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Abstract

Despite the apparent lack of a mechanism to resist lateral forces, rocking structures
have a remarkable capacity against earthquake loading. The Thesis presents a novel
modeling approach for the seismic response assessment of free-standing, rigid or flex-
ible, pure rocking systems. The simplified models adopted use beam elements which
are connected to a nonlinear rotational spring with negative stiffness that describes
the self-centering capacity of the rocking members. The loss of energy at impact is
treated with an “event-based” approach consistent with Housner’s theory. The ef-
ticiency and the accuracy of the proposed modeling is demonstrated with the aid of
carefully chosen case studies either using simple wavelets or historical ground motion
records. This modeling approach is extended to rocking frames providing a holistic
approach suitable for modeling a variety of rocking systems.

In addition, the Thesis presents for the first time a fully performance-based seismic
reliability and risk assessment framework for freestanding structural components and
contents that can be modeled as rocking rigid blocks. The seismic response of build-
ing contents depends on several parameters such as the geometry of the object, the
dynamic characteristics of the building and the storey that the object is located. The
main interest is focused on the capped structure-content reliability assessment. The
procedure of risk and fragility assessment considering the symmetric rocking blocks
is extended to asymmetric blocks while the cases of arrays of freestanding columns
capped with an architrave and rocking frames with unequal in height columns are
investigated. In the latter case one more Intensity Measure (IM) is examined.

The protection of cultural heritage structures and museum treasures against earth-
quakes is a subject of top priority. Large scale shake table tests, that took place at CEA,
Saclay, are presented on cultural heritage assets emphasizing on the use computing
models in tandem with experimental testing. More specifically, an extensive experi-
mental campaign on the seismic response of artefacts, with emphasis on statues and
busts is presented. The aim is to understand the seismic response of statues and busts
and then develop novel and cost-effective risk mitigation schemes for improving the
seismic resilience of museum valuable contents. Both non-isolated and seismically

isolated artefacts here considered.






Exktetapuévn lNepiAndn

Eicaywyn

To mpdéAnua TS AMXVIGTIXAC CUUTERLPORAC TWV XATUAOXELVWY, £lvon cupl xon cUVUe-
T0 xou apopd CUVAYWS O amhd €DPUCOUEVA, GXOUTTA 1 EOXUUTTO COUTH.  LUYYEOVKLC,
TepLAoUPAVEL TN OEIoUXY| OLEEEUVNOT| TNG CUUTERLPOQRAS TEPLEYOUEVWY XUTACKEUMDY.  2TA
TeoTo oTddl TNg Awdoaxtopinric Alatpldric uehethinxe 1 cuutepLpopd eAelicpa edpaldue-
VOV IXAUTTOV OWPETWY. 2¢ dxounta amhd edpaldueva couato utopoly vo Yewenloly ta
TepLEyOpEVL plog xataoxeunic xadog xar povoetoxd exvepata. H mo aniy| yopgr| Tétoiwy
cwUdTeVY eivar Tor optoywvixd ota ool TpayuaTonoinXE avdhuon VewpmVTIaC AMXVIOTI-
x1} xbvnom yOpw amd duo onueta. To mpoBinua e Ao Tixnc xivnong e€optdton amd T
YEWUETELN TOV CWUETWY XAl CUYXEXPWEV IO TNV TORAUETEO UEYEVOUS %ot T1) PUOWVOTN T
Apyxd, emhdinxe 7 ellowon xivnone amhd edpalduevwy cwudtwy. XNy enthucr auth
UTIELOERYETOL 1) OWAELN EVEQYELIS TOU AoBAvEL Y WEd, CUUPWVI UE TOAES TEOTYOUUEVES
UENETES, UOVO XaTd TN OTUYUNA TNS xeoLoTg.

[ tnv enfAuon tou TEOBAAUATOS TOLU AXVIGUOU TEOTAUNXUY ATAOTOMNTIXG TEOGOUOL-
opota factloueva ot pédodo twyv Henepaouévev Mtolyelonv xatdAAnAo Vo TpoGoUoLOGOUY
TN ALXVIC TIXY AMOXQLOT AXOUTITLY OWUGTOY Tou £0pdlovTon GE ULol dxauntn Bdor. Mta mpo-
COUOLMUATO UTIELGERYETOL 1) ATWAEL EVEQYELAS ELGAYOVTUS TOV GUVTEAED TY| ATOXATAUC TUOTC.
H avédhuon o xdide xpolorn otopotd xou emavalexivd Ue VEEC apynéc cuVITXEC Tou ou-
UTEQLAOPBAVOUY TN UELOUEVT YWVLaxXT| ToyLTNT YE BAOT TOV GUVTEASOTH AMOXATAIC TAOTG.
Mehethinxe, eniong, n meplnTtwon ebxountwy AXVILOUEVWY CWUATWY OTOU TEETEL VoL AT-
@UolV uodn peToavioels Aoyw xdudPne xon oL omolec TEoo TIEVTAL GTIC HETOXVACELS AOYW
xivnong otepeol owpatog. H axplBeia twv adpouepdy noviéhwy mou tpotdinxay xo yenot-
wormounxay 6to Thaioto g At EAEY Y INXE UE TPOGOUOLOOELS UE EUTOPIXO TEOY P
o [emepaouévwy Mtotyelwy oémou yenowonotfinxoy tetpoxouBud Ienepaouéva Xrtoryeio
xan oTouyelo emaghc Ye To €dagoc. Eletdotnxe, eniong, N amdxplon TEOEVIETAUEVKDY Al-
HWVILOUEVWY UTOG TUADUATOY. L€ GUVEYELNL TWV ATAOTOINTIXOV UOVTIEAWY, EYIVE EMEXTAOT)
NG TEOCOUOLWOTE YLl TNV TEPITTWOT TEOEVTIETUUEVWY OWHUATOVY UE VA TEVOVT TTOU DIEQYE-
Tow amé 10 %(EVTEo Bdpouc Tou urnocTuAmuatos. H enéxtoon €ytve ue v Tpomonolnon Twv
TORAUUETEGY TOL TROBAAUITOC XAl CUYXEXPUIEVA TNS SuoXaulag TwV IooBUVIKY EAATNElWY.

Y Awoxtopur) Atatel3r) pekethtnxe eniong to TeOBANUL Twy AXVILOUEVWY TAUGTWY
ToL ouVOVTOVTHL Eite o AwlOpEveES YEQuEeS elte oe xovooTolyiec apyalwy vaoy. Ele-
TAOTNXAY BLUPOPETIXES TEQITTWOELS XolU HOVTEAX TOGO evog Baduol eheudeplag 600 xa mo
Aemtopept|, OAa oTNEWlOUEVY OE GTOLYEld 50XV TOU GUVOEOVTOL UE TO €BUPOC XAl UE TO Xa-
8o TpwUo/EMOTOMO Ue 6Tpo@d ehatiipta. Hpaypatonoiinxe npocouoinot twy Stapdewy

TEPITTOOEWY AXVILOUEVWY TAUGIWY UE IXUUTTO XATHOTEOUN/ETOTONO XL UE dxaunta 1



e0xaunTa utooTLAGUaTe. Ernlong, pehetiOnxe n mepintwon yefone TEOEVIETUUEVLY Xo-
TOXOPUPWY GTOYEWY, 1) TERITTWOT TV BUO UTOC TUAMUGTWY TOU HORYOYOUY EVa TANGLO
xodig emiong xou To TEOBANU Thauciwy pe avicoldr Bddpa.

Y€ enduevo oTddlo, 1 Altpld| ETMXEVTEWINKE OTNV EXTIUNOY TNG CELOUIXYC TEWTOTNTAC
XOU TNC OELOUIXTS BLXVOUVEUOTC APEVOS O MYV OUEVY TAALCLOL XAl APETEPOL OE MEQLEY OUE-
VoL XAUTAOXEVWY. Apyind, TopoucldoTnxe To TEOBANUA TNS oEloWixrc TewToTnToS. Algpeu-
vinxa o dtdopa Métpa Evtaong xau ot didpopec Topduetoolr Andxplong tne xatooxeurc
£V TAPOUGLAG TNXaY ot p€dodol e Ti omoleg umopel va tpooeyyloelg To TEdBANua. XToY0C
ATay Vo TpoToel EVar OAOXANPEWUEVO TAXICLO YIaL T OEIOUIXT| TEOTOTNTA TAUCLUXGY XUTO-
OXEVWY UUE EUPUCT) OE TEPLEYOUEVA XATUOHEUWY.

To moAuodpoga xtipla, dTwe To LOUCELd, EYOLY CLY VA TEPLEYOUEVA TOU Elval TOAUTIA 1
avTixelpeva tou mavég BAdBec Toug xaTd T BLdEXEL EVOS GELGUOU TEOXAAOVY CTUAVTIXES
ouvéneteg. Iapouoidotnxe €va véo mhaloto extiunong e aflomo Tlag oL TNS BLoXUVOUVEU-
O”NG BOUIXWY GTOLYEIWY XoU TEPLEYOUEVWY TOL UTopoLY v Yewprdoly dxoumta Aviloueva
owpata. H oelopnr] andxplon TV TEPIEYOUEVLV XATUOXEVOY ECUPTATL Und TOAAES ORI
HETEOUG OTIWG 1) YEWUETELO TOU AVTIXEWEVOL, TA DUVOLXE YUEAXTNEIOTIXE TOU XTiplou xou
ToU 0pbYou oL PBeloxeTon TomodeTnuévo Eva avtixelyevo. Me Bdon to mpotewvouevo TAo-
folo, AouPdveton 1 amdxplon xdde 0pbdPoL xal 0T GUVEYELN UTOAOYI(ETOL 1) ATOXELOT) TV
TEPLEYOUEVY YPTOUOTIOLOVTOG WG EDUPIXY| ETULTEYLVOT TNV YpeovoloTopla amdxplong xdie
opogou. H xataoxeur) unofdiieton oc TARUOC Suvox®dy avoALoewy Ue TN Pordeio uiog
TpoTOTONUEVTS Loppnc TN uedodou Incremental Dynamic Analysis (IDA) xa otn ou-
VEYELOL XATAOHELALOVTOL Ol XUUTUAES TEWTOTNTAS TV AXVILOPEVODY COUATOY Yio xdde 6po-
@o. AlagopeTixég mpooeyyioeig yio TNV extiunom tng oelouxg TentoTNTAg oLlnTRYNXOY
eve Olepeuviinxay ol Aemtouépeteg g enthuong Tou mpofAruatoc. Iopoucidotnxe, Téhog,
Ulol ATAOTIONUEVT] TROGEYYIOT], OTIOU 1) TEWTOTNT TWV TEQIEYOUEVODY XU TNG XATUOXEUHC
eletdletan EexmpEloTd o o1 cUVEYEL Yivetow cuvévwor. H mpotewvduevn pedodoroyia
GUVOLALEL TIC UTAPYOVCES XUUTUAES TEOTOTNTOC Xot €TOL efvon XATIAANAY Yior TNV Y yoen
a€LOAOY o™ TG AZlOTUO TING TOV TEPLEYOUEVMY EVOS XTIOIOU, TEOGPEROVTAC ETUPXELC EXTI-
UAOELS TNG OELOUXTAC OLOXLVOUVEUOTC.

Téhoc, xatd tn dudpxeta Tne Awaxtophc Aotp3hc opyavainxoy xon Teayuatonotiin-
X0V TIELQOUATIXES DIEPELVNOELS OE GELGHUIXO TIPOCOUOLOTARN TOLU EAABAY YEU OE EPELVNTIXG
wvoTitouTo ot F'odhia xou €yve eneepyasio 1w BEBOPEVOY OF GUVERYATIA UE TNV EQELVY-

TIXY) OUAON TOU CUUUETELYE O aUTA.

Akl épeval cooLTO

Yy meplntwon twv Auevi{oUevey cwupdtwy, otny mapodoa Awtel3y| tapoustdlovTal
Yo TewTN Qopd Téocepa povtéha Hlenepacuévwy Xtoyelwy, tou ovoudlovton Spring Model

(SM), yio v mpocouoiwor tne oeouixic andxptone ereticpa eBpalOUEVOY CWUATWY, OA



xi

axohovdwvtag o Lyfua lo, mou Yo culntniel avalutixd oe enduevn evotnta. O TeelC
TEOTEG TORUANXYES TPOTEVOLY Evary HovoBdduto TahavTwTh xou 1) TETHETN ebval Eval HOVTELOD
HATAVEUNUEVLY ol v, Apyind, TapouctdleTal 1) EUPWC TIAL TWY HOVTEAWY VLol AXAUTTO GO
TOL UTO OTOTIXY| PORTION XoU OTAES TUAUXES DLEYEQOELS, EVEK OTIC EVOTNTES TOU axohov oLy
eZeTALOVNE T1) CUUTERLPORA XATw OTO TEAYHATIXES CELOUIXES DIEYEQOELC TOU EOAPOUS UEAE-

TOVTOC X0 TO EUXOUTTO COUOTA.

M0 ______
gRsin(a-0
S
=
= M, (1-06/c)
Q@ @
£
o
E L
=-—exact
.M~ linear
0 — -cons+(P-A)| |

rotation ¢
(v)

YyAua 1 (o) Heprypagh tou npotevéuevou povtéhou. (B) Hopopoppwuévn
XATAoTOON dxounTou Xat edxauntou oouatoc. (y) Koumilec ponfc-otpophc
evoc hxvilopevou oouatog (Mg = mgRsina).

To mpwto povtéro cupPBorileton wg SM1 (Spring Model 1) xan gaivetar oto Nyfuo 2.

To povtého autod ebvan évag povofdiuiog Tohavtnthc ye Uog (oo ye TV amdoTacT Tou

2h

o' 0
- 2b -

Yyfua 2: Spring Model 1(SM1) vy tnv npocouoiwon Mxvilduevou couo-
To0C.

iz

xévtpou wiloc (CM) and to onueio neplotpoghic, Hy = R. H oceiouxr dOvaun ovohbeto
oe 000 oploywvieg cuvotwoeg. Troldetoupe oL 1 ®detn oto R cuviothoa elvor auTh
mou Ya woéhdel otouc utohoyiopols. Emouévne, edv 1 oetouxt| dOvour etvan —Milg, Ve)Vo)

n ouviotwoa By = —miigcosa Vewpeiton oto SM1. Xpnoyonoimviag 10 Hovielo Tou
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oyfuatog la, To SM1 ulornoteitan av oploouue: to Ohog Tou TahavtwTy (oo ue Hy = R =
\/bz—l—ih2 X0 TN OTEOPIXT) O adpdveLag Tou xévipou udlac CM on ue Icy = (1 /3)mR2
%o TOMNNATAUGLAGOUNUE TNV CELOUIXT] XOTAYEAUPY| UE COSK.

To deltepo povtého mou mpoteiveton mpocdlopiletar we SM2 xon TEPLYPAPETOL EVVOLO-
hoywd oto My 3. To Udoc Hy tou povoBdiutou tahavtwty| eivat (60 Pe TO UGG TOU
Uhoug tou umhox (Hy = h), evéy we oo neptoteo@ric O oplleton 1 TEOBOAY| Tou ®EVTEOoU
udloc CM o1tn Bdorn), 1 1oodLvaya, o xouoc CM Peloxeton axpBoe méve and to onueio
neplotpogric. Edv 1 otpopued porr| adpdvetac we mpoc to CM eivan Icyr = (1/3)mR?,
agol to CM petatonileton opildvtia ot andoTtaoy (on e b, N oTEOPWT| poTY| adpdvELIC
Yot 10 povtého SM2 Vo ebvon: Iy, = (1/3)mR? + mb®. Me avapopd oto Lyrue lo, o
SM2 Bwpopgpmvetar av oploouvpe: Hy = h, Iy = (1/3)mR? + mb?, evé> dev Yeedleton

vo TolMamhacldooupe Ty xvnor Tou eddgoug Ye xdnolo péyedog, oe avtideon ye 1o SM1.

£ _CM

2h =0

- T

O O

Z
- 2b —-
Yyhua 3: Spring Model 2 (SM2) yiot Ty npocouolnct Axvi{OUeEVOU Ghuo-
T0G.

Y10 poviého SM3 (SpringModel3), vrnodétoupe 6Tt 1 udla TV COUATOC EfVOL CUYXE-
VTPWUEVY) 0TO OTUElD TEPLOTEOPHC Xou OTL 1) GELCUIXY| POETIOT EPupuéleTar ancudelog oTov
oTeoPX6 Pordud ehevdeplog Tou xouBou otpognc. H hoyw authc tng mpocéyylong mnydlel
amo TNy dueon olyxpelon tng eéiowong xvnomg Tou AxaUTTou COUATOC ot TNG e€lowong
xtvnong tou povoPddutou tahavtwty| mii + ci + ku = —Mmiig TOU AOvel éva hoylouxd Ile-
TEQUOUEVWY 2TOLElWY. Luyxplvovtag Ue TNV e£lomon xIvNong TOU GXUTTOU COUATOS Xol
umovétovtag OTL 0 Hovadog Baduog ehevieplag eivon 1 otpogy 0, aviixahiotolue T udla
m pe Ty oTeoPxY| pomy| adpdvelag Ip xon @apuOlOUYE T CELOULXT XATAYPuPY) OTO GTEOYL-
%6 Barduo ehevdepioc. T To dxounto oo, T0 16odYVaUo Tou ehacTixol dpou ku opileton

uéow e oyéong M — 6 tou ehatnpiou xat, ETOUEVKS, TEETEL VO TPOGOLOPICOUUE UOVO TOV

SM3

60 avaTEOTHE oL exgedleTon we: My = Ioég = Alpiig. H otadepd A mpoxinter oe
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obyxpelon pe tov 6po g pomic avatponiic Tou aduatog (EE. 2.3):

R -0
MEE — M5M® = 0 < miigRcos(ax — 0) = Alpiig <> A = %O“) (1)

H éxqpoon v 1o A nepiéyet v otpo@n 0 mou ebvar éva dyvemotog Yoo To TEOBANUA
uoc. Egboov 6 € [0,a], unopolue va agaupécoupe to 8 opillovtac to (0o pe tic oplaxés
Tég Tou, 0 = 01 0 = a. Auto elvon oA par TpocEy Yo, ahhd 1 axpiBelar apxeTA XAk
o ouyxexpéva, e€etdlovtag T oyéorn oTatxhc dOVaUNc-oTEoPHc Tou SM3:

MSM3 = MSM3 < Alyiig = mgRsin(a — 0) < Algmily = m*gRsin(a — 6) <
ESM3  mRsin(x—8)
mg Al (2)

Opilovtac Ag—g = mRcos(a) /Iy f Ag—y = mR/ Iy, n oyéon Slvaunc-otpoprc yiveto:

FEM mRsin(a —0)  sin(a—0)

= = (3)

mg Ao—olp cos(a)
FSM3 Rsin(a —6)
0=« :
— = sin(a — 6 4
g oo (a —0) (4)

-
-

—RB (Eq. 3.15) 3 h/b=10
- - SM3 (Eq. 3.19) =0 D 0 AAAAANA
—SM3 (Eq. 3.20) ) 1
) 10 20 0 10 20
1 1 .
3 hib=5
=0 0 WVVWW-—
i 10 20 o 10 20
1 1 .
hib=3
S o Npa
Q 0 Vv- < 0 “-:-Eé“-
‘ 4 g e SM3
0 0.1 0.2 0.3 0 10 20 o 10 20
rotation 0 time (s) time (s)

(o) ®)
EyAuad: (o) EOyxpion xomuddy d0vaunc-otpoghc yio 1o povtého SM3 yern-
owonoldvTag elte Ag—g eite Ag—y. (B) Llyxplon twv ypovoloTopidv 6 TeoPnhY
(aptoTepd), o ToyuTHTOVY (de€id) petall Tou RB xou tou povtéhou SM3 yua
évoowpaye R = 2m xou h/b = 10,5 xou 3 mou unoPdiietan o nahud Ricker
(xp = 3.6gtanw, w, = 37rrad/s).

To oyfuo 4o cuyxpivel TI¢ TaEATAVE EXPEACELS PE aUTEG TNG Abong Tou RB. Ko ta
0V0 Ag—p %o Ag—, elvon mdavd, oaAld T0 Ag—p €lvon ehapedc TO axEIBEC ot ETOPEVGC
mpoTdton. ‘Onwg xon mptv, To oyrua 4f3 cuyxplvel Tn ypovoioTopla amdxpiong Twv 0 xau
0 Yo €va Sxounto oouo he R = 2m xou évoy cUUPeTend Tolud Ricker Selyvovtac mog 1)

oUyxAon pe ) Aoorn RB etvan eCanpetint| yior Ag—p.
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To tétopto yovtého elvon 10 yovtého xataveunuévov polov (mmSM) tou otnpileto
Cavd oty Omapdn evog un-yeouuxol ehatneiou otn Bdon omwe gaivetar oto Lyrua 5.
To mpoTeEVOUEVO UOVTEND TEOXUTITEL aXOAOVIWVTOC UL TEOCEYYIOT) ToEOUOLYL E(TE UE TO
SM1 eire pe to SM2. Kot oTic 800 TEQITTWOELS, T0 YoVTEAO amoTeAE(Ton amd 11 UdlEC Tou
XAUTAVEUOVTOL E{TE XUTA KOG TNG BLoty VIO TOU GOUITOS TOU GUVOEEL TO OTUElD TIEPLOTEOPTC
HE TNV omévavTt emdve Yovia Tou oopatog (Ewdva 5a) eite xod) Oog tou odpatoc (Ewxdva
53). H Beltepn npooéyyion etvon xovtd, odhd Oyt TopbUOoLd, YE TO HOVTENO TIOU TEOTENVOUY
ol Vassiliou et al., 2016. ¥tnv npwtn tepintwon, to cbotnua eivon évag tpéolog ue Oihog
2R xou n pdlec otoug petagopixols Baduolc ereudepioc 1 xodepla lon ye m; = m/n
xou Undevixég pomég adpdvelag, I,; = 0. Opolwg ye to yoviého SM1, 1 emtdyuvon Tou
eddpoug molanmiaoidleton enl cosw. Xtn BelTEEN TMEpInTwaoT, o mpoBohog Eyel Oihoc 2h
xou ot xouPot éyouv: pdla m; = m/n, xoa oTpo@ix pomr adpdvelg I, ; = m;b*, 6mou b
elvor 1) YeTaTomioN x&e Palag M, amd Lol XATAXOPUPY) YROUUT ToU SlEpyETAL antd To oNuElo
neptotpognc. T éva oploydvio omua, to b elvat (60 pe To PLIod TAATOS TOU CWHUATOC. XN

OeVUTEPY) MEQITTWOT), 1) CEIGUIXY| XATOYEAUPT) OEV TOANATAACIALETAL UE XATOLOV 6RO,

2h 25\ N

FCosa

'
’///9//////////////////////////////.
~— 2b —

(o)
Yyhua 5: Multimass Spring Model (mmSM): (o) H pdla efvon xotavepn-
wévn otn darydwvio, (B) 1 udlo eivon xotaveunuévn xo” Opoc tou adpatoc.

2 VUTtepLPop i ALKVLLOEVOV TIACLLOLOLK@WV KOLTOLOKEV WDV
o€ CELOMLKT POPTLON

Y€ CUVEYELN TWV OTAOTIOMNTIXOY HOVTEAWY V1ol AXVILOUEVY GOUOTA TUPOUCLALETAL 1) TEO-
o0UOlwET AXVILOUEVODY TAUICLOXDY XAUTUCHEVMY TOU ATOTEAOUVTOL OO AXOUTTES 1) EX-
TTEC XOAOVES Tou ebvan efte ehedepa edpaldueve elte mpoevtetopéves. H povtehonoinon
emexteiveton oe Aevilopeva mhadotor pe N xohoveg/xioveg xou mAaiola pe LTOGTUAGDUATY

OLapopeTixon Udouc.
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[ évar Auevilouevo mAokoto Pe dxaunTor o Totyela TEOTEVETAL 1) TPOCOUOIWST) OTWS (Po-
tvetow oto My 6o To mpocouoiwpo autd elvon pLor ETEXTACT TOU LOVTEAOU Ylol SXAUTTTA
owpaTa ToL TEoTAUNXE 0T AlTEBT] XU THEOUGCIAC TNXE AVIAUTIXG YO XATOLES YRUUUES TLO
mdvew. To mpocopolwua amoteleiton amd un-yeouuxd oTEOPIXE EAATARLY OTIC OLETILPAVELES
AVopoU, dnAadT) UETAHED TOU UTOC TUAMUATOS XoL TOU EO0A(POUC XL ETHOTC UETAUED TNE Xo-
ELUYPYIC TOU UTOC TUAWUATOS X0k TOU XOTAO TEGUTOS/emotuhion. Extde and tic yewpetpinés
TOEUUETEOUE oL paivovton 6To oy Yo 6o, elvar emtlong amopaltnTo Vo oploTet: (i) To UNTEOO
udlog, dnhady| 1 petagpoptx udla xan 1 oteoxY| pony| adpdvetac, xat (ii) n oyéon M — 0
TWV OTROPGY ehATNEiWY.

Aedouévou 6Tl ToL COUTA TOU GUVIGTOVY To Thaicto eivon dxaunta, 1 udla ymopel vo
ouyxevtpwiel 610 péco Uog g xdie xoAmvag OTwe @aiveton oto My 6a. ' To Aéyo
auTo, etodyovTon Vo Bondntixol xéufot, Cq, Cz. Autol ot xoufol unopolv va aueAntoly edv
1 pélo twv oTUALY Veweniel undevixy| 1 edv mpotyunlel n Teocéyylon Swveunuévne udlog,
yioo Ty omola yivetar oulAtnomn mopaxdtw. Onwe gaivetow oto Xyrua 63, n andotouon
METOED TOU Ve %ot TOL X3Te onueiny teplatpognc, Snhadh tov xéufwv Dy (¥ Dy), and
O1 ( O2), etvau 2R, 6moU R? = b? + 2. 'Eto, yio 10U GTUROUC, TO untewo pdlag Yo
oynuatiotel Tonovetwvtag pdla lon e me otouc xouBouc Cp xaw Cp xou oTpo@IXt| POTN
adpdvetag avtiotowya lon e Icp = I = (1/3)mCR2 + mcb?. T NV d0x0, ot avtioTotyot
xoufot eivon Dy xan Dy, 6mou 1 uetagopiny udlo Vo ebvon mp/2 xon 1 CUYXEVTPWUEVT
otpoouct| Ipts = Ipas = (my,/2)(2b)? (Ewéva 68).

E | —00
m,/2 % % m,/2
Dy D5
D1 S DZS ) )
Mg, lcq M, lco

C C
'©— @2 2n 2h
h

O | Oz ] L,

Y S

(o) ®)

EyAua 6: (o) Hpotewvouevo mpocopoimuo yio Mxvloueva Aot Ye dxpomTo
uéln, (B) Aemtouépelol TOL TEOTEWOUEVOL TEOGOUOLDHUTOC.

Y10 Eyfua 6o, ot xouPBor ot denogpy| eupavilovion oe (ebyrn master-slave, 6mou o

delxng “s”

YENOUWOTOLETOL Yo TOV 0ploud Tou deuTEPELOVTOS XOUPou. Katd yevixd xo-
VOVOL, Ol TOGOTNTEC TOU TEOEPYOVTOL amd Toug 6TOAOUC Tpoc Thievtal oToug BeuTepedOVTES

x6uBouc Dis (Y Das), evéd o1 mocdtntee mou avagpépovton otn doxd (udla, optia, xAm.)
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tonoYetolvton oToug xVptoug xéuBouc, Ty Dy (f D). To un-ypouuixd ehotiipto apvntixnic
duoxaudloc TotodeTolvTon GTIC EMPAVELES TAAAVTWONG XGVE UTOC TUAMUATOS, ONAABTH OTN
Béomn, O1, Oy xou o1t oUvdeon otilouv-emotuliov, Dy, Dy (Ewéva 6).

H amoppdgnom evépyetag yia To TpoTeEWVOUEVO Tpocouolnua eninedou TAaciou oxohouviel
v Tpocéyyion “event — based”, mopbuot e ot Tou vodethtnxe Yo To hevilbuevo
owua. Enopéveg, anmicwa evepyelag oupfaiver uévo dtav cupfel xpolon, 1 onolo Aaudve
Y WP OTAV TO TEOCTUO TNG GTEOPNG AVTIoTEEPETAL. T oTiyUr| Tng xpovong, 1 avdhuoT dLo-
AOTTETAL X0 OTY) CUVEYELL GUVEY(LETOL YENOULOTOUWMVTOS WS AEYLXT) T UTNTA TWV ETOUEVELY
YEOVIXOY BNUdTmy, TO YWOUEVO TNg TayUTNTOG TTEWY amtd TNy xpovon xdie Poduol eheuidepiog
entl TOV OUVTEAECTY| AMOXUTACTAONS (E€.2.14). Amouteito TEOGOY 1) 0T GUVOEST) OTUAOU-
emoTUAlou 6oL P6VO 1) PETUPOEIXY| Ty OTNTA TOU XVEtoL xOUPoL xat 1) Yewvioxy| TaydTnTa
TOU UTOTENOUC XOUB0U TIRETEL V0L TOMATAACLACOVTOL UE 7 frame- AUTO OQEINETL OTO YEYOVOC
OTL 1] POTIY) ETAVUPORAC EYEL CLYXEVTPWUEL 6TOV deuTEpELOVTA XOUfo0.

Yy mepintwon twv mhaolowy pe ebxantouc oTtUAOUS, 1 ATACUCTERT TEOCEYYIOT Elval
var apehniel 1 pdlo Tou oTOAoU, xaddg UTopel Vo eivol oMUOVTIXG UXEOTERT And AUTH| TOU
XOTOO TEWPOTOC/emoTUMoU. Qo1600, €dv Angdel undn 1 udla, uropet eite va xatoveundel
oe n xéuPouc xad’ Gog (Eyhue 7, aptoteph oTHAN) 1 avtl autol va yenodonotnlel o tpo-
oéyylon dloveunuévng udlog, otny onofo 1 wdlo xortovéueton xad” Oipog tou péroue (Ewxdva
7, 0edid). YV mpddTn mepintwon, 1 udla xatavéUeTon o€ 11 xOUBoug (00U BLaC THUNTOS TTOU
€youv pala m; = me/n. X1n deltepn meplntwon, N udlo xorovéueton xad” Oihog, dnhadt| we
m = A rho/2h xa. m. = A rho, émou rho elvar 1 TuxVOTNTA TOU LAXOU o A 1) Blatou

oL oTVAou. Ot 800 emAoYEC UINTOUVTOL TUPUXATE.

Bl /2
m
D, b
D2s
i m=2pb 2h

Yyfua 70 Auewillopevo mhadolo pe edxounteg xohwveg: 1) pdla etvon ouyxe-
VTpwUéVn oe 1 x6uBouc (aploTepd), 1 SlapopeTixd o GARY Topahhoryy) Yern-
owgonoteltat avahdyme xou TV duvatdTnta Tou Aoylouxol (Je€Ld).
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H mpotn emdoyn eivon va cuyxévipwoouue tn pdla o xoéufoug iong amdotacng .
Enopévee, 1 petagopixty puala xdde xouBouv Vo ebvon m; = me/n xou n otpogixy) pomh
adpdivelag Tou xouPBou i oe oyéon Ue Evay dEova Tou BiépyeTon and To onueio tepiloTeogrc O
ebvon In; = mlhl2 Auth n mpooéyyion €xel xdmola, uixper) evonoincio, otov aptiud Twv ualoyv
omwe Qavnxe yioo To ehebdepa edpalduevo owpa arndé Diamantopoulos and Fragiadakis,
2019. Emumhéov, edv 1 andotoon udlac i and tov tdho neptotpoprc eivan by = (2i/n)Rcosa,
1 GUVOAXT| poTH| adpdvelag xdde otllou opiletan we: [ = Zmihf = (4/3)m:R*cos’a.
261600, 1 axpPric TWY TNG CUVOMXNC OTEOPIXNC POTTG adpdvelag elvon auUTrH NG omAd
edpalbpevne xohodvag, dnhadnf 1) = (4/3)mcR2. o vor aponpedel autd To wixpd o@diua,
wiet mp6éoetn mocdTTe fon ue 8lp; = (1) — Ip)/n = (4/3n)mR?sin® a mpootideton oe
xadévay and Toug xouPoug n.

H mpotewduevn yedodoroyia emextelvetar oe mhaiolo ye mpoevtetopéva Padpa xadog
enlong oe mAaiolo e LTOC TUAGMATA ToL OTolor eV €YoLY To (Blo Uog, elvor TpoevTETOPEVY
/%o amoteholvTton and neplocdTEpOUS amd dUo otvloug (N otbhhot). H Sodixaoio enéxta-

O™G TEPLYPUPETOL AVOAUTIXG OTO AVTIGTOLYO XEQPSAALO.

025 035
2 2
7 7
Yyfuo 8 Avolutix) mpocopoiwor Axvilouevou miaictiou pe teld UTOCTU-
Aopota (N = 3).

AvdAvon alomiotiong AkVLLOEVWV KLTOLOKEVWDV

O xaumiieg tpwtdTNTOC Elvan évar TOADTIWO €pyolelo yiow TNV exTiunom Tng oelouixic
dloavdlveuong evog cuocthuatos. H avdhuorn tpwtdtnrag avoamtiydnxe apywd yio Ty
ovdhuoT TG alloToTOG TRV TUEHVIXOY CTadUGOY OE Wiol TEooTdIE Var SlaywELoTEL TO
TUAMY TNG OTUTIXNG AVIAUCTC a6 TNV avdAUGT) OEGULXOU XxVOUYOU Tou OlevepYeltal amod
Yewopohdyoug. H avdhuon tpwtétnag amontel Tov uToAoyloud Tev miavotitwy utépfaong
evog aptipol oplaxmv xotactdoswy. Emouévng, 1 ooy TpwtéTnTa EVOC CUCTANATOC
ebvon 1) TavoTNTAL WUiot TORAUETEOS ATOXPLONG (EDP) va unepPel o oploner) Tun edp xou

oplCetan we:



EyAua 9: (o) Fewpetpior evoe mhawoiov pe Bddpa Sopopetinold vhou xau
(B) mpotewduevn npocopoino evoc Mxvlouevou thouciou pe dxpmta Bddpa
BlapopeTinol ihoug.

Fr(IM) = P(EDP > edp|IM) (5)

Mo v umohoyiotel 6wotd To ohoxhpwua tne EE. 5 mpoodiopilovtar teeig mdavol tpdmot
amdxpiong: (i) To cloTNUO TUPUUEVEL OE MEEpia XorTd Tn) SLdpxeLo Tou oelopoy, (ii) Axvileton
xou (iii) avatpénetar. Xpnowponotwviag to Oedpnua Ohurc IIavétntag, n tpotétnta (EE.

5) urohoyileton we:
Fr = P(EDP]NOUplift)PNOupliﬁ + P(EDP|Uplift)Puplift + P(EDP|Ovtn)Pomn (6)

6nou P(EDP|NoUplift), P(EDP|Uplift) xoo P(EDP|Ovtn) eivan o1 mbavotnree unépBo-
O™NG KL OPLIXNE XUTAC TUOTG OTAY UTAEYEL NeeUia, Aviouog xon avateotd), avtiotorya. T
oduato mou dev Yo Aevilovtan (Bploxovtar oe npepior), P(EDP|NoUplift) = 0, evé yu
COUITA TTOU OVUTEETOVTAL P(EDP|Ovtn) = 1. Emoyevewe, o utoAoyiouog Tng TewtoTnTog

amhoToleltal oc:
Fr = P(EDP > edp|Uplift)(1 — Poyin — PNoUplift) ~+ Poytn (7)

Trovétovtog 6Tt T BEBOUEVAL TWV TEPLTTWOEWY Tou Aviovton axoloudoly hoyoprd-
noxavovixn xatavoun, to P(EDP > edp|Uplift) pnopel vo unohoyto el avahutixd pohic
UTOAOYLOTEL 0 P€GOC 6POC Xou 1) TUTLXTY AmOXALOT TV hoyaplduwy Twv Hopuuétewy Andxpr-
ong, T oot SUUBOMZOVTUL WS MlogEDP X0 TlogEDP, AVTIOTOL(OL AV oUTE UTOAOYIOTOLY,
umopoLY va yenotponotnoly yio Tov utohoyilopd tne mavétntag o EDP va umepPel o

TWH XATOPAOL edp YenoWoToumVTaS THY AOY LYY XOTOVOUY:

(8)

log(EDP) —
P(EDP > edp|Uplft) =1—- & ( o3( ) P‘logEDP)
UlnEDP
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omou edp etvan 1 T xotwAiou Tou EDP mou unodnhover unépBacm Tng optoxnc xotdo Ta-
ong mou e&etdoTnxe xou P elvon 1 TUTIIXY HAVOVIXT] XAUTOVOUT).

H oeouxr Swouvdiveuon exgpdletar w¢ umépBaon g Yéong ETAOLIG OUYVOTNTUS
(MAF) g opoxhic xotdotaone. YTwodetwvrac tov timo tou PEER, to MAF unopel
vo utohoylo el pe T Borlela Tng Exgpaong:

dIM

Arpp = / P(EDP|IM) ‘ AIM (9)
IM

6mou Appp ebvon 1 péon ethola ouyvotnto tou EDP xan dArp ebvon 1 xhion tng xaumding
oetopo xvoivou. H péon etholo cuyvotnta uEpBuone ULag oplox|c XATAGTUOTG Ao-
Bdvetan omd TNV TR WYO TNG XUUTOANG GEWUX0) XWVOUVOU Afpf, EXPEACUEVY) W GUVAETNOM
tou IM xou v xounOAn tpwtétnrac P(EDP|IM) tou Aaufdveta o€ oyéon pe to EDP
xaw to IM mou e&etdlovtar. Yto mialoto tne Atatelfric eCetdotnxay dlagopeTinée uédodol
TEOCEYYIONS TWY XUUTUAGY TROTOTNTAC oL oToleg culNTwVToL Sle€odixd xou YiveTon EQupuUo-
YY) TNG TROTEWVOUEVNS UeVODoAOYING OE TEQITTWOELS AMXVILOUEVWY COUATOVY, XIOVOO TOLYLOV
xou mhoustwy pe aviooldr Bddea.

H mpotewvduevn yeodoroyia cuvoudlel utoroylo Tixd epyaiela xan Slodixacie allohdy -
ong T o&lomo Tl TPOXEWEVOL VoL UTOAOYIGTEL 1) TRWTOTNTO X0l 1) OEIGUXY| SLotyOUVEUGT)
EVOC CUCTANATOC YLt Evar €0p0¢ 0pLoX@Y XaTaoTdoewy. To anodextd eninedo PAILNC e-
CapTdTon amd TN CELOUXT DIEYEROT) XOL TN OTOUBNOTNTA TNG XxuTooXeLS. ['iot wovohrdixoic
xloveg xan xovoctotyieg, N xatdpeeuon eivon peiCovog onuactag (htnua. O xoadoploudg
TV oToduoY BAaBoV Tou Efval ATOBEXTES YLt UVNUELUXES XATUAOXEVES OeV Elvan amAdg Bedo-
uévou OTL amautel ouvaiveon YTl SLopdenmy ewdxoThTwy. Tapdha autd, ctvar Béoto dTL 7

THovoOTNTO XUTAPEEVCTC TEETEL Vo Elva 66O TO BUVITOV UXEOTERD.

