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Advanced high performance computing methods for the solution of
crack propagation and material design problems using the extended

Finite Element method (XFEM)

Abstract

The need for advanced high-performance materials in the industry led to the development
of various innovative solutions over the years, designed to possess application-specific proper-
ties, such as improved thermal conductivity. To model heat transfer in composite materials,
their complex micro-structure, as well as the thermal resistance at the interfaces between
materials must be taken into account. The standard finite element treatment requires very
fine meshes to conform to the complex geometry of these interfaces. This thesis proposes an
eXtended Finite Element Method (XFEM) formulation that captures the temperature jump
by enriching the polynomial approximation around the material interfaces with appropri-
ate discontinuous functions. Specifically, a new XFEM enrichment scheme is developed to
address the issue of multiple-phase junctions, namely areas where multiple interfaces with
different resistance properties intersect. In addition, a double-mesh LSM technique is devel-
oped for describing the geometry of material interfaces. A very fine mesh is employed by
a Level Set Method (LSM) to represent complex interface geometries with high accuracy,
whereas XFEM uses a mesh that does not conform to the material interfaces, but is instead
a coarser version of the LSM mesh, to reduce the computational cost of the analysis. The
combined numerical model is first validated against existing results from the literature on
polycrystalline materials. Then, it is applied for heat conduction analysis of polymers re-
inforced with carbon-nanotubes. The unknown thermal resistance between these materials
is inferred by calibrating the numerically predicted effective conductivity to corresponding
experimental measurements. The proposed XFEM model can be straightforwardly extended
to other similar problem types, such us elasticity or electrical conduction.

XFEM is also an attractive choice for modeling crack propagation, by enriching the poly-
nomial displacement field of FEM with specialized non-smooth functions, without the need
of remeshing in the vicinity of the crack at each propagation step. However, this enrichment
causes the stiffness matrix to become strongly ill-conditioned, rendering the convergence of
iterative solvers very slow. On the other hand, direct solvers are inefficient in 3D problems,
due to the increased bandwidth of the system matrix. In this thesis, two domain decomposi-
tion solvers, namely FETI-DP and P-FETI-DP, are proposed for solving the linear systems
resulting from XFEM crack propagation analysis in large-scale 3D problems. By modifying
the coarse problem of both solvers, any singularities caused by the crack propagation are
avoided and the XFEM-related ill-conditioning is completely eliminated, ensuring the scal-
ability of FETI-DP and P-FETI-DP as the number of subdomains is increased. Finally, an
efficient implementation in high performance computing systems, specifically computer clus-
ters is developed, by altering the original FETI-DP and P-FETI-DP equations to minimize
communication and computation bottlenecks in distributed memory environments.
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Κεφάλαιο 0

Ελληνική περίληψη

Διάδοση θερμότητας σε σύνθετα υλικά

Σχήμα 0.1: Μετάδοση θερμότητας σε φορέα που αποτελείται από πολλαπλές φάσεις υλικού

΄Εστω ότι το σώμα Ω αποτελείται από np φάσεις υλικού Ω(i)
, οι οποίες χωρίζονται από nb

διεπιφάνειες Γ(ij) ≡ Γ(ji)
. Το σχήμα 0.1 δείχνει ένα παράδειγμα με τρεις φάσεις. Το εξωτερικό

σύνορο ∂Ω του φορέα έχει κάθετο διάνυσμα n και αποτελείται από τα εξωτερικά σύνορα των

επιμέρους φάσεων υλικού ∂Ω =
np⋃
i=1

∂Ω(i)
. Καθένα από αυτά χωρίζεται στα συμπληρωματικά

μέρη ∂Ω
(i)
T και ∂Ω

(i)
q , έτσι ώστε ∂Ω(i) = ∂Ω

(i)
T ∪ ∂Ω

(i)
q . Συνοριακές συνθήκες Dirichlet,

Neumann επιβάλλονται αντίστοιχα στα ∂Ω
(i)
T και ∂Ω

(i)
q
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T = T̄ ον ∂Ω
(i)
T ,

q · n = −q̄n ον ∂Ω(i)
q .

(1)

όπου T = T (x) είναι το (βαθμωτό) πεδίο θερμοκρασίας και q = q (x) είναι το (διανυσματικό)
πεδίο ροής θερμότητας. Στη γενική περίπτωση, η θερμική αγωγιμότητα k(i)

της φάσης Ω(i)

είναι συμμετρικός τανυστής δευτέρας τάξης. Ο νόμος Fourier μεταξύ της θερμοκρασίας και
ροής θερμότητας στο εσωτερικό κάθε φάσης Ω(i)

είναι

q (x) = −k(i) (x) · ∇T (x) , x ∈ Ω(i), i = 1, . . . np (2)

Για μια δεδομένη πηγή θερμότητας r (x), η εξίσωση της θερμοκρασίας στο εσωτερικό του Ω,
σε σταθερή κατάσταση, είναι η εξίσωση Poisson

∇ · q (x) = r (x) (3)

όπου ∇ · q (x) είναι η απόκλιση του πεδίου ροής θερμότητας. Σε αυτό το ετερογενές υλικό,
κάθε διεπιφάνεια Γ(ij)

παρουσιάζει διεπιφανειακή θερμική αντίσταση Kapitza α(ij)
, ή ισοδύναμα

διεπιφανεικαή αγωγιμότητα k(ij), που ορίζεται ως το αντίστροφο της αντίστασης, δηλαδή k(ij) =
1

α(ij) . Επομένως, η θερμική συμπεριφορά χαρακτηρίζεται από άλμα στο πεδίο θερμοκράσίας

εγκάρσια σε κάθε διεπιφάνεια μεταξύ υλικών

JT K(ij) = −α(ij)q(i) · n(ij)
ον Γ(ij)

(4)

όπου ο τελεστής J·K(ij) = (·)(j) − (·)(i) υποδεικνύει το άλμα εγκάρσια στη διεπιφάνεια Γ(ij)
. Το

μοναδιαίο διάνυσμα n(ij)
κάθετο στη Γ(ij) ≡ Γ(ji)

είναι προσανατολιμσένο από τη φάση Ω(i)

προς τη Ω(j)
και ισχύει ότι

n(ij) = −n(ji)
(5)

Επιπλέον, το πεδίο ροής θερμότητας είναι συνεχές εγκάρσια σε κάθε διεπιφάνεια Γ(ij)

q(i) · n(ij) = q(j) · n(ji)
ον Γ(ij)

(6)

όπου q(i)
και q(j)

είναι οι τιμές του πεδίου ροής θερμότητας στις διαφορετικές πλευρές της

διεπιφάνειας Γ(ij)
. Το παραπάνω πρόβλημα συνοριακών τιμών μπορεί να λυθεί με τη συμβατική

μέθοδο πεπερασμένων στοιχείων (ΜΠΣ), αλλά απαιτούνται ορισμένες τροποποιήσεις. Πρώτον,

ένα πλέγμα μπεπερασμένων στοιχείων, που να ακολουθεί τη γεωμετρία των διεπιφανειών μεταξύ

των φάσεων υλικού Γ(ij)
, πρέπει να δημιουργηθεί, όπως φαίνεται στο σχήμα 0.2. Δεύτερον, οι

κόμβοι που βρίσκονται πάνω στις διεπιφάνειες υλικού πρέπει να αναπαραχθούν, ώστε να υπάρ-

χει ένας διαφορετικός κόμβος για κάθε φάση υλικού Ω(i)
και να μπορεί να προσομοιωθεί το

άλμα θερμοκρασίας. Τέλος, ειδικά πεπερασμένα στοιχεία μεταξύ των πολλαπλών ταυτιζόμενων

κόμβων πρέπει να χρησιμοποιηθούν για την προσομοίωση της διεπιφανειακής αντίστασης στις

εξισώσεις (4) και (6). Ωστόσο, αυτή η προσέγγιση με ΜΠΣ είναι μη αποδοτική ή ακόμα και
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Σχήμα 0.2: Προσομοίωση μετάδοσης θερμότητας σε σύνθετα υλικά με τη συμβατική μέθοδο

πεπερασμένων στοιχείων.

αδύνατη σε τρισδιάστατα προβλήματα μεγάλης κλίμακας. Σε αυτές τις περιπτώσεις, ένας πολύ

μεγάλος αριθμός από μικρά πεπερασμένα στοιχεία απαιτείται γύρω από τις διεπιφάνειες, ειδικά

στις περιοχές με απότομες στροφές. Αυτή η πυκνή διακριτοποίηση αυξάνει έντονα το υπολογι-

στικό κόστος της ΜΠΣ και κυρίως της επίλυσης του παραγόμενου γραμμικού συστήματος.

Για την αντιμετώπιση αυτού του προβλήματος, στην παρούσα διατριβή προτείνεται μια πρω-

τότυπη προσέγγιση, η οποία βασίζεται στην επεκταμένη μέθοδο πεπερασμένων στοιχείων (Ε-

ΜΠΣ) για την προσομοίωση μετάδοσης θερμότητας σε σύνθετα υλικά. Στην ΕΜΠΣ, τα πε-

περασμένα στοιχεία μπορούν να τέμνονται από μία ή περισσότερες διεπιφάνειες υλικού, όπως

φαίνεται στοο σχήμα 0.3, αντί να χρειάζεται να προσαρμόζονται στη γεωμετρία των διεπιφανειών.

Προκειμένου να προσομοιωθεί το άλμα στο πεδίο θερμοκρασίας, ειδικές ασυνεχείς συναρτήσεις

βάσης εισάγονται στους κόμβους γύρω από τις διεπιφάνειες υλικού. Τα στοιχεία που τέμνο-

νται από τις διεπιφάνειες καλούνται εμπλουτισμένα στοιχεία. Οι ασυνεχείς συναρτήσεις βάσης

εισάγονται στοιυς κόμβους των εμπλουτισμένων στοιχείων, που ονομάζονται εμπλουτισμένοι

κόμβοι, σε αντίθεση με τους υπόλοιπους συμβατικούς κόμβους. Τα στοιχεία χωρίς εμπλου-

τισμένους κόμβους ονομάζονται συμβατικά στοιχεία και συμπεριφέρονται όπως στη ΜΠΣ. Ε-

πιπλέον, τα μεικτά στοιχεία δεν τέμνονται από διεπιφάνειες υλικού, αλλά μοιράζονται έναν ή

περισσότερους κόμβους με εμπλουτισμένα στοιχεία. Γενικώς, το πεδίο θερμοκρασίας δεν μπο-

ρεί να αναπαραχθεί με μεγάλη ακρίβεια εντός των μεικτών στοιχείων. Ωστόσο, η προτεινόμενη

μεθοδολογία ΕΜΠΣ αποφεύγει το πρόβλημα μεικτών στοιχείων, χρησιμοποιώντας κατάλληλες

συναρτήσεις εμπλουτισμού. ΄Ετσι σύνθετες γεωμετρίες μπορούν να αναπαρασταθούν εύκολα και

με ακρίβεια με τη μέθοδο ισοϋψών καμπυλών, ενώ ένα απλό και αραιό πλέγμα, που δεν ακολου-
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θεί αυτές τις γεωμετρίες, μπορεί να χρησιμοποιηθεί για να μειώσει το υπολογιστικό κόστος της

ανάλυσης.

Σχήμα 0.3: Συναρτήσεις εμπλουτισμού Heaviside και συμβολής όταν τέμνονται διεπιφάνειες
υλικού.

΄Οπως η ΜΠΣ, η ΕΜΠΣ εφαρμόζεται πάνω στην ασθενή μορφή του προβλήματος συνορια-

κών τιμών. ΄Εστω ο συναρτησιακός χώρος όλων των επιτρεπτών πεδίων θερμοκρασίας (δοκι-

μαστικές συναρτήσεις)

D = {T : T = T̄ ον ∂ΩT , T ασυνεχής σε Γ
(ij), ∀(i, j) ∈MΓ} (7)

Επίσης ο συναρτησιακός χώρος συναρτήσεων στάθμισης είναι

W = {δT : δT = 0 ον ∂ΩT , δT ασυνεχής σε Γ
(ij), ∀(i, j) ∈MΓ} (8)

Η ασθενής μορφή του προβλήματος συνοριακών τιμών τίθεται ως εξής: ‘Βρες δοκιμαστική

συνάρτηση T ∈ D, έτσι ώστε για όλες τις συναρτήσεις στάθμισης δT ∈ W να ισχύει η ακόλουθη
ολοκληρωτική εξίσωση:’∑
(i,j)∈MΓ

∫
Γ(ij)

JδT K(ij)
1

α(ij)
JT K(ij) dΓ+

∫
Ω

∇δT ·k ·∇TdΩ =

∫
Ω

δT r dΩ+

∫
∂Ωq

δT q̄n dΓ (9)

Στη γενική περίπτωση πολλαπλών φάσεων υλικού, μία συνάρτηση εμπλουτισμού Heaviside
H(pq)

ανά διεπιφάνεια Γ(pq)
απαιτείται για τη μοντελοποίηση του άλματος:
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H(pq) (x) =

{
−1, x ∈ Ω(p)

+1, x ∈ Ω(q)
(10)

Ωστόσο, εντός κάποιων στοιχείων τέμνονται οι διεπιφάνεις μεταξύ τριών ή περισσοτέρων

φάσεων υλικού, όπως φαίνεται στο σχήμα 0.3. Για να αναπαραχθεί το ασυνεχές πεδίο θερμο-

κρασίας εντός αυτών των στοιχείων, στην παρούσα διατριβή προτείνεται η χρήση συναρτήσεων

συμβολής. Οι κόμβοι ενός στοιχείου, που περιέχει σημεία συμβολής nJ ≥ 3 διεπιφανειών, ε-
μπλουτίζονται με nJ−1 συναρτήσεις συμβολής, αντί για συναρτήσεις Heaviside. Η συνάρτηση
συμβολής J (rs) (x) για τη διεπιφάνεια Γ(rs)

μεταξύ των φάσεων Ω(r), Ω(s)
, η οποία τέμνει 2 ή

περισσότερες άλλες διεπιφάνειες, είναι

J (rs) (x) =


−1, x ∈ Ω(r)

+1, x ∈ Ω(s)

0, x ∈ Ω−
(
Ω(r) ∪ Ω(s)

) (11)

Είναι βολικό να αναφερόμαστε σε κάθε εμπλουτισμό Heaviside ως Hb (x) = H(pq) (x), όπου
b = 1, · · ·nb είναι ένας ακέραιος που αντιστοιχεί στο ζεύγος (p, q). Ομοίως, αν συνολικά
υπάρχουν nc συναρτήσεις συμβολής, καθεμία από αυτές θα ονομάζεται J

c (x) = J (rs) (x), όπου
c = 1, · · ·nc είναι ένας ακέραιος που αντιστοιχεί στο ζεύγος (r, s). Η προσέγγιση του πεδίου
θερμοκρασίας στην ΕΜΠΣ εκφράζεται ως

T h (x) =
∑
k∈M

Nk (x)Tk

+

nb∑
b=1

∑
k∈Mb

H

Nk (x)
(
Hb (x)−Hb (xk)

)
T̃ b
k


+

nc∑
c=1

∑
k∈Mc

J

Nk (x) (J
c (x)− J c (xk)) T̂

c
k


(12)

όπου Nk (x) είναι οι συναρτήσεις σχήματος της ΜΠΣ και Tk είναι επικόμβιες θερμοκρασίες,
δηλαδή συμβατικοί βαθμοί ελευθερίας (β.ε.). Αντίθετα, Hb (x) / J c (x) είναι καθεμία από τις nb

/ nc συναρτήσεις εμπλουτισμού Heaviside / συμβολής, M
b
H /M

c
J είναι το σύνολο των κόμβων

που εμπλουτίζονται με Hb (x) / J c (x) και T̃ b
k / T̂

c
k είναι οι αντίστοιχοι εμπλουτισμένοι β.ε.

Το άλμα του πεδίου θερμοκρασίας μπορεί να προσεγγιστεί χρησιμοποιώντας τους εμπλου-

τισμένους β.ε. Αν τα σημεία x(i) ≡ x(j) ≡ x, ταυτίζονται αλλά βρίσκονται σε διαφορετικές
πλευρές της Γ(ij)

, τότε το άλμα είναι

q
T h (x)

y(ij)
=

nb∑
b=1

∑
k∈Mb

H

Nk (x)
q
Hb

y(ij)
T̃ b
k

+
nc∑
c=1

∑
k∈Mc

J

Nk (x) JJ cK(ij) T̂ c
k

 (13)
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όπου
q
Hb

y(ij)
και JJ cK(ij) είναι 0, εκτός αν οι εμπλουτισμοί Hb = H(pq)

και J c = J (rs)
έχουν

εισαχθεί για τη μοντελοποίηση του άλματος εγκάρσια στη Γ(ij)
, δηλαδή (pq) = (rs) = (ij).

Γενικώς

q
H(b)

y(ij)
(x) =

q
H(pq)

y(ij)
(x) = H(pq)

(
x(j)
)
−H(pq)

(
x(i)
)
= 0, −2, ορ +2

q
J (c)

y(ij)
(x) =

q
J (rs)

y(ij)
(x) = J (rs)

(
x(j)
)
− J (rs)

(
x(i)
)
= 0, −2, +2, −1 ορ +1

(14)

Αντίθετα με άλλες στρατηγικές εμπλουτισμού, οι προτεινόμενοι εμπλουτισμοί Heaviside
και συμβολής δεν προκαλούν σφάλματα ακρίβειας στα μεικτά στοιχεία, αφού

H(pq) (x)−H(pq) (xk) = 0

J (rs) (x)− J (rs) (xk) = 0
(15)

και το εμπλουτισμένο μέρος του πεδίου προσέγγισης απαλείφεται

T h (x) =
∑
k∈M

Nk (x)Tk (16)

Αντικαθιστώντας το πεδίο προσέγγισης της εξίσωσης (12) στην ασθενή μορφή της εξίσωσης

(9), προκύπτει το γραμμικό σύστημα

(KΩ +KΓ) · d = f (17)

όπου d είναι οι άγνωστες θερμοκρασίες στους συμβατικούς και εμπλουτισμένους β.ε., KΩ είναι

το χωρικό μητρώο αγωγιμότητας

KΩ =

∫
Ω

BT (x)k (x)B (x) dΩ (18)

KΓ είναι το διεπιφανειακό μητρώο αγωγιμότητας

KΓ =
∑

(i,j)∈MΓ

∫
Γ
(ij)
e

1

α(ij)

(
N

(ij)
(x)
)T

·N (ij)
(x) dΓ (19)

και f είναι τα εξωτερικά θερμικά φορτία

f =

∫
∂Ωq

NT q̄vdΓ +

∫
Ω

NT rdΩ (20)

Ο πίνακας συναρτήσεων βάσης N για τους κόμβους k ενός στοιχείου είναι

N (x) =
[
N std (x) N enr (x)

]
N std (x) =

[
· · · Nk (x) · · ·

]
N enr (x) =

[
· · · Nk (x) (Ψ

a (x)−Ψa (xk)) · · ·
] (21)
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όπου Ψa (x) αναπαριστά οποιαδήποτε συνάρτηση εμπλουτισμού Heaviside Hb (x) ή συμβολής
J c (x). Οι αντιστοιχες παράγωγοι των συναρτήσεων βάσης βρίσκονται στον πίνακα B

B (x) =

[
Bstd (x) Benr (x)

]

Bstd (x) =


· · ·

∂Nk (x)

∂x
∂Nk (x)

∂y

∂Nk (x)

∂z

· · ·



Benr (x) =


· · ·

∂
(
Nk (x) (Ψ

a (x)−Ψa (xk))
)

∂x
∂
(
Nk (x) (Ψ

a (x)−Ψa (xk))
)

∂y

∂
(
Nk (x) (Ψ

a (x)−Ψa (xk))
)

∂z

· · ·



(22)

καιN
(ij)
είναι πίνακας που χρησιμοποιείται για να παρεμβάλει το άλμα του πεδίου θερμοκρασίας

εγκάρσια στην διεπιφάνεια Γ(ij)

N
(ij)

(x) =
[
N std N

(ij)

enr (x)
]

N std = 0

N
(ij)

enr (x) =
[
· · · Nk (x) JΨa (x)K(ij) · · ·

] (23)

Αναπαράσταση διεπιφανειών υλικού

Προκειμένου να αναπαρασταθεί η γεωμετρία των διεπιφανειών υλικού, χρησιμοποιείται η μέθο-

δος ισουψών καμπυλών (Level Set Method - LSM). Στη LSM, ορίζεται η συνάρτηση προ-
σημασμένης απόστασης ϕ (x) από ένα σημείο x προς την καμπύλη ή επιφάνεια, όπως φαίνεται
στο σχήμα 0.4. Η καμπύλη/επιφάνεια περιγράφεται έμμεσα ως μηδενική ισοϋψής της συνάρ-

τησης απόστασης. Η συνάρτηση απόστασης υπολογίζεται και αποθηκεύεται στους κόμβους

xk του πλέγματος. ΄Επειτα για οποιοδήποτε άλλο σημείο, χρησιμοποιούνται οι πολυωνυμικές

συναρτήσεις σχήματος της ΜΠΣ:

ϕ (x (ξ)) =

nnodes∑
k=1

Nk (ξ)ϕk (24)
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Σχήμα 0.4: Συνάρτηση προσημασμένης απόστασης στη LSM. Υπολογίζεται στους κόμβους και
παρεμβάλεται εντός των στοιχείων.

Η LSM συνεργάζεται με την ΕΜΠΣ, καθώς χρησιμοποιεί το ίδιο πλέγμα πεπερασμένων
στοιχείων για να αναπαραστήσει τις ασυνέχειες και να εκτελέσει τις γεωμετρικές λειτουργίες που

χρειάζεται η ΕΜΠΣ. Ωστόσο, για να περιγραφούν γεωμετρίες με υψηλή καμπυλότητα ή απότομες

στροφές, απαιτείται ένα πολύ πυκνό πλέγμα, το οποίο αυξάνει ταχύτατα τις απαιτήσεις μνήμης

και χρόνου για την ανάλυση με ΕΜΠΣ. Σε αυτή τη διατριβή αναπτύχθηκε μια προσέγγιση LSM
με διπλό πλέγμα, η οποία χρησιμοποιεί ένα αραιό πλέγμα για αποδοτική ανάλυση ΕΜΠΣ και

ένα πυκνό πλέγμα για ακριβή γεωμετρική περιγραφή με την LSM. Αυτά τα 2 πλέγμα ταυτίζονται
σε συγκεκριμένους κόμβους, όπως φαίνεται στο σχήμα 0.5, ώστε να επιτρέπεται η συνεργασία

ΕΜΠΣ-LSM.
Το αραιό πλέγμα αποτελείται από τετραπλευρικά στοιχεία 4 κόμβων σε δισδιάστατα προ-

βλήμα ή εξαεδρικά στοιχεία 8 κόμβων σε τρισδιάστατα προβλήμα, ενώ το πυκνό πλέγμα αποτε-

λείται από τριγωνικά ή τετραεδρικά στοιχεία αντίστοιχα. Η απεικόνιση μεταξύ των συστημάτων

συντεταγμένων ενός στοιχείου αραιού πλέγματος και ενός στοιχείου πυκνού πλέγματος γίνεται

χρησιμοποιώντας ένα βοηθητικό σύστημα συντεταγμένων, όπως φαίνεται στο σχήμα 0.6.

Η γεωμετρική αναπαράσταση μίας διεπιφάνειας υλικού με τη μέθοδο LSM μπορεί να χρη-
ησιμοποιηθεί για να βρεθεί η τομή των στοιχείων με τη διεπιφάνεια. ΄Εστω ότι rP1 και rP2

είναι οι συντεταγμένες των κόμβων μιας πλευράς ενός στοιχείου του πυκνού πλέγματος. Τότε

η πλευρά (P1P2) τέμνεται απο τη διεπιφάνεια αν ϕP1 · ϕP2 ≤ 0 και το σημείο τομής rO είναι

rO = rP1 +
0− ϕP1

ϕP2 − ϕP1

(rP2 − rP1) (25)

Ο προσδιορισμός αυτών των τομών είναι απαραίτητος για την ΕΜΠΣ, αφού το επιφανειακό

ολοκλήρωμα της εξίσωσης (19) υπολογίζεται πάνω στα αποκοπτόμενα τμήματα (γραμμές σε

δισδιάστατα προβλήματα, τρίγωνα σε τρισδιάστατα) κάθε στοιχείου. Επιπροσθέτως, για το
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Σχήμα 0.5: Αραιό πλέγμα για ΕΜΠΣ και πυκνό για LSM

χωρικό ολοκλήρωμα της εξίσωσης (18), κάθε τεμνόμενο στοιχείο χωρίζεται σε υποστοιχεία

(τρίγωνα σε δισδιάστατα προβλήματα, τετράεδρα σε τρισδιάστατα) που ακολουθούν τη γεωμετρία

των αποκοπτόμενων τμημάτων, τα οποία προκύπτουν από την προτεινόμενη μέθοδο LSM με
διπλό πλέγμα.
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Σχήμα 0.6: Τοπικό σύστημα συντεταγμένων στοιχείων: α) Στοιχείο αραιού πλέγματος . β)

Βοηθητικό σύστημα συντεταγμένων. γ) Στοιχείο πυκνού πλέγματος.

Διάδοση ρωγμών με την ΕΜΠΣ

Επιπλέον, μελετάται η ΕΜΠΣ για ψαθυρή διάδοση ρωγμών υπό την υπόθεση γραμμικής ε-

λαστικής θραυστομηχανικής, όπου το μέγεθος της πλαστικής ζώνης είναι τόσο μικρό, ώστε

να ενσωματωθεί σε μία ελαστική ζώνη γύρω από το μέτωπο της ρωγμής. ΄Εστω ο φορέας Ω
που περιέχει μία ρωγμή Γd, όπως φαίνεται στο σχήμα 0.7. Dirichlet και Neumann συνοριακές
συνθήκες επιβάλλονται στα εξωτερικά σύνορα Γu και Γt, αντίστοιχα, ενώ στην επιφάνεια της

ρωγμής δεν υπάρχει ελκυστής:

u = ũ ον Γu

σ · nΓ = t̃ ον Γt

σ · nΓd
= 0 ον Γd

(26)

όπου u είναι το πεδίο μετατοπίσεων, σ ο τανυστής τάσεων Cauchy, ũ οι επιβαλλόμενες μετα-
τατοπίσεις και t̃ ο επιβαλλόμενος ελκυστής. Αν ϵ(u) είναι ο τανυστής παραμορφώσεων, C ο
καταστατικός τανυστής και b οι επιβαλλόμενες χωρικές δυνάμεις, τότε η εξισώση ισορροπίας
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και ο καταστατικός νόμος είναι αντίστοιχα

∇ : σ + b = 0

σ = C : ϵ(u)
(27)

Η ασθενής μορφή του προβλήματος τίθεται ως εξής: Βρες δοκιμαστική συνάρτηση u που
ανήκει στο συναρτησιακό χώρο

U = {v ∈ H : v = ũ στη Γu , v ασυνεχής στη Γd} (28)

έτσι ώστε ∫
Ω

ϵ(w) : C : ϵ(u)dΩ =

∫
Ω

w · b dΩ +

∫
Γt

w · t̃ dΓ (29)

για όλες τις συναρτήσεις στάθμισης w που ανήκουν στο χώρο

U0 = {v ∈ H : v = 0 στη Γu , v ασυνεχής στη Γd} (30)

H είναι H1
χώρος Hilbert συναρτήσεων που είναι ομαλές στο Ω, αλλά ασυνεχείς εγκάρσια στη

Γd.

Σχήμα 0.7: Φορέας με ρωγμή

Για τη προσομοίωση του ασυνεχούς πεδίου μετατοπίσεων u, η ΕΜΠΣ εμπλουτίζει το πο-
λυωνυμικό προσεγγιστικό πεδίο της συμβατικής ΜΠΣ με μη συνεχείς συναρτήσεις βάσης. Το

πλέγμα πεπερασμένων στοιχείων είναι ανεξάρτητο από τη γεωμετρία της ρωγμής και δεν την α-

κολουθεί. Αντίθετα κάποια στοιχεία τέμνονται από την επιφάνεια ή το μέτωπο της ρωγμής, όπως

φαίνεται στο σχήμα 0.8βʹ. Οι κόμβοι των στοιχείων που τέμνονται από το μέτωπο της ρωγμής,

εμπλουτίζονται με 4 ασυμπτωτικές συναρτήσεις αιχμής-ρωγμής Fm(x), οι οποίες εξάγονται από
τη θεωρία γραμμικής ελαστικής θραυστομηχανικής

{Fm(x)}4m=1 = {Fm(r, θ)}4m=1 =

{√
r sin(

θ

2
);
√
r cos(

θ

2
);
√
r sin(

θ

2
) sin(θ);

√
r cos(

θ

2
) sin(θ)

}
(31)
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όπου (r, θ) = (r(x), θ(x)) είναι οι συντεταγμένες ενός σημείου σε πολικό σύστημα που ορίζε-
ται στο μέτωπο της ρωγμής, όπως φαίνεται στο σχήμα 0.8αʹ. Επιπροσθέτως, οι κόμβοι των

στοιχείων που τέμνονται από την επιφάνεια της ρωγμής, αλλά όχι το μέτωπο, εμπλουτίζονται

με τη συνάρτηση Heaviside H(x)

H(x) = H(ϕ(x)) =

{
+1, ϕ(x) ≥ 0

−1, ϕ(x < 0
(32)

όπου ϕ(x) είναι η προσημασμένη απόσταση από ένα σημείου x ως την επιφάνεια της ρωγμής,
όπως φαίνεται στο σχήμα 0.8αʹ. Ο εμπλουτισμός της ΕΜΠΣ επιβάλλεται τοπικά γύρω από τη

ρωγμή, ενώ τα υπόλοιπα στοιχεία και οι υπόλοιποι κόμβοι του πλέγματος δεν αλληλεπιδρούν με

τη ρωγμή. ΄Εστω M , MH
και MT

τα σύνολα όλων των κόμβων που δεν είναι εμπλουτισμένοι,

είναι εμπλουτισμένοι με τη συνάρτηση Heaviside ή είναι εμπλουτισμένοι με τις συναρτήσεις
αιχμής-ρωγμής, αντίστοιχα. Τότε το εμπλουτισμένο προσεγγιστικό πεδίο, που χρησιμοποιείται

στην ΕΜΠΣ, είναι

uh(x) =
∑
i∈M

Ni(x)ui

+
∑

j∈MH

Nj(x) (H(x)−H(xj))aj

+
∑
k∈MT

Nk(x)
( 4∑

m=1

(Fm(x)− Fm(xk)) b
m
k

) (33)

όπου ui είναι οι συμβατικοί β.ε., που εκφράζουν επικόμβιες μετατοπίσεις, ενώ aj και b
m
k είναι

εμπλουτισμένοι β.ε., οι οποίοι εισάγονται από την ΕΜΠΣ στους κόμβους που είναι εμπλου-

τισμένοι με συναρτήσεις Heaviside και αιχμής-ρωγμής, αντίστοιχα. ΄Ολες οι Ni(x), Nj(x),
Nk(x) είναι πολυωνυμικές συναρτήσεις σχήματος, ίδιες με αυτές που χρησιμοποιούνται στη
συμβατική ΜΠΣ. Το πρώτο άθροισμα στο δεξί μέλος της εξίσωσης (33) αντιστοιχεί στο προ-

σέγγισστικό πεδίο της συμβατικής ΜΠΣ. Τα άλλα δύο αθροίσματα περιέχουν εμπλουτισμένες

συναρτήσεις βάσης, που επιτρέπουν στο προσεγγιστικό πεδίο να μοντελοποιεί (α) το άλμα του

πεδίου μετατοπίσεων κάθετα στην επιφάνεια της ρωγμής (εμπλουτισμός Heaviside) και (β)
τον απειρισμό των πεδίων παραμορφώσεων και τάσεων στο μέτωπο της ρωγμής (εμπλουτισμός

αιχμής-ρωγμής).

Χρησιμοποιώντας την προσέγγιση του πεδίου μετατοπίσεων από την εξίσωση (33), η ασθε-

νής μορφή της εξίσωσης (29) καταλήγει σε γραμμικό σύστημα με αγνώστους τις επικόμβιες

μετατοπίσεις u

K u = f

K =

∫
Ω

BT C B dΩ

f =

∫
Ω

NT b dΩ +

∫
Γt

NT t̃ dΓ

(34)
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(αʹ) (βʹ)

Σχήμα 0.8: Ρωγμή σε τρισδιάστατο φορέα. (α) Προσημασμένες αποστάσεις ϕ από την επιφάνεια
της ρωγμής και πολικές συντεταγμένες (r, θ) γύρω από το μέτωπο. (β) Εμπλουτισμένοι κόμβοι
και στοιχεία που τέμνονται από τη ρωγμή.

όπου N , B είναι πίνακες που περιέχουν τις συναρτήσεις βάσης και τις παραγώγους του, α-
ντίστοιχα. Προκειμένου να αναπαρασταθεί η γεωμετρία της ρωγμής, χρησιμοποιείται η ρητή-

έμμεση υβριδική μέθοδος που προτάθηκε από Fries and Baydoun (2012). Αντίθετα με πλήρως
έμμεσες περιγραφές, αυτή η μέθοδος μπορεί να ανανεώνει εύκολα τη γεωμετρία της ρωγμής σε

τρισδιάστατα προβλήματα, επειδή περιγράφει τη ρωφμή ως ένα πλέγμα τριγωνικών στοιχείων.

Ταυτόχρονα, συνεργάζεται με την ΕΜΠΣ, αφού χρησιμοποιεί το ίδιο πλέγμα και προσημασμένες

αποστάσεις, οι οποίες αποθηκεύονται στους κόμβους και μετά παρεμβάλονται στο εσωτερικό

των στοιχείων, για να υπολογιστούν τα ϕ(x), r(x) και θ(x) σε οποιοδήποτε σημείο. Αφού
περιγραφεί η γεωμετρία της ρωγμής με αυτή τη μέθοδο, εκτελείται ανάλυση ΕΜΠΣ για να υ-

πολογιστούν τα πεδία μετατοπίσεων, παραμορφώσεων και τάσεων. ΄Επειτα η ρωγμή διαδίδεται

ανανεώνοντας τις θέσεις των σημείων που ορίζουν το μέτωπο της ρωγμής και προσθέτοντας

νέα τρίγωνα.

Μέθοδοι υποφορέων σε υπολογιστικά συστήματα

υψηλών επιδόσεων

Η παρούσα διατριβή εστιάζει σε συμπλέγματα υπολογιστών, δηλαδή περιβάλλοντα που αποτε-

λούνται από πολλαπλούς υπολογιστές, καθένας από τους οποίους διαθέτει τους δικούς του επε-

ξεργαστές και μνήμη και επικοινωνεί με τους υπόλοιπους μέσω τοπικού δικτύου (LAN), ώστε
να επιλυθεί απο κοινού ένα υπολογιστικό πρόβλημα. Τα συμπλέγματα υπολογιστών τυπικά
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Σχήμα 0.9: Σύμπλεγμα υπολογιστών

χρησιμοποιούν υβριδική κατανεμημένη μνήμη, όπου κάθε υπολογιστής έχει τη δική του μνήμη,

αλλά αυτή μοιράζεται μεταξύ των επεξεργαστών του, όπως φαίνεται στο σχήμα 0.9. Επομένως,

κάθε υπολογιστής είναι μηχάνημα κοινής μνήμης, αλλά το σύστημα όλων των δικυτωμένων

υπολογιστών διαθέτει κατανεμημένη μνήμη. Σε αυτό το υβριδικό σύστημα η επικοινωνία μετα-

ξύ επεξεργστών του ίδιου υπολογιστή είναι πολύ γρηγορότερη από ότι μεταξύ επεξεργαστών

που ανήκουν σε διαφορετικούς υπολογιστές. Συνολικά τα συμπλέγματα υπολογιστών έχουν τα

ακόλουθα πλεονεκτήματα:

� Απόδοση. Τα προγράμματα εκτελούνται παράλληλα.

� Κλιμακωσιμότητα. Η υπολογιστική ισχύς και διαθέσιμη μνήμη μπορούν να αυξάνονται

διαρκώς, προσθέτοντας νέους υπολογιστούς που έχουν τη δική τους μνήμη και επεξεργα-

στές.

� Χαμηλό οικονομικό κόστος. Το ίδιο επιθυμητό επίπεδο υπολογιστικής ισχύος μπορεί να

επιτευχθεί πολύ πιο φθηνά με ένα σύμπλεγμα συνηθισμένων υπολογιστών, από ότι με

έναν μόνο υπολογιστή υψηλών προδιαγραφών.

� Αξιοπιστία. Η αστοχία ή συντήρηση ενός ή περισσοτέρων υπολογιστών δεν απαγορεύει τη

λειτουργία του υπόλοιπου συστήματος, αλλά απλά μειώνει προσωρινά την απόδοσή του.

Σε αυτή τη διατριβή, προτείνονται δύο μέθοδοι υποφορέων, οι FETI-DP και P-FETI-DP,
για την επίλυση του γραμμικού συστήματος της εξίσωσης (34). Αυτοί οι επιλύτες υψηλή κλιμα-

κωσιμότητα και μπορούν να υλοποιηθούν αποδοτικά σε περιβάλλοντα υψηλών επιδόσεων, όπως
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συμπλέγματα υπολογιστών. Ως μέθοδοι υποφορέων, διαιρούν τον καθολικό φορέα σε πολλα-

πλούς υποφορείς, τους οποίους επεξεργάζονται ανεξάρτητα και παράλληλα. Οι β.ε. χωρίζονται

σε συνοριακούς β.ε., που αντιστοιχούν σε κόμβους στο σύνορο μεταξύ δύο ή περισσοτέρων υπο-

φορέων, και εσωτερικούς β.ε.που αντιστοιχούν σε κόμβους που ανήκουν σε ένα μόνο υποφορέα,

όπως φαίνεται στο σχήμα 0.10.

Σχήμα 0.10: Εσωτερικοί και συνοριακοί κόμβοι υποφορέων.

P-FETI-DP

Στη μέθοδο P-FETI-DP ο πίνακας δυσκαμψίας, το διάνυσμα μετατοπίσεων και το διάνυσμα
δυνάμεων χωρίζονται σε μέρη που αντιστοιχούν στους εσωτερικούς (δείκτης i) και συνοριακούς
(δείκτης b) β.ε.:

Ks =

[
Ks

ii Ks
ib

(Ks
ib)

T Ks
bb

]
us =

[
us

i

us
b

]
f s =

[
f s
i

f s
b

]
(35)

Μετά από στατική συμπύκνωση των εσωτερικών β.ε., το συμπλήρωμα Schur Ss
bb για τονK

s
ii

κάθε υποφορέα και το αντίστοιχο διάνυσμα δυνάμεων zs
b είναι

Ss
bb = Ks

bb − (Ks
ib)

T (Ks
ii)

−1Ks
ib (36)
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zs
b = f s

b − (Ks
ib)

T (Ks
ii)

−1f s
b (37)

Ο επεκταμένος φορέας ορίζεται ως μία δομή που περιέχει όλους τους β.ε., αλλά κάθε συνο-

ριακός β.ε. εμφανίζεται πολλές φορές, συγκεκριμένα μία φορά για κάθε υποφορέα όπου ανήκει,

όπως φαίνεται στο σχήμα 0.11. Αντίθετα ο καθολικός φορέας περιέχει μία φορά κάθε β.ε. του

μοντέλου.

(αʹ) Καθολικός φορέας. Κάθε β.ε. εμφανίζεται μία φορά.

(βʹ) Επεκταμένος φορέας. Κάθε β.ε. εμφανίζεται μία φορά για κάθε

υποφορέα όπου ανήκει.Εδώ ταυτίζονται οι εξής β.ε.: 13 ≡ 19, 14 ≡ 20,
15 ≡ 21, 16 ≡ 22, 17 ≡ 23, 18 ≡ 24

Σχήμα 0.11

Οι πίνακες και τα διανύσματα του επεκταμένου φορέα αποτελούνται από τους αντίστοιχους

πίνακες και διανύσματα των υποφορέων. Π.χ.
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ue
b =

 u1
b
...

uns
b

 ẑe
b =

 z1
b
...

zns
b

 Ke
bb =

K
1
bb
. . .

Kns
bb

 Ke
bi =

K
1
bi
. . .

Kns
bi

 (38)

(Ke
ii)

−1 =

(K1
ii)

−1

. . .

(Kns
ii )

−1

 Se
bb =

S
1
bb
. . .

Sns
bb

 (39)

Στην συνηθισμένη διατύπωση της P-FETI-DP, οι μετατοπίσεις, που αντιστοιχούν σε όλους
τους συνοριακούς β.ε. του καθολικού φορέα, συγκεντρώνονται σε ένα διάνυσμα ub μήκους nb.

Η αντιστοίχηση μεταξύ ub και u
s
b γίνεται με δυαδικούς πίνακες L

s
b, οι οποίοι έχουν στοιχεία

0, 1 και διαστάσεις διμενσιονς (ns
b × nb), όπου n

s
b και nb είναι ο αριθμός τωνς συνοριακών β.ε.

του υποφορέα s και του καθολικού φορέα, αντίστοιχα:

us
b = Ls

bub (40)

Η επικοινωνία μεταξύ των υποφορέων πραγματοποιείται με πράξεις απεικόνισης-συμπύκνωσης

των διανυσμάτων δυνάμεων που αντιστοιχούν στους υποφορέις. Π.χ. για τα διανύσματα

ys
b = Ss

bb · us
b:

yb =
ns∑
s=1

(Ls
b)

Tys
b (41)

Ωστόσο, σε αυτή τη διατριβή προτείνεται μια εναλλακτική διατύπωση που αποφεύγει καθο-

λικά διανύσματα και πίνακες. Η επικοινωνία γίνεται απευθείας μεταξύ των υποφορέων, αντί να

χρησιμοποιούνται καθολικά διανύσματα. Για το σκοπό αυτό, οι πίνακες απεικόνισης Ls
b, μεταξύ

υποφορέα-καθολικού φορέα, αντικαθίστανται με πίνακες απεικόνισης M st
b , μεταξύ υποφορέα-

υποφορέα. Για κάθε ζεύγος υποφορέων (s, t), ένας δυαδικός πίνακας χωρίς πρόσημο, δηλαδή
πίνακς με τιμές 0, 1, M st

b (ns
b × nt

b) ορίζεται, ο οποίος απεικονίζει τους συνοριακούς β.ε. του
υποφορέα t στους συνοριακούς β.ε. του s. Δύο υποφορείς ορίζονται ως γειτονικοί, αν έχουν
κοινούς συνοριακούς κόμβους και άρα β.ε. Αν δύο υποφορείς s, t δεν είναι γειτονικοί, τότε δεν
έχουν κοινούς β.ε. και οι αντίστοιχοι πίνακες απεικόνισης είναι M st

b = 0, M ts
b = 0. Από την

άλλη, για τον ίδιο υποφορέα s: M ss
b = I. Οι πράξεις απεικόνισης-συμπύκνωσης από διανύσμα-

τα υποφορέων σε καθολικό διάνυσμα εκτελούνται με κατανεμημένο τρόπο. Για το διάνυσμα ŷs
b

ενός δεδομένου υποφορέα s, η πρόσθεση των κοινών στοιχείων με άλλους υποφορείς μπορεί να
γίνει ως

ys
b =

∑
t=1,···ns

t̸=s

M st
b ŷs

b (42)

Ο αντίστοιχος πίνακς επεκταμένου φορέαM e
b (ne

b × ne
b) ορίζεται ως
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M e
b =


M 11

b M 12
b · · · M 1ns

b

M 21
b M 22

b · · · M 2ns
b

...
...

. . .
...

Mns1
b Mns2

b · · · Mnsns
b

 (43)

και η πρόσθεση όλων των διανυσμάτων του επεκταμένου φορέα γίνεται ως

ye
b =

 y1
b
...

yns
b

 = M e
b ŷ

e
b (44)

όπου ye
b (ne

b × 1) είναι ένα διάνυσμα δυνάμεων για τον επεκταμένο φορέα, το οποίο περιέχει
πολλαπλές εμφανίσεις των ίδιων στοιχείων με το καθολικό διάνυσμα yb (nb × 1). Σύμφωνα με
αυτή τη διατύπωση, το γραμμικό σύστημα που εκφράζει το συνοριακό πρόβλημα της P-FETI-
DP είναι

M e
bS

e
bbx

e
b = M e

b ẑ
e
b (45)

Αυτό το γραμμικό σύστημα είναι συμμετρικό, θετικά ορισμένο και λύνεται με επαναληπτικό

αλγόριθμο όπως η μέθοδος Προσταθεροποιημένων Συζυγών Κλίσεων (ΠΣΚ). Η προτεινόμενη

διατύπωση μπορεί να υλοποιηθεί αποδοτικά σε συστήματα κατανεμημένης μνήμης όπως συ-

μπλέγματα υπολογιστών. ΄Ολα τα διανύσματα και οι πίνακες των υποφορέων αποθηκεύονται

μόνο στους υπολογιστές που ανατίθενται για τους εκάστοτε υποφορέις. Γειτονικού υποφορείς

που ανήκουν στον ίδιο υπολογιστή ανταλλάσσουν στοιχεία διανυσμάτων με αμελητέο κόστος,

αφού αυτά τα δεδομένα βρίσκονται στον ίδιο χώρο μνήμης. Γειτονικοί υποφορείς που ανήκουν σε

διαφορετικούς υποφορείς ανταλλάσσουν στοιχεία διανυσμάτων μέσω δικτύου. Αυτή η επικοινω-

νία περιορίζεται μόνο στα στοιχεία κοινών β.ε. μεταξύ υποφορέων και κατανέμεται ομοιόμορφα

εντός τουδικτύου, χωρίς μεταφορές μνήμης σε ένα κεντρικό σημείο που θα προκαλούσαν συμ-

φόρηση. Επιπλέον, αντί να εκτελούνται καθολικές πράξεις σε ένα υποφορέα, ενώ οι υπόλοιποι

είναι αδρανής, η προτεινόμενη διατύπωση κατανέμει τις πράξεις ομοιόμορφα σε όλους τους υ-

πολογιστές. ΄Ενα παράδειγμα δίνεται στο σχήμα 0.12. Χρησιμοποιώντας τους πίνακες M 1s
b

απομονώνονται τα στοιχεία σε συνοριακούς β.ε. που είναι κοινοί μεταξύ του υποφορέα 1 και

κάθε άλλου υποφορέα s. ΄Επειτα μεταφέρονται μόνο αυτά τα κοινά στοιχεία στο χώρο μνήμης
που βρίσκεται ο υποφορέας 1 και τελικά προστίθενται στο διάνυσμα του υποφορέα 1. Παράλληλα

με τον υποφορέα 1, εκτελούνται τα ίδια βήματα για όλους τους άλλους υποφορείς.

Οι μέθοδοι FETI-DP, P-FETI-DP χρησιμοποιούν το ίδιο αραιό πρόβλημα, το οποίο είναι
ένα πολύ μικρότερο βοηθητικό σύστημα που επιταχύνει τη σύγκλιση, συζεύγοντας τους υπο-

λογισμούς των υποφορέων και διαδίδοντας ομοιόμορφα το σφάλμα σε κάθε επανάληψη ΠΣΚ.

Για τη δημιουργία του αραιού προβλήματος ορίζονται οι γωνιακοί κόμβοι, οι οποίοι αποτελο-

ύν υποσύνολο των συνοριακών κόμβων και βρίσκονται στην αρχή και το τέλος κάθε πλευράς

κάθε υποφορέα, όπως φαίνεται στο σχήμα 0.13. Οι γωνιακοί β.ε., που αντιστοιχούν σε αυτούς

τους γωνιακούς κόμβους, συμβολίζονται με το δείκτη c. Οι υπόλοιποι β.ε. κάθε υποφορέα
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(αʹ)

(βʹ)

Σχήμα 0.12: Κατανεμημένη μορφή των πράξεων απεικόνισης-συμπύκνωσης, στην περίπτωση

γειτονικών υποφορέων και μετατοπίσεων στους κοινούς συνοριακούς β.ε.

συμβολίζονται με το δείκτη r. Ο πίνακας δυσκαμψίας Ks
, το διάνυσμα μετατοπίσεων us

και το
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Σχήμα 0.13: Ορισμός γωνιακών κόμβων.

διάνυσμα δυνάμεων f s
κάθε υποφορέα s χωρίζονται ως εξής:

Ks =

[
Ks

rr Ks
rc

(Ks
rc)

T Ks
cc

]
us =

[
us

r

us
c

]
f s =

[
f s
r

f s
c

]
(46)

Οι μετατοπίσεις, που αντιστοιχούν σε όλους τους γωνιακούς β.ε. τους καθολικού φορέα,

συγκεντρώνονται στο διάνυσμα uc με μήκος nc. Η αντιστοίχηση μεταξύ uc και u
s
c γίνεται με

δυαδικούς πίνακες Ls
c που έχουν στοιχεία 0, 1 και διαστάσεις (n

s
c × nc), όπου n

s
c και nc είναι

το πλήθος των γωνιακών β.ε. του υποφορέα s και του καθολικού φορέα, αντίστοιχα.

us
c = Ls

cuc (47)

Μετά από στατική συμπύκνωση των υπόλοιπων β.ε., το συμπλήρωμα Schur Ss
cc για τονK

s
rr

κάθε υποφορέα και το αντίστοιχο διάνυσμα δυνάμεων zs
c είναι

Ss
cc = Ks

cc − (Ks
rc)

T (Ks
rr)

−1Ks
rc (48)

zs
c = f s

c − (Ks
rc)

T (Ks
rr)

−1f s
r (49)

΄Επειτα αυτοί οι πίνακες και διανύσμτα υποφορέων προστίθενται για να παραχθούν ο καθο-

λικός γωνιακός πίνακας δυσκαμψίας Scc και το αντίστοιχο καθολικό διάνυσμα δυνάμεων zc

Scc =
ns∑
s=1

(Ls
c)

TSs
ccL

s
c =

ns∑
s=1

(Ls
c)

T
(
Ks

cc − (Ks
rc)

T (Ks
rr)

−1Ks
rc

)
Ls

c (50)
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zc =
ns∑
s=1

(Ls
c)

Tzs
c =

ns∑
s=1

(Ls
c)

T
(
f s
c − (Ks

rc)
T (Ks

rr)
−1f s

r

)
(51)

Με κατάλληλη επιλογή των γωνιακών κόμβων, ο πίνακαςKs
rr είναι αντιστρέψιμος. Το αραιό

πρόβλημα ορίζεται ως το ακόλουθο γραμμικό σύστημα

Scc · xc = yc (52)

το οποίο λύνεται χρησιμοποιώντας άμεσο αλγόριθμο, όπως είναι η παραγοντοποίηση Cholesky,
αφού είναι πολύ μικρότερο και πρέπει να λύνεται μία φορά σε κάθε επανάληψη ΠΣΚ του συνο-

ριακού προβλήματος. Προκειμένου να μειωθούν οι επαναλήψεις ΠΣΚ που απαιτούνται για το

συνοριακό πρόβλημα, η P-FETI-DP χρησιμοποιεί τον προσταθεροποιητή

(Ãe
bb)

−1 = Ar,e
bb +Ae

bcA
e
ccA

e
cb

Ar,e
bb = M e

bW
e
b

(
N e

r,b

)T
(Ke

rr)
−1N e

r,bW
e
b

Ae
cb =

(
−Ke

cr (K
e
rr)

−1N e
r,b +N e

c,b

)
W e

b

Ae
bc =

(
N e

c,b

)T −M e
bW

e
b

(
N e

r,b

)T
(Ke

rr)
−1Ke

rc

Ae
cc = Le

cS
−1
cc (Le

c)
T

(53)

όπου

� W s
b είναι ο αντίστροφος διαγώνιου πίνακα, τα στοιχεία του οποίου είναι οι πολλαπλότητες

των συνοριακών β.ε. του υποφορέα s.

