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Abstract

During the last years, big data and deep learning have become a very effective and
state of the art method to deal with many demanding and difficult problems, in
multiple scientific fields, from traditional computer science to finance and biology.
Up to the present, deep learning was rarely used as a method by bioinformaticians,
who prefer gene expression data and try to understand the mechanism of action
of drugs to promote research on topics like early drug discovery. To deal with
signaling networks, it is more common to use network analysis and dynamical
systems modelling. For this thesis, we develop a specific class of graph
convolutional neural network, using a very effective architecture that achieves
maximum discriminative power among other GNNs’ and apply this model to a
dataset of biological (protein) signaling networks. We prove that our model can
effectively cluster compounds with similar mechanisms of action together and
identify compounds with similar signaling networks. Finally, we use the data
produced from this model and try to train a model to infer a protein signaling

network from a compound’s chemical structure.



Mepiinym

Ta tedevtaia xpovia, ta peyada dedopeva kot  fabid pddnon €xovv yivel pa
TIOAD QTOTEAECUATIKTY KAl TEAELTALNG TEYVOAOYING HEOOSOGC LA TNV AVTIUETWTILON
TOAAWV ATALTNTIKWV Kol SUGKOAWV TPORANUATWY, 0€ TTOAAXTIAQ ETLOTNLOVIKA
medla, amd TNV MapadoclaKy EMOTAUN TWV VUTOAOYLOTWV HEXPL TN
xpnuatodotnon kot TN PloAoyio. Méxpt onuepa, n  Pabuiad  pabnon
xpnowotmombnke omavia wsG pHEBodog amd PlomAnpo@oplkovs, oL oTmoiol
TPOTIUOVV Ta SeSopéva YOVISLAKNG EKQPAOTG KAL TTPOGTHOOUV VA KATAVOT|GOUV
TOV UNXavIoUo SpAons Twv @AapUAK®WVY YLX TNV TIpowOnomn ¢ épeuvag o€ Bépata
OTWG 1N TMPWLUN avakdAvym @apuakwyv. Ta ™V aVTIHETOTION TwV SIKTUWV
onuatodoTnong, eivatl o ocuvnOLoUEVO VO XPNOLULOTIOLEITAL ) AVAAVOT) SIKTUOU
KAL) LOVTEAOTIO(NOT) SUVAUIKWV CUOTNHATWV. [l aUTH ™ SIMAWUATIKY Epyacia,
QVATITUGOOVE ML CUYKEKPLUEVT] KATNYOPLX GUVEALKTIKOU VEUPWVIKOU SIKTVUOU
YPAPNUATWY, XPNOLUOTOLWVTAG LK TTOAD ATIOTEAECUATIKI] APXLTEKTOVIKI] TIOU
ETTUYXAVEL PEYLOTN oYXV SlaYwPLopoy HETAEY GAAWV TETOLWV SIKTUWV Kal
e@apuolovpe ouUTO TO HOVTEAO O £éva oUVOAO OBedopévwv  PLOAOYIKWV
(mpwTeivikwy) SIKTOWV oNUaToddTNonG. AToSelKVUOUNE OTL TO HOVTEAO UOG
UTIOPEL VA OPASOTION|OEL ATIOTEAECUATIKA EVWOELS [E TIAPOUOLOUG UNYXAVICUOVG
Spaons Kal va avayvwploel evwoels pe tapopola Siktva onuatodotnong. TéAog,
XpnowomoloVpe Ta O6edSopéva OV TAPAYOVTAL ATO AQUTO TO HOVTEAO Kol
TPOooTABOVUE VA EKTALSEVGOVE VA HOVTEAD WOTE VA CUUTIEPAVEL €éva SIKTLO

OoNUATOSOTNONG TTPWTEIVNG ATLO TN XTULKN Sopun HLag EVwong.
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1. Introduction

1.1. Motivation

The motivation of this thesis is to use deep learning methods in order to analyze,
quantify and extract meaningful and robust representations from protein
signaling networks. Biological networks have been used as data in research
purposes as well as data for machine and deep learning models, but the concept
of using Graph Neural Networks in processing this data is, to the best of our
knowledge, was first introduced by previous lab members, and the purpose of this
thesis is to introduce a new method and model to apply to these data. Biological
networks, and especially protein signaling networks can possess a huge amount
of information about the nodes and connectivity between them, that can be very
important for multiple fields of bioinformatics and computational biology. These
graphs can be considered as directed acyclic graphs where each node represents
a protein, and therefore every branch of the graph contains information on the
nodes that construct it and therefore on the whole graph. Therefore, by processing
each node and its connections separately and collectively we can extract very
important information about the structure and functioning of the graph. In the
following pages, we try to use deep learning methods to prove that signaling
network data can provide us with significant information if processed properly.
Moreover, there is a first approach in trying to use deep learning to infer a protein
signaling network from a compound’s chemical structure. This method could be
extremely important in early drug discovery and CADD since it could help us
identify the signaling network (i.e., mechanism of action) of a compound by
comparing its chemical structure with other compounds whose signaling network
is known. Drug discovery is the process aiming to identify new candidate
medications, meaning the development and discovery of new drugs intended to
be used for the treatment of specific diseases. Early-stage drug discovery aims to

identify the right compound for the right target, for the right disease.



1.2. Systems Biology

Systems biology has been responsible for some of the most important
developments in the science of human health and environmental sustainability. It
is a holistic approach to deciphering the complexity of biological systems that
starts from the understanding that the networks that form the whole of living
organisms are more than the sum of their parts. It is collaborative, integrating
many scientific disciplines - biology, computer science, engineering,
bioinformatics, physics and others - to predict how these systems change over
time and under varying conditions, and to develop solutions to the world’s most

pressing health and environmental issues. [33]

1.3. Proteins

Proteins are large and the most complex molecules known, with very critical roles
for the body of a multicellular organism. They are needed in the structure,
functioning and organization of tissues, organs, and cells. Proteins are consisted
of long chains of numerous smaller units called amino acids which determine the
unique 3D structure and specific function of the protein. There are 20 amino acids
that can connect in infinite combinations, and each of these amino acids is linked
with its neighbor through a covalent peptide bond (another name for proteins is
polypeptide). Amino acids are coded by combinations of nucleotides (three DNA

building blocks), determined by the sequence of genes.