AvdAvon oiloToTiog TeEPLEXOMEVOV KOLTOLOKEV OV

To mopomdve mpotevéuevo mAaloto yior TNy extiunon e olomiotiog o AMxVi{OUEVES
HATOOXEVES, YEVIX, ETEXTAUNXE OE €var exTeVEC Thaiolo To omolo Tapouctdlel To TEOBANU,
T Sudpopar Métpar Evtaong xan tic Hopopétpoug Andxpione xadde xon TIC BlopopeTinég
uedodoroylec pe Tic onoleg unopel va TPOCEYIGTEL N OELOUIXT] TEWTOTNTO XL 1) OELOUIXN
OlovdlveUoT) o mepleyOueva xataoxeucy. H yedodoloyio mou oaxoroudlnxe yio tnv
exTlUnom TNg CELOUXNS AMOXELOTS TWV TEPLEYOUEVGY XTIV QalveTal GUVOTITIXG GTO My AU
10a. To xtipio umdxelton o€ pLa yeovoioTopla EMTAYLYONS Xal ATOUNUEVETOL 1) ATOXELO
TOU 0p6POL eVOLPEOVTOG. H emtdyuvon 1wy 0pdYwy yenowonolelton w¢ emTdyuVoT o
Bdomn eVOC IXAUTTOU CWUATOS XU TEOXOTTEL 1) AMOXELOT) Tou. AUTH| 1) EVVOLOAOYIXE ATAY)
otadactor amontel 600 HOVTEA, EVAL YO TNV TEOCOUOIKGT Tou X Tiplou xou Eva BelTEPO Yia
TNV TEOGOUOIWGT TV aveLdoTNTwY TEplEyouévwy. Emniéov, uetd and xdlde avdhuon mou

TpoyUaToTotelton yior To xTiplo 1 ypovoioTopia TNg EMTAYLVOTC TEENEL Vo amoUnXEvETAL Yid



XX

x&de 6pogo. Auty 1 Sadixacio yenouylomoleiton enlong Yol TNV TAURAYWYT) TWV XAUTUADY
TEWTOTNTOC TWV AXVILOPEVODY CWUATWY TOU UAS EVOLPEROUV.

H agiohdéynon tng oeiopinic amdxplong anutel tov xodoploud twv Métpwy Evtaorng
xou Ty Hopduetpny Atoxplong 1600 Yo TNV XATUACKEUT) GCO %ol Yio To TEQIEYOUEVA. AuTo
10 BAua ebvon emlong onpoavtind yia v extiunon g tewtotntag. To Métpa Evtaong
AVTITPOCWTEVOLY T GEloUXT| EvTaoT, eve ol Hapduetoor Andxplong yenotuonoolvto yio
Vv o&lohdynon tne anaitnong N e oetouxhc PAEBnc. To T Bidxplon tTwv yeyedomy Tou
AVAPEPOVTOL OTNV XATUOKEVN xatt TO MxVIOUEVO oy, YenotlonoolvTor ot exdétec “s” xou
“b", avtiotoya. Ernopévoc, EDP®) you IM®) eivon t0 IM xon 10 EDP NG XATUOXEVTS,
evey ta EDP®) o TM®) aVTLIOTOLY 00V 0TO dxaunTo omua. Lo éva owua otov 6pogo J,
w0 IM®) Hg ouvunintet ye (1 Yo npoépyeton and) to EDP]-(S) NG XATAOXEUAC 1), OmAd, TNV
ETUTAYUVOY) TOU 0pOGOU 1) oTtolal Eivol 1) UEYLOTT ETULTAYUVOT) TOU £BGPOUC Yiot TO AL OUEVO
onua. Enopévee, n emhoyn towv EDP]-(S) wor IM©®) 9o TEETEL VoL ElVoL GUVETAC.

[Mo xotaoxevéc ouvAoug WOLOTEPLOBOU Lol AVTICTROCKWTEVUTIXY ETAOYT Yiol TO PETEO
évtaong Tou xTiplou IM®)| eivan T QUOUATIXY ETUTAYUVOT TNG TEMOTNG LWOOUOPPNG UE o-
néoPeon 5%, Sq(T1,5%). Emmiéov, 1o mo ouvnhiopévo Métpo Andxrpiong eivan 1) puéytot
OYETXN UETATOTION PETOEY 0p0¢wV. §26T600, 6edouévou 6Tt 1) e TLIALOVUE G AL OUEVY
OoWUATA, ovTl YL TN UEYIO TN UETUTOTULOY) TV 0p0PwY, Vol TEETEL VoL ETUAEYEL Ui DLUPORETLXN
TOGOTNTA (G EDPY), evéy 1o UETEO EVTOoMG IM®) ey évTa Sa(Th,5%), av xou dhha
uETpa ebvon emtiong duvaTd.

[oc évor Avenilopevo oopa, 1 mo StoucInter emhoyy) IM etvan 1 péylotn edaguxr emi-
wyuvon (PGA), agol eivar 1) topdueteog mou xoopllel T Péytotn PoTH avVATEOTHS, EVEK
10 PGA xodopiCet, enlong, edv Yo cupPel hixviopode, ohiodnon 1 xovéva amd ta 80o. Av xo
oev elvou amapaitnTto, T0 PGA xavovixoroleiton pe gtana xo €tot o IM tou cwuatog elvou
IM®) = PGA/gtana, 6mou 1o IM®) < 1 UTOONAGYVEL OTL TO COUOL TUPAUEVEL oxivnTo.
Emniéov, nahoudtepeg €peuveg €deilav 6L 1o PGV etvan eniong par onuavtind Hopduetpog
Andxplong Tou TopEyEL pLol XOAT) CUOYETION UETAED TNG CEICUXHC ATaUTNONG XL TG AVATEO-
TS TV CLUATOVY. o Adyoug anAdTnTog, ETAEYOUNE Vo unv xavovixorotficouue to PGV,
av xou ot Bihoypapla €yel mpotadel 1 xavovixoroinuévn tocotnta pPGV / gtana g IM
xot8AANAo yior huevlopevee xataoxevéc. Ta anotehéopoatd pac €deidav 61t 1o PGV (4 1o
PFV) omobidet xohd we IM xat ¢ ex tovtou emthéEoue Ty amholo Tepn duvath TEp{nTmon,.
Emopévwe, to ImM©®) Yo v oOpa 0ToV 6p0o | Tou AuuBdveTon Lo, elvon elte 1 xovo-
VIXOTOLNUEVT] ETUTEYUVOT| TOU 0POPOU UVAPORAS PFA]-, elte 1 ToyUTNTAL 0POPOU AVAPORAS
PFV]-. H emheyuévn nopduetpog Yo yenouylomoinlel emione we TupdUeTeos ana{tnone Tou
xTiplou EDP].(S). H xotoahhnhétepn nopduetpoc anaitnong EDP®) YLt T0 AVILOUEVO GOU
elvon 1 ywvia 6Teognc 0 XavovixoToinuévn and T padvoTnTo &, ONAAON EDP®) = 16|/ a.
To EDP xon toe IM yior TV xaTaoxeLT| Xt Tor ave&dpTnTa Tepieyopeva ouvoillovton 6Tov

TTivaxo 1.
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Yo mhadotor g Awdoxtopiniic AotplBhc €ETAoTNXOY BLUPORETING. GOMOTA, OLUPOPETL-
%€¢ YEVYoBOL Yot TOV UTOAOYLOUO TNG CELOUIXNS TROTOTNTUC X GELOUIXTS OLaxtvOUVELSTG
xou TEOEXLPAY GTUAVTIXG CUUTERAOUATA TOU XahoTOUY TN GUUBOAY TNG ONUAVTIXY GTNV

ETUO TNUOVIXY) XOWVOTN T

[Tivaxag 1: Opiopog twv IMs xow EDPs.

IM EDP
XOTOOXEVT Sa(Th,5%) drift, PFA;, PFV;
oW PGA/gtana, PGV 0/«
oua otov 6pogo j  PFA/gtana, PFV 0/«
e ———— .4%»7
3.00m ﬁ_’.
e —— Wu-»-l 1 r’ah:aa‘—’_
3.00m ﬂ Iy
- r1 M‘W'j |_|_> ac=_0 28
3.00m ‘A) at %
. - y s o
3.20m jth storey acceleratior
response history
- 3@5.00m
T . s u;g/sy 8 | 12
(B)

()

YyAua 10: (o) To tetpadpogo xtipto avagopde, (B) Koumdin dOvaunc-
petatémone (F —6).

2 ELOMLKTN CUMTIEPLPOPA LOVOELOK®DV eKOepdTwV

H retpopoting Siepehvnomn tng Axvio Tixig GUUTERLPORAS LOVOELXGY EXVEUSTWVTOU Y-
uoatomolinxe oto mAaiota Tou mpoyeduuatoc SEREME o emxevtpwinxe otn dicpebvnon
NG OEIOUXTG CUUTIEQLPORAS UUEUAEVGY oY OAUSTWY XUl TEOTOUMY TEAYHAUTIXAG XAUonog
mou otéxovtar oe Bruata/Bédea. H emloyh twv ayahudteov xon TEOTOUMY TeayUATOTOL-
AUNxe GoTE va £youy SlopopeTiny| YewueTpla xou Bdpn. Ilpdxetton yio avtiypago apyaiev
Poyaiwy autoxpatépwy xon yenowdomotfinxay tévie mpotoués cuvolxd. Emnicov, téo-
oepa orydhuata ETEAEYNoAY, dU0 amhd edpaloueva ot pappdevo Badpo yauniol loug xo

0Vo oamhd yuvanxeto orydAuota. Aedopévou 6Tl GAa Tor BELYUTA EVOL XATACHEVAGUEVAL OO
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CUUTOYEC UdipUapo, To PESOo Bdpog Twv meoTou®y etvor 250-300 x1Ad, Ve TwV oy dhUdTeY
oy 500-600 sard. To avtiypogpa Tou aydhuatog/tpotourc €youy mepinou TNy (Bla yewpe-
Tplo, ahhd Bev etvon amolvtwe moavopotdtuna (Exdva 11). E&etdotnxe eniong n oeiou

amoxELoT plag TEoUxNnG.

Yyfua 11: Iepieyoueva xataoxeu®dy mou Yewmpednxoy xatd TNy TELoUaTIXT
diepelvnon: (o) Hpotouée xar mpodinn, (B) aydhuorto Yuvouxeiwy Lop@y.

Ou mpotopéc Tomodetrinxay o éva Padpo mou yenowonoleiton yior vor avuiiver Ta ex-
Vépato 610 Uhog Twv Yoty Tou emoxéntr. Teelg Swaupopetinol Tomol Béddpou evtoricTnxay
xou 0T oLvéyela ioVeTRtnxay Yo T tetpapatixés doxyéc: (o) oupmoyéc Bddpo, ue Bio-
otdoelg 45x45x100ex., (B) xoiho Bddeo, ue Swotdoeg 35x35x100 ex., xou (y) Lovtépvou
TUTOU UETAAALXS Bdipo.

To mopadoctoxd Bruato ATOY XATUOXEVAOUEVA Omd OXUROBEUA TOU EYEL EWWO Bdpog
%0VTd o€ auTé ToL Uapudpou. Ta TNy enitevln peallo Ty cUVINXGY emTomag TEYBHC,
OTNV EMAVG XAl OTNY XATew TAELEd TeV Bddpwv Tomodethtnxoay popudpeveg Thdxeg Tdyoug
3ex.. To ovunory?) Prwarta €youv peydha Bden (oyeddv 500 xhd) xat yenotponooly eniong
UEYdAEC BdoELS, EMOUEVKC Yiol auTd Tor Briotar OEV avoevdTay ovOpwon. Ao Ty GAAN
TAeupd, Tor xolha Bruata efvon Aemtd pe Bdpog 226 xihd xou €youv Bdom UE UixpoTERO TALTOG
{oo ye 3b5ex.. Emmiéov, 1o xévtpo Bdpouc toug elvor mohd uhnhdtepo o GUYXELON YE TN
ouumoyt| tepintwon. To petoaddnd Bdipo €yel ueydhn tetedywvn Bdon ue tAsupd (on pe
85ex. xou Quyilel pohig 85 xihd. o v mpocopoinwson Tou damédou TwV UOoVoEKY, 6TOU
oLVATLS PLAOEEVOUVTAL TTROTOUEG XOlL Y SAUOTA, Tol U1 LOVOUEVH exdéuata TotoVeTRi oy
o€ popudetvn emipdvela damédou. To udpuopo €yel méyog (oo pe 3ex. xou etvor Totodetn-
uévo oe oxned LVAo erniong mdyoug 3ex.. Toéco 10 udpuapo 600 xou to VAo BLowinxoy
xatevdeioy otn oslouxr Tedmela. ‘Oha ta delypota TotoveToUVTOL TEVEL OO TO UUQUSOVO

0dmedo xou o Bdipo ywelc va mapeuBdAieTar xovéva LS cuvdeong. T'a Toug wovwthpeg
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SMA, popudelveg TAGXES OTNV EMEVL EMLPAEVELNL TOU GELOULXOU LOVLTHEA XOAAINXaY, EVE
Ta exOépota etvan anAd edpaloueva.

'Evog 1epdoTiog 6yxog 6e00UEVLY EANQUT xaTd T BISEXEL TNG TERUUATIXTS DlEPEdVNOTS
Tou dujpxece mepimou 600 uhAvee. doTdc0o, xaTd TN Sdpxela NG dlepelvnong €yvay oD
EVOLOPEQOUOES TopATNEHOES.  AdY® TwV UETPKVY TpooTaciag BV oNUEWINXE GNUOYTIXY
BAEBN ota exdepaTa, EVE 0 TO YopaXTNEIOTIXOS TUTOS BAISNE mou mapatnerdnxe civon 1
aotoyla oTic Ywvieg TV detyudtov. Auth 1 {nud goalveton oto oyfua 7.13 t6c0 Yoo Ty
TpoTour, 600 xou Yo Tor orydhuata.  Autdc o tinog BAIPBne cuVERT oyedOY oE OheC TIC
TEOTOUES TOU €EETAOTNXAY €V 1) 00TOYlo TOU aydAuaTog Tou Qaiveton oto oyrua 7.1303
oLVERN plo opd. Eneldr énpene va emavokngel ueydhog aptiudg Soxiuy, ol HopUdeLves
BAoElC TV TEOTOUMY AVTIXATAO TNV, EVE Yot To dyahda 1) BASPN emoxeudotnxe. Aev

onuetddnxay actoyieg (tomxéc R xadohixéc) ota Briuata.

EyAua 12: BrdBec otn Bdomn twv exdepdtov: (o) mpotoun, (B) dyohuo.

LnuovTnd evpruota TEoxuay amd TNV TELROUTIXY SlEpebvnoT xat cuvodilovTon €v

ouvTopio wg e&Xg:

* TN Boxwéc pe YeYdAn edaplxr) ETITAYUVOT), To Un-hoveuéva exdéuato tapovaiocay
oLVOLACPEVY xivnon Aeviouol xar ohicinone. H xpolon mou mpoxaheiton amd TNV
AoevioTixr) xivnorn unopet va ebvon Ty PASENEC ot Bdom Twv tpotou®y, ewxd oTi

yowviee.

* H amdxplon TV TeoTou®y 6T0 GUUTAYES ot 0To xolho Bdipo elvar ouclao TG BLo-
gopetixr). H avilwon tou xolhou Bddpou fArav mévta uixer xou Htoy 8UOX0AO Vo
eviomio el onTixd. (2671000, elvor CUPEC OTL ETMNPENCE CNUAVTIXG T CELOUXT] OTOXEL-

on. To av 1 mpotour| elvor To acPaAric 6T0 cuuTaYES 1) 6To xotho Bddpo elvar Eva
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Vépa mou ag{let mepantépw €peuva. O doxtuég €detlay 6Tt 1) acpdAela e€aptdTon Eiong

Ao TO CGUYVOTIXO TEPLEYOUEVO TNG OLEYEPOTC.

* Aoxuég 6mouv 0 cuVTEAEG TS TEBNC YeTadd TNE TEOTOUNE Xt Tou BrudTog ATay youn-
AoO¢ €6et&ay 6TL 1) oAloUnom elvan €Vog EVEPYETIXGS TPOTOS ATOXELONE Yiol TNV TEOTOUN.

* YTIC TEPIOOOTEPES TIEPLTTAOOELS, T UETPA TEOC TAGtaG fiTay anoTeAeouatixd. Anantriin-
XE XATOLL TPOCOY Y GTNY TERIMTOOT UPNAAS HATAXOPUPNG CUVICTOOS TNG EOXPIXHS

OLEYEQOTC.

* To petahhxd Bddpa, Aoyw tng yewueTplag Toug, dev avuhainxay xaL we ex ToUTOU
Aoy €€{00U AmOTEAECUATING UE TaL GUUTOYY), UE TNV TEoUTOVEST OTL UMOEOoUY VoL UTo-

otnpl€ouy TAHpwe To Bdpog Tou €pyou TEYVNC.

o H andxpiomn Twv ayoahudTe:y HToy XaAd JEAETNUEVT EX TWV TEOTEPWY Xal OEV TEoExUaY
weydAeg exmAngelc. ‘Ot 1 EMTaYLVOT TOU EBEPOUS HTAV XATK AT6 TO OEL0 EXXIVIOTC

AXVIOUO0, TaL oy ST €XOVOY XETOLL TOAGYTOOT LPNATC cuyVeTNTOG AdY W Xdudng.

¢ H Bdion opiopeveny amd tor arydhuato 8ev Toy EVIEADS ERUTEDT), AOY W XATACHEVACTIXGDVY
aTEAEL®Y. AUTH 1) ENAELT ETTEBOTNTOG ENNEENCE TNV AMOXELOT) X0l OEV €00 @AMLE TNV
ACPAAELL TV ayoAdTwyY. Autd to (ATnua €yel enlong avagepiel oe TEonNyoUuEVES

€peuveg ot BBAoypapio.

2 UULTIEPALOLOLTOL

Yy napovoa Awaxtopnf; Alatel3) topouctdleton 1) exTiUno TS CELOUXTC amdXpL-
oNG AMXVLOUEVY XUTACKEVWY UE YENOT ATAOTOINTIXGY wovTEhwy. H mpocouoiwon agpopd
aPeVOS MWL OUEVL OOUOTOL/ XONDVES KOl aPeTEEOL AVILOPEVA TALCLOL TTOU €LVl SXOUTTA
1) e0xoumta xou erediepa dpaloueva 1 mpoevietauéva. Emmiéov, Siepeuvdtal 1 oelouin
TEWTOTNTA XL 1) CELGUIXT| BLOXUVOUVEUGCT] TV TEPLEYOUEVWY XTIRlwY Tou YewpolvTon dxoy-
TTA XoU 1) ETUOQUOT TNG XUTACKEVNC O DIEQEUVNOY] AUTY| ELOAYETAUL GTOUC UTOAOYIGUOUG.
Yta mhadoto Tng TapoNoug SLTEBHC, TANV TWY UTOAOYLO TIXMY HOVIEAWY Xal TROCEYYICE®Y,
TEOYUUTOTOONXE Lo TELQOUOTIXY| XUUTEVIAL UE EUPUOT) OE OYTAUOTA XAl OE TEOTOPES TTOU
otéxovton o éva “Bripa”. Oplopéva mpoxatoexTixd anoteAéoyata tapouctdlovton €6w. Ta
ouunepdouata oLVOPILoVToL TUEUXETE CUUPELVIL UE TOL TROTYOUUEVO XEQPSALL.

Apywd, oulnrelton 1) yeHon AmAOY TEAYTOTOVY VoS Baduol ekevdepioc yia TNy extiun-
o1 NS OEOUXNC amoxEoNe AVLOUEVWDY oL TNUATLY. To mpoBinua Tou Axvi{OUEVOU
OWUATOS EMAVETOL YPNOoLoToLwYTOS HovTéha Tou Baocilovtoar o oTolyeior doxol xaL Tou
cuvBéovTol GTN BAoT TOUC PE EVal UN-YReUUUiX0 GTEOMIXG eAaTroto. AuTi 1 Tpocouoino),

av XL xoT dpY Y TEOCEY Yo TIXY, €yel amodetyVel tav va AoeL Ypriyopa xon Ue ao@dheL
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TO TEOBANUN TNG AMXVLO TIXN|C CUUTIEQLPORAS E(TE Y10l UEUOVOUEVO COUATA ELTE V1oL GUC THUOTA
TOU TEOYUOTOTOLOUY MXVIOUO X0 ToL OTtola £Y0UV TEptypapel avahuTixd oTny Atote3y.

Hopd to ydopa mou mapouctdletar UETUEY TNG AXVICTIXAG ATOXELONG ULIG XATUOXEVTIG
X0l TEOTEWVOUEVLY VewpnTix®y AICGEWY, €VTOUTOWS To TREOTEWOUEVA UOVTEAN UTOPOUV v
Yewenloly we éva Briua mpog o axplBelc extunoslc g oeouxrc amoxplong. H eupwotia
TOUG EYXELTAL OTO YEYOVOS TWG EMITEETOLY OL8PORES BEATIWOELS Ydpn oTNV cueM&la TNg
uedodov twv Ilemepaocuévwv Ltoryelwy. Xtnv mpaypatxdtnta, €youv npotadel Téoocpa
omAd povtéha (téooepic mopahhoyéc). Ta tpior povtéla yenotwonowdy ua Tpoceyyion
OLYXEVTPWHEVNE Ualag xon To TETOETO eivon €val UOVTEND XoTaveunuévey ualov. ‘Ola Ta
wovtéha PBaoilovton ot Yewpla Tou Aviopol Aopfdvovtag unddn v “xadapr” xivnon
ouoTNUdTWY ToL efvon eEAelVepa Var avuewBoly Uepin®de ot Vo Axviotoly. H telud| emioyn
UETAE) TWV TEOTEWOUEVWY UOVTEA®Y, e€apTdTtal amd To TEOBANUN Tou mapouctdleTal, Xou
amd TaL yopuxTNEoTIXd Tou AoytopxoL mou Yo uovetniel. Ihio cuyxexpiuéva, n emthoyn
HETOED TOV CUYXEVTPWUEVLY Kol XUTAVEUNUEVGDY Lal®y eCopTdtal and To TeoBinua. Edv
N ualo uropel va Yewpniel wg ouyxevipwuévn (m.y. omhd edpaldUEvo GxUUNTO WYL,
TEOEVTETOUUEVO GXOUTITO GWUAL), Tol TELo TEWTA HOVTEND Eval EUXONOTERO OTNY EQPUOUOYT| Kol
EMOMEVWC TEOTUMVTAL EVOVTL TNG ETMAOYNE TOU TETAUPTOV.

H unéieon tou ebxoauntou oduoatog e€aptdral xoapd omd TIC IBOTNTES TNG XATUOEUNC.
To povtéro mou mapouctdlel SlavEUNUEVES udleg TEOTIUATAL YL TNV TROGOHOINCT] TUPULOR-
POV AXVLOUEVWY OWHUETWY X0 ME OL AVOTERES LOIOPOPPES UTOPOLUY VO TROGEYYLOTOUY
ue peyohltepn axpifeio. H emhoyy| uetald tov Ty yovtéhny efaptdtal and To AoyYLoul-
%6 mou uoveteltan, xordde Tor 000 TEMTA Elvol TEAXTIXE TAVOUOLOTUTIA, EVEK TO Tplto clvor
HATEAANAO UOVO Y10l GUOUTITOL TOUATAL.

Emuniéov, eCetdotnnay TpElC OYECE POTAC-OTEOPNC Yol TOL U1) YOOUUIXE EAXTHELOL TTOU
TEOGOUOLWYOUY TN OTY| EUCTAVELNS EVOC GUOTAUNTOS TOU TEOYUXTOTOLEL AXVIo Tixr) xivr-
on. H omodotixdtnia ota anotehéoyata xde oyeong o€ cUVOLACUO PE Xadéva amd To
TEOTEWVOUEVA HOVTERX a&tohoyHiUnxe 1600 UTO GTaTIXY 660 xou LT duvaixy| @oeTion. O
CUVTEAEG THC EMAVAPORAC, Lol XPIoLT TOEAUETEOS Yiot TEOBAAUTH AXVIGUOU, €YEl eCETAC TE
QUECO WG EQPUPUOYT| IOC TPOCEYYLONG TOU BLOXOTTEL o GUVEYILEL TNV avdAUOT] PETA Ao
x&de xpovon. H mpotevéuevn npocouoinon umopel va popuocTel o€ xovd AoYIoUIXd ToU
epappolouy ) Médodo twv Ienepaouévev Mtowyelnv xar ot Mnyavixol etvar cuvugacuévol
ue awtd. H uhonoinon elvon duvoty efte e to xdmoto ehetlepo hoylouxd, elte ue xMOxa Tou
umopet vo otnpileton otn uédodo. Téhog, uerethHtnxoy V0 CUCTAUATA: VO TPOEVTETOUEVO
Ml oPevo opo/xohova xou €vol GULELYPEVO GUOTNUA XEUPNC-MXVIGUOY, OTOU TO GOUL
elvon elte dxopnto elte ebxopunto. Ye Oheg TIC TEPITTWOELG ETTEDYUNXE TEAEIL CUUPWVIA UE
Toe amoTeEAEopaTa omd T PiSAloypapla.

Enextelvovtag tny mponyoluevr €peuva, TEOTEIVETOL UL VEX TROCEYYLOY| TEOCOUOLW-

oNg Yl TNV exTlUNom NG OEloUxG amdxplong TAotoluxy xataoxeuomy. H pedodoloyia
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Tou TapovoldleTon unopel vo egopuoctel Eavd o éva mhaiolo Ilenepaouévev YNtotyelwy €-
fre vor uiodetniel xdmowo eumopixd hoyiouxd Ilohtixod Mnyovixod. H 16éa Bacileton ot
XeNom oTEOPWY eEAaTNElwY UE apvnTixy oxoudla GTIC BLETLPAVELES, Tave Xal XATw, xdE
xohwvog/ OWUATOE oV oLVIGTOUY €var Axvilouevo mhaiolo. H amoteheopotixdtnta autrc
NG TEOCEYYIONG TOROUCIAG TNXE aEytxdL Yiot Evary omAd €0palouevo Axvi{OUevo oTUAO, ETe-
ATAONKE OE EUNOUTTEC HOMDVES Xou OTY) GLVEYELW o AewlOueva Thalowa. H oldvieon tou
TeoPhAuatog culnteiton apyixd £YOVToC WS avapopd To amhd e0palOUEVO MUVILOUEVO G
10 omolo enaveetdleTon TpoxeyEvou va Angioly mo axplBelc apyés ouviixes. Autod elvon
ONUAVTIXG Yl TNV 0€LOAOYNOT TNG OELOUXNC AMOXEIONG EUXUUTTWY XOADVWY UTO UEYEAN
aovixr] BUVaUY, OTwe cupPaivel cuyvd Ue Ta Aeviloueva PEAN wag yéqupas. Emmiéov,
oulnteiton AETTOUEROS 1) HOVTEAOTOINGT AUVILOUEVWY TAUGIWY, TEMOTO SXOUUTTOV XAl GTN
CLVEYELN EUXOPUTTWY, YENOYWOTOLOVTAS O TROPXE ehaTplal apvnTixhc duoxoudiog Tou Tomo-
Yetolvton oTig diempdveleg xpovong. O mapduetpol Twv ehatnplwy emAéyovtar avdioya
UE ToV TUTO avdhuoTg, ONAcdY| cuUTEQLAUUBEVOVTOC 1) OYL Ta ToL PAULVOUEVY BEUTEQUC TALEWC
xou TN V€on tou ehatnplou. QdoTtdo0, elvar entlong onNpavTING va ETAEYOLY GWGTd oL Gpot
OTEOPIXNC POTNG AdEAVELIS TOU ELoEpyovTaL 6To UNTe®o udloac. Mo amAomolnuévn eva-
Aoty AOGT), XUTEAANAN Yl TNV TEQIMTWON SXoUTTOV TAUGIwY uTopel va Angldel €dv o
HovoPBdiuog ToAaVTOTAS TAVTIOTEL UE TN YEVIXEUUEVT e€{owoT TOU TEOBAAUATOC AXVIGUOU.
AvtipetoniCovtar, eniong, ta mpoevieTopéva Avi{oueva cuoTAUATY, Xxadog 1 ¥eHon Te-
VOVTOV ebvar eUpéwg amodexTh Y oUyyeoves Yépuees. H pedodoroyio tng mpocouolwong
mou mopouctdleTon umopel va emextadel xon o dhhor AevillOueva GUOTAUATA UE ATAG TEOTO
TEOGPEQOVTAS axEIPBElc AVCELS, PELDVOVTUC TO UTOAOYLOTIXO XOGTOG XOl ATOPEYYOVTIG TNV
€L AVTETOTLON TNS AAANAETOpUONE UETAL) TWV MEAWY. ZUVOALXA, 1) TROTEWVOUEVT] TEO-
oéyyton ebvan éval Yoo xon TeaxTixd epyaheio Tou umopel vo utodetniel extevdg Yo Ty
TEOCOUOIWGT| OTOLGONTOTE AVILOUEVNS HATAOHEVHC.

Axohodwe, 1 a&lohdyNon TG TEOTOTNTUS TANUCIAXGY XATACKEVGY oulnTeiTon GTNV
mopovoo Atatelfr. Eva extevéc ohoxinpwuévo mhaiclo to omoio mapouctdletl To TpdBinua,
o OLdpopar Métpa ‘Evtaong xan tic Iopapétpoug Andxpione xododg ot TiC SLpopeTIXES
uedodoNOYIES Yiar TNV EXTIUNGCT] TNG CELOUXAS TPWTOTNTAS XA TNG CELOULXTG OLoXVOUVEUCTC
mopouotdleton SieCodixd. Ivetan eqopuoy TG TEOTEWVOUEVNS UEVOBOAOYING OF TEQITTMOELS
AMYVLOUEVWY COUATOV, XIOVOGTOLYIWY Xt Thanolwy ue avicobdr Badpa. H mpocéyyion auth
elye otéyo TNV TEWTUEY T DlEpELYNCT WOoTE v enexToel N uevodoloyio oe TEpLEyOUEVY
HOTAOKEVWY OTT GUVEYELDL, OTA OTO{ol X0l ETXEVTEOVETOL 1) AlaTpl31] TOEEYOVTAS VLol TEWTN
(QOEY Lol TEWTOTUTY GOVOEST) X TLEIOU-CWUATWY TOU UTOXEVTOL OE MXVIGTIXT xivnom,.

Y10 ouvéyela, 1 alloAOYNON TG TPWTOTNTIC TWV TEPLEYOUEVKY EVOS xTiplou culnTeito
otnv mopovoa Atatel). To nepleydueva Tou xTEOL TEOGOUOWWUNXUAY (G SXUUTTA COUTA
xou €YVe 1) UTOVEST) WS PLAOEEVOUVTOL GE €Vl TETPAMEOPO X TIPIO amd OTAMOUEVO OHUEODE-

uo. ‘Eyer anoderydel 6Tt 10 mEdPAnue mou avtyetwniletar €66 elvoar TohOThoxo Ao 1
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AmOXELOT HTLOIWV-TEEPLEYOUEVWLY elvar GUVDOEDEUEVT o ahhnhoelapTouevr. Ta euprjuota Tne
HERETNG Exouy Angiel yenoLOoToWVTAS €V BIOOLEC TUTO, TETEAUMEOPO XTIPLO XAl WS EX TO-
UTou Bev UmoEoLY TdvTa vor Yevixevovtal. [ To Adyo autd, amoutelton mepaunTtépw EpEUVA
TEOXEWEVOU Vo xatavonlel TAYewe 1) ETBEACT) TNG XATAGKELY| OTNV TEWTOTNTA TKV EAEUUE-
e edpalouevwy TepleYouévwy. 2oTo00, 1) epyacio unopel va Yewpendel we pla tpoonddeia
VoL Te0o(PeRUOUY XATOIEG TPWTES XATEVVUVTTQIES YROUMES VIO TO TG UTOPEL VO AV TIUETOTI-
otel To mpdBAnUa Tne Ao Tixhic xivnone yio eletiepa edpalbueva avtixeiueva,/exdéuata
mou @urholevolvtor ot éva xtiplo. Mepd amd tar x0plol GUUTERGOUATO TNG TOEOUCUS €-
votntog cuvodiloviar ev cuvtopla we e€nc: (i) Hupovodleton o yedodoroyia extiunong
™ TewtoTNTC Tou Bactletar oty Ilpocavdnting Auvauixy Avduor, TpocupUloouévn ot
Aoeviloueva Tepleyoueva xTiplwy. Amedelytn 6Tl éva eheepa e0palOUEVO WU, OTAV @i
AoZeveltal OE Lol XATAOXEVT|, UTOREL VoL Elval TEPLOGHTERO 1 AYOTERO EVGAWTO amd 6,TL OTO
€dopog. Autd elopTdTon amd TN YEWHUETEIN TWY TEPLEYOUEVKDY X0l TO DUVOIXE Y oEoXTNEL-
oTxd g xatooxeunc. Emmiéov, 1 TonTOTNTA TV COUATGY OEV TEETEL Vo utohoyileTo
aveZdptnTor and Ty xotdppeuon B Tic miavée BAdBec tou xuplou. (ii) Alepeuvdtar yior o-
TAOTOUNUEVT) TPOGEYYLOT ToL UTtopEt var yenotporoinel yio Ty aloAdYNoT NG TewTOTNTAG
EVOC OOUATOS OTAY EVOL YVOO TEG TOGO 1) TEWTOTNTA TNE XATACKEVHS OGO XAl EVOS GOUATOC.

Emuniéov, amodetxvieTon 6Tl elvon onuovTind vo yenotonoleltal to Pétpo Eviaong Tng
XATAOKEVYS Yol TNV a&LOAOY O™ TNG CELOUIXY|G BLUXUYOUVEUGTIC TOU OWUATOS, XoME Bl pa-
ACer ) ouvémelo peTaC Tou COUUTOC xat TNS xatooxeunc. Metall Twv Yétpwy évtaorng
nou e&etdotnxay, Beédnxe 6Tl 1 Yéylotn oy hTnTo 0pdPoL, Yevixd, eivar mpotydtepn. (iii)
Avdloya pe tn encéepyaoio TV anoteAeoudTwy, To dedopéva AauBdvovtar o poppr| cUV-
VEQOU 1} TOMATAGY Awpldwy. Oo meémel va AauBdveton uddm 1 xatdhhnin enelepyaoio
TEOXEWEVOU Vo ovTWETWTICOVTOL PE GUVETELX Tol AXVI{OUEVO GOUTA, Tal U1 AvCOuEVa
OWUOTA XAl TOL GOUATA TOU avatedmnxoy.  AlpogeTixd, ol xoumiAeg TentdTnTac Yo uTo-
extiundoiv. (iv) ‘Eyet inedei unddn éva ompo e PeYEAN xon éva odua U vt podvotnta,
Tou Belyvel 6Tl 1 yewpeTpla Tou cwuatog ebvar xplown. Alamot@inxe 6Tt o To oTBupd
oWUATA EVOL TO ACPUAT) OTO IGOYELD EVE ToL AETTY EIVAL TILO AGQAAY) 6Tay PLAoZEVOUVTOL OTO
xtipro. Puowd auTég oL TopEATNEYOELS AvapEpoVTaL OTNY EEETALOUEVT TETPAUMPROPT] XATUOKEL-
1, oS padveton Eexdiopa 1) onuacio TOGO TV WBIOTHTWY TOL XTplou OGO %ot TOU COUATOC
xa €T{OMC SLUTIO TOVETOL WS 1) TEMTOTNTA TWV AVECHPTNTWY TEQIEYOUEVKY Efvon TOAY BLapo-
PETLXY AT EXEVT TWV TOUXTOUEVHDY TTOU OVOUEVETOL VO CUUTEQLPEROVTAL ()G TUPUUOPPWCUIES
HUTOOXEVEC.

Y10 tedevtaio Briua, TopouctdlEToL Ylal EXTEVAC TELQOUATIXY DIEPELYNOT Yol T1) CELCUIXT
amoxplon pouoelaxmy exdeudtoyv. H Siepedvnon Baciletan oe éva €pyo mou bivel Eugao oe
LY GAOTOL XOUL TIPOTOUES O EYEL AVTIIETWTLO TEl OE GLUVERPY UG Ue avlptToUS TV ATOTEAOVY
war opddo. Ov doxipée mparypatomolinxay oto mhaiclo tou Epeuvnuixol ‘Epyou o oeiout-

x1) tedmela oto Ilaplol. H nelpopatinn Siepevnorn otoyeve va Bondroel otny xatavonon
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NG OELOUXNC CUUTIEQLPORAS TWYV ETUASYUEVGY AYUAUATOV XUl TROTOUMY Xl OTH GUVEYELX
OTNV OVATTUET VEWY XL OLXOVOUIXE ATOBOTIXOY UETEMVY UEIWONS TOU OELoUX0) XVBUYOU
Yo TN Behtioon g osiouinic TemTOTNTAS TOAITYWY AVTIXEEVWY TOU QLAOEEVOUVTAL OE
eLPOTOIXE wouoela. Ao mpaypaTxhAc xhlpoxag uapudpva (T avtiypago xotaoxsudlovia
ouvidwe amd YOPo) pwuoixd arydhuota o TEES TROToRES TELdY Pouainwy avtoxpatdpwy
mou otexovian ot Telo Bdipa BlaopeTinol TUTOU Xou UEYEDOUS BIEEUVMVTAL OYETIXY YE
TNV anoxpElot| Toug ot oeouxy) @opTion. Ta €pya téyvne Yepolvtan elte amhd edpaldueva
elte oelopd povwuéva. LNy teleutaio Tepintwon, doxyudlovtor 500 Véa xon eEUEETIXG
AmOBOTIXG. CUC THUNTA OEICUIXTG LOVWOTG, TEooupUooueva oe Epya T€xvne. H anoteieouo-
TIXOTNTO TNG OELOUXAC LOVWOoNS Tapouatdlel x0plo evdlagépoy. O mpmTtog uovemtrhpag etval
éval o0oTNua TTou BaolleTon G EXUPEUES, EVE O BEUTEQPOC YENOULOTOLE! GUEUUTA Umd %P
uviung oyfuatog. T Ty e€étoom OV TV TEQITTOOEWY EEETACTNXAY OLUPORETIXES Ola-
woppwoelg. Eletdleton eniong 1 onuacioa tou xTiplou mou Ta @UAOEeVEL, dnhadY| o TUTOg
Tou xTiplou, 1 oxoudlor xou o dpopoc mou @uolevel Ta épya TEYvNG. Ewdwd mpocopuo-
oUEVaL, apriunTXd povtéha TowxiAng toAuthoxdTntag xan povtéda Henepaouévev Mtoryeionv
YL CUC THUOTO IOV UTOXEVTOL O AMXVIG TIxT| xivnam eVOg xat U0 CWUATOY avamtuydnxay
YL TIC AVAYXES AUTAC TG UEAETNG xou a&lohoyolvTon eRiong O OYEOT UE TA TELRUUOTIXS
ATOTEAECHATOL.

Mepixéc ntuyéc mou a&ilel va epeuvnioly mepoutépw eivon:

o Aiepelvnorn e ahknhenidpaone petald ohiodnong xou hxvioyatog xou meg Yo Unopo-
voe va tparypatoroinUel 1) TeocouoinoT), ETEXTEIVOVTUG £TOL TIC TPOTEWOUEVEG TROOEY-
vioewc. H enéxtoaon unopel vo Bacictel oe anlonointixd TpocoUomuaTo xon Tiovede
oe éva mpooleto ehathplo Tou Aopfdvel TV ohicUnor. LOUGOVL UE TNV TELUUAUTIXT
Olepelivnom, 1 ouleuypévn xivnom Avicpol-okiodnong eltvon cuvilng o€ pouoeLoxd

exO€UoTal 1) YEVIXA OE TMEQLEYOUEVI XTLRIWV.

¢ [Lio evdehey g Biepelivnom TNG OAANAETEUONG UETAED AXVIOUOU %ok GAAWY U1 YROUUL-
AWV QOUUVOUEVWY, T.Y. OVITABNOT), TOUQUUORPMOT), AVEAUC TIXOTNTO Xl ATOGPBECT) UETA
am6 xpolor. Katd tn dudpxeta pag ostouxrg diéyepone Yo mpémel v hoBdvovTan

Unédm ONOL TOL TTOROTIAVEY OV Xl XURLIRYEL 1) Aevio T xivnon).

