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3 Know the Self as lord of the chariot,
The body as the chariot itself,
The discriminating intellect as

The charioteer, and the mind as reins.

4 The senses, say the wise, are the horses;
Selfish desires are the roads they travel.
When the Self'is confused with the body,

Mind, and senses, they point out, he seems

To enjoy pleasure and suffer sorrow.

The Katha Upanishad, Part [3], Verses 3-4

38 Just as a fire is covered by smoke and a mirror is
obscured by dust, just as the embryo rests deep within
the womb, knowledge is hidden by selfish desire
— 3% hidden, Arjuna, by this unquenchable fire for

self-satisfaction, the inveterate enemy of the wise.

The Bhagavad Gita, Chapter 3: Selfless Service, Verses 38-39

[3]
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Abstract

This PhD dissertation enhances the human-centered design of existing dynamic eco-driving
systems, and models driver adaptation to energy-efficient speed advice upstream of signalized
intersections with the use of decision trees and empirical evidence generated via the pilot operation
of an advisory dynamic eco-driving system along an urban arterial corridor, quantifies the relevant
impacts on emissions, and compares them with the case of automated execution of dynamic eco-
driving advice. Moreover, it proposes a simulation framework that is comprised of a microscopic
traffic simulator, an external test-bed for emulating dynamic eco-driving, multiple tools for the
analysis of simulation output, and a comprehensive set of simulation scenarios for evaluating the

performance of different variants of dynamic eco-driving technology.

Results indicate that despite rendering advised deceleration strategies more conservative for
enhancing user acceptance and safety, traffic and energy efficiency of dynamic eco-driving are not
undermined. Moreover, advisory dynamic eco-driving can yield significant emissions reduction
compared to unequipped manually driven vehicles for increased market penetration rate of the
relevant technology. However, for multi-vehicle and multi-lane traffic simulation experiments
environmental, traffic and safety benefits are maximized when dynamic eco-driving is automated
and market penetration rate is maximum. Finally, the implications of this PhD dissertation’s results
with respect to system design, operational, technological and policy aspects of dynamic eco-

driving are discussed.

Keywords: dynamic eco-driving, speed advice, traffic simulation, AIMSUN, emissions,

connected vehicle, signalized intersection
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Iepiinyn

H mapovoa didaktopikn datpipn avanticcel pedddovg mov BeATidvovy Tov avOpmToKeVTPIKod
oXEO10GLO TOV GLGTNUATOV TEPPAAAOVTIKA PIAKNG 001 YNONG, TPOTVTOTOLOVV TNV TPOCUPLOYY|
TOV 00NYDV OCE EVEPYELOK(O OMOOOTIKEG OTPOUTNYIKEG OONYNONG OVAVTN ONUATOSOTNUEV®V
SLOCTAVPDOCEMVY LE TN YPNOT OEVOP®V AITOPAGEDV KOl EUTEIPIKDOV dEGOUEVOV TOV GLAAEXOM KOV
KOTO TNV TAOTIKT EQAPLOYT EVOS GUGTNHOTOC TEPPUAAOVTIKA PIAIKNG 001 YNONG KOTA UKOG LG
OOTIKNG OOIKNG 0pTNPIaG, TOGOTIKOTOOVV TIC GUVOPELS TEPIPAALOVTIKEG KOl KUKAOPOPLUKEG
eMMTOOES, KaBMOG Ko kaBoToOV €PIKT TN OVYKPION EMOOCEMV HE OVTOUOTOTOUEVQ
ovoTNaTe TEPPAALOVTIKE PIAKTG 001 YNOMG, OTOL TO dyNua lval TOVTOYPOVMG EEOTMGUEVO LUE
GULGTHILOTO CVTOLOTOTOMUEVTG 0O YOG TTOV EMTPETOVV TNV AKPIN TPOGUPLOYT GE EVEPYELOKA
amodoTikd mpoPik ToyvtHTeV. EmmAéov, n afloAdynon EMMTIOGE®V TOV GLGTUATOV
TEPPAALOVTIKG PLAMKTNG 001 YNoNGS YIVETOL HEGM TNG AVATTTLENG AOYIGLUKOD TTOV TPOGOLOUDVEL TN
Aertovpyio TOVg oTOL TAOIGLO LOVTEAOVL UIKPOGKOTMIKNG TPOGOUOIoNG NG KLuKAOQOpiag yia
dlpopeTikég ovvOnkeg {NTNoMg UETOKIVACE®V OAAG Kot O1ElcdvoNG TG GLYKEKPIUEVNG

TEYVOAOYI0G GTO GLVOALKO GTOAO TV OYNUATOV.

Ta amotedéopoto TOV AVOADGE®V NG WUIKPOOKOTIKNG TPOGOUOIoNG TG KLKAOPOping
KATEOEIEAV OTL Ol TPOCUPUOYES OTN SOUN TV VEIGTAREVOV HOVTEA®V TEPIPAALOVTIKG PIAIKNG
001 YNONG OV ATOCKOTOVV GTNV PEATIOON NG AmOd0YNG TOVG Amd TOVG XPNOTES AAAL KOl GTNV
BeAltimon g 001N acpaielag dgv emnpedlovy apvnTiKd TNV amdd0GN TOVS OVOPOPIKA LE TN
Helwon NG €VEPYEIONKNG KOTOVAAMONG KOl TOV EKTOUT®V oaéplowv pvmwv. Emiong, 1o
nepPoAlovIiKd  omotOmOpe  dtacvvoedepévav  oynudtov  mov  eivor  eEomMouévo  pe
GLUPBOVAEVLTIKOV TOHTOV GLGTHHOTA TEPPUAAOVTIKE GIAIKNG 031 YN oNG £ival SNUOVTIKG LKpOTEPO
oe oyéon pe ovuPatikd oYNUATO OTAV TO TOCOCTO O1EIGOLONG GTO GTOAO T®V TOPOTAV®
ocvotnuatev givor vynAo. Eivar opwg aloonueimto, 01t 6 0d1kéG aptnpieg TOALATADY AmpidwV
N peyotonoinon TV TePPOALOVIIKGOV Kol KUKAOPOPLOKADV TAEOVEKTNUATOV TMV GUGTNUATOV
TePPAALOVTIKG PLMKNG 0d1ynong cvppaivel dtav avtd glval OVTOLOTOTOMUEVOD TUTOL KOl 1)
dteiodvon tovg 610 6TOAO lvar péylom. TeMK®G, avOADOVTOL Ol ETIMTMOGELS TOV EVPNUATOV TNG
OLYKEKPIUEVNG SOOKTOPIKNG OOTPIPNG avapopiKd e TOV avOpOTOKEVIPIKO GYEOACUO TMV
CLOTNUATOV TEPIPOAALOVTIKNG 00NYNONG GUUPOLAEVTIKOD TUTOV Kot TN OpON EQPAPLOYT TOVG GE

TPUYUOTIKEG KOKAOPOPLUKEG GLVOTKEG.
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Extevig Ilepiinyn

H ovveymg av&avopevn {nnon yio 0d1kég PETOKIVAGELS OUVOTOL VO ETOEWVAOCEL GE CNUAVTIKO
Babud TIg emmtdoel ™G 001K KukAogopiag oto mepPdAiov. Amd v dAAN mAevpd, ot
TPOSPATES TEYVOLOYIKEG EEEMEELC OTOV TOUEN TOV TNAETIKOIVOVIOV £XOVV KATOGTIOEL EPIKTY TNV
avamTuEn Kol EQOPUOYN GLOTNUATOV dleLVOedepnévng oonynong (Zvvepyatikd Eveun
Yvotiuota Metagop®mv) Tov divouv Tn duvatdHTTa PEATIOONS TOV KUKAOQOPLOKMOV CLVONKOV,
™G 00KNG OCPAAELNG, KOOMDS Kol TNV PLOGIOTNTOS TOV GUGTHUATOG OOKMV HETAPOP®V. o
TOPAdELYHa, 1 OloVVOEST VLTOJOUNG-OYNUATOC HEo®  €EeldKevUEVOD  €EOTAIGHOD Kot
KATOAANA®V TNAETIKOWVOVIOKOV TPOTOKOA®V emtpénel o€ dracvvoedepéva oynuata (AO) va
TANPOPOPNOOVV HEAAOVTIKES LETAPBOAES TOV VOLOTAUEVOV TPOYPOUUAT®V CTIUATOSOTNONG KOl VO
oe01460VV KOl VAOTOMGOLV TEPIPAALOVTIKG PIMKEG TPOYLES Kivnong TEPLE ONUOTOSOTNUEVEOV
dwctavpdcewv. Emmiéov, o oxedoopds Tov tpomov kivnons tov AO yio v enitevén otoymv
oxetillopevav pe v PeAtioon g eVEPYELNKNG KOTAVAAMOTG KOl TOV TEPLOPIGUOV TOV AEPLOV
pOTTOV TOVG (TEPPaALOVTIKE @Ak odnynom) dHvator vo AAPel VTOYN TIC EVEPYELEG KOl TIG
npobéoelg mapokeipevav AO HEc® KATAAANA®Y TNAETIKOW®VIOK®V TPOTOKOA®Y S1000VOEoNC
OYNUOTOG-OYNLOTOG GE £Vl 001KO TEPPAALOV EEOTAMGUEVO e GVYYPOVES TEXVOAOYIES O10GVVIESTG

KO TNAETIKOWVOVIOV.

Kot v nepaopévn dekaetio, mAn00G pobnpatikdv HovIEA®V Kol GUGTNUATOV TEPPOAAOVTIKA
QUMKNG 00N yNong mEPLE ONUATOIOTNUEVOV SLOGTAVPMOCEDV TPOoTdOnKay kot depevviOnkav. H
TOPOVCO, OOUKTOPIKY TP oKlaypaeel TNV €peLVNTIKY] OPACTNPOTNTO YOP® OO TIC
TAPOTAV® TEYVOLOYIES, AVAOEIKVVEL TO. TAEOVEKTNLOTA KOl TOVS TEPLOPICUOVS TOVG, OAAG Kot
KOTAOEIKVVEL TTUYES TOVG TTOL dgV £xovv dtepevvnbel pe cuotnpatikd tpomo akdpa. Ewdwodtepa,
wpaypotoromOnke evoerleyne Piproypapikn avackdnnon Pdoel g omoiag mpoékvye OTL Ta
VOICTAUEVO GLGTNUATO TEPIPAAAOVTIKNAG 001YNONG OAPEPOVY GE GNUOVTIKO PBabud wg mpog Tig
dopég eréyyov mov mopovctdlovv, TOovg O€ikTeC PEATIGTONOINGCNG 7OV YPNGIULOTOOVV, T
EVEPYELOKA KO CLYKOWMOVIOKO HOVTEAQ TTOV AGUPAvouv vIoyr, KoOMG Kol To YOPKO €0POg
epapuoyng tovg. Emiong, mpocdiopiomnke éva chHvVoro emBupunt®dV YOpOKINPICTIKOV Yo, TO
ocvoTnHoTe TEPPAALOVTIKA QIAIKNG 00N ynomng ta omoio avapévetar ott o emovénoovy v

OTOTEAEGUOTIKOTNTA TOVG KOl TOPOVGLALOVTOL OVOAVTIKMG TOPUKATM:
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o1 aAYOp1OpHOL TV GLGTNUATOV TEPIPAAAOVTIKG PLAMKNG 001 ynong Ba mpémet va Aappdvouvv
VILOYN TANPOPOPIL. CYETIKA LE TN LEALOVTIKT KATAGTOOT TOV POTEVAOV GNUATOO0TAOV (TOGO
TAPN 0G0 Kol LEPIKT), TO SUVOUIKE YapakTNPloTikd Tov AO, TN dtadikacio dOnpovpyiag Kot
amoOcPecNC OVPMOV OVAVTIN QOTEWV®V ONUATOd0TAV, KAOMG Kol TNV KOTACTAGY TOL
TPOTOPEVOUEVOV OYNUOTOG HECH TNAETIKOIVOVIDV SLOGVVOESTG OYNLATOG-OXNLOTOC,

ol oAyopilBpol TV ocvomnuatev TEPPoArovIKG GLAMKNG odnynong Bo mpémer va
BEATIOTONOO0V TOVTOYPOVOS TNV KATOVAAMGON EVEPYELNG, UIKPOGKOTIKA KUKAOPOPLOKA
peyenm, kabmg Kot OeikTeg 00IKNG OGPAAELNG Y10 TOV VTOAOYICHO EVEPYEINKA OTOOOTIKAOV
OTPOTNYIK®V 001 yNong,

01 GVVaPTNCELS PEATIOTOTOINONG TOV AAYOPIOU®V TPOTEIVETOL VO EVOGOUATMOVOLV UT] YPOLLUIKA
povtéda 100G TV AO 1 MKPOGKOTIKA LOVTEAN KATAVAAMGNG EVEPYELNS TTOV YPTGLLOTOLOVV
OG €160 YOLEVO OEOOUEVA TILEG TOYVLTHTMV KOl ETITOYVVCEDV,

N eniAvon TV TpoavaPepOEVTOV TPoypouLdTOV podnuatikng BeAtiotonoinong Oa mpénet va
elvar amodoTikn kot ypnyopn o€ Pabud mov va emtpénel T Asrtovpyio TV GLGTNUATOV
TEPPAALOVTIKG PIAMKNG 001 YNONG OE EMXEPNOLOKEG GLVONKEG,

0 VTOAOYIGUOG TV EVEPYELNKA ATOJOTIKAOV TpoyL®V kivnong twv AO cuvictatot va Aappdvet
VIOYN  YPOUUIKE HOVTEAQ EMPPAOLVONG OVAVIN TOV QOTEWVOV CNUOTOO0TAOV, KOl U
YPOLLUKO LOVTEAN ETLTAYLVONG KATAVIN TOV POTEVAV CTLATOO0TAV,

N emidpaon g evoArlayng oxécemv tov AO otV VAOTOINGT EVEPYEWNKE OTOSOTIKMV
GTPATNYIK®OV KIVI|ONG TPOTEIVETAL VO GUVEKTILATOL,

1o GLOTNUATO TEPIPAALOVTIKAE PIAMKNC 031 yNonS Oa mpémel va cuvepyalovTot e SLOPOPETIKE
TPOYPAUUOTO  oNHotoddTons  (my. otafepod  ypoOvov, emevepyoOUEVA,  SUVOLKE
TPOGUPUOLOUEVO, OTIS EMIKPATOVCEG KLKAOPOPLOKEG GUVONKEG, GUVIOVIGUEVA), OAAG Kot
AapBavouy vdéyn ™ HEALOVTIKY] LETAPOAN TG KATAGTAOTG TANO0VG POTEWV®V GNUOTOO0TOV
nov Ppickovtor katdvin Tov AO, AGTE VO EMTLYYAVOVTOL VYNAOTEPA OPEAT] GE KATOVAAMON

EVEPYELONG KOl EKTOUTES OEPLOV PUTTMV G EMIMESO 0OIKNG apTNPiag N Kot SkTHOV.

[Tépav tov TPocdoPIoHOD EVOG GLVOAOD EMOVUNTAOV YOPAKTNPIGTIKOV TOV EMITPETOLV L0l TTLO

OMOTIKY] HOONUOTIKY] £EKQPACT) TOL TPOPANUOTOC TNG TEPPAALOVTIKA GIAMKNG 001 YN OMG avavIn

QOTEWVAOV CNUOTOS0TMV, 1 KPITIKN EMOKOTNON NS LOIOTANEVNG PiPAoypapiog katédele Kot

OPIOUEVOVG TOUEIG OTNV £PELVA TOV GLYKEKPIUEVOV GUGTNUATOV oL dgv £xovv dlepguvnOet

Ote€odkd Kot eKOETOVTOL TOPAKATW:
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o  avOpOTOKEVTPIKOG GYESUGUOC GLGTNUATOV TEPPAALOVTIKAE PIMKNG 00N yNoNG,

®  TPOTLTOTOINCT) GLGTNUATOV TEPPAAALOVTIKA PIAKNG 00N YNONS GLUPOVAEVTIKOVD TOHTTOV, OTTOV
0 00Mnyo6c Tov AO &givar emPOPTICUEVOS LLE TNV EKTEAEGN TNG TPOTEWVOUEVIG EVEPYELOKA
OTOOOTIKNG OTPATNYIKNG 00N YNONG,

e a&10A0YN oY TEXVOAOYLOV TEPPUAAOVTIKA QIATKNG 001 YNOTG PACEL TAOTIKOV EQPOPULOYDV TOL
Exovv mpaypatomombel 6€ TPAYUATIKA 0O1KA SIKTLO KOl VIO PEUMOTIKES KUKAOPOPLOKEG

ouvOnkeg.

ZVYKEKPIUEVA, TOL VPLGTALEVO GVOTNUATO TEPIBAALOVTIKE QIAIKNG 001 yNONG OIVOVV TEPLOPIGUEVT|
ELLPOOT] OTNV VLTOAOYIGUO EVEPYEWONKA OTOJOTIKOV GTPATNYIKOV 00NYNONG OV GULVEKTILOOV
TAPAYOVTEG OTMOC 1) AVEST] TOV EMPATAOV, 1] ATOS0YN T®V GLGTNUAT®V OO TOLS 0ONYOVS, KOl 1
001KN ac@aiet. Andadn, diveton TpotepaldTNTA GTNV EM{TEVLEN EVEPYELOKDV KO TEPIPAALOVTIIKADV
oTOYMV, EVD ETIOTNG Ol TEPLOCOTEPEG EPELVNTIKEG epyacieg voBétovy 6Tl T AO Srabétovy Kot
GUCTNUOTO  OVTOUOTOTOMUEVIG OONYNONG TOL EMITPENMOVYV TNV  EMOKPP EQOPUOY TOV

EVEPYELOKA OTOOOTIKMV GTPUTNYIKAOV Kivnong.

AopBdavovtoc vroyn 6t n petdfoon mpog Eva TANPOS S10GVVIEIEUEVO KOl QUTOUOTOTOMUEVO
0016 TepIPaiiov Ba droprécet dekaetieg, aALA Kat OTL 1| EVOOUATOOT eE0TAMGHOD d1060VIEST|G
o€ gUmopkd O1BEGILOL OYNLOTO. VTOAEITETAL TOV GUOTNUATOV OVTOUATOTOMUEVIS 00N YNONG,
KafioToTon GaEég OTL 0 AVOPOTOKEVIPIKOS GYEOOGHOS GLUCTNUATOV TEPIPOALOVTIIKE QIAKNG
odnynong stvar amapaimrog yo v enitevén nepPorioviikmdv otoywv. Emmiéov n diepedvnon
NG TPOCOAPUOYNG TOV 0dNY®OV G€ 00MYyieg cLOTNUATOV TEPIPAAAOVTIKA OUMKNG 0N yNoNG
ovpPovievtikol yopaxtinpa Bo ODOGEL TN SVVATOTNTA OELOAIYNONS TOV EMATAOCEDY TEPICCOTEPOV
OYETIKOV TEYVOLOYIDV KOl Y10, O10POPETIKA eminmeda dEIGOVONG TOVG GTO GLVOMKO GTOAO TV
oymuatov. IHopdia avtd, sivor agoonueiowto 6t N avanTvén Kol dlEPEHVION TOV TOPATAVED
texvoroylov Ba mpénet vo PacileTon og emopkn dEOOUEVO OO OVTIGTOLXES TAOTIKEG EQAPLOYES
evpelag KMpokog mov AapBdvovv voyn TN HETAPANTOTNTO TNG OOKNG GUUTEPIPOPAS TMV
00N YDV, TOV KUKAOQPOPLOK®OY GLVONKADV, 0ALY KOl TOV YOPAKTNPIOTIKGOV TV oyxnpdtov. [Ipog to
POV, 1| CUVIPUTTIKY TAELOYNOIO TOV VPIGTAUEVOV EPELINTIK®OV £pywV aflodoyel Tig dvawbev
TEXVOAOYiEG e TN xpNon HeBOSwV aplBuNTIKAG aVAALOTG KOl UKPOGKOTIKNG TPOCGOUOIMGNS TG

KuKAOQOpiag.
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Agdopévav Tmv eupnuiatov e PBPAoypaeikng avackdnnong, avartiydnkav pebodoroyieg mov
EVOOUOTOVOVY avOpomoyevels mapdyovieg oYeTICOUEVOVS UE TNV 001K GULUTEPLPOPH GTO
oxedlacpd, Asttovpyio Kot 0E0AOYNON GCLGTNUATOV TEPIPAALOVTIKG QIAKNG 00N ynong ovavn
QOTEWVAOV onuatodot®v. Edwkdtepa, mpotdOnkoay yYEVIKELUEVES TPOTOTOMGELS OTN OOUN TV
aAyop1OL®VY TEPPAALOVTIKA PIATKNG 00NYNOTG, OGTE VO BEATIOEL 1] dveon TV 00NYDV KATA TNV
EKTELEDT] EVEPYELOKE OTOOOTIKDOV GTPATNYIKMV 001 YNONG AL KOt 1) AGPAAELD TOV GUGTILATOG
KOTO TNV EQAPUOYN OTPOUTYIKAV eTPPpaovvens. Ot TPOTEWVOUEVEG TPOTOTOWCELS TAPOLGLALOVTOL

TOPOKATO:

®  OTOPLYN VTOAOYIGUOV GTPATNYIK®OV EMPPAOLVONG OV GULUREPIAOUPAVOLY TOAD YOUNAES
Toy0TNTEG Kivong Kot ot omoieg Oa  Tuyydvouv YOUNANG  OmOd0YNG OO TOVLG
001YOUG/LETOKIVOVULEVOLG Kol OaL ETITVYYXAVOLV YOUNAT EVEPYELOKT ATOJOTIKOTN T,

®  VTOAOYIOUOG GTPATNYIKAOV EMPPAOLVONG TOV OAOKANPOVOVTIOL TPOOVGTEPA TNG UETAPOANS
™G €VOEIENg TOL PMTELVOD GNUATOOOTY A0 KOKKIVO GE TPAGIVO KOl O€ GUVETAYOVTIOL TNV

apEn tov AO 611 S100TOVPOGT TOVTOYPOVA LE TNV TOPATAVE LETOPOAT.

H dgvtepn mpotevouevn tpomomoinon eEacpalrilel 41t ot odnyoi de Ba eivar voypewpEvol va
001yovv to AO cg VYNAN ToYLTNTA TOAD KOVTE GTOV PMTEVO GNUATOJOTN EVA AVTOG TOPUUEVEL
o KOKKvN évoelln, evd emiong Bo mapéyel meplddplo acPAAOVS TPOTOTOINGNG TG TPOYLAS
kivnong tov AO og mepintwon mapoPiocns Tov EOTEWVOD CNUATOIOTN OO OLOGTOVPOVLEVT|
katevBuvon mov AauPdvel mphotvn EvoelEn Koatd T SAPKEWL VAOTOINGNG TNG CTPATNYIKNG

emPpadvvong and to AO.

Emumiéov, depguvinke kot mpoTtumomomOnke HoOMUATIKG 1 TPOGUPLOYN TOV 0ONYOV OE
EVEPYEWOKA OTOOOTIKEG CTPOTNYIKEG 00NYNONG OVAVIN POTEVAOV CNUOTOO0TOV UE TN YXPNoN
EUTEIPIKAV OEOOUEVAOV TTOL CLAAEYOMKOV KOTE TNV TAOTIKY €QOPUOYN €VOG GULGTNOTOC
ePPOALOVTIKE GUAKNG 001YNONS GLUPBOVAEVTIKOD YOPUKTAPA KOTE UAKOG OGS AOTIKNG OOTKNG
aptnpiog. Apywd, Tpaypoatomromdnke avaivon Tov eumelpikdv dedopévav e akydpipovg CFS
01 070101 AVAYVAOPLGAV TOVG KATWOL TOPAYOVTIES OG EMOPACTIKOTEPOVG GTO PAOIO TPOCAUPLOYNG

TOV 0ONYDOV GE EVEPYELNKE OTOJOTIKEG GTPATNYIKEG 0ONYTONG AVAVTN POTEVAV GNUOTOO0TMV:

® TUMOC TPOTEWVOUEVNG EVEPYELOKO OMOOOTIKNG OTPATNYIKNG odnynong (emtdyvvon,
emPBpadvvon, dlaTnpnon ToLTNTG),

e andotacn AO and 10 PoTEWVS oNUaTOdOTY,
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®  VTOAEMOUEVOC YPOVOG TNG TPEYOVOAG PMOTEWVIG EVOEIENG.

Axolovbwg, avamtuydnke 06vOpo amopAcE®Y TO OO0 EKTIUA TOV Pabud TPOCUPHOYNS TMV
00MNYDV OE EVEPYELNKA AMOOOTIKES GTPATNYIKES 00N YNONG AVAVIN POTEWV®OV GNUOTOO0TOV PACEL
TOV TOPOUTAVE TOPAYOVI®MV. ZVYKEKPLUEVA, TO O0EvOpo amopdocewmv Tpoodtopilel €va €bpog
mBovav amokAicewv amd TO 10010 TPOPIL TOoyLTNTOC MG VTOoAoyloBelcag evepyelakd
OmOOOTIKNG GTPATNYIKNG 00NYNoNG PAGEL TOV TIUOV TOV Topomdve Topoyoviov. H teAikn tyun
™G amOKAIONG oL peTooynuotilel to 10eatd mpoPik TayvtnTog Kabopiletor pe T ypnom
otoToTiKOV pefddwv. H avdmtuén tov 8évopov amopdcemv divel ) duvatdtnto a&lordynong
ocvoTNUATOV TTEPPAALOVTIKNAG 00N yNoNG GLUUPBOLAEVTIKOD TOTTOL OAAG Tr GUYKPION TOVLG WE
avTIGTOLY0 GLGTHLLATO L TOLUTOTOMUEVOD TOTTOV, OOV TO OYM LA EIVOL TOVTOYPOVEOS EEOTAMGUEVO
LE CLOTNUATO CVTOUATOTOUUEVIC O0ONYNONG MOV EMITPEMOLY TNV OKPPY| TPOCUPUOYY| GE

EVEPYELOKA OTOSOTIKA TTPOPIA TAYVTNTOV.

H oonoinon eumepikov dedopévov omd TV TAOTIKY] €POPUOYH €VOG GULOTNUOTOC
TEPPAALOVTIKG IAKNG 001 YNONG GLUUPOVAELTIKOD YOPAKTPO KATH PUNKOC LIOG OGTIKNG OOIKNG
aptnpiog yo v avantuén TV TpoavaeepBEivImV LabMUATIKOV TPOTUT®MV OTOTEAEL Lid Ao TIG
Baocikég KovoTopies TG TaPOVCAS SIOUKTOPIKTG S TPIPNS, KaBDS 1 PAoypapikn avackoTnon
dgv evtOmoe mpoNyovreEVo avtiotolryo epevvnTikd €pyo. [Ma v vAomoinom ™ MAOTIKNG
EQUPUOYNG eYKOTACTAONKE TEYVOLOYIKOG eEomMapdg oe 200 taéi kKot 12 pmtevohg onpatodoTed,
MGTE VO KOTAGTEL EPIKTY 1 O1LGVVOEGT] VITOJOUNG-OYNLLOTOG KOLL 1] EVILEPMCT] TV 00N YDV CYETIKA
LLE TIG EVEPYELNKA OTTOOOTIKES OTPATNYIKES 001 yNoNS. Katd tn didpketa tng TAOTIKNG EQOPLOYNG,
AO mov e1épyovtiav oe mpokabopiopéveg (OVEG TNG OOTIKNG 001KNG aptnpiog (0dkd TunpaTo
AVAVTN POTEWVOV CTUATOI0TAOV) AAuPovoy TANPOPOPNOT LEGH KATAAAAOD TNAETIKOIVOVIOKOD
TPOTOKOAAOV OYETIKA pe TIG MEAAOVTIKEG HETAPOAEG TOV  aVTICTOU(®V  TPOYPUUUATOV
onuUatoddTNoNG, eV AOYIoUIKO gykateotnuévo otov efomhopd tov AO alomowodoe v
TOPEYOUEVT) TANPOPOPN O TPOKEEVOD Vo VTOAOYiceEL Kol petafifdcel otov odnyd péow
KOATAAANANG OTEIKOVIONG TIG EVEPYELOKO OTOOOTIKEG OTPATNYIKEG odnynong (vmwd TN Hopen
GUVIGTOUEVNG TOXOTNTOG KIVIOTG) KO TOV VTOAEMOUEVO XPOVO TNG TPEXOVGUS PMOTEWVNG EVOEIENC.
[MopdAinia, Aertovpyohoe GUGTNILO ETCKOTNONG KOl KATOYPUPNS TNG AELTOLPYING TNG EPOPLOYNG
TEPPOALOVTIKA QIAIKNG 00MyNoms, HEGM TOL Omoiov amobfnkevoviav o€ KATAAANAN Pdon
dedopévov ta akdlovba Aemtopepn otoryeio Tov ypnopomoOnKay 6ta TAAIGIO TNG TOPOVONG
OBUKTOPIKNG dtaTpIPng:
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® LoOVadIKOG aplBuog kdbe Olacvvoedepévonr tall mov AdpPoave TANPOEOPNCYN CYETIKA L
EVEPYELONKA OTTOSOTIKEG GTPAUTNYIKES 001 YNONG,

®  YPOVIKEG OTIYIES KaTd TIG omoieg KaOe dracuvoedepévo tali Aaupave mAnpoedpnon,

o  K®IKOG mpokabopiopévne Lodvng oty omoia eloepyotav kdbe dlaocvvoedepuévo taél mov
Aappave odnyleg oxetikd pe teptPaAloviikd GrAkn odnynon,

e TUMOC TPOTEWVOUEVNG EVEPYELOKO OMOOOTIKNG OTPATNYIKNG odnynong (emtdyvvon,
emPpadvvon, Sl TnPNon TOYVTNTAG),

® TIUN EVEPYELOK(G OTOOOTIKNG TAXVTNTOG KIVONG OV TapEXOVTOY MG GUUPOVAN GTOV 0ONYO
LEG® KATAAANANG 000VNG OMEWOVIONG TNG GYETIKNG TANPOPOPiag,

e otiypoia ToydTNTA Kiviong Tov dtocuvoedeIEvVoL Tasl,

e andoTACT TOV O10GVVIESEUEVOL TAET ad TOV PMOTEWVO GNUATOdOTN,

e (@domn Tov TPOYPAULATOS CNUATOOOTNONG Y10 TNV OTOl0 TPOYUATOTOOVVIAV O VITOAOYIGUOG
NG EKAGTOTE EVEPYELOKA OMOSOTIKNG CTPATNYIKNAG 00N YNoNG,

®  VTOAEWMOUEVT YPOVIKT OEPKELN TNG TPEYOVGOGS EVIELENG TOV PMTEVOD CTLOTOdOTN,

e  TOHTOG £VOEIENC TOV POTEWVOD GNUATOSOTNG (TPAcIvN 1) KOKKIVN)).

Ta mapondve dedopéva avovedvoviov Kot Kotaypdeoviov otn Pacon dedopévov kdbe 3

devTEPOLETTOL.