Proteins can have multiple functions and biological properties which depend on
the physical interaction with other molecules. Some of the main functions of
proteins are working as antibodies, enzymes, messengers, structural components,

and transport.[1]



1.4. Signaling Networks

One of the most important mechanisms in biology is the communication between
cells of multicellular organisms. This is achieved through a number of pathways
that instantly receive and process signals, with other part of a cell and the external
environment. These networks are commonly classified based on the molecules
transferred, with two very common being proteins or genes. When cell signaling
is involved, meaning the response of a cell to internal and external stimuli
(chemical, mechanical nature) and the regulation of its activity is regulated, these

networks are called Signaling Networks. [2]

The process can be described by two main steps. At first, an extracellular molecule
binds to a specific protein called receptor on a target cell, changing its state to
active. Afterwards, the receptor stimulates intracellular biochemical pathways
leading to a cellular response, which may involve progression through the cell
cycle or changes in gene expression. These internal pathways are controlled and
regulated by conserved protein modules which have the ability to mediate
interactions between proteins. [3]. Some of the most common of these molecules
are Hormones (endocrine system), Neurotransmitters (nervous system),
Cytokines (immune system). Signaling networks are extremely important for

several functions and mechanisms of multicellular organisms.
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Figure 1: An example of a protein network

1.5. Deep Learning Neural Networks

Neural networks, also known as artificial neural networks, are a method of
machine learning that is also the main method used in deep learning algorithms.
Their name and functioning are inspired by the human brain and specifically the
communication and signal transferring between the neurons of the brain. They
are consisted of node layers, starting with an input layer, which is then followed
by one or more hidden layers, which end to an output layer. Every node connects
to another and has a weight and a threshold, and the node is activated (i.e., sending
data to the next layer) when the output of the node is above the specified
threshold. Each neuron receives the value of previous connected neurons as input,

and maps it into an activation function:
Xnew = S(prrev + b)

Where s is the activation function and w,b are the trainable parameters.[4]
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Figure 2: Deep Neural Network Structure

Neural Networks are trained by the optimization of a cost function and rely on

training data to learn and improve their accuracy over time.[5]

1.6. Graph Neural Networks

Graph Neural Networks (GNNs) are a class of deep learning methods designed to
perform inference on data described by graphs. A GNN is an optimizable
transformation on all attributes of the graph (nodes, edges, global context) that
preserves graph symmetries (permutation invariances). GNNs adopt a “graph-in,
graph-out” architecture meaning that these model types accept a graph as input,
with information loaded into its nodes, edges and global-context, and
progressively transform these embeddings, without changing the connectivity of
the input graph.[34] GNNs are neural networks that can be directly applied to
graphs, and provide an easy way to do node-level, edge-level, and graph-level

prediction tasks. GNNs can do what Convolutional Neural Networks (CNNs) failed



to do. Further information on Graph Neural Networks will be provided in Chapter

3 where the model of the thesis is discussed.

1.7. Graph Convolutional Networks

Graph Convolutional Networks were first introduced by Kipf and Welling [6] and
are the main deep learning method used when working with graphs. Convolution
refers to the same operation as in simple Convolutional NN. The input neurons are
multiplied with a set of weights known as filters or kernels, which slide through
the image as a window and enable CNNs to learn features from neighboring cells,
while the same filter will be used within the same layer (weight sharing). GCN
perform in a very similar way and the model learns features by inspecting
neighboring nodes. GCN are a generalized version of CNN since the nodes can be
unordered and the connections between them can be complex (where CNN work
on structured data), and the equation that describes the problem is G = (V, E)
where G is the graph and V, E are the vertices and edges. [7]
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Figure 3: Graph Convolutional Network Structure

The goal is to learn a function of signals/features on a graph G = (V,E) which

takes as input:



e A feature description x; for every node i in a feature matrix X (N X D, N:

number of nodes, D: number of input features)

e A representative description of the graph structure in matrix form

(adjacency matrix A or some function thereof)

and produces a node-level outputZ (an N X F feature matrix, where F is the
number of output features per node). Graph-level outputs can be modeled by

introducing some form of pooling operation. [7]

Every neural network layer can then be written as a non-linear function
H+D) — f(H(l),A),

with H® = X and H® = Z, L being the number of layers.[8]

A very simple and common propagation rule would be f(H®,4) = a(AHOW®)
where W is the weight matrix and o being the activation function (a very common
one is ReLu). There are many ways GCNs are implemented, some of which are used

in the following thesis.[9]

1.8. Auto Encoders

Autoencoders are a specific type of feedforward neural networks where the input
is the same as the output. The input is compressed into a lower-

dimensional code and then the output is reconstructed from this representation.

An autoencoder consists of 3 components: the encoder which compresses the
input and produces the code from which the decoder reconstructs the input. The
encoder and the decoder are fully connected feedforward NN, and the decoder
architecture is the mirror image of the encoder. These components use an
encoding method, a decoding method, and a loss function to compare the output

with the target. [10]
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Autoencoders are mainly a dimensionality reduction (or compression) algorithm

and the most important properties of autoencoders are:

Data-specific: ~ Autoencoders can meaningfully compress data

dimensionally similar to the data they have been trained on.

Lossy: The output of the autoencoder will not be the same as the input, it

will be a close but degraded representation.

Unsupervised: Autoencoders don’t need explicit labels to train and
therefore are considered an unsupervised learning method. They can be
considered self-supervised since they generate their own labels from the

training data.

Four hyperparameters need to be set before training an autoencoder:

Code size: number of nodes in the middle layer (smaller size means more
compression).

Number of layers: the autoencoder can have as many layers as we like.
Number of nodes per layer: the number of nodes per layer decreases with
each subsequent layer of the encoder, and increases back in the decoder
(decoder is symmetric to the encoder in layer structure)

Loss function: two very common loss functions are mean squared error

(MSE) and binary crossenttropy. [11]



2. Data

2.1. Preprocessing and Quality Control

The effectiveness and predicting capability of even the best neural network
architectures and methods is highly depended on the quality of the data selected
to accomplish the specific task. Without data of high quality, even the best deep
learning algorithms would fail to provide robust predicting results. So, it is very
important to analyze the ways data was gathered and processed for our problem.
A big part of this data is available on the GitHub page of the NTUA’s BioSys Lab,

however due to size restrictions, not all data is available online.

2.1.1. CMAP

Connectivity Map (CMAP) is a project by the Broad Institute LINCS Center for
Transcriptomics, that has provided the laboratory with the transcriptomic
signatures (level 5 transformed z-score) needed to develop the appropriate
protein signaling networks that will be used for this thesis. The version of CMAP
that was used was the GSE92742 and it is important to mention that only the
differential expression of the 978 landmark genes in the L1000 assay was
considered. For each gene expression signature, a quality score was calculated,
based on transcriptional activity score (TAS), number of biological replicates and
whether the signature is an exemplar. The signatures with the highest quality

score were selected, based on the process that is described below. [18]

The filtered CMap dataset contains 7722 transcriptomic signatures from 3005
compounds tested across 70 cell lines. During the filtering process, for each
compound per cell line, its signature with the highest quality across different
dosages and time points was selected. The assigned quality score based on TAS,
number of replicates and whether the signature is considered an exemplar is

presented in Table S1. Only signatures with Quality score of 1 were used.



