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Euyapiotieg

H exmévnon autric tng ddaxpotixhc dlateldric Arav euneipior xadoplotinfic onupaciag yio péva
xa yeeldoTxe TN oThEEn xar TNV %xadodNyNoT TOAAGY avipmTwY.

o tapyind V€A vor EUYUPLOTACK TOUS YOVEIC JOU Yol Tr oUVEYT) OTHELEN %o oy ATy TOUG
XOUTA T1) OLIPXELNL AUTWV TWV YEOVGLY o TG (whg Hou YEVIXOTERO.

H Sty owt) Yo Aoy adLvatn ywele vy xadodrynorn xat mopdtpuvor and Toug eml-
BrEmovteg xodnynTéc pou, x. Mavorn Iarnadpaxdnn xa x. Bnooaplwva [ataddémovio. Yog
ELUYOPIO T YLOL TNV UTOUOVY| OUC, TN CUVEYT EUTIOTOCUVY GE PEVA oL TN YEVVALOdwElo UE TO
YEOVO %O TIC YVWOELS GUC.

Oa fela entlong va ex@Edce TNV EUYVWUOCOVY WOV GTA GAAY PEAN TNG CUUPBOUAEUTIXNG
emtponhc, xonyntée x. Kwvotavtivo Enniténovio xan x. Nuxodhao Aayopd, yia to ebotoya
oy OhoL xa T1) SLdECLIOTNTA TOUS Yial GUUSBOUAES.

Emuniéov, auth n dwaten Jo Aoy ToAd grwydteen ywels tn Bordeia Twv cuvERYAT®Y %ot
plhwv pou Iwdvvn Koaroyepn, T'ewpyio Mtawpouvidxn xaw Mavorn Tewpyiouddnn, ywel Tic
oL{NTACELC Uag Tou 0ORYNoaY G TOAAEG EUTVEVUCELS Xal YwRlg TIG UTVES VOYTEC TOU €QY0-
CopooTtay pall mewv Sldpopes dlopleg.

Téhog elpon evyvodUoY Yo TNV evyevixy| yYopnyeia Tou Edwol Aoyaplaouot Kovouliwy 'E-
eeuvog (E.AK.E) tou Edvixod MetooBiov Holuteyveiou (E.M.IL.) ue ) poper unotpopiac yio
TNV EXTOVNOT) TN OtdoxTopixc dtateBc pou. Ilepetalpw owovouixy evioyuon éhaPa and cuy-
UETOY T 070 TEOYEUUUN ‘BEATIOTOC OYEDLAOUOS OE TOMATAES HALUUKES HOUVOTOUWY VAIXWDY YLd
epappoyéc petddoone Veppdtnroc (HEAT-68/1286)" und ) Spdon: Emnyepnoaxéd Ilpdypay-
wot Avtorywviotxotnto- Envyeionuatixétnta-Koavotopla (EITAVEK) e ouyypenuoatodftnon g
EAAG0ac xon tne Eupwnoixfc Evewong.



Advanced high performance computing methods for the solution of
crack propagation and material design problems using the extended
Finite Element method (XFEM)

ABSTRACT

The need for advanced high-performance materials in the industry led to the development
of various innovative solutions over the years, designed to possess application-specific proper-
ties, such as improved thermal conductivity. To model heat transfer in composite materials,
their complex micro-structure, as well as the thermal resistance at the interfaces between
materials must be taken into account. The standard finite element treatment requires very
fine meshes to conform to the complex geometry of these interfaces. This thesis proposes an
eXtended Finite Element Method (XFEM) formulation that captures the temperature jump
by enriching the polynomial approximation around the material interfaces with appropri-
ate discontinuous functions. Specifically, a new XFEM enrichment scheme is developed to
address the issue of multiple-phase junctions, namely areas where multiple interfaces with
different resistance properties intersect. In addition, a double-mesh LSM technique is devel-
oped for describing the geometry of material interfaces. A very fine mesh is employed by
a Level Set Method (LSM) to represent complex interface geometries with high accuracy,
whereas XFEM uses a mesh that does not conform to the material interfaces, but is instead
a coarser version of the LSM mesh, to reduce the computational cost of the analysis. The
combined numerical model is first validated against existing results from the literature on
polycrystalline materials. Then, it is applied for heat conduction analysis of polymers re-
inforced with carbon-nanotubes. The unknown thermal resistance between these materials
is inferred by calibrating the numerically predicted effective conductivity to corresponding
experimental measurements. The proposed XFEM model can be straightforwardly extended
to other similar problem types, such us elasticity or electrical conduction.

XFEM is also an attractive choice for modeling crack propagation, by enriching the poly-
nomial displacement field of FEM with specialized non-smooth functions, without the need
of remeshing in the vicinity of the crack at each propagation step. However, this enrichment
causes the stiffness matrix to become strongly ill-conditioned, rendering the convergence of
iterative solvers very slow. On the other hand, direct solvers are inefficient in 3D problems,
due to the increased bandwidth of the system matrix. In this thesis, two domain decomposi-
tion solvers, namely FETI-DP and P-FETI-DP, are proposed for solving the linear systems
resulting from XFEM crack propagation analysis in large-scale 3D problems. By modifying
the coarse problem of both solvers, any singularities caused by the crack propagation are
avoided and the XFEM-related ill-conditioning is completely eliminated, ensuring the scal-
ability of FETI-DP and P-FETI-DP as the number of subdomains is increased. Finally, an
efficient implementation in high performance computing systems, specifically computer clus-
ters is developed, by altering the original FETI-DP and P-FETI-DP equations to minimize
communication and computation bottlenecks in distributed memory environments.
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Aldooorn YepuotTnTag o CUVUETA VALK

(1)
lo

(2)
Glom 0Qr

Yo 0.1: Metddoon depudtnrog o gopea mou anoteleiton amd TOAATAES PACELC UAIXOU

‘Eotw 61t 10 owpa Q anoteheltor amd n, QACES LALXOU Q(i), ol omofeg ywpilovton amd ny
OlemLpdiveLeg @ =109, To oYU Oetyvel éva mapdderyuo pe Teelg pdoceic. To entepnd
oOvopo 0 Tou gopéa €yel xddeTo BLdvuoua T8 xou amoTEAE(TAL amd T EEWTEPINE GUVOPAL TGV

np )
EMPEPOUC PACEWY LAX0) O = U 000 Kadéva and autd YwelleTon OTo CUUTANEGUTIXG
i=1

uéen 0955) xa 00, étoL dbote 9N = 5(255) U oy | Yuvoploég ouviixeg Dirichlet,

Neumann emBdihovtoun avtioTtoryo ota 8Q¥) xa GQ((;)
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T=T ov 8935),
q-n=—q, OV 89?.

(1)
6mou T' =T (x) eivan 10 (Barduwt6) medio Vepuoxpascioc xou ¢ = q (x) eivon to (BtovuopoTind)
medlo poric VepudtnTog. XN yevixy meplntwot, 1 Yepuiny| orywyuotnta k@ e pdong Q@
elval GUUPETEIXOG TavUOTHG Oeutépag Tdlng. O vépog Fourier petald tng Veppoxpaciog xou
eong VEQUOTNTUC OTO E0MTEPO XdVE Pdong QO givon

q(x) =k (x) - VI (z), QW i=1..n, (2)

[ o 8eSopévn mny 1 epudtnroc 7 (x), n e&ionon tne Veppoxpacioc oto conteptnd tou (2,
oe oTtaepy| xatdoTaot, evor 1 e¢lowon Poisson

V.q(x)=r(x) (3)

6mou V - g (x) ebvou 1 amOXALOT, TOL TEdloL PoNg VepUOTNTAG. XE AUTO TO ETEQOYEVEC LALXO,
x&e Blemipdvero ') napovoidlel Semupavetonr| Vepunt avtiotaon Kapitza alid) 1| LooBUVaoL
Sremipaveron aywypétnto k)| mou opileton we To avtiotpogo e avtiotaong, dnhadh k1) =
ﬁ Enopévwe, 1 depuixr} ouunepupopd yopuxtneiletar and dipo oto medlo depuoxpdoiog
eyxdpota o€ %dde BLETLPAVELD UETOEY VALXDY

[T] = —alg® . p) oy 76 (4)

61O 0 TEAEOTAC [1 = ()9 — ()@ unodexvier To dha eyxdoota ot dempdvere '), To
wovediafo Stévuopa n xddeto otn I = 'Y elvar npocavatohucévo and tn @dorn QO
npoc T QU xau 1oyler dL

n@) — _pU? (5)

Emunicov, to medio pong Yepudtnrag elvar ouveyeg eyxdpota oe xdle diempdvela )
q(i) ) — q(j) .nUD gy 70) (6)

6mou @9 xou g9 eivor ot TWES Tou Tedlou pong VepUOTNTUC OTIC OLUPOPETIXEG TASUPES TNG
OLETLPAVELAG 6, To TRV TEOBANUA CUVOELIXWY TGV PTopel vor Auel ue T cupPotinn
uévodo nenepaopévmy otoyelwy (MIIX), adld anatodvtar optouéves tpomonotioelc. ooy,
EVOL TAEYUOL UTETEQUOUEVWY G TOLYEIWY, TOU Var axohoUVel T YEWUETElA TwV BLETLPAVELDY UETAL)
TWV PAUCEWY UALXOU NN TEETEL v OnutovpynUel, OTwe gafvetow 6To Gy ua Aceltepov, ot
x0ufol mou Bploxovial TEVe OTIC DIETUPAVELEG UALXOU TRETEL VoL avamapay VoV, OOTE Vo uTdp-
YEL VUG OLPORETIXOG x0uPBog Yo xdie @don LALXOU QO yon vo unopel vo tpocopolwiel o
Ghpo Yeppoxpacioc. Téhog, ewdind tenepaouévo ototyelor ETOED TwV TOAATAGY TaVTILOUEVKDY
A(OUPwV TEETEL Vo Yenotuotondoly yio TNV TEOCOUOIWGST] TG OLETLPAVELUXHS AVTIoTAONE OTIC
cEloMoELC Ol @ Qotéo0, auth 1 npocéyyion pue MIIY elvan un amodotixt| # oxdua xou



X

q regular elements conform to the interface

<" duplicated nodes

_..special interface elements

Yyfuo 0.2: TTpocopoiwon yetddoong Vepudtntog oe chvieta VA Ye T cudfotix uédodo
TETEPUOUEVLY GTOLYEIWV.

adLVATY) O TELOOLEO TUTA TEOBAAUATO UEYAANG XAUOXAG. 2E AUTES TIC TEQITTMOOELS, £V TOAD
ueYdhog apriude amd uxed memepaouéva otolyelor amouteltar YOpw amd TIC SLETLPAVEIES, EOLXS
OTIC TEPLOYES UE ATMOTOUES OTEOWES. AUTH 1) TUXVY| BloxELToToNoT AUEAVEL EVIOVH TO UTONOYI-
otxd x6otog e MIIE %o xuplwe e enthuong Tou TapayOUEVOL YEAUUUIXO) GUC TAUATOC.
[t TV avTPeT®Oon auTol ToL TEOPAUUTOS, TNV ToEoLc dluTEl3n TeoTelveTon Ula TEwW-
toTUTN TPOGEYYLoT, N onolo Baciletar oty enextauévn uédodo mencpuouévwy ctotyelwy (E-
MIIY) yw v npocopoiwon uetddoone Yepudtntoc o cvvieto vAxd. Ltnv EMIIE, ta ne-
Tepaopéva oTolyelo umopoly vo TéuvovTon and o 1) TEPLOCOTERES OLETLPAVELEC UALXOU, OT(C
oiveton 6100 oy Aua(0.3} avtl va ypetdleton vor tpocapuélovTon 0T YEWUETEIN TV SIETLPOVELDY.
Ipoxewévou va tpocouolwiel To dAua oTto medio Vepuoxpaciog, ewdéc acuveyelic cuvaETHoELC
Bdone ewodyovton otoug xoufoug Yopw amd Tig Olempdveleg LAxoL. To cTouyeio Tou TEUvo-
VToL amd TG OIETLPAVELEG xohoUvTaL eumhouTiopéva otolyelo. Ou acuveyeic cuvaptrioeic Bdong
ELOGYOVTAL GTOWC XOUPBOUC TV EUTAOUTIOUEVLY GTOLYEIY, TOL OVOUALOVTOL EUTAOUTICUEVOL
x0uPol, oe avildeon ue toug undlomoug cuuPatixoie xouBouc. Ta ctoyelo ywele eumiou-
Tiouévoug xopfouc ovoudlovton cuufBatind cTolyelo xou cuuTEpLpépovT Omwe ot MIIN. E-
TIAE0Y, T PEWXTA oTolyelo BV TéUvovTal amd SlETQAvElEC LAXOD, ahhd potpdlovTton évay 1
TEPLOCOTEROLS XOUPoug Ue eumhouTiopéva ototyela. Ievinwg, to medio Yepuoxpaciog dev umo-
el var avamopary Vel pe peydhn axp{Belo evidg Tov Yemtoyv ototyelwy. 26T600, 1) TEOTEWOUEYN
uedodoroyla EMIIY amogelyel to mpdBAnuo UETOY GTOLYEIWY, YENOULOTOLOVTIC XATIAANAES
oLVAPTAHCELS EUTAouTionoL. 'Etot clvieteg yewuetpleg unopolv v avamoapac tadoly edxolo xou
ue oxpiBeta pe T pédodo 1oolPoiV xaUTUAGY, EVK Eva amhd xal apatd TAEYUA, TOU BEV 0XONOU-



Vel auTég TIC YewPETPIES, uTtopEl var yenouonotniel YLo Vol UEWWOEL TO UTOAOYLO TIXO XOOTOG NG
AVIAVOTG.

nodes enriched with H(m

o nodes enriched with H'*)

O nodes enriched with H(23)

nodes enriched with J*?

D nodes enriched with J\**!

|:| intersected elements
|:| junction elements

|:| blending elements

Yyfuo 0.3: Yuvaptroeg euniovtiopol Heaviside xan cuufBoiric dtav tepuvovtor OETLPAVELES
VALXOU.

‘Onwe n MIIE, n EMIIY eqopuéletar méve otny ac¥evr| Lopdr| Tou TeoBARUaTos cuvopLo-
%OV TWOV. 'Eotw 0 cuvaptnolonds ydeog Ohwy TV ETITEETTOY Tediwy depuoxpaciog (Boxt-
Moo TIXES ouvap'cr']oag)

D={T:T=TovdQr, T acuveyric oc T V(i j) e M"} (7)
Enflonc o ocuvaptnolonds yohpog cuvaptiioeny otdduiong etvat
W = {6T : 0T = 0 ov 9Q, 6T acuveyhc oe T (i, ) € M"} (8)

H acdevic popgr tou mpoAfuatoc cuvoploxmy Twoy tiieton we e€ig: ‘Bpeg doxpoaotind
owvdptnon T' € D, étol Hote Yo Oheg Tic cuvapThoelg otdduone 61 € W va oy el 1) oxdhovidn
ohoxhnputny| e&lowaon:’

1 .
E / [[5T]](”)WHT]](”) dF+/V5T-k-VTdQ:/6TrdQ+/ 6T G, dT (9)
S TG5) atd Q Q 00,
1,5)EM

L1 Yevuh tepintwor TOAMATAGY QAcEWY LALXOU, Uio cuvdpTnoT eunioutiolol Heaviside
H®D ovg OLETILPAVELYL ') yrouteiton YL TN HOVTEAOTIOINOT) TOU AUOTOC:



X1

—1, e
He (@) = {+1 x e QW (10)

2671600, EVIOC XATOLWY GTOYElWY TEUVOVTAL Ol DLETLPAVELS HETAC) TELOVY 1) TEPLOGOTEPWY
PAoERY UAX00, OTwe palvetal 6TO oYU . o vae avamopoydel 1o acuveyég medlo Vepuo-
%paclag EVIOEC AUTOY TV OTOLYElWY, oTNV Tapolca dluteldT| TEOTEVETAL 1) YPHOT) CUVAPTHCEWY
oudPolfic. Ou xouPot evég crolyelou, mou mepléyel onueta cUPBOAAC Ny > 3 DIETLPAVELDY, E-
umhoutiCovton pe 1y — 1 cuvopthoel cudBolfc, avti yio cuvaptrioeic Heaviside. H cuvdptnon
ouuBohig Js) (x) v ™ OLeTLpdvELDL (s UETAC) TV QACERY Q) Q) 1 omolo TEUvVeEL 2 N
TEPLOCOTERES BAAEG OLETLPAVELES, Elvan

—1, xc Q)
Jr) () = { +1, x e QO (11)

0, @eQ- (VUM
Efver Bolxé va avogpepdpaote oe xde eumhoutioud Heaviside g H® (x) = HPD (), énou
b =1,---n, evon évag axéponog mou avtioTtoryel 6to (ebyog (p, q). Ouolwg, av ouvolxd
UTEPY 0LV N CLVEPTAOELC SUUPOMC, xadepio amd autéc Vo ovopdleton J (x) = J) (z), bnov
c=1,---n. e évag axéponog Tou avtiotoryel oto Levyog (1,5). H npooéyyion tou nediou
Vepuoxpacioc otny EMIIY exqpdletar we

=Y Ni(x)T

S @) (@) - () T

c=1 keM§

6mou Ny, () eivar oL cuvaptioelc oyfuatoc e MIIX xou T} elvon emxdufiec Yeppoxpaotee,
Srhadr) oupPatixot Baduol ehevdeptac (B.c.). Avtideta, H® (z) / J¢ (2) ebvon xodepio and Tic ny
/ n. cuvopthoeic eumhoutiopol Heaviside | cuufolic, MY / M etvou to 6Ovoro tov xOufuv
nou epmhoutilovta pe H® (x) / J°(x) xou !/ f,g elvat oL ovTioTOLY 0L EUTAOUTIGUEVOL B.E.
To dhua tou medlov Veppoxpaciog umopel vo TPOCEYYIGTEL YENOUOTOLOVTUS TOUS EUTAOU-

Tiopévoug B.e. Av ta onueia ) = 2U) = gz, tautilovtar odAd Beloxovtar og dlopopeTinég
mheupéc tne T, téte to o ebvon

Ny Ne

[T @] =3[ Y. M@ [T+ | S M) [ T (13)

b=1 \keMy, c=1 \keM§g



Xil

6mou [H] “ o [J]") etvan 0, extoc av or eumhoutiopol HY = H®PD yau Je = J09) éyo
ewooyVet Yyl 1) poviehomoinom tou dhuartoc eyxdpote ot D) nhadh (pg) = (rs) = (ij
Ievixoe

[9)Y

)

[[H(b)]](ij) () = [[H(pq)]](ij) (x) = H P2 (a:(j)) _ ga (zc(i)) =0, -2, op +2

@7 (o — [ 7T (o — 7(rs) (() (rs) (@) — (14)
[T (=) = [J"9] 7 () = I (&V)) — JU) (&) =0, =2, +2, =1 0p +1

Avtideta pe dhhec otpatnyixéc eUmAOUTIONOY, Ol TEOTEWVOUEVOL euthouTiopol Heaviside
%o GUUBOAYG Bev mpoxaholy opdlpata axpiBelag oo UeTd oTolyEela, apou

H®9) (x) — P (x)) =

J(rs) (m) . J(rs) (wk) (15)

0
0

X0l TO EUTAOUTIOHEVO PEPOC TOU TEDIOL TEOCEYYLONG anahelpeTon

T" (1) = > Ni (@) Ty (16)

keM

Avtixadioteyviag o tedio mpoogyyiong tng eicwong oty acVevy| pop@r| Tng e&icwong
([9), mpoximTer To YpauuIxd cloTNUN

(Ko+ Kr)-d=f (17)

omou d elvon ot dyveoteg Yepuoxpaciec otoug cupfatixoilc xou eurthovtiopévoug B.e., Ko etvor
TO YWEWXO UNTEWO oY WYLLOTNTAS

Ko :/BT (z) k (z) B (z) dQ (18)
Q

K clvon TO DIETLPAVELOXO UNTEMO ALY WY WOTNTAS

=

(i9)
i,j)eMT o

xou f ebvon to e€wtepnd Veppnd popTtio

f=/ NTgdr+ / NTrdQ (20)
09, Q

7. 14 4 7 / /7 7
O wivoxag cuvapthoewy Bdone IN yio Toug x6ufoug k evég ototyelou ebvon

N(m) _ [ Nstd (w) Nenr (iB) }
Nstd(w):[,,, Ni(z) -] (21)
N (@) =[ - Ni(@) (V" (@) = V" (2)) -]
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6mou W (x) avamaplotd otoladimote ouvdpTnon euthoutiopol Heaviside HY () ¥ cuufolic
J¢(x). Ov avtioTtolyec mapdywyol Twy cuvopThoewy Bdone Beloxovtar otov mtivaxa B

B(z) = | Bsd(z) B (x)

ONy, ()
ox
B (:I:) — 8Nak‘y<w>
ONy, ()
2 | (22)
O(Ni () (0" (z) — 0" (z1)) ]
ox
B (@)= | ... O () (0" g;) — U (x)))
O(Ni (@) (¥ () — U ()
L 0z i

_(7'.7) ’ ’ ’ ’ ’ ’ ’
xon N7 ebvan mivocag mou yenoudomoteiton yiar vor tape3dAeL To dApa Tou edlou Yeppoxpaciog
EYX3EOLL OTNV BIETLPAVELXL NG

N @) = [ Nuw N9 (@) |

enr

Nstcl =0 (23)

Avocrcocpdccs‘coccm &e:mcpocvsw’av LALXOUV

Ipoxewévou va avanopactadel 1 YEUETElA TWV BIETLPAVELDY UAIXOU, yenowloroteiton 1 uédo-
00¢ LOOLPOY XAUTUAGDY (Level Set Method - LSM). ¥tn LSM, opileton 1 ouvdptnon mpo-
OTNUUCUEVNE ATOCTACTS @ (x) and éva onuelo T TEOC TNV XAUTUAT 1) ETLPAVELY, OTIWS QatveTon
0TO oYU . H xopunOhn/empdveio teprypdpeton Uueca we undevix toobhc tne ouvde-
mong anoctoonc. H ocuvdptnon andotaone unoloyileton xou amodnxedeton otoug xoufoug
xj, Tou TAéypatoc. ‘Emeita yio onowodrrote dhho oruelo, YenoUoTolo0VTOL Ol TOAUGYUULIXES
ocuvopThoelg oyfuatog tne MITX:

Nnodes

¢(@ (&)= > Ni(€) o (24)

k=1



X1v

D mesh element

exact
m— geometry

LSM
approximation

o
~
o

o
w
~

-0.018

s LRI s
o
D

-0.80

Yyfua 0.4: Yuvdptnon mpoonuoaouévng andotaong otn LSM. Troloyileton otoug xouBoug xou
TopeUPBAAETAL EVIOS TWV GTOLYEIWV.

H LSM ouvepydleton pe v EMIIY, xadog yenowonoiel 1o (Blo mAéypo mEnepaouévemy
OTOLYELLY Y10l VOL AVUTIUPUOTHOEL TIG AOUVEYELEG KO VUL EXTEAETEL TIC YEWUETEIXES AELTOVRYIEC TTOU
yeewdleton n EMIIY. Qotéo0, Yo va teprypapoly YEWUETEIES UE UPNAY XoUTUAOTNTA 1 ATOTOUES
oTpopEC, anoutelton vl TOAD TuXVO TAEYUN, TO O0Ttolo ALEAVEL TaUTATA TIC AMAUTACELS UVAUNG
xan Yeovou yio Ty avéiuon e EMIIE. e auty| tn Stotelfn avartdydnxe o tpocéyyion LSM
uE OAO TAEYUQ, 1) ool yenowonotel Eva apond TAEYUA Yo amodoTixy| avdivon EMIIY xou
€vor TuXVO TAEY AL YLor axpUBT| YewueTexr teptypapt ve Tnv LSM. Autd ta 2 miéyua tautilovton
oE oUYXEXEWEVOUS XOpBoug, dTeg gaivetar oTo oyfua [0.5], dote vo emtpénetan 1) cuvepyaoio
EMIIY-LSM.

To opard mAEyuo amoteheltan and teTpanAcupnd ctolyelor 4 xOufwy oe BIedIAc TUTA TEO-
BAAuo ) e€aedpind oTovyelo 8 xOUBwY ot TELEOLEC Tt TEOPATUY, EVEK TO TUXVO TAEYUX ATOTE-
Aelton amod Terywd 1 TeTEaedpxd o Totyela avtioToya. H amedvion uetald twv custnudtwy
CUVTETAYHEVWY EVOC O TOLYEOL apato) TAEYUATOC Xol EVOC GTOLYElOL TUXVOU TAEYUOTOC YiveTol
YENOWOTOLOVTUS €Val BoninTind cOG TN CUVTETAYUEVLY, OIS PAiVETL GTO GXY’]pa

H yewpetpwd| avanopdotaon plog diempdveiog VAol ye tn pédodo LSM unopel va yen-
nowonoinVel yio vo Boedel 1 toun TV ototyelwy ye TN dlempdveia. ‘Eotw 6T py xou Tpo
elval oL CUVTETOYUEVES TWV XOUBWY UG TAEURdS evog atotyeiou Tou Tuxvo) mAéyuatog. Tote
1 TAELEd (P Py) téuveton amno ™ Otempdvela av ¢pi - Ppa < 0 xon To ornuelo Tourg To Elvor

0—9p
ro=7rp + —1(’I°P2 - ?“P1) (25)

¢P2 - ¢P1

O mpocdloplopdg aUTHOY TV ToUny eivon atopaitntog yioo Ty EMIIX, agol 1o empaveiond
ohoxAfpwua g e&lowong (1Y) vroroyileton Tévew GTo ATOXOTTOUEVY TURUATA (Yoouuéc o€
SiobLdotato mpofAfuata, Telywve ot Teiobidotata) xdde otoyeiou. Emmpoodétwe, yuu to
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fine mesh
B element (LSM)

coarse mesh
element (XFEM)

exact
geometry

LSM
approximation

Eyfuor 0.5: Apand mAéypa yioo EMITE xon muxvo yoo LSM

Ywewd oloxhhpwua Tne eéiowong 1} x&de TeEPvVOUEVO oTotyElo ywelleTon o uTooToLyEla
(tplywva o€ BodidoTtata tpoBhiuota, TeTededpa o TptodidoTata) Tou axoloudoly Th YewUETpio
TWV ATOXOTTOUEVWY TUNUATWY, To ontola TpoxdnTouy and TNy TEoTevopevn uedodo LSM ue
OLTAO TAEY ML



Xvi

5 i (b)
1 /\ Pa +1 P3
. y=2
(c) : R
y=1 :
0 1 r P1 1 P2
T 0
________ n=+1

Yyfuo 0.6: Tomxd cvotnua cuvtetayuévwy ototyelwy: o) Xtoryeio apouod mhéyuotog . B)
Bondntixé cbotnuo cuvtetayuévoy. v) Ltoyeio muxvol Théypotoc.

Aiddoon pcwyuoy pe tnvy EMITXY

Emniéov, peretdton n EMIIE vy dodupry Sidboon pwyuodv und tnv unddeon ypouuxne e-
Ao thc Ypawotounyovixhc, 6mou o uéyedoc tng mhaoTixrc Cwvng elvon 1600 Uixpd, HoTE
vo evowuatndel oe plo ehac i) (ovn YOpw amd 1o Yétwno e pwyuhc. Eotw o gopéuc 2
Tou TepLEyel plo pwyur) Iy, 6mwe galvetar oto oyfjuc . Dirichlet xou Neumann cuvoploxecg
ouviixeg emBdihovton ota e€wtepd olvopa I'y, xou I'y, avtioTtoya, eved oty emgdveln tng
PWYUNE BEV LUTHPYEL EAXUC TAC:

uU=1u ov I,
o-nr=t ovl} (26)
o-nr,=0 ovly
6mou u elvor o Tedlo uetatomicewy, o 0 TavueTAC Tdoewy Cauchy, w ot emBoAAOUEVES UeTa-

TotoTioelc xou to emPBohopevog elxuotic. Av e(u) eivor o Tavuo TAC Tapopopgwoewy, C o
AATUO TATINOS TOVUGTAC ot b ot emBAAAOUEVES YWEIKEC BUVANELS, TOTE 1) ELOWOT WoppoTiog
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X0l O XOTAC TATIXOS VOUOC Elvan avTio Tolya

V:o+b=0

oc=C:€(u) (27)

H aoctevic wopyy| tou mpoBiuatog tideton we e&ric: Bpeg doxpactind cuvdptnon u mou

AVAXEL GTO GUVORTNCLUXO YOO

U={veH:v=uoml,, voaouveyic om [y} (28)
¢€Tol WoTE

/e(w):C:e(u)dQ:/w-bdQ—i— w - £ dr (29)

Q Q It

Yot OAEC TIC CLUVORTYOELC OTAUULIONG W TOL AVIXOUY GTO YWOEO

Up={veH:v=00mT,, voacuveyic om 'y} (30)

H etvoan H' yopoc Hilbert ouvopthcewy tou efvor opakéc oo €2, adhd acuveyeic eyxdpota ot
Ly
t

VL
L L r

Eyfuo 0.7: Popéag pe pwyun

't mpocopoinon tou acuveyols nediou yetatonioewy w,  EMIIY eumhoutilel to mo-
AuwVuxd Tpooey Yoo medlo tne ouuPBatxic MIIY ye un cuveyeic cuvapthoeig Bdone. To
TAEY O TETEQPUCUEVGY G TOLYEIWY elvol aveldpTnTo amd T1 YEWUETEIL TNG PWYUAC X0t OEV TNV O-
xohovlel. Avtileta xdmowa oTotyelo TéuvovTon amd TNV ETLPAVELN 1 TO UETOTO TNE PWYUNS, OTWS
pofveTon 670 oxﬁpoc O x6pfol twv oTolyelwy Tou Téuvovial and 10 PETLTO TG PWYUNGS,
eumhoutiCovton pe 4 aouPTTWTIXES CUVUPTAOELS oy c-pwYUc Fin (), ot otoleg e€dyovta and
™ Vewplo YooUUXAC €A TN VEaUG TOUNY AVIXHC

(@) = (Enlr Oy = {Vsin(G)s VFcos(g)s Visin(3) sin(0)s vrcos(3) sin(e) |
(31)
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émou (r,0) = (r(x),0(x)) eivor oL cuvteTaypéveg evdc ornueiov oe Tohxd cVo TNUa Tov opile-
TOL OTO PETOTO TNG PWYUNG, OTWS QUVETUL GTO Oy . Emnpociétng, ou xouPot tov
OTOLYElWY TOU TEUVOVTAL OO TNV ETPAVELN TNG PWYUNS, dhAd Oyt To YEtwno, eumhoutiCovton
ue ™ ouvdptnon Heaviside H(x)

+1, ¢(x) >0
-1, ¢(x<0

6mou ¢(x) eivon 7] TROOTUAUOUEVT] ATOCTACT] ATO EVOL ONUEIOU T WS TNV ETUPAVELN TNG PWYHUNAS,
OTWS palveTal 0TO Oy U . O eumhoutiopds tng EMIIY emfBdiieton tomnd yOpw amd
PWYHTN, VG ToL UTOAOLTTAL OTOLYEl X0t OL UTOAOLTIOL XOUBOL TOU TAEYUTOS DEV UAANAETLOPOUY UE
™ pwyuh. ‘Eotw M, M xa M7 <o oOvora 6hev Twv x6pBev tou dev etvon eurioutiopévot,
elvon eumhouTiopévol pe TN ouvdptnor Heaviside 1| lvon euTAOUTIOUEVOL UE TIC GUVORTHOELC
oy ung-pwYUnS, avtiototya. Tote T0o eUnAOLTIOUEVO TPOOEYYIOTIXG TEdlO, TOU Y ENOYLOTOLEITON
otnv EMIIY, etvou

H(zx) = H(¢(x)) = { (32)

+j€ZM:H Nj(w) (H(:B) - H(wj))a’ﬂ (33)
£ 30 Nelw) (3 (Fulw) — Fulwn) 07)

omou u; elvon o cuyfotixol B.€., mou expedlouv emxouPleg YeTATOTIOELS, eVe a; xan bt elvou
eumiouTiopévol B.e., ot omolol ewcdyovtan and vy EMIIY otouc xéuBouc mou elvon eumhou-
Tiopévol ye ouvopthoels Heaviside xou awyphc-poyphc, aviiototya. ‘Okec ov N;(x), Nj(x),
Ni(x) elvon moluwVUIXéS GUVURTACELS OYAUATOC, (BIEC UE QUTEC TIOU YENOWOTOOUVTOL 0T
ouuPBatixry MIIE. To mpwto dipotoua oo 6eéi uéhog tng e&loworng avTioTolyel oTo Tpo-
oéyylooTd medlo tne oupPatinic MIIX. To dAla 800 adpolopata TEPLEYOUY EUTAOUTIOUEVES
oLVUPTAHCELS BACNC, TOU ETUTEETOLY GTO TEOCEYYLOTIXO TEDIO Vo oVTENOTIOLE (o) o G0 TOU
nediou petotonicewy xdleta oty empdveta e pwyuic (euthoutiopuds Heaviside) xon (B)
TOV OTEPLOUO TWV TEBIWY TUPUUOPPOOEWY X0l TACEWY 0TO PETWTO TS POYHUAC (EUTAOUTIONOC
oy pfic-peYUrc).

Xenotponowhvtog Ty mpoocéyylon Tou tedlou petatonioewy and tny elowon ([B3), 1 acde-
VAC Uopr| tne eélowong XATOAYEL O YROUUUIXO GUCTNUN UE OYVIGTOUS TIC ETUXOUPLES
UETATOTOEIC U

Ku=Ff
K:/BTC’BdQ
Q

f:/NdeQ+ NT tdr
Q

Iy
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Crack surface =0

Crack front

Element intersected
by crack surface

@ Heaviside enriched node

Element intersected
by crack front

(o) (®)

@ Crack tip enriched node

Yy 0.8: Poypr oe tpiodidototo gopéa. (o) Hpoonuuouéves anocstdoelc ¢ oamd tny enpivela
NG PWYHNE Xt TOAXES ouvTeTayUévee (7, 6) ypw and to pétwro. () Eunloutiopévor xéufBol
xoL oTotyela Tou TEUVOVTOL OO TN PWYUT).

ormov IN, B eivou mivoxeg mou TEPLEYOLY TIC CUVUPTACELS BAoNE Xou TIC TOEUYWYOUS TOU, O-
viiototya. Ilpoxewévou va avarmapactadel 1 yewuetpla e pwyurc, yenowonoteitoa 1 enth-
éupeon Ve uédodog mou tpotddnxe ond Fries and Baydoun (2012). Avtideto ye mhipwg
EUUECEC TEQLYPUPES, AUTH 1) LEVODOG UTOPEL VaL OVAVEMVEL EUXOA T1) YEWUETPIA TNG PWYUNG OF
TELOOWIO TATY TEOBAAUATY, ETELDY| TEQLYRUPEL TN PWOUT WC EVA TAEYUN TELYWOVIXOY OTOLYEIWY.
Toautdypova, cuvepydleton pe Tnv EMIIXE, agol yenotuonotet 1o (610 TAEY MO Xl TPOCNUACUEVES
AmOCTAGEL;, Ol OTOlEC amoUNXEVOVTUL GTOUC XOUBOUS X0t UETH TUREUPANOVTUL GTO ECWTERPXO
OV OTOElWY, Yiol Vo UToAoyioToly 1o ¢(x), 7(x) xu §(x) oc omowdhnote onueio. Agol
Tepypagel 1 yewpeTpla TN pwYUNAS UE auTh TN uEVodo, exteheltar avdiuon EMIIY yio va u-
TONOYLGTOOV Tol TEBlol UETATOTUOEWY, TOPAUUOPPMOOEWY X THoEWY. Ereita 1 pwyur| dlodideto
OVAVEWVOVTACS TIC VEGELS TV oNuelwy Tou 0pllouy TO UETWTO TNC POYHNSC %ot TPOCUETOVTOC
vEa Tplymva.

Megdob0oL UTOYOEEWY OE UTOAOYLOTIXE CUCTHUAT
LPNA®Y ETLOOCEWY

H rapotoa dlateir) eoTidlel oe cUUTAEYUATH UTOAOYIGTMY, ONAUdY| TEPIBAAAOVTA TOU ATOTE-
hoOvTat amd TOAMATAOUEC UTOAOYLO TEC, XadEvac amd Toug omoloug dladéTel Toug dixoUg Tou ETE-
EepyaoTEC Xou PVAUN o ETIXOWVKVEL UE TOUC LTIOROLTOUS WEow Tomixo dxtlou (LAN), dote
vo. emtAvdel amo xowol éva utohoyloTid TEOBANUa.  To cuumAEyUaTH UTOAOYIGTOY TUTIX
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Lyfuo 0.9: XOumAeyUo UTOAOYIGTWY

XX

YENOWOTOL00V UBELOLXY XATAVEUNUEVT) UVAUT], OTIOU XEUE UTOAOYIOTAC €YEL TN BT TOU UVAUN,
oAAG o potpdleTon YETAC) TV ETEEERYUCTMY TOU, OTWS QPUUVETOL OTO Oy . Emopévac,
x(&de umohoyloTAG Elvan unydvnua xowhg PVAUNG, dhAd T0 GOOTNUA OAWY TOV OIXUTOUEVKDY
UTIOAOYIG TRV OLIETEL XATAVEUNUEVT) UVIUT. 2E auTO To UBELOIXG GUC TN 1) ETLXOVWVIAL HETO-
&0 eneepyo TV TOU (510U LTOAOYIGTH| Elval TOAD YENYOROTERT and OTL UETUED EMEEEQYAUTTAOV
TIOL AVAXOUY GE BLPORETINOVC UTOROYIGTES. JUVORXE Tol GUUTAEYUOTO UTOAOYLO TV €Y OUV T
oxohovlar TAEOVEXTHUOTAL

Amédoor. Ta npoypdupato exteAobvTaL TUEAAANAL.

Kipaxwowotnta. H urohoyiotinr woyic xou dtadéoun uviun uropodv vor auédvovTal
LIPS, TPOCVETOVTUC VEOUC UTOAOYLGTOUC TIOU €Y0UV TN O] TOUC VAT XaL ETECEQY -

Xaunro owovouxd xéctog. To (Blo embuuntod eninedo unohoylotinc oy bog unopel va
emtevyel TOAD mo @Unvd ue éva oluTAeypa cLYNHIOUEVLY UTOAOYLOT®Y, Omd OTL UE
EVaY U6VO UTOAOYIGTY UUNAGY TEOBLY QaUPOYV.

Alomotia. H actoyio v cuvtipnon evog 1} teplocotépmy UTOAOYIGTGY BEV amoryopelEL TN
AetTovpyia TOL UTOAOLTIOU GUOTAUATOC, UAAS ATTAGL UELOVEL TEOCWEWE TNV ATOB0CY| TOU.

Ye auth| ) datelPn, Teotelvovton dVo pedodol utogopéwy, ot FETI-DP xa. P-FETI-DP,
yioe TNy etAuoT Tou Ypouuixol cuoTAaTog Tng elowong 1} Avtol ot emhOteg UMY xAa-
AWOWOTNTA Yo UTopoLY vor Lhooinloly amodoTtixd o€ TepUB3dANovTa LPNAGY ETBOCEWY, OTWS
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CUUTAEYHOTA UTOAOYLOTGY. §2¢ peYodol UTOPOREWY, BlalEolY ToV Xaolxd QopEa GE TOAAI-
mholg umogopelc, Toug onoloug enedepydlovTon aveldptnTo xou ToedAAnAa. Ot fB.e. ywpllovto
o€ GUVORLIXOUE B.E., TOU AVTIOTOLYOLY GE x0UBoUE 6T0 6UVOEO UETALY BUO 1) TEQPIGCOTEPWY UTO-
POREWY, XAl ECKOTEPIXOVE [3.€.TOV AVTIOTOLYOLY GE XOUB0UC TOU AVAXOLY GE EVOL UOVO UTOQOREX,

OTWS PolvETOL GTO Oy UYL
® @ ® ® ® @ @ ® ®

Q.@.. .@.

o & 0@.. ® ®

@ internal nodes
® boundary nodes

Yo 0.10: Ecwtepixol xou cuvoploxol xouBot utogopéwy.

P-FETI-DP

Y pédodo P-FETI-DP o nivaxoc duoxaudiog, to didvuoua yetatonicemy xot To didvucu
BLVAPERY YwpllovTol GE YR TTOU AVTIOTOLY 00V GTOUC ECWTERXOUS (6€i><rng i) xou oLYVOELIXOUC

(8eixtne b) B.e.:

S S S S
K5 = [ Ku'T K, } us — |:U'i ] f5 = l T ] (35)
S S S S
(KG3)" K, Uy Ty
Metd and oTatiny] cuTOXVWOT TWY ECWTEPXOY B.€., To cuuTAfpwua Schur Sy yio Tov K
xdde uToQoEéa xaL To AVTIGTOLYO BIAVUCUN SUVANEWY 2} Elvor

Slfb - Klfb - (be)T(Kfi)_leb (36)
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T -1
zy = fy — (K3) (K3) " fy (37)
O emextapévoc gopéag opiletar we pia dour| mou meptéyel Ghoug Toug B.€., aAAd xdde cuvo-
ptoxd¢ Be. eppavileTton TOAES QORES, GLUYXEXPIIEVA Ular Qopd Yo xdie uTopopEa OTOL aviXEL,

OTWS QalveETUL OTO Oy AU Avtiveta o xadohinde popéag mepléyel uio popd xdie B.c. Tou
HOVTENOU.

5,6 11,12 17,18 23,24 29,30
e2 ed e6 es

3,4 9,10 15,16 21,22 27,28
el e3 e5 e’/

1,2 7,8 13,14 19,20 25,26
(o) Kadohnde gopéac. Kdde B.e. eppaviletar pio popd.

5,6 11,12 17,18 23,24 29,30 35,36
e2 ed e6 e8

3,4 9,10 15,16 21,22 27,28 33,34
el e3 e5 e’/

1,2 7,8 13,14 19,20 25,26 31,32
subdomain 1 subdomain 2

(B") Enmextapévoc gopéac. Kdée B.e. epgavileton pio @opd yio xde
umogopéa 6mou avixel. E6w towtiCovton ow e€hc B.e.r 13 = 19, 14 = 20,
15=21,16 =22, 17 =23, 18 = 24

Yyfua 0.11

Ou mivaxeg xan tor BLavOoUATA TOU ETEXTUPEVOL POREN UTOTENOVUVTAL UTd TOUS AVTIGTOLYOUG
ivoeg xan Sovbouata Twv utogopéwy. ILy.
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w, 2 Kj, K,
up=| | Z=|": b = b= (38)
,u’lT)Ls zgs g;)s ;s
(Kili)_l Sl}b
(Kg) ™' = 5 = (39)
(Kj)™ 3

Yy ouvnbiopévn dlatinwon tng P-FETI-DP, ol yetatoniceig, nou avtiotolyolv 6 6houg
ToUC GUVOELIXOUE B.€. TOU xaJOMXOV POREN, CUYEVTRWVOVTOL GE EVaL OLEVUOUA Up WHAXOUS 1.
/7 7 s 7 4 /. 8 7’ / 7
H avuotoiynon uetold wy, xou up yiveton ue duadixole mivaxee L, ol omolol €youv ctolyeia
7 s / s / 7 ,
0, 1 xou SloTdoelg SlUEVaLOVE (1) X 1), OTIOL Ny XAt 1y, €vat 0 AELIUOC TWVE GUVORLIXMY B.€.
TOU UTIOQOREX § %o TOL xardolxo) @opéa, avtioTouya:

uy = Ly, (40)

H emxovewvio uetal T)v UTOPopEnY TEUYUATOTOLEITAL UE TEAEELS ATELXOVIOTG-OUUTOXNVGOTNG

TV BLAVUOUATWY BUVEHEWY TIOU AVTIOTOLY0UV 6Toug uttogopelg. ILy. i T dravioporta
s — Q5 . s
Yp = Opp - Wyt

Ns
w=> (L)"y; (41)

s=1
61600, ce auTh TN dlaTELPT] TEOTEIVETOL Ulal EVOAAOXTIXT) DLUTUTIKOT) TTOU ATOPEVYEL xoO-
A Bravoopartor xan mivoxeg. H emixowvwvio yiveton ameuielog uetall twv uto@opéwy, avtl va
yenotonotolvTon xodohxd diaviouata. I'a o oxomd autd, ot mivaxeg amewxoviong Ly, uetodd
untoYopEa-xaohixol popéa, avtixadioTavton ue Tivoxee amedvione M, petall uogopéa-
umogogéa. T xdde Ledyoc umopopénmv (s,t), évag duadixdg mivoxac Ywelc medonuo, dNAadY
mivaxg pe tweg 0, 1, MbSt (ng x ni) opiletar, o omolog amewxovilel Toug cuvoptaxolg B.e. Tou
umogopéa t oToug cuvoplaxols B.e. Tou 5. Alo unogopeic optlovTon K¢ Yertovixol, av €youv
%0vo0¢ cuvopLaxoUE xopfBoug xou dea B.e. Av BUo uTogopeic s,t Bev elvor YelTovixol, TOTE BeV
€youv xowoig B.e. xou oL avticTolyol ivaxeg anexdviong etvan Mt =0, M* =0. Azo ™V
GAAT), yioe Tov (B0 uogopéa 51 MP* = 1. O npdlelc amedVIoTC-CUUTUXVOOTS amd BLoVOCUO-
ToL UTOPOREWY GE XAJOXO DLEVUCUN EXTENOVUVTAL UE XoTaveEUnuéEVo Tedmo. Tl To didvuoua
£VOC DEDOPEVOU UTIOPOREX S, 1) TEOCUEDT] TWV XOWVWY GTOLYEWY UE GAAOUS UTOQOEEIC UTOPEL Vo

YIVEL (¢

Yy = E M;'g; (42)
t=1,-ng
t#s

O avtiotouyog mivaxg emextapévou gopéa MY (ng x nf) opileton wg
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11 12 1ns
M, My* --- M,"
M» M2 .. M
Mg =| A . (43)
: 81 : 82 . : slts
xaL 1) TEOCVEST) OAWY TWV BLAVUCHUETWY TOU ETEXTUUEVOL POREN YIVETAL WS
Y
y=| | =My, (44)
Yy

6mou Yy (ng x 1) elvon évor SLdvuouo BUVEHEWY YioL TOV ETEXTUUEVO Qopéd, TO omolo Teptéyet
TOMATAES EUQaVIoELS TwV [Bwy oTotyeiny e o xadolxd didvuopo Yy (ny X 1). Loupwva ye
oUTH TN SLUTOTWOT), TO YRUUUXO GVUOTNUA Tou expEdlel To cuvoplaxd TeoBinua tne P-FETI-
DP etvou

My Spyxy = My z; (45)

Auté 10 ypouuxd cOoTNU Eival CUUPETEIXO, VETIXG OPLOUEVO X ANOVETOL UE ETOVOANTTIXG
oAy oprduo 6mwe 1 uédodoc Ipootodeponomuévery Muluydy Kiicewv (ITXK). H npotewvduevn
OltUTwon) unopel vor uhomotniel amoBOTIXG OE UG TAUATO XUTAVEUNUEVNG UVAUNG OIS GU-
umAéyparto utohoyloTey. ‘OAlo Tar BlotvOoUUTA XU Ol TVOXES TV UTOQOREWY amoUnxebovTo
UOVO GTOLG UTOAOYIOTEC Tou avatilevtal Yo Toug exdoTote uTto@oélc. I'ettovinol urogopeic
TIOU AVAXOLY GTOV (Blo UTOAOYLOTH aVTAAAEOGOUY GTOLYEld BLUVUOUATWY UE AUEATED XOOTOG,
ool auTd T dEdoUEVa Bploxovton oTov (Blo yweo uvAung. ettovixol unogopeic tou avAxouy oe
OLopOEETNOVE UTOQORELC avTUAAAGGOUY GToLYEld BLUVUGUATWY UEGK BXTUOU. AUTH 1) ETXOVG-
via teptopileton pévo otor oTolyelor xovmy B.e. UETAC) UTOQOREWY XAl XUTUVEUETOL OUOLOUOOPAL
EVTOS TOUOXTUOV, YWPEIC UETAPORES UVAUNG OF €val XEVTEIXG oTuelo Tou Yo TpoxaAoloay Gu-
poenon. Emmiéov, avtl vo extehobvtar xodohxég TedEelc o €va UTOPOopEd, EVE Ol UTOAOLTOL
elvor aBEAVAC, 1) TEOTEWVOUEVY DITUTOT) XATAVEUEL TIC TRPAEELS OUOLOUORPA GE GAOUG TOUC U-
nohoyotéc. BEva nopdderypo diveton oto oyfipo [0.12] Xenowonowbvrac toug mivaxeg M
ATOUOVGVOVTOL ToL GTolyElol G cuVopLaxoUE B.e. Tou elvan xowol peTtall Tou utogopéa 1 xou
xdde dAlou umogopéa 5. ‘Emeita yetagépovton uOVo auTd Tor XOWE GTOLYElN GTO YWEO UVAUNG
Tou Peloxeton o unogopeag 1 xou TeAxd tpoo tidevtoun 6To didvucua Tou utogopea 1. Tlapdhinia
UE ToV uTogopea 1, extehobvTon Tar (Btar BruaTa yior Ghoug Toug dAAOUS LTIOQOEE(S.