H napovoa didaxtopikn dtatpipn avéntuée emiong éva pebodoroyikd mAaicto yio v a&toloynon
TOV EMNTOGEMV SOPOPETIKDOV TEXVOAOYIDV TEPPAAAOVTIKA PIATKNG 001YNONG OVAVTY QOTEVOV
onuatodotdyv, 10 omoio Pacileton otn ypMon ePYOAEI®V HIKPOOGKOTIKNG TPOCOUOIMONS TNG
Kukhopopiog. T TG avAyKEG TOL GULYKEKPIUEVOL EPELVNTIKOL £PYOV, TPOGOUOILONKE GTO
AOYIOUIKO HIKPOGKOTIKNG TPOGOLOIoNG TNG KuKAOQOpiag Aimsun 1o d1KTLO TG OCTIKNG OOIKNG
aptnpiog eni g onoiog TpayLaTomomONKe 1 TAOTIKY EPOPLOYTH TOL GUGTHLOTOS TEPPAAAOVTIKA
QUKNG odnynons ovpfovievtikod tHmov. To HOVIEAO HKPOGKOTIKNG TPOGOUOIMONS TNG
KukAo@opiog Tov mapomdve diktoov Pabpovoundnke GyoAaoTiKd e TN ¥PNOT KLUKAOPOPLUKDV
LETPNOEDV (KUKAOPOPIKOL (pOPTOL KOt YPOVOL SLAOPOUNG) Kol KATAAANA®Y GTATICTIKMOV EAEYXWOV
TPOKEWEVOD VO E0CPOUAMOTEL 1| PEAMOTIKY| AVOTOPAGTOCT] TOV TPAYLOTIKOV KUKAOPOPLOUKDOV

oLVONKAOV TOL EMKPATOVV EML TNG CLYKEKPEVNC 0OIKNG apTNpiog.

IMa v npocopoioon cuotnudTov TEPIPAAAOVTIKE IAIKTG 011YNoNGS 6T0 Aimsun ovorTOyONnKe

eCedwevpévn Atemaon Ipoypappaticpov Eeappoyov (AIIE). H AIIE odiver ™ dvvatdtnta
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TPOGOUOIWONG CLOTNUATOV TEPIPAAAOVTIKE PUMKNG 001 yNoNG AVAVIN POTEVAV GNUOTOO0TMOV
1660 GLUPOVAELTIKOD OGO KOl CLTOATOTOMUEVOL TOTTOV, EVA EMioNG O100£TEL 1oL ATAOTOTNUEVT
KoL EDEMKTN SOUT OV EMTPENEL TNV EDKOAN EVOOUATMOOT LEALOVTIK®V 0AYOPIOU®V avTIGTOLY®V
cvotnudtwv. Méow Tov oyedopoD KOl TG LAOTMOINoNG &vOg  €0HYPNOTOL  YPOPLKOD
nepBdirovioc ota mAaicwo oavarntuéne g AIIE, dtevkoldveton 1 TOPOUETPOTOINGT TNG
Aertovpyiog T@V GLOTNUATOV TEPPUAAOVTIIKG PIMKNG 0ONYNOoMNG TPV TNV aSlOAdYNoN TOV
AVTIGTOLY®V TEPAUATOV LKPOCKOTIKNG TPOGOUOIMONG TNG KUKAOPOPIaG. Zuykekpipéva, dvvatot

VoL OpLoTOVV:

e To OO0IKA TUNUOTO EML TV OmMOl®V To GLOTAUNTO TEPPOAAOVTIKA OUMKNG 0ONynomg
emnpealovv tn cvumeplpopd Tv AO,

® 0l QUGCELS TOV EMUEPOVS TPOYPUUUATOV CIUATOOOTNONG Y0 TS OTOIEG TTPOYUATOTOE TON
VTOAOYIGUOG EVEPYELOKA ATOJOTIKAV GTPATNYIK®OV 001 yNOTG,

o TWEG TOPAPETP®OV TOL GYETILOVTOL OMOKAEIGTIKA HE TOVG OAYOPOLOVS VTOAOYIGHLOV
EVEPYELOKA OTOOOTIKMV GTPUTIYIKOV 001YNoNG,

e tOmMOlL oynMudTe®V mov Bewpovvtol efomAouéva pE cLOTAUOTE TEPPOAAOVTIKA QIAKNG
001 yNoNg 6ta TAAIG0 TG TPOCOUOIWONC,

o 0plOUOG GTOYUGTIKMY TPOCOUOIDGEMV Y10l TIG OTOIEG EMAVUANTTIKA KOl ALTOUATOTTOULLEVA BaL

a&loAloyovVToL Ol EMNTMOGELS TOV CLGTNUATOV TEPPAALOVTIKA QLAMKTG 03N YNGNG.

Koatd ™ odpkela g tpocopoinong, kdbe AO mov e16épyeTal 6€ KATOL0 001KO TUNHO OOV £XEL
oplotel ®G evepyod To cLOTNUA TEPPAALOVTIKAE PIAKT|G 001 yNoNg AapBdver kot vAomolel pécw g
AIIE o gvepyelakd OmodOTIKN oTpATNYIK) 00fynong (vmd T popen &vog OovOCUATOG
TOYVTNTOV) 1) omoia evOEyeTan va, avarpedet duvapukd epdsov 1 kivnon tov AO mapakmAvdet amd
TPOTOPELOUEVO OyNua. 6Ty O Awpida KvkAopopioc. Otav 1o AO gpappocel TAP®G TV
EVEPYEWKA OMOOOTIKY] OTPOTNYIKN] OONYNONG Kol Ol0CYIcEL TNV KATAVIN OCNUOTOOOTNUEN
SoTOVP®ON diY®S VO GTALATNOEL, TOTE 1| CLUTEPLPOPE TOL VITOJEIKVVETAL EV GuVEXEia amd T

poOnpotikd vwodetypoto tov Aimsun.

H oa&oddynon tov emnt®ce®v TOV OCLGTNUATOV  TEPPUAALOVIIKA QOUMKNG  001YNONG
wpaypotortombnke pEo® NG KATAPTIONG OVO0  VTOOUAO®V TEWPAUATOV  UKPOGKOTIKNG
wpocopoiwons. H mpd™ vroopddo melpapdtov kotaptioTke pe otdyo TV aS0A0yNon ToV

TPOTEWVOUEV®OV TPOTOTMOMGEWY GTOVG OAYOPOUOVG TEPIPOALOVIIKE PIAMKNG 00NYNoNG TOL

[26]



Evangelos Mintsis | Mathematical models for dynamic eco-driving in signalized intersections in
the context of cooperative intelligent transportation systems

OTOGKOTOVV OTN PEATI®OON TNG AVESTC TOV 001YOU KOTA TNV EQPAPLOYN EVEPYELNKA OTOOOTIKAOV
OTPOTNYIK®V 00NYNOMNG OAAL KOl TNG OGQPOAOVG AEITOLPYIOG TOV OYETIKOV cvotnuatov. H
OCLYKEKPLUEVN VTTOOAdA TTEWPAUATOV EAaPE VITOYN SLOPOPETIKEG KLKAOQOPLOKEG cLuVOnKES (Un
CULLPOPNLEVES, GYEOOV GUUPOPNUEVES, CUUEOPNUEVES) KOl TOAAATAG emimeda dleicdvong g
OLYKEKPILEVNG TEYVOAOYIOG GTO GUVOAO TOV GTOAOL oynudTev. H dehtepn vwoopdda Telpapdtwy
OYEOAOTNKE UE GTOYO TN GVYKPION EMOOCEMV AVAUESH GE CLOGTHUOTA TEPPUAALOVTIKA PIATKNG
001 YNoNS GLUPBOVAEVTIKOD KO CUTOHOTOTOMUEVOD TOTTOV, OAAN KOl KUKAOQPOPLOK®Y PODV TOV
amoptilovtal amoKAEIGTIKA 0md GUUPATIKA OYLOTA TTOV OV £YOVV SVVATOTNTES JAGHVOESNG LUE
To. otoyEeion TG 001kNG vmodouns. H ovuykekpiuévn vroopdoa mepapdtov Elape vroyn un
GULLPOPNLEVES KUKAOPOPLOKEG GLVONKES Kot O1POPETIKA EMIMEN O1EIGOVONG TV OAPOPETIKADV

TEYVOLOYLDV TTEPIPOAAOVTIKA QIAIKNG 001YNONG GTO GOVOAO TOV GTOAOL OYNUAT®V.

Mo ™mv a&lohdynon TOV ENTTOCEMY TOV CLOTNUATOV TEPIPOAAOVTIKA QIAMKNG 00NYNoNG £YVE
avdALON TOV ATOTEAECUATOV TOV TEWPAUATOV TPOCOUOIoNG G €MIMESO UEHOVOUEVOV
OYNUATOV, 00KV TUNUATOV OAAL KOU TOL GLVOAOL TNG OOTIKNG 00wng apmpiag. Ta
OTOTEAECUOTO TMOV TPOGOUOIDGEMY YPNOILOTOWONKAY Y10l TOV LTOAOYICUO TOV TOPAKAT®O

JEIKTAOV KUKAOPOPLOKNG OITOS0TIKOTNTAS, TEPPAUALOVTIKMV EMMTAOCEDV KOl 0OIKNG OCPAAELNS:

e oyéon tayOvTTAG-d1vLOEIGOS amOGTAON G LELOVOUEVOD OYNLLATOG,

e oyéom TaLTNTOG-EMTAYLVONG LELOVAOUEVOL OYNLOTOG,

®  YPOVOCELPA TOYVTNTOS LELOVMOUEVOL OYNLOTOG,

® oyéomn ekmoun®v 010&e1dion Tov avlpaka-dtavubeicag amdcTOoNG LELOVOUEVOL OYNULATOG,

o cKmoumES 010E1010v TOL dvBpaka avd dtavuBEV yLMduETpO,

e 0plOuOg oTACEDV AVA OYMLULa,

®  UECOG XPOVOG OLOPOUNG AVE 0OKO TUN L,

® L&c0G XpOVOG 6TAOoMG v dtovuBEY yIMduepTO,

e puéom tayvrnTa SIKTHOVL,

e aplBudg EVOEXOUEVMOV GLYKPOVGE®V VA TOTTO GVYKPOVOTG,

®  VTOAEMOUEVOG YPOVOG EmG TNV GVYKPOLGT 600 OYNUAT®V G TEPITTWGT TOV Ol TPOYLES TOVG
Tapopetvouy aueTaPANTEC,

®  OYETIKN TOYVTNTA OYNUATOV EUTAEKOUEV®OV GE OLVNTIKN GUYKPOLOT).
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O VTOAOYIGHOC TOV FEIKTOV KLUKAOPOPLUKTNG OTOO0CTG TPAYLATOTOONKE e TV xpron tov MS
Excel, evd ywo tqv avdAvorn kol omeKOVIOT TOV YOPUKTNPIOTIKOV TOV TPOYIOV KIVoNg
LELOVOUEVOV OYNUATOV avarmthyOnke eEeldkevpévn dtadiktvakn e@appoyr. O vtoloyiopds TV
JEIKTAOV TOV TOGOTIKOTOLOVV TIG EMUTMGELS TMV GLUGTNUATOV TEPIPAALOVTIKA PLAMKNG 0O YNONG
oTNV 001KT ac@dAEln TpaypatoromOnke pe 1o Surrogate Safety Assessment Model (SSAM) to
omoio &yel TN OLVATOTNTO VO GULGYETILEL OTATIOTIKOC HE OEOMIOTION SVVNTIKES GUYKPOVCELS
oOYMUATOV pE Tpaypratikd dedopéva atvynpdtwv. A&ilet emiong va onpemdel 6Tt 1o TOAOTAELPO
peBodoroYIKO TAAICI0 0EIOAOYNONG TOV EMMTOCEDY TOV GLUGTNUATOV TEPIPUAALOVTIKA OIAKNG
00NYNoNG avAvVIN QOTEWV®OV CNUUTOO0TMOV OVVOTOL VO TPOCHPUOCTEL €DKOAN OTIS OVAYKESG
LEALOVTIIKAV EPEVVNTIKAV OpACTNPOTHTOV HECH TNG TPocHnkng vémv epyoieimv n v

TPOTOTOINGT TOV VPICTAUEVOV.

H avédivon 1ov oamoteleocpdtov g TPOTNG LTOOUAONS TEPAUATOV  UIKPOGKOTIKNG
TPOCOUOIMONG NG KLuKAOQOpiag KatédelEaov OTL Ol TPOGAPUOYEG GTN OO TOV VOICTAUEVOV
LOVTEAW®V TTEPPAALOVTIKE GIAKTG 001|YNGNG TOV ATOGKOTOVY 6TV PEATI®OON TNG ATod0YNS TOVG
and Tovg ¥PNOoTEG OAAG Kol otV Pedtioon G ac@arlovg Agttovpyiog Tovg dev emnpedlovv
apVNTIKA TNV 0mdS00T TOVG GVOPOPIKA HE TN HElMON NG EVEPYELNKNG KOTOVAAMONG KOl TOV
EKTOUTTOV aEPLV pOTTav. Ewdikdtepa, dOvavtal va LELOCOVV TiG EKTOUTES d10&e1diov Tov avOpaKa
¢m¢ kot 13% eni pepovopévov odikdv tunpatov kot 2.5% o enimedo 0dkNg aptnpiag, diyms vao
emnpedlovy apvnTiKd ToL OElKTEG KUKAOPOPLaKNG amodotikdtnTag. Emiong, avayvopiomke 0t Tal
0PEAN TV GLGTNUATOV TEPPAAALOVTIKG PIAKNG 03N YNoNG e€aptdvTal og onuavTiko Babud and

TOVG TOPUKATO TAPAYOVTES:

®  YEMUETPIKA YOPUKTNPLOTIKA TG 0000,

® UNKOG TOV 001KOV TUNUOTOS €L TOV OTOToL €lval EvePYd TO GLGTNUA,

®  YOPOKTNPLOTIKE TOV TPOYPALLLATOS CTLATOOOTNGNG,

e TANH0C KATAVIN QOTEWVAOV GNUOTOSOTMVY Y10l TOVG OTOI0VE VPIGTATOL GLVEYXNS TANPOPOPNON
OYETIKO LE TOV VITOAEITOUEVO YPAVO TG TPEYOLGAS PMOTEWVIG EVOEIENS AL KO TNV dLAPKELNL
G EMOHEVNG,

®  £MIKPATOVGEG KUKAOPOPLOKES GUVONKEC.

A&oonueioto gbpnua to omoio dev €xel amoTLTMOEL [Le CAPNVELDL GE TPOTYOVLEVO EPELVNTIKA

épya, elvar Kot To YEYOvOg OTL To. CLOTNHUATA TEPPAALOVTIKE QIAIKNG 001 yNonG HeTafaAiovy
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YOPOKTNPLIOTIKA TNG KUKAOQOPIIKNG PONG KOl GE TEPLOYES TOL 0OKOV SIKTHOV TEPAV OV TMV TOV
epapuoloviol. XVVETMC, TO TANIGI0 VAOTOINONG &€VOC GLOTNHOTOG TEPPUALOVTIKA (OIAKNG
00N YNoNG AVAVTI POTEWVOV CNILATOS0TAOV O TPETEL VO SIEPEVLVATAL ETOPKDG KATH TEPITTMOT Kot
0€ GLVAPTNON LLE TOVG TPOOVAPEPOHEVTEG TaPAyOVTES, MGTE VO S10GPAAILOVTOL TO LEYIOTO EPIKTA

TEPPOALOVTIKA KOl KUKAOPOPLOKE OPEAN.

H avédivon tov amotedecpdtov 1ng 0e0TEPNE VLTOOUAONS TEPAUATOV UIKPOGKOTIKNG
TPOcOopoimoNe ™G KukAoeopiag Katédelle 0Tl T0 MEPPOAAOVTIKO OMOTOTOUO CUVOEOEUEVDV
oymuaTov mov etvar e£omAlopéva e GLUBOVAELTIKOD TOTOL GLOTHUATO TEPPAALOVTIKNG
00N ynong ival oMUOVTIKA UIKPOTEPO o€ oyéon pe un ocvppatikd oynupate 6tav To mTOcG0GTd
deiodvuong 6to 6TOA0 TOV TOPATAVEO cLGTHUATOV glval VYNAO. AviiBétwg, ta meptParlovTikd
0PéAN TV ovotNUdTeV TEPPAALOVTIKE QIAIKNG 001yNong GLUPOVLAELTIKOV TUTOL &lval
UIKPOTEPO TOV AVTIGTOLY®V OVTOUATOTOUUEVOL TOTOL, VM 0 BaBUOS TPOCAPHOYNS TMV 00TYDV
0€ EVEPYELNKA OTOJOTIKEG GTPOTNYIKES 00N YNONG €EQPTATAL OO TO YEMUETPIKA KO AEITOVPYIKAL
YOPOKTNPLOTIKA TOVL 001KOV TUNHOTOS OOV €Poproletar 10 cOGTNUA TEPPOAAOVTIKA QUAMKNG
oonynong. Eivar emiong a&loonueioto, Ot1 o 00WEC aptnpieg TOAAATAGV A®PId®V 1
LEYLOTOTOINGN TOV TEPPUAAOVTIKOV Kol KUKAOPOPLOKADV TAEOVEKTNUAT®OV TOV GLOTNUATOV
TEPPAALOVTIKNG 00NYNONG TOPATNPEITAL OTOV OVTO €VOL OVTOUATOTOUNUEVOL TOUTOL Kol 1|

dlelodvoN TOVG 6TO GTOAO gival LEYIGTN.

Ta evpiuato TG TOPOVONG OOOKTOPIKNG STPPNS avVaPOPIKA HE TOV OvOP®OTOKEVTIPIKO
OYEOGUO GLOTNUATOV TEPPAALOVTIKA QIAIKNG 0dNynons, v opdn epappoyn Tovg o€
TPAYUOTIKEG KUKAOQOPLOKEG GLVONKES, KAOMS Kol TIG TEPPUAAOVTIKES Kol KUKAOPOPLOKES TOVG
EMNTOCELS £ivol TOAVGLOVTO Y10 TIG ETOIPEIEG KOl TOVS POPElG TOL EUTAEKOVTOL GTO 0OKO
ocvotnua petagopav. H avtokivntoBiopnyoavio Kot ot dpoyol VANPESIOY ToV GYETIOVTOL LE TO
Yvvepyatikd Evour Zvomuoata Meta@opdv HUmopodv vo ovOTTOEOVLY EVEPYELOKE OTOOOTIKES
OTPATNYIKEG 00NYNONG 7OV €ivol GIMKOTEPEG TPOG TOV YPNOTN Kol TO AGQPOAEIC, dlywg vo
OTTOLELOVOVTOAL Ol BETIKEG EMMTMOGES TOVG GTO TEPIPAAAOV Kot otV kKukhopopia. Ot @opeig
dwyeipiong TV 0dKOV OIKTVOV UTOPOLV V. TPOPAEYOVV TIG EMUTTOGCELS OLOPOPETIKDOV
TEXYVOAOYLOV TEPIPAAAOVTIKA GUMKNG 001 YNONG OVAVTN QOTEWVAOV CUATOO0TOV TOGO TOTIKA OGO
Kol 6€ EMIMESO GLVOAKOV OIKTHOV, EVM EMIONG LITOPOHV VO, EEETACOVY TO EVOEYOLEVO VAOTOINGNG
TOV TOPATAVED TEYVOLOYIDV GE OLOPOPETIKAE SNUEID TOV 0IKADV SIKTVOV BAGEL TOV YEMUETPIKOV

KOl AEITOVPYIKOV YOPOKTNPIOTIKOV TOVG, OAAL KOl TOV TPOYPOUUUATOV CMUATOSOTNONG TOL
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pvOuilovv Vv KukAopopia 67 avtd. Emiong, ol gopeic Sapdpemong TOAMTIKOV GYETIKA HE TO
Yvvepyatikd Eveuny Zvotmjuoato Metagopdv pmopodv va TpomBnoovv TNV EQUPUOYN
CLOTNUATOV TEPIPAAALOVTIKA QIAKNG 00NYNoNG GULUPOVAELTIKOD TOTOL OVAVTIN QOTEWVOV
onuatodotdv, kabdg Pdost eumelpkdv OedopéveV  amodekvOETOL OTL TO GUYKEKPLUEVOL
CLCTNLOTO UTOPOVY VO TOPEXOVY CNUOVTIKE TEPPAALOVIIKA OPEAT VIO €LVOTKEG GULVOTKEC

VAOTOINGNG TOVG GTO TTEDTO.

ZNUOVTIKY TTOY TG TapoHONG SOUKTOPIKNG STPIPG AOTEAEL KOt 1] OVOyVOPLOT) TPOOTTIKADV
Y10l TPOLYLOTOTOINOT| TTEPUUTEP® EPEVVAG EL TV GLOTNUATOV TEPPOAAOVTIKA PIAKNG 001 yNoNG
avavtn eoTevVav onuatodotmv. Ewdwdtepa, ot tpotonomacelg mov mpotddnkay yua tn Peitioon
™G  Gveonc Kol  OCGQOAEWG TOV  EVEPYELWOKE  OMOOOTIKOV  GTPATNYIK®V  0ONYNong
TPOYUOTOTOLOVVTOL HETAYEVEGTEPO TOV OPYLKOD VITOAOYIGHOV TOLG. MeAlovTikd, dvvatal vo
evoouatmbodv  meplopicpol  dveone kol 0OKNG OOQAAEING OTO HOVIEAD  HOOMUOTIKNAG
BeAticTonoinong To omoiot AvVOTTOGGOVTOL Yl TOV VLTOAOYIGHO EVEPYEWNKO OTOOOTIKAOV
oTPATNYIKOV 0dNynons. Méow G moapamdve TPocEyyons, ovvatar va  Pedtiwbel 1
ATOdOTIKOTNTO TV TOPATAVE® GTPOTNYIKAV, dAAG Kol va emttoyvvOel n dtadikacio VTOAOYIGHOD
TOVG MOTE VO EPAPUOLOVTOL TO OMOTEAECUATIKO GE TPAYUATIKO YPOVO KOl VIO PEAACTIKEG

KUKAOQOPLOKES GLVONKEG.

Emumiéov, 1 cvAAOYN AENTOUEPESTEP®V KOl TEPICCOTEPMV EUTEIPIKMV OEOOUEVOV KATO TNV
TIAOTIKT] EPOPUOYN CLGTNUATOV TEPPAALOVTIKA PIAIKNG 00N ynons cvupfovievtikod Tomov o
dmoel ™ dvvatotnta avantuéng Pertiopévov avtictoryywv adyopluwv. o mapddetypa, n
GLALOYT] KUKAOQOPLOK®Y dEGOUEVMV KATE TNV TAOTIKY EPOUPLOYT TOV TOPUTAVEO GLCTNUAT®V Bal
eMTPEYEL TN ONUIOVPYIR EVOPMV ATOPAGEMY TOV EKTYHOVV TNV TPOGUPLOYN TOV 00NYDV GE
EVEPYELONKA OTOOOTIKEG GTPATNYIKEG OONYTOTG OE GLVAPTNGT LE TIG EMKPATOVGEG KUKAOPOPLOKES
ouvOnkeg (uUn ovueopnuéves, oxeddv  cvueopnuéves, ocvppopnuéveg). H  ovykévipwon
TANpoeopiag oxeTikd pe T Awpida Kivnong tov AO Katd TNV EQAPLOYY| EVEPYELNKA ATOJOTIKOV
oTPATNYIK®OV 001 yNons duvatal va aglomombei mpokeyévov o Babudg Tpocapoyn Twv 0dnydv
va wpoPAéneTon o€ eninedo Awpidoc. H mapoamdve duvardomra Oa eiye peydin ypnowodmrao yio
001K TUNHOTO TTOV EUTEPLEXOVY AMPIOES OTOKAEIGTIKNG YPNONG OO GLYKEKPUUEVO OYNIATO.
Eniong, 6o pmopovoe perloviikd vo mpotvmomomBel pabnuatikd n petafoin tov Pobpod
TPOCAPLOYNG TOL 00N Y0V KATA TNV EKTEAECT] OGS EVEPYELOKE OTOOOTIKNG GTPOTNYIKNG 00N YNONG
0€ GLVAPTNON TOL ¥POVOL KOl TNG CLUTEPIPOPES TOL 00MYyoV Kotd Ta mapeABovia Prjparto
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EQUPUOYNG NG AVMBEV OTPATNYIKNG. TNV TEPITTMOON OVTY], EVOEYOUEVOS VO KATAOTEL EPIKTN M
TPOGOUOIMON EVEPYEINKA OTOOOTIKOV OCTPOTNYIKOV 0O0NYNoNG MOV KATOAYOUV Va £YOLV
LEYOADTEPO TTEPIPAAAOVTIKO OTOTUTMWIO OO TN GLUPATIKY] 001YNON OKOUO KOl GE TEPITTAOCELG

7ov 0 Babuds TPOsaPHOYHG TV 0dNYDV de Ba etvar Wwaitepa yoUnAog.

[Tponyovueva epevvnTikd €pya €xovv amodeifel OTL 1 cvvepPYasia OLCLVOESEUEVOV KOl
avtopaTomomuéEVOY oynudtov (AAO) péocm doeOVOEoNS OYXNLOTOG-OXNUATOS WITOPEL va
eMOLENCEL ONUAVTIKE TIC €MOOCEL; TOV CLOTNUATOV TEPIPUALOVTIIKG QOIAMKNG 0dNynomg
OLTOLOTOTOMUEVOD TOTOL GE UEIKTEG KUKAOPOPLOKES poés. Ta verotduevo epguvnTikd £pyo
EMKEVTIPAOVOVTAL OLLMG GTNV GLVEPYUGIN TOV TPOaVAPEPHEVTMOV OYNUATOV G EMIMESO SLAUNKOVG
KIVNoNg MPOKEWEVOL VO HEUDGOLY TNV KOTOVOAMOT EVEPYELNG KOl TIG €KTOUTEG pummv. H
EVOOUATMOON OLUVOTOTHTOV GULVEPYOTIKNG OAAOYNG A®PIdOC o€ TPOYPOUUOTO HOONUOTIKNAG
BeAtioTomoinong mov avamTOooOoVTOL HE GTOYXO TNV TEPPUAAOVTIKA QIAKY 0dnynon avdivin
QOTEWVAOV GNUATOO0TOV UTOPEL VoL LEUDGEL OKOUA TEPIGGATEPO TO TEPPOALOVTIKO OMOTOT®LLOL
tov AAO. Ta dvvntikd mepiParioviikd o@éAn pmopel var avénbovv Tt mepartépw HEGH TNG
o vLVOESN OYNLOTOC-VTTOSOUNG OOV 1 VTodou dvvatot vo avaldPel €va KeVIpkd poAo
dtevkoAvvong TV cuvepyactdv LeTaEd AAO dote va peyiotomoindel n peiwon g Katavalmong

EVEPYELNG KO EKTOUTAOV PUTMOV GE EMIMESO SIKTVOV.

Ev té)et, cuvictaton n avantuén texvikav odnyiodv Bdoet Tov onoimv Ba duvatal vo amoeacioTtel
1N VAOTOINOT SPOPETIKDOV TEYVOLOYIDV TEPPAALOVTIKAE PIAIKNG 001 YNONG GE GLVAPTNON LE TIG
VTOAOYIOTIKEG TOVG EMOOGELS, TA YEWUETPIKA Kol AEITOVPYIKA YOPUKTNPICTIKA TV 00MV, TOV TOTO
Kot T SOUN TOV TPOYPOUUAT®V CTULATOOOTNONG, KOOMG Kol TOV EMKPUTOVCMV KUKAOPOPLUKDOV
oLVVONKOV. v TEPITTOON TOV GLGTNUATOV TEPPOAAOVTIKE QLAMKTG 031 YNONG GLUBOVAELTIKOD
TOTOL TOL TAPATAVE® GTOLYEID SVVATOL VO GLVOLOGTOVV LE TO YOPAKTNPLOTIKA TOV EKAGTOTE 0O Y0V
OAAG Kol Ta duvopkd yopaktnplotikd tov AO katd v €i60d0 ce €va 001kd TUNUA OOV
vrootpileton N TopATdve TEYVOLOYiD, MOTE Vo amo@actotel 1 agio evnuépwong evog od1yoL

OYETIKA LE TN OLVOTOTNTA EKTEALECTG LLOG EVEPYELOKA OTOSOTIKNG CTPATNYIKNG 00N YNONG.
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1 Introduction

1.1 Environmental Impacts of Road Traffic

Road traffic is currently one of the main contributors to energy consumption, climate change and
atmospheric pollution. Road traffic in the US produces 59.6% of the total carbon monoxide (CO)
emissions, 33.1% of the oxides of nitrogen (NOx), and 26% of the volatile organic compounds
(VOT) (Chen et al. 2014). In the International Energy Agency (IEA) countries road traffic accounts
for the biggest share of total energy consumption in the transport sector (89%), while passenger
cars and freight trucks rank highest (28%) among the top ten carbon dioxide (CO>) emitting end
uses (IEA 2020). Moreover, urban road traffic is responsible for 40% of CO; emissions and 70%
of emissions of other pollutants (EC 2007).

Statistics indicate that demand for travel has significantly increased in the past 30 years (FHWA
2021). Due to continued population and economic growth, urban sprawl, road user centric mobility
services, and periods of low fuel prices the latter trend is expected to further escalate (EPA 2021;
Leard et al. 2016). Therefore, it is also expected that the total energy needs of surface transportation
will be increasing constantly in the near future. Thus, the adoption of innovative policies,
measures, and technologies for mitigating the adverse environmental impacts of road traffic

constitutes key element for attaining long-term sustainability goals (EC 2019).

1.2 Mitigating the Environmental Imprint of Urban Road Traffic

A US driver wastes on the average 40 hrs annually in standstill traffic. The cost of fuel consumed
during this time frame amounts to 78 billion dollars per year (Schrank et al. 2013). Policy makers
strongly advocate for more fuel-efficient vehicles (encompassing broader use of alternative fuels)
(CEC 2005) and comprehensive legislation relating to stricter emission performance standards for
new passenger cars (EU Parliament 2009). Moreover, the Council of the EU has published
directives with respect to limiting values of sulphur dioxide (SO.), nitrogen dioxide (NOz), NOx
and particulate matter (PMio) (EU Council 1999). Nowadays, sustainable transportation programs
place significant focus on strategies that minimize fuel consumption and gas emissions (especially

CO» emissions) from motor vehicles.
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Freeway traffic is free-flowing under light-to-moderate traffic conditions and experiences high
delays during congestion (stop-and-go traffic) due to increased travel demand (which induces high
traffic density along with the randomness of individual driver's behavior). On the contrary, arterial
traffic can be subject to increased delays even during uncongested conditions due to the presence
of intersections controlled by traffic signals. By definition an intersection is a distribution node of
traffic flow in urban networks, and is also a bottleneck node of road capacity affecting mobility,

safety and the environment.

Vehicles approaching signalized intersections frequently have to decelerate to a complete stop,
idle till they receive green signal status, and subsequently accelerate to their desired speed. Thus,
surface street traffic in the proximity of signalized intersections is subject to high delays.
Moreover, several field studies identified a strong positive correlation between delay time at
signalized intersections and vehicle fuel consumption and emissions (Saint Pierre & Ehrlich 2008;
Myhrberg 2008). Therefore, vehicles that stop at traffic signals are also subject to wasted fuel and

increased emissions.

It has been estimated that 22% of all wasted fuel is caused by inefficient deceleration and/or lack
of anticipation (Vreeswijk et al. 2010). The relationship between fuel consumption/emissions and
vehicle speed has been thoroughly studied at a microscopic level and a comprehensive review has
been presented in (Barth and Boriboonsomsin 2009). Vehicles traveling at low speeds exhibit a
high fuel/distance value, since they travel for longer time periods. At high speeds, vehicles require
excessive engine tractive force to overcome aerodynamic resistance, thus producing higher
emissions. It was estimated that fuel consumption and emissions are minimized around 60 km/h
depending on the vehicle type. Therefore, it is best for vehicles to travel at a steady-state velocity

around these mid-range speeds, in order to minimize fuel consumption and emissions.

