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Abstract 
Muconic acid is a high value product which has gathered interest in applications in the 
manufacture of new resins, bio plastics, food additives, agrochemicals and pharmaceuticals. Lots 
of efforts have been made for an economically viable biotechnological strategy for muconic acid 
production but as of yet have been fruitless. Directed evolution and DBTL cycles hold important 
promises for the development of future catalysts with high efficiency and productivity. However, 
process engineering is typically disjointed from these cycles and more often than not the 
mismatch of kinetics presents a major challenge and a bottleneck in the scaling up of novel 
bioprocesses. 

The dissertation addresses the integration of metabolomics and experimental data using the 
optimization and risk analysis of complex living entities (ORACLE) platform combined with 
clustering and advanced analytics. The methodology consists of six steps. In the first step, the 
stoichiometry of the system is defined through biochemical data and experimental data are 
integrated into the model to further constrain it. In the second step, steady state fluxes and 
metabolite concentrations are calculated based on metabolomics analysis. In the third step, 
through stoichiometric analysis conserved moieties are identified and the dependent metabolites 
are separated from the independent. In the fourth step, kinetic parameters for every reaction are 
sampled to fit in with the steady state fluxes based on mechanistic kinetics expressions. In the 
fifth step, consistency checks and pruning consider the stability of the system and the consistency 
with experimental data. In the fifth step, the flux control coefficients for the desired metabolite 
flux are calculated based on the well-established metabolic control analysis (MCA) framework. In 
the sixth step, clustering and advanced statistical analysis on the control coefficient population is 
performed to determine the impact of key enzymes on the desired flux. 

In this project, large-scale mechanistic kinetic models for a muconic acid producing S.cerevisiae 
strain were developed using the aforementioned ORACLE platform. The yeast8 genome scale 
model [1] was used and experimental data from this paper [2] were integrated into the model. Three 
heterologous reactions (PaAroZ, KpAroY, CaCatA) were added to the GEM for the muconic acid 
production pathway via shikimate pathway branching. Τhe reduced genome scale model for 
S.cerevisiae used in this project consisted of 306 reactions and 300 metabolites. A total of 23500 
of potential kinetic models were generated out of which 372(1.58%) agreed to the experimental 
data thus passing the pruning step. Lastly 29(0.12%) models out of the 372 passed the consistency 
check and showed stability in random perturbations performed on them. Those 29 models were 
used to indicate key enzymes that affect muconic acid flux and possible bottlenecks. Enzyme 
perturbations were performed to further quantify the influence of various enzymes on muconic 
flux. A big number of enzymes seem to have a significant impact on muconic acid production, 
excluding those that express the heterologous reactions of the muconic acid pathway, such as 
glucose-6-phosphate isomerase (PGI), transketolase (TKT2) and enolase (ENO). 

This study aims to offer metabolic engineering strategies for a muconic acid production yeast 
strain while taking into consideration stoichiometry, thermodynamics and kinetics. 

Keywords: S.cerevisiae; muconic acid; genome scale model; metabolomics; advanced data 
analytics; metabolic engineering; ORACLE; metabolic control analysis; large-scale kinetics; 
industrial biotechnology 
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Εκτεταμένη περίληψη 
Η παρούσα διπλωματικη εργασία πραγματοποιήθηκε στα πλαίσια της ακαδημαικής 
συνεργασίας μεταξύ της σχολής Χημικών Μηχανικών Ε.Μ.Π και του πανεπιστημίου EPFL. Η 
εργασία είχε ως στόχο την ανάπτυξη μεγέλου μεγέθους κινητικών μοντέλων με υπολογιστικές 
μεθόδους για στελέχη του μύκητα S.cerevisiae με την ικανότητα να παράγουν μυκονικό οξύ. 

H χρήση γενετικά τροποποιημένων μικροοργανισμών για την παραγωγή βιοκαυσίμων και 
χημικών αποτελεί μια υποσχόμενη βιώσιμη εναλλακτική. Η δημιουργία κατάλληλων στελεχών 
ικανών να παράγουν χρήσιμα χημικά συχνά προϋποθέτει την επιβολή αλλαγών στον κυτταρικό 
μεταβολισμό. Επειδή οι αλλαγές αυτές είναι μη προφανείς η σχεδιαστική διαδικασία συχνά 
υποβοηθάται από τη χρήση Μεταβολικών μοντέλων Γονιδιακής Κλίμακας (ΜΓΚ) που περιέχουν 
όλη τη διαθέσιμη πληροφορία σχετικά με τις μεταβολικές δυνατότητες ενός οργανισμού. Τα ΜΓΚ 
αποτελούν στοιχειομετρικές αναπαραστάσεις του συνόλου του μεταβολικού δικτύου υπό τη 
μορφή συστήματος γραμμικών εξισώσεων και περιορισμών. Τα ΜΓΚ αποτελούν μία απλοποίηση 
του πολύπλοκου συστήματος ενός μικροργανισμού καθώς χρησιμοποιούν την παραδοχή της 
μόνιμης κατάστασης. Η παραδοχή αυτή καθιστά δυνατή την γρήγορη εξαγωγή συμπερασμάτων 
και μεταβολικών στρατηγικών ως προς τι γενετικές τροποποιήσεις που θα προσδώσουν στον 
μικροοργανισμό κάποιο επιθυμητό χαρακτηριστικό. Ωστόσο αυτή η μέθοδος δεν λαμβάνει 
υπόψιν την δυναμική του συστήματος, δηλαδή την κινητική και αδυνατεί να εντοπίσει πιθάνα 
τροχοπέδια του μεταβολικού συστήματος και να υποδείξει με μεγαλύτερα σιγουριά ένζυμα 
στόχους που επηρεάζουν την παραγωγή του επιθυμητού προιόντος.  

Η ανάπτυξη κινητικών μοντέλων ενός συστήματος τέτοιας πολυπλοκότητας όπως ένας 
μικροοργανισμός είναι μια αρκετά δύσκολη πρόκληση. H κινητικη των ενζύμων εργαστηριακά 
καθορίζεται με in vitro πειράματα που ο ενζυμικος καθαρισμός είναι υποχρεωτικός. Ακόμα και 
για τον πιο μελετημένο μικροοργανισμό S.cerevisiae δεν έχουν προσδιοριστεί οι κινητικές 
παράμετροι της πλειονότητας των ενζύμων. Αν και γίνονται πειράματα προσδιορισμού κινητικών 
ιδιοτήτων των ενζύμων ποτέ δεν θα επαρκέσουν για να περιγράψουν όλη την δυναμική 
συμπεριφορά του πολύπλοκου μεταβολικού συστήματος αποτελείτο απο εκατονταδες ένζυμα.  

Μία άλλη στρατηγική είναι να προσπαθήσουμε να υποθέσυμε κινητικές εκφράσεις για τις 
ενζυματικές αντιδράσεις και να προβλέψουμε τις κινητικές παραμέτρους κάθε αντίδρασης. Η 
πολυπλοκότητα των ενζυμικών αντιδράσεων ωστόσο, καθιστά σχεδόν αδύνατο τον 
χαρακτηρισμό όλων των κινητικών παραμέτρων. Επομένως, συνήθως χρησιμοποιούνται 
παραδοχές και απλουστεύσεις στις εκφράσεις των ενζυμικών κινητικών, είτε κινητικές Michaelis-
Menten είτε κινητικές δράσης μαζών. Τις περισσότερες φορές τα κινητικά μοντέλα υποθέτουν 
τις κινητικές παραμέτρους δίχως πειραματικά δεδομένα ή δεν λαμβάνουν υπόψιν ρυθμούς 
αντίδρασης μόνιμης κατάστασης ή δεδομένα συγκεντρώσεων, ούτε εξασφαλίζουν 
θερμοδυναμικούς περιορισμούς. 

Στην παρούσα εργασία χρησιμοποιήθηκε η μεθοδολογία ORACLE(Optimization and Assessment 
of Complex Living Entities) για την ανάπτυξη κινητικών μοντέλων για γενετικά τροποποιημένα 
στελέχη μαγιάς που παράγουν μυκονικό οξύ. Στο πρώτο στάδιο ενσωματώνονται στο επιλεγμένο 
Μεταβολικο μοντέλο Γονιδιακής Κλίμακας πειραματικά δεδομένα αν υπάρχουν, όπως και οι 
ετερόλογες ενζυμικές αντιδράσεις. Τα ΜΓΚ αποτελούν στοιχειομετρικές αναπαραστάσεις του 
συνόλου του μεταβολικού δικτύου υπό τη μορφή συστήματος γραμμικών εξισώσεων και 
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περιορισμών. Στο δεύτερο στάδιο δειγματοληπτείται ο επιτρεπτός χώρος λύσεων του γραμμικού 
συστήματος και δειγματοληπτούνται επιτρεπτές συγκεντρώσεις μεταβολιτών. Στο τρίτο βήμα, 
υπολογίζονται οι κινητικές παράμετροι των αντιδράσεων έτσι ώστε να επαληθεύουν τις λύσεις 
της μόνιμης κατάστασης. Στο τέταρτο βήμα, τα κινητικά μοντέλα που έχουν παραχθεί 
υποβάλονται σε τεστ που ελέγχουν την σταθερότητα τους σε τυχαίες μεταβολές της αρχικής 
συγκέντρωσης ισορροπίας καθώς και την ταχύτητα απόκρισης. Τα κινητικά μοντέλα που 
εμφανίζουν υψηλή σταθερότητα χρησιμοποιούνται για τον υπολογισμό συντελεστών ρύθμισης 
μεταβολικής ροής και συντελεστών ρύθμισης μεταβολικών συγκεντρώσεων σύμφωνα με την 
μεθοδολογία MCA(Metabolic Control Analysis). Στο τελευταίο βήμα, εξάγονται στατιστικά 
δεδομένα για τους συντελεστές ρύθμισης και προτείνονται μεταβολικές στρατηγικές αύξησης 
ροής του επιθυμητού προιόντος. 
 
Με την μεθοδλογία αυτή καταφέραμε για το σύστημα μας καταφέραμε να αναπτύξουμε 70 
σταθερά κινητικά μοντέλα. Επίσης εντοπίστηκαν ένζυμα στόχοι και προτάθηκαν μεταβολικές 
στρατηγικές που επηρεάζουν σε υψηλό βαθμό την παραγωγή μυκονικού οξέος και 
παρατηρήθηκε εώς και 12πλασιασμός της επιθυμητής μεταβολικής ροής.  Οι μεταβολικές 
στρατηγικές μπορούν να μεταφραστούν σε εργαστηριακές πρακτικές γενετικής τροποποίησης 
όπως προσθήκη, διαγραφή, υπερέκφραση ή υποέκφραση γονιδίων και να θέσουν στόχους για 
την τροποποίηση ενζύμων.  
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Chapter 1. Introduction 
Biotechnology has existed almost since the dawn of humanization. Products such as cheese, 
bread, wine and beer come from the manipulation of living organisms. As humans began to 
understand better biology and the possibilities of bioprocesses and with the sense of necessity 
born from both Worlds Wars, the first biorefineries were constructed. The acetone-ethanol-
butanol fermentation process, which is still in use, was developed during WW1 and WW2 was 
signaled the industrial scale production of penicillin1. 