Ou pédodor FETI-DP, P-FETI-DP ypenowonowlv o {dlo apond mpoBinua, to onofo etvan
éva ToAD pxpedTepo BorninTtind cboTnua mou emtayUVEL 1 60YXAoT), GUCEYOVTUC TOUC UTO-
AOYIGUOUC TV UTOQPOREWY Xot dLadidOVTIC OUOLOUop®a To c@dhua o xde emavdindn IIXK.
[a T dnuovpyior Tou aponod TpofBifuatog opllovtour ot yovioxol xoufol, ol omolol artotelo-
UV UTOGUYOAO TV GUVORLIXGY xOUPBwy xot Bploxoviar otny apyn xa to Téhog xdlde TAsupdc
x(&de uToPoEEa, OTWS PulVETL GTO Oy U O yovioxol B.e., Tou avTtioToryoly ot auTolg
TOUG YwVioxoLg xouBoug, cuyfolilovtar e to Oeixtrn c. Ou undhoinot B.e. xde umogopéa
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Computer 2
3 4
Yba3 Yp,24
~3 3 ~4 4
Yy = | Ypsza s3 (/Y]] sa Yy = | Yp3za
: 4
Yn.1234 Y1234
Y3 Ybi231 | Yp,24
1 2
Y12 s1 Y2
N 1 ~2 2
Yy = | Ypis Y]] 52 Yy, = | Ybou
1 2
Yp.1234 Y1234
Computer 1
(o)
Computer 2
. P ~ 4 4
[ e ] m M9 [ v
Ui = | Yim _— y}im < | Yy | = ik
3 3 41 1
Y231 Y1231 Y123 Y1231
remote data transfers via network:
only non-zero entries are transferred
. 911;,12 Yi 12 , yg,u M(}Qilf yé,lz .
Y, = ylzll.,m + : + g{:'b‘l:% + ) Yoor | = Ui
Yi1234 Yp1234 Yi 1231 Yi1234 yilz:m yi.ucm
U,
Computer 1

local data transfers:
just access shared memory

(®)

Syfuo 0.12: Kotaveunuévn wop@y| Tov TEAEEWY amEXOVIOTS-OUUTOXNVOOTG, OTNV TERITTWoN
YELTOVIXMY UTIOPORERY Kol HETATOTUGEWY GTOUS X000 GUYOPLIXOUS [B.€.

ouuPBoiiCovtan pe to detxtn 7. O mivaxog duoxoudiog K*, To Bidvuoua UETATOTICEDY U’ xou TO
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| | |
LA L
['l (mn| I l'] Element edge
| L |- | =
Subdomain edge
nl m m |
[.I + +. I.] D Corner node
m m
| - el

Yyua 0.13: Optopodg ywvior@y xouBwy.

OLdvuoua Suvauewy f* xde urtogopéa s yweilovtal wg e&hg:

S __ KTS’T K';?C S ___ uf‘ S __ f?"'s
K‘LK@T Ksc]“‘{us} f_[ﬁ] (46)

Ou petatonioelg, mou avTioTOLYOUV GE GAOUG TOUC YWLOXOUS B.e. Toug xoOAXOU (QopEd,
CUYXEVTRPMVOVTOL GTO BIAVUOUA U, UE UHXOS .. H avtiotolynon yetald u. xon w) yiveton e
duadtxole mivoxeg LY mou €youv ototyeio 0, 1 ot Swotdoec (nf X n.), 6mov nf xat n, evo
70 TARYOC TV YVIOX®Y B.€. TOU UTOQOREN § Xal TOU XoJOAXOU QopE, avTicToLyaL.

s S
u, = Liu, (47)
Metd amd otatind) cUUTONVWOT TV LTOAOTKY B.€., To cuuTAfpnue Schur S?, v tov K7,

%dde uToQopéa XL To AVTIGTOLYO BIdVUCHA SUVANEWY 27 Elvor

Sgc - Kgc - (Ki(:)T(KiT)_lec (48)

s __ ps s\T s \—1 ps
zZ. = fc - (Krc) (Krr) fr (49)
r 7’ Ve 7 z 7’ 7
Eretto autol ot TUVAXEC oL &O(VUOP.TO( UTLOPOQEWY TEPOG’EL'BEVTO(L YL Vo TEO(pO(XﬂOUV o xodo-

Axo¢ yovioxog mivoxag duoxaudioc Se. xat 1o avtioToyo xoohxd BdvUoUL BUVIUENDY 2.

Ns Ns

S.=) (L)'S.Li=) (L) (K~ (K" (K;,)'K;,) L (50)

s=1 s=1
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Ns Ns

ze= Y (L)7z =Y (L))" (f: = (K3)T(K5) 7 £7) (51)

s=1 s=1
Me xatdhhnhn emAoy | TV Ywvioax®y x0uBwy, o tivaxag K eivor avtioteéduyioc. To apound
TeOBANUa 0ptleTon ¢ To axdAoudo Yeouuxd cLOTNUA

SCC . mc fr yc (52)

70 omofo AOVETOL YPNOUOTOLOVTOS dUECO ahyopLiuo, OTwe etvor 1 tapayoviomoinor Cholesky,
ool efvar TOAD uxedTERD Xan TEémel vor Aoveton Wla popd og xde enavdindr IIXK tou cuvo-
etoxol mpofiruatog. Ilpoxewévou va yetwdoly ol emavarrideic IIXK mou anutodvron yio t0
ouvopLoxd TeoPBAnua, 1 P-FETL-DP yenowonotel tov mpootadepononty

(Af) " = Ajy + A} ACAG,
Zi)e = Mbee ( re,b)T (Kfr)_l Nf,bWbe
o= (Ko (KG) ™ Ng + NGy )W (53)
po= (N2 — Mywy (Ng,)' (K5) ' KL,
AL, = LiSH(LY)”
6Tov

o W} elvau o avtiotpogog dlorymviou mivaxa, ta otovyelo Tou ontolou eivar oL TOAATAOGTNTES
TWY CLYVOPLAXMY [3.€. TOU UTOYOPEX. 5.

e N, elvon duadixde mivaxac(0, 1 we ototyela) pe dwotdoeic (n; X ny) mou ametxovilel
TOUG GLYOPLIXOUG B.E. EVOC UTIOPOREN GTOUC LTOAOLTIOUG B.. TOL (Blou UToYOoREa.

o NS, elvou duadixoc mivaxac(0, 1 we otowyeia) pe Swotdoeg (nd x nj) mou amexovilel

TOUG GLYOPLIXOUS [B.€. EVOS UTOPOREN GTOUS YrVLaXoUE [B.€. Tou {Blou uToPopEa.

e O TOMATAACLACUOS TOU AVTIOTEOPOU St Ue €va BLdvuoa ebvar LlooduVaUog Pe enthuc
TOU optoy TEOBAAUATOC.

FETI-DP

Y pédodo FETI-DP, ot undhoinot B.e. ywpllovtar nepetaipn g ecmtepols B.g., ol onolol
apopolV x6ufouc Tou avixouv ce éva Uovo utopopéa xou cLUBoAlovTal Ye To BelxTn @, xou
ouvoplaxolc-utdrottoug B.€., ot omofol cupfolilovton Ue To BeixTn b, xou AvVTIoTOLOUY OF
CLYOELIXOUS xOUBOUE o BEV elvon Ywwviaxol:

K7, = s o ] uf«Z{ s } 52[ s } 54
[ ( ¢b7.>T Ky, Uy, s be (54)
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H ouvéyen yetatonioewy YeTaE) TwV AmoCUVBEBEUEVLY UTOQOREWY amoxoicToTaL UE TNV
eQopuOYY) oUVITXOY GLUPBBACTOTNTAS Yo EUPAVIOELC TOU (Blou GUVOELIXOL B.€. OF BLUPOPETL-
%0U¢ uToopelc. AuTéC ol EELOWOEL GUYXEVTPWVOVTAL OE TPOCTUUCUEVOUS BUadIX0UE TiVaXES
B;, nou éyouv ototyeio pe twéc 0, 1, -1 xou dtaotdoelg (ny X ny), énou ny eivar o TAHdoC
e€lowoewy oLPBPBUCTOTNTIC Yo TOV XoOAXO Popéa Xt Ny 0 dEIUOC TwV UTOAOLTOWY [3.€.
TOU UTIOPOREX S:

> Biui=0 (55)
s=1
L —— —

77 ._T_). 7 ® internal

- — —_— ® boundary-remainder
3h DD Deme
G ¢ 9 % Lagrange multiplier

Yyfua 0.14: TodMamhactaotés Langrange egopuolduevol 6Toug ouvopLaxolec-UTdAOLToUS B.e.
TWV UTIOPOREWY.

[o vae Avdoly ot xadohixée e€lotoelc toopporiac Ku = f mapoucio aut®y Twv Teplopl-
ouwy, epopudlovtar Tolamiactactég Langrange A otoug ouvoplaxolg-undroitoug B.g., oTe
vo emPBAniel cufiBactétnTa YeTATOToEWY, OTIWS PaUiVETOL OTO Ty T|Uo . Ipénel var onueww-
Vel 6T oToug Ywvioolg B.e. Bev epapuolovion Tolarmiactactéc Langrange. Axololdwg, ol
eZlOWOELC IGOPPOTHOC YRAUPOVTOL (G

K:u® + K: Liu.+ (B3 X = f? (56)

rrr rcT—c



XXIX

Ns s

> (L)"(K —F}j.Ls (K3)"Liw; => (L)' f: (57)

s=1 s=1
Me xatdhhnhn emAoyn Twv yoviaxoy B.e., o tivaxag K, etvon avtiotpédiuog xou n eiowon

YEOUPETAL WG:
up = (K3,) 7 (f; = (BY)'A - K} Liu.) (58)

rc C

LOUQOVAL UE TNV XATAVEUNHEVY) OLUTUTILON) TOU TROTEVETAL oTNY Tapolo dLutelfr), xdie
nivaxag B (ny x ng) avuxadiotoron e €vay GhAho Tpoonuacuévo duadxd nivoxa C; (n3 X ny),
o omolog anewovilel Toug utdloitoug fB.. Tou UToGopER s oTouC ToAhamhaolacTéc Langrange
Tou uToopéa s, avtl va ameixovilel otoug xadolxole Tohhamhactactée Langrange, 6mwe o
mivaxag By, Emmpooietwg, nopduoia ue v P-FETI-DP, duadixol un mpoonuacuévol nivaxeg
M yenotponotodvon yior v ametxovioouv toug tolamhaotaotéc Langrange tou utogopé ¢
oToug mohhamiactacTtée Langrange tou unogopéa s. T'a Tov enextouévo gopéa:

M){l M)%Z . ‘2\4){71S
M)%l M)%Q . 12\4)%71S

M= . S . (59)
_]\4';\7131 M;\MQ . M;\lsns

Yuvouvdlovtac TiC eELOWOELS , , X0 YENOYOTOLWVTOS TOUG BLUAdLXOUE TiVaXES amEL-
xoviong Cr xon M, xotahyouue o€

(Flerr + FfrcAscFIecr))\e = d? - FIrcAe 2e (60>

CCC

OTOU

Ff,, = M{Ci(K,)™(C))"

Irr

Flrc - M)\eCf(Kfr)_lKﬁc

Fi, = K,(K;)7(Ch)" (61)
AL, = LS H(LY)"

d; = M{C:(KS,) ™ £

To yeauuxd chotnua tng eéicwong sivoa T0 cuvoptaxd TEOBANua Tne FETIT-DP xou Advetan
ue T pévodo IIXK. Mnopolue va nopatnericouue 6Tt o mivaxag A, Teptéyel 1o apond TpoBhnua
¢ FETI-DP. Agol huiel To cuvoplaxd mpdfinua xou Beedolv ot TES TwV TOAATAACLIOTMY
Lagrange A°, ot UETaTOTIOEC 0TOUC YwviooUg xou utohoitoug B.e. utoloyilovtal we

up = AL, (2 +

Icr

A%) (62)

up = (K7) 7 (F7 = (C)'X° — K ug) (63)

’I"C C
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Hpoxewévou va ehattwioly ol enavarfleg IIXK mou anwtodvron yio v entluor tou
ouvoploxoL tpoPAfjuatog, N FETI-DP yenotuonotel npoctadepomomnty| ue tnv axdroudn yevixn

HopYPT
e \—1 eve e Qe e e\T
(Fr,,)” = M Cy; Wy Sy, Wy (Cy) (64)
omou Wy elvan o avtiotpogog darywviou Tivaxa, Tou omolou ta oTowyEl TautilovTal Ue TIC TOA-
AAMAOTNTES TWY CUVORLIXOV-UToAOITWY .., xau C}  elvan oL othreg Tou C) Tou avTioToL 00V
0TOUC GLYOPLIXOVC-UTOAOLTOUE B.€. AVAAOYO UE TOV OPLOUO TOU Sy, UTopoLV va eZorydolv
oL axéhoudol TEoG TELOTONTEC:

e KfT.bT'—(beT)T(Kfi)_l %, mpootadeponomnthc Dirichlet

e
brbr

65
K; , Tpootadeponomntrc lumped (65)

O mpootadeponomtrc Dirichlet yonowonotel to mAvpec cuumAfipmue Schur Twv eowTepX®Y
B.€., emopéveg €yl UEYARDTEQO UTOAOYLOTIXG XOOTOC, OAAG 00NYElL OE AYOTERES EMAVONAPELS
II¥K, oe clyxpion pe tov npoctadeponointy| lumped.

MegUoool utoopEwyY Yia dLddooT pwyYUwy e EMIIX

Ov pedodor FETI-DP, P-FETI-DP avoamtOydnxay yia tpoBArjuoto unyovixis O GUVEYES UECO.
61600, ot YpowoTounyavixt| uio fj TEQIOCOTERES PWYUES BLadIdoVTAL OE EVaY ACUVEYY| POREX
xa xdmotol umogopelc unopel va téuvovian €€’ ohoxAfjpou ambd autég, omdTE oL avtioTolyol
nivaxeg K, yivovtaw un avtioteéduuor. Eva mapdderyuo goivetan oto oyrua [0.15, énou uia
EWYUT DLBIBETOL OF BIGOLICTATO GWUA Xl CAANAETILOPY UE TEELC UTOQOPELS, amd Toug omoloug
oL BV0 TEUVOVTUL TAHEWS ATO AUTHY.

O eumioutiopog tne EMIIY povtehornotel 1o dhpo Tou medlou petatontioewy ot pwyun,
elodyovtog aocuveyelc ouvapTroeic Bdong xan avtioToryoug eumhoutiopévou B.e. ‘Otav 1 pwy-
Un TEUVEL TAHOWS €Vay UTOQOREN S, Ol YROUUES Xat OTAREC Tou K7, Tou avTIoToLYoLY GTOug
eumhouTiopévoug B.g., yivovton yoauuixd eCopTtnuéves. Xe auThAv TNV TERITTWON, 0 UTOQOoREag
otanpe{ton ovolacTXd o BLO ETTAEOVTA ‘tw’]pocw/pnxawopobg, To. omofal xvolvTon aveldpTn-
o To €va omb 1o dhho, 6meg @oivetan oto oyfua [0.16] T va hudel to mpdBhnua tov un
avTo TEEduwy mvixwy K., mpotelveton 1 oxdroudn Swdiacio. Ilpwtov, mpocdopilovta ot
Yoouuxd e€aptnuéves Yeouués xou othieg Tou K72 evtorniCovtog toug avtiototyouc B.e. ‘Eotw
M, to chvoho twv cuvoplax®y B.€., Snhadr) Twv B.€. ToL avixouy ot 800 N TEPLOGOTEPOUS UTO-
popeic. Ov Heaviside eumhoutiopévol B.e. a; tng ediowong aviixouv 6To cLVoAo My, Ve
ot eumhovtiopévol P.e. by, Tou ElodyovToL YioL TNV TEMTN ouVdpTnon atyuic-pwyphc i oty
eZiowon (B1)), avixouv oto clvoho Myi. Av évog unogopéag téuvetan Thfpws omd pio peypA,
T61E oL B.g. moU avixouy oto oivoro My N (My UMp) elvon unedduvol yior tn poviehomnoin-
oY) TOU GAUITOC TOU TEDIOU UETUTOTICEWY XAl YLOL TNV AVATTULT ECOTEPLXMY UNYAVIOUDY OTOV

unogopéa. Av autol ot B.e. yivouv ywwiaxol B.e., TOTE aparpolvToL oL Yeouuxd eCUpTNUEVES
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Yyfuo 0.15: Buvopraxol xon yevioxol xépfol twv cuyfotixey pedodwy FETI-DP, P-FETI-
DP.

Yeoppéc/othkeg amd o K xan enavogépeton 1 ovuoteedydtnto. Av M g4 €lvor to obvolo
TV GLUPATIXWY B.E., TOTE 1) TEOTEWVOUEVY aAAayT) cuVICTATUL GTOY Xa)oPLOUG TOU GUVOAOU

M, =M 51q U (M, " Mp) U (M N M) (66)

xan TN yenon tou otoug emhlteg FETI-DP, P-FETI-DP ©¢ c0voho ywviaxav x0uPov, émewe
goiveton 670 oyAua [0.17), avti yia 10 oOvoho M gq. Autol ot cuvoplaxol B.e. petagépovta
oto untewo duoxoudlac K. tou unogopéa xo Tehxd 6To Xadohxd untewo duoxoudlac Se..
Me v mpoTevOUEVT UETATEOTY, OL UTOQORE(S UTOROUY Vo TEUvVOVTAL aUVAPETO O POYHES o
VOL ETUAEYOVTOL UE XQPLTARLO TNV EAXYLOTOTOINGOT] TV AMOUTHOEWY UVAUNG X0 TOUG UTOAOYLOTIXO00
YeOvVou.

Mo dhhn duoxohion otig avahboelg diddoong pwyuomy pe EMIIY eivon 1) xaxr| xotdo taom tov
Ty duoxaudiog, Aoye TNG onuavTixic dla@opds YETAC) TWV THOY TOU VIO TOLYOLY GTOUG
EUTAOUTIOUEVOUC OO GUVORTACELS ALYUAC-PWYUNS B.E. XUl TV TWOV TOU AvVTIGTOLYOUY GTOUG
oudPotixoig xar eumhoutiouevoug and Heaviside B.e. Xto nAduoto twv FETI-DP, P-FETI-DP,
1 XUTAOTAGT] TGV TUVEXWY ETBEAODVEL TNV ETAVUANTTIXY ETLAUCT] TV GUVORLIX®Y TEOBANUATODY
xat ot oupPatxol TEocTAdEPOTOMNTES TWV TUEATEVEL EMAUTMY OEV ETOEXOVY Yid Vo U0l
ot enavariferc. Emouévee mpotelveton 1 e€AC UETATEOTH Yol Vo AUAELPEL 1) xaxh| xoTdo To-
on. 'Eotw Mgm, m = 1,---4 10 cOvoho twv b]' B.e. mou ciodyoviar yia xdec cuvdpTtnon
auyUhc-pwyUnc tne edlowaong . Ot 6pot Tou TEOXAAODY XKUY HATACTACT) TOU GLVOELAXOD
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Yo 0.16: Emmiéovto TUAROTA TWV UTOPORERY TOU TEUVOVTOL TARKS ATt T1) peYUY.

TpoPAUATOS avToToL oY 6Toug fB.e. Tou avAxouv oto cbvoho My N Migm, m = 1,---4. H
TEOTEWVOUEVY TEYVIXT| AVTIIETOTILEL auTo0C TOuC B.€. WC YOWLOXOUS, 0TS QPUiVETOL GTO Oy A
7 BehTiwvovTag €T0L TNV ovoTNTOL ToU oipao TeoAfuaToc Tne e&lomaong , VoL OLOVENEL
T0 oAU PETOCD TV UToQoREwY ot xdie emavdindn g IIXK. Etol o tpoctaieponointric
¢ P-FETI-DP pnopel va avtyetwnioet tnv xoxr xatdotacn Aoyw euniovtiopol EMIIY, o-
oV mepiéyel To opatd TedBAnua. Iapdtt o tpoctadeponoimntric tng FETI-DP 6ev oyetileton pe
yovioxoOg B.e. ot 0ev enneedletal and auTY| TNV PETATEOTH, 0 OeixTng xuTdoToong Tou Tivoxa
ToU cuvoploaxol TpolAuatoc Fr,, + F., .S 'Fy,., Behtidvetan, emedn o) to opond TEOBANU
ouunepthopfdveton ancudeiag oe auTéV TOV Voo xou B) ol mpofBAnuaTtixol B.e. TOU GUVOAOU
M, N Mgm, m = 1,---4 agapodvton and autov. Aoufdvoviag umodn TG YETATEOTY YLoL Vol
amogedyovtal un avtioteéduuorl K mivoxeg, ot mpotevopevol FETI-DP, P-FETI-DP emi(teg
YPNOYLoTOoL0Y T0 GUVOLO

4

M, = ML sq U (M, N M) U (M, N Mzm) (67)
0¢ Yoviaxolg B.e. Xwplc auth T yetatpom), ol eniuayes uedodol UToPoREwy TapEoLaldlouy o
HovTLiX aOENoT OTIC ETAVOAAPELS TTOU OmOUTOUVTOL VLol GUYXALGT]. MTol aptdunTixd Topadely oo
Topotneeiton adEnomn we xon 245%. Xpnowonowwvtoag Ty e&lonon Y10 OPLOUO TWV YOVLO-
%V B.e., eagaviCeton TARpw 1 xoxn xatdotaoTn Aoyw EMIIY xou ot mpotewvépevor FETI-DP,
P-FETI-DP emhutov otopgatody va ebvon evadointol oty U€omn xon twv aprdud twy eumhou-
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Yo 0.17: Ov cuvoploxol xoufol mou eumhoutiCovton pe ouvapthoelc Heaviside xon owyunic-
PWYUNS, METUTEETOVTAL GE YVIOX0UE, Yo Vol amopeuyYoly urn avtioteédipol mivoxeg K. otic
FETI-DP, P-FETI-DP.

TIOUEVWY xouBwy. Emmiéov, amogelyovtag tny addnomn twv emavaridewy, armoxadioToton 1
xhpoxoowotnta twv FETI-DP, P-FETI-DP, onAad? ot emavirieic peivoviar 66o auédvo-
VIO OL UTOQORELS. AUTO ETITEENEL TNV UAOTOINOT TWV TEOTEWVOUEVGLY ETIAUTGY OF TEPYBEAAOVTA
XOUTAVEUNUEVNC UVAUNG, OTIOU 1) UTOAOYLO TiXT Loy Ug xat 1) Slard€aydn uviun uropolyv va auédvo-
vtow owdalpeta, amAd mpooUétoviag véoug umoroyiotéc. H wavdtntor vo avartidevton mohhot
uToQOEElg ot Ghoug Toug Bladéotuoug emelepyaoTéS, Ywplc va auidvovtar o emavalfle yia
oUYXALOT), elvol amaEalTNTN Yo TNV EXUETAAAEUCT) TWV CUCTNUATODY XATUVEUNUEVNS UVAUNG %ol
%010 Td TOUG TPOTEWOUEVOUG ETUAVTEG TOAY EAXUG TWO0S Yio TNV ETUALOT TEOBANUATOY UEYIANG
xhfpanoc.

Yy tepintwon Poduprc duddoong pwyuoy ue EMIIY, 6tou Alya pdvo ototyelor twv mvidxwy
ovoxaudlag arhdlouv and To €va Briua oTo enduEvo, elvar duvaty| TepeTalpw Behtiwon anddoong
elvar. AuTd T oTOLYEL AVTIOTOLYOVY OE EUTAOUTIONEVOUS [B.€. XOVTA OTO UETWTO TNG PWYUNS,
ouvyxexpyéva B.e. Heaviside xan awyuric-pwyuric mou elcdyovion oto Teeyov Brua diddoorg,
xadog xou e, anyuric-pwyunc mou etyav couydel oto mponyoluevo Brua, ahhd cTo TEEYOV
agotpolvTal. Mtoug tpotewvouevoug emthiteg FETI-DP, P-FETI-DP colepc, molhol utogopeic
0EV AAANAETLOPOLY UE TO PETWTO TNE PwYUNS ot xdle Briua Biddoone. Ltny mepintworn auty,
olou oL avtioTotyol Tivaxeg, SLavVOoUOTA ot AOLTd DEDOUEVIL TWV UTOPOREMY TUPAUEVOUY (BLol Ue
7o TeheuTalo Briua mou dAhagay xar umopolv vo emavaypenotpononioly. Emlong, mpoteiveto
€00 plar TeY VXY emavapyLxonoinong yio T cuvoplaxd meofBiAuata twv FETI-DP, P-FETI-DP,
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TEOXEWEVOUY Vo UEIWDOUY oL ETaVOAAPELS. BUYREXPWEVD, XUTd TNV ETIAUCT TOU GUVOELIXOU
mpoPAiuatoc tne P-FETI-DP, ypewdleton puor apy ) extiunon tou dtaviopotog hiong wy, yio
v Teo T emaveAndm IIXK. Yto npwto Briwa Siddoong, we apy x| extiunon yenottonoleitor o
UNOEVIXO DLdVUGUX ﬁizo = 0. 'Ectw u,t) 1 A0oT TOUC GLYOELIXOL TEOBAYUNTOC XoTd To Briue ¢

UZ = [ uitd uy  uh ] (68)

6mou ul,, etvor ot uetatoTioelg oToug cuuPBatixois B.e., u}; otouc Heaviside cuvopLaxoUg [B.€.
xou uk. 6Toug ouvoploxolg fB.e. ayunc-pwypunc. Tote ol petatornioelc otoug oupPatinois xou
Heaviside B.c. unopolv va yenowwonomdoly we apyixr| extiunon tne Adong tou enduevou
Bruatog diddoong

w = Al ah uhg ull =l uh 0 0] (69)
OTOoU ﬁgll avTioToryoLy otouc Heaviside cuvoplaxoic B.€. mou undpyouy xotd tor Bruota t xan
t+1, evod alfy avtiotoryoly otouc Heaviside cuvoptaxotc B.e. mou mpootidevton xotd o B
t+ 1. Avtideto, To alfy xon @i avtiotoyodv oe B.e. mou dev ebvon TopdVTEC X0Td TO PR T,
onote 1) apywxr extiunon yio autolg etvan 0. Tlopoduota teyviny| enavapytxomoinorg tpoteiveton
yioo Ty FETI-DP, émou to cuvoptaxd mpofinua expedletoar oe dpoug tolhamhaolactey La-
grange, Tou £@apuolovIoL GTOU GUVORLAXOUG-UTOAOITOUC B.€., avTl Yot GAOUC TOUS GUYORLIXOUC
B.e. otnv P-FETI-DP. Xnowonowwvtog tnv e&iowon , ONOL OL EUTTAOUTIGUEVOL GUVOELAXO(-
uTohoLToL [B.€.  UETAUTEETNOVIOL OE YWVLIXOUG, EMOUEVKS Ol avTioTolyol Ttohhaniactactég La-
grange a@otpolvTal. AuTo BLEXVOADVEL TNV TEYVIXT ETOVORYIXOTOMOTNS, 0pol eCacpolilel OTL
T0 cuvoptaxd TEOPBANua g FETI-DP euniéxer uévo ocupPatinols ouvoplaxoic-undhotnoug
B.c., ot omolel elvan (Blor oe Gha Tor BridorTa BLddooNne e pwyurhc. ‘Etol to cuvokixd didvu-
opo Aoong xatd eva Brjua dudidoong unopel va enavayenotuotomidel wg apyinr| extiunom yio to
enduevo Brjua

Xt-i—l _ At (70)

Lo apriunTnd mopadelypota TG Topolous SLTEYSHC, 1) TEYVIXY| ETOVIQYIXOTOINO TS UTopEl
va ehattwoettig enovaiigee IIXK xatd 40% v ) P-FETI-DP »o 37% vy ) FETI-DP.
Y€ CLYOLAOUO UE TNV ETUVOLYPTOYLOTOINGOT) TVAXWY X0l DEBOUEVLY TWY UTOPOREWY ATt TEOT)-
youueva Bruata, o yedvog mou amonteiton Yo entlvon uropel vor petwdel xotd 50% xon yuar Tic
oLo uedodouc.
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Chapter 1

Introduction

1.1 XFEM for modeling heat transfer in
nanocomposite materials

The development of polymer materials with high thermal conductivity is of great interest to
many industrial sectors, including chemical, construction, electronics, automotive, aerospace
and energy industries. As most polymers are thermal insulators, it is necessary to add ther-
mally conductive fillers in order to improve their thermal properties. Towards this direction,
carbon-based nanomaterials such as graphene (G), graphite (GRF) and carbon nanotubes
(CNTs), stand out as ideal candidates for inclusions in reinforced composites (RCs) due to
their extraordinary thermal conductivity. In particular, CNTs are expected by the scientific
community to have the highest thermal conductivity amongst conductive materials (Che
et al., [2017; H. Chen et al., |2016), reaching thermal conductivity values between 2000-6000
Wm~tK~!, which is higher than diamond, graphite and carbon-fibers (Berber et al., 2000
Hussain et al., 2017; W.-b. Zhang et al., 2015).

Based on the above, several authors postulated that CNTs can make a polymer nanocom-
posite thermally conductive (Ajorloo et al., 2019; Liao et al., 2015; G. Zhang et al., 2010)),
provided that these are properly aligned. However, experimental investigations showed that
by adding CNTs to polymers, the increase in the effective conductivity of the composite is
significantly below theoretical expectations (Gojny et al., 2006; Konstantopoulos et al., 2021}
Moisala et al., 2006; Xie, 2007; Yunsheng et al., 2006|). This discrepancy between theoretical
predictions and experimental measurements can be explained by the interface thermal con-
ductivity or conductance (Chalopin et al., [2009; Marcos-Gdémez et al., 2010; Yvonnet et al.,
2011)), which is a phenomenological parameter used for modeling imperfect interfaces. The
impact of imperfect interfaces in the effective conductivity of CNT reinforced composites,
has also been investigated in several simulations using finite element methods (Kaminski &
Ostrowski, [2021) or atomistic approaches (Carlborg et al., [2008; Kumar & Murthy, 2009;
Saha & Shi, |2007; Zhong & Lukes, 2006), which reported very low conductance (equivalently,
high resistivity) values, mostly attributed to the phonon scattering mechanism arising at the
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interfaces between CNTs and the surrounding polymer matrices (Marconnet et al., 2013)).

This ‘in silico” characterization of heterogeneous composite materials is becoming more
and more accessible nowadays, with the increase in computational resources. Simulation-
based material design can efficiently replace the experimental procedure and, thus, minimize
the required time and cost for the development of new materials with desirable target prop-
erties. On the downside, accurately modeling the behavior of such materials is a very chal-
lenging computational mechanics problem due to the complexity of the physical phenomena
arising in multiple scales (nano-, micro-, macroscale) and the uncertainties in the material
parameters and microstructural geometry.

When working with composite materials, effective properties are usually pursued by ho-
mogenizing their physical properties in some volume average quantities. Based on a known
topology of the composite’s microstructure and the physical-mechanical properties of its
components, effective properties are usually extracted either analytically, using formulas, or
numerically, using modern computational tools. Analytical solutions are mostly limited to
simplified cases with ideal geometries, while numerical methods can handle more complex
and realistic cases. A key concept in the numerical analysis of composite materials is the
representative volume element (RVE), which is the smallest volume over which a measure-
ment can be made that will yield a value representative of the whole. Typically, the behavior
of RVEs is estimated using the finite element method (FEM) and through the process of
homogenization (Geers et al., 2010; Miehe & Koch, [2002)), the macroscopic properties of the
composite material are obtained. This generic approach is applicable to all types of mate-
rial characterization, thermal (Wu et al., 2013), mechanical (Papadopoulos & Impraimakis,
2017)) and electrical (Seidel & Puydupin-Jamin, 2011)).

In the framework of FEM, the process of generating RVEs of multi-phase heterogeneous
materials relies on the use of advanced mesh generators to design the mesh around the
different phases. In this case, the finite element mesh is generated such that the element
boundaries have to conform to the geometry of the interface between the phases. This ap-
proach is often time consuming and difficult to improve. More importantly, it leads to an
excessive number of elements, since such conforming meshes need significant refinement to
accurately discretize the inclusion geometries, especially the more complex ones, which intro-
duces additional mesh sensitivity issues and leads to a substantial increase in the computing
cost of the FEM analysis. In addition, the zones, where two or more phases are in contact, re-
quire appropriate surface elements to capture their interaction. For instance, cohesive zones
(Papadopoulos et al., 2017; Savvas & Papadopoulos, 2014), coherent interfaces with surface
energy effects (Yvonnet et al., 2008) and equivalent eigenstrains for a coating layer at the
interfaces (Benvenuti, 2014) are introduced for mechanical interaction. Similarly, conductive
heat transfer across the boundaries of the phases exhibiting Kapitza thermal resistance is
modeled in Yvonnet et al. (2011). To address these limitations of FEM, several automatic
mesh generation techniques have been developed (Golias & Dutton, 1997; Talischi et al.,
2012; Y. Zhang et al., [2010), but they could still face significant challenges for complex
microstructural topologies.

The first half of this dissertation focuses on simulating conductive heat transfer in het-
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erogenous multi-phase materials with complex microstructural topologies, using the extended
finite element method (XFEM). XFEM was originally developed by Belytschko and Black
(1999) and Daux et al. (2000) in an effort to remedy the meshing issues posed by FEM
in crack propagation analysis, but has also been successfully applied to problems involving
material interfaces (Beese et al., [2018; Moés et al., 2003; Sukumar et al., 2001). Moreover,
XFEM is particularly suitable for problems requiring repeated simulations for different real-
izations of the RVE’s microstructure, since there is no need to generate a new finite element
mesh at each simulation (Savvas et al., 2014). In the applications investigated in this dis-
sertation, the interactions between different material phases must be modelled, as well as
the existence of interfacial resistance at their boundaries, which produces discontinuities in
the temperature field. To this end, an XFEM formulation is developed in two publications:
Bakalakos et al. (2020)) and Bakalakos et al. (2022)), with a novel enrichment strategy and an
efficient implicit representation of the complex microstucture of a composite material’s RVE.
Even though the proposed method is demonstrated in heat conduction problems, it can be
straightforwardly extended to other similar type problems, such us electrical conduction or
elasticity problems with cohesive interfaces.

The proposed methodology offers a series of advantages over traditional FEM modeling.
First, it does not require advanced mesh generators and complex refined meshes, since it em-
ploys a simple and coarse, thus cost-efficient, mesh for XFEM, while the complex geometry
of the material interfaces is represented with the Level Set Method (LSM) on a second mesh
that is much finer and related to the coarse XFEM mesh. LSM is an implicit method to
describe curves and geometries, which was developed in Osher and Sethian (1988) and first
used in conjuction with XFEM in Stolarska et al. (2001) and Sukumar et al. (2001). The
double-mesh approach adopted in this dissertation allows high accuracy in the representation
of inclusions with arbitrarily complex 2D and 3D geometries, without increasing the com-
puting cost of XFEM analysis. Furthermore, the discontinuities in the temperature field are
captured via appropriate enrichment functions used in the XFEM approximation, instead
of using specialized surface boundary elements, and different interfacial resistances can be
assigned to all phase surfaces that are in contact. Similar approaches to treat boundary in-
teractions in the context of XFEM can be found in Yvonnet et al. (2011), where the Kapitza
thermal resistance at a simple interface between two materials was modeled. Also, Bansal
et al. (2019) investigates the case of multiple inclusions which interact with the matrix but
not with each other. Extending previous approaches, in this research, a novel XFEM enrich-
ment scheme is developed for the case of junctions, that is, areas where multiple boundaries
with different interface resistance intersect.

Moreover, another property of CNTs is that they act as heterogeneous nucleating agents
for polymer crystallizing along the interface. This induces the formation of a transcrystalline
layer that surrounds the CNT in a process known as CNT-induced polymer crystallization (S.
Zhang et al., 2008). This layer has improved thermal properties compared to the amorphous
polymer, which affects the overall thermal conductivity of the composite. On the other hand,
its formation is associated with great uncertainties regarding its shape around the individual
CNTs. Therefore, modeling heat transmission between CNTs and surrounding matrix by
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employing imperfect interfaces with equivalent conductance that takes into account this
phenomenon is an alternative, reasonably reliable approach.

Due to the aforementioned complexities, interfacial thermal conductance cannot be ac-
curately predicted through experimental setups or numerical models based on methods of
molecular dynamics. In this dissertation, the conductance of the interface between CNTS
and the polymer matrix is treated as a model parameter and its value is inferred based on
experimental measurements of other directly measurable quantities. The general premise
behind model parameter identification is to calibrate the parameters of a detailed numerical
model so as to agree with experimental measurements. This approach has been extensively
used for the purposes of material characterization to identify the values of parameters that
are not directly observable (Bogdanor et al., 2015; Bogdanor et al., 2013; Pyrialakos et al.,
2021; Savvas et al., |[2020). For instance, in Pyrialakos et al. (2021) the mechanical interac-
tions properties between polymers and CNTs at the microscopic level were obtained, based
on deformation measurements of macroscopic structures comprised of the CNT-reinforced
polymer. In this dissertation, the focus is on modeling heat transfer in CNT-reinforced
polyethylene (PE), and the unknown value of the interfacial conductance is calibrated using
the experimental results on the effective conductivity of the reinforced composites provided
by Konstantopoulos et al. (2021)). Once the value of the interface conductance is inferred, the
data-informed model is then employed for the investigation of optimal CNT configurations
in the parent material that will provide upper bounds on the effective thermal conductivity
CNT-reinforced polymers can achieve.

1.2 XFEM for crack propagation analysis in high
performance environments

The extended finite element method used so far was actually originally developed by Be-
lytschko and Black (1999) and Moés et al. (1999)) for analyzing brittle crack propagation in
2D problems. In this context, the polynomial approximation space of XFEM is enriched with
problem specific functions, in order to accurately model the discontinuous displacement field
and the singular strain/stress field around a crack. These enriched basis functions correspond
to additional degrees of freedom (DOFs), which are introduced around a crack and are called
enriched DOFs to differentiate from the standard DOFs that express nodal displacements.
As elaborated in Moés et al. (1999), the mesh is independent from the crack geometry and
does not have to conform to it. Thus, simple structured or unstructured meshes can be used
without the need of remeshing, whenever the crack grows, and mapping the displacement
field between the old and new meshes, which would result in lower accuracy.

Ever since, XFEM has become one of the most popular methods to simulate fracture
phenomena, with brittle as well as cohesive (Moés & Belytschko, [2002) or plastic (Elgued;j
et al., [2006)) material behavior and even thermo-mechanical coupling (Duflot,|2008)). Branch-
ing and intersecting cracks can also be modeled with the addition of specialized enrichment
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functions Daux et al. (2000)). Apart from crack propagation, with the selection of appro-
priate, problem-specific enrichment functions, XFEM has been extended to a wide range
of applications, such as modeling composite materials, as discussed in the previous para-
graphs, fluid-structure interaction (Gerstenberger & Wall, 2008), contact problems (Khoei
et al., 2009)), topology optimization (Abdi et al., [2017; Villanueva & Maute, 2014)), where it
can produce efficient structures without requiring very fine meshes, and probabilistic shape
optimization (Georgioudakis et al., [2017)).

XFEM is almost always coupled with the Level Set Method (LSM) for representing the
geometry of discontinuities, such as cracks or material interfaces. LSM was originally pro-
posed by Osher and Sethian (1988)) in order to implicitly describe moving curves or surfaces
as the zero contour of a signed distance function (distance of points to the curve/surface),
evaluated over a fixed mesh. This approach can be naturally combined with XFEM, since it
uses the same mesh to determine which elements and nodes interact with the discontinuities,
as well as providing a very efficient way to determine on which side of the discontinuity an ar-
bitrary point lies. The first combination of XFEM and LSM was developed in Stolarska and
Chopp (2003)) for simple 2D cracks, but has since been extended to 3D problems (Gravouil
et al., 2002). A number of improvements have emerged, such as the fast marching method
(Chopp & Sukumar, 2003) and the vector level set (Ventura et al., 2003). Last but not least,
Fries and Baydoun (2012) propose a hybrid implicit-explicit approach, to combine both the
straightforward update of an explicit crack description and the compatibility of an implicit
description with XFEM, while treating both 2D and 3D cracks in a consistent manner.

Despite its general success, XFEM has certain shortcomings, especially with regards to
the solution of the resulting linear systems of equations. The local enrichment scheme of
XFEM introduces additional DOF's only around a crack, which avoids redundantly increasing
the size of the resulting linear system. However, the enriched basis functions, particularly
those introduced to model the singular strain/stress field around the crack front, cause the
stiffness matrix to become very ill-conditioned. Therefore, iterative solvers exhibit slow
convergence for crack propagation problems. Although direct solvers are not affected as
much from this ill-conditioning, they are inefficient in 3D problems, where the bandwidth
of the stiffness matrix is much higher, resulting in dramatically increased time and memory
required for factorizing it. In order to address the need for solvers that can efficiently solve
linear systems resulting from XFEM, various specialized solvers have been developed.

Bechet et al. (2005) developed a preconditioning scheme, based on the Cholesky decom-
position of certain node-level submatrices of the global stiffness matrix. This preconditioner
can then be used to improve the convergence rate of standard iterative solvers and is indepen-
dent from the type of enrichment function used. Similarly, in Lang et al. (2014), a low-cost
geometric preconditioner constructed from the nodal basis functions is proposed to eliminate
the ill-conditioning caused by the Heaviside enrichment in problems with material interfaces.
As far as direct solvers are concerned, Pais et al. (2012)) implemented an exact reanalysis
Cholesky solver which updates the factorized matrix at each crack propagation step, instead
of rebuilding and refactorizing at the global level. Another reanalysis-type algorithm is fea-
tured in Feng and Han (2019)), where the transfer operations of a geometric multigrid solver
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are established at the beginning of the analysis and then reused at each crack propagation
step. The method presented in Gravouil et al. (2008]) was also based on geometric multigrid,
but added finer mesh patches around small cracks. Moreover, the algebraic multigrid solver
of Hiriyur et al. (2012) modifies the sparsity pattern of the prolongator operator to prevent
interpolation across cracks. In contrast, Gerstenberger and Tuminaro (2013) introduced a
simple modification of algebraic multigrid, in order to use black-box AMG software.

