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Abstract

In classical systems, chaos is clearly defined via the behavior of trajectories. In quantum

systems with a classical analogue one finds that the transition from regular to chaotic

dynamics is signified by a change in the spectral statistics. This has been found to remain

true for quantum systems with no classical analogue, including many-body systems. Fur-

thermore, quantum chaotic systems explore all the allowed configurations in the Hilbert

space, i.e. they are ergodic, while integrable systems, and systems in the many-body

localized phase, are restricted to a certain subspace of the available phase space, and

hence strongly break ergodicity. In this dissertation, we study the intermediate behavior

between ergodicity and localization, i.e. the weak breaking of ergodicity. The model

examined is the PXP spin chain model, where spins are allowed to flip only under certain

kinetic constraints. We start by reproducing some already established results. First, we

explore the eigenstate thermalization hypothesis (ETH) for this model and demonstrate

the existence of a small number of states, throughout the PXP spectrum, that violate

the ETH. Then we study the level-spacing statistics of the model, a well-known quantum

chaos diagnostic, which turns out to be close to semi-Poisson and approach Wigner–Dyson

statistics for large system sizes. Moreover, we examine various aspects of the model that

have not been studied before. For example, the eigenvector component statistics, another

quantum chaos diagnostic, for the PXP model turn out to be non-Gaussian. Finally, we

perform a quench, in order to study how the energy spreads throughout the system, and

observe ballistic fronts.

Keywords: quantum chaos, quantum many-body scars, weak ergodicity break-

ing, PXP, spin chain model, eigenstate thermalization hypothesis, quantum

thermalization, level-spacing statistics, eigenvector component statistics, quan-

tum quench, energy density front
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Abstract in Greek

Σε κλασικά συστήματα, το χαός ορίζεται από την συμπεριφορά των τροχιών. Σε κβαντικά

δυναμικά συστήματα με κλασικό ανάλογο, η μετάβαση από κανονική σε χαοτική δυναμική,

σηματοδοτείται από αλλαγή στην στατιστική των ιδιοενεργειών. Αυτό ισχύει ακόμη και

σε κβαντικά συστήματα χωρίς κλασικό ανάλογο, συμπεριλαμβανομένων των συστημάτων

πολλών σωμάτων. Επιπλέον, τα κβαντικά χαοτικά συστήμα εξερευνούν όλο τον φασικό

χώρο διαθέσιμο, δηλαδή είναι εργοδικά, ενώ τα ολοκληρώσιμα συστήματα, και συστήματα

σε MBL φάση, είναι περιορισμένα σε ένα συγκεκριμένο μέρος του συνολικού διαθέσιμου

φασικού χώρου, και επομένως σπάνε ισχυρά την εργοδικότητα. Σε αυτή την εργασία με-

λετάμε την ενδιάμεση συμπεριφορά μεταξύ της εργοδικότητας και της μη εργοδικότητας,

δηλαδή το ασθενές σπάσιμο της εργοδικότητας. Το μοντελό που μελετάται είναι η PXP

σπιν αλυσίδα, όπου τα σπιν μπορούν να αλλάξουν μόνο υπό κάποιες συνθήκες. Ξεκινάμε

αναπαράγοντας κάποια ήδη γνωστά αποτελέσματα. Πρώτα ελέγχουμε την εγκυρότητα μίας

βασικής υπόθεσης στην θεωρία της κβαντικής δυναμικής πολλών σωμάτων, την λεγόμενη

eigenstate thermalization hypothesis (ETH), επιβεβαιώνοντας την ύπαρξη κάποιων κατα-

στάσεων που σπάνε την ETH. ΄Επειτα, μελετάμε την στατιστική των αποστάσεων μεταξύ

των ιδιοενεργειών του μοντέλου, ένα γνωστό τεστ για τον αν ένα κβαντικό σύστημα είναι

χαοτικό ή όχι. Επίσης, ερευνούμε διάφορες ιδιότητες του μοντέλου που δεν έχουν εξε-

τασθεί. Για παράδειγμα, η στατιστική των συνιστωσών των ιδιοδιανυσμάτων για το PXP

μοντέλο είναι μη γκαουσιανή. Τέλος, μελετάμε την διάδοση της ενέργειας στο σύστημα και

παρατηρούμε γραμμική συμπεριφορά.

Λέξεις κλειδιά: κβαντικό χάος, εργοδικότητα, κβαντικές ουλές, PXP,

σπιν αλυσίδα, κβαντική θερμοποίηση
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Chapter 1

Introduction

Chaos theory became an established science in the second half of the 20th century, even

though it was proposed as early as 1880 by Henri Poincare [1]. This theory describes a

certain class of dynamical systems that may exhibit high sensitivity to initial conditions.

Even a minor perturbation can lead to an exponential growth of perturbations in the

initial conditions, resulting in a completely different trajectory. As a result of this sen-

sitivity, the behavior of these so-called chaotic systems appears random, which seems in

contradiction to the fact that these systems are deterministic.

At the same time, quantum mechanics, already developed in the first half of the 20th

century, challenged the classifications based on the behavior of the trajectories. Quantum

chaos studies this incompatibility: how chaotic classical systems can be described in terms

of quantum theory. It is now generally accepted that in quantum systems the transition

from regular to chaotic dynamics is signified by a change in the spectral statistics [2].

More recently, significant efforts have been focused on understanding quantum ther-

malization, i.e. how isolated quantum systems approach equilibrium. This interest has

come hand in hand with the experimental advances in controllable, quantum-coherent

systems of ultracold atoms [3, 4], trapped ions [5], and nitrogen-vacancy spins in dia-

mond [6]. These systems allow one to realize highly tunable lattice models of interacting

spins, bosons, or fermions, and to characterize their quantum thermalization [7].

The process of thermalization is believed to be governed by the properties of the

system’s many-body eigenstates via the eigenstate thermalization hypothesis (ETH). Al-

though there is no formal proof for the ETH, it has been demonstrated numerically for

various system of spins, fermions and bosons, in one (1D) and two dimensions (2D) [8, 9].

More specifically, it is suggested that in many cases when the system thermalizes, all of

its highly excited states obey the ETH [10], i.e., they are typical thermal states and akin

to random vectors.

However, not all quantum systems obey the ETH. In integrable systems, and systems
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in the many-body localized phase [11, 12], the ETH is strongly violated, because of

the presence of an extensive number of operators Ki, which commute with the system’s

Hamiltoninian [H,Ki] = 0. The presence of these operators prevents the system from

exploring all allowed configurations in the Hilbert space, leading to strong ergodicity

breaking.

Despite the progress in theoretical understanding of ergodic systems, and systems

that strongly violate the ETH, much less in known about the existence of intermedi-

ate behaviors. Can ergodicity be broken weakly? Indeed, recently, an example of this

was discovered experimentally [13]. A Rydberg atom platform [13, 14, 15] was used to

realize a quantum model with kinetic constraints induced by strong nearest-neighbor re-

pulsion between atoms in excited states. In this thesis we numerically study the effective

Hamiltonian for this system, according to [16], the so-called PXP.

In Section 1.1, we describe the PXP model. Then, in Chapters 2-3, we reproduce

some already established results. In the former, we explore ETH for this model and

demonstrate the existence of a small number of states, throughout the PXP spectrum,

that violate the ETH. In the latter, we study the level-spacing statistics of the model, a

well-known diagnostic for quantum chaos. Moreover, in Chapters 4-5, we study various

aspects of the model that have not been studied before. In Chapter 4, we study the eigen-

vector component statistics, which turn out to be non-Gaussian. This non-Gaussianity is

unexpected since chaotic systems have eigenvectors akin to Gaussian random vectors. In

Chapter 5, we perform a quench on the system and study its response. By studying the

spreading of energy, a conserved quantity, throughout our system, we can make conclu-

sions about whether the system is diffusive or non-diffusive. The ballistic (linear) fronts

observed also come as a surprise since the system, prepared in a generic state, is diffusive.

