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[TepiAnyn

Y Awrpd) pog e€etdloude 1o TEOBANUA TOU EVIOTIOUOU AXOUCTIXMY YEYOVOTWY O «EEuU-
vy TERYBAAROVTO UE TOANATAYL Uixpopwva. O EVIOTIOUOS UXOUGTIXWY YEYOVOTWY AmOTEAEL
ONUOVTIXG TUAA TOU EVPUTEPOU TEDOL TNE UTOAOYIOTIXAG OVEAUCTC OXOUCTIXAC OXNVAC,
%L 0TOYOC TOU E(VOL O AUTOUATOS EVIOTUIOUOC GTOV YPOVO XL 1) OVOYVELOT TV OXOUG TL-
AWV YEYOVOTWY TOU TEPLEYOVTAL O EVa NYNTIXO OTIYMLOTUTIO. LNV €peuvd pog eoTIdlouye
otV ovdnTun pedodwy Y TNy ollonoinom tng TANeogopiag amd TOMNATAYL ULXEOPYAL YL
TOV EVIOTUOUO YEYOVOTWY OE UMOUTNTIXEC CUVUAXES UE pouvoueva exdAudng. Apyixd, divouue
€UQACT) 0TO TEOBANUA TOU EVIOTUOUOU TNG ovIp®TVIG YWVNG, X0t OTA TAALCLA EVOS «EEUTVOUY
ouLooU TEPYBAAAOVTOG UE TOANATAGL BOUATIOL AVATTUGCOUNE EVaL GUG TN Y WEO-YPOVIXOU E-
VTOTUGHOU QPWVAC U0 GTAdwY, XUTIAANAO VLol DLUAOYIXE GUC THUUTA POVNTIXWY EVIOADY. XTO
TEMTO GTASLO, TO LG TNUA PG CUVOUALEL ATOTEAECUATING TOL CHUATA ATO TOANATAGL ULXEOPWVAL
Yiot VoL TETOYEL TOV YPOVIXO EVIOTIOUO TNG PWVAC, XOL OTO OEUTEQO, XOUVOTOUO TOAUXOVOAL-
X3 YoEaXTNEIOTIXE eEQyYOoVTaL YLol TOV YWeixd EVIOTOUS NG YwVAC ot eninedo dwuotiou.
To chotnud pog emdeviel eVpWo TN am6800T ot GUYXEIVETOL guVOIXE ue pedodoug Bordt-
Gc unyavixic wdinonc. XTn cuVEYELN, 0TO EVPUTEPO TEOBANUO TOU EVIOTUGUOU AXOUC TIXMY
YEYOVOTWY, OIVOUUE EUPUCT] OTO ATMUUTNTLIXO CEVIQLO TWV EMXAAUTTOUEVWY YEYOVOTMY X0 TEL-
popotilopacte ye Yedddoug moporyoviomonong un-aevntixey mvixwy (NMF). Yta mhalow
auTAS TNS €peuvag, dlepeuvolue pedodoug yia Ty Bedtinon Tou oTadiou evtomopol ot Poot-
xéc uevodoug NMF, tnv abinon tng amodoTixdtntag o 80OX0AES EMUXAAVTTOUEVES CUVUHXES
cuvatnudtwy NMF nou cuvbudlovtar pe ta€vountés, xot T€A0C TNV avamTud) omoTEAEGUO-
TIXWY TOAU-XVOAX@Y cuoTNUdTwY NMF yio mtpofifuata eviomopol yeyovotwyv. Téhog,
TelpopoTillOpac e P Uevddoug Bordide UnyavixAc udidnong yio Tov EVIOTIOUSO ETUXOAUTTOUE-
VOV YEYOVOTWY OF MEQITTWOELS OTOU UTHPYEL UEYSAN Towahio mdavmdy xAdoewy. Xe auTr TNV
%xatebLUVoT), TEOTEIVOUUE TOV GUVOLIGUO XAl TNV ATO XOWOU EXTUBEUCT) EVOC TOAU-XAVAALXOU
VEUROVIXOU BIXTUOU BLoywEIoHo) YEYOVOTWY UE €V VEUPWVIXO BiXTUO TaVOUNONG AXOUC TI-
AWV YEYOVOTWY, TETLUYOVOVTAS BEATIWUEVT amoB00T OE OYEOT UE TORUBOCLOXES TEYVLXEC.
INo v agloAdynom twv Yedodwy Hag, YENOHLOTOLOUUE BIAPORES CUVUETIXEC XOl TEAYUATIXES
Bdoeic dedopévmv mou dnuoupyimxay/nyoyeaphidnxoay oe xatdhAnhor ToAu-xovahixd «€Eu-

vy TepBdAlovTAL

A€Eeig KAetdid: Evromopog akovotikdv yeyovotwv, IToAv-kavakikég pébodot,
Emucalvntopeva yeyovota, «E§umvar mepipédlovrta
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Abstract

In our Dissertation we examine the problem of Acoustic Event Detection (AED) in multi-channel
smart-space environments. AED constitutes a major part of the computational auditory analysis
field, and its main goal is the automatic end-pointing and classification of each sound event present
in an audio clip. In our research we focus on developing methods for exploiting the information
from multiple microphones for detecting events under challenging and overlapping conditions.
At first, we focus on the detection of human speech events in smart homes consisting of multi-
ple rooms, equipped with multiple microphones. For this purpose, we develop a novel two-step
room-localized Speech Activity Detection (SAD) system, appropriate for voice-enabled applica-
tions. In its first step, our system efficiently combines the signals from multiple microphones to
produce temporal speech segmentation, and in the second step it extracts novel room-discriminant
multi-channel features to locate the speaker at the room-level. Our system performs robustly and
compares favorably to deep-learning based alternatives. Then, for the general AED task, we focus
on the challenging overlapping scenario and experiment with non-negative matrix factorization
(NMF)-based approaches. In the process, we investigate ways to improve the detection step of
well-known NMF baselines, to increase the robustness of classifier-based NMF systems in highly
overlapping conditions, and finally to develop an efficient multi-channel NMF system for detec-
tion tasks. Finally, we employ deep-learning methods for overlapping AED when the number of
different event classes is large. In this direction, we propose the combination and joint training of
a multi-channel sound source separation network with a multi-label AED network, achieving im-
proved results over traditional neural network approaches. For our experiments, we employ several

synthetic and real databases recorded in suitable multi-microphone smart-space environments.

Index Terms: Acoustic event detection, Multi-channel, Overlapping events, Smart homes






[IpoAoyog

Me v ohoxhfpworn authc g Satelfric xhelvel évag peydhog xUxAog, xotd Tn Oldpxela
Tou onolou VYW 6Tl Byabve WLaltepa xEEOICPEVOS OE YVOOELS xou euTetpleg. Oo fieha va
ELYOPLOTHOW OAOUE OGOUC PE GTHELEAY Xl GUVERYAOTNXAY Yoll LoV OE QUTY TNV YoXpoyeovT
OLadpoun.

Apynd Bo deha va euyopiothow Tov emBiénovta xodnynty x. IIétpo Mapayxd yio
TNV cuvepyaoio Tou elyoue OhaL AUTA TA YEOVLXL oL YLl TNV xJOOHYNoT TOU UOU TORELyE.
"Hrov exelvog mou pyéoo and tnv SLd0oxahior TOU GTo TROTTUYLOXS Lo AUNTA TNG OYOAAC UE
EVETVEUGE VoL axohoLUNOW TIG EPELVNTIXES TEQLOYES TNG EMECERYATIAUC ONUATLY Xl TNG UNY -
vixhc udinong. Katd tnv dudpxeia tne dlatplBhc, uéoo amd TnV CUVERYACT oG OE EPELVNTIXG
TEOYEAUUATY, TIC EPELVNTIXES oLLNTAHCELS ToL Elyoue, oA xou péoa amd TNV BLdooxoAla pe-
TATTUYLOXWY LoINUET®Y, UE Sloaudppmwae xadoplo Txd cav epeuvnTy xat emoThuova. Eriong
Yo ek var euyaplo T Tov cuvemPBAénovTa xadnynth x. [epdowo Iotawdvo yia tn yo-
xpoyeovn cuvepyaota tou etyaue. H cuvelogopd tou Atay toAbTn 1600 o1n dlelaywyr| Tng
€PELUVOC OO0 XAl OTN CUYYEAUPY TWV BLAPORKY EPELVNTIXWY dElowY ToL TEOExUPUY XUTd TN
oudpxeta Tne Awboxtopixfc dateBric. Evyapliot eniong toug x. Kwota Tlagéota, x. Ada-
vaoto Katoaudvn, x. Ytépavo Kohha, x. BEulta Pwtewvéa, xou x. Havayidtn Toovdxa mou
O€yOmpary vou lvon UEAN TN ERTOPEAOUS HOU ETTROTAG.

Oa feho axduo vor euyaploTACK Ohat Tor PéAT Tou gpyactneiou Pournoturc xouw Autoua-
TIOGUOU YId TO EUYSEIOTO X0l ONUIOVEYIXO XA{Uo Xou TIC XOLWVES euTElpleg Tou elyoue Ao auTd
Ta yeovia. Téhog Va ideha Vo eLYARLOTACL TNV OXOYEVELS oL YLo TNV CLVEYT GTHRIER TNG
amb TNV oy Y| HEXEL TO TEAOC QUTAC TNG OLUBEOUNS.
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Extetauevn [epiAnym

Ewcoywyy

O ywpo-ypovixdc eviomopds oxousTxmy yeyovotwy (AED) anotekel éva onuavtind tufua
TOU EVPVUTEPOU TEBIOL TNE UTOAOYIC TIXNG AVAAUCTC IXOUC TIXWY CNUATKY, TO OTolo €YEL TpO-
oeAUGEL WOLTEPO EVOLAPEROY OTNV EPELYNTIXY xOWOTNHTA Tor TEAeLUTAda Ypovia. Tumixég eqop-
Hoyéc tou mediou autod mepthapPBdvouy cuoThuaTa Yo «éEunvay onitia [1-5], yio mopaxoho-
Oinon tne vyeovouxhc tepibadne [6], yioa ebpeon xou avdxtnon Tolvpgéowy [7], xodme xou
ouo T aopaieiog xou tapoxorholinong ywewyv [8,9].

O %0pto¢ o%0TOC TOU EVIOTUOUOU UXOUCTIXWY YEYOVOTWY EVUL O AUTOUAUTOS YPOVIXOG €-
VTOTUOUOC XAl 1) XOTNYORLOTOINCT TwV BLAPORKY AXOVCTIXMY YEYOVOTWY HECA OE EVOL MY NTIXO
ATOCTIUOUOL, ATOXAAVTTOVTAG ETOL ONUAVTIXT) TANEOQOELa Yiot AavIPOTIVES Xou 1) SpAC TNELOTY-
TeC 070 TEPYBIAAOY. AVAAOYO UE TO CUYXEXPWEVO TEOBANUA XU TO AVTIGTOL(O AXOUCTIXG
nepBéihov, pmopel va tpoxtet évag peydhog aprdude and mdavd oxovotixd yeyovoto [10,11].
XN ouyxexpuévn dlatelfr), 80UNXE EUpaon OE oxXOUCTIXE YEYOVOTO TOU CUVADWS TEayUd-
TonoolvTan ot «€Eunvay epBdAlovta («é€unvay omitia ¥ ywpoug epyoaoiog). Mepixd mapo-
OELYHOTOL TETOUWY OXOUCTIXMY GUUPBAVTWY VAL 1) <QWVAY, TO KTEQTATNUAY, 1) KPUDLOQPWVIXT
HOUGLXY)», TO «YTUTNUA TNG TOPTACY, 1) «TANXTEOAGYNON» AT. 'Eva oxouctind yeyovog ue
WLodtepo VOLpEEOY Elval 1) avIpOTIVY «PWVTHY, apol amoTEAEL TO x0pLo PECO Yia ETLXOVLVOL
oVUWTOU-UNYAVAG Xl ETOUEVGS OLBEaATICEL ONUAVTIXG PONO GE TOAAES EQUOUOYEC.

[Switepn éugoon 860N e otov eviomioud g gwvic (SAD) cav pla eldn tepintwon Tou
EVIOTIUOUOU AXOUCTIXWY YEYOVOTWY. LUYXEXQUEVO UEAETAUNXE O EVTOTIOUOS TNS POVAC O
TAAOLOL GUC TNUATOV POVNTIXWY EVIOA®Y YEoa oe «Eunvay mept3dAiovTa. Tétotou eldoug ou-
oot cLYHYWS TEPLAOUBAVOLY Wiar axohoudio amd UTO-CUGTAUTA, UE AUTO TOU EVIOTIOUOU
POVAG Vo elvol amd T ONUAVTIXOTERA, APOU TUREYEL TNV AmopodtnTy 0000 YLot TOAAG GAAL
UTO-GUOTAPOTA, OTIWE T.Y. TOV Y0EX EVIOTLOUS ophnTy, Tov xaduploud/Bektivwon tne gw-
VAC, TOV EVIOTIOUO AEEEWV-XAELBLMY YIo TIC POVNTIXES EVTOAES, KOl TNV AUTOUOTY] OVOLY VEPLOT)
povic. ExTto¢ TV CUGTNUATOY QWVNTIX®Y EVIOA®Y, 0 EVIOTIONOS Puvic Beloxel epopuoy
X0 o€ Ghhat TEOBA AT/ TEPLOYES, OTWS OTIC TNAETXOWVOVIES, OTNY XwdXoToiNoN PWVAS, TN
OVOLY VPLOT) OUANTY HECW ORLALAS, %ot GANAL.

Y70 unéhointo P€pog Tou xEPaAalou, Vo YIVEL Ulal ETLOXOTNOY TWV GYETIXWY EQYACLDY OT
TEOlol TOU EVTOTUOUOU (QPWVAC X0k TWV UXOUCTIXMY YEYOVOTWY. TN cuvéyew Jo yivel uia

TERPLYPAPT) TV XVPLOV CUVEIGPORMY TNS EQELVIITIIXAC Hog epyaciag, xat Yo Sodel cuvoTTixd 1)
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doun e AwateBrc.

Yyetxéc Epyaoleg

ITinddpa pedodnv €youv mpotadel tar Teheutala ypodvia otn PBiBMoypapio yio To TEOBANUL
TOU EVIOTUOUOU AXOUCTIXWY YEYOVOTWY, UE UEYAAY TOAlY 6TV EMAOYY TwV ohyoplduwy
XAl TWV AXOVC TIXWY YORUXTNREIC TGV TOL Yenoylonotovvtat. Mropolue va Sioywpicoupe Tic
oyxeTwég epyaoieg pe Bdon to av avamtdyUnxoy xat aZLoAoY UMMV Yiol TOV EVIOTIOUO UELOVE-
UEVOY 1) ETUOAUTTOUEVHY OXOUC TIXWY YEYOVOTWY, OTKS ETLONE Xou Ue Bdor To av otneilovto
oTNY UTaEEN €VOC 1 TOANUTAGY UXEOPOV®Y YLOL TNV XATHYEAUPY) TOU oxoucTIXo) TEpBAiho-
VToG. LNy TEp(nTeot Tou TeoBAAUaTog EVIOTIoRoU Uepovmuévey Yeyovotny (isolated AED),
epyaolec ToL YENoOTOLY XhaooXéS UeBdBOUC EVTOTIOUOU Xou TAEVOUNCNS, OIS TT.Y. XEU-
(& Mapxofiovd povtéra (HMMs), o€ cuVBLAGUO UE TOEABOGLOXS AXOUG TIXE Y oRUXTNELC TIXS
(m.x. MFCCs), éyouv deifet 6Tt unopolv vo TeTOYoLy xavorontixy anddoon [2].

Y1y meplnTtwon woT6C0 TOU T AmATNTIXOU TEOBAAUNTOC EVIOTIOUOU EMLXAAUTTOUE-
vov yeyovétwv (overlapping AED), ypewdletan va yenowonomdolv yédodol oL omoleg vo
ETUTPETOUY TOV EVTOTULOUO TOAMATAGY YeYOVOTwv. [ mopdderyua, otnv epyaoia [12], yio
TNV ETAVOT TOU TEOBAAUATOC TNE EMXAALPING, TeoTddNXE UL LEVOBOC TOLU XAVEL YEHOT TOU
alyoprduou amoxwdixonoinone Viterbi oe moAamAd povondtio. ANAec epyasieg yio Tov e-
VIOTUOUO ETUXUAUTTOUEVODY YEYOVOTWY TepthapBdvouy Padid vevpwwixd dixtua (DNNs) [13],
HOVTEN avdhuoTe TIAVOTIXWY CUVOTOOGOY [14], cuoThAuaTa Baotouéva 0TOV YEVIXEUUEVO [E-
taoynuatioué Hough [15], xardde xou ot pn-apvntix napayovtonoinon mvixwy (NMF) [16].

Meta€) twv Spopwy uedddwy mou €youv avamTuyUel yYiot TOV EVIOTIOUO OXOUCTIXMY
YEYOVOTWY, oL Tpooeyyioeic mou Pacilovion oty teyvinh NMF €youv mpoceixioel apxetd
evOlaépoy, xou WLalTtepa oTar oeVApLY UE ETXGAUYT. AuTd ogelheton 0TV YEVIXOTERT EUPL-
o Tlal TOUG AAAG XoU TNV BUVATOTNTA TOUC VoL ETLTEETOUY TOV EVIOTUOUO TOANATAMY YEYOVOTWY
ToL GUPPBAVOLY T TOYEOVAL, BEBOUEVOU OTL XUTIAANAES UTFOEVNTIXES XL YROUULXES AVATOQOU-
otdoelc Toug ebvon Stodéoipeg. Ot NMF pédodol pmopolv va dloaxprdoldy oe autéc mou Yern-
OWOTOLVY GuEsH TIC TWES Tou Tivaxa evepyoToioewy (activation matrix) yio vor emtiyouvy
TOV EVTOTUOWS TwV YEYOVOTwV [16,17], xou o autéc Tou yenoonotoly évay talvounty o
omolog exmoudeletan pe Bdon tov nivaxa evepyomoinong [18,19]. Xty epyooio [16], uetd v
XATAUOXEVT| EVOC 0pXeTd Yeydhou Aedixol NMF, ol evepyornolfoelc yenotgonoodvial dueca
Y10 TOV EVTOTUOUO TOU XAVE 0XOUCTIXAC XAJONG. LYETIXA UE TIC UEVOBOUC TTOL Y ENCULOTOL0Y
emnAéov talvountée, otny epyaoia [18], éva apxetd wixpol peyéoug Aelixd xotaoxeudleton
AUTOUOTA UE YPHOT| TNG LEVOBOU 0po G CUVEMXTIXS UN-UEVITIXAC TRy OVTOTIOMNOTG TVEXWY
(CNMF), xou 6T GUVEYELL OL TOPOY OUEVES EVERYOTIOWOELS YENOLLOTIO0VTOL WS E{00d0C YLal
Vv exnaidevon evoc (HMM) yia tic Sidpopeg axovotixéc xhdoeic. Enione otnv epyooio [20],
oL cuYYpagelc, eumveLoUévol amd To yeyovog OTL ol pédodol NMF umopolv va emweeln-
Yoy and v dnuiovpyia evéc pelypatog and tomxd helwd (Mixture of Local Dictionaries
(MLD)) [21], mpoteivouv éva cuvduaoud tadvounth xou cuothuatoc NMF, yenowonoudvtog

MLD yia vo teThyouv BEATIOUEVT amOB00T) GTOV EVIOTIGUO YEYOVOTWY.
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[Tapdro mou o yédodor NMF amotehodv i uotxr eTLAOYT] Yiol T GEVIPLN ETUXOAUTTOUE-
VOV YEYOVOTWY, €YOUV ETUOMG XATOLL UELOVEXTHUOTA, TOU XUEIC opopolY GTNV UELWUEVT
UTOAOYIG TIXY) TOUC amoBoTIXOTNTAL (TayUTNTA UTOAOYLOMOU AVONG), 0AAG Xl GTNV IXavOTN T
SLdxplong oyeTxd pe Ty TaEvounon (elxd ot TEQITTOCELS PE HEYEAO optdUd aXOUCTIXGDY
yYeyovotov). e meplntwon mou opxetd Sedopéva elvon Bioadéotpo yio exmatdevot), pédodot
Baolouéveg otny Bodhid unyavixy) wdinomn unopolv vo TeTUYOUV XAAUTERT, ANOBOCT, GE TEO-
BAAUOTo EVTIOTUOUOU YEYOVOTWV [22], Aoy TNE XoAITEPNS tXaUVOTNTAC DIXELONE TOU TOREY OLV.
Fevixd, dudpopeg pédodol Baciouéveg oe Padhd veupmwixd dixtua €youv mpotadel Ue LotaiTe-
en emtuyio ta Teheutada ypdvia, tepthapfBdvovtoc DNNs [23], cuvehixtixd veupwmvixd dixtuo
(CNNs) [24], ouvehixtixd avadpouixd veupmvixd dixtua [22], xou transformers [25].

‘Ohec oL uyédodol mou avapépUnxay Topamdve €Y0UV xUEIWS EQPUPUOCTEL OTNV TEpImTw-
oM TOU POVO-Xavahixol (xataypagh and éva uixpdpwvo) eviomopold yeyovotwy. (261600,
OTAY 1) OEBOUEVY] EYXUTACTACT] TO ETUTEETEL, 1) EXUETUAAELCT) TANEOPORIAC ATtd TOANATAL UL
xpbpwvo unopel var govel ToAdTn.  Xtnv epyooio [2], Sidpopec texVixéc Yo cuVOLAOUG
TOAMATADY ULXPOPWYLY TEoTdUNXay oTo TAalol evoe cucThuatog Bactouévou o HMMs,
eV otny epyoaoio [26] yapoxtnpiotixd Pactopéva oe olvoha Aé€ewv (bag-of-words) and Bio-
(POPETIXG UXPOPWVIL Yenoylomolinxay yio TV exnoideuor evog tadivountr tomou random
forest. Myetixd pe pedddouc Pootopévec o vevpwvixd dixtua, otny epyooio [27] expetdh-
AEUCT) TNC TOAU-XAVORXTC TANEOGORIAC TEXYUATOTOLAUNXE EITE TPOPOBOTHOVTIC TO BIXTUO UE
€l0600U¢ am6 TOMATAS UixpoPwVY, €lte eE8YOVTAUS TOAU-XOVOAXA YWEIXA YUPUXTNEIC TIX.
Ye pedoooug and v xotnyopia NMF, mohu-xavahixéc enextdoelg €youv enione mpotade,
oA fiTory xUPlKC OTOYEVUEVES 0TO TEOBANUA TOU «TLPROVY Bloywpetouol tnyoy (blind source
separation) [28-32].

[Mapdpota ue TNV TEPITTWOT TOU EVIOTUOUOU AXOUCTIXMY YEYOVOTWY, O EVIOTIOUOS POVAC
(SAD) enione anotehel évo medlo €vtovng epeuvnTxic BEaoTNELOTNTACS, UE UEYAAN ToLAia
olyoplduwy vo €youv npotadel otnv Bihoypapio yioa TepocdTECO and TECCEQPLS DEXUETIES,
6TLC QolveTton xou omd TV emoxoTnon e epyooiog [33]. Mepwéc and tic mo VepeMwpéves
pedodoug Tepthopfdvouy olyopliuous evowpatwpévous oe tpotuna (standards) [34, 35], tov
ahybprdpo twv Sohn et al. tov Pactletoun o ototioxd wovtéha [36], xou tov ahydprduo twyv
Ramirez et al. tou Baoiletor otny 1déa Tng paopatixic andxiong [37], petalld dhhwyv. Tumxd,
oL u€dodoL yia EVIOTIOUO QPWVAC EEAYOLY BLAPORA YURUXTNPIO TG ANO TNV XUUATOROR®Y| To
omola efva, yLor ToEAOELY O, OYETIX UE TNV EVERYELX 1} ToV pudUS undevixrc-Siéleuone (zero-
crossing rate) [34,35,38,39], v apuovixdtnTar xou TV TOVIXOTNTAL TNg Pwvhc (harmonicity
and pitch) [40-42], tnv Sou twv xplwv cuyvoTx®y cuviotwowy (formants) [34, 43-45],
Tov Padud e otacdTNTaC TV onudtey gwvic xou YopBou [46-48], tnv Sopdppwon
(modulation) [49-51], § T« MFCCs [45]. H eZoywyn yopaxtnplo Xy oTr GUVEYELDL UXO-
houdeiton amd mopadoaotuxy) oTATIOTIXY HovTEAOTOINOT, 1 o TEodopT, and Tokvountés Ba-
Vidic punyavinic pddnone, 6mwe yio napdderypa DNNs [52, 53], emovahouovopevo veupmvind
dixtua (RNNs) [54, 55], 4 CNNs [56-58], cuyvd o€ cUVOUOOUS XL UE AUTOXWOIXOTONTES
(autoencoders) [59]. Eniong, éyouv npotadel e emtuyio [60] «amd dxpen-oe-dxeny (end-to-

end) uédodol Bohdc unyovixrc wddnone ot onoleg evepyolv ameudelag oTo NyNTS GHUL.
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SUYEXPWEVOL OTOV TOPEN TV «EEUTVWYY OTITLOY, BLAPORN GUC THUNTH EVIOTUGUOD QPOVAG
€youv avantuyVel TN TeEAeuTala dexaetio, Enelta and TNV cUALOYY| Bdoewy BeoUEVLY amd o-
vtioTowya owtoxd tepiBddhovta [61-65]. T mopdderypo otny epyaoio [66], pacpatixol cuvte-
Aeotéc ypauuixdv ouyvothtwy (linear-frequencies cepstral coefficients) e&dyovton cov yopo-
ATNELO TIXA Xou cLVBUALovTon Ue Tagvountég Bactouévoug o povtéha uetyuotog I'vaovootovdy
(GMM) xar HMM 1y vor eviomicouy gwvi 6 cuvIixes dyyous, 1 oxous ixd YEYOVOTa HEL
o€ €val «€EUTVOY OTTL Yia NALLWUEVOUS avIp®OToUE. e €va ToEOUoLo EYYElpTUo oTa Thaiola
Tou gpeuvnuxoL épyou Sweet-Home [67], mporyuatomoleiton opyixd EVIOMOUOS OXOUGC TIXEY
YEYOVOTWY UE YENOT YUEUXTNRLC TIXWY TOU EEAYOVTOL OO TOV BLAXELTO UETUCY NUATICUO XUUA-
diwv (discrete wavelet transform) xau piog otpatnyXAc TEOCUEUOG TIXOL Xatw@Aiou (adaptive
thresholding), xou 6T cLUVEYELL TEOYUATOTOLETOL XATNYORPLOTOMOT UETOUEY PwVAC Xat GAAWY
YEYOVOTOV pE yerom Todvounty Tne xatnyopiag unyovey dlavuouatixic utootiplEne (SVM)
oe ouvduooud pe GMM unep-Biaviouata (supervectors) Bactopéva o MFCC yapoxtnelo Tixd.
Yy epyaoia [68], évac anhde ahybprduoc eVIOTOUOU QuVAC PACIOPEVOS OTNY EVERYELL TOU
NYNTXOL oHuATOg, TeoNYEeiTon UL UEHOB0U vy VORLONG PWVNTIXWY EVIOAGY BACLOUEVNE OE
HMM. Yty epyacia [69], o evtomouds @wvic mporyUatomoleltol xdvovTog Yenon fiyou mou
ATy EAPETAL ATO UXEOPWVO TEOCUPUOCHUEVO GE GET UXOUC TIXWY UE OXOTO TNV TOEUXONOVUT-
o1 e avipdTvng Spao TNELOTNTAS HECA OE EVa <EEUTVOY OTILTL, UE TO TROTEWVOUEVO GO TN
VoL TEQLAAUPBAVEL VLY VEUTT) EVEQYELAS X0 EVOL VEUPWVIXO BIXTUO EXTIUOELPEVO O GUVTEAECTEC

Yoopuxhc tpoBiedne (linear predictive coding) xat dAAo GLYVOTIXE YAUPOXTNELO TIXY.

Ta cuoTAPATE TOU TEOAVAPERUNXAY EYOLY WG GTOYO TOV EVIOTIOUS avlp®TIVNG OuLAlag
yeVd p€oa 6T ThaoLo evOg «EEUTVOLY TERIBAANOVTOC, Ywplc duws vor AauBdvouy utddy Tny
TUTIXT) SOUT] TOANATAGY SWUATIY TOL GLVHTWE CUVAVTAUE Ot TETOLOUS YWpeous. Mepixéc uovo
npooeyyioeic ot BBAoypapla e€etdlouv To TREOBANUA TOU YWEO-YEOVIXO0) EVIOTUOHOV POVIG
oe €va obuaxd TEPYBAAAOY UE TOMAG dwpdtia, To omolo amoTEAEl xaL TO %VpLo avTiXeluEvo
TNC €PEVVAC UOC YL TOV EVIOTIOUO QWVAC. XE AUTO TO OEVAPLO, {NTOVUEVO EVOL 1) YPOVIXN

XATATUNON O PWVY/olwnh Eeywptotd Yot xdde Eva and o dwudtia Vg «EEUTVOUY oTLTLOL.