Prior to the development of communication capabilities between connected vehicles (CVs) and
the infrastructure, innovations in vehicles' powertrain (Bandivadekar et al. 2008), infrastructure,
road geometry design and traffic signal operation (Bazzan 2005; Li et al. 2004; Midenet et al.
2004; Yin et al. 2007) enhanced fuel efficiency by more than 83% over the past 35 years.
Moreover, the introduction of Intelligent Transportation Systems (ITS) in the surface

transportation sector in the mid-1990s provided new capabilities to mitigate the adverse traffic,
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energy and environmental impacts of vehicular traffic (Khondaker and Kattan 2015b;

Papageorgiou and Kotsialos 2002).

When vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication was rendered
technologically feasible researchers focused on the development of CV technologies to further
enhance traffic safety and efficiency. Initially developed speed advice systems provided speed
advice to equipped vehicles according to external conditions (weather, traffic, road grade, etc.) in
order to promote safety (Spyropoulou & Karlaftis 2008). Currently, connected vehicle applications
can utilize the signal phase and timing (SPaT) message for the estimation of energy optimal speed

advice.

1.2.1 Advancements on the Vehicle Side

The automobile industry is constantly investing on the production of more energy efficient and
environmentally friendly vehicles (Johnson 2015). The efficiency of drive train (use of lighter and
stronger materials without compromising safety characteristics) and power train of modern
vehicles has increased significantly. These advancements improved the average passenger car fuel
efficiency from 18.4 1/100km in 1975 to 10.1 I/100km in 2005 (Bandivadekar et al. 2008).
Moreover, new technologies were introduced such as hybrid and fuel-cell vehicles. Concurrently,
the list of available in market vehicles that utilize carbon-neutral alternative fuels is gradually
growing. Regardless of the technological advancements on the vehicle-side, drivers can also save
fuel and reduce emissions from their vehicles via proper maintenance. Normal maintenance
practices are tire pressure checks, regular air filters replacements, removal of excess weight from

the vehicle, performance of periodic engine tune-ups and use of manufacturer-recommended oil.

1.2.2 Advancements on the Infrastructure Side

Significant advancements have also taken place on the infrastructure-side. Past studies identified
increased vehicle energy waste, emissions, and delays incurred due to inefficient traffic signal
control plans (Coelho et al. 2005; Unal et al. 2003). Therefore, research activities focused on the
development of advanced signal timing plans (Li et al. 2004), actuated signal control systems
(Midenet et al. 2004), adaptive signal control (Yin et al. 2007), and coordination of traffic signals
(Bazaan 2005). Few researchers focused on the development of advanced signal timing plans that

seek to minimize explicitly motor vehicle fuel consumption and gas emissions (Nishuichi & Yoshii
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2005; Stevanovic et al. 2009), while others formulated mathematical programs for the optimization

of signal time design that concurrently minimized fuel consumption, emissions and delays (L1 et

al. 2004).

However, the annual maintenance and update of advanced traffic signal control systems is a
significant expenditure. It was estimated that in the US only, the update of traffic signal plans costs
annually 217 million dollars. Some studies proposed that the substitution of conventional traffic
lights with intelligent ones in fully connected and automated road environments could address the
aforementioned limitation (Dresner & Stone 2008). In this case fully connected and automated
vehicles (CAVs) approaching an intersection equipped with intelligent lights will request in
advance the reservation of a time-space slot in order to pass safely the intersection without stopping

(Vanmiddlesworth et al. 2008; Zohdy & Rakha 2016).

1.2.3 Intelligent Transportation Systems (ITS)

The deployment of ITS renders traffic management more robust and as a result improves traffic
operations significantly. Increased traffic efficiency yields substantial fuel consumption and gas
emissions savings. It was identified that ITS technologies which homogenize and smooth traffic
flow can generate profound energy and environmental benefits. Thus, the EU has incorporated ITS
deployment in its strategic planning, in order to accomplish the goal set in the White Paper for a

60% reduction of CO; emissions in the 1990-2050 period (EC 2011).

Initial ITS technologies encompassed Advanced Traffic Management Systems (ATMS) and
Advanced Traveler Information Systems (ATIS). Example ATMS applications for uninterrupted
traffic flow facilities that increase energy efficiency of vehicular traffic are ramp metering and
variable speed limits (VSL). In the US, ITS technology was introduced in the surface
transportation sector through the Federal Highway Administration (FHWA) ITS Program that
began in the mid-1990s (Rakha et al. 2012). During the ITS Program, the US road infrastructure
was equipped with sensors that monitored prevailing traffic conditions and provided congestion
information to drivers so as to assist them with route-guidance. However, interest was soon shifted

towards communications and vehicle connectivity due to the rapid evolution of telematics.
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1.2.4 Connected Vehicle (CV) Technologies

Advancements in the field of digital technologies have enabled the development and deployment
of CV applications which utilize vehicle-to-everything (V2X) communications (exchange of real-
time information: a) between road-side infrastructure and vehicles, and b) among vehicles) to
provide smart advice to CVs for the realization of mobility, safety and environmental benefits
(Grace et al. 2012; Lu et al. 2018b; Monteil et al. 2011; Rakha et al. 2012; Zeng et al. 2012).
Development of CV technologies is growing constantly, and several research works have been

conducted to date in order to enhance their operation and evaluate their efficiency Table 1.1.

The SAFESPOT cooperative system harnessed both infrastructure and vehicles as sources and
destinations of safety-related information (Brignolo et al. 2006). The Cooperative Intersection
Collision Avoidance system placed focus on the use of the SPaT message for improving
intersection safety (Sengupta et al. 2007). The EU-co-funded Cooperative Vehicle-Infrastructure
system (CVIS) allowed vehicles to communicate — and cooperate — directly with each other and
with the roadside infrastructure through a unified technical solution that utilized a variety of media
and exhibited enhanced localization (Koenders & Vreeswijk 2008). The CO-OPerative SystEms
for Intelligent Road Safety innovation activity (COOPERS) placed emphasis on the reduction of
the self-opening gap of the development of telematics applications between car industry and
infrastructure operators (Frotscher & Schneider 2008). BMW and Volkswagen developed a wide
range of traffic safety related cooperative applications within the context of the German project

AKTIV (Giebel et al. 2008).

The sim™ project focused on the technical implementation of a hybrid communication system,
based on the well-known WLAN standard, to facilitate the testing of the effectiveness of car-to-x
(C2X) functions (Stiibing et al. 2010). The European research project eCoMove used V2V and
V2I communication to develop and integrate three strategies that provide efficient route choice,
improved driving performance and robust traffic management and control, with an aim of reducing
total fuel consumption by 20% (Vreeswijk et al. 2010). Within the context of the German project
"Cooperative and Optimized Traffic Signal Control in Urban Networks" (KOLINE), V2I data were
used in addition to ordinary loop detector traffic data for the optimization of the adaptive traffic
signal control systems signalization (Niebel et al. 2012). During the EU co-funded Compass4D
project three Cooperative-ITS (C-ITS) services (Energy Efficient Intersection, Road Hazard
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Warning, and Red Light Violation Warning) were piloted for one year in seven EU cities (Mitsakis
et al. 2014). The Local4Global Mobility Tool combines the number of petrol litters filled in the
vehicle's fuel tank with data of the GPS-navigator and information regarding the current weather
conditions in order to provide speed profiling commands to drivers that assist them in significantly

reducing fuel consumption and travel time (Michailidis et al. 2015).

In the US, the Vehicle Infrastructure Integration (VII) Program was initiated by the US Department
of Transportation (DOT) in 2005 to develop standardized wireless V2V and V2I communications
(Andrews & Cops 2009). The VII Program, which was a joint government-industry effort, tested
a 5.9GHz-based VII Proof-of-Concept (POC) in a real-world uncontrolled environment in Detroit,
Michigan. The VII Program managed to demonstrate the technical feasibility and functionality of
the VII architecture, and the effective implementation of safety, mobility and commercial
applications. This initial initiative evolved subsequently into the CV Program which became part
of the USDOT's 2010-2014 ITS Strategic Plan (Grace et al. 2012). The USDOT's future plans with
respect to CVs focus on the adoption and eventual deployment of CV systems based on the 2015-
2019 ITS Strategic Plan (Barbaresso et al. 2014). USDOT will place attention on research activities
pertaining to the development of V2V communications based on dedicated short-range
communications (DSRC) technology and other CV technologies and communications that are

enabled by either DSRC or other networks, such as cellular, Wi-Fi, or satellite.

CV technologies have been also widely adopted for increasing energy efficiency and diminishing
greenhouse gas (GHG) emissions via eco-routing (Djavadian et al. 2020; J. Wang et al. 2019) and
eco-driving assistance on highways (Barth & Boriboonsomsin 2009; Shen et al. 2018), rolling
terrains (Hu et al. 2016), transit routes (Xu et al. 2017) and signalized traffic (Chen et al. 2014;
Kamalanathsharma et al. 2015). Previous research has identified that inefficient vehicle
acceleration/deceleration, stop-and-go events, queuing time in idle mode and lack of driver
anticipation can incur significant vehicle delay, fuel consumption and exhaust emissions at
signalized intersections (Adamidis et al. 2020; Li et al. 2011; Pandian et al. 2009). Thus, the
provision of dynamic eco-driving advice (robust and real-time speed and/or countdown advice) to
CVs in the proximity of signalized intersections with the use of [2V communication has shown
notable potential for achieving energy savings and GHG emissions reduction by preventing CVs
from unnecessarily cruising/accelerating while approaching a signalized intersection and suddenly

breaking just upstream of the stop line (Barth et al. 2011; Mitsakis et al. 2014; Rakha &
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Kamalanathsharma 2011) and has received significant attention from funding agencies, vehicle

manufacturers, road authorities, technology providers, and the research community.
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Table 1.1. Research projects in the field of CV technologies and applications

Project Name Duration Location Application Outputs
C-MobILE (Accelerating C-ITS . L
. ) Safety, Traffic and Energy Fully integrated C-ITS technologies in
Mobility Innovation and depLoyment 2017 —-2020 EU ; .
. Efficiency real-world conditions
in Europe) (Lu et al. 2018b)
InterCor (Interoperable Corridors) (Lu . ) A Test Bed for beyond Day-One C-ITS
2016 - 2019 EU Connectivity, Energy Efficiency .
et al. 2018a) services development and deployment
2015-2019 ITS Strategic Plan Safety, Mobility and Research activities pertaining to the
2015-2019 USA ) L
(Barbaresso et al. 2014) Commercial development of V2V communications
Connected Vehicle Pilot Deployment 2014 — 2020 USA Connectivity, Safety, Traffic Integrate CV research concepts enhancing
Program (ITS JPO 2019) and Energy Efficiency existing operational capabilities
Local4Global (Kosmatopoulos et al. ) Speed profiling commands for fuel
2013 - 2016 EU Traffic and Energy Efficiency . . i
2015) consumption and travel time savings.
Energy Efficient Intersection (EEI), Road
Compass4D (Mitsakis et al. 2014) 2013 - 2015 EU Safety, Energy Efficiency Hazard Warning (RHW), and Red Light
Violation Warning (RLW) Applications
Integration of real-time data and advanced
Transportation for Livability by transportation applications to minimize
Integrating Vehicles and the . environmental impacts; Development of
; 2012 - 2016 USA Energy Efficiency ] ) ; ) o
Environment (TranLIVE) (Rakha et modeling, simulation, and visualization
al. 2016; Tang et al. 2016) tools to assess energy, environmental, and
emission impacts
Assessment of cooperative Systems
DRIVE C2X (Stahlmann et al. 2011) 2011 -2014 EU Safety

through FOTs.
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Table 1.1. (Continued)
Project Name Duration Location Application Outputs
Connected Vehicle Program (2010- o More than three dozen connected vehicle
] Safety, Mobility and L .
2014 ITS Strategic Plan) (Grace et al. 2010 -2014 USA C ol applications concepts through prototyping
ommercia
2012) and demonstration.
eCoMove (Cooperative Mobility Strategies that provide efficient route
Systems and Services for Energy 2010 -2014 EU Traffic and Energy Efficiency choice, improved driving performance and
Efficiency) (Vreeswijk et al. 2010) robust traffic management and control.
Applications for the Environment: Models for the analysis of the
Real-Time Information Synthesis 2009 — 2014 USA Energy Efficiency environmental impacts of CV applications;
(AERIS) Program (Rakha et al. 2012) Prototype development of CV applications.
Cooperative and Optimized Traffic V2I and loop detector data for the
Signal Control in Urban Networks 2009 — 2012 DE Traffic Monitoring optimization of the adaptive traffic signal
(KOLINE) (Saust et al. 2010) control systems signalization.
. . . Safety, Traffic Efficiency, Technical implementation of a hybrid

Safe and Intelligent Mobility (sim™) .

. 2008 — 2014 DE Integrated Value-Added communication system, based on the well-
(Stiibing et al. 2010) .

Services known WLAN standard.
PRE-DRIVE C2X (Bechler et al. o Common European C2X communication
2008 - 2014 EU Connectivity
2009) system.
SAFESPOT (Vivo 2007) 2006 — 2010 EU Safety V2X safety-related information.
Cooperative Intersection Collision . . .
. SPaT message for improving intersection

Avoidance Systems (CICAS) 2006 — 2010 USA Safety

(Misener 2010)

safety.
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Table 1.1. (Continued)
Project Name Duration Location Application Outputs
Cooperative Vehicle-Infrastructure V2X in a continuous and transparent way
Systems (CVIS) (Toulminet et al. 2006 — 2010 EU Connectivity using a variety of media and with enhanced
2008) localization.
CO-OPerative SystEms for Intelligent Reduction of the gap in the development of
Road Safety (COOPERS) (Toulminet 2006 — 2010 EU Safety telematics applications between car
et al. 2008) industry and infrastructure operators.
Adaptive and Cooperative .
. . Wide range of traffic safety related
Technologies for Intelligent Transport 2006 —-2010 DE Safety : L
. cooperative applications.
(AKTIV) (Giebel et al. 2008)
Technical feasibility and functionality of
Vehicle Infrastructure Integration Safety, Mobility and the VII architecture, and the effective
2005 —2008 USA

(VID) (Opiola 2006)

Commercial

implementation of safety, mobility and

commercial applications.

[41]



1.3 Research Scope and Objectives

Increased demand for road trips is expected to have significant implications for energy
consumption and emissions in the upcoming decades. On the other hand, the evolution of CV
technology, such as dynamic eco-driving systems, provides an opportunity for achieving
sustainability goals and ameliorating the adverse environmental impacts of vehicular traffic.
Specifically, the standardization of C-ITS messages and the development of V21 communication
equipment enables the adoption of environmental friendly driving via dedicated real-time advice

on interrupted traffic flow facilities.

In the past decade, several models were introduced for achieving dynamic eco-driving in the
proximity of signalized intersections. Although the latter models assumed different methodologies
and optimization objectives for enhancing energy efficiency, the vast majority of them were
developed on the premise that CVs are equipped with automated driving functions that can
accurately execute the advised energy efficient driving strategies (automated dynamic eco-driving
systems). However, the transition towards a fully connected and automated road environment is
expected to endure for several decades prior to fruition. Thus, there will be a significant period of
time when several drivers will still have to enact upon provision of advice form the CV side or
supervise lower-level vehicle automation functions that will be commissioned with the task of

adopting the latter advice.

Hence, it becomes evident that human factors shall exert significant influence on the efficiency of
dynamic eco-driving systems that are advisory (driver has to adopt energy efficient driving
strategy) in the near future. This dissertation focuses on the human aspects of advisory dynamic

eco-driving and aims to provide methodologies and tools that:

e enhance comfort and safety of dynamic eco-driving advice,

e identify factors that influence driver adaptation to dynamic eco-driving advice,

e model and predict driver adaptation to dynamic eco-driving advice as a function of the most
influential factors identified in the previous step,

e incorporate dynamic eco-driving algorithms in microscopic traffic simulation software,

e conduct microscopic traffic simulation analysis to compare advisory and automated dynamic

eco-driving for different penetration rates and traffic demand levels,
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e process and analyze microscopic traffic simulation results to estimate traffic efficiency, safety

and environmental indicators.

Specifically, this dissertation proposes new elements in the design of existing dynamic eco-driving
models that are expected to bolster efficient adaptation to speed advice and evaluates their impacts
on emissions and mobility. Secondly, it uses data from the deployment of an advisory dynamic
eco-driving system on public roads to identify factors that affect driver’s adaptation to speed
advice and develop a decision tree (DT) model that can predict driver’s adaptation to speed advice
as a function of the latter factors. The DT model is subsequently integrated in the microscopic
traffic simulator AIMSUN to assess the environmental, traffic efficiency and safety impacts of
advisory dynamic eco-driving and compare its performance with automated dynamic eco-driving

and manual driving.
To this end, the objectives of the specific dissertation are:

e to provide insights about human-centered design of dynamic eco-driving systems to
automakers and C-ITS service providers,

e inform road authorities and operators about the expected impacts of different dynamic eco-
driving systems on the environment, traffic operations and safety

e advocate the benefits and point out the limitations of different dynamic eco-driving
technologies to policy makers,

o facilitate further research on the addressed topic via the set-up of a generic framework for
evaluating the impacts of human factors on dynamic eco-driving and the provision of relevant

and appropriate software and tools (in open-source format).

Finally, it is important to emphasize that the research scope of this dissertation explicitly
encompasses dynamic eco-driving models that are tailored for internal combustion engine (ICE)

vehicles.

1.4 Research Methodology

To accomplish the aforementioned objectives this dissertation adopts a multi-step methodological

approach which is illustrated in Figure 1.1 and presented in detail below:
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A) A comprehensive literature review is conducted that considers multiple aspects of state-of-the-
art research in the field of dynamic eco-driving for interrupted traffic flow facilities. Existing
dynamic eco-driving models are analyzed in terms of their conceptual design and optimization
objectives. Relevant impact assessment frameworks encompassing both simulation studies and
field experiments are elaborately described, while emphasis is also placed on a limited number of
research efforts that examine human factors in the context of dynamic eco-driving near signalized
intersections. Finally, an overview of the limitations of existing dynamic eco-driving models is
provided, which serves for the identification of knowledge gaps in the domain and the set-up of

the objectives and research hypotheses of this dissertation.

B) Theoretical model formulations are introduced for incorporating human factors in advisory
dynamic eco-driving models. Enhancements to the control logic of existing dynamic eco-driving
models are proposed that account for driver’s comfort and safety. Feature selection strategies are
recommended for identifying factors that affect driver’s adaptation to speed advice in the
proximity of signalized intersections. Additionally, DT models are adopted for predicting driver’s
adaptation to speed advice according to vehicle behavior, road geometry and traffic control

characteristics.

C) A microscopic traffic simulation framework is set-up for the investigation of the environmental,
traffic efficiency and safety impacts of advisory dynamic eco-driving. The framework
encompasses the microscopic traffic simulation software Aimsun, an Aimsun Application
Programming Interface (API) that mimics the behavior of CVs equipped with dynamic eco-driving
systems, an emissions models that quantifies environmental impacts, a Surrogate Safety
Assessment Model (SSAM) that estimates safety proxies for safety assessment, and a web-based
application that analyses vehicle trajectories generated via Aimsun. A simulation network of an
actual urban arterial corridor is built and calibrated against real-world traffic counts in Aimsun.
Finally, a comprehensive simulation experiment including several simulation scenarios with

varying penetration rates of different dynamic eco-driving technologies is devised and conducted.

D) The pilot operation of an advisory dynamic eco-driving model along an urban arterial corridor
is described. Information is provided with respect to the functional and physical architectures of
the deployed dynamic eco-driving system, as well as about the algorithm that determines its

operation. The management and performance of the pilot operation is presented along with
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technical details of the data collection process. Moreover, a description of the collected dataset

that feeds the development of the DT model is given.

E) The DT model that dictates driver adaptation to speed advice in the vicinity of signalized
intersections based on vehicle behavior, road geometry and traffic control characteristics is
presented. Subsequently, a thorough simulative assessment of advisory and automated dynamic
eco-driving models is conducted that considers environmental, traffic efficiency and safety key
performance indicators (KPIs). The assessment encompasses analysis of individual vehicle
behavior throughout dynamic eco-driving episodes, local impacts along specific dynamic eco-
driving service zones, as well as impacts on the network scale. Eventually, assumptions and
limitations of the current dissertation are discussed based on the dissertation’s findings and

outlooks are highlighted for future research in the field of dynamic eco-driving on urban roads.
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1.5 Structure of the Dissertation

An outline of the dissertation’s structure is given below:

1.

Chapter 2 provides a comprehensive state-of-the-art review on the core elements of dynamic
eco-driving models and the impact assessment methods used to evaluate their performance.
Chapter 3 deals with the introduction of human factors in the modelling of dynamic eco-driving
near signalized intersections and proposes a generic simulation framework for evaluating the
performance of different dynamic eco-driving systems.

Chapter 4 describes the pilot operation of a dynamic eco-driving service along an urban arterial
corridor and the relevant data used for model development in the context of this dissertation.
Chapter 5 presents a DT model developed for emulating driver adaptation to speed advice and
a simulative analysis of the performance of different dynamic eco-driving systems.

Chapter 6 summarizes the findings of this dissertation and illuminates future pathways for
research in the field of advisory dynamic eco-driving.

Appendix A provides information on an API developed for emulating dynamic eco-driving in
a microscopic traffic simulator.

Appendix B presents a web-based application developed for the analysis of vehicle trajectories

generated from microscopic traffic simulation software.

Finally, a list of related publications is provided at the end of the text.
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2 State-of-the-Art Review

Among the prevailing modern strategies to achieve energy savings and ameliorate the negative
environmental impacts of vehicular traffic is eco-driving. Eco-driving, constitutes a set of rules
that promote energy efficiency by operating the vehicle engine at the most fuel-efficient points.
Several eco-driving training programs were previously developed to establish eco-friendly driving
traits (Barkenbus 2010; Zarkadoula et al. 2007), while recently, the advent of CV technology has
empowered the development of dynamic eco-driving applications (offering real-time eco-driving

advice to drivers) for both interrupted and uninterrupted traffic flow facilities.

Examples for uninterrupted traffic flow facilities include: a) Intelligent Speed Adaptation (ISA)
systems (Servin et al. 2006; Varhelyi & Mikinen 2001), b) cooperative variable speed limits
applications (Grumert et al. 2015; Khondaker & Kattan 2015a), c¢) speed advisory systems in the
proximity of work zones (Ramezani & Benekohal 2015), or d) at the emergence of phantom traffic
jams (Suijs et al. 2015), as well as e) speed harmonization (Ma et al. 2016) and f) dynamic eco-

driving systems (Barth & Boriboonsomsin 2009).

For the case of interrupted traffic flow facilities, dynamic eco-driving applications have recently
attracted significant attention (Chen et al. 2015; Hao et al. 2015a; Jiang et al. 2017;
Kamalanathsharma & Rakha 2016; Xia et al. 2013b). This is mainly due to advancements in the
infrastructure-to-vehicle (I2V) communication technologies and the standardization of the SPaT
message, which provides a consistent manner to communicate signal status changes for C-ITS
applications (ETSI 2009; SAE International 2016). Research in dynamic eco-driving near
signalized intersections is progressing rapidly and producing a variety of conceptual and
methodological frameworks, application objectives and models to evaluate energy savings. These
advancements necessitate the analysis of existing literature to enhance the understanding of

research aspects, the applicability of services and their impacts to the road transport system.

A few scholars have already reviewed literature relevant to eco-driving. Policy and technology
issues pertaining to eco-driving were discussed by (Alam & McNabola 2014), while the major
factors affecting eco-driving were identified in (Huang et al. 2018). The energy implications of
eco-driving in a connected and automated road environment were also highlighted in a number of

recent studies (Guanetti et al. 2018; Taiebat et al. 2018; Vahidi & Sciarretta 2018; Wadud et al.
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2016). However, the latter studies mainly emphasize on the generic principles of eco-driving and
focus less on its technology and modelling related aspects. Moreover, none of the aforementioned
studies reviews dynamic eco-driving in the proximity of signalized intersections in a rigorous and

explicit manner although the topic is partially addressed in (Vahidi & Sciarretta 2018).

The latter gap in literature is addressed by this research, which focuses on the different aspects
(conceptual, methodological, evaluation, technology, human-related) of dynamic eco-driving in
the proximity of signalized intersections. To this end, a structured approach is adopted to analyze
literature through the following steps: a) identify the elements of dynamic eco-driving models
designed for signalized intersections and analyze literature accordingly, and b) present and
evaluate the corresponding impact assessment frameworks. Dedicated attention is given to human
factors and field experiments of dynamic eco-driving, which are aspects that have not been
comprehensively covered by existing reviews. Finally, this dissertation provides research

pathways for further enhancements of speed advice services developed for signalized intersections.

2.1 Elements of Dynamic Eco-Driving Models

The dynamic eco-driving models are analyzed according to (Figure 2.1): a) the elements that
specify the conceptual and methodological framework of the system, and b) the impact assessment

framework of the system, which can be analytical, simulated or based on real time data.

Dynamic Eco-Driving Models

Y A 4 l

Analytical Approaches Simulation Studies . .
.. Fe e
A. Parametric Evaluation A. Microscopic Simulation 5 )
» A Conceptual Design A Controlled Experiments
B. Sensitivity Analysis B. Agent-based Simulation .
> B. Methodological Framework B. Real-traffic Experiments

1. Energy/Emissions Models
2. Vehicle Dynamics Models

Figure 2.1. Structured approach for the state-of-the-art review of dynamic eco-driving models
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A variety of different algorithms and services for dynamic eco driving can be traced in literature
(Table 2.1). Existing dynamic eco-driving models vary in terms of conceptual design (problem
statement, parameters used etc.), the formulation of the problem solution (mathematical
formulation, interacting modules, input space etc.) and the energy and traffic models, which
translate the eco-driving service to energy and vehicle dynamics (Mintsis et al. 2020). Through

this prism, the existing literature is summarized in relation to the following features:

e specification of the input space,

e proposed methodological aspects (optimization objectives),

e fuel consumption models,

e vehicle dynamics models,

e analysis boundary (service zone of the dynamic eco-driving system), and

e traffic signal control strategy.

Furthermore, dynamic eco-driving models can be classified based on the recipient of the energy-
efficient speed advice. In the case of personalized advice (Figure 2.2), the system objective is to
generate energy and emission savings explicitly for a single vehicle. Thus, the impacts of
personalized advice to the fuel efficiency of surrounding traffic are not considered. On the
contrary, platoon-based speed recommendation (Figure 2.2) ensures that a fuel-optimal driving
strategy is provided to a group of vehicles approaching a signalized intersection. In this case, the

probability of adversely affecting the fuel efficiency of surrounding vehicles diminishes.

50



[nputs Process Output i Inputs Process Output
i

A, SPaT Information : A. SPaT Information

!
- Remaining green/red time ; - Remaining greenfred time
- Historical signal timing data ! - Historical signal timing data
- Guaranteed green time ! - Guaranteed green time

Dynamic Eco-driving Model
Dynamic Eco-driving Model . %
e i - Optimization Framewaor! .
. . - Optimization Framework Personalized i . Platoon-hased
B. CV Information — ‘ ‘ Dynamic Eeo- i B. Platoon Information -’ _ TLead-vehicle Problem Dynamie Eco-
- CV Lacation - Vehicle Dynamics Model driving Advice i - Target Platoon n driving Advice
- . ng i - Vehicle Dynamics Model 2
- CV Dynamics - Energy/Emissions Model ' - Downstream Platoon
- Energy/Fmissions Model

C. Queue Information i | €. Queue Information

I
- Queue length i - Queue I_e“g‘h_ o
- Queue formation/dissipation H - Quence formation/dissipation
- Preceding vehicle status !

|

i

i

'

i

i

!

{a) i (b)

Figure 2.2. Interacting elements of dynamic eco-driving models: (a) personalized advice; and (b) platoon-

based advice

2.1.1 Conceptual Design

Few dynamic eco-driving models explicitly accounted for single vehicle information (dynamic
status and location) and SPaT information to estimate energy-efficient speed advice in the vicinity
of isolated and pre-timed controlled signalized intersections (Li et al. 2009; Mandava et al. 2009;
Wan et al. 2016; Xia et al. 2013a; Yao & Li 2020). A dynamic eco-driving system for signalized
corridors that encompasses an arterial velocity planning algorithm which estimates energy-
efficient (de)acceleration profiles based on remaining green/red time and distance between the
vehicle and the intersection was developed by (Barth et al. 2011). Although the aforementioned
models considered similar inputs for the estimation of fuel-optimal speed profiles, they used
different methodologies to process these inputs. Moreover, they assumed that the space between
the equipped vehicle and the signalized intersection is unoccupied, thus disregarding the impact of

surrounding traffic.

Lead vehicle status and queue length at stop line were also incorporated in the mathematical
formulations of dynamic eco-driving models to enhance the accuracy, feasibility and fuel-
efficiency of speed advice tailored for single vehicles under denser traffic conditions (He et al.
2015; Kamalanathsharma & Rakha 2016; Xia etal. 2013b; Yang et al. 2017). The predictive cruise

control (PCC) model provided energy-efficient (de)acceleration strategies, while, concurrently
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minimizing travel time under both free-flow and stop-and-go traffic (Asadi & Vahidi 2011), and
the predictive driver assistance system was based on SPaT information, vehicle location and
dynamics, and queue length information for the estimation and provision of energy-optimal advice
to drivers (Schuricht et al. 2011). (Rakha et al. 2012) introduced a dynamic eco-driving model that
initially estimates a suggested arrival time to the signalized intersection according to queue length
information, presence of preceding vehicles and the SPaT message, and subsequently calculates a
fuel-optimal driving strategy based on the previously estimated suggested arrival time to
intersection, the vehicle (de)acceleration model, and roadway characteristics. (Xia et al. 2013b)
incorporated an intersection delay term to the velocity planning algorithm previously developed
by (Barth et al. 2011) to capture the effects of preceding vehicles on energy and emissions savings.
(Chen et al. 2014) developed a dynamic eco-driving model that estimates fuel-efficient vehicle
trajectories by using SPaT and queue discharge information. Furthermore, (He et al. 2015)
integrated spatial and temporal constraints from traffic light queues into the formulation of an
optimal control problem that estimates fuel-efficient speed advisory for CVs approaching

signalized intersections.

Early dynamic eco-driving models were designed based on the assumption that the signal control
plan of the equipped signalized intersection is pre-timed, and that real-time accurate acquisition of
future SPaT information is always feasible and guaranteed (Barth et al. 2011; Kamalanathsharma
& Rakha 2016; Mandava et al. 2009; Rakha et al. 2012; Raubitschek et al. 2011; Wan et al. 2016;
Xia et al. 2013a). However, vehicular traffic is controlled by actuated and/or coordinated or
adaptive traffic signal control plans at several signalized intersections and the acquisition of precise
future SPaT information is a difficult task due to timing drift in pre-timed traffic signals, and
fluctuating traffic conditions for actuated and adaptive lights. In these cases, the retrieval and use
of accurate future SPaT information from signal controllers becomes a demanding task and, thus,

may be restricted to only the red phase in actuated conditions (Vreeswijk et al. 2010).