In the early 1990s advancement in the field of genetic engineering led to success stories especially 
in the pharmaceutical field (recombinant proteins, antibodies). Later, mathematical modelling, 
genome scale models, easier genetic modification technologies, bioinformatics kickstarted the 
field of metabolic engineering- suggesting was of producing chemicals exceeding the spectrum of 
the food industry through biotechnological routes. The emerging biotechnological field has a net 
worth of 300 billion USD and is said to duplicate by 20252. 

Biotechnology could prove to be a solution to a plethora of modern-day challenges such as climate 
change, pollution, depletion of natural resources and increasing food demands. Biotechnology is 
an invaluable that will be able to transform renewable feedstock to desired chemicals thus 
decreasing the need for fossil fuels and subsequently alleviating the impact on climate. 
Genetically modified plants would prove to be highly resistant and exhibit high yields helping in 
the rising food demands. Biotech drugs, vaccines and diagnostics help rise the quality of life3,4. 

Bioprocesses and biorefineries where biomass feedstock are transformed to biofuels, platform 
and special chemicals and novel products, can be seen as the key concepts that will lead to a bio-
based economy. Fossil fuels and petrochemicals still dominate today’s economy as the cost of 
production is lower than their bio counterparts. With the ever-increasing fuel and plastic demand 
and the stagnation of old oil wells, petroleum prices will soon rise as we will have to turn to much 
more inaccessible oil wells and more unrefined oil. This will result in higher extraction costs and 
higher separation and purification costs. On the other hand, bio processes remain an environment 
friendly alternative, as microbial fermentations demand milder conditions than the equivalent 
catalytic transformations. However, these processes are seldom competitive to their 
petrochemical counterparts due to low productivity, yields and high separation costs. The 
development of industrial strains with selected characteristics that can support the 
commercialization of a biorefinery application is being conducted with iterative cycles where 
metabolic interventions are systematically identified and applied to the host organism5-7. As the 
metabolic systems are very complex, interventions are not so obvious and are computer assisted 
and typically Mixed Integer Linear Programming (MILP) algorithms are utilized to build the 
interventions8-10. 

However, most strain design approaches make the assumption of the system being in steady state 
and fail to take into consideration the kinetic aspect. Although such techniques provide useful 
insights and are computationally cost efficient, sometimes they fail to predict potential 
bottlenecks or rate limiting reactions inside the metabolic network. The current thesis aims to 
develop large scale metabolic kinetic models for a muconic acid producing yeast using the 
Optimization and Risk Assessment of Complex Living Entities (ORACLE) workflow. The generated 
populations of kinetic models will be used as an input for the well-established MCA framework to 
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identify enzymes closely affiliated to muconic acid flux and perform enzyme perturbations to 
quantify this effect. This way we will be able to develop metabolic strategies while taking into 
consideration stoichiometry, thermodynamics, kinetics and their interplay. 

Chapter 2. Background and state of the art 
2.1 Cellular Metabolism 
Metabolism refers to all chemical reactions that take place in an organism. These reactions are 
necessary for the production of biomolecules and biomass (nucleic acids, lipids, proteins and 
carbohydrates), the extraction of energy from nutrients for the various functions of the cell. 
Metabolism is often divided into catabolism and anabolism. 

Catabolism is the set of reactions that break down large molecules (such as polysaccharides, lipids 
nucleic acids and proteins) into smaller units (such as monosaccharides, fatty acids, nucleotides 
and amino acids respectively). These smaller units are either oxidized to release energy necessary 
for the maintenance and growth of cells or used in anabolic reactions. Some examples of catabolic 
pathways are glycolysis, the citric acid cycle, the breakdown of fat or muscle protein and many 
more. Glycolysis for example is the metabolic pathway that converts glucose into pyruvic acid. 
During this process free energy is produced and while a large part escapes as heat the other is 
used to form high-energy molecules ATP (adenosine triphosphate) and NADH (reduced 
nicotinamide adenine dinucleotide). 

Anabolism, or also known as biosynthesis, on the other hand is the set of metabolic pathways that 
construct large molecules from smaller units. This process requires energy and is called 
endergonic whereas catabolism is exergonic. Some examples of anabolism are the amino acid 
biosynthesis, gluconeogenesis etc. 

The sum of the aforementioned reactions, catalyzed by enzymes, consist the metabolism of the 
cell. These reactions form interconnected metabolic pathways that shape a dynamical circuitry 
referred as metabolic network. The pathways are further categorized in subnetworks, responsible 
for a specific cellular function. Organisms have many structural differences between them but 
they may share several core subnetworks.   

2.2 Metabolic Engineering 
Metabolic engineering is the intentional modification and manipulation of cellular metabolism for 
the production of desired chemicals11.  Recombinant DNA techniques are used to either insert 
new pathways in microorganisms in order to produce novel metabolites or produce heterologous 
peptides (e.g., human insulin) or improve new or existing processes.  

Metabolic engineering is necessary for creating efficient cell factories for the development of 
sustainable processes for the production of chemicals, fuels and materials. Microorganisms 
through their complex metabolic network are able to convert simple feedstock such as glucose, 
lignin etc. into desired products. However small yields, high separation costs, lack of kinetics, 
difficulties in the scaling up impose a bottleneck. Systems metabolic engineering can offer better 
predictions by combining the omics data (genomes, transcriptomes, proteomes, metabolomes, 
fluxomes) and computational techniques used in systems biology allowing a better understanding 
of the cellular processes and engineering capabilities12.   
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2.2.1 Muconic acid  
Muconic acid (MA) is a high value product which has gathered interest in applications in the 
manufacture of new resins, bio-plastics, food additives, agrochemicals and pharmaceuticals13. MA 
is an unsaturated dicarboxylic acid, also known as 2,4 hexanedienoic acid, which due to the double 
bond and dicarboxylic groups can be polymerized. MA can be found in three isomer forms cic,cis-
MA, cis,trans-MA, trans,trans-MA. MA can be chemically processed to produce bulk chemicals 
such as adipic acid, terephthalic acid and trimelitic acid which are widely used in the nylon and 
thermoplastic industry13. 

 

  
Figure 1:Industrial products of MA and further applications13 

Traditionally MA is produced via chemical processing of non-renewable petroleum feedstock with 
acids and strong metal catalysts14. Toxic intermediates, corrosive catalysts, concern for the 
environment and the use of non-renewable materials have led to the search of alternative paths. 
Recently, progress has been made in the biochemical procedures for MA production. 

2.2.2 Different Metabolic strategies for muconic acid production 
The ortho cleavage of catechol 

Catechol is a precursor molecule to cis,cis-MA and can be produced by microorganisms capable 
of biodegrading aromatic compounds. Especially, bacteria oxidize aromatic compounds such as 
benzoate, toluene, benzene, phenol, aniline, anthranilate to catechol. Benzoate has mainly been 
used as feedstock due to its low price and the capability of some microorganisms in the genus 
Pseudomonas, Arthrorbacter, Corynebacterium, Brevibacterium, Microbracterium and 
Sphingobacterium to metabolize to MA via the β-ketoadipate pathway15. 
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Figure 2:The β-ketoadipate pathway15 

 

In order to achieve high MA yields this pathway requires the following properties for the mutants; 

 Metabolizing aromatic compounds through the β-ketoadipate pathway and having the CatA 
enzyme responsible for the cleavage of the aromatic ring of catechol 

 Missing functional muconate cycloisomerase which would enable the accumulation of MA 
and stop the flux to muconolactate 

 Being resistant to aromatic products and substrates  
 Excreting MA to the medium in order for it to be easily separated  
 Having strong CatA activity16 

Many efforts have been made with the above biotechnological strategy and high yields, 
concentrations, productivities have been achieved17-18. However, this method is restrictive due to 
its dependency on the petrochemical industry. An attractive alternative would be the use of a 
lignocellulosic feedstock due to its high concentration of aromatic compounds19-20 but the high 
cost of separation and small yields present a bottleneck. 

MA production by branching shikimate synthesis via 3-dehydroshikimate 

Glucose can be converted to MA through an artificial pathway based on the shikimic pathway. 
The shikimic pathways begins with the condensation of phosphoenolpyruvate (PEP) and 
erythrose-4-phosphate to form 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP).  DAHP is 
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then converted to 3-dehydroquinate (DHQ) and afterwards to dehydroshikimate (DHS). DHS is the 
precursor molecule to shikimate which is the basic aromatic compound for the production of 
aromatic amino acids such as tryptophan, phenylalanine, tyrosine. An heterologous pathway is 
expressed by the genes aroZ (encodes 3-dehydroshikimate dehydratase which catalyzes the 
reaction of DHS to protocatechuate (PCA)), aroY(encodes protocatechuate decarboxylase which 
catalyzes the reaction of PCA to catechol) and catA( encodes catechol dioxygenase which 
catalyzes the reaction of catechol to MA). 

 
Figure 3:The heterologous pathway to MA production by branching of the shikimic pathway13 

Many efforts have been made using a shikimate dehydrogenase deficient E.coli. It is worth 
mentioning. E.coli is a great candidate for high yield muconic acid production. An engineered 
E.coli strain with inactivated shikimate dehydrogenase, overexpression of DHQ synthase and 
transketolase to increase the flux through the shikimic pathway, and the heterologous enzymes 
AroZ and AroY and CatA has produced 59g/L(30% yield mol/mol) in a fed-batch culture, the 
highest reported MA yield with glucose as a substrate21. 

MA production by branching tryptophan pathway via anthranilate 

A novel alternative to the branching of the shikimic pathway is the branching of the tryptophan 
pathway. More specifically, an intermediate metabolite of the shikimic pathway is chorismate 
which is a precursor molecule to the three aromatic amino acids tryptophan, phenylalanine, 
tyrosine. The reaction catalyzed by anthranilate synthase converts chorismate to anthranilate. A 
novel pathway is grafted by heterologously expressing the reaction of anthranilate to catechol 
encoded by the gene ADO. Catechol then gets converted to MA through the CatA enzyme activity. 
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Figure 4:Pathway A illustrates muconic acid production via shunting the shikimic pathway and pathway B illustrates 
muconic acid production via shunting antranilate pathway22 

An engineered E.Coli strain following the above pathway produced a maximum concentration 
390mg/L of MA in shake flasks22. This heterologous pathway is shorter by one reaction from the 
shikimate alternative but additional PEP is required in contrast23-24 and small yields have as of now 
been reported. 



 
 

16 
 

2.2.3 Yeast as a cell factory 
Since S.cerevsiae has been broadly used for beer and wine fermentations, its selection as 
industrial ethanol producer is not surprising. The ethanol fermentation, nowadays, consists a 
robust, well-studied industrial application, making yeast one of the most preferred host organisms 
for the production of diverse fuels and chemicals. Moreover, holding a GRAS status by FDA, makes 
yeast suitable for the production of food-grade products25. Over the years, yeast metabolic 
capabilities have been exploited for the production of various products such as pharmaceuticals 
(artemisinic acid, human albumin etc.), fuels (alcohols, alkanes, etc.) and platform chemicals 
(succinic acid, coumaric acid, etc.) and specialties (santalene, valencene, etc.). 