H meodnpla twv cusTudtey y»peo-yeovixol evioTiolol @wvic Aeltoupyoly oe 600
oTddio. Luviiwe, oto TedTo oTddo evtomilovtar Tor THavE YEOVIXA OPLol TWV PWVITIXDY
TUNUATOVY Yot OAO TO OTTL 1 Yl xdde dwUdTio, Ta oTolo 6To BeUTEPO GTAOLO enaveleTdlovTaL,
Sropdchvovton xou avtiotolyilovial ota owoté dwudtia. Luyxexpéva, otny epyooio [70], oo
TEWTO GTABLO TOU TPOTEWOUEVOL ahyOELiou, yior X3Ue EVIOTIOUEVO TUAA PWVAS, O OTUATO-
YopuPBude Aoyog (SNR) xou yapoxtneloTixd Bactopéva oTny Evvola NG CUVAQELIS OTUATLY
(coherence-based) eEdyovTon yior GAOL Tl SWUETLO X0 GTY) GUVEYELX CUVEVMVOVTAL OE €VaL EVIaio
didvuopo ou Tpopodotel évav Tavounth yeouuxhic Staxprtixfc avéiuone (LDA) vy tnv
OVTIG TOLYLOT TOU QPOVNTIXOU TUARNTOS 0T0 0woTo dwudtio. Xtny epyaoia [71], oto mpdto
OT0L0, €va GUCTNUN EVIOTUOHOY PuVNE BACIOUEVO OE GTATIOTIXG HOVTEAA e@opuoleTal OF
%80e pxpbdPmVo, o 0T cUVEYELD Wit TAeloYNpIx otpatnyxr (majority voting) epopudleto
HETAEY TOV BLrdECIUWY UXpoPmVLY ToL XdUE dwUaTiou, Yio Vo TopoyYolV Tol YeoVIXd TUAUAT
pwvrc oe xdde dwudTio. 210 delTERO OTABLO, 1) €€000¢ EVOC UTO-CUGTHUATOS YWEOU EVTO-

TUOUOU ORANTH Yenoldomoteltar w¢ elcodog ot évay tadvounth (SVM ¥ veupwvixd dixtuo)
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YLoL TNV TEPOAUTER EEETOUON TWV PWVNTIXWY TUNUATWY TOU BuUATIOL Xan TNV Blorypapr] auTdY
ToU TPoEpyovToL and dhha dwpdtia.  Xtny epyooio [72], oto mpoto otddio, Tolu-enineda
perceptrons yenoloTolo0VTL YLol XGUE ULXPOPWYO, Xl O YPOVIXOS EVIOTIOUOS QPWVAC ETULTUY-
Yaveton o xdde Swudtio YEcw TAEOPNPIXAC CTEUTNYIXAC. TN CUVEYELD, YioL TOL TUAUNTA
Ta ool avTicToLRiNXay ot TEPLoGOTERPA A EVal DWUATIA, EVOL YAUPAXTNEWOTIXO Baclouévo
OTNY PETENOT NS AmOXNONS TNE TEPIBEANOUCAC TOL PwynTxol ofjuatoc (envelope distortion
measure) yenoWoTolelton yior Vo anogacto el TEMxd 10 60woTd dwpdtio. Ltny epyooio [73],
Telor SLopopeTind Yoo TNEIG TIXd €EETALOVTOL YLOL TOV YWEO-YEOVIXO EVIOTIOUSO QPWVAC, X0
CLYXEXEWEVA O oTuaToVopUBINOS AOYOS, 1) TERLOOLXOTNTA, XAl TO TEd{o xUVOAXHC CUVAPELIS
(global coherence field). T ot y povixd 6 pLor TV TUNUETWY @ VAC Y Lo x dde B wudtio utohoyilo-
VTOL YE ATAT) XATOPAWOT] TWV THOY TOV AVWTERK YARUXTNELO TIXWY Xl XAYOVTOS YeNoT EVOS

EVPLOTIXOU XUVOVAL YIOL GUVEYOUEVA EVERY S YEOVIXA TAXLGLAL.

Emnpéoieta, pédodol evog pévo ctadiou €youy entong avantuyvel yia to TpdBAnua tou
YWEO-YPOVIXOV EVIOTUOUOU QOVAC. 2uyxexpuuéva, otny epyaocia [74], éva Bodd vevpwvixd
6ixTuo Talpvel cav lcodo éva 176-B1doToTo SLdvucU AmoTEAOVUEVO amtd €var GUVORO BLopPOpE-
TIXOV YapaxTNEo TixwY, 0Twe MFCCs, RASTA-PLPs, SwoxcOuovon tepBdhhovcog, TovxoTnTd,
xhm. Ilapoéupolo chvolo yapoxtnelo Ty (oAd 187-81dotato Tehixd BIdvucua) Xot VEUROVIXY
dixtua emhéyovta enione oty epyooio [75], 6nwe enione xou emmAéoy Talvountéc, Tepthop-
Boavopévev xou 2D-CNN. H pédodoc auth, enexteiveton xou oe pa 3D-CNN exdoy ) oty [76],
OTIOU WC YAUPAXTNELOTIXG YernotponoolvTon 40-01doTtato Slaviouato Ue T Aoyoptduxés evép-
YEIEC UTOAOYLOUEVEG amtd cucTolyleg cuyvoTxwy @iATewy oty Mel xhipaxo (log-FBEs), 7
YEOVIXT TANEOQOEIOL ELGAYETOL UE TNV CUVEVWOT] DLAVUOUATOY YAUPUXTNELO TIXWY ATd YELTOVIXG.
Yeovxd mAalota, xou TEA0G oL 2D ovamopas TEGELS TOU TEOXUTTOUY YLol XGUE UXEOPWVO CGUVE-
VOVOVTOL altd OAOL T IXEOPOVAL, 00NYWVTAS €ToL o€ €vay 3D mivoa yapaxtneio txayv. Téhog,
oty epyaocia [77], To mpooavapepdéy 3D-CNN clo tnuo cuvbudletan ye évay tadivounti CNN
TOU YENOWOTOLEL To YWEXE YopoXTNEIo XA YEVIXEUUEVNC etepo-cuoyétione (GCC-PHAT),

ETUTUY YAVOVTOC OO XOLVOU YPOVIXO EVTIOTUOHUO POVAC XL YWEXO EVIOTLOUO TOU OUANTH.

Yuvetopopd Atatpific

To avtixelpevo autrg tne Awoxtopinic dlateBnc apopd oTic EpeuvnTIXES TEPLOYES TNE enedep-
YOolog AXOUC TIXWY CTUATLY %ok TNS UNYOViXC Wainong, pe x0ploug GEOVES TOV YWEO-YEOVIXO

EVTOTIUOWUO XAl TNV XATNYOPLOTOINOT) OXOUCTIXWY YEYOVOTMV.

Yyetxd ye to euplTEEO VEUN TOU EVIOTULOUOU AXOUGTIXMY YEYOVOTWY, OTNV OLaTel3r| Uty
Yewprinxay didpopeg TopaAlayES TOU TEOBAAUNTOE, TEPLAUUBAVOVTUC GEVAPLOL UE UEUOVOUEVAL
1 XL ETMXOAUTTOUEVA YEYOVOTA, Xadwe xou TNV UTOEET EVOS 1) TOAAATAGY UXQOPOVKY YLoL
™V x0Ty popr) Tou axouoTixol TepBdihovtog (Eyua 1). Lto mhaiowa autd avamtiydnxoy
xou aglohoyinxay Sidpopes YEYoBOL Yiol TOV EVIOTIOUS AXOUCTIXOY YEYOVOTWwY. Axoloudel

ULo GOVTOUT TEQLYQUPT| TWV ONUAVTIXOTERWY CUVELGPORKY TNG TOEoUCUS BLATEL31C.



26 Extetapévn Iepilnyn
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Eyfuo 1t Eynuotixy| anexovion TwV SLUPORETIXOY GEVIRIWY MOE TEOE TA QPOUVOUEVI ETUXAAU-
dne xow Tov apriud UXeoPOVLY. TNV YeEAETN uag Yewpridnxoay dhot ol Suvatol cuvBuacUol
oevoplwy.

Xwpo-ypovindg EVIOTUOHOS PwVAS OE TOAV-Xavolxd TeptBdAhovTa

Apyind, ot mhadota evog mepBdihovTtog «€Euvouy oTiTol, avamtUydnxe éva cUOTNUN Y weo-
YEOVIXOU EVTOTIOUOU QuVAC, TO OTOlo EYEL TNV BUVITOTNTA Vo EVTOTIULEL Ta YEOVIXA OpLoL TN
PwVAC («TOTEY) 0AAG xou TNV Véom Tou owAnTy («mtovy) ot eninedo dwpatiou, dnwe Qoiveto
o70 Lyfua 2. To cbotnua autéd urnopel Vo SLEUXOADVEL TNV ETLXOVWVIO TOAATAGY OULANTOVY OE
BLopOPETIXG DWUATIAL UE TNV BIETOPY| PrVTE TOL «EEuTvouy omitiol. Emimiéov, yia va emteuydet
IXOVOTIOLNTIXT| OOB0GT) TOU GUCTAUNTOS OE PEUAICTIXES X0l AMATNTIXES OXOUCTIXEC CUVUTXEC,
70 00OTNUA TOV TEOTAVNNUE EXUETAAAEVETOL TNV TANEOPOEIA TG TOAATAS IXEOPEVYL TOU Elvan
EYXATECTNUEVA GTOV «EEUTIVOY YWEO, EVEK AXOAOUVEL Lol AmOTEAEGUOTIXNY AoYIXY| 800 GTAdIWY.
‘Onwe gaiveton 0To BIdyEoUUs ToU LY AUATOS 3, TO TEWTO OTABLO amoTEAE(TL amd €var TOAU-
xavaAix6 aoTNo Unyovixhic wainone to onolo evtonilel o ypovixd 6pLal TNG PWVAC GTO OTILTL,
EVG TO OeUTEPO 0TABI0 PacllEToL OF XAVOTOUA XA TOAU-XOVIAIXE OXOUCTIXG Y AU TNELOTIXG
Yio VoL EVIOTHOEL Ywewd ToV OUANTA o€ eminedo dwuatiou.

Apyxd v T0 TOTO 0TEdL0, 0 MUEHVAC TOL CUCTAUATOC Bploxetal oTNY LovieAonolnon
pwVhc/otwmic yio éva uxpbdgwvo. T xdde wixpdpnvo, e€dyetou éva 39-Oldotato didvuoua
Tapadoctoxmy yapoxtneloTixey MFCCs oe napdiupa twv 25 ms. 3tn cuvéyela, évag Todl-
vountig Paoctopévoc oe GMMSs extoudeVETAL GE QUTA TOL YUPAXTNELO TIXA YO TOV Ol WELOUO
WY 000 (NIoEWY (<PwVAY, «olwThy). Ocov apopd 0Tov cUVBLACUS TV TONNATADY UXpo-
POVWY, doxdoTXaY apxeTEC Yédodol ot eninedo andgaonc. Xtny uédodo mou anodelydnxe
N mo anodotxn, yio xdde yeovixd mopddupo, urtohoyiletan éva otoduiouévo dlpotouo Twy
TV Aoyapiuxhc mavogdvelag Yo Tig 600 xAdoES, OTwe TpoxLuTTouy and Toug GMM

TAEVOUNTES TWV SLPORKY XPOPWVKY EVOC dwuaTiou:

CM,j(OM,t) = Z Wm,t bm,j(om,t) »
meM

6mou M elvar T0 GUVORO TWV WXROPOVOY TOL dWUATIOU, by, j(0m¢) elvor 1 Aoyoprdu

mdavogpdvela Twv GMMS yia T0 UixedPmVo M, GEBOUEVV TWV UXOUCTIXMY YURUXTNEIGTIXWY
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Yyfuo 2: Topdderypo yeovinod xou Yweo-Yeovixol EVIOTIOUOD @wVHc o€ Vol «€EUTVOY OTTL
TOMGOY dUoTiedV, eE0TAOUEVO UE TOAUTAL UWXEOPWVI. Y€ AUTO TO TURAOELYUN, TEELS OUL-
Antég Bivouv puvnTixéc eviohéc oe tpla dwudtio. IIdve: Kdtolmn tou «é€unvouy omitiod mou
yenowonotfinxe ota mhaiola Tou epeuvnTIXoY TpoYpEdupatoc DIRHA [100], pe Tic podpes xou-
%((BEC VoL UTOONAWVOLY T BLAPORAL UXEOPWVAL, EYXATEC TNUEVO GTOUG TOLYOUS Ol TIC OPOYEC.
Kdte: mynuixée xupatopoppéc Sldpxetag VO AETTOU, Ny OYRUPNUEVES AT TOL UIXEOPWVAL UE
XOXUv0 yewuo (éva yia xddevo and to Tplor eVEpYd SWUATIO), PE ETLONUELWUEVES TIC OVTIo TOL-
YES XPOVIXE EVERYEC TEQLOYES Yiot XGUE BwUATIO. X TNV X0puPY| palveTtal ETIONG 1 EToNUEiwo
TWV YPOVIXY EVEQYWY TEQLOY WY POVAS Yot OAO TO OTTL.

Om.t, xou TS xAdone j € {sp,sil} («pwviy, «cwwnhy). Ta Bden unopodv va elvor otadepd
xou (dtor yror GAa Tat wxpdpovel (W, =1/ |M]), eite va ahhdlouv Suvoixd oe xdde ypovixd
ToEdiupo o avBAOYO UE TNV EUTLOTOGUVY OTNV OmOQACT) TOU XAUE UXQOPWVOU, OTOTE

vroloyilovon we:
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Yyfuor 31 Eynuotixd Sy ool TOU TEOTEWVOUEVOU GUC TAUATOS YO TOV YWEO-YPOVIXO EVTO-
moud govic. O diepyaoieg Tou Te®MTou oTadiou amexovi{ovtol Ue UTAE YEWUA, EVE) TOU
0€0TEPOL GTABIOU UE HONAXLVO.

Y
apISINO / apisu|

‘bm, sp(om,t) - bm,sil(om,t) ‘

Z |bm’,sp(0m{t) - bm’, sil(om{t) ’
m/'e M

W, t )

e 7 7’ 7 4 /7 e
MeTd Tov UTOAOYIOUO TWV TOAU-XAVAUAX®Y TWIAVOPAVELDY, 1) TEMXT] YPOVIXY| XUTATUNOT

o€ TEPLOYES «POVACY /«otwThcy Yiveton Ue ypron Tou akyopiduou Viterbi we e&hc:

dm,;(t) = mjf}X{5M,j'(t— 1) + log(ajj)} + cmj(omge) ,

6mou dpr,j(t) SNAGVEL TO O%0p TOL XANVTEPOU UOVOTIATION TOU XATUNAYEL OTNY XAAON j UETH
and t mapdivpa mapathenone. Me xatdAinio opioud twv miavothtey uetdaong aj; ueTagd
TV xMdoewyv, puduilovpe v euxohio petdBaone YeToll «PwVACY /<OLWTACY.

Y70 8eUTEPO GTABLO, MEVTE XOUVOTOUO YOPUXTNELO T €E8YOVTOL Yiot XAdE TUAUO PWVTE TOU
EVIOTOTNXE AN TO TEMTO OTABLO, £TOL HOTE VA TO XUTNYOPLOTONCOLY WG KEVIOCH 1| KEXTOCY
owuotiou. O GYEBIAOUOE AUTWY TWYV EWBXWY YURUXTNRLOTIXWY Elye oo ageTneia Teelc Paocinég
wéeg: (o) To ofuata gwvic extéc dwpatiou Yo Eyouv uxpdTERN axoUcTX «EVvépyelay (N
enione wxpotepo SNR) o€ oyéon pe autd nou napdyovton péoo and 1o dwudtio, (B) to ofuata
TIOL €QYOVTOL A6 YELTOVIXA dwpdtia, Yo yopoxtnellovTon and UEYUAUTERT <AVTHYNONY XIS
Vo €youv avaxhaotel neplocdtepes Yopée, () 1 dlodog adEnome Twv NYNTIXWY oNUSTWY o-

6 e€wTepnd dwudtia Yo elvon péow tng mépTac Tou dwpatiou. H Sloxpltind iavotnTo Twy
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Yyfuo 4: To ilotoyeduuato Twv TEVTE EWBXA OYEDUOUEVOY YURUXTNPLO TIXWY YIol TOV EVTO-
Toud Tou dwuatiou Tou owANTY. Elvow epgoavic 1 ixavoTnTal TOUG Yol TNV XATNYOELOTOLNGT)
EVOC OTUATOS PWVAC S KEVTOCY 1| KEXTOCY dwUaTiou.

BLOPOPMV YUPAXTNRLO TV PatveTan oTo Lyuo 4. Enlong, o&ilel va onueiwdel oL eved ta yo-
QOXTNELO TIXE TOU TEKTOL G TAdlOU €E8YOVTOL AVa UIXPOPMVO, TOL YAPAUXTNELT TIXE TOL SEUTEPOU
otadiou etvar TOAV-xavahixd, xon €dyovTan aved BWUATIO. XTN CUVEYELN, TO YULAUXTNELO TIX
oo Ta Sldpopa dwudTior cuVBLALovTon UETAEY TOUg Yo Vo TpoxUpeL évar GUVOAIXG BLdvucyua
YAEOXTNEIO TIXWY, To oTtolo Tpoodotel évay Tadvount SVM yia Ty xatnyoplonolnon evog
TUAHATOS POV WS EVTOC 1) eXTOC BwUatiou. Buyxexpyévo exmatdedeton €vog TagVouNnTHC
SVM yia xdlde Swudtio, onoTe €Vol EVIOTUOUEVO TUAU POVIC UTOREL TEAXA v amodovel oe
€Val, OF TEPLOCOTERA UG €V, 1| XAl O XAVEVA DOUATLO.

To npotewvoyevo cUGTNUA, To omolo dev amoutel peYdAo Oyxo Oedopévwy exnaldeuong,
aZLONOYETOL EXTEVC 08 GUVIETIXES GAASL X0l TEAYUOTIXES TONU-XAVOMXES BAoELS (MY 0Ypapn-
uéveg oto «€Eumvoy omitt Tou mpoypdupatoc DIRHA), xou onuetdver onuavtinés BEATIOOELS
EVOVTL EVOAAAXTIXWY TapadoCLox®yY Pedodwy. Emmiéov, emdewviel eupnwotia oc oevdpla
HE UxpOTERO apLiUd SLIECIUWY UXPOPOVOY, EVK ETUIOTE CUYXEIVETAUL EUVOIXA UE CUYYPOVES

pedés0ug Pardide udinone, 6mwe gatveton otov Ilivaxo 1.

Movo-xavahuxt uédodoc NMF yia EVIOTIOUS EMXOAUTTOUEV®Y AXOUCTIXWY YEYOVOTOV

X1 YEVIXOTERT TEQIMTWOT] TOU EVIOTIOUOU 0XOUCTIXWY YEYOVOTWY, Wlaitept EugooT 860 e
oe oevdpla Ue ypovix exdAudm. H apyinh Yog Tpocgyylon yiol TNV GVTIUETOTLON TNS EML-
xdhung Baolleton ot uevddoug oyetixég pe NMF, xadog SioxpivovTon yia Ty eupwao tio Toug
oe cuviixeg YoplPou, xou YL Th BUVATOTNTA TOUC VoL ETLTEETOLY TOV EVIOTIOUO TAUTOYEOVWY
YEYOVOTWY, DEBOUEVOU OTL XATIAANNAES UN-0RVNTIXES XOL YROUUIXES AVATOQRUO TACELS TOUC Efvall
otord€oiueg.

Ytoyoc v pédodwv NMF elvar 1 un-opvntixs noporyovtonolnon evog mivoxo yopoxtnet-
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ivoxag 1: Amotiunorn Tou TEOTEWOUEVOU GUCTAUATOS EVOVTL EVOANIXTIXWY UG TUATWY [Bo-
olouévwy o€ pedodoug Badide udinong, yia ToV Yweo-Yeovixd EVIOTIoUO QWVAC oTnv Bdon
DIRHA-sim-evalita [112].

method SAD error (%)
DNN [75] 5.8
i 3D-CNN [76] 7.0
deep-learning
3D-CNN [77] 5.2
3D-CNN (SAD+SLOC) [77] 3.5
proposed 4.7

oty V € REXY a6 to ywépevo V. A = W -H, 6mou W € REXH eivon o mivoxac

Ae€wd, xow H € R%N elvor o mivaxog evepyoroioewy. To P ouufBoiilel tnv didotoon
ToU BlYOoUATOSG Xa;ocxrnptcuxdw, 0 N 7ov apuiud tov ypovixawv mhacinwy xa 1o R Tov
oLVOAXG oIS TV AZewv/LoTiBwy otov ntivaxa hexd. ‘Evo napdderypa epappoyic NMF
paivetar oto LyAua 5. H elaylotonoinon wac xatdhnine ouvdptnone xéotouc D(V||A)
odnyel ot eZlotoeic unohoyiopol Twv W xow H [118]. Etnv nepintwon yac yenotponotolue
tnv Kullback-Leibler (KL) divergence cuvdptnon xdéctoug 1 onolor opiletan we e&hc:

D(VI||A) =||[Volog(VOA) -V +A|l,

omou o ® xou @ cuuBoiilouv Tolhamhactaoud xou dikpeoy oTolyelo-tpog-cToLyeio peTadD
mvixwy. Enlong oty meplntworn tou mpofARuatog EVIOTIOHOU YEYOVOT®Y, GUYVE Yenol-
wornotelton 1 pédodoc sparse-NMF, 1 omolo €lodyel 0TV avTIXEWEVIXT] CUVEETNOT) €Vay 6RO

AEUUOTNTOC TOU THVOXAL EVEQYOTIOLCEWV:

G(VI[A) = D(VI[A) + AH|: ,

OTOL 1) TUPAUETEOS A EAEYYEL TNV LooppoTia HETOEY axEYB0UC OVOXATACKEVHS XOlL ORUOTNTOG
e Mong. Xe auth v douletd ypnotponotolue T ouvelixtixr enéxtacn CNMF [124] 7
omola eTTEENEL TV avacOVIEST) TV YEYOVOTWY and AéEelc/uotifa e ypovixh eZéNEN. Ytny
nepintwon tou CNMF o rnivaxag V' npoceyyiCetar and 1o cuvehixtixd ddpolouo Tou mivaxa

Ae&1x00 xou Tou TVAXOL EVERYOTOLACEWV:

N
_

t—
VA=Y W H,
0

H
Il

7 4 t% 4 7 7 7 e Z e 7
omou o TeEAecThc @ UeTatomilel TIg OTHAES evOg Thvaxa xatd ¢ Véoelg mpog Ta 6e€id, 1" elvou
N Ypovixn Oudpxela Twv Aé&ewv, xou Wy € R];gR elvon To TURHA Tou Tivoxa Aegixol mou
oyetileton Ye TN yeovixn oy ¢ Twv AEZewy.

Y1y meplnTwom EVIOTOUO) 0XOUCTIXWDY YEYOVOTWY, £YOVTOS ATOXTHOEL VoY Tivoxa Ae-

&6 and dedopéva exmaldeuong, 1 pédodog sparse-CNMF malpvel w¢ elcodo tov mivaxo mo-
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potneroenwy V xou diver oty €€odo Ttov mivoxa evepyonotioewy H. Xtn cuvéyelo, otny na-

padootaxy) uEYodo eviomouoy, yia xdde ypovixd mioicto, adpollovion oL EVERYOTOACELS TOU
’ 7 ’ ’ ’, 2 L z / ! CxN

AVTLGTOLY 0LV GE X&E 0xoUGTIXG YEYOVOS, dpoupYevIoS €0l évay véo mivaxo H € R3g

GUYOAIXWY EVEQRYOTIOLNOEWY YL XGUE YEYOVOS:

= ZH(r,n) ,

r € {i}
6mou 1o i oupPolilel to yeyovoe (i = 1,---,C), {i} evar t0 GUVORO TWV YEOUUDY TOU
nivaxa. H mou avtiotoyody oe Aéeic/potiBa tou i-ootol yeyovétog, xou n € {1,---, N}

ouuPohilel to ypovixd mhaicto. Téhog, Eva yeyovog Vewpelton EVERYO xaTd TO YEOVIXO TAACLO
n,eav H'(i,n) > O, 6mou Oy eivan évo xatdhhnho xatd@AL evepyonoinone. Qotdéoo auth 1
nopadootaxy| Teocéyylon eviomopol eivor eutodic oe Peudelc evepyonotoeic (false alarms),
xS xdmoleg popéc umopel var Tpox oLy ECPUAIEVIL EVEQRYOTIOLACELC UEYEANG EVTUoNS Yo

xAmoleC AEEEIC EVOC YEYOVOTOC, YWRIC VO UTEOYEL OTNY TEAYUATIXOTNTA AUTO TO YEYOVOC.

[Mo va awéroouue v evpwoTtio TG wedo80u EVIOTIOUOY, TEOTEVOUUE TNV ELCAYWYT| EVOS
emmAéov xpLtneiou To omoio oyeTileTon UE TO UTOAOLTO OVOXATUOXEUNAC. LUYXEXQUIEVA, YLl
xdde oocououxﬁ 2NAoT), xou Yo Eva Yeovixo didotnua seg, uetpdue to KL-divergence x6otog
D( segHAseg ), 6nou:

T— »9) t—
zbg Z g i,bg
seg § Hseg) )

ONAUDT| TO UTOAOLTIO AVOXAUTACKEVHC, EAY YENOOTONUOOY YLl TNV UVAXATACHEUT) LOVAY 0L OL
MEEEC OV avTIoTOL 00V 010 YEYOVOC-i (Xou 0T0 Yeyovic nepBaihovikod Yopiou bg). Xn
ouvéyeta utohoyiloude To «AdYo umoloitouy («residual ratioy) tou i-00TOV YEYOVOTOC, WS
0V AOYO:

D (Visey || AL)
D ( seg || Aseg) ’

610U D (Ve || Aseg) €bvor T0 UTONOLTO aVOXOTOOXEURAS OTOV YENOWOTOLOUVTOL YLOL TNV a0

E(i,n) =

for all n € seg .

xaTaoxeun AEEElG amd Ao ToL YEYOVOTAL Yiol TO Bedopévo Sldotnua seg. Tehixd, 1 amdpocT Yo

TOV EVTOTIUOUO EVOC YEYOVOTOC TROXUTTEL UE GUVOUNC TIXT XATWPAIOT Twv 800 xpLtnplnv:

H'(i,n) >0y and E(i,n) < 0¢

[N T mepdparta yenowonodnxe 1 Bdorn “Sound event detection in synthetic audio” and
Tov drywviopd DCASE’16 [79], n onoio mepléyet €viexa oxoucTixd YEYOVOTO OYETXA UE
éva epIBdAlov ypapeiou («xadopiouds hougovy, «Briyacy, <y TOmnua tépTacy, <XAelowo top-
TACY, «CUPTARLY, <YENLOY, KTANXTEOANOYNGTY, < Y0g YAEWBLOVY, «Eepiihioua BiBAlouy, «fyog
xAfone xvntoly, «@uvhy). Ltov Iivaxa 2 gaivovton to amoteréopata yio v pédodo CNMF
UE TO TPOTEWVOUEVO 0TEdL0 eviomiopoy (activations&residuals), tnv yédodo CNMF pe to mo-
padootaxd otddio evromiopoy (activations-only), xadode xoun pa tapoadoaotaxt| uédodo NMF. Ot

Teelc uédodol aflohoyolvtan oe Tplo BlapopeTind LTo-clvola e Bdong, xou e 6o Blapo-
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Syfua 5: Hopdderyua egoapuoyfic NMF e wa nyoypedgnon mdvou yia to teayoudt “Mary had
a little lamb”. O mnivaxag Ae€ixd W nepthaufBdver AEEeIC Tou elvon OYETINES PE TNV PAUCHATIXY
TAnpogopla Tng xdde voTag, xou o mivaxag evepyonotoewy H evionilel tig ypovinég otiypée
Tou yenoyoroidnxe 1 x&de vota (and [119]).

ivoxag 2: Amotiunon tng meotevouevne Uetddou xat TemV Tapadoctaxay Uetddmy.

system setup #1 setup #2 test
F-score \ ER | F-score \ ER | F-score \ ER
NMF-baseline 042 |0.79| 0.32 |0.87| 0.37 |0.89
activations-only 0.83 10.30| 0.43 ]0.79 — —
activations&residuals|| 0.84 [0.29| 0.55 |0.63| 0.56 |0.68

ceTxéc petpwéc [79] (vhniéc Twéc yia to F-score xou yopuniéc twée yio to ER onuaivouy
xohOtepn amddoon). Ilapatnpolue 6Tt 1 npotevouevn PéBodog XoTapEpveL Vo EVIoYUGEL TNV
€VPWO TloL TOU G TAdloV EVTOTIGUOU, 0ONYWVTAS OTA XA TEPA GUVORXS anoteAéopata. Télog,
070 Ly fua 6 BAémouue Eva TopddeLY A TN EEO00U TOU TEOTEWVOUEVOU GUC THUITOS EVIOTIOUOU
YEYOVOTWY, Holl UE TIC TEAYUATIXES EVERYOTIOLATELS YEYOVOTWY, YL Lol Y 0YRAPNOT| SLUEXELIS

000 AETLTMOV.

ITohu-xavoxéc pédodor NMF yio eVTOTIOUS ETXAAUTTOUEVWY OXOUCTIXWY YEYOVOTGY

Yy neplntwon evog mepBAIANOVTOC HE TOAUTAS UxedPeVA, 1 XATdAANAn aflomoinon Tng
TOAU-XAVAALXC TTANEOQOpRlag UTOREL Vor 00NYoEL OE oNUaVTIXA BEATIWUEVA amoTEAEOUITA. 2E
auTH TNV evoTnTa e€eTACOUNE BUO TOAU-XAVOAMXES EMexTdoE; TNE pedooou NMF, xoatdAinieg
YO EVIOTUOUO ETMUXAAUTTOUEVWY OXOUCTIXDY YEYOVOTwY. H povo-xoavolur pédodoc mave
otnv omolot oTNEWOUAGTE Yid TOV OYEBIOUS TwV ENEXTACEWY eivon Ui pédodog sparse-NMF
(onhadf) NMF pe «opondy Tivaxa EVEQYOTOLACEMY).

Yy mpdTn ToAU-xavaAixy| uédodo, cuvoudlouue To BLdpopa UXEOPWVY OE ETINESO o-
TOQACNC, avoévovTag OTL Yol TEEOUPE To oELOTIC T ATOTEAEGUOTA GE GUYXELON UE EVOL LOVO-
XAVOALXO GUGTAHA. LUYXEXPWEVA, OTwe QaiveTon oTo MyAua 7, opyxd xdle puxpdpwvo m

hertoupyel aveldptnTa and to utdhoina, unoloyilovtag yéow sparse-NMF tov 8ixd tou mivoxa
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Yyfuo 6: Topdderypa eVTOTIoUOD 0xOUCTIXWY YEYOVOTWY and 1o Tpotewvouevo CNMF cu-
oThua. (o) TEAYUATIXES EVEQYOTOLACELS YEYOVOTLY () €£080¢ TOU TROTEWVOUEVOU GUGTHUO-
TOC.

evepyonooewy Hy,, yenowonouwvtag 1o 8ix6 tou AeCixd W, xou Tov Tivoxo TapaTnefcewy
V. 211 ouvéyela évog TeEAxOC Tivoxag EVERYOTOLoEWY UToAOYILeTon ¢ 0 PECOS HPOC TWV
EMUPEPOUC TIVAXWY AT ToL BLAPORIL ULXPOPLVAL.

Y1 8eltepn pédodo, Yewpolue TNy BEATIC TOTOIMOT YIS XOUVOTOUOU OVTIXELIEVIXHC CUVAE-
TNomNG, 1 omolo anoTeAeiTon Amd EVOY TOAU-XAVUALXO OPO AVAXUTACHEUTC XAk EVOL TOAU-XOVIAMXO

6p0 VPUOTNTOC:

M N
J =" D(Vm|WHp,) + XY Qb1 oo harn)
n=1

m=1
omou M eivan o apriudg TV uxpophvwy, N o aprdudg Twv yeovixey thaciny, W éva tolu-
xovolxd AeIxd TOU TEOXUTTEL OmG TOV GUVOLUOUS TWV ETUEROUS AEEXDY TWV BLAPOopwLY

UxEoQOVLY, evd we D(V,,|WH,,) cuyforileton n KL-divergence cuvdptnon xbéotoug avoxo-

WV, H,

Single-channel
Sparse NMF

WV, gue H
Single-channel H
f

:
b 4

z \_?_J Sparse NMF
b 4

Wy, Vy
Single-channel

M

Sparse NMF

Syfuo 7: Eynuotind Sy ool TS TEMTNG TOAL-XAVAALX S UEVOBOU UE GUQOIGUO TOV TVEXWY
EVEQYOTOLCEMY U0 T OLAPOEA UXPOPWVAL.
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Yyhuor 8: Myédio xdtodng tou «€€umvouy yeagelou tng Bdong ATHENA. ®aivovtou ol Véoelg
Yo Tor uipdpwver (padpo), toug owhntés (Tedotvo xat xiTevo), xou o aXoLUoTIXE YEYOVOTa
(umhe). Ta €& wxpdpwva Tov yenoworotfinxay yio Tic Tohu-xavohixés pedddouc NMF
ETUONUELOVOVTOL UE XOXXLVO TAACLO.

