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[MepAnn

Ou Oepomeieq T-AEPPOKUTTAPWY HE XWAPIKO AVTyoVIKO YTIOSOXEQ Elval KUTTOPIKEG
OVOO0BEPOTIELEC TIOU EPPAVIOON EVOAPPUVTIKA OMOTEAETUOTO TN BEPOTTEin TUTIWV KOPKIVOU
TOV QUPOTOC OTIWG N O&Ela AEUPOBAQTTIKI) ASUX OO KO TO ETIOETIKO Aéppwpa B-kuttdipwv. Ot
outoloysg  Oepomeieq  T-AepPOKUTTAPWY e Xipawpkd  Avtlyovikd — Yrodoxea  gival
EEQTOKEVPEVEG YL TOV O0OEVN] KOL ETIOUEVWG OKOAOUBOUV TO ETIXELPNMOTIKO HOVTEAO 1:1,
oTouv KOs Beporeiar TTOPAYETOL KL SIOVEETOL EEXWPLOTA. [TPOKEWEVOU VO EXOVHE ML KOV
oAuoidal EPOSIOCUOY TIOV PTIOPEL VAL IKAVOTIOWOEL TN {ITNON KAl VO OVTOTTOKPIVETOL OTOUG
OLPOPOVG TIEPIOPIOUOVE TIOU CULVETIAYOVTOL HE TIG Oepameieq ouTEG OTWG XPOVIKOUG
TIEPLOPLOPOVG, XPNOLUOTIOOVVTAL T HOONUOTIKA HOVTEAD Tl OTtolat RSN OTOTEAOUV eyAdAO
MEPOG WG epyoieia uTtooTtrpEng amo@aoswv. QaTO00, AOyw TNG PUONG CLTWV TWV Beparteiwy,
n owénon otnv mopaywyn Snuouvpyel evar ducemiduto TPOPANUa BeATioTomoinong g
oAoidag €POSOLOOUOV OTOV HOVTEAOTIOLEITOL PE TO HOVTEAO MIKTOU AkEpaiou MpogLuKov
MpoypappaTiopov. Mo var KATomoAeUnOel auTO, ELOAYETAL L0l ATTOOVVOEDN TOU TIPOPANOTOG
0€ MOKPOTIPOOETO OXESIOOHO KA BPouTIPOBETIO TIPOYPAUUOTIOUO. ETOL, XpnoiylomolouvTal
TEXVIKEG Mnxovikng MdaBnong yx tnv emiiuon Tou POKPOTIPOBECUOU OXESIOOUOU TNG
OUYKEKPLIEVNG OAUCISOG EQPOSIACOU KOl OTN CUVEXELX OL AVCELG TOUG TPOPOSOTOUVTAL OTO
OPXIKO HOVTEAO MiKToU Aképaiov Tpoppkol MPOoYypaUUOTIONoY Yl TNV €mAuon TOU
TIPOPAAUOTOG TIPOYPAUUATIONOV. XpNOWOTIoWBNKaY TPELG SLopopeTikol cyoplOpol Multi-
Layer Perceptron, Random Forest kot Support Vector Machines, Ttou kator)youv va Sivouv TioAU
Tiapopola amoteAéapata. Ot chyoplOpol Mnxavikng MaBnong pEWwVOoLY TNV TTIOAUTIAOKO TN TA
TOU OPXIKOU HOVTEAOU MILP yior KOOs OOKIUOOUEVO OEVAPLO, HELWVOVTOG TIG OLOKPLTEG
METOPANTEG KAl TOUG TIEPLOPIOPOVG KOTA PECO Opo 63%. AUTO PE TN OEPA TOU Onaivel
TIOPOUOLX PEIWON TN XPNON TOU KEVTPLKOU EMEEEPYATTH) KATA TNV ETAVCN TOL TIPORANOTOG

BeAtiotomoinong



Abstract

Chimeric Antigen Receptor (CAR) T-cell therapies are cellular immunotherapies that displayed
encouraging results in the treatment of blood cancer types like acute lymphoblastic leukemia and
aggressive B-cell lymphoma. Autologous CAR T-cell therapies are patient-specific and therefore
follow a 1:1 business model, where every single therapy is produced and distributed uniquely. In
order to have a responsive supply chain that can satisfy the demand under the tight time
constraints of the supply chain, decision support tools such as mathematical models are already
utilized. However, due to the nature of the autologous CAR T-cell therapies, volumetric scale-up is
not possible and a scale-out creates an intractable problem to solve. To combat this drawback, a
decomposition solution strategy is introduced, where the model is split into long-term planning
and short-term scheduling. To this extent, Machine Learning (ML) techniques are used to solve the
long-term planning of the supply chain, and then the results are fed to the original Mixed Integer
Linear Programming (MILP) model to solve the scheduling problem. Three different ML algorithms
were used, namely Multi-Layer Perceptron, Random Forest, and Support Vector Machines, that
ended up yielding very similar results. The ML algorithms reduce the complexity of the original
MILP model for every scenario tested, by reducing on average the binary variables and constraints

by 63%. This in turn means the same reduction in CPU time usage.



Extetapévn Nepinlin

H Bepomeiot T-AEUPOKVTTAPWY HE XUAUPIKO UTIOSOXEQ QVTLyOVOL sival o Beparmeio Ttou
oVaKOTEVBUVEL TO T-AEUPOKUTTAPA EVOG 0GDEVOUG YL VOL TTOXEVOOLV KOL VO KXTOOTPEWYOLV
KOPKIVIKA KUTTOpa. H VPnAr TiBovOTnTar UTTOTPOTIAG TIOU LTIAPXEL OTIG Oepomeieq kapkivou,
OTWG N XnMewBepomeior kow N aktvoPoAio, wlnoe Toug avBpwroug otnv oavaditnon
KOWOTOMWVY Bepamelwv. Tol YEVETIKA TPOTIOTIOINEVA T-AEUPOKITTOPO GNUXTOSOTOVV L VEX
EMOXN 0€ AUTOV Tov TopEa. OL Beparmeieg T-AEUPOKVTTAPWV HE XLXPIKO UTIOSOXENX OVTLYOVOL
€XOUV OmOSELXOel OTTOTEAEOUOTIKEG OE QUUATOAOYIKEG KOKONBELEG TWV B-KUTTAPWV. X& KAWIKEC
SokpEg 1M daang yla veoug aoBeveiq pe ofgia AeppofAaaTikr Asuxoupio B-kuttdpwv (ALL), Ta
TIOCOOTA QVTOTIOKPLONG Kupaivovtow omo 69% cwg 90%. ErumAéov, oL autoloyeg Bepormeieqg
(XPNOWOTIOINGN TWV KUTTAPWV TOU agBevr) ya Tnv avamtuén Bepareiog ya Tov idlo aobevn)
T-AEPOKUTTAPWV PE XILALPKO LTIOSOXED OVTLYOVOU £XOUV AXBEL yKPIoELG oo Tov Opyoviopo
Tpopipwv kot Pappdkwyv (FDA) twv HIMA to 2017 kat Tov Eupwtaikd Opyoviopo Ooppakwy
(EMA) to 2018. At T0 2017 KUKAOPOPOVV OTNV ayopd £€L eyKeKPLUEVEG amd Tov FDA Bepomeie,
AKOpa KL av oUTEG oL Beparteieg Sivouv TIOA) KOAX OMOTEAECUOTA, £XOVV VLPNAO KOOTOG, TO
omoio pmopsl va &emepdoel o 450.000%, omou mepimou o 30% eivar kOOTN OAVGISOG
€podloopov. Eivar ipopaveg Aomov OTL n BeATIoTOTIoINoN TNG EPOSITTIKNG CAVGIOOG TWV

Bepamewwv givat {WTIKAG ONUAGCIOG TNV PLICUOTNTA TWV BepaTtelwv.

Mepkol Teploplopol Twv Bepomelwy ouTwy TIoV SUOKOAEUOUV TNV HOVTEAOTIOINGN TNG
€POJIOOTIKNG oAvoidag elvon ol €&ng. O xpovog gival evag KpIoWog TIEPLOPIOPOG OTNV
€POSLOTTIKI) cAuaida Twv Bepomewwv. Autég oL Bepareieg £xouv ikpn Stapketo (wng. Mo pio pn
KoTeYuypevn Bepameia, 0 xpOVOG UETOPOPAG Oev TIPETEL va umepPaivel To eva 24wpo.
Erunpoobeto, n koraypogn Kot VUAATNoN Twv Setyatwy kaB' 0An v oAuoida eodSlaopon
glvat avaykaio a@ov TipeTeL N owaoTr Bepareia va TtapadoBel oTov owoTo aabevi 0To TEAOG
TOL KUKAOL {wNG TG Bepameiag. Emopevwg n Taoutomoinon Tou Selypatog 0AAG Kot Tou aaBevn
elval (wtikng onpooiag Tédog yio var pnv Ttebel o kivbuvo n ToldtnTa Twv Bepameiwy, givat

ovayKaio vor SLaoPOALTTOVV 0L CUVONKEG KOTA TN HETAPOPA KO ATTOBNKELOT) TOUG,

‘Otav n €podlooTiky cAuoida Twv Bepameiwv T-AEUPOKUTTAPWY HE XIUAPIKO UTTOSOXEX

OVTLYOVOU TIEPLYPAPETAL WG Eval TIPORANHA Miktow Aképatou Mpoppuikol MpoypoppaTioptou
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Snuoupysitat Eva PoORANpa BeATioToToNoNG TO OTIoIO YiveTan SUCETIAUTO YLa peydAn {rtnon
Twv Bepamewwy. Autd ocupfaivel ool oL Bepareieq oUTEG AOYyw TOU OUTOAOYOU TOUG
XOPOKTAPQ, AKOAOUOOUV ETIXELPNIOTIKO HOVTEAO 1:1, e ATIOTEAECHO OL TLEPLOPLOMOL KAt Ol
METABANTEG OTO MOVTEAO va oauvgavovTtal PE €KOETIKO Kol TILO YPOUUIKO TPOTIO
avTiotola. Emiong n TOAUTIAOKOTNTO €vOG HoVTEAOL MIKTOU Aképatov pappikoy
MPOYPOUUATIONOU UTIOPEL VO KOBOPLOTEL TIEPITIOV PE TOV OPOUO TWV HETARANTWV.
AoV og k&Be KOPPO uTIAPXOLVV SVO SLAPOPETIKOL KAGSOL TIOU PTTOPOVV akoAouBnBouy,
TOTE N TIOAUTIAOKOTNTA KAl GUVARA N SuokoAia emtiAuong yivetal tng Tagng O(2"), éTov
n elvat ot peTafAnTEG TOu TPOPANUaTOC. ETOL Yyl TEPIMTWOELG OTov N {NTNoNn Twv
Bepameiwv Eemepvael Tig 1700 Bepameieg 10 xpovo, o emAutng CPLEX, o omolog
Xpnowotmoteitat  yio va Avoel To  TPOPANH  Miktou  Aképatov  [pappikov
[POYPOAUUATIONOV, OEV KATAPEPVEL va Bpel AVon AOyw QVETIOPKNG MVARNG TOU

NAEKTPOVIKOU UTIOAOYLOTH).

Me OKOTIO va EETTEPACOVPE TO EUTIOBIO OUTO KOL VO IUKPUVOUUE TNV TIOAUTIAOKOTNTO TOU
TIPOPANHOTOG, YiveTal atocuvBOean TOL TIPOPRANATOG G€ LOKPOTIPOBECUO OXESIOATHO KOl
BpaxumpdBeopo TPOYPAUUATIONO. AkoAoVBwg Ta Svo TPOoPAApAT  AvvovTal
EEXWPLOTA, TIPWTA O HOKPOTIPOOETUOG OXESLATUOG KOL apyOTEPA O BPaxuTtpOBeauOg
TIPOYPOPUOTIONOG. 2T TAAQLOWl QUTAG TNG OUTAWMOTIKAG TO TPOLANUO TOu
MOKPOTIPOOECHOU OXESLAOUOU AUVETOL PE TEXVIKEG UNXOVIKNG MAONONG e OTIOTEAECUO TN
Melwon Twv PETOBANTWY KAl TIEPLOPIOUWY TOL TIPOPARpaTog MikToU Akeépatov Mpapptkoy
[MPOYPOUUATIONOV. Xe QUTH TNV  €QOSLAOTIKA  oAuvcida  To TPORANpa  TOL
MOKPOTIPOBETHOU OXESLOTUOU Eival N EVPEDN TWV KATOAMNAWY EYKOTOOTACEWNY TIOPOYWYNG

TWwV BepaTtelv TIoL XPEAOVTAL VLo VO IKOVOTIOGOLV TNV {rTtnon.

Yndpxouv €&l Pookd otadla 0TV QVATITUEN TWV TIPOTEWOUEVWY OAYyopIOpwVY
MNXOQVIKNG HABNnong: 1) Zuykevtpwon Twv amapaitntwy dedopevwy amod tnv emiAuon
Tou TpoPANpaTog Miktou Aképatov Mpappkou lMpoypappatiopov 2) Emdoyr twv
OAYOPIOUWY pNxavikng padnong mov Ba xpnotpomoinBouv 3) MNpo emegepyaoia Twv
Sedopevwy yla kKABe oAyoplOpo 4) 'Koupdlopa' Twv TOPAPETPWY TWV HOVTEAWV
MNXQVIKNG paBnong 5) Ekmaideuon twv oAyopiBpwv pnxavikng pabnong 6) Xprion tTwv

MOVTEAWV HNXOVIKAG MAONONG ywx AVON TOU MOKPOTIPOOECHOU OXESLOOUOU TNG



oAvoidog e@odSlaopoy Kal €10l TN MeElwon TOu XwWPOouL €miAuong Tou TPOPRARUATOG

Miktou Akepatov papptkov MNpoypopUaTIoHOoU.

Mpwta o’ OAg, yla va ekTauSeVTel €vag OAYOpLOUOG HNXOVIKAG HaBnong eival
amOPAITNTO VO LUTIAPXOLV Ta amapaitnTa dedopeva. XTO TPEXOV TPORANUY, T
Sedopéval OTOKTWVTOL XPNOLOTIOIWVTAG TO HOVTEAO MikToU Aképatou poppikoy
MpoypoUUATIONOV. Me 0TOX0 Vo An@BoUV apKeTA SedopEva ylax TNV ekTaidevon Twv
OAYOPIBUWY ETPETIE VO KATAOKEVAOTOUV SLPOPETIKA oevapla {ATnong, va AVBeL To
TPOPANUa MikToU Akepaitov pappkoV [pOoypPOoUUATIONOU KOL 0T CUVEXELX VO
mopBovv Ta amopaitnTa dedopEva IOV XpPNnOoLloTo|Bnkav otnv ekmaidevon Twv

OAYOPIBUWY pPnxavIKAG padnong.