Domain decomposition methods (DDM) are widely considered as the most computation-
ally efficient solvers for large-scale problems, particularly in parallel computing architectures.
The first DDM for XFEM crack propagation was proposed in Wyart et al. (2008) with
the aim of reusing existing FEM software for problems with small isolated cracks, rather
than developing a high performance solver for demanding problems with cracks propagating
throughout the whole domain. This technique was based on the FETI method (Farhat &
Roux, |1991)), using only two subdomains, a large uncracked subdomain, assigned to a general
purpose FEM software and a smaller subdomain, located around a crack which is modelled
with XFEM. A more performance-oriented approach was proposed by Menk and Bordas
(2011)), where the domain was separated into one subdomain containing all standard DOFs
and multiple subdomains containing the enriched ones. Cholesky factorization was applied
to stiffness matrices of enriched subdomains and QR factorization to matrices connecting
them with the large monolithic subdomain with standard DOFs. The resulting DD matrix
was used as a preconditioner, which was effective at reducing the number of iterations in 2D
problems, but did not scale well, since the convergence rate decreased when increasing the
number of subdomains.

Furthermore, Waisman and Berger-Vergiat (2013) implemented a multiplicative Schwarz
domain decomposition preconditioner to accelerate the convergence of a generalized min-
imum residual solver in 2D problems. The domain was partitioned into one uncracked
subdomain, which was treated with an algebraic multigrid approach, and many smaller sub-
domains defined around cracks, which were concurrently solved with direct methods. A
similar approach for 2D crack propagation problems was presented by X. Chen and Cai
(2022), where the preconditioner was based on an additive Schwarz DD solver. This method
used LU factorization for subdomains with enriched DOFs and incomplete LU for subdo-
mains with standard DOFs. Even though the cracked subdomains were still dependent on
the locations of cracks, multiple uncracked subdomains could be used. Neither Waisman
and Berger-Vergiat (2013) nor X. Chen and Cai (2022)) scaled well with the number of sub-
domains, since by increasing the subdomains, an increase on the required iterations was
observed.

In this dissertation, the modification of two well-established domain decomposition solvers,
namely the FETI-DP (Farhat et al.,[2000) and P-FETI-DP (Fragakis & Papadrakakis, 2003),
is proposed in order to solve the linear systems resulting from 3D XFEM crack propagation
analysis. Instead of decomposing the domain into cracked and uncracked subdomains, the
domain is partitioned into an arbitrary number of load-balanced subdomains, independently
from the location of cracks, while treating both standard and enriched DOFs consistently.
The customizable coarse problem of FETI-DP and P-FETI-DP enables the introduction of
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XFEM-specific modifications that eliminate the ill-conditioning caused by the enrichment
functions, as well as any singularities that the cracks may induce as they propagate through-
out subdomains. The reduced bandwidth of subdomain-level stiffness matrices, afforded by
the flexible partitioning, results in a drastic decrease of computing time and memory require-
ments for solving large-scale 3D crack propagation problems. Furthermore, the subdomain-
level matrices and the linear system solution of one crack propagation step are reused, in
order to reduce the computing effort and iterations of the next step. In contrast to all previ-
ous DDM implementations for XFEM crack propagation, the solvers proposed in this work
exhibit excellent numerical scalability, when increasing the number of subdomains.

This scalability is essential for efficiently implementing them in modern high perfor-
mance computing environments, where the available memory and processing power can be
arbitrarily increased by including additional multicore CPUs and GPUs in distributed mem-
ory systems. In order to take advantage of these computer clusters, this dissertation modifies
the equations of the original FETI-DP and P-FETI-DP methods, altering the communica-
tion pattern between subdomains. Specifically, algebraic operations, involving matrices and
vectors that contain terms from all subdomains, are replaced with equivalent operations
between neighboring subdomains only. As a result, memory transfers are minimized and
distributed evenly across the network of processors, while global operations, which require
a centralized processor to gather and process data from all subdomains, thus becoming a
possible bottleneck, are avoided.

1.3 Outline

Besides this introductory chapter, the rest of this dissertation is organized in 6 chapters,
outlined as follows:

Chapter [2| presents the proposed XFEM methodology for simulating conductive heat
transfer in composites with complex geometries. After presenting the boundary value prob-
lem of heat transfer, the procedure of traditional FEM is explained, along with its limitations.
Then XFEM is used to solve this problem, with simple non-conforming meshes, while tak-
ing into account the thermal resistance of interfaces between different material phases. The
novel enrichment strategy to capture the discontinuous temperature field near junctions of
3 or more material phases is elaborated and the final algebraic equations of XFEM are ex-
tracted. Special attention has been given to the numerical integration in this discontinuous
medium, as well as along the material interfaces. Finally, an LSM variation that uses a ded-
icated mesh for geometric operations is developed, in order to achieve the desired accuracy
in representing material interfaces, without increasing the computational cost of XFEM.

Chapter |3| presents a series of numerical applications, where the methodology of chapter
is employed. Initially, the method of computational homogenization is presented to extract
the macroscopic conductivity from a micro-scale RVE. Then, the proposed XFEM-based
numerical model is validated against FEM in a synthetic benchmark and against existing
results from the literature on heat conduction in multigrain materials. Specifically, poly-
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crystalline silicene is studied, a material consisting of many silicene crystallites (grains) of
varying size and orientation. Subsequently the proposed formulation is applied to the more
demanding case of estimating the effective conductivity of a polymeric material reinforced
with carbon nanotubes. The effect of the thermal conductance of interfaces between dif-
ferent materials on the effective thermal conductivity of the material is investigated in 2D
and 3D problems. Moreover, the unknown values of the parameters of the numerical model
are calibrated using experimental measurements in polyethylene-CNT nanocomposites and
optimal CNT configurations that maximize thermal conductivity are sought.

Chapter 4| reviews crack propagation analysis in the framework of XFEM. The strong
and weak form of the boundary value problem are posed and the problem-specific Heaviside
and crack-tip enrichment functions, used in the XFEM formulation, are described. A hybrid
explicit-implicit method for representing 2D and 3D cracks, which was proposed in Fries and
Baydoun (2012)), is explained and then some modifications are introduced, in order to make
it more robust. Finally, two alternative ways to predict the crack propagation path, after
the XFEM solution of each step, are examined.

Chapter |p|is concerned with algorithms used to solve the systems of algebraic equations
resulting from FEM and XFEM analysis. First, well-established solvers developed for FEM
are reviewed. These belong to three categories: direct solvers, iterative solvers and domain
decomposition methods (DDM). Then DMM solvers, based on FETI-DP and P-FETI-DP,
are proposed for the linear systems resulting from crack propagation analysis in the frame-
work of XFEM. The problem-specific difficulties, namely singular matrices in subdomains
intersected by cracks and severe ill-conditioning due to the XFEM enrichment, are eliminated
by introducing appropriate modifications to the coarse problem of FETI-DP and P-FETI-
DP. Furthermore, optimizations with respect to the computing cost and convergence rate
are proposed, by reusing computations and solutions of one propagation step to improve
the performance of the solvers in the next steps. Moreover, an efficient implementation of
the proposed FETI-DP and P-FETI-DP solvers is developed for computer clusters, where
multiple computers, each with its own processors and memory, cooperate over a network to
solve a common problem. Specifically, the original equations of both solvers are altered to
reduce data transfers between computers, which host subsets of the total subdomains, and
avoid possible bottlenecks, such as global operations.

Chapter [6] investigates the performance of the proposed solvers in 3D crack propagation
applications and compares them to optimized direct and iterative solvers, as well as a solver
developed specifically for XFEM crack propagation. These comparisons are performed using
a single computer with a multicore CPU and fully parallel execution of each solver. The
results justify that the proposed solvers are significantly more efficient in all cases and that
they scale well as the number of subdomains is increased. Finally, the performance and
parallel scalability of the proposed FETI-DP and P-FETI-DP solvers, when executed on a
computer cluster, are investigated.

Chapter [7] presents a summary of the contributions of this research. Lastly, Appendix
[A] reviews some of the basics of FEM, needed to fully comprehend the proposed XFEM
methodology of chapter [2]



Chapter 2

XFEM for composites

2.1 Heat transfer analysis with FEM

Before investigating how to model the thermal behaviour of composite materials, this sec-
tion reviews the basic principles of heat transfer analysis with the standard Finite Element
Method (FEM), when there is only one homogeneous material.

2.1.1 The boundary value problem

00,

00,

Figure 2.1: Heat transfer in domain with a single material phase

Let €2 be the domain of a body composed of a single material and 0f2 its boundary, as
illustrated in figure 2.1 The external boundary 02 has an outward normal vector n and is
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divided into complementary parts 92z and 0€),, such that 02 = 9Qr U 0€),. Dirichlet and
Neumann boundary conditions are applied respectively on 92y and 02,

T=T on 0y,

2.1
qg-n=—q, ondf), (2.1)

where 7" = T () is the (scalar) temperature field and ¢ = g (x) is the heat flux vector
field, T is the temperature prescribed at the boundary 9§y and is the surface heat flux
prescribed at the boundary 0€2,. In the general case of an anisotropic material, the thermal
conductivity k is a second order tensor with 4 components in 2D problems

kvw k
k=1 ™ " } 2.2
[ Koy Kyy (22
and 9 components in 3D problems
kzx k:py kmz
k= | ky kyy ky. (2.3)
kmz kyz kzz

According to the reciprocity relation derived from the Onsagar’s principle of thermodynamics
of irreversible processes (Ozisik, 1993), the conductivity tensor is symmetric, thus k,, = ky,,
ky. = k.2, ky. = k. The constitutive relation between the temperature and heat flux in
the interior of €2, which is also called Fourier’s law, is defined as

q(x) = —k(x) VT () (2.4)
For a given heat source r (x), the steady-state equation governing the temperature field in
the interior of ) is the Poisson’s equation, namely the following elliptic partial differential
equation
V-q(z)=r(z) (2.5)
where V - q (x) is the divergence of the heat flux field. By combining the Poisson equation
(2.5) with the boundary conditions of equation and constitutive relation of equation
, the boundary value problem (BVP) of steady-state heat transfer can be posed as: “Find
a function T (x) for the temperature field, so that the following equations are satisfied:”.

V.g=r inQ
q=—-k-VT
T=T ondQr (2.6)

qg-n=—q, onodl,
or equivalently
kE-V2T+r=0 inQ

T=T on (2.7)
g-n=—q, ond,
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2.1.2 Weak form

The system in equation is known as the strong form of the BVP and it requires the
solution scalar field to be at least two times continuously differentiable, namely T € C?(Q).
This condition can be relaxed by using a variational formulation of the BVP, referred to as
the weak form, which conveniently incorporates the boundary conditions in the differential
equation. Let the function space of admissible temperature fields (trial function space) be

D={T:T =T on dr} (2.8)
Also define the function space of weighting functions (test function space) as
W = {07 : 6T =0 on 0Qr} (2.9)

The weak form of the BVP is then posed as: “Find a trial function 7" € D, such that for all
test functions 07 € W the following integral equation holds:”

/VéT-k-VTdQ:/éTrdQ+/ 5T G dT =0 (2.10)
Q Q 0y

The weak form can be derived from the strong form. Assume that the solution is one of
the trial functions 7' € D. By multiplying both sides of the Poisson equation (2.5 with an
arbitrary test function 67 € W and integrating over {2 we obtain

V-q:r<:>/5TV-qu:/5TrdQ (2.11)
Q Q
Applying the product rule of differentiation

/v-(aT q)dQ — / VoT - qdQ = / 5T r dQ (2.12)
Q Q Q

At this point, let’s state the Divergence theorem: Given a continuous domain €2, with external
boundary 952, outwards normal vector n on the boundary and a continuous vector function
F', the integration of its divergence over the domain is equivalent to the integration of the
function itself over the boundary

/V-FdQ:/F-ndF (2.13)
Q oN

By applying the divergence theorem to the first integral of equation ([2.12])

/V-((5T q)dQ:/éTq-ndF (2.14)
Q
o9
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By decomposing the integral over J) into sub-integrals over 9Qp and 0f2, and then
imposing the Neumann boundary conditions of equation . ), the previous equation becomes

/QV-(éTq WJF/M 5T(— (2.15)

where we have used that g () = 0 on 0€Q7. Substituting back into equation ([2.12])
O—/ 5andF—/V5T-qu:/(5TrdQ (2.16)
09, Q Q
Finally, using the constitutive relation of equation ([2.4)), the weak form is obtained

/vaT-k-VTdQ:/éTrdQ+/ 6T G, dT =0
Q Q 0y

2.1.3 FEM approximation

In practice, obtaining an exact solution 7" (x) of equation (2.10|) is not feasible in most ap-
plications of interest, since the function spaces D and W are infinite-dimensional. Therefore
FEM secks approximate solutions T (x) that belong to finite-dimensional spaces, using the
Galerkin approximation

D"={Te€H(Q): T=Ton o} CD (2.17)
The test functions are treated similarly
W = {6T € H(Q) : T =0 on 007} CW (2.18)

where H'(Q) are Hilbert spaces, that is they contain smooth functions over 2 that are square
integrable themselves and have square integrable derivatives of order = 1. Then the problem
reduces to finding the best approximation 7" € D" such that equation is satisfied
for all test functions 67 € W". Because D" and W" are finite-dimensional spaces, they
are spanned by a finite number of basis functions {Nj, Ny, ---}. Therefore, the Galerkin
approximation consists of searching for an approximate trial function 7" € D", which can be
expressed as a linear combination of these basis functions, as can the test functions 67" € W"

T" (x) = ayNi () + aoNs () +

The basis functions {N7,Na,---} are chosen according to the problem and the Galerkin
method used. Then, finding the approximate solution 7" reduces to identifying the coeffi-
cients {ai, s, -~} that minimize the error | 7" — T||. The coefficients {by,bs, -} are not
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calculated, since they are different for each test function 67" and the weak form equation
(2.10) must hold for all of them. Taking into account these approximations, the finite-
dimensional weak form (also called the Galerkin weak form) will be used in the remainder
of this section

/ VoT" k- VT"dQ = / ST" r dQ) + §T" @, dU' = 0 (2.20)
Q Q 9Qq

elements

nodes -~

Figure 2.2: An unstructured finite element mesh, consisting of triangular elements.

In FEM, the domain €2 is decomposed into a number of non-overlapping patches €2, called
finite elements, such as the triangles illustrated in figure 2.2 The vertices of these elements
are called nodes and the set of all nodes of the domain will be referred to as M. If the number
of finite elements is n., then the domain 2 and its external boundary 0}, are decomposed

into
0= UQ
e=1

09, = Gagqe
e=1

where 0, is the part of 09, that coincides with an edge (2D) or face (3D) of element
e, as depicted in figure 2.2] If an element has fewer than two (2D problems) or three (3D

(2.21)



CHAPTER 2. XFEM FOR COMPOSITES 14

problems) nodes that lie on the boundary 0€),, then 0Q, = 0. 0y can be partitioned
similarly, but is of no interest for now. The integrals of the finite-dimensional weak form
equation (2.20)) can also be decomposed into

Ne Ne Ne

g / VoTh - k- VT"dQ = E / ST" r dQ + E / 6T" g, dT (2.22)
Qe Qe Qe

e=1 e=1 e=1

FEM is a Galerkin method that employs piecewise polynomials Ny () as basis func-
tions, which are defined for each node of each element. These are commonly called shape
functions and are usually Lagrange polynomials that degenerate to 0 outside their corre-
sponding element. The trial and test functions can now be expressed with respect to the
basis functions

T" (x) = > Ni () Ty (2.23)

keM
0T () = Y Ny (z) 0T, (2.24)

keM
where Ny is the polynomial basis function of node k and T}, 07}, are the unknown coefficients
defined for the basis function of node k. Such a coefficient is referred to as a degree of freedom
(DOF) and represents the temperature at node k. Equation ([2.23)) calculates the temperature
field at any point of the domain, using the basis functions and DOFs defined at all nodes. Of
course the basis functions are 0 outside the element they are defined in. Inside each element

Qe

T" (@) = > Ni() Ty

keMe

0T () = Y Ny (x) 0T,

keMe.

(2.25)

where M, is the set of nodes of element e. It is more convenient to work with the matrix-
vector form of the above equations

T"(x) = N (x) - d.

6T" (x) = N (x) - d. (2:26)

where IN () is a row vector containing the shape functions of all nodes of element e and d.,
dd. are vectors containing the DOFs of the element:
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N(@)=[- Ne(m) -] de= fk od, = 5sz (2.27)

Also consider that all DOF's of the domain, namely the values of the trial and test solution
at all nodes, are gathered in the global vectors d and dd. To extract the element vector from
the corresponding global vector we use

d.=PFP.-d

0d. = P.-dd (2.28)

where P, is a boolean matrix, namely it contains only 0 or 1 entries, that correlates each
element DOF (row of P,) to one exactly global DOF (column of P,). Therefore, the approx-
imation of the temperature field can be rewritten as

T"(x)=N(z) -d.=N(x) - P.-d

6T" () = N (z)-6d. = N (z)- P, - 6d (2.29)

The derivatives of the discretized trial and test function in matrix-vector form are

VT"(x)=B(x)-d.=B(x)-P,-d

VoT" (z) = B (z) - 6d, = B (z) - P, - 6d (2.30)

where matrix B (x) contains the derivatives of the shape functions for each node

ONy ()
ox
B(z)=| - ONi (x) . (2.31)
dy
ONy ()

L 0z i

In matrix-vector form, the tensor multiplication V6T" - k - VT of equation (2.22) is
written as a row vector X a matrix X a column vector: (VéTh)T -k -VT". Also 6§T" is a

scalar, thus 67" = (5Th)T. Therefore, equation ([2.22) is written as

Ne Ne Ne

E / (V&T")T-k-VTth:§ / (5T")TrdQ+E / (67")" g, dT (2.32)
Qe Qe Qe

e=1 e=1 e=1
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Combining all equations above, we obtain the matrix-vector form of the finite-dimensional
weak form used in FEM

Z/ P.-6d)" k() (B(z)-P.-d)d
_Z / P, 8d)" r () d (2.33)
+Z/m . P.-8d)" G, () T

Pulling the constants out of the corresponding integrals and summations:

iPeT. ( QeBT(m).k(m).B(w)dQ) p|.d
—o ZPT (/ N dQ) (2.34)
e e ] )

=1 -

At this point, we should define the element-level conductivity matrix
K, = / B (z) - k(x)- B (x)dQ (2.35)
and the element-level thermal load vectors

:/QSNT(zc)r(a:)dQ

fqe = NT ($) In (m) dl’
0.

(2.36)

By assembling all element-level conductivity matrices K., we obtain the global conduc-
tivity matrix K, which expresses the thermal conductivity of the whole discretized domain
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Ne
K=) P' K.-P.= E pT. ( BT(m)-k(m)-B(m)dQ) . P, (2.37)
- Qe
e=1 e—1
Similarly we assemble all element-level vectors f,., f4 into a global vector f that repre-
sents the thermal loads due to the heat source r (x) and the surface heat flux g, (x)

N" (x) g (w)) (2.38)

80qe

_ne T _ : T T
F=D B (ft £ z;Pe (/N (@) (z) +

Finally, equation (2.34)) is rewritten as a linear system:

K-d=f (2.39)

To take the Dirichlet boundary conditions into account, the prescribed nodal tempera-
tures T}, = T are removed from the vector d, which will then contain only unknown nodal
temperatures. The corresponding rows and columns are also removed from the matrix K
and vector f. As a result, the domain is adequately supported and the linear system of
equation is positive definite. Therefore, there is a unique solution for the nodal tem-
peratures d. Solving this linear system is an interesting topic that will be explained in detail
in later chapters. Once the nodal temperatures d have been calculated, the temperature and
heat flux fields at any point in the domain can be approximated using equations and

).

2.2 Multi-phase heat transfer analysis with XFEM

This section describes how to model heat transfer in composites consisting of multiple mate-
rial phases, the interfaces between which exhibit thermal resistance. A novel approach based
on the Extended Finite Element Method (XFEM) is proposed and compared with standard
FEM.

2.2.1 The boundary value problem

Let a body € be divided into n, material phases QL Q@ . Q) gseparated by ny
interfaces T, T® . T'™)  Each interface I'® will be written as @) = TU9 to signify
that it separates the solid phases Q) QU An example with three phases is illustrated in
figure 2.3] The external boundary 02 of the whole domain has an outward normal vector

n and consists of the external boundaries of individual phases 02 = Lj o0@ . Each of
i=1
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(1)
0a]

Figure 2.3: Heat transfer in domain with multiple material phases

these boundaries is further divided into complementary parts 89&9 and 8Q,(;), such that
000 = anf) U 89((;) . It is possible that a phase Q) is entirely internal, namely it does not
have any common points with the external boundary 02 and is bounded only by material
interfaces I'™@). In this case, 90" = 89&9 = 90 = (). Otherwise, Dirichlet and Neumann
boundary conditions are applied respectively on 895@ and 89?

T=T on 09?,

‘ 2.40
q-n=-—q, on 892‘). ( )

where T" = T (x) is the (scalar) temperature field and q = g (x) is the heat flux vector
field. In the general case of anisotropic materials, the thermal conductivity k® of phase
QO is a symmetric second order tensor, defined similarly to equations and . The
constitutive relation between the temperature and heat flux in the interior of each phase
Q@ which is also called Fourier’s law, is defined as

q(z)=-kY(x) - VI(z), QW i=1,...n, (2.41)
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For a given heat source r (x), the steady-state equation governing the temperature field in
the interior of € is the Poisson’s equation, namely the following elliptic partial differential
equation

V-q(x)=r(x) (2.42)

where V - q(x) is the divergence of the heat flux field. In this heterogeneous material,
each interface ') exhibits Kapitza (interfacial) thermal resistance a(¥), or equivalently
interfacial conductance k) which is the reciprocal of the resistance, that is, k) = a(lij).
Therefore, the thermal behavior on '@ is characterized by a jump in the temperature field
across each material interface

[T] = —a@q® . p@)  on T (2.43)

where []% = ()@ — (1)@ is an operator denoting the jump across the material interface
['@). The unit vector n() normal to I'™@) = ' is directed from Q) into QU) and it holds
that

n) = _pld (2.44)

Meanwhile, the heat flux field is continuous across each interface ')
g - nli) = gi) . U)o D) (2.45)

where ¢” and @) are the values of the heat flux field on each side of the interface I,
By combining the Poisson equation ([2.42]) with the boundary conditions of equations
and and the constitutive relations of equations (2.41)) and (2.43)), the boundary value
problem (BVP) of steady-state heat transfer can be posed as: “Find a function 7" (x) for the
temperature field, so that the following equations are satisfied:”

(

V-g=r inQ
qg=—kY VT, ineach QW, i=1,.. Ny
[T]%) = —al@q® . nl)  on each T

o o ) (2.46)
q(l) . n(l]) — q(]) . n(]l) on each P(Z])

2.2.2 FEM vs XFEM modeling

The BVP of equation can be solved with the standard FEM, but the following mod-
ifications are required. First of all, a mesh that conforms to the interfaces between the
material phases I'¥) must be generated, as depicted in figure . Second, the nodes that lie
on these material interfaces must be duplicated, so that different nodes are defined for each
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material phase Q). This is necessary, in order to model the temperature jump of equation
(2.43). These duplicate nodes are used to define DOFs, namely nodal temperatures, that
are different on each side of the interfaces. Finally, special finite elements that connect the
duplicate nodes and lie exactly on the interface (see figure must be defined. These
interface elements differ from the usual elements used for calculating the weak form integrals
in the bulk of the domain. Instead they are responsible for modeling the interface behavior

described in equations ([2.43]) and (2.45)).

(1)
0a]

regular elements conform to the interface

' ‘;,duplicated nodes

_.-special interface elements

Figure 2.4: Modeling heat transfer in composite materials with FEM.

Unfortunately, this FEM approach has a number of drawbacks. A suitable mesh generator
is required, in order to create a mesh that conforms to material interfaces. Afterwards, the
generated conforming mesh needs to be modified. The nodes on the material interface must
be located and then duplicated. Furthermore, special interface elements must be added to the
mesh based on these nodes. While these operations are certainly demanding and increase the
complexity of the analysis, the main problem lies in trying to produce a mesh that conforms
to complex geometries of multiple material interfaces. In these cases, a large number of very
small elements is required in the vicinity of the interfaces, particularly near sharp turns and
kinks. This fine discretization increases the computational cost of the whole FEM procedure
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and especially the solution of the linear system of equation . Moreover, duplicate nodes
and their corresponding extra DOFs are added exactly where the conforming mesh is very
fine, further increasing the size of the linear system, as well as the memory and time needed
for its solution. As more material phases are modeled, the overall FEM simulation rapidly
becomes more cumbersome and inefficient or even impossible in large scale 3D problems.
Finally, in problems where the material interfaces evolve and move throughout the analysis,
the conforming mesh must be regenerated at each iteration and all mesh-related operations
listed previously need to be repeated. In addition, the temperature and heat flux fields need
to be mapped between the old and new meshes, which introduces errors.

To overcome the aforementioned limitations, in this dissertation a novel approach based
on the Extended Finite Element Method (XFEM) is proposed for modeling heat transfer
in composite materials. In XFEM, the elements can be intersected by one or more ma-
terial interfaces, instead of having to conform to their geometry. In order to model the
discontinuous temperature field, non-smooth basis functions are introduced at nodes near
the material interfaces. figure [2.5]illustrates a non-conforming XFEM mesh that interacts
with three material interfaces. The elements that are intersected by the interfaces are called
enriched elements. The non-smooth basis functions are introduced in the nodes of enriched
elements, which will be called enriched nodes. All other nodes of the domain will be called
standard nodes. All elements that do not have any enriched nodes are called standard ele-
ments and behave identically to FEM elements. Finally, elements that are not intersected
by the material interfaces, but share one or more enriched nodes with the enriched elements,
are called blending elements. In general, the temperature field is not perfectly reproduced
in these blending elements, which leads to reduced accuracy. However, the XFEM formula-
tion developed here avoids all blending-related problems, by using appropriate enrichment
functions.

The proposed XFEM approach provides a convenient framework to model heat transfer
in composites with multiple material phases, by avoiding any dependencies of the mesh from
the geometry of the material interfaces. Complex geometries can be represented easily with
explicit or level set methods, while the mesh used for the analysis can be arbitrarily inter-
sected by the material interfaces, rather than having to conform to them. Therefore, there is
no need for specialized mesh generators and problems with evolving material interfaces pose
no additional difficulties. Moreover, the density of the finite element mesh can be selected
such that the desired accuracy is met without needlessly increasing the computational cost,
instead of employing very fine meshes only to represent the complex geometries. In Yvonnet
et al. (2011)), XFEM was used to model the Kapitza thermal resistance between different
materials. Unfortunately, that approach was only applicable for domains consisting of only
two materials and cannot be used in more interesting problems, such as composites with
multiple inclusions that interact with each other and the surrounding matrix material. To
remedy this, a more general XFEM formulation, which allows modeling steady state heat
transfer in composites consisting of an arbitrary number of material phases, is proposed in
Bakalakos et al. (2020), Bakalakos et al. (2022) and elaborated here.
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qu enriched elements
- ___enriched nodes
A~

standard
elements ™.

standard __
nodes

Figure 2.5: Modeling heat transfer in composite materials with XFEM.

2.2.3 Discontinuous divergence theorem

In this section, we will formulate the divergence theorem for a vector function F' that is
discontinuous in the whole domain ). Particularly, F' is continuous in each material phase
Q@ i =1,---n,, but discontinuous across each material interface I'™. The value of F at
points that lie exactly on an interface I'¥) is either F® or F') depending on which side
we examine F from (F® # FU)). Let M" be the set of all unordered pairs (4, j), for which
there is a material interface I'™¥). For a given phase p let Mép ) be the set of all unordered
pairs (p, j), for which there is a material interface I'®?) = I'P) . Obviously Mép ) c MT. As
depicted in figure , each phase Q0 is bounded by its corresponding material interfaces
and external boundary Q. We define 895:) to be the total boundary of phase Q)

o0} =90® | J 10 (2.47)
(i.5)eM{”

The outwards normal vector n(” defined on 895:) coincides either with the outwards
normal vector n defined on the external boundary 02 of the whole domain € or with the
outwards normal vector n(¥) defined on the material interfaces bounding Q.
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(i)
@ _ n  on Jf)
" _{ n(i)  on T (2.48)

Note that n(¥) is oriented from phase Q) towards QU). Similarly, for phase Q) the
outwards normal vector on the same material interface would be nU9 = —n(@) At this
point we can apply the divergence theorem for each material phase Q) separately, since the
vector function F' is continuous in its interior

/V-FdQ: / F-nlqdr (2.49)
By decomposing the surface integral accordlng to equations (2.47) and (| -

/v FdQ_/F n dl + E / F® . gr (2.50)
(i5)

aw (i,5)eM”

If we apply equation (2.50) for all phases ¢ = 1,---n, and then sum

/ V- FdQ = E / F-ndl
Q@) Q)
N E ( o ar+ [ FO) .U dp)
) @

(i,5)EMT

(2.51)

The first two sums can be calculated by merging the integrals over €2 and 0 respectively

Np
E V-FdQ:/V-FdQ
Q) A
i=1
M (2.52)

E F-ndF:/F-ndF
/910
B9)

1=1
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Since I'U" coincides with T'™) | but is oriented opposite to it, the third sum of equation

(2.51]) becomes
g < FO . n@) g + FU . ) df)
(i) (%)

(i.)eM”

— FO . nl) gr — FU . 0 dF)
Z </p<ij) i) (2.53)

(i.j)eM”
g FO . nl) _ pl) . 0 gr
T(i5)

(i,5)eM™

Substituting back into equation (2.51)), the divergence theorem for this discontinuous vector
function F' is obtained

/v F dQ = /F n dl + E / F® — FY . nld gr (2.54)
(i5)

(i,5)eMT

2.2.4 Weak form

The system in equation is known as the strong form of the BVP and it requires the
solution scalar field to be at least two times continuously differentiable inside each material
phase, namely T € C?(Q®). This condition can be relaxed by using a variational formulation
of the BVP, referred to as the weak form, which conveniently incorporates the boundary
conditions in the differential equation. Let the function space of admissible temperature
fields (trial function space) be

D={T:T =T on dQr, T discontinuous on I' V(i,j) € M"} (2.55)
Also define the function space of weighting functions (test function space) as
= {0T : 6T = 0 on 9y, 6T discontinuous on T V(i, j) € M"} (2.56)

The weak form of the BVP is then posed as: “Find a trial function 7" € D, such that for all
test functions 07 € W the following integral equation holds:”

E / [[57’]](” [[T]](” dr' + / VoT - k- VTdQ = / 6T rdQ+ [ T G, dU
(@) 0Qyq
(i,5)eM™
(2.57)
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The weak form can be derived from the strong form. Assume that the solution is one of
the trial functions 7" € D. By multiplying both sides of the Poisson equation ([2.42)) with an
arbitrary test function 07" € W and integrating over {2 we obtain

V-q=r<:)/5TV-qu:/5TTdQ (2.58)
Q Q

Applying the product rule of differentiation

/v (5T q)dS2 — / V6T - qdf — / 5T 7 dS) (2.59)
Q Q Q

By applying the divergence theorem of equation (2.54]) for the discontinuous vector func-
tion F' = ¢T q, the first integral of the previous equation becomes

/V-(éTq)dQ:/éTq-ndF
Q

(2.60)
n E / ST g . i) 576) gl . 0 g1
@)

(i,j)eM"”

We decompose the integral over 02 into sub-integrals over 0€2y and J€2, and then impose
the Neumann boundary conditions of equation ([2.40))

/(5T q-ndl :W+/ 5T () = —/ 5T G, dT (2.61)
o Qr 99, 99,

where we have used that g () = 0 on 0€2r. Meanwhile, by taking into account the continuity
of the heat flux field across each interface I'¥) (see equation (2.45))), the last integrals of

equation (2.60)) can be rewritten

E / ST q) . D) _ §7G) g0 . G gr
(ig)

(i,j)eM*

g / 6T g . — 6T g .l gr
T5)

(i,5)eM™

E / 5T( — T J)) ). @) ar
(i3)

(i,5)eM™

E / — [677% ¢@ . ) gr
(i5)

(i,5)eMT

(2.62)
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which can be further simplified by using the interfacial constitutive relation of equation

2.13)
E /5T ).l — s70) nU9) dr
(i5)
(i,j)eM"
= > [ BT i
(is) ”)

(i,j)eM"™

Substituting equation (2.61]) and (2.63)) into equation ([2.60)) produces

/v-(aTq)dQ:_/ ST gl + ) / T L[ ar (2.64)
Q 89, T (”

(i,j)eM"”

(2.63)

which can then be substituted back into equation (2.59))

— | 6T g, dl + g / [67]" ( [[T]] W) gr
09, i) i)
(i.7)eM" (2.65)

—/V&T-qu:/éTrdQ
Q Q

Finally, using the bulk constitutive relation of equation (2.41)), the weak form is obtained

E / [67]" )[[T]] U dr + / VoT - k- VTdQ = / 6T rdQ+ [ T G, dU
- rGs) 0
(i,7)eM

2.2.4.1 Finite-dimensional weak form

Finding the exact solution 7' (x) of equation is not feasible in general, since the
function spaces D and W are infinite-dimensional. Similarly to standard FEM, XFEM seeks
approximate solutions 7™ (x) that belong to finite-dimensional spaces, using the Galerkin
approximation

D' ={T e H(Q): T =T on 907} C D (2.66)

The test functions are treated similarly
={6T € H'(Q) : 6T =0 on 97} CW (2.67)

where H 1(Q) are function spaces consisting of piece-wise Hilbert spaces H' (). Specifically,
they contain functions that:
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e are smooth and square integrable and have have square integrable derivatives of order =
1, inside each material phase Q. i =1, -- Ny

e are discontinuous across each material interface T, V(i, j) € MT

Then the problem reduces to finding the best approximation 7" € D" such that equation
is satisfied for all test functions 67" € W". Since D" and W” are finite-dimensional
spaces, they are spanned by a finite number of basis functions {N7, N3, --}. Therefore, the
Galerkin approximation consists of searching for an approximate trial function 7" € D" that
can be expressed as a linear combination of these basis functions, as can the test function
0T € Wh:

" () = ayNi () + agNs () + - - -

ST" () = byN| (x) + boNo () + - - - (2.68)

XFEM chooses appropriate basis functions {Nj, Ny, - - - } that can capture the discontinu-
ous trial and test functions. Then, finding the approximate solution 7" reduces to identifying
the coefficients {as, as,---} that minimize the error ||T" — T'||. The coefficients {b;, by, - - }
are not calculated, since they are different for each test function §7" and the weak form
equation must hold for all of them. Taking into account these approximations, the
finite-dimensional weak form will be used in the remainder of this chapter

[ L[ ar 4 [ ver' k- vThdn
@) aliy) Q
()Mt (269)

:/5Th rdQ)+ §Th g, dT°
Q 90,

Similarly to standard FEM, XFEM decomposes the domain ) into a number of non-
overlapping finite elements €2.. Unlike FEM, the finite elements of XFEM can be intersected
by the material interfaces I'™), as illustrated in figure . If the number of finite elements
is n., then the domain € and its external boundary 0f2, are decomposed into

Q= []Qe
e=1
09, = Dagqe
e=1

where 0, is the part of 09, that coincides with an edge (2D) or face (3D) of element
e, as depicted in figure 2.5 If an element has fewer than two (2D problems) or three (3D

(2.70)
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problems) nodes that lie on the boundary 0€),, then 0Q, = 0. 0y can be partitioned
similarly, but is of no interest for now. Similarly the material interfaces I'™) can be divided
into

o = Uar i Y(i,5) € M (2.71)

where ') is the part of the material interface I'™¥) that lies inside element e and on its
edges (2D problems) or faces (3D problems). If element e is not intersected by or does not

conform to F 4, then obviously I = 0. The integrals of the finite-dimensional weak form
equation (2 can also be decomposed into

ne

> / N L e )[[Th]](” dr +Z / VoT" - k- VT Q)

e— 1 (i,5)eMT

o n (2.72)
= E /6ThrdQ+ g §T" g, dT°
Q oN
e=1 e=1

2.2.5 XFEM enrichment

In order to capture the jumps of the temperature field across material interfaces, XFEM
enriches the approximation field used in FEM (see equation ([2.23])) with discontinuous func-
tions.

2.2.5.1 Simple case with only 2 materials

Consider the simplest case depicted, where there are only two material phases Q) Q®) and
only one material interface I' between them, as illustrated in figure Let M be the set
of nodes of all elements intersected by the interface I'. XFEM enriches the basis functions
defined at all nodes in M¥ with a discontinuous function, typically the Heaviside function
(also called step function)

—1, QW
H(z) = {+1, T (2.73)

The approximate temperature field used in XFEM will then be

=Y Ne(@)Ti+ Y Ni(z)(H (x) — H(2)) T

keM keMH (2.74)

S/

-~ -~

Tstd Tenr

where @) are the coordinates of node k, Nj () are the same Lagrange polynomial shape
functions used in FEM and T}, are nodal temperatures. It can be observed that the first part
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Heaviside enriched nodes

|:| enriched elements

|:| blending elements

Figure 2.6: Heaviside enrichment for a single material interface.

T is the approximation field used in FEM (see equation ), while the second part 7™
is introduced by XFEM to model the discontinuous behaviour. Furthermore, T, is an extra
DOF introduced to node k for the enriched basis function Ny, () (H (x) — H (x1)). These
extra DOFs will be referred to as enriched DOF's in the following, to differentiate them from
Ty, which will be called standard DOFs. Unlike T}, enriched DOFs do not represent nodal
temperatures. However, enriched DOFs introduced due to Heaviside enrichment can be used
to interpolate the temperature field jump on I':
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[[Th (il?)]] 12) _ Th (m(z)) _h (w(l))

- S M Y M) (4 ()~ ) T
- Y e S N ) (1 () 2

- Z N (z) (+1 = H () fk — Z Ny (x) (=1 — H (1)) Tk (2.75)

kEMH keMH
= > Np(z) (+1 — Hdap) + 1 + Htap)) T
keMH
ke MH

where V) coincides with @®, but lie on different sides of I' and Ny, ('?) = N (2V) =
Ny (), since Ny is continuous.

2.2.5.2 General case

In the general case of multiple material phases, one Heaviside enrichment H®? per interface
') is needed to model the temperature jump across it:

—1, z€ Q@)
H®D () = {+1 Q@ (2.76)

However, in some elements the interfaces of three or more material phases will intersect, as
illustrated in figure[2.7] Enriching the nodes of the element that contains this point with one
Heaviside function for each interface cannot reproduce the discontinuous temperature field.
Instead, in this thesis a junction enrichment function is proposed to model the discontinuous
displacement field in the case of these junction points. The nodes of an element containing a
junction point (or line in 3D) created by n; > 3 interfaces are enriched with n; — 1 junction
functions, one for each intersecting interface except for the last (Bakalakos et al., 2020)).
In addition, these nodes are not enriched with Heaviside functions. The junction function
J9) (z) used for the interface I'™*) between the phases Q) Q) which intersects 2 or more
other interfaces, is

—1, x c Q)
J0) () = { +1, z € Qb (2.77)
0, TeQ— (QWUQE)

In figure it can be observed that, a node can be 7) enriched with junction functions, i)
enriched with one or more Heaviside functions corresponding to different material interfaces
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nodes enriched with H(u]

O nodes enriched with H(Bl

O nodes enriched with H(B)

nodes enriched with J*?

D nodes enriched with J(B)

|:| intersected elements

|:| junction elements

|:| blending elements

Figure 2.7: Heaviside and junction enrichments when material interfaces intersect.

or ii1) not enriched at all. Similarly, an element can i) contain junctions, i) be intersected by
one or more material interfaces, ii7) be far away from any interface or 7v) have common nodes
with elements in categories i) and ii), in which case it is called a blending element. It is more
convenient to refer to each Heaviside enrichment as H® (x) = H®? (), where b = 1,---n,
is an integer corresponding to the pair (p,¢). Similarly if there are n. junction enrichments
applied in total, with n, < n; in general, each one can be referred to as J¢(x) = J™) (x),
where ¢ = 1,---n, is an integer corresponding to the pair (r,s). The complete XFEM
approximation of the temperature field can now be expressed as

T (x) = Ni () Tk

keM
30 S M) (B () — B () T (2.78)

X M@ @) ) T

e=1 \keM$
where

e N, (@) are the Lagrange polynomial shape functions, also used in FEM
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e T} are the standard DOFs representing nodal temperatures.

e H'(x) is any of the n, Heaviside enrichments applied and MY is the set of nodes
enriched with H® (x)

e J¢(x) is any of the n. junction enrichments applied and M§ is the set of nodes enriched
with J¢ ()

e 17 is an enriched DOF introduced at node k due to the enrichment H (z)
o T © is an enriched DOF introduced at node k due to the enrichment J¢ (x)

Equation ([2.78) can be written more concisely by grouping all Heaviside and junction
enrichment functions and representing them collectively as W* (x)

T"(x) = > Ni(@) T+ Z > N (@) (U (@) — U (x4)) Ty, (2.79)

keM a=1 \ keMg
where
® n, = Ny + n. is the total number of Heaviside and junction enrichment functions
e UV'(x),a=1,2---,n, is any of the Heaviside or junction enrichment functions
e MY is the set of all nodes enriched with the enrichment U* ()

e T is the enriched DOF introduced at node k due to the enrichment ¥® (x)

2.2.5.3 Temperature field jump

The jump of the temperature field can be approximated using the enriched DOFs. Let « be a
point on the material interface I'™) separating Q® and Q. Then the points 29 = ) = «,
lie on different sides of ') namely Q® and QU respectively. The shape functions Nj are
continuous thus

However, some of the enrichment functions U® () are introduced to model the tempera-
ture jump across this material interface and are discontinuous on I') namely [¥? (a:)]](ij ) # 0.
Meanwhile, the rest are introduced to model the temperature jump across another material
interface and are continuous on I' namely [¥¢ (2)]"/) = 0. For example, for any Heaviside
enrichment function H®9 ()

[[H(pq)ﬂ(ij) (x) = HPa) (a:(j)) — g (a:(i)) =0, -2, or +2 (2.81)
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depending on whether one or both of the phases Q® and Q@ coincide with Q® and Q)
Similarly, for any junction enrichment function J*) (a)

[0 (@) = S0 (@9) — J0I (D) =0, -2, +2, —1 or +1 (2.82)

depending on whether one or both of the phases Q) and Q) coincide with Q® and Q)
The temperature field jump across '@ can be approximated as

HTh (:13)]] (i5) _h (w(j)) _h (m(i))

_ Z N, (w(j)) T, + i Z N, (:B(j)) (\I,a (:l:(j)) _ e (wk)) TZ

keM a=1 \ keMg
=2 N @) D=3 | > Ne(@?) (¥ () - 9" (@) T
keM a=1 \keMg

_W‘F i Z Nk (J)) _ e (wk)) TZ (283)

k a=1 keMyg

S5O ST M) (9 (29) — e — 9 (29) + 0 ) T

a=1 \keMg

therefore the approximation of the temperature field jump across the interface ') can be
calculated with respect to all enriched DOF's as

Na

[T @] =3[ Y Ni(e) [v] T, (2.84)

a=1 \ keMyg

Regardless of whether W* (x) is a Heaviside or junction enrichment, [¥®(x )]](ij) =0
means that the approximation of the temperature field jump [[T h )]] (@) across the interface

I'(7) does not depend on the enriched DOFs T, introduced for this enrichment ¥® (). In fact,
the jump across each material interface ') depends only on those enrichments introduced
specifically for I'™) and their corresponding DOFs.
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2.2.5.4 Blending elements

If an element is not intersected and does not include a junction, but is located next to
another element that does, then only some of its nodes will be enriched. Figure depicts
examples of such blending elements, which form a layer between standard (non-enriched)
elements and fully enriched ones. The polynomial shape function used in FEM and XFEM
have the partition of unity property, namely any function f (x) can be recovered inside an

element e
D Ne(@) f(a) = f (=) (2.85)

ke M,
where M, is the set of all nodes of the element e. Because blending elements have only
some of their nodes enriched, the partition of unity property is violated inside them and an
enrichment function U (x) cannot be recovered

> Nk () U () £ Y Ny () U () = U () (2.86)

keMm¥r® keM.

where MY* C M, are only those nodes of element e that are enriched with ¥® (z). The
incomplete interpolation inside blending elements generally introduces errors into the ap-
proximation field of equation (2.79). However, the Heaviside and junction enrichments of
the proposed formulation do not encounter this is problem. A blending element is not inter-
sected by a material interface I'™@) | thus all of its points lie on the same side of I'™), which
means that the enrichment W (x) that was introduced for the discontinuity I'™ has the
same value in all points of the blending element, including its nodes:

HPD () = HPD (g;,)
U (x) = or = U’ (xy,) (2.87)
J(rs) (fl?) — J(rs) (wk)

As a result, no errors are introduced to the approximate temperature field, since its
enriched part vanishes inside blending elements

Th(w):ZNk(m)Tk—I—i: Z Nk(w)(ﬂ(g:)/v/\lf”’(m/k))fz

keM, a=1 \keMP" (2.88)

k€EMe

Similarly, the approximate field evaluated at a node x; is equal to the standard DOF T,
since the standard part is

T () = 3 Ny () Te = Y Ni (@) T+ Ny (@) Ti = 0+ 1 Ty = T, (2.89)

keM keM
k£l
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because

Ny () = { 0 h (2.90)

and due to the use of a shifted enrichment W* (x) — ¥* (x;), the enriched part degenerates
to 0

Ta

T () = Z Z Ny (1) (U () — W (a1,)) T,

a=1 \ keMg

3
)

D Nk (0 () — 0 (@) T+ Ny () (2 (any— ) T,

a=1\ keMyg
k#l

—0
(2.91)

As aresult, applying Dirichlet boundary conditions T’ () = T to node x; is done similarly
to FEM, namely by setting the corresponding standard DOF T; equal to the prescribed
temperature 7', even if nodes on 02y are enriched:

T =T" () =T (x)) + T (x;) = T (2.92)

2.2.6 XFEM discretized equations
Similarly to FEM, the approximation of equation ([2.79) is also used for the test function

ST (@) = 3 N @) 0T+ [ 3 Ne@) (9 (@) - ¥ (2)) 0T, (299)

keM a=1 \keMg

where 6T}, and 6T, are standard and enriched DOF's for the test function and different from
T, and T, in general. It is more convenient to work with the matrix-vector form of the
approximate temperature field

T" = N () - d.