, , , _ R (©) Tyr
TooxeLiic yior to uxpodgovo m. Eniong, Hy= (A1, ..., by N] %04 Ry = [hanln 5 oo hann |7,

ONAAdY|, UE A n oUPPBOAILETOL 1) N-00TH GTHAT TOL Tivoxa evepyomotfioewy Hy,. Télog, 1 ou-

VEETNoT TOAU-XoVaAx g apondtnag 2 optleton we:

C M
Qi harn) = 3 logle+ Y W, 11) |
c=1 m=1

55)” ouuPoAilel To TUAUA TNE GTHANG TOL TV EVERYOTIOLACEWY Tou GYETlEToN

omou 0 6pog h
UE TO 0XOUCTIXO YEYOVOG ¢, xat C elvor 0 aptiuodg TV SLUPORETIXWY AXOUCTIXMY YEYOVOTWY.

Me v ewcaywyh aUTAC TNS AVTIXEWEVIXAC CUVARTNONG, OTOYOC UOG EVOL 1) GUVERYO-
olat TV BLPORETIXWY xpopwVeY ot eninedo NMF yio tnv edpeon wag xaAbtepnc Abong.
YUYAEXQUIEVA, O OPOC AVAXUTACKEUTC EAAYLOTOTOLEL TO GOAAUA AVOXATACKEVHC Yo Ot ToL
WxEOPOVEL VEWEMOVTIS ETTAE0V €vol BEATLWUEVO GUVOAXG Aedixd Tou mepiéyet potifo/AéEeic
am6 Oha Ta xpopwva. Enione o dpog apondtnTog, efval ouclac Tind ot TOAU-XoVOhXT) ETEXTO-
or Tou log/ll group-sparsity, 6Tou Ge €udc Tar groups efval To AXOUCTIXA YEYOVOTA. LTOY0S
Tou elvai vor emiTeéPeL var evepyomon ol uovo evag uxpeog aptiuog omd yeyovoto omd Oha To

uEdpwva ot xdde ypovixd TAUGLo, To OTol0 €YEL (G CUVETELNL Tl UXEOPWVIL VoL TEVOLY Val
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‘-Avg Single -Oracle Single DSum-oi-activations -Multi-channel NMF
49.17
50 - 47.15 48.14 B
44.40
42.84
41.38 40.71 s
a0 38.6632:84 — 38.82 38.67°0:27 i
O\o 30 = -
20 b
10 b
0 1 1 1
Recall Precision F-score

Yyfor 9: Luyxpltxr) anoTiunot TeV LOVO-XoVOMXOY Xl TOAU-XovolxoV uedodwy NMF yio
TOV EVIOTUOUO ETUXAAVTITOUEVRY AXOUCTIXWY YEYOVOTwY oTny Bdon ATHENA. Me Avg. Single
ouuPohriletar 1 u€om ambdB00m TNG HOVO-XAVUALXNS HEVOO0OU Yiar T BIAPOEA IXEOPWVAL, EVE
ue Oracle Single cuyfoiiletar 1 an6B00T TOU XOAITEROL UXEOPOVOU.

Beolv A)oelC OTIC OTOlEC GUUPWVOUV.

To T melpdpata pog yenotporoindnxe n tolv-xavahuxr, Bdon ATHENA [80] (Eyhuc 8),
1 omolo TePLEYEL 4 OPEC NYOYPAPNOEWY ATO EVOL TOAU-XAVORXO «EEUTVOY Ywpeo Yeapeiou. H
Bdon auth etvar XUTIAANAT Y10l TOAU-XAVOAMXO EVIOTUOUO ETUXVAUTTOUEVWY YEYOVOT®Y, a(po0
TEpLEYEL BEXAEEL BLOPORETIXG AXOUOTIXG YEYOVOTA, TA OTOlAl UEXETE GLYVE ETUXUAUTTOVTOL
HETOEY TOUG YEOVIXAL.

‘Ocov agopd v a€lordynorn tov pedodwy, oto LyhAua 9 Brénouue twe cuyxpivovto ot
00V0 TEOTEWVOUEVES TOAU-XOVOAXES EVODOL, GE OYEON UE AMOTEAEGHUATO TNG HOVO-XAVUALXNG
uédodou NMF. Ilopatnpolue 6Tl 1 6ebtepn wédodoc mohu-xavahixod NMF netuyatvel oucintd

BeATIWUEVA ATOTEAEGUATA OE GUYXELOT) UE OAES TG SAREC EVOANOXTIXES.

Borhid udidnom yia eviomopd emxoAVTTOUEVRDY XXOUC TIXWY YEYOVOT®Y GE TOAU-XAVOALXS
TepyBdAhovTa

‘Eog tohpa, Yewproouue pedodoug Poaociouévee oe NMF yior 10 mpdPBAnua twv emxoAuntope-
vov yeyovotwy. Ipdyuatt, oo NMF pédodol anotehodv yia Touplao T ETAOYT Yio OEVIRLAL
HE emdALPN, apol €youv eYYEVMS TN BuvaTOTNTA Vo evTonilouy YEYovOTa Tou cuUaivouy
TauToyeova. Emmiéov umopolv vo exmandeutolv e yenomn Alywv uovo Sebouévewy, xong
X0l VoL 0MOOLY AUGEL TOU UTOROVY Vol EpUNVEUTOLY €0xola. dotdco oTig pépeg pog, €xEl
ETXEATACEL 1) xorTyopio: LeVddwy Bardide udidnone [22-25], apol unepéyel onUavTIXd WS TEOC
TV Ty 0TI UTOAOYLOUOU AUGNG, ohAd XUPLOTEQRY, W TEOS TNV dlaxELTixy) avotnTe.  A-
&iler wo 600 Vo onuewwdel 611 ot uédodot Badidg pdinong, anoutody apXETE UEYUAUTERO OYXO
0edoUEVLV Yia EXTalBEVDT), OTwe emiong xou TNV UTOEEN CTYMOTUTOV ETXAALYNG xoTd TNV

EXTOUOEVOT) Yiot TNV ENEAUGT) GEVUPIWY PE EMXUAUTTOUEVA YEYOVOTA.
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i Nx1

‘ 64-band Log Mel Energies
+ Deltas

1 128 xT

16, 3x3 filters, 2D CNN
batch normalization, ReLU

32, 3x3 filters, 2D CNN
batch normalization, ReLU
2x2 max pool
Dropout (p=0.5)

batch normalization, ReLU

xz{ 64, 3x3 filters, 2D CNN
2x2 max pool

128, 3x3 filters, 2D CNN
batch normalization, ReLU
2x2 max pool
Dropout (p=0.5)

[PNEINES
Flatten

!

‘ Fully connected, ReLU ‘
Dropout (p=0.5)

600x 1

‘ Fully connected, Sigmoid ‘

50x1

Yyhuor 10: Apyttextovint| HoVo-xavahixolh VEUPWVIXOU BIXTO0U Yia ToEVOUNOY) UXOUGTIXMY
YEYOVOTLV.

[Mpdrypatt, n xuplapyn Teocéyylon exnaideuons cuoTnUdTwy Batide uddnong yio Tov evito-
TUOUO ETUXOAUTITOUEVOY YEYOVOTWY, EIVOL 1) TROPOBHTNOT EVOS VELEWVIXOD BixTOOUL ue TAndwea
OTLYUOTUTIOY EMXdALYPNE TTou elte LTdpy oLV oTa Slondéatua BEBOUEV, ELTE TORAYOVTAL UE GUV-
YeTd TEOTO and UTdEYOVTA UEHOVLUEVA oTiyldTuTo. 20T600 OF TMEPINTWOELS Tou ElTE O
opLIUOC TV THUVMY AXOUCTIXDY YEYOVOTWY Elvon ueYEAog, elte o Bodude emxdiudne (tohu-
pwviag) auldvetor, 0 Tapadoctaxds auTdS TEOTOC exTaideUoTC YiveTon TEOBANUATIXGS, XS
omoutel TNy Umopdn TOiA®Y CTIYUOTUTLY ETXEALPNG Yiot €Vay oNUOVTIXG UEYAAO apliud
GUVOUNOUWY YEYOVOTOYV.

M evorhoxtinn mpooéyyion 1 omoio Teplopilel To Topamdvey TeoPAfuaTa, elvon 1) Yeron
€VOG BIXTUOU DL WELOHOL YEYOVOTWY GOV €VOL TPWTO GTABL0, GTOYEVOVTAS GTNY UETATROTH
TOU TEOPBANUATOS TAELVOUNONE EMXAAUTITOUEVGY YEYOVOTWY GE TROBATUO ToEVOUNOTG HEUOVK-
LEvwy yeyovotwy. Eunvevouéveg amd tnv onpavtind tedodo mou €yel onuetwiel ta Teheutaio
XpOVIoL 0TO €peUVNTIXG TED(O Doy WEIOUOY axOLCTIXOY TNYGY [132-137], xdmotec mpbogateg
UEAETES EVTACGOUY TN YPNOT) TETOLWY OLXTOWY OTO UG THUNTO TOUG Kol OVAUPECOUY BEATIOUEVA
OTOTEAEGUOTA YO TO TEOBANUA TOU UOVO-XAVAUAIXOU TROBAAUATOC EVIOTIOUO) AXOUC TIXWY
YEYOVOTWY UE ETUXGAUP.

Ye auth TNV evOTNTA, ToEoUCIALoUUE T BOUAELS Uag 0TO TEOBANUN TOU EVIOTOUOL €-
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Yyfuor 11: Eynuotin) anelxovion TN oe)ITEXTOVIXAC TNS TROTEWOUEVNS UeUOB0L Yo TOV
TOAU-XAVOALXO EVIOTUOUO ETUXAAUTITOUEVOY YEYOVOTMY.

TUXOAUTITOUEVOY AXOUC TIXWY YEYOVOTWY GE TOAU-XOVUAXE TeplBdAhovTa ue ypron uedodwy
Barddc pddnone. Ilpotelvoupe yior Tp®dTN QoEd, TO GUVBLUOUO EVOS TOAU-XAVOAXOU BXTUOU
LY WELOHOV UXOUCTIXDY YEYOVOTWY UE €VaL BIXTUO TAEVOUNOTC AXOUC TIXWY YEYOVOTWY, Yo
NV em{AUGT TOLU TEOPAAUATOS GTO AMUUTNTLXG GEVIELO OTIOU O AELIUOS TV THHAVEDY OLUPOPETL-
AWV OXOVCTIXWY XNAOEWY VOl UEYHAOG. LUYHEXQUIEVA, YENOLLOTOLOVUE EVOL TOAU-XOVIAXO
dixtuo Srorywpelopol NNty Tnyoy [141], étol HGote Vo Unopécoupe Vo EXUETOAMEUTOVYE,
EXTOG UG TNV QACUATIXT TANROQORL, XL TNV YWeixH TANEOQOopia Yia TNV BlapopoToincT Twv
TAUTOYPOVLY UXOUC TV CUUBAVTODVY. (2¢ 8XTUO TAgVOUNOTC YEYOVOTWY YENOHIOTOLOVUE €Val
6ixtuo Bactoyévo oe CNNSs, 1 apyttextovixr) Tou omolou gatvetar oto Lyfua 10. To tehixd
TEOTEWVOUEVO GUOTNU, OTWS (alvetar oto Lyfua 11, cuvdudlet tor dixTua Sl wELoUol xal
tagwopunonc. Iho avahutind, apyixd to dixtuo Bloywelopod Talpvel we elc080 TO AXOUCTIXG
MElYUO TWV ETXUAUTTOUEVWY YEYOVOTWY, Xal divel aTtny €000 Tou K Sloywplouéva oruata,
Ta onola amotehoLY TNV €lcodo Tou dixthou tadvounonc. H 6éa elvar 611, Bedouévne wiag
IXOVOTIOLNTIXAC TOLOTNTAC Ol WEIGUOU, TO TEOBANUA ETXUAUTTOUEVOV YEYOVOTWY UTOREL Vol
peToTpanel TEOCEYYIOTIXA OE TEOBANUA TUEVOUNONS EVOC GUVONOU UEUOVOUEVKDY NYTTIXWY
YEYOVOTWY, TO oTtolo anotehel euxordTEpo TEOBANUA. To dixTuo Ta&oUNoNE TOU YENOoYLoTO-
elton, epapudlel To dixtuvo Tou Lyruatoc 10, yio xdde Eva and to K Slorywelopéva Gruato, xon
o1n ouvéyeta uToloyilel Tov Y€co 6po Twv e£60wY Toug. o TNy exnaldeuon Tou TpoTEVOUE-
VOU UG TAUOTOS, Soxtudoae 500 BlapopeTinéc npooeyyioels, Ty «axolouthaxhy (Sequential
training), émou ta 800 dixtua extandevovtan EeywEloTd YeTOD TOUS, XAl TNV <omd XOWOoLY
(Joint training), 6mou T dixTua ENAVO-EXTAOEVOVTAL ATO XOWVOU, ETOL MGTE Ol TUPSUETEOL X0l
TV 600 BWTLOY Vo PLUUCTOOY XL GUVTOVIOTOUY ¢ PO TO TeAXO ({NToLuEvo TNng Todl-
vounong yeyovotwy. Télog, ota cuyxettind Tewpduata pog Yewmprinxe xar 0 GLVOLACUOS TOU
TEOTEWVOUEVOL OixTO0L UE T0 Bacixd dixTuo Tou Lyfuatog 10 ot eninedo andpaorng.

To o tewpduoto poc yenotonotiinxe 1 Bdorn dedopéviv ESC50 [81], n onola neptéyet
2000 nynTd otrypdTUToL BldpXELaS 5 BEVTEPORETTWY amd 50 BLUPOPETIXA AXOUCTIXA YEYOVOTA.
Y11 CUVEYEL, ONULOURYHOUUE Uiol TOAU-XOVOAXT BACT), GUVEAIGOVTOG TAL GTLYULOTUTIOL QUTAL UE

TEOYUAUTIXES XPOLOTWES amoxpioelg and TNy Bdon dedouévwy DIRHA. Anuovpyooue €Tol ue
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Eyfuo 12: Anodoom tou 5ixtiou TagvoUnoNne Yiot Tot TEOBANUOTH UELOVOUEVKDY XAl ETUXOAU-
TTOUEVWY YEYOVOTWY, YL OLUPORETIXES TYIES TOU GUVORLXOU aptiuol xAJGEWY.

cuvieTxd TpOTOo Wia Bdon e TANBOeo oTyUoTOTKY emxdiudng, omwe Yo elyov nyoypapniel
amé o ouototyto 3 wxpopdvey. O péooc ypdvoc avtiynone Teo xupadvetor petafd 0.58 xou
0.83 BeuUTEPOAETTOV, EVE OL AMOCTUCEIS TWV YEYOVOTWY ANd TO XEVTIPXO WXEOPWVO UETOED
0.72 xou 3.2 yétpwv.

ooy wphvtag ot anoteAéouota, apyxd emBeBardoaue TNy Suoxohia Tou avTiueTHT ouy
TAL VEUPOVIXY BIXTUO TOU EXTILOEVOVTAL UE TOV TAEAO0CLoXS TEOTO, GTNY TERINTWAOT TOL 0 opLl-
HOC TV TavmY YEYOVOTwY eivan Yeydhog. ‘Omwe gatvetar oto Lyfua 12, xadoe o aprdudg
TWV OXOUCTIXWY XAACEWY QUEGVETAL, 1) AmOBOCY) TOU OIXTUOU TAEVOUNCTG YELROTEREVEL XAl
oty TEPInTWoN ToU TEOPAAUATOC UEPOVLUEVWY YeYovoTtwy (isolated), o otnv mepintwon
TWY ETXOAVTTOPEVOY YEYOVOTwY (overlapped). Qotdoo 1 dpopd anddoone uetoll Toug
yiveton dho xan yeyahitepn, a@ol o Badudg TOAUTAOXOTNTOSC TOU TEOBAAUATOS ETUXAALYNG
auEdveTon onuavTixd e TV adénon tou aprtuold Twv yeyovotwy. To mpotewduevo clotn-
UL OTOYEVEL VO OVTIUETOTIOEL AUTO TO TEOPBANUA Xat Vo TETOYEL AndBOCT) TOEOUOLA UE TNV
TEPIMTOON TWV UEUOVWUEVWY YEYOVOTWV.

Téhog otov Iivaxa 3, galveton 1 CLYXEITIXY ATOTIUNOT TWV TEOTEWOUEVKDY PEVOBLY Xl
TWV ToEAdoCLaX®Y UeVOdwWY Yio 600 BlagopeTixd cevdpla avtiynone. Iapatneodue yevixd
6T oY TepinTwon tou oevapiou uecatac avtiynone (Tep=0.61s), xou oL dlo mapodhayéc Tne
mpotewvopevng uedodou (C xou D), netuyaivouv onuavtixéc BekTidoel oe oyéon Ye TG Topo-
dootaxég uevddoug, eved xoADTERT amodelxvOETOL 1) LEVOBOC UE TO OYTUA OTO XOWVOUY EXTO-
©devone (D). Eniong, emnhéov PEATUOOELC ONUELDGVOVTOL UE TOV GUVOLAOUS TV TROTEVOUEVGDY
X TV Tapadootoxdy Yedddwy ot eninedo andgaone (Late Fusion). Qotéoo, otny nepintw-
o tou cevaplou udnifc avtiynone (Teo=0.80s), oL Tpotewbuevee Pédodol amoTLYYEVouY Vo
BEATLOOOUV Tal AMOTEAEGUATA, AOYW TNE AVETAEX0UE amddooN Tou dxTUou dlaywelouol. To
YEYOVOSG UTO EPYETAL GE CUUPWVIOL UE TROCPATES UEAETES YIAL TNV ATOB0CT) BIXTOWY BLorywpL-
ouoV oe cuviixeg uPNAAc avtiynone [148]. Topdha autd, 0 GUVBLACUOS TWV TEOTEVOUEVKDY

UEDOBWY UE TIC TUPABOCLAUXES, E0WaE BEATIOUEVO ATOTEAECUATI XL GE AUTH TNV TEPITTWOM.
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ivoxag 3: Anotiunon twv dpodpwy uedodwy yio T0 TEOBANUL TOV ETXUNUTTOUEVKDY 0XOU-
OTIXOV YEYOVOTWV.

System _ F-score 7(%)
T60=0.61s | T'60=0.80s
(A) Baseline (1 channel) 41.26 39.05
(B) Baseline (3 channels) 41.45 39.33
(C) Proposed - Sequential 44.72 38.41
(D) Proposed - Joint 47.46 38.75
Late Fusion (B+C) 46.20 41.52
Late Fusion (B+D) 48.95 41.95
Aopn AwatpBic

H Suatpi3r) axoroudel tnv mopoxdte doun:

* To Kegdhowo 1 eodryetl Tic Baocixég €vvoleg yior Ta 600 TEOBAYUUTA TOU HEAETOUVTAL, TOV
EVTOTIOUO AXOUCTIXOV YEYOVOTWY X0l TOV EVIOTIOUS YwVvAc. Emimiéov napouctdlet uia
EMOXOTNOT TWV EQELVITIXWY YEVOOWY Tou €youv avantuydel otny oyetiny| PiBAtoypadpia

TWV TEAEVTULWY ETOV.

* To Kegdhao 2 mopouctdlel Ty €peuvd Pog 0To TEOBANUO TOU YWEOo-YEOVIXOU EVTO-
TLOPOU PuVAC OE «EEUTVOY TEPYBAAAOVTO. LUYXEXQWEV, oo TAALCLa EVOSC «EEUTTVOUY
ooV €EOTAIGUEVOU UE TOAATASL ULXEOPWVAL, AVATTOCGOUUE Evay oy opriuo dVo cTo-
olwv, o omolog Ye TNV YeYoN EWBIXE OYEDLICUEVDY TOAU-XAVAUAIXWY YULUXTNELO TIXODY
67O OEVTEPO GTABLO, XATNYOPLOTOLEL TOL TUAUATA PWVTE TTou €Youy avtyveulel 6To TEKTO
oTABl0 W EVTOC 1) EXTOC dwpatiou. o o melpduatd pag yenowonolobue Teelc dlapope-
TiXéC BAoelc BEBOUEVHV TIOLU TEPLEYOLY TOAU-XAVAALXA BEGOUEVA OO TO «EEUTVOY OTILTL
Tou gpevvnTxol épyou DIRHA. H mpotewouevn pédodog €yet xalbtepn anddoor amd
OLdpopeg evolhoxtixég puedodoug tne oyeTxnc BiBMoypaplog, eved eniong mopouctdlel

ELPWO TloL AL OE GEVAPLYL PE PELWUEVO apldud amd SLodEoulor UixpopmvaL.

* To Kegdhato 3 mopoucidlel Ty SOUAEL HoC 0TO TEOBATUO TOU EVIOTUGHO) UEUOVK-
HEVGY aXOUCTIXMY YEYOVOTWY, e0TIdlovTag o€ ued680ug GUYBLACHOY TN TANEOPORiC
an6 TOMAATAS UXEOPOVAL. LUYXEXQULEVD, TELRUUATICOPACTE UE TOAU-XAVAUAIXO GUVOUO-
ouo6 o€ eNINEDO CHUUTOC, YALUXTNELO TIXWY, ATOPAUCTS, 1 TOAU-XUVIAMXAC EXTUOEUCNC,
xenotponodvtag mopadootaxd ototioTixd povtéha (HMMs, GMMs). Mo to neipduatd
Hog, yivetan ypron pog ToAU-xavahixig BAomG UE TRoYUOTIXES NYOYPUPHOELS UXOVC Ti-
xOV YeYovoTomv and évav «EZunvoy yohpo ovoxéewv (UPC-TALP corpus) [78]. Ta
ATOTEAEGUOTA OELYVOUV OTL UE TOV XATIAANAO GUVBUIGHO TNG TOAU-XAVOALXNG TTANROPO-
elag umopel xavelc va mdpel onpavTind BeEATIOUEVT AmdBOCT) CLUYXEITIXE UE TNV YeYoN

EVOC UOVO UIXEOPOVOU.
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* To Kegdhao 4 emexteivel TV SOUAELY UAC OTO THO ATAULTNTIXO GEVIQLO TWYV ETUXUAUTTOUE-
VOV YEYOVOTWY, 0 TLdlovTag ot Yedodouc NMF yia tnv povo-xoavolxr tepintwon. Xto
TEMTO PEPOC, E0TLACOUUE oTNY BeATit)oT TOL GTABIOL EVIOTOUOY YEYOVOTWY GTA TALGLYL
¢ pevédou CNMF. Ta mewpduota, yia to omoio yenowonoujlnxe 1 mporypotixy| Bdon
and Tov epeuvnTid dtorywwviopd DCASE’16 Task 2 [79], delyvouv onuavtixh Pedtiwon
OTOV EVIOTIOUO YEYOVOTWVY PE TNV TpoTelivouevr uédodo €vavtl cUUBATIXOY OYNUATLY
eviomouol ye yerion g CNMF pedddou. Xto deltepo yépog, eCetdloupe TNy Teplntw-
on ouvdvaouob NMF pedodwy ye tolvountéc. Aclyvouue to mpoBAuoto mou unopet
Vol TpoxUouY GE TEPINTOOELS eTXdAUPNC, xou TpoTelvoupe plar uédodo yia TNy petpio-
o1 aUTOY TV TEolAnudtey. Ta to tewpduatd pac yenowonololue dVo Bdoelc, plor Ue
OUVUETIXG YEYOVOTOL, XOUL [LOL UE TROLYALTIXSL 0X0UG TiXdL YEYOVHTOL (UToa VOO TS Bdong
DCASE’16 Task 2).

* To Kegdhao 5 enexteiver Tic NMF pedodouc tou mponyoluevou xe@golalou Yo Tov
EVIOTUOUO ETMXAAUTTOUEVRY YEYOVOTWY, GTNV TEQITTWOT TOU Olrd€TOUUE TOAATAY i
XEOPWVAL. LUYEXPYEVL, TEOTEVOUUE Uiol ToAU-Xovohxt| ued66o NMF 1 onola Booile-
TAL TNV EAAYLOTOTOMNON ULOIC XOUVOTOUOU AVTIXEWEVIXNC CUVERTNONC TOU TERLEYEL VO
TOAU-XavoAix6 6po opandtnrag (sparsity term). Ta meipdpoto diegdyovtor oty TOAL-
xovohixr] mporypotixd Bdon ATHENA [80] mou nepléyet nyoypagroeic and éva «€Zumvoy
Yweo cuoxédewy. Ta anoteréopota emBePaleVouy TNV avwTEROTNTA TNG TEOTEVOUE-
VN UEVOB0L EVOVTL XAACOXDY HOVO-Xovohx®V pedodwv NMF ¥ amtholotepnmy molu-

xavohixwy NMF pedooomvy.

* To Kegdhato 6 nopoucidlet tny pédodo mou avantiiope Baocilopevol oe TexIxéS Pordidg
udINoNE YLt TOV EVIOTUOUS EMXAAUTTOUEVY OXOUC TIXWY YEYOVOTWY GE TOAU-XAVOALXSL
repBdihovta, oTNY TEPIMTWOT oL 0 AELUOS TwV TWAVKY YEYOVOTWY elval PeYdAOC.
To mpotewduevo cUGTNUA GUVBUALEL XL EXTIUOEVEL OO XOWOU EVaL VEUPWVIXO OiXTUO
Ol WELOUOY OXOUCTIXY CUUBAVTOVY e €var dixtuo Tadvounone yeyovotwy. Io Ta
TelpduoTa Yenotwormotinxe wa cuvietinr| Bdon 1 omolo Snuoveyinxe cuvdudlovtog
TEAYHATIXES NYOYPAPNOELS S0 DLUPOPETIXDY UXOLCTIXWDY YEYOVOTWY and TNy Bdor E-
SC50 [81] ue mpaypoTinéc XpOUOTIXES OmOXploels and To «EZUTVOY» OTITL TOU EPELVI
TxoU épyou DIRHA. To anoteléopata delyvouv dtL oe dloxoha cevdpia entxdhudng,
0 TPOTEWOUEVOG GUVOLAOUOG UTOPEL Ty UTL Vol TETOYEL ONUAVTIXES BEATIOOELS EVavTl
VELPWVIXWY OIXTUWY EXTTUOEUPEVWY UE TOV TUPABOGLUXO TEOTO, OEDOUEVOU OUWS OTL 1)

AVTAYNOT 0TO oxoUCTIXO TEPIBAANOV BeV elvor UPNAT.

» Téhoc, o Kegpdhowo 7 cuvodilel tnv epeuvnuixt] yac SouvAeld xat npotelvel mdoveég peh-

hovtixég xateLdOVOELS VLol TO TEOBANUA TOU EVIOTIOUOU OXOUCTIXWY YEYOVOTWY.

Yuunepdopato xat ueEAAOVTIXT €peuva

[evind 0 EVIOTOUOC AXOUGTIXGY YEYOVOTMV EIVOL ULl VAT TUGCOUEVT) EQELVNTIXT TIERLOY T, EVE

OLAPOPES TUPUAAXYES TOU TEOBAAUATOS €Y OUV ATOTEAEGEL TO AVTIXELUEVO TOMNAGY EQELVITIXMY
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Srorywvioudy otny BiBhoypopio T teheutalar ypovio [11]. Xtnv Awboxtopiny| pag dtatplr,
dwoae Eupaon xupleng oTic xateLIOVOELS TN TOAL-Xavahix g encéepyaciog xon TwvV cevopiwy
ME ETUXAUAUTTOUEVO OXOUGTIXG YEYOVOTAL.

Yyetnd pe miaveég TEOEXTAOELS TG DOUAELAS YOG, TG TEVOUNE OTL OL THUEUX AT XATELY V-
OEIC UTOEOUV VOl PavOLY ETOXOBOUNTXES. Apyixd, OYETIXA UE TO CUCTNUA YWEO-YEOVIXOU
EVIOTIUOUOU QPWVAC, OXOTEVOUUE VoL BEATICOVUE TEQUUTERL TNV AOBOGT| ELGAYOVTOC GToLyElo
and Bordid pnyovixy pdinon (m.y. avixatdotaon wwv GMM tolwvountwy pe CNNs). E-
A€oy Yempolue wg %ok xateduvoT) TOV OYEBIIOUSO EVOSC GUGTAUATOS YLOL Y(EO-YPOVIXO
EVIOTUOUO ETUXUAUTITOUEVGYV AXOUC TIXWY YEYOVOTWY, ENEXTEVOVTAC €TOL TNV DOVAELY HAC OTIC
OLETOPES «EEUTIVWVY OTULTIWV OTNY TEPIMTMON YEVIXOTEQWY OXOUCTIXWY GUUBAVTWLY.

‘Ooov agopd 670 Véua Twv Wlaitepo amoutnTixoy oevapiny emxdiudne (ueydhog aptdude
o miavée xatnyopiec Yeyovotwy, X ueydrog Badudc tohugoviag otic emxollel), oxomne-
0OUUE VO EPELVYCOUUE ETUTAEOV UEYLITEXTOVIXES VEUROVIXMY OLXTOWY YLol XAAVTERO GUYOLACUO
TWV AELTOVEYLMOY TOU BLoyWELOUOU XAl EVIOTUOUOU YEYOVOTWY, OIS X0l VO TELROUATIOV00UE
HE YOELXA XATAVEUNUEVES CUOTOLYIEC UXPOPOVWY Ol OTIO{ES EVOEYOUEVIC VO AVTWETWOTIGOUV

O AMOTEAEOUATIXG TO TEOBANUO TNG AVTHYNONS.






Chapter 1

Introduction

Acoustic event detection (AED) constitutes a major part of the computational auditory analysis
field, a research topic that has recently attracted significant interest in the literature. Typical ap-
plications of AED include smart home environments [1-5], multimedia indexing and retrieval [7],

monitoring for healthcare [6], and security and surveillance systems [8, 9].

The main goal of AED is the automatic end-pointing and classification of each sound event
present in an audio clip, revealing information about human or other activity. The “sound event”
term refers to the audio part of any meaningful event with a noticeable acoustic impact. Depending
on the application of interest and the corresponding environment, there can exist a large variety
of possible acoustic events [10, 11]. In our work, we focus on acoustic events that can usually
occur inside smart-space environments, primarily domestic ones. Some examples of such acoustic
events can be “speech”, “walking”, “radio music”, “door knocking”, “keyboard typing”, etc. Of
particular interest is the acoustic event of speech, as it constitutes the primary mode of human-
to-human and human-to-machine communication, and therefore plays a significant role in many
applications. Hence, we focus part of our work on Speech Activity Detection (SAD), as a special

case of the general AED problem.

