

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ &
ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ

ΕΡΓΑΣΤΗΡΙΟ ΒΙΟΙΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Deep learning for signaling network embeddings and inferring them from a
compound’s chemical structure

Ιωάννης Γεώργιος Ζαζάς

Επιβλέπων: Λεωνίδας Αλεξόπουλος, Καθηγητής ΕΜΠ

Αθήνα, Ιούνιος 2022

Abstract

During the last years, big data and deep learning have become a very effective and

state of the art method to deal with many demanding and difficult problems, in

multiple scientific fields, from traditional computer science to finance and biology.

Up to the present, deep learning was rarely used as a method by bioinformaticians,

who prefer gene expression data and try to understand the mechanism of action

of drugs to promote research on topics like early drug discovery. To deal with

signaling networks, it is more common to use network analysis and dynamical

systems modelling. For this thesis, we develop a specific class of graph

convolutional neural network, using a very effective architecture that achieves

maximum discriminative power among other GNNs’ and apply this model to a

dataset of biological (protein) signaling networks. We prove that our model can

effectively cluster compounds with similar mechanisms of action together and

identify compounds with similar signaling networks. Finally, we use the data

produced from this model and try to train a model to infer a protein signaling

network from a compound’s chemical structure.

Περίληψη

Τα τελευταία χρόνια, τα μεγάλα δεδομένα και η βαθιά μάθηση έχουν γίνει μια

πολύ αποτελεσματική και τελευταίας τεχνολογίας μέθοδος για την αντιμετώπιση

πολλών απαιτητικών και δύσκολων προβλημάτων, σε πολλαπλά επιστημονικά

πεδία, από την παραδοσιακή επιστήμη των υπολογιστών μέχρι τη

χρηματοδότηση και τη βιολογία. Μέχρι σήμερα, η βαθιά μάθηση

χρησιμοποιήθηκε σπάνια ως μέθοδος από βιοπληροφορικούς, οι οποίοι

προτιμούν τα δεδομένα γονιδιακής έκφρασης και προσπαθούν να κατανοήσουν

τον μηχανισμό δράσης των φαρμάκων για την προώθηση της έρευνας σε θέματα

όπως η πρώιμη ανακάλυψη φαρμάκων. Για την αντιμετώπιση των δικτύων

σηματοδότησης, είναι πιο συνηθισμένο να χρησιμοποιείται η ανάλυση δικτύου

και η μοντελοποίηση δυναμικών συστημάτων. Για αυτή τη διπλωματική εργασία,

αναπτύσσουμε μια συγκεκριμένη κατηγορία συνελικτικού νευρωνικού δικτύου

γραφημάτων, χρησιμοποιώντας μια πολύ αποτελεσματική αρχιτεκτονική που

επιτυγχάνει μέγιστη ισχύ διαχωρισμού μεταξύ άλλων τέτοιων δικτύων και

εφαρμόζουμε αυτό το μοντέλο σε ένα σύνολο δεδομένων βιολογικών

(πρωτεϊνικών) δικτύων σηματοδότησης. Αποδεικνύουμε ότι το μοντέλο μας

μπορεί να ομαδοποιήσει αποτελεσματικά ενώσεις με παρόμοιους μηχανισμούς

δράσης και να αναγνωρίσει ενώσεις με παρόμοια δίκτυα σηματοδότησης. Τέλος,

χρησιμοποιούμε τα δεδομένα που παράγονται από αυτό το μοντέλο και

προσπαθούμε να εκπαιδεύσουμε ένα μοντέλο ώστε να συμπεράνει ένα δίκτυο

σηματοδότησης πρωτεΐνης από τη χημική δομή μιας ένωσης.

Acknowledgements

First of all, I would like to kindly thank my supervising Professor, Mr. Leonidas

Alexopoulos for providing me the opportunity to work in such an interesting topic

in a great environment, as well as for his mentorship and guidance throughout the

last two years that I have been a member of the Biomedical Systems Laboratory.

Moreover, I would like to greatly thank both Nikos Meimetis, the former lab

member and present PhD student, and Christos Fotis, the PhD student of the lab

who both helped me understand the problem of the diploma thesis and develop

the model.

Furthermore, I would like to thank all the members of the lab who created a

friendly environment and making the lab an exciting workspace.

Finally, I am grateful to my friends and family, for supporting me during not only

the diploma thesis, but in the whole journey of my studies at the National

Technical University of Athens.

Contents

1. Introduction .. 8

1.1. Motivation .. 8

1.2. Systems Biology ... 9

1.3. Proteins ... 9

1.4. Signaling Networks ... 10

1.5. Deep Learning Neural Networks ... 11

1.6. Graph Neural Networks .. 12

1.7. Graph Convolutional Networks ... 13

1.8. Auto Encoders .. 14

2. Data ... 16

2.1. Preprocessing and Quality Control .. 16

2.1.1. CMAP .. 16

2.1.2. CARNIVAL .. 17

2.2. Tensorizing the signaling networks ... 18

3. Model ... 20

3.1. Theoretical Background of GNN .. 20

3.1.1. Weisfeiler-Lehman test .. 21

3.1.2. Theoretical Framework: Overview ... 22

3.1.3. Building Neural Networks .. 23

3.2. Graph Isomorphism Network – GIN .. 24

3.3. Attention Layer .. 25

3.4. Mutual Information .. 27

3.4.1. Theoretical Background on Information Theory .. 27

3.4.2. Training with Mutual Information ... 28

3.5. Structure of the model... 31

4. Embeddings Quality Evaluation .. 34

4.1. Task 1 : Same Signature ID vs Different Signature ... 34

4.2. Task 2: Duplicates vs Random Signatures ... 35

4.3. Task 3: t-SNE Visualization - Mechanism of Action ... 36

5. Infer a protein signaling network from a compound’s chemical structure 38

5.1. Introduction .. 38

5.2. Background on deepSIBA... 39

5.3. Siamese GCNN .. 40

5.4 Data .. 42

6. Performance Evaluation ... 46

7. Conclusion .. 52

8. Limitations and Further Research .. 53

9. Bibliography .. 55

List of figures

Figure 1: An example of a protein network ... 11

Figure 2: Deep Neural Network Structure ... 12

Figure 3: Graph Convolutional Network Structure... 13

Figure 4: Encoder - Decoder Structure .. 15

Figure 5: CARNIVAL Functioning .. 18

Figure 6: An overview of the theoretical framework. .. 20

Figure 7: Graph 1 and Graph 2 are isomorphic. The correspondance between

nodes is illustrated by the node colors and numbers. ... 22

Figure 8: Mutual Information and Entropy ... 28

Figure 9: Discriminators ... 30

Figure 10: Embeddings Quality Evaluation Task 1 ... 35

Figure 11: Embeddings Quality Evaluation Task 2 ... 36

Figure 12: Embeddings Quality Evaluation Task 3 ... 37

Figure 13: Overview of deepSIBA model .. 40

Figure 14: Siamese Graph Convolutions ... 41

Figure 15: A375 Distances Histogram ... 44

Figure 16: VCAP Distances Histogram ... 44

Figure 17: PC3 Distances Histogram .. 44

Figure 18: MCF7 Distances Histogram .. 45

Figure 19: VCAP predicted-true values ... 48

Figure 20: A375 predicted-true values ... 48

Figure 21: PC3 predicted-true values .. 48

Figure 22: Precision - CV threshold for different cell lines .. 50

Figure 23: MSE - CV threshold for different cell lines .. 50

file:///C:/Users/johny/Desktop/thesis_paper/thesis_paper.docx%23_Toc106618814
file:///C:/Users/johny/Desktop/thesis_paper/thesis_paper.docx%23_Toc106618815
file:///C:/Users/johny/Desktop/thesis_paper/thesis_paper.docx%23_Toc106618816
file:///C:/Users/johny/Desktop/thesis_paper/thesis_paper.docx%23_Toc106618817

1. Introduction

1.1. Motivation

The motivation of this thesis is to use deep learning methods in order to analyze,

quantify and extract meaningful and robust representations from protein

signaling networks. Biological networks have been used as data in research

purposes as well as data for machine and deep learning models, but the concept

of using Graph Neural Networks in processing this data is, to the best of our

knowledge, was first introduced by previous lab members, and the purpose of this

thesis is to introduce a new method and model to apply to these data. Biological

networks, and especially protein signaling networks can possess a huge amount

of information about the nodes and connectivity between them, that can be very

important for multiple fields of bioinformatics and computational biology. These

graphs can be considered as directed acyclic graphs where each node represents

a protein, and therefore every branch of the graph contains information on the

nodes that construct it and therefore on the whole graph. Therefore, by processing

each node and its connections separately and collectively we can extract very

important information about the structure and functioning of the graph. In the

following pages, we try to use deep learning methods to prove that signaling

network data can provide us with significant information if processed properly.