AkoAoVBWG, eTIAEXONKOV TPELG SLAPOPETIKOL OAYOPLOUOL HNXAVIKAG HABnaong yux tnv
emiAuon Tou oXeSLAOUOU pe OKOTIO Vo OUYKPLOBOUV Kot va BpeBei tolog Sivel Ta KOAUTEP
amnoteAéopata. Ot TPELG SLaPOPETIKOL dAyOpLBuOoL TToV XpnaotpoToOnkav givat ot Multi-
Layer Perceptron (MLP), Random Forest kot Support Vector Machines (SVM). Autol
ETAEXONKOV  ETIELON XPNOLUOTIOLOVVTAL €UPEWG Yl TIPOPANpaTa Taglvopunong Kot
SloeEpouv atov TPoTo ekmaidevong toug. O MLP eivat eva texvnto veEupwviKO SikTuO
IOV TIAPAYEL VA OUVOAO €§00WV amod €va GUVOAO €l00SWV aAPOTOU T OESOMEVA
TEPACOUV ATO Wi OUVAPTNON €VEPYOTIOINONG OTOUG UTIOAOYLOTIKOUG 1 KPUPOUG
veupwvee. Na tnv ekmaidsuon tov, o MLP xpnowotmoiwd backpropagation, omou pia
ouVAPTNON OPAAPOTOC VTIoAOYIlEL TN StaPopd PeTagy TNG TIPORAEYNE TOU VEUPWVLIKOU
OLKTUOU KAl TNG AVOUEVOUEVNG €E0O0V TOU, APOTOU VA TIAPASELYHO EKTIAIOEVONG EXEL
O10d00¢l peow tov Siktvou. O Random Forest amoteAsital amd Evav peyodAo aplOpo
HeEpoVwEVWY  Decision Trees TOU TEAKA AEITOUPYOUV WG Eva oUVOAo. KdaBe
MEHOVWHEVO SeVTPO Pyadel pia TtPpOPAEYN Kot N TIPOPAEYN He TIG TIEPLOCOTEPEG WNPOUG
yivetat n poBAeyn tou povteédov. O SVM eival Evag oAyoplOpog pnxavikng padnong
Tov PaocileTal oTnNV WEQX TNG €VPECNG UTIEPETITIEOWVY TIOU XWPI(OUV KOAUTEPA EVal

oVVOAO SeSopEVWY OTIG SLAPOPEG KAATELG TToU TO amapTi{ouv.

Mo TNV ekmaidsvon Twv oAYopiOpwWY PNXaVIKAG HABNnong xpelaleTal va oploTouV
TIPOPAVWG KOL OL EEXPTNUEVEG LETABANTEC OTLIG OTtoleg Bat eKTIALSEVTOVV TA HOVTEAQ. Tl

va €TIIAEXOOUV OL PETOPANTEG QUTEG TIPWTA MEAETAONKE TO MPOPANUA TNG CAVCISOG

7



£QOSLOOUOV Kol Ol PeTABANTEG £10060V 0TO TPOPANUa MikToU Aképatou pappikoy
MpOoyPOUUATIONOV. ETOL apx KA eTIIAEXONKAV OL AKOAOLOEC €aPTNUEVEG HETAPANTEG: N
oLVOALKA {ATNON BEPATIELWV YL €V £TOC, TO ONUELO OTIOV yiveTal N apaipeon Twv T-
AEUPOKUTTAPWY KOl TEAOG N OUVOALKN XWPNTIKOTNTA OAWV TWV EYKATAOTAOEWV
Topaywyng Twv Bepamelwy. ApyoTtepa, HE OKOTIO TNV PeATiwon Twv HOVTEAWV
MNXOWVLIKNAG LABNoNG, TPOOTEONKE OKOUA Uict LETABANTA, N HEYOAUTEPN OTLyULaia {ATNOoN

TOU K&Be oevapiov.

Mpwv tnv Tpo emegepyacio Twy SeSOUEVWV Eyve Tapoucioon Twy SeSOUEVWV O€
olapopeg popPes. H mapouciaon twv dedopevwy €lval ONUAVTIKA OTN UNXOQVLKA
MAONoN, emeldr) Sivel aTOV XPrOTN KL KOAN LOEA YL TO TIWG KATAVEUOVTOL TO SESOEVD
KOl UTTOPOUV VO EVTOTILOTOUV TUXOV OVWHOALEG. AUTO UE TN OELPA TOU ETILTPETIEL TNV
KOAUTEPN TIpo eme€epyaoia Twy SeSOUEVWV KOl OUVETIWG KOAUTEPN amodoon Twv
MOVTEAWV. XTNV OUYKEKPLUEVN TIEPITITWON (PAVNKE VA UTIAPXEL KOKI KOXTOVOMN TWV
SESOUEVWV POV OL TIPWTEG TPELG EYKATATTATELG TIOPOYWYNG BEPOTTELLV ETIAEYOVTOL TIOAVY
TIEPLOCOTEPEG (POPEG OTTO TLG UTIOAOUTTEG TPELG, PE OMOTEAECUA VO PNV AELTOUPYOUV OWOTA. MNava
KoramoAepunOel To apamavw TiPORANpa XpNowoTowBnkov SU0 TEXVIKEG YL 6l00pPOTINCN
Twv Sedopevwy, SMOTE (Synthetic Minority Over-sampling Technique) yla topaywyr) erumiéov
oedopevwy kot Tomek Links yla Starypapry Sedopevwv ota omoia emAexOnke n 2" eykataatoon.
Emtiong, kot tnv Tipo enegepyooion Twv SeSopEVWV EYvVE Kal KAUAKWOT) Toug HeTa€w O kau 1
MOVO Yo Ta povtedar MLP ko SVM, oo yia To povtedo Random Forest n kAyudkwaon Sev givat

oVOYKOOL Lo TN OWOTr) TOU Asttoupyio.

AkoAOVBWG €ywve 'KOUPSIOUA TWV TIOPOUETPWY TWV HOVTEAWV. Na var Yivel ouTo, TIPWTA
SNOUPYNBNKE Vol TIASYHOL e SIAPOPEG TIEG TWV TIOPOMETPWY Yl kKaBs oAyoplBpo. O
OUVOUOIOPOG TWV TWHWV TWV TINPOWETPWY TIOU OlVEL TA KOAUTEPA OTTOTEAEOUOTA YO T
Sedopeva ov Tou TtapeXovTaL, SnNAdH Ttov Sivel TNV KoAuTepn PoBporoyia F1, petd omd 5-fold

Cross-Validation, xpnoyomorOnkKe ylo TNV EKTIUOEVON TWV HOVTEAWV.

TEAOG KO TO TPIXt HOVTEAD EKTIAUOEUTNKOV Yl SUO SIOPOPETIKEG TIEPUTTWOELG. H Tipwn
TEPIMTWON ATAV XWPIG TIEEPLOPIOPO OTIG EYKATAOTACELS TIOL gival Suvato va emhexBouy,
SnAadn umopel va erAexBovv OAEG OL €L EYKOTAOTATELG. AUTO SIVEL O TILO OTTOKEVTPWHEVN

TIPOCEYYLON TNG EPOSLOOTIKAG OAVCIOOG OTIOL TIOAEG EYKATOOTACTELG TIOPaywYyNnS Pplokovtat
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IO KOVTA OTOUG ooBsveic.
H Seltepn mepimTwon lvat i TIO KEVTPWHEVN TIPOCEYYLON, OTIOU [ia 1) SUO EYKATAOTACELG
xelpidovtat TNV Topaywyr OAwWv Twv Bepamelwv. Apa G aUTA TN TIEEPITTTWON TO HOVTEAO gival

TIEPLOPLOUEVO VO ETIAEYEL TO PEYLOTO SVO OO TIG £EL EYKATAOTATELG TIOPOYWYNG TWV Beparteiwv.

A@OU T HOVTEAQ UNXOVIKAG AONONG EKTIAUSEUTOVY, XPNOYOTIOLOUVTOL VIO TNV EVPETN TWV
TWV KATOMNAWV EYKATOOTATEWVY TIOPOYWYNG Twv Bepomelwv. MeTd, Ta dedopeva .60S0L Tou
TpoPAuoTog MikTtoU Aképatov MPapUkoU MPoypOoUUATIOHOU, TIOU €X0UV OXEON ME TIG
EYKOTOOTATELG TIOU SV ETTAEXONKOV, SLOyPAPOVTOL KO £TOL EVNIEPWVETAL TO HOVTEAO. KaBwg
TWPa Ba UTIAPXOLVV ALYOTEPEG ETIAOYEG YL TIG EYKATOOTATELG TO HOVTEAO MIKTOU AKEPOLOU
MpapptkoV MNPoypapUATIONOU £XEL CUVOALKA AlyOTEPEG PETAPANTEG KL TIEPLOPLOUOVG OE

OXEON UE TIPONYOUUEVWG KOl £TOL UTTOPEL va AuBel og AlyoTepO XpOvo.

ZTnv TiEPITTWon OTov SV UTIAPXEL TIEPLOPLOUOG OTIG EYKATOOTATELG TIOPOATNPETAL YLt OAX T
osvopla (NTNoNG pelwon oTig METOPANTEG KOl OTOUG TIEPLOPIOROVUE ZUYKEKPIUEVO YLt T
TIEPLOCOTEPO TEVAPLA TIOU SOKIUAOTNKAV UTIOPXEL pelwan 50-65% aToug TepLopLopoUg Kat TG
OLOKPLTEG PETOPANTEG TIOU UTTOPEL VO (PTATEL EWG KA TO 83% OE KATTOLOL GEVAPLO OAAGL KOl OTO
XOUNAG 000 16% yla va aevaplo. Ooov a@opd TG AVCELG ToL TIPOPARUOTOg MIKTOU AKEPALOU
FpapuLkoy [pOYyPOUUATIONOU, N MOV Sla@Oopd, TPV KOl UETA TNV HElWON Twv
petafAnTwy, Bpioketal povo ota oevapla pe ¢Atnon 1000 Bepamelwv TO £€T0G OTIOV

UTTAPXEL pia pikpr) ovénon 5% oto kOoTog Twv Bepamelwv.

TNV ePIMTWOon OTIOV TA HOVTEAQ UTTOPOUVV VA ETHAEEOLVV WG SVO EYKATAOTATELG OTIO
TIG €€l TO ATOTEAEOPATA Elval OKOUO KOAUTEPA. ‘OTIWG KL TIPLY, 0 OAX TQX OEVAPLA TO
MOVTEAO MikTOU Aképailov Mpappikol MPOoypopUaTIOHOU KATOANYEL O EQLKTH Avon
META amod TNV pelwon Touv Xwpeou pe tn Bondeia pnxavikng pabnong. Akopa ot AVCELG
QUTEG elval oL Sleg og OAa Ta TEVAPLA TTIOL SOKLPUATTNKAV HE TIG AVOELG TTov Pplokel TO
HOVTEAO MiktoU Akepatov Tpopptkol  POYypoUUaTIOHOV  Otav  Pplokel  TIG
EYKATOOTACELG TO (510. OTOTE 08 QUTA TN TEPITTTWON OL AAYOPLOUOL UNXOAVIKAG HABnong
TIPOPAETIOUV TIAVTA TIG CWOTEG EYKATAOTATELG TIOU XPELA(OVTOL YIX VOl LKAVOTIOL) GOV
tnv {Atnon o k&Be oevaplo. EmmpooBeTa, n peElwon OTOUG TEPLOPLOPOVG KL OTLG
METOPANTEG O0TO pOVIEAO MikToU Aképatov [pappikol TMpoypoppaTiopnoy otav

APALPOVVTOL Ol EYKATAOTACELS TIou Sev xpetddovtal @TAavel ota 83% yla PEPIKA
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OEVAPLY, EVW OTA UTIOAOLTIA Ol TIAPAPETPOL PELWVOVTAL KATA 65%. AOyw TG peiwong
QUTAG, CUVETIAYETAL KOL TIXPOMOLA PELWON 0TO XPOVO TIoU X PELXCETAL YIX VA eTIAVOEL TO
TPOPANpa BeATiotomoinong tNg cAvoidog £Podolaopol, ooy OTAV T HOVTEAO
MNXOVLIKNG HABNoNG ekmatdeutouy, dev XPEeLAlovTal TIOAU [IKPO XPOVO YL VO KAVOUV

HLo TTPOBAEYN.

AKOUN, KOl OTLG VO TIEPITITWOELG N KNXAVIKN HaBnon, Adyw peiwong Twv PeTaBAnTWY,
BonBdel otn €Vpson Avong Tou TpPOoPARpaTog MikTov Aképalov  pappLkoy
MPOYPOAUUATIONOU O€ GEVAPLO OTIOV N {ATNON €lval TOOO PEYAAN KOl AOYW OVETIOPKNG

MVAUNG, O €TUAUTAG SV £@TavVE 0 AVON.

Ta Tplot HOVTEAX HNXOVIKAG MAONONG TEAKKA KATOANyouv va Slvouv TapOpOLX
QTIOTEAEOPATA PETAED TOUG OTIOTE CUMTIEPAIVETAL TIWG O TPOTIOG TIOU EKTIALOEVOUE
MNXQVIKNA paBnon dev mailel Wblaitepo poAo ota amoteAéopata. Qotoco, o Random
Forest pmopel va ekmadeutel TTOAU ypnyopoTeEPO o TOuG GAAOUG SUO OAYOPLOpOUG,
EVW OO TNV GAAN TO VEUPWVIKO SIKTUO, AOyw TOU HEYGAOU OPLOUOV VELPWVWY,

XPELALETAL TIOAY TIEPLOCOTEPO XPOVO.
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1. Introduction

1.1. CART-Cell Therapies

Chimeric antigen receptor (CAR) T cell therapy is a cellular therapy that redirects a

patient’s T cells to specifically target and destroy tumor cells.

The high probability of relapse or even resistance to non-surgical cancer treatments like
chemotherapy and radiation drove people in the search of innovative treatments.
Genetically engineered T cells marked a new era in that area [1]. CAR T cell therapies have
shown to be efficient in hematological B-cell malignancies. In Phase 1 clinical trials for
young patients with B-cell acute lymphoblastic leukemia (ALL), response rates ranged
from 69% to 90% after T-cells were engineered to express the CAR specific to the B-
lymphocyte antigen CD19. [2] [3]. Furthermore, autologous CAR T-cell therapies have
received approvals from the U.S. Food and Drug Administration (FDA) (2017) and the
European Medicines Agency (EMA) (2018). Since 2017, six FDA approved therapies are in
the market, Kymriah, Yescarta, Tecartus, Breyanzi, Abecma and Carvykti, where in the first
4 the target antigen is CD19 and for the other 2 the target antigen is BCMA [4].

Even if these therapies show great potential, they come with a high cost, which can be
more than $450,000 in some cases [5], with approximately 30% of them being supply
chain costs [6]. It is evident then, that the optimization of the therapies’ supply chain is

crucial for them to be financially sustainable and competitive [4].

1.1.1. Lifecycle of CAR T-Cell Therapies

The production of CAR T-cells requires several carefully performed steps, and quality
control testing is performed throughout the entire protocol. The main steps of a typical
CAR T cell therapy lifecycle are: (a) leukapheresis, (b) manufacturing, (c) Quality Control,
(d) therapy administration [5]. Leukapheresis in autologous cell therapies (use of a

patient’s own cellular material to treat disease [7]), takes place in specialized clinical
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centers and involves removing the blood from the patient's body, separating the

leukocytes, and then returning the blood to the circulation [8], [9].