SAD focuses on detecting the time boundaries of human speech present in an audio record-
ing. In our work, we specifically focus on the SAD task in the context of voice-enabled systems
for smart-home environments. Such systems typically contain a sequence of modules in their
architecture, with SAD being a crucial one, as it provides input to other pipeline components,
for example, speaker localization, speech enhancement, keyword spotting, and automatic speech
recognition (ASR) [82—-84], as well as contributing to the timing of the dialog management [85].
Further to voice-based interaction, SAD has found additional applications, such as telecommuni-
cations [34,35,86], variable-rate speech coding [87], and voice-based speaker recognition [45,88],

among others.

In the rest of this chapter, we overview related work in the SAD and general AED fields. Then,

we list the primary contributions of our work, and we overview the structure of this thesis.
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1.1 Related work

1.1.1 Acoustic event detection

In the literature, several approaches have been proposed over the last years for the task of AED,
varying in the algorithms and acoustic features employed. We can discriminate them depending
on whether they were designed and evaluated for the isolated or the overlapped AED case, as well
as on whether they employ single or multiple microphones in their setup. In the case of isolated
AED, a number of conventional detection and classification approaches, such as ones based on
hidden Markov models (HMMs) in conjunction with traditional audio features (for example Mel-
frequency cepstral coefficients (MFCCs)), can achieve satisfactory performance [2].

In the case of the more challenging overlapping AED however, different approaches need to be
employed in order to allow multiple event detection. For example, in [12], multiple-path Viterbi
decoding is proposed to deal with the overlapping scenario. Other works for overlapping AED
include multi-label deep neural networks (DNNs) [13], temporally-constrained probabilistic com-
ponent analysis models [14], generalized Hough-transform based systems [15], and non-negative
matrix factorization (NMF) [16].

Among such methods, NMF-based approaches and their variants have attracted significant
interest in the field of both isolated and overlapping AED in recent years. This is due to both their
robustness and their natural ability to detect multiple events occurring simultaneously, as far as
appropriate non-negative and linear representations of them are available. NMF-related methods
can be separated in those that exploit the NMF activations directly to perform event detection [16,
17], and in those that employ a classifier trained on these activations [18,19]. In [16], after building
a quite large NMF-dictionary, NMF activations are directly exploited to perform detection for each
event class. Regarding classifier-based NMF methods, in [18], a rather small dictionary of events
is automatically built using sparse convolutive NMF (CNMF), and subsequently the activations
produced are used as input for HMM training of each class. Also, in [20], exploiting the fact that
NMF-based approaches can benefit from the creation of a Mixture of Local Dictionaries (MLD)
[21], the authors propose a classifier-based NMF system using MLDs for improved detection
performance.

Although NMF methods present a natural choice for overlapping AED scenarios, they have
some disadvantages too, mainly including running-time efficiency and discriminative capability
(when it comes to a large number of event classes). When enough training data are available,
deep-learning based approaches can achieve superior performance in AED tasks [22], due to their
better discriminative power. In general, several deep-learning based methods have been success-
fully proposed in recent years, including DNNs [23], convolutional neural networks (CNNs) [24],
convolutional recurrent neural networks [22], and transformers [25].

All aforementioned approaches have been primarily applied to single-channel AED. However,
whenever available, exploiting information from multiple channels can be valuable. In [2] various
channel fusion methods were proposed within an HMM-based framework, while in [26] bag-of-
words based features from different channels were used to train a global random forest classifier.

Regarding neural network based methods, in [27] multi-channel exploitation was performed either
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by feeding the network with inputs from multiple channels or by extracting multi-channel spatial
features. In NMF related approaches, multi-channel extensions have also been considered, but
mostly targeting blind source separation [28-32].

1.1.2 Speech activity detection

Similarly to AED, SAD has also been a topic of intense research activity, with numerous algo-
rithms proposed in the literature over more than four decades, as for example overviewed in [33].
Some of the most established methods include algorithms incorporated into standards [34, 35],
the statistical model-based approach by Sohn et al. [36], and the spectral divergence proposed
by Ramirez et al. [37], among others. Typically, SAD methods extract various features from
the waveform that are, for example, related to energy or zero-crossing rate [34, 35, 38, 39], har-
monicity and pitch [40-42], formant structure [34,43—45], degree of stationarity of speech and
noise [46—48], modulation [49-51], or MFCCs [45]. Feature extraction is subsequently followed
by traditional statistical modeling, or, more recently, by deep-learning based classifiers, for ex-
ample DNNs [52, 53], recurrent neural networks [54,55], or CNNs [56-58], often in conjunction
with autoencoders [59]. Further, end-to-end deep-learning approaches applied directly to the raw
signal have also been proposed [60].

Specifically for the smart-home domain, several SAD systems have been developed over the
last decade, following the collection of appropriate corpora in domestic environments [61-65]. For
example, in [66], linear-frequencies cepstral coefficients are employed as features in conjunction
with Gaussian mixture model (GMM) and HMM classifiers to detect distressed speech or acoustic
events inside a smart apartment for elderly persons. In a similar task under the Sweet-Home
project in [67], sound event detection is first performed by discrete wavelet transform features
and an adaptive thresholding strategy, followed by speech/event classification using support vector
machines (SVMs) with GMM supervectors based on MFCC:s. In [68], a simple energy-based SAD
precedes the HMM-based recognition of sounds and spoken words. In [69], SAD is performed on
headset microphone audio to track human behavior inside a smart home, with the proposed system
employing an energy detector and a neural network trained on linear predictive coding coefficients
and band-crossing features.

The aforementioned SAD systems aim to detect speech activity over the entire smart home,
without however considering its typical multi-room layout. Only few recent approaches in the
literature focus on the task of room-localized SAD in multi-room domestic environments that
constitutes the focus of our work on SAD, yielding a speech/non-speech segmentation for each
individual room of the smart home.

The majority of such systems operate in two stages. Typically, the first stage generates speech
segment hypotheses over the entire home or for each specific room, which are further examined,
refined, and assigned to the proper room at a second stage. Specifically, in [70], at the first stage
of the proposed algorithm, DNN-based single-channel SAD is performed in each room. Then, at
the second stage, for each detected speech segment, signal-to-noise ratio (SNR) and coherence-

based features are extracted from all rooms and concatenated to feed a linear discriminant analysis
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classifier that yields the segment room allocation. In [71], at the first stage, statistical-based SAD is
performed for each microphone, and then majority voting over the room microphones provides the
speech segments of each room. At the second stage, speaker localization output feeds a classifier
(SVM or neural network) to further examine speech segments and delete those originating in other
rooms. In [72], at the first stage, multi-layer perceptrons are employed for each microphone, and
speech/non-speech segmentation is achieved via majority voting for each room. Then, in case of
segments assigned to multiple rooms, a speech envelope distortion measure is employed to decide
the correct room. In [73], three different features are investigated for room-localized SAD, namely
SNR, periodicity, and the global coherence field. Speech boundaries for each room are computed
by simple thresholding of these feature values and by using a heuristic rule over consecutive active
frames.

In addition to the above, single-stage approaches have also been pursued for room-localized
SAD. Specifically, in [74], a DNN is employed taking as input 176-dimensional vectors composed
of a variety of features, such as MFCCs, RASTA-PLPs, envelope variance, pitch, etc. Similar
features (but 187-dimensional) and DNNs are again considered in [75], as well as alternative
classifiers, including a 2D-CNN. The latter is extended to a multi-channel 3D-CNN system in [76],
where Log-Mel filterbank energies (40-dimensional) are employed as features, temporal context is
exploited by concatenating adjacent time-frames, and the resulting 2D single-microphone feature
matrices are stacked across channels. Finally, in [77], the aforementioned 3D-CNN is combined
with the generalized cross-correlation (GCC-PHAT) [89] based CNN of [90] to yield a joint SAD
and speaker localization network.

1.2 Contribution of this Thesis

In our work on AED we consider several variants of the task, including isolated and overlapped
event scenarios, as well as single-channel or multi-channel setups available in the domestic smart-
space environment (as depicted in Figure 1.1). Under this framework, we develop and evaluate
several different approaches for AED. In particular, at first we study the isolated AED problem,
providing several ways for combining the information from multiple microphones, and developing
a multi-channel statistical based system with improved performance compared to single-channel
baselines. Then, in the case of overlapped AED scenarios, we employ NMF methods, and by ex-
amining several variants of them, we propose methods for improved detection, for multi-channel
expansion of the existing baselines, as well as modifications on state-the-art methods that combine
NMF with classifiers, in order to improve their performance under highly overlapped conditions.
Finally, we employ deep learning methods for overlapping AED when the number of event classes
is large. In this direction, we propose the combination and joint training of a multi-channel sound
source separation network with a multi-label AED network. Under moderate reverberation con-
ditions, our proposed pipeline achieves significant improvements over traditional neural network
approaches. For the evaluation of our proposed methods, suitable smart-space datasets, both real
and simulated, are employed.

Regarding SAD, under the framework of smart-space environments, we develop an enriched
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Figure 1.1: Different variants of the AED task regarding the number of available microphones, and
the existence of overlap (or not) between the events. In our work, we considered all the possible
combinations of scenarios.

SAD module named “room-localized” SAD, which is able to provide both the time boundaries of
speech events (“when”) and the coarse speaker position (“where”) at the room level. This module
can facilitate the communication of multiple speakers in different rooms with the smart-home
voice interface. In addition, to achieve robust performance in the challenging acoustic conditions
of a real smart space, our system takes advantage of the multiple microphones installed in it. The
system follows a two-step approach, with the first step being a multi-channel statistical based
module giving as output the temporal segmentation of speech. The second step, employing novel
multi-channel based, hand-crafted features, provides the spatial intelligence of our SAD system,
localizing the speaker at room level. The proposed approach is extensively evaluated on both
simulated and real data recorded in a multi-room, multi-microphone smart home, significantly
outperforming alternative baselines. Further, it remains robust to reduced microphone setups,

while also comparing favorably to deep-learning based alternatives.

1.3 Structure of this Thesis

The rest of this Thesis is structured as follows:

» Chapter 2 presents our research on the SAD task for smart-space environments, provid-
ing details for our proposed systems, alongside experimental comparisons with alternative

baselines and state-of-the-art systems.

* Chapter 3 presents our work on the isolated AED task, focusing on multi-channel fusion

methods.

* Chapter 4 extends our work to the more challenging overlapped AED task, focusing on

NMF-based approaches for the single-channel case.

» Chapter 5 extends our NMF-based approach of Chapter 4 to the multi-channel overlapped
AED case.
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* Chapter 6 presents our deep-learning based work on overlapped AED in multi-channel sce-

narios with a large number of possible event classes.

* Chapter 7 concludes the Thesis by summarizing our research work and discussing possible
future efforts on the AED task.



Chapter 2

Speech Activity Detection in
Multi-room Smart Spaces

2.1 Introduction

Smart-home technology has been attracting increasing interest lately, mainly in assistive scenar-
ios for the disabled or the elderly, but also in “edutainment”, home monitoring, and automation
applications, among others [91-95]. Given that interaction with users must be convenient and
natural, and motivated by the fact that speech constitutes the primary means of human-to-human
communication, voice-enabled interaction systems have been progressively entering the field. In-
deed, multiple smart-home projects have been focusing on voice-based interaction [96-103], and
a number of commercial voice-assistant home devices have recently been introduced in the mar-
ket [104].

In practice, domestic environments contain multiple rooms, where one or more users may
be located wishing to interact with the smart-home voice interface. This scenario can be facili-
tated if the SAD module provides not only time boundaries of speech events (“when”), but also
coarse speaker position (“where”) at the room level, i.e., assigning room “tags” to the detected
speech activity, thus yielding separate speech/non-speech segmentation outputs, one per room of
the smart home (see also Figure 2.1). Enriching the traditional “room-independent SAD” to such
“room-localized SAD” variant can be useful in multiple ways: It can help disambiguate user com-
mands for voice-control of devices or appliances present in multiple rooms (e.g., light switches,
windows, temperature control units, television sets, etc.); enable room-localized system feedback,
for example via a loudspeaker or visual display at the room where speech activity takes place;
and allow parallel voice interaction sessions by multiple subjects inside different rooms, engaging
separate system pipelines, one per room [83]; finally, ASR itself can benefit significantly from
room localization [70].

Designing a robust SAD system in domestic environments is a hard task due to the challeng-
ing acoustic conditions encountered. Such involve speech at low SNR, presence of reverberation,
and multiple background noise sources often overlapping with speech activity. In the case of

room-localized SAD, these difficulties are further exacerbated due to acoustic interference be-
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Figure 2.1: An example of room-independent vs. room-localized SAD in multi-room domestic
environments equipped with multiple microphones. Here, three speakers are active in three rooms.
Top: Floorplan of the smart home used in the DIRHA project [100] (see also Section 2.6.1 and
Figure 2.6), with dots indicating microphone locations on the apartment walls and ceiling. Bottom:
1-minute long waveforms, captured by the red-colored microphones (one per room with an active
speaker), shown together with the corresponding ground-truth of room-localized SAD. The room-
independent speech/non-speech segmentation is also depicted at the top.

tween rooms. To counter these challenges, smart homes typically employ multiple microphones
to capture the acoustic scene and “cover” the large multi-room interaction area. This allows ex-
ploiting multi-channel processing techniques, for example fusion of the microphone information
at the signal, feature, or decision level, in order to facilitate the analysis of the acoustic scene of

interest.

Several efforts have been reported recently on room-localized SAD in multi-room environ-
ments [70-77]. As already overviewed in Section 1.1.2, these approaches vary in the kind of

features, classifiers, and number of microphones used per room. Depending on their design, they
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Figure 2.2: Block-diagram of the proposed room-localized SAD system. The first-stage algorith-
mic components are depicted in blue color and the second-stage ones in red.
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typically consist of one or two algorithmic stages, and may or not allow the detection of simulta-

neously active speakers located in different rooms.

In this chapter, we investigate a room-localized SAD system for smart homes equipped with
multiple microphones distributed in multiple rooms. The system employs a two-stage algorithm,
incorporating a set of hand-crafted features specially designed to discriminate room-inside vs.
-outside speech at its second stage, refining SAD hypotheses obtained at its first stage by tra-
ditional statistical modeling and acoustic front-end processing. Both algorithmic stages exploit
multi-microphone information, combining it at the signal, feature, or decision level. The proposed
approach is extensively evaluated on both simulated and real data recorded in a multi-room, multi-
microphone smart home, significantly outperforming alternative baselines. Further, it remains
robust to reduced microphone setups, while also comparing favorably to deep-learning based al-

ternatives.

The remainder of the chapter is organized as follows: The overview of the proposed system is
provided in Section 2.2, with its two algorithmic stages further detailed in Sections 2.3 and 2.4;
alternative baselines are presented in Section 2.5; the datasets and experimental framework are
discussed in Section 2.6; the evaluation is reported in Section 2.7; and, finally, conclusions are

drawn in Section 2.8.
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2.2 Notation and system overview

Let us denote by R the number of rooms inside a given smart home that is equipped with a set of
microphones M .. This is partitioned into subsets M, , for » = 1,2, ..., R, each containing
the microphones located inside room 7. Let us also denote by o,,; the short-time acoustic
feature vectors (e.g., MFCCs) extracted from the signal of microphone m, and by o their
concatenation over microphone set M C M.y, with ¢ indicating time indexing at the frame
level (typically at a 10 ms resolution).

We are interested in room-localized SAD, seeking speech/non-speech segmentations for each
room 1, detecting speech events occurring inside it but ignoring speech originating in other rooms
or any other non-speech events. As also shown in Figure 2.1, this differs from room-independent
SAD, where a single speech/non-speech segmentation is produced, including speech events oc-
curring inside any of the R rooms of the smart home.

As already discussed in the previous sections and also depicted in the block diagram of Fig-
ure 2.2, our proposed system for room-localized SAD operates in two stages. The first stage,
detailed in Section 2.3, is based on single-channel GMM classifiers, each trained on an individual
room microphone, employing MFCC features and operating at the frame level. An appropriate
decision fusion scheme follows, combining GMM likelihood scores across all room microphones
and, by means of Viterbi decoding, providing a crude speech/non-speech segmentation for the
given room. Then at the second stage, presented in detail in Section 2.4, for the speech seg-
ments detected for each room, an SVM classifier is employed on a number of hand-crafted room-
localization features, specially designed to discriminate room-inside vs. room-outside speech.
Various feature fusion schemes across rooms are considered for this purpose, accompanied by
different options for their SVM-based modeling.

2.3 First stage: speech segment generation

We now proceed with a detailed description of the first stage of the developed room-localized
SAD system. This stage generates individual speech/non-speech segmentations for every room
using the specific room microphones only, thus providing initial room-localized SAD hypotheses
to be refined later. To accomplish this, it employs traditional acoustic front-end processing and
statistical modeling at the microphone level as discussed in Section 2.3.1, followed by decision
fusion across microphones as detailed in Section 2.3.2, and appropriate decoding schemes that are
presented in Section 2.3.3. Variations on the choices of microphones and classes considered are

discussed in Section 2.3.4.

2.3.1 Single-microphone system core

At the core of the system lies the single-microphone speech/non-speech modeling. Specifically, for
each microphone of the smart home, a traditional 39-dimensional MFCC-plus-derivatives acoustic
front-end is employed, with features extracted over 25 ms Hamming-windowed signal frames with

a 10 ms shift. Subsequently, two-class microphone-specific GMMs are trained on these features
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(32 Gaussian mixtures with diagonal covariance matrices are used in our implementation), with the
set of classes being J = {sp,,silay }, where sp, denotes speech originating in room r where
the given microphone is located, and sil 5); indicates lack of speech in all rooms. Alternative class

choices for set 7 are discussed in Section 2.3.4.

2.3.2 Multi-microphone decision fusion

The developed system performs multi-microphone fusion at the decision level, where the GMM
log-likelihood scores of different channels are combined at the frame level for each class of in-
terest, potentially also incorporating channel decision confidence. In particular, the following
approaches for decision fusion over microphone set M C M, are considered, which were
investigated in our work in [2], but for room-independent SAD only:

¢ Log-likelihood summation, where the fused log-likelihoods (log class-conditionals) at frame ¢

become

emi(Ome) = D Wit bmj(Oms) , @.1)
meM

where by, j(0y,,¢) denotes the log-likelihoods of the GMMs for microphone m given its acoustic
features o,,, ; at time frame ¢, and class j € J . The individual microphone scores in (2.1) can be
uniformly weighted by setting w,,+ = 1 /|M| (where |e| denotes set cardinality), in which case
the scheme will be referred to as unweighted log-likelihood summation (‘“u-sum”), or adaptively
weighted at any given time frame ¢, according to channel decision confidence that is estimated as

|bm7 spr(om,t) - bm7 sil an (Om,t) |

Z ’bm’, spr(omit) - bm’, sil a1 (Omﬁt) ‘
m'e M

, (2.2)

Wt

in which case the method will be termed weighted log-likelihood summation (“w-sum”). Weight-
ing by (2.2) is motivated by intuition that large log-likelihood differences between the classes
imply higher classification confidence.

o Log-likelihood selection, where, at each time frame ¢, a microphone m; € M is selected to

provide all fused class log-likelihoods, i.e.,
cmj(ome) = by i (0, ¢) , forall jeJ. (2.3)

Such microphone can be chosen as the one achieving the highest frame log-likelihood over all

channels and over all classes, i.e.,

m; = arg max { max b,, (o
t 7%6/\/1 {jej m,j( m,t)}a

in which case the scheme will be referred to as log-likelihood maximum selection (‘“‘u-max’), or as
the channel with the highest confidence (2.2), i.e.,

My = arg max Wy, ¢
meM o
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in which case the method will be termed log-likelihood confidence selection (“w-max”).

e Majority voting, where, at each time frame ¢, single-channel decisions, computed as j‘m,t =
argmax je 7 b, j (Om,t), are accumulated over microphone set M , and the class with the highest
decision incidence is chosen. Such accumulation can be computed uniformly over the channels, in
which case the scheme will be termed unweighted majority voting (“‘u-vote”), or scaled by means
of (2.2), resulting in weighted majority voting (“w-vote”).

Among the above approaches, based on the experimental results of Section 2.7, the developed
room-localized SAD system employs the “w-sum” scheme computed over the set of microphones
inside one room at a time, i.e., M = M. Alternative choices for set M are discussed in
Section 2.3.4.

2.3.3 Speech/non-speech segmentation

Following GMM training and multi-channel fusion, two speech detection implementations are de-
veloped: The first operates on mid-sized sliding windows, thus resulting in low latency, whereas
the second performs Viterbi decoding over longer sequences, providing superior accuracy (as
demonstrated in Section 2.7), but being more suitable for off-line processing.

o GMM-based scoring over sliding window: This scheme performs sequential classification
over sliding windows of fixed duration and overlap (400 ms and 200 ms, respectively, are used).
Specifically, for a given time-window 7 = [, .| and microphone m , the log-likelihoods for
each class 7 € J are first computed by adding all frame scores within the window. This results in
scores by, j(0m, 1) = Zfe: t.bm.j (0m,t) , where oy, 7 denotes all feature vectors within window
T . Microphone fusion is then carried out as in Section 2.3.2, but employing the window log-
likelihoods instead.

o HMM-based Viterbi decoding over sequence: In this scheme, HMMs are built with a set of
fully connected states 7, state transition probabilities { a;;/ , for j, j'€ 7 }, and class-conditional
observation probabilities provided by the class GMMs of Section 2.3.1. Then, Viterbi decod-
ing is performed over an entire sequence of observations (in our data, such are of 1 min length,
as discussed in Section 2.6.1), in order to provide the desired speech/non-speech segmentation.

Specifically, for the single-microphone case, the well-known recursion [105]

57”7]'(75) = Hle/LX{(SmJ/(t— 1) + log(aj’j)} + bm,j(om,t)a (2.4)

is used, where 6, ;(t) denotes the score of the best decoding path ending at state j and accounting
for the first ¢ frame observations of microphone m . This can be readily extended to the fusion

schemes of (2.1) and (2.3) over microphone set M as
dm,;(t) = HE?;LX{5M,J" (t=1) + log(ajj)} + camjlome) , (2.5)

whereas majority voting fusion schemes “u-vote” and “w-vote” are modified to be applied over
best-path scores d,, ;(t) instead of log-likelihoods by, (0 ) -

Between the two aforementioned decoding schemes, the proposed system follows the HMM-
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based approach due to its superior performance, with a number of fine-tuned parameters incorpo-
rated in it. Specifically, these are the state transition penalty that tunes the flexibility of the decoder
to change states, as well as the speech class prior that favors or not the selection of the speech state.

2.3.4 Variations in sets of classes and microphones

As already discussed, to obtain the first stage of the speech/non-speech segmentation hypothesis
for room r, only the particular room microphones are considered (M = M, ). A number of
variations however are possible for the set of classes 7, which are investigated in the experiments
of Section 2.7.2:
o 7={sp,,sila1}, where sp, denotes speech inside room r, and sil ) indicates absence of
speech in all rooms of the smart home. This set is used in the proposed room-localized SAD
algorithm.
e J={sp,,sil, }, where sil, indicates absence of speech in room r. This set is used in our
work in [106].
o 7={sp,,sps,silan}, where sp; indicates speech inside any of the other rooms, excluding
room 7.

In addition, in [107], the first-stage of the algorithm provides room-independent SAD output.
That system uses the “w-sum” decision fusion scheme with all smart-home microphones con-
tributing to (2.1), i.e., M = M 1. Further, the set of classes employed is J = {sp .y, silan } »

where sp,); denotes speech occurring in any of the smart-home rooms.

2.4 Second stage: room assignment

Following the generation of initial room-localized SAD hypotheses, the second stage of the devel-
oped algorithm performs the final selection of active segments for each room. For this purpose,
five hand-crafted features are proposed as detailed in Section 2.4.1, extracted at the segment level
for each room, and capable of segment discrimination as originating from inside vs. outside a
given room. These features are then fused within and across rooms as presented in Section 2.4.2,
and are fed to SVM classifiers that perform room assignment as detailed in Section 2.4.3, tempo-
rally operating on the given segment as discussed in Section 2.4.4. Various options for the above

are presented.

2.4.1 Room discriminant features

As mentioned above, for any first-stage speech segment 7 = [¢5,t. | starting at time-frame ¢
and ending at frame ¢., segment-level features are extracted for each room. The design of these
hand-crafted features is motivated by intuition concerning: (a) the energy; (b) the reverberation;
and (c) the arrival direction of the microphone signals. For example, microphones located inside
the room where a speech segment originates are expected to yield signals with higher energy
and lower reverberation than microphones located outside it. Likewise, the room door region

typically appears as the speech source for room-outside segments. In particular, five scalar features
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Figure 2.3: Histograms of the five hand-crafted scalar features of Section 2.4.1, demonstrating
their ability to discriminate room-inside vs. room-outside speech. Histograms are computed over
the development set of the simulated dataset of Section 2.6.1, for the case of the smart-home
Bedroom (see also Figure 2.1). Upper row, left-to-right: Energy-based feature, coherence feature,
and envelope variance one; Lower row, left-to-right: Spectrogram texture smoothness feature and
SRP-based one.

that are specially designed to provide room-inside vs. -outside segment source discrimination are
proposed, as also depicted in the histograms of Figure 2.3.

It should be noted that in contrast to the acoustic front-end of the first stage of the algorithm
that extracts microphone-dependent features, the features of the second stage are instead room-
dependent. Indeed, their estimation typically involves all microphones located in a room (or in
the entire smart home), performing in a sense fusion of their information at the signal level. Such
derivation requires of course knowledge of the microphone room-membership, but in the case of
the coherence features also of additional information concerning which microphones lie adjacent
to each other, and in the case of the SRP-based features further knowledge of the microphone
topology and room layout. Details are provided next.

e Energy-based feature: Originally proposed in [106], this feature is motivated by intuition that
microphones inside the room where speech activity occurs will exhibit, on average, higher SNRs
compared to ones outside it. For its computation, given detected speech segment 7 =[t, , t. ], the
energy ratio (ER) of speech over non-speech is first computed for all smart-home microphones.
For this purpose, the initial part of the speech segment, as well as the trailing part of non-speech

preceding it, both of length A 7, are utilized to yield

Lts+ AT—1 Lts—1

ERpmyr = (D am(r)? > am(™)?) (2.6)

T=Ltg T=Lts— AT
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for all microphones m € M ;1. In (2.6), z,,(7) denotes the signal captured by microphone m,
with 7 indicating indexing at the sample level. The latter is related to frame-level indexing by
T = Lt, where L is the number of signal samples over the short-time window shift. Following
computations (2.6), the ERs are sorted across all smart-home microphones, and the microphone

set with the K largest values is derived, denoted by ME)

. Finally, the desired energy-based
feature for room 7 is extracted as the difference between the sum of the ERs of the microphones
in set M) that are located inside room 7 and the ER sum of the ones in M%) but located in
other rooms, namely
7 = 2 FRmy = 3 FRur,
meMENM,  meMUIN\ M,
for all rooms r = 1,2, ..., R. In our implementation, K = 5 and, in (2.6), A 7 corresponds to a

0.5 s interval.

o Coherence feature: Originally proposed in [70] and re-used in [106], this feature is motivated
by intuition that signals captured by pairs of adjacent microphones located outside a speech-active
room will exhibit higher reverberation and thus lower cross-correlation than pairs inside it. To
compute the coherence feature for room r, the set of adjacent pairs of microphones inside the
room is first determined, denoted by {M,. x M, },q4; . Such pairs typically consist of neighboring
microphones in larger arrays (see also Section 2.6.1). Then, for every time-frame ¢ within detected
speech segment 7 , the maximum cross-correlation of the signal frames of adjacent microphone
pair (m,m') is computed, denoted by C,;, v (t) . This is repeated for all pairs (m,m’) € {M, x
M, }aqj and the maximum retained. Finally, the result is averaged over the entire segment 7,

yielding the coherence feature for room r, as

teT | (mm)

f'r(,ggh) = avg { max Cm,m’(t)
S {Mr XMT}adj

Note that this feature employs the un-normalized cross-correlation function in order to also “cap-
ture” signal attenuation. In our implementation, signal cross-correlation is computed over fixed

size sliding windows of 100 ms in length and a 25 ms shift.

e Envelope variance feature: Originally proposed in [108] for ASR channel selection and used
in [72,74,106] for room-localized SAD, this feature is motivated by intuition that higher rever-
beration (indicative of room-outside speech) results in smoother short-time speech energy, also
observed as reduced dynamic range of the corresponding envelope. To compute the envelope vari-
ance feature, we follow the derivations in [108]. Briefly, for each microphone m , the short-time
filterbank energy, denoted by X,,(n,t), is obtained for time-frames ¢t € T, where, as above, T

is the detected speech segment and n denotes the sub-band (20 linear filters are used here). Then
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Figure 2.4: Motivation for the spectrogram texture smoothness feature. Left: Spectrogram from
a microphone located inside the active-speaker room (Bedroom in the apartment of Figure 2.1);
Right: Spectrogram from a microphone outside it (Kitchen).

the n'" sub-band envelope of microphone m is computed as

Xm(n,t) = exp { log[ X (n,t)] — taev7g—,{ log[ X (n,t)] }} ,

where 7/ denotes medium-sized windows sliding over segment 7, the time-progression of which
will be indexed by ¢’ (600 ms long windows with a 50 ms shift are used). Then, the variance of
each sub-band envelope is computed (following cube root compression) as

Vm 7t/ = Xm 7t1/3 )
(n,t') = var { X(n.0)"/*}

subsequently normalized over all smart-home microphones, and its average over all sub-bands

obtained:
V, t’
EV,(t') = avg _ V) (2.7)
n max Vm/ (TL s t,)
m/'€ Man

In this work, we define the envelope variance feature of segment 7 for room r as the average over
all mid-sized shifting windows within 7 of the maximum value of (2.7) over the set of all room
microphones M ,., i.e.,

(ev) _ /
157 = avg { ma BV, (1 )} . 2.8)

e Spectrogram texture smoothness feature: For measuring the degree of reverberation, we pro-
pose an additional feature that is based on the “smearing” effect that reverberant conditions cause
to the speech signal spectrogram. An example is shown in Figure 2.4: There, for a speech oc-
currence inside the Bedroom of the smart home of Figure 2.1, the spectrograms of two signals
captured by a microphone located in the Bedroom and one in the Kitchen are depicted, showing
that the latter (located outside the speech-active room) is much smoother (smeared). To measure
this effect, the proposed feature considers the signal spectrogram as a 2D image, and attempts to

quantify its texture smoothness by applying to it the 2D discrete Teager energy operator of [109],
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yielding
O,(n,t) = 2 (Spu(n,t)° = Sm(n,t—1) Sp(n,t+1)
— Sp(n—1,t) Spn+1,t),

where S, (n,t) denotes the signal spectrogram of microphone m at short-time frame ¢ € 7, and
n is the frequency index (40 ms long Hamming windows with a 20 ms shift and 960 frequency
bins are used here). Then, as for the envelope variance case, medium-sized windows 7’ sliding
over segment 7 are considered, the time-progression of which is indexed by ¢’ (600 ms long
windows with a 50 ms shift are used). The values of ®,,(n,t) are then averaged over a part of

the resulting 960 x 30-sized spectrogram image, as

P (t') = avg avg { ®m(n,t)},
n=1,..,200 te T’

where the frequency-domain averaging is carried out over the 200 lower-frequency bins that corre-
spond to the 0-5 kHz frequency range of the 48 kHz-sampled signal, focusing on speech content.
Finally, the spectrogram texture smoothness feature for room r and segment 7 is obtained by
maximizing over all room microphones and averaging the result over all medium-sized windows,

namely

(ts) _ /
157 = avg {mapaen}. 29

e SRP-based feature: The final feature considered for room assignment of detected speech seg-
ments is based on the steered-response-power (SRP-PHAT) approach of [110], and it is proposed
for the first time in this research work for room-localized SAD. Employing SRP allows the cre-
ation of an acoustic map, by computing the signal power when steering microphone arrays in the
direction of a specific location. The position of the sound source corresponds to that with the max-
imum SRP value over all possible locations. In the case of multi-room smart homes, one expects
that speech originating from outside a given room will likely exhibit high SRP values at the door
region that connects that room to the rest of the apartment. In contrast, for room-inside speech,
the actual source location should yield the highest SRP instead. An example for this motivation is
depicted in Figure 2.5. To compute the SRP-based feature for room 7, a 3D region is first defined,
denoted by A,., that corresponds to cylindrically-shaped volume(s) covering the room door(s).
Specifically, on the floor plane, this lies inside room 7, delineated by a 0.7 m radius semicircle
around the door center, while also containing all points above it. Using a 10 cm spatial resolu-
tion for each dimension, and depending on the number of doors of the room, this scheme yields
approximately between 2k and 4.3k points, denoted as i € A,., expressed in the 3D room coor-
dinate system (see also Figure 2.5). Then, for all points i/ € A, , the corresponding SRP-PHAT
values for time-frame ¢t € 7 are computed (200 ms long frames with a 100 ms shift are used), by

summing the generalized cross-correlations over all pairs of adjacent microphones in room 7, as
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Figure 2.5: Motivation for the SRP-based feature (the acoustic maps are shown in 2D, obtained
after summing SRP-PHAT values over the z-axis). Top: Acoustic map example for speech inside
the Livingroom of the apartment of Figure 2.1. Middle: Acoustic map example for speech outside
the Livingroom. Botfom: Livingroom door area (in yellow color) employed for the SRP-based
feature computation (2.10) of this room.

