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Abstract

Muconic acid is a high value product which has gathered interest in applications in the
manufacture of new resins, bio plastics, food additives, agrochemicals and pharmaceuticals. Lots
of efforts have been made for an economically viable biotechnological strategy for muconic acid
production but as of yet have been fruitless. Directed evolution and DBTL cycles hold important
promises for the development of future catalysts with high efficiency and productivity. However,
process engineering is typically disjointed from these cycles and more often than not the
mismatch of kinetics presents a major challenge and a bottleneck in the scaling up of novel
bioprocesses.

The dissertation addresses the integration of metabolomics and experimental data using the
optimization and risk analysis of complex living entities (ORACLE) platform combined with
clustering and advanced analytics. The methodology consists of six steps. In the first step, the
stoichiometry of the system is defined through biochemical data and experimental data are
integrated into the model to further constrain it. In the second step, steady state fluxes and
metabolite concentrations are calculated based on metabolomics analysis. In the third step,
through stoichiometric analysis conserved moieties are identified and the dependent metabolites
are separated from the independent. In the fourth step, kinetic parameters for every reaction are
sampled to fit in with the steady state fluxes based on mechanistic kinetics expressions. In the
fifth step, consistency checks and pruning consider the stability of the system and the consistency
with experimental data. In the fifth step, the flux control coefficients for the desired metabolite
flux are calculated based on the well-established metabolic control analysis (MCA) framework. In
the sixth step, clustering and advanced statistical analysis on the control coefficient population is
performed to determine the impact of key enzymes on the desired flux.

In this project, large-scale mechanistic kinetic models for a muconic acid producing S.cerevisiae
strain were developed using the aforementioned ORACLE platform. The yeast8 genome scale
model ™ was used and experimental data from this paper [? were integrated into the model. Three
heterologous reactions (PaAroZ, KpAroY, CaCatA) were added to the GEM for the muconic acid
production pathway via shikimate pathway branching. The reduced genome scale model for
S.cerevisiae used in this project consisted of 306 reactions and 300 metabolites. A total of 23500
of potential kinetic models were generated out of which 372(1.58%) agreed to the experimental
data thus passing the pruning step. Lastly 29(0.12%) models out of the 372 passed the consistency
check and showed stability in random perturbations performed on them. Those 29 models were
used to indicate key enzymes that affect muconic acid flux and possible bottlenecks. Enzyme
perturbations were performed to further quantify the influence of various enzymes on muconic
flux. A big number of enzymes seem to have a significant impact on muconic acid production,
excluding those that express the heterologous reactions of the muconic acid pathway, such as
glucose-6-phosphate isomerase (PGl), transketolase (TKT2) and enolase (ENO).

This study aims to offer metabolic engineering strategies for a muconic acid production yeast
strain while taking into consideration stoichiometry, thermodynamics and kinetics.

Keywords: S.cerevisiae; muconic acid; genome scale model; metabolomics; advanced data
analytics; metabolic engineering; ORACLE; metabolic control analysis; large-scale kinetics;
industrial biotechnology



Exktetapevn nepiAndn

H mnapolUoa OSuthwpatikn epyacio mpayupatomou}Bnke ota TMAALOLO TNG OKASNUOLKAG
ocuvepyoaoiag UeTaty tng oxoAng Xnuikwv Mnxavikwv E.M.M kal tou mavemotnuiov EPFL. H
gpyaoia €lye wg otdX0 TNV OVATITUEN LEYEAOU PEYEDOUC KIVNTIKWY UOVTEAWVY UE UTIOAOYLOTIKEC
pHeBOSOUC YL 0TEAEXN TOU LUKNTA S.cerevisiae e TNV LKOWOTNTA VO TIAPAYOUV LUKOVLKO 0&U.

H xprion YEeVETIKA TPOTOTOLNUEVWY HULKPOOPYOVIOUWVY ylo TNV Tapoywyn PBlokauoipwy Kal
XNUIKWV omoTeAel pLor umooxopevn Buwotpn evalhaktikiy. H Snuloupyio katdAAnAwv oteexwv
LKOVWV VOl TTOpAYOUV XPHOLUA XNULKA cuXVA TtpoUTtoBETeL TNV emBoAn aAlaywyv OToV KUTTOPLKO
METaBOALOUO. Emeldn) ol aAlayEG auTEG sival pn mpodaveic n oxedlaotiky dadikaoia cuxva
umoBonBartat and tn xprion MetaBolikwyv poviéAwv Movidtakng KAipakag (MrK) mou mepléxouv
OAn tn StaBaoiun nAnpodopia oXETIKA e TIG LeETABOALKEG SuvaTOTNTES EVOC opyaviopol. Ta MK
OTOTEAOUV OTOLXELOLETPLKEG OVATIOPOOTACELS TOU OUVOAOU TOU HETABOAKOU SIKTUOU UTO Th
popdn CUCTANATOC YPOUHLKWY EELOWOEWV KoL TTEpLOPLOpWV. Ta MTK amoteAoUv pia anAomnoinon
TOU TIOAUTTAOKOU OCUGTHOTOC EVOC ULKPOPYAVIOHOU KaBwe XPNoLUOToLoUV TNV mapadoxr Tng
MOVLUNG Katdotaong. H mapadoxn autr kablotd duvartr) tnv ypriyopn e€aywyr CUUMEPOCUATWY
KOl LETABOAIKWY OTPATNYIKWY WG TPOG TL YEVETIKEC TPOTIOMOLNCELG TTou Ba tpoodwaoouv oTov
MULKPOOPYAVIOUO KATOLO €MBUUNTO XapakTnploTikd. Qotoco autr n péBodog dev AauPdvel
umoP v TNV SUVAULKA TOU CUOTHUOTOG, SNAadr TNV KvnTikn Kal aduvatel va evtomicsl mbdava
Tpoxomedia tou UETAPBOAKOU CUOTHUATOC Kal va UTtodeifel pe peyoAUtepa olyoupla Evivua
OTOXOUC TIOU EMNPEAIOUV TNV OPOYWYN TOU EMLBUNTOU TTPOLOVTOC.

H avamtuén KwnTikwv HOVIEAWV €VOC CUOCTNUATOC TETOLOG TOAUTAOKOTNTAG OMWG EVaG
MLKPOOPYAVIOUOG £lval pia apKeTd SUOKOAN TMPOKANGN. H KvNTIKn Twv eviUPWV EpyaoTnpLaKd
koBopiletal Ue in vitro mepapata mou 0 evIUULIKOG KABapLOPOC ElvaL UTIOXPEWTLKOC. AKOUO KOl
yloL TOV TILO MEAETNMEVO HLIKPOOPYOAVIOUO S.cerevisiae Sgv €XOUV TPOOSLOPLOTEL OL KLVNTLKEG
TAPAUETPOL TNG TTAELOVOTNTAG TWV VIUUWVY. AV KAl YIVOVTAL TIELPAUATA TTPOGSLOPLOUOU KIVNTLKWY
WotAtwy Twv evlUpwv Toté dev Ba emapkéocouv yla va meplypaldouv OAn tnv SuvapLKA
ouUTEPLPOPA TOU TIOAUTTAOKOU HETOBOALKOU CUCTALATOC AMOTEAELTO Ao ekATOVTASEC Eviupa.

Mia &AAn otpatnylkn €lval vo TPOooTaBriCOUUE va UTIOBECUUE KLVNTIKEG EKPPACELG yLa TIG
evIUMATLKEG avTLOPAOELG KOl VO TIPOBAEPOUUE TIG KIVNTIKEG TTApAPETpoUC KABe avtidpaong. H
TIOAUTTAOKOTNTA TWV €eVIUUIKWY OvVIWOPACEWY wotoco, Kablota oxedov adlvato Tov
XOPOAKTNPLOUO OAWV TWV KWWNTIKWV TapapETpwy. EMopévweg, ouviBwg xpnolpomolouvtal
TaPaSoXEG Kal ATTAOUCTEVUOELG OTLG EKPPATELG TWV EVIUULKWV KVNTKWYV, £ite KvnTkéG Michaelis-
Menten eite kwnTikéG Spaong palwv. TG MepLooOTEPEG GOPEG TA KIVNTIKA LOVTEAQ UTIOBETOUV
TG KLVNTLKEG TtapapeTpoug Sixwg melpapatikd dedopéva r 6ev Aapufavouv unoPv pubuoug
avtibpaong poviung koataotoong N O6ebopéva  OUYKEVIpwOoewv, oute efaocdalilouv
BeppoduvapLkou mePLOPLOUOUG.

Jtnv napovoa epyacia xpnotpomnotnonke n pebodoAloyia ORACLE(Optimization and Assessment
of Complex Living Entities) yla tTnv avamtuén KvnTikwv LOVTEAWV YLO YEVETIKA TPOTIOTIOLNUEVA
OTEAEXN LOYLAG TIOU TTOPAYOUV HUKOVLKO 0€U. ITO TPWTO O0TASL0 EVOWUATWVOVTOL OTO ETIAEYUEVO
MetaBoAlko povtélo Movidltakng KAlpakag melpapatikd dedopéva av umdpyxouv, Omwe Kat ol
€TePONOYEC eVIUULKEG avTidpdoelg. Ta MIK amoteAoUV OTOLYELOUETPLKEG AVATIPAOTACELG TOU
OUVOAOU TOU HeTAPOALKOU SIKTUOU UMO TN HopPdH CUCTAUOTOG YPAUUIKWY €ELOWOEWY Kol



TLEPLOPLOUWV. 2T 8eUTEPO OTASLO SELYUATOANTITELTAL O ETUTPENTOC XWPOG AVCEWV TOU YPOUULKOU
CUOTAMATOC Kal SELYLOTOANTTOUVTAL ETMITPENTEG CUYKEVIPWOELG HeTABOAITWY. XTOo Tpito BAua,
umoAoyilovtal oL KIVNTIKEG TTAPAUETPOL TWV AVTIOPACEWV £TCL WOTE va emaAnBevouv Tig AUCELG
NG MOVIUNG KATAOTAONG. 2TO TETAPTO PAMO, TA KLWNTIKA HOVTEAQ Tou £xouv TmopoyBel
uTtoBAaAovTal O TEOT TIOU €AEYXOUV TNV OTABOEPOTNTA TOUG OE TUXALEC UETOBOAEC TNG APXLKNG
OUYKEVTPpWONG Loopporiog KabBwg Kat tnv taxlTNTo amokplong. Ta KvNTIKA UOVTEAQ Tou
gudaviouv uPnAn otabBepdTNTA XPNOLLOTOLOUVTAL YLO. TOV UTIOAOYLOUO GUVTEAECTWY pUBULONG
METAPBOALKAC PONG KL CUVTEAECTWY pUBULONG UETOBOALKWY CUYKEVTIPWOEWV oUudwva UE ThV
pebodoroyiae MCA(Metabolic Control Analysis). Ito teAeutaio Brua, €€dyovral OTOTIOTIKA
6e6opéval yla TOUC CUVTEAEOTECG pUBULONG KOl TPOTEIVOVTOL LETABOALKEG OTPATNYIKEG AUEnong
pON¢ Tou emBupunToU TPOLOVTOC.

