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"The actual science of logic is conversant at present only with things either certain, impossible, 

or entirely doubtful, none of which (fortunately) we have to reason on. Therefore, the true logic 

for this world is the calculus of Probabilities, which takes account of the magnitude of the 

probability which is, or ought to be, in a reasonable man’s mind. 

 

James Clerk Maxwell (1850) 
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Abstract 

The structural reliability assessment of ships is a field of particular interest and importance. 

Since the 1980s where the foundations of structural reliability analysis and probabilistic-based 

formats for ship structural design were laid, there have been significant advancements. 

Nowadays, reliability analysis provides a robust tool for the development of design codes and 

the assessment of existing vessels. Typically, the safety level and the design of ship structures is 

governed by their performance in extreme or ultimate limit state. The rational treatment and 

quantification of the uncertainties associated with the load and resistance models is meaningful 

for a proper reliability analysis. 

In this thesis, the focus is placed on developing new methods for the management of 

uncertainties associated with the hull girder ultimate strength assessment of ocean-going 

vessels. Broadly speaking, this topic is addressed here by: (i) introducing the tools for a better 

representation of input uncertain parameters, (ii) propagating the relative uncertainties 

through the model effectively using Monte Carlo simulation and surrogate modelling 

techniques (neural networks), and (iii) using observed data to reduce the uncertainties 

considered in the model by means of a Bayesian analysis. 

Random field theory is used to describe spatial variability on geometric characteristics of hull 

structures. Ships are subject to manufacturing procedures and in-service deterioration 

processes which are generally random in space and time. A new stochastic imperfection model 

is introduced for the representation of the imperfect geometry of steel plates. In addition, the 

impact of uneven thickness distribution of stiffened plate panels on the ultimate strength 

calculation is investigated here for the first time. 

Bayesian methods offer a formal way to combine systematically different types of information 

and update model predictions as soon as new observations come into light. In the context of 

this thesis, Bayesian techniques are developed for: (i) the reduction of uncertainties related to 

modelling aspects arising from the assumptions and methods of analysis used to calculate the 

hull girder ultimate strength of ships, and (ii) the improvement of corrosion predictions on a 

vessel-specific basis by incorporating the information acquired from inspections data into 

existing global-based corrosion models. 

The impact of the aforementioned novelties on the structural reliability of oil tankers and 

container ships in ultimate limit state condition is finally examined. In particular, the reliability 

assessment and updating of an oil tanker is examined conditional on inspections data. 

Moreover, the reliability of two container ships at a given point in time is evaluated using the 

proposed modifications on the model uncertainty factor associated with hull girder ultimate 

strength prediction. 
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Nomenclature 

List of Symbols  

 

Latin characters 

 

Symbol    Description 

𝐴     Cross-sectional area 

𝑎     Plate’s length 

𝑎eff     Effective plate’s length 

a     Lower bound of a set of plausible values 

𝑎𝑛     Scale parameter of Gumbel distribution 

𝐵  Overall breadth of stiffened plate panel between supporting members, 

e.g., girders, floors, etc. 

B  Ship’s breadth 

𝑏     Plate’s breadth 

b     Upper bound of a set of plausible values 

𝑏𝑓     Face plate width stiffener 

𝑏𝑖     Threshold levels in subset simulation  

𝑏𝑛     Location parameter of Gumbel distribution 

𝐶𝑏     Block coefficient of a ship 

𝐶1     Annual corrosion rate 

𝐶2     Corrosion progress (trend)  

𝑐  A constant used for the normalization of likelihood function on the BUS 

problem 

CoV𝑋   Coefficient of variation of 𝑋 

𝐷𝑖   Intermediate domains (or events) defined in subset simulation 

𝒅      A vector of 𝑚 observations or measurements 𝒅 = {𝑑1, … , 𝑑𝑚} 

𝑑𝑖      A single observation or measurement 



                                                                                      

 

𝑑∞     Maximum steady corrosion depth expected after a long period of time 

𝐸     Young’ s modulus 

𝐸𝑡     Tangent modulus beyond the elastic limit 

E(𝑋)    Expectation value of 𝑋 

𝐹𝑋(𝑥)    Cumulative distribution function (CDF) of 𝑋 

𝑓𝑋(𝑥)    Probability density function (PDF) of 𝑋 

ℱ     Failure event 

𝐺  Limit state function expressing the reliability problem in the standard 

normal space 

𝑔  Limit state function expressing the reliability problem in the original 

space 

ℎ     Limit state function expressing the BUS problem 

ℎ𝑤     Web height of stiffener 

𝐼     Moment of inertia  

I     Indicator function  

𝐾     Total number of simulations or realizations 

𝑘     Shape parameter of Weibull distribution  

𝑘𝑑   A load combination factor that considers the interaction between 

WVBM and whipping bending moment 

𝑘𝑤   A load combination factor that considers the interaction between 

SWBM and WVBM 

𝐿     Length of a sample function 

𝐿0     Period of the simulated stochastic field 

𝐿𝐵𝑃     Ship’s length between perpendiculars 

ℓ𝑐     Correlation length parameter 

𝑀     Vertical bending moment 

ℳ     Model 

𝑀𝑑     Whipping bending moment 

𝑀𝑠𝑤     Still water vertical bending moment  

𝑀𝑠𝑤
𝑚𝑎𝑥   Maximum still water vertical bending moment from all loading 

conditions according to the loading manual of the ship



 

 

𝑀𝑡     Total applied vertical bending moment 

𝑀𝑢     Ultimate vertical bending moment capacity 

𝑀𝑢
𝑐ℎ     Characteristic ultimate vertical bending moment capacity 

𝑀𝑤𝑣     Wave-induced vertical bending moment 

𝑀𝑤𝑣
𝑐ℎ      Characteristic wave-induced bending moment defined by the Rules 

𝑀𝑤𝑣,𝑒𝑥    Extreme wave-induced vertical bending moment 

𝑚     Number of measurements (or observations) in a problem 

𝑚τ     Total number of time instances {𝜏1, … , 𝜏𝑚τ
} 

𝑚x     Plate’s buckling half-wave number in the x-direction 

𝑁     Total number of terms in a series expansion or a product 

𝑛𝑓     Number of failure points in the MCS estimate 

Pr(𝐴)    Probability of the event 𝐴 

𝑃𝑓     Probability of failure in reliability analysis 

𝑃𝑓,𝑐     Cumulative probability of failure 

𝑝𝑓
𝑀𝐶𝑆    Monte Carlo estimator of the true failure probability 

𝑝0     Target probability in SuS problem 

𝑄     Safety margin 

𝑅      Resistance (or capacity) term in structural reliability problem 

𝑟𝑖     Rotation around 𝑖-axis 

𝑟𝑔     radius of gyration of the stiffener with the attached plate defined as: 

𝑟𝑔 = √
𝐼

𝐴
 

𝑆     Load (or demand) term in structural reliability problem 

S     Sobol index 

𝑆𝑀     Hull girder section modulus 

𝑡     Thickness 

𝑡̅     Mean thickness 

𝑡𝑐     Corrosion wastage 

𝑡𝑛     Net thickness with 100% corrosion reduction specified by Rules 



                                                                                      

 

𝑡𝑛−50    Net thickness with 50% corrosion reduction specified by Rules 

𝑡𝑎𝑠−𝑏𝑢𝑖𝑙𝑡    As-built thickness 

𝑡𝑝     Plate thickness 

𝑡𝑤     Web thickness 

𝑡𝑓     Flange thickness 

𝒖     A collection of points/locations in space 𝒖 = (𝑢1, … , 𝑢𝑛) 

𝑣     Space lag between two arbitrary points 𝑢𝑖  and 𝑢𝑗  

Var[𝑋]    Variance of 𝑋 

𝑤0     Initial defection 

�̅�0     Mean initial defection 

𝑤0𝑐
𝑚𝑎𝑥    Maximum amplitude of initial deflection for column-type shape mode 

𝑤0𝑝
𝑚𝑎𝑥  Maximum amplitude of initial deflection for plate shape mode 

𝑤0𝑠
𝑚𝑎𝑥  Maximum amplitude of initial deflection for stiffener sideway shape 

mode 

𝑿     A 𝑛-dimensional random vector  

𝒙     A realization (outcome) of the random vector 𝑿 

𝑋     A one-dimensional random variable 

𝑥     A realization (outcome) of the random variable 𝑋 

x     Spatial Cartesian x – axis 

𝑋𝑑  A random variable representing the uncertainty on the whipping 

bending moment calculation 

𝑋𝑚     A random variable representing the uncertainty on material properties 

𝑋𝑛𝑙 A random variable representing the model uncertainty associated with 

the computation of non-linear effects in WVBM 

𝑋𝑟  A random variable representing the model uncertainty associated with 

the prediction of hull girder ultimate strength 

𝑋𝑠𝑡  Model uncertainty associated with the computation of linear result in 

WVBM 

𝑋𝑠𝑤     Model uncertainty associated with the computation of SWBM 

𝑋𝑢  A random variable representing an equivalent model uncertainty 

associated with the prediction of hull girder ultimate strength 



 

 

𝑌     A random variable representing the model output 

𝑦     A realization of the scalar variable 𝑌 

y     Spatial Cartesian y – axis 

𝒁     A vector of 𝑛 independent standard normal variables  

𝑍     A random variable in the standard normal space  

𝒛     A realization of 𝒁 

𝑧     A realization of 𝑍 

z     Spatial Cartesian z – axis 

 

Greek characters 

 

Symbol    Description 

𝜶      Sensitivity factors associated with FORM 

α      Beta distribution shape parameter 

𝛼𝑖      Sensitivity index for the 𝑋𝑖 random variable 

B     Beta function 

𝛽      Generalized reliability index 

𝛽FORM    Reliability index computed by FORM 

β      Beta distribution shape parameter 

𝛽𝑝     Plate’s slenderness ratio defined as: 

𝛽𝑝 =
𝑏

𝑡
√
𝜎𝑦

𝐸
 

Γ     Gamma function 

𝛿     Dirac delta function  

휀     Strain 

ε     Observation or measurement error 

휀𝑦     Normalized strain 

ε𝑡     Combined observation and model error  

휁     Parameter of the lognormal distribution 

휂     Parameter of the lognormal distribution 



                                                                                      

 

𝜽     Vector containing the parameters of a distribution model 

휃     A single parameter of a distribution model 

𝜗     Scale of fluctuation of a random field 

𝜅     Wave number 

𝜅𝑢     Cut-off wave number 

𝜆     Scale parameter of Weibull distribution 

𝜆𝑐     Column’s slenderness ratio defined as: 

𝜆𝑐 =
𝑎

𝜋𝑟𝑔
√
𝜎𝑦

𝐸
 

μ      Parameter of the normal distribution 

�̂�      Spatial mean value 

𝜇𝑋     Mean value of variable 𝑋 

𝜈     Poisson’ s ratio 

ξ     Model error 

𝜌     Correlation coefficient 

�̂�      Spatial correlation coefficient 

𝜎     Stress 

σ      Parameter of the normal distribution 

�̂�      Spatial standard deviation 

𝜎ε,𝜇     Standard error of the mean 

𝜎𝑋     Standard deviation of 𝑋 

𝜎𝑋
2     Variance of 𝑋 

𝜎𝑦     Yield stress 

𝜎𝑦
𝑐ℎ      Characteristic (nominal) value of yield strength 

𝜎𝑢     Ultimate stress 

𝜏     Time 

𝜏𝑐     Coating life duration or corrosion time initiation 

𝜏𝑡      Transition time between coating life duration and corrosion initiation  

Φ     Standard normal (cumulative) distribution function 

𝜑     Standard normal probability density function 



 

𝜒     Curvature 

Ω     Sample space 

𝜔     An outcome of the sample space 

Ω𝑜      Observation domain 

Ω𝑆      Spatial domain 

Ωℱ      Failure domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                      

 

List of Abbreviations 

 

Abbreviations  Description 

(a)BUS     (adaptive) Bayesian Updating using Structural reliability methods 

BM Imperfection model for the description of steel plates’ imperfect 

geometry based on the critical number of half-waves lengthwise of the 

plate. 

BM+2 Imperfection model for the description of steel plates’ imperfect 

geometry based on the critical number plus two half-waves lengthwise 

of the plate. 

CDF     Cumulative distribution function 

CoV     Coefficient of variation 

CSR     Common Structural Rules 

DoF     Degree of freedom 

FEM     Finite element method 

FLNG    Floating liquified natural gas unit 

FPSO    Floating, production, storage and offloading unit 

HH  Hungry-horse imperfection model for the description of steel plates’ 

imperfect geometry. 

IACS     International Association of Classification Societies 

ISSC     International Ship Structure Committee 

JSQS    Japan Shipbuilding Quality Standard 

LHS     Latin Hypercube sampling 

LSC     Load-end shortening (or stress-strain) curves 

LSF     Limit state function 

MCMC    Markov Chain Monte Carlo 

MCS     Monte Carlo simulation 

MLE     Maximum Likelihood estimate 

MSE     Mean squared error 

NLFEA    Non-linear finite element analysis 

NN     Neural network 



 

PDF     Probability density function 

PSF     Partial safety factor 

QoI     Quantity of interest 

RF     Random Field 

RV     Random Variable 

SHH  Stochastic hungry-horse imperfection model for the description of steel 

plates’ imperfect geometry (model proposed by the author) 

SSC     Ship Structure Committee 

SuS     Subset Simulation 

SWBM    Still water (vertical) bending moment 

WVBM    Wave-induced (vertical) bending moment 

ULS     Ultimate limit state 
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1 

 

1 Introduction 

1.1 Background 

The ultimate limit state (ULS) defines the maximum load-carrying capacity of a ship. Checking 

the hull girder ultimate capacity against extreme load events is one of the most important 

safety measures for the design and analysis of ocean-going ship structures. This fact has been 

acknowledged by the International Association of Classification Societies and the Common 

Structural Rules (IACS CSR) through the introduction of a partial safety factor (PSF) format 

design criterion, the derivation of which has been based on structural reliability methods.  

Structural reliability allows for the probabilistic treatment of the uncertainties related to the 

resistance (capacity) and the loads (demand) of an engineering structure. The ultimate purpose 

of a reliability analysis is generally to achieve a balance between functionality and cost, while 

maintaining a high level of safety. Apart from contributing to the introduction of PSFs format 

design criteria, reliability analysis is also a prominent method to examine the performance of 

existing structures and make decisions, e.g., inspection planning, reinforcement/replacement of 

a structural member, lifetime extension of the target vessel, etc.  

The focus of this thesis is on the assessment and quantification of hull girder ultimate strength 

in the presence of uncertainties. Marine engineers encounter various types of uncertainties 

associated with hull girder ultimate strength prediction. In particular, uncertainties can be 

classified into two broad categories: (i) input uncertain parameters and (ii) model uncertainties. 

Uncertainties of the first type are related to random geometric characteristics of the hull 

structure (e.g., thickness, weld-induced initial imperfections, residual stresses, etc.) and 

variations on material properties (e.g., yield strength, Young’ s modulus, etc.). Such types of 

uncertainties are generally the result of manufacturing processes and deterioration effects. 

Deterministic approaches become insufficient to accommodate the inherent randomness of 

such properties and their description often dictates the use of more advanced quantification 

techniques to characterize their spatial (temporal) uncertain characteristics over space (time). 

The framework of random fields (processes) is then needed to achieve this task. 

On the other hand, model uncertainties arise in our attempt to replicate the behavior of the 

real system. As any model is – more or less – uncertain on its prediction, the development of a 

model that would accurately compute the hull girder ultimate strength is a challenging task. A 

basic limitation that magnifies the significance of the problem is the absence of real-life results. 

As the comparative and trustworthy term is not always clear and defined enough to obtain 

information about the approximation in hull girder ultimate strength calculations, subjective 

knowledge from experts in conjunction with advanced numerical model predictions are often 

needed, see ISSC (2012). 



2                                                                                                                                             1. Introduction 

 

1.2 Motivation 

Uncertainty reflects our imprecise state of knowledge of the universe and expresses our level of 

confidence, see Lindley (1975). One can reduce uncertainties by an increase in knowledge, that 

is, by learning. Uncertainty quantification and reduction can be mathematically expressed using 

the theory of probability. In engineering, measured or observed data, becoming available during 

the lifetime of a structure, can be used to reduce the uncertainties related to a model and/or its 

parameters. In doing so, background knowledge is updated with new information – usually of 

limited amount – leading thus to an improved prediction of the system’s performance. Bayesian 

framework provides an effective tool to formalize the above procedure and quantify the effect 

of information through probabilistic terms. 

Bayesian inference techniques have been extensively used in different engineering disciplines, 

including bridges, see e.g., Enright and Frangopol (1999), Strauss et al. (2008), Ma et al. (2013), 

floating structures, see e.g., Garbatov and Soares (2002), Vasconcelos de Farias and Netto 

(2012), and geotechnical applications, see e.g., Papaioannou and Straub (2017). In the above 

studies, the effect of new information is quantified through probabilistic terms and used to 

update the model parameters and the subsequent reliability of the system. In the field of ship 

structures, Okasha et al. (2010) and Zhu and Frangopol (2013) evaluated the reliability of a 

vessel after performing a Bayesian updating on the wave-induced bending moment. In terms of 

resistance, Garbatov and Soares (2002) used inspection data to update the distribution models 

of crack initiation and the subsequent fatigue reliability of ship structural components. In the 

context of reliability in ULS, the application of Bayesian methods as a tool to manage the 

uncertainties associated with basic resistance parameters can be meaningful. For instance, the 

probabilistic description and reduction of uncertainties related to the corrosion and the 

resistance model itself is an open research area for application of Bayesian approaches. 

Corrosion is a time-dependent deterioration process that has a significant impact on the 

integrity and reliability of the ship’s hull girder. However, existing corrosion models used in the 

framework of reliability usually provide poor quality predictive capabilities and are associated 

with high statistical uncertainties, since they are constructed by pooling data from various 

sources. The need for more sophisticated corrosion prediction models sufficient for reliability 

analyses purposes has been stressed by Melchers (2003). 

The management of uncertainties associated with the resistance model itself can be also 

addressed using Bayesian techniques. Particularly, the limited amount of available data along 

with the need for combining different sources of information (e.g., subjective knowledge from 

experts and advanced finite element models) in order to improve our simplified analytical 

models motivates the establishment of a Bayesian framework capable of updating the model 

uncertainty factor associated with hull girder ultimate strength prediction. As a robust 

methodology for the quantification of model uncertainty factor is still missing from the 

literature, the establishment of such a procedure on a ship-type dependent basis would be of 

important practical use. An urgent need to develop practical methods to evaluate the hull 
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girder ultimate strength of container ships with consideration of the effect of lateral loads has 

been reported by ClassNK (2014) after the shipwreck of “MOL Comfort” in the Indian Ocean in 

June 2013.  

1.3 Scope of the Thesis 

The general subject of this thesis is the development of innovative methods for an improved 

assessment and updating of hull girder ultimate strength and reliability of ship structures. This 

objective is mainly achieved by managing the uncertainties associated with model parameters 

(model inputs) as well the model itself. From the first perspective, the advancements concern 

the development of a new model for the spatial random representation of the imperfect 

geometry of weld-induced steel plates and the introduction of a Bayesian approach to update 

the corrosion predictions of a target ship using inspections data. From the perspective of 

model, the emphasis has been placed on the refinement of model uncertainties through the 

combination of information from: (i) the analytical incremental-iterative method of IACS CSR 

based on Smith (1977) method, (ii) high-fidelity non-linear finite element analysis (NLFEA), and 

(iii) subjective judgment from experts. To achieve this task, an appropriate Bayesian updating 

scheme is developed. The impact of the aforementioned developments is investigated on: (i) 

the reliability assessment and updating of an oil tanker conditional on inspections data, and (ii) 

the reliability assessment of two container ships at a given point in time.  

In particular, the thesis presents procedures for an improved modelling and uncertainty 

reduction of the following aspects:  

- Spatial description of random geometric characteristics of steel plates 

In ship structures, geometric characteristics of steel plates, such as thickness and imperfections, 

are characterized by an inherent randomness in space. The framework of stochastic FEM can 

efficiently accommodate the spatial randomness of such quantities through the use of random 

fields. Uncertainty from the input is then propagating through the FE model and the impact on 

the stochastic response of the system is evaluated. In the present thesis, the effect of stochastic 

geometric imperfections on the ultimate strength of plates and hull girders is investigated. 

Moreover, the validity of uniform thickness reduction in the formulation of the analytical stress-

strain relations or load-end shortening curves (LSC) prescribed in IACS CSR Smith’s model is 

examined by simulating the actual non-uniform pattern of thickness on a representative 

stiffened plate element and assessing its impact on the ultimate strength. 

- Updated predictions of corrosion trends on a vessel-specific basis 

During the past decades, ship-type dependent empirical corrosion models have been developed 

based on corrosion data sets from the global fleet. Constructing models by collecting data from 

various sources – usually from ships with different characteristics and operational profile – 
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often leads to poor quality mean predictions and high statistical uncertainties of model 

parameters. Such models are generally insufficient for reliability analysis purposes where a 

much higher level of sophistication is needed. During a ship’s operation, new information 

regarding the hull structure condition is acquired from inspection surveys in the form of 

ultrasonic-thickness (UT) measurements report. This information can and should be utilized to 

update the corrosion predictions of the target vessel and reduce the relevant model 

uncertainties. In this thesis, the framework of Bayesian analysis is used to effectively update 

prior model predictions based on actual measurements acquired from subsequent inspections. 

- Determination and quantification of model uncertainties 

Different models for the computation of hull girder ultimate strength of ships have been 

developed throughout the past years. Among the most prominent ones are: (i) the analytical 

progressive collapse analysis of IACS CSR Smith’s method and (ii) the NLFEA method. The 

quantification of model uncertainties is generally a challenging task since real-life 

measurements are not available. In this thesis, a Bayesian approach is established to estimate 

the parameters of the model uncertainty factor for container ships and oil tankers with a 

consistent and systematic manner. In this context, experts’ opinion from literature sources and 

advanced NLFEA results are combined in order to refine the uncertainty in IACS CSR Smith’s 

model prediction and define a ship-type dependent model uncertainty factor. 

Overall, the above investigation provides knowledge and information to address the following 

questions: 

• IACS CSR Smith’s method assumes a uniform thickness reduction of structural members 

when evaluating the structural behavior of a stiffened plate element through the load-

end shortening curves (LSC). Does this practice lead to reliable results for ultimate 

strength prediction or should the effect of non-uniform thickness wastage should be 

considered?  

• Thickness measurements of the hull structure are acquired during inspections during a 

ship’s lifetime. How this form of information can be exploited to update existing 

knowledge and improve future corrosion predictions on a target vessel?  

• Are the common deterministic imperfection models capable of capturing the imperfect 

geometry of real steel plates? Is it possible to develop a stochastic imperfection model 

that will approximate better the inherent randomness of weld-induced steel plates’ 

geometry in space? What would be the impact of such a stochastic imperfection model 

on the ultimate strength of hull girders?  

• How the various sources of available information, i.e., subjective information from 

experts and objective information from advanced FE models, can be combined 

effectively to refine the model uncertainty associated with hull girder ultimate strength 
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prediction using the analytical IACS CSR Smith’s model? How this methodology can be 

applied to account for the specific characteristics of different ship types? 

• What is the effect of thickness measurements collected from subsequent inspections on 

the reliability updating of an oil tanker in ULS? How the reliability (failure probability) of 

container ships is updated if a more refined strength model uncertainty factor is used?  

1.4 Thesis layout 

The thesis consists of the following eight chapters: 

Chapter 1 introduces the background, motivation, objectives and organization of this thesis. 

Chapter 2 reviews the main sources of uncertainties and their treatment in the context of hull 

girder ultimate strength assessment. Broadly speaking, uncertainties are categorized into 

geometric, material and model uncertainties. Common literature approaches used for the 

quantification of all sources are presented. Particular focus is placed on model and geometric 

uncertainties, which are the main subject of this thesis. 

Chapter 3 presents the basic mathematical background of random fields theory. The context of 

this chapter is oriented in the numerical applications introduced in Chapter 4.  

Chapter 4 describes the spatial randomness of initial geometric imperfections and non-uniform 

thickness on steel plates of ships through the use of random fields. A new stochastic 

imperfection model is introduced, and its impact on the ultimate strength of plates and hull 

girders is examined. Furthermore, the effect of non-uniform thickness representation on the 

structural behavior of a stiffened panel is investigated and compared with the IACS CSR LSC 

uniform thickness reduction approach. 

Chapter 5 presents the fundamental theory of Bayesian analysis for engineering applications. 

Bayes’ rule is extended to address the updating of continuous random variables. Common 

methods for the appropriate probabilistic modelling of the prior and the likelihood – which are 

two of the basic components of Bayes’ rule – as well computational strategies for the solution 

of the Bayesian updating problem are provided. The context of this chapter is essential for the 

numerical investigations that follow in Chapter 6. 

Chapter 6 constitutes the core of the thesis. This chapter introduces a novel methodology for 

the updating of the probabilistic-based hull girder ultimate strength. This is accomplished 

through the solution of two problems. In the first problem, a Bayesian approach is applied for 

determining the hull girder model uncertainty on a ship-type dependent basis. Investigations 

are focused on oil tankers and container ships. In the second problem, Bayesian techniques are 

used to learn and update the parameters of a time-dependent empirical-based corrosion model 

in light of available data from inspections. A numerical investigation is presented for a specific 

vessel. 
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Chapter 7 investigates the impact of the novelties developed in the previous chapter on the 

reliability of ship structures in ultimate limit state. The basic reliability problem and the time-

dependent reliability framework for deteriorating ship structures are analyzed. Then, two 

numerical applications follow. In the first application, the reliability updating of an oil tanker 

conditional on inspections data takes place. Results from Chapter 6 regarding the updating of 

corrosion model are used for this purpose. In the second application, the reliability of two 

container ships using the proposed strength model uncertainty factor from Chapter 6 is 

investigated and compared with common literature approaches. 

Chapter 8 provides a summary of the work and lists the originalities of this thesis. Future 

research directions are also presented. 

A layout of the thesis is illustrated in Figure 1.1. 

In Appendix A, a brief overview of the basic notions of probability theory are presented. 

Appendix B formally defines the concept of random variable and presents the numerical 

descriptors of continuous random variables. In Appendix C, some common probability 

distributions for the representation of continuous random variables are introduced. In 

Appendix D, an outline of the Monte Carlo simulation (MCS) method is presented. Appendix E 

outlines the fundamentals of feed-forward neural networks. Appendix F presents a 

phenomenon that is present in container ships and bulk carriers known as the double bottom 

effect. The remaining appendices present results of this thesis.        
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Figure 1.1. Graphical overview of the thesis.
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2 A review on hull girder ultimate strength assessment 

2.1 Introduction 

This chapter reviews state-of-the-art work related to the probabilistic modelling of resistance in 

terms of structural reliability analysis of ship structures in ultimate limit state. The basic 

question that is addressed here is: “Which are the uncertainties that govern the probabilistic-

based hull girder ultimate strength assessment and how are these quantified in the framework 

of reliability analysis?” 

The chapter begins with summarizing the most commonly used computational methods for the 

prediction of ultimate strength of hull girders (Section 2.2). The various sources of uncertainties 

associated with hull girder ultimate strength assessment are briefly analyzed in Section 2.3. This 

section answers to the first part of the basic question stated above. The second part of the 

question is covered in Section 2.4. Particularly, an overview regarding the strategy for a 

probabilistic-based ultimate strength assessment within the framework of reliability in ULS is 

given in Section 2.4.1. In the remaining sections of this chapter, we present the most common 

practices used by researchers to treat some of the most fundamental sources of uncertainties 

related to the probabilistic modelling of hull girder ultimate strength, that is: (i) model 

uncertainty (Section 2.4.2), (ii) material characteristics (Section 2.4.3), (iii) initial geometric 

imperfections (Section 2.4.4) and (iv) corrosion (Section 2.4.5). 

2.2 Computational methods for the hull girder ultimate strength assessment 

Ships are to be designed to withstand the extreme environmental loads anticipated during their 

design life. The assessment of hull girder ultimate strength involves the computation of the 

maximum load-carrying capacity under longitudinal bending moment. Buckling and yielding 

failure mechanisms are to be considered for the determination of hull girder ultimate strength. 

An accurate and efficient method for evaluating the ultimate hull girder strength is thus of 

great practical importance.   

During the past decades, useful analytical, numerical and experimental methods have been 

developed to assess the hull girder ultimate strength of ships1. Analytical methods generally 

involve closed-form expressions and the progressive collapse analysis method proposed by 

Smith (1977). Numerical methods consist of the NLFEA method and the idealized structural unit 

 

1 Experiments on real ships’ hull collapse date back to the 1930s and the World War II. Since then, experimental 
efforts have been limited to reduced scale testing of box girders and ship hull models, see ISSC (2018). 
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method (ISUM). A brief description of the most commonly used methods is given below. For a 

more elaborated review, the reader is referred to Yao (2003) and ISSC (2018). 

Closed-form methods involve the development of simple theoretical and empirical formulas 

that explicitly evaluate the hull girder ultimate strength. Such formulations have been based on 

a presumed stress distribution field over the hull cross-section at collapse, taking into account 

plasticity and buckling. Caldwell (1965) first determined the longitudinal bending strength using 

this method on a simplified geometry of a cross-section. Since then, several improvements, 

both in the assumed stress state and in the form used to express the ultimate strength, have 

been performed, see ISSC (2018).  

Smith’s model is the prescribed procedure of IACS CSR used for the evaluation of hull girder 

ultimate strength. Smith’s method is considered superior than closed-form methods since it 

takes into account the strength reduction (load shedding) of each structural member after 

attaining its ultimate strength locally. The neglection of this phenomenon can greatly affect the 

ultimate strength of the whole cross-section, see ISSC (2000). Smith’s method is based on an 

incremental-iterative algorithm and requires the division of the hull girder transverse section 

into a set of independent elements (stiffeners with attached plating). An important feature of 

the method is the identification and computation of failure mechanisms for the individual 

elements, expressed through the so-called load-end shortening curves (LSC) (or average stress-

strain 𝜎 − 휀 relationship). For a detailed presentation of the algorithm and the basic 

assumptions behind this method, the reader is referred to IACS (2019). 

NLFEA method is an advanced tool to perform a hull girder collapse analysis – considering both 

material and geometric non-linearities – in a digital environment. The continuous advance of 

computer capabilities in conjunction with the robust finite element techniques have made this 

method very popular in the last years. Although NLFEA still remains time-consuming, and 

requires significant human effort and experience, it is an advanced tool to represent influential 

parameters of the problem, while at the same time, alleviates serious simplifications and 

weaknesses of Smith’s method. 

2.3 Uncertainties on the prediction of hull girder ultimate strength 

The assessment of hull girder ultimate strength is governed by various types of uncertainties, 

the presence of which restricts the construction of an absolutely safe ship structure. In general, 

uncertainties can be classified into: (i) input uncertain parameters and (ii) model uncertainties 

(see Section 1.1). In turn, input uncertainties can be further distinguished into random 

geometric and material properties. An alternative categorization of input uncertain parameters, 

according to ISSC (2012), is their distinction between physical aspects and deterioration effects. 

Based on this, an overview of the main sources of uncertainties related to hull girder ultimate 

strength prediction is presented below and illustrated in Figure 2.1. 
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2.3.1 Physical aspects 

Physical aspects are mainly referred to material properties’ variation, geometric random 

characteristics and fabrication-related procedures. Inherent variability of material properties of 

steel plates, such as, yield strength and Young’s modulus, as well geometric random 

characteristics, such as cross-sectional thickness of elements, are prominent sources of 

uncertainty that highly affect the overall strength of a vessel. Additional sources of uncertainty 

arise from manufacturing processes during the construction stage. Fabrication-related 

processes result in the development of initial geometric imperfections, residual stresses, 

misalignments, etc. Imperfections are characterized by a significant degree of uncertainty in 

terms of their magnitude and spatial variation. Although quality control methods have been 

improved throughout the years, these types of uncertainties are still present and may severely 

affect the prediction of hull girder collapse. 

2.3.2 Deterioration effects 

Deterioration (or ageing) effects are associated with physical processes and phenomena which 

take place during operation, and degrade the condition of the hull structure over time. Such 

phenomena include corrosion, fatigue cracks and dents’ formulation. Of particular interest in 

the longitudinal hull girder ultimate strength and the subsequent reliability assessment is the 

description of uniform (or general) corrosion, see e.g., Hørte et al. (2007). A detailed 

description of this subject is given later in Section 2.4.5. Fatigue cracks can reduce the load 

carrying capacity of ship hull structural elements and eventually decrease the overall hull girder 

capacity. However, studies dealing with the effect of crack initiation and propagation in the 

context of hull girder ultimate strength and reliability are quite limited, see e.g., Akpan et al. 

(2002), Sun and Bai (2003), Gao et al. (2012), and Babazadeh and Khedmati (2021). This can be 

explained in part by the fact that the amount and location of cracks are not generally known in 

a ship hull, and therefore, the phenomenon cannot systematically be addressed. Another 

important reason is that cracks are repaired as soon as they are observed. This statement holds 

for dents too. Dents’ formulation is usually the result of impact or accidental loads, see e.g., 

Smith et al. (1988). As it is a very localized and vessel-specific phenomenon, the representation 

of dents requires the development of an advanced FE model that will be able to approximate 

the real ship’s imperfect geometry. 

2.3.3 Model uncertainties 

Model uncertainty (or model error) constitutes a significant source of uncertainty in the 

computation of hull girder ultimate strength. In general, this type of error may be the result of 

simplified mathematical descriptions that are selected in favor of convenience or/and missing 

variables which are not included in the model because of ignorance. Depending on the type of 
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the employed model (analytical, numerical, experimental) different uncertainties may arise as a 

result of the simplifications and assumptions made. Among the various models developed 

throughout the years in shipping community, the IACS CSR Smith’s model and the NLFEA are 

the most prominent approaches for the description of hull girder collapse. Uncertainties related 

to these two models are discussed here. 

Smith’s method provides a two-dimensional idealization of the cross-section of the ship. 

Various sources of uncertainty exist, including the implicit modelling of imperfections, the 

boundary conditions and the division of the cross-section into a set of independent elements2. 

The formulation of the LSC is considered as one of the most critical factors affecting the 

accuracy of the method, see e.g., ISSC (2000) and Yao (2003). Another limitation of the 

conventional Smith model is the fact that it cannot capture the effect of double bottom 

bending between transverse bulkheads which is particularly profound in bulk carriers and 

container ships3. This phenomenon can considerably affect the hull girder ultimate strength of 

the vessel, see e.g., Amlashi and Moan (2008), Tatsumi and Fujikubo (2020). 

FE method provides a refined version of the real system but is subject to other sources of 

uncertainties mostly related to modelling aspects, such as for example the selection of the 

appropriate mesh, the boundary conditions, the analysis’ solver, etc., see e.g., ISSC (2018). The 

experience and skills of the user may also play an important role on the final results. In 

addition, the computational and modelling effort required for a single NLFEA is higher than that 

of Smith’s method. 

 

Figure 2.1. Main sources of uncertainties associated with hull girder ultimate strength assessment. 

 

2 Although relatively clear instructions are provided by IACS CSR upon the modelling of structural elements, 
differences may arise on the ultimate bending moment capacity calculation between various participants, mainly 
as a result of different modelling procedures, see also ISSC (2012). 

3 See Appendix F for a description of the double bottom phenomenon. 
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2.4 Quantification and treatment of basic types of uncertainties 

2.4.1 Overview 

In the framework of reliability analysis, the assessment of hull girder ultimate strength with 

probabilistic terms involves three basic steps:  

A. The selection of a reference model used for the computation of capacity. 

Traditionally, the IACS CSR Smith’s incremental-iterative algorithm is preferred as a 

reference model for the implementation of reliability analysis due to its 

computational efficiency relatively good accuracy on its predictions. 

B. The probabilistic description of the input uncertain parameters or basic random 

variables introduced in the reference model. In the general case, uncertainties 

related to material characteristics (e.g., yield strength, Young’s modulus) and 

geometric properties (e.g., corrosion) of structural elements are accounted for.  

C. The selection of a distribution model to describe the model uncertainty, i.e., the 

deviation of the reference model prediction vs. real-life (true) value. This factor 

covers the uncertainty on the calculation model, as well other aspects that cannot 

be explicitly treated through the use of basic random variables, such as 

imperfections.  

Ιn terms of mathematical notion, the formulation of resistance (or capacity) term 𝑅 in ultimate 

limit state is usually expressed as the product of two independent random variables, see e.g. 

Hørte et al. (2007): 

𝑅 = 𝑋𝑟𝑀𝑢 (2.1) 

where, 𝑀𝑢 denotes the hull girder ultimate strength predicted by Smith’s (reference) model (A) 

and 𝑋𝑟 reflects the uncertainty on the prediction model (C). The randomness on 𝑀𝑢 derives 

from the uncertainty on the material and geometric characteristics (B). Common literature 

approaches for the determination of the distribution model of 𝑋𝑟 are presented in Table 2.1. 

An alternative formula for the representation of resistance term 𝑅 is occasionally adopted in 

the literature. Based on this approach, the calculation of hull girder ultimate strength using 

IACS CSR Smith’s model is performed using the minimum specified characteristic values of 

material properties (see Table 2.2). Therefore, a fixed value for 𝑀𝑢 is obtained corresponding to 
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the characteristic value 𝑀𝑢
𝑐ℎ. Uncertainties related to material properties4 are gathered into a 

single random variable 𝑋𝑚 which is multiplied by the model uncertainty 𝑋𝑟. The resistance term 

𝑅 reads then: 

𝑅 = 𝑋𝑟𝑋𝑚𝑀𝑢
𝑐ℎ (2.2) 

Usually, an equivalent strength model uncertainty factor 𝑋𝑢 is established as 𝑋𝑢 = 𝑋𝑟𝑋𝑚 in 

order to decrease the number of random variables of the reliability problem. The statistics of 

𝑋𝑢 are obtained assuming independence between 𝑋𝑟 and 𝑋𝑚. The mean value E[𝑋𝑢] and the 

variance Var[𝑋𝑢] of 𝑋𝑢 are calculated as: 

E[𝑋𝑢] = E[𝑋𝑟𝑋𝑚] = E[𝑋𝑟]E[𝑋𝑚] = 𝜇𝑋𝑟𝜇𝑋𝑚 (2.3) 

Var[𝑋𝑢] = 𝜎𝑋𝑟
2 𝜇𝑋𝑚

2 + 𝜎𝑋𝑚
2 𝜇𝑋𝑟

2 + 𝜎𝑋𝑟
2 𝜎𝑋𝑚

2  (2.4) 

It is generally assumed that 𝑋𝑢 follows the lognormal distribution, as a product of a normal (𝑋𝑟) 

and lognormal distribution (𝑋𝑚)5. The mean value and CoV of material uncertainty factor 𝑋𝑚 

for different grades of steel are listed in Table 2.2. It is stressed, however, that there is not an 

established procedure for the calculation of 𝑋𝑚 when the ship is constructed by both mild and 

high-tensile grades of steel (which is often the case).  

2.4.2 Model uncertainty 

The uncertainty associated with a particular model performance is usually expressed by a single 

random variable 𝑋𝑟 defined as: 

𝑋𝑟 =
true strength (response)

model strength (response) prediction
 (2.5) 

Typically, a Gaussian distribution model is postulated to represent model uncertainty 𝑋𝑟. 

However, for hull girder ultimate strength calculation, the statistical parameters of the 

respective distribution model have not met a universal acceptance. Indeed, different estimates 

 

4 The variability of Young’s modulus is not taken into account in the specific approach, as its impact on the 
probabilistic-based hull girder ultimate strength calculation is considered to be limited, see e.g., Paik and Frieze 
(2001).  

5 However, the product of a normal distribution and a lognormal distribution does not give a lognormal 
distribution. 
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on mean value and standard deviation can be found in the literature. A brief historical review is 

outlined. 

Primarily, the determination of 𝑋𝑟 was performed empirically on the basis of experts’ 

judgement. A degree of variability around the predicted value of a reference model was 

presumed. Typical values of CoV were 0.10 and 0.15, while for the mean value an unbiased 

estimate (unit-mean) was usually adopted, see e.g. Mansour and Hovem (1994), Soares et al. 

(1996) and Paik and Frieze (2001). At that time, the selection of the statistical parameters of the 

distribution was seen more as a “guesstimate”. As soon as better information becomes 

available this should be considered to refine the statistics of the model, see Paik and Frieze 

(2001). An early effort to take into consideration additional sources of information was initiated 

by Frieze and Lin (1991). In their work, they estimated the parameters of 𝑋𝑟 by combining 

subjective knowledge, as well, numerical and experimental results carried out on box girders.  

In 2007, Hørte et al. (2007) used NLFEA predictions to calibrate 𝑋𝑟. A single result from the hull 

girder ultimate bending capacity prediction of a Suezmax tanker was adopted by a series of 

NLFEA conducted previously in DNV (2004). Hørte et al. (2007) used this outcome to 

compensate the simplifications of the Smith’s method with a more sophisticated model such as 

FEM. In doing so, the recommended mean value of 𝑋𝑟 shifted to a higher level (equal to 1.05), 

while the CoV was assumed equal to 0.10.  

Up to date, most of the research studies performed under the framework of reliability analysis 

adopt a mean value equal to 1.00 or 1.05 and a CoV of 0.10 (in less cases equal to 0.15) for the 

quantification of 𝑋𝑟 (see Table 2.1). It is stressed that this consideration is followed 

irrespectively on the examined type of ship. This is reflected on the numerous research studies 

carried out during the last two decades for tankers, see e.g., Hussein and Soares (2009), Gaspar 

and Soares (2013), Xu et al. (2015), Campanile et al. (2017)a, Gong and Frangopol (2020), bulk 

carriers, see e.g., Shu and Moan (2011)b, Campanile et al. (2016)a, Campanile et al. (2016)b, 

floating production and offloading units (FPSOs), see e.g., Sun and Bai (2003), Chen (2016) and 

container ships, see e.g., Parunov et al. (2014), Corak and Soares (2018), Shi and Gao (2021). 

Table 2.1. Applied distribution models for strength mode uncertainty factor 𝑋𝑟. The references 
essentially correspond to the first studies which introduced the corresponding statistics for 𝑋𝑟. 

Distribution Mean CoV References 

Normal 1.00 0.10 Paik and Frieze (2001) 

Normal 1.00 0.15 Frieze and Lin (1991), Mansour and Hovem (1994) 

Normal 1.05 0.10 Hørte et al. (2007) 
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2.4.3 Material properties 

The inherent randomness associated with basic material characteristics can significantly affect 

the hull girder ultimate strength and the reliability of a ship structure. In general, the 

quantification of material properties is accomplished by means of random variables which are 

introduced in the resistance model 𝑅 through Eq. (2.1) or Eq. (2.2).  

Yield strength 𝜎𝑦 is the most influential parameter among other material properties, such as 

Young’s modulus 𝐸 and Poisson’s ratio 𝜈. Traditionally, a lognormal distribution is adopted to 

represent yield strength variability. The distribution of the yield strength is derived from its 

characteristic value 𝜎𝑦
𝑐ℎ which represents the 5% fractile, see IMO (2006). The statistics of the 

distribution are listed in Table 2.2 for common types of steel grades used in the shipbuilding 

industry. 

Young’s modulus 𝐸 is usually represented by a normal distribution model with mean value 

equal to 210 GPa and coefficient of variation equal to 0.10, see e.g., DNV (1992). Occasionally, 

Young’s modulus is set as fixed quantity as it is considered that the impact of its variability on 

the results is not important, see e.g., IMO (2006). Poisson’s ratio 𝜈 is also set as constant. 

Usually, for a unique ship construction the same supplier of steel products is adopted. In doing 

so, although some degree of independence in the steel properties for different plates and 

stiffeners around the hull section might exist, the characteristics of the material at different 

locations can be assumed similar. Thus, the spatial variation of material properties around cross 

section is usually neglected, see e.g. Hørte et al. (2007). 

Table 2.2. Properties of yield strength of steel. Characteristic values 𝜎𝑦
𝑐ℎ are prescribed by IACS (2019). 

The distributions are given by IMO (2006). 

Steel grade Distribution Mean CoV 𝜎𝑦
𝑐ℎ E[𝑋𝑚] ≈ Mean 𝜎𝑦

𝑐ℎ⁄  

Mild Lognormal 269 0.08 235 1.14 

High tensile H-32 Lognormal 348 0.06 315 1.10 

High tensile H-36 Lognormal 391 0.06 355 1.10 

High tensile H-40 Lognormal 426 0.06 390 1.10 
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2.4.4 Initial geometric imperfections 

The collapse analysis of ship-type stiffened plate panels under longitudinal compression, as well 

the overall hull girder ultimate strength, is generally affected by initial geometric 

imperfections6. Typically, imperfections are introduced in the hull girder FE model and 

accommodated on the resistance model 𝑅 implicitly through 𝑋𝑟 parameter. The incorporation 

of initial imperfections into a FE model of a hull girder is not a trivial task, as it often needs 

significant human effort. Usually, the prescribed initial imperfections are assigned to the nodes 

of the finite elements as discrete nodal displacements. Alternatively, an eigenvalue buckling 

analysis on the examined stiffened panels can be carried out, see e.g., Amlashi and Moan 

(2008). Imperfections are usually introduced in the most vulnerable areas of midship section 

region, that is, areas subject to highly compressive stresses. For instance, for a ship examined in 

extreme hogging condition, maximum compression is developed on the bottom structure. 

Imperfections are then assigned on that particular region of the vessel. 

As actual imperfections are rarely known, different imperfection models have been introduced 

to represent the imperfect geometry of a stiffened panel in a deterministic, yet practical, 

manner. These models aim at describing the initial deflection field by applying a presumed 

geometric shape and a characteristic maximum distortion magnitude. In general, the applied 

models are either based on more theoretical approaches trying to ensure a conservative 

structural behavior, or more realistic practices focusing on the approximation of the actual 

condition of structure. Recently, the author co-published a paper dealing with the prevailing 

ship-type geometric imperfection models and assessed their impact on the collapse of ship-type 

stiffened plated grillages, see Li et al. (2022). 

2.4.4.1 Shape/mode of deflection 

The initial geometric imperfection of a stiffened pated grillage is formed of three components 

that are linearly superimposed to generate the final imperfect geometry, i.e., (i) global column-

type deflection, (ii) local stiffener sideway deflection, and (iii) local plate deflection. The 

prevailing initial geometric models are presented below and a schematic description is given in 

Figure 2.2. 

 

6 Imperfections generally involve initial geometric imperfections and residual stresses. Particular focus on this 

thesis is placed on weld-induced initial geometric imperfections. The impact of residual stresses on hull girders and 

stiffened panels ultimate strength prediction has been studied by e.g., Gannon et al. (2012) and Li et al. (2021). 
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Global column-type deflection 

The column-type deflection is introduced as a half sinusoidal curve between the transverse web 

frames and between primary supporting members, e.g., longitudinal bulkheads. The analytical 

form of this deflection mode is given by Eq. (2.6) as: 

𝑤0𝑐(x, y) = 𝑤0𝑐
𝑚𝑎𝑥 sin

𝜋x

𝑎
sin

𝜋y

𝐵
 (2.6) 

where, 𝑤0𝑐
𝑚𝑎𝑥 is the maximum amplitude of initial deflection, 𝑎 is the plate length between two 

adjacent transverse frames and 𝐵 is the overall breadth of the entire panel between supporting 

members, e.g., girders and floors (see Figure 2.2). 

Local stiffener sideway deflection 

The initial sideway deflection mode applied on longitudinal stiffeners is represented by a half-

wave between transverse web frames and a sideway deflection along the web height. The 

above is expressed by Eq. (2.7) as: 

𝑤0𝑠(x, z) = 𝑤0𝑠
𝑚𝑎𝑥

z

ℎ𝑤
sin

𝜋x

𝑎
 (2.7) 

where, 𝑤0𝑠
𝑚𝑎𝑥 is the maximum amplitude of initial sideway deflection and z is the vertical 

position of deflection along the web height ℎ𝑤. Stiffener sideway deflection may have a 

significant impact on the torsional buckling (tripping) of stiffeners. 

Local plate deflection 

The local plate deflection is described following one of the two below alternatives. The first 

form, which has a clearly theoretical background, is introduced based on the critical elastic 

buckling-mode shape of imperfection and it reads: 

𝑤0𝑝(x, y) = 𝑤0𝑝
𝑚𝑎𝑥 sin

𝑚x𝜋x

𝑎
sin

𝜋y

𝑏
 (2.8) 

where, 𝑤0𝑝
𝑚𝑎𝑥 is the maximum amplitude of initial deflection on the plate, 𝑏 is the breadth of 

the plate and 𝑚x expresses the buckling half-wave number of the plate defined as the minimum 

integer satisfying the following condition: 

𝑎

𝑏
≤ √𝑚x(𝑚x + 1) (2.9) 
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The second alternative shape is the idealized (or conventional) hungry-horse (HH) or thin-horse 

model. The HH model has been introduced by Ueda and Yao (1985) and is generally associated 

with a more realistic description of weld-induced imperfections, as it is based on full-scale 

measurement data of ship structures. For this model, the initial deflection pattern of a plate’s 

geometry is expressed using the following Fourier series: 

𝑤0𝑝(x, y) =∑𝐴0𝑚x
sin

𝑚x𝜋x

𝑎
sin

𝜋y

𝑏
𝑚x

 (2.10) 

where values of 𝑚x are taken from 1 to 11. The coefficients of the deflection components 𝐴0𝑚x
 

for different aspect ratios 𝑎 𝑏⁄  of plates are listed in Table 2.3. 

Table 2.3. Coefficients of deflection components 𝐴0𝑚x
 for the conventional HH imperfection model, see 

Ueda and Yao (1985). 