However, few researchers developed and simulated methodologies that facilitate the
implementation of dynamic eco-driving services for actuated or adaptive traffic lights
(Bodenheimer et al. 2014; Hao et al. 2015a; Hao et al. 2018; Mahler & Vahidi 2012; Mousa et al.
2019; Sun et al. 2018; Weber & Winckler 2013; Xin et al. 2019). (Mahler & Vahidi 2012) utilized
probabilistic signal timing information based on real-time phase data, and historically averaged

timing data per signal status, while (Weber & Winckler 2013) worked with the guaranteed green
52



and the green band for the determination of the possible green window that the CV could arrive at
the intersection in the case of coordinated and actuated control. Moreover, (Hao et al. 2015a) also
developed an Eco-Approach and Departure (EAD) application for actuated signals, while
(Bodenheimer et al. 2014) enabled Green Light Optimized Speed Advisory (GLOSA) for adaptive
traffic lights by using empirical signal and detector data. Stochastic dynamic programming
techniques were adopted by (Typaldos et al. 2020a; Typaldos et al. 2021) to estimate in real time
fuel-efficient velocity profiles for CVs when traffic signals operate in adaptive mode. Precise
knowledge of future SPaT information is still difficult due to technological barriers and the
dynamic operation of actuated coordinated and adaptive traffic signals, thus rendering dynamic
eco-driving challenging for most traffic signals in the real world. However, it is expected that
connected and automated driving (CAD) technology will provide new opportunities in terms of

accurate prediction of future signal status for actuated, coordinated and adaptive traffic lights.

Interest in the field of dynamic eco-driving in the proximity of signalized intersections has been
also oriented towards the estimation of energy and traffic efficient speed advice for platoons of
vehicles (Chen et al. 2015; Stebbins et al. 2017; Wang et al. 2018; Wu et al. 2019; Zhou et al.
2017). Platoon-based energy-efficient speed control of vehicles in the proximity of signalized
intersections has been considered both for mixed and fully connected and automated road traffic
environments based on the following approaches. Either by explicitly identifying the optimal
leaders, controlling platoon length (joining/splitting), and naturally allowing platoons to form
upstream of the traffic signal (Chen et al. 2015; Stebbins et al. 2017), or by additionally enabling
V2V communication based cooperative car-following CAVs to bolster platoon progression (Han
et al. 2020; Jin et al. 2013; Liu & Kamel 2016; Ma et al. 2021; Wang et al. 2017; Z. Wang et al.
2019; Yang et al. 2021; Zhao et al. 2018).

(Chen et al. 2015) proposed a platoon-based speed control algorithm for eco-driving at signalized
intersections, which accounts for the signal timing information, the dynamic traffic characteristics
of the target platoon, as well as for the influence of the downstream platoon to estimate an optimal
(de)acceleration profile for the target platoon. (Stebbins et al. 2017) adapted a GLOSA system to
provide multiple acceleration advices to a CAV, irrespective of the initial conditions (remaining
red time, activation zone and initial speed) based on a time looping technique to solve the lead-
vehicle problem (Daganzo 2006). Finally, (Zhou et al. 2017) developed a parsimonious shooting

heuristic algorithm that can estimate safe, traffic efficient and energy-efficient trajectories for a
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platoon of CAVs along a signalized highway taking into consideration boundary conditions,
vehicle powertrain capabilities, safety constrains, and remaining red/green time to plan the vehicle
trajectories. It is to note that, although dynamic eco-driving for CAV platoons has gained lesser
attention so far, early evidence indicates that it provides the ground for a substantial enhancement

of the energy and emission saving potentials of existing dynamic eco-driving models.

Additionally, research attention has been placed on the development of dynamic eco-driving
models that utilize SPaT information from multiple signalized intersections to provide fuel
efficient speed advice along signalized corridors (Asadi & Vahidi 2011; Lin et al. 2021; Liu et al.
2019; Yang et al. 2020). Other implementations have integrated CAV lane changing and
overtaking capabilities in the estimation of energy-efficient speed advice along signalized
corridors (Guo et al. 2021; Hu et al. 2021; Wang et al. 2017). Moreover, deceleration strategies
received greater interest, since they provide higher energy savings potential, while some
researchers considered the recommendation of acceleration as safety critical (Raubitschek et al.
2011). Very promising results with respect to environmental benefits at interrupted traffic flow
facilities have been also identified from the joint optimization of traffic signal control and dynamic
eco-driving advice (Du et al. 2021; Erdmann 2013; Liang et al. 2019; Soleimaniamiri et al. 2020;
Xu et al. 2019; Yu et al. 2018).

2.1.2 Methodological Framework: Eco-driving as an Optimization Problem

Dynamic eco-driving systems mainly use mathematical programming methods to estimate energy
and/or traffic optimal (de)acceleration speed profiles. Existing dynamic eco-driving models vary
significantly in terms of their optimization objectives (Table 2.1). The formulated optimization
problems of many dynamic eco-driving models minimize vehicle tractive force, vehicle
(de)acceleration and/or idling time (Barth et al. 2011; Chen et al. 2015; Hao et al. 2015a; Mahler
& Vahidi 2012; Mandava et al. 2009; Xia et al. 2013b). The rationale behind idling time
minimization is based on the strong correlation between stop events at traffic lights and increased

fuel consumption and emissions.

(Mandava et al. 2009) developed a power-constrained algorithm that minimizes the
(de)acceleration rate of the equipped vehicle during the transition from the vehicle's current speed
to a target speed that will allow it to pass the downstream signalized intersection on green signal

status without stopping. Barth’s velocity planning algorithm minimizes fuel consumption and
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emissions by minimizing idling time and total tractive force demanded for the complete vehicle
maneuver. Concurrently, the optimal velocity must be lower than a maximum speed threshold, and
ride comfort constraints should be met (Barth et al. 2011). (Mahler & Vahidi 2012) formulated an
optimization problem that minimized total trip time and acceleration, thus disengaging the
estimation of fuel-optimum speed from the vehicle's dynamic models and propulsion system.
Finally, (Chen et al. 2015) formulated an optimization problem that minimized the target platoon's

idling time by optimizing the (de)acceleration rate during the eco-driving maneuver.

Interestingly, literature emphasizes that those algorithms that focus on optimization of the
standstill time could be more energy-efficient compared to those that attempt to reduce the
deceleration time under specific circumstances (Raubitschek et al. 2011). Thus, researchers
incorporated explicit fuel consumption models in the objective functions of the speed advice
optimal controllers to ensure energy and emissions benefits under any conditions (He et al. 2015;

Rakha et al. 2012).

Recent dynamic eco-driving models value energy efficiency and mobility concurrently by
integrating mobility components into their optimal controllers. These models can estimate optimal
speed profiles both in terms of energy and traffic efficiency. A variety of different optimization
frameworks have been proposed in literature. Some prominent examples include model predictive
control (MPC) approaches based on trip time and kinetic energy loss (Asadi & Vahidi 2011), fuel-
optimal speed profiles estimation based on a linear combination of traffic efficiency and emissions
(Chen et al. 2014), and optimal controllers based on the formation of tight and fast-moving
platoons prior to the optimization of fuel efficiency (Jiang et al. 2017). In some research efforts,
optimization frameworks that also encompassed safety constraints for the estimation of safe,
energy and traffic efficient trajectories of vehicle streams near signalized intersections were
proposed (Hao et al. 2015a; Ma et al. 2017; Stebbins et al. 2017; Zhou et al. 2017). Recently,
artificial intelligence has been also used for estimating and providing dynamic eco-driving advice

in the proximity of signalized intersections (Mousa et al. 2018; Yang et al. 2019).
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Table 2.1. Characteristics of existing dynamic eco-driving models

. R Fuel Vehicle . Traffic
Dynamic Eco- Optimization . . Analysis .
Author(s) drivine Model Inputs Methodology Obiectives Consumption Dynamics Boundar Signal
g ! Model Models y Control
- SPaT Message - Non-linear
o - Vehicle Status Dynamic - Electricity Dynamic Battery Deceleration Upstream of .
Ma etal. (2021) Eco-CACC - Preceding Programming Consumption Model - Non-linear Traffic Signal Pre-timed
Vehicle Status Acceleration
- SPaT Message
Cooperative i ;’]ree}élec(ll?nztatus - Idle Time
Yang et al. (2021 Driving Vehicle Status Int.eg.rate.d - Tractive Force MOVES Trlgonometrlc Upstrearp of Coordinated
Optimization - Delay Acceleration Traffic Signal ~ Actuated
Framework - Queue
. . - Cycle Offset
information
-Signal Parameters
- SPaT Message - Constant
- Vehicle Status Mixed Integer Non- - Fuel Akcelik Model & Deceleration Upstream of .
Han et al. (2020) PTO-GFC - Preceding linear Program Consumption VT-Micro - Constant Traffic Signal Pre-timed
Vehicle Status Acceleration
Decentralized - SPaT Message : glrli\]/e] Time - Non-linear
Yao & Li (2020) Mo@el for CAV - Vehlcl§ Status Mathel.natl.cal Consumption VT-Micro Deceler‘atlon Upstrearp of Pre-timed
Trajectory - Preceding Optimization . - Non-linear Traffic Signal
AN . - Inverse Time-to- .
Optimization Vehicle Status . Acceleration
collision
: slzi?cffgstsaiﬁs - Idle Time Trigonometric Upstream &
Wang et al. (2019) CED : Analytical Model . MOVES & . Downstream of  Pre-timed
- Preceding - Tractive Force Acceleration .
. Traffic Signal
Vehicle Status
Cluster-Wise : %/I;?l?cff ;ﬁﬁ: - Idle Time Trigonometric Upstream &
Wang et al. (2018) Cooperative . Analytical Model . MOVES & . Downstream of  Pre-timed
- Preceding - Tractive Force Acceleration .
EAD Traffic Signal

Vehicle Status
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Table 2.1. (Continued)

. R Fuel Vehicle . Traffic
Dynamic Eco- Optimization . . Analysis .
Author(s) drivine Model Inputs Methodology Obiectives Consumption Dynamics Boundar Signal
g ! Model Models y Control
Dynamic Eco- - SPaT message
driving - Vehicle Status
under Partially . Optimal Controller - Mobility . Upstream &
. - Preceding . Akcelik Model & .
Jiang et al. (2017) Connected and . (Pontryagin - Fuel . - Downstream of  Pre-timed
Vehicle Status .. = . VT-Micro .
Automated Minimum Principle) Consumption Traffic Signal
. - Loop Detector
Vehicles
. Data
Environment
- SPaT message Dvnami
- Vehicle Status ynamic - Constant
Kamalanathsharma & - Preceding Programming - Fuel Deceleration Upstream &
ECACC . (modified A-star . VT-CPFM-1 . Downstream of  Pre-timed
Rakha (2016) Vehicle Status . Consumption - Rakha & Lucic .
pathfinding ) Traffic Signal
- Queue . Acceleration
. . algorithm)
information
- Full SPaT
information
. - Vehicle Status One-engine
Wang et al. (2016) Speed Guidance Environmental Simulation - Shi Model Constant . Up stream of Pre-timed
Model . . Acceleration Traffic Signal
Characteristics of Architecture
Intersection
Surrounding
: slzi?cirel(esstse?t%l: . - Idle Time Trigonometric Upstream &
Hao et al. (2015a) EAD ) Analytical Model . MOVES . Downstream of  Actuated
- Preceding - Tractive Force Acceleration .
. Traffic Signal
Vehicle Status
Platoon-Based i slzi?cirel(esstse?t%l: ]-DE((:)eanter:iton Upstream of
Chen et al. (2015) Dynamic Eco- . Analytical Model - VT-micro P . Pre-timed
driving - Preceding - Constant Traffic Signal
Vehicle Status Acceleration
- Full SPaT . . . . . Upstream &
. ) . . Mathematical - Idle Time Power-based Quasi-  Trigonometric .
Xiang et al. (2015) CAEHV-C information Optimization - Tractive Force Static Model Acceleration Downstream of ~ Pre-timed

- Vehicle Status

Traffic Signal
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Table 2.1. (Continued)

. R Fuel Vehicle . Traffic
Dynamic Eco- Optimization . . Analysis .
Author(s) drivine Model Inputs Methodology Obiectives Consumption Dynamics Boundar Signal
. ! Model Models Y Control
;anEEnSaIt)ii)Tl Multi-stage Optimal Upstream &
. Control Problem - Fuel Biggs & Akcelik Constant p .
He et al. (2015) - - Vehicle Status L . . Downstream of  Pre-timed
(Approximation Consumption Model Acceleration .
- Queue Traffic Signal
. . Method)
information
- Full SPaT - Constant
information Mathematical - Emissions (NOx) Motor Vehicle Deceleration Upstream &
Chen et al. (2014) - - Vehicle Status Optimization . * Emissions . Downstream of  Pre-timed
. . - Travel Time . - Nonlinear .
- Queue (Genetic Algorithm) Simulator . Traffic Signal
] . Acceleration
information
. - Full SPaT
Dynamic Beo- . p i ation Upstream &
Xia et al. (2013b) Driving for - Vehicle Status Mather.natl.cal - ldle Tlme CMEM Trlgonometrlc Downstream of  Pre-timed
Connected . Optimization - Tractive Force Acceleration .
Vehicles - Prgcedlng Traffic Signal
Vehicle Status
Weber & Wrinclker Dynamic Eco- Full SP_a T Mathematical - Idle Time Trigonometric Upstream & - Pre-timed
(2013) Drivin information Optimization - Tractive Force ) Acceleration Downstream of - Actuated &
& - Vehicle Status P Traffic Signal ~ Coordinated
Predictive - Probabilistic
o Optlmal SPaT .1nformat10n Determml.stlc - Acceler%_mon & AUTONOMIE
Mabhler & Vahidi (2012) Velocity - Vehicle Status Dynamic Deceleration Rate - - Any Type
. . . (v1210)
Planning - Queue Programming - Travel Time
Algorithm information
- Full SPaT
information Constant
- Vehicle Status Mathematical - Fuel i)ec?elirition Upstream &
Rakha et al. (2012) - - Preceding L Y . VT-CPFM-1 . Downstream of  Pre-timed
. Optimization Consumption - Rakha & Lucic .
Vehicle Status . Traffic Signal
Acceleration
- Queue
information
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Table 2.1. (Continued)

. R Fuel Vehicle . Traffic
Dynamic Eco- Optimization . . Analysis .
Author(s) drivine Model Inputs Methodology Obiectives Consumption Dynamics Boundar Signal
g ! Model Models y Control
- Full SPaT
Predictive information . .
Schuricht et al. (2011) Driver - Vehicle Status - - Akcjeh.k Statistical - - Pre-timed
' Emissions Model
Assistance - Queue
information
Raubitschek et al. Predictive - Full SPaT Upstream & .
2011) Drivine Strate information - - Dymola - Downstream of  Pre-timed
ving &Y _Vehicle Status Traffic Signal
. - Full SPaT . . . . Upstream &
Barth et al. (2011) Dynamic Eco- information Mathematical - Idle Time CMEM Trigonometric Downstream of ~ Pre-timed
Driving . Optimization - Tractive Force Acceleration .
- Vehicle Status Traffic Signal
- Full SPaT oy L Powertrain System
Asadi & Vahidi (2011) PCC information hg:ii(ir?ﬁ;tg;e : %;gs::llc]ﬁgggy Analysis Toolkit - - Pre-timed
- Vehicle Status (PSAT)
- Full SPaT - Tractive Force
Vreeswijk et al. (2010) - information - (only duringred  EnViVer - - Pre-timed
- Vehicle Status phase)
) zgildgia Empirical Formula
Saust et al. (2010) - - - (function of work - - Pre-timed
- Queue
. . on wheels)
information
Arterlg I Velocity . Full SPg T Mathematical - Acceleration Constant .
Mandava et al. (2009) Planning information Optimization Rate CMEM Acceleration - Pre-timed
Algorithm - Vehicle Status P
Jusnr
Li et al. (2009) ADAS . - - CMEM - Downstream of ~ Pre-timed
- Travel time to .
' Traffic Signal
stop line.
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2.2 Impact Assessment Framework

The operation and performance of dynamic eco-driving models has been evaluated through:

8. analytical methodologies (Chen et al. 2014; Chen et al. 2015; Hao et al. 2015a; Li et al. 2009;
Ma et al. 2017; Rakha et al. 2012),

9. microscopic traffic simulation tools (Asadi & Vahidi 2011; Barth et al. 2011; He et al. 2015;
Jiang et al. 2017; Kamalanathsharma et al. 2015; Kamalanathsharma & Rakha 2016; Mandava
et al. 2009; Raubitschek et al. 2011; Schuricht et al. 2011; Tielert et al. 2010; Vreeswijk et al.
2010; Xia et al. 2013a; Xia et al. 2013b), and

10. field experiments (controlled and real-traffic) (Almannaa et al. 2017; Hao et al. 2015b; Hao et
al. 2018; He et al. 2015; Mahler & Vahidi 2012; Mintsis et al. 2017; Mufioz-Organero &
Magana 2013; Rakha et al. 2016; Raubitschek et al. 2011; Saust et al. 2010; Stahlmann et al.
2017; Weber & Winckler 2013; Xia et al. 2012).

The analysis boundary in most studies encompassed both the road section upstream of the
signalized intersection and the downstream one where energy and emission benefits from
deceleration strategies are realized. Table 2.2 depicts the selected evaluation methodology per
dynamic eco-driving model and the corresponding energy and traffic impacts. Since energy and
vehicle dynamics models markedly affect the fuel efficiency and emissions computations
conducted in numerical and simulation studies, we firstly present a relevant discussion regarding
their use in impact assessment frameworks of dynamic eco-driving models. Subsequently, a
thorough description of each evaluation methodology and an overview of the reported results are

provided.

2.2.1 Energy and Traffic Models

Assessing the efficiency of dynamic eco-driving strategies and services has been for long a serious
consideration. Several integral parts need to be developed to effectively replicate the behavior of
both the service, the user who receives the information from the service, and the system that
interacts with the user and the service. To this end, literature has pointed towards two integral

modules that are critical to the assessment of dynamic eco-driving services:
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e the fuel consumption and emission model, which is not only integrated to the optimization
function, but needs to be determined to assess the energy impacts of the service to the system,
and

e the vehicle dynamics models, or else the models that should be introduced to accurately

replicate the behavior of vehicles under the effect of dynamic eco-driving services.

The latter modules are usually integrated in an impact assessment framework dedicated to enable
the estimation of the effects of dynamic eco-driving on traffic and environment. The literature on
the fuel consumption and emission models, as well as the vehicle dynamics models are analyzed

in the following sections.

2.2.1.1 Fuel Consumption and Emissions Models

The use of fuel consumption and emissions models within the context of dynamic eco-driving is
twofold. Fuel consumption or emissions models were explicitly integrated in the optimization
function of dynamic eco-driving models (He et al. 2015; Rakha et al. 2012), or they were used
after the estimation of the energy-efficient speed profile to quantify energy savings (Barth et al.
2011; Hao et al. 2015a; Li et al. 2009; Mandava et al. 2009; Xia et al. 2013a; Xia et al. 2013b).
For those models encompassing a fuel consumption model in their objective function, energy
efficiency computations were performed seamlessly and concurrently with the solution of the
optimal problem, while for the rest detailed speed trajectories extracted from simulation tools were

fed to the fuel consumption and emissions models.

According to dynamic eco-driving literature, black-box fuel consumption models were primarily
used to evaluate the energy savings of dynamic eco-driving applications. These are data-driven
mathematical models that do not capture physical processes and are divided in three categories
according to their inputs: a) engine-based, b) vehicle-based, and ¢) mode-based. They are
considered suitable for evaluating the energy implications of eco-driving applications due to their
simplicity and accuracy in real-time estimation of fuel consumption (Zhou et al. 2016). Research
findings based on the Comprehensive Modal Emissions Model (CMEM) (vehicle-based black box
fuel consumption model) indicated that sharp decelerations to target speed and full throttle
accelerations to desired speed (bang-bang control) maximized energy efficiency (Barth et al. 2011;
Li et al. 2009; Mandava et al. 2009; Xia et al. 2013a). However, this finding contradicted typical

eco-driving behavior and actual measurements. Non-linear power-based or instantaneous speed
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and acceleration fuel consumption models (vehicle-based black box models) prevented the
development of bang-bang control systems and predicted valid and accurate energy and emissions
benefits (Chen et al. 2014; Chen et al. 2015; He et al. 2015; Jiang et al. 2017; Rakha et al. 2012;
Schuricht et al. 2011). Simplified fuel consumption approaches that utilized the square of-
acceleration term were also proven to be highly efficient for accurately solving the fuel
minimization problem of CV trajectories in the proximity of signalized intersections (Typaldos et

al. 2020b).

2.2.1.2 Vehicle Dynamics Models

Researchers used different vehicle dynamics models to describe the equipped vehicle’s transition
from current to target speed upstream of the signalized intersection and its return to desired speed
on the downstream link. Constant acceleration, linear acceleration, constant-throttle and non-linear
acceleration models were adopted. (Mandava et al. 2009) assumed a constant (de)acceleration rate
during the aforementioned transition. A study developed trigonometric functions to replicate the
increase/decrease of an equipped vehicle speed profile in order to account for ride comfort (Barth
et al. 2011). (Chen et al. 2015) considered constant (de)acceleration rates for the transition of the
target platoon from the initial (activation zone entry speed) to the target speed and back to the

desired speed after crossing the signalized intersection.

However, with respect to acceleration strategies actual vehicle dynamic constraints should be
considered in the sense that motor vehicles can accelerate more at lower than at higher speeds.
This research direction was followed by (Rakha et al. 2012) who used a constant deceleration
model and the Rakha and Lucic acceleration model (Rakha et al. 2004), which is non-linear, for
the estimation of fuel-optimal maneuvers. Likewise, (Chen et al. 2014) used a constant
deceleration model to estimate the upstream maneuver of the eco-driving vehicle, while a non-
uniform acceleration model was used for the downstream maneuver since acceleration decreases

with increasing vehicle speed.

Fuel consumption and emissions are significantly impacted from the vehicle dynamics models that
are used to describe the vehicle maneuver from current to target speed and subsequently to desired
speed downstream of the signalized intersection (Rakha & Ahn 2004). Therefore, it is critical that

the vehicle dynamics models that are used for the development and evaluation of dynamic eco-
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driving models account for actual vehicle capabilities with respect to braking and throttling

(Rajamani 2011).

2.2.2 Analytical Methodologies

A summary of the studies that used numerical examples to demonstrate the benefits of dynamic
eco-driving near signalized intersections is presented below. A parametric evaluation of an
Advanced Driving Alert System (ADAS) developed by (Li et al. 2009) was conducted for different
values of green/red ratio, initial conditions (signal timing information, vehicle status and location),
activation zone length, and vehicle type, which showed energy and emissions savings on the order
of 12 — 14%. (Rakha et al. 2012) focused on the analysis of deceleration strategies, when a CV
must reduce speed to arrive at the downstream signalized intersection during the upcoming green
window. A sensitivity analysis conducted to test the performance of the model for different initial
conditions, vehicle types and signal timing plans indicated savings up to 30% compared to the

average fuel consumption.

(Chen et al. 2014) conducted a sensitivity analysis to measure the impacts of their proposed
dynamic eco-driving model on emissions and travel time for different values of: a) the distance of
the equipped vehicle from the end of the queue when the driver decides to decelerate, b) the time
required from the onset of green signal till the last vehicle in the queue begins to accelerate, and
c) the weights of the emissions and travel time. The analysis showed that the eco-driving strategy
reduces emissions and travel time both for minimization of emissions and minimization of travel

time.

A numerical evaluation of the EAD algorithm was conducted for different signal control plans and
vehicle approach speeds in (Hao et al. 2015a). Results indicated that fuel and emission savings
range between 11% — 30% for low vehicle approach speed (<50 km/h), and 3.3% — 6.2% for
vehicle approach speed close to the speed limit (65 km/h). Numerical examples were also used to
demonstrate the energy savings generated by a dynamic eco-driving model that estimates fuel-
optimal trajectories near signalized intersections taking into consideration queue length

information (He et al. 2015).

Furthermore, (Chen et al. 2015) examined the performance of a platoon-based speed control

algorithm both for fully obedient platoons and mixed platoons. The parametric analysis results

63



showed that the speed control algorithm produced energy savings compared to conventional
driving under any conditions (time to red, time spent by downstream platoon to clear the
intersection, driving behavior under eco-driving status). Finally, a numerical study indicated that
optimizing vehicle trajectories along a signalized highway section assuming a fully connected and
automated road environment can yield fuel savings ranging between 30% — 65% for specific traffic

signal cycle lengths, highway section lengths, and saturation flow rates (Ma et al. 2017).

2.2.3 Simulation Studies

Simulation tools, such as microscopic traffic (Casas et al. 2010; Fellendorf & Vortisch 2010; Sykes
2010), or agent-based simulation models (Abar et al. 2017; Kamalanathsharma et al. 2015;
Kamalanathsharma & Rakha 2016) have been systematically used for the evaluation of dynamic
eco-driving in the vicinity of signalized intersections. The impacts of dynamic eco-driving models

as reported by simulative assessment studies are shown in Table 2.2.

Tested simulation networks have been either selected to be simplified with hypothetical demand
scenarios (Asadi & Vahidi 2011; Barth et al. 2011; He et al. 2015; Jiang et al. 2017; Mandava et
al. 2009; Schuricht et al. 2011; Tielert et al. 2010; Xia et al. 2013a; Xia et al. 2013b), or represented
actual road networks and were calibrated against field traffic measurements (Kamalanathsharma

etal. 2015; Tielert et al. 2010; Vreeswijk et al. 2010). Simulation experiments were run for:

e different network types (urban, suburban, and rural environments) (Asadi & Vahidi 2011;
Barth et al. 2011; Kamalanathsharma et al. 2015; Tielert et al. 2010; Vreeswijk et al. 2010),

e network configurations (single lane intersection approach, multi-lane intersection approach,
multi-lane arterial corridor) (Asadi & Vahidi 2011; Jiang et al. 2017; Kamalanathsharma et al.
2015; Mandava et al. 2009; Stebbins et al. 2017; Tielert et al. 2010; Xia et al. 2013a; Xia et al.
2013Db),

e single vehicle (He et al. 2015) or multi vehicle (Asadi & Vahidi 2011; Tielert et al. 2010; Wang
et al. 2019) scenarios

e traffic conditions (under-saturated, saturated, and over-saturated) (Barth et al. 2011; Jiang et
al. 2017; Kamalanathsharma et al. 2015; Stebbins et al. 2017; Xia et al. 2013a; Xia et al.
2013b),
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e market penetration rates of the dynamic eco-driving technologies (Kamalanathsharma et al.
2015; Xia et al. 2013a; Xia et al. 2013b),

e traffic signal cycle lengths (Barth et al. 2011; Raubitschek et al. 2011; Xia et al. 2013a),

e activation zone lengths (Barth et al. 2011; Mandava et al. 2009; Raubitschek et al. 2011; Tielert
et al. 2010; Xia et al. 2013b),

e vehicle status and location information at activation distance (Kamalanathsharma & Rakha
2016; Schuricht et al. 2011), and

e vehicle types (Kamalanathsharma & Rakha 2016; Mandava et al. 2009).

Moreover, different models have been used for assessing the fuel consumption and emissions
produced by traffic under the effect of speed advice algorithms in a simulation environment.
(Mandava et al. 2009) used the CMEM emissions model (Barth et al. 2000) in a stochastic
simulation environment for the quantification of the energy and emissions benefits. (Vreeswijk et
al. 2010) applied the statistical emissions model EnViVer (Smit et al. 2007) and (Tielert et al.
2010) the Passenger Car and Heavy Duty Emission Model (PHEM) (Hausberger et al. 2011) in
VISSIM simulation environment. (Asadi & Vahidi 2011) used the Powertrain System Analysis
Toolkit (PSAT) in SIMULINK for the estimation of the fuel economy of vehicles. (Barth et al.
2011; Xia et al. 2013a) used the microscopic traffic simulation software PARAMICS and CMEM
modal emissions model for fuel consumption and emissions quantification. (Raubitschek et al.
2011) integrated the Dymola v5.3 model within MATLAB to estimate fuel consumption, while
(Schuricht et al. 2011) conducted experiments using the Intelligent-Driver Model (IDM) to assess
the fuel savings potential of a predictive driver assistance system. (Kamalanathsharma & Rakha
2014, Kamalanathsharma et al. 2015) run agent-based simulations in a MATLAB test-bed to test
the network-wide impacts of vehicle eco-speed control, and, later, incorporated the Eco-
Cooperative Adaptive Cruise Control (ECACC) model into the INTEGRATION microscopic

traffic simulation software to conduct network-wide traffic simulation experiments.

Evidence from simulation experiments shows that in single-lane simulation scenarios speed advice
benefits levelled off over a market penetration rate of 40 — 50% (Barth et al. 2011; Xia et al. 2013a).
On the contrary, in multi-lane scenarios where lane-changing activity of conventional vehicles
degrades the performance of the dynamic eco-driving service it was proven that higher market

penetration rates (up to 100%) yield higher savings (Xia et al. 2013a). Initial dynamic eco-driving
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models provided significant benefits only under light or medium demand levels (Barth et al. 2011;
Mandava et al. 2009; Xia et al. 2013a). However, when queue discharge information was
incorporated in the logic of more advanced dynamic eco-driving models and mobility components
were added in their objective functions, energy, emissions and travel time savings were realized
under congested traffic conditions as well (Hao et al. 2015a; Jiang et al. 2017; Kamalanathsharma

et al. 2015; Kamalanathsharma & Rakha 2016; Xia et al. 2013b).

Furthermore, several simulation studies identified that fuel savings were higher for higher vehicle's
approach speed, since the flexibility for changes to a vehicle's trajectory increases at higher speeds
(Kamalanathsharma et al. 2015; Kamalanathsharma & Rakha 2014). Findings also demonstrate
that higher vehicle offset times reduce fuel savings, since equipped vehicles have to maintain a
lower average speed upstream of the traffic lights, and subsequently accelerate to their desired
speed from a lower speed on the downstream section (Kamalanathsharma & Rakha 2016,
Kamalanathsharma & Rakha 2014; Raubitschek et al. 2011; Schuricht et al. 2011). Moreover,
there exists evidence that speed advisory models underperform when the service activation
distance is short as there is limited space for equipped vehicles to modify their trajectories
accordingly (Kamalanathsharma & Rakha 2016, Kamalanathsharma & Rakha 2014; Xia et al.
2013Db).

Overall, energy and emissions savings ranging between 2% — 70% and travel time savings ranging
between 2% — 68% were reported in the literature regarding the impacts of dynamic eco-driving
on travel efficiency, energy efficiency and the environment (Table 2.2). However, it is practically
infeasible to directly compare the reported savings from different models because they were
developed based on different constraints, assumptions, vehicle and fuel consumption models, as

well as initial conditions (vehicle speed, vehicle location, traffic signal plan) (Table 2.1).

2.2.4 Human Factors in Simulation Studies

The efficient operation of CVs is profoundly related to the behavioral adaptation of the driver to
the information assistance system (Sharma et al. 2018). If drivers fail to comply with the provided
advice, behavioral adaptation is not possible and the benefits of the system diminish. Thus, driver’s
compliance to the system, which depends on personal traits, cognitive and psychomotor functions,
situational factors, acceptance and trust, is a very critical factor for realizing benefits from CV

applications when the latter are manually driven. However, the influence of driver’s compliance
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on the performance of dynamic eco-driving systems is a topic that has gained limited attention.
Moreover, limited focus has been placed on data-driven approaches for simulative assessment of

human factors affecting dynamic eco-driving in the vicinity of signalized intersections.

(Xiang et al. 2015) proposed a speed advisory model that could enhance driver’s adaptability to
dynamic eco-driving advice and provide more fuel savings compared to its naive counterpart
(without consideration of driver’s behavior). Nonetheless, the latter model accounted for generic
driver behavioral traits, its development was not based on field data, and was not evaluated in real
world conditions. (Butakov & Ioannou 2016) conducted a driving experiment in downtown Los
Angeles encompassing three drivers in order to collect real-world data (speed and acceleration)
which were utilized to develop a dynamic eco-driving algorithm for signalized traffic that
considered driver’s characteristics and preferences (top speed, desired acceleration and
deceleration, driver turning maneuvers at intersections). Although their algorithm proved to be
computationally efficient, it was explicitly tested in simulation environment (where it
demonstrated significant energy savings potential) and the authors did not clarify if it could
efficiently adapt in real-time to driver’s compliance to speed recommendation. (Tang et al. 2017)
introduced a theoretical model formulation for dynamic eco-driving in signalized traffic that took
into account driver’s response time, acceptance level and execution capabilities. However, model
parameters were not calibrated based on real-world data, the model was not assessed in the field,
and the authors assumed homogeneous driver characteristics in their microscopic traffic simulation

analysis.