Moreover, there is a first approach in trying to use deep learning to infer a protein

signaling network from a compound’s chemical structure. This method could be

extremely important in early drug discovery and CADD since it could help us

identify the signaling network (i.e., mechanism of action) of a compound by

comparing its chemical structure with other compounds whose signaling network

is known. Drug discovery is the process aiming to identify new candidate

medications, meaning the development and discovery of new drugs intended to

be used for the treatment of specific diseases. Early-stage drug discovery aims to

identify the right compound for the right target, for the right disease.

1.2. Systems Biology

Systems biology has been responsible for some of the most important

developments in the science of human health and environmental sustainability. It

is a holistic approach to deciphering the complexity of biological systems that

starts from the understanding that the networks that form the whole of living

organisms are more than the sum of their parts. It is collaborative, integrating

many scientific disciplines – biology, computer science, engineering,

bioinformatics, physics and others – to predict how these systems change over

time and under varying conditions, and to develop solutions to the world’s most

pressing health and environmental issues. [33]

1.3. Proteins

Proteins are large and the most complex molecules known, with very critical roles

for the body of a multicellular organism. They are needed in the structure,

functioning and organization of tissues, organs, and cells. Proteins are consisted

of long chains of numerous smaller units called amino acids which determine the

unique 3D structure and specific function of the protein. There are 20 amino acids

that can connect in infinite combinations, and each of these amino acids is linked

with its neighbor through a covalent peptide bond (another name for proteins is

polypeptide). Amino acids are coded by combinations of nucleotides (three DNA

building blocks), determined by the sequence of genes.

Proteins can have multiple functions and biological properties which depend on

the physical interaction with other molecules. Some of the main functions of

proteins are working as antibodies, enzymes, messengers, structural components,

and transport.[1]

1.4. Signaling Networks

One of the most important mechanisms in biology is the communication between

cells of multicellular organisms. This is achieved through a number of pathways

that instantly receive and process signals, with other part of a cell and the external

environment. These networks are commonly classified based on the molecules

transferred, with two very common being proteins or genes. When cell signaling

is involved, meaning the response of a cell to internal and external stimuli

(chemical, mechanical nature) and the regulation of its activity is regulated, these

networks are called Signaling Networks. [2]

The process can be described by two main steps. At first, an extracellular molecule

binds to a specific protein called receptor on a target cell, changing its state to

active. Afterwards, the receptor stimulates intracellular biochemical pathways

leading to a cellular response, which may involve progression through the cell

cycle or changes in gene expression. These internal pathways are controlled and

regulated by conserved protein modules which have the ability to mediate

interactions between proteins. [3]. Some of the most common of these molecules

are Hormones (endocrine system), Neurotransmitters (nervous system),

Cytokines (immune system). Signaling networks are extremely important for

several functions and mechanisms of multicellular organisms.

Figure 1: An example of a protein network

1.5. Deep Learning Neural Networks

Neural networks, also known as artificial neural networks, are a method of

machine learning that is also the main method used in deep learning algorithms.

Their name and functioning are inspired by the human brain and specifically the

communication and signal transferring between the neurons of the brain. They

are consisted of node layers, starting with an input layer, which is then followed

by one or more hidden layers, which end to an output layer. Every node connects

to another and has a weight and a threshold, and the node is activated (i.e., sending

data to the next layer) when the output of the node is above the specified

threshold. Each neuron receives the value of previous connected neurons as input,

and maps it into an activation function:

𝑥𝑛𝑒𝑤 = 𝑠(𝑤𝑥𝑝𝑟𝑒𝑣 + 𝑏)

Where s is the activation function and w,b are the trainable parameters.[4]

Figure 2: Deep Neural Network Structure

Neural Networks are trained by the optimization of a cost function and rely on

training data to learn and improve their accuracy over time.[5]

1.6. Graph Neural Networks

Graph Neural Networks (GNNs) are a class of deep learning methods designed to

perform inference on data described by graphs. A GNN is an optimizable

transformation on all attributes of the graph (nodes, edges, global context) that

preserves graph symmetries (permutation invariances). GNNs adopt a “graph-in,

graph-out” architecture meaning that these model types accept a graph as input,

with information loaded into its nodes, edges and global-context, and

progressively transform these embeddings, without changing the connectivity of

the input graph.[34] GNNs are neural networks that can be directly applied to

graphs, and provide an easy way to do node-level, edge-level, and graph-level

prediction tasks. GNNs can do what Convolutional Neural Networks (CNNs) failed

to do. Further information on Graph Neural Networks will be provided in Chapter

3 where the model of the thesis is discussed.

1.7. Graph Convolutional Networks

Graph Convolutional Networks were first introduced by Kipf and Welling [6] and

are the main deep learning method used when working with graphs. Convolution

refers to the same operation as in simple Convolutional NN. The input neurons are

multiplied with a set of weights known as filters or kernels, which slide through

the image as a window and enable CNNs to learn features from neighboring cells,

while the same filter will be used within the same layer (weight sharing). GCN

perform in a very similar way and the model learns features by inspecting

neighboring nodes. GCN are a generalized version of CNN since the nodes can be

unordered and the connections between them can be complex (where CNN work

on structured data), and the equation that describes the problem is 𝐺 = (𝑉, 𝐸)

where G is the graph and V, E are the vertices and edges. [7]

Figure 3: Graph Convolutional Network Structure

The goal is to learn a function of signals/features on a graph 𝐺 = (𝑉, 𝐸) which

takes as input:

• A feature description 𝑥𝑖 for every node 𝑖 in a feature matrix 𝑋 (𝑁 × 𝐷 , 𝑁:

number of nodes, 𝐷: number of input features)

• A representative description of the graph structure in matrix form

(adjacency matrix 𝐴 or some function thereof)

and produces a node-level output 𝑍 (an 𝑁 × 𝐹 feature matrix, where 𝐹 is the

number of output features per node). Graph-level outputs can be modeled by

introducing some form of pooling operation. [7]

Every neural network layer can then be written as a non-linear function

𝐻(𝑙+1) = 𝑓(𝐻(𝑙), 𝐴),

with 𝐻(0) = 𝑋 and 𝐻(𝑙) = 𝑍 , 𝐿 being the number of layers.[8]

A very simple and common propagation rule would be 𝑓(𝐻(𝑙), 𝐴) = 𝜎(𝐴𝐻(𝑙)𝑊(𝑙))

where 𝑊 is the weight matrix and 𝜎 being the activation function (a very common

one is ReLu). There are many ways GCNs are implemented, some of which are used

in the following thesis.[9]

1.8. Auto Encoders

Autoencoders are a specific type of feedforward neural networks where the input

is the same as the output. The input is compressed into a lower-

dimensional code and then the output is reconstructed from this representation.

An autoencoder consists of 3 components: the encoder which compresses the

input and produces the code from which the decoder reconstructs the input. The

encoder and the decoder are fully connected feedforward NN, and the decoder

architecture is the mirror image of the encoder. These components use an

encoding method, a decoding method, and a loss function to compare the output

with the target. [10]

Figure 4: Encoder - Decoder Structure

Autoencoders are mainly a dimensionality reduction (or compression) algorithm

and the most important properties of autoencoders are:

• Data-specific: Autoencoders can meaningfully compress data

dimensionally similar to the data they have been trained on.

• Lossy: The output of the autoencoder will not be the same as the input, it

will be a close but degraded representation.

• Unsupervised: Autoencoders don’t need explicit labels to train and

therefore are considered an unsupervised learning method. They can be

considered self-supervised since they generate their own labels from the

training data.

Four hyperparameters need to be set before training an autoencoder:

• Code size: number of nodes in the middle layer (smaller size means more

compression).

• Number of layers: the autoencoder can have as many layers as we like.

• Number of nodes per layer: the number of nodes per layer decreases with

each subsequent layer of the encoder, and increases back in the decoder

(decoder is symmetric to the encoder in layer structure)

• Loss function: two very common loss functions are mean squared error

(MSE) and binary crossenttropy. [11]

2. Data

2.1. Preprocessing and Quality Control

The effectiveness and predicting capability of even the best neural network

architectures and methods is highly depended on the quality of the data selected

to accomplish the specific task. Without data of high quality, even the best deep

learning algorithms would fail to provide robust predicting results. So, it is very

important to analyze the ways data was gathered and processed for our problem.

A big part of this data is available on the GitHub page of the NTUA’s BioSys Lab,

however due to size restrictions, not all data is available online.

2.1.1. CMAP

Connectivity Map (CMAP) is a project by the Broad Institute LINCS Center for

Transcriptomics, that has provided the laboratory with the transcriptomic

signatures (level 5 transformed z-score) needed to develop the appropriate

protein signaling networks that will be used for this thesis. The version of CMAP

that was used was the GSE92742 and it is important to mention that only the

differential expression of the 978 landmark genes in the L1000 assay was

considered. For each gene expression signature, a quality score was calculated,

based on transcriptional activity score (TAS), number of biological replicates and

whether the signature is an exemplar. The signatures with the highest quality

score were selected, based on the process that is described below. [18]

The filtered CMap dataset contains 7722 transcriptomic signatures from 3005

compounds tested across 70 cell lines. During the filtering process, for each

compound per cell line, its signature with the highest quality across different

dosages and time points was selected. The assigned quality score based on TAS,

number of replicates and whether the signature is considered an exemplar is

presented in Table S1. Only signatures with Quality score of 1 were used.

