MSc Mathematical Modeling (SEMFE)

Study of the Quantum Advantage in Quantum
Machine Learning Applications for drug discovery

Karakasis Ioannis
09320015

Supervisor Professor:
Andreas Stafylopatis
(E.E. Department NTUA)

16/06/2022

Iepreyoueva

1.

AbStract s

1 Drug Discovery methods

1.

RDKIT package,

2 Calibration Data-set and Data Exploration

3 Neural Network Models for Classical Computing

l.

2.

Difficultiesusing GNNs
Types of Graph Neural Networks

GNN Algorithm with a focus on Application of Convolutional Net-
workson Graphs L L

Generative Adversarial Networks
MolGANmodel
Quantum Neural Networks
Setting the base for the Quantumera
Data EncodinginQML

Angle Encoding Lo oo

10

12

21

10. Variational Auto-encoders 37

I11. Quantum VAEs 40
12. Quantum Graph Neural Networks 43
13, Quantum GANS e 46
ML Models of Classical computing - Experimental Implementation 50
1. Convolutional Neural Network (CNN) 55
2. Graph Neural Network (GNN) 60
3. Generative Adversarial Network (GAN) 63
Quantum ML Models - Experimental Implementation 68
1. How to Run Quantum Algorithms 68

2. Comparison of Encoding Methods for Quantum Variational Classifiers 72

3. Quantum Convolutional Neural Networks (QCNN) 82
4. Quantum Generative Neural Networks (QGAN) 92
Experimental Results - Conclusion 100
Bibliography 103
Appendix 107
1. Dataset Pairplot before Encoding 108
2. QCNN-Quantum Circuit. 109

The present thesis was implemented within the framework of the postgraduate
program of the School of Applied Mathematics and Natural Sciences, Mathematical
Modeling in Modern Technologies and Finance, at the National Technical University
of Athens.

I would like to say a huge thank you to my supervising professors Georgios
Siolas and Andreas Stafilopatis who for the last year have been helping and guiding
me on this new journey of Machine Learning and Quantum Computers. From the
beginning of our collaboration and throughout the writing of this paper, he was by
my side and his presence was key to overcoming several difficulties in its development.

Finally, I would like to thank my parents Natalia and George and all the people
close to me who supported me throughout this effort. This study is dedicated to
a close friend and aims to raise awareness of the stressful conditions that affect
nowadays society and especially young people.

1. Abstract

This thesis was authored under the postgraduate program, “Mathematical
Modeling in Cutting Edge Technologies Finance”, of the School of Applied
Mathematics and Physic Sciences of the National Technical University of Athens.
The study supporting the specific thesis is focused on proving how Classical Quantum
Deep Learning Models can be used to solve a classification problem. The dataset
chosen for this task was the QM9 dataset containing information on molecules and
was limited to approximately 20 thousand molecules that can possibly be used to
classify drugs that can be used as tricyclic antidepressant drugs or to design new
molecules based on this benchmark dataset. However, the main purpose of this
thesis was to try Quantum Machine Learning models on this dataset and prove
that the quantum analogous of the models achieve the quantum supremacy. By the
term quantum supremacy, we mean the quantum advantage provided on solving
computational problems, when someone utilises a Quantum Computer. I tried to use
approximately the same parameters in order to be able to compare the models. The
results that we analysed showed that all quantum algorithms used performed better
than their classical analogous or at least on the same level. The quantum models that
didn’t outperform their classical analogous in accuracy, they outperformed them in
run-time. We observed models that performed in 1-2% of the time that their classical
analogous performed. These findings are very important as Quantum Computing
and especially Quantum ML algorithms, is a field rapidly growing but still in its
preamble stage and thus there is no abundance of experimental data. As described,
it is very hard to test all the above in real quantum computers as they are limited,
they are underdeveloped and are hard to access to run extended studies. Although,
we ran all our algorithms on simulations of quantum computers with the help of
Cirq package by Google, the pennylane package, which is focused in Quantum
ML and the qiskit open source package provided by IBM, it is important to know
the behavior of the quantum computers for when the time that we can build more
complex architectures to be able to test their performance and be able to exploit
them.

Introduction

The purpose of this thesis is to discover how the field of drug discovery can be
extended with the use of Quantum Machine Learning algorithms. More specifically,
I will study how some known techniques can be applied to medical data sets and try
to define some conclusions on the performance of the predictive models, in order to
understand which one is more suitable for specific tasks, such as drug discovery.

The ordinary methodologies used for drug discovery are via the experimental
process and require many trials, consisting these methods time consuming and very
costly. These drove us to use modern tools such as simulations and predictive models
to exploit the abundance of data and map how the drug materials behave. One needs
to start his study from the characteristics of atoms and molecules to entire healthcare
databases on how to combine them to find treatment to the most common diseases.
However, today’s classical computers and even supercomputers can only simulate
relatively simple molecules, limiting our capabilities to study more complex systems.
Therefore, the focus of research is to achieve the so-called quantum supremacy.
This can be achieved with the use of quantum computers, which exploit the laws of
quantum mechanics to process information. Quantum computers use quantum bits,
called qubits, which can encode zero and one simultaneously. This phenomenon is
called the superposition of a quantum state.

Quantum Machine Learning uses quantum algorithms to perform complex machine
learning tasks. Quantum ML allows us to translate ML algorithms into a quantum
circuit that can take into account the architecture of the quantum computer and
run more efficiently. Most of these algorithms are of course hybrid models using
a combination of classical and quantum models. Companies and researchers have
experimented more on these hybrid algorithms, because at the moment they are
the more affordable choice. Hybrid algorithms combine the storage capacity of
a classical computer, which is higher of that of a quantum computer, with the
computational power of a quantum machine.

Kepdiawo 1

Drug Discovery methods

Target identification, molecular design, preclinical investigations, and clinical
trials are all considered stages in the drug development pipeline. Searching for new
pharmaceuticals can be thought of as navigating in chemical space, which is the
collection of all organic molecules, and navigation in unexplored chemical space
falls under the category of ”de novo” drug design. For the scope of this work, we
chose to investigate how the most well-known machine learning techniques, such
as Variational Autoencoders (VAEs), generative adversarial networks (GANs), and
recurrent neural networks (RNNs), compare to each other and can be used to learn
latent representations of molecules and generate large numbers of drug candidates
for further high-throughput screening. To overcome the difficulty of dimensionality,
we would need to use the quantum equivalent of all the aforementioned models to
sample molecule compounds from sections of the chemical space that may be on
the order of 10%°. GANs, for example, find therapeutic candidates by producing
molecular structures that obey chemical and physical properties and have a high
affinity for binding to a target disease’s receptor. Instead, a QGAN, a qubit-efficient
system with a hybrid generator, can be used to learn richer representations of molecules
by searching exponentially huge chemical spaces with few qubits more effectively
than a classical GAN. A hybrid quantum generator that supports varying numbers
of qubits and quantum circuit layers and a conventional discriminator are usually
used in these types of models.

Quantum GAN is one of the main applications of near-term quantum computers

due to its strong expressive power in learning data distributions even with much

less parameters compared to classical GANs. However, quantum neural network

is still at its nascent stage due to qubit constraints on noisy quantum computers.
Considering the specific task of drug discovery, we explore potential quantum advantages
for both generative and predictive models due to the following reasons:

» Gate parameter exploration in Hilbert space is different from neural network
parameter exploration

» Given a chemical region abundant of molecules, the inherent probabilistic
nature of quantum systems helps generate more diverse and novel molecules
surrounding that region.

Quantum ML involves parameter optimization of parameterized quantum circuits
to obtain a desired input-output relationship.

Another popular application of QML in drug discovery is the use of Graph Neural
Networks combined with libraries such as RDKIT or DeepChem to pre-process
them. Some popular experiments are the prediction of molecules’ toxicity and solubility.
The first is a classification task, in contrary to the second, which is a regression task.
Thus, we see that the prediction of each one of the molecule’s properties may require
different types of models that suit better each problem’s conditions. The common
theory behind most of the properties is the Density functional theory, which is used

to calculate some molecular properties such as energies and enthalpies as targets.

The traditional method of drug discovery involves determining the characteristics
of a receptor and the compounds that can facilitate its binding. Again, this is done
using density functional theory. A fingerprint similarity method can also be used
to identify potential targets of other molecules that are active against the receptor.
The MolGAN model uses a generative adversarial network to learn and generate
drug-like molecules based on the QM9 dataset. To improve the quality of generated
compounds and stabilize the GAN training, a reward network based on chemical
validity, RDKIT, is used. If we want to use Quantum ML, we can use a hybrid
quantum-classical model, which is a variation of the MolGAN. This model us presented
below:

H
"Drugfragments\ [Docking | §

NH2 ¢ |5
I N cogine | | ‘E 2 E ftom i g; distan
O - I (38 bo N N ¥
i i £3 00| i o 0/1
| inding site 1 E o g to | i OO
\ | i 38 O C ! f
| i gg o Bond il
‘\ ______] H & Layer N// i % D
i i operl
(a) (b) () (d)

Yympo 1.1: QGAN

The proposed model, from literature, has been proven to be qubit-efficient and

includes a hybrid generator and a classical discriminator. The model efficiently
learns molecule distributions based on MolGAN. As we can see in 1.1:

» (a) the validity of the generated molecules depend on if they have high affinity
towards the receptor binding sites.

» At the second part (b), the quantum stage is displayed and

» In the the third section (c) an atom layer and a bond layer are applied to
generate synthetic molecular graphs.

» Finally, in (d) section a batch of real molecules from the training dataset
(QMY9) and a batch of synthetic molecules that are generated from (c) stage are
fed into the classical discriminator for real prediction and the score calculation.

In the specific paper, they used the Frechet distance as a criterion for scoring. After
the above process, all results on the drug properties are evaluated using the RDKIT
package.

If a probabilistic search is preferred, the receptor can be treated asa N x N X
N picture with 8 channels corresponding to the atom types. The ligand will be
regarded as a NV x NN adjacency matrix with 6 bond type channels and a length
N atom type vector with 7 atom type channels. At this point, it is important to
mention that the maximal value is N = 32 atoms, which makes this approach
feasible for generating large molecular graphs. To continue with, two variational
autoencoders were used, one for the receptor pocket and one for the ligand. They
will be utilized to match receptor pocket and ligand pairs. They are made up of
three-dimensional convolutional layers that compress the original image into a 32-
element latent representation before decompressing it back into the initial receptor
pocket image. A two-way matching network connects the two VAEs, converting the
receptor pocket’s latent representation into the ligand’s latent representation and vice
versa. The activation function used in this study was a LeakyReLU combined with
spectral normalization to prevent exploding/vanishing gradients. The Hybrid VAE
is created by inserting quantum layers into the neural network at specific points.
The pain point discovered during this experimental process was that the quantum
embedding stage limited the model’s quantum superiority. The quantum embedding
used was angle encoding, followed by a data re-uploading method for measuring
different techniques for quantum state preparation.