\ (2.94)
0T" = N (x) - éd.

where IV () is a matrix (row vector actually) consisting of the standard (submatrix N (z))
and enriched (submatrix IN“"" (x)) basis functions corresponding to each each enrichment
U4 (x) and each node k of element e:
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N = [ N@) N () ]
Nt (z) [ oo Np(x) --- } (2.95)
N ()= [+ Ny(z) (P () — U (xx) - |

and d., dd. are vectors containing the standard (subvector d:?) and enriched (subvector
d¢"") DOFs introduced for each enrichment W to each node k of the element e:

dstd : —:a
de = |: deenr :| dgtd = Tk dznr = Tk
- (2.96)
5dztd s : enr —:a
&d, = { s } sdd — | o1y | sde = | 5T

Also consider that all standard and enriched DOFs of the domain are gathered in the
global vectors d and dd for the trial and test functions, respectively. To extract the element
vector from the corresponding global vector the matrix P, is used

d.=P.-d

2.
od. = P, -dd (2.97)

where P, is a boolean matrix, namely it contains only 0 or 1 entries, that correlates each
element DOF (row of P,) to one exactly global DOF (column of P,). Therefore, the approx-
imation of the temperature field can be rewritten as

T"(x)=N(z) -d.=N(x) P.-d

h (2.98)
0T (x) = N (x)-dd. = N (x)- P. - dd

The derivatives of the discretized trial and test function in matrix-vector form are

VT"(x)=B(x)-d.=B(x)-P,-d
VoT" () = B () - 6d. = B (z) - P.- &d

(2.99)

where matrix B (x) contains the derivatives of the standard (submatrix B (x)) and en-
riched (submatrix B¢ (x)) basis functions corresponding to each each enrichment U* (x)
and each node k of element e:
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B(x) = | Bstd(z) B (z)

ON; (z)
ox
Bstd (33) — 8Nak‘y<w)
ONy ()
e | (2.100)
(N (@) (¥° () = 0" (21))) |
ox
B (@)= | ... Ok () (0" <aa;> — U (x)))
O(Ny () (* (z) — T (x)) )
L 0z i

Since both Heaviside and junction enrichment functions are piece-wise constant, their
partial derivatives in each material phase Q) are
ove (x) 0V (x) OV (x)
or 9y 0z

and the calculation of B (x) can be simplified to

—0 (2.101)

P @ @) - v @)
B (a:) — | ... aNgy(w) (\Ija (33) _ e (CBk)) e (2.102)
ONy ()

Ve (x)— v (x

_ 22 @) - v @)
Furthermore, the matrix-vector form of the temperature field jump across a material

interface I'(7) is

Iy oy o (i 5dstd
[T @] =N (2) d. = | Ny N9 (@) ]- [ S ] (2.103)

where N7 (x), N yq and ng (x) are row vectors:
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~N@ (x) = [ N Nelrjw (z) }
Naa=0 (2.104)
N, (@) = [ oo Ni (@) [ ()] - }

As discussed in section m given an interface I'™), only those enrichments that were

introduced specifically to model the temperature jump across I'™) will have [¥° (2 )]] 9 £,

Therefore, most entries of N im),( ) will be 0, since they correspond to other enrichment

functions, which were introduced for material interfaces other than I'™). Similarly, for the
test function 67"

[67" ()] =N (2) - 6d, (2.105)
and with respect to global DOF vectors

[1" ()] =N (x)- P, 6d (2.106)
[67" ()] = N (2) - P, - 5d '

In matrix-vector form, the tensor multiplication V&T" - k - VT of equation (2.72) is
written as a row vector X a matrix X a column vector: (VéT h)T -k - VT". Moreover,

§T™ and [6T"] @) are scalar quantities, thus 67" = (6Th)T and [0T"] @) _ <[[5Th]] (”)> .
Therefore, equation (2.72)) is rewritten as

Tle

E / o ([o1'] ” a( 7 [1] ) ar +E / (VoT")" - k- VT"dQ
e— 1 (i,5)eMT
ZE /(5Th)TrdQ+E / (67" g, dr
Qe 0Qqe
e=1 e=1

(2.107)

By combining all equations above, the matrix-vector form of the finite-dimensional weak
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form used in XFEM is obtained

> / N N (z). P, 6d> a(lij) (W“” () - Pe.d> dl

e— 1 (i,)eMT

ne

E / P.-6d)" k(x)- (B(z)-P.-d)d
(2.108)
E / P, 6d)" 7 (x)dO
E / . P..38d)" G, (x)dl
0Nge
Pulling the constants out of the corresponding integrals and summations:
T (i) T g ‘ ‘
E P o 7 )<N (@ )) N7 @adr| P | d
(4,9) eMF
+8d7 - E PZ-(/ BT(a:)-k:(a:)-B(ac)dQ)-Pe -d
Qe
(2.109)

+48d"- ZPeT < ., N (x) g, (x) dF)
e=1 ”

At this point, the element-level conductivity matrices and thermal load vectors need to
be defined. The bulk conductivity matriz of an element e is

Ke:/ BT (x) -k (x) - B () d (2.110)

whereas the interface conductivity matriz of the element is
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Be 3 [ () W e
poy)

a(id)
i,j)eM”

and finally the element-level thermal load vectors are

fre= | NT(x)r(z)dQ

Qe

.fqe = NT (CE) n (CL’) dr’
0.

(2.112)

Equations (2.110}, [2.112]) are similar to standard FEM. The interface conductivity matrix

of equation (2.110)) represents the element-level conductivity due to the interfacial conduc-

tance kU9 which is the reciprocal of the resistance, that is, k() = —. By assembling

all element-level conductivity matrices K, and K., the global conductivity matrix K is
obtained, which expresses the thermal conductivity of the whole discretized domain:

e=1
Ne
:ZPE. < : B” (z) - k(z)- B (z)dQ s
e=1 ¢
L (N (i3)
- Z () i) (N (>) N " (x)dl | - P.
(yeMt "

Similarly, all element-level vectors f,., f, are assembled into a global vector f that
represents the thermal loads due to the heat source r () and the surface heat flux ¢, ()

Ne
F=Y Pl (fre+ foe) = E :PeT ' ( NT(z)r(z)d2+ [ N (z)g, (z) dr)
- Qe e
e=1 e—1
(2.114)
Finally, equation ([2.109) is rewritten as a linear system:
K-d=f (2.115)

As explained in section [2.2.5.4] the Dirichlet boundary conditions can be considered by
applying the prescribed temperatures to the standard DOFs of the corresponding nodes [
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that lie on 0Qp, namely 7} = T. These standard DOFs are removed from the vector d,
which will then contain only unknown standard and enriched DOFs. The corresponding
rows and columns are also removed from the matrix K and vector f. As a result, the
domain is adequately supported and the linear system of equation (2.115) is positive definite.
Therefore, there is a unique solution for the standard and enriched DOF's in d. Solving this
linear system is an interesting topic that will be explained in detail in later chapters. Once
the the standard and enriched DOFs in d have been calculated, the temperature and heat
flux fields at any point in the domain can be approximated using equations and ,
while equation is used for the jump of the temperature field.

2.2.6.1 Example

Consider the example illustrated in figure with 3 material phases Q) Q® QG The
Heaviside enrichment functions used to model the temperature field jump across the material
interfaces ') T'(13) T'23) are respectively

-1, e QW
1 _ 7(12) _ ;
v =1 @) = {20,
—1, zeW
2 _ (13) _ )
¥ (@) -1 @) = {1 TS0
—1, ze®
3 _ 7(23) _ ;
v @) =1 @ = {1 TE00

The nodes of elements intersected by one or more of the interfaces are enriched with
one or more of the above functions. However, the element that connects nodes 6-7-11-10
contains the junction point of these three interfaces, therefore its nodes are only enriched
with 3 — 1 = 2 junction enrichments:

—1, e QW
Uh(x)=J" () = +1, xeQ®
0, xeQ®
—1, zeQW
T (x) = JI) () = { +1, € Q®
0, xeQ?

It should be noted that a junction enriched node is not enriched with Heaviside functions
associated with the interfaces that form the junction. In this example, H!? (z), H!® (x)
and H (x) are not applied to nodes enriched with J?) (x) and JU? (x). All other nodes
of the mesh are not enriched. The vector of standard and enriched DOFs of the element
that connects nodes 10-11-15-14 is

T
— —4 =5 —4 =5 =2 =3 —2 —3
T=|Toy Tu Tis Tu Ty Ty Ty Ty Ty Ty Thy Ty
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3
(13) Q® r23)

I_
1

L
13 4 15 16

® H H P

9 10 \/11 12
(_)(1) Q(Z) (O node enriched with 2
Ifj E (O node enriched with B3

5 6 7 8
(O node enriched with H?3

a

O O [C] node enriched with 12

1 2 3 4

(12)

[ [C] node enriched with 3

Figure 2.8: Step and junction enrichment of various nodes.

The row vector N (x) of equation (2.103) used for approximating the temperature
(13)
(x) for

field jump across a material interface in the same element 10-11-15-14, e.g. N
s ig
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0 - AT

0 0

0 0

0 0
No@) [ @10 |y ) )

~ (@) = Ny () - [¥° (m)]]il?»; _ [N () - (+2)

N11 (ZB) . [[\114 (33)]] N11 (IB) . ("—1)
Nt () - [9° ()] Ny () - (+2)
Nis () - [0 ()] Nis (@) - (+2)
Ny (z) - [¥3 (m)]](13) Nis (x) - (£0)
Nii(@)- [ @) R
Ns (@) - [0 (m)]](13) | N1g () - (£0) |

where enrichment U3 () = H®% (z) does not affect the jump across ['"® thus entries cor-
responding to it, as well as to standard DOFs, are equal to 0. Similarly, for the temperature
field jump across I'®) in the same element 10-11-15-14:

_ O - T ) o
0 0
0 0
N <w>-[[?1f4 ()] X
v s \1(23) Nig (z) - (—1)
N () No (@) - [V @] | Ny () - (+1)
@)= | Ny (@) [ @] | = | Ny (@) - (-1)
Ny (z) - [9° ()] Ny () - (+1)
Nis () - [02 ()] Nis (z) - (£0)
N (w) ng(m)TZ” ﬁh5(w)-(+2)
N15 H\Iﬂ )]](23) N14(:l:)~(:l:0)
14(@)- 3(33 (23) | N1y () - (+2) ]
[Ny () - [0° ()] ]

where enrichment W? (x) = H) (x) does not affect the jump across I'® thus entries
corresponding to it, as well as to standard DOFs, are equal to 0. Furthermore, the B*' (x)
and B®"" (x) matrices of element 10-11-15-14 are

ONi(x) ONa2(x) ONs3(x) ONs3(x)

std () _ B B B B)
B (x) = | o) oNix) oNa(w) oN(x)
Oy Oy dy Oy

B (z) = [ Bi" (x) Bii"(z) By (z) Bfj" (z) |
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44

where the submatrices of B{"" (x) that correspond to each node are

Biy" (z) =

By (x) =

By (z) =

By (z) =

8N1 (:1:)
or
ON1(x) .

dy
ON1(x)

ox
0Ny (:I:)

dy

ONa (@)

(U4 () — Ut (1)) P (U5 () — TP (m19))
(‘1’4 () — U (x10)) aNaI;w) (WP () — WP (219))
(T () +1) 232 (° () + 1)
(T () +1) 232 (V° () + 1)
o (x) — o (z11)) Mggﬁm) : (‘I/5 (x) — o (211))
Ut () — U (z11)) ‘9]?;@ (0 () = U° (211))
Vi (z) —1) 2225 (a)
Ut (z) —1) 225 (a)
(0 () = 0 (@5) TR (VP (@) — 0P (15))
: (\112 (x) — v (z15)) 81\([93;@ (\1'3 (x) — & (15))
(1 (@)= 1) L (18 @) 1)
(@)~ 1) 232 (9 (@) - 1)
V2 (z) — U2 (21a)) 22 (U (@) — U3 (a014))
U2 (z) — U2 (z14)) 8]%3593) (% () — ¥° (z14))
W (@)~ 1) 2 (1 (@)~ 1)
U2 ()~ 1) Do (0 () 1)

where Ny (), Ny (x), N3 (x), Ny (x) are the shape functions corresponding to the nodes of
each quadrilateral element in counter-clockwise order and the enrichment functions evaluated

at nodes are

U (x14) = HY) (214) = +1
0% (x15) = HY) (215) = +1
U3 (x14) = H® (214) = +1
U3 (x15) = H® (x15) = +1
U (xy0) = J1?) (10) = —1
Ut (xy,) = JI? (2q,) = +1
U0 (x10) = JID (my9) = —1
U0 (xy1) = JI (211) =0
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Lastly, in order to calculate the element-level interface conductivity matrix of equation
(2.111]), integration over the part of each interface that lies inside the element, is needed.
E.g. for the element with nodes 10-11-15-14, two contour integrals are needed, over i

and F£23>, as illustrated in figure .

2.2.7 XFEM integration

In traditional FEM, the integrands that appear in the matrix-vector weak form are cre-
ated by multiplying and dividing the polynomial shape functions and their derivatives and
thus they are polynomials themselves. These integrals can be calculated by using numerical
integration. Specifically, Gaussian-Legendre quadrature is used, which guarantees exact in-
tegration of polynomials with the minimum number of required integration points. Since it
is also naturally coupled with the isoparametric element formulation, it has been established
as the de facto integration rule in FEM.

However, XFEM uses discontinuous enriched basis functions, which means that the in-
tegrands that appear in Eqgs. (2.11042.112)) are not polynomials in general. Using Gauss-
Legendre quadrature introduces a substantial loss in accuracy, even if the number of integra-
tion points is increased. As a result, alternative integration rules, that are consistent with the
enrichment functions and the geometry of discontinuities, must be developed. Specifically for
the present formulation, the Heaviside and junction enrichment functions are piece-wise con-
stant, therefore the basis functions, their derivatives and generally all matrices and vectors
in the integrals of interest are piece-wise polynomials. Observing figure 2.7 the following
cases are possible:

e Standard elements that have no enriched nodes. In this case, regular Gauss-Legendre
quadrature can be used, since standard elements have no enriched nodes and their
basis functions are polynomials.

e Blending elements that are neither intersected nor contain junctions, but have some en-
riched nodes. As explained in section[2.2.5.4] the enriched part of the temperature field
approximation defined in the present XFEM formulation, vanishes outside elements
that are intersected. Consequently, all discontinuous functions vanish in blending el-
ements and Gauss-Legendre quadrature can be used for the remaining polynomials,
similarly to standard elements.

e [Enriched elements that are intersected by one or more material interfaces. Some of
these may also contain junctions. In this case, which will be elaborated in this sec-
tion, piece-wise polynomial functions need to be integrated over regions with different
material properties, specifically different conductivity tensors.
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2.2.7.1 Bulk integrals

Integrating over intersected elements is achieved by partitioning an intersected element into
multiple subcells, namely sub-triangles in 2D or sub-tetrahedra in 3D, which conform to
the material interface, as depicted in Figs. and [2.10] respectively. Each of these subcells
belongs to only one material phase, thus the conductivity tesor is constant inside the subcell.
Note that although a conforming submesh is indeed used inside each intersected element,
the global finite element mesh continues not to conform to the material interfaces, thus
retaining all advantages of XFEM discussed in section [2.2.2] Although any element type
can be used in the present XFEM formulation, this dissertation focuses on isoparametric
elements, which are reviewed in Appendix [A] Using this approach, all shape functions Ny
are defined as functions NV, (§) of the coordinates &, 1, ¢ of the natural system of the element.
The element-level bulk conductivity matrix of equation (2.110)) is calculated by integrating
in the natural system

K. = BT(S) k(&) B (&) tdet(Ing (§))dédn  in 2D
(2.116)
K, = / BT (¢) k(&) B (&) det (Jye (&) dédnd¢  in 3D

where (), is the surface (in 2D problems) or space (in 3D problems) occupied by the isopara-
metric element in its natural coordinate system, ¢ is the thickness of the domain in 2D
problems, k (§) = k (x (£)) is the conductivity tensor at the point @ = x (&), det (-) is the
matrix determinant operator and Jy¢ (€) is the Jacobian matrix of the isoparametric map-
ping, as defined in Egs. (A.2] [A.3). The matrix B (¢) = B (z (£)) contains the derivatives
of basis functions with respect to the global coordinates x, y, z, expressed as functions of
the natural coordinates &, n, (:

B(x(€) =B (&) = (Jnc (£) - B(€) (2.117)

where B (&) contains the derivatives of basis functions with respect to the natural coordinates
&, m, ¢, expressed as functions of the natural coordinates:
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B (¢) B ()

ONy (€)
0§
ON; (&)
on
ONy (€)
¢

ONy (€)
0§
ON; (&)
on
ONy (€)
¢

B () =

(2.118)

(W (x (§)) — V* (2))
B (§) = (W (2 (£)) — V" (@)

(W (z (§)) — ¥ ()

2.2.7.1.1 2D problems

The integral of needs to be calculated in each sub-triangle, where the integrand func-
tions are continuous. As figure illustrates, an auxiliary coordinate system (r,s) is de-
fined for each sub-triangle, which is mapped to the natural coordinate system (&, 7), using
Lagrange polynomial shape functions

M«

k=1
where £ = 1,---3 are the nodes of the sub-triangle, & are their natural coordinates and
Ny (7) are the shape functions corresponding to them, which are defined in equation (A.8§]).

The Jacobian matrix of the mapping from auxiliary to natural system J4y (7) is

o0& 0On
o o =& m—m
Jay (r) = |9 Or| = (2.120)
o0& On
% % &—& m—m

Similarly to equation (A.11)), the determinant of this Jacobian matrix is constant and
related to the area of the sub-triangle in the natural coordinate system:

det (Jan) = [[(§2 — &1) x (§3 — &1)|| = 2 Aps

(2.121)
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@ integration point

—— material interface

________________ A
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(0,0) (1,0) r

(c)

Figure 2.9: Integration in an intersected 2D element. a) Global coordinate system, b) Natural
coordinate system of the element, c¢) Auxiliary coordinate system for each sub-triangle.

The integral of 2.116| can now be converted to the auxiliary system:
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K, = / / BT (&(r) - k(&(r)) - B(&(r)) t det (Jng (€ (r)))det (Jay)drds — (2.122)

which can be calculated using numerical integration:

ngp

K. =Y B"(£(r,) k(& (r,) - B(£(r,) t det (Jne (€ (r,)) det (Jan)w,  (2123)

where p = 1,---ngp is the set of integration points from all sub-triangles, r, are the co-
ordinates of each integration point in the auxiliary system, w, is its corresponding weight
coefficient and & (7,) is calculated using equation . In each sub-triangle, a subset of
the integration points is generated using Gauss-Legendre quadrature, therefore table is
used for r, and w,,.

2.2.7.1.2 3D problems

Similarly to the 2D case, an auxiliary coordinate system (r,s,t) is defined for each sub-
tetrahedron, as illustrated in figure [2.10, Mapping from the auxiliary to the natural coordi-
nate system (&, 7, () is done using Lagrange polynomial shape functions:

E=€(r) =) Ni(r)& (2.124)
k=1

where k = 1, - - -4 are the nodes of the sub-tetrahedron, &, are their natural coordinates and
Ny (r) are the shape functions corresponding to them, which are defined in equation (A.13]).
The Jacobian matrix of the mapping from auxiliary to natural system Jay (7) is

[o¢ on o] | |
E)_i a—z 8_i - m—m G-
o on 0
Jan (r) = 8_§ a—z 8_§ 1S —& m—m G—G (2.125)
o on 0
_(‘9_§ a—Z a—i_ _54 —& m—m G- Cl_

Similarly to equation (A.16)), the determinant of this Jacobian matrix is constant and
related to the volume of the sub-tetrahedron in the natural coordinate system:

det (Jan) = [(€1— &) - ((€&2— &) x (&= &1) )| = 6 Vi (2.126)
The integral of can now be converted to the auxiliary system:
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@ integration point

. material interface

Figure 2.10: Integration in an intersected 3D element. a) Global coordinate system, b)
Natural coordinate system of the element, ¢) Auxiliary coordinate system for each sub-
tetrahedron.

1-r—s 1—r 1

K= [ [ [ B €0k BEm) det(Tnc (€ (r) det (Jaw) drdsdt (2127

0 0 0
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which can be calculated using numerical integration:

nGp

K.=Y B"(&(r,)) k(£(ry)) B(&(ry) t det (Ing (€ (1)) det (Jan)w,  (2.128)

where p = 1,---ngp is the set of integration points from all sub-tetrahedra, r, are the
coordinates of each integration point in the auxiliary system, w,, is its corresponding weight
coefficient and & (r,) is calculated using equation . In each sub-tetrahedron, a subset
of the integration points is generated using Gauss-Legendre quadrature, therefore table
is used for 7, and w,,.

2.2.7.2 Interface integrals

To obtain the partition of an element into subcells, first the part ng ) of each material
interface I'¥) that lies inside the element e needs to be determined. In this dissertation, ngj )
is approximated by simpler geometries, such as line segments in 2D or triangles in 3D, as
illustrated in Figs. 2.11], 2.12] The geometric operations required to obtain these interface
segments are elaborated in section 2.3 Apart from the bulk mtegratlon over the domain of
each element, there is also need to integrate over the surface of F i) , in order to calculate
the element-level interface conductivity matrix of equation . This integration will
be performed by integrating over each interface segment rd s), thus equation can be
written as

(ZJ)

Z Z/F(ma ( N (@)T-W(m (z)dl (2.129)

(i,j)eMT B=1

where némﬁ) is the number of interface segments F%) (line segments in 2D or triangles in 3D)

that comprise the interface I'?) inside element e. The matrices N (x) = N (x (&)) are
calculated using the shape functions of the isoparametric element, thus they are functions
of the natural coordinates &:

N (@) =N (€)= [ Ny N7 (g |

enr

N =0 (2.130)
NO© =] MmEOE@EI® -]

where Ni (€) is the shape function corresponding to node k of the isoparametric element.
Thus, equation ([2.129)) is rewritten as
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(ZJ)

-3

(i,5)eMT A=l

S(N(e) N (g)ar (2.131)

By grouping all interface segments together the previous equation can be simplified to

ni / N(7 (g))T N (¢)dr (2.132)

where n. , is the total number of intersection segments inside element e and each I'. , corre-
sponds to one interface segment F(” of the element. Since v corresponds to a unique triple

(1,7, 1), ~ (&) corresponds to N( ) (€) and o) to o),

2.2.7.2.1 2D problems

Similarly to the bulk integrals, an auxiliary coordinate system is used for the intersection
segments. In 2D problems an 1D auxiliary system with a single coordinate (r) is defined
for each line segment, as illustrated in figure [2.11] Using the Lagrange polynomial shape
functions, mappings are defined from the auxiliary system to the natural (mapping AN) and
global (mapping AG) ones:

= (2.133)

where k = 1,2 are the nodes of the interface (line) segment I'. ., x;, and & are their global
and natural coordinates, respectively, and N (r) are the polynomial shape functions corre-
sponding to them. These Lagrange polynomials and their derivatives are

1—1r 1+r
Ni(r) = Ny(r) = 5
(2.134)
dNy(r) _ 1 dNy(r) - +1
dr 2 dr 2

In order to calculate the integral of any function f (x) = f (x(r)), the auxiliary system
is used

/F f (@) dl = 7 f (a:(r))‘ dflff) dr (2.135)
] —_—
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e node of segment

@ integration point

(-1,+1) /\ (+1, +1)

[ep (-1,1) (+1,-1)

_ (b)

Figure 2.11: Integration over a 2D material interface in an intersected element. a) Global
coordinate system, b) Natural coordinate system of the element, c¢) Auxiliary coordinate
system for each line segment of the material interface.

dx(r)
dr
The total derivative with respect to the auxiliary coordinate r of the global coordinates,

which constitute a vector function (), is

where Jag = Jag(r) = is the local length distortion factor of the mapping (AG).
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dx(r) dNy(r) dNs(r)
dx(r) _ | dr | _ dr ! * dr 2 _ 1 2 (2.136)
dr dy(r) dN;(r) dNs(r) 2
Y1+ Yo Yo — Y1
dr dr dr

thus the distortion factor is equal to

D) () e -

where L., is the length of the intersection segment (x;, 2) in the global cartesian system.
Note that Ja¢g is constant and independent from the auxiliary coordinate r. The integral of
equation (2.132)) can be converted to

dx(r)
dr

JAG:‘

i / (N (e())" - N () t Jac dr (2.138)

where t is the thickness of the domain. By using numerical integration, the above equation
becomes

e ngp
K L (N )
Ko=323 o (N7 €)W taow, 2139
s=1 P=
wherep=1,--- n(GV])D are the integration points used for the intersection line segment I ., 7,

and w, are the coordinate and weight coefficient for Gauss-Legendre quadrature, as listed in

and &(rp) is calculated using equation ([2.133)).

2.2.7.2.2 3D problems

On the other hand, in 3D problems a 2D auxiliary coordinate system (r, 5) is used for
each intersection segment, which are now triangles, as illustrated in figure [2.12] Using the
Lagrange polynomial shape functions, mappings are defined from the auxﬂlary system to
the natural (mapping AN) and global (mapping AG) ones:

(2.140)
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(a)

@ integration point

0,1)

(0,0)

(c)

Figure 2.12: Integration over a 3D material interface in an intersected element. a) Global
coordinate system, b) Natural coordinate system of the element, ¢) Auxiliary coordinate
system for each triangular segment of the material interface.

where k = 1, - - - 3 are the nodes of the (triangular) interface segment I'. ., ), and &, are their
global and natural coordinates, respectively, and Ny (r) are the polynomial shape functions
corresponding to them. These Lagrange polynomials and their derivatives are
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Ni(r,s)=1—r—s Ny(r,s)=r Ns(r,s) =s

ONi(ris) _~ ONalrys) ONo(r,s) (2.141)
or or or

ONi(r;s) | ONa(ris) _  ONa(ris)
os T 9s 0 ds

In order to calculate the integral of any function f (x) = f ((r, s)), the auxiliary system

is used
/F f (@) dr - / / f (a(r,5))

ox(r,s) 0x(r,s)

ar B
mapping (AG). The partial derivatives with respect to the auxiliary coordinates (r, s) of the
global coordinates, which constitute a vector function x(r, s) are

ox(r,s) 0x(r,s)
o 0s

N J/
-~

drds (2.142)

Jac

is the local area distortion factor of the

where Jyg = Jag(r,s) =

- - 3 B _
Dz (r, s) ZaNk(n N
or k=1 or T2 — 11
Ox(r,s) _ |9 3 ON(r, s)
’ — y(T, S) _ k\T - o B
or - or B ZTyk |y —uyi | T Io T
k=1
0z(r, s) 3 ON
or Z#% 2 — 21
- - i r | L i
r - (2.143)
- - 3 B _
ox(r,s)| |5 S,
ds = Os T3 =1
Ox(r,s) _ |9 3 ONL(r, 5)
) _ | Oy(r,s) | — k(7 _ o
0s s ; s Yk Ys — % T3 T
0z(r, s) 3 ONy(r, 5)
L 0s _ = s | L ]
thus the distortion factor is equal to
ox(r,s ox(r, s
Jac = (‘(97» ) x 6()5 ) = (o —z1) x (25 —21)[| = 2 Airi (2.144)
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where Ay.; is the area of the triangular intersection segment (x;, @2, x3) in the global
cartesian system. Note that Jag is constant and independent from the auxiliary coordinates
r,s. The integral of equation (2.132)) can be converted to

ey 1-r 1

_ . 1 - T —(y

K:Z/ / 5 (N7 €0,9) N7 (€r,9) Jag drds — (2.145)
=10 o0

By using numerical integration, the above equation becomes

The,y ngll

K.=3> 5 (N7 )

where p =1, -- ng])p are the integration points used for the triangular intersection segment

Ie., (rp, Sp) and w, are the coordinates and weight coefficient for Gauss-Legendre quadrature,
as listed in and &(rp, s,) is calculated using equation ([2.140)).

S asl (€(
Tps Sp)) Jag Wy (2.146)

2.3 LSM representation of complex material interface
geometries

2.3.1 Level Set Method

The Level Set Method (LSM) is a convenient approach to track complex 2D and 3D geome-
tries, which may be stationary and evolving. Originally developed by Osher and Sethian
(1988)), it was first used in conjunction with XFEM in Stolarska et al. (2001)) for modeling
cracks and Sukumar et al. (2001)) for modeling inclusions or voids. In LSM, a curve in 2D or
surface in 3D is implicitly represented by its zero level set (contour), instead of employing an
explicit parametric description. The level set function is defined as the signed distance ¢ (x)
from a point @ to the curve or surface, as illustrated in figure If the geometry of an
inclusion is represented with LSM, the usual convention for the sign is: negative inside the
inclusion and positive outside. The level set function is evaluated and stored at the nodes
x; of a mesh. Then, it is interpolated for any other point, using the same polynomial shape
functions FEM uses:

Nnodes

¢(@(£) =D Ni(€) o (2.147)

where ¢ = ¢ (). LSM complements XFEM nicely, since it uses the finite element mesh
to represent the discontinuities and perform any geometric operations needed by XFEM.
For example, ¢ (x) is needed to determine on which material phase a point lies and for
the calculation of the enrichment functions. Furthermore, LSM can be used to identify the
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mesh element

exact
G geometry

LSM
approximation
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--0.018
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Figure 2.13: Signed distance function evaluated at nodes and interpolated inside elements;,

intersections of the material interfaces with the finite elements, which are needed for the
numerical integration presented in section [2.2.7 However, the accuracy of LSM depends on
the size of the elements. In order to represent geometries with high curvature or sharp turns,
a very fine mesh is required, as shown in figure Although the computational cost of
LSM is very low, the same mesh is used by XFEM, where refining the mesh rapidly increases
the time and memory requirements. The accuracy of XFEM does increase by refining the
mesh, but usually convergence occurs at significantly lower mesh densities than the ones
needed by LSM.

In this dissertation a double-mesh LSM approach has been developed, which uses a
coarse mesh for efficient XFEM analysis and a fine mesh for accurate LSM representations.
This section will elaborate the coupling of these two meshes and the geometric operations
needed by the XFEM formulation presented in this chapter. The resulting method offers
the advantage of independently adjusting the densities of the two meshes: the XFEM mesh
must be fine enough to achieve the desired accuracy of the analysis, but coarse enough to not
redundantly increase the computational effort, while the LSM mesh needs to be significantly
refined, in order to capture complex geometries of inclusions, and match the XFEM mesh.
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Figure 2.14: Variable accuracy of LSM representation. a) Coarse mesh. b) Fine mesh
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2.3.2 The double-mesh LSM approach

fine mesh
SR element (LSM)

coarse mesh
element (XFEM)

exact
geometry

LSM
approximation

Figure 2.15: Example of coarse XFEM and fine LSM mesh.

Figure illustrates the coarse mesh used for XFEM and the fine mesh used for LSM. It
can be observed that all nodes of the coarse mesh coincide with some nodes of the fine mesh
and that each coarse-mesh element contains a number of fine-mesh elements. The coarse
mesh consists of 4-noded quadrilateral elements in 2D or 8-noded hexahedral elements in 3D.
Triangular elements in 2D and tetrahedral elements in 3D are selected for the fine mesh, since
they lead to simpler and more robust geometric operations, especially when intersections
are considered (see section [2.3.3)). Furthermore, triangles and tetrahedra produce a more
accurate representation of the original curve or surface, since the level set approximation is
linear inside each element. For example, 2 line segments inside 2 triangles can approximate
a curve better than 1 line segment inside 1 quadrilateral.

Each fine-mesh triangle and tetrahedron has its own coordinate system =, while the
natural coordinates of the coarse-mesh element are &, as shown in figure 2.16] In order to
map between the two coordinate systems, a third auxiliary system & is defined, along with
its corresponding auxiliary elements. These auxiliary elements are generated by dividing a
coarse-mesh quadrilateral into (m; x m;) 4-noded quadrilaterals, in 2D problems. In 3D
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S/\ ﬁ,/\ (b)

Pa +1 P3

E;-l §;+1

Figure 2.16: Natural coordinate systems of the elements. a) Coarse-mesh element system.
b) Auxiliary element system. c¢) Fine-mesh element system.

problems, a coarse-mesh hexahedron is divided into (m; x m; x my) 8-noded hexahedra.
Therefore, the multiplicities m;, m; and my are integers that express the relative mesh
density of the coarse and fine mesh, along the axes x, y and z respectively. Each of these
auxiliary elements is assigned an index 3 = (f;, 5;, Bk), where

=1, m,
Bi=1,---m;
Br=1,my

Essentially, mapping between the coarse and auxiliary element systems involves mapping
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from € — (E, B):

8, = FLOOR (vn#) P S,

1+ ~
fj = FLOOR (W%) 1 =mn—20; +m; —1 (2.148)

1+¢ .

where FFLOOR(-) is an operator that keeps the integer part of a real number. Similarly, the
mapping from (§,3) — € is

£+ 26 +1
g=2T T
m;
n+26+1
=
C+26+1
my

(2.149)

(=

Moreover, each auxiliary quadrilateral is divided into 2 triangular fine-mesh elements, as
shown in figure [2 - In order to map a point E from the auxiliary system to the natural
system of the fine-mesh elements, first we must identify which triangle contains the point 5
Therefore and integer index v = 1 or 2 is assigned to each of the 2 triangles. Assuming that
the nodes of the auxiliary quadrilateral element are given in the specific order described in
table table lists the nodes of each triangle, as well as the region (in the auxiliary
space) occupied by it. Mapping between the auxiliary and fine-mesh coordinate system is
described in table 2.2

Triangle | Nodes of quad4 element | Region
v=1 P, B, Py 7<—€

v =2 P, Py, Py n>—£

Table 2.1: Fine mesh triangles.
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Triangle 5 —Tr r—>g
1+€ 14+7 | ~ _

ST P P R
2 2
1-¢ 1—7| ~

v =2 r:T€ s:T" E=1-2r|fj=1-2s

Table 2.2: Conversion between fine-mesh element system and auxiliary element system (2D
case).

The 3D case is similar. Each auxiliary hexahedron is divided into 6 tetrahedral fine-mesh
elements, which are assigned integer indices v = 1,---6. Assuming that the nodes of the
auxiliary hexahedron element are given in the specific order described in table table
lists the nodes of each tetrahedron, as well as the region (in the auxiliary space) occupied
by it. Mapping between the auxiliary and fine-mesh coordinate system is described in table

2.4

Triangle | Nodes of hexa8 element Region

y=1 Py, Py, Py, Ps m<E g<-§ 7<—C
y=2 P, Py, Py, P N>& <— 1< —C
y=3 P, Py, Ps, Py T<E iz-f 7<—C
y=1 Pr, Py, Py, Py T<E H>—E 7>—C
v=5 Pr, Ps, Py, Ps N>& i>—¢ i>=—C
v =6 Py, P;, Py, P W>E <-§ 7>-C

Table 2.3: Fine mesh tetrahedra.
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Tetra g—>r r—>g
E—7 7+l C+1 |~ _ ~

vy=1 7":5—7] s:n t:C E=2r+2s—1 n=2s—1 (=2t—-1
2 2 2
$+1 £ C+1]  ~ B -

v =2 7“:5— 5:77 ¢ t:C E=2r—1 n=2r+2s—1 (=2t—-1
2 2 2
7+1 1-¢ E+C| =~ _ ~

v=3 r:n— s = ¢ t:f ¢ E=1-2s n=2r—1 (=2s+2t—1
2 2 2
E—7f 1—¢ 1-¢| - -

NN RS Sl D PR S NP W SRR SR [ USRI
2 2 2
1—7 M€ 1-( | ~ ~

v=>5 T:Tn 827726 t = QC E=1—-2r—2s n=1-2r (=1-2t
1-7 E+1 T+C| ~

v=26 T:Tn 3252 t:772< E=2s—1 n=1-2r (=2r+2t—1

Table 2.4: Conversion between fine-mesh element system and auxiliary element system (3D
case).

Note that this approach is only viable for structured coarse meshes, consisting of quadri-
lateral (2D) or hexadedral (3D) elements. These meshes are perfect for modeling materials
in Reference Volume Elements with XFEM. In the general case of an unstructured coarse
mesh with triangular (2D) or tetrahedral (3D) elements, a similar approach can be adopted.
Each triangle would be recursively divided into 3 subtriangles, using its nodes and centroid.
Similarly, each tetrahedron would be recursively divided into 4 subtetrahedra, using its nodes
and centroid.

2.3.3 Intersecting the finite elements

The LSM representation of the geometry of a material interface (curve in 2D problems or
surface in 3D problems), can be used to find the intersection of the elements with that
geometry. Let rp; and rpy be the nodal coordinates of an edge of a fine-mesh element,
namely a triangle in 2D problems or tetrahedron in 3D problems, in the coordinate system
of that element. Also let ¢p; = ¢ (rp1) and ¢ps = ¢ (rp2) be the level sets of the fine-mesh
nodes P, and P; respectively. Then, the edge (P, P,) is intersected by the level representation
of the curve or surface if
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op1-Pp2 <0
or

¢p1 =0 and ¢py # 0 (2.150)

or
¢p2 =0 and ¢py # 0

Assuming that the level set functions are linear inside the element, which holds for 3-noded
triangles and 4-noded tetrahedra, the coordinates of the intersection point ro with ¢o = 0
are

0— ¢p

—¢P2 — b (P2 —Tp1) (2.151)

rTo =Tp1 +

¢br1>0
P1 dr2>0
dr3<0

02

P2
O
' P3

Figure 2.17: Intersection of LSM curve with a triangular element of the fine mesh.

On the other hand, the edge lies on the level set geometry, which means that fine-mesh
element conforms to the level set geometry, if

¢p1=¢p2 =0 (2.152)

2.3.3.1 2D problems

The intersection of a curve described by the proposed double-LSM approach and a coarse-
mesh (XFEM) element is an 1D mesh consisting of line segments (actually just a series of
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them) in 2D space, as depicted in figure . In order to find this intersection mesh, each
coarse-mesh element (quadrilateral) is divided into the corresponding fine-mesh elements
(triangles). Each triangle may by intersected by the level set representation of the curve along
a line segment or not all. Iterating over the edges of the triangle, if an edge is intersected
according to equation , the coordinates of the intersection point are calculated using
equation . The triangle is intersected, if it has 2 unique intersection points roi, ro2,
as illustrated in figure The segment (O103) must be oriented so that its normal vector

now — | (502~ s01) (2.153)
To2 —To1

points towards the region where level set values are positive. Let one of the nodes with

positive level sets be called P; (¢p; > 0). There must be at least one node with positive

level set (and one with negative), if the triangle is intersected. The intersection segment

(Q1Q2) is

(0102) if noi2 - (Tpl — 7‘01) >0

2.154
(0204) else ( )

(Q1Q2) = {
Let M; be the 1D intersection mesh, which consists of vertices and line segments. After
identifying an intersection segment ((1Q)2) for each triangle (if the triangle is intersected),
the points @)1, Q)2 are sought in M; and added to it, if they do not already exist. Then the
segment ((1Q)2) is added to M. After processing all fine-mesh elements (triangles) of a
coarse-mesh element (quadrilateral), the coordinates of the vertices of the intersection mesh
M are calculated in the natural system of that coarse-mesh element, using the mappings
described in table [2.2| and equation ([2.149)).

Finally, an area mesh is generated for the integration operations of XFEM, as depicted
in figure 2.9p. This mesh a) is defined in the natural coordinate system of the coarse mesh
element, b) covers the element’s area and c) conforms to the intersection mesh. Generating
this conforming mesh can be done using the Constrained Delauny Triangulation (Chew,
1989), which takes as input the nodes of the coarse-mesh element and the vertices and
segments of the intersection mesh.

2.3.3.2 3D problems

Similarly to the 2D case, the intersection of a surface described by the double-mesh LSM
with a coarse-mesh element is a 2D mesh of triangles in 3D space, as shown in figure [2.12]
Each coarse-mesh element (hexahedron) is divided into the corresponding fine-mesh elements
(tetrahedra). A tetrahedron may be intersected by the level set surface along 1-2 triangles
or not all. Iterating over the edges of the tetrahedron, if an edge is intersected according
to equation , the coordinates of the intersection point are calculated using equation
(2.151]). There are two intersection cases, as can be observed in figure
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e 3 intersection points: This happens when there are 3 fine-mesh nodes with positive
level sets and 1 with negative or 3 with negative and 1 with positive, as depicted in
figure The intersection points O7, O, O3, which can be selected in any order,
form a single triangle, which should be oriented, so that its normal vector np123 points
towards the region where level set values are positive:

noies = (roz — ro1) X (ro3 — ro1) (2.155)

where X is the cross product operator. Let one of the nodes with positive level sets be
called Py (¢p; > 0). The intersection triangle (Q1Q2Q3) is

(010203) it no1os - (7“P1 - ”“01) >0

2.156
(010302) else ( )

(Q1Q2Q3) = {

e 4 intersection points: This happens when there are 2 fine-mesh nodes with positive level
sets and 2 with negative, as illustrated in figure 2.18b] Let the nodes with positive
level sets be called P, P, and the nodes with negative level sets P3, P;. The order in
which these nodes are selected is unimportant. Then the intersection points located
on the edges between these nodes are

(2.157)

Then, two non-overlapping triangles (O;0,03) and (O40303) can be selected, although
there are other valid choices. The normal vectors of these triangles are

Nno123 = (7“02 - ”'01) X ("‘03 - 7“01)

2.158
No432 = (7“03 - ’1“04) X (7‘02 - 7“04) ( )

Taking into account that node Pj lies on the positive side of the LSM surface (¢p; > 0),
the two intersection triangles (Q1Q2Q3) and (Q4Q5Qs) are

o (010503) if mpo1a3 - (rp1 —T01) >0
(@Q1Q2Q3) = {(010302) else (2159)
) (04030,) if mouzz - (rp1 —T01) >0 |
(Q4Q5Q6) B {(040203) else
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Let M; be the 2D intersection mesh, which consists of vertices and triangles. After identi-
fying the intersection segments (Q1Q2Q3), (Q41Q5Qs) for each tetrahedron (if these intersec-
tions exist), the points Q1-Q¢ are sought in M and added to it, if they do not already exist.
Then the segments (Q1Q2Q3), (Q1Q5Qs) are added to M. After processing all fine-mesh
elements (tetrahedra) of a coarse-mesh element (hexahedron), the coordinates of the ver-
tices of the intersection mesh M are calculated in the natural system of that coarse-mesh
element, using the mappings described in table and equation ([2.149)).

Finally, a volumetric mesh is generated for the integration operations of XFEM, as de-
picted in figure . This mesh a) is defined in the natural coordinate system of the coarse
mesh element, b) covers the element’s area and c) conforms to the intersection mesh. Gen-
erating this conforming mesh can be done using the 3D version of the Constrained Delauny
Triangulation (Shewchuk, 2008), which takes as input the nodes of the coarse-mesh element
and the vertices and segments of the intersection mesh.
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Figure 2.18: Intersection of LSM surface with a tetrahedral element of the fine mesh.
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Chapter 3

Heat transfer analysis applications

In this chapter, the XFEM methodology proposed in chapter[2]is used in a series of numerical
applications. To begin with, the computational homogenization method is presented, in order
to obtain the macroscopic conductivity of composite materials. Subsequently, the proposed
XFEM formulation is validated in a numerical benchmark, as well as in the analysis of multi-
grain materials. Finally, the numerical model is used to simulate conductive heat transfer
in polymer-CNT composites, with random complex 2D and 3D microstructure, and then
calibrated using experimental macroscopic measurements.

3.1 Computational homogenization

In solid mechanics, homogenization is used to evaluate the parameters of the effective be-
havior of the macroscopic composite material by adopting a microscopic Representative
Elementary Volume (RVE), on which predefined boundary conditions are applied. In this
dissertation, linear boundary conditions are considered for the RVE, as described in Miehe
and Koch (2002). Consider a square RVE denoted by Q and its external boundary 09. Q
is discretized by nodes « that can be partitioned into internal nodes x; € €2 and bound-
ary nodes x, € 09, as illustrated in figure [3.1 By applying the same internal-boundary
partitioning to the DOFs of these nodes, the conductivity matrix can be written as

3.1
K, Ky (3.1)

In computational homogenization, the internal DOFs are condensed by taking the Schur
complement of Kj;:

R/bb = Ky, — KbiKZ‘;lKib (3.2)

Due to the assumption of linear boundary conditions:

T,=VT -x,=D"-VT (3.3)
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O internal node

y/\ ® boundary node

Figure 3.1: A 2D RVE with internal and boundary nodes.

with VT denoting any macroscopic temperature gradient vector applied on the RVE bound-
ary and Tj the temperature of boundary node x;,. The kinematic relationship matrix D
contains the coordinates of each of the n, boundary nodes in a coordinate system defined for
the RVE, which is also depicted in figure In case of 2D problems, it can be calculated
as

D — $1 IQ T xnb (34)
91 Y2 0 Ynb|
and for 3D problems
_le X9 e xnb_
D=y y2 - Yn (3.5)
_Zl 29 PN an_

The effective macroscopic conductivity tensor can be now computed as
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1
12]]
where [|€2|| is the volume of 2. This computational homogenization method is combined
with the XFEM procedure presented in chapter [2} For a target composite material, an RVE
of the composite material is considered in the micro-scale. This RVE consists of multiple
material phases, which are separated by interfaces that exhibit thermal resistance and can
be dispersed randomly or according to case specific rules. The elaborated XFEM procedure
is used to obtain the conductivity matrix K, according to equation . Then equation
(3.6]) is used to approximate the macroscopic conductivity tensor of the composite material.

C=— DK,D" (3.6)

3.2 Application 1: Three-phase benchmark

T=100K £ A

T=-100 K

Figure 3.2: Material configuration

First of all, a simple a benchmark problem is investigated, in order to validate the cor-
rectness of the XFEM formulation proposed in chapter In this example, the domain
consists of a composite material with three phases, A, B and C, having different interface
conductance along their boundaries. The configuration of the composite material is given
in figure along with the boundary conditions applied on the left and on the right side.
The thickness of the material is equal to 1, while the conductivities of materials A, B and C

w
are chosen k4 = 100——, kg = 1000—— and k¢ = 1——, respectively. The conductance at
mK mK mK
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the interfaces A-B, A-C and B-C is kyp = 100%, kaic = 10mV2VK and ko = 1000%,

respectively.