Many microorganisms are capable of producing muconic acid naturally using aromatic 
compounds such as lignin as feedstock. However, the production levels and properties fall short 
due to toxicity, different feedstock compositions, difficult and costly separations. Although, 
microorganisms such as K.putida  have shown very high yields with pure aromatic compounds as 
feedstocks they fail to provide a viable solution due to the high value of the materials used. For 
that reason, interest is being shown to hosts that can be used to express heterologous pathways 
that would lead to a cost-efficient biotechnological strategy using cheap feedstocks. 

Yeast, although falling short to its bacteria adversaries K.putida and E.coli who can produce and 
metabolize aromatic compounds due to their physiology, is the perfect host to express 
heterologous pathways. Moreover, the accumulation of yeast fermentation data and knowledge 
reduce the uncertainty in the scaling up process. S.cerevisiae exhibits pH-tolerance and has 
proven robust in prior applications. Yeast from a biological scope is the perfect candidate for gene 
editing as: 

 Its genome is completely sequenced, its metabolic pathways are known as well as its 
proteins26 

 Genetic manipulation on yeast is quite easy as DNA insertion and integration in a yeast 
cell doesn’t require transport proteins or CRISPR 

 Yeast cells don’t contain a cell membrane thus making it easier to insert plasmids. 

2.3 Constraint based modelling 
The generation of large amounts of information regarding biological systems and processes due 
to emerging high throughput technology has also pushed forward the systematic and 
mathematical analysis of these systems27. The mathematical modelling of metabolism is an 
invaluable tool in predicting and evaluating the cellular reaction under genetic changes, 
concentration perturbations and different background environments. In general, all the existing 
approaches boil down to roughly two categories: the kinetics modelling and the stoichiometric 
modelling. The kinetics approach is based in assigning mechanistic kinetic expressions such as 
Michaelis Menten or Hill equation or mass action kinetic expressions to describe the reaction 
rates. The conservation of mass for every metabolite depicts an ordinary differential equation. 
The total of these equations presents a system of ordinary differential equations which can be 
solved numerically. The solution of such a system is a time dependent metabolite concentration 
and reaction flux profile. However, lack of kinetics experimental data or uncertainty in the 
prediction of kinetics parameters present an obstacle. The stoichiometric approach primarily 
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relies in the assumption of steady state resulting in a system of linear equations that describe 
the metabolites mass concentration. 

2.3.1 Genome scale metabolic reconstructions (GEMS) 
Stoichiometric models have been used to study the physiology of organisms for almost 30 years. 
The advance in technology as well as the better understanding of genomes has led to the 
accumulation of information and the creation of Genome Scale Metabolic Reconstructions28. 
GEMS can be seen as a map showing all the reactions occurring in the cell while also linking the 
gene encoding the enzyme for each reaction. This gene to protein to reaction association (GPR) 
offers a pretty good image of the biochemistry inside the cell. These GEMS can be used for five 
major ends: (1) conceptualization of high-throughput data, (2) assisting in metabolic engineering, 
(3) directing hypothesis-driven discovery, (4) evaluation of multi-species interactions, (5) network 
property analysis29. For metabolic engineering applications GEMS can offer metabolic strategies 
for maximizing a desired product flux, identification and drug design as well as reactions of cellular 
phenotypes under different environment conditions and gene knockouts. 

 

Figure 5:Phylogenetic representation of the alternative constraint-based methods applied to GEMs30 
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2.3.2 Flux Balance Analysis (FBA) 
Flux Balance Analysis is a key method for constraint-based modelling from which take birth a 
plethora of other analysis methods. At its core, FBA is a mathematical approach to analyze the 
flow of metabolites through a metabolic pathway31. The metabolic network stoichiometric 
information is encoded in the stoichiometric matrix S. Each row of the matrix S represents a 
metabolite and its column a reaction. The elements of the matrix are the stoichiometric 
coefficients of every metabolite for every reaction. FBA imposes two constraints on the system. 
The first one is that the system is in pseudo steady state, meaning that there exists none time 
dependency. This is mathematically described by the equation: 

𝑆 ∙ 𝑣 = 0 

Where S is the stoichiometric matrix and v is the flux vector for every reaction. This simple 
equation makes sure that every mass concentration equation for every metabolite is satisfied. 
The second type of imposed constraints are the lower and upper bounds for metabolite 
concentration, typically including laboratory flux measurements (metabolite uptake or secretion 
rates). 

These two types of constraints define am allowable solution space. The network is capable to 
acquire any flux distribution lying inside the solution space. Typically, the aim of FBA is to find a 
flux distribution inside the allowable solution space that maximizes or minimizes a specified 
objective function. A common aim when handling GEMS is growth prediction, so a column is 
added most of the times to account for the biomass producing reaction. The objective function in 
this case is the maximization of biomass production. 

 

 

Figure 6:: A conceptual basis representation of constraint-based modeling. When left unconstrained any flux profile is 
possible. When mass balance constraints (S matrix) and lower and upper bounds of metabolites are defined, then there 
exists an allowable solution space. The network may acquire any flux distribution within this defined space, while points 
outside it are denied by the constraints. Through optimization of specific objective functions, FBA identifies a point in 
the allowable solution space that satisfies the objective function. 

2.3.3 Thermodynamic Flux Analysis (TFA) 
While FBA solutions offer a good insight in metabolic fluxes more often than ever the solutions 
are non-unique and sometimes violate thermodynamic laws. To further constrain the solution 
space and obtain thermodynamically feasible flux profiles extra constraints are added in order to 
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couple the reaction directionalities to thermodynamic constraints32-35. In this approach 
metabolite concentrations and Gibbs energy of reaction are added to the model.  

 

Table 1.FBA and TFA constraints35 

 
FBA constraints 

Mass balance 𝑆 ∙ 𝑣 = 0 

Flux capacity 𝑣̅ ≤  v ≤  𝑣 

 
 
 

TFA constraints 
 

Gibbs energy of reaction 
𝛥௥𝐺௜ = 𝛥௥,௧௣௥𝐺௜

ᇱ + ෍ 𝑛௜,௝𝑚௝

௠

௝ୀଵ
 

Chemical potential 𝜇௝ = 𝛥௙𝐺௝
ᇱ଴ + 𝛥௙,௘௥௥𝐺௝

ᇱ଴ + 𝑅𝑇𝑙𝑛𝑥௝ 

Thermodynamic feasibility 𝛥௥𝐺௜
ᇱ − 𝐾 + 𝐾 ∙ 𝑧௜ < 0 

Coupling constraint 𝑣௜ − 𝐾 ∙ 𝑧௜ < 0 

Where: 

Δ𝑟𝐺𝑖 ′ is the transformed Gibbs free energy of the reaction 𝑖  

𝜇𝑗 are the chemical potentials of the reactants 𝑗 

Δ𝑟,𝑡𝑝𝑡𝐺𝑖 ′ is the Gibbs free energy of transport (accounted when the reaction is transport of a 
compound from one compartment to another) 

Δ𝑓𝐺𝑗 ′0 is the standard transformed Gibbs free energy of formation of the compounds  

Δ𝑓,𝑒𝑟𝑟𝐺𝑗 ′0 is the estimated error in the energy of formation 

𝑅 is the universal gas constant 

𝑇 is the temperature (here assumed 298 K)  

𝑥𝑗 is the molar fraction of the compound j  

𝐾 is a large (Big-M, 𝐾 > max Δr𝐺𝑖 ′) value  

and 𝑧 is a binary decision variable 

This formulation further requires that net fluxes are non-negative. To achieve this, each reaction 
is separated in two: a net forward and a net backward while the net fluxes are associated such 
that: 

𝑣௡௘௧ = 𝑣௙௢௥௪௔௥ௗ − 𝑣௕௔௖௞௪௔௥ௗ  

By doing this it is ensured that the solution space is a convex one which is necessary during the 
sampling step. From the constraints it is also ensured that either the backward reaction is active 
or the forward or none at all.  
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Figure 7:Space of metabolite concentrations within bounds experimentally observed under different physiological 
conditions (dashed line) and within thermodynamically feasible bounds (solid line)35. 

2.4 Kinetic models and DBTL cycle 
2.4.1 Kinetic models  
All the constraint-based methods make steady state assumptions and fail to capture the dynamic 
the metabolic network’s dynamic properties. To reveal dynamic properties of reaction networks, 
kinetics is essential36. However, enzyme kinetics traditionally are determined through in vitro 
experiments which require purification of the enzymes involved. As a result, even for the most 
studied microorganism S.cerevisiae the vast majority of enzymes lack kinetic parameters. 
Although experiments are being contacted to determine kinetic properties for enzymes, they will 
not suffice to describe the full dynamic behavior of a complex metabolic network consisting of 
hundreds of enzymes. 

A different strategy is to try to assume rate laws for each enzymatic reactions and try to predict 
the kinetic parameters for each reaction. However, reactions such as phosphofructokinase 
contain 11 different kinetic parameters37 and the determination of all them proves very difficult. 
As a result, simplified kinetic laws are assumed for the enzymatic reactions either Michaelis-
Menten or mass action kinetics. Most of the time the kinetic models developed predict kinetic 
parameters with no experimental data available38-42 or they do not take into consideration known 
steady state fluxes or concentration data, nor do the ensure thermodynamic constraints43. 
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The two main issues that hamper the development of kinetic models are44: 

a) Uncertainty in metabolite concentrations and thermodynamic displacement. 
Uncertainties in metabolite measurements and in the estimated thermodynamic 
properties of reactions (Gibbs free energies of reactions) can impact the conclusions 
about the displacement of reactions from thermodynamic equilibrium and ultimately 
the conclusions about the kinetic parameters of the corresponding enzymes. 

b) Uncertainty in kinetic properties of enzymes. The lack and uncertainty of information 
about enzyme kinetics has been acknowledged as the single most important obstacle 
for developing kinetic models. Uncertainties of this type can be either structural, e.g., 
incomplete knowledge of kinetic mechanisms, or quantitative, e.g., absent or 
incomplete knowledge about the values of the kinetic parameters of enzymes. 