1. RDKIT package

RDKIT is a popular tool in cheminformatics that is written in C++ and Python
and allows users to directly calculate molecule similarities. Graph embeddings could
be used to perform a more thorough similarity search on molecules using classical
algorithms. For many tasks, such as creating a molecule, this package employs
SMILES(Simplified Molecular Input Line Entry System) strings. SMILES strings
contain a letter that represents an atom as well as other symbols that contain information
about the bonds between the atoms. Another task that RDKIT excels at is loading
and visualizing molecules. When we visualize a molecule, we get an image that
looks like below:

smiles: O=clocnel -357.16757

O

N\

0

Zyua 1.2:

All of the substructures of the molecule contained in the specific smile can be
seen in the above image. This is extremely useful information because the behavior
of a molecule as a drug could be determined by certain substructures contained in
this SMILE. We can conclude from this that molecules with similar key substructures
are likely to behave similarly. When comparing different molecules, we can use
RDKIT to match these parts. Tanitomo similarity is one criterion provided by RDKIT
that can be used to compare them. This is a popular metric that uses substructure
matching.

After loading and visualizing the molecules, one can use RDKIT to search
similarities between them. This could be achieved by starting with a molecule that
we know its properties and its behaviour and search for similarities with molecules
in a large database, such as QM9 and that can be used as vanilla. If the information
and properties provided by SMILES while working with RDKIT are insufficient,
SMARTS can be used. SMARTS is a generalization of SMILES that can tell you

10

whether or not a molecule has rings. However, molecular fingerprints are utilized
to encode the structure of a molecule in every case, as we discuss elsewhere in this
thesis. These are mostly used to compare molecule substructures, characteristics, and
the vast majority of information stored within a molecule. In a molecule, they hold
each pattern of a specific size.

11

Kepdiaro 2

Calibration Data-set and Data
Exploration

The main issue with this thesis was the lack of experimental data and the lack
of variety to different types of implementations. Thus, one of the most important
steps following in our procedure was to choose a well known data-set that could
be used to calibrate our model. The wrong choice of data-set could lead to skewed
results and false conclusions in our experiment.

For the scope of this thesis, we used a data-set generated from the Quantum
Machines 9 (QM9) database. This data set contains over 134 thousand rows of
information and provides us with quantum chemical parameters for a relevant, consistent,
and extensive chemical space of small size organic compounds. This database may
be used for bench-marking existing methods, developing new approaches such as
hybrid quantum mechanics/machine learning, and systematic identification of structure-
property connections, as stated in its documentation. The quantum chemistry properties
mentioned above include geometric, energetic, electronic and thermodynamic properties.
In more detail, this database can be used to report energy-minimal geometries, related
harmonic frequencies, dipole moments, polarizabilities, as well as atomization energies,
enthalpies, and free energies. In addition to structure information, QM9 incorporates
SMILES from GDB9 and for relaxed geometry, as well as InChl for GDB9 and for
relaxed geometry. The QM9 dataset is based on GDB9, the most general database
of molecular quantum computations. However, the high computing cost prevents it
from being used on a regular basis for extensive chemical space exploration.

Now, to further explain the above information. With the word SMILES we
refer to the ”Simplified Molecular Input Line Entry System”, which is a chemical

12

representation that uses a sequence of characters to encode the molecule. SMILE
mainly include symbols of atoms and their bonds, in addition to syntax rules that
designate the validity of each entry of a string. The features derived from SMILES
representation are called topological descriptors, since the feature extraction process
relies on the molecule files. Finally, The advantages of using SMILES are

» an interpretation of the molecules that is more friendly to the user,
» they are simple to encode the molecular graph in or vice-versa,
» they are widely used and are a popular way for molecule representation and

» they consist a representation that is faster to compute.

If one wants to study SMILES and data-sets like QM9 and approach these problems,
firstly he has to follow the preprocessing methodology. Fortunately, for most of
the cases this step is covered by libraries used in deep learning projects such as
Deepchem or RDKIT, as mentioned in the previous chapter which is dedicated to the
description of the RDKIT package. They offer useful features for molecular data,
such as data loaders, splitters, featurizers, metrics, and even GNN models. These
routines allow you to use SMILES as string representations of the molecule’s 2D or
3D structure. It’s important to remember that this step translates any molecule to a
particular string that is almost certainly unique and can be translated back to the 2D
structure. Additionally, various molecules may be assigned to the same SMILES
string, lowering the model’s performance. The binary vectors obtained from the
SMILES are then used to represent whether a specific substructure of the molecule
is present or not, and these vectors are referred to as fingerprints.

Now, with the use of RDKIT package and some basic data analysis, we can
obtain some very important information for our data-set. Firstly, one can see the
frequency in which the number of atoms appear in our dataset. Firstly, we can print
the description of each label of the dataset that in reality each label depicts to one

property.

13

"gdb9"; string constant to ease extraction via grep
Consecutive, 1-based integer identifier of molecule

Isotropic polarizability

Energy of Highest occupied molecular orbital (HOMO)
Energy of Lowest occupied molecular orbital (LUMO)
Gap, difference between LUMO and HOMO

Electronic spatial extent

Zero point vibrational energy

Internal energy at 298.15 K

I. Property Unit Description

1 tag -

2 index -

3 A GHz Rotational constant A
4 B GHz Rotational constant B
5 C GHz Rotational constant C
6 mu Debye Dipole moment

7 alpha Bohr~3

8 homo Hartree

9 lumo Hartree

10 gap Hartree

11 r2 Bohr~2

12 zpve Hartree

13 Ue Hartree Internal energy at @ K
14 U Hartree

15 H Hartree Enthalpy at 298.15 K
16 G Hartree Free energy at 298.15 K
17 Cv cal/(mol K)

Heat capacity at 298.15 K

Yymua 2.1: Description of each property

Next we can plot the distribution based on the number of atoms in each molecule
and based on the number of molecules by the chemical species.

Absolute frequency

20K

11 13 15 17 19 21 23 25 27 29
Number of atoms

Zynuo 2.2: Atoms Histogram

One can assume that the distribution that appears can be fitted be a Gaussian
function with a center average of 19 atoms and that the limits are [3,29].

14

64374

5’70K' o

o lam)

g >

= 50K <

e

o

@ 30K

= 00

2 ® = oco

Z 10K L2238 ¢

< QPPN AR A
Q0O ZZO0OZO0O OO0 ZZEHOOZ
ZIODZLOzZzIZ T Rzz0ROZIoO
o O 0 T EE OO M @)
o %OO o

Chemical species

Zynua 2.3: Histogram based on the chemical species

Now, just to simplify our calculations we take a subset and do some data exploration
to further understand our dataset. So if we want to see the correlation of our spatial
data combined with the atom index we plot the heatmap representation below.

10

0.8

0.6
0.4
0.2
0.0
i
% ¥ z

2yfua 2.4: Correlation of Spatial Data

atom_index

atom_index

15

and then in the table below we display some basic statistic analysis on this
subset calculating the mean, standard deviation, etc.

Atom Index X y y/
count | 2.35887e+06 2.35887e+06 2.35887e+06 2.35887e+06
mean | 9.757255e+00 | 9.495981e-02 | -3.335625e-01 | 6.239050e-02
std 5.592444e+00 | 1.655403e¢+00 | 1.989328+00 | 1.445876e+00
min | 0.0000000e+00 | -9.234889¢+00 | -9.933938e+00 | -9.134765¢+00
25% | 4.0000000e+00 | -8.746228e-01 | -1.826097e+00 | -8.424758e-01
50% | 9.0000000e+00 | 5.183962¢-02 | -4.034906e-01 | 1.092888e-02
75% | 1.3000000e+00 | 1.116163e+00 | 1.373848e¢+00 | 9.393901e-01
max | 2.8000000e+00 | 9.382240e+00 | 1.018196e+01 | 7.8894733e+00

Here I present a plot scatter plot that shows the electronic spatial extent < R? >
by the number of atoms.

3000 - " Meanj , . ol ' .
L .' * 4
— .1 1E
S 2000 - S i
® i
= s
1000 * .
"W
i"'l
oL et B

N FLIOO~0HO—NMFLOOM~00N D N FLOOI~ D
Eembam b B L Do EEn R Een R (A o ot [Kt [t Fa [B |

Number of atoms

Tynua 2.5: Electronic spatial extent < R? >

Next, we can easily calculate the abundance of the atoms in the chosen subset:

51.231456%
35.262954%
7.766499%
5.612082%
0.127010%

sslivdieli@|les

16

To continue with, we create some scatter plots for the rotational constants:

N800} e

3
= 600 f

®

=]

2

S 400+ «

-~

© o

< 200

= .,i:.tttiit

-~

w ' * * - -

§ 0-..n!“'illll!ttttotnctooo

*

|

N FOO~ODNO—ANMFIOOI~0OND NN OO~ D
ke ke R an R R EEn R [[Ko [a) Ko [a Ea Ea B |

Number of atoms

Yynua 2.6: Scatter plot for A rotational constant

400 - *+ Mean

—

N

s

)

S—r

as)

= 300F

=]

2 *

3

& 200 r

e “

2

2 100 F «

3

17 e

=} "

5] OF =«tw bl sssiovnnnrononnee o

O NN SN N NN NN N [N (NN Y T TN JNN SN SN SN SN NN T I [(R S S 1
M FIOWI~0DO —NMHIDO~OND NN FIDO~ D

Number of atoms

Yymua 2.7: Scatter plot for B rotational constant

17

= .

3
@)

—= 200

=}

S) *

g

<

-~

2100 ¢

v

45 *

3 T

17 * .

5 g crtbelssissscsonnsennens o
o IIIIIIIIIIIIIIIIIIIIIIIII 1

N <FIOO~ODHO —~NMHOO~0N QD — AN O
bbb R R P R R [[Ko [Ko (o)

Number of atoms

26
27
9

Yymua 2.8: Scatter plot for C rotational constant

Then I create a similar plot by substituting the dipole moment on the y-axis.

30 - *
* DMean
-
L
- *
I t:
20 ee 19 8
& *y
*
) v B R !
) HHHR
L L]
- | I|| | I
0 ii|'l| II| i
o
N FHIO L= 00D S — N e H D O I= 00T D — I HD O~
SRR S PPN PO Ch P

Yynua 2.9: Dipole moment vs Number of atoms

Finally, I display some energy enthalpy plots as we can extract many
assumptions for the system of each molecule from these parameters.