This example is first solved using the standard FEM software Abaqus (Dassault Systemes,
2020)), where a 40 x 40 mesh of quadrilateral elements was deemed adequate for an accurate
representation of the temperature field. In addition, appropriate cohesive interface elements
were used in the FEM model so as to capture the temperature discontinuities at the interfaces
between the different material phases. For XFEM, a nonconforming 39 x 39 mesh was used.
The results of the analysis obtained from standard FEM and the proposed XFEM formulation
are given in figures [3.3] and respectively.

+1.000e+02
+8.333e+01
+6.667e+01
+5.000e+01
+3.232e+01
+1.667e2+01
-1.144e-05

-1.667e+01
-3.333e+01
-5.000e+01
-6.667e+01
-8.333e+01
-1.000e+02

Figure 3.3: Temperature field from standard FEM analysis

Additionally, figures [3.5D] [3.5d and [3.5d| depict a comparison of the temperatures along
the different intersection lines shown in figure This investigation indicates the results
obtained from the proposed approach are in almost perfect agreement with the FEM model.
Lastly, figure displays the distribution of the heat flux field at the interior of the material,
where it becomes evident that heat ‘chooses’ to travel through the paths that have the highest
conductivity, a result that matches our physical intuition.
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Figure 3.5: Comparison of temperature between FEM and proposed XFEM formulation.
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Figure 3.5: Comparison of temperature between FEM and proposed XFEM formulation.
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3.3 Application 2: Polycrystalline silicene

This application investigates thermal transport across grain boundaries in polycrystalline
silicene. Silicene is a monolayer material, consisting of a honeycomb structure of silicon
elements. It is commonly fabricated through chemical vapor deposition (CVD). However,
this process leads to the formation of polycrystalline structures or, in other words, the for-
mation of grains, with each grain having different crystalline orientation. As a consequence,
temperature jumps appear across the grain boundaries due to phonon scattering. The ther-
mal properties of this particular material have been extensively studied in Khalkhali et al.
(2019), where the interfacial thermal conductance of grain boundaries was estimated at

ksp = 2.46 x 10°

> using non-equilibrium molecular dynamics simulations. The con-
m

ductivity of silicene is kg; = 41—K. Then, the effective conductivity, kesr, as a function
m

of the grain size GS can be estimated using the following formula (Mortazavi et al., 2014}
Mortazavi et al., 2017)

k?S] X kSB x GS
ksr + ksg x GS
which was also verified in Khalkhali et al. (2019).

(3.7)

kepr =

The aim of this example is to apply the proposed XFEM methodology for the conductive
heat transfer analysis of polycrystalline silicene, where the geometry of the interfaces is quite
complex, and validate the XFEM results with those predicted by equation (3.7). In figure
the material configuration is depicted, where red lines depict the grain boundaries and black
lines the structured finite element mesh used for the purposes of XFEM. The characteristic
grain size is defined as GS = y/(A/N) with A being the total area of the silicene sheet and
N the number of grains. The geometry of the grains was generated via Voronoi tessellation,
while their characteristic size was considered to be a varying parameter. Without loss of
generality, the same geometry was used for all RVEs, scaled accordingly to the G'S size. As
boundary conditions of the RVE, a temperature of 315K was applied to its leftmost edge
and 285K to its rightmost. The RVE size was taken equal to (20 - GSS) x (20 - GS) and
various RVEs were analyzed with G'S ranging from 2nm to 1000nm.

To validate the proposed XFEM formulation, the effective thermal conductivity of poly-
crystalline silicene is evaluated from the XFEM model for various grain sizes. The results
are then compared to those obtained from equation . As evidenced by figure , the
two models are in very good agreement. From this figure, it can be surmised that the effec-
tive thermal conductivity of polycrystalline silicene increases monotonically with the size of
grains, before reaching a plateau at the conductivity value of pure silicene. To estimate the
sensitivity of the methodology with respect to the mesh size, figures and present
two convergence diagrams, corresponding to the cases of GS = 2nm and GS = 1000nm. It
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is obvious that in both these cases an adequate level of accuracy can be obtained even for a
small number of elements.

Furthermore, figure [3.10] illustrates the temperature fields at steady-state for two RVEs
with GS = 2nm and GS = 1000nm. It becomes apparent that for a sample with small grain
size (figure , the temperature distribution is almost constant inside each grain. On the
other hand, for samples with large grain sizes (figure , a slight temperature gradient
can be detected inside each grain. These observations suggest that for small grain sizes,
the interface thermal resistance plays a dominant role in the temperature distribution but
as the grain size becomes larger, its effect is significantly diminished. To further elucidate
this, in figures |3.11a) and |3.11b| the temperature profiles along a section cut in the middle
of the corresponding RVEs are presented. Specifically, in figure it is clear that the
temperature is nearly constant inside each grain and temperature jumps manifest at the
boundaries of the grains. In contrast, in figure[3.11b|the temperature profile is approximately
linear inside the RVE and the temperature jumps are indiscernible.
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Figure 3.8: Effective thermal conductivity of polycrystalline silicene with various grain sizes
based on the analytical thermal resistance model from Mortazavi et al. (2014) and Mortazavi

et al. (2017) and the proposed XFEM formulation. Material properties: kg; = 41—K,
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Figure 3.11: Temperature profiles along a section cut in the middle of the RVEs for grain
sizes 2nm and 1000nm
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3.4 Application 3: 2D polymer - carbon nanotube
composite

In this example, a 2D RVE of a polypropylane (PP) polymeric matrix reinforced with carbon
nanotubes is studied. Pure CNTs are excellent heat conductors with their conductivity

W w
estimated to be in the range from 3500—— (Pop et al., 2006) to 6600—-= (Berber et al.,
mi mi

2000). Therefore, it has been theorized that the use of CNTs as inclusions in polymers
will significantly enhance their conductivity. However, the results from several experimental
works (Gojny et al., |2006; Moisala et al., 2006; Yunsheng et al., |2006) indicate only a
marginal improvement in the polymer’s conductivity, which is attributed to defects and
impurities in the CNT lattice (Che et al.,|2000), or, more critically, to the thermal resistance
during heat transmission from one medium to the other (Marconnet et al., 2013} Singh et
al.,2007)). On the bright side, by increasing the volume fraction of CNTs in the polymer, a
percolation network is created (Kumar et al., 2007), through which heat is being transferred
unhindered, which results in increased material conductivity. Moreover, another property of
CNTs, often neglected when used as inclusions in polymers, is that they act as heterogeneous
nucleating agents for polymer crystallizing along the interface. This induces the formation
of a transcrystalline layer (TL) that surrounds the CNT in a process known as CNT-induced
polymer crystallization (S. Zhang et al., 2008). This layer has improved thermal properties
compared to the amorphous polymer, which affects the overall thermal conductivity of the
RVE.

In this regard, the proposed XFEM formulation is employed for the study of 2D RVEs of
this three-phase material. CNTs are assumed to be randomly dispersed in the interior of the
PP and each phase (PP, CNT, TL) has its own conductivity and interfacial conductance.

w
More specifically, the PP conductivity was considered kpp = O.20—K (Maier & Calafut,
m

w
1998)), the CNT conductivity keyr = 2000_K (Hussain et al., [2017) and in lack of any
m
experimental knowledge over the thermal properties of the transcrystalline layer, it was
taken equal to kpr, = 0.30——, which is approximately the conductivity of the isotactic

m
polypropylene (Laschet et al., 2017) (degree of crystallinity 30-60 % ). Due to the inherent
uncertainties concerning the interfacial conductances, they were treated as parameters in
this model and a sensitivity analysis was performed to assess their influence on the effective

and

conductivity of the composite material. Their initial values were kpp;cnr = 0.25 %
m

. Moreover, a justified assumption has been made that the TLs around

kCNT/TL — 1000m2K
the CNTs have different crystallinities and an interface is created at the edges where TLs of
adjacent CN'Ts merge. The crystalline phases around each CNT exhibit different preferred
orientations that can not be determined a priori, causing interfacial resistance. An analogous

phenomenon was the formation of the grain boundaries in the polycrystalline material of
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section (3.3l Therefore, the interfacial resistance between two TLs was also considered as a
parameter under investigation.

The study of this material was performed on RVEs of size 2000nm x 2000nm, with
varying volume fractions. Figure depicts the RVE corresponding to a CNT volume
fraction of 4.27%, while the RVEs of figures [3.12b}, |3.12¢| and [3.12d| correspond to volume
fractions of 6.54%, 10.31% and 12.80%, respectively. In all cases, the CNTs were randomly
scattered in the parent material and their orientations were also random, following a uniform
distribution between 0 and 27. The length of the CNTs was taken equal to 500nm, their
diameter 20nm and the width of the TL was 60nm. Figure displays in more detail the
different interfaces formed in the interior of the composite material.

Next, a temperature gradient is applied at the z-direction of the RVEs by setting the
temperature at the leftmost nodes equal to 100K and at the rightmost nodes equal to —100K.
Figure depicts the temperature field and the heat fluxes inside the corresponding RVEs
at thermal equilibrium. This figure highlights the fact that heat fluxes inside CNTs are
significantly larger in magnitude than those in the polymer matrix. Evidently, heat ‘prefers’
to travel mostly through CNTs, due to their excellent conductivity. CNTs oriented towards
the y-axis exhibit smaller heat fluxes, as the temperature gradient for this example is applied
only in the x-direction. However, when CN'T clusters are formed, which is the case for higher
volume fractions, these vertical CNT's act as bridges between horizontal heat paths. This is
particularly noticeable in figure [3.14d] where several percolation networks can be detected.

Subsequently, the impact of the interfacial conductances krp/rr, kpp/rr and konrrr
on the overall material conductivity was assessed. To this end, a parametric investigation
was performed, where the effective conductivity of each RVE was obtained via computational
homogenization. More specifically, ﬁgure illustrates the effect of the conductance krp,7r
of the interface between two TLs for various volume fractions, when considering it to be
perfect insulator, perfect conductor or anything in-between. As shown from this figure, the
effect krp 7 has on the material’s conductivity becomes more pronounced as the volume
fraction increases. This is attributed to the fact that for higher volume fractions, more local
networks between adjacent CNTs are being formed (see figure and higher values of
krr 1 significantly facilitate conductive heat transfer through them. In contrast, for low
volume fractions the absence of percolation networks renders the effect of k7, /7y, insignificant.

Moreover, figure depicts the surface plots of k.¢; as a function of the interface con-
ductances koyryrr and kppypp for all volume fractions. Upon inspection of these figures,
it becomes apparent that the influence of kpp/7 and konr/rr on the effective conductiv-
ity, increases for higher volume fractions. This stems from the fact that by increasing the
content of CNTs, more boundary interfaces are generated. Hence, higher values of inter-
face conductance facilitate heat entering the highly conductive CNTs and flowing through
them. For instance, for volume fraction 12.80%, the maximum attainable improvement

%4
in k.rs between the case of perfect insulation (kCNT/TL = kpp/r1, = 107° 2K) and per-
m
%4
fect conductance <I<:CNT/TL = kpp/TL = 103 3 K) is 61.20%. These results indicate that
m
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Figure 3.12: RVEs for various volume fractions

kcntyrr and kpp/rp play an important role in the overall material conductivity and should
not be neglected in the analysis of nano-composites. Finally, as illustrated in these figures,
the volume fraction of CNTs in the parent material is the most significant factor that en-
hances the composite’s effective conductivity compared to the initial polymer’s conductivity,

w
kpp = 0.20——.
pp =0 OmK
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Figure 3.12: RVEs for various volume fractions
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Figure 3.13: Detailed view of the different interfaces in the interior of the composite material
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3.5 Application 4: 3D polymer - carbon nanotube
composite

In this application, the XFEM model of the microstructure, which was elaborated in chapter
2} will be employed to investigate the thermal conductivity of CNT reinforced polyethylene
(PE). In contrast to the previous example, in this case, a 3D XFEM model is used and the
interface conductance is calibrated using experimental data.

3.5.1 Model calibration - Inference of the conductance between
CNTs and polymers

In particular, the effective thermal conductivity of the composite will be calculated from
an analysis of multiple SVEs of the micro structure, for different CNT concentrations and
configurations. For an accurate estimation of the material’s effective conductivity, it is of
paramount importance to know the interface conductance, denoted as k, between the PE
matrix and the CNTs. To infer k, a set of experimental measurements of the effective con-
ductivity of CNT-reinforced PE provided by Konstantopoulos et al. (2021), will be utilized.
In this work, specimens of the composite were studied, for the cases of 1%, 5% and 15% wt
of CNTs in the parent material. The CNTs were synthesized by catalytic Chemical Vapor
Deposition on a vertical setup, having an average diameter of 168 +56 nm, while their length
exceeded 10 pum, classifying them as “long”. Masterbatches of CNTs were produced with
polythelene glycol (PEG) in a 1 : 1 weight ratio between CNTs and PEG, in order to ensure
better dispersion of CNTs into PE. PEG however makes interfaces complex as a third phase
in the composite. The experimental results regarding the composite’s effective conductivity
are summarized in table 3.1l

w
Effective conductivity (—)

Reference samples mi
without CNTs | 1 wt% CNTs | 5 wt% CNTs | 15 wt% CNTs
PE 0.250
PE + 1 wt% PEG 0.229 0.416
PE + 5 wt% PEG 0.219 0.403
PE + 15 wt% PEG 0.210 0.422

Table 3.1: Effective thermal conductivity from experimental measurements in Konstantopou-
los et al. (2021)).

By denoting k. #¢ the composite’s effective conductivity obtained by applying the homog-
enization scheme to the XFEM model, then this quantity is parametrized by the weight
ratio wt% of the CNTs in the parent material, the interface conductance k, and a vector
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of random parameters @ which affect the architecture of CNTs. In mathematical notation,
kes = kesp(wt%, k, 0). To account for the randomness @ in the material configuration,
this work opts to analyze a number N of SVEs of the microstructure for different geometry
realizations 64, ..., 0y and extract average values of the effective conductivity, k.ss given by

Zf\il l%eff(wt%v ]%7 01)
N

which is considered to be representative for the composite. For the generation of the SVEs,
a geometry generator was employed, where a 10nm x 10nm x 10nm polymer matrix was
created, in which CNTs were added so as to attain a prescribed weight fraction. The CNTs
were modeled as cylinders, randomly positioned and oriented inside the PE matrix, having
length of 10 pum and diameter of 168 nm. It was also assumed that each CN'T’s center of
mass follows a uniform distribution ([0, 10]*) (nm) and periodic boundary conditions were
applied. More specifically, the implementation aspects of the 3D SVE generator are the
following;:

keff(wt%,l;:) = (38)

1. The coordinates (xf, yf, z7) of the center of mass of the i-th CNT cylinder are considered
to be independent random variables, each following a uniform distribution between
0 and the length of the SVE. That is, ¢, y¢, 2f ~ U([0,10]) (nm). This is chosen
because we do not have any information indicating the existence of more probable
CNT locations or a correlation structure for the CNT dispersion in the host material.

2. The orientation of the i-th CNT is characterized (in spherical coordinates) by the
azimuthal angle w® and the polar angle w? | which are also considered to be random

variables following uniform distributions, i.e. w® ~ U([—m,n]) and ! ~ U(]0,7]).
Again, this is chosen since we do not have any evidence indicating towards a preferred

CNT orientation during the manufacturing process.

3. A prescribed number of CN'Ts is added to the cubic volume element so as to achieve the
target weight fraction. The positioning of the CNTs is performed in a serial manner,
where for each new CNT, a random realization of [z¢, 3¢, 2¢, w®, wP| is drawn from the
corresponding probability distributions. Two cases are examined here:

a) If the i-th CNT intersects with a face of the cube, then the remaining part re-
enters through the opposite face (periodic boundary positions). This allows us to
insert the exact number of CNTs that will produce the desired weight fraction in
the host material.

b) If the i-th CNT penetrates a pre-existing one then its positioning process is re-
peated (Song et al., 2016).

In figure three realizations of SVEs are illustrated for the cases of 1%wt of CNTs (figure
3.17a), 5%wt of CNTs (figure [3.17b)) and 15%wt of CNTs (figure [3.17¢)).
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Figure 3.17: Statistical volume elements for different wt% of CNTs: (a) 1 wt%, (b) 5 wt%,
(c) 15 wt%

Based on the measurements of Table [3.1], the numerical model’s agreement with the
experimental measurements, is expressed through the error norm:
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Figure 3.17: Statistical volume elements for different wt% of CNTs: (a) 1 wt%, (b) 5 wt%,
(c) 15 wt%

\/<k:€ff(1wt%, k) - 0.416)2 o (Kegs(5ut?, k) - 0.403)2 o+ (Keg(15wt%, k) - 0.422)2

e(k) =
(%) V0.4162 + 0.4032 + 0.4222

(3.9)
To obtain accurate statistical estimates of k.ss, for each wt% and each value of conductance
k in the parametric investigation, a number of N = 100 SVEs were analyzed. The results
of this investigation are shown in figure |3.18] which plots the effective conductivity of the
composite for varying values of k. Upon inspection of this figure, it quickly becomes evident
that & plays a major role in the composite’s effective conductivity, since for values greater

than 1
an 1 —oor

wt% of the CNTs increases, as expected.

Subsequently, the error € given by equation is plotted as a function of the conduc-
tance k in figure . This figure indicates that the best agreement between the experimental
measurements and the numerical predictions can be attained for k& = 0.73 %, which results
in an error € = 7.41%.

a rapid increase in k.sy can be reported. This result is more prominent as the
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Figure 3.18: Parametric investigation for different wt% of CNTs and PEG. The markers
indicate the mean value of k.s¢ and the length of the error bars is one standard deviation.
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Figure 3.19: Error of effective conductivity k.s¢ as a function of interface conductance k
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3.5.2 Theoretical investigation on the effective conductivity for
optimal microstructural morphologies

In this section, a numerical investigation will be conducted to assess the potential CNT-
reinforced PE has as a conductive material, based on idealized microstructural morphologies,
even if these are beyond current manufacturing capabilities. The focus in the section will be
placed on: (i) the CNT weight fraction, (ii) the CNT orientation, (iii) the CNT aspect ratio
and (iv) the interface conductance.

Initially, the effective conductivity of CNT reinforced PE is studied for varying weight
ratios wt%, assigning to k the value 0.73 %, found in the previous section. The investiga-
tion is performed for arbitrarily inserted CNTs in the polymer, as well as perfectly aligned

CNTs. This way, upper estimates of k.ss can be obtained. In figure [3.20, the SVEs made
up of horizontally aligned CNT's are depicted, as opposed to figure which plotted SVEs
with randomly oriented CNTs.

AV \\

N
'“\\\\\\

(a)

Figure 3.20: Statistical volume elements for different wt% of of horizontally aligned CNT's:
(a) 1 wt%, (b) 5 wt%, (c) 15 wt%






CHAPTER 3. HEAT TRANSFER ANALYSIS APPLICATIONS 101

4 T T

g - ® =3aligned CNTs ®
£ 3.5 1 |= ® =randomly oriented CNTs s
= A
S p
SN— 3 [ , B
S 4
< 25} P .
B>y /
= 4
=2 > 1
3! o 1
= >
”g 1.5r ;', 1
Q _ .
() -
o) 1r ¢‘ 9
= .
E —
am:: 0-5;4’__.__.---o--o--o---o---o--o——o-ib

<

0 1 1 1

0 5 10 15 20

wt% CNTs

Figure 3.21: Comparison in the effective conductivity between randomly oriented CNTs and
perfectly aligned

Figure |3.21| provides a comparison in the effective conductivity of the composite between
randomly oriented CNTs and aligned CNT's, where a noticeable increase in conductivity can
be reported for the latter configuration. Next, the role of the aspect ratio of the CNTs in
the effective conductivity is examined. Figure displays the effective conductivity of the
composite for perfectly aligned CNTs, as a function of the CNT length and diameter. The
conclusion is drawn that by increasing the aspect ratio of the CNTs, a significantly more
conductive material can be produced.

Lastly, an idealized material is considered with perfectly aligned CNTs and an aspect
ratio of 2000 (diameter 10 nm and length 20 pm), which is studied for varying interface
conductance k values. The reason for this investigation stems from the fact that the conduc-
tance between CNTs and PE could potentially be increased by coating the CNTs with other
conductive materials (Wang et al., 2020), even though this area is not well researched yet.
Figure depicts the results of this analysis for k= 0.73,10, 100, 1000, where a drastic
improvement in k.sy can be reported as k increases. Overall, the conclusions drawn from
these analyses suggest that CNT-reinforced PE is not expected to have high conductivity
values when using conventional manufacturing techniques. Nevertheless, by optimizing the
CNT orientation and aspect ratio, as well as by increasing the conductance at the interface, a
highly conductive material can be generated with great potential for industrial applications.
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Figure 3.22: Effective conductivity k.r; as a function of the CNT length and diameter for
various wt%, for the case of perfectly aligned CNT's
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Figure 3.22: Effective conductivity k.r; as a function of the CNT length and diameter for
various wt%, for the case of perfectly aligned CNT's
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Figure 3.23: Effective conductivity kes; for perfectly aligned CNTs with an aspect ratio of
2000, for different values of interface conductance k
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3.6 Conclusions

This chapter investigated the numerical model based on XFEM and LSM, which was pre-
sented in chapter [2, in a series of examples involving heat transfer in composite materials
with complex geometries. After validating the method’s accuracy with data from the lit-
erature, it was employed for the study of polymer - carbon nanotube (CNT) composites.
The thermal resistance between polyethylene (PE) and CNTs was estimated, by performing
parameter inference using experimental measurements of the effective thermal conductivity
of the composite. From the investigation of the role of CNT orientation, aspect ratio and
interfacial resistance on the effective conductivity, the following conclusions can be drawn:

1. The resistance at the interface between PE and CNTs is quite high and as a result the
effective conductivity that the composite can reach is far below theoretical expecta-
tions.

2. The theoretical investigations demonstrate that the most critical parameter for the
production of a highly conductive composite is the resistance at the interface between
CNTs and PE. Reduced values of thermal resistance, possibly achieved by coating
CNTs with other conductive materials, can indeed lead to a composite with the desired
properties for thermal applications.

3. In addition, microstructural morphologies consisting of perfectly aligned CNTs with
high aspect ratio can lead to a noticeable improvement in the effective conductivity.



105

Chapter 4

3D crack propagation analysis

The aim of this chapter is to review crack propagation analysis using the Extended Finite
Element Method (XFEM). The Boundary Value Problem (BVP) for the case of Linear
Elastic Fracture Mechanics (LEFM) is stated and then solved in its weak form using XFEM.
Furthermore, the geometric representation of 3D cracks, as well as their interaction with
XFEM are presented. Finally, the propagation direction and increment of an existing crack
are predicted.

4.1 Modeling crack propagation with XFEM

4.1.1 Strong form

Figure 4.1: Domain with an edge crack
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Let © be a domain containing a crack I'y, as illustrated in figure[d. 1] Its external boundary
of 0N has an outward normal vector nr and is divided into complementary parts 0€2, and
0€);, such that 92 = 902, U 0€2;. Dirichlet and Neumann boundary conditions are imposed
on the boundaries I', and I';, respectively

u=wuonl,

~ (4.1)
o-nr=tonl}y
where
e u = u(x) is the displacement field
u
u=|v (4.2)
w
e 0 = o (u) is the Cauchy stress tensor
o
Oyy
o
o= |7 (43)
Tyz
e u are prescribed displacements on I,
o ¢t are prescribed tractions on I';
The surface of the crack is assumed to be traction-free:
_ ot o _
o-nr,=0" -np, =0 -npr,=0only (4.4)

where nr, is the normal vector of the crack I'; and o™, o~ is the stress tensor evaluated
on each side of I';. Assuming that the displacements remain small, the kinematic equations
consist of the strain-displacement relation

Vau + (V)"
2
where Vg, u denotes the symmetric part of the Vu tensor and € is the strain tensor

€ =€(u) = Vy,u= (4.5)
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ou

ox
ov

dy
ow

e=| 02 (4.6)
ou  Ov

by o
ov  OJw
29z oy
ou Ow
92 "
For a linear elastic material, the constitutive law is

oc=oc(u)=C:€(u) (4.7)

where C' is the constitutive tensor. For a 3D elastic isotropic material, this 4th-order tensor
is constant and equal to

[1 — v v v 0 0 0
v 1—w v 0 0 0
v v 1—w 0 0 0

E 1—2v
C = 0 0 0 0 (4.8)
(14 v)(1—2v) L— 2%
0 0 0
1—2v

0 0 0 0 0 5

where E is Young’s modulus and v is Poisson’s ratio. If b = b () is the body force per unit
volume applied to the entire €2, then the equilibrium equation is

V.-og+b=0in () (4.9)
where the divergence of the stress tensor V - o is a vector defined as

004, 00y 004,
ox dy 0z
doij 00y 0oy, N oy,
O Ox dy 0z
00,; 00, 00,

Ox dy 0z

(4.10)
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Given the equilibrium equation, kinematic relations, constitutive law and boundary con-
ditions on the external boundary and the crack, the strong form of the BVP can be posed
as: “ Find a vector function u (x) for the displacement field, so that the following equations
are satisfied:”

V-o+b=0in

o=C:e(u)

Vu + (Vu)”
elw)=———— (4.11)

u=wuonl,

J-n:t~on1“t

o-np,=0onTly

4.1.2 Divergence theorem in cracked domain

The divergence theorem is necessary to derive the weak form that is the basis of any finite
element formulation. Given a continuous domain €2, with boundary I' and a continuous vector
field F', the integration of its divergence over the domain is equivalent to the integration of
the field itself over the boundary:

/V - FdS) = /F -npdl’ (4.12)
Q r
where the divergence operator is used:

F,
v-F:divpz[ﬁ 9 3}.
ox 0Oy 0z

OF, OF, OF,
= +

— 4.1
ox oy + 0z (4.13)

y
F,

In XFEM the domain €2 is discontinuous, but the divergence theorem can be applied
by splitting € into continuous subdomains. Figure depicts a domain €2 that is divided
into two subdomains Q1 and Q~ by a discontinuity I'y. The external boundaries of domains
QF and Q~ are denoted as I't and I'", with their outward unit normal vectors being np+
and np- respectively. The internal boundary I'y, with the unit normal vector mr, oriented
towardsQ™, consists of the actual discontinuity I'g; and its extension I'go with the unit normal

vector nr,,, both oriented towardsQ™. The divergence theorem can now be applied to QF
and 27, since F' is continuous inside them:
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Figure 4.2: A domain 2 with an interior discontinuity I'y

/V~FdQ:/F-nF+dF+/F+-(—npdl)dF—l—/F- (—np,,)dl (4.14a)
o o T Lz
o - Ta P

where the values of F' along the two sides of the discontinuity I'}; and I';; are different
and denoted as F* and F~ respectively. Since the two subdomains span the whole domain
Q=0"UQ and I = I'" U~ and by noticing that the contour integrals along the extension
of the discontinuity I'gs in equation cancel out:
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/V-FdQ—/V-FdQ+/V~FdQ
Q o o-

:/F'nﬁdf—l—/F-nF—dF—/F+'npdldl“
r+ r-

+
Fdl

(4.15)
+/F_-npd1df—/F-npdzdF+/F~npd2dF
I Il Ly
:/F.nrdr—/(F+—F‘)-npddF

r Ty

By defining the jump of the vector field across 'y as [F] = Ft — F~ the previous
equation becomes

/V-FdQ = /F-anF—/[[F]] -np,dl (4.16)
Q r Ty

For problems where the domain contains Ny discontinuities, the following should be used

instead
/V-FdQ = /F-anF—Z/ﬂE]] -np, dT (4.17)
Q r '

4.1.3 Weak form

The weak form of the BVP is posed as: Find a trial function w that belongs to the function
space

U={veH:v=wuonl,, v discontinuous on I'y} (4.18)
such that
/e(w):C:e(u)dQ:/w-bdQ+ w-tdl (4.19)
Q Q Tt
for all test functions w belonging to the space

Up={veH:v=0o0nT,, v discontinuous on I'y} (4.20)

where H is an H' Hilbert space of functions that are smooth in €2, but discontinuous across
[y. To derive the weak form from the strong form, equation (4.9)), is multiplied with an
arbitrary test function w, integrated and then the product rule of differentiation is applied:
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Vio(u)+b=0
= /’w-(V~a(u)+b) dQ=0

= [w-(V-o)dr+ [w-bd2=0 (4.21)
/ /

= Q/V-('w-U(U))dQ—Q/Vw:0'(u) dQJrQ/'w-bdQ:O

The discontinuous Divergence theorem of equation (4.16) can now be applied on the first
integral of equation (4.21))

[V tw-owie= [w o nar - [[w-o @]
I/'w‘a(U)‘nrdFJr/w~0(U)~nrdF (4.22)

_/<’w+-0+(u)"nrd_w_'U_(u)'"Fd) dr

By imposing the boundary conditions of equations , , the last two integrals are
eliminated from the previous equation

/V N(w o (u)dQ = /w-fdr (4.23)

The gradient of the test vector field can be written as

Vw + (Vw)"  Vw — (Vw)"
v 2 * 2

where Vg, w and V,,w are the symmetric and anti-symmetric parts of the Vw tensor.
Since V w is anti-symmetric and o (u) is symmetric, their product is

= VymW + Vgnw (4.24)

Viuw : o (u) =0 (4.25)
Therefore the second integral of equation (4.21)) becomes
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/V'w:a'dQ—/Vsym'w:a(u) dQ+/Vamw:0'(u) dQ
Q Q Q

(4.26)
= /e(w) co(u) dS2

Q

Substituting equations (4.23)) and (4.26)) into equation (4.21]) results in the weak form

/w-idr—/e(w):a(u)dﬂ+/w-bd9:o

@/e(w):C:udQ:/w-bdQJr/w-de
Q Q Iy

4.1.4 XFEM enrichment

In order to model the discontinuous displacement field w, XFEM enriches the polynomial
approximation space of standard FEM with non-smooth enrichment functions. The finite
element mesh is independent from the crack geometry and does not need to conform to it.
Instead, some elements are intersected by the crack surface or the crack front, as illustrated
in figure The nodes of elements intersected by the crack front are enriched with 4
asymptotic crack-tip enrichment functions F,(x), derived from LEFM

(4.27)

{Fm(a’)}fnzl = {Fn(r, 0)};:1

0 0

4.28
= {\/Fsin(a); \/Fcos(é); \/;sin(g) sin(f); \/Fcos(g) sin(@)} (4.28)

where (r,0) = (r(x),0(x)) are the coordinates of a point defined in a polar system at the
crack front, as shown in figure [4.3a] Furthermore, the nodes belonging to elements that are
intersected by the rest of the crack surface, are enriched with the Heaviside function H ()

+1, ¢(z) >0
-1, ¢(x) <0

where ¢(x) is the signed distance of a point @ to the crack surface, as shown in Fig. This
enrichment strategy of XFEM is localized around the crack, since the rest of the elements
and nodes in the mesh do not interact with the crack. Let M, My and My be the sets of
all nodes that are not enriched, enriched with the Heaviside function and enriched with the
crack-tip functions, respectively. Then the enriched approximation space used in XFEM is

H(x) = H(p(x)) = { (4.29)



CHAPTER 4. 3D CRACK PROPAGATION ANALYSIS 113

Crack front

Element intersected
by crack surface

@ Heaviside enriched node

Element intersected

@ Crack tip enriched node
by crack front

(b)

Figure 4.3: A crack surface inside a 3D body. (a) Signed distances ¢ from the crack surface
and polar coordinates (r,#) around the crack front. (b) Enriched nodes and elements inter-
sected by the crack.
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(4.30)

By
m
5
3
,&

where u; are the standard DOFs expressing nodal displacements, while u’ and ul™ are
enriched DOFs introduced by XFEM at the nodes that are enriched with Heaviside and
crack-tip functions, respectively. All Ny (x) are polynomial shape functions, identical to the
ones used in standard FEM. The above equation can be written more concisely by grouping
all Heaviside and crack-tip enrichment functions and representing them collectively as G*(x)

") =) Ni(z)up+ Z Ny(@ — G(x1)) uf

keM keM, (4.31)

s

' Vv
ustd uenr

where M, are the nodes enriched with enrichment function G* and u{ are the corresponding
enriched DOFs. The first term (u**9) on the right-hand side of equation corresponds to
the standard FEM approximation of the displacement field. The second term (u*"") contains
enriched basis functions that allow the approximation space to model (i) displacement jumps
across the crack surface (Heaviside enrichment) and (ii) stress/strain fields that are singular
at the crack front (crack-tip enrichments). The derivatives of the crack-tip functions with
respect to the polar coordinates are

OF, 1 Q
88_}7;1 _ 12f o 9 (4.32)
0] L2 Vresy
o | 1 6
aa_é _ 21\/7“ COSQH (4.33)
o) LTV
% L sme sin ¢
;‘;3 ! 2\? | » (4.34)
=5 \/F<§-cos§-81n9+sm§-cos€>
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OF, 1 0 p
2_\/F - COS 5 - S1n
837" — Y ) (4.35)
Fy . .
= \/7_“( 5 sing sm@~|—cos2 cos@)

4.1.5 Algebraic equations

Using the displacement field approximation of equation (4.31)), the weak form of equation
(4.19) results in a linear system with the nodal displacements u as unknowns

Ku=f

K:iPeT~Ke~Pe

e=1

F=> B 1
e=1

(4.36)

where n. is the number of finite elements, P, is a boolean matrix, namely it contains only
0 or 1 entries, that correlates each element DOF (row of P.) to one exactly global DOF
(column of P.), K, is the element stiffness matrix and f, is the element force vector:

f= / NT(z(£)bd2+ [ NT(x(&))tdl (4.37)
Qe

Fte

where € are the coordinates of a point in the natural system of the element and N (x (£))
is a matrix containing the standard and enriched basis functions of the element:

N (z(§) = [N (z(§)) N (z(§))]

[ Ne(x(8)) 0 0

N (z(§) = |- 0 Ni (2 (£)) 0
_ 0 0 Nelz(€) (4.38)
L N (= (8)) 0 0

N (z (€)= | 0 Ny (@ (€)) 0
I 0 0 N (2 (€))

where N are the enriched basis functions
N (x (£)) = Ny (2 (€)) (G* (= (§)) — G* (x)) (4.39)

where G (x (€)) is any Heaviside or crack-tip enrichment, evaluated with respect to the
natural coordinates xz. Moreover, the element stiffness matrix can be calculaed as
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K, - /ﬂ B (@ (€))- C (@(£)) - B (x (€)) det (Jng (€)) dédndc

where det (Jy¢ (€)) is the determinant of the Jacobian matrix Jy¢ (&) of the isoparametric
mapping, which is defined in equation (A.3)). The deformation matrix B (x (£)) is

(4.40)

B@(&) =B (z(€) B (=(¢)
W#&:@)) 0 0
ON{™ (z (€)) 0
dy
ON™ (
B ey | T o
&)= ONG™ (x (€)) ON™ (2 (€)) 0
oy ox
ONE™ (z(€)) AN (x(€))
0z y
92 ox J

B (x (£)) = s;milarly

The derivatives with respect to global cartesian coordinates @ are calculated using the deriva-

tives with respect to natural coordinates &:

o @ 6))] N (o)
ox 73
ONE™ @ (&) | = (g (€))™" - | PN (&)
Oy on
N (2 (€)) N (€)
0z ] ¢
and
ONE™™ (8)  ONK(€) ., . oG* (€)
o = o€ (G* (&) — G* (&) + Nk (€) o€
ONE™™ (8)  ONK(£) ., . oG* (€)
T o (G (&) — G (&) + Ny (€) n
ONE™ (€)  ONG(E) ., . oG* (€)
¢ = ac (G* (&) — G (&) + Nk (€) ¢

(4.42)

(4.43)
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For the Heaviside enrichment function H (x (§)) of equation (4.29)), the derivatives are

OH(§) OH(§) OH (§)
e ap o

The derivatives of the crack-tip enrichment functions F,, ( (£)) of equation (4.28) with
respect to the global coordinates & can be calculated as

=0 (4.44)

OF,, o dn oC| |0F,
Or or Ox ox| | o€
OFn| _ 106 On OC| | OFn (4.45)
Jdy dy 0Oy Jy on
0F,, o0& On OC 0F,,
| 92] 10z 02 92] Lo
(JJ\TC:)_1

where Jy¢ is the Jacobian matrix of the isoparametric mapping: natural — global coor-
dinate system (NG), which is defined in equation ([A.3|). Then, the derivatives with respect
to the natural coordinates & are

0F,, or 00
o¢ | |og ol |oF,
OFy| _ |or 00| or (4.46)
on on On oF,,
OF,, or 00| L oo
L oc ] Lac ol
Jnp

where Jyp is the Jacobian matrix of the mapping: natural — polar coordinate system

.. 0F, 0F, . . . .
(NP). The derivatives ——, —— of the crack-tip enrichment functions with respect to

or
the polar coordinates (r,0) are evaluated using equations (4.32H4.35). In this work, the

Jacobian matrix Jyp is calculated using an auxiliary coordinate system (¢,) defined by
the representation of the crack’s geometry, which will be elaborated in section 4.2

4.2 Crack geometry representation

In combination with XFEM, implicit representations of crack geometries are usually em-
ployed, based on the Level Set Method (LSM). LSM was originally proposed in Osher and
Sethian (1988) for tracking complicated moving interfaces, by computing their motion on a
fixed finite element mesh. This implicit representation complements XFEM very well, since



CHAPTER 4. 3D CRACK PROPAGATION ANALYSIS 118

it uses the same fixed mesh to efficiently calculate the signed distance of arbitrary points to
the crack surface, as well as their polar coordinates (see equation (4.28)).

In this work, a hybrid explicit-implicit representation of cracks is used, instead of the
purely implicit LSM developed by Stolarska and Chopp for simple 2D cracks. This
hybrid approach was introduced in Fries and Baydoun and takes advantage of the
synergy between implicit crack representations and XFEM, as well as the ease of updating
explicit crack geometries in both 2D and 3D. A brief overview of the method will be given
here, while interested readers should refer to Fries and Baydoun for more details.
Note this approach is just one alternative for representing 3D cracks. The solution meth-
ods developed in chapter [5| will perform just as well with other crack geometry description
methods.

Figure 4.4: Explicit representation of a 3D crack as a mesh with triangular elements.

A crack surface is represented explicitly as a mesh of triangular cells in 3D space and
the crack front consists of the surrounding vertices of this mesh, namely the crack tips. An
example involving a planar crack is shown figure [£.4] along with local coordinate systems
defined at each crack tip. This explicit representation is very convenient to model crack
growth, since only new triangles need to be added along the crack front, as the crack prop-
agates. Specifically, each crack tip :cl@ at step t will propagate towards azgtﬂ). Update the
crack mesh of step t consists simply of adding to it the triangles between crack tips azgt) and

2+,
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Figure 4.5: Implicit representation of a 3D crack: ¢y (x)

Furthermore using this triangular crack mesh, 3 level set functions are evaluated at the
finite element nodes:

e ¢ (x) is the unsigned distance of a point to the crack mesh.
® ¢, (x) is the unsigned distance of a point to the crack front.

e o3 (x) is the signed distance of a point to the crack mesh, which defines a positive and
a negative half-space depending on the normal vectors to the triangles.

Figures illustrate these level set functions plotted over a plane that intersects the
crack. In Fries and Baydoun (2012), these 3 level sets are used to evaluate the enrichment
functions, identify elements intersected by the crack, etc. In this dissertation, a modified

approach will be used, which avoids singular derivatives when ¢ () = ¢3 (x). Two more
level sets ¢ (x), 1 () are defined here:
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1.33

1.00

0.66

0.33

0.00

b (@) = 6 ()
(/62 (@)* — (63(2) it 61 (@) # |6 ()
@) = | V@) = @ @) i1 (@) =103 (@) |2 (@) # 03 (@) |. s (2) > 0
(62 (@) — (65 (@))* i b1 (@) = |¢s (@) |. 62 () # |9 (@) |. 65 (x) <0
L0 it 61 (2) = |95 () |, 62 (@) = |65 (@)|

(4.47)

where it should be noted that ¢, (x) > ¢3 (x) by definition. Figure depicts the ¥ level
set, while ¢ can be seen in [4.7 Both these level sets functions are evaluated and stored at



CHAPTER 4. 3D CRACK PROPAGATION ANALYSIS 121

0.00

-0.63

-1.25

Figure 4.7: Implicit representation of a 3D crack: ¢3 () = ¢ (x)

mesh nodes ;. For any point inside the finite elements, the standard shape functions can
be used to interpolate the stored nodal values ¢y, ¥y:

k=l (4.48)

If pmin  gmaz qfmin_ 4ymat are the minimum and maximum values of the level set functions
evaluated at the nodes of a finite element, then the element is intersected by the crack surface
if
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Figure 4.8: Implicit representation of a 3D crack: ¢ (x)

O™ $MT < 0 and Y™ < 0 (4.49)
Similarly, the element is intersected by the crack front if

(bmin . ¢mam S 0 and 7’bmm X wmax < 0 (450)

In addition, the (¢,1) level sets can be used to calculate the polar coordinates needed for
the crack-tip enrichment functions in equation (4.28)):

= VETP

f = arctan g = ATAN2(¢, )

(4.51)
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as well as evaluate the Heaviside enrichment function in equation (4.29):
H (z) = H (¢(x)) (4.52)

Furthermore, (¢,1) define a “level-set” coordinate system that can be used to calculate the
Jacobian matrix Jyp, which is necessary for the evaluation of the derivatives of crack-tip

enrichment functions, as described in equations (4.45} |4.46)):

JNP = JN<I> : J<I>P

or 00 op Oy
oc o¢|  |oc og| |or o6

or 90 ¢ 0| |99 09 (4.53)
on on| g on| |or 09

or 00 o6 ov| Loy o

a¢ acl  Lac acl
where Jyg is the Jacobian matrix of the mapping: natural — level-set coordinate system
(N®) and can be calculated using equation (4.48)):

_% a_w‘ nodasaNk <€)¢k nodesaNk (€>¢k

o0& 0€ k=1 o k=1 ¢

96 0| _ |EEONL(E) | AN, (§) -
wom| &t e o
% a_w nnodesaNk <€> nnodesaNk (ﬁ)

| 9¢ OC 2 ¢ ZEDY aC ¥

| k=1 k=1

Moreover, Jgp is the Jacobian matrix of the mapping: level-set — polar coordinate system
(N®). Starting from equation (4.51)), the derivatives of the polar coordinates with respect
to the level sets are
0(¢”* +v?)
or__ 9 _20_79
do 2 /P2 4+ 2  2r 7
0(¢* +v?)
or o 2% ﬂ

TR Wr sl R (4.55)
00 P Y

T

00 ) 0]

By gy o2
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and the Jacobian matrix Jgp is

L I
¢ 0| _ |r o2
Jop = - .
o lor o " (4.56)
oy ol Lr 2

To sum up, the derivatives of the crack-tip enrichment functions with respect to the global
coordinates can be converted to the derivatives with respect to the polar coordinates of

equations (4.32H4.35)) as

o]

Oz OF,

OFn | _ (Ina) ™" Ina - Jop - or (4.57)
oy b e 4 8&

OF,, o0

WER

where Jgp can be seen as the Jacobian matrix of an (indirect) mapping: polar — global
coordinate system (PG).

4.3 Crack propagation

For a given crack configuration, XFEM analysis is applied to calculate the displacement,
strain and stress fields. In order to model the propagation of the crack surface from these
results, the simplified approach proposed in Fries and Baydoun (2012) will be used in this
work. According to this “o,9 = 0”-criterion, the circumferential (ogy) and shear (o,9) stresses
are calculated at a set of trial points around one of the crack tips, namely the vertices of
the crack front. Then the propagation angle .. for that tip is selected as the one where
o9 = 0. If there are multiple such angles, then the angle with maximum oy among them is
chosen. To begin with, the stress tensor at a trial point needs to be transformed to the local
cartesian coordinate system of each crack tip

Ot Otn Oy
Otng = gla'wszﬁ = |Ont Onn Ong (4.58)
Ogqt  Ogn  Oqq
where n is a vector normal to the crack surface, q is oriented along the crack front and ¢ is
oriented towards the tangential extension of the crack and orthogonal to the previous n, q,

as illustrated in figure [£.4} The global-local rotation Ty, is defined as



CHAPTER 4. 3D CRACK PROPAGATION ANALYSIS 125

ot ot ot
or dy 0z
T, = |97 On On (4.59)
or Oy 0z
dq 0q O0q
| Ox Oy 0z ]
Subsequently the polar stresses gy and (0,4) are calculated
099 = Opn sin?(0) + o4 cos?(0) — o, sin(20) (4.60)

or9 = sin(0) cos(0) (G,n — 04t) + ot cos(20)

After estimating the direction of propagation .. for a crack tip, the increment must be
specified too. At each propagation step of the analysis, a maximum crack increment da
is prescribed. This length is assigned to the crack tip with the maximum circumferential
max (ogg) stress, while the length of the crack increment at other tips will be scaled propor-
tionally to their og9. The trial points are placed on a [—75° +75°] arc in front of each crack
tip at a distance r. such that 0.1 - da < r. < da, where da is the crack increment.