The Optimization and Assessment of Complex Living Entities (ORACLE) framework tries to bridge 
the gap between constraint-based methods and kinetic modelling. Using Thermodynamic Flux 
Analysis to predict potential flux steady states and concentration profiles and then fitting in kinetic 
parameters to verify the steady state. A population of kinetic models can be generated without 
sacrificing thermodynamics or steady state fluxes, out of which pruning tests and stability checks 
will determine potential kinetic models. These models will be used as the basis to construct new 
metabolic strategies that will lead to the maximization of the desired flux. 
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2.4.2 DBTL cycle 
The typical design process towards a sustainable bio-production of chemicals follows the iterative 
Design-Build-Test-Learn (DBTL) cycle. The design involves the selection of the platform organism 
and the heterologous reactions that need to be expressed to produce the desired chemicals as 
well as strategies (enzyme upregulations or downregulations) to enhance product yield. The build 
module involves the genetic transformation and gene editing of the platform organism in 
accordance to the strategies of the design step. The test module we gather information on the 
cloning results, omics data and help comprehend cellular behavior. Small batch experiments 

Figure 8: Generalized workflow for metabolic kinetic model construction and use in metabolic engineering45. 
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showcase the developed strain’s desired product yield as well as some key metabolites secretion 
rates. The learn module takes into account the generated information from the test step and 
incorporates it into new metabolic strategies to further optimize and increase the desired flux.  

The learn module often doesn’t take into consideration the kinetic aspect of the cell behavior. 
Moreover, during the test module the experimental conditions are well monitored and controlled 
and the yield predictions often fall short during the scaling up of the bioprocess. This uncertainty 
gap between experimental yield and pilot yield deems bioprocesses untrustworthy and 
unfavorable for further scaling up. In order to minimize this gap, it is necessary to incorporate 
large scale kinetic modelling and curating in the learning phase in order to have a clearer picture 
if we were to move to scaling up process.  

Large scale kinetic models not only will offer better metabolic strategies to increase the desired 
flux during the DBTL cycle but will also work as a basis during the scaling up process. They can be 
used to simulate the cell behavior in a real batch reactor, with fluctuating conditions while also 
offering the necessary information for the process optimization. To add to this, secretion rates 
will be also predicted offering the possibility for downstream separation design and 
optimization. 

 

Chapter 3. Problem description and methodology 
3.1 Problem description and workflow outline  
3.1.1 Problem description and main challenges 
Typical metabolic engineering strategies to produce efficient cell factories often do not take into 
account the kinetics and use FBA-related methods which assume that the system is in steady 
state. The common practice in computer aided strain design involves MILP formulations that 
reveal metabolic strategies (gene knockouts, reaction additions, gene upregulations or 
downregulations) that maximize yeast growth coupled with the desired chemical production. 
These methods may offer a helpful insight and good metabolic strategies but they sometimes fail 
to take into consideration possible flux bottlenecks due to enzyme saturation or due to the lack 
of activity from some enzymes. In other words, they fail to predict the dynamic part of a metabolic 
network and the interplay between stoichiometry, thermodynamics and kinetics. 

The development of large-scale metabolic models is a challenging task. The lack of experimental 
data, the uncertainty of some kinetics parameters available in literature and databases, the 
uncertainty of the types of mechanisms for every reaction, the errors in metabolomics and 
fluxomics data are some of the problems46. Moreover, for every reaction in the system a rate 
expression along with values of kinetic parameters are required for a kinetic model. Errors also in 
the thermodynamic properties hinder the ascertainment of a unique steady-state profile for 
metabolic fluxes and metabolite concentrations. Taking all this into account it is impossible to find 
a unique kinetics model which describes the physiology but it is possible to produce a population 
of models that agree with the physiology and statistical analysis on these models can be used to 
analyze and predict the metabolic responses in the system47. 
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A common practice while developing large-scale kinetic models is to use any type of experimental 
data such as fluxomics, metabolomics, proteomics, growth rates, uptake rates, secretion rates 
etc. That way, the problem’s uncertainty is reduced and we can get models that are closer to 
physiology that has been experimentally observed. The alternative approach is to assume ad hoc 
growth rates and flux directionalities. 

The primary challenge will be to produce large-scale kinetic models that are physiologically 
relevant meaning that their dynamic behavior is close to the experimentally observed one. The 
secondary challenge is to identify kinetic models that show “robust” behavior. Finally, the 
population of the kinetics models will be used to target key enzymes and offer metabolic 
strategies for the increase of flux of the desired product. 

3.1.2 Workflow Outline 
The proposed workflow outline is based on the Optimization and Risk Analysis of Complex Living 
Entities (ORACLE) methodology48-49. The ORACLE methodology consists of 7 steps: 

1) In the first step, the stoichiometry of the system is defined either by biochemical data 
or genome reconstruction analysis. In this project, a yeast genome scale model is 
curated and then reduced using redGEM50 and lumpGEM51. Then, the experimental 
data52 are integrated into the reduced model as well as the heterologous reactions. 

2) In the second step, the solution space from Thermodynamic Flux Balance Analysis is 
sampled. Metabolite concentrations and reaction fluxes profiles, that agree with 
thermodynamics, are generated.  

3) In the third step, the kinetic parameters for all the reactions are calculated using a 
Monte Carlo simulation. For every steady state sampled in step 3 the kinetic 
parameters are calculated to verify that steady state 

4) In the fourth step, the produced kinetic models undergo pruning and stability checks. 
Pruning reduces the models to those that are physiologically relevant and consistent 
with the experimental data and stability checks identifies the models that show great 
stability to a wide range of random perturbations. 

5) In the fifth step, the stable models are used to calculate flux control coefficients and 
concentration control coefficients based on a well-established MCA framework49. 

6) In the sixth step, advanced statistical analysis and visualization is performed on the 
produced populations of control coefficients as well as basins responses of the 
generated kinetic models. 
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Figure 9:Workflow of the computational procedure for uncertainty analysis of metabolic networks within the ORACLE 
framework. Light gray boxes denote the integration of available experimental and literature data, whereas the dark 
gray boxes denote the computation35 
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3.2 Genome Scale Reconstruction, curation and experimental data integration 
The first step of the proposed outline is to prepare a functional and practical GEM to conduct the 
following steps of the analysis. In the vast majority of industrial fermentation applications we 
utilize one of the so-called platform organisms: Ε.coli, S.cerevisiae, C.glutaminicum and A.Niger. 
These microorganisms are well-studied and their genome scale metabolic reconstructions are 
available and thoroughly used. The GEM preparation includes actions concerning the metabolic 
network and integrating the experimental data. 

First of all, the GEM of interest is reduced to specific subsystems of interest. This step is of very 
important practical value because it substantially reduces the metabolic network, we have to 
work with thus resulting in a reduction of the necessary computing power. By applying the 
redGEM50 and lumpGEM51 algorithms we can form a core metabolic network on the subsystems 
of interest without losing paternal GEM characteristics.  

On the reduced model we can add the heterologous reactions that will lead to the desired 
product. The new pathways added are translated to sequential biochemical reactions whose 
reactants and products are cellular metabolites. The necessary rows for the new metabolites and 
the necessary columns for the new reactions are added on the stoichiometric matrix along with 
the corresponding reaction coefficients.  

To increase GEM credibility and predictability of the analysis the incorporation of experimental 
data52 is a common practice. Fluxomics, metabolomics, physiology, uptake rates, secretion rates, 
growth can all be used to constrain metabolite concentrations, define reactions direction, add 
gene deletions, upregulations or downregulations. All this information is valuable in building 
kinetic models that agree with the observed experimental data and offer a really precise picture 
of the cellular system and metabolic strategies with solid background. 

3.2.1 GEM sampling 
In order to develop the large scale metabolic kinetic models, it is necessary to build them around 
thermodynamically and physiologically feasible steady states. The stoichiometric capacity and 
thermodynamic constraints imposed on the system through the TFA analysis form a solution 
space containing all the thermodynamically feasible steady states. In order to maximize the 
probability of getting close to the steady states that will produce stable and physiologically 
relevant kinetic models the sampling process is very important. 

In order to uniformly sample the solution space an artificial centering hit and run algorithm (ACHR) 
is used. This algorithm is broadly used to determine flux distributions and metabolite 
concentrations53-55. Flux distribution and metabolite concentration profiles sampled are used in 
the next step to develop the kinetic models. 

 

3.3 Enzyme kinetics 
3.3.1 Modelling and simulation of enzyme kinetics 
The rate law can be expressed by the equation below: 
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𝑣 = 𝑣௠௔௫𝜔𝜑 (1) 

where vmax is the maximum rate achieved, ω is the mass action expression and φ is the saturation 
component. If we were to take the partial derivative of the rate with respect to the metabolite 
concentration x we would get: 

𝜕𝑣

𝜕𝑥
= 𝑣௠௔௫

𝜕𝜔

𝜕𝑥
𝜑 + 𝑣௠௔௫𝜔

𝜕𝜑

𝜕𝑥
  (2) 

Scaling equation (2) by x/v we get: 

𝑥

𝑣

𝜕𝑣

𝜕𝑥
=

𝜕𝑙𝑛𝜔

𝜕𝑙𝑛𝑥
+

𝜕𝑙𝑛𝜑

𝜕𝑙𝑛𝑥
 (3) 

The expression on the left-hand side 
௫

௩

డ௩

డ௫
 is called enzyme elasticity and it quantifies the 

interaction between enzyme and metabolite concentration. The expression 
డ௟௡ఠ

డ௟௡௫
 is defined as 

the mass action elasticity and the expression 
డ௟௡ఝ

డ௟௡௫
 as the saturation elasticity. 

The enzyme elasticity is closely related to enzyme saturation meaning that for a high value of 
elasticity we get low saturation and for a low value we get high saturation56. 

The enzyme elasticity appears to be a sum of mass action elasticity and saturation elasticity: 

𝜀 = 𝜀௠ + 𝜀௦  (4) 

 

3.3.2 Elasticity calculation for a simple uni-bi reaction 
In a simple reversible Uni-bi reaction the stoichiometry is as follows: 

𝑆 ↔ 𝑃ଵ + 𝑃ଶ (5) 

Where S is the substrate and P1 and P2 the products 

The rate expression is: 

𝑣 =

𝑣௠௔௫
𝑆

𝐾௠,ௌ
൤1 −

1
𝐾௘௤

𝑃ଵ𝑃ଶ
𝑆 ൨

1 +
𝑆

𝐾௠,ௌ
+

𝑃ଵ
𝐾௠,௉భ

+
𝑃ଶ

𝐾௠,௉మ

  (6) 

To simplify equation (6) we denote 𝛤 =
ଵ

௄೐೜

௉భ௉మ

ௌ
 as the displacement from thermodynamic 

equilibrium, 𝑆̅ =
ௌ

௄೘,ೄ
, 𝑃ଵ

തതത =
௉భ

௄೘,ುభ

, 𝑃ଶ
തതത =

௉మ

௄೘,ುమ

 

Using equation (2) and (3) we can get expressions for the enzyme elasticity, the mass action 
elasticity and the saturation elasticity with respect to every metabolite (S, P1, P2): 

 ௌ

௩

డ௩

డௌ
=

ଵ

ଵି௰
−

ௌ̅

ଵାௌ̅ା௉భതതതା௉మതതത
 (7)  
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 ௉భ

௩

డ௩

డ௉భ
= −

ଵ

ଵି௰
−

௉భതതത

ଵାௌ̅ା௉భതതതା௉మതതത
  (8) 

 ௉మ

௩

డ௩

డ௉మ
= −

ଵ

ଵି௰
−

௉మതതത

ଵାௌ̅ା௉భതതതା௉మതതത
  (9) 

Table 2:Elasticities for a simple Uni-bi reaction 

 Substrate S Product P1 Product P2 
Enzyme elasticity(ε) 𝑆

𝑣

𝜕𝑣

𝜕𝑆
 

𝑃ଵ

𝑣

𝜕𝑣

𝜕𝑃ଵ
 

𝑃ଶ

𝑣

𝜕𝑣

𝜕𝑃ଶ
 

Mass action 
elasticity(εm) 

1

1 − 𝛤
 −

1

1 − 𝛤
 −

1

1 − 𝛤
 

Saturation 
elasticity(εs) 

𝑆̅

1 + 𝑆̅ + 𝑃ଵ
തതത + 𝑃ଶ

തതത
 

𝑃ଵ
തതത

1 + 𝑆̅ + 𝑃ଵ
തതത + 𝑃ଶ

തതത
 

𝑃ଶ
തതത

1 + 𝑆̅ + 𝑃ଵ
തതത + 𝑃ଶ

തതത
 

 

For the mechanistic enzyme kinetics, we can see that enzyme elasticity is a function of 
thermodynamic displacement, the stoichiometry of reaction and the metabolites concentrations 
as well as the saturation constants. 