Aspect ratio 𝑎 𝑏⁄  𝐴01 𝑡⁄  𝐴03 𝑡⁄  𝐴05 𝑡⁄  𝐴07 𝑡⁄  𝐴09 𝑡⁄  𝐴11 𝑡⁄  

𝑎 𝑏⁄ < 1.41 1.000 0.000 0.000 0.000 0.000 0.000 

1.41 ≤ 𝑎 𝑏⁄ < 2.45 1.200 0.240 0.034 -0.011 -0.005 0.003 

2.45 ≤ 𝑎 𝑏⁄ < 3.46 1.241 0.333 0.124 0.035 0.000 -0.008 

3.46 ≤ 𝑎 𝑏⁄ < 4.47 1.255 0.371 0.173 0.082 0.032 0.007 

4.47 ≤ 𝑎 𝑏⁄ < 5.48 1.261 0.390 0.200 0.111 0.060 0.029 

5.48 ≤ 𝑎 𝑏⁄ < 6.48 1.265 0.400 0.216 0.130 0.080 0.047 

2.4.4.2 Magnitude of deflection 

Once the deterministic shape of the geometric distortion is defined, the maximum amplitude of 

the distortion field should be specified. Different approaches are available. DNV (2013) specifies 

maximum permissible amplitudes for each mode of distortion profile as indicated in Table 2.4. 

Japan Shipbuilding Quality Standard (JSQS) has established a maximum allowable tolerance of 

6 mm for all modes, see Yao and Fujikubo (2016). Smith et al. (1988) developed the following 

formula as a function of plate’s slenderness ratio 𝛽𝑝 and the level of imperfections’ severity for 

the description of a plate’s maximum amplitude initial distortion based on actual 

measurements on ship structures.  

𝑤0𝑝
𝑚𝑎𝑥 = 𝑐𝑝𝛽𝑝

2𝑡𝑝 (2.11) 

where, 
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𝑐𝑝 = {
0.025,  for a slight level
0.1,  for an average level
0.3,  for a severe level

 

Except otherwise specified, an average-level magnitude is commonly adopted in the above 

formula. It is noted that when the conventional HH mode is applied on ship grillages, it is 

common to express a variability on the maximum initial deflection (usually a 10% difference) 

between adjacent plates (see Figure 2.2). This strategy is applied in order to express the 

presence of asymmetric deflection component that induces the asymmetric buckling-mode 

deformation, and at the same time, to avoid converge issues when performing a NLFEA, see 

e.g., Fujikubo et al. (2005). 

Table 2.4. Class tolerance of maximum imperfections amplitudes, after DNV (2013). 

Deflection type Symbol Max amplitude 

Global 𝑤0𝑐
𝑚𝑎𝑥 𝑎/1000 

Local – Stiffener 𝑤0𝑠
𝑚𝑎𝑥 𝑎/1000 

Local – Plate 𝑤0𝑝
𝑚𝑎𝑥 𝑏/200 

 

 

 

Figure 2.2. Schematic illustration of a typical initial geometric imperfection field applied on a stiffened 
panel. The buckling-mode (BM) and the conventional hungry-horse (HH) plate imperfection models are 

superimposed with a global half-wave and a local sideway stiffener deflection to generate the final 
imperfect geometry introduced on a FE model. 
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2.4.5 Corrosion 

Corrosion is a deterioration process that highly affects the hull girder ultimate strength and the 

subsequent reliability of ship structures. Statistics for ship hull damages show that around 90% 

of ship failures are attributed to corrosion, including corrosion fatigue, see Emi et al. (1991). 

Corrosion is a complex phenomenon which is influenced by many uncertain factors, including 

various environmental (e.g., temperature, pH, humidity, salinity, etc.) and operational (e.g., 

corrosion protection system, maintenance policy, trading routes, ship cargo, etc.) aspects. A 

summary of the environmental factors that affect to a lesser or a greater degree the corrosion 

of mild and low alloy steels is given by Melchers (1999)b. 

Typical corrosion mechanisms associated with steel plates of ship structures are: (i) general (or 

uniform), (ii) pitting and (iii) grooving corrosion, see also DNV (2020). General corrosion results 

in a uniform decrease of plate thickness which greatly affects the strength of plate elements 

under in-plane compression. This type of corrosion is thus of particular relevance in longitudinal 

strength assessment and should be always considered when studying the reliability of ships in 

ULS. In contrast, pitting corrosion leads to the formulation of localized dents with very deep 

holes appearing in the plate. Due to this localized effect, pitting does not affect the in-plane 

stress distribution of plate and generally, it is not taken into account when assessing the hull 

girder ultimate strength. Grooving corrosion may occur at stiffener connections close to a weld 

between the longitudinal and the deck plate. Like pitting, grooving is a more localized 

phenomenon that is usually not considered when assessing the overall strength of a ship. 

In practice, a corrosion model should be able to represent both temporal and spatial variability. 

However, most of the research studies conducted so far have been focused on the temporal 

character of corrosion, while efforts for an efficient approach that considers the spatial 

dependence of corrosion growth are rare. In Section 2.4.5.1, common models used for the 

prediction of long-term corrosion of ship structural elements as a function of time are provided. 

In Section 2.4.5.2, existing methods used for the consideration of spatial dependence of 

corrosion at a given point in time are presented. Finally, in Section 2.4.5.3, Rule-based 

approaches for modelling corrosion at a given point in time are introduced. 

2.4.5.1 Temporal representation of corrosion 

The prediction of corrosion loss is an important task for the assessment of ship structures. 

Ideally, the most accurate way of approximating corrosion growth in time would be the 

construction of theoretical models based on the prevailing physical processes that take place on 

the surface of steel plates, see e.g., Melchers (1999)b. However, such models have been only 

partly verified for laboratory conditions. The complexity of marine environment and the 

interaction of the various factors influencing corrosion prevent the development of a purely 

theoretical model for the prediction of long-term corrosion wastage of ship structural elements.  
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Empirical time-dependent corrosion models are far more simple than theoretical ones as they 

employ only a few parameters. The parameters of these models are calibrated – mainly 

adopting regression techniques – based on actual corrosion data from existing ships. Corrosion 

data sets have been established primarily for bulk carriers, see e.g., Paik et al. (1998), 

Yamamoto and Ikegami (1998), Paik et al. (2003) and oil tankers, see e.g., Paik et al. (2003). 

Extrapolations from single hull to double hull oil tankers and FPSOs have taken place, see Paik 

et al. (2003), while for other types of ships, such as container ships, a corrosion data set is 

currently lacking. The main drawback of empirical modelling is that pooling data from various 

sources, covering a wide range of ship characteristics (including different operational 

characteristics, maintenance practices and ships’ ages) usually provides poor-quality mean-

value information and very high statistical uncertainties of corrosion model parameters. This 

fact may seem particularly problematic for reliability analysis where a much higher level of 

accuracy is required, see also Melchers (2003). Empirical models have become, however, an 

acceptable solution for marine engineers to predict future corrosion trends. In literature, two 

basic models are generally used: (i) Paik’s model, and (ii) Soares and Garbatov model. 

Paik’s model 

In 2002, Paik (2002) proposed a corrosion model that is divided into three main stages: (i) the 

durability of corrosion 𝜏𝑐, (ii) the transition between coating durability and corrosion initiation 

𝜏𝑡, and (iii) the progress of corrosion. A schematic representation of the corrosion model 

process is illustrated in Figure 2.3. For the second stage, it can be pessimistically assumed that 

transition time is zero 𝜏𝑐 = 0 and thus, corrosion initiates immediately after coating 

breakdown7. Mathematically, the model is expressed by the following relation: 

𝑡𝑐(𝜏) = {
𝐶1(𝜏 − 𝜏𝑐)

𝐶2 , 𝜏 ≥ 𝜏𝑐
0, 𝜏 < 𝜏𝑐

 (2.12) 

where, 𝑡𝑐 is the corrosion diminution of plate thickness in mm as a function of time 𝜏, 𝐶1 is the 

annual corrosion rate in mm/year, 𝜏𝑐 is the coating life duration in years, and 𝐶2 is a 

coefficient that determines the trend of corrosion waste over time. The following information 

can be used for the determination of the above model parameters. 

Annual corrosion rate 𝐶1 has been assumed to follow a Weibull distribution model. The first and 

second order statistics of the distribution model have been determined from thickness 

measurements on different locations of cross-section. Different statistics have been defined 

conditional on the location of element and the exposed environment of each element, see Paik 

et al. (2003). 

 

7 From the remaining of the thesis, the terms “coating life” and “corrosion initiation” are used interchangeably and 
are referred at the time where corrosion initiates. 
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Coating life duration 𝜏𝑐 is difficult to be identified and depends, mainly, on the type of coating 

system used and the relevant maintenance policy. Expected coating life duration typically lies 

between 5 to 10 years (with a maximum of 15 years), see e.g., Qin and Cui (2003), Moan et al. 

(2005). It is thus appropriate to consider the variability of coating life parameter using a random 

variable. Usually, a normal or a lognormal distribution is used for its representation, see e.g., 

Yamamoto and Ikegami (1998).  

The exponent 𝐶2 determines the trend of the corrosion progress. According to Paik (2002), one 

of the following three types of corrosion trends may exist (see Figure 2.3): the convex type 

(gradual build-up of rust layer will prevent metal from further corrosion), the concave type 

(likely to happen under dynamically loaded structures due to flexing exposing fresh areas to 

corrosion) and the linear type (rust layer are continually removed due to abrasion or wear). 

Typical values of 𝐶2 are in the range [0.3 - 1.5] according to Paik (2002). However, values 

greater than unity are rarely used in literature, see e.g., Qin and Cui (2003), Melchers (2019). 

In the context of hull girder ultimate strength and reliability assessment, Paik’s model is usually 

employed by considering a linear corrosion progression 𝐶2 = 1.0, a fixed coating life equal to 

𝜏𝐶 = 7.5 years and a constant but unknown corrosion rate that follows the Weibull 

distribution. This approach has been extensively used in the literature to evaluate the time-

dependent reliability of oil tankers/FPSOs, see e.g., Akpan et al. (2002), Zhu and Frangopol 

(2013), Campanile et al. (2016)b and Campanile et al. (2017)a and bulk carriers, see e.g., 

Campanile et al. (2015) and Campanile et al. (2016)c. 

Soares and Garbatov model 

In 1999, Soares and Garbatov (1999) proposed a similar model which also includes no corrosion 

and transition between coating durability and corrosion initiation. However, they believed that 

the corrosion would gradually stabilize at a depth of 𝑑∞, since corrosion products on the plate 

surface will prevent the corrosion process. Any disturbance, or indeed removal, of this oxide 

layer could lead to a re-initiation of the corrosion process. Figure 2.3 shows the corrosion 

wastage thickness change against time. The model proposed by Soares and Garbatov reads: 

𝑡𝑐(𝜏) = {
𝑑∞ (1 − exp [

(𝜏𝑐 − 𝜏)

𝜏𝑡
]) , 𝜏 ≥ 𝜏𝑐

0, 𝜏 < 𝜏𝑐

 (2.13) 

where, 𝜏𝑐 denotes the corrosion initiation time, 𝜏𝑡 gives the transition time and 𝑑∞ is the 

maximum steady corrosion depth expected after a long period of time.  

Several data sets from oil tankers and bulk carriers have been fitted to the non-linear model. In 

doing so, representative/average values of these parameters can be obtained using regression 

analysis. Zayed et al. (2018) associated parameters’ values according to the exposed 
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environment and defined a triplet of {𝜏𝑐, 𝜏𝑡, 𝑑∞} for each individual space. A basic limitation of 

the proposed model is that, in contrast with the model proposed by Paik, a full probabilistic 

description for all model parameters is lacking.  

An extension of the Soares’ model to the probabilistic regime has been recently performed by 

Gong and Frangopol (2020). A multiplicative error term ε𝑡 reflecting the uncertainty of model 

prediction 𝜉 and measurements’ uncertainty ε has been considered as follows: 

𝑡𝑐′(𝜏) = ε𝑡𝑡𝑐(𝜏) (2.14) 

where, 𝑡𝑐(𝜏) represents the average thickness loss given by Eq. (2.13). The error term ε𝑡 has 

been assumed to follow a Weibull distribution with a unit mean and CoV equal to 0.50 and 

1.00. This high variability is indicative of the wide scatter of corrosion growth data measured in 

oil tankers from over 110,000 readings. Uncertainties on measurements may arise due to 

measurement tool inaccuracy and location errors, i.e., the fact that thickness measurements 

are not recorded for exactly the same locations between subsequent surveys. Location errors 

become meaningful when corrosion presents significant variations over the surface of a plate. 

 

  

(a) (b) 

Figure 2.3. (a) The Paik and Thayamballi corrosion model, after Paik (2002), and (b) the Soares and 
Garbatov corrosion model, after Soares and Garbatov (1999). 

2.4.5.2 Spatial representation of corrosion 

The spatial dependence of corrosion needs to be considered when assessing the hull girder 

ultimate strength. Broadly speaking, spatial dependence of corrosion can be classified into 

small-scale and large-scale. The former accounts for spatial random variations of corrosion in a 

smaller scale, usually that of a plate. Small-scale dependence of corrosion at a given time 

instance is often taken into account using random fields. A more detailed description regarding 
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the application of random fields on plate elements and the impact on ultimate strength is 

presented in Section 4.3.  

Large-scale dependency defines the correlation degree of corrosion penetration between 

elements exposed in the same or different environmental conditions around the cross-section 

of the hull. Corrosion growth can vary significantly between different elements around cross-

section, since corrosion progress is closely related to the environment on which steel plates are 

exposed. Large-scale dependency is usually taken into account by assuming a partial correlation 

model, i.e., full correlation exists among corrosion growth of structural elements belonging to 

the same group of compartments, namely double-bottom, hopper tank, double-side and cargo 

oil tank, while no correlation exists for elements belonging to different categories, see e.g., 

Campanile et al. (2014) and Campanile et al. (2017)b.  

A complete model that takes into account both large-scale and small-scale dependency has 

been proposed by Luque et al. (2014). The method is based on a hierarchical approach where 

spatial dependency is achieved by dividing the structural components of the ship into five 

levels, i.e., vessel, compartment, frame, structural element, plate. The dependence of corrosion 

in the lowest level, i.e., the plate, is modelled using a random field. Recently, Gong and 

Frangopol (2020) used copula theory to model the spatial dependence of corrosion growth, as 

well other geometric and material properties of structural elements around cross-section. This 

modelling approach was used to derive the time-dependent hull girder reliability of a ship 

structure. 

 

 

Figure 2.4. Small-scale and large-scale spatial dependency of corrosion growth at a given point in time. 
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2.4.5.3 Rule-based approaches for modelling corrosion 

Traditionally, prescribed design values from Rules are adopted to account for corrosion wastage 

of ship structural elements in cases where an empirical corrosion model is not available for the 

examined ship type or when the interest lies on the evaluation of reliability at a given point in 

time, usually for 25th year of lifetime which corresponds to the design life of vessel. 

According to IACS (2019), the effect of corrosion loss is accounted for using the net scantling 

approach. The net scantling approach prescribes a total corrosion addition 𝑡𝑛 for all structural 

members of cross section depending on the element’s type and location based on a 25-year 

design life8. For hull girder ultimate strength calculations, the net-50 scantling approach 𝑡𝑛−50 

is defined which assumes a uniform reduction of thickness by half of the total corrosion 

addition, that is: 

𝑡𝑛−50 = 𝑡as−built − 0.5𝑡𝑛 (2.15) 

The net-50 scantling approach has been widely adopted to account for corrosion degradation in 

the context of reliability on oil tankers and bulk carriers, see e.g., Parunov et al. (2007), Shu and 

Moan (2011)a, Xu et al. (2015), Guia et al. (2018). For container ships, the corrosion effect has 

been considered based on Rule-based values specified by different Classification Rules, such as 

Bureau Veritas (BV), see e.g., Corak and Soares (2018)), IACS URS11A, see e.g., Kim et al. (2012) 

or even IACS CSR for double hull oil tankers and bulk carriers, see e.g.,  Kim et al. (2012). 

Regarding FPSOs, Chen (2016) examined their reliability based on American Bureau of Shipping 

(ABS) Floating Production Rules and by assuming a linear decrease of thickness due to corrosion 

as a function of time. Finally, another practice to account for the uncertainty of corrosion at the 

design life is to postulate a variability around Rules nominal net-50 thicknesses, see e.g.  Gaspar 

and Soares (2013) and Gong and Frangopol (2020). 

 

8 The total corrosion addition 𝑡𝑛 has been based on historical data from oil tankers and bulk carriers, see IACS 
(2016). It corresponds approximately to the 95% quantile of the recorded corrosion loss empirical distribution. 
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3 Random fields 

3.1 Introduction 

The uncertainties on the input parameters of a system are generally attributed to variations on 

material properties (e.g., yield strength, Young’s modulus, etc.), geometric characteristics (e.g., 

thickness, imperfections, etc.) and loads or load effects (e.g. wave loads, wave-induced bending 

moments). The representation of such quantities is commonly achieved through probabilistic 

methods. Depending on the level of sophistication which is desired and the problem at hand, 

different modelling approaches can be adopted.  

Let us consider for example the case where the analyst is interested in simulating the uncertain 

character of thickness distribution over the surface of a plate for a given time instance during 

the service time of a ship structure. In general, the following options are available. The first, and 

more simple option, is to model implicitly the spatial variability of thickness using a single 

random variable. Extending this variable in the time frame – by assuming that the plate has a 

fixed but unknown value of thickness loss over its surface at any time – we refer to a stochastic 

process. The second option is to model a more refined version of thickness variability. This is 

accomplished through the use of random fields9. The extension of a random field in the time 

domain is usually referred as a space-time stochastic process.  

In the above example, both approaches have their pros and cons. On the one hand, the use of a 

random variable approach provides simplicity, but it may insufficient to capture the variations 

of the actual phenomenon. On the other hand, modelling a quantity of interest (QoI) using a 

random field offers more realism, but increases – often significantly – the computation cost and 

the modelling effort. A schematic description of the above is depicted in Figure 3.1. 

The fundamental theory of random fields is introduced in this chapter in a very condensed 

form. The definitions and basic properties of random fields are presented in Section 3.2 and 

Section 3.3, respectively. In Section 3.4, some popular classes and terms of random fields are 

analyzed, including, homogeneous RFs, Gaussian RFs, ergodicity, etc. Common methods to 

discretize the continuous random fields are presented in Section 3.6. Finally, in Section 3.7, we 

thoroughly present a popular method for generating one-dimensional (1D) and two-

dimensional (2D) Gaussian homogeneous stochastic fields, i.e., the spectral representation 

method. The reader is referred to the books of Vanmarcke (2010), Grigoriu (2002) and Papoulis 

 

9 The terms “stochastic” and “random” are used interchangeably throughout this thesis. We refer to a stochastic 
(or random) “process” in order to define quantities that randomly vary with respect to one coordinate (or 
parameter), usually time. The term “field” generally denotes a generalization of a “process” and indicates that the 
parameter space is multi-dimensional. In this thesis, the concept of random field is used to describe only spatially 
varying random quantities. 
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and Pillai (2002) for a detailed view on the subjects of stochastic processes and random fields. 

An introduction to the basic notions of probability theory and random variables is presented in 

Appendix A and Appendix B. 

 

 

Figure 3.1. Random Variable (RV) vs. Random Field (RF) approach as a function of realism and 
computational effort needed for the modelling of an uncertain quantity of interest (QoI) at a given time 

instance. 

3.2 Basic definitions 

Consider10 a set of spatial coordinates 𝑢 of the spatial domain Ω𝑆, where Ω𝑆 ⊂ ℝ
𝑑 with 𝑑 ≥ 1. 

A single outcome or realization of the sample space Ω is denoted by 𝜔, such as 𝜔 ∈ Ω.  

A random field 𝑋(𝑢;𝜔) is defined as a collection of random variables indexed by a spatial 

coordinate 𝑢 ∈ Ω𝑆. The function 𝑋(𝑢;𝜔) is a mapping from the domain Ω × Ω𝑆 to the real 

numbers’ domain ℝ, i.e., Ω × Ω𝑆 ↦ ℝ. A sample function (or realization) 𝑥(𝑢;𝜔) of 𝑋(𝑢; 𝜔) is 

defined for a fixed 𝜔 ∈ Ω. For any fixed location 𝑢𝑖, each 𝑋(𝑢𝑖; 𝜔) is a random variable. In the 

remaining chapter, the dependence of 𝑋 on 𝜔 is omitted, i.e., 𝑋(𝑢;𝜔) ≡ 𝑋(𝑢). 

An example of a two-dimensional (2D) random field is illustrated in Figure 3.2. Two realizations 

of the field, describing the thickness 𝑡 variation of a 3 × 1 m rectangular plate, are shown. For a 

fixed location 𝑢𝑖  and 𝐾 realizations (𝜔𝑗, 𝑗 = 1,2, … , 𝐾), the family of generated samples 

constitute a random variable 𝑋(𝑢𝑖). 

For the complete definition of a random field, the joint distribution of the sequence of random 

variables {𝑋(𝑢1), 𝑋(𝑢2),… , 𝑋(𝑢𝑛)} is needed.  

 

10 The dimensions of a physical system can be one (for 1D space), two (for 2D space) or three (for 3D space). For a 
space-time process four dimensions are needed in order to include the parameter of time. In a mathematical point 
of view, however, any 𝑑 ≥ 1 is possible. 
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(a) (b) 

Figure 3.2. Two sample functions of a two-dimensional (2D) random field representing thickness 
distribution on the surface of a plate. 

The 𝑛-th order joint CDF of a random field 𝑋(𝑢) is the function 𝐹𝑋(𝑢1)…𝑋(𝑢𝑛): Ω𝑆 ×ℝ
𝑛 → [0,1] 

that expresses the probability of occurrence of the event {𝑋(𝑢1) ≤ 𝑥1 ∩ …∩ 𝑋(𝑢𝑛) ≤ 𝑥𝑛} in 

terms of the outcomes {𝑥1, … , 𝑥𝑛} for any collection of points (locations) 𝒖 = (𝑢1, … , 𝑢𝑛), that 

is: 

𝐹𝑋(𝑢1)…𝑋(𝑢𝑛)(𝑥1, … , 𝑥𝑛; 𝑢1, … , 𝑢𝑛) = Pr(𝑋(𝑢1) ≤ 𝑥1 ∩ …∩ 𝑋(𝑢𝑛) ≤ 𝑥𝑛) (3.1) 

The 𝑛-th order joint PDF of a random field 𝑋(𝑢) can be obtained by differentiation of the 𝑛-th 

order joint CDF as follows: 

𝑓𝑋(𝑢1)…𝑋(𝑢𝑛)(𝑥1, … , 𝑥𝑛; 𝑢1, … , 𝑢𝑛) =
𝜕𝑛𝐹𝑋(𝑢1)…𝑋(𝑢𝑛)(𝑥1, … , 𝑥𝑛; 𝑢1, … , 𝑢𝑛)

𝜕𝑥1…𝜕𝑥𝑛
 (3.2) 

3.3 Statistics of random fields 

3.3.1 First and second order moments 

Let 𝑓𝑋(𝑥) be the PDF of random variable 𝑋(𝑢) that represents the set of samples for the 

ensemble at location 𝑢. The mean value 𝜇𝑋(𝑢) of a stochastic field 𝑋 as a function of the 

position 𝑢 is the expected value of each random variable 𝑋(𝑢), that is: 

𝜇𝑋(𝑢) = E[𝑋(𝑢)] = ∫ 𝑥𝑓𝑋(𝑥)𝑑𝑥
∞

−∞

 (3.3) 
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The variance 𝜎𝑋
2(𝑢) of a stochastic field 𝑋 as a function of the position 𝑢 is: 

𝜎𝑋
2(𝑢) = E [(𝑋(𝑢) − 𝜇𝑋(𝑢))

2
] = ∫ (𝑥 − 𝜇𝑋(𝑢))

2
𝑓𝑋(𝑥)𝑑𝑥

∞

−∞

 (3.4) 

where, 𝜎𝑋(𝑢) is the standard deviation function of 𝑋(𝑢). Taking into account that the 

expectation E[∙] is a linear operator, Eq. (3.4) can take the following form: 

𝜎𝑋
2(𝑢) = E[𝑋2(𝑢)] − E2[𝑋(𝑢)] (3.5) 

3.3.2 Autocorrelation and Autocovariance functions 

The autocorrelation function 𝑅𝑋𝑋(𝑢1, 𝑢2) of a stochastic field 𝑋(𝑢) as a function of two 

arbitrary positions 𝑢1, 𝑢2 is: 

𝑅𝑋𝑋(𝑢1, 𝑢2) = E[𝑋(𝑢1)𝑋(𝑢2)] = ∫ ∫ 𝑥1𝑥2𝑓𝑋(𝑢1)𝑋(𝑢2)(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2

∞

−∞

∞

−∞

 (3.6) 

The autocovariance function 𝐶𝑋𝑋(𝑢1, 𝑢2) of 𝑋(𝑢) is defined as: 

𝐶𝑋𝑋(𝑢1, 𝑢2) = E[(𝑋(𝑢1) − 𝜇𝑋(𝑢1))(𝑋(𝑢2) − 𝜇𝑋(𝑢2))] =

= ∫ ∫ (𝑥1 − 𝜇𝑋(𝑢1))(𝑥2 − 𝜇𝑋(𝑢2))𝑓𝑋(𝑢1)𝑋(𝑢2)(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2

∞

−∞

∞

−∞

 (3.7) 

After manipulations, Eq. (3.7) yields: 

𝐶𝑋𝑋(𝑢1, 𝑢2) = 𝑅𝑋𝑋(𝑢1, 𝑢2) − 𝜇𝑋(𝑢1)𝜇𝑋(𝑢2) (3.8) 

In case now where 𝑢1 = 𝑢2 = 𝑢, the covariance function equals the variance of each random 

variable:  

 𝐶𝑋𝑋(𝑢, 𝑢) = 𝜎𝑋
2(𝑢) (3.9) 

Also, for zero-mean stochastic fields, it is evident that 𝐶𝑋𝑋(𝑢1, 𝑢2) ≡ 𝑅𝑋𝑋(𝑢1, 𝑢2). 

The autocorrelation coefficient function 𝜌𝑋𝑋(𝑢1, 𝑢2) is obtained if we normalize the 

autocovariance function with the standard deviation functions at 𝑢1 and 𝑢2: 
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𝜌𝑋𝑋(𝑢1, 𝑢2) =
𝐶𝑋𝑋(𝑢1, 𝑢2)

𝜎𝑋(𝑢1)𝜎𝑋(𝑢2)
 (3.10) 

From the above definitions, the following properties for the second-moment functions derive: 

• Symmetry: 

𝑅𝑋𝑋(𝑢1, 𝑢2) = 𝑅𝑋𝑋(𝑢2, 𝑢1) (3.11) 

and 

𝐶𝑋𝑋(𝑢1, 𝑢2) = 𝐶𝑋𝑋(𝑢2, 𝑢1) (3.12) 

• Bounded (Cauchy-Schwarz inequality): 

𝑅𝑋𝑋(𝑢1, 𝑢2) ≤ √𝑅𝑋𝑋(𝑢1, 𝑢1)𝑅𝑋𝑋(𝑢2, 𝑢2) (3.13) 

and 

𝐶𝑋𝑋(𝑢1, 𝑢2) ≤ 𝜎𝑋(𝑢1)𝜎𝑋(𝑢2) (3.14) 

From Eq. (3.14), it is also proved that: 

𝜌𝑋𝑋(𝑢1, 𝑢2) ≤ 1 (3.15) 

• Non-negative definiteness: 

∑∑𝑞𝑖𝑞𝑗𝑅𝑋𝑋(𝑢𝑖, 𝑢𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

≥ 0 (3.16) 

where, the coefficients {𝑞1, … , 𝑞𝑛} ∈ ℝ − {0} and may be replaced by some function 𝑞(𝒖), for 

which it holds that: 

∫ ∫ 𝑞(𝒖)𝑞(𝒖′)𝑅𝑋𝑋(𝒖, 𝒖′)
 

𝑢′

 

𝑢

𝑑𝒖𝑑𝒖′ ≥ 0 (3.17) 
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3.4 Classes of random fields 

There are several key attributes that may characterize a random field - homogeneity, isotropy, 

ergodicity, Gaussianity - and can facilitate the probabilistic modelling of the analyst. In the 

following section, the strict and weak definitions of these properties are presented. In practice, 

however, random fields that are assumed to possess these properties to any degree often do so 

in a limited (or weak) sense, not in the strict sense. 

3.4.1 Homogeneous random fields 

A random field is called homogeneous in the strict sense or strictly homogeneous if all the joint 

PDFs remain the same when shifted in space. Mathematically this is expressed as: 

𝑓𝑋(𝑢1)…𝑋(𝑢𝑛)(𝑥1, … , 𝑥𝑛; 𝑢1, … , 𝑢𝑛) = 𝑓𝑋(𝑢1+𝑣)…𝑋(𝑢𝑛+𝑣)(𝑥1, … , 𝑥𝑛; 𝑢1 + 𝑣,… , 𝑢𝑛 + 𝑣) (3.18) 

The above definition implies that the marginal PDF 𝑓𝑋(𝑢)(𝑥, 𝑢) is invariant in 𝑢 and the second 

order PDF 𝑓𝑋(𝑢1)𝑋(𝑢2)(𝑥1, 𝑢1; 𝑥2, 𝑢2) is a function of the difference in locations, i.e., 𝑣 = 𝑢1 −

𝑢2: 

𝑓𝑋(𝑢)(𝑥, 𝑢) = 𝑓𝑋(𝑢)(𝑥) (3.19) 

and: 

𝑓𝑋(𝑢1)𝑋(𝑢2)(𝑥1, 𝑥2; 𝑢1, 𝑢2) = 𝑓𝑋(𝑢1)𝑋(𝑢2)(𝑥1, 𝑥2; 𝑣) (3.20) 

Therefore, the mean and variance functions are constants and the autocorrelation, 

autocovariance and autocorrelation coefficient functions can be expressed as a function of 

space lag 𝑣, that is: 

𝜇𝑋(𝑢) → 𝜇𝑋 (3.21) 

𝜎𝑋
2(𝑢) → 𝜎𝑋

2 (3.22) 

𝑅𝑋𝑋(𝑢1, 𝑢2) → 𝑅𝑋𝑋(𝑢1 − 𝑢2) = 𝑅𝑋𝑋(𝑣) (3.23) 

𝐶𝑋𝑋(𝑢1, 𝑢2) → 𝐶𝑋𝑋(𝑢1 − 𝑢2) = 𝐶𝑋𝑋(𝑣) (3.24) 
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𝜌𝑋𝑋(𝑢1, 𝑢2) → 𝜌𝑋𝑋(𝑢1 − 𝑢2) = 𝜌𝑋𝑋(𝑣) (3.25) 

The definition of Eq. (3.18) is quite restrictive and rarely met in real-life. Usually, the 

assumption of wide-sense homogeneity or weak homogeneity is made. 

A random field is called weakly homogeneous if the 𝑛-th order PDF of a random field 𝑋(𝑢) is 

invariant to a location shift only up to a second degree, i.e., 𝑛 = 1 and 𝑛 = 2. In other words, a 

random field is said to be weakly homogeneous, if its mean function is constant, i.e., Eq. (3.22) 

holds, and one of its second moment functions, i.e., Eq. (3.23) - (3.25), can be expressed in 

terms of space lag 𝑣. 

The second-moment functions of a homogeneous random field are even functions, i.e., 

symmetric with respect to the origin 𝑣 = 0, e.g., 

𝑅𝑋𝑋(𝑣) = 𝑅𝑋𝑋(−𝑣) (3.26) 

Moreover, for homogeneous fields, the bounds of 𝑅𝑋𝑋(𝑣) and 𝐶𝑋𝑋(𝑣) read: 

|𝑅𝑋𝑋(𝑣)| ≤ 𝑅𝑋𝑋(0) =  E[𝑋2(𝑢)] (3.27) 

and 

|𝐶𝑋𝑋(𝑣)| ≤ 𝜎𝑋
2 (3.28) 

3.4.1.1 Correlation models for homogeneous random fields 

Several models describing the form of an autocorrelation functions for homogeneous fields 

have been proposed in the literature, see e.g., Abrahamsen (1997). Here, we focus on some 

common one-dimensional correlation models, such as the triangular, the exponential and the 

square exponential (or Gaussian) model: 

(A) Triangular: 

𝜌𝑋𝑋(𝑣) = {
1 −

|𝑣|

ℓ𝑐,𝐴
, 0 ≤ |𝑣| ≤ ℓ𝐴

0, |𝑣| ≥ ℓ𝐴

 (3.29) 
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(B) Exponential: 

𝜌𝑋𝑋(𝑣) = exp [−
|𝑣|

ℓ𝑐,𝐵
] , |𝑣| ≥ 0 (3.30) 

(C) Square exponential: 

𝜌𝑋𝑋(𝑣) = exp [−(
|𝑣|

ℓ𝑐,𝐶
)

2

] , |𝑣| ≥ 0 (3.31) 

It is easy to verify that the conditions of symmetry, bounded and positive semi-definite 

functions hold for the above autocorrelation coefficient functions. The parameters ℓ𝑐,𝐴, ℓ𝑐,𝐵, 

ℓ𝑐,𝐶  are the correlation lengths of the respective correlation models. In general, a small 

correlation length (ℓ𝑐 → 0) indicates fully uncorrelated samples with high fluctuations in the 

sample functions. Conversely, large correlation lengths correspond to strongly dependent fields 

with a smooth shape of sample functions. In the limit, where ℓ𝑐 → ∞, a random field can be 

modelled with a single random variable instead. 

A common measure to express the degree of variability, independent of the adopted model, is 

the scale of fluctuation 𝜗, defined as the integral of correlation function: 

𝜗 = 2∫ 𝜌𝑋𝑋(𝑣)𝑑𝑣
∞

0

= ∫ 𝜌𝑋𝑋(𝑣)𝑑𝑣
∞

−∞

 (3.32) 

For the above three autocorrelation models the scale of fluctuation reads: (A) 𝜗𝐴 = ℓ𝑐,𝐴, (B) 

𝜗𝐵 = 2ℓ𝑐,𝐵 and (C) 𝜗𝐶 = √𝜋ℓ𝑐,𝐶. Figure 3.3 shows plots of the above one-dimensional 

correlation models using 𝜗 = 5. In the same figure, the square exponential autocorrelation is 

plotted for different values of scale of fluctuation. 

3.4.1.2 Isotropic correlation structure 

A random field is called isotropic if the joint probability density functions remain the same 

when the constellation of location parameters is rotated in the parameter space. In other 

words, for an isotropic random field, the covariance function depends only on the distance 𝑣 

between the points 𝒖 = (𝑢1, … , 𝑢𝑛) and 𝒖’ = (𝑢1
′ , … , 𝑢𝑛

′ ): 

𝑣 = |𝒗| = |𝒖 − 𝒖′| = √|𝑣12 + 𝑣22 +⋯+ 𝑣𝑛2| (3.33) 
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3.4.1.3 Fully separable correlation structure 

An autocorrelation function is said to be fully separable if it can be expressed as a product of 

the autocorrelation functions of one-dimensional fields. For example, in the case of a 2D 

random field, it holds that: 

𝑅𝑋𝑋(𝒗) = 𝜎𝑋
2𝜌𝑋𝑋(𝑣1)𝜌𝑋𝑋(𝑣2) (3.34) 

 

  

(a) (b) 

 

(c) 

Figure 3.3. (a) Different types of autocorrelation functions for scale of fluctuation 𝜗 = 5, (b) Gaussian 
type autocorrelation functions for various scale of fluctuations 𝜗, and (c) three sample functions with 

different scales of fluctuation generated with a Gaussian type autocorrelation function. 

 



36                                                                                                                                        3. Random fields 

 

3.4.2 Ergodic random fields 

Ergodicity is a feature of a random field with exceptional practical importance. Loosely 

speaking, a random field is called ergodic if all information about its joint probability 

distributions (and all their statistical parameters) can be obtained from a single sample function 

of the random field.  

Consider the case where a number of 𝐾 realizations of a stochastic field is available. For the 

total set of sample realizations, the ensemble average for a given location 𝑢 is defined as the 

average of the entire population of sample realizations, that is: 

E[𝑋(𝑢)] =
𝑋1(𝑢) + 𝑋1(𝑢) + ⋯+ 𝑋𝐾(𝑢)

𝐾
 (3.35) 

In reality, one usually has only a limited number of sample functions or a long, single 

observation of one sample function. The question that is posed here is whether the statistical 

averages of the random field can be determined from a single sample function. The answer to 

this question is yes, and comes from the definition of ergodicity. 

Practically, to determine if a field is ergodic, the following two weaker ergodicity conditions 

must be satisfied: 

• Ergodicity of the mean: 

𝜇 = E[𝑋(𝑢)] = lim
𝐿→∞

1

𝐿
∫ 𝑋(𝑢)𝑑𝑥
𝐿

0

 (3.36) 

where, 𝐿 is the length of the sample function. The right term denotes the spatial average of a 

sample function. Necessary and sufficient conditions for 𝑋(𝑢) to be ergodic in the mean are: 

1. E[𝑋(𝑢)] = constant 

2. 𝑋(𝑢) and 𝑋(𝑢 + 𝑣) must become independent as 𝑣 reaches infinity. 

• Ergodicity of the autocorrelation: 

𝑅𝑋𝑋(𝑣) = E[𝑋(𝑢)𝑋(𝑢 + 𝑣)] = lim
𝐿→∞

1

2𝐿
∫ 𝑋(𝑢)𝑋(𝑢 + 𝑣)𝑑𝑥
𝐿

0

 (3.37) 

The right term denotes the spatial autocorrelation function of a sample function. Necessary and 

sufficient conditions for 𝑋(𝑢) to be ergodic in the autocorrelation are: 

1. E[𝑋(𝑢)𝑋(𝑢 + 𝑣)] is a function of 𝑣 only 
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2. lim
𝑢→∞

𝑅𝑋𝑋(𝑣) = 0 

Note that if a field is ergodic, it is also homogeneous, but the reverse does not necessarily 

holds. 

3.4.3 Gaussian random fields 

A random field can be interpreted as a sequence of random variables {𝑋(𝑢1),… , 𝑋(𝑢𝑛)} 

corresponding to a set of points 𝒖 = (𝑢1, … , 𝑢𝑛) ∈ Ω𝑆. A random field 𝑋(𝑢) is called Gaussian if 

each of these random variables is Gaussian. In the case where the field is also homogeneous, 

the Gaussian field can be completely defined by its mean value 𝜇𝑋(𝑢) and its autocovariance 

function 𝐶𝑋𝑋(𝑣).  

The marginal PDF of a Gaussian random field is given by: 

𝑓𝑋(𝑢)(𝑥; 𝑢) =
1

𝜎𝑋(𝑢)√2𝜋
exp [−

1

2
(
𝑥 − 𝜇𝑋(𝑢)

𝜎𝑋(𝑢)
)

2

] (3.38) 

The standardized (zero mean and unit standard deviation) Gaussian random field 𝑍(𝑢) is 

obtained using the following transformation: 

𝑍(𝑢) =
𝑋(𝑢) − 𝜇𝑋(𝑢)

𝜎𝑋(𝑢)
 (3.39) 

An important property is that under linear transformations, Gaussian random fields remain 

Gaussian, that is, if 𝑋(𝑢) is a Gaussian random field, it holds that: 

𝑌(𝑢) = 𝑎(𝑢)𝑋(𝑢) + 𝑏(𝑢) (3.40) 

where, 𝑎 and 𝑏 are deterministic functions of 𝑢. The generated Gaussian random field 𝑌(𝑢) has 

the following mean and autocovariance functions: 

𝜇𝑌(𝑢) = 𝑎(𝑢)𝜇𝑌(𝑢) + 𝑏(𝑢) (3.41) 

and 

𝐶𝑌𝑌(𝑢1, 𝑢2) = 𝑎(𝑢1)𝑎(𝑢2)𝐶𝑋𝑋(𝑢1, 𝑢2) (3.42) 
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3.4.4 Non-Gaussian random fields 

In nature, most of the uncertain quantities appearing in engineering systems are non-Gaussian, 

e.g., material, geometric properties, wave loads. In order to fully characterize a non-Gaussian 

random field, the corresponding joint PDF of the random variables {𝑋(𝑢1), 𝑋(𝑢2), … , 𝑋(𝑢𝑛)} is 

needed, which, in practice, is not possible to be known. Usually, the available information is: i) 

the marginal distribution 𝐹𝑋(𝑢)(𝑥, 𝑢) and ii) the autocorrelation coefficient function 

𝜌𝑋𝑋(𝑢1, 𝑢2). In such cases, we can model the joint distributions of the random variables 

{𝑋(𝑢1), 𝑋(𝑢2), … , 𝑋(𝑢𝑛)} using the Nataf model, see Der Kiureghian and Liu (1986). This is 

achieved by defining the random field 𝑋(𝑢) as a marginal transformation of an equivalent 

Gaussian field Ζ(𝑢) with zero mean, unit variance and autocorrelation coefficient function 

𝜌𝑍𝑍(𝑢1, 𝑢2). Then, 𝑋(𝑢) can be defined by the following transformation: 

𝑋(𝑢) = 𝐹𝑋(𝑢)
−1 [Φ(𝑍(𝑢))] (3.43) 

where, Φ is the standard Gaussian cumulative distribution function. The transformation 

𝐹𝑋(𝑢)
−1 [Φ(∙)] is a memory-less translation since the value of 𝑋(𝑢) at an arbitrary point 𝑢 depends 

on the value of 𝑍(𝑢) at the same point only. The resulting non-Gaussian field 𝑋(𝑢) is called a 

transation field, see Grigoriu (1998). 

The autocorrelation coefficient function 𝜌𝑋𝑋(𝑢1, 𝑢2) differs slightly from 𝜌𝑍𝑍(𝑢1, 𝑢2). The 

following integral equation is solved iteratively for 𝜌𝑍𝑍(𝑢1, 𝑢2) in order to determine the 

desired 𝜌𝑋𝑋(𝑢1, 𝑢2): 

𝜌𝑋𝑋(𝑢1, 𝑢2) = ∫ ∫ (
𝑥(𝑢1) − 𝜇𝑋(𝑢1)

𝜎𝑋(𝑢1)
)(
𝑥(𝑢2) − 𝜇𝑋(𝑢2)

𝜎𝑋(𝑢2)
)𝜑[𝑢1, 𝑢2, 𝜌𝑍𝑍(𝑢1, 𝑢2)]𝑑𝑢1𝑑𝑢2

∞

−∞

∞

−∞

 (3.44) 

where, 𝜇𝑋(𝑢), 𝜎𝑋(𝑢) and 𝜌𝑋𝑋(𝑢1, 𝑢2) are the mean, standard deviation and autocorrelation 

coefficient function of 𝑋(𝑢) and 𝜑(∙) is the standard normal PDF. 

3.5 Power Spectral density function 

Fourier analysis is particular useful for the description of a stochastic field as the properties of 

the field in the space domain can be expressed simpler into the wave number domain 𝜅. Of 

particular importance is the Fourier transformation of the autocorrelation function 𝑅𝑋𝑋(𝑣) of a 

homogeneous field which gives the so-called power spectral density function or power spectrum 

𝑆𝑋𝑋(𝜅): 
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𝑆𝑋𝑋(𝜅) =
1

2𝜋
∫ 𝑅𝑋𝑋(𝑣)
∞

−∞

𝑐𝑜𝑠(𝜅𝑣)𝑑𝑣 (3.45) 

𝑅𝑋𝑋(𝑣) = ∫ 𝑆𝑋𝑋(𝜅)
∞

−∞

𝑐𝑜𝑠(𝜅𝑣)𝑑𝜅 (3.46) 

The two above equations are known as Wiener-Khintchine Fourier transform pair. Since 

𝑅𝑋𝑋(𝑣) = 𝑅𝑋𝑋(−𝑣), it follows from Eq. (3.45) that the function 𝑆𝑋𝑋(𝜅) is an even function, i.e., 

symmetric about 𝜅 = 0: 

𝑆𝑋𝑋(𝜅) = 𝑆𝑋𝑋(−𝜅) (3.47) 

Setting 𝑣 = 0 in Eq. (3.46) it yields that: 

𝑅𝑋𝑋(0) = E[𝑋2(𝑢)] = ∫ 𝑆𝑋𝑋(𝜅)
∞

−∞

𝑑𝜅 (3.48) 

For a zero-mean homogeneous random field, it holds that 𝜎𝑋
2(𝑢) = E[𝑋2(𝑢)] and thus, Eq. 

(3.48) becomes: 

𝜎𝑋
2 = ∫ 𝑆𝑋𝑋(𝜅)

∞

−∞

𝑑𝜅 (3.49) 

Eq. (3.49) helps one to understand the physical meaning of power spectrum: The power 

spectrum 𝑆𝑋𝑋(𝜅) of a stochastic field 𝑋(𝑢) describes how its variance 𝜎𝑋
2 is distributed over the 

wave number domain 𝜅. 

3.6 Discretization of random fields 

By definition, a random field is a collection of an infinite set of random variables indexed in 

space. However, this definition is only of theoretical and conceptual value. For computational 

purposes, a random field has to be expressed using a finite number of random variables 

{𝑋1, 𝑋2, … , 𝑋𝑛}. The discretization of the random field 𝑋(∙) into its approximation �̂�(∙) is thus 

needed in practice. An overview of common discretization methods can be found in Sudret and 

Der Kiureghian (2000). Broadly speaking, discretization techniques can be classified into three 

main categories:  
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1. Point discretization methods, where the random variables 𝑋𝑖 are simply the values of 

the stochastic field at specific points of the system domain. The main representatives of 

this category are the midpoint, the nodal point and the integration point method. 

2. Average-type discretization methods, where the random variables 𝑋𝑖 are represented as 

(weighted) integrals of 𝑋(𝑢) over a specific domain. The local average and the weighted 

integral methods are the main representative of this class. 

3. Series expansion methods, where the stochastic field is represented as a truncated finite 

series of random variables and deterministic shape functions. Typical techniques of this 

class include the spectral representation method, the KL expansion and the EOLE 

method. 

It is out of the scope of this thesis to present in detail each of the above methods. The focus has 

been placed only on the spectral representation method which is the preferred method for the 

numerical investigations of Chapter 4. 

3.7 Spectral representation method 

The spectral representation method has been introduced by Shinozuka and Deodatis (1991) for 

the simulation of one-dimensional (1D) and by Shinozuka and Deodatis (1996) for simulation of 

multi-dimensional (𝑛D) Gaussian homogeneous stochastic fields. In this thesis, applications 

span the 1D and 2D field (see Chapter 4). The main steps used for the generation of 1D and 2D 

fields are presented in the remaining section.  

3.7.1 1D Gaussian random field  

In the general case, the spectral representation method expands the stochastic field 𝑋(𝑢) as a 

sum of trigonometric functions (cosine series) with random phase angles and amplitudes. In 

most applications, the approach of having deterministic amplitudes and random phase angles is 

usually adopted, as one can lead to sample functions that are ergodic in their mean value and 

autocorrelation function, see Stefanou (2009). A single (𝑖) sample function �̂�(𝑢) of the 

stochastic field 𝑋(𝑢) can be generated according to Eq. (3.50) as11: 

 

11 Alternatively, Eq. (3.50) can be written without the √2 term, see Stefanou (2009): 

�̂�(𝑖)(𝑢) = ∑𝐴𝑛𝑐𝑜𝑠(𝜅𝑛𝑢 + 𝜑𝑛
(𝑖))

𝑁−1

𝑛=0
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�̂�(𝑖)(𝑢) = √2∑ 𝐴𝑛𝑐𝑜𝑠(𝜅𝑛𝑢 + 𝜑𝑛
(𝑖))

𝑁−1

𝑛=0

 (3.50) 

where, 

• 𝐴𝑛 = √2𝑆𝑋𝑋(𝜅𝑛)𝛥𝜅 , for 𝑛 = 0,1, … ,𝑁 − 1 

• 𝜅𝑛 = 𝑛𝛥𝜅 

• 𝛥𝜅 =
𝜅𝑢

𝑁
 

• 𝐴𝑜 = 0  or  𝑆𝑋𝑋(𝜅𝑜 = 0) = 0  (enforced condition) 

In Eq. (3.50) the amplitudes 𝐴𝑛 are deterministic and depend only on the prescribed power 

spectrum 𝑆𝑋𝑋 of the stochastic field. The term 𝜑𝑛
(𝑖) expresses random phase angles following 

the uniform probability distribution in the range [0, 2𝜋]. Under the last enforced condition, it 

can be shown that the simulated stochastic field �̂�(𝑢) is periodic with period 𝐿𝑜: 

𝐿𝑜 =
2𝜋

𝛥𝜅
 (3.51) 

The parameter 𝜅𝑢 is a cut-off wave number defining the active region of the power spectral 

density function 𝑆𝑋𝑋 of the stochastic field. For the determination of 𝜅𝑢 the following equation 

is used: 

∫ 𝑆𝑋𝑋(𝜅)
𝜅𝑢

0

𝑑𝜅 = (1 − 𝜓)∫ 𝑆𝑋𝑋(𝜅)
∞

0

𝑑𝜅 (3.52) 

where, 휂 denotes a very small number, e.g., 𝜓 = 0.01, 0.001. 

The following points are noted: 

• Eq. (3.50) is asymptotically Gaussian as 𝑁 → ∞ because of the Central Limit theorem. 

• The enforced condition is necessary to guarantee ergodicity, namely, that the spatial 

average and the spatial autocorrelation function of any sample function �̂�(𝑖)(𝑢) are 

identical to the corresponding targets. 