1.1 Kinetically Constrained PXP Model

We study the following spin-1/2 Hamiltonian which models a Rydberg atom chain in the

limit where the nearest-neighbor interaction is much larger than the detuning and the

Rabi frequency [17, 18].

HPXP =
L∑
i=1

Pi−1XiPi+1, (1.1)

where Xi, Yi, Zi are the Pauli operators, L denotes the length of the chain and we work

in units ~ = 1. We assume that each atom can be either in the ground state, |◦〉, or

the excited (Rydberg) state, |•〉, of a single atom. The operator Xi = |◦〉 〈•| + |•〉 〈◦|
creates or removes an excitation at site i, and projectors Pi = |◦〉 〈◦| = (1 − Zi)/2,

12



written in terms of Zi = |•〉 〈•| − |◦〉 〈◦|, ensure that two adjacent atoms are not in the

excited state simultaneously. For example, P1X2P3 acting on |◦ ◦ ◦〉 gives |◦ • ◦〉, while

it annihilates any of the configurations |• ◦ ◦〉, |◦ ◦ •〉, |• ◦ •〉. For the derivation of the

PXP Hamiltonian see [16].

The Hamiltonian in Eq. (1.1) does not allow for relaxation of several adjacent Rydberg

atoms. In other words, states of the form |· · · • • · · ·〉 break our chain into two parts that

are completely independent. The Hilbert space is broken into disconnected parts, and

often instead of studying the whole Hilbert space we study only the reduced Hilbert space

without any adjacent Rydberg atoms. With that constraint, and for periodic boundary

conditions (PBC), the Hilbert space dimension is equal to D = FL−1 + FL+1, where Fn

is the nth Fibonacci number. On the other hand, for open boundary conditions (OBC),

D = FL+2. Thus, the Hilbert space is very different from, for example, the spin-1/2

chain where the number of states grows as 2L. Also, the model of Eq. (1.1) has spatial

inversion symmetry I which maps i → L − i + 1, as well as translation symmetry, with

PBC. For some calculations, we will explicitly resolve these symmetries in order to fully

diagonalize systems with up to L = 32 sites.

Experiment [13] and simulations on small systems [19] have shown that the relaxation

under time evolution with the Hamiltonian in Eq. (1.1) strongly depends on the initial

state of the system. In particular, starting from period-2 charge density wave states

|Z2〉 = |• ◦ • ◦ · · ·〉 , |Z′2〉 = |◦ • ◦ • · · ·〉 ,

the system shows surprising long-time oscillations, while starting from the state |◦〉 the

system quickly relaxes and shows no revivals. The latter behavior is characteristic of

a thermalizing system, while the former might suggest that the system is non-ergodic.

Given that the model in Eq. (1.1), with PBC imposed, is translation invariant and has no

disorder, many-body localization cannot be the cause of this weak breaking of ergodicity.
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Chapter 2

Thermalization and Special

Eigenstates

In this chapter, reproducing results from [16], we investigate properties of eigenstates of

the Hamiltonian in Eq. (1.1) using exact diagonalization methods [20]. First, we directly

test the ETH. We find that the majority of the eigenstates appear thermal, apart from

a small subset of special eigenstates that strongly violate ETH. We will call these states,

following [16], quantum many-body scars (QMBSs). Then, we calculate the overlap of

the eigenstates of the PXP Hamiltonian with the |Z2〉 product state. We observe that

there exists a set of eigenstates with anomalously large overlap. The states at the top of

the tower-like structures coincide with the aforementioned special eigenstates.

2.1 Exact diagonalization methods

Exactly diagonalizing a spin chain model is a challenging task because of the dimension-

ality of the matrix representing the Hamiltonian of the model. For a spin-1/2 model,

like PXP, where each site has 2 possible configurations, up or down, the Hilbert space

dimension grows as D = 2L, which means that for L = 30 we have D = 1, 073, 741, 824.

However, for the PXP model, because of the model being local and due to the sym-

metries that it has, the matrix representing the Hamiltonian of the system is sparse and

block-diagonal. The latter means that the Hamiltonian is broken up into pieces that are

disconnected, with each block having fixed quantum numbers relating to the symmetries

of the model. For example, for inversion symmetry, there exists an eigenbasis where the

Hamiltonian H of the model splits into a symmetric (+) block and an antisymmetric (−)

block

H =

[
+

−

]
.

15



Now, instead of diagonalizing the full H we can focus on the + block, for example, and

diagonalize this instead. This reduces the dimension by half. We can do this for the other

symmetries as well. The PXP model, Eq. (1.1), with PBC, has translational symmetry

and we can resolve this symmetry by further restricting the Hilbert space to the zero-

momentum (0) sector. And finally, we can insist that there are no adjacent Rydberg

excitations in our system. All of the above, reduce the Hilbert space dimension to, as

we saw, D = FL−1 + FL+1. Therefore, for L = 30, the dimension is reduced down to

1, 860, 498.

We implement [20] to do the above restrictions to the zero-momentum (0), inversion

symmetric (+), and with no adjacent excitations sector. The code, written in Julia, can

be found in the Appendix. We verified that the Hamiltonian is correct by starting with

the full PXP Hamiltonian, projecting to the lower subspaces, and then comparing the two

sets of eigenvalues. In Fig. 2.1, we see a heatmap of the PXP Hamiltonian for L = 10.

The dimension of the reduced Hilbert space, i.e. zero-momentum, inversion symmetric,

no adjacent excitations sector, in this case is D = 14, which is significantly smaller than

the full Hamiltonian which would have dimension D = 210 = 1, 024.

2.2 Breakdown of ETH in special eigenstates

Thermalization in ergodic systems is explained by the powerful conjecture regarding the

nature of eigenstates: the eigenstate thermalization hypothesis (ETH) [21, 22, 9]. The

ETH states that in ergodic systems, the individual excited eigenstates have thermal

expectation values of physical observables, which are identical to those obtained using

the microcanonical and Gibbs ensembles. The expectation value of a physical observable

associated with an operator O is given by the diagonal matrix element Oαα = 〈α|O |α〉,
where |α〉 is an eigenstate of H, H |α〉 = Eα |α〉. Furthermore, ETH can be formulated

as an ansatz for the matrix elements of observables in the basis of the eigenstates of the

Hamiltonian [23, 24, 11]:

Omn = O(Ē)δmn + e−S(Ē)/2fO(Ē, ω)Rmn, (2.1)

where Ē ≡ (Em+En)/2, ω ≡ En−Em, and S(E) is the thermodynamic entropy at energy

E. Crucially, O(Ē) and fO(Ē, ω) are smooth functions of their arguments, the value O(Ē)

is identical to the expectation value of the microcanonical ensemble at energy E and Rnm

is a random real or complex variable with zero mean and unit variance (R2
mn = 1 or

|Rmn|2 = 1, respectively). While there is no rigorous understanding of which observables

satisfy the ETH and which do not, it is generally expected that Eq. (2.1) holds for all

16



Figure 2.1: Heatmap of the values of the matrix that represents the PXP Hamiltonian
for L = 10, in the zero-momentum, inversion-symmetric, no adjacent excitations sector.
The dimension of the reduced Hilbert space in this case is D = 14, and therefore the
Hamiltonian is a matrix of dimension 14× 14.

physical observables. We note that it has been verified in several low-dimensional models

[25, 26, 27], while it was found to break down in many-body localized systems [28, 29].