Table 1: Signature Quality Score [28]

Number of
Quality score TAS Exemplar
replicates
Q1 > 0.4 > 2 True
Q2 0.2-0.4 > 2 True
Q3 0.2-04 <2 True
Q4 0.1-0.2 > 2 True
Q5 0.1-0.2 <2 True
Q6 <0.1 > 2 True
Q7 <0.1 <2 True
Q8 <0.1 <2 False

2.1.2. CARNIVAL

Causal Reasoning pipeline for Network identification using Integer Value
programming, or simply CARNIVAL,[19] is a causal network contextualization tool
identifying upstream regulatory signaling pathways by using downstream gene
expression data. It uses different sources of prior research, as signed, and directed
interaction networks between proteins, pathway signatures and transcription
factor targets.[20] In order for the protein signaling networks to be produced, the
quality 1 data from L1000 CMap was integrated and processed with carnival along

with some other resources.

For each signature, DoRothEA R package (gene set resource with signed
transcription factor - target interactions) was used in order to infer the
transcription factor (TF) activity scores [16]. This method utilizes the VIPER
enrichment algorithm and a knowledge base of signed TF-target interactions
called Regulons to calculate TF activity scores [17]. After that, the TF activities for
each compound perturbation inferred by DoRothEA were transformed into
signaling networks using the CARNIVAL pipeline. CARNIVAL solves an ILP

optimization problem to infer a family of highest scoring subgraphs, from a prior



knowledge network of signed and directed protein-protein interactions, which
best explain the TF activities, subject to specific constraints. In our approach

OmniPath network was used as the global prior knowledge network [21].

After this process, that was done by previous members of the lab,7788 weighted,
signed, and directed signaling networks along with their corresponding
unweighted networks per signature (5 - 100 per weighted signaling network)
were produced. The weighted networks are produced by adding the unweighted
networks, so edge weights refer to the percentage of times a certain edge appeared

in the unweighted graphs.
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Figure 5: CARNIVAL Functioning

2.2. Tensorizing the signaling networks

After the process of creating the signaling networks using CARNIVAL, there are
7788 graphs corresponding to the quality 1 signatures. In order for these graphs
to be appropriate for integration to the deep learning methods and models that
will be described later, their nodes and edges need to be mathematically

represented to be fed in the neural networks.
Nodes

Each node of these graphs represents a specific protein of a cell signaling network.

Hence every one of these nodes must have a multi-dimensional distributed



representation that describes the proteins actions and modes using mathematical
representations. One way that this can be done is by encoding the protein function
and structure using each protein’s amino acid sequence. One very effective and
state of the art way is presented in the following paper [14] where proteins are
represented as continuous vectors. SeqVeq (Sequence-to-Vector) is inspired by
Natural Language Processing (NLP) tasks and uses a bi-directional model to
capture the biophysical properties of sequences from big unlabeled data
(UniProt50 database). This method is very effective in predicting results in
various tasks by using protein sequence data and has proven to be more effective

than other similar methods.

Edges

In each of the graphs the edges represent the connection between two nodes i.e.,
proteins. In the case of our problem the (directed) connection between two nodes

represents two different functions.

The first one is protein interaction. Every cell signaling network is formulated as
a directed acyclic graph and each of the proteins either upregulates or
downregulates the next protein that is connected, which is presented as 1 and -1
correspondingly. In order for this to be appropriately fed to neural networks, 1
and -1 are formulated into vectors of ones and zeros, and the connection is

categorically attributed.

The second one is edge weight. This function is used in weighted graphs, and it
quantifies the appearance of the edge in the unweighted graphs. The number
ranges from 0 to 1 with the maximum value meaning that an edge was in every

unweighted graph.



3. Model

3.1. Theoretical Background of GNN

Let G = (V, E) denote a graph with node feature vectors Xvfor v € V. There are two
different tasks of interest that can be performed by GNN models: (1) Node
classification: each node v € V has an associated label yvand the goal is to learn a
representation vector hy of v such that v’s label can be predicted as yv = f(hv); (2)
Graph classification: given a set of graphs {Gz,..,Gn} € G and their labels {yi,...yn}
C Y, the goal is to learn a representation vector hg that helps predict the label of

an entire graph, yc = g(ha).

Graph Neural Networks. GNNs use the node features Xv and graph structure to
learn a representation vector of the entire graph, hs or a node, hyv. A neighborhood
aggregation strategy is followed by modern GNNs, where the representation of a
node is updated by aggregating representations of its neighbors. After k iterations
of aggregation, a node’s representation captures the structural information within

its k-hop network neighborhood.[12] Formally, the k-th layer of a GNN is

ol = AGGREGATE® ({n{ V:u e N}, hY® = COMBINE® (1, o)

where hl(,k) is the feature vector of node v at the k-th iteration/layer. The initial

condition is hl(,o) = X, , and N(v) is a set of nodes adjacent to v. The choice of
AGGREGATE® () and COMBINE®(-) in GNNs is very important, and numerous

architectures have been proposed.
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Figure 6: An overview of the theoretical framework.



The figure above is explained:

e Middle panel: rooted subtree structures (at the blue node) used by the WL
test to distinguish different graphs.

e Right panel: if a GNN’s aggregation function captures the full multiset of
node neighbors, the GNN can capture the rooted subtrees in a recursive

manner and be as powerful as the WL test.

For node classification, the node representation hl(,k) of the final iteration is used
for prediction. For graph classification, the READOUT function aggregates node

features from the final iteration to obtain the entire graph’s representation h¢

h = READOUT ({"

UEG})

3.1.1. Weisfeiler-Lehman test

The question the graph isomorphism problem tries to solve is whether two graphs
are topologically identical. This problem is very demanding and there are no
polynomial-time algorithms known for it. The Weisfeiler-Lehman (WL) test of
graph isomorphism [15] is a computationally efficient and effective test that
distinguishes a wide class of graphs. Its 1-dimensional form, known as “naive
vertex refinement”, is analogous to neighbor aggregation in GNNs. The WL test
iteratively (1) aggregates the labels of nodes and their neighborhoods, and (2)
hashes the aggregated labels into unique new labels. When the labels of the nodes

between two graphs differ, then the algorithm classifies them as non-isomorphic.

With the background of the WL test, a WL subtree kernel that measures the
similarity between graphs was proposed. The kernel uses the counts of node
labels at different iterations of the WL test as the feature vector of a graph.
Intuitively, a node’s label at the k-th iteration of WL test represents a subtree
structure of height k rooted at the node. Thus, the graph features considered by
the WL subtree kernel are essentially counts of different rooted subtrees in the

graph.



Graph 1 Graph 2

Figure 7: Graph 1 and Graph 2 are isomorphic. The correspondance between nodes
is illustrated by the node colors and numbers.

