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Abstract 

During the last years, big data and deep learning have become a very effective and 

state of the art method to deal with many demanding and difficult problems, in 

multiple scientific fields, from traditional computer science to finance and biology. 

Up to the present, deep learning was rarely used as a method by bioinformaticians, 

who prefer gene expression data and try to understand the mechanism of action 

of drugs to promote research on topics like early drug discovery. To deal with 

signaling networks, it is more common to use network analysis and dynamical 

systems modelling. For this thesis, we develop a specific class of graph 

convolutional neural network, using a very effective architecture that achieves 

maximum discriminative power among other GNNs’ and apply this model to a 

dataset of biological (protein) signaling networks. We prove that our model can 

effectively cluster compounds with similar mechanisms of action together and 

identify compounds with similar signaling networks. Finally, we use the data 

produced from this model and try to train a model to infer a protein signaling 

network from a compound’s chemical structure. 

 

 

 

 

 

 

 

 

 

 

 

 



Περίληψη 

Τα τελευταία χρόνια, τα μεγάλα δεδομένα και η βαθιά μάθηση έχουν γίνει μια 

πολύ αποτελεσματική και τελευταίας τεχνολογίας μέθοδος για την αντιμετώπιση 

πολλών απαιτητικών και δύσκολων προβλημάτων, σε πολλαπλά επιστημονικά 

πεδία, από την παραδοσιακή επιστήμη των υπολογιστών μέχρι τη 

χρηματοδότηση και τη βιολογία. Μέχρι σήμερα, η βαθιά μάθηση 

χρησιμοποιήθηκε σπάνια ως μέθοδος από βιοπληροφορικούς, οι οποίοι 

προτιμούν τα δεδομένα γονιδιακής έκφρασης και προσπαθούν να κατανοήσουν 

τον μηχανισμό δράσης των φαρμάκων για την προώθηση της έρευνας σε θέματα 

όπως η πρώιμη ανακάλυψη φαρμάκων. Για την αντιμετώπιση των δικτύων 

σηματοδότησης, είναι πιο συνηθισμένο να χρησιμοποιείται η ανάλυση δικτύου 

και η μοντελοποίηση δυναμικών συστημάτων. Για αυτή τη διπλωματική εργασία, 

αναπτύσσουμε μια συγκεκριμένη κατηγορία συνελικτικού νευρωνικού δικτύου 

γραφημάτων, χρησιμοποιώντας μια πολύ αποτελεσματική αρχιτεκτονική που 

επιτυγχάνει μέγιστη ισχύ διαχωρισμού μεταξύ άλλων τέτοιων δικτύων και 

εφαρμόζουμε αυτό το μοντέλο σε ένα σύνολο δεδομένων βιολογικών 

(πρωτεϊνικών) δικτύων σηματοδότησης. Αποδεικνύουμε ότι το μοντέλο μας 

μπορεί να ομαδοποιήσει αποτελεσματικά ενώσεις με παρόμοιους μηχανισμούς 

δράσης και να αναγνωρίσει ενώσεις με παρόμοια δίκτυα σηματοδότησης. Τέλος, 

χρησιμοποιούμε τα δεδομένα που παράγονται από αυτό το μοντέλο και 

προσπαθούμε να εκπαιδεύσουμε ένα μοντέλο ώστε να συμπεράνει ένα δίκτυο 

σηματοδότησης πρωτεΐνης από τη χημική δομή μιας ένωσης. 
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1. Introduction 

 

1.1. Motivation 

 

The motivation of this thesis is to use deep learning methods in order to analyze, 

quantify and extract meaningful and robust representations from protein 

signaling networks. Biological networks have been used as data in research 

purposes as well as data for machine and deep learning models, but the concept 

of using Graph Neural Networks in processing this data is, to the best of our 

knowledge, was first introduced by previous lab members, and the purpose of this 

thesis is to introduce a new method and model to apply to these data. Biological 

networks, and especially protein signaling networks can possess a huge amount 

of information about the nodes and connectivity between them, that can be very 

important for multiple fields of bioinformatics and computational biology. These 

graphs can be considered as directed acyclic graphs where each node represents 

a protein, and therefore every branch of the graph contains information on the 

nodes that construct it and therefore on the whole graph. Therefore, by processing 

each node and its connections separately and collectively we can extract very 

important information about the structure and functioning of the graph. In the 

following pages, we try to use deep learning methods to prove that signaling 

network data can provide us with significant information if processed properly. 

Moreover, there is a first approach in trying to use deep learning to infer a protein 

signaling network from a compound’s chemical structure. This method could be 

extremely important in early drug discovery and CADD since it could help us 

identify the signaling network (i.e., mechanism of action) of a compound by 

comparing its chemical structure with other compounds whose signaling network 

is known. Drug discovery is the process aiming to identify new candidate 

medications, meaning the development and discovery of new drugs intended to 

be used for the treatment of specific diseases.  Early-stage drug discovery aims to 

identify the right compound for the right target, for the right disease. 

 

 



1.2. Systems Biology 

 

Systems biology has been responsible for some of the most important 

developments in the science of human health and environmental sustainability. It 

is a holistic approach to deciphering the complexity of biological systems that 

starts from the understanding that the networks that form the whole of living 

organisms are more than the sum of their parts. It is collaborative, integrating 

many scientific disciplines – biology, computer science, engineering, 

bioinformatics, physics and others – to predict how these systems change over 

time and under varying conditions, and to develop solutions to the world’s most 

pressing health and environmental issues. [33] 

 

1.3. Proteins 

 

Proteins are large and the most complex molecules known, with very critical roles 

for the body of a multicellular organism. They are needed in the structure, 

functioning and organization of tissues, organs, and cells. Proteins are consisted 

of long chains of numerous smaller units called amino acids which determine the 

unique 3D structure and specific function of the protein. There are 20 amino acids 

that can connect in infinite combinations, and each of these amino acids is linked 

with its neighbor through a covalent peptide bond (another name for proteins is 

polypeptide). Amino acids are coded by combinations of nucleotides (three DNA 

building blocks), determined by the sequence of genes. 

Proteins can have multiple functions and biological properties which depend on 

the physical interaction with other molecules. Some of the main functions of 

proteins are working as antibodies, enzymes, messengers, structural components, 

and transport.[1] 

 

 

 



1.4. Signaling Networks 

 

One of the most important mechanisms in biology is the communication between 

cells of multicellular organisms. This is achieved through a number of pathways 

that instantly receive and process signals, with other part of a cell and the external 

environment. These networks are commonly classified based on the molecules 

transferred, with two very common being proteins or genes. When cell signaling 

is involved, meaning the response of a cell to internal and external stimuli 

(chemical, mechanical nature) and the regulation of its activity is regulated, these 

networks are called Signaling Networks. [2] 

The process can be described by two main steps. At first, an extracellular molecule 

binds to a specific protein called receptor on a target cell, changing its state to 

active. Afterwards, the receptor stimulates intracellular biochemical pathways 

leading to a cellular response, which may involve progression through the cell 

cycle or changes in gene expression. These internal pathways are controlled and 

regulated by conserved protein modules which have the ability to mediate 

interactions between proteins. [3]. Some of the most common of these molecules 

are Hormones (endocrine system), Neurotransmitters (nervous system), 

Cytokines (immune system). Signaling networks are extremely important for 

several functions and mechanisms of multicellular organisms.  



 

Figure 1: An example of a protein network 

 

1.5. Deep Learning Neural Networks 

 

Neural networks, also known as artificial neural networks, are a method of 

machine learning that is also the main method used in deep learning algorithms. 