3.3.3 Enzyme saturation 
Most enzymatic reactions begin with the binding of regulatory substrate S on the active site of 
the enzyme E: 

E + 𝑆
௞ଵ
ሱሮ 𝐸𝑆  

𝐸𝑆
௞ଶ
ሱሮ  𝐸 + 𝑆  (10)    

The total active site concentration is the sum of the free active site and the site of the 
substrate/enzyme complex. 

[𝐸்] = [𝐸] + [𝐸𝑆]  (11)  

The saturation constant Km is defined as: 

𝐾௠ =
𝑘ଶ

𝑘ଵ
 (12) 

The degree of saturation can be defined as the ratio of substrate/enzyme complex concentration 
to total enzyme concentration: 

𝜎௲ =

𝑆
𝐾௠

𝑆
𝐾௠

+ 1
  (13) 

and the scaled metabolite concentration can be expressed as a function of degree of saturation: 

𝑆

𝐾௠
=

𝜎௲

1 − 𝜎௲
  (14) 

From equation (8) we can deduct that: 
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 When an enzyme is 0% operating, 𝜎௲ = 0, then [𝑆] ≫ 𝐾௠ 
 When an enzyme is 100% operating, 𝜎௲ = 0, then [𝑆] ≪ 𝐾௠ 
 When an enzyme is 50% operating, 𝜎௲ = 0, then [𝑆] = 𝐾௠ 

This formulation is very important during the Monte Carlo step because the degree of saturation 
is well bound between 0 and 1 whereas if we were to sample the saturation constant which is 
boundless constant it would prove more difficult.  

As we consider more complex kinetic mechanisms, it is known that more complex enzyme 
saturation expressions occur57 but in the current study equation (9) was used. 

3.4 Parameter inference  
During the TFA sampling step we generate profiles of steady state fluxes, metabolite 
concentrations and reaction free energies (vi, [Xj], ΔrGj). Using the information from the steady 
state solution we will generate kinetic parameters (vmax, Km,I, Keq) for all the reactions in the 
system. The generated parameters will have to lead to the corresponding steady state solution 
and also produce a steady kinetics model. 

First of all, for every reaction of the system a mechanistic kinetic expression is added based on 
biochemical data or in case data is lacking we use ad hoc kinetics. 

 

 

Table 3:Expressions of mechanistic kinetics used and list of parameters. 

Name Reaction Rate law expression 

Michaelis 
Menten 

𝑆 ⇌ 𝑃 
𝑣 =

𝑉௠௔௫
[𝑆]

𝐾ெ,ௌ
൬1 −

1
𝐾௘௤

[𝑃]
[𝑆]

൰

1 +
[𝑆]

𝐾ெ,ௌ
+

[𝑃]
𝐾ெ,௉

 

 
Parameters: [𝑉௠௔௫ , 𝐾ெ,ௌ, 𝐾ெ,௉, 𝐾௘௤] 

Random Bi-
Bi Michaelis 

Menten 
𝑆ଵ + 𝑆ଶ  ⇌ 𝑃ଵ + 𝑃ଶ 

𝑣 =

𝑉௠௔௫
[𝑆ଵ]

𝐾ெ,ௌభ

[𝑆ଶ]
𝐾ெ,ௌమ

൬1 −
1

𝐾௘௤

[𝑃ଵ][𝑃ଶ]
[𝑆ଵ][𝑆ଶ]

൰

1 +
[𝑆ଵ]

𝐾ெ,ௌଵ

+
[𝑆ଶ]

𝐾ெ,ௌଶ

+
[𝑃ଵ]

𝐾ெ,௉భ

+
[𝑃ଶ]

𝐾ெ,௉మ

+
[𝑆ଵ][𝑆ଶ]

𝐾ெ,ௌଵ
𝐾ூ,ௌଶ

+
[𝑃ଵ][𝑃ଶ]

𝐾ெ,௉ଶ
𝐾ூ,௉ଵ

 

 
Parameters: [𝑉௠௔௫ , 𝐾ெ,ௌభ

, 𝐾ெ,ௌమ
, 𝐾ூ,ௌమ

𝐾ெ,௉భ
, 𝐾ெ,௉మ

, 𝐾ூ,௉భ
𝐾௘௤] 

Generalized 
Reversible 

Hill 

𝑆ଵ + ⋯ +𝑆ே  
⇌ 𝑃ଵ + ⋯ + 𝑃ே 

𝑣 =

𝑉௠௔௫ ൬1 −
1

𝐾௘௤
∏ ൬

[𝑃௜]
[𝑆௜]

൰ே
௜ୀଵ ൰ ∏ ൬

[𝑆௜]
𝐾ெ,ௌ೔

൰ே
௜ୀଵ ൬

[𝑆௜]
𝐾ெ,ௌ೔

+
[𝑃௜]

𝐾ெ,௉೔

൰
௛ିଵ

∏ ቆ1 + ൬
[𝑆௜]

𝐾ெ,ௌ೔

+
[𝑃௜]

𝐾ெ,௉೔

൰
௛

ቇே
௜ୀଵ 

 

 
Parameters: [𝑉௠௔௫ , 𝐾ெ,ௌభ

… 𝐾ெ,ௌಾ
, 𝐾ெ,௉భ

… 𝐾ெ,௉ಾ
, 𝐾௘௤ , ℎ] 
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Uni-Bi 
Reversible 

Hill 
𝑆ଵ  ⇌ 𝑃ଵ + 𝑃ଶ 

𝑣 =

𝑉௠௔௫ ൬
[𝑆ଵ]

𝐾ெ,ௌభ

൰ ൬1 −
1

𝐾௘௤

[𝑃ଵ][𝑃ଶ]
[𝑆ଵ]

൰ ൬
[𝑆ଵ]

𝐾ெ,ௌభ

+
[𝑃ଵ]

𝐾ெ,௉భ

[𝑃ଶ]
𝐾ெ,௉మ

൰
௛ିଵ

1 + ൬
[𝑆ଵ]

𝐾ெ,ௌభ

+
[𝑃ଵ]

𝐾ெ,௉భ 
൰

௛

+ ቆ
[𝑆ଵ]

𝐾ெ,ௌభ

+
[𝑃ଶ]

𝐾ெ,௉ଶ

ቇ

௛

+ ቆ
[𝑆ଵ]

𝐾ெ,ௌభ

+
[𝑃ଵ]

𝐾ெ,௉_ଵ

[𝑃ଶ]
𝐾ெ,௉ଶ

ቇ

௛

− 2 ൬
[𝑆ଵ]

𝐾ெ,ௌభ

൰
௛
 

 
Parameters: [𝑉௠௔௫ , 𝐾ெ,ௌభ

, 𝐾ெ,௉భ
, 𝐾ெ,௉మ

, 𝐾௘௤ , ℎ] 

Bi-Uni 
Reversible 

Hill9 
𝑆ଵ + 𝑆ଶ  ⇌ 𝑃ଵ 

𝑣 =

𝑉௠௔௫ ൬
[𝑆ଵ]

𝐾ெ,ௌభ

[𝑆ଶ]
𝐾ெ,ௌమ

൰ ൬1 −
1

𝐾௘௤

[𝑃ଵ]
[𝑆ଵ][𝑆ଶ]

൰ ൬
[𝑆ଵ]

𝐾ெ,ௌభ

[𝑆ଶ]
𝐾ெ,ௌమ

+
[𝑃ଵ]

𝐾ெ,௉భ

൰
௛ିଵ

1 + ൬
[𝑆ଵ]

𝐾ெ,ௌభ

+
[𝑃ଵ]

𝐾ெ,௉భ 
൰

௛

+ ቆ
[𝑆ଶ]

𝐾ெ,ௌమ

+
[𝑃ଵ]

𝐾ெ,௉ଵ

ቇ

௛

+ ൬
[𝑆ଵ]

𝐾ெ,ௌభ

[𝑆ଶ]
𝐾ெ,ௌమ

+
[𝑃ଵ]

𝐾ெ,௉_ଵ
൰

௛

− 2 ൬
[𝑃ଵ]

𝐾ெ,௉భ

൰
௛
 

 
Parameters: [𝑉௠௔௫ , 𝐾ெ,ௌభ

, 𝐾ெ,ௌమ
, 𝐾ெ,௉భ

, 𝐾௘௤ , ℎ] 

Convenience 
Kinetics 

𝛼ଵ𝑆ଵ + ⋯ +𝛼ெ𝑆ெ  
→ 𝛽ଵ𝑃ଵ + ⋯ + 𝛽ே𝑃ே 

𝑣 =

𝑉௠௔௫ ∏ ൬
[𝑆௜]

𝐾ெ,ௌ೔

൰ ቆ1 −
1

𝐾௘௤

∏ [𝑃௝]ே
௝ୀଵ 

∏ [𝑆௜]ெ
௜ୀଵ 

ቇெ
௜ୀଵ 

∏ ∑ ൬
[𝑆௜]

𝐾ெ,ௌ೔

൰
௠

ఈ೔
௠ୀ଴

ெ
௜ୀଵ + ∏ ∑ ቆ

ൣ𝑃௝൧
𝐾ெ,௉ೕ

ቇ

௠
ఉೕ

௠ୀ଴
ே
௝ୀଵ − 1

 

Parameters: [𝑉௠௔௫ , 𝐾ெ,ௌభ
… 𝐾ெ,ௌಾ

, 𝐾ெ,௉భ
… 𝐾ெ,௉ಿ , 𝐾௘௤ , ] 

Irreversible 
Michaelis 
Menten 

𝑆ଵ + ⋯ +𝑆ெ  
→ 𝑃ଵ + ⋯ + 𝑃ே 

𝑣 = 𝑉௠௔௫ ෑ

⎝

⎜
⎛

[𝑆௜]
𝐾ெ,ௌ௜

1 +
[𝑆௜]

𝐾ெ,ௌ௜ ⎠

⎟
⎞

ெ

௜ୀଵ 

 

 
Parameters: [𝑉௠௔௫ , 𝐾ெ,ௌబ

… 𝐾ெ,ௌಾ
] 

 

The above table contains all the mechanistic kinetic expressions used in the current thesis. The 
parameters that need to be defined are the vmax (maximum rate achieved), the saturation 
constants Km which are related to enzyme saturation, the Keq which is related to the ΔGr and the 
hill coefficient h which for our problem was equal to 1 for every reaction. 