Table 1: Signature Quality Score [28]

Quality score TAS
Number of

replicates
Exemplar

Q1 > 0.4 > 2 True

Q2 0.2 – 0.4 > 2 True

Q3 0.2 – 0.4 ≤ 2 True

Q4 0.1 – 0.2 > 2 True

Q5 0.1 – 0.2 ≤ 2 True

Q6 < 0.1 > 2 True

Q7 < 0.1 ≤ 2 True

Q8 < 0.1 < 2 False

2.1.2. CARNIVAL

Causal Reasoning pipeline for Network identification using Integer Value

programming, or simply CARNIVAL,[19] is a causal network contextualization tool

identifying upstream regulatory signaling pathways by using downstream gene

expression data. It uses different sources of prior research, as signed, and directed

interaction networks between proteins, pathway signatures and transcription

factor targets.[20] In order for the protein signaling networks to be produced, the

quality 1 data from L1000 CMap was integrated and processed with carnival along

with some other resources.

For each signature, DoRothEA R package (gene set resource with signed

transcription factor – target interactions) was used in order to infer the

transcription factor (TF) activity scores [16]. This method utilizes the VIPER

enrichment algorithm and a knowledge base of signed TF-target interactions

called Regulons to calculate TF activity scores [17]. After that, the TF activities for

each compound perturbation inferred by DoRothEA were transformed into

signaling networks using the CARNIVAL pipeline. CARNIVAL solves an ILP

optimization problem to infer a family of highest scoring subgraphs, from a prior

knowledge network of signed and directed protein-protein interactions, which

best explain the TF activities, subject to specific constraints. In our approach

OmniPath network was used as the global prior knowledge network [21].

After this process, that was done by previous members of the lab,7788 weighted,

signed, and directed signaling networks along with their corresponding

unweighted networks per signature (5 – 100 per weighted signaling network)

were produced. The weighted networks are produced by adding the unweighted

networks, so edge weights refer to the percentage of times a certain edge appeared

in the unweighted graphs.

Figure 5: CARNIVAL Functioning

2.2. Tensorizing the signaling networks

After the process of creating the signaling networks using CARNIVAL, there are

7788 graphs corresponding to the quality 1 signatures. In order for these graphs

to be appropriate for integration to the deep learning methods and models that

will be described later, their nodes and edges need to be mathematically

represented to be fed in the neural networks.

Nodes

Each node of these graphs represents a specific protein of a cell signaling network.

Hence every one of these nodes must have a multi-dimensional distributed

representation that describes the proteins actions and modes using mathematical

representations. One way that this can be done is by encoding the protein function

and structure using each protein’s amino acid sequence. One very effective and

state of the art way is presented in the following paper [14] where proteins are

represented as continuous vectors. SeqVeq (Sequence-to-Vector) is inspired by

Natural Language Processing (NLP) tasks and uses a bi-directional model to

capture the biophysical properties of sequences from big unlabeled data

(UniProt50 database). This method is very effective in predicting results in

various tasks by using protein sequence data and has proven to be more effective

than other similar methods.

Edges

In each of the graphs the edges represent the connection between two nodes i.e.,

proteins. In the case of our problem the (directed) connection between two nodes

represents two different functions.

The first one is protein interaction. Every cell signaling network is formulated as

a directed acyclic graph and each of the proteins either upregulates or

downregulates the next protein that is connected, which is presented as 1 and -1

correspondingly. In order for this to be appropriately fed to neural networks, 1

and -1 are formulated into vectors of ones and zeros, and the connection is

categorically attributed.

The second one is edge weight. This function is used in weighted graphs, and it

quantifies the appearance of the edge in the unweighted graphs. The number

ranges from 0 to 1 with the maximum value meaning that an edge was in every

unweighted graph.

3. Model

3.1. Theoretical Background of GNN

Let G = (V, E) denote a graph with node feature vectors Xv for v ∈ V . There are two

different tasks of interest that can be performed by GNN models: (1) Node

classification: each node v ∈ V has an associated label yv and the goal is to learn a

representation vector hv of v such that v’s label can be predicted as yv = f(hv); (2)

Graph classification: given a set of graphs {G1,...,GN} ⊆ G and their labels {y1,...,yN}

⊆ Y, the goal is to learn a representation vector hG that helps predict the label of

an entire graph, yG = g(hG).

Graph Neural Networks. GNNs use the node features Xv and graph structure to

learn a representation vector of the entire graph, hG or a node, hv. A neighborhood

aggregation strategy is followed by modern GNNs, where the representation of a

node is updated by aggregating representations of its neighbors. After k iterations

of aggregation, a node’s representation captures the structural information within

its k-hop network neighborhood.[12] Formally, the k-th layer of a GNN is

𝛼𝜐
(𝑘)

= 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸(𝑘)({ℎ𝑢
(𝑘−1)

: 𝑢 ∈ 𝑁(𝜐)}) , ℎ𝜐
(𝑘)

= 𝐶𝑂𝑀𝐵𝐼𝑁𝐸(𝑘)(ℎ𝜐
(𝑘−1)

, 𝛼𝜐
(𝑘)

)

where ℎ𝜐
(𝑘)

 is the feature vector of node v at the k-th iteration/layer. The initial

condition is ℎ𝜐
(0)

= 𝛸𝜐 , and N(v) is a set of nodes adjacent to v. The choice of

AGGREGATE(k) (·) and COMBINE(k)(·) in GNNs is very important, and numerous

architectures have been proposed.

Figure 6: An overview of the theoretical framework.

The figure above is explained:

• Middle panel: rooted subtree structures (at the blue node) used by the WL

test to distinguish different graphs.

• Right panel: if a GNN’s aggregation function captures the full multiset of

node neighbors, the GNN can capture the rooted subtrees in a recursive

manner and be as powerful as the WL test.

For node classification, the node representation ℎ𝜐
(𝑘)

 of the final iteration is used

for prediction. For graph classification, the READOUT function aggregates node

features from the final iteration to obtain the entire graph’s representation hG

ℎ𝐺 = 𝑅𝐸𝐴𝐷𝑂𝑈𝑇({ℎ𝜐
(𝑘)

|𝜐 ∈ 𝐺})

3.1.1. Weisfeiler-Lehman test

The question the graph isomorphism problem tries to solve is whether two graphs

are topologically identical. This problem is very demanding and there are no

polynomial-time algorithms known for it. The Weisfeiler-Lehman (WL) test of

graph isomorphism [15] is a computationally efficient and effective test that

distinguishes a wide class of graphs. Its 1-dimensional form, known as “naïve

vertex refinement”, is analogous to neighbor aggregation in GNNs. The WL test

iteratively (1) aggregates the labels of nodes and their neighborhoods, and (2)

hashes the aggregated labels into unique new labels. When the labels of the nodes

between two graphs differ, then the algorithm classifies them as non-isomorphic.

With the background of the WL test, a WL subtree kernel that measures the

similarity between graphs was proposed. The kernel uses the counts of node

labels at different iterations of the WL test as the feature vector of a graph.

Intuitively, a node’s label at the k-th iteration of WL test represents a subtree

structure of height k rooted at the node. Thus, the graph features considered by

the WL subtree kernel are essentially counts of different rooted subtrees in the

graph.

Figure 7: Graph 1 and Graph 2 are isomorphic. The correspondance between nodes
is illustrated by the node colors and numbers.

3.1.2. Theoretical Framework: Overview

A GNN recursively updates each node’s feature vector to capture the network

structure and features of other nodes around it, i.e., its rooted subtree structures.

Node input features are considered from a countable universe. Node feature

vectors at deeper layers of any fixed model are also considered from a countable

universe in finite graphs. For simplicity, each feature vector is assigned a unique

label in {a,b,c...}. Then, feature vectors of a set of neighboring nodes form a

multiset: the same element can appear multiple times since different nodes can

have identical feature vectors.[12]

Definition 1 (Multiset). A multiset is a generalized concept of a set that allows

multiple instances for its elements. More formally, a multiset is a 2-tuple X = (S,m)

where S is the underlying set of X that is formed from its distinct elements, and m

: S → N≥1 gives the multiplicity of the elements.

The representational power of a GNN is studied by analyzing when a GNN maps

two nodes to the same location in the embedding space. A maximally powerful

GNN maps two nodes to the same location only if they have identical subtree

structures with identical features on the corresponding nodes. Subtree structures

are defined recursively via node neighborhoods, and therefore the analysis leads

to the question whether a GNN maps two neighborhoods to the same embedding

or representation. A maximally powerful GNN would never map two different

neighborhoods, i.e., multisets of feature vectors, to the same representation. This

means its aggregation scheme must be injective. Thus, we abstract a GNN’s

aggregation scheme as a class of functions over multisets that their neural

networks can represent and analyze whether they are able to represent injective

multiset functions.