Their name and functioning are inspired by the human brain and specifically the 

communication and signal transferring between the neurons of the brain. They 

are consisted of node layers, starting with an input layer, which is then followed 

by one or more hidden layers, which end to an output layer. Every node connects 

to another and has a weight and a threshold, and the node is activated (i.e., sending 

data to the next layer) when the output of the node is above the specified 

threshold. Each neuron receives the value of previous connected neurons as input, 

and maps it into an activation function: 

𝑥𝑛𝑒𝑤 = 𝑠(𝑤𝑥𝑝𝑟𝑒𝑣 + 𝑏)  

Where s is the activation function and w,b are the trainable parameters.[4] 



 

Figure 2: Deep Neural Network Structure 

 

Neural Networks are trained by the optimization of a cost function and rely on 

training data to learn and improve their accuracy over time.[5] 

 

1.6. Graph Neural Networks 

 

Graph Neural Networks (GNNs) are a class of deep learning methods designed to 

perform inference on data described by graphs. A GNN is an optimizable 

transformation on all attributes of the graph (nodes, edges, global context) that 

preserves graph symmetries (permutation invariances). GNNs adopt a “graph-in, 

graph-out” architecture meaning that these model types accept a graph as input, 

with information loaded into its nodes, edges and global-context, and 

progressively transform these embeddings, without changing the connectivity of 

the input graph.[34] GNNs are neural networks that can be directly applied to 

graphs, and provide an easy way to do node-level, edge-level, and graph-level 

prediction tasks. GNNs can do what Convolutional Neural Networks (CNNs) failed 



to do. Further information on Graph Neural Networks will be provided in Chapter 

3 where the model of the thesis is discussed. 

 

1.7. Graph Convolutional Networks 

 

Graph Convolutional Networks were first introduced by Kipf and Welling [6] and 

are the main deep learning method used when working with graphs. Convolution 

refers to the same operation as in simple Convolutional NN. The input neurons are 

multiplied with a set of weights known as filters or kernels, which slide through 

the image as a window and enable CNNs to learn features from neighboring cells, 

while the same filter will be used within the same layer (weight sharing). GCN 

perform in a very similar way and the model learns features by inspecting 

neighboring nodes. GCN are a generalized version of CNN since the nodes can be 

unordered and the connections between them can be complex (where CNN work 

on structured data), and the equation that describes the problem is 𝐺 = (𝑉, 𝐸) 

where G is the graph and V, E are the vertices and edges. [7] 

 

Figure 3: Graph Convolutional Network Structure 

 

The goal is to learn a function of signals/features on a graph 𝐺 = (𝑉, 𝐸)  which 

takes as input: 



• A feature description 𝑥𝑖  for every node 𝑖 in a feature matrix 𝑋 (𝑁 × 𝐷 , 𝑁: 

number of nodes, 𝐷: number of input features) 

• A representative description of the graph structure in matrix form 

(adjacency matrix 𝐴 or some function thereof) 

and produces a node-level output 𝑍 (an 𝑁 × 𝐹 feature matrix, where 𝐹 is the 

number of output features per node). Graph-level outputs can be modeled by 

introducing some form of pooling operation. [7] 

Every neural network layer can then be written as a non-linear function 

𝐻(𝑙+1) = 𝑓(𝐻(𝑙), 𝐴),  

with 𝐻(0) = 𝑋 and 𝐻(𝑙) = 𝑍 , 𝐿 being the number of layers.[8] 

A very simple and common propagation rule would be 𝑓(𝐻(𝑙), 𝐴) = 𝜎(𝐴𝐻(𝑙)𝑊(𝑙)) 

where 𝑊 is the weight matrix and 𝜎 being the activation function (a very common 

one is ReLu). There are many ways GCNs are implemented, some of which are used 

in the following thesis.[9] 

 

1.8. Auto Encoders 

 

Autoencoders are a specific type of feedforward neural networks where the input 

is the same as the output. The input is compressed into a lower-

dimensional code and then the output is reconstructed from this representation.  

An autoencoder consists of 3 components: the encoder which compresses the 

input and produces the code from which the decoder reconstructs the input. The 

encoder and the decoder are fully connected feedforward NN, and the decoder 

architecture is the mirror image of the encoder. These components use an 

encoding method, a decoding method, and a loss function to compare the output 

with the target.  [10] 



 

Figure 4: Encoder - Decoder Structure 

Autoencoders are mainly a dimensionality reduction (or compression) algorithm 

and the most important properties of autoencoders are: 

• Data-specific: Autoencoders can meaningfully compress data 

dimensionally similar to the data they have been trained on.  

• Lossy: The output of the autoencoder will not be the same as the input, it 

will be a close but degraded representation. 

• Unsupervised: Autoencoders don’t need explicit labels to train and 

therefore are considered an unsupervised learning method. They can be 

considered self-supervised since they generate their own labels from the 

training data. 

Four hyperparameters need to be set before training an autoencoder: 

• Code size: number of nodes in the middle layer (smaller size means more 

compression). 

• Number of layers: the autoencoder can have as many layers as we like.  

• Number of nodes per layer: the number of nodes per layer decreases with 

each subsequent layer of the encoder, and increases back in the decoder 

(decoder is symmetric to the encoder in layer structure)  

• Loss function: two very common loss functions are mean squared error 

(MSE) and binary crossenttropy. [11] 



2. Data 

 

2.1. Preprocessing and Quality Control 

 

The effectiveness and predicting capability of even the best neural network 

architectures and methods is highly depended on the quality of the data selected 

to accomplish the specific task. Without data of high quality, even the best deep 

learning algorithms would fail to provide robust predicting results. So, it is very 

important to analyze the ways data was gathered and processed for our problem. 

A big part of this data is available on the GitHub page of the NTUA’s BioSys Lab, 

however due to size restrictions, not all data is available online.  

 

2.1.1. CMAP 
 

Connectivity Map (CMAP) is a project by the Broad Institute LINCS Center for 

Transcriptomics, that has provided the laboratory with the transcriptomic 

signatures (level 5 transformed z-score) needed to develop the appropriate 

protein signaling networks that will be used for this thesis. The version of CMAP 

that was used was the GSE92742 and it is important to mention that only the 

differential expression of the 978 landmark genes in the L1000 assay was 

considered. For each gene expression signature, a quality score was calculated, 

based on transcriptional activity score (TAS), number of biological replicates and 

whether the signature is an exemplar. The signatures with the highest quality 

score were selected, based on the process that is described below. [18] 

The filtered CMap dataset contains 7722 transcriptomic signatures from 3005 

compounds tested across 70 cell lines. During the filtering process, for each 

compound per cell line, its signature with the highest quality across different 

dosages and time points was selected. The assigned quality score based on TAS, 

number of replicates and whether the signature is considered an exemplar is 

presented in Table S1. Only signatures with Quality score of 1 were used. 

 

 



Table 1: Signature Quality Score [28] 

Quality score TAS 
Number of 

replicates 
Exemplar 

Q1 > 0.4 > 2 True 

Q2 0.2 – 0.4 > 2 True 

Q3 0.2 – 0.4 ≤ 2 True 

Q4 0.1 – 0.2 > 2 True 

Q5 0.1 – 0.2 ≤ 2 True 

Q6 < 0.1 > 2 True 

Q7 < 0.1 ≤ 2 True 

Q8 < 0.1 < 2 False 

 

2.1.2. CARNIVAL 

 

Causal Reasoning pipeline for Network identification using Integer Value 

programming, or simply CARNIVAL,[19] is a causal network contextualization tool 

identifying upstream regulatory signaling pathways by using downstream gene 

expression data. It uses different sources of prior research, as signed, and directed 

interaction networks between proteins, pathway signatures and transcription 

factor targets.[20] In order for the protein signaling networks to be produced, the 

quality 1 data from L1000 CMap was integrated and processed with carnival along 

with some other resources.  