18

Ug (eV)

U (eV)

—20

—40

—60

—80

—100

Zynpa 2.10: Internal Energy at OK by the number of atoms

—20

—40

—60

—80

—100

Zynua 2.11: Internal Energy at 298.15K by the number of atoms

M HOOI~CONO —HMNMFLOWP-00H O — D LD
D e B D B P e R R Ta [o [Ea [

Number of atoms

26
27

M TFLOOI~0NO =N HLOWI~0H D — NI FD

Number of atoms

19

[[[a

26

3" * Mean
*
- .';‘. - * ".' .
IR]
> '!:fi llll
— H
S -
_5t N :!
- t..'
IIII.II.IIIIIIIIIIII 1 1

1 1 L
OO~ O
[N Ia [[\ [BEAN

L L
MO~ 00O ~NM <FINW~0N XN
e e e = QIO

Number of atoms

Yynua 2.12: Internal Energy at OK per atom by the number of atoms

_3- -
* * Mean
o
. "'a' * .
a4t " ¥ "i' "
> . *
L S
L)
* '!
L "..
x T
L]

N FILOLCI~0NO N HIDW =0 1
e e e e e QT

Number of atoms

Yynupa 2.13: Internal Energy at 298.15K per atom by the number of atoms

20

Kepaiaro 3

Neural Network Models for Classical
Computing

For this particular experiment we decided to use several variations of
Convolutional Neural Networks but the one type of Neural Network that made more
sense to use and that we hoped that would fit the best to our use case, was the
category of Graph Neural Networks. As mentioned in previous chapters, our data-set
primarily contains the geometric properties of the molecules and their coordinates in
the 3 dimensional space. Thus, one can resemble the combination of atoms to simple
graphs. In our case, we have information about the different molecules consisting of
their 3D coordinates and the atom type. So imagine the atoms as the nodes and the
chemical bonds as edges. This is the simplest type of modeling one can use. Now,
with the use of Graph Neural Networks we have the ability to predict various kinds
of molecular properties. This can be achieved via the Density functional theory to
calculate properties such as energies and enthalpies as our targets.

In order to genaralize the abilities of these models for all cases, GNN models is
making four types of predictions. Beginning from local level, a GNN can predict the
property of anode. Then, due to the neighborhoods in graphs this type of models can
predict the link between two nodes and combining this with the previous prediction
it can come to assumptions on the whole property of a graph. After that, we can
scale this pattern and apply similar techniques to predict the similarity between two
nodes or two graphs.

21

1. Difficulties using GNNs

As is well known, Graph Neural Networks are included in the deep learning
chapter. The majority of neural networks are designed to cope with fixed-size or
regularly arranged inputs. We cannot apply the same principle to GNN models in
this case. The intricacy of the topological structure of networks or graphs is one
of the most prevalent issues that arise. We cannot assume, as a general rule, that
the input will be in the form of an image with a squared grid of pixels and follow
specific rules on precise dimensions and density. In some cases, graph inputs lack
spatial locality and uniformity. With this as a fact, we can see why the connections
between the nodes are a result rather than a fact. In addition to this, there is lack
of fixed node ordering or any reference point, adding difficulty to our study as we
cannot assume the isomorphism of the problem. And if the spatial issues are not
enough, another major aspect one should consider is that it includes different entities
as nodes and different types of interactions between the nodes, the edges. Finally,
what it makes it such a special case is that it has rich and heterogeneous features
about entities and interactions.

2. Types of Graph Neural Networks

If we choose this type of network, we must also choose which type of GNN
to employ on a second level. We must first choose between a Recurrent Graph
Neural Network, a Spatial Convolutional Network, and a Spectral Convolutional
Network. The Recurrent GNN'’s rationale is to define a parametrized function fw
with which the final node state will be used to produce an output after k iterations
to make a judgment regarding each node. The Banach Fixed-Point Theorem is used
to construct this model. The difference between this and the Spatial Convolution
Network is that the latter is more like CNN. This aggregates the features of neighboring
nodes into the center node. The last two categories, in general, broaden the convolution
process from grid data to graph data. The representation of a node v is created by
combining its own features z,, and those of its neighbors x,,. Convolutional Graph
Networks, unlike the first category, stack many graph convolutional layers to extract
high-level node representations and aid in the development of more complicated
GNN models. They also employ a set number of layers, each with a varied weight.
By adding filters from the standpoint of graph convolutions by introducing filters
from the perspective of graph signal processing, where the graph convolutional
operation is regarded as removing noises from graph signals, spectral-based techniques
construct graph convolutions. RecGNNs inspired spatial-based ways to define graph
convolutions via information propagation. These outmatch the rest in efficiency,

22

flexibility and generality.

This type of GNNs aims to learn node representations with recurrent neural
architectures, starting with a more extensive investigation of Recurrent Graph Neural
Networks. The underlying premise is that each node in a graph trades information
with its neighbors continuously until a stable equilibrium is found. As a result, it
works on one of the most fundamental principles of all physical systems: the quest
for the lowest energy point. RecGNNs extract high-level node representations by
repeatedly applying the same set of parameters over nodes in a graph.

In terms of efficiency, spatial models outperform spectral models in the final
two categories. Spectral models must either compute eigenvectors or manage the
entire graph at the same time. As you may imagine, both time and computing power
are valuable commodities. Spatial models, on the other hand, are more scalable
to huge graphs since they conduct convolutions directly in the graph domain via
information propagation. In addition, rather than computing the entire graph, the
computation can be done in batches of nodes. Spectral models, on the other hand,
extend poorly to new graphs since they rely on a graph Fourier basis and presuppose
a fixed graph. For all perturbations to the graph, this causes the eigenbasis to change.
Spatial-based models, on the other hand, conduct graph convolutions locally on
each node, allowing weights to be transferred easily across multiple locations and
structures. Furthermore, spectral-based models can only work with undirected graphs.
Because graph inputs such as edge inputs, directed graphs, signed graphs, and
heterogeneous graphs may be easily incorporated into the aggregation function,
spatial-based models are more versatile in handling multi-source graph inputs.

3. GNN Algorithm with a focus on Application of Convolutional
Networks on Graphs

In this section of this thesis, we will shortly analyse a type of convolutional
neural network that operates directly using as input graph structures and in most
areas is better to apply on Molecular Fingerprints. The nature of the problem as
shown below: To examine chemical fingerprints with a convolutional network, first
one has to create a graph that matches the architecture of the molecule, with nodes
representing atoms and edges representing chemical bonds. Fortunately, the SMILES
in the QM-9 data set follow a similar rationale. Information travels between neighbors
in the graph at each layer of the CNN. Finally, each network node activates one bit
in the fixed-length fingerprint vector.

23

|
/]
n

‘\ﬂ /A
S

R

V4

L
4
N

"A. R

Va
[3

AW N AW L.

%

N

"’
4
>

N\ %

VY

WX |

A

\ PN/

ANEE VAN N AN

N\
N Y i Y} A

A\ Iy \ Iy \ _J\]

Vi WAL : VAR - YA N

X P
NN N

A2 W
X
<A

i
¢
i
¢
i
q
2

A

Zynpe 3.1: GCN from literature

As previously discussed, one of the challenges with using any type of neural
network is that they will almost certainly require fixed size inputs, as most machine
learning pipelines cannot manage input of arbitrary size shape, which would be a
major issue for researching molecules. This issue arises because molecules can be
any size or form. Using a differential neural network with a graph as input, the
molecular fingerprint vectors can be computed more quickly. In the [] publication,
D. Duvenaud and colleagues developed a model that uses several layers, each of
which applies the same local filter to each atom and its surroundings, with the final
layers combining characteristics from all of the atoms in the molecule using a global
pooling step. Each feature of a circular fingerprint vector can each only be activated
by a single fragment of a single radius and in contrast to that, neural graph fingerprint
features can be activated by variations of the same structure, making them more
interpretable, and allowing shorter feature vectors.

This approach has superior predictive ability when compared to traditional
fingerprints for solubility, pharmacological efficacy, and organic photovoltaic
efficiency data. The approach can be streamlined to encode just relevant features by
employing differentiable fingerprints, lowering downstream computing and
regularization needs, and, as previously indicated, feature activation becomes much
simpler and meaningful. However, computing the neural fingerprint of depth R,
length L of a molecule with N atoms using a molecular convolutional net with
F features at each layer costs O(RNFL + RNF?), which is a computationally
expensive method. Furthermore, their implementations are still insensitive to stereo-
isomer classification.

24

Graph NNs are better suited for applications like node classification, graph
classification, node clustering, link prediction, and influence maximization. The
major purpose of this thesis is to use it as a graph classification model to categorize
different molecules, or even as a link prediction model to investigate how different
types of atoms join to produce new molecules. We’ve discussed Convolutional
Networks, and now we’d like to apply these convolutions to graphs. The goal of
this exercise is to extend convolutions to any graph.

The basic idea behind graph convolutions is that it includes simple calculations,
as each node aggregates info from surrounding nodes to update its embeddings.
The feature vector from each neighboring node of the prior layer are aggregated
with the top-right node itself. Next we can apply a non-linear transformation on the
aggregated node vector to arrive at the updated embedding. We choose this to be
a trainable weight matrix followed by an activation function (e.g. ReLU). Here is
important to note that the application of the update function and the weight matrix
is uniform across all nodes of that layer, meaning that the mechanism of embedding
is the same which makes sense since even with CNNs the image filter weights are
shared across the same layer. To extend this beyond a single-layer Neural Network,
we can a deeper NN to construct the above transformation. Finally after the above
steps, the subsequent layer’s corresponding node is updated to the resulting feature
embedding. The flow can be described as beginning from the input graph, followed
by the GNN blocks. After these the transformed graph is implemented, in which a
classification layer is added and finally we reach the prediction point.

4. Generative Adversarial Networks

In classical machine learning, GANs are mostly used in data generation like
high-resolution images. However, it has been observed that these kind of models
are computationally expensive. Thus, the quantum analogous are here to overcome
them. The purpose of using QGANS is a too in the race to thrive in the optimization
process while implementing quantum circuits to produce a good estimation in any
high-complexity problem.

To start with, in the classical world Generative models belong to unsupervised
machine learning and in the exact case of Generative Adversarial Networks are
being used as a training method for these models by framing the problem as a
supervised learning problem with two types of models:

25

» The Generator Model which is trained to generate new data and

» The Discriminator Model with goal to classify these data and understand which
are fake and real.

These two models are competitive with one another and as a whole, GANSs, provide a
method to domain-specific data augmentation and solutions to problems that require
a generative solution. The model described by lan Goodfellow in ?? and was the first
proposed method that freed the user from Markov chains and approximate inference
networks during training or sample generation.