This simplified method for modelling crack propagation has been shown to produce rea-
sonably accurate crack paths. However, other approaches, such as the J-integral method
(Rice, 1968) and configurational forces (Gurtin, [1995) may result in higher accuracy, al-
though they pose difficulties as well, especially in 3D problems. In any case, any method
to estimate the crack propagation can be used without affecting the solvers that will be
presented in chapter [fl The resulting procedure for crack propagation is therefore:

Algorithm 4.1 Quasi-static crack propagation analysis

1: Initialize crack geometry and level sets.
2: repeat
3: Perform XFEM analysis to obtain linear system, as described in section 4.1}
Solve linear system with one of the solvers, presented in chapter [5
for each crack tip do
Identify trial points and calculate stress tensors.
Estimate propagation direction and increment.
end for
9: Update the crack mesh and level sets, as described in section [4.2]
10: until the crack fully intersects the domain

This quasi-static analysis is suitable for simulating brittle crack propagation based on
LEFM theory and has been used since the early XFEM works, such as Belytschko and Black
(1999)).
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Chapter 5

Linear system solvers

Both FEM and XFEM convert the partial differentions of the boundary value problem into
a system of algebraic equations

Ku=Ff (5.1)

where the system matrix K is the stiffness or conductivity of the discretized domain, the
right-hand-side (RHS) vector f expresses forces or thermal loads applied to the domain
and the solution vector w contains the nodal displacements or temperatures. The system
matrix K is symmetric positive definite. The solution of this linear system is by far the most
computationally intensive part of FEM and XFEM, especially in large-scale and 3D problems.
Inverting the system matrix is almost always prohibitive in terms of computing time and
memory requirements. Instead, various solution algorithms have been developed and will
be investigated in this chapter. Additionally, two novel solvers and their implementation in
high performance computing environments will be proposed for the solution of linear systems
resulting from crack propagation analysis in the framework of XFEM.

5.1 Direct methods

5.1.1 Cholesky solver

Direct methods solve the linear system by factorizing the system matrix and then apply-
ing back and substitution. For a positive definite system matrix, the most efficient direct
methods are Cholesky solvers, which are based on the Cholesky factorization

K=LL" (5.2)

where L is a lower triangular matrix. Most often, the LDL factorization variant is used:

K =LDL" (5.3)
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where L is a lower triangular matrix with diagonal entries being equal to 1 and D is a
diagonal matrix. Once the matrix is factorized, the L, D factors can be used to solve one
or more linear systems with different RHS vectors, according to the procedure described in

algorithm [5.1}

Algorithm 5.1 Cholesky solver for linear systems Ku; = f;

. Factorize: K = LDL™
: fort=1---n4, do
Forward substitution: Lx; = f;
Diagonal solve: Dy, = x;
Back substitution: LTu; = 1,
end for

S g Wy

where the subscript ¢ denotes each of the ng,s RHS vectors. The LDL factorization is
described in algorithm

Algorithm 5.2 LDL factorization K = LDL”

1: fori=1---ndo
2: for j=1---i—1do

j—1
3: Lij = %(KZ - ; Lik:ijDkk>
4: end for i

5 Dy=Ky— Z Li L Dy,

6: end for -

where n is the number of rows (equal to the number of colums) and the subscripts ij denote
the entry of the corresponding matrix at row ¢ and column j. The forward substitution using
the lower triangular matrix L is listed in algorithm [5.3}

Algorithm 5.3 Forward substitution Lx = f

rx = fi
2: fori=2---ndo

i—1
z; = fi — g Lijx;
j=1

4: end for

—_

@

The solution of the system with the diagonal matrix D is listed in algorithm [5.4}
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Algorithm 5.4 Diagonal system solution Dy = x

1: fori=1---ndo
X

2: Yi =

3: end for

i

The back substitution using the upper triangular matrix L’ is listed in algorithm

Algorithm 5.5 Back substitution L7u = y

L uy = Yn
2: fori=n—1---1do

n

3: U; = Y; — Z Ljin

j=it+l

4: end for

5.1.2 Sparse direct solvers

For matrices resulting from FEM and XFEM, most entries are equal to 0, while the non-zero
entries are gathered around the diagonal. In this case, only the non-zero entries are explicitly
stored, in order to greatly reduce the memory requirements of the solver and be able to solve
much larger problems. The positions of the non-zero entries of a matrix is called its sparsity
pattern. There are various sparse matrix formats used in practice, such as the skyline format
(SKY). An example of a symmetric matrix stored in SKY format is:

(K11 Ko Ky

Ky Ky 0
K33 K3y K35

SKY Ky Ky Kyg

K= Ko K Ko (5:4)
K¢ Ko7 0
K7 Krg
ey

where only the non-zero entries of the upper triangle are stored, as well as any zero entries
between the top non-zero entry to the diagonal entry of each column. Therefore the sparsity
pattern of the matrix includes some zero entries. The active height of each column is defined
as the distance between the top and diagonal non-zero entries and the bandwidth of the
matrix as the maximum active height of all columns. In practice, the non-zero entries of
matrices resulting from FEM and XFEM are very few (less than 20%), while the zero entries
inside the active columns can reach a considerable number, albeit much less than the ignored
zero entries outside the active columns. During factorization, any zero entries outside the
sparsity pattern will remain as 0 and can thus be ignored in algorithms|[5.2]-[5.5 which greatly
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reduces the computational time. However, the zero entries inside the sparsity pattern will
be changed to non-zero values, a process that is called fill-in and is the main obstacle of
direct methods when solving large-scale problems.

A non-diagonal entry is non-zero when it corresponds to two DOFs that interact with
each other, namely they belong to the same node or different nodes of the same element.
The bandwidth of the matrix is the maximum distance in the ordering of these interacting
DOFs, namely which unique number identifier is assigned to each DOF. Two nodes belong
to the same element, when they are neighbors in the finite element mesh, but they can be
ordered consecutively only along one axis, not all three axes x,y, z. As the mesh is refined,
the difference in ordering of neighboring nodes increases, as does the ordering difference
of their DOFs and thus the bandwidth of the matrix. Therefore, for large-scale problems,
the bandwidth of the matrix can become so high that the fill-in causes the direct solver to
become very inefficient, since it spends too much time operating on zero entries within the
active heights of the columns, or even impossible due to the memory requirements of storing
these zero entries. This problem does not affect 1D problems, where the DOF ordering is
always consecutive. In 2D problems, the DOF ordering distance and thus bandwidth of the
matrix are not very high, albeit higher than in 1D problem, therefore direct solvers are a
very attractive choice. However, in 3D problems the increased ordering difference between
neighboring nodes and their DOFs greatly increase the bandwidth and fill-in of the matrix,
rendering direct solvers inefficient or unusable.

On the other hand, the bandwidth of the matrix can be reduced by applying a DOF
reordering algorithm, such as the reverse Cuthill-McKee developed in Cuthill and McKee
(1969), Approximate Minimum Degree (AMD) and its Column AMD (COLAMD) variant
proposed in Amestoy et al. (2004) and Davis et al. (2004)), respectively, as well as nested
dissection by George (1973|). These fill-reducing algorithms renumber the DOFs by using
graph partitioning algorithms or heuristics, in order to minimize the bandwidth of the matrix.
Their computational cost is much lower than factorizing the matrix, thus all direct solvers
use a reordering algorithm prior to the factorization step in practice. In the numerical
examples investigated in this dissertation, the direct method of choice is the supernodal
sparse Cholesky solver (Y. Chen et al., 2008), which is implemented in the CHOLMOD
package of the SuiteSparse library (Davis, |2022). This linear algebra library uses a sparse
matrix format, which is similar to skyline and also provides AMD, COLAMD and nested
dissection reordering algorithms, which are all applied and the best DOF ordering is kept.

5.1.3 Advantages and disadvantages
Advantages of direct solvers:

e The back/forward/diagonal substitutions require considerably less computational effort
than the factorization step. Once the matrix is factorized, multiple linear systems with
the same matrix, but different RHS vectors, can be solved very fast.

e In 1D problems, they are the most efficient solves available.
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e In 2D problems, they are less efficient due to the increased bandwidth, but in many
cases they are still the most attractive choice.

e They are reliable and not affected by ill-conditioning as much as iterative solvers.
e The number of operations can be predicted based on the system size and bandwidth.
Disadvantages of direct solvers:

e In 3D and large-scale problems they are very slow and can have prohibitive memory
requirements, since the bandwidth of the matrix is very high, even after DOF reorder-
ing.

e The matrix must be explicitly stored in the memory space of a single computer. Using
more computers to increase the available memory is pointless.

e The operations used in factorization and back/forward substitution are strongly cou-
pled. Thus, they cannot be executed in parallel as efficiently as in iterative and domain
decomposition solvers.

5.2 Iterative methods

Iterative solvers calculate an approximate solution of the linear system, by starting from an
initial guess and then refining it over a number of iterations. The iterations end when the
iterative method has converged, namely the error of the approximate solution is within a
desired tolerance, or a maximum number of iterations has been reached. If u is the exact
solution of the linear system and u, is the approximate solution at iteration ¢, then the error
is defined as

e =u—u (5.5)

Since the exact solution is not known, the residual vector

ry=f— Ku, (5.6)

is compared to the zero vector to estimate the accuracy of the solution vector w.

5.2.1 The Conjugate Gradient method

The defacto iterative method for symmetric positive definite matrices is Conjugate Gradient.
At each iteration of this method, the next approximation of the solution vector w;; is sought
starting from the previous u; and moving along a direction vector d for a step size a;:

U1 = Uy + atdt (57)
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The step size, which is a scalar quantity, is calculated from line search as
ol
- d'Kd,

The direction vectors are chosen from a basis of the vector space that contains vectors that
are conjugate (also called K-orthogonal) with each other:

(5.8)

Gy

which can be achieved if

diy1 =71 + Bipady

B 7°7:T+17“t+1 (5.10)
ﬁt+1 - T—

Ty Ty

All operations are between vectors, except for the matrix-vector multiplications Kd;, Ku;.
The matrix-vector multiplications are optimized by using sparse matrix storage formats, that
are designed specifically for efficient matrix-vector multiplication operations. Two popular
storage formats are the Compressed Sparse Rows (CSR) format for CPU implementations,
which only stores the non-zero entries, their column indices and a compressed representation
of their row indices, and the ELLPACK format for GPU implementations. Even then,
the vector operations have negligible cost compared to the matrix-vector multiplications.
Consequently, it is desirable to limit the latter into only one matrix-vector multiplication
Kd, per iteration t by calculating the residual vector as

Tip1 =T — atht (511)

where Kd,; has already been performed for the calculation of the step size a;. In theory,
conjugate gradient will find the exact solution after n iterations, where n is the number of
rows/columns of the matrix. However, when the operations are executed by a computer,
limited precision and round-off errors will increase the required number of iterations. In
any case, once the residual vector r is within some tolerance e, which happens after much
fewer than n iterations for most € chosen in practice, conjugate gradient has converged to
a reasonably accurate solution . The convergence rate of Conjugate Gradient, like all
iterative methods, is very sensitive to the condition number of the matrix

)\mam (K)
where i (K), Apae (K) are the the minimum and maximum, respectively, absolute values
of the eigenvalues of K. For a positive definite matrix K, all eigenvalues are positive

numbers. Additionally, the identity matrix I has all eigenvalues equal to 1, which leads
to the minimum possible condition number ¢(I) = 1. The convergence rate of Conjugate

oK) = (5.12)
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Gradient depends on this condition number. Let ||et||, be the energy norm of the error

vector
led = /el Ke (5.13)

Then, the convergence rate of Conjugate Gradient is quantified by the ratio of the current
error norm to the error norm of the initial iteration

t

e (cE) ~ 1 _—

leoll  \ c(K) +1
Matrices with a large spread of their eigenvalues will have high condition numbers and
the rate at which the error decreases will be lower, therefore Conjugate Gradient will require
a high number of iterations to converge to the desired tolerance. The matrices, linear sys-
tems and generally the mechanics problems themselves are call ill-conditioned in this case.
Unfortunately, problems with heterogeneous materials, high Poisson ratios or the crack-tip

enrichment functions used in XFEM (see equation(4.28])) are strongly ill-conditioned, which
causes Conjugate Gradient and any other iterative solver to be inefficient.

5.2.2 Preconditioned Conjugate Gradient

The convergence rate of Conjugate Gradient can be increased with a technique called pre-
conditioning. Instead of the original linear system Ku = f, the equivalent system

P'Ku=P'f (5.15)

is solved. The matrix P~! (or sometimes P itself) is called the preconditioner matrix. The
preconditioner P! is usually an approximation of the inverse K !, so that the matrix P~ K
of the new linear system has a condition number ¢ (P! K) close to 1 or at least lower than
the original ¢ (K). Therefore, solving this linear system usually requires less iterations and
computing time. The original Conjugate Gradient is modified to solve the preconditioned
linear system leading to the Preconditioned Conjugate Gradient (PCG) method, which will
be used in the rest of this dissertation and is elaborated in algorithm [5.6
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Algorithm 5.6 PCG solution of Ku = f, with preconditioner P~!

1: € = desired tolerance, t,,,, = maximum iterations
2:t=0
3: ug = 0 or another initial guess
4: ro = f — K’U,Q
5. dy = 89 = P_l’l'o
6: po = T4 So
7: while t < t,,,,, do
8 q: = K;th

T St
9: a; = dtht
10: Upr] = U + (Itdt
11 Tiy1 = T — Q4G
12: Siy1 = Pil’l"t_i_l
13: Pt+1 = rtTHstH
14: if p1 < € pg then
15: Stop and return ;. > PCG has converged
16: end if
17 Bry1 = Pret

t

18: dii1 = 811+ Brady

19: t=t+1
20: end while

Nevertheless, choosing a preconditioner P~! is not straightforward and problem-specific
preconditioners need to be developed usually. A good preconditioner must satisfy the fol-
lowing criteria:

1. P must be symmetric positive definite.

2. The number of iterations should be reduced as much as possible, namely the condition
number ¢ (P~ K) must be as low as possible.

3. The preconditioner P~! must be calculated efficiently, in terms of memory and time
required, before PCG starts.

4. The preconditioner P~! must be applied effectively during the PCG iterations of al-
gorithm [5.6] which is expressed by the multiplication P~'r,.

Unfortunately, criteria 2, 3, 4 are usually contradictory and a reasonable trade-off is
sought. For example, the diagonal preconditioner (also called Jacobi preconditioner) is the
most basic one and very efficient to both calculate:
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1
Kn
Pl = (5.16)
1
L KTLTL
and apply during PCG:
C ]
Kn
Pylr=| : (5.17)
TTL
_Knn_

but does not reduce the number of iterations as much as more sophisticated options. Diagonal
preconditioning is very effective in reducing the condition number when the matrix is strongly
diagonally dominant. However, it can be applied to all problems, in contrast with more
complicated preconditioners that can become unstable, has negligible computing cost and
can be parallelized extremely efficiently in both shared memory and distributed memory
computing systems. Consequently, it is always a good choice to try, unless a better option
is available.

On the opposite end, the Cholesky (and LDL) methods can also be used for precondi-
tioning. The initial calculation involves the factorization of the system matrix, while the
application step involves performing the back/forward substitutions. By doing so, the pre-
conditioner P~! coincides with the inverse matrix K—! and PCG converges after only 1
iteration. Of course, this preconditioner is the most costly to calculate and store, negating
all the advantages PCG may have over the corresponding direct solver. While, this precon-
ditioner is not used in practice, approximate versions of it, such as incomplete Cholesky, may
be employed. Finally, the domain decomposition solvers investigated in this dissertation will
define their own preconditioners.

5.2.3 Advantages and disadvantages

Advantages of iterative solvers:

e The memory requirements are minimized, since only non-zero entries need to be ex-
plicitly stored, without any fill-in occurring,.

e In 3D and large-scale problems they usually outperform direct solvers.

e If a good preconditioning strategy is known for the specific problem, then the iterations
and computation time can be greatly reduced.
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e The convergence tolerance can be adjusted to improve performance at the cost of lower
accuracy, if the latter is not important.

e The matrix-vector multiplications, vector-vector operations and some preconditioners
can be parallelized very efficiently in both shared memory and distributed memory
systems.

e There is no need to explicitly store the matrix K or the preconditioner P~!. Instead,
only a way to perform the matrix vector multiplications K -d and P~!-r is needed. This
is a huge benefit, because it allows the decomposition of K and P! into submatrices
that exist on different computers, without actually forming K and P~! on any coputer
explicitly. Instead the matrix-vector multiplications are performed by processing each
submatrix independently and possibly in parallel and then summing the intermediate
results. For example, this is the strategy employed when using PCG in the domain
decomposition solvers that will be presented in the next sections.

Disadvantages of iterative solvers:
e They are very sensitive to ill-conditioning, unlike direct solvers.

e There is no universally good preconditioner. Instead, problem-specific preconditioners
must be developed and tried for each case. The complexity and computational cost of
these preconditioners often exceeds that of the iterative method itself.

e They converge to an approximation of the solution, instead of the exact one.

e Predicting the number of iterations and thus the time required is generally impossible,
since calculating the eigenvalues needed for the condition number is actually more
difficult than solving the linear system.

5.3 Domain decomposition methods

In this section, a review of the FETI-DP and P-FETI-DP domain decomposition methods
(DDM) will be presented. Both belong to the finite element tearing and interconnecting
(FETTI) family of algorithms, the high performance of which has been established in standard
FEM (Fragakis & Papadrakakis, 2003), meshless methods (Metsis & Papadrakakis, [2012)
and isogeometric analysis (Stavroulakis et al., 2012). Moreover, both solvers have shown
to exhibit high numerical and parallel scalability properties, since their convergence rate
increases as more subdomains are used (Farhat et al.,|2000; Fragakis & Papadrakakis, [2003)).
In FETI-DP and P-FETI-DP, an iterative algorithm, such as the preconditioned conjugate
gradient (PCG), is used to connect individual subdomains and calculate the forces required
for the equilibrium (FETI-DP) or the displacements required for the compatibility (P-FETI-
DP) at boundary nodes. Boundary nodes are those that belong to two or more subdomains,
while internal nodes belong to only one subdomain, as shown in figure [5.1]
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o & 0@.. ® ®

@ internal nodes
@® boundary nodes

Figure 5.1: Boundary and internal nodes of subdomains.

5.3.1 FETI-DP

5.3.1.1 Primal and dual DOFs

The dual-primal FETI (FETI-DP) was introduced in Farhat et al. to improve the
scalability of the original FETT method (Farhat & Roux, . This is achieved by defining
corner nodes, which are a subset of boundary nodes that lie on the beginning or end of each
geometric edge of each subdomain, as illustrated in figure [5.2] Sometimes additional corner
nodes can be used, to ensure that each subdomain has at least two (in 2D problems) or
three (in 3D problems) non-colinear corner nodes. The corner DOFs associated with these
corner nodes are indicated by the subscript c¢. The remainder DOF's of each subdomain are
indicated by the subscript . The stiffness matrix K*, displacement vector u® and force
vector f* of subdomain s are therefore decomposed as follows:

S ___ Kﬁr KT?C S ___ us S __ fi
K‘LK&)T K} “‘{u} f‘[fs} (5.18)

C

[V ]

The remainder DOF's are further divided into internal DOFs, which are associated with
nodes that belong to only one subdomain and are indicated by the subscript ¢, and boundary-
remainder DOF's, which are indicated by the subscript b, and are associated with boundary
nodes that are not corners:
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Figure 5.2: Definition of corner nodes.
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The displacements corresponding to all corner DOFs of the global domain are gathered
in the vector u,. of length n.. The mapping between u, and u; is defined as boolean matrices
L? that have 0, 1 entries and dimensions (nf x n.), where n? and n, are the number of corner
DOFs of subdomain s and the global domain, respectively. An entry ¢,j of L? is equal to
1, if the corner DOF that corresponds to subdomain-level row i, is the same as the corner
DOF that corresponds to global-level column j.

u, = Liu, (5.20)

The continuity between the otherwise disconnected subdomains is retained by enforcing
compatibility conditions for instances of the same boundary DOF in different subdomains:

[1 —1] [ Y ] =0 (5.21)
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where the subscript k& denotes any boundary-remainder DOF that belongs to subdomains s;
and s;. These continuity equations are gathered into signed boolean matrices B, which have
0, 1, -1 entries and dimensions (n) x n?), where n, is the number of continuity equations of
the global domain and n; the number of remainder DOFs of subdomain s:

> Biui=0 (5.22)
s=1
To solve the global equilibrium equations Ku = f in the presence of these constraints,
the Lagrange multipliers A are applied at boundary-remainder DOF's to enforce displacement
compatibility, as illustrated in figure It should be clarified that no Lagrange multipliers
are applied at corner DOF's.

*—o—9 .—T—). *—o—9

7 .$. 1 ® internal

- — C— ® boundary-remainder
ENE S N N e
*—o — % Lagrange multiplier

Figure 5.3: Langrange multipliers applied to boundary DOF's of subdomains. In the case of
nodes belonging to 2 subdomains, only one Lagrange multiplier is needed per DOF.

In 3D problems, there are nodes that lie on the common edge between 3 or more subdo-
mains, excluding its corners. For these cross-point nodes, multiple continuity equations and
corresponding Lagrange multipliers per boundary DOF must be applied. This is achieved
with the fully redundant constraint strategy (Farhat & Roux, , which increases the
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Figure 5.4: Langrange multipliers applied to boundary DOFs of subdomains. In the case
of cross-points nodes belonging to 3 or more subdomains, multiple Lagrange multipliers are
needed per DOF.

convergence rate of FETI-DP by applying a Lagrange multiplier between each pair of in-
stances of the same DOF in different subdomains, as shown in figure 5.4, The equilibrium
equations can then be written as

> (L) (K ul + Z (L) (K2 Liwy =Y (L) f: (5.24)
s=1 s=1

5.3.1.2 Interface problem of FETI-DP

By performing static condensation of the remainder DOFs, the Schur complement S?. of
each subdomain’s K and the corresponding force vector z are calculated

Sgc = ch - (Kfc>T(K1fr)71K7?c (525>
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5= 2 - (KT (K (5.26)

Then these subdomain-level matrices and vectors are summed to obtain the global-level
corner stiffness matrix S.. and corresponding corner force vector z.

Ns Ns

See = > (LY)"S5L:=> (L)' (K, — (K;,)" (K;,)'K,) L (5.27)
s=1 s=1

2= Y (LT = DL (F - (K257 1) (5.25)
s=1 s=1

With an appropriate selection of corner nodes, K, is a positive definite matrix, which
means that its Schur complement S?, and eventually S, are also positive definite matrices.
Equation (5.23) can also be written as:

wl = (K3) ™ (£ — (B)"A - K, Liu,) (5.20)

rce—c

Substituting equation(5.29) into equations (5.22) and (5.24) and decoupling the un-

knowns u. and A, results in

U = Sczl (zc =+ FICT)\) (530)
(Flrr + FITCSC_CIFICT)A =d, — Flrcsc_clzc (531)
where .

Fi, =Y Bi(K;) (B (5.52)

s=1
Fy.= )Y B}(K;) 'K L (5.33)

s=1
Fro=Ff, =) (L) K, (K}) ™ (B)" (5.34)

s=1

s=1

Note that F7j,, is a flexibility matrix, while d,. expresses displacements. The linear system
of equation is the interface problem of FETI-DP. The matrix of equation is
positive definite and the solution for A can be done using an iterative algorithm, such as
the PCG method. During each matrix-vector multiplication of PCG, in the form of (F Trr +
FITCSC_ClFICT) - A, the linear system
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S T, =Y. (5.36)

needs to be solved, where y. = Fp.. - A. This linear system, defined as the coarse problem of
FETI-DP, is a much smaller auxiliary problem that speeds up convergence by coupling the
subdomain computations and globally propagating the error at each PCG iteration. After
solving the interface problem and obtaining the Lagrange multipliers A, the displacements at
corner and remainder DOFs can be calculated using equations (5.30) and (5.29). However,
the displacements at different instances of the same boundary DOF Wlll be slightly different
in each subdomain. To obtain compatible displacements across all subdomains the following
averaging operation needs to be done:

= Ly(L)"W;uj (5.37)

where u; are the incompatible displacements at boundary DOF's of subdomain s, @; are the
corrected, compatible displacements at the same DOFs, L} is a mapping matrix defined in

section [0.3.2.1| and W} is a scaling matrix defined in section |5.3.2.2]

5.3.1.3 Preconditioners of FETI-DP

Using a preconditioner is necessary to reduce the number of iterations of PCG. A precondi-
tioner is an approximation to the flexibility-like matrix of the interface problem. Therefore,
FETI-DP preconditioners incorporate the stiffness matrices of subdomains:

Z bTSbTbT o) (5.38)

where ‘§lfrbr is an approximation of the Schur complement of internal DOFs and Bj, is
a scaling-mapping matrix. In elasticity (2nd order) problems with homogeneous stiffness
distribution among subdomains, B, is given by

B, =B, W; (5.39)

where B; are the columns of B; that correspond to the boundary-remainder DOFs of
subdomain s and W' is the inverse of a diagonal matrix, whose entries are the multiplicities
of these DOFs. The multiplicity of a DOF is defined as the number of subdomains that
contain the node associated with that DOF. Depending on the definition of Sy , the following
preconditioners can be obtained:

brby — s (5.40)

= ) K§, — (K )" (K;) 'K;  Dirichlet preconditioner
Ky, lumped preconditioner

Dirichlet preconditioner uses the full Schur complement of internal DOFs, therefore it is
more costly to calculate and implement, but results in fewer PCG iterations, in comparison
to the lumped preconditioner, which is less effective in improving the convergence of PCG.
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5.3.2 P-FETI-DP

P-FETI-DP has been introduced in Fragakis and Papadrakakis (2003)) as a hybrid approach
that combines the high computational efficiency of FETI methods with the robustness of
primal methods in ill-conditioned problems. Essentially, P-FETI-DP is equivalent to a primal
substructuring method (PSM) that uses the first iteration of FETI-DP as its preconditioner.
The resulting algorithm is a simpler, yet more efficient alternative to FETI-DP that avoids
any need for Lagrange multipliers.

5.3.2.1 Interface problem of P-FETI-DP

In P-FETI-DP the stiffness matrix, displacement and force vectors are decomposed into parts
corresponding to internal (subscript 7) and boundary (subscript b)) DOFs. In contrast to the
boundary-remainder DOFs of FETI-DP, here boundary DOFs comprise all DOFs belonging
to two or more subdomains, without considering corner nodes into account:

s __ I(Z I(% s __ ‘Uf s __ f?

S AR I >4
The displacements corresponding to all boundary DOFs of the global domain are gathered
in the vector wu; of length n;,. The mapping between u;, and wu; is defined as boolean matrices
L; that have 0, 1 entries and dimensions (nj x n,), where n; and n, are the number of
boundary DOF's of subdomain s and the global domain, respectively. An entry ¢,j of L} is
equal to 1, if the boundary DOF that corresponds to subdomain-level row i, is the same as

the boundary DOF that corresponds to global-level column j.

up = Lyu, (5.42)

By performing static condensation of the internal DOFs, the Schur complement S}, of
each subdomain’s K, and the corresponding force vector z; are calculated

Sy = Ky, — (K3 (K;) K, (5.43)

Z = f — (K3) (K3) 7' f (5.44)

Then these subdomain-level matrices and vectors are summed to obtain the global-level
boundary stiffness matrix Sy, and corresponding boundary force vector z;,

Sw=Y (L)"SpLy=> (L))" (K, — (K3)"(K;)'K},) L (5.45)
s=1 s=1
z=Y (L)"2 = (L))" (f; — (K3)" (K37 f7) (5.46)

s=1 s=1



CHAPTER 5. LINEAR SYSTEM SOLVERS 143

As in FETI-DP, K3, S}, and Sy, are positive definite matrices. The interface problem

of P-FETI-DP is then solved iteratively by PCG:

Sbb Uy = Zp (547)

After obtaining the global boundary displacements u,, the boundary displacements of
each subdomain s can be computed using equation(5.42)) and the internal displacements u$
as

uj = (K;) ' (ff — Kju) (5.48)

5.3.2.2 Preconditioner of P-FETI-DP

During the iterative solution of the interface problem, the first iteration of FETI-DP is used
to provide the preconditioner for PCG. Fragakis and Papadrakakis (2003)) proved that in
this case, the Lagrange multipliers can be eliminated from the equations and the following
matrix form of the preconditioner can be derived

Av&l = AZb + AbcAccAcb

Ns

Ay => (L) (KL,

s=1
s B (5.49)
Acb = - Z (Lz)T K;" (Kjr) ! L;r + Nc7b
s=1
Abc = Az;)
A =8
where the matrices K., K>, K: S. and L were defined in section Ny is a

boolean matrix (0, 1 as entries) with dimensions (n. x n;) that maps the boundary DOFs of
the global domain (columns) to the corner DOF's of the global domain (rows). In addition

L, = N:, L, (5.50)

where N is a boolean matrix (0, 1 as entries) with dimensions (n; x nj) that maps the
boundary DOFs of a subdomain (columns) to its remainder DOFs (rows). L;; is a scaling-
mapping matrix and in elasticity (2nd order) problems with homogeneous stiffness distribu-
tion among subdomains, it can be calculated as

where W}’ is the inverse of a diagonal matrix whose entries are the multiplicities of the
boundary DOFs of subdomain s. Since there are no Lagrange multipliers involved, the
matrix form of the preconditioner in equation (5.49) is a lot simpler to implement and the
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size of the interface problem of P-FETI-DP in 3D problems is not increased, unlike FETI-DP
where multiple Lagrange multipliers are applied at cross-point nodes. It can be observed
that the operations performed by P-FETI-DP and Dirichlet-preconditioned FETI-DP are
identical, with the exception of some multiplications with boolean matrices. Since these are
extremely sparse matrices, the computing cost of these multiplications is negligible, therefore
the amount of work done per iteration of the PCG algorithm is the same for both methods.
However, P-FETI-DP tends to converge faster, particularly for ill-conditioned problems,
making it superior in terms of computational time.

5.4 Domain decomposition methods for XFEM

In this dissertation two domain decomposition methods, namely the FETI-DP and P-FETI-
DP solvers described in section [5.3] are proposed for the solution of the linear systems
resulting from XFEM at each step of the crack propagation analysis. Both solvers are par-
ticular effective for this type of problems for a number of reasons that will be elaborated
in this section. A main advantage over direct solvers developed especially for XFEM crack
propagation, such as the incremental Cholesky algorithm of Pais et al. (2012)), is that the
proposed solvers involve matrices which can be factorized significantly more efficiently, espe-
cially in large scale 3D problems. In particular, the matrices K., K, and S.. of equations
(5.18] [5.19} .41} [5.27) require factorization, but these are substantially smaller than the
global stiffness matrix of a direct solver. Moreover, their bandwidth is reduced, since DOFs
of nearby elements, which interact and contribute non-zero entries to stiffness matrices, fol-
low a local DOF ordering at each subdomain with much fewer total DOFs than the global
domain. As a result, FETI-DP and P-FETI-DP can achieve significant computation gains
in terms of time and memory requirements, especially in 3D problems.

Additionally, both FETI-DP and P-FETI-DP can benefit from their high parallelizable
features, since all subdomain-level operations are independent from each other and can be
executed concurrently. This inherent parallelism allows the full utilization of multi-core
and distributed memory computing systems to further reduce the computation cost. Other
domain decomposition solvers for XFEM crack propagation have been developed in X. Chen
and Cai (2022), Menk and Bordas (2011), and Waisman and Berger-Vergiat (2013) and can
also be executed in parallel, however without being tested in 3D computationally intensive
problems. In contrast, this work is focused on producing high performance solvers for large-
scale 3D problems, as reflected by the numerical examples investigated in chapter [0

5.4.1 Resolving crack-specific singularities

FETI-DP and P-FETI-DP solvers, as described in sections [5.3.1| and [5.3.2, were developed
for continuum mechanics problems. Thus, it is assumed that the subdomains are sufficiently
supported and their K matrices are not singular, as long as corner nodes are selected
according to the rules listed in section [5.3.1.1 However, this assumption is not valid in
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fracture mechanics, where one or more cracks propagate through a discontinuous domain
and some subdomains may be entirely intersected by them. An example of this is shown
in figure [5.5 where a single crack propagates throughout a 2D domain and interacts with
three subdomains, two of which are completely bisected by the crack. A 2D example is used,
since it is can be illustrated more clearly. However, the proposed method can also be applied
to 3D problems. In the same figure, the boundary and corner nodes defined in the original
FETI-DP and P-FETI-DP algorithms are also depicted.

el Iel el
C o - = 5]

@ Boundary node

=1

@) Corner node

=1

Figure 5.5: Boundary and corner nodes of the original FETI-DP and P-FETI-DP algorithms.

The XFEM enrichment described in section models the jump in the displacement
field around a crack, by introducing discontinuous basis functions and corresponding enriched
DOFs. When the crack completely intersects a subdomain s, the rows and columns of
K. corresponding to these enriched DOFs become linearly dependent. In this case, the
subdomain is essentially divided into two floating rigid parts that can move independently
from one another, as illustrated in figure [5.6] where two subdomains are bisected by the
crack, and the resulting independent rigid parts are denoted as shaded regions. There is
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Figure 5.6: Floating rigid parts of subdomains that are completely intersected by a crack.

also another subdomain that interacts with the crack and contains the crack tip, but no
mechanism is developed there, since the crack does not run through the entire subdomain.
In order to overcome this singularity of K , the following procedure is proposed. First,
the linearly dependent rows and columns of K are identified by locating their correspond-
ing enriched DOFs. Let M, be the set of boundary DOFs, namely DOF's belonging to 2
or more subdomains. The Heaviside enriched DOFs a; of equation belong to the set
My, while the enriched DOFs b}, applied for the first crack tip function Fy of equation
belong to the set Myi. If a subdomain is fully intersected by a crack, then the DOFs that
belong to the set M, N (My U M) are responsible for introducing the jump in the displace-
ment field and for developing internal mechanisms for that subdomain. Subsequently, these
DOFs are promoted to corner DOFs, thus removing the corresponding linearly dependent
rows/columns from K7 and restoring its invertibility. If M, 4 is the set of corner DOF's
defined in section then the proposed modification consists of identifying the set

M, =M, 51q U (M, " Mp) U (M N M) (5.52)

and using it to define the corner DOFs of FETI-DP and P-FETI-DP, instead of M ¢4,
as illustrated in figure 5.7 These boundary enriched DOFs are then included in the sub-
domain’s stiffness submatrix K, and ultimately in the global coarse problem matrix S,
of equation. However, contrary to subdomain-level matrices, S.. corresponds to the
global domain, albeit in terms of its corner DOF's only. While the crack propagates through-
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out the domain, some subdomains will be fully intersected, but this will not happen for the
entire domain until the last propagation step of the analysis, when collapse occurs. There-
fore, the proposed approach avoids the singularity of S.., since no internal mechanisms will
be developed for the reduced order model corresponding to the coarse problem. As a result,
the definition of subdomains does not depend on the location of cracks, as was the case in
X. Chen and Cai (2022), Waisman and Berger-Vergiat (2013)), and Wyart et al. (2008), and
the entire domain can be arbitrarily partitioned, unlike Menk and Bordas (2011) where only
the enriched DOF's were decomposed into subdomains. Furthermore, with the proposed ap-
proach cracks can intersect any subdomains, which can then be selected with the objective
of minimizing memory requirements and computation time.
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Figure 5.7: Boundary nodes enriched with Heaviside and crack tip enrichment functions are
promoted to corner nodes, to avoid singular K? matrices in FETI-DP and P-FETI-DP.

5.4.2 Elimination of XFEM-related ill-conditioning

Another difficulty that arises in crack propagation simulations with XFEM is the ill-conditioning
of the stiffness matrices, due to the significant difference of stiffness entries corresponding
to the crack-tip enriched DOF's from entries corresponding to standard and Heaviside en-
riched DOFs. To speed up convergence, a preconditioner suitable for this particular source
of ill-conditioning is essential. Unfortunately, general purpose preconditioners are not as
effective in the case of XFEM. Problem specific preconditioners based on domain decompo-
sition methods have been developed for this purpose in X. Chen and Cai (2022), Menk and
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Bordas (2011]), and Waisman and Berger-Vergiat (2013)), where the domain is separated into
well-conditioned subdomains (standard and possibly Heaviside DOFs) and ill-conditioned
subdomains (crack-tip enriched DOFs and possibly Heaviside or even a few standard DOFs).
Then direct solvers are used for the subproblems defined at the ill-conditioned subdomains,
while the well-conditioned ones are treated with inexact methods, such as diagonal precondi-
tioning (Menk & Bordas, 2011)), algebraic multigrid (Waisman & Berger-Vergiat, 2013) and
incomplete LU factorization (X. Chen & Cai, 2022)).

In the present formulation, the terms causing ill-conditioning are restricted only to the
interface problem of FETI-DP and P-FETI-DP and can be further eliminated by modifying
the coarse problem appropriately. Let Mypm, m = 1,---4 be the set of b} DOFs intro-
duced for each crack-tip enrichment function of equation(4.28). The ill-conditioned terms
of the interface problem correspond to DOFs belonging to M, N Mym, m = 1,---4. The
proposed technique treats these DOFs as corner DOF's, as depicted in figure thus mak-
ing the coarse problem of equation more efficient in distributing the error between
subdomains at each PCG iteration. Therefore, the preconditioner of P-FETI-DP can over-
come ill-conditioning due to XFEM enrichments, since it includes this coarse problem, as
described in equation. Although the preconditioner of FETI-DP does not depend on
corner DOF's and is not affected by the modification, the condition of the interface problem
matrix Fy,. + Fr,..S;' Fy., is improved, because i) the coarse problem is directly embedded
into this matrix and ii) the problematic DOFs in My N Myzm, m = 1,-- -4 are removed from
it. Taking into account the modification of section to avoid singular K matrices, the
proposed method uses the set

4
M, = Meqa U (M, N\ Mp) | (M, N Myzo) (5.53)
m=1
to define the corner DOF's of FETI-DP and P-FETI-DP. It should be pointed out, however,
that even without this improvement, the ill-conditioning due to XFEM enrichments could be
avoided during some crack propagation steps, if the crack front does not interact with nodes
located on the boundary between subdomains, as illustrated in figure [5.6, However, this is
unlikely in 3D problems, since the crack front is substantially more extensive and interacts
with multiple elements, as will be shown in the numerical examples of chapter[6] In any case,
when ill-conditioning does appear, FETI-DP and P-FETI-DP exhibit a substantial increase
in the iterations required for convergence. In the test case of section an increase of up
to 245% is reported. By using equation to define the corner DOFs, this XFEM related
ill-conditioning is entirely eliminated and the proposed FETI-DP and P-FETI-DP become
insensitive to the location and number of enriched nodes.

Moreover, by avoiding these iteration spikes, the scalability of FETI-DP and P-FETI-DP
solvers is retained. As will be shown in the numerical examples of chapter [0 the iterations
required for convergence decrease as more subdomains are used. All DMM solvers for XFEM
crack propagation developed earlier (X. Chen & Cai, 2022; Menk & Bordas, 2011} Waisman
& Berger-Vergiat, [2013) were not scalable and by increasing the number of subdomains,
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an increase in the required iterations was observed. In contrast, the scalability of the pro-
posed FETI-DP and P-FETI-DP solvers permits their implementation in cluster computing
environments, where numerous networked multi-core CPUs and/or GPUs can be used to
solve the resulting equations in parallel. In these high perfomance computing systems, the
computational power and available memory can be arbitrarily increased, simply by adding
more processors, each with its own memory. The ability to assign a lot of subdomains to all
these processors, without increasing the required iterations for convergence is essential for
the exploitation of cluster computing environments and makes the proposed FETI-DP and
P-FETI-DP very attractive solvers for large scale problems.

5.4.3 Reusing data from previous steps

In brittle crack propagation with XFEM, only a few entries of the stiffness matrices change
from one analysis step to the next. These entries correspond to localized DOF's near the crack
front, specifically Heaviside and crack-tip enriched DOFs that are introduced in the current
step, as well as crack-tip enriched DOF's introduced in previous steps and then removed. Yet,
XFEM-oriented solvers based on domain decomposition methods, such as Menk and Bordas
(2011)), Waisman and Berger-Vergiat (2013), and Wyart et al. (2008]) overlook this potential
to reduce the computational cost of the solution phase by reusing data calculated during
previous crack propagation steps. In Pais et al. (2012), a reanalysis solver was proposed,
that takes advantage of this opportunity and partially reuses the matrix factorization of the
previous step. Nevertheless, this approach has limited success in 3D problems or when the
percentage of modified columns of the stiffness matrix is not extremely small.

In the present FETI-DP and P-FETI-DP formulations, the need to update only a part
of the total stiffness is exploited for further computational gains in a very natural manner.
Due to the domain partitioning, many subdomains do not interact with the crack front at
each propagation step. In this case, all corresponding subdomain stiffness matrices, vectors
and related data remain unaltered and can be reused from the last step when they were
updated. Note that these reusable data include the Schur complements of the matrices K,
and K, which require time consuming operations. Figures [5.8a and [5.8b| represent two
successive steps, as a crack propagates through multiple subdomains. The set of nodes with
modified stiffness contains only those enriched with crack tip functions and the newly added
Heaviside functions. Therefore, only the corresponding quantities of subdomains S6 and S7
need to be updated. In addition, increasing of the number of subdomains will enhance the
effectiveness of this reanalysis feature, due to further localization of modified DOFs and the
existence of more unmodified subdomains.

Furthermore, a re-initialization technique is proposed for the solution of the interface
problem of FETI-DP and P-FETI-DP, in order to reduce the number of iterations. Specifi-
cally, when solving the interface problem of P-FETI-DP (see equation([5.47))), an initial guess
uy, is required for the first PCG iteration. In the first crack propagation step, the zero vector
is assumed as an initial guess uf=" = 0. Let u} be the solution of the interface problem at
propagation step ¢
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Figure 5.8: Two consecutive analysis steps as the crack propagates. Only subdomains S6
and S7 will have modified DOFs and stiffness between propagation steps (a) i and (b) i + 1.
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= [ty uly ul ] (5.54)
where u!,; are the displacements of standard boundary DOFs, u!; of Heaviside boundary
DOFs and ul. of crack-tip boundary DOFs. Then the displacements of standard and Heav-
iside DOF's can be reused as an initial guess during the next propagation step

= Uy, Uy upy upl | =[uy, uy 0 0] (5.55)
where ﬁtgf corresponds to Heaviside boundary DOF's that are present in both steps ¢, ¢t + 1,

while 63}; corresponds to Heaviside boundary DOF's that were newly introduced in step

t + 1. Conversely, a4y and w4 correspond to DOFs that were not present during the
propagation step t, therefore the initial guess for them is 0. Nevertheless, these make up a
small fraction of the total boundary DOFs and do not markedly affect the improvement of
the re-initialization technique.

A similar re-initialization technique is proposed for FETI-DP, where the interface problem
is expressed in terms of Lagrange multipliers applied to boundary-remainder DOFs (see
equation(.31), instead of all boundary DOFs in P-FETI-DP (see equation(.47)). Using
equation(|5.53)), all enriched boundary-remainder DOF's are promoted to corner DOF's, thus
removing the corresponding Lagrange multipliers. This complements the re-initialization
technique, since it ensures that the interface problem of FETI-DP involves only standard
boundary-remainder DOF's, which are the same during all crack propagation steps. As a
result, the entire solution vector of one propagation step A’ can be reused as an initial guess
for the next step

A = N (5.56)

Both the re-initialization of the solution vector guess and the reuse of previously computed
subdomain matrices and factorizations, can be easily implemented to further increase the
computational efficiency of FETI-DP and P-FETI-DP solvers. In the numerical examples of
chapter [0}, it is shown that the re-initialization technique can reduce the number of iterations
across all propagation steps of the analysis by up to 40% for P-FETI-DP and 37% for FETI-
DP and in combination with the reuse of subdomain data, the time required for the solution
can be reduced by up to 50% for both methods.

5.5 HPC implementation

This section specifies the parallel implementation of the FETI-DP and P-FETI-DP solvers
in high performance computing systems, specifically computer clusters. By modifying the
original FETI-DP and P-FETI-DP equations, the programming endeavor can be greatly
simplified.
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5.5.1 Cluster computing

There is a large number of parallel computing environments and programming paradigms
available nowadays. This dissertation focuses on cluster computing, which is popular for
computational simulations. Computer clusters are computing environments consisting of
multiple networked computers that collaborate to solve a single problem. These units are
often called “computing nodes”, but the term “computers” will be used here, to avoid confu-
sion with FEM nodes. Generally, a cluster consists of readily available personal computers,
complete with their own processors, memory and storage devices. These are connected via
a Local Area Network (LAN), such as conventional Ethernet. Usually, the computers have
the same or similar specifications, which helps in load balancing, namely evenly distributing
the required work to all computers to increase performance. Supercomputers may also be
computer clusters, in which case high speed buses are used instead of Ethernet, to improve
the bandwidth and latency of data transfers.

Processors:

P1 P2 P3 P4

Bus

Memory

Figure 5.9: Shared memory system

Parallel computing environments may use shared memory, distributed memory or a com-
bination of both. A shared memory system employs central (typically large) block of Random
Access Memory (RAM), which can be accessed by multiple processing units in parallel, as il-
lustrated in figure[5.9) These processing units may be separate processors or different threads
executed on the same CPU. The main advantages of this approach is the very fast memory
accesses. Additionally, it leads to simplified programming, albeit race-conditions need to be
avoided, due to the unified memory address space that allows processors to communicate,
simply by accessing the same data. However, shared memory systems are not scalable, since
the number of processors and the amount of available RAM cannot be increased indefinitely.
On the other hand, figure depicts a purely distributed memory system, where each pro-
cessor has its own private memory and communication between them happens by passing
messages over a network. This approach complicates communication and requires a middle-
ware (software) to handle the message passing between processors. Nevertheless, it allows an
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Network

M1 P1 P2 M2

Memory  Processor

Figure 5.10: Distributed memory system

indefinite increase of processing power and available memory by adding an arbitrary number
of processors and their memory.