A simulation-based impact assessment of driver’s compliance to dynamic eco-driving advice at
signalized intersections was conducted by (Liao et al. 2018). The latter study assumed fully
connected vehicle fleet and precise execution of speed guidance strategies (acceleration,
deceleration and constant speed strategies) from compliant driver’s side. In reality driver’s
compliance to speed guidance may vary though depending on driver’s skills and surrounding
traffic conditions, and might lead to unsuccessful episodes of following dynamic eco-driving
advice (e.g. driver partially adapts to speed advice leading to vehicle stop at the end of deceleration
strategy). The dimension of driver’s adaptability to dynamic eco-driving advice was incorporated
into an EAD application that was explicitly developed for actuated signals and CVs (Hao et al.
2018). The EAD application was integrated in a research vehicle and tested under real traffic

operations along the EI Camino Real corridor in Palo Alto, CA, USA. However, it was neither
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compared to an EAD version without consideration of driver’s adaptability nor to the case of EAD

execution from an automated vehicle function.

(Qietal. 2018) developed an EAD application for drivers of electric vehicles (EVs) that harnessed
predictions of human driver errors made by a Markov chain model to estimate fuel efficient driving
strategies. The driver error model was built based on real-world driving data collected while testing
an EAD application without human error consideration capabilities in a test track. The proposed
EAD application showed an average of 12% energy savings compared to its counterpart without
driver error consideration, but it was explicitly evaluated via simulation analysis. Finally, a
controlled field experiment encompassing one research vehicle and 32 participants was conducted
at the Smart Road facility of Virginia’s DoT to compare the performance of an advisory (driver
controls the vehicle) and an automated (automation function controls the vehicle) dynamic eco-
driving system (Almannaa et al. 2019). The automated system showed significant fuel and travel
time savings compared to the manual one, but the effects of surrounding traffic in complex traffic

situations such as those encountered in public roads were not addressed.

Most simulation studies have assumed that equipped vehicles were highly automated and, thus,
could precisely execute the advised fuel-optimal speed profile. However, vehicular fleet is not
expected to be fully automated and connected before 2060 even according to optimistic predictions
(C-ITS Platform 2017; ERTRAC 2017; Litman 2020; PTOLEMUS 2017). Thus, CV applications
will remain advisory to several drivers for a significant time period prior to the realization of a
fully connected and automated road transport environment. Within the context of dynamic eco-
driving systems this means that it will be in the driver’s discretion to comply or not with the
proposed speed advice. Consequently, driver’s adaptation to speed advice will influence
significantly the impacts of the latter services (Tielert et al. 2010). Hence, it is important that the

dynamic speed advice is safe and comfortable so that drivers can easily adapt to it.

2.2.5 Field Experiments

The energy and traffic efficiency of existing dynamic eco-driving models was mainly estimated
under idealized (not practicable) conditions, and partially proven in real-world traffic (Table 2.2).
Dynamic eco-driving field experiments (in the proximity of signalized intersections) have been
conducted either in test tracks (controlled experiments encompassing isolated signalized

intersections) or in real world traffic (signalized arterial corridors and isolated signalized

68



intersections). However, only preliminary results of the latter naturalistic driving studies were

reported in the relevant literature.

2.2.5.1 Controlled Experiments

(Raubitschek et al. 2011) conducted field trials to evaluate a predictive driving strategy pertaining
to the provision of speed advice upstream of a signalized intersection. These experiments verified
their simulation results, which indicated that the predictive driving strategy could reduce the CV’s

fuel consumption by 10%.

(Weber & Winckler 2013; Xia et al. 2012) deployed a prototypic dynamic eco-driving system that
estimated fuel efficient speed advice according to current SPaT information (Barth et al. 2011) and
subsequently provided it through a graphical interface to the driver on an isolated test track. The
prototypic system was tested on the "Richmond Field Station" test track, where different single-
vehicle scenarios were examined under the same conditions in the absence of traffic. The results
of the field experiment showed that the prototypic system could reduce stop frequency by 37%,

travel time by 1%, and fuel consumption by 14%.

The EAD application for actuated signals was tested at Palmyrita Ave., Riverside CA with the use
of a 2008 Nissan Altima research test vehicle (Hao et al. 2015b). The SPaT message was
communicated to the test vehicle 300 m upstream of the signalized intersection, which was
controlled by a two-phased signal control plan. The EAD test encompassed different traffic
conditions on the main street and the cross street. Preliminary results indicated that the EAD
application can yield 5% — 10% energy savings for high vehicle approach speeds, and 7% — 26%

for low speeds.

A controlled field experiment was set up at the Virginia Smart Road Test facility (Almannaa et al.
2019; Rakha et al. 2016) to evaluate a speed recommendation algorithm. The experiment was
conducted with the use of an automated vehicle (2014 Cadillac SRX) equipped with an onboard
unit (OBU) for V2I and V2V communication. 32 subjects participated in the study (16 females
and 16 males between the ages of 18 — 30) driving the automated vehicle in the vicinity of the
equipped signalized intersection existing in the test facility. Driving sessions encompassed
different road grades and red offset times. Advice was provided to the subjects through an auditory

system in the form of speed recommendation or signal countdown. The experimental findings
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showed that energy savings on the order of 19% can be realized depending on the road grade, red
offset time, and type of advice. Moreover, the system was found capable of yielding travel time

savings up to 10%.

2.2.5.2 Real world Experiments

There are few studies that have attempted to evaluate the performance of eco-driving services in
real world testbeds. (Saust et al. 2010) tested a cooperative system that estimates energy-efficient
(de)acceleration strategies, but also utilizes real time V21 and V2V data to supplement traffic data
from conventional sensors to optimize the signalization of adaptive traffic control systems along
the ring road of Braunschweig, Germany, which is a two-lane arterial road. Fuel consumption
estimation results based on an empirical formula, indicated that the optimized strategy could

reduce the needed work and the corresponding fuel consumption by 35%.

A preliminary version of a dynamic eco-driving system that embedded probabilistic signal timing
information in the optimization framework was programmed into an iPhone 3GS and implemented
in downtown Greenville, South Carolina (Mahler & Vahidi 2012). Clock synchronization
challenges were the largest obstacle to be overcome during field experiments. The experiments
showed that drivers were able to avoid idling at traffic lights during light traffic conditions and

low pedestrian volumes.

(Weber & Winckler 2013; Hao et al. 2015a) implemented their prototypic dynamic eco-driving
system for actuated and coordinated traffic signals in real-life traffic conditions on the "El Camino
Real" test site in Palo Alto, CA, USA. A comprehensive evaluation of the field experiment
conducted along the El Camino Real corridor with the dynamic eco-driving technology was
presented by (Hao et al. 2018). Findings showed that the energy savings were not found to be
statistically significant for the entire trips’ duration, opposite to emissions savings. Interestingly,
interference from preceding vehicles was found to deteriorate the performance of the system (Hao

et al. 2018).

An eco-driving assistant that estimates energy-efficient deceleration (voice) advice was deployed
and validated in actual traffic conditions (Mufioz-Organero & Magana 2013). The eco-driving
assistant was installed in five different market available vehicle models, which were driven by nine

different drivers for 180 test drives in urban traffic conditions. Field trials showed that the system
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can achieve a maximum of 4.9% fuel consumption reduction by minimizing fast deceleration

patterns in case a vehicle stop cannot be avoided at the traffic lights.

(He et al. 2015) used an approximation model to predict the speed trajectory of a vehicle travelling
along a signalized arterial (Trunk Highway 55) in the city of Minneapolis, Minnesota, given that
spatial and temporal constraints due to queues and estimated trajectories of following vehicles
were readily available through the SMART-Signal system installed on the aforementioned arterial.
Results showed that fuel consumption for the predicted trajectory was 29% lower in the expense

of 9% longer travel time compared to the actual trajectory without advice.

Recently, the functional operation of a GLOSA system was evaluated based on a field operation
test (FOT) that was conducted under naturalistic driving conditions at the DRIVE C2X test site in
Gothenburg, Sweden (Stahlmann et al. 2017). The real-world tests were implemented in the
vicinity of three fully equipped traffic lights using ten retrofitted prototype vehicles. The analysis
of the recorded data from the field experiments indicated that information distance and
communication coverage are two aspects of dynamic eco-driving systems that significantly
influence their energy and emission saving potential. The authors also noted that existing
simulations studies did not thoroughly address the influence of communication latency on dynamic

eco-driving benefits.

(Mintsis et al. 2017) evaluated the operation and performance of a cooperative speed advice service
that was tested along an urban arterial corridor in the city of Thessaloniki, Greece. The field test
encompassed 12 equipped signalized intersections and 200 taxis equipped with OBUs. A model-
based approach was used to quantify CO» emissions of the equipped vehicles based on real-world
vehicle trajectories. A rigorous statistical analysis of the field data showed that CVs compliant to
speed advice emitted 9% lesser CO> emissions compared to the non-compliant ones. Furthermore,
driver’s compliance to speed advice was found to be strongly related to the type of message
transmitted (“accelerate”, “decelerate”, or “maintain speed”), the remaining time of the signal

status, and finally the dynamic eco-driving service zone distance.
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Table 2.2. Evaluation methodologies of existing dynamic eco-driving models and corresponding impacts

. . ) .. Travel Real-
Speed Advisory Evaluation Test Network Vehicle Energy Emissions ) .
Author(s) . . . Time time
Model Name Methodology Configuration Type Savings Savings .
Savings Ready
Simulation Multiple Signalized 5 electric
Ma et al. (2021) Eco-CACC (MATLAB/Simulink & Intersections, passenger 8% - - -
SUMO) Columbus, Ohio, USA cars
Cooperative . . Plymouth Rd, Ann Passenger
Yang et al. (2021) o Simulation (PTV VISSIM) L 7.4% - 33% v
Driving Framework Arbor, Michigan, USA Cars
Hypothetical Single .
. . i Multiple
Han et al. (2020) PTO-GFC Numerical Analysis Lane Intersection CAV 48% - 40% -
s
Approach
Decentralized
. . Model for CAV . . Hypothetical Isolated Passenger
Yao & Li (2020) . Numerical Analysis ; ) . - - - -
Trajectory Signalized Intersection Cars
Optimization
University Avenue, 59% (CO)
. . . . . . Passenger
Wang et al. (2019) CED Simulation (PTV VISSIM) Riverside, California, C 7.1% 57% (HC) 55% - -
ars
USA (NOx
. . . . . 16% (CO)
i Cluster-Wise Numerical Simulation Hypothetical 2-lane 16 Passenger
Wang et al. (2018) . L . 11% 9.76% (HC) - -
Cooperative EAD (MATLAB/Simulink) Intersection Approach Cars 2% (NO
(1] X)

* . . . . . . . .. .
A composite index encompassing travel time, fuel consumption and inverse time-to-collision is used to demonstrate the performance of the model.

“*Energy and emissions savings are provided with reference to an Ego-EAD application.
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Table 2.2. (Continued)

. ) ) .. Travel Real-
Speed Advisory Evaluation Test Network Vehicle Energy Emissions ) .
Author(s) . . . Time time
Model Name Methodology Configuration Type Savings Savings .
Savings Ready
Single-
. . . . 7% (CO)
Field Experiment (Real- "El Camino Real" test vehicle )
Hao et al. (2018) EAD . 2% (all trips) 18% (HC) 13% - -
world traffic) site (2.5L 4-
. (NOx)
cylinder)
Dynamic Eco-
driving
. under Partially Simulation (Excel VBA, Hypothetical
Jiang et al. (2017) . - 2.02% 1.97% 10.80% v
Connected and MATLAB, VISSIM) Intersection
Automated Vehicles
Environment
) . DRIVE C2X 10 retrofitted
Field Experiment (Real- .
Stahlmann et al. (2017) GLOSA test site (Gothenburg, prototype - - - v
world traffic) .
Sweden) vehicles
Speed o 2014
) ) ) Virginia Smart Road .
Almannaa et al. (2019) Recommendation Field Experiment . Cadillac 19% - 10% v
) Test facility
Algorithm SRX
. . . Signalized arterial 9% (compliant
o Dynamic Eco- Field Experiment (Real- . . .
Mintsis et al. (2017) o corridor (Thessaloniki, 200 taxis - Vs - v
Driving world traffic) .
Greece) noncompliant)
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Table 2.2. (Continued)

. . . .. Travel Real-
Speed Advisory Evaluation Test Network Vehicle Energy Emissions ) .
Author(s) . . . Time time
Model Name Methodology Configuration Type Savings Savings .
Savings Ready
30 top sold
Kamalanathsharma & Rakha . .
ECACC MATLAB - vehicles in - - - v
(2016)
the US
Speed Guidance . . . 3.7km urban
Wang et al. (2016) Simulation (EstiNet) . . - - 2.13% 8.15% -
Model arterial road in Beijing
. 5%-20% (CO)
. . Hypothetical
Hao et al. (2015a) EAD Numerical Evaluation . - 3%-12% 3%-14% (HC) - v
Intersection
6%-21% (NOx)
. Palmyrita Ave, 2008 Nissan
Hao et al. (2015b) EAD Controlled Experiment . . . 5%-27% - - 4
Riverside CA Altima
Platoon-Based ) ) .
. Simulation Cross Intersection 13% (CO, HC,
Chen et al. (2015) Dynamic Eco- o - 13% 38%
. (INTEGRATION) (Blacksburg, Virginia) CO2, and NOx)
driving
Xiang et al. (2015) CAEHV-C Simulation - - - -
MATLAB
He et al. (2015) - - - 29% - -9% v
(GPOPS)

74



Table 2.2. (Continued)

. ) ) .. Travel Real-
Speed Advisory Evaluation Test Network Vehicle Energy Emissions ) .
Author(s) . . . Time time
Model Name Methodology Configuration Type Savings Savings .
Savings Ready
5 different
Mufioz-Organero & Magafia ~ Eco-driving Field Experiment (Real- vehicles
) Urban Network ) 4.9% - - v
(2014) Assistant world traffic) (series-
production)
MATLAB
Chen et al. (2014) - . . - - - 50% (NOx) 14% -
(Sensitivity Analysis)
Dynamic Eco- . Single and
) o ) ) Hypothetical )
Xia et al. (2013b) Driving for Simulation (PARAMICS) . Multi- 31% - - v
. Intersection .
Connected Vehicles Vehicle
: . . . Single and
) Dynamic Eco- ) ) 11-signalized Arterial )
Xia et al. (2013a) . Simulation (PARAMICS) . Multi- 12.5% 13% (CO2) 0.7% v
Driving Corridor .
Vehicle
"Richmond Field
) Dynamic Eco- ) . Station” test track BMW Mid-
Weber & Wrinclker (2013) . Field Experiment . 14% - - v
Driving "El Camino Real" test sized Sedan
site
Predictive Optimal MATLAB . . . ) )
Mabhler & Vahidi (2012) Velocity Planning v
; Greenville, South
Algorithm Field Experiment (Gr ) Vi " - - - -
Carolina)
Rakha et al. (2012) - MATLAB - - 30% - - -
. Predictive Driver . .
Schuricht et al. (2011) Simulation (IDM) - - 8.7% - - -

Assistance
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Table 2.2. (Continued)

. . ) .. Travel Real-
Speed Advisory Evaluation Test Network Vehicle Energy Emissions ) .
Author(s) . . . Time time
Model Name Methodology Configuration Type Savings Savings .
Savings Ready
MATLAB -
. Predictive Driving
Raubitschek et al. (2011) - 10% - - v
Strategy ) . BMW Test Track
Field Experiment . .
(Aschheim, Munich)
Dynamic Eco- . . Hypothetical 10- Mid-sized
Barth et al. (2011) . Simulation (PARAMICS) . . . 12% 12% (CO2) 2% v
Driving signalized Arterial Sedan
Urban road
Asadi & Vahidi (2011) PCC SIMULINK (MATLAB) - 47% 56% (CO2) - -
Suburban road
. 80% (CO); 35%
Single-lane road
. EURO4 Otto 22% (NOx); 18%
. Speed Adaptation . . segment i
Tielert et al. (2010) Model Simulation (VISSIM) and Diesel (PM) - -
ode
. . engines
Karlsruhe’s inner city 8% -
. . . Four-leg Intersection 5%
Vreeswijk et al. (2010) - Simulation (VISSIM) - - - v
(Rotterdam) (CO2 & NOxy)
Ring road of
Saust et al. (2010) - Field Experiment Braunschweig (two- - 35% - - v
lane arterial road)
Arterial Velocity o ) Hypothetical 10- LDV24
Mandava et al. (2009) ) ; Stochastic Simulation ] ] ) 12%-14% 12%-14% (CO2) - -
Planning Algorithm signalized Arterial LDV17
Parametric Analysis 14%
Li et al. (2009) ADAS - - - - -
Simulation 8%
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2.3 Limitations and the Way Forward

The analysis of the literature indicated that the level of sophistication of dynamic eco-driving
models is gradually advancing. However, there are certain shortcomings that need to be
systematically addressed in future studies. Conceptually, most approaches are entirely driven from
energy and traffic efficiency leaving aside safety considerations. Evidently, the road safety
component can be integrated as a complementary indicator to the structure of the optimization

function of dynamic eco-driving models.

Furthermore, this dissertation identified that human factors are partially and abstractly addressed
in current forms of dynamic eco-driving simulation studies. Integrating predictive models that can
account for the compliance of the users to speed advice systems or other behavioral characteristics
in relation to the interaction of users with dynamic eco-driving services will result in a much more
realistic representation of how these services may affect the system. To this end, models should be
more data driven, rather than solely theory based, and leverage empirical observations
encompassing different driver types, vehicle types and traffic conditions so that accurate
predictions regarding the performance of dynamic eco-driving applications can be made. Hence,
implementation should be linked to controlled field experiments and naturalistic driving studies,

which demand significant funding and technological readiness.

This links to another limitation related to impact assessment frameworks. The performance of
dynamic eco-driving models has been primarily tested with the use of analytical methodologies
and simulation tools. Only few field experiments were conducted on controlled test tracks or actual
signalized road networks. In terms of impact assessment results, it is, thus, evident that there is
limited information of what the impact of such technologies will be in real traffic (i.e. when
implemented massively to large-scale networks). Existing studies indicate that actual energy and
emissions savings from dynamic eco-driving are more conservative compared to simulation
findings. Moreover, communication aspects are expected to significantly influence the respective
environmental benefits. Therefore, introducing further testbeds and standardized procedures to: a)
benchmark the efficiency and effectiveness of dynamic eco-driving models, and b) determine the
signalized intersection approaches where road, traffic and communication factors favor the

implementation of dynamic eco-driving, will enable the proper development of such systems.
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In relation to the modeling, this dissertation reveals that some of the most critical desired

characteristics of an advanced and robust dynamic eco-driving model are:

e the dynamic eco-driving model control logic should consider both full and partial SPaT
information, vehicle status and location information, queue discharge information, car-
following behavior, and generic V2V real-time information (status of the leading vehicle),

e the optimal controller of the speed advice model should consider mobility (travel time), energy
efficiency (fuel consumption) and safety (surrogate safety measures) indicators for the
estimation of the fuel-optimal speed trajectory,

e the solution method for the corresponding formulated optimization problem should be
computationally efficient enough to render the speed advisory system functional in real-time
deployments,

e non-linear power based, or speed-acceleration based microscopic fuel consumption and
emissions models should be incorporated in the objective function of the optimal controller,

e linear deceleration and non-linear acceleration models (vehicle dynamics models) should be
selected for the computation of the entire (upstream and downstream) eco-driving maneuver,

e gear shifting modeling should be encompassed to capture the effects of gear choice on dynamic
eco-driving,

e the speed advice model should be rendered functional with any type of signal control strategy
(pre-timed, actuated, actuated and coordinated, adaptive),

e the speed advice model should consider SPaT information from multiple downstream

signalized intersections for the estimation of the energy and traffic optimal trajectory.

Smoothing traffic via vehicles’ trajectory planning and coordination is a robust, yet, complex
traffic management and control problem that is receiving increasing attention due to the
introduction of CAVs. Most dynamic eco-driving systems smooth traffic by estimating individual
fuel-optimal speed advice based on the SPaT and MAP (topology) message in the vicinity of
signalized intersections. Latest studies proposed mathematical formulations that allow for the
provision of multiple different speed advice during the course of an energy and traffic optimized
trajectory (Stebbins et al. 2017). Moreover, they developed methodologies that estimate near real-

time safe, energy and traffic efficient trajectories for platoons of vehicles by solving the lead-
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vehicle problem assuming that the leading vehicle is a CAV (Ma et al. 2017; Stebbins et al. 2017,
Zhou et al. 2017).

However, existing studies have not addressed in a rigorous mathematical way the implications of
lateral vehicular interactions on trajectory planning along multi-lane road segments near signalized
intersections. Dynamic eco-driving has been mainly studied as a centralized traffic control scheme
based mainly on V2I communication for the estimation of the energy and traffic efficient
trajectories. Development of cooperative maneuvering within mixed traffic streams through the
introduction and standardization of the relevant communication message sets (Cooperative
Awareness Message, Collective Perception Message, Maneuver Coordination Message etc.)
provides the opportunity for converting the aforementioned traffic management and control
scheme into a hybrid one (encompassing both V2I and V2V communications). Moreover, future
studies should also account for the heterogeneous characteristics of the vehicular fleet and the
heterogeneous vehicle destinations. Finally, it would be very interesting to further investigate the
coordination of dynamic eco-driving with adaptive traffic signals, since up to date research has

shown very promising results.
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3 Methodological Approach

The state-of-the-art review (cf. Section 2) indicated that limited focus was previously placed on
the comfort and safety of dynamic eco-driving technologies (Mintsis et al. 2020). Early evidence
from field testing of an eco-cruise control system in the vicinity of traffic signalized intersections
showed that manual speed adaptation based on countdown advice proved less comfortable, but
equally safe and desirable compared to automated eco-cooperative adaptive cruise control (Rakha
et al. 2016). Thus, there is significant potential for enhancing dynamic eco-driving performance

via the introduction of novel features that improve comfort, user acceptance and safety.

Undoubtedly, drivers/passengers would be more willing to adopt dynamic eco-driving if it ensured
comfortable, safe and intuitive speed advice. According to the profile of existing deceleration
strategies, a CV initially decelerates and subsequently cruises at a steady-state speed towards a
signalized intersection until the signal status changes to green, when vehicle accelerates back to
its desired speed beyond the signalized intersection. This implies that existing dynamic eco-driving
services instruct CVs to cruise at significant steady speed while the vehicle approaches the
signalized intersection and the signal status remains red. In this case, many drivers/passengers
would feel uncomfortable driving/riding a vehicle that cruises in close vicinity to a signalized
intersection while the traffic light status is still red. That would be especially true in the early stages
of CV market introduction when mixed traffic conditions are expected to prevail on the streets and

drivers/passengers will be less familiar with CV technology.

This work proposes and evaluates enhancements on an existing dynamic eco-driving model

(velocity planning algorithm) that encompass the following novel features:

e provision of non-crawling speed advice, and
e vehicle acceleration commencement prior to CV arrival at signalized intersection at the end of

deceleration strategies

Additionally, findings from the state-of-the-art review (cf. Section 2) showed that no previous
study utilized real world data from a large scale dynamic eco-driving field experiment conducted
in public urban roads to model driver’s adaptation to fuel efficient speed advice. This dissertation
addresses the latter research gap by exploiting empirical evidence from a multi-vehicle multi-

driver dynamic eco-driving experiment conducted along an urban arterial corridor to develop a
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decision tree model (DT) that emulates driver’s adaptation to dynamic eco-driving advice in the
proximity of signalized intersections. Moreover, the DT is integrated in the control logic of an
existing dynamic eco-driving model. Finally, an extensive and thorough microscopic traffic
simulation analysis that encompasses an actual urban arterial corridor that was calibrated against

real traffic conditions is conducted to compare the performance of:

e the enhanced velocity planning algorithm against the original velocity planning algorithm

e advisory dynamic eco-driving against automated dynamic eco-driving

Figure 3.1 depicts the mathematical models used for the analysis of the behavior and the impacts

of the different dynamic eco-driving systems considered in the context of this dissertation.
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A Velocity Planning Algorithm (VPA)
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Figure 3.1. Mathematical models used for analyzing the behavior and impacts of different dynamic eco-

driving systems
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3.1 Enhanced Speed Advice

Enhanced dynamic eco-driving accounts for intuitive speed advice that drivers/passengers can
easily and conveniently adapt to, and encompasses comfortable accelerations/decelerations,
acceptable cruising speeds, as well as guidance that facilitates safe interactions with surrounding
road users and elements (e.g. traffic lights). As mentioned above, existing literature has overlooked
specific aspects of speed advice pertaining to comfort and safety which this dissertation aims to
address. To this end, we present in the following sections the velocity planning algorithm (VPA)
previously developed by (Xia et al. 2013a) and an Enhanced VPA (EVPA) version proposed by
this dissertation that promotes speed advice comfort and safety without adversely impacting

energy and traffic efficiency (Mintsis et al. 2021).

3.1.1 Velocity Planning Algorithm (VPA)

(Xia et al. 2013a) introduced VPA considering that energy savings can be realized when drivers

exhibit the following behavior:

e maintain a steady-state speed near the speed limit,
e keep a safe headway distance from the leading vehicle, and

e avoid idling, or idle the least possible time at the traffic light if this is unavoidable.

Thus, an optimization problem was formulated that minimized a vehicle’s tractive force and idling
time while accounting for ride comfort and the local speed limit (v;;,,). To avoid stopping at a
traffic light, a vehicle should arrive at the signalized intersection during a green signal status. Based

on the current signal status, a green arrival interval can be estimated as:

[0,t,.} or [tg, t.1), ifsignal status=green
tarrival = (D

[tg, t.), if signal status=red
where t,. is the time to the upcoming red phase, t, represents the time to the next green phase, and

t,1 1s the time to the second red phase. Thus, if the signal is green, a vehicle can either cruise at
current speed or accelerate to a target speed to pass through the intersection during the first green

window or decelerate and cross the intersection during the second green window. If the signal is
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red (yellow time is considered to be red time), the vehicle can cruise at current speed or decelerate

to a target speed to cross the intersection during the upcoming green window.

The possible values of t4,i,q; can range between [t;, t, ]|, where t; and t;, are low and high values
according to Equation 1. Given the range [t;, t ] and the vehicle’s distance to intersection d;,;, the
possible target velocities Vg,ipqr can be expressed as the range [v;, v, ], where v; is the maximum
between zero and vy, (v, = din:/tyn) and vy, is the minimum between vy, and vy, (v, =
din:/t1). Evidently, d;,,; and signal timing information are key parameters for the estimation of

energy optimal speed trajectories.

When v,,pipq 18 estimated, the provision of speed advice to CV is determined according to its
current speed v,. If v, lies within [v;, v,], then the vehicle can pass the intersection cruising at
current speed. Alternatively, it can accelerate or decelerate with respect to v, which (Xia et al.
2013a) have selected as the target velocity to achieve travel time savings apart from environmental

benefits. The energy-efficient speed profiles are estimated according to the following functions:

/i
(vh—vd*cos(ut), for0 <t <—
2u
£ cos(t- L4 1), tor s o< (24 L)
= — * — % -+ — — — 4+ —
Vopt =4 Vn — Va P cos 2 2) or e 2 2 (2)
T T d;
”‘7h‘|‘”l7d*E for(—+—>§t§ e
\ p 2p 2u vy,

where v, 1s equal to v, — v,. Positive v, values generate acceleration profiles, and negative values
generate deceleration profiles. The only unknown parameters in Equation 2 are u and p, which
determine the acceleration/deceleration rate. The higher the value of p, the higher the
acceleration/deceleration rate. The values of p and p can be computed by solving the following

three constraints:
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( 2721 27;#27; U T T
— t))dt ( — — (t - _)) dt
) (v, — vy * cos(ut))dt + fz’z vy — Vg * p * COS 2 + 2

{ p Un Zp 2# (3)

jerkmax = 1vg * 1w * p|l < 10 and a gy < 2.5 m/s?

\u = max{u}

The first constraint in Equation 3 is the distance constraint, which ensures vehicle’s arrival at the
downstream signalized intersection in the shortest time. The second constraint pertains to ride
comfort. The third was set based on the finding of (Xia et al. 2013a), which suggests that
minimization of fuel consumption and emissions occurs for the largest possible u value (i.e. a
vehicle accelerates sharply instead of smoothly to v,). Moreover, it has to be noted that VPA can
be explicitly implemented at signalized intersections with fixed signal control plans, and it does
not consider queue dynamics at signalized intersections. A more detailed description of VPA can

be found in (Xia et al. 2013a).

3.1.2 Enhanced Velocity Planning Algorithm (EVPA)

This dissertation introduced enhancements to the control logic of the VPA accounting for actual
behavioral traits of drivers. The EVPA increases the comfort and safety of the provided speed

advice to facilitate acceptance of dynamic eco-driving service from the driver’s/passenger’s side.

The control logic of the reference model implies that the minimum speed advice is an explicit
function of the vehicle’s traveling state (approach speed and distance to the signalized intersection)
and the signal timing information of the signalized intersection. Thus, v; could acquire rather low
values (e.g. 10 km/h), which implies that a vehicle might be advised to cruise towards a signalized
intersection at a crawling speed. However, it is legitimate to assume that drivers would refrain
from driving below a minimum speed threshold (anxiety reasons), irrespective of the provided
speed advice. Thus, the authors propose that v,,,i,4; 1 not only bounded on the upper limit by the
speed limit, but also on the lower limit by a minimum acceptable speed value (vyy;, ). Therefore,
v; would become the maximum between vy,;, and v;,(v;, = din:/ty). It is expected that this

enhancement will increase the indirect benefits of dynamic eco-driving, since legacy vehicles
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(LVs) will overtake CVs less frequently, thus inducing less turbulence to traffic. Additionally,
previous research has shown that cruising at low speeds at the end of deceleration strategies might

incur higher energy consumption, even compared to a standstill strategy (Raubitschek et al. 2011).

The second enhancement also pertains to deceleration strategies. According to the control logic of
existing dynamic eco-driving models, a CV’s arrival at traffic lights after the implementation of a
deceleration strategy is concurrent with the onset of the green phase. However, many
drivers/passengers would feel uncomfortable riding a vehicle that cruises at high steady speed in
close vicinity to a signalized intersection while the signal status is still red. Therefore, this
dissertation suggests that the lowest cruising speed v, of the initially estimated deceleration
profile is used for the computation of the CV’s practical stopping distance, assuming it had
complied with the initial deceleration strategy. In this case, the vehicle’s practical stopping

distance d,p is given by Equation 4:

Vir

a “4)
2 (—d) +G
o((5)+¢)

where a; is the deceleration rate, g is the gravitational constant, and G is the roadway grade.

dstop =

Equation 4 provides an estimate of typical braking distances and is more simplistic and usable than
the theoretical stopping distance one. Given the assumption that CVs fully stop and road grades
are small, mass factor accounting for moments of inertia during braking (which is considered for
the estimation of theoretical stopping distance) can be ignored due to its small effects (Mannering
et al. 2007). Moreover, we assume that friction is always guaranteed in our simulation experiments

and anomalous situations such as sudden and strong braking do not occur.