In Fig. 2.2 we test the ansatz (2.1) for the diagonal matrix elements, also known as

eigenstate expectation values (EEVs), of the local operator OZ = (1/L)
∑L

j=1 Zj in the

PXP model in Eq. (1.1). Fig. 2.2 shows that most of the expectation values are close

to the canonical prediction O(Ē), which is calculated from the Gibbs states defined by

the density matrix ρ ∝ exp(−βH). The value of β ∈ (−∞,+∞) is extracted by relating

the observable expectation value to the mean energy in the Gibbs ensemble. However,

in Fig. 2.2, we can also see that are some states that clearly violate the ETH. For OBC,

the number of these states is L + 1, while for PBC, the number is L/2 + 1 in the zero-

momentum sector, and L/2 in the π-momentum sector, resulting in the same total count

[16]. These special states, can be viewed as parent states that define the ETH-breaking

“towers” visible in the figure.
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Figure 2.2: Strong violation of the ETH revealed by the eigenstate expectation values
〈OZ〉, with OZ = (1/L)

∑L
j=1 Zj, plotted as a function of energy. While the majority of

the points are concentrated around the canonical ensemble prediction, the band of special
eigenstates is also clearly visible. For these eigenstates, 〈OZ〉 strongly deviates from the
canonical prediction at the corresponding energy, see Section 2.2.1 for the calculation of
the canonical curve. The system contains L = 28 atoms in the zero-momentum, inversion-
symmetric, no adjacent excitations sector. We see a total of 15, L/2+1 for L = 28, special
eigenstates (one of them shown with an arrow), at the top of the tower-like structures.

2.2.1 Canonical curve

In order to calculate the thermal curve, we start with the construction of the reduced

PXP Hamiltonian (Section 2.1) and with a similar construction for the OZ operator in

the eigenstate basis of the Hamiltonian. Then, for various values of β we calculate the

density matrix ρ = 1
Z e
−βH for the system. In the Hamiltonian eigenstate basis, this

operator simplifies to a diagonal operator with diagonal elements

ρii =
1

Z
e−βEi ,

with Z =
∑

i e
−βEi , where the sum is over the eigenenergies of the Hamiltonian {Ej}j.

The expectation value of an operator A, in a mixed state described by the density operator

18



ρ can be calculated using the trace

〈A〉 = Tr(ρA).

Therfore, in order to calculate the expectation values of the energy, 〈E〉, and of the

observable, 〈OZ〉, we use

〈E〉 = Tr(ρ V THV ),

〈OZ〉 = Tr(ρ V TOZV ),

where we have used V T • V , with V the matrix of the eigenvectors of H, in order to

express the operator in the eigenstate basis of H.

2.3 Scaling of the standard deviation of OZ EEVs

Then, we looked at how the standard deviation of the EEVs of the OZ = (1/L)
∑L

j=1 Zj

operator scales as a function of the dimension of the Hilbert space. We do this in the

following way. First, we take the points in Fig. 2.2, and we split the energy E in intervals

or “windows”. For each window, we calculate the mean, and subtract it from all the

points in the window, such that the distribution is centered around zero for all values of

E. Finally, we calculate the standard deviation σ of this distribution, which is essentially

the “width” of the EEV curve, in Fig. 2.2. For a chaotic system, due to the ETH, we

expect this width to scale as

σ ∼ D−1/2,

with σ → 0 in the thermodynamic limit D →∞.

For the PXP model, in Fig. 2.3, we plot the standard deviation σ for various system

sizes L as a function of the Hilbert space dimension D. We perform a regression only on

the last 3 points, because the previous ones do not seem to fall on a straight line. We

have

σ ∼ D−0.23,

for the system sizes we have been able to reach. In [16], the corresponding exponent

is −0.34. The discrepancy is probably due to the fact that we were limited up to sizes

L = 30. However, the important observation that we verified is that this scaling is indeed

slower than expected for a chaotic system.
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Figure 2.3: Standard deviation σ of the EEVs of the OZ = (1/L)
∑L

j=1 Zj operator for
various system sizes L, as a function of the dimension of the Hilbert space D in the
zero-momentum, inversion symmetric, no adjacent excitations sector. The regression is
performed only on the last 3 points.

2.4 Overlap of special eigenstates with product states

The PXP model breaks the ETH because of the existence of a relatively small number

of highly atypical, nonthermal eigenstates. These states are distinguished by anomalous

matrix elements of local observables (Fig. 2.2) as well as subthermal entanglement en-

tropy (see [16], section III. B.). However, since we have L + 1 such states among the

exponentially many thermalizing eigenstates, one might expect that these states do not

have direct physical relevance, as they might be hidden by the large number of typical

eigenstates. Below we show that this is not the case because these special eigenstates have

anomalously high overlaps with certain product states. This implies that superpositions

of special eigenstates can be experimentally prepared and probed using a global quench.

For example, a class of product states which was studied in recent experiments [13] are

the charge-density-wave (CDW) states

|Zk〉 = |· · · • ◦ · · · ◦︸ ︷︷ ︸
k

• · · ·〉
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Figure 2.4: Overlap of all the different energy eigenstates |ψ〉 of the PXP Hamiltonian,
with the |Z2〉 product state. Data are shown for L = 28 sites in the zero-momentum,
inversion symmetric, no adjacent excitations sector. The states with high overlap with
the |Z2〉 state, lying on top of the “towers” observed, are identified with the states at the
top of the ETH-breaking “towers” in Fig. 2.2, one of which is shown with an arrow.

where the atoms in the excited state are separated by k − 1 atoms in the ground state.

In this section we focus on the period-2 CDW (Z2 or Néel) state.

Fig. 2.4 shows the squared overlap between eigenstates in the PXP model and the |Z2〉
product state. From this plot, we see a subset of eigenstates that have a high overlap with

the |Z2〉 product state. Looking at the x-axis, we can identify these special states with

the ones that break ETH in Fig. 2.2, as well as the ones with subthermal entanglement

entropy [16].
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Chapter 3

Level statistics

In this chapter, we reproduce results about the level-spacing statistics of the PXP model

found in [16]. The level-spacing statistics of a Hamiltonian is a diagnostic for whether

the system is ergodic or integrable. Essentialy, we are studying the distribution of the

differences between adjacent energy levels (eigenvalues of the Hamiltonian). Given the

Hamiltonian of a finite-dimensional system, we sort the energies of the full spectrum in

ascending order

E1 ≤ E2 ≤ · · · ED−1 ≤ ED,

where D is the dimension of the Hilbert space, as well as the number of eigenvalues

{Ei}Di=1. Then, we calculate the D − 1 spacings

δn = En − En−1,

and divide them by the local mean level spacing, which is an average of sufficiently many

spacings around the energy where the spacing is located at. This procedure is called the

unfolding of the spectrum and yields normalized spacings

sn =
δn

∆En
,

where the average is one ( 1
N

∑
n sn = 1). Then, one can study the histrograms of the

spacings, i.e. p(s). By normalizing using the local mean we have removed system size

dependence, since otherwise sn ∝ 1
N

. For integrable systems, the spacing is highly de-

generate, the eigenvalues are uncorrelated with each other and the normalized spacing

follows Poisson statistics. On the other hand, for non-integrable systems, the spacing is

not degenerate because of level repulsion, and the level statistics are described by random

matrix theory (RMT) [30], and more specifically they follow the Wigner–Dyson distri-

bution. The latter was conjectured in 1984 by Bohigas, Giannoni and Schmit and since
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then has been tested and confirmed in many different setups. To date, only non-generic

counterexamples are known to violate this conjecture [11]. Therefore, the emergence of

Wigner–Dyson statistics for the level-spacing is often considered as a defining property

of quantum chaotic systems, whether these systems have a classical counterpart or not.