Me tnv pebobdloyia autr katadépaue yo To cuoTnua pog katadépape va avamntuéoupe 70
otaBepd KvnTika povtéla. Emiong evtomiotnkav €viupo otoxol Kal tpotabnkav PETAPBOAKES
OTPATNYKEG ToU emnpedlouv oe LPNAG PBabud TtV mapaywyry HUKOVIKOU 0E£0C Ko
napatnpendnke ewg kat 12mAaclacuog tng emBuUUNTAC UeTABOAKAC pong. Ol peTaBOALKEG
OTPATNYLKEG UMTOPOUV VO LETADPOOTOUV OE EPYOOTNPLAKEG TIPOKTLKEG YEVETLKNG TPOTOMOLNONG
OMw¢ mpoobnkn, dlaypacdr), UTtepékPpaon 1 UTIOEKPPaoH yovidiwv Kal va BEcouv oTOXoUG yLa
TNV tpomnomnoinon ev{uUwV.
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Chapter 1. Introduction

Biotechnology has existed almost since the dawn of humanization. Products such as cheese,
bread, wine and beer come from the manipulation of living organisms. As humans began to
understand better biology and the possibilities of bioprocesses and with the sense of necessity
born from both Worlds Wars, the first biorefineries were constructed. The acetone-ethanol-
butanol fermentation process, which is still in use, was developed during WW1 and WW2 was
signaled the industrial scale production of penicillin®.

In the early 1990s advancement in the field of genetic engineering led to success stories especially
in the pharmaceutical field (recombinant proteins, antibodies). Later, mathematical modelling,
genome scale models, easier genetic modification technologies, bioinformatics kickstarted the
field of metabolic engineering- suggesting was of producing chemicals exceeding the spectrum of
the food industry through biotechnological routes. The emerging biotechnological field has a net
worth of 300 billion USD and is said to duplicate by 20252,

Biotechnology could prove to be a solution to a plethora of modern-day challenges such as climate
change, pollution, depletion of natural resources and increasing food demands. Biotechnology is
an invaluable that will be able to transform renewable feedstock to desired chemicals thus
decreasing the need for fossil fuels and subsequently alleviating the impact on climate.
Genetically modified plants would prove to be highly resistant and exhibit high yields helping in
the rising food demands. Biotech drugs, vaccines and diagnostics help rise the quality of life*,

Bioprocesses and biorefineries where biomass feedstock are transformed to biofuels, platform
and special chemicals and novel products, can be seen as the key concepts that will lead to a bio-
based economy. Fossil fuels and petrochemicals still dominate today’s economy as the cost of
production is lower than their bio counterparts. With the ever-increasing fuel and plastic demand
and the stagnation of old oil wells, petroleum prices will soon rise as we will have to turn to much
more inaccessible oil wells and more unrefined oil. This will result in higher extraction costs and
higher separation and purification costs. On the other hand, bio processes remain an environment
friendly alternative, as microbial fermentations demand milder conditions than the equivalent
catalytic transformations. However, these processes are seldom competitive to their
petrochemical counterparts due to low productivity, yields and high separation costs. The
development of industrial strains with selected characteristics that can support the
commercialization of a biorefinery application is being conducted with iterative cycles where
metabolic interventions are systematically identified and applied to the host organism>”. As the
metabolic systems are very complex, interventions are not so obvious and are computer assisted
and typically Mixed Integer Linear Programming (MILP) algorithms are utilized to build the
interventions®°,

However, most strain design approaches make the assumption of the system being in steady state
and fail to take into consideration the kinetic aspect. Although such techniques provide useful
insights and are computationally cost efficient, sometimes they fail to predict potential
bottlenecks or rate limiting reactions inside the metabolic network. The current thesis aims to
develop large scale metabolic kinetic models for a muconic acid producing yeast using the
Optimization and Risk Assessment of Complex Living Entities (ORACLE) workflow. The generated
populations of kinetic models will be used as an input for the well-established MCA framework to
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identify enzymes closely affiliated to muconic acid flux and perform enzyme perturbations to
quantify this effect. This way we will be able to develop metabolic strategies while taking into
consideration stoichiometry, thermodynamics, kinetics and their interplay.

Chapter 2. Background and state of the art

2.1 Cellular Metabolism

Metabolism refers to all chemical reactions that take place in an organism. These reactions are
necessary for the production of biomolecules and biomass (nucleic acids, lipids, proteins and
carbohydrates), the extraction of energy from nutrients for the various functions of the cell.
Metabolism is often divided into catabolism and anabolism.

Catabolism is the set of reactions that break down large molecules (such as polysaccharides, lipids
nucleic acids and proteins) into smaller units (such as monosaccharides, fatty acids, nucleotides
and amino acids respectively). These smaller units are either oxidized to release energy necessary
for the maintenance and growth of cells or used in anabolic reactions. Some examples of catabolic
pathways are glycolysis, the citric acid cycle, the breakdown of fat or muscle protein and many
more. Glycolysis for example is the metabolic pathway that converts glucose into pyruvic acid.
During this process free energy is produced and while a large part escapes as heat the other is
used to form high-energy molecules ATP (adenosine triphosphate) and NADH (reduced
nicotinamide adenine dinucleotide).

Anabolism, or also known as biosynthesis, on the other hand is the set of metabolic pathways that
construct large molecules from smaller units. This process requires energy and is called
endergonic whereas catabolism is exergonic. Some examples of anabolism are the amino acid
biosynthesis, gluconeogenesis etc.

The sum of the aforementioned reactions, catalyzed by enzymes, consist the metabolism of the
cell. These reactions form interconnected metabolic pathways that shape a dynamical circuitry
referred as metabolic network. The pathways are further categorized in subnetworks, responsible
for a specific cellular function. Organisms have many structural differences between them but
they may share several core subnetworks.

2.2 Metabolic Engineering

Metabolic engineering is the intentional modification and manipulation of cellular metabolism for
the production of desired chemicals!’. Recombinant DNA techniques are used to either insert
new pathways in microorganisms in order to produce novel metabolites or produce heterologous
peptides (e.g., human insulin) or improve new or existing processes.

Metabolic engineering is necessary for creating efficient cell factories for the development of
sustainable processes for the production of chemicals, fuels and materials. Microorganisms
through their complex metabolic network are able to convert simple feedstock such as glucose,
lignin etc. into desired products. However small yields, high separation costs, lack of kinetics,
difficulties in the scaling up impose a bottleneck. Systems metabolic engineering can offer better
predictions by combining the omics data (genomes, transcriptomes, proteomes, metabolomes,
fluxomes) and computational techniques used in systems biology allowing a better understanding
of the cellular processes and engineering capabilities®?.
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2.2.1 Muconic acid

Muconic acid (MA) is a high value product which has gathered interest in applications in the
manufacture of new resins, bio-plastics, food additives, agrochemicals and pharmaceuticals®. MA
is an unsaturated dicarboxylic acid, also known as 2,4 hexanedienoic acid, which due to the double
bond and dicarboxylic groups can be polymerized. MA can be found in three isomer forms cic,cis-
MA, cis,trans-MA, trans,trans-MA. MA can be chemically processed to produce bulk chemicals
such as adipic acid, terephthalic acid and trimelitic acid which are widely used in the nylon and
thermoplastic industry?3.

Chemical formula: CgHO4 Nylon-6,6, polyester polyols,

Molecular weight: 142.11

/, — COOH
HOOC —

cis,cis-Muconic acid

/\/\/('()()“
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polytrimethylenc terephthalate,

polyethylene terephthalate,

dimethyl terephthalate,
COOH H()()(‘*@f('()()“ . - .
trimellitic anhydride,
(/ — I'erephthalic acid ' industrial plastics,
\/('()()Il resins, food ingredients,

cis, trans-Muconic acid

H()()('—//_\\—('()()H

trans, trans-Muconic acid

HOOC

N

HOOC COOH

plasticizers, cosmetics,
pharmaceuticals,

engineering polymers, etc.
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Figure 1:Industrial products of MA and further applications3

Traditionally MA is produced via chemical processing of non-renewable petroleum feedstock with
acids and strong metal catalysts'®. Toxic intermediates, corrosive catalysts, concern for the
environment and the use of non-renewable materials have led to the search of alternative paths.
Recently, progress has been made in the biochemical procedures for MA production.