This reasoning is used to develop a maximally powerful GNN.

3.1.3. Building Neural Networks

The first step is characterizing the maximum representational capacity of a

general class of GNN-based models. The ideal scenario is a maximally powerful

GNN being able to distinguish different graph structures by mapping them to

different representations in the embedding space. However, mapping graphs to

different embeddings depends on solving the graph isomorphism problem,

meaning isomorphic graphs to be mapped to the same representation and non-

isomorphic ones to different representations. For the layer that will be

constructed for this thesis, the representational capacity of GNNs is characterized

via a slightly weaker criterion: a powerful heuristic called Weisfeiler-Lehman

(WL) graph isomorphism test. [12]

Lemma 2. Let G1 and G2 be any two non-isomorphic graphs. If a graph neural

network A: G → Rd maps G1 and G2 to different embeddings, the Weisfeiler-Lehman

graph isomorphism test also decides G1 and G2 are not isomorphic.

Therefore, any aggregation based GNN can be as powerful as the WL test in

distinguishing different graphs. Based on theorem 3, we can assume that if the

neighbor aggregation and graph-level readout functions are injective, then the

resulting GNN is as powerful as the WL test.

Theorem 3. Let A: G → Rd be a GNN. With a sufficient number of GNN layers, A

maps any graphs G1 and G2 that the Weisfeiler-Lehman test of isomorphism

decides as non-isomorphic, to different embeddings if the following conditions

hold:

a) A aggregates and updates node features iteratively with

ℎ𝜐
(𝑘)

= 𝜑 (ℎ𝜐
(𝑘−1)

, 𝑓 ({ℎ𝑢
(𝑘−1)

: 𝑢 ∈ 𝑁(𝜐)}))

where the functions f, which operates on multisets, and φ are

injective.

b) A’s graph-level readout, which operates on the multiset of node features {ℎ𝜐
(𝑘)

},

is injective.

Injectiveness characterizes whether a function preserves the distinctness of

inputs in countable sets, and the focus is on this case.

Lemma 4. Assume the input feature space X is countable. Let g(k) be the function

parameterized by a GNN’s k-th layer for k = 1,...,L, where g(1) is defined on multisets

X ⊂ X of bounded size. The range of g(k), i.e., the space of node hidden features ,

is also countable for all k = 1,...,L.

Another important advantage of GNNs beyond distinguishing different graphs, is

capturing similarity of graph structures. In the WL test, node feature vectors are

one-hot encodings and therefore they cannot capture similarity of subtrees. In

contrast, a GNN satisfying the criteria in Theorem 3 generalizes the WL test by

learning to embed the subtrees to low-dimensional space. This gives GNNs the

ability not only to discriminate different structures, but also map similar graph

structures to similar embeddings.

3.2. Graph Isomorphism Network – GIN

After analyzing the conditions behind a powerful GNN, the next step of the thesis

is to create an architecture that probably satisfies theorem 3. Graph Isomorphism

Network (GIN) generalizes the WL test and consequently has the most

discriminative power of other GNNs.

To model injective multiset functions for the neighbor aggregation, this thesis

follows a theory of “deep multisets”, i.e., parameterizing universal multiset

functions with neural networks. Based on the following lemma, we assume that

sum aggregators can represent injective, universal functions over multisets.

Lemma 5. Assume X is countable. There exists a function f: X → Rn so that

h(X) = ∑ f(x)x∈X is unique for each multiset X ⊂ X of bounded size. Moreover, any

multiset function g decomposed as g(X) = φ(∑ f(x)x∈X) for some function φ.

A significant difference between deep multisets and sets is that some popular

injective set functions, such as the mean aggregator, are not injective multiset

functions. Using the mechanism for modeling universal multiset functions from

Lemma 5 as a building block, aggregation schemes that can represent universal

functions over a node and the multiset of its neighbors satisfying Theorem 3 can

be conceived. The following corollary provides a concrete formulation among

many such aggregation schemes.

Corollary 6. Assume X is countable. There exists a function f : X → Rn so that for

infinitely many choices of , including all irrational numbers,

h(c, X) = (1 + ε) ∙ f(c) + ∑ f(x)x∈X is unique for each pair (c,X), where c ∈ X and X

⊂ X is a multiset of bounded size. Moreover, any function g over such pairs can be

decomposed a g(c, X) = φ((1 + ε) ∙ f(c) + ∑ f(x)x∈X) for some function ϕ.

Based on the universal approximation theorem [29][30] multi-layer perceptrons

(MLPs) can be used to model and learn f and ϕ in Corollary 6. In practice, we model

f(k+1) ◦ ϕ(k) with one MLP, because MLPs can represent the composition of

functions. In the first iteration, if input features are one-hot encodings as their

summation alone is injective MLPs before summation are not needed. We can

make a learnable parameter or a fixed scalar. Then, GIN updates node

representations as

ℎ𝜐
(𝑘)

= 𝑀𝐿𝑃(𝑘)((1 + 𝜀(𝑘)) ∙ ℎ𝜐
(𝑘−1)

+ ∑ ℎ𝑢
(𝑘−1)

𝑢∈𝑁(𝜐))

GIN is a maximally powerful GNN, while being simple.

3.3. Attention Layer

After the inputs have been integrated and processed by the GIN layer, the three

output layers (there are three GIN layers followed by a batch normalization and

an activation function ReLu) can be added. Instead of this method, for the purpose

of this thesis we choose to have one more layer, called Multi Scale Node Attention

layer. This layer provides attention (through a changeable weight matrix) to each

node, i.e. protein based on the connections and structure of the graph [22]. The

equation of the layer is the following:

𝐴𝑇𝑇𝛩(𝑈𝑔) = ∑ 𝜎(𝑢𝑛
𝑇𝑅𝑒𝐿𝑈(𝛩(

1

𝑁
∑ 𝑢𝑚)))𝑁

𝑚=1 𝑢𝑛
𝑁
𝑛=1

• σ sigmoid

• N the number of nodes

• Θ(κ) weight parameters for k-th node embedding layer

The intuition behind this equation is that, during the generation of graph-level

embeddings, the attention weight assigned to each node should be adaptive to the

graph proximity metric. This can be achieved by determining the weight by both

the node embedding un and a learnable graph representation. The learnable graph

representation is adaptive to a particular graph proximity via the learnable weight

matrix (k). Specifically, this equation used all the node outputs, adds them and

produces a vector, and after multiplying this vector with a weight matrix, an

activation function ReLU, appropriate matrix multiplications and a sigmoid it

produces a final vector. After all these vectors are summed, the three layers are

concatenated (instead of added) using the following equation

ℎ𝐺 = 𝑀𝐿𝑃𝑊(||𝑘=1
𝐾 𝐴𝑇𝑇𝛩(𝑘)(𝑈𝑔))

• || concatenation

• K the number of neighbors aggregation layers

• ATT multi-head attention mechanism that transforms the node

embeddings into a graph level embedding

• MLP

The intuition behind this equation is that, instead of only using the node

embeddings generated by the last neighbor aggregation layer, we use the node

embeddings generated by each of the K neighbor aggregation layers.

After this, the outputs are integrated into a simple dense layer so that the

appropriate dimensions are assigned.

3.4. Mutual Information

3.4.1. Theoretical Background on Information Theory

For the purpose of the thesis, training of the encoder of the signaling networks to

produce the appropriate embeddings will be made using mutual information.

Before analyzing the construction of the algorithm, some theoretical background

and definitions will be provided. [31]

Entropy

Let X be a random variable on a (discrete) space 𝑋, and 𝑥 an element from 𝑋. For

every positive integer 𝑑, we denote by 𝑋 a d-dimensional random

vector(𝑋1, … , 𝑋𝑑) ∈ 𝑋𝑑 , and by the letter 𝑥 an element from 𝑋𝑑 .

The (Shannon) entropy [4] of a random variable X on a discrete space 𝑋 is a

measure of its uncertainty during an experiment. It is defined as

𝐻[𝑋] = −∑ Pr [𝑋 = 𝑥] ∙ log (Pr [𝑋 = 𝑥])𝑥∈𝑋

The joint entropy of a pair of random variables (𝑋, 𝑌) expresses the uncertainty

one has about the combination of these variables:

𝐻[𝑋, 𝑌] = −∑ Pr [𝑋 = 𝑥, 𝑌 = 𝑦] ∙ log (Pr [𝑋 = 𝑥, 𝑌 = 𝑦])𝑥∈𝑋,𝑦∈𝑌

Finally, the conditional entropy of a random variable 𝑋 given another variable 𝑌

expresses the uncertainty on 𝑋 which remains once 𝑌 is known:

𝐻[𝑋|𝑌] = −∑ Pr [𝑋 = 𝑥, 𝑌 = 𝑦] ∙ log (Pr [𝑋 = 𝑥|𝑌 = 𝑦])𝑥∈𝑋,𝑦∈𝑌

Figure 8: Mutual Information and Entropy

Mutual Information

The mutual information is a general measure of the dependence between two

random variables. It expresses the quantity of information one has obtained on 𝑋

by observing 𝑌 . On a discrete domain, the mutual information of two random

variables 𝑋 and 𝑌 is defined as:

𝐼(𝑋; 𝑌) = ∑ Pr [𝑋 = 𝑥, 𝑌 = 𝑦] ∙ log (
Pr [𝑋=𝑥,𝑌=𝑦]

Pr [𝑋=𝑥]∙Pr [𝑌=𝑦]𝑥∈𝑋,𝑦∈𝑌)

It can be seen as the Kullback–Leibler divergence [4] between the joint

distribution Pr[𝑋 = 𝑥, 𝑌 = 𝑦] and the product distribution Pr[𝑋 = 𝑥] ∙ Pr[𝑌 = 𝑦].