Because the unfolding procedure can reduce the precision of the method [31], another

method has proven more widely used. In order to define a better observable, which

appears to be numerically the most accessible quantity that shows a clear, well-understood

difference between the diffusive (chaotic) and non-diffusive phase (integrable), Oganesyan

and Huse [32] proposed the quantity

rn ≡
min{δn, δn+1}
max{δn, δn+1}

,

where 0 ≤ rn ≤ 1. The average of the distribution of this quantity was shown [33] to be

a stable and good predictor of quantum chaos. In Table 3.1, we see the different values

for the two cases. For an integrable system, we have Poisson statistics and an average

of 〈r〉 ≈ 0.38629, while for a non-integrable system with time-reversal symmetry, the

statistics are that of the Gaussian orthogonal ensemble (GOE) and 〈r〉 ≈ 0.53590. For

the GOE, we define an ensemble of random matrices drawn from the Gaussian distribution

[11]

P (Ĥ) ∝ exp

[
− 1

2a2
Tr Ĥ2

]
,

where a sets the overall energy scale, and all entries in the Hamiltonian are real and

satisfy Hij = Hji. For a description of the unitary and symplectic ensembles see [11].

The Poisson and the GOE curves are surmised, in [33], to be

Poisson: p(r) =
2

(1 + r)2
,

GOE: p(r) =
27

4

r + r2

(1 + r + r2)5/2
.

In Fig. 3.1, for the two cases, we compare the theoretical prediction (solid curve) with

the numerical calculation (histogram) for random matrices of size D = 6, 000. For the

Poisson case, we generate a diagonal matrix with real random entries, while for the GOE

case, we generate a random matrix M of size 6, 000 × 6, 000 with real entries, and then

symmetrize it using (M +MT )/2.
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ensemble Poisson GOE
observable

〈r〉 2 ln 2− 1 4− 2
√

3
≈ 0.38629 ≈ 0.53590

Table 3.1: Values of the average 〈r〉 for Poisson and GOE statistics, according to [33].

3.1 PXP

A possible explanation for the observed ergodicity breaking and the special states of

the PXP model could be some approximate integrability. To investigate this possibility

we can study the level statistics of the model. Fig. 3.2 reveals that even for relatively

small system size, there is pronounced level repulsion and that the distribution is neither

Poisson nor GOE. In fact, it was demonstrated in [18] that, for system sizes L ≤ 28, this

distribution is close to the semi-Poisson distribution [34], characterized by level repulsion

and an exponential tail. This is in sharp contrast with integrable systems, which always

have Poisson level statistics. Moreover, when we increase the system size, we see that the

statistics approach more and more the Wigner–Dyson distribution. The Wigner–Dyson

(GOE) level statistics, along with ballistic growth of entanglement [16], rule out the

integrability-based explanation of the non-ergodic dynamics in the model in 1.1.
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Figure 3.1: Level spacing statistics, using the quantity rn = min{δn, δn+1}/max{δn, δn+1}
defined in [32]. We compare the theoretical prediction (solid curve), surmised in [33],
with the numerical calculation (histogram) for random matrices of size D = 6, 000. For
the Poisson case, we generate a diagonal matrix with real random entries, while for the
GOE case, we generate a random matrix M of size 6, 000× 6, 000 with real entries, and
then symmetrize it using (M +MT )/2.
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Figure 3.2: Level spacing statistics, using the quantity rn = min{δn, δn+1}/max{δn, δn+1}
defined in [32], for the PXP model, for various system sizes L. We see that even for
relatively small system size, there is pronounced level repulsion and that the distribution
is neither Poisson nor GOE. In fact, it was demonstrated in [18] that this distribution
is close to the semi-Poisson distribution [34], characterized by level repulsion and an
exponential tail. This is in sharp contrast with integrable systems, which always have
Poisson level statistics. Moreover, when we increase the system size, we see that the
statistics approach more and more the Wigner–Dyson distribution. The Wigner–Dyson
(GOE) level statistics, along with ballistic growth of entanglement [16], rule out the
integrability-based explanation of the non-ergodic dynamics in the model in 1.1.
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Chapter 4

Eigenvector component statistics

Another diagnostic, which has not yet been studied for the PXP model, for whether a

quantum system is integrable or not is the statistics of the eigenvector components of its

Hamiltonian. Berry, in 1977 [35], conjectured that the coefficients of high energy eigen-

states of a quantum system in a generic basis corresponding to a chaotic classical system

are independent Gaussian random variables, similar to the distribution of eigenstates in

the corresponding random matrix ensemble [36]. The connection between random matrix

theory and realistic systems was made later, in [22], showing that perturbing a Hamil-

tonian with a random matrix leads to thermalization. Later, Srednicki showed that if

Berry’s conjecture is satisfied, a gas of hard core particles has a distribution of veloci-

ties that approaches the Maxwell-Boltzmann distribution for large systems. Therefore,

it was concluded that Berry’s conjecture is a requirement for thermalization in quantum

systems [21]. It was this intuition that motivated Srednicki to propose the ETH ansatz

[24]. The Rαβ term in the ansatz in Eq. (2.1) is justified through Berry’s conjecture.

4.1 PXP

To directly test Berry’s conjecture for the PXP model, we calculate the distribution of

the coefficients (components) 〈i|ψ〉 of the eigenstates |ψ〉 in the spin basis |i〉 in Fig.

4.1. Surprisingly, the conjecture is clearly violated. The fact that Berry’s conjecture

is not satisfied does not necessarily imply that the ETH cannot be satisfied, even with

non-Guassian fluctuations [37]. However, the absence of a Thouless plateau in the off-

diagonal matrix elements, along with the slow decay of fluctuations in diagonal matrix

elements ∆OZ and deviations from purely Wigner–Dyson level statistics, suggests that

thermalization of the bulk of eigenstates in the PXP model may not follow the ETH [16].

Moreover, in Fig. 4.2 we check if the distribution of the eigenvector components

changes as we increase the system size L. We plot different values of L superimposed,
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(a)

(b)

Figure 4.1: (a) Eigenvector component statistics for the PXP Hamiltonian, for L = 24.
The dimension of the matrix in the zero-momentum, inversion symmetric, no adjacent
excitations sector is D = 2, 359. The inset is the same plot but with a logarithmic y-axis.
The distribution is clearly not Gaussian, and we can also see a spike around 〈i|ψ〉 = 0
present due to zero modes. (b) Eigenvector component statistics for a random (GOE)
matrix of dimension D = 2, 359. The inset is the same plot but with a logarithmic y-axis.
The distribution is clearly Gaussian.
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Figure 4.2: Eigenvector component statistics for the PXP Hamiltonian, for various system
sizes L, in the zero-momentum, inversion symmetric, no adjacent excitations sector.

after normalizing by diving the eigenvector components with the standard deviation of the

distribution. For L ≤ 28 the distribution looks like it does not change shape. However,

it might be that for L > 28 that is no longer true. One possible scenario is that the

distribution tends to a Gaussian for values L > 30, but it remains to be checked.

4.2 Zero-energy states

A prominent feature in Fig. 4.1a is the peak on top of the non-Gaussian distribution

of eigenvector components. This peak is caused by a large number of states annihilated

by the PXP Hamiltonian, H |ψ〉 = 0, which form a degenerate subspace of zero modes.

The number of zero modes is a Fibonacci number, which means that this number grows

exponentially with system size. For OBC and even system size L this degeneracy is

Z = FL
2

+1. When instead L is odd, we have Z = FL−1
2

[18, 16].