 

A comparative study between the two formulas has been implemented by Grigoriu (1993). 
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• The step 𝑑𝑢 separating the generated values of �̂�(𝑖)(𝑢) in the space domain must satisfy 

the following condition in order to avoid aliasing according to the sampling theorem, 

see Bracewell (1965): 

𝑑𝑢 ≤
𝜋

𝜅𝑢
 (3.53) 

3.7.2 2D Gaussian random field 

For the case of a two-dimensional (2D) random field, a single sample function is generated 

according to Eq. (3.54) as: 

�̂�(𝑖)(𝑢x, 𝑢y) = ∑ ∑ [𝐴𝑛1𝑛2
(1) 𝑐𝑜𝑠(𝜅1𝑛1𝑢x + 𝜅2𝑛2𝑢y + 𝜑𝑛1𝑛2

(1)(𝑖))

𝑁2−1

𝑛2=0

𝑁1−1

𝑛1=0

+ 𝐴𝑛1𝑛2
(2) 𝑐𝑜𝑠(𝜅1𝑛1𝑢x − 𝜅2𝑛2𝑢y + 𝜑𝑛1𝑛2

(2)(𝑖))] 

(3.54) 

where, 𝜑𝑛1𝑛2
(𝑗)(𝑖)

, 𝑗 = 1,2 represent the realization of the (𝑖) simulation of the independent 

random phase angles uniformly distributed in the range [0, 2π]. The terms 𝐴𝑛1𝑛2
(1) , 𝐴𝑛1𝑛2

(2)  are 

defined as: 

• 𝐴𝑛1𝑛2
(1) = √2𝑆𝑋𝑋(𝜅1𝑛1 , 𝜅2𝑛2)𝛥𝜅1𝛥𝜅2 

• 𝐴𝑛1𝑛2
(2) = √2𝑆𝑋𝑋(𝜅1𝑛1 , −𝜅2𝑛2)𝛥𝜅1𝛥𝜅2 

where, 

• 𝜅1𝑛1 = 𝑛1𝛥𝜅1, 𝜅2𝑛2 = 𝑛2𝛥𝜅2 

• 𝛥𝜅1 =
𝜅𝑢x
𝑁1
, 𝛥𝜅2 =

𝜅𝑢y

𝑁2
 

• A0𝑛2
(1) = A𝑛10

(1) = 0, A0𝑛2
(2) = A𝑛10

(2) = 0 (enforced condition) 

for 𝑛1 = 0,1, … ,𝑁1 − 1 and  𝑛2 = 0,1, … , 𝑁2 − 1 
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The term 𝑁𝑗 with 𝑗 = 1, 2 represent the number of intervals in which the wave number axes 𝜅1 

and 𝜅2 are subdivided and 𝜅𝑗𝑢 are the upper cut-off wave numbers corresponding to the 𝑢x and 

𝑢y axes in the space domain. This implies that the power spectral density function 𝑆𝑋𝑋(𝜅1, 𝜅2) 

is assumed to be zero outside the region defined by: 

−𝜅1𝑢 ≤ 𝜅1 ≤ 𝜅1𝑢 and − 𝜅2𝑢 ≤ 𝜅2 ≤ 𝜅2𝑢 (3.55) 

The criterion of Eq. (3.52) is usually used to determine the values of 𝜅1𝑢 and 𝜅2𝑢. 

Under the last enforced condition, the simulated random field 𝑋(𝑢x, 𝑢y) given by Eq. (3.54) is 

periodic along the x and y axes with periods: 

𝐿x0 =
2𝜋

𝛥𝜅1

𝐿y0 =
2𝜋

𝛥𝜅2

 (3.56) 

Finally, similar to Eq. (3.53), the steps 𝑑𝑢x and 𝑑𝑢y of the generated sample functions must 

satisfy the following requirements: 

𝑑𝑢x ≤
𝜋

𝜅𝑢x

𝑑𝑢y ≤
𝜋

𝜅𝑢y

 (3.57) 
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4 Spatial probabilistic modelling of steel plates’ geometric 

characteristics 

4.1 Introduction 

Geometric characteristics of steel plates, such as thickness and imperfections, are vulnerable to 

variations in space, usually as a result of manufacturing processes and deterioration effects 

occurring during the service of ships. The spatial inherent randomness of such geometric 

quantities motivates the use of random fields for their explicit representation.  

The main subject of this chapter is to assess the impact of the spatial uncertain character of 

thickness and initial imperfections on the ultimate strength of basic ship structural elements, 

i.e., plates, stiffened plates and hull girders. An appropriate FE model is constructed to replicate 

the physical system’s behavior. In particular, the framework of stochastic finite element method 

(SFEM)12, which is an extension of the classical finite element method into the probabilistic 

space, is used in order to assess probabilistically the structural behavior of the examined model. 

Spectral representation method is used to model the spatial uncertain randomness of initial 

imperfections and thickness. Then, Monte Carlo simulation (MCS) technique is employed to 

propagate the input uncertainties through the system and evaluate the ultimate strength of the 

model using statistical terms. In this context, a large number of samples is generated from the 

input parameter space and an equivalent number of FE model calls is implemented to obtain 

the output statistics. Neural networks are used to replace time-consuming model evaluations 

and accelerate the process when needed.  

The structure of this chapter is organized as follows. In Section 4.2, a new stochastic 

imperfection model is introduced aiming at representing the actual random pattern of steel 

plates’ imperfect geometry. The impact of stochastic initial imperfections on the ultimate 

strength of plates and hull girders is investigated. In Section 4.3, a two-dimensional non-

uniform thickness random field is generated on the surface of a representative stiffened panel 

and its impact on the ultimate strength is examined. The chapter ends with discussing the utility 

of the findings on the course of this thesis, including its connection with the remaining part of 

this thesis. 

The chapter presents some original work published previously in Georgiadis and Samuelides 

(2021)a and Georgiadis and Samuelides (2021)b. 

 

12 The reader is referred to the work of Stefanou (2009) for a detailed state-of-the-art upon the subject of SFEM. 
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4.2 The effect of stochastic geometric imperfections on the ultimate strength 

of plates and hull girders 

4.2.1 Background 

The existence of a model that is able to capture the imperfect geometry of a steel plate in ship 

structures is of vital importance for an engineer. An accurate description of initial imperfections 

can lead to a safe and reliable design, while on the other hand, significant deviations from the 

true geometry may result in an over/under-estimation of the true structural behavior. This fact 

has drawn the attention of many researchers and engineers in the past.  

Smith et al. (1988) suggested a plate model that has the shape of a combined global cylindrical-

shaped half-wave distortion caused by weld-induced wrap-up at the plate edges (well-known as 

the “hungry-horse” shape) and local wavelength components, mainly due to dents caused by 

point loads and accidental impacts received in service or during fabrication. They illustrated a 

typical initial distortion profile of such a description like the one depicted in Figure 4.1. 

 

 

Figure 4.1. Typical profile of initial deflection along plate’s length first proposed by Smith et al. (1988). 

Smith et al. (1988) also highlighted the fact that the most significant form of initial deformation 

in such plates is a periodic or isolated distortion of amplitude 𝑤0𝑏 with half-wavelength 𝑤𝑠 

equal to or somewhat less than the plate width (𝑤𝑠 < 𝑏). They also mentioned that in long 

rectangular plates, the overall distortion 𝑤0 has relatively little influence on the compressive 

strength and may actually increase plate strength by inhibiting formation of the preferred 

buckling mode.  

During the same period, Ueda and Yao (1985) carried out extensive measurements on the deck 

panels of a bulk carrier and a car carrier. In their research, they focused mainly on the shape of 

initial deflections rather than the maximum amplitudes developed. Similar to Smith et al. 

(1988), it is certified that in the majority of the examined panels, the dominant mode of initial 

imperfections well-suited to the HH model. A demonstration of this geometry is given in Figure 

4.2 where measured geometric distortions along the length of 9 plates are illustrated. It is also 

apparent that local random fluctuations along the length do exist, something that confirms the 

remarks drawn by Smith et al. (1988) regarding the development of local dents. 
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Figure 4.2. Actual measured deflections across the length of 9 deck panels on a car carrier, after Ueda 
and Yao (1985). 

4.2.2 Development of new stochastic imperfection model 

The recommended stochastic imperfection model in this thesis aims to simulate with realism 

the randomly distributed imperfection patterns located on a ship’s plate as those illustrated in 

Figure 4.1 and Figure 4.2. The proposed model effectively combines the HH model by 

preserving the global dominant mode of imperfection, while simultaneously expressing the 

local pattern of imperfections along the length of the plates with a 1D Gaussian homogeneous 

random field. A typical portrait of the suggested model is illustrated in Figure 4.3. 

 

 

Figure 4.3. Schematic description of the proposed stochastic hungry-horse (SHH) imperfection model 
using a 1D homogeneous random field. 
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The random field is introduced on the effective length 𝑎eff of the plate whose longitudinal 

extent is determined by the aspect ratio 𝑎/𝑏 of the plate. The concepts of homogeneity and 

normality are documented using actual data in Section 4.2.2.2. The one-dimensional pattern of 

initial imperfections 𝑤eff(𝑢) along the effective length of the plate, as this described graphically 

in Figure 4.3, can be rationally represented using Eq. (4.1): 

𝑤eff(𝑢) = �̅�0 + �̂�(𝑢) (4.1) 

where, �̅�0 is the mean amplitude of the imperfection and �̂�(𝑢) is a zero-mean Gaussian 

homogeneous stochastic field. The full description of the initial deflection 𝑤(𝑢) along the 

longitudinal path on the centerline of the plate is obtained as follows: 

𝑤0(𝑢) =

{
 
 

 
 𝑤eff(𝑢 = 𝑢0) |sin

𝜋𝑢

2𝑎0
| , for 0 ≤ 𝑢 < 𝑢0

𝑤eff(𝑢), for 𝑢0 ≤ 𝑢 ≤ 𝑢1

𝑤eff(𝑢 = 𝑢1) |sin
𝜋(𝑢 − 𝑎eff)

2𝑎0
| , for 𝑢1 < 𝑢 ≤ 𝑎

 (4.2) 

where, 𝑢0 = 𝑎0 and 𝑢1 = 𝑎0 + 𝑎eff. Finally, the entire two-dimensional deflection pattern is 

portrayed when considering the preserved one-half sinusoidal over the plate’s breadth 

direction too.  

In the present study, the statistical properties of the stochastic field �̂�(𝑢) are based on 

available data. Sample functions (realizations) of the stochastic field can be generated with 

properties equivalent to the measured ones using the spectral representation method. The 

theoretical background of the method was described in Section 3.7. 

4.2.2.1 Autocorrelation function 

The target power spectral density function 𝑆𝑋𝑋(𝜅) has been selected based on available 

measurements (see Section 4.2.2.3). The corresponding autocorrelation function 𝑅𝑋𝑋(𝑣) is 

given by the following form: 

𝑅𝑋𝑋(𝑣) = 𝜎𝑋
2𝜌𝑋𝑋(𝑣) = 𝜎𝑋

2
ℓ𝑐
4(ℓ𝑐

2 − 3|𝑣|2)

(ℓ𝑐2 + |𝑣|2)3
 (4.3) 

where, |𝑣| = |𝑢1 − 𝑢2| expresses the relative distance (lag) between two positions, 𝜎𝑋 denotes 

the standard deviation of the stochastic field and ℓ𝑐 is the correlation length parameter of the 

field. The present autocorrelation model, which has been also used at the study of Shinozuka 

and Deodatis (1991), is a valid one, since it is easy to show that is symmetric, bounded and 
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semi-definite function. Using the Fourier transformation (Eq. (3.45)), the analytical form of the 

power spectral density function reads: 

𝑆𝑋𝑋(𝜅) =
𝜎𝑋
2

4
ℓ𝑐
3𝜅2 exp[−ℓ𝑐|𝜅|] (4.4) 

The standard deviation of the stochastic field is a measure of the amplitude of imperfections, 

whereas the correlation length influences the shape of imperfections along the effective length 

of the plate. Available literature sources are used to define the mean value �̅�0 and standard 

deviation 𝜎𝑋 parameters. This issue will be discussed thoroughly in Section 4.2.4.3. 

4.2.2.2 Discussion upon the normality and homogeneity concepts 

The spectral representation method generates Gaussian homogeneous random fields with a 

given correlation structure. This requires that the assumption of homogeneity is valid and a 

Gaussian probability density function fits the data of imperfections. 

A weakly homogeneous random field requires that the mean function of the stochastic field is 

constant and the autocorrelation can be expressed as a function of the space lag (see Section 

3.4.1). It is verified from the available data that the mean value of stochastic deflections does 

not substantially vary between plates which possess the same characteristics (aspect ratio, 

breadth-to-thickness ratio and slenderness ratio). In fact, the ensemble average has been 

obtained at different locations and the standard error of the mean 𝜎ε,𝜇 has been computed as: 

𝜎ε,𝜇 =
𝜎𝑚

√𝑚
 (4.5) 

where, 𝜎𝑚 is the standard deviation of the ensemble average at all measured positions and 𝑚 is 

the total number of measurements at the positions where the ensemble average has been 

computed. The above formula has been applied for two different groups of plate panels with 

the same characteristics leading to values equal to 𝜎ε,𝜇 = 0.011 and 𝜎ε,𝜇 = 0.020. The 

estimated standard errors can be characterized small enough to rationally assume that the 

mean function is constant over the random field.  

As it will be seen in the next section, the autocorrelation may be rationally considered as a 

function of space lag since the spatial autocorrelation function for most of individual plate 

panels is of similar form. In addition, and based on intuition, no evidence to prove that 

deflections along the centerline of the effective length of plates are dependent on specific 

locations exists. 

The concept of normality has been verified by the statistical processing of 9 deck plate panels 

with similar characteristics. The actual measurements along their effective length have been 
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depicted in Figure 4.2, while the corresponding histogram and the probability plot are 

presented in Figure 4.4. A normal distribution fits well the observed data. In addition, a 

Kolmogorov-Smirnov test has been carried out which also substantiates that the assumption of 

normality of the initial imperfections is justified. It is also verified that normality is maintained 

for plate panels possessing the same characteristics and belonging on the same vessel.  

The robustness of the spectral representation method is verified in terms of Gaussianity. A 

number of 100 sample functions is generated using the preassigned first and second order 

statistics of the respective data. The PDF of the samples generated by the spectral 

representation method is illustrated also in Figure 4.4. It is demonstrated that the PDFs of the 

data and the generated samples show a very good agreement on the first two statistical 

moments. 

  

(a) (b) 

Figure 4.4. Verification of normality against actual data from initial imperfections. (a) Normalized 
histogram of initial deflections with a fitted normal distribution, and (b) probability plot of actual data. 

4.2.2.3 Discussion upon the autocorrelation function form 

The correlation structure adopted for the spectral representation method is validated against 

measurements from Ueda and Yao (1985). Due to the fact that the data of initial imperfections 

provides much more comprehensive information about the imperfections of an individual plate 

panel, it seems to be more reasonable to estimate the autocorrelation function form over the 

sample, and not over the ensemble. This approach of course requires that the stochastic field of 

imperfections is ergodic in the mean and in the autocorrelation function. It is considered 

reasonable though to estimate the autocorrelation function over the sample, if no significant 

variation is observed. This assumption could be verified by the data. To ensure that the whole 

ensemble is represented by the autocorrelation form obtained from the individual samples, 

these characteristics have been averaged over the ensemble. 
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The spatial autocorrelation coefficient �̂�𝑦(𝑣) of the actual deflections 𝑑 among two different 

locations 𝑢𝑖  and 𝑢𝑖 + 𝑣 along the effective length is calculated using the following formula: 

�̂�𝑑(𝑣) =
1

𝑚 − 1
∑

(𝑑𝑢𝑖 − �̂�)(𝑑𝑢𝑖+𝑣 − �̂�)

�̂�2

𝑚

𝑖=1

 (4.6) 

where, 𝑚 is the total number of measurements for a given lag and �̂�, �̂� express the spatial 

average value and standard deviation for each individual plate panel, respectively.  

The total number of plate panels has been initially considered for statistical processing. Among 

them, a few outliers have been excluded from the procedure resulting in 28 plate panels in 

total. Figure 4.5 presents the final (spatial) autocorrelation functions in the form of cloud data 

points along with a fitted polynomial curve. The autocorrelation coefficient, 𝜌𝑋𝑋(𝑣), of Eq. with 

ℓ𝑐 𝑎eff⁄ = 0.415 has been selected which minimizes the root mean square error between the 

polynomial fit and the proposed autocorrelation model. It is also shown that not significant 

variations between the autocorrelation form of individual samples exists, a clue that confirms 

the assumption of homogeneity.  

The ℓ𝑐 parameter can be expressed as a ratio of the total length 𝑎 of the plate given that 𝑎 =

2𝑎0 + 𝑎eff. Finally, the following relation can be used to establish the correlation length 

parameter as a ratio of the length:  

ℓ𝑐
𝑎
= {

0.208,
0.277,
0.311,
0.332,

for 1.41 ≤ 𝑎 𝑏⁄ < 2.45
for 2.45 ≤ 𝑎 𝑏⁄ < 3.46
for 3.46 ≤ 𝑎 𝑏⁄ < 4.47
for 4.47 ≤ 𝑎 𝑏⁄ < 5.66

 (4.7) 

 

Figure 4.5. Verification of the selected auto-correlation function (Eq. (4.3)) with actual data. The auto-
correlation coefficient is shown as a function of the non-dimensional distance along the effective length 

of plate panels. 
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4.2.3 Numerical investigation on plates 

The performance of the proposed stochastic model is first tested against available test results 

presented by Ueda and Yao (1985). Actual measurements from initial deflections on several 

plates are used to validate the stochastic model in terms of strength prediction and accuracy of 

capturing the real collapse mode. This study aims to establish the recommended model as a 

rational one, in order for the designer/engineer to be able to use it from a probabilistic 

perspective, for example, to assess the reliability of the structure at hand, accounting for the 

uncertainties associated with the imperfect geometry of steel plates in ship structures. 

The present section is formulated as follows. First, a validation test is performed for the case of 

a plate panel from a car carrier which was tested by Ueda and Yao (1985) in terms of ultimate 

strength prediction and collapse mode behavior using the actual measured initial 

imperfections. The same case study is now repeated using the ABAQUS finite element software 

in order to verify the existing results and validate our FE model. In the second stage, 15 plate 

panels have been considered to investigate the performance of the idealized/conventional HH 

imperfection model in relation to the actual initial deflections. Some important conclusions are 

extracted from this analysis. In the third and final stage, the proposed stochastic imperfection 

model is tested upon selected cases and its performance is evaluated and compared with the 

two common imperfection models, namely, (i) the idealized HH imperfection model, and (ii) the 

sinusoidal buckling-mode imperfection model. Valuable findings are drawn from this study, 

before proceeding with the probabilistic assessment of the hull-girder ultimate strength. 

4.2.3.1 Validation test 

A validation test is firstly performed to guarantee that the adopted FE model predicts 

accurately the ultimate strength of a plate under uniform compression. An elastoplastic large 

deflection analysis is performed on the plate panel no. 6 of the car carrier using the actual 

deflections. The initial actual deflection pattern 𝑤0𝑝(x, y) of plate’s geometry is expressed using 

Eq. (2.10), where the coefficients of the deflection components 𝐴0𝑚x
 are obtained from Ueda 

and Yao (1985) for each plate. A schematic description of the problem at hand is presented in 

Figure 4.6. The length (𝑎), breadth (𝑏), thickness (𝑡), yield stress (𝜎𝑦), Young’s modulus (𝐸) and 

Poisson’s ratio (𝜈) are illustrated on the same figure. The pre-assigned values of 𝑤0𝑝 are 

inserted into the FE model as initial nodal displacements. The plate is assumed as simply 

supported along all the edges. All edges are assumed to remain straight while subjected to in-

plane movements. 
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Figure 4.6. Geometric and material characteristics of the car carrier plate panel no. 6, after Ueda and 
Yao (1985). 

The plate panel is modelled in ABAQUS software. Shell quadratic four-node elements with 

reduced integration points (S4R) are used for the mesh discretization. A mesh size of 50mm 

with aspect ratio close to unity has been verified to give stable results. The resulted axial stress 

for each increment is obtained by dividing the reaction axial force by the sectional area of the 

plate at the short edge. A static Newton-Raphson solver has been used for the non-linear 

analysis. The material model is assumed as elastic-perfectly plastic. 

The resulted normalized axial stress-strain curve is presented in Figure 4.7a. The normalization 

of stress is performed with respect to the yield strength, 𝜎𝑦 and that of strain with the yield 

strain, 휀𝑦. The maximum predicted strength is achieved for 𝜎x 𝜎𝑦 = 0.836⁄  which is in very 

good agreement with the corresponding prediction of Ueda and Yao (1985). In addition, the 

collapse mode, as illustrated in Figure 4.7b is identical with the one presented in the same 

paper. Overall, the verification of the FE model has been successfully accomplished.  

 

 

 

(a) (b) 

Figure 4.7. (a) Average stress-strain curve and, (b) collapse mode for plate panel no. 6 of the car carrier. 
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4.2.3.2 Performance of the idealized HH imperfection model 

A total of 15 plate panels have been employed from the study of Ueda and Yao (1985) to 

examine the performance of the idealized HH imperfection model for a variety of actual initial 

imperfections. Nine (9) of the plates belong to a bulk carrier and six (6) to a car carrier. The 

examined plate panels possess the following geometric characteristics: 

• 𝑎 × 𝑏 × 𝑡𝑝 = 2800 × 800 × 15 mm  (𝑎 𝑏⁄ = 3.5, 𝑏 𝑡𝑝⁄ = 53, 𝛽𝑝 = 2.0) 

• 𝑎 × 𝑏 × 𝑡𝑝 = 2800 × 800 × 19 mm (𝑎 𝑏⁄ = 3.5, 𝑏 𝑡𝑝⁄ = 42, 𝛽𝑝 = 1.6) 

• 𝑎 × 𝑏 × 𝑡𝑝 = 2100 × 800 × 15 mm (𝑎 𝑏⁄ = 2.6, 𝑏 𝑡𝑝⁄ = 42, 𝛽𝑝 = 1.6) 

• 𝑎 × 𝑏 × 𝑡𝑝 = 3440 × 780 × 15 mm (𝑎 𝑏⁄ = 4.4, 𝑏 𝑡𝑝⁄ = 52, 𝛽𝑝 = 1.9) 

where, 𝛽𝑝 is the slenderness ratio. The simulations were performed for plates with medium 

thicknesses ranging from 𝑡𝑝 = 15 mm to 𝑡𝑝 = 19 mm which are usually met in oil tankers. The 

material characteristics for all plate panels are the ones presented in Figure 4.6. The 

coefficients of deflection components for the idealized HH model are obtained from Table 2.3. 

The results from the NLFEA are presented in Table 4.1 in terms of ultimate to yield strength 

ratio, 𝜎𝑢 𝜎𝑦⁄ . The average spatial deflection 𝑤0̅̅̅̅  and the individual standard deviation 𝜎𝑋 for 

each plate panel are also listed as a ratio of thickness. Although the idealized HH model gives 

good predictions for many of the examined plates, there are some cases where it fails to 

predict the ultimate strength with an emphatic way, since this deviation may reach to an 

overestimation of the true ultimate strength by about 7 − 8%. A deeper insight into this issue 

is given by isolating two plate panels and examining their structural behavior for the actual and 

idealized deflection pattern.  

The case of plate panels no. 18 of the bulk carrier and no. 4 of the car carrier have been 

selected to investigate the effect of idealized HH model application on the structural behavior 

of the plate. The initial deflections are depicted in Figure 4.8a and Figure 4.9a. The idealized HH 

shape makes use of the average initial deflection of each individual plate panel. The behavior of 

the structure in terms of average stress-strain results is also presented in Figure 4.8 and Figure 

4.9, along with the collapse mode of the plate when applying the average and the actual 

deflection pattern. 

The idealized HH imperfection model seems to behave rather well when deviations of initial 

deflection from the average level of magnitude are relatively small along the effective length of 

the plate panel. As shown in Figure 4.8, the initial fluctuations around the mean value have a 

negligible impact on the collapse mode shape, which is highly controlled by the deflection at 

the end edges. This behavior of collapse has been also verified by the findings of Ueda and Yao 

(1985). 
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Table 4.1. Ultimate strength prediction for actual and idealized shape of initial deflections. 

Plate panels Actual 
𝜎𝑢 𝜎𝑦⁄  

Idealized HH 
𝜎𝑢 𝜎𝑦⁄  

Deviation 
(%) 

�̅�0 𝑡𝑝⁄  𝜎𝑋 𝑡𝑝⁄  

Bulk carrier panel no. 13 0.878 0.904 3.03 -0.140 0.018 

Bulk carrier panel no. 14 0.829 0.871 5.09 -0.241 0.021 

Bulk carrier panel no. 15 0.867 0.879 1.40 -0.214 0.016 

Bulk carrier panel no. 16 0.992 0.979 -1.32 -0.137 0.027 

Bulk carrier panel no. 17 0.980 0.964 -1.66 -0.174 0.024 

Bulk carrier panel no. 18 0.974 0.964 -1.04 -0.173 0.022 

Bulk carrier panel no. 19 0.992 0.980 -1.25 -0.134 0.018 

Bulk carrier panel no. 20 0.978 0.971 -0.66 -0.156 0.011 

Bulk carrier panel no. 21 0.971 0.973 0.23 -0.155 0.006 

Car carrier panel no. 1 0.875 0.868 -0.78 -0.319 0.022 

Car carrier panel no. 2 0.865 0.872 0.87 -0.300 0.042 

Car carrier panel no. 3 0.822 0.884 7.51 -0.248 0.047 

Car carrier panel no. 4 0.843 0.896 6.32 -0.196 0.127 

Car carrier panel no. 5 0.844 0.878 4.03 -0.273 0.036 

Car carrier panel no. 6 0.836 0.871 4.24 -0.305 0.033 

 

On the other hand, the behavior of the idealized HH imperfection model is not equally good in 

cases where fluctuations around the average deflection path are more pronounced, as in the 

case of plate panel no. 4 (see Figure 4.9a). The presence of highly peaked deflections is 

associated with the existence of localized dents in the structure, as discussed also in Section 

4.2.1. Moreover, it is more likely that localized dents are present on higher values of aspect 

ratios 𝑎 𝑏⁄ . It seems from the present results that local dents in long rectangular plates may 

significantly reduce the resulted ultimate strength by altering the collapse mode. This can be 

observed from the collapse mode and the resulted maximum strength of plate panel no. 4. In 

reality, the presence of one or more localized dents can trigger buckling to occur more rapidly, 

while simultaneously, a stable deflection mode is developed from an early stage during the 

progressive collapse. This may accelerate the plastification and greatly affects the resulting 

ultimate strength.  

Last but not least, it is remarked that the conventional HH imperfection model representation 

underestimates the effect of any localized short wave-length distortions, e.g., dents, and for 

that reason can be considered unsatisfactory, see e.g., Dow and Smith (1984) and Smith et al. 

(1988). The Fourier series representation used by Ueda and Yao (1985) to express the imperfect 
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geometry may conceal that information, i.e., the presence of localized short wave-length 

distortions. If so, the idealized HH model will deviate even more from reality.  

 
 

(a) (b) 

  

(c) (d) 

Figure 4.8. Panel no. 18 of bulk carrier. (a) Initial deflection path, (b) resulted stress-strain relationship, 
(c) Von Mises contour plot for actual initial deflections at collapse and (d) Von Mises contour plot for 

idealized HH initial deflections at collapse. A very good agreement is observed between the 
conventional HH model and reality. 

4.2.3.3 Performance of the proposed stochastic imperfection model against common 

imperfection models 

The recommended stochastic imperfection model is now tested against actual data. The 

performance of the new model is compared with the probabilistic behavior of the idealized HH 

and the theoretical buckling-mode common imperfection models which are employed for 

various amplitudes of initial deflections. The geometric and material characteristics of the car 

carrier panels, as those presented in Figure 4.6, are considered for the present analysis.  

With respect to the proposed stochastic imperfection model, Gaussian homogeneous sample 

functions are generated according to the target mean value, standard deviation and the 

established autocorrelation model. The assigned first and second order statistics come from the 

statistical processing of the measured initial deflections based on the six examined panels. For 
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the idealized HH model, the definition of the maximum initial deflection 𝑤0𝑝
𝑚𝑎𝑥 is needed. This is 

selected to vary uniformly between the minimum (lower bound) and the maximum value 

(upper bound) of the average initial deflections, as obtained from Table 4.1 for the examined 

plate panels. 

 
 

(a) (b) 

  

(c) (d) 

Figure 4.9. Panel no. 4 of car carrier. (a) Initial deflection path, (b) resulted stress-strain relationship, (c) 
Von Mises contour plot for actual initial deflections at collapse and (d) Von Mises contour plot for 

idealized HH initial deflections at collapse. An important deviation is observed between the conventional 
HH model and reality. 

The buckling-mode sinusoidal imperfection model with four (referred as “BM”) and six (referred 

as “BM+2”) half-waves is also tested. The number of four half-waves corresponds to the elastic 

buckling mode. In addition, six half-waves have been also tested since –  according to the 

suggestion of Ueda and Yao (1985) –  the critical mode on the ultimate strength prediction of 

thin plates is usually higher by one or two modes than the elastic buckling one. The definition of 

the maximum amplitude of initial deflection is based on recommendations from literature. As a 

lower limit, Smith’s formula (Eq. (2.11)) for a slight level of imperfections is used, while as an 

upper limit, the maximum allowable initial deflection of 6 mm recommended by (JSQS) is 

applied (see Section 2.4.4). Summarizing, the prescribed distributions with the associated 

parameters for the three stochastic imperfection models are presented in Table 4.2. 
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Table 4.2. Prescribed distributions for the selection of input initial deflections. 

Imperfection 
model Distribution �̅�0 𝑡𝑝⁄  𝜎𝑋 𝑡𝑝⁄  

𝑤0𝑝
𝑚𝑎𝑥 𝑡𝑝⁄  

(lower limit) 

𝑤0𝑝
𝑚𝑎𝑥 𝑡𝑝⁄  

(upper limit) 

SHH Gaussian -0.274 0.073 - - 

HH Uniform - - -0.196 -0.319 

BM Uniform - - 0.092 0.400 

 

A number of 𝐾 = 100 simulations has been used for each imperfection model. The predicted 

minimum and maximum values, together with the 25% quartile, 50% quartile (median) and 

75% quartile, of ultimate strength sample values are estimated for the three models and 

displayed graphically in Figure 4.10. The actual predicted values of the six plate panels, as those 

listed in Table 4.1, are also illustrated.  

From the results of Figure 4.10 it seems that the stochastic HH model performs better than the 

common imperfection models. The proposed SHH model predicts all of the actual scenarios 

while offering a reasonable conservatism on its estimations. On the other hand, the idealized 

HH model overestimates the actual predicted strength in most of the cases. The more 

theoretical buckling-mode imperfection models gives too conservative predictions of the true 

ultimate strength. The efficiency and robustness of the proposed stochastic HH model lies on 

the fact that it can adjust the magnitude and initial shape of deflections through the selection 

of three parameters, i.e., the mean value, the standard deviation and the autocorrelation form. 

This makes the model more flexible upon capturing a variety of plausible outcomes of plates’ 

imperfect geometries.  

In Figure 4.11, the collapse mode of panel no. 3 of the car carrier is depicted for the true 

imperfections and a randomly selected sample function of the stochastic field. It is shown that 

an excellent agreement between the two collapse modes exists, something that is also 

captured from the stress-strain diagram of Figure 4.11c. 

The average coefficients of deflection components for the generated sample functions have 

been also derived and presented in Table 4.3. These coefficients account for the entire length 

of the plate panel 𝑎 and depict the average characteristics of all panels. It is observed that the 

coefficients of odd terms are higher than those of even terms. This behavior is quite reasonable 

indicating a relatively symmetric shape of deflection with respect to the midspan of the plate. 

This finding is in symphony with the observations made by Ueda and Yao (1985) for the same 

data source. 
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Figure 4.10. Ultimate strength predictions of the three imperfection models; the conventional HH 
model, the theoretical BM model with four half-waves, the theoretical BM with six half-waves (BM+2) 

and the proposed stochastic HH (SHH) imperfection model against actual predictions. 

  

(a) (b) 

 

(c) 

Figure 4.11. (a) Collapse mode for the actual initial deflection and (b) collapse mode for the selected 
individual sample function of the proposed SHH model. (c) Average stress-strain curve for panel no. 3 of 
the car carrier. A very good agreement between the selected individual sample function of the proposed 

stochastic model and the actual deflection behavior is observed. 
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Table 4.3. Sample functions average coefficients of deflection components in initial deflection for the car 
carrier plate panels. 

𝐴01 𝐴02 𝐴03 𝐴04 𝐴05 𝐴06 𝐴07 𝐴08 𝐴09 𝐴10 𝐴11 

-4.631 -0.036 -1.426 0.021 -0.639 -0.028 -0.305 0.003 -0.118 0.000 -0.027 

4.2.4 Numerical investigation on a hull girder 

The effect of the proposed stochastic imperfection model on the hull girder ultimate strength 

prediction of a VLCC tanker is examined under extreme sagging condition. Failure in sagging is 

investigated since it is identified as the most critical failure mode for double hull tankers. The 

buckling instability phenomenon occurring on the deck panels is influenced by the initial 

imperfections, highlighting the importance of their accurate modelling on the prediction of the 

overall hull girder strength. A comparison between the proposed stochastic imperfection model 

and the conventional/deterministic imperfections models as well as Smith’s incremental-

iterative solution is also performed in this section. Due to the numerous simulations required 

for a statistical description of capacity, neural networks (NNs) are efficiently trained and used to 

substitute the time-consuming FEM. 

4.2.4.1 Vessel description 

Thickness measurements reports have been acquired from a VLCC oil tanker with a deadweight 

of 300,000 t. The principal particulars of the vessel, along with the midship section properties 

calculated using the as-built scantlings are presented in Figure 4.12. The cross-section 

amidships is mainly constructed by high-tensile steel of type AH32, while the longitudinal 

stiffeners attached on the side shell plating of the neutral axis zone are made of mild steel. 

Longitudinal stiffeners are primarily of type “Tee”. Angle-bar profiles are met only on few 

locations, e.g., deck stringer plates.  

 

Figure 4.12. Principal particulars and midship section drawing of the examined VLCC tanker. 



4. Spatial probabilistic modelling of steel plates’ geometric characteristics 61 

 

4.2.4.2 Finite Element (FE) modelling 

The establishment of the FE model has been implemented on the ABAQUS software. It is of 

primary concern to develop a FE model that gives reliable predictions in conjunction with 

reasonable computational efforts. In the analysis that follows, the selection of the basic 

modelling parameters that influence the above aspects is described. 

Length extent of the FE model 

A one-bay FE model has been established for the determination of the hull-girder ultimate 

capacity (see Figure 4.13). This FE model extent has been considered acceptable for simulating 

pure bending, see e.g., Dow and Smith (1984), Hughes and Paik (2010), and ISSC (2018). A 

three-bay FE model has been also tested in Georgiadis and Samuelides (2021)a to examine the 

effect of boundary conditions on the resulted structural behavior. It was shown that the two FE 

model extents give identical results in terms of hull girder ultimate strength prediction and 

collapse mode. Thus, only the results from the one-bay FE model will be presented in the 

present thesis. 

 

  

(a) (b) 

Figure 4.13. The geometry of (a) the one-bay and the (b) three-bay FE model. The x, y, z axes correspond 
to the longitudinal, transverse and vertical direction of the FE model, respectively. 

Material modelling 

The stress-strain curve of the material used is represented by a bilinear model with a constant 

tangent modulus equal to 1000 MPa. The mechanical properties of the constructive mild and 

high-tensile steels used are based on their characteristic values as these recorded in Table 4.4. 
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Analyses solver 

The problem of ultimate strength prediction is generally a static one. Hence, analogous 

techniques have been employed for its solution. The arc-length method has been primarily 

used, but convergence issues due to instability phenomena were encountered during the 

simulation. Therefore, a quasi-static analysis has been successfully implemented through the 

dynamic implicit solver of ABAQUS software to overcome these difficulties. In order to ensure 

that no inertia effects are present, it is verified that the kinetic energy of the deformable body 

through the whole simulation is only a small portion (less than 1%) of the internal energy of the 

whole model. In addition, in cases where the arc-length method was allowed to capture the 

entire path of the moment-curvature diagram, results between the two different solvers were 

in full agreement. 

Boundary conditions and constraints 

The boundary conditions of the FE model should be applied on such a way that simulate the 

real behavior of the structure. The fore and aft edges of the cross-section are coupled with an 

associated reference node. The prescribed degrees of freedom (DoF) assigned to the reference 

node coincide with the coupled nodes of the above end edges. The multi-point beam constraint 

(MPC-beam) used ensures that the cross-section remains plane throughout the whole 

simulation. 

The boundary conditions applied on the two edges are in accordance with Table 4.5, where 

𝑢x, 𝑢y, 𝑢z indicate translations on the longitudinal, transverse and vertical axis, respectively and 

𝑟x, 𝑟y, 𝑟z denote the rotations around each corresponding axis. A prescribed rotation around y-

axis equal to 0.0025 rad is imposed incrementally on each reference node leading to a sagging 

condition. In order to avoid the existence of axial forces on the longitudinal direction, 

translation on x-axis is set free at the fore end. All the remaining DoF are restraint. It is verified 

at the end of the analyses though, that reaction stresses on the restricted DoF are negligible, in 

an effort to simulate pure bending. 

Table 4.4. Material properties’ characteristic values, after IACS (2019). 

Material properties Symbol Value Units 

Young’s modulus 𝐸 206 GPa 

Poisson’s ratio 𝜈 0.3 - 

Yield stress (Mild/AH32) 𝜎𝑦 235 / 315 MPa 

Inelastic tangent modulus 𝐸𝑇 1000 MPa 
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Table 4.5. Applied boundary conditions on the cross-section end edges. 

DoF Ref. node fore Ref. node aft 

𝑢x free - 

𝑢y - - 

𝑢z - - 

휃x - - 

휃y −0.0025 rad 0.0025 rad 

휃z - - 

Mesh discretization 

The discretization of the FE model is achieved using the four-nodes reduced integration shell 

elements (S4R) type, while five integration points are used through the thickness of the 

element. This type is selected mainly upon previous researches and recommendations on the 

study of the ultimate strength of stiffened plate structures, see e.g., Amlashi and Moan (2008), 

and Hughes and Paik (2010). 

The mesh density is selected on the basis of a convergence analysis. Following Bathe (2006), 

mesh refinement is performed by subdividing a previously used element into two or more 

elements; thus, the old mesh is “embedded” in the new mesh. In addition, a fine mesh is 

selected for the deck zone (above 2/3 of vessel’s depth) in order to capture accurately the 

relevant modes of failure occurring mainly due to buckling instability and a coarser mesh is 

used for the remaining region (neutral axis zone and bottom) in order to reduce the 

computational time and at the same time retain the accuracy on the results. This strategy has 

also been adopted by Amlashi and Moan (2008). 

Deck’s zone mesh density is tested using 400, 300, 200, 100, 75 and 50 mm size of elements. 

The remaining zones were examined using 200, 300 and 400 mm of element sizes. An aspect 

ratio of element size close to one is achieved for the deck region. The results of the 

convergence study are presented in Figure 4.14, where it is noticed that a stable plateau has 

been reached for a mesh smaller than 100 mm on the deck zone (notice that the difference 

between the 50 mm and the 100 mm mesh is less than 1%). 

The following number of elements are recorded in the stiffened plates of deck: 

• 6 elements along the web height of deck longitudinal stiffeners 

• 1 element along the flange half-width of deck longitudinal stiffeners 

• 9 elements between longitudinal stiffeners 

• 51 elements between transverse web frames 
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Figure 4.14. Mesh convergence analysis. 

The above selection satisfies the recommendations of ISSC (2018). For the remaining zones, an 

element size equal to 300 mm is chosen. A close-up view on the adopted mesh is shown in 

Figure 4.15 for the deck and the bottom region. The final FE model resulted in a total of 

814,668 DoF. The final selected mesh is considered sufficient to proceed with the examination 

of the ultimate capacity of the vessel and the application of imperfections. 

 

  

(a) (b) 

Figure 4.15. A close-up view on the adopted mesh on (a) deck zone and (b) neutral/bottom zone. 

Initial imperfections 

Imperfections have been assigned to the FE nodes of the deck structure since overall strength 

in sagging is dominated by the buckling failure of this area. It was considered unnecessary 

though to model the imperfections on the side shell or longitudinal bulkheads since 

deformations on the deck will automatically trigger compatible buckling patterns in the 
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adjacent members. The final imperfect geometry has been obtained by linearly superimposing 

the three deflection modes described in Section 2.4.4.1, namely: (i) global column-type 

deflection, (ii) stiffener sideway deflection, and (iii) local plate deflection. In addition, the 

proposed stochastic HH model is tested as local plate deflection shape. Both directions of global 

deflection (towards plate and towards stiffener side) have been examined in the NLFEA and the 

one with the most conservative outcome is retained. In addition, and following the suggestions 

of Ueda and Yao (1985), the cases where 𝑚 = 𝑚 + 1 and 𝑚 = 𝑚 + 2 have been examined 

since the elastic buckling-mode is not necessarily the most conservative case when the collapse 

of panel is tested (see also Figure 4.10).  

4.2.4.3 Application of stochastic imperfection model 

The method of spectral representation is applied to generate Gaussian sample functions with a 

prescribed mean value �̅�0, standard deviation 𝜎𝑋 and correlation length ℓ𝑐. Information from 

literature regarding the statistical description of �̅�0 and 𝜎𝑋 is vague. This motivates the use of 

random variables for the description of their statistical uncertainty. A probabilistic model from 

available literature sources is thus established as follows. 

Antoniou (1980) carried out a regression analysis using data from plates’ deflections on newly 

built ships. He established a formula which suggests that the mean amplitude of initial 

distortions along the centerline of the plate �̅�0 can be expressed as a function of the plate’s 

slenderness 𝛽 and the thickness of the adjacent longitudinal stiffeners 𝑡𝑤 as: 

�̅�0
𝑡𝑝
= 0.091𝛽2 (

𝑡𝑤
𝑡𝑝
) (4.8) 

when 𝑡𝑤 𝑡𝑝⁄ < 1 and 𝛽 > 2.6. In addition, in his study suggested that the mean plus two 

standard deviation amplitude for the examined case study when 𝑏 𝑡𝑝⁄ > 40 and 𝑡𝑝 ≥ 14 mm 

can be obtained using Eq. (4.9) as: 

�̅�0 + 2𝜎𝑋
𝑡𝑝

= 0.014
𝑏

𝑡𝑝
− 0.32 (4.9) 

In the present study, the scantlings of the deck stiffened panel are equal to 𝑏 = 910 mm, 𝑡𝑝 =

19.5 mm, 𝑡𝑤 = 15 mm and the slenderness ratio is 𝛽𝑝 = 1.825. Thus, the solution of Eq. (4.8) 

and Eq. (4.9) leads to a pair of �̅�0 (�̅�0 𝑡𝑝⁄ ) and 𝜎𝑤  (𝜎𝑤 𝑡𝑝⁄ ) equal to 4.5 mm (0.231) and 1.0 mm 

(0.051), respectively. It is assumed that this pair corresponds to the mean values of the 

respective random variables.  
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Smith et al. (1988) recommended a magnitude of 𝑤0𝑝
𝑚𝑎𝑥 𝑡𝑝⁄ = 0.1𝛽2 for an average level of 

imperfections that correspond to the mean value of measured data. This equals to 𝑤0𝑝
𝑚𝑎𝑥 𝑡𝑝⁄ =

0.333 for the specified deck plate characteristics and provides an upper limit for the variability 

of �̅�0 𝑡𝑝⁄ .  

The authors also conducted a statistical analysis to the data of Ueda and Yao (1985) where a 

series of 189 measurements from 21 deck panels has been considered. Ueda and Yao (1985) 

obtained a number of measurements from a total of 33 panels; however, 12 panels have been 

excluded in the present study because the plate characteristics differ significantly to the ones of 

the examined vessel. The ensemble average and standard deviation of the deflections have 

been computed resulting in the values of 2.52 mm and 1.64 mm, respectively.  

From the three above literature surveys and assuming a uniform distribution to describe the 

variability related to the mean amplitude �̅�0 𝑡𝑝⁄  a mean value equal to 0.231 and an upper 

(lower) limit of 0.333 (0.128) are derived. These values lead to a coefficient of variation equal 

to 0.013. Similarly, the variability of random field’s standard deviation 𝜎𝑋 is determined by 

assuming a lognormal distribution. The mean value is set equal to 1.0 mm following Eq. (4.8). 

The 90% quantile of the distribution is set equal to 1.64 mm, which corresponds to the 

(ensemble) standard deviation derived from the data of Ueda and Yao (1985). This leads to a 

5% probability of exceeding the 2.0 mm and a resulting coefficient of variation CoV equal to 

0.50 (or 0.026 in terms of 𝜎𝑋 𝑡𝑝⁄ ). Table 4.6 summarizes the PDFs of the statistical moments 

chosen for consideration on the present VLCC tanker along with their mean value and 

coefficient of variation. 

The following comments and remarks are made:  

• The generated sample functions have the same first and second order statistics when 

performing a single NLFEA simulation, considering that on a real case scenario similar 

behavior of initial distortions is encountered for all the deck panels. 

• The spatial correlation of the initial deflection between adjacent panels is neglected, and 

thus, sample functions, i.e., initial deflection states, are generated independently on each 

panel.  

• Although the HH model is preserved by obtaining a negative value of �̅�0 (deflection of plate 

towards stiffener direction), there are points which exhibit a positive deflection. This is 

something that coincides with reality as it has been noticed from Ueda and Yao (1985). 

Hence, such sample functions are included in the analyses too. 

• The ultimate strength produced with constant values of �̅�0, 𝜎𝑋 and ℓ𝑐 is more or less 

constant, i.e., one value of ultimate strength is considered. This means that different 

realizations (or sample functions) of initial imperfections do not affect the magnitude of 

response significantly. 

• The only available data for the description of the correlation length parameter comes from 

the study of Ueda and Yao (1985). Therefore, ℓ𝑐 𝑎⁄  is taken equal to 0.332 as derived from 

the post-processing of these data (see Eq. (4.7)). 
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An illustration of the imposed imperfection models applied on the deck panels of the FE model 

is shown in Figure 4.16, where a mean representative value of the field parameters is selected. 

Global stiffened plate panel imperfections and local initial sideways deflections on stiffeners are 

preserved for the proposed stochastic model, with Eq. (2.6) and Eq. (2.7) giving their analytical 

form. 

Table 4.6. Probability distributions of the statistical moments associated with the generated random 
field. 

Parameter Symbol Distribution Mean value CoV 

Mean amplitude (dimensionless) �̅�0 𝑡𝑝⁄  Uniform 0.231 0.013 

Standard deviation (dimensionless) 𝜎𝑋 𝑡𝑝⁄  Lognormal 0.051 0.026 

 

 

  

(a) (b) 

 

(c) 

Figure 4.16. Applied imperfect geometry on the deck stiffened panels; (a) buckling mode (BM) model 
and (b) hungry-horse (HH) model and (c) stochastic hungry-horse (SHH) model (amplified). 
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4.2.4.4 Assessment of hull girder ultimate strength 

Deterministic approach 

The results from the hull girder NLFEA simulations are presented here in order to investigate 

the effect of initial imperfections on the ultimate load carrying capacity of the target vessel. 

Results of bending moment versus curvature 𝑀 − 𝜒 curves are presented in Figure 4.17 for all 

the described imperfection models, including the perfect geometry and the average stochastic 

imperfection model. In the latter case, representative average values of the field (�̅�0 𝑡𝑝⁄ =

0.231, 𝜎𝑋 𝑡𝑝⁄ = 0.051, ℓ𝑐 𝑎⁄ = 0.332) are selected under a common reference base between 

the imperfect models.  

 

Figure 4.17. Bending moment 𝑀 vs. curvature 𝜒 diagram derived from NLFEA adopting different 
imperfection models. 

It can be seen that the response of all the models, except that of the BM model, displays a 

linear behavior up to about 90% of the maximum bending moment capacity when a sudden 

decrease of bending stiffness takes place. On the other hand, the BM model loses its stiffness 

gradually as a result of the a priori imposed mode of failure. Using two modes higher than the 

elastic-buckling half-waves on the plates (𝑚x = 𝑚x + 2), a slightly decreased magnitude of 

strength is obtained (~1.5%). This is in accordance with Ueda and Yao (1985) who concluded 

that one or two modes higher than the elastic-buckling mode usually gives the most 

conservative result when collapse behavior of panels is examined. This is also confirmed from 

the results of Figure 4.10 for plates. The hull girder ultimate bending capacity for all applied 

imperfection models is presented in Table 4.7. 
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Table 4.7. Hull girder ultimate bending capacity for different imperfection models. 

Imperfection Model 
Ultimate Bending Capacity 

(MN×m) 

Perfect 24,154 

Buckling-mode (BM) 24,101 

Buckling-mode (BM+2) (𝑚x = 𝑚x + 2) 23,815 

Hungry-horse (HH) 24,638 

Stochastic HH (average) 23,843 

IACS CSR Smith’s model 24,013 

 

Another interesting fact observed from the results of Table 4.7 is that the BM model gives 

slightly higher predictions than the stochastic average model. At a first sight, this contradicts 

with the results of Figure 4.10, where the BM model is the most conservative one. However, 

the progressive collapse analysis of a hull-girder is a much more complex phenomenon than the 

one of a plate. When hull-girder analysis takes place, three initial distortion components (global 

distortion, stiffener distortion and plate distortion) that are considered as critical, when 

examined individually, are linearly superimposed. In doing so, there is no evidence that this 

superimposition leads to the minimum possible buckling or collapse capacity when the 

“buckling-mode” imperfection model of plates is applied. It is clear from the above analyses, 

that the shape and amplitude of the initial deflections as obtained from the stochastic 

imperfection model can lead to a more conservative prediction of the overall ultimate strength. 

A detailed picture on the deck structure at the time of collapse is presented in Figure 4.18 for 

the BM, the HH and the average stochastic model. The vertical displacement field on the deck 

plates, along with the Von Mises stresses distribution is illustrated. The conventional 

imperfection models exhibit a symmetry that is observed on the deflection patterns, both on 

the vertical deflections of plates, as on the transverse deflections of longitudinal stiffeners. This 

symmetry vanishes when the random field is applied. Apparently, the reality approaches the 

asymmetric condition of the stochastic field patterns. 

 Probabilistic approach 

The probabilistic evaluation of hull girder strength applying the recommended SHH 

imperfection model follows. Neural networks have been successfully trained in order to provide 

a rapid mapping between the input uncertain parameters of the stochastic field, i.e., 𝑤0 and 𝜎𝑋 

and the hull girder ultimate strength 𝑀𝑢. Latin-Hypercube (LH) technique proposed by  
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(a) 

  

(b) 

  

(c) 

Figure 4.18. A close-up view on the center cargo tank deck panels indicating the Von Mises stresses (left 
column) and vertical displacements (right column) when ultimate strength is reached. From top to 
bottom: a) buckling-mode, b) hungry-horse and c) mean stochastic imperfection model (amplified). 

