολύπλοκες, ακριβείς και γρήγορες προσομοιώσεις είναι
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απαραίτητες στον τομέα της φυσικής της κίνησης των δεσμών σωματιδίων σε κυ-

κλικούς επιταχυντές για να ξεπεραστούν οι τρέχοντες τεχνολογικοί περιορισμοί,

να υλοποιηθούν οι επερχόμενες αναβαθμίσεις των επιταχυντών σωματιδίων και να

σχεδιαστούν μελλοντικές μηχανές που θα βοηθήσουν την επιστήμη να προοδεύσει

περαιτέρω.

Το δεύτερο μέρος της διπλωματικής εργασίας επικεντρώνεται στην προσαρμο-

γή και εξειδίκευση του υλικού με σκοπό να καλύψει τις ανάγκες των σύγχρονων

εφαρμογών. Οι GPU, που κάποτε χρησιμοποιούνταν για την επιτάχυνση του ε-
φαρμογών γραφικών, έχουν γίνει πλέον η κυρίαρχη πλατφόρμα για την επιτάχυνση

εφαρμογών γενικού σκοπού. Η επεξεργαστική τους ισχύς, σε συνδυασμός με την

υψηλή ενεργειακή αποδοτικότητα οδήγησαν στην υιοθέτησή τους σε σχεδόν κάθε

υπολογιστικό τομέα, συμπεριλαμβανομένης της μηχανικής μάθησης, του επιστη-

μονικών εφαρμογών και των βάσεων δεδομένων. Παρακολουθώντας την συμπερι-

φορά πολλαπλών εφαρμογών που χρησιμοποιούν GPU, εντοπίστηκε μια σημαντική
συλλογή συναρτήσεων, οι οποίες, λόγω περιορισμένου παραλληλισμού δεδομένων,

δεν υποστηρίζουν μεγάλο βαθμό παραλληλισμού νημάτων (Thread-Level Paral-
lelism, TLP) και δεν καταφέρνουν να κρύψουν την καθυστέρηση των λειτουργιών
μνήμης. Αυτές οι συναρτήσεις αναζητούν πιο επιθετικές στρατηγικές παραλληλι-

σμού επιπέδου εντολών (Instruction-Level Parallelism, ILP) για τη βελτίωση της
χρησιμοποίησης των πόρων κατά την εκτέλεση. Αυτή η προβληματική κατάσταση

αντιμετωπίζεται με το σχεδιασμό μιας νέας μικροαρχιτεκτονικής GPU με δυνα-
τότητα εκτέλεσης εντολών εκτός σειράς Out-Of-Order, που ονομάζεται LOOG.
Το σύστημα LOOG έχει σχεδιαστεί ώστε να επαναχρησιμοποιεί υπάρχοντα εξαρ-
τήματα υλικού και να ελαχιστοποιεί τα επιπρόσθετα κόστη σε ισχύ και μέγεθος

επιφάνειας κυκλώματος. Με την εκμετάλλευση του Παραλληλισμού Επιπέδου Ε-

ντολών, το οποίο συμπληρώνει το υπάρχον μοντέλο εκτέλεσης Παραλληλισμού

Επιπέδου Νήματος, το LOOG ξεπερνά τόσο τις παραδοσιακές πλατφόρμες GPU
όσο και άλλες προγενέστερες υλοποιήσεις υψηλών επιδόσεων. Μια διεξοδική συ-

ζήτηση των λεπτομερειών του LOOG και των βασικών σχεδιαστικών αποφάσεων
που έπρεπε να ληφθούν υπόψη παρέχονται στη διατριβή. Επιπλέον, εκτελείται

μια εκτεταμένη εξερεύνηση του χώρου σχεδίασης για να ρυθμιστεί με ακρίβεια

το LOOG και να αποδειχθεί η αποτελεσματικότητά του όταν εφαρμόζεται πάνω
από μια ποικιλία από παραδοσιακές πλατφόρμες GPU. Ο μηχανισμός LOOG ξε-
περνά τις συμβατικές πλατφόρμες κατά 27.6% και 22.4% όσον αφορά τον χρόνο

εκτέλεσης και την ενεργειακή απόδοση, αντίστοιχα. Αυτή είναι μια ισχυρή ένδειξη

ότι το LOOG είναι μια πολλά υποσχόμενη εναλλακτική μικροαρχιτεκτονική GPU,
η οποία είναι ικανή να επεκτείνει την χρήση μελλοντικών συστημάτων GPU σε
νέους τομείς εφαρμογών.

Συνοψίζοντας, αυτή η διατριβή προτείνει δύο προσεγγίσεις για τη μείωση του
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χρόνου εκτέλεσης και της κατανάλωσης ενέργειας, προσαρμοσμένες στις συνεχώς

αυξανόμενες υπολογιστικές απαιτήσεις των σύγχρονων εφαρμογών. Πρώτον, ε-

στιάζουμε στην σχολαστική προσαρμογή λογισμικού για να αξιοποιήσουμε τους

υπάρχοντες πολυεπεξεργαστές και επιταχυντές υλικού, παρέχοντας παράλληλα μια

εύχρηστη διεπαφή στους χρήστες. Δεύτερον, διερευνούμε εξειδικευμένες μικροαρ-

χιτεκτονικές με σκοπό την προσαρμογή στις ανάγκες των σύγχρονων εφαρμογών.

Λέξεις Κλειδιά: Υπολογισμός Υψηλών Επιδόσεων, Κατανεμημένη Επεξερ-

γασία, Προσεγγιστικοί Υπολογισμοί, Δυναμική Εξισορρόπηση Φόρτου Εργασίας,

Μικροαρχιτεκτονική Μονάδων Επεξεργασίας Γραφικών.
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Chapter 1

Introduction

1.1 Computer & Software Design in the Post-
Moore’s Law Era

Gordon Moore in 1965 made the observation that the number of transistors
in dense integrated circuits doubles about every two years, and that there is
no reason to believe that this rate will not remain fairly constant for at least
the coming ten years [1]. Since then, Moore’s prediction has been used in the
semiconductor industry to drive long-term planning and set targets for research
and development, thus functioning to some extent as a self-fulfilling prophecy.
Indeed, looking at Fig. 1.1 that shows in a logarithmic scale the number of
transistors of computer systems since 1970, we can see that the transistor count
has been increasing exponentially for almost 50 years.

For many years, the increase in transistors had been accompanied with a sim-
ilar increase in performance. In Fig. 1.2, we can see the processors’ performance
growth over a period of 40 years, relative to the VAX 11/780 processor [3]. The
performance is measured by the SPEC CPU integer benchmark [4, 5, 6]. Dur-
ing the first 25 years, the growth in performance was mainly technology-driven,
delivering performance improvement of about 25% per year.

The gradual improvement in performance per dollar led to the emergence
of new classes of computers, such as personal computers and workstations.
Additionally, improved semiconductor manufacturing guided the dominance of
microprocessor-based computers across the entire range of computer design.
These hardware innovations drove a renaissance in computer design, which em-
phasized both in architectural innovation and efficient use of technology im-
provements. The combination of computer design innovations and technological
improvements resulted in an average 52% yearly performance improvement rate
from 1986 to 2003.

Computer architecture is the organization of the components of a computer
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Figure 1.1: Evolution of transistor count in CPUs since 1970.
Data source [2].

and the semantics of the operations that guide its function. The computer ar-
chitecture governs the design of a family of computers and defines the logical
interface that is used by programming languages and compilers. The organi-
zation determines the mix of functional units and their interconnectivity. The
architecture semantics is the meaning of what the systems do under user di-
rection and how their functional units are controlled to work together. The
instruction set architecture (ISA) of the system represents the basic set of op-
erations that a given architecture can perform. Compilers and interpreters are
used to convert higher-level user programs into a sequence of such basic oper-
ations. This is true for all kinds of computers, from those in mobile phones
and embedded devices to those making up the world’s largest supercomput-
ers. High-performance computer architecture is about designing and organizing
computers specifically to deliver computational speed.

The third time period of Fig. 1.2 recorded an average annual performance
improvement rate of 23%, and is characterized by what is referred to as the end
of Dennard scaling [8]. In 1974 Robert Dennard observed that the power density
of a given silicon area remained constant when increasing the number of tran-
sistors, because of the smaller dimensions of each transistor. This meant that
processors could integrate more transistors without using more power. Den-
nard scaling ended around 2004. The primary reason cited for the breakdown
is that at small sizes, current leakage poses greater challenges and also causes
the chip to heat up, which creates a threat of thermal runaway and therefore
further increases energy costs. This change forced the microprocessor industry
to use multiple, small to medium size processors or cores, instead of a large
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Figure 1.2: Performance of processors over 40 years according
to the SPEC CPU benchmark [7].

monolithic processor. From 2004 and onward, the road to high-performance is
via multi-core processors rather than via faster uniprocessors. This milestone
signaled a switch from relying solely on instruction-level parallelism (ILP), to
data-level parallelism (DLP) and thread-level parallelism (TLP).

The period from 2011 to 2015, the annual improvement rate dropped to
around 12% per year. This is mostly attributed to the implications of Amdahl’s
Law [9]. Amdahl’s law puts a theoretical upper bound to the maximum speedup
that can be extracted from using multiple cores, and can be formulated as
follows:

Speedup = 1
(1− P ) + P

N

(1.1)

where P is the proportion of the execution time that is parallelized and N is
the number of cores. For example, if 10% of a program is serial, the speedup
from parallelization cannot be more than 10 independently of the number of
available cores in the system.

After Dennard’s scaling, Moore’s law has also come to an end recently. The
combination of extreme complexity in transistor manufacturing, the limited
power budget of modern processors, and Amdahl’s law implications to multi-
processing has caused the processors performance to improve at a rate of 3.5%
per year, that is to double every two decades instead of every two years, as
originally predicted by Moore.

The 50,000-fold performance improvement since 1978 (see Fig. 1.2) had a
major impact in software development, since it allowed modern programmers
to trade performance for productivity. In place of performance-oriented lan-
guages like C and C++, much more programming today is done in managed



4 Chapter 1. Introduction

programming languages like Java and Scala. Moreover, scripting languages
like JavaScript and Python, which are even more productive, have gained in
popularity. To maintain productivity and try to close the performance gap,
interpreters with just-in-time compilers [10] are replacing the traditional com-
pilers and linkers of the past. Software deployment is changing as well, with
Software as a Service [11] (SaaS) used over the Internet replacing software that
must be installed and run locally.

Living at the end of the line of the rapid performance improvement that
lasted for half a century, there are no more low-hanging fruits. Nowadays,
meticulous software optimization, fine tuning and hardware customization are
more prevalent than ever before. In the scope of this thesis, we approach
High-Performance Computing from two different viewpoints. At first, we bring
cutting-edge high-performance computing techniques to the field of longitudinal
beam dynamics, by entirely restructuring the state-of-art simulator library to
match the hardware’s features and take advantage of distributed computing and
accelerator platforms. A brief outline of the steps taken towards the direction of
high-performance software development can be seen in the top part of Fig. 1.3.
Then, in the second part of the thesis we focus on architectural customization
instead. Specifically, we target GPUs – the most prevalent platform for perfor-
mance acceleration. We discuss, suggest and explore a novel, non-conventional
GPU architecture paradigm, better tailored to the requirements of modern,
general-purpose GPU accelerated workloads. The development steps, that will
be discussed and evaluated in detail in the second part of this thesis are shown
in the bottom of Fig. 1.3.

1.2 High-Performance Computing Strategies for
Longitudinal Beam Dynamics

The first part of this thesis (see Fig. 1.3) bridges the gap between user-friendly
scientific software and high-performance computing. Typically, scientific soft-
ware is intended to be used by non-computer scientists. A high-level scripting
language such as Python is widely popular among mathematicians, physicists,
chemists, biologists, geologists, and others for simulation studies and data anal-
ysis. A scripting language like Python, allows for rapid development and proto-
typing, and seamless integration with powerful third-party libraries. However,
high-performance software is usually developed in a compiled language such
as Fortran, C and C++. In the scope of this thesis, we focus on the domain
of beam dynamics, the field of physics that studies the beam motion in cir-
cular particle accelerators, also called synchrotrons. As shown later in Sec. 2,
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the state-of-art Beam Longitudinal Dynamics code BLonD, was developed at
CERN since 2014 by a team of experienced accelerator physicists in Python.

The first step to extract better single-node performance while maintaining
an easy-to-use interface, was to combine Python with a C/C++ computational
back-end. Chapter 4 shows how this was achieved, and in addition, how the
computational core was able to effectively exploit modern processors’ resources
as well as intra-node, vertical scaling with the aid of the OpenMP [12] paral-
lel programming framework. The single-node optimized version of BLonD is
called BLonD++ , and managed to provide on average 18× single-core speedup
compared to the original Python-only BLonD version.

In beam dynamics, similarly to many other scientific domains, simulation
studies may vary in terms of simulation count, i.e. the total number of sim-
ulations that need to be performed, and workload size. Figure 1.4 shows a
qualitative diagram of the two-dimensional simulation space of BLonD, and
how the different versions of the code that were developed in the scope of this
thesis are better tailored for different simulation space regions. Below we ex-
plain the most typical simulation study scenarios, that motivated us to develop
the different variations of BLonD:

1. The user is interested in scanning a parameter space of tens, hundreds
or even thousands of slightly different configured simulations, to finely
tune a set of input parameters. Since these distinct simulation runs are
independent of each other, they can all run in-parallel given enough com-
puting resources. Therefore, this type of studies is better tailored for effi-
cient vertical-scalability to take full advantage of the available computing
hardware. This is the purpose of the BLonD++ code.

2. The user needs to examine certain phenomena with the highest possible
accuracy, therefore a small set of large scale simulations has to be run.
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scope of this thesis, and their recommended usage region.

These simulations can be very demanding in terms of execution time. In
the case of BLonD, some simulations could take several weeks or even
months to finish, making them impractical given that the outcome of the
studies is needed to guide the on-going operation of real experiments.
This type of studies can be only accommodated by horizontally scaling
software, meaning that the simulation software must be capable of com-
bining multiple computing nodes to cooperatively calculate a large-scale
simulation in a shorter time frame. In Chapter 5, we will see the archi-
tecture of HBLonD, the MPI-over-OpenMP distributed implementation
of BLonD, that is able to scale in more than 30 computing nodes and
600 cores. With the aid of a dynamic load balancing scheme and various
approximate computing methods, HBLonD achieves an up to 58× faster
execution time compared to a single-node instance of BLonD++ .

The optimization of the operation of existing circular particle accelerators,
the upgrade projects, and the design and research for future machines drive the
need for larger, longer and more simulation studies. To anticipate this ever-
growing need for computationally more and more demanding simulations, in
our on-going work in Chapter 6 we combine MPI with the CUDA programming
language to build a distributed, GPU-accelerated code for beam longitudinal dy-
namics, called CuBLonD. CuBLonD is designed with usability in mind, hence
the Python front-end has been kept intact. Using an efficient, zero-overhead
Python library, PyCUDA [13], we offload the most compute-intensive code re-
gions to the GPU accelerator. Furthermore, a memory pool mechanism was
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implemented to minimize memory allocation and de-allocation overheads. A
CPU-GPU memory synchronization mechanism was developed to provide the
user the view of a unified memory space with minimal performance overhead.
CuBLonD delivers up to two orders of magnitude speedup w.r.t. BLonD++ ,
using 32 GPU accelerators in 16 computing nodes. The dramatic reduction in
execution time that is achieved by the highly optimized BLonD++ and HBLonD
codes, have enabled scientists to simulate beam longitudinal dynamics scenarios
that combine more complex physics phenomena with finer resolution and larger
number of simulated particles. These complex, accurate and fast simulations
are essential in the field of beam dynamics to overcome current technological
limitations, plan the upcoming upgrades of particle accelerators, and design
future machines that will help science advance further.

1.3 Non-Conventional General-Purpose GPU
Architectures

While the first part of this thesis discusses how to bridge the gap between
high performance computing and scientific software simulators, the second part
moves further towards the direction of accelerator platforms and hardware spe-
cialization. More specifically, it focuses on novel, non-traditional Graphics Pro-
cessing Unit (GPU) accelerators. GPUs are nowadays the primary platform
for general-purpose workload generation. Despite originally being designed for
graphics processing in video games and other visual applications, over time,
GPU programming for general-purpose applications became more practical.
Their processing power and cost-efficiency have led to their adoption in a wide
spectrum of computing domains, including among others machine learning [14,
15], scientific computing [16], and databases [17, 18].

By meticulously monitoring the characteristics of modern, GPU-accelerated
workloads, we observe that certain classes of kernels, due to limited data par-
allelism, fail to support a large degree of Thread-Level Parallelism (TLP) and
hide the latency of memory operations. Thus they suffer from excessive stalling
time and sub-optimal resource utilization. These “irregular” kernels cannot ef-
fectively exploit the traditional TLP model due to low warp occupancy, and re-
quire more aggressive Instruction-Level Parallelism (ILP) strategies to improve
stall hiding, tolerate periods of insufficient TLP, and provide the back-end with
a flow of instructions even in the absence of a large number of active thread
contexts. We address the aforementioned inefficiencies found in typical GPUs
by re-purposing GPU micro-architectures towards a general-purpose, dynamic,
Light-weight Out-of-Order GPU (LOOG) execution scheme, carefully designed
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Figure 1.5: Development, Optimization and Evaluation
methodology followed in the second part of this thesis.

to minimize the hardware overhead. LOOG surpasses prior state-of-art by ex-
ploiting ILP to complement the existing TLP and improve resource utilization
of underperforming kernels.

Figure 1.5 shows the sequence of development, optimization, fine tuning and
evaluation steps that are discussed in this thesis, regarding the Out-Of-Order
execution for GPUs paradigm, LOOG. In Chapter 9, we present the micro-
architectural mechanisms we implemented in order to enable Out-Of-Order ex-
ecution in GPUs. A series of design tradeoffs had to be considered to achieve a
balance between run-time and energy efficiency. The first LOOG implementa-
tion could re-order only arithmetic and not memory operations. However, this
pose a great performance limiting factor. Therefore, with the introduction of a
Load-Store Queue, we enabled the re-ordering of both arithmetic and memory
operations. Then, we observed that the LOOG architecture was sensitive to
the number of Collector Units, since they are used as reservation stations to
implement register renaming. The addition of a light-weight structure, named
Register Renaming Stack (RRS), managed to resolve this issue in a cost-efficient
way, and resulted in the LOOG architecture being on average

In Chapter 10, we study the sensitivity of LOOG to key micro-architectural
parameters that affect the Instruction-Level Parallelism potential. Furthermore,
we perform an extensive design space exploration of traditional GPU architec-
tures and the LOOG mechanism, to show that LOOG is capable of providing
superior performance and energy efficiency when combined with both low-end
and high-end GPU platforms. Finally, in Chapter 11, the evaluation of the
fully optimized LOOG mechanism against conventional GPU architectures is
presented, showing that LOOG offers 27.6% and 22.4% run-time and energy
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efficiency, respectively. In conclusion, LOOG is a promising alternative GPU
micro-architecture that can expand the applicability of future GPU platforms
even further to new application domains.

1.4 Thesis Structure
The remainder of this thesis is organized in two parts. The first part, titled High
Performance Computing Strategies Applied to Longitudinal Beam Dynamics, is
organized as follows:

1. Chapter 2 provides a generic introduction to the role and scientific mis-
sion of CERN and highlights the need for computational beam dynamics
studies.

2. A brief overview of the field of Longitudinal Beam Dynamics and the
BLonD simulator is found in Chapter 3.

3. Chapter 4 discusses BLonD++ , the single-node, optimized and multi-
threaded version of BLonD.

4. In Chapter 5, we enable for the first time scale-out beam longitudinal
dynamics simulations and provide the respective experimental evaluation.

5. Chapter 6 describes CuBLonD, the GPU accelerated version of BLonD,
that provides superior runtime performance and scalability, and makes
use of modern GPU architectures.

The second part of the thesis, titled Towards Non-Conventional GP-GPU Micro-
Architectures, is outlined below:

1. Chapter 8 reviews related work on performance optimization strategies
for GPUs, and provides a brief synopsis of the baseline GPU execution
model and micro-architecture pipeline.

2. The in-depth implementation details of LOOG are discussed in Chapter 9.

3. The key design trade-offs that aroused during the development of LOOG
and a thorough LOOG-oriented design space sensitivity analysis are dis-
cussed in Chapter 10.

4. The experimental evaluation in terms of run time performance and energy
efficiency of LOOG compared to conventional GPU architectures takes
place in Chapter 11.

Finally, Chapter 12 concludes this thesis.
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Part I

High-Performance Computing
Strategies for Longitudinal

Beam Dynamics
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Chapter 2

CERN’s Role & Necessity for
HPC Beam Dynamics Studies

2.1 CERN’s Scientific Mission1

At CERN, physicists use large particle accelerators to accelerate and then collide
high-energy particles in order to study the fundamental laws of particle physics.
The Large Hadron Collider (LHC), operational since 2008, is currently the
world’s largest and most powerful particle accelerator and the latest addition to
CERN’s accelerator complex. The Standard Model of particle physics describes
the weak, strong, and electromagnetic forces, but it does not describe gravity.
In 1964, the Higgs boson was introduced by various scientists into the Standard
Model in order to add a mechanism that explains the mass of particles [19, 20,
21, 22, 23]. The discovery of the Higgs boson in 2012 in the LHC machine and its
two broad-purpose detectors ATLAS [24] and CMS [25] is one of the greatest
discoveries of the LHC so far. Presently, the biggest challenge is to obtain
hints for physics beyond the Standard Model, such as theories including gravity,
the observed matter-antimatter asymmetry in nature, and the conservation of
charge and parity in strong interactions, just to mention a few.

The higher-energy particle accelerators at CERN are circular machines, so-
called synchrotrons. Charged particles are accelerated through a chain of syn-
chrotrons, also called injectors, to increasingly higher energies, before being
injected into two separate beam pipes to collide in the final synchrotron, also
called collider. In the LHC, the two beams circulate in opposite directions
and intersect at fixed locations in the heart of large particle detectors that can
record and then analyse the collision traces. ATLAS [24] and CMS [25], two of
the largest particle detectors on earth are two general-purpose detectors of the
eight LHC experiments.

1The complete mission statement can be found at: home.cern/about/who-we-are/our-
mission

https://home.cern/about/who-we-are/our-mission
https://home.cern/about/who-we-are/our-mission
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CERN is not only exploiting its present facilities to a maximum potential,
but it also participates in a wide range of accelerator physics R&D projects to
prepare for the future. The accelerator physics community convenes regularly
in forums like the European Strategy for Particle Physics [26, 27] and sets
the priorities among different R&D projects. Discussed are so-called search
machines that can probe a wide range of energies, and precision machines (so-
called Higgs factories) that can probe the properties of the Higgs boson with
high precision; both in order to explore physics and various theories beyond the
Standard Model.

2.2 Beam Dynamic Studies Necessity
The LHC Injector Upgrade (LIU) [28], the upcoming High-Luminosity LHC
project [29], and the studies of future machines such as the Future Circular
Collider (FCC) [30, 31, 32] and the Compact Linear Collider (CLIC) [33, 34] are
CERN’s most important R&D projects at present. Despite of vast experience
with the LHC and its injectors, upgraded and future machines cannot simply be
scaled in size and energy to achieve the desired beam energy and intensity. Some
limitations in future machines are known by design, but studies are required
to explore previously unknown limitations, too. The studies are often very
complex and require precision modelling in the domain of accelerator physics
and specifically also beam dynamics simulations that can model the relevant,
detailed physics phenomena and machine-specific features.

The simulator software has to be flexible enough to include a wide range
of synchrotrons, energy regimes and particle types. To fulfill these critical re-
quirements, the Beam Longitudinal Dynamics simulation suite (BLonD) [35,
36] was developed at CERN since 2014. As its name suggests, the field of
longitudinal beam dynamics focuses on the longitudinal motion of the beam
particles, and BLonD tracks the energy and time coordinates of beam particles
in synchrotrons. It features a modular structure that allows the user to focus
on different physics phenomena and combine different physics modules accord-
ing the study requirements. BLonD is an open-source, cross-platform project
that is increasingly gaining popularity among the world’s largest accelerator
laboratories.

Through an extensive range of applications [37, 38, 39, 40, 41, 42, 43, 44] and
benchmarks [45] for beam dynamics studies, the confidence in the BLonD suite
has grown among the scientific community. The benchmarks performed range
from comparisons with theory and measurements, to other particle tracking
codes and increased the trust in BLonD and its predictions. The outcome of
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the simulation studies is continuously guiding the baseline choices for machine
upgrades and future machines [42, 43]. In many cases the existing machines
are being pushed beyond their design limits while the upgraded systems are
designed with minimal margins in order to be as cost-efficient as possible. Thus,
simulations need to be very accurate despite the complexity of the machines.
Also, whenever new phenomena in operational machines are discovered, it is
crucial to have a tool that can reproduce and explain observations.