The steps followed to determine these parameters are as follows: 

1) The Keq is calculated based on the reaction ΔGr. The thermodynamic properties needed 
for this step are calculated during the TFA step and the equilibrium constant is calculated: 

𝐾௘௤,௜ = −𝑅𝑇𝑙𝑛(𝛥௥𝐺௜
ᇱ௢)  (15), 

where R is the universal gas constant, T is temperature in and 𝛥௥𝐺௜
ᇱ௢ is the transformed 

Gibbs free energy of reaction i calculated during the TFA step. 
2) In order to calculate the saturation constants Km,i,j we sample the saturation constants σi,j 

which are bound 0 ≤ 𝜎௜,௝ ≤ 1. Then by using equation (13) we calculate the saturation 
constants. 

3) Lastly, the vmax parameters are calculated to verify the steady state fluxes. 

For each resulting model it is important to test the local stability of the system. In order to do that 
we calculate the Jacobian matrix: 
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𝑑𝑋

𝑑𝑡
= 𝐽𝑋 + 𝑂(𝑋ଶ), 

𝑗௜,௝ =
𝜕

𝜕𝑋௝
൬

𝑑𝑋௜

𝑑𝑡
൰  (16) 

For a metabolic system at steady state, we have: 

𝑁ന𝑣 = 0  (17) 

Where 𝑁ന is the stoichiometric matrix and v is the flux vector. The Jacobian matrix can be derived 
from equation (17)58-60: 

𝚥̿ = 𝑁ന
𝜕𝑣

𝜕𝑥
= 𝑁ന𝑉ധ 𝑉ധ ିଵ

𝜕𝑣

𝜕𝑥
𝑋ധ

ᇣᇧᇧᇤᇧᇧᇥ
ா

 𝑋ധିଵ
(ସ)
ሳሰ 𝚥̿ = 𝑁ന𝑉ധ𝐸ധ௠𝑋ധିଵ + 𝑁ന𝑉ധ𝐸ധ௦𝑋ധିଵ  (18) 

Where 𝑉ധ  is diagonal matrix containing the steady state fluxes, 𝑋ധ is a diagonal matrix containing 

all the steady state metabolite concentrations, 𝐸ധ is the enzyme elasticity matrix, 𝐸ധ௠ is the 

mass action elasticity matrix and 𝐸ധ௦ is the saturation elasticity matrix. 

The two elasticity matrixes can be easily calculated from expressions such as those in Table 

1. After calculating the Jacobian matrix, we check if the real part of every eigenvalue (λi) is 

negative. If this condition is met then the generated model is stable and the parameter 

population is stored for further analysis. 

3.5 Parameter pruning and stability checks 
3.5.1 Parameter pruning 
After the parameter inference step, we have generated a large number of kinetic models 
containing fluxes, concentrations and parameters. However, the majority of those models appear 
not to be physiologically relevant and would result in uncertain predictions. As the first step of 
the parameter pruning, we check if the system response to a small metabolite concentration 
perturbation is within physiological bounds. 

For a small perturbation the response of metabolite i concentration will be given by the equation: 

[𝑋௜] − [𝑋௜]௦௧௘௔ௗ௬ = ൫[𝑋௜]௧ୀ଴ − [𝑋௜]௦௧௘௔ௗ௬൯ exp ൬−
𝑡

𝜏௜
+ 𝑖𝜔௜𝑡൰  (19)  

Where 𝜏௜ = 𝑎𝑏𝑠 ቀ
ଵ

ோ௘(ఒ೔)
ቁ and 𝜔௜ = 𝐼𝑚(𝜆௜). The first term − ௧

ఛ೔
 inside the exponential represents 

the exponential decay and second term 𝑖𝜔௜𝑡 represents the harmonic oscillations. By ignoring the 
term for the harmonic oscillations, the dynamic response of the system would be an exponential 
decay reaching the reference steady state and the time constant of the system would be τ i. 

We define two bounds for the time constants: 

 The upper bound is 𝜏௠௔௫ =
௧೏

ସ
 ,where td is the doubling time of the cell. The upper bound 

ensures that the system has reached quasi steady state meaning that the changes in 
metabolite concentrations levels are so small that could be considered constant. 
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 The lower bound is 𝜏௠௜௡ = 𝑘ௗ௜௙௙
௠௔௫[𝐸௠௜௡] = 10ି଻. This ensures that metabolism is slower 

than physics. 

The physiological relevant models are those that all the time constant values are within those 
bounds. 

 

Figure 10:The model's response must be within physiological bounds. 

3.5.2 Assessing robust model behavior (Basins) 
The models surviving the pruning step are further analyzed to identify models that show great 
stability around their steady state. We also tested the models for different enzyme saturation 
states. To make this analysis we performed two sets of random perturbations on the metabolite 
concentrations values. The first set of perturbations was on a short range and the second set was 
on a wider range. 

Table 4: Ranges of perturbations. 

Short range Wide range 
0.8ൣ𝑋௥௘௙൧ ≤ [𝑋] ≤ 1.2ൣ𝑋௥௘௙൧ 0.5ൣ𝑋௥௘௙൧ ≤ [𝑋] ≤ 2ൣ𝑋௥௘௙൧ 

 

For every metabolite in the system, we imposed random initial conditions on the concentration 
values within the defined ranges, thus creating a system of ordinary differential equations, an 
initial value problem. Solving the system provided us with the trajectories of responses for the 
metabolites of the models. We further classified the trajectories based on the distance from the 
reference steady state. The distance was calculated as the norm: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ቤ
[𝑋௜] − [𝑋௜]௥௘௙

[𝑋௜]௥௘௙
ቤ   (20) 
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After a lot of time (𝑡 → ∞), the trajectories indicated three different scenarios: 

 Metabolism reached the same steady state. Every metabolite concentration returned to 
the reference steady state. 

 Metabolism reached another steady state. A number of metabolites ended up in a 
different steady state concentration value. 

 Metabolism reached a pathological state. Some metabolite concentrations did not 
converge to a steady state but rather escaped further increasing with the pass of time. 

  

 

Figure 11:The three different scenarios for the metabolite concentration trajectories 

3.5.3 Clustering trajectories 
To further analyze the generated kinetic models, we performed clustering on the trajectories 
produced during the basins step. First of all, we classified the basins responses only by the three 
aforementioned states without clustering. This way, we screened the models that reached new 
steady states and used those for the clustering. 

For the clustering process we used the models whose trajectories reached another steady state. 
As an input we used the metabolite concentration vector after a long time (𝑡 → ∞) and also added 
the reference steady states provided during the TFA step. This way we were able to identify if 
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different models reached same steady states in case, they didn’t reach the reference steady. For 
the clustering we used the kmeans++61 algorithm embedded in sklearn in python. KMeans++ is an 
iterative centroid based clustering technique in which n data points are arranged to k clusters. 
Each observation belongs to the cluster with the nearest mean. In order to define the number of 
clusters we used the elbow method where the distance of clusters is plotted against the number 
of clusters. 

3.6 Metabolic Control Analysis (MCA) 
Having performed the pruning and stability check we identify the kinetic models that are 
physiologically relevant and show great stability. These models will be used to calculate the flux 
control coefficients for the desired reaction or reactions.  

The flux control coefficients 𝐶௣
௩ and the concentration control coefficients 𝐶௣

௫ are defined as the 
fractional change of metabolic fluxes and metabolite concentration, respectively, in response to 
fractional changes in parameter values. Having linearized and scaled the system around the 
steady state62-63 we can derive the expressions for the control coefficients: 

𝐶௣
௫ = −(𝑁ோ𝑉𝐸௜ + 𝑁ோ𝑉𝐸ௗ𝑄௜)ିଵ[𝑁ோ𝑉𝛱௠ ⋮ 𝑁ோ𝑉𝛱௘ ⋮ 𝑁ோ𝑉𝛱௦], 

𝐶௣
௩ = (𝐸௜ + 𝐸ௗ𝑄௜)𝐶௣

௫௜ + [[𝛱௠ ⋮ 𝛱௘ ⋮ 𝛱௦]  (21) 

Where V is a diagonal matrix with the steady state fluxes, NR is the reduced stoichiometric matrix, 
Ei and Ed are the elasticity matrices with respect to independent and dependent metabolites 
respectively, Πm, Πe and Πs are the matrices of the elasticities with respect to parameters, Qi is a 
weight matrix that represents the relative abundance of dependent metabolites with respect to 
independent. A weight matrix Qm is defined as the abundance of dependent metabolites with the 
respect to the levels of their corresponding moieties, which leads to the expression for the matrix 
of moieties elasticities with respect to parameters, Πm: 

𝛱௠ = 𝐸ௗ𝑄௠  (22) 
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Figure 12:MCA nomenclature49 

The flux control coefficients will provide a good insight on which enzymes affect the desired 
reaction flux. The enzymes identified by MCA will be put to the test using the generated models. 
Enzyme perturbations will be performed to quantify and evaluate the flux change predicted by 
the MCA framework. 

 

Chapter 4. Case study: Muconic acid producing yeast 
4.1 GEM model preparation 
4.1.1 Model reduction  
The genome scale model for Saccharomyces Cerevisiae used in the current thesis was the yeast8 
model64. The reduction of the model was not done on the current thesis and the reduced model 
was provided. The reduced model contains 5 subsystems that form our metabolic network: 

 Glycolysis 
 Pentose Phosphate Pathway 
 TCA cycle 
 Oxidative Phosphorylation 
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 Shikimate pathway (aromatic aminoacids) 

The reduced yeast model has 226 metabolites, that makes a total of 226 mass balances. Out of 
those, 49 are extracellular metabolites. A total of 308 reactions describes the metabolic network 
out of which 121 are transport reactions, 183 are enzymatic and 1 lumped biomass that describes 
biomass production and subsequently yeast growth. The yeast cell is divided into 9 different 
compartments, each with a different volume and different reactions happening there: 

Table 5: Yeast cell compartments and their volume 

Compartment Volume(μm3) 
Cell 42 

Cytosol (_c) 29.4 
Mitochondria (_m)  0.0378 

Inner Mitochondria (_i) 0.0042 

 Figure 13:Reduced yeast metabolic pathway 
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Golgi (_g) 4.2 
Golgi membrane (_gm) 42 

Endoplasmic reticulum (_er) 0.84 
Endoplasmic reticulum membrane (_erm) 42 

Vacuole (_v) 2.94 
Cell envelope (_ce) 42 

 

4.1.2 Experimental data integration 
First of all, we added the heterologous reactions for the muconic acid production pathway. 
According to the experimental data52 the pathway used was the shunting of the shikimate 
pathway. We assumed that the reactions added took place in the cytosol. 