� N s
r,b είναι δυαδικός πίνακας(0, 1 ως στοιχεία) με διαστάσεις (n

s
r × ns

b) που απεικονίζει
τους συνοριακούς β.ε. ενός υποφορέα στους υπόλοιπους β.ε. του ίδιου υποφορέα.

� N s
c,b είναι δυαδικός πίνακας(0, 1 ως στοιχεία) με διαστάσεις (n

s
c × ns

b) που απεικονίζει
τους συνοριακούς β.ε. ενός υποφορέα στους γωνιακούς β.ε. του ίδιου υποφορέα.

� Ο πολλαπλασιασμός του αντιστρόφου S−1
cc με ένα διάνυσμα είναι ισοδύναμος με επίλυση

του αραιού προβλήματος.

FETI-DP

Στη μέθοδο FETI-DP, οι υπόλοιποι β.ε. χωρίζονται περεταίρω σε εσωτερικούς β.ε., οι οποίοι
αφορούν κόμβους που ανήκουν σε ένα μόνο υποφορέα και συμβολίζονται με το δείκτη i, και
συνοριακούς-υπόλοιπους β.ε., οι οποίοι συμβολίζονται με το δείκτη br και αντιστοιχούν σε
συνοριακούς κόμβους που δεν είναι γωνιακοί:

Ks
rr =

[
Ks

ii Ks
ibr

(Ks
ibr
)T Ks

brbr

]
us

r =

[
us

i

us
br

]
f s
r =

[
f s
i

f s
br

]
(54)
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Η συνέχεια μετατοπίσεων μεταξύ των αποσυνδεδεμένων υποφορέων αποκαθίσταται με την

εφαρμογή συνθηκών συμβιβαστότητας για εμφανίσεις του ίδιου συνοριακού β.ε. σε διαφορετι-

κούς υποφορείς. Αυτές οι εξισώσεις συγκεντρώνονται σε προσημασμένους δυαδικούς πίνακες

Bs
r , που έχουν στοιχεία με τιμές 0, 1, -1 και διαστάσεις (nλ × ns

r), όπου nλ είναι το πλήθος

εξισώσεων συμβιβαστότητας για τον καθολικό φορέα και ns
r ο αριθμός των υπόλοιποων β.ε.

του υποφορέα s:

ns∑
s=1

Bs
ru

s
r = 0 (55)

Σχήμα 0.14: Πολλαπλασιαστές Langrange εφαρμοζόμενοι στους συνοριακούς-υπόλοιπους β.ε.
των υποφορέων.

Για να λυθούν οι καθολικές εξισώσεις ισορροπίας Ku = f παρουσία αυτών των περιορι-
σμών, εφαρμόζονται πολλαπλασιαστές Langrange λ στους συνοριακούς-υπόλοιπους β.ε., ώστε
να επιβληθεί συμβιβαστότητα μετατοπίσεων, όπως φαίνεται στο σχήμα 0.14. Πρέπει να σημειω-

θεί ότι στους γωνιακούς β.ε. δεν εφαρμόζονται πολλαπλασιαστές Langrange. Ακολούθως, οι
εξισώσεις ισορροπίας γραφονται ως

Ks
rru

s
r +Ks

rcL
s
cuc + (Bs

r)
Tλ = f s

r (56)
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ns∑
s=1

(Ls
c)

T (Ks
rc)

Tus
r +

ns∑
s=1

(Ls
c)

T (Ks
cc)

TLs
cu

s
c =

ns∑
s=1

(Ls
c)

Tf s
c (57)

Με κατάλληλη επιλογή των γωνιακών β.ε., ο πίνακαςKs
rr είναι αντιστρέψιμος και η εξίσωση

(56) γραφεται ως:

us
r = (Ks

rr)
−1
(
f s
r − (Bs

r)
Tλ−Ks

rcL
s
cuc

)
(58)

Σύμφωνα με την κατανεμημένη διατύπωση που προτείνεται στην παρούσα διατριβή, κάθε

πίνακας Bs
r (nλ × ns

r) αντικαθίσταται με έναν άλλο προσημασμένο δυαδικό πίνακα C
s
r (n

s
λ×ns

r),
ο οποίος απεικονίζει τους υπόλοιπους β.ε. του υποφορέα s στους πολλαπλασιαστές Langrange
του υποφορέα s, αντί να απεικονίζει στους καθολικούς πολλαπλασιαστές Langrange, όπως ο
πίνακας Bs

r . Επιπροσθέτως, παρόμοια με την P-FETI-DP, δυαδικοί μη προσημασμένοι πίνακες
M st

λ χρησιμοποιούνται για να απεικονίσουν τους πολλαπλασιαστές Langrange του υποφορέα t
στους πολλαπλασιαστές Langrange του υποφορέα s. Για τον επεκταμένο φορέα:

M e
λ =


M 11

λ M 12
λ · · · M 1ns

λ

M 21
λ M 22

λ · · · M 2ns
λ

...
...

. . .
...

Mns1
λ Mns2

λ · · · Mnsns
λ

 (59)

Συνδυάζοντας τις εξισώσεις (58, 55, 57) και χρησιμοποιώντας τους δυαδικούς πίνακες απει-

κόνισης Ce
r καιM

e
λ, καταλήγουμε σε(

F e
Irr + F e

IrcA
e
ccF

e
Icr

)
λe = de

r − F e
IrcA

e
ccẑ

e
c (60)

όπου

F e
Irr = M e

λC
e
r (K

e
rr)

−1(Ce
r )

T

F e
Irc = M e

λC
e
r (K

e
rr)

−1Ke
rc

F e
Icr = Ke

cr(K
e
rr)

−1(Ce
r )

T

Ae
cc = Le

cS
−1
cc (L

e
c)

T

de
r = M e

λC
e
r (K

e
rr)

−1f e
r

(61)

Το γραμμικό σύστημα της εξίσωσης (60)είναι το συνοριακό πρόβλημα της FETI-DP και λύνεται
με τη μέθοδο ΠΣΚ. Μπορούμε να παρατηρήσουμε ότι ο πίνακαςAe

cc περιέχει το αραιό πρόβλημα

της FETI-DP. Αφού λυθεί το συνοριακό πρόβλημα και βρεθούν οι τιμές των πολλαπλασιαστών
Lagrange λe

, οι μετατοπίσεις στους γωνιακούς και υπόλοιπους β.ε. υπολογίζονται ως

ue
c = Ae

cc (ẑ
e
c + F e

Icrλ
e) (62)

ue
r = (Ke

rr)
−1
(
f e
r − (Ce

r )
Tλe −Ke

rcu
e
c

)
(63)
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Προκειμένου να ελαττωθούν οι επαναλήψεις ΠΣΚ που απαιτούνται για την επίλυση του

συνοριακού προβλήματος, η FETI-DP χρησιμοποιεί προσταθεροποιητή με την ακόλουθη γενική
μορφή

(F̃ e
Irr)

−1 = M e
λC

e
brW

e
brS̃

e
brbrW

e
br(C

e
br)

T
(64)

όπουW s
br
είναι ο αντίστροφος διαγωνίου πίνακα, του οποίου τα στοιχεία ταυτίζονται με τις πολ-

λαπλότητες των συνοριακών-υπολοίπων β.ε., και Cs
br
είναι οι στήλες του Cs

r που αντιστοιχούν

στους συνοριακούς-υπόλοιπους β.ε. Ανάλογα με τον ορισμό του S̃e
brbr
, μπορούν να εξαχθούν

οι ακόλουθοι προσταθεροποιητές:

S̃e
brbr =

{
Ke

brbr
− (Ke

ibr
)T (Ke

ii)
−1Ke

ibr
προσταθεροποιητής Dirichlet

Ke
brbr

προσταθεροποιητής lumped
(65)

Ο προσταθεροποιητής Dirichlet χρησιμοποιεί το πλήρες συμπλήρωμα Schur των εσωτερικών
β.ε., επομένως έχει μεγαλύτερο υπολογιστικό κόστος, αλλά οδηγεί σε λιγότερες επαναλήψεις

ΠΣΚ, σε σύγκριση με τον προσταθεροποιητή lumped.

Μέθοδοι υποφορέων για διάδοση ρωγμών με ΕΜΠΣ

Οι μέθοδοι FETI-DP, P-FETI-DP αναπτύχθηκαν για προβλήματα μηχανικής σε συνεχές μέσο.
Ωστόσο, στη θραυστομηχανική μία ή περισσότερες ρωγμές διαδίδονται σε έναν ασυνεχή φορέα

και κάποιοι υποφορείς μπορεί να τέμνονται εξ΄ ολοκλήρου από αυτές, οπότε οι αντίστοιχοι

πίνακες Ks
rr γίνονται μη αντιστρέψιμοι. ΄Ενα παράδειγμα φαίνεται στο σχήμα 0.15, όπου μία

ρωγμή διαδίδεται σε δισδιάστατο σώμα και αλληλεπιδρά με τρεις υποφορείς, από τους οποίους

οι δύο τεμνονται πλήρως από αυτήν.

Ο εμπλουτισμός της ΕΜΠΣ μοντελοποιεί το άλμα του πεδίου μετατοπίσεων στη ρωγμή,

εισάγοντας ασυνεχείς συναρτήσεις βάσης και αντίστοιχους εμπλουτισμένου β.ε. ΄Οταν η ρωγ-

μή τέμνει πλήρως έναν υποφορέα s, οι γραμμές και στήλες του Ks
rr, που αντιστοιχούν στους

εμπλουτισμένους β.ε., γίνονται γραμμικά εξαρτημένες. Σε αυτήν την περίπτωση, ο υποφορέας

διαιρείται ουσιαστικά σε δύο επιπλέοντα τμήματα/μηχανισμούς, τα οποία κινούνται ανεξάρτη-

τα το ένα από το άλλο, όπως φαίνεται στο σχήμα 0.16. Για να λυθεί το πρόβλημα των μη

αντιστρέψιμων πινάκων Ks
rr, προτείνεται η ακόλουθη διαδικασία. Πρώτον, προσδιορίζονται οι

γραμμικά εξαρτημένες γραμμές και στήλες τουKs
rr, εντοπίζοντας τους αντίστοιχους β.ε. ΄Εστω

Mb το σύνολο των συνοριακών β.ε., δηλαδή των β.ε. που ανήκουν σε δύο ή περισσότερους υπο-

φορείς. Οι Heaviside εμπλουτισμένοι β.ε. aj της εξίσωσης (33) ανήκουν στο σύνολο MH , ενώ

οι εμπλουτισμένοι β.ε. b1k, που εισάγονται για την πρώτη συνάρτηση αιχμής-ρωγμής F1 στην

εξίσωση (31), ανήκουν στο σύνολο MT 1 . Αν ένας υποφορέας τέμνεται πλήρως από μία ρωγμή,

τότε οι β.ε. που ανήκουν στο σύνολο Mb ∩ (MH ∪MT 1) είναι υπεύθυνοι για τη μοντελοποίη-
ση του άλματος του πεδίου μετατοπίσεων και για την ανάπτυξη εσωτερικών μηχανισμών στον

υποφορέα. Αν αυτοί οι β.ε. γίνουν γωνιακοί β.ε., τότε αφαιρούνται οι γραμμικά εξαρτημένες
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Σχήμα 0.15: Συνοριακοί και γωνιακοί κόμβοι των συμβατικών μεθόδων FETI-DP, P-FETI-
DP.

γραμμές/στήλες από τα Ks
rr και επαναφέρεται η αντιστρεψιμότητα. Αν Mc,std είναι το σύνολο

των συμβατικών β.ε., τότε η προτεινόμενη αλλαγή συνίσταται στον καθορισμό του συνόλου

Mc = Mc,std ∪ (Mb ∩MH) ∪ (Mb ∩MT 1) (66)

και τη χρήση του στους επιλύτες FETI-DP, P-FETI-DP ως σύνολο γωνιακών κόμβων, όπως
φαίνεται στο σχήμα 0.17, αντί για το σύνολο Mc,std. Αυτοί οι συνοριακοί β.ε. μεταφέρονται

στο μητρώο δυσκαμψίας Ks
cc του υποφορέα και τελικά στο καθολικό μητρώο δυσκαμψίας Scc.

Με την προτεινόμενη μετατροπή, οι υποφορείς μπορούν να τέμνονται αυθαίρετα από ρωγμές και

να επιλέγονται με κριτήριο την ελαχιστοποίηση των απαιτήσεων μνήμης και τους υπολογιστικού

χρόνου.

Μία άλλη δυσκολία στις αναλύσεις διάδοσης ρωγμών με ΕΜΠΣ είναι η κακή κατάσταση των

πινάκων δυσκαμψίας, λόγω της σημαντικής διαφοράς μεταξύ των τιμών που αντιστοιχούν στους

εμπλουτισμένους από συναρτήσεις αιχμής-ρωγμής β.ε. και των τιμών που αντιστοιχούν στους

συμβατικούς και εμπλουτισμένους από Heaviside β.ε. Στο πλάισιο των FETI-DP, P-FETI-DP,
η κατάσταση των πινάκων επιβραδύνει την επαναληπτική επίλυση των συνοριακών προβλημάτων

και οι συμβατικοί προσταθεροποιητές των παραπάνω επιλυτών δεν επαρκούν για να μειωθούν

οι επαναλήψεις. Επομένως προτείνεται η εξής μετατροπή για να απαλειφεί η κακή κατάστα-

ση. ΄Εστω MTm , m = 1, · · · 4 το σύνολο των bmk β.ε. που εισάγονται για κάθες συνάρτηση
αιχμής-ρωγμής της εξίσωσης (31). Οι όροι που προκαλούν κακή κατάσταση του συνοριακού
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Σχήμα 0.16: Επιπλέοντα τμήματα των υποφορέων που τέμνονται πλήρως από τη ρωγμή.

προβλήματος αντιστοιχούν στους β.ε. που ανήκουν στο σύνολο Mb ∩ MTm , m = 1, · · · 4. Η
προτεινόμενη τεχνική αντιμετωπίζει αυτούς τους β.ε. ως γωνιακούς, όπως φαίνεται στο σχήμα

0.17, βελτιώνοντας έτσι την ικανότητα του αραιού προβλήματος της εξίσωσης (52), να διανέμει

το σφάλμα μεταξύ των υποφορέων σε κάθε επανάληψη της ΠΣΚ. ΄Ετσι ο προσταθεροποιητής

της P-FETI-DP μπορεί να αντιμετωπίσει την κακή κατάσταση λόγω εμπλουτισμού ΕΜΠΣ, α-
φού περιέχει το αραιό πρόβλημα. Παρότι ο προσταθεροποιητής της FETI-DP δεν σχετίζεται με
γωνιακούς β.ε. και δεν επηρεάζεται από αυτή την μετατροπή, ο δείκτης κατάστασης του πίνακα

του συνοριακού προβλήματος FIrr + FIrcS
−1
cc FIcr βελτιώνεται, επειδή α) το αραιό πρόβλημα

συμπεριλαμβάνεται απευθείας σε αυτόν τον πίνακα και β) οι προβληματικοί β.ε. του συνόλου

Mb ∩ MTm , m = 1, · · · 4 αφαιρούνται από αυτόν. Λαμβάνοντας υπόψη της μετατροπή για να
αποφεύγονται μη αντιστρέψιμοιKs

rr πίνακες, οι προτεινόμενοι FETI-DP, P-FETI-DP επιλύτες
χρησιμοποιούν το σύνολο

Mc = Mc,std ∪ (Mb ∩MH)
4⋃

m=1

(Mb ∩MTm) (67)

ως γωνιακούς β.ε. Χωρίς αυτή τη μετατροπή, οι επίμαχες μεθοδοι υποφορέων παρουσιάζουν ση-

μαντική αύξηση στις επαναλήψεις που απαιτούνται για σύγκλιση. Στα αριθμητικά παραδείγματα

παρατηρείται αύξηση ως και 245%. Χρησιμοποιώντας την εξίσωση (67) για ορισμό των γωνια-

κών β.ε., εξαφανίζεται πλήρως η κακή κατάσταση λόγω ΕΜΠΣ και οι προτεινόμενοι FETI-DP,
P-FETI-DP επιλυτών σταματούν να είναι ευαίσθητοι στην θέση και των αριθμό των εμπλου-
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Σχήμα 0.17: Οι συνοριακοί κόμβοι που εμπλουτίζονται με συναρτήσεις Heaviside και αιχμής-
ρωγμής, μετατρέπονται σε γωνιακούς, για να αποφευχθούν μη αντιστρέψιμοι πίνακες Ks

rr στις

FETI-DP, P-FETI-DP.

τισμένων κόμβων. Επιπλέον, αποφεύγοντας την αύξηση των επαναλήψεων, αποκαθίσταται η

κλιμακωσιμότητα των FETI-DP, P-FETI-DP, δηλαδή οι επανλήψεις μειώνονται όσο αυξάνο-
νται οι υποφορείς. Αυτό επιτρέπει την υλοποίηση των προτεινόμενων επιλυτών σε περιβάλλοντα

κατανεμημένης μνήμης, όπου η υπολογιστική ισχύς και η διαθέσιμη μνήμη μπορούν να αυξάνο-

νται αυθαίρετα, απλά προσθέτοντας νέους υπολογιστές. Η ικανότητα να ανατίθενται πολλοί

υποφορείς σε όλους τους διαθέσιμους επεξεργαστές, χωρίς να αυξάνονται οι επαναλήψεις για

σύγκλιση, είναι απαραίτητη για την εκμετάλλευση των συστημάτων κατανεμημένης μνήμης και

καθιστά τους προτεινόμενους επιλύτες πολύ ελκυστικούς για την επίλυση προβλημάτων μεγάλης

κλίμακας.

Στην περίπτωση ψαθυρής διάδοσης ρωγμών με ΕΜΠΣ, όπου λίγα μόνο στοιχεία των πινάκων

δυσκαμψίας αλλάζουν από το ένα βήμα στο επόμενο, είναι δυνατή περεταίρω βελτίωση απόδοσης

είναι. Αυτά τα στοιχεί αντιστοιχούν σε εμπλουτισμένους β.ε. κοντά στο μέτωπο της ρωγμής,

συγκεκριμένα β.ε. Heaviside και αιχμής-ρωγμής που εισάγονται στο τρέχον βήμα διάδοσης,
καθώς και β.ε. αιχμής-ρωγμής που είχαν εισαχθεί στο προηγούμενο βήμα, αλλά στο τρέχον

αφαιρούνται. Στους προτεινόμενους επιλύτες FETI-DP, P-FETI-DP σολvερς, πολλοί υποφορείς
δεν αλληλεπιδρούν με το μέτωπο της ρωγμής σε κάθε βήμα διάδοσης. Στην περίπτωση αυτή,

όλοι οι αντίστοιχοι πίνακες, διανύσματα και λοιπά δεδομένα των υποφορέων παραμένουν ίδια με

το τελευταίο βήμα που άλλαξαν και μπορούν να επαναχρησιμοποιηθούν. Επίσης, προτείνεται

εδώ μία τεχνική επαναρχικοποίησης για τα συνοριακά προβλήματα των FETI-DP, P-FETI-DP,
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προκειμένουν να μειωθούν οι επαναλήψεις. Συγκεκριμένα, κατά την επίλυση του συνοριακού

προβλήματος της P-FETI-DP, χρειάζεται μια αρχική εκτίμηση του διανύσματος λύσης ũb για

την πρώτη επανάληψη ΠΣΚ. Στο πρώτο βήμα διάδοσης, ως αρχική εκτίμηση χρησιμοποιείται το

μηδενικό διάνυσμα ũt=0
b = 0. ΄Εστω ut

b η λύση τους συνοριακού προβλήματος κατά το βήμα t

ut
b =

[
ut

std ut
H ut

T

]
(68)

όπου ut
std είναι οι μετατοπίσεις στους συμβατικούς β.ε., u

t
H στους Heaviside συνοριακούς β.ε.

και ut
T στους συνοριακούς β.ε. αιχμής-ρωγμής. Τότε οι μετατοπίσεις στους συμβατικούς και

Heaviside β.ε. μπορούν να χρησιμοποιηθούν ως αρχική εκτίμηση της λύσης του επόμενου
βήματος διάδοσης

ũt+1
b =

[
ũt+1

std ũt+1
H1 ũt+1

H2 ũt+1
T

]
=
[
ut

std ut
H 0 0

]
(69)

όπου ũt+1
H1 αντιστοιχούν στους Heaviside συνοριακούς β.ε. που υπάρχουν κατά τα βήματα t και

t+1, ενώ ũt+1
H2 αντιστοιχούν στους Heaviside συνοριακούς β.ε. που προστίθενται κατά το βήμα

t+ 1. Αντίθετα, τα ũt+1
H2 και ũ

t+1
T αντιστοιχούν σε β.ε. που δεν είναι παρόντες κατά το βήμα t,

οπότε η αρχική εκτίμηση για αυτούς είναι 0. Παρόμοια τεχνική επαναρχικοποίησης προτείνεται
για την FETI-DP, όπου το συνοριακό πρόβλημα εκφράζεται σε όρους πολλαπλασιαστών La-
grange, που εφαρμόζονται στου συνοριακούς-υπόλοιπους β.ε., αντί για όλους τους συνοριακούς
β.ε. στην P-FETI-DP. Χησιμοποιώντας την εξίσωση (67), όλοι οι εμπλουτισμένοι συνοριακοί-
υπόλοιποι β.ε. μετατρέπονται σε γωνιακούς, επομένως οι αντίστοιχοι πολλαπλασιαστές La-
grange αφαιρούνται. Αυτό διεκυολύνει την τεχνική επαναρχικοποίησης, αφού εξασφαλίζει ότι
το συνοριακό πρόβλημα της FETI-DP εμπλέκει μόνο συμβατικούς συνοριακούς-υπόλοιπους
β.ε., οι οποίει είναι ίδιοι σε όλα τα βήματα διάδοσης της ρωγμής. ΄Ετσι το συνολικό διάνυ-

σμα λύσης κατά ένα βήμα διάδοσης μπορεί να επαναχρησιμοποιηθεί ως αρχική εκτίμηση για το

επόμενο βήμα

λ̃t+1 = λt
(70)

Στα αριθμητικά παραδείγματα της παρούσας διατριβής, η τεχνική επαναρχικοποίησης μπορεί

να ελαττώσειτις επαναλήψεις ΠΣΚ κατά 40% για τη P-FETI-DP και 37% για τη FETI-DP.
Σε συνδυασμό με την επαναχρησιμοποίηση πινάκων και δεδομένων των υποφορέων από προη-

γούμενα βήματα, ο χρόνος που απαιτείται για επίλυση μπορεί να μειωθεί κατά 50% και για τις
δύο μεθόδους.
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Chapter 1

Introduction

1.1 XFEM for modeling heat transfer in

nanocomposite materials

The development of polymer materials with high thermal conductivity is of great interest to
many industrial sectors, including chemical, construction, electronics, automotive, aerospace
and energy industries. As most polymers are thermal insulators, it is necessary to add ther-
mally conductive fillers in order to improve their thermal properties. Towards this direction,
carbon-based nanomaterials such as graphene (G), graphite (GRF) and carbon nanotubes
(CNTs), stand out as ideal candidates for inclusions in reinforced composites (RCs) due to
their extraordinary thermal conductivity. In particular, CNTs are expected by the scientific
community to have the highest thermal conductivity amongst conductive materials (Che
et al., 2017; H. Chen et al., 2016), reaching thermal conductivity values between 2000-6000
Wm−1K−1, which is higher than diamond, graphite and carbon-fibers (Berber et al., 2000;
Hussain et al., 2017; W.-b. Zhang et al., 2015).

Based on the above, several authors postulated that CNTs can make a polymer nanocom-
posite thermally conductive (Ajorloo et al., 2019; Liao et al., 2015; G. Zhang et al., 2010),
provided that these are properly aligned. However, experimental investigations showed that
by adding CNTs to polymers, the increase in the effective conductivity of the composite is
significantly below theoretical expectations (Gojny et al., 2006; Konstantopoulos et al., 2021;
Moisala et al., 2006; Xie, 2007; Yunsheng et al., 2006). This discrepancy between theoretical
predictions and experimental measurements can be explained by the interface thermal con-
ductivity or conductance (Chalopin et al., 2009; Marcos-Gómez et al., 2010; Yvonnet et al.,
2011), which is a phenomenological parameter used for modeling imperfect interfaces. The
impact of imperfect interfaces in the effective conductivity of CNT reinforced composites,
has also been investigated in several simulations using finite element methods (Kamiński &
Ostrowski, 2021) or atomistic approaches (Carlborg et al., 2008; Kumar & Murthy, 2009;
Saha & Shi, 2007; Zhong & Lukes, 2006), which reported very low conductance (equivalently,
high resistivity) values, mostly attributed to the phonon scattering mechanism arising at the
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interfaces between CNTs and the surrounding polymer matrices (Marconnet et al., 2013).
This ‘in silico’ characterization of heterogeneous composite materials is becoming more

and more accessible nowadays, with the increase in computational resources. Simulation-
based material design can efficiently replace the experimental procedure and, thus, minimize
the required time and cost for the development of new materials with desirable target prop-
erties. On the downside, accurately modeling the behavior of such materials is a very chal-
lenging computational mechanics problem due to the complexity of the physical phenomena
arising in multiple scales (nano-, micro-, macroscale) and the uncertainties in the material
parameters and microstructural geometry.

When working with composite materials, effective properties are usually pursued by ho-
mogenizing their physical properties in some volume average quantities. Based on a known
topology of the composite’s microstructure and the physical-mechanical properties of its
components, effective properties are usually extracted either analytically, using formulas, or
numerically, using modern computational tools. Analytical solutions are mostly limited to
simplified cases with ideal geometries, while numerical methods can handle more complex
and realistic cases. A key concept in the numerical analysis of composite materials is the
representative volume element (RVE), which is the smallest volume over which a measure-
ment can be made that will yield a value representative of the whole. Typically, the behavior
of RVEs is estimated using the finite element method (FEM) and through the process of
homogenization (Geers et al., 2010; Miehe & Koch, 2002), the macroscopic properties of the
composite material are obtained. This generic approach is applicable to all types of mate-
rial characterization, thermal (Wu et al., 2013), mechanical (Papadopoulos & Impraimakis,
2017) and electrical (Seidel & Puydupin-Jamin, 2011).

In the framework of FEM, the process of generating RVEs of multi-phase heterogeneous
materials relies on the use of advanced mesh generators to design the mesh around the
different phases. In this case, the finite element mesh is generated such that the element
boundaries have to conform to the geometry of the interface between the phases. This ap-
proach is often time consuming and difficult to improve. More importantly, it leads to an
excessive number of elements, since such conforming meshes need significant refinement to
accurately discretize the inclusion geometries, especially the more complex ones, which intro-
duces additional mesh sensitivity issues and leads to a substantial increase in the computing
cost of the FEM analysis. In addition, the zones, where two or more phases are in contact, re-
quire appropriate surface elements to capture their interaction. For instance, cohesive zones
(Papadopoulos et al., 2017; Savvas & Papadopoulos, 2014), coherent interfaces with surface
energy effects (Yvonnet et al., 2008) and equivalent eigenstrains for a coating layer at the
interfaces (Benvenuti, 2014) are introduced for mechanical interaction. Similarly, conductive
heat transfer across the boundaries of the phases exhibiting Kapitza thermal resistance is
modeled in Yvonnet et al. (2011). To address these limitations of FEM, several automatic
mesh generation techniques have been developed (Golias & Dutton, 1997; Talischi et al.,
2012; Y. Zhang et al., 2010), but they could still face significant challenges for complex
microstructural topologies.

The first half of this dissertation focuses on simulating conductive heat transfer in het-
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erogenous multi-phase materials with complex microstructural topologies, using the extended
finite element method (XFEM). XFEM was originally developed by Belytschko and Black
(1999) and Daux et al. (2000) in an effort to remedy the meshing issues posed by FEM
in crack propagation analysis, but has also been successfully applied to problems involving
material interfaces (Beese et al., 2018; Moës et al., 2003; Sukumar et al., 2001). Moreover,
XFEM is particularly suitable for problems requiring repeated simulations for different real-
izations of the RVE’s microstructure, since there is no need to generate a new finite element
mesh at each simulation (Savvas et al., 2014). In the applications investigated in this dis-
sertation, the interactions between different material phases must be modelled, as well as
the existence of interfacial resistance at their boundaries, which produces discontinuities in
the temperature field. To this end, an XFEM formulation is developed in two publications:
Bakalakos et al. (2020) and Bakalakos et al. (2022), with a novel enrichment strategy and an
efficient implicit representation of the complex microstucture of a composite material’s RVE.
Even though the proposed method is demonstrated in heat conduction problems, it can be
straightforwardly extended to other similar type problems, such us electrical conduction or
elasticity problems with cohesive interfaces.

The proposed methodology offers a series of advantages over traditional FEM modeling.
First, it does not require advanced mesh generators and complex refined meshes, since it em-
ploys a simple and coarse, thus cost-efficient, mesh for XFEM, while the complex geometry
of the material interfaces is represented with the Level Set Method (LSM) on a second mesh
that is much finer and related to the coarse XFEM mesh. LSM is an implicit method to
describe curves and geometries, which was developed in Osher and Sethian (1988) and first
used in conjuction with XFEM in Stolarska et al. (2001) and Sukumar et al. (2001). The
double-mesh approach adopted in this dissertation allows high accuracy in the representation
of inclusions with arbitrarily complex 2D and 3D geometries, without increasing the com-
puting cost of XFEM analysis. Furthermore, the discontinuities in the temperature field are
captured via appropriate enrichment functions used in the XFEM approximation, instead
of using specialized surface boundary elements, and different interfacial resistances can be
assigned to all phase surfaces that are in contact. Similar approaches to treat boundary in-
teractions in the context of XFEM can be found in Yvonnet et al. (2011), where the Kapitza
thermal resistance at a simple interface between two materials was modeled. Also, Bansal
et al. (2019) investigates the case of multiple inclusions which interact with the matrix but
not with each other. Extending previous approaches, in this research, a novel XFEM enrich-
ment scheme is developed for the case of junctions, that is, areas where multiple boundaries
with different interface resistance intersect.

Moreover, another property of CNTs is that they act as heterogeneous nucleating agents
for polymer crystallizing along the interface. This induces the formation of a transcrystalline
layer that surrounds the CNT in a process known as CNT-induced polymer crystallization (S.
Zhang et al., 2008). This layer has improved thermal properties compared to the amorphous
polymer, which affects the overall thermal conductivity of the composite. On the other hand,
its formation is associated with great uncertainties regarding its shape around the individual
CNTs. Therefore, modeling heat transmission between CNTs and surrounding matrix by
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employing imperfect interfaces with equivalent conductance that takes into account this
phenomenon is an alternative, reasonably reliable approach.

Due to the aforementioned complexities, interfacial thermal conductance cannot be ac-
curately predicted through experimental setups or numerical models based on methods of
molecular dynamics. In this dissertation, the conductance of the interface between CNTS
and the polymer matrix is treated as a model parameter and its value is inferred based on
experimental measurements of other directly measurable quantities. The general premise
behind model parameter identification is to calibrate the parameters of a detailed numerical
model so as to agree with experimental measurements. This approach has been extensively
used for the purposes of material characterization to identify the values of parameters that
are not directly observable (Bogdanor et al., 2015; Bogdanor et al., 2013; Pyrialakos et al.,
2021; Savvas et al., 2020). For instance, in Pyrialakos et al. (2021) the mechanical interac-
tions properties between polymers and CNTs at the microscopic level were obtained, based
on deformation measurements of macroscopic structures comprised of the CNT-reinforced
polymer. In this dissertation, the focus is on modeling heat transfer in CNT-reinforced
polyethylene (PE), and the unknown value of the interfacial conductance is calibrated using
the experimental results on the effective conductivity of the reinforced composites provided
by Konstantopoulos et al. (2021). Once the value of the interface conductance is inferred, the
data-informed model is then employed for the investigation of optimal CNT configurations
in the parent material that will provide upper bounds on the effective thermal conductivity
CNT-reinforced polymers can achieve.

1.2 XFEM for crack propagation analysis in high

performance environments

The extended finite element method used so far was actually originally developed by Be-
lytschko and Black (1999) and Moës et al. (1999) for analyzing brittle crack propagation in
2D problems. In this context, the polynomial approximation space of XFEM is enriched with
problem specific functions, in order to accurately model the discontinuous displacement field
and the singular strain/stress field around a crack. These enriched basis functions correspond
to additional degrees of freedom (DOFs), which are introduced around a crack and are called
enriched DOFs to differentiate from the standard DOFs that express nodal displacements.
As elaborated in Moës et al. (1999), the mesh is independent from the crack geometry and
does not have to conform to it. Thus, simple structured or unstructured meshes can be used
without the need of remeshing, whenever the crack grows, and mapping the displacement
field between the old and new meshes, which would result in lower accuracy.

Ever since, XFEM has become one of the most popular methods to simulate fracture
phenomena, with brittle as well as cohesive (Moës & Belytschko, 2002) or plastic (Elguedj
et al., 2006) material behavior and even thermo-mechanical coupling (Duflot, 2008). Branch-
ing and intersecting cracks can also be modeled with the addition of specialized enrichment
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functions Daux et al. (2000). Apart from crack propagation, with the selection of appro-
priate, problem-specific enrichment functions, XFEM has been extended to a wide range
of applications, such as modeling composite materials, as discussed in the previous para-
graphs, fluid-structure interaction (Gerstenberger & Wall, 2008), contact problems (Khoei
et al., 2009), topology optimization (Abdi et al., 2017; Villanueva & Maute, 2014), where it
can produce efficient structures without requiring very fine meshes, and probabilistic shape
optimization (Georgioudakis et al., 2017).

XFEM is almost always coupled with the Level Set Method (LSM) for representing the
geometry of discontinuities, such as cracks or material interfaces. LSM was originally pro-
posed by Osher and Sethian (1988) in order to implicitly describe moving curves or surfaces
as the zero contour of a signed distance function (distance of points to the curve/surface),
evaluated over a fixed mesh. This approach can be naturally combined with XFEM, since it
uses the same mesh to determine which elements and nodes interact with the discontinuities,
as well as providing a very efficient way to determine on which side of the discontinuity an ar-
bitrary point lies. The first combination of XFEM and LSM was developed in Stolarska and
Chopp (2003) for simple 2D cracks, but has since been extended to 3D problems (Gravouil
et al., 2002). A number of improvements have emerged, such as the fast marching method
(Chopp & Sukumar, 2003) and the vector level set (Ventura et al., 2003). Last but not least,
Fries and Baydoun (2012) propose a hybrid implicit-explicit approach, to combine both the
straightforward update of an explicit crack description and the compatibility of an implicit
description with XFEM, while treating both 2D and 3D cracks in a consistent manner.

Despite its general success, XFEM has certain shortcomings, especially with regards to
the solution of the resulting linear systems of equations. The local enrichment scheme of
XFEM introduces additional DOFs only around a crack, which avoids redundantly increasing
the size of the resulting linear system. However, the enriched basis functions, particularly
those introduced to model the singular strain/stress field around the crack front, cause the
stiffness matrix to become very ill-conditioned. Therefore, iterative solvers exhibit slow
convergence for crack propagation problems. Although direct solvers are not affected as
much from this ill-conditioning, they are inefficient in 3D problems, where the bandwidth
of the stiffness matrix is much higher, resulting in dramatically increased time and memory
required for factorizing it. In order to address the need for solvers that can efficiently solve
linear systems resulting from XFEM, various specialized solvers have been developed.

Bechet et al. (2005) developed a preconditioning scheme, based on the Cholesky decom-
position of certain node-level submatrices of the global stiffness matrix. This preconditioner
can then be used to improve the convergence rate of standard iterative solvers and is indepen-
dent from the type of enrichment function used. Similarly, in Lang et al. (2014), a low-cost
geometric preconditioner constructed from the nodal basis functions is proposed to eliminate
the ill-conditioning caused by the Heaviside enrichment in problems with material interfaces.
As far as direct solvers are concerned, Pais et al. (2012) implemented an exact reanalysis
Cholesky solver which updates the factorized matrix at each crack propagation step, instead
of rebuilding and refactorizing at the global level. Another reanalysis-type algorithm is fea-
tured in Feng and Han (2019), where the transfer operations of a geometric multigrid solver
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are established at the beginning of the analysis and then reused at each crack propagation
step. The method presented in Gravouil et al. (2008) was also based on geometric multigrid,
but added finer mesh patches around small cracks. Moreover, the algebraic multigrid solver
of Hiriyur et al. (2012) modifies the sparsity pattern of the prolongator operator to prevent
interpolation across cracks. In contrast, Gerstenberger and Tuminaro (2013) introduced a
simple modification of algebraic multigrid, in order to use black-box AMG software.

Domain decomposition methods (DDM) are widely considered as the most computation-
ally efficient solvers for large-scale problems, particularly in parallel computing architectures.
The first DDM for XFEM crack propagation was proposed in Wyart et al. (2008) with
the aim of reusing existing FEM software for problems with small isolated cracks, rather
than developing a high performance solver for demanding problems with cracks propagating
throughout the whole domain. This technique was based on the FETI method (Farhat &
Roux, 1991), using only two subdomains, a large uncracked subdomain, assigned to a general
purpose FEM software and a smaller subdomain, located around a crack which is modelled
with XFEM. A more performance-oriented approach was proposed by Menk and Bordas
(2011), where the domain was separated into one subdomain containing all standard DOFs
and multiple subdomains containing the enriched ones. Cholesky factorization was applied
to stiffness matrices of enriched subdomains and QR factorization to matrices connecting
them with the large monolithic subdomain with standard DOFs. The resulting DD matrix
was used as a preconditioner, which was effective at reducing the number of iterations in 2D
problems, but did not scale well, since the convergence rate decreased when increasing the
number of subdomains.

Furthermore, Waisman and Berger-Vergiat (2013) implemented a multiplicative Schwarz
domain decomposition preconditioner to accelerate the convergence of a generalized min-
imum residual solver in 2D problems. The domain was partitioned into one uncracked
subdomain, which was treated with an algebraic multigrid approach, and many smaller sub-
domains defined around cracks, which were concurrently solved with direct methods. A
similar approach for 2D crack propagation problems was presented by X. Chen and Cai
(2022), where the preconditioner was based on an additive Schwarz DD solver. This method
used LU factorization for subdomains with enriched DOFs and incomplete LU for subdo-
mains with standard DOFs. Even though the cracked subdomains were still dependent on
the locations of cracks, multiple uncracked subdomains could be used. Neither Waisman
and Berger-Vergiat (2013) nor X. Chen and Cai (2022) scaled well with the number of sub-
domains, since by increasing the subdomains, an increase on the required iterations was
observed.

In this dissertation, the modification of two well-established domain decomposition solvers,
namely the FETI-DP (Farhat et al., 2000) and P-FETI-DP (Fragakis & Papadrakakis, 2003),
is proposed in order to solve the linear systems resulting from 3D XFEM crack propagation
analysis. Instead of decomposing the domain into cracked and uncracked subdomains, the
domain is partitioned into an arbitrary number of load-balanced subdomains, independently
from the location of cracks, while treating both standard and enriched DOFs consistently.
The customizable coarse problem of FETI-DP and P-FETI-DP enables the introduction of
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XFEM-specific modifications that eliminate the ill-conditioning caused by the enrichment
functions, as well as any singularities that the cracks may induce as they propagate through-
out subdomains. The reduced bandwidth of subdomain-level stiffness matrices, afforded by
the flexible partitioning, results in a drastic decrease of computing time and memory require-
ments for solving large-scale 3D crack propagation problems. Furthermore, the subdomain-
level matrices and the linear system solution of one crack propagation step are reused, in
order to reduce the computing effort and iterations of the next step. In contrast to all previ-
ous DDM implementations for XFEM crack propagation, the solvers proposed in this work
exhibit excellent numerical scalability, when increasing the number of subdomains.

This scalability is essential for efficiently implementing them in modern high perfor-
mance computing environments, where the available memory and processing power can be
arbitrarily increased by including additional multicore CPUs and GPUs in distributed mem-
ory systems. In order to take advantage of these computer clusters, this dissertation modifies
the equations of the original FETI-DP and P-FETI-DP methods, altering the communica-
tion pattern between subdomains. Specifically, algebraic operations, involving matrices and
vectors that contain terms from all subdomains, are replaced with equivalent operations
between neighboring subdomains only. As a result, memory transfers are minimized and
distributed evenly across the network of processors, while global operations, which require
a centralized processor to gather and process data from all subdomains, thus becoming a
possible bottleneck, are avoided.

1.3 Outline

Besides this introductory chapter, the rest of this dissertation is organized in 6 chapters,
outlined as follows:

Chapter 2 presents the proposed XFEM methodology for simulating conductive heat
transfer in composites with complex geometries. After presenting the boundary value prob-
lem of heat transfer, the procedure of traditional FEM is explained, along with its limitations.
Then XFEM is used to solve this problem, with simple non-conforming meshes, while tak-
ing into account the thermal resistance of interfaces between different material phases. The
novel enrichment strategy to capture the discontinuous temperature field near junctions of
3 or more material phases is elaborated and the final algebraic equations of XFEM are ex-
tracted. Special attention has been given to the numerical integration in this discontinuous
medium, as well as along the material interfaces. Finally, an LSM variation that uses a ded-
icated mesh for geometric operations is developed, in order to achieve the desired accuracy
in representing material interfaces, without increasing the computational cost of XFEM.

Chapter 3 presents a series of numerical applications, where the methodology of chapter 2
is employed. Initially, the method of computational homogenization is presented to extract
the macroscopic conductivity from a micro-scale RVE. Then, the proposed XFEM-based
numerical model is validated against FEM in a synthetic benchmark and against existing
results from the literature on heat conduction in multigrain materials. Specifically, poly-
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crystalline silicene is studied, a material consisting of many silicene crystallites (grains) of
varying size and orientation. Subsequently the proposed formulation is applied to the more
demanding case of estimating the effective conductivity of a polymeric material reinforced
with carbon nanotubes. The effect of the thermal conductance of interfaces between dif-
ferent materials on the effective thermal conductivity of the material is investigated in 2D
and 3D problems. Moreover, the unknown values of the parameters of the numerical model
are calibrated using experimental measurements in polyethylene-CNT nanocomposites and
optimal CNT configurations that maximize thermal conductivity are sought.

Chapter 4 reviews crack propagation analysis in the framework of XFEM. The strong
and weak form of the boundary value problem are posed and the problem-specific Heaviside
and crack-tip enrichment functions, used in the XFEM formulation, are described. A hybrid
explicit-implicit method for representing 2D and 3D cracks, which was proposed in Fries and
Baydoun (2012), is explained and then some modifications are introduced, in order to make
it more robust. Finally, two alternative ways to predict the crack propagation path, after
the XFEM solution of each step, are examined.

Chapter 5 is concerned with algorithms used to solve the systems of algebraic equations
resulting from FEM and XFEM analysis. First, well-established solvers developed for FEM
are reviewed. These belong to three categories: direct solvers, iterative solvers and domain
decomposition methods (DDM). Then DMM solvers, based on FETI-DP and P-FETI-DP,
are proposed for the linear systems resulting from crack propagation analysis in the frame-
work of XFEM. The problem-specific difficulties, namely singular matrices in subdomains
intersected by cracks and severe ill-conditioning due to the XFEM enrichment, are eliminated
by introducing appropriate modifications to the coarse problem of FETI-DP and P-FETI-
DP. Furthermore, optimizations with respect to the computing cost and convergence rate
are proposed, by reusing computations and solutions of one propagation step to improve
the performance of the solvers in the next steps. Moreover, an efficient implementation of
the proposed FETI-DP and P-FETI-DP solvers is developed for computer clusters, where
multiple computers, each with its own processors and memory, cooperate over a network to
solve a common problem. Specifically, the original equations of both solvers are altered to
reduce data transfers between computers, which host subsets of the total subdomains, and
avoid possible bottlenecks, such as global operations.

Chapter 6 investigates the performance of the proposed solvers in 3D crack propagation
applications and compares them to optimized direct and iterative solvers, as well as a solver
developed specifically for XFEM crack propagation. These comparisons are performed using
a single computer with a multicore CPU and fully parallel execution of each solver. The
results justify that the proposed solvers are significantly more efficient in all cases and that
they scale well as the number of subdomains is increased. Finally, the performance and
parallel scalability of the proposed FETI-DP and P-FETI-DP solvers, when executed on a
computer cluster, are investigated.

Chapter 7 presents a summary of the contributions of this research. Lastly, Appendix
A reviews some of the basics of FEM, needed to fully comprehend the proposed XFEM
methodology of chapter 2.
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Chapter 2

XFEM for composites

2.1 Heat transfer analysis with FEM

Before investigating how to model the thermal behaviour of composite materials, this sec-
tion reviews the basic principles of heat transfer analysis with the standard Finite Element
Method (FEM), when there is only one homogeneous material.

2.1.1 The boundary value problem

Figure 2.1: Heat transfer in domain with a single material phase

Let Ω be the domain of a body composed of a single material and ∂Ω its boundary, as
illustrated in figure 2.1. The external boundary ∂Ω has an outward normal vector n and is
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divided into complementary parts ∂ΩT and ∂Ωq, such that ∂Ω = ∂ΩT ∪ ∂Ωq. Dirichlet and
Neumann boundary conditions are applied respectively on ∂ΩT and ∂Ωq

T = T̄ on ∂ΩT ,

q · n = −q̄n on ∂Ωq.
(2.1)

where T = T (x) is the (scalar) temperature field and q = q (x) is the heat flux vector
field, T̄ is the temperature prescribed at the boundary ∂ΩT and is the surface heat flux
prescribed at the boundary ∂Ωq. In the general case of an anisotropic material, the thermal
conductivity k is a second order tensor with 4 components in 2D problems

k =

[
kxx kxy
kxy kyy

]
(2.2)

and 9 components in 3D problems

k =

 kxx kxy kxz
kxy kyy kyz
kxz kyz kzz

 (2.3)

According to the reciprocity relation derived from the Onsagar’s principle of thermodynamics
of irreversible processes (Ozisik, 1993), the conductivity tensor is symmetric, thus kxy = kyx,
kxz = kzx, kyz = kzy. The constitutive relation between the temperature and heat flux in
the interior of Ω, which is also called Fourier’s law, is defined as

q (x) = −k (x) · ∇T (x) (2.4)

For a given heat source r (x), the steady-state equation governing the temperature field in
the interior of Ω is the Poisson’s equation, namely the following elliptic partial differential
equation

∇ · q (x) = r (x) (2.5)

where ∇ · q (x) is the divergence of the heat flux field. By combining the Poisson equation
(2.5) with the boundary conditions of equation (2.1) and constitutive relation of equation
(2.4), the boundary value problem (BVP) of steady-state heat transfer can be posed as: “Find
a function T (x) for the temperature field, so that the following equations are satisfied:”.