Stein (1987) has been used to sample uniformly in the input space considering that the two 

parameters act independently on each other. A number of 40 training points (input pairs) have 

been generated and used to obtain an equivalent number of target output data by performing 

NLFEA simulations. Regarding the network’s architecture, one hidden layer has been selected 

for all tested configurations, whereas the number of neurons is examined. The predominant 

network configuration has six neurons in the hidden layer, two fixed input variables and one 

output (abbreviation: 2 − 6 − 1). The performance of the best network is presented in Table 

4.8. The network’s performance is translated in terms of standardized mean square error 

(MSE), maximum error and mean error percentage of the test subset data.  
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A number of 10,000 samples is generated using MCS and an equivalent number of output 

samples is obtained using the selected NN in trivial computational time. The mean value and 

coefficient of variation of hull girder ultimate strength are presented in Table 4.9. The low 

magnitude of coefficient of variation CoV indicates a low variability on the resulted ultimate 

strength that is due to the consideration of amplitude measures (mean value and standard 

deviation) as random variables. The histogram of the output response is illustrated in Figure 

4.19. A kernel distribution is fitted to the data. 

Table 4.8. Performance of the selected NN architecture. 

NN configuration MSE Max error (%) Mean error (%) 

2 − 6 − 1 0.008 0.26 0.074 

 

Table 4.9. Sample mean and coefficient of variation of ultimate bending capacity. 

Number of samples  Mean value (MN ×m) CoV 

10,000 23,790 0.007 

 

 

Figure 4.19. Histogram of the stochastic ultimate strength when 10,000 samples are generated using 
Monte Carlo simulation. Comparison with the conventional imperfection models and the IACS CSR 

Smith’s incremental-iterative method. 

The outcomes from the different models adopted in the present study are also presented in 

Figure 4.19. The resulted ultimate bending capacity of the proposed imperfection model (mean 

value) is lower than that of the idealized HH imperfection model by approximately 4%. A 

reasonable explanation of the above is the fact that the straight path that is present on the 
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idealized HH model prevents the development of localized wave-lengths along the panel which 

in turn, trigger the buckling to occur more rapidly. This difference is more profound (about 7%) 

in the case where the idealized HH model is applied without considering the 10% difference in 

the amplitudes of initial deflections between the adjacent plates (see also the results of Table 

4.7). In the latter case, the imposition of the same amplitude and shape in the same direction 

restrains the plate buckling because of no presence of the asymmetric deflection component. 

On the other hand, the stochastic imperfection model produces the same levels of strength 

with the BM imperfection model, when in the latter model, two modes higher than the elastic-

buckling mode are selected for local plate deflection. The resulted hull girder ultimate bending 

moment capacity by the IACS CSR Smith’s model is also indicated for comparison and validation 

issues. The deviation between Smith’s model and NLFEA when no imperfections are applied 

(perfect model) is less than 1%, revealing a very good agreement between the two models.  

4.2.5 Concluding remarks 

A new approach capable of simulating the spatial inherent randomness of initial geometric 

imperfections of ships’ steel plates has been introduced in Section 4.2. Localized random initial 

deflections observed at the geometry of real steel plates motivate the use of random fields 

theory for their representation. The statistical description of the generated field, including the 

first/second order statistics and its autocorrelation form, is determined by exploiting actual 

data found from literature sources. The impact of the proposed stochastic imperfection model 

on the probabilistic-based ultimate strength assessment of plates (see Section 4.2.3) and hull 

girders (see Section 4.2.4) has been investigated.  

The main findings out of this study are summarized as follows: 

• The proposed stochastic HH imperfection model provides a very good agreement with 

the actual predictions of plates’ ultimate strength (see Section 4.2.3). For the examined 

dataset, the conventional/idealized HH imperfection model generally overestimates the 

true ultimate strength, while it performs well only in cases where localized dents are not 

very profound in steel plates. On the other hand, the more theoretical BM imperfection 

model seems too conservative on its predictions.  

• The ultimate strength assessment of plates is governed by the presence and magnitude 

of localized dents (see Section 4.2.3.3). This fact has been initially reported by Smith et 

al. (1988), and Dow and Smith (1984) and is confirmed here. It has been verified that the 

proposed stochastic imperfection model is able to generate such an imperfect 

geometry. 

• With respect to hull-girder ultimate strength assessment, the proposed stochastic HH 

imperfection model gives closer estimates with the BM model than the idealized HH 
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model (see Section 4.2.4.4). Application of the conventional HH model result in about 

1.0 −  4.5% higher strength predictions than the stochastic one. This is something that 

should be considered from the scientific body, as conventional HH mode is generally 

associated with “realistic” operational conditions. In addition, variations on the statistics 

(mean value and standard deviation) of the stochastic imperfection model leads to very 

low levels of variability on the overall strength (CoV < 1%). This is due to the fact that 

hull girder collapse is dominated from the global/column-type mode, not the plate’s 

collapse mode. Application of the stochastic imperfections on the global mode would 

possibly result in larger variations of overall capacity. This issue remains open for future 

research. 

• Uncertainties considered on the parameters of the model (mean value, standard 

deviation and correlation length) can be represented by appropriate distribution 

models. As soon as more data become available, this can be used to refine/update the 

initial knowledge on the above parameters and improve predictions.  

• The proposed stochastic imperfection model is able to account and quantify effectively 

different shapes of imperfections through the adjustment of the correlation length 

parameter ℓ𝑐. This is extremely useful in practice because the representation of actual 

hull geometry can be captured, e.g., after measurement inspections on construction 

stage or in-service, and further analyzed using FEM tools.  

• A surrogate model (neural network) has been developed that is able to be learned with 

rather limited training samples of NLFEA and generalize effectively by retaining the 

accuracy of NLFEA and at the same time, reducing by orders of magnitudes the 

computational effort needed. The full spectrum of input uncertainties associated with 

the imperfect hull geometry is explored and a full probabilistic description of hull girder 

ultimate capacity is achieved. This is especially useful when a reliability assessment is 

subsequently carried out and the full PDF is required, without the need to employ the 

incremental-iterative Smith method.  

Overall, it should be noted that for the establishment of the proposed stochastic imperfection 

model, and its use for design or assessment purposes in ship structures, further data should be 

acquired - both in as-built and in-service conditions - to tune the statistics and the 

autocorrelation form of the proposed model. Moreover, application of a similar stochastic 

model on the local sideways stiffener’s deflection and global (column-type) deflection modes 

could be performed when up-to-date information from different types of ships and structural 

configurations becomes available. 
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4.3 The effect of non-uniform thickness variability on the ultimate strength of 

stiffened plate elements 

4.3.1 Background 

General (or uniform) corrosion is commonly idealized by uniformly reducing the thickness of a 

plate element. In reality, however, steel plates exhibit non-uniform thickness variation. 

Methods to simulate general corrosion have been primarily restricted on uniformly reducing 

the thickness of the plate element. Nevertheless, with the advancement of computer 

capabilities, more sophisticated modelling techniques that try to simulate the actual uneven 

patterns of thickness distribution over the surface of a steel plate have been emerged. In this 

direction, the framework of random fields can be used to model explicitly the spatial uncertain 

character of general corrosion. 

During the last years, particular interest has been placed on the impact of thickness non-

uniformity on the ultimate strength reduction under in-plane compressive loads of aged steel 

plates exposed in marine environments. A review study upon this subject can be found in Wang 

et al. (2014). Various discretizing techniques of random fields generation for representing 

thickness uneven patterns have been used, including the EOLE method, see e.g., Teixeira and 

Soares (2008), the spectral representation method, see e.g., Rahbar-Ranji (2012) and the KL 

expansion method, see e.g., Woloszyk and Garbatov (2020). Parametric studies for different 

correlation lengths and aspect ratios of plates have been carried out and results have been 

compared against random uniform reduction of thickness. Rahbar-Ranji (2012) used the 

spectral representation method based on an empirical construction of the power spectrum 

from actual data of scanned plates. Woloszyk and Garbatov (2020) tuned the parameters of the 

stochastic field based on experimental measurements and they additionally examined the 

effect of irregularities on the reduction of material mechanical properties.  

The present study investigates the influence of non-uniform thickness distribution on the 

ultimate strength of a representative stiffened plate element subject to compression. The study 

aims at evaluating the validity of uniform thickness reduction in the formulation of analytical 

LSC. The stochastic variability of thickness is represented through a two-dimensional 

homogeneous non-Gaussian random field. The spectral representation method is employed to 

generate realizations of the stochastic field. The stochastic response of the system’s output, 

i.e., stress-strain curves and maximum stress, is obtained by means of MCS method. A case 

study for a deck stiffened panel of a VLCC tanker is presented. The performance of the FE 

model is compared against the analytical LSC formulations prescribed by IACS CSR. Material 

properties’ variation as well as residual stresses are neglected in this study for reasons of 

simplicity. 
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4.3.2 Description of spatial uncertain thickness variability 

In the present study, the thickness loss over the surface of the plate element is described by a 

two-dimensional non-Gaussian homogeneous and isotropic random field as follows: 

𝑡(𝑢x, 𝑢y) = 𝑡̅ + �̂�(𝑢x, 𝑢y) (4.10) 

where, 𝑡̅ denotes the mean thickness and �̂�(𝑢x, 𝑢y) is a zero-mean 2D homogeneous stochastic 

field that describes the fluctuations of thickness around its mean value.  

The random field is assumed to be homogeneous in the sense that its marginal distribution is 

invariant under arbitrary shift in space. In addition, the random field is assumed to be isotropic, 

i.e., its autocorrelation function is assumed to be independent of the direction. The above 

assumptions are rather rational since no evidence is provided proving the opposite side, i.e., 

that the corrosion process over the surface of a steel plate depends on the direction or its 

marginal distribution is dependent on specific locations. 

Typically, a lognormal or a Weibull distribution model are used to quantify corrosion variability 

for given time instances of aged ship structures, see e.g., Guo et al. (2008), and Woloszyk and 

Garbatov (2020). Here, a Weibull distribution model is considered to describe the marginal 

distribution of thickness loss over the plate’s surface. This selection is documented based on 

the data base provided by IACS (2016). The analyzed data, which are presented in Section 

4.3.3.2, well fit to a Weibull distribution model13. 

The zero-mean 2D homogeneous random field is generated using the multidimensional spectral 

representation method proposed by Shinozuka and Deodatis (1996). As non-Gaussian sample 

functions are required, a translation process following Eq. (3.43) is adopted. The two-sided 

power spectral density function 𝑆𝑋𝑋 is assumed to correspond to an autocorrelation function of 

square exponential type whose functional form is given by: 

𝑆𝑋𝑋(𝜅1, 𝜅2) =
𝜎𝑋
2

4𝜋
ℓ𝑐1ℓ𝑐2 exp [−

1

4
(ℓ𝑐1
2 𝜅1

2 + ℓ𝑐2
2 𝜅2

2)] (4.11) 

where, ℓ𝑐1 , ℓ𝑐2 denote the correlation length parameters that influence the shape of the field 

and they are proportional to the correlation distances of the stochastic field along the x, y axes, 

respectively. The correlation structure adopted herein has been assumed to be independent of 

 

13 It should be noted here that the consideration of Weibull distribution is based on data extracted from various 
sources. Here, we are interested in representing the thickness loss over the surface of specific plate elements. A 
more proper analysis would require a 3D scanning of the surface of the examined plate elements and a subsequent 
statistical processing. However, this information is not currently available. 
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the direction. This is equivalent to a fully separable correlation structure. In that case, the 

autocorrelation function, 𝑅𝑋𝑋, takes the following form: 

𝑅𝑋𝑋(𝑣1, 𝑣2) = 𝜎𝑋
2𝜌𝑋𝑋(𝑣1)𝜌𝑋𝑋(𝑣2) = 𝜎𝑋

2 exp [−
|𝑣1|

2

ℓ𝑐1
2

−
|𝑣2|

2

ℓ𝑐2
2
] (4.12) 

where, 𝑣1 and 𝑣2 denote the relative distance between arbitrary locations in the x and y 

directions, respectively. It is noted that Eq. (4.11) and Eq. (4.12) are directly linked with an 

analytical relation based on the Fourier transform.  

The selection of correlation length parameters ℓ𝑐1 , ℓ𝑐2 is selected based on available literature 

data. Previous studies performed by Rahbar-Ranji (2012), Neumann and Ehlers (2019), and 

Garbatov and Soares (2019) have indicated that, in general, a small correlation length (less than 

100 mm) is appropriate to model the correlation structure of steel plate elements in aged ship 

structures. In the present study, the correlation length on the two directions has been chosen 

equal to ℓ𝑐 = ℓ𝑐1 = ℓ𝑐2 = 50 mm, which is in symphony with the above studies. More 

information for this selection is provided in Section 4.3.3.2. 

4.3.3 Numerical investigation 

The effect of model selection and quantification method is analyzed on a deck stiffened panel 

from a VLCC tanker that is subject to pure compression. In particular, the models used for the 

description of its structural performance in terms of a stress-strain relationship are: (i) the 

analytical LSC prescribed by IACS CSR, and (ii) the FE method, which is examined in terms of 

non-linear material behavior and non-linear geometry. The uncertainty quantification 

techniques applied for the description of thickness are: (i) the Random Variable (RV) approach 

and (ii) the Random Field (RF) approach. Overall, three different case studies are examined:  

1. IACS CSR analytical LSC using uniform thickness (RV approach)  

2. SFEM using uniform thickness (RV approach) 

3. SFEM using non-unform thickness (RF approach) 

In the framework of SFEM, Monte Carlo simulation (MCS) in conjunction with Latin-Hypercube 

technique is employed to propagate the input thickness uncertainties through the system and 

evaluate the ultimate strength of the stiffened plate panel model by means of statistical terms. 

A step-by-step process followed to embody a stochastic framework approach in a general-

purpose finite element software such as Abaqus is provided in Georgiadis and Samuelides 

(2021)b. 
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The analytical LSC formulations of IACS CSR take into consideration three different failure 

modes: (i) beam-column buckling, (ii) torsional buckling and (iii) web local buckling. For brevity, 

the analytical relationships for these formulations are not given herein and the reader is 

referred to IACS (2019). 

4.3.3.1 FE modelling 

The FE model adopted in the present study is illustrated in Figure 4.20. The length of the model 

extends between a 1/2 + 1 + 1/2 span and its breadth over a 1/2 + 1/2 bay. The above FE 

range is selected based on the recommendations from Tanaka et al. (2014). The aspect ratio of 

length over breadth in the mid-span region is equal to 5.6. The material behavior is assumed to 

follow a bilinear elastic-plastic model and the steel used for the construction of the stiffened 

panel is a high-tensile steel of AH-32 type. The nominal values of material properties are listed 

in Table 4.10 along with the geometric characteristics of the stiffened panel. 

The buckling and ultimate strength of plates and stiffened panels are closely related to the 

plate slenderness ratio 𝛽𝑝 and the column slenderness ratio 𝜆𝑐. The examined stiffened panel 

results in 𝛽𝑝 = 2.0 and 𝜆𝑐 = 0.42 using the as-built scantlings. According to a survey carried 

out by Zhang and Khan (2009) on the structural design of 12 double hull oil tankers and 10 bulk 

carriers, the present values of the examined stiffened panel are typical for such types of ships 

and close to the average values. 

 

 

Figure 4.20. FE model of the examined deck stiffened panel subject to uniform compression. 
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Table 4.10. Stiffened panel’s geometric and material characteristics. 

Item Symbol Value Units 

Plate length 𝑎 5120 mm 

Plate width 𝑏 910 mm 

Plate thickness 𝑡𝑝 19.5 (17.5) * mm 

Web height ℎ𝑤 400 mm 

Web thickness 𝑡𝑤 15.0 (13.0) * mm 

Flange breadth 𝑏𝑓 130 mm 

Flange thickness 𝑡𝑓 20.0 (18.0) * mm 

Yield stress 𝜎𝑦 315 MPa 

Young’s modulus 𝐸 206 GPa 

Poisson’s ratio 𝜈 0.3 - 

Tangent modulus 𝐸𝑡 1000 MPa 

*As-built (CSR net-50 thickness). 

 

The FE model is subject to uniform compression at its free end edges. The effect of transverse 

web frames has been modelled applying a restriction of plate’s displacement in the vertical 

direction and a restriction on web’s displacement in the transverse direction. Also, it is assumed 

that displacement in the longitudinal direction for all nodes is equal. A symmetry condition 

along the unloaded longitudinal edges has been imposed, i.e., 𝑢x = 𝑟y = 𝑟z = 0. In the loaded 

end edges fore and aft, a uniform compression has been applied and a restriction for the x-y 

plane to remain vertical. 

A dynamic implicit solver (quasi-static analysis) has been used in order to overcome any 

instabilities present when static algorithms are employed. It is ensured that the kinetic energy 

arises for the whole model during the simulation is negligible. 

The discretization of the FE model is executed using the quadratic four-node shell elements of 

reduced integration (S4R). First, a mesh convergence study has been carried out indicating that 

a 50 mm element size is sufficient to achieve an acceptable solution. However, a more refined 

discretization using a 25mm element size has been adopted for the region between the 

unsupported length of the panel in order to sufficiently capture the random field fluctuations 

(see also Section 4.3.3.2). 

Values generated from spectral representation are assigned on the centroid of each element 

using the midpoint method. Therefore, the thickness of each element is represented by a single 

random variable. The nodes are located on the middle surface of the shell element and 

therefore, discontinuities localized at the element boundaries (bottom and top surface) exist. In 
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general, the midpoint method tends to over-represent the variability of the random field within 

each element. However, the error induced is almost negligible, especially in our case where a 

very fine mesh has been used on the area of interest. 

The use of solid elements for the description of thickness random fluctuations has been 

rejected due to the high computational effort required. Moreover, it has been shown that 

differences between shell and solid elements on the collapse strength of steel plates are slight, 

see Teixeira and Soares (2008). 

4.3.3.2 FEM stochastic thickness representation 

Marginal distributions 

The marginal distributions used for the description of corrosion wastage 𝑡𝑐 for the plate, the 

web and the flange members of the examined deck stiffened panel are determined based on 

the CSR empirical database, see IACS (2016). Two candidate analytical distributions have been 

selected to fit the empirical distributions: the lognormal and the Weibull distribution. The 

analytical distributions are determined to match the target mean value and standard deviation 

of the collected data. Then, the 50%, 90%, 95% and 97.5% quantiles between the target and 

analytical distributions are compared. It is shown in Georgiadis and Samuelides (2021)b that the 

Weibull distribution is the best representative for all structural members since the statistical 

descriptors of the Weibull distribution model give a better approximation of the corresponding 

data, especially on the tails of the data. In summary, the marginal distributions used for the 

description of the corrosion wastage 𝑡𝑐 variation are given in Table 4.11. The marginal PDFs of 

net-50 thickness 𝑡n−50 are finally obtained by application of Eq. (2.15). 

Table 4.11. Marginal distributions for the description of corrosion wastage 𝑡𝑐 at the 25-year design life. 
The empirical database by IACS (2016) with over 600,000 measurements from bulk carriers and oil 
tankers has been used to fit the empirical data with the analytical Weibull distribution model. 

Structural member Distribution Mean value (mm) Standard deviation (mm) 

Plate Weibull 1.73 0.995 

Web  Weibull 1.25 0.590 

Flange  Weibull 1.21 0.570 

Correlation structure and FE discretization 

The correlation structure of the generated random fields is described by the 2D power 

spectrum and the associated autocorrelation function of Eq. (4.11) and Eq. (4.12), respectively. 

The correlation length parameter has been chosen equal to ℓ𝑐 = 50 mm (see Section 4.3.2). 
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This value satisfies the condition of aliasing (see Eq. (3.56) - (3.57)), as well the following 

criterion, suggested by Sudret and Der Kiureghian (2000), that relates the appropriate random 

field mesh size with the correlation length parameter: 

RF mesh size =
ℓ𝑐
4
~
ℓ𝑐
2

 (4.13) 

Taking into consideration the above, an approximate RF mesh size of 25 mm is adopted. The 

structural mesh on the area of interest (between the unsupported length) is forced to be equal 

with the RF mesh. The selected magnitude of the correlation length parameter implies 

practically that finite elements in a close area (approx. 100 × 100 mm) act independently from 

the adjacent areas. 

Cross-correlation structure 

Statistical independence between the generated fields of each structural member, namely, 

plate, web and flange, is considered. In reality, it is very likely that a certain degree of cross-

correlation might exist between the thickness waste for different structural members exposed 

in the same environmental conditions. However, the hypothesis of independence between the 

random fields is true due to the following reasoning. As the correlation length tends to infinity 

the random field tends to approximate the random variable approach since a full dependence 

between all locations exists. In such a case, cross-correlation is as important as in the RV 

approach case study. On the other hand, when correlation length approaches zero (white-noise 

random field14), as in the present examined case, all the elements act independently from each 

other and hence, the existence of cross-correlation becomes negligible. In addition, Graham 

and Deodatis (2001) have shown that cross-correlation effect does not influence considerably 

the response variability when static problems are treated (it is shown that this remark is not 

valid when a dynamic random eigenvalue problem is examined). Overall, it becomes apparent 

that the statistical independence assumption will not practically influence the accuracy of the 

results for the case of RF approach. 

For the case of RV approach, a correlation matrix between the input random variables must be 

established, as this may have an influence on the response quantity of interest. It is reasonable 

to assume that a strong correlation exists between the web and the flange of the stiffener due 

to the fact that these members are exposed on the same corrosive environment. On the other 

hand, deck’s plate surface is displayed on two different environments. Therefore, it is 

considered reasonable to select a moderate dependence between plate and stiffener’s 

members. Finally, a correlation of 𝜌 = 0.8 is selected among stiffener’s members thickness 

reduction and a value of 𝜌 = 0.5 among the plate and stiffener’ members. Figure 4.21 provides 

 

14 A white-noise is a stochastic field that is characterized by complete randomness. 



4. Spatial probabilistic modelling of steel plates’ geometric characteristics 81 

 

an overview of the dependence between the three input random variables, i.e., plate, web and 

flange thickness waste. In the same figure, a number of samples has been generated using the 

Latin-Hypercube technique. In the diagonals, the histogram of each corresponding random 

variable is displayed.  

 

Figure 4.21. Multivariate scatter plot of the thickness waste reduction in mm for plate, web and flange 
adopted for uniform thickness reduction (RV approach). 

A random realization of the adopted random field is presented in Figure 4.22 for the surface of 

plate, web and flange. It can be observed that an excellent match between the target statistics 

and the sample functions has been obtained in terms of marginal distributions. A random 

realization for the uniform (RV) and non-uniform (RF) thickness approach on the examined FE 

model is illustrated in Figure 4.23. Since the critical failure mode occurs at the mid-span region 

of the FE model, thickness variation has been applied solely on this area. Thickness magnitudes 

outside the mid-span region follow the as-built scantlings. 
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(a) (b) (c) 

Figure 4.22. A realization of the 2D thickness RF for (a) plate, (b) web and (c) flange using the pre-
assigned target distribution models and correlation structure. 

  

(a) (b) 

Figure 4.23. A random realization of random thickness using (a) the RV approach and (b) the RF 
approach on the FE model under examination. 
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4.3.3.3 Results 

A preliminary study is first implemented between the numerical FE model and the analytical 

LSC curves from CSR using the net-50 scantling approach. The results from the analysis are 

presented in Figure 4.24a in the form of normalized stress-strain curves. The normalization of 

stresses takes place using the yield strength of the material and that of strains using the yield 

strain. It is found that a very good agreement between the two different models exists when 

the critical failure mode of CSR is taken into consideration. The ultimate stress is equal to 𝜎𝑢 =

262 MPa for NLFEA and 𝜎𝑢 = 258 MPa for CSR model. Failure occurs under flexural-torsional 

buckling mode in both models. This can be seen from the contour plot of Von Mises stresses in 

Figure 4.24b. 

It is noted that the hardening effect model which is taken into account in the NLFEA has a very 

slight effect on the maximum strength and the overall structural behavior, while the failure 

mode does not change. The incorporation of hardening effect on the FE model has been 

selected to give a more realistic perspective of the actual material behavior. 

 

 
 

(a) (b) 

Figure 4.24. (a) Normalized stress-strain curves under axial compression for the two different models; 
CSR and NLFEA. (b) Collapse mode of the examined stiffened panel using NLFEA (amplified). Grey color 

indicates the zones beyond the yield strength point. 

The results from the stochastic modelling of thickness variation follow. The geometric location 

of ultimate stresses is presented in Figure 4.25 for the RF and the RV approach, along with the 

normalized stress-strain curves of CSR using the net-50 scantlings. MCS-LHS has been adopted 

using a sample size of 𝐾 = 200, which is considered satisfactory for the particular problem to 

achieve convergence on the output sample statistics. A large variation is observed in the 

normalized stress when the RV approach is used. In contrast, when the RF approach is used, the 

variation on ultimate stress seems almost negligible. It is of interest that, in the case of the FE 
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analyses, a variation on the normalized strain occurs for both RV and RF approach with a 

degree of variability equal to 1.5% and 2.3%, respectively. This variation is more apparent in 

the RF approach (see Figure 4.25). This is due to the fact that curves do not exhibit a 

pronounced peak value (a stable plateau is observed), as opposed to the RV approach, where 

the generated curves display a smoother behavior when reaching the peak region (see Figure 

4.26). In addition, interpolation between equilibrium points as those defined by the quasi-static 

solver of numerical analysis may lead to a shift of the peak to the left or the right. 

 

  

(a) (b) 

 

(c) 

Figure 4.25. The geometrical location of maximum stresses using (a) IACS CSR LSC, (b) RV approach using 
SFEM, and (c) RF approach using SFEM. The three curves depict the results using IACS CSR net-50 

scantlings. 
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(a) (b) 

Figure 4.26. A typical stress-strain curve generated from a single NLFEA with the (a) RF approach and (b) 
RV approach. A stable plateau is observed when RF approach is considered, whereas a more profound 

peak is displayed using RV approach. 

Figure 4.27 depicts the corresponding histograms of ultimate stresses for the three different 

cases and the most appropriate distribution model fit. The quantification of output results with 

respect to the ultimate strength is summarized in Table 4.12. Using the SFEM, and the RF 

quantification method, the mean value of the maximum stresses is found to be 266 MPa, while 

the coefficient of variation is 0.7 %. For the same model and the case of the RV approach, a 

mean value equal to 271 MPa and a CoV of 5.6% is obtained. A comparison between the CSR 

and the SFEM when uniform thickness reduction is applied reveals a 4.2% difference in their 

mean values and a value of CoV more than two times for the SFEM. The above differences, 

although relatively small, can be attributed to model selection reasons and material hardening 

effects. The modeling of thickness non-uniformity has slight differences with respect to the 

magnitude of the mean value (about 2% for each model), but a more profound effect on the 

ultimate strength variability. The low degree of variability for the RF case is quite rational since 

a small correlation length has been selected for the modeling of spatial dependence. 
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(a) (b) 

 

(c) 

Figure 4.27. Histogram of maximum stresses for 𝐾 = 200 along with fitted probability distributions. (a) 
IACS CSR approach (LSC), (b) RV approach, and (c) RF approach. IACS CSR net-50 result is given with a 

black dot line as a fixed quantity. 

Table 4.12. Ultimate strength variability for different models and quantification approaches. 

Model Quantification 
method 

Mean value  

(MPa) 

CoV  

(%) 

Min value  

(MPa) 

Max value  

(MPa) 

CSR Deterministic 258 - - - 

 RV approach  260 2.5 234 271 

FEM Deterministic 262 - - - 

SFEM RV approach  271 5.6 216 301 

 RF approach 266 0.5 261 269 
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4.3.4 Concluding remarks 

The computation of LSC prescribed by IACS CSR highly affects the hull girder ultimate bending 

moment capacity computed by Smith’s method. The main scope of this study was to examine 

the assumption of uniform thickness reduction in the formulation of LSC. To this end, two 

different quantification approaches, i.e., a random variable (RV) and a random field (RF) 

approach, have been adopted for the simulation of uniform and non-uniform corrosion loss. 

Their influence is evaluated on the ultimate strength of a representative stiffened plate 

element, which is the main structural component for Smith’s model implementation. In 

addition, the effect of model selection, i.e., FEM vs. analytical LSC, on the predicted ultimate 

strength has been investigated. The stochastic FEM framework has been employed to 

effectively combine the probabilistic modelling of input uncertain parameters and the well-

founded finite element method technique for the solution of complex non-linear problems.  

Summarizing, the following conclusions are drawn out of this study: 

• The uniform thickness reduction adopted by LSC (IACS CSR model) provides a lower 

mean value (about 2%) and a much higher variability on the predicted ultimate 

strength against the non-uniform thickness reduction (SFEM RF approach). The latter 

approach displays this small variability due to the weak correlation structure adopted, 

that tends to simulate a white-noise stochastic field. In addition, the net-50 scantling 

approach leads to a below-average value for all probability density functions (see 

Figure 4.27 and Table 4.12). The above results indicate that the uniform thickness 

reduction in LSC is conservative and reasonable for the design of ship structures.  

• The model itself has a considerable impact on the stochastic response of the structure. 

Particularly, the uniform thickness loss representation using the analytical curves of IACS 

CSR and the SFEM resulted in a 4.2% difference in their mean values and a value of 

coefficient of variation more than two times for the SFEM. 

• The computational cost of RF modelling is much higher than the one of RV modelling 

approach. 

It should be highlighted that the predicted probabilistic-based ultimate strength using the RF 

approach is highly dependent on the prescribed correlation structure. In the present study, 

literature sources have been used to establish a “realistic” correlation structure. However, in-

situ information about the spatial distribution of thickness in aged structures is necessary to 

gain further confidence on the results. In addition, it would be more beneficial to develop a 

model on a vessel-specific basis or a fleet of sister vessels since spatial thickness distribution 

depends on many factors, including ship’s age, operational profile, exact location, etc. Finally, 

as the results are based on a single case study, their generalization would require further 

research on various geometries of ship-type stiffened panels. 
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4.4 Main findings 

An essential step in the course of this thesis is the construction of a high-fidelity FE model used 

for the hull girder ultimate strength assessment. In particular, an advanced FE model could 

explicitly accommodate various influencing factors, including spatially varying quantities such as 

imperfections, thickness and material characteristics15, as well other phenomena, such as the 

double bottom effect observed in bulk carriers and container ships, the interdependence of 

failure modes between adjacent structural elements and so on. Such a model would be able to 

replace (missing) real-life results and update the model uncertainty associated with the 

simplified IACS CSR Smith’s method16. The findings drawn from the present chapter contribute 

on the development of the aforementioned high-fidelity FE model with the following way.  

From the perspective of imperfections, we concluded that the general impact of the applied 

stochastic model against the conventional deterministic imperfection models is considerable, 

but its variability on the resulted hull girder ultimate strength is quite small (see also Section 

4.2.5). Therefore, a representative outcome of the hull girder collapse strength associated with 

the stochastic imperfection model application shall be used later in Section 6.2. In addition, the 

outcomes applying the BM and HH imperfection model shall be also employed.  

From the perspective of thickness, the main finding was that RV and RF approaches give 

comparable results on the expected ultimate strength of the examined structure. As RV 

approach simulates in a satisfactory manner the corrosion diminution, and taking also into 

consideration the high computational cost associated with RF modelling, we do not consider it 

necessary to model the corrosion as a random field. Therefore, no modification is implemented 

in the formulation of LSC relationships of IACS CSR Smith’s model. It is highlighted here that the 

modelling of thickness variability using random fields on such a large scale as that of a hull 

girder would be prohibitive since the modelling effort and the computational cost would be 

enormous. This is the reason why the non-uniform thickness representation has been tested on 

a representative stiffened plate element, which is the main structural component in the 

framework of Smith’s incremental-iterative method.

 

15 To the author’s knowledge, data for the spatial variation of material properties, e.g., yield strength or Young’s 
modulus, of structural elements used at the construction of a ship structure has not been found in the literature. 

16 The procedure for implementing the updating task is developed in Section 6.2. 
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5 Bayesian analysis 

5.1 Introduction 

Engineers are often faced with uncertainties related to the input parameters of a system and/or 

the model itself. At the same time, information related to the system’s performance – often of 

limited amount – may become available in the form of observations, measurements or other 

sources, during the construction or operation. It is then desirable to quantify the effect of this 

information and combine it with existing knowledge (generally expressed in the form of initial 

distribution models) in order to reduce uncertainties and improve the performance of the 

system. Bayesian analysis framework provides a formal and systematic tool to implement this 

task, and is particularly appropriate when different sources and types of information need to be 

combined effectively.  

In practice, different approaches can be applied to perform a Bayesian updating depending on 

the problem at hand. An outline of the different strategies applicable to the problem of 

Bayesian updating is illustrated in Figure 5.1. Let us consider a model ℳ of the real physical 

system. Input uncertain parameters of the model are collected into a vector of random 

variables 𝑿 = [𝑋1, … , 𝑋𝑛]
𝑇 with corresponding joint probability density function 𝑓𝑿(𝒙). Often, 

the parameters that define the distribution model 𝑓𝑋 of a single random variable 𝑋, such as the 

mean value and variance, can be uncertain. In that case, a random vector 𝜽 can be formulated 

to characterize their randomness17. At any time, observations related to the system’s 

performance or input parameters may become available. The scope of Bayesian updating is 

then to update the random vector 𝑿 or 𝜽 conditional on these measurements, either directly or 

indirectly. The procedure of using measurements associated with the system output ℳ(𝒙), 

e.g., deformations or displacements, to update the input uncertain model parameters 𝑿 or 𝜽 is 

commonly referred as Bayesian inverse analysis. On the other hand, if direct measurements of 

the QoI are acquired, e.g., measurements of yield stress from a steel plate, these can be used to 

learn its initial distribution model 𝑓𝑋 either explicitly through 𝑋 or implicitly through learning its 

associated parameters 𝜽. The process of updating explicitly the distribution model 𝑓𝑋 is a 

classical Bayesian updating problem, while the process of learning the parameters 𝜽 of a 

distribution 𝑓𝑋 is known as Bayesian statistical inference problem.  

In this chapter, the fundamental theory of Bayesian analysis for application on common 

engineering problems is reviewed. Bayes’ theorem is presented in Section 5.2 and reinterpreted 

in Section 5.3 for the updating of model input parameters 𝑿, and in Section 5.4 for statistical 

inference on parameters 𝜽. The selection of prior is discussed in Section 5.5 while the general 

 

17 Commonly, the uncertain parameters 𝜽 that define a distribution model 𝑓𝑋 are called hyperparameters. 
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formulation of the likelihood function is presented in Section 5.6. Finally, in Section 5.7, some 

basic methods to deal with the updating scheme are reviewed.  

 

 

Figure 5.1. Outline of the Bayesian updating problem. 

5.2 B y  ’ theorem 

Bayes’ rule18 describes how the conditional probability of an event 𝛢 given the occurrence of 

another event 𝛦 can be computed from the unconditional probability Pr(𝐴) and from Pr(𝐸|𝐴). 

In a mathematical manner this is written as: 

Pr(𝐴|𝐸) =
Pr(𝐸|𝐴) Pr(A)

Pr(E)
∝ Pr(𝐸|𝐴) Pr(A) (5.1) 

In practice, Bayes’ theorem provides a formal way to quantify the reduction in uncertainty on 

the event 𝐴 through knowledge of the event 𝐸. Eq. (5.1) decomposes into three principal 

terms:  

• Pr(𝐴) is the prior probability, representing the knowledge before seeing the event 𝐸. 

• Pr(𝐸|𝐴) is the likelihood, describing the probability of the event 𝐸 given 𝐴 to occur. 

• Pr(𝐴|𝐸) is the posterior probability, representing the new knowledge on 𝐴 after 

observing the event 𝐸. 

 

18 Named after Thomas Bayes (1701-1761), a British mathematician, philosopher and minister. 
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The proportionality constant in Eq. (5.1) signifies that Pr(𝐸) can be ignored for the purpose of 

inference on 𝐴. The term Pr(𝐸) is also a measure of the plausibility of the evidence and can be 

computed by application of total probability theorem. 

Bayes’ theorem can be extended to discrete and continuum random variables. The focus in this 

thesis is placed on the continuous case since all the numerical applications that are presented 

deal with continuous quantities.  

5.3 Bayesian updating of model parameters 

Consider a model ℳ of a physical system and the associated uncertainties gathered into a 

vector of random variables 𝑿 = [𝑋1, … , 𝑋𝑛]
𝑇 whose prior joint PDF is denoted by 𝑓𝑿

′(𝒙). The 

prior joint PDF describes the background knowledge about parameters 𝑿. When information in 

observed data is acquired, this can be collected into a vector 𝒅. The representation of this data 

set is performed through the formulation of the likelihood function 𝐿(𝒙). The posterior PDF 

𝑓𝑿
′′(𝒙) of 𝑿 after observing the data 𝒅 is then computed by application of Bayes’ rule as: 

𝑓𝑿
′′(𝒙) = 𝑐𝐸

−1𝐿(𝒙)𝑓𝑿
′(𝒙) (5.2) 

The posterior distribution can be also symbolized as 𝑓𝑿|𝑫(𝒙|𝒅) to express how 𝑿 vector 

changes conditional on the data 𝒅. Similarly, the likelihood function can be also denoted as 

𝐿(𝒙|𝒅) or 𝑓𝑫|𝑿(𝒅|𝒙). It is stressed however, that the likelihood is a function of 𝒙, even though it 

describes the probability of observing the measurement outcome19. Note that Eq. (5.2) is a 

generalization of Eq. (5.1) for continuous random variables. The constant 𝑐𝐸 is a normalizing 

constant that ensures that the posterior PDF integrates to one.  

𝑐𝐸 = ∫ …

∞

−∞

∫ 𝐿(𝒙)𝑓𝑿
′(𝒙)𝑑𝑥1…𝑑𝑥𝑛

∞

−∞

 (5.3) 

In analogy with Pr(𝐸) of Eq. (5.1), 𝑐𝐸 is referred to as the model evidence and expresses the 

plausibility of the model ℳ. Usually, the difficulty in Bayesian updating lies in the evaluation of 

the constant 𝑐𝐸. Common methods for the solution of Bayesian updating problem will be 

reviewed in Section 5.7. 

 

 

19 Likelihood function states that: “Given a fixed parameter state of the system 𝑿 = 𝒙, what is the probability of 
observing a particular set of data 𝒅?” 
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5.4 Bayesian statistical inference 

Bayesian statistical inference is closely related to classical statistical inference, see e.g., Ang and 

Tang (2007). In classical statistical inference, an unknown physical quantity is expressed by its 

distribution model 𝑓𝑋 and its associated true – but unknown – hyperparameters 𝜽. This 

distribution represents a “population” of the real physical system. When a data set (sample) of 

that population is observed, this can be used to estimate the true parameters of distribution 

model 𝑓𝑋. In other words, the exact values of the population parameters are generally 

unknown. The best that we can do is to estimate their values based on a finite set of samples 

(observations) of the population.  

Common methods of classical statistical inference include the method of moments and the 

maximum likelihood estimate (MLE). The main difference between MLE and Bayesian statistical 

inference is the prior. In Bayesian statistics, a prior distribution is defined on the 

hyperparameters 𝜽 of the distribution 𝑓𝑋 to reflect our initial uncertain knowledge on them. 

Bayesian updating is well-suited in cases where the sample set observed is small and the 

existing information about the hyperparameters 𝜽 is vague. In analogy with Eq. (5.2), the 

Bayesian updating problem now reads: 

𝑓𝜣
′′(𝜽) = 𝑐𝐸

−1𝐿(𝜽)𝑓𝜣
′(𝜽) (5.4) 

The main difference from Eq. (5.2) is that all functions are now expressed with respect to the 

hyperparameters 𝜽. The constant 𝑐𝐸 is thus defined as: 

𝑐𝐸 = ∫ …

∞

−∞

∫ 𝐿(𝜽)𝑓𝜣
′(𝜽)𝑑휃1…𝑑휃𝑛

∞

−∞

 (5.5) 

As the interest in most applications usually lies on the evaluation of the basic random variable 

𝑿, one can apply the total probability theorem to derive the so-called posterior predictive 

distribution 𝑓𝑋(𝑥) of a single random variable 𝑋 as: 

𝑓𝑋(𝑥) = ∫ …

∞

−∞

∫ 𝑓𝑿|𝜣(𝑥|𝜽)𝑓𝜣
′′(𝜽)𝑑휃1…𝑑휃𝑛

∞

−∞

 (5.6) 

One can notice that the predictive distribution 𝑓𝑋(𝑥) is the expected value of 𝑓(𝑥|𝜽) with 

respect to the posterior distribution of 𝜽. The solution of the integral in Eq. (5.6) can be 

performed using the same approach followed for the computation of Bayesian updating 

problem. If, for example, samples from 𝑓𝜣
′′(𝜽) are available, a Monte Carlo integration can be 
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adopted. On the other hand, if an analytical formulation for 𝑓𝜣
′′(𝜽) is available, then an 

analytical expression is usually available for the predictive PDF as well. 

In some cases, it is desirable to neglect the whole spectrum of (statistical) uncertainty 

associated with the hyperparameters 𝜽 and obtain some point estimators for the posterior 

hyperparameters 𝜽. The posterior mean is the most common Bayesian estimator derived as: 

�̂�mean
′′ = ∫ …

∞

−∞

∫ 𝜽𝑓𝜣
′′(𝜽)𝑑휃1…𝑑휃𝑛

∞

−∞

 (5.7) 

The posterior maximum or maximum a-posteriori (MAP) estimate is an alternative point 

estimate. It is the mode of the posterior distribution, i.e., the most likely value for 𝜽: 

�̂�𝑀𝐴𝑃
′′ = argmax 𝑓𝜣

′′(𝜽) (5.8) 

Note that for a non-informative prior distribution of 𝜽, the posterior maximum estimate 

coincides with the classical maximum likelihood estimate (MLE). In general, the derivation of 

posterior maximum estimate should be preferred in cases where the uncertainty in the 

hyperparameters is small. When the uncertainty on the posterior is significant, the predictive 

distribution as defined in Eq. (5.7) should be utilized instead. However, the computation of MAP 

estimate is computationally advantageous over the mean estimate since it does not involve the 

solution of a multi-fold integral.  

5.5 Prior distribution 

Prior distributions play a vital role in Bayesian analysis and in most cases their selection is 

subjective. Priors represent our best knowledge on the uncertain model parameters 𝑿 or 𝜽 

before seeing the data. The uncertainty on the parameters is expressed through the 

establishment of proper probability distribution models. Initial information may be acquired 

from different sources, such as experts’ (subjective) knowledge, literature survey or previous 

observations on similar projects. In the framework of Bayesian analysis, it is feasible to 

effectively combine different sources of information. For instance, an expert’s opinion can be 

used as prior information, and previous on-field observations as the remaining information to 

form the likelihood function. 

Priors can have different levels of informativeness, see Van de Schoot et al. (2021). There are 

three main classification of priors that are used in literature to reflect the degree of uncertainty 

(or certainty) associated with parameters 𝑿 or 𝜽: (i) informative, (ii) weakly informative and (iii) 

diffuse (or non-informative). An informative prior is one that reflects a high degree of certainty 

about the model parameters. Mathematically, this level of informativeness can be 
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accomplished by assigning a small value of variance on the respective distribution model. In the 

contrary, a non-informative prior signifies the case where no specific knowledge of a parameter 

is available. A non-informative prior can be mathematically expressed by a relatively flat density 

function, such as for example a uniform distribution with bounds 0 to +∞ or generally, by 

assigning a very high degree of variability on the prior distribution. Finally, a weakly informative 

prior has a moderate amount of certainty, being neither too non-informative nor too 

restrictive. Such priors will have in general a very limited effect on the posterior distribution. A 

demonstration of the effect of the different types of priors on the posterior distribution for a 

given likelihood function is illustrated in Figure 5.2. It should be noted that the interpretation of 

a prior - as informative, weakly informative or diffuse - strongly depends on the formulation of 

the likelihood function in which it will be paired. For instance, if the likelihood is very 

informative, even a prior distribution with a moderate variance may have no effect on the 

posterior.  

 

Prior  Likelihood  Posterior 

 

 

 

 

 

 

× ∝ 

 

 

  

 

Figure 5.2. Illustration of the effect of prior on the posterior distribution for a given likelihood function. 
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5.6 Likelihood function 

Information acquired in the form of measurements or observations is represented by the 

likelihood function. For continuous random variables 𝑿, the likelihood function is defined as 

being proportional of the probability that one observes a measurement 𝑑𝑖 conditional on a 

given parameter state (for fixed parameters), i.e., 𝑿 = 𝒙, that is: 

𝐿(𝒙) ∝ Pr(𝑑𝑖|𝑿 = 𝒙) (5.9) 

If multiple measurements 𝒅 = {𝑑1,… , 𝑑𝑚} become available, likelihood functions 𝐿𝑖  with 𝑖 =

1, … ,𝑚 can be established for all of them individually. For statistically independent 

measurements, i.e., knowing the value of any measurement does not provide any information 

regarding the probability of observing other measurements, the joint likelihood takes the 

following form: 

𝐿(𝒙) =∏𝐿𝑖(𝒙)

𝑚

𝑖=1

 (5.10) 

In real applications, one is may interested in implementing the Bayesian updating process when 

measurements become available sequentially in time. Assuming independence between 

measurements collected at different time instances {𝜏1, … , 𝜏𝑚𝜏
}, the likelihood function of Eq. 

(5.10) can be extended as: 

𝐿(𝒙) =∏∏𝐿𝑖(𝒙; 𝜏𝑗)

𝑚

𝑖=1

𝑚𝜏

𝑗=1

 (5.11) 

where, 𝑚𝜏 is the total number of the time instances in which measurements are observed. For 

numerical stability enhancement, it is often convenient to work with the natural logarithm of 

the likelihood function instead of the joint likelihood function. Taking the natural logarithm on 

each side, Eq. (5.11) becomes: 

ln 𝐿(𝒙) =∑∑ln𝐿𝑖(𝒙; 𝜏𝑗)

𝑚

𝑖=1

𝑚𝜏

𝑗=1

 (5.12) 

Note also that the logarithm of a function has its maximum at the same location as the function 

itself. This is particular useful for the evaluation of Eq. (5.2) using sampling-based techniques as 

only the shape of the likelihood, and not its absolute magnitude, is needed to be known. In the 
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following, the derivation of the likelihood function for different classes of measurements is 

presented. 

5.6.1 Direct measurements of a parameter 𝑿 

Consider that a measurement 𝑥𝑖  of the single random variable 𝑋 is obtained20. We distinguish 

between a perfect and an imperfect measurement. For a perfect measurement, there would be 

no uncertainty on 𝑋, and thus the random variable would become a constant parameter with 

value 𝑋 = 𝑥𝑖. There is no need for Bayesian updating in that case. The analytical form of the 

likelihood function would be the Dirac delta function with argument 𝑥𝑖 − 𝑥: 

𝐿𝑖(𝑥) = δ(𝑥𝑖 − 𝑥) = {
1, 𝑥𝑖 = 𝑥
0, 𝑥𝑖 ≠ 𝑥

 (5.13) 

In practice, however, measurements are subject to one or numerous errors due to 

measurement inaccuracies. The measurement error ε is modelled probabilistically by its PDF 𝑓ε 

which is commonly assumed to follow a Gaussian distribution. Error can be of additive or 

multiplicative type. In case of an additive error, the measurement is equal to the true value plus 

the error, 𝑥𝑖 = 𝑋 + ε, or equivalently, ε = 𝑥𝑖 − 𝑋. The probability of observing a measurement 

𝑥𝑖  given that the true value is 𝑋 = 𝑥, is equal to 휀𝑖 taking the value 𝑥𝑖 − 𝑥. The likelihood 

function then reads: 

𝐿𝑖(𝑥) = 𝑓ε(𝑥𝑖 − 𝑥) (5.14) 

In case of a multiplicative error, it is 𝑥𝑖 = ε𝑋, so that ε = 𝑥𝑖 𝑋⁄ . The likelihood function then 

becomes: 

𝐿𝑖(𝑥) = 𝑓ε (
𝑥𝑖
𝑥
) (5.15) 

5.6.2 Indirect measurements of model output 

Consider a model denoted by ℳ and its prediction ℳ(𝒙) for a given parameter state 𝑿 = 𝒙. 

Let 𝑑𝑖 denotes a single measurement corresponding to that model prediction. An error ε 

expressing the deviation of the model prediction from the measurement is modelled through 

 

20 In the context of this thesis, measurements are generally denoted by the symbol 𝒅. Here, however, 𝑥𝑖  has been 

used to emphasize that the measurement corresponds to the random variable 𝑋. 
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the PDF 𝑓ε. This deviation is due to measurement and model errors21. Assuming an additive 

error, the following relation holds: 𝑑𝑖 =ℳ(𝒙) + ε. The likelihood function describing this 

observation reads then: 

𝐿𝑖(𝒙) = 𝑓ε(𝑑𝑖 −ℳ(𝒙)) (5.16) 

More generally, the likelihood function for observations that provide information on 

continuous quantities can be expressed as: 

𝐿𝑖(𝒙) = 𝑓𝐷𝑖|𝑿(𝑑𝑖|𝒙) (5.17) 

where 𝑓𝐷𝑖|𝑿 is the conditional PDF of the measured quantity 𝑑𝑖 given 𝑿 = 𝒙. Typically, 𝑓𝐷𝑖|𝑿 is 

assumed to follow a Gaussian distribution model. In case of multiplicative observation error ε 

the relationship that holds is 𝑑𝑖 = εℳ(𝒙). The likelihood then becomes: 

𝐿𝑖(𝒙) = 𝑓ε (
𝑑𝑖

ℳ(𝒙)
) (5.18) 

5.6.3 Sampling from a population 

Occasionally, a model parameter 𝑋 cannot be learned explicitly, but the parameters 𝜽 that 

define the distribution model 𝑓𝑋 can be learned. For instance, consider a spatially varying 

random parameter, e.g., thickness distribution, which is implicitly modelled through a single 

random variable 𝑋 with corresponding PDF 𝑓𝑋. In that case, the inherent variability of thickness 

cannot be reduced with further measurements, but the parameters 𝜽 (e.g., mean value and 

variance) of the distribution model 𝑓𝑋 can be learned. In other words, the measurements are 

realizations of 𝑋, which are used to learn the parameters 𝜽 of the distribution model 𝑓𝑋. The 

likelihood function describing a single sample 𝑥𝑖  of a continuous random variable 𝑋 with PDF 𝑓𝑋 

is expressed as follows: 

𝐿𝑖(𝜽) = 𝑓𝑋(𝑥𝑖|𝜽) (5.19) 

where, 𝑓𝑋(𝑥𝑖|𝜽) is the PDF of 𝑋 with parameters value 𝜽, evaluated at 𝑥𝑖.  