Table 6: Hetetologous reactions added to the reduced model 

Enzyme Reaction 
PaAroz 3dhs_c  pca_c + h2o_m 
KpAroY pca_c  catechol_c +co2_c 
CaCatA catechol_c + o2_c  ccm_c 
ccmt2p ccm_c ccm_e 
pca2tp pca_cpca_e 

 

 

 

Figure 14:Fermentation data used to constrain the model 

The metabolomics from the fitting of the fermentation data shown in Figure 2 were used to 
constrain the model. Also, gene KOS were expressed in the form of setting the lower and upper 
bound of the corresponding reaction to zero. That way it is assured that the reaction flux during 
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the TFA step will be zero. Moreover, reaction directionalities will be defined either from literature 
data. The extracellular space in this formulation is considered to be equivalent to reactor space, 
meaning that the extracellular concentrations is the reactor concentration. 

1) Glucose extracellular concentration was constrained between 9.8M≤ glc_c ≤10.2M 
2) Extracellular fluxes for glucose, muconic acid and prtocatechuic acid are integrated: 

Table 7: Extracellular fluxes bounds 

Reaction Lower bound Upper bound 
EX_glc__D_e -0.55 0 

EX_ccm_e 0.028 0.0308 
EX_pca_e 0.008 0.0088 

 

3) Define reaction directionalities: 
 Glycolysis is modeled to operate only forward. The reactions FBA,PGI,PGM are 

set to forward 
 Assume diffusion of passive transporters (akg_m, mal_m) as they were not 

observed in the medium. Transport reactions AKGt, MALt set to backward. 

Table 8: Other fermentation data used 

Ratio gdw to gww 0.32 
Density 1200 g/l 

Ph(extracellular) 6 
Minimum growth 0.03h-1 

Division time ln2/minimum_growth=23.1h 
 

4.2 Thermodynamic Flux analysis Sampling 
Having constrained the reduce model based on the fermentation data provided we move on to 
the sampling step. During the sampling process we had to first get the metabolite concentration 
close to the fluxes calculated. This is an important step, because during the pruning step we need 
the time constants for every metabolite to be within some physiological bounds. In order to 
efficiently get the metabolite concentration close to the steady state fluxes, we followed the 
following steps: 

1) First, we took 500 samples from the TFA solution space. We could continue with the 
parameter inference step, calculate the time constants and proceed with the 
metabolite concentration curation but that would need a lot of computational power 
and time. 

2) Then we calculate the turnover for the metabolites in the system. Turnover is the 
following expression:  

𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟 =
∑ 𝑣௣௥௢ௗ,௜

[𝑋]௜
 

Where vprod,I are all the fluxes that produce metabolite i and [X]i is the metabolite 
concentration. The turnover index is somewhat analogous to the time constants of 
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the metabolites mass balances. The median, maximum and minimum of the 500 
samples were calculated and used to indicate which metabolites had small turnovers. 

3) The concentrations of the metabolites with low turnovers were further constrained 
in order to increase the turnover index and subsequently their time constant. 

The three steps above were repeated until the turnover indexes for all metabolites showed values 
greater than 0.1. 

4.3 Kinetics Models generation 
4.3.1 Pruning step 
In order for a kinetic model to be physiologically relevant we demand that the maximal 
eigenvalue:  

𝜆௠௔௫ < −3
𝑡ௗ

𝑙𝑛2
=> 𝜆௠௔௫ < −0.12 

At first, having not done the turnover procedure we sampled 100 flux and concentration profiles 
from TFA. We then fitted 100 kinetic parameter sets for every TFA sample and ended up with 
1000 kinetic models. However, none was physiologically relevant as the histogram below hints. 

 

Figure 15:Histogram of maximal eigenvalues of all 100000 models before the turnover step 

As it is visible from Figure 3, we were 3 points of magnitude below the cutoff point. After the 
turnover procedure we generated 100000 kinetic models (1000TFA*100Kinetic_sets) and ended 
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up with only 56 of those passing the pruning step. As the number of pruned models was so low, 
we screened the tfa samples to those that generated models with maximal eigenvalues close to 
the cutoff value. In the end, 47 tfa samples were used and 500 kinetic parameter sets were 
generated for each sample, thus resulting in 23500 models. Out of those, 366 models were only 
physiologically relevant, a percentage of 1.56%. 

 

 

Figure 16:Histogram of maximal eigenvalues of all 23500 models. It is visible that we are closer to the cutoff value 

4.3.2 Basins Distributions 
To assess the stability of the generated and pruned models we performed the sets of random 
perturbations. Then we classified the trajectories of the models based on the three different 
outcomes: reference steady state, another steady state or escape. We will show the basins 
distributions for both ranges of perturbations. We will start with the models that showed great 
stability in the short range and juxtapose the basins distribution for the same models on the 
wide range. 

The systems of ordinary equations were solved for a time span of 0min-100min. Then the 
timeframe used to evaluate the distributions was for t=23min which is the doubling time of the 
cell. 
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           Figure 17: Basins distributions of models 0-100. Blue bar is for the reference steady, green bar is for escape and orange bar is other steady state 

F



 
 

42 
 

Figure 18:Basins distributions of models 100-200.       Figure 18: Basins distributions of models 100-200 
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Figure 20:Basins distributions of models 200-300 

Figure 19:Basins distribution of models 200-300.           Figure 19: Basins distributions of models 200-300 
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Figure 8: Basins distributions of models 300-366.            Figure 20: Basins distributions of models 300-366 
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Some good observations that can be made from the basins distributions for both ranges are: 

 Models that show great stability in the short range are more likely to show great 
stability in the wide range but that is not guaranteed. For example, model 39,107 had 
99/100 perturbations return to reference steady state for the short range but scored 
0/100 for the wide range. 

 On the wide range, models reached new steady states more frequently than on the 
short range. This is normal as on a wider specter of initial concentrations metabolites 
can reach new steady state concentrations. 

 On the wide range, models reached a pathological state (escaped) far more often than 
on the short range. The further away we go from the reference steady state the more 
probable that some metabolite concentrations don’t reach a steady state but rather 
continue to increase to infinity. 

 Models that reached new steady states on the short range of perturbations also 
reached new steady states on the wide range. Further clustering analysis will show if 
the new steadies coincide. 

 Unstable models in the short range also showed great instability on the wide range 
with some exceptions (models 40,66 and 40,89). 

 

4.3.3 Basins trajectories clustering 
To delve deeper into the understanding of these systems we clustered the steady states observed 
throughout the basins step. The cluster points will provide information on metabolites that 
reached new steady states. For the clustering we used the basins results for the models on the 
wide range that reached a new steady. To define the number of clusters we used the elbow 
method. 



 
 

46 
 

 

From Figure 21 we can clearly see that models built around the same steady state reached the 
same alternative steady state (the case for the models built around steady states with index 
3,4,5,6). Other models based on the same steady state (index 21) reached different alternative 
steady states. And also, the case for the model 23,88 which reached 5 different steady states. 
However, three of them should be included as in the escape cluster as they reached unnaturally 
big concentrations. 

In the matrix below we will show the distance of the 5 metabolites that are the farthest from the 
reference steady for every cluster.  

 

 

 

 

 

 

 
Figure 21:Distribution of basins for models that reached new steady states on the wide range. Blue bars represent the reference steady state, purple bars represent 
escape and all the other colors represent new steady states. 
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Table 9: Other steady state characteristics 

 

 

4.3.4 Models with great stability 
Having done the basins analysis we can identify models that show robust behavior and great 
stability. We define as stability the fraction of the number of perturbations that returned to the 
reference steady state to the total number of perturbations: 

𝑆 =
𝑛௥௘௙௘௥௘௡௖௘_௦௧௘௔ௗ௬

𝑛௦௘௧௦
 

The other classes of trajectories are defined as unstable as it is not physiologically logical for the 
metabolites concentrations to either reach other steady state values in case of a small 
perturbation or escape to very large values. 

 

Figure 22:Venn diagrams of models for two different kind of stabilities 95% and 80%. 

It is logical that for the shorter range of perturbations more models scored higher stability than 
for the wide range.  

Cluster 
no 

Met 1 Norm Met 2 Norm Met 3 Norm Met 4 Norm Met 5 Norm 

3(green) pram_c 0.14 ile__L_c 0.070 ile__L_m 0.058 pi_erm 0.039 imp_c 0.036 
4(orange) pram_c 0.061 ile__L_c 0.035 imp_c 0.031 ile__L_m 0.027 s_0834_m 0.022 

5(red) pram_c 0.066 imp_c 0.033 pi_erm 0.025 cbc_c 0.021 s_0834_m 0.020 
6(brown) ile__L_c 0.14 ile__L_m 0.11 s_0834_m 0.075 3mob_c 0.04 imp_c 0.036 
21,1(pink) 3mob_c 0.12 val__L_c 0.11 3mob_m 0.044 tyr__L_c 0.038 lald__L_c 0.024 
21,2(grey) val__L_c 936 ile__L_c 750 tyr__L_c 665 ile__L_m 292 pram_c 170 

38 pi_erm 0.051 cbc_c 0.037 cbasp_c 0.030 gmp_c 0.020 gtp_c 0.020 
23,1(light 

blue) 
val__L_c 2.2e7 3mob_c 4.3e5 3mob_m 487 3c3hmp_m 4.9 3c3hmp_c 4.6 

23,2 akg_m 5.1e12 s_0834_m 2.2e10 val__L_c 2.3e8 indpyr_C 4.8e5 trp__L_c 1.4e5 
23,3 akg_m 5e12 nadp_er 3.6e10 s_0834_m 2.1e10 eig3p_c 1.4e10 val__L_c 2.3e8 
23,4 akg_m 5.1e12 s_0834_m 2.2e10 eig3p_c 1.4e10 val__L_c 2.3e8 prlp_c 1.7e6 
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Figure 23:Venn diagrams for both ranges of perturbations and three different stability scores. Intersection of models 
also illustrated. 

Models with high stability in the wide range are very likely to have high stability in the shorter 
range as well. As stable models are selected those that had a stability score of 90% for both 
ranges of perturbations. A total of 70 kinetic models will be used to calculate the flux control 
coefficients for muconic acid production. 

4.3.5 TFA samples and stability 
To further illustrate the importance of the steady state flux and concentration profile prediction 
we present the percentile of fast (physiologically relevant models) and stable models for every 
tfa sample used to generate the kinetic models. For every tfa sample we generated and fitted 
500 random kinetic parameter sets.  
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Figure 24:Physiological and stable models generated for every tfa sample 

It is visible that while some samples produced many fast models, they didn’t necessarily produce 
stable models.  