∇ · q = r in Ω
q = −k · ∇T
T = T̄ on ∂ΩT

q · n = −q̄n on ∂Ωq

(2.6)

or equivalently 
k · ∇2 T + r = 0 in Ω

T = T̄ on ∂ΩT

q · n = −q̄n on ∂Ωq

(2.7)
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2.1.2 Weak form

The system in equation 2.7 is known as the strong form of the BVP and it requires the
solution scalar field to be at least two times continuously differentiable, namely T ∈ C2(Ω).
This condition can be relaxed by using a variational formulation of the BVP, referred to as
the weak form, which conveniently incorporates the boundary conditions in the differential
equation. Let the function space of admissible temperature fields (trial function space) be

D = {T : T = T̄ on ∂ΩT} (2.8)

Also define the function space of weighting functions (test function space) as

W = {δT : δT = 0 on ∂ΩT} (2.9)

The weak form of the BVP is then posed as: “Find a trial function T ∈ D, such that for all
test functions δT ∈ W the following integral equation holds:”∫

Ω

∇δT · k · ∇TdΩ =

∫
Ω

δT r dΩ +

∫
∂Ωq

δT q̄n dΓ = 0 (2.10)

The weak form can be derived from the strong form. Assume that the solution is one of
the trial functions T ∈ D. By multiplying both sides of the Poisson equation (2.5) with an
arbitrary test function δT ∈ W and integrating over Ω we obtain

∇ · q = r ⇐⇒
∫
Ω

δT ∇ · q dΩ =

∫
Ω

δT r dΩ (2.11)

Applying the product rule of differentiation∫
Ω

∇ · (δT q)dΩ−
∫
Ω

∇δT · qdΩ =

∫
Ω

δT r dΩ (2.12)

At this point, let’s state the Divergence theorem: Given a continuous domain Ω, with external
boundary ∂Ω, outwards normal vector n on the boundary and a continuous vector function
F , the integration of its divergence over the domain is equivalent to the integration of the
function itself over the boundary∫

Ω

∇ · F dΩ =

∫
∂Ω

F · n dΓ (2.13)

By applying the divergence theorem to the first integral of equation (2.12)∫
Ω

∇ · (δT q)dΩ =

∫
∂Ω

δT q · n dΓ (2.14)
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By decomposing the integral over ∂Ω into sub-integrals over ∂ΩT and ∂Ωq and then
imposing the Neumann boundary conditions of equation (2.1), the previous equation becomes∫

Ω

∇ · (δT q)dΩ =
���������
∫
∂ΩT

δT 0 · ndΓ +

∫
∂Ωq

δT (−q̄n)dΓ (2.15)

where we have used that q (x) = 0 on ∂ΩT . Substituting back into equation (2.12)

0−
∫
∂Ωq

δT q̄n dΓ−
∫
Ω

∇δT · qdΩ =

∫
Ω

δT r dΩ (2.16)

Finally, using the constitutive relation of equation (2.4), the weak form is obtained∫
Ω

∇δT · k · ∇TdΩ =

∫
Ω

δT r dΩ +

∫
∂Ωq

δT q̄n dΓ = 0

2.1.3 FEM approximation

In practice, obtaining an exact solution T (x) of equation (2.10) is not feasible in most ap-
plications of interest, since the function spaces D and W are infinite-dimensional. Therefore
FEM seeks approximate solutions T h (x) that belong to finite-dimensional spaces, using the
Galerkin approximation

Dh = {T ∈ H1(Ω) : T = T̄ on ∂ΩT} ⊆ D (2.17)

The test functions are treated similarly

Wh = {δT ∈ H1(Ω) : δT = 0 on ∂ΩT} ⊆ W (2.18)

where H1(Ω) are Hilbert spaces, that is they contain smooth functions over Ω that are square
integrable themselves and have square integrable derivatives of order = 1. Then the problem
reduces to finding the best approximation T h ∈ Dh such that equation (2.10) is satisfied
for all test functions δT ∈ Wh. Because Dh and Wh are finite-dimensional spaces, they
are spanned by a finite number of basis functions {N1,N2, · · · }. Therefore, the Galerkin
approximation consists of searching for an approximate trial function T h ∈ Dh, which can be
expressed as a linear combination of these basis functions, as can the test functions δT h ∈ Wh

T h (x) = a1N1 (x) + a2N2 (x) + · · ·
δT h (x) = b1N1 (x) + b2N2 (x) + · · ·

(2.19)

The basis functions {N1,N2, · · · } are chosen according to the problem and the Galerkin
method used. Then, finding the approximate solution T h reduces to identifying the coeffi-
cients {a1, a2, · · · } that minimize the error

∥∥T h − T
∥∥. The coefficients {b1, b2, · · · } are not
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calculated, since they are different for each test function δT h and the weak form equation
(2.10) must hold for all of them. Taking into account these approximations, the finite-
dimensional weak form (also called the Galerkin weak form) will be used in the remainder
of this section ∫

Ω

∇δT h · k · ∇T hdΩ =

∫
Ω

δT h r dΩ +

∫
∂Ωq

δT h q̄n dΓ = 0 (2.20)

Figure 2.2: An unstructured finite element mesh, consisting of triangular elements.

In FEM, the domain Ω is decomposed into a number of non-overlapping patches Ωe called
finite elements, such as the triangles illustrated in figure 2.2. The vertices of these elements
are called nodes and the set of all nodes of the domain will be referred to asM . If the number
of finite elements is ne, then the domain Ω and its external boundary ∂Ωq are decomposed
into

Ω =

ne⋃
e=1

Ωe

∂Ωq =

ne⋃
e=1

∂Ωqe

(2.21)

where ∂Ωqe is the part of ∂Ωq that coincides with an edge (2D) or face (3D) of element
e, as depicted in figure 2.2. If an element has fewer than two (2D problems) or three (3D
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problems) nodes that lie on the boundary ∂Ωq, then ∂Ωqe = 0. ∂ΩT can be partitioned
similarly, but is of no interest for now. The integrals of the finite-dimensional weak form
equation (2.20) can also be decomposed into

ne∑
e=1

∫
Ωe

∇δT h · k · ∇T hdΩ =

ne∑
e=1

∫
Ωe

δT h r dΩ +

ne∑
e=1

∫
∂Ωqe

δT h q̄n dΓ (2.22)

FEM is a Galerkin method that employs piecewise polynomials Nk (x) as basis func-
tions, which are defined for each node of each element. These are commonly called shape
functions and are usually Lagrange polynomials that degenerate to 0 outside their corre-
sponding element. The trial and test functions can now be expressed with respect to the
basis functions

T h (x) =
∑
k∈M

Nk (x)Tk (2.23)

δT h (x) =
∑
k∈M

Nk (x) δTk (2.24)

where Nk is the polynomial basis function of node k and Tk, δTk are the unknown coefficients
defined for the basis function of node k. Such a coefficient is referred to as a degree of freedom
(DOF) and represents the temperature at node k. Equation (2.23) calculates the temperature
field at any point of the domain, using the basis functions and DOFs defined at all nodes. Of
course the basis functions are 0 outside the element they are defined in. Inside each element
Ωe

T h (x) =
∑
k∈Me

Nk (x)Tk

δT h (x) =
∑
k∈Me

Nk (x) δTk
(2.25)

where Me is the set of nodes of element e. It is more convenient to work with the matrix-
vector form of the above equations

T h (x) = N (x) · de

δT h (x) = N (x) · δde

(2.26)

where N (x) is a row vector containing the shape functions of all nodes of element e and de,
δde are vectors containing the DOFs of the element:
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N (x) =
[
· · · Nk (x) · · ·

]
de =


...
Tk
...

 δde =


...
δTk
...

 (2.27)

Also consider that all DOFs of the domain, namely the values of the trial and test solution
at all nodes, are gathered in the global vectors d and δd. To extract the element vector from
the corresponding global vector we use

de = Pe · d
δde = Pe · δd

(2.28)

where Pe is a boolean matrix, namely it contains only 0 or 1 entries, that correlates each
element DOF (row of Pe) to one exactly global DOF (column of Pe). Therefore, the approx-
imation of the temperature field can be rewritten as

T h (x) = N (x) · de = N (x) · Pe · d
δT h (x) = N (x) · δde = N (x) · Pe · δd

(2.29)

The derivatives of the discretized trial and test function in matrix-vector form are

∇T h (x) = B (x) · de = B (x) · Pe · d
∇δT h (x) = B (x) · δde = B (x) · Pe · δd

(2.30)

where matrix B (x) contains the derivatives of the shape functions for each node

B (x) =


· · ·

∂Nk (x)

∂x
∂Nk (x)

∂y

∂Nk (x)

∂z

· · ·


(2.31)

In matrix-vector form, the tensor multiplication ∇δT h · k · ∇T h of equation (2.22) is

written as a row vector × a matrix × a column vector:
(
∇δT h

)T · k · ∇T h. Also δT h is a

scalar, thus δT h =
(
δT h

)T
. Therefore, equation (2.22) is written as

ne∑
e=1

∫
Ωe

(
∇δT h

)T · k · ∇T hdΩ =

ne∑
e=1

∫
Ωe

(
δT h

)T
r dΩ +

ne∑
e=1

∫
∂Ωqe

(
δT h

)T
q̄n dΓ (2.32)
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Combining all equations above, we obtain the matrix-vector form of the finite-dimensional
weak form used in FEM

ne∑
e=1

∫
Ωe

(B (x) · Pe · δd)T · k (x) · (B (x) · Pe · d) dΩ

=

ne∑
e=1

∫
Ωe

(N (x) · Pe · δd)T r (x) dΩ

+

ne∑
e=1

∫
∂Ωqe

(N (x) · Pe · δd)T q̄n (x) dΓ

(2.33)

Pulling the constants out of the corresponding integrals and summations:

���δdT ·


ne∑
e=1

P T
e ·
(∫

Ωe

BT (x) · k (x) ·B (x) dΩ

)
· Pe

 · d

=���δdT ·

ne∑
e=1

P T
e ·
(∫

Ωe

NT (x) r (x) dΩ

)

+���δdT ·

ne∑
e=1

P T
e ·

(∫
∂Ωqe

NT (x) q̄n (x) dΓ

)
(2.34)

At this point, we should define the element-level conductivity matrix

Ke =

∫
Ωe

BT (x) · k (x) ·B (x) dΩ (2.35)

and the element-level thermal load vectors

fre =

∫
Ωe

NT (x) r (x) dΩ

fqe =

∫
∂Ωqe

NT (x) q̄n (x) dΓ
(2.36)

By assembling all element-level conductivity matrices Ke, we obtain the global conduc-
tivity matrix K, which expresses the thermal conductivity of the whole discretized domain
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K =
ne∑
e=1

P T
e ·Ke · Pe =

ne∑
e=1

P T
e ·
(∫

Ωe

BT (x) · k (x) ·B (x) dΩ

)
· Pe (2.37)

Similarly we assemble all element-level vectors fre, fqe into a global vector f that repre-
sents the thermal loads due to the heat source r (x) and the surface heat flux q̄n (x)

f =
ne∑
e=1

P T
e · (fre + fqe) =

ne∑
e=1

P T
e ·

(∫
Ωe

NT (x) r (x) +

∫
∂Ωqe

NT (x) q̄n (x)

)
(2.38)

Finally, equation (2.34) is rewritten as a linear system:

K · d = f (2.39)

To take the Dirichlet boundary conditions into account, the prescribed nodal tempera-
tures Tk = T̄ are removed from the vector d, which will then contain only unknown nodal
temperatures. The corresponding rows and columns are also removed from the matrix K
and vector f . As a result, the domain is adequately supported and the linear system of
equation (2.39) is positive definite. Therefore, there is a unique solution for the nodal tem-
peratures d. Solving this linear system is an interesting topic that will be explained in detail
in later chapters. Once the nodal temperatures d have been calculated, the temperature and
heat flux fields at any point in the domain can be approximated using equations (2.23) and
(2.4).

2.2 Multi-phase heat transfer analysis with XFEM

This section describes how to model heat transfer in composites consisting of multiple mate-
rial phases, the interfaces between which exhibit thermal resistance. A novel approach based
on the Extended Finite Element Method (XFEM) is proposed and compared with standard
FEM.

2.2.1 The boundary value problem

Let a body Ω be divided into np material phases Ω(1), Ω(2), ... Ω(np), separated by nb

interfaces Γ(1), Γ(2), ... Γ(nb). Each interface Γ(b) will be written as Γ(ij) ≡ Γ(ji) to signify
that it separates the solid phases Ω(i), Ω(j). An example with three phases is illustrated in
figure 2.3. The external boundary ∂Ω of the whole domain has an outward normal vector

n and consists of the external boundaries of individual phases ∂Ω =
np⋃
i=1

∂Ω(i). Each of
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Figure 2.3: Heat transfer in domain with multiple material phases

these boundaries is further divided into complementary parts ∂Ω
(i)
T and ∂Ω

(i)
q , such that

∂Ω(i) = ∂Ω
(i)
T ∪ ∂Ω(i)

q . It is possible that a phase Ω(i) is entirely internal, namely it does not
have any common points with the external boundary ∂Ω and is bounded only by material
interfaces Γ(ij). In this case, ∂Ω(i) = ∂Ω

(i)
T = ∂Ω

(i)
q = ∅. Otherwise, Dirichlet and Neumann

boundary conditions are applied respectively on ∂Ω
(i)
T and ∂Ω

(i)
q

T = T̄ on ∂Ω
(i)
T ,

q · n = −q̄n on ∂Ω(i)
q .

(2.40)

where T = T (x) is the (scalar) temperature field and q = q (x) is the heat flux vector
field. In the general case of anisotropic materials, the thermal conductivity k(i) of phase
Ω(i) is a symmetric second order tensor, defined similarly to equations (2.2) and (2.3). The
constitutive relation between the temperature and heat flux in the interior of each phase
Ω(i), which is also called Fourier’s law, is defined as

q (x) = −k(i) (x) · ∇T (x) , x ∈ Ω(i), i = 1, . . . np (2.41)
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For a given heat source r (x), the steady-state equation governing the temperature field in
the interior of Ω is the Poisson’s equation, namely the following elliptic partial differential
equation

∇ · q (x) = r (x) (2.42)

where ∇ · q (x) is the divergence of the heat flux field. In this heterogeneous material,
each interface Γ(ij) exhibits Kapitza (interfacial) thermal resistance α(ij), or equivalently
interfacial conductance k(ij) which is the reciprocal of the resistance, that is, k(ij) = 1

α(ij) .

Therefore, the thermal behavior on Γ(ij) is characterized by a jump in the temperature field
across each material interface

JT K(ij) = −α(ij)q(i) · n(ij) on Γ(ij) (2.43)

where J·K(ij) = (·)(j) − (·)(i) is an operator denoting the jump across the material interface
Γ(ij). The unit vector n(ij) normal to Γ(ij) ≡ Γ(ji) is directed from Ω(i) into Ω(j) and it holds
that

n(ij) = −n(ji) (2.44)

Meanwhile, the heat flux field is continuous across each interface Γ(ij)

q(i) · n(ij) = q(j) · n(ji) on Γ(ij) (2.45)

where q(i) and q(j) are the values of the heat flux field on each side of the interface Γ(ij).
By combining the Poisson equation (2.42) with the boundary conditions of equations (2.40)
and (2.45) and the constitutive relations of equations (2.41) and (2.43), the boundary value
problem (BVP) of steady-state heat transfer can be posed as: “Find a function T (x) for the
temperature field, so that the following equations are satisfied:”

∇ · q = r in Ω

q = −k(i) · ∇T , in each Ω(i), i = 1, . . . np

JT K(ij) = −α(ij)q(i) · n(ij) on each Γ(ij)

q(i) · n(ij) = q(j) · n(ji) on each Γ(ij)

T = T̄ on ∂ΩT

q · n = −q̄n on ∂Ωq

(2.46)

2.2.2 FEM vs XFEM modeling

The BVP of equation (2.46) can be solved with the standard FEM, but the following mod-
ifications are required. First of all, a mesh that conforms to the interfaces between the
material phases Γ(ij) must be generated, as depicted in figure 2.4. Second, the nodes that lie
on these material interfaces must be duplicated, so that different nodes are defined for each
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material phase Ω(i). This is necessary, in order to model the temperature jump of equation
(2.43). These duplicate nodes are used to define DOFs, namely nodal temperatures, that
are different on each side of the interfaces. Finally, special finite elements that connect the
duplicate nodes and lie exactly on the interface (see figure 2.4) must be defined. These
interface elements differ from the usual elements used for calculating the weak form integrals
in the bulk of the domain. Instead they are responsible for modeling the interface behavior
described in equations (2.43) and (2.45).

Figure 2.4: Modeling heat transfer in composite materials with FEM.

Unfortunately, this FEM approach has a number of drawbacks. A suitable mesh generator
is required, in order to create a mesh that conforms to material interfaces. Afterwards, the
generated conforming mesh needs to be modified. The nodes on the material interface must
be located and then duplicated. Furthermore, special interface elements must be added to the
mesh based on these nodes. While these operations are certainly demanding and increase the
complexity of the analysis, the main problem lies in trying to produce a mesh that conforms
to complex geometries of multiple material interfaces. In these cases, a large number of very
small elements is required in the vicinity of the interfaces, particularly near sharp turns and
kinks. This fine discretization increases the computational cost of the whole FEM procedure
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and especially the solution of the linear system of equation (2.39). Moreover, duplicate nodes
and their corresponding extra DOFs are added exactly where the conforming mesh is very
fine, further increasing the size of the linear system, as well as the memory and time needed
for its solution. As more material phases are modeled, the overall FEM simulation rapidly
becomes more cumbersome and inefficient or even impossible in large scale 3D problems.
Finally, in problems where the material interfaces evolve and move throughout the analysis,
the conforming mesh must be regenerated at each iteration and all mesh-related operations
listed previously need to be repeated. In addition, the temperature and heat flux fields need
to be mapped between the old and new meshes, which introduces errors.

To overcome the aforementioned limitations, in this dissertation a novel approach based
on the Extended Finite Element Method (XFEM) is proposed for modeling heat transfer
in composite materials. In XFEM, the elements can be intersected by one or more ma-
terial interfaces, instead of having to conform to their geometry. In order to model the
discontinuous temperature field, non-smooth basis functions are introduced at nodes near
the material interfaces. figure 2.5 illustrates a non-conforming XFEM mesh that interacts
with three material interfaces. The elements that are intersected by the interfaces are called
enriched elements. The non-smooth basis functions are introduced in the nodes of enriched
elements, which will be called enriched nodes. All other nodes of the domain will be called
standard nodes. All elements that do not have any enriched nodes are called standard ele-
ments and behave identically to FEM elements. Finally, elements that are not intersected
by the material interfaces, but share one or more enriched nodes with the enriched elements,
are called blending elements. In general, the temperature field is not perfectly reproduced
in these blending elements, which leads to reduced accuracy. However, the XFEM formula-
tion developed here avoids all blending-related problems, by using appropriate enrichment
functions.

The proposed XFEM approach provides a convenient framework to model heat transfer
in composites with multiple material phases, by avoiding any dependencies of the mesh from
the geometry of the material interfaces. Complex geometries can be represented easily with
explicit or level set methods, while the mesh used for the analysis can be arbitrarily inter-
sected by the material interfaces, rather than having to conform to them. Therefore, there is
no need for specialized mesh generators and problems with evolving material interfaces pose
no additional difficulties. Moreover, the density of the finite element mesh can be selected
such that the desired accuracy is met without needlessly increasing the computational cost,
instead of employing very fine meshes only to represent the complex geometries. In Yvonnet
et al. (2011), XFEM was used to model the Kapitza thermal resistance between different
materials. Unfortunately, that approach was only applicable for domains consisting of only
two materials and cannot be used in more interesting problems, such as composites with
multiple inclusions that interact with each other and the surrounding matrix material. To
remedy this, a more general XFEM formulation, which allows modeling steady state heat
transfer in composites consisting of an arbitrary number of material phases, is proposed in
Bakalakos et al. (2020), Bakalakos et al. (2022) and elaborated here.
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Figure 2.5: Modeling heat transfer in composite materials with XFEM.

2.2.3 Discontinuous divergence theorem

In this section, we will formulate the divergence theorem for a vector function F that is
discontinuous in the whole domain Ω. Particularly, F is continuous in each material phase
Ω(i), i = 1, · · ·np, but discontinuous across each material interface Γ(ij). The value of F at
points that lie exactly on an interface Γ(ij) is either F (i) or F (j) depending on which side
we examine F from (F (i) ̸= F (j)). Let MΓ be the set of all unordered pairs (i, j), for which

there is a material interface Γ(ij). For a given phase p let M
(p)
Γ be the set of all unordered

pairs (p, j), for which there is a material interface Γ(pj) ≡ Γ(jp). Obviously M
(p)
Γ ⊂ MΓ. As

depicted in figure 2.3, each phase Ω(i) is bounded by its corresponding material interfaces
and external boundary ∂Ω(i). We define ∂Ω

(i)
+ to be the total boundary of phase Ω(i)

∂Ω
(i)
+ = ∂Ω(i)

⋃
(i,j)∈M(i)

Γ

Γ(ij) (2.47)

The outwards normal vector n(i) defined on ∂Ω
(i)
+ coincides either with the outwards

normal vector n defined on the external boundary ∂Ω of the whole domain Ω or with the
outwards normal vector n(ij) defined on the material interfaces bounding Ω(i).
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n(i) =

{
n on ∂Ω(i)

n(ij) on Γ(ij)
(2.48)

Note that n(ij) is oriented from phase Ω(i) towards Ω(j). Similarly, for phase Ω(j) the
outwards normal vector on the same material interface would be n(ji) = −n(ij). At this
point we can apply the divergence theorem for each material phase Ω(i) separately, since the
vector function F is continuous in its interior∫

Ω(i)

∇ · F dΩ =

∫
∂Ω

(i)
+

F · n(i) dΓ (2.49)

By decomposing the surface integral according to equations (2.47) and (2.48)∫
Ω(i)

∇ · F dΩ =

∫
∂Ω(i)

F · n dΓ +

∑
(i,j)∈M (i)

Γ

∫
Γ(ij)

F (i) · n(ij) dΓ (2.50)

If we apply equation (2.50) for all phases i = 1, · · ·np and then sum

np∑
i=1

∫
Ω(i)

∇ · F dΩ =

np∑
i=1

∫
∂Ω(i)

F · n dΓ

+

∑
(i,j)∈MΓ

(∫
Γ(ij)

F (i) · n(ij) dΓ +

∫
Γ(ji)

F (j) · n(ji) dΓ

) (2.51)

The first two sums can be calculated by merging the integrals over Ω and ∂Ω respectively

np∑
i=1

∫
Ω(i)

∇ · F dΩ =

∫
Ω

∇ · F dΩ

np∑
i=1

∫
∂Ω(i)

F · n dΓ =

∫
∂Ω

F · n dΓ

(2.52)



CHAPTER 2. XFEM FOR COMPOSITES 24

Since Γ(ji) coincides with Γ(ij), but is oriented opposite to it, the third sum of equation
(2.51) becomes ∑

(i,j)∈MΓ

(∫
Γ(ij)

F (i) · n(ij) dΓ +

∫
Γ(ji)

F (j) · n(ji) dΓ

)

=

∑
(i,j)∈MΓ

(∫
Γ(ij)

F (i) · n(ij) dΓ−
∫
Γ(ij)

F (j) · n(ji) dΓ

)

=

∑
(i,j)∈MΓ

∫
Γ(ij)

F (i) · n(ij) − F (j) · n(ji) dΓ

(2.53)

Substituting back into equation (2.51), the divergence theorem for this discontinuous vector
function F is obtained∫

Ω

∇ · F dΩ =

∫
∂Ω

F · n dΓ +

∑
(i,j)∈MΓ

∫
Γ(ij)

F (i) · n(ij) − F (j) · n(ji) dΓ (2.54)

2.2.4 Weak form

The system in equation 2.46 is known as the strong form of the BVP and it requires the
solution scalar field to be at least two times continuously differentiable inside each material
phase, namely T ∈ C2(Ω(i)). This condition can be relaxed by using a variational formulation
of the BVP, referred to as the weak form, which conveniently incorporates the boundary
conditions in the differential equation. Let the function space of admissible temperature
fields (trial function space) be

D = {T : T = T̄ on ∂ΩT , T discontinuous on Γ(ij), ∀(i, j) ∈MΓ} (2.55)

Also define the function space of weighting functions (test function space) as

W = {δT : δT = 0 on ∂ΩT , δT discontinuous on Γ(ij), ∀(i, j) ∈MΓ} (2.56)

The weak form of the BVP is then posed as: “Find a trial function T ∈ D, such that for all
test functions δT ∈ W the following integral equation holds:”∑
(i,j)∈MΓ

∫
Γ(ij)

JδT K(ij)
1

α(ij)
JT K(ij) dΓ +

∫
Ω

∇δT · k · ∇TdΩ =

∫
Ω

δT r dΩ +

∫
∂Ωq

δT q̄n dΓ

(2.57)
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The weak form can be derived from the strong form. Assume that the solution is one of
the trial functions T ∈ D. By multiplying both sides of the Poisson equation (2.42) with an
arbitrary test function δT ∈ W and integrating over Ω we obtain

∇ · q = r ⇐⇒
∫
Ω

δT ∇ · q dΩ =

∫
Ω

δT r dΩ (2.58)

Applying the product rule of differentiation∫
Ω

∇ · (δT q)dΩ−
∫
Ω

∇δT · qdΩ =

∫
Ω

δT r dΩ (2.59)

By applying the divergence theorem of equation (2.54) for the discontinuous vector func-
tion F = δT q, the first integral of the previous equation becomes∫

Ω

∇ · (δT q)dΩ =

∫
∂Ω

δT q · n dΓ

+

∑
(i,j)∈MΓ

∫
Γ(ij)

δT (i) q(i) · n(ij) − δT (j) q(j) · n(ji) dΓ
(2.60)

We decompose the integral over ∂Ω into sub-integrals over ∂ΩT and ∂Ωq and then impose
the Neumann boundary conditions of equation (2.40)∫

∂Ω

δT q · n dΓ =
���������
∫
∂ΩT

δT 0 · ndΓ +

∫
∂Ωq

δT (−q̄n) = −
∫
∂Ωq

δT q̄n dΓ (2.61)

where we have used that q (x) = 0 on ∂ΩT . Meanwhile, by taking into account the continuity
of the heat flux field across each interface Γ(ij) (see equation (2.45)), the last integrals of
equation (2.60) can be rewritten∑

(i,j)∈MΓ

∫
Γ(ij)

δT (i) q(i) · n(ij) − δT (j) q(j) · n(ji) dΓ

=

∑
(i,j)∈MΓ

∫
Γ(ij)

δT (i) q(i) · n(ij) − δT (j) q(i) · n(ij) dΓ

=

∑
(i,j)∈MΓ

∫
Γ(ij)

(
δT (i) − δT (j)

)
q(i) · n(ij) dΓ

=

∑
(i,j)∈MΓ

∫
Γ(ij)

− JδT K(ij) q(i) · n(ij) dΓ

(2.62)
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which can be further simplified by using the interfacial constitutive relation of equation
(2.43) ∑

(i,j)∈MΓ

∫
Γ(ij)

δT (i) q(i) · n(ij) − δT (j) q(j) · n(ji) dΓ

=

∑
(i,j)∈MΓ

∫
Γ(ij)

JδT K(ij)
1

α(ij)
JT K(ij) dΓ

(2.63)

Substituting equation (2.61) and (2.63) into equation (2.60) produces∫
Ω

∇ · (δT q)dΩ = −
∫
∂Ωq

δT q̄n dΓ +

∑
(i,j)∈MΓ

∫
Γ(ij)

JδT K(ij)
1

α(ij)
JT K(ij) dΓ (2.64)

which can then be substituted back into equation (2.59)

−
∫
∂Ωq

δT q̄n dΓ +

∑
(i,j)∈MΓ

∫
Γ(ij)

JδT K(ij)
1

α(ij)
JT K(ij) dΓ

−
∫
Ω

∇δT · qdΩ =

∫
Ω

δT r dΩ

(2.65)

Finally, using the bulk constitutive relation of equation (2.41), the weak form is obtained∑
(i,j)∈MΓ

∫
Γ(ij)

JδT K(ij)
1

α(ij)
JT K(ij) dΓ +

∫
Ω

∇δT · k · ∇TdΩ =

∫
Ω

δT r dΩ +

∫
∂Ωq

δT q̄n dΓ

2.2.4.1 Finite-dimensional weak form

Finding the exact solution T (x) of equation (2.57) is not feasible in general, since the
function spaces D and W are infinite-dimensional. Similarly to standard FEM, XFEM seeks
approximate solutions T h (x) that belong to finite-dimensional spaces, using the Galerkin
approximation

Dh = {T ∈ H̃1(Ω) : T = T̄ on ∂ΩT} ⊆ D (2.66)

The test functions are treated similarly

Wh = {δT ∈ H̃1(Ω) : δT = 0 on ∂ΩT} ⊆ W (2.67)

where H̃1(Ω) are function spaces consisting of piece-wise Hilbert spacesH1(Ω(i)). Specifically,
they contain functions that:



CHAPTER 2. XFEM FOR COMPOSITES 27

� are smooth and square integrable and have have square integrable derivatives of order =
1, inside each material phase Ω(i), i = 1, · · ·np

� are discontinuous across each material interface Γ(ij), ∀(i, j) ∈MΓ

Then the problem reduces to finding the best approximation T h ∈ Dh such that equation
(2.57) is satisfied for all test functions δT ∈ Wh. Since Dh and Wh are finite-dimensional
spaces, they are spanned by a finite number of basis functions {N1,N2, · · · }. Therefore, the
Galerkin approximation consists of searching for an approximate trial function T h ∈ Dh that
can be expressed as a linear combination of these basis functions, as can the test function
δT h ∈ Wh:

T h (x) = a1N1 (x) + a2N2 (x) + · · ·
δT h (x) = b1N1 (x) + b2N2 (x) + · · ·

(2.68)

XFEM chooses appropriate basis functions {N1,N2, · · · } that can capture the discontinu-
ous trial and test functions. Then, finding the approximate solution T h reduces to identifying
the coefficients {a1, a2, · · · } that minimize the error

∥∥T h − T
∥∥. The coefficients {b1, b2, · · · }

are not calculated, since they are different for each test function δT h and the weak form
equation (2.57) must hold for all of them. Taking into account these approximations, the
finite-dimensional weak form will be used in the remainder of this chapter∑

(i,j)∈MΓ

∫
Γ(ij)

q
δT h

y(ij) 1

α(ij)

q
T h

y(ij)
dΓ +

∫
Ω

∇δT h · k · ∇T hdΩ

=

∫
Ω

δT h r dΩ +

∫
∂Ωq

δT h q̄n dΓ

(2.69)

Similarly to standard FEM, XFEM decomposes the domain Ω into a number of non-
overlapping finite elements Ωe. Unlike FEM, the finite elements of XFEM can be intersected
by the material interfaces Γ(ij), as illustrated in figure 2.5. If the number of finite elements
is ne, then the domain Ω and its external boundary ∂Ωq are decomposed into

Ω =

ne⋃
e=1

Ωe

∂Ωq =

ne⋃
e=1

∂Ωqe

(2.70)

where ∂Ωqe is the part of ∂Ωq that coincides with an edge (2D) or face (3D) of element
e, as depicted in figure 2.5. If an element has fewer than two (2D problems) or three (3D
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problems) nodes that lie on the boundary ∂Ωq, then ∂Ωqe = 0. ∂ΩT can be partitioned
similarly, but is of no interest for now. Similarly the material interfaces Γ(ij) can be divided
into

∂Γ(ij) =

ne⋃
e=1

∂Γ(ij)
e , ∀(i, j) ∈MΓ (2.71)

where Γ
(ij)
e is the part of the material interface Γ(ij) that lies inside element e and on its

edges (2D problems) or faces (3D problems). If element e is not intersected by or does not

conform to Γ(ij), then obviously Γ
(ij)
e = 0. The integrals of the finite-dimensional weak form

equation (2.69) can also be decomposed into

ne∑
e=1

 ∑
(i,j)∈MΓ

∫
Γ
(ij)
e

q
δT h

y(ij) 1

α(ij)

q
T h

y(ij)
dΓ

+

ne∑
e=1

∫
Ωe

∇δT h · k · ∇T hdΩ

=

ne∑
e=1

∫
Ω

δT h r dΩ +

ne∑
e=1

∫
∂Ωq

δT h q̄n dΓ

(2.72)

2.2.5 XFEM enrichment

In order to capture the jumps of the temperature field across material interfaces, XFEM
enriches the approximation field used in FEM (see equation (2.23)) with discontinuous func-
tions.

2.2.5.1 Simple case with only 2 materials

Consider the simplest case depicted, where there are only two material phases Ω(1), Ω(2) and
only one material interface Γ between them, as illustrated in figure 2.6. Let MH be the set
of nodes of all elements intersected by the interface Γ. XFEM enriches the basis functions
defined at all nodes in MH with a discontinuous function, typically the Heaviside function
(also called step function)

H (x) =

{
−1, x ∈ Ω(1)

+1, x ∈ Ω(2) (2.73)

The approximate temperature field used in XFEM will then be

T h (x) =
∑
k∈M

Nk (x)Tk︸ ︷︷ ︸
T std

+
∑

k∈MH

Nk (x) (H (x)−H (xk)) T̃k︸ ︷︷ ︸
T enr

(2.74)

where xk are the coordinates of node k, Nk (x) are the same Lagrange polynomial shape
functions used in FEM and Tk are nodal temperatures. It can be observed that the first part
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Figure 2.6: Heaviside enrichment for a single material interface.

T std is the approximation field used in FEM (see equation (2.23)), while the second part T enr

is introduced by XFEM to model the discontinuous behaviour. Furthermore, T̃k is an extra
DOF introduced to node k for the enriched basis function Nk (x) (H (x)−H (xk)). These
extra DOFs will be referred to as enriched DOFs in the following, to differentiate them from
Tk, which will be called standard DOFs. Unlike Tk, enriched DOFs do not represent nodal
temperatures. However, enriched DOFs introduced due to Heaviside enrichment can be used
to interpolate the temperature field jump on Γ:
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q
T h (x)

y(1,2)
= T h

(
x(2)

)
− T h

(
x(1)

)
=

���������
∑
k∈M

Nk

(
x(2)

)
Tk +

∑
k∈MH

Nk

(
x(2)

) (
H
(
x(2)

)
−H (xk)

)
T̃k

−
���������
∑
k∈M

Nk

(
x(1)

)
Tk −

∑
k∈MH

Nk

(
x(1)

) (
H
(
x(1)

)
−H (xk)

)
T̃k

=
∑

k∈MH

Nk (x) (+1−H (xk)) T̃k −
∑

k∈MH

Nk (x) (−1−H (xk)) T̃k

=
∑

k∈MH

Nk (x) (+1−����H (xk) + 1 +����H (xk)) T̃k

= 2
∑

k∈MH

Nk (x) T̃k

(2.75)

where x(1) coincides with x(2), but lie on different sides of Γ and Nk

(
x(2)

)
= Nk

(
x(1)

)
=

Nk (x), since Nk is continuous.

2.2.5.2 General case

In the general case of multiple material phases, one Heaviside enrichment H(pq) per interface
Γ(pq) is needed to model the temperature jump across it:

H(pq) (x) =

{
−1, x ∈ Ω(p)

+1, x ∈ Ω(q)
(2.76)

However, in some elements the interfaces of three or more material phases will intersect, as
illustrated in figure 2.7. Enriching the nodes of the element that contains this point with one
Heaviside function for each interface cannot reproduce the discontinuous temperature field.
Instead, in this thesis a junction enrichment function is proposed to model the discontinuous
displacement field in the case of these junction points. The nodes of an element containing a
junction point (or line in 3D) created by nJ ≥ 3 interfaces are enriched with nJ − 1 junction
functions, one for each intersecting interface except for the last (Bakalakos et al., 2020).
In addition, these nodes are not enriched with Heaviside functions. The junction function
J (rs) (x) used for the interface Γ(rs) between the phases Ω(r), Ω(s), which intersects 2 or more
other interfaces, is

J (rs) (x) =


−1, x ∈ Ω(r)

+1, x ∈ Ω(s)

0, x ∈ Ω−
(
Ω(r) ∪ Ω(s)

) (2.77)

In figure 2.7 it can be observed that, a node can be i) enriched with junction functions, ii)
enriched with one or more Heaviside functions corresponding to different material interfaces
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Figure 2.7: Heaviside and junction enrichments when material interfaces intersect.

or iii) not enriched at all. Similarly, an element can i) contain junctions, ii) be intersected by
one or more material interfaces, iii) be far away from any interface or iv) have common nodes
with elements in categories i) and ii), in which case it is called a blending element. It is more
convenient to refer to each Heaviside enrichment as Hb (x) = H(pq) (x), where b = 1, · · ·nb

is an integer corresponding to the pair (p, q). Similarly if there are nc junction enrichments
applied in total, with nc < nb in general, each one can be referred to as J c (x) = J (rs) (x),
where c = 1, · · ·nc is an integer corresponding to the pair (r, s). The complete XFEM
approximation of the temperature field can now be expressed as

T h (x) =
∑
k∈M

Nk (x)Tk

+

nb∑
b=1

∑
k∈Mb

H

Nk (x)
(
Hb (x)−Hb (xk)

)
T̃ b
k


+

nc∑
c=1

∑
k∈Mc

J

Nk (x) (J
c (x)− J c (xk)) T̂

c
k


(2.78)

where

� Nk (x) are the Lagrange polynomial shape functions, also used in FEM
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� Tk are the standard DOFs representing nodal temperatures.

� Hb (x) is any of the nb Heaviside enrichments applied and M b
H is the set of nodes

enriched with Hb (x)

� J c (x) is any of the nc junction enrichments applied andM c
J is the set of nodes enriched

with J c (x)

� T̃ b
k is an enriched DOF introduced at node k due to the enrichment Hb (x)

� T̂ c
k is an enriched DOF introduced at node k due to the enrichment J c (x)

Equation (2.78) can be written more concisely by grouping all Heaviside and junction
enrichment functions and representing them collectively as Ψa (x)

T h (x) =
∑
k∈M

Nk (x)Tk +
na∑
a=1

∑
k∈Ma

Ψ

Nk (x) (Ψ
a (x)−Ψa (xk))T

a

k

 (2.79)

where

� na = nb + nc is the total number of Heaviside and junction enrichment functions

� Ψa (x), a = 1, 2 · · · ,na is any of the Heaviside or junction enrichment functions

� Ma
Ψ is the set of all nodes enriched with the enrichment Ψa (x)

� T
a

k is the enriched DOF introduced at node k due to the enrichment Ψa (x)

2.2.5.3 Temperature field jump

The jump of the temperature field can be approximated using the enriched DOFs. Let x be a
point on the material interface Γ(ij) separating Ω(i) and Ω(i). Then the points x(i) ≡ x(j) ≡ x,
lie on different sides of Γ(ij), namely Ω(i) and Ω(j), respectively. The shape functions Nk are
continuous thus

Nk

(
x(i)
)
= Nk

(
x(j)
)
= Nk (x) (2.80)

However, some of the enrichment functions Ψa (x) are introduced to model the tempera-

ture jump across this material interface and are discontinuous on Γ(ij), namely JΨa (x)K(ij) ̸= 0.
Meanwhile, the rest are introduced to model the temperature jump across another material
interface and are continuous on Γ(ij), namely JΨa (x)K(ij) = 0. For example, for any Heaviside
enrichment function H(pq) (x)

q
H(pq)

y(ij)
(x) = H(pq)

(
x(j)
)
−H(pq)

(
x(i)
)
= 0, −2, or +2 (2.81)
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depending on whether one or both of the phases Ω(p) and Ω(q) coincide with Ω(i) and Ω(j).
Similarly, for any junction enrichment function J (rs) (x)

q
J (rs)

y(ij)
(x) = J (rs)

(
x(j)
)
− J (rs)

(
x(i)
)
= 0, −2, +2, −1 or +1 (2.82)

depending on whether one or both of the phases Ω(r) and Ω(s) coincide with Ω(i) and Ω(j).
The temperature field jump across Γ(ij) can be approximated as

q
T h (x)

y(ij)
=T h

(
x(j)
)
− T h

(
x(i)
)

=
∑
k∈M

Nk

(
x(j)
)
Tk +

na∑
a=1

∑
k∈Ma

Ψ

Nk

(
x(j)
) (

Ψa
(
x(j)
)
−Ψa (xk)

)
T

a

k


−
∑
k∈M

Nk

(
x(i)
)
Tk −

na∑
a=1

∑
k∈Ma

Ψ

Nk

(
x(i)
) (

Ψa
(
x(i)
)
−Ψa (xk)

)
T

a

k


=

����
����∑

k∈M

Nk (x)Tk +
na∑
a=1

∑
k∈Ma

Ψ

Nk (x)
(
Ψa
(
x(j)
)
−Ψa (xk)

)
T

a

k


−

�
���

����∑
k∈M

Nk (x)Tk −
na∑
a=1

∑
k∈Ma

Ψ

Nk (x)
(
Ψa
(
x(i)
)
−Ψa (xk)

)
T

a

k


=

na∑
a=1

∑
k∈Ma

Ψ

Nk (x)
(
Ψa
(
x(j)
)
−�����Ψa (xk)−Ψa

(
x(i)
)
+�����Ψa (xk)

)
T

a

k



(2.83)

therefore the approximation of the temperature field jump across the interface Γ(ij) can be
calculated with respect to all enriched DOFs as

q
T h (x)

y(ij)
=

na∑
a=1

∑
k∈Ma

Ψ

Nk (x) JΨaK(ij) T a

k

 (2.84)

Regardless of whether Ψa (x) is a Heaviside or junction enrichment, JΨa (x)K(ij) = 0

means that the approximation of the temperature field jump
q
T h (x)

y(ij)
across the interface

Γ(ij) does not depend on the enriched DOFs T
a

k introduced for this enrichment Ψa (x). In fact,
the jump across each material interface Γ(ij) depends only on those enrichments introduced
specifically for Γ(ij) and their corresponding DOFs.
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2.2.5.4 Blending elements

If an element is not intersected and does not include a junction, but is located next to
another element that does, then only some of its nodes will be enriched. Figure 2.7 depicts
examples of such blending elements, which form a layer between standard (non-enriched)
elements and fully enriched ones. The polynomial shape function used in FEM and XFEM
have the partition of unity property, namely any function f (x) can be recovered inside an
element e ∑

k∈Me

Nk (x) f (xk) = f (x) (2.85)

where Me is the set of all nodes of the element e. Because blending elements have only
some of their nodes enriched, the partition of unity property is violated inside them and an
enrichment function Ψa (x) cannot be recovered∑

k∈MΨa
e

Nk (x)Ψ
a (xk) ̸=

∑
k∈Me

Nk (x)Ψ
a (xk) = Ψa (x) (2.86)

where MΨa

e ⊂ Me are only those nodes of element e that are enriched with Ψa (x). The
incomplete interpolation inside blending elements generally introduces errors into the ap-
proximation field of equation (2.79). However, the Heaviside and junction enrichments of
the proposed formulation do not encounter this is problem. A blending element is not inter-
sected by a material interface Γ(ij), thus all of its points lie on the same side of Γ(ij), which
means that the enrichment Ψa (x) that was introduced for the discontinuity Γ(ij) has the
same value in all points of the blending element, including its nodes:

Ψa (x) =


H(pq) (x) = H(pq) (xk)

or
J (rs) (x) = J (rs) (xk)

 = Ψa (xk) (2.87)

As a result, no errors are introduced to the approximate temperature field, since its
enriched part vanishes inside blending elements

T h (x) =
∑
k∈Me

Nk (x)Tk +
na∑
a=1

 ∑
k∈MΨa

e

Nk (x)
(
(((((((((
Ψa (x)−Ψa (xk)

)
T

a

k


=
∑
k∈Me

Nk (x)Tk

(2.88)

Similarly, the approximate field evaluated at a node xl is equal to the standard DOF Tl,
since the standard part is

T std (xl) =
∑
k∈M

Nk (xl)Tk =
∑
k∈M
k ̸=l

Nk (xl)Tk +Nl (xl)Tl = 0 + 1 Tl = Tl (2.89)
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because

Nk (xl) =

{
1 , k = l
0 , k ̸= l

(2.90)

and due to the use of a shifted enrichment Ψa (x)− Ψa (xk), the enriched part degenerates
to 0

T enr (xl) =
na∑
a=1

∑
k∈Ma

Ψ

Nk (xl) (Ψ
a (xl)−Ψa (xk))T

a

k



=
na∑
a=1

∑
k∈Ma

Ψ
k ̸=l

����Nk (xl) (Ψ
a (xl)−Ψa (xk))T

a

k +Nl (xl)
(
(((((((((
Ψa (xl)−Ψa (xl)

)
T

a

l


= 0

(2.91)

As a result, applying Dirichlet boundary conditions T (x) = T̄ to node xl is done similarly
to FEM, namely by setting the corresponding standard DOF Tj equal to the prescribed
temperature T̄ , even if nodes on ∂ΩT are enriched:

T̄ = T h (xl) = T std (xl) + T enr (xl) = Tl (2.92)

2.2.6 XFEM discretized equations

Similarly to FEM, the approximation of equation (2.79) is also used for the test function

δT h (x) =
∑
k∈M

Nk (x) δTk +
na∑
a=1

∑
k∈Ma

Ψ

Nk (x) (Ψ
a (x)−Ψa (xk)) δT

a

k

 (2.93)

where δTk and δT
a

k are standard and enriched DOFs for the test function and different from
Tk and T

a

k, in general. It is more convenient to work with the matrix-vector form of the
approximate temperature field

T h = N (x) · de

δT h = N (x) · δde

(2.94)

whereN (x) is a matrix (row vector actually) consisting of the standard (submatrixN std (x))
and enriched (submatrix N enr (x)) basis functions corresponding to each each enrichment
Ψa (x) and each node k of element e:
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N (x) =
[
N std (x) N enr (x)

]
N std (x) =

[
· · · Nk (x) · · ·

]
N enr (x) =

[
· · · Nk (x) (Ψ

a (x)−Ψa (xk)) · · ·
] (2.95)

and de, δde are vectors containing the standard (subvector dstd
e ) and enriched (subvector

denr
e ) DOFs introduced for each enrichment Ψa to each node k of the element e:

de =

[
dstd
e

denr
e

]
dstd
e =


...
Tk
...

 denr
e =


...

T
a

k
...



δde =

[
δdstd

e

δdenr
e

]
δdstd

e =


...
δTk
...

 δdenr
e =


...

δT
a

k
...


(2.96)

Also consider that all standard and enriched DOFs of the domain are gathered in the
global vectors d and δd for the trial and test functions, respectively. To extract the element
vector from the corresponding global vector the matrix Pe is used

de = Pe · d
δde = Pe · δd

(2.97)

where Pe is a boolean matrix, namely it contains only 0 or 1 entries, that correlates each
element DOF (row of Pe) to one exactly global DOF (column of Pe). Therefore, the approx-
imation of the temperature field can be rewritten as

T h (x) = N (x) · de = N (x) · Pe · d
δT h (x) = N (x) · δde = N (x) · Pe · δd

(2.98)

The derivatives of the discretized trial and test function in matrix-vector form are

∇T h (x) = B (x) · de = B (x) · Pe · d
∇δT h (x) = B (x) · δde = B (x) · Pe · δd

(2.99)

where matrix B (x) contains the derivatives of the standard (submatrix Bstd (x)) and en-
riched (submatrix Benr (x)) basis functions corresponding to each each enrichment Ψa (x)
and each node k of element e:
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B (x) =

[
Bstd (x) Benr (x)

]

Bstd (x) =


· · ·

∂Nk (x)

∂x
∂Nk (x)

∂y

∂Nk (x)

∂z

· · ·



Benr (x) =


· · ·

∂
(
Nk (x) (Ψ

a (x)−Ψa (xk))
)

∂x
∂
(
Nk (x) (Ψ

a (x)−Ψa (xk))
)

∂y

∂
(
Nk (x) (Ψ

a (x)−Ψa (xk))
)

∂z

· · ·



(2.100)

Since both Heaviside and junction enrichment functions are piece-wise constant, their
partial derivatives in each material phase Ω(i) are

∂Ψa (x)

∂x
=
∂Ψa (x)

∂y
=
∂Ψa (x)

∂z
= 0 (2.101)

and the calculation of Benr (x) can be simplified to

Benr (x) =


· · ·

∂Nk (x)

∂x
(Ψa (x)−Ψa (xk))

∂Nk (x)

∂y
(Ψa (x)−Ψa (xk))

∂Nk (x)

∂z
(Ψa (x)−Ψa (xk))

· · ·


(2.102)

Furthermore, the matrix-vector form of the temperature field jump across a material
interface Γ(ij) is

q
T h (x)

y(ij)
= N

(ij)
(x) · de =

[
N std N

(ij)

enr (x)
]
·
[

δdstd
e

δdenr
e

]
(2.103)

where N
(ij)

(x), N std and N
(ij)

enr (x) are row vectors:
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N
(ij)

(x) =
[
N std N

(ij)

enr (x)
]

N std = 0

N
(ij)

enr (x) =
[
· · · Nk (x) JΨa (x)K(ij) · · ·

] (2.104)

As discussed in section 2.2.5.3, given an interface Γ(ij), only those enrichments that were
introduced specifically to model the temperature jump across Γ(ij) will have JΨa (x)K(ij) ̸= 0.

Therefore, most entries of N
(ij)

enr (x) will be 0, since they correspond to other enrichment
functions, which were introduced for material interfaces other than Γ(ij). Similarly, for the
test function δT :

q
δT h (x)

y(ij)
= N

(ij)
(x) · δde (2.105)

and with respect to global DOF vectors

q
T h (x)

y(ij)
= N

(ij)
(x) · Pe · δd

q
δT h (x)

y(ij)
= N

(ij)
(x) · Pe · δd

(2.106)

In matrix-vector form, the tensor multiplication ∇δT h · k · ∇T h of equation (2.72) is

written as a row vector × a matrix × a column vector:
(
∇δT h

)T · k · ∇T h. Moreover,

δT h and
q
δT h

y(ij)
are scalar quantities, thus δT h =

(
δT h

)T
and

q
δT h

y(ij)
=
(q
δT h

y(ij)
)T

.

Therefore, equation (2.72) is rewritten as

ne∑
e=1

 ∑
(i,j)∈MΓ

∫
Γ
(ij)
e

(q
δT h

y(ij)
)T 1

α(ij)

q
T h

y(ij)
dΓ

+

ne∑
e=1

∫
Ωe

(
∇δT h

)T · k · ∇T hdΩ

=

ne∑
e=1

∫
Ωe

(
δT h

)T
r dΩ +

ne∑
e=1

∫
∂Ωqe

(
δT h

)T
q̄n dΓ

(2.107)

By combining all equations above, the matrix-vector form of the finite-dimensional weak
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form used in XFEM is obtained

ne∑
e=1

 ∑
(i,j)∈MΓ

∫
Γ
(ij)
e

(
N

(ij)
(x) · Pe · δd

)T 1

α(ij)

(
N

(ij)
(x) · Pe · d

)
dΓ


+

ne∑
e=1

∫
Ωe

(B (x) · Pe · δd)T · k (x) · (B (x) · Pe · d) dΩ

=

ne∑
e=1

∫
Ωe

(N (x) · Pe · δd)T r (x) dΩ

+

ne∑
e=1

∫
∂Ωqe

(N (x) · Pe · δd)T q̄n (x) dΓ

(2.108)

Pulling the constants out of the corresponding integrals and summations:

���δdT ·


ne∑
e=1

P T
e ·

 ∑
(i,j)∈MΓ

∫
Γ
(ij)
e

1

α(ij)

(
N

(ij)
(x)
)T

·N (ij)
(x) dΓ

 · Pe

 · d

+�
��δdT ·


ne∑
e=1

P T
e ·
(∫

Ωe

BT (x) · k (x) ·B (x) dΩ

)
· Pe

 · d

=���δdT ·

ne∑
e=1

P T
e ·
(∫

Ωe

NT (x) r (x) dΩ

)

+���δdT ·

ne∑
e=1

P T
e ·

(∫
∂Ωqe

NT (x) q̄n (x) dΓ

)

(2.109)

At this point, the element-level conductivity matrices and thermal load vectors need to
be defined. The bulk conductivity matrix of an element e is

Ke =

∫
Ωe

BT (x) · k (x) ·B (x) dΩ (2.110)

whereas the interface conductivity matrix of the element is
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Ke =
∑

(i,j)∈MΓ

∫
Γ
(ij)
e

1

α(ij)

(
N

(ij)
(x)
)T

·N (ij)
(x) dΓ (2.111)

and finally the element-level thermal load vectors are

fre =

∫
Ωe

NT (x) r (x) dΩ

fqe =

∫
∂Ωqe

NT (x) q̄n (x) dΓ
(2.112)

Equations (2.110, 2.112) are similar to standard FEM. The interface conductivity matrix
of equation (2.110) represents the element-level conductivity due to the interfacial conduc-
tance k(ij) which is the reciprocal of the resistance, that is, k(ij) = 1

α(ij) . By assembling

all element-level conductivity matrices Ke and Ke, the global conductivity matrix K is
obtained, which expresses the thermal conductivity of the whole discretized domain:

K =
ne∑
e=1

P T
e ·
(
Ke +Ke

)
· Pe

=

ne∑
e=1

P T
e ·

(∫
Ωe

BT (x) · k (x) ·B (x) dΩ

+
∑

(i,j)∈MΓ

∫
Γ
(ij)
e

1

α(ij)

(
N

(ij)
(x)
)T

·N (ij)
(x) dΓ

 · Pe

(2.113)

Similarly, all element-level vectors fre, fqe are assembled into a global vector f that
represents the thermal loads due to the heat source r (x) and the surface heat flux q̄n (x)

f =
ne∑
e=1

P T
e · (fre + fqe) =

ne∑
e=1

P T
e ·

(∫
Ωe

NT (x) r (x) dΩ +

∫
∂Ωqe

NT (x) q̄n (x) dΓ

)
(2.114)

Finally, equation (2.109) is rewritten as a linear system:

K · d = f (2.115)

As explained in section 2.2.5.4, the Dirichlet boundary conditions can be considered by
applying the prescribed temperatures to the standard DOFs of the corresponding nodes l
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that lie on ∂ΩT , namely Tl = T̄ . These standard DOFs are removed from the vector d,
which will then contain only unknown standard and enriched DOFs. The corresponding
rows and columns are also removed from the matrix K and vector f . As a result, the
domain is adequately supported and the linear system of equation (2.115) is positive definite.
Therefore, there is a unique solution for the standard and enriched DOFs in d. Solving this
linear system is an interesting topic that will be explained in detail in later chapters. Once
the the standard and enriched DOFs in d have been calculated, the temperature and heat
flux fields at any point in the domain can be approximated using equations (2.79) and (2.41),
while equation (2.84) is used for the jump of the temperature field.