For each signature, DoRothEA R package (gene set resource with signed 

transcription factor – target interactions) was used in order to infer the 

transcription factor (TF) activity scores [16]. This method utilizes the VIPER 

enrichment algorithm and a knowledge base of signed TF-target interactions 

called Regulons to calculate TF activity scores [17]. After that, the TF activities for 

each compound perturbation inferred by DoRothEA were transformed into 

signaling networks using the CARNIVAL pipeline. CARNIVAL solves an ILP 

optimization problem to infer a family of highest scoring subgraphs, from a prior 



knowledge network of signed and directed protein-protein interactions, which 

best explain the TF activities, subject to specific constraints. In our approach 

OmniPath network was used as the global prior knowledge network [21].  

After this process, that was done by previous members of the lab,7788 weighted, 

signed, and directed signaling networks along with their corresponding 

unweighted networks per signature (5 – 100 per weighted signaling network) 

were produced. The weighted networks are produced by adding the unweighted 

networks, so edge weights refer to the percentage of times a certain edge appeared 

in the unweighted graphs. 

 

Figure 5: CARNIVAL Functioning 

 

2.2. Tensorizing the signaling networks 

 

After the process of creating the signaling networks using CARNIVAL, there are 

7788 graphs corresponding to the quality 1 signatures. In order for these graphs 

to be appropriate for integration to the deep learning methods and models that 

will be described later, their nodes and edges need to be mathematically 

represented to be fed in the neural networks.  

Nodes 

Each node of these graphs represents a specific protein of a cell signaling network. 

Hence every one of these nodes must have a multi-dimensional distributed 



representation that describes the proteins actions and modes using mathematical 

representations. One way that this can be done is by encoding the protein function 

and structure using each protein’s amino acid sequence.  One very effective and 

state of the art way is presented in the following paper [14] where proteins are 

represented as continuous vectors. SeqVeq (Sequence-to-Vector) is inspired by 

Natural Language Processing (NLP) tasks and uses a bi-directional model to 

capture the biophysical properties of sequences from big unlabeled data 

(UniProt50 database). This method is very effective in predicting results in 

various tasks by using protein sequence data and has proven to be more effective 

than other similar methods. 

Edges 

In each of the graphs the edges represent the connection between two nodes i.e., 

proteins. In the case of our problem the (directed) connection between two nodes 

represents two different functions. 

The first one is protein interaction. Every cell signaling network is formulated as 

a directed acyclic graph and each of the proteins either upregulates or 

downregulates the next protein that is connected, which is presented as 1 and -1 

correspondingly. In order for this to be appropriately fed to neural networks, 1 

and -1 are formulated into vectors of ones and zeros, and the connection is 

categorically attributed. 

The second one is edge weight. This function is used in weighted graphs, and it 

quantifies the appearance of the edge in the unweighted graphs. The number 

ranges from 0 to 1 with the maximum value meaning that an edge was in every 

unweighted graph. 

 

 

 

 

 

 



3. Model 

 

3.1. Theoretical Background of GNN  

 

Let G = (V, E) denote a graph with node feature vectors Xv for v ∈ V . There are two 

different tasks of interest that can be performed by GNN models: (1) Node 

classification: each node v ∈ V has an associated label yv and the goal is to learn a 

representation vector hv of v such that v’s label can be predicted as yv = f(hv); (2) 

Graph classification: given a set of graphs {G1,...,GN} ⊆ G and their labels {y1,...,yN} 

⊆ Y, the goal is to learn a representation vector hG that helps predict the label of 

an entire graph, yG = g(hG). 

Graph Neural Networks. GNNs use the node features Xv and graph structure to 

learn a representation vector of the entire graph, hG or a node, hv. A neighborhood 

aggregation strategy is followed by modern GNNs, where the representation of a 

node is updated by aggregating representations of its neighbors. After k iterations 

of aggregation, a node’s representation captures the structural information within 

its k-hop network neighborhood.[12] Formally, the k-th layer of a GNN is 

𝛼𝜐
(𝑘)

= 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸(𝑘)({ℎ𝑢
(𝑘−1)

: 𝑢 ∈ 𝑁(𝜐)}) , ℎ𝜐
(𝑘)

= 𝐶𝑂𝑀𝐵𝐼𝑁𝐸(𝑘)(ℎ𝜐
(𝑘−1)

, 𝛼𝜐
(𝑘)

)  

where ℎ𝜐
(𝑘)

 is the feature vector of node v at the k-th iteration/layer. The initial 

condition is  ℎ𝜐
(0)

= 𝛸𝜐 , and N(v) is a set of nodes adjacent to v. The choice of 

AGGREGATE(k) (·) and COMBINE(k)(·) in GNNs is very important, and numerous 

architectures have been proposed. 

 

 

Figure 6: An overview of the theoretical framework. 

 

 



The figure above is explained:  

• Middle panel: rooted subtree structures (at the blue node) used by the WL 

test to distinguish different graphs.  

• Right panel: if a GNN’s aggregation function captures the full multiset of 

node neighbors, the GNN can capture the rooted subtrees in a recursive 

manner and be as powerful as the WL test. 

For node classification, the node representation ℎ𝜐
(𝑘)

  of the final iteration is used 

for prediction. For graph classification, the READOUT function aggregates node 

features from the final iteration to obtain the entire graph’s representation hG  

ℎ𝐺 = 𝑅𝐸𝐴𝐷𝑂𝑈𝑇({ℎ𝜐
(𝑘)

|𝜐 ∈ 𝐺})   

 

3.1.1.  Weisfeiler-Lehman test 

 

The question the graph isomorphism problem tries to solve is whether two graphs 

are topologically identical. This problem is very demanding and there are no 

polynomial-time algorithms known for it. The Weisfeiler-Lehman (WL) test of 

graph isomorphism [15] is a computationally efficient and effective test that 

distinguishes a wide class of graphs. Its 1-dimensional form, known as “naïve 

vertex refinement”, is analogous to neighbor aggregation in GNNs. The WL test 

iteratively (1) aggregates the labels of nodes and their neighborhoods, and (2) 

hashes the aggregated labels into unique new labels. When the labels of the nodes 

between two graphs differ, then the algorithm classifies them as non-isomorphic.  

With the background of the WL test, a WL subtree kernel that measures the 

similarity between graphs was proposed. The kernel uses the counts of node 

labels at different iterations of the WL test as the feature vector of a graph. 

Intuitively, a node’s label at the k-th iteration of WL test represents a subtree 

structure of height k rooted at the node. Thus, the graph features considered by 

the WL subtree kernel are essentially counts of different rooted subtrees in the 

graph. 



 

Figure 7: Graph 1 and Graph 2 are isomorphic. The correspondance between nodes 
is illustrated by the node colors and numbers. 

 

3.1.2.  Theoretical Framework: Overview 
 

A GNN recursively updates each node’s feature vector to capture the network 

structure and features of other nodes around it, i.e., its rooted subtree structures. 

Node input features are considered from a countable universe. Node feature 

vectors at deeper layers of any fixed model are also considered from a countable 

universe in finite graphs. For simplicity, each feature vector is assigned a unique 

label in {a,b,c...}. Then, feature vectors of a set of neighboring nodes form a 

multiset: the same element can appear multiple times since different nodes can 

have identical feature vectors.[12] 

Definition 1 (Multiset). A multiset is a generalized concept of a set that allows 

multiple instances for its elements. More formally, a multiset is a 2-tuple X = (S,m) 

where S is the underlying set of X that is formed from its distinct elements, and m 

: S → N≥1 gives the multiplicity of the elements. 

The representational power of a GNN is studied by analyzing when a GNN maps 

two nodes to the same location in the embedding space. A maximally powerful 

GNN maps two nodes to the same location only if they have identical subtree 

structures with identical features on the corresponding nodes. Subtree structures 



are defined recursively via node neighborhoods, and therefore the analysis leads 

to the question whether a GNN maps two neighborhoods to the same embedding 

or representation. A maximally powerful GNN would never map two different 

neighborhoods, i.e., multisets of feature vectors, to the same representation. This 

means its aggregation scheme must be injective. Thus, we abstract a GNN’s 

aggregation scheme as a class of functions over multisets that their neural 

networks can represent and analyze whether they are able to represent injective 

multiset functions. 