3.1.2. Theoretical Framework: Overview

A GNN recursively updates each node’s feature vector to capture the network
structure and features of other nodes around it, i.e., its rooted subtree structures.
Node input features are considered from a countable universe. Node feature
vectors at deeper layers of any fixed model are also considered from a countable
universe in finite graphs. For simplicity, each feature vector is assigned a unique
label in {a,b,c..}. Then, feature vectors of a set of neighboring nodes form a
multiset: the same element can appear multiple times since different nodes can

have identical feature vectors.[12]

Definition 1 (Multiset). A multiset is a generalized concept of a set that allows
multiple instances for its elements. More formally, a multiset is a 2-tuple X = (S,m)
where S is the underlying set of X that is formed from its distinct elements, and m

: S = N21 gives the multiplicity of the elements.

The representational power of a GNN is studied by analyzing when a GNN maps
two nodes to the same location in the embedding space. A maximally powerful
GNN maps two nodes to the same location only if they have identical subtree

structures with identical features on the corresponding nodes. Subtree structures



are defined recursively via node neighborhoods, and therefore the analysis leads
to the question whether a GNN maps two neighborhoods to the same embedding
or representation. A maximally powerful GNN would never map two different
neighborhoods, i.e., multisets of feature vectors, to the same representation. This
means its aggregation scheme must be injective. Thus, we abstract a GNN’s
aggregation scheme as a class of functions over multisets that their neural
networks can represent and analyze whether they are able to represent injective

multiset functions.

This reasoning is used to develop a maximally powerful GNN.

3.1.3. Building Neural Networks

The first step is characterizing the maximum representational capacity of a
general class of GNN-based models. The ideal scenario is a maximally powerful
GNN being able to distinguish different graph structures by mapping them to
different representations in the embedding space. However, mapping graphs to
different embeddings depends on solving the graph isomorphism problem,
meaning isomorphic graphs to be mapped to the same representation and non-
isomorphic ones to different representations. For the layer that will be
constructed for this thesis, the representational capacity of GNNs is characterized
via a slightly weaker criterion: a powerful heuristic called Weisfeiler-Lehman

(WL) graph isomorphism test. [12]

Lemma 2. Let G1 and Gz be any two non-isomorphic graphs. If a graph neural
network A: G = Rdmaps Gi1and Gz to different embeddings, the Weisfeiler-Lehman

graph isomorphism test also decides G1and Gz are not isomorphic.

Therefore, any aggregation based GNN can be as powerful as the WL test in
distinguishing different graphs. Based on theorem 3, we can assume that if the
neighbor aggregation and graph-level readout functions are injective, then the

resulting GNN is as powerful as the WL test.

Theorem 3. Let A: G —» Rd¢be a GNN. With a sufficient number of GNN layers, A

maps any graphs Gi1 and G2 that the Weisfeiler-Lehman test of isomorphism



decides as non-isomorphic, to different embeddings if the following conditions

hold:

a) A aggregates and updates node features iteratively with

hl(,k) =¢ (hl(,k_l),f ({hgk_l): ue€ N(v)}))

where the functions f, which operates on multisets, and ¢ are

injective.

b) A’s graph-level readout, which operates on the multiset of node features {hl(,k)},
is injective.

Injectiveness characterizes whether a function preserves the distinctness of

inputs in countable sets, and the focus is on this case.

Lemma 4. Assume the input feature space X is countable. Let g¥) be the function
parameterized by a GNN’s k-th layer for k= 1,..,L, where g(l)is defined on multisets
X c X of bounded size. The range of g, i.e., the space of node hidden featureshf.‘m,

is also countable for all k= 1,...,L.

Another important advantage of GNNs beyond distinguishing different graphs, is
capturing similarity of graph structures. In the WL test, node feature vectors are
one-hot encodings and therefore they cannot capture similarity of subtrees. In
contrast, a GNN satisfying the criteria in Theorem 3 generalizes the WL test by
learning to embed the subtrees to low-dimensional space. This gives GNNs the
ability not only to discriminate different structures, but also map similar graph

structures to similar embeddings.

3.2. Graph Isomorphism Network - GIN

After analyzing the conditions behind a powerful GNN, the next step of the thesis
is to create an architecture that probably satisfies theorem 3. Graph Isomorphism
Network (GIN) generalizes the WL test and consequently has the most

discriminative power of other GNNs.

To model injective multiset functions for the neighbor aggregation, this thesis

follows a theory of “deep multisets”, i.e., parameterizing universal multiset



functions with neural networks. Based on the following lemma, we assume that

sum aggregators can represent injective, universal functions over multisets.

Lemma 5. Assume X is countable. There exists a function f: X — R® so that
h(X) = Yxex f(X) is unique for each multiset X c X of bounded size. Moreover, any

multiset function g decomposed as g(X) = @ (D xex f(x)) for some function ¢.

A significant difference between deep multisets and sets is that some popular
injective set functions, such as the mean aggregator, are not injective multiset
functions. Using the mechanism for modeling universal multiset functions from
Lemma 5 as a building block, aggregation schemes that can represent universal
functions over a node and the multiset of its neighbors satisfying Theorem 3 can
be conceived. The following corollary provides a concrete formulation among

many such aggregation schemes.

Corollary 6. Assume X is countable. There exists a function f: X - Rrso that for
infinitely many choices of , including all irrational numbers,
h(c,X) = (1 +¢) - f(c) + Yxex f(X) is unique for each pair (c,X), where ¢ € X and X
C X is a multiset of bounded size. Moreover, any function g over such pairs can be

decomposed a g(c,X) = @((1 + ¢€) - f(c) + Yxex f(X)) for some function ¢.

Based on the universal approximation theorem [29][30] multi-layer perceptrons
(MLPs) can be used to model and learn fand ¢ in Corollary 6. In practice, we model
fk+1) o &) with one MLP, because MLPs can represent the composition of
functions. In the first iteration, if input features are one-hot encodings as their
summation alone is injective MLPs before summation are not needed. We can
make a learnable parameter or a fixed scalar. Then, GIN updates node

representations as
k - —
hg? = MLP®((1 + &%) b ™ + Zyew b ™)

GIN is a maximally powerful GNN, while being simple.

3.3. Attention Layer

After the inputs have been integrated and processed by the GIN layer, the three

output layers (there are three GIN layers followed by a batch normalization and



an activation function ReLu) can be added. Instead of this method, for the purpose
of this thesis we choose to have one more layer, called Multi Scale Node Attention
layer. This layer provides attention (through a changeable weight matrix) to each
node, i.e. protein based on the connections and structure of the graph [22]. The

equation of the layer is the following:
1
ATT,(Ug) = BN 0 (uhReLU (O (= By tn))) Uy

e 0 sigmoid
e N the number of nodes

e 0 weight parameters for k-th node embedding layer

The intuition behind this equation is that, during the generation of graph-level
embeddings, the attention weight assigned to each node should be adaptive to the
graph proximity metric. This can be achieved by determining the weight by both
the node embedding un and a learnable graph representation. The learnable graph
representation is adaptive to a particular graph proximity via the learnable weight
matrix (k). Specifically, this equation used all the node outputs, adds them and
produces a vector, and after multiplying this vector with a weight matrix, an
activation function ReLU, appropriate matrix multiplications and a sigmoid it
produces a final vector. After all these vectors are summed, the three layers are

concatenated (instead of added) using the following equation
he = MLPy (|lk=1 ATT 400 (Uy))

¢ || concatenation

e K the number of neighbors aggregation layers

e ATT multi-head attention mechanism that transforms the node
embeddings into a graph level embedding

e MLP

The intuition behind this equation is that, instead of only using the node
embeddings generated by the last neighbor aggregation layer, we use the node

embeddings generated by each of the K neighbor aggregation layers.