2.2.2 Different Metabolic strategies for muconic acid production
The ortho cleavage of catechol

Catechol is a precursor molecule to cis,cis-MA and can be produced by microorganisms capable
of biodegrading aromatic compounds. Especially, bacteria oxidize aromatic compounds such as
benzoate, toluene, benzene, phenol, aniline, anthranilate to catechol. Benzoate has mainly been
used as feedstock due to its low price and the capability of some microorganisms in the genus
Pseudomonas, Arthrorbacter, Corynebacterium, Brevibacterium, Microbracterium and
Sphingobacterium to metabolize to MA via the B-ketoadipate pathway®.
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Figure 2:The B-ketoadipate pathway®

In order to achieve high MA yields this pathway requires the following properties for the mutants;

» Metabolizing aromatic compounds through the B-ketoadipate pathway and having the CatA
enzyme responsible for the cleavage of the aromatic ring of catechol

> Missing functional muconate cycloisomerase which would enable the accumulation of MA
and stop the flux to muconolactate

> Being resistant to aromatic products and substrates

> Excreting MA to the medium in order for it to be easily separated

> Having strong CatA activity'®

Many efforts have been made with the above biotechnological strategy and high vyields,
concentrations, productivities have been achieved’*®. However, this method is restrictive due to
its dependency on the petrochemical industry. An attractive alternative would be the use of a
lighocellulosic feedstock due to its high concentration of aromatic compounds®2° but the high
cost of separation and small yields present a bottleneck.

MA production by branching shikimate synthesis via 3-dehydroshikimate

Glucose can be converted to MA through an artificial pathway based on the shikimic pathway.
The shikimic pathways begins with the condensation of phosphoenolpyruvate (PEP) and
erythrose-4-phosphate to form 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP). DAHP is
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then converted to 3-dehydroquinate (DHQ) and afterwards to dehydroshikimate (DHS). DHS is the
precursor molecule to shikimate which is the basic aromatic compound for the production of
aromatic amino acids such as tryptophan, phenylalanine, tyrosine. An heterologous pathway is
expressed by the genes aroZ (encodes 3-dehydroshikimate dehydratase which catalyzes the
reaction of DHS to protocatechuate (PCA)), aroY(encodes protocatechuate decarboxylase which
catalyzes the reaction of PCA to catechol) and catA( encodes catechol dioxygenase which
catalyzes the reaction of catechol to MA).

H( ooy DPHQ ' DAHP
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,04PC E4P

OH OH
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dehydrogenase

'OOH

—» Aromatic amino acids
—
e . A
H( H Other aromatic metabolites

H
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Figure 3:The heterologous pathway to MA production by branching of the shikimic pathway!3

Many efforts have been made using a shikimate dehydrogenase deficient E.coli. It is worth
mentioning. E.coli is a great candidate for high yield muconic acid production. An engineered
E.coli strain with inactivated shikimate dehydrogenase, overexpression of DHQ synthase and
transketolase to increase the flux through the shikimic pathway, and the heterologous enzymes
AroZ and AroY and CatA has produced 59g/L(30% yield mol/mol) in a fed-batch culture, the
highest reported MA yield with glucose as a substrate?!

MA production by branching tryptophan pathway via anthranilate

A novel alternative to the branching of the shikimic pathway is the branching of the tryptophan
pathway. More specifically, an intermediate metabolite of the shikimic pathway is chorismate
which is a precursor molecule to the three aromatic amino acids tryptophan, phenylalanine,
tyrosine. The reaction catalyzed by anthranilate synthase converts chorismate to anthranilate. A
novel pathway is grafted by heterologously expressing the reaction of anthranilate to catechol
encoded by the gene ADO. Catechol then gets converted to MA through the CatA enzyme activity.
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Figure 4:Pathway A illustrates muconic acid production via shunting the shikimic pathway and pathway B illustrates
muconic acid production via shunting antranilate pathway??

An engineered E.Coli strain following the above pathway produced a maximum concentration
390mg/L of MA in shake flasks?2. This heterologous pathway is shorter by one reaction from the
shikimate alternative but additional PEP is required in contrast?®>?* and small yields have as of nhow
been reported.
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2.2.3 Yeast as a cell factory

Since S.cerevsiae has been broadly used for beer and wine fermentations, its selection as
industrial ethanol producer is not surprising. The ethanol fermentation, nowadays, consists a
robust, well-studied industrial application, making yeast one of the most preferred host organisms
for the production of diverse fuels and chemicals. Moreover, holding a GRAS status by FDA, makes
yeast suitable for the production of food-grade products?. Over the years, yeast metabolic
capabilities have been exploited for the production of various products such as pharmaceuticals
(artemisinic acid, human albumin etc.), fuels (alcohols, alkanes, etc.) and platform chemicals
(succinic acid, coumaric acid, etc.) and specialties (santalene, valencene, etc.).

Many microorganisms are capable of producing muconic acid naturally using aromatic
compounds such as lignin as feedstock. However, the production levels and properties fall short
due to toxicity, different feedstock compositions, difficult and costly separations. Although,
microorganisms such as K.putida have shown very high yields with pure aromatic compounds as
feedstocks they fail to provide a viable solution due to the high value of the materials used. For
that reason, interest is being shown to hosts that can be used to express heterologous pathways
that would lead to a cost-efficient biotechnological strategy using cheap feedstocks.

Yeast, although falling short to its bacteria adversaries K.putida and E.coli who can produce and
metabolize aromatic compounds due to their physiology, is the perfect host to express
heterologous pathways. Moreover, the accumulation of yeast fermentation data and knowledge
reduce the uncertainty in the scaling up process. S.cerevisiae exhibits pH-tolerance and has
proven robust in prior applications. Yeast from a biological scope is the perfect candidate for gene
editing as:

e |ts genome is completely sequenced, its metabolic pathways are known as well as its
proteins?®

e Genetic manipulation on yeast is quite easy as DNA insertion and integration in a yeast
cell doesn’t require transport proteins or CRISPR

e Yeast cells don’t contain a cell membrane thus making it easier to insert plasmids.

2.3 Constraint based modelling

The generation of large amounts of information regarding biological systems and processes due
to emerging high throughput technology has also pushed forward the systematic and
mathematical analysis of these systems?’. The mathematical modelling of metabolism is an
invaluable tool in predicting and evaluating the cellular reaction under genetic changes,
concentration perturbations and different background environments. In general, all the existing
approaches boil down to roughly two categories: the kinetics modelling and the stoichiometric
modelling. The kinetics approach is based in assigning mechanistic kinetic expressions such as
Michaelis Menten or Hill equation or mass action kinetic expressions to describe the reaction
rates. The conservation of mass for every metabolite depicts an ordinary differential equation.
The total of these equations presents a system of ordinary differential equations which can be
solved numerically. The solution of such a system is a time dependent metabolite concentration
and reaction flux profile. However, lack of kinetics experimental data or uncertainty in the
prediction of kinetics parameters present an obstacle. The stoichiometric approach primarily
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relies in the assumption of steady state resulting in a system of linear equations that describe
the metabolites mass concentration.

2.3.1 Genome scale metabolic reconstructions (GEMS)

Stoichiometric models have been used to study the physiology of organisms for almost 30 years.
The advance in technology as well as the better understanding of genomes has led to the
accumulation of information and the creation of Genome Scale Metabolic Reconstructions?®.
GEMS can be seen as a map showing all the reactions occurring in the cell while also linking the
gene encoding the enzyme for each reaction. This gene to protein to reaction association (GPR)
offers a pretty good image of the biochemistry inside the cell. These GEMS can be used for five
major ends: (1) conceptualization of high-throughput data, (2) assisting in metabolic engineering,
(3) directing hypothesis-driven discovery, (4) evaluation of multi-species interactions, (5) network
property analysis?®. For metabolic engineering applications GEMS can offer metabolic strategies
for maximizing a desired product flux, identification and drug design as well as reactions of cellular
phenotypes under different environment conditions and gene knockouts.
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Figure 5:Phylogenetic representation of the alternative constraint-based methods applied to GEMs30
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2.3.2 Flux Balance Analysis (FBA)

Flux Balance Analysis is a key method for constraint-based modelling from which take birth a
plethora of other analysis methods. At its core, FBA is a mathematical approach to analyze the
flow of metabolites through a metabolic pathway?!. The metabolic network stoichiometric
information is encoded in the stoichiometric matrix S. Each row of the matrix S represents a
metabolite and its column a reaction. The elements of the matrix are the stoichiometric
coefficients of every metabolite for every reaction. FBA imposes two constraints on the system.
The first one is that the system is in pseudo steady state, meaning that there exists none time
dependency. This is mathematically described by the equation:

S-v=0

Where S is the stoichiometric matrix and v is the flux vector for every reaction. This simple
equation makes sure that every mass concentration equation for every metabolite is satisfied.
The second type of imposed constraints are the lower and upper bounds for metabolite
concentration, typically including laboratory flux measurements (metabolite uptake or secretion
rates).

These two types of constraints define am allowable solution space. The network is capable to
acquire any flux distribution lying inside the solution space. Typically, the aim of FBA is to find a
flux distribution inside the allowable solution space that maximizes or minimizes a specified
objective function. A common aim when handling GEMS is growth prediction, so a column is
added most of the times to account for the biomass producing reaction. The objective function in
this case is the maximization of biomass production.
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Constraints Optimization
1)0=S8v maximize Z
2)a;i<v;<b; e

ki >V >V,
Unconstrained Allowable ) .
Solution Space Solution Space Optimal Solution
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Figure 6:: A conceptual basis representation of constraint-based modeling. When left unconstrained any flux profile is
possible. When mass balance constraints (S matrix) and lower and upper bounds of metabolites are defined, then there
exists an allowable solution space. The network may acquire any flux distribution within this defined space, while points
outside it are denied by the constraints. Through optimization of specific objective functions, FBA identifies a point in
the allowable solution space that satisfies the objective function.

2.3.3 Thermodynamic Flux Analysis (TFA)

While FBA solutions offer a good insight in metabolic fluxes more often than ever the solutions
are non-unique and sometimes violate thermodynamic laws. To further constrain the solution
space and obtain thermodynamically feasible flux profiles extra constraints are added in order to
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couple the reaction directionalities to thermodynamic constraints3?3°, In this approach
metabolite concentrations and Gibbs energy of reaction are added to the model.