After a sufficient number of leukocytes have been harvested, the leukapheresis product is
transferred to the manufacturing site, where it undergoes a series of processing steps
(enrichment, activation, genetic modification, expansion, formulation, and
cryopreservation) until the final product is ready to be shipped to the hospital for
administration. CAR T cell therapy manufacturing is the lengthiest and most important
step of the lifecycle. Enrichment is where the T cells are washed and concentrated via
counterflow centrifugal elutriation, a procedure that separates cells by size and density.
T-Cell activation is achieved with stimulation of the T cells with anti-CD3 and anti-CD28

monoclonal antibodies coated paramagnetic beads [2], [10] or plate-bound antibodies.

Next, T-lymphocytes are genetically modified with viral transduction using lentiviral
vectors, gammaretroviral vectors or other delivery methods [9], [11] to express the cell
surface CAR molecule [12]. Then, in order to grow a large number of cells for clinical use,
cell expansion happens, where the cell culture can reach a volume of 5L before it is washed

and concentrated for blood infusion in the patient [9].

Before the therapy is taken to the clinical site to be administrated to the patient, Quality
Control (QC) takes place. This process ensures that the final product has the critical quality
attributes and can either happen in the manufacturing site or a different facility. Lastly,
after the patient undergoes a treatment of lymphodepleting chemotherapy, the

cryopreserved CAR T-cell therapy is thawed and administrated to the patient [5], [13].

As was mentioned these therapies use the patient's own cellular material. To guarantee
that the right therapy is manufactured and delivered to the right patient, the sample and
the patient have to be identified and linked and then each product is tracked efficiently
at every stage of the process through a chain-of-custody system [5]. The autologous
nature of the therapies also renders volumetric scale-up impossible since every therapy is
essentially a different batch process. Scale-out solutions then, can be used as an
alternative [5], [14].
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1.2.  Optimization
1.2.1. Basic Concepts

Optimization is used daily in many areas of our lives. Optimization can be found a lot in
the industry, when manufacturing a product, process and service design, programming,
and resource allocation, either in the manufacturing process or transport. Generally, where
there are resources that can be distributed in a variety of ways, optimization is used to
find the best way to allocate those resources. That is, the goal of optimization is to provide
the user who uses it with the necessary information, which he or she may not otherwise
have, to make the best possible decision. In other words, optimization is used to find the
most correct and best solution to a problem through a set of possible solutions without,
of course, violating the constraints that the problem may have [15]. The vector of the
decision variables of the problem which does not violate the constraints of the problem
and minimizes a cost function or maximizes a fitness function is the optimal solution to
the problem. These two aforementioned functions are called objective functions. An
optimization problem can be either multi-criteria i.e., it consists of many objective
functions (Multi-Objective Optimization Problem), or single-criteria i.e., only one (Single
Objective Optimization Problem) [16]. In case a problem is multi-criteria, sometimes the
objective functions that make it up are competitive, that is, the improvement of one makes
the others worse. In this case, a set of equally good solutions is calculated which dominate
the other solutions to the problem, that is, they have a better result than the others in
terms of each function. All of these solutions are called the Pareto Front [17]. First, it is

useful to express the function of an optimization-minimization problem.

min £ (%) = min [f;(®), f,Z), ., fy (@] (1-1)

In equation 1.1, f symbolizes the vector of objective functions, & is denotes the vector of
the decision variables of the set problem n and f, (%), f2(X), ..., fy(X) are the individual
objective functions. In case the problem is subject to restrictions they are presented in

equations 1-2.
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BE =0  j=1,.k EQ. 1-2

giX) <0 i=1,...m

With g;(x) are the m functions of inequality constraints and h;(x) are the k functions of
equality constraints. As mentioned above the vector ¥ = [x,x;,...,x,], contains the
decision variables of the problem. The vector whose combination of decision variables
gives the best value to the respective objective function is considered the solution to the
problem. These variables can be either discrete or continuous and each of them is
characterized by a threshold and a ceiling xp1 and xpu respectively. These limits then, define
the search space for the solution to the problem. Such constraints, like the limits of
decision variables, are called side constraints and do not fall into the same category as
the main constraints of the problem mentioned above. In the general case, the constraint

functions and the objective functions can be either linear or non-linear [16], [18].

1.2.2. Optimization methods

Initially, optimization methods can be classified into three main categories. Deterministic
methods are based on mathematical programming, stochastic methods which are based
on artificial intelligence and machine learning algorithms, and lastly hybrid methods that
combine two or more different optimization algorithms. Deterministic methods utilize the
analytical properties of a problem to arrive at a global solution [19]. Some classes of
problems that can be solved with deterministic approaches are linear programming (LP)
where convex linear problems are solved, non-linear programming (NLP) where convex
nonlinear and non-convex continuous problems are solved, Mixed Integer Linear
Programming (MILP) where non-convex discrete linear problems are solved, as well as
Nonlinear Mixed Integer Programming (MINLP) where non-convex discrete nonlinear
problems are solved [19], [20], [18]. Some deterministic solvers that can solve the
problems mentioned above are CPLEX where a branch and cut and a dynamic search

algorithm are used [21], GUROBI where cutting planes algorithm and heuristics and search
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techniques are used [22], XPRESS that uses Branch and Bound framework [23]. The

allocation of the different problems with the solution methods can be seen in figure 2.

Stochastic methods are often using principles of natural selection and are suitable for the
search of nonlinear, large spaces [24]. Additionally, they are general-purpose algorithms
and they treat the problems as a "black box". Although stochastic methods seem to be

effective in solving specific problems, the solutions are not always optimal [25], [26].

In hybrid methods a stochastic method is usually used first, to explore the space and find
the optimal area and then using a mathematical/deterministic method as a local optimizer

for better use of the area and therefore improving the results of the stochastic method.

Optimization

problems
|
| T
Convex Nonconvex
| |
| [ |
Linear Nonlinear Discrete Continuous
: |
| |
LP Convex Linear Nonlinear Nonconvex
NLP ) | ] NLP
P Nonconvex Convex
MILP relaxation relaxation
Nonconvex Convex
MINLP MINLP

Figure 1: Problems that can be solved using Deterministic methods [19]

1.2.3. Size Reduction Techniques

For large-scale optimization problems, deterministic methods, due to the complexity of
the problem, may have a difficult time finding the optimal solution and if they do, they
could take a lot of time to do so [19]. A logical approach then is to try and reduce the size
of the problem. Decomposition techniques allow to break a problem into smaller ones

and then solve them separately, either in parallel or sequentially [27].
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One approach for decomposition is to relax a set of complicating constraints. Some
examples of this approach are Lagrangian relaxation and cutting-plane methods. On the
other hand, Benders' decomposition is a technique that, considering the restrictions of
the problem, keeps the value of a set of variables fixed [28]. These are some traditional

decomposition approaches that are based on improving the bounds of the problem [29].

Alternatively, recently, meta-heuristic algorithms have been gaining a lot of attention [29].
Meta-heuristic techniques are based on powerful heuristic algorithms and can find close
to optimal solutions by guiding heuristic methods over the search space of the problem.
Meta-heuristic algorithms examples are Genetic Algorithm, Particle Swarm Optimization,
and Variable Neighbourhood Search [6] [30].

In this work, the problem is decomposed in two subproblems where the first one is solved

using Machine Learning (ML) techniques and the other using a MILP model.

1.3.  Supply Chain

With the term supply chain, we mean the chain or the alignment of different firms that
are involved in one way or the other (raw materials, transportation, merchants) in
manufacturing a product or providing services for the final consumer. Supply chain was
described by Christopher M. as “a network of organizations that are involved, through
upstream and downstream linkages, in the different processes and activities that produce
value in the form of products and services in the hands of the ultimate consumer” [31].
The supervision and control of the processes in supply chains like planning,

manufacturing, and distribution, is called supply chain management.

1.3.1. Supply Chain Management

Supply chain design and management are crucial, as a good design structure can result
in considerable savings in both the investment costs as well as the operational costs [32].
However, accomplishing this is not straightforward. A lot of operating factors and
constraints like raw materials acquisition, manufacturing and inventory capacities,
transportation modes and times, and even expiring dates for food or pharmaceutical

products, must be considered when managing a supply chain [33]. Adding to these
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factors, changes in demand or adding new products to the market, sum up to an
extremely difficult problem to manage for the lowest costs. Optimizing these processes,

managers have to have some guidance from decision support tools [34].

1.3.2. Supply Chain Optimization

Optimizing supply chains is really challenging as was mentioned before. First of all,
modeling a supply chain is a difficult challenge. One has to develop tractable models that
can be solved in a reasonable time range and can depict all the parts of the supply chain.
Secondly, multiscale optimization that characterizes the supply chain is another issue. The
decision support tool has to be able to make decisions both for long-term, strategic and
tactical decisions, like sourcing and planning respectively, and for short-term like
scheduling. Uncertainties, such as sudden changes in demand or the availability of raw
materials, are again difficult to account for in models [5] [33] [34]. Last but not least is the
algorithmic and computational challenge, which includes the development and solving of

efficient algorithms [34].
1.3.3. Pharmaceutical Supply Chains

Managing the supply chain of pharmaceutical products can be a way more difficult task
than other products and many pharmaceutical companies are still importantly a long way
from effectively satisfying market demands [35]. Certain characteristics distinguish
pharmaceutical products from the rest of the consumer products. Firstly, it takes a lot of
time and money for the completion of the clinical trials that a pharmaceutical product has
to pass. However, even after the approval of a product, there can be a high manufacturing
time compared to consumer products. Moreover, the demands for pharmaceutical
products are often uncertain and can arise problems with capacity, as well as the
pharmaceutical industry is vulnerable to disasters, like technological malfunctions or
strikes, which can lead to unsatisfying the demand [33]. Adding to these, due to their
nature, pharmaceutical products have a limited shelf-life. All of the above contribute to a

challenging, to say the least, supply chain [36].

For personalized medicine supply chains and particularly for CAR T-cell therapies’ supply

chain, the above challenges remain and more are added. One really important aspect of
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the supply chain model is sample tracking. The tracking required here is bi-directional as
it must be ensured that the right therapy will be delivered to the right patient at the end
of the product cycle. Therefore, sample and patient identification are vital and errors in
tracking traceability are not allowed. Time is also a critical factor in CAR T-cell therapies’
supply chain. These therapies have tight shelf-life windows so processing, storage, and
shipping times must be tightly controlled because for a fresh, not frozen, therapy the
laytime for transport should not exceed a 24-hour window. Lastly, in order not to risk the
quality of the therapies, it is imperative to ensure the conditions during transfer and

storage so equipment validation is necessary [5], [2].

Due to the aforementioned reasons, a decentralized manufacturing approach, where
several manufacturing facilities are situated closer to patients, instead of a centralized
approach, where a single facility handles the production, is attractive.
The patient-specific nature of these therapies hinders volumetric scale-up and therefore
parallel manufacturing lines are needed. Moreover, the simpler logistics for a final product
that a decentralized approach is offering, as well as that this supply chain network is more
resilient to unforeseen events, and the fact that fresh products can make it to the patients
faster, makes the decentralized approach a preferred choice for personalized medicine in

general [37].

Models are being developed to optimize these supply chains. A. Bernardi et al. developed
a MILP model to provide candidate solutions concerning the location, number, and
capacity of manufacturing sites, storage duration, and the most suitable mode of
transport for each therapy [14]. Moschou et al. presented a MILP investment planning
model to propose patient-centric, cost-efficient supply chain network structures [38].
Karakostas et al. considered a General Variable Neighbourhood Search algorithm to

identify key elements impacting design and operation in CAR T cell supply chains [6].
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2. Background and State-of-the-Art

The current supply chain model is currently based on the products’ lifecycle that was
described in section 1.1.2 and can be seen in Figure 2. Given its sensitive and autologous
nature, the decision-making process is based on specific handling conditions and patient
schedules, thus making the configuration of the optimal supply chain particularly
complicated [39]. The current state-of-the-art model that is used to solve the optimization
problem of this supply chain is a Mixed Integer Linear Programming (MILP) formulation
that provides candidate solutions with respect to the location, number, and capacity of
manufacturing sites and the most suitable mode of transport. The MILP model is used to
assess the supply chain network performance under different time constraint scenarios
on the total return time of each therapy [14]. In particular, the model gets inputted the
capital and variable costs (capital investment and fixed variable cost for every
manufacturing facility, unit transport costs, quality control costs), the transport time for
the two transport modes (j1, j2) from the leukapheresis sites to manufacturing facilities
and then to the hospital, the manufacturing facilities’ capacities and the demand profile.
Then minimizing the total cost as shown in equation (A-1), while satisfying the constraints
in equations (A-15) to (A-29), (A-33), (A-35), the model outputs the time and transport
mode that a therapy is leaving a leukapheresis site (A-7), then a manufacturing facility (A-
10) and lastly arriving at the hospital (A-12). It also gives the manufacturing (A-2) and

transport costs (A-4) for every therapy, as well as their total return time (A-34).

The supply chain network superstructure that includes 4 nodes leukapheresis site,
manufacturing site, Quality Control, and hospital can be seen in Figure 3. The complexity
of the supply chain network, with the combination of the one-to-one business model that
autologous CAR T-cell therapies follow and the time restrictions that are imposed due to
the sensitivity to temperature and stress, short shelf-life CAR T-cells create a really
complex, computationally expensive optimization problem. Small-scale instances of the
CAR T-cell supply chain model, that is a low annual demand, can be solved with exact
methods using commercial solvers such as CPLEX. However, as the demand increases and
is expected to increase in the following years, it can be easily observed that the MILP

model becomes computationally intractable very quickly.
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Consequently, there is obviously a need to reduce the complexity of the problem in order
to make it feasible for larger instances. Reducing the size of the problem can be done

with various techniques that were mentioned before.

3. Purpose of this work

The purpose of this work is to try and train machine learning algorithms to replace the
planning part of the supply chain model, which is to predict the best manufacturing sites
that need to be established to satisfy the demand, in order to reduce the overall
complexity of the problem and therefore the computational cost. The solution of the data
models is used to remove the manufacturing facilities that are not needed and then the
MILP problem can be solved faster for optimal solutions. Three different ML algorithms
were trained for a decentralized approach where all six manufacturing sites are possible
to get chosen. Next, the same algorithms were trained with a constrain, a limit of a max
of two manufacturing sites that can be established, which suggests a more centralized
approach where one or two facilities handle the production of the therapies. An analysis

of the results and a comparison of the three ML algorithms will follow.
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Figure 2: Schematical supply chain of CAR T-Cell therapies
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Figure 3: CAR T cell supply chain network with 4 nodes: (a) leukapheresis site, (b) manufacturing site, (c) Quality Control, and (d)
hospital
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4. Literature Review

Machine learning techniques are very appealing for numerous applications. Supply chain
optimization is one of those applications. Even though until now, supply chain
optimization is done using mathematical models (MILP, MINLP, etc.) [40], machine
learning is now getting a lot of attention in this field and is on the verge of improving and
revolutionizing the supply chain management [41]. Research for different supply chains
utilizes machine learning for optimizing their processes in different parts of the supply
chain (transportation, manufacturing, etc.) [42]. In [43], D. Goettsch et al. used ML to
reduce the possible storage depot locations in biomass co-firing supply chain, in
coordination with a stochastic MILP model. D. N. Duc and N. Nananukul in [44] trained an
artificial neural network in a real case study from Central Vietnam for a biomass supply
chain problem to determine the optimal facility locations. Demand forecasting is another
application of ML in supply chains. In [45] and [46] ML algorithms were used to predict
the demand and thus improve the efficiency of the supply chain in a steel manufacturer
and the leading household and personal care manufacturer respectively. ML techniques
are also in research for pharmaceutical supply chains. A data model was used to find the
efficiency of a pharmaceutical company’s supply chain in what orders are delivered on
time [47]. Lastly, in [48], four different ML algorithms were trained from optimal solutions
of mathematical models, for decision-making on order and transshipment quantities in a

network of hospitals.