¢ Enéxtaon TV TeocopolwudTey Ot TRLoOIAC TUTES XUTAOXEVES. ALGDIAC TATES TPOTEY-
yioewg elvon ypowee yia TNy extiunon g TeWTOTNTUC 1| Yo TEOOEY YO TIXEC AUOELS

TOU GXOUTITLV X0l EUXOUTTOY XATACHEVOV.

* Mo o evdeheyric Siepedvnon Tou TEOBAAUATOS TwY U0 CWUATMY YETNOULOTOLOVTIC
amhég mpooeyyloec. Tétoleg mepimtwoelg efvar cuvAlelc Yo povoetaxd exdéuota xa
SO YLt TNV TEPITTWOT TOU AGUPPETEOL dvw cwpatog. Emopévee, mpooeyyloeig,
ATAOTIOLNTIXES r']/xoa mo cUVleTeS, pe yerion Aoyiowxol Ilemepoouévov Xrtotyelwy

7 / / /7
AmOTEAOVY €VaL GNUAVTIXG Briud.
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o Enéxtaom tng diepebynong TNe OEIOUXHC TEMTOTNTS XAl TNE OELGUXAC OLOXVOUVEUCTC
UE YPHOM O AETTOUEPOUS TPOGOUOLMUATOS YL TO XTIPLO Xou YLol ToL TEPLE Y OEVAL Efvar

eniong éva ornuelo evolupépovtog Tou YenlEl TEPIGCOTERNC OLEPELYNOTC.

¢ Enéxtaon twv npocopolinudtwy Ilenepaouéveny Ntoyelnv mpoxeyévou vo dlepeuvrn-
Vo0V Tol GELOULXE LOVOUEVOL oy SAUOTA XAl OL TOOTOUES YPTOULOTOLOVTOS T TELOUUOTIXS

OedopEVaL.
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Chapter 1
Thesis outline

In Chapter 2 the introductory material and literature review on various rocking systems
is presented. Previous works on the seismic response assessment of rocking blocks,
either rigid or flexible, and rocking frames, with rigid or flexible columns, that are
freestanding or restrained are discussed. Some interesting observations on rocking
blocks are presented while the case of asymmetric rocking blocks is reviewed. Last
but not least the significance of two-block systems and seismic response assessment
approaches for handling the equations of motions are discussed.

In Chapter 3, a novel modeling approach for the seismic response assessment of
free-standing, rigid or flexible, pure rocking single-degree-of-freedom (SDOF) sys-
tems is presented. The proposed modeling that refers to rocking columns is based
on equivalent single-degree-of-freedom (SDOF) oscillators that can be implemented
with common engineering software or user-made structural analysis codes. The pro-
posed SDOF models adopted use beam elements which are connected to a nonlin-
ear rotational spring with negative stiffness that describes the self-centering capacity
of the rocking member. Smartly-positioned, negative-stiffness rotational springs are
adopted in order to simulate the rocking restoring moment, while all necessary im-
plementation details are presented. Different variations, pertinent to rigid blocks are
tirst presented and then the concept is extended to the flexible case. In case of flexible
columns, modified moment-rotation relationships are discussed. The loss of energy
which occurs in every impact is treated with an “event-based” approach consistent
with Housner’s theory. The implementation of the method requires some minor pro-
gramming skills, while thanks to the versatility of the Finite Element Method it is
capable to handle a variety of rocking problems. This is demonstrated with two other
applications, i.e. a vertically restrained block equipped with an elastic tendon, and a
rocking block coupled with an elastic SDOF oscillator. The efficiency and the accu-
racy of the proposed modeling is demonstrated with the aid of carefully chosen case
studies either using simple wavelets or historical ground motion records.

In Chapter 4 a novel modeling approach for the seismic response assessment of
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rocking frames is presented. Rocking frames are systems with columns that are al-
lowed to fully, or partially, uplift. Despite the apparent lack of a mechanism to resist
lateral forces, they have a remarkable capacity against earthquake loading. Rocking
frames are found in old structures, e.g. ancient monuments, but it is also a promising
design concept for modern structures such a bridges, or buildings. The proposed mod-
elling can be implemented in a general-purpose structural analysis software, avoiding
the difficulties that come with the need of formulating and solving specifically-tailored
differential equations, or the use of detailed computational models. Different configu-
rations of a rocking portal frame problem are examined. Smartly-positioned, negative-
stiffness rotational springs are adopted in order to simulate the rocking restoring mo-
ment. Both the case of rigid and flexible piers/columns is discussed, while it is shown
that frames with restrained columns can be considered in a straightforward manner.
A simple alternative based on an equivalent oscillator that follows the generalized
rocking equation of motion is also investigated. The efficiency and the accuracy of the
proposed modeling is demonstrated with the aid of carefully chosen case studies.

In chapter 5 a fully performance-based seismic reliability and risk assessment frame-
work for rigid rocking frames is presented for the first time. Different options for
fragility assessment are discussed and the underlying details of the problem are in-
vestigated. The cases of freestanding blocks, arrays of freestanding columns capped
with an architrave and rocking frames with unequal in height columns are investi-
gated. Intensity Measures (IMs) and Engineering Demand Parameters are presented
for handling the problem at hand.

In chapter 6 the Thesis presents a fully performance-based seismic reliability and
risk assessment framework for freestanding structural components and contents that
can be modelled as rocking rigid blocks. It is generally accepted, that multistorey
buildings often have a valuable inventory consisting of objects that their possible dam-
age during an earthquake will cause unacceptable losses. The seismic response of
building contents depends on several parameters such as the geometry of the object,
the dynamic characteristics of the building and the storey that the object is located.
The demand at the storey level is first obtained and then the response of the con-
tents is calculated using the storey acceleration response history. The demand of the
structure is obtained with the aid of a modified version of the Incremental Dynamic
Analysis method and subsequently the fragility curves of the rocking building con-
tents are derived for every storey of interest. Different options for fragility assessment
are discussed and the underlying details of the problem are investigated. A simplified
approach, where the fragility of the freestanding components and the structure are

derived separately is also presented. The method combines existing fragility curves
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and thus is suitable for quickly assessing the reliability of a building’s inventory of-
fering sufficient risk estimates. Considering that building contents in most cases are
not rectangular and homogeneous the proposed framework is extended in the case of
asymmetric contents. The extension is based on the different equation of motion of the
contents that should be adopted and a comparison with symmetric cases is of interest.

In Chapter 7 an experimental campaign on museum artifacts is presented. Consid-
ering that the protection of cultural heritage structures and also of museums and their
treasures against earthquakes is a subject of top priority, in the current Thesis. Large
scale shaking table tests are presented on cultural heritage assets emphasizing on the
use of computing models in tandem with experimental testing. The tests have been
carried out in the framework of SEREME project (Seismic Resilience of Museum Con-
tents) at the AZALEE seismic simulator of CEA in Saclay, Paris under the auspices of
the EC funded SERA project. The aim was to understand the seismic response of stat-
ues and busts and then to develop novel and cost-effective risk mitigation schemes for
improving the seismic resilience of museum valuable contents. The work is focused on
the investigation of the seismic response of two real-scale marble roman statues and
three busts of three roman emperors standing on pedestals of different types and size.
Both non-isolated and seismically isolated artefacts are considered, while two new
and highly efficient base isolation systems, tailored to art objects, have been tested.
The setting up of the tests and the derivation of preliminary numerical results are pre-
sented.

Finally, Chapter 8 presents the conclusions of the Thesis. This chapter summarizes
the key and novel points of the Thesis and proposes future work extensions.






Chapter 2

Rocking Systems

2.1 The freestanding rocking block

Free-standing slender blocks when subjected to an excitation of their base may slide,
uplift, rock or overturn. Omitting the uplift and assuming that there is no sliding,
the most significant motion is rocking, i.e. the partial uplift of a structure from its
base when the center of rotation changes. Rocking during an earthquake is common
for free-standing objects and also for many other engineering systems. The seismic
response of a solitary rigid block that rocks on a rigid base was first studied more than
a century ago by Milne, 1885, while today the problem is typically addressed using the
framework proposed by Housner, 1963. Over the years there have been many studies
shedding light on the problem, e.g. Yim and Chopra, 1985, Ishiyama, 1982a, Zhang
and Makris, 2001, Politopoulos, 2010, Dimitrakopoulos and DeJong, 2012b, Mathey
et al., 2016, just to name a few.

The homogeneous rectangular rigid block of Figure 2.1 has dimensions 2b x 2h,
mass m and its moment of inertia about the pivot point O, or O’, is I (Figure 2.1). We
assume that the coefficient of friction between the block and its rigid base is always
big enough so that the block does not slide. In this simplest case, the rigid block
problem has a single-degree-of-freedom, the rotation 6, while « = atan(b/h) is the
block slenderness angle and R = /b2 + h2 is its size parameter. Parameters « and R
fully describe the block’s geometry (Housner, 1963), while for a rectangular block the
rotational moment of inertia with respect to O is Iy = (4/3)mR>.

Assuming that there is no jump and as a result the rigid body remains at the same
position at the instant of impact, the equation of motion of a free-standing block under
a horizontal ground acceleration i, is obtained from the equilibrium between the seis-
mic resisting and overturning moments about the pivot point “O”. The overturning

moment My, due to seismic loading is:

Moty = —miig (t) H (0) = —miig (t) Rcos [asgn(6 (t)) — 6 (t)] (2.1)
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where H(6) is the height of the block’s center of mass during the rocking motion.
When the block is at rest (6 = 0), the height H(0) becomes equal to Hy = Rcos(a). The
restoring moment M, resists the overturning of the block and is equal to:

M;es = mgRsin [asgn (6 (t)) — 0 (1)] (2.2)

—— 2b

FIGURE 2.1: Geometry of the rocking block.

Assuming that, under dynamic loading, the overturning is also prevented by the
inertia term Iyf(t), the block’s equation of motion will be (Housner, 1963):

IOé (t) + Myes — Moty = 0 &
Io6 (t) + mgRsin [asgn (0 (t)) — 6 ()] + miig (t) R cos [asgn (6 (t)) — 6 ()] = 0(2.3)

where ¢ is the acceleration of gravity. The term sg¢n(#) is used to take into considera-
tion that there are two symmetric pivot points, while we assume that an impact occurs
and the block continues rocking with a new pivot point when the sign of 6 is reversed
(Housner, 1963). The equation of motion can be simplified if the angles 6 and « are
small:

Io6 (t) + mgR [asgn (0 (t)) — 0 (t)] + miig () R =0 (2.4)

When the block is at rest (¢ = 0), omitting the inertia term in Eq. 2.3, we find
that the block will start a rocking motion only if the ground acceleration i, exceeds a
threshold value, i.e. when iy > (b/h)g, or iig > gtanwa. Furthermore, we often nor-
malize the rotation with the slenderness angle in order to obtain the metric 6 /a which
is related to the block’s overturning. Another way to write the equation of motion is
using the frequency parameter p of the rocking block. This approach, considering that
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p = /3g/4R, results to a more compact expression:

0 (t) = p* [—sin[asgn (6 (t)) — 0 (t)] — iig (t) /g cos [asgn (6 (1)) — 0 (1)]]  (2.5)

The equation of motion of the block (Eq. 2.3, or one of Eq. 2.4, 2.5) is solved numer-
ically using an Ordinary Differential Equation (ODE) solver. The analysis is initiated
at the time instant that the condition ii; > (b/h)g = g tan & is met and continues until
an impact is detected. Immediately after impact we assume that the rotation 6 is zero
and that the sign of the angular velocity changes and becomes equal to 76, where 7 is
the coefficient of restitution. The coefficient of restitution is obtained with the aid of the

principle of conservation of angular momentum as:
1091 — m912bR sina = 1092 (26)

where 6; and 6, is the angular velocity before and immediately after impact, respec-
tively. From Eq. 2.6 and setting b = Rsina, Iy = 4/3mR? the ratio of the angular

velocity before and after impact defines the coefficient of restitution:

6y Ip—2mR%sin*a
=5 7’

1 =1- gsinzoc (2.7)
In the remaining of this work we refer to the block solutions obtained after directly
solving the equation of motion as “rigid block” model, or in short as “RB” solution.
All RB solutions were obtained using the ODE23s solver available in Matlab, 2016.

Some interesting observations about the seismic response of rocking blocks can
be made with reference to Figure 2.2b. The figure shows results from a large pool
of ground motions and blocks of various sizes (Fragiadakis et al., 2016). The results
refer to pulse-like ground motions and the data are plotted against the peak ground
acceleration (PG A) normalized by the critical acceleration for the initiation of rocking,
gtana, versus the normalized pulse period, wy/p. Such plots are referred as “over-
turning spectra”, since the horizontal axis measures frequency and the vertical axis
measures PGA which is a possible ground motion intensity measure. The red points
correspond to blocks that overturned and the green points to blocks that did not over-
turn. Furthermore, for comparison, the solid blue lines show the closed-form solution
of Dimitrakopoulos and DeJong, 2012a that define the safe-unsafe threshold for full,
symmetric sine pulses.

Simulations of a large pool of ground motion records and blocks of various sizes
(Fragiadakis et al., 2016) (blue lines: closed-form solution (Dimitrakopoulos and De-
Jong, 2012a) and red curve: approximately separates the safe from the overturning

data) are presented in Figure 2.2. Moving horizontally to the right side of Figure 2.2,
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UNSAFE

small blocks OR large blocks OR
low frequency pulse high frequency pulse

FIGURE 2.2: Simulations of a large pool of ground motion records and

blocks of various sizes (Fragiadakis et al., 2016) (blue lines: closed-form

solution (Dimitrakopoulos and DeJong, 2012a) and red curve: approxi-
mately separates the safe from the overturning data.)

the points refer to blocks that are either large (large R and small p) or are subjected
to high frequency ground motions (large w; values). Therefore, towards the right (in-
creasing wy/p), the possibility of overturning reduces, while for w,/p larger than 8,
the blocks are safe regardless of the acceleration level. Towards the left side (decreas-
ing wy / p), either the ground motions contain long-period pulses (small w, values), or
the blocks have a small size (large p values). Especially for w,/p < 2, overturning oc-
curs for all ground motion records that are capable to initiate rocking. It is interesting
to note, that the apparent limit between the safe and the unsafe region implies only
that the blocks on the safe side do not overturn. In other words, there are many blocks
on the “unsafe” region that did not overturn. In this sense, the threshold between the
safe and the unsafe region corresponds to the minimum normalized ground acceler-
ation PGA/gtana for each value of wy/p that could topple the block; this does not
mean that all excitations with larger PGA /g tan a values will cause overturning.

2.2 The asymmetric rocking block

Considering the dynamics of a symmetric freestanding block, that have been previ-

ously discussed, the extension of the theory to asymmetric cases is here presented.
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The asymmetric rocking block of Figure 2.3b is assumed. The asymmetric bust of Fig-
ure 2.3a can be modeled using the simplification of Figure 2.3b. The block’s width is
b = by + by, the center’s of mass height is & while the total mass and the rotational
moment of inertia with respect to the center of mass are m and Iy, respectively. The

FIGURE 2.3: (a) implementation of the asymmetric rocking block theory
to a freestanding bust, (b) Geometry of an asymmetric rocking block.

rocking motion of an asymmetric rocking block, that is assumed as rigid, is described
by a modified equation of motion as discussed by Wittich and Hutchinson, 2015:

<ICM + mR?) 0 (t) +mgR;sin [a;sgnf (t) — 6 (t)] = —miig (t) R; cos [a;sgnd (t) — 0 (t)]

(2.8)
where the subscript i denotes the positive or negative rotation of the block and sgn ()
is the signum function that corresponds to rocking motion with respect to the critical
or the noncritical side. Therefore, when i = 1, the block rotates with respect to O and
when i = 2 the pivot point is the O'.

When impact occurs, the kinetic energy is reduced and this reduction is derived
through conservation of momentum with reference to the rocking point immediately
before and just after the impact. This yields to a velocity ratio, known as the coefficient
of restitution, which for the rigid block of interest is given by the following formulas

for the positive to negative and the negative to positive transition, respectively:

1 .
= Icp + mR? [ICM +mRy —m(b + bz)stm(xz} @9)
1
1 2 .
2
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2.3 Rocking frames

Frames with columns that are allowed to uplift and then pivot during a seismic exci-
tation can be found in various systems. A notable example is the case of ancient mon-
uments in which freestanding columns support an epistyle (Figure 2.4a). Although
rocking systems lack a mechanism in order to resist lateral forces, they have survived
many strong earthquakes during their long history. Based on the rocking principle, a
relatively recent “damage avoidance design” concept (Mander and Cheng, 1997) that
allows a partial/controlled rocking motion of the columns offers a promising seismic
design procedure. Remarkable examples of modern rocking bridges are the Rangi-
tikei Railway Bridge (Figure 2.4b) and the Deadman’s Point bridge at Cromwell, both
in New Zealand (Skinner et al., 1980; Priestley et al., 1996). Rocking can be seen as a
form of seismic isolation (Chen et al., 2006; Di Egidio and Contento, 2009) that reduces
transient deformations and column damage (Giouvanidis et al., 2015), while it results
to reduced moment demand at the foundation. Moreover, the residual displacements
can be controlled using a self-centering system (ElGawady and Sha’lan, 2011).

(a) (b)

FIGURE 2.4: Examples of rocking frames: (a) Portara monument, Naxos

island, Greece. A massive marble entrance of an unfinished temple that

faces directly toward Delos island, the birthplace Apollo. Portara sur-

vived more than 2500 years. (b) The Rangitikei railway bridge in New
Zealand.

The dynamics of the freestanding rocking block can be easily extended to the study
of rocking frames. Among others, Makris and Vassiliou, 2013, DeJong and Dimi-
trakopoulos, 2014 and Dimitrakopoulos and Giouvanidis, 2015a, expressed the equa-
tion of motion of a simple rocking frame using principles of analytical dynamics. The
beneficial effect of rocking in critical structures (e.g. bridges) has been confirmed by
Cheng, 2008, and has been also shown by Palermo et al., 2007 and Wacker et al., 2005,

among others. Giouvanidis and Dimitrakopoulos, 2016b worked on the modeling of
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bridges, and specifically on precast frame structures, equipped with vertical restrain-
ers. Dar et al., 2018 first investigated the seismic response of rocking frames when the
contact edge is allowed to reside anywhere between the center of the pier and its ex-
treme edge, while recently they examined the seismic response of rocking frames with
unsymmetrical piers (Dar et al., 2019). Thomaidis et al., 2020 studied the influence
of the abutment-backfill system on rocking bridges, while Zhou et al., 2019 presented
an experimental study on the seismic response and rocking isolation of a bridge with
post-tensioned rocking piers exhibiting negative stiffness.

The rigid block, referred also as “freestanding column”, is the simplest rocking
structure. The rocking frame can be seen as an extension of the solitary block and
hence the fundamentals of the rocking problem are quickly repeated. The freestanding
block of Figure 2.1 has dimensions 2b x 2h, mass m. and is subjected to a horizontal
seismic excitation iy (). This is a nonlinear single-degree-of-freedom (SDOF) problem
described by the equation of motion (Eq. 2.3) proposed by Housner, 1963:

— 2b —l — 2b —

FIGURE 2.5: Rocking frame with two rigid columns and a rigid beam.

The right-hand side of the Equation 2.3 is the seismic demand and it is equal to the
overturning moment (Eq. 2.1): The left-hand side term is the resistance (or capacity)
which is equal to the inertia term plus the restoring moment M,.s produced by the

selfweight if the problem was static:
I00(t) + Myes = Io8(t) + mcgR sin [asgnd(t) — 0(t)] (2.11)

The simplest rocking frame problem consists of two freestanding columns that are
capped with a rigid beam (Figure 2.5). The columns are identical, i.e. they have the
same size parameter R, equal slenderness « and mass m., while the properties of each
column are equal to those of the freestanding block of Figure 2.1. The mass of the beam
is denoted as m; and the ratio of the deck/epistyle mass over the sum of the mass of
the two columns is the mass ratio 7y, equal to v = m;/(2m.). The rocking frame of
Figure 2.5 is also a SDOF system since the rotation 6(t) is the only degree-of-freedom.
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The equation of motion of the two-column rocking frame is (Makris and Vassiliou,
2013):

142y

6)=17 30 g0

p? | —sin [asgné(t) — 6(t)] — e cos [asgnf(t) — 6(t)] (2.12)

The above equation of motion (Eq. 2.12) is similar to that of the rigid block (Eq. 2.5)
if the p? term is multiplied by (1 +27)/(1 + 37). Thus, Eq. 2.12 can be solved as-
suming that the rocking frame is a rigid block with modified frequency parameter
P? = p?(1+2v)/(1+37) and slenderness & = tan~!(b/h), same to that of the rock-
ing block &. The size parameter is given by the expression R = ((1+37)/(1+27))R.
Moreover, setting p> = 3g/4R and multiplying Eq. 2.12 with (4/3)m:R? x (1 +
37)/ (1 + 27), the equation of motion becomes:

1+ 3y
1+ 2y

Lof(t) + mcgR sinjasgnd(t) — 6(t)] = —meiig(t)R cos[asgnd(t) — O(t)] (2.13)

Egs. 2.12 and 2.13 are equivalent and known as the generalized equation of motion
of the rocking frame problem. When y = 0 Egs. 2.12 and 2.13 reduce to the equation
of motion of the rocking block, while if the frame has N freestanding columns that are
capped with a rigid beam, the same equation can be used setting v = m;,/ (Nm.). The
generalized equation of motion offers a convenient tool for solving rocking frames; in
our work it will be used as the basis of an alternative simplified modelling approach.
For the rocking frame, the uplift acceleration is equal to L'lg/mm(t) = gtanw, and the
coefficient of restitution is given by the expression (Makris and Vassiliou, 2013; Dimi-
trakopoulos and Giouvanidis, 2015a):

6 1—15sin’a + 37y cos2a

Mframe = 3~

: 2.14

As expected, when y = 0, Eq. 2.14 reduces to that of the solitary block (Eq. 2.7).

24 Two-block systems

Following the observations on the dynamics of the freestanding block, Psycharis, 1990
extended the problem to the rocking response assessment of two-block systems. This
concerns the rocking response of stacked blocks, consisting of freestanding blocks
placed one on top of the other. Psycharis, 1990 examined the simplest case of two
symmetric blocks. This work was later revisited by Spanos et al., 2001 who formu-
lated again the equations of motions trying to facilitate the development of multi-
block structural models (i.e. pillars). From all the above studies it is evident that
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special care is required for the assessment of the energy dissipation. Chatzis et al.,
2017 investigated analytically the loss of energy in two-body systems providing an
alternative way to assess such a non-linear dynamic phenomenon. Recently, Anag-
nostopoulos et al., 2019 presented a compact mathematical formulation in order to
describe the dynamic rocking response of two-block systems subjected to ground ex-
citation. Their work aims to derive a unified system of governing equations capable of
describing all possible rocking and impact modes of two-stacked rigid blocks, based
on the Euler-Lagrange approach and the principle of the conservation of angular mo-
mentum. Kounadis et al., 2012 studied the overturning instability of a freely standing
two-rigid block system, focusing on the determination of the minimum amplitude

ground excitation.

8,>8,>0 0,<8,<0 0,>0,8,<8,  6,<0, 6,>8,

u
L)L

Mode 1 Mode 2
8,=6,>0 8,=8,<0 0,=0, 6,>0 8,=0, 6,<0
Mode 3 Mode 4

FIGURE 2.6: Four different modes in two-block assemblies considering
symmetric upper block (Psycharis, 1990).

Psycharis, 1990 addressed the two-block problem proposing the corresponding
equations of motion. Applying Newton’s second law to each block separately and
considering the equilibrium of restoring and overturning moments, e.g. Diaman-
topoulos and Fragiadakis, 2019, about the appropriate pivot point, the equations of
motion can be written in a form equivalent with the approach proposed by Housner,
1963 for the single block case. The free-standing block can oscillate under a seismic
excitation and hence, the equation of motion is changed when the angle of rotation
changes sign. That means that the problem has only one “mode” and is governed by
one set of equations. The analytical formulation of the non-linear two-block problem
is complicated enough, because of the four possible “modes” (Fig. 2.6) of vibration,
each being governed by a different set of equations of motion.
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FIGURE 2.7: Geometrical properties: (a) symmetric two-block system, (b)
asymmetric two-block system considered.

In two-block assemblies (Fig. 2.7) it is assumed that there are two degrees of free-
dom, the rotations of the lower and upper block, respectively, while the four possible
modes of oscillation (Fig. 2.6) are independent. For each of the four different modes,
the equation of motion is implemented with the aid of the equivalent matrices pre-
sented below. Supposing that each mode has two sub-cases, then there are eight cases
and hence eight equations of motion. The eight equations are simplified to four using
the sign function in order to define the restoring moments M,.;. The four equations

are defined as:

Ip + Myes = Motn (2.15)
and the corresponding matrices, are as follows:
Mode 1:
I 12 2h1hy + b
I = 01 + M2 ma (2h1hy + bag) (2.16)
ma(2h1hy + ba§) Io2
— 2myh +
M,os = (m1h1 +2my 1)g 0 01 n (m1b1 + ng)g (2.17)
0 mohog| | 02 +(maby)g
—(mqhy + 2myhq )X,
Moy = [ (il 2 ) g] (2.18)
—mzl’lzxg
Mode 2:
I 2 2 _ !
= 01 + mal ma(2h1hy — byg") (2.19)
1y (2h1hy — bo{) Io2
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_ !/
M, — (mihy 4 2mohy)g 0 61 n +(miby +mo')g (2.20)
0 mohyg | | 62 F(maby)g
Motn = [_(mlhl +2"7.2h1)xg] (2.21)
Mode 3:
Iy O
Iy = 222
0 [0 Io] (2.22)
—mh 0 0 +(mb
res = g ! + (mb1)g (2.23)
0 —mhg| |62 +(mby)g
—mhx
Mot = [ "g] (2.24)
—mhxg
Mode 4:
Ip = I (2.25)
Mrgs = m2h2g92 + mszg (2.26)
Motn = —m2h2x.g (227)

where mj, my are the masses of lower (block 1) and upper (block 2), respectively, Iy,
Iy are the moments of inertia of blocks with respect to their pivot points, m = mj + my
is the total mass of the system, I is the moment of inertia of the system about any of
the two pivot points and h is the height of the center of mass of the two-block system:

m1h1 + m2(2h1 —+ hz)
m

h= (2.28)

The study extended to the case of an asymmetric upper block and a symmetric,
solid pedestal, which is typically the case of museum artefacts, as shown in Figure
2.8. This requires to modify the matrices above in order to define the critical and the
non-critical sides of the upper asymmetric body (Fig. 2.7b). As shown below, the
geometrical properties of the upper block need to be distinguished in the sub-cases
included in each mode. Two significant modifications are needed for the transition
from the simple symmetric case to the asymmetric. Initially, the width b, should be
replaced with by,;; (modes 1a, 2a, 4a) when the upper block rocks with respect to the
right pivot point or byt (modes 1b, 2b, 4b) when the block rocks with respect to the
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FIGURE 2.8: Example of two-block systems.

left pivot point assuming that the critical side is the right one. In mode 3 where both
blocks oscillate around the pivot point of the lower block byt and by,gycrir sShould be
defined. Also, the moment of inertia in I (i.e Eqs.2.16, 2.19, 2.22, 2.25,) matrices should
be calculated for every mode according to the above b values.
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Chapter 3
Modeling of rocking blocks

In this chapter, the modeling of rigid / flexible rocking blocks that are freestanding/restrained
is presented. It has to be noted that, the notation was partially changed with respect

to the original corresponding paper Diamantopoulos and Fragiadakis, 2019 in order

to be consistent with the notation used throughout the Thesis.

3.1 Introduction

Rocking of rigid, or flexible, bodies/systems is a fundamental problem in earthquake
engineering. The most common option for handling a 2D rocking problem is directly
solving the equation of motion proposed by Housner, 1963. However, there have
been attempts to develop “equivalent” solutions based on the dynamics of the single-
degree-of-freedom (SDOF) oscillator, since structural engineers are more comfortable
with elastically deforming structures and software. Priestley et al., 1978 proposed an
equivalent SDOF oscillator with a constant damping ratio whose period depends on
the amplitude of the rocking angle; this approach was latter adopted by ASCE/SEI
41-06, 2007. Makris and Konstantinidis, 2003 revisited the approach of Priestley et al.,
1978 showing that in many cases it fails to produce accurate response estimates. An-
other equivalent SDOF approach is that found in ASCE 43-05, 2005 where the SDOF
oscillator has constant damping but its period depends on the amplitude of rocking.
This method was also recommended for the seismic loss assessment of unanchored
objects in the FEMA P-58-1, 2012 guidelines but it also has serious limitations, as
shown in Dar et al., 2016. On the other hand, there are different modeling approaches
for solving numerically the problem as shown in Figure 3.1. The first three models
of Figure 3.1a,b,c are essentially SDOF systems equipped with tension-only springs,
dashpots or a curved base. These models are conceptually simple but often lack com-
putational stability, or have a limited purpose, e.g. are suitable only for rigid blocks.
A full finite (FEM) (Figure 3.1d), or discrete element (DEM) modeling, is also possible
but again there are various computational shortcomings, e.g. large computing cost for
handling a simple problem, difficulty to define energy loss and damping, difficulty
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to define the interaction surface either through springs, or through proper boundary

conditions.

(a) (b) () (d)

FIGURE 3.1: Existing numerical models for the rocking block problem in
the literature.

Due to the apparent difficulties of simple modeling methods, several fundamen-
tally different approaches have been proposed in the literature for solving the rocking
block problem. Prieto et al., 2004 introduced an approach based on a Dirac-delta type
interaction for the impact mechanism. Chatzis and Smyth, 2012 proposed two models:
a concentrated spring model and a Winkler model for the simulation of a rigid body
experiencing a 2D rocking motion on a moving deformable base. Vassiliou et al., 2014
and Vassiliou et al., 2016 developed a versatile finite element model for the seismic
response analysis of solitary blocks based on elastic multimass oscillators. Giouvani-
dis and Dimitrakopoulos, 2016a solved the problem following a nonsmooth approach
that consistently treats the contact/impact phenomenon during the rocking motion,
while Acikgoz and DeJong, 2012 and Acikgoz and DeJong, 2016 proposed analytical
models and studied the dynamics of flexible rocking structures. Recently, Kakouris
et al., 2018 solved the problem using the Material Point Method (MPM) which is a
method where the continuum is represented by a set of moving material points.

The initial motivation of the work presented in the Thesis stems from the need
for simple, robust and fast models necessary for studying the dynamic/seismic be-
haviour of rocking structures. Centered around the equation of motion of Housner,
1963, a rocking modeling that for rigid blocks has a single degree-of-freedom, the ro-
tation, is presented. Rocking is simulated with a negative-stiffness rotational spring at
the base of a beam element with properties consistent with the geometry of the block.
Depending on the problem at hand, a single (lumped) mass, or an array of masses
is introduced, resulting to a system that can be easily solved with the direct stiffness
method and thus with common matrix analysis methods. The proposed method al-
lows also to easily calculate the seismic response of flexible rocking bodies and can
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be extended to many other applications avoiding specifically tailored analytical solu-

tions, or costly finite element simulations.

3.2 Proposed rigid block modeling

3.2.1 SDOF oscillator vs Rocking Block

The proposed rigid block model is essentially a single-degree-of-freedom (SDOF) sys-
tem connected at its base with a nonlinear rotational spring (Figure 3.2a) that has a
negative stiffness moment-rotation relationship. The proposed model is conceptually
explained comparing the equation of motion of the SDOF oscillator against that of the
rigid block. Structural analysis software solve the equation of motion of a SDOF oscil-
lator that consists of the sum of the inertia Fj, the damping Fp and the elastic Fg forces
resisting the externally applied load P, i.e.:

Fi(t) + Fp(t) + Fe(t) = P(t) & mii 4 cu + Fg = —miig (3.1)

where m is the mass, c the damping, ii, 11 the acceleration and the velocity of the SDOF,
respectively. We can tune a software that has been programmed to solve Eq. 3.1 so
that it solves the equation of motion of the block (e.g. Eq. 2.3) by smartly adjusting
the input parameters. For this purpose, we can rewrite Eq. 3.1 replacing u with 6, the
force F with the moment M and the mass m with the rotational inertia of the block Ij.
The elastic term Fg is determined from the M — 0 relationship of the spring at the base
of the oscillator and is denoted M,,s(6). Furthermore, the external force term P(t) is
replaced by the overturning moment M,s,, which is equal to the seismic force Fpy =
—miig times its leverarm H(f). For the moment, the damping term Fp is omitted, since
it will be considered with an event-based approach that is discussed in the section that
follows. With these replacements, the SDOF equation of motion (Eq. 3.1) is rewritten
as:

where M, is the restoring moment under static loading (Eq. 2.2). Comparing with
Eq. 2.3, we have arrived at the equation of motion of the block starting from the
SDOF oscillator’s equation (Eq. 3.1). In the sections that follow, we show that if we
choose appropriately the SDOF’s height H, the rotational moment of inertia I and the
M — 6 relationship of the spring, we can solve quickly and accurately any rigid block
problem using a structural analysis software, e.g. OpenSees (McKenna and Fenves,
2001).
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FIGURE 3.2: (a) Conceptual description of the proposed rigid block mod-

eling. (b) Deformed shape of rigid and flexible rocking blocks. (c)

Moment-rotation relationships of the nonlinear rotation spring (My =
mgRsinw).

The proposed modeling of the rocking block problem is shown schematically in
Figure 3.2a where we model the SDOF oscillator assuming two nodes connected with
a beam element and having a distance Hy. The top node corresponds to the center
of mass “CM” of the block and the bottom node is denoted as “O” and loosely corre-
sponds to the pivot point. The elastic beam element that connects the two nodes can
be rigid, or flexible, depending on the properties of the block, while in the simplest of
our models we assume that all the mass m is lumped at the CM node. The lumped
mass also has a rotational moment of inertia Icy; the subscript implies that it is cal-
culated with respect to an axis that passes from the center of mass CM. Moreover, the
bottom node O is connected to the ground with a rotational spring that hasa M — 0
relationship describing the block’s restoring moment under static loading. Assuming
that the SDOF oscillator is rigid, the rotations ¢y and 6y are equal (cpr = 6 = 6),
while the horizontal and the vertical displacements u$M, v6M of the CM node are al-
ways function of 6, since u%M = Hysin® = Hyb and U%M = Hy(1 — cos). Therefore,
for the rigid case, the four degrees-of-freedom (dof) are reduced to one, the rotation
of the spring 6; similar to the rocking block equation of Eq. 2.3. When the block is
flexible, there is an additional degree-of-freedom the displacement w, while the total
horizontal displacement of the center of mass can be decomposed to a rocking and a
bending part uSM = u§M + wMcos6 (Figure 3.2b).

The analogy between the SDOF oscillator and the rocking block (RB) problem al-
lows adopting a modeling based on the SDOF oscillator, but, more importantly, this
analogy allows to easily solve rocking problems that are more complicated or have
more degrees-of-freedom. Below we outline the fundamental components of the pro-
posed modeling based on the SDOF oscillator of Figure 3.2a, while in the sections that
follow we give more details on how the various parameters are derived.
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3.2.2 Properties of the M — 0 relationship

The self-centering capacity of the block depends on the M — 8 relationship of the rota-
tional spring. Vassiliou et al., 2016 and Kalkan and Graizer, 2007 have shown that it is
possible to use an elastic-perfectly plastic spring combined with a modeling that takes
into consideration second-order effects. The “yield” moment of the nonlinear spring
should be equal to My = mgb = mgR sina, which is the moment required for setting a
rectangular block from its rest position to a rocking motion. This option may not be al-
ways stable and its efficiency depends on the software used. In our work, we propose
to omit the geometric nonlinearity and to use a negative stiffness M — 6 relationship,
as shown in Figure 3.2c. The moment at 6 = 0is My, but once the block is set to rocking
motion the restoring moment decreases (negative stiffness) reaching a zero moment at
8 = a (overturning). This mildly nonlinear moment-rotation relationship follows the
expression of the restoring moment M(0) = mgRsin(a — 6) of Eq. 2.2 and can be in-
serted in a FE (finite element) code using a piecewise linear approximation. Another
option is to use the linearized relationship M(0) = mgRsina(1 —0/a) = My(1 —0/«)
which stems from the simplified equation of motion of Eq. 2.4. The three M — 6 op-
tions are shown in Figure 3.2c. In all cases unloading and reloading should follow
the same path, while the behaviour in the opposite direction is symmetric about the
origin.

The choice among the three M — 0 relationships of Figure 3.2c depends on the
options available in the software adopted. All three options are possible in OpenSees
(Mazzoni et al., 2006) which offers pertinent material models and can be used for large
displacement and small strain problems. The differences between the two negative
stiffness options of Figure 3.2¢c are negligible, while the perfectly plastic model may
produce errors, or it may not be stable. In the remaining of this work, unless other-
wise specified, our results have been obtained using the “exact” option of Figure 3.2c.
The linear M — 6 relationship is more easy to implement, while, in terms of accuracy,
it produces some very minor differences when the slenderness angle « becomes large.
Furthermore, typically in most FE codes the first branch of the available material mod-
els is linear elastic, followed by a hardening (or a softening) branch. Since our M — 6
relationship is not zero at 6 = 0, we assume a very small “yield” rotation, typically of
the order of 107>.

The case of flexible rocking columns deserves further attention. Especially in the
case of a large axial load or very flexible systems the properties of negative-stiffness
nonlinear springs should be properly adjusted in order the accuracy to be improved.
This situation is common in rocking frames with flexible columns, which typically
correspond to modern structures, e.g rocking bridges, where the axial load is larger

than the column’s self-weight.
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A deformable rocking column with height 2/ and axial load N is shown in Figure
3.3. Depending on the problem examined, the mass of the column can be assumed
lumped at the center of mass or it can be neglected (e.g. Acikgoz and DeJong, 2012;
Avgenakis and Psycharis, 2017). Unless otherwise specified and the for the sake of
simplicity, the self-weight of the column will be neglected while other axial loads, are
lumped at the column top and are denoted as N. When the lateral seismic force F; is

2h

FIGURE 3.3: Freebody diagram of flexible rocking column before uplift.

not strong enough to uplift the column, the column will deform as a cantilever. At the
instant that the column uplifts, the horizontal displacement at the column top is 1y,
and the equation of equilibrium of the cantilever is:

Feq — keuup (3-3)

If the weight of the column W, is not neglected, a more accurate expression for k.
can be obtained assuming that the resultant horizontal force (base shear) is applied at
height z measured from the base of the frame:

We + 2N
7 =

=N (3.4)

where setting W, = 0 the expression gives z = 2h. Using the force method, the elastic
stiffness k, of a cantilever with a force acting at height z is:

. 3EI
¢ B(1+302h—-2)/22)

(3.5)

where setting z = 2h we obtain k, = 3EI/(2h)3. The uplift condition requires that the

restoring and the overturning moment should be equal, thus:

Motn — Mres = Fqu — N(b - uup) + Wc(b - O.Suup) (3.6)
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where the leverarm of the axial load is b — 1y, and the leverarm of W, is equal to
b — 051, !. Combining Eq. 3.3 and Eq. 3.6, the critical displacement 1, at the instant
of uplift is:

Nb + W¢b

_ 7
My = N+ 05W, (3.7)

Omitting the self-weight of the column, Eq. 3.7 becomes:

Nb

Hup = kez + N (3.8)
If b —uy,p ~ b, Eq. 3.8 can be further simplified:
Nb
uup —_— keﬁ (3.9)

The above expression (Eq. 3.9) is in agreement with that proposed by other researchers,
e.g Acikgoz and DeJong, 2012 while Eq. 3.8 has been adopted by Calid and Greco,
2016. For typical values of k, and N, Eq. 3.8 and Eq. 3.9 will yield practically the same
uplift displacement u,,.