This reasoning is used to develop a maximally powerful GNN.  

 

3.1.3.  Building Neural Networks 
 

The first step is characterizing the maximum representational capacity of a 

general class of GNN-based models. The ideal scenario is a maximally powerful 

GNN being able to distinguish different graph structures by mapping them to 

different representations in the embedding space. However, mapping graphs to 

different embeddings depends on solving the graph isomorphism problem, 

meaning isomorphic graphs to be mapped to the same representation and non-

isomorphic ones to different representations. For the layer that will be 

constructed for this thesis, the representational capacity of GNNs is characterized 

via a slightly weaker criterion: a powerful heuristic called Weisfeiler-Lehman 

(WL) graph isomorphism test. [12] 

Lemma 2. Let G1 and G2 be any two non-isomorphic graphs. If a graph neural 

network A: G → Rd maps G1 and G2 to different embeddings, the Weisfeiler-Lehman 

graph isomorphism test also decides G1 and G2 are not isomorphic. 

Therefore, any aggregation based GNN can be as powerful as the WL test in 

distinguishing different graphs. Based on theorem 3, we can assume that if the 

neighbor aggregation and graph-level readout functions are injective, then the 

resulting GNN is as powerful as the WL test. 

Theorem 3. Let A: G → Rd be a GNN. With a sufficient number of GNN layers, A 

maps any graphs G1 and G2 that the Weisfeiler-Lehman test of isomorphism 



decides as non-isomorphic, to different embeddings if the following conditions 

hold: 

a) A aggregates and updates node features iteratively with 

ℎ𝜐
(𝑘)

= 𝜑 (ℎ𝜐
(𝑘−1)

, 𝑓 ({ℎ𝑢
(𝑘−1)

: 𝑢 ∈ 𝑁(𝜐)}))       

where the functions f, which operates on multisets, and φ are 

injective. 

b) A’s graph-level readout, which operates on the multiset of node features {ℎ𝜐
(𝑘)

}, 

is injective. 

Injectiveness characterizes whether a function preserves the distinctness of 

inputs in countable sets, and the focus is on this case.  

Lemma 4. Assume the input feature space X is countable. Let g(k) be the function 

parameterized by a GNN’s k-th layer for k = 1,...,L, where g(1) is defined on multisets 

X ⊂ X of bounded size. The range of g(k), i.e., the space of node hidden features , 

is also countable for all k = 1,...,L. 

Another important advantage of GNNs beyond distinguishing different graphs, is 

capturing similarity of graph structures. In the WL test, node feature vectors are 

one-hot encodings and therefore they cannot capture similarity of subtrees. In 

contrast, a GNN satisfying the criteria in Theorem 3 generalizes the WL test by 

learning to embed the subtrees to low-dimensional space. This gives GNNs the 

ability not only to discriminate different structures, but also map similar graph 

structures to similar embeddings.  

 

3.2. Graph Isomorphism Network – GIN 

 

After analyzing the conditions behind a powerful GNN, the next step of the thesis 

is to create an architecture that probably satisfies theorem 3. Graph Isomorphism 

Network (GIN) generalizes the WL test and consequently has the most 

discriminative power of other GNNs. 

To model injective multiset functions for the neighbor aggregation, this thesis 

follows a theory of “deep multisets”, i.e., parameterizing universal multiset 



functions with neural networks. Based on the following lemma, we assume that 

sum aggregators can represent injective, universal functions over multisets. 

Lemma 5. Assume X is countable. There exists a function f: X → Rn so that                                  

h(X) = ∑ f(x)x∈X   is unique for each multiset X ⊂ X of bounded size. Moreover, any 

multiset function g decomposed as g(X) = φ(∑ f(x)x∈X ) for some function φ. 

A significant difference between deep multisets and sets is that some popular 

injective set functions, such as the mean aggregator, are not injective multiset 

functions. Using the mechanism for modeling universal multiset functions from 

Lemma 5 as a building block, aggregation schemes that can represent universal 

functions over a node and the multiset of its neighbors satisfying Theorem 3 can 

be conceived. The following corollary provides a concrete formulation among 

many such aggregation schemes. 

Corollary 6. Assume X is countable. There exists a function f : X → Rn so that for 

infinitely many choices of , including all irrational numbers,                                                    

h(c, X) = (1 + ε) ∙ f(c) + ∑ f(x)x∈X  is unique for each pair (c,X), where c ∈ X and X 

⊂ X is a multiset of bounded size. Moreover, any function g over such pairs can be 

decomposed a g(c, X) = φ((1 + ε) ∙ f(c) + ∑ f(x)x∈X ) for some function ϕ. 

Based on the universal approximation theorem [29][30] multi-layer perceptrons 

(MLPs) can be used to model and learn f and ϕ in Corollary 6. In practice, we model 

f(k+1) ◦  ϕ(k) with one MLP, because MLPs can represent the composition of 

functions. In the first iteration, if input features are one-hot encodings as their 

summation alone is injective MLPs before summation are not needed. We can 

make a learnable parameter or a fixed scalar. Then, GIN updates node 

representations as 

ℎ𝜐
(𝑘)

= 𝑀𝐿𝑃(𝑘)((1 + 𝜀(𝑘)) ∙ ℎ𝜐
(𝑘−1)

+ ∑ ℎ𝑢
(𝑘−1)

𝑢∈𝑁(𝜐) )  

GIN is a maximally powerful GNN, while being simple. 

 

3.3. Attention Layer 

 

After the inputs have been integrated and processed by the GIN layer, the three 

output layers (there are three GIN layers followed by a batch normalization and 



an activation function ReLu) can be added. Instead of this method, for the purpose 

of this thesis we choose to have one more layer, called Multi Scale Node Attention 

layer. This layer provides attention (through a changeable weight matrix) to each 

node, i.e. protein based on the connections and structure of the graph [22]. The 

equation of the layer is the following: 

𝐴𝑇𝑇𝛩(𝑈𝑔) = ∑ 𝜎(𝑢𝑛
𝑇𝑅𝑒𝐿𝑈(𝛩(

1

𝑁
∑ 𝑢𝑚)))𝑁

𝑚=1 𝑢𝑛
𝑁
𝑛=1    

• σ sigmoid 

• N the number of nodes 

• Θ(κ) weight parameters for k-th node embedding layer 

The intuition behind this equation is that, during the generation of graph-level 

embeddings, the attention weight assigned to each node should be adaptive to the 

graph proximity metric. This can be achieved by determining the weight by both 

the node embedding un and a learnable graph representation. The learnable graph 

representation is adaptive to a particular graph proximity via the learnable weight 

matrix (k). Specifically, this equation used all the node outputs, adds them and 

produces a vector, and after multiplying this vector with a weight matrix, an 

activation function ReLU, appropriate matrix multiplications and a sigmoid it 

produces a final vector. After all these vectors are summed, the three layers are 

concatenated (instead of added) using the following equation 

ℎ𝐺 = 𝑀𝐿𝑃𝑊(||𝑘=1
𝐾  𝐴𝑇𝑇𝛩(𝑘)(𝑈𝑔)) 

• || concatenation 

• K the number of neighbors aggregation layers 

• ATT multi-head attention mechanism that transforms the node 

embeddings into a graph level embedding 

• MLP 

The intuition behind this equation is that, instead of only using the node 

embeddings generated by the last neighbor aggregation layer, we use the node 

embeddings generated by each of the K neighbor aggregation layers. 

After this, the outputs are integrated into a simple dense layer so that the 

appropriate dimensions are assigned. 