In case where an additive error term ε is postulated on the observation 𝑥𝑖, e.g., due to a 

measurement inaccuracy, the likelihood function will depend both on 𝑓𝑋 conditional on 𝜽 as 

 

21 Model errors can be implicitly accommodated in the input vector 𝑿 by adding an additional random variable. In 
that case, the induced error ε will be totally attributed to measurement inaccuracy. 
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well as the functional relationship between the error term and the measurement. Applying the 

multiplication and chain rules, the so-called marginalized or integrated likelihood is obtained as, 

see also Nagel and Sudret (2016): 

𝐿𝑖(𝜽) = ∫ 𝑓𝑋𝑖|𝑋(𝑥𝑖|𝑥)𝑓𝑋(𝑥|𝜽)𝑑𝑥
∞

−∞

= ∫ 𝑓ε(𝑥𝑖 − 𝑥)𝑓𝑋(𝑥|𝜽)𝑑𝑥
∞

−∞

 (5.20) 

where the term 𝑓𝑋𝑖|𝑋(𝑥𝑖|𝑥) denotes the PDF of measuring the value 𝑥𝑖  given the true value is 

𝑋 = 𝑥. For an additive error where  𝑥𝑖 = 𝑋 + ε, this term becomes equal to 𝑓ε(𝑥𝑖 − 𝑥), where a 

Gaussian distribution is considered to express the variability of the error. In analogy with Eq. 

(5.10), if 𝑖 = 1,… ,𝑚 independent measurements are observed, then the joint likelihood 

function becomes: 

𝐿(𝜽) =∏𝐿𝑖(𝜽)

𝑚

𝑖=1

 (5.21) 

5.7 Posterior distribution 

The quantification of the uncertainty related to the posterior distribution of model parameters 

𝑿 can be expressed using point estimates, such as the posterior mean and the MAP that we 

saw in Section 5.4. An alternative way to account for the uncertainty on the posterior model 

parameters is to estimate the so-called credible intervals. Credible intervals are used in the 

framework of Bayesian statistics and are opposed to confidence intervals which are adopted 

from a frequentist point of view. The use of credible intervals is more intuitive and their 

definition is simple: the 𝑝% credible interval represents a range in which the parameter value 

lies with 𝑝% probability. Credible intervals are defined through quantiles: e.g., the 2.5% and 

the 97.5% quantile of the posterior distribution are the limits of the 95% credible interval. 

The calculation of the posterior distribution is implemented through Eq. (5.2) or Eq. (5.4), after 

determining the prior and the likelihood. In general, the selection of the appropriate 

computational strategy depends on the problem at hand and especially, on the number of 

random variables, their distribution model, the number of measurements and the 

computational cost of the respective model. Analytical solutions are rarely available in practice, 

while numerical integration methods (e.g., quadrature rule) are only applicable for a small 

number of input vector (in the order of 3). In most engineering applications, advanced 

sampling-based techniques, such as Markov Chain Monte Carlo (MCMC) and Bayesian updating 

using structural reliability (BUS) methods are needed for the solution of the Bayesian updating 

problem.  
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In the following, common methods for calculating the posterior distribution are reviewed. The 

emphasis is placed on the methods used in the context of the present thesis. A detailed 

presentation of the algorithms is beyond the scope of this thesis. A deeper insight is given for 

the reader in the relevant references. 

5.7.1 Analytical solution (conjugate priors) 

An analytical solution of the basic Bayesian updating problem is possible for given pairs of prior-

likelihood distribution models. Knowledge of the so-called conjugate priors is extremely useful 

as they provide accuracy and low computational effort. Various forms of conjugate priors pairs 

can be found in Raiffa and Schlaifer (1961). 

A common conjugate prior is the following case: Consider a normal random variable 𝑋 with 

uncertain mean value 𝜇𝑋 = 휃 and known standard deviation 𝜎𝑋. If the likelihood of the 

parameter 휃 is the normal distribution with mean 휃 and fixed standard deviation 𝜎𝑋, the 

conjugate prior is the normal distribution with mean 𝜇𝜃
′  and standard deviation 𝜎𝜃

′ . If 𝑚 

samples are taken with sample mean �̅�, the posterior distribution of 휃 is the normal 

distribution with parameters: 

𝜇𝜃
′′ =

𝜇𝜃
′

𝜎𝜃
′2 +

𝑚�̅�
𝜎𝑋
2

1
𝜎𝜃
′2 +

𝑚
𝜎𝑋
2

 (5.22) 

𝜎𝜃
′′ = [

1

𝜎𝜃
′2 +

𝑚

𝜎𝑋
2]

−1 2⁄

 (5.23) 

Note that in the above formulations the posterior mean 𝜇𝜃
′′ depends on the average value and 

the number of observations, while the posterior standard deviation 𝜎𝜃
′′ is affected only by the 

number of observations, and not on their actual outcome. In other words, the more samples 

are observed, the higher is the reduction of uncertainty that is achieved.  
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5.7.2 Sampling-based approaches 

5.7.2.1 Markov Chain Monte Carlo methods 

The most common sampling-based method used for the evaluation of the Bayesian updating 

problem is based on Markov Chain Monte Carlo (MCMC) technique. MCMC is a method that 

asymptotically generates dependent samples from the target (posterior) distribution. The 

sampling process is called Markovian in the sense that the next generated sample depends only 

on the current sample and not on the samples generated previously. For a comprehensive 

introduction to MCMC the reader is referred to the book of Gilks et al. (1996). 

A well-known MCMC algorithm is the Metropolis-Hastings algorithm, after Metropolis et al. 

(1953), and Hastings (1970). The Metropolis-Hastings algorithms proceeds by generating each 

new state of the Markov chain from a proposal distribution 𝑞(∙ |𝒙(𝑖)) conditional on the current 

state 𝒙(𝑖) and then accepts or rejects the sample with a certain degree of acceptance 

probability that depends on the current and the proposed state. Typical choices of the proposal 

distribution are symmetric distributions, such as the normal or uniform distribution, centered 

on the current state 𝒙(𝑖). The Metropolis-Hastings algorithm for generating 𝐾 states of a 

Markov chain with stationary distribution equal to the posterior distribution 𝑓𝑿
′′(𝒙) can be 

summarized as follows: 

 

Metropolis-Hastings algorithm: 

1. Choose an initial guess  𝒙(0) 

2. Set 𝑖 = 1 

3. Generate a candidate sample 𝝃 from the proposal distribution 𝑞(𝝃|𝒙(𝑖−1)) 

4. Compute the acceptance probability 𝑝𝑎 as: 

𝑝𝑎(𝒙
(𝑖−1), 𝝃) = min {

𝑓𝑿
′′(𝝃)𝑞(𝒙(𝑖−1)|𝝃)

𝑓𝑿
′′(𝒙(𝑖−1))𝑞(𝝃|𝒙(𝑖−1))

, 1} 

5. Generate a sample 𝑝 from the standard uniform distribution 𝑝~𝑈(0,1) 

6. Set: 

𝒙(𝑖) = {
𝝃, if 𝑝 < 𝑝𝑎(𝒙

(𝑖−1), 𝝃)

𝒙(𝑖−1), otherwise
 

7. Set 𝑖 = 𝑖 + 1 

8. Stop if 𝑖 = 𝐾, else go to Step 2. 

 

Note that the Metropolis-Hastings algorithm does not require the posterior distribution to be 

normalized. This is particular useful for Bayesian updating as the posterior distribution is known 

only up to a proportionality level. A problem with MCMC methods is the difficulty of ensuring 
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convergence to the target posterior distribution after an initial burn-in phase22, see Plummer et 

al. (2006). Moreover, it is often difficult to choose a proposal density that can sample efficiently 

in high dimensional posterior densities. A method that partly alleviates the problem of burn-in 

in the original MCMC is the so-called transitional MCMC method, see Ching and Chen (2007). 

However, its performance deteriorates with increasing the dimension of the parameter space, 

see Betz et al. (2016). 

5.7.2.2 Bayesian Updating with Structural reliability methods (BUS) 

An alternative sampling-based approach of MCMC is the Bayesian updating with structural 

reliability methods (BUS), originally proposed by Straub and Papaioannou (2015). BUS 

reinterprets the Bayesian updating problem by using structural reliability methods. The basic 

concept of BUS approach is presented below.  

The principal idea behind BUS is to add a parameter 𝑃 uniformly distributed in [0,1] 

additionally to the space spanned by random variables 𝑿. The updating problem is then 

expressed as a structural reliability problem in the augmented outcome space [𝒙; 𝑝]. In analogy 

with the failure domain Ωℱ defined in the reliability problem (see Section 7.2), the observation 

domain Ω𝑜 is defined as: 

Ω𝑜 = {𝑝 ≤ 𝑐𝐿(𝒙)} (5.24) 

where 𝑐 is a positive constant that ensures 𝑐𝐿(𝒙) ≤ 1 for all 𝒙. It is proved by Straub and 

Papaioannou (2015) that samples generated from the prior and falling into the observation 

domain Ω𝑜 are distributed according to the posterior distribution. In analogy with structural 

reliability analysis, the limit state function ℎ(𝒙, 𝑝) is introduced here to describe the 

observation (“failure”) domain Ω𝑜: 

ℎ(𝒙, 𝑝) = 𝑝 − 𝑐𝐿(𝒙) (5.25) 

where, ℎ(𝒙, 𝑝) ≤ 0 if [𝒙; 𝑝] ∈ Ω𝑜 and ℎ(𝒙, 𝑝) > 0 if [𝒙; 𝑝] ∉ Ω𝑜.  

Rejection sampling 

In its simplest version, the BUS approach reduces to a classical rejection sampling method 

where the prior distribution is applied as an envelope distribution and the likelihood is applied 

as a filter, see Gelfand and Smith (1992). The basic steps of the algorithm are presented below: 

 

22 The number of steps until the Markov chain approximately reaches its stationary target distribution is called the 
burn-in period. 
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Rejection sampling algorithm: 

1. 𝑖 = 1 

2. Generate a sample 𝒙(𝑖) from the prior joint distribution 𝑓𝑿
′(𝒙) 

3. Generate a sample 𝑝(𝑖) from the standard uniform distribution 𝑝~𝑈(0,1) 

4. If [𝒙(𝑖), 𝑝(𝑖)] ∈ Ω𝑜 

a. Accept 𝒙(𝑖) 

b. Set 𝑖 = 𝑖 + 1 

5. If 𝑖 = 𝐾 stop, otherwise go to Step 2. 

 

The posterior samples resulting from the above algorithm are statistically independent. A 

measure for the efficiency of the rejection sampling algorithm is the probability of acceptance 

𝑝𝑎𝑐𝑐 which is given by the following relation, see Straub and Papaioannou (2015): 

𝑝𝑎𝑐𝑐 = ∫𝑐𝐿(𝒙)𝑓𝑿
′(𝒙)𝑑𝒙

 

𝑿

 (5.26) 

The probability of acceptance represents the probability that samples [𝒙; 𝑝] from the prior 

distribution fall into Ω𝑜, that is: 

𝑝𝑎𝑐𝑐 = Pr(Ω𝑜) = Pr[ℎ(𝒙, 𝑝) ≤ 0] (5.27) 

An estimate of the acceptance probability �̂�𝑎𝑐𝑐 can be obtained simply by dividing the number 

of samples falling into the observation domain Ω𝑜 by the total number of generated samples 𝐾. 

Following Eq. (5.26), an estimate of the evidence �̂�𝐸 associated with the updating problem can 

be obtained as: 

�̂�𝐸 = 𝑐
−1𝑝𝑎𝑐𝑐 (5.28) 

An illustration of the rejection sampling algorithm is provided in Figure 5.3a for the case of a 

univariate standard normal prior PDF 𝑓𝑋
′(𝑥) and a single observation 𝑥𝑖 = 2 with an associated 

normally distributed additive error term ε~𝑁(0, 𝜎ε = 0.5). Here, the constant 𝑐 is chosen as: 

𝑐 = 1 max[𝐿(𝑥)]⁄ = 1.253. A total number of 𝐾 = 500 samples has been generated from the 

prior. Samples falling into the shaded green area, i.e., the observation domain Ω𝑜 , are accepted. 

These samples follow the posterior distribution 𝑓𝑋
′′(𝑥). A very good agreement between the 

empirical and the exact solution, which is available for the present problem, is achieved by 

examining the analytical/exact CDF with the empirical CDF (see Figure 5.3b). For that particular 
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problem, the exact acceptance probability, as computed by Eq.  (5.26), is 𝑝𝑎𝑐𝑐 = 0.09. An 

estimate of the acceptance probability can be obtained by dividing the number of samples 

falling into the domain Ω𝑜 by the total number of generated samples: �̂�𝑎𝑐𝑐 = 50/500 = 0.1.  

The above rate of acceptance quickly reduces as the number of dimensions and measurements 

increases. Then, the rejection sampling algorithm becomes insufficient to accommodate the 

Bayesian updating problem. The BUS approach overcomes this difficulty by resorting to efficient 

structural reliability methods for representing the observation domain. Such an efficient 

structural reliability method is the Subset simulation (SuS). An outline of BUS-SuS method is 

given below, while for a detailed presentation of the method and the algorithms used for its 

implementation, the reader is referred to the papers of Straub and Papaioannou (2015), and 

Betz et al. (2018). 

 

 

(a) (b) 

Figure 5.3. (a) Illustration of the rejection sampling algorithm. Pairs of samples generated from the prior 
distribution 𝑓𝑋

′(𝑥) and the standard uniform distribution that fall inside the observation domain Ω𝑜 
(green shaded area) are distributed according to the posterior. (b) CDFs of the exact/analytical solution 

and the empirical distribution constructed from the accepted samples are in very good agreement. 

(a)BUS-SuS 

Subset simulation (SuS) has been introduced by Au and Beck (2001) and is a particular efficient 

method to compute small failure probabilities in high-dimensional problems encountered in the 

reliability analysis of engineering systems. SuS expresses the observation domain Ω𝑜 as the 

intersection of 𝑁 intermediate nested intermediate domains (or events) 𝐷0 ⊃ 𝐷1 ⊃ ⋯ ⊃ 𝐷𝑁, in 

which 𝐷0 is the certain event and 𝐷𝑁 = Ω𝑜. The probability Pr(Ω𝑜) is then expressed as: 
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Pr(Ω𝑜) = Pr [⋂𝐷𝑖

𝑁

𝑖=0

] =∏Pr(𝐷𝑖|𝐷𝑖−1)

𝑁

𝑖=1

 (5.29) 

The above expression states that the possibly small probability Pr(Ω𝑜) can be expressed as a 

product of conditional probabilities with higher probability level. The events 𝐷𝑖  are defined as 

𝐷𝑖 = {ℎ(𝒙, 𝑝) ≤ 𝑏𝑖}, where 𝑏𝑖 are positive threshold levels satisfying the following condition 

𝑏0 = ∞ > 𝑏1 > ⋯ > 𝑏𝑛 = 0. The thresholds 𝑏𝑖 are selected adaptively such that each 

conditional probability equals a target probability 𝑝0, with 𝑝0 typically chosen as 𝑝0 = 0.1. This 

is accomplished by generating 𝑗 = 1,… , 𝐾 samples from {𝒙𝑖
(𝑗)
, 𝑝𝑖
(𝑗)} conditional on the 

intermediate events 𝐷𝑖  and then setting 𝑏𝑖 as the 𝑝0-quantile of the corresponding limit state 

function values. Samples conditional on the certain event 𝐷0 are obtained by crude Monte 

Carlo simulation. Samples conditional on the events 𝐷𝑖  for 𝑖 = 1,… ,𝑁 − 1 are obtained by 

MCMC using as seeds 𝐾𝑠 = 𝑝0𝐾 samples conditional on 𝐷𝑖−1 for which ℎ(𝒙, 𝑝) ≤ 𝑏𝑖.  

As discussed in Betz et al. (2018), the formulation of the limit state function has an impact on 

BUS-SuS. In general, a smooth transition between the intermediate events is needed for an 

efficient performance of the method. This can be achieved by introducing an alternative, yet 

equivalent, representation of the limit state function applying the natural logarithm for each 

term in Eq. (5.25): 

ℎ(𝒙, 𝑝) = ln(𝑝) − ln(𝑐) − ln[𝐿(𝒙)] (5.30) 

Note that both limit state function formulations have the same failure domain while the use of 

the logarithms provides the additional advantage of numerical stable solutions. 

Eventually, the probability Pr(Ω𝑜) can be approximated by: 

Pr(Ω𝑜) ≈ 𝑝0
𝑁−1�̂�𝑛 (5.31) 

where �̂�𝑛 is the estimate of the conditional probability Pr(𝐷𝑖|𝐷𝑖−1) given by the ratio of the 

number of samples for which ℎ(𝒙, 𝑝) ≤ 0 over the total number of samples 𝐾 generated 

conditional on the intermediate level 𝐷𝑖−1. The number of samples 𝐾 generated in each 

intermediate domain should be selected large enough (usually larger than 1000) to guarantee 

an accurate estimate of 𝑝0, see Betz et al. (2018). 

An improved version of BUS-SuS approach termed adaptive BUS-SuS (aBUS-SuS) has been 

proposed by Betz et al. (2018). The main benefit of aBUS-SuS is that it does not require the 

knowledge of the constant 𝑐 as input. In contrast, the constant 𝑐 is adaptively learned. The 

method is recommended in cases where (log)-likelihood evaluations are associated with high 

computational cost. 
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6 Hull girder ultimate strength assessment: Uncertainty 

reduction methods 

6.1 Introduction 

In this chapter, novel methods for reducing the uncertainty associated with the assessment of 

hull girder ultimate strength of ship structures are developed. Bayesian techniques are 

employed for the accomplishment of this purpose. The scope of this chapter is to update the 

basic random variables that constitute the resistance model 𝑅 in Eq. (2.1), namely, the model 

uncertainty factor 𝑋𝑟 and the (time-varying) hull girder ultimate strength 𝑀𝑢. The impact of the 

novelties introduced in this chapter is analyzed in Chapter 7 through the implementation of a 

reliability analysis in an oil tanker and two container ships. 

In Section 6.2, a methodology for a rigorous management of the uncertainties related to the 

model error parameter 𝑋𝑟 is established. Particularly two stages are introduced. In the first one, 

a Bayesian updating scheme is employed to build a general-purpose ship-type dependent 

model uncertainty factor 𝑋𝑟. A recommendation is made for the determination of 𝑋𝑟 within the 

context of reliability assessment on container ships and oil tankers. In the second stage, the 

derived model uncertainty factor 𝑋𝑟 is further refined for application on a target vessel. A 

demonstration is presented where the model uncertainty factor 𝑋𝑟 extracted for the global 

fleet of container ships is adapted for the unique case of “MOL Comfort” accident, sank in the 

Indian Ocean in 2013. 

In Section 6.3, a Bayesian approach is adopted to learn and update the parameters of a time-

dependent corrosion model using actual measurements from inspections. Updated thickness 

predictions are provided for the structural elements composing the cross section of midship 

section area by combining the information acquired from inspections with existing knowledge 

from global-fleet statistics. The focus is placed on a more accurate estimation of uniform 

thickness diminution based on a limited number of available measurements. The impact of 

using measurements from a single and sequential inspections is investigated. Results are 

validated against actual data from the last inspection of the examined vessel. 
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6.2 A Bayesian method for the determination and quantification of the 

strength model uncertainty factor 

6.2.1 Background 

The strength model uncertainty factor 𝑋𝑟 is generally the most influential basic random variable 

of the reliability problem in ultimate limit state, see e.g., Campanile et al. (2016)c, Chen (2016), 

Parunov et al. (2014), Corak and Soares (2018). The determination of an appropriate ship-type 

dependent distribution model for 𝑋𝑟 is thus of great practical importance. As real-scale 

observations from hulls’ collapse are not available, the true value of hull girder ultimate 

strength is generally unknown. As a result, the quantification of 𝑋𝑟 usually involves the 

combination of engineering judgment and results obtained from high-fidelity models, e.g., 

NLFEA. A need arises to develop a solid framework for efficiently combining the different 

sources of information. To this end, a systematic and formal method to manage the uncertainty 

related to model uncertainty 𝑋𝑟 is presented in this section. The framework of Bayesian 

analysis whose basic theory was introduced in Chapter 5 is used for this purpose.  

In the current study, advanced NLFEA results are used to formulate the likelihood function. 

Finite element simulations are seen as a trustworthy source of information used to replace real-

life data23. In this regard, Xu et al. (2015) investigated the reliability of a Suezmax oil tanker by 

calibrating the results obtained from the simplified IACS CSR Smith’s method with an advanced 

and “realistic” FE model. NLFEA can provide a refined version of the actual structure by 

explicitly covering aspects that are not considered in the simplified Smith’s method (see also 

the discussion of Section 4.4). It should be noted, however, that the assessment of hull girder 

ultimate strength using non-linear finite element techniques is associated with an uncertainty, 

usually attributed to modelling aspects and user’s skills (human error). This “measurement 

inaccuracy” type of uncertainty – although generally unknown up to an extent – can be 

explicitly quantified through the framework of Bayesian analysis. 

Overall, the present study is structured as follows. In Section 6.2.2, the methodology and the 

mathematical formulation to update and learn the population statistics of the model 

uncertainty factor 𝑋𝑟 are presented. For this purpose, different sources of subjective and 

objective type of information are combined effectively under the framework of Bayesian 

analysis to learn the parameters of the distribution model. The main objective is the 

establishment of an appropriate ship-type dependent model uncertainty factor 𝑋𝑟 used for 

reliability assessment and potentially, for the development of design code formats. In Section 

6.2.3, the goal is to learn the model uncertainty factor 𝑋𝑟 explicitly for application on vessel-

specific purposes. This is achieved using information from a target or a sister vessel whose 

 

23 As stated by Bathe (2006), a finite element simulation can be considered as a “laboratory experiment” 
performed on a digital environment. 
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specific characteristics, e.g., true imperfections, structural configuration, etc., are known and 

they can be embodied in an advanced FE model to evaluate the hull girder ultimate strength. In 

Section 6.2.4, we demonstrate the proposed methodology by applying it in oil tankers and 

container ships. Aiming at the specific characteristics of the individual type of vessels, a new 

recommendation for the quantification of strength model uncertainty factor 𝑋𝑟 is presented. In 

addition, and following the methodology presented in Section 6.2.3, a suitable distribution 

model for 𝑋𝑟 in the case of “MOL Comfort” container ship is proposed in order to evaluate the 

variability of its capacity at the time of accident.  

6.2.2 Method for the determination of a global-based model uncertainty factor 

The fundamental theory of learning the parameters of a distribution model 𝑓𝑋 using Bayesian 

analysis has been presented in Section 5.4. In the present problem, the random variable of 

model uncertainty factor 𝑋𝑟 with corresponding distribution model 𝑓𝑋 is of interest. According 

to the definition given in Eq. (2.5), 𝑋𝑟 reflects the model error, namely, in our case, the 

deviation of IACS CSR Smith’s model prediction vs. real-life result. To reflect this uncertainty, 𝑋𝑟 

is modelled as a random variable with normal PDF, i.e., 𝑋𝑟~𝑁(𝜇𝑋 , 𝜎𝑋). 

The standard deviation 𝜎𝑋 expresses the uncertainty or deviation of model prediction vs. true 

value. In the ideal case where our model was a perfect replica of the physical system, 𝜎𝑋 would 

be equal to zero. However, since the true value for the problem at hand is not known, it is 

practically impossible to compute this deviation or learn it by data. Therefore, the uncertainty 

on 𝜎𝑋 parameter is treated as irreducible and is set equal to 𝜎𝑋 = 0.10, which is the most 

widely adopted value in the literature (see Section 2.4.2). 

The mean 𝜇𝑋 expresses the bias of the reference model prediction. For instance, 𝜇𝑋 = 1.00 

denotes an unbiased estimate of model prediction. In our problem, the mean parameter 𝜇𝑋 is 

considered unknown and its quantification is inferred combining different sources of 

information, including experts’ judgement from literature sources, as well observations from a 

limited number of high-fidelity NLFEA. The overall scope is then to provide the “best” estimate 

of the mean value 𝜇𝑋 using a Bayesian approach. Although this estimate would be different for 

each type of ship due to the unique structural characteristics, the methodology remains the 

same. A graphical overview of the proposed concept is illustrated in Figure 6.1. 

6.2.2.1 Prior belief on mean parameter 

To construct the prior probabilistic model of mean uncertain parameter 𝜇𝑋, someone can rely 

on different potential sources. Among them, the most commonly used are: (i) available 

information from past observations/projects of similar type, (ii) literature sources, and (iii) 

experts’ assessments. In the case where prior information is vague, a so-called non-informative 

or weakly informative prior can be chosen (see Section 5.5). In the present analysis, prior 
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knowledge is based on the available information associated with the specific type of ship that is 

investigated. 

 

 

Figure 6.1. Outline of the procedure for the determination of mean value 𝜇𝑋 and associated strength 
model uncertainty factor 𝑋𝑟 distribution model. 

6.2.2.2 Likelihood formulation 

In the absence of real-scale measurements, information about the hull girder collapse comes 

from high-fidelity NLFEA results. Recalling Eq. (2.5), the true – but unknown – value of the 

nominator is here approximated by the outcome of a NLFEA result. Therefore, a single 

observation 𝑥𝑖 ≡ 𝑥𝑟 can be expressed by the following ratio: 

𝑥𝑟 ≡ 𝑥𝑖 =
𝑀𝑢
𝐹𝐸𝑀

𝑀𝑢
𝐶𝑆𝑅  (6.1) 

where, 𝑀𝑢
𝐹𝐸𝑀 denotes the “measurement” obtained from a single NLFEA simulation, and 𝑀𝑢

𝐶𝑆𝑅  

is the corresponding result using the IACS CSR Smith’s model. An error is associated with the 

ratio 𝑥𝑖  due to the uncertainty on the NLFEA prediction and the transformation, i.e., 

𝑀𝑢
𝐹𝐸𝑀 𝑀𝑢

𝐶𝑆𝑅⁄ . NLFEA prediction error generally includes modelling and users’ error. 

Transformation error is the result of deviations on Smith’s model prediction observed between 

different participants24. The formulation of the likelihood function follows. 

 

24 Although one would expect this portion of error to be relatively small. 
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Let us assume that 𝑥𝑖  is subject to an additive error term ε, so as: 𝑥𝑖 = 𝑋 + ε, and 𝑋 denotes 

the true but unknown value. In that case, the analytical form of the likelihood is provided by Eq. 

(5.20), which for the present case reads: 

𝐿𝑖(𝜇𝑋) = ∫ 𝑓𝑋𝑖|𝑋(𝑥𝑖|𝑥)𝑓𝑋(𝑥|𝜇𝑋)𝑑𝑥
∞

−∞

= ∫ 𝑓ε(𝑥𝑖 − 𝑥)𝑓𝑋(𝑥|𝜇𝑋)𝑑𝑥
∞

−∞

 (6.2) 

where,  

𝑓𝑋(𝑥|𝜇𝑋) =
1

𝜎𝑋√2𝜋
exp [−

1

2
(
𝑥 − 𝜇𝑋
𝜎𝑋

)
2

]  

and 𝑓ε(𝑥𝑖 − 𝑥) is a univariate zero-mean Gaussian PDF ε~𝛮(0, 𝜎𝜀). The uncertainty for each 

sample 𝑥𝑖 is reflected on 𝜎𝜀, which has been estimated equal to 𝜎ε = 0.05 (see Appendix G for 

further details). For multiple and independent on each other observations, the likelihood 

function becomes: 

𝐿(𝜇𝑋) =∏∫ 𝑓ε(𝑥𝑖 − 𝑥)𝑓𝑋(𝑥|𝜇𝑋)𝑑𝑥
∞

−∞

𝑚

𝑖=1

 (6.3) 

6.2.2.3 Posterior distribution of mean parameter and predictive distribution 

The posterior PDF of mean 𝑓𝜇𝑋
′′ (𝜇𝑋) is computed using Bayes’ theorem (see Eq. (5.4)) as: 

𝑓𝜇𝑋
′′ (𝜇𝑋) = 𝑐𝐸

−1𝐿(𝜇𝑋)𝑓𝜇𝑋
′ (𝜇𝑋) (6.4) 

A rejection sampling algorithm is employed to derive the posterior distribution. In the general 

case, the posterior predictive distribution of the basic random variable 𝑋𝑟, which is of interest, 

is obtained following Eq. (5.6): 

𝑓𝑋(𝑥) = ∫ 𝑓𝑋(𝑥|𝜇𝑋)𝑓𝜇𝑋
′′ (𝜇𝑋)𝑑𝜇𝑋

∞

−∞

 (6.5) 

In the present case study, the predictive distribution of 𝑋𝑟 is computed employing a Monte 

Carlo integration using the posterior samples of 𝑓𝜇𝑋
′′ (𝜇𝑋) generated from the employed 

rejection sampling algorithm. 
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6.2.3 Method for the adjustment of global-based model uncertainty factor for vessel-

specific purposes  

In the case where information from the hull condition of a target or sister ships is available, 

then updating can be performed on the model uncertainty factor 𝑋r directly. The methodology 

to implement a Bayesian updating on such a case is presented here. In the present analysis, we 

are interested in updating only a single random variable. Therefore, the 𝑿 vector on Eq. (5.2) 

reduces to a univariate random variable 𝑋 ≡ 𝑋𝑟, and the basic problem of Bayesian updating 

reads:  

𝑓𝑋
′′(𝑥) = 𝑐𝐸

−1𝐿(𝑥)𝑓𝑋
′(𝑥) (6.6) 

The necessary information and mathematical tools to construct the prior PDF, the likelihood 

function and finally, the way to reach on the posterior distribution is analyzed in the remaining 

section. 

 

 

Figure 6.2. Outline of the updating process followed to derive the posterior 𝑋𝑟 for a target vessel based 
on the actual data and structural configuration of that vessel or a sister vessel. 

6.2.3.1 Prior probabilistic model 

Initial knowledge on the strength model uncertainty factor can be based either on available 

literature sources, see e.g. Mansour & Hovem (1994), Paik and Frieze (2001), Hørte et al. (2007) 

or the updated/posterior PDF of the population statistics’ learning (see Section 6.2.2). 
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6.2.3.2 Likelihood formulation 

A single observation 𝑥𝑖  is assumed to be taken from the target or a sister vessel after 

performing a detailed NLFEA and an associated Smith’s model evaluation. An error term ε is 

added on the measurement to reflect the deviation from the true value 𝑋, so as: 𝑥𝑖 = 𝑋 + ε, 

where ε~𝛮(0, 𝜎ε). A zero-mean Gaussian PDF is postulated on 휀𝑖 so that the likelihood function 

takes the following form: 

𝐿𝑖(𝑥) = 𝑓ε(ε) = 𝑓ε(𝑥𝑖 − 𝑥) =
1

𝜎ε√2𝜋
exp [−

1

2
(
𝑥𝑖 − 𝑥

𝜎ε
)
2

] (6.7) 

The error term 𝜎ε for each measurement can be taken equal to 𝜎ε = 0.05, after Appendix G. 

This error is assumed to cover the uncertainties mentioned in Section 6.2.2.2. 

6.2.3.3 Posterior distribution 

The posterior distribution of the uncertain parameter 𝑋𝑟 is evaluated using Eq. (6.6). An 

analytical solution to the present problem is available since the prior and the likelihood follow 

the normal distribution (conjugate priors). Following Section 5.7.1, the posterior PDF has the 

normal distribution with parameters:  

𝜇𝑋
′′ =

𝜇𝑋
′

𝜎𝑋
′2 +

𝑚�̅�
𝜎ε
2

1
𝜎𝑋
′2 +

𝑚
𝜎ε2

 (6.8) 

𝜎𝑋
′′ = [

1

𝜎𝑋
′2 +

𝑚

𝜎ε2
]

−1 2⁄

 (6.9) 

where, 𝑚 = 1 for a single observation and �̅� is the average (actual) value of the unique 

observation. 

6.2.4 Determination of model uncertainty factor for oil tankers and container ships 

The methodology developed in Section 6.2.2 is used as a basis to determine reasonably an 

appropriate model uncertainty factor 𝑋𝑟 for the fleet of oil tankers (see Section 6.2.4.1) and 

container ships (see Section 6.2.4.2).  
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6.2.4.1 Numerical application on oil tankers 

Failure in sagging is identified as the most critical failure mode for double hull tankers due to 

the way loads acting on the hull and due to the structural arrangement of these types of 

vessels, see e.g., Hørte et al. (2007). In sagging condition, the buckling of deck stiffened panels 

generally dominates the overall hull girder collapse for these types of ships. Since buckling 

phenomenon is highly affected by initial geometric imperfections, the proper consideration of 

the latter is a crucial parameter for the hull girder ultimate strength assessment. In contrast 

with the IACS CSR Smith’s method, the FE model can explicitly accommodate the imperfect 

geometry of the hull structure and assess its impact on hull structure collapse. This information 

is exploited here through the inclusion of selected NLFEA which are used to calibrate the 

Smith’s model prediction.  

Prior belief on mean uncertain parameter 𝜇𝑋 

For oil tankers, our prior belief on mean uncertain parameter 𝜇𝑋 comes from literature sources, 

mainly as the result of experts’ judgment. The most widely adopted values for mean value for 

the justification of 𝑋𝑟 are 𝜇𝑋 = 1.00 and 𝜇𝑋 = 1.05 (see also Table 2.1). However, as the value 

of 𝜇𝑋 = 1.05 – firstly introduced by Hørte et al. (2007) – was originally selected with some bias 

on a series of NLFEA results carried out by DNV (2004), we are going to omit its consideration 

from the prior and include it only in the formulation of the likelihood. Parunov et al. (2007) 

carried out parametric studies on the statistical parameters of 𝑋𝑟. They varied the values of 𝜇𝑋 

in the range of 0.95 to 1.05. Here, we associate these values to the 15% and 85% quantiles, 

respectively, and we fit a normal distribution. The resulted prior PDF 𝑓𝜇𝑋
′  has a mean value 𝜇0 =

1.00 and standard deviation 𝜎0 = 0.05. 

Likelihood 

Information acquired from NLFEA results is used to formulate the likelihood function. The 

dataset has been selected taking into consideration:  

1. Different imperfection models to describe the imperfect geometry of deck panels  

2. Various types of ships  

In summary, the dataset used to formulate the likelihood function given in Eq. (6.3) is 

presented in Table 6.1. The ship types that are examined are one VLCC, two Suezmax and one 

Product/Chemical tanker. The initial imperfect geometry for all case studies25 consists of a 

linear superposition of: (i) a column-type global half-wave mode, (ii) a local half-wave stiffener 

 

25 An exception to this is the result of the Product/Chemical tanker whose imperfection model is not known. 



6. Hull girder ultimate strength assessment: Uncertainty reduction methods 113 

 

sideways deflection, and (iii) a local plate deflection shape (see also Section 2.4.4). Both 

“theoretical” and “realistic” imperfection models have been adopted in the data set. For 

theoretical models, local plate’s initial geometry is in symphony with the critical buckling mode 

shape (BM), whereas for the realistic models, the conventional hungry-horse (HH) model has 

been used. In addition, a single representative (average) result from the newly proposed 

stochastic HH model has been added in the dataset (see Section 4.2.4). 

DNV (2004) conducted a series of NLFEA using different scantlings and imperfection models. 

From this series, Hørte et al. (2007) adopted a single NLFEA outcome, 𝑥𝑖 = 1.05, corresponding 

to the net-50 scantling approach and the HH imperfection model. This value has been 

considered in the data set of the present study (see Table 6.1). However, we have additionally 

considered the result obtained from the theoretical imperfection model, 𝑥𝑖 = 1.01, because as 

shown from the results of Section 4.2.4.4, the conventional HH model may overestimate the 

true strength. This the reason why more theoretical models have been considered in the 

dataset too.  

Table 6.1. Hull girder ultimate strength results as a ratio of NLFEA result to IACS CSR Smith’s model 
prediction. 

Ship type Imperfection model Ratio 𝑥𝑖 Reference 

Suezmax #1 
Buckling-mode (BM) 1.01 

DNV (2004) 
Hungry-horse (HH) 1.05 

Suezmax #2 Buckling-mode (BM) 1.08 Xu et al. (2017) 

VLCC 

Buckling-mode (BM) 0.99 

From Table 4.7 Hungry-horse (HH) 1.03 

Stochastic HH (SHH) 0.99 

Product/Chemical Buckling-mode (BM) 0.98 Andric et al. (2014) 

Posterior distribution of mean value 𝜇𝑋 and predictive distribution of model error 𝑋𝑟  

The results of the updating process are presented in Figure 6.3. As shown from Figure 6.3a, the 

likelihood (data) distribution has approximately equal effect with the prior on the resulted 

posterior distribution. This is due to the relative strong prior belief for the problem at hand and 

the considerable degree of uncertainty associated with observations. As a result, the inclusion 

of added information does not alter significantly our prior belief on the mean uncertain 

parameter 𝜇𝑋. In turn, as shown from  Figure 6.3b, the effect on the predictive posterior 

distribution 𝑓𝑋 is almost negligible. 

Note that the predictive distribution 𝑓𝑋 depicted in Figure 6.3b includes the statistical 

uncertainty on the mean value. This is the reason why 𝑓𝑋 is wider, i.e., it has a larger standard 
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deviation, than the “true” distribution 𝑓𝑋.  Standard practices upon the quantification of 𝑋𝑟 do 

not take into account the uncertainty on the statistical parameters. Consequently, the following 

distribution model is recommended: 

𝑋𝑟~𝑁(𝜇𝑋 = 1.01, 𝜎𝑋 = 0.10) (6.10) 

Overall, Figure 6.6a summarizes the common literature approaches for the quantification of 𝑋𝑟 

in the context of reliability analysis of oil tankers and the proposed 𝑋𝑟. 

 

  

(a) (b) 

Figure 6.3. Determination of strength model uncertainty factor 𝑋𝑟 for oil tankers. (a) Bayesian updating 
of the mean value 𝜇𝑋, and (b) prior and posterior predictive distributions of 𝑋𝑟. Note that predictive 

distributions include the statistical uncertainty of its mean value. 

6.2.4.2 Numerical application on container ships 

In contrast with tankers, the most unfavorable condition for container ships is the hogging. 

Hogging is also the most commonly experienced condition for these types of ships because of 

the result of the two following load effects: (i) buoyancy forces acting on the midship part are 

larger than those acting on the fore and aft parts, and (ii) cargo distribution is extended over 

the full length of the vessel. Recent studies have revealed the fact that lateral loads acting on 

the double bottom structure of container ships have a negative impact on the overall ultimate 

strength assessment when the ship is in hogging condition. This phenomenon is referred as the 

double bottom effect (see Appendix F for a detailed description). The consideration of the 

double bottom effect can be adequately captured through high-fidelity NLFEA. On the contrary, 

the conventional IACS CSR Smith’s method cannot account for it. 
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Prior belief on mean uncertain parameter 𝜇𝑋 

In the case of container ships, prior belief on 𝜇𝑋 is based on two different sources of available 

information: (i) literature sources, and (ii) past NLFEA results conducted on a wide range of ship 

sizes. For the first source, structural reliability studies conducted on container ships show that 

the most commonly used value for 𝜇𝑋 is 1.00, see e.g. Parunov et al. (2014), Corak and Soares 

(2018) and Shi and Gao (2021). However, sufficient evidence for this selection is missing. For 

the second source of information, the results of NLFEA presented by Matsumoto et al. (2016) 

are used. In their analysis, the ratio between hull girder ultimate strength calculation using 

NLFEA to the conventional IACS CSR Smith’s method prediction was extracted for 18 container 

ships of various sizes (4,000 – 10,000 TEU). The effect of double bottom has been explicitly 

considered by the authors in NLFEA while no initial imperfections were used. The results 

indicated a reduction of hull girder ultimate capacity because of the double bottom effect. 

Particularly, it was found that the mean value of the ratio 𝑋𝑟 was equal to 0.86, whereas lower 

and upper bounds varied approximately from 0.7 to 1.0.  

In the present analysis, we assume that 0.86 corresponds to the most probable value before 

observing any new data and that the value of 1.00 observed in literature - which also coincides 

with the maximum value obtained from Matsumoto et al. (2016) - corresponds to about 5% 

probability of exceedance. Then, we fit a normal distribution. The resulted prior PDF 𝑓𝜇𝑋
′  has a 

mean value 𝜇0 = 0.86 and standard deviation 𝜎0 = 0.09.  

Likelihood 

A series of NLFEA results performed on 6 post-Panamax vessels aims to increase our initial 

knowledge on the mean uncertain parameter 𝜇𝑋 and consequently, on the resulted model 

error 𝑋𝑟. The data used to formulate the likelihood have been retrieved by ClassNK (2014). In 

the investigation report, the ratio 𝑥𝑟 of the ultimate strength calculated by 3-hold model elasto-

plastic analysis to the ultimate strength calculated by IACS CSR Smith’s method has been 

presented for the 6 vessels. The results are reproduced in Figure 6.4. The FE simulations 

accounted for the double bottom effect, while no initial imperfections were considered in the 

FE modelling in order to examine the impact of double bottom effect on the resulted strength.  

Posterior distribution of mean value 𝜇𝑋  and predictive distribution of 𝑋𝑟  

The results from the updating process of 𝜇𝑋 along with the posterior predictive distribution of 

𝑋𝑟 are illustrated in Figure 6.5. The error postulated in NLFEA results leads to a quite large 

variation of the likelihood function, similar to the previous case study for tankers. However, in 

contrast with tankers, the prior belief here is less informative. It turns out that the posterior 

distribution 𝑓𝜇𝑋
′′  is mainly affected from the likelihood. After removing the statistical uncertainty 

from the posterior predictive distribution, we come up with the recommended distribution 

model for model uncertainty factor 𝑋𝑟: 
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𝑋𝑟~𝑁(𝜇𝑋 = 0.83, 𝜎𝑋 = 0.10) (6.11) 

Figure 6.6b illustrates the proposed model uncertainty factor 𝑋𝑟 along with the one commonly 

adopted for reliability assessment of container vessels in literature. It is noticed that this result 

is considerable different with the one adopted in previous research studies. This is because, in 

the past studies, the quantification of model uncertainty factor 𝑋𝑟 exclusively relied on Smith’s 

– most probable value – prediction. However, this is misleading since the conventional IACS CSR 

Smith’s method does not take into account the double bottom effect. In the contrary, NLFEA 

take into account this effect. Double bottom effect is a phenomenon which is actually related to 

a reduction of the ultimate strength, and it can lead to serious damages or even ship losses, see 

ClassNK (2014). For this reason, it is beneficial to use the suggested distribution model when 

performing a reliability analysis on container ships at the design phase. Alternatively, intrusive 

methods should be used to appropriately modify the Smith’s method in order to consider the 

effect. A recent study published by Tatsumi et al. (2020) accounted exactly for this fact. 

 

 

Figure 6.4. Ratio 𝑥𝑟 of hull girder ultimate strength calculated by 3-hold model elasto-plastic analysis 
and IACS CSR Smith’s model prediction, after ClassNK (2014). 
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(a) (b) 

Figure 6.5. Determination of strength model uncertainty factor 𝑋𝑟 for container ships. (a) Bayesian 
updating of the mean value 𝜇𝑋, and (b) prior and posterior predictive distributions of 𝑋𝑟. Note that 

predictive distributions include the statistical uncertainty of its mean value. 

  

(a) (b) 

Figure 6.6. Recommended distribution model for the quantification of strength model uncertainty factor 
𝑋𝑟 for (a) oil tankers and (b) container ships, along with existing practices from literature. Note that the 

statistical variability associated with the mean value 𝜇𝑋 has been substituted by its mean estimate. 
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6.2.4.3 Vessel-specific case study: Determination of model uncertainty factor for “MOL 

Comfort”  

We now examine how the model uncertainty factor 𝑋𝑟 can be further refined when available 

information from a target vessel becomes available (see Section 6.2.3). Bayesian updating is 

performed to evaluate the model error 𝑋𝑟 for the case of “MOL Comfort” at the time of its 

accident. Particularly, the formulation of the prior distribution model 𝑓𝑋
′ coincides with the 

recommended global-based 𝑋𝑟 for container ships (see Section 6.2.4.2). A single observation is 

used to formulate the likelihood. This value corresponds to the ratio26 𝑥𝑖 = 0.72, see ClassNK 

(2014). An additive error is associated with this value – due to the difference of NLFEA 

prediction and real-life result – equal to 𝜎ε = 0.05 (as computed in Appendix G). The results of 

the Bayesian updating process are shown in Figure 6.7. 

It is found that the updated PDF is very close to the likelihood since the variability of the 

likelihood is significantly lower than that of prior. Prior here becomes weakly informative. The 

posterior PDF 𝑋𝑟~𝑁(𝜇𝑋 = 0.74, 𝜎𝑋 = 0.04) can be used in the formulation of limit state 

function (LSF) when assessing the reliability of “MOL Comfort” at the time of accident.  

It should be noted here that the reliability of the “MOL Comfort” before its construction would 

be evaluated using the derived model uncertainty factor 𝑋𝑟 of the previous section. However, 

after the construction, the actual characteristics of the ship at the time of accident have been 

here considered. For example, deformations of bottom plates on sister ships were measured 

and used to simulate the true imperfect geometry. Information on the sea state condition 

prevailing at the time of accident has been also exploited to apply the actual loads acting at the 

structure. Such types of data have been embodied in a high-fidelity FE model which was then 

used to predict the ultimate hull girder strength. The results revealed a significant reduction on 

the model uncertainty factor.  

 

Figure 6.7. Updating the model uncertainty factor 𝑋𝑟 for the case of “MOL Comfort” accident. 

 

26 This value has been derived applying the nominal yield strength values both on NLFEA and Smith’s method. 
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6.2.5 Concluding remarks 

A robust methodology for the probabilistic modelling of the strength model uncertainty factor 

in ultimate strength assessment has been presented in this section. The mathematical 

framework of Bayesian analysis is proved to be a powerful tool for that purpose, able to provide 

a formal way of dealing with small amount of available data while combining efficiently 

different sources of information.  

The recommended Bayesian updating scheme can be performed dually; firstly, combining 

available information from different sources, such as, literature, experts’ accumulated 

knowledge and past NLFEA studies, to learn the “population” statistics and build a general-

purpose model, and secondly, using information of the particular characteristics of hull 

structure of a target - or sister ships - to adjust the model uncertainty factor explicitly. 

Undoubtfully, the best practice would be to consider both of the updating approaches in a 

sequential manner, that is, to use the results from the population learning as the prior 

information and then perform the direct updating of the model error parameter 𝑋𝑟 (see Section 

6.2.4.3). 

A summary of the information and the results obtained after the implementation of Bayesian 

updating for model uncertainty factor 𝑋𝑟 is illustrated in Figure 6.8. Two types of ships were 

analyzed throughout this section, i.e., container ships and tankers. In each case, the updating 

was performed by appropriately quantifying the available sources of information. For oil 

tankers, the results showed that the probabilistic modelling of capacity can be entirely rely on 

the IACS CSR Smith’ model prediction. In contrast, for container ships, Smith’s method must be 

corrected by NLFEA in order to consider the double bottom effect in extreme hogging 

conditions. The exclusion of this phenomenon can severly overestimate the true strength. The 

correction of Smith’s method is reflected on the proposed model uncertainty factor 𝑋𝑟. 

Alternatively, a correction in the method of Smith itself can be implemented intrusively, see 

Tatsumi et al. (2020). 

During the construction of a specific vessel, information from the hull structure condition can 

be acquired and used to update a “digital twin” of the vessel, that is, a purpose-built FE model. 

Of course, this information can be also added during operation or inspection surveys. It is 

possible then to explicitly update the model uncertain parameter 𝑋𝑟. A demonstration of this 

methodology has been analytically presented in Section 6.2.4.3 for the case of “MOL Comfort” 

at the time of accident. The results showed that a considerable decrease on the uncertainty of 

model error can be achieved in this way. This, in turn, would determine a more reliable safety 

index for the specific vessel. 

Overall, a well-documented and robust methodology has been presented in Section 6.2 for a 

rational determination of model uncertainty factor. Subjective and objective types of 

information have been effectively addressed through the framework of Bayesian analysis. The 

proposed methodology allows for the explicit quantification of NLFEA uncertainty and has the 

capability of incorporating new data with a systematic approach. 
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Figure 6.8. Summary of information and results obtained by implementing the Bayesian updating 
scheme for container ships and oil tankers. The recommended predictive posterior of model uncertainty 

factor 𝑋𝑟 shall be used for application in reliability assessment. 

6.3 A Bayesian approach for learning and updating the corrosion model 

parameters 

6.3.1 Background 

Several probabilistic corrosion models have been established so far, aiming at quantifying the 

thickness loss due to uniform/general corrosion. Most of the models have been developed 

empirically based on thickness measurements collected over a wide range of ships of similar 

type. Although these models provide a relatively good approximation of thickness prediction 

over time and a useful guide for design purposes, they are prone to a large degree of 

uncertainty (see Section 2.4.5). 

Marching into the digital-twin era, condition assessment of structures tends to be more unique. 

In this direction, information related to the hull structure condition that may come into light at 

the construction stage and/or during operation become more and more relevant. Often, 

thickness measurement reports acquired from inspections surveys remain unexploited. The 

inclusion of such information into existing generic (global-based) empirical corrosion models 

 
Tankers Container ships 
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Sources: 

1) Literature 
2) Experts’ accumulated knowledge 
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Data (NLFEA) → Seven (7) measurements: 
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could mitigate the uncertainties of model parameters and provide improved corrosion 

predictions for the remaining life of the target vessel. 