2.3 High-performance Computing Simulations
Simulations of high-energy particle physics inside circular accelerators comprise
a scientifically and computationally challenging task. These workloads are typi-
cally inherently parallel and fit naturally in a distributed-memory, weak scaling
environment using MPI. Furthermore, strong-scaling within a node is also es-
sential. Intra-node scaling and efficient utilization of the hardware resources
is especially useful in studies that require large parameter scans. However,
high-precision studies require simulating an extremely large number of macro-
particles, that can take weeks or even months to execute. As a result, a hybrid,
distributed-shared programming model combined with hardware-specific code
tuning is required to squeeze every drop of performance out of modern CPUs.
Optimizing and tuning scientific codes, while aided by compiler features, has
become a highly manual endeavor that requires integrating awareness of the
application specific features and the underlying system architecture: the mem-
ory subsystem, the execution pipeline, the concurrent threads, and the SIMD
vector units [46].

To undertake this agenda, in this thesis we design, optimize and evalu-
ate HBLonD, a hybrid, multi-parallel system for running large scale longitu-
dinal beam dynamics simulations. Since the user-base of BLonD is mainly
non-computer scientists, all the HPC techniques are integrated in the code in
a completely transparently to the user way. We initially focus on improving
intra-node performance of BLonD. We perform micro-architecture motivated
optimizations by combining the TMAM [47] and Roofline model [48, 49] anal-
yses. We identify and parallelize the computational core of BLonD using the
OpenMP framework [12]. Then, we enable scale-out simulations by combining
the OpenMP implementation with MPI. To minimize the inter-node commu-
nication and synchronization overhead, we apply various software optimisa-
tion techniques. At first, we develop a mixed data- and task-parallel model.
Data parallelism is used across the nodes and task parallelism is used among
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the intra-node MPI processes to profit from fast shared-memory communica-
tion. Then, we discuss and evaluate two traffic optimisation and relaxed syn-
chronisation techniques, motivated by the modelled physics phenomena. We
study the accuracy-performance trade-off when using those traffic optimization
techniques, as well as single versus double floating point precision arithmetic.
To deal with various sources of load imbalance, we develop a dynamic load-
balancing (DLB) scheme that periodically re-distributes the workload to ensure
that all the worker processes progress at the same rate. Finally, to satisfy the
ever-growing need for larger workloads and longer simulation periods, guided
by the research for future synchrotrons and the upgrades of the existing ones,
we combine CUDA and MPI to build a GPU-accelerated, distributed version of
BLonD, called CuBLonD. We evaluate CuBLonD in a GPU-enabled supercom-
puting infrastructure and demonstrate greater than two orders of magnitude
speedups when using 16 or 32 GPU platforms.
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Chapter 3

Background

3.1 Longitudinal Beam Dynamics
in Synchrotrons

Beam dynamics is the field of physics that models the beam motion inside parti-
cle accelerators. Longitudinal beam dynamics focuses on the longitudinal plane
of motion, i.e. the motion alongside the beam pipe, in contrast to transverse
beam dynamics that focuses on the transverse plane, in the cross-section of the
beam pipe. In this thesis, we will restrict the to longitudinal beam dynamics in
synchrotrons, which the BLonD simulator suite is designed to simulate.

Synchrotrons are circular particle accelerators, in which Radio-Frequency
(RF) cavities accelerate and magnets bend them beam; the frequency of the
cavities and the bending field of the magnets are synchronized at any time such
that charged particles are circulating more or less at a fixed reference orbit,
independent of their energy. The angular RF frequency ωRF is therefore usually
a harmonic of the angular revolution frequency ω0,

ωRF = hω0 , (3.1)

where h is an integer. A particle circulating on the synchronous orbit has the
synchronous (relativistic) energy of Es. If in addition the particle is arriving to
the RF cavity exactly at the synchronous RF phase φs, it will be perfectly on
orbit also in the next turn; such a particle is referred to as the ‘synchronous
particle’.

The term ‘beam’ usually refers to the collection of all the particles of a given
species of charged particles in the accelerator. In the presence of RF voltage, the
beam is condensed around the centres of the RF potential wells, see Fig. 3.1,
forming a train of several ‘bunches’. Beam particles are described in a 2D
phase space, typically by the longitudinal coordinate and its conjugate variable.
Also, beam coordinates are usually described relative to the coordinates of the
synchronous particle. A widely-used phase-space coordinate pair is (φ,∆E/ω0),
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Figure 3.1: Example of a periodic potential well in a syn-
chrotron, for several RF systems. In the absence of intensity
effects, the synchronous point (ts, Es) is periodic with Trf along

the ring. The beam particles fill part of the potential well.

where φ is the phase coordinate w.r.t. RF voltage wave and ∆E is the relativistic
energy of the particle w.r.t. the energy Es of the synchronous particle. The
longitudinal equations of motion can then be derived, for a single-RF system,
to be [50]

dφ

dt
= hω2

0η

β2E

(
∆E
ω0

)
(3.2)

and
d

dt

(
∆E
ω0

)
= eV

2π (sinφ− sinφs) , (3.3)

where e is the unit charge, V is the RF voltage amplitude and β = v/c is the
relativistic beta of the particle, with v being the velocity and c being the speed
of light. The slippage factor η is a property of the synchrotron, which describes
how much RF phase slippage a particle will undergo after one turn with a given
energy offset of ∆E. With multiple RF systems installed in the machine, several
voltage terms appear on the right-hand-side of Eq. 3.3.

In the above equations, all particles are moving independently in the ma-
chine. However, since the beam is a collection of charged particles, and the
accelerator is composed of devices that are not perfect conductors, the beam
particles can interact with its surroundings electromagnetically. This also leads
to trailing particles being affected by leading particles, which we call collective
effects. A given particle experiences thus an induced voltage by itself and the
particles in front. If the overall impedance of the machine is Z(ω), we can define
a corresponding wake field W (t) as the Fourier transform of the impedance,

W (t) = 1
2π

∫ +∞

−∞
dωeiωtZ(ω) . (3.4)

A physical wake field is zero in front of the particle,W (t > 0) = 0. Denoting the
longitudinal line density (or beam profile) of the particles with λ(t), a particle
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at the coordinate ∆t will experience the induced voltage

Vind(∆t) = −q Np

∫ +∞

−∞
λ(τ)W (∆t− τ) dτ , (3.5)

where q is the particle charge, Np is the number of (real) particles in the beam
and the profile is normalized to

∫+∞
−∞ λ(t) = 1. Equivalently, the induced voltage

can be calculated as the product of the beam spectrum Λ(ω) =
∫+∞
−∞ λ(t) e−iωtdω

and the impedance,

Vind(∆t) = −q Np

2 π

∫ +∞

−∞
Z(ω) Λ(ω) eiω∆tdω . (3.6)

The induced voltage is applied to the particles as an additional energy kick
Eind(∆t) = q Vind(∆t) added to Eq. 3.3. In a similar manner, energy loss due
to synchrotron radiation, or any other phenomena affecting the particle energy,
can also be added to the kick equation.

In addition, control systems used in the accelerators can be modeled with
BLonD, too. So called beam-based or global feedbacks measure some beam
observable, like the beam phase w.r.t. to RF bucket or the beam radial position,
and feedback on the RF frequency. Cavity-based or local feedbacks control the
RF voltage and phase bucket-by-bucket, adjusting the current of the amplifier
that feeds the cavity so that the actual voltage is regulated to the desired voltage
value. If enabled, the RF parameters are modified on a turn-by-turn basis.

3.2 The BLonD Simulator Suite
Fig. 3.2a shows a simple particle accelerator model containing the three main
components modeled in BLonD: the synchrotron or ‘ring’, the Radio-Frequency
(RF) cavities, and the beam that circulates inside the beam pipe. Fig. 3.2b
shows a high-level class diagram of the core BLonD functionality together with
the key class methods and class fields that interact in every typical BLonD
simulation. The main code classes are the following:

• The Ring class. This class models the synchrotron, and contains machine-
related parameters such as the machine’s circumference, the type of par-
ticles to be accelerated and the number of RF sections.

• The RFParameters class. In this class are stored all the parameters related
to the RF equipment that is attached around the beam pipe of the syn-
chrotron. User-defined inputs such as the voltage and momentum arrays
are stored in this class, and affect the motion of the simulated particles.
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Figure 3.2: BLonD ring and class diagram.

• The Beam class. This class stores beam-related information, including the
2-D coordinates of all the simulated macro-particles. Thus, this class has
the higher memory footprint in the BLonD code.

• The Profile class. This class is responsible for the beam profile, a his-
togram of the beam along the time axis, as well as other beam profile-
related operations.

• The InducedVoltage class. This class describes the impedance of the
machine, that is provided by external modeling tools and studies. The
machines impedance interacts with the circulating particles, generating
an induced voltage, which is also calculated by this class and is one of the
most computationally heavy operations.

• The MotionTracker class. The actual tracking of the beam particles is
performed in this class. This class contains methods related to the equa-
tions of motion that update turn-by-turn the 2-D particle coordinates.
The evaluation of these equations is also one of the most computationally
demanding operations in typical BLonD simulations.

More details about these clases, methods and their interactions are given below.
In reality, a bunch can contain trillions of particles, in simulations however,

macro-particles are used which represent many real particles in order to reduce
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the memory footprint. The user is responsible for determining the amount
of macro-particles required to describe a certain physical phenomenon with
sufficient resolution. The computational complexity of most operations in a
BLonD simulation, as we can see from the following beam motion tracking
equations, scales linearly with the number of simulated macro-particles, which
typically ranges from a few millions to 100s of millions.

In BLonD, particle motion is described using the coordinates (∆t(n),∆E(n)),
which are the particle’s arrival time and energy at the RF section with respect
to the reference time td,(n) and design energy Ed,(n), respectively. The reference
time is given by the revolution periods T0,(n) = 2π/ω0,(n) as follows:

td,(0) ≡ 0 and td,(n) ≡
n∑
k=1

T0,(k) for n ≥ 1. (3.7)

On the other hand, the revolution periods are defined by the design orbit of
radius Rd and βd,(n), the relative speed of the design particle with respect to
the speed of light c on that orbit,

T0,(n) = 2πRd

βd,(n)c
, (3.8)

where the user can input βd,(n) implicitly via the corresponding design energy
Ed,(n) evolution over time. In BLonD, the reference time and design energy are
therefore intrinsically connected. The reference time also serves as an external
‘clock’, to disentangle the equations describing the beam motion and the RF
system, which are both tracked with respect to this external ‘clock’. As a result,
several beam, RF, and intensity effects can be included when modeling the beam
motion.

RF sections are placed in fixed locations along the ring. The number of RF
stations modeled along the ring depends on the case and ranges typically from
one to a dozen. The so-called kick equation of motion is used to update the
energy ∆E coordinate of a given particle from time step n to n + 1, based on
the particle’s ∆t(n) coordinate and the RF voltage energy kicks k received in
the corresponding RF station,

∆E(n+1) = ∆E(n) +
nrf∑
k=0

qVk,(n) sin(ωrf,k,(n)∆t(n) + ϕrf,k,(n))

− (Ed,(n+1) − Ed,(n)) + Eother,(n), (3.9)

where q is the charge of the particle, Vk the voltage amplitude, ωrf,k the revolu-
tion frequency, and ϕrf,k the phase of the RF system k, and Ed,(n+1)−Ed,(n) the
change of the design energy from one turn to another. The last term Eother,(n) is
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used to model energy changes due to intensity effects or synchrotron radiation,
for instance.

The beam motion from one RF station to another is modeled by the drift
equation of motion that updates the time coordinate using the updated energy
of the particle. In BLonD, the machine-dependent slippage factor η(∆E) used
in Eq. 3.3 is replaced by the momentum compaction factor α of at least zeroth,
and up to second order,

∆t(n+1) = ∆t(n) + Trev,(n+1)

(1 + α0,(n+1)δ(n+1) + α1,(n+1)δ
2
(n+1)

+ α2,(n+1)δ
3
(n+1)

)1 + ∆E(n+1)
Ed,(n+1)

1 + δ(n+1)
− 1

, (3.10)

where Trev is the revolution period and δ(n) = ∆p(n)
pd,(n)

= ∆E(n)
β2

d
Ed,(n)

is the relative
momentum offset. A full cycle of updating the beam coordinates corresponds
to a single simulation iteration. The number of iterations required for a given
testcase can range from a few thousands to a few millions.

While the kick and drift equations act on the particles one by one, the
collective effects described in Eqs. 3.5 and 3.6 couple the particles and limit the
exploitable parallelism degree of the code. In frequency domain, the induced
voltage is calculated by discretizing Eq. 3.6 as

Vind[n] = −q Np IDFT (Z[k] Λ[k]) , (3.11)

where IDFT is the Inverse Discrete Fourier Transform and Λ[k] is the Discrete
Fourier Transform (DFT) of the line density Λ[k] = DFT (λ[n]).

In time domain, the induced voltage (Eq. 3.5) is calculated as a discrete
convolution, where for run-time efficiency, the circular convolution theorem is
being applied,

Vind[n] = −q Np IDFT {DFT (W [n]) DFT (λ[n])} . (3.12)

In order to obtain a linear convolution in the end, both W [n] and λ[n] have to
be suitably zero-padded to the length L = N +M − 1, where N is the length of
W [n] andM is the length of λ[n]. The complexity of the time-domain algorithm
that uses FFTs is O(L logL), while that of the direct convolution is O(NM).

Since both Eqs. 3.11 and 3.12 apply and IDFT, BLonD has a single imple-
mentation for both frequency- and time-domain methods. The only difference is
that, in time-domain calculations, a pseudo-impedance and beam spectrum are
defined as Z∗[k] = DFT (W ∗[n]) and Λ∗[k] = DFT (λ∗[n]), respectively, where
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the * represents zero-padding of the signal.
Just as in particle-in-cell simulations [51], induced voltage is calculated on a

discrete histogram of the beam line density to optimise the computation time.
Particles are grouped in bins. The amplitude corresponding to the bin is given
by the number of particles inside and a linear interpolation is applied between
bins. The histogram acts as a frequency filter and cuts high-frequency numerical
noise, but also physical contributions if the resolution is not sufficient. The
minimum amount of bins required is fixed by the Nyqvist sampling theorem,
and depending on the phenomena modelled, the user has to choose the adequate
amount of bins.

BLonD is a modular and flexible library. Other physics phenomena, such
as space-charge effects, synchrotron radiation, or impedance-reducing control
circuits can be included in a given simulation. A BLonD simulation scenario
is an assembly of components which in turn can be composed of smaller sub-
parts. The user, knowing which physics effects are essential for a given study,
initializes the relevant components. Then, the user wires the components to
form a pipeline of physics transformations that will be computed on a turn-by-
turn basis. Some optional features of BLonD include a complete tool-set for
data analysis, storage and plotting.

3.3 Related Work
The BLonD simulator suite emerged in 2014 to respond to the need for a highly
customisable tool required by scientists at CERN driving a large amount of
longitudinal beam dynamics studies. Some of the features modeled in BLonD
were unique and had not been implemented by any other prior code.

ESME [52, 53], a code developed at Fermilab since 1984, was widely used
prior to BLonD. The code is written in Fortran and is compatible with certain
Unix-based operating systems like Solaris. The lack of support and maintenance
led the ESME project to slowly disappear from being used in the scientific
community.

Py-Orbit [54, 55] and Elegant [56, 57] are two other alternatives to BLonD.
They are Particle-In-Cell, 6D tracker codes, modelling both transverse and lon-
gitudinal beam dynamics. For longitudinal purposes, the computational com-
plexity of a Py-Orbit or Elegant simulation is significantly heavier than that
of a BLonD simulation. Good agreement between Py-Orbit and BLonD has
been reported in various studies [45, 38]. Being more general-purpose oriented
codes, both Py-Orbit and Elegant lack many of the specific longitudinal and
RF features available in BLonD.
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The BLonD suite differs from the aforementioned codes in numerous ways.
Using a python front-end makes BLonD easy-to-use and particularly attractive
to new users. The modular structure allows rapid prototyping of new features
that extend its capabilities. Contrary to Py-Orbit and Elegant, BLonD special-
izes in the longitudinal plane and as a consequence, it contains more detailed
physics models and is computationally less heavy, resulting in shorter simulation
times. In terms of flexibility and precision, BLonD has been tested successfully
on a wide range of real-world simulation scenarios and it is generic enough to
cover a wide spectrum of beam dynamics simulation scenarios ranging from ex-
isting to future machines and from relatively small to very large synchrotrons
accelerating protons, electrons or ions. Finally, as we will see later in this the-
sis, BLonD allows for efficient horizontal and vertical scaling across hundreds
of cores, as well as heterogeneous simulations using CPU and GPU platforms.
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Chapter 4

Intra-node Optimizations

4.1 Optimization Methodology
To cope with the challenging simulation complexity and prediction accuracy
needed in the field of longitudinal beam dynamics, single-node, run-time opti-
mizations were introduced in the BLonD simulation suite, and are described in
this section. Our analysis and experimental evaluation is based on four real-
world simulation scenarios, representative of typical BLonD simulations scenar-
ios, each concerning a different particle accelerator. As a first approach to per-
formance optimization, the most compute-intensive code regions are ported to
C++. Then, the Top-Down method [47] is applied on the testcases to provide an
in-depth micro-architectural insight of BLonD. Based on the analysis outcome,
we identify a series of bottlenecks and proceed to mitigate them through com-
piler tuning, the use of high-performance scientific libraries and other software
optimization techniques. We employ the Roofline model [48, 49] to verify the ef-
ficiency of BLonD’s computation core. In addition, we employ OpenMP [12] to
parallelize the compute-intensive code regions. Finally, we evaluate the single-
core run-time performance of BLonD++ [58] as well its scalability in a multi-core
Intel Haswell [59] server platform. The proposed implementation, BLonD++ ,
demonstrates an up to 23× single-core run-time speedup compared to the pre-
vious python-only BLonD library. By dramatically reducing the duration of a
week-long simulation to below 9 hours, BLonD++ has enabled users to perform
several beam dynamics studies that were previously unfeasible due to run-time,
memory, and CPU limitations.

We adopted a straightforward performance optimization methodology to
improve the intra-node performance of the BLonD code. Our methodology
can be easily adapted to the needs of other similar high-performance scientific
simulators. The suggested methodology is depicted in Fig. 4.1. Initially, we
identify the most time-consuming regions, by profiling four representative, large-
scale simulation testcases. We then port these identified regions, also referred
to as benchmarks, from Python to C++ in order to profit from compiler and
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Figure 4.1: BLonD++ performance optimization methodology.
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Figure 4.2: Run-time breakdown of the four target testcases
with the initial, python-only BLonD version. The seven tagged
methods are responsible for 99% of the run-time on average.

other low-level optimizations. Then, we use a collection of hardware counters
to discover various micro-architecture limitations. Subsequently, we mitigate
these limitations by combining a series of typical High-Performance Computing
(HPC) strategies. To evaluate and verify the performance of our benchmarks,
we apply the Roofline model [48, 49] analysis. Finally, when we are satisfied
with the achieved performance, we parallelize the computational core of BLonD,
that is, the identified set of benchmarks, using the OpenMP [12] framework.

4.2 C++ Computational Core
BLonD started originally as a pure Python code. Python is a widely adopted
language for various reasons; to name a few, Python combines rapid prototyp-
ing and development, ease-of-use, object-oriented design principles, seamless
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cross-platform support, and simple integration with a huge body of third-party
libraries [60, 61].

To identify the most time-consuming regions of the BLonD code, we built
a lightweight time profiler. In Fig. 4.2, we can see the run-time breakdown of
four representative BLonD simulation cases. The seven tagged methods, namely
LIkick(), drift(), hist(), fft(), stats(), SR() and kick() aggregate 99%
of the simulation time. Thus, in the remainder of this section wer refer to
them as benchmarks, and focus our efforts on optimizing their performance
individually but also collectively, whenever possible.

As a first approach to reduce the run-time, the selected benchmarks were
ported to C++; a programming language that is well suited for performance-
critical applications. To interface the existing Python code with the C++ ex-
tensions, the C++ sources are compiled into a shared library which is exposed
to Python via the ctypes module. This hybrid implementation combines the
best of both programming languages; the usability of Python in the front-end
and the efficiency of C++ in the compute-intensive back-end. Furthermore, it
allows for fine control over the compilation process of the C++ sources.

A noticeable speedup was extracted by porting the computationally intensive
core to C++ and is reported in Fig. 4.3. The first bar of every group shows the
overall speedup of the testcase specified in the x-axis and the remaining bars of
every group show the speedup of each individual benchmark in that testcase.
The run-time ranges from 3.3× to 12.5×, or 7.5× on average. The SR() method
of the FCC testcase used the Boost library [62] for the Pseudo-Random Number
Generation (PRNG) as it was noticed at this early stage that the STD library
PRNGs performed worse. The fft() benchmark has not been optimized with
respect to the Python-only version as at that moment, as fft() was allocating
a very slight percentage of the run-time. However, as we will see below, the
fft() performance will be revised in Sec. 4.5.

4.3 Probing Performance Counters for Opti-
mization

Software developers utilize performance counters extracted with the aid of the
Performance Monitoring Units (PMUs) to better understand workload bottle-
necks and act accordingly. Due to the increased micro-architecture complex-
ity of modern processors, and the large number of performance counters, this
process can be cumbersome and error prone. To deal with these challenges,
the Top-down Micro-architecture Analysis Method (TMAM) [47] has emerged,
and has been integrated in widely-used profiling tools like the Intel VTune [63]
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Figure 4.3: Per-testcase and per-benchmark speedup of the
first BLonD++ revision compared to the initial, Python-only ver-

sion.
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Figure 4.4: Top-Down breakdown of pipeline slots into differ-
ent categories.

and the Linux Perf [64]. TMAM is a low-overhead, hierarchical method that
effectively pinpoints performance limitations in modern, out-of-order (OOO),
super-scalar processors. TMAM divides the total number of processor pipeline
slots into four main categories:

Bad Speculation (BS) denotes slots wasted due to all aspects of incorrect
speculations like mis-predicted branches.

Retiring (RET) denotes slots utilized by “useful operations”. Ideally, all slots
should be attributed here. However, a high retiring fraction does not
necessary mean that there is no room for improvement.

Front-End Bound (FEB) denotes stalled slots because the pipeline’s front-
end undersupplies the back-end. The front-end is the portion of the
pipeline responsible for fetching the next instruction from the ICache and
decoding it into micro-operations to be executed by the back-end.

Back-End Bound denotes stalled slots due to lack of resources to accept new
operations. It is further divided into: Memory bound (MB) which
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reflects execution stalls due to the cache and memory subsystems, and
Core bound (CB) which reflects either pressure on the execution units
or lack of Instruction Level Parallelism (ILP).

The above categories are then further broken down into sub-categories (see
Fig. 4.4), that are more closely associated with one or a few possible bottlenecks.
Each category is assigned a weight, and the category with the highest value is
flagged as the one limiting the workload’s performance, therefore the developer
can safely ignore all the other categories and focus only in one. Compared
to other approaches, TMAM is generic enough to be applied to any modern
O3 processor, it induces a low time overhead, and it offers clear insights on
micro-architecture related performance bottlenecks.

Following the TMAM approach, we analyze our target benchmarks and
identify the most critical performance issues for each of them.
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Figure 4.5: LHC TMAM cycles breakdown.

In Sec. 4.2, a compelling speedup was reported by porting the computation
core of the BLonD code to C++. To go even further, we need to identify the
performance limitations of the new code. In this section, the TMAM analysis is
applied to the targeted testcases in order to better understand and eventually
tackle the micro-architectural bottlenecks of the BLonD suite.

To reproduce the TMAM breakdown described earlier in this section, a
collection of approximately 90 hardware counters is needed. To facilitate the
automation of the collection process, the command-line interface of the Intel
VTune Amplifier [63] was used. The Instrumentation and Tracing Technology
(ITT) API [65] was utilized to localize the event collection around the regions
of interest as well as to enable a more fine-grained, per-benchmark event group-
ing. Finally, after the collection and grouping of the events was completed,
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Figure 4.6: PSB TMAM cycles breakdown.
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Figure 4.7: SPS TMAM cycles breakdown.

the formulas suggested by TMAM were used to breakdown the total available
processor pipeline slots into the following categories: FEB, BS, RET, CB, and
MB.

Figs. 4.5, 4.7, 4.6, and 4.8 show this breakdown for each of the targeted
testcases displaying the percentage of the total available pipeline slots dedicated
to each of the above-mentioned categories on a per-benchmark base. The bars
on the left each plot show the time contribution of the considered benchmarks
to the run-time. Based on these cycle breakdown figures, the following five
performance inefficiencies were identified.
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Figure 4.8: FCC TMAM cycles breakdown.