3.4. Mutual Information 

 

3.4.1. Theoretical Background on Information Theory 
 

For the purpose of the thesis, training of the encoder of the signaling networks to 

produce the appropriate embeddings will be made using mutual information. 

Before analyzing the construction of the algorithm, some theoretical background 

and definitions will be provided. [31] 

Entropy 

Let X be a random variable on a (discrete) space 𝑋, and 𝑥 an element from 𝑋. For 

every positive integer 𝑑, we denote by 𝑋 a d-dimensional random 

vector(𝑋1, … , 𝑋𝑑) ∈ 𝑋𝑑 , and by the letter 𝑥 an element from 𝑋𝑑 . 

The (Shannon) entropy [4] of a random variable X on a discrete space 𝑋 is a 

measure of its uncertainty during an experiment. It is defined as 

𝐻[𝑋] = −∑ Pr [𝑋 = 𝑥] ∙ log (Pr [𝑋 = 𝑥])𝑥∈𝑋   

The joint entropy of a pair of random variables (𝑋, 𝑌) expresses the uncertainty 

one has about the combination of these variables: 

𝐻[𝑋, 𝑌] = −∑ Pr [𝑋 = 𝑥, 𝑌 = 𝑦] ∙ log (Pr [𝑋 = 𝑥, 𝑌 = 𝑦])𝑥∈𝑋,𝑦∈𝑌   

Finally, the conditional entropy of a random variable 𝑋  given another variable 𝑌 

expresses the uncertainty on 𝑋 which remains once 𝑌 is known: 

𝐻[𝑋|𝑌] = −∑ Pr [𝑋 = 𝑥, 𝑌 = 𝑦] ∙ log (Pr [𝑋 = 𝑥|𝑌 = 𝑦])𝑥∈𝑋,𝑦∈𝑌   



 

Figure 8: Mutual Information and Entropy 

Mutual Information 

The mutual information is a general measure of the dependence between two 

random variables. It expresses the quantity of information one has obtained on 𝑋 

by observing 𝑌 . On a discrete domain, the mutual information of two random 

variables 𝑋 and 𝑌 is defined as: 

𝐼(𝑋; 𝑌) = ∑ Pr [𝑋 = 𝑥, 𝑌 = 𝑦] ∙ log (
Pr [𝑋=𝑥,𝑌=𝑦]

Pr [𝑋=𝑥]∙Pr [𝑌=𝑦]𝑥∈𝑋,𝑦∈𝑌 )  

It can be seen as the Kullback–Leibler divergence [4] between the joint 

distribution  Pr[𝑋 = 𝑥, 𝑌 = 𝑦] and the product distribution Pr[𝑋 = 𝑥] ∙ Pr[𝑌 = 𝑦]. 

In terms of Shannon entropy, MI can be defined as: 

𝐼(𝑋; 𝑌) = 𝐻[𝑋] − 𝐻[𝑋|𝑌] 

                              = 𝐻[𝑋] + 𝐻[𝑌] − 𝐻[𝑋, 𝑌] 

                                       = 𝐻[𝑋, 𝑌] − 𝐻[𝑋|𝑌] − 𝐻[𝑌|𝑋] 

 

3.4.2. Training with Mutual Information 

 

Based on the available research (Deep Graph Infomax) the encoder should be 

trained by maximizing local mutual information. Through that, the encoder will 

obtain node representations that capture the global information content of the 



entire signaling network. The signaling network is represented by a summary 

vector 𝑠 ⃗⃗  and each node’s patch representation is ℎ⃗ . [31] 

 

For the local MI to be optimized, we construct a discriminator 𝐷:ℝ𝑑𝑘 × ℝ𝑑𝑘 → ℝ 

that is used for each node i and 𝐷(ℎ⃗ 𝑖, 𝑠 ⃗⃗ ) represents each node’s probability scores 

assigned to the summary-patch pair. 

The discriminator in a GAN is simply a classifier [23]. It tries to distinguish real 

data from the data created by the generator. It could use any network architecture 

appropriate to the type of data it's classifying. The architecture of the 

discriminator is described below. We assume that the input of the discriminator 

is x. The discriminator contains three consecutive simple dense layers followed by 

an activation function ReLU. After the input is integrated into the model and into 

the three layers, the output is 𝑥1. Moreover, the input x is also integrated into a 

simple dense layer called dense shortcut and the output of this is 𝑥2. The final 

output of the discriminator is 𝑥1 + 𝑥2 . 

This architecture is applied twice. Local Discriminator uses the node encodings as 

input and Global Discriminator uses the sum of the node encodings as input. 

Finally, those two are integrated into a dot layer, which is a Layer that computes a 

dot product between samples in two tensors and the final output is used in the 

mutual information training as the one output(prediction). 



 

Figure 9: Discriminators 

 

For the discriminator to work properly, both positive and negative samples must 

exist.  

For the graph 𝐺 with a summary 𝑠 ⃗⃗  negative samples are produced by pairing the 

summary with patch representations from another graph �̃�  namely ℎ⃗̃ 𝑗  . For the 

purpose of this thesis, we consider two different classes of positive and negative 

samples. Two graphs are considered positive or negative base on the following 

conditions. 

Positives: Same signature id (same experiment) or duplicates (same experiment 

processed in different time) 

Negatives: Not same signature id or not duplicates 

For the loss function to be defined, we will use the Jensen Shannon Mutual 

Information estimator, described in the paper (Unsupervised and Semi-

supervised Graph-Level Representation Learning via Mutual Information 

Maximization.) We consider 𝐼𝜑,𝜓 the estimator which is modeled by a 

discriminator 𝐷𝜓 parametrized by a neural network with parameters ψ. The 

Jensen-Shannon criteria is: 

𝐼𝜑,𝜓(ℎ𝜑
𝑖 , 𝑠𝜑) ≔ 𝛦𝑃[−𝑠𝑝 (−𝐷𝜓,𝜑(ℎ𝜑

𝑖 , 𝑠𝜑))] − 𝛦�̃�[𝑠𝑝(𝐷𝜓,𝜑(ℎ𝜑
�̃� , 𝑠𝜑))]  



P represents the empirical distribution of the input data set, �̃� represents the 

negative distribution from which we sample from and 𝑠𝑝 is the softplus function 

𝑠𝑝(𝑧) = (1 + 𝑒𝑧) 

Adjusting the Jensen-Shannon estimator to our problem, we calculate two 

different losses, one loss  𝑙𝑜𝑠𝑠𝑠𝑖𝑔_𝑖𝑑 for the positive and negative samples regarding 

same signature id and one loss for the positive and negative samples regarding 

duplicates 𝑙𝑜𝑠𝑠𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠. 

Moreover, for the final loss of the model to be constructed, there is another term 

referring to a regularization loss, which denotes matching the pushforward 

distribution of our summary vectors to a prior distribution, with the most effective 

being the uniform distribution. This happens through a prior discriminator which 

has a simple architecture consisting of three dense layers followed by an 

activation function ReLU. The encoded sum is integrated to this discriminator and 

terms of a uniform distribution are also processed by the discriminator and the 

outputs are added together. The final loss, 𝑙𝑜𝑠𝑠𝑝𝑟𝑖𝑜𝑟 is equal to the negative value 

of the mean of the encoded sum.  