4.3.6 Decision tree analysis on key parameters 
After the stability analysis we have deducted that out of the 366 kinetic models 70 had high 
stability scores. In order to evaluate and find the kinetic parameters that deem a kinetic model 
unstable or stable we performed classification using a Decision Tree Classification Algorithm. As 
the input data for the kinetic parameters, we used: 

1) The enzyme saturation values. The saturation values are well bound between 0 and 1 and 
they didn’t need further normalization 

2) The thermodynamic displacement(Γ) values. The Γ values are well bound as well between 0 
and 1. 

The vmax values were not used as they would require further normalization and also, they are 
dependent variables. As a training set for the algorithm, we used all 366 stable kinetic models as 
we wanted to extract information on the different kinetic parameter values that affect stability 
rather than make predictions. We generated two decision trees, one for stability score 90% and 
one for stability score 80%. 
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 Figure 25:Decision tree for stable and unstable models with stability score 90%. Blue boxes correspond to stable model majority, orange boxes to unstable 
model majority and as we get closer to white we have equilibrium of models. Gini index illustrates to number 
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It is visible that for a different stability score the generated decision tree changes entirely. 
However, in both cases the first branch on the tree corresponds to a Gamma parameter. That is 
normal because the gamma value is calculated during the TFA sampling step. Having selected only 
47 TFA samples to do the parameter inference leads to some TFA samples producing more stable 
kinetic models than others thus making the first branching a Gamma value.  

For both stability cases the firsts branching classifies almost half the stable models with a very 
small percentage of unstable (42% and 28% for S=90% and S=80% accordingly). This signifies the 
importance of the steady state flux and concentration profiles prediction as they highly influence 
the stability of the generated models. 

 Figure 26:Decision Tree for stability score 80%. Blue boxes correspond to stable majority, orange to unstable majority and closer to white boxes correspond 
to almost same number of stable and unstable models 
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4.4 MCA 
Having selected the kinetic models which are physiologically relevant and have showed great 
stability in the basins step we calculate the muconic acid flux control coefficients. To be more 
precise we calculated the flux control coefficients for the transport reaction of muconic acid 
from the cytosol department to the extracellular, cmm2tp. We could also use the reaction 
CaCatA (muconic acid production reaction) but it would yield the same results. 
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Figure 24: Violin plots for muconic acid production. The marker on the center represents the mean values and the two other 
points are the extreme values. The figure on the left represents the fccs of the 70 stable models and the figure on the right the 
fccs of the 366 models. F
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Figure 25: Bar plots of the mean values of fccs. On the left the fccs of the 70 stable models and on the right of the 366 
models. 

F
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The large flux coefficients, for enzymes such as FERCOXOXI, SUCDu6m, PGI, FUMm, come as a 
result of small sampled fluxes.  

Table 10: Information about the top 20 enzymes and the reactions they catalyze. 

Enzyme Subsystem Reaction 
FERCOXOXI Oxidative 

phosphorylation 
focytc_m + 1.266h_m + 0.25o2_m  →  

ficytc_m + 0.5h2o_m + 0.633h_i 
PGI Glycolysis g6p_c→ f6p_c 

SUCD2u6m Oxidative 
phosphorylation 

q6_m + succ_m → fum_m + s_1535_m 

FRD2m Oxidative 
phosphorylation 

nad_m + succ_m  ← fum_m + h_m + nadh_m 

PDHm Oxidative 
phosphorylation 

coa_m + nad_m + pyr_m → accoa_m + co2_m + nadh_m 

CSm Oxidative 
phosphorylation 

accoa_m + h2o_m + oaa_m → cit_m + coa_m + h_m 

FUMm Oxidative 
phosphorylation 

fum_m + h2o_m → mal__L_m 

ENO Glycolysis 2pg_c → h2o_c +pep_c 
AKGDBm Oxidative 

phosphorylation 
coa_m + sdhlam_m → dhlam_m + succoa_m 

DHQTi Shikimate 
pathway 

3dhq_c → 3dhsk_c + h2o_c 

GCC2cm Oxidative 
phosphorylation 

dhlam_m + nad_m → h_m + lpam_m + nadh_m 

ICDHxm Oxidative 
phosphorylation 

Icit_m + nad_m → akg_m +co2_m + nadh_m 

NADH2u6m Oxidative 
phosphorylation 

h_m + nadh_m +q6_m → nad_m + s_1535_m  

AKGDam Oxidative 
phosphorylation 

akg_m + h_m + lpam_m → co2_m + sdhlam_m 

AMPDA Purine and 
Pyrimidin 

biosynthesis 

amp_c + h2o_c + h_c → imp_c + nh4_m 

TKT2 Pentose 
Phosphate 
Pathway 

e4p_c + xu5p__D_c → f6p_c + g3p_c 

PGL Pentose 
Phosphate 
Pathway 

6pgl_c + h2o_c → 6pgc_c + h_c 

ASPTA Alanine and 
Aspartate 

Metabolism 

akg_c + asp__L_c ← glu__L_c + oaa_c 

PGM Glycolysis 3pg_c → 2pg_c 
GLUDy Glutamate 

Metabolism 
akg_c + h_c + nadph_c + nh4_C → glu__L_c +h2o_c +nadp_c 
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4.5 Enzyme Perturbations  
To further quantify the effect on muconic acid flux of the enzymes with high flux control 
coefficients we performed enzyme perturbations. Based on the numeric sign of the fccs, we 
upregulated the enzyme if the sign was positive or downregulated if the sign was negative. The 
enzyme modification was simulated in the form a vmax value change, as the maximum rate is 
dependent on enzyme activity. For the new vmax value we calculated the new steady state muconic 
acid fluxes for all 70 stable models. It should be worth noting that for upregulation we set 
𝑣௠௔௫,௡௘௪ = 1.5𝑣௠௔௫,௥௘௙௘௥௘௡௖௘ and for downregulation 𝑣௠௔௫,௡௘௪ = 0.5𝑣௠௔௫,௥௘௙௘௥௘௡௖௘. 
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Figure 29: Violin plots of the effect of enzyme perturbations on muconic flux. Middle bar corresponds to the mean value. 
Both extremas also included. 



 
 

58 
 

Chapter 5. Conclusions and Future research 
5.1 Developing large scale models 
In the present study, we attempted to build large scale kinetic models for a muconic acid 
producing yeast. By bridging both approaches in strain design, the constraint-based methods 
(Thermodynamic Flux Balance Analysis) and the kinetic approach we managed through the 
ORACLE platform to generate physiologically relevant and stable kinetic models. These models 
were used to offer insight on the metabolic strategies that can be applied to increase muconic 
acid flux. 

5.1.1 Genome scale curation and experimental data integration 
The developed GEM corresponds to a mutant strain of S. Cerevisiae capable of producing muconic 
acid via shunting of the shikimic pathway. The model has thermodynamically curated and 
reduced. A kinetic model was created that incorporated all the information about the kinetic 
parameters and the kinetic expressions of the system’s reactions. Experimental data such as 
growth rates, secretion rates, extracellular concentrations, were added to the GEM in the form of 
upper and lower bounds or reaction directionalities.  

5.1.2 Kinetic models generation and pruning 
In order to produce physiologically relevant kinetic models, we had to further constrain the 
metabolite concentration bounds to satisfy the pruning step criteria. During the TFA sampling 
step we identified 47 samples capable of producing relevant kinetic models and continued with 
generating 500 parameter sets for each TFA sample, thus generating a total of 23500 kinetic 
models. Out of those models, 366 were within physiological bounds and were used for further 
analysis. 

5.1.3 Kinetic Models Stability 
We continued with the stability test which consisted with 2 sets of 100 random perturbations 
each on two different ranges, a shorter and a wider one. As it is logical, models performed better 
in the shorter range as they had higher stability scores. Moreover, some kinetic models reached 
new steady states and by imposing a clustering algorithm we calculated the new centroids of the 
new steady states. An interesting observation is that in their majority kinetic models based on the 
same tfa sample reached the same alternative steady state.  

With a stability score of 90%, 73 kinetic models were selected as candidates for the Metabolic 
Control Analysis and the enzyme perturbation step. 

5.1.4 Decision Tree Analysis 
Having picked out the kinetic models that showed robust cellular behavior we performed a 
decision tree analysis on the kinetic parameters of the generated models with the aim of 
indicating the parameters that seem to highly affect stability. For a stability score of 90% the most 
important kinetic parameter appears to be the thermodynamic displacement for SUCCt 
(Gamma<0.389) and the nad_c saturation for reaction ALCD26xi (sigma>0.725). If we wanted to 
increase the percentage of stable models during the generation step, we could employ those two 
bounds those two parameters. This iterative cycle would lead to more stable kinetic models and 
we would eventually constrain a plethora of kinetic parameters. 
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5.1.5 Metabolic Control Analysis 
Using the 73 stable kinetic models we calculated the muconic flux control coefficients with the 
well-established MCA framework. We were able to identify the top 20 enzymes that affect 
muconic flux. Some attractive metabolic strategies that arisen were to increase flux to the Pentose 
Phosphate Pathway as to increase flux to e4p (PGI↓ ,TKT2↓,PGL↓) and to increase the 
dehydroshikimate flux (DHQTi↑). From the MCA results, we deducted that a bottleneck in muconic 
acid production is the deficiency of e4p in the cell. Moreover, we present the control coefficients 
for the all the physiological models and some differences are apparent such as the very larger 
control coefficients for FUMm and ENO.  

5.1.6 Enzyme perturbations 
For the enzymes that had large control coefficients for the muconic flux we performed some 
perturbations to calculate the effect on muconic flux. Although, some enzymes that are connected 
to the Electron Transport Chain (ETC) and it is infeasible to regulate we calculated the effect on  
muconic flux just for comparison. The candidate enzymes (PGI, TKT2, PGL, DHQTi) showed an 
increase in muconic flux with varying results. PGI downregulation by 0.5 resulted in 12.5 times 
bigger than reference muconic flux whereas TKT2 PGL downregulation by 0.5 resulted in 1.4 and 
1.3 times accordingly bigger flux. DHQTi upregulation by 1.5 resulted in 1.8 times bigger than 
reference muconic flux. We also tested upregulating the heterologous enzymes (PaAroz,KpAroy) 
of the muconic pathway but the increase in muconic flux was insignificant. 

5.2 Future Research 
Kinetic modelling of such complex systems as cellular metabolism is a challenging task. However, 
in order to thin gap between lab observed strain yields and pilot scale yields we must be able to 
construct kinetic models which will be closer to reality. Although, constraint-based methods can 
offer a quick insight and great metabolic strategies for the increase of the desired flux they more 
often than ever cannot predict the dynamic aspect of the system. The formulation used in this 
thesis incorporated stoichiometry, kinetics and thermodynamics and produced models that are 
physiologically relevant and stable for a range of perturbations. 

In order to produce more relevant kinetic models, we could set bounds to critical parameters 
that seem to affect model stability (e.g., for our case study gamma_SUCCt). The critical 
parameters can be classified using machine learning classification algorithms. Furthermore, the 
experimental data for the growth rate, secretion rates could be used to further screen out the 
generated models. Pattern recognition algorithms could be employed to identify kinetic models 
that seem to have the same behavior as the experimentally observed trajectory. 
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