Computer clusters typically employ a hybrid distributed memory model, where each com-
puter has a multi-processor and its own private memory, but this memory is shared among
the multiple processing units, as shown in figure |5.11] Therefore, each computer is a shared
memory machine, but the system of all networked computers is distributed. In this hybrid
system, communication between the processors of the same computer is much faster and
should be prioritized over communication between processors belonging to remote comput-
ers. All in all, cluster computing environments offer the following advantages:

e Performance. Programs can be executed in parallel.

e Scalability. Processing power and available memory can be increased indefinitely by
adding more computers, which have their own RAM and multicore CPUs.

e Cost effectiveness. Obtaining the desired level of performance with a cluster of several
low-end computers is usually cheaper than using a single high-end computer.

e Reliability. Failure or maintenance of one or more computers does not incapacitate the
whole system. Instead, its performance is lowered until fixing or replacing the affected
computers.
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Figure 5.11: Computer cluster

5.5.1.1 Message Passing Interface

In this dissertation, communication between different computers of a cluster is performed
using the Message Passing Interface (MPI). The MPI standard defines a set of commands
for transferring data between physically distinct memory spaces and is implemented by
different libraries for various operating systems. In MPI terminology, a “process” is an
independent thread of execution with has its own private memory and can be mapped to
a physical computer of the cluster. Using multiple MPI processes on the same computer is
possible, but not used here. This section lists the most basic commands supported by all
implementations:

e mpi_send / mpi_recv. Process i sends a chunk of data to process j. Process j receives
the same chunk of data from process j. These point-to-point commands are the most
basic ones and they must always appear in pairs; each mpi_send must have a corre-
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sponding mpi_recv. They can also be executed asynchronously, which is exploited in
this dissertation for further performance gains. See figure

e mpi_broadcast. One process, called the root process, sends a chunk of data to all other

processes. This is collective command sends the same data to all processes. See figure
5. 12bl

e mpi_scatter. Another collective command, where one root process sends data to all
other processes, but each processes receives a different chunk of data. See figure [5.12c|

e mpi_gather. This collective command is the opposite of mpi_scatter: one root process
1 receives data from all other processes, but each processes sends a different chunk of
data. See figure

There are numerous other commands, but they are not available in all MPI implementa-
tions. In any case, other commands can be viewed as optimized or shorthand versions of a
series of the above basic ones.
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Figure 5.12: Basic point-to-point and collective MPI commands.

5.5.1.2 DDM solvers on clusters

When implementing the FETI-DP and PFETI-DP solvers, which were discussed in the pre-
vious sections, on a computer cluster, the total number of subdomains is divided into groups
and each group is assigned to one computer. This is called static scheduling and happens
once, before the analysis starts. Load balancing is achieved by forming equally sized subdo-
main groups, if the computers have the same specifications, or groups of size proportional
to the processing power of each different computer. Within a computer, the number of sub-
domains is generally much higher than the number of processing units (usually CPU cores).
In this case, a producer-consumer strategy is employed instead of static scheduling, since it
is more flexible and can balance the computational load more effectively. Specifically, the
subdomain-level tasks are put on a queue. When a CPU core has finished the rest of its
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computations, it is assigned to a new subdomain, which is then removed from the queue.

remote
neighboring
subdomains
AN
S2 S4 S6 S8
local
neighboring <
subdomains
S1 S3 S5 S7
Computer 1 Computer 2
(a)
§ A
(]
T o o &
c 2 92 3
L o o ¢
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\_/ N\
X N\
CPU1 /7 \ N\ CPU 2
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bus o
2
th e
s1|s2|s3|sa| % ° s5|s6|s7|ss| Other
data data
Memoryl | | \_ / Memory 2
Computer 1 Computer 2
) remote data transfer:
local data transfer: )
via network

just access shared memory

(b)

Figure 5.13: Allocation of subdomains to computers and communication between them.
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Figure illustrates this subdomains-to-computers allocation for a 2D example. In
the same figure, the communication between neighboring subdomain can be seen, where two
subdomains are considered as neighbors, if they have common nodes. Data transfers between
two local neighboring subdomains, namely subdomains allocated to the same computer,
is done very fast via accessing the shared memory of that computer. In contrast, data
transfers between two remote neighboring subdomains, namely subdomains allocated to
different computers, is performed over the network using MPI commands and is, thus, much
slower. When allocating subdomains to computers, these number and frequency of these
remote transfers should be minimized to increase the performance of the solvers.

5.5.2 P-FETI-DP

The HPC implementation of P-FETI-DP will be covered first, since it is simpler than FETI-
DP. To begin with, the expanded domain is defined, which contains all DOFs, but each
boundary DOF appears multiple times, once for each corresponding subdomain. In contrast,
the global domain contains exactly one instance of all DOFs in the model. A 2D example
of this distinction for a mesh with 4 x 2 elements is given in figure [5.14] where the DOF's
along axes x,y are shown for the global and expanded domain. In the remainder of this
section, superscript s will denote a subdomain-level quantity, superscript e will denote an
expanded-domain-level quantity and no superscript will denote a global-level quantity.

5.5.2.1 Interface problem

In section [5.3.2} u; (np, x 1) was defined as the global boundary displacements and u; (nf x 1)
as subdomain boundary displacements. Here, the expanded boundary displacements wuj
(ng x 1) are also defined as

1
uy

u, = | (5.57)

u,’
where n, is the number of subdomains, n;, is the number of global boundary DOFs, nj is the
number of boundary DOFs of subdomain s and nj is the number of boundary DOF's of the

expanded domain. The boolean mapping matrices Lj defined in section compose the
expanded matrix L§ (ng X ng):

L,
L= | : (5.58)
Ly

This mapping matrix can be used to extract subdomain-level displacements from global ones:
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subdomain 2

Figure 5.14: a) Global domain: each DOF appears once. b)Expanded domain: each bound-
ary DOF appears once for each subdomain it belongs to. Here the following DOF's coincide:
13=19,14=20,15=21,16=22,17=23,18 =24

s __ S

e e

(5.59)

Similarly, to calculate global right-hand-side (RHS) forces z, from their subdomain contri-
butions z;, which compose the expanded vector £, the following are used
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Zp = Z(Li)Téb = (L;)" %
s=1
2} (5.60)
Zp =1 :

The stiffness matrices can also be written in expanded domain form:

K}, K}, K!

i

K, = K, = K; = (5.61)

Ns Ns Ns
K, K, K

and for the inverses and Schur complements:

(K}
(K;) ' =
K)™!
- (i) (5.62)
Shy
Sy = = K, — (K3)"(K§) T K,
s
Then, the matrix of the interface problem of P-FETI-DP is
Sw =) (L)' Sy Ly = (L) S5, L (5.63)
s=1

and the interface problem can be rewritten in terms of the expanded domain matrices and
vectors

Sbb Uy = Z2p — (LE)TSZbeiub = Zb (5 64)
— (L))" Spuf = (L§)" %

This interface problem system is solved using the PCG method. At each PCG iteration, the
following matrix-vector multiplication is performed:

Ns
=) (L)' S = (L5)" Siya; (5.65)
s=1
where x§ (n§ x 1) is the approximation of the solution u§ for this iteration and y; (n, x 1)
is a force vector. This operation is performed in two stages.



CHAPTER 5. LINEAR SYSTEM SOLVERS 161

e The matrix-vector multiplication is executed at subdomain level (or equivalently ex-
panded domain level)
Uy = Spy,

o e o (5.66)
g, = Spxy,

e A map-reduce operation is performed to obtain the global vector y; from the subdomain
contributions g;

v =Y _(Ly)"9; = (L;)" s (5.67)

s=1

where g7 (n; x 1) and g5 (n; x 1) are intermediate force vectors, meaning that their
entries at different instances of the same boundary DOF (one instance per subdomain)
are different. In contrast, these different entries for the same boundary DOF are
summed and appear only once in ys.

i ] Computer 2
yﬁn I '9324 ]
’Q’z? = ’9’3‘34 Yosa(l] sS4 ’Qf = yfﬂ
_yg,1234_ a . _’9'21,1234_
Yp1z | Ypi231 | Yb24
. s — T2
yb,l? yb,l?
Uy, = ygl? yiof|] 52 y;, = ’9324
_’!Jz},1234_ _95,1234_
Computer 1

Figure 5.15: Example of neighboring subdomains and displacements along their common
boundary DOFs.
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It can be observed that xf, z; and S}, can be calculated and stored so that each sub-
domain owns only its corresponding matrices and vectors. When implementing P-FETI-DP
in a distributed memory system, each computer will be assigned to a group of subdomains.
Thus the matrices and vectors of each subdomain will only exist in the memory space of the
computer assigned to the subdomain’s group. In contrast, the global vectors y, and z;, refer
to global boundary DOFs, that do not correspond to any computer. Trying to implement
the equations above, would require transfering the subdomain vectors to one computer, e.g.
by using the MPI operation mpi_gather. The global vectors would be calculated on that
computer and then sent to all others, e.g. with the MPI operation mpi_broadcast, to con-
tinue with the rest of the algorithm. An example is given in figure [5.15] where the vectors
9, at boundary DOFs of 4 subdomains, which are allocated to 2 computers, are shown be-
fore the map-reduce operation. Figure illustrates the data transfers from the memory
spaces of the subdomains to the memory space where global operations will be performed,
the global-level map-reduce operation y, = >_.°,(L;)"g; and the data transfer of the global
vector y, back to the memory spaces of the subdomains.

While this centralized approach is definitely doable, it is not efficient in terms of com-
munication, since it forces significant data transfers to a single computer. For large-scale
problems with thousands of subdomains, this communication pattern will lead to congestion
of the network at the computer that handles global vectors, and become a computational
bottleneck. Additionally, forcing one computer to execute the summation of vectors from all
subdomains, while the rest are idle, leads to imbalances in the load distribution. To over-
come these problems, a distributed implementation is developed in this dissertation, which
requires a modifyiing the original P-FETI-DP (and FETI-DP) equations.

For each ordered pair of subdomains (s, t), an unsigned boolean matrix, namely a matrix
that has only 0, 1 as values, M;" (nj x n}) is defined, which maps the boundary DOFs of
t into the boundary DOFs of s. Specifically, an entry i,j of M is 1, only if row i and
column j correspond to the same boundary DOF in subdomains s and ¢, respectively. Let us
define two subdomains as neighbors, if they have common boundary nodes, and thus DOF's.
If two subdomains s,t are not neighbors, then they do not have common DOFs and the
matrices are M = 0, M/* = 0. On the other hand, for the same subdomain s: M;* = I.
Map-reduce operations of subdomain vectors into a global one are performed in a distributed
fashion using M;*. For the vector g; of a given subdomain s, summing the corresponding
entries of other sumbdomains can be performed as

vi= Y M5 (5.68)
t=1,
t#s

The corresponding expanded domain matrix M} (n§ x nf) is defined as
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and summing all vectors of the expanded domain can be done as

Y;

v, = | | =My, (5.70)
y,”

where y; (ny x 1) is an expanded-domain force vector that contains the same entries as the
global vector y;, (ny x 1). Similarly to the wu§, u, pair of vectors, entries corresponding to
the same DOF's are listed only once in y,, while in y; they are listed once per subdomain
vector vy;, provided that DOF belongs to subdomain s. Therefore, the following conclusion
will be used to transform the original P-FETI-DP and FETI-DP equations:

“The centralized map-reduce operation y, = (L{)Tg¢ can be replaced with the
dustributed equivalent yy = Mgyp.”

This distributed alternative of map-reduce operations can be implemented much more
efficiently in computer clusters. Each subdomain s only needs to exchange the common
entries of its sumbdomain-level vector ¢; with its neighbors, while for the rest M;* = 0 and
M}* = 0. This means that:

e Neighboring subdomains that belong to the same group, therefore the same computer,
exchange vector data with negligible cost, since these entries exist in the same memory
space.

e Neighboring subdomains that belong to different groups, therefore different computers,
exchange vector data over the network, using mpi_send and mpi_receive or equivalent
MPI commands, if they are supported by the MPI library.

e To further minimize communication, only the common entries of g5, §i are exchanged
between two subdomains s, ¢, instead of the whole vectors.

With the above procedure, the communication between computers is minimized, as well
as distributed evenly across the network, while there are no centralized data transfers to
congest the network at any point, as is the case with the original map-reduce operation.
Furthermore, instead of performing global-level map-reduce operations at a single computer,
while the rest are idle, the proposed implementation distributes the computations evenly
across all computers. An example is depicted in figure for the case described in figure
5.15 Using the matrices M!® isolates the entries at boundary DOFs that are common
between subdomain 1 and each other subdomain s. Only these common entries are then
transferred to the memory space where subdomain 1 exists and finally added to the vector
of subdomain 1. While these steps are executed for subdomain 1, all other subdomains are
also processed in parallel and with the same steps.
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Figure 5.17: Distributed version of the map-reduce operation.

By using the above logic, the distributed alternative for the RHS vector 2z, = (L§)7 25 of
P-FETI-DP’s interface problem is

z, = M; 2, (5.71)
The matrix-vector operations (L§)T S5 x¢ can be written as

Y, = MySyxy (5.72)

and finally the linear system that expresses the interface problem is equivalent to
M S5 = M (5.73)

5.5.2.2 Coarse problem

The distributed implementation of the coarse problem of P-FETI-DP, which is the same as
FETI-DP, is similar to the interface problem’s implementation. The original coarse problem

from equation(|5.36) is

Scc *Le = Ye
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where S (ne X n.), . (ne X 1), y. (n. x 1) are the stiffness matrix, displacement vector
and force vector, respectively, defined at global corner DOFs. The number of global corner
DOFs is n., while the number of corner DOFs of subdomain s is nJ. Similarly, n¢ is the
number of corner DOFs of the expanded domain, where each corner DOF is included once
per subdomain it belongs to. Mapping between global vectors x., y. and subdomain vectors

s (nd x 1), g5 (ng x 1) is done with the unsigned boolean mapping matrices L? (n? X n.):

z, =Lz,
SN T s (5.74)
ye=) (L)'
s=1
and for the expanded domain
x. = L.z, (5.75)
Ye = (Li)T @5 '
where ¢ (nt x 1), g¢ (n¢ x 1) and L¢ (n¢ X n,):
Ll
L= | (5.76)
L
The coarse problem matrix can be written as
See =Y (L2)"S;.L: = (LY)" SE. L (5.77)

s=1

where S%, (nxn?) is given by equation(5.25)) and S¢, (nSxn¢) is the corresponding expanded
domain matrix. Therefore the coarse problem can be written as

See T, =y. <= (L)'S° . Léx. = y. (5.78)
or equivalently
(L)' Ses = (L) 9 (5.79)

Similarly to the boundary DOFs, for each ordered pair of subdomains (s, ), an unsigned
boolean matrix, namely a matrix that has only 0, 1 as values, M?* (n% xn?) is defined, which
maps the corner DOF's of ¢ into the corner DOFs of s. Specifically, an entry i, 7 of M5 is
1, only if row ¢ and column j correspond to the same corner DOF in subdomains s and ¢,
respectively. If two subdomains s, are not neighbors, then they do not have common DOFs
and the matrices are M** = 0, M' = 0. On the other hand, for the same subdomain s:
M?® = I. Map-reduce operations of subdomain vectors into a global one are performed in
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a distributed fashion using M?*. For the vector ¢ of a given subdomain s, summing the
corresponding entries of other sumbdomains can be performed as

yi= Y Mg (5.80)
t=1,ns

The corresponding expanded domain matrix M¢ (n§ x nf) is defined as

Mll M12 ... Mlns
M021 Mc22 . _Z\4C2nS
Me=| ° A ‘ (5.81)
Ménsl ]\4—(;”/52 e MgLsns
and summing all vectors of the expanded domain can be done as
Y.
yg — = _2\46e ACE (582)
Yo

where y¢ (n¢ x 1) is an expanded force vector that contains the same entries as the global
vector y. (n. x 1). Entries corresponding to the same DOFs are listed only once in y.,
while in y¢ they are listed once per subdomain vector y2, provided that DOF belongs to
subdomain s. Finally, the matrix-vector operations (L¢)? S¢.x¢ can be written as M¢S¢ x¢

ccTce ccTrc

and the linear system that expresses the coarse problem in equation(5.79) is equivalent to

MESE xt = MSg° (5.83)

ccrre

In this dissertation, the following approaches are investigated for solving the coarse prob-
lem of P-FETI-DP (and FETI-DP). Note that this solution has to performed once per
iteration of the PCG method used to solve the interface problem of P-FETI-DP (and FETI-
DP).

5.5.2.2.1 Distributed iterative strategy

The linear system of equation(5.83) is solved using a nested PCG method. In this case,
the subdomain-level matrices S7, and vectors x;, y> exist only in the memory space of the
corresponding computers, without the need to transfer them to a central computer, so that
the global coarse problem matrix S.. can be explicitly formed and factorized. Preconditioning
of the nested PCG is parallely executed using a diagonal preconditioner, which can be done

in a distributed fashion as

PD_1 = (DCC)il

. (5.84)
D..= M¢D¢,
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where P! (n¢ x n¢) is the diagonal preconditioner and D¢, (n¢ x n¢) is the expanded
domain matrix containing the diagonals D2, (n% x n?) of the subdomain-level matrices S?,.
The calculation of D,.. and P, ! is performed before the iterations of the interface problem
PCG and the nested coarse problem PCG start.

The distributed iterative approach minimizes the memory requirements of the coarse prob-
lem. Additionally, it ensures that the stored data and operations needed to solve the coarse
problem are distributed evenly across all computers. Therefore, it can be employed for ex-
tremely large scale problems, where the number of subdomains is so high, that explicitly
storing and factorizing the coarse problem in a single computer is not viable. On the other
hand, repeatedly using the nested PCG to solve linear systems with the same matrix is not
optimal in terms of computing time.

The iterations required for the coarse-problem PCG can be reduced by relaxing the
corresponding convergence tolerance, which will result in less accurate coarse-problem solu-
tions. As far as P-FETI-DP is concerned, the coarse problem is part of the preconditioner
of equation(5.49). Therefore, less accurate coarse-problem solutions lower the accuracy of
the preconditioner, which leads to more iterations of the interface-problem PCG. In many
cases, the convergence decrease of the interface-problem PCG is not very severe and relaxing
the coarse-problem PCG ends up reducing the overall computing time. On the other hand,
this technique cannot be used in FETI-DP, because the coarse problem is included in the
interface-problem matrix of equation, instead of the precondtioner. Consequently, re-
ducing the accuracy of the coarse-problem solution will lead to an incorrect solution, instead
of just decreasing the convergence rate.

5.5.2.2.2 Centralized direct strategy

The linear system S, - x. = y. of equation(5.36)) is solved using a direct solver, such as
supernodal Cholesky. Before starting the solution of the coarse and interface problems,
algorithm is used to prepare the coarse problem matrix:

Algorithm 5.7 Preparation of the centralized direct coarse problem

1: Gather subdomain matrices S7, from all computers to a central one.

2: Explicitly form the global matrix S.. = Z (L)' 85, L? in the central computer.
s=1
3: Factorize the global matrix using Cholesky factorization (S.. = ULU,.) in the central
computer

During each iteration of the interface problem PCG, the coarse problem needs to be
solved with the same matrix but a different RHS vector M{g¢. Algorithm is used,
which has the same input and output, namely RHS vector ¢¢ and solution vector x¢, as the
distributed iterative approach.
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Algorithm 5.8 Solution of the centralized direct coarse problem

1: Input: Subdomain vectors ¢
2: Gather subdomain vectors g from all computers to the central one.

Ns

3: Map-reduce these subdomain vectors y. = Z (L3)" 42 in the central computer.

s=1
4: Solve the linear system S..x. = y. by performing back & forward substitution with the
Cholesky factors UL U, in the central computer.

5: Isolate the subdomain displacement vectors ] = L.x. in the central computer.
6: Scatter the subdomain vectors x; to their corresponding computers.

This approach is usually significantly faster than the distributive iterative solution of the
coarse problem, since most of the work is done only once during the factorization of the coarse
problem matrix. The back & forward substitutions, which are performed once per iteration
of the interface problem PCG, are much faster in comparison. In contrast, the memory
requirements are increased for the central computer, since the global matrix S.. needs to
be stored and factorized there. Nevertheless, this is usually a preferable trade-off, because
the coarse problem is significantly smaller than the global and interface problems. Only
in extremely large-scale problems with thousands of subdomains, are the memory require-
ments potentially too high for this centralized approach. Moreover, gathering/scattering
subdomain-level matrices and vectors to/from a centralized computer may cause a conges-
tion of the network at that computer, but, once more, that becomes a concern when the
problem grows beyond a certain size. Finally, there are load imbalances hindering perfor-
mance, since the factorization of S.. and back/forward substitutions are all performed by a
single computer, while the rest are idle.

5.5.2.2.3 Distributed direct strategy

This is the same as the centralized direct approach, but the coarse problem solution is per-
formed on all computers. In this case, the subdomain matrices SZ2. are gathered to all
computers, where the formation and factorization of the global matrix S.. are performed.
Algorithms [5.9 and describe the procedure.

Algorithm 5.9 Preparation of the distributed direct coarse problem

1: Gather subdomain matrices S%. from all computers to all computers.

2: Explicitly form the global matrix S.. = Z (L3)" 82 L? in all computers.
s=1
3: Factorize the global matrix using Cholesky factorization (S.. = ULU.,.) in all computers.
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Algorithm 5.10 Solution of the distributed direct coarse problem

1: Input: Subdomain vectors ¢
2: Gather subdomain vectors g2 from all computers to all computers.

Ns

3: Map-reduce these subdomain vectors y. = Z (L) 42 in all computers.

s=1
4: Solve the linear system S..x. = y. by performing back & forward substitution with the
Cholesky factors UL, U, in all computers.

5: Isolate the displacement vector ] = L.x. of each subdomain s, but only in the computer
corresponding to subdomain s.

This redundancy increases the memory requirements of all computers, contrary to the
centralized direct approach, where only one central computer requires more memory. Never-
theless, many distributed memory systems consist of computers that have the same available
memory, in which case this redundancy is inconsequential, since the extra memory would
be unoccupied either way. On the other hand, the distributed direct approach can be more
efficient, due to better load balancing during the solution of the coarse problem. The fac-
torized S.. matrix is available on all computers, thus each one solves the coarse problem
independently, instead of idly waiting the central computer to finish the solution and scatter
the corresponding subdomain vectors.

5.5.2.3 Preconditioner

The expanded domain form equation(5.49)), which defines the P-FETI-DP preconditioner, is

Ay = A+ AL ALAY
e e \T e\—1 ge
Abb = (Lpr) (Krr) ! Lpr

ib = - (Li)T KCeT (K:r)_l L;T + Nc7b (585>
b= (AL = (N — (Lg,)" (K) ' KCL
A.=8"
where
LZT = Nf}bL;b (5.86)
and
;b — WbeLg (587)

Therefore the preconditioner can be rewritten as
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Ayl = A+ ALALA

~rye e e e T e \— e e e

Abb = (Lb)T Wb (Nr,b) (Krr) ' Nr,bWb Lb

A = — (L) K, (K;,) ™ No,WiLy + Ney (5.88)

Ae Ae r T e\T e e \T e\—1 gre Te

Abc = <A0r> = (NC,b) - (Lb> Wb (Nr,b) (KTT) Krch

A, =8
where (W¢)" = Wy has been used, since W¢ (n¢ x ng) is diagonal. Let N, be a boolean
matrix (0, 1 as entries) with dimensions (n? x nj) that maps the boundary DOFs of the
subdomain s (columns) to the corner DOFs of subdomain s (rows). Then, its expanded
domain form is NS, (ng x ny). For a force vector y,, the following multiplications are
equivalent:

Newys = (L2) NGWy Ly, = (LE)" N, Wiy; (5.89)

where it should be noted that multiplying with (L¢)" will sum the contributions from all
subdomains for any DOF, thus they are scaled with the matrix Wy to replicate the action
of (L8)". As a result, multiplying a force vector y, with A¢, is equivalent to

Agyy = — (L)' K& (K5, NS WLy, + Neys
= — (L))" K (K;) ™ NEWys + (1Y) NSWy; (5.90)
= (L9)" (- K& (K5) ™ Ngy + NG, ) Wiy
Furthermore, for a displacement vector ., the multiplication
Ajwe = (Noo)" @ — (L) Wi (N7,)" (K, K L, (5.91)
can be done in a distributed fashion as

(sz)T Limc - MbeWbe (Nf,b)T (Kfr)_l K Lewc

rc C

5.92
= (V)" = Mywy (N5,)" (K) T K ) L, o4

Additionally, for a force vector vy, the multiplication

Avcy, = (L) Wi (NS (KE) ™ NS, WLy, (5.93)
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can be done in a distributed fashion as

e e e T e - e e, e
MWy (Nr,b) (K7, lNr,bWbyb (5.94)

Consequently, the preconditioner takes the following distributed form

(Af) " = Ay + AL AL A
r.e e e e \T' e \— e e
Ay = MyWy (Nr,b) (K7,) 1Nr,bWb
Ag = (- K& (KG) ™ Ng, + NG, )Wy (5.95)
e e \T e e e \T e \—1 e
Abc = (Nc,b) - Mb Wb (Nr,b) (Krr) Krc
Ag = LS. (L)'
Note that during PCG, this preconditioner will be multiplied with force-like vectors (resid-
ual vectors to be exact) y; and produce displacement-like vectors (preconditioned-residual
vectors to be exact) ;. All these matrices and vectors refer to the expanded domain and
can be stored and operated on in a distributive fashion. The only global operations left are
in the solution of the coarse problem, which is performed by multiplying a force vector y.
with the matrix A
x, = ASy, = LS (L) y. (5.96)

c—cc

As elaborated in section [5.5.2.2] the above can be done in two ways:

e Direct solution of the global system
(LE)T Seelgxe =ye = (Li)T e
e [terative solution of the equivalent distributed system

M SEal = MEy:

ccrce Cc

5.5.2.4 Implementation details

This section describes some details pertaining to the parallel implementation of P-FETI-DP,
while also avoiding duplicate operations. Specifically, algorithm describes the matrix-
vector multiplications performed during the solution of the interface problem in equation
(5.73), while algorithm describes the application of equation for the precondi-
tioning step of PCG.
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Algorithm 5.11 Matrix-vector multiplication for interface problem of P-FETI-DP.

1: Input: displacement vector xj. Output: force vector y;

2:
3:

for each subdomain s do
v, = K -z}
= (K3
vy = (Kj) vy
V4 = Klfz * V3
Yy = v1 + U3
end for
e __ e ~E
Yy, = My - g;

> In parallel

> Back & forward substitutions with factors of K

> Communication between subdomains

Algorithm 5.12 Preconditioner of P-FETI-DP.

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

1
2
3
4:
5:
6
7
8
9

for each subdomain s do
v =Wy yp
Vo = Ncsb * U1
V3 = Nﬁb * U1
v, = (K3,)7" v
V5 = Kir * Uy
Y = vy — U5

: end for
Solve coarse problem x¢ = A¢, -

for each subdomain s do
v =K. - m%
Uy = (Kf’r> * Vg
Vg = Vg4 — Uy
T
vy = W) - v
end for
e __ e ~NE
for each subdomain s do
T
vio = (N3)" - =
a:,‘j = 'Ug + V1o
end for

€

Ye

: Input: force vector y;. Output: displacement vector xj

> In parallel

> Back & forward substitutions with factors of K,

> See section [5.5.2.2)

> In parallel

> Back & forward substitutions with factors of K,

> Communication between subdomains
> In parallel

5.5.3 FETI-DP

In FETI-DP, the unknowns of the interface problem are Lagrange multipliers, namely inter-
subdomain forces at boundary-remainder DOFs. Therefore, its left-hand-side (LHS) vectors
are force-like quantities and its RHS vectors are displacement-like quantities.



CHAPTER 5. LINEAR SYSTEM SOLVERS 174

5.5.3.1 Interface problem
A Lagrange multiplier is defined between the corresponding instances of the same boundary-
remainder DOF of exactly two subdomains. Let ny, n} and n§ = Zni be the Lagrange

s=1
multipliers of the global domain, subdomain s and expanded domain, respectively. Each

Lagrange multiplier is counted only once in ny. In contrast, a Lagrange multiplier, which
is applied to different instances of the same boundary-remainder DOF in two subdomains,
is counted twice in in nf§. Similarly, the vectors containing the Lagrange multipliers of the
global domain, subdomain s and expanded domain are X (nyx1), A* (n§ x 1) and A (n§ x1).
In order to obtain a distributed form of the FETI-DP equations, the global Lagrange
multipliers vector A needs to be replaced by the expanded domain vector A°, whereas the
multiplications with signed boolean matrices B (n, x n?) need to be be replaced by equiva-
lent actions. In the implementation developed here, another signed boolean mapping matrix
C;: (n} x ng) is introduced. This C? matrix maps the remainder DOFs of subdomain s
(columns) to the Lagrange multipliers of subdomain s (rows), instead of mapping to the
global Lagrange multipliers, as done by B;. The rules for £1 signs of C; are identical with

the rules for B?. The corresponding expanded domain matrix C¢ (n§ X n¢) is

C,
Cr = (5.97)
(O

Using the boolean matrices C¢ and C¢, multiplications of force-like vectors (B#)T - A
will be replaced by (C*)T - A% and (C¢)T - X°. Let v$ (n® x 1) be a vector that contains
displacement quantities along the n? remainder DOFs of subdomain s and v¢ (n¢ x 1) the
corresponding expanded domain vector. Multiplications with these displacement-like vectors
B; - v; will be replaced by C? - v;:

5 =C: v (5.98)

T

where 6° (n§ x 1) is a vector containing displacement quantities of subdomain s along its
Lagrange multipliers. For each ordered pair of subdomains (s, t), an unsigned boolean matrix,
namely a matrix that has only 0, 1 as values, M}’ (n§ x n}) is defined, which maps the
Lagrange multipliers of ¢ into the Lagrange multipliers of s. Specifically, an entry 4, j of M
is 1, only if row ¢ and column j correspond to instances of the same Lagrange multiplier in
subdomains s and ¢, respectively. If two subdomains s, are not neighbors, then they do not
have common Lagrange multipliers and the matrices are M' = 0, M{* = 0. On the other
hand, for the same subdomain s: M;* = I. Map-reduce operations of subdomain vectors
into a global one are performed in a distributed fashion using the M;' matrices. For the
vector 8° of a given subdomain s, summing the corresponding entries of other sumbdomains
can be performed as
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> myé (5.99)

t=1,ns
t#s
and summing all vectors of the expanded domain into §° (n§ x 1) can be done as

8¢ = MSo° (5.100)
where the expanded domain matrix M5 (n§ x nf) is defined as
Mil M){Z . ‘2\4){nS
M)\Ql M)%Q . M}\Qns
My = . . ' _ (5.101)
M;\lsl M;\ls2 . M;\lsns

As a result, the map-reduce operation Z(Bf -v;) will be replaced by the distributed

s=1
alternative M{CY - v¢. Applying the aforementioned modifications, the distributed form of
the interface problem of FETI-DP is
(Fy,, + F}, A F,

Irr Irc Ier

JA® =di — Fy. ASZS (5.102)

Irc**cc c

where

FIerr M)\Ce(Kfr) ( )

Flerc M)\CG(KfT) 1K6
Fy, = K& (K5) ™ (CH)! (5.103)
A; = LS ML)

d; = M{Cy(K},) ™ ff

where f¢ and 2£¢ are the expanded domain forms of the corresponding vectors defined in
equations , . The linear system of equation is solved in parallel using the
PCG method. It can be observed that only the matrix A¢, involves global operations.
Multiplying a vector with A€, is equivalent to solving the coarse problem. In fact, A¢, in
the interface problem of FETI-DP is identical with A¢. in the preconditioner of P-FETI-
DP. Therefore, the observations relating to the parallel execution of this operation, given in
section [5.5.2.3] apply here as well. After solving of the interface problem and obtaining the
Lagrange multipliers A¢, the displacements at corner and remainder DOF's can be calculated
as

u. = A8, (25 + FL,X°) (5.104)

Icr

= (Kg) ™ (ff — (C)TX — K ) (5.105)

'f‘C C
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However, the above equations will result in the displacements at different instances of
the same boundary DOF being slightly different in each subdomain. To obtain compatible
displacements across all subdomains, the following averaging operation needs to be done:

al = MEWeus (5.106)

where uj are the incompatible displacements at boundary DOFs of subdomain s and 4 are
the corrected, compatible displacements at the same DOF's.

5.5.3.2 Preconditioners

In the original FETI-DP preconditioners, the signed boolean matrix Bj (n) x nj ) is used
for mapping the nj boundary-remainder DOFs of subdomain s (columns) to the n, global
Lagrange multipliers (rows). In the developed implementation, this will be replaced by Cj
(n} x nj ), which is also signed boolean matrix (0,-1,41 entries) and maps the boundary-
remainder DOFs of subdomain s (columns) to the Lagrange multipliers of subdomain s
(rows). The rules for £1 signs of Cj are identical with the rules for B; . The corresponding
expanded domain matrix Cy (n§ x nj ) of the mapping operation is

C,
C;, = (5.107)
Cy’
and the expanded domain matrix Wy (nj x nj ) of the scaling operation is
w,

where the subdomain-level scaling matrices W;’ (nj x nj ) were defined in section 5.3.1.3
The FETI-DP preconditioner has the following general form
(F}

Irr

)~ = MC; Wi Sg, Wi (Cp )T (5.109)

Depending on the definition of :S’v,frbr the following preconditioners can be obtained:

C, = b o (5.110)
K; , lumped preconditioner

- {Klfrbr — (K, )" (K&)' K Dirichlet preconditioner

The observations of section|5.3.1.3| concerning the performance properties of the Dirichlet
and lumped preconditioner, apply here as well.
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5.5.3.3 Implementation details

This section describes some details pertaining to the parallel implementation of FETI-DP,
while also avoiding duplicate operations. Specifically, algorithm describes the matrix-
vector multiplications performed during the solution of the interface problem in equation
(5.111]), while algorithm describes the application of the equation ((5.109) (Dirichlet-

preconditioner version) for the preconditioning step of PCG.

Algorithm 5.13 Matrix-vector multiplication for interface problem of FETI-DP.

1: Input: force vector A°. Output: displacement vector §¢

2: for each subdomain s do > In parallel
3 v = (CH)T X

4: v, = (K?) vy > Back & forward substitutions with factors of K.
o: @S = Kgr )

6: end for

7: Solve coarse problem x¢ = A¢, - Y& > See section
8: for each subdomain s do > In parallel
9: vs =K -x;
10: v, = (K*) " vy > Back & forward substitutions with factors of K?,
11: Vs = V2 + Uy
122 8 =C* vy
13: end for
14: 8¢ = M5 - ¢ > Communication between subdomains

Algorithm 5.14 Dirichlet preconditioner of FETI-DP.

1: Input: displacement vector §°. Output: force vector A°
2: for each subdomain s do > In parallel

3: v = (C{;)T - 0°

4: Uy = Wbsr * U1

5: v3=Kj, vy

6: vy = Kj, vy

T vs = (K3)™" - vy > Back & forward substitutions with factors of K7
8: ve = K, - vs

9: V7 = V3 — Vg
10: vy = Wy vy
1: XN =C; vy
12: end for
13: A= My - A > Communication between subdomains

Finally, the RHS vector of the interface problem in equation (5.111]) can be written as
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e _ gqe e e ze
el =d. — F}, A .2

cc’Te

-1 -1 -1 (5.111)
= M{C} (K,)" fi — M{CY(KT,) ™ KL AL (fe — KG (KL fY)

and its implementation is described by algorithm [5.15

Algorithm 5.15 RHS of interface problem of FETI-DP.
1: for each subdomain s do > In parallel
2 v, = (K3)' - fs > Back & forward substitutions with factors of K3,
5 9= Kb
4: end for
5: Solve coarse problem x¢{ = A¢, - §¢ > See section
6: for each subdomain s do > In parallel
7 vy =K’ -x;
8 vs = (K2) ' vy > Back & forward substitutions with factors of K,
9: V4 = V1 — V3

10: é‘;\ = Cf * Uy

11: end for

12: e§ = My - €5 > Communication between subdomains
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Chapter 6

Crack propagation applications

6.1 Hardware and software setup

In this chapter the proposed FETI-DP and P-FETI-DP algorithms are used to solve two
3D problems involving brittle crack propagation. Their scalability is investigated and their
performance in terms of computation time and iterations is compared with other solvers on
a computer with the following specifications: Intel(R) Core(TM) i7-X980 CPU (3.33GHz,
6 cores/12 threads) and 24GB RAM. Moreover, the performance of the developed HPC
implementations of FETI-DP and P-FETI-DP is investigated in sections |6.2.5 [6.2.6] 6.3.6|
and [6.3.7] To this end, a computer cluster is used, which consists of 1-6 computers with the
aforementioned specifications, linked via an Ethernet LAN.

The first solver used for comparison is a direct solver based on the supernodal sparse
Cholesky factorization (Y. Chen et al., 2008) and the fill-reducing DOF ordering operations,
available from the CHOLMOD package of SuiteSparse library (Davis, [2022)). SuiteSparse
provides high-performance implementations of direct sparse solvers, which are written in the
C programming language and take full advantage of the multicore architecture of modern
CPUs. Since the main portion of the XFEM code is written in C#, SuiteSparse is com-
piled and linked with as few calls as possible to reduce any overhead. This solver will be
abbreviated as Direct-S in the remaining of this section.

Both FETI-DP and P-FETI-DP are implemented in C# as part of the MSolve (MGroup,
2022)) open-source software for computational mechanics. In order to solve the linear sys-
tems at subdomain level (operations involving (K2 )" and (K2%)™") and the coarse prob-
lem (operations involving (S,.)~"), SuiteSparse is used once more. Apart from the paral-
lelism exploited by SuiteSparse for these operations, the subdomains are processed concur-
rently, taking advantege of the domain decomposition formulation. The DDM solvers tested
are following: Dirichlet-preconditioned FETI-DP (abbreviated as FETI-DP-D), lumped-
preconditioned FETI-DP (abbreviated as FETI-DP-L) and the P-FETI-DP. Each of these
methods is also executed with the improvements discussed in section and these versions
of the solvers will be abbreviated as FETI-DP-D-I, FETI-DP-L-I and P-FETI-DP-I.
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From equations and , it can be observed that unknowns and residual vectors
of the iterative PCG algorithm are defined in terms of Lagrange multipliers (FETI-DP)
and boundary displacements (P-FETI-DP), respectively. In order to objectively compare
the performance and convergence rate of these solvers, a unified residual based convergence
criterion is used in the following numerical examples:

K- f|
T (61

where K, uw and f are the global stiffness matrix, displacements and external forces
of the whole domain, and ¢ = 10~7. In practical applications, a more relaxed tolerance
may be used, which will require less computational time for FETI-DP and P-FETI-DP. The
objective criterion of equation is expensive to apply, because at each PCG iteration
the Lagrange multipliers (FETI-DP) or boundary displacements (P-FETI-DP) need to be
converted to the global displacements w and the difference Ku — f needs to be calculated.
In practical applications, the default convergence criterion of PCG is used instead and the
global displacements w are calculated once, after PCG has converged. Since equation (6.1
is applied only for the sake of objective comparison, the time required for it is not included
in the comparisons presented.

Another solver used for comparison is the incremental Cholesky solver (abbreviated as
Direct-I), an reanalysis solver proposed in Pais et al. (2012)), specifically for brittle crack
propagation problems, which achieved significant performance improvements over the Direct-
S solver. This method implements a partial factorization connected to the modified DOF's
at each propagation step. Row-add operations are used for the stiffness of new Heaviside
and tip enriched DOF's of the current step, while row-delete operations for the tip enriched
DOFs of the previous step. Before the analysis starts, the approximate minimum degree
(AMD) algorithm (Amestoy et al., [2004) is used to obtain an effective DOF ordering for all
standard and possibly enriched DOFs. The aforementioned row-add, row-delete and AMD
operations are all implemented by the high performance library SuiteSparse.

Finally, a typical PCG solver with Jacobi preconditioning (abbreviated as PCG-D) is
included in the comparison, where the stiffness matrix is stored in compressed sparse rows
(CSR) format and Intel math kernel library (MKL) (Intel Corporation, 2022) is used for
the execution of matrix-vector multiplications, vector-vector operations and the application
of the preconditioner in each PCG iteration. Therefore, this is an very optimized parallel
implementation that takes full advantage of the multicore computing system. Similarly to
the domain decomposition solvers, the objective criterion of equation with a tolerance of
€ = 1077 is employed for checking the convergence of this iterative solver and the additional
cost of this criterion is subtracted, in order to compare its performance with the other solvers
impartially.
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6.2 Test case 1: Plate under impact loading

6.2.1 Problem description

The first test case is based on the Kalthoff experiment (Kalthoff & Winkler, |1987). As
illustrated in figure , a steel plate with an initial notch (crack) is impacted by a cylindrical
projectile. The projectile is modeled with prescribed displacements uy = 50 mm around
the point of impact and an initial crack propagates from the cylindrical notch (Fries &
Baydoun, |2012)). For low projectile velocities, brittle crack propagation occurs, in a 60 =+ 70°
angle through the domain, indicating Mode II loading. The material properties are £ =
310" N/mm? and v = 0.3. Similarly to Fries and Baydoun (2012) and other studies,
the crack is allowed to propagate quasi-statically with a constant increment da = 5 mm,
until it reaches the domain boundary, which happens after 16 propagation steps. At each
propagation step, XFEM analysis is performed using a uniform mesh of hexahedral elements
with 8 nodes. The whole quasi-static crack propagation is repeated for various mesh densities
and for each solver. The resulting crack path after 16 propagation steps and the nodes
enriched with Heaviside and crack tip functions are depicted in figure [6.2] The number of
DOFs varies per propagation step, since new enriched DOFs are introduced as the crack
propagates. The initial and final number of DOFs for each mesh are listed in table [6.1}
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Figure 6.1: Test case 1. Description of the plate under impact example. All dimensions are
in mm.
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Figure 6.2: Test case 1. (a) Crack path and (b) enriched nodes, at the last propagation step.

Mesh DOFs at first step | DOFs at last step | Average
10 x 5 x 10 2,791 4,357 3,532
20 x 10 x 20 15,960 20,502 17,983
30 x 15 x 30 48,507 56,709 52,083
40 x 20 x 40 109,386 122,052 115,169
50 x 25 x 50 208,385 226,577 | 216,456
60 x 30 x 60 353,784 379,140 | 364,641
70 x 35 x 70 554,171 587,357 | 568,222
80 x 40 x 80 818,770 860,224 | 836,817
90 x 45 x 90 1,157,761 1,208,929 | 1,179,569

Table 6.1: Test case 1. Number of DOFs per mesh.
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6.2.2 Comparison of various solvers

The performances of the supernodal Cholesky solver (Direct-S), the incremental Cholesky
solver (Direct-I), the iterative solver PCG-D and the FETI-DP and P-FETI-DP solvers are
compared. The total time required by each for the solution phases of the whole analysis can
be observed in figure and the speedup with respect to the default direct solver Direct-S
in figure speedup = t ((Direct-S) / t (solver), where t(-) is the total time required by
each solver for the full crack propagation analysis. In both figures, the x-axis corresponds to
the initial number of DOFs for the meshes listed in table Note that supernodal Cholesky
can be used for meshes up to 3.5 10° DOFs only, while incremental Cholesky runs out of
memory at approximately 1.1 - 10° DOFs.

This increased memory requirement of Direct-D is attributed to the increased bandwidth
of the stiffness matrix compared to the matrix of Direct-S, although both solvers use the
AMD reordering algorithm to reduce the bandwidth. In the case of Direct-I, many inactive
enriched DOFs are included in the set of total DOF's and the effectiveness of AMD decreases,
whereas in the Direct-S solver, the AMD algorithm can optimize the DOF ordering. Ad-
ditionally, Direct-I uses extra temporary memory for implementing the row-add operations.
In terms of computation time, incremental Cholesky is slower than the supernodal Cholesky
solver in this test case, in contrast to 2D applications, where incremental Cholesky solver
provides significant speedups (Pais et al., 2012)). This is caused by the increase of crack tip
enriched DOF's, since the crack front is more extensive and interacts with a larger part of
the domain in 3D problems. Section provides a detailed comparison of this case with
a 3D application, where the reanalysis features of incremental Cholesky are effective and
outperform supernodal Cholesky.

The PCG-D solver is up to 100 times faster than supernodal Cholesky. Although PCG-
D requires a very large number of iterations to converge, the computational effort remains
reasonably low, due to the simple operations performed by the very optimized linear alge-
bra library (Intel MKL). Nevertheless, the improvement of the FETI-DP and P-FETI-DP
solvers is superior, especially for larger problems, even though they are implemented by an
unoptimized C# code. The maximum speedups that have been achieved due to the memory
limitations of the direct solver are 340 (FETI-DP-D), 290 (FETI-DP-L), 410 (P-FETI-DP),
670 (FETI-DP-D-I), 530 (FETI-DP-L-I) and 830 (P-FETI-DP-I).
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Figure 6.3: Test case 1. Performance comparison of the solvers for the plate under impact:
(a) Computing time (in seconds). (b) Speedup of the solvers relative to supernodal Cholesky

solver.
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6.2.3 Numerical scalability investigation

The numerical scalability of FETI-DP and P-FETI-DP with respect to the number of sub-
domains (strong scalability), is depicted in figure . It can be seen that as the subdomains
increase for a constant mesh size, the iterations of PCG required for the solution of the
interface problem of FETI-DP and P-FETI-DP decrease, thus both methods scale well with
respect to the number of subdomains. The constant mesh used is (72 x 36 x 72), correspond-
ing to 616, 115 global DOF's on average. For various partitions of the constant mesh, table
lists the number of subdomains, boundary DOFSs, corner DOFs and Lagrange multipli-
ers (relevant only for FETI-DP). Although the iterations always decrease as the number of
subdomains increases, this is not the case for the solution time, where there is an optimum
number of subdomains for each solver resulting in the best solution time. Adding more
subdomains also increases the number of corner DOFs of FETI-DP and P-FETI-DP, which
in turn increases the size and bandwidth of the coarse problem matrix S... Consequently,
after that optimum is reached, the benefit of reduced iterations cannot counterbalance the
increased computing cost of the factorization of S.. and the corresponding back/forward
substitutions.

Subdomains Number of | Boundary | Corner | Lagrange
subdomains DOFs DOFs | multipliers

4x2x4 32 65,735 | 3,563 72,892
6x3x%x6 108 111,156 | 5,607 137,734
8 x4 x8 256 154,970 | 8,780 210,040
12 x 6 x 12 864 232,434 | 13,190 372,784
18 x 9 x 18 2,916 332,774 | 24,443 645,906
24 x 12 x 24 6,912 414,101 | 41,303 927,808

Table 6.2: Test case 1 (616,115 global DOFs). Number of subdomains, boundary DOFs,
corner DOF's and Lagrange multipliers.