Table 1.FBA and TFA constraints3®

Mass balance S-v=0
FBA constraints

Flux capacity vTSv<=vw

Gibbs energy of reaction m
A4,.G; = Ar,tprGi’ + z 1 nijm;
J:

Chemical potential i = ApG{® + Af 0y G;° + RTInx;
TFA constraints
Thermodynamic feasibility A,Gi—K+K-7;<0
Coupling constraint v,—K-z;,<0

Where:
ArGi'is the transformed Gibbs free energy of the reaction i
Wj are the chemical potentials of the reactants j

Ar,tptGi ' is the Gibbs free energy of transport (accounted when the reaction is transport of a
compound from one compartment to another)

AfGj'0is the standard transformed Gibbs free energy of formation of the compounds
Af,errGj ‘0 is the estimated error in the energy of formation

R is the universal gas constant

T is the temperature (here assumed 298 K)

xj is the molar fraction of the compound j

K is a large (Big-M, K > max ArGi ') value

and z is a binary decision variable

This formulation further requires that net fluxes are non-negative. To achieve this, each reaction
is separated in two: a net forward and a net backward while the net fluxes are associated such
that:

Unet = Vforward — Vbackward

By doing this it is ensured that the solution space is a convex one which is necessary during the
sampling step. From the constraints it is also ensured that either the backward reaction is active
or the forward or none at all.
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Figure 7:Space of metabolite concentrations within bounds experimentally observed under different physiological
conditions (dashed line) and within thermodynamically feasible bounds (solid line)3.

2.4 Kinetic models and DBTL cycle

2.4.1 Kinetic models

All the constraint-based methods make steady state assumptions and fail to capture the dynamic
the metabolic network’s dynamic properties. To reveal dynamic properties of reaction networks,
kinetics is essential®®. However, enzyme kinetics traditionally are determined through in vitro
experiments which require purification of the enzymes involved. As a result, even for the most
studied microorganism S.cerevisiae the vast majority of enzymes lack kinetic parameters.
Although experiments are being contacted to determine kinetic properties for enzymes, they will
not suffice to describe the full dynamic behavior of a complex metabolic network consisting of
hundreds of enzymes.

A different strategy is to try to assume rate laws for each enzymatic reactions and try to predict
the kinetic parameters for each reaction. However, reactions such as phosphofructokinase
contain 11 different kinetic parameters®” and the determination of all them proves very difficult.
As a result, simplified kinetic laws are assumed for the enzymatic reactions either Michaelis-
Menten or mass action kinetics. Most of the time the kinetic models developed predict kinetic
parameters with no experimental data available3®*? or they do not take into consideration known
steady state fluxes or concentration data, nor do the ensure thermodynamic constraints®3,
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The two main issues that hamper the development of kinetic models are*:

a) Uncertainty in metabolite concentrations and thermodynamic displacement.
Uncertainties in metabolite measurements and in the estimated thermodynamic
properties of reactions (Gibbs free energies of reactions) can impact the conclusions
about the displacement of reactions from thermodynamic equilibrium and ultimately
the conclusions about the kinetic parameters of the corresponding enzymes.

b) Uncertainty in kinetic properties of enzymes. The lack and uncertainty of information
about enzyme kinetics has been acknowledged as the single most important obstacle
for developing kinetic models. Uncertainties of this type can be either structural, e.g.,
incomplete knowledge of kinetic mechanisms, or quantitative, e.g., absent or
incomplete knowledge about the values of the kinetic parameters of enzymes.

The Optimization and Assessment of Complex Living Entities (ORACLE) framework tries to bridge
the gap between constraint-based methods and kinetic modelling. Using Thermodynamic Flux
Analysis to predict potential flux steady states and concentration profiles and then fitting in kinetic
parameters to verify the steady state. A population of kinetic models can be generated without
sacrificing thermodynamics or steady state fluxes, out of which pruning tests and stability checks
will determine potential kinetic models. These models will be used as the basis to construct new
metabolic strategies that will lead to the maximization of the desired flux.
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Figure 8: Generalized workflow for metabolic kinetic model construction and use in metabolic engineering*®.

2.4.2 DBTL cycle

The typical design process towards a sustainable bio-production of chemicals follows the iterative
Design-Build-Test-Learn (DBTL) cycle. The design involves the selection of the platform organism
and the heterologous reactions that need to be expressed to produce the desired chemicals as
well as strategies (enzyme upregulations or downregulations) to enhance product yield. The build
module involves the genetic transformation and gene editing of the platform organism in
accordance to the strategies of the design step. The test module we gather information on the
cloning results, omics data and help comprehend cellular behavior. Small batch experiments

22



showcase the developed strain’s desired product yield as well as some key metabolites secretion
rates. The learn module takes into account the generated information from the test step and
incorporates it into new metabolic strategies to further optimize and increase the desired flux.

The learn module often doesn’t take into consideration the kinetic aspect of the cell behavior.
Moreover, during the test module the experimental conditions are well monitored and controlled
and the yield predictions often fall short during the scaling up of the bioprocess. This uncertainty
gap between experimental yield and pilot yield deems bioprocesses untrustworthy and
unfavorable for further scaling up. In order to minimize this gap, it is necessary to incorporate
large scale kinetic modelling and curating in the learning phase in order to have a clearer picture
if we were to move to scaling up process.

Large scale kinetic models not only will offer better metabolic strategies to increase the desired
flux during the DBTL cycle but will also work as a basis during the scaling up process. They can be
used to simulate the cell behavior in a real batch reactor, with fluctuating conditions while also
offering the necessary information for the process optimization. To add to this, secretion rates
will be also predicted offering the possibility for downstream separation design and
optimization.

Chapter 3. Problem description and methodology
3.1 Problem description and workflow outline

3.1.1 Problem description and main challenges

Typical metabolic engineering strategies to produce efficient cell factories often do not take into
account the kinetics and use FBA-related methods which assume that the system is in steady
state. The common practice in computer aided strain design involves MILP formulations that
reveal metabolic strategies (gene knockouts, reaction additions, gene upregulations or
downregulations) that maximize yeast growth coupled with the desired chemical production.
These methods may offer a helpful insight and good metabolic strategies but they sometimes fail
to take into consideration possible flux bottlenecks due to enzyme saturation or due to the lack
of activity from some enzymes. In other words, they fail to predict the dynamic part of a metabolic
network and the interplay between stoichiometry, thermodynamics and kinetics.

The development of large-scale metabolic models is a challenging task. The lack of experimental
data, the uncertainty of some kinetics parameters available in literature and databases, the
uncertainty of the types of mechanisms for every reaction, the errors in metabolomics and
fluxomics data are some of the problems?®. Moreover, for every reaction in the system a rate
expression along with values of kinetic parameters are required for a kinetic model. Errors also in
the thermodynamic properties hinder the ascertainment of a unique steady-state profile for
metabolic fluxes and metabolite concentrations. Taking all this into account it is impossible to find
a unique kinetics model which describes the physiology but it is possible to produce a population
of models that agree with the physiology and statistical analysis on these models can be used to
analyze and predict the metabolic responses in the system?®’.
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A common practice while developing large-scale kinetic models is to use any type of experimental
data such as fluxomics, metabolomics, proteomics, growth rates, uptake rates, secretion rates
etc. That way, the problem’s uncertainty is reduced and we can get models that are closer to
physiology that has been experimentally observed. The alternative approach is to assume ad hoc
growth rates and flux directionalities.

The primary challenge will be to produce large-scale kinetic models that are physiologically
relevant meaning that their dynamic behavior is close to the experimentally observed one. The
secondary challenge is to identify kinetic models that show “robust” behavior. Finally, the
population of the kinetics models will be used to target key enzymes and offer metabolic
strategies for the increase of flux of the desired product.

3.1.2 Workflow Outline

The proposed workflow outline is based on the Optimization and Risk Analysis of Complex Living
Entities (ORACLE) methodology*®*°. The ORACLE methodology consists of 7 steps:

1) Inthefirst step, the stoichiometry of the system is defined either by biochemical data
or genome reconstruction analysis. In this project, a yeast genome scale model is
curated and then reduced using redGEM®*® and lumpGEM?®?, Then, the experimental
data® are integrated into the reduced model as well as the heterologous reactions.

2) In the second step, the solution space from Thermodynamic Flux Balance Analysis is
sampled. Metabolite concentrations and reaction fluxes profiles, that agree with
thermodynamics, are generated.

3) In the third step, the kinetic parameters for all the reactions are calculated using a
Monte Carlo simulation. For every steady state sampled in step 3 the kinetic
parameters are calculated to verify that steady state

4) In the fourth step, the produced kinetic models undergo pruning and stability checks.
Pruning reduces the models to those that are physiologically relevant and consistent
with the experimental data and stability checks identifies the models that show great
stability to a wide range of random perturbations.

5) In the fifth step, the stable models are used to calculate flux control coefficients and
concentration control coefficients based on a well-established MCA framework®.

6) In the sixth step, advanced statistical analysis and visualization is performed on the
produced populations of control coefficients as well as basins responses of the
generated kinetic models.
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Figure 9:Workflow of the computational procedure for uncertainty analysis of metabolic networks within the ORACLE
framework. Light gray boxes denote the integration of available experimental and literature data, whereas the dark
gray boxes denote the computation3®
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3.2 Genome Scale Reconstruction, curation and experimental data integration

The first step of the proposed outline is to prepare a functional and practical GEM to conduct the
following steps of the analysis. In the vast majority of industrial fermentation applications we
utilize one of the so-called platform organisms: E.coli, S.cerevisiae, C.glutaminicum and A.Niger.
These microorganisms are well-studied and their genome scale metabolic reconstructions are
available and thoroughly used. The GEM preparation includes actions concerning the metabolic
network and integrating the experimental data.

First of all, the GEM of interest is reduced to specific subsystems of interest. This step is of very
important practical value because it substantially reduces the metabolic network, we have to
work with thus resulting in a reduction of the necessary computing power. By applying the
redGEM®* and lumpGEM?®! algorithms we can form a core metabolic network on the subsystems
of interest without losing paternal GEM characteristics.