2.2.6.1 Example

Consider the example illustrated in figure 2.8 with 3 material phases Ω(1), Ω(2), Ω(3). The
Heaviside enrichment functions used to model the temperature field jump across the material
interfaces Γ(12), Γ(13), Γ(23) are respectively

Ψ1 (x) = H(12) (x) =

{
−1, x ∈ Ω(1)

+1, x ∈ Ω(2)

Ψ2 (x) = H(13) (x) =

{
−1, x ∈ Ω(1)

+1, x ∈ Ω(3)

Ψ3 (x) = H(23) (x) =

{
−1, x ∈ Ω(2)

+1, x ∈ Ω(3)

The nodes of elements intersected by one or more of the interfaces are enriched with
one or more of the above functions. However, the element that connects nodes 6-7-11-10
contains the junction point of these three interfaces, therefore its nodes are only enriched
with 3− 1 = 2 junction enrichments:

Ψ4 (x) = J (12) (x) =


−1, x ∈ Ω(1)

+1, x ∈ Ω(2)

0, x ∈ Ω(3)

Ψ5 (x) = J (13) (x) =


−1, x ∈ Ω(1)

+1, x ∈ Ω(3)

0, x ∈ Ω(2)

It should be noted that a junction enriched node is not enriched with Heaviside functions
associated with the interfaces that form the junction. In this example, H(12) (x), H(13) (x)
and H(14) (x) are not applied to nodes enriched with J (12) (x) and J (13) (x). All other nodes
of the mesh are not enriched. The vector of standard and enriched DOFs of the element
that connects nodes 10-11-15-14 is

T =
[
T10 T11 T15 T14 T

4

10 T
5

10 T
4

11 T
5

11 T
2

15 T
3

15 T
2

14 T
3

14

]T
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Figure 2.8: Step and junction enrichment of various nodes.

The row vector N
(ij)

(x) of equation (2.103) used for approximating the temperature

field jump across a material interface in the same element 10-11-15-14, e.g. N
(13)

(x) for
Γ(13) is
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N
(13)

(x) =



0
0
0
0

N10 (x) · JΨ4 (x)K(13)

N10 (x) · JΨ5 (x)K(13)

N11 (x) · JΨ4 (x)K(13)

N11 (x) · JΨ5 (x)K(13)

N15 (x) · JΨ2 (x)K(13)

N15 (x) · JΨ3 (x)K(13)

N14 (x) · JΨ2 (x)K(13)

N14 (x) · JΨ3 (x)K(13)



T

=



0
0
0
0

N10 (x) · (+1)
N10 (x) · (+2)
N11 (x) · (+1)
N11 (x) · (+2)
N15 (x) · (+2)
N15 (x) · (±0)
N14 (x) · (+2)
N14 (x) · (±0)



T

where enrichment Ψ3 (x) = H(23) (x) does not affect the jump across Γ(13), thus entries cor-
responding to it, as well as to standard DOFs, are equal to 0. Similarly, for the temperature
field jump across Γ(23) in the same element 10-11-15-14:

N
(23)

(x) =



0
0
0
0

N10 (x) · JΨ4 (x)K(23)

N10 (x) · JΨ5 (x)K(23)

N11 (x) · JΨ4 (x)K(23)

N11 (x) · JΨ5 (x)K(23)

N15 (x) · JΨ2 (x)K(23)

N15 (x) · JΨ3 (x)K(23)

N14 (x) · JΨ2 (x)K(23)

N14 (x) · JΨ3 (x)K(23)



T

=



0
0
0
0

N10 (x) · (−1)
N10 (x) · (+1)
N11 (x) · (−1)
N11 (x) · (+1)
N15 (x) · (±0)
N15 (x) · (+2)
N14 (x) · (±0)
N14 (x) · (+2)



T

where enrichment Ψ2 (x) = H(13) (x) does not affect the jump across Γ(23), thus entries
corresponding to it, as well as to standard DOFs, are equal to 0. Furthermore, the Bstd (x)
and Benr (x) matrices of element 10-11-15-14 are

Bstd (x) =

[
∂N1(x)

∂x
∂N2(x)

∂x
∂N3(x)

∂x
∂N3(x)

∂x
∂N1(x)

∂y
∂N2(x)

∂y
∂N3(x)

∂y
∂N3(x)

∂y

]

Benr (x) =
[
Benr

10 (x) Benr
11 (x) Benr

15 (x) Benr
14 (x)

]
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where the submatrices of Benr
k (x) that correspond to each node are

Benr
10 (x) =

[
∂N1(x)

∂x
· (Ψ4 (x)−Ψ4 (x10))

∂N1(x)
∂x

· (Ψ5 (x)−Ψ5 (x10))
∂N1(x)

∂y
· (Ψ4 (x)−Ψ4 (x10))

∂N1(x)
∂y

· (Ψ5 (x)−Ψ5 (x10))

]

=

[
∂N1(x)

∂x
· (Ψ4 (x) + 1) ∂N1(x)

∂x
· (Ψ5 (x) + 1)

∂N1(x)
∂y

· (Ψ4 (x) + 1) ∂N1(x)
∂y

· (Ψ5 (x) + 1)

]

Benr
11 (x) =

[
∂N2(x)

∂x
· (Ψ4 (x)−Ψ4 (x11))

∂N2(x)
∂x

· (Ψ5 (x)−Ψ5 (x11))
∂N2(x)

∂y
· (Ψ4 (x)−Ψ4 (x11))

∂N2(x)
∂y

· (Ψ5 (x)−Ψ5 (x11))

]

=

[
∂N2(x)

∂x
· (Ψ4 (x)− 1) ∂N2(x)

∂x
·Ψ5 (x)

∂N2(x)
∂y

· (Ψ4 (x)− 1) ∂N2(x)
∂y

·Ψ5 (x)

]

Benr
15 (x) =

[
∂N3(x)

∂x
· (Ψ2 (x)−Ψ2 (x15))

∂N3(x)
∂x

· (Ψ3 (x)−Ψ3 (x15))
∂N3(x)

∂y
· (Ψ2 (x)−Ψ2 (x15))

∂N3(x)
∂y

· (Ψ3 (x)−Ψ3 (x15))

]

=

[
∂N3(x)

∂x
· (Ψ2 (x)− 1) ∂N3(x)

∂x
· (Ψ3 (x)− 1)

∂N3(x)
∂y

· (Ψ2 (x)− 1) ∂N3(x)
∂y

· (Ψ3 (x)− 1)

]

Benr
14 (x) =

[
∂N4(x)

∂x
· (Ψ2 (x)−Ψ2 (x14))

∂N4(x)
∂x

· (Ψ3 (x)−Ψ3 (x14))
∂N4(x)

∂y
· (Ψ2 (x)−Ψ2 (x14))

∂N4(x)
∂y

· (Ψ3 (x)−Ψ3 (x14))

]

=

[
∂N4(x)

∂x
· (Ψ2 (x)− 1) ∂N4(x)

∂x
· (Ψ3 (x)− 1)

∂N4(x)
∂y

· (Ψ2 (x)− 1) ∂N4(x)
∂y

· (Ψ3 (x)− 1)

]
where N1 (x), N2 (x), N3 (x), N4 (x) are the shape functions corresponding to the nodes of
each quadrilateral element in counter-clockwise order and the enrichment functions evaluated
at nodes are

Ψ2 (x14) = H(13) (x14) = +1

Ψ2 (x15) = H(13) (x15) = +1

Ψ3 (x14) = H(23) (x14) = +1

Ψ3 (x15) = H(23) (x15) = +1

Ψ4 (x10) = J (12) (x10) = −1

Ψ4 (x11) = J (12) (x11) = +1

Ψ5 (x10) = J (13) (x10) = −1

Ψ5 (x11) = J (13) (x11) = 0
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Lastly, in order to calculate the element-level interface conductivity matrix of equation
(2.111), integration over the part of each interface that lies inside the element, is needed.

E.g. for the element with nodes 10-11-15-14, two contour integrals are needed, over Γ
(13)
e

and Γ
(23)
e , as illustrated in figure 2.8.

2.2.7 XFEM integration

In traditional FEM, the integrands that appear in the matrix-vector weak form are cre-
ated by multiplying and dividing the polynomial shape functions and their derivatives and
thus they are polynomials themselves. These integrals can be calculated by using numerical
integration. Specifically, Gaussian-Legendre quadrature is used, which guarantees exact in-
tegration of polynomials with the minimum number of required integration points. Since it
is also naturally coupled with the isoparametric element formulation, it has been established
as the de facto integration rule in FEM.

However, XFEM uses discontinuous enriched basis functions, which means that the in-
tegrands that appear in Eqs. (2.110-2.112) are not polynomials in general. Using Gauss-
Legendre quadrature introduces a substantial loss in accuracy, even if the number of integra-
tion points is increased. As a result, alternative integration rules, that are consistent with the
enrichment functions and the geometry of discontinuities, must be developed. Specifically for
the present formulation, the Heaviside and junction enrichment functions are piece-wise con-
stant, therefore the basis functions, their derivatives and generally all matrices and vectors
in the integrals of interest are piece-wise polynomials. Observing figure 2.7, the following
cases are possible:

� Standard elements that have no enriched nodes. In this case, regular Gauss-Legendre
quadrature can be used, since standard elements have no enriched nodes and their
basis functions are polynomials.

� Blending elements that are neither intersected nor contain junctions, but have some en-
riched nodes. As explained in section 2.2.5.4, the enriched part of the temperature field
approximation defined in the present XFEM formulation, vanishes outside elements
that are intersected. Consequently, all discontinuous functions vanish in blending el-
ements and Gauss-Legendre quadrature can be used for the remaining polynomials,
similarly to standard elements.

� Enriched elements that are intersected by one or more material interfaces. Some of
these may also contain junctions. In this case, which will be elaborated in this sec-
tion, piece-wise polynomial functions need to be integrated over regions with different
material properties, specifically different conductivity tensors.
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2.2.7.1 Bulk integrals

Integrating over intersected elements is achieved by partitioning an intersected element into
multiple subcells, namely sub-triangles in 2D or sub-tetrahedra in 3D, which conform to
the material interface, as depicted in Figs. 2.9 and 2.10, respectively. Each of these subcells
belongs to only one material phase, thus the conductivity tesor is constant inside the subcell.
Note that although a conforming submesh is indeed used inside each intersected element,
the global finite element mesh continues not to conform to the material interfaces, thus
retaining all advantages of XFEM discussed in section 2.2.2. Although any element type
can be used in the present XFEM formulation, this dissertation focuses on isoparametric
elements, which are reviewed in Appendix A. Using this approach, all shape functions Nk

are defined as functions Nk (ξ) of the coordinates ξ, η, ζ of the natural system of the element.
The element-level bulk conductivity matrix of equation (2.110) is calculated by integrating
in the natural system

Ke =

∫
Ω̃e

BT (ξ) · k (ξ) ·B (ξ) t det (JNG (ξ)) dξdη in 2D

Ke =

∫
Ω̃e

BT (ξ) · k (ξ) ·B (ξ) det (JNG (ξ)) dξdηdζ in 3D

(2.116)

where Ω̃e is the surface (in 2D problems) or space (in 3D problems) occupied by the isopara-
metric element in its natural coordinate system, t is the thickness of the domain in 2D
problems, k (ξ) = k (x (ξ)) is the conductivity tensor at the point x = x (ξ), det (·) is the
matrix determinant operator and JNG (ξ) is the Jacobian matrix of the isoparametric map-
ping, as defined in Eqs. (A.2, A.3). The matrix B (ξ) = B (x (ξ)) contains the derivatives
of basis functions with respect to the global coordinates x, y, z, expressed as functions of
the natural coordinates ξ, η, ζ:

B (x (ξ)) = B (ξ) = (JNG (ξ))−1 · B̃ (ξ) (2.117)

where B̃ (ξ) contains the derivatives of basis functions with respect to the natural coordinates
ξ, η, ζ, expressed as functions of the natural coordinates:
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B̃ (ξ) =

[
B̃std (ξ) B̃enr (ξ)

]

B̃std (ξ) =


· · ·

∂Nk (ξ)

∂ξ

∂Nk (ξ)

∂η

∂Nk (ξ)

∂ζ

· · ·



B̃enr (ξ) =


· · ·

∂Nk (ξ)

∂ξ
(Ψa (x (ξ))−Ψa (xk))

∂Nk (ξ)

∂η
(Ψa (x (ξ))−Ψa (xk))

∂Nk (ξ)

∂ζ
(Ψa (x (ξ))−Ψa (xk))

· · ·



(2.118)

2.2.7.1.1 2D problems

The integral of 2.116 needs to be calculated in each sub-triangle, where the integrand func-
tions are continuous. As figure 2.9 illustrates, an auxiliary coordinate system (r, s) is de-
fined for each sub-triangle, which is mapped to the natural coordinate system (ξ, η), using
Lagrange polynomial shape functions

ξ = ξ (r) =
3∑

k=1

Nk (r) ξk (2.119)

where k = 1, · · · 3 are the nodes of the sub-triangle, ξk are their natural coordinates and
Nk (r) are the shape functions corresponding to them, which are defined in equation (A.8).
The Jacobian matrix of the mapping from auxiliary to natural system JAN (r) is

JAN (r) =


∂ξ

∂r

∂η

∂r
∂ξ

∂s

∂η

∂s

 =

ξ2 − ξ1 η2 − η1

ξ3 − ξ1 η3 − η1

 (2.120)

Similarly to equation (A.11), the determinant of this Jacobian matrix is constant and
related to the area of the sub-triangle in the natural coordinate system:

det (JAN) = ∥(ξ2 − ξ1)× (ξ3 − ξ1)∥ = 2 Atri (2.121)
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Figure 2.9: Integration in an intersected 2D element. a) Global coordinate system, b) Natural
coordinate system of the element, c) Auxiliary coordinate system for each sub-triangle.

The integral of 2.116 can now be converted to the auxiliary system:
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Ke =

1−r∫
0

1∫
0

BT (ξ (r)) · k (ξ (r)) ·B (ξ (r)) t det (JNG (ξ (r))) det (JAN) drds (2.122)

which can be calculated using numerical integration:

Ke =

nGP∑
p=1

BT (ξ (rp)) · k (ξ (rp)) ·B (ξ (rp)) t det (JNG (ξ (rp))) det (JAN)wp (2.123)

where p = 1, · · ·nGP is the set of integration points from all sub-triangles, rp are the co-
ordinates of each integration point in the auxiliary system, wp is its corresponding weight
coefficient and ξ (rp) is calculated using equation (2.119). In each sub-triangle, a subset of
the integration points is generated using Gauss-Legendre quadrature, therefore table A.5 is
used for rp and wp.

2.2.7.1.2 3D problems

Similarly to the 2D case, an auxiliary coordinate system (r, s, t) is defined for each sub-
tetrahedron, as illustrated in figure 2.10. Mapping from the auxiliary to the natural coordi-
nate system (ξ, η, ζ) is done using Lagrange polynomial shape functions:

ξ = ξ (r) =
4∑

k=1

Nk (r) ξk (2.124)

where k = 1, · · · 4 are the nodes of the sub-tetrahedron, ξk are their natural coordinates and
Nk (r) are the shape functions corresponding to them, which are defined in equation (A.13).
The Jacobian matrix of the mapping from auxiliary to natural system JAN (r) is

JAN (r) =



∂ξ

∂r

∂η

∂r

∂ζ

∂r
∂ξ

∂s

∂η

∂s

∂ζ

∂s
∂ξ

∂t

∂η

∂t

∂ζ

∂t


=


ξ2 − ξ1 η2 − η1 ζ2 − ζ1

ξ3 − ξ1 η3 − η1 ζ3 − ζ1

ξ4 − ξ1 η4 − η1 ζ4 − ζ1


(2.125)

Similarly to equation (A.16), the determinant of this Jacobian matrix is constant and
related to the volume of the sub-tetrahedron in the natural coordinate system:

det (JAN) =
∣∣(ξ4 − ξ1) ·

(
(ξ2 − ξ1)× (ξ3 − ξ1)

)∣∣ = 6 Vtet (2.126)

The integral of 2.116 can now be converted to the auxiliary system:
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Figure 2.10: Integration in an intersected 3D element. a) Global coordinate system, b)
Natural coordinate system of the element, c) Auxiliary coordinate system for each sub-
tetrahedron.

Ke =

1−r−s∫
0

1−r∫
0

1∫
0

BT (ξ (r))·k (ξ (r))·B (ξ (r)) det (JNG (ξ (r))) det (JAN) drdsdt (2.127)
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which can be calculated using numerical integration:

Ke =

nGP∑
p=1

BT (ξ (rp)) · k (ξ (rp)) ·B (ξ (rp)) t det (JNG (ξ (rp))) det (JAN)wp (2.128)

where p = 1, · · ·nGP is the set of integration points from all sub-tetrahedra, rp are the
coordinates of each integration point in the auxiliary system, wp is its corresponding weight
coefficient and ξ (rp) is calculated using equation (2.124). In each sub-tetrahedron, a subset
of the integration points is generated using Gauss-Legendre quadrature, therefore table A.7
is used for rp and wp.

2.2.7.2 Interface integrals

To obtain the partition of an element into subcells, first the part Γ
(ij)
e of each material

interface Γ(ij) that lies inside the element e needs to be determined. In this dissertation, Γ
(ij)
e

is approximated by simpler geometries, such as line segments in 2D or triangles in 3D, as
illustrated in Figs. 2.11, 2.12. The geometric operations required to obtain these interface
segments are elaborated in section 2.3. Apart from the bulk integration over the domain of
each element, there is also need to integrate over the surface of Γ

(ij)
e , in order to calculate

the element-level interface conductivity matrix of equation (2.111). This integration will

be performed by integrating over each interface segment Γ
(ij)
e,s , thus equation (2.111) can be

written as

Ke =
∑

(i,j)∈MΓ

n
(ij)
e,β∑

β=1

∫
Γ
(ij)
e,β

1

α(ij)

(
N

(ij)
(x)
)T

·N (ij)
(x) dΓ (2.129)

where n
(ij)
e,β is the number of interface segments Γ

(ij)
e,β (line segments in 2D or triangles in 3D)

that comprise the interface Γ
(ij)
e inside element e. The matrices N

(ij)
(x) = N

(ij)
(x (ξ)) are

calculated using the shape functions of the isoparametric element, thus they are functions
of the natural coordinates ξ:

N
(ij)

(x (ξ)) = N
(ij)

(ξ) =
[
N std N

(ij)

enr (ξ)
]

N std = 0

N
(ij)

enr (ξ) =
[
· · · Nk (ξ) JΨa (x (ξ))K(ij) · · ·

] (2.130)

where Nk (ξ) is the shape function corresponding to node k of the isoparametric element.
Thus, equation (2.129) is rewritten as
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Ke =
∑

(i,j)∈MΓ

n
(ij)
e,β∑

β=1

∫
Γ
(ij)
e,β

1

α(ij)

(
N

(ij)
(ξ)
)T

·N (ij)
(ξ) dΓ (2.131)

By grouping all interface segments together the previous equation can be simplified to

Ke =

ne,γ∑
s=1

∫
Γe,γ

1

α(γ)

(
N

(γ)
(ξ)
)T

·N (γ)
(ξ) dΓ (2.132)

where ne,γ is the total number of intersection segments inside element e and each Γe,γ corre-

sponds to one interface segment Γ
(ij)
e,β of the element. Since γ corresponds to a unique triple

(i, j, β), N
(γ)

(ξ) corresponds to N
(ij)

(ξ) and α(γ) to α(ij).

2.2.7.2.1 2D problems

Similarly to the bulk integrals, an auxiliary coordinate system is used for the intersection
segments. In 2D problems an 1D auxiliary system with a single coordinate (r) is defined
for each line segment, as illustrated in figure 2.11. Using the Lagrange polynomial shape
functions, mappings are defined from the auxiliary system to the natural (mapping AN) and
global (mapping AG) ones:

ξ = ξ(r) =
2∑

k=1

Nk(r)ξk

x = x(r) =
2∑

k=1

Nk(r)xk

(2.133)

where k = 1, 2 are the nodes of the interface (line) segment Γe,γ, xk and ξk are their global
and natural coordinates, respectively, and Nk (r) are the polynomial shape functions corre-
sponding to them. These Lagrange polynomials and their derivatives are

N1(r) =
1− r

2
N2(r) =

1 + r

2
dN1(r)

dr
= −

1

2

dN2(r)

dr
= +

1

2

(2.134)

In order to calculate the integral of any function f (x) = f (x(r)), the auxiliary system
is used

∫
Γ

f (x) dΓ =

+1∫
−1

f (x(r))

∥∥∥∥dx(r)dr

∥∥∥∥︸ ︷︷ ︸
JAG

dr (2.135)
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Figure 2.11: Integration over a 2D material interface in an intersected element. a) Global
coordinate system, b) Natural coordinate system of the element, c) Auxiliary coordinate
system for each line segment of the material interface.

where JAG = JAG(r) =

∥∥∥∥dx(r)dr

∥∥∥∥ is the local length distortion factor of the mapping (AG).

The total derivative with respect to the auxiliary coordinate r of the global coordinates,
which constitute a vector function x(r), is
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dx(r)

dr
=


dx(r)

dr
dy(r)

dr

 =


dN1(r)

dr
x1 +

dN2(r)

dr
x2

dN1(r)

dr
y1 +

dN2(r)

dr
y2

 =
1

2

x2 − x1

y2 − y1

 (2.136)

thus the distortion factor is equal to

JAG =

∥∥∥∥dx(r)dr

∥∥∥∥ =

√(
dx(r)

dr

)2

+

(
dy(r)

dr

)2

=
1

2

√
(x2 − x1)2 + (y2 − y1)2 =

Lseg

2
(2.137)

where Lseg is the length of the intersection segment (x1, x2) in the global cartesian system.
Note that JAG is constant and independent from the auxiliary coordinate r. The integral of
equation (2.132) can be converted to

Ke =

ne,γ∑
s=1

+1∫
−1

1

α(γ)

(
N

(γ)
(ξ(r))

)T
·N (γ)

(ξ(r)) t JAG dr (2.138)

where t is the thickness of the domain. By using numerical integration, the above equation
becomes

Ke =

ne,γ∑
s=1

n
(γ)
GP∑

p=1

1

α(γ)

(
N

(γ)
(ξ(rp))

)T
·N (γ)

(ξ(rp)) t JAG wp (2.139)

where p = 1, · · ·n(γ)
GP are the integration points used for the intersection line segment Γe,γ, rp

and wp are the coordinate and weight coefficient for Gauss-Legendre quadrature, as listed in
A.3 and ξ(rp) is calculated using equation (2.133).

2.2.7.2.2 3D problems

On the other hand, in 3D problems a 2D auxiliary coordinate system (r, s) is used for
each intersection segment, which are now triangles, as illustrated in figure 2.12. Using the
Lagrange polynomial shape functions, mappings are defined from the auxiliary system to
the natural (mapping AN) and global (mapping AG) ones:

ξ = ξ(r, s) =
3∑

k=1

Nk(r, s)ξk

x = x(r, s) =
3∑

k=1

Nk(r, s)xk

(2.140)
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Figure 2.12: Integration over a 3D material interface in an intersected element. a) Global
coordinate system, b) Natural coordinate system of the element, c) Auxiliary coordinate
system for each triangular segment of the material interface.

where k = 1, · · · 3 are the nodes of the (triangular) interface segment Γe,γ, xk and ξk are their
global and natural coordinates, respectively, and Nk (r) are the polynomial shape functions
corresponding to them. These Lagrange polynomials and their derivatives are
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N1(r, s) = 1− r − s N2(r, s) = r N3(r, s) = s

∂N1(r, s)

∂r
= −1

∂N2(r, s)

∂r
= +1

∂N3(r, s)

∂r
= 0

∂N1(r, s)

∂s
= −1

∂N2(r, s)

∂s
= 0

∂N3(r, s)

∂s
= +1

(2.141)

In order to calculate the integral of any function f (x) = f (x(r, s)), the auxiliary system
is used

∫
Γ

f (x) dΓ =

1−r∫
0

1∫
0

f (x(r, s))

∥∥∥∥∥∂x(r, s)∂r
×
∂x(r, s)

∂s

∥∥∥∥∥︸ ︷︷ ︸
JAG

drds (2.142)

where JAG = JAG(r, s) =

∥∥∥∥∥∂x(r, s)∂r
×
∂x(r, s)

∂s

∥∥∥∥∥ is the local area distortion factor of the

mapping (AG). The partial derivatives with respect to the auxiliary coordinates (r, s) of the
global coordinates, which constitute a vector function x(r, s) are

∂x(r, s)

∂r
=



∂x(r, s)

∂r

∂y(r, s)

∂r

∂z(r, s)

∂r


=



3∑
k=1

∂Nk(r, s)

∂r
xk

3∑
k=1

∂Nk(r, s)

∂r
yk

3∑
k=1

∂Nk(r, s)

∂r
zk


=



x2 − x1

y2 − y1

z2 − z1


= x2 − x1

∂x(r, s)

∂s
=



∂x(r, s)

∂s

∂y(r, s)

∂s

∂z(r, s)

∂s


=



3∑
k=1

∂Nk(r, s)

∂s
xk

3∑
k=1

∂Nk(r, s)

∂s
yk

3∑
k=1

∂Nk(r, s)

∂s
zk


=



x3 − x1

y3 − y1

z3 − z1


= x3 − x1

(2.143)

thus the distortion factor is equal to

JAG =

∥∥∥∥∥∂x(r, s)∂r
×
∂x(r, s)

∂s

∥∥∥∥∥ = ∥(x2 − x1)× (x3 − x1)∥ = 2 Atri (2.144)
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where Atri is the area of the triangular intersection segment (x1, x2, x3) in the global
cartesian system. Note that JAG is constant and independent from the auxiliary coordinates
r, s. The integral of equation (2.132) can be converted to

Ke =

ne,γ∑
s=1

1−r∫
0

1∫
0

1

α(γ)

(
N

(γ)
(ξ(r, s))

)T
·N (γ)

(ξ(r, s)) JAG drds (2.145)

By using numerical integration, the above equation becomes

Ke =

ne,γ∑
s=1

n
(γ)
GP∑

p=1

1

α(γ)

(
N

(γ)
(ξ(rp, sp))

)T
·N (γ)

(ξ(rp, sp)) JAG wp (2.146)

where p = 1, · · ·n(γ)
GP are the integration points used for the triangular intersection segment

Γe,γ, (rp, sp) and wp are the coordinates and weight coefficient for Gauss-Legendre quadrature,
as listed in A.5 and ξ(rp, sp) is calculated using equation (2.140).

2.3 LSM representation of complex material interface

geometries

2.3.1 Level Set Method

The Level Set Method (LSM) is a convenient approach to track complex 2D and 3D geome-
tries, which may be stationary and evolving. Originally developed by Osher and Sethian
(1988), it was first used in conjunction with XFEM in Stolarska et al. (2001) for modeling
cracks and Sukumar et al. (2001) for modeling inclusions or voids. In LSM, a curve in 2D or
surface in 3D is implicitly represented by its zero level set (contour), instead of employing an
explicit parametric description. The level set function is defined as the signed distance ϕ (x)
from a point x to the curve or surface, as illustrated in figure 2.13. If the geometry of an
inclusion is represented with LSM, the usual convention for the sign is: negative inside the
inclusion and positive outside. The level set function is evaluated and stored at the nodes
xk of a mesh. Then, it is interpolated for any other point, using the same polynomial shape
functions FEM uses:

ϕ (x (ξ)) =

nnodes∑
k=1

Nk (ξ)ϕk (2.147)

where ϕk = ϕ (xk). LSM complements XFEM nicely, since it uses the finite element mesh
to represent the discontinuities and perform any geometric operations needed by XFEM.
For example, ϕ (x) is needed to determine on which material phase a point lies and for
the calculation of the enrichment functions. Furthermore, LSM can be used to identify the
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Figure 2.13: Signed distance function evaluated at nodes and interpolated inside elements¿

intersections of the material interfaces with the finite elements, which are needed for the
numerical integration presented in section 2.2.7. However, the accuracy of LSM depends on
the size of the elements. In order to represent geometries with high curvature or sharp turns,
a very fine mesh is required, as shown in figure 2.14. Although the computational cost of
LSM is very low, the same mesh is used by XFEM, where refining the mesh rapidly increases
the time and memory requirements. The accuracy of XFEM does increase by refining the
mesh, but usually convergence occurs at significantly lower mesh densities than the ones
needed by LSM.

In this dissertation a double-mesh LSM approach has been developed, which uses a
coarse mesh for efficient XFEM analysis and a fine mesh for accurate LSM representations.
This section will elaborate the coupling of these two meshes and the geometric operations
needed by the XFEM formulation presented in this chapter. The resulting method offers
the advantage of independently adjusting the densities of the two meshes: the XFEM mesh
must be fine enough to achieve the desired accuracy of the analysis, but coarse enough to not
redundantly increase the computational effort, while the LSM mesh needs to be significantly
refined, in order to capture complex geometries of inclusions, and match the XFEM mesh.
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(a)

(b)

Figure 2.14: Variable accuracy of LSM representation. a) Coarse mesh. b) Fine mesh
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2.3.2 The double-mesh LSM approach

Figure 2.15: Example of coarse XFEM and fine LSM mesh.

Figure 2.15 illustrates the coarse mesh used for XFEM and the fine mesh used for LSM. It
can be observed that all nodes of the coarse mesh coincide with some nodes of the fine mesh
and that each coarse-mesh element contains a number of fine-mesh elements. The coarse
mesh consists of 4-noded quadrilateral elements in 2D or 8-noded hexahedral elements in 3D.
Triangular elements in 2D and tetrahedral elements in 3D are selected for the fine mesh, since
they lead to simpler and more robust geometric operations, especially when intersections
are considered (see section 2.3.3). Furthermore, triangles and tetrahedra produce a more
accurate representation of the original curve or surface, since the level set approximation is
linear inside each element. For example, 2 line segments inside 2 triangles can approximate
a curve better than 1 line segment inside 1 quadrilateral.

Each fine-mesh triangle and tetrahedron has its own coordinate system r, while the
natural coordinates of the coarse-mesh element are ξ, as shown in figure 2.16. In order to
map between the two coordinate systems, a third auxiliary system ξ̃ is defined, along with
its corresponding auxiliary elements. These auxiliary elements are generated by dividing a
coarse-mesh quadrilateral into (mi × mj) 4-noded quadrilaterals, in 2D problems. In 3D
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Figure 2.16: Natural coordinate systems of the elements. a) Coarse-mesh element system.
b) Auxiliary element system. c) Fine-mesh element system.

problems, a coarse-mesh hexahedron is divided into (mi × mj × mk) 8-noded hexahedra.
Therefore, the multiplicities mi, mj and mk are integers that express the relative mesh
density of the coarse and fine mesh, along the axes x, y and z respectively. Each of these
auxiliary elements is assigned an index β = (βi, βj, βk), where

βi = 1, · · ·mi

βj = 1, · · ·mj

βk = 1, · · ·mk

Essentially, mapping between the coarse and auxiliary element systems involves mapping
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from ξ −→ (ξ̃,β):

βi = FLOOR

(
mi

1 + ξ

2

)
ξ̃ = miξ − 2βi +mi − 1

βj = FLOOR

(
mj

1 + η

2

)
η̃ = mjη − 2βj +mj − 1

βk = FLOOR

(
mk

1 + ζ

2

)
ζ̃ = mkζ − 2βk +mk − 1

(2.148)

where FLOOR(·) is an operator that keeps the integer part of a real number. Similarly, the

mapping from (ξ̃,β) −→ ξ is

ξ =
ξ̃ + 2βi + 1

mi

− 1

η =
η̃ + 2βi + 1

mj

− 1

ζ =
ζ̃ + 2βi + 1

mk

− 1

(2.149)

Moreover, each auxiliary quadrilateral is divided into 2 triangular fine-mesh elements, as
shown in figure 2.16. In order to map a point ξ̃ from the auxiliary system to the natural
system of the fine-mesh elements, first we must identify which triangle contains the point ξ̃.
Therefore and integer index γ = 1 or 2 is assigned to each of the 2 triangles. Assuming that
the nodes of the auxiliary quadrilateral element are given in the specific order described in
table A.1, table 2.1 lists the nodes of each triangle, as well as the region (in the auxiliary
space) occupied by it. Mapping between the auxiliary and fine-mesh coordinate system is
described in table 2.2.

Triangle Nodes of quad4 element Region

γ = 1 P1, P2, P4 η̃ ≤ −ξ̃

γ = 2 P3, P4, P2 η̃ > −ξ̃

Table 2.1: Fine mesh triangles.
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Triangle ξ̃ −→ r r −→ ξ̃

γ = 1 r =
1 + ξ̃

2
s =

1 + η̃

2
ξ̃ = 2r − 1 η̃ = 2s− 1

γ = 2 r =
1− ξ̃

2
s =

1− η̃

2
ξ̃ = 1− 2r η̃ = 1− 2s

Table 2.2: Conversion between fine-mesh element system and auxiliary element system (2D
case).

The 3D case is similar. Each auxiliary hexahedron is divided into 6 tetrahedral fine-mesh
elements, which are assigned integer indices γ = 1, · · · 6. Assuming that the nodes of the
auxiliary hexahedron element are given in the specific order described in table A.2, table 2.3
lists the nodes of each tetrahedron, as well as the region (in the auxiliary space) occupied
by it. Mapping between the auxiliary and fine-mesh coordinate system is described in table
2.4.

Triangle Nodes of hexa8 element Region

γ = 1 P1, P2, P3, P5 η̃ ≤ ξ̃, η̃ ≤ −ξ̃, η̃ ≤ −ζ̃

γ = 2 P1, P3, P4, P5 η̃ > ξ̃, η̃ ≤ −ξ̃, η̃ ≤ −ζ̃

γ = 3 P2, P3, P5, P6 η̃ ≤ ξ̃, η̃ ≥ −ξ̃, η̃ ≤ −ζ̃

γ = 4 P7, P6, P5, P3 η̃ ≤ ξ̃, η̃ ≥ −ξ̃, η̃ > −ζ̃

γ = 5 P7, P5, P8, P3 η̃ > ξ̃, η̃ > −ξ̃, η̃ ≥ −ζ̃

γ = 6 P4, P5, P3, P8 η̃ > ξ̃, η̃ < −ξ̃, η̃ > −ζ̃

Table 2.3: Fine mesh tetrahedra.
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Tetra ξ̃ −→ r r −→ ξ̃

γ = 1 r =
ξ̃ − η̃

2
s =

η̃ + 1

2
t =

ζ̃ + 1

2
ξ̃ = 2r + 2s− 1 η̃ = 2s− 1 ζ̃ = 2t− 1

γ = 2 r =
ξ̃ + 1

2
s =

η̃ − ξ̃

2
t =

ζ̃ + 1

2
ξ̃ = 2r − 1 η̃ = 2r + 2s− 1 ζ̃ = 2t− 1

γ = 3 r =
η̃ + 1

2
s =

1− ξ̃

2
t =

ξ̃ + ζ̃

2
ξ̃ = 1− 2s η̃ = 2r − 1 ζ̃ = 2s+ 2t− 1

γ = 4 r =
ξ̃ − η̃

2
s =

1− ξ̃

2
t =

1− ζ̃

2
ξ̃ = 1− 2s η̃ = 1− 2r − 2s ζ̃ = 1− 2t

γ = 5 r =
1− η̃

2
s =

η̃ − ξ̃

2
t =

1− ζ̃

2
ξ̃ = 1− 2r − 2s η̃ = 1− 2r ζ̃ = 1− 2t

γ = 6 r =
1− η̃

2
s =

ξ̃ + 1

2
t =

η̃ + ζ̃

2
ξ̃ = 2s− 1 η̃ = 1− 2r ζ̃ = 2r + 2t− 1

Table 2.4: Conversion between fine-mesh element system and auxiliary element system (3D
case).

Note that this approach is only viable for structured coarse meshes, consisting of quadri-
lateral (2D) or hexadedral (3D) elements. These meshes are perfect for modeling materials
in Reference Volume Elements with XFEM. In the general case of an unstructured coarse
mesh with triangular (2D) or tetrahedral (3D) elements, a similar approach can be adopted.
Each triangle would be recursively divided into 3 subtriangles, using its nodes and centroid.
Similarly, each tetrahedron would be recursively divided into 4 subtetrahedra, using its nodes
and centroid.

2.3.3 Intersecting the finite elements

The LSM representation of the geometry of a material interface (curve in 2D problems or
surface in 3D problems), can be used to find the intersection of the elements with that
geometry. Let rP1 and rP2 be the nodal coordinates of an edge of a fine-mesh element,
namely a triangle in 2D problems or tetrahedron in 3D problems, in the coordinate system
of that element. Also let ϕP1 = ϕ (rP1) and ϕP2 = ϕ (rP2) be the level sets of the fine-mesh
nodes P1 and P2 respectively. Then, the edge (P1P2) is intersected by the level representation
of the curve or surface if
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ϕP1 · ϕP2 < 0

or

ϕP1 = 0 and ϕP2 ̸= 0

or

ϕP2 = 0 and ϕP1 ̸= 0

(2.150)

Assuming that the level set functions are linear inside the element, which holds for 3-noded
triangles and 4-noded tetrahedra, the coordinates of the intersection point rO with ϕO = 0
are

rO = rP1 +
0− ϕP1

ϕP2 − ϕP1

(rP2 − rP1) (2.151)

Figure 2.17: Intersection of LSM curve with a triangular element of the fine mesh.

On the other hand, the edge lies on the level set geometry, which means that fine-mesh
element conforms to the level set geometry, if

ϕP1 = ϕP2 = 0 (2.152)

2.3.3.1 2D problems

The intersection of a curve described by the proposed double-LSM approach and a coarse-
mesh (XFEM) element is an 1D mesh consisting of line segments (actually just a series of
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them) in 2D space, as depicted in figure 2.11. In order to find this intersection mesh, each
coarse-mesh element (quadrilateral) is divided into the corresponding fine-mesh elements
(triangles). Each triangle may by intersected by the level set representation of the curve along
a line segment or not all. Iterating over the edges of the triangle, if an edge is intersected
according to equation (2.150), the coordinates of the intersection point are calculated using
equation (2.151). The triangle is intersected, if it has 2 unique intersection points rO1, rO2,
as illustrated in figure 2.17. The segment (O1O2) must be oriented so that its normal vector

nO12 =

[
−(sO2 − sO1)
rO2 − rO1

]
(2.153)

points towards the region where level set values are positive. Let one of the nodes with
positive level sets be called P1 (ϕP1 > 0). There must be at least one node with positive
level set (and one with negative), if the triangle is intersected. The intersection segment
(Q1Q2) is

(Q1Q2) =

{
(O1O2) if nO12 · (rP1 − rO1) > 0

(O2O1) else
(2.154)

Let MI be the 1D intersection mesh, which consists of vertices and line segments. After
identifying an intersection segment (Q1Q2) for each triangle (if the triangle is intersected),
the points Q1, Q2 are sought in MI and added to it, if they do not already exist. Then the
segment (Q1Q2) is added to MI . After processing all fine-mesh elements (triangles) of a
coarse-mesh element (quadrilateral), the coordinates of the vertices of the intersection mesh
MI are calculated in the natural system of that coarse-mesh element, using the mappings
described in table 2.2 and equation (2.149).

Finally, an area mesh is generated for the integration operations of XFEM, as depicted
in figure 2.9b. This mesh a) is defined in the natural coordinate system of the coarse mesh
element, b) covers the element’s area and c) conforms to the intersection mesh. Generating
this conforming mesh can be done using the Constrained Delauny Triangulation (Chew,
1989), which takes as input the nodes of the coarse-mesh element and the vertices and
segments of the intersection mesh.

2.3.3.2 3D problems

Similarly to the 2D case, the intersection of a surface described by the double-mesh LSM
with a coarse-mesh element is a 2D mesh of triangles in 3D space, as shown in figure 2.12.
Each coarse-mesh element (hexahedron) is divided into the corresponding fine-mesh elements
(tetrahedra). A tetrahedron may be intersected by the level set surface along 1-2 triangles
or not all. Iterating over the edges of the tetrahedron, if an edge is intersected according
to equation (2.150), the coordinates of the intersection point are calculated using equation
(2.151). There are two intersection cases, as can be observed in figure 2.18:
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� 3 intersection points: This happens when there are 3 fine-mesh nodes with positive
level sets and 1 with negative or 3 with negative and 1 with positive, as depicted in
figure 2.18a. The intersection points O1, O2, O3, which can be selected in any order,
form a single triangle, which should be oriented, so that its normal vector nO123 points
towards the region where level set values are positive:

nO123 = (rO2 − rO1)× (rO3 − rO1) (2.155)

where × is the cross product operator. Let one of the nodes with positive level sets be
called P1 (ϕP1 > 0). The intersection triangle (Q1Q2Q3) is

(Q1Q2Q3) =

{
(O1O2O3) if nO123 · (rP1 − rO1) > 0

(O1O3O2) else
(2.156)

� 4 intersection points: This happens when there are 2 fine-mesh nodes with positive level
sets and 2 with negative, as illustrated in figure 2.18b. Let the nodes with positive
level sets be called P1, P2 and the nodes with negative level sets P3, P4. The order in
which these nodes are selected is unimportant. Then the intersection points located
on the edges between these nodes are

O1 ∈ (P1P3)

O2 ∈ (P1P4)

O3 ∈ (P2P3)

O4 ∈ (P2P4)

(2.157)

Then, two non-overlapping triangles (O1O2O3) and (O4O3O2) can be selected, although
there are other valid choices. The normal vectors of these triangles are

nO123 = (rO2 − rO1)× (rO3 − rO1)

nO432 = (rO3 − rO4)× (rO2 − rO4)
(2.158)

Taking into account that node P1 lies on the positive side of the LSM surface (ϕP1 > 0),
the two intersection triangles (Q1Q2Q3) and (Q4Q5Q6) are

(Q1Q2Q3) =

{
(O1O2O3) if nO123 · (rP1 − rO1) > 0

(O1O3O2) else

(Q4Q5Q6) =

{
(O4O3O2) if nO432 · (rP1 − rO1) > 0

(O4O2O3) else

(2.159)
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Let MI be the 2D intersection mesh, which consists of vertices and triangles. After identi-
fying the intersection segments (Q1Q2Q3), (Q4Q5Q6) for each tetrahedron (if these intersec-
tions exist), the points Q1-Q6 are sought in MI and added to it, if they do not already exist.
Then the segments (Q1Q2Q3), (Q4Q5Q6) are added to MI . After processing all fine-mesh
elements (tetrahedra) of a coarse-mesh element (hexahedron), the coordinates of the ver-
tices of the intersection mesh MI are calculated in the natural system of that coarse-mesh
element, using the mappings described in table 2.4 and equation (2.149).

Finally, a volumetric mesh is generated for the integration operations of XFEM, as de-
picted in figure 2.10b. This mesh a) is defined in the natural coordinate system of the coarse
mesh element, b) covers the element’s area and c) conforms to the intersection mesh. Gen-
erating this conforming mesh can be done using the 3D version of the Constrained Delauny
Triangulation (Shewchuk, 2008), which takes as input the nodes of the coarse-mesh element
and the vertices and segments of the intersection mesh.



CHAPTER 2. XFEM FOR COMPOSITES 69

(a) 3 intersection points

(b) 4 intersection points

Figure 2.18: Intersection of LSM surface with a tetrahedral element of the fine mesh.
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Chapter 3

Heat transfer analysis applications

In this chapter, the XFEM methodology proposed in chapter 2 is used in a series of numerical
applications. To begin with, the computational homogenization method is presented, in order
to obtain the macroscopic conductivity of composite materials. Subsequently, the proposed
XFEM formulation is validated in a numerical benchmark, as well as in the analysis of multi-
grain materials. Finally, the numerical model is used to simulate conductive heat transfer
in polymer-CNT composites, with random complex 2D and 3D microstructure, and then
calibrated using experimental macroscopic measurements.

3.1 Computational homogenization

In solid mechanics, homogenization is used to evaluate the parameters of the effective be-
havior of the macroscopic composite material by adopting a microscopic Representative
Elementary Volume (RVE), on which predefined boundary conditions are applied. In this
dissertation, linear boundary conditions are considered for the RVE, as described in Miehe
and Koch (2002). Consider a square RVE denoted by Ω and its external boundary ∂Ω. Ω
is discretized by nodes x that can be partitioned into internal nodes xi ∈ Ω and bound-
ary nodes xb ∈ ∂Ω, as illustrated in figure 3.1. By applying the same internal-boundary
partitioning to the DOFs of these nodes, the conductivity matrix can be written as

K =

[
Kii Kib

Kbi Kbb

]
(3.1)

In computational homogenization, the internal DOFs are condensed by taking the Schur
complement of Kii:

K̃bb = Kbb −KbiK
−1
ii Kib (3.2)

Due to the assumption of linear boundary conditions:

Tb = ∇T · xb = DT · ∇T (3.3)
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Figure 3.1: A 2D RVE with internal and boundary nodes.

with ∇T denoting any macroscopic temperature gradient vector applied on the RVE bound-
ary and Tb the temperature of boundary node xb. The kinematic relationship matrix D
contains the coordinates of each of the nb boundary nodes in a coordinate system defined for
the RVE, which is also depicted in figure 3.1. In case of 2D problems, it can be calculated
as

D =

[
x1 x2 · · · xnb
y1 y2 · · · ynb

]
(3.4)

and for 3D problems

D =

x1 x2 · · · xnb

y1 y2 · · · ynb

z1 z2 · · · znb

 (3.5)

The effective macroscopic conductivity tensor can be now computed as
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C̃ =
1

∥Ω∥
DK̃bbD

T (3.6)

where ∥Ω∥ is the volume of Ω. This computational homogenization method is combined
with the XFEM procedure presented in chapter 2. For a target composite material, an RVE
of the composite material is considered in the micro-scale. This RVE consists of multiple
material phases, which are separated by interfaces that exhibit thermal resistance and can
be dispersed randomly or according to case specific rules. The elaborated XFEM procedure
is used to obtain the conductivity matrix K, according to equation (2.113). Then equation
(3.6) is used to approximate the macroscopic conductivity tensor of the composite material.

3.2 Application 1: Three-phase benchmark

Figure 3.2: Material configuration

First of all, a simple a benchmark problem is investigated, in order to validate the cor-
rectness of the XFEM formulation proposed in chapter 2. In this example, the domain
consists of a composite material with three phases, A, B and C, having different interface
conductance along their boundaries. The configuration of the composite material is given
in figure 3.2 along with the boundary conditions applied on the left and on the right side.
The thickness of the material is equal to 1, while the conductivities of materials A, B and C

are chosen kA = 100
W

mK
, kB = 1000

W

mK
and kC = 1

W

mK
, respectively. The conductance at
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the interfaces A-B, A-C and B-C is kAB = 100
W

m2K
, kAC = 10

W

m2K
and kBC = 1000

W

m2K
,

respectively.
This example is first solved using the standard FEM software Abaqus (Dassault Systemes,

2020), where a 40× 40 mesh of quadrilateral elements was deemed adequate for an accurate
representation of the temperature field. In addition, appropriate cohesive interface elements
were used in the FEM model so as to capture the temperature discontinuities at the interfaces
between the different material phases. For XFEM, a nonconforming 39× 39 mesh was used.
The results of the analysis obtained from standard FEM and the proposed XFEM formulation
are given in figures 3.3 and 3.4, respectively.

Figure 3.3: Temperature field from standard FEM analysis

Additionally, figures 3.5b, 3.5c and 3.5d depict a comparison of the temperatures along
the different intersection lines shown in figure 3.5a. This investigation indicates the results
obtained from the proposed approach are in almost perfect agreement with the FEM model.
Lastly, figure 3.6 displays the distribution of the heat flux field at the interior of the material,
where it becomes evident that heat ‘chooses’ to travel through the paths that have the highest
conductivity, a result that matches our physical intuition.
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Figure 3.4: Temperature field from XFEM
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(a) Intersection lines paths

(b) Temperature along line 2-3

Figure 3.5: Comparison of temperature between FEM and proposed XFEM formulation.
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(c) Temperature along line 4-5

(d) Temperature along line 1-6

Figure 3.5: Comparison of temperature between FEM and proposed XFEM formulation.
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Figure 3.6: Heat fluxes
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3.3 Application 2: Polycrystalline silicene

This application investigates thermal transport across grain boundaries in polycrystalline
silicene. Silicene is a monolayer material, consisting of a honeycomb structure of silicon
elements. It is commonly fabricated through chemical vapor deposition (CVD). However,
this process leads to the formation of polycrystalline structures or, in other words, the for-
mation of grains, with each grain having different crystalline orientation. As a consequence,
temperature jumps appear across the grain boundaries due to phonon scattering. The ther-
mal properties of this particular material have been extensively studied in Khalkhali et al.
(2019), where the interfacial thermal conductance of grain boundaries was estimated at

kSB = 2.46 × 109
W

m2K
using non-equilibrium molecular dynamics simulations. The con-

ductivity of silicene is kSI = 41
W

mK
. Then, the effective conductivity, keff , as a function

of the grain size GS can be estimated using the following formula (Mortazavi et al., 2014;
Mortazavi et al., 2017)

keff =
kSI × kSB ×GS

kSI + kSB ×GS
(3.7)

which was also verified in Khalkhali et al. (2019).