Random Input
Vector

Generator
Model

Generated Real Example
Example

\/

Discriminator || ,
Update Model
model

Binary Classification | .
Real/Fake

=
g
)
@

Yymua 3.2: GANs model

I provide more specific information for the use case of drug discovery by explaining
MolGAN model in the next subsection.

26

5. MolGAN model

For the scope of this thesis, however, we focus in a specific type of GAN,
the MolGAN. Thus model consists of three main components: a generator Gy, a

A
discriminator D, and a reward network R,.

Adjacency tensor A Sampled A Graph
F I D Discriminator
N ~ N do) | GCM 0
Ganerator ! —
| = | . % _
/\k - - . - . . ’
Annotation matri X Sampled X Malecule
%~ plz) N I Reward network
| [0
N ~ N I) | GCN 0
1 MH - - \
P P 5
T | \ T] =

Yymua 3.3: MolGAN flow

As shown in 3.3 the generator takes a sample from a prior distribution and
generates a dense adjacency tensor A and an annotation matrix X. Subsequently,
sparce and discrete A and X are obtained from A and X respectively via categorical
sampling. The combination of A and X represents an annotated molecular graph
which corresponds to a specific chemical compound. Finally, the graph is processed
by both the discriminator and reward networks that are invariant to node order

permutations and based on Relational-GCN layers. For the training of the discriminator
the WGAN model’s loss function is used, while the generator uses a linear combination

of the WGAN’s loss and RL loss:

L(0) = ALwgan + (1 = A)Lgr (3.1
where A € [0, 1] is the hyperparameter that regulates the trade off between the two
components and Ly gay 1S given by:

0
)

L(2®, Gy(=4):6) = Do) + Dy(Co(z)) +a(||V 0 Dy(a]|~ 1)* (32)

where the first part is the original WGAN loss and the second part is a gradient

(i .
penalty, with a: a hyperparameter, T a sampled linear combination of (¥ and
Go(2"). Gy is the generative model, D, a discriminative model that learns to classify
whether samples came from the data distribution rather than from GY.

27

6. Quantum Neural Networks

7. Setting the base for the Quantum era

While entering the era of Quantum computers, we are entering the probabilistic
era. We turn from the classical unit of information, the bit, to the quantum analogous,
the qubit. The basic difference that we meet in quantum computing is the existence
of superposition states. What do we mean by superposition? To answer that we first
have to understand what a qubit is. In classical computing, the bit can receive two
values, 0 and 1. In a qubit, we don’t use 0 and 1 as numbers but we use |0 > and |1 >
as two quantum states of a system, called quantum bit or qubit. Quantum computers
are built to exploit the nature of qubits by obeying the laws of quantum mechanics.
So according to the quantum theory, one particle enters a superposition of states, in
which it behaves as if it were in both states simultaneously. Thus, now the number of
computations that a quantum computer could undertake is 2", where n is the number
of qubits used in this computer. The state of a qubit can be written as:

lg >= a|0 > 4+8]1 >

where |0 > is a state described by the vector (1, 0), |1 > a state vector like (0, 1) and
the constants «, J are two constants defining the % probability that the qubit will
be in each state and by the probability theory |a|* + |3|?. These are visualised in a
unitary sphere, called the Bloch sphere. This sphere is a geometrical representation
of the pure state space of a two level quantum mechanical system, a qubit.

2ynua 3.4: Bloch sphere

28

The two qubit states |0 >, |1 > are represented by the z, -z axes. Any point
|1 > on this sphere is represented by the equation |¢ > I wrote above. The Bloch
sphere is a generalization of a complex number z with |z|?> = 1 as a point on the
unit circle in the complex plane. Thus, we understand that the more generic form
that we can write the equation of a qubit is the below:

0 4 0
Y >= cos(§)|0 > —i—e“f’sin(§)]1 >
where 0, ¢ € [0, 7).

In order to handle a qubit or multiple qubits, we use basic gates. such as in
classical computing, which include the X-Gate, Y-Gate, CNOT Gate, NAND Gate,
XOR Gate and the OR Gate, the Hadamard gate and some more complex operations.
The Pauli X-Gate (NOT gate) inverts the value of a qubit from 0 to 1 or 1 to 0. This
inversion gate is often referred as a bit-flip. The Pauli Y-Gate is equivalent to a bit
value and phase flip in one operation. So, it flips the value +1 to -1 or vice versa.
The CNOT gate operates as the classical AND gate and as one can imagine this gate
doesn’t operate to a single qubit but to a system of 2 or more. It is called CNOT,
because it is a Controlled NOT gate. If either of the input qubits are 0, the resulting
qubit will be 0. There is also the Toffoli gate (or else the CCNOT gate) for the 3 qubit
circuits. It simply takes two input qubits and flips the value of a resulting qubit if
the two inputs hold a value of 1. If we want to reach superposition, then we have to
use the Hadamard gate. The Hadamard gate converts a 0 state to \%(]0 > 4|1 >)

and a 1 state to \/%(|O > —|1 >). In both cases, the resulting state displays an equal
probability of each eventuality. The NAND Gate operates as a NOT AND gate and
the exclusive OR (XOR) gate can be created with a CX-gate. This takes an input
and an output qubit. The output qubit will be inverted only if the input qubit has a
value of 1.

All the above can be used to compose a quantum circuit and a simple way is to
use the IBM Quantum Composer for visualizing and creating these circuits. It is a
drag and drop web-application that helps you incorporate quantum circuit controls
and execute them in a simulator or on a real quantum computer at IBM.

29

EERHANNEEEEEEE BN OEAREE o : o - s

+Add Open in Quantum Lab
1 from qiskit import
QuantumRegister,
qe . G‘ ClassicalRegister,
QuantumCircuit
a1 &7 2 from numpy import pi
+ 3
- 4 qreg_q = QuantumRegister(2, 'q')

5 creg_c = ClassicalRegister(2,
[
6 circuit = QuantumCircuit
(qreg_q, creg_c)
Probabilit : -sph
robabilities v © i Qephere v @ 8 circuit.h(qreg_q[0])

B 9 circuit.cx(qreg_q[0], qreg_q[1])
00

Probability (%)

20
w2
0 T T y (e l)o l
00 01 10 11 b

Computational basis states 32 State [] Phase angle
Zynpoa 3.5: IBM Quantum Composer

As displayed in 3.5, firstly we have many gates and operations at our disposal
and many of them are included in the gates previously discussed. Below the set
of tools, one can find the drag-and-drop palette, where you can add the number
of qubits you want for your circuit, as long as the classical register and after that
perform operations on the qubits. By default, all qubits are initialized to the |0 >
state. Here, I have used an example to construct one of the four Bell states, using
a Hadamard and a CX-gate. At the bottom of the page, we can find the predicting
probabilities, which in this case are 50% to end up in the state |0 > and 50% to
end up to |11 >. Next to this component we can find the Q-sphere. The Q-sphere
provides a global view of multi-qubit quantum state in the computational basis. The
size of the node is proportional to express the probability of the state and the color
reflects the phase of each basis state. Finally, in the right side of the screen, we
find the Quantum Lab section, where the IBM Quantum Composer converts our
implemented quantum circuit to python code using the Qiskit library. This is very
useful as in many projects and especially in Quantum Machine Learning, we use
hybrid classical-quantum algorithms and is most desired to alternate between tasks
using the same tool.

Now that we have explained some basic gates and the basic functions of the
tool, it is a good time to highlight how to read the IBM Quantum Composer probability
bar chart to understand the output from a quantum circuit. In this chart you can see
which outcome that the qubit would result in after applying the series of quantum
gates. As dictated by quantum mechanics laws, in order to know this result we
have to measure our circuit. But when we continue with the measurement, the wave

30

function of the system collapses. What do we mean by that? All postulates in quantum
mechanics are applicable on closed, isolated systems. The two basic postulates are
the following:

» For an isolated quantum system, we can define a Hilbert space, aka a complex

vector space with an inner product. This allows several operations like measurement

of length and angles.

» The evolution of a closed system can be described with a unitary transformation
U, such that [¢)' >= Uy >.

The main conclusion of the above is that closed systems described by unitary time
evolution (Hamiltonian formalism) can be measured by projective measurements.

When a system contains more than one qubit and especially when the states are not
well defined states of 0 and 1, things get more complicated. First of all, the wave
function of the system is written in the form:

¥ >= ago|00 > +a |01 > +a]10 > +ay|11 >

with Zij |aij|2 =1.

The problem with this state is that although we have the four complex numbers, most
of the system’s information cannot be accessed by measurement. If we measure the
entire system or perform a partial measurement of some qubits, we obtain a new
state. The new superposition is obtained by crossing out all those terms of [¢) > that
are inconsistent with the outcome of the measurement. After normalization to obey
the probability laws and the preservation laws, we get:

. aoo\OO > +G01|01 >

[Vnew >=
o V |aoo|* + |aor|?

The big question after all is can we decompose our entire state to partial measurements
of two qubits? Classically there would not be a problem with doing so and consider
that each two qubits should be in a state of the form a|0 > +/|1 >. However, we
have seen in practice some states, such the Bell states, which are:

B+ > %(yoo > 11 >) (3.3)
P~ >= %(!00 > —[11 >) (3.4)
- %(101 > 10 >) (3.5)
0 >= (|01 > —[10 >) (3.6)

Sl

2

31

that cannot decomposed in two separate states of each qubit. This phenomenon is
called entanglement. When two qubits are entangled, we cannot determine the state
of each qubit separately because the state of each qubit has as much to do with the
relationship of the two qubits as it does with their individual states. The above Bell
states are considered as the states in which two qubits are maximally entangled.

If we measure the first state, then the outcome is 50% 0 and 50% 1. However if
the outcome is 0, than a measurement of the second qubit will result in 0 for 100%
probability no matter the spatial distance between the two qubits. In the same way
as in a GNN, we take into account both the state of the node and the interaction it
has with its neighbors, here the qubits that are in an entangled state, they combine.
This is also the secret of Quantum Teleportation.

8. Data Encoding in QML

The algorithms employed in Quantum Machine Learning are hybrid classical-
quantum algorithms, as discussed in earlier chapters. We must be able to adapt
our input data to be usable by the various sorts of tools and libraries that will be
used during the implementation due to the nature of these methods. For quantum
computation, classical data encoding is crucial to the overall design and efficiency
of the algorithm. By encoding, we mean loading classical data into the qubits’ state.
There are various options for doing so. Generally, in the qubit encoding process
given a feature vector 7 = [z1,...,2y]7 € RY, the general qubit encoding maps
¥ — E(Z) given by

|$ >= ®££{2]fi($2i71,$2i)’0 > +gi(«r2i717$2i)’1 > (3.7)

where f,g: R x R — C are such that | f;|*> + |g;]> = 1 for every i.