—uup: large Nb

(a)

§ L N(b'uup) \\\\\ § L N(b'uup)
= N =

e -« > € o

[<}] N [«}]

€ S

) T )

E Ss O TdN(b-u ) =
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~! -Nb
rotation 6 rotation 60
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FIGURE 3.4: (a) Negative stiffness spring, (b) moment-rotation relation-
ship of the spring when the P — A effects are introduced to the model.

The parameters of the base spring of Figure 3.2b should be also adjusted. The
spring should be fully rigid prior uplift so that the total stiffness of the system is k,
(Eq. 3.5). The maximum moment of the spring at the onset of uplift should be equal
to My = N(b — uyp). If the column is perfectly rigid, or when u,, is small, then
b—u =~ band My = Nb. Depending on the analysis method chosen, there are two

lassuming a linear triangular distribution of the displacements along the height of the column
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options: (i) The analysis does not include P — A effects and therefore, the spring should
have negative stiffness (Figure 3.4a), and (i7) the analysis explicitly accounts for P — A
effects. The two variants are shown in Figure 3.4, where it shown that in both cases
the maximum rotation is the overturning rotation equal to the column slenderness
angle «. The two approaches produce results that are very close, but not perfectly
identical, as shown in the paragraph that follows. The similarity of the two approaches
is due to the fact that, when the moment-rotation relationship has a horizontal, or a
hardening branch (Figure 3.4b), the stiffness that is assigned internally by the software
is augmented with a P — A term which is approximately equal to kpy = —N/2h 2.
Thus, the total stiffness of the column will be approximately equal to k; = k. — N /2h.
In other words, due to the presence of the axial force, the actual slope of the force-

displacement curve will be negative after the uplift, although the M — 6 curve does
not soften.

350 e ‘ w 350 : ‘
¥ —Avgenakis & Psycharis (2017)
300 N\ i ] 300F —rigid block :
— o | - - - -proposed model (b-uup ~b)
§,250 [ x §,250 I ——proposed model (u,, : large)
[0} (0]
(&) [S]
5 200 - 5 200 -
T . I
£ 150 - N £ 150 -
8 R
G 100 ¢ 5100 |
< c

)]

o
[
o

o

I L L O HH L L L
0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
horizontal displacement (m) horizontal displacement (m)

() (b)

o

FIGURE 3.5: Comparison of force displacement curves for a flexible col-
umn (2h = 4m, 2b = 1m, N = —2500kN) with E = 1GPa: (a) using
negative stiffness M — 0 spring and (b) analysis including P — A effects.

Figure 3.5 and 3.6 compare the two models with the results presented in Avgenakis
and Psycharis, 2017 who proposed a macroelement for modelling rocking members
resting on a deformable base. For comparison purposes, a very small modulus of
elasticity (E = 1GPa) has been assumed in Figure 3.5a, while in Figure 3.6 the differ-
ences tend to disappear for ordinary values of the modulus (E = 10GPa). In all cases,
the response is initially linear elastic and when the uplift condition is met, a negative
stiffens branch is initiated. In the model of Avgenakis and Psycharis, 2017 the transi-
tion is smooth since a fiber model is used to model the deformability of the column
base. The black thick solid line corresponds to the rigid case which is shown here for

2this term corresponds to the “geometric stiffness”
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FIGURE 3.6: Comparison of force displacement curves for a flexible col-
umn (2h = 4m, 2b = 1m, N = —2500kN) with E = 10GPa: (a) using
negative stiffness M — 0 spring and (b) analysis including P — A effects.

reference. The red solid curves in Figure 3.5a and Figure 3.6a were obtained assum-
ing that the maximum restoring moment is M,es = N(b — uy,), while the dashed red
lines correspond to M,,s = Nb. Figures 3.5b and Figure 3.6b were obtained using the
moment-rotation relationship of Figure 3.4b for the base spring and explicitly includ-
ing P — A effects. Again, the difference of the red solid and the red dashed lines is due
to the uplift moment, i.e. N(b — u,;,) and Nb, respectively. Based on the experience
of the authors, the sensitivity between the two approaches for introducing negative
stiffens and /or of using the approximation b — u,, = b is trivial. Therefore, either Eq.
3.8 or 3.9 can be safely adopted, especially for small axial loads, or large values of the
modulus of elasticity (e.g. concrete or steel structures).

3.2.3 Energy dissipation and time integration

When a FE software is used for solving rocking problems (e.g. Figure 3.1d), the damp-
ing force is assumed continuous and proportional to the velocity, i.e. Fp = cii, where
c is a percentage of the critical damping. For rigid blocks, a possible value can be
obtained using concepts of dimensional analysis as shown by Vassiliou et al., 2016,
where the following expression was proposed:

=002 () mgOSR1S (3.10)
01/) ™8

The damping coefficient ¢ can be introduced in the model with the aid of a simple
dashpot element in parallel with the rotational spring. However, rocking bodies dis-

sipate energy primarily when impact occurs and thus damping is “event-based” and
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energy is mainly lost after every impact (Housner, 1963).

As already discussed in Section 2.1, when solving Eq. 2.3 an impact is detected
if the sign of the rotation is reversed. If the time step is sufficiently small, at the ex-
act instant of impact, the rotation is practically zero and the velocity is reversed and
multiplied by the coefficient or restitution 7 given by Eq. 2.7. Since 7 is always less
than one, energy is damped out at every impact. The same practice is also followed
with our modeling, where the coefficient of restitution is introduced by pausing the
analysis once an impact is detected, or simply when the sign of rotation is reversed.
The analysis is then resumed using as “initial” velocity of the subsequent time steps
the product of the pre-impact angular velocity of every degree-of-freedom (dof) of the
FE model with the coefficient of restitution. The same procedure is repeated for every
impact/event until the analysis is completed. As we will show, the results obtained
with this practice, match perfectly the results obtained after solving directly the rigid
block’s equation of motion as derived by Housner’s theory (Eq. 2.3).

For the flexible block, a more general definition of the impact model is adopted
since, upon impact, the displacements of the block may not follow the rotation of the
base as in the rocking block case. Again we distinguish two phases: the rocking phase,
where impacts are assumed instantaneous, and the full contact phase where the base
of the block is in full contact with the supporting ground for a finite duration just
prior and right after the impact. When the block is at rest, rocking is initiated when
the overturning moment exceeds the resisting moment. However, when the block is in
the rocking phase and 6 = 0, in order to decide whether a rocking phase will start or
the block will remain for some time in full contact with the ground, we need to check
the sign of the total angular momentum Lyo:

Lot = XL = X i0; (3.11)

1“7
1

where the subscript implies that £ is measured at every node of the structure.
Therefore, in order to initiate a new rocking phase, the conditions that should be met
are: (i) the angular momentum L, should have the same sign with the angular ve-
locity of the base 6 at the instant of impact (e.g. Acikgoz and DeJong, 2012; Acikgoz
and DeJong, 2016), and (ii) the overturning moment about the impending pivot point
must exceed the resisting moment. Otherwise, full contact should be assumed since
the transition to a new rocking phase occurs smoothly. This approach is rather intu-
itive since, according to several researchers (e.g. Psycharis, 1983; Yim and Chopra,
1985; Acikgoz and DeJong, 2012; Acikgoz and DeJong, 2016), the actual response of
the flexible rocking block at impact is unvalidated; examining the validity of our as-

sumption is beyond the purpose of our study while different approaches can be easily
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handled. Furthermore, we detect an impact when the product of the rotations of two
subsequent time steps is negative and we set the current (last) time as the time of im-
pact. This simple assumption was found adequate in practice, but if more accuracy is
desired, the exact instant of impact can be easily found, e.g. using a bisection method.

All results obtained with the proposed modeling were produced with the aid of
a standard Newmark algorithm. It is, therefore, possible to obtain accurate response
estimates for the rocking problem using an implicit integration scheme allowing for
large time steps of the order of 10~2sec. Otherwise, an explicit time integration scheme
can be easily implemented, avoiding the need for corrective iterations but requiring
a smaller time-step; this option was not further examined. Different tolerance values
are used for RB and the SM models, while as a rule of thumb, we’ve left the tolerances
to their default values in Matlab and OpenSees. Specifically, the (default) tolerance
of the ODE23s algorithm is 102 for the relative error and 10~ for the absolute error.
For the SM models, the convergence test for the corrective iterations was based on
a displacement-based norm with a tolerance equal to 107°. Although, in principle,
it is possible to adjust the two approaches and compare them in terms of speed, this
comparison is not straightforward. Therefore, our comparisons are based primarily on
accuracy and not on computing speed (although the proposed SM models are quite
fast).

A minimum threshold on the rotational velocity 0,,in should be also considered.
Below this threshold, the block is assumed at rest (full contact) and the analysis is
paused, i.e. the rotation 6 and the velocity @ are set equal to zero, until the next time
step that the overturning moment exceeds the resisting moment. In our RB solutions
this threshold was assumed equal to 10~#rad /s, while Acikgoz and DeJong, 2016 rec-
ommend 6,,;, = 10~2rad /s. In the proposed modeling the same procedure is followed
using the same threshold value. Hence, the cases of excitations with a spike after the
instant of the theoretical termination of rocking are correctly modelled. Although this
practice adds both accuracy and stability, our models produced sufficient response
estimates for most cases examined even without this threshold. On the other hand,
standard ODE solvers, such as those of Matlab, typically increment automatically the
time step and are often trapped in an effort to exactly locate the instant of impact.
Implementing the threshold in the later case is critical when the seismic loading is a

ground motion record.

3.3 Proposed block models

We present four models, called spring models (SM), for simulating the seismic response
of blocks, all following the concept of Figure 3.2a, discussed in section 3.2. The first
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three variations assume a single lumped mass SDOF oscillator and the fourth is a
multimass model. We first demonstrate the capacity of the models for the rigid case
under static loading and simple wavelets, while in the sections that follow we examine

the behaviour under ground motion records and we also study the flexible case.

3.3.1 Spring Model 1 (SM1)

The first model is denoted SM1 (Spring Model 1) and is shown in Figure 3.7. SM1 is a
SDOF oscillator with height equal to the distance of the center of mass (CM) from the
pivot point, Hy = R. The seismic force is analyzed into two orthogonal components;
we assume that only the component perpendicular to R is of interest. Therefore, if
the seismic force is —mii ¢, only the component Feq = —miigcosa is considered in SM1.
Using the SDOF model of Figure 3.2a, SM1 is implemented if we set: the oscillator’s
height equal to Hy = R = /b2 + 12, the rotational moment of inertia of the CM node
equal to Icp = (1/ 3)mR? and the record timehistory is multiplied times cosa.

CM
Eq ol ‘a
2h al
E.cosa \

o' 0
- 2p

FIGURE 3.7: Spring Model 1 (SM1) for rocking block modeling.

In theory, the results of this model do not exactly coincide with the block’s equation
of motion of Eq. 2.3, but as we show below the error is always negligible. In order to
investigate the error of SM1, we first look at the force-rotation curves under static load-
ing, i.e. neglecting the inertia term Iy6. The seismic force is equal to F,; = —miigcosa

and the overturning moment is the seismic force F; times the leverarm Hy = R:

The restoring moment M,,; depends on the M — 6 relationship adopted. For the non-
linear spring it is equal to M(0) = mgRsin(a — 6) (Figure 3.2¢, solid line). Therefore,
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for the SM1 model, the block’s force-rotation relationship becomes:

FSMl : -0
MIMY — MSMY = mgRsin(a — 0) = —miig (t) Rcosa = s = Smc(gsa ) (3.13)

If instead we choose a constant M — 6 relationship combined with second order anal-
ysis (P — A), the expression of the restoring moment is different and the force-rotation

relationship becomes:

sm1 _ mgRsina — mgRsin 6 N Fﬁﬁﬁ __sina —sinf  tana  tan®

FpZA (3.14)

Rcoswacos® mg ~ cosacosf " cosf  cosa
The two force-rotation relationships are compared to that of the rigid block (RB) equa-
tion (Eq. 2.3). From Eq. 2.1, the overturning moment is known and it can be calcu-
lated as MRE = —miig (t) R cos [asgn (6 (t)) — 6 (t)], while the distance of CM from

the ground during the rocking motion is H(6) = Rcos [asgn (6 (t)) — 6 (t)]. Thus, the

force-rotation curve of the rigid block (RB) equation is:

FRB

FRB _ Mfef FRB _ mgR sin(ax —0)

0 = “Reos(a — 0) = g = tan(a — 6) (3.15)

The linear option of Figure 3.2c is also possible, but its difference with the exact ex-

pression is small and thus is not further examined.

—RB (Eq. 3.15) —RB (Eq. 3.15)

- - SM1 (Eq. 3.13 - - SM1 (Eq. 3.14
03! (Eq )| 03" (Eq )|

0.2

~
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FIGURE 3.8: Force-rotation curves for the spring model SM1 vs the rock-
ing block (RB), obtained with: (a) Eq. 3.13, and (b) Eq. 3.14.

Figure 3.8a compares the force-rotation curves of Eq. 3.13 and 3.15 for three slen-
derness values /b = 3,5 and 10. The same comparison is shown Figure 3.8b but
the SM1 curve is that of Eq. 3.14. Overall, for both variations of SM1, the errors are

small and increase slightly for more stocky blocks (smaller /b ratio), as shown in the



30 Chapter 3. Modeling of rocking blocks

3 h/b=10
= : AANANAANAN
=0 0

A ‘ 1 :
0 10 20 0 10 20
1 1 :
. hib=5
S '
=0 0 \/\NV\MMM—
1 ‘ 1 ?
0 10 20 o 10 20
1 1
hib=3
Q 0 I\I\p» 0
> ——RB
_1 | § e SM1
0 10 20 0 10 20
time (s) time (s)

FIGURE 3.9: Comparison of rocking rotation (left column) and velocity

(right column) response histories between the rocking block RB and SM1.

The results refer to a block with R = 2m and h/b = 10,5 and 3 subjected
to a symmetric Ricker pulse (¢ = 3.6¢tana, w, = 37t rad/s).

static results. Figure 3.9 shows also the response estimates of the SM1 model under
dynamic analysis. We compare the response history of the rotation 6 and the angu-
lar velocity 0 of a rigid block with R = 2m and slenderness values equal to h/b =
3,5 and 10 (tanax = 0.33,0.2,0.1, respectively). The block is subjected to a symmetric
Ricker pulse with pulse amplitude a, = 3.6¢ tana and frequency w, = 37 rad/s and
the coefficient of restitution is obtained using Eq. 2.7. The results of Figure 3.9 are
compared against the solution of the equation of motion of the rocking block (RB) and
show perfect agreement for all three & /b values considered.

3.3.2 Spring Model 2 (SM2)

The second rigid block model is identified as SM2 and is conceptually shown in Fig-
ure 3.10. The height Hy of the SDOF is equal to half the height of the block (Hy = h),
while the pivot point O is the projection of the center of mass CM to the base, or equiv-
alently, the CM node is located right above the pivot point. If the rotational moment
of inertia around the CM is Icp = (1/3)mR?, since the CM is displaced horizontally
at an offset distance equal to b, the rotational moment of inertia for the SM2 model
will be: I}.,, = (1/3)mR? + mb?. With reference to Figure 3.2a, SM2 is realized if we
set: Hy = I, Icpr = (1/3)mR? + mb?, while there is no need to multiply the ground
motion with a scalar factor (contrary to SM1).
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FIGURE 3.10: Rigid block Spring Model 2 (SM2).

s

Similarly to SM1, the SM2 model is also approximate but again the error is always
small. For the static case, the force-rotation relationships are similar to that of SM1,
since Hy = Rcosa and thus Mgtl\,fz = FegHop = FeqRcosa, while the restoring moment
depends always on the M — 0 relationship chosen. However, it is interesting to show
that when we combine the SM2 model with a nonlinear spring that combines a con-

stant moment My and P — A effects, instead of Eq. 3.14 we obtain the expression:

FSM2 _ My—mghsinf _ mgR sina—mg(R cosa) sin 6 N
P—-A R coswacos @ Rcosacos@
FI%/IA2 tana
g = c0s? —tan 6 (3.16)

Figure 3.11a compares the static response of the SM2 to that of the rigid block (RB)
solution of Eq. 3.15. The errors are overall small, with the exception of small values of
the h/b ratio (small slenderness), e.g. h/b = 3 (Figure 3.11a). Therefore, SM2 is also
accurate unless the M — 0 relationship of the spring is defined with a constant relation-
ship. The validation of the SM2 model under wavelet pulses is shown in Figure 3.11b.
Again we compare the response history of the rotation 6 and the angular velocity 8 of
a rigid block with R = 2m and slenderness values equal to h/b = 3, 5 and 10 using
the symmetric Ricker pulse used also in Figure 3.9. The M — 0 relationship adopted is
the nonlinear negative (exact) stiffness expression of Figure 3.2c. Excellent agreement
with the results of the RB solution is again observed.

3.3.3 Spring Model 3 (SM3)

In the SM3 (Spring Model 3) model, we assume that the mass of the block is lumped
at the pivot point and that the seismic loading is applied directly on the rotational
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FIGURE 3.11: (a) Force-rotation curves for the rocking block (RB) and the

SM2 model when a perfectly-plastic M — 8 relationship is adopted. (b)

Comparison of rocking rotation (left column) and velocity (right column)

response histories between the rocking block RB and SM2. The results re-

fer to ablock with R = 2m and h/b = 10,5 and 3 subjected to a symmetric
Ricker pulse () = 3.6g tana, w, = 37t rad/s).

degree-of-freedom of the base node. The rationale of this approach stems from the di-
rect comparison of the equation of motion of the rigid block (Eq. 2.3) and the equation
of motion of the SDOF oscillator mii + cit + ku = —mii, that structural analysis soft-
ware solve. Comparing with the equation of motion of the rigid block (Eq. 2.3) and
assuming that the only dof of interest is the rotation 6, we replace the mass m with the
rotational mass Iy and we apply the record on the rotational dof. For the rigid block,
the equivalent of the elastic term ku is defined through the M — 6 relationship of the
spring and, therefore, we need to determine only the overturning term which is writ-
ten as: M5M3 = [0, = Alyil,. The constant A is obtained comparing with overturning

otn

moment term of the rocking block (Eq. 2.3):

mRcos(x — 0)

MEE —M3)B = 0 miigReos(a — 0) = Alpiig & A = o

(3.17)
The expression for A contains the rotation 6 which is a problem unknown. Since 6 €
[0, &), we can remove 6 setting it equal to its bounding values, 6 = 0 or § = a. This is
again an approximation, but the loss of accuracy is small. More specifically, looking
into the static force-rotation relationship of SM3:

M3MB = MEM3 < Algiiy = mgRsin(a — 0) < Algmiiy = m>gRsin(a — 0) <
FSM3 mRsin(a—0)

e (3.18)
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FIGURE 3.12: (a) Comparison of force-rotation curves for the SM3 model
using either Ag— or Ayp—,. (b) Comparison of rocking rotation (left column),
and velocity (right column) response histories between the RB and the SM3

model for ablock with R = 2m and h/b = 10,5 and 3 subjected to a Ricker
pulse (¢, = 3.6g tan &, w, = 37 rad/s).

Setting Ag_g = mRcos(a)/ Iy, or Ag—, = mR/Iy, the force-rotation relationship be-
comes:

F3M3 _ mRsin(ae —0)  sin(a —0)

= = A
mg Ao—olp cos(a) (3.19)
FSM3 ol
o=y _ MRsin(e —6) _ sin(a — 0) (3.20)
mg )\9:04[0

Figure 3.12a compares the above expressions with that of the RB solution (Eq. 3.15).
Both Ag—y and Ay, are possible, but Ag_g is slightly more accurate and therefore is
preferred. As before, Figure 3.12b compares the response history of 6 and 6 for a rigid
block with R = 2m and the symmetric Ricker pulse of Figure 3.9 showing perfect
agreement with the RB solution for Ay_.

To summarize, with reference to the model of Figure 3.2a, the SM3 model can be
implemented in a structural analysis code if we set Hy = 0, Iy = (4/3)mR? and we
apply the record timehistory on the rotational dof of the base node multiplied times A,
where A = 3 cosa/(4R) for a rectangular block. Note that obviously, the option of us-
ing a constant M — 0 relationship is not possible with the SM3 model. Moreover, since
flexible blocks have at least one more degree-of-freedom, the SM3 model is pertinent

only for rigid blocks, unless a second rotational spring is introduced.
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3.3.4 Multimass Spring Model (mmSM)

The fourth model is the multimass Spring Model (mmSM) shown in Figure 3.13. The
multimass spring model is obtained following an approach similar to either SM1, or
SM2. In both cases, the model consists of n masses distributed either along the block’s
diagonal that connects the pivot point with the block’s opposite upper corner (Figure
3.13a), or along the height of the block (Figure 3.13b). The second approach is close,
but not similar, to the model proposed by Vassiliou et al., 2016. In the first case, the
SDOF system is a cantilever with height 2R and n nodes with lumped masses at the
horizontal translational dofs equal to m; = m/n and zero rotational moment inertia,
I,; = 0. Similarly to the SM1 model, the ground motion record is multiplied times
cosa. In the second case, the cantilever has height 2/ and the nodes have: mass m; =
m/n, and rotational moment inertia I,,; = m;b%, where b is the offset of each mass m;
from a vertical line that passes from the pivot point. For a rectangular block, b is equal

to the block’s half width. In the second case, the ground motion record is left unscaled.

=

'
’///9////////////////////// 7
~— 2b —

(a)
FIGURE 3.13: Multimass Spring Model (mmSM): (a) the mass is dis-

tributed along the block’s diagonal, (b) the mass is distributed along the
block’s height.

For the mmSM, initially, we investigate the horizontal force-rotation pushover re-
sponse under static loading. In the first case (Figure 3.13a) the seismic force of the i
mass is equal to Feiq = —(Xm;)iigcosa and its leverarm is H; = R; with R; = 2R(i/n).
If the second approach is preferred, the seismic force is equal to F;, = —(Zm;)iig and
the leverarm is H; = h; with h; = 2h(i/n). Since both variations of Figure 3.13 are
possible, we focus on the first option and we find that the total overturning moment



3.3. Proposed block models

35
is equal to:

MmmSM — Z (mjiig cos aH;)

i Z( MgR cos oc) = —mingR Cosa; (i/nZ)

1

(3.21)
The restoring moment M,.s depends on the M — 6 relationship adopted for the nonlin-

ear spring (Figure 3.2¢); if the base shear is F/""M = y°

h/b=3

eq = —Miig, the force-rotation
relationship of the mmSM model becomes:
mmSM _ 3 smmSM mmSM _ ____MpsM
)7 = Mg <k ~ 2Rcosay;(i/n?) <
FprmsM sin(a—6)
b
mg 2cosay;(i/n?) (3.22)
20 :
i. —0=0
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FIGURE 3.14: (a) Convergence of the error term of Eq. 3.23 as function
of the number of masses and the rotation angle for a rigid block with
h/b = 3, (b) Sensitivity of mmSM model to the number of masses for
blocks with: (up) R = 2m, h/b = 6, Ricker pulse (w, = 37 rad/s), (down)
R =5m, h/b = 10, Ricker pulse (w, = 27 rad/s).

When the quantity 2cosa ) (i/1?) in the denominator of Eq. 3.22 converges to

cos(a — 0), then Eq. 3.22 converges to the exact solution FRB /mg = tan(a — 6) of Eq.
3.15. Therefore, the accuracy of Eq. 3.22 depends on the number of masses and on 6

To further investigate the sensitivity of the mmSM model, we define the error of the
denominator of equation Eq. 3.22 as:

error = ‘ [cos(zx —0) —2cosa (i/nz)} ‘ / cos(a — 6)

As shown in Figure 3.14a, the error quickly decreases as the number of masses
increases; for more than 7 masses it becomes less than 10% and is always less than 5%

as the number of masses increases. For 6 values other than zero, it is practically zero

(3.23)
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when n ~ 20. Moreover, Figure 3.14b compares the sensitivity of the response to the
number of masses for two blocks with R = 2m,h/b = 6 and R = 5m,h/b = 10. The
blocks are subjected to a symmetric Ricker pulse with w, = 37 rad/s and w, = 27
rad /s, respectively, while the coefficient of restitution is equal one in order to facilitate
the comparison. For both blocks when n = 3 there is both amplitude and period
elongation error, obviously stemming from the different eigenfrequency properties of
the system. Both oscillators produce results equivalent to that of the RB solution when
more than 7 masses are adopted and perfect agreement is obtained for approximately
10 masses.

It is interesting to note that in the work of Vassiliou et al., 2016, the authors rec-
ommend the use of a rotational spring with a constant M — 6 relationship combined
with second order analysis (P — A). Their formulation follows the second multimass
variation of Figure 3.13b. Our investigations have shown that, a constant M,.s may
overestimate the restoring moment, which is not observed when the first variation of
Figure 3.13a is preferred. Nevertheless, the problem is fully amended if the model of
Figure 3.13b is combined instead with a negative stiffness M — 6 law.

3.4 Validation using acceleration time-histories

The accuracy of the proposed simplified models is further investigated using natural
ground motion records. We have extracted the set of twenty ground motion records
shown in Table 3.1 from the far-field set of FEMA P695 Federal Emergency Manage-
ment Agency, 2009. Among the full list of the FEMA P-695 records, the 20 records
chosen have M, over 6.5 and their PGAs cover a wide range from 0.15g to 0.73g.
Figures 3.15a,b show the response history of a block with R = 2m and tana = 0.16
(h/b = 6) subjected to records #2 and #11 of Table 3.1. Specifically, Figure 3.15a shows
the response history of a block that was modeled using the SM1 model subjected to
record #11, where excellent agreement for the whole range of the response history is
obtained compared to the RB model of Eq. 2.3. A similar comparison, is shown in
Figure 3.15b for record #2 which overturns the block. The analyses were repeated
with the SM2 and the SM3 models and similar results were obtained and hence are

not repeated.

Figures 3.16 and 3.17 show a wide comparison, where the accuracy of each of the
four models is obtained in terms of the maximum rotation demand normalized by
the slenderness angle of the block |0|/«. The figures show the maximum demand for
two blocks with R = 2m, tana = 0.16 and R = 5m, tana = 0.10 subjected to the 20
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FIGURE 3.15: Comparison of rocking rotation and angular velocity re-
sponse history for a block with R = 2m and tana = 1/6: (a) response
history to record #11, (b) response history to record #2, the block over-
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FIGURE 3.16: Comparison of the maximum response rotation between
the RB and the proposed models for the 20 ground motions of Table 3.1:

(a) SM1, (b) SM2.

ground motions of Table 3.1. The dimensions of the blocks were chosen so that they
either rock or overturn when subjected to the 20 records (i.e. rocking always initiates).
The agreement is very good practically for all four models (Figure 3.16 and 3.17). More
specifically, with the sole exception of one simulation modeled with the mmSM model
(Figure 3.16d), all four models successfully captured overturning, while, overall, the
differences with the RB solution are minor and less than 5% regardless of the peak
ground acceleration of the ground motion record. Moreover, the maximum values ob-

tained are not biased, since none of the models systematically under- or over-estimates

the demand.
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FIGURE 3.17: Comparison of the maximum response rotation between
the RB and the proposed models for the 20 ground motions of Table 3.1:
(a) SM3, (b) mmSM model of Figure 3.13a.

TABLE 3.1: The twenty ground motion records adopted.

No Event Station ¢° | Soil | M | PGA(g)
1 Northridge, 1994 Beverly Hills-14145 Mulh | 279 | D | 6.7 | 0.2
2 Duzce, 1999 LA, Bolu 00| D |71 0.73
3 Hector, 1999 Hec 000 C |71 0.27
4 Imperial Valley, 1979 El Centro Array 11 140 | D |65 | 0.36
5 Imperial Valley, 1979 Hollister Diff. Array 11 {230 | D |6.5| 0.38
6 Kobe, 1995 LA, Shin-Osaka 09| D |69 021
7 Kocaeli, 1999 Duzce 180| D |75 0.31
8 Kocaeli, 1999 Duzce 2701 D |75 0.36
9 Kocaeli, 1999 Arcelik 000 | C |75 0.22
10 Kocaeli, 1999 Arcelik 0% | C |75| 015
11 Loma Prieta, 1989 Capitola 090 | D |69 044
12 Manyjil, 1990 Manjil 000 C | 74| 051
13 | Superstition Hills, 1987 | El Centro Imp. Co. Center | 090 | D | 65| 0.26
14 | Cape Mendocino, 1992 Rio Dell Overpass FF 27200 D 70| 0.39
15 | Cape Mendocino, 1992 Rio Dell Overpass FF 360 | D |70 0.55
16 Chi-Chi, 1999 Chy101 000 D |76 035
17 Chi-Chi, 1999 Chy101 09| D |76 044
18 Chi-Chi, 1999 Tsu045 000 C |76| 047
19 Friouli, 1976 Tolmezzo 000 | C |65 0.35
20 Friouli, 1976 Tolmezzo 270 C |65 0.31

3.5 Flexible blocks

Real structures, or structural members, when designed to resist seismic loading through
rocking, are usually made from concrete or other structural materials and thus have

some flexibility, especially when their size is large. The proposed modeling can be
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easily extended to the case of flexible blocks simply modifying the properties of the
beam element of Figure 3.2a and adopting the rocking conditions discussed in Section
3.2.3 when impact is detected. We study systems with both lumped and distributed
mass, the former using the SM1, SM2 models and the latter with the mmSM model.
Both lumped and distributed mass modeling are useful and the choice depends on the
problem at hand. For example, for rocking bridge piers, a lumped mass modeling may
be preferable, while for a tall, slender system the multimass model may be preferred.

For the flexible block, our node of interest is usually the top node instead of the
center of mass. The flexibility of the block is modeled through the flexibility of the
beam element connecting the top with the base of the oscillator. Therefore, if the lat-
eral stiffness of the beam is k = 3EI/h3, the rigidity EI is defined according to the
properties and the geometry of the rigid block. Moreover, although rocking is still the
major source of energy dissipation, viscous damping needs to be considered in order
to damp out the pure bending motion. Therefore, we introduce some mild mass (or
stiffness) proportional viscous damping of the order of { = 0.5 < 2% calculated using
the properties of the equivalent fixed SDOF system.

Some attention is required when post-processing the results. The analysis software
outputs the total displacement of every node, e.g. u$M for the CM node (Figure 3.2b).
Focusing at the top node, the total displacement u:gf is broken down to the rigid rocking
displacement ur and the pure bending displacement w. Assuming that w is perpendic-
ular to a coordinate system that follows the rocking rotation (Figure 3.2b), the total

displacement u; is:

t t t .
uth = MROP + w'? cosh = uth = (2R cos &) sin § + w!°? cos 6 =
top — 1 top .
W' = g (Upr — 2R cosasin6) (3.24)

where h = 2R cos « is the height of the block. Similarly, for the CM node the bending
displacement is obtained if we set h = Rcosa instead. Furthermore, when the SM1
or the mmSM model of Figure 3.13a is adopted, the nodal displacements uigf , u$M
should be multiplied times cosa before inserted in Eq. 3.24.

When the block is at rest and the acceleration level is below gtana, the system
responds as a SDOF (or MDOF) oscillator, until the combined rocking-bending motion
begins when ii; > gtana. As discussed by Psycharis, 1983 and Acikgoz and DeJong,
2012, the first mode interacts with rocking and its effect becomes important as the
block becomes more flexible. Specifically, the effect of flexibility is significant when
either the ratio E/pg is small, or when the size parameter R of the block is large. This is

better understood from the expression of the first eigenperiod of flexible homogeneous
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FIGURE 3.18: Response of flexible block vs rigid blocks (Acikgoz and

DeJong, 2012): (a) response history of rotation 68, (b) response history of

bending displacement w. The block is subjected to a sinusoidal pulse

excitation (¢p = 1.3gtana, wy, = 5.1rad/s). The figure also compares

the lumped vs the multimass (7 masses) modelling using SM2 and the

model of Figure 3.13a, respectively (¢ = 0.20, { = 0.005, p = 1rad/s and
wspor = 11.9rad/s).

0 1

rectangular blocks with a fixed base(Vassiliou et al., 2016):

12.38h [p
T, = = 3.25
1 tan« E ( )

where p is the mass density of the block and E is the modulus of elasticity. The block
becomes more flexible as E decreases which results to higher overturning accelerations
and rotation demand due to the transformation of rotational kinetic energy to bending
vibrations. Another interesting aspect is the vibration period of the uplifted rocking
body. According to Chopra and Yim, 1985 the vibration frequency of the uplifted
structure is given, approximately, by the following equation:

R

w”’up ~ Ewn (3.26)

where wy, is the frequency of the fixed-based structure. Since R/b > 1, wy,yp is higher
than wy. As also discussed by Vassiliou et al., 2015, for a rocking problem with two
degrees-of-freedom wy,,,;» corresponds to the second, the rotational, eigenmode of the
system. In the proposed models, the first eigenfrequency is equal to zero, since the
uplifted block is a mechanism and the first eigenmode represents a rigid body rotation
around the pivot point(s).

In order to further examine the response of flexible blocks, Figure 3.18 compares
the response of a block subjected to a sinusoidal pulse when it is either rigid or flexi-

ble. The problem was first examined by Acikgoz and DeJong, 2012 in a dimensionless
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form, assuming a single lumped mass. We extent the comparison examining also the
possibility of having a “distributed” mass system. For this problem, Eq. 3.26 gives
wWyup = 60rad/sec, while when the SM and the mmSM models are used the period
was found equal to 49.44rad /sec and 50.24rad /sec, respectively. The two values are
in reasonable agreement with the approximate estimate of Eq. 3.26. According to
Figure 3.18a, the differences when the block is rigid or flexible are significant, since
the flexible system is shown to produce considerably larger rocking rotations (Fig-
ure 3.18a). Figure 3.18b shows the pure bending displacements of the SDOF system,
normalized by w,,, the displacement at the instant of rocking initiation, obtained as
wer = gB/ (w% DOF)H (Acikgoz and DeJong, 2012). For the flexible block, after every
impact there are sudden and large “jumps” of the displacement (Figure 3.18a points
of the left plot that the curves cross the y = 0 line). This indicates that the mass is not
in phase with the rocking motion and that the bending oscillations resist the rocking
motion producing larger rotations. Furthermore, both plots of Figure 3.18 show the
existence of higher mode effects which are coupled with the rocking oscillations. This
is shown at the two zoom windows at the lower right side of each plot. Looking at
the lumped and the distributed mass case, although the rocking motion is sufficiently
captured by both models, as expected, the distributed mass system is more sensitive
to higher modes. Figure 3.18b shows also the response of the corresponding linear
SDOF oscillator, which has a substantially different frequency content and damping
than the rocking system. The response of the SDOF oscillator follows the sinusoidal

shape of the seismic loading which is not the case for the rocking structure.
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FIGURE 3.19: Response histories of total displacement u:gf (upper row)

and pure bending displacement w'? (lower row) between a flexible block

modelled in ABAQUS and modelled using the mmSM model (7 masses):
(a) response to a sine pulse excitation, (b) response to record #8.

In Figure 3.19 we compare the results of our models against response estimates
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obtained with the aid of ABAQUS, 2011. Figure 3.19a shows the response of a block
with total height 2 = 50m and tana = 0.1 subjected to a sine pulse (T, = 1.6sec,
a, = 5gtana = 4.905m/sec?), while Figure 3.19b shows the response of the same
block subjected to record #8. In both cases the block was assumed from concrete with
modulus of elasticity E = 30GPa and density p = 2.5Mg/m> and was solved using
the model of Figure 3.13a (7 masses). In ABAQUS we created a model with a full mesh
of quadrilateral elements and a 2D planar base. We’ve assumed a surface-to-surface
contact between the base and the bottom of the block and we’ve set the friction for-
mulation as rough in order to omit the effect of sliding. The dynamic explicit analysis
option with automatic time step was also adopted. The first row of Figures 3.19a, b
compare the total displacements uizf at the top of the block, showing close agreement
for the examples shown. The plots immediately below depict the pure bending dis-
placements w'°? produced by our model.

3.6 Restrained blocks

All four models can be easily adopted for the study of vertically restrained rocking
blocks. A vertically restrained rocking block is equipped with an elastic tendon that
passes through its centerline, as shown in Figure 3.20a. The tendon has axial stiff-
ness EA and is prestressed with a force Py. This problem can be solved with all of
the proposed models by appropriately adjusting the M — 6 relationship of the spring.
According to Vassiliou and Makris, 2015 the condition for the initiation of rocking is
iig > gtana(1+ Py/mg) while the restoring moment M, of a restraint block depends
on EA and Pj and is given by the expression:

. . tana EA Py 1

M;es(0) = mgR |sin(a — 0) + sinasin6 (Tm_g + m—gmﬂ (3.27)
Figure 3.20b shows the modified M — 6 relationship for the restraint block case,
where the slope of the M — 0 law depends on the axial stiffness EA and the prestress-
ing force Py. When the stiffness EA of the restrainer is small compared to the weight,
the restoring moment M,,; will have negative stiffness once rocking initiates. As EA
increases, the restoring moment increases and may become positive. Figures 3.21a and
b compare the response of a block with negative, zero and positive stiffness against the
block’s equation of motion proposed by Vassiliou and Makris, 2015. The numerical re-
sults presented were obtained using the SM3 model, where the M — 6 relationship is
that of Eq. 3.27 and refer to a block with R = 2m,h/b = 6 subjected to the Duzce
1999 record (#2) and to a second block with R = 5m,h/b = 10 subjected to the Im-
perial Valley 1979 record (#4). Moreover, in Figure 3.20b we examine the influence of
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FIGURE 3.20: (a) Restrained rocking block geometry, (b) Moment-rotation
relationship for restrained blocks. Adjusting the properties of the tendon,
the restoring moment can have a positive or negative slope.

EA and Py on the response history assuming (from top to bottom): (i) negative M — 0
stiffness, setting EA/mg = 40, Py = 0 (both blocks), (ii) zero M — 0 stiffness, setting
EA/mg = 73, Py = 0.1mg for the first block and EA/mg = 201, Py = 0.1mg for the
second block, and (iii) positive M — 0 stiffness setting EA/mg = 120, Py = 0.2mg, and
EA/mg = 250, Py = 0.2mg, respectively. For all cases examined, the results match
perfectly the analytical solution for both ground motions and for all EA and P) com-
binations.

Furthermore, in Figure 3.22a,b we show the maximum normalized rotation de-
mand as function of the block’s size parameter and we compare against the analytical
solution. For both cases examined, the results using either the solution of Vassiliou
and Makris, 2015, or the proposed modeling are very close. For some simulations
there is a small error (e.g. Figure 3.22b, R = 2.5m), which is attributed to the Matlab
ODE (ODE23s) solver, while the solution using the proposed model is always stable
and accurate. Notice that for simulations with ||/« > 1, the blocks continue their
rocking motion since the systems have either positive or zero moment-rotation rela-
tionship. A possible straightforward extension of the proposed modeling is the study
of flexible blocks with linear or nonlinear behaviour.

Vertical restrainers are used to improve, in general, the restoring capacity of a sys-
tem. This technology is commonly implemented in modern structures, but it can be
used for any rocking system. Prior the initiation of the rocking motion, the column
behaves elastically with elastic stiffness k, which does not include the contribution of
the restrainers. If u,, is much smaller than the width of the column (e.g. Zhou et al,,
2019), the lateral displacement prior uplift is obtained according to Eq. 3.9 where the
axial load N is set equal to N + Pycos¢, i.e.:
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FIGURE 3.21: Comparison of rotation response history between the ana-

lytical solution (Vassiliou and Makris, 2015) and the proposed model: (a)

R =2m,h/b = 6, record #2, (b) R = 5m, h/b = 10, record #4. Upper row:

negative stiffness M — 0, middle row: M — 6 zero stiffness M — 6, lower row:
positive stiffness M — 6.

h/b=6 h/b=10
2 1 T T T 2 T T T
_'l_ ® positive proposed \ ® positive proposed
| —positive (Ref. 31) * —positive (Ref. 31)
3 + zero proposed AN + zero proposed
L e R zero (Ref. 31) 150 L zero (Ref. 31)
3 c)
I >
x 1 < 1
© ©
(S (S
0.5- 0.5+
00 2 . 4 6 8 10 00 2 . 4 6 8 10
size parameter R (m) size parameter R (m)
(a) (b)

FIGURE 3.22: Rocking spectra of restrained rocking systems subjected to
earthquake records: (a) record #2, block slenderness: h/b = 6 and (b)
record #4, block slenderness: /b = 10.