After this, the outputs are integrated into a simple dense layer so that the

appropriate dimensions are assigned.



3.4. Mutual Information

3.4.1. Theoretical Background on Information Theory

For the purpose of the thesis, training of the encoder of the signaling networks to
produce the appropriate embeddings will be made using mutual information.
Before analyzing the construction of the algorithm, some theoretical background

and definitions will be provided. [31]

Entropy

Let X be a random variable on a (discrete) space X, and x an element from X. For
every positive integer d, we denote by X a d-dimensional random

vector(Xy, ..., X4) € X%, and by the letter x an element from X¢.

The (Shannon) entropy [4] of a random variable X on a discrete space X is a

measure of its uncertainty during an experiment. It is defined as

H[X] = = Yxex Pr[X = x] -log (Pr [X = x])

The joint entropy of a pair of random variables (X,Y) expresses the uncertainty
one has about the combination of these variables:

HIX,Y] = = Yxexyey Pr[X =x,Y = y] -log (Pr[X = x,Y = y])

Finally, the conditional entropy of a random variable X given another variable Y

expresses the uncertainty on X which remains once Y is known:

HIX|Y] = = Yxexyer Pr[X = x,Y = y]-log (Pr [X = x|Y = y])
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Figure 8: Mutual Information and Entropy

Mutual Information

The mutual information is a general measure of the dependence between two
random variables. It expresses the quantity of information one has obtained on X
by observing Y . On a discrete domain, the mutual information of two random

variables X and Y is defined as:

Pr [X=xY=y]

IXGY) = Zrexyer PriX = xY =y]-log (=m0

It can be seen as the Kullback-Leibler divergence [4] between the joint
distribution Pr[X = x,Y = y] and the product distribution Pr[X = x] - Pr[Y = y].
In terms of Shannon entropy, MI can be defined as:
I(X;Y) = H[X] — H[X]|Y]
= H[X]+ H[Y] - H[X,Y]

= H[X,Y] — H[X|Y] — H[Y|X]

3.4.2. Training with Mutual Information

Based on the available research (Deep Graph Infomax) the encoder should be
trained by maximizing local mutual information. Through that, the encoder will

obtain node representations that capture the global information content of the



entire signaling network. The signaling network is represented by a summary

vector s  and each node’s patch representation is h. [31]

For the local MI to be optimized, we construct a discriminator D: R% x R% — R

that is used for each node i and D(ﬁi, s7) represents each node’s probability scores

assigned to the summary-patch pair.

The discriminator in a GAN is simply a classifier [23]. It tries to distinguish real
data from the data created by the generator. It could use any network architecture
appropriate to the type of data it's classifying. The architecture of the
discriminator is described below. We assume that the input of the discriminator
is x. The discriminator contains three consecutive simple dense layers followed by
an activation function ReLU. After the input is integrated into the model and into
the three layers, the output is x;. Moreover, the input x is also integrated into a
simple dense layer called dense shortcut and the output of this is x,. The final

output of the discriminator is x; + x .

This architecture is applied twice. Local Discriminator uses the node encodings as
input and Global Discriminator uses the sum of the node encodings as input.
Finally, those two are integrated into a dot layer, which is a Layer that computes a
dot product between samples in two tensors and the final output is used in the

mutual information training as the one output(prediction).
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Figure 9: Discriminators

For the discriminator to work properly, both positive and negative samples must

exist.
For the graph G with a summary s negative samples are produced by pairing the

summary with patch representations from another graph ¢ namely Ej . For the
purpose of this thesis, we consider two different classes of positive and negative
samples. Two graphs are considered positive or negative base on the following
conditions.

Positives: Same signature id (same experiment) or duplicates (same experiment

processed in different time)
Negatives: Not same signature id or not duplicates

For the loss function to be defined, we will use the Jensen Shannon Mutual
Information estimator, described in the paper (Unsupervised and Semi-
supervised Graph-Level Representation Learning via Mutual Information
Maximization.) We consider I,y the estimator which is modeled by a

discriminator Dy, parametrized by a neural network with parameters . The

Jensen-Shannon criteria is:

Loss () 1= Eol=5 (~Dyp (i 5,))) ~ Epl5p Dy, 5,))



P represents the empirical distribution of the input data set, P represents the

negative distribution from which we sample from and sp is the softplus function
sp(z) = (1 +e7)

Adjusting the Jensen-Shannon estimator to our problem, we calculate two
differentlosses, one loss lossg; ;4 for the positive and negative samples regarding

same signature id and one loss for the positive and negative samples regarding

duplicates loSSgypiicates-

Moreover, for the final loss of the model to be constructed, there is another term

referring to a regularization loss, which denotes matching the pushforward
distribution of our summary vectors to a prior distribution, with the most effective

being the uniform distribution. This happens through a prior discriminator which
has a simple architecture consisting of three dense layers followed by an
activation function ReLU. The encoded sum is integrated to this discriminator and
terms of a uniform distribution are also processed by the discriminator and the

outputs are added together. The final loss, l0ss,,,r is equal to the negative value

of the mean of the encoded sum.
Therefore, the loss function through which the model is trained is equal to

loss = 10sSsig g + l0SSgypiicates + L0SSprior

3.5. Structure of the model

After creating the graphs using Carnival, they are processed as analyzed
previously so that four different vectors or matrices are produced. The goal is to
tensorize the signaling networks into nodes, edges, edge attributes, activity
matrix. These data are the inputs of the model. At first, the activity matrix is
integrated into a Projection Model, which contains three simple dense layers, so
that its dimensions are increased. This is very important, because at first the
dimensions were one, and the importance of the activity matrix would be lost
when compared to the higher dimensions of the nodes. After passing through the
projection model, the activity matrix is concatenated with the nodes. The

concatenated nodes matrix along with the edges and edge attribute matrices are



integrated into the first encoder which is consisted of three consecutive GIN layers
followed by a batch normalization, an activation function ReLU, and an attention
layer. The output of the first three layers is x;, and the output of the attention layer
is a;. The outputs of this function are two: a layer concatenating the outputs of the
three attention layers (node embeddings) and the sum of the three layers x; (all
nodes’ embeddings). After that, the node embeddings are integrated into another
encoder. This second encoder consists of three simple dense layers followed by a
batch normalization, an activation function ReLU, a drop dense function and a
normalization. The output of this function is called encoded and is then integrated
into the global discriminator. All node embeddings are integrated into the local
discriminator and the outputs of the two discriminators are passed through a
layer that produces their dot product; the output is called result. The encoded is
processed by the prior discriminator and the logarithm of the output is added to a
term containing samples from a uniform distribution, constructing a term called
prior sum. Finally, the nodes, edges, edge attributes, activity matrix are used as the
input of the mutual information training model, and the result and prior sum are
used as the outputs that will help the model train through minimizing the loss
function. Finally, the mutual information training model is fit into the data
produced by the train generator, which produces the four matrices analyzed
below along with the masks for the same signature id and the duplicate that are

needed.