Encoding can be categorized into two major categories:

» Digital encoding is the representation of data as qubit strings. This category
is most preferable if data has to be processed by arithmetic computations.

» Analogue encoding represents data in the amplitudes of a state. This category
is most preferable for machine learning algorithms, as mapping data into the
large Hilbert space of the quantum device is needed.

To begin, one of the most common methods is basis encoding. When real numbers
must be arithmetically manipulated in a quantum algorithm, this instance is more

32

applicable. sThe ideal goal is to represent real numbers in the binary system and then
convert them to a quantum state on a computational basis. This method, however, is
prohibitively expensive because to the large amount of qubits required. The Amplitude
encoding method is another option for encoding our data. The data is encoded into
the amplitudes of a quantum state, as the method’s name suggests. When we need
to take advantage of a quantum device’s huge Hilbert space, this way is better. This
encoding requires logs(n) qubits to represent an n-dimensional data point. Finally,
one should include Angle encoding, or else Tensor product encoding, as one of the
most well-known techniques. The n classical features are encoded into the rotation
angle of the n qubit. It requires one rotation on each qubit. This method is mostly
useful, when processing data in quantum neural networks. Before our data is a
compatible input to our neural network, we apply a rotation gate over the x or y
axis, RX or RY, respectively. Mathematically, these transformations can be written
as the below matrices:

R(0) = (C.Os.(g)g ‘“W)g)) (3.8)

—isin(4) cos(%
B cos(g) —sin(g)
Ry (6) = (—sm(g) cos(g)) (3.9)

As it has been experimentally observed, this method is very efficient in operations.
This occurs because, regardless of the quantity of data values to be encoded, only a
fixed number of parallel processes are required. However, because each input vector
component takes one qubit, this is also expensive in terms of qubits.

In addition to the above basic and most generally used techniques, other more specialized
or combined techniques are being used. Firstly, there is the Qsample encoding method,
which combines the basis and amplitude encoding methods. It associates a real
amplitude vector with classical discrete probability distributions. The advantage is
that we use mostly the amplitude logic, but all features are encoded in the qubit.
Thus, we can assume that most of the above choices are suitable to be used to
specific cases and the final choice for the encoding technique is very important as
it influences the runtime of the loading process.

In an example case, researchers have tried a descriptor compression algorithm
for Quantum Machine Learning of Sars-Cov-2 Data. They employed an MF to
produce binary numbers with a default of 2048 bits in this algorithm. A large number
of descriptors, as well as the use of qubits on the Quantum Computing network
to represent them, can be a challenge. In most circumstances, decoherence noise
introduced in the qubit system causes accuracy to fail. If there is a lack of linkage
between some qubits, some additional noise may be injected to the system based on
the quantum computer’s architecture. The 2048 descriptor features were encoded
using the following four methods:

33

» PCA,

» Common dimension reduction technique of linear discriminant analysis (LDA)

99,2

» Divide 2048 molecule fingerprint bits into ”x” groups, such that, each group
has ”’k” bits. The number of bits should divide 2048 completely. Then the "k”
bits are converted into base 10 or decimal value. Repeat until all the groups
are converted to a decimal.

» Keep track of positions of 1 in the whole array.

Within the quantum computer, a quantum algorithm was used to solve the direct
product for matrix operations and then calculate the M matrix. Then a quantum
algorithm can be used to transform into waveforms to solve the complete Support
Vector Machine on a quantum computer. While the SVM generally provides promising
results, it takes considerable time to solve linear equations to solve for the kernel
matrix using feature maps.

Finally, in the diagram below, one can see how the dimensionality reduction
worked and the data were stored.

Data after Data in

di i lock
mens_uon Ulxa) UlB.) " Ulxe) U(8s) - bloch
reduction sphere

Yymua 3.6: Data in the Bloch sphere

Generally, using SVM models we reduce the 3-dimensional space to 2 dimensions.
In this particular case, they managed to reduce to 3 to 10 dimensions to consider
the qubit architecture. In the above diagram,you can find displayed a high-level
abstraction of how data are stored in the Bloch sphere. The two layers, A and B
with U(z4) denoting the unitary matrix applied on the input vector and U(0,)
representing the unitary matrix applied to rotate the vector in the Bloch sphere.

As previously stated, dimensionality reduction is a critical task that may be
accomplished using Neural Networks. To convert high-dimensional data to low-
dimensional codes, a multi-layer neural network with a tiny central layer can be
trained to reconstruct high-dimensional input vectors. Principal components analysis
(PCA) is a simple and commonly used method in the classical approach, which
discovers the directions of highest variance in the data set and represents each data

34

point by its coordinates along each of these directions. A multi-layer encoder network
transforms high-dimensional data into a low-dimensional code, and a similar decoder
network recovers the data from the code, is a generalized approach. For these networks,
the required gradients are easily obtained by using the chain rule to backpropagate
error derivatives first through the decoder network and then through the encoder
network. After that, an ensemble of binary vectors can be modeled using a two-
layer network, the restricted Boltzmann machine, in which stochastic, binary pixels
are connected to stochastic, binary feature detectors using symmetrically weighted
connections. To continue wit, the network assigns a probability to every possible
image via the energy function. One possible joint configuration (v, k) of the visible
and hidden units has an energy of:

E(U, h) = — Z bivi - Z bjhj - Zvihjwij (310)

i€pixels j€Efeatures 1,5

where v;, h; are the binary states of pixel 1 and feature j, 0;, b; are their biases and
w;; 1s the weight between them.

In the modeling that was used for this study, was a single layer of binary
features, which was used for learning and the results were used as data for learning
a second layer of features. This layer-by-layer learning process can be performed as
many times as needed. Each feature layer captures high-order correlations between
the actions of units in the layer below. The global fine-tuning stage then substitutes
stochastic activity with deterministic, real-valued probability and employs back-
propagation to fine-tune the weights for optimal reconstruction throughout the whole
autoencoder. Classification and regression can both benefit from layer-by-layer pre-
training. Pre-training was found to aid generalization by ensuring that the majority
of the information in the weights originates from modeling the images or, in our
instance, the graph structures.

9. Angle Encoding

Due to the nature of our problem, we will probably choose to use the Angle
encoding method as the most suitable one to encode our data to our Quantum Graph
Neural Network. Thus, we need to deep dive in this technique in order to understand
how to implement it and to ensure that we will not have any data leakage at this
step of the process. Angle encoding makes use of rotation gates to encode classical
information x. The classical information determines angles of rotation gates, as
shown below:

|z >= @] R(z;)|0" > (3.11)

35

where R can be rotation over any axis, IR, I?,, R.. Usually, the number of qubits
used for encoding is equal to the dimension of vector x. However, we should always
keep in mind that each encoding is essentially a trade-off between three major aspects.

» the number of qubits should be minimal,

» the number of parallel operations should be minimal to minimize the width
of the quantum circuit,

» the data must be represented appropriately for further calculations

Understanding this trade off, it may more suitable to some cases to try the Dense
Angle Encoding technique. This subcategory exploits an additional property of qubits,
the relative phase, to use the only n/2 qubits to encode n data points. This could
be most useful in real life cases, while most quantum computers still have a limited
number of qubits. In dense angle encoding, given a feature vector 7 = [z1,...,zx]|T €
RY, the process maps & — FE(¥) given by

‘f >= ®£Z{2]COS<7T$21',1)‘O > +€2ﬂ-ix2i8in(ﬂ'l’2i,1>’1 > (312)

And as mentioned above, we can refer to dense angle encoding as the process
to encode two features per qubit by exploiting the relative phase degree of freedom,
we can also try dense angle encoding for two-dimensional data # € R? with a single
qubit given by

|7 >= cos(mx1)|0 > +e*™ 2 sin(rx,)|1 > (3.13)
with a density matrix
—2mix2

0052(7m1) e cos(mxy)sin(mxy)
pa) - (GQWiIQCos(ﬂ{L’l)Sin<7ﬂL’l> Sinz(ﬂ'fL’l) (314)

Lastly, the extreme version of this process is called Superdense Angle Encoding
(SDAE). Let ¥ = [z1,...,2x]7 € RY be a feature vector and 0, ¢ € R" be
parameters. Then the superdense angle encoding maps 7 — FE/(Z) given by

|z >= ®££{2]COS(91'$2¢—1 + $i12:)|0 > +cos(Bixai—1 + Giva)|1 > (3.15)

We see that this model includes two new hyper-parameters, 6 and ¢. This happens
in order to optimize the process and increase robustness. Now as mentioned in

36

literature, dense angle encoding is seen to perform well on all data-sets and is capable
of adapting well to noise, even outperforming the ideal case without noise and fixed
encoding. From another point of view, superdense angle encoding does not perform
well on any shown data-set since the generated decision boundary is highly non-
linear and cannot correctly classify more than half the data-set.

10. Variational Auto-encoders

VAEs (Variational Autoencoders) are versatile generative models that may be
used to a variety of media. A conventional autoencoder network can be described
as a pair of two connected networks, the encoder and the decoder, if we wish to
analyze it. The encoder network turns an input into a smaller, denser representation
that the decoder network can utilize to convert it back to the original input. We
examined Convolutional Graph Networks earlier in this chapter. As a result, we
can conclude that the general operation of CNNs is also well understood. If we
have an experiment with images as input, the CNN will take the large image and
”compress” it to a more compact and dense representation, which it will then use to
categorize the image via a fully connected classifier network. The encoders operate
in a similar manner. After that, the network produces a much smaller representation
with enough information for the next component of the network to transform it into
the required output format. Encoders, on the other hand, are trained in conjunction
with other portions of the network and then optimized through backpropagation to
provide encodings suitable for the task at hand. If we employ an autoencoder, the
system will instruct the encoder to create encodings that are specifically beneficial
for reconstructing its own input. As previously said, the complete network is usually
trained together. The reconstruction loss is a penalty imposed on the network for
producing outputs that differ from the input and is usually the mean-squared error
or cross-entropy between the output and the input. Now that we’ve demonstrated
that all encoders’ intuition is to decrease the input to a smaller representation of
itself, the encoder must choose to delete information in this scenario. The encoder
learns to preserve as much of the relevant information as possible in the limited
encoding, and intelligently discard irrelevant parts. Next, the decode learns to take
the encoding and properly reconstruct it into a full image. If we combine the above
parts, we receive the system of an autoencoder.