4.3.1 Core-bounded LIkick().

The LIkick() benchmark is in overall responsible for a big portion of wasted
cycles due to core-related stalls. Core-related stalls are usually caused by se-
quences of dependent instructions or unbalanced use of the execution units that
leads to instruction serialization and ILP deterioration. Furthermore, LIkick()
contributes significantly to the retiring part. As mentioned in Sec. 4.3, a high
retiring percentage does not necessarily mean that there is no space for im-
provement. In particular, vectorization is a technique that lets more operations
to be executed by a single instruction, thus decreasing the retiring percentage
and speeding up the execution at the same time.

The inefficiency spotted in LIkick() was tackled in two phases. The LIkick()
function computes the energy transferred to each macro-particle, every time the
beam passes through an acceleration cavity. At first, it was noticed that a por-
tion of the main computation of LIkick() was independent of the particle index
and was determined only by the particle distribution bin to which the particle
belonged to. As a result, two auxiliary arrays of a size equal to the number of
bins (∼ 103) were pre-calculated and then used as look-up tables in the main
loop (∼ 106iterations) saving expensive computations. Furthermore, the main
loop was unrolled and partially vectorized.

4.3.2 Memory-bounded drift().

The second identified issue is related to the drift() benchmark. Fig. 4.9 shows
that drift() suffers from frequent memory stalls. To mitigate this pathogenic
behavior, we noticed that the calculation of drift() and LIkick() can be
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Figure 4.10: Comparison of STD and VDT libraries with the
gcc and icc compilers in kick(). The STD-icc configuration is

on average 6.4× faster than the STD-gcc configuration.

interleaved. By doing so, the memory loads are reduced roughly by 50% and
therefore the pressure to the memory subsystem is reduced.

4.3.3 Inefficient kick() implementation.

The third issue concerns the kick() benchmark that dominates the run-time of
the PSB testcase. The most time consuming part of kick() is the calculation of
the sin() function. In Fig. 4.10, the performance of kick() is evaluated with
the C++ Standard Library (STD) [66] and the VDT Library [67] compiled
with the gcc and icc compilers. The values on the y-axis are normalized to the
STD-gcc configuration. The fastest configuration appears to be the use of the
STD library compiled with the icc compiler which is on-average 6.4× faster
than the STD-gcc configuration.

4.3.4 Inefficient SR() Implementation.

The SR() benchmark is responsible for the fourth bottleneck. In the FCC
testcase, SR() dominates in the RET, FEB, BS categories and the run-time.
The most time-consuming task of the SR() benchmark is the pseudo-random
number generation (PRNG). In Fig. 4.11, the performance of three different
PRNG libraries is evaluated: STD [66], Boost [62] and Intel MKL [68]. The
latter is the most efficient and outperforms the STD library by 11.4× on average
across a range of input sizes.
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Figure 4.11: Benchmarking the STD, Boost and MKL libraries
for the PRNG methods in the SR() function. The MKL PRNG
method is on average 11.4× faster than the STD counterpart.
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Figure 4.12: Breakdown of the “other” part of the LHC test-
case before and after porting PhaseLoop() and RFVCalc() to

C++.

4.3.5 Large Contribution of “other” in LHC Testcase.

The final underlined limitation appears in the LHC testcase. The “other” part,
which represents the code that does not belong to any of the considered bench-
marks, allocates 8% of the run-time. While this might seem as a minor issue, it
is crucial to reduce the contribution of the serial parts as they greatly affect the
overall scalability of the code. With detailed profiling, we discovered the two
most significant methods of the “other” part: RFVCalc() and PhaseLoop(). By
parallelizing and porting them to C++ the contribution of the “other” part to
the overall run-time dropped to 3.5%. Fig. 4.12 summarizes the run-time break-
down of the “other” part in the LHC testcase, before and after the porting to
C++.

Tackling the issues mentioned above with the suggested techniques lead
to the next generation beam longitudinal dynamics simulator suite, BLonD++ .
The evaluation of the single-core performance of BLonD++ is given in Sec. 4.6.2.

4.4 Roofline Model Assisted Analysis
The vast complexity and variability of modern applications have motivated CPU
architects to incorporate a plethora of hardware components in CPU proces-
sors, e.g. Fused Multiply Add (FMA) units, multiple cache levels, wide vector
units, multiple hyper-threads per CPU core, among others. This has resulted
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Figure 4.13: Roofline model applied in the kick() benchmark.
The best performing variation (v6-s10-icc-vec) is bounded by L2
cache bandwidth. To break through this ceiling, we need to fit

the entire data-set in the L1 cache.

in a complex processor design, which makes it challenging to exploit to its full
potential by application developers.

Usually, when executing an application in a given CPU architecture, one or a
few resources are those that limit the application’s performance. For example,
memory-intensive workloads are limited by the cache capacity and memory
bandwidth, while CPU-intensive workloads are less sensitive in terms of memory
capacity but are prone to congestion in the integer or floating point execution
units. Knowing which resource is limiting the application’s performance is a
valuable insight and can motivate certain optimization strategies.

The Roofline model [48, 49], is a graphical representation of the theoretical
upper-bound performance of a computer architecture. By taking into consid-
eration the bandwidth of the memory and cache components, as well as the
throughput of various compute units it offers useful insights and guidelines for
improving applications, and also evaluating how close to their maximum poten-
tial they perform.

In Fig. 4.13, we can see an application of the Roofline model for the purposes
of optimization of the kick() benchmark. The inclined lines correspond to the
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bandwidths of the various memory structures, while the horizontal ceilings cor-
respond to execution units related optimizations. Each bullet point represents
a different variation of the kick algorithm. As we can see, the operational in-
tensity is only slightly affected, since it is a property of the algorithm. The
attained performance of the best variation (v6-s10-icc-vec) has hit the L2 mem-
ory bandwidth ceiling. Therefore, this is an indication that in order to extract
more flops/sec, we need to modify our algorithm so that the dataset can mostly
fit in the L1 cache. Unfortunately, this is not always possible. However, we
can safely stop optimizing this particular algorithm, since it has reached its full
potential in this specific evaluation platform.

4.5 Code Parallelization
To anticipate forthcoming computational challenges in the field of beam dy-
namics, the seven considered benchmarks were parallelized.

The framework used to express parallelism is the OpenMP [12]. Simplicity,
maturity, compiler support, and scalable performance are some of the assets that
made OpenMP the most popular shared-memory parallelization framework. In
general, most benchmarks were parallelized using the parallel loop pragmas.
Some benchmarks, like hist() were not inherently parallel as they need to
update shared data structures. In this case, to avoid atomic operations or other
means of synchronization, each thread computes a private histogram and in
the end the private histograms are reduced to a global one. For the fft()
benchmark, the multi-threaded version of the FFTW library [69] was used. We
performed a deep evaluation and analysis of BLonD++ scalability, reported in
Sec. 4.6.3.

4.6 Experimental Evaluation

4.6.1 Experimental Setup

The proposed BLonD++ library is evaluated experimentally on a Non-Uniform
Memory Access (NUMA), multi-core server platform. Table 4.1 summarizes the
hardware set-up. The Intel Turbo Boost technology and the hyper-threading
feature were disabled for more stable and reproducible measurements. The
standard deviation of the reported results is ≈ 1%.
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Table 4.1: Hardware Set-up.

Model Intel Xeon Haswell
E5-2683v3 @ 2.00GHz

OS CentOS Linux 7.4
kernel 3.10

Slots 2 Cores/Slot 14 (Total: 28)
L1I & L1D 32KB/core (Total: 896KB) L2 256KB/core (Total: 7MB)
L3 35MB/slot (Total: 70MB) DRAM 64GB
Compiler gcc 5.3 & icc 18.0 Flags -O3 -ffast-math -mtune=native
Turbo Boost Off Hyper-Threads Off
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Figure 4.14: Single-core execution time evaluation of
BLonD++ after mitigating the identified issues with TMAM.

4.6.2 BLonD++ Single-core Performance

Fig. 4.14 presents the speedup gained by mitigating the identified bottlenecks
described in Sec. 4.3.

The Likick() that now includes drift() in all testcases except PSB, has
been improved by a factor of 2× to 3× in terms of run-time. This is mainly
the result of saving computations by utilizing the look-up tables described in
Sec. 4.3, reducing memory loads by overlapping LIkick() with drift(), and
finally employing auto-vectorization. The kick() benchmark that was domi-
nating the PSB testcase is 8× faster in the fully optimized version. In the FCC
testcase, the SR() has been improved by a factor of 3× due to the use of the
random number generation functions from the MKL [68] library. Note that in
the previous, un-optimized version, the Boost [62] library was used and not the
C++ STD [66] library. In the fft() benchmark, the Scipy [60] FFTs have
been replaced by the more efficient FFTW [69] library. The fft() benchmark
demonstrates a speedup of up to 3.3×.

In Fig. 4.15, the cumulative speedup of the final BLonD++ version against
the initial Python-only version is presented. BLonD++ achieved a 18× speedup
in the four representative testcases on average. This means that a previously
day-long, single-core simulation, can now be completed in 80 minutes while a
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Figure 4.15: Single-core cumulative speedup of BLonD++
over the initial BLonD version. BLonD++ demonstrates a 18×

speedup on average.

Table 4.2: BLonD++ scalability efficiency.

Testcase Non-parallel (%) Efficiency (%)
4 thr. 14 thr. 28 thr.

FCC 0.85 95 80 73
PSB 3.73 95 85 84
SPS 0.35 93 47 44
LHC 9.40 93 80 81

Mean 3.58 94 73 71

week-long simulation needs only 9 hours to complete. Furthermore, this dra-
matic reduction in execution time has enabled the scientists using BLonD to
simulate scenarios that combine more complex physics phenomena with finer
resolution. For instance, in the SPS, modeling 144 bunches was crucial to get
more accurate predictions for the upgrade of the machine, since bunches are cou-
pled through intensity effects. This only became possible with the optimized
BLonD++ version.

4.6.3 Scalability Analysis

The dramatic single-core speedup reported in the previous section is sufficient to
enable studies of physics effects that were previously unfeasible due to run-time
limitations in deeper detail. Nevertheless, as future challenges are anticipated,
the considered benchmarks were parallelized to provide even greater speedups.

As mentioned in Sec. 4.5, OpenMP was used to express parallelism. The
multi-threaded version of FFTW [69] was used in the fft() benchmark. FFTW
enables multi-threading only after a certain threshold of input points. This is
why the fft() benchmark shows scalable behavior only in the SPS testcase
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Figure 4.16: Intra-node scalability stressing of four real-world
test-cases.

where the problem size is large enough. The FFTW library also defines the
exact number of utilized threads depending on the input size.

Fig. 4.16 summarizes the scalability analysis for the four selected testcases.
The top subplot of each sub-figure shows how the contribution of every bench-
mark to the total execution time changes with the increase of the thread count.
The contribution of the multi-threaded parts decreases with the increase of the
threads, and correspondingly, the non-parallelized parts become more signifi-
cant as the thread count increases. This means that for a testcase to be scalable
as a whole, all of its sub-parts need to be sufficiently scalable. The bottom sub-
plot of each sub-figure shows the speedup of each benchmark as well as the
speedup of the whole testcase, compared to the single threaded execution.

In general, most of the benchmarks demonstrate decent scalability. However,



4.7. Memory-Bound Limitation 39

not all testcases scale well as a whole. In the LHC and PSB testcases the
“other” part, dominates the run-time when the thread count increases. The
“other” part needs to be further broken down into sub-parts, analyze them and
explore new optimization opportunities. In the SPS testcase, LIkick() does
not demonstrate a very scalable behavior. This is mainly due to the big input
size which requires more than 1.2 GB of memory. As the thread count increases,
the overall performance is limited by the memory bandwidth. This explains the
speedup jump from 14 to 28 threads. The first 14 threads are allocated in the
first node to avoid expensive inter-thread communication via the main memory.
The second group of threads is scheduled in the second node, which unlocks an
extra 35 MB of L3 cache. As a result, the performance of this testcase scales
ideally from 14 to 28 threads. Finally, the FCC testcase demonstrated the most
scalable behavior among the testcases.

Table 4.2 shows how efficiently each testcase scales. The “Non-parallel%”
column shows what percentage of the run-time is spent on serial code. The effi-
ciency has been calculated as the ratio of the measured speedup to the theoreti-
cal speedup according to Amdahl’s law. All the reported values are percentages.
We show the efficiency for four, 14 and 28 threads. Four threads is a typical
number of cores that a desktop computer has, 14 is the number of cores in each
node of the platform used for the experimental evaluation and 28 is the total
number of available cores in the experimental platform. On average, BLonD++
achieved near-optimal, 94% scalability efficiency with four threads. This in-
dicates that the multi-threaded benchmarks are indeed efficiently parallelized,
successfully avoiding harmful effects of synchronization and load imbalance.
Moreover, BLonD++ achieved over 70% efficiency with 14 and 28 cores, which
is acceptable considering the system’s configuration. Nonetheless, there is still
room for improvement.

4.7 Memory-Bound Limitation
Despite our efforts to parallelize the most computationally intensive regions
of our code, we saw that in large thread counts, BLonD++ is constrained by
the memory hierarchy. This limitation appears quite often in modern parallel
applications. In the coming section, we will see how we employ distributed com-
puting and horizontal scaling to allow multiple computing nodes to collectively
run BLonD simulations. This not only addresses the memory-bound limitation,
since the memory bandwidth is effectively multiplied by the number of available
computing nodes, but also allows our code to scale across multiple computing
nodes.
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Chapter 5

Scale-Out Beam Dynamics

5.1 Ever-Growing Simulation Sizes and Hori-
zontal Scalability

The single-node optimized BLonD++ code managed to efficiently reduce the
run-time of beam dynamics simulations and push the boundaries of practicable
simulation scenarios further. However, the past and upcoming synchrotron
upgrades, including the LHC Injector Upgrade (LIU) project [28], the High-
Luminosity LHC project (HL-LHC) [29], and the studies of future machines,
like the FCC [31], keep pushing the current technology boundaries and call for
larger and more extensive simulation studies.

As shown in Chapter 4, BLonD++ is constrained by the memory bandwidth
when increasing the thread count. As a consequence, it cannot exploit exist-
ing or future multi-/many-core processors to their full potential. Furthermore,
even if this issue was mitigated, our server infrastructure would have to be up-
dated with newer, faster processors in order to be able to continue scaling the
simulation sizes and maintain the execution time under a feasible extent.

Apart from BLonD++ scalability limitations, simulations of high-energy par-
ticle physics inside circular accelerators comprise a scientifically and computa-
tionally challenging task. These workloads are typically inherently parallel and
fit naturally in a distributed-memory, weak scaling environment using MPI [70]
(Message Passing Interface). Furthermore, strong-scaling within a node is also
essential. As a result, a hybrid, distributed-shared programming model com-
bined with hardware-specific code tuning is required to extract maximum per-
formance out of modern CPUs. Optimizing and tuning scientific codes, while
aided by compiler features, has become a highly manual endeavor that requires
integrating awareness of the application-specific features and the underlying
system architecture: the memory subsystem, the execution pipeline, the con-
current threads, and the SIMD vector units [46].

To undertake this agenda, in this section we design, optimize and evaluate
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Figure 5.1: The hybrid, MPI-over-OpenMP HBLonD archi-
tecture.

HBLonD, a hybrid, MPI-over-OpenMP system for running longitudinal beam
dynamics simulations. As seen in Fig. 5.1, HBLonD relies on MPI [70] to
enable inter-node communication and cooperation between remote computing
nodes. HBLonD is built on top of BLonD++ , therefore OpenMP [12] is used
for intra-node parallelization. We apply three software optimisation techniques
to minimize the inter-node communication and synchronization overhead. At
first, we develop a mixed data- and task-parallel model. Data parallelism is
used across the nodes and task parallelism is used among the intra-node MPI
processes to profit from fast shared-memory communication. Then, we discuss
and evaluate two traffic optimisation and relaxed synchronisation techniques,
motivated by the modelled physics phenomena. Finally, we develop a dynamic
load-balancing scheme that periodically re-shuffles the workload to ensure that
all the worker processes progress at the same rate. HBLonD is evaluated against
the previous state-of-the-art BLonD++ [58], using three real-word simulation
scenarios, each targeting a different particle accelerator. We show that HBLonD
can successfully scale up to 32 nodes or 640 cores, showing an average 40.5x
speedup against BLonD++ .

5.1.1 Real-World Testcases

Three real-world testcases, representative of typical BLonD workloads were used
for the performance evaluation and optimization of the HBLonD MPI-over-
OpenMP distributed system. Each testcase targets a different synchrotron in
the CERN complex, and has its own distinct characteristics. The execution time
of a simulation highly depends on the modelled physics, and the modules the
user chooses to combine. A short description of the three real-world testcases
follows.
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The Proton Synchrotron (PS) testcase The PS is the second synchrotron
of the LHC injector chain. It is CERN’s oldest synchrotron and has a circum-
ference of 628 m. The PS can accelerate protons up to an energy of 26 GeV,
before injecting them into the SPS. Due to its relatively small size and closely
spaced bunches, the PS is dominated by collective effects, meaning that lead-
ing particles of the beam affect the dynamics of trailing particles. The PS can
accelerate up to 18 bunches simultaneously. The aim of the PS testcase we
benchmarked is to study and control the beam instabilities that can manifest
due to collective effects. The characteristic timescale of the beam motion in the
PS is longer than in the other two real-world test cases, resulting in a slower
moving, more “rigid” dynamics.

The Super Proton Synchrotron (SPS) testcase The SPS receives bunches
of charged particles from the PS, accelerates them to 450 GeV and delivers
them to the LHC or other experiments. With a circumference of 7 km it is
the second-largest machine in the CERN’s accelerator complex and one of the
largest machines worldwide. For the LHC-type beam, the SPS can receive up
to four batches of 72 bunches, or 288 bunches in total. In the testcase used for
the evaluation [43], due to the very high number of particles and bunches in
the machine, collective effects were an important limitation. Furthermore, the
detailed impedance model requires very fine frequency sampling rate, calling
for time-consuming FFT operations on large input arrays. Finally, the beam
phase loop, a dynamic feedback system required to correct the bunch phase
with respect to the RF system, adds to the overall simulation complexity.

The Large Hadron Collider (LHC) testcase With a circumference of
27 km and a collision energy at 13 TeV, the LHC is the world’s largest and
most powerful particle collider. The LHC can fit up to 2808 bunches of charged
particles. The testcase used in the evaluation [71, 45] describes one of the
critical elements of machine operation, which is the controlled emittance blow-
up during the acceleration ramp, required for beam stability. An RF noise
is generated and applied turn by turn for the so-called controlled emittance
blow-up, which is a stochastic process that increases the bunch size and largely
affects the simulation results. As the LHC uses super-conducting magnets, the
acceleration ramp to 6.5 TeV takes about 13 million simulation steps, making
the simulation extremely time consuming, even for the smallest sizes using a
single bunch.
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5.2 Base Distributed Implementation
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Figure 5.2: The baseline HBLonD workflow. A weak-scaling,
data-parallel model is used to scatter the workload among the

available MPI processes.

In Fig. 5.2, the baseline HBLonD execution flow is displayed. A typical
simulation begins with the generation of the 2-D particle distribution. For this
purpose, an extensive collection of particle distribution generation methods is
included in BLonD. Since this initialization step is executed only once, it is
not parallelized with MPI. The particle distribution is then scattered equally
among the available MPI workers which reside in the same or remote nodes. As
seen in Sec. 5.6.3, one worker per NUMA socket is providing the best and most
stable performance.

Each worker runs a histogram operation to calculate the so-called beam
profile of its assigned particles. All the local profiles are summed in order to
generate the global beam profile that is needed for the subsequent stages. The
global beam profile is used as input to the intra-worker processing stage. This
stage is composed of a collection of operations that can only be parallelized
among the threads of a worker but not across workers. Every worker is running
the same sequence of operations on the same input, producing the exact same
output. Even though it might seem as a redundant operation and a waste of
resources, it is actually more efficient than having only one worker to calculate
these tasks and then broadcast the result, since the remaining workers would
be idling and also they would have to communicate.

Then, the workers perform the particle tracking, which essentially updates
the particle coordinates according to the equations of motion, for all their as-
signed particles. The kick and drift are the two routines that absolutely need
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to be applied during the tracking stage, as discussed in Sec. 3.2. Their com-
putational complexity is linear w.r.t. the number of simulated macro-particles.
This succession of operations from histogram to tracking is repeated hundreds
of thousands or millions times, before the final gather operation that assembles
the resulting particle distribution that is one of the main outcomes of a BLonD
simulation. The percentage that each of the above stages allocate in typical
simulation scenarios is discussed in Sec. 5.7.

In HBLonD, a series of optimization techniques were developed with the
aim of minimizing the communication and intra-worker processing stage time.
All those techniques are compatible with each other and their activation can be
easily controlled via a set of command-line arguments.

5.3 Mixed Data and Task Parallelism
HBLonD is using a data-parallel model that distributes the input data (particle
coordinates) across the available workers and lets every worker operate mainly
on their local data. Generally, the stages of the main execution pipeline cannot
profit from task parallelism since the output of each stage is required before the
subsequent stage can begin executing.

However, among the various tasks of the intra-worker processing stage, there
is some degree of task-parallelism that can be exploited. Typically, three or
more tasks need to be calculated during this stage, depending on the use-case.
The tasks are divided into two groups and assigned to every pair of MPI pro-
cesses sharing the same node, as seen in Fig. 5.3. When both processes finish
calculating the assigned tasks, they exchange the calculated data using fast
shared-memory message passing, since they share the same computing node
and memory hierarchy. The mixed data- and task-parallel model is evaluated
experimentally in Sec. 5.6.4.

5.4 Approximate Computing Techniques

5.4.1 Description

To further optimize the inter-node network traffic and extract higher scalabil-
ity and speedups, we developed two computing techniques motivated by the
physics of the simulated phenomena. These techniques trade off prediction ac-
curacy, which is strongly case dependent, for performance gain. Therefore, they
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Figure 5.3: Task-parallelism exploited by neighbouring MPI
processes during the intra-worker processing stage.

need to be controlled by experienced scientists that deeply understand the sim-
ulated problem and can decide which measure of error should be calculated and
whether they can afford a loss in prediction accuracy for improved performance.

Representative Distribution Subset (RDS) In the beam distribution
scatter phase, a large number of particles, in the order of 100s of millions, is
distributed among a small number of MPI workers. Consequently, every worker
is assigned 10s or 100s of million particles. This traffic optimisation method
is based on the assumption that each worker has been assigned a representa-
tive subset of the particles that describes the overall distribution adequately.
To ensure that the subset of particles assigned to each worker represents the
features of the original particle distribution, the particles are scattered among
the available workers randomly. As seen in Fig. 5.4 and expressed in Eq. 5.1
to approximate the global beam profile, worker i can simply scale up the local
beam profile by the ratio of all particles to the assigned particles:
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globalProfile ≡
N∑
i=0

profilei ' profilek ×
∑N
i=0 particlesi
particlesi

(5.1)

where N is the total number of workers, particlesi are the particles assigned
to worker i, and profilei is the local beam profile of worker i. As a consequence,
the costly all-to-all beam profile reduction is avoided, the workers’ execution is
disengaged, and the time needed for communication and synchronization among
them is greatly reduced.

Smoothly Revolving Profile (SRP) In the 2D time and energy phase
space, the particles are slowly revolving around the synchronous point with
every simulation step. This approximation method is based on the assumption
that the beam profile is not changing rapidly between consecutive steps, which
is generally true for the slow synchrotron motion of particles, in the absence of
specific scenarios e.g. fast beam instabilities. Indeed, as depicted in Fig. 5.5,
in a real-world scenario with a sufficient number of simulated particles per
histogram bin, the per-turn variation of the beam profile is limited to 1.3% on
average. This condition needs to be verified by the user before enabling the
approximation. SRP updates the beam profile every K iterations as shown in
Eq. 5.2, which is generally tolerable in terms of precision for small K values,
e.g. two or three.
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in terms of simulation accuracy.

profilet = profilet+1 = · · · = profilet+K−1, t mod K = 0, (5.2)

where profilet is the beam profile of turn t. By doing so, the need to perform
the histogram calculation and the costly, communication-heavy global reduction
in every turn is eliminated, reducing the simulation latency significantly.