Therefore, the loss function through which the model is trained is equal to  

𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠𝑠𝑖𝑔_𝑖𝑑 + 𝑙𝑜𝑠𝑠𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠 + 𝑙𝑜𝑠𝑠𝑝𝑟𝑖𝑜𝑟   

 

3.5. Structure of the model 

 

After creating the graphs using Carnival, they are processed as analyzed 

previously so that four different vectors or matrices are produced. The goal is to 

tensorize the signaling networks into nodes, edges, edge attributes, activity 

matrix. These data are the inputs of the model. At first, the activity matrix is 

integrated into a Projection Model, which contains three simple dense layers, so 

that its dimensions are increased. This is very important, because at first the 

dimensions were one, and the importance of the activity matrix would be lost 

when compared to the higher dimensions of the nodes. After passing through the 

projection model, the activity matrix is concatenated with the nodes. The 

concatenated nodes matrix along with the edges and edge attribute matrices are 



integrated into the first encoder which is consisted of three consecutive GIN layers 

followed by a batch normalization, an activation function ReLU , and an attention 

layer. The output of the first three layers is 𝑥𝑖 , and the output of the attention layer 

is 𝑎𝑖. The outputs of this function are two: a layer concatenating the outputs of the 

three attention layers (node embeddings) and the sum of the three layers 𝑥𝑖  (all 

nodes’ embeddings). After that, the node embeddings are integrated into another 

encoder. This second encoder consists of three simple dense layers followed by a 

batch normalization, an activation function ReLU, a drop dense function and a 

normalization. The output of this function is called encoded and is then integrated 

into the global discriminator. All node embeddings are integrated into the local 

discriminator and the outputs of the two discriminators are passed through a 

layer that produces their dot product; the output is called result. The encoded is 

processed by the prior discriminator and the logarithm of the output is added to a 

term containing samples from a uniform distribution, constructing a term called 

prior sum. Finally, the nodes, edges, edge attributes, activity matrix are used as the 

input of the mutual information training model, and the result and prior sum are 

used as the outputs that will help the model train through minimizing the loss 

function. Finally, the mutual information training model is fit into the data 

produced by the train generator, which produces the four matrices analyzed 

below along with the masks for the same signature id and the duplicate that are 

needed. 

 

 

 

 

 

 

 

 



Table 2: Training Hyperparameters 

Hyperparameters Value 

Batch Size 96 

Epochs 8 

Optimizer Adam 

ReduceLROnPlateau - 

Learning Rate 0.001 

Batch Normalization 

momentum 

0.6 

Weight Initializer Glorot Normal 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4. Embeddings Quality Evaluation 

 

After training the model and producing the 128 dimension embeddings , it is of 

vital significance to evaluate their quality, so that there is certainty that the model 

works appropriately and the embeddings can be used in other deep learning 

models that will be analyzed in this thesis. In order to evaluate the embeddings, 

three different tasks were used, that analyze the quality of embeddings regarding 

their differentation regarding same signature graphs, duplicates and mechanism 

of action. The three tasks were written in programming language R and their 

results will be explained . 

For the following plots , G2V refers to Graph2Vector, a graph embedding approach 

based on the idea of the doc2vec approach that uses the skip-gram network, GT-

MI refers to Graph Transformers Mutual Information, a model constructed bya  

previous lab member, and MI-GIN-TF2 meaning Mutual Information- GIN Layer- 

Tensorflow 2 refers to the model constructed in this thesis. 

 

4.1. Task 1 : Same Signature ID vs Different Signature 

 

The purpose of the first task is to differentiate the signaling networks that have 

the same signaling network id (meaning the same experiment) from those that 

have different signatures. As we can see , the model of this thesis differentiates the 

two categories, since the mean of the same sigantures is near zero and the mean 

of different signatures is above 0.5 . Both samples have some outliers, however the 

model performs very effectively, since there is no significant overlap between the 

two. Moreover, it can be said that our model performs better than the other two, 

since the mean of the same signatures is very near 0, which is the desirable 

situation, since these samples share a lot of mutual information and therefore 

their embeddings are accepted to be very similar and close and consequently the 

distances of the embeddings very near 0. 

 



 

Figure 10: Embeddings Quality Evaluation Task 1 

 

4.2. Task 2: Duplicates vs Random Signatures 

 

The purpose of the second task is to differentiate signaling networks that are 

duplicates (same experiment, i.e. same drug, dosage, duration but conducted at 

different moments) from random signatures. As we can see, our model is very 

effective in this task since it manages to differentiate the two categories. 

Specifically, the mean distance of the duplicate embeddings is near 0.2, whereas 

the mean of the randoms is over 0.5. Moreover, as we can see our model can be 

consider more effective than the other two, since there is less overlap between the 

two violin plots and the two mean distances are further than the other two 

methods. Therefore, our model proves successful in this task and our embeddings 

have effective quality in differentiating duplicates from randoms. 



 

Figure 11: Embeddings Quality Evaluation Task 2 

 

4.3. Task 3: t-SNE Visualization - Mechanism of Action 

 

In medicine, a term used to describe how a drug or other substance produces an 

effect in the body. For example, a drug’s mechanism of action could be how it 

affects a specific target in a cell, such as an enzyme, or a cell function, such as cell 

growth. Knowing the mechanism of action of a drug may help provide information 

about the safety of the drug and how it affects the body. It may also help identify 

the right dose of a drug and which patients are most likely to respond to treatment. 

Also called MOA. [13]  

The following plot represents the t-SNE Visualization of the embeddings. T-

distributed stochastic neighbor embedding (t-SNE) is a statistical method for 

visualizing high-dimensional data by giving each datapoint a location in a two or 

three-dimensional map. Therefore, the dimensionality of the embeddings is 

reduced from 128 to 2. Each point in the graph represents a signaling network. As 

we can see, the following graph is consisted of a big cloud instead of clusters. 



However, there are some clusters, for example HDAC inhibitors, MTOR inhibitors 

and protein synthesis inhibitors. This task is very difficult since the embeddings 

contain a lot of information about the signaling networks and reducing their 

dimension from 128 to 2 means that a huge proportion of this information is lost. 

However, the fact that there are some clusters of experiments with similar 

mechanism of action, as well as the fact that the other methods (GT-MI) had very 

similar t-SNE visualizations, proves that our model is successful in this task.  

 

 

 

Figure 12: Embeddings Quality Evaluation Task 3 

 

 

 

 

 

 

 



5. Infer a protein signaling network from a compound’s chemical structure  

 

5.1. Introduction 

 

After producing the embeddings for the signatures, these will be processed in 

order to be integrated into another deep learning model called DeepSIBA [32]. The 

purpose of this part of the thesis is to infer a protein signaling network from a 

compound’s chemical structure.  

Identification of protein interactions (PPIs) is at the center of molecular biology 

considering the unquestionable role of proteins in cells. There has recently been a 

rapid progress in computational methods for determining protein targets of small 

molecule drugs, which will be termed as compound protein interaction (CPI). Data 

for CPI has been accumulated and curated significantly both in quantity and 

quality. Computational methods have become powerful ever to analyze such 

complex the data.  

To achieve generalization of our current knowledge on CPI prediction using AI 

methods, the computational methods are grouped into five categories: tree-based 

ML, network- and kernel-based ML, and three deep learning (DL) based 

architectures. Specifically, with this approach, the goal is to be able to predict 

whether two compounds will activate similar protein signaling networks based on 

their chemical structure. This is very significant since it could prove very 

beneficial for early drug discovery. Predicting whether two compounds will 

activate similar protein to protein interaction, and therefore similar mechanism 

of action based only on their chemical structure is one state of the art method that 

would be very helpful for drug discovery researchers, The long-term goal of this 

is being able to find out the protein signaling network of compounds constructed 

on paper without any further experiments. For this thesis, a deep learning-based 

architecture will be used, specifically the deepSIBA model, a graph convolution 

model. [24][25] 

 



Predicting whether a chemical structure leads to a desired or adverse biological 

effect can have a significant impact for in silico drug discovery. For this thesis, we 

used a deep learning model where compound structures are represented as 

graphs and then linked to their biological footprint. To make this complex problem 

computationally tractable, compound differences were mapped to biological 

effect alterations using Siamese Graph Convolutional Neural Networks. In 

previous work and research, the model was able to encode molecular graph pairs 

and identify structurally dissimilar compounds that affect similar biological 

processes with high precision. Additionally, by utilizing deep ensembles to 

estimate uncertainty, the model provided reliable and accurate predictions for 

chemical structures that are very different from the ones used during training. 