On the reduced model we can add the heterologous reactions that will lead to the desired
product. The new pathways added are translated to sequential biochemical reactions whose
reactants and products are cellular metabolites. The necessary rows for the new metabolites and
the necessary columns for the new reactions are added on the stoichiometric matrix along with
the corresponding reaction coefficients.

To increase GEM credibility and predictability of the analysis the incorporation of experimental
data®? is a common practice. Fluxomics, metabolomics, physiology, uptake rates, secretion rates,
growth can all be used to constrain metabolite concentrations, define reactions direction, add
gene deletions, upregulations or downregulations. All this information is valuable in building
kinetic models that agree with the observed experimental data and offer a really precise picture
of the cellular system and metabolic strategies with solid background.

3.2.1 GEM sampling

In order to develop the large scale metabolic kinetic models, it is necessary to build them around
thermodynamically and physiologically feasible steady states. The stoichiometric capacity and
thermodynamic constraints imposed on the system through the TFA analysis form a solution
space containing all the thermodynamically feasible steady states. In order to maximize the
probability of getting close to the steady states that will produce stable and physiologically
relevant kinetic models the sampling process is very important.

In order to uniformly sample the solution space an artificial centering hit and run algorithm (ACHR)
is used. This algorithm is broadly used to determine flux distributions and metabolite
concentrations®°. Flux distribution and metabolite concentration profiles sampled are used in
the next step to develop the kinetic models.

3.3 Enzyme kinetics

3.3.1 Modelling and simulation of enzyme kinetics
The rate law can be expressed by the equation below:
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V = Uy @@ (1)

where vmaxis the maximum rate achieved, w is the mass action expression and ¢ is the saturation
component. If we were to take the partial derivative of the rate with respect to the metabolite
concentration x we would get:

av dw do
a = 17maxafp + 17max(‘)a (2)
Scaling equation (2) by x/v we get:

x0v Olnw  0dlng
vox Odlnx  dlnx

(3

x v
The expression on the left-hand side 9% is called enzyme elasticity and it quantifies the
dlnw

interaction between enzyme and metabolite concentration. The expression is defined as

din

the mass action elasticity and the expression as the saturation elasticity.
x

The enzyme elasticity is closely related to enzyme saturation meaning that for a high value of
elasticity we get low saturation and for a low value we get high saturation®®.

The enzyme elasticity appears to be a sum of mass action elasticity and saturation elasticity:

e=¢gn+é& (4)

3.3.2 Elasticity calculation for a simple uni-bi reaction
In a simple reversible Uni-bi reaction the stoichiometry is as follows:

So P+ P, (5
Where S is the substrate and P; and P, the products

The rate expression is:

S [1_LP1P2]

Vmax Km,s Keq S 6
U_1+S L «©
Km,S Km,P1 Km,Pz
To simplify equation (6) we denote I' = L AP a5 the displacement from thermodynamic
eq
equilibrium, § = = P, = el P, = Pe
Km,s Km,Pl Km,Pz

Using equation (2) and (3) we can get expressions for the enzyme elasticity, the mass action
elasticity and the saturation elasticity with respect to every metabolite (S, P1, P2):

Sov _ 1 S ( )
vdS  1-I' 1+5+P+P;
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P, 0v 1 Py
v 0P, 1-I' 14+S+P+P,
P, 0v 1 P,
[ J 2 - - +_ (9)
v 0P, 1-I'  14+S+P+P,

Table 2:Elasticities for a simple Uni-bi reaction

Substrate S Product P, Product P,
Enzyme elasticity(g) Sov P, ov P, ov
vdS v 9P, v 9P,
Mass action 1 1 1
elasticity(em) 1-T 1-r 1-T
Saturation S P, P,
elasticity(es) 1+S+P +P, 1+S+P +P, 1+S+P +P,

For the mechanistic enzyme kinetics, we can see that enzyme elasticity is a function of
thermodynamic displacement, the stoichiometry of reaction and the metabolites concentrations
as well as the saturation constants.

3.3.3 Enzyme saturation
Most enzymatic reactions begin with the binding of regulatory substrate S on the active site of

the enzyme E:
k1
E+S—>ES
k2
ES—> E+S (10)

The total active site concentration is the sum of the free active site and the site of the
substrate/enzyme complex.

[Er] = [E] + [ES] (11)

The saturation constant Kn is defined as:
K, = z 12

The degree of saturation can be defined as the ratio of substrate/enzyme complex concentration
to total enzyme concentration:
S
Km
o =—<—— (13)

m+1

and the scaled metabolite concentration can be expressed as a function of degree of saturation:

S Og

K, 1-og

(14)

From equation (8) we can deduct that:
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e When an enzyme is 0% operating, oy = 0, then [S] > K,,
e When an enzyme is 100% operating, oz = 0, then [S] K K,
e When an enzyme is 50% operating, oz = 0, then [S] = K,

This formulation is very important during the Monte Carlo step because the degree of saturation
is well bound between 0 and 1 whereas if we were to sample the saturation constant which is
boundless constant it would prove more difficult.

As we consider more complex kinetic mechanismes, it is known that more complex enzyme
saturation expressions occur®’ but in the current study equation (9) was used.

3.4 Parameter inference

During the TFA sampling step we generate profiles of steady state fluxes, metabolite
concentrations and reaction free energies (vi, [Xj], AGj). Using the information from the steady
state solution we will generate kinetic parameters (Vmax, Km,, Keq) for all the reactions in the
system. The generated parameters will have to lead to the corresponding steady state solution
and also produce a steady kinetics model.

First of all, for every reaction of the system a mechanistic kinetic expression is added based on
biochemical data or in case data is lacking we use ad hoc kinetics.

Table 3:Expressions of mechanistic kinetics used and list of parameters.

Name Reaction Rate law expression
[5] ( _ 1 ﬂ)
L e s\ Ry [S)
Michaelis N - [S] [P]
Menten S=P 1+ Ky s + Ky p

Parameters: [Viax, Ku,s) Knpy Kegl

[S1] [S.] (1 1 [Pl][PZ])

max Ky s, Kus, \"  Keq [S1][S2]

Random Bi- v =
Bi Michaelis | S +S, =P, +P, 1+ K[Sl] + K[SZ] + IEPJ + IEPZ] + K[Sl][lgﬂ + K[Pl][I?Z]
Menten mMs;  fms,  Bmp o Bmp,  Bms tus;  BmpyRipg
Parameters: [Viax, Ku,s,» Ku,s,o Kis, K pys K pys Kip, Keg
V(PLW(@»N(mxm+mW*
. max Keg "= \[S;] =1 \Ku,s,) \Ku,s, * Kup,
Generalized P v= o
Reversible b v (1 +( [, [P )
Hill Tt N = Kus,  Kup,

Parameters: [Viyax, Kus, - Kusyo Kmp, - Kipy Kegs
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v ([51] )(1 _1 [Pll[Pz])( [S:] , [P [Po] )"‘1
Uni-Bi v = max KM,Sl Keq [51] KM.Sl KM,P1 KM,P2
ni-Bli - h h h h
Reversible S, 2P, +P, 1+([51] + [P1]> (IS0 [Pl ) | (IS | [P [Po] _2(M>
Hill KM,51 KM.P1 KM,51 KM,PZ KM,51 KM.P_l KM.PZ KM,51
Parameters: [Vinax, Ku,s,» Km,p,» K p,r Keqs 1l
v ([51] [S.] )(1_ 1 _[P] )( [S:1] [S2] | [P] )"‘1
Bi-Uni v = max KM.Sl KM,S2 Keq [S1][S,] KM,Sl KM,S2 KM,P1
=uni - h h h h
Reversible S, +S, =P, 14 ( [S:] | [P1] ) oIS L [P | ( [S1] [Sz] |, _[Py] ) —Z(Q)
Hill® KM,s1 KM.P1 KM,S2 KM,P1 KM,s1 KM.S2 KM,P_l KM,P1
Parameters: [Vyax, Ky s, Ku,s,» Kupy» Kegs
Voo TTM ([Si])l_lw
. max 11i=1 KM,SL- Keq H{VL1 [Si]
Convenience | «;S; + - +aySy v= po- ™
Kinetics = 1P+ + ByPy M Zai [Si] + HN Zﬁj [P]] -1
i=1 &4m=0 KM,SL- Jj=1 &4m=0 KM,Pj
Parameters: [Vynax, Ky s, - Kus,0 Knmp, - Ky pys Kegr ]
[Si] \
u (L
| ibl v, l_[ R,
rreversible UV = Vinax T AE
Michaelis | 51+~ *S =i k1 +K[5_L]/
Menten : N M.Si
Parameters: [Vnax, Ku,s, - Ku,s,,)

The above table contains all the mechanistic kinetic expressions used in the current thesis. The
parameters that need to be defined are the vma (maximum rate achieved), the saturation
constants Km which are related to enzyme saturation, the Keq which is related to the AG: and the
hill coefficient h which for our problem was equal to 1 for every reaction.

The steps followed to determine these parameters are as follows:

1)

2)

3)

The Keq is calculated based on the reaction AG,. The thermodynamic properties needed
for this step are calculated during the TFA step and the equilibrium constant is calculated:
Keqi = —RTIn(4,G/°) (15),
where R is the universal gas constant, T is temperature in and 4,.G;° is the transformed

Gibbs free energy of reaction i calculated during the TFA step.

In order to calculate the saturation constants Km,i; we sample the saturation constants oj;
which are bound 0 < 0;; < 1. Then by using equation (13) we calculate the saturation
constants.

Lastly, the vmax parameters are calculated to verify the steady state fluxes.