Floating Point Arithmetic Precision Another typical performance-accuracy
trade-off lies in the floating point datatype size. BLonD traditionally uses 64-
bit floating point numbers to ensure maximum accuracy in the calculations
involved in BLonD simulations. However, using 32-bit floating point numbers
can provide significant latency gains, without major accuracy loss. In the 32-bit
HBLonD version, the datatype length of all floating point variables is reduced
from 64-bit to 32-bit. Additionally, all the routines that were previously op-
erating on 64-bit floats have been adjusted to operate on shorter, 32-bit wide
floats. The two previous approximate computing techniques, i.e. RDS and SRP,
can provide additional execution latency gain when combined with the 32-bit
floating point datatype, as shown in Fig. 5.15.

5.4.2 Accuracy Loss Evaluation

In this section we evaluate the approximate computing techniques detailed
above in terms of accuracy loss. The first two techniques, namely RDS and
SRP, can be combined with 32-bit floating point size (f32), therefore in to-
tal five different approximate variations are considered: SRP, SRP-f32, RDS,
RDS-f32 and f32.
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Naturally, the five methods described above produce different simulation re-
sults compared to the baseline, approximate-free version. To be able to evaluate
the magnitude of this difference, we put it in perspective with the statistical
fluctuations induced by altering the input seed of the random number genera-
tor function used during the particle distribution instantiation. This statistical
fluctuation is considered acceptable, when using a large enough number of sim-
ulated macro-particles.

In Figs. 5.6 and 5.7, there are three data-points in addition to the five
approximate variations. Base corresponds to the approximate-free, exact sim-
ulation. The Ref1 and Ref2 data-points are also non-approximate, but have
slightly altered initial particle distribution. More specifically, as part of the
particle coordinates generation process, a Gaussian random number generator
is used. Passing a different seed value to the generator results in a distinct set
of particle coordinates, which follows the same Gaussian distribution. By using
a large enough number of particles, the statistical deviation of two particle dis-
tributions with a different seed is minimized. The only difference between Ref1,
Ref2 and Base is the seed value used for the generation of the input particle
distribution. To limit the statistical fluctuation deriving from the exact instan-
tiation of the particle coordinates, large numbers of particles were used in the
experiments shown in Figs. 5.6 and 5.7, i.e. four million.

Fig. 5.6 shows the accuracy loss in the energy coordinate while Fig. 5.6
shows the accuracy loss in the time coordinate. In both figures, the cross
points correspond to the distribution’s average after a relatively large period of
simulated turns (i.e. approximately 40 thousand). The errorbars show the per-
turn fluctuation of the distribution’s average in the last few turns. As described
above, the Base, Ref1, and Ref2 datapoints are basically equivalent, and their
differences reflect the statistical fluctuation noise.

The best agreement can be observed in the PS testcase, where both the
average values and the errorbars of the base, reference and approximate dat-
apoints are essentially identical. This behavior derives from the fact that in
the PS simulation scenario the particle distrubution is slowly moving and more
resilient to micro-approximations. As a consequence, the PS testcase is a good
candidate for more aggressive approximations in order to save execution time.

On the other hand, in the time coordinate evaluation of the LHC testcase
(Fig. 5.6), we observe the greatest variation between the base, reference and ap-
proximate values. This is related to the RF noise diffusion phenomenon present
in this specific testcase. The RF noise is also generated based on a random
number generator, and the final particle distribution depends on the generated
noise sequence. The effect of the applied noise largely affects the simulation’s
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dynamics. As a consequence, it overshadows the final result variation coming
from both the seed derived statistical fluctuation, and the approximate tech-
niques. Moreover, by observing the error bars of all three approximate versions
using 32-bit float (i.e. SRP-f32, RDS-f32, and f32 ), we see that reducing the
data-type precision introduces a significant loss. This is due to the fact that
32-bit floats are used for the RF noise, which as said above, largely affects the
energy and time coordinates. Nevertheless, Fig. 5.6 shows that the base point
is closer to the approximate points than the two reference points for the LHC
testcase. This means that due to the presence of the RF noise, the LHC test-
case is more sensitive to the input particle distribution, and that the deviation
deriving from the approximations is less significant than the deviation deriving
from the particle distribution generation.

Finally, the SPS testcase falls within the two extremes, and shows mostly
good agreement between the approximate and reference points, and the base
simulation results. In the SPS testcase, it can be seen that the RDS approxi-
mation method reduces the per-turn variation errorbars both in terms of energy
and time. The RDS method decouples the MPI workers and lets them approx-
imate the global beam profile based on their local beam profile. This effectively
reduces the per-worker distribution size, which is possibly the reason why the
pet-turn variation errorbars appear to be narrower.

In conclusion, all the five approximate computing techniques presented above
provide acceptable agreement with the exact, non-approximate simulations.
Their error magnitude is strongly testcase dependent. Approximate computing
is therefore a valuable tool for the expert users of BLonD, and can be used to
reduce the run-time of lengthy simulations, as will be shown later in Sec. 5.6.5.

5.5 Dynamic Load Balancing
During the evaluation process, an occasional increase in the latency of some
nodes was noticed, despite the fact that the computing cluster used for devel-
opment and evaluation was composed of homogeneous hardware. The delayed
nodes would require significantly more time than others to execute the same
amount of workload. This increased latency appeared to be spontaneous and
temporal, but in most of the cases it would persist for small or medium periods
of time. As a result, the execution was imbalanced. Since in every iteration
all the workers need to synchronize (upper half of Fig. 5.8), the latency of the
slowest worker is experienced by all workers in a given simulation step. The
load imbalance was not coming from the characteristics of the data, since the
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performance of the whole system.

same operations are applied universally to all available data, but from the char-
acteristics of the cluster and the nodes.

Slow workers would experience near-zero waiting times at the synchroniza-
tion barriers while faster workers would experience a larger waiting time. By
measuring the time the workers spent synchronizing, we can calculate the spread
of the workers’ execution time. Using this metric we can evaluate if and how
imbalanced a workload is. Figure 5.9a shows the time spread, normalized to the
total execution time for three HBLonD testcases (described in Sec. 5.1.1) when
running two-, four-, eight- or 16-node simulations. Multiple runs per testcase
and number of nodes were executed, and the red capped lines show the standard
deviation of these runs. The time spread ranges from 11.6% to 30.1%. Further-
more, we observe that when using more nodes, the time spread is increasing
since, statistically, the chances that one or more workers will undergo a delayed
phase increase. On the other hand, while in the smaller node configurations
the average time spread is low, the standard deviation is much larger. This
means that most of the runs did not experience any increased latency phases,
but there were still some few cases with severe load imbalance.

To mitigate this issue, we developed a Dynamic Load-Balancing (DLB)
scheme. The proposed DLB scheme is generic enough to alleviate imbalances
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Figure 5.9: The difference in run time among the workers,
normalized to the total execution time. Without DLB, the time
spread ranges from 11.6%-30.1%. With DLB, it is limited to

2.7%-5.9%.

that originate from various sources such as the cluster’s topology, the intercon-
nection network, and the involvement of heterogeneous hardware. The proposed
DLB scheme has been customized to the following HBLonD’s specific workload
properties:

1. tCompi = pi × mi + ci: The computation time of worker i is linearly
associated with the number of particles (pi). The computation time is
considered the time needed to perform the particle tracking (kick and
drift methods) as well as to calculate the beam profile (histogram opera-
tion). All these methods have a linear time complexity with the number
of input particles. The first subplot of Fig. 5.10 validates experimentally
this assumption.

2. tCommi = const, tIntrai = const: The nodes only need to communicate
the beam profile and not the beam coordinates, thus the communication
(tComm) and intra-node (tIntra) processing time are independent of the
number of particles. The length of the beam profile is equal to the num-
ber of histogram bins, which is typically much smaller, of the order of
1%�, than the number of particles. The second and third subplots of
Fig. 5.10 shows that the communication and intra-node processing time
are basically independent of the particles’ size.

3. Perfect load balance⇔ tSynci −→ 0: In a perfectly load-balanced scenario,
all workers are in sync and experience near-zero synchronization time
(tSynci).
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Figure 5.10: Experimental verification of the two first work-
load assumptions on which the DLB scheme is based.

4. Once a worker enters a slower than usual execution phase, it maintains
this status for a medium or long period of time.

According to the first property, the workers by measuring their computation
time, they can apply a least-squares, 1st-degree polynomial fit method to cal-
culate the slope (mi) and y-intersect (ci) coefficients. A weighted polynomial
solver is used, that takes into account a fixed number of past measurements.
To allow for swift reaction to developing imbalances, greater weight is given to
the more recent data points. An exponential decay function is used to calculate
the weights W, given by the following equation:

W [k] = e−(H−k)/DC , k ∈ {1...H} , (5.3)

where H is the number of historic points considered and DC is the decay coef-
ficient.

Due to the synchronization barriers before the communication phase, all
workers will experience the same per-turn latency T :

tCompi + tIntrai + tSynci = T,
property 1−−−−−−→ (5.4)

pi ×mi + ci + tIntrai + tSynci = T. (5.5)

The tIntrai can be also measured by each worker, and since it is a constant
independent of the particles, let us incorporate it in ci:

pi ×mi + ci + tSynci = T. (5.6)

Faster workers will experience longer synchronization time so that the turn
latency of all workers is equal to T . According to the 3rd property, we want to
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Table 5.1: Dynamic-Load Balancing Scheme Configurable Pa-
rameters.

Name Default Description

Rebalance Period 1000 Number of turns between two re-balancing operations.
Txmin 3% Min. transaction size as a percentage of the total particles.
Pmin 10% Min. percentage of particles assigned to a worker.
History length 20 Number of points to consider in polynomial fitting.
Decay Coefficient 5 Decay coefficient used in the exponential weight function.

find a new set of (p′
i, T

′) that makes tSync′
i = 0:

p
′

i ×mi + ci = T
′
, and (5.7)

P =
∑N

i=0 p
i
i, (5.8)

where P is the total number of particles that remains constant, and N is the
number of workers. This is a set of N + 1 equations with N + 1 variables. By
solving this set of equations we get:

p
′

i = P + sum1 − ci × sum2

mi × sum2
, where (5.9)

sum1 =
∑N

i=0
ci
mi

, and sum2 =
∑N

i=0
1
mi

. (5.10)

Knowing the number of particles each worker should be assigned in order to
simultaneously arrive at the synchronization barrier (bottom half of Fig. 5.8),
slower-than-average workers have to offload a portion of their workload to faster-
than-average workers. This set of transactions is calculated by minimizing data
traffic[72] and prioritizing transactions within the same node. The workers cal-
culate the particles they need to send or receive from other workers. After
completing these transactions, the workers continue with the next iteration of
the simulation. This process is repeated periodically. The DLB scheme is highly
customizable, and able to cover a wide range of load-imbalance scenarios. The
key configurable parameters and their default values, that were identified by
exhaustive exploration, are summarized in Table 5.1. For optimal and portable
performance, these DLB parameters must be fine-tuned under a specific work-
load, load imbalance scenario, and cluster configuration.

Figure 5.9b shows the normalized spread in time among the MPI workers
when the DLB mechanism is enabled. It is evident that the imbalance among
the workers has been minimized both in smaller and larger node configurations.
The time spread is limited to 2.7% - 5.9%, i.e. 5× lower than without the
DLB mechanism. Furthermore, the more balanced workload brings 17% gain
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in execution time on average across three real-world simulation cases. The
overhead of the DLB scheme is limited to 0.4% for the polynomial fit and p

′
i

calculation, and 1.1% for the particle transactions, so in total 1.5% of the total
execution time.

5.6 Fine-Tuning and Sensitivity Analysis

5.6.1 Experimental Setup Configuration

All reported experiments took place in an HPC cluster hosted at CERN. Every
node contains two sockets, equipped with a 2.2 GHz 10-core Intel Xeon E5-
2630v4, Broadwell micro-architecture [73] processor and 64 GB of RAM. The
nodes are connected using Infiniband [74] and run CentOS Linux 7. Different
configuration containing up to 32 such nodes, or 640 cores were evaluated. All
the data points appearing in this section’s figures represent the average value of
ten identical runs. The standard deviation was most of the time less than one
percent.

5.6.2 Benchmarking MPI Implementations

In this section, we benchmark three of the most widely used MPI flavours: i)
MVAPICH2 [75], ii) OPENMPI3 [76] and iii) MPICH3 [70], in order to deter-
mine which is performing best in terms of elapsed time for our testcases and
cluster configuration. Figure 5.11 shows the run time of each testcase, using
each of the three different MPI implementations, normalized to the run time of
MVAPICH2, thus larger values correspond to longer execution times. The main
MPI operations used in HBLonD are the point-to-point Isend(), Ireceive() and
sendrecv(), as well as the collective allreduce() and allgather().

The rightmost group of bars in Fig. 5.11 shows the average, normalized run
time values for all three testcases. We see that MPICH3 is on average 11%
slower than MVAPICH2, and OPENMPI3 is 17% slower than MVAPICH2. In
addition, MVAPICH2 provided the most stable and reproducible run-times.
Thus, in the following experiments of this section and Sec. 5.7, the MVAPICH2
MPI implementation will be used.

5.6.3 Workers-per-Node Sensitivity Analysis

Apart from the MPI implementation, the number of MPI workers-per-node
(WPN) is another important configurable value that can greatly affect the per-
formance. In Fig. 5.12, we executed all three testcases using a single, two, four
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Figure 5.11: Performance benchmarking of three MPI imple-
mentations: openmpi3, mpich3 and mvapich2. The run times

are normalized to the mvapich2 run time.

or ten WPN, with 20, ten, five or two hardware threads available to each worker,
respectively, since every node contains 20 cores in total. Generally, a very large
number of workers might increase the communication time and negatively affect
the performance. On the other hand, a very small number of workers might
also perform poorly due to sub-optimal memory usage [77].

The cluster used in the experimental evaluation is composed of dual-socket
servers. Each socket forms a separate NUMA domain or locality group [78],
therefore we chose WPN values that allow for all the threads that are assigned to
a worker to remain in the same locality group. For instance, a value of five WPN
would mean that each worker would spawn four threads and one of them would
have two threads in each locality group. This can hurt the performance and lead
to a load imbalance among the workers within a node [79, 80]. In Fig. 5.12, the
reported run times are normalized to the run time of the configuration using
ten MPI WPN. We observe that the outcome of all testcases is qualitatively
consistent; the dual WPN (or one worker per locality group) performs best,
followed by the four WPN configuration, then the single WPN and finally the
ten WPN configuration. Since using one worker per locality group consistently
performs best, in the following experiments we will be always using one MPI
process per locality group.

5.6.4 Task-Parallelism and Load-Balancing Evaluation

As described earlier in Sec. 5.5, a mixed data- and task-parallel model is used
in HBLonD to reduce the time spent in the intra-worker processing stage. Fur-
thermore, to deal with the spontaneous load imbalance that was observed, a
dynamic load-balancing scheme was integrated, that periodically evaluates the
processing rate of the workers and re-distributes the particles assigned to them
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accordingly, in order to ensure minimum waiting time at the synchronization
barriers.

The effect these techniques have on the run time can be seen in Fig. 5.13.
In this figure, base corresponds to the baseline HBLonD without any additional
optimization. LB stands for Load-Balance and TP stands for Task-Parallelism.
Hence, LB-TP is the exact, fully optimized HBLonD. In Fig. 5.13, all the
results were collected using eight computing nodes or 160 cores. With fewer
nodes, the advantageous effects of some of the optimisation techniques were not
evident. This was anticipated since our techniques aim to reduce the time lost
in communication and non-parallelizable regions, which gets more significant in
larger configurations. The run times have been normalized to the run time of
the baseline HBLonD, thus lower values signify faster execution times.
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Figure 5.14: Time spend for inter-node communication with
the various approximate computing techniques.

From a qualitative point of view, a consistent behavior across the three
real-world testcases is observed. HBLonD with TP and LB-TP is on average
faster than the baseline by 13% and 17%, respectively. This is a significant
improvement considering that HBLonD has been based on BLonD++ [58] – a
well optimized software.

5.6.5 Approximate Computing Evaluation

In Sec. 5.4.2, we described three approximate computing techniques that were
designed to reduce the time spent on inter-node communication and other non-
parallelized regions. The Smoothly Revolving Profile (SRP) and Representa-
tive Distribution Subset (RDS) techniques are motivated by the physics of the
simulated process, and the characteristics of the specific test-case. The third
technique, reducing the floating point data-type length, is a typical technique
used to accelerate floating point arithmetic operations and reduce the appli-
cation’s memory footprint. Figure 5.14 demonstrates the total time allocated
for inter-node data exchange in each of the three test-cases when applying the
aforementioned approximation techniques, as well as the combination of SRP
and F32 (F32-SRP) and RDS with F32 (F32-RDS). Eight nodes with 160 cores
in total were used for this experiment. Using smaller datatype size is not affect-
ing greatly the communication time, since most of the traffic has to do with the
beam profile, which is an array of 32-bit integers. The SRP and RDS approxi-
mations reduce the communication time by a factor of 2.5×-5×. As expected,
the RDS effects more the inter-node traffic since it eliminates the need for the
costly all-to-all collective operation, while the SRP technique still applies the
all-to-all operation, but less frequently than in the non-approximate baseline.

Fig. 5.15, summarizes the gain in runtime when applying the aforementioned
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Figure 5.15: Approximate computing performance evaluation.
8 nodes or 160 cores were used.

approximation techniques, as well as the combination of SRP and F32 (F32-
SRP) and RDS with F32 (F32-RDS). Eight nodes with 160 cores in total were
used to perform this experiment. The y-axis shows the runtime, normalized
to the base HBLonD, i.e. without any approximation applied. Lower values
correspond to greater gains in latency. As expected, the combined approximate
versions, F32-SRP and F32-RDS demonstrate the greatest gains in latency,
59% and 52% on average, respectively. SRP calculates the beam profile, which
is one of the most time-consuming operations, only once every three turns.
Furthermore, the costly all-to-all beam-profile reduction is only performed when
the beam profile is updated, i.e. once in three turns.

We observe that the characteristics of the simulated scenario affect the la-
tency gain provided by the various approximate techniques. In the PS testcase,
for instance, using 32-bit floats instead of 64-bit floats provides 33% reduction
in runtime. This is due to the fact that the particle tracking related operations,
such as kick and drift, allocate a large percentage of the total execution time,
and these operations profit the most from the reduced data-type length. In the
SPS testcase, the runtime is reduced by 45% when updating the beam-profile
periodically instead of in every turn. This is explained by the fact that the
all-reduce and the induced voltage operations are calculated periodically, which
jointly account for 40% of the execution time in the SPS testcase. Finally, in
the LHC testcase the RDS method offers 21% latency gain. The RDS method
allows the workers to operate independently by approximating the global beam
profile based on their local beam profile. This completely eliminates the cost of
the all-to-all reduction and any time lost in synchronization among the work-
ers. In the LHC testcase, these two categories were allocating 39% of the total
execution time.
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Figure 5.16: HBLonD strong scalability. The speedup shown
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5.7 Scalability Stressing
In this section, we present HBLonD performance under weak- and strong-scaling
workloads. In strong-scaling experiments, the input size is held constant while
the number of computing resources increases. The purpose of this study is to
determine whether the code can effectively handle the additional resources or
if the scalability saturates quickly, meaning that adding more resources cannot
provide any further performance speedup. This usually happens when a por-
tion of the workload is not parallelized, thus the speedup is upper-bounded by
Amdahl’s law [9].

Fig. 5.16 summarizes the strong-scaling results for the three real-world test-
cases. For every testcase, there are six lines, one for the baseline, optimized
exact version, and one for every of the five optimized approximate versions.
The number of nodes are shown on the x-axis and range from one to 16 nodes,
with each node containing 20 cores. The speedup shown on the y-axis is w.r.t.
to a single node BLonD++ instance with 20 cores. We observe that up to 8
nodes, all versions including the exact HBLonD, demonstrate near-linear scal-
ability. In the largest, 16 and 32 node configurations the speedup seems to
saturate in the exact version. As previously stated, this is a direct product
of Amdahl’s law. However, with the aid of the approximate computing tech-
niques, a speedup of 43.4×, 56.4× and 56.7× is extracted in the LHC, SPS and
PS testcase, respectively. In some of the fewer-node configurations, we observe
super-linear speedups of HBLonD compared to BLonD++ . This is a product of
the task-parallelism exploited by neighboring workers. With task-parallelism,
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Figure 5.17: HBLonD execution time breakdown with and
without approximate computing. As the node count increases,
less time is spent on useful, fully parallelized computations, lim-

iting the scalability.

each worker calculates a subset of all the non-parallelizable with MPI opera-
tions, and then neighboring workers exchange the calculated results profiting
from fast, shared memory communication. These tasks demonstrate limited
scalability, due to the nature of the algorithm or the input size. It is therefore
most preferable to assign less cores to each task and calculate them in parallel,
as is done in HBLonD, rather than using all the available cores in every task
and calculating the various tasks sequentially, as in BLonD++ .

In order to study the factors that limit the code’s scalability, we have to
compare the run-time breakdown of the Base implementation with the F32-
SRP and F32-RDS implementations. In Fig. 5.17, the total runtime is divided
into three categories: communication time (comm), time spent on operations
that are parallelized only intra-node and not across nodes using MPI (serial),
and the remaining is the computation time (comp) that scales with the number
of particles and is parallelized both intra and inter-node.

Ideally, the MPI workers should mostly run fully parallelized computations
and only spend a minimum percentage of their time for communication and
intra-node processing. When using only one computing node, less than 9% of
the run time of all testcases is spent for communication and intra-node process-
ing. When the number of computing nodes increases to 16, approximately 21%
to 36% of the run time of the Base version is used for communication and syn-
chronization among the remote MPI workers. The percentage of the run time
spent for intra-node processing in the Base version, ranges from 6% to 16%. The
most time consuming intra-node processing task are the FFT computations that
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Figure 5.18: HBLonD weak scalability. The throughput is
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take place during the induced voltage calculation. In the PS testcase, about
half of the total run time is spent running useful parallel operation, and the
other half is used for cooperation and non-scalable with MPI operations. This
is limiting the scalability that can be exploited as the node count increases, as
shown previously in Fig. 5.16. When the approximate variations are switched
on, the communication time is effectively reduced to the range of 6% to 15%,
much lower than in the baseline. The intra-node processing time remains at
the same levels as in the baseline, ranging from 6.7% to 17%. Since not more
than a quarter of the total run time is spent for non-parallelizable operation,
we can expect the approximate variations to scale with a further increase in the
number of computing nodes.

To further study HBLonD’s scalability, we stress its performance under a
weak-scaling experiment. In weak-scaling experiments, the workload per node
is kept constant as the number of nodes increases. In Fig. 5.18, the number
of nodes ranges from one to 32, and each time the number of nodes is dou-
bled, the input size is also doubled so that the workload per worker is constant.
The y-axis shows the throughput per computational node, normalized to the
throughput of the smallest configuration, that is the one using a single node.
Ideally, the throughput per node should remain constant as the node count
increases. However, this is not happening since the communication and syn-
chronization time are increasing as more nodes are added. Therefore, with 32
nodes, the normalized throughput per node drops to 40-80%. Again, this is a
consequence of Amdahl’s law, the existence of non-parallelized code regions, as
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Table 5.2: End-to-end real-world case studies run time with
BLonD++ on one node and HBLonD on 32 nodes.

Case Turns Particles BLonD++ HBLonD Speedup
Run Time Run Time 32 Nodes

LHC 14M 192×4M 110 days 61 hours 43.4×
SPS 430K 288×6M 8.8 days 3.7 hours 56.4×
PS 380K 21×32M 2.3 days 1 hour 56.7×

well as communication and synchronization overheads that dominate the execu-
tion as more nodes are added. Nevertheless, the RDS version maintains around
60-80% normalized throughput efficiency, even in the largest, 32-node config-
uration. The RDS technique decouples the MPI workers, by assuming that
their locally calculated beam profile is a representative sample of the global
beam profile. Therefore, with RDS, the communication and synchronization
overheads are minimized, which explains why the throughput per node remains
solid even in large node configurations.

5.7.1 Exploring New Parameter Spaces

In this section, we touch the importance of the speedup recorded with HBLonD
as seen by the user base experience – a team of experienced accelerator physicists
working at CERN, one of world’s largest research facility.

The execution time of a test-case is mainly determined by the number of sim-
ulated macro-particles and synchrotron revolutions (simulation turns) required.
These parameters vary according to the phenomena under study and the phys-
ical dimensions of the accelerator. Usually, for a complete study, thousands of
simulations are run in order to explore the parameter space and discover solu-
tions that optimally satisfy the requirements. The exploration of this parameter
space is an iterative process, and thus run times beyond a few days to a week
are impractical. Users often have to simplify their models to reduce the run
time requirements. Furthermore, simulations lasting longer than a week have a
higher probability of failure due to the imperfect cluster reliability, the sched-
uler’s quota limitations, scheduled maintenance and other unplanned outages.