In Fig. 4.3 we demonstrate the above statement, that the peak is due to the zero-

modes. We again calculate the distribution of eigenvector components for the PXP, but

now excluding the zero-energy states. We identify these states using the |Z2〉 overlap we

saw in Section 2.4.
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(a)

(b)

Figure 4.3: (a) Eigenvector component statistics for the PXP Hamiltonian, including the
whole spectrum. The system contains L = 26 atoms in the zero-momentum, inversion-
symmetric, no adjacent excitations sector. We can clearly see a spike around 〈i|ψ〉 = 0
present. The right inset shows the overlap with the |Z2〉 product state among the energy
eigenstates. The isolated states with extremely negative overlap are the zero-energy
states. The left inset is the same plot but with a logarithmic y-axis. (b) Eigenvector
component statistics for the PXP Hamiltonian, excluding the zero-energy states, again
for L = 26. The right inset shows the states that were excluded with red. These are the
states that have an extremely low overlap with |Z2〉 and have energy E = 0. The spike
around 〈i|ψ〉 = 0 has disappeared, implying that the spike is due to the zero modes in the
spectrum of the PXP Hamiltonian. The left inset is the same plot but with a logarithmic
y-axis.
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4.3 Scaling of the standard deviation

We then looked at the scaling of the standard deviation σ of the eigenvector components

with increasing the system size L of the PXP model. The second term in the ETH ansatz,

Eq. (2.1), is e−S(Ē)/2fO(Ē, ω)Rmn. Since the entropy scales with the logarithm of the

system size

S(Ē) ∼ lnD,

we have that

e−S(Ē)/2 ∼ 1√
D
.

Therefore, for σ we expect a scaling

σ ∼ D−1/2, (4.1)

where D is the dimension of the Hilbert space. In Fig. 4.4 we verify Eq. (4.1). We exactly

diagonalize systems with sizes between L = 20 and L = 26, again in the zero-momentum,

inversion-symmetric, no adjacent excitations sector. For each system size L, we pool the

eigenvector components from all D eigenvectors and calculate the standard deviation σ.

We plot the D vs σ on a log-log plot and finally perform a linear regression. The results

verify the expectation from the ETH ansatz.
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Figure 4.4: Scaling of the standard deviation σ of the eigenvector components of the
PXP, with the Hilbert space dimension D. System sizes between L = 20 and L = 26,
in the zero-momentum, inversion-symmetric, no adjacent excitations sector, were used.
The regression clearly verifies the ETH expectation for the scaling, Eq. (4.1).
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Chapter 5

Transport of energy density fronts

Another new idea we had was to study how energy spreads in the PXP model, Eq. (1.1).

Because energy is a conserved quantity in our model, how this spreading occurs can

indicate whether the system is diffusive or non-diffusive, and hence integrable or not. For

an integrable system we expect ballistic (linear) fronts, while for a non-integrable system

we expect diffusive (nonlinear) fronts.

5.1 Thermal states

In order to see these fronts, we are going to prepare the system in a state that will be split

in half, with each half having a different temperature, then evolve the state using the full

Hamiltonian. This procedure is known as a quench. We can do this in the following way.

Suppose that the system is of size L, an even number, with Hamiltonian H, and let us

split the system in two smaller systems, each of size L1/2 = L
2

and Hamiltonian H1/2. We

can then generate a random initial state in the Hilbert space H1/2 of the L1/2 system,

|ψ0〉, and then make it thermal with

|ψleft〉 =
1√
A
e−βleftH1/2 |ψ0〉 , (5.1)

where A is a normalization constant, and similarly for the right half

|ψright〉 =
1√
A′

e−βrightH1/2 |ψ′0〉 , (5.2)

for another random initial state |ψ′0〉, and where βleft/βright are the thermodynamic betas

β = 1
kBT

for the left and the right halves of the system. Taking the tensor product

(Kronecker product) of these two states, we create the state that we wanted, one where

the left half has temperature 1/βleft and the right half has temperature 1/βright. However,
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we have to take into account the fact that the Hilbert space H for the L system is not

exactly equal to H1/2 ⊗ H1/2, because with OBC, some states that are allowed in the

H1/2 are not necessarily allowed when we take their tensor product. For example, a state

|· · · ◦ •〉 on the left system is allowed, as well as a state |• ◦ · · ·〉 on the right. However,

|· · · ◦ •〉 ⊗ |• ◦ · · ·〉

is not allowed in H since we have adjacent excitations at the point of contact.

Finally we have to evolve the system in time using the full system Hamiltonian H,

using

|ψ(t)〉 = e−iHt |ψ(t = 0)〉 ,

where H is sparse, since our model is local. This operation of taking the exponential

of a sparse matrix, and operating with it on a dense vector can be done in one step,

i.e. without explicitly computing the exponential, very efficiently using Krylov subspaces

methods. This was done using the ExpmV package in Julia.

5.1.1 Fronts

We study a system with size L = 30. We follow the method described above, and the

space-time diagram is presented in Fig. 5.1, where the x-axis is the index i of the site on

the chain, the y-axis is the time t and the colorbar is the energy density h. Therefore,

we observe how the energy difference at t = 0, equalizes and diffuses across the system.

We use βleft = −10 and βright = +10 in Eq. (5.1) and (5.2). It is evident that the fronts

produced are ballistic. In Fig. 5.1b, we subtract the energy density at t = 0 in order to

highlight the unexpected linearity of the fronts observed.

5.1.2 Regression

Also, we attempted to find a systematic way to determine when the front has “arrived”

at some site. We tried looking at the space-time diagram for a specific site. This is a

curve that is very close to an exponential when the front is sufficiently far away. After

subtracting the initial value such that all the points are above zero, we plotted the curve

in a semi-log plot. These points form a line, but after some time t∗ deviate from the line.

Then we fitted a curve to the middle points where the points seem to follow a straight

line. An example of this is shown in Fig. (5.2).

Then, we defined t∗ the point in time where the deviation is > 10% from the regression

line. For the even sites, we also had to flip the curve. We did that for the L = 30 system

and for sites L = 5 through 10. The resulting plot is shown in Fig. (5.3); we clearly see
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(a) (b)

Figure 5.1: (a) Space-time diagram of the evolution of the energy density of a PXP chain
(with OBC) of size L = 30, prepared in a state with the left half having an inverse
temperature βleft = −10 and the right having βright = +10. The x-axis is the index i of
the site on the chain, the y-axis is the time t and the colorbar is the energy density h. It
is evident that the fronts produced are ballistic. (b) The same space-time diagram, but
in this case we also subtract the energy density at t = 0 in order to highlight the linearity
of the fronts.

linear behavior. We also tried using a least squares package for exponentials to do the

same thing, and the results were similar.

5.1.3 Multi-threading

The algorithm was sped up further using Julia’s built-in multi-threading features. The

decorator (macro) Threads.@threads was used to access for loops with multiple threads.

The only problem is that appending to a list is not thread-safe. Therefore, instead of

appending an element to an empty list in each step, we have to initialize a list of zeroes

with predetermined length, and then “add” elements by editing the list of zeroes. In this

way, we make sure that no two threads can edit the same element at the same time, i.e.

it is thread-safe.

5.2 Microcanonical states

To make our investigation more conclusive, we have to study the weights the initial state

has with respect to the eigenstates of the Hamiltonian, and do the quench again for other

initial states that do not have a lot of weight in the ground state, in order to exclude the

possibility that this effect (linear spreading) has something to do with the ground state

and is not a feature of the system.

37



Figure 5.2: Determining the time of “arrival” of the front at a site i, for a system with
L = 30, and the other parameters as in Fig. 5.1. This is a slice for the i = 7 site of the
space-time diagram, until time t = 5. This is a curve that is very close to an exponential
when the front is sufficiently far away. After subtracting the initial value such that all the
points are above zero, and plotting the curve in a semi-log plot, we get a line. However,
with the arrival of the front, the points deviate from this line, and we define the time of
arrival t∗ as the point in time where this deviation is > 10%. In this case, for i = 7, we
have t∗ = 4.2.

In this case, similarly to Eq. (5.1) and (5.2), we prepare the system in

|ψleft〉 =
1√
A
e−δ(H1/2−E0)2 |ψ0〉 , (5.3)

|ψleft〉 =
1√
A′

e−δ(H1/2+E0)2 |ψ′0〉 , (5.4)

where A, A′ are normalization constants, and |ψ0〉, |ψ′0〉 are random initial states in the

Hilbert space H1/2 of the L1/2 system. In this way we can choose states in a very narrow

window, of size 1/
√
δ and around energy ±E0, in the middle of the spectrum or even the

ground state.