_ (N + Pycosg) b

Uyp k.20 (3.28)

where ¢ is the top rotation of the cantilever due to bending and P, is the force of the
restrainer. The equation above omits the mass of the column, while the component
of the pre-stressing force P, that is parallel to the axis of the column (Figure 3.23a)
is added to the axial force N. With minor loss of accuracy, it can be assumed that
cos¢ ~ 1, especially for slender blocks. This simplifies Eq. 3.28 and allows to directly
calculate u,,. Otherwise, u,, can be calculated through an iterative process, where
¢ = Feqdh?/2EL.
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FIGURE 3.23: a) Restraint freestanding block, (b) Spring moment-rotation
relationship for restraint blocks.

In the general case, where the mass of the column is not neglected, the uplift dis-
placement is obtained from Eq. 3.9 considering that at & = 0 the momentis My = (N +
Py + W¢)b, while the stiffness k. is calculated from Eq. 3.5 assuming that b — u,, ~ b.
The spring M — 6 relationship follows approximately the equation of the rigid re-
strained column and is thus equal to (Diamantopoulos and Fragiadakis, 2019):

. . . EAtana Py
M,.s(0) = (W, + N)Rsin(asgnf — 0) + Rsina sin 6 +
res(0) = (We )R sin(asg ) 1 1 ( 5 2—2C089)
(3.29)

According to the expression above, the moment-rotation relationship can be either
negative or positive depending on the second term of Eq. 3.29. This approach allows
to easily implement and solve a restraint rocking block using a structural analysis
software. The simplifications introduced cause some minor error but in most cases ex-
amined it is small and the resulting models are accurate enough. From the experience
of the author there are many sources of error, e.g. the ODE solver, or the integration
method that can produce considerably larger errors.

3.7 Blocks connected to a SDOF oscillator

The second system example is a SDOF oscillator rigidly connected to a rocking wall.
The coupling of a bending and a rocking member has several applications, e.g. in a
moment frame, a rocking wall can be used to suppresses the dynamic response of the
SDOF oscillator.

Makris and Aghagholizdeh, 2017 investigated the dynamic response of a SDOF
rigidly connected with a rocking wall as shown in Figure 3.24a and they also studied
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FIGURE 3.24: (a) Rocking block coupled with a SDOF oscillator, (b) Equiv-
alent rocking block coupled with a SDOF oscillator.

the case of having an inelastic SDOF instead (Aghagholizadeh and Makris, 2018). Ac-
cording to Figure 3.24a, the SDOF oscillator has mass m;, stiffness k, damping ¢ and
is connected with a rectangular rocking wall via a rigid link (arm) with length L. The
wall is rigid, with dimensions 2b x 2h, size parameter R = \/m, slenderness «
and mass m;. It is assumed that the rigid link is articulated at the center of mass of the
rocking wall at height, &, from the rigid base and also that the length L is large enough
so that the displacements of the SDOF and the rigid block are the same. Therefore,
since the displacements are equal, the system has only one degree-of-freedom, the ro-
tation of the rocking wall, 6. The equation of motion of this coupled system is (Makris
and Aghagholizdeh, 2017):

[% + 7 cos?(a F 9)} 0 + v cos(a F 0)
[wi(sina — sin(a F 0)) + 2wl cos(a F 0) + 62 sin(a F 6)]
=¥% [i(7+1)i;—gcos(a:|:9) +sin(tx:|:9)} (3.30)

where mg, my, is the mass of the SDOF and of the wall, respectively, and v = m; / my,
{ = ¢/ 2mswy, wy = vk/ms. The signs of Eq. 3.30 are either positive or negative,
depending on the sign of the angle 6, i.e. T implies that the sign is negative when 6 >
0. Furthermore, the condition for starting the rocking motion is: iig > (gtana/(y +
1)) (Makris and Aghagholizdeh, 2017).

We can solve this problem coupling a SDOF oscillator with a rocking block as
shown conceptually in Figure 3.24b. We assume that the link is articulated at the cen-
ter of mass of the block and that the mass and the moment of inertia is lumped at the
block’s center of mass, as shown in Figure 3.2b. In OpenSees the SDOF oscillator can
be simply implemented with a zeroLength element of given stiffness and damping,
while a 2-node model of the SDOF is also possible (Figure 3.24b). The non-linear M — 6
relationship of the rocking wall is one of those of Figure 3.2c with My = mpgR sina.
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We also examine the case of having a flexible rocking wall; a more pertinent assump-
tion for real-world applications. For the flexible wall we’ve used the mmSM model
of Figure 3.13b, assuming that the mass is distributed along the height of the wall.
The time instant that the wall starts its rocking motion can be found with the condi-
tion provided a few lines above, while the SDOF’s displacements begin as soon as the
earthquake starts. In the general case, when it is necessary to identify the instant that
rocking initiates, a simple pushover analysis can be performed. The acceleration that
initiates rocking is found from the overturning moment at the pushover time incre-

ment that the rotation of the rocking member exceeds zero for the first time.

analytical
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FIGURE 3.25: Rocking spectra of the coupled rocking-bending system: (a)

SDOF oscillator coupled with a rigid wall, (b) SDOF oscillator coupled
with a flexible rocking wall.

0 0 2

Figure 3.25a shows the response of the coupled rocking-bending system, adopted
from Makris and Aghagholizdeh, 2017 with parameters: v = m; / m, = 5, 7 = 0.90,
{ = c/2mgwy = 0.03, wo / p = 15 and tana = 1/6. The figure compares the re-
sponse for period values in the range of 0 < 2 sec when the system is subjected to the
“Takarazuka, Kobe 1995” (Makris and Aghagholizdeh, 2017) earthquake. For model-
ing the rigid block we’ve used the SM2 model (Figure 3.10) and we compare our mod-
eling with the response obtained after solving Eq. 3.30. For the sake of comparison
we also plot the displacement spectrum of the record which provides the displace-
ment demand of the SDOEF, without the rocking wall. Figure 3.25a shows the excellent
agreement of the proposed model with the analytical solution. Furthermore, the rock-
ing wall considerably reduces the displacement demand when the SDOF is flexible
(T > 1.5sec), however for stiffer systems its effect is small.

With the aid of the proposed modeling we can also easily investigate cases where
the SDOF is inelastic, or the wall is flexible. To demonstrate the versatility of our mod-

els, we’ve considered also a SDOF oscillator coupled with a flexible rocking wall with
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properties: E = 20GPa and p = 2.5Mgr/m?3. Figure 3.25b compares the response of
the coupled system when the wall is either rigid, or flexible. A further reduction of
the displacement demand is observed for period values above 1.7sec. In brief, Figure
3.25 validates the accuracy of the proposed modeling, but most importantly, it demon-

strates its capacity to handle rocking problems other than the solitary block.
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Chapter 4
Rocking frames

In this chapter, the modeling of rocking frames that consist of rigid/flexible columns
that are freestanding/restrained is presented. The modeling is extended to rocking
frames with N columns and frames which columns are unequal in height. It has to be
noted that, the notation was partially changed with respect to the original correspond-
ing paper (Diamantopoulos and Fragiadakis, 2022) in order to be consistent with the

notation used throughout the Thesis.

4.1 Introduction

Previous research, as discussed in the above paragraph, examine different variations
of the rocking frame problem. It can be seen that the solution of the problem requires
to formulate and then solve the equation of motion using an ODE (Ordinary Differ-
ential Equation) solver. This practice requires a specifically-tailored equation of mo-
tion and lacks the comfort of a general-purpose finite element software. As a result,
tew, well-trained engineers will be able to handle the numerical solution of rocking
frame problems, while solving more complex structural configurations becomes cum-
bersome, or is possible only after several simplifying assumptions. The Thesis aims
to fill this gap and provide a generic and robust modeling. The work is motivated by
the need to develop simple models that are suitable for a variety of rocking frame sys-
tems. The proposed models follow the work of Diamantopoulos and Fragiadakis, 2019
who have shown that the solitary block can be modeled using an equivalent-single-
degree-of-freedom oscillator, equipped with a negative stiffness rotational spring at
their base. This modeling can be extended to rocking frames showing that this simple
and efficient modeling approach is suitable for a variety of rocking frame structures.
The idea of using springs for modeling the rocking problem is not new. There have
been several publications in the past that introduce support springs in order to model
rocking. For example, Psycharis and Jennings, 1983 and Chopra and Yim, 1985 used
vertical springs at the pivot points in order to consider the soil conditions, while more
recently Ma and Butterworth, 2012 examined a combination of two vertical springs for



50 Chapter 4. Rocking frames

solving the rocking block problem. However, these solutions usually are not robust
enough, especially when the base is rigid, while the applications on rocking frames
are few. In our work, a novel alternative with a minimum number of rotational, in-
stead of vertical, negative-stiffness springs is discussed. This approach has practical
advantages and it can be easily extended to other rocking problems (Diamantopoulos
and Fragiadakis, 2019). This simple modeling is suitable for frames with either rigid
or flexible columns, while vertical column restrainers can be introduced by appropri-
ately modifying the properties of the rotational springs. The consistent derivation of
the properties of the springs from first principles is explained in detail while an exten-
sive discussion on how to chose the entries of the mass matrix is presented. The pro-
posed numerical scheme is fast and robust, while the results obtained match closely
those of detailed FE models and/or the solutions obtained by other researchers in the

literature.

4.2 Detailed modeling

Monolithic columns can be simulated with the aid of software based on the Finite El-
ement Method (FEM), or the Discrete Element Method (DEM). Other modeling based
on multi-body dynamics is also possible, but it is more complicated and, to some ex-
tent, is covered by the discussion that follows. FEM methods have the advantage
that there is a large variety of powerful software that can be adopted, while engi-
neers are already comfortable with the method. The main disadvantage is that the
method is considerably more time consuming compared to the DEM. Examples of
FE models created with ABAQUS software (ABAQUS, 2011) are shown in Figures
4.1 and 4.2. The modeling of a simple column requires the definition of two “areas”.
The first represents the ground, and the second the column. Furthermore, the user
has to define the mass, the center of mass and the moment of inertia of every body.
With the aid of a CAD environment, it is straightforward to define the exact dimen-
sions and all required properties of each body. Since, a common assumption is that
the column is freestanding and therefore the ground-structure interaction is obtained
through a friction-contact condition. For marble-marble interfaces, the coefficient of
friction takes values in the range 0.6-1.15 (different assumptions are adopted in the
literature). Since rocking impacts is the major mechanism for energy absorption, the
critical damping coefficient (material damping) can be set equal to zero. However,
some mild viscous damping of the order of 1% can help to damp out the low ampli-
tude vibrations and also adds some numerical stability.

The Discrete (or Distinct) Element Method (DEM) offers an efficient and perhaps a

suitable alternative for studying the dynamic behaviour of columns and colonnades.
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(b)

FIGURE 4.1: (a) A freestanding column in Aphaia Temple, Greece and
and (b) detailed modelling of a rocking monolithic column.

(a) (b)

FIGURE 4.2: (a) Array of freestanding columns in Aphaia Temple, Greece
and (b) detailed modelling of an array of freestanding columns that are
capped with an architrave.

The Molecular Dynamics (smooth-contact) approach (e.g. Cundall & Strack Cun-
dall and Strack, 1979) offered by the three dimensional DEM code 3DEC (i.e. Itasca
Group, 1998) is a suitable choice that was also adopted in Papantonopoulos et al.,
2002 and Psycharis et al., 2013a, among others studies. The method models the struc-
ture as a system of blocks which may be either rigid, or deformable. For the prob-
lem at hand, assuming rigid blocks is a sufficient approximation that reduces sub-
stantially the computing time. The system deformation is concentrated at the joints
(soft-contacts), where frictional sliding and/or complete separation may take place
(dislocations and/or disclinations between blocks). As discussed in detail by Pa-
pantonopoulos et al., 2002, the discrete element method employs an explicit algorithm
for the solution of the equations of motion, taking into account large displacements
and rotations.

For the numerical analysis using DEM models, it is important to appropriatelly
select the constitutive laws that govern the mechanical behaviour of the joints. A
Coulomb-type failure criterion can be adopted for this purpose. The selection of the
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properties of the springs is not a straightforward. One way to calculate the appropri-
ate values is by calibrating the model against ambient vibration measurements (e.g.
see Ambraseys and Psycharis, 2012). The reader who seeks more information, may
consult the work of Psycharis and his co-workers, i.e Papantonopoulos et al., 2002

and Toumbakari and Psycharis, 2010.

4.3 Equivalent single-degree-of-freedom oscillators

The SDOF oscillator model proposed by Diamantopoulos and Fragiadakis, 2019 can
be also adopted to obtain a simple solution for rigid frames based on the generalized
equation of motion of the rocking block (Eq. 2.12 and 2.13). Modifying either the size
parameter R, or the moment of inertia I, an equivalent rocking system can be obtained.
The properties of the modified SDOF oscillator are summarized in Table 4.1 and are
compared against the SDOF model adopted for solving the solitary freestanding col-
umn. The reasoning behind the values of Table 4.1 is explained below.

TABLE 4.1: Properties of the equivalent SDOF oscillator.

M(0) Iem mass
block R « mcgRsin(asgnd —0) (1/3)m.R*+mcb>  m,
modified R R« mcgRsin(asgnd —0) (1/3)m.R2+mb>  m,
modified I R « mgRsin(asgnd —6) Eq. 44 me

The first option is to modify the size parameter R in order to obtain a block that
follows Eq. 2.12. Thus the rotational moment of inertia should be equal to Ty =
(4/3)m.R?, where R = ((1+3v)/(1+27))R and the slenderness should be equal to
that of a freestanding column: @ = «. Therefore, a block with dimensions I = Rcos ®,
b = Rsina and slenderness « is assumed. For the proposed SDOF oscillator, the rota-
tional moment of inertia with respect to the center of mass is Iep = (1/3)m R2 + mb2.
The equivalent moment-rotation relationship of the rotational spring will be M(8) =
m.gR sin(asgn® — 0). This expression indicates that the rocking motion will initiate
when M, = mcgﬁ sina and iig i, = gtana. The resulting equation of motion will

become:
Iof(t) + mcgR sin[asgnd(t) — 0(t)] = —mpiig(t)R cos[asgnd(t) — O(t)] (4.1)

It is also possible to modify the rotational moment of inertia. Setting p> = 3¢/4R and
multiplying Eq. 2.12 with (4/3)mR? x (1 +37)/(1 + 27). The equation of motion is

rewritten as follows:

1+3y
142y

Lo (t) + mcgRsinasgnd(t) — 0(t)] = —mciig(t)R cosasgnd(t) — 6(t)] (4.2)



4.4. Single-bay rocking frame 53

Comparing Eq. 4.2 with the block’s equation of motion, the modified rotational mo-

ment of inertia I’ is:

4 4
I I = SmeR? + 5271 - R? (4.3)

I - 1+ 3y
07 1429

while the rotational moment of inertia with respect to the block’s center of mass I-,,
is (Diamantopoulos and Fragiadakis, 2019):

1 4
Ien = 3R + mcb? + 2 271 -mcR? (4.4)

In this case, the mass of the equivalent block should be set equal to the mass of the
column m, and the M — 6 relationship is defined according to the geometry of the
frame columns, where M'(0) = m.gR sin(asgné — ).

4.4 Single-bay rocking frame

4.4.1 Rocking frames with rigid members

A single-bay rocking frame with rigid columns is modeled as shown in Figure 4.3a.
The model is an extension of the rigid block model of Diamantopoulos and Fragiadakis,
2019 that was briefly summarized in Section 4.3. It consists of nonlinear rotational
springs at the rocking interfaces, i.e. between the rocking column and the ground
and also between the column top and the deck. Apart from the geometric parameters
shown in Figure 4.3a, it is also necessary to define: (i) the entries of the mass matrix,
i.e. the translational mass and the rotational moment of inertia, and (i7) the M — 6
relationship of the rotational springs.

Since the columns are rigid, the mass can be lumped at the midheight of the columns
as shown in Figure 4.3a. For this reason, two auxiliary nodes, Cy, C,, are introduced.
As shown in Figure 4.3b, the distance between the top and the bottom pivot points, i.e.,
nodes D; (or D»), from O (or O,), is 2R, where R?> = b? + h?. Thus, for the columns,
the mass matrix will be formed by lumping the mass at C; and C,, assuming transla-
tional mass equal to 7, and rotational mass equal to Ic; = Ic; = (1/3)m:R? + mb>.
For the deck, the corresponding nodes are Dy and D;, where the translational mass
will be m;, /2, and the rotational Ipys = Ipys = (my/2)(2b)? (Figure 4.3b).

The rotational springs are introduced as zero-length springs which define the re-
straints between the dofs of two nodes. In OpenSees (Mazzoni et al., 2006) additional
nodes are required in order to define the rotational springs, while the same principle,
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more or less, is followed by most software. In Figure 4.3a, the nodes at the rocking in-
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terface appear in master-slave pairs, where the subscript “s” is used to define the slave
node. As a rule of thump, quantities due to the columns are added to the slave nodes
Ds; (or Dys), while the quantities that refer to the deck (mass, loads, etc) are placed on

the master nodes, e.g. D1 (or D;). The negative stiffness nonlinear springs are placed
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FIGURE 4.3: (a) Proposed model of rocking frame with rigid columns, (b)
detail of the proposed model.

at the rocking surfaces of each column, i.e. at the base, O, O, and at the column-deck
connection, D1, Dy (Figure 4.3). In the simple case of a symmetric frame, all springs
have moment-rotation relationships that have a form similar to that of the rigid block
shown in Figure ??b. The restoring moment M(0) of each spring is equal to the axial
load times the corresponding leverarm. The axial load that stems from the deck is
Wy, = 0.5m;g and the load due to the column weight is W, = m.g. The corresponding
leverarms are I, = Rsin [asgn6(t) — 6(t)] and I, = I, respectively (Figure 4.3b). Thus,
the restoring moment of the top and the bottom spring of each column will be:

M"P(8) = Wyl, = 0.5W, R sin [asgn(t) — 6(t)]
MP™(0) = Wl + Wylp = (W, 4 0.5W,,) R sin [asgnd (t) — 0(t)] (4.5)

Egs. 4.5 can be implemented with a piecewise linear approximation, or for simplicity,
they can be linearized (Diamantopoulos and Fragiadakis, 2019). Notice that, com-
pared to the rocking block problem, m; adds stability to each column of the frame,
while if m, = 0 the single freestanding column problem is retrieved. For 6 = 0 the
maximum restoring moment at the top and the bottom spring is MSOP = 0.5mygb and
MEt™ = (0.5my, + mc)gb, respectively. When = a the moment is zero for each of the

four springs.
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In order to further examine the proposed model, the restoring moment M{gsm(f))
and the overturning moment M%7 (6) of the whole structure are calculated and the
resulting equation is compared to the equation of motion of the rocking frame (Eq.

2.13). The frame restoring moment My, (6) with respect to the pivot point is:

ML (0) = 2M™P(8) + 2MP™ (9) = 2 (W, + W,,) R sin [asgnf(t) — 0(t)] <
ML (0) = 2(1 + 27)W.Rsin [asgnf(t) — 8(t)]  (4.6)

rm

Furthermore, the overturning moment of the frame M,

los and Fragiadakis, 2019):

is defined as (Diamantopou-
Mo (8) = 2 (mele + myly) iig = 2(1 + 27)mciigR cos (4.7)

and the total moment of inertia of the system with respect to the pivot point(s) is:

1
=2 (gmch + %4122) =2(1+37)l (4.8)
Inserting Eqs. 4.6, 4.7 and 4.8 into the equation of equilibrium (i.e. 2.3), yields:

1+ 3y
142y

Lo6(t) + mcgRsinlasgnd(t) — ()] = —mciig(t)R cos (4.9)

The equation above is practically equivalent to the equation of motion (Eq. 2.13). Com-
paring Eq. 2.13 with 4.9, there is a difference at the overturning term, i.e. it is Rcosa
instead of R cos [asgnf(t) — 0(t)]. This difference is minor as has been shown in Dia-
mantopoulos and Fragiadakis, 2019 and thus can be neglected. Note also that having
a bottom and a top spring that follow Eqgs. 4.5 is not the only possibility for the rigid
frame. For example, one could have chosen to insert a hinge at top and a rotational
spring at the bottom. For a frame with rigid piers, this practice can also produce accu-
rate results, provided that the proper M — 8 relationships are chosen.

Energy dissipation for the planar frame model follows the “event-based” approach,
similar to that adopted for the block. Therefore, energy is dissipated only when an im-
pact occurs, which is simply detected when the sign of rotation is reversed. At the
instant of impact, the analysis is paused and then resumed using as “initial” velocity
of the subsequent time steps, the product of the pre-impact velocity of each dof of the
FE model times the coefficient of restitution # ¢4y (Eq. 2.14). Attention is required
at the pier-deck connection where only the master node translational velocity and the
slave node angular velocity should be multiplied with #,4y,,. This is due to the fact
that the rotational moment has been lumped on the slave node.
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4.4.2 Rocking frames with flexible columns

Modern rocking structures, e.g. rocking RC bridges, should be modeled as flexible
systems. The model of Figure 4.3 can be extended to flexible rocking frames in a
straightforward manner. However, in this case it is not advisable to lump the column
mass at the column midheight, since the system eigenmodes may not be captured cor-
rectly. Therefore, compared to the rigid rocking frame, there are minor differences in
the mass matrix and the spring M-0 relationship, which both depend on the column
mass modeling. The mass of the deck is again lumped at the two ends of the deck,
similar to the rigid frame. Energy dissipation follows an “event-based” scheme, as in
the rigid block case. Other sources of energy dissipation, e.g. viscous damping, are
here omitted. However, one may wish to consider some mild Rayleigh damping of
the order of 0.5 — 2%.

In the case of flexible frames, the simplest approach is to neglect the column mass
since it may be considerably less than that of the deck. However, if the column mass
is taken into consideration, it can be either distributed to n nodes along the height of
the columns (Figure 4.4, left column), or instead a consistent mass matrix approach,
where the mass is continuously distributed along the member can be adopted (Figure
4.4, right column). In the first case, the column mass is distributed to n equally-spaced
nodes that have mass m; = m./n. In the second case, the mass is continuously dis-
tributed along the pier’s height, i.e. i1 = Ap/2h and m. = Ap, where p is the material
density of the column and A the column cross-section. The two options are discussed

below.

El—oo

3

FIGURE 4.4: Rocking frame with flexible columns: the mass is lumped on
n nodes (left column), or a consistent mass matrix approach can be used
(right column).

The first option is to lump the mass on n equally-spaced nodes. Therefore, the transla-
tional mass of each node will be m; = m./n and the rotational moment of inertia of
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node i with respect to an axis that passes from the pivot point O is Iy; = m;h?. This
approach has some, small sensitivity, to the number of masses as was shown for the
solitary block by Diamantopoulos and Fragiadakis, 2019. Furthermore, if the distance
of mass i from the pivot point is h; = (2i/n)Rcosa, the total rotational moment of
inertia of each column is defined as: I, = Y m;h? = (4/3)m:R*cos*x. However, the
exact value of the total rotational moment of inertia is that of the solitary column, i.e.
I = (4/3)mcR? (Eq. 2.11). In order to remove this small error, an additional quantity
equal to 61y; = (I — Ip)/n = (4/3n)m:R?sin” & is added to each of the n nodes and

the final expression for the rotational moment inertia of each node becomes:
Io; = (4me/n)R?[cosa(i/n) + (1/3) sin®a] (4.10)

The M — 6 expressions of the top and the bottom spring will differ due to the col-
umn mass. At zero rotation (§ = 0), the M — 6 expressions will have values equal
to MSOP and M'™ for the top and the bottom spring, respectively. Both expressions
terminate at rotation equal to a. Note that in this case we do not obtain a close-form
expression for M(0) as in Eq. 4.5. A straight line between MSOP and M (0 = 0)
and M?(a) = M""(a) = 0 (0 = a) is drawn to obtain the M — @ relationship. Mo-
ments MSOP and M§™ at 6 = 0 are obtained from the uplift condition similarly to the
freestanding column case (Eq. 3.6):

My? = 0.5Wy (b — 0.5uyp) (4.11)
My™ = (0.5W), + W) (b — 0.5uy,) (4.12)

The uplift displacement, u,,, is calculated from Eq. 3.8 (or Eq. 3.9) setting N = W, +
Wp. A more accurate expression for u,;, can be obtained from Eq. 3.8 assuming that
the resultant horizontal force (base shear) is applied at height z, measured from the

base of the frame. The height z is equal to:

_ 2y mihi + my2h - dmch Y i/n?* + 2myh - 2m, —|—2mbh
2) m;+my 2me + my, 2mc + my,

(4.13)

where Y_i/n? ~ 0.5 (Diamantopoulos and Fragiadakis, 2019). Using the force method,
the expression of the elastic stiffness k. of a double curvature column with a force

acting at height z is:
12E1

ke = 4.14
© " 222(6h — z) — 6hz2 (4.19)
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The total overturning moment is thus calculated as:

Moy =2Y W;(b — u;) + Wy(2b — uup) =2W. Y. (b — (i/n)uup) + W, (2b — uup) =
My =2(W: + W) (b — O.Suup) (4.15)

where W; is the weight of each of the n-nodes and W, is the weight of the deck. If u;
is the horizontal displacement of node i and /; is the corresponding height from the
base, then u; = (h;/2h)u,, = (i/n)uy,,. With the aid of Eqs. 4.11, 412 and 4.15 it is
shown that My = 2M60p + ZMS“”. Furthermore, if the column mass is neglected, then
all system mass is on the deck, i.e. it is lumped at D; and D,. All the above expressions
can be used in this case setting m. = 0 and z = 2h. Specifically, the M — 6 relationship
will be the same for each of the four springs and equal to My = 0.5Wj,(b — 0.5uy).
The member stiffness will be k, = 12E1/(2h)3.

Most software offer the consistent or distributed mass matrix option. The expression
of the mass matrix for beam-column elements can be found in textbooksPrzemieniecki,
1968. Note that, this mass matrix is no longer diagonal, as in the lumped mass case.
The lack of diagonality causes the loss of the sparsity of the effective stiffness ma-
trix which makes the solution process too costly for problems with many degrees of
freedom. However, for the rocking frame problems here examined, the number of
degrees-of-freedom is small and hence the problem is not noticeable. Moreover, since
the are no intermediate column nodes, the column rotational moment of inertia has
to be lumped at the top and the bottom nodes. At nodes D; and D, (Figure 4.4), the
translational mass will be m;, /2. The rotational inertia should consider also the inertia
of the columns, thus: Ip; = Ipy = 0.5(4m./3)R?*sin? a + (m;/2)(2b)%. The rotational
moment at the base node should be Ip; = Iy = AI§/2 = 0.5(4m./3)R? sin?a. The
M — 6 relationship is that of Eq. 4.15, setting W, = mg2h.

4.5 Column restraining

Structures designed to behave as rocking systems will be most likely restrained in
order to maintain some control of the rocking motion. Following the work of Dia-
mantopoulos and Fragiadakis, 2019 and the previous discussion for the freestanding
block, it can be shown that the models already presented (Figure 4.3 and 4.4) for unre-
strained frames can be extended to frames with rigid, or flexible, restrained columns
maintaining the same mass and rotational moment of inertia values. The restrainers
affect only the M — 6 relationship which describes the self-centering restoring mo-
ment. Therefore, the required modifications concern the M — 6 relationship of the
rotational spring(s), while the uplift displacement u,,, is obtained with the aid of Eq.
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3.28 and Eq. 4.14. The equation of motion of a rigid rocking frame with vertical re-

strainers that pass from the column axis is (Makris and Vassiliou, 2015):

0(t) = — 131 p? [sin lasgnd(t) — 0(1)] + " cos [asgne() - e(t)]} -

22 . EA P, 1
mp SanCSlne(t) |:m_cg tana + m—fgm} (416)
where D is the pre-stressing force and EA the axial stiffness of the restrainers. Com-
pared to the generalized frame equation of motion (Eq. 2.12), the second term in the
right hand-side accounts for the restrainers. Moreover, when the frame is at rest, the
first uplift will occur when the threshold acceleration iig i, is exceeded:

, 2 P
llg min = § tana (1 + 2741 mcg) (4.17)

For a frame with rigid columns, if MP/b"(9) is the M — 0 relationship of the top,
or the bottom, springs without the restrainer (Eq. 4.5), the corresponding M — 0 rela-
tionships for the restraint frame is denoted as M and will be:

mtop/btm gy — pptor/btm(g) 4 Rsin asin 6 {EA tan o + L} (4.18)

V2 —2cos0

The additional term, is the extra stability provided by the restrainer and is obtained
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1 T ‘
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EA EA
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FIGURE 4.5: Rocking frame with two symmetric restrained columns.

from the second right-hand side term of Eq. 4.16. The extension to flexible rocking
columns is straightforward following the previous sections. For § = 0, the maximum
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moment of the spring for which the rocking motion starts will be:

MSOP = 0.5mygRsina + PyR sina (4.19)
ME™ = 0.5mygRsina + m.gRsina + PyR sin a

Furthermore, from Figure 4.5b and Eq. 4.18, it is clear that the restoring moment M(6)
may have positive (stiffening) or negative (softening) hardening, depending on the
axial stiffness EA and the force Py of the restrainer. When the piers are flexible, the
uplift displacement is obtained using Eq. 3.28, setting N = W, /2 + W, and using
Eq. 4.14 to obtain k.. The M — 0 relationships are that of the rigid case assuming
the MSOP and M§"™ values of Eq. 4.19. Tables 4.2 and 4.3 summarize the properties
of the proposed frame models with either rigid or flexible columns. For frames with
restrained columns, Table 4.3 can be applied as it is, while the M — 8 relationships of
Table 4.2 require a minor adjustment according to Eqs. 4.19. Egs. 4.19 are considered
for both rigid and flexible case, i.e. neglecting the cases in which u,,, is large.

TABLE 4.2: Spring properties for freestanding rocking frames.

moment at 6 = 0 (M)

rigid frame, column top 0.5mpgb
flexible frame, column top 0.5mg (b — 0.5uy))
rigid frame, column bottom (me+0.5my)gb

flexible frame, column bottom (1 + 0.5m;)g(b — 0.5u,)

TABLE 4.3: Moment of inertia of rocking frames.

column-deck column-ground atnodes i

Ipis, Ipss lois, Toos I
rigid frame (Fig. 4.3) 2k (2b)? - ImcR? + mcb? *
flexible frame (Fig. 4.4, left) T (2b)2 + %stii’lzﬂé - %stinza o
flexible frame (Fig. 4.4, right) T (2b)% + 0.5 R?sin’a 0.5 R2%sina -

* at column midheight, ** at n nodes

A simple alternative is to use the generalized rocking equation of motion, using
a “modified R”, or a “modified I”, system similar to that of Table 4.1. The addi-
tional term due to restraining is inserted into the M — 6 relationship of the spring
and thus the model remains similar to that of the freestanding frame, but with dif-
ferent spring properties. Table 4.4 summarizes the properties of the equivalent SDOF
oscillator and also compares the properties of the equivalent frame with the modelling
of a restrained rigid block (Vassiliou and Makris, 2015).
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TABLE 4.4: Properties of the equivalent SDOF oscillators for rocking
frames with restrained columns.

M(0) Icm

R « mcgR sin(asgnd — 0) + Rsinw sin 6 (EA fana \/2—Z;0cose) Iem
modified R R « mgRsin(asgnd —0) + ﬁﬁ sinasinf ( EAtana + \/ZJ;OW Iem
modified I R

block (restraint)

PO !

EAtana + N Iew

a  megRsin(asgnt —6) + ﬁR sina sin 6

4.5.1 Column array capped with a rigid beam (epistyle)

The extension to an array of N-symmetric columns can be achieved either with one of
the equivalent SDOF beam models (modified R or modified I model) that solves the
generalized equation of motion, or with an extension of the detailed model of Figure
4.3 or Figure 4.4. The generalized equation of motion (Eq. 2.12) can be modified to
include an array of N freestanding columns by adjusting v, i.e. the ratio of the mass
of the deck over the total mass of the columns (Makris and Vassiliou, 2013). Since
the total mass of the N-columns is Nm. the parameter < of the array is set equal to
v = my/Nm.. Therefore, the extension to N-columns is straightforward using the

parameter values summarized in Tables 4.1 and 4.4.
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FIGURE 4.6: Detailed modelling of a rocking frame with three columns
(N =3).

The model of Figure 4.3a can be also extended to an array of N-symmetric columns
as shown in Figure 4.6 (N = 3). The mass of the deck is lumped at the top of each
supporting column (points Dy, Dy, D3, Figure 4.6). In the general case of N columns,
the deck mass at the internal nodes/columns is m;/(N — 1) and m;/(2(N — 1)) at
the two end nodes/columns. Therefore, when N = 3, the mass at nodes D; and
D3 will be my, /4 (external nodes) and the mass of middle node will be m;/2. The
rotational moment of inertia at the column midheight (Cy,Cy, ... Cy, Figure 4.6) will
be (1/ 3)mCR2 + m.b?. Furthermore, at the top nodes, the rotational moment of inertia
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will differ for the external and the internal columns. More specifically, at the external
nodes D1s and Dy it will be equal to [0.5m;/ (N — 1)](2b)? and at the internal nodes
Das, ..., D(n—1)s it will be [m /(N —1)] (2b)?. The moment-rotation relationship of the
springs will differ for the external and the internal columns. Therefore the equivalent

M — 8 relationship of each spring at the bottom and the top of each column will be:

M"P(9) = k(N—il)gR sin [asgnf(t) — 6(t)]
M (0) = m gR sin [asgnd(t) — O(t)] + k(Z\T]n—il)gR sin [asgn6(t) — 0(t)]  (4.20)

where k = 1 for the internal and k = 2 for the two external columns. Note that the
M — 0 relationship is the same for all columns. Moreover, for a frame with N piers
which is at rest the maximum restoring moment is obtained assuming § = 0 and
v =my/(Nm,) in Eq. 4.20.

The extension to the restrained case is straightforward and the moment-rotation rela-

tionship of each spring is given from the expression:

V2 —2cosH(t)

Column flexibility can be also taken into consideration simply adopting the model

WtoP/bm (9) — AftoP/btm(9) 4 DR sina (EA tanasin0(t) + Py sin 6(t) ) (4.21)

of Figure 4.4. The moment-rotation relationship is introduced according to Eq. 4.20
and/or Eq. 4.21 for freestanding and restrained columns, respectively. The rotational
moment of inertia at the top of the external and the internal columns is the same with
the rigid case as described above for N columns, while the rest of the model properties
are these discussed in Section 4.4.2 and summarized in Table 4.3.

4.5.2 Rocking frame with asymmetric piers

Asymmetric rocking frames is a special case of rocking frames with piers of different
heights that may be found in the transverse direction of bridges. The problem has
been studied in detail by Dimitrakopoulos and Giouvanidis, 2015a. Following their
work, the asymmetric frame examined has two piers of different size parameter R but
same width b, connected with a rigid beam. The main difference between the symmet-
ric and the asymmetric rocking frame is that in the latter case a three-block rocking
mechanism should be studied (DeJong and Dimitrakopoulos, 2014). This results to
a structure with three degrees of freedom, i.e. the rotations of the two piers and the
deck. The problem can be further simplified if the rotation of the deck is related to the

rotations of the columns.
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Figure 4.7a shows the free-body diagram of the asymmetric frame, while Figure
4.7b shows a detailed model with beam elements and negative-stiffness rotational
springs, similar to the model of Figure 4.3. The rotation of the deck 6, depends
on the rotation of the two columns 6,6, and approximately can be calculated as:
0, = Av/L = (2b/L)(sinf, — sinby), where L is the horizontal distance of the two
pivot points and Av is the difference of the vertical displacements of the tips of the
two piers. If the difference of the pier heights /1; and h; is small and/or the length of
the deck is large, it can be assumed that the deck remains approximately horizontal
during the ground motion. Furthermore, since by = by < Rysina; = Rpsinap and
assuming that the deck is horizontal, it is found that the rotations 0y, 8, are approxi-
mately related as follows:

sinh  Rycosay  sinapcoswag sinty _ tanay 01 6>

. = = — - = ~ (4.22)
sinfy  Rpcosap sin aqcosay sinfy  tanwy N Ky

For the model proposed, the mass of the columns is concentrated at the column mid-
height (C; and C,), the mass of the deck is lumped at the two ends D; and D;, while
negative-stiffness rotational springs are inserted at the rocking surfaces. Due to the
different height of the columns, the moment-rotation relationships are calculated with
Eq. 4.5, but adopting the size parameter R and the rotation 6 of the column consid-
ered. Furthermore, the rotational moment of inertia of each node is obtained using

the equations discussed in the detailed model of a frame with rigid columns and pre-

sented in Table 4.3 for the freestanding rigid case, i.e. Ic; = (1/ 3)m51R% + mab?,
Ico = (1/3)meRE + meob?, Ipis = Ipos = (my/2)(2b)2.
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FIGURE 4.7: (a) Geometry of an asymmetric frame, and (b) proposed
modelling of a rocking frame with asymmetric rigid columns.

The asymmetric frame has two major differences compared to the symmetric frame.
The first is related to the coefficient of restitution, #,sym, and the second to the uplift
acceleration, ug ;. The coefficient of restitution differs depending on the pivot point
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as discussed in the work of Dimitrakopoulos and Giouvanidis, 2015a. Due to length
limitations the equation are not here repeated; instead the reader can find them in
paper of Dimitrakopoulos and Giouvanidis, 2015a (Eq. 36, Appendix II). It is worth
mentioning that the 7,5, values obtained will have as upper and lower bound the
two values obtained with Eq. 2.14 using the geometry of each pier. For example, for
tana; = 0.15 and tanay, = 0.20, the coefficient of restitution will be 0.955 and 0.923.
Assuming L = 5m and 2hy,,,, = 1m, an asymmetric frame with the same «1, a, values
will result to 7745, values equal to 0.948 and 0.934.

It is also interesting to mention that the minimum acceleration iig ,;,, required for
the initiation of rocking motion of a frame with columns of the same b, depends on
the sign of the record and it is given by the equation below (Dimitrakopoulos and
Giouvanidis, 2015a) :

thgmin EFE e + my[1+h — 2b(£h F1)] + meh

- ! . (4.23)
8 M ey + 2my [P (£h 1) + 1] + meo

where 2k, is the beam’s height, i = hy/hy, b = b/L and L is the length of the
beam. Alternatively, the minimum acceleration required for the initiation of rocking
can be determined through a static pushover analysis using the proposed model and
avoiding the expression of Eq. 4.23.

4.6 Numerical results

Different rocking frame examples are examined in order to validate the accuracy of
the models proposed. The first example concerns two rigid frames with properties:
2h=5m, 2b=0.75m, =1 (Frame 1) and 2h=8.4m, 2b=1.4m, =5 (Frame 2). Frame 1
is representative of an ancient monument with monolithic columns that support an
epistyle (e.g. Figure 2.4a), while the properties of Frame 2 are representative of a
modern rocking bridge. Note that in the case of a bridge, the mass ratio v is usually
larger than 4, as opposed to the case of monuments where this ratio is much lower,
e.g. v ~ 1. The records adopted are the Loma Prietta (1989), Saratoga - Aloha Ave
(PGA = 0.369) and the Northridge (1994), MUL279 component (PGA = 0.52g). The
acceleration time histories are shown in Figure 4.8; the first is a near-fault record, while
the second is a far-field ground motion.