Subsequently, the practical stopping distance is subtracted from d;,;, and the result
(d’ =dint — dstop) is returned to the algorithm for the estimation of an enhanced deceleration
profile. According to this updated deceleration profile, the CV decelerates to a lower cruising speed
v, compared to the initial one, but the onset of the green phase occurs prior to the CV’s arrival to
the signalized intersection. Moreover, sufficient time and space remain available for the CV to
stop in case of red light running from the opposite direction. Since the practical stopping distance
is a function of the vehicle’s cruising speed, the EVPA is expected to perform efficiently within a

wide range of cruising speeds. The enhanced dynamic eco-driving service is expected to be
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perceived as more intuitive, convenient and safer by drivers, who would thus increase their

confidence regarding the system’s operation and efficiency.

3.2 Modelling Driver’s Compliance to Speed Advice

Each driver has a unique way of navigating through traffic, which is affected by various elements.
In the traditional vehicle-road landscape, these may include socio-economic and physiological
factors as well as personality traits, skills, and desires (Hellinga and Mandelzys 2011; Mantouka
et al. 2019; Sharma et al. 2018; Tselentis et al. 2019; Vlachogiannis et al. 2020). In a CV
environment, one should add the perception of drivers on the reliability of the advice system and

the quality of information.

To address the stochasticity induced by human factors in modelling driver compliance to speed
advice, we first determine the factors affecting driver’s compliance to energy-efficient speed
advice and then develop a DT model to emulate the decision-making process of driver adaptation

to the latter advice.

3.2.1 Factors Affecting Driver’s Compliance to Speed Advice

To evaluate the factors that may affect the driver’s compliance to speed advice, a mixture of feature
selection strategies is implemented based on the Information Gain criterion and the Correlation-
based Feature Selection (CFS) algorithm. The scope is to reveal which of the observed features —
from a given feature vector — provide redundant information given an output variable. The joint
consideration of two different criteria for revealing the factors that may affect the compliance to

speed advice aims to enhance the consistency of the results.

Information Gain is a symmetrical metric of strength between a feature X and a target variable Y.
It is based on the entropy, which is considered as a measure of system’s unpredictability.

Information Gain quantifies the gain of about Y after observing X according to Equation 5:
Information Gain = H(Y) — H(Y|X) ®))

where H(Y) and H(Y|X) are the entropies of X and Y after observing respectively, given by

Equations 6 — 7:
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where p(y) is the marginal probability of Y and p(y|x) the conditional probability of Y given X.

The CFS algorithm produces a ranking of features’ subsets from the original feature vector
according to a correlation based heuristic evaluation function (Hall 1999). The merit of a subset S
is given by Equation 8:

ktes
Jk + k(k — 1),

merits = —

@®)

where k are the features in the subset, 7.f is the mean feature-class correlation, and 7y is the
average feature-feature inter-correlation. The concept is to detect subsets of features that are highly
correlated to a class, yet uncorrelated with each other. In this specific implementation, a greedy

hill climbing search algorithm is implemented to search the feature space from the optimum subset.

3.2.2 Decision Tree Model of Driver’s Compliance to Speed Advice

This dissertation considered a greedy top-down DT whose training evolves in two stages: growing
and pruning (Quinlan 1987). For the growing stage, the algorithm considers the partition of the
training set using the outcome of a discrete function of the input attributes in each iteration based
on a divide-and-conquer strategy. The selection of the most appropriate function is made according
to splitting measures. After the selection of an appropriate split, each node further subdivides the
training set into smaller subsets, until no split gains sufficient splitting measure or a stopping

criterion is satisfied.

The splitting criterion is based on the information gain of an attribute a, which relates to entropy

(Ruggieri 2002) and is calculated based on Equation 9:

gain = info(T) — ZS |';_1| x info(T;) ©)
i=1

where attribute a is discrete and Ty, ..., T are the subsets of T and info(T) is the entropy function

given by Equation 10:
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info(T) = — f—req(Cj,T) x log, (f_req(C}-,T)) (10)
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The growing phase continues until a stopping criterion is triggered (i.e. maximum tree depth has

been reached).

During the pruning stage, a reduced error-pruning algorithm is implemented. The algorithm starts
by considering the entire tree that resulted from the growing stage, and for each internal node it
compares the classification error produced on the pruning set where the subtree T; is kept, with the
classification error made when ¢ is turned into a leaf and was associated with the best class. This
branch pruning operation is repeated on the simplified tree until further pruning increases the

misclassification rate.

The output of the DT is defined as the possible divergence range between the realized speed and
the advised speed. The average speed divergence S, is selected stochastically from a possible
range of values as dictated by the DT presented in Section 5.2. During the simulation timeline, an
acceleration/deceleration profile is estimated per CV that enters a dynamic eco-driving service
zone upstream of a signalized intersection. The speed profile is transformed uniformly by adding
the average speed divergence to the initial speed vector produced by EVPA. The transformed speed

profiles v,y are estimated according to the Equation 11:

vcl)pt = Vopt + S~div (1T)

3.3 Microscopic Traffic Simulation Framework

A microscopic traffic simulation tool (Aimsun, version 8.1.2) was used to conduct the simulation
analysis. A dedicated Aimsun API was built to replicate vehicle behavior during the operation of
the latter dynamic eco-driving systems (cf. Section 3.3.1). VPA and EVPA dictated behavior of
vehicles that automatically executed speed advice (automated case), while EVPA-DT reflected
vehicle behavior when drivers manually adapted to provided speed advice (advisory case). The

architecture of the proposed microscopic traffic simulation framework is depicted in Figure 3.2.
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Figure 3.2. Simulation framework for evaluating advisory and automated dynamic eco-driving

3.3.1 (E)VPA(-DT) — Application Programming Interface (API)

VPA, EVPA, and EVPA-DT were simulated in Aimsun with the use of an API that was directly
interfaced with the core Aimsun models. The API estimates a single energy optimal driving
strategy for every CV that enters the dynamic eco-driving service activation zone. Then, the CV
becomes “tracked” in the simulation and strictly follows (VPA and EVPA cases) or adapts to
(EVPA-DT case) the provided speed advice (every simulation time step) until it crosses the
signalized intersection. However, a CV can discard speed advice if it enters car-following state.
An empirical formula was used to assess the car-following state of CVs during the simulation

(Pipes 1953). The maximum car-following distance is given by Equation 12:
Xep = Tug_1 + B (12)

where T is a time constant, u;_1 is the speed of the following vehicle, and £ is the average distance
between two vehicles in standstill. If a CV’s distance to the leader becomes shorter than x.f, then
it becomes “untracked” in the simulation and its motion is subsequently dictated by the Aimsun
driver models. In this case, an updated speed advice is not provided to the CV even though it is
still driving within the activation zone. The behavior of CV beyond the activation zone is

determined by Aimsun driver models that are parametrized to reflect manual driving conditions.

The length of the activation zone is set equal to the total length of the corresponding signalized
intersection approach (IA: road section between two consecutive intersections). During the

simulation of VPA, the estimated speed advice can range between 10 — 50 km/h. On the other
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hand, while EVPA or EVPA-DT are simulated the estimated speed advice can range between the
minimum cruising speed after deceleration (20 km/h) and the speed limit (50 km/h). Table 3.1
provides an elaborate list of the parameter values that affect the operation of the examined dynamic

eco-driving models (VPA, EVPA, and EVPA-DT) in the simulation experiments.

Table 3.1. Parameter values of dynamic eco-driving models used in the simulation experiments

Variables Description Value(s)
Viim Speed limit (km/h) 50

U Acceleration rate parameter (m/s”2) 0.15
Vmin Minimum cruising speed after deceleration (km/h) 20

g Gravitational constant (m/s”2) 9.807

aq Normal deceleration rate (m/s”2) 4.00

G Road grade (%) 0

T Time constant (sec) 1.02

B Average headway distance in standstill (meters) 3.5

The graphical user interface (GUI) of the Aimsun API enables the configuration of dynamic eco-
driving deployment per examined IA in the simulator. Configuration entails definition of dynamic
eco-driving service activation zone, selection of dynamic eco-driving algorithm (VPA, EVPA or
EVPA-DT), relevant algorithmic parameters, vehicle types receiving speed advice, and number of
simulation replications that dynamic eco-driving will be executed. An elaborate description of the

developed Aimsun API capabilities and features is provided in Appendix A.

3.3.2 Microscopic Emission Model

To estimate CO2 emissions within the simulation loop (second-by-second estimation, 1 Hz.), the
Panis microscopic emission model calibrated with real world emission data is used (Panis et al.
2006). As this model combines multiple non-linear regression models to estimate emission

functions per vehicle type and pollutant (with instantaneous speed and acceleration as explanatory
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variables) it was considered relevant for the evaluation of the environmental impacts of dynamic

eco-driving. The generic form of the model’s equations is provided subsequently:

Eo, fi + fovn(®) + f31,(0)* + faa, (t)

E,(t) = max +fsan()? + fovn(D)an(t)

(13)
where v, (t) and a,(t) are the instantaneous speed and acceleration of vehicle n at time t, E, is
the lower limit of emissions specified for each vehicle and pollutant type, and f; to f; are emissions

constants specific for each vehicle and pollutant type determined via regression analysis.

The fleet composition with respect to engine type for Greece was obtained from (ACEA 2017).
To this end, in our simulation experiments taxis, heavy duty vehicles (HDV), and buses run on
diesel engines. Passenger cars are divided into the following shares according to their fuel type:
92% petrol, 5% diesel, and 2% LPG. The emission constants used for the estimation of CO;

emissions per combination of vehicle and engine type are presented in Table 3.2.

Table 3.2. CO, emission constants per combination of vehicle and engine type

Vehicle EREINC g e p fo fa fs fe
Type ype

Car Petrol 0 0.553 0.161 -0.003 0.266 0.511 0.183
Car Diesel 0 0.324 0.086 0.005 -0.059 0.448 0.23
Car LPG 0 0.6 0.219 -0.008 0.357 0.514 0.17
Taxi Diesel 0 0.324 0.086 0.005 -0.059 0.448 0.23
HDV Diesel 0 1.52 1.88 -0.07 4.71 5.88 2.09
Bus Diesel 0 0.904 1.13 -0.043 2.81 3.45 1.22

3.4 Surrogate Safety Assessment Model (SSAM)

SSAM is a software utility that was developed to facilitate safety assessment of new traffic facility
designs. It is methodologically founded on the notion of conflict, which resembles observable
situations in which two or more road users approach each other in time and space to such an extent

that there is risk of collision if their movements remain unchanged. SSAM validation efforts have
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proven that there is strong positive correlation between SSAM conflict data and real-world crash
data (Gettman et al. 2008), which i1s expressed by Equation 14 and justifies that those conflicts

comprise credible proxies for traffic safety evaluation.

1.419

Crashes Conf liCtS)

Hour

=0.119 x ( (14)

Year
SSAM can utilize vehicle trajectory output generated from several microscopic simulation tools
(i.e. Paramics, VISSIM, TEXAS, and AIMSUN) in a predefined and standardized format, to
algorithmically identify different conflict types according to the conflict angle (i.e. crossing, lane
change, and rear-end) and estimate indicators (surrogate safety measures) that dictate propensity

and severity of conflicts (Gettman & Head 2003).

Time-to-Collision (TTC) is a benchmark surrogate safety measure for the identification of conflict
propensity that indicates the expected time for two vehicles to collide if they remain at their present

speed and on the same path, and is given by Equation 15:

((Xic1e— Xit) — Lic1y
TTC,, = ! Vie = Vi1t

for vehicles travelling in same direction
(15)

D:
V—l't for vehicles travelling in dif ferent direction
it

where X;_,  and X; . stand for the positions of the preceding and following vehicle, L;_; ; denotes
the length of the preceding vehicle, V;, and V;_; , represent the velocities of the following and

preceding vehicle, and D; ; is the distance between the projected collision point and vehicle i.

Conflict severity can be examined with the use of the DeltaS surrogate safety measure, which
indicates the maximum relative speed of two conflicting vehicles throughout the duration of a

conflict event and is mathematically defined by Equation 16:
DeltaS = ||Vi_y: — Vi (16)

Road safety impact assessment of CV technologies has been conducted via real world experiments
(Maile & Degrossi 2009) and with the use of microscopic traffic simulation tools (Morsink et al.
2008) that utilize surrogate measures of safety to indicate conflict risk for both uninterrupted and

interrupted traffic flow (Archer 2005; Dalla Chiara et al. 2009; Dalla Chiara et al. 2014; Gettman
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& Pu 2006; Kim & Sul 2009). Specifically, SSAM has been previously used to evaluate the safety
performance of EAD applications (Li et al. 2018), lower-level automation functions in a connected
and automated road environment (Rahman et al. 2019), and generic CAV behavior at different
intersection types (Virdi et al. 2019). In the context of this dissertation, SSAM is used to compare
safety implications of advisory (EVPA-DT) and automated dynamic eco-driving systems (EVPA).

3.5 Experimental Setup

3.5.1 Simulation Testbed

A detailed microscopic simulation model of an urban arterial corridor in the city of Thessaloniki,
Greece, was developed with the use of the microscopic traffic simulation tool Aimsun. Its total
length is 15 km (road grade is nearly zero across the full length of the corridor) and it encompasses
26 signalized intersections (17 equipped with road-side units) which are controlled by pre-timed
signal control plans. VPA, EVPA and EVPA-DT were deployed on 23 signalized intersection
approaches (IA) (highlighted in yellow) of the examined simulation network (Figure 3.3). Side-
street parking and seven public transport lines (along with their corresponding time plans) that

traverse the central business district (CBD) of Thessaloniki were simulated as well.
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Figure 3.3. Dynamic eco-driving test site in Thessaloniki, Greece (real world and simulation)

A thorough macroscopic calibration process was conducted to ensure the ability of the microscopic
traffic simulation model to replicate actual traffic operations (without dynamic eco-driving
service) on the examined road network. Calibration parameters of Aimsun driver models (car-
following, lane-changing, and gap-acceptance models) were adjusted for the reconciliation of field
and simulated traffic counts. Field traffic data were obtained from several traffic detectors that
monitor traffic conditions in the CBD of Thessaloniki. The latter data contain traffic volumes,

average time mean speed, and travel time information for selected network routes.

Field and simulated traffic counts were used for the conduct of the appropriate statistical test
(GER) to verify the validity of the simulation model (Chu et al. 2003). The GEH statistic is given
by Equation 17:

GEH = Z(fsim - freal)z (17)

(f:sim + freal)
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where f;;, is the simulated flow, and f;..4; is the observed flow. The estimated GEH values for

volume and speed counts were lower than 5 for more than 85% of the selected detector stations

(Table 3.3 and Table 3.4). Moreover, GEH index was also lower than 5 when comparing average

travel time between field and simulation along the examined urban arterial corridor. Thus, the

calibration procedure demonstrated that the simulation model can credibly replicate traffic

operations pertaining to manual driving on the test network.

Table 3.3. GEH values obtained from field and simulation traffic flow counts

Detector No. Field Flow (veh) Simulated Flow (veh) GEH Statistic
1 1628 1556 1.80
2 3218 3053 2.94
3 2875 2678 3.74
4 2571 2461 2.20
5 2293 2104 4.04
6 2398 2126 5.73
7 2324 2095 4.87
8 2219 2075 3.12
9 2488 2252 4.85
10 2546 2292 5.17
11 2575 2317 5.22
12 2093 2088 0.10
13 584 583 0.05
14 365 377 0.63
15 132 118 1.24
16 143 148 0.37
17 425 430 0.26
18 511 534 1.01
19 530 569 1.68
20 711 721 0.36
21 848 883 1.18
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Table 3.4. GEH values obtained from field and simulation time mean speed counts

Detector No. Field Speed (km/h) Simulated Speed (km/h) GEH Statistic
1 45.23 41.33 0.59
2 30.13 31.81 0.30
3 29.56 35.49 1.04
4 32.12 37.71 0.95
5 33.25 37.41 0.70
6 29.23 33.40 0.74
7 26.50 30.41 0.73
8 25.36 27.69 0.45
9 27.98 33.77 1.04
10 44.76 38.94 0.90
11 43.65 51.63 1.16
12 44.74 46.57 0.27
13 35.36 47.42 1.88
14 34.69 53.49 2.83
15 31.63 32.16 0.09
16 32.47 28.73 0.68
17 34.71 40.99 1.02
18 40.62 49.60 1.34
19 45.69 52.56 0.98
20 52.36 41.32 1.61
21 47.26 54.28 0.98

However, we also deem that our simulation model remains valid for different market penetration
rates of dynamic eco-driving technology, since we assumed that CVs are manually driven beyond
the service activation zone and existing literature (Alam & McNabola 2014; Guanetti et al. 2018;
Huang et al. 2018; Mintsis et al. 2020; Taiebat et al. 2018; Vahidi & Sciarretta 2018; Wadud et al.
2016) addressing the impacts of dynamic eco-driving on traffic operations does not indicate

changes to route choice due to speed advice provision in the proximity of signalized intersections.
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3.5.2 Simulation Scenarios — VPA vs EVPA

The performance of the VPA and the EVPA were assessed for different traffic demand levels and
different penetration rates of the dynamic eco-driving technology (Table 3.5). In total, 48
scenarios were simulated (38 with service on and 10 with service off). The calibration scenario
corresponds to D100 traffic demand level (initial demand input to the microscopic simulation
model). The effect of the penetration rate of the CV technology was tested both for uncongested
(D50) and congested (D100) traffic conditions. On the other hand, the performance of CV
technology for a wide spectrum of traffic conditions (uncongested — near congested —
congested/D10 — D100) was evaluated for three different penetration rates (low — moderate —
high/P15 — P50 — P100). Speed advice was explicitly provided to passenger cars and taxis among
the simulated vehicle types (passenger cars, taxis, trucks, and buses), since the VPA model was

explicitly developed for light-duty vehicles.

Table 3.5. Simulated demand levels and penetration rates for comparison of VPA vs EVPA performance

3 o
Demand Level Penetration Rate (P%)

(D%)

PO P3 P10 P15 P25 P50 P75 P100
D10 v X x v x v x v
D20 v x x v x 4 x 4
D30 4 x x v x 4 x v
D40 v x x v x 4 x 4
D50 v v v v v v v v
D60 v x x v x 4 x 4
D70 v x x v x v x v
D80 v x x v x 4 x 4
D90 v x x v x v x v
D100 v v v v v v v v
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Aimsun is a stochastic microscopic traffic simulation tool. Thus, multiple runs of each simulated
scenario were executed so that the obtained simulation outputs can be statistically significant.
Initially, five runs of the calibration scenario were executed (each corresponding to a different
random seed) and statistics of the average network speed were collected. The required number of
runs is determined based on the standard deviation of speed for a specific significance level and
the tolerable error (Ott & Longnecker 2004). The significance level was selected to be 95% and
the tolerable error equal to 0.5 km/h. Since the standard deviation of the average network speed of
the initial sample was estimated as 0.398 km/h, the required number of runs was determined to be

10 according to Equation 18:

232
n= (Za/zl)s# (18)

where n is the number of required runs, z; is the critical value of the normal distribution at the

significance level (1 — a), and E is the allowable error.

3.5.3 Simulation Scenarios — EVPA vs EVPA-DT

Impact assessment of advisory (EVPA) and automated (EVPA-DT) dynamic eco-driving was
conducted for 8 different penetration rates of LVs, CVs and CAVs in the fleet mix. LVs were
assumed manually driven and non-equipped with dynamic eco-driving technology, CVs could
receive energy-efficient speed advice but drivers of the corresponding vehicles should manually
adapt to it (EVPA-DT), while CAVs were assumed equipped with automation functions that could
execute the provided speed advice in an accurate and timely manner (EVPA). A complete list of
simulated scenarios per penetration rate of each vehicle type is depicted in Table 3.6. A single
demand level corresponding to moderate traffic conditions was considered, since previous research
indicated that EVPA does not operate efficiently during congestion (Mintsis et al. 2021). The latter
demand level represents 50% of total trips simulated in the calibrated demand scenario.
Additionally, simulation experiments explicitly encompassed passenger cars in this case. Finally,
each simulation scenario was executed 10 times (cf. Section 3.5.2), so that statistical significance

of simulation analysis was guaranteed.
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Table 3.6. Simulated penetration rates of advisory and automated dynamic eco-driving services

Vehicle Type Penetration Rate (%)

Scenario No.

LV cv CAV
1 100 - -

) 75 25 -

3 50 25 25
4 25 50 25
5 - 50 50
6 - 25 75
7 - 100 -

g - . 100
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4 Data Collection from Real-world GLOSA Applications

4.1 Energy Efficient Intersection (EEI)

The Energy Efficient Intersection (EEI) is a GLOSA service that aims to reduce vehicular energy
consumption and emissions in the vicinity of signalized intersections. The operation of the EEI
service relies on 12V communication and specifically the exchange of the SPaT message between
the infrastructure and the CV. Upon reception of the SPAT message the CV’s OBU can estimate
an energy efficient driving strategy which is presented to the driver via a Human-Machine Interface
(HMI) in the form of speed advice and countdown information (increased anticipation of the
upcoming traffic light status). A pilot operation of the EEI service was conducted along an urban
arterial corridor (Tsimiski St.) in the city of Thessaloniki, Greece in the context of the Compass4D

project (Mitsakis et al. 2014).

Tsimiski St. is one of the main urban arterial corridors of Thessaloniki’s CBD which serves
approximately 50.000 vehicles per weekday (60% of which are through-traffic). It is equipped
with modern traffic monitoring and adaptive signal control devices, which are connected to the
Traffic Management Centre (TMC) of the city. Tsimiski St. is congested during morning and
afternoon peak hours, since the CBD of the city attracts multiple business, leisure and housing
activities. Traffic lights along Tsimiski St. operate under fully adaptive mode (OMNIA system)
and are managed by the Region of Central Macedonia. Information regarding the status of signal
phase and timing is thus known and can be transmitted to CVs via 7 road-side units (RSUs)
installed along the arterial. Figure 4.1 depicts the location of the RSUs along Tsimiski St. (panel
a), the location of traffic light controllers, as well as the side-streets intersecting the urban arterial

corridor (panel b).
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Figure 4.1. (a) RSU placement along Tsimiski St., (b) location of traffic light controllers and side-streets

intersecting Tsimiski St.

4.1.1 System Architecture

4.1.1.1 Functional Overview

This section provides an abstract description of the EEI system which is platform and technology
independent. It encompasses the main interactions among the functional elements of the EEI
system which is comprised of several subsystems (vehicles, road-side infrastructure, TMC, other
back-office installations) that cooperate to achieve some common goal or support a common
policy. The latter collaboration entails different roles and actions per EEI system component.
Figure 4.2 shows a generic functional architecture of the EEI system, which is comprehensively

presented in (Alcaraz et al. 2015).
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Figure 4.2. Functional architecture of the EEI system

A description of each functional component and its role in the context of the EEI system is

provided below:

e Intersection TLC: It is comprised of the switching unit for the signal head states, the unit for
processing detector data, the proxy gateway for the RSU and the communication unit to
connect with the TMC.

e Data Manager: It enables the interfacing of the different functional components by providing
access to static and dynamic data.

e Traffic Conditions and Traffic Signal States: This component enables the processing of
traffic signal (SpaT information) and detector data (flow and speed counts).

e Speed Advisory: Computes energy optimal driving strategies for single vehicles and
intersection approaches based on the SPaT message. It is installed on the vehicle side.

e Driver Assistance: It is the vehicle sub-system that interacts with the driver by presenting

information from infrastructure and/or vehicle applications via HMI.

103



Moreover, the interactions among the functional components encompass the following flow of
information and processes. The “Speed Advisory” component periodically reads from the “Data
Manager” signal group states including residual times (SPaT information) and — if available — local
traffic states via detector data. On the basis of the signal state information and prevailing traffic
conditions “Speed Advisory” calculates energy optimal driving strategies (speed profiles) per
intersection approach and signal group. The latter speed profiles are written into “Data Manager”,
which periodically dispatches them to the “Driver Assistance”. The driver eventually receives
speed advice via the “Driver Assistance” sub-system. An elaborate depiction of the information

flow between the different functional components is shown in Figure 4.3.
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Figure 4.3. Information flow between functional components of the EEI system
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4.1.1.2 Physical Architecture

The actual EEI system deployed along Tsimiski St. is comprised of the OBUs installed on the CVs,
equipment installed on the road-side traffic controllers, software installed on the existing TMC of

Thessaloniki, and the Pilot Operation Management System (POMS).

The existing TMC is equipped with hardware and network infrastructure (server room) that enables
the hosting of the new applications (back-office software) required for the operation of the EEI
system (Figure 4.4). The new applications are responsible for the generation of the C-ITS
messages that make possible the communication between the CVs and infrastructure and their
installation has been done remotely by the software suppliers. Via their installation the existing
OMNIA & MISTIC software configurations of the existing TMC have been upgraded (Traffic

Signal Predictor, Cooperative Back-end) in order to support C-ITS services such as EEL

Figure 4.4. TMC at the city of Thessaloniki, Greece

The OMNIA platform installed on Tsimiski St. provides a common interface for all the traffic
related systems in the city center of Thessaloniki. The system includes 12 traffic controllers, 8
surveillance cameras, 5 AUTOSCOPE cameras, 11 radars and 5 Variable Message Signs (VMS).
It supports real-time monitoring of prevailing traffic conditions (MISTIC conducts validation,

normalization and synchronization of the collected traffic data) and traffic signal plan selection.
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Android tablets were selected as OBUs for installation on the CVs side (Figure 4.5). The devices
were installed on the side of the dashboard and were used for both estimating and showing speed
advice messages to taxi drivers. The EEI application developed in the context of the Compass4D

project could be downloaded from the Google Play App Store and installed on the tablets. It was

operating on the top of the taxi dispatching application.

Figure 4.5. OBU (Android Tablet) equipped with 3G/LTE capabilities

POMS was developed by CERTH/HIT and is hosted at its the mobility laboratory (Figure 4.6). It
is comprised of hardware (2 large monitors) and software responsible for storing, processing and
visualizing data collected during the pilot operation of the EEI system (Figure 4.7). It is equipped

with the following features:

e A direct connection to the TMC used to obtain traffic related information.

e Connection to OBUs that upload data collected via the existing GPRS (3G/4G) connection of
the taxi fleet company to POMS. This allows POMS to monitor the performance of the EEI
services in real time.

¢ Information collected from the TMC and the OBUs is automatically processed and stored at a

central database in a common format.
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e Monitoring and visualization capabilities for inspecting the system operation and generating

periodic reports that summarize its performance.

Figure 4.6. POMS infrastructure (hardware and software)
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Figure 4.7. POMS features and monitoring capabilities

The physical architecture of the EEI system in the context of the pilot site of Thessaloniki is

depicted in Figure 4.8. According the to the latter architecture, the Intersection TLCs initially send

SPaT information to the TMC, which subsequently provides SPaT and TOPO information to a

web service via OMNIA. OBUs connect to the web service via 3G/LTE in order to retrieve it and

estimate an energy efficient driving strategy based on the current CV position and speed (GPS),

the distance to the traffic light (TOPO), and the time to green/red (SPAT). The energy efficient

speed advice is shown to the taxi driver via the OBU/HMI while the CV is approaching the traffic

light. Finally, OMNIA collects Cooperative Awareness Messages (CAM) from CVs including

information about their state (speed, acceleration, position and heading) and then transmits the

relevant information to POMS.
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Figure 4.8. Physical architecture of the EEI system in the city of Thessaloniki

4.1.2 Pilot Operation and Management

The pilot operation of the EEI service encompassed 200 taxis equipped with OBUs that executed
speed advice estimated based on the EVPA algorithm along 12 signalized intersection approaches.
When CVs entered the EEI service activation zone (road sections between two consecutive traffic
lights) the EEI application installed on the OBU would pop-up a dedicated screen showing
information on remaining time to the next signal state and suggested speed advice so that CVs
could cross the signalized intersection without stopping (Figure 4.9). Speed advice and signal
status countdown information were provided every 3 seconds to taxi drivers who could manually
adapt to it. Data from RSUs and OBUs were logged into a central database (maintained in POMS)
in a time resolution similar to the speed advice update intervals (3 sec) throughout the whole pilot

operation period.
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Figure 4.9. EEI application showing countdown information and speed advice

The pilot operation of the EEI service on Tsimiski St. spanned between November 2014 and

August 2015. The baseline phase (EEI system deactivated) commenced on the 1% of November

with a set of four drivers. The service was activated on the 15™ of November for a set of 15 drivers

in order to obtain preliminary feedback, while on the 15" of December the service became

available for all 606 taxi drivers that were involved in this FOT. The timeline of the main phases

of the pilot operation of the EEI service in Thessaloniki is depicted in Table 4.1.

Table 4.1. Main phases of the pilot operation of the EEI service in Thessaloniki

Dates

Operations

Oct —Nov 2014
Nov — Dec 2014
Jan — Aug 2015

Apr —May 2015

Installation of EEI system equipment
Baseline pilot operation (EEI system deactivated)
Pilot operation of the EEI system

Updates to system configuration and operation
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A few representative figures summarizing EEI system performance throughout the pilot operation

period are summarized below:

23,965,358 GPS locations were collected within the EEI service activation zone (179,506 per
day). The average number of GPS locations per driver and per day was 872. Moreover, the
number of collected GPS locations showed a linear increase during the pilot operation
following the corresponding increase in the number of drivers participating in the FOT.

The distribution of collected GPS location during the day coincides with demand for taxi trips.

Figure 4.10 indicates that peaks are observed at 13:00 pm and 18:00 pm.
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% of GPS locations
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Figure 4.10. Distribution of collected GPS locations per hour of day

606 drivers participated in the pilot site activities covering a total of 95,566 km during 7,428
driving hours along Tsimiski St. The daily average number of drivers travelling within the EEI
service activation zone was 178, while the average number of days that each driver tested the
system was 76.

Transmission of SPaT information from the RSUs side was primarily consistent between Apr
— Jun 2015 (Figure 4.11), while the majority of RSUs transmitted SPaT messages for
approximately 40% of the pilot operation timeline (Figure 4.12).
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Figure 4.11. Number of connected TLCs providing SPaT information per day
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Figure 4.12. Percent of time that equipped TLCs were providing SPaT information throughout the pilot

operation period

e A total of 8.086 speed advice messages were provided to taxi drivers. Acceleration advices
were mainly given during green signal phase (Table 4.2), while deceleration and maintain
speed advices were given during red signal phase as expected based on the EVPA control logic
(Table 4.3). The most common situation was to advice drivers to attain 30 km/h driving speed,

which was the minimum allowable speed that could be provided via the EEI service.
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Table 4.2. Advised driving strategies during green phase

Speed Advise Driving Strategy
(km/h) “Acceleration” “Deceleration” “Maintain Speed”
30 2156 716 688
40 1054 197 219
50 453 - )

Table 4.3. Advised driving strategies during red phase

Speed Advise Driving Strategy
(km/h) “Acceleration” “Deceleration” “Maintain Speed”
30 ] 938 676
40 - 407 377
50 . ] 205

More elaborate information with respect to the pilot operation of the EEI service in Thessaloniki,

Greece can be found in (Vernet et al. 2016).