For example, in Fig. 5.4, for L = 24, δ = 1, 000, which has a ground state of around

Eg.s. ≈ −7.5, we choose various energies E0. We see that for different E0 the width of
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Figure 5.3: Time of arrival of the front at a site i, for a system with L = 30, and the
other parameters as in Fig. 5.1, for 5 ≤ i ≤ 10. We can clearly see linear behavior.

the cone is different, i.e. the velocities of the fronts at different energies E0 are different.

In particular for E0 = 3.7 the cone is particularly wide.

5.2.1 Pre-quench and post-quench weights

We now also study the weights that the initial state has with the pre-quench, H1/2, and

post-quench Hamiltonian H.

In Fig. 5.5 we calculate the weights for a system of size L = 16 (L1/2 = 8), and with

δ = 1, 000 and E0 = 2.0 in Eq. (5.3) and (5.4). The system under study has a ground

state of Eg.s. ≈ −5.1. In Fig. 5.5a, we see the weights of the |ψleft〉 and |ψright〉 in Eq.

(5.3) and (5.4) with the pre-quench Hamiltonian H1/2 for one half of the chain. We see

that the state is prepared away from the ground state, in a narrow window somewhere in

the middle of the spectrum. In Fig. 5.5b, the weights of the |ψ〉 = |ψleft〉 ⊗ |ψright〉 state

with the post-quench Hamiltonian H for the whole chain are shown. There, it is clear

that |ψ〉 has large weights around eigenenergies with E = 0. In Fig. 5.5c, we see the

space-time plot, as in Fig. 5.4, where the x-axis is the index i of the site on the chain,

the y-axis is the time t and the colorbar is the energy density h. Finally, in Fig. 5.5d, we
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see the density of states for the post-quench Hamiltonian H.

In Fig. 5.6 and 5.7, we do the same, but with E0 = 2.8 and E0 = 5.1.

5.3 Further splitting of the chain

Another way to see the fronts, instead of splitting the L chain in two halves of size L/2

each, is to split the chain in three sections, where the middle part is comprised of only

three sites. In other words, the left part and right parts are going to be of size L−3
2

and

Hamiltonian HL−3
2

each, while the middle is going to have size L = 3 and Hamiltonian

H3, provided that we use odd L. Then, we can prepare the middle part in a high energy

state and the rest of the chain, the other two parts, in the ground state, or in other

interesting configurations. Exactly as before, the Hilbert space of the chain HL will be a

restriction of the larger Hilbert space

Hleft
L−3
2

⊗Hmiddle
3 ⊗Hright

L−3
2

,

where the three Hilbert spaces are for the left, the middle, and the right parts respectively,

with OBC. The restriction is again due to the fact that we have to exclude the possibility

of adjacent excitations at the point of contact between the sections of the chain that we

are joining, see Section 5.1.

For example, for a system with L = 23, we prepare the whole chain in the ground

state, using the method of Section 5.1 and β = 10, apart from the middle 3 sites, which

we prepare in a high energy state using β = −10. In other words, the three parts of the

chain are prepared in

|ψleft〉 =
1√
A
e
−βleftHL−3

2 |ψ0〉 , (5.5)

|ψmiddle〉 =
1√
A′

e−βmiddleH3 |ψ′0〉 , (5.6)

|ψright〉 =
1√
A′′

e
−βrightHL−3

2 |ψ′′0〉 , (5.7)

where the A’s are normalization constants, the |ψ0〉’s are random initial states, βleft = 10,

βmiddle = −10 and βright = 10.

The resulting space-time diagram is presented in Fig. 5.8a, where the x-axis is the

index i of the site on the chain, the y-axis is the time t and the colorbar is the energy

density h. It is evident that the fronts produced are ballistic. In Fig. 5.8b, we see the

behavior of the fronts for larger t. The fronts start diffusing slightly after at least 2

reflections.

In Fig. 5.9, we do the same calculation but for L = 25.
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Figure 5.4: Space-time diagrams of the evolution of the energy density of a PXP chain
(with OBC) of size L = 24 (ground state Eg.s. ≈ −7.5), where the left and right parts of
the chain are prepared in a state according to Eq. (5.3) and (5.4) respectively, δ = 1, 000,
and for various energies E0. The x-axis is the index i of the site on the chain, the y-axis is
the time t and the colorbar is the energy density h. It is evident that the fronts produced
are ballistic. We see that for different E0 the width of the cone is different, i.e. the
velocities of the fronts at different energies E0 are different. For example, for E0 = 3.7
the cone is particularly wide.
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(a) (b)

(c) (d)

Figure 5.5: (a) Weights of the |ψleft〉 and |ψright〉 in Eq. (5.3) and (5.4) with the pre-quench
Hamiltonian H1/2 for one half of the chain. We see that the state is prepared away from
the ground state, in a narrow window somewhere in the middle of the spectrum. The
system studied is of size L = 16 (L1/2 = 8), with δ = 1, 000 and E0 = 2.0 in Eq. (5.3) and
(5.4), and has a ground state of Eg.s. ≈ −5.1. (b) Weights of the |ψ〉 = |ψleft〉 ⊗ |ψright〉
state with the post-quench Hamiltonian H for the whole chain. It is clear that |ψ〉 has
large weights around eigenenergies with E = 0. (c) Space-time plot, as in Fig. 5.4, where
the x-axis is the index i of the site on the chain, the y-axis is the time t and the colorbar
is the energy density h. (d) Density of states for the post-quench Hamiltonian H.
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(a) (b)

(c) (d)

Figure 5.6: (a) Weights of the |ψleft〉 and |ψright〉 in Eq. (5.3) and (5.4) with the pre-quench
Hamiltonian H1/2 for one half of the chain. We see that the state is prepared away from
the ground state, in a narrow window somewhere in the middle of the spectrum. The
system studied is of size L = 16 (L1/2 = 8), with δ = 1, 000 and E0 = 2.8 in Eq. (5.3) and
(5.4), and has a ground state of Eg.s. ≈ −5.1. (b) Weights of the |ψ〉 = |ψleft〉 ⊗ |ψright〉
state with the post-quench Hamiltonian H for the whole chain. It is clear that |ψ〉 has
large weights around eigenenergies with E = 0. (c) Space-time plot, as in Fig. 5.4, where
the x-axis is the index i of the site on the chain, the y-axis is the time t and the colorbar
is the energy density h. (d) Density of states for the post-quench Hamiltonian H.
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(a) (b)

(c) (d)

Figure 5.7: (a) Weights of the |ψleft〉 and |ψright〉 in Eq. (5.3) and (5.4) with the pre-
quench Hamiltonian H1/2 for one half of the chain. We see that the state is prepared in
the ground state Eg.s. ≈ −5.1. The system studied is of size L = 16 (L1/2 = 8), with
δ = 1, 000 and E0 = 5.1 in Eq. (5.3) and (5.4). (b) Weights of the |ψ〉 = |ψleft〉 ⊗ |ψright〉
state with the post-quench Hamiltonian H for the whole chain. It is clear that |ψ〉 has
large weights around eigenenergies with E = 0. (c) Space-time plot, as in Fig. 5.4, where
the x-axis is the index i of the site on the chain, the y-axis is the time t and the colorbar
is the energy density h. (d) Density of states for the post-quench Hamiltonian H.
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(a)

(b)

Figure 5.8: (a) Space-time diagram of the evolution of the energy density of a PXP chain
(with OBC) of size L = 23, prepared in a state with the left and right 10 sites having an
inverse temperature β = 10, and the middle 3 sites having β = −10. This results in the
whole chain being prepared in the ground state apart from the middle three sites which
are prepared in the highest excited state. The x-axis is the index i of the site on the
chain, the y-axis is the time t and the colorbar is the energy density h. It is evident that
the fronts produced are ballistic. (b) The same space-time diagram, but for longer time
t.
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Figure 5.9: Space-time diagram of the evolution of the energy density of a PXP chain
(with OBC) of size L = 25, prepared in a state with the left and right 11 sites having an
inverse temperature β = 10, and the middle 3 sites having β = −10. This results in the
whole chain being prepared in the ground state apart from the middle three sites which
are prepared in the highest excited state. The x-axis is the index i of the site on the
chain, the y-axis is the time t and the colorbar is the energy density h. It is evident that
the fronts produced are ballistic.
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Chapter 6