7 X (w,t) X 5 (w, t)

Po(t,7) = m ¢ 3Tt Dy
(mmz,) 0 |Xm(w,t) Xm,(w,t)’
G{MTXMr}adj

where X, (w,t) denotes the DTFT of the m'" microphone signal frame, and 7,,,, () is the
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time-difference-of-arrival at point i/ between the signals of adjacent microphones m and m’. Fi-
nally, the SRP-based feature is computed by summing all above values and averaging them over

all windows t € T, i.e.,

15 = avg { S Rg) | (2.10)

teT GEA,

Clearly, computation of this feature requires knowledge of the microphone topology and room

layout.

2.4.2 Intra- and inter-room feature fusion

Using the above framework in the proposed system, for each candidate speech segment 7, five
features are extracted for each room r. The features are then combined by intra-room feature

fusion (plain concatenation), resulting in 5-dimensional feature vectors

f?E;l’l) - [frTa fr@;ﬂ? f(s‘_/’ ’V‘T’ f(SrP ] (2'11)

foreachroom r=1,2,..., R.

In addition, inter-room feature fusion can be beneficial to room-inside vs. -outside speech
discrimination. Two schemes are considered for this purpose:
o Inter-room feature concatenation, where vectors from all R rooms are concatenated, resulting

in a single 5 R-dimensional feature vector for segment 7,

P = [ S ) 2.12)

o Inter-room feature averaging, where vectors from each room are augmented by the feature
average across the remaining R — 1 rooms, resulting in 10-dimensional representations of segment

7-’

11 (all (all
friwer = £ ave{£57}] 2.13)
for eachroom r = 1,2, ..., R. This way, feature vector dimensionality is no longer a function of

R . Alternatives to (2.13) can also be designed, for example employing feature extrema instead of

averages.

2.4.3 SVM classification

The fused feature vectors are fed to appropriately designed classifiers, in order to determine the
room of origin for a given segment. In our work, linear SVMs are employed for this purpose, due
to the two-class nature of the problem (room-inside vs. room-outside segment classification), as

well as the relatively small corpus size (see also Section 2.6.1).! Specifically, two SVM modeling

'All SVMs are trained in Mat 1ab®, by its svmtrain.m function. By default, the regularization parameters are
set taking into account the unbalanced nature of the two classes of interest. For this purpose, different penalties are set
for misclassifying each class samples, with their ratio being equal to the inverse ratio of the two class sample sizes.
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approaches are considered, resulting to a total of five different models, as discussed next.
e Room-specific SVM models, where a separate classifier is built for each smart-home room.
Each training segment thus provides data to a total of R SVMs as a room-inside or -outside
class sample, while during testing, a candidate segment is fed to the SVM of the room in which
it was detected by the first stage. The SVMs can be built on any of the three feature vectors of
Section 2.4.2, given by (2.11), (2.12), or (2.13), thus resulting in three different systems.
e Global SVM models, where a single SVM is developed being applicable to all rooms, thus
removing dependence of the number of SVM models on R. Each training segment provides its
data to the global SVM a total of R times (once as a room-inside sample and R — 1 times as a
room-outside one). During testing, candidate segments are fed to this global SVM. In both cases,
room-dependent features are used, provided by (2.11) or (2.13), yielding two different systems.
Features (2.12) are not used, as they would have re-introduced dependency on R.

Among the above modeling options, the proposed system employs room-specific SVMs on
inter-room concatenated features (2.12). Note also that, since each room decides for its own final

segments, it is possible that a segment gets assigned to multiple rooms or to no rooms at all.

2.4.4 Temporal operation and post-processing

In practice, the SVM classification of speech segments can be performed at two different temporal
scales:

e Over the entire segment, where a single scalar feature is extracted for the segment for each of
the five categories of Section 2.4.1, providing a single sample for SVM training or testing. Thus,
assignment to a given room is made for the whole segment.

e Over segment sliding windows, where features are extracted on medium-sized windows sliding
over the given segment. As a result, each segment provides multiple data points for SVM training
or testing (per window). The scheme allows segment breakup and selective assignment of its parts
into the room that it was detected in by the first stage of the algorithm.

The proposed room-localized SAD system employs the sliding-window approach, using win-
dows of 600 ms in size advancing by a 100 ms shift. This necessitates minor modifications to
the feature extraction methodology of Section 2.4.1. In particular, there is no longer the need of
averaging in (2.8) and (2.9), since the medium-sized window sizes coincide, thus trivially allowing
for one window only. Further, in (2.6), the non-speech energy is computed over the 0.5 s interval
preceding the first window of the segment.

As a final step, post-processing is also applied to the results. Specifically, speech segments
with less than 0.7 s distance between them are unified, whereas speech segments of less than 0.4 s

duration are deleted.

2.5 Baseline approaches

Two additional, simpler systems are presented in this section, both following a two-stage archi-

tecture, to serve as baselines against the developed room-localized SAD system. The first method
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employs MFCC features and GMM classifiers in both its algorithmic stages, while the second ex-
tends the well-known statistical model-based approach of Sohn et al. [36] to room-localized SAD,
by incorporating a simple SNR-based room-assignment criterion. Details follow.

2.5.1 MFCC/GMM-based system

This baseline follows [106], and it is mainly considered in order to evaluate a system based entirely
on a standard acoustic front-end (MFCC features), aiming also to demonstrate the value of the
room discriminant features of Section 2.4.1.

Its first stage is identical to that of the proposed system. Namely, for every smart-home room,
it performs weighted log-likelihood summation of MFCC/GMM-based scores by means of (2.1)
and (2.2) over all room microphones (M = M) for classes J = {sp,,silan} (see also Sec-
tion 2.3.4).

At the second stage, segments generated by the first stage are further examined and classified
as room-inside or room-outside speech. For this purpose, room-specific GMMs are trained for
each class J ={sp,,sp;}, and unweighted log-likelihood summation of MFCC/GMM-based
scores is performed over all room microphones (M = M ,.), followed by averaging over all short-
time frames in the segment. Segments classified as room-outside speech are then deleted from the

SAD output of the given room.

2.5.2 Sohn’s algorithm with SNR criterion

The first stage of this baseline employs the well-known and effective SAD algorithm of Sohn et al.
As they detail in [36], the method is based on a likelihood ratio test between speech and noise
models, considered as Gaussians in the frequency domain under an i.i.d. assumption in frequency
and that of additive uncorrelated noise. Following noise model estimation using observed noise
and of the necessary SNRs by a decision-directed approach, the likelihood ratio test is performed,
and decision results are smoothed by means of an HMM-based hang-over scheme [36].

In the designed baseline, Sohn’s SAD is employed for each smart-home room r, using a
single ad-hoc selected room microphone m € M .. Then, at the second stage, for a first-stage
generated segment in room 7, the SNR of microphone m is compared to a global threshold;
if below it, the particular segment is deleted from the room’s SAD output. This baseline thus

presents a well-established and relatively simple to implement approach for room-localized SAD.

2.6 Databases and experimental framework

We now proceed to describe the databases where the proposed system, its variations, and baselines
are evaluated, as well as to discuss the adopted experimental framework and evaluation metrics
used. In particular, the presentation refers to the experiments of Sections 2.7.1-2.7.4. An additional
dataset and a slightly modified evaluation framework, necessary to allow comparisons with recent

deep-learning based works, are detailed in the corresponding Section 2.7.5.
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Figure 2.6: Floorplan of the multi-room DIRHA apartment where the datasets of Section 2.6.1 are
simulated or recorded. Black circles indicate the 40 microphones installed inside five rooms on
their walls or ceiling. Colored squares and arrows indicate possible positions and orientations of
speech and other acoustic event sources (figure from [62]).

2.6.1 The DIRHA corpora

The experiments in Sections 2.7.1-2.7.4 are conducted on two databases: the Greek-language
part of DIRHA-simcorpora II [61], hereafter referred to as “DIRHA-sim”, and the “DIRHA-real”
Greek corpus [83].2 The datasets are either simulated or recorded inside a smart-home apart-
ment (with an average reverberation time of 0.72 s), developed for the purposes of the DIRHA
research project [100]. Its floorplan is depicted in Figures 2.1 and 2.6, showing that five of its
rooms (Livingroom, Kitchen, Bathroom, Corridor, and Bedroom) are equipped with a total of 40
microphones grouped in 14 arrays. Most arrays consist of two or three microphones (with linear
topology) located on the room walls, while, for each of the Livingroom and Kitchen, a six-element
pentagon-shaped array is also located at the ceiling. As a result, concerning the set of adjacent mi-
crophone pairs used in calculating the coherence and SRP-based features, the two-element arrays
provide one such pair, the three-element arrays two, and the pentagon-shaped arrays five, with all
latter pairs containing the central array microphone. The Corridor thus yields the least pairs (one),
while the Livingroom the most (ten).

As indicated by its name, the DIRHA-sim dataset contains audio simulations, produced as
detailed in [61]. Briefly, first, about 9k room impulse responses are measured at each of 40 smart-
home microphones from 57 possible source locations uniformly distributed in the rooms of interest

’DIRHA-sim is found at https://dirha.fbk.eu/simcorpora, whereas DIRHA-real is available on re-
quest to the author.
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Table 2.1: Characteristics and statistics of the DIRHA-sim and DIRHA-real corpora, used in our
experiments.

data databases

characteristics DIRHA-sim | DIRHA-real
speech source loudspeaker human
1 min long sequences (#) 150 60
total speech (min) 47 19
overlapped speech (min) 22 0
non-speech events (#) 72 untranscribed
background noises (#) 10 untranscribed
subjects (#) 20 5
average SNR (dB) 13 15

and with up to 8 source orientations for each (as shown in Figure 2.6). These are then used to con-
volve high-quality, close-talk speech by 20 subjects (recorded at a 48 kHz sampling rate and an
SNR average of 50 dB), while real, long-duration background noises and shorter acoustic events
are also added to the resulting simulations. In total, 150 one-minute simulation sequences con-
taining speech and noise are available. In contrast, the DIRHA-real set contains actual recordings
of 5 subjects acquired by the 40 microphones inside the smart home under realistic noise condi-
tions [83]. In total, 60 one-minute recorded sequences of speech and noise are available. Statistics
of the two sets are summarized in Table 2.1.

Apart from the main difference concerning the nature of the two sets (simulated vs. real), there
exist two additional variations, as can be also observed in the waveform examples of Figure 2.7.
First, DIRHA-sim is characterized by more adverse noise conditions, containing more background
noises and acoustic events besides speech. Further, in DIRHA-sim, speech often overlaps with
other acoustic events or speech in different rooms of the smart home. Indeed, as listed in Table 2.1,
speech overlap there reaches 47% (22 out of 47 min). These facts deem DIRHA-sim much more
challenging for room-localized SAD than DIRHA-real.

2.6.2 Experimental framework and metrics

In the experiments of Sections 2.7.1-2.7.4, the DIRHA-sim dataset of 150 simulations is parti-
tioned into a training set containing 75 of them and a test set with the remaining 75. Optimization
of the first-stage algorithmic parameters of Section 2.3.3 (i.e., the transition penalty and constant
prior added to the speech-class log-likelihood), as well as of the global threshold used in con-
junction with Sohn’s baseline, are performed on the training set. In the case of DIRHA-real,
all 60 recordings are used for testing systems developed on the DIRHA-sim training data. This
framework allows to also gauge the usefulness of simulated databases for training models and de-
veloping features and systems that can perform well in real-case scenarios, even when differences
between the sets are significant.

For evaluation, the recall, precision, and F-score metrics are used, all computed at the frame
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level with a 10 ms time resolution and reported %. Evaluation of room-localized SAD differs
somewhat to the traditional room-independent case, as can be easily inferred from Figure 2.1. In
traditional SAD, the aim is to detect speech anywhere in the smart home, and, as a result, each
test-set sequence is evaluated only once (75 sequences for DIRHA-sim and 60 for DIRHA-real).

In contrast, in the room-localized case, for each sequence, a total of R = 5 SAD outputs are

speakerd
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Figure 2.7: Examples of multi-microphone data of the DIRHA corpora used in this work. Micro-
phone waveforms in three rooms are shown. Top: A multi-speaker acoustic scene in the DIRHA-
sim dataset. Bottom: A single-speaker scene in the DIRHA-real data.
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Table 2.2: Room-independent SAD results on the DIRHA-sim (left) and DIRHA-real (right) test
sets, further discussed in Section 2.7.1.

DIRHA-sim DIRHA-real

method recall precision F-score recall precision F-score
GMM HMM GMM HMM GMM HMM GMM HMM GMM HMM GMM HMM
oracle-best 96.94 94.67 94.01 96.82 95.45 95.73 93.01 95.49 9591 96.46 94.44 9597
channel avg. 87.86 82.26 76.64 83.13 81.82 82.69 65.56 71.57 89.47 87.42 75.37 78.34
best act.-SNR 94.56 92.36 83.85 87.95 88.88 90.10 88.77 90.33 88.95 86.87 88.86 88.57
best est.-SNR 96.60 93.63 66.56 73.54 78.81 82.38 9243 93.41 74.38 74.02 82.43 82.59

Sohn’s 81.22 5891 68.29 78.05 61.51 68.80
“u-sum” 94.39 91.08 83.60 90.97 88.67 91.01 74.76 89.11 96.54 91.70 84.26 90.39
_§ “w-sum” 95.00 91.78 83.57 91.82 88.92 91.80 76.87 87.37 96.58 93.37 85.67 90.27
é “u-max” 74.17 82.51 7528 73.69 74.72 77.85 45.66 68.40 97.21 95.01 62.14 79.54
2 “w-max” 95.44 95.53 82.34 87.16 88.41 91.15 79.76 89.66 95.77 88.70 87.03 89.18
g “u-vote” 92.55 88.92 84.18 92.24 88.16 90.55 69.12 83.39 96.61 95.02 80.58 88.82
“w-vote” 91.37 91.83 87.39 90.40 89.34 91.11 74.76 85.03 96.54 94.82 84.26 89.66

evaluated (one for each room), with ground-truth each time considering only speech occurring
inside the given room. Thus, 75 x 5 = 375 and 60 x 5 = 300 SAD outputs in total are evaluated
for the DIRHA-sim and DIRHA-real test sets, respectively. This affects the evaluation metrics: for
example, recall for room-localized SAD is computed as the ratio between the number of correctly
detected room-inside speech frames and the total number of such frames in the ground-truth. In
total, the test set contains 447 room-inside and 1788 room-outside speech segments in the DIRHA-

sim case, and 232 and 928 segments respectively in DIRHA-real.

2.7 Experimental results

Next, we report our experiments. We first focus on room-independent SAD results, subsequently
covering the room-localized case extensively. We also provide an error analysis of the proposed
system, as well as a study on its robustness to the number of available microphones. We conclude

the section with a comparison to recent deep-learning based approaches.

2.7.1 Room-independent SAD results

Room-independent SAD is evaluated first, primarily to showcase its easier nature compared to
the room-localized task, as well as to benchmark differences between the various techniques of
Sections 2.3 and 2.5 and simple channel selection schemes. Results are reported in Table 2.2 for
both DIRHA-sim and DIRHA-real sets in terms of recall, precision, and F-score.

Specifically, in the lower part of Table 2.2, both the GMM- and HMM-based decoding schemes
of Section 2.3.3 are presented in conjunction with the six fusion techniques of Section 2.3.2, but
for the room-independent SAD system variant discussed at the end of Section 2.3.4 that uses all
40 smart-home microphones (M =M . and J = {sp 4y, silan } ). These results are compared
to two single-channel systems where microphone selection is driven by the best SNR per test-
set sequence (actual based on ground-truth segmentation, or estimated), as well as the oracle-best
channel result (that with the maximum F-score per sequence) and the average of all channel results.
Finally, Sohn’s algorithm is also considered, applied for each room (a single room microphone is

used for each room), with the union of the results across rooms obtained.
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For DIRHA-sim (left side of Table 2.2), we immediately observe the superiority of HMM-
based Viterbi decoding over frame-based GMM segmentation. The best result is obtained by
multi-channel fusion using log-likelihood summation scheme “w-sum”, achieving an F-score of
91.80%. This is significantly higher than Sohn’s method (68.29%), and it represents a 53.5%
relative error reduction in F-score compared to the best estimated-SNR single-channel system
(91.80% vs. 82.38%). Note that the latter performs similarly to the average of all channel results
(82.69%), while it lags the ideal actual-SNR case (90.10%) where channel SNR computations em-
ploy ground-truth information. These comparisons confirm that the challenging nature of DIRHA-
sim adversely affects SNR estimation. Note finally that the best multi-channel system still lags the
oracle-best channel one (95.73%), showing potential for further improvements.

Similar observations hold in the DIRHA-real case (right side of Table 2.2). The best system
again employs log-likelihood summation, with scheme “u-sum” reaching an F-score of 90.39%.
This corresponds to a 44.8% relative F-score error reduction compared to the best estimated-SNR
single-channel system (90.39% vs. 82.59%). The latter performs now better than the average of
all channel results (78.34%), and it lies somewhat closer to the best actual-SNR system (88.57%)
than in the DIRHA-sim case, due to the less adverse DIRHA-real environment. Note finally that,
as above, the best multi-channel system lags the oracle-best channel result (95.97%).

2.7.2 Room-localized SAD results

We now switch focus to the room-localized SAD task. Our experiments are organized as fol-
lows: First, we evaluate the several possible choices of the system’s first stage discussed in Sec-
tion 2.3.4. Next, we investigate its second stage and the performance of the room discriminant
features of Section 2.4.1. Finally, we present comparative results between our proposed system
and the alternative baselines of Section 2.5.

The first experiment, reported in Table 2.3, compares the various design choices concerning
the possible classes and microphones used in the first stage of the room-localized SAD system, as
summarized in Section 2.3.4. In all cases, decision fusion by means of log-likelihood summation
scheme “u-sum” is employed across microphones. For consistency in the comparisons, the var-
ious first stages considered are always followed by an identical second stage, namely that of the
MFCC/GMM baseline of Section 2.5.1.

It is clear from Table 2.3 that the room-independent scheme leads to the worst performance,
trailing all room-localized variants. The basic reason is that, in the latter schemes, the first stage
can achieve high recall for room-inside speech and produces less room-outside segments compared
to the room-independent case, thus the second stage has an easier task. The second line of the table
corresponds to the classes and microphone set options chosen in the proposed system. These yield
the highest recall (72.07%) among the room-localized SAD variants, with an F-score second, but
very close, to the three-class modeling approach of the last line (66.12% vs. 66.43%).

The second experiment, reported in Table 2.4, concentrates on the proposed room discriminant
features of Section 2.4.1, as well as their feature fusion schemes of Section 2.4.2 and the SVM

modeling approaches of Section 2.4.3 operating over entire segments. The evaluation is conducted
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Table 2.3: Effect of the various choices in the design of the system’s first stage (discussed in Sec-
tion 2.3.4) to the room-localized SAD performance on the DIRHA-sim test set. For consistency,
the first stage is always followed by the second stage of the MFCC/GMM baseline of Section 2.5.1.
Below, RI denotes room-independent operation (“oper”) of the first stage and RL room-localized
one.

loper‘ M ‘ classes J H recall ‘precision‘ F-score ‘
| RI | M| {spoy.silan} || 7230 | 56.63 | 6351 |
{sp,,silan} 72.07 | 61.08 | 66.12
RL | M, | {sp,,sil,} 71.20 | 60.39 | 65.35
{sp,,sps,silay j| 71.00 | 62.40 | 66.43

for the room-inside vs. room-outside speech classification task of the second stage of the developed
algorithm. For this purpose, the ground-truth speech boundaries are used, thus decoupling the
comparisons from the first stage. Further, results include four rooms of the smart home, excluding
the Corridor (R = 4). Importantly, in addition to single features and their intra-room fusion
(2.11), various feature subsets are also considered. Specifically, in Table 2.4 the best two, three,
and four feature combinations are listed, as selected by wrapper-based sequential forward feature
selection [111, ch. 5.7.2] that is conducted on DIRHA-sim (based on the corresponding proposed
system F-scores). In addition, the three-feature subset of [107] is evaluated. Notice that the
notation in (2.12) and (2.13) is slightly extended to allow inter-room fusion of single features and
subsets.

Concerning DIRHA-sim (Table 2.4, top), in the case of room-specific SVMs we observe that
for most individual features of Section 2.4.1 (with the exception of the energy-based one) per-
formance improves by inter-room fusion. The best feature is the proposed spectrogram texture
smoothness, achieving an F-score of 84.01% after fusion by (2.12). In contrast, the energy-based
feature performs the worst at a 52.65% F-score after fusion by (2.13). For the entire feature vec-
tor (“all”’) obtained by intra-room fusion (2.11), small differences are observed between no room
combination and inter-room fusion by (2.12) or (2.13), with the best F-score reaching 88.30%.
Global SVM modeling performs slightly worse (85.46% F-score with fusion (2.13)).

Regarding feature subsets, the best two-feature set consists of the spectrogram texture smooth-
ness and the SRP-based feature; envelope variance is then added to yield the best three-member
set; and subsequently the coherence-based one is chosen. All subsets demonstrate better perfor-
mance than individual features, when fused by (2.12) or (2.13). Also, we can observe that energy
does not boost performance further, as the best four-feature set slightly outperforms the “all” set,
achieving an 88.92% vs. 88.30% F-score with fusion (2.12). Finally, compared to [107], the “all”
set achieves a 17.5% relative error reduction in F-score (88.30% vs. 85.81% with (2.12)).

In the less challenging DIRHA-real set (Table 2.4, bottom), the coherence, envelope variance,
and spectrogram texture smoothness features take advantage of inter-room combination, whereas
the energy- (as also on DIRHA-sim) and SRP-based ones fail to do so. The highest performing
feature is the envelope variance with an F-score of 98.96% after fusion by (2.12), closely followed

by spectrogram texture smoothness at 96.33% after fusion by (2.13). For the entire feature vector
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Table 2.4: Performance of the room discriminant features of Section 2.4.1 and their combinations,
in conjunction with inter-room fusion (Section 2.4.2) and SVM modeling (Section 2.4.3) for the
room-inside vs. room-outside speech classification task of the second stage of the proposed algo-
rithm. Results are reported on R = 4 rooms of the DIRHA smart home (excluding the Corridor)
on the DIRHA-sim (top) and DIRHA-real (bottom) test sets using ground-truth speech segment
boundaries. All SVMs operate over entire segments.

set SVM feature recall precision F-score
models | (o) 17 152 0ve 7 [ teme 7 | 107 [ st 7 [ Ftome 7| S it | iohva.7 [ S home.T
(en) 63.97 37.93 40.06 50.51 86.03 86.92 56.45 52.65 54.84
(coh) 4746 8741 88.66 67.90 77.01 76.05 55.87 81.88 81.87
(ev) 82.89 90.81 90.38 78.01 74.85 76.28 80.37 82.06 82.74
(ts) 71.91 86.00 89.35 5221 74.46 79.28 60.50 79.82 84.01
; room- (srp) 76.76 79.85 79.25 53.94 56.44 60.94 63.36 66.13 68.90
é specific (ts,srp) 80.67 89.33 90.58 66.72 79.37 82.97 73.03 84.05 86.61
& (ts,srp,ev) 91.74 90.74 91.86 85.20 83.26 85.27 88.35 86.84 88.44
| (ts,srp,ev,coh) 90.62 90.42 92.27 83.65 84.96 85.80 86.99 87.61 88.92
(en,coh,ev) [107] 89.48 87.65 90.37 78.90 81.16 81.69 83.86 84.28 85.81
ll) 91.14 89.65 91.40 83.93 85.30 85.40 87.39 87.42 88.30
global 91.12 92.21 n/a 78.49 79.63 n/a 84.34 85.46 n/a
(en) 63.65 24.39 27.68 55.30 100.00 100.00 59.18 39.22 43.36
(coh) 5.61 71.35 78.99 100.00 61.67 57.22 10.62 66.16 66.71
(ev) 99.02 99.73 99.73 97.40 98.07 98.21 98.21 98.89 98.96
_ (ts) 68.94 97.44 97.94 81.42 95.25 93.41 74.67 96.33 95.62
§ room- (srp) 85.36 87.91 80.75 75.50 77.98 75.29 80.13 82.65 77.93
é specific (ts,srp) 90.28 94.52 97.33 91.58 95.32 86.76 90.92 94.92 91.74
& (ts,srp,ev) 99.90 98.82 97.81 99.82 97.87 97.24 99.86 98.34 97.53
/ (ts,srp,ev,coh) 98.52 98.99 98.11 99.94 98.37 87.09 99.23 98.68 92.27
(en,coh,ev) [107] 98.25 99.73 99.50 99.60 98.64 90.84 98.92 99.18 94.98
(ll) 98.89 98.85 95.68 99.94 98.46 80.21 99.42 98.66 87.26
global 99.33 100.00 n/a 100.00 99.84 n/a 99.66 99.92 n/a

(“all”) obtained by intra-room fusion (2.11), small differences are observed between no room
combination and inter-room fusion by (2.13), regardless of the SVM models used. However,
concatenation across all rooms by (2.12) fails to improve matters (an F-score of only 87.26% is
attained). This is probably due to the high dimensionality of the resulting vector and the use of
multiple SVMs, in conjunction with the mismatch between the DIRHA-sim trained models and
DIRHA-real test conditions. This seems also supported by the fact that inter-room fusion by means
of (2.13) in most cases outperforms (2.12). Nevertheless, the best “all” feature system reaches an
almost perfect F-score of 99.92%, obtained by global SVMs and fusion (2.13). Note also that
this is very close to the 99.86% F-score of the spectrogram texture smoothness - SRP - envelope

variance combination with no inter-room fusion.

As a complement to this experiment and to further gain insights into the room discriminant
features, their correlation is investigated. For this purpose, the Pearson correlation coefficient is
computed among all features over the speech segments of the DIRHA-sim test set, resulting in
the matrix of Figure 2.8. As expected, the envelope variance, spectrogram texture smoothness,
and coherence-based features demonstrate high correlation between them, as they are all related
to reverberation. On the contrary, the energy- and SRP-based ones exhibit low correlation with all

features.

In the third experiment, reported in Table 2.5, once again ground-truth segments are considered
as input to the second stage. The aim here is three-fold: first, to showcase the superiority of
the proposed room discriminant feature approach over the baselines of Section 2.5; second, to

highlight performance differences among the various smart-home rooms; and, third, to further
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Table 2.5: Comparison of the two baselines of Section 2.5 (upper part) and the room discriminant
feature based approach (lower part) for the room-inside vs. -outside speech classification task. F-
scores are reported for each room, as well as over R = 4 rooms (excluding the Corridor) and all
R = 5 rooms of the DIRHA smart home, on both DIRHA-sim (left) and DIRHA-real (right) test
sets using ground-truth speech segment boundaries. Room-specific SVMs are employed, operat-
ing over entire segments.

DIRHA-sim DIRHA-real
Features single room [ [ multi-room single room [ [ multi-room
Liv. [ Kitch. | Bath. | Bed. [ Cor. [[ R=4 [ R=5 Liv. [ Kitch. [ Bath. [ Bed. [ R=4 [ R=5
[ Mrccs [ 7096 [ 7252 [ 61.25 | 7694 | 39.03 [[ 7232 [ 7049 [ 4693 | 71.50 [ 8098 [ 58.11 [[ 6891 | 6891 |
IBR || 5559 | 5757 | 1738 [ 5075 | 880 [| 4859 | 4122 [| 4147 [ 7299 [ 5342 [ 3163 || 5374 [ 4554 |
fﬁa¥> 8374 | 9283 | 8333 | 8676 | 34.28 87.39 80.63 97.17 | 100.00 | 99.89 | 100.00 99.42 93.34
fﬁ"gjg || 8480 | 9283 | 8448 | 8505 | 38.11 87.42 81.46 9950 | 9751 | 99.89 | 99.16 98.66 89.94
fﬁiﬂfe || 8629 | 8996 | 91.67 | 8825 | 39.66 88.30 84.26 97.88 | 7923 | 9500 | 93.63 87.26 79.19

compare the fusion schemes of Section 2.4.2. Specifically, the MFCC/GMM-based second stage
of the baseline of Section 2.5.1 is listed in the first line of Table 2.5, followed by the SNR-based
room-assignment scheme of Section 2.5.2, as well as room-specific SVM modeling on (2.11),
(2.13), and (2.12) operating over entire segments. F-scores are reported for each room separately
(no Corridor F-score is shown for DIRHA-real, as there are no ground-truth room-inside segments
there), as well as for all four (excluding the Corridor) or five rooms.