The ML algorithms used for the above applications can be seen in Table 1.
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Table 1: Literature review for the use of Machine Learning in supply chain optimization

Reference Application Model
D. Goettsch et al. (2020) Select Potential Depot Logistic Regression, Random
. . Forrest,
Locations for the Supply Chain
of Biomass Co-Firing Multi-Layer Perceptron Neural
Network

D. N. Duc and N. Nananukul Planning biomass plant Artificial Neural Network
(2020) locations using a Hybrid

Methodology Based on
Machine Learning and MIP

J. Feizabadi (2022) Demand forecasting ARIMAYX, Artificial Neural
Network
M. A. Villegas, D. J. Pedregal and Demand forecasting Support Vector Machines

J. R. Trapero (2018)

C. Han and Q. Zhang (2021) Optimization of supply chain BP Neural Network
efficiency management

Kartal, Hasan, et al (2016) Multi-attribute inventory Naive Bayes, Artificial Neural
classification Network, Support Vector
Machine
B. Abbasi, T. Babaei, Z. A case study in blood supply Multi-Layer Perceptron Neural
Hosseinifard, K. Smith-Miles and chain management Network, k-Nearest Neighbor,
M. Dehghani (2020) Random Forest, Classification

and Regression Tree

Manyathi Sakhile (2017) Robustness of supply chain Decision Tree
management system
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5. Methodology

In this section, the process of training the ML algorithms and then using these trained
models to solve the planning of the supply chain to reduce the complexity of the MILP
model is described.

Six main stages followed in the development of the proposed algorithms.

1) Gathering the necessary data from the MILP state-of-the-art algorithm
2) Choosing the ML algorithms to be used

3) Pre-processing the data for each algorithm

4) Tuning their hyperparameters

5) Training the ML algorithms

6) Using the trained data models for the problem reduction

R Pre-Processing and Tuning ML

Training ML models

Data Gathering using full-space

MILP

Use model to obtain
manufacturing sites to be
established

Demand Profile

Update data for MILP to exclude
the manufacturing sites that
weren’t chosen from the data
model

Solve the reduced MILP model for
optimal solution

27
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5.1. Data Gathering:

First of all, in order to train a machine learning algorithm, it is necessary to acquire the
needed data. In the current problem, the data is acquired using the MILP model proposed
by [14] With the aim of getting enough data to train the algorithms different demand
scenarios had to be constructed and then ran through the MILP model. Then, when an
optimal solution was found, the data was processed for the purpose of training the ML

algorithms.

The data was gathered after 26 different demand scenarios for 100 patients/year, 22
scenarios for 200 patients/year, 6 scenarios for 300 patients/year, 6 scenarios for 500
patients/year, 6 scenarios for 640 patients/year, 3 scenarios for 750 patients/year, 5
scenarios for 1000 patients/year, 3 scenarios for 1200 patients/year, 2 scenarios for 1500
patients/year, 1 scenario for 1700 patients/year and finally 2 scenarios for 2000

patients/year. These resulted in having 8663 examples for the ML algorithms to train.

All the scenarios were run for the first quarter of the year i.e. for 200 patients/year, the
scenario list 50 patients arriving at a leukapheresis site on the first 90 days of the year.
Another point of the scenarios is that the leukapheresis site can serve up to 8 people a
day. At the current stage of this work, is worth mentioning that the transportation method

is restricted to a single transportation (j2).

5.2. Machine Learning Algorithms

5.2.1. Multi-Layer Perceptron

Multi-layer Perceptron (MLP)is a supervised learning algorithm that learns a
function f():R™—R° by training on a dataset, where m is the number of dimensions for
input and o is the number of dimensions for output. Given a set of features X=xi, x2,..., Xm,
and a target y, it can learn a non-linear function approximator for either classification or

regression. It is different from logistic regression, in that between the input and the output
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layer, there can be one or more non-linear layers, called hidden layers. Figure 5 shows a
two hidden layer MLP [49].

Hidden Layers
Input Layer

Figure 5: Two hidden layers MLP

The leftmost layer, known as the input layer, consists of a set of neurons {x;| xi1, xz,...,
Xm} representing the input features. Each neuron in the hidden layer transforms the values
from the previous layer with a weighted linear summation wix1+w2xz+...+Wmxm, followed
by a non-linear activation function g(-):R—R. The output layer receives the values from the
last hidden layer and transforms them into output values [49]. Multi-Layer Perceptron has
its advantages and disadvantages. One really strong point of neural networks is their
ability to train and learn non-linear models, due to the non-linear activation functions of
the hidden layers. MLP can also be trained in real-time, that is any data added in the
training set is used to train the classifier at the time of the addition. Some drawbacks of
MLP follow. First of all, MLP is sensitive to feature scaling, so using a scaler is basically
mandatory. Moreover, MLP with hidden layers has a non-convex loss function where there
exists more than one local minimum. Therefore, different random weight initializations
can lead to different validation accuracy. MLP also due to backpropagation has high time

complexity. Lastly, MLP, like a lot of other classifiers, requires tuning to a number of
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hyperparameters such as the number of hidden neurons, layers, and iterations [49] , [50],
[51].

Mathematical Formulation

As a supervised learning algorithm, the classifier is first given a set of training examples
(x1y1), (X2y2), ... (Xnyn), where x; € R"and y € R'. For one hidden layer neural network the

MLP learns the following function:
fx) =wy x gw,T xx + bl) + b2 (3-1)

where w1 € R™represents the weights of the input layer, w, € R" represents the weights
of the hidden layer, and b1, b> € R represents the bias added to the hidden and output

layer.

g() is the activation function that the hidden layers pass through and there are a lot of

different ones that anyone can choose from. The most popular are:

e Linear activation function: g(z) = z
e Rectified Linear Units (ReLU) — With RelLU, we ensure our output doesn't go
below zero (or negative). Therefore if z is greater than zero, the output remains z,

else if z is negative, the output is zero: g(z) = max (0, z)

e?—e~%
[ ] Tanh- g(z) - eZte—2
e Sigmoid activation: g(z) = 1 _,_2—2

To obtain the outputs, f(x) passes through one activation function. For binary
classification, f(x) passes through the sigmoid function to obtain output values between
zero and one. A threshold, often set to 0.5, would assign samples of outputs larger or

equal to 0.5 to the positive class, and the rest to the negative class.

If there are more than two classes, f(x) itself would be a vector with a size equal to the
classes. Instead of passing through the sigmoid function, it passes through the softmax
function [49], [52].
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exp(zi)

e Sigmoid Function: softmax(z); = Y¥exp (z))

where zi represents the itn element of the input to softmax, which corresponds to class i,
and k is the number of classes. The result is a vector containing the probabilities that

sample x belongs to each class. The output is the class with the highest probability.

Starting from initial random weights, multi-layer perceptron (MLP) minimizes the loss
function by repeatedly updating the weights. After computing the loss, a backward pass
propagates it from the output layer to the previous layers, providing each weight
parameter with an update value meant to decrease the loss. The loss is given by the

Average Cross-Entropy
Loss = % oilog(F(x)) + (1 —y) log(l - (f(xi)))) +% lw|3 (3-2)

where allw||3 is an L2-regularization term (aka penalty) that penalizes complex models;

and a>0 is a non-negative hyperparameter that controls the magnitude of the penalty.

The update of the weights happens with gradient descent like below:

witl = wt — eVLoss!, (3-3)

where i is the iteration step, and € is the learning rate with a value larger than 0.

The algorithm stops when it reaches a preset maximum number of iterations; or when the

improvement in loss is below a certain, small number [49], [52].

5.2.2. Random Forest

Random forest consists of a large number of individual decision trees that operate as
an ensemble. The goal of ensemble methods is to combine the predictions of several base
estimators built with a given learning algorithm to improve generalizability/robustness
over a single estimator. The prediction of the ensemble is given as the averaged prediction
of the individual classifiers [49], [53].
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Decision Trees (DTs)are a non-parametric supervised learning method used
for classification and regression. The goal is to create a model that predicts the value of a
target variable by learning simple decision rules inferred from the data features. A tree

can be seen as a piecewise constant approximation [53].

Like all the other algorithms DTs and Random Forest have their advantages and
disadvantages. Firstly, DTs and Random Forest are easy to interpret and understand as
can be visualized. Secondly, Random Forest is one of few algorithms that doesn’t need a
lot of data preprocessing [54]. It can give really good results with no scaling or dummy
variables. Furthermore, the cost for training each tree is logarithmic in the number of
examples in the training set [49]. On the other hand, a negative of DTs and Random Forest
is that predictions of decision trees are neither smooth nor continuous, but piecewise
constant approximations as seen in figure 6. Therefore, they are not good at extrapolation
[55]. Lastly, DTs are based on heuristic algorithms such as the greedy algorithm where
locally optimal decisions are made at each node. Such algorithms cannot guarantee to
return the globally optimal decision tree [53]. Random Forest can mitigate this problem,

although global optimality is not guaranteed [49].
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Figure 6: Random Forest Classifier visualization
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Mathematical Formulation of Decision Trees

As the MLP, the classifier is first given a set of training examples (x1y1), (X2y2), ..., (Xn,Yn),
where xi € R"and y € R, For every split that happens in a node m, there is a threshold tm
that is used to partition the data Qm with nm samples in two subsets

Left(9) and Q19" () where 8 is the candidate split that consists of a feature j and the
threshold.

wIHO) = {0 y)|x; <ty (3-4)

ht
rlg ( ) left(g)

The choice of the best candidate split is taken based on the function G(Qm, 6) and the
parameters (0*) are selected in order to minimize G.

left rlght

G(Qm 0) = "= H (0 (0)) + "2—x H (01" (0)) (3-5)

where H is the impurity function and can be measured with the “Gini” or "Entropy”

function.
e Gini; H(Qm) = Zk pmk(1 - pmk)
e Entropy: H(Qm) = — Xk Pmilog (Pmx)

1
and ppmi = aZyele(y =k)

The splitting process happens until the maximum allowable depth is reached

(nm<minsamp|es) or nm = 1 [49]

5.2.3. Support Vector Machine

Support vector machines (SVMs) are a set of supervised learning methods used
for classification, regression, and outliers detection. SVMs are based on the idea of finding
hyperplanes that best divides a dataset into classes. There are a lot of different methods

that one can implement SVMs for classification purposes like C-Support Vector
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Classification, Nu-Support Vector Classification and Linear-Support Vector Classification.
SVC and NuSVC are similar methods, but accept slightly different sets of parameters and
have different mathematical formulations. On the other hand, LinearSVCis a faster
implementation of Support Vector Classification for the case of a linear kerne [49]. SVMs
are generally effective in high-dimensional spaces and have good results in the cases
where the number of features is greater than the number of examples [56]. However, if
the number of features is much greater than that of the samples, overfitting the data
becomes common and regularization of the data is important. A huge advantage that the
SVMs have is their versatility because the decision function can be specified using
different Kernel functions, which are customizable. Unfortunately, SVMs do not directly
provide probability estimates, these are calculated using an expensive five-fold cross-
validation [57] [58].

For multi-class classification, like this problem, SVC and NuSVC follow the “one-versus-
one” approach for choosing the class. This means that the classifier compares the
probability that a class is the right one between two classes and after the comparison
happens between all the classes, the one that ‘won’ everyone is the predicted class. This

means that (nggsses * (Merasses — 1))/2  have to be constructed [49].

Figure 7: Example of splitting the data into classes using SVC
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Mathematical Formulation of SVC

The mathematical formulation of SVMs is based on the intuition that a good separation
is achieved by the hyper-plane that has the largest distance to the nearest training data
points of any class (so-called functional margin), since in general the larger the margin

the lower the generalization error of the classifier.

Just as the other classifiers first the classifier is given a training set which consists of
xi€RP and a vector y<{-1,1}", i=1,...,.n. As was mentioned before the prediction follows a
one-vs-one approach so the classification happens between just two classes. To find the

best hyperplanes SVC solves the following problem:
.1
Mr]/r}é%EWTW +CYM, G (3-6)

sst.yywlf(x)+b=1-4
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Figure 8: Example of a linearly separated problem with three support vectors
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where w are the weights for the training examples and C is the distance between a
wrong predicted point to its correct hyperplane and C is a regularization parameter and

basically controls the strength of the penalty when a sample is misclassified.

The above problem can be rewritten:

main%aTQa —eTa (3-7)
s.t.yTa=0

where o are the dual coefficients and 0< ai < C, i=1,...,n, e is the vector of all ones and Q

is an n by n semidefinite matrix. Q is given by:
Qi; = viviK(xi,x;) (3-8)
K(x;,x7) = f ()T f ()

and K is the kernel function that measures similarity between any pair of inputs (xi, ;).

Lastly, the predicted value is given by
9 = sign(T, wiyiK (x;, %;) (3-9)
Some common kernels that are used are:

e Linear Kernel: K = (x;, x;)

e Polynomial Kernel: K = (y * (xl-,xj) + r)d, where d is the degree of the polynomial
and gamma is a parameter that defines how much influence a single example has

e Radial basis function (rbf) kernel: K = exp (—y * || — xj||2)

e Sigmoid kernel: K = tanh(y(x;, x;) + ) [49]
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Input features

The input features for the machine learning algorithms have to be associated with the

result that the algorithms produce. At this point of the work the features selected are:

e The total demand for CAR-T cell therapies for a year i.e. 200 patients/year

e The total capacity of all manufacturing facilities available at the time a patient
arrives at a leukapheresis site

e The leukapheresis site where a sample has been taken and left for a

manufacturing facility.

The result for each example is the manufacturing facility that the MILP model selected

for the current therapy to be manufactured.