Table 2: Training Hyperparameters

Hyperparameters Value
Batch Size 96
Epochs 8
Optimizer Adam
ReduceLROnPlateau -
Learning Rate 0.001
Batch Normalization 0.6

momentum

Weight Initializer

Glorot Normal




4. Embeddings Quality Evaluation

After training the model and producing the 128 dimension embeddings, it is of
vital significance to evaluate their quality, so that there is certainty that the model
works appropriately and the embeddings can be used in other deep learning
models that will be analyzed in this thesis. In order to evaluate the embeddings,
three different tasks were used, that analyze the quality of embeddings regarding
their differentation regarding same signature graphs, duplicates and mechanism
of action. The three tasks were written in programming language R and their

results will be explained .

For the following plots, G2V refers to Graph2Vector, a graph embedding approach
based on the idea of the doc2vec approach that uses the skip-gram network, GT-
MI refers to Graph Transformers Mutual Information, a model constructed bya
previous lab member, and MI-GIN-TF2 meaning Mutual Information- GIN Layer-

Tensorflow 2 refers to the model constructed in this thesis.

4.1. Task 1 : Same Signature ID vs Different Signature

The purpose of the first task is to differentiate the signaling networks that have
the same signaling network id (meaning the same experiment) from those that
have different signatures. As we can see, the model of this thesis differentiates the
two categories, since the mean of the same sigantures is near zero and the mean
of different signatures is above 0.5 . Both samples have some outliers, however the
model performs very effectively, since there is no significant overlap between the
two. Moreover, it can be said that our model performs better than the other two,
since the mean of the same signatures is very near 0, which is the desirable
situation, since these samples share a lot of mutual information and therefore
their embeddings are accepted to be very similar and close and consequently the

distances of the embeddings very near 0.



1.00

0.75

Distance
o
o
o

0.25

0.00

G2V GT-MI MI-GIN-TEF2

Embeddings from B3 Same signature [ Different signatures

Figure 10: Embeddings Quality Evaluation Task 1

4.2. Task 2: Duplicates vs Random Signatures

The purpose of the second task is to differentiate signaling networks that are
duplicates (same experiment, i.e. same drug, dosage, duration but conducted at
different moments) from random signatures. As we can see, our model is very
effective in this task since it manages to differentiate the two categories.
Specifically, the mean distance of the duplicate embeddings is near 0.2, whereas
the mean of the randoms is over 0.5. Moreover, as we can see our model can be
consider more effective than the other two, since there is less overlap between the
two violin plots and the two mean distances are further than the other two
methods. Therefore, our model proves successful in this task and our embeddings

have effective quality in differentiating duplicates from randoms.
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Figure 11: Embeddings Quality Evaluation Task 2

4.3. Task 3: t-SNE Visualization - Mechanism of Action

In medicine, a term used to describe how a drug or other substance produces an
effect in the body. For example, a drug’s mechanism of action could be how it
affects a specific target in a cell, such as an enzyme, or a cell function, such as cell
growth. Knowing the mechanism of action of a drug may help provide information
about the safety of the drug and how it affects the body. It may also help identify
the right dose of a drug and which patients are most likely to respond to treatment.

Also called MOA. [13]

The following plot represents the t-SNE Visualization of the embeddings. T-
distributed stochastic neighbor embedding (t-SNE) is a statistical method for
visualizing high-dimensional data by giving each datapoint a location in a two or
three-dimensional map. Therefore, the dimensionality of the embeddings is
reduced from 128 to 2. Each point in the graph represents a signaling network. As

we can see, the following graph is consisted of a big cloud instead of clusters.



However, there are some clusters, for example HDAC inhibitors, MTOR inhibitors
and protein synthesis inhibitors. This task is very difficult since the embeddings
contain a lot of information about the signaling networks and reducing their
dimension from 128 to 2 means that a huge proportion of this information is lost.
However, the fact that there are some clusters of experiments with similar
mechanism of action, as well as the fact that the other methods (GT-MI) had very

similar t-SNE visualizations, proves that our model is successful in this task.
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5. Infer a protein signaling network from a compound’s chemical structure

5.1. Introduction

After producing the embeddings for the signatures, these will be processed in
order to be integrated into another deep learning model called DeepSIBA [32]. The
purpose of this part of the thesis is to infer a protein signaling network from a

compound’s chemical structure.

Identification of protein interactions (PPIs) is at the center of molecular biology
considering the unquestionable role of proteins in cells. There has recently been a
rapid progress in computational methods for determining protein targets of small
molecule drugs, which will be termed as compound protein interaction (CPI). Data
for CPI has been accumulated and curated significantly both in quantity and
quality. Computational methods have become powerful ever to analyze such

complex the data.

To achieve generalization of our current knowledge on CPI prediction using Al
methods, the computational methods are grouped into five categories: tree-based
ML, network- and kernel-based ML, and three deep learning (DL) based
architectures. Specifically, with this approach, the goal is to be able to predict
whether two compounds will activate similar protein signaling networks based on
their chemical structure. This is very significant since it could prove very
beneficial for early drug discovery. Predicting whether two compounds will
activate similar protein to protein interaction, and therefore similar mechanism
of action based only on their chemical structure is one state of the art method that
would be very helpful for drug discovery researchers, The long-term goal of this
is being able to find out the protein signaling network of compounds constructed
on paper without any further experiments. For this thesis, a deep learning-based
architecture will be used, specifically the deepSIBA model, a graph convolution

model. [24][25]



Predicting whether a chemical structure leads to a desired or adverse biological
effect can have a significant impact for in silico drug discovery. For this thesis, we
used a deep learning model where compound structures are represented as
graphs and then linked to their biological footprint. To make this complex problem
computationally tractable, compound differences were mapped to biological
effect alterations using Siamese Graph Convolutional Neural Networks. In
previous work and research, the model was able to encode molecular graph pairs
and identify structurally dissimilar compounds that affect similar biological
processes with high precision. Additionally, by utilizing deep ensembles to
estimate uncertainty, the model provided reliable and accurate predictions for
chemical structures that are very different from the ones used during training.

Therefore, this model will be used for this thesis.