For each resulting model it is important to test the local stability of the system. In order to do that
we calculate the Jacobian matrix:
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ax_ X +0(X?)
a =’ ’

_ 9 (dX;

=35 (@) 19
J

For a metabolic system at steady state, we have:
Nv =0 (17)

Where N is the stoichiometric matrix and v is the flux vector. The Jacobian matrix can be derived
from equation (17)°8°°:

) __ ____
VE, X1+ NVEX! (18)

-
X1=s7=

=2

e
>l

~iI
Il
=2l
Q)l <Y}
1R
Il
=
<
<
AR
1R

o

Where V is diagonal matrix containing the steady state fluxes, Xisa diagonal matrix containing
all the steady state metabolite concentrations, E is the enzyme elasticity matrix, Em is the
mass action elasticity matrix and E; is the saturation elasticity matrix.

The two elasticity matrixes can be easily calculated from expressions such as those in Table
1. After calculating the Jacobian matrix, we check if the real part of every eigenvalue (1;) is
negative. If this condition is met then the generated model is stable and the parameter
population is stored for further analysis.

3.5 Parameter pruning and stability checks

3.5.1 Parameter pruning

After the parameter inference step, we have generated a large number of kinetic models
containing fluxes, concentrations and parameters. However, the majority of those models appear
not to be physiologically relevant and would result in uncertain predictions. As the first step of
the parameter pruning, we check if the system response to a small metabolite concentration
perturbation is within physiological bounds.

For a small perturbation the response of metabolite i concentration will be given by the equation:
t
[Xi] - [Xi]steady = ([Xi]t=0 - [Xi]steady) exp (_T_ + lwit> (19)
L

Where t; = abs( ) and w; = Im(4;). The first term —L. inside the exponential represents

Re(4;) Ti

the exponential decay and second term iw;t represents the harmonic oscillations. By ignoring the
term for the harmonic oscillations, the dynamic response of the system would be an exponential
decay reaching the reference steady state and the time constant of the system would be T..

We define two bounds for the time constants:

e The upperboundis 7,4, = %d ,where tq is the doubling time of the cell. The upper bound

ensures that the system has reached quasi steady state meaning that the changes in
metabolite concentrations levels are so small that could be considered constant.
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* The lower bound is Tyyi = k{ji#f [Emin] = 1077. This ensures that metabolism is slower

than physics.

The physiological relevant models are those that all the time constant values are within those
bounds.

Toin = 1/Aninchar time of the slowest response

Assumption to ensure that

@® Slowest response i h
metabolism is in a quasi-steady state

@® Fastest response

ta :
Gy R 5 X 4 min

t4 doubling time the cell

Metabolism is slower than physics

Tomin = k:ir;ﬁ[Emin] ~1077s

time
Tmax = 1/Anaxchar time of the slowest response

Figure 10:The model's response must be within physiological bounds.

3.5.2 Assessing robust model behavior (Basins)

The models surviving the pruning step are further analyzed to identify models that show great
stability around their steady state. We also tested the models for different enzyme saturation
states. To make this analysis we performed two sets of random perturbations on the metabolite
concentrations values. The first set of perturbations was on a short range and the second set was
on a wider range.

Table 4: Ranges of perturbations.

Short range Wide range
0.8[Xrer] < [X] < 1.2[Xpef] 0.5[Xrer] < [X] < 2[Xyer]

For every metabolite in the system, we imposed random initial conditions on the concentration
values within the defined ranges, thus creating a system of ordinary differential equations, an
initial value problem. Solving the system provided us with the trajectories of responses for the
metabolites of the models. We further classified the trajectories based on the distance from the
reference steady state. The distance was calculated as the norm:

[X:] = [Xilrer

[Xi]ref (20)

Distance = ‘
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After a lot of time (t — o), the trajectories indicated three different scenarios:

» Metabolism reached the same steady state. Every metabolite concentration returned to
the reference steady state.

» Metabolism reached another steady state. A number of metabolites ended up in a
different steady state concentration value.

> Metabolism reached a pathological state. Some metabolite concentrations did not
converge to a steady state but rather escaped further increasing with the pass of time.

[Xi] = [Xilres
[Xilres

“ /

L, Norm of the realtive changes

2

time

= Norm -0 Reference steady state
B Norm - N; >0 Another steady state
W Norm - o Pathological state (escape)

Figure 11:The three different scenarios for the metabolite concentration trajectories

3.5.3 Clustering trajectories

To further analyze the generated kinetic models, we performed clustering on the trajectories
produced during the basins step. First of all, we classified the basins responses only by the three
aforementioned states without clustering. This way, we screened the models that reached new
steady states and used those for the clustering.

For the clustering process we used the models whose trajectories reached another steady state.
As an input we used the metabolite concentration vector after a long time (¢ — o) and also added
the reference steady states provided during the TFA step. This way we were able to identify if
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different models reached same steady states in case, they didn’t reach the reference steady. For
the clustering we used the kmeans++%! algorithm embedded in sklearn in python. KMeans++ is an
iterative centroid based clustering technique in which n data points are arranged to k clusters.
Each observation belongs to the cluster with the nearest mean. In order to define the number of
clusters we used the elbow method where the distance of clusters is plotted against the number
of clusters.

3.6 Metabolic Control Analysis (MCA)

Having performed the pruning and stability check we identify the kinetic models that are
physiologically relevant and show great stability. These models will be used to calculate the flux
control coefficients for the desired reaction or reactions.

The flux control coefficients C;,’ and the concentration control coefficients Cz’f are defined as the
fractional change of metabolic fluxes and metabolite concentration, respectively, in response to
fractional changes in parameter values. Having linearized and scaled the system around the
steady state®2®3 we can derive the expressions for the control coefficients:

Cg = —(NRVE; + NRVEin)_l[NRVHm : NRVII, : NRVII],
;127 = (E; + Ein)CzJ)Ci + [[Hm Y P ns] (21)

Where V is a diagonal matrix with the steady state fluxes, Nr is the reduced stoichiometric matrix,
Ei and Eq are the elasticity matrices with respect to independent and dependent metabolites
respectively, MNm, Me and s are the matrices of the elasticities with respect to parameters, Q; is a
weight matrix that represents the relative abundance of dependent metabolites with respect to
independent. A weight matrix Qn is defined as the abundance of dependent metabolites with the
respect to the levels of their corresponding moieties, which leads to the expression for the matrix
of moieties elasticities with respect to parameters, MNn:

Iy, = EqQm (22)
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Figure 12:MCA nomenclature*’
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The flux control coefficients will provide a good insight on which enzymes affect the desired
reaction flux. The enzymes identified by MCA will be put to the test using the generated models.

Enzyme

perturbations will be performed to quantify and evaluate the flux change predicted by

the MCA framework.

Chapter 4. Case study: Muconic acid producing yeast

4.1 GEM model preparation
4.1.1 Model reduction

The gen
model®

ome scale model for Saccharomyces Cerevisiae used in the current thesis was the yeast8
. The reduction of the model was not done on the current thesis and the reduced model

was provided. The reduced model contains 5 subsystems that form our metabolic network:

Glycolysis

Pentose Phosphate Pathway
TCA cycle

Oxidative Phosphorylation
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e Shikimate pathway (aromatic aminoacids)

Glycolysis
iy L’“J'_l'\mL".’.. PPP
) Shikimate pathway

TCA & Oxidative phosphorylation

Figure 13:Reduced yeast metabolic pathway

Py e e e e 7Y@ Tryptophan

Tyrosine

Phenylalanine

The reduced yeast model has 226 metabolites, that makes a total of 226 mass balances. Out of
those, 49 are extracellular metabolites. A total of 308 reactions describes the metabolic network
out of which 121 are transport reactions, 183 are enzymatic and 1 lumped biomass that describes
biomass production and subsequently yeast growth. The yeast cell is divided into 9 different
compartments, each with a different volume and different reactions happening there:

Table 5: Yeast cell compartments and their volume

Compartment Volume(um?3)
Cell 42
Cytosol (_c) 29.4
Mitochondria (_m) 0.0378
Inner Mitochondria (_i) 0.0042
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Golgi (_g) 4.2

Golgi membrane (_gm) 42
Endoplasmic reticulum (_er) 0.84
Endoplasmic reticulum membrane (_erm) 42
Vacuole (_v) 2.94

Cell envelope (_ce) 42

4.1.2 Experimental data integration

First of all, we added the heterologous reactions for the muconic acid production pathway.
According to the experimental data®? the pathway used was the shunting of the shikimate
pathway. We assumed that the reactions added took place in the cytosol.

Table 6: Hetetologous reactions added to the reduced model

Enzyme Reaction

PaAroz 3dhs_c & pca_c+h2o_m

KpAroY pca_c < catechol_c+co2 ¢

CaCatA catechol_ c+02 c < ccm_c

ccmt2p ccm_cé» ccm_e

pca2tp pca_c<>pca_e

25 - o -
= —a—Muconic acid 19g/L
3 —8—Protocatechuic acid 71.2 mg/g Glu i
] —B—Residual glucose 154 mg/L/h
_‘; 20 4 ——Ethanol 4 -
'E ":--..h +G!uwse feed ‘ 208 g/L
% f Biomass (dry cell weight) 66.2 mg/g Glu
=g s 139 mg/L/h
8
[= I
& O 10 4 -
ax; 53
by =
- no B4
m
L
c 5 -
o
L=
3
b= - A i
0 . = r = e : .|
0 20 40 60 80 100 120 140 160

Time (h)
Figure 14:Fermentation data used to constrain the model

The metabolomics from the fitting of the fermentation data shown in Figure 2 were used to
constrain the model. Also, gene KOS were expressed in the form of setting the lower and upper
bound of the corresponding reaction to zero. That way it is assured that the reaction flux during
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the TFA step will be zero. Moreover, reaction directionalities will be defined either from literature
data. The extracellular space in this formulation is considered to be equivalent to reactor space,
meaning that the extracellular concentrations is the reactor concentration.