HBLonD alleviates the aforementioned limitations and enables simulation
of a wide range of new studies, becoming and invaluable tool for accelerator
physicists. Table 5.2 contains the basic input configuration for the three tar-
get test-cases, as well as the estimated execution time with BLonD++ [58] and
HBLonD on 32 nodes, respectively. With BLonD++ , running the LHC case
would be practically impossible. For the SPS, simulating the real amount
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of bunches was impractical and therefore omitted. The speedup brought by
HBLonD enables users to simulate the real operational scenario and discover
some multi-bunched effects (like beam instabilities) that would be impossible
to observe with a reduced number of bunches. Some of these results lead to
hardware design modifications [42, 43] for the ongoing machine upgrades [28],
which would otherwise not have been realised. With HBLonD the LHC and
SPS cases require less than 3 days and 4 hours, respectively.
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Chapter 6

GPU-Accelerated Beam
Longitudinal Dynamics Studies

6.1 CuBLonD: Multi-GPU BLonD Experiments
Graphic Processing Units (GPUs) were originally designed for efficient image
and video processing in computer graphics applications. Over time, their mas-
sive computing capacity as well as the emergence of intuitive programming
models, such as CUDA [81] and OpenCL [82], lead to the widespread use of
GPUs for general purpose applications [83, 16]. GPUs are throughput oriented
machines, meaning that they are optimized for processing large data sets at the
expense of increased latency in smaller-scale data sets.

HBLonD made possible the simulation of a very large number of macro-
particles by harnessing the power of distributed computing, combined with
efficient intra-node scaling. Despite this major breakthrough in longitudinal
beam dynamics simulation studies, the design of future machines, such as the
FCC [31], the upcoming LHC luminosity upgrade project [29], and the discovery
of new phenomena in multi-bunch simulations, are constantly pushing for larger,
longer and more complex scenarios. Furthermore, living in the post Moore’s
law [1] era, the use of accelerator hardware is mandatory to achieve high per-
formance and energy efficiency. These are the main driving forces that lead us
to the development of a GPU accelerated version of BLonD, named CuBLonD,
that will combine the existing MPI infrastructure with CUDA [84] kernels, to re-
duce further the executing time of extremely large simulation cases. This chap-
ter describes the implementation and experimental evaluation of CuBLonD.

Not every application is well-fitted for GPU acceleration. GPUs are tailored
for applications with wide data-level parallelism. BLonD simulations can reach
up to 1 billion of simulated macro-particles, providing enough work to the GPU
hardware to sustain high levels of data-parallelism. Furthermore, frequent CPU-
GPU communication is often a performance limiting factor for GPU accelerated
applications. In CuBLonD, the largest structures, which are the energy and
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Figure 6.1: High-level software architecture of the GPU-
accelerated BLonD code, CuBLonD.

time coordinate arrays, are transferred once from the CPU to the GPU memory,
where they reside for the entire simulation. Only smaller arrays, such as the
beam profile, are transferred more often between the host and the GPU. Finally,
one of the challenges in a code like BLonD, is the variety of kernels required to
model all the physics effects in typical simulation scenarios. Unless a significant
portion of the code is accelerated by the GPU, the gains in execution time will
be severely reduced. Therefore, CuBLonD accelerates almost the entirety of
operations that take place during the main computational loop (see Fig. 5.2),
to limit the potential communication overhead that would be otherwise required.
Overall, more than one hundred functions had to be converted to GPU kernels
for the efficient acceleration of the BLonD suite.

6.2 Seamless CUDA Integration
The CUDA enabled variant of HBLonD, CuBLonD was designed with perfor-
mance as well as ease-of-use in mind. The PyCUDA [13] and Scikit-CUDA
libraries were used to simplify the GPU memory allocation and the integra-
tion of native CUDA code in Python. In Fig. 6.1, we can see the high-level
architecture of CuBLonD. The CUDA kernels are merged in one source file
(kernels.cu) which is then compiled using the Nvidia C compiler to a shared
library (kernels.so). This compiled library is exposed to the Python front-end
using the SourceModule() method of PyCUDA, which allows for direct calls to
native CUDA code with seemingly zero performance overhead.
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side.

To simplify the usability of the code, we developed the SyncArray() class.
This class extends the Numpy [61] array interface, and basically provides to the
user a single array reference that can be used as is by CPU and GPU code. The
operations that take place under the hood when operating on a SyncArray()
object can be seen in Fig. 6.2. The array needs to be allocated both in the CPU
and GPU memory. When a modification to the CPU copy is made, the GPU
copy is invalidated, and vise-versa. The invalidated copy is updated lazily, so
that consecutive modifications will cause only a single data movement, when
the invalidated copy will be first accessed. Since the greatest part of computing
operations has been ported to the GPU, this process rarely needs to happen,
especially inside the main computation loop. However, there are scenarios,
where a user of BLonD would need to access data stored in GPU for reporting,
plotting, storing in files. In this case, the SyncArray() mechanism hides the
underlying complexity from the end-user, while ensuring the correctness of the
simulation.

Another mechanism we developed is the GPU memory pool. There are
certain operations in a BLonD simulation, such as the evaluation of multiple
FFTs, that require the allocation of temporary memory regions. The size of
these memory regions often remains constant for long simulation periods. To
avoid frequent allocation/de-allocation of these memory regions, we designed a
software-managed memory pool, on top of the SyncArray() class. This means
that the end-user does not need to be aware of the memory pooling mechanism.
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Figure 6.3: Effect of caching common arrays in GPU main
memory.

The memory pool basically caches frequently used memory structures, and re-
turns them when requested. Since the memory pool manages a fixed amount of
memory, it uses a Least Recently Used policy to replace old memory allocations
with recent ones. In Fig. 6.3, we can see the effect on the run time of the GPU
pooling mechanism with varying input sizes. The run time is normalized to
that of CuBLonD without pooling, therefore lower values correspond to greater
performance gains. We observe that the performance gain decreases with larger
input sizes. This happens since the memory allocation/de-allocation time is
amortized across lengthier calculations, due to the higher number of particles.
Furthermore, we see that the SPS testcase profits the most from memory pool-
ing. The SPS testcase runs the most FFTs among the three testcases, and
subsequently has the most allocation/de-allocation requests among the three
testcases. On average, we see a 23% to 35% performance gain from the memory
pooling mechanism.

With the use of CUDA libraries like CuRand and CuFFT, porting most of
the computationally heavy code regions from C++ to CUDA was a straightfor-
ward process. Two benchmarks in particular, the histogram() that generates
the beam profile and the linear_interpolation_kick() required adjustments
to make proper use of the shared memory. More specifically, to avoid costly
atomic operations on global memory structures, the histogram kernel first al-
locates a thread-block private beam profile. Then the thread-block private
profiles are accumulated to generate the global beam profile (or worker-wide
beam profile). However, since the shared memory is a limited resource, in large
simulations only a portion of the beam profile fits in the shared memory. In
this case, we take advantage of the Gaussian-like shape of the beam, to store in
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memory only the “hottest” bins, those around the center of the Gaussian distri-
bution, as can be seen in Fig. 6.4. The remaining bins reside in global memory
and are updated using atomic operations. Since the bins around the center
of the distribution are accessed more frequently than the others, the average
memory access latency approaches the latency of the fast shared memory.

The performance gain of this hybrid implementation is shown in Fig. 6.5.
The y-axis shows the run time normalized to the global memory only imple-
mentation, therefore lower values correspond to greater run time gains. The
x-axis shows different numbers of input particles. We observe that the perfor-
mance gain gradually increases from 27% with 1 million particles, to 51% with
64 million particles. Then, it reaches a saturation point, where the portion of
the beam profile that fits in the shared memory is too small to capture the
hottest bins, therefore the performance gain is reduced to 29%. We need to
note that 100 million macro-particles is the largest input size that we expect to
use per GPU platform, since for very large simulations we use multiple GPU
platforms and computing nodes. Nevertheless, the latency gain of utilizing the
shared memory both in the histogram() and linear_interpolation_kick()
operations ranges from 29% to 51%.

6.3 CuBLonD Single-Node Performance Eval-
uation

This section evaluates the single-node performance of CuBLonD in comparison
with HBLonD. Later, in Sec. 6.5, the scalability of the code is examined. The
specifications of the CPU server used for HBLonD are shown in the last column
of Table 6.1, while the specifications of the two GPU platforms evaluated are
shown on the second and third column of Table 6.1.
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Figure 6.5: Latency gain by making use of the thread block
shared memory in the histogram operation.

Table 6.1: Benchmarking Platforms’ Specifications.

Model Nvidia Tesla K40 Nvidia Tesla V100 Intel Xeon E5-2630v4

Generation Kepler (2013) Volta (2018) Broadwell (2016)
Process size 28 nm 12 nm 14 nm
RAM 12 GB GDDR5 32 GB HBM2 2x64 GB DDR4
Bandwidth 288 GB/s 897 GB/s 2x68 GB/s
Cores 15 80 2x10
Frequency 0.75 GHz 1.2 GHz 2.2 GHz
Cache 1.5 MB (L2) 6 MB (L2) 2x25 MB (L3)

The y-axis of Fig. 6.6, shows the throughput of CuBLonD using one GPU
platform (CuBLonD-1PN ) or two GPU platforms (CuBLonD-2PN ), normal-
ized to the throughput of HBLonD on a single 20-core node. Higher values
correspond to greater speedups. The GPU that was used is the Nvidia K40 and
the CPU is the Intel Xeon E5v4 (see Table 6.1). CuBLonD with one K40 pro-
vides approximately five times higher throughput than the CPU-only HBLonD.
We observe varying speedup values for the three testcases, since each testcase
is a unique application with specific characteristics. By utilizing both GPU
platforms, the average speedup is 9.3x compared to the CPU baseline, or 1.82x
higher than when using one platform. The speedup is not doubled when going
from one to two GPU platforms, mainly because the code is not entirely GPU-
accelerated and parallelized. In fact, on average 96.2% of the code runs on the
GPU and is also parallelized with MPI. In addition, using two GPU platforms
instead of one adds a communication and synchronization overhead to the total
execution time.
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Figure 6.6: CuBLonD - HBLonD single-node throughput com-
parison with one and two K40 GPUs, in one node.

6.4 Future-proof High Performance Simulator
Scalability stressing experiments were performed on a system that contains
Nvidia K40 GPUs. When the K40 was released in the end of 2013, it was a
high-end, server class GPU. Nowadays it is considered outdated and has been
superseded by newer generations. In this section, we evaluate the performance
of CuBLonD in a more recent GPU generation – the Nvidia Tesla V100. The
model’s specifications can be found in Table 6.1. In Fig. 6.7, the y-axis shows the
speedup achieved using one K40 or V100 GPU platform w.r.t. a 20-core CPU
node. The bars correspond to the double precision, non-approximate version
(F64 ), the single precision, non-approximate version (F32 ), and the single-
precision SRP approximate (F32-SRP) version. On average, the V100 GPU is
3x faster compared to the K40 GPU, and provides 23x to 46x faster execution
compared to a 20-core CPU node, depending on the approximation method
applied. These results demonstrate the potential of CuBLonD to efficiently
take advantage of both older and more recent GPU platforms and provide great
speedups w.r.t. the previous state-of-art CPU-only implementation.

6.5 Stressing CuBLonD Multi-Node Scalabil-
ity

This section evaluates the scalability of CuBLonD under strong-scaling work-
load scenarios. In strong-scaling experiments, the input size is held constant
while the number of computing resources increases. The purpose of this study
is to determine whether the code can effectively scale in multiple computing
nodes and discover the saturation point, i.e. the point after which the addition
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Tesla K40 and Nvidia Tesla V100 platforms.

of more resources is not increasing the performance. As formulated by Amdahl’s
law [9], this happens when a portion of the workload is not parallelized.

Each of the three columns of Fig. 6.8 corresponds to one of the three real-
world testcases described in Sec. 5.1.1. The top row shows the performance of
CuBLonD, when using one GPU card per node and up to 16 nodes or 16 GPU
cards, while the bottom row shows the scalability of CuBLonD with two GPU
cards per node and up to 16 nodes or 32 GPU cards. Each sub-figure of Fig. 6.8
demonstrates the scalability of the baseline non-approximate version, the 32-
bit RDS approximation and the 32-bit SRP approximation. These approximate
computing techniques have been described in detail in Sec. 5.4.

The y-axis of all sub-figures shows the speedup w.r.t. a 20-core instance of
BLonD++ [58]. We observe that without enabling any of the approximate com-
puting variations, the scalability of the code saturates around eight computing
nodes, due to the excessive communication time. Similarly to what was ob-
served in HBLonD, the approximate computing techniques allow for far greater
performance scalability compared to the non-approximate baseline. In the top
row of Fig. 6.8, the performance gain the SRP and RDS techniques is compara-
ble, with SRP being slightly better, demonstrating speedups of 50x, 78x and 72x
in the LHC, SPS and PS testcase, respectively. Finally, in the bottom row we
can see the performance of CuBLonD when using both GPU devices available
in every computing node. The largest configuration uses 32 GPUs in 16 nodes.
In this case, the speedup compared to a 20-core reaches or surpasses two-orders
of magnitude in the SPS and PS testcase, i.e. 122x and 108x, respectively. In
the LHC case, the larger and more time consuming FFT operations during the
induced voltage calculation, that are not parallelized across the MPI workers
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Figure 6.8: Multi-node scalability of Cublond.

but only within every worker, the achieved speedup is slightly lower, at 72x.
The massive computational capacity of CuBLonD will play a key role in the
upcoming, large-scale BLonD studies that include:

• End-to-end simulations, i.e. beam dynamics simulations that start from
the injection of the charged particles to the smallest synchrotron (Proton
Synchrotron Booster), the gradual energy ramp-up through a sequence
of increasingly larger machines, until the injection to the LHC and the
moment before the first collisions.

• High-precision, future machine studies that integrate multi-bunch collec-
tive effects only observable with high number of beam bunches and macro-
particles.

To better understand the factors that limit the code’s scalability, especially
when using the approximate-free version, we examine the run-time breakdown
of CuBLonD in three categories: communication and synchronization time
(comm), time spent in regions not globally parallelized with MPI, but only
locally with CUDA (serial), and the remaining fully parallelized computation
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tions, limiting the scalability.

time (comp). Ideally, the MPI workers should use their time mostly on the fully
parallelized code regions, and only spend a minimum percentage of their time
for communication and other non-globally parallelized calculations.

Figure 6.9 shows time breakdown of CuBLonD for the non-approximate
Base, and the F32-SRP and F32-RDS approximations. In the single-node
configuration, no time is spent on communicating, since there is only a sin-
gle worker, and less than 5% of the execution time of each testcase is spent for
serial processing. When the number of computing nodes increases to 16, approx-
imately 15% to 20% of the Base version run time is used for communication and
synchronization among the remote MPI workers, while the percentage of the run
time spent for serial processing ranges from 23% to 38%. The most time con-
suming, non-globally parallelized computation is spent on the FFTs that take
place during the induced voltage calculation. These are one-dimensional FFTs
that do not scale efficiently on a distributed environment due to the nature of
the algorithm. In all three testcases, without applying approximate computing,
about half of the total run time is spent running useful parallel operation, and
the other half is used for communication and non-scalable operations. This is
limiting the scalability that can be exploited as the node count increases, as
shown previously in Fig. 6.8. The RDS approximation relaxes the synchro-
nization required among workers, therefore reducing the communication time
to 5-7%. The serial processing time is also reduced greatly with the approxi-
mate versions, ranging from 10-18%. Since not more than a quarter of the total
run time is spent in non-parallelizable operation, we expect the performance



6.5. Stressing CuBLonD Multi-Node Scalability 77

of the approximate variants to scale with a further increase in the number of
computing nodes.
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Chapter 7

Motivational Observations

7.1 Traditional GPUs and Thread-Level Par-
allelism

Graphic Processing Units (GPUs) are nowadays the dominant platform for
general-purpose workload acceleration. While originally designed for graph-
ics processing in video games and other visual applications, over time, with the
introduction of comprehensive programming interfaces [81, 85], GPU program-
ming for general-purpose applications became more practical. Their processing
power and intuitive programming model led to their adoption in a wide spec-
trum of computing domains [86, 87]. GPUs are throughput-oriented machines;
they employ massive multi-threading and fast context switching to achieve high
computational throughput [7]. A modern GPU holds up to 64 active thread
contexts per core at a time[88, 89, 90]; much more than what is seen in modern
CPUs with one to four hyper-threads per core. To allow for single-cycle context
switch, every GPU thread context has its own set of registers. This results in
large register files that have been the focal point of research efforts [91, 92, 93].

In modern GPUs [94, 95], a front-end issue scheduler is responsible for se-
lecting one or more instructions to issue to the back-end pipeline every turn.
Although GPU manufacturers do not disclose all micro-architecture related de-
tails [96] of their platforms, including the front-end issue scheduler, various
implementations have been proposed like the Loose Round-Robin (LRR), the
Greedy-Then-Oldest (GTO) [97] and the Two-Level-Scheduler (TLS) [98]. The
fundamental idea is that when a thread context, also called warp or wavefront,
encounters a stall, the scheduler will continue to issue instructions from the re-
maining warps. Given enough active warps, the back-end execution pipeline will
remain active until the stalled operation will be serviced, and the stalled warp
will be considered for issuing again. Consequently, for most GPU functions,
also called kernels, and GPU software developers, maintaining a large number
of active warps, or high warp occupancy, is inherent to extracting maximum
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Figure 7.1: Warp occupancy, IPC and stalls correlation for 60
general-purpose GPU kernels.

performance off a GPU platform. Reportedly, cache-sensitive workloads are an
exception to this rule, since they require a larger share of the cache and memory
resources and thus they profit from a lower warp occupancy [97, 99, 100].

The rise of deep learning and big data analytics applications [101, 102, 83,
103], with extremely large input datasets, has motivated Multi-GPU system
designs [104, 105, 106], to allow for scaling beyond the scope of a single GPU
platform. At the same time, NVIDIA recently announced the Multi-Instance
GPU (MIG) architecture [107], allowing up to seven clients to simultaneously
share a GPU, in order to accommodate smaller scale applications effectively.
As GPU acceleration has become more prevalent than ever, we see active de-
velopment towards both directions of the workload scale spectrum.

7.2 Low-Occupancy, Underperforming Kernels
Among the increasing range of GPU-accelerated applications, we observe the
existence of a class of kernels, which, due to limited data parallelism, fail to
support a large degree of Thread-Level Parallelism (TLP) and hide the latency
of memory operations. Thus they suffer from excessive stalling time and sub-
optimal resource utilization. As shown in Fig. 7.1, from a collection of 60
general-purpose kernels originating from three well known benchmark suites
[108, 109, 84], a noticeable percentage of kernels fail to maintain enough active
warps and are prone to excessive stalling time. Fig. 7.1 depicts the distribution
of warp occupancy, IPC, and stalled cycles1, where both axes are normalized to
the range of observed values. A cycle counts as stalled if no warp was issued in

1Our baseline GPU architecture throughout the thesis is modelled in GPGPU-Sim [110]
after the NVIDIA Pascal [89, 88] GeForce GTX1080Ti model, detailed in Sec. 10.2
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Figure 7.2: Warp occupancy - IPC distribution for 115 general-
purpose kernels in two physical GPU platforms.

this cycle. There are three stall sources: control hazards, register dependencies,
and no available execution units. In practice, dependencies on long-latency
memory operations are the most common source of stalls. As shown in Fig. 7.1,
a significant number of kernels, i.e. 20/60 (33.3%), demonstrate low (less than
40% of the maximum) warp occupancy, IPC deterioration, and stall more than
40% of their runtime. These “not-well-fitted” kernels (Table 10.1) cannot exploit
effectively the traditional TLP model due to low warp occupancy. They seek
for more aggressive Instruction-Level Parallelism (ILP) strategies to improve
stall hiding, tolerate periods of insufficient TLP, and provide the back-end with
a flow of instructions even in the absence of a large number of active thread
contexts. In the remainder of this thesis we will refer to these low-TLP kernels
as target kernels, to distinguish them from the rest non-target kernels.

The above observation forms an ill-pattern for a large set of GPU applica-
tions. This pattern is further confirmed when examining a wider set of appli-
cations (115 kernels in total) from [108, 109, 84] and their execution footprint
onto two physical, not simulated, GPU platforms. Fig. 7.2 shows the warp oc-
cupancy - IPC distribution for the NVIDIA Tesla P40 [89] and NVIDIA Tesla
V100 [90] GPUs, respectively. In the figure, both axes are normalized to the
range of observed values. In both GPUs, it is evident that a large amount of
kernels (i.e. 35.7% and 42.5% for Tesla P40 and Tesla V100, respectively) is
concentrated in the lower left region, characterised by limited warp occupancy,
hence limited TLP, and low IPC, hence sub-optimal execution efficiency. While
several research efforts have already focused on resource utilization improve-
ments [111, 112], they are either tailored to specific workload scenarios [97, 99]
or rely on static information and lack flexibility [113, 114].
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7.3 Instruction-Level Parallelism Exploitation
In the second part of this thesis, we address the aforementioned inefficien-
cies found in typical GPUs by re-purposing GPU micro-architectures towards
a general-purpose, dynamic, Light-weight Out-of-Order GPU (LOOG) execu-
tion scheme, carefully designed to minimize the hardware overhead. LOOG
surpasses prior state-of-art by exploiting ILP to complement the existing TLP
and improve resource utilization of underperforming kernels. To limit the area
and power overhead to a feasible extent, most resources are left intact and
some are repurposed to the needs of Out-Of-Order execution. LOOG is a fully-
functional, non-speculative Out-Of-Order (OOO) architecture, capable of re-
ordering both arithmetic and memory operations, that can alleviate a wide
variety of pathogenic scenarios that influence intra-core resource utilization.
Being a dynamic system, LOOG boosts ILP when needed according to the
dynamic instruction mix, that varies largely compared to the static instruc-
tion flow. We analyse LOOG’s features, by exploring its sensitivity to vari-
ous key micro-architecture components, demonstrating significant performance,
area and power benefits from fine-tuning the LOOG architecture. In addition,
a systematic two-level exploration of its key micro-architectural parameters is
followed. At first, a sensitivity analysis on the sizing of the Instruction Window
(I-Window) and the number of Operand Collectors is performed, identifying
the configuration that provide good performance with minimal hardware over-
heads. Then, an extensive resource-aware design space exploration (DSE) for
both typical GPU platforms and their LOOG-based projections is conducted,
to study OOO GPUs’ sensitivity and efficiency to scaled resource allocation
scenarios. Historically, newer GPU generations contain more resources in terms
of Execution Units (EXUs) and L2 Cache (L2C) per GPU core. Therefore, we
vary these two resources, generating multiple baseline in-order GPU variants,
and fine-tune LOOG for each of these variants.

LOOG is extensively evaluated and benchmarked against conventional in-
order GPU architectures, as well as prior-art implementations of Out-Of-Order
execution GPUs. To establish LOOG’s potential as a realistic alternative GPU
architecture, we evaluate LOOG’s efficiency over a generic collection of 60 ker-
nels in comparison with state-of-art GPU configurations. Finally, we provide
an in-depth analysis of LOOG’s performance and power efficiency, with re-
spect to compiler-based optimizations, up-sized workloads, and modern micro-
architectural configurations. We show that LOOG’s OOO execution delivers
average latency gains of 27.6%, and energy gains of 22.4%.
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Chapter 8

Prior-Art & Background
Knowledge

8.1 Prior-Art
In this section, we discuss LOOG’s positioning and qualitative features with
respect to prior-art. Several research efforts have pinpointed the inherent issues
of resource utilization inefficiencies of modern GPU architectures, proposing
either software or hardware approaches to effectively address them. Warped-
P [113] is such a hardware-based extension that, in the shadow of long-latency
stalls, continues to fetch, decode and execute independent instructions to keep
the pipeline busy. The often underutilized [115, 116] RF is leveraged to store
the speculatively pre-calculated results, from where they are restored when a
stalled warp resumes normal execution. HAWS [114] follows a similar approach,
but is based on compiler-generated hints to minimize the overall area overhead.
Both HAWS and Warped-P cannot re-order store instructions since they cannot
handle address dependencies. LOOG on the contrary, uses a load-store queue to
resolve address dependencies and allow for load-store re-ordering. Furthermore,
in Warped-P, loads do not modify the RF but only warm up the cache. There
are no guarantees, however, that the prefetched data will not be evicted from
the cache by the time the stalled warp will resume normal execution and will try
to access them. LOOG fully executes loads in an OOO fashion, in the absence
of address dependencies. While Warped-P and HAWS mitigate only a specific
pathological scenario: keeping the pipeline busy in the shadow of long-latency
global memory operations, LOOG introduces a more generic, dynamic scheme
that can additionally mitigate other pathological scenarios such as stalls due to
low-occupancy kernels, long-delay special function unit (SFU) operations, and
excessive control and structural hazards. Thus, LOOG forms a more holistic
OOO scheme and as such, it has greater performance improvement potential.