The model of Figure 4.3 is adopted first. Figure 4.9 and Figure 4.10 show the nor-
malized rotation response history (8/«) for Frames 1 and 2, respectively. The results
for the records of Figure 4.9 and Figure 4.10 are compared to the solution obtained
solving directly the differential equation (Eq. 2.12) using Matlab ODE23s solver. Close

agreement between the two solutions is found in all cases examined. Furthermore,
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FIGURE 4.8: (a) Near-fault excitation (1989 Loma Prietta, Saratoga - Aloha
Ave), and (b) far-field excitation (1994 Northridge, MUL279 component).

Figure 4.11 shows the response obtained using the simplified models of sections 4.3.
The Figure 4.11 shows the results of Frame 1 and 2 under the near and far-field record,
respectively considering the two simplified rocking frame models, i.e. the modified
R and the modified I. The results of both modified R and modified I approaches co-
incide almost perfectly with the solution of the generalized equation of motion of the

rocking frame.

2h=5m, tana=0.15, v=1 2h=5m, tana=0.15, y=1
06 ===EoM (Eq. 2.12) - 0.6 ===EoM (Eq. 2.12) -
—-=-proposed model --=-proposed model
0.4r ] 0.4+ .
0.2 ] 0.2¢
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FIGURE 4.9: Rocking response history obtained using the detailed model
of Figure 4.3: (a) Frame 1, subjected to the near-field record (Figure 4.8a),
(b) Frame 1, subjected to the far-field record (Figure 4.8b).

The flexible rocking frame model of Figure 4.4 is examined assuming a frame with
two symmetric columns (2h = 12m, 2b = 1.2m) and mass ratio v = 4 (Frame 3). Com-
pared to the previous two frames, this frame has larger height and smaller slenderness
and thus the dynamic response is affected significantly by the column flexibility. The
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2h=8.4m, tana=1/6, v=5 2h=8.4m, tana=1/6, y=5
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FIGURE 4.10: Rocking response history obtained using the detailed
model of Figure 4.3: (a) Frame 2, subjected to the near-fault record (Figure
4.8a), (b) Frame 2, subjected to the far-fault record (Figure 4.8b).
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FIGURE 4.11: Rocking response history of Frame 1, simulated with the
“modified R” and “modified I” approach. (a) Near-fault record, (b) far-
field record.

columns are made of concrete and have properties E=30GPa and p=2.5Mg/m?®. Figure
4.12 compares the response of the proposed flexible rocking frame models of Figure
4.4 against the response of the rigid rocking frame. Clearly, the rigid column assump-
tion is not suitable for the frame examined. Furthermore, the agreement of the two
models is almost perfect for both the near and the far-field ground motion. The choice
of assuming eight masses (1 = 8) is based on a previous investigation (Diamantopou-
los and Fragiadakis, 2019), where it was shown that there is a small sensitivity of the
results to the number of nodes n assumed. Reduced rotation demand is observed for
the flexible frame, although this is not a general rule. Furthermore, Figure 4.13 com-

pares the response of the proposed flexible rocking frame model of Figure 4.4 against
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FIGURE 4.12: Seismic response history of a single-bay rocking frame with
flexible columns (E=30GPa and p=2.5Mg/m?®) when it is subjected to: (a)
the near-fault ground motion, and (b) the far-field ground motion.
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FIGURE 4.13: Seismic response history of a single-bay rocking frame with

flexible columns (E=30GPa and p=2.5Mg/m®) when it is subjected to: (a)

the near-fault ground motion, and (b) the far-field ground motion. The

plot compares the response of the proposed model assuming that the

mass is distributed along the height of the columns with the solution ob-
tained using Abaqus.

the solution obtained with Abaqus software; the agreement is practically perfect in
both cases. For the Abaqus model, surface-to-surface interaction with zero damping
and a rough friction coefficient was assumed while the dynamic analysis is explicit.
Moreover, the bodies were assumed flexible, the model was 2D and the material was
linear elastic with E=30GPa and p=2.5Mg/m®. For the proposed model, the coeffi-
cient of restitution was set equal to one in order to allow a fair comparison with the
Abaqus model that uses only continuous damping while a three-point backward Eu-
ler numerical integration scheme (TRBDF2 integrator in OpenSees) was adopted since
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FIGURE 4.14: Seismic response history of a single-bay rocking frame with

flexible columns (E=30GPa and p=2.5Mg/m?). The plot compares the re-

sponse whenn = 1, n = 8 and n = 15 equally spaced masses are adopted

and the frame is subjected to: (a) the near-fault ground motion, and (b)
the far-field ground motion.

it was found to be more accurate and efficient.

Figure 4.14 further investigates the sensitivity of the response prediction to the
number of equally spaced masses. Three different values (n = 1,8 and 15) are com-
pared. The case of n = 1 leads to the model of Figure 4.3, while for n = 8 and n = 15
the model of Figure 4.4 (left column) is adopted. For n = 1 the seismic response does
not agree well with the solution of Abaqus due to the flexibility of the columns, while
for n = 15 the agreement is practically perfect. Since the difference between n = 8
and n = 15 is small, n = 8 can be adopted without loss of accuracy for columns up to
12m. In any case, it is concluded that the larger the number of equally spaced nodes,
the more accurate the model response prediction.

The third example examines the seismic response of a rocking bridge with vertical
restrainers at the piers. Frame 2 is considered for this example since it has dimen-
sions that can be assumed representative to those of a contemporary rocking bridge.
The columns are equipped with restrainers pre-tensioned to axial force Py/m.g = 0.5,
while two types of restrainers with EA/m,g = 80 and 250 are considered. The first
E A value results to springs with negative M — 6 relationship and the second to springs
with a positive stiffness. Figure 4.15 shows the response of the structure subjected to
the far-field excitation (Figure 4.8) and is compared against the direct solution of the
equation of motion (Eq. 4.16) using the ODE23s solver. Perfect agreement is obtained
for both restrainer types when the proposed model is adopted.

Figure 4.16 compares the rigid response against a version of Frame 2 with flexible
columns (E=30GPa, p=2.5Mg/m?%) and rigid deck. In this case, the flexible response
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FIGURE 4.15: Comparison of the response obtained for the solution of
the equation of motion of Frame 2 with pre-stressed rocking columns and
the proposed modelling when it is subjected to Northridge (Figure 4.8b)
earthquake and the springs have: (a) negative (EA/m.g = 80) or (b) pos-
itive stiffness (EA/m.g = 250).
EAImcg=80 EAImcg=250
0.6+ | | ==rigid | 0.6 | ==rigid

--=-flexible --=-flexible

0.6+ — 06"

time(s) time(s)
(@) (b)

FIGURE 4.16: Comparison of the response obtained for the solution of the

equation of motion of Frame 2 with pre-stressed rocking columns and the

proposed modelling (Figure 4.4) when the columns are assumed flexible

( E=30GPa and p=2.5Mg/m?), the frame is subjected to Northridge (Fig-

ure 4.8b) earthquake and the springs have: (a) negative or (b) positive
stiffness.

starts at time zero as opposed to the rigid frame where the motion initiates at the in-
stant of the first uplift. Moreover, it is seen that the rotation at the base of the columns
is smaller than that of the rigid frame since the flexibility acts beneficially for both
restrainer types considered.

The first example considered for the case of an array of freestanding columns

capped with a beam is an array of N = 3 columns. Two frames with properties:
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2h=5m, 2b=0.75m, y=1 (Frame 1) and 2h=8.4m, 2b=1.4m, =5 (Frame 2) are considered.
The two frames have been adopted for the two different ground motions with different
dimensions and different y values. The colonnades are capped with a rigid epistyle
and are subjected to a near-field and a far-field ground motion record. The same ex-
ample frames were adopted in Diamantopoulos and Fragiadakis Diamantopoulos and
Fragiadakis, 2022 and are used as reference frames for the validation of the modeling.

Figure 4.17 presents the results obtained using the model of Figure 4.6 and is com-
pared against the solution of the equation of motion of the problem. In Figure 4.17a
the Frame 1 is subjected to the Loma Prietta (1989), Saratoga - Aloha Ave (PGA = 0.36%)
which is a near-fault ground motion, while in Figure 4.17b Frame 2 is subjected to
the Northridge (1994), MUL279 component (PGA = 0.52g) which is a far-field signal.
In both cases, excellent agreement is obtained confirming that the proposed model is

accurate and stable.

2h=5m, tana=0.15, y=1, N=3 2h=8.4m, tana=1/6, v=5, N=3
0.6+ ——EoM (Eq. 2.12) ] 0.6 ——EoM (Eq. 2.12)
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FIGURE 4.17: Rocking response history of a two-bay rocking frame mod-

eled with the detailed model (Fig. 4.6), when subjected to (a) Loma Pri-

etta (1989), Saratoga - Aloha Ave (far-field with PGA = 0.36g) and (b)
Northridge (1994), MUL279 component (near-fault with PGA = 0.52g).

The next numerical example refers to the modeling of frames with columns of un-
equal height. Such a frame is not common in ancient structures. However, it can be
assumed as a case when an imperfection is considered in the ground or when the mon-
uments is located on a downhill terrain. In order to validate the results of the proposed
model for asymmetric columns, an ABAQUS finite element model was employed (Fig.
4.18). Details about the FE modeling using ABAQUS can be found in Diamantopoulos
and Fragiadakis, 2019 and Diamantopoulos and Fragiadakis, 2022.

Figure 4.19a shows the results of an asymmetric rocking frame with 2h; = 5.0m,
2hy = 3.75m, tanay = 0.15, tana; = 0.20 (Frame 3). The mass of the epistyle is equal

to the sum of the masses of the two columns, i.e. my, = mq + m. It is reminded that
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FIGURE 4.18: Asymmetric rocking frame modeled with ABAQUS, 2011
(2hh = 5.0m, 2hy = 3.75m, tanay = 0.15, tanay, = 0.20).

v can not be defined for the asymmetric case. Figure 4.19b shows the same results but
for another asymmetric rocking frame with 2h; = 8.4m, 2hy = 7.0m, tana; = 0.16,
tanay = 0.20 and m, = 5 x (m¢, + mc,) (Frame 4). The difference between the two
frames is that the second is higher than the first and has a larger mass ratio m;/Xm..
In both frames considered here the taller column is equal to that of Frame 1 and Frame
2, respectively and always the columns have the same width 2b. The first frame is sub-
jected to the near-field record and the second to the far-field ground motion, respec-
tively. As shown in Figure 4.19, the accuracy of the proposed model is satisfactory,
although it has been assumed that the deck remains always horizontal. More specifi-
cally, for the first frame (Fig. 4.19a), the results perfectly coincide up to t ~ 20sec, while
the agreement for the second frame is good for the whole response history duration.
Note that the vertical axes of the plots show the ratio of the rotation normalized by the
column slenderness which is, approximately, equal for both columns as explained in
Eq. 4.22.
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FIGURE 4.19: Rocking response history of asymmetric frames subjected

to reference ground motion records: (a) first asymmetric frame (2h; =

5m,2h; = 3.75), subjected to near-field record, (b) second asymmetric
frame (2hy = 8.4m,2hy; = 7m), subjected to the far-field record.
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Chapter 5
Fragility and risk assessment

In this chapter, a fragility and risk assessment framework for rocking frames is pre-
sented. It has to be noted that, the notation was partially changed with respect to an
original corresponding paper which is under review in order to be consistent with the
notation used throughout the Thesis.

5.1 Performance-based assessment framework

Performance-Based Earthquake Engineering (PBEE) combines computational tools and
reliability assessment procedures in order to obtain the system fragility and risk for a
range of limit-states. According to PBEE, the acceptable level of damage depends on
the level of ground shaking and the significance of the structure considered. These
concepts are today well understood among earthquake engineers, but when mon-
uments are considered the criteria differ (Psycharis et al.,, 2013a). For freestanding
monolithic columns and colonnades, the collapse damage state is primarily of inter-
est. Determining what risk level is acceptable for monuments is not straightforward
since it requires a consensus among various experts, i.e. archaeologists, experts in
monument preservation and engineering. Nevertheless, it is certain that the risk of

collapse should be as low as possible.

5.1.1 Engineering Demand Parameters and Intensity Measures

The work of the Thesis is concentrated on monolithic columns and colonnades. There-
fore, the Engineering Demand Parameter (EDP) considered is the normalized rotation
6 of the column over its slenderness angle &, where « is defined as the ratio of the col-
umn height over the width of the base. The normalized rotation 6/« provides a mea-
sure of column deformation during the ground shaking and also shows how close to
collapse a column or a colonnade was brought during the earthquake. This EDP has a
clear physical meaning and allows to identify various damage states and to set empir-

ical performance objectives. For example a value of 8 /a equal to 1/3 indicates that the
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maximum rotation was 1/3 of the slenderness and thus there was no danger of col-
lapse, while values of 6/« larger than one imply intense shaking, large deformations
of the column and most probably collapse.

Although the critical performance level of interest is collapse, intermediate perfor-
mance levels, in some cases, can be also of importance. Lower performance levels
are related to secondary damage indicators, e.g. minor fracture of a wedge, that do
threaten the stability of the system but may still damage the monument. Therefore,
three performance levels have been considered in this chapter. The first level (damage
limitation) corresponds to weak shaking with small or no rocking at all. At this level
of shaking, no damage, and no residual deformations are expected. The second level
(significant damage) corresponds to intense shaking with significant rocking of the
column; however, the column is not brought close to collapse. The third performance
level (near collapse) corresponds to very intense shaking with significant rocking. The
column does not necessarily collapse at this level but it is brought close to collapse
and its safety is critically threatened. Possible EDP threshold values are: 0.15, 0.35 and
1.00. These values are based on engineering judgment and also on experience from
past earthquakes and the literature. Although it is clear that, in general, strong ground
motions lead to large rotations during an earthquake there is a significant scatter of the
results indicating that intense rocking does not necessarily imply large rotations and
also that large rotations can occur for relatively weak shaking of the column. This is
due to the complexity of the problem.

The selection on an appropriate Intensity Measure (IM) is also a point of inter-
est. For rocking systems, the most intuitive IM choice is the peak ground acceleration
(PGA), since it is the parameter that defines the maximum overturning moment, while
it also defines whether rocking, sliding or none of the two will occur. The PGA can
be normalized with gtana in order to be dimensionless and thus the block’s IM is
IM = PGA/gtana, where IM < 1 implies that the block does not start rocking. Past
research papers, e.g. Ishiyama, 1982b and Dimitrakopoulos and Giouvanidis, 2015b,
have shown that also the PGV is an important response parameter that correlates the
seismic demand with the block’s overturning. A third IM considered in this work is
the average spectral acceleration Sa’¢ (Eads et al., 2015; Kohrangi et al., 2017). S7%8 s
defined for a range of periods (or frequencies) and is calculated as:

N (1/N)
S8 — (n sa<ci>) 61)
i=1

where N is the number of discrete period values considered and c; defines the period

range of interest, that typically varies from 0.50 to 1.50sec, as it is discussed in the
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Numerical Results section.

In summary, the three IMs considered are the Peak Ground Acceleration over the
tangent of the slenderness value (PGA/gtana), the Peak Ground Velocity (PGV) and
the average spectral acceleration (S; °). All three IMs have the desired IM properties,

i.e. “practicality”, “efficiency” and “sufficiency”, as discussed by Giouvanidis et al.,
2017.

5.1.2 Fragility and Risk assessment

Fragility curves are a valuable tool for the seismic risk assessment of a system. Fragility
analysis was initially developed for the reliability analysis of nuclear plants in an ef-
fort to separate the structural analysis part from the hazard analysis performed by
engineering seismologists. Fragility analysis requires the calculation of the probabil-
ities that a number of monotonically increasing limit-states are exceeded. Therefore,
the seismic fragility Fr is defined as the limit-state probability conditioned on seismic
intensity. Therefore, the fragility of a system is the probability that an engineering
demand parameter (EDP) exceeds a threshold value edp and is defined as:

Fr(IM) = P(EDP > edp|IM) (5.2)

In order to properly calculate the integral of Eq. 5.2 three possible response states
are identified: (i) the system remains at rest during the earthquake, (i7) it uplifts and
rocks and (iii) it overturns. Using the total probability theorem, the fragility function
(Eq. 5.2) is calculated as:

Fr = P(EDP|NoUplift)Pnoupiist + P(EDP|Uplift) Pypiist + P(EDP|Ovtn) Poytn
(5.3)
where P(EDP|NoUplift), P(EDP|Uplift) and P(EDP|Ovtn) are the limit-state ex-
ceedance probabilities when there is no-uplift, there is uplift and there is overturn-
ing, respectively. Pnoupiit, Pupiift and Poyty are the corresponding probabilities. For
columns that will not uplift, P(EDP|NoUplift) = 0, while for the overturning columns
P(EDP|Ovtn) = 1. Therefore, the calculation of fragility is simplified to:

Fr = P(EDP > edp|upliff)(1 — Pootn — PNoUplift) + Pootn (5.4)

Assuming that rocking data are lognormally distributed, P(EDP > edp|Uplift)
can be calculated analytically once the mean and the standard deviation of the logs of
the EDP are calculated, which are denoted as ,gepp and 0j,4epp, respectively. Once
they are known they can be used to calculate the probability that the EDP exceeds a
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threshold value edp using the lognormal distribution:

(5.5)

log(EDP) — uy,
P(EDP > edp|Uplft) =1—® < 0g( ) — Hi gEDP)

UImEDP

where edp is the EDP’s threshold value that denotes that the limit-state examined
is exceeded and @ is the standard normal distribution. For example, if the fragility
that corresponds to normalized rotation of the column’s capital 8/« is larger than 0.3,
log(edp) would be equal to log(0.3).

The risk is expressed as the mean annual frequency (MAF) of a limit-state being
exceeded. Adopting the PEER’s formula, the limit-state MAF can be calculated with
the aid of the expression:

dA1m
dIM

AEDp :/ P(EDP|IM) ' dIM (5.6)
IM

where Arpp is the mean annual frequency of the EDP and dA ), is the slope of the seis-

mic hazard curve. The limit-state MAF is obtained convolving the slope of the site haz-

ard curve Ay, expressed as function of the IM, with the fragility curve P(EDP|IM)

obtained with respect to the EDP and the IM of interest.

5.2 Fragility analysis methods

5.2.1 Multiple-stripe analysis

The limit-state fragilities of rocking systems can be calculated using different approaches.
The Incremental Dynamic Analysis (IDA) method is a common tool for such problems.
IDA involves subjecting the system to a suite of ground motion records, each scaled to
multiple levels of intensity. After incrementally scaling every ground motion, single
record capacity curves are produced in terms of demand versus seismic intensity. IDA
has conceptual similarities to the Multiple Stripe Analysis (MSA) method (Jalayer,
2003; Baker, 2015), where instead of scaling up every ground motion, the records are
scaled to the same IM level (Fig. 5.1). Since for every scaling level the ground mo-
tions have the same IM value, the EDP values form a “stripe” (Fig. 5.1) which allows
to directly calculate the median (50% percentile) and the 16% and 84% percentile ca-
pacity curves conditional on the IM. Strictly speaking, in IDA the scaling factors will
be different, but stripped data can be easily obtained with interpolation (Vamvatsikos
and Cornell, 2004). For the sake of simplicity, in this work MSA was performed (i.e.

scaling the records to a common IM level), but loosely speaking the “term” IDA could
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have been also used since it is more widespread and the difference is merely lie on the

implementation.
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FIGURE 5.1: EDP - IM plot: multiple stripe analysis.

Eq. 5.4 can be directly solved using a multiple stripe analysis approach when the
EDP values form stripes conditional on the IM value. For every stripe, the mean and
standard deviation conditional on the IM, are calculated. Assuming that the data fol-
low the lognormal distribution, the fragility conditioned on the IM level is obtained

as:

) (1 = Pootn — Pnouplift) + Pootn (5.7)

Fp =@ HiogEDP — log(edp)
UlogEDP

Poupiift and Poyty are obtained, for every stripe, as the percentage of simulations
where no-uplift and overturning was observed, respectively. In other words, P, upiift

and Ppyy, are calculated following the equations:

number of simulations NoUplift
total number of simulations

number of simulations Ovtn
total number of simulations

(5.8)

Pnouplift =

(5.9)

Ovtn —

5.2.2 Cloud analysis

If the data are not stripped (Fig. 5.1) then they will form a “cloud” (Fig. 5.2) and
the “cloud analysis” has to be adopted instead. Therefore, the cloud analysis is a
common method when the data are scattered in the EDP-IM plane. This occurs when
the ground motions are left unscaled, or when they have all been scaled with the same
factor. A linear fit (Fig. 5.3) provides the mean of the logarithms (y/o¢epp) and a single
constant value for the dispersion 0jogpp. Knowing pjoeepp and ojoeepp, it is possible
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to calculate the fragility of the rocking simulations using Eq. 5.7. Eq. 5.7 requires the

10 -
s 8 N
c .
3 .
2 6 — . {
< " .
O] ® % ¢ .. .
a4 . 1
II .. .:..'. ... .. L]
E & ........ . . o o
- ;'o:.'o .‘&'. ¢« * .
2 s g0 =0 .
0

0 0.2 0.4 0.6 0.8 1
EDP = 0/«

FIGURE 5.2: EDP - IM plot: cloud analysis.

knowledge of Pnorock and Poyt, over the whole IM range. These probabilities can be
calculated (Fragiadakis and Diamantopoulos, 2020; Jalayer et al., 2017) using a logistic
regression model (logit) which yields a probability estimate that is function of the IM
(Jalayer et al., 2017). Therefore, for the NoUplift and Overturning cases:

1
PNoUplift = 1+ o— (b1 blog (IM)) (5.10)
! (5.11)

Pootn = 1+ e—(ba+balog(IM))

where the constants by, by, b3, by are the parameters of the logistic regression model,

obtained with binomial-based, generalized linear model (GLM) regression.

5.2.3 Maximum-Likelihood (MLE) fitting

A maximume-likelihood (MLE) fitting can be also adopted both when the data are
striped, or form a cloud in the EDP — IM plane (Baker, 2015). The MLE fitting ap-
proach fits the CDF (Cumulative Distribution Function) of a lognormal distribution
on the EDP-IM data and thus the fragility function is simply a lognormal CDF of the
form:

(5.12)

Fg = P(EDP > edp) = @ (M)

Ba
where 0, and B, are the median and the dispersion that have to determined by maxi-
mizing the likelihood function (Baker, 2015).
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FIGURE 5.3: Cloud analysis: Linear fitting in the log-log space.

Multiple-stripe analysis provides, at discrete IM levels (stripes), the number of suc-
cesses Mgy, i.e. the number of simulations that the limit-state has been exceeded after
1t total simulations. Using the binomial distribution on the data of a single stripe,

the probability of having exactly 7, successes after n;,; simulations, will be:

P(Success = ngyc) = ( Mot > P(EDP(S))nsuc(l _ P(EDP(S)))ntot—TlsuC (5.13)

Nsyc

If there are k stripes, substituting Eq. 5.12 to Eq. 5.13, we obtain the MLE function as:

E _ ﬁ ntot,i q) (log(EDP/Ga))nsuc,i <1 B q)log(EDP/ea))ntot,i_nsuc,i (5 14)
i=1 Ngyc,i IB” ‘Ba

The only unknowns are 6, and B, which are found as the values that maximize the
likelihood function £ of Eq. 5.14, or preferably its natural logarithm. This can be
achieved easily with a spreadsheet or with a simple computer script. Note that the fit
is performed on the whole data, avoiding the partitioning of Eqs. 5.3 and 5.4. If the
EDP-IM pairs form a cloud, each simulations is assumed as a stripe. Therefore, k is the
number of simulations, 1y, is equal to one (14, = 1) and ng,, is equal to one, or zero,
depending whether the simulation exceeds the limit-state threshold or not.

The fragility curves of Figure 5.4 have been obtained using the above modeling
approach. Figure 5.4a compares smooth and chainsaw-like fragility curves, i.e. the
fragility that comes from the multiple-stripe analysis and the fragility considering the
Baker’s method (Baker, 2015). Figure 5.4b compares the multiple-stripe and the cloud
analysis for the same IM = PGA/gtanx and the same structure. The proposed results
shed light on the fact that the methods presented have limitations especially related to
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FIGURE 5.4: (a) Chainsaw-like vs smooth fragility curves, (b) multiple
stripe vs cloud analysis. The limit-states considered correspond to 6/« =
0.15, 0.35 and 1.00.

the fitting of the fragilities in the tails of the distribution. For example, a large number
of simulations may be required to properly assess the correct values of the median and
percentiles that are used in the formulation or convergence analysis may be needed.

5.3 Numerical results

5.3.1 Rocking columns

A rectangular freestanding rocking block with dimensions 2/ x 2b = 5.00m x 0.75m
is assumed. The IMs considered are the PGA/gtana and the PGV (Peak Ground
Velocity). This is the first step for the application of the previous framework on the
simplest rocking case, i.e. a freestanding rocking block. The suite of thirty, non-pulse,
like ground motion records are used again. The ground motions are listed in Vamvat-
sikos and Fragiadakis, 2010 and are also adopted in Figure 5.4. Figure 5.5a presents
the smooth fragility curves. The three limit-states are considered in the current re-
sults, i.e. 6/a = 0.15, 0.35, 1.00 (Psycharis et al., 2013b). Figure 5.5b presents the same
results using as IM the PGV In the following subsection the same plots are used for

comparison purposes with a more complicated rocking system, a rocking colonnade.

5.3.2 Rocking colonnade

Figure 5.6 compares the response of a column with a colonnade of symmetric columns.
For the freestanding column and for comparison purposes the rectangular block 2/ x

2b = 5.00m x 0.75m is assumed. For the columns of the colonnade it is assumed again
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FIGURE 5.5: Fragility curves of a rocking block: (a) IM = PGA/gtana
and (b) IM = PGV.

that 2h x 2b = 5.00m x 0.75m while quantity oy = m;/Nm, is equal to one. The IMs
are either PGA/gtana or PGV. It is clear that colonnades are more stable compared
to the corresponding column dimensions. In both plots, the probability of exceedance

of all IMs is larger for the freestanding column compared to that of the colonnade.
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FIGURE 5.6: Fragility curves of a column vs the corresponding colonnade
with v = 1: (a) IM = PGA/gtana and (b) IM = PGV.

In order to adopt as IM the average spectral acceleration (S; °), in Figure 5.7 the
Fourier spectra of the records have been calculated. The spectra are used in order to
decide the c; values of Eq.5.1 which corresponds to the frequencies of interest. S;*®
needs a careful handling in order the fragilities to be usable. In general, the lower
period ordinates affect early damage, similar to the effect of peak ground acceleration
to uplift, while longer periods have been found to be correlated to overturning. Based
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on Figure 5.7 the period range of interest is T; = 0.5s to Ty = 1.5s and is shown as a
black thick line.
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FIGURE 5.7: Fourier spectra of the rocking response of the colonnade
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FIGURE 5.8: Fragility assessment for different values of the epistyle’s
weight (7 =0.0, 0.5, 1.0, 5.0) for: (a) 6/« = 0.15and (b) 8/« = 1.00.

Figure 5.8 presents the smooth fragilities obtained using IM = S;°¥(0.5,1.5) for
different values of beam to column mass ratio . This investigation shows the effect
of the epistyle’s weight on the fragility of the colonnade. It is observed that the larger
the 7 values the more stable the rocking frame. It is clearly shown for the case of
overturning fragility curves, i.e. 8/« = 1.00. However, the effect of v can not be
assumed straightforward or proportional, as it affects not only the equation of motion
but also the coefficient of restitution.

In order to calculate the limit-state MAFs of the block, we adopt a hazard curve
that corresponds to a site in the island of Crete, Greece (5.9). As discussed above, the
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FIGURE 5.9: Hazard curve adopted for the risk assessment.

(0/a <0.15) (8/a <0.35) (0/a <1.0)
v=0.0 434 years 552 years 801 years
v=0.5 399 years 642 years 1122 years
v=10 478 years 648 years 1327 years
v=>50 549 years 739 years 1429 years

TABLE 5.1: Limit-state return periods for the colonnade.

limit-state MAFs are calculated using Equation 6.7. Table 6.2 presents the limit-state
MAFs obtained for the colonnade and for different values of parameter .

5.3.3 Frame with columns of unequal height

For the fragility assessment, both cases consider that 2h; = 5.00m, 2b; = 0.75m and
the intensity measure adopted is the average spectral acceleration S; °. Figure 5.10a
considers that 2hy = 3.75m, 2b, = 0.75m, while in Figure 5.10b it is assumed that the
second column’s height is equal to the 95% of the first column’s height, i.e. 2h, =
4.75m, 2by = 0.75m. Both cases consider m; = m. + m. The Engineering Demand
Parameter (EDP), as in all the previous plots, is the rotation over the slenderness of
the columns, i.e. 8/a and the limits states follow the recommendations of Psycharis
etal., 2013b.

It can be observed that the fragility curves are not affected considerably by the
asymmetry. The difference in the initiation of rocking and the coefficient of restitution
affect the response histories but considering the fragility assessment it can not be de-
cided if the asymmetric frame is more or less stable. Further parametric investigation

is proposed considering all the input parameters. However, the fragility assessment
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FIGURE 5.10: Comparison of the fragility curves of a symmetric and an
asymmetric rocking frame using as I M= Sav8, Asymmetric frame’s height
is: (a) 75% and (b) 95% of the corresponding symmetric.

procedure presented, is an efficient approach for handling ancient structures while it

can be extended in a straightforward manner to a variety number of more complicated

rocking systems.
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Chapter 6

Fragility and risk assessment of rocking

building contents

In this chapter, the fragility and risk assessment of freestanding building contents is
presented. The framework of handling the problem of rocking contents and the ef-
fect of the structure was examined. It has to be noted that, the notation was partially
changed with respect to the original corresponding paper (Fragiadakis and Diaman-
topoulos, 2020) in order to be consistent with the notation used throughout the Thesis.

6.1 Introduction

6.1.1 Pastresearch

Earthquake losses may be due to structural damage, damage of non-structural com-
ponents (e.g. infills, piping system) and also due to the damage of the structure’s
contents. Recent guidelines (e.g. FEMA, 2012b, FEMA, 2012a, NIST, 2017) address the
problem of the seismic response of building contents, acknowledging that the losses
are comparable, or may exceed, those of structural damage. Non-structural damage
can be due to damage of components attached, or anchored, to the hosting building, or
due to damage on the freestanding inventory of the building. In the latter case, there
is a huge variability of systems and configurations hampering the systematic study
of the problem and the recommendation of generally-applicable guidelines. The risk
assessment of building contents is a complicated task since the response of the con-
tents depends also on the behaviour of the hosting structure. As a result, there may be
cases where a strong earthquake does not overturn an object but strongly damages the
structure, while more benign ground motions may leave the structure intact however
causing losses due to damage on the building’s contents. The current work focuses
on the seismic performance, fragility and risk assessment of freestanding building
contents. Some common examples of such contents are shown in Figure 6.1. Free-

standing building contents are treated as rocking rigid blocks and are modelled using
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Housner’s theory (Housner, 1963). A specifically tailored version of the Incremental
Dynamic Analysis (IDA) method is proposed in order to assess the structure and its
contents considering that the structural collapse implies also collapse/overturning of
the contents. A second point of interest is the derivation of fragility curves and the

calculation of the Mean Annual Frequency (MAF) of the rocking building contents.

FIGURE 6.1: Examples of building contents (left to right: an artefact, a
sculpture and a computer server).

Despite the significance of the problem at hand, there are relatively few past stud-
ies on the seismic response assessment of freestanding contents, especially compared
to the case of anchored non-structural components and anchored building equipment.
Recent research examines, for example, the seismic behaviour of artefacts (Spyrakos
etal., 2016), or hospital equipment (DiSarno et al., 2015; Petrone et al., 2017). Spyrakos
et al., 2016 proposed predictive models for artefacts assuming that they form systems
of one, or two, rocking blocks, while DiSarno et al., 2015 performed shake table tests
on hospital equipment. In this direction, Wittich and Hutchinson, 2017 and Wittich
and Hutchinson, 2015 studied the seismic response of human-formed artefacts that
are either standing on a pedestal (Wittich and Hutchinson, 2017) or are asymmetric
(Wittich and Hutchinson, 2015). Both configurations are very common for freestand-
ing building contents and therefore the numerical tools developed are quite useful for
their seismic performance assessment.

One of the first studies that focus on the fragility of rocking systems, is the work
of Purvance et al., 2008. The authors derived overturning fragilities for both symmet-
ric and asymmetric freestanding blocks and they compared the overturning fragilities
with shake table experiments. They also showed that objects with multiple rocking
points are more fragile than predicted. Furthemore, Konstantinidis and Makris, 2009,
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studied the seismic response of laboratory equipment using analytical solutions and
experimental results, while Konstantinidis and Nikfar, 2015 studied the sliding mo-
tion of stocky freestanding equipment and contents located at base-isolated buildings.
Bakhtiary and Gardoni, 2016 presented a probability model that predicts the rotation
demand of rocking bodies. Their fragility-assessment approach is based on identi-
fying the approximate period and equivalent damping ratio for the rocking object.
Dimitrakopoulos and Paraskeya, 2015 proposed dimensionless fragility curves for the
rocking response of rectangular blocks under near-fault excitations of their base. Their
work was the first that proposed dimensionless Intensity Measures (IMs) for rocking
blocks, while Giouvanidis et al., 2017 discussed the fragility assessment of rocking
frames. Petrone et al., 2017 focused on the efficiency of different intensity measures in
predicting the damage states of the rigid block, while alternative intensity measures
for rocking systems were also investigated in Purvance et al., 2008, Pappas et al., 2017,
Kavvadias et al., 2017a and Kavvadias et al., 2017b. Psycharis et al., 2013a developed
a fragility assessment framework for mutidrum ancient columns that consist of rigid
marble pieces that are stacked one on top of the other. The work of Contento et al.,
2019 studies the seismic response and the fragility of rocking objects that are paired
with two different protective devices. The work uses a logistic regression model cali-
brated with a Bayesian approach in order to construct the fragility curves as function
of the block properties.

In this Thesis a performance-based seismic fragility and risk assessment frame-
work for freestanding building contents is presented. Contrary to previous works
on the seismic fragility assessment of rocking contents, the proposed methodology
discusses how the response of the hosting building and that of the contents are cou-
pled and also the effect of different stories and different block geometries. In order
to consistently study the effect of increasing seismic intensity in a performance-based
setting, a modified version of the well-known Incremental Dynamic Analysis (IDA)
method is presented. It is shown that the EDP that should “drive” the IDA simula-
tions is that of the building rather than that of the contents and also that the collapse
of the building should not be neglected. Moreover, the calculation of fragility and risk
are discussed. Existing fragility assessment methodologists are adopted showing that
the IM of the building should be adopted (instead of that of the contents), while a
procedure that uses the total probability theorem in order to calculate the MAFs com-
bining fragilities that were separately generated for the structure and for the contents
is investigated. Overall it is shown that the problem is not as simple, as it may initially
seem, and that various tools should be appropriately combined in order to accurate

and efficiently calculate the risk of freestanding contents.
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6.1.2 Building contents as rigid blocks

In order to study the seismic response of freestanding bodies to an earthquake ground
motion, it is assumed that the bodies are orthogonal blocks. Following the pioneer-
ing work of Housner, 1963, the problem of rocking and overturning of freestanding
blocks to earthquakes has been the subject of intense analytical and experimental re-
search. Despite its apparent simplicity, the rocking problem has been proven difficult,
since the blocks behave nonlinearly and also due to the occurrence of many impacts
between the rocking bodies and their base. Previous studies have revealed the com-
plex response, including certain counter-intuitive trends. Some important remarks are
(Fragiadakis et al., 2016): (i) the stability of a block subjected to a specific ground mo-
tion does not depend monotonically on the size or the slenderness of the block, (ii)
the overturning of a block under a certain ground motion does not necessarily imply
overturning for an increase of the base excitation amplitude, (iii) the amplitude of the
response does not always decrease as the coefficient of restitution increases. A planar
model is adopted in this work. This is an often made approximation, which leads
to unconservative results when applied to three-dimensional objects such as those
shown in Figure 6.1. Nevertheless the two-dimensional, planar modelling adopted
offers some simplicity and was found adequate for the purpose of this work.

The fundamentals of rocking block’s theory have been summarized in the previ-
ous subsections. In is worth noting that following Figure 2.1, in the static case, when
6 > « the block will overturn since the self-weight becomes an overturning force in-
stead of a restoring force. Under dynamic loading, this is not strictly true since there
may be cases where the block does not overturn for 6/a values that slightly exceed
one. Therefore, we often normalize the rotation with the slenderness angle in order
to obtain the metric 6/« that provides an estimate of how close to overturning is the
block. Moreover, when the block is at rest (¢ = 0), omitting the inertia term in Eq. 2.3,
we find that it will start a rocking motion only if the ground acceleration ii; exceeds a

threshold value, i.e. when:
liig| > (b/h)g < |ilg| > gtana (6.1)

On the other hand, a body will slide if the seismic force F,; = mii, exceeds the static
friction:
Feq > ]/lstW <~ |”g| > Hst8 (6.2)

where y5; is the static coefficient of friction, that typically receives values above 0.65.
Therefore, the inequality of Eq. 6.2 implies that typically an acceleration above 0.65g is
required for sliding to occur. Comparing Eq. 6.1 to Eq. 6.2, sliding will precede rocking
only if tana is less than p. This is possible for small friction conditions, or for stocky
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blocks, i.e. for small ug or for large tana values. Interestingly, when neither condi-
tions of Eq. 6.1 or Eq. 6.2 are met, the body will remain at rest in its initial position.
The equation of motion is solved numerically using standard Ordinary Differential
Equation (ODE) solvers available in Matlab’s (Matlab, 2016) library or considering the
various alternative ways to model the seismic response of rocking systems which are
discussed in Diamantopoulos and Fragiadakis, 2019. Considering the coefficient of

friction, it typically receives values between 0.7 < 1.0.

6.2 Performance assessment

6.2.1 Definition of IMs and EDPs

The procedure followed for the seismic response assessment of freestanding building
contents is shown schematically in Figure 6.5a. The building is subjected to an accel-
eration timehistory and the total acceleration response history of the storey of interest
is stored. The stored storey acceleration response history is used as the input acceler-
ation time history for the rigid block assessment. This, conceptually simple, cascad-
ing procedure requires two models, one for simulating the building and a second for
simulating the freestanding contents. Moreover, after every building simulation the
complete acceleration, or velocity, response history has to be stored for every storey.
This workflow is used also for developing the fragility curves of the rocking objects of
interest.

Seismic response assessment requires to define pertinent Intensity Measures (IM)
and Engineering Demand Parameters (EDP) for both the structure and the contents.
This step is also important for the fragility assessment. IMs represent seismic intensity;,
while the EDPs are used to measure the demand, or the “damage”. In order to distin-
guish the quantities that refer to the “structure” and the “block’, the superscripts “s”
and “b” ’ are used, respectively. Therefore, EDP®) and IM() are the IM and the EDP
of the structure, while EDP(*) and IM(®) refer to the rigid block. For a block at storey
j, IM (6) will coincide with (or be derived from) the structure’s EDI’j(S), or, simply, the
peak floor acceleration of the storey is the peak ground acceleration for the rocking
body. Therefore, the selection of E DP].(S) and IM(®) should be consistent.

For moderate-period structures with no near-fault activity, an appropriate choice
for the intensity measure of the building IM(®), is the 5%-damped, first-mode spectral
acceleration, S;(T;,5%). Moreover, the most common EDP for moment frames is the
maximum interstorey drift. However, since our focus is on freestanding components,

instead of the maximum interstorey drift, a consistent quantity should be chosen as
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the EDP®), while the intensity measure IM) is always S,(T;,5%), although other
measures are also possible.