1) Glucose extracellular concentration was constrained between 9.8M< glc_c <10.2M
2) Extracellular fluxes for glucose, muconic acid and prtocatechuic acid are integrated:

Table 7: Extracellular fluxes bounds

Reaction Lower bound Upper bound
EX glc_D e -0.55 0

EX_ccm_e 0.028 0.0308

EX_pca_e 0.008 0.0088

3) Define reaction directionalities:
» Glycolysis is modeled to operate only forward. The reactions FBA,PGI,PGM are
set to forward
> Assume diffusion of passive transporters (akg_m, mal_m) as they were not
observed in the medium. Transport reactions AKGt, MALt set to backward.

Table 8: Other fermentation data used

Ratio gdw to gww 0.32
Density 1200 g/I
Ph(extracellular) 6
Minimum growth 0.03h?
Division time In2/minimum_growth=23.1h

4.2 Thermodynamic Flux analysis Sampling

Having constrained the reduce model based on the fermentation data provided we move on to
the sampling step. During the sampling process we had to first get the metabolite concentration
close to the fluxes calculated. This is an important step, because during the pruning step we need
the time constants for every metabolite to be within some physiological bounds. In order to
efficiently get the metabolite concentration close to the steady state fluxes, we followed the
following steps:

1) First, we took 500 samples from the TFA solution space. We could continue with the
parameter inference step, calculate the time constants and proceed with the
metabolite concentration curation but that would need a lot of computational power
and time.

2) Then we calculate the turnover for the metabolites in the system. Turnover is the
following expression:

2 Uprod,i

[X];

Where vproq, are all the fluxes that produce metabolite i and [X]; is the metabolite

concentration. The turnover index is somewhat analogous to the time constants of

turnover =
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the metabolites mass balances. The median, maximum and minimum of the 500
samples were calculated and used to indicate which metabolites had small turnovers.

3) The concentrations of the metabolites with low turnovers were further constrained
in order to increase the turnover index and subsequently their time constant.

The three steps above were repeated until the turnover indexes for all metabolites showed values
greater than 0.1.

4.3 Kinetics Models generation

4.3.1 Pruning step

In order for a kinetic model to be physiologically relevant we demand that the maximal
eigenvalue:

ta
Amax < —SE => Amax < -0.12

At first, having not done the turnover procedure we sampled 100 flux and concentration profiles
from TFA. We then fitted 100 kinetic parameter sets for every TFA sample and ended up with
1000 kinetic models. However, none was physiologically relevant as the histogram below hints.

Number of models

1400 -

1200 A

1000 A

800 A

600 -

400 -

200 A

1053 10~4 103 102 1071 100
abs(Amax)

Figure 15:Histogram of maximal eigenvalues of all 100000 models before the turnover step

As it is visible from Figure 3, we were 3 points of magnitude below the cutoff point. After the
turnover procedure we generated 100000 kinetic models (1000TFA*100Kinetic_sets) and ended
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up with only 56 of those passing the pruning step. As the number of pruned models was so low,
we screened the tfa samples to those that generated models with maximal eigenvalues close to
the cutoff value. In the end, 47 tfa samples were used and 500 kinetic parameter sets were
generated for each sample, thus resulting in 23500 models. Out of those, 366 models were only
physiologically relevant, a percentage of 1.56%.

Number of models

4000 A

3500 A

3000 A

2500 A

2000 A

1500 A

1000 A

500 A

0 tr~rr————r——————rr -
105 10~4 103 102 101 100
abs(Amax)

Figure 16:Histogram of maximal eigenvalues of all 23500 models. It is visible that we are closer to the cutoff value

4.3.2 Basins Distributions

To assess the stability of the generated and pruned models we performed the sets of random
perturbations. Then we classified the trajectories of the models based on the three different
outcomes: reference steady state, another steady state or escape. We will show the basins
distributions for both ranges of perturbations. We will start with the models that showed great
stability in the short range and juxtapose the basins distribution for the same models on the
wide range.

The systems of ordinary equations were solved for a time span of Omin-100min. Then the
timeframe used to evaluate the distributions was for t=23min which is the doubling time of the
cell.
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Some good observations that can be made from the basins distributions for both ranges are:

» Models that show great stability in the short range are more likely to show great
stability in the wide range but that is not guaranteed. For example, model 39,107 had
99/100 perturbations return to reference steady state for the short range but scored
0/100 for the wide range.

> On the wide range, models reached new steady states more frequently than on the
short range. This is normal as on a wider specter of initial concentrations metabolites
can reach new steady state concentrations.

» Onthe wide range, models reached a pathological state (escaped) far more often than
on the short range. The further away we go from the reference steady state the more
probable that some metabolite concentrations don’t reach a steady state but rather
continue to increase to infinity.

» Models that reached new steady states on the short range of perturbations also
reached new steady states on the wide range. Further clustering analysis will show if
the new steadies coincide.

> Unstable models in the short range also showed great instability on the wide range
with some exceptions (models 40,66 and 40,89).

4.3.3 Basins trajectories clustering

To delve deeper into the understanding of these systems we clustered the steady states observed
throughout the basins step. The cluster points will provide information on metabolites that
reached new steady states. For the clustering we used the basins results for the models on the
wide range that reached a new steady. To define the number of clusters we used the elbow
method.
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Figure 21:Distribution of basins for models that reached new steady states on the wide range. Blue bars represent the reference steady state, purple bars represent
escape and all the other colors represent new steady states.

From Figure 21 we can clearly see that models built around the same steady state reached the
same alternative steady state (the case for the models built around steady states with index
3,4,5,6). Other models based on the same steady state (index 21) reached different alternative
steady states. And also, the case for the model 23,88 which reached 5 different steady states.
However, three of them should be included as in the escape cluster as they reached unnaturally
big concentrations.

In the matrix below we will show the distance of the 5 metabolites that are the farthest from the
reference steady for every cluster.
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Table 9: Other steady state characteristics

Cluster Met 1 Norm Met 2 Norm Met 3 Norm Met 4 Norm Met 5 Norm
no
3(green) | pram_c 0.14 ile_Lc 0.070 | ile_ L m | 0.058 pi_erm 0.039 imp_c 0.036
4(orange) | pram_c | 0.061 ile_Lc 0.035 imp_c 0.031 ile_ L m 0.027 | s_0834 m | 0.022
5(red) pram_c | 0.066 imp_c 0.033 pi_erm 0.025 cbc ¢ 0.021 |s 0834 _m | 0.020
6(brown) |ile_ L c| 0.14 ile_ L m 0.11 |s 0834 m | 0.075 3mob _c 0.04 imp_c 0.036
21,1(pink) | 3mob_c | 0.12 val_Lc 0.11 3mob_m | 0.044 tyr_Lc 0.038 | lald_L c | 0.024
21,2(grey) | val_L c| 936 ile_Lc 750 tyr_Lc 665 ile_ L m 292 pram_c 170
38 pi_erm | 0.051 cbc ¢ 0.037 cbasp_c 0.030 gmp_c 0.020 gtp_c 0.020
23,1(light |val_L c| 2.2e7 3mob _c 4.3e5 | 3mob_m 487 | 3c3hmp_m 4.9 3c3hmp_c | 4.6
blue)
23,2 akg m | 5.1e12 | s 0834 m | 2.2e10 | val_L c | 2.3e8 indpyr_C 4.8e5 | trp_ L c | 1.4e5
23,3 akg m 5el12 nadp_er | 3.6el0 | s 0834 m | 2.1el0 eig3p_c 1.4e10 | val_L c | 2.3e8
23,4 akg m | 5.1e12 | s 0834 m | 2.2e10 | eig3p_ c | 1.4el10| val_L c 2.3e8 prip_c 1.7e6

4.3.4 Models with great stability

Having done the basins analysis we can identify models that show robust behavior and great
stability. We define as stability the fraction of the number of perturbations that returned to the
reference steady state to the total number of perturbations:

_ nreference_steady

S =

nS@CS

The other classes of trajectories are defined as unstable as it is not physiologically logical for the
metabolites concentrations to either reach other steady state values in case of a small
perturbation or escape to very large values.

models short range

models wide range

80%
228

Figure 22:Venn diagrams of models for two different kind of stabilities 95% and 80%.

It is logical that for the shorter range of perturbations more models scored higher stability than
for the wide range.
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short 95% wide 95%

109 70 13

short 90% wide 90%

109 119 10

short 80% wide 80%

Figure 23:Venn diagrams for both ranges of perturbations and three different stability scores. Intersection of models
also illustrated.

Models with high stability in the wide range are very likely to have high stability in the shorter
range as well. As stable models are selected those that had a stability score of 90% for both
ranges of perturbations. A total of 70 kinetic models will be used to calculate the flux control
coefficients for muconic acid production.

4.3.5 TFA samples and stability

To further illustrate the importance of the steady state flux and concentration profile prediction
we present the percentile of fast (physiologically relevant models) and stable models for every
tfa sample used to generate the kinetic models. For every tfa sample we generated and fitted
500 random kinetic parameter sets.
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Figure 24:Physiological and stable models generated for every tfa sample

It is visible that while some samples produced many fast models, they didn’t necessarily produce
stable models.

4.3.6 Decision tree analysis on key parameters

After the stability analysis we have deducted that out of the 366 kinetic models 70 had high
stability scores. In order to evaluate and find the kinetic parameters that deem a kinetic model
unstable or stable we performed classification using a Decision Tree Classification Algorithm. As
the input data for the kinetic parameters, we used:

1) The enzyme saturation values. The saturation values are well bound between 0 and 1 and
they didn’t need further normalization

2) The thermodynamic displacement(l) values. The I values are well bound as well between 0
and 1.