In terms of Shannon entropy, MI can be defined as:

𝐼(𝑋; 𝑌) = 𝐻[𝑋] − 𝐻[𝑋|𝑌]

 = 𝐻[𝑋] + 𝐻[𝑌] − 𝐻[𝑋, 𝑌]

 = 𝐻[𝑋, 𝑌] − 𝐻[𝑋|𝑌] − 𝐻[𝑌|𝑋]

3.4.2. Training with Mutual Information

Based on the available research (Deep Graph Infomax) the encoder should be

trained by maximizing local mutual information. Through that, the encoder will

obtain node representations that capture the global information content of the

entire signaling network. The signaling network is represented by a summary

vector 𝑠 ⃗⃗ and each node’s patch representation is ℎ⃗ . [31]

For the local MI to be optimized, we construct a discriminator 𝐷:ℝ𝑑𝑘 × ℝ𝑑𝑘 → ℝ

that is used for each node i and 𝐷(ℎ⃗ 𝑖, 𝑠 ⃗⃗) represents each node’s probability scores

assigned to the summary-patch pair.

The discriminator in a GAN is simply a classifier [23]. It tries to distinguish real

data from the data created by the generator. It could use any network architecture

appropriate to the type of data it's classifying. The architecture of the

discriminator is described below. We assume that the input of the discriminator

is x. The discriminator contains three consecutive simple dense layers followed by

an activation function ReLU. After the input is integrated into the model and into

the three layers, the output is 𝑥1. Moreover, the input x is also integrated into a

simple dense layer called dense shortcut and the output of this is 𝑥2. The final

output of the discriminator is 𝑥1 + 𝑥2 .

This architecture is applied twice. Local Discriminator uses the node encodings as

input and Global Discriminator uses the sum of the node encodings as input.

Finally, those two are integrated into a dot layer, which is a Layer that computes a

dot product between samples in two tensors and the final output is used in the

mutual information training as the one output(prediction).

Figure 9: Discriminators

For the discriminator to work properly, both positive and negative samples must

exist.

For the graph 𝐺 with a summary 𝑠 ⃗⃗ negative samples are produced by pairing the

summary with patch representations from another graph �̃� namely ℎ⃗̃ 𝑗 . For the

purpose of this thesis, we consider two different classes of positive and negative

samples. Two graphs are considered positive or negative base on the following

conditions.

Positives: Same signature id (same experiment) or duplicates (same experiment

processed in different time)

Negatives: Not same signature id or not duplicates

For the loss function to be defined, we will use the Jensen Shannon Mutual

Information estimator, described in the paper (Unsupervised and Semi-

supervised Graph-Level Representation Learning via Mutual Information

Maximization.) We consider 𝐼𝜑,𝜓 the estimator which is modeled by a

discriminator 𝐷𝜓 parametrized by a neural network with parameters ψ. The

Jensen-Shannon criteria is:

𝐼𝜑,𝜓(ℎ𝜑
𝑖 , 𝑠𝜑) ≔ 𝛦𝑃[−𝑠𝑝 (−𝐷𝜓,𝜑(ℎ𝜑

𝑖 , 𝑠𝜑))] − 𝛦�̃�[𝑠𝑝(𝐷𝜓,𝜑(ℎ𝜑
�̃� , 𝑠𝜑))]

P represents the empirical distribution of the input data set, �̃� represents the

negative distribution from which we sample from and 𝑠𝑝 is the softplus function

𝑠𝑝(𝑧) = (1 + 𝑒𝑧)

Adjusting the Jensen-Shannon estimator to our problem, we calculate two

different losses, one loss 𝑙𝑜𝑠𝑠𝑠𝑖𝑔_𝑖𝑑 for the positive and negative samples regarding

same signature id and one loss for the positive and negative samples regarding

duplicates 𝑙𝑜𝑠𝑠𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠.

Moreover, for the final loss of the model to be constructed, there is another term

referring to a regularization loss, which denotes matching the pushforward

distribution of our summary vectors to a prior distribution, with the most effective

being the uniform distribution. This happens through a prior discriminator which

has a simple architecture consisting of three dense layers followed by an

activation function ReLU. The encoded sum is integrated to this discriminator and

terms of a uniform distribution are also processed by the discriminator and the

outputs are added together. The final loss, 𝑙𝑜𝑠𝑠𝑝𝑟𝑖𝑜𝑟 is equal to the negative value

of the mean of the encoded sum.

Therefore, the loss function through which the model is trained is equal to

𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠𝑠𝑖𝑔_𝑖𝑑 + 𝑙𝑜𝑠𝑠𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠 + 𝑙𝑜𝑠𝑠𝑝𝑟𝑖𝑜𝑟

3.5. Structure of the model

After creating the graphs using Carnival, they are processed as analyzed

previously so that four different vectors or matrices are produced. The goal is to

tensorize the signaling networks into nodes, edges, edge attributes, activity

matrix. These data are the inputs of the model. At first, the activity matrix is

integrated into a Projection Model, which contains three simple dense layers, so

that its dimensions are increased. This is very important, because at first the

dimensions were one, and the importance of the activity matrix would be lost

when compared to the higher dimensions of the nodes. After passing through the

projection model, the activity matrix is concatenated with the nodes. The

concatenated nodes matrix along with the edges and edge attribute matrices are

integrated into the first encoder which is consisted of three consecutive GIN layers

followed by a batch normalization, an activation function ReLU , and an attention

layer. The output of the first three layers is 𝑥𝑖 , and the output of the attention layer

is 𝑎𝑖. The outputs of this function are two: a layer concatenating the outputs of the

three attention layers (node embeddings) and the sum of the three layers 𝑥𝑖 (all

nodes’ embeddings). After that, the node embeddings are integrated into another

encoder. This second encoder consists of three simple dense layers followed by a

batch normalization, an activation function ReLU, a drop dense function and a

normalization. The output of this function is called encoded and is then integrated

into the global discriminator. All node embeddings are integrated into the local

discriminator and the outputs of the two discriminators are passed through a

layer that produces their dot product; the output is called result. The encoded is

processed by the prior discriminator and the logarithm of the output is added to a

term containing samples from a uniform distribution, constructing a term called

prior sum. Finally, the nodes, edges, edge attributes, activity matrix are used as the

input of the mutual information training model, and the result and prior sum are

used as the outputs that will help the model train through minimizing the loss

function. Finally, the mutual information training model is fit into the data

produced by the train generator, which produces the four matrices analyzed

below along with the masks for the same signature id and the duplicate that are

needed.

Table 2: Training Hyperparameters

Hyperparameters Value

Batch Size 96

Epochs 8

Optimizer Adam

ReduceLROnPlateau -

Learning Rate 0.001

Batch Normalization

momentum

0.6

Weight Initializer Glorot Normal

4. Embeddings Quality Evaluation

After training the model and producing the 128 dimension embeddings , it is of

vital significance to evaluate their quality, so that there is certainty that the model

works appropriately and the embeddings can be used in other deep learning

models that will be analyzed in this thesis. In order to evaluate the embeddings,

three different tasks were used, that analyze the quality of embeddings regarding

their differentation regarding same signature graphs, duplicates and mechanism

of action. The three tasks were written in programming language R and their

results will be explained .

For the following plots , G2V refers to Graph2Vector, a graph embedding approach

based on the idea of the doc2vec approach that uses the skip-gram network, GT-

MI refers to Graph Transformers Mutual Information, a model constructed bya

previous lab member, and MI-GIN-TF2 meaning Mutual Information- GIN Layer-

Tensorflow 2 refers to the model constructed in this thesis.

4.1. Task 1 : Same Signature ID vs Different Signature

The purpose of the first task is to differentiate the signaling networks that have

the same signaling network id (meaning the same experiment) from those that

have different signatures. As we can see , the model of this thesis differentiates the

two categories, since the mean of the same sigantures is near zero and the mean

of different signatures is above 0.5 . Both samples have some outliers, however the

model performs very effectively, since there is no significant overlap between the

two. Moreover, it can be said that our model performs better than the other two,

since the mean of the same signatures is very near 0, which is the desirable

situation, since these samples share a lot of mutual information and therefore

their embeddings are accepted to be very similar and close and consequently the

distances of the embeddings very near 0.