Figure [6.5] illustrates the behaviour of FETI-DP and P-FETI-DP, when the ratio of
subdomain to element size remaints constant H/h = 5 and the mesh size, along with the
number of subdomains, increases. The x-axis contains the initial number of DOF's for each
mesh, as listed in table|6.1], while the y-axis corresponds to the iterations required for PCG-D
and for the interface problem of FETIT-DP and P-FETI-DP. Although the mesh size increases,
the number of iterations performed by FETI-DP and P-FETI-DP remains constant, contrary
to the PCG-D solver that requires increasingly more iterations to converge. Specifically, when
using the zero vector as an initial guess for the interface problems, the number of iterations
reaches a plateau at 69 (FETI-DP-D), 117 (FETI-DP-L) and 59 (P-FETI-DP), while when
using equations and the iterations are 44 (FETI-DP-D-I), 77 (FETI-DP-L-
I) and 37 (P-FETI-DP-I). This result confirms the numerical scalability of FETI-DP and
PFETI-DP with respect to the problem size (weak scalability), a property that is essential
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Figure 6.4: Test case 1. Scalability analysis with respect to the number of subdomains.
Constant mesh (72 x 36 x 72), variable number of subdomains. (a) Iterations required to
solve the interface problem (b) Time (in seconds) required for the solution phase.
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for solving arbitrarily large problems with constant iterations, by increasing the number of
subdomains and the corresponding processors of a distributed memory system.

103

PCG-D

1 ——FETI-DP-D
i | === FETI-DP-D-I
—— FETI-DP-L
| == FETI-DP-L-I
—— P-FETI-DP
- == P-FETI-DP-I

Iterations

DOFs x10°

Figure 6.5: Test case 1. Scalability analysis with respect to the problem size: Variable mesh
size, but constant ratio of subdomain to element size H/h = 5.

As can be seen in Figs [6.3H6.5, when using Eqs , as initial guesses for the so-
lution of the interface problem, both FETI-DP and P-FETI-DP exhibit substantial compu-
tational gains. Specifically, the number of iterations is reduced by up to 37% (FETI-DP-D),
36% (FETI-DP-L) and 40% (P-FETI-DP-I). By reusing subdomain data from previous prop-
agation steps and the non-zero initial guesses for the interface problems, the total solution
time is reduced by 49% (FETI-DP-D-I), 45% (FETI-DP-L-I) and 50% (P-FETI-DP-I).

6.2.4 Effectiveness of XFEM-specific modifications

Next, the effectiveness of the proposed solvers in eliminating the ill-conditioning caused by
XFEM is investigated by comparing two corner DOF schemes. The first scheme requires the
minimum modification to the original FETI-DP and P-FETI-DP for avoiding singular K,
matrices, by using equation to treat boundary DOF's that are enriched with Heaviside
and only the first crack tip function as corner DOFs. The second scheme, which in fact
is used in all previous investigations, uses equation to treat boundary DOFs that
are enriched with Heaviside and all four crack tip functions as corner DOFs. Figure
depicts the iterations required for solving the interface problems of FETI-DP and P-FETI-
DP, when each of these schemes are used. Four sample meshes are shown and the x-axis
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corresponds to crack propagation steps. The ratio of subdomain to element size is kept
constant at H/h = 5 and the initial guesses for the interface problems are taken equal to 0.
When using equation , sharp increases in the number of iterations are observed during
some propagation steps. This XFEM-related ill-conditioning occurs only when boundary
DOFs become enriched due to their proximity to the crack front, which happens at different
propagation steps for each mesh. Nevertheless, when it does happen, an iteration increase
of up to 245% can be observed. On the other hand, iteration spikes during those crack
propagation steps are not observed when using equation , which ensures that XFEM
ill-conditioning is completely eliminated with this version of FETI-DP and P-FETI-DP.
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Figure 6.6: Test case 1. Iterations required for solving the interface problem at each prop-
agation step for different mesh sizes, when using equations ([5.52)) or (5.53) to define the
corner DOF's.
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Figure 6.6: Test case 1. Iterations required for solving the interface problem at each prop-
agation step for different mesh sizes, when using equations (5.52)) or (5.53)) to define the
corner DOF's.
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6.2.5 Parallel scalability investigation

This section investigates the performance of the proposed DDM solvers when executed on
the HPC system described in section [6.1 A mesh with (72 x 36 x 72) elements is par-
titioned into (12 x 6 x 12) subdomains (864 in total). The number of subdomain DOFs,
global DOFs, boundary DOFs (size of P-FETI-DP’s interface problem), corner DOFs (size
of coarse problem) and Lagrange multipliers (size of FETI-DP’s interface problem) is listed
in table [6.3] Since new enriched DOF's are introduced at each crack propagation step, the
minimum, maximum and average values are shown. This problem is then solved by each
solver on a cluster computing environment, which consists of 1,2,4 or 6 computers, with
the specifications given in section [6.1] The 864 subdomains are evenly divided among the
available computers in each case, to ensure balanced loads. Furthermore, the communication
needed between the computers is minimized, by minimizing the boundary DOFs that belong
to subdomains allocated to different computers and maximizing the boundary DOF's that
belong to subdomains allocated to the same machine. The solution of the coarse problem of

FETI-DP and P-FETI-DP is performed according to section [5.5.2.2.3

Min Max | Average
Subdomain DOF's 1,026 1,773 1,074
Global DOFs | 601,050 | 635,400 616,115
Boundary DOFs | 226,690 | 238,816 232,434
Corner DOFs 7,446 | 19,572 13,190
Lagrange multipliers | 372,784 | 372,784 372,784

Table 6.3: Test case 1. Number of DOFs for the case of (72 x 36 x 72) elements and
(12 x 6 x 12) subdomains.

Fig. depicts the time required for the solution phase of the XFEM analysis by each of
the solvers. As previously, P-FETI-DP is faster than FETI-DP-D and FETI-DP-L and the
improved versions P-FETI-DP-I, FETI-DP-D-I, FETI-DP-L-I are even faster. However, as
more resources (computers) are added, the relative performance differences between the 6

t(1 computer)
solvers become less pronounced. The parallel speedup, namely speedup = is
t(n computers)

shown in Fig. [6.7b It can be observed that all solvers scale well, when more computers are
added to the system.

The main obstacle in the efficient implementation of these DDM solvers for HPC systems
is the amount of data that need to be transferred between different computers. As section
[b.5] elaborates, this communication has been minimized in the proposed P-FETI-DP solver
by replacing the map-reduce operations on vectors involving multiple subdomains y, =

Ns

Z(Lg)Tgb with the more distributed version y; = My g;, as explained in equation ([5.70)).
s=1
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Figure 6.7: Test case 1. Parallel scalability analysis. Constant elements (72 x 36 x 72) and
subdomains (12 x 6 x 12), variable number of computers. (a) Time (in seconds) required for
the solution phase (b) Parallel speedup.
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Similarly, 6¢ = M )\656 is used in the proposed FETI-DP solver, as explained in equation
(5.100). These map reduce operations occur:

e Once per iteration of the PCG used to solve the interface-problem of P-FETI-DP, when
the interface-problem matrix is multiplied with a vector corresponding to displacements
at boundary DOFs. See equation ([5.73)).

e Once per iteration of the PCG used to solve the interface-problem of P-FETI-DP,
when the preconditioner is multiplied with a residual vector corresponding to forces at
boundary DOFs. See equation (5.95)).

e Once per iteration of the PCG used to solve the interface-problem of FETI-DP, when
the interface-problem matrix is multiplied with a vector corresponding to Lagrange
multiplies. See equation ((5.111]).

e Once per iteration of the PCG used to solve the interface-problem of FETI-DP, when
the preconditioner is multiplied with a residual vector corresponding to displacement
quantities along the Lagrange multipliers. See equation ({5.109)).

In order to estimate the magnitude of these communications, Fig. presents the data
transferred in MB. Data transfers between subdomains that are assigned to the same com-
puter are denoted as “local” and have negligible cost in the current implementation, since
they are performed by accessing the shared memory of that computer. In contrast, “re-
mote” data transfers, namely transfers between subdomains assigned to different computers,
go through the network connecting these computers. Therefore, they are much slower and
can easily become a computational bottleneck if their size, frequency or distribution in the
network topology are not optimized. As illustrated in Fig. [6.8] the remote data transfers are
significantly lower than the local ones in this application. Additionally, FETI-DP requires
transferring less data than P-FETI-DP, which can be attributed to the removal of enriched
DOFs from the interface-problem of FETI-DP (see section [5.4.2)), but not from the interface
problem of P-FETI-DP.
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Figure 6.8: Test case 1. Data transfers per application of equation (5.70) (P-FETI-DP) or
(5.100) (FETI-DP). Local data transfers happen between subdomains on the same computer,
while remote data transfers between different computers.

6.2.6 Coarse problem solution strategies

Moreover, three different strategies for solving the coarse problem of P-FETI-DP and P-
FETI-DP-I are considered. The first strategy solves the global version of the coarse problem
on 1 computer using a direct method and broadcasts the result to all other computers, as
explained in section [5.5.2.2.2, This requires extra memory in 1 computer and data transfers
after the solution of the coarse problem. The second strategy solves the global version of
the coarse problem on all computers using a direct method, as explained in section [5.5.2.2.3
It requires extra memory from all computers, but leads to better load balancing. The third
strategy solves the distributed version of coarse problem on all computers using an iterative
method (PCG), as explained in section . This approach has minimum memory
requirements but is usually slower, since direct methods are better suited for multiple linear
systems with the same matrix but different RHS vectors.

Fig. depicts the total time required for the solution phase of P-FETI-DP-I when the
coarse problem is solved using PCG (the third strategy) with various convergence tolerances.
A mesh of (72 x 36 x 72) elements (616,115 global DOFs on average) and (12 x 6 x 12)
subdomains (13,190 corner DOFs on average) is used. For the same case, Fig. shows
the average iterations required by the interface-problem PCG to converge to a tolerance
of 1E — 7. It can be observed that relaxing the coarse-problem PCG tolerance, slightly
decreases the convergence rate of the interface-problem PCG, but the overall computing time
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Figure 6.9: Test case 1. Coarse problem of P-FETI-DP-I is solved with PCG. a) Solution
time for various tolerances of the coarse-problem PCG and b) iterations of the interface-
problem PCG.
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is significantly improved. However, increasing the coarse-problem PCG tolerance beyond
1E — 1 will cause the interface-problem PCG to not converge at all.
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Figure 6.10: Test case 1. Solution time of P-FETI-DP with different coarse problem solution
strategies.

Finally, the performances of P-FETI-DP and P-FETI-DP-I are compared, when using
each of the three coarse-problem solution strategies. A subdomain-element size ratio of
H/h =5 and some of the meshes of table are used. The third coarse-problem solution
strategy, a tolerance of 1E — 1 is used for the coarse-problem PCG, since it was shown to be
optimal for this problem in Fig. [6.9a] The total time required for the solution phase of the
XFEM analysis is illustrated in Fig. It can be observed that the difference between the
first two strategies, which use a direct method, is very small, while the third strategy, which
uses an iterative method, is considerably slower, which counter-balances the advantage of
reduced memory requirements.

6.3 Test case 2: 4-point bending beam

6.3.1 Problem description

The second test case involves a crack propagating in a beam supported at three points
and loaded at a fourth point, as illustrated in figure [6.11l The material properties are
E = 3-10" N/mm? v = 0.3 and the applied load is F' = 1000 N. The dimensions of
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the beam, the placement of supports and load and the initial configuration of the crack
surface are shown in figure [6.11] Similarly to the first test case, the crack propagates in a
quasi-static manner with a constant increment da = 8 mm, until it reaches the boundary
of the domain and collapse occurs after 13 propagation steps. At each propagation step,
XFEM analysis is performed using a uniform mesh of hexahedral elements with 8 nodes.
The whole quasi-static crack propagation is repeated for various mesh densities and for each
solver. The resulting crack path after 13 propagation steps is depicted in figure [6.12a] while
the nodes enriched with Heaviside and crack tip functions can be observed in figure [6.12b]
The number of DOF's varies per propagation step, since new enriched DOFs are introduced

as the crack propagates. Therefore, the initial and final number of DOF's for each mesh are
listed in table 6.4]

F

Figure 6.11: Test case 2. 4-point bending beam test case. Geometry, boundary conditions
and initial configuration of the crack surface (dimensions in mm).
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Figure 6.12: Test case 2. (a) Crack path and (b) enriched nodes, at the last propagation
step. The crack starts propagating from x = 337.5 at step = 0.

Mesh DOFs at first step | DOF's at last step | Average

45 x 10 x 5 9,492 9,816 9,666

90 x 20 x 10 64,130 65,384 64,775
135 x 30 x 15 204,336 206,880 | 205,617
180 x 40 x 20 470,820 475,419 | 473,093
225 x 50 x 25 903,812 910,832 907,286
270 x 60 x 30 1,537,228 1,548,295 | 1,543,366
315 x 70 x 35 2,431,872 2,444,940 | 2,438,435

Table 6.4: Test case 2. Number of DOFs per mesh.
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6.3.2 Comparison of various solvers

The total time required by each solver for the solution phases of the whole analysis can
be seen in figure and the corresponding speedup (speedup = t (Direct-S) / t (solver))
of the solvers with respect to the default direct solver (Direct-S) in figure [6.13b] In both
figures, the x-axis corresponds to the initial number of DOFs for the meshes listed in table
6.4, The supernodal Cholesky solver can be used for meshes up to 4.73-10° DOFs only, while
incremental Cholesky runs out of memory even sooner, at approximately 2.5-10% DOFs. As
discussed in the previous test case, the presence of enriched DOFs, which are active in a
few crack propagation steps and inactive in the rest, deteriorates the effectiveness of the
AMD reordering, thus increasing the bandwidth of the stiffness matrix and the memory
requirements in the incremental Cholesky solver. However, contrary to the previous test
case, incremental Cholesky offers a performance improvement over the default supernodal
Cholesky solver, which increases as the mesh is refined, similarly to the results in 2D problems
reported in Pais et al. (2012).

Nevertheless, the improvement of FETI-DP and P-FETI-DP solvers is superior, especially
for larger problems. In the finest mesh where comparison with the Direct-I solver is possible,
the speedups are 66 (FETI-DP-D), 52 (FETI-DP-L), 79 (P-FETI-DP), 117 (FETI-DP-D-
I), 83 (FETI-DP-L-I) and 171 (P-FETI-DP-I), compared to 3.5 (Direct-I). As the number
of DOF's increases, the speedup over the supernodal Cholesky becomes even greater. The
maximum speedups that are recorded, due to the memory limitations of Direct-S, are 144
(FETI-DP-D), 98 (FETI-DP-L), 184 (P-FETI-DP), 249 (FETI-DP-D-I), 145 (FETI-DP-L-
I) and 377 (P-FETI-DP-I). The maximum reported speedup of PCG-D is 20 at the finest
mesh investigated, which is 21 times slower than P-FETI-DP-I. The memory requirements
of FETI-DP, P-FETI-DP and PCG solvers are also far lower than the supernodal Cholesky
solver, and can solve problems with more than 2.5 - 10° DOFs, even with one processor.
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Figure 6.13: Test case 2. Performance comparison of the solvers for the 4-point bending
beam: (a) Computing time (in seconds). (b) Speedup of the solvers relative to supernodal
Cholesky solver.
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6.3.3 Comparison of reanalysis features

Next, the effectiveness of the reanalysis techniques of the proposed DDM solvers and the
incremental Cholesky solver of Pais et al. (2012)) are compared. By examining figure m
and figure it can be observed that the crack front is more extensive in the first test
case, resulting in an increased number of crack tip enriched DOFs. Therefore, between
two successive crack propagation steps, substantially more DOFs are modified in the first
test case. Figure [6.14] illustrates the percentage of total DOFs that are modified between
two crack propagation steps, because enriched DOFs are added or removed. The x-axis
corresponds to the initial number of total DOF's for the meshes listed in table[6.4, When the
incremental Cholesky solver updates the factorized stiffness matrix, the number of rows that
need to be add or deleted, because they correspond to these modified DOF's, is higher in the
first test case than in the second one. This results in worse performance than factorizing the
whole matrix, while in the second test case, incremental Cholesky outperforms the standard
supernodal Cholesky solver, due to a very low percentage of modified DOFs.
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Figure 6.14: Percentage of enriched DOFs, newly added or deleted between propagation
steps, to total DOFs.

In contrast, the effectiveness of reusing data from previous propagation steps in the pro-
posed FETI-DP and P-FETI-DP solvers does not depend on a low percentage of modified
DOFs. In both numberical examples, the FETI-DP-D-I, FETI-DP-L-I and P-FETI-DP-I
versions are roughly 2 times faster than FETI-DP-D, FETI-DP-L and P-FETI-DP, respec-
tively. The reanalysis technique involves identifying and reusing previous subdomain-level
matrices, thus avoiding repeated operations, as well as reducing the iterations needed for
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the interface problem, by using its solution during the previous propagation step to start
the iterations with a better initial guess. These operations have no additional cost as op-
posed to the row-add and row-delete operations of the incremental Cholesky solver, which
end up being more time consuming than factorizing the whole matrix in the test case 1.
Additionally, in the incremental Cholesky solver, the AMD reordering algorithm is applied
only at the first propagation step and needs to account for all possibly enriched DOF's, thus
deteriorating the quality of the DOF ordering and increasing the stiffness matrix bandwidth.
On the other hand, in the proposed solvers, AMD is applied at each propagation step and
can optimize the DOF ordering for each step independently from the previous ones.

6.3.4 Ill-conditioning caused by high Poisson ratio

In the following, the sensitivity of the proposed solvers to the Poisson ratio v is investigated.
Materials with increased Poisson ratio result in very ill-conditioned linear systems. While
this does not affect dramatically the performance of direct solvers, apart from their accuracy
in extreme cases, iterative and domain decomposition solvers exhibit substantial sensitivity
in their convergence rate. Figure[6.15]illustrates the performance of PCG-D and the proposed
domain decomposition solvers for various values of the Poisson ratio v. The (225 x 50 x 25)
mesh was used with 903,812 <+ 910,832 DOFs. In figure the number of iterations are
plotted for each case. It is evident that the proposed FETI-DP and especially P-FETI-DP
solvers are less sensitive to the ellipticity of problem at hand than the PCG solver. For
the highest Poisson ratio v = 0.499, the P-FETI-DP-I solver is up to 73 times faster than
PCG-D and 1.8 times faster then FETI-DP-D-I.
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Figure 6.15: Test case 2. Convergence rate vs Poisson ratio. (a) Required iterations. (b)
Time (in seconds) required for the solution phase of the analysis.
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6.3.5 FETI-DP vs P-FETI-DP

Finally, the proposed DDM solvers are compared to each other in more detail, with re-
spect to their convergence rate and overall computing time. In all examples, FETI-DP-
L is significantly less efficient than FETI-DP-D and P-FETI-DP. The reduced operations
for the lumped preconditioner described in equation cannot counter-balance the in-
crease in iterations caused by ignoring the stiffness of internal DOFs K. Furthermore,
Dirichlet-preconditioned FETI-DP is outperformed by P-FETI-DP in all tests performed.
Although the amount of work per iteration is the same, P-FETI-DP always requires less it-
erations. Figures , show the speedup of P-FETI-DP with respect to Dirichlet-
preconditioned FETI-DP, namely speedup = t(FETI-DP-D) / t(P-FETI-DP). Figure
clarifies that P-FETI-DP is up to 2.4 times faster than Dirichlet-preconditioned
FETI-DP and this ratio tends to progressively increase as the mesh is refined. The same
trend is observed in figure , where P-FETI-DP becomes progressively more efficient
than Dirichlet-preconditioned FETI-DP for higher values of the Poisson ratio.
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Figure 6.16: Test case 2. Speedup of P-FETI-DP solver over Dirichlet-preconditioned FETI-
DP solver. (a) For various meshes and v = 0.3. (b) For mesh 225 x 50 x 25 and various
poisson ratios.
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6.3.6 Parallel scalability investigation

This section investigates the performance of the proposed DDM solvers when executed on
the HPC system described in section [6.1] A mesh with (252 x 56 x 28) elements is par-
titioned into (36 x 8 x 4) subdomains (1152 in total). The number of subdomain DOFs,
global DOFs, boundary DOFs (size of P-FETI-DP’s interface problem), corner DOFs (size
of coarse problem) and Lagrange multipliers (size of FETI-DP’s interface problem) is listed
in table [6.3] Since new enriched DOF's are introduced at each crack propagation step, the
minimum, maximum and average values are shown. This problem is then solved by each
solver on a cluster computing environment, which consists of 1,2,4 or 6 computers, with
the specifications given in section [6.1} The 1152 subdomains are evenly divided among the
available computers in each case, to ensure balanced loads. Furthermore, the communication
needed between the computers is minimized, by minimizing the boundary DOFs that belong
to subdomains allocated to different computers and maximizing the boundary DOF's that
belong to subdomains allocated to the same machine. The solution of the coarse problem of

FETI-DP and P-FETI-DP is performed according to section [5.5.2.2.3

Min Max | Average
Subdomain DOF's 1,512 2,424 1,550
Global DOFs | 1,260,572 | 1,269,011 | 1,264,822
Boundary DOF's 407,731 410,488 409,080
Corner DOF's 7,836 10,593 9,185
Lagrange multipliers 631,765 631,765 631,765

Table 6.5: Test case 2. Number of DOFs for the case of (252 x 56 x 28) elements and
(36 x 8 x 4) subdomains.

Fig. depicts the time required for the solution phase of the XFEM analysis by each
of the solvers. As previously, P-FETI-DP is faster than FETI-DP-D and FETI-DP-L and
the improved versions P-FETI-DP-1, FETI-DP-D-I, FETI-DP-L-I are even faster. However,
as more resources (computers) are added, the relative performance differences between the

t(1 computers)

6 solvers become less pronounced. The parallel speedup, namely speedup =
t(n computers)

is shown in Fig. [6.17b] It can be observed that all solvers scale well, when more computers
are added to the system.

In order to quantify the communication between neighboring subdomains and their cor-
responding computers, Fig. presents the data transferred in MB. It can be observed
that remote data transfers (between subdomains of different computers) are significantly
lower than local data transfers (between subdomains of the same computer) in this appli-
cation. Additionally, FETI-DP requires transferring less data than P-FETI-DP, which can
be attributed to the removal of enriched DOF's from the interface-problem of FETI-DP (see
section [5.4.2)), but not from the interface problem of P-FETI-DP.
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Figure 6.17: Test case 2. Parallel scalability analysis. Constant elements (252 x 56 x 28)
and subdomains (36 x 8 x 4), variable number of computers. (a) Time (in seconds) required
for the solution phase (b) Parallel speedup.
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Figure 6.18: Test case 2. Data transfers per application of equation (5.70) (P-FETI-DP) or
(5.100) (FETI-DP). Local data transfers happen between subdomains on the same computer,
while remote data transfers between different computers.

6.3.7 Coarse problem solution strategies

Moreover, the solution of the coarse problem of P-FETI-DP and P-FETI-DP-I is investigated,
when using the three different strategies for of sections [5.5.2.2.2, [5.5.2.2.3 and [5.5.2.2.1]
Fig. depicts the total time required for the solution phase of P-FETI-DP-I when the
coarse problem is solved using PCG (the third strategy) with various convergence tolerances.
A mesh of (216 x 48 x 24) elements (805,162 global DOF's on average) and (36 x 8 x 4)
subdomains (8,244 corner DOFs on average) is used. For the same case, Fig. shows
the average iterations required by the interface-problem PCG to converge to a tolerance
of 1E — 7. It can be observed that relaxing the coarse-problem PCG tolerance, slightly
decreases the convergence rate of the interface-problem PCG, but the overall computing time
is significantly improved. However, increasing the coarse-problem PCG tolerance beyond
1E — 2 will cause the interface-problem PCG to not converge at all.

Finally, the performances of P-FETI-DP and P-FETI-DP-I are compared, when using
each of the three coarse-problem solution strategies. A subdomain-element size ratio of
H/h =5 and some of the meshes of table are used. The third coarse-problem solution
strategy, a tolerance of 1E — 2 is used for the coarse-problem PCG, since it was shown to be
optimal for this problem in Fig. [6.19b] The total time required for the solution phase of the
XFEM analysis is illustrated in Fig. It can be observed that the difference between the
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Figure 6.19: Test case 2. Coarse problem of P-FETI-DP-I is solved with PCG. a) Solution
time for various tolerances of the coarse-problem PCG and b) iterations of the interface-
problem PCG.
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Figure 6.20: Test case 2. Solution time of P-FETI-DP with different coarse problem solution
strategies.

first two strategies, which use a direct method, is very small, while the third strategy, which
uses an iterative method, is considerably slower, which counter-balances the advantage of
reduced memory requirements.

6.4 Conclusions

In the 3D examples investigated, both FETI-DP and P-FETI-DP are faster than optimally
implemented standard iterative (73 times faster) and direct solvers (833 times faster). They
are also much more insensitive to ill-conditioned problems than iterative solvers. Comparison
with the incremental Cholesky solver developed in Pais et al., specifically for XFEM
crack propagation, proves that the proposed methods are significantly faster, require less
memory and use a more robust reanalysis approach. Between the two proposed solvers, P-
FETI-DP is overall faster than FETI-DP, but both exhibit numerical scalability with respect
to the number of subdomains and the problem size. Their efficiency is further improved,
when they are executed in high performance computing systems, such as computer clusters.
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Chapter 7

Summary - Innovation of thesis

This thesis presents a two-scale numerical framework for conductive heat transfer in nano-
composites with complex geometries and thermal resistance along the interfaces between
different materials. This numerical model is based the extended finite element method
(XFEM), which enriches the polynomial approximation space of FEM with discontinuous
functions, in order to capture the jump in the temperature field across material interfaces.
Thus, new basis functions, enriched with the Heaviside function, and corresponding enriched
freedom degrees are added to the approximation space. In the proposed XFEM formulation,
novel junction functions are also introduced for the enrichment of nodes in finite elements,
where more than two material interfaces coincide. The interface thermal resistance is taken
into account through its effect on the the temperature jump across material interfaces, which
is calculated using the Heaviside and junction enrichments.

This XFEM formulation is then coupled with the level set method (LSM), in order to
represent the geometry of the material interfaces. Specifically, a double-mesh LSM approach
has been developed, which uses two different meshes for XFEM and LSM operations. The
XFEM mesh is fine enough to achieve the desired accuracy for the analysis, but coarse
enough to not redundantly increase the computational effort. The LSM mesh is much finer,
in order to capture the complex geometry of the interfaces between the matrix material and
the inclusions. Yet, the fine LSM mesh derives from the coarser XFEM mesh at a subset of
its nodes, so that they geometric operations on the coarse mesh needed by XFEM can be
performed on the fine mesh instead.

The combined XFEM-LSM model is used for simulating heat transfer in composite ma-
terials, consisting of carbon nanotubes (CNT) embedded into a polymer matrix. Using
computational homogenization, the macroscopic effective conductivity of the material was
estimated using reference volume elements (RVE) in the micro-scale. The thermal resistance
of the interfaces between CNTs and polymers is generally unknown and was inferred by
calibrating the developed model using experimentally measured values of the macroscopic
conductivity for various material configurations. Apart from polymer-CNT nano-composites,
conductive heat transfer in materials with polycrystalline structure was also modeled and
validated against results from the literature.
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Furthermore, the solution of algebraic equations resulting from XFEM has been ad-
dressed. Specifically, solvers based on the domain decomposition methods (DDM) FETI-DP
and P-FETI-DP have been developed for modeling crack propagation problems with XFEM.
In these DDM solvers, the domain is partitioned into multiple subdomains, which can be
processed in parallel, in order to reduce the computational effort and memory requirements.
However, mechanisms are developed in subdomains that are completely intersected by cracks,
which causes their stiffness matrices to become singular. In this thesis, the aforementioned
mechanisms were attributed to the discontinuous enrichment functions used by XFEM to
capture the displacement field jump across the crack, as well as their corresponding enriched
freedom degrees. The proposed solvers restore the invertibility of subdomain matrices, by
transferring a subset of these enriched freedom degrees to the coarse problem of FETI-DP
and P-FETI-DP.

Another difficulty posed by XFEM is the ill-conditioning of the stiffness matrix, due
to enrichment functions that model the singular stress field around the crack front. As a
result, iterative solution methods, including those employed by FETI-DP and P-FETI-DP
internally, are inefficient for the resulting linear systems, since their converge rate is low.
In this thesis, the XFEM-related ill-conditioning has been completely eliminated by fur-
ther modifying the coarse problem of the proposed DDM solvers. Additionally, optimized
versions of FETI-DP and P-FETI-DP were developed for the case of brittle crack propaga-
tion. These solvers reuse the solution of the interface problem, the stiffness matrices and
Schur complements during one propagation step, in order to reduce the solver iterations and
computational effort required for the next step.

Subsequently, an implementation of the proposed FETI-DP and P-FETI-DP solvers was
developed for high performance computing systems, specifically computer clusters. Com-
puter clusters are distributed memory environments, consisting of readily available comput-
ers linked via a local area network (LAN) to produce a low-cost, yet powerful system. To
that end, the original equations of both solvers were replaced with equivalent ones, which
avoid global-level operations in favor of exchanges between neighboring subdomains. These
enable an implementation with more efficient communication operations, since the amount
of data transferred between computers is reduced and distributed more evenly. Finally, the
performance of the proposed DDM solvers was investigated in 3D crack propagation prob-
lems, where both FETI-DP and P-FETI-DP were found to be significantly more efficient
than well-known direct and iterative solvers, as well as a solver that was developed specifi-
cally for XFEM crack propagation problems. Moreover, they scale well with respect to the
number of subdomains and the problem size.
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Below are some different avenues for future work in the topics addressed in this thesis:

e The XFEM-LSM model of chapter [2| can be extended to different types of differential
equations, such as elasticity and electrical conduction, as well as coupled problems,
such as thermomechanical coupling. In fact, the extension to pure elasticity problems
has already been successful after the completion of this thesis.

e Using the numerical model of chapter [2] in the context of structural topology opti-
mization. The proposed XFEM-LSM approach is an attractive choice for topology
optimization, since it operates on fixed meshes, while the boundary between the mate-
rial phases is smooth and can be moved according to the optimization rules. Various
interface behaviors can be considered, such as cohesive, namely the primarily field is
discontinuous, as in chapter [2| or coherent, namely the first derivative field is discon-
tinuous.

e Extension of the DDM solvers of chapter 5[ to more complicated fracture problems than
brittle crack propagation under Linear Elastic Fracture Mechanics. Dynamic crack
propagation, cohesive cracks, elasto-plastic and ductile materials, which introduce ma-
terial and geometric non-linearities, are of particular interest. Moreover, problems
with heterogeneous materials and multiple interacting or branching cracks should be
considered. In the cases above, new problem-specific enrichment functions would be
introduced in the XFEM approximation. The proposed coarse problem of section
needs to take into account the corresponding enriched DOF's, in order to avoid singular
matrices and ill-conditioning. Furthermore, the optimizations of section may re-
quire significant alterations or not be possible at all, outside brittle crack propagation.

e Improved numerical scalability of the proposed DDM solvers. Specifically, the combi-
nation of FETI-DP and P-FETI-DP with artificial intelligence and multigrid methods
is already under investigation, in order to handle any parts of the algorithms that are
not fully scalable yet.

e Optimized parallel implementation and increase of the parallel speedup of the DDM
solvers. The main obstacle consists of time wasted during data transfers between sub-
domains that belong to different computers. To this end, multiple network topologies
(e.g. cartesian) should be explored for the local area network connecting the individ-
ual machines of the computer cluster. In addition, the utilization of the MPI library
can always become more efficient, e.g. by using batch data transfers more frequently.
Finally, the proposed DDM solvers should be made as easy to use as possible, by
employing adaptive load balancing techniques.
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Appendix A

Element types

A.1 Isoparametric mapping

In this dissertation, isoparametric elements are employed to discretize the domain and the
interfaces between subdomains, such as material interfaces. In the isoparametric formulation,
apart from the global coordinate system (z, y, z), a secondary one is defined: the natural
coordinate system (&, m, (), which is also called element-local coordinate system. Each
element type has a specific position is the natural system. Mapping a point from the natural
to the global system is done using the Lagrange polynomial shape functions, which are
defined as functions of the natural coordinates (£, n, ():

Nne

where n,, is the number of nodes of the element and @) = (zx, Yk, zx) are the coordinates
of node k in the global system. The Jacobian matrix of this isoparametric mapping from
the natural to the global system is in 2D problems
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and in 3D problems
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The derivatives of a vector function f (x) = f ( (£))
coordinates, as functions of the natural coordinates, can be calculated using the chain rule,
which in 2D problems becomes

and in 3D problems
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(A.3)

f (&) with respect to the global

o5 on of (&)
dr Oz o€
o6 on| | 0f (§)
dy Oy on
on oc| |of (&)
or Oz o€
on oC| | Of(§)
dy Oy on
an ¢ of (&)
0z 92 | a¢ |

A 1D element with 2 nodes is depicted in Fig. Its shape functions are

N (€) = 0.5(1 - €)
N, () = 0.5(1 +€)

(A4)

(A.5)

(A.6)
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=
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X1 X2 X -1 +1 E

Figure A.1: Isoparametric 1D element with 2 nodes.

Node | ¢ n
P -1 ] -1
P +1] -1
Py | +1 ] +1
Py -1 | +1

Table A.1: Nodal coordinates of a quadrilateral element with 4 nodes.

A quadrilateral element with 4 nodes is depicted in Fig.[A.2] The natural coordinates of
its nodes are given in table Its shape functions are

Ny (€) = 0.25(1 = &)(1 —n)
Ny (€) = 0.25(1+&)(1 - 1)
Ny (&) = 0.25(1+&)(1 +n) (A7)
N, (&) =0.25(1 — €)(1+17)
4 3 n
4 3
y I/_\ +1
1 1 o] ¢
’ o 2
X

Figure A.2: Isoparametric quadrilateral element with 4 nodes.
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A triangular element with 3 nodes is depicted in Fig. [A.2] Its shape functions are

Ni(§)=1-¢—n
N> (§) =¢ (A.8)
N3 (&) =n
and their derivatives are
ON(E) | ONE _
e on
ON: ON:
28 M), (A.9)
o0& an
ON: ON:
(O N®
o0& on
which are constant, therefore the Jacobian matrix of equation (A.2)) is also constant

3. ON 3. ON,
5~ N (f)xk 5~ N (€>yk
J =J (5) — k=1 85 k=1 85
NG NG i ONy (€) i ONy (€)
—1 On g = On :
| “lei A lae 4+ 0x3 —lyn+ 1y +0ys | | 22— 21 Y2 — W
—1x1 + 029 + 125 —1y; + Oys + 1ys T3 —T1 Y3 — Y1

(A.10)

which is a constant. Actually the determinant of Jyg is related to the area A;,; of the
triangular element (1,9, x3) in the global cartesian system

det (Jye) = det (JT.) = det [ | P27 01 xg_xl])
et (Ing) e(NG) © ([y2—y1 Ys —

= [[(x2 — 1) X (23 — 1) || = 2 Aprs

(A.11)

since the norm of the cross product (€3 — 1) X (€3 — @) is the area of a parallelogram that
shares two sides s — @1, T3 — x; with the triangle.

A hexahedral element with 8 nodes is depicted in Fig. [A.4] The natural coordinates of
its nodes are given in table Its shape functions are

Ny (€) = 0125(1 — €)1 — )(1— Q)
Ny (€) = 0125(1 4 €)(1 —n)(1— )
Ny (€) = 0125(1 + £)(1 + m)(1 - O
Ny (€) = 0125(1— £)(1+ )1 — )
Ny (€) = 0.125(1 — €)1 — )(1 + ) (A-12)
Ny () = 0.125(1 + )(1 — )(1+ )
Ny (€) = 0125(1 + €)1+ n)(1+ )
Na(€) = 0.125(1 — £)(1 4 n)(1 + )
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YA N

N
N\ /
4 +1
g 3

Figure A.3: Isoparametric triangular element with 3 nodes.

Node | ¢ n ¢
P 1] 1] -1
P | +1] 1] -1
Py | +1 | +1] -1
P 1] +1] -1
P | -1 ] -1]+1
FPs | +1] -1 ]+1
P, [ 4+1]+1]+1
Py | 1] +1]+41

Table A.2: Nodal coordinates of a hexahedral element with 8 nodes.

2 ¢

6 ? 8 5 8(-1,41,+1)
Z -

. I/—\ : A(+1,41,+1)
6 : 7
2 | n
3 ekl Bl 4(-1,4+1,-1)
y (-1,-1,-1) .
2/ 3(+1,+1,-1)

Figure A.4: Isoparametric hexahedral element with 8 nodes.

A tetrahedral element with 4 nodes is depicted in Fig. Its shape functions are
N1(€)=1—§—77—C

Nz (&) =

N3 (&

Ny (€

(A.13)

§
)=n
)=¢
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and their derivatives are

Ine = JIng (&) =
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since the absolute value of the triple
a parallelepiped that shares three sides @y — @1, @3

= det (J{g) = det
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(A.15)

which is a constant. Actually the determinant of Jy¢ is related to the volume Vi of the
tetrahedral element (a1, @2, 3, x4)) in the global cartesian system

Tog —T1 T3 —T1 T4 — 1
Yo—Y1 Y3—UY1 Ys— MU
g — 21 23— 21 R4— 21 <A'16)

(@2 —21) X (T3 — 21) )| = 6 Vit

scalar product (xg — 1) X (€3 — o) is the volume of
— &y, T4 — @1 with the tetrahedron.
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Z

Figure A.5: Isoparametric tetrahedral element with 4 nodes.

A.2 Integration

A main advantage of isoparametric elements is the ease of integration. The following equa-
tions will focus on scalar functions, but integrating vector and matrix functions follows the
same logic. Any integral of a function f (x) = f ( (§)) over an element €., can be converted
to the natural system of the element:

fl@)d= [ f(z(€) det (e (€))dedny in 2D
e . (A.17)
/ f (@) d0 = / £ (@ (€)) det (T (€)) dédnd( in 3D
Qe Qe

where €0, is the surface (in 2D problems) or space (in 3D problems) occupied by the isopara-
metric element in its natural coordinate system and det (Jy¢ (€)) is the determinant of the
Jacobian matrix of the isoparametric mapping. These integrals can be calculated by us-
ing numerical integration and specifically, Gaussian-Legendre quadrature, which guarantees
exact integration of polynomials with the minimum number of required integration points:

/Q f@)a2 =Y (&) det (Tng (&) w, (A18)

where &, are the coordinates in the natural system of certain integration points, where the
function is evaluated. Each of the ngp integration points corresponds to a weight coefficient
wy. In order to exactly integrate polynomials of higher order, Gauss-Legendre needs to
increase the number of integration points. The coordinates and weights for integrating over
the various elements used in this dissertation are listed in tables [A.3] - [A.7



APPENDIX A. ELEMENT TYPES

Points

§

weight

1

0.0

2.0

2

-0.5773502691896257
+0.5773502691896257

1.0
1.0

-0.7745966692414834
0.0
+0.7745966692414834

0.5555555555555556
0.8388383833838389
0.5555555555555556

-0.8611363115940526
-0.3399810435848563
+0.3399810435848563
+0.8611363115940526

0.3478548451374538
0.6521451548625461
0.6521451548625461
0.3478548451374538

Table A.3: Gauss-Legendre quadrature for 1D elements.

Points & n weight
1 0.0 0.0 2.0
-0.5773502691896257 | -0.5773502691896257 1.0
4 -0.5773502691896257 | +0.5773502691896257 1.0
+0.5773502691896257 | -0.5773502691896257 1.0
+0.5773502691896257 | +0.5773502691896257 1.0
-0.7745966692414834 | -0.7745966692414834 | 0.308641975308642
-0.7745966692414834 0.0 0.4938271604938272
-0.7745966692414834 | 40.7745966692414834 | 0.308641975308642
0.0 -0.7745966692414834 | 0.4938271604938272
9 0.0 0.0 0.7901234567901235
0.0 +0.7745966692414834 | 0.4938271604938272
+0.7745966692414834 | -0.7745966692414834 | 0.30864197530864
+0.7745966692414834 0.0 0.4938271604938272
+0.7745966692414834 | +0.7745966692414834 | 0.30864197530864

Table A.4: Gauss-Legendre quadrature for quadrilateral elements.
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Points & n weight
1 0.3333333333333333 | 0.3333333333333333 0.5
0.6666666666666667 | 0.1666666666666667 | 0.1666666666666667
3 0.1666666666666667 | 0.6666666666666667 | 0.1666666666666667
0.1666666666666667 | 0.1666666666666667 | 0.1666666666666667
0.3333333333333333 | 0.3333333333333333 -0.28125
4 0.2 0.2 0.2604166666666667
0.2 0.6 0.2604166666666667
0.6 0.2 0.2604166666666667
0.44594849091597 0.44594849091597 | 0.111690794839005
0.44594849091597 0.10810301816807 | 0.111690794839005
6 0.10810301816807 0.44594849091597 | 0.111690794839005
0.09157621350977 0.09157621350977 | 0.054975871827660
0.09157621350977 0.81684757298046 | 0.054975871827660
0.81684757298046 0.09157621350977 | 0.054975871827660

Table A.5: Gauss-Legendre quadrature for triangular elements.
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Points 13 n ¢ weight
1 0.0 0.0 0.0 2.0
-0.5773502691896257 | -0.5773502691896257 | -0.5773502691896257 1.0
-0.5773502691896257 | -0.5773502691896257 | 4-0.5773502691896257 1.0
-0.5773502691896257 | 4+0.5773502691896257 | -0.5773502691896257 1.0
3 -0.5773502691896257 | 40.5773502691896257 | 4-0.5773502691896257 1.0
+0.5773502691896257 | -0.5773502691896257 | -0.5773502691896257 1.0
+0.5773502691896257 | -0.5773502691896257 | 4-0.5773502691896257 1.0
+0.5773502691896257 | +0.5773502691896257 | -0.5773502691896257 1.0
+0.5773502691896257 | +0.5773502691896257 | 4-0.5773502691896257 1.0

27

-0.7745966692414834
-0.7745966692414834
-0.7745966692414834
-0.7745966692414834
-0.7745966692414834
-0.7745966692414834
-0.7745966692414834
-0.7745966692414834
-0.7745966692414834

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0
+0.7745966692414834
+0.7745966692414834
+0.7745966692414834
+0.7745966692414834
+0.7745966692414834
+0.7745966692414834
+0.7745966692414834
+0.7745966692414834
+0.7745966692414834

-0.7745966692414834
-0.7745966692414834
-0.7745966692414834

0.0

0.0

0.0
+0.7745966692414834
+0.7745966692414834
+0.7745966692414834
-0.7745966692414834
-0.7745966692414834
-0.7745966692414834

0.0

0.0

0.0
+0.7745966692414834
+0.7745966692414834
+0.7745966692414834
-0.7745966692414834
-0.7745966692414834
-0.7745966692414834

0.0

0.0

0.0
+0.7745966692414834
+0.7745966692414834
+0.7745966692414834

-0.7745966692414834
0.0
+0.7745966692414834
-0.7745966692414834
0.0
+0.7745966692414834
-0.7745966692414834
0.0
+0.7745966692414834
-0.7745966692414834
0.0
+0.7745966692414834
-0.7745966692414834
0.0
+0.7745966692414834
-0.7745966692414834
0.0
+0.7745966692414834
-0.7745966692414834
0.0
+0.7745966692414834
-0.7745966692414834
0.0
+0.7745966692414834
-0.7745966692414834
0.0
+0.7745966692414834

0.1714677640603567
0.2743484224965702
0.1714677640603567
0.2743484224965702
0.4389574759945131
0.2743484224965702
0.1714677640603567
0.2743484224965702
0.1714677640603567
0.2743484224965702
0.4389574759945131
0.2743484224965702
0.4389574759945131
0.7023319615912209
0.4389574759945131
0.2743484224965702
0.4389574759945131
0.2743484224965702
0.1714677640603567
0.2743484224965702
0.1714677640603567
0.2743484224965702
0.4389574759945131
0.2743484224965702
0.1714677640603567
0.2743484224965702
0.1714677640603567

Table A.6: Gauss-Legendre quadrature for hexahedral elements.
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Points

£

n

¢

weight

1

0.25

0.25

0.25

0.166666666666667

0.138196601125011
0.138196601125011
0.138196601125011
0.585410196624969

0.138196601125011
0.138196601125011
0.585410196624969
0.138196601125011

0.138196601125011
0.585410196624969
0.138196601125011
0.138196601125011

0.041666666666667
0.041666666666667
0.041666666666667
0.041666666666667

0.250000000000000
0.166666666666667
0.166666666666667
0.166666666666667
0.500000000000000

0.250000000000000
0.166666666666667
0.166666666666667
0.500000000000000
0.166666666666667

0.250000000000000
0.166666666666667
0.500000000000000
0.166666666666667
0.166666666666667

-0.133333333333333
0.075000000000000
0.075000000000000
0.075000000000000
0.075000000000000

15

0.250000000000000
0.319793627829630
0.319793627829630
0.319793627829630
0.040619116511110
0.091971078052723
0.091971078052723
0.091971078052723
0.724086765841831
0.056350832689629
0.056350832689629
0.443649167310371
0.056350832689629
0.443649167310371
0.443649167310371

0.250000000000000
0.319793627829630
0.319793627829630
0.040619116511110
0.319793627829630
0.091971078052723
0.091971078052723
0.724086765841831
0.091971078052723
0.056350832689629
0.443649167310371
0.056350832689629
0.443649167310371
0.056350832689629
0.443649167310371

0.250000000000000
0.319793627829630
0.040619116511110
0.319793627829630
0.319793627829630
0.091971078052723
0.724086765841831
0.091971078052723
0.091971078052723
0.443649167310371
0.056350832689629
0.056350832689629
0.443649167310371
0.443649167310371
0.056350832689629

0.019753086419753
0.011511367871045
0.011511367871045
0.011511367871045
0.011511367871045
0.011989513963170
0.011989513963170
0.011989513963170
0.011989513963170
0.008818342151675
0.008818342151675
0.008818342151675
0.008818342151675
0.008818342151675
0.008818342151675

Table A.7: Gauss-Legendre quadrature for tetrahedral elements.
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