Methods for updating corrosion predictions of steel plates conditional on inspection data have 

been recently developed in the field of ship structures. Lampe and Hamann (2018) presented 

an updating scheme for predicting general corrosion on structural elements of an ageing ship 

by considering inspection data. In particular, it was shown how the parameter values of the 

employed corrosion model can be adjusted based on available inspection measurements and 

improve the accuracy of the corrosion model. Mohammadrahimi and Sayebani (2019) used a 

Bayesian approach to model the time-dependent corrosion wastage for the deck panel of bulk 

carriers. A set of about 4,000 measurements were used for the updating. Kim and Straub 

(2017) investigated the effect of spatial variability of corrosion on the reliability of ships 

considering hypothetical measurements from inspections. A hierarchical spatial model was 

adopted to represent the spatial variability of corrosion. A Bayesian updating scheme was 

developed to investigate the effect of different spatial corrosion models and the number of 

inspected elements on the resulting reliability. 

The main objective of the present study is to develop a practical and useful methodology able 

to predict thickness diminution of steel plates due to general/uniform corrosion. To this end, 

we employ a Bayesian approach to incorporate new data acquired on field into a global-based 

time-dependent corrosion model, and provide updated predictions for vessel-specific purposes. 

As Bayesian techniques are particularly useful in cases where a limited number of 

measurements is available, we attempt to offer reliable results using only a small portion of the 

available data. Such a solution could be beneficial for reducing the inspection effort and 

mitigating the associated costs. In addition, decisions associated with lifetime extension and 

maintenance policy can be arranged with that way. In addition, the effect of the updating 

process on the reliability of the target ship is investigated later in Chapter 7. The present study 

differs from the existing ones presented in the literature so far as it combines the following: 

• A different procedure for implementing the Bayesian updating scheme in ship structures 

is proposed. 

• Sequential Bayesian updating using a minimum amount of data from each inspection is 

performed. 

• The updating is performed on the entire set of structural elements of midship section 

and thus, it provides a holistic view of its structural resistance. 

• A validation of the method based on observations from the last inspection is obtained 

for all elements. 

The present study is an extension of the work published by Georgiadis and Samuelides (2019). 
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6.3.2 Methodology 

An outline of the methodology followed for the derivation of updated thickness predictions is 

illustrated in Figure 6.9. Broadly speaking, the whole procedure can be classified into three 

main steps: (i) data processing, (ii) Bayesian updating of corrosion model parameters, and (iii) 

validation and interpretation of the results. 

In the first stage, the various environmental classes that characterize the corrosion growth for 

different groups of elements are identified. UT measurement reports carried out at the 15th, 

18th and 20th year of the service life of target vessel are processed (see Section 6.3.3). Readings 

are then classified into 22 groups (or classes) based on the environmental conditions that 

prevail on each area and their impact on the time-dependent corrosion progress, see Paik et al. 

(2003)a.  

In the second stage, the Bayesian updating of corrosion model parameters takes place. The 

mathematical formulation of the problem is thoroughly presented in Section 6.3.4. Bayesian 

updating is implemented using data (i) from the first inspection and (ii) the first and second 

inspection. A limited number of data is used for the updating process for the reasons explained 

in Section 6.3.1.  

In the third step, the updated model predictions for all elements are presented and validated 

against the actual measurements from the last inspection. Mean predictions and associated 

credible intervals of the parameter of interest, i.e., corrosion wastage, are depicted as a 

function of time. A close investigation on the deck plates of the vessel is analyzed in Section 

6.3.5. 

 

 

Figure 6.9. Overview of the proposed methodology. 

 
I. Data processing (Section 6.3.3): 

1. Identify the corrosion environmental classes for the target ship 
2. List the readings for each inspection 𝜏𝑗  for 𝑗 = 1,2,3 and each classified group 𝑖 with 𝑖 = 1 − 22 

3. Estimate statistical measures for each classified group 

II. Bayesian updating scheme (Section 6.3.4): 

1. Establish the prior joint PDF of input uncertain parameters 𝑿 and hyperparameters 𝜽 
2. Formulate the likelihood function based on the observed set of thickness measurements 
3. Solve for the posterior joint PDF by employing the adaptive BUS-SuS algorithm 

III. Numerical implementation (Section 6.3.5): 

1. Analyze the results of the Bayesian updating scheme for the deck plates of the target ship 
2. Determine the validity of the updated model for all elements by comparing model predictions 

against the actual data from the final inspection  
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6.3.3 Data processing 

6.3.3.1 Corrosion environmental classes 

Different corrosion environmental classes have been identified based on the recommendation 

of Paik et al. (2003)a. Application on the examined VLCC results in a total of 21 environmental 

classes (or groups) as shown in Figure 6.10. The characteristics of the target vessel have been 

presented in Section 4.2.4.1.  

Each class is characterized by a time-invariant and uncertain annual corrosion rate that follows 

the Weibull distribution with scale parameter 𝜆 and shape parameter 𝑘 (see Table 6.2). The 

corresponding mean values and CoVs have been computed for each group by assuming a linear 

corrosion propagation law and that corrosion initiates after 7.5 years of service (see Section 

2.4.5.1). These assumptions arise additional uncertainties27 on the values listed in Table 6.2. 

This fact will be explicitly considered in the framework of Bayesian analysis as will be shown 

later in Section 6.3.4.1.  

 

 

Figure 6.10. Classified corrosion environmental groups for the target VLCC according to Paik et al. 
(2003)a. 

 

27 It is reminded here that primary sources of uncertainties related to model parameters arise due to the fact that 
measurements have been collected from the global fleet of oil tankers covering a wide range of operational 
profiles, maintenance policies, etc. (see also the discussion in Section 2.4.5). 
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Table 6.2. Mean value and CoV with associated Weibull distribution parameters 𝜆 (scale parameter), 𝑘 
(shape parameter) for the annualized corrosion rate 𝐶1 of each group, after Paik et al. (2003)a. 

ID Group Mean (mm/year) CoV 
Scale parameter 

𝜆 
Shape parameter 

𝑘 

1 A/O-H 0.0581 0.8262 0.0620 1.2163 

2 A/B-H 0.1084 0.8183 0.1159 1.2286 

3 A/B-V 0.0661 1.1341 0.0622 0.8839 

4 B/S-V 0.0622 1.0030 0.0621 0.9970 

5 BLGB 0.0619 0.8821 0.0648 1.1361 

6 B/S-H 0.0597 0.9901 0.0599 1.0100 

7 B/B-H 0.1408 0.2704 0.1550 4.1661 

8 O/B-V 0.1012 0.7994 0.1088 1.2592 

9 O/O-V 0.0577 0.8162 0.0617 1.2319 

10 DLC (W) 0.0716 0.8902 0.0747 1.1254 

11 DLC (F) 0.0588 1.0032 0.0587 0.9968 

12 DLB (W) 0.2403 0.9165 0.2485 1.0923 

13 DLB (F) 0.2403 0.9165 0.2485 1.0923 

14 SSLB (W) 0.1413 1.0097 0.1407 0.9904 

15 SSLB (F) 0.0882 0.8966 0.0919 1.1172 

16 BSLB (W) 0.1367 0.7802 0.1478 1.2921 

17 BSLB (F) 0.1127 1.0121 0.1121 0.9881 

18 LBLB (W) 0.1960 0.9993 0.1961 1.0007 

19 LBLB (F) 0.1782 0.9941 0.1786 1.0059 

20 LBLC (W) 0.0550 0.8129 0.0589 1.2372 

21 LBLC (F) 0.0508 1.0012 0.0508 0.9988 
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6.3.3.2 Thickness measurements data 

The UT measurement report of the examined ship is available for the first, second and third 

inspection survey. Since we are interested in estimating the corrosion wastage at midship 

section area, recordings corresponding to cargo tank no. 3 are of relevance here. Outliers have 

not been removed from the data set on the basis that all measurements collected from the 

inspector are considered trustworthy. Therefore, large deviations on corrosion wastage 

observed within an environmental class may attributed to non-uniformity of corrosion and the 

fact of measuring different locations on each inspection. 

The sample statistics of corrosion wastage for each group are summarized in Table 6.3. Inner 

bottom plates and side longitudinal bulkhead plates have been divided into two separate 

groups because it was noticed that the degree of corrosion penetration has a substantial 

difference among them. The higher level of corrosion growth is present at the deck plates and 

longitudinal stiffeners of cargo tanks, as well, at the inner bottom plates. In general, the area 

inside oil tanks is more corrosive than the area inside ballast tanks. For the majority of groups, 

the thickness diminution is relatively small (less than 1 mm on average). Moreover, it is seen 

that corrosion does not grow linearly with time, but rather stabilizes between second and third 

inspection. 
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Table 6.3. Sample statistics of corrosion wastage for all plates and stiffeners located at the midship 
section region of the examined VLCC. Thickness measurements are grouped in 22 environmental classes. 

Group 

 Inspection 1  Inspection 2  Inspection 3 

 Samples 
Mean 

(mm) 

St. dev. 

(mm) 
 Samples 

Mean 

(mm) 

St. dev. 

(mm) 
 Samples 

Mean 

(mm) 

St. dev. 

(mm) 

A/O-H  183 1.50 0.52  167 1.55 0.46  168 1.66 0.51 

A/B-H  56 0.14 0.06  54 0.59 0.41  54 0.47 0.26 

A/B-V  40 0.17 0.11  42 0.27 0.08  40 0.28 0.07 

B/S-V  82 0.15 0.09  134 0.26 0.09  122 0.27 0.07 

BLGB  40 0.16 0.10  30 0.20 0.11  30 0.23 0.10 

B/S-H  214 0.18 0.09  216 0.19 0.11  216 0.21 0.10 

B/B-H  164 0.14 0.06  118 0.16 0.07  100 0.17 0.06 

O/B-V (1)  190 0.96 0.22  188 1.88 0.80  196 1.25 0.72 

O/B-V (2)  178 0.28 0.10  200 0.27 0.12  260 0.39 0.14 

O/O-V  178 0.28 0.12  208 0.29 0.14  208 0.33 0.31 

DLC (W)  156 0.49 0.17  360 1.18 0.43  208 1.49 0.31 

DLC (F)  156 0.49 0.21  360 0.84 0.47  208 0.83 0.10 

DLB (W)  40 0.28 0.13  72 0.21 0.08  54 0.25 0.08 

DLB (F)  40 0.27 0.14  72 0.26 0.13  54 0.26 0.08 

SSLB (W)  210 0.21 0.09  210 0.22 0.11  208 0.19 0.08 

SSLB (F)  210 0.19 0.07  210 0.26 0.14  208 0.23 0.09 

BSLB (W)  312 0.19 0.09  378 0.19 0.07  380 0.24 0.07 

BSLB (F)  312 0.20 0.09  378 0.24 0.08  380 0.27 0.07 

LBLB (W)  560 0.21 0.09  526 0.25 0.10  526 0.33 0.09 

LBLB (F)  560 0.20 0.08  526 0.27 0.10  526 0.31 0.09 

LBLC (W)  178 0.41 0.21  300 0.30 0.10  300 0.40 0.15 

LBLC (F)  178 0.34 0.17  300 0.33 0.13  300 0.38 0.17 

Notes: 

(1) Inner bottom plates. 

(2) Side longitudinal bulkhead plates. 

 

 

 



6. Hull girder ultimate strength assessment: Uncertainty reduction methods 127 

 

6.3.4 Bayesian Updating scheme 

6.3.4.1 Problem description 

Let us consider the model ℳ of Eq. (2.12) which predicts the corrosion diminution of a steel 

plate in mm as a function of time 𝜏 and the input random vector 𝑿 = [𝑋1, 𝑋2, 𝑋3]
𝑇: 

ℳ(𝑿; 𝜏) = {
𝑋1(𝜏 − 𝑋2)

𝑋3 , 𝜏 ≥ 𝑋2
0, 𝜏 < 𝑋2

 (6.12) 

This model assumes uniform/general thickness reduction of steel, and thus, it does not consider 

the actual spatial variability - non-uniformity - of corrosion within the plate’s surface. The 

consideration of spatial variability would require the explicit modelling of thickness using 

random fields. However, the random field approach has not been adopted in the present thesis 

for the following reasons. First, the computational cost and modelling effort for performing the 

updating for the entire hull girder and for different time instances would be enormous. Second, 

information on the exact measurements’ location is not available for the problem at hand. 

Third, results from this study are used later for implementing IACS CSR Smith’s algorithm. 

Nevertheless, Smith’s model requires the assignment of a single value of thickness, namely, a 

uniform thickness diminution is considered for a given structural member.  

In the present study, we keep the analysis simple, and without loss of generality, we model the 

spatial variability of corrosion through a random variable (RV) approach. This random variable 

represents the inherent variability of thickness within an area of interest. Therefore, its 

distribution model cannot be learned explicitly, since this type of variability can be diminished 

only up to a certain level with an increasing number of measurements. However, the statistical 

parameters of the distribution model can be learned (this is the case discussed in Section 5.6.3). 

For the problem at hand, a prior joint distribution 𝑓𝜣(𝜽) is established on the hyperparameters 

𝜽 of the basic random variables 𝑿. Measurements 𝒅 corresponding to the model outcome 

ℳ(𝒙) are then used to reduce the uncertainties considered in the model through updating 

𝑓𝜣(𝜽) by means of a Bayesian inverse analysis. A schematic description of the learning process 

is illustrated in Figure 6.11.  

The formulation of the Bayesian updating problem takes the following functional form: 

𝑓𝜣|𝑫(𝜽|𝒅) ∝ 𝑓𝑫|𝜣(𝒅|𝜽)𝑓𝜣(𝜽) (6.13) 

where the proportionality constant is equal to: 
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𝑐𝐸 = [∫𝑓𝑫|𝜣(𝒅|𝜽)𝑓𝜣(𝜽)𝑑𝜽
 

𝜽

]

−1

 (6.14) 

Briefly, the solution of the updating problem requires:  

1. The description of a joint PDF 𝑓𝑿|𝜣(𝒙|𝜽) for 𝑿 parameters conditional on the 

uncertain hyperparameters 𝜽 

2. The establishment of a prior joint PDF 𝑓𝜣(𝜽)  

3. The formulation of the likelihood function 𝑓𝑫|𝜣(𝒅|𝜽) as a function of 𝜽 given an 

observation set 𝒅 

4. The calculation of the posterior joint PDF 𝑓𝜣|𝑫(𝜽|𝒅) for 𝜽 conditional on the 

observation set 𝒅 

5. The final evaluation of the unconditional posterior predictive distributions 𝑓𝑿(𝒙) 

The above steps are thoroughly described in the remaining section.  

 

 

Figure 6.11. Learning the hyperparameters 𝜽 of model parameters 𝑿 through indirect measurements 𝒅 
that correspond to the model outcome ℳ(𝒙). 

Probabilistic modelling of input parameters 𝑿 and prior hyperparameters 𝜽 

Model input parameters 𝑿 are expressed by their joint PDF. To make the dependence of the 

model parameters to their corresponding parameters explicit, we express 𝑿 conditional on 𝜽, 

i.e., 𝑓𝑿|𝜣(𝒙|𝜽). The uncertainty associated with the hyperparameters 𝜽 is represented by their 

joint PDF 𝑓𝜣(𝜽). In the following, we establish the individual PDF of each variable 𝑋𝑖 separately, 

after assuming independence among them. In addition, the distribution models for the 

hyperparameters 𝜽 are defined. 
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The annual corrosion rate parameter 𝑋1 follows a Weibull distribution model with uncertain 

shape parameter 𝜆𝑋1 and scale parameter 𝑘𝑋1  (see Section 2.4.5.1). Since both parameters are 

positive definite a bivariate lognormal distribution is a rational selection for their joint 

representation. The prior correlation coefficient 𝜌 between the two random variables 𝜆𝑋1 and 

𝑘𝑋1  is calculated for each environmental class28. The values listed in Table 6.1 are set as their 

expected values. Following the short discussion in Section 6.3.3.1, a high degree of variability is 

assumed for both parameters to reflect their high statistical uncertainty. Their coefficient of 

variation CoV is thus set equal to 30%. 

The coating life (or corrosion initiation) parameter 𝑋2 is represented by a lognormal distribution 

with parameters 휂𝑋2  and 휁𝑋2. These parameters express the mean and standard deviation of 

the underlying normal distribution of ln 𝑋2, and can be related to the mean 𝜇𝑋2 and coefficient 

of variation CoV𝑋2  of 𝑋2 using the relationships of Eq. (C.7) and (C.8).  

Coating life is expected to vary in the range of 5 to a maximum of 15 years (see Section 

2.4.5.1). Assigning a 10% probability of non-exceeding the value of 5 years, the resulted 

coefficient of variation of the parameter is equal to CoV𝑋2 = 0.30. This value is assumed known 

and is modelled as a fixed quantity. We use inspections data to learn the mean value 𝜇𝑋2 of 

coating life parameter which is assumed unknown. Mean value typically ranges between 5 to 

10 years. Typically, a mean value equal to 7.5 years is considered in literature (see Section 

2.4.5.1). From this information, we set the mean equal to 7.5 and the coefficient of variation 

equal to 10%. We then fit a lognormal distribution to represent the variability on 𝜇𝑋2.  

The corrosion progress (trend) parameter 𝑋3 is assumed to follow a Beta distribution with 

lower limit a𝑋3 and upper limit b𝑋3, and shape parameters α𝑋3 , β𝑋3 > 0. We will here 

parametrize the Beta distribution with the mean value of parameter 𝜇𝑋3 and its standard 

deviation 𝜎𝑋3, so that 𝑋3~𝐵𝑒𝑡𝑎(𝜇𝑋3 , 𝜎𝑋3 , [a𝑋3 , b𝑋3]). This selection is made because the first 

and second order statistics are more intuitive than the shape parameters. The relations that 

link the parameters of Beta distribution with its mean and standard deviation are given in Eq. 

(C.15) and (C.16).  

 

28 An estimate of the prior correlation coefficient 𝜌 between the two uncertain parameters 𝜆 and 𝑘 can be 
obtained by implementing the following procedure: 

1. Create a 𝐾 × 𝐾 (with 𝐾~105) matrix of random numbers from the original Weibull distribution with fixed 
shape 𝑘 and scale parameters 𝜆. The random numbers of each array 1 × 𝐾 follow the prescribed Weibull 
distribution. 

2. For the 𝑖-th array (𝑖 = 1,2, … ,𝐾), the associated parameters 𝜆(𝑖) and 𝑘(𝑖) can be found after computing 
the mean value and standard deviation of the 𝑖-th array. 

3. The correlation coefficient 𝜌0 between the parameters 𝜆 and 𝑘 is calculated for the obtained 𝝀 and 𝒌 
vectors with corresponding size 𝐾 × 1. Finally, the correlation coefficient 𝜌 between log(𝑘) and log(𝜆) is 
then estimated from the log(𝒌) and log(𝝀) vectors. 
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Corrosion progress is generally assumed to vary in the range 0.30 (lower bound) and 1.50 

(upper bound). However, the majority of the scientific body advices that values of corrosion 

trend mostly lie between 0.30 (optimistically) to 1.00 (pessimistically) (see Section 2.4.5). Here, 

we set 1.00 as the 95% quantile of the Beta distribution with lower and upper bounds 0.30 and 

1.50. The resulted mean value and coefficient of variation are equal to 𝜇𝑋3 = 0.75 and CoV𝑋3 =

0.20. We assume that the variability of the parameter 𝑋3 is known and we model the mean 

value 𝜇𝑋3 as a random variable. Based on literature sources, the mean value 𝜇𝑋3typically lies 

between 0.50 and 1.00, see e.g., Melchers (1999)b. Setting its mean equal to 0.75 and 

assuming that 0.50 and 1.00 correspond to the bounds of plausible values, we fit a lognormal 

distribution to represent the variability in 𝜇𝑋3. The resulting coefficient of variation is equal to 

0.15.  

Overall, the vector of hyperparameters 𝜽 consists of the following four uncertain parameters 

𝜽 = [𝜆𝑋1 , 𝑘𝑋1 , 𝜇𝑋2 , 𝜇𝑋3]
𝑇

 whose prior distribution models are listed in Table 6.5. It is assumed 

that 𝜇𝑋2 and 𝜇𝑋3 act independently among each other and among the other two 

hyperparameters. The probabilistic description of 𝑿 vector is summarized in Table 6.4. 

Table 6.4. Distribution models of corrosion model parameters 𝜲. 

Parameter Symbol Distribution Mean value CoV 

Annual corrosion 
rate [mm/year] 

𝐶1 ≡ 𝑋1 Weibull uncertain uncertain 

Coating life [years] 𝜏𝑐 ≡ 𝑋2 Lognormal uncertain 0.30 (fixed) 

Corrosion progress 𝐶2 ≡ 𝑋3 Beta uncertain 0.20 (fixed) 

 

Table 6.5. Prior distribution models of hyperparameters 𝜽. 

Hyperparameter Symbol Distribution Mean value CoV 

Scale parameter  𝜆𝑋1 ≡ 휃1 
Bivariate 

lognormal 

As in Table 6.2 0.30 

Shape parameter  𝑘𝑋1 ≡ 휃2 As in Table 6.2 0.30 

Mean value  𝜇𝑋2 ≡ 휃3 Lognormal 7.50 0.10 

Mean value  𝜇𝑋3 ≡ 휃4 Lognormal 0.75 0.15 
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Likelihood formulation 

Measurements are mathematically represented by the likelihood function. Let us consider that 

a single measurement 𝑑𝑖 is recorded at a given time instance 𝜏. This measurement corresponds 

to a given model outcome ℳ(𝒙) and is prone to an error due to measurement and model 

uncertainties29. Assuming an additive error term ε, this single measurement can be written as 

follows: 

𝑑𝑖 =ℳ(𝒙; 𝜏) + ε (6.15) 

We further postulate a zero-mean normal distribution model with standard deviation 𝜎𝜀  to 

describe this error, that is, ε~𝑁(0, 𝜎ε). The analytical form of the marginalized likelihood 

function for a single measurement reads (see Eq. (5.20)): 

𝐿𝑖(𝜽; 𝜏) = ∫ …
∞

−∞

∫ 𝑓(𝑑𝑖|𝒙)𝑓(𝒙|𝜽)𝑑𝑥1…𝑑𝑥𝑛

∞

−∞

 (6.16) 

It is stressed that the integration is performed with respect to 𝒙 vector and thus, likelihood is 

expressed as a function of 𝜽. For the problem at hand, the precise expression of the likelihood 

function becomes: 

𝐿𝑖(𝜽; 𝜏) = ∫ ∫ ∫ 𝑓ε(𝑑𝑖 − 𝑥1(𝜏 − 𝑥2)
𝑥3)𝑓𝑋1(𝑥1|휃1, 휃2)𝑓𝑋2(𝑥2|휃3)𝑓𝑋3(𝑥3|휃4)𝑑𝑥1𝑑𝑥2𝑑𝑥3

∞

0

𝜏

0

1

0.3

 (6.17) 

For a set of multiple measurements 𝑚 independent on each other, obtained at a given time 

instance 𝜏, the likelihood is evaluated as the product of individual marginalized likelihoods: 

𝐿(𝜽; 𝜏) =∏𝐿𝑖(𝜽; 𝜏)

𝑚

𝑖=1

 (6.18) 

If we further assume independence of measurements between different time instances 

{𝜏1, … , 𝜏𝑚𝜏
}, we can express the likelihood function as (see Eq. (5.11)): 

 

29 Measurement error may be attributed to inaccuracy of measurement tool and location error. Location error may 

become significant if the corrosion of plates is not entirely uniform (as in practice) and the precise location of 

readings at different time instances is uncertain. On the other hand, model error involves the assumption of an 

“ideal” uniform thickness diminution within an area. Although this may be accepted for practical use, it does not 

represent real life. It can be said that location error is included in model error component.  
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𝐿(𝜽; 𝜏1, … , 𝜏𝑚𝜏
) =∏∏𝐿𝑖(𝜽; 𝜏𝑗)

𝑚

𝑖=1

𝑚𝜏

𝑗=1

 (6.19) 

Posterior distribution of 𝜽 and predictive distribution of basic random variables 𝑿 

The solution of Eq. (6.13) is implemented using the adaptive version of BUS-SuS approach 

presented in Section 0. Samples of the posterior PDFs of 𝜽 are thus generated. The posterior 

predictive distribution 𝑓𝑋 for each 𝑋𝑖 is thus evaluated by marginalizing out the 

hyperparameters 𝜽 according to the following relations: 

Posterior predictive distribution for 𝑋1: 

𝑓𝑋1(𝑥) = ∫ ∫ 𝑓𝑋1(𝑥|휃1, 휃2)𝑓′′(휃1, 휃2)𝑑휃1𝑑휃2

∞

0

∞

0

 (6.20) 

Posterior predictive distribution for 𝑋2: 

𝑓𝑋2(𝑥) = ∫ 𝑓𝑋2(𝑥|휃3)𝑓′′(휃3)𝑑휃3

∞

0

 (6.21) 

Posterior predictive distribution for 𝑋3: 

𝑓𝑋3(𝑥) = ∫ 𝑓𝑋3(𝑥|휃4)𝑓′′(휃4)𝑑휃4

∞

0

 (6.22) 

In each case, the evaluation of the unconditional distribution of 𝑋𝑖 is implemented employing a 

Monte Carlo simulation where samples from the posterior PDFs 𝑓′′(𝜽) are used. 

6.3.5 Numerical implementation on a VLCC tanker 

The proposed Bayesian updating scheme is used here to demonstrate its benefit on real 

problems. A relatively limited number of measurements from the full set of available readings, 

as displayed in Table 6.3, is randomly selected to update the corrosion wastage prediction for 

each group. Measurements from the last inspection are kept off record and used only for 

validation purposes. A close investigation is implemented here for the deck plates located at 
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the cargo area of the target vessel30. For this group, the impact of different number of 

observations on the updating scheme is examined (see Table 6.6). Then, we generalize our 

results for the remaining 21 groups using a standard number of measurements, i.e., using 10 

measurements from each inspection. The effect of the random selection of 𝑚 measurements is 

discussed in Section 6.3.5.1. 

The error associated with each measurement is assumed equal to 𝜎ε = 0.10 mm. This covers 

the uncertainty which arises from the measurement tool and the effect of location. In the 

former case, error due to inaccuracies in the measuring device may occur. The latter case is 

referred to the fact that if the inspector repeats the survey, observations on different locations 

from the original will be recorded. This, in turn, would possibly result in a somewhat different 

set of measurements. 

The adaptive version of BUS-SuS algorithm that was briefly reviewed in Section 5.7.2 is 

employed here to sample from the posterior distributions of hyperparameters 𝜽. The posterior 

predictive distributions of the basic random variables 𝑿 are then obtained using a Monte Carlo 

simulation and following Eq. (6.20)-(6.22). The number of samples per subset level 𝐷𝑖  has been 

selected equal to 𝐾 = 3000 and the probability of accepted samples for each subset level is set 

equal to 𝑝0 = 0.1. The above selections have been mainly based on the recommendations 

presented by Betz et al. (2018).  

Due to the high computational cost needed for evaluating the logarithm of the joint likelihood 

function (see Eq. (5.12)) for a given set of input parameters 𝜽, neural networks have been 

efficiently trained and used adaptively at each conditional subset to accelerate the aBUS-SuS 

algorithm. This concept has been originally presented by Giovanis et al. (2017). An outline of 

the procedure is presented below.  

Table 6.6. Number of measurements considered for each specified scenario for the implementation of 
Bayesian updating scheme. Application on A/O-H group. 

Scenario 
Data 

Inspection 1 Inspection 2 

1 5 - 

2 10 - 

3 20 - 

4 5 5 

5 10 10 

6 20 20 

 

30 Deck plates have been selected because they display the highest level of corrosion diminution among all groups 
and deviate the most from prior model prediction. In other words, the “worst-case” scenario is examined here. 
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At each subset level we construct a NN surrogate of the logarithm of the likelihood function 

ln 𝐿(𝜽|𝒅). This surrogate will be used to accelerate the generation of 𝑖 = 1,2, … , 𝐾 samples 

conditional on the intermediate domain 𝐷𝑖  required to proceed to the next level of SuS. The NN 

is trained with a limited number of training samples. A training point is defined as a duad 

{𝜽(𝑖), 𝑦(𝑖)}, where 𝑦(𝑖) = ln 𝐿(𝜽(𝑖)|𝒅). The input vector 𝜽 consists of 5 parameters and the 

output  𝑦 is a scalar parameter.  

In the present study, a feed-forward back propagation network with one hidden layer and 5 

neurons in that layer has been selected. The NN has been trained with 100 training points, 

which have been considered sufficient for most of the cases. For increasing dimensionality of 

the problem, i.e., for measurements equal to and above 20, the number of training points has 

been set equal to 200. The error of NN is controlled applying the criteria presented in Giovanis 

et al. (2017). In general, a reduction on the computational cost more than 80-90% has been 

achieved as compared with the standard aBUS-SuS algorithm, while maintaining the accuracy of 

the standard algorithm. 

6.3.5.1 Results 

The results from the updating process are presented in this section for all classified groups. A 

deeper insight is provided for the deck plates of cargo tanks (A/O-H group). The results from 

the sensitivity study regarding the random selection of 𝑚 measurements are also presented in 

the end of this section. 

Deck plates of cargo area (A/O-H group) 

The results from the single and the sequential updating process are given in Table 6.8 - Table 

6.16 for the deck plates exposed to the cargo tanks. The quantitative description of various 

quantities of interest, including the hyperparameters 𝜽, the basic random variables 𝑿 and the 

model prediction ℳ(𝒙), is depicted before and after observing the measurements.  

The model predictions of thickness loss are presented in Table 6.12. In general, it is observed 

that with increasing number of observations, the updated model prediction approaches the 

actual values. Although the initial model prediction underestimates the true data, a small 

number of observed samples (only 5 measurements) is sufficient to approximate the actual 

dataset corresponding to the 20th year of service. Already after 10 measurements, the expected 

model prediction is very close to the mean value of the observed set, while the validation set of 

measurements is enveloped within the 95% credible interval of model prediction. Moreover, it 

is observed that the inherent variability of predicted thickness loss reduces (with a decreasing 

rate) as the number of measurements increases. This substantiates the fact that the dispersion 

of the parameter cannot be reduced beyond a certain level which depends on its inherent 

variability.  
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The following insights are drawn regarding the input uncertain parameters 𝜽 and 𝑿 after the 

implementation of the updating scheme: 

• The posterior PDFs of the scale parameter 𝜆𝑋1 and shape parameter 𝑘𝑋1 of the 

prescribed Weibull distribution clearly deviate from our initial belief. The density 

function of the posterior shape parameter deviates the most. Particularly, the expected 

value of both hyperparameters’ PDF has been increased, while their variability (CoV) has 

been decreased. As a result, the expected value of annual corrosion rate 𝑋1 has been 

considerably increased, whereas its inherent variability has been decreased by more 

than 50%, in the cases where more than 20 measurements have been considered. 

• The mean value of corrosion initiation 𝜇𝑋2 shifts to lower values. This indicates that the 

corrosion starts earlier than expected. The statistical uncertainty of 𝜇𝑋2 has been slightly 

diminished after seeing the data. As a result, the corrosion initiation 𝑋2 has been shifted 

to lower values, but its inherent variability is constant since it has been assumed known. 

• The expected value of the corrosion trend 𝜇𝑋3 is more or less the same with our initial 

belief (𝜇𝑋3 ≈ 0.75). However, the variability of the parameter has been significantly 

decreased with measurements. The result out of this process is that the posterior 

distribution of the corrosion progress 𝑋3 is more or less the same as the initial 

consideration. As in the previous case of coating life parameter, the inherent variability 

of 𝑋3 remains the same because it has been assumed known from the beginning. 

All groups 

The results for all group members are summarized in Table 6.17 and Table 6.18. A priori, we 

assume the same PDF for coating life 𝑋2 and corrosion trend 𝑋3. However, after the updating, 

we may result in different PDF for each classified area. The results from this table are used to 

assess the hull girder ultimate strength of the ship and its subsequent reliability later in Chapter 

7. In Table 6.17, the inherent variability of the basic random variables 𝑿 has been only 

considered. To this end, the statistical uncertainty of the associated hyperparameters 𝜽 has 

been described by the mean posterior point estimate, following Eq. (5.7). A schematic 

representation of the prior and posterior model predictions along with the 95% credible 

interval is depicted for each group in Appendix H. The following conclusions are drawn from 

these results.  

Posterior model predictions show a very good agreement with actual inspection data almost in 

all cases. In particular, the posterior means are very close to the corresponding mean observed 

values while, in majority, the 95% credible interval envelops the true data. With the increase of 

measurements, the credible intervals are becoming narrower. This fact indicates a reduction in 

the uncertainty associated with our predictions. In some cases, however, credible intervals are 
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seen to be broader than the initial prediction (e.g., A/O-H, O/B-V1, DLC (W)). This is due to the 

high degree of inherent variability of thickness loss (high scatter of measurements) associated 

with these groups (see Table 6.3). It is also observed that for two groups, i.e., O/O-V, DLC (W), 

posterior predictions are not as close to the true values. This seems rational since the 

observations for the specific groups show anomalies and inconsistencies between consecutive 

inspections (see Table 6.3). 

At this point, it should be emphasized that the integration of data does not necessarily reduce 

the variability of a parameter. In fact, if the initial prediction is associated with a low level of 

variability regarding this parameter, while true dispersion is large, then the inherent 

uncertainty of the parameter will increase after updating since the incorporation of data would 

lead the prediction closer to its true value. However, the uncertainty related to our imprecise 

state of knowledge will reduce because our knowledge about the hyperparameters of the 

parameters after seeing the data will improve. 

Sensitivity study 

A sensitivity study was carried out to examine the effect of randomly selecting 𝑚 

measurements. The study was conducted for the deck plates of cargo area (A/O-H) since the 

measurements of this group present one of the highest degrees of scatter and deviation from 

the original corrosion model prediction. Two cases have been considered, i.e., 𝑚 = 10 and 𝑚 =

20. The algorithm runs 10 times using randomly selected measurements each time. The results 

are presented in Table 6.7 in terms of mean thickness loss prediction 𝑡�̅� and coefficient of 

variation of thickness loss prediction CoV𝑡𝑐 at the 20th year of service life. It was found that for 

all runs and measurements cases, the 95% credible interval of updated model prediction 

enclose the true values. Already after 10 measurements reliable results can be obtained, 

whereas very accurate predictions and an increase level of confidence is acquired for 20 

measurements.  

Table 6.7. Sensitivity study for randomly selecting 𝑚 measurements in terms of mean value and CoV of 
thickness loss 𝑡𝑐 at the validation year. The statistics for the two parameters are presented after running 
the algorithm 10 times. 

Statistics 

descriptors 

𝑚 = 10  𝑚 = 20 

𝑡�̅� CoV𝑡𝑐  𝑡�̅� CoV𝑡𝑐 

𝜇 1.23 1.04  1.69 0.71 

CoV 13% 13%  5% 1% 

Min 0.94 0.87  1.62 0.70 

Max 1.47 1.24  1.90 0.73 
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Table 6.8. Histograms of hyperparameters 𝜽 before and after the observations. Single updating. Deck plates (A/O-H group). 

Data 
Weibull scale parameter 

𝜆𝑋1  

Weibull shape parameter 

𝑘𝑋1  

Lognormal mean parameter 
𝜇𝑋2  

Beta mean parameter 

𝜇𝑋3  

5 

    

10 

    

20 

    

 

 



138                                                                                               6. Hull girder ultimate strength assessment: Uncertainty reduction methods 

 

Table 6.9. Histograms of hyperparameters 𝜽 before and after the observations. Sequential updating. Deck plates (A/O-H group). 

Data 
Weibull scale parameter 

𝜆𝑋1  

Weibull shape parameter 

𝑘𝑋1  

Lognormal mean parameter 
𝜇𝑋2  

Beta mean parameter 

𝜇𝑋3  

[5,5] 

    

[10,10] 

    

[20,20] 
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Table 6.10. PDFs for basic random variables 𝑿 before and after the observations. Single updating. Deck plates (A/O-H group). 

Data 
Annual corrosion rate 

𝑋1 ≡ 𝐶1 

Corrosion time initiation 

𝑋2 ≡ 𝜏𝑐 

Corrosion trend 

𝑋3 ≡ 𝐶2 

5 

   

10 

   

20 
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Table 6.11. PDFs for basic random variables 𝑿 before and after the observations. Sequential updating. Deck plates (A/O-H group). 

Data 
Annual corrosion rate 

𝑋1 ≡ 𝐶1 

Corrosion time initiation 

𝑋2 ≡ 𝜏𝑐 

Corrosion trend 

𝑋3 ≡ 𝐶2 

[5,5] 

   

[10,10] 

   

[20,20] 
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Table 6.12. Prior and posterior time-varying model predictions of corrosion wastage for the deck plates of cargo tanks (A/O-H). Results are 
tested against actual data from the last inspection (the 2.5% and 97.5% quantiles of the data are depicted with red color). 
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Table 6.13. Prior and posterior of the mean and CoV of the corrosion model hyperparameters 𝜽. Single updating. Application on deck plates of 
cargo tank. 

Hyperparameter 
Prior  

Posterior 

𝑚 = 5 
 

Posterior 

𝑚 = 10 
 

Posterior 

𝑚 = 20 

Mean CoV  Mean CoV  Mean CoV  Mean CoV 

Scale parameter 𝑎𝑋1  0.062 0.30  0.114 0.33  0.205 0.23  0.296 0.14 

Shape parameter 𝑘𝑋1  1.216 0.30  1.039 0.30  1.932 0.33  2.885 0.25 

Mean coating life 𝜇𝑋2  7.50 0.10  7.10 0.09  7.00 0.09  6.70 0.08 

Mean corrosion progress 𝜇𝑋3  0.75 0.15  0.80 0.10  0.78 0.08  0.76 0.07 

 

 

Table 6.14. Prior and posterior of the mean and CoV of the corrosion model hyperparameters 𝜽. Sequential updating. Application on deck plates 
of cargo tank. 

Hyperparameter 
Prior  

Posterior 

𝑚 = [5, 5] 
 

Posterior 

𝑚 = [10, 10] 
 

Posterior 

𝑚 = [20, 20] 

Mean CoV  Mean CoV  Mean CoV  Mean CoV 

Scale parameter 𝑎𝑋1  0.062 0.30  0.202 0.22  0.261 0.14  0.304 0.13 

Shape parameter 𝑘𝑋1  1.216 0.30  2.030 0.30  2.679 0.23  3.438 0.20 

Mean coating life 𝜇𝑋2  7.50 0.10  7.00 0.09  6.80 0.09  6.60 0.09 

Mean corrosion progress 𝜇𝑋3  0.75 0.15  0.79 0.08  0.76 0.07  0.72 0.08 
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Table 6.15. Prior and posterior of the mean and CoV of the thickness model parameters 𝑿. Single updating. Application on deck plates of cargo 
tank. Inherent variability of the parameters is depicted only, without considering for statistical uncertainty of hyperparameters. 

Parameter 
Prior  

Posterior 

𝑚 = 5 
 

Posterior 

𝑚 = 10 
 

Posterior 

𝑚 = 20 

Mean CoV  Mean CoV  Mean CoV  Mean CoV 

Annual corrosion rate 𝑋1 0.058 0.83   0.115 0.95  0.181 0.53  0.258 0.38 

Coating life 𝑋2 7.50 0.30   7.00 0.30  7.00 0.30  6.60 0.30 

Corrosion progress 𝑋3 0.75 0.20   0.79 0.20  0.78 0.20  0.75 0.20 

 

Table 6.16. Prior and posterior of the mean and CoV of the thickness model parameters 𝑿. Sequential updating. Application on deck plates of 
cargo tank. Inherent variability of the parameters is depicted only, without considering for statistical uncertainty of hyperparameters. 

Parameter 
Prior  

Posterior 

𝑚 = [5, 5] 
 

Posterior 

𝑚 = [10, 10] 
 

Posterior 

𝑚 = [20, 20] 

Mean CoV  Mean CoV  Mean CoV  Mean CoV 

Annual corrosion rate 𝑋1 0.058 0.83  0.181 0.51  0.236 0.39  0.274 0.32 

Coating life 𝑋2 7.50 0.30  7.00 0.30  6.90 0.30  6.60 0.30 

Corrosion progress 𝑋3 0.75 0.20  0.79 0.20  0.75 0.20  0.72 0.20 
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Table 6.17. Prior and posterior statistical values for corrosion model parameters for all groups using 𝑚 = 10 from the first inspection. 

Group 

Prior  Posterior 

𝑋1  𝑋2  𝑋3  𝑋1  𝑋2  𝑋3 

Mean CoV  Mean CoV  Mean CoV  Mean CoV  Mean CoV  Mean CoV 

A/O-H 0.058 0.83  7.50 0.30  0.75 0.20  0.181 0.53  7.00 0.30  0.78 0.20 

A/B-H 0.108 0.82  7.50 0.30  0.75 0.20  0.072 0.82  7.70 0.30  0.63 0.20 

A/B-V 0.066 1.13  7.50 0.30  0.75 0.20  0.060 1.00  7.40 0.30  0.67 0.20 

B/S-V 0.062 1.00  7.50 0.30  0.75 0.20  0.051 0.86  7.50 0.30  0.65 0.20 

BLGB 0.061 0.88  7.50 0.30  0.75 0.20  0.052 0.79  7.50 0.30  0.66 0.20 

B/S-H 0.060 0.99  7.50 0.30  0.75 0.20  0.053 0.79  7.50 0.30  0.65 0.20 

B/B-H 0.141 0.27  7.50 0.30  0.75 0.20  0.070 0.33  7.70 0.30  0.60 0.20 

O/B-V1 0.101 0.80  7.50 0.30  0.75 0.20  0.176 0.49  7.10 0.30  0.74 0.20 

O/B-V2 0.101 0.80  7.50 0.30  0.75 0.20  0.087 0.61  7.50 0.30  0.64 0.20 

O/O-V 0.058 0.82  7.50 0.30  0.75 0.20  0.061 0.58  7.40 0.30  0.68 0.20 

DLC (W) 0.072 0.89  7.50 0.30  0.75 0.20  0.098 0.59  7.20 0.30  0.70 0.20 

DLC (F) 0.059 1.00  7.50 0.30  0.75 0.20  0.084 0.64  7.10 0.30  0.72 0.20 

DLB (W) 0.240 0.92  7.50 0.30  0.75 0.20  0.169 0.88  7.60 0.30  0.64 0.20 

DLB (F) 0.240 0.92  7.50 0.30  0.75 0.20  0.168 0.94  7.70 0.30  0.65 0.20 

SSLB (W) 0.141 1.01  7.50 0.30  0.75 0.20  0.098 0.92  7.60 0.30  0.65 0.20 

SSLB (F) 0.088 0.90  7.50 0.30  0.75 0.20  0.068 0.75  7.50 0.30  0.64 0.20 

BSLB (W) 0.137 0.78  7.50 0.30  0.75 0.20  0.094 0.74  7.60 0.30  0.63 0.20 

BSLB (F) 0.113 1.01  7.50 0.30  0.75 0.20  0.088 0.86  7.50 0.30  0.65 0.20 

LBLB (W) 0.196 1.00  7.50 0.30  0.75 0.20  0.142 0.97  7.70 0.30  0.66 0.20 

LBLB (F) 0.178 1.00  7.50 0.30  0.75 0.20  0.126 1.00  7.60 0.30  0.63 0.20 

LBLC (W) 0.056 0.81  7.50 0.30  0.75 0.20  0.077 0.60  7.10 0.30  0.72 0.20 
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(Table continued) 

LBLC (F) 0.051 1.00  7.50 0.30  0.75 0.20  0.063 0.66  7.20 0.30  0.71 0.20 
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Table 6.18. Prior and posterior statistical values for corrosion model parameters for all groups using 𝑚 = [10,10] measurements from each 
inspection. 

Group 

Prior  Posterior 

𝑋1  𝑋2  𝑋3  𝑋1  𝑋2  𝑋3 

Mean CoV  Mean CoV  Mean CoV  Mean CoV  Mean CoV  Mean CoV 

A/O-H 0.058 0.83  7.50 0.30  0.75 0.20  0.236 0.39  6.90 0.30  0.75 0.20 

A/B-H 0.108 0.82  7.50 0.30  0.75 0.20  0.087 0.76  7.50 0.30  0.66 0.20 

A/B-V 0.066 1.13  7.50 0.30  0.75 0.20  0.060 0.73  7.50 0.30  0.65 0.20 

B/S-V 0.062 1.00  7.50 0.30  0.75 0.20  0.051 0.70  7.50 0.30  0.63 0.20 

BLGB 0.061 0.88  7.50 0.30  0.75 0.20  0.050 0.66  7.50 0.30  0.62 0.20 

B/S-H 0.060 0.99  7.50 0.30  0.75 0.20  0.045 0.74  7.50 0.30  0.62 0.20 

B/B-H 0.141 0.27  7.50 0.30  0.75 0.20  0.058 0.31  7.80 0.30  0.54 0.20 

O/B-V1 0.101 0.80  7.50 0.30  0.75 0.20  0.223 0.44  7.10 0.30  0.74 0.20 

O/B-V2 0.101 0.80  7.50 0.30  0.75 0.20  0.078 0.61  7.50 0.30  0.63 0.20 

O/O-V 0.058 0.82  7.50 0.30  0.75 0.20  0.061 0.56  7.30 0.30  0.65 0.20 

DLC (W) 0.072 0.89  7.50 0.30  0.75 0.20  0.142 0.50  7.30 0.30  0.72 0.20 

DLC (F) 0.059 1.00  7.50 0.30  0.75 0.20  0.108 0.60  7.20 0.30  0.72 0.20 

DLB (W) 0.240 0.92  7.50 0.30  0.75 0.20  0.130 0.80  7.60 0.30  0.56 0.20 

DLB (F) 0.240 0.92  7.50 0.30  0.75 0.20  0.126 0.76  7.60 0.30  0.58 0.20 

SSLB (W) 0.141 1.01  7.50 0.30  0.75 0.20  0.087 0.87  7.60 0.30  0.59 0.20 

SSLB (F) 0.088 0.90  7.50 0.30  0.75 0.20  0.065 0.67  7.60 0.30  0.61 0.20 

BSLB (W) 0.137 0.78  7.50 0.30  0.75 0.20  0.083 0.68  7.50 0.30  0.59 0.20 

BSLB (F) 0.113 1.01  7.50 0.30  0.75 0.20  0.078 0.73  7.40 0.30  0.60 0.20 

LBLB (W) 0.196 1.00  7.50 0.30  0.75 0.20  0.103 0.87  7.80 0.30  0.57 0.20 

LBLB (F) 0.178 1.00  7.50 0.30  0.75 0.20  0.101 0.78  7.70 0.30  0.58 0.20 
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(Table continued) 

LBLC (W) 0.056 0.81  7.50 0.30  0.75 0.20  0.071 0.58  7.20 0.30  0.68 0.20 

LBLC (F) 0.051 1.00  7.50 0.30  0.75 0.20  0.067 0.58  7.20 0.30  0.67 0.20 
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6.3.6 Discussion and concluding remarks 

In Section 6.3, we presented a Bayesian approach to update corrosion wastage predictions of 

steel plates for an oil tanker based on UT measurements from inspection surveys. The method 

is capable of incorporating new data sequentially, that is, to combine existing knowledge with 

measurements that become available at different time instances during service life. The spatial 

distribution of corrosion has been implicitly considered using a random variable approach. 

Using a Bayesian inverse analysis, we used measurements that correspond to the model 

outcome in order to learn the statistics of the basic random variables of the employed time-

dependent corrosion model. In summary, the following insights are gained: 

• The updated model is able to give accurate predictions of future corrosion trends using a 

limited number of observed samples. Particularly, a set of 10 measurements collected from 

the first and the second inspection provide a very good agreement with the validation set 

for all groups. The method is capable of giving reliable predictions even if the initial model 

predictions deviate by far from the true values, as this demonstrated for the case of deck 

plates. 

• The high level of uncertainty and scatter of data related to annual corrosion rate remains a 

matter of conflict and skepticism in scientific body. This uncertainty is the result of 

developing empirical corrosion models that have been based on data from vessels with 

various operational profiles and maintenance strategies. In this study, the high statistical 

uncertainty associated, mainly, with the annual corrosion rate parameter is significantly 

reduced with the inclusion of only a small set of measurements. A reduction of the 

associated statistical variability by more than 50% can be achieved in some cases. 

• The more measurements are considered, the higher is the reduction of uncertainty. From 

the results of the sensitivity study, it was found that 10 measurements are considered 

sufficient to have a reliable estimate in terms of 95% credible interval, while 20 

measurements are adequate to obtain confident predictions on the mean value too. 

It is also noted that in real cases, added knowledge on the corrosion initiation may become 

available. This information can be explicitly considered in the model. For example, if we know 

that corrosion initiated between the 8th and 10th year of service, we can quantify this 

information by selecting a lognormal probabilistic model with reduced variability or a Beta 

distribution model with lower and upper bounds the 8 and 10 years, respectively. 

Overall, the developed methodology can considerably reduce the uncertainties related to 

corrosion model parameters and its associated prediction. The high degree of uncertainty 

related to the conventional empirical corrosion models motivates the need for the 

establishment of vessel-specific corrosion models. In particular, the updating procedure 

proposed in this section can be implemented in a more refined scale by establishing a corrosion 

degradation model for each plate of a ship.
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7 Reliability Analysis 

7.1 Introduction 

The main objective of this chapter is to examine the effect of the proposed strength model 

uncertainty factor (see Section 6.2) and the updated corrosion model predictions (see Section 

6.3) on the performance of ship structures in ultimate limit state. After introducing the general 

reliability problem in Section 7.2, the framework of time-dependent reliability of deteriorating 

ship structures is addressed in Section 7.3. Then, two numerical applications are analyzed in 

Section 7.5. In the first one, the updating of time-dependent reliability of a VLCC tanker 

conditional on thickness measurements acquired from subsequent inspections is performed. In 

the second application, the safety level of two container ships at a given time instance is 

computed using the existing and the recommended approach for the quantification of strength 

model uncertainty factor 𝑋𝑟 (see Section 6.2). The differences on the failure probabilities using 

the two approaches are compared and discussed for each case. 