For a rocking block, the most intuitive IM choice is the peak ground acceleration
(PGA), since it is the parameter that defines the maximum overturning moment, while
according to Egs. 6.1 and 6.2 the PGA defines whether rocking, sliding or none of the
two will occur. Although it is not necessary, the PGA is normalized with gtana and
thus the block’s IM is IM(®) = PGA/gtana, where IM(®) < 1 implies that the block
does not start rocking. Furthermore, past research (Ishiyama, 1982b; Dimitrakopou-
los and Giouvanidis, 2015b) has shown that the PGV is also an important response
parameter that provides a good correlation between seismic demand and block over-
turning. For simplicity, we choose not to normalize the PGV, but researchers (e.g.
Dimitrakopoulos and Paraskeya, 2015) have also proposed the normalized quantity
pPGV /gtana as an IM suitable for rocking blocks. Our results have shown that the
PGV (or PFV) performs well as an IM and hence we have chosen the simplest IM
possible. Therefore, the IM(®) for a rocking block at storey j considered, is either the
normalized peak floor acceleration PFA]-, or the peak floor velocity PF V]'; the param-
eter chosen will be also used as the demand parameter of the building E DP].(S). The
most suitable engineering demand parameter EDP®) for the rocking block is the ro-
tation angle 8 normalized by slenderness angle &, i.e. EDP(®) = |0|/a. The EDPs and

IMs for the structure and the freestanding contents are summarized in Table 6.1.

TABLE 6.1: Definition of IMs and EDPs.

IM EDP

building Sa(T1,5%) drift, PFA;, PFV;
block PGA/g tana, PGV 0/«
block at storey j PFA/g tanx, PFV 0/a

In order to assess a system’s capacity, meaningful performance objectives related
with the system’s modes of failure or damage have to be identified. For rocking sys-
tems, overturning is the primary limit-state of interest, while rocking initiation is also
of interest but it can be easily identified from the PGA. Depending on the freestanding
component, (e.g. its purpose, its material, etc), “limited” damage can be identified for
normalized rotation values 6/« ~ 0.1 <+ 0.3, “moderate” damage for 6/a ~ 0.3 < 0.5
and “overturning” is assumed for 6/a > 1. Recommendations of limit-state thresh-
olds for rocking bodies can be found in various publications, e.g. Dimitrakopoulos
and DeJong, 2012a, Psycharis et al., 2013a and Kavvadias et al., 2017b. In practice,
these limits vary considerably and it is not possible to decide threshold values that
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are generally applicable. For example, for sensitive mechanical equipment a rotation
6/a > 0.1 may result to permanent damage and thus in terms of loss the outcome
will be the same with overturning. Another important aspect is the geometry of the
block. Slender blocks start rocking for smaller acceleration values, while stocky blocks

require higher acceleration values to start rocking and are more stable.

6.2.2 Fragility assessment

Past research on fragility assessment focuses on the risk assessment of the structure
itself (e.g. Fragiadakis et al., 2015), while the contents are examined separately and,
usually, neglecting the effect of the hosting structure. Independent, and often generic,
fragility curves for various building contents can be found in guidelines (e.g. FEMA,
2012b) and the literature. Such fragility curves are empirical and are targeted to spe-
cific component types (e.g. cladding panels, masonry parapets). The direct fragility
calculation that is here proposed through simulations allows to consider additional
sources of uncertainty (e.g. related to the shape of the object, its mass distribution)
and hence is preferable. The fragility function is the conditional limit-state exceedance
probability, it has been discussed in the previous subsection and is given by Eq. 5.2.
The fragility calculation of the building and of the contents are discussed separately
following the framework of Chapter 5.

Structure: There will be simulations that the building collapses (denoted as “C”)
and simulations where no collapse occurs (denoted as “NC”). Making this separation
and dropping the conditioning term in order to simplify the notation, i.e.: P(EDP) =
P(EDP > edp|IM), the probability of Eq. 5.2 is calculated using the total probability
theorem (TPT) as follows:

F) = P(EDP®)|NC)Pyc + P(EDP®)|C)Pc <
F) = P(EDP®|NC)(1 — Pc) + Pc (6.3)

where P(EDP > edp®)|C) is equal to 1 since the inequality is always satisfied and
Pye =1—Pc.

Rocking body: When an object is subjected to a seismic ground motion there are
three possible types of response: (i) the object may not rock and remain at rest, (ii) it
may rock, or (iii) it may overturn. Using the total probability theorem for the block,

the fragility function becomes:

FY) = P(EDP®)|NoRock) Pyorock + P(EDP®) |Rocking) Procking + P(EDP®) |O0t) Poy
(6.4)
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where P(EDP")|NoRock), P(EDP"")|Rocking) and P(EDP®)|Ovtn) are the probabil-
ities that EDP%) = 0/a exceeds a threshold value edp(b) and Pnorocks Procking and
Poytn are the corresponding probabilities of no rocking, rocking and overturning, re-
spectively. Blocks that will not rock, will not exceed any edp(®) value and conse-
quently P(EDP|NoRock) = 0, while the overturning blocks always exceed the limit-
state threshold and thus P(EDP|Ovtn) = 1. The conditional limit-state probability
(fragility) is further simplified to:

FI({b) = P(EDP(b) > €dp|ROCki1’lg)(1 - POUtn - pNoRock) + POvtn (6-5)

The calculation of Eq. 6.5 is discussed in the sections that follow. A fundamental
assumption of our derivation is that the simulations that collapse the building also over-
turn/collapse the freestanding contents.

Seismic risk can be expressed as the mean annual frequency (MAF) of a limit-state
being exceeded. Adopting PEER’s formula, the limit-state MAF for the structure and
for a rigid block can be calculated with the aid of the expressions below:

Al /1M<5) P(EDP®|IM®)) [dA 0| (6.6)
b
Aggp:/lM<h) P(EDPO [IM®)) A, 0| 6.7)

where Aé% pr Ag% p is the mean annual frequency of the engineering demand param-

eter (EDP®) or EDP)) exceeding threshold level and d/\g A)/I, d/\g AZI is the slope of the
seismic hazard curve. The limit-state MAFs are obtained convolving the site hazard
curve, expressed as function of the IM, with the fragility curve obtained with respect
to any of the EDPs of interest. For the structure, the IM of interest is always available,
e.g. spectral acceleration S,(T1,5%), but for the block this information is available
only at the ground floor. For assets located at a storey, the calculation of d/\gl;& has no
meaning and thus their fragility should be calculated as function of IM() instead of
IM®):

b
Mpp= [ PEDPOIIMO) i (6.8)

Conditioning the block’s fragility to IM(), i.e. using Eq. 6.8 instead of Eq. 6.7, is also
conceptually preferable since the MAF is directly calculated from the site’s hazard.
Note that we have dropped the superscript “s” from dA,, ), since dAp will refer to
the site.

A simplified and more generic methodology for the seismic risk of structure’s con-
tents is possible if we apply the total probability theorem (TPT), using the block’s

intensity measure IM(®) as an intermediate variable. This allows to expand Eq. 6.8



6.3. Handling of the structure and the contents 93

and obtain the MAF using the expression:
A~ / / P(EDP® [IM®) ap(IM®) [IM®)) [dA 1] 6.9)
IM©) JIM®)

where P(IM(®)|IM®)) = P(EDP®)|IM®)) is the building’s fragility curve. Eq. 6.9 can
be used in order to calculate separately the fragilities using Egs. 6.6 and 6.7, thus by-
passing the need for performing building simulations and storing the response accel-
eration histories for the stories of interest. The use of this formula does not implement
the interaction between the building and the contents and thus is appealing but not
always suitable.

6.3 Handling of the structure and the contents

Below we first discuss how the multiple stripe method is applied for the cascading
problem at hand. We first examine the structure since the ground motions are applied
at the base of the building and in the subsection that follows we discuss how the
fragilities of the freestanding contents are obtained from the floor response histories.

6.3.1 Hosting structure

Following the discussion of Chapter 5 every IDA curve is plotted in the EDP-IM plane
(Fig. 6.6) for the structure considered. The building adopted is discussed a few lines
below, in the numerical results subsection. The median curve (50% percentile) pro-
vides an estimate of the expected value and the fractile curves can be used to measure
the dispersion (Vamvatsikos and Fragiadakis, 2010). The IDA capacity curve of Fig-
ure 6.6 is the most common form of IDA where EDP(®) is the maximum interstorey
drift ratio. However, a different EDP has to be adopted for studying building con-
tents which leads to the representation of Figure 6.2, where the EDP() is either the
normalised peak floor acceleration (PFA), or the peak floor velocity (PFV). The sum-
marized EDP-IM plots (Figure 6.2a or b) allow to directly calculate P(E DP].(S) INC) and

Pc (Eq. 6.3) for every IM stripe. If the E DP]-(S) values are lognormally distributed, the
buildings fragility for the j* storey is calculated as follows:

UlogEDP

P(EDP®) > edp(®)) =1 — P(EDP®) < edp®)) =1— @ (edp“)—mogmp) N

UlogEDP

—edp(®)
P(EDP®) > edp®)) = @ (M) (6.10)
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FIGURE 6.2: Storey capacity curves for the four-storey RC building con-
sidered, using as EDP: (a) the Peak Floor Acceleration (PFA), and (b) the
Peak Floor Velocity (PFV).

where p,0epp and 0jo0ppp are the mean and the standard deviation of the logarithm
of the demand, always conditional on the IM (). The mean Hiogepp and the disper-
sion 0,0epp Of the logarithms can be also calculated as (Vamvatsikos and Fragiadakis,
2010):

Miogepp ~ 10g(EDPsgo,)

1
UlogeDP R E(log(EDPM%)—log(EDPm%)) (6.11)

where EDP,q, is the x% percentile values of EDP-demand. Regardless the IM, the
fragility of the building should be obtained combing Eq. 6.10 with Eq. 6.3:

. — edp®
Y = o (”l SEDP " €OP > (1- Pc) + Pe 6.12)
UlogEDP

where P¢ is the percentage of collapsed simulations. Obviously different fragilities
will be obtained depending on the EDP of interest. Figure 6.2 and Eq. 6.10 allow for

two important observations:

* The calculation of Eq. 6.10 using Eqgs. 6.11, is not efficient when the drift is
used as the EDP. This is understood looking at Figure 6.6 and Eq. 6.11, where
it is evident that the median (or the 16, 84% fractile) curves, conditional on the
IM, cannot be calculated above the IM level where more than 50% (or the 16,
84% fractile, respectively) of the single-record IDAs become horizontal. On the
contrary, when the PFA, or the PFV, is adopted, the median and the 16, 84%
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fractiles can be easily calculated due to the practically monotonic increase of the

IDA curves.

¢ Although the drift is not the primary EDP of interest, the IDAs should be driven
by the drift, or any other EDP that is related with the structural damage. This
is because when structural collapse occurs, the freestanding contents are also
considered collapsed (overturned). In the single-record capacity curves of Fig-
ure 6.6, the solid dots indicate when the building collapses, i.e. either when the
analysis structurally fails, or when the maximum drift threshold is exceeded.
The dots are transferred in Figure 6.2 indicating the occurrence of structural fail-
ure. This is done merely for visualization purposes since all simulations after
the dots are assumed collapsed. This visualization shows that even for relatively

low PFA, or PFV values, structural damage may have already occurred.

A very efficient alternative for calculating the fragilities using IDA, is to fit the CDF
(cumulative distribution function) of a lognormal distribution on the striped EDP-IM
data as discussed by Baker, 2015. The fragility function can be simply seen as the
lognormal CDF:

(6.13)

(s)
F]({s) _ P(EDP(S) > edp) — P (lOg(EDP /911))

Ba

where 6, and B, are the parameters that we need to determine. 6, is the “median” of
the fragility function, i.e. the IM value corresponding to limit-state probability equal
to 0.5 and B, is the dispersion (standard deviation of log(IM)). The values of 6, and
Ba are obtained from the whole data using a Maximum Likelihood Estimation (MLE)
approach (Baker, 2015) presented in Chapter 5.

6.3.2 Rocking contents

Figure 6.3 shows the EDP-IM plots of a freestanding block with R = 1.0m and & =
0.2. The hosting structure was subjected to the IDA simulations of Figs. 6.6 and 6.3
and then the simulations (shown as black dots in Figure 6.6) are transferred to the
EDP®) — M) (Figure 6.3a), or the EDP®) — 1M©) plane (Figure 6.3b). In both plots
the collapsed simulations appear as dots just right to the vertical line at EDP(®) =
1. The dots below the horizontal line at IM(") = 1 (Figure 6.3a) correspond to the
no rocking simulations. As already discussed in Section 6.2.2, the EDP®) — M)
representation is the natural EDP-IM choice, but is not the easiest choice when it comes

to the calculation of MAF /\](EbD)P' Moreover, as shown in Figure 6.3a, the data in the
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EDP® — IM®) form a cloud, while if they are plotted in the EDP(®) — IM() place
they are already conditional on the TM(®).
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FIGURE 6.3: Seismic response of a freestanding building object with R =
1.0m and « = 0.2: (a) plotting EDP® — IM®) results to cloud data, (b)
plotting EDP®) — TM() results to data in stripes.

Both EDP-IM representations allow to calculate the fragility of the blocks, but with
respect to a different IM. Defining the fragility conditional on the IM of the structure,
ie. Flgb) = P(EDP®)|IM®)) can be used for directly Calculating the MAF using Eq.
6.8. On the other hand, the intuitive definition Fl(z )= p (EDP®)|IM®)) provides the
storey fragilities with respect to the block’s IM and always for the storey of interest.
Another major difference is that when IM(®) is adopted, the EDP-IM data appear as
a “cloud” (Figure 6.3a), while when IM®) is adopted instead, they appear in stripes
(Figure 6.3b). The IDA method can be directly applied to the striped data, while the
cloud data require a different post-processing in order to derive the fragility curve. In
the case of Figure 6.3b, the data form stripes and hence they can be post processed as

was already shown in Section 6.3.1 for the building;:

b Hiogeppy — edp?)
= ( B | (1~ Pouns — Ponact) + Pons (614)
08

Since the F}({b) is calculated at every stripe Pyorock, Pootn are simply obtained as the per-
centage of simulations where no-rocking and overturning was observed, respectively.
The fitting of Eq.6.13 is also very efficient in the case of the freestanding contents. If
the data are not stripped, as in Figure 6.3a, the cloud analysis method should be used

instead.
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6.3.3 Cloud analysis

Cloud analysis is a common method when the data are scattered in the EDP-IM plane
(e.g. Figure 6.3a). This occurs when the ground motions are left unscaled, or when
they have all been scaled with the same factor. Cloud analysis is shown schemati-
cally in Figure 5.3, where a least-squares straight line is fitted on the log(EDP®)) -
log(IM(b)) data. The linear fit provides the mean of the logarithms (p,0epp) and a
single constant value for the dispersion 0j,,epp. Knowing pjoeepp and 0joeepp, it is
possible to calculate the fragility of the rocking simulations using Eq. 6.14. This re-
quires the knowledge of the no-rocking Pp,rock and overturning Ppo,, probabilities
over the whole IM range. These probabilities are calculated using a logistic regression
model (logit) which yields a probability estimate that is function of the IM(?) (Jalayer
et al., 2017). Therefore, for the overturning case:

1
1+ o— (b1+balog(IM()))

POvtn = (615)

where the constants by, b, are the parameters of the logistic regression model, obtained
with binomial-based, generalized linear model (GLM) regression.
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FIGURE 6.4: Cloud analysis: Derivation of the fragility curves using the
cloud method (Eq. 6.13) on the whole set of data, i.e. including rocking,
overturning and no rocking simulations. If Eq.6.13 is applied only on the

rocking data, it is necessary to add the overturning and no-rocking curves
obtained with Eq. 6.5 (R = 1.0m, « = 0.2, 6 /a2=0.5, 3rd storey).

A third option for post-processing the cloud data is the “running mean” method
(e.g. Psycharis et al., 2013a and Zentner et al., 2017). The method allows to obtain
stripes conditional on the IM. The response data are plotted in EDP-IM ordinates and

the conditional probabilities are calculated dividing the IM axis into stripes. If IM,, is
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the central IM value of the stripe, the conditional probability P(EDP > edp|IM,,) can
be calculated according to Eq. 6.14 using the response data that are found within the
stripe. Thus, the mean ji,,ppp and the dispersion 0}, pp are obtained from the stripe
data, and P(EDP > edp|IM,,) is approximated with Eq. 6.14 resulting to a procedure
that is equivalent to that of multiple-stripe analysis.

The methods presented above have several limitations especially related to the fit-
ting of the fragilities in the tails of the distribution. In the case of the pointwise fragility
of Eq. 6.12 a high number of simulation is required to properly assess the correct val-
ues of the median and percentiles that are used in the formulation and convergence
analysis may be needed. Furthermore, in the case of the fragility presented in Eq. 6.13,
which is obtained fitting a probit model, the behavior of the tail is constrained by the
assumption of lognormal distribution. Nevertheless, various other possible fragility
calculation methods could have been adopted for both stripped and cloud data. For
example, Lallemant et al., 2015 and Zentner et al., 2017 discuss possible alternative
approaches that could be applied for both the structure and the block. Moreover, the
Bayesian approach (e.g. Singhal and Kiremidjian, 1998 and Jalayer et al., 2017) can be
also adopted. A Bayesian approach will allow to easily update the parameters of the
fragilities when more simulations become available which would be very useful for

simulation-based curves.

6.4 Numerical Results

6.4.1 Example of four-storey reinforced concrete building adopted

The case-study building adopted is the four storey RC building shown in Figure 6.5a.
The building has been designed for a site in Greece following the Greek seismic code
which results to designs close to those of Eurocode 2 and 8, assuming Ductility Class
High (DCH). This planar building should be considered as a simplification, since the
reality is more complex, i.e. the model omits the bidirectional effect of the earthquake,
the torsional coupling and the direction of the earthquake. The columns of the first
two storeys have a rectangular section of 40cm and those of upper two stories of 35cm.
The cross section of the beams is 30 x 60cm for all stories apart from the last where a
30 x 50cm cross-section has been assumed instead. The concrete and steel quality were
assumed C20/25 and B500C, respectively. The mass of every storey is 50, 50, 40 and
40 Mg (first to last) and the first two periods are T7 = 0.60sec and T, = 0.24sec. Every
storey has the force-displacement (F — §) relationship shown in Figure 6.5b, while the

elastic stiffness k; of the j storey was calculated according to the formula (Chopra,
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1995):
 L12El; 12+ 1

TR 12p+4

(6.16)

where S, = Y EI,/L,, Sc = Y EI./L,, pj = Sp/Sc. Ly, Lc are the lengths of the
beams and the columns of the storey considered, respectively. The formula assumes
that there is a shear building with beams that have finite stiffness. The stiffness val-
ues of each storey were obtained as follows: ki = 78612kN/m, ky = 94459kN /m,
ks = 59370kN/m and k4 = 55257kN/m. The storey stiffnesses were subsequently
reduced by 50% in order to consider the effective stiffness according to EC8. Fur-
thermore, section analysis was performed in order to obtain the moment capacities
of the columns. The storey yield strengths F,, were found equal to: F,; = 450kN,
Fy» = 420kN, F,3 = 360kN and F,4 = 240kN. The remaining parameters of the
storey capacity curves are shown in Figure 6.5b. More specifically, the capping duc-
tility was set equal to 5, the ultimate ductility equal to 12, and the post-capping slope
was assumed equal to -28%. The building’s model was implemented in OpenSees
(Mazzoni et al., 2006) and the cyclic degradation follows the modified Ibarra-Medina-
Krawinkler deterioration model with bilinear hysteretic response (Bilin material in
OpenSees (Mazzoni et al., 2006)). The total mass is 180Mgr and the building yields
approximately at a normalized base shear equal to F,/W = 0.26, while the roof drift
at yield is 0.33%.
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FIGURE 6.5: (a) The four-storey RC building considered, (b) Storey force-

displacement (F — §) relationship with in-cycle degradation.

The building’s capacity curve (Figure 6.6) is obtained with the aid of the IDA
method (Incremental Dynamic Analysis). IDA was performed using a suite of thirty
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occurs, beyond this point the single-record curve is assumed that has
reached collapse.

non-pulse like ground motion records representing a scenario earthquake. The prop-
erties of the ground motions can be found in elsewhere (Vamvatsikos and Fragiadakis,
2010), where the same records were adopted. These ground motions belong to a bin of
relatively large magnitudes of 6.5-6.9 and moderate distances, all recorded on firm soil
and bearing no marks of directivity. The gray lines correspond to the 30 single-record
IDA curves, the black solid line is the median IDA curve, while the black dashed lines
show the 16" and 84! percentile capacities, respectively. According to Figure 6.6,
the median capacity of the structure is approximately S,(T1,5%) = 1¢g. The median
capacity is calculated as the median of the maximum drift demands over time (in ab-
solute values) of every ground motion. In the IDA plot of Figure 6.6, the IM adopted is
the 5%-damped, first mode spectral acceleration, i.e. S;(T7,5%) and the EDP®) is the
maximum interstorey drift ratio. This is the most common IM choice, typically used
for assessing the capacity of a structure and thus differs from the IM adopted in the

rest of the thesis.

6.4.2 Symmetric building contents

Figure 6.7 shows the mean acceleration spectra at S,(Ty,5%)= 0.4g and 1.0g. Accord-
ing to the capacity curve of Figure 6.6, the first S,(T;,5%) value corresponds to elastic
behaviour of the building, while for S,;(T;,5%)= 1.0g the building is inelastic. The
ground spectra, indicated as ground, refer to the mean acceleration spectra of the orig-

inally recorded timehistories scaled so that all records have the same S,(T;,5%). The
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spectra at the ji* storey refer to the acceleration response histories of the correspond-
ing storey. The spectra of the “ground” records have a different shape than those mea-
sured at each storey, while the spectra of the storey response histories have all a similar
shape but different amplification. The similar shape of the storey spectra is possible
due the uniform distribution of mass, stiffness and strength along the height of the
structure. When the building is elastic (Figure 6.7a) all storey spectra are amplified at
T; = 0.6s and T, = 0.24s, i.e. the first and the second eigenmodes of the structure.
The resonance shows that the building strongly filters the ground motions, while the
amplification depends on the storey of interest. In general, the maximum amplifica-
tion is expected for the upper stories, which is also here verified. For the inelastic case
(Figure 6.7b) at S,(T,5%)=1.0g, the amplification spans all period values between T,
and T;. Another interesting observation is that the building beneficiary filters down
seismic accelerations at periods beyond 1sec regardless of the S,(T;,5%) level. Similar
conclusions are offered by the 5%-damped velocity spectra, but the amplification at
the first and the second mode is stronger and more clear compared to the acceleration
spectrum. Also, the ground velocity spectrum exceeds the storey spectra at slightly
longer periods, at 1.5s instead of 1.2s.
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FIGURE 6.7: 5%-damped acceleration spectra S,(T,5%): (a) IM®) = 0.4g,
and (b) IM®) = 1.0g.

Figure 6.9a shows the mean storey PFAs, normalized with the peak ground acceler-
ation (PGA). As shown in the acceleration and velocity spectra of Figures 6.7 and 6.8,
the floor demands increase monotonically as the intensity increases, while the maxi-
mum demand appears always at the top storey. In Figure 6.9a, the PFAs have been
normalized in order to allow understanding the propagation of PGA along the height
of the building. For small values of the IM, the first storey has the smallest values of

PFA/PGA which is equal to 2, as opposed to the top storey where the ratio is around
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FIGURE 6.8: 5%-damped velocity spectra S,(T,5%): (a) IM®) = 0.4g, and
(b) IM®) = 1.0g.

3.4. However, as the IM increases, the PFA/PGA ratio tends to one for all stories of
the building. Furthermore, Figure 6.9b shows the structure’s fragility curves using as
EDP the PFA of the 3™ storey. Three threshold values were assumed for the PFAs,
ie.: edp®®) =0.50, 0.70 and 0.90g. The structure’s fragilities were obtained using the
IM-stripes extracted from the IDA curves of Figure 6.2a and with the MLE fitting. In
the former case the curves are monotonic but not smooth, as in the latter case where
the fragility is obtained as the CDF of Eq. 6.13. As it is possible to observe from Figure
6.9b when the two kinds of fragilities are compared, considerable difference may be
seen at the tails.
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FIGURE 6.9: (a) Mean storey PFA /PGA demand capacities as function of
S4(Ty,5%), and (b) Fragility curves of the 3" storey assuming IM() =
PFA. The smooth curves correspond to the fitting of Eq. 6.13.

The acceleration and the velocity response spectra of Figures 6.7 and 6.8 allow to
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understand how the structure filters the record, i.e. they show the modes that are
amplified and those that are filtered out. However, rocking structures do not have
modes of vibration in the classical sense, i.e. like an elastically deforming body. For
this reason, Figure 6.10 shows the mean rotation demand for two rigid blocks with the
same size parameter R = 1m and varying slenderness angle a. A smaller slenderness
« value implies a more slender block, hence the block is more sensitive to overturning
and keen to larger rotations. Having set overturning simulations to 6/a = 1, very
interesting findings are offered by Figure 6.10. At S,(T1,5%)=0.4g (Figure 6.10), the
mean rotations of the scaled ground motions are very close to that of the top storey,
while the demand is considerably smaller at lower stories. When the building is inelas-
tic (S,(T1,5%)=1.0g, Figure 6.10b), the blocks that are subjected to the storey response
histories have smaller rotation demand compared to the “ground” records. There-
fore, regardless of the S,(T1,5%) level, the building alters the frequency content of the

ground motions reducing the fragility of the block for any slenderness angle «.
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FIGURE 6.10: Mean rotation demands for rigid blocks with R = 1m as

function of the slenderness angle. The spectra were produced for building

response histories scaled at: (a) I MG) = 0.4g (elastic structure), and (b)
IMG) = 1.0g (inelastic structure).

The remaining of the thesis is focused on the seismic fragility assessment of the
freestanding contents. We isolate two freestanding rocking blocks with R = 1m. The
tirst has a slenderness angle « = 0.20 and is considered as “slender”, while the second
has « = 0.35 and is referred as “stocky”. Three limit-states are identified for each
block. For the slender block, the corresponding EDP®) = §/a threshold values are
assumed as 0.3, 0.5 and 1, respectively, while for the stocky block the values are 0.1,
0.3 and 1. Different threshold values are used for each block due to their very different
dynamic behaviour (e.g. see Fig 6.10). For example, 6/« = 0.1 is easily exceeded for
the slender block and thus it is not a reasonable threshold, while for a stocky block
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FIGURE 6.11: Fragility curves for a block located at the 3" storey of the
building: (a) slender block (R = 1.0m,a = 0.2), (b) stocky block (R =
1.0m,« = 0.35).

the limit-state fragility of 6 /a = 0.5 will, practically, coincide with that of overturning
(0/a > 1). This is reasonable also for blocks of the same geometry, since they may
have a different use or other operational restrictions. For example, a computer server
may not be able to operate at all after a very small rocking rotation. On the other
hand, for another type of freestanding equipment, e.g. furniture, this rotation would
have been negligible. Figure 6.19 shows the fragility curves of the two rectangular
blocks on the 3™ storey of the RC building considered. The curves were produced with
respect to IM®) = S,(Ty,5%), a practice that allows convolving the fragility curve
with the hazard curve in order to obtain the mean annual frequencies (MAF) (Eq. 6.8).
As shown in Figure 6.19, both chainsaw-like and smooth fragilities can be obtained
depending on the post-processing method. Both curve types are acceptable, although
intuitively the reader will be more comfortable with the smooth curves offered by
the MLE fitting of Eq. 6.13. The smooth fragility curves are shown in rest of the
manuscript.

Figure 6.20 shows the block overturning fragilities using PFA as the intensity mea-
sure IM(®) of the block. The solid lines refer to the block subjected to the original
ground motions, while the dashed lines were obtained using the response history of
the fourth storey. Also, the dark lines correspond to the slender block and the grey to
the stocky. As expected, the slender block is always more vulnerable, while the build-
ing reduces its fragility (Figure 6.20a). On the contrary, the building fragility overall
increases for the stocky block. This is in agreement with the rocking spectra of Figure
6.10. In order to better understand the importance of considering the collapse of the
structure, Figure 6.20b, repeats the fragility curves of Figure 6.20a, but this time ignor-

ing the coupling between the structure and the block. In other words, in Figure 6.20b,
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PFA/gtana: (a) the block is considered overturned when the structure
collapses, (b) the collapse of the structure is omitted.

we do not assume that the block overturns when structural collapse occurs. As before,
for the slender block the fragilities are only slightly affected, but for the stocky block
the fragility is very different. According to Figure 6.20a and b, when the coupling is
neglected, the building is beneficial also for the stocky block.

The results of Figure 6.20 are repeated in Figure 6.13 but with IM() = PFA/gtana,
instead of PFA. Since the blocks have a different slenderness angle «, the normalized

IM") affects the fragilities obtained. Qualitatively the results are the same compared
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FIGURE 6.14: Storey overturning fragility curves: (a) slender block (R =
1.0m,a = 0.2), (b) stocky block (R = 1.0m, « = 0.35).

to those of Figure 6.20a and b, but the fragilities curves are less dispersed, bring-
ing closer the slender and the stocky block fragilities. Figure 6.13b also shows the
90% bootstrap confidence intervals around each fragility curve. The narrow confi-
dence intervals obtained, verify that the comparison is statistically significant. Figure
6.21 presents for all stories of the structure the block overturning fragilities assuming
IM(") = PGA/gtana. For both blocks, the storey fragilities practically coincide, while
the “ground” fragilities differ considerably from those of the four stories. In principle,
the fragility curves should coincide since they provide a property of the system that
should not be sensitive to the ground motion set. However, due to the substantially
different frequency content of the ground motions (see the spectra of Figure 6.7) this in
not the case here. Of interest is also to show the fragilities obtained using as IM(®) the
PGV (or PFV) instead of the PGA (Figure 6.22). Adopting the PGV, the storey fragili-
ties appear more dispersed compared to the PFA / gtana, which is more profound for
the stocky block. Quantitatively, as before, the stocky block is more vulnerable on
the ground, while the slender block is less affected by the structure compared Figure
6.20a. As a general conclusion, although qualitatively our conclusions are not affected
by the IM(), the fragility curves will differ and their interpretation requires attention.
Furthermore, Figures 6.21a and 6.22a show the 90% confidence intervals which again
verify the statistical significance of the fragilities obtained.

In order to calculate the limit-state mean annual frequencies (MAF) of the block, we
adopt the hazard curve shown in Figure 6.16a and corresponds to a site in the island of
Crete, Greece. As discussed in Section ??, the limit-state MAFs are “exactly” calculated
with Eq. 6.8. Alternatively, the MAFs can be calculated with Eq. 6.9 finding separately
the fragility of the block and of the structure. The calculation of Eq. 6.9 requires the
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FIGURE 6.15: Storey overturning fragility curves using PFV as the IM of
the block: (a) slender block (R = 1.0m,a = 0.2), (b) stocky block (R =
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FIGURE 6.16: (a) Hazard curve for a site located in Southern Greece, (b)
Calculation of dP(PFA|IM®)).

derivative of the block’s fragility, which essentially is the probability density function
(PDF) for a number of discrete limit-states, as shown in Figure 6.16b. For the example
considered, the MAFs of Eq. 6.8 and Eq. 6.9 are shown in Table 6.2 for the first and the
fourth storey of the RC building considered. In Eq. 6.9 two IM(®) were considered,
PGA/gtana and PFV. Sufficient accuracy between the MAFs of the two approaches
is achieved when the PFV is used as the intermediate variable in Eq. 6.9, while signif-
icant errors are observed for IM(") = PFA/gtana. Although not shown, poor results
were observed when the PFA was used as IM(®). Moreover, the simplified method of
Eq. 6.9 produces slightly better estimates for the slender block. The cloud data should
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be handled carefully, since the associated dispersion is naturally large. The main rea-
son for the large variation of the MAFs in Table 6.2 is the biased fragilities of the blocks
when the IM considered is the PFA. However, we have observed that using the PFV

as IM, the approximate evaluation tends to produce smaller errors.
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FIGURE 6.17: Fragility curves using the exact (Eq. 6.8) and the simplified
approach (Eq. 6.9) for the slender block (R = 1.0m,a = 0.2): (a) first

storey, (b) forth storey.
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approach (Eq. 6.9) for the stocky block (R = 1.0m,a = 0.35): (a) first
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The comparison of the MAF estimates is better understood looking at the fragilities
of Figures 6.17 and 6.18. The fragility P(EDP®)|[IM®)) is calculated as P(EDP(®) |IM?) =
Jim® P(EDP®)|IM©®)) dP(IM®)|IM()) and is compared with the direct calculation,
i.e. without an intermediate variable. Essentially the calculation of Eq. 6.9 is repeated

leaving out the slope of the hazard curve dA s, which is common for both MAF
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equations. Figures 6.17 and 6.18 show the good performance of PFV as opposed to
PFA/gtanx, while better agreement is shown for the overturning limit-state and for
the slender block.

Accepting that the choice of the IM(®) is important, it is necessary to investigate
where do the errors shown in Figures 6.17, 6.18 come from. This is understood com-
paring Figure 6.21 and Figures 6.17,6.18. Figure 6.21 shows that the fragility curves
of the block at the building and at the ground will differ for the stocky block but not
for the slender block. Since the collapse of the building does not affect the overturn-
ing fragility of the slender block (Figure 6.21a), the overturning fragility of the slender
block is almost the same regardless, if the structure’s collapse is neglected or not, hence
the overturning MAF of Figure 6.17 is closely estimated. On the other hand, for the
slender block, the building and the ground fragilities differ and this is transfered to
Figure 6.18. However, even for the stocky block, the solution provided is acceptable
given the many sources of uncertainty on the problem at hand. Another important
remark is that the block used in this example were obtained including the building’s
collapse. Therefore, when the building’s collapse does affect the fragilities, as in the
case of the slender block, Eq. 6.9 is accurate. This hampers the use of Eq. 6.9 when
generic fragility curves are to be adopted.

6.4.3 Asymmetric building contents

The case of asymmetric building contents is also examined here. The asymmetry of
a rocking block leads to different equation of motion and the energy dissipation de-
pends on the pivot point. Also, it has been shown in Vlachos et al., 2019 that the sign
of the ground motion also affects the response.

= symmetric
= rasymmetric
]

0 0.5 1 1.5 2
IM®) =S (T, 5%)(9)

FIGURE 6.19: Fragility curves for a block located at the 2™ storey of the
building: (a) slender block (R = 1.0m,a = 0.2), (b) comparison between
the symmetric and the asymmetric block considered.
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Two blocks, a symmetric and an asymmetric, are compared. The symmetric block
has slenderness angle & = 0.20 and size parameter R = 1m and the asymmetric slen-
derness angles a; = 0.212, a = 0.182 and size parameters Ry = 1.003m, R, = 0.997m.
Three limit-states are identified for each block. The corresponding EDP(") = 0/«
threshold values are assumed as 0.3, 0.5 and 1, respectively. Figure 6.19a shows the
fragility curves of a rectangular block on the 2™ storey of the RC building consid-
ered and Figure 6.19b compares the fragility curves of the symmetric and the asym-
metric block in each limit-state. The curves were produced with respect to IM() =
Sa(T1,5%), a practice that allows convolving the fragility curve with the hazard curve
in order to obtain the mean annual frequency (MAF) (Eq. 6.8). As shown in Figure
6.19, both chainsaw-like and smooth fragilities can be obtained depending on the post-
processing method. Both curve types are acceptable, although intuitively the reader
will be more comfortable with the smooth curves offered by the MLE fitting of Eq.

6.13. The smooth fragility curves are shown in rest of the section. Figure 6.20 shows
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FIGURE 6.20: Overturning fragility curves of a slender block assuming it
as symmetric or asymmetric: (a) the block is considered at the 1% storey of
the structure, (b) the block is considered at the 4" storey of the structure.

the block overturning fragilities using PFA as the intensity measure IM(?) of the block.
The solid lines refer to the block subjected to the storey response time-history and as-
suming that the structure’s collapse means overturning of the blocks, while the dashed
lines were obtained omitting the structure’s collapse. Also, the dark lines correspond
to the symmetric block and the grey to the asymmetric. As expected, the asymmetric
block is always more vulnerable, while the building affects the fragilities especially
when the block is hosted in the lower storeys of the building (Fig. 6.20a vs Fig. 6.20b).
Figure 6.21 presents for all stories of the structure the block overturning fragilities
assuming IM(?) = PFA/gtana. For both blocks, the storey fragilities practically coin-
cide. In principle, the fragility curves should coincide since they provide a property of
the system that should not be sensitive to the ground motion set. However, due to the
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FIGURE 6.21: Storey overturning fragility curves: (a) slender symmetric
block (R = 1.0m,a = 0.2), (b) slender asymmetric block. The structure’s
collapse has been considered in both cases.

substantially different frequency content of the ground motions this in not always the
rule. Of interest is also to show the fragilities obtained using as IM(?) the PFV instead
of the PFA (Fig. 6.22). Adopting the PFV, the storey fragilities appear more dispersed
compared to the PFA/gtana, which is more profound for the symmetric block. As
a general conclusion, although qualitatively our conclusions are not affected by the
IM®), the fragility curves will differ and their interpretation requires attention.
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FIGURE 6.22: Storey overturning fragility curves using PFV as the IM

of the block: (a) slender symmetric block (R = 1.0m,a = 0.2), (b) slen-

der asymmetric block. The structure’s collapse has been adopted in both
cases.

For the blocks considered, the MAFs of Eq. 6.8 are shown in Table 6.2 for the first
and the fourth storey of the RC building considered. From the values of the MAFs it
is obvious that a symmetric block is more stable than an asymmetric is all storeys of
the structure. Especially, in the fourth storey the differences become important while
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storey @/a<03) (0/a<05) (0/a<1.0)
1'symmetric 1353 years 3427 years 5280 years
1tasymmetric 1230 years 2838 years 4933 years
4"symmetric 170 years ~ 808 years 2478 years
4" asymmetric 105 years ~ 538 years 1226 years

TABLE 6.2: Limit-state MAFs obtained for a rocking block using the exact
(Eq. 6.8) approach.

the values of the MAFs in the first storey are close for the symmetric and asymmetric

case.
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Chapter 7

Experimental testing of museum

artefacts

In this chapter, the experimental seismic assessment and protection of museum arte-
facts, is presented. It has to be noted that, the notation was partially changed with
respect to the original corresponding conference paper (Diamantopoulos and Fra-
giadakis, 2022) in order to be consistent with the notation used throughout the Thesis.

7.1 Introduction

Earthquake actions pose an immense threat to museums and their contents. For ex-
ample, during the recent earthquakes on 21 July 2017 and 24 March 2020, in the island
of Kos (Greece) and in Zagreb (Croatia), respectively, severe and widespread dam-
age were reported in the archaeological museums of the cities. The earthquakes ex-
tensively damaged the sculpture exhibition, where many artefacts were dislocated,
leaned against the walls, or over-turned. In the case of heavy and slender sculptures,
the overturning mechanism, apart from damaging the sculptures themselves, poses a
serious threat to other standing exhibits in the gallery and the visitors. It is, therefore,
of paramount importance to develop methods and tools for characterizing the seis-
mic risk of museum artefacts and, where necessary, propose cost-efficient protective
measures.

The study of the seismic behaviour of museum assets and the investigation of novel
and cost-effective risk mitigation schemes for improving the seismic resilience of Eu-
ropean museums was the focus of the H2020-SERA project Seismic Resilience of Mu-
seum contEnts (SEREME). SEREME aims on filling this gap through extensive shake
table tests on real-scale busts and statues. The aim of this large experimental cam-
paign was to understand the seismic response of statues and busts and then develop
novel and cost-effective risk mitigation schemes for improving the seismic resilience
of museum valuable contents. The study focused on the investigation of the seismic

response of two real-scale marble roman statues and three busts of roman emperors
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standing on pedestals of different types and size. Both isolated and non-isolated arte-
facts were considered, while two new and highly efficient base isolation systems, tai-
lored to art objects, were tested. The tested isolators include a pendulum-based system
and devices with Shape Memory Alloy (SMA) wires. Furthermore, the importance of
the hosting building was examined. Specifically tailored, numerical models of varying
complexity, for single and two-block rocking systems, were developed for the needs of
this study and were assessed with the aid of the experimental results of the SEREME
campaign.