Therefore, this model will be used for this thesis. 

Following, some basic background of the deepSIBA model along with how it was 

adjusted for the purpose of this thesis will be mentioned.  

 

5.2. Background on deepSIBA 

 

Transcriptomic signatures from compound perturbations along with their 

respective chemical structures were retrieved from the CMap dataset. For each 

compound perturbation, the embeddings that were calculated by the model of this 

thesis were used. Specifically, every different signature had up to 100 different 

signaling networks, and 128 size embeddings were produced for each of them. 

Using a code in R, a mean value was calculated for these different signaling 

networks, so that each signature referred to only 128 embeddings. Afterwards, 

pairwise distances for these signatures were calculated, using the Euclidean 

distance and cosine similarity functions. Cosine similarity had better results and 

therefore was used for the training of the model. During the learning phase, the 

proposed model is trained to predict the pairwise distance between compounds’ 

using only their chemical structure as input. The input chemical structures are 

represented as undirected graphs, with nodes being the atoms and edges the 

bonds between them and encoded using a Siamese GCNN architecture. During 



inference, the model is tasked to predict the biological effect distance between 

reference and unknown compounds. 

 

Figure 13: Overview of deepSIBA model 

 

5.3. Siamese GCNN 

 

A schematic representation of the model’s architecture is presented in the figure 

below.  The learning model takes as input the chemical structures of compound 

pairs and predicts their biological distance 

The input of the model, chemical structures, are represented as undirected graphs, 

where atoms represent the nodes and bonds between them represent the edges. 

Every chemical structure is encoded with 3 matrices: the atom array, which 

contains atom-level features, the bond array, which contains bond-level features 

and the edge array, which describes the connectivity of the compound.  

The learning model consists of two Siamese encoders (shared weights) that 

embed the input graphs into a high dimensional latent space and a trainable 

distance module that outputs the final distance prediction. The overall goal of the 

Siamese encoder is to learn task-specific compound representations. Siamese 

encoders have 3 graph convolutional layers that learn neighborhood-level 

representations, and a convolutional layer that extracts compound level features.  



The feature maps of the last Siamese layers are then subtracted, and their absolute 

difference is passed to the distance module. The distance module consists of 2 

convolutional layers, which extract important features from the difference of the 

feature maps and 3 fully connected layers that aim to combine those features, 

while progressively reducing the dimensions. Finally, a Gaussian regression layer 

outputs a mean and variance of the biological effect distance between the 

compound pair. By treating the distance as a sample from a Gaussian distribution 

with the predicted mean and variance, the model is trained end-to-end by 

minimizing the negative log-likelihood criterion given by [26] 

−𝑙𝑜𝑔𝑝𝜃(𝑦𝑛|𝑋𝑛) = −
1

2
𝑙𝑜𝑔𝜎𝜃

2(𝑥) −
1

2𝜎𝜃
2(𝑥)

(𝑦 − 𝜇𝜃(𝑥))
2
+ 𝑐𝑜𝑛𝑠𝑡 

 

 

Figure 14: Siamese Graph Convolutions 

 

In general, deepSIBA is used as a black box since for the purpose of this thesis we 

only integrate the data produced by the model without altering or analyzing the 

parameters and structure of the deepSIBA architecture and model. Therefore, it is 

expected that the results will not be great, since deepSIBA was designed for 

another problem and not for predicting signaling network embeddings. However, 

since this model has proven very powerful in previous research and is based on 

compounds’ chemical structure and pairwise distances to train, it is appropriate 

for the purpose of this thesis, which is a first trial in training a deep learning model 

to predict the similarity of the protein signaling network of two different 



compounds. We will not analyze further the functionality of deepSIBA, which can 

be found in [32] and we will proceed with the data processing and the 

performance evaluation of the training. 

 

5.4 Data 

 

Of all the different cell lines for which the CARNIVAL has produced signaling 

networks, four of them have the most compounds with quality score 1 whose 

embeddings will be used in the training of the deepSIBA model. It is very 

important to keep only these cell lines, because based on research of previous 

thesis of the lab, these are the most credible and therefore will produce the most 

robust results. These four cell lines are all human cancer cell lines. 

Table 3: Number of compounds for different cell lines 

Cell Line Compounds 

A375 711 

MCF7 813 

PC3 729 

VCAP 730 

 

For each of these different cell lines, the pairwise differences for all different 

compounds were calculated. To train and validate the deep siba model, these 

pairwise distances were divided to train and test set. For splitting the total, we 

used a combination of the 80-20 rule (80% of the sample is train set and 20% of 

the sample is test set) and an algorithm of previous research. This algorithm 

divides the compounds based on their similarity, so as similar compounds will be 

divided into the train and test sets, and there will not be bias in the model. After 

splitting the totals, and removing some samples that did not have embeddings of 

good quality (multiple zeros etc), the train and test set for each cell line contained 

the following number of samples 

 



Table 4: Number of pairwise distances for train and test set 

Cell Line Total Train Test 

A375 216520 172167 44353 

MCF7 285542 238871 46671 

PC3 221716 178595 43121 

VCAP 234326 203590 30736 

 

The pairwise distances for the different cell lines were calculated using the 

cosine similarity function:[27] 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐴, 𝐵) =
𝐴 ∙ 𝐵

‖𝐴‖ × ‖𝐵‖
=

∑ 𝐴𝑖 × 𝐵𝑖
𝑛
𝑖=1

√∑ 𝐴𝑖
2𝑛

𝑖=1 × √∑ 𝐵𝑖
2𝑛

𝑖=1

 

 

Before training the model, it is very significant to validate that the distributions of 

the distances for the train and tests sets are similar, since this is a very important 

factor for an effective and robust training. As seen below, all cell lines have similar 

distributions between the two sets. 



 

 

 

 

Figure 15: A375 Distances Histogram 

Figure 16: VCAP Distances Histogram 

Figure 17: PC3 Distances Histogram 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: MCF7 Distances Histogram 



6. Performance Evaluation 

 

Across all test scenarios, model performance was evaluated in terms of Mean 

Squared Error (MSE), Pearson’s r and precision. MSE and Pearson’s r were 

calculated between the predicted and computed distance values. To calculate 

precision, the continuous distance values were transformed to binary form by 

comparing them with an appropriate distance threshold. Even though the 

learning task is a regression problem, given its nature and potential applications, 

high precision (
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
) is important in order to avoid false positive hits for 

validation experiments. 

 

Table 5: Training Metrics 

Metric  Definition Formula 

MSE The mean squared error (MSE) tells you 

how close a regression line is to a set of 

points. It does this by taking the distances 

from the points to the regression line and 

squaring them. The squaring is necessary to 

remove any negative signs. It also gives 

more weight to larger differences. It’s called 

the mean squared error as you’re finding the 

average of a set of errors. The lower the 

MSE, the better the forecast. 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑌𝑖 − 𝑌�̂�)

2

𝑛

𝑖=1

 

Pearson’s r Pearson's correlation coefficient is the 

covariance of the two variables divided by 

the product of their standard deviations. The 

form of the definition involves a "product 

moment", that is, the mean (the 

first moment of the origin) of the product of 

the mean-adjusted random variables; hence 

the modifier product-moment in the name. 

𝑟 =
𝑛∑𝑥𝑦 − ∑𝑥 ∑𝑦

√[𝑛 ∑𝑥2 − (∑𝑥)2] [𝑛 ∑𝑦2 − (∑𝑦)2]
 



Precision Precision (also called positive predictive 

value) is the fraction of relevant instances 

among the retrieved instances 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

Accuracy Accuracy is one metric for evaluating 

classification models. Informally, accuracy is 

the fraction of predictions our model got 

right 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

# 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

 

Below, the matrix shows the number of positives, meaning number of similars 

for each cell line when the structural distance threshold increases. 