It is clear from Table 2.5 that the proposed approach dramatically outperforms the baselines:
e.g., for R =5, on DIRHA-sim the best result (84.26%) represents a 46.7% and 73.2% relative
error reduction over the baselines of Sections 2.5.1 and 2.5.2 respectively, while on DIRHA-real
the corresponding reductions of the best result (93.34%) stand at 78.6% and 87.8% relative. It is
also clear that the Corridor is a challenging room, as seen by its low DIRHA-sim F-scores and the
performance drop from the R =4 to the R =5 case. This is primarily due to its central location in
the smart-home floorplan (see also Figure 2.6) exposing it to sounds coming from all other rooms,
as well as the small number of microphones in it (only two). Regarding the multi-room results
of the feature fusion schemes of Section 2.4.2, inter-room feature concatenation (2.12) performs
best on DIRHA-sim, followed by (2.13). This can be expected as (2.12) captures more detailed

ev ts coh en srp
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Figure 2.8: Pearson correlation coefficients between the room discriminant features of Sec-
tion 2.4.1, computed on DIRHA-sim (ev: envelope variance; ts: spectrogram texture smoothness;
coh: coherence-based; en: energy-based; srp: SRP-based).
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Table 2.6: Performance of various approaches for the full task of room-localized SAD on DIRHA-
sim (left) and DIRHA-real (right).

DIRHA-sim DIRHA-real
method

recall ‘ precision ‘F—score recall ‘ precision ‘F—score

best RI 9222 | 19.49 | 3218 || 92.71 | 16.25 | 27.66
single-stage] MFCC/GMM]|| 89.87 | 41.60 | 56.87 | 88.02 | 57.06 | 69.24
Sohn’s 73.17 | 17.33 | 28.02 || 73.40 | 17.71 | 28.53

two-stage | MFCC/GMM|| 72.07 | 61.08 | 66.12 || 7894 | 76.87 | 77.89
baselines | Sohn’s 43.14 | 21.96 | 29.11 || 46.39 | 22.26 | 30.08
seg(R=25) | 82.16 | 77.35 | 79.68 || 88.27 | 89.30 | 88.78

proposed | win (R =5) || 83.09 | 78.96 | 80.98 || 86.51 | 88.87 | 87.68
win (R =4) || 84.65 | 86.10 | 85.37 || 86.51 | 94.03 | 90.11

information (albeit at higher dimensionality). Similarly, fusion (2.13) is superior to the lack of
inter-room combination in (2.11). On DIRHA-real, however, the above are reversed, as features
(2.11) outperform (2.13) and, in turn, fusion by (2.12). This is primarily due to the mismatch
of the DIRHA-sim trained SVMs to the DIRHA-real conditions, thus favoring lower-dimensional
representations that generalize better, as also observed in Table 2.4.

Finally, Table 2.6 reports on the full task of room-localized SAD. Its upper part covers single-
stage methods, namely the best room-independent approach (“best RI’), as well as the first stages
of the MFCC/GMM baseline of Section 2.5.1 (recall that this is identical to the proposed system’s
first stage) and Sohn’s algorithm (Section 2.5.2). The complete two-stage baselines are evaluated
next, followed by the proposed algorithm employing room-specific SVMs on features (2.12) op-
erating over the entire segments (“seg”) or over sliding windows (‘“win”), where results both with
and without the Corridor are reported.

As shown in Table 2.6, the proposed system operating over sliding windows reaches satisfac-
tory performance, namely a 80.98% F-score on DIRHA-sim and 87.68% on DIRHA-real, which
are further improved if the Corridor is excluded. The algorithm clearly outperforms the two-stage
baselines dramatically, resulting to relative error reductions of 43.9% and 73.2% on DIRHA-sim
compared to the methods of Sections 2.5.1 and 2.5.2, respectively. The corresponding improve-
ments stand at 44.3% and 82.4% on DIRHA-real. The single-stage systems considered perform
even worse. Not surprisingly, the addition of the second stage helps both baselines, especially the
MFCC/GMM system.

Concerning the operation of the second stage over entire segments vs. sliding windows, it
can be observed in Table 2.6 that the latter scheme fares slightly better on the more challenging
DIRHA-sim dataset. An example of its superiority is provided in Figure 2.9 (same as in Figure 2.7
(left)). There, the Kitchen SAD results are shown for a case of two overlapping speakers located
inside different rooms (“speaker 5” in the Livingroom and “speaker 4” in the Kitchen). The first
stage of the system returns a segment containing both. Then, at the second stage, the segment-

operating scheme classifies it entirely as Kitchen-inside speech, whereas the sliding window one
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allows to only keep the part belonging to “speaker 4. Further, both schemes delete three erro-
neous first-stage segments, but fail to do so for two that originate in the Livingroom. However, on
the less challenging DIRHA-real set, a slightly worse performance for the sliding-window scheme
is observed in Table 2.6. This can be attributed to the lack of overlapping speech segments orig-
inating in different rooms, in conjunction with the obvious fact that window-based decisions rely

on less data than entire segments.

2.7.3 Error analysis

This section attempts to provide additional insights into the performance of the various room
discriminant features of Section 2.4.1. In particular, the focus lies on how such is affected by the
speech source location and the amount of overlap in the detected segment.

Figure 2.10 concentrates on the two novel features proposed, namely the spectrogram texture
smoothness (upper part) and the SRP-based feature (lower figure). There, in the case of segments
with ground-truth boundaries and no overlap, performance of the features for Livingroom-inside
vs. -outside classification on DIRHA-sim data is visualized by an appropriate coloring scheme
within circular sectors that correspond to the various speech source positions and orientations in
the smart home (blue indicates low misclassification rates, while red high ones). It can be observed
that errors mostly occur around the Livingroom boundaries, but differ across features. For exam-
ple, the spectrogram texture smoothness misclassifies mainly segments of adjacent rooms with
orientation towards the Livingroom doors, as they reach its microphones with less reverberation.
In contrast, the SRP feature classifies such correctly, as they produce high acoustic energy at the
Livingroom doors. However, it misclassifies room-inside segments near these doors.

Finally, Figure 2.11 aims to quantify the effects of overlap to the room discrimination perfor-
mance of the various features. For this purpose, two cases are considered: “low overlap” concern-
ing speech segments with less than 30% of overlap with acoustic events of other rooms, and “high
overlap” with more than 30%. Performance is measured in frame-based F-score, using ground-

truth first-stage (room-independent) speech boundaries. In all single-feature sets, 5-dimensional
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Figure 2.9: Example of the proposed room-localized SAD system output for the Kitchen of the
DIRHA smart home, shown in green when operating over the entire first-stage segments (depicted
in black), or in red dashed line when operating over shifting windows. The example is that of
Figure 2.7 (left).
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Figure 2.10: Visualization of error rates in Livingroom-inside vs. -outside segment classification
for each speech source position and orientation on the DIRHA-sim test set, using two features
of Section 2.4.1. Upper: spectrogram texture smoothness; Lower: SRP-based feature. Blue and
red circular sectors indicate low and high percentage of errors, respectively, while gray sectors
indicate unused orientations.

vectors are produced (one feature per room). Clearly, most sets exhibit low performance in the
high overlap condition, with some (spectrogram texture smoothness, energy-based, and fused fea-

tures) affected more.
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Figure 2.11: Performance of the room discriminant features of Section 2.4.1 in classifying speech
segments exhibiting low or high overlap with audio events in other rooms for the DIRHA-sim test
set (en: energy-based; coh: coherence-based; srp: SRP-based; ts: spectrogram texture smooth-
ness; ev: envelope variance; all: intra-room fusion (2.11)). In all cases, inter-room fusion (2.12)
and room-specific SVMs are used.

2.7.4 Robustness to reduced microphone setups

The proposed room-localized SAD algorithm relies on the availability of multiple microphones
in the multi-room DIRHA apartment. As this installation includes 40 microphones, the question
naturally arises as to how dependent the system is on such an expensive setup.

To investigate this, four reduced “nested” setups are considered, gradually decreasing the num-
ber of smart-home microphones |M,y| from 40 down to 5, specifically to | M| =25, 16, 10,
and 5, as depicted in Figure 2.12 (compare to the original configuration of Figures 2.1 and 2.6).
Note that the | M| = 10 setup includes one microphone pair in each room, while the |M;|=5
configuration only one microphone per room. For the latter, coherence- and SRP-based features
cannot be computed due to the absence of microphone pairs, thus reducing the set of available
features to three per room (see also Figure 2.13).

The first experiment, summarized in Table 2.7, quantifies the effects of reduced microphone
setups to the GMM-HMM based SAD module. Specifically, room-independent SAD performance
on the DIRHA-sim test set is reported (see also Table 2.2), employing HMM-based Viterbi decod-
ing and “w-sum” decision fusion over the microphones of the various setups. To further reduce
system complexity, a simplified modeling approach is also evaluated, where only a single GMM
is trained on data of a specific microphone, in place of microphone-specific models. In particular,
the Livingroom ceiling central microphone, available in all configurations, is used for this pur-
pose. In that case, (2.1) and (2.2) are slightly modified by setting b, j(0m,¢) < barj(0Om,), for
all m € M, where M denotes the specific GMM-training microphone.

Concerning SAD performance, it is evident from Table 2.7 that it remains robust to the num-
ber of available microphones. In particular, the F-score degrades gracefully and monotonically
as the installation becomes leaner: In the microphone-specific modeling case, the full-setup F-
score of 91.80% reduces to 89.60% for |M,y| =5, exhibiting an absolute drop of only 2.2%.
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Figure 2.12: Reduced microphone setups of Section 2.7.4. Left-to-right, Top-to-bottom: | M| =
25, 16, 10, 5 microphones used (shown in red).

A similar trend is also observed in the single-GMM case. Further, comparing the two model-
ing approaches, the single-GMM one yields small only F-score absolute degradations within the
1.7% to 2.6% range (depending on the setup). Thus, in the lack of multi-channel training data, a

single-microphone model constitutes a viable approach leading to satisfactory results.

Table 2.7: Room-independent SAD results on the DIRHA-sim test set, employing all available
microphones (| M| = 40) or the reduced setups of Figure 2.12. In all cases, HMM-based Viterbi
decoding and “w-sum” decision fusion are used, where the combined log-likelihoods result from
microphone-specific GMMs (left) or a GMM trained on a single microphone (right).

microphone-specific GMMs || single microphone GMM

| M|

recall ‘precision‘ F-score || recall ‘precision‘ F-score

40 || 91.78 | 91.82 91.80 91.21 | 87.25 | 89.19
25 || 91.45 | 9141 91.43 90.66 | 87.58 | §9.09
16 || 91.50 | 90.89 91.19 87.51 | 90.69 | 89.07
10 || 90.84 | 89.39 90.11 90.33 | 86.42 | 88.33

5 || 88.22 | 91.02 89.60 89.21 | 86.61 | 87.89
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Figure 2.13: Performance of the room discriminant features of Section 2.4.1 for the speech-inside
vs. -outside classification task with ground-truth segmentation on the DIRHA-sim test set, using
various numbers of microphones (en: energy-based; coh: coherence-based; srp: SRP-based; ts:
spectrogram texture smoothness; ev: envelope variance; all: intra-room fusion (2.11)). Inter-room
fusion (2.12) and room-specific SVMs are used.

In the second experiment, depicted in Figure 2.13, the performance of the room discriminant
features of Section 2.4.1 is examined as a function of the number of available microphones. For
this purpose, the room-inside vs. -outside classification task (second stage of the algorithm) is
considered with ground-truth segmentation on the DIRHA-sim test set. It can be readily noted
that reduced setups have a noticeable, albeit not dramatic, effect on the performance of the intra-
room fused features (“all”), degrading the full-setup F-score of 88.30% (| M| =40) to 85.10%
for | M| =16 and 80.86% for | M,y| =5. Thus, the multi-channel second stage can benefit
from larger microphone numbers, but can also perform satisfactorily with fewer microphones.
Regarding individual feature performance in reduced setups, the envelope variance seems the most
robust, while the SRP-based feature the least.

2.7.5 Comparison to deep-learning approaches

As overviewed in Section 1.1.2, a number of works on room-localized SAD have appeared re-
cently, proposing single-stage algorithms based on deep-learning methods [74—77]. In this section,
a performance comparison to our developed system is provided.

To enable such comparison, the experimental framework of these works is followed, deviating
from that of Section 2.6. In particular, the corpus used is the Italian-language part of the DIRHA
simcorpora (DIRHA-sim-evalita), first introduced as part of the SASLODOM evaluation cam-
paign at the EVALITA’ 14 workshop [112]. This contains 80 one-minute simulations, generated
in the DIRHA apartment as discussed in Section 2.6.1. Experiments are conducted by ten-fold
cross-validation to reduce performance variance, with each test fold containing eight simulations.
Results are reported in terms of the “overall SAD detection error” metric, as defined in [112],

considering only two rooms (R =2) of the DIRHA apartment, i.e., Livingroom and Kitchen.
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Comparative results between the best deep-learning results of [74-77] and our proposed algo-
rithm are presented in Table 2.8. In particular, the best system of [74,75], employing a DNN over
187-dimensional features of various types that are extracted from the best microphone per room,
yields a SAD error of 5.8%. Further, the 3D-CNN system of [76], operating on 40-dimensional
Log-Mel filterbank energies after temporal splicing and combining information from the three best
microphones per room, exhibits a 7.0% SAD error. This improves to 5.2%, when employing all
microphones available in the two rooms [77]. Finally, a 3.5% SAD error is reported in [77], when
the aforementioned 3D-CNN is extended incorporating 51-dimensional GCC-PHAT patterns [89]
to jointly provide SAD and speaker location estimates (marked as “SAD+SLOC” in the table).
However it should be noted that this system employs additional information during its training, in
the form of ground-truth speaker positions (in 2D room coordinates).

In comparison, our proposed algorithm exhibits SAD errors of 5.7% and 4.7%, when operating
over entire segments (“‘seg”) or sliding windows (“win”), respectively. The latter represents a 19%
relative SAD error reduction over the DNN of [75] and 10% over the 3D-CNN of [77], proving
better than segment-based operation in the challenging and noisy DIRHA-sim-evalita data (as also
observed in Table 2.6 for DIRHA-sim). These comparisons highlight the competitiveness of our
two-stage system and the suitability of the five room discriminant features of its second stage.
Of course, it is possible that the deep-learning methods could have gained advantage, had more
training data been available in the DIRHA corpora.

2.8 Conclusions

In this chapter, we have presented an efficient multi-channel, two-stage approach to address speech
activity detection in multi-room smart-home environments, equipped with multiple microphone ar-
rays distributed inside them. In the general scenario, possibly concurrent speech activity in differ-
ent rooms needs to be detected and the effect of cross-room interference suppressed. For this pur-
pose, the proposed room-localized SAD system first employs a multi-channel speech/non-speech
segmentation module per room, and it subsequently determines whether detected speech activity
occurs inside or outside each room by utilizing a novel set of room discriminant features. Ex-

periments on a suitable multi-room, multi-channel dataset demonstrate satisfactory performance

Table 2.8: Performance (in overall SAD detection error [112]) of deep-learning based approaches
vs. the proposed algorithm for room-localized SAD on the DIRHA-sim-evalita corpus.

method SAD error (%)
DNN [75] 5.8
) 3D-CNN [76] 7.0
deep-learning

3D-CNN [77] 5.2

3D-CNN (SAD+SLOC) [77] 35

d seg 5.7

propose

win 4.7
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on both simulated and real data, reaching F-scores of 81.0% and 87.7% respectively, while sig-
nificantly outperforming alternatives that combine well-known baselines and features (MFCCs,
Sohn’s SAD, SNR), as well as comparing favorably to deep-learning based approaches (DNN:ss,
CNNs). The evaluation results verify the robustness of the two-stage system and the suitability
of the devised hand-crafted features, while also highlighting the realistic design and value of the

current simulated database for developing algorithms that generalize well to real recorded data.






Chapter 3

Isolated Acoustic Event Detection in
Smart Spaces

3.1 Introduction

In the previous chapter, we studied SAD, which focuses on detecting the time boundaries of human
speech present in an audio recording. In fact, “speech” belongs to the broad category of acoustic
events, and SAD constitutes a special case of the more general AED problem.

In our work on AED we have considered several variants of the task, including isolated and
overlapped event scenarios, as well as single-channel or multi-channel setups available in the
given smart-space environment. Under this framework, we have developed and evaluated several
different approaches for the AED task. In this chapter we focus on the isolated AED case.

Isolated AED refers to the case where there is no overlap between the occurrences of the differ-
ent acoustic events in the audio clip. In this chapter we examine the problem of detecting acoustic
events in smart indoors environments, equipped with multiple microphones. In particular, we focus
on channel combination strategies, aiming to take advantage of the multiple microphones installed
in the smart space, capturing the potentially noisy acoustic scene from the far-field. Towards this
end, we investigate channel fusion at the signal level, employing beamforming techniques to pro-
duce enhanced signals, at the feature level, utilizing time-difference-of-arrival (TDOA) between
channel signals as additional informative features, and at the decision level, appropriately integrat-
ing detection decisions to yield the final one. Further, “multi-style” training is also considered,
utilizing observations from all available microphones to produce more robust models.

The above are investigated using two related detection systems that are based on appropri-
ately trained GMMs on traditional audio front-end features. The first is a frame-based GMM that
operates over sliding windows of fixed duration, whereas the second employs Viterbi decoding
over the entire observation sequence, based on an HMM composed of the trained GMMs over the
classes of interest. Experimental results are reported on a multi-microphone corpus containing
isolated acoustic events of twelve types occurring in a single room that is appropriate for AED.
In the evaluation results, multi-channel approaches are demonstrated to significantly outperform

single-channel baselines.

81
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The rest of this chapter is organized as follows: Section 3.2 presents the multi-channel methods
for fusion and information extraction; Section 3.3 is devoted to the experiments and results; and,

finally, Section 3.4 concludes this chapter.

3.2 Multi-channel information extraction and fusion

A number of channel combination approaches at different levels are investigated in this chapter,

as discussed next.

3.2.1 Multi-channel training

In this approach, observations from all available microphones, or from an appropriate subset of
them, are used during the training process in order to obtain the statistical model (GMM) of each
class of interest. This is akin to the “multi-style” training procedure, often employed in ASR and
other machine learning problems to improve robustness of the produced models. The obtained
models can then be used during testing on one or more microphones, in the latter case using the

decision fusion framework discussed below.

3.2.2 Signal fusion

In this approach, a plain delay-and-sum beamformer with no post-filtering is employed to combine
audio from multiple microphones into a single enhanced signal (typically, a subset of the available
microphones is exploited that are closely located within microphone arrays). For this purpose, the
“Beamformlt” software is used [113]. Depending on which channels are combined, one or more
beamforming signals can be created, thus also allowing multi-channel training and/or decision

fusion approaches to be employed.

3.2.3 Decision fusion

In this approach, the available class models are tested on the appropriate channels that are to be
fused at the decision level. Typically, for example, a single-channel classifier is tested on the
respective channel that it is trained on; a multi-channel model is tested on any channel within the
set of microphones that is trained on; and a signal-fusion model is tested on its corresponding
enhanced signal. Such tests provide sequences of log-likelihood scores for each class and channel
of interest, which are then fused at the frame level by a decision fusion method. In particular,
we employ the multi-microphone decision fusion methods already used for the SAD task earlier
and presented in Section 2.3.2, namely the “u-sum”, “w-sum”, “u-max”, “w-max”, “u-vote” and
“w-vote” methods. Here the set of classes 7 includes all the acoustic events considered instead of
just speech and non-speech events.

Approaches “w-sum”, “w-max”, and “w-vote” require channel confidence estimation to yield
necessary weights. Previously in Section 2.3.2 we already presented a way to compute the weights

using the log-likelihood differences between the classes. Here, we propose additional ways to
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compute the weights, by utilizing the following channel decision confidence or channel quality
indicators (similarly to [114]).
e N-best average log-likelihood difference: For every channel, this is derived by computing the
average of the differences in the log-likelihood score between the highest scoring class GMM and
the N — 1 following in descending order (where N = |7| is upper bounded by the number of
available event classes in the set 7).

In particular, if we denote with by, ; (Orm,¢) the sorted log-likelihoods of the GMMs for micro-
phone m given its acoustic features o,,, ; at time frame ¢, and event class j € J , the weights for

this channel quality indicator are computed as:

N
Wmt = Z bm,l(om,t) - bm,j (Om,t)‘ (3.1
=2

Large values of this difference indicate high confidence.
o N-best average log-likelihood dispersion: This constitutes a modification of the above, where
log-likelihood differences between all top /N-scoring class pairs are summed. The weights w;, ;

for the microphone-m at time frame ¢ are computed as:

N-1 N
Wmt = Z bm,j (Om,t> - bm,j/(om,t)- (32)
Jj=1j'=j+1

As before, large values demonstrate high confidence.
o Log-likelihood score entropy: The entropy over the probability distribution of all class poste-

riors is computed. In this case the weights are computed as:

N
Wmit = — me,j (Om,t) IOg(pm,j (Om,t))v (3.3)
j=1
where
ebm,j (Om,t)
Pm,j(Omt) = =¥ (3.4)

S o)

is the softmax function used to map the log-likelihood scores into probabilities summing to 1.
Small entropy values indicate high classification confidence.

e Segmental signal-to-noise-ratio (SNR): This is a commonly used channel quality indicator,
with high SNR values indicating good data quality.

We note that in all cases, before fusion, the weights are normalized to sum to 1 across the chan-
nels, for each time frame. After experimenting with the above channel confidence indicators, we
converged to using “segmental SNR”, yielding weights after their normalization over the channels
fused.

3.2.4 Feature extraction

Regarding the features used, 13 MFCCs with A’s and AA’s are extracted from the single-channel

or fused signal, over 100ms duration frames with a 20ms shift. An example of the discrimina-
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Figure 3.1: Mel-frequency band energy features (32 bands) depicted over time (frames) for an
example occurrence of “key jingle” (left) and “speech” (right).

tive capability of the latter features (but without the discrete cosine transform operation included
in MFCCs and the subsequent derivative computation) is given in Figure 3.1 for two different
acoustic event type occurrences under consideration, namely “key jingle” and “speech”. Clearly,
the Mel-frequency band energies (which are the primitive features for the computation of the
MFCCs) separate these two examples very well. In addition, and similarly to [115], we employ as
features TDOAs between pairs of adjacent microphones, as these are related to the source location
and possibly the class of certain acoustic events. Such features are used to train a separate GMM,
which is then combined with MFCC-trained GMMs employing decision fusion.

3.2.5 Detection approaches

Two detection systems are developed, employing at their core the trained GMMs with multi-
channel fusion. Following our speech detection implementations presented earlier in Section 2.3.3,
we employ (a) the HMM-based Viterbi decoding over entire sequence, and (b) the GMM-based
scoring over sliding window approaches. The only difference here is that the number of states is
larger, as the number of acoustic events rises (not just speech/non speech events). Also the length
of window and window shift in the GMM-based approach are 0.6 s and 0.4 s respectively in our

experiments.

3.3 Experiments and results

The development and evaluation of the various approaches is performed on the UPC-TALP multi-

microphone corpus of acoustic events [78]. This database contains a set of isolated acoustic events
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Figure 3.2: Floorplan of the meeting room used in the UPC-TALP database recordings. In total
24 microphones are employed, grouped in 6 T-shaped arrays. Their spatial coordinates (x,y,z) are
also depicted.

that occur frequently in a meeting environment scenario. In our task, in addition to silence, we
have 12 different events in total: knocks (door, table), door slams, steps, chair moving, spoon,
paper work, key jingle, keyboard typing, phone ringing, applause, cough, and speech. Audio data
from a total of 24 channels are available, provided by six T-shaped microphone arrays located on
the room walls as shown in the floorplan of the meeting room in Figure 3.2. As the UPC-TALP
database recordings are divided into 8 independent sessions, experiments have been conducted in
a leave-one-out session fashion, keeping seven sessions for training and leaving one for testing.

The results for the AED task are depicted in Table 3.1. Performance of the various combi-
nation schemes considered is reported in terms of Diarization Error Rate (DER) [116], which in
our case (isolated events) practically corresponds to frame misclassification. The results presented
correspond to the best combination of parametres used (state transition penalty and number of
Gaussians). As a baseline in our experiments, the “best estimated-SNR channel” selection strat-
egy (per session) is considered. For a given session, the SNR for each channel is computed as
the ratio between the total energy in the non-silence and silence segments detected. In the “best
actual-SNR” method, segment boundaries are obtained from the ground-truth. In the “oracle best
channel” method, in each session the channel with the lowest DER is selected. Finally “aver-
age over channels” refers to the mean DER of all the single-channel results in the leave-one-out
experiment.

Concerning the results, at first we observe that Viterbi decoding (HMM) outperforms the slid-
ing window approach (GMM). Regarding decision-level fusion, we can observe its superiority

over the baseline systems. The best approach is “w-sum” that achieves a 8.10% relative error
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Figure 3.3: Performance (in DER %) of baseline “best estimated-SNR” and best multi-channel
approach (“TDOAs & MFCCs”) for the 8 sessions of AED problem.

reduction (from 14.20% to 13.05%) compared to the best SNR single-channel system.

The combination of decision fusion with multi-channel training and signal fusion yielded no
improvement. Yet, the results remained better than the single-channel baseline. Finally, the com-
bination of TDOAs with MFCCs in conjunction with GMMs at the decision level obtained the
best overall result (Table 3.2). In particular, the combination of TDOAs with the “u-sum” method
yielded a 12.88% DER, which corresponds to a 9.30% relative error reduction from the “best
estimated-SNR channel” approach (Figure 3.3), and 11.20% from the “average over channels”
DER. This can be explained by the fact that some events occur at similar locations in the various
sessions. The best combination gave weight equal to 0.1 to the TDOA model and 0.9 to the MFCC
model. Note that the DER of the TDOA model (without fusion) reaches 36.64%.

Table 3.1: Multi-channel fusion results for the AED problem. Results are depicted in DER %.

training single- multi- | signal

style channel channel | fusion
trained models (#) 24 1 6
channels tested (#) 24 24 6

model type GMM | HMM | HMM | HMM

best estimated-SNR channel | 18.54 | 14.20 14.59 14.53
best actual-SNR channel 18.43 | 14.16 14.43 14.48
average over channels 19.21 | 14.34 14.42 14.42

oracle best channel 17.50 | 12.71 13.04 13.40
u-max 18.94 | 13.76 14.19 14.37

u-vote 18.09 | 13.13 13.42 13.40

decision u-sum 17.91 | 13.21 13.36 13.50
fusion Ww-max 18.21 | 13.66 13.96 14.15
w-vote 18.12 | 13.17 13.50 13.78

w-sum 17.94 | 13.05 13.29 13.43
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Table 3.2: Results for the fusion of MFCC and TDOA based models (with the HMM scheme) for
AED.

TDOAs & MFCCs | DER%
decision | u-sum 12.88
fusion w-sum 12.92

In order to verify that the improvement observed by the multi-channel approaches is statis-
tically significant, we apply the Wilcoxon signed-rank test. In particular, a one-sided Wilcoxon
test [117] is performed to compare the detection accuracies over all 8 leave-one-out experiments
between the various multi-channel approaches and the baseline system. We also compare the
significance of improvement between weighted and non-weighted approaches.

The outcomes of the tests are positive using the value p < 0.05. The improvements over the
baseline observed are judged as significant in all approaches except the “u-max” one (“TDOAs”,

LR N3 LR N3 LT3 LRI

“w-sum”, “u-sum”, “w-vote”, “u-vote”, “w-max’’). Also statistical significant improvement was

observed between the “w-sum” and “u-sum’ methods.

3.4 Conclusions

In this chapter, we investigated multi-channel combination approaches at different levels for the
problem of isolated AED, outperforming the baseline single-channel system. Concerning the
back-ends used, we can observe that Viterbi decoding is more appropriate for the detection task.
It finds the most probable sequence of events in an optimal way. As for the decision fusion ap-
proaches, in general summation methods work better than majority based ones, and weighted
better than unweighted ones. Finally, the extraction of the TDOAs and the training of a separate

GMM on them improved further the performance of the overall system.






Chapter 4

NMF-based Single-channel Overlapped
Acoustic Event Detection

4.1 Introduction

In the previous chapter we described the isolated case, which is the most common scenario under
which the AED problem is examined. However, depending on the particular task and the environ-
ment conditions, there may exist low or high overlap between the occurrences of different acoustic
events. In this work, we mainly employ NMF techniques in order to tackle the overlapped AED
task for both single-channel and multi-channel setups.

The remainder of this chapter is organized as follows: First, in Section 4.2 we provide an in-
troduction to the basic concepts and formulations of NMF-based AED. Then, in Section 4.3 we
develop a CNMF-based system with an improved detection step, and in Section 4.4 we investi-
gate ways to improve the robustness of classifier-based NMF systems in overlapping conditions.

Finally, we summarize the chapter in Section 4.5.

4.2 Non-negative matrix factorization approaches

NMF-based approaches and their variants have begun to attract interest in the field of both isolated
and overlapping AED in recent years. This is due to both their robustness and their natural ability
to detect multiple events occurring simultaneously, as long as appropriate non-negative and linear
representations of them are available. In this section, we will present the basic formulations of

some of the most common NMF-based methods.

4.2.1 Basic NMF

The main idea behind the application of NMF for AED is the linear decomposition of acoustic
events into spectral atoms. Given the representation of events with non-negative and approxi-
mately linear features (e.g., spectrogram, filterbank energies), overlapping events can be decom-

posed into atoms of individual events.

89
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Figure 4.1: An NMF example of a piano performing “Mary had a little lamb”. Dictionary matrix
W captures the harmonic content of the three pitches of the passage and activation matrix H
captures the time onsets and gains of the individual notes (figure from [119]).

NMF seeks to determine a linear non-negative approximate factorization of the observed fea-
ture matrix V € ]RigN , by the product V.~ W - H, where W € ]RigR denotes the non-negative
dictionary matrix, and H € RQSN represents the non-negative activation matrix. Here P denotes
the feature dimensionality, N ‘the number of time frames, and R the total number of event atoms
in the dictionary matrix. An example of NMF is depicted in Figure 4.1. Minimization of a suitable
error cost function D(V||WH) results in iterative estimation of W and H [118]. Most common
choices for the cost function are the Euclidean distance, the Itakura-Saito divergence, and the

Kullback-Leibler (KL) divergence. In the case of KL divergence, which is defined as:
D(V||WH) = ||V ©®log(V© WH) -V + WH||, 4.1

matrices W and H are obtained by means of the following multiplicative updates:

H«Ho {W (Vo (WH)} o {Wy} (4.2)
W« Wo {(Vo (WH)H"} o {1,H"}

where ® and © denote element-wise matrix multiplication and division, and 1y, is a matrix with all
elements equal to 1 and dimensions equal to those of V. Multiplicative update-based approaches
have the most widespread usage for solving the NMF task, mainly due to their high reproducibility.
Alternative efficient algorithms for solving the NMF task have also been proposed and applied
successfully in the literature [120-122].