Twin-Kernel (TK) [117] follows a compiler-based approach that better dis-
tributes the memory requests in time by re-organising the static instruction
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stream. When compiling a kernel, a set of different versions with slightly altered
memory access pattern is generated. Then, during the kernel launch, the altered
versions are combined into pairs to utilize the GPU resources more efficiently.
However, TK is a static approach and cannot properly handle the dynamic in-
struction mix characteristics. In addition, it requires that two complementary
versions can be formed from each kernel, which is not always the case. LOOG
on the other hand makes no assumptions about the workload characteristics
and exploits ILP based on the dynamic instruction stream, and the available
memory and compute resources. Similarly to TK, HyperQ [118] enables mul-
tiple kernels to run concurrently on the GPU, by assigning leftover shaders to
subsequent kernels, assuming that there are independent kernels waiting for
resources. While it improves the overall GPU throughput, HyperQ does not
allow for shader sharing and is unable to improve the latency of kernels that
suffer from frequent stalling. Nevertheless, the LOOG runtime is compatible
with HyperQ.

A plethora of alternative warp scheduling techniques have been proposed to
improve GPU resource utilization and avoid stalling. Narasiman et al. [98] pro-
pose a combined two-level scheduler (TLS) with a large warp micro-architecture
(LWM). TLS aims to better distribute in time the long-latency stall operations
and improve utilization, while LWM forms dynamically SIMD-width sub-warps
to better utilize the EXUs in the presence of branch divergence. Mascar [119]
implements a memory aware, warp prioritization scheduler, intertwined with a
cache access re-execution mechanism to better overlap computation with mem-
ory accesses. RLWS [120] proposes a reinforcement learning based warp sched-
uler that can learn and adapt to various sorts of workloads, demonstrating
performance gains compared to prior static scheduling methods [97, 98]. All
these schedulers are better tailored for specific workloads, i.e. memory or com-
pute intensive, with or without inter-thread data locality. LOOG features a
simple, in-order warp issue scheduler, avoiding the complexity of an intelligent
scheduler. After issuing, instructions dispatch to the EXUs in an OOO manner,
as their source operands become available.

A variety of prior studies observe that the interference of multiple warps
sharing the L1D cache, the network and the DRAM bandwidth can lead to
cache thrashing and performance deterioration. Thus, these studies suggest ei-
ther limiting the maximum number of active warps at a time (TLP throttling)
or finely controlling the warps’ access priority to the shared resources. Rogers
et al. proposed CCWS [97], a scoring system to identify warps that re-reference
their data in the L1D cache, and gives these warps more exclusive cache access.
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In Dyncta [99], a CTA scheduling mechanism based on the applications charac-
teristics is proposed, that limits the number of CTAs assigned to a shader and
alleviates the contention to shared resources. LCS [121] and OWL [100] both de-
velop coordinated CTA and warp scheduling techniques to throttle the TLP and
better utilize the memory resources. Interestingly the authors of PCAL [112]
observed that although TLP throttling techniques can improve the L1 cache
utilization, they can leave other resources underutilized. Thus they proposed a
coupled warp scheduling and cache management mechanism which prioritizes
a subset of warps to access the cache while allowing low-priority warps to use
other GPU resources. Recently, Dublish et al. introduced Poise [122], which
is a machine learning framework combined with a runtime inference engine to
predict the warp scheduling decision that will lead to a balanced TLP and
memory system performance. Contrary to TLP limiting [99, 97, 112], Virtual
Threads have been proposed in [111] suggesting that increasing the maximum
number of concurrent warps beyond the scheduling limit can favor some appli-
cations. In conclusion, TLP throttling approaches can reduce cache congestion
but can cause under-utilization of other GPU resources. In LOOG, we take a
different approach to improve resource utilization by exploiting hidden ILP at
the micro-architecture level and thus improving performance of both regular
(data-parallel) or irregular workloads. As the ILP complements the existing
TLP model, LOOG is orthogonal to TLP tuning techniques.

LOOG highly differentiates from prior-art by repurposing GPU microar-
chitecture through a light-weight Out-Of-Order execution scheme. Although
LOOG’s motivation is to assist kernels with low occupancy, in principle every
workload can profit from OOO execution, compared to in-order only execution.
Furthermore, LOOG exploits ILP among arithmetic and memory operations,
therefore tackling a wide variety of sub-optimal resource utilization. Limiting
the area overhead of an OOO scheme is crucial. We manage that by re-using
the existing CUs as RSs and adopting a light-weight non-speculative pipeline.
To the best of our knowledge, this is the first work that suggests, implements
and evaluates a hardware-only, general-purpose, fully featured OOO execution
scheme for GPU platforms.

8.2 GPU U-Arch Internals
A typical GP-GPU application begins executing on the host CPU side. Se-
lected functions, called kernels, are offloaded to the GPU. A kernel is composed
of hundreds or thousands of lightweight threads, called work items or simply
threads, executing the same stream of instructions on different data, according



88 Chapter 8. Prior-Art & Background Knowledge

to the Single-Instruction Multiple-Thread (SIMT ) model [81, 123]. Threads are
organised into a grid of Cooperative-Thread-Arrays (CTA), consisting of warps
or wavefronts that contain a group of 32 or 64 consecutive work items [85, 124].
Multiple CTAs are assigned to each GPU computing core, also called Streaming
Multiprocessor (SM) or shader core. Each work item disposes a unique iden-
tifier (ID), that is typically used to identify its share of input data to process.
Wavefronts execute in lockstep using a single Program Counter (PC) for all
their work items. This is essential to reduce the fetch and decode resources
with such a large number of thread contexts. When some of the work items of
a wavefront follow different directions of a branch, they encounter a branch or
warp divergence. The performance deteriorates, since both branch paths are ex-
ecuted sequentially by all work items, masking-off the unneeded calculations. A
rich body of research work attacks the performance slowdown caused by branch
divergence [125, 126, 98].

Wavefronts have access to a plethora of on- and off-chip memory struc-
tures [7, 123], namely the local memory, the global memory, the shared memory,
and the read-only constant and texture memories. In addition, each thread has
exclusive access to a limited number of registers. Having a separate set of reg-
isters per thread allows for fast and efficient context switching. Due to the very
large number of active contexts (warps), the capacity of the register file tends
to be substantial and a lot of effort has been put into optimising it in terms of
efficiency, area and power consumption [116, 93, 127, 92].

GPU exposes three synchronization mechanisms. Threads within the same
warp execute in lockstep, thus they are always in-sync. Threads belonging to
the same CTA can synchronise using a hardware supported barrier instruction.
Finally, a special host-side function call can be invoked to ensure that all CTAs
of a kernel have completed. The programmer can make no assumptions about
the execution order across CTAs or even warps belonging to the same CTA.

The number of concurrent CTAs assigned to a shader core normalized to
the maximum number of CTAs supported by the hardware, also called warp
occupancy, is calculated by the following Eq. 8.1:

occupancy =
Min

(
MaxWarpsPerSM

WarpsPerBlk , MaxRegsPerSM
RegsPerBlk , MaxShMemPerSM

ShMemPerBlk

)
MaxWarpsPerSM (8.1)

During the kernel launch, the programmer specifies the number of warps
per block, as well the amount of shared memory that will be allocated to each
block. The number of registers needed per block is calculated by the compiler
and depends mostly on the kernel code. The maximum values for these three



8.2. GPU U-Arch Internals 89

Issue Operand Collect Writeback

SIMT
Stack Scoreboard

Warp  
Sched 1 

RF

Arbitrator

X-bar

Fetch

ICacheFetch  
Sched

Decode

Decoder

I-Buffer

1 2

5

4

6a

87

11

12

13

Warp  
Sched 2 

Execute
SP

SFU

MEM

D
is

pa
tc

h
Sc

he
d 

CU CU

CU CU

6b
10

15
16

17

18

20

Registers
3

Registers

R
egisters

R
eg

is
te

rs

19

14

9

Figure 8.1: The baseline GPU architecture pipeline.

variables are architecture-dependent. Traditionally, high warp occupancy is
desired, however there are specific cases where a higher number of active warps
can hurt performance, mainly due to sub-optimal cache usage [97, 99, 112].

This work adopts the shader core pipeline of GPGPU-Sim [110], the state-
of-the-art, open-source GPU simulator. The pipeline is composed of six stages:
fetch, decode, issue, operand collect, execute and writeback. The main micro-
architecture modules of each stage and their inter-connections are depicted in
Fig. 8.1. The circled numbers in Fig. 8.1 indicate the instruction flow from fetch
to writeback. A brief description of every stage follows.

Fetch and Decode. In the fetch stage, a round-robin scheduler selects a
warp to issue a load operation from the I-Cache. A warp is considered for
fetching only if it has no valid instructions in the I-Buffer, the structure that
holds the decoded, ready-to-issue instructions of every warp. By default, two
instructions are copied from the I-Cache to the fetch-decode pipeline register,
except if the fetch address is situated at the end of the cache line, where only a
single instruction is forwarded to the register. The decoder decodes the content
of the fetch-decode register and stores it in the I-Buffer.

Instruction Issue. The warps are generally divided into multiple groups and
each of the groups is assigned to an issue scheduler. Separate schedulers can
use different scheduling strategies to avoid being too biased towards a specific
workload scenario. Based on the scheduling policy, the scheduler selects one
warp to issue up to two instructions per cycle. For a warp instruction to issue,
it must not be blocked in a synchronization barrier, pass the scoreboard check
and are find free issue-pipeline registers. Typically a GPU contains at least one
memory unit (MEM), one arithmetic unit, also called scalar processor (SP),
and one special function unit (SFU). After the instruction issues, the SIMT
stack [128], and the scoreboard (SB) are updated.

The SB is a simple dependency-tracking mechanism, mainly used in in-order
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processors [129]. In typical GPU micro-architectures, the scoreboard maintains
a vector of write bits for every warp. The size of the vector is equal to the max-
imum number of registers that a warp can use. When instructions issue, they
set the write bit of their destination register. The issue scheduler, before issuing
an instruction to the operand collect stage, ensures that all the source and des-
tination operands, have their write bits cleared in the SB. This way, RAW and
WAW hazards are avoided. As we will see later in Sec. 10.1.4, WAR hazards are
wrongly ignored in the base architecture. In GPU workloads, threads within a
warp mostly execute the same flow of operations in lockstep. However, given
that each thread operates on separate data, a warp can encounter a branch
divergence, which deteriorates the performance [125, 126, 98]. The SIMT stack
is a warp private structure used to handle branch divergence by serializing the
execution of the divergent control flow paths [130]. Every SIMT stack entry
holds a bit vector representing the active warp-items, called active mask, the
PC address of the next instruction to execute and the reconvergence address.
We consider the reconvergence address to be the immediate post-dominator
(IPDOM) of the divergent branch, i.e. the earliest guaranteed point in the pro-
gram that the instruction flow of all threads re-converges. Mechanisms that
can, under circumstances, discover earlier re-convergence points than IPDOM
have been proposed [126, 128, 130].

Operand Collect (OC). To allow for single-cycle context switching, every
warp needs to have access to a separate set of registers. Due to the large
number of active warps, the RF in modern GPUs can be as large as 256 KB [91].
Since the SRAM memory area scales with the number of read/write ports, a RF
composed of multiple single-ported banks is less demanding in terms of area and
energy resources, and is preferred in GPUs [131, 132]. After issuing, instructions
allocate a CU and issue a read request for every source operand to the RF
arbitrator. Instructions wait in the CUs until their source operands are read
from the RF and are ready to dispatch to the execution units. Arbitration logic
is used to handle RF bank conflicts and maximize the RF read throughput [133].
A crossbar (X-bar) is used to wire the CUs with the RF ports. There is a
dedicated set of CUs per execution unit.

Execute and Writeback. As previously mentioned, there are multiple types
of execution units. The SPs and SFUs are pipelined and SIMD-vectorized.
Memory operations are forwarded to the MEM unit. The SFUs calculate tran-
scendental instructions and the remaining arithmetic operations are calculated
by the SPs. The dispatch scheduler selects, from the pool of ready to execute
instructions, up to one instruction per EXU to dispatch, prioritizing older in-
structions. After executing, the instructions and the values of the destination
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registers are moved to a set of execute-writeback registers. There, they issue a
write request to the RF arbitrator and then retire from the pipeline. Multiple
instructions can writeback per cycle.
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Chapter 9

LOOG Internals

9.1 From GPU to LOOG uarch
This section describes the micro-architectural modifications required to enable
out-of-order execution and exploit instruction-level parallelism. In addition to
Fig. 8.1 that was used in Sec. 8.2 to show the baseline GPU pipeline compo-
nents, Fig. 9.1 shows the LOOG-specific modifications and components intro-
duced. While LOOG modifies several parts of the datapath, reviewed in the
remainder of this section, it mainly extends the OC phase by i) advancing the
CUs to implement functionality of reservation stations, and ii) introducing a
Register Alias Table (RAT) structure that replaces the SB and eliminates false
dependencies with register renaming.

Wider fetch and decode bandwidth. In LOOG, when a cache line is
fetched from the I-Cache, 16 bytes (two instructions) to 128 bytes (16 instruc-
tion) are forwarded to the fetch-decode register. If the requested address is
close to the end of the cache line, only the remaining bytes in the cache line
will be fetched even if less than initially requested. Since warps can still fetch
more data only after there are no more valid instructions in the I-Buffer, the
I-Window is quantised into chunks. Although this may limit the ILP opportu-
nities when approaching the chunk’s end, the overall design is simplified. The
I-Window size defines the register width, the decoder capacity per cycle and the
width of every I-Buffer row. As seen in Sec. 10.2.3, the I-Window size greatly
affects the area and power resources.

Simplified issue stage. LOOG’s issue stage has been simplified compared
to the baseline. Since the RAW dependencies are resolved in the CUs and the
false dependencies are eliminated with register renaming, described in detail
in the next paragraph, the SB has been removed. Secondly, traditional GPUs
often use two or more issue schedulers, implementing a different scheduling
policies. This intelligent scheduling logic is power hungry [116]. In LOOG,
only a single round-robin scheduler is used, reducing the scheduling complexity,
without performance loss. LOOG is insensitive to the warp issue policy. In
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Figure 9.1: The LOOG modifications on top of the baseline
architecture pipeline.

the baseline, the issue and dispatch stages are temporarily closely connected,
since the OC stage only lasts a few cycles. Thus, the instruction issue sequence
is directly linked with the instruction dispatch sequence. In LOOG, issue and
dispatch are temporally far away since in the OC stage, instructions also resolve
data dependencies, which takes more cycles. Consequently, the instruction issue
and dispatch sequences diverge broadly, making LOOG insensitive to the warp
scheduling policy.

Register renaming. In LOOG, the CUs function in addition as reservation
stations. When an instruction allocates a CU, it first reads the RAT once for
each source operand. The RAT is indexed by the operand ID and warp ID.
Every RAT entry contains a CU ID field. A special null value is used to indicate
that the latest value of the register is in the RF. Otherwise, the register has
been renamed and the RAT entry contains the ID of the CU that holds the
instruction that will produce the value of the register. This ID value is copied
in the allocated CU and the result broadcast bus is monitored to match the
CU ID and capture the value of the register. Also, the RAT is updated so
that the instruction’s destination register now points to the allocated CU ID.
In Sec. 10.1.2, we introduce the RRS module and provide deeper insight into
LOOG’s register renaming scheme.

Load-store re-ordering. LOOG implements a non-speculative memory re-
ordering scheme. We opted for a non-speculative scheme to avoid the necessary
recovery mechanism and its associated cost. Memory operations might have
address dependencies in addition to register dependencies. To track address de-
pendencies, memory instructions allocate an entry in the Load Queue (LQ) and
Store Queue (SQ). Two separate queues are used since loads and stores require
different handling. More specifically, before re-ordering any memory operation,
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(RF-WR) and Total (RF-TOT) accesses that are bypassed due
to the addition of the result broadcast mechanism of LOOG.

the value of the address operand needs to be compared against the addresses
of all earlier issued store instructions. If a match is detected, the memory op-
eration cannot be reordered. In addition, if a store has not yet resolved its
target address, it is effectively blocking all subsequent memory operations, due
to the potential address conflict. Finally, to satisfy the GPU memory consis-
tency model, no memory instructions are reordered ahead of memory barrier
operations. While in an extreme scenario, every memory instruction can gener-
ate up to 32 memory address requests, in practice across our whole benchmark
set, we saw a median of 1.67 requests per memory operation.

Result broadcast. Upon exiting the EXU, an instruction has calculated
the value of the destination register and is ready to update the RF. The warp
and destination register ID is used to index the RAT and compare its content
with the CU ID of the just retired instruction. If it matches, a write request
is sent to the arbitrator and the RAT entry valid bit is cleared, meaning that
the latest value of the register can be found in the RF. Otherwise, the register
has been renamed since the instruction was issued, thus neither the RF nor the
RAT need to be updated. Notice how LOOG hides some RF writes compared
to the baseline, alleviating the pressure to the RF banks. More specifically, as
it can be seen in Fig. 9.2 across all 60 kernels comprising our evaluation set, in
terms of geometric mean 34.8% of all reads bypass the RF, 20.0% of all writes
bypass the RF, and in total the RF is accessed 28.6% less often. The result bus
has been extended to carry the CU ID, and comparative logic has been added
to the CUs to be able to capture the broadcasted result. Only after writeback
the CU holding the retired instruction is freed.
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Table 9.1: Area and Power overhead breakdown of LOOG with
the same sizing as a traditional in-order GPU, modelled after the

NVIDIA GeForceGTX1080Ti [88].

Unit Capacity ∆Power ∆Area

Decoder 4 instr/cycle 0.163 % 0.033 %
I-Buffer 4 entries/warp 0.075 % 0.009 %
Issue Scheduler single, RR 0.980 % 0.101 %
RAT/ Scoreboard 16-port RAT 3.351 % 0.185 %
RRS 64 entries 0.138 % 0.039 %
Operand Collector 32 CUs 0.019 % 0.008 %
Load/ Store Queue 16 entries 0.088 % 0.087 %
Result Bus – 3.104 % 0.042 %

Core Total A: 30.58 mm2, P: 5.37 W 7.921 % 0.506 %
GPU Total (28 cores) A: 873.05 mm2, P: 156.70 W 7.582 % 0.496 %

9.2 LOOG Area and Power Modelling
We model LOOG u-arch functionality by introducing and implementing all
the aforementioned mechanisms in GPGPU-Sim [110]. GPUWattch [134], a
framework heavily based on McPAT [135] and CACTI [136], was used to model
power and area for both LOOG and the baseline GPU architectures. The addi-
tional RRS, RAT and LSQ structures were modelled as SRAM arrays. Further-
more, since some GPU specific structures, i.e. the SIMT stack and the Score-
board, were missing from the original version of GPUWattch, we implemented
them. All the modifications affected the core pipeline; peripherals such as the
Network-On-Chip, the memory controllers and the L2 memory were left intact.
Table 9.1 lists all the modified components, their capacity as well as their over-
head w.r.t. the baseline GPU platform, modelled after the NVIDIA GeForce
GTX1080Ti [88]. Since the most resource-hungry structures like the RF, the
EXUs, and the main memory were unaffected, the overall power overhead of
LOOG is 7.58% and the area overhead is limited to 0.5% per platform.

The most heavily modified part of the core execution is the Operand Collect
stage, where the register renaming operation takes place. According to the
baseline model on which LOOG is based, the Operand Collect stage is pipelined
in four sub-stages:

1. Allocate Collector Units: At first, the instructions that issued on the
previous cycle look for and allocate free collector units.

2. Allocate Reads: For every source operand, the a read request will be
forwarded to the Register File arbitrator.
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Figure 9.3: Adjusting the latency of the RAT and the CUs, so
that both structures can be accessed within one cycle, and the

associated power overhead.

3. Process banks: Then, the Register File banks are accessed to read the re-
quested operand values. The arbitrator is used to maximize the through-
put of the RF banks. A crossbar connects the Collector units with the
Register File banks.

4. Finally, the Collector units that have read all source operands can dispatch
to the execution units.

Consequently, four cycles is the minimum latency an instruction spends in the
Operand Collect stage. In LOOG, the Register Alias Table (RAT) is also ac-
cessed when a Collector Unit is allocated, to find which source operand values
should be read from the Register File, and which will have to be captured from
the result bus.

Accessing the RAT can be modeled as an additional step of the Operand
collect stage, or by using low latency SRAM components, so that both the
RAT access and the CU allocation can take place in the same cycle. The RAT
is more than two orders of magnitude smaller than the RF, since it holds for
every register only a tag of length log2 #RRS, i.e. 6 bits for a 64-entry RRS,
while the RF holds the entire value of the register which is 32× 32 = 1024 bits
wide. As a result, the RAT overhead is minimal compared to the RF. Therefore,
we preferred to decrease the latency of the RAT and the CU allocation so that
both operations can take place in a single cycle. In turn, this increases the
power consumption of these structures.

In Table 9.3, we vary the portion of the cycle allocated to accessing the RAT
and allocating the CU in order to discover the most power efficient configuration.
We observe that when allocating 49% of the cycle for accessing the RAT and
51% for accessing the CUs, the power overhead takes the minimum value which
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Table 9.2: The cycles in which instructions complete executing
the corresponding pipeline stages in the baseline and LOOG

architecture, for a simple execution paradigm.

Baseline Pipeline Stages Timing
Instructions F D I OC EX WB
I1 ld.global.u32  r1,[r2] 0 1 2 4 4+L1 5+L1

I2 add.u32        r1,r1,1 0 1 6+L1 8+L1 9+L1 10+L1

I3 ld.global.u32  r3,[r4] 11+L1 12+L1 13+L1 15+L1 15+L1+L3 16+L1+L3

I4 sub.u32        r3,r3,1 11+L1 12+L1 17+L1+L3 19+L1+L3 20+L1+L3 21+L1+L3

Total cycles: 21+L1+L3 L1 | L3 H|H: 23 M|H: 122 H|M: 122 M|M: 221

LOOG Pipeline Stages Timing
I1 ld.global.u32  r1,[r2] 0 1 2 4 4+L1 5+L1

I2 add.u32        r1,r1,1 0 1 2 5+L1 6+L1 7+L1

I3 ld.global.u32  r3,[r4] 0 1 3 5 5+L3 6+L3

I4 sub.u32        r3,r3,1 0 1 3 6+L3 7+L3 8+L3

Cycles: max(7+L1,8+L3) L1 | L3 H|H: 9 M|H: 107 H|M: 108 M|M: 108

H: Hit, M: Miss, Lk: Ik Latency    Delta(%) 60.9 12.3 11.5 51.1

is 11.33%. In the remainder of this thesis, we assume this modeling of the
Operand Collect stage. As mentioned above, an alternative approach could be
to separate in two cycles the RAT and CU accesses.

9.3 LOOG Execution Paradigm
In order to provide some more insights on the performance improvements pro-
vided by LOOG compared to traditional in-order GPU architectures, we focus
our discussion on a small code sample, i.e. few lines of assembly operations. We
have made some assumptions through this example that allow us to focus on
the instruction-level parallelism exploited by LOOG and demonstrate its poten-
tial within few lines of assembly operations. Let the sample program composed
of four instructions (see Table 9.2): two global memory 32-bit load operations,
each followed by an arithmetic operation that is data-dependent on the previous
load. We assume single-cycle access latency on a L1 cache hit and 100-cycle
latency on a miss. Furthermore, we suppose that we have enough resources to
avoid structural hazards (e.g. no available CUs or pipeline registers) during this
short exemplary execution. Finally, to amplify and focus the attention to the
Out-Of-Order capability of LOOG, we consider only a single warp is active at
the moment.
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The rows of Table 9.2 contain the cycles the corresponding instruction leaves
each of the six pipeline stages, for the baseline, at the top, and LOOG, at the
bottom. In the baseline, two instructions are fetched and decoded per cycle.
In LOOG, a four instruction wide I-Window is used, meaning also that up to
four instructions can be fetched and decoded per cycle. Instructions I2 and I4
depend on I1 and I3, respectively, and cannot execute until after I1 and I3 have
completed. Since there is no data dependency between I1 and I3, in LOOG,
they can dispatch almost simultaneously, effectively exploiting instruction level
parallelism and overlapping the two memory access requests. In the baseline, the
two requests cannot be overlapped and need to run sequentially. Note that the
writeback happens Out-Of-Order in LOOG. There is no need to enforce in-order
writeback since LOOG is not executing speculatively, and precise exception and
interrupt support is not typically a requirement for GPUs [137], as it is for
CPUs.