The vmax Values were not used as they would require further normalization and also, they are
dependent variables. As a training set for the algorithm, we used all 366 stable kinetic models as
we wanted to extract information on the different kinetic parameter values that affect stability
rather than make predictions. We generated two decision trees, one for stability score 90% and
one for stability score 80%.
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True

o_nad_c_ALCD26xi <= 0.725
gini = 0.488
samples =71
value =[30, 41]

gini=0.5 gini = 0.496 gini = 0.444
samples =18 samples = 22 samples =24
value =[9, 9] value =[10, 12] value =[16, 8]

Figure 25:Decision tree for stable and unstable models with stability score 90%. Blue boxes correspond to stable model majority, orange boxes to unstable
model majority and as we get closer to white we have equilibrium of models. Gini index illustrates to number
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Gamma_ALATA_L <=0.315
gini = 0435
samples = 372
value =[253, 119]

gini = 0.455
samples = 20
value =[7, 13]
gini = 0.48 gini = 0.497
samples = 15 samples = 24
value = [6, 9] value =[11, 13]

Gamma_CO2tm <= 1.482
gini = 0.499
samples =42
value =[20, 22]

Figure 26:Decision Tree for stability score 80%. Blue boxes correspond to stable majority, orange to unstable majority and closer to white boxes correspond
to almost same number of stable and unstable models

It is visible that for a different stability score the generated decision tree changes entirely.
However, in both cases the first branch on the tree corresponds to a Gamma parameter. That is
normal because the gamma value is calculated during the TFA sampling step. Having selected only
47 TFA samples to do the parameter inference leads to some TFA samples producing more stable
kinetic models than others thus making the first branching a Gamma value.

For both stability cases the firsts branching classifies almost half the stable models with a very
small percentage of unstable (42% and 28% for S=90% and S=80% accordingly). This signifies the
importance of the steady state flux and concentration profiles prediction as they highly influence
the stability of the generated models.
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4.4 MCA

Having selected the kinetic models which are physiologically relevant and have showed great
stability in the basins step we calculate the muconic acid flux control coefficients. To be more
precise we calculated the flux control coefficients for the transport reaction of muconic acid
from the cytosol department to the extracellular, cmm2tp. We could also use the reaction
CaCatA (muconic acid production reaction) but it would yield the same results.
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Figure 24: Violin plots for muconic acid production. The marker on the center represents the mean values and the two other
points are the extreme values. The figure on the left represents the fccs of the 70 stable models and the figure on the right the
fccs of the 366 models.
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The large flux coefficients, for enzymes such as FERCOXOXI, SUCDuém, PGI, FUMm, come as a
result of small sampled fluxes.

Table 10: Information about the top 20 enzymes and the reactions they catalyze.

Enzyme Subsystem Reaction
FERCOXOXI Oxidative focytc_m + 1.266h_m + 0.2502_m -
phosphorylation ficytc_m + 0.5h20_m + 0.633h_i
PGl Glycolysis gbp c—fép ¢
SUCD2ubm Oxidative g6_m+succ_m — fum_m +s_1535_m
phosphorylation
FRD2m Oxidative nad_m +succ_m « fum_m +h_m + nadh_m
phosphorylation
PDHmM Oxidative coa_m+nad_m + pyr_m — accoa_m +co2_m + nadh_m
phosphorylation
CSm Oxidative accoa_m+h2o0 m+o0aa_ m—-cit m+coa_m+h_m
phosphorylation
FUMm Oxidative fum_m+h2o m->mal_ L m
phosphorylation
ENO Glycolysis 2pg _c— h20_c+pep_c
AKGDBm Oxidative coa_m + sdhlam_m — dhlam_m + succoa_m
phosphorylation
DHQTi Shikimate 3dhg_c = 3dhsk c+h20_c
pathway
GCC2cm Oxidative dhlam_m +nad_m - h_m +Ipam_m + nadh_m
phosphorylation
ICDHxm Oxidative Icit_ m + nad_m — akg_m +co2_m + nadh_m
phosphorylation
NADH2u6m Oxidative h_m+nadh_m+g6_ m—-nad m+s_1535 m
phosphorylation
AKGDam Oxidative akg m+h_m+Ilpam_m - co2_m +sdhlam_m
phosphorylation
AMPDA Purine and amp_c+h2o c+h_c—imp_c+nh4d_m
Pyrimidin
biosynthesis
TKT2 Pentose edp c+xuS5p_ D c—-fép_c+g3p ¢
Phosphate
Pathway
PGL Pentose 6pgl c+h20 c—>6pgc c+h c
Phosphate
Pathway
ASPTA Alanine and akg c+asp_ L ceglu L c+oaa_c
Aspartate
Metabolism
PGM Glycolysis 3pg c—2pg c
GLUDy Glutamate akg c+h_c+nadph_c+nh4 C—glu_ L c+h20o_c+nadp_c
Metabolism
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4.5 Enzyme Perturbations

To further quantify the effect on muconic acid flux of the enzymes with high flux control
coefficients we performed enzyme perturbations. Based on the numeric sign of the fccs, we
upregulated the enzyme if the sign was positive or downregulated if the sign was negative. The
enzyme modification was simulated in the form a vmax value change, as the maximum rate is
dependent on enzyme activity. For the new vimax value we calculated the new steady state muconic
acid fluxes for all 70 stable models. It should be worth noting that for upregulation we set

Vmaxnew = 1-5vmax,reference and for downregulation Vmaxnew = 0-5vmax,reference-
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Figure 29: Violin plots of the effect of enzyme perturbations on muconic flux. Middle bar corresponds to the mean value.
Both extremas also included.
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Chapter 5. Conclusions and Future research

5.1 Developing large scale models

In the present study, we attempted to build large scale kinetic models for a muconic acid
producing yeast. By bridging both approaches in strain design, the constraint-based methods
(Thermodynamic Flux Balance Analysis) and the kinetic approach we managed through the
ORACLE platform to generate physiologically relevant and stable kinetic models. These models
were used to offer insight on the metabolic strategies that can be applied to increase muconic
acid flux.

5.1.1 Genome scale curation and experimental data integration

The developed GEM corresponds to a mutant strain of S. Cerevisiae capable of producing muconic
acid via shunting of the shikimic pathway. The model has thermodynamically curated and
reduced. A kinetic model was created that incorporated all the information about the kinetic
parameters and the kinetic expressions of the system’s reactions. Experimental data such as
growth rates, secretion rates, extracellular concentrations, were added to the GEM in the form of
upper and lower bounds or reaction directionalities.

5.1.2 Kinetic models generation and pruning

In order to produce physiologically relevant kinetic models, we had to further constrain the
metabolite concentration bounds to satisfy the pruning step criteria. During the TFA sampling
step we identified 47 samples capable of producing relevant kinetic models and continued with
generating 500 parameter sets for each TFA sample, thus generating a total of 23500 kinetic
models. Out of those models, 366 were within physiological bounds and were used for further
analysis.

5.1.3 Kinetic Models Stability

We continued with the stability test which consisted with 2 sets of 100 random perturbations
each on two different ranges, a shorter and a wider one. As it is logical, models performed better
in the shorter range as they had higher stability scores. Moreover, some kinetic models reached
new steady states and by imposing a clustering algorithm we calculated the new centroids of the
new steady states. An interesting observation is that in their majority kinetic models based on the
same tfa sample reached the same alternative steady state.

With a stability score of 90%, 73 kinetic models were selected as candidates for the Metabolic
Control Analysis and the enzyme perturbation step.

5.1.4 Decision Tree Analysis

Having picked out the kinetic models that showed robust cellular behavior we performed a
decision tree analysis on the kinetic parameters of the generated models with the aim of
indicating the parameters that seem to highly affect stability. For a stability score of 90% the most
important kinetic parameter appears to be the thermodynamic displacement for SUCCt
(Gamma<0.389) and the nad_c saturation for reaction ALCD26xi (sigma>0.725). If we wanted to
increase the percentage of stable models during the generation step, we could employ those two
bounds those two parameters. This iterative cycle would lead to more stable kinetic models and
we would eventually constrain a plethora of kinetic parameters.
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5.1.5 Metabolic Control Analysis

Using the 73 stable kinetic models we calculated the muconic flux control coefficients with the
well-established MCA framework. We were able to identify the top 20 enzymes that affect
muconic flux. Some attractive metabolic strategies that arisen were to increase flux to the Pentose
Phosphate Pathway as to increase flux to ed4p (PGl ,TKT2!,PGL!) and to increase the
dehydroshikimate flux (DHQTIT). From the MCA results, we deducted that a bottleneck in muconic
acid production is the deficiency of edp in the cell. Moreover, we present the control coefficients
for the all the physiological models and some differences are apparent such as the very larger
control coefficients for FUMm and ENO.

5.1.6 Enzyme perturbations

For the enzymes that had large control coefficients for the muconic flux we performed some
perturbations to calculate the effect on muconic flux. Although, some enzymes that are connected
to the Electron Transport Chain (ETC) and it is infeasible to regulate we calculated the effect on
muconic flux just for comparison. The candidate enzymes (PGl, TKT2, PGL, DHQTi) showed an
increase in muconic flux with varying results. PGl downregulation by 0.5 resulted in 12.5 times
bigger than reference muconic flux whereas TKT2 PGL downregulation by 0.5 resulted in 1.4 and
1.3 times accordingly bigger flux. DHQTi upregulation by 1.5 resulted in 1.8 times bigger than
reference muconic flux. We also tested upregulating the heterologous enzymes (PaAroz,KpAroy)
of the muconic pathway but the increase in muconic flux was insignificant.

5.2 Future Research

Kinetic modelling of such complex systems as cellular metabolism is a challenging task. However,
in order to thin gap between lab observed strain yields and pilot scale yields we must be able to
construct kinetic models which will be closer to reality. Although, constraint-based methods can
offer a quick insight and great metabolic strategies for the increase of the desired flux they more
often than ever cannot predict the dynamic aspect of the system. The formulation used in this
thesis incorporated stoichiometry, kinetics and thermodynamics and produced models that are
physiologically relevant and stable for a range of perturbations.

In order to produce more relevant kinetic models, we could set bounds to critical parameters
that seem to affect model stability (e.g., for our case study gamma_SUCCt). The critical
parameters can be classified using machine learning classification algorithms. Furthermore, the
experimental data for the growth rate, secretion rates could be used to further screen out the
generated models. Pattern recognition algorithms could be employed to identify kinetic models
that seem to have the same behavior as the experimentally observed trajectory.
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