The aim of this example is to apply the proposed XFEM methodology for the conductive
heat transfer analysis of polycrystalline silicene, where the geometry of the interfaces is quite
complex, and validate the XFEM results with those predicted by equation (3.7). In figure 3.7
the material configuration is depicted, where red lines depict the grain boundaries and black
lines the structured finite element mesh used for the purposes of XFEM. The characteristic
grain size is defined as GS =

√
(A/N) with A being the total area of the silicene sheet and

N the number of grains. The geometry of the grains was generated via Voronoi tessellation,
while their characteristic size was considered to be a varying parameter. Without loss of
generality, the same geometry was used for all RVEs, scaled accordingly to the GS size. As
boundary conditions of the RVE, a temperature of 315K was applied to its leftmost edge
and 285K to its rightmost. The RVE size was taken equal to (20 · GS) × (20 · GS) and
various RVEs were analyzed with GS ranging from 2nm to 1000nm.

To validate the proposed XFEM formulation, the effective thermal conductivity of poly-
crystalline silicene is evaluated from the XFEM model for various grain sizes. The results
are then compared to those obtained from equation (3.7). As evidenced by figure 3.8, the
two models are in very good agreement. From this figure, it can be surmised that the effec-
tive thermal conductivity of polycrystalline silicene increases monotonically with the size of
grains, before reaching a plateau at the conductivity value of pure silicene. To estimate the
sensitivity of the methodology with respect to the mesh size, figures 3.9a and 3.9b present
two convergence diagrams, corresponding to the cases of GS = 2nm and GS = 1000nm. It
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Figure 3.7: Material configuration and mesh (red lines: grain boundaries, black lines: XFEM
mesh)

is obvious that in both these cases an adequate level of accuracy can be obtained even for a
small number of elements.

Furthermore, figure 3.10 illustrates the temperature fields at steady-state for two RVEs
with GS = 2nm and GS = 1000nm. It becomes apparent that for a sample with small grain
size (figure 3.10a), the temperature distribution is almost constant inside each grain. On the
other hand, for samples with large grain sizes (figure 3.10b), a slight temperature gradient
can be detected inside each grain. These observations suggest that for small grain sizes,
the interface thermal resistance plays a dominant role in the temperature distribution but
as the grain size becomes larger, its effect is significantly diminished. To further elucidate
this, in figures 3.11a and 3.11b the temperature profiles along a section cut in the middle
of the corresponding RVEs are presented. Specifically, in figure 3.11a it is clear that the
temperature is nearly constant inside each grain and temperature jumps manifest at the
boundaries of the grains. In contrast, in figure 3.11b the temperature profile is approximately
linear inside the RVE and the temperature jumps are indiscernible.
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Figure 3.8: Effective thermal conductivity of polycrystalline silicene with various grain sizes
based on the analytical thermal resistance model from Mortazavi et al. (2014) and Mortazavi

et al. (2017) and the proposed XFEM formulation. Material properties: kSI = 41
W

mK
,

kSB = 2.46× 109
W

m2K



CHAPTER 3. HEAT TRANSFER ANALYSIS APPLICATIONS 81

50 100 150 200 250 300 350 400 450 500

elements per axis

3

3.5

4

4.5

5

5.5

6

6.5

7
k

e
ff
 (

W
/m

K
)

(a) Mesh convergence for grain size 2nm
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Figure 3.9: Mesh convergence plots for grain size 2nm and 1000nm
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(a)

(b)

Figure 3.10: Temperature fields inside the polycrystalline material. Material properties:

kSI = 41
W

mK
, kSB = 2.46 × 109

W

m2K
. (a) Grain size 2nm, RVE size 40 nm × 40 nm. (b)

Grain size 1000nm, RVE size 20000 nm× 20000 nm
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(b) temperature profile for grain size 1000 nm

Figure 3.11: Temperature profiles along a section cut in the middle of the RVEs for grain
sizes 2nm and 1000nm
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3.4 Application 3: 2D polymer - carbon nanotube

composite

In this example, a 2D RVE of a polypropylane (PP) polymeric matrix reinforced with carbon
nanotubes is studied. Pure CNTs are excellent heat conductors with their conductivity

estimated to be in the range from 3500
W

mK
(Pop et al., 2006) to 6600

W

mK
(Berber et al.,

2000). Therefore, it has been theorized that the use of CNTs as inclusions in polymers
will significantly enhance their conductivity. However, the results from several experimental
works (Gojny et al., 2006; Moisala et al., 2006; Yunsheng et al., 2006) indicate only a
marginal improvement in the polymer’s conductivity, which is attributed to defects and
impurities in the CNT lattice (Che et al., 2000), or, more critically, to the thermal resistance
during heat transmission from one medium to the other (Marconnet et al., 2013; Singh et
al., 2007). On the bright side, by increasing the volume fraction of CNTs in the polymer, a
percolation network is created (Kumar et al., 2007), through which heat is being transferred
unhindered, which results in increased material conductivity. Moreover, another property of
CNTs, often neglected when used as inclusions in polymers, is that they act as heterogeneous
nucleating agents for polymer crystallizing along the interface. This induces the formation
of a transcrystalline layer (TL) that surrounds the CNT in a process known as CNT-induced
polymer crystallization (S. Zhang et al., 2008). This layer has improved thermal properties
compared to the amorphous polymer, which affects the overall thermal conductivity of the
RVE.

In this regard, the proposed XFEM formulation is employed for the study of 2D RVEs of
this three-phase material. CNTs are assumed to be randomly dispersed in the interior of the
PP and each phase (PP, CNT, TL) has its own conductivity and interfacial conductance.

More specifically, the PP conductivity was considered kPP = 0.20
W

mK
(Maier & Calafut,

1998), the CNT conductivity kCNT = 2000
W

mK
(Hussain et al., 2017) and in lack of any

experimental knowledge over the thermal properties of the transcrystalline layer, it was

taken equal to kTL = 0.30
W

mK
, which is approximately the conductivity of the isotactic

polypropylene (Laschet et al., 2017) (degree of crystallinity 30-60 % ). Due to the inherent
uncertainties concerning the interfacial conductances, they were treated as parameters in
this model and a sensitivity analysis was performed to assess their influence on the effective

conductivity of the composite material. Their initial values were kPP/CNT = 0.25
W

m2K
and

kCNT/TL = 1000
W

m2K
. Moreover, a justified assumption has been made that the TLs around

the CNTs have different crystallinities and an interface is created at the edges where TLs of
adjacent CNTs merge. The crystalline phases around each CNT exhibit different preferred
orientations that can not be determined a priori, causing interfacial resistance. An analogous
phenomenon was the formation of the grain boundaries in the polycrystalline material of
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section 3.3. Therefore, the interfacial resistance between two TLs was also considered as a
parameter under investigation.

The study of this material was performed on RVEs of size 2000nm × 2000nm, with
varying volume fractions. Figure 3.12a depicts the RVE corresponding to a CNT volume
fraction of 4.27%, while the RVEs of figures 3.12b, 3.12c and 3.12d correspond to volume
fractions of 6.54%, 10.31% and 12.80%, respectively. In all cases, the CNTs were randomly
scattered in the parent material and their orientations were also random, following a uniform
distribution between 0 and 2π. The length of the CNTs was taken equal to 500nm, their
diameter 20nm and the width of the TL was 60nm. Figure 3.13 displays in more detail the
different interfaces formed in the interior of the composite material.

Next, a temperature gradient is applied at the x-direction of the RVEs by setting the
temperature at the leftmost nodes equal to 100K and at the rightmost nodes equal to−100K.
Figure 3.14 depicts the temperature field and the heat fluxes inside the corresponding RVEs
at thermal equilibrium. This figure highlights the fact that heat fluxes inside CNTs are
significantly larger in magnitude than those in the polymer matrix. Evidently, heat ‘prefers’
to travel mostly through CNTs, due to their excellent conductivity. CNTs oriented towards
the y-axis exhibit smaller heat fluxes, as the temperature gradient for this example is applied
only in the x-direction. However, when CNT clusters are formed, which is the case for higher
volume fractions, these vertical CNTs act as bridges between horizontal heat paths. This is
particularly noticeable in figure 3.14d, where several percolation networks can be detected.

Subsequently, the impact of the interfacial conductances kTL/TL, kPP/TL and kCNT/TL

on the overall material conductivity was assessed. To this end, a parametric investigation
was performed, where the effective conductivity of each RVE was obtained via computational
homogenization. More specifically, figure 3.15 illustrates the effect of the conductance kTL/TL

of the interface between two TLs for various volume fractions, when considering it to be
perfect insulator, perfect conductor or anything in-between. As shown from this figure, the
effect kTL/TL has on the material’s conductivity becomes more pronounced as the volume
fraction increases. This is attributed to the fact that for higher volume fractions, more local
networks between adjacent CNTs are being formed (see figure 3.12) and higher values of
kTL/TL significantly facilitate conductive heat transfer through them. In contrast, for low
volume fractions the absence of percolation networks renders the effect of kTL/TL insignificant.

Moreover, figure 3.16 depicts the surface plots of keff as a function of the interface con-
ductances kCNT/TL and kPP/TL for all volume fractions. Upon inspection of these figures,
it becomes apparent that the influence of kPP/TL and kCNT/TL on the effective conductiv-
ity, increases for higher volume fractions. This stems from the fact that by increasing the
content of CNTs, more boundary interfaces are generated. Hence, higher values of inter-
face conductance facilitate heat entering the highly conductive CNTs and flowing through
them. For instance, for volume fraction 12.80%, the maximum attainable improvement

in keff between the case of perfect insulation

(
kCNT/TL = kPP/TL = 10−5 W

m2K

)
and per-

fect conductance

(
kCNT/TL = kPP/TL = 103

W

m2K

)
is 61.20%. These results indicate that
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(b) RVE with vf 6.54%

Figure 3.12: RVEs for various volume fractions

kCNT/TL and kPP/TL play an important role in the overall material conductivity and should
not be neglected in the analysis of nano-composites. Finally, as illustrated in these figures,
the volume fraction of CNTs in the parent material is the most significant factor that en-
hances the composite’s effective conductivity compared to the initial polymer’s conductivity,

kPP = 0.20
W

mK
.
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(c) RVE with vf 10.31%
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(d) RVE with vf 12.80%

Figure 3.12: RVEs for various volume fractions
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Figure 3.13: Detailed view of the different interfaces in the interior of the composite material
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(a) RVE with vf 4.27%

(b) RVE with vf 6.54%

Figure 3.14: Temperature field and heat fluxes inside the RVEs at thermal equilibrium. Ma-

terial properties: kCNT = 2000
W

mK
, kPP = 0.20

W

mK
, kTL = 0.30

W

mK
, kPP/TL = 0.25

W

m2K
,

kCNT/TL = 1000
W

m2K
, kTL/TL = 1000

W

m2K
.
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(c) RVE with vf 10.31%

(d) RVE with vf 12.80%

Figure 3.14: Temperature field and heat fluxes inside the RVEs at thermal equilibrium. Ma-

terial properties: kCNT = 2000
W

mK
, kPP = 0.20

W

mK
, kTL = 0.30

W

mK
, kPP/TL = 0.25

W

m2K
,

kCNT/TL = 1000
W

m2K
, kTL/TL = 1000

W

m2K
.
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Figure 3.15: Parametric investigation on the effect of TL-TL interfacial conductance on
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(a) Effective conductivity of RVE with volume fraction 4.27%

(b) Effective conductivity of RVE with volume fraction 6.54%

Figure 3.16: Parametric investigation on the effect of PP-TL and CNT-TL interfacial con-
ductivities on the effective conductivity of the composite. Material properties:

kCNT = 2000
W

mK
, kPP = 0.20

W

mK
, kTL = 0.30

W

mK
, kTL/TL = 1000

W

m2K
.
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(c) Effective conductivity of RVE with volume fraction 10.31%

(d) Effective conductivity of RVE with volume fraction 12.80%

Figure 3.16: Parametric investigation on the effect of PP-TL and CNT-TL interfacial con-
ductivities on the effective conductivity of the composite. Material properties:

kCNT = 2000
W

mK
, kPP = 0.20

W

mK
, kTL = 0.30

W

mK
, kTL/TL = 1000

W

m2K
.
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3.5 Application 4: 3D polymer - carbon nanotube

composite

In this application, the XFEM model of the microstructure, which was elaborated in chapter
2, will be employed to investigate the thermal conductivity of CNT reinforced polyethylene
(PE). In contrast to the previous example, in this case, a 3D XFEM model is used and the
interface conductance is calibrated using experimental data.

3.5.1 Model calibration - Inference of the conductance between
CNTs and polymers

In particular, the effective thermal conductivity of the composite will be calculated from
an analysis of multiple SVEs of the micro structure, for different CNT concentrations and
configurations. For an accurate estimation of the material’s effective conductivity, it is of
paramount importance to know the interface conductance, denoted as k̃, between the PE
matrix and the CNTs. To infer k̃, a set of experimental measurements of the effective con-
ductivity of CNT-reinforced PE provided by Konstantopoulos et al. (2021), will be utilized.
In this work, specimens of the composite were studied, for the cases of 1%, 5% and 15% wt
of CNTs in the parent material. The CNTs were synthesized by catalytic Chemical Vapor
Deposition on a vertical setup, having an average diameter of 168±56 nm, while their length
exceeded 10 µm, classifying them as “long”. Masterbatches of CNTs were produced with
polythelene glycol (PEG) in a 1 : 1 weight ratio between CNTs and PEG, in order to ensure
better dispersion of CNTs into PE. PEG however makes interfaces complex as a third phase
in the composite. The experimental results regarding the composite’s effective conductivity
are summarized in table 3.1.

Reference samples
Effective conductivity

(
W

mK

)
without CNTs 1 wt% CNTs 5 wt% CNTs 15 wt% CNTs

PE 0.250
PE + 1 wt% PEG 0.229 0.416
PE + 5 wt% PEG 0.219 0.403
PE + 15 wt% PEG 0.210 0.422

Table 3.1: Effective thermal conductivity from experimental measurements in Konstantopou-
los et al. (2021).

By denoting k̂eff the composite’s effective conductivity obtained by applying the homog-
enization scheme to the XFEM model, then this quantity is parametrized by the weight
ratio wt% of the CNTs in the parent material, the interface conductance k̃, and a vector
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of random parameters θ which affect the architecture of CNTs. In mathematical notation,
k̂eff := k̂eff (wt%, k̃, θ). To account for the randomness θ in the material configuration,
this work opts to analyze a number N of SVEs of the microstructure for different geometry
realizations θ1, ...,θN and extract average values of the effective conductivity, keff given by

keff (wt%, k̃) =

∑N
i=1 k̂eff (wt%, k̃, θi)

N
(3.8)

which is considered to be representative for the composite. For the generation of the SVEs,
a geometry generator was employed, where a 10nm × 10nm × 10nm polymer matrix was
created, in which CNTs were added so as to attain a prescribed weight fraction. The CNTs
were modeled as cylinders, randomly positioned and oriented inside the PE matrix, having
length of 10 µm and diameter of 168 nm. It was also assumed that each CNT’s center of
mass follows a uniform distribution U([0, 10]3) (nm) and periodic boundary conditions were
applied. More specifically, the implementation aspects of the 3D SVE generator are the
following:

1. The coordinates (xci , y
c
i , z

c
i ) of the center of mass of the i-th CNT cylinder are considered

to be independent random variables, each following a uniform distribution between
0 and the length of the SVE. That is, xci , y

c
i , z

c
i ∼ U([0, 10]) (nm). This is chosen

because we do not have any information indicating the existence of more probable
CNT locations or a correlation structure for the CNT dispersion in the host material.

2. The orientation of the i-th CNT is characterized (in spherical coordinates) by the
azimuthal angle ωα

i and the polar angle ωp
i , which are also considered to be random

variables following uniform distributions, i.e. ωα
i ∼ U([−π, π]) and ωp

i ∼ U([0,π]).
Again, this is chosen since we do not have any evidence indicating towards a preferred
CNT orientation during the manufacturing process.

3. A prescribed number of CNTs is added to the cubic volume element so as to achieve the
target weight fraction. The positioning of the CNTs is performed in a serial manner,
where for each new CNT, a random realization of [xc, yc, zc,ωα,ωp] is drawn from the
corresponding probability distributions. Two cases are examined here:

a) If the i-th CNT intersects with a face of the cube, then the remaining part re-
enters through the opposite face (periodic boundary positions). This allows us to
insert the exact number of CNTs that will produce the desired weight fraction in
the host material.

b) If the i-th CNT penetrates a pre-existing one then its positioning process is re-
peated (Song et al., 2016).

In figure 3.17, three realizations of SVEs are illustrated for the cases of 1%wt of CNTs (figure
3.17a), 5%wt of CNTs (figure 3.17b) and 15%wt of CNTs (figure 3.17c).
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(a)

(b)

Figure 3.17: Statistical volume elements for different wt% of CNTs: (a) 1 wt%, (b) 5 wt%,
(c) 15 wt%

Based on the measurements of Table 3.1, the numerical model’s agreement with the
experimental measurements, is expressed through the error norm:
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(c)

Figure 3.17: Statistical volume elements for different wt% of CNTs: (a) 1 wt%, (b) 5 wt%,
(c) 15 wt%

ϵ(k̃) =

√(
keff (1wt%, k̃)− 0.416

)2
+
(
keff (5wt%, k̃)− 0.403

)2
+
(
keff (15wt%, k̃)− 0.422

)2
√
0.4162 + 0.4032 + 0.4222

(3.9)
To obtain accurate statistical estimates of keff , for each wt% and each value of conductance
k̃ in the parametric investigation, a number of N = 100 SVEs were analyzed. The results
of this investigation are shown in figure 3.18, which plots the effective conductivity of the
composite for varying values of k̃. Upon inspection of this figure, it quickly becomes evident
that k̃ plays a major role in the composite’s effective conductivity, since for values greater

than 1
W

m2K
a rapid increase in keff can be reported. This result is more prominent as the

wt% of the CNTs increases, as expected.
Subsequently, the error ϵ given by equation (3.9) is plotted as a function of the conduc-

tance k̃ in figure 3.19. This figure indicates that the best agreement between the experimental
measurements and the numerical predictions can be attained for k̃ = 0.73 W

m2K
, which results

in an error ϵ = 7.41%.
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Figure 3.18: Parametric investigation for different wt% of CNTs and PEG. The markers
indicate the mean value of keff and the length of the error bars is one standard deviation.
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Figure 3.19: Error of effective conductivity keff as a function of interface conductance k̃



CHAPTER 3. HEAT TRANSFER ANALYSIS APPLICATIONS 99

3.5.2 Theoretical investigation on the effective conductivity for
optimal microstructural morphologies

In this section, a numerical investigation will be conducted to assess the potential CNT-
reinforced PE has as a conductive material, based on idealized microstructural morphologies,
even if these are beyond current manufacturing capabilities. The focus in the section will be
placed on: (i) the CNT weight fraction, (ii) the CNT orientation, (iii) the CNT aspect ratio
and (iv) the interface conductance.

Initially, the effective conductivity of CNT reinforced PE is studied for varying weight
ratios wt%, assigning to k̃ the value 0.73 W

m2K
, found in the previous section. The investiga-

tion is performed for arbitrarily inserted CNTs in the polymer, as well as perfectly aligned
CNTs. This way, upper estimates of keff can be obtained. In figure 3.20, the SVEs made
up of horizontally aligned CNTs are depicted, as opposed to figure 3.17 which plotted SVEs
with randomly oriented CNTs.

(a)

Figure 3.20: Statistical volume elements for different wt% of of horizontally aligned CNTs:
(a) 1 wt%, (b) 5 wt%, (c) 15 wt%
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(b)

(c)

Figure 3.20: Statistical volume elements for different wt% of of horizontally aligned CNTs:
(a) 1 wt%, (b) 5 wt%, (c) 15 wt%
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Figure 3.21: Comparison in the effective conductivity between randomly oriented CNTs and
perfectly aligned

Figure 3.21 provides a comparison in the effective conductivity of the composite between
randomly oriented CNTs and aligned CNTs, where a noticeable increase in conductivity can
be reported for the latter configuration. Next, the role of the aspect ratio of the CNTs in
the effective conductivity is examined. Figure 3.22 displays the effective conductivity of the
composite for perfectly aligned CNTs, as a function of the CNT length and diameter. The
conclusion is drawn that by increasing the aspect ratio of the CNTs, a significantly more
conductive material can be produced.

Lastly, an idealized material is considered with perfectly aligned CNTs and an aspect
ratio of 2000 (diameter 10 nm and length 20 µm), which is studied for varying interface
conductance k̃ values. The reason for this investigation stems from the fact that the conduc-
tance between CNTs and PE could potentially be increased by coating the CNTs with other
conductive materials (Wang et al., 2020), even though this area is not well researched yet.
Figure 3.23 depicts the results of this analysis for k̃ = 0.73, 10, 100, 1000, where a drastic
improvement in keff can be reported as k̃ increases. Overall, the conclusions drawn from
these analyses suggest that CNT-reinforced PE is not expected to have high conductivity
values when using conventional manufacturing techniques. Nevertheless, by optimizing the
CNT orientation and aspect ratio, as well as by increasing the conductance at the interface, a
highly conductive material can be generated with great potential for industrial applications.
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(a) 1%wt CNTs

(b) 5%wt CNTs

Figure 3.22: Effective conductivity keff as a function of the CNT length and diameter for
various wt%, for the case of perfectly aligned CNTs



CHAPTER 3. HEAT TRANSFER ANALYSIS APPLICATIONS 103

(c) 15%wt CNTs

Figure 3.22: Effective conductivity keff as a function of the CNT length and diameter for
various wt%, for the case of perfectly aligned CNTs
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Figure 3.23: Effective conductivity keff for perfectly aligned CNTs with an aspect ratio of
2000, for different values of interface conductance k̃
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3.6 Conclusions

This chapter investigated the numerical model based on XFEM and LSM, which was pre-
sented in chapter 2, in a series of examples involving heat transfer in composite materials
with complex geometries. After validating the method’s accuracy with data from the lit-
erature, it was employed for the study of polymer - carbon nanotube (CNT) composites.
The thermal resistance between polyethylene (PE) and CNTs was estimated, by performing
parameter inference using experimental measurements of the effective thermal conductivity
of the composite. From the investigation of the role of CNT orientation, aspect ratio and
interfacial resistance on the effective conductivity, the following conclusions can be drawn:

1. The resistance at the interface between PE and CNTs is quite high and as a result the
effective conductivity that the composite can reach is far below theoretical expecta-
tions.

2. The theoretical investigations demonstrate that the most critical parameter for the
production of a highly conductive composite is the resistance at the interface between
CNTs and PE. Reduced values of thermal resistance, possibly achieved by coating
CNTs with other conductive materials, can indeed lead to a composite with the desired
properties for thermal applications.

3. In addition, microstructural morphologies consisting of perfectly aligned CNTs with
high aspect ratio can lead to a noticeable improvement in the effective conductivity.
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Chapter 4

3D crack propagation analysis

The aim of this chapter is to review crack propagation analysis using the Extended Finite
Element Method (XFEM). The Boundary Value Problem (BVP) for the case of Linear
Elastic Fracture Mechanics (LEFM) is stated and then solved in its weak form using XFEM.
Furthermore, the geometric representation of 3D cracks, as well as their interaction with
XFEM are presented. Finally, the propagation direction and increment of an existing crack
are predicted.

4.1 Modeling crack propagation with XFEM

4.1.1 Strong form

Figure 4.1: Domain with an edge crack
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Let Ω be a domain containing a crack Γd, as illustrated in figure 4.1. Its external boundary
of ∂Ω has an outward normal vector nΓ and is divided into complementary parts ∂Ωu and
∂Ωt, such that ∂Ω = ∂Ωu ∪ ∂Ωt. Dirichlet and Neumann boundary conditions are imposed
on the boundaries Γu and Γt, respectively

u = ũ on Γu

σ · nΓ = t̃ on Γt

(4.1)

where

� u = u (x) is the displacement field

u =

uv
w

 (4.2)

� σ = σ (u) is the Cauchy stress tensor

σ =


σxx
σyy
σzz
τxy
τyz
τzx

 (4.3)

� ũ are prescribed displacements on Γu

� t̃ are prescribed tractions on Γt

The surface of the crack is assumed to be traction-free:

σ · nΓd
= σ+ · nΓd

= σ− · nΓd
= 0 on Γd (4.4)

where nΓd
is the normal vector of the crack Γd and σ+, σ− is the stress tensor evaluated

on each side of Γd. Assuming that the displacements remain small, the kinematic equations
consist of the strain-displacement relation

ϵ = ϵ(u) = ∇symu =
∇u+ (∇u)T

2
(4.5)

where ∇symu denotes the symmetric part of the ∇u tensor and ϵ is the strain tensor
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ϵ =



∂u

∂x
∂v

∂y

∂w

∂z
∂u

∂y
+
∂v

∂x

∂v

∂z
+
∂w

∂y

∂u

∂z
+
∂w

∂x



(4.6)

For a linear elastic material, the constitutive law is

σ = σ(u) = C : ϵ(u) (4.7)

where C is the constitutive tensor. For a 3D elastic isotropic material, this 4th-order tensor
is constant and equal to

C =
E

(1 + v)(1− 2v)



1− v v v 0 0 0
v 1− v v 0 0 0
v v 1− v 0 0 0

0 0 0
1− 2v

2
0 0

0 0 0 0
1− 2v

2
0

0 0 0 0 0
1− 2v

2


(4.8)

where E is Young’s modulus and v is Poisson’s ratio. If b = b (x) is the body force per unit
volume applied to the entire Ω, then the equilibrium equation is

∇ · σ + b = 0 in Ω (4.9)

where the divergence of the stress tensor ∇ · σ is a vector defined as

∇ · σ =
∂σij

∂xj
êi =



∂σxx

∂x
+
∂σxy

∂y
+
∂σxz

∂z

∂σyx

∂x
+
∂σyy

∂y
+
∂σyz

∂z

∂σzx

∂x
+
∂σzy

∂y
+
∂σzz

∂z


(4.10)
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Given the equilibrium equation, kinematic relations, constitutive law and boundary con-
ditions on the external boundary and the crack, the strong form of the BVP can be posed
as: “ Find a vector function u (x) for the displacement field, so that the following equations
are satisfied:”

∇ · σ + b = 0 in Ω

σ = C : ϵ(u)

ϵ(u) =
∇u+ (∇u)T

2
u = ũ on Γu

σ · n = t̃ on Γt

σ · nΓd
= 0 on Γd

(4.11)

4.1.2 Divergence theorem in cracked domain

The divergence theorem is necessary to derive the weak form that is the basis of any finite
element formulation. Given a continuous domain Ω, with boundary Γ and a continuous vector
field F , the integration of its divergence over the domain is equivalent to the integration of
the field itself over the boundary:∫

Ω

∇ · F dΩ =

∫
Γ

F · nΓdΓ (4.12)

where the divergence operator is used:

∇ · F = divF =

[
∂

∂x

∂

∂y

∂

∂z

]
·

Fx

Fy

Fz

 =
∂Fx

∂x
+
∂Fy

∂y
+
∂Fz

∂z
(4.13)

In XFEM the domain Ω is discontinuous, but the divergence theorem can be applied
by splitting Ω into continuous subdomains. Figure 4.2 depicts a domain Ω that is divided
into two subdomains Ω+ and Ω− by a discontinuity Γd. The external boundaries of domains
Ω+ and Ω− are denoted as Γ+ and Γ−, with their outward unit normal vectors being nΓ+

and nΓ− respectively. The internal boundary Γd, with the unit normal vector nΓd
oriented

towardsΩ+, consists of the actual discontinuity Γd1 and its extension Γd2 with the unit normal
vector nΓd2

, both oriented towardsΩ+. The divergence theorem can now be applied to Ω+

and Ω−, since F is continuous inside them:
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Figure 4.2: A domain Ω with an interior discontinuity Γd

∫
Ω+

∇ · F dΩ =

∫
Γ+

F · nΓ+dΓ +

∫
Γ+
d1

F+ · (−nΓd1
) dΓ +

∫
Γ+
d2

F · (−nΓd2
) dΓ (4.14a)

∫
Ω−

∇ · F dΩ =

∫
Γ−

F · nΓ−dΓ +

∫
Γ−
d1

F− · nΓd1
dΓ +

∫
Γ−
d2

F · nΓd2
dΓ (4.14b)

where the values of F along the two sides of the discontinuity Γ+
d1 and Γ−

d1 are different
and denoted as F+ and F− respectively. Since the two subdomains span the whole domain
Ω = Ω+∪Ω− and Γ = Γ+∪Γ− and by noticing that the contour integrals along the extension
of the discontinuity Γd2 in equation (4.14) cancel out:
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∫
Ω

∇ · F dΩ =

∫
Ω+

∇ · F dΩ +

∫
Ω−

∇ · F dΩ

=

∫
Γ+

F · nΓ+dΓ +

∫
Γ−

F · nΓ−dΓ−
∫
Γ+
d1

F+ · nΓd1
dΓ

+

∫
Γ−
d1

F− · nΓd1
dΓ−

∫
Γ+
d2

F · nΓd2
dΓ +

∫
Γ−
d2

F · nΓd2
dΓ

=

∫
Γ

F · nΓdΓ−
∫
Γd

(
F+ − F−) · nΓd

dΓ

(4.15)

By defining the jump of the vector field across Γd as JF K = F+ − F− the previous
equation becomes ∫

Ω

∇ · F dΩ =

∫
Γ

F · nΓdΓ−
∫
Γd

JF K · nΓd
dΓ (4.16)

For problems where the domain contains Nd discontinuities, the following should be used
instead ∫

Ω

∇ · F dΩ =

∫
Γ

F · nΓdΓ−
Nd∑
i=1

∫
Γdi

JFiK · nΓdi
dΓ (4.17)

4.1.3 Weak form

The weak form of the BVP is posed as: Find a trial function u that belongs to the function
space

U = {v ∈ H : v = ũ on Γu , v discontinuous on Γd} (4.18)

such that ∫
Ω

ϵ(w) : C : ϵ(u)dΩ =

∫
Ω

w · b dΩ +

∫
Γt

w · t̃ dΓ (4.19)

for all test functions w belonging to the space

U0 = {v ∈ H : v = 0 on Γu , v discontinuous on Γd} (4.20)

where H is an H1 Hilbert space of functions that are smooth in Ω, but discontinuous across
Γd. To derive the weak form from the strong form, equation (4.9), is multiplied with an
arbitrary test function w, integrated and then the product rule of differentiation is applied:
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∇ · σ (u) + b = 0

⇐⇒
∫
Ω

w · (∇ · σ (u) + b) dΩ = 0

⇐⇒
∫
Ω

w · (∇ · σ (u)) dΩ +

∫
Ω

w · b dΩ = 0

⇐⇒
∫
Ω

∇ · (w · σ (u)) dΩ−
∫
Ω

∇w : σ (u) dΩ +

∫
Ω

w · b dΩ = 0

(4.21)

The discontinuous Divergence theorem of equation (4.16) can now be applied on the first
integral of equation (4.21)

∫
Ω

∇ · (w · σ (u)) dΩ =

∫
Γ

w · σ (u) · nΓ dΓ−
∫
Γd

Jw · σ (u)K · nΓd
dΓ

=

∫
Γt

w · σ (u) · nΓ dΓ +

∫
Γu

w · σ (u) · nΓ dΓ

−
∫
Γd

(
w+ · σ+ (u) · nΓd

−w− · σ− (u) · nΓd

)
dΓ

(4.22)

By imposing the boundary conditions of equations (4.1, 4.4), the last two integrals are
eliminated from the previous equation∫

Ω

∇ · (w · σ (u))dΩ =

∫
Γt

w · t̃dΓ (4.23)

The gradient of the test vector field can be written as

∇w =
∇w + (∇w)T

2
+

∇w − (∇w)T

2
= ∇symw +∇antw (4.24)

where ∇symw and ∇antw are the symmetric and anti-symmetric parts of the ∇w tensor.
Since ∇antw is anti-symmetric and σ (u) is symmetric, their product is

∇antw : σ (u) = 0 (4.25)

Therefore the second integral of equation (4.21) becomes
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∫
Ω

∇w : σ dΩ =

∫
Ω

∇symw : σ (u) dΩ +

∫
Ω

∇antw : σ (u) dΩ

=

∫
Ω

ϵ(w) : σ(u) dΩ

(4.26)

Substituting equations (4.23) and (4.26) into equation (4.21) results in the weak form∫
Γt

w · t̃ dΓ−
∫
Ω

ϵ(w) : σ(u) dΩ +

∫
Ω

w · b dΩ = 0

⇔
∫
Ω

ϵ(w) : C : u dΩ =

∫
Ω

w · b dΩ +

∫
Γt

w · t̃ dΓ
(4.27)

4.1.4 XFEM enrichment

In order to model the discontinuous displacement field u, XFEM enriches the polynomial
approximation space of standard FEM with non-smooth enrichment functions. The finite
element mesh is independent from the crack geometry and does not need to conform to it.
Instead, some elements are intersected by the crack surface or the crack front, as illustrated
in figure 4.3b. The nodes of elements intersected by the crack front are enriched with 4
asymptotic crack-tip enrichment functions Fm(x), derived from LEFM

{Fm(x)}4m=1 = {Fm(r, θ)}4m=1

=

{
√
r sin(

θ

2
);
√
r cos(

θ

2
);
√
r sin(

θ

2
) sin(θ);

√
r cos(

θ

2
) sin(θ)

}
(4.28)

where (r, θ) = (r(x), θ(x)) are the coordinates of a point defined in a polar system at the
crack front, as shown in figure 4.3a. Furthermore, the nodes belonging to elements that are
intersected by the rest of the crack surface, are enriched with the Heaviside function H(x)

H(x) = H(ϕ(x)) =

{
+1, ϕ(x) ≥ 0

−1, ϕ(x) < 0
(4.29)

where ϕ(x) is the signed distance of a point x to the crack surface, as shown in Fig.4.3a. This
enrichment strategy of XFEM is localized around the crack, since the rest of the elements
and nodes in the mesh do not interact with the crack. Let M , MH and MT be the sets of
all nodes that are not enriched, enriched with the Heaviside function and enriched with the
crack-tip functions, respectively. Then the enriched approximation space used in XFEM is
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(a)

(b)

Figure 4.3: A crack surface inside a 3D body. (a) Signed distances ϕ from the crack surface
and polar coordinates (r, θ) around the crack front. (b) Enriched nodes and elements inter-
sected by the crack.
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uh(x) =
∑
k∈M

Nk(x)uk

+
∑

k∈MH

Nk(x) (H(x)−H(xk))u
H
k

+
∑
k∈MT

Nk(x)
( 4∑

m=1

(Fm(x)− Fm(xk))u
Tm
k

) (4.30)

where ui are the standard DOFs expressing nodal displacements, while uH
k and uTm

k are
enriched DOFs introduced by XFEM at the nodes that are enriched with Heaviside and
crack-tip functions, respectively. All Nk(x) are polynomial shape functions, identical to the
ones used in standard FEM. The above equation can be written more concisely by grouping
all Heaviside and crack-tip enrichment functions and representing them collectively as Ga(x)

uh(x) =
∑
k∈M

Nk(x)uk︸ ︷︷ ︸
ustd

+
∑
k∈Ma

Nk(x) (G
a(x)−Ga(xk))u

a
k︸ ︷︷ ︸

uenr

(4.31)

whereMa are the nodes enriched with enrichment function Ga and ua
k are the corresponding

enriched DOFs. The first term (ustd) on the right-hand side of equation (4.31) corresponds to
the standard FEM approximation of the displacement field. The second term (uenr) contains
enriched basis functions that allow the approximation space to model (i) displacement jumps
across the crack surface (Heaviside enrichment) and (ii) stress/strain fields that are singular
at the crack front (crack-tip enrichments). The derivatives of the crack-tip functions with
respect to the polar coordinates are

∂F1

∂r

∂F1

∂θ

 =


1

2
√
r
· sin

θ

2

1

2
·
√
r · cos

θ

2

 (4.32)


∂F2

∂r

∂F2

∂θ

 =


1

2
√
r
· cos

θ

2

−
1

2
·
√
r · sin

θ

2

 (4.33)


∂F3

∂r

∂F3

∂θ

 =


1

2
√
r
· sin

θ

2
· sin θ

√
r

(
1

2
· cos

θ

2
· sin θ + sin

θ

2
· cos θ

)
 (4.34)
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
∂F4

∂r

∂F4

∂θ

 =


1

2
√
r
· cos

θ

2
· sin θ

√
r

(
−
1

2
· sin

θ

2
· sin θ + cos

θ

2
· cos θ

)
 (4.35)

4.1.5 Algebraic equations

Using the displacement field approximation of equation (4.31), the weak form of equation
(4.19) results in a linear system with the nodal displacements u as unknowns

K u = f

K =
ne∑
e=1

P T
e ·Ke · Pe

f =
ne∑
e=1

P T
e · fe

(4.36)

where ne is the number of finite elements, Pe is a boolean matrix, namely it contains only
0 or 1 entries, that correlates each element DOF (row of Pe) to one exactly global DOF
(column of Pe), Ke is the element stiffness matrix and fe is the element force vector:

f =

∫
Ωe

NT (x (ξ)) bdΩ +

∫
Γte

NT (x (ξ)) t̃dΓ (4.37)

where ξ are the coordinates of a point in the natural system of the element and N (x (ξ))
is a matrix containing the standard and enriched basis functions of the element:

N (x (ξ)) =
[
N std (x (ξ)) N enr (x (ξ))

]
N std (x (ξ)) =

 Nk (x (ξ)) 0 0
· · · 0 Nk (x (ξ)) 0 · · ·

0 0 Nk (x (ξ))


N enr (x (ξ)) =

 N enr
k (x (ξ)) 0 0

· · · 0 N enr
k (x (ξ)) 0 · · ·

0 0 N enr
k (x (ξ))


(4.38)

where N enr
k are the enriched basis functions

N enr
k (x (ξ)) = Nk (x (ξ)) (Ga (x (ξ))−Ga (xk)) (4.39)

where Ga (x (ξ)) is any Heaviside or crack-tip enrichment, evaluated with respect to the
natural coordinates xi. Moreover, the element stiffness matrix can be calculaed as



CHAPTER 4. 3D CRACK PROPAGATION ANALYSIS 116

Ke =

∫
Ω

BT (x (ξ)) ·C (x (ξ)) ·B (x (ξ)) det (JNG (ξ)) dξdηdζ (4.40)

where det (JNG (ξ)) is the determinant of the Jacobian matrix JNG (ξ) of the isoparametric
mapping, which is defined in equation (A.3). The deformation matrix B (x (ξ)) is

B (x (ξ)) =

[
Bstd (x (ξ)) Benr (x (ξ))

]

Benr (x (ξ)) =



· · ·

∂N enr
k (x (ξ))

∂x
0 0

0
∂N enr

k (x (ξ))

∂y
0

0 0
∂N enr

k (x (ξ))

∂z
∂N enr

k (x (ξ))

∂y

∂N enr
k (x (ξ))

∂x
0

0
∂N enr

k (x (ξ))

∂z

∂N enr
k (x (ξ))

∂y

∂N enr
k (x (ξ))

∂z
0

∂N enr
k (x (ξ))

∂x

· · ·


Bstd (x (ξ)) = similarly

(4.41)

The derivatives with respect to global cartesian coordinates x are calculated using the deriva-
tives with respect to natural coordinates ξ:

∂N enr
k (x (ξ))

∂x

∂N enr
k (x (ξ))

∂y

∂N enr
k (x (ξ))

∂z


= (JNG (ξ))−1 ·



∂N enr
k (ξ)

∂ξ

∂N enr
k (ξ)

∂η

∂N enr
k (ξ)

∂ζ


(4.42)

and

∂N enr
k (ξ)

∂ξ
=
∂Nk (ξ)

∂ξ
(Ga (ξ)−Ga (ξk)) +Nk (ξ)

∂Ga (ξ)

∂ξ

∂N enr
k (ξ)

∂ξ
=
∂Nk (ξ)

∂η
(Ga (ξ)−Ga (ξk)) +Nk (ξ)

∂Ga (ξ)

∂η

∂N enr
k (ξ)

∂ξ
=
∂Nk (ξ)

∂ζ
(Ga (ξ)−Ga (ξk)) +Nk (ξ)

∂Ga (ξ)

∂ζ

(4.43)
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For the Heaviside enrichment function H (x (ξ)) of equation (4.29), the derivatives are

∂H (ξ)

∂ξ
=
∂H (ξ)

∂η
=
∂H (ξ)

∂ζ
= 0 (4.44)

The derivatives of the crack-tip enrichment functions Fm (x (ξ)) of equation (4.28) with
respect to the global coordinates x can be calculated as

∂Fm

∂x

∂Fm

∂y

∂Fm

∂z


=



∂ξ

∂x

∂η

∂x

∂ζ

∂x

∂ξ

∂y

∂η

∂y

∂ζ

∂y

∂ξ

∂z

∂η

∂z

∂ζ

∂z


︸ ︷︷ ︸

(JNG)−1

·



∂Fm

∂ξ

∂Fm

∂η

∂Fm

∂ζ


(4.45)

where JNG is the Jacobian matrix of the isoparametric mapping: natural −→ global coor-
dinate system (NG), which is defined in equation (A.3). Then, the derivatives with respect
to the natural coordinates ξ are

∂Fm

∂ξ

∂Fm

∂η

∂Fm

∂ζ


=



∂r

∂ξ

∂θ

∂ξ

∂r

∂η

∂θ

∂η

∂r

∂ζ

∂θ

∂ζ


︸ ︷︷ ︸

JNP

·


∂Fm

∂r

∂Fm

∂θ

 (4.46)

where JNP is the Jacobian matrix of the mapping: natural −→ polar coordinate system

(NP ). The derivatives
∂Fm

∂r
,
∂Fm

∂θ
of the crack-tip enrichment functions with respect to

the polar coordinates (r, θ) are evaluated using equations (4.32–4.35). In this work, the
Jacobian matrix JNP is calculated using an auxiliary coordinate system (ϕ,ψ) defined by
the representation of the crack’s geometry, which will be elaborated in section 4.2.

4.2 Crack geometry representation

In combination with XFEM, implicit representations of crack geometries are usually em-
ployed, based on the Level Set Method (LSM). LSM was originally proposed in Osher and
Sethian (1988) for tracking complicated moving interfaces, by computing their motion on a
fixed finite element mesh. This implicit representation complements XFEM very well, since
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it uses the same fixed mesh to efficiently calculate the signed distance of arbitrary points to
the crack surface, as well as their polar coordinates (see equation (4.28)).

In this work, a hybrid explicit-implicit representation of cracks is used, instead of the
purely implicit LSM developed by Stolarska and Chopp (2003) for simple 2D cracks. This
hybrid approach was introduced in Fries and Baydoun (2012) and takes advantage of the
synergy between implicit crack representations and XFEM, as well as the ease of updating
explicit crack geometries in both 2D and 3D. A brief overview of the method will be given
here, while interested readers should refer to Fries and Baydoun (2012) for more details.
Note this approach is just one alternative for representing 3D cracks. The solution meth-
ods developed in chapter 5 will perform just as well with other crack geometry description
methods.

Figure 4.4: Explicit representation of a 3D crack as a mesh with triangular elements.

A crack surface is represented explicitly as a mesh of triangular cells in 3D space and
the crack front consists of the surrounding vertices of this mesh, namely the crack tips. An
example involving a planar crack is shown figure 4.4, along with local coordinate systems
defined at each crack tip. This explicit representation is very convenient to model crack
growth, since only new triangles need to be added along the crack front, as the crack prop-
agates. Specifically, each crack tip x

(t)
i at step t will propagate towards x

(t+1)
i . Update the

crack mesh of step t consists simply of adding to it the triangles between crack tips x
(t)
i and

x
(t+1)
i .
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Figure 4.5: Implicit representation of a 3D crack: ϕ1 (x)

Furthermore using this triangular crack mesh, 3 level set functions are evaluated at the
finite element nodes:

� ϕ1 (x) is the unsigned distance of a point to the crack mesh.

� ϕ2 (x) is the unsigned distance of a point to the crack front.

� ϕ3 (x) is the signed distance of a point to the crack mesh, which defines a positive and
a negative half-space depending on the normal vectors to the triangles.

Figures 4.5-4.7 illustrate these level set functions plotted over a plane that intersects the
crack. In Fries and Baydoun (2012), these 3 level sets are used to evaluate the enrichment
functions, identify elements intersected by the crack, etc. In this dissertation, a modified
approach will be used, which avoids singular derivatives when ϕ2 (x) = ϕ3 (x). Two more
level sets ϕ (x), ψ (x) are defined here:
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Figure 4.6: Implicit representation of a 3D crack: ϕ2 (x)

ϕ (x) = ϕ3 (x)

ψ (x) =



√
(ϕ2 (x))

2 − (ϕ3 (x))
2 if ϕ1 (x) ̸= |ϕ3 (x) |

−
√

(ϕ2 (x))
2 − (ϕ3 (x))

2 if ϕ1 (x) = |ϕ3 (x) |,ϕ2 (x) ̸= |ϕ3 (x) |,ϕ3 (x) > 0

−
√

(ϕ2 (x))
2 − (ϕ3 (x))

2 if ϕ1 (x) = |ϕ3 (x) |,ϕ2 (x) ̸= |ϕ3 (x) |,ϕ3 (x) ≤ 0

0 if ϕ1 (x) = |ϕ3 (x) |,ϕ2 (x) = |ϕ3 (x) |
(4.47)

where it should be noted that ϕ2 (x) > ϕ3 (x) by definition. Figure 4.8 depicts the ψ level
set, while ϕ can be seen in 4.7. Both these level sets functions are evaluated and stored at
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Figure 4.7: Implicit representation of a 3D crack: ϕ3 (x) = ϕ (x)

mesh nodes xk. For any point inside the finite elements, the standard shape functions can
be used to interpolate the stored nodal values ϕk, ψk:

ϕ (x (ξ)) =

nnodes∑
k=1

Nk (ξ)ϕk

ψ (x (ξ)) =

nnodes∑
k=1

Nk (ξ)ψk

(4.48)

If ϕmin, ϕmax, ψmin, ψmax are the minimum and maximum values of the level set functions
evaluated at the nodes of a finite element, then the element is intersected by the crack surface
if
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Figure 4.8: Implicit representation of a 3D crack: ψ (x)

ϕmin · ϕmax ≤ 0 and ψmax < 0 (4.49)

Similarly, the element is intersected by the crack front if

ϕmin · ϕmax ≤ 0 and ψmin · ψmax ≤ 0 (4.50)

In addition, the (ϕ,ψ) level sets can be used to calculate the polar coordinates needed for
the crack-tip enrichment functions in equation (4.28):

r =
√
ϕ2 + ψ2

θ = arctan
ϕ

ψ
= ATAN2(ϕ,ψ)

(4.51)
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as well as evaluate the Heaviside enrichment function in equation (4.29):

H (x) = H (ϕ(x)) (4.52)

Furthermore, (ϕ,ψ) define a “level-set” coordinate system that can be used to calculate the
Jacobian matrix JNP , which is necessary for the evaluation of the derivatives of crack-tip
enrichment functions, as described in equations (4.45, 4.46):

JNP = JNΦ · JΦP

⇐⇒



∂r

∂ξ

∂θ

∂ξ

∂r

∂η

∂θ

∂η

∂r

∂ζ

∂θ

∂ζ


=



∂ϕ

∂ξ

∂ψ

∂ξ

∂ϕ

∂η

∂ψ

∂η

∂ϕ

∂ζ

∂ψ

∂ζ


·


∂r

∂ϕ

∂θ

∂ϕ

∂r

∂ψ

∂θ

∂ψ

 (4.53)

where JNΦ is the Jacobian matrix of the mapping: natural −→ level-set coordinate system
(NΦ) and can be calculated using equation (4.48):



∂ϕ

∂ξ

∂ψ

∂ξ

∂ϕ

∂η

∂ψ

∂η

∂ϕ

∂ζ

∂ψ

∂ζ


=



nnodes∑
k=1

∂Nk (ξ)

∂ξ
ϕk

nnodes∑
k=1

∂Nk (ξ)

∂ξ
ψk

nnodes∑
k=1

∂Nk (ξ)

∂η
ϕk

nnodes∑
k=1

∂Nk (ξ)

∂η
ψk

nnodes∑
k=1

∂Nk (ξ)

∂ζ
ϕk

nnodes∑
k=1

∂Nk (ξ)

∂ζ
ψk


(4.54)

Moreover, JΦP is the Jacobian matrix of the mapping: level-set −→ polar coordinate system
(NΦ). Starting from equation (4.51), the derivatives of the polar coordinates with respect
to the level sets are

∂r

∂ϕ
=

∂(ϕ2 + ψ2)

∂ϕ

2
√
ϕ2 + ψ2

=
2ϕ

2r
=
ϕ

r

∂r

∂ψ
=

∂(ϕ2 + ψ2)

∂ψ

2
√
ϕ2 + ψ2

=
2ψ

2r
=
ψ

r

∂θ

∂ϕ
=

ψ

ϕ2 + ψ2
=
ψ

r2

∂θ

∂ψ
= −

ϕ

ϕ2 + ψ2
= −

ϕ

r2

(4.55)
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and the Jacobian matrix JΦP is

JΦP =


∂r

∂ϕ

∂θ

∂ϕ

∂r

∂ψ

∂θ

∂ψ

 =


ϕ

r

ψ

r2

ψ

r
−
ϕ

r2

 (4.56)

To sum up, the derivatives of the crack-tip enrichment functions with respect to the global
coordinates can be converted to the derivatives with respect to the polar coordinates of
equations (4.32–4.35) as 

∂Fm

∂x
∂Fm

∂y

∂Fm

∂z


= (JNG)

−1 · JNΦ · JΦP︸ ︷︷ ︸
JGP

·


∂Fm

∂r
∂Fm

∂θ

 (4.57)

where JGP can be seen as the Jacobian matrix of an (indirect) mapping: polar −→ global
coordinate system (PG).