The study of the seismic vulnerability of museum artefacts, especially of slender,
human-formed statues, is related to the research on the dynamic response of rocking
rigid blocks. The dynamic characteristics of the hosting structures are also important.
This is evident from the fact that, on many occasions, damage to the structure was
reported leaving the exhibits intact and vice-versa. Although the problem is coupled,
it can be studied looking separately at the structure and its contents, provided that
the contents are not attached to the building. The response of the artefacts is sensi-
tive to acceleration and velocity-based quantities and also to their geometry. Today,
there is lack of standards, while the existing approaches in the literature are general
in concept and do not sufficiently address the mechanisms of the variety of rocking
objects. The reliability of such analytical approaches has also been scarcely validated
experimentally.

Museum exhibits can be seen as rocking freestanding objects, hence their response
is sensitive to acceleration and velocity-based quantities. The geometrical properties
of the artefacts also have significant effects on the dynamics and earthquake response
of the components. Additionally, when freestanding components are placed on a
pedestal, made either from marble or steel, their dynamic response is more difficult
to be predicted with simple methods.

The seminal analytical work carried out on the seismic response of rocking objects
in the 60’s Housner, 1963 stimulated several quantitative studies that have focused
primarily on numerical solutions Voyagaki et al., 2013; Zhang and Makris, 2001; Dim-
itrakopoulos and Fung, 2016; Diamantopoulos and Fragiadakis, 2019. Recently, how-
ever, Purvance et al., 2008 carried out extensive experimental and numerical studies
in order to investigate the overturning response of symmetric and asymmetric blocks
with both simple and complex basal contact conditions and also proposed block over-
turning fragilities. Similarly, ready-to-use fragility curves were proposed by Konstan-
tinidis and Makris, 2009 through a comprehensive experimental program on full-scale
freestanding laboratory equipment located on several floor levels. The latter studies,
however, focused primarily on the behaviour of single blocks. Dual block systems

were first studied numerically by Psycharis, 1990, while the recent experimental work
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of Wittich and Hutchinson, 2017 studied asymmetric free-standing component con-
tigurations. It is worth noting that, for rocking rigid objects, such as artefacts, the
response, at least in terms of over-turning motion, is size-dependent, thus the scal-
ing of the specimens is not possible and the experimental tests should be based on
tull-scale specimens.

Nowadays, considering the huge earthquake losses registered in recent earthquakes,
especially in the Mediterranean region, it is also imperative to propose viable and cost-
effective seismic protection measures for free-standing statues and busts. Podany, 2015
discussed a range of retrofitting measures based on the best practice followed by the
J. Paul Getty Museum in Los Angeles, in California, where a newly developed base
isolation device has been employed. Past research on the seismic protection of art
objects using isolators, includes primarily several analytical and numerical investiga-
tions (e.g. Psycharis et al., 2013b; Calio and Marletta, 2003), while to our knowledge
only few experimental studies can be found in literature. However, the effectiveness
of the use of seismic isolators for light weight components should be further investi-
gated to characterize thresholds for accelerations and horizontal displacements for an
adequate seismic protection of the artefacts.

The H2020-SERA SEREME project aimed to fill the experimental gaps highlighted
above and to include comprehensive shake-table tests of several configuration of free-
standing and base isolated statues and busts. The freestanding artefacts were installed
either directly on the marble floor, or on a pedestal. The objective of the campaign
was to give insight on the seismic behaviour of statues and busts as well as to eval-
uate the effectiveness of two different seismic risk mitigation systems. A total of 5
pairs of real scale marble artefacts were tested, 3 busts installed on marble pedestals
and 2 statues. Seven different testing arrangements (also termed “Configurations”)
were considered during this experimental campaign and more than 400 seismic tests
were performed. Two innovative base isolation devices were utilized for seismic pro-
tection. The first system is a combination of friction pendulum isolators Contento
and Di Egidio, 2014, a system designed for light components. The second system uti-
lizes shape memory alloy wires in the horizontal plane. The isolation devices tested
are patented systems, namely ISOLART® PENDULUM ISOLART® SMA, which are
manufactured by the Italian company FIP Mec. In order to obtain a direct evaluation
of the isolator effectiveness, for each test configuration, pairs of two similar artefacts
were tested together in an isolated and a non-isolated arrangement. The shake-table
tests were carried out considering uniaxial, biaxial and triaxial earthquake loadings at
increasing amplitudes. In order to evaluate the influence of the frequency content and
the directionality of the seismic excitation, 13 different waveforms were applied to the

shake table (8 uni-directional motions, 3 bi-directional motions and 2 tri-directional
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motions). Regarding the instrumentation, the artefacts motions were recorded using
accelerometers, gyroscopic velocity and displacement sensors.

7.2 Museum contents tested

The experimental campaign of SEREME project focused on the investigation of the
seismic behaviour of real-scale marble statues and busts standing on pedestals. The
case study statues and the busts were selected with different geometry and weights;
they were replicas of ancient roman emperors. Five busts of roman emperors were
tested: two of Emperor Traiano, two of Emperor Augusto and one of Emperor Tito.
Furthermore, four statues were also purchased, two standing on a low height marble
pedestal (quoted as “Figura Femminile”) and two simple female form statues (quoted
as “Fanciulla”). Since all specimens are made from solid marble, the average weight
of the busts is 250-300kg, while that of the statues was 500-600kg. The replicas of the
same statue/bust have approximately the same geometry, but they are not perfectly
identical (Figure 7.1). The seismic response of a display case was also examined.

(a) (b)

FIGURE 7.1: Components used for the shake table tests: (a) Busts and
display case, (b) female statues.

The busts were placed on a pedestal which is used to bring the specimens to
the eye-level of the visitor. Three different pedestal types were identified and then
adopted for the experimental tests: (i) solid pedestal, with dimensions 45x45x100 cm,
(ii) hollow pedestal, with dimensions 35x35x100 cm, and (iii) modern type metallic
pedestals that were provided by the Italian manufacturer Fallani. The traditional,
hollow and solid, pedestals were made of concrete which has a specific weight close
to that of marble. To reproduce realistic conditions for in-situ friction, on the upper
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and the lower face of the pedestals, 3 cm thick marble plates were installed. Solid
pedestals have large weights (nearly 500kg) and they also employ large bases, thus
these pedestals are not prone to uplift. On the other hand, hollow pedestals are slen-
der with weight 226kg and have a base with smaller width equal to 35c. Furthermore,
its center of gravity is much higher compared to the solid case. The metallic pedestal
has a large square base with side equal to 85 cm and it weighs only 85 kg. In order to
simulate the floor of museums, where typically busts and statues are hosted, the non-
isolated specimens were placed on a marble floor surface. The marble has thickness
equal to 3 cm and it is positioned on stiff wood also 3 cm thick. Both marble and wood
were directly bolted on the shake table. All specimens are placed on top of the marble
floor and pedestal without any connection material. In the case of isolated specimens,
the isolator was bolted on the table with the aid of specific holders that adjusts the
holes of the table to the holes of the device. For the SMA isolators, marble plates were
glued on the upper surface of the isolator, while the specimens are simply standing.
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FIGURE 7.2: Geometric properties of the Emperor August bust.

The static friction coefficient was measured for the marble-marble interface with
inclined tests. The inclined tests were repeated 10 times in order to determine the
mean friction angle. For the plate-plate marble interface the mean friction coefficient
1 was found equal to 0.79, while for the bust-plate interface it was found equal to
0.39. The values of the friction coefficient for plate-plate interface that were derived
experimentally comply with those provided in the literature. Conversely, the friction
marble-plate interface was found unexpectedly low. However, both mean values were

also verified during the shake table tests where sliding was observed approximately
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at peak ground acceleration (PG A) values close to the ones measured (the condition to
have frictionis PGA > ug). To increase the friction coefficient, where necessary, a thin
layer of a rubber material was glued at the bottom of the busts. The friction coefficient
at the interface of the marble floor and the bottom of the statues was found sufficiently
high and thus no measures were required.

Laser scanning was carried out by a joint research team before moving them the
artefacts from the vendor to CEA. Digitalization with laser scanning provides the geo-
metrical proper-ties of the specimens. The purpose of laser scanning is two-fold: (i) it
provides a finite element (FE) mesh of the geometry of the artefacts that can be used to
perform numerical simulations, and (ii) it allows the calculation of fundamental prop-
erties of the components, such as the center of mass (CM), the total mass, the rotational
moments of inertia and the distance of the CM from the pivot points. Furthermore,
the laser scanning verified that the specimens are made from solid marble through cal-
culating the ratio of the scanned volume over the measured weight of each specimen.
Example of laser scanning information obtained are shown in Figure 7.2 for the bust

of Emperor August.

(a) (b)

FIGURE 7.3: Tested isolation systems: (a) friction pendulum isolator, (b)
SMA isolator.
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Two different base isolator technologies were adopted (Figure 7.3): a friction pen-
dulum isolator and an innovative device with shape memory alloy (SMA) wires. The
tested seismic isolator systems were manufactured by the Italian company FIP Mec srl:
the selected isolators are marketed as ISOLART® SMA and ISOLART® PENDULUM,
respectively. ISOLART® PENDULUM, is similar to common pendulum isolators used
for structures, but it consists of different materials and it has been designed specifically
for low-mass structures such as objects of art. The main difference between the two
isolation devices is the range of mass of the objects to seismically isolate. For ordinary
friction pendulum bearings, the friction can be large because of low vertical pressure.
To overcome the problem, an increase of the vertical force, or a decrease of the friction
coefficient is required. For this purpose, the friction pendulum was used to isolate
several artefacts together which are standing on a heavy steel plate, thus increasing
the vertical force (Figure 7.3a). Therefore, three pendulum isolators were employed
to isolate a floor on which a group of artefacts (2 or 3 artefacts) was installed. The
installation of the ISOLART® PENDULUM devices is shown in Figure 7.3a.

ISOLART® SMA, i.e. the SMA-based isolator, is a novel isolator based on SMA
wires that are effective in limiting the horizontal displacements of the device. ISO-
LART® SMA is a patented isolation system which takes advantage of the super-elastic
properties of SMA wires, i.e. their capacity to have a stress-induced non-linear be-
haviour similar to elastoplastic behaviour up to high deformations (about 7%) and
unload to zero displacement. As shown in Figure 7.3b, the SMA isolator can be used
to isolate a single specimen each time, which is a significant advantage. Although
all SMA isolators adopted have the same dimensions, the properties of the SMA may
differ. Three different types of SMA isolators were tested.

FIGURE 7.4: Configuration I-1: Traiano bust on solid pedestal; on marble
and on SMA isolator
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FIGURE 7.5: Traiano bust on steel metallic pedestal; on marble and on
SMA isolator.

FIGURE 7.6: Configuration I-3: Augusto bust on hollow pedestal; on mar-
ble and on SMA isolator.

Due to the large variety of specimens, pedestals and isolators, seven different Con-
tigurations were analysed experimentally using the 6-DOFs shake table AZALEE. The
seven testing configurations were designed taking into consideration the limited test-
ing time available and also the needs of the project. The tests of each configuration
lasted approximately 2, or 3 days. Configuration 1, was sub-divided into five sub-
configurations, shown in Figure 7.4 up to Figure 7.8 and considers only the SMA iso-
lators. The caption of each figure explains the properties of the tested configuration.
In order obtain a direct comparison between the isolated and the non-isolated case,
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FIGURE 7.7: Configuration I-4: Female statue (Figura femminile) stand-
ing on the ground pedestal and non-isolated display case and isolated
display case (SMA isolator).

FIGURE 7.8: Configuration I-5: Female statue (Fanciulla) standing on the
ground pedestal and non-isolated display case and non-isolated display
case.

the sub-configurations compare pairs of two similar artefacts tested side-by-side in
an isolated and a non-isolated arrangement. Instead of testing simultaneously more
than a pair of specimens, single pairs were considered every time. This practice of-
fered speed during the tests, while it also allowed to focus on one tested pair every
time. In configurations 1.4 and 1.5 a display case was tested, first isolated and then
non-isolated.

Configurations II and III are shown in Figure 7.9 and Figure 7.10, respectively.
These two configurations test the friction pendulum as seismic isolator. In Figure 7.9,
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FIGURE 7.9: Configuration II: Non-isolated vs isolated statues (friction
pendulum system). The pairs of specimens com-pared are: (i) Traiano
bust on solid pedestal, (ii) Fanciulla and (iii) Figura femminile.

FIGURE 7.10: Configuration III: Non-isolated vs isolated statues (friction

pendulum system). The pairs of specimens com-pared are: (i) Tito bust

on metallic pedestal, (ii) Augusto bust on solid pedestal, and (iii) Traiano
bust on hol-low pedestal.

the two female statues and one bust were positioned on top of the friction pendulum
isolators. The specimens were positioned on the steel plate in way that the center of
mass of the specimens approximately coincides with the center of mass of the plate.
Configuration III (Figure 7.10) compares simultaneously the three different types of



7.3. est setup 123

pedestals. Since only five busts were available, for the metallic pedestals only the non-
isolated case was considered. Furthermore, the upper face of the metallic pedestals
was reinforced with an 8mm thick steel plate which considerable improved the per-

formance of the system compared to Configuration 1.2 (Figure 7.5).

7.3 Test setup

To evaluate the influence of frequency content of the excitation, as well as the direc-
tionality of the seismic input, five different earthquake ground motions were adopted
in this experimental study. The ground motion records and their properties are shown
in Table 7.1. The records were applied in different combinations every time, i.e. first
the X-component was applied alone, the Y component afterwards and then the X and

Y components were applied simultaneously.

TABLE 7.1: Ground motion records used for the testing campaign.

Earthquake Date My, Station Dist. Soil PGA(g)

L:0.33

Emilia, Italy 29.05.2012 | 6.0 T0800 144 | C(EC8) | T:0.25

V:0.33

L:0.109

Athens, Greece | 07.09.1999 | 5.9 | Syntagma Metro B | 10.0 | Stiff soil | T:0.086
V:0.087

L:0.45

L’Aquila, Italy 06.04.2009 | 6.3 | Aternoriver-AQA | <2 | Stiff soil | T:0.39
V:0.37

L:0.22

Kalamata, Greece | 13.09.1986 | 6.2 Nomarchia 5.0 | Stiffsoil | T:0.29
Kobe, Japan 16.01.1995 | 6.9 Takatori, Japan <15 | C(EC8) | L:0.068

Emilia — 1% storey | 29.05.2012 | 6.0 T0800 144 | C(EC8) | L:0.37

The record combinations adopted are listed in Table 7.2. For each record combi-
nation, the ground motion amplitude was gradually scaled up. In general, the target
intensity levels considered were: 0.15g, 0.20g, 0.25¢g, 0.35g, 0.40g and 0.50g. For simu-
lations where simultaneously two, or three, components were considered, a uniform
scaling factor was adopted for all record components considered, while the target ac-
celeration refers either to the X-component or the Y-component. When both X and Y
are present, it refers to the X-component. For the Takatori and the Kalamata records,
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the maximum permissible scaling factor is controlled by the maximum allowable dis-
placement of the shake table that cannot exceed 10cm. As expected, differences be-
tween target PGA and the PGA measured as input to the shake table were observed.

On average 25-40 shake table runs were performed for each of the seven tested config-

uration.

TABLE 7.2: Record combinations.

ID | Record Components Target PGA

1 Emilia X 0.15, 0.25, 0.35, 0.40, 0.50
2 Emilia Y 0.15, 0.25, 0.35, 0.40, 0.50
3 Emilia XYZ 0.15, 0.25, 0.35, 0.40, 0.50
4 Emilia XY 0.15, 0.25, 0.35, 0.40, 0.50
5 Emilia Y (first floor) 0.15, 0.25, 0.35, 0.40, 0.50
6 Emilia YZ(first floor) 0.15, 0.25, 0.35, 0.40, 0.50
7 | Syntagma X 0.15, 0.25, 0.35, 0.40, 0.50
8 | Takatori | Y applied on X 0.10,0.15

9 Takatori | YZ applied on X 0.10, 0.13, 0.20, 0.24
10 | Takatori Y 0.10, 0.18, 0.20, 0.24
11 | L' Aquila X 0.15, 0.25, 0.35, 0.40, 0.50
12 | L' Aquila XYZ 0.15, 0.25, 0.35, 0.40, 0.50
13 | Kalamata X 0.15, 0.20, 0.25, 0.30

Apart from five naturally recorded ground motions, the acceleration response his-
tory of the first floor of the museum was considered. The museum is the Archaeolog-
ical museum of Pella in Greece. This is a new reinforced concrete building. The build-
ing was modelled with OpenSees software and it was subjected to the five ground
motion records of Table 7.1. Since it is a two storey RC building with many shear
walls, it is a quite stiff structure (Ty = 0.17s, T, = 0.14s) and hence large amplifica-
tions were observed at the stories. Among the various floor acceleration histories, the

tirst storey of the Emilia 2012 (Italy) response acceleration was adopted for the tests.

7.4 Simulations

Due to the complex geometry of museum exhibits and the uncertainties of the prob-
lem, the numerical simulation of artefacts and museum exhibit systems presents sig-
nificant difficulties. Complex simulations should be repeated for each exhibit, or for

groups of exhibits with similar geometrical characteristics. Moreover, despite the great
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value of museum exhibits, in practice all decisions about their safety are taken by mu-
seum curators, who have empirical knowledge, e.g. experience of past earthquakes,
but no technical background to perform sophisticated computer simulations.

TABLE 7.3: Peak ground acceleration that initiate rocking and overturn-
ing velocity estimates.

Specimen Standing conditions Rocking (g) | Overturning (mm/s)
Arock,B,x / Arock,B,y Ocr,x / Ocry
Figura Femminile 0.244/ 0.207 0.446/0.344
with pedestal
Fanciulla 0.296/ 0.226 0.382/0.289
Emperor Traiano Bust only 0.240/0.236 0.297/0.308
Bust on solid pedestal 0.330/0.331 0.423/0.424
Bust on hollow pedestal | 0.207/0.208 0.280/0.281
Bust on steel pedestal 0.293/0.292
Emperor Tito Bust only 0.283/ 0.254 0.262/0.309
Emperor Augusto | Bust on solid pedestal 0.283/0.253 0.257/0.304
Bust on hollow pedestal | 0.220/0.216 0.294/0.290
Bust on steel pedestal 0.318/0.310

The possible methods of analysis are either simplified calculations based on first
principles, or advanced methods of analysis, e.g. analyses using FE modelling, or the
discrete element method (DEM). Simplifications are based on simplifying the geom-
etry to one or two rectangular, rigid bodies. These are basic geometric calculations
that do not require engineering knowledge, but give useful information such as the
maximum ground acceleration for which the system will slide or will engage into a
rocking motion. When laser scanning information is available, these calculations are
more accurate and, despite their simplicity, they are very important and helpful. Ta-
ble 1 shows the peak ground acceleration values that initiate rocking for each of the
specimen considered. In the case of busts standing on a pedestal, the two bodies are,
crudely, assumed to behave as a single body. Table 7.3 also shows the velocity that trig-
gers overturning motion according to the relationship proposed by Ishiyama, 1982a.
This is a conservative lower bound estimation, as opposed to the rocking initiation
acceleration which is exact.

Laser scanning was adopted for determining the geometric characteristics of the
busts and of the statues that were tested. The scanning provides FE models that allow
to perform simulations, but with increased CPU requirements. Furthermore, the ac-
curacy of the scanning is very high and results to very fine and detailed finite element

models which do not offer more accuracy but they require excessive memory and
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CPU resources. It is, therefore, necessary to also have simple models for the seismic
response prediction.

The FE method offers several advantages concerning the accuracy, but there are
also difficulties in utilizing the analytical simulation approach. The surface-to-surface
interaction between the upper surface of the pedestal and the lower surface of the bust
requires knowledge of the friction coefficient and the damping ratio, while damping of
the motion due to rocking impacts cannot be introduced in a straightforward manner.
Also, the FE method is more realistic if the bodies have some flexibility. Introducing
the flexibility and the real modulus of elasticity of the artefacts will increase the CPU
time, thus making prohibitive a large number of simulations. On the other hand, the
Discrete Element Method (DEM) assumes that the objects are rigid and consequently
can be adopted with reduced computational costs. For the interaction between the sur-
faces, appropriately calibrated springs should be introduced in the model. Psycharis
et al., 2013b have described the numerical model for the simulation of a multidrum
ancient column which is subjected to natural ground motion records. The column
consists of eight rigid bodies, the upper placed on the top of the lower. In this work
the 3DEC software has been used for the simulation of a problem that has similarities

to the problem at hand.

() (b)

FIGURE 7.11: (a) Finite Element model (pedestal-bust), (b) three-
dimensional model.

Models that consider either two-block assemblies (pedestal-bust) or freestanding,
symmetric or asymmetric, rocking blocks (a freestanding statue or a bust that rocks on
a pedestal in rest) are a possible alternative to the costly FEM and DEM simulations.
Such simple models are typically limited to one-direction simulations and hence the
procedure should be repeated for both the longitudinal and the transverse direction
due to the asymmetry of the specimens. A simplified approach is offered by using
the equation of motion proposed by Housner, 1963. A possible way to handle the
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FIGURE 7.12: Finite Element Model used for the simulation of the Fanci-
ulla statue.

equations of Housner, 1963 has been proposed by Diamantopoulos and Fragiadakis,
2019. For the two-block case and for simplicity reasons the work of Psycharis, 1990
can be adopted. Vlachos et al., 2019 presented a first attempt to extend the two-block
problem in case of asymmetric upper block when the pedestal is symmetric.

Figure 7.11 presents the Finite Element Model adopted for the simulation of the
Traiano bust when it is freestanding on the solid pedestal while Figure 7.12 presents
the corresponding Finite Element Model for the simulation of the Fanciulla statue.
The models have been introduced and analyzed as three-dimensional rigid bodies.
The center of mass, the mass and inertia properties have been calculated using a CAD
software and the exact dimensions came from the laser scanning. For the damping

and sliding parameters, an appropriate calibration has been carried out.

7.5 Observations from the experimental campaign

A vast amount of data was obtained during the experimental campaign that lasted
approximately two months. However, very interesting observations were made dur-
ing the campaign. Due to the protection measures no major damage on the specimens
occurred, while the most typical damage type observed is the failure at the corners of
the specimens. This damage is shown in Figure 7.13 for both the bust and the statues.
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This type of damage happened practically to all busts of Configuration 1.1-1.5, while
the damage of statue show in Figure 7.13b happened once. Since a large number of
tests had to be repeated, the marble bases of the busts were replaced, while for the
statue the failed wedge shown in Figure 12b was repaired by gluing it back and retest-
ing the statue isolated. No damage occurred at the pedestals. The metallic modern
pedestals when tested in Configuration 1.2, exhibited some mild bending of their up-
per face, where the bust was standing. The lateral bending due to the self-weight of the
bust affected the dynamic response. In order to mitigate this effect, in Configuration
III, an 8mm thick plate was used to reinforce the pedestal.

FIGURE 7.13: Typical damage at the base of the specimens: (a) bust, (b)
base of the statue.
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FIGURE 7.14: Response of the non-isolated bust of Configuration L.1.

Figure 7.14 summarizes the response of the non-isolated bust in Configuration 1.1
where the bust of emperor Traiano was positioned on top of the solid pedestal. The
solid pedestal, due to its massive geometry, never uplifted and hence only rocking
of the bust was observed. As expected from the PGA values of Table 7.3, no uplift
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occurred for PGA values below 0.20g. Note that the accelerations of Figure 7.14 are
the theoretical predictions; the latter differ, sometimes considerably, from the values
recorded on the shake table. Comparing record combinations 1 and 2 to combina-
tions 3 and 4, it is evident that the bidirectional ground shaking is more severe for
the bust, since overturning was observed at much lower accelerations for the Emilia
earthquake. This observation also holds for the " Aquila record (combinations 11 and
12). The Takatori and Kalamata ground motions have a low recorded PGA and have
a large frequency content. These records were scaled but they were not critical for the
busts, as opposed to the Syntagma ground motion which was severe.
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FIGURE 7.15: Response of the SMA-isolated bust of Configuration I.1.

Different observations hold also for the SMA isolated specimen. As show in Figure
7.15, the specimen was safe for most ground motion levels, practically for most ground
motions. The Emilia XYZ ground motion produced sliding and rocking that threat-
ened the bust for a PGA of 0.40g. This is attributed to the large vertical acceleration
component. This was also seen for the first-floor response when a vertical component
is present. Interestingly, rocking was observed also for the Takatori and the Kalamata
ground motions. Important findings were obtained from the experimental campaign

and are briefly summarized as follows:

¢ For high excitation intensity tests, the non-isolated artefacts are prone to show
a complex rocking and sliding behaviour. The impact induced by the rocking
motion can be a source of damage to the base of the busts, especially at the corner
points of the base of the bust.

¢ The response of the busts on the solid and the on the hollow pedestal is substan-
tially different. The uplift of the hollow pedestal was always small and difficult
to identify visually. However, it is clear that it considerably affected the seis-
mic response. Whether the bust is safer on the solid, or on the hollow pedestal
is a topic that deserves further re-search; the tests have shown that the safety

depends also on the ground motion frequency content.
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¢ Tests where the friction coefficient between the bust and the pedestal was low,
i.e. when friction coefficients vary between 0.20 and 0.30, revealed that sliding is
a beneficial response mode for the bust. If the sliding motion of the rigid object

is controlled, then some sliding is desirable.

* In most of the cases, the considered mitigation methods have been effective in
the prevention of the rocking/sliding behaviour of the artefacts. As a result,
these mitigation methods improved significantly the seismic behaviour of the
artefacts. Especially the friction-pendulum system was very efficient in practi-
cally all tests. Some attention is required in the case of high vertical component.
Although the vertical earthquakes considered were very strong, some attention
is required in this respect.

* The metallic pedestals, due to their geometry, did not uplift and hence they
were equally efficient as the solid ones, provided that they can fully support
the weight of the artwork.

* The response of the statues was well predicted and with no surprises. When
the input acceleration was below the rocking initiation threshold, the statues

performed some high frequency oscillation.

¢ The base of some of the statues was not fully flat, due to structural imperfections.
This lack of planarity affected the response and threatened the safety of the stat-

ues. This is-sue has been also reported in previous research in the literature.

¢ The simplified calculations, summarized in Table 7.1, are very important and
useful. Such information should be always advised when taking seismic protec-

tion measures for artefacts.

7.6 Preliminary numerical results

Preliminary results that concern the investigation of the bust-pedestal system, mod-
elled as a two-block problem are presented below. The busts considered are freestand-
ing on a solid pedestal (Figure 7.11). The pedestal has dimensions 2b = 0.45m and
2h = 1.0m, while the statue is made of marble and is symmetric with 2b = 0.22m and
h = 0.40m, where h is the height of the center of mass, determined with the aid of laser
scanning. The mass of the pedestal and of the statue are 511kg and 107kg, respectively.

In the results shown in Figure 7.16 and 7.17 the distances of the center of mass
from each pivot point of the upper block, have been assumed equal, i.e. symmetric
two-block assemblies have been considered. The system is subjected to the Emilia,



7.6. Preliminary numerical results 131

500k ---Anachal
—Experimental

0.00

0.20 | —Upperbody 0.20 |  Upperbody
- -Analﬁical ---Analytical
o.10b —Experimental 040k ! —Experimental
3 nif % :
= 0.00 i s = 0.00 . e 1
0101 i -0.10f
-0.20 : : : : * -0.20 : : : ! :
0 2 4 6 8 10 12 0 2 4 [ 8 10 12
<1072 Lower body <1073 Lower body

---Analytical
—Experimental |

/6.
/0,

-2.00F

0.50 T T T T T 0.40

= 0.00

-0.50 : * : : *
0 2 4 6 8 10 12
time (s)

(a) (b)

time (s)

FIGURE 7.16: Comparison of rocking rotation between experimental re-
sults: response history to record Emilia in direction (a) X (PGA=0.44g)
and (b) Y (PGA=0.37g).

2012 record in X or Y direction and for different values of peak ground acceleration
(PGA). The four records adopted have PGA in the range of 0.37 — 0.44g. In both
tigures it is observed that the experimental results can not be assessed exactly but in
the response of the “critical” upper block is adequately determined. This is because of
the simplified equations adopted and due to the fact that the asymmetry of the upper
block has not been considered in the simulations. Possible other sources of uncertainty
are the damping of the system, the possible sliding and the three-dimensional motion
that is not considered explicitly. In either case, the rotations of the pedestal are small
compared to those of the statue since the pedestal requires large accelerations in order
to be set in motion.

Representative results are presented also for the case of Fanciulla statue that is free-
standing directly on the shake table. A fair agreement between the experimental be-
havior and the simulation output shown in Figures 7.18 and 7.19. Figure 7.18 presents
the response time-histories of two representative runs (named here 312 and 313) of
configuration L.5, while in Figure 7.19 runs 316 and 322 of configuration 1.5 have been
considered. In Figure 7.18a the record Emilia in X direction has been considered using
a scaling value of 1.06 (i.e. the PGA is 6% larger than the PG A of the recorded signal)
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FIGURE 7.18: Experimental vs numerical results: (a) run #312, (b) run
#313.

while in Figure 7.18b the the same record scaled with 1.21. The above values corre-
spond to target PGA 0.35g and 0.40g, respectively. In Figure 7.19a the record Emilia
in Y direction has been considered using a scaling value of 1.40 (target PGA = 0.35g)
while in Figure 7.19b the XYZ components of the same record scaled with 0.76 in order
the target PGA in X direction to be equal to 0.25g. The comparison in the latter plot
refers to the Y direction response. It can be shown that the simulation results are not
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perfect but could be considered very close to the experimental ones, even if the num-
ber of uncertainties is large. Further investigations considering the input parameters

of the Finite Element Model and parametric analyses are necessary.
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Chapter 8

Conclusions and discussion

8.1 Summary

The seismic response assessment of different rocking structures using simplified mod-
els is presented. The modeling focuses on either rocking blocks or rocking frames
which are rigid or flexible and freestanding or restrained. Furthermore, the fragility
and risk assessment of rocking building contents that are assumed rigid is investigated
and the structure’s effect is introduced in the calculations. An experimental campaign
on either statues or busts standing on a pedestal took place during the current Thesis
and some preliminary results are presented. The conclusions are summarized below
according to the previous chapters:

Initially, the use of simple single-degree-of-freedom oscillators for the seismic re-
sponse assessment of rocking systems is discussed. The rocking block problem is
solved using beam element models that are connected at their base with a nonlinear ro-
tational spring. This modeling, although approximate in principle, it has been proven
able to quickly and robustly solve the rocking problem for either solitary blocks, or
other rocking systems. Despite the gap between the response of a real-world rocking
structure and the theoretical solution, the proposed models can be seen as a step to-
wards more accurate response estimates for rocking problems, since they permit vari-
ous refinements thanks to the versatility of the FE method. In fact, four simple models
have been proposed; the three models use a lumped mass approach and the fourth
is a multimass model. All models are based on Housner’s theory considering pure
rocking motion of systems that are able to partially uplift and rock. The final choice
among the proposed models, depends on the problem at hand, and on the features
of the software code that will be adopted. More specifically, the choice between the
Spring Models (SMs) and the multi-mass Spring Model (mmSM) case depends on the
problem. If the mass can be considered as lumped (e.g. rigid block, restrained rigid
blocks), the SM models are easier to implement and thus preferred over the mmSM
option. The flexible block assumption depends purely on the properties of the struc-
ture. mmSM is preferred for modelling distributed mass deformable rocking bodies
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because higher mode effects can be better represented. The choice between the three
single-mass (SM) models depends on the software adopted, since the SM1 and SM2
are practically identical, while the SM3 is suitable only for rigid blocks.

Moreover, we examined three moment-rotation M — 6 relationships for the non-
linear springs which simulate the restoring moment of the rocking system. The per-
formance of each M — 6 relationship combined with each of the proposed models
was assessed under both static and dynamic analysis. The coefficient of restitution,
a critical parameter for rocking problems, has been directly considered implementing
an “event-based” scheme pausing and resuming the analysis after every impact. The
modeling proposed can be implemented in engineering software that follow the direct
stiffness method and engineers are comfortable with. The implementation is possible
either with an OpenSees script, or with home-made structural analysis software. Fi-
nally, two rocking systems were studied: a restrained rocking block and a coupled
bending-rocking system where the block is either rigid or flexible. In all cases perfect
agreement with results from the literature was achieved.

Extending the previous investigation, a novel modeling approach for the seismic
response assessment of rocking frames is proposed. The presented methodology can
be again implemented in a finite element framework and thus common civil engineer-
ing software can be adopted. The idea is based on the use of rotational springs with
negative stiffness at the rocking interfaces, top and bottom of each column that consist
a rocking frame. The efficiency of this approach was first shown by the authors for the
solitary rocking block (Diamantopoulos and Fragiadakis, 2019) and is here extended
to flexible rocking columns and then to rocking frames. The problem formulation is
tirst discussed having as reference the freestanding rocking block which is revisited
in order to obtain more accurate initial conditions. This is important for the seismic
response assessment of flexible columns under large axial force, as is often the case
of rocking bridge members. Furthermore, the modelling of rocking frames, first rigid
and then flexible, using negative-stiffens rotational springs placed at the rocking in-
terfaces is discussed in detail. The parameters of the springs are chosen depending
on the analysis type, i.e. including or not the P — A effects, and the location of the
spring. However, it is also critical to correctly chose the rotational moment inertia
terms that enter into the mass matrix. A simplified alternative, suitable for the case
of rigid frames can be obtained if the SDOF oscillator is adjusted to the generalized
equation of the rocking problem. Restrained rocking systems are also addressed, since
the use of restrainers is a commonly adopted for modern rocking bridges. The mod-
elling presented can be extended to other rocking systems in a straightforward man-
ner offering accurate solutions, reducing the computational cost and avoiding special

treatment of the interaction among the structural members. All in all, the approach
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proposed is a useful and practical tool that can be extensively adopted for modeling
any rocking system in engineering practice.

The thesis proposed also a Performance Based Earthquake Engineering (PBEE) risk
and reliability assessment framework for freestanding monolithic ancient columns
and colonnades. The efficient numerical modeling approach, previously discussed,
is adopted. The numerical examples have shown the capacity of the proposed mod-
eling to simulate a variety of problems and to provide accurate fragility assessment
criteria within a fully performance-based framework. The findings of the work are
summarized as follows: (i) A performance-based fragility and risk assessment frame-
work has been proposed. The Engineering Demand Parameter (EDP) is always the
normalized rotation 0/«, while there are various options for the Intensity Measure
(IM). The average spectral acceleration S; " is a useful and suitable IM which can be
adopted for the fragility assessment of those systems. The fragility assessment can
be performed with either a cloud or a multiple stripe analysis approach, but some
caution is required for the simulations that produce overturning or do not uplift the
structure. (i7) Fragility and risk assessment can be used in order to compare the ca-
pacity of different structural configuration and also to study the sensitivity of those
ancient structures to different problem parameters.

On the other hand, the fragility assessment of freestanding building contents is dis-
cussed in the current work. The building contents were modelled as rigid blocks and
it was assumed that they are hosted in a four-storey RC building. It has been shown
that the problem addressed is complicated since the response of the structure and the
contents are coupled. The findings of the study have been been obtained using a single
two-dimensional, four-storey building and hence cannot be always generalized. For
this reason, further research is required in order to fully understand the effect of the
structure on the fragility of freestanding contents. Nevertheless, the work presented
should be considered as an attempt to offer some first guidelines on how the rocking
problem can be handled for freestanding objects that are hosted in a building. Some
of the major conclusions of the current section are briefly summarized as follows: (i)
AnIDA-based (Incremental Dynamic Analysis) fragility-assessment methodology, tai-
lored to freestanding building contents, is presented. It shown that freestanding build-
ing contents, when hosted in a structure, may be more or less vulnerable than they are
in the ground. This depends on the geometry of the contents and the dynamic charac-
teristics of the structure. Moreover, the fragility of the blocks should not be calculated
independently of the collapse, or damage, of the building. (ii) A simplified approach
that can be used for the fragility assessment of a block when both the fragilities of the
structure and of the block are known is investigated. Furthermore, it is shown that it

is important to use the IM of the structure for the risk assessment of the block since it
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ensures consistency between the block and the structure and it also allows to directly
calculate the overturning MAF of the contents. Among the IMs examined, it has been
found that the PFV, in general, is preferable. (iii) Depending on the post-processing
of the results, cloud or multiple-stripe data are obtained. The proper post-processing
in order to consistently handle rocking, non-rocking and overturned blocks should be
considered; otherwise the fragilities will be underestimated. (iv) A stocky and a slen-
der block have been considered, showing that the geometry of the block is critical. It
is found that the more stocky blocks are more safe on the ground floor while the slen-
der blocks are safer when hosted in the building. Of course this observations refers
to the four-storey structure considered, but it clearly shows the importance of both
building and block properties and also the fact that fragility of freestanding contents
is very different from that anchored contents that are expected to behave as elastically
deforming structures.

In a next step, an extensive experimental campaign on the seismic response of arte-
facts, is presented. The campaign is based on a work which emphasizes on statues and
busts and has been addressed in collaboration with people that consist a team. The
tests took place in the framework of SEREME project (Seismic Resilience of Museum
Contents) at the AZALEE seismic simulator of CEA in Saclay, Paris under the auspices
of the SERA project. The campaign aims to help us understand the seismic behaviour
of the selected statues and busts and then to develop novel and cost-effective risk
mitigation schemes for improving the seismic resilience of valuable objects hosted in
European museums. Two real-scale marble (replicas are usually made from gypsum)
roman statues and three busts of three roman emperors standing on three pedestals of
different types and size are investigated concerning their response under seismic load-
ing. The artefacts are considered either isolated or non-isolated. In the latter case, two
new and highly efficient base isolation systems, tailored to art objects, are tested. The
efficiency and the effectiveness of the isolators are of the main interest for the authors.
The first isolator is a pendulum-based system, while the second utilizes Shape Mem-
ory Alloy wires. Different configurations were considered for examining all cases.
The importance of the hosting building is also examined, i.e. building type, stiffness
and story that hosts the artefacts. Specifically tailored, numerical models of varying
complexity and Finite Element models for single and two-block rocking systems were
developed for the needs of this study and are also assessed against the experimental
results.

8.2 Future work

Some aspects that deserve further research are summarized below:
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¢ Investigation of the interaction between sliding and rocking and how could it be
modeled, thus extending the proposed approach. The extension can be based
on simplified approaches and probably on an additional translational spring
that considers sliding. According to the experimental investigation, the coupled
rocking-sliding motion is common in museum artifacts or generally in building

contents.

* More thorough investigation of the interaction between rocking and other non-
linear phenomena, e.g. upthrow, deformability, inelasticity and damping follow-
ing an impact. During a seismic excitation all the above should be considered

although the rocking motion is predominant.

¢ Extension of the models to three-dimensional cases. Two-dimensional models
are accurate and useful for the fragility assessment or approximate solutions of
rigid or flexible structures. However, the tree-dimensional effects are neglected

and thus an extension could be a useful tool in many applications.

* A more thorough investigation of the two-block problem using simplified ap-
proaches. Two-block assemblies are, also, common for museum artifacts and
especially the case of asymmetric upper block. Therefore, simplified approaches
either using Finite Element software or home-made codes is an important step

for the risk mitigation of artefacts.

* Extension of the fragility and risk investigation using a three-dimensional build-
ing model to include the bidirectional effect of the earthquake, the torsional cou-
pling and the direction of the earthquake. A more detailed building model and
a detailed model for the contents is also of interest.

* Extension of the Finite Element models for modeling base-isolated statues and
busts using the experimental data of SEREME project. The simulation of the iso-
lation system is a challenging task. Furthermore, the seismic isolation of rocking

systems is a topic that has not received the appropriate attention in the literature.
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