The total number of cycles needed for this code snippet, according to the
outcome of the memory accesses, in the baseline and LOOG is also shown in
Table 9.2. In the all hit and all miss scenarios, LOOG requires less than half
cycles in total compared to the baseline. In the mixed, miss/hit and hit/miss,
scenarios LOOG requires ≈ 14% less cycles than the baseline. Thus, even in
this small example, it is evident that in situations with reduced TLP, the ILP
exploited by LOOG can lead to significant performance gains.
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Chapter 10

Design Trade-Offs & Fine
Tuning

10.1 Key Design Points & Trade-offs

10.1.1 Boosting the Instruction-Level Parallelism Poten-
tial with Memory Re-Ordering.

The initial version of LOOG was only capable of re-ordering Arithmetic and
Logic Unit (ALU), and Special Function Unit (SFU) operations. When a mem-
ory operation, both load and store was detected, it would not be issued to the
Operand Collect stage, and in addition it would block the associated warp from
issuing any further instructions, since for functional correctness, the issue se-
quence must be kept in-program order. To achieve this, the main additional
structures needed were the RAT, the modified CUs to serve as reservation sta-
tions, and the addition of a result broadcast bus. However, we soon noticed
that not being able to re-order memory instructions was a major limiting factor
for LOOG and its ability to exploit ILP.

To mitigate this issue, we enabled load and store re-ordering. To do that,
load and store operations need to allocate an entry in the Load Queue and Store
Queue respectively. Then, in-addition to potential register dependencies, that
are resolved with the existing re-naming and result broadcast scheme, the ad-
dress dependencies are also monitored. Since LOOG is a non-speculative OOO
execution scheme, to avoid the implementation of a costly recovery mechanism,
if a store instruction has not yet resolved its target address, all subsequent
memory operations of all warps are blocked. This needs to happen, since if
the target address is the same as this of another load operation, the store had
to execute first. If a store has resolved its target address, this address is then
compared against all earlier issued load and store operations. If no match is
detected, these load and store operations can be re-ordered and execute ahead
of the earlier issued store.
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Figure 10.1: IPC comparison of LOOG’s intermediate varia-
tions. All results are normalized to LOOG with only ALU and

SFU instruction re-ordering.

Being able to re-order both compute, i.e. ALU and SFU, and memory opera-
tions, LOOG is a complete, non-speculative OOO scheme. Figure 10.1 shows the
IPC comparison of LOOG’s intermediate variations for the 60 general-purpose
kernels in our benchmark set. All the results are normalized to the first LOOG
variation, which the one capable of re-ordering only compute operations. The
ability to re-order load operations provides 2× improvement in execution effi-
ciency. Then, an additional 5% was gained by allowing the out-of-order execu-
tion of both load and store operations. Finally, as will be shown later in more
detail, the inclusion of the Register Renaming Stack (RRS), enables earlier de-
allocation of the collector units, which boosts performance by an additional
66%.

10.1.2 Operand Collect Stage Congestion

In traditional GPU architectures, the CUs are used to hold instructions until
their source operands are read from the banked register file. Typically, this
takes a few cycles. At best, a CU can read three source operands in a single
cycle. Then, as soon the instruction dispatches to the execution stage, the CU
is de-allocated and can accept a new instruction.

In LOOG, however, the CUs are additionally used as reservation stations, for
instructions to resolve RAW dependencies. A long-latency memory operation
dependency can take hundreds of cycles before it is resolved. Furthermore, the
CUs cannot be freed when the instruction dispatches to the execution stage.
For correct program execution, the CUs can only be freed after the writeback
stage. To better illustrate this, let us assume that an original instruction I0 of
warp W0 is issued to the CU0. The CU ID will be written in the instructions’
destination register field in the RAT and subsequent dependent instructions will
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Figure 10.2: Cumulative Distribution Function of 60 GPU ker-
nels of the CU allocation period (top), and pipeline stalls due to
no available CU (bottom). The lines correspond to the baseline,

LOOG without RRS, and LOOG with RRS architectures.

monitor the result bus to match this ID and capture the value of the broadcasted
register. After a few cycles I0 dispatches and begins executing. If the CU0 was
freed at this moment, a following instruction, say I1 of warp W0, could allocate
it. If I1 would finish executing before I0, I1 would broadcast its result together
with the CU ID 0 and instructions dependent to I0 would incorrectly capture
the output of I1, breaching program correctness. Therefore, in LOOG the CUs
are freed after the writeback stage; much later than in the baseline.

In Fig. 10.2a we can see the Cumulative Density Function (CDF) of the CU
allocation interval in the baseline (BASE) and in LOOG (LOOG-v0 ). In the
baseline, 50% of the instructions spend a single cycle in the CU, 80% of the
instructions spend less than three cycles and 95% of the instructions less than
ten cycles. In LOOG-v0, the allocation period is on average longer; two cycles
for 50% of the instructions, less than 15 cycles for 80% and less than 31 cycles
for 95% of operations. This longer allocation period translates directly to more
stalls due to no available CUs. Indeed, the Pearson’s correlation coefficient
between the CU stalls and the CU allocation period is 91%.
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operand collect stage.

A simple solution to this issue would be to increase the number of CUs.
However, as we will see in detail in Sec. 10.2.2, CUs come with a significant
area cost. To alleviate this problem in a cost-effective way, we introduced the
Register Renaming Stack (RRS). The RRS is a structure that holds a list of
unique IDs to be used in the RAT instead of the CU ID. When an instruction
issues, it allocates a free CU and pulls a unique ID from the RRS. This ID is
written in the RAT and subsequent dependent instructions will use it to capture
the result from the result bus. This way, instructions can release the CU after
dispatch, and hold only the RRS ID until writeback. The size of the RRS is
#RRS × log2(#RRS), e.g. only 384 bits for a 64-entry RRS.

Leveraging the RRS, we allow the CUs to be freed earlier, decompressing
the CU congestion. In Fig. 10.2a, we can see that the introduction of the RRS
(LOOG-RRS) has decreased the average CU allocation period compared to
LOOG without RRS (LOOG-v0 ), by approximately 20%, which resulted in a
similar decrease in pipeline stalls due to no available CU, as it can be seen in
Fig. 10.2b.

Fig. 10.3 depicts the sequence of operations that take place during the
operand collect stage, in order for a typical instruction with two source operands
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and one destination operand to become ready for dispatch to the EXUs. The
numbers in parenthesis inside the OC structures correspond to the sizes of the
data fields in bits. At first, there has to be a free CU and a free entry in the
RRS( 1 ). The rrsid pointed by the head RRS pointer is copied to the rrsid
field in the header of the CU. This unique ID is the new name of the destina-
tion register (r0). Then the RAT table, which is indexed by the warp ID and
register ID, is accessed to read the values of the two source operands, w0:r0
and w0:r1, and update the value of the destination operand w0:r0, to point to
rrs1 ( 2 ). A special null value means that the latest value of this register is
stored in the RF (r0) ( 3 ). Otherwise, there is a RAW dependency, and the
RAT value contains the ID of the renamed register (rrs0). The capture bit is
set, and the result bus is monitored to match the tag field rrs0 and capture the
register value ( 7 ). For r0, a read request is sent to the arbitrator ( 4 ). The
arbitrator, after resolving potential bank conflicts ( 5 ), schedules the w0:r0
read request. A copy of the value of the r0 is stored in the firs operand row
of the CU and the corresponding ready bit is set ( 6 ). When the value of the
renamed register rrs0 is broadcasted, the CU captures it and sets the ready bit
of the second operand (r1) ( 7 ). The third source operand (op3) is not used by
this instruction. Since both source operands have been read, the instruction is
ready to dispatch and de-allocate the CU ( 8 ).

10.1.3 To Predict or Not to Predict?

The branch predictor is a fundamental component of the front-end pipeline of
OOO processors, crucial for maintaining a flow of instructions in the presence of
conditional branches [138]. In alignment with traditional architectures, LOOG
does not include a branch prediction mechanism.

Typical GPU workloads do not involve complex instruction flow, thus the
performance degradation from control hazards is minimal. Indeed in Fig. 10.4,
we can see the control stalls, normalized to the total execution cycles, for each
of the 60 kernels in our test suite. On average 5.45% cycles are stalled due
to control hazards and, therefore, the potential speedup of a branch prediction
scheme is limited.

In addition, the size of a GPU branch predictor would be immense. In
CPUs, a branch can be either Taken (T) or Not-Taken (NT). This binary in-
formation can be captured in a single bit. In GPUs, the threads of a warp
execute in lockstep and might not evaluate uniformly a conditional branch. In
fact, for an SIMT width of 32, there are 232 possible branch outcomes, and 32
bits are needed to store this information. Using McPAT [135], we modelled a
basic branch predictor structure adapted to the purposes of a GPU platform.
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Specifically, we consider a branch predictor unit that includes branch target
buffer (BTB) and can predict up to four targets per cycle, since our baseline
platform can issue up to four instructions per cycle. Given that typical GPU
kernels are shorter and contain less control flow compared to CPU functions,
we scaled down the number of entries found in CPU predictors by a factor of
four to eight. The measured area overhead ranges between 4.7% and 8.35%.
Note that the structures needed to implement a recovery mechanism in case of
mis-speculation are not included in this estimation, thus in reality, the mea-
sured overhead will be even greater. This makes such a predictor extremely
demanding in terms of area and power.

10.1.4 Obeying Operand Dependencies

Obeying the RAW, WAR andWAW operand dependencies is essential for ensur-
ing program correctness. In LOOG, the RAW dependencies are resolved in the
CUs. Dependent instructions wait until the latest value of their read operands is
broadcasted in the result bus, from where they can capture it. Both WAR and
WAW hazards, which arise from name dependencies are eliminated with register
renaming [139]. By renaming the destination registers of all instructions, using
the RRS ID, we ensure that out-of-order writes will not affect instructions that
depend on an earlier operand value.

In typical GPUs, a different approach is followed. A scoreboard is used to
track and satisfy both RAW and WAW dependencies. When an instruction
issues, it sets the dependency bit of the output register in the scoreboard and
following instructions cannot issue if their source or destination registers have
their dependency bit set in the scoreboard. In reality, GPU platforms comple-
ment the scoreboard with a mechanism to safeguard against WAR hazards [140].
However, a known default of GPGPU-Sim [110], the u-arch simulator used for
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modeling the baseline architecture and LOOG, is that it incorrectly ignores
WAR hazards [140].

The following, uncommon but nevertheless possible scenario can lead to a
WAR violation. The front-end scheduler selects every cycle a warp to issue
up to two consecutive instructions given that they are no structural, control
or data hazards. Let us assume that there is a WAR dependency between the
two instructions, meaning that the second instruction is writing a register that
the first instruction is reading. After issuing, both instructions allocate a CU.
There, they schedule a read request for their input operands. The arbitrator
resolves bank conflicts and selects which CUs will receive data from the RF. It
is possible that while the first instruction is delayed due to bank conflicts, the
second instruction dispatches, executes and writes back the destination register.
Then, the first instruction will read the value of the register that the second
instruction just modified, violating the program’s correctness.

A straightforward way to resolve this pathogenic scenario and ensure correct
functional execution is to only allow one instruction per warp to be in the back-
end pipeline at a time, instead of two originally. NeglectingWAR hazards results
in a performance bias, i.e. an overestimation of the real IPC, w.r.t. the more
conservative but functionally correct approach described above. In Fig. 10.5, we
measured for every kernel in our test suite, the performance bias of the baseline
for not explicitly handling WAR hazards, with two different configurations: i)
using a single or ii) two warp schedulers. Every scheduler can select one warp
per cycle to issue, thus two schedulers have twice as much issue capacity as a
single scheduler. The y-axis of Fig. 10.5 shows the Probability Density Function
(PDF) of the performance bias (x-axis). A higher PDF value translates to a
higher probability that a kernel will experience the corresponding performance
bias. With a single scheduler, we see a considerable performance bias of 12%,
on average. With two schedulers, the performance bias is limited to less than
1%. Thus, to minimize the IPC overestimation, we use two warp schedulers
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Table 10.1: Collection of benchmark applications.

Streamcluster[108] Histo-Par [109] Hotspot [108] Pathfinder[108] SPMV [109]
ParticleFilter [108] MergeSort [84] SRAD-v1[108] VecAdd [84] MRI-Q [109]
RayTrace [110] Reduction [84] Gaussian [108] Transpose [84] AES [110]
Sorting Nets [84] SRAD-v2 [108] DWT2D [108] MUMmer [110] NN-Rod[108]
MonteCarlo [84] Convolve [84] KMeans [108] Histo-SDK [84] QRNG [84]
SumAbsDiff [109] BackProp [108] Sobol [84] Binomial [84] BFS [108]
FastWalsh [84] Laplace3D[110] NN-ISP [110] ScalarProd [84]

Table 10.2: Baseline GPU platform specifications.

Clock 1481MHz SP/SFU/MEM Units 4/1/1
Technology 23nm RF Size 256KB
Shader Cores 28 SP/SFU/MEM CUs 20/4/8
SIMT Width 32 L1/Shared Cache 64/96KB
Warps/ Shader 64 Tex./Const. Mem 48/12KB
Schedulers/ Shader 2 Inst. Issue/Warp 2

in the baseline platform, each able to issue up to two consecutive instructions
from a selected warp per cycle. Similarly, in LOOG, we use a single scheduler
that can pick up to two warps and issue up to two instructions from each per
cycle. This gives a slight (< 1%) performance bias towards the baseline for
neglecting WAR hazards. We need to clarify that LOOG satisfies all operand
hazards ensuring correct functional execution.

10.2 LOOG Right-sizing
In this section, we examine LOOG’s sensitivity to key micro-architectural pa-
rameters, in an attempt to analyze its characteristics and rightsize its configura-
tion. LOOG was evaluated under a wide collection of 60 kernels, covering among
others the domains of scientific computing, artificial intelligence, graph theory
and image processing. The applications were selected from CUDA SDK [84],
Parboil [109], Rodinia [108, 141] and the GPGPU-Sim benchmark suite [110].
From the complete collection of workloads, 20 kernels with the most frequent
stalling time and lowest warp occupancy were selected as our target evaluation
set, since they can benefit the most from an enhanced ILP run-time. These
kernels originate from 15 applications, which are listed in Table 10.1.

The baseline GPU architecture as well as our extension were developed and
evaluated with the latest version of GPGPU-Sim [110], a broadly used, cycle-
accurate GPU simulator. The evaluation platform is modeled after the Pascal
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GeForce GTX1080Ti [89, 88]. Its specifications are listed in Table 10.2. All
experimental workloads were run with the PTXPlus (SASS) simulation mode
enabled. Therefore, compiler assisted optimizations such as instruction reorder-
ing are integrated in the simulated instruction flow.

10.2.1 Register Renaming Stack Size

Extending the CUs to additionally function as reservation stations applies more
pressure on the operand collect stage. As discussed in Sec. 10.1.2 and shown
Fig. 10.2, in LOOG the CUs are on average allocated by much longer periods
compared to the baseline. This translates to a significant amount of CU stalls.
The RRS is a structure designed to alleviate this congestion. Without the RRS,
instructions needed to allocate the CUs from the issue to the writeback stage.
Using the RRS, instructions can de-allocate the CUs after they dispatch to the
execution units, reducing effectively the CU allocation period. In Fig. 10.6,
we can see the average and maximum number of RRS entries used by our
benchmark set. No application required more than 196 RRS entries while on
average, no application allocated more than 64 RRS entries at once.

Furthermore, in Fig. 10.7, the sensitivity to the RRS size is demonstrated.
The y-axis values are normalized to the IPC of LOOG with an RRS of size 32.
As shown, using a larger RRS of 64 entries brings a 10% gain in performance.
The area overhead is minimal; 0.04% and 0.06% when using 64 and 256 entries,
respectively. Similarly, the power overhead is only 0.02% and 0.3%, respectively.
Since no performance gain from 64 to 256 RRS entries is extracted, we settle
the RRS size to 64 in the remaining experiments.

10.2.2 Operand Collector Size

The addition of the RRS structure reduced the congestion caused in the operand
collect stage. Instructions can de-allocate the CUs right after dispatch. Never-
theless, as depicted in Fig. 10.2, the allocation period of LOOG, even with the
RRS, is longer than that of the baseline. This longer allocation period causes
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Figure 10.8: Sensitivity to the number of CUs and area over-
head normalized to the 32 CU configuration.

more stalls due to no available CUs, meaning that LOOG is sensitive to the
operand collector size. A larger number of CUs allows more instructions to
issue and increases the probability that some of them will quickly resolve their
data dependencies and dispatch to the EXUs.

In Fig. 10.8, we quantify the sensitivity of LOOG to the number of CUs.
The smaller 32 CU configuration is identical to that of the baseline. We also
try larger configurations with 36, 44 and 48 CUs in total. The y-axis values are
normalized to the smallest, 32 CU configuration. Increasing the number of CUs
from 32 to 48, brings a 5% gain in performance and a 2.57% additional area
cost. The additional power overhead in the largest configuration is limited to
less than 1%. We note that the larger contribution to the area cost is not due
to the hardware needed by the CUs, but due to the x-bar between the RF and
the CUs that has to accommodate more outputs. More specifically, the x-bar
contributes 91.1% to the additional area cost of the larger CU configurations,
and the increased CU count contributes the remaining 8.9%.
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10.2.3 Instruction Window Width

In LOOG, the I-Window width defines the number of instructions per warp
that will be considered for issuing by the front-end warp scheduler. Except
from that, it also defines the number of instructions that can be fetched and
decoded per cycle. The I-Window affects directly the number of instructions
that will be candidates for OOO execution. While modern CPUs use deep I-
Windows of more than 128 slots [142], in LOOG, to minimize the area overhead,
the I-Window width takes values from two to 16 instructions.

Fig. 10.9 shows the effect of the I-Window to LOOG’s performance for four I-
Window sizes – two, four, eight and 16. The values on the y-axis are normalized
to the smallest I-Window size. With an I-Window width of four instructions we
extract a speedup of 10% with an area and power overhead of 0.25% and 1.03%,
respectively. With a larger I-Window of eight instructions, we can improve the
performance by an additional 2% with a small power and area cost. However,
the performance gain of a 16-wide I-Window is limited and the power overhead
is 65% more than the baseline, making it impractical. In a few cases, like the
HST kernel, we can see a small IPC degradation with a deeper I-Window. This
happens when the issued instructions form a chain of long-latency dependencies,
thus blocking other, possibly independent instructions from allocating the CUs.
Furthermore, to simplify the design complexity and minimize LOOG’s overhead,
a warp is considered for fetching new instructions only when there are no more
valid instructions in the I-Buffer. Thus, a deep I-Window will be fully exploited
after a fresh instruction fetch. As instructions are issued and executed, the
I-Window will be shrinking in depth, limiting the ILP opportunities.

In LOOG, the priority to issue is given to the next in-order instruction of
every warp. Thus, in regular workloads with sufficient data parallelism, LOOG
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is mostly dispatching instructions in-order. Only in irregular cases, where the
TLP and the warp occupancy are not sufficient, LOOG will begin dispatching
instructions OOO to improve utilization.
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Chapter 11

Experimental Evaluation

11.1 LOOG vs. Warp Scheduling Policies & TLP
Throttling

In this section, we evaluate the run time performance of LOOG compared to
conventional GPU architectures. Specifically, for the baseline, we consider three
different warp schedulers: GTO [97], LRR and TLS [98], since traditional GPU
workloads are sensitive to the warp issue scheduling policy. Each of the baseline
configurations is better suited for different sets of applications. LOOG uses the
exact same configuration of CUs as the baseline and a 4-slot I-Window.

In order to evaluate LOOG’s efficiency against TLP throttling mechanisms,
we implemented the Best Static Wavefront Limiting (BSWL) technique [97].
BSWL is a static TLP throttling technique in which for every application, all
the possible CTA limits are scanned and the one that performed the best is
used. BSWL targets cache-sensitive applications, but has little to no effect on
cache insensitive workloads. BSWL has been shown to outperform both the
CCWS [97] and Dyncta [99] TLP throttling strategies.

We focus our analysis on the 20 target kernels with the most frequent stalls
and least mean occupancy which were identified in Sec. 7 and Table 10.1.
Fig. 11.1 shows LOOG’s IPC normalized to the four baseline configurations
described above. Among the baseline workloads, the greatest performance vari-
ation is observed in the SR1, NN1 and MS2 benchmarks, with a 29.8%, 22.1%
and 17.6% spread, respectively. The average performance variation per kernel,
when varying the warp scheduler is 8.65%. Despite the considerable kernel-by-
kernel variation, when averaging the performance of all kernels, we observe a
limited variation of about 1% among the baseline schedulers. Since the target
kernels were not chosen based on their access locality or cache footprint, they
do not coincide with GTO’s, LRR’s or TLS’s target workloads.

LOOG outperforms all three baseline scheduler by 22% to 23%. With the
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Figure 11.1: LOOG IPC normalized to the baseline GPU plat-
form using three different warp scheduling policies (LRR, TLS,

GTO), and the BSWL technique.

exception of the HST and PFR kernels, LOOG performs better than the base-
line in every kernel. As expected, the BSWL technique that relies on oracle
knowledge to discover the best performing CTA limit per kernel, is the fastest
among the baseline policies. Nevertheless, LOOG is faster by 16% on average
compared to BSWL.

LOOG’s slightly lower IPC in the PFR and HST kernels, by 7% and 8%
respectively, is due to the altered scheduling sequence. More specifically, in
traditional GPUs, when instructions issue to the OC stage, they have already
passed the scoreboard check, meaning they are free of dependencies. In LOOG,
there is no dependency-checking mechanism before issuing; instructions wait
in the CUs to resolve RAW dependencies. In some cases, a chain of data
dependent instructions on a long-latency memory request is formed, leaving no
space for other warps to issue potentially dependency-free instructions. Indeed,
in the HST and PFR kernels, we saw an average CU allocation period two times
longer than the average, indicating increased congestion in the OC stage.

11.2 LOOG vs. Dual-Operation Mode Mecha-
nisms

Warped-P [113] and HAWS [114] are alternative GPU architectures that enable
OOO execution, similarly to LOOG. HAWS suggests a modified compiler in-
frastructure combined with a hint-assisted warp scheduler to implement OOO
execution, and Warped-P is a purely hardware-based mechanism. HAWS tar-
gets the AMD architectures [85] and Warped-P targets NVIDIA architectures.
Despite few implementation differences, both techniques are based on the same
concept; in the shadow of long-latency memory stalls the warp scheduler enters a
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Figure 11.2: Comparison of LOOG against a Dual-Operation
Mode [113, 114] analogous mechanism.

special pre-execution mode, and continues to fetch, decode and execute instruc-
tion in an OOO fashion to keep the back-end pipeline busy. When the stalled
warps resume normal execution, pre-calculated ALU operations are converted
to memory load operations from a renaming unit. Due to their similarities, we
will refer to these techniques as Dual-Operation Mode (DOM).

In order to evaluate LOOG against DOM, we extended GPGPU-Sim [110]
with a DOM-like mechanism. Similarly to the original DOM techniques, DOM-
like allows for load but not store re-ordering. Furthermore, DOM mechanisms
are capable of considering instructions further ahead in the instruction stream
than LOOG. To simulate this behavior, in DOM-like we i) increase the number
of collector units from 32 to 64 and we use an I-Window of size 16, instead
of four. Fig. 11.2 shows the performance comparison between LOOG and the
examined DOM-like GPU. The y-axis shows the IPC of both techniques, nor-
malized to that of the baseline, conventional GPU architecture. On the right,
we have included the geometric means of the target (TG), non-target (NTG)
and all (ALL) kernels for DOM-like and LOOG. As we can see, the performance
values of both techniques are very close, but nevertheless, LOOG offers on av-
erage an additional 3% run time gain among the target kernels, 5% among the
non-target kernels and 4% across all 60 general-purpose kernels.

DOM does not pre-execute store operations and, load operations do not
modify the architectural state either, but only warm-up the L1 cache. Issuing
a speculative load operation in the shadow of a long-latency memory stall can
aggravate the memory congestion and deteriorate performance. Additionally,
there is no guarantee that the prefetched data will not be over-written before
the warp resumes normal execution and issues the actual load operation. On the
other hand, LOOG offers true load-store re-ordering, in the absence of address
dependencies. DOM mechanisms are designed to mitigate a single pathogenic
scenario: stalls due to long-latency memory operations. LOOG is an inher-
ent OOO, non-speculative architecture, able to improve performance under a
wider range of pathogenic scenarios, e.g. long-delay transcendental operations,
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Figure 11.3: PDP and EDP of various LOOG configurations,
normalized to the baseline, in-order GPU platform.

excessive control and structural stalls, and deficient thread level parallelism.