4.3 Crack propagation

For a given crack configuration, XFEM analysis is applied to calculate the displacement,
strain and stress fields. In order to model the propagation of the crack surface from these
results, the simplified approach proposed in Fries and Baydoun (2012) will be used in this
work. According to this “σrθ = 0”-criterion, the circumferential (σθθ) and shear (σrθ) stresses
are calculated at a set of trial points around one of the crack tips, namely the vertices of
the crack front. Then the propagation angle θcr for that tip is selected as the one where
σrθ = 0. If there are multiple such angles, then the angle with maximum σθθ among them is
chosen. To begin with, the stress tensor at a trial point needs to be transformed to the local
cartesian coordinate system of each crack tip

σtnq = TglσxyzT
T
gl =

σtt σtn σtq
σnt σnn σnq
σqt σqn σqq

 (4.58)

where n is a vector normal to the crack surface, q is oriented along the crack front and t is
oriented towards the tangential extension of the crack and orthogonal to the previous n, q,
as illustrated in figure 4.4. The global-local rotation Tgl is defined as
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Tgl =



∂t

∂x

∂t

∂y

∂t

∂z

∂n

∂x

∂n

∂y

∂n

∂z

∂q

∂x

∂q

∂y

∂q

∂z


(4.59)

Subsequently the polar stresses σθθ and (σrθ) are calculated

σθθ = σnn sin
2(θ) + σtt cos

2(θ)− σnt sin(2θ)

σrθ = sin(θ) cos(θ) (σnn − σtt) + σnt cos(2θ)
(4.60)

After estimating the direction of propagation θcr for a crack tip, the increment must be
specified too. At each propagation step of the analysis, a maximum crack increment da
is prescribed. This length is assigned to the crack tip with the maximum circumferential
max (σθθ) stress, while the length of the crack increment at other tips will be scaled propor-
tionally to their σθθ. The trial points are placed on a [−75◦, +75◦] arc in front of each crack
tip at a distance rc such that 0.1 · da ≤ rc ≤ da, where da is the crack increment.

This simplified method for modelling crack propagation has been shown to produce rea-
sonably accurate crack paths. However, other approaches, such as the J-integral method
(Rice, 1968) and configurational forces (Gurtin, 1995) may result in higher accuracy, al-
though they pose difficulties as well, especially in 3D problems. In any case, any method
to estimate the crack propagation can be used without affecting the solvers that will be
presented in chapter 5. The resulting procedure for crack propagation is therefore:

Algorithm 4.1 Quasi-static crack propagation analysis

1: Initialize crack geometry and level sets.
2: repeat
3: Perform XFEM analysis to obtain linear system, as described in section 4.1.
4: Solve linear system with one of the solvers, presented in chapter 5.
5: for each crack tip do
6: Identify trial points and calculate stress tensors.
7: Estimate propagation direction and increment.
8: end for
9: Update the crack mesh and level sets, as described in section 4.2.
10: until the crack fully intersects the domain

This quasi-static analysis is suitable for simulating brittle crack propagation based on
LEFM theory and has been used since the early XFEM works, such as Belytschko and Black
(1999).
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Chapter 5

Linear system solvers

Both FEM and XFEM convert the partial differentions of the boundary value problem into
a system of algebraic equations

Ku = f (5.1)

where the system matrix K is the stiffness or conductivity of the discretized domain, the
right-hand-side (RHS) vector f expresses forces or thermal loads applied to the domain
and the solution vector u contains the nodal displacements or temperatures. The system
matrix K is symmetric positive definite. The solution of this linear system is by far the most
computationally intensive part of FEM and XFEM, especially in large-scale and 3D problems.
Inverting the system matrix is almost always prohibitive in terms of computing time and
memory requirements. Instead, various solution algorithms have been developed and will
be investigated in this chapter. Additionally, two novel solvers and their implementation in
high performance computing environments will be proposed for the solution of linear systems
resulting from crack propagation analysis in the framework of XFEM.

5.1 Direct methods

5.1.1 Cholesky solver

Direct methods solve the linear system by factorizing the system matrix and then apply-
ing back and substitution. For a positive definite system matrix, the most efficient direct
methods are Cholesky solvers, which are based on the Cholesky factorization

K = LLT (5.2)

where L is a lower triangular matrix. Most often, the LDL factorization variant is used:

K = LDLT (5.3)
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where L is a lower triangular matrix with diagonal entries being equal to 1 and D is a
diagonal matrix. Once the matrix is factorized, the L,D factors can be used to solve one
or more linear systems with different RHS vectors, according to the procedure described in
algorithm 5.1:

Algorithm 5.1 Cholesky solver for linear systems Kut = ft

1: Factorize: K = LDLT

2: for t = 1 · · ·nsys do
3: Forward substitution: Lxt = ft

4: Diagonal solve: Dyt = xt

5: Back substitution: LTut = yt

6: end for

where the subscript t denotes each of the nsys RHS vectors. The LDL factorization is
described in algorithm 5.2:

Algorithm 5.2 LDL factorization K = LDLT

1: for i = 1 · · ·n do
2: for j = 1 · · · i− 1 do

3: Lij =
1

Djj

(
Kij −

j−1∑
k=1

LikLjkDkk

)
4: end for

5: Dii = Kii −
i−1∑
k=1

LikLikDkk

6: end for

where n is the number of rows (equal to the number of colums) and the subscripts ij denote
the entry of the corresponding matrix at row i and column j. The forward substitution using
the lower triangular matrix L is listed in algorithm 5.3:

Algorithm 5.3 Forward substitution Lx = f

1: x1 = f1
2: for i = 2 · · ·n do

3: xi = fi −
i−1∑
j=1

Lijxj

4: end for

The solution of the system with the diagonal matrix D is listed in algorithm 5.4:
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Algorithm 5.4 Diagonal system solution Dy = x

1: for i = 1 · · ·n do

2: yi =
xi

Dii
3: end for

The back substitution using the upper triangular matrix LT is listed in algorithm 5.5:

Algorithm 5.5 Back substitution LTu = y

1: un = yn
2: for i = n− 1 · · · 1 do

3: ui = yi −
n∑

j=i+1

Ljiuj

4: end for

5.1.2 Sparse direct solvers

For matrices resulting from FEM and XFEM, most entries are equal to 0, while the non-zero
entries are gathered around the diagonal. In this case, only the non-zero entries are explicitly
stored, in order to greatly reduce the memory requirements of the solver and be able to solve
much larger problems. The positions of the non-zero entries of a matrix is called its sparsity
pattern. There are various sparse matrix formats used in practice, such as the skyline format
(SKY). An example of a symmetric matrix stored in SKY format is:

KSKY =



K11 K12 K14

K22 K23 0
K33 K34 K35

K44 K45 K46

K55 K56 K58

K66 K67 0
K77 K78

K88


(5.4)

where only the non-zero entries of the upper triangle are stored, as well as any zero entries
between the top non-zero entry to the diagonal entry of each column. Therefore the sparsity
pattern of the matrix includes some zero entries. The active height of each column is defined
as the distance between the top and diagonal non-zero entries and the bandwidth of the
matrix as the maximum active height of all columns. In practice, the non-zero entries of
matrices resulting from FEM and XFEM are very few (less than 20%), while the zero entries
inside the active columns can reach a considerable number, albeit much less than the ignored
zero entries outside the active columns. During factorization, any zero entries outside the
sparsity pattern will remain as 0 and can thus be ignored in algorithms 5.2 - 5.5, which greatly
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reduces the computational time. However, the zero entries inside the sparsity pattern will
be changed to non-zero values, a process that is called fill-in and is the main obstacle of
direct methods when solving large-scale problems.

A non-diagonal entry is non-zero when it corresponds to two DOFs that interact with
each other, namely they belong to the same node or different nodes of the same element.
The bandwidth of the matrix is the maximum distance in the ordering of these interacting
DOFs, namely which unique number identifier is assigned to each DOF. Two nodes belong
to the same element, when they are neighbors in the finite element mesh, but they can be
ordered consecutively only along one axis, not all three axes x, y, z. As the mesh is refined,
the difference in ordering of neighboring nodes increases, as does the ordering difference
of their DOFs and thus the bandwidth of the matrix. Therefore, for large-scale problems,
the bandwidth of the matrix can become so high that the fill-in causes the direct solver to
become very inefficient, since it spends too much time operating on zero entries within the
active heights of the columns, or even impossible due to the memory requirements of storing
these zero entries. This problem does not affect 1D problems, where the DOF ordering is
always consecutive. In 2D problems, the DOF ordering distance and thus bandwidth of the
matrix are not very high, albeit higher than in 1D problem, therefore direct solvers are a
very attractive choice. However, in 3D problems the increased ordering difference between
neighboring nodes and their DOFs greatly increase the bandwidth and fill-in of the matrix,
rendering direct solvers inefficient or unusable.

On the other hand, the bandwidth of the matrix can be reduced by applying a DOF
reordering algorithm, such as the reverse Cuthill-McKee developed in Cuthill and McKee
(1969), Approximate Minimum Degree (AMD) and its Column AMD (COLAMD) variant
proposed in Amestoy et al. (2004) and Davis et al. (2004), respectively, as well as nested
dissection by George (1973). These fill-reducing algorithms renumber the DOFs by using
graph partitioning algorithms or heuristics, in order to minimize the bandwidth of the matrix.
Their computational cost is much lower than factorizing the matrix, thus all direct solvers
use a reordering algorithm prior to the factorization step in practice. In the numerical
examples investigated in this dissertation, the direct method of choice is the supernodal
sparse Cholesky solver (Y. Chen et al., 2008), which is implemented in the CHOLMOD
package of the SuiteSparse library (Davis, 2022). This linear algebra library uses a sparse
matrix format, which is similar to skyline and also provides AMD, COLAMD and nested
dissection reordering algorithms, which are all applied and the best DOF ordering is kept.

5.1.3 Advantages and disadvantages

Advantages of direct solvers:

� The back/forward/diagonal substitutions require considerably less computational effort
than the factorization step. Once the matrix is factorized, multiple linear systems with
the same matrix, but different RHS vectors, can be solved very fast.

� In 1D problems, they are the most efficient solves available.
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� In 2D problems, they are less efficient due to the increased bandwidth, but in many
cases they are still the most attractive choice.

� They are reliable and not affected by ill-conditioning as much as iterative solvers.

� The number of operations can be predicted based on the system size and bandwidth.

Disadvantages of direct solvers:

� In 3D and large-scale problems they are very slow and can have prohibitive memory
requirements, since the bandwidth of the matrix is very high, even after DOF reorder-
ing.

� The matrix must be explicitly stored in the memory space of a single computer. Using
more computers to increase the available memory is pointless.

� The operations used in factorization and back/forward substitution are strongly cou-
pled. Thus, they cannot be executed in parallel as efficiently as in iterative and domain
decomposition solvers.

5.2 Iterative methods

Iterative solvers calculate an approximate solution of the linear system, by starting from an
initial guess and then refining it over a number of iterations. The iterations end when the
iterative method has converged, namely the error of the approximate solution is within a
desired tolerance, or a maximum number of iterations has been reached. If u is the exact
solution of the linear system and ut is the approximate solution at iteration t, then the error
is defined as

et = u− ut (5.5)

Since the exact solution is not known, the residual vector

rt = f −Kut (5.6)

is compared to the zero vector to estimate the accuracy of the solution vector u.

5.2.1 The Conjugate Gradient method

The defacto iterative method for symmetric positive definite matrices is Conjugate Gradient.
At each iteration of this method, the next approximation of the solution vector ut+1 is sought
starting from the previous ut and moving along a direction vector d for a step size at:

ut+1 = ut + atdt (5.7)
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The step size, which is a scalar quantity, is calculated from line search as

at =
rT
t rt

dT
t Kdt

(5.8)

The direction vectors are chosen from a basis of the vector space that contains vectors that
are conjugate (also called K-orthogonal) with each other:

diKdj = 0, if i ̸= j (5.9)

which can be achieved if

dt+1 = rt+1 + βt+1dt

βt+1 =
rT
t+1rt+1

rT
t rt

(5.10)

All operations are between vectors, except for the matrix-vector multiplications Kdt, Kut.
The matrix-vector multiplications are optimized by using sparse matrix storage formats, that
are designed specifically for efficient matrix-vector multiplication operations. Two popular
storage formats are the Compressed Sparse Rows (CSR) format for CPU implementations,
which only stores the non-zero entries, their column indices and a compressed representation
of their row indices, and the ELLPACK format for GPU implementations. Even then,
the vector operations have negligible cost compared to the matrix-vector multiplications.
Consequently, it is desirable to limit the latter into only one matrix-vector multiplication
Kdt per iteration t by calculating the residual vector as

rt+1 = rt − atKdt (5.11)

where Kdt has already been performed for the calculation of the step size at. In theory,
conjugate gradient will find the exact solution after n iterations, where n is the number of
rows/columns of the matrix. However, when the operations are executed by a computer,
limited precision and round-off errors will increase the required number of iterations. In
any case, once the residual vector r is within some tolerance ϵ, which happens after much
fewer than n iterations for most ϵ chosen in practice, conjugate gradient has converged to
a reasonably accurate solution x. The convergence rate of Conjugate Gradient, like all
iterative methods, is very sensitive to the condition number of the matrix

c(K) =
λmax(K)

λmin(K)
(5.12)

where λmin(K), λmax(K) are the the minimum and maximum, respectively, absolute values
of the eigenvalues of K. For a positive definite matrix K, all eigenvalues are positive
numbers. Additionally, the identity matrix I has all eigenvalues equal to 1, which leads
to the minimum possible condition number c(I) = 1. The convergence rate of Conjugate
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Gradient depends on this condition number. Let ∥et∥K be the energy norm of the error
vector

∥et∥K =
√

eT
t Ket (5.13)

Then, the convergence rate of Conjugate Gradient is quantified by the ratio of the current
error norm to the error norm of the initial iteration

∥et∥K
∥e0∥K

=

(
c(K)− 1

c(K) + 1

)t

(5.14)

Matrices with a large spread of their eigenvalues will have high condition numbers and
the rate at which the error decreases will be lower, therefore Conjugate Gradient will require
a high number of iterations to converge to the desired tolerance. The matrices, linear sys-
tems and generally the mechanics problems themselves are call ill-conditioned in this case.
Unfortunately, problems with heterogeneous materials, high Poisson ratios or the crack-tip
enrichment functions used in XFEM (see equation(4.28)) are strongly ill-conditioned, which
causes Conjugate Gradient and any other iterative solver to be inefficient.

5.2.2 Preconditioned Conjugate Gradient

The convergence rate of Conjugate Gradient can be increased with a technique called pre-
conditioning. Instead of the original linear system Ku = f , the equivalent system

P−1Ku = P−1f (5.15)

is solved. The matrix P−1 (or sometimes P itself) is called the preconditioner matrix. The
preconditioner P−1 is usually an approximation of the inverseK−1, so that the matrix P−1K
of the new linear system has a condition number c (P−1K) close to 1 or at least lower than
the original c (K). Therefore, solving this linear system usually requires less iterations and
computing time. The original Conjugate Gradient is modified to solve the preconditioned
linear system leading to the Preconditioned Conjugate Gradient (PCG) method, which will
be used in the rest of this dissertation and is elaborated in algorithm 5.6.
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Algorithm 5.6 PCG solution of Ku = f , with preconditioner P−1

1: ϵ = desired tolerance, tmax = maximum iterations
2: t = 0
3: u0 = 0 or another initial guess
4: r0 = f −Ku0

5: d0 = s0 = P−1r0
6: ρ0 = rT

0 s0
7: while t < tmax do
8: qt = Kdt

9: at =
rT
t st

dT
t qt

10: ut+1 = ut + atdt

11: rt+1 = rt − atqt

12: st+1 = P−1rt+1

13: ρt+1 = rT
t+1st+1

14: if ρt+1 < ϵ ρ0 then
15: Stop and return ut+1 ▷ PCG has converged
16: end if
17: βt+1 =

ρt+1

ρt
18: dt+1 = st+1 + βt+1dt

19: t = t+ 1
20: end while

Nevertheless, choosing a preconditioner P−1 is not straightforward and problem-specific
preconditioners need to be developed usually. A good preconditioner must satisfy the fol-
lowing criteria:

1. P must be symmetric positive definite.

2. The number of iterations should be reduced as much as possible, namely the condition
number c (P−1K) must be as low as possible.

3. The preconditioner P−1 must be calculated efficiently, in terms of memory and time
required, before PCG starts.

4. The preconditioner P−1 must be applied effectively during the PCG iterations of al-
gorithm 5.6, which is expressed by the multiplication P−1rt.

Unfortunately, criteria 2, 3, 4 are usually contradictory and a reasonable trade-off is
sought. For example, the diagonal preconditioner (also called Jacobi preconditioner) is the
most basic one and very efficient to both calculate:
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P−1
D =


1

K11
. . .

1

Knn

 (5.16)

and apply during PCG:

P−1
D r =


r1

K11
...
rn

Knn

 (5.17)

but does not reduce the number of iterations as much as more sophisticated options. Diagonal
preconditioning is very effective in reducing the condition number when the matrix is strongly
diagonally dominant. However, it can be applied to all problems, in contrast with more
complicated preconditioners that can become unstable, has negligible computing cost and
can be parallelized extremely efficiently in both shared memory and distributed memory
computing systems. Consequently, it is always a good choice to try, unless a better option
is available.

On the opposite end, the Cholesky (and LDL) methods can also be used for precondi-
tioning. The initial calculation involves the factorization of the system matrix, while the
application step involves performing the back/forward substitutions. By doing so, the pre-
conditioner P−1 coincides with the inverse matrix K−1 and PCG converges after only 1
iteration. Of course, this preconditioner is the most costly to calculate and store, negating
all the advantages PCG may have over the corresponding direct solver. While, this precon-
ditioner is not used in practice, approximate versions of it, such as incomplete Cholesky, may
be employed. Finally, the domain decomposition solvers investigated in this dissertation will
define their own preconditioners.

5.2.3 Advantages and disadvantages

Advantages of iterative solvers:

� The memory requirements are minimized, since only non-zero entries need to be ex-
plicitly stored, without any fill-in occurring.

� In 3D and large-scale problems they usually outperform direct solvers.

� If a good preconditioning strategy is known for the specific problem, then the iterations
and computation time can be greatly reduced.
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� The convergence tolerance can be adjusted to improve performance at the cost of lower
accuracy, if the latter is not important.

� The matrix-vector multiplications, vector-vector operations and some preconditioners
can be parallelized very efficiently in both shared memory and distributed memory
systems.

� There is no need to explicitly store the matrix K or the preconditioner P−1. Instead,
only a way to perform the matrix vector multiplicationsK·d and P−1·r is needed. This
is a huge benefit, because it allows the decomposition of K and P−1 into submatrices
that exist on different computers, without actually forming K and P−1 on any coputer
explicitly. Instead the matrix-vector multiplications are performed by processing each
submatrix independently and possibly in parallel and then summing the intermediate
results. For example, this is the strategy employed when using PCG in the domain
decomposition solvers that will be presented in the next sections.

Disadvantages of iterative solvers:

� They are very sensitive to ill-conditioning, unlike direct solvers.

� There is no universally good preconditioner. Instead, problem-specific preconditioners
must be developed and tried for each case. The complexity and computational cost of
these preconditioners often exceeds that of the iterative method itself.

� They converge to an approximation of the solution, instead of the exact one.

� Predicting the number of iterations and thus the time required is generally impossible,
since calculating the eigenvalues needed for the condition number is actually more
difficult than solving the linear system.

5.3 Domain decomposition methods

In this section, a review of the FETI-DP and P-FETI-DP domain decomposition methods
(DDM) will be presented. Both belong to the finite element tearing and interconnecting
(FETI) family of algorithms, the high performance of which has been established in standard
FEM (Fragakis & Papadrakakis, 2003), meshless methods (Metsis & Papadrakakis, 2012)
and isogeometric analysis (Stavroulakis et al., 2012). Moreover, both solvers have shown
to exhibit high numerical and parallel scalability properties, since their convergence rate
increases as more subdomains are used (Farhat et al., 2000; Fragakis & Papadrakakis, 2003).
In FETI-DP and P-FETI-DP, an iterative algorithm, such as the preconditioned conjugate
gradient (PCG), is used to connect individual subdomains and calculate the forces required
for the equilibrium (FETI-DP) or the displacements required for the compatibility (P-FETI-
DP) at boundary nodes. Boundary nodes are those that belong to two or more subdomains,
while internal nodes belong to only one subdomain, as shown in figure 5.1.



CHAPTER 5. LINEAR SYSTEM SOLVERS 136

Figure 5.1: Boundary and internal nodes of subdomains.

5.3.1 FETI-DP

5.3.1.1 Primal and dual DOFs

The dual-primal FETI (FETI-DP) was introduced in Farhat et al. (2000) to improve the
scalability of the original FETI method (Farhat & Roux, 1991). This is achieved by defining
corner nodes, which are a subset of boundary nodes that lie on the beginning or end of each
geometric edge of each subdomain, as illustrated in figure 5.2. Sometimes additional corner
nodes can be used, to ensure that each subdomain has at least two (in 2D problems) or
three (in 3D problems) non-colinear corner nodes. The corner DOFs associated with these
corner nodes are indicated by the subscript c. The remainder DOFs of each subdomain are
indicated by the subscript r. The stiffness matrix Ks, displacement vector us and force
vector f s of subdomain s are therefore decomposed as follows:

Ks =

[
Ks

rr Ks
rc

(Ks
rc)

T Ks
cc

]
us =

[
us

r

us
c

]
f s =

[
f s
r

f s
c

]
(5.18)

The remainder DOFs are further divided into internal DOFs, which are associated with
nodes that belong to only one subdomain and are indicated by the subscript i, and boundary-
remainder DOFs, which are indicated by the subscript br and are associated with boundary
nodes that are not corners:
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Figure 5.2: Definition of corner nodes.

Ks
rr =

[
Ks

ii Ks
ibr

(Ks
ibr
)T Ks

brbr

]
us

r =

[
us

i

us
br

]
f s
r =

[
f s
i

f s
br

]
(5.19)

The displacements corresponding to all corner DOFs of the global domain are gathered
in the vector uc of length nc. The mapping between uc and us

c is defined as boolean matrices
Ls

c that have 0, 1 entries and dimensions (ns
c × nc), where n

s
c and nc are the number of corner

DOFs of subdomain s and the global domain, respectively. An entry i, j of Ls
c is equal to

1, if the corner DOF that corresponds to subdomain-level row i, is the same as the corner
DOF that corresponds to global-level column j.

us
c = Ls

cuc (5.20)

The continuity between the otherwise disconnected subdomains is retained by enforcing
compatibility conditions for instances of the same boundary DOF in different subdomains:

[
1 −1

] [ u
(si)
k

u
(sj)
k

]
= 0 (5.21)
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where the subscript k denotes any boundary-remainder DOF that belongs to subdomains si
and sj. These continuity equations are gathered into signed boolean matricesBs

r , which have
0, 1, -1 entries and dimensions (nλ × ns

r), where nλ is the number of continuity equations of
the global domain and ns

r the number of remainder DOFs of subdomain s :

ns∑
s=1

Bs
ru

s
r = 0 (5.22)

To solve the global equilibrium equations Ku = f in the presence of these constraints,
the Lagrange multipliers λ are applied at boundary-remainder DOFs to enforce displacement
compatibility, as illustrated in figure 5.3. It should be clarified that no Lagrange multipliers
are applied at corner DOFs.

Figure 5.3: Langrange multipliers applied to boundary DOFs of subdomains. In the case of
nodes belonging to 2 subdomains, only one Lagrange multiplier is needed per DOF.

In 3D problems, there are nodes that lie on the common edge between 3 or more subdo-
mains, excluding its corners. For these cross-point nodes, multiple continuity equations and
corresponding Lagrange multipliers per boundary DOF must be applied. This is achieved
with the fully redundant constraint strategy (Farhat & Roux, 1994), which increases the
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Figure 5.4: Langrange multipliers applied to boundary DOFs of subdomains. In the case
of cross-points nodes belonging to 3 or more subdomains, multiple Lagrange multipliers are
needed per DOF.

convergence rate of FETI-DP by applying a Lagrange multiplier between each pair of in-
stances of the same DOF in different subdomains, as shown in figure 5.4. The equilibrium
equations can then be written as

Ks
rru

s
r +Ks

rcL
s
cuc + (Bs

r)
Tλ = f s

r (5.23)

ns∑
s=1

(Ls
c)

T (Ks
rc)

Tus
r +

ns∑
s=1

(Ls
c)

T (Ks
cc)

TLs
cu

s
c =

ns∑
s=1

(Ls
c)

Tf s
c (5.24)

5.3.1.2 Interface problem of FETI-DP

By performing static condensation of the remainder DOFs, the Schur complement Ss
cc of

each subdomain’s Ks
rr and the corresponding force vector zs

c are calculated

Ss
cc = Ks

cc − (Ks
rc)

T (Ks
rr)

−1Ks
rc (5.25)
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ẑs
c = f s

c − (Ks
rc)

T (Ks
rr)

−1f s
r (5.26)

Then these subdomain-level matrices and vectors are summed to obtain the global-level
corner stiffness matrix Scc and corresponding corner force vector zc

Scc =
ns∑
s=1

(Ls
c)

TSs
ccL

s
c =

ns∑
s=1

(Ls
c)

T
(
Ks

cc − (Ks
rc)

T (Ks
rr)

−1Ks
rc

)
Ls

c (5.27)

zc =
ns∑
s=1

(Ls
c)

T ẑs
c =

ns∑
s=1

(Ls
c)

T
(
f s
c − (Ks

rc)
T (Ks

rr)
−1f s

r

)
(5.28)

With an appropriate selection of corner nodes, Ks
rr is a positive definite matrix, which

means that its Schur complement Ss
cc and eventually Scc are also positive definite matrices.

Equation (5.23) can also be written as:

us
r = (Ks

rr)
−1
(
f s
r − (Bs

r)
Tλ−Ks

rcL
s
cuc

)
(5.29)

Substituting equation(5.29) into equations (5.22) and (5.24) and decoupling the un-
knowns uc and λ, results in

uc = S−1
cc (zc + FIcrλ) (5.30)

(
FIrr + FIrcS

−1
cc FIcr

)
λ = dr − FIrcS

−1
cc zc (5.31)

where

FIrr =
ns∑
s=1

Bs
r(K

s
rr)

−1(Bs
r)

T (5.32)

FIrc =
ns∑
s=1

Bs
r(K

s
rr)

−1Ks
rcL

s
c (5.33)

FIcr = F T
Irc =

ns∑
s=1

(Ls
c)

TKs
cr(K

s
rr)

−1(Bs
r)

T (5.34)

dr =
ns∑
s=1

Bs
r(K

s
rr)

−1f s
r (5.35)

Note that FIrr is a flexibility matrix, while dr expresses displacements. The linear system
of equation (5.31) is the interface problem of FETI-DP. The matrix of equation (5.31) is
positive definite and the solution for λ can be done using an iterative algorithm, such as
the PCG method. During each matrix-vector multiplication of PCG, in the form of

(
FIrr +

FIrcS
−1
cc FIcr

)
· λ, the linear system
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Scc · xc = yc (5.36)

needs to be solved, where yc = FIcr ·λ. This linear system, defined as the coarse problem of
FETI-DP, is a much smaller auxiliary problem that speeds up convergence by coupling the
subdomain computations and globally propagating the error at each PCG iteration. After
solving the interface problem and obtaining the Lagrange multipliers λ, the displacements at
corner and remainder DOFs can be calculated using equations (5.30) and (5.29). However,
the displacements at different instances of the same boundary DOF will be slightly different
in each subdomain. To obtain compatible displacements across all subdomains the following
averaging operation needs to be done:

ǔs
b = Ls

b(L
s
b)

TW s
b u

s
b (5.37)

where us
b are the incompatible displacements at boundary DOFs of subdomain s, ǔs

b are the
corrected, compatible displacements at the same DOFs, Ls

b is a mapping matrix defined in
section 5.3.2.1 and W s

b is a scaling matrix defined in section 5.3.2.2.

5.3.1.3 Preconditioners of FETI-DP

Using a preconditioner is necessary to reduce the number of iterations of PCG. A precondi-
tioner is an approximation to the flexibility-like matrix of the interface problem. Therefore,
FETI-DP preconditioners incorporate the stiffness matrices of subdomains:

F̃−1
I =

ns∑
s=1

Bs
pbrS̃

s
brbr(B

s
pbr)

T (5.38)

where S̃s
brbr

is an approximation of the Schur complement of internal DOFs and Bs
pbr

is
a scaling-mapping matrix. In elasticity (2nd order) problems with homogeneous stiffness
distribution among subdomains, Bs

pbr
is given by

Bs
pbr = Bs

brW
s
br (5.39)

where Bs
br

are the columns of Bs
r that correspond to the boundary-remainder DOFs of

subdomain s and W s
br
is the inverse of a diagonal matrix, whose entries are the multiplicities

of these DOFs. The multiplicity of a DOF is defined as the number of subdomains that
contain the node associated with that DOF. Depending on the definition of S̃s

brbr
the following

preconditioners can be obtained:

S̃s
brbr =

{
Ks

brbr
− (Ks

ibr
)T (Ks

ii)
−1Ks

ibr
Dirichlet preconditioner

Ks
brbr

lumped preconditioner
(5.40)

Dirichlet preconditioner uses the full Schur complement of internal DOFs, therefore it is
more costly to calculate and implement, but results in fewer PCG iterations, in comparison
to the lumped preconditioner, which is less effective in improving the convergence of PCG.
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5.3.2 P-FETI-DP

P-FETI-DP has been introduced in Fragakis and Papadrakakis (2003) as a hybrid approach
that combines the high computational efficiency of FETI methods with the robustness of
primal methods in ill-conditioned problems. Essentially, P-FETI-DP is equivalent to a primal
substructuring method (PSM) that uses the first iteration of FETI-DP as its preconditioner.
The resulting algorithm is a simpler, yet more efficient alternative to FETI-DP that avoids
any need for Lagrange multipliers.

5.3.2.1 Interface problem of P-FETI-DP

In P-FETI-DP the stiffness matrix, displacement and force vectors are decomposed into parts
corresponding to internal (subscript i) and boundary (subscript b) DOFs. In contrast to the
boundary-remainder DOFs of FETI-DP, here boundary DOFs comprise all DOFs belonging
to two or more subdomains, without considering corner nodes into account:

Ks =

[
Ks

ii Ks
ib

(Ks
ib)

T Ks
bb

]
us =

[
us

i

us
b

]
f s =

[
f s
i

f s
b

]
(5.41)

The displacements corresponding to all boundary DOFs of the global domain are gathered
in the vector ub of length nb. The mapping between ub and us

b is defined as boolean matrices
Ls

b that have 0, 1 entries and dimensions (ns
b × nb), where n

s
b and nb are the number of

boundary DOFs of subdomain s and the global domain, respectively. An entry i, j of Ls
b is

equal to 1, if the boundary DOF that corresponds to subdomain-level row i, is the same as
the boundary DOF that corresponds to global-level column j.

us
b = Ls

bub (5.42)

By performing static condensation of the internal DOFs, the Schur complement Ss
bb of

each subdomain’s Ks
ii and the corresponding force vector zs

b are calculated

Ss
bb = Ks

bb − (Ks
ib)

T (Ks
ii)

−1Ks
ib (5.43)

ẑs
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T (Ks
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−1f s
b (5.44)

Then these subdomain-level matrices and vectors are summed to obtain the global-level
boundary stiffness matrix Sbb and corresponding boundary force vector zb
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As in FETI-DP, Ks
ii, S

s
bb and Sbb are positive definite matrices. The interface problem

of P-FETI-DP is then solved iteratively by PCG:

Sbb · ub = zb (5.47)

After obtaining the global boundary displacements ub, the boundary displacements of
each subdomain s can be computed using equation(5.42) and the internal displacements us

i

as

us
i = (Ks

ii)
−1 (f s

i −Ks
ibu

s
b) (5.48)

5.3.2.2 Preconditioner of P-FETI-DP

During the iterative solution of the interface problem, the first iteration of FETI-DP is used
to provide the preconditioner for PCG. Fragakis and Papadrakakis (2003) proved that in
this case, the Lagrange multipliers can be eliminated from the equations and the following
matrix form of the preconditioner can be derived

Ã−1
bb = Ar

bb +AbcAccAcb
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Abc = AT
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Acc = S−1
cc

(5.49)

where the matrices Ks
rr, Ks

rc, Ks
cr, Scc and Ls

c were defined in section 5.3.1. Nc,b is a
boolean matrix (0, 1 as entries) with dimensions (nc × nb) that maps the boundary DOFs of
the global domain (columns) to the corner DOFs of the global domain (rows). In addition

Ls
pr = N s

r,bL
s
pb (5.50)

where N s
r,b is a boolean matrix (0, 1 as entries) with dimensions (ns

r × ns
b) that maps the

boundary DOFs of a subdomain (columns) to its remainder DOFs (rows). Ls
pb is a scaling-

mapping matrix and in elasticity (2nd order) problems with homogeneous stiffness distribu-
tion among subdomains, it can be calculated as

Ls
pb = Ls

bW
s
b (5.51)

where W s
b is the inverse of a diagonal matrix whose entries are the multiplicities of the

boundary DOFs of subdomain s. Since there are no Lagrange multipliers involved, the
matrix form of the preconditioner in equation (5.49) is a lot simpler to implement and the
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size of the interface problem of P-FETI-DP in 3D problems is not increased, unlike FETI-DP
where multiple Lagrange multipliers are applied at cross-point nodes. It can be observed
that the operations performed by P-FETI-DP and Dirichlet-preconditioned FETI-DP are
identical, with the exception of some multiplications with boolean matrices. Since these are
extremely sparse matrices, the computing cost of these multiplications is negligible, therefore
the amount of work done per iteration of the PCG algorithm is the same for both methods.
However, P-FETI-DP tends to converge faster, particularly for ill-conditioned problems,
making it superior in terms of computational time.

5.4 Domain decomposition methods for XFEM

In this dissertation two domain decomposition methods, namely the FETI-DP and P-FETI-
DP solvers described in section 5.3, are proposed for the solution of the linear systems
resulting from XFEM at each step of the crack propagation analysis. Both solvers are par-
ticular effective for this type of problems for a number of reasons that will be elaborated
in this section. A main advantage over direct solvers developed especially for XFEM crack
propagation, such as the incremental Cholesky algorithm of Pais et al. (2012), is that the
proposed solvers involve matrices which can be factorized significantly more efficiently, espe-
cially in large scale 3D problems. In particular, the matrices Ks

rr, K
s
ii and Scc of equations

(5.18, 5.19, 5.41, 5.27) require factorization, but these are substantially smaller than the
global stiffness matrix of a direct solver. Moreover, their bandwidth is reduced, since DOFs
of nearby elements, which interact and contribute non-zero entries to stiffness matrices, fol-
low a local DOF ordering at each subdomain with much fewer total DOFs than the global
domain. As a result, FETI-DP and P-FETI-DP can achieve significant computation gains
in terms of time and memory requirements, especially in 3D problems.

Additionally, both FETI-DP and P-FETI-DP can benefit from their high parallelizable
features, since all subdomain-level operations are independent from each other and can be
executed concurrently. This inherent parallelism allows the full utilization of multi-core
and distributed memory computing systems to further reduce the computation cost. Other
domain decomposition solvers for XFEM crack propagation have been developed in X. Chen
and Cai (2022), Menk and Bordas (2011), and Waisman and Berger-Vergiat (2013) and can
also be executed in parallel, however without being tested in 3D computationally intensive
problems. In contrast, this work is focused on producing high performance solvers for large-
scale 3D problems, as reflected by the numerical examples investigated in chapter 6.

5.4.1 Resolving crack-specific singularities

FETI-DP and P-FETI-DP solvers, as described in sections 5.3.1 and 5.3.2, were developed
for continuum mechanics problems. Thus, it is assumed that the subdomains are sufficiently
supported and their Ks

rr matrices are not singular, as long as corner nodes are selected
according to the rules listed in section 5.3.1.1. However, this assumption is not valid in
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fracture mechanics, where one or more cracks propagate through a discontinuous domain
and some subdomains may be entirely intersected by them. An example of this is shown
in figure 5.5, where a single crack propagates throughout a 2D domain and interacts with
three subdomains, two of which are completely bisected by the crack. A 2D example is used,
since it is can be illustrated more clearly. However, the proposed method can also be applied
to 3D problems. In the same figure, the boundary and corner nodes defined in the original
FETI-DP and P-FETI-DP algorithms are also depicted.

Figure 5.5: Boundary and corner nodes of the original FETI-DP and P-FETI-DP algorithms.

The XFEM enrichment described in section 4.1.4 models the jump in the displacement
field around a crack, by introducing discontinuous basis functions and corresponding enriched
DOFs. When the crack completely intersects a subdomain s, the rows and columns of
Ks

rr corresponding to these enriched DOFs become linearly dependent. In this case, the
subdomain is essentially divided into two floating rigid parts that can move independently
from one another, as illustrated in figure 5.6, where two subdomains are bisected by the
crack, and the resulting independent rigid parts are denoted as shaded regions. There is
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Figure 5.6: Floating rigid parts of subdomains that are completely intersected by a crack.

also another subdomain that interacts with the crack and contains the crack tip, but no
mechanism is developed there, since the crack does not run through the entire subdomain.

In order to overcome this singularity of Ks
rr, the following procedure is proposed. First,

the linearly dependent rows and columns of Ks
rr are identified by locating their correspond-

ing enriched DOFs. Let Mb be the set of boundary DOFs, namely DOFs belonging to 2
or more subdomains. The Heaviside enriched DOFs aj of equation(4.31) belong to the set
MH , while the enriched DOFs b1k applied for the first crack tip function F1 of equation(4.28)
belong to the set MT 1 . If a subdomain is fully intersected by a crack, then the DOFs that
belong to the set Mb∩ (MH ∪MT 1) are responsible for introducing the jump in the displace-
ment field and for developing internal mechanisms for that subdomain. Subsequently, these
DOFs are promoted to corner DOFs, thus removing the corresponding linearly dependent
rows/columns from Ks

rr and restoring its invertibility. If Mc,std is the set of corner DOFs
defined in section 5.3.1.1, then the proposed modification consists of identifying the set

Mc = Mc,std ∪ (Mb ∩MH) ∪ (Mb ∩MT 1) (5.52)

and using it to define the corner DOFs of FETI-DP and P-FETI-DP, instead of Mc,std,
as illustrated in figure 5.7. These boundary enriched DOFs are then included in the sub-
domain’s stiffness submatrix Ks

cc and ultimately in the global coarse problem matrix Scc

of equation(5.36). However, contrary to subdomain-level matrices, Scc corresponds to the
global domain, albeit in terms of its corner DOFs only. While the crack propagates through-
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out the domain, some subdomains will be fully intersected, but this will not happen for the
entire domain until the last propagation step of the analysis, when collapse occurs. There-
fore, the proposed approach avoids the singularity of Scc, since no internal mechanisms will
be developed for the reduced order model corresponding to the coarse problem. As a result,
the definition of subdomains does not depend on the location of cracks, as was the case in
X. Chen and Cai (2022), Waisman and Berger-Vergiat (2013), and Wyart et al. (2008), and
the entire domain can be arbitrarily partitioned, unlike Menk and Bordas (2011) where only
the enriched DOFs were decomposed into subdomains. Furthermore, with the proposed ap-
proach cracks can intersect any subdomains, which can then be selected with the objective
of minimizing memory requirements and computation time.

Figure 5.7: Boundary nodes enriched with Heaviside and crack tip enrichment functions are
promoted to corner nodes, to avoid singular Ks

rr matrices in FETI-DP and P-FETI-DP.

5.4.2 Elimination of XFEM-related ill-conditioning

Another difficulty that arises in crack propagation simulations with XFEM is the ill-conditioning
of the stiffness matrices, due to the significant difference of stiffness entries corresponding
to the crack-tip enriched DOFs from entries corresponding to standard and Heaviside en-
riched DOFs. To speed up convergence, a preconditioner suitable for this particular source
of ill-conditioning is essential. Unfortunately, general purpose preconditioners are not as
effective in the case of XFEM. Problem specific preconditioners based on domain decompo-
sition methods have been developed for this purpose in X. Chen and Cai (2022), Menk and
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Bordas (2011), and Waisman and Berger-Vergiat (2013), where the domain is separated into
well-conditioned subdomains (standard and possibly Heaviside DOFs) and ill-conditioned
subdomains (crack-tip enriched DOFs and possibly Heaviside or even a few standard DOFs).
Then direct solvers are used for the subproblems defined at the ill-conditioned subdomains,
while the well-conditioned ones are treated with inexact methods, such as diagonal precondi-
tioning (Menk & Bordas, 2011), algebraic multigrid (Waisman & Berger-Vergiat, 2013) and
incomplete LU factorization (X. Chen & Cai, 2022).

In the present formulation, the terms causing ill-conditioning are restricted only to the
interface problem of FETI-DP and P-FETI-DP and can be further eliminated by modifying
the coarse problem appropriately. Let MTm , m = 1, · · · 4 be the set of bmk DOFs intro-
duced for each crack-tip enrichment function of equation(4.28). The ill-conditioned terms
of the interface problem correspond to DOFs belonging to Mb ∩ MTm , m = 1, · · · 4. The
proposed technique treats these DOFs as corner DOFs, as depicted in figure 5.7, thus mak-
ing the coarse problem of equation(5.36) more efficient in distributing the error between
subdomains at each PCG iteration. Therefore, the preconditioner of P-FETI-DP can over-
come ill-conditioning due to XFEM enrichments, since it includes this coarse problem, as
described in equation(5.49). Although the preconditioner of FETI-DP does not depend on
corner DOFs and is not affected by the modification, the condition of the interface problem
matrix FIrr + FIrcS

−1
cc FIcr is improved, because i) the coarse problem is directly embedded

into this matrix and ii) the problematic DOFs in Mb ∩MTm , m = 1, · · · 4 are removed from
it. Taking into account the modification of section 5.4.1 to avoid singular Ks

rr matrices, the
proposed method uses the set

Mc = Mc,std ∪ (Mb ∩MH)
4⋃

m=1

(Mb ∩MTm) (5.53)

to define the corner DOFs of FETI-DP and P-FETI-DP. It should be pointed out, however,
that even without this improvement, the ill-conditioning due to XFEM enrichments could be
avoided during some crack propagation steps, if the crack front does not interact with nodes
located on the boundary between subdomains, as illustrated in figure 5.6. However, this is
unlikely in 3D problems, since the crack front is substantially more extensive and interacts
with multiple elements, as will be shown in the numerical examples of chapter 6. In any case,
when ill-conditioning does appear, FETI-DP and P-FETI-DP exhibit a substantial increase
in the iterations required for convergence. In the test case of section 6.2, an increase of up
to 245% is reported. By using equation(5.53) to define the corner DOFs, this XFEM related
ill-conditioning is entirely eliminated and the proposed FETI-DP and P-FETI-DP become
insensitive to the location and number of enriched nodes.

Moreover, by avoiding these iteration spikes, the scalability of FETI-DP and P-FETI-DP
solvers is retained. As will be shown in the numerical examples of chapter 6, the iterations
required for convergence decrease as more subdomains are used. All DMM solvers for XFEM
crack propagation developed earlier (X. Chen & Cai, 2022; Menk & Bordas, 2011; Waisman
& Berger-Vergiat, 2013) were not scalable and by increasing the number of subdomains,
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an increase in the required iterations was observed. In contrast, the scalability of the pro-
posed FETI-DP and P-FETI-DP solvers permits their implementation in cluster computing
environments, where numerous networked multi-core CPUs and/or GPUs can be used to
solve the resulting equations in parallel. In these high perfomance computing systems, the
computational power and available memory can be arbitrarily increased, simply by adding
more processors, each with its own memory. The ability to assign a lot of subdomains to all
these processors, without increasing the required iterations for convergence is essential for
the exploitation of cluster computing environments and makes the proposed FETI-DP and
P-FETI-DP very attractive solvers for large scale problems.

5.4.3 Reusing data from previous steps

In brittle crack propagation with XFEM, only a few entries of the stiffness matrices change
from one analysis step to the next. These entries correspond to localized DOFs near the crack
front, specifically Heaviside and crack-tip enriched DOFs that are introduced in the current
step, as well as crack-tip enriched DOFs introduced in previous steps and then removed. Yet,
XFEM-oriented solvers based on domain decomposition methods, such as Menk and Bordas
(2011), Waisman and Berger-Vergiat (2013), and Wyart et al. (2008) overlook this potential
to reduce the computational cost of the solution phase by reusing data calculated during
previous crack propagation steps. In Pais et al. (2012), a reanalysis solver was proposed,
that takes advantage of this opportunity and partially reuses the matrix factorization of the
previous step. Nevertheless, this approach has limited success in 3D problems or when the
percentage of modified columns of the stiffness matrix is not extremely small.

In the present FETI-DP and P-FETI-DP formulations, the need to update only a part
of the total stiffness is exploited for further computational gains in a very natural manner.
Due to the domain partitioning, many subdomains do not interact with the crack front at
each propagation step. In this case, all corresponding subdomain stiffness matrices, vectors
and related data remain unaltered and can be reused from the last step when they were
updated. Note that these reusable data include the Schur complements of the matrices Ks

rr

and Ks
ii, which require time consuming operations. Figures 5.8a and 5.8b represent two

successive steps, as a crack propagates through multiple subdomains. The set of nodes with
modified stiffness contains only those enriched with crack tip functions and the newly added
Heaviside functions. Therefore, only the corresponding quantities of subdomains S6 and S7
need to be updated. In addition, increasing of the number of subdomains will enhance the
effectiveness of this reanalysis feature, due to further localization of modified DOFs and the
existence of more unmodified subdomains.

Furthermore, a re-initialization technique is proposed for the solution of the interface
problem of FETI-DP and P-FETI-DP, in order to reduce the number of iterations. Specifi-
cally, when solving the interface problem of P-FETI-DP (see equation(5.47)), an initial guess
ũb is required for the first PCG iteration. In the first crack propagation step, the zero vector
is assumed as an initial guess ũt=0

b = 0. Let ut
b be the solution of the interface problem at

propagation step t
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(a)

(b)

Figure 5.8: Two consecutive analysis steps as the crack propagates. Only subdomains S6
and S7 will have modified DOFs and stiffness between propagation steps (a) i and (b) i + 1.
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ut
b =

[
ut

std ut
H ut

T

]
(5.54)

where ut
std are the displacements of standard boundary DOFs, ut

H of Heaviside boundary
DOFs and ut

T of crack-tip boundary DOFs. Then the displacements of standard and Heav-
iside DOFs can be reused as an initial guess during the next propagation step

ũt+1
b =

[
ũt+1

std ũt+1
H1 ũt+1

H2 ũt+1
T

]
=
[
ut

std ut
H 0 0

]
(5.55)

where ũt+1
H1 corresponds to Heaviside boundary DOFs that are present in both steps t, t+1,

while ũt+1
H2 corresponds to Heaviside boundary DOFs that were newly introduced in step

t + 1. Conversely, ũt+1
H2 and ũt+1

T correspond to DOFs that were not present during the
propagation step t, therefore the initial guess for them is 0. Nevertheless, these make up a
small fraction of the total boundary DOFs and do not markedly affect the improvement of
the re-initialization technique.

A similar re-initialization technique is proposed for FETI-DP, where the interface problem
is expressed in terms of Lagrange multipliers applied to boundary-remainder DOFs (see
equation(5.31)), instead of all boundary DOFs in P-FETI-DP (see equation(5.47)). Using
equation(5.53), all enriched boundary-remainder DOFs are promoted to corner DOFs, thus
removing the corresponding Lagrange multipliers. This complements the re-initialization
technique, since it ensures that the interface problem of FETI-DP involves only standard
boundary-remainder DOFs, which are the same during all crack propagation steps. As a
result, the entire solution vector of one propagation step λt can be reused as an initial guess
for the next step

λ̃t+1 = λt (5.56)

Both the re-initialization of the solution vector guess and the reuse of previously computed
subdomain matrices and factorizations, can be easily implemented to further increase the
computational efficiency of FETI-DP and P-FETI-DP solvers. In the numerical examples of
chapter 6, it is shown that the re-initialization technique can reduce the number of iterations
across all propagation steps of the analysis by up to 40% for P-FETI-DP and 37% for FETI-
DP and in combination with the reuse of subdomain data, the time required for the solution
can be reduced by up to 50% for both methods.

5.5 HPC implementation

This section specifies the parallel implementation of the FETI-DP and P-FETI-DP solvers
in high performance computing systems, specifically computer clusters. By modifying the
original FETI-DP and P-FETI-DP equations, the programming endeavor can be greatly
simplified.
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5.5.1 Cluster computing

There is a large number of parallel computing environments and programming paradigms
available nowadays. This dissertation focuses on cluster computing, which is popular for
computational simulations. Computer clusters are computing environments consisting of
multiple networked computers that collaborate to solve a single problem. These units are
often called “computing nodes”, but the term “computers” will be used here, to avoid confu-
sion with FEM nodes. Generally, a cluster consists of readily available personal computers,
complete with their own processors, memory and storage devices. These are connected via
a Local Area Network (LAN), such as conventional Ethernet. Usually, the computers have
the same or similar specifications, which helps in load balancing, namely evenly distributing
the required work to all computers to increase performance. Supercomputers may also be
computer clusters, in which case high speed buses are used instead of Ethernet, to improve
the bandwidth and latency of data transfers.

Figure 5.9: Shared memory system

Parallel computing environments may use shared memory, distributed memory or a com-
bination of both. A shared memory system employs central (typically large) block of Random
Access Memory (RAM), which can be accessed by multiple processing units in parallel, as il-
lustrated in figure 5.9. These processing units may be separate processors or different threads
executed on the same CPU. The main advantages of this approach is the very fast memory
accesses. Additionally, it leads to simplified programming, albeit race-conditions need to be
avoided, due to the unified memory address space that allows processors to communicate,
simply by accessing the same data. However, shared memory systems are not scalable, since
the number of processors and the amount of available RAM cannot be increased indefinitely.
On the other hand, figure 5.10 depicts a purely distributed memory system, where each pro-
cessor has its own private memory and communication between them happens by passing
messages over a network. This approach complicates communication and requires a middle-
ware (software) to handle the message passing between processors. Nevertheless, it allows an
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Figure 5.10: Distributed memory system

indefinite increase of processing power and available memory by adding an arbitrary number
of processors and their memory.