Note that it is possible to directly update the reliability without the need to first update the 

model parameters 𝑿, see e.g., Straub (2011). However, such an approach has not been 

implemented in the present thesis as the interest lies mainly on the updating of model 

parameters. 

7.2 The general reliability problem 

In reliability analysis, the interest is on the evaluation of the failure probability of a system. 

Consider a vector 𝑿 = [𝑋1, … , 𝑋𝑛]
𝑇 consisting of a set of basic random variables that 

characterize a system. In general, the vector 𝑿 describes uncertainties regarding material 

properties, geometric characteristics, loads (or load effects) and calculation models. A failure 

domain Ωℱ can be defined as the collection of the outcomes of 𝑿 for which the so-called limit 

state function (LSF) or performance function 𝑔(𝒙) takes non-positive values, that is, Ωℱ =

{𝑔(𝒙) ≤ 0}. The probability of failure of the system can be evaluated as: 

𝑃𝑓 = Pr[ℱ] = Pr[𝑔(𝒙) ≤ 0] = ∫ 𝑓𝑿(𝒙)𝑑𝒙
 

Ωℱ

 (7.1) 

where, 𝑓𝑿(𝒙) denotes the joint PDF of 𝑿 vector. The computation of Eq. (7.1) is the solution of 

the reliability problem.  
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For the elementary case where a resistance term 𝑅 and a load term 𝑆 define the problem, i.e., 

𝑿 = [𝑅, 𝑆]𝑇 , the LSF becomes 𝑔(𝒙) = 𝑟 − 𝑠. Then, the probability of failure can be written as 

follows: 

𝑃𝑓 = Pr[𝑟 − 𝑠 ≤ 0] = Pr[𝑟 ≤ 𝑠] = ∬ 𝑓𝑅𝑆(𝑟, 𝑠)𝑑𝑟𝑑𝑠
 

Ωℱ

 (7.2) 

In case where 𝑅, 𝑆 are independent, it holds that 𝑓𝑅𝑆(𝑟, 𝑠) = 𝑓𝑅(𝑟)𝑓𝑆(𝑠). Eq. (7.2) can be 

written then in a single integral form known as the convolution integral: 

𝑃𝑓 = Pr[𝑟 − 𝑠 ≤ 0] = ∫𝐹𝑅(𝑠)𝑓𝑆(𝑠)𝑑𝑠
 

𝑆

 (7.3) 

where the integration takes place over the 𝑆 domain (typically from 0 to ∞). A schematic 

description of the elementary reliability problem is illustrated in Figure 7.1. Note that the 

probability of failure corresponds to the volume of joint density function 𝑓𝑅𝑆(𝑟, 𝑠) that lies 

within the failure domain {𝑔(𝒙) ≤ 0}.  

Often, a more convenient way to describe the reliability of a structural system is the reliability 

index. The generalized reliability index 𝛽 is defined as: 

𝛽 = −Φ−1(𝑃𝑓) (7.4) 

where, Φ−1 is the inverse cumulative distribution function (CDF) of the standard Normal 

distribution. A one-to-one mapping exists between the failure probability and the reliability 

index. As shown in Figure 7.2, for increasing values of reliability index, the failure probability of 

a system decreases monotonically. 

 

Figure 7.1. A 3D illustration of the reliability problem for the elementary case of two random variables 
𝑅, 𝑆. 
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Figure 7.2. Relationship between failure probability 𝑃𝑓 and reliability index 𝛽. 

7.3 Time-variant reliability analysis of deteriorating ship structures 

An overview of the basic theory of time-dependent reliability with some focus on deteriorating 

ship structures is presented in this section. For a more detailed analysis, the reader is referred 

to the books of Ditlevsen and Madsen (1996) and Melchers (1999)a. A comprehensive review 

on the subject of time-dependent deterioration of structural systems in general is provided by 

Straub et al. (2020).  

The loads (or load effects) acting on the hull structure of a ship during its lifetime should be 

ideally modelled as stochastic process. Moreover, if deterioration effects (e.g., corrosion, 

fatigue) are considered, the resistance should be also represented by a stochastic process. In 

fact, if no repair and renewal actions are performed, resistance will monotonically decrease 

with time. In the simplest case, where a ship structure is characterized by a time-varying 

resistance term 𝑅(𝜏) and a load (effect) 𝑆(𝜏), the point-in-time or instantaneous failure 

probability can be defined as: 

𝑃𝑓(𝜏) = Pr[𝑔(𝑿, 𝜏) ≤ 0] =Pr[𝑅(𝜏) − 𝑆(𝜏) ≤ 0] = Pr[𝑅(𝜏) ≤ 𝑆(𝜏)] (7.5) 

The difference 𝑄(𝜏) = 𝑅(𝜏) − 𝑆(𝜏) is called the safety margin and is also a stochastic process. 

Note that Eq. (7.5) is an extension of the basic reliability problem of Eq. (7.2) and evaluates the 

failure probability of the ship for an arbitrary time instance over the service life. However, Eq. 

(7.5) has no actual meaning if the structure has already failed in previous years. In practice, one 

should consider the stochastic processes 𝑅(𝜏) and 𝑆(𝜏) for 𝜏 ∈ [0, 𝑇] considering that failure 

may occur at any time up to time 𝑇. The cumulative failure probability 𝑃𝑓,𝑐 that describes this 

event is then defined as: 
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𝑃𝑓,𝑐(𝑇) = Pr {[ min
𝜏∈[0,𝑇]

𝑔(𝑿, 𝜏)] ≤ 0} (7.6) 

The cumulative failure probability that is referred to the entire 25-year design life of ship, is 

called the lifetime failure probability. In the general case, computation of Eq. (7.6) requires the 

solution of a first-passage problem, i.e., the probability that the safety margin 𝑄(𝜏) exceeds a 

threshold level (zero), see Melchers (1999)a. However, difficulties arise on the computation of 

this problem, while the establishment of a stochastic process that defines the load (or load 

effect) for the entire history of a ship structure is practically impossible. To this end, an 

approximation method is usually adopted for the solution of Eq. (7.6) by transforming the time-

variant reliability problem into a series of time-invariant reliability problems with the following 

way. 

Consider that time is discretized into a sequence of intervals 𝑗 = 1,2, … such that the 𝑗-th 

interval corresponds to 𝜏 ∈ (𝜏𝑗−1, 𝜏𝑗]. The interval failure probability 𝑃𝑓
𝑗
 is then defined as the 

event of failure in 𝜏 ∈ (𝜏𝑗−1, 𝜏𝑗]: 

𝑃𝑓
𝑗(𝜏) = Pr {[ min

𝜏∈(𝜏𝑗−1,𝜏𝑗]
𝑔(𝑿, 𝜏)] ≤ 0} ≈ Pr[𝑅(𝜏𝑗) ≤ 𝑆max,𝑗  ] (7.7) 

where, 𝑆max,𝑗  = max
𝜏∈(𝜏𝑗−1,𝜏𝑗]

 𝑆(𝜏) is the maximum load for the given reference period (e.g., 

annual). 𝑆max  corresponds to an extreme value distribution and its formulation requires the 

implementation of an extreme value analysis on 𝑆(𝜏). Note that the formulation of Eq. (7.7) is 

in analogy with Eq. (7.5), namely, it neglects the occurrence of previous failure events. The 

Pr[𝑅(𝜏𝑗) ≤ 𝑆max,𝑗  ] can be thus evaluated by a time-invariant reliability analysis. The 

cumulative failure probability up to time 𝑇 is the union of the interval failure probabilities 

leading up to time 𝑇, which corresponds to the solution of a system reliability problem, see 

Straub et al. (2020). A robust and simple approach to compute the system reliability by means 

of Monte Carlo simulation is introduced in the next section (see Eq. (7.12)). 

The formulation of Eq. (7.7) is valid when a single load process is acting on the structure. In 

practice, however, more than one stochastic load effects {𝑆1(𝜏), 𝑆2(𝜏), … } are present. In that 

case, it would be very pessimistic to combine the maximum (extreme values) for all loads. As an 

improvement, load combination techniques should be used to obtain an equivalent extreme 

value distribution of the combined load effect of all random variables.  

In the formulation of hull girder reliability problem, a commonly used method to combine 

effectively multiple loads is given by Turkstra (1970). Turkstra’s rule states that if one of the 

time-varying loads is dominant, the load combination problem can be formulated by applying 

the extreme value distribution on that load and an arbitrary-point-in-time distribution on the 
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other load(s). For instance, if two time-varying load processes act on a structure, the 

distribution of the total load 𝑆𝑡 can be obtained using the following relation: 

𝑆𝑡 = max{(𝑆1 + 𝑆2,𝑒𝑥), (𝑆1,𝑒𝑥 + 𝑆2)} (7.8) 

where, 𝑆1 and 𝑆2 are the arbitrary-point-in-time load distributions and 𝑆1,𝑒𝑥 and 𝑆2,𝑒𝑥 are the 

corresponding extreme value distributions for the given reference period. The difference 

between an arbitrary-point-in-time distribution and an extreme value distribution can be seen 

in Figure 7.3. 

 

 

Figure 7.3. Illustration of a time-varying realization 𝑥(𝜏) of a stochastic process 𝑋(𝜏). The random-point-
in-time distribution and the extreme value distribution of maxima are depicted for 𝑋(𝜏). 

7.4 Common methods for the evaluation of failure probability 

The solution of the general reliability problem of Eq. (7.1) is generally not a trivial task. An 

analytical solution of the problem exists only when the LSF is linear and the random variables 𝑿 

are normally distributed. However, in most practical applications, the LSF is non-linear and the 

random vector 𝑿 consists of one or more non-Gaussian variables. Then, the selection of the 

solution method depends mainly on the order of magnitude of failure probability for the ad-hoc 

problem. For ship structures examined in ULS, this order of magnitude is usually between 10−2 

and 10−5, see e.g., Hørte et al. (2007). For such cases, the First Order Reliability method 

(FORM) and the crude Monte Carlo simulation (MCS) method are particularly efficient. An 

outline of these two methodologies is given below31. 

 

31 It is noted that for smaller probabilities of failure (in the order of 10−6 − 10−8), the above methods become 
insufficient. In that cases, more advanced sampling techniques based on MCMC and BUS methods are needed. 
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7.4.1 Monte Carlo simulation for application to structural reliability analysis 

An outline of the MCS method is given in Appendix C. In terms of reliability, where the interest 

lies on evaluating the probability of a failure event, MCS proceeds by first generating a number 

of samples 𝒙(𝑖), 𝑖 = 1,… , 𝐾 from the input vector 𝑿 and then calculating the failure probability 

by applying the following relation: 

𝑃𝑓 ≈ 𝑝𝑓
𝑀𝐶𝑆 =

1

𝐾
∑Ι[𝑔(𝒙(𝑖)) ≤ 0]

𝐾

𝑖=1

 (7.9) 

where, 𝑝𝑓
𝑀𝐶𝑆 is an unbiased estimator of the true probability of failure 𝑃𝑓 and Ι[∙] is the 

indicator function which takes value one if the argument is true and zero otherwise, that is: 

Ι[𝑔(𝒙(𝑖)) ≤ 0] = {
1, 𝑔(𝒙(𝑖)) ≤ 0

0, otherwise
 (7.10) 

The estimator 𝑝𝑓
𝑀𝐶𝑆 is thus obtained by dividing the number of failures 𝑛𝑓 = ∑ Ι[𝑔(𝒙(𝑖)) ≤𝐾

𝑖=1

0] to the total number of generated samples 𝐾. Using MCS, the computation of (instantaneous) 

failure probability for the 𝑗-th time interval can be obtained as: 

Pr[ℱ(𝜏𝑗)] ≈
1

𝐾
∑Ι[𝑔(𝒙(𝑖), 𝜏𝑗) ≤ 0]

𝐾

𝑖=1

 (7.11) 

Similarly, the calculation of cumulative failure probability up to time 𝜏𝑛 with 𝑛 = 1,2, … can be 

computed as: 

Pr[ℱ(𝜏𝑛)] ≈
1

𝐾
∑Ι {[min

𝑗=1:𝑛
𝑔(𝒙(𝑖), 𝜏𝑗)] ≤ 0}

𝐾

𝑖=1

 (7.12) 

The strong benefit of using MCS is its independence on the LSF formulation and the number of 

random variables of the problem. In addition, MCS provides a set of measure indexes 

(confidence and credible intervals) to assess the uncertainty on the estimated probability of 

failure 𝑝𝑓
𝑀𝐶𝑆. Credible intervals are preferred in this thesis over confidence intervals as they 

provide a more intuitive description of the uncertainty. 
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7.4.1.1 Estimation of confidence intervals for 𝑝𝑓
𝑀𝐶𝑆   

The estimator 𝑝𝑓
𝑀𝐶𝑆 is itself a random variable whose coefficient of variation depends on the 

(unknown) failure probability 𝑃𝑓 and the total number of samples 𝐾. Moreover, Ι[𝑔(𝒙(𝑖))] for 

𝑖 = 1, … , 𝐾 can be considered as a Bernoulli process that has a mean value equal to 𝑃𝑓. 

Consequently, for a certain 𝑃𝑓, the number of failures 𝑛𝑓 in 𝐾 (independent) trials follows a 

binomial distribution. Therefore, the mean value of the estimator 𝑝𝑓
𝑀𝐶𝑆 is: 

E[𝑝𝑓
𝑀𝐶𝑆] =

𝑛𝑓

𝐾
 (7.13) 

The variance of the estimator 𝑝𝑓
𝑀𝐶𝑆 is: 

Var[𝑝𝑓
𝑀𝐶𝑆] =

𝑃𝑓(1 − 𝑃𝑓)

𝐾
 (7.14) 

The coefficient of variation of the estimator 𝑝𝑓
𝑀𝐶𝑆 is: 

CoV[𝑝𝑓
𝑀𝐶𝑆] =

√𝑃𝑓 − 𝑃𝑓
2

𝑃𝑓√𝐾
≈

1

√𝑃𝑓𝐾
 

(7.15) 

The importance of Eq. (7.15) lies on the fact that knowing the order of magnitude of failure 

probability 𝑝𝐹 provides the required number of samples (LSF evaluations) to achieve a desired 

level of CoV. For instance, for a CoV equal to 10%, the required number of samples to achieve a 

failure probability in the order of 10−3 is approximately equal to 𝐾 = 105. It is also shown that 

𝑝𝑓
𝑀𝐶𝑆 converges to the true failure probability 𝑃𝑓 as 𝐾 → ∞. 

7.4.1.2 Estimation of credible intervals for 𝑝𝑓
𝑀𝐶𝑆 

In a Bayesian context, the (posterior) uncertainty about the probability of failure 𝑝𝑓 follows a 

standard Beta distribution with parameters 𝑛𝑓 + 1 and 𝐾 − 𝑛𝑓 + 1, that is, 𝑝𝑓~𝐵𝑒𝑡𝑎(𝑛𝑓 +

1, 𝐾 − 𝑛𝑓 + 1). Its probability distribution function then reads: 

𝑓𝑃𝑓|𝑛𝑓,𝐾(𝑝𝑓) =
𝑝
𝑓

𝑛𝑓(1 − 𝑝𝑓)
𝐾−𝑛𝑓

𝐵(𝑛𝑓 + 1,𝐾 − 𝑛𝑓 + 1)
 (7.16) 

where, B(∙) is the Beta function with arguments 𝑛𝑓 + 1 and 𝐾 − 𝑛𝑓 + 1. 
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The posterior expectation value of 𝑝𝑓 is: 

E(𝑝𝑓|𝑛𝑓 , 𝐾) =
𝑛𝑓 + 1

𝐾 + 2
 (7.17) 

The posterior variance of 𝑝𝑓 is: 

Var(𝑝𝑓|𝑛𝑓 , 𝐾) =
(𝑛𝑓 + 1)(𝐾 − 𝑛𝑓 + 1)

(𝐾 + 2)2(𝐾 + 3)
 (7.18) 

The posterior coefficient of variation of 𝑝𝑓 is: 

CoV(𝑝𝑓|𝑛𝑓 , 𝐾) = √
𝐾 − 𝑛𝑓 + 1

(𝑛𝑓 + 3)(𝑛𝑓 + 1)
 (7.19) 

7.4.2 First Order Reliability Method (FORM) 

FORM was first introduced by Hasofer and Lind (1974) and is still an attractive method for 

computing the probability of failure of a system. Broadly speaking, FORM transforms all random 

variables 𝑿 into an equivalent set of standard normal random variables 𝒁, and then 

approximates the LSF by a linear first-order polynomial function. The basic methodology 

consisting FORM is summarized below. An illustration of the approach is presented in Figure 

7.4. 

The first step of FORM is to transform the LSF 𝑔(𝒙) from the original space into standard 

normal space 𝐺(𝒛) and perform the integration on the standardized domain, namely: 

𝑃𝑓 = ∫ 𝑓𝑿(𝒙)

 

𝑔(𝒙)≤0

𝑑𝒙 = ∫ 𝑓𝒁(𝒛)

 

𝐺(𝒛)≤0

𝑑𝒛 (7.20) 

FORM evaluates the above integral by linearizing the LSF at the so-called design point or most 

probable failure point (MPFP) 𝒛∗. This point is the location on the limit state surface which is 

closest to the origin. The evaluation of the design point 𝒛∗ can be obtained by solving the 

following constrained optimization problem: 

𝒛∗ = argmin‖𝒛‖  subject to the constraint: 𝐺(𝒛) = 0 (7.21) 
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where, ‖𝒛‖ = √𝒛𝑇𝒛 is the norm of the vector 𝒛, which corresponds to the distance of 𝒛 from 

the origin. The problem can be solved with a variety of optimization problems, see e.g., 

Rackwitz and Flessler (1978), and Liu and Der Kiureghian (1991). Assuming that the LSF is 

continuous and differentiable near 𝒛∗, we can approximate 𝐺(𝒛) through its linearization at 𝒛∗, 

that is: 

𝐺(𝒛) ≅ 𝐺′(𝒛) = ∇𝐺(𝒛∗)(𝒛 − 𝒛∗) (7.22) 

where, ∇𝐺(𝒛∗) = [𝜕𝐺 𝜕𝑧1⁄ |𝒛=𝒛∗ , … , 𝜕𝐺 𝜕𝑧𝑛⁄ |𝒛=𝒛∗] is the gradient row vector evaluated at the 

design point in standard normal space. The FORM approximation to the failure probability is 

then:  

𝑃𝑓 ≈ Pr[𝐺′(𝒁) ≤ 0]=Φ[−𝛽FORM] (7.23) 

where, Φ is the CDF of standard normal distribution. The distance between the design point 

and the origin corresponds to the first order reliability index, defined as: 

𝛽FORM = ‖𝒛∗‖ (7.24) 

The main advantage of using FORM is the information that provides regarding the sensitivity of 

basic random variables 𝑿 on the probability of failure through the so-called 𝛼-factors. The 

sensitivity measures are obtained through knowledge of the design point 𝒛∗ as follows: 

𝜶 = −
∇𝐺(𝒛∗)

‖∇𝐺(𝒛∗)‖
 (7.25) 

The relation between the reliability index 𝛽FORM, the design point 𝒛∗ and the 𝑖-component of 𝜶 

row-vector is given by the following relation: 

𝑎𝑖 =
𝑧𝑖
∗

𝛽FORM
  (7.26) 

where, 𝑧𝑖
∗ is the value of the 𝑖-th coordinate at the design point. Basic random variables 𝑋𝑖 

whose absolute value of 𝑎𝑖 is high have a strong impact on the reliability index 𝛽FORM, and vice 

versa. 
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Figure 7.4. Illustration of the FORM approach. 

7.5 Numerical investigations 

7.5.1 Application 1: Reliability updating of a VLCC tanker based on inspections data 

The reliability assessment and updating of a double hull VLCC tanker using inspections results 

from the 15th and 18th year of its service life is presented. In each inspection survey, we 

consider the collection of 10 measurements for each classified group (for the classification of 

groups see Figure 6.10). The updating of reliability takes place by considering the posterior 

corrosion model parameters that have been already presented in Table 6.17 and Table 6.18. For 

comparison, the effect of Paik’s linear corrosion model and IACS CSR net-50 scantling approach 

on the reliability of the vessel is also evaluated. The calculations are performed using the 

recommended and the existing strength model uncertainty factor 𝑋𝑟 as well (see Section 

6.2.4.1). 

7.5.1.1 Limit State Function (LSF) formulation 

Failure in sagging is considered as the most unfavorable scenario for double hull oil tankers. The 

time-dependent LSF of hull girder collapse under extreme sagging conditions can be 

determined using the following relation, see e.g., Hørte et al. (2007), Hussein and Soares 

(2009):  

𝑔(𝑿, 𝜏) = 𝑋𝑟𝑀𝑢(𝜏) − (𝑋𝑠𝑤𝑀𝑠𝑤 + 𝑋𝑠𝑡𝑋𝑛𝑙𝑀𝑤𝑣,𝑒𝑥) (7.27) 
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where, 𝑀𝑠𝑤 and 𝑋𝑠𝑤 denote the uncertainty on still water bending moment load and the 

corresponding model uncertainty factor, 𝑀𝑤𝑣,𝑒𝑥 is the annual extreme wave-induced bending 

moment load subject to two model uncertainty factors; 𝑋𝑠𝑡 and 𝑋𝑛𝑙, corresponding to linear 

and non-linear response calculations, respectively. The ultimate bending moment capacity 𝑀𝑢 

is computed by IACS CSR Smith’s method as a function of time 𝜏 due to corrosion deterioration. 

The term 𝑀𝑢 also includes the randomness of material properties, i.e., yield strength and 

Young’s modulus. 

7.5.1.2 Probabilistic representation of time-variant hull girder ultimate bending 

capacity 

The incremental-iterative IACS CSR Smith’s method is employed to calculate the hull girder 

ultimate bending capacity of the ship under longitudinal bending. It is considered that the hull 

girder ultimate strength decreases over time due to uniform corrosion degradation.  

Two versions of Paik’s corrosion wastage model (see Section 2.4.5.1) are applied to estimate 

the time-varying thickness reduction 𝑡𝑐(𝜏) of steel plates and stiffeners: (i) the linear, and (ii) 

the generalized corrosion model. The linear corrosion model is the one that is commonly 

adopted in literature. It assumes that 𝐶1 parameter follows a Weibull distribution, while 𝐶2 =

1.0 and 𝜏𝐶 = 7.5 years. On the other hand, the generalized version is considered to be more 

representative of real-life as it takes into account the uncertainty on the corrosion time 

initiation and the non-linearity of corrosion progress. This is accomplished here by setting 𝜏𝐶  

and 𝐶2 as random variables. The generalized corrosion model has been adopted in Section 6.3 

for the implementation of the updating scheme. In addition, a partial correlation model is 

applied here to characterize the large-scale spatial dependence of corrosion growth between 

the elements around the midship section (see also Section 2.4.5.2). Finally, we take into 

account that a structural element that reaches its renewal thickness is replaced by its original 

(as-built) thickness32.  

Regarding material properties variation, the recommendations of Section 2.4.3 have been 

followed. In particular, a lognormal distribution has been used to describe the variability on the 

yield strength with mean value equal to 269 MPa (348 MPa) and coefficient of variation 0.08 

(0.06) for mild (high-tensile steel), and a normal distribution to quantify the variability on 

Young’s modulus with mean value equal to 210 GPa and coefficient of variation 10%. 

Temporal and spatial variation of material characteristics around midship section is neglected, 

namely, full correlation is considered both in time and space. It is also assumed that mechanical 

properties do not decay over time, that is, the same PDFs are valid at any point in time. 

 

32 The renewal thickness is specified by IACS (2019) equal to the 100% of net thickness 𝑡𝑛 and depends on the 
location of an element around the midship section. 
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Table 7.1. Summarized random variables introduced for IACS CSR Smith’ model evaluation 𝑀𝑢. 

Parameter Symbol Distribution Mean value CoV Units 

Annual corrosion rate 𝐶1 Weibull (*) (*) mm/year 

Coating life 𝜏𝑐 Lognormal (*) (*) years 

Corrosion progress 𝐶2 Beta (*) (*) - 

Yield stress (**)  𝜎𝑦 Lognormal 269 (348) 0.08 (0.06) MPa 

Young’s modulus 𝐸 Normal 210 0.10 GPa 

Notes: 

(*) For the generalized corrosion model, three sets of mean values and COVs are adopted from Table 
6.17 and Table 6.18, namely: (i) prior, (ii) posterior after 𝑚 = 10 measurements and (iii) posterior 
after 𝑚 = [10,10] measurements.  

For the linear corrosion model, 𝐶1 is assumed to follow the Weibull distribution with associated prior 
values as listed in Table 6.17 and Table 6.18, whereas coating life and corrosion progress are assumed 
fixed with 𝜏𝑐 = 7.5 and 𝐶2 = 1.0. 

(**) Mean values and CoVs are referred to mild steel and high tensile AH32 type steel (mild/AH32). 

7.5.1.3 Combination of loads 

The formulation of Eq. (7.27) needs the combination of still water bending moment 𝑀𝑠𝑤 and 

wave-induced bending moment 𝑀𝑤𝑣. It would be unrealistic and quite unfavorable scenario, 

however, to consider a linear superposition of their extreme values since it is unlikely that 

maximum values act at the same time during the service life of a ship, see also Huang and 

Moan (2008). Therefore, to effectively combine these two loads Turkstra’s rule is applied (see 

Eq. (7.8)).  

Previous applications of the Turkstra’s rule have shown that annual extreme value distribution 

of vertical wave-induced bending moment dominates the ship hull girder annual failure 

probability over still water bending moment, see e.g., Hørte et al. (2007), and Teixeira and 

Guedes Soares (2009). Therefore, the following linear superposition that combines the annual 

extreme wave bending moment 𝑀𝑤𝑣,𝑒𝑥 and the arbitrary point-in-time distribution of still water 

bending moment 𝑀𝑠𝑤 is used for the present study to describe the total load effect: 

𝑀𝑡 = 𝑀𝑤𝑣,𝑒𝑥 +𝑀𝑠𝑤  (7.28) 

The probabilistic formulations of annual random-point-in-time still water bending moment 𝑀𝑠𝑤 

and extreme value distribution of wave bending moment 𝑀𝑤𝑣,𝑒𝑥 are established below.  
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7.5.1.4 Probabilistic representation of still water bending moment (SWBM) 

The uneven longitudinal distribution of loads (weights and buoyancy) acting on the hull 

structure of a ship results in the development of vertical SWBM. In reality, as the cargo load 

varies between different voyages – and between departure and arrival of one voyage as well – 

the SWBM alters too. Traditionally, the annual stochastic representation of SWBM is assumed 

to follow a normal distribution with mean value and standard deviation equal to 0.7𝑀𝑠𝑤
𝑚𝑎𝑥  and 

0.2𝑀𝑠𝑤
𝑚𝑎𝑥, respectively, where 𝑀𝑠𝑤

𝑚𝑎𝑥  denotes to the maximum value of SWBM as reported in 

the loading manual of the vessel. The following two simplifications are usually made for the 

stochastic description of SWBM: (i) the SWBM is considered fixed during one voyage, and (ii) 

the value of SWBM within one year is interpreted as a realization of the random-point-in-time 

(normal) distribution, and (iii) SWBM realizations are assumed independent between 

consecutive years. The above description is shown schematically in Figure 7.5. 

Uncertainties on the prediction of SWBM are taken into account through a relevant model 

uncertainty factor 𝑋𝑠𝑤. This factor reflects the uncertainty between the actual SWBM and the 

corresponding calculated value from the loading manual. 𝑋𝑠𝑤 is assumed to follow a normal 

distribution with mean value and standard deviation equal to 1.00 and 0.10, respectively, see  

e.g., Hørte et al. (2007). 

 

 

Figure 7.5. Distribution for still water bending moment (SWBM). A single realization corresponds to an 
annual random point-in-time value. A one-voyage SWBM value is approximated with an annual value. 

7.5.1.5 Probabilistic representation of annual extreme wave-induced bending moment 

The wave-induced bending moment (WVBM) results from the dynamic response of the hull 

girder due to the excitation of wave loads. The long-term prediction of WVBM 𝑀𝑤𝑣 at any point 

in time is assumed to follow the Weibull distribution with shape parameter 𝑘 and scale 

parameter 𝜆, see e.g., Hughes and Paik (2010). According to Gaspar et al. (2016), a 

representative value for the shape parameter is 𝑘 = 1.0. On the other hand, the scale 
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parameter 𝜆 can be defined under the condition that the specified by the Rules characteristic 

wave-induced bending moment 𝑀𝑤𝑣
𝑐ℎ  will be exceeded at any one of the 𝑁 cycles encountered 

during the design life of vessel with a probability 10−8, i.e., Pr[𝑀𝑤𝑣 > 𝑀𝑤𝑣,𝑑] = 10
−8. This 

leads to the following relationship for the scale parameter 𝜆: 

𝜆 =
𝑀𝑤𝑣
𝑐ℎ

(ln𝑁)
1
𝑘⁄

 (7.29) 

Τhe characteristic value of sagging wave-induced bending moment is defined by IACS (2019) as: 

𝑀𝑤𝑣
𝑐ℎ = 0.110𝐶𝑤𝐿𝐵𝑃

2 B(𝐶𝑏 + 0.7) (7.30) 

where, B equals the breadth of the vessel, 𝐶𝑏 is the block coefficient and 𝐶𝑤 equals to 10.75 for 

300 < 𝐿𝐵𝑃 ≤ 350 m.  

Since the interest here is in the evaluation of the (annual) extreme WVBM 𝑀𝑤𝑣,𝑒𝑥, we require 

the extreme value distribution of long-term WVBM for a given return period over 𝑁 cycles. This 

converges to the Gumbel distribution with CDF: 

𝐹𝑀𝑤𝑣,𝑒𝑥(𝑚𝑤𝑣,𝑒𝑥) = exp [−exp (
𝑚𝑤𝑣,𝑒𝑥 − 𝑏𝑛

𝑎𝑛
)] (7.31) 

The scale parameter 𝑎𝑛 and location parameter 𝑏𝑛 of the Gumbel distribution are related to 

the Weibull parameters of the long-term WVBM, as follows: 

𝑏𝑛 = 𝜆(ln𝑁)
1
𝑘⁄  (7.32) 

𝑎𝑛 =
𝑏𝑛
𝑘ln𝑁

 (7.33) 

The number of wave cycles encountered over the reference period of one year is determined 

based on the North Atlantic wave environment, see e.g., Hørte et al. (2007). The mean 

representative wave period for this environment is about 8.0 sec. Taking into consideration 

that the vessel will travel on the full load departure (sagging) condition and at sea 42.5% 

annually, the annual number of wave cycles 𝑁𝑎 encountered can be estimated. Finally, it is 

assumed that extreme WVBM is independent among different years. 

The uncertainty on the linear response calculations is reflected on 𝑋𝑠𝑡 which is represented by a 

normal random variable whose mean value and standard deviation equals to 1.00 and 0.10, 

respectively. The 𝑋𝑛𝑙 model uncertainty factor, which accounts for uncertainties on non-linear 
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effects, is also modelled with a normal distribution model with the same statistical parameters, 

see e.g., Hørte et al. (2007). 

7.5.1.6 Results 

A summary of the random variables used for the formulation of Eq. (7.27) is listed in Table 7.2. 

The calculation of hull girder ultimate strength 𝑀𝑢 is performed applying MCS in conjunction 

with appropriately trained NNs. The vector of input parameters of the NN includes the Young’s 

modulus 𝐸, the yield strength 𝜎𝑦 (both mild and high-tensile steel grade) and the values of 

thickness wastage 𝑡𝑐 for each classified group (22 groups). In total, 25 parameters are assigned 

in the input vector for each time instance. The output of interest is the ultimate bending 

moment in sagging. However, ultimate strength in hogging was also computed by the employed 

NN. NNs have been trained using a rather limited number of Smith’s model evaluation. In 

particular, 100 training points are sampled from the input parameter space each year using the 

Latin-Hypercube variance reduction technique. Α NN is trained for each annual time interval 

separately. 

Table 7.2. Summary of random variables used for the reliability problem of the VLCC tanker. 

Item Symbol Distribution Mean St. dev. Units 

Ultimate bending capacity (*) 𝑀𝑢 Lognormal 22,611 984 MN × m 

Still water bending moment 𝑀𝑠𝑤 Normal 3,059 874 MN × m 

Extreme wave bending moment 𝑀𝑤𝑣,𝑒𝑥 Gumbel 11,138 1,120 MN × m 

Strength model uncertainty (**) 𝑋𝑟 Normal 1.01 (1.05) 0.10 - 

Still water model uncertainty 𝑋𝑠𝑤 Normal 1.00 0.10 - 

Linear wave model uncertainty 𝑋𝑠𝑡 Normal 1.00 0.10 - 

Non-linear wave model uncertainty 𝑋𝑛𝑙 Normal 1.00 0.10 - 

Notes: 

(*) 𝑀𝑢 calculation here corresponds to 𝑡𝑛−50 scantlings prescribed by IACS (2019). See Table 7.3 for 

time-variant ultimate strength calculation.  

(**) 𝑋𝑟 is adopted equal to the proposed one from Section 6.2 and the one recommended by Hørte et 

al. (2007). 

 

Time-varying Smith’s model evaluation is illustrated in Figure 7.6 when the linear corrosion 

model is adopted. In the same figure, the 90% credible interval is identified to quantify the 

uncertainty bounds of the prediction. The hull girder ultimate strength starts to decay from the 

8th year of service life since coating life duration is equal to 7.5 years for the linear corrosion 
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model. In total, 𝐾 = 5 × 103 × 25(years) = 125 × 103 model evaluations have been 

performed using NN-MCS. The overall reduction of the computational cost that has been 

achieved is more than 90%.  

The sample statistics (mean value and coefficient of variation CoV) for hull girder ultimate 

strength prediction adopting the linear and generalized corrosion model are shown in Table 7.3. 

It has been found that the derived sample of annual sagging bending moment capacity well fits 

the lognormal distribution model. In addition, the following are noticed: 

• The variability for both corrosion models ranges between 4.5% to 5% in all cases. 

• At the design life of vessel, the expected value of hull girder ultimate strength adopting 

the posterior generalized corrosion model (after the incorporation of inspections data) 

is about 2% higher than the value corresponding to the linear corrosion model.  

• With respect to the generalized corrosion model, a reduction of less than 1% is 

observed in the mean ultimate strength after seeing the data at the 15th and 18th year of 

service lifetime. This reduction seems logical since the amount of thickness loss on the 

deck plates – which, as it will be seen later, affects the overall strength in sagging – is 

higher in the posterior model, but not as much high in order to change the expected 

value of ultimate strength significantly. At the same time, the degree of variability 

remains the same after the incorporation of data in both inspections. 

From the above conclusions it seems that the influence of thickness wastage uncertain 

parameters upon the variability of hull girder ultimate strength is minor. This fact motivated the 

author to carry out a sensitivity analysis in order to assess the relative influence of input 

variables on the variance of model output. A global sensitivity analysis was conducted by means 

of (i) depicting the scatterplots between input random variables and model output, and (ii) 

computing the variance-based sensitivity measures. Details are presented in Appendix I.  

The main finding of the sensitivity analysis is that the variability related to material properties – 

and especially yield strength of high-tensile grade – dominate the variance of ultimate bending 

capacity in sagging condition. The contribution of thickness loss in the deck plates of cargo tank 

area seems to have a minor effect to the output variability, whereas the importance of 

thickness wastage uncertainty for all other groups is almost negligible. The above conclusion 

justifies this minor change in the variability of ultimate strength after the incorporation of 

inspections data. 

The time-dependent resistance 𝑅(𝜏) and load 𝑆(𝜏) prediction is shown in Figure 7.7 for the 

case of linear corrosion model. The 90% credible interval is depicted for both cases too. In the 

same figure, a single realization of 𝑅 and 𝑆 is illustrated. For the specified scenario, it is 

observed that an event of failure occurs during the 24th year of service life.  
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Table 7.3. Time-variant hull girder ultimate bending capacity in sagging. 

Service time  

(years) 

Linear corrosion model  (Updated) Generalized corrosion model 

E[𝑀𝑢] CoV[𝑀𝑢]  E[𝑀𝑢] CoV[𝑀𝑢] 

(GN × m) (%)  (GN × m) (%) 

5 26.064 4.4  26.059 4.4 

10 25.647 4.4  25.726 4.4 

15 (1st inspection) 24.880 4.5  25.308 (25.099) 4.5(4.6) 

18 (2nd inspection) 24.508 4.6  24.866 (24.693) 4.7 (4.7) 

20 24.288 4.7  24.575 4.7 

25 23.939 4.8  24.378 4.8 

 

 

Figure 7.6. Time-variant hull girder ultimate strength reduction due to uniform corrosion degradation. 

  

(a) (b) 

Figure 7.7. (a) Time-dependent mean resistance 𝑅(𝜏) and annual extreme load event 𝑆(𝜏) along with 
the 90% credible interval, and (b) a single realization 𝑟(𝜏) of time-dependent resistance and extreme 

annual load 𝑠(𝜏). A failure event is recorded at the 24th year for the specific realization. 
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Τhe calculations for the derivation of failure probability 𝑃𝑓 and associated reliability index 𝛽 are 

shown in Figure 7.8 and Figure 7.9 for the recommended and existing strength model 

uncertainty factor 𝑋𝑟, respectively. The results are presented for: (i) the linear corrosion model, 

(ii) the (updated) generalized corrosion model before and after the collection of data from 

inspections, and (iii) the IACS CSR 𝑡𝑛−50 scantling approach corresponding to the design life of 

vessel. MCS has been used to estimate the instantaneous failure probability in annual time 

intervals 𝑗 = 1,… ,25. The number of LSF evaluations in each year has been set equal to 𝐾 =

107. For this number of samples and a magnitude of failure probability in the order of 10−3 to 

10−2, the error – translated by means of coefficient of variation – produced by MCS prediction 

is about 1%, following Eq. (7.15). The cumulative failure probability up to time 𝜏𝑛 is also 

computed through Eq. (7.12). From the results shown in Figure 7.8 and Figure 7.9, the following 

comments are made: 

• The magnitude of annual failure probability at the design life of the vessel is in the order 

of 10−4 to 10−2 which is in good agreement with IACS CSR recommended values. 

• The impact of the inspections data on the resulted reliability is low. This should come 

with no surprise as the decrease on the mean ultimate strength is small (see also Table 

7.3). However, it should be stressed that this is not a generic conclusion. 

• The linear and the updated generalized corrosion model give comparable results of 

failure probability. Although this finding cannot be generalized, since the outcome 

depends on the structural configuration of the examined ship and the effect of 

measurements as well, it can be noticed that the linear corrosion model provides a 

reasonable conservatism over the generalized, and more representative, corrosion 

model. 

• The (instantaneous) annual failure probability using IACS CSR net-50 scantling approach 

provides a reasonable conservatism. However, in terms of cumulative failure 

probability, IACS CSR is not on the safe side. Particularly, the value of lifetime failure 

probability is approximately equal to 2 × 10−2 which is one order of magnitude smaller 

than the annual failure probability at the 25th year of service life (2 × 10−3 to 4 × 10−3). 

As a final note it is stated that the cumulative failure probability should be generally preferred 

for assessing the performance and the structural safety of a vessel, since it provides 

information from the entire history of ship, accounting for the fact that the ship may already 

have failed previously. In that case, the computation of instantaneous failure probability has no 

actual meaning. 
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(a) (b) 

Figure 7.8. (a) Failure probability and (b) reliability index for linear corrosion model, updated corrosion 
model and net-50 scantling approach. The strength model uncertainty 𝑋𝑟 has been set equal to 

𝑋𝑟~𝑁(𝜇𝑋 = 1.01, 𝜎𝑋 = 0.10) which is the one proposed from Section 6.2.4. 

 

  

(a) (b) 

Figure 7.9. (a) Failure probability and (b) reliability index for linear corrosion model, updated corrosion 
model and net-50 scantling approach. The strength model uncertainty 𝑋𝑟 has been set equal to 

𝑋𝑟~𝑁(𝜇𝑋 = 1.05, 𝜎𝑋 = 0.10) which is the recommended from Hørte et al. (2007). 
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7.5.2 Application 2. Reliability assessment of two container ships 

In this section, the reliability assessment under extreme hogging condition for a 4,400 TEU and 

a 9,400 TEU container ship is investigated. The scope of the present study is to evaluate the 

impact of the proposed model uncertainty factor 𝑋𝑟 of Section 6.2 on the resulted probability 

of failure. For this reason, FORM has been employed to solve the reliability problem and 

identify the level of sensitivity of the basic random variables on the failure probability. The data 

for computing the basic random variables 𝑿 that constitute the LSF for the above ships have 

been directly obtained from the paper of Corak and Soares (2018).  

7.5.2.1 LSF formulation 

The LSF formulation for the performance assessment of container ships in extreme hogging 

conditions reads: 

𝑔(𝑿) = 𝑋𝑟𝑋𝑚𝑀𝑢
𝑐ℎ − [𝑋𝑠𝑤𝑀𝑠𝑤,𝑒𝑥 + 𝑘𝑤(𝑋𝑠𝑡𝑋𝑛𝑙𝑀𝑤𝑣,𝑒𝑥 + 𝑘𝑑𝑋𝑑𝑀𝑑)] (7.34) 

where, 𝑀𝑢
𝑐ℎ is the characteristic ultimate hull girder bending moment predicted by IACS CSR 

Smith method, 𝑀𝑠𝑤 is a random variable representing the annual extreme vertical SWBM, 

𝑀𝑤𝑣,𝑒𝑥 is a random variable expressing the annual extreme WVBM, 𝑀𝑑 is a random variable 

that gives the annual extreme whipping bending moment due to bow flare slamming, 𝑘𝑤 is a 

load combination factor between still water loads and wave-induced loads, 𝑘𝑑 is another load 

combination factor that considers the interaction between wave and whipping bending 

moment. parameter 𝑋𝑑 is also a random variable that denotes the uncertainty on whipping 

load prediction, whereas the random variables 𝑋𝑠𝑤, 𝑋𝑠𝑡, 𝑋𝑛𝑙 have been defined in Eq. (7.27). 

Note that Eq. (2.2) has been used here to express the uncertainty on the computational model 

𝑋𝑟 and material yield strength 𝑋𝑚 of the associated hull girder ultimate strength. The 

The LSF of Eq. (7.34) can be seen as an extension of the LSF for oil tankers that takes into 

account the whipping bending moments. Whipping phenomenon is generally caused by the 

violent impact of wave loads on bow (bow flare slamming). Whipping bending moment is 

associated with high-frequency vibrations – as opposed with low-frequency rigid body vertical 

wave bending moments. Whipping should be taken into account for the ultimate limit state 

check as it can significantly increase the vertical wave bending moment. 

A summary of the basic random variables forming the LSF is listed in Table 7.4. The evaluation 

of the hull girder ultimate capacity has been implemented using the as-built scantlings. 
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Table 7.4. A summary of the basic variables formulating the LSF for the 4,400 TEU and the 9,400 
container ships. 

  4,400 TEU vessel  9,400 TEU vessel 

Variable Distribution Mean CoV  Mean CoV 

𝑀𝑢
𝑐ℎ fixed 9,893 -  20,199 - 

𝑀𝑠𝑤,𝑒𝑥 Gumbel 3,317 0.1112  6,668 0.0396 

𝑀𝑤𝑣,𝑒𝑥 Gumbel 3,846 0.0766  7,232 0.0781 

𝑀𝑑,𝑒𝑥 Gumbel 1,864 0.1470  6,113 0.1516 

𝑋𝑟 Normal 1.00 (0.83) * 0.10  1.00 (0.83) * 0.10 

𝑋𝑚 Lognormal 1.10 0.06  1.10 0.06 

𝑋𝑠𝑤 Normal 1.00 0.05  1.00 0.05 

𝑋𝑠𝑡 Normal 1.00 0.10  1.00 0.10 

𝑋𝑛𝑙 Normal 0.81 0.15  0.87 0.15 

𝑋𝑑 Normal 1.00 0.30  1.00 0.30 

𝑘𝑑 Normal 0.389 0.15  0.544 0.15 

𝑘𝑤 Normal 0.837 0.05  0.899 0.05 

Note: (*) Existing vs. (recommended) approach. 

7.5.2.2 Results  

The results of the reliability analysis are shown in Table 7.5 for the two case studies. Probability 

of failures and associated reliability indexes are presented with respect to the existing and the 

proposed strength model uncertainty factor. Table 7.6 presents the importance of the 

respective random variable on the derived failure probability. An absolute value close to unity 

denotes a high effect whereas a value close to zero expresses a minor effect on the reliability 

problem. 

Regarding the effect of strength model uncertainty factor 𝑋𝑟 on the calculated reliability, the 

following two important insights are drawn from this study: 

• The strength model uncertainty factor is the most influential parameter for the 

determination of safety level for both vessels. 

• A significant reduction of the reliability index is observed using the recommended 𝑋𝑟. 

For the 4,400 TEU ship, the failure probability has increased by a factor of 36, whereas 

for the 9,400 TEU ship, the increase of failure probability is by a factor of 13. 
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The above results signify the importance of a proper quantification of 𝑋𝑟 for the problem of 

reliability. 

Table 7.5. Reliability index 𝛽𝐹𝑂𝑅𝑀 and failure probability 𝑃𝑓 calculated with FORM for the 4,400 TEU and 

9,400 TEU container ships for different strength model uncertainty factor 𝑋𝑟. 

Case study 
𝑋𝑟 

Pr[𝐹] 𝛽𝐹𝑂𝑅𝑀 
𝜇𝑋 𝜎𝑋 

Ship A. 4,400 TEU 1.00 0.10 8.3 × 10−4 3.15 

 0.83 0.10 3.0 × 10−2 1.89 

Ship B. 9,400 TEU 1.00 0.10 1.0 × 10−2 2.32 

 0.83 0.10 1.3 × 10−1 1.11 

 

Table 7.6. Derived sensitivity indexes (𝛼-factors) for the two examined ships. 

Random variables 
Ship A. 4,400 TEU  Ship B. 9,400 TEU 

𝜇𝛸 = 1.00 𝜇𝛸 = 0.83  𝜇𝛸 = 1.00 𝜇𝛸 = 0.83 

𝑀𝑢
𝑐ℎ - -  - - 

𝑀𝑠𝑤,𝑒𝑥 0.359 0.300  0.084 0.083 

𝑀𝑤𝑣,𝑒𝑥 0.197 0.167  0.177 0.154 

𝑀𝑑,𝑒𝑥 0.073 0.068  0.212 0.169 

𝑋𝑟 -0.714 -0.764  -0.687 -0.734 

𝑋𝑚 -0.332 -0.314  -0.346 -0.329 

𝑋𝑠𝑤 0.130 0.126  0.108 0.112 

𝑋𝑠𝑡 0.221 0.211  0.211 0.202 

𝑋𝑛𝑙 0.310 0.303  0.301 0.296 

𝑋𝑑 0.136 0.136  0.333 0.315 

𝑘𝑑 0.074 0.072  0.192 0.169 

𝑘𝑤 0.141 0.133  0.175 0.160 
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8 Conclusions, originality and future directions 

8.1 Conclusions 

The hull girder ultimate strength assessment is one of the most critical measures of safety and a 

fundamental issue for the structural design of commercial vessels. The uncertainties associated 

with hull girder ultimate strength prediction dictate the use of probabilistic methods for its 

quantification. An overview of the uncertainties associated with hull girder ultimate strength 

prediction has been presented in Chapter 2. The main objective of this thesis is the assessment 

of hull girder ultimate strength and the updating of reliability through the management of the 

uncertainties related to geometric aspects (initial imperfections), deterioration processes 

(corrosion) and model aspects. For this reason, two basic mathematical tools have been 

introduced for uncertainty quantification and reduction, i.e., random fields and Bayesian 

analysis. In addition, machine learning techniques (neural networks) have been used when 

needed in conjunction with sampling-based approaches, such as MCS, to replace time-

consuming models and accelerate the propagation of uncertainty through the model. 

Random fields have been used within the framework of stochastic FE method as a tool to 

describe the spatial randomness of initial geometric imperfections and uneven thickness 

distribution on structural elements (see Chapter 4). The impact of stochastic initial 

imperfections on the ultimate strength of steel plates and hull girders has been examined in 

Section 4.2. It has been found that the developed stochastic imperfection model is able to 

accommodate the inherent randomness of initial deflections and predict the true ultimate 

strength of plates with better accuracy than the existing deterministic models (see Figure 4.10). 

It has been also showcased that the application of the proposed stochastic imperfection model 

on the hull girder resembles more the structural behavior of the critical buckling-mode (BM) 

imperfection model than the conventional hungry-horse (HH) model. The results from both 

analyses indicated that the conventional/idealized HH imperfection model does not necessarily 

represents a “realistic” condition as it is commonly assumed from literature body. 

The effect of non-uniform thickness distribution on the ultimate strength of a representative 

stiffened panel has been investigated in Section 4.3. The main conclusion drawn from this study 

was that the uniform thickness approach adopted by IACS CSR seems reasonable and provides a 

satisfactory manner to simulate the actual uneven thickness distribution pattern, without loss 

of generality. The two modelling approaches (RF and RV approach) give comparable results in 

terms of mean ultimate strength prediction, although the variability is larger using the uniform 

thickness reduction. More case studies should be conducted to generalize the outcomes of the 

present work.  

Bayesian methods have been applied in Chapter 6 of this thesis on two numerical 

investigations: (i) the quantification of model uncertainty associated with hull girder ultimate 
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strength description (see Section 6.2) and (ii) the updating of corrosion model predictions (see 

Section 6.3). In the first investigation, a robust framework for the determination of the model 

uncertainty factor distribution on a ship-type dependent basis has been established. The 

proposed methodology combines systematically and efficiently the analytical IACS CSR Smith’s 

model prediction along with high-fidelity NLFEA results and other sources of information, e.g., 

literature sources or subjective knowledge from experts. The updating scheme that has been 

performed on oil tankers resulted in a model uncertainty factor that is close to the existing 

ones, verifying with that way the current practices of scientific body. On the contrary, the 

derived distribution model for container ships indicated that the model uncertainty factor 

should be shifted to lower values than the one commonly adopted in literature in order to 

account for the double bottom effect. The consideration of the double bottom effect can be 

performed either by adjusting the model uncertainty factor using the proposed methodology or 

by intrusively modifying the Smith’s method, see Tatsumi et al. (2020). It has been also shown 

how the model uncertainty factor can be further adjusted and be applied on a particular vessel, 

as demonstrated for the case of “MOL Comfort” at the time of accident. 