37

o

A E D

UL

Yymua 3.8: VAE Circuit

In the first picture above, we present a graphical representation of six-bit autoencoder
with a three-bit latent space. The map encodes a six-bit input, which are displayed
with red points, into a three-bit intermediate state, which is symbolised with yellow
points in the center, after which the decoder D attempts to reconstruct the input
bits at the output, which is displayed as green points. At the second image, one
can find the circuit implementation that corresponds to the above 6-3-6 quantum
autoencoder. The issue with ordinary autoencoders, on the other hand, can be found
in the generation stage. The issue is that the latent space into which the autoencoder
translates its inputs and where its encoded vectors are stored may not be continuous
or allow easy interpolation. This is a significant problem since we want to randomly
sample from the latent space or produce variants on an input image from a continuous
latent space while building generative models. If there are discontinuities in the
space and we sample or generate a variation from there, the decoder will simply

produce an implausible output because it has no concept how to deal with that part
of the latent space.

At this point it is time to introduce Variational Autoencoders. This type of
autoencoders has one unique property that separates them from the standard

38

autoencoders and that makes them most suitable for generative modeling. Their
latent spaces are designed to be continuous, allowing easy random sampling and
interpolation. This is achieved by forcing the encoder output a vector of means p
and a vector of standard deviations . We notice that the difference from the standard
autoencoders is that the vectors produced are doubled but each vector has the same
size as the one that the output vector from the standard encoder would have had. The
generation is stochastic and by this design one can achieve that the encoding will
vary one every single pass due to the sampling over the input. This sample encoding
which is then passed to the decoder is achieved by exploiting the parameters of a
vector that includes random variables of length the same of the initial vectors, using
the p, o of the i-th random variable, from which the sampling happens. The mean
vector controls where the encoding of an input should be centered around, while the
standard deviation controls the allowed variance from the mean. As encodings are
randomly from anywhere inside the distribution, the decoder learns that not only is
a single point in latent space referring to a sample of that class but all nearby points
refer to the same as ell. This allows the decoder to not just decode single, specific
encodings in the latent space but also small variances of itself, as the decoder is
exposed to a range of variations of the encoding of the same input during training.

The ability to use interpolation between classes is a key characteristic of VAEs.
Because the values of i, 0 have no limitations, the encoder can learn to create
extremely different . for distinct classes, clustering them apart and minimizing o,
ensuring that the encodings themselves do not differ significantly from the samples.
This enables the decoder to reassemble the training data quickly. The Kullback-
Leibler (KL) divergence must be introduced into the loss function to compel smooth
interpolations and permit the creation of new samples. This metric is measured
between two probability distributions and it simply measures how much they diverge
from each other. If we want to optimize the probability distributions parameters, x, &
to closely resemble that of the of the target distribution, we must try to minimize the
KL divergence. For VAEs KL loss is equivalent to the sum of all the KL divergences
between the component X; &~ N (p;,07) in X and the standard normal. It reaches its
minimum for y; = 0 and ¢; = 1. This measure is an excellent fit for autoencoders
since it encourages the encoder to evenly distribute all encodings around the latent
space’s center. Pure KL loss causes encodings to be densely put randomly around the
center of the latent space, with little respect for similarity between nearby encodings.
It is difficult for the decoder to decipher anything significant from this region. As a
result, this procedure need improvement. This produces a latent space that, on a local
scale, retains the similarity of surrounding encodings by clustering that is tightly
packed around the latent space origin. Following this strategy, we can eventually
build separate clusters that the decoder can decode. The extra benefit is that when
interpolating, there are no sudden gaps between clusters as we have a smooth mix
of features a decoder can understand.

39

11. Quantum VAEs

One can utilize one of the approaches outlined above, or any basic quantum
autoencoder that can incorporate some embedding procedures, to encode classical
data to qubits. The particular options of quantum embedding and measurement are
primarily determined by the dataset’s dimensions and scales, and the optimal option
is often a hybrid model, as pure quantum encoders only apply to normalized-scale
data reconstruction. The reason for this is that the top bound of both expectation and
probability is 1.

One can start with BQ-BVAE/AE which adopts amplitude embedding and expectation
output for encoder and angle embedding and probability output for decoder. This
autoencoder has already been used on QM9 data-set. Two variations of the same
model were used, the first was fully baseline quantum VAEs (F-BQ-VAEs) and the
second one was a hybrid quantum variant (H-BQ-VAEs). The main comparison of
their performance was experimentally proven as shown:

TABLE I
COMPARISON OF NUMBER OF TRAINABLE PARAMETERS.

Parameter Type VAE(AE) F-BQ-VAE(AE) H-BQ-VAE(AE)

Quantum 0 (0) 108 (108) 108 (108)
Classical 5694 (5610) 84 (0) 4286 (4202)
Total 5694 (5610) 192 (108) 4394 (4310)

2yMua 3.9: Autoencoders

It was shown that BQ-VAE/AE learned faster for normalized QM9 molecules
as a function of the training epochs.
The other case that was studied is the category of scalable quantum autoencoders.

In this sub-chapter, we aim to focus in the quantum analogous of the previous
chapter. The logic behind a quantum autoencoder is that such systems allow us to
perform analogous machine learning tasks for quantum systems without exponentially
costly classical memory, such as in the reduction of the data dimensionality. The
model is not far from the classical reality, as it has been proven that for a specific
model, if we choose a specific setting of parameters in the quantum network, it
reduces to classical neural network exactly. Each node in a simple quantum auto-
encoder system represents a qubit, with the output register represented by the first
layer of the network. A unitary transformation from one layer to the next is represented
by the edges linking adjacent layers. Finding unitaries that retain the quantum information

40

of the input through the smaller intermediate latent space is the main learning task
for a quantum encoder. A successful encoding can be described as one in which
F(|¢; >, p?"*) ~ 1 for all input states, where F is the fidelity of the states and can
be defined mathematically as

F(|[hy >, pi™") =< bs?p7" [¢); > (3.16)

Fidelity is a measure of how much two states look-alike and is expressed as the
probability that one state will pass a test to identify as the other. To return back
to the topic of this chapter, as defined in recent studies, if we have an ensemble
{pi-|10; > ap} of pure states on n+k qubits, where subsystems A and B are comprised
of n and k qubits, respectively, then we can consider a family of unitary operators
{U?}. These operators act on n + k qubits, where 7’ = {p1, ps, ...} is some set of
parameters defining a unitary quantum circuit. Also let |a > p/ be some fixed pure
reference state of k qubits. Using classical machine learning methods, we wish to
find the unitary U”, which maximizes the average fidelity, which we define to be
the cost function

Ci(p) = sz (1 >, P (3.17)

with,
s = UP)ipTre[Ulgti,, ® ap](UPA2)) (UP) ap: (3.18)

where we have used |¢; >< ¥;|ap = ¥;,, and |a >< a|p = ap. The main goal
is to find the best unitary U?, which on average best preserves the input state of the
circuit. After some hypotheses and calculations there is also an alternative definition
of the cost function in terms of the trash state fidelity,

Zpl (Tra[UP|0; >< ¥ ap(UP)], |la >p) (3.19)

This equation differs from the previous one, as it is considered that C} < C5. As
trash state we consider the state with density matrix p/y, = Tr 4[| >< ¢} ap’] and
it is preferable to look at this state instead of tracing over the AB system.

For the implementation of the quantum autoencoder to be efficient, the number
of parameters and the number of gates in the circuit should scale polynomially with
the number of input qubits. The other choice for generating the U” is to employ
a programmable quantum circuit that consists of a fixed network of gates, where
a polynomial number of parameters associated to the gates constitute p. The next
step is to train the network bu maximizing the autoencoder cost function, Cs. The
schematic representation of the training process can be depicted in 3.10. It consists
of the following steps:

41

1. Efficiently prepare the input state, [¢); >, and the reference state.

2. Evolve under the encoding unitary, U?, where j7 is the set of parameters at a
given optimization step.

3. Measure the fidelity between the trash state and the reference state viaa SWAP
test.

The training approach uses a quantum-classical hybrid scheme, in which the quantum
computer handles state preparation and measurement, while a classical computer

handles optimization. The weighted average of fidelities between the trash state

produced by compression and the reference state is defined as the cost function of

the quantum autoencoder. The cost function is bounded by 1 and its optimization

means to minimize the value of log;o(1 — C5). After the computation of Cs, we can

feed it into a classical optimization routine that returns a new set of parameters for

our compression circuit. All these steps are repeated until the optimization algorithm

converges. Finally, as described in this sub-section the training could be implemented
with states of a specific size, obtained by a given ansatz and then it can be used as

a state preparation tool. Once the system has been trained to compress a specific

set of states, the decompression unitary (U ™) can be used to generate states similar

to those originally used for training. This can be achieved by preparing a state of

the form ¥; > ®|a > and evolving it under U™, where |Psi; > has the size of

the latent space and |a > is the reference state used for training. However, one

important consideration when using quantum autoencoders of this type is that the

von-Neumann entropy of the density operator representing the ensemble {p;, [1); > ap
} limits the number of qubits to which it can be noiselessly compressed.

As shown in the image 3.9, autoencoders shrink the space between the first
and the second layer. One important thing to keep in mind when working with an
autoencoder network, the input nodes must be discarded after the initial encoding
and then we initialise a new set of qubits based on a reference state, which will be
used to implement the final decoding D that will be compared to the initial state.

42

|0> m

Reference —
state Ia>
S —
o w (]
| P [, Trash
-g =) l ' state g
T 7 Ul — " T
g =
E B (p..p.....) cu
2 i Compressed o
c : state %
s 0= 8
(e o

Zynpa 3.10: Training QVAEs

12. Quantum Graph Neural Networks

Quantum Graph Neural Networks is one emerging category of QML algorithms
that is particularly suitable to be executed on distributed quantum systems over a
quantum network. Now, if we want to understand how a hybrid quantum-classical
model works, we may use it as an example to shift from the logic of a classical graph
network to quantum computing. This GNN’s goal is to forecast the probability that
each edge in an event graph is a track segment. This is in the hopes of feeding new
event graphs into the trained QGNN, which can then infer edge predictions that can
be used to anticipate drug assembly over tiny molecules. An edge and node network,
which share weights across layers and within the same layer, make up the specific
model. Because they are applied repeatedly, edge and node networks exchange
weights across layers. This calls attention to the fact that just one node network and
one edge network are utilized, and they are applied repeatedly, therefore all weights
of those networks are shared across all nodes and layers in each application.