Table 6: Number of positives for different thresholds 

P-Threshold A375 PC3 VCAP 

0.15 - 42 60 

0.2 259 697 1037 

0.25 1190 3701 4134 

0.3 4927 12489 16008 

 

As we can see, as the threshold rises, the model finds more positives. For all these 

different cell lines, we choose a threshold between 0.2 and 0.25 so that the number 

of positives, meaning the number of similar compounds, is neither huge nor 

negligible. After that we run the model once again, so that the evaluation metrics 

for each of these cell lines based on the chosen threshold are produced. In the 

following matrix, the metrics for these tests can be seen, so that a first view of the 

performance of the model can be derived. 

Table 7: Metrics values in training 

Cell Line MSE  MSE Similar Pearson r Precision Accuracy Similars 

A375 0.018 0.028 0.17 0.59 0.64 821 

VCAP 0.014 0.013 0.35 0.6 0.7 1126 

PC3 0.016 0.02 0.26 0.56 0.66 1231 



 

Figure 19: VCAP predicted-true values 

 

Figure 20: A375 predicted-true values 

 

Figure 21: PC3 predicted-true values 

 



As we can see, the training of this data is not very effective. Pearson’s r value is 

low in all 3 different cell lines, meaning that there is a positive correlation between 

the predicted values and the true ones, however this correlation cannot lead to the 

conclusion that the training was very effective. For the VCAP cell line, pearson’s r 

is 0.35 which shows a significant positive correlation which however is not above 

0.5 that would be the threshold showing that the predicted data actually 

approaches the true values. 

Precision is around 60% for all three different cell lines. This number shows that 

60% of the predicted positive values (similar) are similar and 40% of them are 

not. This value shows that the model proved an ability to correctly identify 

whether two compounds have a close distance (meaning close embeddings and 

therefore similar signaling networks). However, for the training to be 

characterized robust this number should be higher. The same applies for accuracy. 

Finally, the MSE value for all 3 different cell lines varies from 0.01 to 0.02 and 

therefore is very low meaning that the average set of errors is very low and 

therefore is a positive index for the training. 

Following that first analysis, we will try to maximize the two most important 

metrics MSE and precision by altering the CV threshold.  

Quantifying predictive uncertainty can lead to more accurate results in virtual 

screening applications. For this reason, we investigated the relationship between 

the uncertainty estimate and the performance of the model. Our model estimates 

predictive uncertainty as the coefficient of variation (CV) of the mixture of each 

model’s Gaussian in the ensemble. MSE and precision were calculated for 

samples in the test set, with CV lower than an increasing threshold  

 



 

Figure 22: Precision - CV threshold for different cell lines 

 

 

 

Figure 23: MSE - CV threshold for different cell lines 



As we can see for both metrics the values remain the same for the most part. 

Precision starts with higher values in PC3 and A375 cell lines because for smaller 

CV threshold, the model finds less positives (similars) and therefore it is easier for 

the precision to be higher. Due to the low number of false positives for all the 

models, precision is largely unaffected by the CV threshold. MSE remains very low 

for all three cell lines and is slowly increasing for each cell line. As the CV threshold 

increases and more samples with higher CV are included in the evaluation, the 

MSE of the models increases as well. This implies that point predictions with lower 

uncertainty are closer to the target value. The conclusion is that for our problem 

the important metrics do not change much when the CV threshold changes. 

Overall, the conclusion is that all metrics have values that indicate that the data is 

somehow trained using the deepsiba model, however the values are not good 

enough to prove that the training is very effective and robust. This mostly happens 

because deepsiba was constructed for a different problem and therefore the 

architecture, hyperparameters and structure are not appropriate enough for the 

data that we integrated. The fact that despite these limitations the data is trained 

shows that inferring a protein signaling network from a compound’s chemical 

structure is a possible prospect. 

 

 

 

 

 

 

 

 

 

 



7. Conclusion 

 

The purpose of this thesis was to construct a deep learning model that would be 

able to extract embeddings from the signaling networks that would describe them 

effectively and separate them based on the signature id of the compound that 

caused them. The main idea was to use graph neural networks, which is a method 

not usually used in such problems. For this purpose, a very robust and state of the 

art architecture, GIN Layer, was used, along with other common deep learning 

techniques and architectures, such as simple dense layers, attention layers, 

projection models etc. The whole concept was to create an effective and ideally 

better alternative to a solution given to this problem by a previous lab member. It 

was proved that our model, despite possible flaws of the data available, was 

capable of providing embeddings of very good quality, even better to compared to 

previous methods and solutions. By succeeding in the 3 significant tasks our 

model proved to create very good embeddings that could effectively separate the 

experiments with same signature ID from the ones with different ones as well as 

the duplicate embeddings from the different ones. Therefore, the primary purpose 

of the thesis was fulfilled. Following this, the secondary purpose of the thesis was 

to infer a protein signaling network from a compound’s chemical structure. Using 

the embeddings created by our model, and the deepSIBA model the goal was to 

train the model to predict whether two compounds have similar signaling 

networks based only on their chemical structures. For this purpose, pairwise 

distances were calculated between the embeddings and these distances along 

with their corresponding compounds were integrated to deepSIBA. The 

conclusion was that this task was not easy, since the deepSIBA model was 

constructed for a different purpose. However, the model managed to provide 

some valuable information and a first sufficient approach to this problem, since 

the model managed to train a proportion of the data effectively.  

 

 

 

 



8. Limitations and Further Research 

 

To begin with, using GNNs to process signaling networks is an approach that is not 

largely developed or tested, and therefore there is not enough research or 

bibliography to refer to. The primary focus of the model was to "reduce" the size 

of biological signaling networks to a single representation so that our methods can 

be used to find a drug’s mechanism of action. Our model passed the test and 

provided embeddings of good quality. However, a significant limitation and 

potential problem was limited amount and questionable biological completeness 

and validity of our data. This did not allow a high degree of predictive confidence 

in further evaluation tests. Besides, the input data (signaling networks) were 

heavily based on the public Protein to Protein Interaction network and the 

hyperparameters of CARNIVAL. Even if our model was complete and constructed 

of the best graph neural network architectures, it’s effectivity and robustness is 

doubtful. Specifically, if the input data are incomplete, the results will be even 

more incomplete. Furthermore, even though CARNIVAL is a great and very useful 

tool, was not designed for large amounts of signaling networks and therefore it’s 

performance might have been affected. Finally, it is important to mention that the 

mediocre results of the deepSIBA training happened because deepSIBA was not 

designed for this problem. For better results, we should have optimized the 

hyperparameters and potentially the architecture. 

For further research, there are multiple potential alternatives to further analyze 

this problem. To begin with, using the encoder of deepSIBA we could encode the 

chemical structures of drugs into vectors and train them with the mutual 

information method. Then, we could construct a final neural network that would 

take as inputs both the vector of our model and of the deepSIBA and train based 

on both. The long-term goal of this is using a signaling network as reference one 

could use the model to and the model would propose some potential drugs that 

could create this signaling network, and most importantly vice versa by using a 

chemical structure as reference. 

Another potential step would be to create similar models as the one proposed in 

this thesis, to create vectors not only for the signaling networks of a drug but also 



for the genes, transcriptional factors and GO terms. Then by concatenating them 

and integrating them to an encoder we could have a unique vector for each drug 

that based on the 4 previous characteristics it would be robust and contain very 

important information on the mechanism of action of each drug. 

Finally, we could train the deepSIBA model for GO terms (already exists) , genes , 

and transcriptional factors. Therefore, the model would be able to propose similar 

drugs to the one that was used as the input in the level of GO terms, genes and 

transcriptional factors. After finding all the similar drugs, it would be very 

intriguing and challenging to use the signaling networks of these drugs and try to 

create an optimization model that would propose a specific signaling network. 
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