In the second investigation of Chapter 6, the corrosion predictions of an existing double hull 

VLCC tanker are updated using thickness measurements data from consecutive inspections. An 

updating scheme is performed to learn the initial uncertain parameters of an empirical time-

dependent corrosion model using inspections data. The results of the posterior model indicated 

a very good agreement with the actual data recorded from the final inspection of the examined 

ship. The statistical uncertainty of the model parameters and the uncertainty bounds of 

corrosion predictions have been reduced using only a limited number of measurements. The 

updated model can be used for reliability analysis purposes where a higher level of 

sophistication is needed. 

Neural networks have been successfully employed in this thesis to replace time-consuming 

model evaluations. MCS is the simplest method for propagating the uncertainty from input 

uncertain parameters through the model and calculating the stochastic response of the system. 

However, MCS becomes inefficient when the computational cost of model evaluations becomes 

unmanageable. NNs can alleviate this problem as they can be trained with a rather limited 

number of model evaluations and substitute the respective model with a black-box. In this 

thesis, NNs have been efficiently trained and used in three particular cases: (i) for the 

prediction of hull girder ultimate strength by replacing NLFEA (see Section 4.2.4.4), (ii) for the 

acceleration of aBUS-SuS algorithm by replacing log-likelihood function evaluations (see Section 

6.3.5), and (iii) for the computation of time-varying hull girder ultimate strength by replacing 

IACS CSR Smith’s model (see Section 7.5.1). The use of NNs for all the above applications reduce 

the computational cost by orders of magnitude while retaining the accuracy of model 

predictions. 

The ultimate goal of this thesis is to get an improved description of the resistance model used 

for the reliability assessment of ship structures in ultimate limit state. In doing so, the 



8. Conclusions, originality and future directions 173 

 

implication of the developments presented in Chapter 6 has been examined on the reliability of 

an oil tanker and two container ships (see Chapter 7). Particularly, the reliability updating of an 

oil tanker conditional on inspection data has been investigated. The results from this study 

demonstrated that the effect of measurements on the time-dependent reliability of the 

examined vessel is small. However, this finding cannot be seen as a general rule as the effect of 

inspections data is ship-type dependent. In the second investigation of Chapter 7, the failure 

probability for two container ships has been calculated using the proposed strength model 

uncertainty factor from Section 6.2. The failure probability has been also computed with 

commonly adopted values of strength model uncertainty factor from literature. The results 

indicated that the adoption of the recommended distribution model for strength model 

uncertainty factor leads to significant larger failure probabilities. This is due to the following 

two reasons: (i) the recommended distribution model for strength model uncertainty factor has 

been shifted to significantly lower values as compared with the existing distribution model (see 

Section 6.2.4.2, Figure 6.6), and (ii) the sensitivity of the strength model uncertainty factor 

parameter in the reliability calculation is the highest among all the basic random variables. It 

has been concluded that the neglection of the double bottom phenomenon in extreme hogging 

conditions can lead to unrealistic and risky results regarding the reliability of container ships 

(see Section 7.5.2). 

8.2 Originality of the work 

The work undertaken has led to the following innovations: 

• A new stochastic imperfection model has been introduced for the description of 

imperfect geometry of steel plates on ship structures. The model has been constructed 

by taking into consideration the general HH mode shape of weld-induced plates and the 

spatial randomness of imperfect geometry. The latter is addressed through random 

fields theory. Statistics from actual data have been used for the formulation of the 

stochastic model. In contrast with the existing deterministic imperfection models that 

use a standard shape and an average level of distortion, the recommended stochastic 

model is able to quantify the whole spectrum of input uncertain parameters and 

approximate better the reality, which is a result of manufacturing processes and random 

localized dents created during service. The proposed model has been validated against 

actual data in terms of ultimate strength prediction. In general, a better resemblance of 

actual collapse mode and ultimate strength assessment has been achieved using the 

proposed model in comparison with the existing imperfection models.  

• A robust framework for determining the model uncertainty factor related to hull girder 

ultimate strength prediction on a ship-type dependent basis has been developed. 

Current practices suggest a model uncertainty factor that either has been based on 
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subjective judgment only, or combines information from NLFEA, but not with a 

systematic and rigorous manner. In addition, no room to effectively incorporate new 

data exists, while often the same model uncertainty factor is adopted irrespectively of 

the ship type under examination. The recommended Bayesian methodology alleviates 

all of the aforementioned weaknesses by: (i) systematically combining information 

from different sources, e.g., subjective knowledge can be used to formulate the prior 

and advanced NLFEA results can be used to construct the likelihood, and (ii) quantify 

the effect of a future observation, e.g., an advanced NLFEA result, through the 

likelihood and update the prior knowledge. In addition, the recommended 

methodology is generic in the sense that it can be applied for any type of ship or 

floating unit (e.g., FPSO/FLNG) where any type of data is available. In the present 

thesis, the methodology has been applied on oil tankers and container ships. It has 

been found that the recommended model uncertainty factor for oil tankers is in good 

symphony with commonly adopted literature practices. On the other hand, for 

container ships, it has been found that the model uncertainty factor currently used in 

literature leads to significantly higher levels of reliability. The proposed methodology, 

which takes into account the double bottom effect due to the presence of local loads, 

results in a more representative model uncertainty factor that should be used in the 

framework of reliability. 

• A Bayesian methodology has been developed on a vessel-specific basis for a more 

reliable and accurate prediction of uniform corrosion trends considering data from 

inspections. It has been shown that a minimum number of measurements acquired 

from consecutive inspections, when combined with available statistics from the global 

fleet of tankers, can lead to a significant reduction of uncertainties associated with the 

parameters of the employed time-dependent empirical corrosion model. A validation of 

the proposed methodology with actual data has taken place on a double hull VLCC 

tanker.  

• A surrogate model (neural network) has been developed that is able to be learned with 

rather limited training samples of NLFEA. The generalized NN generalize retains the 

accuracy of NLFEA while it reduces by orders of magnitudes the computational effort 

needed. The full spectrum of input uncertainties associated with the imperfect hull 

geometry is explored and a full probabilistic description of hull girder ultimate capacity 

is achieved. This is especially useful when a reliability assessment is subsequently 

carried out and the full PDF is required, without the need to employ the incremental-

iterative Smith’s method. 
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8.3 Future directions 

Methods for the quantification and reduction of uncertainties related to hull girder ultimate 

strength and reliability assessment have been developed in this thesis. It has been showed that 

Bayesian analysis framework can provide a solution on the problem of model error 

quantification and determination. As a systematic method for the determination of model error 

was missing from literature, a new framework has been established that is able to consistently 

and efficiently combine different sources of information and quantify their effect. The ultimate 

goal from this study could be a more reliable estimate of the performance of existing ship 

structures, as well the establishment of a unified partial safety factor (PSF) format design 

criterion for container ships. The adoption of the proposed methodology to other types of 

ships, such as bulk carriers, FPSOs, would be also an option for the future. 

The application of the proposed Bayesian methodology for the corrosion model updating is 

beneficial as it may serve as a decision-making tool on existing ship structures, e.g., 

reinforcements, replacements, life-time extension. A strong benefit of the proposed model is 

that it can give reliable results with only as few as 20 measurements. This can reduce 

unnecessary costs and time from inspection surveys. In addition, the extension of the corrosion 

model to a smaller scale, i.e., a plate (or strake) element level, can be implemented for a more 

detailed view of corrosion predictions. Such a model could operate as a digital-twin where prior 

knowledge will be updated with new information from inspections. 

In addition, the following research directions are proposed: 

• The extension of the proposed stochastic imperfection model on stiffener sideways and 

global beam-column mode deflection mode shapes as soon as related information 

become available. 

• The performance of the reliability assessment of “MOL Comfort” at the time of accident 

as soon as the midship section plan of the ship becomes available to the public. 
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Appendix A. Probability theory 

The basic notions of probability theory are briefly introduced in this appendix. A thorough 

review of probability theory is out of the scope of this thesis. The reader who is interested is 

referred to the book of Ang and Tang (2007) for a deep insight of probability theory with focus 

on engineering applications. 

A.1 Basics of probability theory 

The theory of probability is concerned with experiments and their outcomes, where the term 

experiment is used in a more generic sense to express for example a random phenomenon or 

process. The collection of all possible outcomes of an experiment is called its sample space Ω. 

This space consists of a set of points (or elements) 𝜔𝑖 representing an individual outcome of an 

experiment called sample points or realizations. An event 𝐴 represents a collection of sample 

points in the sample space Ω. 

We use the notation Pr(𝐴) to denote the probability of an event 𝐴. The basic axioms of 

probability theory are: 

1. For any event 𝐴, the probability of 𝐴 must lie between zero and one: 

0 ≤ Pr(𝐴) ≤ 1 (A.1) 

2. The probability that is associated with the entire sample space Ω expresses a certain event 

and is equal to unity: 

Pr(Ω) = 1 (A.2) 

3. If the events 𝐴1, 𝐴2, … , 𝐴𝑛 are mutually exclusive, i.e., they do not contain no sample points 

in common, the probability of their union is a sum of probabilities: 

Pr(𝐴1 ∪ 𝐴2 ∪ …∪ 𝐴𝑛) =∑Pr(𝐴𝑖)

𝑛

𝑖=1

 (A.3) 

The event that 𝐴 or 𝐵 occurs is the union of events {𝐴 ∪ 𝐵}, whose probability can be 

expressed as: 
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Pr(𝐴 ∪ 𝐵) = Pr(𝐴) + Pr(𝐵) − Pr(𝐴 ∩ 𝐵) (A.4) 

where {𝐴 ∩ 𝐵} denotes the joint event that both 𝐴 and 𝐵 occur. If the events 𝐴 and 𝐵 are 

mutually exclusive, then Pr(𝐴 ∪ 𝐵) = Pr(𝐴) + Pr(𝐵). 

If all possible outcomes of an experiment are represented by a set of mutually exclusive events 

𝐴1, 𝐴2, … , 𝐴𝑛, then it follows from axioms 2 and 3 that the associated probabilities sum to 

unity: 

Pr(𝐴1) + Pr(𝐴2) + ⋯+ Pr(𝐴𝑛) = 1 (A.5) 

The probability of the complement event �̅� is defined as: 

Pr(�̅�) = 1 − Pr(𝐴) (A.6) 

The probability of an event 𝐴 given that another event 𝐸 has occurred expresses the 

conditional probability of 𝐴 given 𝐵:  

Pr(𝐴|𝐵)=
Pr(𝐴 ∩ 𝐵)

Pr(𝐵)
 (A.7) 

Rearranging Eq. (A.7), it yields that: 

Pr(𝐴 ∩ 𝐵) = Pr(𝐴|𝐵)Pr(𝐵) = Pr(𝐵|𝐴)Pr(𝐴) (A.8) 

Two events A and B are called independent, i.e., the occurrence of one does not affect the 

probability of occurrence of the other, when: 

Pr(𝐴|𝐵) = Pr(𝐴) (A.9) 

or: 

Pr(𝐴 ∩ 𝐵) = Pr(𝐴) Pr(𝐵) (A.10) 

The above can be generalized from more than two events. This theorem is known as the 

multiplication rule. If 𝐵1, 𝐵2, … , 𝐵𝑛 are a set of mutually exclusive events, then the probability of 

an event 𝐴 can be determined from the total probability theorem as: 
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Pr(𝐴) =∑Pr(𝐴 ∩ 𝐵𝑖)

𝑛

𝑖=1

=
Eq.(A.8)

∑Pr(𝐴|𝐵𝑖) Pr(𝐵𝑖)

𝑛

𝑖=1

 (A.11) 

The conditional probability of an event 𝐴 given the occurrence of another event 𝐵 can be 

computed by the combination of Eq. (A.7) and Eq. (A.8) yielding the so-called Bayes’ rule: 

Pr(𝐴|𝐵) =
Pr(𝐵|𝐴)Pr(𝐴)

Pr(𝐵)
 (A.12) 

A detailed presentation of Bayes’ rule is presented in Section 5.2 of the thesis. 

 

 

 

Figure.A.1. Illustration of total probability theorem. 
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Appendix B.      Random variables 

Throughout this thesis, a single random variable is represented by a capital letter 𝑋. A single 

realization (or outcome) of the random variable 𝑋 is denoted by a small letter 𝑥. In the 

following, we will first define the description of a single random variable, and then we will 

extend to two or more random variables jointly. 

B.1 Basic definitions 

A random variable 𝑋 is a function which maps a set of sample points 𝜔𝑖 from the sample space 

Ω to real numbers, that is: 𝑋:Ω → ℝ. A random variable can be discrete or continuous, 

depending on the type of the corresponding sample space. In the following, we will restrict our 

definitions to continuous random variables which is the main subject of this thesis. 

A common way to describe the probability distribution of a random variable is through the use 

of a cumulative distribution function or CDF. The value of this function 𝐹𝑋(𝑥) is simply the 

probability of the random variable 𝑋 being smaller or equal to a specific value 𝑥, that is: 

𝐹𝑋(𝑥) = Pr(𝑋 ≤ 𝑥) (B.1) 

The following properties hold for the CDF of 𝑋: 

0 ≤ 𝐹𝑋(𝑥) ≤ 1 (B.2) 

𝐹𝑋(−∞) = 0 (B.3) 

 𝐹𝑋(∞) = 1 (B.4) 

𝐹𝑋(𝑥2) − 𝐹𝑋(𝑥1) = Pr(𝑥1 ≤ 𝑋 ≤ 𝑥2) (B.5) 

Another classical measure to express the probability distribution of a random variable is 

through the probability density function or PDF. We define the PDF 𝑓𝑋(𝑥) of a variable 𝑋 such 

that the probability that 𝑋 takes values in an interval 𝑥 to 𝑥 + 𝑑𝑥 is: 

𝑓𝑋(𝑥)𝑑𝑥 = Pr(𝑥 ≤ 𝑋 ≤ 𝑥 + 𝑑𝑥) (B.6) 

The following properties hold for the PDF of 𝑋: 
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Pr(𝑥 ≤ 𝑋 ≤ 𝑥 + 𝑑𝑥) = ∫ 𝑓𝑋(𝑥)𝑑𝑥
𝑥+𝑑𝑥

𝑥

 (B.7) 

𝑓𝑋(𝑥) ≥ 0 (B.8) 

∫ 𝑓𝑋(𝑥)𝑑𝑥
∞

−∞

= 1 (B.9) 

The PDF can be determined if the CDF is known, since 𝑓𝑋(𝑥) is simply the derivative or slope of 

𝐹𝑋(𝑥): 

𝑓𝑋(𝑥) =
𝑑𝐹𝑋(𝑥)

𝑑𝑥
 (B.10) 

It also holds that: 

𝐹𝑋(𝑥 = 𝑎) = Pr(−∞ ≤ 𝑋 ≤ 𝑎) = ∫ 𝑓𝑋(𝑥)𝑑𝑥
𝑎

−∞

 (B.11) 

B.2 Jointly distributed random variables 

Most engineering problems deal with multiple random variables 𝑿 = [𝑋1, … , 𝑋𝑛]
𝑇. It is then 

needed to establish a joint distribution model. For the elementary case of two continuous 

random variables 𝑋 and 𝑌, the probability that 𝑋 lies in the interval {𝑥, 𝑥 + 𝑑𝑥} and 𝑌 lies in the 

interval {𝑦, 𝑦 + 𝑑𝑦} is 𝑓𝑋𝑌(𝑥, 𝑦)𝑑𝑥𝑑𝑦. The function 𝑓𝑋𝑌(𝑥, 𝑦) is called the joint probability 

density function of joint PDF. 

The probability of the joint occurrence of 𝑋 and 𝑌 in some region in the sample space is 

determined by integration of the joint PDF over that region, that is: 

Pr(𝑥1 ≤ 𝑋 ≤ 𝑥2)  and Pr(𝑦1 ≤ 𝑌 ≤ 𝑦2) = ∫ ∫ 𝑓𝑋𝑌(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑦2

𝑦1

𝑥2

𝑥1

 (B.12) 

Clearly, the joint PDF must satisfy the following conditions: 

𝑓𝑋𝑌(𝑥, 𝑦) ≥ 0 (B.13) 
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∬𝑓𝑋𝑌(𝑥, 𝑦)𝑑𝑥𝑑𝑦

∞

−∞

= 1 (B.14) 

The joint CDF can be defined as: 

𝐹𝑋𝑌(𝑥, 𝑦) = Pr[(𝑋 ≤ 𝑥) ∩ (𝑌 ≤ 𝑦)] (B.15) 

The joint density function is now the partial derivative of joint CDF: 

𝑓𝑋𝑌(𝑥, 𝑦) =
𝜕2

𝜕𝑥𝜕𝑦
𝐹𝑋𝑌(𝑥, 𝑦) (B.16) 

The marginal PDF of is 𝑋1obtained by integrating the joint PDF over all possible values of 𝑥2: 

𝑓𝑋(𝑥) = ∫ 𝑓𝑋𝑌(𝑥, 𝑦)𝑑𝑦
∞

−∞

 (B.17) 

Consider the case of two dependent random variables 𝑋 and 𝑌. If the value of one random 

variable is known 𝑌 = 𝑦, the distribution of the other becomes the conditional distribution of 𝑋 

given 𝑌 = 𝑦, and it follows from Eq. (A.7) that: 

𝑓𝑋|𝑌(𝑥|𝑦) =
𝑓𝑋𝑌(𝑥, 𝑦)

𝑓𝑌(𝑦)
 (B.18) 

Note that 𝑓𝑋|𝑌(𝑥|𝑦) is a univariate PDF. From the above definition of conditional distribution, 

the chain rule is defined as: 

𝑓𝑋𝑌(𝑥, 𝑦) = 𝑓𝑋|𝑌(𝑥|𝑦)𝑓𝑌(𝑦) (B.19) 

Chain rule can be extended to a vector of random variables 𝑿 = [𝑋1, … , 𝑋𝑛]
𝑇 as follows: 

𝑓𝑿(𝒙) = 𝑓(𝑥𝑛|𝑥𝑛−1, … , 𝑥1)𝑓(𝑥𝑛−1|𝑥𝑛−2, … , 𝑥1)…𝑓(𝑥1) (B.20) 

Through the chain rule, conditional distributions are often an effective way to establish joint 

distributions. 
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B.3 Statistical descriptors of random variables 

The expectation or the first moment 𝜇𝑋 of a random variable 𝑋 with associated PDF 𝑓𝑋(𝑥) is: 

𝜇𝑋 = E[𝑋] = ∫ 𝑥𝑓𝑋(𝑥)𝑑𝑥
∞

−∞

 (B.21) 

A common measure of the dispersion of the variable 𝑋 is its variance 𝜎𝑋
2 defined as the 

weighted average of the squared deviations from the mean: 

𝜎𝑋
2 = Var[𝑋] = E[(𝑋 − 𝜇𝑋)

2] = ∫ (𝑥 − 𝜇𝑋)
2𝑓𝑋(𝑥)𝑑𝑥

∞

−∞

 (B.22) 

Alternatively, the variance can be written as: 

Var[𝑋] = E[𝑋2] − 𝜇𝑋
2  (B.23) 

The square root of the variance is the standard deviation 𝜎𝑋 of 𝑋: 

𝜎𝑋 = √Var[𝑋] (B.24) 

A dimensionless measure to quantify the degree of uncertainty of 𝑋 is the coefficient of 

variation CoV𝑋: 

CoV𝑋 =
𝜎𝑋
|𝜇𝑋|

 (B.25) 

The covariance of two random variables 𝑋1 and 𝑋2 is defined as the expectation of the product 

of the deviations from their respective means: 

𝐶[𝑋1, 𝑋2] = E[(𝑋1 − 𝜇𝑋1)(𝑋2 − 𝜇𝑋2)] = ∬(𝑥1 − 𝜇𝑋1)(𝑥2 − 𝜇𝑋2)𝑓𝑋1𝑋2(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2

∞

−∞

 (B.26) 

It holds also that: 

𝐶[𝑋1, 𝑋2] = E[𝑋1𝑋2] − 𝜇𝑋1𝜇𝑋2 (B.27) 

 If the random variables 𝑋1 and 𝑋2 are independent, the expectation of the product is the 

product of the expectations, that is: 
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E[𝑋1𝑋2] = E[𝑋1]𝛦[𝑋2] (B.28) 

From Eq. (B.27) and Eq. (B.28) it yields that for two independent random variables their 

covariance is zero 𝐶[𝑋1, 𝑋2] = 0. 

The dimensionless coefficient of correlation 𝜌𝑋1𝑋2 between 𝑋1 and 𝑋2 is defined by dividing Eq. 

(B.26) by the associated standard deviations: 

𝜌𝑋1𝑋2 =
𝐶[𝑋1, 𝑋2]

𝜎𝑋1𝜎𝑋2
 (B.29) 

It can be shown that the bounds of the correlation coefficient are: 

−1 ≤ 𝜌𝑋1𝑋2 ≤ 1 (B.30) 
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Appendix C.       Probability distribution models 

C.1 Normal distribution 

A random variable 𝑋 follows the normal or (Gaussian) distribution with parameters μ and σ, 

denoted by 𝑋~𝑁(μ, σ), if its PDF 𝑓𝑋(𝑥) is defined as: 

𝑓𝑋(𝑥) =
1

σ√2𝜋
exp [−

1

2
(
𝑥 − μ

σ
)
2

] (C.1) 

The parameters μ and σ of the Normal distribution are identical to the mean and standard 

deviation of 𝑋, i.e., μ = 𝜇𝑋 and σ = 𝜎𝑋. 

The standard normal distribution 𝜑(𝑧) it comes from the generalized normal distribution with 

μ = 0 and σ = 1. The PDF of the standard normal distribution reads: 

𝜑(𝑧) =
1

√2𝜋
exp [−

1

2
𝑧2] (C.2) 

and the CDF: 

Φ(𝑧) = ∫ 𝜑(𝑧)𝑑𝑧
𝑧

−∞

 (C.3) 

Any normal distributed random variable 𝑋 can be transformed to its standardized form 𝑍 by the 

transformation: 

𝑍 =
𝑋 − 𝜇𝑋
𝜎𝑋

 (C.4) 

As no closed-form solution for the normal distribution exists, the above transformation can be 

used to evaluate the CDF of a normal random variable through the standard normal CDF as 

follows: 

𝐹𝑋(𝑥) = Φ(
𝑥 − 𝜇𝑋
𝜎𝑋

) (C.5) 
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C.2 Lognormal distribution 

If 𝑋 = ln(𝑌) has a normal distribution with mean value 𝜇𝑋 and standard deviation 𝜎𝑋, then the 

random variable 𝑌 will follow the lognormal distribution with parameters 휂 and 휁, denoted by  

𝑋~𝐿𝑁(휂, 휁), with PDF: 

𝑓𝑌(𝑦) =
1

휁√2𝜋
exp [−

1

2
(
ln(𝑦) − 휂

휁
)

2

] ,     𝑦 ≥ 0 (C.6) 

The parameters 휂 and 휁 are associated with the mean 𝜇𝑌 and coefficient of variation CoV𝑌 of 𝑌 

as follows: 

휁 = √ln(1 + CoV𝑌
2) (C.7) 

휂 = ln(𝜇𝑌) − 0.5휁
2 (C.8) 

The CDF of 𝑌 can be evaluated in terms of the standard normal CDF Φ(∙) as: 

𝐹𝑌(𝑦) = Pr(𝑌 ≤ 𝑦) = Pr(𝑋 ≤ ln(𝑦)) = Φ(
ln(𝑦) − 𝜇𝑋

𝜎𝑋
) (C.9) 

C.3 Uniform distribution 

A random variable 𝑋 follows the uniform distribution with lower limit a and upper limit b, 

denoted by 𝑋~𝑈(a, b), if its PDF 𝑓𝑋(𝑥) is defined as: 

𝑓𝑋(𝑥) =
1

b − a
,       a ≤ 𝑥 ≤ b (C.10) 

The PDF 𝑓𝑋(𝑥) of the uniform distribution is thus constant over the interval [a, b]. The CDF 

𝐹𝑋(𝑥) of the uniform distribution is defined as: 

𝐹𝑋(𝑥) =
𝑥 − a

b − a
 (C.11) 

The parameters a and b are related to the mean value 𝜇𝑋 and standard deviation 𝜎𝑋 of 𝑋 

variable as follows: 
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a = 𝜇𝑋 − 𝜎𝑋√3 (C.12) 

b = 𝜇𝑋 + 𝜎𝑋√3 (C.13) 

C.4 Beta distribution 

A random variable 𝑋 follows the beta distribution with shape parameters α and β, and lower 

and upper limits a and b, respectively, denoted by 𝑋~𝐵𝑒𝑡𝑎(α, β, [a, b]), if its PDF 𝑓𝑋(𝑥) is 

defined as: 

𝑓𝑋(𝑥) =
𝑤α−1(1 − 𝑤)β−1

B(α, β)(b − a)
,       a ≤ 𝑥 ≤ b (C.14) 

where, w =
𝑥−a

b−a
 and B(α, β) is the beta function with arguments α and β. The parameters α and 

β are related to the mean 𝜇𝑋 and standard deviation 𝜎𝑋 with the following relations: 

α =
(a − 𝜇𝑋)(ab − a𝜇𝑋 − b𝜇𝑋 + 𝜇𝑋

2 + 𝜎𝑋
2)

𝜎𝑋
2(b − a)

 (C.15) 

β =
(𝜇𝑋 − b)(ab − a𝜇𝑋 − b𝜇𝑋 + 𝜇𝑋

2 + 𝜎𝑋
2)

𝜎𝑋
2(b − a)

 (C.16) 

The great value of the Beta distribution lies in the wide variety of shapes it can take simply by 

varying the parameters α and β. Beta distribution is particularly appropriate in cases where a 

variable must lie within a specified range [a, b]. Finally, for α = 1 and β = 1, the Beta 

distribution is equivalent to the uniform distribution. 

C.5 Weibull distribution 

Let 𝑋 be a random variable that follows the Weibull distribution with scale parameter 𝜆 and 

shape parameter 𝑘. The PDF 𝑓𝑋(𝑥) of the Weibull distribution is: 

𝑓𝑋(𝑥) =
𝑘

𝜆
(
𝑥

𝜆
)
𝑘−1

exp [− (
𝑥

𝜆
)
𝑘

] (C.17) 

The CDF 𝐹𝑋(𝑥) of the Weibull distribution is: 
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𝐹𝑋(𝑥) = 1 − exp [−(
𝑥

𝜆
)
𝑘

] (C.18) 

The parameters 𝜆 and 𝑘 of the Weibull distribution are associated with its mean 𝜇𝑋 and 

standard deviation 𝜎𝑋 as follows: 

𝜇𝑋 = 𝜆Γ(1 +
1

𝑘
) (C.19) 

𝜎𝑋 = 𝜆 [Γ (1 +
2

𝑘
) − Γ2 (1 +

1

𝑘
)] (C.20) 

where Γ(∙) is the Gamma function. 

C.6 Gumbel distribution 

Let 𝑋 be a random variable that follows the Gumbel distribution with scale parameter 𝑎𝑛 and 

location parameter 𝑏𝑛. The PDF 𝑓𝑋(𝑥) of the Gumbel distribution is: 

𝑓𝑋(𝑥) =
1

𝑎𝑛
exp [−

𝑥 − 𝑏𝑛
𝑎𝑛

− exp (−
𝑥 − 𝑏𝑛
𝑎𝑛

)] (C.21) 

The CDF 𝐹𝑋(𝑥) of the Gumbel distribution is: 

𝐹𝑋(𝑥) = exp [− exp (−
𝑥 − 𝑏𝑛
𝑎𝑛

)] (C.22) 

The parameters 𝑎𝑛 and 𝑏𝑛 of the Gumbel distribution are associated with its mean 𝜇𝑋 and 

standard deviation 𝜎𝑋 as follows: 

𝜇𝑋 = 𝑏𝑛 + 0.5772𝑎𝑛 (C.23) 

𝜎𝑋 =
𝜋

√6
𝑎𝑛 (C.24) 

 



   

201 

 

Appendix D. Monte Carlo simulation 

D.1 Outline of Monte Carlo simulation (MCS) method 

Monte Carlo simulation is a simple and powerful method for propagating the uncertainty from 

input model parameters 𝑿 = [𝑋1, … , 𝑋𝑛]
𝑇 through the model ℳ and calculate the variability of 

the response 𝒀 using simple relationships from statistics (see Figure D.1).  

 

 

Figure D.1. Input-output relation. 

 

The implementation of MCS consists of the following three simple steps which are briefly 

outlined below. 

1. Generate (pseudo-)random samples 𝒙(𝑖), for 𝑖 = 1, … , 𝐾 of the input random vector 𝑿. 

For the simple case of a single random variable 𝑋 with associated CDF 𝐹𝑋(𝑥), a sample 𝑥(𝑖) can 

be obtained by first generating a random sample 𝑢(𝑖) from the standard uniform distribution 

𝑈(0,1) and then computing the inverse CDF 𝐹𝑋
−1 on that single point: 

𝑥(𝑖) = 𝐹𝑋
−1(𝑢(𝑖)) (D.1) 

The generation of a pseudo-random sample point uniformly distributed in the interval [0,1] can 

be implemented by a computer code, e.g., in Matlab by calling the function rand. For the case 

where the input vector 𝑿 consists of 𝑛 random variables independent on each other, the above 

transformation can be applied on each variable separately to generate its associated samples.  

To generate samples from a vector 𝑿 of correlated random variables, the Nataf transformation 

can be used, see Der Kiureghian and Liu (1986). According to the Nataf transformation model, 

samples of uncorrelated normal random variables are generated, which are then transformed 

into correlated random variables by applying an appropriate orthogonal transformation. These 

correlated random variables are then marginally transformed into the desired random 

variables. 

2. Run the model 𝐾 times and evaluate its response as 𝒚(𝑖) = ℳ(𝒙(𝑖)). 



202                Appendix D. Monte Carlo simulation                                                            

 

Once the samples have been generated, the function ℳ(𝒙) must be evaluated 𝐾 times. The 

model ℳ can represent an analytical expression but can also represent an advanced FE 

numerical model. Often, model evaluations require a significant computational time. This is the 

basic disadvantage of MCS. For instance, for a time-consuming large-scale non-linear FE model, 

the use of MCS is almost prohibitive.  

An alternative solution is the replacement of the basic model with a surrogate model or meta 

model. Surrogate models are trained (learned) by selected values of input parameters and 

corresponding basic model evaluations. Common surrogate models include simple polynomial 

models, Gaussian process models, neural networks, etc. 

3. Analyze the generated samples 𝒚(𝑖) by means of statistics. 

The generated samples 𝒚(𝑖), for 𝑖 = 1,… , 𝐾 are processed by common statistical methods in 

order to derive sample means, sample standard deviations and other sample statistics. The 

expected value of a function ℳ(𝑿) is estimated by means of MCS as: 

Ε[ℳ(𝑿)] ≈
1

𝐾
∑ℳ(𝒙(𝑖))

𝐾

𝑖=1

 (D.2) 

However, since MCS generates a finite number of samples, it is subject to a statistical 

uncertainty. It is thus important for real problems to have an estimate of the accuracy of MCS. 

D.2 Accuracy of MCS 

We are interested in evaluating an estimate of the expected value of a scalar function 𝑌, Ε[𝑌]. 

Following Eq. (D.2), the MCS estimate is equal to the sample mean �̅� = ℳ(𝑿)̅̅ ̅̅ ̅̅ ̅̅ , where �̅� is itself 

a random variable with associated mean value and variance: 

Ε[�̅�] = 𝜇𝑌 (D.3) 

Var[�̅�] =
𝜎𝑌
2

𝐾
 (D.4) 

Eq. (D.3) shows that the MCS estimate is unbiased, i.e., on average MCS results in the true value 

𝜇𝑌. On the other hand, Eq. (D.4) shows that for increasing number of samples 𝐾, the variance of 

the sample mean �̅� decreases. This relationship provides an indication of the uncertainty on the 

estimate. 
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If the quantity 𝑌 has a coefficient of variation CoV𝑌, the standard deviation and the coefficient 

of variation of the MCS estimate read: 

𝜎𝜇𝑌
𝑀𝐶𝑆 = √

𝜎𝑌
2

𝐾
=
CoV𝑌

√𝐾
𝜇𝑌 (D.5) 

CoV𝜇𝑌
𝑀𝐶𝑆 =

𝜎𝜇𝑌
𝑀𝐶𝑆

𝜇𝑌
=
CoV𝑌

√𝐾
 (D.6) 

For example, for a value of  CoV𝑌 = 0.2 and 𝐾 = 1000 samples, the coefficient of variation of 

the MCS estimate is only CoV𝜇𝑌
𝑀𝐶𝑆 = 0.6%. As shown from the above, an important feature of 

MCS is that its accuracy does not depend on the number of random variables 𝑿. 
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Appendix E.      Neural Networks 

The fundamentals of neural networks (NN) – with particular focus on feed-forward neural 

networks – are presented here in a synoptic manner. The reader who is interested for a more 

comprehensive understanding of NNs is referred to the books of Hagan et al. (2014) and 

Goodfellow et al. (2016). A review on the use of NNs in reliability analysis of steel structures can 

be found in Chojaczyk et al. (2015). 

E.1 Structure and architecture of a neural network 

A typical structure of a neural network is illustrated in Figure E.1. The structure of a NN consists 

of basic units which are called neurons. The neurons incorporate the basic elements of a 

network such as the weight matrix, the net input function and the activation function. The 

inputs are gathered into a vector 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑛]
𝑇. Each element of the input vector is 

connected with a neuron 𝑗 through the weight matrix 𝑤𝑖𝑗. Then, two actions take place. First 

the input data is combined with the weights to formulate the net input function 𝑢𝑗  which is 

expressed by the following relation: 

𝑢𝑗 =∑𝑥𝑖𝑤𝑖𝑗 + 𝑒

𝑛

𝑖=1

 (E.1) 

where the constant 𝑒 is the bias value which has the effect of increasing or lowering the net 

input of the activation function 𝑓(∙). The latter, then, receives the result of the net input 

function 𝑢𝑗  and gives the output 𝑦𝑗 of the neuron 𝑗 as: 

𝑦𝑗 = 𝑓(𝑢𝑗) (E.2) 

The weights and the bias are both adjustable parameters which are randomly initialized. The 

activation functions are chosen from the designer and play an essential role on the 

effectiveness of the network. Commonly used activation functions are the sigmoid and the 

linear transfer function. A learning rule is applied on the network in order the input-output 

relationship meets some specific goal. 

The number of neurons that work on parallel is called a layer. Commonly, a neural network may 

consist of multiple layers and number of neurons within each layer. Apparently, the number of 

inputs and outputs of the network is selected from external specifications and coincides with 

the corresponding number of input-output variables of the problem. For example, a typical 

network architecture with two input variables, three neurons in the layer and one neuron in the 
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output layer is illustrated in Figure E.2. The layer whose output is not the network output is 

called hidden layer.  

 

Figure E.1. A typical structure of an artificial neuron. 

There are generally two broad categories or types of network architectures: the single-layer 

and the multilayer networks. The first type consists of the input vector and one output layer, 

whereas the second one has additional hidden layers between the input vector and the output 

layer. The network of Figure E.2 is characterized as a multilayer network. Multilayer networks 

are more powerful than single-layer networks. For instance, a two-layer network having a 

sigmoid first-layer activation function and a linear second layer can be trained to approximate 

most functions arbitrarily well. This is something a single-layer network cannot do, see also 

Hagan et al. (2014).  

 

 

Figure E.2. A typical network architecture with one hidden layer. 



Appendix E. Neural Networks                                                           207 

 

E.2 Training of a feed-forward neural network 

In order a network to generalize well it must be trained appropriately. Training depends on the 

quantity and the quality of the input-output training set, as well as the selected architecture. It 

is difficult to determine the exact number of input-output data a priori since this depends 

mainly on the size and the non-linearity of the problem under consideration. However, it is 

essential that the training data should be appropriately sampled from the input parameter 

space and span the whole range for which the network will be used. 

A feed-forward back-propagation algorithm is commonly used for applications of function 

approximations as the ones examined in the present thesis. The term “feed-forward” describes 

the forward pass of the signal propagating from the input vector to the output layer throughout 

the network. The term “back-propagation” describes the signal that travels back adjusting the 

weights aiming to minimize the error and make the output response of the network move 

closer to the target values. During the forward pass, the weights of the neurons are all fixed. 

The actual response of the network (output signal) is subtracted from the desired (target) 

response values and an error is produced. The process is repeated until the mean squared error 

(MSE) of training data is minimized: 

MSE =
1

𝐾
∑(𝑡𝑖 − 𝑦𝑖)

2

𝐾

𝑖=1

 (E.3) 

The symbol 𝐾 denotes the number of input-output data in the training set, 𝑡 is the target 

output and 𝑦 the output produced by the network. The training algorithm that has been 

applied in the context of this thesis is the Bayesian regularization algorithm. This algorithm is an 

application of Bayes’ rule and modifies the weights accordingly in order to maximize the 

conditional probability of them given the data. 
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Appendix F.      The double bottom effect 

Container ships travel most of their time in hogging condition. It can be said that the following 

three loads act almost always on the double bottom structure of a container ship: 

1) Longitudinal compressive load due to vertical bending 

2) Upward load due to bottom sea pressure 

3) Transverse compressive load due to side sea pressure 

The compressive stresses induced by the aforementioned combination of loads lead to the 

development of the double bottom effect. In particular, hull girder bending leads to the 

development of longitudinal compressive stresses 𝜎𝐶𝐿1 at the bottom structure. In addition, the 

transverse sea loads acting at the side plates and the upward sea loads acting at the bottom 

result in the generation of transverse compressive stresses 𝜎𝐶𝑇1  and 𝜎𝐶𝑇2  on the bottom plate. 

At the same time, local longitudinal compressive stresses 𝜎𝐶𝐿2 as a result of the upward loads 

induced by the sea pressure are developed on the outer bottom. The total induced longitudinal 

and transverse stresses are the linear superposition of the corresponding stresses that cause 

the double bottom effect. A schematic description of the phenomenon is depicted in Figure F.1. 

 

 

 

Figure F.1. Induced compressive stresses acting on the bottom plating of a container ship; longitudinal 
vertical bending moment 𝜎𝐶𝐿1, transverse compressive load due to side sea loads 𝜎𝐶𝑇1 and upward loads 

due to bottom sea pressure 𝜎𝐶𝐿2 , 𝜎𝐶𝑇2.  The double bottom effect takes place within the length defined 

by two watertight bulkheads (WBHD). 
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Appendix G.      Estimation of FEM error 

Ideally, the quantification of FEM error could be estimated by comparing the result from a 

number of FEA participants with a reference full-scale result from the hull-girder collapse of a 

ship. Since this is not feasible, the data from the benchmark study of Ringsberg et al. (2021) will 

be used, where a full-scale experiment predicting the ultimate strength of a steel stiffened 

panel under uniaxial compressive loads was conducted. The results from the NLFEA are 

depicted in Figure G.1. The results from Phase 3-1 are considered as these correspond to the 

actual values and thus, the error induced is (mostly) attributed to the difference between FE 

modelling itself versus real-life. 

 

 

Figure G.1. FEA users’ prediction along with experimental value, after Ringsberg et al. (2021). The solid 
line is the mean value from the FEA results, and the dashed line is the ultimate capacity from the 

reference experiment (true value). 

In our analysis, we accept that the value received from the experimental result coincides with 

the true value. Then, we try to quantify the error between FEA participants and reality by 

postulating that a Gaussian distribution describes this error. In doing so, we employ a maximum 

likelihood estimate (MLE) approach.  

Let us consider that the FEA prediction 𝑥𝑖  is equal to the true value (experimental result) 𝑥𝑡 plus 

an additive error ε. This can be written as: 

𝑥𝑖 = 𝑥𝑡 + ε (G.1) 
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A zero-mean Gaussian distribution with unknown standard deviation 𝜎ε is used to describe this 

error, so as: ε~𝛮(0, 𝜎ε). The likelihood as a function of the unknown parameter 𝜎ε, and for a 

single FE prediction, is formulated as follows: 

𝐿𝑖(𝜎ε) = 𝑓ε(ε) = 𝑓ε(𝑥𝑖 − 𝑥𝑡) =
1

𝜎ε√2𝜋
exp [−

1

2
(
𝑥𝑖 − 𝑥𝑡
𝜎ε

)
2

] (G.2) 

In case of 𝑖 = 1, … ,𝑚 FEA users, and assuming independence between each other, the 

likelihood becomes: 

𝐿(𝜎ε) =∏𝐿𝑖(𝜎ε)

𝑚

𝑖=1

∝
1

𝜎ε
𝑛
exp [−

1

2
∑(

𝑥𝑖 − 𝑡

𝜎ε
)

𝑚

𝑖=1

2

] (G.3) 

The MLE �̂�ε , i.e., the value of 𝜎ε that best describes the current data set, is obtained by 

maximizing the above equation (or the logarithm of the above equation), namely: 

�̂�ε = max ln(𝐿(𝜎ε)) (G.4) 

After transforming the results of the benchmark study to the dimensionless values, i.e., the 

result from the experiment is taken equal to unity, and following a numerical replacement to 

the above relations, we get �̂�ε = 0.05.  
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Appendix H. Results: Corrosion model updating 

Table H.1. Prior and posterior corrosion model prediction for all groups of the target VLCC vessel. 10 measurements from the first and the 
second inspection corresponding to the 15th year and the 18th year of service have been randomly selected from the full set. Results are 
compared with the validation set corresponding to the 20th year of service life (third inspection). 

Group Prior 
Posterior 

𝑚 = 10 

Posterior 

𝑚 = [10,10] 

A/O-H 

   

A/B-H 
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A/B-V 

   

B/S-V 

   

BLGB 
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B/S-H 

   

B/B-H 

   

O/B-V1 
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O/B-V2 

   

O/O-V 

   

DLC (W) 
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DLC (F) 

   

DLB (W) 

   

DLB (F) 
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SSLB (W) 

   

SSLB (F) 

   

BSLB (W) 
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BSLB (F) 

   

LBLB (W) 

   

LBLB (F) 
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LBLC (W) 

   

LBLC (F) 
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Appendix I. S      v  y     y       S    ’        

A global sensitivity analysis is presented here in order to assess the relative influence of input 

random variables on the variance of the Smith’s model output, that is, the ultimate bending 

moment in sagging. In particular, a graphical sensitivity analysis (through the form of 

scatterplots) is performed based on Monte Carlo simulation, as well a variance-based sensitivity 

analysis based on the first-order Sobol index, after Sobol (1993). The reader who is not familiar 

with the theory of global sensitivity analysis is referred to the book of Saltelli et al. (2008). 

The total number of random variables considered in the problem is 25, including, one variable 

for Young’s modulus 𝐸, one variable for yield strength of mild steel 𝜎𝑦(𝑚𝑖𝑙𝑑), one variable for 

the yield strength of high-tensile AH-32 type steel 𝜎𝑦(𝐴𝐻−32), and twenty-two variables 

representing the thickness loss 𝑡𝑐 variability for each of the specified classified groups (see 

Figure 6.10). The distribution models of corrosion loss correspond to the 15th year of service life 

when the first inspection takes place.  

I.1 Graphical sensitivity analysis 

Graphical sensitivity analysis depicts the relationship between inputs and output values in a 

schematic way, through scatterplots. For the problem at hand, the samples generated for each 

random variable 𝑋𝑖 with 𝑖 = 1, … ,25 are depicted in a single plot against the corresponding 

samples of output 𝑌. Using MCS in conjunction with Latin-Hypercube sampling technique, 

totally 𝐾 = 105 samples have been generated. The results for the present analysis are 

illustrated in Figure I.2. 

In general, scatterplots with more “shape” (or pattern) express an influential parameter 𝑋𝑖. On 

the contrary, a scatterplot with less shape, i.e., when a rather uniform cloud of points is 

observed over the range of parameter values 𝑥𝑖, indicate a non-influential parameter 𝑋𝑖. 

The following can be noticed by visual inspection of Figure I.2: 

• Yield strength of high-tensile grade has a pronounced effect on the variability of hull 

girder ultimate bending capacity. In particular, a strong positive correlation is observed. 

• Young’s modulus also seems to have a positive effect on the output strength. 

• Thickness wastage parameters seem to have no influence. The only exception seems to 

be the deck plates of cargo tanks (group A/O-H) where a negative correlation is 

observed, i.e., for increasing values of corrosion loss, the ultimate strength is 

diminished. 
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I.2 Variance-based sensitivity analysis 

A more quantitative way of defining the importance of input variables 𝑋𝑖 is to look at their 

contribution to the variance of the output Var[𝑌]. A common measure to implement this task is 

the so-called Sobol indices. The first-order Sobol index is defined as: 

S𝑖 =
𝑉𝑖

Var[𝑌]
 (I.1) 

where 𝑉𝑖 denotes a first-order measure for the part of the variance Var[𝑌] that can be 

attributed to the uncertainty in 𝑋𝑖 given by: 

𝑉𝑖 = Var𝑋𝑖{E𝑿−𝑖[𝑌|𝑋𝑖]} (I.2) 

The term E𝑿−𝑖[𝑌|𝑋𝑖] is the expected value of the model output 𝑌 with respect to all input 

random variables 𝑿−𝑖, except 𝑋𝑖 which is fixed.  

An intuitive description of Eq. (I.2) is provided with a demonstrative example in Figure I.1. 

Consider a model that consists of two input random variables 𝑋1 and 𝑋2. The scatterplots of 𝑋1 

and 𝑋2 against model output 𝑌 are presented. The scatterplots are splitted into a number of 

vertical thin slices; each slice representing a subset that contains a fixed number of samples 

denoted by 𝑘𝑠. Now, an approximation of E𝑿−𝑖[𝑌|𝑋𝑖] can be obtained for each subset by 

computing the expected value of output 𝑌 with respect to all variables 𝑿−𝑖, except 𝑋𝑖 which is 

fixed. The variance of E𝑿−𝑖[𝑌|𝑋𝑖] over the subsets gives us the 𝑉𝑖. If 𝑋𝑖 has no effect on 𝑌, the 

expected value is constant with 𝑋𝑖, and hence, 𝑉𝑖 = 0 (the case of parameter 𝑋2). On the other 

hand, if 𝑋𝑖 has an important effect on 𝑌, then 𝑉𝑖 approximates the full variance of the model 

output, Var[𝑌] (the case of parameter 𝑋1). 

A simple and intuitive Monte Carlo-based algorithm that can be used to estimate the first-order 

Sobol indices is given as follows: 

1. Conduct a MCS of the model resulting in 𝑘 = 1, … , 𝐾 samples of the model output. The 

use of variance reduction sampling techniques, such as Latin-Hypercube sampling 

technique is recommended in order to have a more stratified sampling of the inputs 

range. 

2. Repeat the following steps for all input random variables 𝑋𝑖 for 𝑖 = 1,… , 𝑛: 

a. Set the sample pairs [𝑥𝑖
(𝑘), 𝑦(𝑘)] in ascending order according to 𝑥𝑖  values. 

b. Divide the total 𝐾 samples into 𝑗 = 1,… , 𝑛𝑠 subsets of size 𝑘𝑠 (e.g., 𝑘𝑠 can be 

range from a few hundreds to a few thousands) and compute the mean value of 

𝑌 for each subset, 𝜇𝑌𝑗 . This mean provides an estimate of E𝑿−𝑖[𝑌|𝑋𝑖]. 
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c. The variance of the subset means 𝜇𝑌𝑗  is an estimate of 𝑉𝑖. 

Sobol indices are computed for each of the 25 random variables presented above. The results 

are presented in Table I.1 for the 15th year of service life, where the distribution models of 

thickness loss before and after observing the measurements have been adopted. As it can be 

noticed, the only parameters that have an influence on the variance of the ultimate bending 

capacity are the yield strength of the high-tensile steel, the Young’s modulus and the thickness 

of deck plates located in the cargo area. For all the other variables the Sobol index is 

approximately zero. This finding justifies the results of Table 7.3. 

 

  

(a) (b) 

Figure I.1. A demonstrative example. Graphical representation of input variable 𝑋1, 𝑋2 vs. model output 
𝑌. The scatter plot of figure (a) shows a clear pattern, indicating that the parameter 𝑋1 has a strong 
influence on the variance of the model output. In figure (b), however, no obvious shape is observed 
which is an indication of a non-influential parameter. Alternatively, using Sobol first-order sensitivity 

measure: the sample space of 𝑋1, 𝑋2 has been splitted into 𝑛𝑠 = 10 subsets, each containing 𝑘𝑠 = 100 
samples. An estimate of E𝑿−𝑖[𝑌|𝑋𝑖] has been depicted with a red square for each case. In figure (b), the 

variance of the values represented by the red squares is calculated close to zero (non-influential 
parameter), whereas in figure (a), the corresponding variance is close to the variance of the model 

output (influential parameter). 
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Table I.1. Sobol indices for the input parameters of Smith’s model. Only the parameters that have a 
relative influence on the resulted variability of hull girder ultimate strength are listed. 

Variable 𝑋𝑖  Symbols 
Sobol index S𝑖 

Prior (𝜏 = 15 years) Posterior (𝜏 = 15 years) 

Yield strength (AH-32 steel) 𝜎𝑦(𝐴𝐻−32) 0.69 0.70 

Young’s modulus 𝐸 0.26 0.23 

Yield strength (mild steel) 𝜎𝑦(𝑚𝑖𝑙𝑑) 0.01 0.01 

Thickness loss (A/O-H) 𝑡𝑐 0.01 0.06 
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Figure I.2. Sensitivity analysis with MCS for hull girder ultimate strength prediction using IACS CSR 
Smith’s model. The sensitivity analysis is performed for the 15th year of service and using the posterior 

generalized corrosion model after observing 10 measurements. The scatterplots of samples of the inputs 
against samples of the output are depicted. Red lines show the mean approximation of model output for 

given input. 