Discussion and Outlook

In this work, we studied the eigenstate and dynamical properties of the PXP model,

which describes a chain of Rydberg atoms realized in recent experiments [13]. We started

by exactly diagonalizing the Hamiltonian of the system, utilizing the system’s symmetries

according to [20]. Then, we used the eigenvectors and eigenvalues of this system to exam-

ine various aspects of the model. We tested the ETH for this model, and demonstrated

the existence of a small number of states, throughout the PXP spectrum, that violate

the ETH. Then we studied various quantum chaos diagnostics, like level-spacing statis-

tics and eigenvector component statistics, for the model. The model has intermediate

spectral statistics, so-called semi-Poisson, which seem to tend to Wigner–Dyson statistics

for systems with size L > 28. At the same time, the eigenvector component statistics

of the model are non-Guassian, which comes as a surprise since chaotic systems have

eigenvectors akin to Gaussian random vectors and hence Gaussian eigenvector compo-

nent statistics. This non-Gaussianity might be related to the exotic dynamics observed

and the breaking of the ETH. Finally, we performed a quench on the system and studied

its response. We see linear fronts, which is also unexpected since the system, prepared

in a generic state, is diffusive.

While our work sheds light on various properties of the special PXP states that

strongly violate the ETH, many interesting questions remain open. Firstly, is the non-

Gaussianity of the eigenvector component statistics related to the revivals observed in

the PXP model when starting from the |Z2〉 state, or the violation of the ETH? Secondly,

on the quenched system, why are the fronts linear? Could the scars be responsible for

them? Finally, the issues discussed above naturally connect to questions about practical

uses of quantum many-body scars and their dynamical signatures.
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Chapter 7

Appendix – Julia scripts

The project can be found in the Github repository github.com/fgias/quantum-chaos.

7.1 Exact diagonalization of PXP Hamiltonian

File name: pxp-0(+)-no adjacent.jl.

##==============================================================================

# zero-momentum, parity symmetric, no adjacent Rydberg PXP

##==============================================================================

using Plots, LinearAlgebra

## codecell ====================================================================

# functions definition

function fock2label(d, L)::Int64

base = 2

s = zero(eltype(d))

mult = one(eltype(d))

for val in d

s += val * mult

mult *= base

end

return s+1

end
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function label2fock(α, L)

return(digits(α-1, base=2, pad=L))

end

function flip_spin(α, j, L)

state = label2fock(α, L)

if state[j]==1

state[j]=0

else

state[j]=1

end

return(fock2label(state, L))

end

function is_flip_allowed(α, j, L)

jl, jr = mod1(j-1, L), mod1(j+1, L)

state = label2fock(α, L)

if state[jl]==0 && state[jr]==0

return(true)

else

return(false)

end

end

# flip spin in bit representation

function flip_spin_state(d, j, L)

state = copy(d) # assign with state = d * 1. or state = copy(d)

if state[j]==1

state[j]=0

else

state[j]=1

end

return(state)

end

# check if flip is allowed in bit representation

function is_flip_allowed_state(state, j, L)
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jl, jr = mod1(j-1, L), mod1(j+1, L)

if state[jl]==0 && state[jr]==0

return(true)

else

return(false)

end

end

# inversion

function reflect_bits(s, L)

new_state = zeros(L)

for i in 1:L

new_state[i] = s[L-i+1]

end

new_state = Vector{Int64}(new_state)

return(new_state)

end

# zero-momentum and parity

function check_state(s, L, k)

R = -1;

m = -1; # reflection-translation number

for i = 1:L

t = circshift(s, i)

if fock2label(t, L) < fock2label(s, L)

return (R, m)

elseif fock2label(t, L) == fock2label(s, L)

if mod(k, L/i) != 0

return (R, m)

end

R = copy(i)

break

end

end

r = reflect_bits(s, L)

for i = 0:(R-1)
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t = circshift(r, i)

if fock2label(t, L) < fock2label(s, L)

R = -1

return (R, m)

elseif fock2label(t, L) == fock2label(s, L)

m = copy(i)

return (R, m)

end

end

return (R, m) # was getting an error when it was not returning anything

end

function construct_basis(k, p, basis, L) # for k = 0 sector

reduced_basis = []

Rs = []

ms = []

D = 2^L

σ = 1 # k = 0 sector

M = length(basis)

a = 0

for s = 1:M

state = basis[s]

(R, m) = check_state(state, L, k)

if R > 0

a = a + 1

append!(reduced_basis, [state])

append!(Rs, σ*R)

append!(ms, m)

end

end

return (reduced_basis, Rs, ms)

end

# find representative

function find_representative(s, L)

r = copy(s)
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l = 0 # number of translations

for i = 1:(L-1)

t = circshift(s, i)

if fock2label(t, L) < fock2label(r, L)

r = copy(t);

l = copy(i);

end

end

m = 0

s = reflect_bits(s, L)

for i = 1:(L-1)

t = circshift(s, i)

if fock2label(t, L) < fock2label(r, L)

r = copy(t)

l = 0

m = copy(i)

#return (r, l, m)

end

end

return (r, l, m)

end

# find position

function find_state(s, L, basis)

b = -1

position = findall(x->x==s, basis)

if length(position) > 0

b = position[1]

end

return(b)

end

# keep basis states with no adjacent Rydberg atoms

function no_adjacent_basis(L)

state_list = []

D = 2^L
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for α = 1:D

add = true

state = label2fock(α, L)

for i = 1:L

j = mod1(i+1, L)

if state[i] == 1 && state[j] == 1

add = false

break

end

end

if add == true

append!(state_list, [state])

end

end

return(state_list)

end

function construct_H_PXP_reduced(L)

k = 0 # zero momentum

p = 1 # inversion symmetry

basis = no_adjacent_basis(L)

(basis, Rs, ms) = construct_basis(k, p, basis, L);

M = length(basis)

H = zeros(Float64, (M,M))

for α = 1:M

state = copy(basis[α])

Na = 2 * L^2 / Rs[α]

if ms[α] >= 0

Na = Na * 2

end
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for i = 1:L

if is_flip_allowed_state(state, i, L)

new_state = flip_spin_state(state, i, L)

(repr, l, m) = find_representative(new_state, L)

β = find_state(repr, L, basis)

if β >= 0

Nb = 2 * L^2 / Rs[β]

if ms[β] >= 0

Nb = Nb * 2

end

H[β,α] += sqrt(Nb/Na)

end

end

end

end

return H

end

## codecell ====================================================================

# test calculation

L = 10;

H = construct_H_PXP_reduced(L)

pl = heatmap(H, yflip=true)

display(pl)

basis = no_adjacent_basis(L)

(basis, Rs, ms) = construct_basis(0, 1, basis, L);

## codecell ====================================================================

# check symmetry

isapprox(transpose(H), H) # has to be true
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esys = eigen(Hermitian(H)) # eigen for Hermitian matrices

evals, evecs = esys.values, esys.vectors;

size(H)

## codecell ====================================================================
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7.2 Breakdown of ETH in special eigenstates

File name: eev.jl.