Figure 10: Embeddings Quality Evaluation Task 1

4.2. Task 2: Duplicates vs Random Signatures

The purpose of the second task is to differentiate signaling networks that are

duplicates (same experiment, i.e. same drug, dosage, duration but conducted at

different moments) from random signatures. As we can see, our model is very

effective in this task since it manages to differentiate the two categories.

Specifically, the mean distance of the duplicate embeddings is near 0.2, whereas

the mean of the randoms is over 0.5. Moreover, as we can see our model can be

consider more effective than the other two, since there is less overlap between the

two violin plots and the two mean distances are further than the other two

methods. Therefore, our model proves successful in this task and our embeddings

have effective quality in differentiating duplicates from randoms.

Figure 11: Embeddings Quality Evaluation Task 2

4.3. Task 3: t-SNE Visualization - Mechanism of Action

In medicine, a term used to describe how a drug or other substance produces an

effect in the body. For example, a drug’s mechanism of action could be how it

affects a specific target in a cell, such as an enzyme, or a cell function, such as cell

growth. Knowing the mechanism of action of a drug may help provide information

about the safety of the drug and how it affects the body. It may also help identify

the right dose of a drug and which patients are most likely to respond to treatment.

Also called MOA. [13]

The following plot represents the t-SNE Visualization of the embeddings. T-

distributed stochastic neighbor embedding (t-SNE) is a statistical method for

visualizing high-dimensional data by giving each datapoint a location in a two or

three-dimensional map. Therefore, the dimensionality of the embeddings is

reduced from 128 to 2. Each point in the graph represents a signaling network. As

we can see, the following graph is consisted of a big cloud instead of clusters.

However, there are some clusters, for example HDAC inhibitors, MTOR inhibitors

and protein synthesis inhibitors. This task is very difficult since the embeddings

contain a lot of information about the signaling networks and reducing their

dimension from 128 to 2 means that a huge proportion of this information is lost.

However, the fact that there are some clusters of experiments with similar

mechanism of action, as well as the fact that the other methods (GT-MI) had very

similar t-SNE visualizations, proves that our model is successful in this task.

Figure 12: Embeddings Quality Evaluation Task 3

5. Infer a protein signaling network from a compound’s chemical structure

5.1. Introduction

After producing the embeddings for the signatures, these will be processed in

order to be integrated into another deep learning model called DeepSIBA [32]. The

purpose of this part of the thesis is to infer a protein signaling network from a

compound’s chemical structure.

Identification of protein interactions (PPIs) is at the center of molecular biology

considering the unquestionable role of proteins in cells. There has recently been a

rapid progress in computational methods for determining protein targets of small

molecule drugs, which will be termed as compound protein interaction (CPI). Data

for CPI has been accumulated and curated significantly both in quantity and

quality. Computational methods have become powerful ever to analyze such

complex the data.

To achieve generalization of our current knowledge on CPI prediction using AI

methods, the computational methods are grouped into five categories: tree-based

ML, network- and kernel-based ML, and three deep learning (DL) based

architectures. Specifically, with this approach, the goal is to be able to predict

whether two compounds will activate similar protein signaling networks based on

their chemical structure. This is very significant since it could prove very

beneficial for early drug discovery. Predicting whether two compounds will

activate similar protein to protein interaction, and therefore similar mechanism

of action based only on their chemical structure is one state of the art method that

would be very helpful for drug discovery researchers, The long-term goal of this

is being able to find out the protein signaling network of compounds constructed

on paper without any further experiments. For this thesis, a deep learning-based

architecture will be used, specifically the deepSIBA model, a graph convolution

model. [24][25]

Predicting whether a chemical structure leads to a desired or adverse biological

effect can have a significant impact for in silico drug discovery. For this thesis, we

used a deep learning model where compound structures are represented as

graphs and then linked to their biological footprint. To make this complex problem

computationally tractable, compound differences were mapped to biological

effect alterations using Siamese Graph Convolutional Neural Networks. In

previous work and research, the model was able to encode molecular graph pairs

and identify structurally dissimilar compounds that affect similar biological

processes with high precision. Additionally, by utilizing deep ensembles to

estimate uncertainty, the model provided reliable and accurate predictions for

chemical structures that are very different from the ones used during training.

Therefore, this model will be used for this thesis.

Following, some basic background of the deepSIBA model along with how it was

adjusted for the purpose of this thesis will be mentioned.

5.2. Background on deepSIBA

Transcriptomic signatures from compound perturbations along with their

respective chemical structures were retrieved from the CMap dataset. For each

compound perturbation, the embeddings that were calculated by the model of this

thesis were used. Specifically, every different signature had up to 100 different

signaling networks, and 128 size embeddings were produced for each of them.

Using a code in R, a mean value was calculated for these different signaling

networks, so that each signature referred to only 128 embeddings. Afterwards,

pairwise distances for these signatures were calculated, using the Euclidean

distance and cosine similarity functions. Cosine similarity had better results and

therefore was used for the training of the model. During the learning phase, the

proposed model is trained to predict the pairwise distance between compounds’

using only their chemical structure as input. The input chemical structures are

represented as undirected graphs, with nodes being the atoms and edges the

bonds between them and encoded using a Siamese GCNN architecture. During

inference, the model is tasked to predict the biological effect distance between

reference and unknown compounds.

Figure 13: Overview of deepSIBA model

5.3. Siamese GCNN

A schematic representation of the model’s architecture is presented in the figure

below. The learning model takes as input the chemical structures of compound

pairs and predicts their biological distance

The input of the model, chemical structures, are represented as undirected graphs,

where atoms represent the nodes and bonds between them represent the edges.

Every chemical structure is encoded with 3 matrices: the atom array, which

contains atom-level features, the bond array, which contains bond-level features

and the edge array, which describes the connectivity of the compound.

The learning model consists of two Siamese encoders (shared weights) that

embed the input graphs into a high dimensional latent space and a trainable

distance module that outputs the final distance prediction. The overall goal of the

Siamese encoder is to learn task-specific compound representations. Siamese

encoders have 3 graph convolutional layers that learn neighborhood-level

representations, and a convolutional layer that extracts compound level features.

The feature maps of the last Siamese layers are then subtracted, and their absolute

difference is passed to the distance module. The distance module consists of 2

convolutional layers, which extract important features from the difference of the

feature maps and 3 fully connected layers that aim to combine those features,

while progressively reducing the dimensions. Finally, a Gaussian regression layer

outputs a mean and variance of the biological effect distance between the

compound pair. By treating the distance as a sample from a Gaussian distribution

with the predicted mean and variance, the model is trained end-to-end by

minimizing the negative log-likelihood criterion given by [26]

−𝑙𝑜𝑔𝑝𝜃(𝑦𝑛|𝑋𝑛) = −
1

2
𝑙𝑜𝑔𝜎𝜃

2(𝑥) −
1

2𝜎𝜃
2(𝑥)

(𝑦 − 𝜇𝜃(𝑥))
2
+ 𝑐𝑜𝑛𝑠𝑡

Figure 14: Siamese Graph Convolutions

In general, deepSIBA is used as a black box since for the purpose of this thesis we

only integrate the data produced by the model without altering or analyzing the

parameters and structure of the deepSIBA architecture and model. Therefore, it is

expected that the results will not be great, since deepSIBA was designed for

another problem and not for predicting signaling network embeddings. However,

since this model has proven very powerful in previous research and is based on

compounds’ chemical structure and pairwise distances to train, it is appropriate

for the purpose of this thesis, which is a first trial in training a deep learning model

to predict the similarity of the protein signaling network of two different

compounds. We will not analyze further the functionality of deepSIBA, which can

be found in [32] and we will proceed with the data processing and the

performance evaluation of the training.

5.4 Data

Of all the different cell lines for which the CARNIVAL has produced signaling

networks, four of them have the most compounds with quality score 1 whose

embeddings will be used in the training of the deepSIBA model. It is very

important to keep only these cell lines, because based on research of previous

thesis of the lab, these are the most credible and therefore will produce the most

robust results. These four cell lines are all human cancer cell lines.