Computer clusters typically employ a hybrid distributed memory model, where each com-
puter has a multi-processor and its own private memory, but this memory is shared among
the multiple processing units, as shown in figure 5.11. Therefore, each computer is a shared
memory machine, but the system of all networked computers is distributed. In this hybrid
system, communication between the processors of the same computer is much faster and
should be prioritized over communication between processors belonging to remote comput-
ers. All in all, cluster computing environments offer the following advantages:

� Performance. Programs can be executed in parallel.

� Scalability. Processing power and available memory can be increased indefinitely by
adding more computers, which have their own RAM and multicore CPUs.

� Cost effectiveness. Obtaining the desired level of performance with a cluster of several
low-end computers is usually cheaper than using a single high-end computer.

� Reliability. Failure or maintenance of one or more computers does not incapacitate the
whole system. Instead, its performance is lowered until fixing or replacing the affected
computers.
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Figure 5.11: Computer cluster

5.5.1.1 Message Passing Interface

In this dissertation, communication between different computers of a cluster is performed
using the Message Passing Interface (MPI). The MPI standard defines a set of commands
for transferring data between physically distinct memory spaces and is implemented by
different libraries for various operating systems. In MPI terminology, a “process” is an
independent thread of execution with has its own private memory and can be mapped to
a physical computer of the cluster. Using multiple MPI processes on the same computer is
possible, but not used here. This section lists the most basic commands supported by all
implementations:

� mpi send / mpi recv. Process i sends a chunk of data to process j. Process j receives
the same chunk of data from process j. These point-to-point commands are the most
basic ones and they must always appear in pairs; each mpi send must have a corre-
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sponding mpi recv. They can also be executed asynchronously, which is exploited in
this dissertation for further performance gains. See figure 5.12a.

� mpi broadcast. One process, called the root process, sends a chunk of data to all other
processes. This is collective command sends the same data to all processes. See figure
5.12b.

� mpi scatter. Another collective command, where one root process sends data to all
other processes, but each processes receives a different chunk of data. See figure 5.12c.

� mpi gather. This collective command is the opposite of mpi scatter : one root process
i receives data from all other processes, but each processes sends a different chunk of
data. See figure 5.12d.

There are numerous other commands, but they are not available in all MPI implementa-
tions. In any case, other commands can be viewed as optimized or shorthand versions of a
series of the above basic ones.
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(a) mpi send and mpi recv (b) mpi broadcast

(c) mpi scatter (d) mpi gather

Figure 5.12: Basic point-to-point and collective MPI commands.

5.5.1.2 DDM solvers on clusters

When implementing the FETI-DP and PFETI-DP solvers, which were discussed in the pre-
vious sections, on a computer cluster, the total number of subdomains is divided into groups
and each group is assigned to one computer. This is called static scheduling and happens
once, before the analysis starts. Load balancing is achieved by forming equally sized subdo-
main groups, if the computers have the same specifications, or groups of size proportional
to the processing power of each different computer. Within a computer, the number of sub-
domains is generally much higher than the number of processing units (usually CPU cores).
In this case, a producer-consumer strategy is employed instead of static scheduling, since it
is more flexible and can balance the computational load more effectively. Specifically, the
subdomain-level tasks are put on a queue. When a CPU core has finished the rest of its
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computations, it is assigned to a new subdomain, which is then removed from the queue.

(a)

(b)

Figure 5.13: Allocation of subdomains to computers and communication between them.



CHAPTER 5. LINEAR SYSTEM SOLVERS 158

Figure 5.13 illustrates this subdomains-to-computers allocation for a 2D example. In
the same figure, the communication between neighboring subdomain can be seen, where two
subdomains are considered as neighbors, if they have common nodes. Data transfers between
two local neighboring subdomains, namely subdomains allocated to the same computer,
is done very fast via accessing the shared memory of that computer. In contrast, data
transfers between two remote neighboring subdomains, namely subdomains allocated to
different computers, is performed over the network using MPI commands and is, thus, much
slower. When allocating subdomains to computers, these number and frequency of these
remote transfers should be minimized to increase the performance of the solvers.

5.5.2 P-FETI-DP

The HPC implementation of P-FETI-DP will be covered first, since it is simpler than FETI-
DP. To begin with, the expanded domain is defined, which contains all DOFs, but each
boundary DOF appears multiple times, once for each corresponding subdomain. In contrast,
the global domain contains exactly one instance of all DOFs in the model. A 2D example
of this distinction for a mesh with 4 × 2 elements is given in figure 5.14, where the DOFs
along axes x,y are shown for the global and expanded domain. In the remainder of this
section, superscript s will denote a subdomain-level quantity, superscript e will denote an
expanded-domain-level quantity and no superscript will denote a global-level quantity.

5.5.2.1 Interface problem

In section 5.3.2, ub (nb×1) was defined as the global boundary displacements and us
b (n

s
b×1)

as subdomain boundary displacements. Here, the expanded boundary displacements ue
b

(ne
b × 1) are also defined as

ue
b =

 u1
b
...

uns
b

 (5.57)

where ns is the number of subdomains, nb is the number of global boundary DOFs, ns
b is the

number of boundary DOFs of subdomain s and ne
b is the number of boundary DOFs of the

expanded domain. The boolean mapping matrices Ls
b defined in section 5.3.2 compose the

expanded matrix Le
b (n

e
b × nb):

Le
b =

L1
b
...

Lns
b

 (5.58)

This mapping matrix can be used to extract subdomain-level displacements from global ones:
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(a)

(b)

Figure 5.14: a) Global domain: each DOF appears once. b)Expanded domain: each bound-
ary DOF appears once for each subdomain it belongs to. Here the following DOFs coincide:
13 ≡ 19, 14 ≡ 20, 15 ≡ 21, 16 ≡ 22, 17 ≡ 23, 18 ≡ 24

us
b = Ls

bub

ue
b = Le

bub

(5.59)

Similarly, to calculate global right-hand-side (RHS) forces zb from their subdomain contri-
butions zs

b , which compose the expanded vector ẑe
b , the following are used
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zb =
ns∑
s=1

(Ls
b)

T ẑs
b = (Le

b)
T ẑe

b

ẑe
b =

 ẑ1
b
...

ẑns
b

 (5.60)

The stiffness matrices can also be written in expanded domain form:

Ke
bb =

K
1
bb

. . .

Kns
bb

 Ke
bi =

K
1
bi

. . .

Kns
bi

 Ke
ii =

K
1
ii

. . .

Kns
ii

 (5.61)

and for the inverses and Schur complements:

(Ke
ii)

−1 =

(K1
ii)

−1

. . .

(Kns
ii )

−1


Se

bb =

S
1
bb

. . .

Sns
bb

 = Ke
bb − (Ke

ib)
T (Ke

ii)
−1Ke

ib

(5.62)

Then, the matrix of the interface problem of P-FETI-DP is

Sbb =
ns∑
s=1

(Ls
b)

TSs
bbL

s
b = (Le

b)
TSe

bbL
e
b (5.63)

and the interface problem can be rewritten in terms of the expanded domain matrices and
vectors

Sbb · ub = zb ⇐⇒ (Le
b)

TSe
bbL

e
bub = zb

⇐⇒ (Le
b)

TSe
bbu

e
b = (Le

b)
T ẑe

b

(5.64)

This interface problem system is solved using the PCG method. At each PCG iteration, the
following matrix-vector multiplication is performed:

yb =
ns∑
s=1

(Ls
b)

TSs
bbx

s
b = (Le

b)
TSe

bbx
e
b (5.65)

where xe
b (n

e
b × 1) is the approximation of the solution ue

b for this iteration and yb (nb × 1)
is a force vector. This operation is performed in two stages.
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� The matrix-vector multiplication is executed at subdomain level (or equivalently ex-
panded domain level)

ŷs
b = Ss

bbx
s
b

ŷe
b = Se

bbx
e
b

(5.66)

� Amap-reduce operation is performed to obtain the global vector yb from the subdomain
contributions ŷs

b

yb =
ns∑
s=1

(Ls
b)

T ŷs
b = (Le

b)
T ŷe

b (5.67)

where ŷs
b (ns

b × 1) and ŷe
b (ne

b × 1) are intermediate force vectors, meaning that their
entries at different instances of the same boundary DOF (one instance per subdomain)
are different. In contrast, these different entries for the same boundary DOF are
summed and appear only once in yb.

Figure 5.15: Example of neighboring subdomains and displacements along their common
boundary DOFs.
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It can be observed that xe
b, z

e
b and Se

bb can be calculated and stored so that each sub-
domain owns only its corresponding matrices and vectors. When implementing P-FETI-DP
in a distributed memory system, each computer will be assigned to a group of subdomains.
Thus the matrices and vectors of each subdomain will only exist in the memory space of the
computer assigned to the subdomain’s group. In contrast, the global vectors yb and zb refer
to global boundary DOFs, that do not correspond to any computer. Trying to implement
the equations above, would require transfering the subdomain vectors to one computer, e.g.
by using the MPI operation mpi gather. The global vectors would be calculated on that
computer and then sent to all others, e.g. with the MPI operation mpi broadcast, to con-
tinue with the rest of the algorithm. An example is given in figure 5.15, where the vectors
ŷb at boundary DOFs of 4 subdomains, which are allocated to 2 computers, are shown be-
fore the map-reduce operation. Figure 5.16 illustrates the data transfers from the memory
spaces of the subdomains to the memory space where global operations will be performed,
the global-level map-reduce operation yb =

∑ns

s=1(L
s
b)

T ŷs
b and the data transfer of the global

vector yb back to the memory spaces of the subdomains.
While this centralized approach is definitely doable, it is not efficient in terms of com-

munication, since it forces significant data transfers to a single computer. For large-scale
problems with thousands of subdomains, this communication pattern will lead to congestion
of the network at the computer that handles global vectors, and become a computational
bottleneck. Additionally, forcing one computer to execute the summation of vectors from all
subdomains, while the rest are idle, leads to imbalances in the load distribution. To over-
come these problems, a distributed implementation is developed in this dissertation, which
requires a modifyiing the original P-FETI-DP (and FETI-DP) equations.

For each ordered pair of subdomains (s, t), an unsigned boolean matrix, namely a matrix
that has only 0, 1 as values, M st

b (ns
b × nt

b) is defined, which maps the boundary DOFs of
t into the boundary DOFs of s. Specifically, an entry i, j of M st

b is 1, only if row i and
column j correspond to the same boundary DOF in subdomains s and t, respectively. Let us
define two subdomains as neighbors, if they have common boundary nodes, and thus DOFs.
If two subdomains s, t are not neighbors, then they do not have common DOFs and the
matrices are M st

b = 0, M ts
b = 0. On the other hand, for the same subdomain s: M ss

b = I.
Map-reduce operations of subdomain vectors into a global one are performed in a distributed
fashion using M st

b . For the vector ŷs
b of a given subdomain s, summing the corresponding

entries of other sumbdomains can be performed as

ys
b =

∑
t=1,···ns

t̸=s

M st
b ŷs

b (5.68)

The corresponding expanded domain matrix M e
b (ne

b × ne
b) is defined as
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Figure 5.16: Map-reduce operation for global-level vectors.

M e
b =


M 11

b M 12
b · · · M 1ns

b

M 21
b M 22

b · · · M 2ns
b

...
...

. . .
...

Mns1
b Mns2

b · · · Mnsns
b

 (5.69)
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and summing all vectors of the expanded domain can be done as

ye
b =

 y1
b
...

yns
b

 = M e
b ŷ

e
b (5.70)

where ye
b (ne

b × 1) is an expanded-domain force vector that contains the same entries as the
global vector yb (nb × 1). Similarly to the ue

b, ub pair of vectors, entries corresponding to
the same DOFs are listed only once in yb, while in ye

b they are listed once per subdomain
vector ys

b , provided that DOF belongs to subdomain s. Therefore, the following conclusion
will be used to transform the original P-FETI-DP and FETI-DP equations:

“The centralized map-reduce operation yb = (Le
b)

T ŷe
b can be replaced with the

distributed equivalent ye
b = M e

b ŷ
e
b .”

This distributed alternative of map-reduce operations can be implemented much more
efficiently in computer clusters. Each subdomain s only needs to exchange the common
entries of its sumbdomain-level vector ŷs

b with its neighbors, while for the rest M st
b = 0 and

M ts
b = 0. This means that:

� Neighboring subdomains that belong to the same group, therefore the same computer,
exchange vector data with negligible cost, since these entries exist in the same memory
space.

� Neighboring subdomains that belong to different groups, therefore different computers,
exchange vector data over the network, using mpi send and mpi receive or equivalent
MPI commands, if they are supported by the MPI library.

� To further minimize communication, only the common entries of ŷs
b , ŷ

t
b are exchanged

between two subdomains s, t, instead of the whole vectors.

With the above procedure, the communication between computers is minimized, as well
as distributed evenly across the network, while there are no centralized data transfers to
congest the network at any point, as is the case with the original map-reduce operation.
Furthermore, instead of performing global-level map-reduce operations at a single computer,
while the rest are idle, the proposed implementation distributes the computations evenly
across all computers. An example is depicted in figure 5.17 for the case described in figure
5.15. Using the matrices M 1s

b isolates the entries at boundary DOFs that are common
between subdomain 1 and each other subdomain s. Only these common entries are then
transferred to the memory space where subdomain 1 exists and finally added to the vector
of subdomain 1. While these steps are executed for subdomain 1, all other subdomains are
also processed in parallel and with the same steps.
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Figure 5.17: Distributed version of the map-reduce operation.

By using the above logic, the distributed alternative for the RHS vector zb = (Le
b)

T ẑe
b of

P-FETI-DP’s interface problem is

ze
b = M e

b ẑ
e
b (5.71)

The matrix-vector operations (Le
b)

TSe
bbx

e
b can be written as

ye
b = M e

bS
e
bbx

e
b (5.72)

and finally the linear system that expresses the interface problem is equivalent to

M e
bS

e
bbx

e
b = M e

b ẑ
e
b (5.73)

5.5.2.2 Coarse problem

The distributed implementation of the coarse problem of P-FETI-DP, which is the same as
FETI-DP, is similar to the interface problem’s implementation. The original coarse problem
from equation(5.36) is

Scc · xc = yc
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where Scc (nc × nc), xc (nc × 1), yc (nc × 1) are the stiffness matrix, displacement vector
and force vector, respectively, defined at global corner DOFs. The number of global corner
DOFs is nc, while the number of corner DOFs of subdomain s is ns

c. Similarly, ne
c is the

number of corner DOFs of the expanded domain, where each corner DOF is included once
per subdomain it belongs to. Mapping between global vectors xc, yc and subdomain vectors
xs
c (n

s
c × 1), ŷs

c (ns
c × 1) is done with the unsigned boolean mapping matrices Ls

c (n
s
c × nc):

xs
c = Ls

cxc

yc =
ns∑
s=1

(Ls
c)

T ŷs
c

(5.74)

and for the expanded domain

xe
c = Le

cxc

yc = (Le
c)

T ŷe
c

(5.75)

where xe
c (n

e
c × 1), ŷe

c (ne
c × 1) and Le

c (n
e
c × nc):

Le
c =

L1
c
...

Lns
c

 (5.76)

The coarse problem matrix can be written as

Scc =
ns∑
s=1

(Ls
c)

TSs
ccL

s
c = (Le

c)
TSe

ccL
e
c (5.77)

where Ss
cc (n

s
c×ns

c) is given by equation(5.25) and Se
cc (n

e
c×ne

c) is the corresponding expanded
domain matrix. Therefore the coarse problem can be written as

Scc · xc = yc ⇐⇒ (Le
c)

TSe
ccL

e
cxc = yc (5.78)

or equivalently
(Le

c)
TSe

ccx
e
c = (Le

c)
T ŷe

c (5.79)

Similarly to the boundary DOFs, for each ordered pair of subdomains (s, t), an unsigned
boolean matrix, namely a matrix that has only 0, 1 as values, M st

c (ns
c×nt

c) is defined, which
maps the corner DOFs of t into the corner DOFs of s. Specifically, an entry i, j of M st

c is
1, only if row i and column j correspond to the same corner DOF in subdomains s and t,
respectively. If two subdomains s, t are not neighbors, then they do not have common DOFs
and the matrices are M st

c = 0, M ts
c = 0. On the other hand, for the same subdomain s:

M ss
c = I. Map-reduce operations of subdomain vectors into a global one are performed in
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a distributed fashion using M st
c . For the vector ŷs

c of a given subdomain s, summing the
corresponding entries of other sumbdomains can be performed as

ys
c =

∑
t=1,···ns

t̸=s

M st
c ŷs

c (5.80)

The corresponding expanded domain matrix M e
c (ne

b × ne
b) is defined as

M e
c =


M 11

c M 12
c · · · M 1ns

c

M 21
c M 22

c · · · M 2ns
c

...
...

. . .
...

Mns1
c Mns2

c · · · Mnsns
c

 (5.81)

and summing all vectors of the expanded domain can be done as

ye
c =

 y1
c
...

yns
c

 = M e
c ŷ

e
c (5.82)

where ye
c (ne

c × 1) is an expanded force vector that contains the same entries as the global
vector yc (nc × 1). Entries corresponding to the same DOFs are listed only once in yc,
while in ye

c they are listed once per subdomain vector ys
c , provided that DOF belongs to

subdomain s. Finally, the matrix-vector operations (Le
c)

TSe
ccx

e
c can be written as M e

cS
e
ccx

e
c

and the linear system that expresses the coarse problem in equation(5.79) is equivalent to

M e
cS

e
ccx

e
c = M e

c ŷ
e
c (5.83)

In this dissertation, the following approaches are investigated for solving the coarse prob-
lem of P-FETI-DP (and FETI-DP). Note that this solution has to performed once per
iteration of the PCG method used to solve the interface problem of P-FETI-DP (and FETI-
DP).

5.5.2.2.1 Distributed iterative strategy

The linear system of equation(5.83) is solved using a nested PCG method. In this case,
the subdomain-level matrices Ss

cc and vectors xs
c, y

s
c exist only in the memory space of the

corresponding computers, without the need to transfer them to a central computer, so that
the global coarse problem matrix Scc can be explicitly formed and factorized. Preconditioning
of the nested PCG is parallely executed using a diagonal preconditioner, which can be done
in a distributed fashion as

P−1
D = (Dcc)

−1

Dcc = M e
c D̂

e
cc

(5.84)



CHAPTER 5. LINEAR SYSTEM SOLVERS 168

where P−1
D (ne

c × ne
c) is the diagonal preconditioner and D̂e

cc (ne
c × ne

c) is the expanded
domain matrix containing the diagonals D̂s

cc (n
s
c × ns

c) of the subdomain-level matrices Ss
cc.

The calculation of Dcc and P−1
D is performed before the iterations of the interface problem

PCG and the nested coarse problem PCG start.
The distributed iterative approach minimizes the memory requirements of the coarse prob-

lem. Additionally, it ensures that the stored data and operations needed to solve the coarse
problem are distributed evenly across all computers. Therefore, it can be employed for ex-
tremely large scale problems, where the number of subdomains is so high, that explicitly
storing and factorizing the coarse problem in a single computer is not viable. On the other
hand, repeatedly using the nested PCG to solve linear systems with the same matrix is not
optimal in terms of computing time.

The iterations required for the coarse-problem PCG can be reduced by relaxing the
corresponding convergence tolerance, which will result in less accurate coarse-problem solu-
tions. As far as P-FETI-DP is concerned, the coarse problem is part of the preconditioner
of equation(5.49). Therefore, less accurate coarse-problem solutions lower the accuracy of
the preconditioner, which leads to more iterations of the interface-problem PCG. In many
cases, the convergence decrease of the interface-problem PCG is not very severe and relaxing
the coarse-problem PCG ends up reducing the overall computing time. On the other hand,
this technique cannot be used in FETI-DP, because the coarse problem is included in the
interface-problem matrix of equation(5.31), instead of the precondtioner. Consequently, re-
ducing the accuracy of the coarse-problem solution will lead to an incorrect solution, instead
of just decreasing the convergence rate.

5.5.2.2.2 Centralized direct strategy

The linear system Scc · xc = yc of equation(5.36) is solved using a direct solver, such as
supernodal Cholesky. Before starting the solution of the coarse and interface problems,
algorithm 5.7 is used to prepare the coarse problem matrix:

Algorithm 5.7 Preparation of the centralized direct coarse problem

1: Gather subdomain matrices Ss
cc from all computers to a central one.

2: Explicitly form the global matrix Scc =
ns∑
s=1

(Ls
c)

T Ss
ccL

s
c in the central computer.

3: Factorize the global matrix using Cholesky factorization (Scc = UT
ccUcc) in the central

computer

During each iteration of the interface problem PCG, the coarse problem needs to be
solved with the same matrix but a different RHS vector M e

c ŷ
e
c . Algorithm 5.8 is used,

which has the same input and output, namely RHS vector ŷe
c and solution vector xe

c, as the
distributed iterative approach.



CHAPTER 5. LINEAR SYSTEM SOLVERS 169

Algorithm 5.8 Solution of the centralized direct coarse problem

1: Input: Subdomain vectors ŷs
c

2: Gather subdomain vectors ŷs
c from all computers to the central one.

3: Map-reduce these subdomain vectors yc =
ns∑
s=1

(Ls
c)

T ŷs
c in the central computer.

4: Solve the linear system Sccxc = yc by performing back & forward substitution with the
Cholesky factors UT

cc, Ucc in the central computer.
5: Isolate the subdomain displacement vectors xs

c = Lcxc in the central computer.
6: Scatter the subdomain vectors xs

c to their corresponding computers.

This approach is usually significantly faster than the distributive iterative solution of the
coarse problem, since most of the work is done only once during the factorization of the coarse
problem matrix. The back & forward substitutions, which are performed once per iteration
of the interface problem PCG, are much faster in comparison. In contrast, the memory
requirements are increased for the central computer, since the global matrix Scc needs to
be stored and factorized there. Nevertheless, this is usually a preferable trade-off, because
the coarse problem is significantly smaller than the global and interface problems. Only
in extremely large-scale problems with thousands of subdomains, are the memory require-
ments potentially too high for this centralized approach. Moreover, gathering/scattering
subdomain-level matrices and vectors to/from a centralized computer may cause a conges-
tion of the network at that computer, but, once more, that becomes a concern when the
problem grows beyond a certain size. Finally, there are load imbalances hindering perfor-
mance, since the factorization of Scc and back/forward substitutions are all performed by a
single computer, while the rest are idle.

5.5.2.2.3 Distributed direct strategy

This is the same as the centralized direct approach, but the coarse problem solution is per-
formed on all computers. In this case, the subdomain matrices Ss

cc are gathered to all
computers, where the formation and factorization of the global matrix Scc are performed.
Algorithms 5.9 and 5.10 describe the procedure.

Algorithm 5.9 Preparation of the distributed direct coarse problem

1: Gather subdomain matrices Ss
cc from all computers to all computers.

2: Explicitly form the global matrix Scc =
ns∑
s=1

(Ls
c)

T Ss
ccL

s
c in all computers.

3: Factorize the global matrix using Cholesky factorization (Scc = UT
ccUcc) in all computers.
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Algorithm 5.10 Solution of the distributed direct coarse problem

1: Input: Subdomain vectors ŷs
c

2: Gather subdomain vectors ŷs
c from all computers to all computers.

3: Map-reduce these subdomain vectors yc =
ns∑
s=1

(Ls
c)

T ŷs
c in all computers.

4: Solve the linear system Sccxc = yc by performing back & forward substitution with the
Cholesky factors UT

cc, Ucc in all computers.
5: Isolate the displacement vector xs

c = Lcxc of each subdomain s, but only in the computer
corresponding to subdomain s.

This redundancy increases the memory requirements of all computers, contrary to the
centralized direct approach, where only one central computer requires more memory. Never-
theless, many distributed memory systems consist of computers that have the same available
memory, in which case this redundancy is inconsequential, since the extra memory would
be unoccupied either way. On the other hand, the distributed direct approach can be more
efficient, due to better load balancing during the solution of the coarse problem. The fac-
torized Scc matrix is available on all computers, thus each one solves the coarse problem
independently, instead of idly waiting the central computer to finish the solution and scatter
the corresponding subdomain vectors.

5.5.2.3 Preconditioner

The expanded domain form equation(5.49), which defines the P-FETI-DP preconditioner, is

Ã−1
bb = Ar,e

bb +Ae
bcAccA

e
cb

Ar,e
bb =

(
Le

pr

)T
(Ke

rr)
−1Le

pr

Ae
cb = − (Le

c)
T Ke

cr (K
e
rr)

−1Le
pr +Nc,b

Ae
bc = (Ae

cr)
T = (Nc,b)

T −
(
Le

pr

)T
(Ke

rr)
−1Ke

rcL
e
c

Acc = S−1
cc

(5.85)

where

Le
pr = N e

r,bL
e
pb (5.86)

and

Le
pb = W e

b L
e
b (5.87)

Therefore the preconditioner can be rewritten as
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Ã−1
bb = Ãr,e

bb + Ãe
bcAccÃ

e
cb

Ãr,e
bb = (Le

b)
T W e

b

(
N e

r,b

)T
(Ke

rr)
−1N e

r,bW
e
b L

e
b

Ãe
cb = − (Le

c)
T Ke

cr (K
e
rr)

−1N e
r,bW

e
b L

e
b +Nc,b

Ãe
bc =

(
Ãe

cr

)T
= (Nc,b)

T − (Le
b)

T W e
b

(
N e

r,b

)T
(Ke

rr)
−1Ke

rcL
e
c

Acc = S−1
cc

(5.88)

where (W e
b )

T = W e
b has been used, since W e

b (ne
b × ne

b) is diagonal. Let N s
c,b be a boolean

matrix (0, 1 as entries) with dimensions (ns
c × ns

b) that maps the boundary DOFs of the
subdomain s (columns) to the corner DOFs of subdomain s (rows). Then, its expanded
domain form is N e

c,b (ne
c × ne

b). For a force vector yb, the following multiplications are
equivalent:

Nc,byb = (Le
c)

T N e
c,bW

e
b L

e
byb = (Le

c)
T N e

c,bW
e
b y

e
b (5.89)

where it should be noted that multiplying with (Le
c)

T will sum the contributions from all
subdomains for any DOF, thus they are scaled with the matrix W e

b to replicate the action

of (Le
c)

T . As a result, multiplying a force vector yb with Ãe
cb is equivalent to

Ãe
cbyb = − (Le

c)
T Ke

cr (K
e
rr)

−1N e
r,bW

e
b L

e
byb +Nc,byb

= − (Le
c)

T Ke
cr (K

e
rr)

−1N e
r,bW

e
b y

e
b + (Le

c)
T N e

c,bW
e
b y

e
b

= (Le
c)

T
(
−Ke

cr (K
e
rr)

−1N e
r,b +N e

c,b

)
W e

b y
e
b

(5.90)

Furthermore, for a displacement vector xc, the multiplication

Ãe
bcxc = (Nc,b)

T xc − (Le
b)

T W e
b

(
N e

r,b

)T
(Ke

rr)
−1Ke

rcL
e
cxc (5.91)

can be done in a distributed fashion as

(
N e

c,b

)T
Le

cxc −M e
bW

e
b

(
N e

r,b

)T
(Ke

rr)
−1Ke

rcL
e
cxc

=
( (

N e
c,b

)T −M e
bW

e
b

(
N e

r,b

)T
(Ke

rr)
−1Ke

rc

)
Le

cxc

(5.92)

Additionally, for a force vector yb, the multiplication

Ãr,e
bb yb = (Le

b)
T W e

b

(
N e

r,b

)T
(Ke

rr)
−1N e

r,bW
e
b L

e
byb (5.93)
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can be done in a distributed fashion as

M e
bW

e
b

(
N e

r,b

)T
(Ke

rr)
−1N e

r,bW
e
b y

e
b (5.94)

Consequently, the preconditioner takes the following distributed form

(Ãe
bb)

−1 = Ar,e
bb +Ae

bcA
e
ccA

e
cb

Ar,e
bb = M e

bW
e
b

(
N e

r,b

)T
(Ke

rr)
−1N e

r,bW
e
b

Ae
cb =

(
−Ke

cr (K
e
rr)

−1N e
r,b +N e

c,b

)
W e

b

Ae
bc =

(
N e

c,b

)T −M e
bW

e
b

(
N e

r,b

)T
(Ke

rr)
−1Ke

rc

Ae
cc = Le

cS
−1
cc (Le

c)
T

(5.95)

Note that during PCG, this preconditioner will be multiplied with force-like vectors (resid-
ual vectors to be exact) ye

b and produce displacement-like vectors (preconditioned-residual
vectors to be exact) xe

b. All these matrices and vectors refer to the expanded domain and
can be stored and operated on in a distributive fashion. The only global operations left are
in the solution of the coarse problem, which is performed by multiplying a force vector yc

with the matrix Ae
cc:

xc = Ae
ccyc = Le

cS
−1
cc (Le

c)
T yc (5.96)

As elaborated in section 5.5.2.2, the above can be done in two ways:

� Direct solution of the global system

(Le
c)

T SccL
e
cxc = yc = (Le

c)
T ŷe

c

� Iterative solution of the equivalent distributed system

M e
cS

e
ccx

e
c = M e

c ŷ
e
c

5.5.2.4 Implementation details

This section describes some details pertaining to the parallel implementation of P-FETI-DP,
while also avoiding duplicate operations. Specifically, algorithm 5.11 describes the matrix-
vector multiplications performed during the solution of the interface problem in equation
(5.73), while algorithm 5.12 describes the application of equation (5.95) for the precondi-
tioning step of PCG.
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Algorithm 5.11 Matrix-vector multiplication for interface problem of P-FETI-DP.

1: Input: displacement vector xe
b. Output: force vector ye

b

2: for each subdomain s do ▷ In parallel
3: v1 = Ks

bb · xs
b

4: v2 = Ks
ib · v1

5: v3 = (Ks
ii)

−1 · v2 ▷ Back & forward substitutions with factors of Ks
ii

6: v4 = Ks
bi · v3

7: ŷs
b = v1 + v3

8: end for
9: ye

b = M e
b · ŷe

b ▷ Communication between subdomains

Algorithm 5.12 Preconditioner of P-FETI-DP.

1: Input: force vector ye
b . Output: displacement vector xe

b

2: for each subdomain s do ▷ In parallel
3: v1 = W s

b · ys
b

4: v2 = N s
cb · v1

5: v3 = N s
rb · v1

6: v4 = (Ks
rr)

−1 · v3 ▷ Back & forward substitutions with factors of Ks
rr

7: v5 = Ks
cr · v4

8: ŷs
c = v2 − v5

9: end for
10: Solve coarse problem xe

c = Ae
cc · ŷe

c ▷ See section 5.5.2.2
11: for each subdomain s do ▷ In parallel
12: v6 = Ks

rc · xs
c

13: v7 = (Ks
rr)

−1 · v6 ▷ Back & forward substitutions with factors of Ks
rr

14: v8 = v4 − v7

15: v9 = (N s
rb)

T · v8

16: v̂s
b = W s

b · v9

17: end for
18: ve

b = M e
b · v̂e

b ▷ Communication between subdomains
19: for each subdomain s do ▷ In parallel
20: v10 = (N s

cb)
T · xs

c

21: xs
b = vs

b + v10

22: end for

5.5.3 FETI-DP

In FETI-DP, the unknowns of the interface problem are Lagrange multipliers, namely inter-
subdomain forces at boundary-remainder DOFs. Therefore, its left-hand-side (LHS) vectors
are force-like quantities and its RHS vectors are displacement-like quantities.
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5.5.3.1 Interface problem

A Lagrange multiplier is defined between the corresponding instances of the same boundary-

remainder DOF of exactly two subdomains. Let nλ, n
s
λ and ne

λ =
ns∑
s=1

ns
λ be the Lagrange

multipliers of the global domain, subdomain s and expanded domain, respectively. Each
Lagrange multiplier is counted only once in nλ. In contrast, a Lagrange multiplier, which
is applied to different instances of the same boundary-remainder DOF in two subdomains,
is counted twice in in ne

λ. Similarly, the vectors containing the Lagrange multipliers of the
global domain, subdomain s and expanded domain are λ (nλ×1), λs (ns

λ×1) and λe (ne
λ×1).

In order to obtain a distributed form of the FETI-DP equations, the global Lagrange
multipliers vector λ needs to be replaced by the expanded domain vector λe, whereas the
multiplications with signed boolean matrices Bs

r (nλ×ns
r) need to be be replaced by equiva-

lent actions. In the implementation developed here, another signed boolean mapping matrix
Cs

r (ns
λ × ns

r) is introduced. This Cs
r matrix maps the remainder DOFs of subdomain s

(columns) to the Lagrange multipliers of subdomain s (rows), instead of mapping to the
global Lagrange multipliers, as done by Bs

r . The rules for ±1 signs of Cs
r are identical with

the rules for Bs
r . The corresponding expanded domain matrix Ce

r (ne
λ × ne

r) is

Ce
r =

C
1
r

. . .

Cns
r

 (5.97)

Using the boolean matrices Cs
r and Ce

r , multiplications of force-like vectors (Bs
r)

T · λ
will be replaced by (Cs

r )
T · λs and (Ce

r )
T · λe. Let vs

r (ns
r × 1) be a vector that contains

displacement quantities along the ns
r remainder DOFs of subdomain s and ve

r (ne
r × 1) the

corresponding expanded domain vector. Multiplications with these displacement-like vectors
Bs

r · vs
r will be replaced by Cs

r · vs
r :

δ̂s = Cs
r · vs

r (5.98)

where δ̂s (ns
λ × 1) is a vector containing displacement quantities of subdomain s along its

Lagrange multipliers. For each ordered pair of subdomains (s, t), an unsigned boolean matrix,
namely a matrix that has only 0, 1 as values, M st

λ (ns
λ × nt

λ) is defined, which maps the
Lagrange multipliers of t into the Lagrange multipliers of s. Specifically, an entry i, j of M st

λ

is 1, only if row i and column j correspond to instances of the same Lagrange multiplier in
subdomains s and t, respectively. If two subdomains s, t are not neighbors, then they do not
have common Lagrange multipliers and the matrices are M st

λ = 0, M ts
λ = 0. On the other

hand, for the same subdomain s: M ss
b = I. Map-reduce operations of subdomain vectors

into a global one are performed in a distributed fashion using the M st
λ matrices. For the

vector δ̂s of a given subdomain s, summing the corresponding entries of other sumbdomains
can be performed as
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δs =
∑

t=1,···ns
t̸=s

M st
λ δ̂s (5.99)

and summing all vectors of the expanded domain into δe (ne
λ × 1) can be done as

δe = M e
λδ̂

e (5.100)

where the expanded domain matrix M e
λ (ne

b × ne
b) is defined as

M e
λ =


M 11

λ M 12
λ · · · M 1ns

λ

M 21
λ M 22

λ · · · M 2ns
λ

...
...

. . .
...

Mns1
λ Mns2

λ · · · Mnsns
λ

 (5.101)

As a result, the map-reduce operation
ns∑
s=1

(Bs
r · vs

r) will be replaced by the distributed

alternative M e
λC

e
r · ve

r . Applying the aforementioned modifications, the distributed form of
the interface problem of FETI-DP is(

F e
Irr + F e

IrcA
e
ccF

e
Icr

)
λe = de

r − F e
IrcA

e
ccẑ

e
c (5.102)

where

F e
Irr = M e

λC
e
r (K

e
rr)

−1(Ce
r )

T

F e
Irc = M e

λC
e
r (K

e
rr)

−1Ke
rc

F e
Icr = Ke

cr(K
e
rr)

−1(Ce
r )

T

Ae
cc = Le

cS
−1
cc (L

e
c)

T

de
r = M e

λC
e
r (K

e
rr)

−1f e
r

(5.103)

where f e
r and ẑe

c are the expanded domain forms of the corresponding vectors defined in
equations (5.18, 5.26). The linear system of equation(5.111) is solved in parallel using the
PCG method. It can be observed that only the matrix Ae

cc involves global operations.
Multiplying a vector with Ae

cc is equivalent to solving the coarse problem. In fact, Ae
cc in

the interface problem of FETI-DP is identical with Ae
cc in the preconditioner of P-FETI-

DP. Therefore, the observations relating to the parallel execution of this operation, given in
section 5.5.2.3, apply here as well. After solving of the interface problem and obtaining the
Lagrange multipliers λe, the displacements at corner and remainder DOFs can be calculated
as

ue
c = Ae

cc (ẑ
e
c + F e

Icrλ
e) (5.104)

ue
r = (Ke

rr)
−1
(
f e
r − (Ce

r )
Tλe −Ke

rcu
e
c

)
(5.105)
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However, the above equations will result in the displacements at different instances of
the same boundary DOF being slightly different in each subdomain. To obtain compatible
displacements across all subdomains, the following averaging operation needs to be done:

ǔe
b = M e

bW
e
b u

e
b (5.106)

where ue
b are the incompatible displacements at boundary DOFs of subdomain s and ǔe

b are
the corrected, compatible displacements at the same DOFs.

5.5.3.2 Preconditioners

In the original FETI-DP preconditioners, the signed boolean matrix Bs
br

(nλ × ns
br
) is used

for mapping the ns
br

boundary-remainder DOFs of subdomain s (columns) to the nλ global
Lagrange multipliers (rows). In the developed implementation, this will be replaced by Cs

br

(ns
λ × ns

br
), which is also signed boolean matrix (0,-1,+1 entries) and maps the boundary-

remainder DOFs of subdomain s (columns) to the Lagrange multipliers of subdomain s
(rows). The rules for ±1 signs of Cs

br
are identical with the rules for Bs

br
. The corresponding

expanded domain matrix Ce
br

(ne
λ × ne

br
) of the mapping operation is

Ce
br =

C
1
br

. . .

Cns
br

 (5.107)

and the expanded domain matrix W e
br

(ne
br
× ne

br
) of the scaling operation is

W e
br =

W
1
br

. . .

W ns
br

 (5.108)

where the subdomain-level scaling matrices W s
br

(ns
br
× ns

br
) were defined in section 5.3.1.3.

The FETI-DP preconditioner has the following general form

(F̃ e
Irr)

−1 = M e
λC

e
brW

e
brS̃

e
brbrW

e
br(C

e
br)

T (5.109)

Depending on the definition of S̃e
brbr

the following preconditioners can be obtained:

S̃e
brbr =

{
Ke

brbr
− (Ke

ibr
)T (Ke

ii)
−1Ke

ibr
Dirichlet preconditioner

Ke
brbr

lumped preconditioner
(5.110)

The observations of section 5.3.1.3, concerning the performance properties of the Dirichlet
and lumped preconditioner, apply here as well.
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5.5.3.3 Implementation details

This section describes some details pertaining to the parallel implementation of FETI-DP,
while also avoiding duplicate operations. Specifically, algorithm 5.13 describes the matrix-
vector multiplications performed during the solution of the interface problem in equation
(5.111), while algorithm 5.14 describes the application of the equation (5.109) (Dirichlet-
preconditioner version) for the preconditioning step of PCG.

Algorithm 5.13 Matrix-vector multiplication for interface problem of FETI-DP.

1: Input: force vector λe. Output: displacement vector δe

2: for each subdomain s do ▷ In parallel
3: v1 = (Cs

r )
T · λs

4: v2 = (Ks
rr)

−1 · v1 ▷ Back & forward substitutions with factors of Ks
rr

5: ŷs
c = Ks

cr · v2

6: end for
7: Solve coarse problem xe

c = Ae
cc · ŷe

c ▷ See section 5.5.2.2
8: for each subdomain s do ▷ In parallel
9: v3 = Ks

rc · xs
c

10: v4 = (Ks
rr)

−1 · v3 ▷ Back & forward substitutions with factors of Ks
rr

11: v5 = v2 + v4

12: δ̂s = Cs
r · v5

13: end for
14: δe = M e

λ · δ̂e ▷ Communication between subdomains

Algorithm 5.14 Dirichlet preconditioner of FETI-DP.

1: Input: displacement vector δe. Output: force vector λe

2: for each subdomain s do ▷ In parallel

3: v1 =
(
Cs

br

)T · δs

4: v2 = W s
br
· v1

5: v3 = Ks
brbr

· v2

6: v4 = Ks
ibr

· v2

7: v5 = (Ks
ii)

−1 · v4 ▷ Back & forward substitutions with factors of Ks
ii

8: v6 = Ks
bi · v5

9: v7 = v3 − v6

10: v8 = W s
br
· v7

11: λ̂s = Cs
br
· v8

12: end for
13: λe = M e

λ · λ̂e ▷ Communication between subdomains

Finally, the RHS vector of the interface problem in equation (5.111) can be written as
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ee
λ = de

r − F e
IrcA

e
ccẑ

e
c

= M e
λC

e
r (K

e
rr)

−1 f e
r −M e

λC
e
r (K

e
rr)

−1Ke
rcA

e
cc

(
f e
c −Ke

cr (K
e
rr)

−1 f e
r

) (5.111)

and its implementation is described by algorithm 5.15

Algorithm 5.15 RHS of interface problem of FETI-DP.

1: for each subdomain s do ▷ In parallel
2: v1 = (Ks

rr)
−1 · f s

r ▷ Back & forward substitutions with factors of Ks
rr

3: ŷs
c = f s

c −Ks
cr · v1

4: end for
5: Solve coarse problem xe

c = Ae
cc · ŷe

c ▷ See section 5.5.2.2
6: for each subdomain s do ▷ In parallel
7: v2 = Ks

rc · xs
c

8: v3 = (Ks
rr)

−1 · v2 ▷ Back & forward substitutions with factors of Ks
rr

9: v4 = v1 − v3

10: ês
λ = Cs

r · v4

11: end for
12: ee

λ = M e
λ · êe

λ ▷ Communication between subdomains
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Chapter 6

Crack propagation applications

6.1 Hardware and software setup

In this chapter the proposed FETI-DP and P-FETI-DP algorithms are used to solve two
3D problems involving brittle crack propagation. Their scalability is investigated and their
performance in terms of computation time and iterations is compared with other solvers on
a computer with the following specifications: Intel(R) Core(TM) i7-X980 CPU (3.33GHz,
6 cores/12 threads) and 24GB RAM. Moreover, the performance of the developed HPC
implementations of FETI-DP and P-FETI-DP is investigated in sections 6.2.5, 6.2.6, 6.3.6
and 6.3.7. To this end, a computer cluster is used, which consists of 1-6 computers with the
aforementioned specifications, linked via an Ethernet LAN.

The first solver used for comparison is a direct solver based on the supernodal sparse
Cholesky factorization (Y. Chen et al., 2008) and the fill-reducing DOF ordering operations,
available from the CHOLMOD package of SuiteSparse library (Davis, 2022). SuiteSparse
provides high-performance implementations of direct sparse solvers, which are written in the
C programming language and take full advantage of the multicore architecture of modern
CPUs. Since the main portion of the XFEM code is written in C#, SuiteSparse is com-
piled and linked with as few calls as possible to reduce any overhead. This solver will be
abbreviated as Direct-S in the remaining of this section.

Both FETI-DP and P-FETI-DP are implemented in C# as part of the MSolve (MGroup,
2022) open-source software for computational mechanics. In order to solve the linear sys-
tems at subdomain level (operations involving (Ks

rr)
−1 and (Ks

ii)
−1) and the coarse prob-

lem (operations involving (Scc)
−1), SuiteSparse is used once more. Apart from the paral-

lelism exploited by SuiteSparse for these operations, the subdomains are processed concur-
rently, taking advantege of the domain decomposition formulation. The DDM solvers tested
are following: Dirichlet-preconditioned FETI-DP (abbreviated as FETI-DP-D), lumped-
preconditioned FETI-DP (abbreviated as FETI-DP-L) and the P-FETI-DP. Each of these
methods is also executed with the improvements discussed in section 5.4.3 and these versions
of the solvers will be abbreviated as FETI-DP-D-I, FETI-DP-L-I and P-FETI-DP-I.
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From equations (5.31) and (5.47), it can be observed that unknowns and residual vectors
of the iterative PCG algorithm are defined in terms of Lagrange multipliers (FETI-DP)
and boundary displacements (P-FETI-DP), respectively. In order to objectively compare
the performance and convergence rate of these solvers, a unified residual based convergence
criterion is used in the following numerical examples:

||Ku− f ||
||f ||

≤ ϵ (6.1)

where K, u and f are the global stiffness matrix, displacements and external forces
of the whole domain, and ϵ = 10−7. In practical applications, a more relaxed tolerance
may be used, which will require less computational time for FETI-DP and P-FETI-DP. The
objective criterion of equation (6.1) is expensive to apply, because at each PCG iteration
the Lagrange multipliers (FETI-DP) or boundary displacements (P-FETI-DP) need to be
converted to the global displacements u and the difference Ku− f needs to be calculated.
In practical applications, the default convergence criterion of PCG is used instead and the
global displacements u are calculated once, after PCG has converged. Since equation (6.1)
is applied only for the sake of objective comparison, the time required for it is not included
in the comparisons presented.

Another solver used for comparison is the incremental Cholesky solver (abbreviated as
Direct-I), an reanalysis solver proposed in Pais et al. (2012), specifically for brittle crack
propagation problems, which achieved significant performance improvements over the Direct-
S solver. This method implements a partial factorization connected to the modified DOFs
at each propagation step. Row-add operations are used for the stiffness of new Heaviside
and tip enriched DOFs of the current step, while row-delete operations for the tip enriched
DOFs of the previous step. Before the analysis starts, the approximate minimum degree
(AMD) algorithm (Amestoy et al., 2004) is used to obtain an effective DOF ordering for all
standard and possibly enriched DOFs. The aforementioned row-add, row-delete and AMD
operations are all implemented by the high performance library SuiteSparse.

Finally, a typical PCG solver with Jacobi preconditioning (abbreviated as PCG-D) is
included in the comparison, where the stiffness matrix is stored in compressed sparse rows
(CSR) format and Intel math kernel library (MKL) (Intel Corporation, 2022) is used for
the execution of matrix-vector multiplications, vector-vector operations and the application
of the preconditioner in each PCG iteration. Therefore, this is an very optimized parallel
implementation that takes full advantage of the multicore computing system. Similarly to
the domain decomposition solvers, the objective criterion of equation (6.1) with a tolerance of
ϵ = 10−7 is employed for checking the convergence of this iterative solver and the additional
cost of this criterion is subtracted, in order to compare its performance with the other solvers
impartially.
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6.2 Test case 1: Plate under impact loading

6.2.1 Problem description

The first test case is based on the Kalthoff experiment (Kalthoff & Winkler, 1987). As
illustrated in figure 6.1, a steel plate with an initial notch (crack) is impacted by a cylindrical
projectile. The projectile is modeled with prescribed displacements u0 = 50 mm around
the point of impact and an initial crack propagates from the cylindrical notch (Fries &
Baydoun, 2012). For low projectile velocities, brittle crack propagation occurs, in a 60÷ 70◦

angle through the domain, indicating Mode II loading. The material properties are E =
3 · 107 N/mm2 and v = 0.3. Similarly to Fries and Baydoun (2012) and other studies,
the crack is allowed to propagate quasi-statically with a constant increment da = 5 mm,
until it reaches the domain boundary, which happens after 16 propagation steps. At each
propagation step, XFEM analysis is performed using a uniform mesh of hexahedral elements
with 8 nodes. The whole quasi-static crack propagation is repeated for various mesh densities
and for each solver. The resulting crack path after 16 propagation steps and the nodes
enriched with Heaviside and crack tip functions are depicted in figure 6.2. The number of
DOFs varies per propagation step, since new enriched DOFs are introduced as the crack
propagates. The initial and final number of DOFs for each mesh are listed in table 6.1.

20
0

100
200

20
0

cylinder 
projectile

50

75

75

100

u0

initial
crack

50

Figure 6.1: Test case 1. Description of the plate under impact example. All dimensions are
in mm.
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(a) (b)

Figure 6.2: Test case 1. (a) Crack path and (b) enriched nodes, at the last propagation step.

Mesh DOFs at first step DOFs at last step Average
10× 5× 10 2,791 4,357 3,532
20× 10× 20 15,960 20,502 17,983
30× 15× 30 48,507 56,709 52,083
40× 20× 40 109,386 122,052 115,169
50× 25× 50 208,385 226,577 216,456
60× 30× 60 353,784 379,140 364,641
70× 35× 70 554,171 587,357 568,222
80× 40× 80 818,770 860,224 836,817
90× 45× 90 1,157,761 1,208,929 1,179,569

Table 6.1: Test case 1. Number of DOFs per mesh.
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6.2.2 Comparison of various solvers

The performances of the supernodal Cholesky solver (Direct-S), the incremental Cholesky
solver (Direct-I), the iterative solver PCG-D and the FETI-DP and P-FETI-DP solvers are
compared. The total time required by each for the solution phases of the whole analysis can
be observed in figure 6.3a and the speedup with respect to the default direct solver Direct-S
in figure 6.3b: speedup = t ((Direct-S) / t (solver), where t(·) is the total time required by
each solver for the full crack propagation analysis. In both figures, the x-axis corresponds to
the initial number of DOFs for the meshes listed in table 6.1. Note that supernodal Cholesky
can be used for meshes up to 3.5 · 105 DOFs only, while incremental Cholesky runs out of
memory at approximately 1.1 · 105 DOFs.

This increased memory requirement of Direct-D is attributed to the increased bandwidth
of the stiffness matrix compared to the matrix of Direct-S, although both solvers use the
AMD reordering algorithm to reduce the bandwidth. In the case of Direct-I, many inactive
enriched DOFs are included in the set of total DOFs and the effectiveness of AMD decreases,
whereas in the Direct-S solver, the AMD algorithm can optimize the DOF ordering. Ad-
ditionally, Direct-I uses extra temporary memory for implementing the row-add operations.
In terms of computation time, incremental Cholesky is slower than the supernodal Cholesky
solver in this test case, in contrast to 2D applications, where incremental Cholesky solver
provides significant speedups (Pais et al., 2012). This is caused by the increase of crack tip
enriched DOFs, since the crack front is more extensive and interacts with a larger part of
the domain in 3D problems. Section 6.3 provides a detailed comparison of this case with
a 3D application, where the reanalysis features of incremental Cholesky are effective and
outperform supernodal Cholesky.