The dictionary W containing spectral atoms for each event is created during the training phase,
either by employing the iterative updates presented above, or by using “exemplar” based methods.
In the “exemplar” methods, representative spectral atoms are extracted directly from the training

data of the given events.

For detection, assuming a given dictionary W that contains atoms of the various events of
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interest, the estimated H provides the activations of each event through time. As in detection-
related tasks the sparsity of H may become desirable or even crucial, sparse-NMF, a variant of
NMF, is often employed, minimizing the following objective,

G(V||WH) = D(V||WH) + X |HJ: , 4.3)

with parameter A controlling the trade-off between sparseness on H and accurate reconstruction
of V by the WH product. Depending on the cost function selected (KL divergence, Euclidean
distance, etc.), different updating equations result for W and H [123].

4.2.2 Convolutive NMF

NMF is a linear non-negative approximate factorization of the observed feature matrix. CNMF [124]
is its convolutive extension, making possible the decomposition of events into atoms with tempo-
ral evolution. It is formulated as follows: Given a non-negative data feature matrix V € RigN ,
the goal is to approximate V by matrix A, derived as a temporal convolutive sum of a “dictioﬁary”

and “activations”, namely

t—
VaA=S W H, (4.4)
0

S
-

N
|

where, operator ‘e’ shifts the columns of its matrix argument ¢ places to the right, W; € R];gR
denotes the non-negative dictionary matrix at time step ¢, H € ]RIESN represents the non—negz;tive
activation matrix, 7" is the number of time frames spanned by each dictionary atom, and R stands
for the number of atoms in the dictionary. The ¢-th column of W, describes the i-th atom, ¢ time
steps after its beginning. The dictionary thus contains 2 atoms of size PxT" each. Minimization of
a suitable error cost function D(V|| A) results in the iterative estimation of W, and H [124,125].

Although CNMF tends to produce sparse activations, in order to ensure sparsity on H, simi-
larly with basic NMEF, there is the sparse-CNMF variant, incorporating the sparsity term in its cost
function [126].

G(VIIA) = D(VI[[A) + A[H: . 4.5)

With sparse-NMF and sparse-CNMF being the core methods, several other NMF variants and
extensions have been developed and successfully applied in the literature [21, 127, 128].

4.3 Sparse-CNMF with improved detection and dictionary selection

In this section, we investigate sparse-CNMF for detecting overlapping acoustic events in single-
channel audio, within the experimental framework of a suitable AED dataset provided by the
DCASE’ 16 Challenge (Task 2) [79]. Our main focus lies in the efficient creation of the dictionary,
as well as the detection scheme associated with the CNMF approach.

Specifically, for the dictionary creation stage, we propose an “exemplar’-based approach suit-

able for CNMF, by employing a shift-invariant method for the efficient size reduction of the dictio-
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nary. The proposed method compares favorably to the standard CNMF-based dictionary building
in our experiments. Further, for detection, we develop a novel algorithm that combines information
from the CNMF activation matrix and atom-based reconstruction residuals, achieving significant
improvements over conventional detection based on activations alone.

The structure of this section is as following: First the “Dictionary Building” and the “Detection
Approaches” subsections present the proposed methods for exemplar-based dictionary creation
and improvement of the ordinary detection scheme for CNMF, respectively. In the next subsec-
tions, details and experimental results of our system submitted to the DCASE’16 AED Challenge

are provided.

4.3.1 Dictionary building

Dictionary building is a very important step in NMF-based methods. Representative atoms from
each class must be contained in the dictionary matrix, capable of reconstructing unseen data. Using
training data consisting of isolated event instances, a sufficient number of atoms is extracted and

stored in the dictionary for each class of interest, resulting to matrices
W, =W W tefo, 1] (4.6)

where C is the number of classes (events). In the case of CNMF-based methods, due to increased
computational complexity, we need to create a rather compact dictionary. In the following, we
present two alternatives for this task.

o CNMF-based: For each class of interest, the training instances are concatenated to form its data
matrix, V(@ Then, via sparse-CNMF iterative updates, matrices ng) and H® are computed (as
in [129]), and ng) S Rlsg Ri are stored in the dictionary. The duration, 7', of each atom and
their total number, R;, are predefined. By extracting the same number of atoms for each class,
their total number for all events in the dictionary becomes R =C - R; .

o Shift-invariant dictionary reduction: Here, we propose an alternative way for dictionary cre-
ation that selects a group of atoms from the original training data. For each class, first, a large
number of atoms is extracted from its data matrix V), using a sliding window of duration T
(shifted by one feature frame at a time). Then, only 12; of them are selected by “uniformly sam-
pling” the set of the resulting atoms, as explained next. The process aims at selecting different
types of existing atoms based on a similarity measure, appropriate for CNMF. In our case, such
similarity should be shift-invariant: i.e., two atoms are considered similar if the Euclidean distance
between them, or between their temporally shifted versions, is small.

To achieve atom comparisons in a shift-invariant way, we first rearrange them into vectors
of size P-T, in a row-wise manner. This way, a time-shift of atoms results to shifts of their
corresponding vectors. Then, atom similarity is measured as the Euclidean distance between the
magnitudes of the Fourier transforms (DFTs) of the rearranged vectors, based on the well-known
shift-invariant property of this transform. The available atoms are thus mapped to their Fourier-
magnitude vectors, which are subsequently sorted based on their Euclidean distance from their

mean. Finally, R; atoms are selected by uniformly sampling the resulting sorted list.
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The adopted sampling scheme represents a simple approach to desired dictionary size reduc-

tion. Alternatively, well-known clustering methods like k-means could also be used for the task.

4.3.2 Detection approaches

As stated earlier, having created the dictionary matrix Wy, sparse-CNMF accepts as input the data
matrix V, and outputs the desired activation matrix H (following the approach in [126]). The
final event detection can occur by exploiting the information in the above matrices. We present
two main approaches for accomplishing this.

e Using activations only: Most of NMF-based approaches employ the information in H di-
rectly [16], or indirectly [18]. In our method, activations in H are directly used for detecting
possible events. In particular, for each class, the activations are summed across all their atoms, for

each frame, resulting in a new matrix H' € RQ(TN , with elements

H'(i,n) =Y H(r,n), (4.7)
r € {i}
where ¢ denotes the class (i = 1,---,C'), {i} the set of row indices in H that correspond to the

i-th event atoms, and n. € {1,-- -, N'} the time frame. Then, at time 7, a class is considered active
if H'(i,n) > Oy, where 6y is a suitably chosen activation threshold. A post-processing step
can also be employed to yield smooth activations. Finally, as activation refers to atoms, 7'— 1
additional frames following the detected activations are considered active.

e Incorporating reconstruction residuals: An alternative method to the above decides for an
event activation, not by thresholding the elements of H', but by measuring KL-divergence between
V and A, when only the atoms of the event in question and of background noise are used in
reconstruction (see Section 4.3.3 for details on background noise modeling). More specifically,
the total reconstruction error of sparse-CNMF over a time-segment, seg, under consideration,
is D (Vseg || Aseq ), Whereas reconstruction error on basis of only the i-th event and noise is

D (Viey || A% where,
T-1 ) t—
A(i,bg) — Z WIEZ’bg)_ H(i,bg) ’ 4.8)

seg seg
t=0

with H(siél;g ) denoting the part of H that contains only rows corresponding to atoms of the ¢-th
class or background noise and columns that correspond to the time frames of seg. Similarly,
in the above, A,, and Vi, contain the columns of (4.4) and of the data matrix, respectively,
within the segment under consideration.

We define the “residual ratio” of the i-th event as the ratio between the residual on basis of
(4.8) to the total one, using (4.4), namely

D (Ve || AS)

E0m) = D Vg | Areg)

for all n € seg . 4.9)

In computing (4.9), non-overlapping segments of 1 s in duration are used. Small residual ratio

values for the ¢-th event in a given segment means that large percentage of the reconstruction in
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Figure 4.2: An example of applying the long-term signal variability (LTSV) measure to back-
ground noise detection (see Section 4.3.3). Ground-truth peaks correspond to acoustic events.

that segment is achieved using only the i-th event (together with background noise). Activations
in H' with large magnitude are also often related with large percentage of reconstruction, but this
is not always the case. From the minimization of (4.5), large magnitude activations may occur for
a given event and a given time frame, but with a small corresponding reconstruction contribution.

In our first approach using activations only, the event detection criterion is the activation matrix
H element magnitudes. In the residuals-based approach, instead, the criterion is the accuracy of
reconstruction using only atoms and activations of a particular event. In our final system, submitted

to the Challenge, we combine both. Thus, the ¢-th event is considered active at time frame n, if
H'(i,n) >0y and E(i,n) < g . (4.10)

Thresholds 0y and ¢ are chosen as explained in Section 4.3.3.

4.3.3 System implementation details

e Background noise modeling: In addition to modeling the acoustic events by incorporating
representative atoms in the dictionary, background noise modeling is necessary for robust AED.
With the presence of background noise atoms in the dictionary, false alarm event activations are
avoided in areas that events are not present. Also, more reliable reconstruction is possible in active
areas, assuming additive noise.

In our approach, and following work in [16], we extract the background noise atoms from the
observed data during decoding (on-the-fly). The advantage of this scheme is the adaptation of
the background dictionary to slightly different conditions, possibly existing each time. However,
instead of assuming background noise present at the beginning and end of the observed data, as
in [16], we attempt to extract background atoms from various areas of the signal, by employing
the long-term signal variability (LTSV) measure, described in [130]. This measure has been suc-

cessfully used in voice activity detection, and it is based on the fact that background noise usually
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exhibits smaller variability through time in its spectrum.

In our system, a frame is considered as noise if its LTSV value is lower than a fixed threshold,

01, . As before, the shift-invariant dictionary reduction method is applied to areas that noise is
detected to help provide background noise atoms. An example of the LTSV based approach is
shown in Figure 4.2, where LTSV values for a Challenge corpus signal are depicted, together with
ground-truth locations of acoustic events. As it can be seen, LTSV values and the chosen 6f,
ensure that acoustic event time frames are avoided.
o Features, system parameters, and post-processing: We now provide some additional details
of our implemented system. Concerning audio feature extraction, we have experimented with
various feature sets that satisfy non-negativity and approximate linearity: Mel-filterbank energies,
Gammatone-filterbank energies, DFT spectrogram, and the variable Q-Transform (VQT). The first
three are computed using 30 ms long frames with a 10 ms shift, whereas VQT is obtained from the
baseline system of [79]. Our final submitted system uses 150-dimensional Mel-filterbank energy
features (M= 150).

Regarding dictionary building, atoms of 200 ms (7= 17 frames) in duration are used, and for
the CNMF-framework, parameter A in (4.3) is set to 0.7. Further, approximately 200 atoms per
event class are used (R; ~200), with R~ 2.4k total atoms (including background noise modeling).

Concerning the various thresholds employed, 8 in (4.10) is computed as a percentage (15%)
of the maximum value of matrix H' elements. Threshold 6¢ in (4.10) is computed as a percentage
(106%) of the minimum of £(i,n) for a given segment. Such values are optimized on available
development data (see Section 4.3.4).

Finally, as a post-processing stage in the detection system, one-dimensional dilation is per-
formed on each row of matrix H', in order to broaden the intervals of high-peaked activations
produced. In the case of the combined method, dilation is performed before the combination with
the residuals approach. Atthe end, 7—1 frames after each detected activation are also considered

as active.

4.3.4 Database and experimental framework

We perform experiments on the DCASE’16 Challenge database designed for Task 2 — “Sound
event detection in synthetic audio” [79]. The corpus contains recordings of eleven office-related
acoustic events (see also Figure 4.3), consisting of three parts: The training set with 20 isolated
recordings of each event; a development set with 18 two-minute long recordings of synthetic
mixtures of audio events and noise at various SNRs and event overlap conditions (“density” and
“polyphony”); and a test set of similar structure to the development set (54 recordings), only used
in the Challenge evaluation, with its ground-truth publicly unavailable during the challenge time
period.

Regarding the experimental setup, we report experiments on both the development and test
sets (the latter as only provided by the Challenge organizers). Specifically, for the development
set, due to its particularity of containing the same event instances as the training set, we use two

different setups, described next.
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Table 4.1: Performance of baseline and proposed systems.

system setup #1 setup #2 test
F-score \ ER | F-score \ ER | F-score \ ER
NMF-baseline 042 |0.79| 032 [0.87| 0.37 |0.89
activations-only 0.83 030 043 |0.79 — —
activations&residuals|| 0.84 [0.29| 0.55 |0.63| 0.56 |0.68

Table 4.2: Performance of different feature sets and dictionary sizes.

feat. | dict. setup #1 setup #2
dim. | size F—score\ ER F—score\ ER

VQT 545 | 200 079 1037 | 029 |0.88
Gamma | 150 | 200 082 033 | 035 |0.86
Mel 150 | 200 083 030 | 043 | 0.79
Mel 150 | 100 0.81 036 | 042 | 0.85
Mel 100 | 100 0.83 | 030| 042 | 0.82
DFT 545 | 100 0.78 | 042 | 041 0.83

features

Table 4.3: Performance of different dictionary building methods.

dictionary setup #1 setup #2
building method F-score \ ER | F-score \ ER
sparse-CNMF 0.64 | 060 | 029 |0.89
shift-invariant reduction 0.83 030 | 042 |0.82

» Setup #1: This is identical to the default setup of Task 2. One dictionary is built using all

isolated training data, and then AED is performed on all 18 development set recordings.

» Setup #2: Here, to allow testing on unseen event instances, we perform a 18-leave-one-
out experiment. In total, 18 dictionaries are built, each tested on a single development set
recording, by using each time all available training set instances, except those contained in
the particular development set recording.

For the evaluation, we employ the adopted Challenge metrics [79], namely frame-based F-
score and frame-based total error rate (ER). The latter is defined as ER = (I + D+ S)/N, where [
denotes acoustic event insertions, D deletions, S substitutions, and [V the total number of ground-

truth events at a given frame. ER is computed in frames of 1 s in length.

4.3.5 Results

In Table 4.1, the results using the Challenge-provided NMF baseline, our submitted system, and a
variant of it are compared for the different experimental setups considered. Regarding the NMF-
baseline, it builds the dictionary using the training data, and extracts 20 atoms per class. Atoms
have single-frame duration, and are extracted from the VQT spectrogram (60 bins, 10 ms step).

A post-processing stage applies median filtering to the output and allows up to five concurrent
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Figure 4.3: AED on the “dev_1_ebr_6_nec_3_poly_0.wav” Challenge recording: (a) ground-truth;
(b) output of our submitted system. Acoustic event labels are also shown.

events [79].

Both our systems, depicted in Table 4.1, perform dictionary creation employing the shift-
invariant reduction approach, and their details are provided in Section 4.3.3. It is obvious that
both outperform the baseline in all setups. In particular, our submitted system (“activations &
residuals’) achieves 63.3%, 27.6%, and 23.6% relative reduction in ER over the baseline for setup
#1, #2, and the test set, respectively. It seems that the extraction of more atoms per class (al-
most ten-fold over the baseline), combined with the incorporation of temporal structure under the

CNMF-framework, lead to major improvements.

Comparing our two detection approaches, we can observe that the system using the combina-
tion of activations and reconstruction residuals (submitted to the Challenge) achieves a 20% ER
relative reduction in setup #2, compared to the system using activations only. This highlights the
complementarity of the two methods. The improvement is mainly due to the elimination of false
activations, exhibiting large peaks in H' but also having a large residual ratio.

In Table 4.2, we show experimentation regarding different audio feature sets, together with
variations in their dimensionality and dictionary size (number of atoms per class is depicted). We
can observe that Mel-filterbank energies achieve the best performance among the different sets
considered. It thus seems that they are more appropriate for the set of acoustic events consid-
ered in the Challenge. Also from the Mel feature results (150-dimensional), we can observe that
increasing dictionary size leads to slight improvements.

A comparison of the different dictionary building methods is shown in Table 4.3, using the
same detection system in both cases (a 100-dimensional Mel-filterbank, activations-only system,
with 100 atoms per class). Clearly, the shift-invariant dictionary size reduction approach out-
performs conventional CNMF-based dictionary building. This provides evidence that accurate

representation of event atoms (instead of approximate) is beneficial to detection, as long as we
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Figure 4.4: Mel energies representations for the different acoustic events. For better visibility
purposes, the logarithm of the values is shown.

have a way to select appropriate atoms.
Finally, in Figure 4.3, the output of our system is shown against ground-truth for a particular
audio recording of the development set, and in Figure 4.4 the Mel-energies representations for all

the corresponding events are depicted, for comparative visual inspection of their spectral content.

4.4 Joint use of NMF and classification for overlapped AED

In general, NMF-related methods can be separated in those that exploit the NMF activations di-
rectly to perform event detection [16, 17] (like our approach in the previous section), and in those
that employ a classifier trained on these activations [18,19]. Based on the fact that NMF-based ap-
proaches can benefit from the creation of a Mixture of Local Dictionaries (MLD) [21], in [20] the
authors propose a classifier-based NMF system using MLDs for improved detection performance,
reaching the 1st place in the Task-2 of DCASE’16 Challenge.

In this section, we investigate the performance of classifier-based NMF methods for detecting
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overlapping acoustic events. We provide evidence that the performance of classifier-based NMF
systems deteriorates significantly in overlapped scenarios in case mixed observations are unavail-
able during training. To alleviate this problem, we propose the generation of mixed observations
using the isolated ones available, and subsequently their incorporation in the training data. For the
artificial mixing procedure, we use a k-means based method for each pair of events. The method
of MLD is employed for the building of the NMF dictionary using both the isolated and artificially
mixed data. Finally, an SVM classifier is trained for each of the isolated and mixed event classes,
using the corresponding MLD-NMEF activations from the training set. The proposed system, tested
on two experiments with a) synthetic and b) real events, outperforms the state-of-the-art classifier-
based NMF system in the overlapped scenarios.

The section is organized as following: Section 4.4.1 presents and discusses the drawbacks
of the two NMF-based alternatives that are compared with our system; Section 4.4.2 describes
the artificial generation of mixed data and the outline of the proposed method, and Section 4.4.3

reviews the experimental framework and reports our results.

4.4.1 Existing NMF-based methods for AED

We will present briefly two popular methods for NMF-based AED. The first can be considered
as the baseline, as it is the simplest one: Sparse-NMF with thresholding. This is an approach
similar to 4.3.2 (with activations only), but with the traditional NMF formulation instead of the
convolutive one. The second is a classifier-based MLD-NMF method presented in [19,20]. We
will discuss the drawbacks of these two methods for isolated/overlapped acoustic event detection.

o Sparse-NMF approach: The Sparse-NMF method of eq. (4.3) is used here as a baseline. Re-
garding the building of the dictionary, by using training data consisting of isolated event instances
(“exemplar” based approach), a sufficient number of atoms is extracted and stored in the dictio-
nary for each class of interest, resulting in the total dictionary matrix W. Then in the detection
step, a simple thresholding on the activations of matrix H decides for the existence of each event
in each frame. We can note two main disadvantages in this traditional method. The first is that
the threshold-based decision in the detection step cannot be considered as the best choice in terms
of robustness. The second and more important is that, as pointed out in [21], the convex cones
created by the bases of the sub-dictionaries of the different classes may often overlap with each
other. This means that new observations that fall in the overlapped regions can be reconstructed in
many different ways (unstable activations), which may result to failures in the classification (e.g.

false alarms).

e SVM-based NMF approach with MLD dictionary: This method essentially refers to the core
system of [19,20]. This system attempts to overcome the drawbacks of the aforementioned tradi-
tional sparse-NMF method, by employing an MLD dictionary framework and an SVM classifier
for the final detection step. The MLD-based dictionary generation eliminates overlaps between
convex cones and produces more stable activations, which are used for training robust SVM clas-

sifiers. As shown in the flow diagram in Figure. 4.5 (component blocks depicted in black), the



100 Chapter 4. NMF-based Single-channel Overlapped Acoustic Event Detection

Dictionary Learning Classifier Training / Testing

Dictionary
w

r il
| ! |
| \7Z ! oy |
| Isolated isol Artificial 1 Training / f“fs"*—(z) |
| Training Data Mixing I Testing Data events |
| ! |
| Il |
| sz'sol Vm'i.z' N 14 |
: Vv : : MLD-NMF :
| _— Il |
| Unsupervise |1 |
| NMF I H |
| Il SVM/ |
: Wao : : Probabilistic :
| Ll S |
| K-means | I
| o ——————— 4
| (9)
| M

A
| rained
|
|
|
|
|
|
|
|

Figure 4.5: Block-diagram of the proposed AED method combining NMF with an SVM classifier.

method consists of two main parts: dictionary learning and classifier training.

For dictionary learning, the feature matrix V containing all training data is decomposed into an
initial basis matrix Wy by basic unsupervised NMF. Next, by applying k-means to Wy, G centroids
149) are obtained, with g € {1, ..., G} denoting the centroid’s index. The final MLD dictionary W
consists of G sub-groups (of K, bases each), which model acoustic atoms W = [W(l)...W(G)].

The MLD dictionary is learned by minimizing the following objective:

D(V||WH) +17 ) D(u@ W) + 13" Q(hy) |

g t
where h; denotes the column vector of H at time frame ¢. The second term is a constraint that
favors bases of sub-groups to be similar with ;(9), so that the resulting convex cones are compact.
The third term preserves group-sparsity in the solution.

Concerning classifier training, for each class considered, an activation matrix H; is extracted
from its corresponding training spectrogram V; by MLD based NMF with the global dictionary
W. Then, the column vectors hy(;) of H; at each time frame ¢ are used as feature vectors to
train a linear SVM classifier. A multi-class SVM is trained using the one-against-all approach.
This method seems to solve the problems of the traditional sparse-NMF approach in the isolated
AED case. Nevertheless, we should point out one possible drawback in the case of overlapping
scenarios: The classifiers are trained for each class of interest using its corresponding isolated
data. This makes the classifier vulnerable in the presence of unseen mixed data. An observation
of a mixed event containing classes ¢ and j will not necessarily be classified correctly by both the

classifiers of i-th and j-th event.
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Figure 4.6: Generation of mixed data (green) from a pair of isolated events (blue and red). Toy
example, with two features “x;” and “xs”.

4.4.2 Proposed method

Our method attempts to solve the deficiency of the previous approach in overlapped scenarios,
by considering mixed data in the training and testing stages. The block-diagram of the proposed
method is depicted in Figure. 4.5 (black and blue component blocks).

e Dictionary learning: Our goal is to include mixed data in the dictionary learning procedure.
Considering the difficulty of having enough mixed data available, we propose a method for arti-
ficial generation of such data. Assuming linearity of features, the method acts in the feature and
not in the signal domain. The basic idea is shown in Figure. 4.6. In order to create representative
observations of the mixed data, we try to combine (sum) representative observations from each of
the two events considered. Given a number of centroids C' and a percentage «, we first perform
k-means clustering with C' clusters in the feature space of each event. Then a% of the samples in
each cluster are selected. Finally, we consider all the combinations (addition) between the selected
samples of the two classes. After mixed data generation, both isolated and mixed data are used as
input to the MLD dictionary learning procedure. In this way, bases created in the final dictionary

may correspond to overlapped events too.

e Classifier training: At the classifier training stage, instead of training N classifiers (/N is the
number of events), we train N + (g] ) In addition, since we are modeling all possible events
(isolated and mixed), we train linear probabilistic SVMs, and at the testing stage we choose the

event with the highest score at each frame.

4.4.3 Databases and experimental framework

We perform our experiments on two datasets, with the one containing synthetic events and the
other real events. In the case of the synthetic event dataset, we generated artificial spectral patches

for 5 synthetic events, while in the real event case, we extracted spectral patches from 5 real events
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Figure 4.7: Different instances for each of the 5 synthetic events. In the first row, the most complete
version of the spectral patch of each event is depicted. In the second and third rows, variations of
them are shown for each event, where some active tiles may disappear.

contained in the database designed for Task 2 of the DCASE’16 Challenge (office-related events:

drawer, phone, keys, speech, and doorslam).

In both datasets, the performance of different methods is evaluated in both isolated and over-
lapped scenarios. In the isolated case, testing sequences of isolated spectral patches are created,
whereas in the overlapped case, sequences of mixed spectral patches are generated. A mixed spec-
tral patch results from the superposition of two isolated spectral patches from the corresponding
testing dataset. Regarding the spectral patch extraction, in the case of synthetic events, we gen-
erate 5x5 spectral patches with the following procedure: The spectral patches of each event are
characterized by a particular pattern which is slightly varying its structure in the different instances
(see Figure. 4.7). To introduce variability, each time some of the active “tiles” of the pattern can
be missing (up to 5), while the active “tiles” take random positive values in the [0.5, 1] inter-
val. Random noise is also added after the generation of each spectral patch. In the case of real
events, spectral patches have dimension 100x10 and are composed of 100 Mel-filterbank energies

in 100 ms intervals (10 frames).

Finally, regarding the partition into training and testing sets, in the real event case, we par-
titioned the training data of DCASE’16 Challenge, so that 80% of event recordings is used for
training and the remaining 20% for testing purposes. In the synthetic event case, we generated
a small number of instances per event (30) for building the training set. For both databases, the
testing sequences contain 1000 spectral patches for both isolated and overlapped scenarios. We
should note that, due to the way we build our synthetic testing sequences, when overlap occurs, it
affects the entire duration of the spectral patches involved. In this way, our problem can be also

considered as classification of spectral patches of acoustic events with temporal information.
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Table 4.4: Performance of the different systems for the synthetic data scenario in terms of F-score
(%).

Local opt. Global opt.
Isol \ Overl \ Avg | Isol \ Overl \ Avg
sparse-NMF 95.10 | 95.82 | 95.46 | 95.21 | 93.53 | 94.37
SVM&MLD-NMF || 96.78 | 77.23 | 87.00 | 94.39 | 77.23 | 85.81
Proposed 96.42 | 94.80 | 95.61 | 92.30 | 91.16 | 91.73

Method

Table 4.5: Performance of the different systems for the real data scenario in terms of F-score (%).

Local opt. Global opt.
Isol \ Overl \ Avg Isol \ Overl \ Avg

sparse-NMF 78.36 | 78.54 | 78.45 | 75.49 | 77.52 | 76.51
SVM&MLD-NMF || 85.83 | 61.76 | 73.79 | 83.96 | 61.76 | 72.86
Proposed 85.79 | 74.49 | 80.14 | 82.00 | 68.86 | 75.43

Method

4.4.4 Results

In Tables 4.4 and 4.5, the comparative results for the three different methods are presented in terms
of F-score, for both isolated and overlapped scenarios and under two different experimental setups,
for the two event datasets. In the first setup (Local opt.), optimization of the various parameters of
the methods is performed in each scenario separately, while in the second (Global opt.) optimiza-
tion is performed only once for the whole testing procedure. In fact, “Local opt.” assumes prior
knowledge of overlap existence.

In Table 4.4 we can draw three major conclusions: First of all, our proposed method clearly
outperforms the state-of-the-art SVM&MLD-NMF based method in the overlapping scenarios,
both in the “local” and “global” setups, achieving 77.16% and 61.18% relative error reductions
respectively. In fact, SVM&MLD-NMF performance degrades significantly in the presence of
mixed events. Next, we can observe that the performance of the baseline sparse-NMF approach
is stable across the different scenarios and setups, achieving also the best F-score in the “global”
optimization setup. We thus conclude that in the case of quite simple and discriminable events this
baseline is a good option for both isolated and overlapped scenarios. Finally, only our proposed
method seems to be affected significantly by using global optimization instead of the local one. It
seems that parameter «, which controls the amount of mixing data included in the training phase,
has strong influence on the behavior of our method.

In Table 4.5, corresponding results for the real-event scenario are presented. Similarly to the
synthetic case, we can again notice a significant performance degradation of the SVM&MLD-
NMF method when we move from the isolated to the overlapped scenario, as well as the supe-
riority of the proposed method in the overlap case (33.29% and 18.57% relative error reduction
in the “local” and “global” setups, respectively). Also, the baseline sparse-NMF method shows
again stable performance across different scenarios. However, as expected, in this more challeng-
ing case of real events, both the SVM&MLD-NMF and proposed methods perform significantly

better than the baseline in the isolated scenario. Finally, as before, among the three methods, our
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Figure 4.8: Performance of the proposed method (4.4.2) in both the isolated and overlapped sce-
narios, as the percentage o of mixing varies.

approach is affected the most by the switch from the “local” to the “global” optimization setup.
By summarizing the results, we can claim that the classifier-based SVM&MLD-NMF ap-
proach outperforms the baseline sparse-NMF based one in the isolated event scenario. This is
important, as the fact is that the isolated scenario is by far the most frequent under realistic condi-
tions. However, if we want to test the system under more challenging overlapping conditions, the
performance of the existing method deteriorates. Our proposed method, by incorporating mixed
data in the training phase, succeeds to improve performance significantly under overlapped con-
ditions and to also provide better results overall. However, there exists one drawback: our method
is strongly affected by the amount of mixed data employed for training. This is depicted also in
Figure. 4.8, where the performance of the proposed method is shown on the real events dataset for
both the isolated and overlapped cases, as the mixing parameter « varies. As « increases, perfor-
mance improves also in the overlapping case, but at the same time degrades (with a higher rate)
in the isolated case. With knowledge of the expected degree of overlap in our dataset, an optimal

value of « could be chosen.

4.5 Conclusions

In this chapter, at first we presented a sparse-CNMF based system for single-channel overlapped
audio event detection, employing an efficient dictionary building method and a novel detection
approach. Attention was also given to background noise modeling and on experimentation with
different possible feature sets for the CNMF framework. Results obtained on Task 2 of the
DCASE’ 16 Challenge were satisfactory, significantly outperforming the NMF-baseline provided,
and reaching the 5th place in the rankings of this task.

Next, we investigated the performance of state-of-the-art NMF approaches for single-channel
overlapped acoustic event detection. We provided evidence of degradation of the existing method’s
performance under highly overlapped conditions, and we proposed a new method which tries to

alleviate this problem by employing a module for artificial generation of mixed data in the training
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phase. Probabilistic SVMs are also employed in the final classification step using all available
classes (isolated and mixed). Results obtained on experiments with synthetic and real events were
promising, outperforming the existing method in overlapping scenarios while also preserving good

performance in the isolated ones.