Table 3: Number of compounds for different cell lines

Cell Line Compounds

A375 711

MCF7 813

PC3 729

VCAP 730

For each of these different cell lines, the pairwise differences for all different

compounds were calculated. To train and validate the deep siba model, these

pairwise distances were divided to train and test set. For splitting the total, we

used a combination of the 80-20 rule (80% of the sample is train set and 20% of

the sample is test set) and an algorithm of previous research. This algorithm

divides the compounds based on their similarity, so as similar compounds will be

divided into the train and test sets, and there will not be bias in the model. After

splitting the totals, and removing some samples that did not have embeddings of

good quality (multiple zeros etc), the train and test set for each cell line contained

the following number of samples

Table 4: Number of pairwise distances for train and test set

Cell Line Total Train Test

A375 216520 172167 44353

MCF7 285542 238871 46671

PC3 221716 178595 43121

VCAP 234326 203590 30736

The pairwise distances for the different cell lines were calculated using the

cosine similarity function:[27]

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐴, 𝐵) =
𝐴 ∙ 𝐵

‖𝐴‖ × ‖𝐵‖
=

∑ 𝐴𝑖 × 𝐵𝑖
𝑛
𝑖=1

√∑ 𝐴𝑖
2𝑛

𝑖=1 × √∑ 𝐵𝑖
2𝑛

𝑖=1

Before training the model, it is very significant to validate that the distributions of

the distances for the train and tests sets are similar, since this is a very important

factor for an effective and robust training. As seen below, all cell lines have similar

distributions between the two sets.

Figure 15: A375 Distances Histogram

Figure 16: VCAP Distances Histogram

Figure 17: PC3 Distances Histogram

Figure 18: MCF7 Distances Histogram

6. Performance Evaluation

Across all test scenarios, model performance was evaluated in terms of Mean

Squared Error (MSE), Pearson’s r and precision. MSE and Pearson’s r were

calculated between the predicted and computed distance values. To calculate

precision, the continuous distance values were transformed to binary form by

comparing them with an appropriate distance threshold. Even though the

learning task is a regression problem, given its nature and potential applications,

high precision (
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
) is important in order to avoid false positive hits for

validation experiments.

Table 5: Training Metrics

Metric Definition Formula

MSE The mean squared error (MSE) tells you

how close a regression line is to a set of

points. It does this by taking the distances

from the points to the regression line and

squaring them. The squaring is necessary to

remove any negative signs. It also gives

more weight to larger differences. It’s called

the mean squared error as you’re finding the

average of a set of errors. The lower the

MSE, the better the forecast.

𝑀𝑆𝐸 =
1

𝑛
∑(𝑌𝑖 − 𝑌�̂�)

2

𝑛

𝑖=1

Pearson’s r Pearson's correlation coefficient is the

covariance of the two variables divided by

the product of their standard deviations. The

form of the definition involves a "product

moment", that is, the mean (the

first moment of the origin) of the product of

the mean-adjusted random variables; hence

the modifier product-moment in the name.

𝑟 =
𝑛∑𝑥𝑦 − ∑𝑥 ∑𝑦

√[𝑛 ∑𝑥2 − (∑𝑥)2] [𝑛 ∑𝑦2 − (∑𝑦)2]

Precision Precision (also called positive predictive

value) is the fraction of relevant instances

among the retrieved instances

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

Accuracy Accuracy is one metric for evaluating

classification models. Informally, accuracy is

the fraction of predictions our model got

right

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

Below, the matrix shows the number of positives, meaning number of similars

for each cell line when the structural distance threshold increases.

Table 6: Number of positives for different thresholds

P-Threshold A375 PC3 VCAP

0.15 - 42 60

0.2 259 697 1037

0.25 1190 3701 4134

0.3 4927 12489 16008

As we can see, as the threshold rises, the model finds more positives. For all these

different cell lines, we choose a threshold between 0.2 and 0.25 so that the number

of positives, meaning the number of similar compounds, is neither huge nor

negligible. After that we run the model once again, so that the evaluation metrics

for each of these cell lines based on the chosen threshold are produced. In the

following matrix, the metrics for these tests can be seen, so that a first view of the

performance of the model can be derived.

Table 7: Metrics values in training

Cell Line MSE MSE Similar Pearson r Precision Accuracy Similars

A375 0.018 0.028 0.17 0.59 0.64 821

VCAP 0.014 0.013 0.35 0.6 0.7 1126

PC3 0.016 0.02 0.26 0.56 0.66 1231

Figure 19: VCAP predicted-true values

Figure 20: A375 predicted-true values

Figure 21: PC3 predicted-true values

As we can see, the training of this data is not very effective. Pearson’s r value is

low in all 3 different cell lines, meaning that there is a positive correlation between

the predicted values and the true ones, however this correlation cannot lead to the

conclusion that the training was very effective. For the VCAP cell line, pearson’s r

is 0.35 which shows a significant positive correlation which however is not above

0.5 that would be the threshold showing that the predicted data actually

approaches the true values.

Precision is around 60% for all three different cell lines. This number shows that

60% of the predicted positive values (similar) are similar and 40% of them are

not. This value shows that the model proved an ability to correctly identify

whether two compounds have a close distance (meaning close embeddings and

therefore similar signaling networks). However, for the training to be

characterized robust this number should be higher. The same applies for accuracy.

Finally, the MSE value for all 3 different cell lines varies from 0.01 to 0.02 and

therefore is very low meaning that the average set of errors is very low and

therefore is a positive index for the training.

Following that first analysis, we will try to maximize the two most important

metrics MSE and precision by altering the CV threshold.

Quantifying predictive uncertainty can lead to more accurate results in virtual

screening applications. For this reason, we investigated the relationship between

the uncertainty estimate and the performance of the model. Our model estimates

predictive uncertainty as the coefficient of variation (CV) of the mixture of each

model’s Gaussian in the ensemble. MSE and precision were calculated for

samples in the test set, with CV lower than an increasing threshold

Figure 22: Precision - CV threshold for different cell lines

Figure 23: MSE - CV threshold for different cell lines

As we can see for both metrics the values remain the same for the most part.

Precision starts with higher values in PC3 and A375 cell lines because for smaller

CV threshold, the model finds less positives (similars) and therefore it is easier for

the precision to be higher. Due to the low number of false positives for all the

models, precision is largely unaffected by the CV threshold. MSE remains very low

for all three cell lines and is slowly increasing for each cell line. As the CV threshold

increases and more samples with higher CV are included in the evaluation, the

MSE of the models increases as well. This implies that point predictions with lower

uncertainty are closer to the target value. The conclusion is that for our problem

the important metrics do not change much when the CV threshold changes.

Overall, the conclusion is that all metrics have values that indicate that the data is

somehow trained using the deepsiba model, however the values are not good

enough to prove that the training is very effective and robust. This mostly happens

because deepsiba was constructed for a different problem and therefore the

architecture, hyperparameters and structure are not appropriate enough for the

data that we integrated. The fact that despite these limitations the data is trained

shows that inferring a protein signaling network from a compound’s chemical

structure is a possible prospect.

7. Conclusion

The purpose of this thesis was to construct a deep learning model that would be

able to extract embeddings from the signaling networks that would describe them

effectively and separate them based on the signature id of the compound that

caused them. The main idea was to use graph neural networks, which is a method

not usually used in such problems. For this purpose, a very robust and state of the

art architecture, GIN Layer, was used, along with other common deep learning

techniques and architectures, such as simple dense layers, attention layers,

projection models etc. The whole concept was to create an effective and ideally

better alternative to a solution given to this problem by a previous lab member. It

was proved that our model, despite possible flaws of the data available, was

capable of providing embeddings of very good quality, even better to compared to

previous methods and solutions. By succeeding in the 3 significant tasks our

model proved to create very good embeddings that could effectively separate the

experiments with same signature ID from the ones with different ones as well as

the duplicate embeddings from the different ones. Therefore, the primary purpose

of the thesis was fulfilled. Following this, the secondary purpose of the thesis was

to infer a protein signaling network from a compound’s chemical structure. Using

the embeddings created by our model, and the deepSIBA model the goal was to

train the model to predict whether two compounds have similar signaling

networks based only on their chemical structures. For this purpose, pairwise

distances were calculated between the embeddings and these distances along

with their corresponding compounds were integrated to deepSIBA. The

conclusion was that this task was not easy, since the deepSIBA model was

constructed for a different purpose. However, the model managed to provide

some valuable information and a first sufficient approach to this problem, since

the model managed to train a proportion of the data effectively.

8. Limitations and Further Research

To begin with, using GNNs to process signaling networks is an approach that is not

largely developed or tested, and therefore there is not enough research or

bibliography to refer to. The primary focus of the model was to "reduce" the size

of biological signaling networks to a single representation so that our methods can

be used to find a drug’s mechanism of action. Our model passed the test and

provided embeddings of good quality. However, a significant limitation and

potential problem was limited amount and questionable biological completeness

and validity of our data. This did not allow a high degree of predictive confidence

in further evaluation tests. Besides, the input data (signaling networks) were

heavily based on the public Protein to Protein Interaction network and the

hyperparameters of CARNIVAL. Even if our model was complete and constructed

of the best graph neural network architectures, it’s effectivity and robustness is

doubtful. Specifically, if the input data are incomplete, the results will be even

more incomplete. Furthermore, even though CARNIVAL is a great and very useful

tool, was not designed for large amounts of signaling networks and therefore it’s

performance might have been affected. Finally, it is important to mention that the

mediocre results of the deepSIBA training happened because deepSIBA was not

designed for this problem. For better results, we should have optimized the

hyperparameters and potentially the architecture.