Following, some basic background of the deepSIBA model along with how it was

adjusted for the purpose of this thesis will be mentioned.

5.2. Background on deepSIBA

Transcriptomic signatures from compound perturbations along with their
respective chemical structures were retrieved from the CMap dataset. For each
compound perturbation, the embeddings that were calculated by the model of this
thesis were used. Specifically, every different signature had up to 100 different
signaling networks, and 128 size embeddings were produced for each of them.
Using a code in R, a mean value was calculated for these different signaling
networks, so that each signature referred to only 128 embeddings. Afterwards,
pairwise distances for these signatures were calculated, using the Euclidean
distance and cosine similarity functions. Cosine similarity had better results and
therefore was used for the training of the model. During the learning phase, the
proposed model is trained to predict the pairwise distance between compounds’
using only their chemical structure as input. The input chemical structures are
represented as undirected graphs, with nodes being the atoms and edges the

bonds between them and encoded using a Siamese GCNN architecture. During



inference, the model is tasked to predict the biological effect distance between

reference and unknown compounds.
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Figure 13: Overview of deepSIBA model

5.3. Siamese GCNN

A schematic representation of the model’s architecture is presented in the figure
below. The learning model takes as input the chemical structures of compound

pairs and predicts their biological distance

The input of the model, chemical structures, are represented as undirected graphs,
where atoms represent the nodes and bonds between them represent the edges.
Every chemical structure is encoded with 3 matrices: the atom array, which
contains atom-level features, the bond array, which contains bond-level features

and the edge array, which describes the connectivity of the compound.

The learning model consists of two Siamese encoders (shared weights) that
embed the input graphs into a high dimensional latent space and a trainable
distance module that outputs the final distance prediction. The overall goal of the
Siamese encoder is to learn task-specific compound representations. Siamese
encoders have 3 graph convolutional layers that learn neighborhood-level

representations, and a convolutional layer that extracts compound level features.



The feature maps of the last Siamese layers are then subtracted, and their absolute
difference is passed to the distance module. The distance module consists of 2
convolutional layers, which extract important features from the difference of the
feature maps and 3 fully connected layers that aim to combine those features,
while progressively reducing the dimensions. Finally, a Gaussian regression layer
outputs a mean and variance of the biological effect distance between the
compound pair. By treating the distance as a sample from a Gaussian distribution
with the predicted mean and variance, the model is trained end-to-end by

minimizing the negative log-likelihood criterion given by [26]

1 ) 1 2
—logpe YmlXn) = — 2 logog (x) — m (y — Ug (x)) + const
0

A. Siamese graph convolutions B. Distance module
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Figure 14: Siamese Graph Convolutions

In general, deepSIBA is used as a black box since for the purpose of this thesis we
only integrate the data produced by the model without altering or analyzing the
parameters and structure of the deepSIBA architecture and model. Therefore, it is
expected that the results will not be great, since deepSIBA was designed for
another problem and not for predicting signaling network embeddings. However,
since this model has proven very powerful in previous research and is based on
compounds’ chemical structure and pairwise distances to train, it is appropriate
for the purpose of this thesis, which is a first trial in training a deep learning model

to predict the similarity of the protein signaling network of two different



compounds. We will not analyze further the functionality of deepSIBA, which can
be found in [32] and we will proceed with the data processing and the

performance evaluation of the training.

5.4 Data

Of all the different cell lines for which the CARNIVAL has produced signaling
networks, four of them have the most compounds with quality score 1 whose
embeddings will be used in the training of the deepSIBA model. It is very
important to keep only these cell lines, because based on research of previous
thesis of the lab, these are the most credible and therefore will produce the most

robust results. These four cell lines are all human cancer cell lines.

Table 3: Number of compounds for different cell lines

Cell Line Compounds
A375 711
MCF7 813
PC3 729
VCAP 730

For each of these different cell lines, the pairwise differences for all different
compounds were calculated. To train and validate the deep siba model, these
pairwise distances were divided to train and test set. For splitting the total, we
used a combination of the 80-20 rule (80% of the sample is train set and 20% of
the sample is test set) and an algorithm of previous research. This algorithm
divides the compounds based on their similarity, so as similar compounds will be
divided into the train and test sets, and there will not be bias in the model. After
splitting the totals, and removing some samples that did not have embeddings of
good quality (multiple zeros etc), the train and test set for each cell line contained

the following number of samples



Table 4: Number of pairwise distances for train and test set

Cell Line Total Train Test

A375 216520 172167 44353
MCF7 285542 238871 46671
PC3 221716 178595 43121
VCAP 234326 203590 30736

The pairwise distances for the different cell lines were calculated using the

cosine similarity function:[27]

A - B _ {;1 Ai X Bi
Al % ||B]l
(Zad? =[S, B2

similarity(A,B) =

Before training the model, it is very significant to validate that the distributions of
the distances for the train and tests sets are similar, since this is a very important
factor for an effective and robust training. As seen below, all cell lines have similar

distributions between the two sets.
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6. Performance Evaluation

Across all test scenarios, model performance was evaluated in terms of Mean

Squared Error (MSE), Pearson’s r and precision. MSE and Pearson’s r were

calculated between the predicted and computed distance values. To calculate

precision, the continuous distance values were transformed to binary form by

comparing them with an appropriate distance threshold. Even though the

learning task is a regression problem, given its nature and potential applications,

. . . true positives
high precision (p—

positives

validation experiments.

Table 5: Training Metrics

) is important in order to avoid false positive hits for

Metric

Definition

Formula

MSE

The mean squared error (MSE) tells you
how close a regression line is to a set of
points. It does this by taking the distances
from the points to the regression line and
squaring them. The squaring is necessary to
remove any negative signs. It also gives
more weight to larger differences. It's called
the mean squared error as you're finding the
average of a set of errors. The lower the

MSE, the better the forecast.

n

1 -
MSE == (¥ - 7)?

=1

Pearson’sr

Pearson's correlation coefficient is the
covariance of the two variables divided by
the product of their standard deviations. The
form of the definition involves a "product
moment", that is, the mean (the

first moment of the origin) of the product of
the mean-adjusted random variables; hence

the modifier product-moment in the name.

nyxy—Xx)y

JnEx?2—E0 Yy - Xy




Precision

Precision (also called positive predictive

true positive

precision = " tive + fal 10
value) is the fraction of relevant instances rue positive + false positive
among the retrieved instances

Accuracy Accuracy is one metric for evaluating # correct predictions
accuracy =

the fraction of predictions our model got

right

classification models. Informally, accuracy is

# total predictions

Below, the matrix shows the number of positives, meaning number of similars

for each cell line when the structural distance threshold increases.