4.1.3 Speed Advice Dataset

As aforementioned, real-time data pertaining to the pilot operation of the EEI service were
recorded and stored in POMS. At the end of the pilot, the dataset in POMS contained 8090 distinct
speed advice records, along with information pertaining to type of transmitted speed advice
messages, suggested energy-optimal driving speeds, IDs of EEI service activation zones,
timestamps of CVs upon entry in the latter zones, instantaneous position and speed of CVs,
distance of CVs from the signalized intersection and remaining time of the current traffic signal
status on message reception. An analysis of the latter dataset which was used for the development
of the EVPA-DT can be found in (Mintsis et al. 2017). A description of the exact variables used
for the development of the EVPA-DT is given in Table 4.4, while an excerpt of the actual dataset
is provided in Table 4.5.
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Table 4.4. Dataset variables used for the development of EVPA-DT

Variable Name

Variable Description

Vehicle ID

Message Timestamp

Zone ID

Message Type

Speed Advice

Vehicle Speed

Distance to Traffic Light

Signal Group

Remaining Phase Duration

Traffic Light Status

Unique ID assigned to individual CVs

Unique timestamp assigned to transmitted speed advice message

Unique ID assigned to each EEI service activation zone

Type of transmitted messsage (“Accelerate”, “Decelerate”, and “Maintain’)
Energy-optimal driving speed (km/h)

Instantaneous speed of CV (km/h)

Distance between CV and equipped signalized intersection (m)

Signal group for which energy-optimal speed advice is estimated
Remaining time of running signal phase (sec)

Status of traffic light (“Green”, or “Red”)
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Table 4.5. Excerpt from the speed advice dataset maintained in POMS

Vehicle ID Message Timestamp Zone ID Message Type Spe(el:imélcll)v fee Veh(igz/i[))eed Trg}'lsct?i;eh:o(m) gﬁ:ﬁ Rle)llrll?:tlii:f (l;::l:)se Tra;?:t:;ght
50065 2014-11-22 08:32:20.000  500651416645088 decelerate 30 47.856 291.43 100201 18 G
50065 2014-11-22 08:32:23.000  500651416645088 decelerate 30 53.195 288.83 100201 15 G
50123 2014-11-26 16:30:35.000  501231417019389 accelerate 30 36.136 372.36 101101 13 G
50123 2014-11-26 16:30:38.000  501231417019389 accelerate 30 37.944 347.82 101101 7 G
50123 2014-11-26 16:30:41.000  501231417019389 maintain 30 40.945 313.57 101101 4 G
50123 2014-11-26 16:30:47.000  501231417019389 maintain 30 40.446 215.38 101101 24 R
50123 2014-11-26 16:30:50.000  501231417019389 maintain 30 40.346 185.82 101101 21 R
50123 2014-11-26 16:31:05.000  501231417019389 decelerate 30 17.615 116.45 101201 12 R
50123 2014-11-26 16:31:08.000  501231417019389 decelerate 30 15.784 79.35 101201 9 R
50123 2014-11-26 16:31:08.000  501231417019389 decelerate 30 15.784 79.35 101201 6 R
50123 2014-11-26 16:31:11.000  501231417019389 maintain 30 11.775 50.89 101201 3 R
50123 2014-11-26 17:28:34.000  501231417022909 accelerate 40 33.007 462.24 101101 40 G
50123 2014-11-27 14:35:42.000  501231417098934 accelerate 30 19.489 317.11 101101 64 G
50123 2014-11-27 14:35:45.000  501231417098934 accelerate 40 19.549 294.11 101101 64 G
50123 2014-11-27 14:35:48.000  501231417098934 accelerate 40 20.983 268.71 101101 40 G
50123 2014-11-27 14:35:51.000  501231417098934 accelerate 40 18.791 241.1 101101 40 G
50123 2014-11-27 14:36:00.000  501231417098934 decelerate 40 12.709 140.61 101101 34 G
50123 2014-11-27 14:36:03.000  501231417098934 accelerate 50 10.562 97.24 101101 28 G
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S Implementation and Results

Simulation results have been comprehensively analyzed for two sets of simulation scenarios
presented in the methodological section (cf. Section 3.5). Initially, the performance of VPA and
EVPA systems has been compared according to environmental benefits and traffic impacts.
Subsequently, the structure of the DT is presented and its results are interpreted to explain driver
adaptation to dynamic eco-driving advice. Finally, the performance of advisory (EVPA-DT) and
automated (EVPA) dynamic eco-driving systems has been assessed with the use of mobility, safety

and environmental performance measurements.

5.1 Impact Assessment — VPA vs EVPA Performance

Simulative assessment of scenarios depicted in Table 3.5 considered environmental and traffic

efficiency KPIs, and was conducted for the following levels of analysis:

¢ Individual vehicle performance under manual, VPA and EVPA driving
e Dynamic eco-driving service zone (local impacts at IA level)

e Network scale (encompassing road sections beyond dynamic eco-driving service zones)

Individual vehicle behavior was examined on the basis of vehicle trajectory output provided by
Aimsun. To this end, a custom web-based application named TrajAIM (Trajectory Analysis for
Microsimulation) that enables the generation of multiple plots from vehicle trajectory data (e.g.
distance vs time, speed vs distance, acceleration vs speed etc.) and the comparison of vehicle
trajectories from different simulation experiments was developed. Elaborate information with
respect to TrajAIM capabilities and features can be found in Appendix B. Local and corridor-wide
impacts of dynamic eco-driving were evaluated with the use of sub-path (spatially coinciding with

dynamic eco-driving service zones) and system (entire network) simulation output.

A specific notation scheme was adopted to simplify description of simulation results. Capital
letters were assumed for different traffic lights of the simulated network appearing in Figure 3.3
and were used to denote [As of particular interest to this analysis. For example, {N—M} denotes
the TA between traffic lights N and M. Moreover, the arrow symbol dictates the direction of traffic
along the IA. For scenarios encompassing dynamic eco-driving, it is also implied that VPA and

EVPA are deployed along the corresponding IA.

117



5.1.1 Individual Vehicle Performance
The analysis of individual vehicle performance encompasses four different types of plots:

e speed vs distance
e speed vs time
e cumulative CO; emissions vs distance, and

e acceleration vs speed.

These plots reveal the influence of dynamic eco-driving on CV behavior and the corresponding
CV performance in terms of COz emissions. The CV performance displayed in Figure 5.1 and
Figure 5.2 pertains to traffic demand level D50, penetration rate P100 and two different routes of

the test site.

Figure 5.1 shows information about a single CV performance along IA:{R—Q} (one-way multi-
lane road segment). While the CV has to stop at the traffic light in the “do-nothing” scenario, it
can adopt a deceleration strategy in the VPA and EVPA scenarios to avoid a standstill and generate
lesser CO> emissions. However, it can be seen (in the focus area of the right top plot) that the
EVPA algorithm allows the CV to cruise at a marginally lower speed compared to the VPA one,
and consequently begin acceleration approximately 10 m upstream of the traffic light (when the

signal status changes to green).

As explained in Section 3.1.2 of this dissertation, the latter behavior can promote comfort, safety
and user acceptance of the system since the CV will not reach the traffic light (in red status) at
cruising speed (enhanced speed advice), and increase intersection safety since there will be further
available time for intersection clearance or CV tactical maneuvering in case of red light running
from vehicles driving along other directions (possible scenario in mixed traffic conditions).
Interestingly, the EVPA deceleration strategy does not adversely impact CO2 emissions savings.
This is also justified by the same acceleration/deceleration patterns between VPA and EVPA

depicted in Figure 5.1 (bottom right plot).
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Figure 5.1. VPA vs EVPA: Individual vehicle performance on IA: {R—Q}

The behavior of an individual CV with (VPA and EVPA) and without (“do-nothing”) dynamic
eco-driving technology is examined along the urban arterial corridor {O—A}. Every signalized
intersection is equipped with an RSU along the corridor (one-way four-lane urban arterial corridor
with reserved bus lane on the right-most lane and side-street parking on the left-most lane), thus

enabling CVs to implement separate acceleration/deceleration strategies per 1A.

Figure 5.2 (top plots) indicates that VPA allows the CV to successfully execute a deceleration
strategy thrice, while EVPA only once given road characteristics, prevailing traffic conditions, and
deployed traffic signal plan. However, the first two deceleration strategies suggested by VPA lead
to rather low cruising speeds (< 20 km/h) that can be non-acceptable by drivers or passengers in
the case of fully automated vehicles. Moreover, they yield CO> emissions savings that are not
significant compared to the “do-nothing” and EVPA scenarios when the same CV has to fully stop
at the traffic light and accelerate back to desired speed from standstill.

Nonetheless, a noteworthy observation is that dynamic eco-driving alters the traffic patterns of
CVs even in space and time intervals that energy optimal driving strategies are not applied or
possible. This phenomenon can generate unfavorable conditions for the CV due to surrounding
traffic (queued vehicles disrupting the adoption of speed advice) or mistimed entrance at an
intersection approach. Hence, the cumulative CO> emissions of the CV (EVPA case) eventually

surpass those of the unequipped equivalent (left bottom plot) along the examined path. Finally,
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results demonstrate that the VPA produces milder acceleration/deceleration rates for the examined

CV (right bottom plot), and thus lesser cumulative CO> emissions along its travelled path {O—A}.
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Figure 5.2. VPA vs EVPA: Individual vehicle performance on urban arterial corridor {O—A}

5.1.2 Dynamic Eco-driving Service Zone

A plethora of information is provided to scrutinize the performance of dynamic eco-driving on two
benchmark TAs of the test site and compare the behavior of VPA and EVPA methods. The

evaluation of the different algorithms is conducted in terms of:

e (CO; emissions (gr/km)
e number of stops per vehicle, and

e mean travel time (seconds).

The reported travel time and CO; emissions results also consider the road sections downstream of
the examined [As where benefits from energy efficient deceleration strategies can be realized.
Results are analyzed for traffic demand levels D50 (uncongested conditions) and D100 (congested

conditions), and penetration rates ranging between PS5 — P100.

[IA:{R—Q} was selected as benchmark in the context of this dissertation since it is isolated and
vehicle arrival patterns are not influenced by implementation of dynamic eco-driving along

upstream [As (Figure 5.3). Moreover, it is a one-way four-lane road section spanning up to 360 m
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where there is available space for CVs to adopt dynamic eco-driving maneuvers. SPaT messages
are received up to 360 m upstream of signalized intersection Q by CVs, and 65.00 s of the signal
cycle (72.22% of the cycle duration) are allocated to the through movement (speed advice is
estimated specifically for this movement). The minimum cruising speed is 20 km/h in the case of
EPVA, and 10 km/h in the case of VPA. An influence zone calibration parameter of 0.01 indicates
that CVs will reach the traffic signal on red light status while driving at cruising speed at the end
of a deceleration strategy (VPA scenario). On the other hand, a 0.5 parameter value (EVPA
scenario) ensures that CVs’ acceleration will commence prior to arrival on red signal status to the

intersection stop line.

Intersection Approach Name M. Alexandrou Ave. — {R — Q}
Communication Zone SPaT received 360 m upstream of Traffic Light Q
Algorithmic Parameters

Algorithm Name EVPA VPA
Acceleration Rate Parameter (m/s2) 0.15 0.15
Influence Zone Calibration Parameter 030 om
Minimum Cruising Speed after Deceleration (km/h) 20.00 10.00
Car-following Rule Enabled Enabled
Enforce Minimum Allowable Speed Rule Yes Yes

Traffic Signal Plan (Traffic Light: Q)
Control Type Pre-timed
Cycle Duration (sec) 20.00
Green Time allocated for Through Movement (sec) 65.00

Green Time/Cycle Duration (%0) 7222

W

M. Alexandrou Ave.

Figure 5.3. Dynamic eco-driving deployment information on [A: {R—Q}

Despite increased demand in D100, traffic conditions remain uncongested along [A:{R—Q}
(Figure 5.4). Mean travel time (min/km) is slightly affected by dynamic eco-driving (bottom plots)
and mostly for higher penetration rates (> 75%). Both VPA and EVPA manage to significantly
reduce idling (number of stops/veh) in mixed traffic, while stop events almost vanish in the case
of fully equipped fleet (middle plots). However, it can be noticed that for low to intermediate

penetration rates (P15 — P50) and highest demand level (D100) EVPA outperforms VPA in terms
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of preventing CV stops at traffic light Q. VPA advices lower cruising speeds in the context of
deceleration strategies, and thus non-equipped vehicles (which represent the highest share in the
fleet mix for low penetration rates of dynamic eco-driving technology) tend to overpass CVs
causing more stops at traffic lights compared to the EVPA scenario. Both algorithms generate CO-
emissions savings beyond medium penetration rate (P50) that are maximized for fully equipped
fleet (P100). Maximum CO; emissions savings rise approximately to 7.0% (top plots) and do not
occur in the expense of significant travel time costs (bottom plots). Moreover, VPA and EVPA

exhibit similar CO2 emissions savings potential in the case of [A:{R—Q}.
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Figure 5.4. VPA vs EVPA: KPIs of dynamic eco-driving deployment on [A: {R—Q}

The reason [A: {N—M} is selected as benchmark and studied explicitly is multifold (Figure 5.5).
[A:{N—M} is part of urban arterial corridor {O—A} where dynamic eco-driving is deployed on
all signalized IAs (Figure 3.3). It is one of the few [As on urban arterial corridor {O—A} that

spans 240 m long, thus providing enough space for CVs to execute dynamic eco-driving
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maneuvers. Additionally, it is fed with traffic by three different [As (i.e. {O—N}, {P—N}, and
{R—N}) where dynamic eco-driving is also applied. Hence, vehicle arrival patterns vary
significantly on IA:{N—M} giving the opportunity to test dynamic eco-driving for different CV
approach speeds (also influenced upstream by dynamic eco-driving). Furthermore, 62.00 s of the
signal cycle (68.89 % of the cycle duration) are allocated to the through movement (speed advice
is estimated specifically for this movement). Consequently, there is adequate red duration to induce
energy efficient deceleration strategies. Algorithmic settings (VPA and EVPA) for IA:{N—M}
are similar to that of {R—Q}.

Intersection Approach Name Tsimiski 8t.— {N — M}
Communication Zone SPaT received 240 m upstream of Traffic Light M
Algorithmic Parameters

Algorithm Name EVPA VPA
Acceleration Rate Parameter (m/s2) 013 013
Influence Zone Calibration Parameter 030 0n
Minimum Cruising Speed after Deceleration (km/h) 20,00 10.00
Car-following Rule Enabled Enabled
Enforce Minimum Allowable Speed Rule Yes Yes

Traffic Signal Plan (Traffic Light: M)
Control Type Pre-timed
Cycle Duration (sec) 20.00
Green Time allocated for Through Movement (sec) 62.00
Green Time/Cycle Duration {%0) 6389

Tumls ki St /\

. "‘«\// \\

Figure 5.5. Dynamic eco-driving deployment information on intersection approach {N—M}

Congested conditions prevail along IA: {N—M} for the highest demand level (D100). Mean travel
time increases four times compared to uncongested conditions (D50) for the “do-nothing” scenario
(Figure 5.6). The deployment of dynamic eco-driving further disrupts traffic flow on [A: {N—M}
for higher penetration rates. As explained in Section 3 of this dissertation, both VPA and EVPA
do not account for traffic light queues when estimating acceleration/deceleration strategies.
Therefore, CVs can receive speed advice upon entrance to the intersection approach but eventually
will need to abort it (due to reaching tail of queue), thus escalating travel time and CO; emissions.

Noticeably, EVPA outperforms VPA on the basis of the examined KPIs (left plots — D100) for the
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majority of the tested penetration rates (most significant difference for higher penetration rates).
Due to the higher minimum speed advice threshold in the case of EVPA (i.e. 20 km/h), lesser
speed advices are provided to equipped vehicles, hence reducing the intensity of disruption to the

traffic flow and CO; emissions performance incurred by dynamic eco-driving.

On the other hand, traffic conditions are uncongested along IA:{N—M} for the intermediate
demand scenario (D50). Queued traffic almost diminishes at traffic light M (Figure 5.6 — middle
right plot) for higher penetration rates (> 75%). EVPA generates CO2 emissions savings along
[A:{N—M}, which approximately rise to 13.0% and 8.5% reduction compared to the “do-nothing”
and VPA scenarios respectively (Figure 5.6 — top right plot). Notably, EVPA exhibits significantly
improved performance compared to VPA with respect to emissions reduction, although it adapts
speed advice to improve comfort and safety. Finally, it can be observed that for low to intermediate
penetration rates vehicle stops increase with deployment of VPA. This phenomenon occurs due to
the behavior of non-equipped vehicles as it was explained in the aforementioned analysis of

simulation results for IA: {R—Q} as well.
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Figure 5.6. VPA vs EVPA: KPIs of dynamic eco-driving deployment on [A: {N—M}

5.1.3 Corridor-wide Impacts

The impacts of dynamic eco-driving (VPA and EVPA) on network performance are assessed in

terms of’

e average network speed
e (CO: emissions per kilometer driven (gr/km), and

e average stop time per kilometer driven (s/km).

Corridor-wide statistics are reported for the full spectrum of examined demand levels (D10 —
D100) and two penetration rates (P50 and P100) to identify triggering points for VPA and EVPA

activation according to the prevailing traffic conditions on the examined test site.

Figure 5.7 indicates that both VPA and EVPA can yield CO; emissions savings when average
network speed is over 25 km/h (D10 — D80), but the latter savings are insignificant though.
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Moreover, corridor-wide savings diminish as traffic demand shifts from light to moderate
(D10—D80). On the other hand, the tested algorithms exhibit similar performance to the do-
nothing” case for heavy traffic conditions (congestion) when average stop time increases
significantly both for 50% and 100% penetration rates. As aforementioned, this is reasonable
considering that both algorithms are not designed to account for traffic light queues when
estimating energy efficient speed advice. Moreover, it can be seen that lower share of CVs in the
fleet mix (P50) results in slightly lesser impacts of dynamic eco-driving on the network scale

compared to the case of fully equipped fleet (P100).

VPA generates marginally higher CO2 emissions savings compared to EVPA in uncongested
conditions when the whole test site is considered. However, these savings are realized in the
expense of marginally increased travel times. Longer travel times are expected in the VPA
scenarios due to the minimum speed advice threshold (i.e. 10 km/h). Lower CO> emissions on the
network level can be attributed to more energy efficient patterns generated by VPA at areas of the
network where speed advice is not implemented successfully or at all as previously highlighted
and explained in the analysis of single vehicle performance. Finally, the lower stop times observed

for VPA can be also ascribed to crawling speeds that can be advised by the latter algorithm.
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Figure 5.7. VPA vs EVPA: Average network KPIs of dynamic eco-driving deployment on the examined

urban arterial corridor

5.1.4 Discussion

Simulation results indicate that EVPA can exhibit similar or even better performance compared to
VPA for specific road characteristics, activation distances of dynamic eco-driving service, traffic
conditions and traffic signal plans, despite adapting speed advice to improve user acceptance and
intersection safety. It is also noteworthy, that improved EVPA performance occurs when VPA
advices deceleration strategies that encompass cruising speeds that undercut the minimum cruising
speed after deceleration (vp,i, ). For this reason EVPA and VPA performance is similar along
[A:{R—Q}, while EVPA significantly outperforms VPA in the case of [A:{N—M}. Moreover,
the fact that EVPA suggests vehicle acceleration prior to CV arrival at the signalized intersection

at the end of deceleration strategies does not weaken its ability to yield CO; emissions savings.
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On the other hand, the analysis of individual vehicle performance and corridor-wide statistics
revealed that VPA slightly outperforms EVPA in terms of environmental benefits on the network
level. Nonetheless, this occurs at the cost of marginally higher travel times. Both VPA and EVPA
generate different traffic patterns on the examined test site even in areas where speed advice is not

feasible due to surrounding traffic or mistimed arrival at intersection approach.

Moreover, both algorithms do not produce significant corridor-wide emissions savings compared
to the “do-nothing” scenario even for low to moderate traffic demand. As it can be seen in Figure
3.3, traffic lights are closely spaced beyond traffic light M along the urban arterial corridor
{O—A}, where the speed limit is 50 km/h along {O—A}. Thus, dynamic eco-driving benefits
diminish due to low approach speeds, confined speed range and space for adapting to speed advice,
and VPA/EVPA algorithmic logic that considers single signalized intersections for estimating
energy efficient driving strategies instead of multi-intersection corridors controlled by traffic
lights. Previous research has also indicated that inappropriate deployment of dynamic eco-driving
could even generate environmental disbenefits due to unfavorable factors (Rakha et al. 2012;
Rakha et al. 2016; Tielert et al. 2010; Xia et al. 2013a). Hence, the deployment scheme of dynamic
eco-driving that encompasses road design characteristics, activation distance of the service, traffic
signal plans and traffic conditions significantly affect its energy efficiency and emissions savings
potential. According to the latter information, it is important to identify the deployment scheme
that enables EVPA to perform efficiently (in terms of CO> emissions reduction) on the network
scale. Thus, travel time, user acceptance and safety benefits also provided by EVPA can be

realized.

Additionally, we show that VPA and EVPA deteriorate traffic conditions during congestion since
they do not consider traffic light queues for speed advice estimation. The corresponding simulation
results pose irregular patterns with respect to speed advice efficiency and CO; emissions. Notably,
interactions between CVs and LVs become more complex especially in the case of VPA when
crawling speeds can be advised to CVs. Finally, it is of note that we assumed full diver compliance
to speed advice in the context of these simulation scenarios. However, human factors can exert
significant impacts on traffic flow performance (Ni et al. 2017) and intersection safety (Hurwitz

2009; Johansson & Rumar 1971).
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5.2 Speed Advice Adaptation modelling based on Real World Data

Information Gain and greedy CFS algorithm were used to extract the relative significance of each
feature included in Table 4.5 to speed advice compliance (cf. Section 3.2.1). Results of the
aforementioned analysis are summarized in Figure 5.8. The three most critical variables are the
distance from the traffic lights when speed advice is received by the vehicle (TrafficLightDist), the
time remaining until the change of the traffic light status (SecondsTillChange), and the type of
message (i.e. maintain speed, accelerate, decelerate) the driver receives from the dynamic eco-
driving system (MessageToDriver). These results are significant for the development of predictive
algorithms that may explain the compliance of the users to speed advice and enhance their

effectiveness in real-world applications.
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Figure 5.8. Graphical representation of the influential features based on Information Gain and greedy

Correlation-based Feature Selection (CFS) algorithm
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A DT modelling driver’s adaptation to speed advice was developed based on the finding of the
latter analysis, the methodology presented in Section 3.2.2, and the dataset obtained from the pilot
operation of EVPA in the city of Thessaloniki (cf. Section 4.1.3). For the scope of this analysis, a
new variable was created and defined as the instantaneous speed divergence Sy;,, between the
vehicle’s average speed during a short time interval after the reception of the speed advice message
and the speed advice (actual speed divergence at the time of first speed advice message reception
was excluded to prevent bias in the estimation of the DT). Instantaneous speed divergence values
were used for the estimation of the average speed divergence S, per dynamic eco-driving
maneuver. The output of the DT (average speed divergence) is related to the distance to the
downstream signalized intersection, the time remaining until the signal’s status change, and the
type of message transmitted. All variables considered in the analysis were discretized to achieve
improved performance in the DT training process. The classification accuracy equals 81%. The

resulting tree is depicted in Figure 5.9.

The most critical feature for driver speed adaptation is the type of message. If the message is
“Accelerate”, drivers most likely will adapt speed, so that the speed divergence between travel
speed and the speed advice ranges between [-11.92, 19.91]. If driver receives either a “Decelerate”
or “Maintain Speed” message, then speed adaptation is influenced by the distance from the
downstream signalized intersection. Specifically, if the distance is longer than 350.64 m, the speed
divergence will range between [-11.92, 19.91]. If distance is shorter than 350.64 m and the time to
signal status change is lower than 47.5 sec, the speed divergence will be between [-11.92, 19.91]
in the “Maintain Speed” case. Otherwise, when the time to signal status change is greater than 47.5
sec, the speed divergence will be between [-15.33, 11.92] in the “Maintain Speed” case. In case of
“Decelerate” advice, speed divergence will range between [-15.33, 11.92] and [-11.92, 19.91] for
distances to traffic lights shorter than 178.31 m and longer than 350.64 m respectively. On the
other hand, if distance to traffic lights rangers between [178.31, 350.6] m and the time to signal
status change is lower than 47.5sec, then speed divergence will range between [-11.92, 19.91]. If
time to signal status change is greater than 47.5 sec, then speed divergence will be negative and

ranging between [-15.33, 11.92].
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Figure 5.9. DT for modelling driver compliance to speed advice

Exemplary transformations of deceleration profiles according to EVPA-DT are depicted in Figure
5.10. For instance, a CV might drive faster than the proposed energy-efficient deceleration strategy
(positive speed divergence case), thus arriving at the stop line prior to the onset of green signal
status. Thus, the CV will accelerate to desired speed from full stop along the downstream road
section and most probably yield emissions equivalent to those of an unequipped manually driven
vehicle. On the other hand, a CV might drive slower than the proposed energy-efficient
deceleration strategy (negative speed divergence case), and avoid a full stop at the signalized
intersection. However, in an urban setting that speed advice cannot range significantly due to speed
limit constraints its energy efficiency will be lower compared to that of a CAV which can
accurately execute the energy optimal driving strategy. Finally, a CV might successfully adapt to
speed advice and execute a maneuver similar to the EVPA estimated one (neutral speed

divergence) which yields the highest emissions savings.
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Figure 5.10. Exemplary energy-efficient deceleration strategies per dynamic eco-driving model

5.3 Impact Assessment — EVPA vs EVPA-DT Performance

Simulative assessment of scenarios depicted in Table 3.6 considered surrogate safety measures
apart from environmental and traffic efficiency KPIs. Safety assessment was conducted based on
conflict risk measures and relevant statistics derived directly via SSAM. The following aspects of
the simulation analysis implemented for the comparison of VPA vs EVPA performance were also

adopted for the comparison of EVPA vs EVPA-DT performance:

e considered levels of analysis
e tools used for the estimation of environmental and traffic efficiency KPIs, and

e notation scheme for the description of simulation results.

5.3.1 Individual Vehicle Performance

The analysis of individual vehicle performance enables the examination of advisory dynamic eco-

driving (EVPA-DT) emissions savings potential in contrast to automated dynamic eco-driving
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(EVPA), and manual driving (“‘do-nothing” scenario). To this end, the following two types of plots

have been generated based on vehicle trajectory information:

e speed vs distance, and

e cumulative CO; emissions vs distance.

The latter plots have been created for three specific vehicles which exhibit different behavior in
terms of adapting to dynamic eco-driving advice (deceleration strategies) along IA:{R—Q}
(Figure 5.11). LV trajectories have been extracted from “Scenario 1” and pertain to manual
driving, CV trajectories have been extracted form “Scenario 7 and pertain to EVPA-DT driving,

and CAV trajectories have been extracted from “Scenario 8 and pertain to EVPA driving.
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Figure 5.11. EVPA vs EVPA-DT: Individual vehicle behavior along [A: {R—Q}

Vehicle “2902” adopts higher speed (green line) compared to the advised one (blue line also
reflecting automated dynamic eco-driving) when equipped with advisory dynamic-eco driving
technology (positive speed divergence case). Thus, it arrives to the stop line prior to the onset of
green traffic light status and has to stop (as in the case of manual driving). Consequently, it has to
accelerate to desired speed from full stop and its cumulative CO; emissions are almost similar to

the case of manual driving. On the other hand, Vehicle “1807” succeeds in precisely following the
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advised speed when equipped with advisory dynamic-eco driving system (CV line superimposed
by CAV line in the middle plots). Hence, its CO> emissions savings coincide with the case when
Vehicle “1807” was equipped with automated dynamic eco-driving. Finally, Vehicle “1878”
adopts lower speed (negative speed divergence) compared to the advised one when equipped with
advisory dynamic-eco driving system, but still manages to cross the signalized intersection without
stopping. Therefore, it achieves CO> emissions savings compared to the “do-nothing” case, but
they are lower than the automated dynamic eco-driving case. The analysis of individual vehicle
behavior indicated that performance of advisory dynamic eco-driving ranges between that of
manual driving (without speed advice provision) and automated dynamic eco-driving depending

on the driver’s adaptation to the advised driving strategy.

5.3.2 Dynamic Eco-driving Service Zone

Local impacts of advisory and automated dynamic eco-driving have been evaluated along the 1As
(i.e. {N—M} and {R—Q}) that were also used for the analysis presented in Section 5.1.2. The
rationale for the selection of the latter two IAs is based on favorable conditions with respect to
available space and time for the execution of dynamic eco-driving advice, and variability in terms

of vehicle arrival patterns, geometrical and operational characteristics.

Reported environmental and traffic efficiency KPIs encompass number of stops per vehicle, CO>
emissions (gr/km), and mean travel time (seconds) per [A. Estimation of CO; emissions and travel
time results also considered vehicle behavior on the road sections downstream of the examined
IAs, where benefits from energy-efficient driving strategies can be realized. Environmental and

traffic efficiency KPIs along IAs {N—M} and {R—Q} are shown in Figure 5.12.

Simulation results indicate that variability in adoption of dynamic eco-driving advice between
different IAs is possible when the dynamic eco-driving system is advisory. For example, advisory
and automated dynamic eco-driving perform equally well along IA:{N—M}, while automated
dynamic eco-driving yields more substantial reductions in stop events and CO2 emissions along
IA:{R—Q}. Superiority of automated dynamic eco-driving performance along IA:{R—Q} is
caused due to insufficient adoption rates during advisory system operation, which can be ascribed
to driver behavior issues and/or surrounding road environment characteristics and conditions.
Although advisory dynamic eco-driving cannot outperform the automated variant of the system,

its performance is superior or at least equal to the case of fully unequipped fleet as also highlighted
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in the analysis of individual vehicle behavior. Moreover, it can be observed that presence of LVs
in the fleet mix induces higher variability in simulation results and lower emissions reduction due
to more complex vehicle interactions which stem from increased heterogeneity in vehicle behavior.
Finally, both advisory and automated dynamic eco-driving have marginal impacts on experienced

travel time along the examined IAs.
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Figure 5.12. EVPA vs EVPA-DT: Environmental and traffic efficiency KPIs along IAs {R—Q} and
{N->M}

Safety assessment of advisory and automated dynamic eco-driving on the local level has been
conducted via the estimation of number of conflicts (crossing, rear-end, and lane change),
propensity of conflicts, and severity of conflicts. TTC is used as a surrogate safety measure for the
quantification of conflict propensity, while DeltaS is used as a surrogate safety measure for the
quantification of conflict severity. In the context of this analysis, conflicts with TTC values smaller
than 1.5 s are explicitly considered as safety critical. Safety KPIs along [As {N—M} and {R—Q}
are depicted in Figure 5.13.

The introduction of dynamic eco-driving technology (both advisory and automated) has profound

homogenizing effects on traffic flow and diminishes rear-end conflicts as its penetration increases
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in the fleet mix. Higher frequency of conflict events is explicitly observed for scenarios
encompassing non-equipped manually driven vehicles (LVs) which yield more complex vehicle
interactions (e.g. LV conducting lane change or overtaking maneuver in response to CV/CAV
adherence to deceleration advice). However, conflicts are minimized along [A: {R—Q} only in the
case of increased CAV percentage, due to lower adoption rates of dynamic eco-driving advice
from CVs (equipped with advisory systems) as previously inferred from traffic efficiency results
(stops/vehicle). Finally, marginal differences among the examined scenarios with respect to

conflict propensity (mean TTC) and severity (DeltaS) are not statistically significant.
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Figure 5.13. EVPA vs EVPA-DT: Safety KPIs along [As {R—Q} and {N—>M}

5.3.3 Corridor-wide Impacts

The corridor-wide impacts of dynamic eco-driving (advisory and automated) on CO> emissions
and traffic efficiency are shown in Figure 5.14 and have been evaluated based on average stop
time per kilometer driven (s/km), CO> emissions per kilometer driven (gr/km), and average
network speed (km/h). Dynamic eco-driving (advisory and automated) reduces average stop time
by approximately 4% — 6%, while higher variability in average stop time is observed when traffic

heterogeneity is increased (Scenarios 3 & 4). Maximum CO> emissions savings (2.5 %) compared
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to manual driving are realized for a fleet fully equipped with automated dynamic eco-driving
technology, while the latter savings reduce to 1.6 % when the fleet is fully equipped with advisory
dynamic eco-driving. Simulation findings at network scale also confirm that advisory dynamic
eco-driving performance with respect to environmental KPIs resides between that of manual
driving and automated dynamic eco-driving. Finally, the introduction of dynamic eco-driving does

not affect average network speed during uncongested traffic operations.