Starting with the input network, we describe our input as a matrix of all the
data points per node, which is then cast into a higher-dimensional embedding space
using a single-layer neural network. At this point, we use /Np the number of hidden
dimensions as a hyperparameter that dictates the size of all node embeddings and
we define

InputNet(X) = c(WHX) (3.20)

where X is the input feature matrix, W (i) the weight matrix for the fully connected
layer and o the activation function. Now, the shape of the input is defined from
the number of nodes N, and the number of coordinates, 3 and thus dim(input) =

43

(Ny, 3). When the spatial coordinates of each data point are supplied, the InputNetwork
converts them to an embedding space with N dimensions. The node embeddings
are then fed through the edge network and then the node network for V; iterations,
concatenated with their perspective spatial coordinates. With each pass-through of
the constituent networks, the node’s latent variables (embeddings in Np) and edge
weights are alternately updated.

In contrast, the output shape is given by dim(output) = (N,, Np) and the
output represents the node embeddings for each data point.

In the next section we need to analyse is the Edge Network. This part of the
model aims to predict the probability that a specific edge exists. The input of this
network is a pair of node feature vectors. Here we have to note that each node feature
vector is the concatenation of the 3 fixed spatial coordinates. The output is just a
float representing the probability that the pair of nodes are connected and we get
Np trainable embedding values from this stage. If h is the feature vector at the input
or output at the k-th layer and ey, is the probability at the k-th layer, we can define
the below equation to mathematically model the purpose of the edge network.

ex = EdgeNetwrok(h® + i) (3.21)

o

The Edge Network is a hybrid quantum-classical Neural Network and after
taking a concatenated vector containing a pair of nodes, the data is fed through
a quantum neural network sandwiched in between two trainable classical layers.
For the input classification layer we know that the aim is to best condense the
dimension form 2(3 + Np) to Ny, which is the number of qubits. Then, the Ng
outputs are rescaled to [0, 7|, which then parametrizes the information encoding
circuit (IEC). Unfortunately, the encoding scheme, independent to what it is, angle
or amplitude encoding or some combination of encoding methods, it is not trainable.
Continuing after the encoding step, the quantum state is evolved under the trainable
parametrized circuit (PQC). Then all qubits are measured from the PQC to then be
fed into a classical fully connected layer, which outputs a single edge probability
value using an activation function.

Each node feature vector has an encapsulated embedding that has been trained
to condense the most useful information for making this decision. As we know from
the basic instance of graph convolutional NNs, each GNN layer, in this case the
node network, is trained to provide the optimal embedding so that the two node
embeddings may be used together to determine whether or not there is an edge
between them. It’s also worth noting that sandwiching the quantum neural network
between two classical layers gives us more freedom with the aggregated network’s
input and output shapes. So having an input classical layer enables us to freely play

44

around with the hidden dimension size, while also retaining independent freedom
over the number of qubits.

In terms of the node network, all edge network predictions are crucial for iteratively
updating the node embeddings, which condense hidden graph properties. The quantum
GNN’s edge network is responsible for predicting track segments as a sub-component.
As aresult, it is critical for the node network. Furthermore, it has been demonstrated
experimentally that information propagates to more nodes with more iterations. We
capture broader graph attributes in this way, allowing it to update a node’s local
features with more understanding.

The input of the node network is a concatenated triplet of 3 node feature vectors:

» One weighted sum over all neighboring node features residing in the detector
layer before the h; layer,

» One A} ., Weighted sum over all neighboring node features that lie in a
detector layer directly ahead of the h; layer,

» the target node feature vector.

The node network’s architecture consists of an input layer of 3(3 + Np) dimension
and an output layer of Np dimension and is responsible for containing the node
embedding. The last part of the algorithm that needs to be checked, is the ansatz
that we will use when training the QGNN.

Thus, if we want to summarize the edge network serves as an attention mode
that feeds information to the node network on which surrounding nodes are important
to attend to. This helps the edge network identify the existence of a track segment
since there’s a higher correlation between two nodes that are likelier to form an edge.

When training the NN, we need to calculate the quantum gradients independently
using inefficient analytic parameter-shift rules. In the training process the below
steps are being executed:

1. Firstly, we feed-in a batch of individual graphs and conduct a forward pass to
arrive at the predicted edge structure for each individual graph.

2. Then we calculate the binary cross-entropy loss between the predicted edge
values and the labels.

45

3. After that we backpropagate the loss to find the gradients of each classical and
quantum weight, by following the parameter-shift rule. The classical gradients
are computed as usual leveraging auto-differentiation.

4. As the last step, we update each weight using calculated gradients with the
optimizer of our choice.

5. Then we repeat the steps above for all batches in an epoch, over 10-100
epochs.

In the above steps, we mentioned cross-entropy as a loss function. When training
the model we can feed the embeddings to any loss function and run stochastic
gradient descent to train the weight parameters as dictated from the rest of the steps.
The loss function should be chosen based on the node proximity in the graph and
we should train the model for a supervised task, such as node classification.

13. Quantum GANs

The next level is for someone to try the quantum analogous of this model.
QGANSs obey the same rules as its classical analogous but it has many differences,
starting from the architecture:

training data samples
- |
generated d:!ltl samples £

i Iy

G

Discriminator . classification:
D, real / fake

Zynpa 3.11: QGANSs

QGANS is a hybrid quantum-classical model, where at least one part of it
is based on quantum algorithms, either being the discriminator or the generator.

46

In this model, the algorithm uses the interplay of the Generator model and the
Discriminator model to learn the probability distribution underlying given training
data. The goal of this kind of network is for the quantum generator to learn the
training data’s underlying probability distribution and it loads a quantum state which
is a model of the target distribution.

As one can conclude from the above statement, QGANS are very useful because
they can load in polynomial time random probability distributions into quantum
data states. The algorithm trains the quantum generator to create a quantum state,
which represents the data’s underlying probability distribution, and it achieves the so
calling quantum advantage in combination with other algorithms such as Quantum
Amplitude Estimation (QAE). From another perspective, this algorithm can be used
for classical data for efficient QIP (Quantum Information Processing) and have
applications in finance and banking. Of course, all the above matter because the
Quantum algorithms have the potential to outperform their classical analogues and
it is a more efficient method due to the computational cost and the time-cost of
loading data into quantum states (O(2")).

In order to implement all the mentioned processes, in QGANs and in Quantum
ML one should use Variational Quantum Algorithms. They are the key to achieve
the desired quantum advantage. In general, VQAs have been developed for a great
variety of applications. VQAs use tasks encoded in a cost function, which is evaluated
by a quantum computer, and use a classical optimizer to train a parameterized quantum
circuit and with their structure they have managed to emerge as a leading strategy to
address the constraints of the current quantum devices. Some of these very binding
constraints are the limited number of Qubits that are used and the noise processes
that limit circuit depth. Thus, their adaptive nature help overcome those problems.
To implement these quantum algorithms we choose from a variety of tools created by
IBM to implement and visualize quantum circuits via the IBM-Quantum Experience
and finally to measure and output our results.

When implementing QGANSs, one can choose from a variety of generator-
discriminator pairs depending on the execution environment either on
quantum computers or simulations (a more detailed analysis on this is displayed
in the "Experimental Method” chapter). In these models, real data has to engage the
state preparation stage, usually through amplitude encoding, for encoding classical
data in a quantum state, and this stage takes Nlog(M) qubits where N is the training
set size and M is feature dimension. In our case, were we study the QM9 data-set,
more than 90 qubits are needed to discover real-like molecules. This total number of

required qubits to reconstruct synthetic molecules is (3)[095 +9logb > 90, where 5
is the number of bond types and atom types contained in QM9. Thus, given the task
complexity of learning molecule distribution, full quantum GAN can hardly encode
all training data in a quantum way. This fact makes a full quantum model not feasible

47

in the near future and in researchers have proposed hybrid models to overcome this
difficulty. These models include a hybrid generator and all variations exploit the
strong expressive power of variational quantum circuits with exponential speedup
up to O(ploy(logM)) time. Finally, in most models used, the discriminator imitates
the MolGAN model and a reward networks are discarded since they observed that
reward value is too minuscule to noticeably contribute to training the model. A
single optimizer is used to update all quantum gate parameters and weights in neural
network simultaneously and the discriminator is being updated alternatively.

The generalized process followed by a QGAN, which is described below, it can
be summarized in the following diagram.

[Start
- .
\ (65.69)) 0
/ Tails

Source R source G(6;)
Train D Training
heuristic
| Train G
max V(8,,8;) min 1»-'(!:5,-,. o,)
iy Py
I Update (6, 6;) I

V(6. 0z)

Zyua 3.12: QGAN flow

Yes

In general, the two quantum circuits (generator and discriminator) maximize
and minimize the same optimization problem, as in the classical analogy. The generator
learns the best parameters to send into its quantum gates after many training steps,
and it separates out a quantum state that is relatively similar to the quantum state
representing real data. To begin, one obtains expectation values from one discriminator
instance. The expectation values are determined by the data supplied into the
discriminator, and if both actual and created data were used, two expectation values
were obtained, indicating the discriminator’s performance on both types of data.
Following this phase, the model can use the traditional method of a cost function to

48

optimize its parameters. The minimization of the cost function entails the maximization
of the probability of correctly classifying fake data. In classical GANs, we use two
cost functions, one for the discriminator and one for the generator but in a QGAN
we can formalize them into one adversarial optimization problem, given by the
expression:

min(;cmang(Pr(D(gD, R) = |real >) — Pr(D(0p, G(0g, 2)) = |fake >)
(3.22)
where 0, is the vector of parameters we plug into our discriminator ansatz, 6 is the
vector of parameters we plug into our generator ansatz. It is important to note that
both parts depend on 6, but only the second part depends on 6. Mathematically,
it is needed to condition the QGAN such that |real > and |fake > are orthogonal
to retain the distinguishability of the two for the two for training Discriminator,
resulting in a better Generator. We arbitrarily use as fact that |real >= |0 > and
|fake >= |1 > with +1, —1 eigenvalues. For the discriminator we use a unitary
operation of the form:
Up = D(0p) @ I®™ (3.23)

with m: number of qubits in a register. The respective operators for the generator
and source R are:

Ug = I°0%) @ G(0g, 2) (3.24)
Up =1 @ R (3.25)

Now we can define the state when U}, is applied after Ug:
PO, b, 2) = Up(0p)p° (8. 2)U (9p) (3.:26)

and the quantum state when Uy, is applied after Ug:
pP"(0p) = Up(6p)p" U (6p) (3.27)

where p% (0, z) = Ug(06)p°(2)UZ (0¢). Thus, the cost function becomes:
Lo 1 . Lo
V(0g,0p) = 5(0052(¢T7’(Z,0DR(8D)) — sin?(¢)Tr(ZpP%(0p,0a,2))) (3.28)

where ¢ is the bias of the source and Z is an observable. Note, that the expectation
value of a density matrix with respect to an observable Z is the trace of that Z
operator applied to the density matrix. Finally, the update rule used for the parameters
D(0%) or G(6%), with learning rates X¥ and X%:

Oy = 6 + 25V, V (0}, 65) (3.29)
O = 05 — 26V 5,V (0, 605) (3.30)

where k is a step.