##==============================================================================

# zero-momentum, parity symmetric, no adjacent Rydberg PXP

# calculation of EEVs

##==============================================================================

using Plots, LinearAlgebra, LaTeXStrings

## codecell ====================================================================

# functions definition

include("pxp-0(+)-no_adjacent.jl");

function construct_O_Z_PXP_reduced(L)

k = 0 # zero momentum

p = 1 # inversion symmetry

basis = no_adjacent_basis(L)

(basis, Rs, ms) = construct_basis(k, p, basis, L);

M = length(basis)

O = zeros(Float64, (M,M))

for α = 1:M

state = copy(basis[α])

for i = 1:L

O[α,α] += (-1)^(state[i]+1)/L # normalization factors cancel out

end

end

return O

end

## codecell ====================================================================
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# test calculation

L = 20;

H = construct_H_PXP_reduced(L) # from fully reduced PXP

esys = eigen(Hermitian(H))

evals, evecs = esys.values, esys.vectors;

O = construct_O_Z_PXP_reduced(L)

basis = no_adjacent_basis(L);

(basis, Rs, ms) = construct_basis(0, 1, basis, L);

## codecell ====================================================================

eev = []

for i = 1:length(basis)

e = transpose(evecs[:,i]) * O * evecs[:,i]

append!(eev, e)

end

## codecell ====================================================================

plt = plot(evals, eev, seriestype=:scatter, legend=false,

title=L"L = %$L", markersize=3, xlabel=L"E", ylabel=L"\langle O^Z \rangle",

framestyle=:box, grid=false)

# savefig(plt, "O^Z, L = $L.pdf")

## codecell ====================================================================
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7.3 Calculation of the canonical curve from the Gibbs

state

File name: thermal.jl.

##==============================================================================

# zero-momentum, parity symmetric, no adjacent Rydberg PXP

# thermal states

##==============================================================================

using LinearAlgebra, Plots, LaTeXStrings, ProgressBars

## codecell ====================================================================

# includes

include("pxp-0(+)-no_adjacent.jl");

include("eev.jl");

## codecell ====================================================================

L = 20

O = construct_O_Z_PXP_reduced(L)

H = construct_H_PXP_reduced(L)

evals, evecs = eigen(Hermitian(H))

# thermal curve

E_list = []

o_list = []

for β = ProgressBar(-2:.1:2)

E = 0; o = 0;

Z = sum(exp.(-β * evals))

ρ = Matrix(Diagonal(exp.(-β * evals)))/Z

E = tr(ρ * transpose(evecs) * H * evecs)

o = tr(ρ * transpose(evecs) * O * evecs)

append!(E_list, E)

append!(o_list, o)
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end

# the canonical curve

plot(E_list, o_list, legend=false, ylim=[-0.6, -0.3], linewidth=4)

## codecell ====================================================================

# plot with EEVs

L = 20

plt = plot(evals, eev, seriestype = :scatter,

title = L" \langle O^Z \rangle,\ L = %$L",

labels=false, xaxis=L"E", yaxis=L"\langle O^Z \rangle")

plot!(E_list, o_list, ylim=[-0.6, -0.3], linewidth=4, labels="Canonical")

# savefig(plt, "O^Z and canonical, L = $L.pdf")

## codecell ====================================================================
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7.4 Scaling of the standard deviation of OZ EEVs

File name: rolling-argparse.jl.

##==============================================================================

# rolling mean and variance for eevs

##==============================================================================

using Plots, LinearAlgebra, LaTeXStrings, Statistics, DataFrames, GLM,

JLD2, ArgParse

## codecell ====================================================================

# command line parsing

function parse_commandline()

s = ArgParseSettings()

@add_arg_table s begin

"L1"

help = "lower limit on the number of spins"

arg_type = Int

required = true

"L2"

help = "upper limit on the number of spins"

arg_type = Int

required = true

end

return parse_args(s)

end

parsed_args = parse_commandline()

L1 = parsed_args["L1"]

L2 = parsed_args["L2"]

## codecell ====================================================================

# includes

# PXP 0(+)
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include("pxp-0(+)-no_adjacent.jl");

include("eev.jl");

## codecell ====================================================================

# variance scaling with D

# PXP

function eevs_rolling(L, no_windows=18, window_threshold=20)

t1 = time_ns()

println("---------------------------------------")

println("Starting calculation: L = $L")

println("---------------------------------------")

H = construct_H_PXP_reduced(L) # for reduced PXP

println("constructed H")

esys = eigen(Hermitian(H))

evals, evecs = esys.values, esys.vectors

mkpath("data_run_id=$id")

save_object("data_run_id=$id//evals_L=$L.jld2", evals)

O = construct_O_Z_PXP_reduced(L) # for reduced PXP

println("constructed O")

basis = no_adjacent_basis(L)

(basis, Rs, ms) = construct_basis(0, 1, basis, L)

M = length(basis)

eev = []

for i = 1:M

e = transpose(evecs[:,i]) * O * evecs[:,i]

append!(eev, e)

end

println("calculated EEVs")

save_object("data_run_id=$id//eevs_L=$L.jld2", eev)

e_min = minimum(evals)

e_max = maximum(evals)

width = (e_max - e_min)/no_windows

62



evals_windows = []

means = []

variances = []

adjusted = []

for i_window = 1:no_windows

s = eev[e_min + (i_window-1)*width .< evals .< e_min + i_window*width]

if length(s) > window_threshold

append!(evals_windows, e_min + (i_window - 1)*width + width/2)

append!(means, mean(s))

append!(variances, var(s))

append!(adjusted, s .- mean(s))

end

end

println("completed rolling calculations")

println("---------------------------------------")

println("End of calculation: L = $L")

println("---------------------------------------")

σ = sqrt(var(adjusted))

t2 = time_ns()

time_calc = (t2 - t1)/1.0e9

## saving data ==========

logm = log(M)

logsigma = log(σ)

log_file = open("data_run_id=$id//log_L=$L.txt", "w")

write(log_file, "Total calculation time: $time_calc s \n")

write(log_file, "L = $L \n")

write(log_file, "no_windows = $no_windows \n")

write(log_file, "window_threshold = $window_threshold \n")

write(log_file, "M = $M \n")

write(log_file, "σ = $σ \n")

write(log_file, "log M = $logm \n")

write(log_file, "log σ = $logsigma \n")

close(log_file)

return (evals_windows, means, M, σ)
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end

## codecell ====================================================================

# PXP

# linear regression

# generating a random integer to distinguish between runs

id = rand((100000:999999))

x = Float64[]

y = Float64[]

for L = L1:L2

c = log.(eevs_rolling(L)[3:4])

append!(x, c[1])

save_object("data_run_id=$id//x.jld2", x)

append!(y, c[2])

save_object("data_run_id=$id//y.jld2", y)

end

## codecell ====================================================================
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7.5 Overlap of special eigenstates with product states

File name: z2 overlap.jl.

##==============================================================================

# overlap with Z2

##==============================================================================

using LinearAlgebra, Plots, LaTeXStrings

## codecell ====================================================================

# functions definition

include("pxp-0(+)-no_adjacent.jl");

## codecell ====================================================================

esys = eigen(Hermitian(H)) # H from fully reduced PXP

evals, evecs = esys.values, esys.vectors;

M = size(H)[1]

init_fock = [] # |Z2>

for i = 1:L

if mod(i,2)==0

append!(init_fock, 0)

else

append!(init_fock, 1)

end

end

init_fock = Vector{Int64}(init_fock)

init_α = findall(x->x==init_fock, basis)[1]

init_state = zeros(M)

init_state[init_α] = 1

overlap = zeros(M)

for k = 1:M

overlap[k] = log(abs(transpose(evecs[:,k])*init_state)^2)/log(10)

end
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plt = plot(evals, overlap, seriestype = :scatter,

title = L"L = %$L", ylims=[-9,0], legend=false, markersize=3,

xaxis=L"E", yaxis=L"\log_{10} |\langle \mathbb{Z}_2 | \psi \rangle|^2",

framestyle=:box, grid=false

)

display(plt)

# savefig(plt, "Z2 overlap, L = $L.pdf")

## codecell ====================================================================

66



Bibliography
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