5.3. Visualization

Visualization is significant in machine learning because it gives a good idea of how the
data is distributed and finds any abnormalities or imbalances. This, in turn, allows for a
better preprocessing of the data and therefore better performance of the models. After
plotting and analyzing figures 9-12, one can make some observations. First of all, we can
conclude from both figures the data is imbalanced. Manufacturing site ‘'m2’ is picked a lot
more times than any other facility on both the constrained and unconstrained models.
This is due to the fact that in scenarios with more than 1000 patients per year, a
manufacturing facility with more capacity is needed and thus it gets picked, as well as
those scenarios contribute more examples than the rest. The imbalance continues
between manufacturing facilities 1, 3 and 4, 6. This happens because the model prioritizes
manufacturing facilities 1 and 3 and then picks 4 or 6 only after the former are full. Lastly,
manufacturing facility 5 is never picked on the unconstained model with the current data
since for 2000 patients per year there is no need for establishing a second 31-capacity

manufacturing facility.
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Figure 9: 3-D representation of the data gathered in respect of the input features for the unconstrained model
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Figure 10: Number of times each manufacturing site was selected for each therapy in all the
scenarios for the unconstrained model
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Figure 12: 3-D representation of the data gathered in respect of the input features for the constrained model
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Figure 11:Number of times each manufacturing site was selected for each therapy in all the scenarios for the
constrained model
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54. Preprocessing
5.4.1. Scaling

During sections 3.2.1. and 3.2.2. it was mentioned that scaling the data is crucial for MLP
and SVM classifiers. The two common approaches to bringing different features onto the

same scale are normalization and standardization.

Normalization refers to rescaling and squeezing the features to a range of [0, 1], which is
a special case of min-max scaling. The scaling formula is shown below [59] [60]
xi_xmin

XE gy = ———— 2 (3-10)

Xmax~Xmin

The standardization technique is used to center the feature columns at mean 0 with a
standard deviation of 1 so that the feature columns have the same parameters as a
standard normal distribution. Unlike Normalization, standardization maintains useful
information about outliers and makes the algorithm less sensitive to them in contrast
to min-max scaling, which scales the data to a limited range of values. Here is the formula
for standardization.

i
i X —Ux
X =
std Oy

(3-11)

where px is the mean of each feature over all data points and ox is the square root of the

variance.
For this work normalization of the features was chosen.
5.4.2. Data balancing

Often real-world data sets are composed of imbalanced data, that is there is an unequal
distribution of the classes. Imbalanced data pose a challenge for predictive modeling as
most of the machine learning algorithms used for classification were designed around the
assumption of an equal number of examples for each class. This results in models that
have poor predictive performance, specifically for the minority class. This is shown in the

data in this particular problem that we examine. There are three methods for balancing
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one's data. Oversampling, which replicates examples of the minority class to achieve a
more balanced distribution, and under-sampling, which aims to balance the data set by
eliminating examples of the majority class, or a combination of the two [61]. In order to
fight the aforementioned imbalance, a method that combines oversampling using the
method SMOTE and cleaning of the data using the method of Tomek links is used. The

results after the oversampling/cleaning are shown in figure 5.

Synthetic Minority Over-sampling Technique (SMOTE) is an oversampling technique that
does not just replicate other examples to over-sample the minority class. SMOTE
generates synthetic minority examples. For every minority example, its k nearest
neighbors of the same class, often set to 5, are calculated, then some examples are
randomly selected from them according to the over-sampling rate. After that, new
synthetic examples are generated along the line between the minority example and its
selected nearest neighbors. By doing that, better and more general regions can be learned
for the minority class. [62] [63]
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Figure 13: Number of times each manufacturing site was selected for each therapy in all the
scenarios after oversampling the training set for unconstrained model
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Figure 14:Number of times each manufacturing site was selected for each therapy in all the scenarios after
oversampling the training set for the constrained model

Tomek Links is an approach used as an under-sampling technique or a post-processing
cleaning step. In this case, Tomek Links were used to under-sample the majority class of
the data (m2). Tomek Links is based on the Nearest-Neighbor Rule (NNR). A Tomek’s link
between two samples essentially links two samples that are the nearest neighbors and is
defined by the distance(d) between two samples of different classes x, y, and another one

Z as:
d(x,y) <d(x,z) and d(x,y) < d(y,z)

After the link is established if one of the samples belongs to the majority class, that
sample will get removed, therefore cleaning the data. The process is depicted in the
figures below. [64] [65] [66]
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Figure 15: Tomek Links under-sampling technique

5.5.  Tuning and Training the ML algorithms

A very significant part of every ML algorithm is its hyperparameters. In order to have a
data model that makes the right predictions, one has to find the best hyperparameters
that help the model understand the data that is given. For every ML algorithm, different
hyperparameters need to be tuned. Some were shown in section 3.2. Below, there is a

more specific analysis of which and what the hyperparameters the three algorithms were

tuned to.

Tuning commences by constructing a grid with the hyperparameters of each classifier.
After constructing the grid there are various but similar ways to find the best
hyperparameters. There is no standard way to optimize the classifier in terms of
hyperparameters and because of that, the major method of finding them is just searching

for the ones that give the best results.
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Specifically, a k-fold Cross-Validation technique is used for the tuning. Cross-Validation is
a procedure that resamples the data of the model into several groups (k-folds) that are
specified by the programmer. After the division happens, for each fold, the model is
trained on the k-1 folds of the dataset and then tested on the ki fold. After the training
and testing of all the number of groups are finished, the average performance of all the
different folds is the cross-validation performance of the model. We follow this procedure
so as to estimate the skill of the ML model on unseen data. Subsequently, by varying the
hyperparameters of the model and using a k-fold Cross-Validation technique, we can find

the best parameters to fit the model.
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Figure 16: Example of a 5-fold Cross-Validation splitting of the dataset
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Table 2: Description of the Hyperparameters of MLPClassifier algorithm

Parameters Description

hidden_layer_sizes The number of the hidden layers and the

number of nodes of each one

The solver for weight optimization.

‘'sgd’ refers to stochastic gradient descent
‘adam’ refers to a stochastic gradient-
based optimizer proposed by Kingma,
Diederik, and Jimmy Ba

'Ibfgs’: optimizer in the family of quasi-
Newton methods.

Activation function for the hidden layer.
_ L2 penalty (regularization term) parameter

learning_rate Learning rate schedule for weight

updates.
‘constant’ is a constant learning rate

‘adaptive’”: each time two consecutive
epochs fail to decrease the training loss,

the current learning rate is divided by 5
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Table 3: Description of the Hyperparameters of the SVM algorithm [2]

Parameters Description

The penalty parameter of the error term or

regularization term
The kernel coefficient.

Specifies the kernel type to be used in the

algorithm (e.g., linear, rbf, poly).

Class_weight Weights associated with classes

degree Degree of the polynomial kernel function
(‘poly’)

Table 4: Description of the Hyperparameters of RandomForestClasssifier algorithm

Parameters Description

n_estimators The number of trees in the forest.

The function to measure the quality of a split.
Supported criteria are “gini” for the Gini impurity
and “entropy” for the information gain. Note: this
parameter is tree-specific.

max_depth The maximum depth of the tree.

max_features The number of features to consider when looking
for the best split:

class_weight Weights associated with classes

min_samples_leaf The minimum number of samples required to be

at a leaf node

min_samples_split The minimum number of samples required to

split an internal node
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The performance of ML algorithms can be evaluated through numerous metrics. The
simpler are the Accuracy, Precision, Recall, and F1 score metrics. The Accuracy metric gives
the number of right predictions on the entire dataset. The Precision quantifies the number
of positive class predictions that belong to the positive class. Recall shows the number of
positive class predictions made out of all positive examples in the dataset. The F1 score is
a performance metric that gives a balance of the precision and recall scores in one

number. The equations that calculate the above metrics can be seen below.

TP+TN

ACCUT(IC}/ = m (3-1 2)
Precision = —— (3-13)
TP+FP
Recall = —— (3-14)
TP+FN
F1 score = 2xPrecisionxRecall (3_1 5)

Precision+Recall

where TP, TN, FP, and FN are True Positive, True Negative, False Positive, and False
Negative respectively. Another performance metric that is also used and a really good
visual representation of the performance is the confusion matrix. The confusion matrix
depicts how many times, for each class, the classifier predicted one class in relation to the
others. In Figure 17 there is an example of a confusion matrix that shows that the classifier
predicted the class "1’ seventeen times when the true class was '1’, twelve times when the

true class was ‘3’, and two times when the true class was ‘4’ and so on.
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Figure 17: Example of a 3x3 confusion matrix

After running a Grid Search for each classifier using the GridSearchCV of scikit-learn
library, the following hyperparameters are selected from the grids that are shown in the
tables below. The best parameters were chosen for the best f1_macro score on a 5-fold
cross-validation and are listed in Table. After finding the best parameters, they are used
to train the classifiers, and then the models can be used to predict the manufacturing sites

that need to be established for the problem.
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Table 5: Grid of Hyperparameters for MLP Classifier

Parameters Grid

hidden_layer_sizes {100, 300, 500, (100,100), (300,300),
(500,500), (100,100,100), (300,300,300),
(500,500,500,

{'sgd’, '"adam’, 'lIbfgs’}
activation function {'tanh’, 'relu’, 'sigmoid’, ‘linear’}
{1e-6, 1le-5, 1e-4, 0.001, 0.01, 0.1, 1}

learning_rate {'constant’, ‘adaptive’}

Table 6: Grid of Hyperparameters for Random Forest Classifier

Parameters Grid

n_estimators

{10,100,1000}
{'gini’, ‘entropy’ }
max_depth {3, 5, 10, None}
max_features {1, 2,3, 4}
class_weight {'balanced’, None}
min_samples_leaf

{1,234}

min_samples_split

{2,3,4,5}

Vo]



Table 7:Grid of Hyperparameters for SVM Classifier

Parameters Grid

{10, 100, 1000, 10000, 1e6}

{1e-5, 1e-4, 0.001, 0.01, 0.1, 1}
{'rbf’, ‘poly’, ‘logistic’, 'sigmoid’}
{2,3,4}

Class_weight {'balanced’, None}

5.6. Computational Analysis

All the models have been implemented in Python 3.9. The MILP model was implemented
in Pyomo 6.2 and solved with CPLEX 20.1.0. The ML models were implemented with scikit-
learn library. The gathering of the data and the tests were run in a Windows 10 pro Pc
with AMD Ryzen 5 3600 6-core 3.59 GHz Processor with 16.0GB of RAM



6. Results

Twelve different scenarios were constructed for testing, three each for total demands
of 200, 500, 1000, and 2000 patients per year like some other articles, and six more
ranging between the minimum and maximum demand, in order to test more the
capabilities of the models. The saved model of each classifier was used to predict the
manufacturing sites for each therapy in the scenarios, so the most probable facilities
that need to be constructed are available to the problem. Then the data file for the
scheduling problem instance is updated automatically so that the parameters related
to the facilities that are not to be established, are removed from the file. This results

in a smaller instance for the MILP model. The results are shown below.

Statistics concerning the classification results from the ML classifiers, the number of
discrete and continuous variables as well as the number of constraints in the full space
model and the model using the ML algorithms for both the unconstrained and

constrained problems are displayed in Tables 11-35 and Figures 15-29.

To make an immediate comparison between the state-of-the-art model and the
proposed work, demand profiles A and B from [14] were used here. The same statistics
for the constraints, variables, and solutions for the profiles A, and B, as well as the
difference in CPU time, can be found in tables 20-25 and figures 18-20. The demand

profiles can be seen in figures 30-34 in Appendix B.
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6.1. Results for Unconstrained model

Table 8: Hyperparameters’ values of all three classifiers after grid search and cross-

validation score

Classifier Parameter Value c-v score
Multi-Layer hidden_layer_sizes (300,300,300) 0.741

Perceptron

solver Adam

activation function tanh
alpha 0.0001
learning_rate adaptive
Random Forest n_estimators 10 0.702
criterion Gini
max_depth 10
max_features 2
class_weight None (all have the

same weight of 1)
min_samples_leaf 2
min_samples_split 2
C 1000 0.710
Gamma 1E+05
Kernel rbf
Degree =

Class_weight None
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Table 9: Hyperparameters’ values of all three classifiers after grid search and cross-validation score after removing the

leukapheresis site as a feature

Classifier

Multi-Layer

Perceptron

Random Forest

Parameter

hidden_layer_sizes
solver

activation function
alpha
learning_rate
n_estimators
criterion
max_depth
max_features
class_weight
min_samples_leaf
min_samples_split
C

Gamma

Kernel

Degree

Class_weight

53

Value

(300,300,300)

C-V score

0.604
Adam

tanh

0.0001

adaptive

50 0.614
Entropy

10

balanced

1000 0.642
1E+05

rbf

None



Table 10:Hyperparameters’ values of all three classifiers after grid search and cross-validation score after adding the Peak in

Demand feature

Classifier

Random Forest

Parameter
hidden_layer_sizes
solver

activation function
alpha
learning_rate
n_estimators
criterion
max_depth
max_features
class_weight
min_samples_leaf
min_samples_split
C

Gamma

Kernel

Degree

Class_weight

54

Value c-V score

(500,490,490) 0.793
Adam

tanh

0.00001

adaptive

100 0.789

Entropy

10

None

1000 0.817
100

rbf

None
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Figure 18: Normalized and not normalized Confusion matrices for the predicted manufacturing facilities for the MLP Classifier
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Table 11: Classification report for MLP Classifier

Manufacturing Precision Recall F1 _score
Facility

1 0.78 0.57 0.66

2 0.92 0.96 0.94

3 0.82 0.67 0.74

4 0.27 0.68 0.38

6 0.38 0.68 0.49
accuracy 0.78
Macro average 0.63 0.71 0.64
Weighted average 0.82 0.78 0.78

Training Time: 5 minutes, 57 seconds, 201 milliseconds
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Figure 19: Normalized and not normalized Confusion matrices for the predicted manufacturing facilities for the Random Forest

Classifier

Table 12: Classification report for Random Forest Classifier
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0.1

Manufacturing Precision Recall F1 _score
Facility

1 0.61 0.67 0.64

2 0.92 0.83 0.87

3 0.79 0.71 0.75

4 0.29 0.45 0.36

6 0.44 0.59 0.50
accuracy 0.73
Macro average 0.61 0.65 0.62
Weighted average 0.76 0.73 0.74

Training Time: 1 second, 98 milliseconds
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Figure 20: Normalized and not normalized Confusion matrices for the predicted manufacturing facilities for the SVM Clasifier

Table 13: Classification report for SVM Classifier

True label

Normalized confusion matrix

Predicted label

0.8

0.6

0.4

0.2

Manufacturing Precision

Facility

1 0.75 0.47 0.58
2 0.91 0.93 0.92
3 0.83 0.69 0.75
4 0.29 0.69 0.41
6 0.36 0.72 0.48
accuracy 0.75
Macro average 0.63 0.70 0.63
Weighted 0.80 0.75 0.76
average

Training Time: 47 seconds, 188 milliseconds
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Table 14: Problem size for increasing problem instances without and with using the MLP

Classifier for solving the planning problem

200

350

500

750

900

1000

1200

Testl

Test2

Test3

Testl

Testl

Test2

Test3

Testl

Testl

Testl

Test2

Test3

Testl

Full
Space
with ML
Full
Space
with ML
Full
Space
with ML
Full
Space
with ML
Full
Space
with ML
Full
Space
with ML
Full
Space
with ML
Full
Space
with ML
Full
Space
with ML
Full
Space
with ML
Full
Space
with ML
Full
Space
with ML
Full
Space