Table 6: Number of positives for different thresholds

P-Threshold A375 PC3 VCAP
0.15 - 42 60
0.2 259 697 1037
0.25 1190 3701 4134
0.3 4927 12489 16008

As we can see, as the threshold rises, the model finds more positives. For all these
different cell lines, we choose a threshold between 0.2 and 0.25 so that the number
of positives, meaning the number of similar compounds, is neither huge nor
negligible. After that we run the model once again, so that the evaluation metrics
for each of these cell lines based on the chosen threshold are produced. In the
following matrix, the metrics for these tests can be seen, so that a first view of the

performance of the model can be derived.

Table 7: Metrics values in training

Cell Line | MSE | MSE Similar | Pearsonr | Precision | Accuracy | Similars
A375 0.018 | 0.028 0.17 0.59 0.64 821
VCAP 0.014 | 0.013 0.35 0.6 0.7 1126
PC3 0.016 | 0.02 0.26 0.56 0.66 1231
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As we can see, the training of this data is not very effective. Pearson’s r value is
low in all 3 different cell lines, meaning that there is a positive correlation between
the predicted values and the true ones, however this correlation cannot lead to the
conclusion that the training was very effective. For the VCAP cell line, pearson’s r
is 0.35 which shows a significant positive correlation which however is not above
0.5 that would be the threshold showing that the predicted data actually

approaches the true values.

Precision is around 60% for all three different cell lines. This number shows that
60% of the predicted positive values (similar) are similar and 40% of them are
not. This value shows that the model proved an ability to correctly identify
whether two compounds have a close distance (meaning close embeddings and
therefore similar signaling networks). However, for the training to be

characterized robust this number should be higher. The same applies for accuracy.

Finally, the MSE value for all 3 different cell lines varies from 0.01 to 0.02 and
therefore is very low meaning that the average set of errors is very low and

therefore is a positive index for the training.

Following that first analysis, we will try to maximize the two most important

metrics MSE and precision by altering the CV threshold.

Quantifying predictive uncertainty can lead to more accurate results in virtual
screening applications. For this reason, we investigated the relationship between
the uncertainty estimate and the performance of the model. Our model estimates
predictive uncertainty as the coefficient of variation (CV) of the mixture of each
model’s Gaussian in the ensemble. MSE and precision were calculated for

samples in the test set, with CV lower than an increasing threshold
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As we can see for both metrics the values remain the same for the most part.
Precision starts with higher values in PC3 and A375 cell lines because for smaller
CV threshold, the model finds less positives (similars) and therefore it is easier for
the precision to be higher. Due to the low number of false positives for all the
models, precision is largely unaffected by the CV threshold. MSE remains very low
for all three cell lines and is slowly increasing for each cell line. As the CV threshold
increases and more samples with higher CV are included in the evaluation, the
MSE of the models increases as well. This implies that point predictions with lower
uncertainty are closer to the target value. The conclusion is that for our problem

the important metrics do not change much when the CV threshold changes.

Overall, the conclusion is that all metrics have values that indicate that the data is
somehow trained using the deepsiba model, however the values are not good
enough to prove that the training is very effective and robust. This mostly happens
because deepsiba was constructed for a different problem and therefore the
architecture, hyperparameters and structure are not appropriate enough for the
data that we integrated. The fact that despite these limitations the data is trained
shows that inferring a protein signaling network from a compound’s chemical

structure is a possible prospect.



7. Conclusion

The purpose of this thesis was to construct a deep learning model that would be
able to extract embeddings from the signaling networks that would describe them
effectively and separate them based on the signature id of the compound that
caused them. The main idea was to use graph neural networks, which is a method
not usually used in such problems. For this purpose, a very robust and state of the
art architecture, GIN Layer, was used, along with other common deep learning
techniques and architectures, such as simple dense layers, attention layers,
projection models etc. The whole concept was to create an effective and ideally
better alternative to a solution given to this problem by a previous lab member. It
was proved that our model, despite possible flaws of the data available, was
capable of providing embeddings of very good quality, even better to compared to
previous methods and solutions. By succeeding in the 3 significant tasks our
model proved to create very good embeddings that could effectively separate the
experiments with same signature ID from the ones with different ones as well as
the duplicate embeddings from the different ones. Therefore, the primary purpose
of the thesis was fulfilled. Following this, the secondary purpose of the thesis was
to infer a protein signaling network from a compound’s chemical structure. Using
the embeddings created by our model, and the deepSIBA model the goal was to
train the model to predict whether two compounds have similar signaling
networks based only on their chemical structures. For this purpose, pairwise
distances were calculated between the embeddings and these distances along
with their corresponding compounds were integrated to deepSIBA. The
conclusion was that this task was not easy, since the deepSIBA model was
constructed for a different purpose. However, the model managed to provide
some valuable information and a first sufficient approach to this problem, since

the model managed to train a proportion of the data effectively.



8. Limitations and Further Research

To begin with, using GNNs to process signaling networks is an approach thatis not
largely developed or tested, and therefore there is not enough research or
bibliography to refer to. The primary focus of the model was to "reduce" the size
of biological signaling networks to a single representation so that our methods can
be used to find a drug’s mechanism of action. Our model passed the test and
provided embeddings of good quality. However, a significant limitation and
potential problem was limited amount and questionable biological completeness
and validity of our data. This did not allow a high degree of predictive confidence
in further evaluation tests. Besides, the input data (signaling networks) were
heavily based on the public Protein to Protein Interaction network and the
hyperparameters of CARNIVAL. Even if our model was complete and constructed
of the best graph neural network architectures, it's effectivity and robustness is
doubtful. Specifically, if the input data are incomplete, the results will be even
more incomplete. Furthermore, even though CARNIVAL is a great and very useful
tool, was not designed for large amounts of signaling networks and therefore it's
performance might have been affected. Finally, it is important to mention that the
mediocre results of the deepSIBA training happened because deepSIBA was not
designed for this problem. For better results, we should have optimized the

hyperparameters and potentially the architecture.

For further research, there are multiple potential alternatives to further analyze
this problem. To begin with, using the encoder of deepSIBA we could encode the
chemical structures of drugs into vectors and train them with the mutual
information method. Then, we could construct a final neural network that would
take as inputs both the vector of our model and of the deepSIBA and train based
on both. The long-term goal of this is using a signaling network as reference one
could use the model to and the model would propose some potential drugs that
could create this signaling network, and most importantly vice versa by using a

chemical structure as reference.

Another potential step would be to create similar models as the one proposed in

this thesis, to create vectors not only for the signaling networks of a drug but also



for the genes, transcriptional factors and GO terms. Then by concatenating them
and integrating them to an encoder we could have a unique vector for each drug
that based on the 4 previous characteristics it would be robust and contain very

important information on the mechanism of action of each drug.

Finally, we could train the deepSIBA model for GO terms (already exists) , genes,
and transcriptional factors. Therefore, the model would be able to propose similar
drugs to the one that was used as the input in the level of GO terms, genes and
transcriptional factors. After finding all the similar drugs, it would be very
intriguing and challenging to use the signaling networks of these drugs and try to

create an optimization model that would propose a specific signaling network.
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