Statistical testing has been conducted via SSAM to compare corridor-wide surrogate safety
measures (TTC and DeltaS) among simulated scenarios in a pair-wise fashion. Table 5.1 depicts
the number of conflict events that were used to estimate mean and variance of TTC and DeltaS per
scenario, as well as the values of the latter measures. The results of “t” statistical tests that
compared differences of mean TTC and DeltaS values for each pair of simulated scenarios are also

shown in Table 5.1 together with respective percental differences.

SSAM results indicate that differences are statistically significant for both propensity (TTC) and
severity (DeltaS) of conflicts only between “Scenario 17 (non-equipped fleet) and “Scenarios 2 &
8” that encompass vehicles equipped with dynamic eco-driving (advisory or automated). However,
the differences in terms of conflict propensity which favor the case on non-equipped fleet are very
small (0.8 %), while the ones relating to conflict severity which favor fleets with shares of equipped
vehicles are higher (~ 3% — 5 %). As far as comparison of pairs of scenarios which encompass
CVs and/or CAVs are concerned, it can be observed that TTC differences are insignificant, while
DeltaS differences are significant but not profound. Moreover, the latter DeltaS differences show
that conflict severity is reduced as the share of automated dynamic eco-driving increases in the

fleet mix.
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Table 5.1. EVPA vs EVPA-DT: Statistical comparison of surrogate safety measures at network scale

A vs B Measure Mean A Variance A Records A Mean B Variance B Records B t value Diff (%)
1 vs2 TTC 1.30 0.05 26425 1.29 0.06 26288 2.20* 0.8
DeltaS 3.85 3.62 26425 3.78 3.87 26288 4.25% 1.8
1vs3 TTC 1.30 0.05 26425 1.29 0.06 25582 2.00* 0.8
DeltaS 3.85 3.62 26425 3.76 3.98 25582 5.32% 2.3
Lvs4 TTC 1.30 0.05 26425 1.29 0.06 25285 3.59% 0.8
DeltaS 3.85 3.62 26425 3.72 3.94 25285 7.37* 34
1vs5 TTC 1.30 0.05 26425 1.29 0.06 25782 3.08%* 0.8
DeltaS 3.85 3.62 26425 3.66 3.99 25782 11.1* 4.9
1vs 6 TTC 1.30 0.05 26425 1.29 0.06 25885 2.36* 0.8
DeltaS 3.85 3.62 26425 3.66 3.94 25885 11.13* 49
1vs 7 TTC 1.30 0.05 26425 1.29 0.06 25218 2.74* 0.8
DeltaS 3.85 3.62 26425 3.70 3.99 25218 8.86* 3.9
1vs 8 TTC 1.30 0.05 26425 1.29 0.06 26068 2.94%* 0.8
DeltaS 3.85 3.62 26425 3.67 3.93 26068 10.88* 4.7
2vs 3 TTC 1.29 0.06 26288 1.29 0.06 25582 -0.19 0.0
DeltaS 3.78 3.87 26288 3.76 3.98 25582 1.11 0.5
2 vs 4 TTC 1.29 0.06 26288 1.29 0.06 25285 1.43 0.0
DeltaS 3.78 3.87 26288 3.72 3.94 25285 3.13* 1.6
2vs 5 TTC 1.29 0.06 26288 1.29 0.06 25782 0.89 0.0
DeltaS 3.78 3.87 26288 3.66 3.99 25782 6.80* 3.2
2vs 6 TTC 1.29 0.06 26288 1.29 0.06 25885 0.18 0.0
DeltaS 3.78 3.87 26288 3.66 3.94 25885 6.80* 3.2
2vs 7 TTC 1.29 0.06 26288 1.29 0.06 25218 0.56 0.0
DeltaS 3.78 3.87 26288 3.70 3.99 25218 4.62* 2.1
2vs 8 TTC 1.29 0.06 26288 1.29 0.06 26068 0.75 0.0
DeltaS 3.78 3.87 26288 3.67 3.93 26068 6.55% 2.9
3vs 4 TTC 1.29 0.06 25582 1.29 0.06 25285 1.61 0.0
DeltaS 3.76 3.98 25582 3.72 3.94 25285 1.99* 1.1
3vs S TTC 1.29 0.06 25582 1.29 0.06 25782 1.09 0.0
DeltaS 3.76 3.98 25582 3.66 3.99 25782 5.60* 2.7
3vs6 TTC 1.29 0.06 25582 1.29 0.06 25885 0.37 0.0
DeltaS 3.76 3.98 25582 3.66 3.94 25885 5.60* 2.7
3vs 7 TTC 1.29 0.06 25582 1.29 0.06 25218 0.76 0.0
DeltaS 3.76 3.98 25582 3.70 3.99 25218 3.46* 1.6
3vs 8 TTC 1.29 0.06 25582 1.29 0.06 26068 0.94 0.0
DeltaS 3.76 3.98 25582 3.67 3.93 26068 5.35% 2.4
4vs 5 TTC 1.29 0.06 25285 1.29 0.06 25782 -0.54 0.0
DeltaS 3.72 3.94 25285 3.66 3.99 25782 3.61%* 1.6
4vs6 TTC 1.29 0.06 25285 1.29 0.06 25885 -1.24 0.0
DeltaS 3.72 3.94 25285 3.66 3.94 25885 3.60* 1.6
4vsT TTC 1.29 0.06 25285 1.29 0.06 25218 -0.86 0.0
DeltaS 3.72 3.94 25285 3.70 3.99 25218 1.48 0.5
4vs 8 TTC 1.29 0.06 25285 1.29 0.06 26068 -0.68 0.0
DeltaS 3.72 3.94 25285 3.67 3.93 26068 3.34% 1.3
5vs6 TTC 1.29 0.06 25782 1.29 0.06 25885 -0.71 0.0
DeltaS 3.66 3.99 25782 3.66 3.94 25885 -0.02 0.0
Svs7 TTC 1.29 0.06 25782 1.29 0.06 25218 -0.32 0.0
DeltaS 3.66 3.99 25782 3.70 3.99 25218 2.11*% -1
5vs 8 TTC 1.29 0.06 25782 1.29 0.06 26068 -0.15 0.0
DeltaS 3.66 3.99 25782 3.67 3.93 26068 -0.29 -0.3
6vs7 TTC 1.29 0.06 25885 1.29 0.06 25218 0.39 0.0
DeltaS 3.66 3.94 25885 3.70 3.99 25218 -2.09*  -1.1
6 vs 8 TTC 1.29 0.06 25885 1.29 0.06 26068 0.57 0.0
DeltaS 3.66 3.94 25885 3.67 3.93 26068 -0.27 -0.3
7vs 8 TTC 1.29 0.06 25218 1.29 0.06 26068 0.18 0.0
DeltaS 3.70 3.99 25218 3.67 3.93 26068 1.83* 0.8
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5.3.4 Discussion

Simulation findings across all levels of analysis indicate that performance of advisory dynamic
eco-driving can be inferior or equal to that of automated dynamic eco-driving, but superior or equal
to that of non-equipped manually driven vehicles. Performance of advisory dynamic eco-driving
is highly related to adoption rate of energy optimal driving strategies which may spatially vary and
is significantly affected by driver characteristics and several elements of surrounding road
environment (e.g. behavior of other road users, traffic signal operation etc.). The latter findings
coincide with similar results from a controlled field experiment of advisory and automated

dynamic eco-driving systems (Almannaa et al. 2019).

It is noteworthy that in our work speed divergence is uniformly added to the values of the speed
profile initially estimated by EVPA. Thus, oscillatory driver adaptation to speed advice which
might induce episodes of dynamic eco-driving which are less environmentally friendly compared
to manual driving (without speed advice support) are not reflected in our simulation experiments.
However, considering that emissions benefits mainly occur due to prevention of stop events at the
signalized intersection (vehicles avoid acceleration to desired speed from full stop) we deem that
our modelling approach credibly captures the average effects of advisory dynamic eco-driving on

environmental and traffic KPIs.

DT model development was based on the full real-world dataset, which was not partitioned in
groups representing different traffic conditions (uncongested, near-congested, congested) due to
the absence of traffic count data pertaining to the pilot testing period and the fact that taxis are
legally allowed to use the bus lane on the examined urban arterial corridor (neither was vehicle
position provided on a per lane basis in the original dataset, nor could it be inferred). Thus, it is
legitimate to assume that efficiency of advisory dynamic eco-driving could be expected higher
than in our simulation analysis during uncongested traffic conditions, while the reverse trend could

be expected during congested traffic conditions.

Additionally, pilot operation of advisory dynamic eco-driving on the public road test site explicitly
encompassed taxi drivers. To the author’s best knowledge, the potential differences between
professional and non-professional drivers in terms of following dynamic eco-driving advice have
not been assessed by previous research. Instead, focus has been placed on the identification of the

most efficient means (audio, visual, haptic etc.) for conveying dynamic eco-driving advice to non-
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professionals drivers (Tang et. al. 2016). However, taxi drivers are more experienced and familiar
with traffic operations on the examined test site than regular passenger car drivers, and it is
legitimate to assume that their efficiency in adapting to speed advice is increased due to the better
driving skills they possess. Thus, overall short-term benefits of advisory dynamic eco-driving
across the whole vehicle fleet can possibly be lower than predicted in this dissertation. However,
accumulating familiarity of regular drivers with advisory dynamic eco-driving systems on the long
run can yield higher benefits in terms of CO> emissions, traffic efficiency and safety. Moreover,
dynamic eco-driving training programs have the potential to significantly improve the
effectiveness of both professional and non-professional drivers in terms of energy efficient driving

in the vicinity of signalized intersections.

Safety assessment of dynamic eco-driving indicated that conflict risk and severity are substantially
reduced when the automated variant of the system is deployed. This is a reasonable outcome
considering the homogenizing effect that automated dynamic eco-driving can exert on traffic flow,
since equipped vehicles can execute advised driving strategies with high precision. Milder safety
benefits are observed with the introduction of advisory dynamic eco-driving in the fleet mix. The
latter finding can also be considered valid since drivers receive speed assistance and improve
anticipation levels via traffic light status and countdown information, while they might exhibit
fluctuating driving behavior in the attempt to adopt dynamic eco-driving advice according to their
skills and distractions from surrounding traffic. However, it is highly likely that safety risk is
underestimated in our analysis when unequipped manually driven vehicles (LVs) are introduced
in the fleet mix. In the case that CVs/CAVs receive and execute deceleration advice while the
signal status is still green (which is possible since they cannot cross the intersection in the current
green phase) LVs might react erratically to the latter phenomenally irrational behavior of
CVs/CAVs in the real world (the latter behavior cannot be rigorously emulated in our simulation
experiments). Possible lane changes and overtaking maneuvers from LV side while CVs/CAVs
adopt-execute dynamic eco-driving advice might induce complex vehicle interactions and pose

increased conflict risk in highly heterogenous traffic scenarios.
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6 Conclusions

6.1 Overview

Constant growth of demand for vehicle trips can significantly exacerbate the adverse impacts of
road traffic on the environment. On the other hand, recent technological evolution in the field of
telecommunications has enabled the development of CV services that can improve traffic flow
performance, road safety and sustainability of the road transport system. For example, CVs can be
informed about upcoming changes to traffic signal status via [2V communication and plan energy
efficient trajectories accordingly. Moreover, planning of CV maneuvering for attaining energy
consumption and emissions goals (i.e. dynamic eco-driving) can encompass the actions and desires

of surrounding traffic via V2V communication in a connected road vehicle environment.

In the past decade, several dynamic eco-driving models and systems have been introduced and
examined for improving fuel efficiency and reducing vehicular emissions in the proximity of
signalized intersections. This doctoral dissertation maps existing dynamic eco-driving
technologies and identifies areas in the research domain of dynamic eco-driving for interrupted
traffic flow facilities that have not received significant attention thus far. According to the research
gaps identified by the literature review, a methodological framework is proposed for incorporating
human factors in the modelling of dynamic eco-driving based on empirical evidence that
encompasses the design of human-centered and safe dynamic eco-driving strategies, as well as the
integration of driver adaptation to environmentally friendly speed advice in the control logic of
dynamic eco-driving models. Additionally, a generic impact assessment framework is introduced
for the evaluation of alternative dynamic eco-driving systems with the use of microscopic traffic
simulation and customized software explicitly developed for the needs of this doctoral dissertation.
Finally, simulation results pertaining to traffic efficiency, safety and emissions savings of different
dynamic eco-driving models are analyzed, relevant implications for road transport stakeholders

are discussed, and prospects for future research in the examined domain are presented.
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6.2 Main Contributions

6.2.1 Mapping of Existing Dynamic Eco-Driving Technologies

This doctoral dissertation provides a detailed analysis of recent advancements in the field of
dynamic eco-driving for interrupted traffic flow facilities. A comprehensive and critical review of
existing literature pertinent to dynamic eco-driving systems was conducted to identify their
advantages and limitations. The review showed that dynamic eco-driving systems vary in terms of
their control logic, optimization objectives, vehicle dynamics and fuel consumption models,
analysis boundaries, deployment readiness and other characteristics. An examination of the
aforementioned elements indicated inherent limitations in the design of available dynamic eco-
driving strategies and proposed a set of desirable features that could significantly enhance the
performance of future dynamic eco-driving systems (cf. Section 2.3). Moreover, it was found that
automated dynamic eco-driving systems had received significantly more attention compared to
their advisory counterparts.

Regardless of the developments with respect to the mathematical formulation of the dynamic eco-
driving modeling problem, the impacts of human factors on the efficiency of advisory dynamic
eco-driving systems have not been studied thoroughly. Specifically, less focus has been placed on
the design of dynamic eco-driving strategies that enhance user acceptance and road safety, while
there is very little evidence on the effects of driver’s adaptation to dynamic eco-driving speed
advice on the performance of dynamic eco-driving systems. Considering that the transition towards
a fully automated and connected vehicular fleet will last decades, and that connectivity capabilities
are integrated into market ready vehicles at a slower pace compared to automation ones, it is
evident that the human-centered design of dynamic eco-driving models is important for achieving
sustainability goals. Thus, the development of dynamic eco-driving models that account for
driver’s adaptation to speed advice facilitates the evaluation of different dynamic eco-driving
technologies for different market penetration rates. However, it is also noted that such
developments should be based on adequate relevant data that could be collected during large-scale
pilot operations of dynamic eco-driving services that account for variability in driver’s behavior,

traffic conditions and vehicle types.
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6.2.2 Methodological Framework for Human-Centered modelling of Dynamic

Eco-Driving

As aforementioned, this doctoral dissertation proposed methods that enable the integration of
human factors in the development of dynamic eco-driving strategies near signalized intersections.
Generic modifications were introduced to the control logic of dynamic eco-driving models that

account for user acceptance of the system and road safety. The latter modifications encompass:

e provision of non-crawling speed advice, and
e vehicle acceleration commencement prior to CV arrival at signalized intersection at the end of
deceleration strategies

Moreover, driver adaptation to dynamic eco-driving speed advice was examined. Initially, feature
selection algorithms and data from a real-world deployment of an advisory dynamic eco-driving
service were utilized to identify factors that affect driver adaptation to energy efficient speed
advice. Subsequently, a DT model was developed based on the same dataset that predicts average
driver adaptation (i.e. speed divergence) to speed advice according to the message type, distance
to signalized intersection, and remaining duration of running traffic signal status. The latter DT
model enabled the evaluation of advisory dynamic eco-driving strategies when the driver is

responsible for the execution of the energy efficient speed advice.

It is noteworthy, that this is the first research effort that utilizes data from the pilot operation of an
advisory dynamic eco-driving system along an urban arterial corridor to investigate the effects of
human factors on dynamic eco-driving. Specifically, 200 taxis were equipped with OBUs, and
RSUs were installed on 12 traffic light controllers along the signalized arterial corridor. Data were
collected via a monitoring system throughout the 11-month pilot operation period and included
information pertaining to CVs’ dynamic status, signal timing plans, and speed advice messages

(cf. Section 4.1.3).

6.2.3 Impact Assessment Framework for Dynamic Eco-Driving Technologies

An impact assessment framework based on microscopic traffic simulation was introduced for the
evaluation of different dynamic eco-driving technologies. The microscopic traffic simulator
Aimsun was used for the simulation of traffic operations along an urban arterial corridor. The

simulated network was calibrated against field traffic measurements based on appropriate
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statistical tests. An Aimsun API was developed for emulating dynamic eco-driving in the
proximity of signalized intersections (cf. Appendix A). The Aimsun API is capable of emulating
both advisory and automated dynamic eco-driving models, but it also features a modular structure
that facilitates the integration of new dynamic eco-driving models. Safety analysis was performed
with the use of SSAM, while a custom web-based application (cf. Appendix B) was developed for
analyzing vehicle trajectory data generated via Aimsun. Moreover, two sets of simulation
experiments were devised to assess the proposed generic enhancements to the control logic of
existing dynamic eco-driving models, and compare the performance of advisory against automated
dynamic eco-driving for different market penetration rates of the two technologies. Overall, the
impact assessment framework exhibits a versatile design that facilitates future developments via
the simplified integration of alternative dynamic eco-driving models and the analysis of simulation

results with the use of multiple robust tools in a streamlined fashion.

6.2.4 Performance of Dynamic Eco-Driving Technologies

Microscopic traffic simulation experiments were conducted to compare a dynamic eco-driving
model that accounts for user acceptance and road safety (EVPA) against its naive counterpart
(VPA) that does not consider the latter objectives. The latter experiments encompassed different
penetration rates of the examined dynamic eco-driving technologies and multiple traffic demand
levels corresponding to a wide range of possible traffic conditions. Simulation results indicated
that EVPA can generate CO> emissions savings on the order of 13% along individual intersection
approaches and 2.5% on a network scale, without substantially escalating travel times. Moreover,
EVPA ensures increased speed advice comfort and safety due to its inherent control logic.
However, it was also identified that EVPA’s efficiency is dependent on roadway characteristics,
distance of the dynamic eco-driving service zone, traffic signal plans and traffic conditions. Thus,
the deployment scheme of dynamic eco-driving on urban networks plays a significant role in
warranting environmental benefits and traffic efficiency. It was also identified that speed advice
estimation should consider signal plans from consecutive traffic lights on urban arterial corridors
with closely spaced signalized intersections to increase dynamic eco-driving performance.
Additionally, evidence was provided that dynamic eco-driving can affect traffic patterns in areas

of road networks that lie beyond the dynamic eco-driving service zones.
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Microscopic traffic simulation analysis was also conducted to evaluate advisory dynamic eco-
driving (EVPA-DT) in the context of simulation experiments that also encompassed different
penetration rates of unequipped legacy vehicles and CAVs equipped with automated dynamic eco-
driving (EVPA). In this case, simulation results indicated that performance of advisory dynamic
eco-driving in terms of GHG emissions, traffic efficiency and safety cannot exceed that of
automated dynamic eco-driving but at most instances is superior to that of unequipped manually
driven vehicles. Advisory dynamic eco-driving performance may also vary among different
service zones given specific geometrical and operational characteristics of the corresponding road
sections which can influence driver’s adaptation to energy efficient speed advice. Moreover,
maximum reduction of stop events, CO2 emissions and severe conflicts can be explicitly achieved
when vehicle fleet is fully equipped with automated dynamic eco-driving technology (EVPA) that

enables CAVs to execute energy-efficient driving strategies with high degree of precision.

The latter simulation findings have profound implications for road transport stakeholders.
Automakers and service providers can easily adapt the design of future dynamic eco-driving
models to attain comfort and safety goals without adversely impacting energy and traffic
efficiency. Moreover, they can develop advisory dynamic eco-driving systems that can foresee
driver adaptation to energy efficient speed advice and enact accordingly (i.e. adjust advice to
achieve increased compliance or terminate advice provision). Road authorities and road operators
can estimate impacts from dynamic eco-driving deployment both within and beyond service zones,
while they can also warrant deployment on different road network areas according to prevailing
geometrical, operational and traffic signal plan characteristics. Given that advisory dynamic eco-
driving can yield substantial emissions savings when deployment conditions are favorable, they
can accelerate deployment of relevant road-side communication equipment on selected signalized
intersections prior to the transition towards a fully connected and automated road environment.
Subsequently, the latter equipment can be upgraded to enable the realization of higher emissions
savings when vehicular fleet will be fully automated and automated dynamic eco-driving
maneuvers could be orchestrated more efficiently via cooperation. Moreover, policy makers can
advocate for prompt introduction of dynamic eco-driving technology, since empirical and

simulation evidence indicates the significant environmental benefits of dynamic eco-driving.
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6.3 Limitations and Future Research Directions

This doctoral dissertation proposed enhancements to the control logic of dynamic eco-driving
models so that energy efficient speed advice in the proximity of signalized intersections becomes
more comfortable and safer. However, these enhancements entail adjustments to energy efficient
driving strategies that are made subsequent to their initial estimation. In the future, integration of
comfort and safety constraints in the estimation process of energy efficient speed advice could

concurrently increase performance and robustness of dynamic eco-driving models.

Development of advisory dynamic eco-driving models could become more sophisticated
depending on the richness of data collected during real world testing of dynamic eco-driving
technologies. Availability of traffic count data from dynamic eco-driving service zones that are
contemporaneous to speed advice data can enable the development of refined DT model versions
which can capture variations in driver adaptability to dynamic eco-driving advice according to
prevailing traffic conditions (uncongested, near-congested, congested). Moreover, information
about lane-wise position of CVs during pilot operation of advisory dynamic eco-driving could
further enhance realism of DT modelling since driver adaptation to speed advice could be rendered
lane-dependent. The latter possibility would be of particular interest for dynamic eco-driving
service zones including exclusive lanes for specific vehicle types. Future research could also focus
on modelling time varying instantaneous speed divergence considering its dependability on driver
behavior during previous update intervals of speed advice assistance. Thus, dynamic eco-driving
episodes that possibly yield inferior performance compared to unequipped manually driven

vehicles can be also examined.

Decentralized CAV cooperation based on V2V communication can significantly increase the
performance of automated dynamic eco-driving in mixed traffic flows. However, existing studies
focus on the longitudinal cooperation of CAVs to increase energy consumption and emissions
savings. The integration of cooperative lane changing in the optimization problem of dynamic eco-
driving could further minimize the environmental footprint of vehicular traffic near signalized
intersections. Benefits could further escalate in a fully connected and automated road environment

where centralized coordination could enable system optimum performance.

Moreover, guidelines could be developed that warrant the deployment of alternative dynamic eco-

driving technologies according to their computational performance, road geometry and operational
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characteristics, traffic signal control, and prevailing traffic conditions. The methodologies and
software developed in the context of this dissertation can facilitate and expedite the latter task,
since they enable low-cost and safe testing of different dynamic eco-driving systems for different
types of road sections (number of lanes and length), green and red signal durations for different
signal phases, passenger car characteristics, and traffic conditions (uncongested, near-congested,
congested). In the case of advisory dynamic eco-driving, the latter elements can be used in
conjunction with driver profile and CV dynamic status upon entrance to dynamic eco-driving

service zone in order to decide on the provision of dynamic eco-driving advice.

Finally, it has to be mentioned that this dissertation explicitly focuses on dynamic eco-driving
systems that have been developed for ICE vehicles. Recently, the substantial shift to
electromobility, which is experienced worldwide, has led to the development of dynamic eco-
driving models for hybrid electric vehicles (Zhu et al. 2022), plug-in hybrid electric vehicles (Li
et al. 2021), fuel cell hybrid electric vehicles (Liu et al. 2022), and purely electric vehicles (Zhang
etal. 2021). However, the dynamic eco-driving systems examined in the context of this dissertation
can be rendered compatible with the latter vehicle types via the appropriate substitution of vehicle

dynamics and energy consumption models according to vehicle powertrain.
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Appendix A

The EVPA Aimsun API enables the emulation of dynamic eco-driving near signalized
intersections in the microscopic traffic simulator Aimsun. The source code of the API can be found
in the corresponding EVPA GitHub Repository, where instructions are provided with respect to
building the EVPA Dynamic-link library (DLL) and loading it to Aimsun. When the EVPA DLL
is loaded in Aimsun and a Simulation Experiment is executed, the EVPA GUI pops up (Figure
A.1) that enables the setup of EVPA along multiple areas of the simulated road network and the

manipulation of its behavior.

Intersections Network Parameters

Intersection ID: | 1018

Section ID: | 986,1011,1010

-Traffic Signal Parameters

Signal Group ID: | 1

Name: |Tsin'|i5ki St. &P.Mela

Enable Disable | Add Remaove

{+) EEI 1018 - 1010: Tsimiski 5t. & P.Mela

{+) EEI 1121 - 383; Tsimizki 5t. & P.P.Germanou
{+) EEI 1285 - 334: Tsimizki 5t. & Komninon

{+) EEI 1374 - 381 Tsimizki 5t. & A.Sofias

{+) EEI 1413 - 336: Tsimiski S5t. & Aristotelous
{+) EEI 1473 - 341: Tsimiski St. & I.Dragoumi

Algorithmic Parameters

Communication Zone

Start: |80 meters

Acceleration Factor: | 0.15

{+) EEI 1533 - 355: Polytechniou & Dodekanisou

{+) EEI 1662 - 1627: Polytechniou & 26 Okt. _(Morth)
{+) EEI 1621 - 2605: Polytechniou & Fragkon

{+) EEI 533 - 429: 3 Sept. & M. Alexandrou

{+) EEI 605 - 419: 3 Sept, &L.Stratou_(South)

{+) EEI 605 - 424: 3 Sept, & L.Stratou_(West)

{+) EEI 825 - 806: Pl.Chanth_(MorthWest)

{+) EEI 1662 - 1649: Polytechniou & 26 Okt._(East)
(+) EEI 715- 711: 3 Sept. &L.V.Georgiou_{South)
(+) EEI 605 - 422: 3 Sept. &L.Stratou_(MNorth)

MNew Intersection ]_

End: |80 meters

¥ Log Errors

v Log Messages

Influence Zone Calib. Parameter: | 0.5
Minimum Allowable Speed: | 20

Enforce Minimum Allowable Speed W
Enable Car-following Rules W

(+) EEI 825 - 810: Pl.Chanth_(\West) —Enuipped Vehide Types
{+) EEI 920 - 402: Tsimizki 5t. & Eth, Aminis_(South) Replications: | 0 e o
{+) EEI 920 - 408: Tsimiski 5t. & Eth, Aminis_(West) CAV1

{+) EEI 987 - 397: Tsimiski 5t. & D.Gounari CAvV2

{+) EEI 825 - 799: Pl.Chanth_(East) CAV3

{+) EEI 1386 - 374: Tsimiski St. & K.Ntl [ Log Al CAV4

{+) EEI 1446 - 333: Tsimizki 5t. & E.Venizelou Bus

File: |C:'n,leers\,\-'Mintsis‘u,EEI_FiIes‘n,EEI_SCParams__lgSS.eei

Figure A.1. EVPA GUI
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Specifically, the EVPA GUI allows a user to initialize and manipulate the following elements of

the EVPA API:

e add/remove an intersection approach where dynamic eco-driving is implemented,

e cnable/disable the dynamic eco-driving service along selected intersection approaches,

e specify the road sections that constitute an intersection approach (from farthest to closest),
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specify the intersection that the coded intersection approach leads to,

specify the signal group for which speed advice is estimated,

specify the zone upstream of the intersection where speed advice execution starts,
specify algorithmic parameters of dynamic eco-driving,

specify vehicle types that receive and execute speed advice,

specify number of replications for which EVPA API will be run automatically,
specify log files that will be output, and

upload text file that contains the aforementioned information.

To explicitly emulate manually driven CVs operated by EVPA-DT throughout dynamic eco-

driving maneuvers, a dedicated vehicle type entitled “NC_Car” needs to be specified in Aimsun.

Moreover, visualization of vehicle types that implement dynamic eco-driving during simulation

animations requires the definition of a new vehicle parameter entitled “Advised” and the relevant

View Style (Figure A.2) and View Mode (Figure A.3) in Aimsun. Different labels and relevant

symbols (i.e. vehicle colors) defined within the newly created View Style imply different vehicle

behavior within dynamic eco-driving service zones and are explained below:

Not Tracked — Not Advised: manually driven vehicle enters the dynamic eco-driving service
zone but is not equipped with connectivity capabilities and cannot receive speed advice,
Tracked: CV enters the dynamic eco-driving service zone where its behavior can externally
be manipulated via the EVPA API (becomes tracked), but does not receive speed advice due
to unfavorable conditions (distance to intersection, remaining phase time, speed on entry to
service zone, interactions with surrounding vehicles),

Advised: CV enters the dynamic eco-driving service zone and receives speed advice without
becoming tracked via the EVPA API (status serving debugging purposes),

Tracked — Advised — Non-Compliant: manually driven CV enters the dynamic eco-driving
service zone, becomes tracked and executes speed advice based on EVPA-DT, and

Tracked — Advised: automatically driven CV enters the dynamic eco-driving service zone,

becomes tracked and executes speed advice based on EVPA.
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Figure A.2. View Style required for visualizing dynamic eco-driving capable vehicles in Aimsun
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Figure A.3. View Mode required for visualizing dynamic eco-driving capable vehicles in Aimsun
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Appendix B

TrajAIM (Trajectory Analysis for Microsimulation) is a web-based application that enables the
visualization and analysis of vehicle trajectories produced by the microscopic traffic simulator
Aimsun. The application code can be found in the corresponding TrajAIM GitHub Repository

along with relevant installation instructions.

TrajAIM can process and visualize vehicle trajectories and other dynamic vehicle characteristics
that are output as “.fzp” files from Aimsun. Moroever, it enables the comparison of the latter
vehicle attributes that have been produced from different Aimsun Experiments. Upon opening
TrajAIM the user encounters two separate tabs (“Tables” and “Analysis”) that offer different

functionalities.

Via the “Tables” tab the user can browse and upload the output files that contain information about
vehicle dynamic characteristics (“.fzp” files must be converted to “.txt” files prior to uploading to
TrajAIM). In order to upload an output file the “Initialize” button should be clicked. In case of
comparison of trajectories from different simulation experiments, the user should check the
“Advise” option and click the “Merge” button to upload the second output file. Figure B.1 depicts

the “Tables” Tab and its functionalities.
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https://github.com/vmintsis/trajectory-analysis-microsimulation
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Trajaim V1.0.0

= Tables bl Analysis

1. Browse to select one of the available files on the server

2. Check ‘Advise' if the file was generated with speed advise enabled

3. Click 'Initialize’ to clear existing data and start with the file selected
4, Click ‘Merge' to add more data to the existing table on the server

data/repl_test.txt || Browse... | [_|Advise| Merge || Initialize |

Figure B.1. The “Tables” tab in TrajAIM enables the uploading of simulation output in a SQL database

Via the “Analysis” tab the user can specify the vehicles (types and ids) for which plots can be
created. The following types of plots can be generated by TrajAIM according to vehicle dynamic

characteristics (i.e. position, speed, acceleration):

e distance vs time,

e speed vs time,

e speed vs distance,

e acceleration vs time,

e acceleration vs distance, and

e acceleration vs speed.

By checking the option “Export”, the data used for generating the selected plots are also exported
in csv format in the corresponding csv project folder. Figure B.2 depicts the “Analysis” Tab and

its functionalities.
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Figure B.2. The “Analysis” tab in TrajAIM enables the processing, visualization and export of simulation

output for selected vehicles simulated in Aimsun Experiments
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