For further research, there are multiple potential alternatives to further analyze

this problem. To begin with, using the encoder of deepSIBA we could encode the

chemical structures of drugs into vectors and train them with the mutual

information method. Then, we could construct a final neural network that would

take as inputs both the vector of our model and of the deepSIBA and train based

on both. The long-term goal of this is using a signaling network as reference one

could use the model to and the model would propose some potential drugs that

could create this signaling network, and most importantly vice versa by using a

chemical structure as reference.

Another potential step would be to create similar models as the one proposed in

this thesis, to create vectors not only for the signaling networks of a drug but also

for the genes, transcriptional factors and GO terms. Then by concatenating them

and integrating them to an encoder we could have a unique vector for each drug

that based on the 4 previous characteristics it would be robust and contain very

important information on the mechanism of action of each drug.

Finally, we could train the deepSIBA model for GO terms (already exists) , genes ,

and transcriptional factors. Therefore, the model would be able to propose similar

drugs to the one that was used as the input in the level of GO terms, genes and

transcriptional factors. After finding all the similar drugs, it would be very

intriguing and challenging to use the signaling networks of these drugs and try to

create an optimization model that would propose a specific signaling network.

9. Bibliography

1. Medline Plus. “What Are Proteins and What Do They Do?”

Medlineplus.gov, 26 Mar. 2021,

medlineplus.gov/genetics/understanding/howgeneswork/protein/.

2. Jordan JD, Landau EM, Iyengar R. Signaling networks: the origins of

cellular multitasking. Cell. 2000 Oct 13;103(2):193-200. doi:

10.1016/s0092-8674(00)00112-4. PMID: 11057893; PMCID:

PMC3619409.

3. Pawson T. Protein modules and signalling networks. Nature. 1995 Feb

16;373(6515):573-80. doi: 10.1038/373573a0. PMID: 7531822.

4. IBM Cloud Education. “What Are Neural Networks?” Www.ibm.com, IBM,

17 Aug. 2020, www.ibm.com/cloud/learn/neural-networks.

5. Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep

learning. Nature, 521(7553), 436-444. doi:10.1038/nature14539

6. Thomas N. Kipf, Max Welling. Semi-Supervised Classification with Graph

Convolutional Networks. 2016. arxiv:1609.02907 [cs.LG]

7. Mayachita, Inneke. “Understanding Graph Convolutional Networks for

Node Classification.” Medium, 18 Aug. 2020,

towardsdatascience.com/understanding-graph-convolutional-networks-

for-node-classification-a2bfdb7aba7b.

8. Kipf, Thomas. “How Powerful Are Graph Convolutional Networks?”

Tkipf.github.io, tkipf.github.io/graph-convolutional-networks/.

9. Zhang, S., Tong, H., Xu, J., & Maciejewski, R. (2019). Graph convolutional

networks: a comprehensive review. In Computational Social Networks

(Vol. 6, Issue 1). Springer Science and Business Media LLC.

https://doi.org/10.1186/s40649-019-0069-y

10. Dertat, Arden. “Applied Deep Learning - Part 3: Autoencoders.” Medium,

Towards Data Science, 3 Oct. 2017, towardsdatascience.com/applied-

deep-learning-part-3-autoencoders-1c083af4d798.

https://doi.org/10.1186/s40649-019-0069-y

11. Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., & Alsaadi, F. E. (2017). A survey

of deep neural network architectures and their applications. In

Neurocomputing (Vol. 234, pp. 11–26). Elsevier BV.

https://doi.org/10.1016/j.neucom.2016.12.038

12. Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka. How Powerful are

Graph Neural Networks. 2018. arXiv:1810.00826[cs.LG]

13. “NCI Dictionary of Cancer Terms - National Cancer Institute.”

Www.cancer.gov, 2 Feb. 2011,

www.cancer.gov/publications/dictionaries/cancer-

terms/def/mechanism-of-action.

14. Heinzinger, M., Elnaggar, A., Wang, Y. et al. Modeling aspects of the

language of life through transfer-learning protein sequences. BMC

Bioinformatics 20, 723 (2019). https://doi.org/10.1186/s12859-019-

3220-8

15. Weisfeiler and Lehman, A.A. (1968) A Reduction of a Graph to a Canonical

Form and an Algebra Arising during This Reduction. Nauchno-

Technicheskaya Informatsia, 9.

16. Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-GAN: Training

Generative Neural Samplers using Variational Divergence Minimization.

2016.arXiv: 1606.00709 [stat.ML].

17. Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation Learning

with Contrastive Predictive Coding. 2018. arXiv: 1807.03748 [cs.LG].

18. Aravind Subramanian et al. _A Next Generation Connectivity Map: L1000

Platform and the First 1,000,000 Profiles. In: Cell 171.6 (Nov. 2017),

14371452.e17. doi: 10.1016/j.cell.2017.10.049.

19. Anika Liu et al. From expression footprints to causal pathways:

contextualizing large signaling networks with CARNIVAL. In: npj Systems

Biology and Applications (2019). doi: 10.1038/s41540-019-0118-z.

20. F. Jordan, T.-P. Nguyen, and W.-c. Liu. Studying protein-protein interaction

networks: a systems view on diseases. In: Briefings in Functional

Genomics 11.6 (Aug. 2012), pp. 497504. doi: 10.1093/bfgp/els035.

https://doi.org/10.1016/j.neucom.2016.12.038
https://doi.org/10.1186/s12859-019-3220-8
https://doi.org/10.1186/s12859-019-3220-8

21. Erick Moen et al. Deep learning for cellular image analysis. In: Nature

Methods 16.12 (May 2019), pp. 12331246. doi: 10.1038/s41592-019-

0403-1.

22. “A Beginner’s Guide to Using Attention Layer in Neural Networks.”

Analytics India Magazine,4 Dec. 2021, analyticsindiamag.com/a-

beginners-guide-to-using-attention-layer-in-neural-networks/.

23. Jason Brownlee. “A Gentle Introduction to Generative Adversarial

Networks (GANs).” Machine Learning Mastery, 16 June 2019,

machinelearningmastery.com/what-are-generative-adversarial-

networks-gans/.

24. Lim S, Lu Y, Cho CY, Sung I, Kim J, Kim Y, Park S, Kim S. A review on

compound-protein interaction prediction methods: Data, format,

representation, and model. Comput Struct Biotechnol J. 2021 Mar

10;19:1541-1556. doi: 10.1016/j.csbj.2021.03.004. PMID: 33841755;

PMCID: PMC8008185.

25. Keskin O, Tuncbag N, Gursoy A. Predicting Protein-Protein Interactions

from the Molecular to the Proteome Level. Chem Rev. 2016 Apr

27;116(8):4884-909. doi: 10.1021/acs.chemrev.5b00683. Epub 2016 Apr

13. PMID: 27074302.

26. B. Lakshminarayanan, A. Pritzel and C. Blundell, Advances in Neural

Information Processing Systems 30 (NIPS 2017), 2017, 6402–6413.

27. Prabhakaran, Selva. “Cosine Similarity – Understanding the Math and How

It Works (with Python Codes).” Machine Learning Plus, 22 Oct. 2018,

www.machinelearningplus.com/nlp/cosine-similarity/.

28. C. Fotis et al. DeepSIBA: Chemical Structure-based Inference of Biological

Alterations. 2020. arXiv: 2004.01028 [q-bio.QM].

29. Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward

networks are universal approximators. In Neural Networks (Vol. 2, Issue

5, pp. 359–366). Elsevier BV. https://doi.org/10.1016/0893-

6080(89)90020-8

http://www.machinelearningplus.com/nlp/cosine-similarity/

30. Hornik, K. (1991). Approximation capabilities of multilayer feedforward

networks. In Neural Networks (Vol. 4, Issue 2, pp. 251–257). Elsevier BV.

https://doi.org/10.1016/0893-6080(91)90009-t

31. Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.-X., & Veyrat-

Charvillon, N. (2010). Mutual Information Analysis: a Comprehensive

Study. In Journal of Cryptology (Vol. 24, Issue 2, pp. 269–291). Springer

Science and Business Media LLC. https://doi.org/10.1007/s00145-010-

9084-8

32. Fotis, C., Meimetis, N., Sardis, A., & Alexopoulos, L. G. (2021). DeepSIBA:

chemical structure-based inference of biological alterations using deep

learning. In Molecular Omics (Vol. 17, Issue 1, pp. 108–120). Royal Society

of Chemistry (RSC). https://doi.org/10.1039/d0mo00129e

33. “What Is Systems Biology · Institute for Systems Biology.” Institute for

Systems Biology, 2015, isbscience.org/about/what-is-systems-biology/.

34. Sanchez-Lengeling, Benjamin, et al. “A Gentle Introduction to Graph

Neural Networks.” Distill, vol. 6, no. 8, 17 Aug. 2021,

10.23915/distill.00033.

https://doi.org/10.1007/s00145-010-9084-8
https://doi.org/10.1007/s00145-010-9084-8
https://doi.org/10.1039/d0mo00129e