6,24E+05

2,08E+05
6,24E+05

2,08E+05
6,24E+05

2,08E+05
1,09E+06

3,62E+05
1,56E+06

7,80E+05
1,56E+06

7,80E+05
1,56E+06

7,80E+05
2,33E+06

1,17E+06
2,81E+06

2,34E+06
3,10E+06

5,16E+05
3,10E+06

1,03E+06
3,10E+06

5,16E+05
3,74E+06
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1,42E+06

5,08E+05
1,42E+06

5,08E+05
1,42E+06

5,08E+05
2,47E+06

8,83E+05
3,54E+06

1,84E+06
3,54E+06

1,84E+06
3,54E+06

1,84E+06
5,30E+06

2,75E+06
6,38E+06

5,36E+06
7,03E+06

1,39E+06
7,03E+06

2,52E+06
7,03E+06

1,39E+06
8,51E+06

2,72E+06

9,59E+05
2,72E+06

9,59E+05
2,72E+06

9,59E+05
4,73E+06

1,67E+06
6,80E+06

3,50E+06
6,80E+06

3,50E+06
6,80E+06

3,50E+06
1,02E+07

5,23E+06
1,22E+07

1,03E+07
1,35E+07

2,57E+06
1,35E+07

4,76E+06
1,35E+07

2,57E+06
1,63E+07

248,80

95,84
247,14

95,88
247,84

91,28
426,77

170,45
617,92

326,17
621,73

346,20
629,52

417,45
1019,34

519,19
1244,00

968,94
1508,67

262,78
1400,06

477,02
1387,67

257,78
1986,36



1350 Testl

1700 Testl

2000 Testl

with ML
Full
Space
with ML
Full
Space
with ML
Full
Space
with ML

1,87E+06
4,21E+06

1,40E+06
5,30E+06

2,65E+06
6,24E+06

3,12E+06
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4,41E+06
9,55E+06

3,42E+06
1,20E+07

6,25E+06
1,42E+07

7,35E+06

8,39E+06
1,83E+07

6,46E+06
2,31E+07

1,19E+07
2,72E+07

1,40E+07

961,05

2480,25

609,67

1435,41

1452,88



Table 15: Comparison of the solutions of the full space model without and with the help of the

MLP Classifier for an increasing number of therapies

200

350

500

750

900

1000

1200

1350

1700

2000

Testl

Test2

Test3

Testl

Testl

Test2

Test3

Testl

Testl

Testl

Test2

Test3

Testl

Testl

Testl

Testl

60

Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML

7,09E+06
7,09E+06
7,09E+06
7,09E+06
7,09E+06
7,09E+06
1,24E+07
1,24E+07
1,33E+07
1,33E+07
1,63E+07
1,63E+07
1,63E+07
1,63E+07
2,22E+07
2,22E+07
2,30E+07
2,30E+07
2,65E+07
2,78E+07
2,65E+07
2,78E+07
2,65E+07
2,78E+07
2,89E+07
2,89E+07
3,26E+07
3,26E+07

3,90E+07

4,82E+07

O O O O O o

17,67
17,67

4,59
4,59
13,89
13,61
9,89
9,89

2,6
8,22
12,83
2,77
7,38
4,68
9,29

0,00
0,00
16,00

7,67

6,13
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200

350

500

750

900

1000

1200

Testl

Test2

Test3

Testl

Testl

Test2

Test3

Testl

Testl

Testl

Test2

Test3

Testl

Full
Space
with ML
Full
Space
with ML
Full
Space
with ML
Full
Space
with ML
Full
Space
with ML
Full
Space
with ML
Full
Space
with ML
Full
Space
with ML
Full
Space
with ML
Full
Space
with ML
Full
Space
with ML
Full
Space
with ML
Full
Space
with ML
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6,24E+05

2,08E+05
6,24E+05

2,08E+05
6,24E+05

2,08E+05
1,09E+06

3,62E+05
1,56E+06

7,80E+05
1,56E+06

7,80E+05
1,56E+06

7,80E+05
2,33E+06

1,17E+06
2,81E+06

2,34E+06
3,10E+06

5,16E+05
3,10E+06

1,03E+06
3,10E+06

5,16E+05
3,74E+06

1,25E+06

1,42E+06

5,08E+05
1,42E+06

5,08E+05
1,42E+06

5,08E+05
2,47E+06

8,83E+05
3,54E+06

1,84E+06
3,54E+06

1,84E+06
3,54E+06

1,84E+06
5,30E+06

2,75E+06
6,38E+06

5,36E+06
7,03E+06

1,39E+06
7,03E+06

2,52E+06
7,03E+06

1,39E+06
8,51E+06

3,04E+06

2,72E+06

9,59E+05
2,72E+06

9,59E+05
2,72E+06

9,59E+05
4,73E+06

1,67E+06
6,80E+06

3,50E+06
6,80E+06

3,50E+06
6,80E+06

3,50E+06
1,02E+07

5,23E+06
1,22E+07

1,03E+07
1,35E+07

2,57E+06
1,35E+07

4,76E+06
1,35E+07

2,57E+06
1,63E+07

5,75E+06

248,80

85,73
247,14

86,05
247,84

85,63
426,77

150,06
617,92

314,22
621,73

312,44
629,52

312,39
1019,34

473,42
1244,00

948,48
1508,67

247,52
1400,06

441,02
1387,67

245,31
1986,36

557,55



1350 Testl

1700 Testl

2000 Testl

Full
Space
with ML
Full
Space
with ML
Full
Space
with ML

62

4,21E+06

1,40E+06
5,30E+06

2,65E+06
6,24E+06

4160036

9,55E+06

3,42E+06
1,20E+07

6,25E+06
1,42E+07

9623542

1,83E+07

6,46E+06
2,31E+07

1,19E+07
2,72E+07

1,84E+07

2480,25

639,77

1439,27

2651,86



200

350

500

750

900

1000

1200

1350

Testl

Test2

Test3

Testl

Testl

Test2

Test3

Testl

Testl

Testl

Test2

Test3

Testl

Testl

63

Full
Space
with ML
Full
Space
with ML
Full
Space
with ML
Full
Space
with ML
Full
Space
with ML
Full
Space
with ML
Full
Space
with ML
Full
Space
with ML
Full
Space
with ML
Full
Space
with ML
Full
Space
with ML
Full
Space
with ML
Full
Space
with ML
Full
Space

7,09E+06

7,09E+06
7,09E+06

7,09E+06
7,09E+06

7,09E+06
1,24E+07

1,24E+07
1,33E+07

1,33E+07
1,63E+07

1,63E+07
1,63E+07

1,63E+07
2,22E+07

2,22E+07
2,30E+07

2,30E+07
2,65E+07

2,78E+07
2,65E+07

2,78E+07
2,65E+07

2,78E+07
2,89E+07

2,89E+07
3,26E+07

17,67

17,67

4,59

4,59
13,89

13,61
9,89

9,89

2,6
8,22

12,83

4,61
1,44

6,05

0,00
0,00



1700 Testl

2000 Test2

64

with ML
Full
Space
with ML
Full
Space
with ML

3,26E+07

3,90E+07

4,82E+07

16,00

7,67

6.13



Table 18: Problem size for increasing problem instances without and with using the SVM

for solving the planning problem

350

500

750

900

1000

1200

1350

1700

2000

Testl

Testl

Test2

Test3

Testl

Testl

Testl

Test2

Test3

Testl

Testl

Testl

Testl

Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML

6,24E+05
2,08E+05
6,24E+05
2,08E+05
6,24E+05
2,08E+05
1,09E+06
3,62E+05
1,56E+06
7,80E+05
1,56E+06
7,80E+05
1,56E+06
7,80E+05
2,33E+06
1,56E+06
2,81E+06
1,87E+06
3,10E+06
5,16E+05
3,10E+06
1,03E+06
3,10E+06
5,16E+05
3,74E+06
1,87E+06
4,21E+06
1,40E+06
5,30E+06
3,54E+06
6,24E+06
4160036

65

1,42E+06
5,08E+05
1,42E+06
5,08E+05
1,42E+06
5,08E+05
2,47E+06
8,83E+05
3,54E+06
1,84E+06
3,54E+06
1,84E+06
3,54E+06
1,84E+06
5,30E+06
3,60E+06
6,38E+06
4,33E+06
7,03E+06
1,39E+06
7,03E+06
2,52E+06
7,03E+06
1,39E+06
8,51E+06
4,41E+06
9,55E+06
3,42E+06
1,20E+07
8,18E+06
1,42E+07
9623542

2,72E+06
9,59E+05
2,72E+06
9,59E+05
2,72E+06
9,59E+05
4,73E+06
1,67E+06
6,80E+06
3,50E+06
6,80E+06
3,50E+06
6,80E+06
3,50E+06
1,02E+07
6,88E+06
1,22E+07
8,28E+06
1,35E+07
2,57E+06
1,35E+07
4,76E+06
1,35E+07
2,57E+06
1,63E+07
8,39E+06
1,83E+07
6,46E+06
2,31E+07
1,56E+07
2,72E+07
1,84E+07

248,80
86,33
247,14
88,28
247,84
87,77
426,77
153,23
617,92
319,14
621,73
319,13
629,52
317,84
1019,34
642,63
1244,00
794,73
1508,67
252,55
1400,06
450,13
1387,67
251,14
1986,36
816,81
2480,25
626,38

1796,20

2122,67



Table 19:Comparison of the solutions of the full space model without and with the help of the SVM Classifier for an increasing
number of therapies

200 Testl Full Space 7,09E+06 0
with ML 7,09E+06 0
Test2 Full Space 7,09E+06 0
with ML 7,09E+06 0
Test3 Full Space 7,09E+06 0
with ML 7,09E+06 0
350 Testl Full Space 1,24E+07 17,67
with ML 1,24E+07 17,67
500 Testl Full Space 1,33E+07 0
with ML 1,33E+07 0
Test2 Full Space 1,63E+07 4,59
with ML 1,63E+07 4,59
Test3 Full Space 1,63E+07 13,89
with ML 1,63E+07 13,61
750 Testl Full Space 2,22E+07 9,89
with ML 2,22E+07 9,89
900 Testl Full Space 2,30E+07 0
with ML 2,30E+07 0
1000 Testl Full Space 2,65E+07 8,22
with ML 2,78E+07 12,83
Test2 Full Space 2,65E+07 0
with ML 2,78E+07 4,61
Test3 Full Space 2,65E+07 1,44
with ML 2,78E+07 6,05
1200 Testl Full Space 2,89E+07 0
with ML 2,89E+07 0,00
1350 Testl Full Space 3,26E+07 0,00
with ML 3,26E+07 16,00

1700 Testl Full Space - -
with ML 3,75E+07 3,95

2000 Testl Full Space - -
with ML 4,82E+07 6.13
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Table 20: Problem size for increasing problem instances without and with using the MLP Classifier for solving the planning

problem
T R TR R NIt SRR e

200 A Full Space 3,12E+05 7,95E+05 1,48E+06 148,92

with ML 1,56E+05 4,24E+05 7,77TE+05 81,06

B Full Space 3,12E+05 7,95E+05 1,48E+06 151,70

with ML 1,04E+05 3,00E+05 5,44E+05 58,34

500 A Full Space 7,80E+05 1,98E+06 3,69E+06 379,75

with ML 5,20E+05 1,37E+06 2,52E+06 262,78

B Full Space 7,80E+05 1,98E+06 3,69E+06 382,25

with ML 5,20E+05 1,37E+06 2,52E+06 260,59

1000 A Full Space 1,55E+06 3,94E+06 7,31E+06 794,13

with ML 7,74E+05 2,10E+06 3,85E+06 405,13

B Full Space 1,55E+06 3,94E+06 7,31E+06 781,67

with ML 7,74E+05 2,10E+06 3,85E+06 405,48

8,00E+06
7,00E+06
6,00E+06
5,00E+06

4,00E+06

H full_space
3,00E+06 H with ML
2,00E+06
1,00E+06 I I
0,00E+00 I .

200A 200B 500A 500B 1000A 1000B
Profile

Constraints

Figure 21: Comparison of the full space model and without and with the help of the MLP Classifier for an
increasing number of therapies in the number of constraints



Table 21: Comparison of the solutions of the full space model without and with the help of the MLP Classifier for an increasing
number of therapies

200 A Full Space 7,09E+06 0
with ML 7,09E+06 0

B Full Space 7,09E+06 0

with ML 7,09E+06 0

500 A Full Space 1,63E+07 4,62
with ML 1,63E+07 4,61

B Full Space 1,63E+07 0

with ML 1,63E+07 0

1000 A Full Space 2,78E+07 0
with ML 2,78E+07 0

B Full Space 2,65E+07 5,62

with ML 2,78E+07 10,89
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Table 22: Problem size for increasing problem instances without and with using the Random Forest Classifier for solving the
planning problem

200

500

1000

8,00E+06
7,00E+06
6,00E+06
5,00E+06
4,00E+06

Constraints

3,00E+06
2,00E+06
1,00E+06
0,00E+00

Full Space

with ML

Full Space

with ML

Full Space

with ML

Full Space

with ML

Full Space

with ML

Full Space

with ML

3,12E+05

1,56E+05

3,12E+05

1,56E+05

7,80E+05

3,90E+05

7,80E+05

5,20E+05

1,55E+06

7,74E+05

1,55E+06

7,74E+05

RF

7,95E+05

4,24E+05

7,95E+05

4,24E+05

1,98E+06

1,06E+06

1,98E+06

1,37E+06

3,94E+06

2,10E+06

3,94E+06

2,10E+06

200B 500A 5008

200A

Profile

1000A

1000B

1,48E+06

7,77E+05

1,48E+06

7,77E+05

3,69E+06

1,94E+06

3,69E+06

2,52E+06

7,31E+06

3,85E+06

7,31E+06

3,85E+06

H full_space

m with ML

Figure 22: Comparison of the full space model and without and with the help of the Random
Forest Classifier for an increasing number of therapies in the number of constraints
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148,92

83,64

151,70

82,41

379,75

214,72

382,25

264,94

794,13

417,86

781,67

416,39



Table 23: Comparison of the solutions of the full space model without and with the help of the Random Forest Classifier for an
increasing number of therapies

200 A Full Space 7,09E+06 0
with ML 7,09E+06 0

B Full Space 7,09E+06 0

with ML 7,09E+06 0

500 A Full Space 1,63E+07 4,62
with ML 1,63E+07 4,53

B Full Space 1,63E+07 0

with ML 1,63E+07 0

1000 A Full Space 2,78E+07 0
with ML 2,78E+07 0

B Full Space 2,65E+07 5,62

with ML 2,78E+07 10,89
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Table 24: Problem size for increasing problem instances without and with using the SVM for solving the planning problem

200 A Full Space 3,12E+05 7,95E+05 1,48E+06 148,92
with ML 1,56E+05 4,24E+05 7,77E+05 80,64
B Full Space 3,12E+05 7,95E+05 1,48E+06 151,70
with ML 1,56E+05 4,24E+05 7,77E+05 83,09
500 A Full Space 7,80E+05 1,98E+06 3,69E+06 379,75
with ML 5,20E+05 1,37E+06 2,52E+06 268,31
B Full Space 7,80E+05 1,98E+06 3,69E+06 382,25
with ML 5,20E+05 1,37E+06 2,52E+06 263,58
1000 A Full Space 1,55E+06 3,94E+06 7,31E+06 794,13
with ML 7,74E+05 2,10E+06 3,85E+06 412,94
B Full Space 1,55E+06 3,94E+06 7,31E+06 781,67
with ML 5,16E+05 1,48E+06 2,70E+06 301,27
SVM
8,00E+06
7,00E+06
6,00E+06
2 5,00E+06
£ 4,00E+06
@ H full_space
S 3,00E+06
m with ML
2,00E+06
1,00E+06 I I
0,00E+00 l l