The PCG-D solver is up to 100 times faster than supernodal Cholesky. Although PCG-
D requires a very large number of iterations to converge, the computational effort remains
reasonably low, due to the simple operations performed by the very optimized linear alge-
bra library (Intel MKL). Nevertheless, the improvement of the FETI-DP and P-FETI-DP
solvers is superior, especially for larger problems, even though they are implemented by an
unoptimized C# code. The maximum speedups that have been achieved due to the memory
limitations of the direct solver are 340 (FETI-DP-D), 290 (FETI-DP-L), 410 (P-FETI-DP),
670 (FETI-DP-D-I), 530 (FETI-DP-L-I) and 830 (P-FETI-DP-I).
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Figure 6.3: Test case 1. Performance comparison of the solvers for the plate under impact:
(a) Computing time (in seconds). (b) Speedup of the solvers relative to supernodal Cholesky
solver.
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6.2.3 Numerical scalability investigation

The numerical scalability of FETI-DP and P-FETI-DP with respect to the number of sub-
domains (strong scalability), is depicted in figure 6.4. It can be seen that as the subdomains
increase for a constant mesh size, the iterations of PCG required for the solution of the
interface problem of FETI-DP and P-FETI-DP decrease, thus both methods scale well with
respect to the number of subdomains. The constant mesh used is (72×36×72), correspond-
ing to 616, 115 global DOFs on average. For various partitions of the constant mesh, table
6.2 lists the number of subdomains, boundary DOFs, corner DOFs and Lagrange multipli-
ers (relevant only for FETI-DP). Although the iterations always decrease as the number of
subdomains increases, this is not the case for the solution time, where there is an optimum
number of subdomains for each solver resulting in the best solution time. Adding more
subdomains also increases the number of corner DOFs of FETI-DP and P-FETI-DP, which
in turn increases the size and bandwidth of the coarse problem matrix Scc. Consequently,
after that optimum is reached, the benefit of reduced iterations cannot counterbalance the
increased computing cost of the factorization of Scc and the corresponding back/forward
substitutions.

Subdomains
Number of Boundary Corner Lagrange
subdomains DOFs DOFs multipliers

4× 2× 4 32 65,735 3,563 72,892
6× 3× 6 108 111,156 5,607 137,734
8× 4× 8 256 154,970 8,780 210,040
12× 6× 12 864 232,434 13,190 372,784
18× 9× 18 2,916 332,774 24,443 645,906
24× 12× 24 6,912 414,101 41,303 927,808

Table 6.2: Test case 1 (616, 115 global DOFs). Number of subdomains, boundary DOFs,
corner DOFs and Lagrange multipliers.

Figure 6.5 illustrates the behaviour of FETI-DP and P-FETI-DP, when the ratio of
subdomain to element size remaints constant H/h = 5 and the mesh size, along with the
number of subdomains, increases. The x-axis contains the initial number of DOFs for each
mesh, as listed in table 6.1, while the y-axis corresponds to the iterations required for PCG-D
and for the interface problem of FETI-DP and P-FETI-DP. Although the mesh size increases,
the number of iterations performed by FETI-DP and P-FETI-DP remains constant, contrary
to the PCG-D solver that requires increasingly more iterations to converge. Specifically, when
using the zero vector as an initial guess for the interface problems, the number of iterations
reaches a plateau at 69 (FETI-DP-D), 117 (FETI-DP-L) and 59 (P-FETI-DP), while when
using equations (5.56) and (5.55) the iterations are 44 (FETI-DP-D-I), 77 (FETI-DP-L-
I) and 37 (P-FETI-DP-I). This result confirms the numerical scalability of FETI-DP and
PFETI-DP with respect to the problem size (weak scalability), a property that is essential



CHAPTER 6. CRACK PROPAGATION APPLICATIONS 186

0 2,000 4,000 6,000

50

100

150

200

250

Subdomains

It
er
at
io
n
s

FETI-DP-D

FETI-DP-D-I

FETI-DP-L

FETI-DP-L-I

P-FETI-DP

P-FETI-DP-I

(a)

0 2,000 4,000 6,000

103

104

Subdomains

T
im

e
[s
]

FETI-DP-D

FETI-DP-D-I

FETI-DP-L

FETI-DP-L-I

P-FETI-DP

P-FETI-DP-I

(b)

Figure 6.4: Test case 1. Scalability analysis with respect to the number of subdomains.
Constant mesh (72 × 36 × 72), variable number of subdomains. (a) Iterations required to
solve the interface problem (b) Time (in seconds) required for the solution phase.
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for solving arbitrarily large problems with constant iterations, by increasing the number of
subdomains and the corresponding processors of a distributed memory system.

0 2 4 6 8

102

103

DOFs ×105

It
er
at
io
n
s

PCG-D

FETI-DP-D

FETI-DP-D-I

FETI-DP-L

FETI-DP-L-I

P-FETI-DP

P-FETI-DP-I

Figure 6.5: Test case 1. Scalability analysis with respect to the problem size: Variable mesh
size, but constant ratio of subdomain to element size H/h = 5.

As can be seen in Figs 6.3-6.5, when using Eqs (5.56, 5.55) as initial guesses for the so-
lution of the interface problem, both FETI-DP and P-FETI-DP exhibit substantial compu-
tational gains. Specifically, the number of iterations is reduced by up to 37% (FETI-DP-D),
36% (FETI-DP-L) and 40% (P-FETI-DP-I). By reusing subdomain data from previous prop-
agation steps and the non-zero initial guesses for the interface problems, the total solution
time is reduced by 49% (FETI-DP-D-I), 45% (FETI-DP-L-I) and 50% (P-FETI-DP-I).

6.2.4 Effectiveness of XFEM-specific modifications

Next, the effectiveness of the proposed solvers in eliminating the ill-conditioning caused by
XFEM is investigated by comparing two corner DOF schemes. The first scheme requires the
minimum modification to the original FETI-DP and P-FETI-DP for avoiding singular Ks

rr

matrices, by using equation (5.52) to treat boundary DOFs that are enriched with Heaviside
and only the first crack tip function as corner DOFs. The second scheme, which in fact
is used in all previous investigations, uses equation (5.53) to treat boundary DOFs that
are enriched with Heaviside and all four crack tip functions as corner DOFs. Figure 6.6
depicts the iterations required for solving the interface problems of FETI-DP and P-FETI-
DP, when each of these schemes are used. Four sample meshes are shown and the x-axis
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corresponds to crack propagation steps. The ratio of subdomain to element size is kept
constant at H/h = 5 and the initial guesses for the interface problems are taken equal to 0.
When using equation (5.52), sharp increases in the number of iterations are observed during
some propagation steps. This XFEM-related ill-conditioning occurs only when boundary
DOFs become enriched due to their proximity to the crack front, which happens at different
propagation steps for each mesh. Nevertheless, when it does happen, an iteration increase
of up to 245% can be observed. On the other hand, iteration spikes during those crack
propagation steps are not observed when using equation (5.53), which ensures that XFEM
ill-conditioning is completely eliminated with this version of FETI-DP and P-FETI-DP.
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Figure 6.6: Test case 1. Iterations required for solving the interface problem at each prop-
agation step for different mesh sizes, when using equations (5.52) or (5.53) to define the
corner DOFs.
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(c) Mesh (60× 30× 60)
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(d) Mesh (70× 35× 70)
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Figure 6.6: Test case 1. Iterations required for solving the interface problem at each prop-
agation step for different mesh sizes, when using equations (5.52) or (5.53) to define the
corner DOFs.
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6.2.5 Parallel scalability investigation

This section investigates the performance of the proposed DDM solvers when executed on
the HPC system described in section 6.1. A mesh with (72 × 36 × 72) elements is par-
titioned into (12 × 6 × 12) subdomains (864 in total). The number of subdomain DOFs,
global DOFs, boundary DOFs (size of P-FETI-DP’s interface problem), corner DOFs (size
of coarse problem) and Lagrange multipliers (size of FETI-DP’s interface problem) is listed
in table 6.3. Since new enriched DOFs are introduced at each crack propagation step, the
minimum, maximum and average values are shown. This problem is then solved by each
solver on a cluster computing environment, which consists of 1,2,4 or 6 computers, with
the specifications given in section 6.1. The 864 subdomains are evenly divided among the
available computers in each case, to ensure balanced loads. Furthermore, the communication
needed between the computers is minimized, by minimizing the boundary DOFs that belong
to subdomains allocated to different computers and maximizing the boundary DOFs that
belong to subdomains allocated to the same machine. The solution of the coarse problem of
FETI-DP and P-FETI-DP is performed according to section 5.5.2.2.3

Min Max Average
Subdomain DOFs 1,026 1,773 1,074

Global DOFs 601,050 635,400 616,115
Boundary DOFs 226,690 238,816 232,434

Corner DOFs 7,446 19,572 13,190
Lagrange multipliers 372,784 372,784 372,784

Table 6.3: Test case 1. Number of DOFs for the case of (72 × 36 × 72) elements and
(12× 6× 12) subdomains.

Fig. 6.7a depicts the time required for the solution phase of the XFEM analysis by each of
the solvers. As previously, P-FETI-DP is faster than FETI-DP-D and FETI-DP-L and the
improved versions P-FETI-DP-I, FETI-DP-D-I, FETI-DP-L-I are even faster. However, as
more resources (computers) are added, the relative performance differences between the 6

solvers become less pronounced. The parallel speedup, namely speedup =
t(1 computer)

t(n computers)
is

shown in Fig. 6.7b. It can be observed that all solvers scale well, when more computers are
added to the system.

The main obstacle in the efficient implementation of these DDM solvers for HPC systems
is the amount of data that need to be transferred between different computers. As section
5.5 elaborates, this communication has been minimized in the proposed P-FETI-DP solver
by replacing the map-reduce operations on vectors involving multiple subdomains yb =
ns∑
s=1

(Ls
b)

T ŷs
b with the more distributed version ye

b = M e
b ŷ

e
b , as explained in equation (5.70).
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Figure 6.7: Test case 1. Parallel scalability analysis. Constant elements (72× 36× 72) and
subdomains (12× 6× 12), variable number of computers. (a) Time (in seconds) required for
the solution phase (b) Parallel speedup.
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Similarly, δe = M e
λδ̂

e is used in the proposed FETI-DP solver, as explained in equation
(5.100). These map reduce operations occur:

� Once per iteration of the PCG used to solve the interface-problem of P-FETI-DP, when
the interface-problem matrix is multiplied with a vector corresponding to displacements
at boundary DOFs. See equation (5.73).

� Once per iteration of the PCG used to solve the interface-problem of P-FETI-DP,
when the preconditioner is multiplied with a residual vector corresponding to forces at
boundary DOFs. See equation (5.95).

� Once per iteration of the PCG used to solve the interface-problem of FETI-DP, when
the interface-problem matrix is multiplied with a vector corresponding to Lagrange
multiplies. See equation (5.111).

� Once per iteration of the PCG used to solve the interface-problem of FETI-DP, when
the preconditioner is multiplied with a residual vector corresponding to displacement
quantities along the Lagrange multipliers. See equation (5.109).

In order to estimate the magnitude of these communications, Fig. 6.8 presents the data
transferred in MB. Data transfers between subdomains that are assigned to the same com-
puter are denoted as “local” and have negligible cost in the current implementation, since
they are performed by accessing the shared memory of that computer. In contrast, “re-
mote” data transfers, namely transfers between subdomains assigned to different computers,
go through the network connecting these computers. Therefore, they are much slower and
can easily become a computational bottleneck if their size, frequency or distribution in the
network topology are not optimized. As illustrated in Fig. 6.8, the remote data transfers are
significantly lower than the local ones in this application. Additionally, FETI-DP requires
transferring less data than P-FETI-DP, which can be attributed to the removal of enriched
DOFs from the interface-problem of FETI-DP (see section 5.4.2), but not from the interface
problem of P-FETI-DP.
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Figure 6.8: Test case 1. Data transfers per application of equation (5.70) (P-FETI-DP) or
(5.100) (FETI-DP). Local data transfers happen between subdomains on the same computer,
while remote data transfers between different computers.

6.2.6 Coarse problem solution strategies

Moreover, three different strategies for solving the coarse problem of P-FETI-DP and P-
FETI-DP-I are considered. The first strategy solves the global version of the coarse problem
on 1 computer using a direct method and broadcasts the result to all other computers, as
explained in section 5.5.2.2.2. This requires extra memory in 1 computer and data transfers
after the solution of the coarse problem. The second strategy solves the global version of
the coarse problem on all computers using a direct method, as explained in section 5.5.2.2.3.
It requires extra memory from all computers, but leads to better load balancing. The third
strategy solves the distributed version of coarse problem on all computers using an iterative
method (PCG), as explained in section 5.5.2.2.1. This approach has minimum memory
requirements but is usually slower, since direct methods are better suited for multiple linear
systems with the same matrix but different RHS vectors.

Fig. 6.9a depicts the total time required for the solution phase of P-FETI-DP-I when the
coarse problem is solved using PCG (the third strategy) with various convergence tolerances.
A mesh of (72 × 36 × 72) elements (616,115 global DOFs on average) and (12 × 6 × 12)
subdomains (13,190 corner DOFs on average) is used. For the same case, Fig. 6.9b shows
the average iterations required by the interface-problem PCG to converge to a tolerance
of 1E − 7. It can be observed that relaxing the coarse-problem PCG tolerance, slightly
decreases the convergence rate of the interface-problem PCG, but the overall computing time
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Figure 6.9: Test case 1. Coarse problem of P-FETI-DP-I is solved with PCG. a) Solution
time for various tolerances of the coarse-problem PCG and b) iterations of the interface-
problem PCG.
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is significantly improved. However, increasing the coarse-problem PCG tolerance beyond
1E − 1 will cause the interface-problem PCG to not converge at all.
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Figure 6.10: Test case 1. Solution time of P-FETI-DP with different coarse problem solution
strategies.

Finally, the performances of P-FETI-DP and P-FETI-DP-I are compared, when using
each of the three coarse-problem solution strategies. A subdomain-element size ratio of
H/h = 5 and some of the meshes of table 6.1 are used. The third coarse-problem solution
strategy, a tolerance of 1E− 1 is used for the coarse-problem PCG, since it was shown to be
optimal for this problem in Fig. 6.9a. The total time required for the solution phase of the
XFEM analysis is illustrated in Fig. 6.10. It can be observed that the difference between the
first two strategies, which use a direct method, is very small, while the third strategy, which
uses an iterative method, is considerably slower, which counter-balances the advantage of
reduced memory requirements.

6.3 Test case 2: 4-point bending beam

6.3.1 Problem description

The second test case involves a crack propagating in a beam supported at three points
and loaded at a fourth point, as illustrated in figure 6.11. The material properties are
E = 3 · 107 N/mm2, v = 0.3 and the applied load is F = 1000 N . The dimensions of
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the beam, the placement of supports and load and the initial configuration of the crack
surface are shown in figure 6.11. Similarly to the first test case, the crack propagates in a
quasi-static manner with a constant increment da = 8 mm, until it reaches the boundary
of the domain and collapse occurs after 13 propagation steps. At each propagation step,
XFEM analysis is performed using a uniform mesh of hexahedral elements with 8 nodes.
The whole quasi-static crack propagation is repeated for various mesh densities and for each
solver. The resulting crack path after 13 propagation steps is depicted in figure 6.12a, while
the nodes enriched with Heaviside and crack tip functions can be observed in figure 6.12b.
The number of DOFs varies per propagation step, since new enriched DOFs are introduced
as the crack propagates. Therefore, the initial and final number of DOFs for each mesh are
listed in table 6.4.
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Figure 6.11: Test case 2. 4-point bending beam test case. Geometry, boundary conditions
and initial configuration of the crack surface (dimensions in mm).
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(a) (b)

Figure 6.12: Test case 2. (a) Crack path and (b) enriched nodes, at the last propagation
step. The crack starts propagating from x = 337.5 at step = 0.

Mesh DOFs at first step DOFs at last step Average
45× 10× 5 9,492 9,816 9,666
90× 20× 10 64,130 65,384 64,775
135× 30× 15 204,336 206,880 205,617
180× 40× 20 470,820 475,419 473,093
225× 50× 25 903,812 910,832 907,286
270× 60× 30 1,537,228 1,548,295 1,543,366
315× 70× 35 2,431,872 2,444,940 2,438,435

Table 6.4: Test case 2. Number of DOFs per mesh.
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6.3.2 Comparison of various solvers

The total time required by each solver for the solution phases of the whole analysis can
be seen in figure 6.13a and the corresponding speedup (speedup = t (Direct-S) / t (solver))
of the solvers with respect to the default direct solver (Direct-S) in figure 6.13b. In both
figures, the x-axis corresponds to the initial number of DOFs for the meshes listed in table
6.4. The supernodal Cholesky solver can be used for meshes up to 4.73 ·105 DOFs only, while
incremental Cholesky runs out of memory even sooner, at approximately 2.5 · 105 DOFs. As
discussed in the previous test case, the presence of enriched DOFs, which are active in a
few crack propagation steps and inactive in the rest, deteriorates the effectiveness of the
AMD reordering, thus increasing the bandwidth of the stiffness matrix and the memory
requirements in the incremental Cholesky solver. However, contrary to the previous test
case, incremental Cholesky offers a performance improvement over the default supernodal
Cholesky solver, which increases as the mesh is refined, similarly to the results in 2D problems
reported in Pais et al. (2012).

Nevertheless, the improvement of FETI-DP and P-FETI-DP solvers is superior, especially
for larger problems. In the finest mesh where comparison with the Direct-I solver is possible,
the speedups are 66 (FETI-DP-D), 52 (FETI-DP-L), 79 (P-FETI-DP), 117 (FETI-DP-D-
I), 83 (FETI-DP-L-I) and 171 (P-FETI-DP-I), compared to 3.5 (Direct-I). As the number
of DOFs increases, the speedup over the supernodal Cholesky becomes even greater. The
maximum speedups that are recorded, due to the memory limitations of Direct-S, are 144
(FETI-DP-D), 98 (FETI-DP-L), 184 (P-FETI-DP), 249 (FETI-DP-D-I), 145 (FETI-DP-L-
I) and 377 (P-FETI-DP-I). The maximum reported speedup of PCG-D is 20 at the finest
mesh investigated, which is 21 times slower than P-FETI-DP-I. The memory requirements
of FETI-DP, P-FETI-DP and PCG solvers are also far lower than the supernodal Cholesky
solver, and can solve problems with more than 2.5 · 106 DOFs, even with one processor.
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Figure 6.13: Test case 2. Performance comparison of the solvers for the 4-point bending
beam: (a) Computing time (in seconds). (b) Speedup of the solvers relative to supernodal
Cholesky solver.
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6.3.3 Comparison of reanalysis features

Next, the effectiveness of the reanalysis techniques of the proposed DDM solvers and the
incremental Cholesky solver of Pais et al. (2012) are compared. By examining figure 6.2b
and figure 6.12b, it can be observed that the crack front is more extensive in the first test
case, resulting in an increased number of crack tip enriched DOFs. Therefore, between
two successive crack propagation steps, substantially more DOFs are modified in the first
test case. Figure 6.14 illustrates the percentage of total DOFs that are modified between
two crack propagation steps, because enriched DOFs are added or removed. The x-axis
corresponds to the initial number of total DOFs for the meshes listed in table 6.4. When the
incremental Cholesky solver updates the factorized stiffness matrix, the number of rows that
need to be add or deleted, because they correspond to these modified DOFs, is higher in the
first test case than in the second one. This results in worse performance than factorizing the
whole matrix, while in the second test case, incremental Cholesky outperforms the standard
supernodal Cholesky solver, due to a very low percentage of modified DOFs.
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Figure 6.14: Percentage of enriched DOFs, newly added or deleted between propagation
steps, to total DOFs.

In contrast, the effectiveness of reusing data from previous propagation steps in the pro-
posed FETI-DP and P-FETI-DP solvers does not depend on a low percentage of modified
DOFs. In both numberical examples, the FETI-DP-D-I, FETI-DP-L-I and P-FETI-DP-I
versions are roughly 2 times faster than FETI-DP-D, FETI-DP-L and P-FETI-DP, respec-
tively. The reanalysis technique involves identifying and reusing previous subdomain-level
matrices, thus avoiding repeated operations, as well as reducing the iterations needed for
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the interface problem, by using its solution during the previous propagation step to start
the iterations with a better initial guess. These operations have no additional cost as op-
posed to the row-add and row-delete operations of the incremental Cholesky solver, which
end up being more time consuming than factorizing the whole matrix in the test case 1.
Additionally, in the incremental Cholesky solver, the AMD reordering algorithm is applied
only at the first propagation step and needs to account for all possibly enriched DOFs, thus
deteriorating the quality of the DOF ordering and increasing the stiffness matrix bandwidth.
On the other hand, in the proposed solvers, AMD is applied at each propagation step and
can optimize the DOF ordering for each step independently from the previous ones.

6.3.4 Ill-conditioning caused by high Poisson ratio

In the following, the sensitivity of the proposed solvers to the Poisson ratio v is investigated.
Materials with increased Poisson ratio result in very ill-conditioned linear systems. While
this does not affect dramatically the performance of direct solvers, apart from their accuracy
in extreme cases, iterative and domain decomposition solvers exhibit substantial sensitivity
in their convergence rate. Figure 6.15 illustrates the performance of PCG-D and the proposed
domain decomposition solvers for various values of the Poisson ratio v. The (225× 50× 25)
mesh was used with 903, 812÷ 910, 832 DOFs. In figure 6.15a the number of iterations are
plotted for each case. It is evident that the proposed FETI-DP and especially P-FETI-DP
solvers are less sensitive to the ellipticity of problem at hand than the PCG solver. For
the highest Poisson ratio v = 0.499, the P-FETI-DP-I solver is up to 73 times faster than
PCG-D and 1.8 times faster then FETI-DP-D-I.
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Figure 6.15: Test case 2. Convergence rate vs Poisson ratio. (a) Required iterations. (b)
Time (in seconds) required for the solution phase of the analysis.
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6.3.5 FETI-DP vs P-FETI-DP

Finally, the proposed DDM solvers are compared to each other in more detail, with re-
spect to their convergence rate and overall computing time. In all examples, FETI-DP-
L is significantly less efficient than FETI-DP-D and P-FETI-DP. The reduced operations
for the lumped preconditioner described in equation (5.40) cannot counter-balance the in-
crease in iterations caused by ignoring the stiffness of internal DOFs Ks

ii. Furthermore,
Dirichlet-preconditioned FETI-DP is outperformed by P-FETI-DP in all tests performed.
Although the amount of work per iteration is the same, P-FETI-DP always requires less it-
erations. Figures (6.16a),(6.16b) show the speedup of P-FETI-DP with respect to Dirichlet-
preconditioned FETI-DP, namely speedup = t (FETI-DP-D) / t (P-FETI-DP). Figure
(6.16a) clarifies that P-FETI-DP is up to 2.4 times faster than Dirichlet-preconditioned
FETI-DP and this ratio tends to progressively increase as the mesh is refined. The same
trend is observed in figure (6.16b), where P-FETI-DP becomes progressively more efficient
than Dirichlet-preconditioned FETI-DP for higher values of the Poisson ratio.
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Figure 6.16: Test case 2. Speedup of P-FETI-DP solver over Dirichlet-preconditioned FETI-
DP solver. (a) For various meshes and v = 0.3. (b) For mesh 225 × 50 × 25 and various
poisson ratios.
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6.3.6 Parallel scalability investigation

This section investigates the performance of the proposed DDM solvers when executed on
the HPC system described in section 6.1. A mesh with (252 × 56 × 28) elements is par-
titioned into (36 × 8 × 4) subdomains (1152 in total). The number of subdomain DOFs,
global DOFs, boundary DOFs (size of P-FETI-DP’s interface problem), corner DOFs (size
of coarse problem) and Lagrange multipliers (size of FETI-DP’s interface problem) is listed
in table 6.3. Since new enriched DOFs are introduced at each crack propagation step, the
minimum, maximum and average values are shown. This problem is then solved by each
solver on a cluster computing environment, which consists of 1,2,4 or 6 computers, with
the specifications given in section 6.1. The 1152 subdomains are evenly divided among the
available computers in each case, to ensure balanced loads. Furthermore, the communication
needed between the computers is minimized, by minimizing the boundary DOFs that belong
to subdomains allocated to different computers and maximizing the boundary DOFs that
belong to subdomains allocated to the same machine. The solution of the coarse problem of
FETI-DP and P-FETI-DP is performed according to section 5.5.2.2.3

Min Max Average
Subdomain DOFs 1,512 2,424 1,550

Global DOFs 1,260,572 1,269,011 1,264,822
Boundary DOFs 407,731 410,488 409,080

Corner DOFs 7,836 10,593 9,185
Lagrange multipliers 631,765 631,765 631,765

Table 6.5: Test case 2. Number of DOFs for the case of (252 × 56 × 28) elements and
(36× 8× 4) subdomains.

Fig. 6.17a depicts the time required for the solution phase of the XFEM analysis by each
of the solvers. As previously, P-FETI-DP is faster than FETI-DP-D and FETI-DP-L and
the improved versions P-FETI-DP-I, FETI-DP-D-I, FETI-DP-L-I are even faster. However,
as more resources (computers) are added, the relative performance differences between the

6 solvers become less pronounced. The parallel speedup, namely speedup =
t(1 computers)

t(n computers)
is shown in Fig. 6.17b. It can be observed that all solvers scale well, when more computers
are added to the system.

In order to quantify the communication between neighboring subdomains and their cor-
responding computers, Fig. 6.8 presents the data transferred in MB. It can be observed
that remote data transfers (between subdomains of different computers) are significantly
lower than local data transfers (between subdomains of the same computer) in this appli-
cation. Additionally, FETI-DP requires transferring less data than P-FETI-DP, which can
be attributed to the removal of enriched DOFs from the interface-problem of FETI-DP (see
section 5.4.2), but not from the interface problem of P-FETI-DP.
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Figure 6.17: Test case 2. Parallel scalability analysis. Constant elements (252 × 56 × 28)
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6.3.7 Coarse problem solution strategies

Moreover, the solution of the coarse problem of P-FETI-DP and P-FETI-DP-I is investigated,
when using the three different strategies for of sections 5.5.2.2.2, 5.5.2.2.3 and 5.5.2.2.1.
Fig. 6.19b depicts the total time required for the solution phase of P-FETI-DP-I when the
coarse problem is solved using PCG (the third strategy) with various convergence tolerances.
A mesh of (216 × 48 × 24) elements (805,162 global DOFs on average) and (36 × 8 × 4)
subdomains (8,244 corner DOFs on average) is used. For the same case, Fig. 6.19a shows
the average iterations required by the interface-problem PCG to converge to a tolerance
of 1E − 7. It can be observed that relaxing the coarse-problem PCG tolerance, slightly
decreases the convergence rate of the interface-problem PCG, but the overall computing time
is significantly improved. However, increasing the coarse-problem PCG tolerance beyond
1E − 2 will cause the interface-problem PCG to not converge at all.

Finally, the performances of P-FETI-DP and P-FETI-DP-I are compared, when using
each of the three coarse-problem solution strategies. A subdomain-element size ratio of
H/h = 5 and some of the meshes of table 6.4 are used. The third coarse-problem solution
strategy, a tolerance of 1E− 2 is used for the coarse-problem PCG, since it was shown to be
optimal for this problem in Fig. 6.19b. The total time required for the solution phase of the
XFEM analysis is illustrated in Fig. 6.20. It can be observed that the difference between the
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Figure 6.19: Test case 2. Coarse problem of P-FETI-DP-I is solved with PCG. a) Solution
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first two strategies, which use a direct method, is very small, while the third strategy, which
uses an iterative method, is considerably slower, which counter-balances the advantage of
reduced memory requirements.

6.4 Conclusions

In the 3D examples investigated, both FETI-DP and P-FETI-DP are faster than optimally
implemented standard iterative (73 times faster) and direct solvers (833 times faster). They
are also much more insensitive to ill-conditioned problems than iterative solvers. Comparison
with the incremental Cholesky solver developed in Pais et al., 2012 specifically for XFEM
crack propagation, proves that the proposed methods are significantly faster, require less
memory and use a more robust reanalysis approach. Between the two proposed solvers, P-
FETI-DP is overall faster than FETI-DP, but both exhibit numerical scalability with respect
to the number of subdomains and the problem size. Their efficiency is further improved,
when they are executed in high performance computing systems, such as computer clusters.
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Chapter 7

Summary - Innovation of thesis

This thesis presents a two-scale numerical framework for conductive heat transfer in nano-
composites with complex geometries and thermal resistance along the interfaces between
different materials. This numerical model is based the extended finite element method
(XFEM), which enriches the polynomial approximation space of FEM with discontinuous
functions, in order to capture the jump in the temperature field across material interfaces.
Thus, new basis functions, enriched with the Heaviside function, and corresponding enriched
freedom degrees are added to the approximation space. In the proposed XFEM formulation,
novel junction functions are also introduced for the enrichment of nodes in finite elements,
where more than two material interfaces coincide. The interface thermal resistance is taken
into account through its effect on the the temperature jump across material interfaces, which
is calculated using the Heaviside and junction enrichments.

This XFEM formulation is then coupled with the level set method (LSM), in order to
represent the geometry of the material interfaces. Specifically, a double-mesh LSM approach
has been developed, which uses two different meshes for XFEM and LSM operations. The
XFEM mesh is fine enough to achieve the desired accuracy for the analysis, but coarse
enough to not redundantly increase the computational effort. The LSM mesh is much finer,
in order to capture the complex geometry of the interfaces between the matrix material and
the inclusions. Yet, the fine LSM mesh derives from the coarser XFEM mesh at a subset of
its nodes, so that they geometric operations on the coarse mesh needed by XFEM can be
performed on the fine mesh instead.

The combined XFEM-LSM model is used for simulating heat transfer in composite ma-
terials, consisting of carbon nanotubes (CNT) embedded into a polymer matrix. Using
computational homogenization, the macroscopic effective conductivity of the material was
estimated using reference volume elements (RVE) in the micro-scale. The thermal resistance
of the interfaces between CNTs and polymers is generally unknown and was inferred by
calibrating the developed model using experimentally measured values of the macroscopic
conductivity for various material configurations. Apart from polymer-CNT nano-composites,
conductive heat transfer in materials with polycrystalline structure was also modeled and
validated against results from the literature.
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Furthermore, the solution of algebraic equations resulting from XFEM has been ad-
dressed. Specifically, solvers based on the domain decomposition methods (DDM) FETI-DP
and P-FETI-DP have been developed for modeling crack propagation problems with XFEM.
In these DDM solvers, the domain is partitioned into multiple subdomains, which can be
processed in parallel, in order to reduce the computational effort and memory requirements.
However, mechanisms are developed in subdomains that are completely intersected by cracks,
which causes their stiffness matrices to become singular. In this thesis, the aforementioned
mechanisms were attributed to the discontinuous enrichment functions used by XFEM to
capture the displacement field jump across the crack, as well as their corresponding enriched
freedom degrees. The proposed solvers restore the invertibility of subdomain matrices, by
transferring a subset of these enriched freedom degrees to the coarse problem of FETI-DP
and P-FETI-DP.

Another difficulty posed by XFEM is the ill-conditioning of the stiffness matrix, due
to enrichment functions that model the singular stress field around the crack front. As a
result, iterative solution methods, including those employed by FETI-DP and P-FETI-DP
internally, are inefficient for the resulting linear systems, since their converge rate is low.
In this thesis, the XFEM-related ill-conditioning has been completely eliminated by fur-
ther modifying the coarse problem of the proposed DDM solvers. Additionally, optimized
versions of FETI-DP and P-FETI-DP were developed for the case of brittle crack propaga-
tion. These solvers reuse the solution of the interface problem, the stiffness matrices and
Schur complements during one propagation step, in order to reduce the solver iterations and
computational effort required for the next step.

Subsequently, an implementation of the proposed FETI-DP and P-FETI-DP solvers was
developed for high performance computing systems, specifically computer clusters. Com-
puter clusters are distributed memory environments, consisting of readily available comput-
ers linked via a local area network (LAN) to produce a low-cost, yet powerful system. To
that end, the original equations of both solvers were replaced with equivalent ones, which
avoid global-level operations in favor of exchanges between neighboring subdomains. These
enable an implementation with more efficient communication operations, since the amount
of data transferred between computers is reduced and distributed more evenly. Finally, the
performance of the proposed DDM solvers was investigated in 3D crack propagation prob-
lems, where both FETI-DP and P-FETI-DP were found to be significantly more efficient
than well-known direct and iterative solvers, as well as a solver that was developed specifi-
cally for XFEM crack propagation problems. Moreover, they scale well with respect to the
number of subdomains and the problem size.
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Below are some different avenues for future work in the topics addressed in this thesis:

� The XFEM-LSM model of chapter 2 can be extended to different types of differential
equations, such as elasticity and electrical conduction, as well as coupled problems,
such as thermomechanical coupling. In fact, the extension to pure elasticity problems
has already been successful after the completion of this thesis.

� Using the numerical model of chapter 2 in the context of structural topology opti-
mization. The proposed XFEM-LSM approach is an attractive choice for topology
optimization, since it operates on fixed meshes, while the boundary between the mate-
rial phases is smooth and can be moved according to the optimization rules. Various
interface behaviors can be considered, such as cohesive, namely the primarily field is
discontinuous, as in chapter 2, or coherent, namely the first derivative field is discon-
tinuous.

� Extension of the DDM solvers of chapter 5 to more complicated fracture problems than
brittle crack propagation under Linear Elastic Fracture Mechanics. Dynamic crack
propagation, cohesive cracks, elasto-plastic and ductile materials, which introduce ma-
terial and geometric non-linearities, are of particular interest. Moreover, problems
with heterogeneous materials and multiple interacting or branching cracks should be
considered. In the cases above, new problem-specific enrichment functions would be
introduced in the XFEM approximation. The proposed coarse problem of section 5.4.2
needs to take into account the corresponding enriched DOFs, in order to avoid singular
matrices and ill-conditioning. Furthermore, the optimizations of section 5.4.3 may re-
quire significant alterations or not be possible at all, outside brittle crack propagation.

� Improved numerical scalability of the proposed DDM solvers. Specifically, the combi-
nation of FETI-DP and P-FETI-DP with artificial intelligence and multigrid methods
is already under investigation, in order to handle any parts of the algorithms that are
not fully scalable yet.

� Optimized parallel implementation and increase of the parallel speedup of the DDM
solvers. The main obstacle consists of time wasted during data transfers between sub-
domains that belong to different computers. To this end, multiple network topologies
(e.g. cartesian) should be explored for the local area network connecting the individ-
ual machines of the computer cluster. In addition, the utilization of the MPI library
can always become more efficient, e.g. by using batch data transfers more frequently.
Finally, the proposed DDM solvers should be made as easy to use as possible, by
employing adaptive load balancing techniques.
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Appendix A

Element types

A.1 Isoparametric mapping

In this dissertation, isoparametric elements are employed to discretize the domain and the
interfaces between subdomains, such as material interfaces. In the isoparametric formulation,
apart from the global coordinate system (x, y, z), a secondary one is defined: the natural
coordinate system (ξ, η, ζ), which is also called element-local coordinate system. Each
element type has a specific position is the natural system. Mapping a point from the natural
to the global system is done using the Lagrange polynomial shape functions, which are
defined as functions of the natural coordinates (ξ, η, ζ):

x =
nne∑
k=1

Nk (ξ)xk (A.1)

where nne is the number of nodes of the element and xk = (xk, yk, zk) are the coordinates
of node k in the global system. The Jacobian matrix of this isoparametric mapping from
the natural to the global system is in 2D problems

JNG (ξ) =


∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

 =


nne∑
k=1

∂Nk (ξ)

∂ξ
xk

nne∑
k=1

∂Nk (ξ)

∂ξ
yk

nne∑
k=1

∂Nk (ξ)

∂η
xk

nne∑
k=1

∂Nk (ξ)

∂η
yk

 (A.2)

and in 3D problems
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JNG (ξ) =


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∂y

∂ξ

∂z

∂ξ

∂x

∂η

∂y

∂η

∂z
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=
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nne∑
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(A.3)

The derivatives of a vector function f (x) = f (x (ξ)) = f (ξ) with respect to the global
coordinates, as functions of the natural coordinates, can be calculated using the chain rule,
which in 2D problems becomes

∇x f (ξ) = J−1
NG · ∇ξ f (ξ) ⇐⇒


∂f (ξ)

∂x
∂f (ξ)

∂y

 =
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∂η
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∂f (ξ)
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∂f (ξ)

∂η

 (A.4)

and in 3D problems

∇x f (ξ) = J−1
NG · ∇ξ f (ξ) ⇐⇒
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∂f (ξ)
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=
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·
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(A.5)

A 1D element with 2 nodes is depicted in Fig. A.1. Its shape functions are

N1 (ξ) = 0.5(1− ξ)

N2 (ξ) = 0.5(1 + ξ)
(A.6)
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Figure A.1: Isoparametric 1D element with 2 nodes.

Node ξ η
P1 –1 –1
P2 +1 –1
P3 +1 +1
P4 –1 +1

Table A.1: Nodal coordinates of a quadrilateral element with 4 nodes.

A quadrilateral element with 4 nodes is depicted in Fig. A.2. The natural coordinates of
its nodes are given in table A.1. Its shape functions are

N1 (ξ) = 0.25(1− ξ)(1− η)

N2 (ξ) = 0.25(1 + ξ)(1− η)

N3 (ξ) = 0.25(1 + ξ)(1 + η)

N4 (ξ) = 0.25(1− ξ)(1 + η)

(A.7)

Figure A.2: Isoparametric quadrilateral element with 4 nodes.
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A triangular element with 3 nodes is depicted in Fig. A.2. Its shape functions are

N1 (ξ) = 1− ξ − η

N2 (ξ) = ξ

N3 (ξ) = η

(A.8)

and their derivatives are

∂N1 (ξ)

∂ξ
= −1

∂N1 (ξ)

∂η
= −1

∂N2 (ξ)

∂ξ
= +1

∂N2 (ξ)

∂η
= 0

∂N3 (ξ)

∂ξ
= 0

∂N3 (ξ)

∂η
= +1

(A.9)

which are constant, therefore the Jacobian matrix of equation (A.2) is also constant

JNG = JNG (ξ) =


3∑

k=1

∂Nk (ξ)

∂ξ
xk

3∑
k=1

∂Nk (ξ)

∂ξ
yk

3∑
k=1

∂Nk (ξ)

∂η
xk

3∑
k=1

∂Nk (ξ)

∂η
yk


=

[
−1x1 + 1x2 + 0x3 −1y1 + 1y2 + 0y3
−1x1 + 0x2 + 1x3 −1y1 + 0y2 + 1y3

]
=

[
x2 − x1 y2 − y1
x3 − x1 y3 − y1

] (A.10)

which is a constant. Actually the determinant of JNG is related to the area Atri of the
triangular element (x1,x2,x3) in the global cartesian system

det (JNG) = det
(
JT
NG

)
= det

([
x2 − x1 x3 − x1
y2 − y1 y3 − y1

])
= ∥(x2 − x1)× (x3 − x1)∥ = 2 Atri

(A.11)

since the norm of the cross product (x2 − x1)× (x3 − x1) is the area of a parallelogram that
shares two sides x2 − x1, x3 − x1 with the triangle.

A hexahedral element with 8 nodes is depicted in Fig. A.4. The natural coordinates of
its nodes are given in table A.2. Its shape functions are

N1 (ξ) = 0.125(1− ξ)(1− η)(1− ζ)

N2 (ξ) = 0.125(1 + ξ)(1− η)(1− ζ)

N3 (ξ) = 0.125(1 + ξ)(1 + η)(1− ζ)

N4 (ξ) = 0.125(1− ξ)(1 + η)(1− ζ)

N5 (ξ) = 0.125(1− ξ)(1− η)(1 + ζ)

N5 (ξ) = 0.125(1 + ξ)(1− η)(1 + ζ)

N7 (ξ) = 0.125(1 + ξ)(1 + η)(1 + ζ)

N8 (ξ) = 0.125(1− ξ)(1 + η)(1 + ζ)

(A.12)
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Figure A.3: Isoparametric triangular element with 3 nodes.

Node ξ η ζ
P1 –1 –1 –1
P2 +1 –1 –1
P3 +1 +1 –1
P4 –1 +1 –1
P5 –1 –1 +1
P6 +1 –1 +1
P7 +1 +1 +1
P8 –1 +1 +1

Table A.2: Nodal coordinates of a hexahedral element with 8 nodes.

Figure A.4: Isoparametric hexahedral element with 8 nodes.

A tetrahedral element with 4 nodes is depicted in Fig. A.4. Its shape functions are

N1 (ξ) = 1− ξ − η − ζ

N2 (ξ) = ξ

N3 (ξ) = η

N4 (ξ) = ζ

(A.13)
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and their derivatives are

∂N1 (ξ)

∂ξ
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(A.14)

which are constant, therefore the Jacobian matrix of equation (A.2) is also constant

JNG = JNG (ξ) =
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
=

 −1x1 + 1x2 + 0x3 + 0x4 −1y1 + 1y2 + 0y3 + 0y4 −1z1 + 1z2 + 0z3 + 0z4
−1x1 + 0x2 + 1x3 + 0x4 −1y1 + 0y2 + 1y3 + 0y4 −1z1 + 0z2 + 1z3 + 0z4
−1x1 + 0x2 + 0x3 + 1x4 −1y1 + 0y2 + 0y3 + 1y4 −1z1 + 0z2 + 0z3 + 1z4


=

 x2 − x1 y2 − y1 z2 − z1
x3 − x1 y3 − y1 z3 − z1
x4 − x1 y4 − y1 z4 − z1


(A.15)

which is a constant. Actually the determinant of JNG is related to the volume Vtet of the
tetrahedral element (x1,x2,x3,x4)) in the global cartesian system

det (JNG) = det
(
JT
NG

)
= det

 x2 − x1 x3 − x1 x4 − x1
y2 − y1 y3 − y1 y4 − y1
z2 − z1 z3 − z1 z4 − z1


=
∣∣(x4 − x1) ·

(
(x2 − x1)× (x3 − x1)

)∣∣ = 6 Vtet

(A.16)

since the absolute value of the triple scalar product (x2 − x1)× (x3 − x1) is the volume of
a parallelepiped that shares three sides x2 − x1, x3 − x1, x4 − x1 with the tetrahedron.
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Figure A.5: Isoparametric tetrahedral element with 4 nodes.

A.2 Integration

A main advantage of isoparametric elements is the ease of integration. The following equa-
tions will focus on scalar functions, but integrating vector and matrix functions follows the
same logic. Any integral of a function f (x) = f (x (ξ)) over an element Ωe, can be converted
to the natural system of the element:

∫
Ωe

f (x) dΩ =

∫
Ω̃e

f (x (ξ)) det (JNG (ξ)) dξdη in 2D∫
Ωe

f (x) dΩ =

∫
Ω̃e

f (x (ξ)) det (JNG (ξ)) dξdηdζ in 3D

(A.17)

where Ω̃e is the surface (in 2D problems) or space (in 3D problems) occupied by the isopara-
metric element in its natural coordinate system and det (JNG (ξ)) is the determinant of the
Jacobian matrix of the isoparametric mapping. These integrals can be calculated by us-
ing numerical integration and specifically, Gaussian-Legendre quadrature, which guarantees
exact integration of polynomials with the minimum number of required integration points:∫

Ω

f (x) dΩ =

nGP∑
p=1

f (ξp) det (JNG (ξp)) wp (A.18)

where ξp are the coordinates in the natural system of certain integration points, where the
function is evaluated. Each of the nGP integration points corresponds to a weight coefficient
wp. In order to exactly integrate polynomials of higher order, Gauss-Legendre needs to
increase the number of integration points. The coordinates and weights for integrating over
the various elements used in this dissertation are listed in tables A.3 - A.7.
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Points ξ weight
1 0.0 2.0

2
-0.5773502691896257 1.0
+0.5773502691896257 1.0

3
-0.7745966692414834 0.5555555555555556

0.0 0.8888888888888889
+0.7745966692414834 0.5555555555555556

4

-0.8611363115940526 0.3478548451374538
-0.3399810435848563 0.6521451548625461
+0.3399810435848563 0.6521451548625461
+0.8611363115940526 0.3478548451374538

Table A.3: Gauss-Legendre quadrature for 1D elements.

Points ξ η weight
1 0.0 0.0 2.0

4

-0.5773502691896257 -0.5773502691896257 1.0
-0.5773502691896257 +0.5773502691896257 1.0
+0.5773502691896257 -0.5773502691896257 1.0
+0.5773502691896257 +0.5773502691896257 1.0

9

-0.7745966692414834 -0.7745966692414834 0.308641975308642
-0.7745966692414834 0.0 0.4938271604938272
-0.7745966692414834 +0.7745966692414834 0.308641975308642

0.0 -0.7745966692414834 0.4938271604938272
0.0 0.0 0.7901234567901235
0.0 +0.7745966692414834 0.4938271604938272

+0.7745966692414834 -0.7745966692414834 0.30864197530864
+0.7745966692414834 0.0 0.4938271604938272
+0.7745966692414834 +0.7745966692414834 0.30864197530864

Table A.4: Gauss-Legendre quadrature for quadrilateral elements.
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Points ξ η weight
1 0.3333333333333333 0.3333333333333333 0.5

3
0.6666666666666667 0.1666666666666667 0.1666666666666667
0.1666666666666667 0.6666666666666667 0.1666666666666667
0.1666666666666667 0.1666666666666667 0.1666666666666667

4

0.3333333333333333 0.3333333333333333 -0.28125
0.2 0.2 0.2604166666666667
0.2 0.6 0.2604166666666667
0.6 0.2 0.2604166666666667

6

0.44594849091597 0.44594849091597 0.111690794839005
0.44594849091597 0.10810301816807 0.111690794839005
0.10810301816807 0.44594849091597 0.111690794839005
0.09157621350977 0.09157621350977 0.054975871827660
0.09157621350977 0.81684757298046 0.054975871827660
0.81684757298046 0.09157621350977 0.054975871827660

Table A.5: Gauss-Legendre quadrature for triangular elements.
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Points ξ η ζ weight

1 0.0 0.0 0.0 2.0

8

-0.5773502691896257 -0.5773502691896257 -0.5773502691896257 1.0
-0.5773502691896257 -0.5773502691896257 +0.5773502691896257 1.0
-0.5773502691896257 +0.5773502691896257 -0.5773502691896257 1.0
-0.5773502691896257 +0.5773502691896257 +0.5773502691896257 1.0
+0.5773502691896257 -0.5773502691896257 -0.5773502691896257 1.0
+0.5773502691896257 -0.5773502691896257 +0.5773502691896257 1.0
+0.5773502691896257 +0.5773502691896257 -0.5773502691896257 1.0
+0.5773502691896257 +0.5773502691896257 +0.5773502691896257 1.0

27

-0.7745966692414834 -0.7745966692414834 -0.7745966692414834 0.1714677640603567
-0.7745966692414834 -0.7745966692414834 0.0 0.2743484224965702
-0.7745966692414834 -0.7745966692414834 +0.7745966692414834 0.1714677640603567
-0.7745966692414834 0.0 -0.7745966692414834 0.2743484224965702
-0.7745966692414834 0.0 0.0 0.4389574759945131
-0.7745966692414834 0.0 +0.7745966692414834 0.2743484224965702
-0.7745966692414834 +0.7745966692414834 -0.7745966692414834 0.1714677640603567
-0.7745966692414834 +0.7745966692414834 0.0 0.2743484224965702
-0.7745966692414834 +0.7745966692414834 +0.7745966692414834 0.1714677640603567

0.0 -0.7745966692414834 -0.7745966692414834 0.2743484224965702
0.0 -0.7745966692414834 0.0 0.4389574759945131
0.0 -0.7745966692414834 +0.7745966692414834 0.2743484224965702
0.0 0.0 -0.7745966692414834 0.4389574759945131
0.0 0.0 0.0 0.7023319615912209
0.0 0.0 +0.7745966692414834 0.4389574759945131
0.0 +0.7745966692414834 -0.7745966692414834 0.2743484224965702
0.0 +0.7745966692414834 0.0 0.4389574759945131
0.0 +0.7745966692414834 +0.7745966692414834 0.2743484224965702

+0.7745966692414834 -0.7745966692414834 -0.7745966692414834 0.1714677640603567
+0.7745966692414834 -0.7745966692414834 0.0 0.2743484224965702
+0.7745966692414834 -0.7745966692414834 +0.7745966692414834 0.1714677640603567
+0.7745966692414834 0.0 -0.7745966692414834 0.2743484224965702
+0.7745966692414834 0.0 0.0 0.4389574759945131
+0.7745966692414834 0.0 +0.7745966692414834 0.2743484224965702
+0.7745966692414834 +0.7745966692414834 -0.7745966692414834 0.1714677640603567
+0.7745966692414834 +0.7745966692414834 0.0 0.2743484224965702
+0.7745966692414834 +0.7745966692414834 +0.7745966692414834 0.1714677640603567

Table A.6: Gauss-Legendre quadrature for hexahedral elements.
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Points ξ η ζ weight

1 0.25 0.25 0.25 0.166666666666667

4

0.138196601125011 0.138196601125011 0.138196601125011 0.041666666666667
0.138196601125011 0.138196601125011 0.585410196624969 0.041666666666667
0.138196601125011 0.585410196624969 0.138196601125011 0.041666666666667
0.585410196624969 0.138196601125011 0.138196601125011 0.041666666666667

5

0.250000000000000 0.250000000000000 0.250000000000000 -0.133333333333333
0.166666666666667 0.166666666666667 0.166666666666667 0.075000000000000
0.166666666666667 0.166666666666667 0.500000000000000 0.075000000000000
0.166666666666667 0.500000000000000 0.166666666666667 0.075000000000000
0.500000000000000 0.166666666666667 0.166666666666667 0.075000000000000

15

0.250000000000000 0.250000000000000 0.250000000000000 0.019753086419753
0.319793627829630 0.319793627829630 0.319793627829630 0.011511367871045
0.319793627829630 0.319793627829630 0.040619116511110 0.011511367871045
0.319793627829630 0.040619116511110 0.319793627829630 0.011511367871045
0.040619116511110 0.319793627829630 0.319793627829630 0.011511367871045
0.091971078052723 0.091971078052723 0.091971078052723 0.011989513963170
0.091971078052723 0.091971078052723 0.724086765841831 0.011989513963170
0.091971078052723 0.724086765841831 0.091971078052723 0.011989513963170
0.724086765841831 0.091971078052723 0.091971078052723 0.011989513963170
0.056350832689629 0.056350832689629 0.443649167310371 0.008818342151675
0.056350832689629 0.443649167310371 0.056350832689629 0.008818342151675
0.443649167310371 0.056350832689629 0.056350832689629 0.008818342151675
0.056350832689629 0.443649167310371 0.443649167310371 0.008818342151675
0.443649167310371 0.056350832689629 0.443649167310371 0.008818342151675
0.443649167310371 0.443649167310371 0.056350832689629 0.008818342151675

Table A.7: Gauss-Legendre quadrature for tetrahedral elements.
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