Chapter 5

NMF-based Multi-channel Overlapped
Acoustic Event Detection

5.1 Introduction

In the previous chapter, we have developed and presented NMF-based approaches that tackle the
problem of overlapped AED by using single-channel audio. However, whenever the setup permits
it, exploiting information from multiple channels can be valuable. In this chapter, we propose
two multi-channel extensions of NMF, suitable for overlapping AED [127]. The single-channel
baseline, upon which we build our methods, is again a sparse-NMF based approach, performing
detection at the frame level. Our first method combines the different microphones at decision level,
by summing their activation matrices to obtain an average confidence for the activation of each
class. Our second method considers the optimization of a novel objective function, containing a
multi-channel KL-divergence reconstruction term and a multi-channel class sparsity term. At each
time frame, this class sparsity term forces the NMF solutions to contain only a small number of
activated classes across all microphones. In this way, the updates of the activation matrix for each
microphone at each iteration are informed by the activations from the other microphones too, and
this leads to robust solutions where most of the microphones should agree. For our experiments we
use the publicly available ATHENA database [80], which contains real multi-channel recordings
from a smart-office environment including sixteen acoustic events and five types of background
noise. The results confirm the superiority of the proposed multi-channel approaches over the
single-channel baseline.

The chapter is organized as follows: Section 5.2 presents both the single-channel baseline and
the two proposed multi-channel approaches; Section 5.3 describes the database and experimental

framework employed and reports our results and, finally, Section 5.4 summarizes our conclusions.
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5.2 Methods

5.2.1 Single-channel baseline

Sparse-NMF is employed as the single-channel baseline system. For the m‘* channel, given
the observed matrix V,,, and the dictionary matrix W,,, containing atoms for all acoustic events,

sparse-NMF derives the activation matrix H,, by minimizing the objective function:

Jm = D(Vi[WiHy) + A Hp 1 - (5.1)

When employing the generalized KL-divergence error cost function D, the solution to (5.1)

can be obtained by means of the iterative update:

H,, + H,, © {W] (V,, @ (W, Hp))} 0 {Wh1y + 14},

where © and @ denote element-wise matrix multiplication and division, and 1y, and 1y are ma-
trices with all elements equal to 1 and dimensions equal to V,,, and H,,, respectively. Matrix H,,
is initialized with random positive values, and for its computation we apply 100 iterations.

After obtaining matrix H,,,, for each time frame, the activations for each class are summed
across all their atoms resulting in a new matrix H,,, € RggN , where C' denotes the total number
of event classes. Finally, detection is performed by thresﬂolding, i.e., class c is considered active
at time frame n, if H,,,(¢,n) > 0y, where 6y is a suitably chosen threshold.

Regarding the creation of dictionary matrix W,,,, we use the “exemplar” based method: Using
extracted isolated training instances from each event, we create the class-specific sub-dictionaries
Wgﬁ) € R];g Re fore=1,...,C, by clustering the available isolated instances with the k-means
algorithm ZRC centroids are selected). The total dictionary W,, is then created by concatenating
the C sub-dictionaries, i.e., W,,, = W%), ey ng )} € ]RigR. Figure. 5.1 shows an example
of a sparse-NMF decomposition resulting in the activation matrix H. In particular, matrix V con-
tains the log-Mel energies representation of a sound sample, containing three overlapping acoustic
events (“cough”, “spoon”, and “Skype call”’), and matrix W depicts the sub-part of the dictionary
containing atoms for these three events. Red-dashed rectangles drawn on H indicate the ground-
truth activation for each event. Clearly, atoms of each event are activated mostly in the areas where

the corresponding event occurs.

skype-call

X
spoon

¥ Al h,!

|4

cough

H

Figure 5.1: Sparse-NMF decomposition for an example of three overlapping acoustic events.
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Figure 5.2: Block diagram for the sum of channel activations scheme for multi-channel sparse
NME.

5.2.2 Sum of channel activations

In NMF-based methods, activations produced for each class are directly related to the confidence
about its existence. In this multi-channel approach, we combine the different channels at the
decision level, expecting more reliable results compared to those based on a single channel alone.

At first, each channel m acts independently from the others, performing single-channel sparse-
NMF by using its own observation matrix V,,, and dictionary matrix W,,, and outputs its activation
matrix H,,. Then, as shown in Figure. 5.2, the activations from all channels are averaged to obtain
the final activation matrix Hy:

1 M
H; = Vi Z H,,, (5.2)
m=1

where M is the total number of channels considered. Finally, summing of activations per class
and thresholding follow, as in the single-channel case.

5.2.3 Multi-channel NMF with class sparsity

In this approach, we extend the objective function of single-channel NMF in a multi-channel fash-
ion. Towards this end, we first transform the reconstruction error term to contain the sum of
KL-divergence errors from all channels. In this case, in each reconstruction term, each channel
uses a global dictionary matrix W that is built similarly to the single-channel case approach dis-
cussed at the end of Section 5.2.1, but with the modification that atoms are sampled for each class
from all training data across all channels. Further, we add a multi-channel class sparsity constraint
as a second term. This constraint is used to regularize the NMF solutions so that, at each time
frame, only a few classes are activated across all channels. As a consequence, the channels are
forced to act in a collaborative way and find solutions to which they agree.

The multi-channel objective function J is defined as:

M N
J = D(Vp[WHy,) + 2> Qhip, o har) (5.3)

m=1 n=1
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0K )T

where Hyp= [An 1, -oos b v] and B = [ o B 1T e, um p is the nt? column of the

activation matrix H,,,. The class-sparsity function €2 is defined as:

C M
Qb1 s oo harn) = Y logle+ > R, 1) | (5.4)
c=1 m=1
where hgﬁ)n denotes the part of the activation column that is related to event class c. This function
can be viewed as a multi-channel extension of the term used in [21, 131] to imply group sparsity.
In our case, groups are the event classes considered.
By majorizing the second term of (5.3), we obtain the following updates for activation matrices
H,, forallme {1,..,M},ce{l,..,C},ne{l,..,N}:

H,, + H, © {W'(V,, @ (WH,,))} (5.5)
M
WO« nld. o {(w<c>)Ti, + AT /(e 4+ ||h£f),n||1)} : (5.6)
m/=1

where € is a small positive constant, while column vectors fv and Thc have all their elements equal
to 1 and dimensions P x 1 and R, x 1 respectively. In our experiments, H,, is initialized with
random positive values, and updates (5.5), (5.6) are applied iteratively for 100 iterations.

From (5.6) it can be seen that, at each iteration, the update for each channel is also affected by
the activations of the other channels. In particular, when the total activation across all channels (as
computed at the previous iteration) is low for a given class, the activations of the m*" channel at
the current update are suppressed for that class. In (5.4), parameter A tunes the size of the impact
of this class-sparsity constraint: high values of \ will lead to solutions with only a few different
classes activated at each frame.

After obtaining the M different activation matrices for all channels, we compute the final
activation matrix H as in the previous method, using (5.2). Finally, we should note that dictionary
matrix W that is used in updates (5.5) and (5.6) of H,,, has its columns (atoms) normalized so that
their elements sum to 1.

It is worth mentioning that in our work we employ the multiplicative updates approach for
solving the NMF task, mainly because of their widespread use in related works and also due to
their high reproducibility. Alternative efficient algorithms for solving the NMF task have also been
proposed and applied successfully in the literature [120-122].

5.3 Experiments

5.3.1 Database

We perform our experiments on the ATHENA multi-modal database [80], captured in a smart of-
fice environment. In total, the dataset contains 240 one-minute long sessions of real recordings

divided into a training and test set. This database is suitable for multi-channel overlapped AED,



5.3.2 System implementation details 111

5350 mm

5750 mm

Corridor. .

Figure 5.3: Floorplan of the smart office used in the ATHENA database recordings. Microphones
(black), speaker (green and yellow) and event (blue) positions are depicted. Six microphones were
used in our experiments, marked with a red square.

as it contains speech plus fifteen acoustic events captured from multiple microphones (20 in total)
installed on the ceiling and walls of the smart space (see also Figure. 5.3). The acoustic events
are categorized according to their average duration to long events (“walking steps”, “cellphone
ring”, “keyboard”, “glass fill”, “coffee spoon”, “Skype call”, “cough”, “paper work”, “window
open/close”) and short events (“mouse click”, “keys”, “knock”, “chair moving”, “switch on/off”,
“door open/close”). To better approximate a realistic scenario, five different types of acoustic
backgrounds are also considered in the various sessions (ambient noise, fan, radio music, vacuum
cleaner, silence). Highly overlapped scenarios (40% of speech overlaps with other events) and ad-
verse noise conditions make this dataset challenging for overlapped AED. The ATHENA database

is publicly available '.

5.3.2 System implementation details

Next, we provide details about the various parameters of the systems described. Regarding au-

dio feature extraction, we employ 100 Mel-filterbank energies computed in windows of 30 ms

"http://cvsp.cs.ntua.gr/research/athenadb
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duration and with a 10 ms shift. Concerning the number R, of atoms selected per class in the
dictionary and the sparsity parameter A, we experimented with various combinations: R, &€
{20, 40, 60, 80, 100, 120,150} and X € {0.5,1,2,4,8,16,32}. Also for better background mod-
eling, we extract and store in the dictionary Iz, atoms for each type of background considered.

As a post-processing stage for the detection system, after thresholding the activations with
0, for each class, we unify active segments that occur with time distance less than ¢,, sec and
delete active segments with duration shorter than ¢; sec. All parameters were optimized on the
development set (see Section 5.3.3).

Finally, for our multi-channel approaches we employ the six microphones that are highlighted
with red marks in Figure. 5.3. The purpose of our selection was to uniformly sample the acoustic

space.

5.3.3 Experimental setup

In our experiments, we have considered three types of acoustic backgrounds, namely ambient
noise, fan, and silence, which are more common in real-life scenarios. These backgrounds cover
roughly 1 hour of recordings in the training set and 1 hour in the test set. From the corresponding
part of the training set, we select isolated instances of events and use them for dictionary building.
We also divide the test set into development and evaluation sets, of 30 min duration each. The
optimization of all system parameters was performed on the development set. The metrics used

for evaluation and comparison of our methods are frame-based Recall, Precision, and F-score.

5.3.4 Results

The three methods are evaluated and compared in the 30 min long recordings of the evaluation set.
As a baseline for our experiments we consider the average single-channel F-score, computed as the
mean of the F-scores of the different single-channel NMF systems (6 in total). This corresponds
to the expected performance we would get if we chose randomly a microphone in the smart space.
As an alternative baseline, we also show the results of the oracle single-channel, i.e. the best-
performing channel for the given evaluation set (central microphone of the ceiling in our case).
In Figure. 5.4, the results in terms of Recall, Precision, and F-score are depicted for the baseline
and the two multi-channel approaches. First, we can observe that both multi-channel approaches
outperform the single-channel baseline, achieving 6.80% and 15.44% relative error reduction in
terms of F-score (the sum-of-activations and multi-channel NMF methods, respectively). Further,
both multi-channel methods show significant improvements over the oracle single-channel result.
Also, multi-channel NMF with class sparsity performs better than the sum-of-activations method,
achieving 9.27% relative error reduction. Finally, the multi-channel NMF approach shows the
best results in all metrics, performing also at a slightly more balanced point between Recall and
Precision than the sum-of-activations method.

We can also observe that, in general, AED performance is relatively low, indicating the chal-
lenging nature of the database. Such can be primarily attributed to the highly overlapped condi-

tions, the adverse background noise, and the large variety of event classes considered.
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Figure 5.4: AED results on the evaluation set of the ATHENA database, depicted in terms of
Recall, Precision, and F-score for the three different approaches of Section 5.2.
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Figure 5.5: Activations across atoms in activation matrix Hy of the multi-channel NMF method.
Activations are averaged for a given time interval of 2 sec in duration and shown for two different
values of sparsity parameter A\. Events with green colors overlap in the ground truth.

Finally in Figure. 5.5, we can observe the effect of class sparsity parameter A on the solutions
for the activation matrices. In particular, we show the activations of the final activation matrix
H/, averaged in time, for a given time interval where two acoustic events overlap (“speech” and
“cellphone ring”). We can see that, when increasing the class sparsity parameter, the solutions
become more concentrated on the atoms of the given events. When A\ becomes lower, atoms from
more classes become activated, leading to false alarms in the detection. In the given example,
when A\=16 only one false alarm occurs for event “cough”, while for A\=2 false alarms also occur

for events “Skype call”, “window open/close”, and “mouse click”.
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5.4 Conclusions

In this chapter, we proposed two multi-channel NMF approaches for overlapped AED. The first
method combines at decision level the independent sparse-NMF outputs from different channels.
The second method considers the optimization of a novel multi-channel NMF objective function
including a class sparsity term. Such term introduces robustness, as it forces the channels to
activate only a few classes that they agree on. Both proposed multi-channel methods outperformed
the single-channel baseline, with the second achieving satisfactory improvements.






Chapter 6

Deep Learning for Multi-channel
Overlapped Acoustic Event Detection

6.1 Introduction

So far, we have considered NMF-based approaches for the overlapped AED task. Indeed, when
it comes to overlapping scenarios, NMF constitutes a suitable choice, as it has the natural ability
of detecting multiple events occurring simultaneously. Additional advantages of NMF techniques
include their interpretability, their ability to be efficiently trained on small amounts of available
data (even with no need for overlapped instances being available during training), and their ro-
bustness to noisy conditions. However, they have some disadvantages too, mainly including their
running-time efficiency and discriminative capability (when it comes to a large number of event
classes). An alternative family of approaches that have better discriminative power and also have
the ability to model simultaneously activated events are the deep-learning based methods. Indeed,
deep-learning approaches have been successfully applied to the AED task in recent years [22-25].
However, compared to NMF methods, deep-learning methods require much larger amounts of
training data in order to perform well, as well as the existence of overlapped instances during
training in order to operate in overlapped scenarios.

As aresult, the standard training approach for overlapped AED in deep-learning based systems
is to feed a multi-label neural network with overlapped instances that either exist in training or are
artificially generated from the available isolated instances. However, the number of possible event
combinations that need to be modeled grows rapidly as the number of event classes or the number
of simultaneous events occurring (polyphony level) increase. In such cases, efficient training of
the network can be problematic, as it depends on the existence or generation of sufficient and
diverse overlapped data, thus rendering this approach not scalable.

An alternative approach that mitigates this issue is to employ a sound source separation net-
work as a pre-processing step to AED, aiming in this way to approximately transform the over-
lapped task into the isolated one. Significant progress has been made in the domain of sound
source separation in recent years, including mostly works on speech separation [132-135], and

lately also on universal sound separation [136, 137]. Based on the above, some works employ
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such systems, reporting improved results for the single-channel overlapped AED task [138, 139].
Also in [140], in a multi-channel setup, the authors train their network using beamformed signals

from various directions of arrival with respect to the microphone array.

In this chapter, we present our work on the task of overlapped acoustic event classification
which is a special case of AED when the time boundaries of active events are considered known a
priori (classification only). In this context, we propose for the first time the combination of a multi-
channel sound separation network with a multi-label AED system for addressing the overlapped
AED task when the number of different event classes is large. In such a scenario, we examine how
the proposed approach can reduce the performance gap of a AED system between the isolated
and the more challenging overlapped cases. In particular, we employ a state-of-the-art multi-
channel sound separation network in order to exploit, additionally to spectral content, the spatial
discrimination of the events present in a mixture clip, while for the AED module we employ a
CNN-based architecture suitable for AED. For the resulting pipeline, we examine both sequential
and end-to-end joint re-training of the two modules, with the latter achieving the best performance.
In addition, we propose the incorporation of a polyphony detection network, which can selectively
apply the proposed system only to the overlapped instances during testing. Although our system
is scalable to an arbitrary polyphony level, in this study, we examine the case of overlap with
up to 2 simultaneous events. For our experiments we employ the ESC50 data collection [81],
as it provides balanced data from a large variety of different event classes (50), and in order
to design a multi-channel dataset, we combine it with real impulse responses from the DIRHA
smart-home dataset [61]. Our results show that in this challenging overlapped scenario, and under
moderate reverberation conditions, the proposed system can provide significant improvements

over a baseline CNN-based AED network trained with the standard multi-label training approach.

This chapter is organized as follows: Section 6.2 provides the description of the several mod-
ules employed in our approaches; Section 6.3 describes the database and experimental framework
used and reports our results; and, finally, Section 6.4 concludes the chapter.

6.2 System description

6.2.1 Baseline AED network

The architecture of the baseline AED network is depicted in Figure. 6.1. Given an input audio
signal s € RY (with N denoting the number of signal samples), the feature extraction stage
computes 64-band Log-Mel filter-bank energies (logFBE) and their Deltas using 0.4 sec Hanning

) ¢ R128XT \where T is the number

windows with 0.2 sec shift, producing the feature matrix X(
of resulting time frames. The feature matrix X®) is fed to the network that consists of a S-layer
CNN block, followed by 2 fully-connected linear layers. The output y € R® has dimension equal
to the number C' of event classes and is expected to have high values at the indexes of activated
events. For the multi-label training we employ the binary cross-entropy loss function. During

testing, active sources are decided by applying a threshold on the output.
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Figure 6.1: Single-channel deep-learning baseline architecture for acoustic event classification.

6.2.2 Multi-channel separation network

In our work we employ a multi-channel separation network originally proposed for speech separa-
tion in [141]. In this method the authors essentially improve their previous work on FaSNet [142],
which is a multi-channel filter-and-sum neural beamforming network operating in the time do-
main. The improvements include: (a) the incorporation of a transform-average-concatenate (TAC)
module that makes the network invariant to the permutation and the number of microphones, and
(b) the transition to a single-stage architecture where the filters for all channels are jointly esti-
mated.

The network takes as input time-domain mixture signals from M microphones and outputs &
time-domain separated signals. Regarding the loss function, similarly to [142], we use the mean
squared error between the FBE representations of the original sources, as captured by a reference
microphone, and the reconstructed sources at the output of the network. In our case, as reference

microphone we consider the central microphone of a 3-channel linear array (see Section 6.3.1).

6.2.3 Proposed system

The proposed system, as shown in Figure. 6.2, combines the separation and the AED networks in a

cascade. In particular, we employ the separation network as a pre-processing step, which provides
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Figure 6.2: Pipeline of the proposed deep-learning system for multi-channel overlapped acoustic
event classification.

the AED network with K separated signals in place of the original mixture. The idea is that,
given a well-performing separation network, the overlapped task can be approximately reduced to
classification of a set of isolated instances, therefore improving the performance of the system.

The AED network used in the proposed system applies an AED module with identical archi-
tecture with the baseline system for each of the K separated inputs S, &k = 1,..., K, and then
averages their outputs. For training the proposed pipeline, we examine two approaches:

e Sequential training: In this case, we first train the separation network with mixtures that are
artificially generated by the available isolated instances, as described in Section 6.3.2. Then,
we train the AED network on the separated signals that result from the output of the separation

network for the various mixtures.

o Joint training: In this case, the training consists of two stages. The first stage is the same with
the sequential training, except that the AED network is trained on ground-truth separated signals.
In the second stage, the two networks are jointly re-trained, using as input the mixture signals
from the microphone array and as loss function the binary cross-entropy on the final output. In
this way, the parameters of both networks can be fine-tuned towards the final objective of event
classification.

Finally, we also examine the ensemble of the baseline AED network with the proposed system,
by performing linear late fusion on their outputs, followed by thresholding.

6.2.4 Polyphony network

The proposed method is designed to operate on audio segments with overlapped events. In order
to evaluate it in a realistic scenario with both isolated and overlapped instances, we need a module
able to detect the polyphony level and selectively apply it only in the overlapped cases.
Polyphony classification modules based on deep learning have been recently employed with
success in the literature [143,144]. In our work, we implement a polyphony classification network

that exploits both the spectral and the spatial information by using logFBE features in conjunction
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with GCC-PHAT based features, computed for different pairs of microphones of the array. Simi-
larly with [145], we consider the GCC-PHAT features as GCC spectrograms that are concatenated
with the logFBEs to form the final feature matrix. In our case that we use a 3-microphone array,
the network takes as input the feature matrix [X(SO); GCClos); GCCBos2) | e R384XT wwhere s
is the signal captured by the central microphone my, and outputs a P-dimensional vectory € RY,
where P denotes the maximum possible degree of polyphony (in this study, P = 2). For the
polyphony network, we use the same architecture with the baseline AED network (just changed

the output dimension of the last linear layer), and the cross-entropy as loss function.

6.3 Experiments

6.3.1 Database

For our experiments we employ the environmental sound classification (ESC50) dataset [81].
ESC50 contains 2000 5 sec-long audio clips from 50 different event classes, belonging to vari-
ous sound categories such as animal sounds, natural soundscapes, human (non-speech) sounds,
domestic sounds, and urban noises.

In order to create a multi-channel dataset, we convolve the audio clips with real room impulse
responses (RIRs) from the DIRHA smart-home dataset [61]. In particular, we use a linear micro-
phone array with 3 omni-directional microphones (spaced 15 cm apart) placed inside the living
room of the DIRHA smart home, and 12 different locations with 2 possible orientations each for
the event sound sources. With respect to the central microphone, the T reverberation times for

the different source locations range from 0.58 to 0.83 sec, while their distances from 0.72 to 3.2 m.

6.3.2 Experimental setup

At first, all audio clips from ESC50 and RIRs from DIRHA are downsampled to 16 kHz. Before
the convolution with the DIRHA RIRs, we pre-process the weakly-labeled audio clips of ESC50
as follows: similarly to [146], we first remove silent areas using an energy thresholding criterion,
and then we split them to 1-sec segments with 80% overlap, thus producing about 34k clips in
total. In this way, we obtain more samples to train our network, and also our system can operate
at a finer temporal resolution. These audio clips are then split into training, validation, and test
sets at a 8:1:1 ratio. In the split we ensure that different sets do not contain clips from the same
recording.

In order to simulate a realistic scenario, we assume that for each set, 50% of their clips are
observed as isolated instances and 50% as parts of overlapped instances. The audio clips are then
convolved with RIRs to produce 1.5-sec long segments (by truncating longer parts). In the case
of overlapped instances, we randomly choose a location and orientation for each event and mix
them at SNRs between -2 and 2 dB. Overall, we end up with approximately 13.5k isolated and
6.5k overlapped instances in the training set, and 1.8k isolated and 0.8k overlapped for each of the
validation and test sets. Also, by following the standard data augmentation paradigm, we further

generate artificial mixtures from the observed isolated instances of each set by superposition. In
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Figure 6.3: Performance of the AED baseline network for isolated and overlapped tasks for event
sets of various numbers of classes.

this way, we also generate 30k overlapped instances for the training set (resulting in 36.5k total),
and 2.2k for each of the validation and test sets (3k total each).
Regarding the evaluation metrics, for the multi-label AED task we employ the F-score metric,

while for the performance of the polyphony network we use the classification accuracy.

6.3.3 Network training details

For training the networks, the Adam optimizer is used [147], with initial learning rate set to 0.001
and decreased to half every 30 epochs. All the networks are trained for 100 epochs, except the
joint network that is re-trained for 30 epochs. In the end, the epoch with best performance on the
validation set is kept. The batch size for the separation network is set equal to 20, while for the
AED networks is set to 150. Finally, the separation network is trained on the set of 30k generated
mixtures where separated ground-truth signals can be considered as known, and for the overlapped
task the AED baseline network is trained on both 30k and 6.5k overlapped instances of the training
set.

6.3.4 Results

In Figure. 6.3, we compare the performance of the baseline AED network for the overlapped and
isolated tasks as the number of event classes considered increases. While the performance clearly
degrades in both tasks, their gap progressively increases as the number of events adds complexity
to the overlapped task. Given a well-performing separation network, our proposed pipeline aims
to reduce this gap.

One way to improve performance in overlapped scenarios is to increase the training size. In
Figure. 6.4, the performance of the AED baseline network for both isolated and overlapped tasks is
depicted for different sizes of their training sets. As we can see, the performance in the overlapped

scenario improves as we add more data to the training set, but at a decreased rate compared to
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Figure 6.4: Performance of the AED baseline network for isolated and overlapped tasks for various
sizes of the training set.
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Figure 6.5: Performance of the AED network of Figure. 6.2 in the overlapped task (blue) for
various levels of separation quality (measured in dB). The red dashed line corresponds to the
performance of the baseline AED network on the isolated task, which can be considered as an
upper limit.

the isolated scenario. Although we can artificially generate infinite overlapped examples, the
contribution of the augmented data saturates at some point, as the diversity of produced mixtures
from a given set is limited. On the other hand, in the isolated task higher F-score values are
achieved for quite smaller training set sizes.

In Figure. 6.5, in an oracle experiment, we examine the performance of the AED network of
Figure. 6.2 in the overlapped task (using 10k training samples and sequential training), in relation
to several hypothetical levels of separation quality provided by the separation network. To simulate
the outputs of the separation network, we artificially mix the isolated sources at different SNRs.
While this experiment ignores the possible distortion artifacts that can be inserted by the separation

network, it provides evidence that even when residuals of the undesired source are present in



122 Chapter 6. Deep Learning for Multi-channel Overlapped Acoustic Event Detection

Table 6.1: Performance of the various systems for the overlapped-event scenario, in terms of F-
score.

System _ F-score 7(%)
T60=0.61s | T'60=0.80s

(A) Baseline (1 channel) 41.26 39.05
(B) Baseline (3 channels) 41.45 39.33
(C) Proposed - Sequential 44.72 38.41
(D) Proposed - Joint 47.46 38.75
Late Fusion (B+C) 46.20 41.52
Late Fusion (B+D) 48.95 41.95

each separated input signal, the separation module can significantly boost the performance of the
AED network, provided that its separation quality exceeds a certain level (~10 dB). Indeed, it
can be seen that as the separation quality increases, the overlapped task performance (in blue)

approximates the isolated task performance (in red) of the baseline network.

Table 6.1 shows the performance of the various approaches for the overlapped task in terms
of F-score for two different reverberation scenarios. In particular, the locations and orientations of
the event sources are selected such as the mean reverberation time is 0.61s and 0.80s respectively.
As a multi-channel extension of the baseline AED network, we perform decision level fusion on
the outputs of the three single-channel networks. In both scenarios, we observe that this multi-
channel version of the baseline is only slightly better than the single-channel one, as the logFBE
features are expected to be similar in adjacent microphones. For the lower reverberation case, we
observe that both of the proposed methods outperform the baseline, with the jointly trained variant
achieving the best performance (47.46%). Further improvements are observed with the fusion
schemes (46.20% and 48.95%), which indicates that the AED networks trained on the mixture
signal and on the separated signals learn complementary information. This corresponds to 7.7%
absolute improvement compared to the baseline (A). On the contrary, in the higher reverberation
case, the proposed system (D) fails to improve the baseline, due to inadequate performance of
the separation network. This is in agreement with the results of recent works on the performance
of separation networks under high reverberation conditions [148], as well as with our results in
Figure. 6.5, which indicate that separation needs to exceed a certain quality to boost the overall

performance. Nevertheless, the fusion schemes still achieve improvements over the baseline.

Table 6.2 provides the polyphony level classification accuracy of the proposed polyphony net-
work for various choices of feature sets. We observe that while all feature sets achieve good
performance, the best option is to combine the logFBE features with the GCC-based ones, leading
to 99.27% classification accuracy. With such performance, it is guaranteed that our pipeline will

be applied almost only on overlapped instances during testing.
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Table 6.2: Performance of the polyphony classification network for different feature sets, in terms

of accuracy.

Features Notation Accuracy (%)
logFBE [X(50)] 95.59
GCC [GCCos1); GCCBos2)] 98.68
logFBE + GCC | [X(%0); GCCtos1); GCCBo2)] 99.27

6.4 Conclusions

In this chapter, we examined the combination of sound source separation with overlapped acoustic

event classification in a multi-channel setup with a large variety of event classes. In particular, we

combined and jointly re-trained a state-of-the-art multi-channel separation network with a CNN-

based AED architecture, aiming to decompose the hard overlapped task into a classification of a

set of isolated instances. Our results showcase the potential of incorporating separation methods

in AED systems, albeit high reverberation scenarios can be a limiting factor for the performance

of the proposed pipeline.






Chapter 7

Conclusions and Future Work

7.1 Thesis contributions

In this Dissertation, we study the problem of Acoustic Event Detection in multi-microphone smart-

space environments. The contributions of our work are summarized below:

* At first, special focus is placed on the subtask of Speech Activity Detection, where in the
framework of multi-room smart-spaces, we develop an efficient two-step room-localized
SAD system, appropriate for voice-enabled applications. The developed system is a spatio-
temporal SAD module that is able to provide both the time boundaries of speech events
(“when”) and the coarse speaker position (“where”) at the room level. Also, the information
from multiple microphones is exploited in several ways, both in the first step of temporal
speech segmentation, as well as in the second step, in the extraction of the proposed novel
room-discriminant features. The developed system is computationally efficient and can be
trained without the need of a large amount of training data. Further, it remains robust to
reduced microphone setups, while also comparing favorably to deep-learning based alterna-

tives.

* Then, in the general AED task, we focus on the challenging overlapping scenario and, at
first, experiment with NMF-based approaches. For the single-channel case, we first propose
a method that improves the detection step of the well-known CNMF approach. Then we
study the case of classifier-based NMF methods where we examine ways to increase their

robustness in highly overlapping conditions.

* In the case of overlapped AED with multiple microphones available, we propose a multi-
channel NMF system based on the minimization of a novel objective function containing a
multi-channel sparsity term. The experiments, conducted in the ATHENA database which
contains real multi-channel recordings, confirm the superiority of the proposed method com-
pared to traditional NMF baseline methods.

* Finally, we focus on deep-learning based approaches for solving the overlapping AED task

in the challenging scenario with a large number of different event classes. Deep-learning
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systems with traditional multi-label training exhibit degraded performance when the number
of possible event combinations increases. To this end, we propose a deep-learning pipeline
that combines a multi-channel separation network with an event classification network, aim-
ing to approximately transform the overlapped task into the isolated one. Our results show-
case that the proposed direction is promising for the overlapped AED task, especially given
the evolution of separation networks in recent years. For our experiments, we employ sev-
eral synthetic and real databases recorded in suitable multi-microphone smart-space envi-

ronments.

7.2 Future work

In general, AED is a rapidly growing research area, and in recent years, several variants of this
task have been the subject of multiple evaluation campaigns in the literature [11]. In our Disser-
tation, we mostly focused on the aspects of multi-channel processing and overlapping scenarios.

Regarding future work, some of the possible research directions are summarized below:

* Regarding the task of room-localized SAD, we aim to further improve the performance of
our system by incorporating deep-learning based modules into our two-stage architecture
(e.g. replacement of GMM classifiers with CNNs in the first step). In addition, we intent to
develop a system for the task of room-localized overlapped AED, expanding in this way our

work on smart-space interfaces in the more general case of arbitrary acoustic events.

* Regarding the aspect of specially challenging overlapped scenarios (large number of dif-
ferent event categories, or high polyphony level), we aim to investigate additional neural
network architectures for better combination of the separation and detection concepts, as
well as to experiment with spatially distributed microphone arrays in order to better tackle

the reverberation issues.
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