200A 200B 500A 500B 1000A 1000B
Profile

Figure 23: Comparison of the full space model and without and with the help of the SVM for an
increasing number of therapies in the number of constraints



Table 25: Comparison of the solutions of the full space model without and with the help of the SVM Classifier for an increasing
number of therapies

200 A Full Space 7,09E+06 0
with ML 7,09E+06 0

B Full Space 7,09E+06 0

with ML 7,09E+06 0

500 A Full Space 1,63E+07 4,62
with ML 1,63E+07 4,61

B Full Space 1,63E+07 0

with ML 1,63E+07 0

1000 A Full Space 2,78E+07 0
with ML 2,78E+07 0

B Full Space 2,65E+07 5,62

with ML 2,78E+07 10,89

72



Constraints

Constraints

Constraints

3,00E+06
2,50E+06
2,00E+06
1,50E+06
1,00E+06
5,00E+05

0,00E+00

5,00E+06
4,00E+06
3,00E+06
2,00E+06
1,00E+06
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8,00E+06
7,00E+06
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Constraints

Constraints

Constraints

1,20E+07
1,00E+07
8,00E+06
6,00E+06
4,00E+06
2,00E+06

0,00E+00

1,40E+07
1,20E+07
1,00E+07
8,00E+06
6,00E+06
4,00E+06
2,00E+06
0,00E+00

1,60E+07
1,40E+07
1,20E+07
1,00E+07
8,00E+06
6,00E+06
4,00E+06
2,00E+06
0,00E+00

LLL

750

M Full_Space
M Reduced
MLP RF SVM
Classifier
900
M Full_Space
B Reduced
MLP RF SVM
Classifier
1000
M Full_Space
H Reduced

Classifier
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Discrete Variables Discrete Variables

Discrete Variables

2,50E+06

2,00E+06
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1,00E+06

5,00E+05
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2,50E+06
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Figure 25: Reduction of constraints and discrete variables in the MILP for different demand scenarios
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Figure 24:Number of constraints (a) and discrete variables(b) of the MILP model for full space and in
combination with the data models for an increasing number of patients
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Figure 26:Cpu time (seconds) for solving the MILP model for full space and in combination with the data
models for an increasing number of patients

From the tables and graphs above there are some observations that can be made. First of
all, from tables 8-10 it is clear that the features that work best to fit the data are the
Demand, Capacity, Leukapheresis site, and the Peak in Demand. Removing the
Leukapheresis site from a feature removes the idea of the distance between the
leukapheresis site and manufacturing facilities, as well as the upper bound of the daily
demand. Adding the Peak in Demand can help the data models to understand the

demand profile, which cannot be seen in the total demand feature.

From tables 11-13 all three classifiers have a higher recall macro average than a precision
macro average, although, the weighted average, where the proportion of each label is
considered, shows the opposite. The differences in both averages are small, so this
suggests that the models are balanced in terms of bias and variance. However,
Manufacturing facility 4 has the lowest F1-score across all classifiers. This could be due to

the fact that most of the data for the specific facility are synthetic from oversampling.

It can also be seen that for every test scenario the data model can almost always predict

the best manufacturing facilities that are needed for the specific demand since the
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solutions after the reduction from the data model are the same as the full space model.
Specifically, the data model’s worst-performing demand scenarios are the ones with total
demand of 1000 patients per year, with around 5% higher cost than the full space model.
Moreover, for demands higher than 1500 patients/year Cplex cannot find a solution due
to insufficient memory, in contrast with the help of the data model where a solution can

be discovered.

In the tables and graphs that depict the statistics for constraints, variables, and CPU times
(in seconds), it is evident that the data model does a really good job of reducing the
complexity of the MILP model. For the most demand scenarios, 50-65% reduction in
constraints and discrete variables can be seen, and it can reach as high as 83% (1000test1,
1000test3) but can be as low as 16% (900test1 — MLP). The time of the solutions in CPU
time is decreased for every scenario as well as shown in figure 20, especially in the higher

demand scenarios.

The ups and downs in figures 18 and 20 can be justified by the capacity of the
manufacturing facilities. That is, until the demand of 900 therapies/year the mathematical
model is choosing the smaller manufacturing facilities. When the demand reaches 1000
therapies/year the data model chooses one of the larger facilities to satisfy the demand.
As the demand gets higher and higher more facilities are needed so the model starts

picking more facilities and therefore the reduction is shortening again.

Lastly, all three classifiers yield approximately the same results. Even so, Random Forest

classifier and SVM take a lot less time than the MLP classifier to train.

Generally, all ML algorithms tested can predict the manufacturing facilities that are
needed for demands ranging from 200-2000 therapies/year and efficiently reduce the size
of the MILP problem. However, seeing that the models are trained with data coming from
the MILP solutions and the manufacturing capacity is limited, larger instances couldn’t be
tested.
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6.2. Results for Constrained Model

Table 26: Hyperparameters’ values of all three classifiers after grid search and cross-validation score for

constrained model

Classifier

Multi-Layer

Perceptron

Random Forest

Parameter

hidden_layer_sizes
solver

activation function
alpha
learning_rate

n_estimators

criterion
max_depth
max_features

class_weight

min_samples_leaf
min_samples_split
C

Gamma
Kernel
Degree

Class_weight
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Value
(500,500,500)

Adam
tanh
0.0001
adaptive
500

Gini

20

None (all have the

same weight of 1)

4400

rbf

None

c-v score
0.898

0.91

0.928
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Figure 27: Normalized and not normalized Confusion matrices for the predicted manufacturing facilities for the MLP Classifier

Table 27: Classification report for MLP Classifier

0.8

0.6

- 0.4

0.2

Manufacturing Precision Recall F1_score
Facility

1 0.86 0.49 0.62
2 0.96 0.87 0.91
3 0.84 0.69 0.76
4 0.22 0.72 0.34
5 0.33 0.90 0.48
6 0.36 0.80 0.50
accuracy 0.77
Macro average 0.59 0.74 0.60
Weighted average  0.86 0.77 0.80

Training Time: 4 minutes, 32 seconds, 647 milliseconds
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Figure 28: Normalized and not normalized Confusion matrices for the predicted manufacturing facilities for the Random Forest
Classifier

0.8

0.7

0.6

0.5

- 0.4

r0.3

- 0.2

F 0.1

- 0.0

Manufacturing Precision

Facility

1 0.74 0.69 0.71
2 0.95 0.90 0.92
3 0.77 0.67 0.72
4 0.16 0.25 0.20
5 0.40 0.79 0.53
6 0.32 0.50 0.30
accuracy 0.79
Macro average 0.56 0.63 0.58
Weighted average 0.82 0.79 0.80

Table 28: Classification report for Random Forest Classifier

Training Time: 948 milliseconds



SVM Classifier
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Confusion matrix, without normalization Normalized confusion matrix
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Figure 29: Normalized and not normalized Confusion matrices for the predicted manufacturing facilities for the SVM Classifier

Manufacturing Precision

Facility

1 0.82 0.50 0.62
2 0.96 0.83 0.89
3 0.86 0.58 0.69
4 0.26 0.83 0.39
5 0.23 0.94 0.37
6 0.33 0.88 0.48
accuracy 0.74
Macro average 0.58 0.76 0.57
Weighted average 0.86 0.74 0.77

Table 29: Classification report for SVM Classifier

Training Time: 51 seconds, 191 milliseconds
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Table 30: Problem size for increasing problem instances without and with using the MLP Classifier for solving the

planning problem

200

350

500

750

900

1000

Testl

Test2

Test3

Testl

Testl

Test2

Test3

Testl

Testl

Testl

Test2

Full
Space
with
ML
Full
Space
with
ML
Full
Space
with
ML
Full
Space
with
ML
Full
Space
with
ML
Full
Space
with
ML
Full
Space
with
ML
Full
Space
with
ML
Full
Space
with
ML
Full
Space
with
ML
Full
Space

83

6,24E+05

2,08E+05

6,24E+05

2,08E+05

6,24E+05

2,08E+05

1,09E+06

3,62E+05

1,56E+06

5,20E+05

1,56E+06

5,20E+05

1,56E+06

5,20E+05

2,33E+06

3,89E+05

2,81E+06

4,68E+05

3,10E+06

5,16E+05

3,10E+06

1,42E+06

5,08E+05

1,42E+06

5,08E+05

1,42E+06

5,08E+05

2,47E+06

8,83E+05

3,54E+06

1,27E+06

3,54E+06

1,27E+06

3,54E+06

1,27E+06

5,30E+06

1,05E+06

6,38E+06

1,26E+06

7,03E+06

1,39E+06

7,03E+06

2,72E+0
6
9,59E+0
5
2,72E+0
6
9,59E+0
5
2,72E+0
6
9,59E+0
5
4,73E+0
6
1,67E+0
6
6,80E+0
6
2,40E+0
6
6,80E+0
6
2,40E+0
6
6,80E+0
6
2,40E+0
6
1,02E+0
7
1,94E+0
6
1,22E+0
7
2,33E+0
6
1,35E+0
7
2,57E+0
6
1,35E+0
7

248,8
87,09
251,3
87,38
248,1
86,45
442,8
153,3
612,2
222,4
604,4
220,3
607,1
221,0
1106,

25
184.8
1290,

64
226,0
1437,

44

253,4

1399,
69



1200

1350

1700

2000

Test3

Testl

Testl

Testl

Testl

with
ML
Full
Space
with
ML
Full
Space
with
ML
Full
Space
with
ML
Full
Space
with
ML
Full
Space
with
ML

84

1,03E+06

3,10E+06

5,16E+05

3,74E+06

1,25E+06

4,21E+06

1,40E+06

5,30E+06

1,77E+06

6,24E+06

2,08E+06

2,52E+06

7,03E+06

1,39E+06

8,51E+06

3,04E+06

9,55E+06

3,42E+06

1,20E+07

4,31E+06

1,42E+07

5,07E+06

4,76E+0
6
1,35E+0
7
2,57E+0
6
1,63E+0
7
5,75E+0
6
1,83E+0
7
6,46E+0
6
2,31E+0
7
8,15E+0
6
2,72E+0
7
9,59E+0
6

450,0

1399,
23
250,8

1883,
94
552,9

2369,



Table 31: Comparison of the solutions of the full space model without and with the help of the MLP Classifier for an increasing
number of therapies

 MLPClassifier 200 Testl Full Space 7,09E+06 0
] with ML 7,09E+06 0
_ Test2 Full Space 7,09E+06 0
] with ML 7,09E+06 0
_ Test3 Full Space 7,09E+06 0
] with ML 7,09E+06 0
_ 350 Testl Full Space 1,24E+07 0
] with ML 1,24E+07 0
] 500 Testl Full Space 1,33E+07 0
I with ML 1,33E+07 0
] Test2 Full Space 1,78E+07 0
I with ML 1,78E+07 0
e Test3 Full Space 1,78E+07 0
] with ML 1,78E+07 0
_ 750 Testl Full Space 2,65E+07 0
] with ML 2,65E+07 0
_ 900 Testl Full Space 2,73E+07 0
] with ML 2,73E+07 0
_ 1000 Testl Full Space 2,78E+07 0
I with ML 2,78E+07 0
e Test2 Full Space 2,78E+07 0
I with ML 2,78E+07 0
e Test3 Full Space 2,78E+07 0,79
I with ML 2,78E+07 0,79
] 1200 Testl Full Space 2,89E+07 0
e with ML 2,89E+07 0
] 1350 Testl Full Space 3,26E+07 6,59
e with ML 3,26E+07 6,59
_ 1700 Testl Full Space - -

e with ML 3,90E+07 7,67
e 2000 Testl Full Space - -

] with ML 5,57E+07 6,13
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Table 32:Problem size for increasing problem instances without and with using the RF Classifier for solving the planning problem

- 200 Test1 Full 6,24E+05 1,42E+06 2,72E+0 248,80
Space 6

- with 2,08E+05 5,08E+05 9,59E+0 89,30
ML 5

- Test2 Full 6,24E+05 1,42E+06 2,72E+0 247,14
Space 6

- with 2,08E+05 5,08E+05 9,59E+0 94,23
ML 5

- Test3 Full 6,24E+05 1,42E+06 2,72E+0 247,84
Space 6

- with 2,08E+05 5,08E+05 9,59E+0 93,00
ML 5

- 350 Test1 Full 1,09E+06 2,47E+06  4,73E+0 442,89
Space 6

- with 3,62E+05 8,83E+05 1,67E+0 157,41
ML 6

- 500 Test1 Full 1,56E+06 3,54E+06  6,80E+0 612,28
Space 6

- with 5,20E+05 1,27E+06  2,40E+0 222,75
ML 6

- Test2 Full 1,56E+06 3,54E+06 6,80E+0 604,48
Space 6

- with 5,20E+05 1,27E+06  2,40E+0 224,13
ML 6

- Test3 Full 1,56E+06 3,54E+06  6,80E+0 607,16
Space 6

- with 5,20E+05 1,27E+06  2,40E+0 225,13
ML 6

- 750 Test1 Full 2,33E+06 5,30E+06 1,02E+0 1019,3

Space 7 4

- with 3,89E+05 1,05E+06 1,94E+0 184,19
ML 6

- 900 Testl Full 2,81E+06 6,38E+06 1,22E+0 1290,6

Space 7 4

- with 4,68E+05 1,26E+06 2,33E+0 230,48
ML 6

- 1000 Test1 Full 3,10E+06 7,03E+06 1,35E+0 1437,4

Space 7 4

- with 5,16E+05 1,39E+06  2,57E+0 256,75
ML 6

- Test2 Full 3,10E+06 7,03E+06 1,35E+0 1399,6

Space 7 9
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1200

1350

1700

2000

Test3

Testl

Testl

Testl

Testl
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ML
Full
Space
with
ML
Full
Space
with
ML
Full
Space
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ML
Full
Space
with
ML
Full
Space
with
ML
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1,03E+06

3,10E+06

5,16E+05

3,74E+06

1,25E+06

4,21E+06

1,40E+06

5,30E+06

1,77E+06

6,24E+06

2,08E+06

2,52E+06

7,03E+06

1,39E+06

8,51E+06

3,04E+06

9,55E+06

3,42E+06

1,20E+07

4,31E+06

1,42E+07

5,07E+06

4,76E+0
6
1,35E+0
7
2,57E+0
6
1,63E+0
7
5,75E+0
6
1,83E+0
7
6,46E+0
6
2,31E+0
7
8,15E+0
6
2,72E+0
7
9,59E+0
6

451,52

1399,2

258,80

1883,9

530,63

2369,9

602,09

819,56

1040,0
0



Table 33: Comparison of the solutions of the full space model without and with the help of the RF Classifier for an increasing
number of therapies