11.3 Evaluating LOOG’s Area, Power, and En-
ergy Efficiency

In Sections 10.2.2 and 10.2.3, we showed that LOOG is sensitive to the number
of CUs and I-Window width. Larger configurations offer better performance but
come with greater power and area budgets. The Area-Delay-Product (ADP),
Power-Delay Product (PDP), and Energy-Delay Product (EDP) metrics are
used as a figure of merit of the area and energy efficiency of hardware extensions.
Figure 11.3 shows the ADP, PDP, and EDP of LOOG with various I-Window
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Figure 11.5: LOOG latency gain percent across 32 applica-
tions.

and CU sizes, normalized to the baseline, in-order GPU platform, as described
in Table 10.2. Lower values correspond to more efficient configurations. The
best LOOG configuration achieves 16%, 7%, and 17% gains in terms of ADP,
PDP and EDP respectively, w.r.t. the baseline architecture. Considering all
three metrics, the best compromise is achieved when using an I-Window of
four instructions with 28 CUs. However, if higher performance is required, the
configuration that contains a 4-slot I-Window and 44 CUs is the most preferable
and EDP efficient design point.

11.4 LOOG: Promising u-Arch Alternative
In the previous section, LOOG demonstrated its superior performance and en-
ergy efficiency against a set of 20, low TLP target kernels. In principle, enabling
more aggressive ILP to complement the existing TLP can be beneficial for every
kernel. Indeed, in this section, we show that LOOG’s efficiency is also evident
for general-purpose kernels. Fig. 11.4 shows the normalized IPC of all 60 kernels,
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coming from a wide range of application domains and benchmark suites [108,
109, 84, 110]. We consider a LOOG configuration with a 4-slot I-Window, 32
CUs and 64 RRS entries. The area overhead of our lightweight extension is
only 1.02% and the additional power cost is 9.84%. Interestingly, LOOG is
23% and 12% faster than the baseline on average in the sets of target and non-
target kernels, respectively. When averaging across all kernels, LOOG offers
16% performance gain. This is a strong indication that a light-weight OOO
execution scheme like LOOG forms a very promising alternative to traditional
GPU architectures.

We further evaluate LOOG’s efficiency regarding end-to-end application ac-
celeration, i.e. for real workloads deployed in GPUs combining one or more
kernels. Fig. 11.5 reports the gain in latency, of LOOG compared to the base-
line GPU, for the 32 applications found in the considered benchmark suites. As
depicted, only four applications show a minor slowdown of 1-5%, while for the
rest 28 applications, the latency gain reaches up to 50%. On average, LOOG
saves 21.42% of GPU cycles when considering entire GPU-accelerated applica-
tions. The gain in cycles is accompanied with a 13.69% gain in energy, across
all 32 GPU accelerated applications.

11.5 In-Order GPU and LOOG Co-Exploration
Analysis

Having discussed how LOOG [143, 144], a non-conventional GPU architecture,
is implemented and fine-tuned, this section demonstrates an extensive explo-
ration of the design space of traditional GPUs and LOOG architectures si-
multaneously. To evaluate the efficiency of an OoO LOOG architecture when
combined with both older and newer GPU generations, we explore three L2
Cache (L2C) sizes, and three execution unit (EXU) counts, i.e. 9 baseline con-
figurations. When scaling the EXUs, both the Scalar Processors (SPs) and the
Special Function Units (SFUs) are scaled. Then, the LOOG OoO extension is
applied on top of these 9 configurations, and for each of them, four I-Window
sizes and four CU sizes are considered, i.e. 16 LOOG configurations in total.
Therefore, the exploration space is composed of 9 × 16 = 144 LOOG, and 9
baseline instances. All 60 kernels of our benchmark collection are executed on
each of these distinct instances.

Figure 11.6 shows the average normalized latency for all baseline and OoO
architecture configurations. Values below one correspond to a latency gain
compared to the baseline. As shown, the smallest OoO configurations with 2-
slot I-Window and 32 CUS, match the performance of in-order GPUs. More
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Figure 11.6: Normalized latency of various baseline and OoO
GPU configurations. Lower values correspond to more efficient

configurations.

aggressive configurations, with 48 CUs and 16-slot I-Window, achieve up-to 25%
latency gain. As anticipated from Sec. 10.2, there is a higher sensitivity to the I-
Window than to the CUs. However, I-Windows of size 16 are impractical due to
the large power overhead of more than 50%. In all in-order GPU configurations,
both those closer to the Pascal [89] architecture, with 5 EXUs and 3MB L2C,
and those closer to more modern GPU architectures, a speedup of 14-20% is
observed with the minimal overhead 36 CU, 4-slot I-Window configuration.
Generally, the latency gain increases with the number of EXUs, which shows
that the OoO extension exploits the extra resources more efficiently than in-
order GPUs. Focusing on the most powerful baseline GPU configuration, the
one that contains 11 EXUs and 12 MB L2C, we observe that with an I-Window
of size four and 36 CUs, a 20% latency gain is achieved on average. Overall, we
conclude that the benefits coming from an OoO extension can be seen even with
minimal additional resources in terms of I-Window and CUs, and are relevant
to a wide range of in-order GPU architectures.

Fig. 11.7 demonstrates the normalized power-delay product, or energy, con-
sumed on average to run the benchmarking kernels. It is evident that, using very
large I-Windows results in a overheads in terms of energy-efficiency. Similarly,
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Figure 11.7: Normalized power-delay product of various base-
line and OoO GPU configurations. Lower values correspond to

more efficient configurations.

too small I-Windows do not manage to capture ILP opportunities effectively
and perform worse that the in-order baseline. With an I-window of 4, a reduc-
tion in energy in the order of 11-17% is extracted. The energy gain of the LOOG
OoO extension becomes more evident when combined with more powerful GPU
architectures. Two factors contribute to this observation, i) the OoO extension
exploits more efficiently the additional EXUs, and ii) the power overhead is
reduced since it is independent of the EXUs and the data cache size. More
specifically, with 36 CUs and 4-slot I-Window, the OoO extension provides on
average 15% improved energy efficiency compared to traditional GPU architec-
tures. The area and power overhead of this configuration is limited to 0.92%
and 5.74%, respectively.

A more detailed evaluation of the optimal instance of LOOG (OPT ), against
high-end in-order GPUs and state-of-art OOOGPU schemes, which is DOM [113,
114] is provided in Fig. 11.8. Modern GPU generations [90, 107] contain large
L2 cache capacity and a plethora of execution units (EXUs). The most powerful
and future-looking baseline configuration simulated in Fig. 11.6 is the one using
11 EXUs and 12MB L2C. The DOM mechanism was summarized in Sec. 11.2.
We note that our DOM-like mechanism provides an upper-bound estimate to
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Figure 11.8: End-to-end latency comparison of 34 applications
for the DOM, LOOG, and LOOG-OPT mechanisms. The la-
tency is normalized to the baseline GPU platform. Lower values

correspond to greater latency gains.

the actual DOM mechanisms.
In Fig. 11.8, the performance of entire applications is examined, considering

the time spent in GPU kernels. On average each application contains two
kernels. In the x-axis of Fig. 11.8, the short-names of the applications listed in
Table 10.1 are shown. The y-axis shows the latency normalized to that of the
baseline in-order GPU with 11 EXUs and 12MB of L2C. Apart from DOM, we
see the performance of the optimized LOOG (OPT ), and the performance of
the non-optimized LOOG (LOOG). Values below one indicate gain in latency
w.r.t. the baseline and lower values correspond to greater gains in latency.

OPT and LOOG demonstrate similar behavior, since are both instances
of the same architecture, with OPT clearly outperforming the non-optimized
LOOG variation. DOM on the contrary exhibits a larger spread in latency.
On average, OPT is 13.8% faster than DOM. This showcases the impact of
re-ordering both load and store operations. DOM does not pre-execute store
operations or any operations ahead of store instructions. LOOG on the other
hand can re-order all types of operations, including loads and stores, in the
absence of address dependencies. Only in three cases, which are the Transpose
(TRP), RayTracing (RAY) and Binomial (BIN) applications, DOM achieves
greater gain in latency compared to the optimized LOOG instance, by 2.4%,
10% and 6.5% respectively. This is the result of the deeper I-Window exploited
by DOM in applications with fewer load-store operations.

OPT provides on average a narrow, but statistically robust, 5.5% additional
gain in latency compared to the non-optimized LOOG. OPT is slightly slower,
by 1.5%, than the baseline in only one case, the Convolution (CS) application.
This is related to the fact that the OoO dispatching mechanism alters the orig-
inal in-order instruction scheduling sequence. In rare cases, inter-dependent
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Figure 11.9: Average candidate instructions for issue per cycle,
grouped by normalized IPC.

instructions allocate the CUs, and block other instructions from issuing. In this
scenario, a scheduling mechanism that only issues instructions after checking
that there are no data-dependencies, as the scoreboard in the baseline archi-
tecture, can result in better utilization of the execution pipeline. Apart from
CS, all the remaining applications exhibit up-to 2× improved run time. The
geometric mean across all 34 applications shows a 27.6% latency gain.

Interestingly, despite the increase in power shown in Table 9.1, the optimized
LOOG-based OoO GPU achieves a geometric mean energy reduction of 23.5%.
The non-optimized LOOG provides 15.9% gain in energy, while with DOM [113]
the energy consumption is not improved. It is evident that the power overhead
of the incorporated OoO mechanisms is completely outbalanced by the achieved
performance gains while the fine-tuned resource allocation of the proposed OoO
GPU solution allows for an extra 7.6% gain in geo-mean energy efficiency. We
conclude that LOOG-based, OoO GPU architectures have great potential in
accelerating general-purpose workloads, providing significant gains in terms of
energy and performance.

11.6 Instruction Level Parallelism Analysis
The exploitable Instruction-Level Parallelism is a characteristic that is inherent
to the workload. It represents the number of independent instructions that can
be executed in parallel given enough resources. Fig. 11.9 shows for the baseline
architecture, the average number of independent instructions per cycle, divided
into groups according to the normalized IPC. A pattern is clearly depicted;
applications with lower degree of exploitable ILP profit more from LOOG. The
ILP is typically limited either because the warp occupancy of the kernel is low
to begin with, or because warps cannot be considered for issue due to control,
structural or data hazards. Both clauses of this conclusion are in agreement with
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our original hypothesis. Firstly, kernels with low occupancy fail to efficiently
hide the latency of memory and other long-lasting operations under a TLP only
scheme. Secondly, LOOG can alleviate the stalling time of kernels with frequent
structural, control or data hazards by considering a larger window of candidate
instructions and thus managing to find hazard-free instructions to issue and
execute.

The LOOG front-end warp scheduler prioritizes for issuing the first in-order
instruction of every warp, before looking deeper into the I-Window. The main
motivation for this is that in “regular”, data-parallel kernels, LOOG will execute
instructions very similarly to the baseline, maintaining equivalent performance.
In Fig. 11.10, we can see the average re-order distance of all 60 kernels in our
benchmark suite. On average, 17.15% of all instructions execute out of the
program order. Most of the re-ordered instructions (10.2%) only surpass one
instruction ahead in program order and less than 1% of the instructions are re-
ordered more than five places ahead. Note that, for this analysis, an I-Window
of 16 instructions was used to maximize the instruction re-ordering possibilities.

11.7 Compiler-based Re-Ordering and LOOG
GPGPU-Sim [110] provides two simulation modes: PTX and PTXPlus (SASS).
The Parallel Thread Execution (PTX) [124] is an intermediate, hardware-independent,
instruction set used by NVIDIA for portability and stability. The PTX ISA is
assembled into SASS, the native GPU ISA, before executing. Compiler opti-
mizations such as static instruction re-ordering and register allocation are only
integrated in the SASS binary and not in the PTX pseudo-assembly. Thus, the
PTX simulation mode is generally less accurate than SASS.

The SASS simulation mode was used in all our experiments, therefore LOOG
has already demonstrated compelling performance gains when combined with
static code optimizations. In Fig. 11.11a we evaluate the effect of compiler
optimizations on LOOG’s performance, examining PTX vs. SASS binaries.
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Figure 11.11: The proposed OOO execution model is relevant
in the presence of compiler-based optimizations, and up-scaled

workloads with additional TLP.

The y-axis shows the IPC of LOOG using PTX and SASS, normalized to the
corresponding baseline. The violin plots correspond to the target kernels with
PTX and SASS, as well as the full set of all kernels with PTX and SASS. For the
20 target kernels, we see that on average, the static code optimizations withdraw
only 4% of LOOG’s speedup. Across all 60 kernels, we observe similar average
speedup. As expected, the all-SASS distribution has lower best-case IPC than
the all-PTX, given that static instruction re-ordering optimizations are only
integrated in the SASS binary, thus limiting, but not canceling, the dynamic
reordering opportunities. In summary, the dynamic ILP exploited by LOOG
provides compelling performance gains, even when combined with compile-time
optimizations.

An interesting argument related to LOOG-like architectures has to do with
the workload input sizes. Increasing an application’s input set provides enough
work to support more active warps and exploit higher degree of TLP. Given
that LOOG’s target workloads fail to efficiently exploit TLP, should we assume
that only smaller scale workloads benefit from LOOG?

In Sec. 11.4, we established that although LOOG has a specific workload
target set, any application can profit from ILP as a complement to the existing
TLP model. To further stress LOOG’s sensitivity to increased TLP kernels, we
evaluate LOOG on larger workloads. Specifically, we upscaled the input sizes
of 12 applications (27 kernels) from the Rodinia [108] suite, by a factor of five,
resulting in 2.85x more CTAs issued per kernel invocation. Figure 11.11b shows
the normalized IPC distribution of LOOG over the baseline for the regular and
up-sized datasets. By comparing the two violin plots, we observe a minor effect
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Figure 11.12: Performance and power efficiency of alternative
LOOG and baseline configurations. All 60 kernel have been

considered.

on the latency gain of LOOG, i.e. from a geometric mean of 21% to 18%. In
conclusion, the speedup of LOOG is not diminished in up-scaled, higher TLP
workloads w.r.t. conventional GPU architectures.

11.8 Compatibility with Recent U-Arch Ad-
vances

The wide applicability of GPU accelerators drive rapid advances in GPU micro-
architectures. Modern NVIDIA GPU generations have introduced novel fea-
tures, not present in older generations. The baseline LOOG architecture is
based on the NVIDIA Pascal [89] generation, however it can be easily adapted
and implemented on top of newer GPU architectures. In this section, we study
how two features introduced in the NVIDIA Volta [90] and Ampere [107] ar-
chitectures impact the efficacy of the proposed LOOG execution model. The
Volta architecture increased the instruction issue capacity to eight instructions
per cycle, using four warp schedulers, each capable of scheduling up-to two in-
structions of a warp per cycle, while the Ampere architecture extended the L2
cache capacity to 40MB. Our baseline Pascal architecture uses a 3MB L2 cache
and has an issue width of four instructions per cycle.

To evaluate the impact of these two new features on LOOG, we modify both
LOOG and baseline to use 40MB L2 cache, or 8 instructions issue width. In
Fig. 11.12a, the violin plots from left to right correspond to the IPC of LOOG
normalized to the baseline, when both systems use the original configuration
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(REF), 40MB L2 cache (40mb$), or 8 instructions issue width (8IW ) respec-
tively. All 60 general-purpose kernels are included in the violin plots. Higher
values correspond to greater speedups. As shown, the average normalized IPC
of the two new configurations is higher (1.22 and 1.21, respectively) than this of
the reference (1.15), meaning that the efficacy of LOOG is not diminished, but
on the contrary, LOOG seems to exploit more efficiently the additional cache
capacity and issue width. This suggests that the LOOG execution model is
compatible with recent micro-architectural advances.

11.9 Alternative ISO-Power Configurations
In Sec. 11.4 we demonstrated how the proposed OOO execution model pro-
vides 16% performance gain on average across a wide range of general-purpose
kernels. However, this comes with an increased power budget of approximately
10%. In this section, we study whether greater power efficiency can be extracted
by alternative GPU configurations with more typical micro-architectural en-
hancements than LOOG. More specifically, we consider three alternative base
configurations: a) using an issue width of eight instructions per cycle (8IW ),
b) using a 40MB L2 cache (40mb$), and c) using 32 SMs (32SM ).

In Fig. 11.12b we can see the Power-Delay Product (PDP) of the most power
efficient LOOG configuration as defined in Sec. 11.3, normalized to the three
alternative baseline configurations, as well as the default baseline (REF) ar-
chitecture with four instructions issue width, 3MB L2 cache and 28 cores. All
60 general-purpose kernels are included in the violin plots. Lower values corre-
spond to less power efficient baseline configurations. The average of all violin
plots being less than one means that LOOG is more power efficient than all
the alternative, simpler base configurations. On average, the 32SM, and 8IW
configurations are less efficient in terms of power than the reference baseline
meaning that the IPC gain is out-weighted by the added power overhead. The
40mb$ configuration with an average normalized PDP of 0.97 shows that in-
creasing the L2 cache from 3MB to 40MB provides a power efficiency 3% lower
than the LOOG extension. However, when looking at the area overhead, LOOG
induces only 1.3% area increase, while increasing the L2 capacity to 40MB re-
sults in 5.4% area increase. Having an issue capacity of eight instructions per
cycle, or 32SMs comes with an area overhead of 6.5% and 14% respectively.
In summary, LOOG is more power- and area-efficient than alternative, simpler
micro-architectural configurations.
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Chapter 12

Conclusions

12.1 Conclusions
Living in the era beyond Moore’s law and Dennard’s scaling, the path to achieve
top performance is today more than ever via software customization, exploita-
tion of hardware accelerator systems, and the design of domain-specific archi-
tectures. In the scope of this thesis, we approach high-performance computing
from two different points of view: meticulous software customization with HPC
strategies, and hardware specialization for improved performance and energy
efficiency.

The first part of this thesis brought cutting-edge, High Performance Com-
puting strategies to the field of beam longitudinal dynamics, by completely
refactoring the BLonD simulator. Special attention was given to the user-
friendliness, since scientific simulators like BLonD are intended to be used
by non-computer scientists who value productivity-oriented programming lan-
guages, such as Python. BLonD++ , focused on vertical scalability and intra-
node efficiency, and demonstrated 18× reduced latency compared to BLonD.
This can be especially helpful for conducting design space exploration stud-
ies, that are often composed of a large number of medium-sized simulation
workloads. Then, to accommodate high-precision studies that require run-
ning a small number of large-scale simulations, we designed a hybrid, MPI-
over-OpenMP code called HBLonD. HBLonD integrates an automatic load-
balancing system to assist poorly balanced workloads. Furthermore, the imple-
mentation of two physics-motivated approximate computing methods optimized
the network traffic and minimized the communication and synchronization over-
head, without noticeable deterioration of the simulation accuracy. When run on
32 nodes, HBLonD demonstrated 43-56× speedup across three real-world test-
cases. Finally, to anticipate the ever-growing demand for larger input workloads,
longer and more simulation studies, we combined MPI with CUDA to build a
GPU-accelerated, distributed simulator, called CuBLonD. CuBLonD was built
on top of HBLonD, therefore inheriting all its advanced capabilities such as
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dynamic load-balancing and approximate computing techniques. On 32 GPU
platforms, CuBLonD showed an up to two orders of magnitude reduction in
execution time w.r.t. a 20-core BLonD++ CPU instance.

The second part of this thesis moved towards micro-architectural customiza-
tion to achieve higher performance and energy efficiency in modern applica-
tions. More specifically, it focuses on GPUs, the most widespread platform
for general-purpose workload acceleration. The diverse nature of modern GPU
accelerated workloads implies the existence of kernels with various character-
istics. Among them, we observed a significant class of kernels, which fail to
maintain enough active warps to hide the latency of memory operations relying
solely on thread-level parallelism. As a result, they suffer from frequent stalling
and poor resource utilization. These irregular kernels perform sub-optimally
under the original, Thread-Level Parallel model. To remedy this shortcom-
ing, this thesis suggested LOOG, a dynamic, hardware-only, general-purpose,
light-weight Out-Of-Order architecture for GPUs. LOOG exploits Instruction-
Level Parallelism to enhance the existing TLP model and improve the efficiency
of underperforming kernels. The area and power overhead of LOOG is mini-
mized by re-purposing existing hardware components and leaving intact the
most resource-hungry structures. A thorough exploration of the design space
of both traditional GPU architectures and LOOG proved that LOOG can be
applied on top of a wide range of GPU models, both low- and high-end. LOOG
outperforms conventional architectures, delivering an average speedup of 27.6%,
and reducing energy consumption by 22.4%, with an area overhead of only
1.02%.

In conclusion, this thesis proposes alternative approaches to achieve high
performance in terms of execution time and energy-efficiency. Firstly, we ex-
plored meticulous software customization strategies to take advantage of exist-
ing multi-processors and hardware accelerators, while providing an easy-to-use
interface to the user base. The dramatic reduction in execution time in the
field of beam longitudinal dynamics enables scientists to simulate scenarios that
combine more complex physics phenomena with finer resolution and larger num-
ber of simulated particles. These complex, accurate and fast simulations have
proven essential in the field of beam dynamics to overcome current technological
limitations, plan the upcoming upgrades of particle accelerators, and design fu-
ture machines that will help science advance further. For instance, in the Super
Proton Synchrotron (SPS), the speedup brought by HBLonD enabled users to
simulate more realistic operational scenarios and discover multi-bunched effects,
impossible to observe with a reduced number of bunches. These results lead to
important hardware design modifications [42, 43], which would otherwise not
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have been realised. Secondly, we focused on micro-architectural specializations
of GPU platforms to exploit Instruction-Level parallelism to complement the ex-
isting Thread-Level parallel model and boost the execution and energy efficiency
of modern workloads. By demonstrating the potential of LOOG to accelerate
a wide collection of applications originating from multiple computing domains,
we conclude that LOOG is a promising alternative GPU micro-architecture that
can expand the applicability of future GPU platforms even further.

12.2 Future Research Directions
Both parts presented in this thesis can be further advanced or extended to-
wards new research directions. Regarding the BLonD code, our main future
development ideas focus on the following topics:

• Develop a distributed implementation of the input-output operations and
particle distribution generation phase. This will enable the simulation of
much larger input workloads, in the order of tens or hundreds of billion
macro-particles.

• Investing in a more intelligent dynamic load-balancing scheme. Specifi-
cally, a load imbalance predictor mechanism can be implemented so that
the DLB scheme will be able to pro-actively resolve load imbalances in-
stead of reactively.

• Fine tune multi-node heterogeneous simulations. Based on the existing
capabilities of the Dynamic Load-Balancer, different types of hardware
can take part in the calculation of a BLonD simulation, e.g. CPU multi-
processors and GPU accelerators. The advanced automatic load-balancing
scheme will ensure a fair distribution of the workload according to the pro-
cessing power of each platform. However, the parallelization scheme can
be further enhanced by assigning specific tasks to specific types of hard-
ware, based on the characteristics of the available hardware and tasks. For
example, the FFT operations can be solely handled by GPU accelerators,
while other more control-intensive operations can be assigned entirely to
the CPU multi-processors.

The studies for novel, LOOG-based, Out-Of-Order GPU architectures can
be also extended towards the following directions:

• Simulation robustness. By transitioning LOOG to Accel-Sim’s [145] up-
graded timing model, and trace-based simulation mode, it is possible to
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gain access to more real-world workloads and modern GPU platforms with
higher modeling accuracy.

• Domain-specific LOOG variations. The simulation framework and the
LOOG architecture are highly configurable. Instances of the LOOG ar-
chitecture that target specific application domains can be designed.

• Micro-architectural optimization for performance and energy gains. Some
LOOG components, such as the instruction fetch and decode units can be
modified to operate in a pipeline fashion, to reduce the power overhead
for a potential increase in execution cycles.

• Run-time aware re-configuration. We have observed that certain work-
loads are not well-fitted for Out-Of-Order execution, while other work-
loads profit from more aggressive Out-Of-Order execution and Instruction-
Level parallelism. By monitoring dynamic characteristics of the applica-
tion, it is possible to detect such classes of applications and re-configure
the underlying architecture ranging from simple in-order to aggressive
Out-of-Order execution.
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Source Code

B.1 BLonD Source code repository
The source code of the BLonD code can be found at:
https://github.com/blond-admin/BLonD.

B.1.1 License

BLonD is distributed with GNU General Public License v3.0. The complete
license text can be found at:
https://github.com/blond-admin/BLonD/blob/master/LICENSE.txt

B.2 LOOG Source code repository
The source code of the LOOG code can be found at:
https://github.com/kiliakis/gpgpu-sim.

B.2.1 License

LOOG is distributed with BSD 2-Clause "Simplified" License. The complete
license text can be found at:
https://github.com/kiliakis/gpgpu-sim/blob/master/LICENSE.txt

https://github.com/blond-admin/BLonD
https://github.com/blond-admin/BLonD/blob/master/LICENSE.txt
https://github.com/kiliakis/gpgpu-sim
https://github.com/kiliakis/gpgpu-sim/blob/master/LICENSE.txt
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