200 Testl Full Space 7,09E+06 0
with ML 7,09E+06 0
Test2 Full Space 7,09E+06 0
with ML 7,09E+06 0
Test3 Full Space 7,09E+06 0
with ML 7,09E+06 0
350 Testl Full Space 1,24E+07 0
with ML 1,24E+07 0
500 Testl Full Space 1,33E+07 0
with ML 1,33E+07 0
Test2 Full Space 1,78E+07 0
with ML 1,78E+07 0
Test3 Full Space 1,78E+07 0
with ML 1,78E+07 0
750 Testl Full Space 2,65E+07 0
with ML 2,65E+07 0
900 Testl Full Space 2,73E+07 0
with ML 2,73E+07 0
1000 Testl Full Space 2,78E+07 0
with ML 2,78E+07 0
Test2 Full Space 2,78E+07 0
with ML 2,78E+07 0
Test3 Full Space 2,78E+07 0,79
with ML 2,78E+07 0,79
1200 Testl Full Space 2,89E+07 0
with ML 2,89E+07 0
1350 Testl Full Space 3,26E+07 6,59
with ML 3,26E+07 6,59

1700 Testl Full Space - -
with ML 3,90E+07 7,67

2000 Testl Full Space - -
with ML 5,57E+07 6,13
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Table 34: Problem size for increasing problem instances without and with using the SVM Classifier for solving the planning

problem

200

350

500

750

900

1000

Testl

Test2

Test3

Testl

Testl

Test2

Test3

Testl

Testl

Testl

Test2

Full
Space
with
ML
Full
Space
with
ML
Full
Space
with
ML
Full
Space
with
ML
Full
Space
with
ML
Full
Space
with
ML
Full
Space
with
ML
Full
Space
with
ML
Full
Space
with
ML
Full
Space
with
ML
Full
Space

89

6,24E+05

2,08E+05

6,24E+05

2,08E+05

6,24E+05

2,08E+05

1,09E+06

3,62E+05

1,56E+06

5,20E+05

1,56E+06

5,20E+05

1,56E+06

5,20E+05

2,33E+06

3,89E+05

2,81E+06

4,68E+05

3,10E+06

5,16E+05

3,10E+06

1,42E+06

5,08E+05

1,42E+06

5,08E+05

1,42E+06

5,08E+05

2,47E+06

8,83E+05

3,54E+06

1,27E+06

3,54E+06

1,27E+06

3,54E+06

1,27E+06

5,30E+06

1,05E+06

6,38E+06

1,26E+06

7,03E+06

1,39E+06

7,03E+06

2,72E+0
6
9,59E+0
5
2,72E+0
6
9,59E+0
5
2,72E+0
6
9,59E+0
5
4,73E+0
6
1,67E+0
6
6,80E+0
6
2,40E+0
6
6,80E+0
6
2,40E+0
6
6,80E+0
6
2,40E+0
6
1,02E+0
7
1,94E+0
6
1,22E+0
7
2,33E+0
6
1,35E+0
7
2,57E+0
6
1,35E+0
7

248,80

87,58

247,14

88,48

247,84

87,98

442,89

150,44

612,28

225,41

604,48

222,19

607,16

223,70

1019,3

184,48

1290,6

223,47

1437,4

246,39

1399,6
9



1200

1350

1700

2000

Test3

Testl

Testl

Testl

Testl

with
ML
Full
Space
with
ML
Full
Space
with
ML
Full
Space
with
ML
Full
Space
with
ML
Full
Space
with
ML

90

1,03E+06

3,10E+06

5,16E+05

3,74E+06

1,25E+06

4,21E+06

1,40E+06

5,30E+06

1,77E+06

6,24E+06

2,08E+06

2,52E+06

7,03E+06

1,39E+06

8,51E+06

3,04E+06

9,55E+06

3,42E+06

1,20E+07

4,31E+06

1,42E+07

5,07E+06

4,76E+0
6
1,35E+0
7
2,57E+0
6
1,63E+0
7
5,75E+0
6
1,83E+0
7
6,46E+0
6
2,31E+0
7
8,15E+0
6
2,72E+0
7
9,59E+0
6

450,59

1399,2

253,84

1883,9

551,19

2369,9

611,91

765,13

1145,9
8



Table 35: Comparison of the solutions of the full space model without and with the help of the SVM Classifier for an increasing

number of therapies

200

350

500

750

900

1000

1200

1350

1700

2000

Testl

Test2

Test3

Testl

Testl

Test2

Test3

Testl

Testl

Testl

Test2

Test3

Testl

Testl

Testl

Testl

Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
Full Space
with ML
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7,09E+06
7,09E+06
7,09E+06
7,09E+06
7,09E+06
7,09E+06
1,24E+07
1,24E+07
1,33E+07
1,33E+07
1,78E+07
1,78E+07
1,78E+07
1,78E+07
2,65E+07
2,65E+07
2,73E+07
2,73E+07
2,78E+07
2,78E+07
2,78E+07
2,78E+07
2,78E+07
2,78E+07
2,89E+07
2,89E+07
3,26E+07
3,26E+07

3,90E+07

5,57E+07
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0,79
0,79
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The tables and graphs in section 4.2. show the results for the data models when they are
fed, with the constrained in manufacturing facilities, MILP solutions. The input features
that are used to fit the data are the Demand, Capacity, Leukapheresis site, and the Peak
in Demand like before. The classifiers behave in the same manner but have better results
than the unconstrained model. The data for the constrained model is easier for the data
models to fit, due to the fact that the ML algorithms have to pick only two from the six
manufacturing facilities rather than from all six, which is the case in the unconstrained

model.

From the solution tables, it can be seen that for every test scenario the data model can
always predict the best manufacturing facilities that are needed for the specific demand
since the solutions after the reduction from the data model are the same as the full space
model. Specifically, the MILP solutions after the prediction of the planning problem by
the data models have the same cost as the full space model. Moreover, like the
unconstrained model, for demands higher than 1500 patients/year, Cplex cannot find a
solution due to insufficient memory. Again, after reducing the complexity of the MILP
model with the ML models, solutions can be discovered. In the tables and graphs that

depict the statistics for constraints, variables, and CPU times (in seconds), it is evident that
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the data model does a really good job of reducing the complexity of the MILP model. For
the most demand scenarios, an average 65% reduction in constraints and discrete
variables can be seen, and it can reach as high as 83% (750test1, 900test1, 1000test1,
1000test3). The time of the solutions in CPU time is decreased for every scenario as well,
especially in the higher demand scenarios. Lastly, all three classifiers yield approximately

the same results.

Still, same as before, larger instances than 2000 therapies/year couldn’t be tested, because

there are no data to train the data models.
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7. Conclusions and Future work

In this paper, in order to combat the high complexity and therefore the really high
computational cost of CAR T-cells’ supply chain optimization, which makes the solution
of the optimization problem impossible to be done in high-demand scenarios, in personal
computers, machine learning approaches were used. Data from the original MILP model
were used to train three different classification models and these were used to solve the
planning aspect of the problem (predict the manufacturing facilities that need to be

established for a specific demand scenario).

Analyzing the results of the previous section can reach several conclusions. Firstly, the ML
classifiers can solve the planning problem with high accuracy, especially in the constrained
approach, giving the same solution as the full space model. So, the lower level
(scheduling) of the problem always comes to a feasible or optimal solution for the
scenarios tested. Furthermore, due to the reduction of the complexity, instances where
high demand is present and the full space model cannot solve the optimization problem,
the problem can be compacted to smaller instances where fewer manufacturing facilities
are available and then can be solved from the MILP model. This shows that using ML
algorithms to decompose the problem can lead to solving higher demand instances with
the right data.

In addition, seeing as all three of the classifiers work really well with similar results, it can
be concluded that the classifier and therefore the way that machine learning is being
utilized does not have a big impact on the results. However, Random Forest can be trained
in way less time than the other two classifiers so it can be considered that it has the
advantage over the three, although when the trained model is being used, the differences

are small to non-existent.

From this work, we can conclude that Machine Learning techniques can be utilized in the
CAR T-cell's supply chain optimization. In this work, the classifiers were used for the
planning of the supply chain, although it is a good indication that later, different ML
models that predict the different decision variables of the problem can replace the MILP

model altogether, when sufficient data for the supply chain are available.
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Meta-Heuristic approaches can also be utilized in the optimization of the supply chain
problem as well. These techniques can guide the search process strategically to find near-

optimal solutions and they should be tried for optimizing this supply chain in the future.
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8. Appendices

Appendix A

Mathematical Formulation of MILP model used to solve the CAR T-cell therapy
supply chain optimization problem, the corresponding nomenclature, and the

capacity of the manufacturing facilities

minTOTCOST = ¥, CTM,, + ¥, TTC, + %, CQC, (A-1)
CTMp _ NT*Zm(Elm*I(VCI:Mm+CVMm)) Vp (A-2)
RATIOy,, = ZP%Z:"” Vmt (A-3)
TTC, = Yemjt Ypemjt * Ulemj + Zmnje Y 2pmpnje * UZmpj » VP (A-4)
INCpep = OUTCpersris VD)t (A-5)
LSRy comjt = LSAp cm, je+TT1, VD, €M, j,t (A-6)
OUTCper = Yimj LSRy e jc» Vs O t (A-7)
INMy e = Se LSAy com e, VD, M, (A-8)
INMp i = OUT My i t+rmre+TOQC VP, M, (A-9)
OUTMy e = S i MSOp 1, VP, M, (A-10)
FTDpmnj: = MSOp,m,h,j,HTTZj ,Vp,m,h,j,t (A-11)
INHy e = S i FTD e VP, ot (A-12)
CAPy, = FCAPy, — ¥y INM, 1, ,¥p,m, t (A-13)
Y INMy e — ¥ OUTM, 1 < CAPyy ,¥p,m, t (A-14)
Xl.m < E1,,Vc,m (A-15)
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sz'h < Elm,Vm,h

Zc,m,j,t Ylp,c,m,j,t <1 Vp, G m'j' t

Zm,h,j,t sz,m,h,j,t < 1) Vp; m, hﬁj} t

YmjtY2pmn1je < DeINCpere
Ymjt Y2pmnzje < LeINCpeot
Ymjt Y2pmns,je < LeINCpest
YmjtY2pmnaje < XeINCpear
YpntINHype = NP ,Vp,h,t

Y1, cmjt < X1lem,Vp,c,m,j,t

sz,m,h,j,t S sz,h ) Vpl ml hljl t

, VP

,Vp

,Vp

VD

LSRp,C,m,j,t > Ylp,c,m,j,t * FMIN, Vp,c,m,j,t

LSRy cm,jt < Y1pemje * FMAX, Vp,c,m,j,t

MSOpmpnjt = Y2pmnje * FMIN,Vp,m, h,j,t

MSOpmpnjit < Y2pmpnjc * FMAX,Vp,m,h,j,t

DURMp,m,t = Zt INMp,m,t—l - Zt OUTMp'm't + OUTMp’m’t ,Vp, m, t

STT, = %0t INCpop * t, VD
CTT, = Yyt INHp s * t VD
STT, < CTT, ,Vp

TRT, = CTT, — STT, ,Vp

TRT, < 19
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TRTy

ATRT, = ¥, —2 (A-36)

Equation (A-1) gives the objective function of the MILP problem, which minimizes the

total cost while satisfying a series of constraints.
Equation (A-2) gives the manufacturing cost per therapy p.
Equation (A-3) calculates the percentage of utilization of facility m at time t.

Equation (A-4) gives the total transportation cost of all therapies p from leukapheresis c

to manufacturing m and from manufacturing m to hospital h.

Equations (A-5) to (A-12) are the material balances of the model
Equations (A-13) to (A-14) give the capacity constraints

Equations (A-15) to (A-22) show the constraints of the network structure.

Equation (A-23) ensures that the total rate of flow of every therapy p arriving at hospital

h is equal to the corresponding demand.
Equations (A-24) to (A-29) are the logical constraints for transportation flows.

Finally, Equations (A-30) to (A-36) are the time constraints.

Nomenclature:
Indices:

c Leukapheresis sites
h Hospitals

j Transport modes

m Manufacturing sites
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Parameters:
TOTCOST
CMIm
CQCp
CVMm
TT1j
TT2j

Ulem,j

U2m,h,j
FCAPm
INCp,c,t
FMIN
FMAX
NP

NT

TLS
TMFE

TAD

Patients

Time points

Total cost of all the therapies p

Capital investment for manufacturing facility m

QC cost when in house

Fixed variable cost for manufacturing facility m

Transport time from leukapheresis to manufacturing site via transport mode j
Transport time from manufacturing site m to hospital h via transport mode j

Unit transport cost from leukapheresis site ¢ to manufacturing site m via transport

mode j

Unit transport cost from manufacturing site m to hospital h via transport mode j
Total capacity of manufacturing facility m

Demand therapy p arriving for leukapheresis c at time t

Minimum flow

Maximum flow

Number of therapies

Number of time points

Duration of leukapheresis

Duration of manufacturing excluding QC

Duration of administration
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Variables

CTMp

TTCp
OUTCp,c,t+TLS

LSRp,cm,j,t

LSAp,cm,jt+TT1j

INMp m,t

OUTMpm,t+TMF

E

MSOpm,q,j,t

FTDpm,h,jt

INHp,h,t

DURMpm,t

RATIOmM,t

CAPm,t

Total manufacturing cost of therapy p
Total transport cost per therapy p
Therapy p leaving leukapheresis site ¢ at time t

Therapy p that is leaving leukapheresis site ¢ and is transported to

manufacturing site m via transport mode j at time t

Therapy p that left leukapheresis site ¢ arriving at manufacturing site m via

transport mode j at time t
Therapy p arriving at manufacturing site m at time t

Therapy p leaving manufacturing site m at time t

Therapy p leaving manufacturing site m and is transported to hospital h via

transport mode j at time t

Final therapy that left from manufacturing site m arriving at hospital h via

transport mode j at time t
Therapy p arriving at hospital h at time t

1 only for the time points t at which a therapy p is manufactured in facility

m
Percentage of utilization of manufacturing site m at time t

Capacity of manufacturing facility m at time t
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STTp Starting time of treatment for patient p

CTTp Completion time of treatment for patient p

TRTp Total return time of therapy p

ATRTp Average return time of all the therapies p

Elm Binary variable to denote if manufacturing facility m is established

X1le,m Binary variable to denote if a match between leukapheresis site ¢ and

manufacturing facility m is established

X2m,h Binary variable to denote if a match between manufacturing facility m and

hospital h is established

Yip,cm,jt Binary variable to denote if sample p is transferred from leukapheresis site ¢

to manufacturing facility m via transport mode j at time t

Y2p,m,h,jt Binary variable to denote if sample p is transferred from manufacturing

facility m to hospital h via transport mode j at time t

Table 36: Capacity of manufacturing facilities

Manufacturing Facility Capacity

m1l 4

m2 31
m3 10
4
31
10
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Demand

Appendix B

Demand Profiles used for testing the ML algorithms on the prediction of manufacturing
facilities and the reduction of the MILP model.
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Figure 33: Demand Profiles for 200 Therapies per year
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