If we consider that we use cross-entropy as loss function between the real and
generated data S(p%?||p%) = Tr(p%(logyp™ — logap®)) and it converges at 0.

49

Kepaiao 4

ML Models of Classical computing -
Experimental Implementation

In this chapter, we will display and comment on the experimental process focused
on the classical Machine Learning models. I tried to approach a classification problem.
The starting idea was to search for similarities of molecules that are used in
radiopharmateuticals compared to the molecules provided by the QM9 dataset. However,
the similarity check that I implemented via the rdkit library, showed pretty low
scores and decided to move on from this problem. For this similarity check I used
radioactive isotopes including '8 F, 11 and 3 H. The metric used was the Tanitomo
similarity and the results received were of 10~2 order reaching a maximum at 0.3-
0.4. This metric is considered as an appropriate choice for fingerprint-based similarity
check. In this algorithm, we consider two sets A and B of fingerprint bits. AB is
the set of common bits of fingerprints of both molecule A and B. The Tanitomo
coefficient is given by the below equation:

AB
and it ranges from 0 when fingerprints have no bits in common, to 1 when the
fingerprints are identical. A good value that can be used to consider two molecules
as “’similar” is over 0.85.

One problem that caught my attention is the increasing numbers of young people
with mental problems. Thus, I decided to focus my drug discovery study to molecules
that could be used as tricyclic antidepressants. These drugs are used to ease depression
by affecting neurotransmitters used to communicate between brain cells. Like most
antidepressants, cyclic antidepressants work by ultimately effecting changes in brain
chemistry and communication in brain nerve cell circuitry known to regulate mood,

50

to help relieve depression. Cyclic antidepressants block the re-absorption of the
neurotransmitters serotonin and norepinephrine, increasing the levels of these two
neurotransmitters in the brain. The Food and Drug Administration(FDA) has approved
some antidepressants that are called doxepin, protriptyline, amoxapine and
amitriptyline. Also, sometimes cyclic antidepressants are used to treat conditions
other than depression, such as obsessive-compulsive disorder, anxiety disorder or
nerve-related pain.

Thus, the purpose of this study is to study this classification problem of molecules
used for designing antidepressant drugs. To achieve this, we used in our arsenal
different types of Neural Networks including convolutional, graph and generative
adversarial networks. This strategy is aimed to give as spherical conclusions on the
QM09 dataset and how if it can reliably be used for antidepressant drug designing.
But prior to implementing all the mentioned machine learning models, we have to
prepare our dataset in order to be ready to use it as an input to our models.

To begin with, I loaded this dataset and all the prerequisite packages to my
environment. The environment used was Google Colab’s Jupyter Notebooks in need
of a cloud solution. QM9 dataset was loaded automatically by using the chainer
chemistry library and its original format is zipped file where each molecule’s information
is stored in each ”xyz” file. Chainer Chemistry automatically merges these information
in one csv file internally. Next in order to extract QM9 dataset the GGNNPreprocessor
was used. We instantiate the preprocessor and follow with ”get-qm9” methods to
extract all labels. After this action, 15 types of physical properties were extracted
and the basic encoding type of the information needed is through SMILES strings
along with the dataset itself. The GGNNPreprocessor class receives as arguments:

1. The maximum number of atoms for each molecule and if the number of atoms
is more than this value, this data is simply ignored.

2. The ouput size, which specifies the size of array returned by the “get-input-
features” method. If the number of atoms in the molecule is less than this
value, the returned arrays is padded to have fixed size.

After the completion of the above step we observe that QM9 dataset is a class of
NumpyTupleDataset, where the i-th dataset features can be accessed by “dataset[i]”.
Additionally, due to using the GGNNPreprocessor class, each dataset consists of the
following features:

1. atom feature: atomic number of a specific molecule,

51

2. adjacency matrix feature: GGNNPreprocessor extracts adjacency matrix of
each bonding type,

3. label feature: chemical properties (labels) of a specific molecule.

The adjacency matrices of each type of bond between atoms in a specific molecule:
Single bond:

01 00O0O0O
1000100
0001O0O0TPO
001 0O0O0O 0
01 00O0T171
0 00OO0OT1TO0TPO
000O0OT1TO0TFPO
Double bond:
0 00O0O0GO 0O
001 0O0O0O 0
01 00O0O0O
0 00O0OO0OO 0O
000O0OO0OTO OO
000O0O0GO 0O
0 00O0O0O 0O
Triple bond:
0 00O0OO0O 0O
000O0O0OGO 0O
000O0O0OTO 0O
000O0O0GO 0O
0 00O0O0O 0O 0
0 00O0OO0GO 0O
0 00OO0OO0OTO OO
Aromatic bond:
000O0O0OTO OO
0 00O0O0GO 0O
0 00O0O0GO 0O
0 00O0OO0OGO 0O
000O0OO0OTO 0O
0 00O0O0OTO 0O
0 00O0O0GO 0O

Next, [use some visualization modules of the RDKIT package to display some
rows of our dataset to images, in order to understand it better4.1.

52

N MO~ on |>_ CL>_
o e OO

Yynpa 4.1: Visualization of molecules in a grid

To continue with, I created an interactive visualization of the whole dataset
for Jupyter Notebooks in order to be able to access each point in the dataset of
13 thousand rows. Finally, it is time to limit the dataset to our needs. Firstly, I
contacted a similarity check on the molecules of Serotonin, Dopamine and Doxepin
to find common characteristics that I will use as criteria to limit the dataset. As it
is obvious by the name of the drugs, I filter the database to keep only molecules
that have three ring substructures in their whole structure as molecules. With this
criterion I limited my data to 19672 rows. I saved all molecule indexes to be able to
isolate them from the whole dataset. Now that I have the rows I want to keep, the
second criterion that I used to classify my dataset was the log P coefficient. This is
the octanol-water partition coefficient logP and is used in QSAR studies and rational
drug design as a measure of molecular hydrophobicity. Hydrophobicity affects drug
absorption, bioavailability, hydrophobic drug-receptor interactions, metabolism of
molecules, as well as their toxicity. Other use of this coefficient is its key usage
in studies of the environmental fate of chemicals. The value of known molecules
used as ansatz in the present study can be seen in the below table [4]. However,
as studying the chemistry and biological properties of all these drugs is not my

53

SMILES logP

Doxepin CN(C)CCC=C1C2=CC=CC=C2COC3=CC=CC=C31 429
Serotonin C1=CC2=C(C=C10)C(=CN2)CCN 0.21
Dopamine C1=CC(=C(C=CICCN)0)O -0.98

Amoxapine | CICN(CCN1)C2=NC3=CC=CC=C30C4=C2C=C(C=C4)Cl | 3.4

area of expertise, in order to be more accurate we would need the assistance of
an experienced researcher. All features and characteristics used to classify the data
are based on personal observations, as we just want to test our models performances
on this dataset and thus cannot be applied to real-life cases until provided official
chemical criteria on these features by a professional in the specific area. Our final
dataset include molecules of the below form:

& S S O
ORI RV

P— Pp— o o

ZyMua 4.2: Molecule Visualization for final dataset

54

Depending on the feasibility of our models we use either a binary classification,
either a multi-class classification splitting our data to 4 classes based on the values of
logP coefficient. In most cases in the following chapters, we use data in the form of
images/matrices combined with the logP feature for our classification problem and
in few case we exploit other structural features of the model to show how we can
optimize their encoding to classifiers. Finally, we aim to conclude on which level
we can exploit the quantum supremacy at the moment, given the fact that quantum
computers are in a preliminary stage and are constantly improving.

1. Convolutional Neural Network (CNN)

In this specific case study, I decided to focus on a multi-class classification
analysis of the dataset. I decided to use as input the matrices which we have gained
from the molecule images. The purpose of practically using images in this kind
of network is because CNNs are immune to spatial variance and hence are able
to detect features anywhere in the input images. Also CNNs are built in a way that
can generate excellent predictions with minimal image preprocessing. For this case I
split my data in 4 classes based on logP coefficient and split my data to 80% training
dataset and 20% testing dataset.

I begun by choosing a simple MLP model with a few layers, which is displayed
below [4.3].

Model: "model"

Layer (type) Output Shape Param #
input_2 (InputLayer) [(None, 64, 64, 4)]]
dense_9 (Dense) (None, 64, 64, 5) 25

Total params: 25
Trainable params: 25
Non-trainable params: @

Yynua 4.3: One Layer Initial Model

55

The results were pretty disappointing as one can observe [1.].

loss | accuracy | precision | val loss | val accuracy | val precision
2.6527 | 0.5113 | 0.0306 25.0061 | 0.0490 0.0032
1.5340 | 0.6363 | 0.0704 29.3843 | 0.0490 0.0031
1.2716 | 0.6908 | 0.0924 27.2253 | 0.0490 0.0032
1.1985 | 0.6908 | 0.0988 28.5666 | 0.0490 0.0033

We had overfitting from the beginning as contradicting the good behavior of
the training loss and accuracy, loss on the validation data kept increasing and the
training stopped after only 4 epochs, due to it remained constant and was stopped
by the Early Stopping. Also, both training and validation precision were kept under
1%. Thus, I made a few choices to change the architecture of the model and one can
find the explanation in the final model.

The final choice for the architecture used for this model can be seen in [4.4].
One can see that we have used a Sequential model with its arguments including an
Adam optimizer, 4 neurons and variable dropout. The hidden layers of the model
include 3 two-dimensional convolutional filter of kernel size 3 x 3 to standardize the
inputs to each layer for each mini-batch, combined with a ReLU activation function.
As time is always a limitation, we decided to apply several batch normalization steps
in order to reduce the number of epochs needed to train the network and to overcome
the over-fitting phenomenon that appeared in previous models that I tried.

56

mModel: "sequential 2"

output Shape Param #

batch_normalization_& {Batc (Mone, Mone, None, 188) 408
hMormalizaticon)

max_pooling2d & (MaxPooling (Mome, Mone, None, 188) @

20)
dropout_8 (Dropouwt) (Mcne, Mone, None, 1@8) @
corw2d_7 {Conv2D) (Mcne, Mone, None, £@) 72280

batch_normalization_7 {Batc (Mone, None, None, 88) 328
hMormalization)

max_pooling2d 7 (MaxPooling (Monme, Mone, None, 28 @

20)
dropout_9 (Dropout) (Mcne, Mone, None, £@) a
corw2d_§ {Conv2D) (Mcne, Mone, None, 32) 23872

batch_normalization_g& {Batc (Monme, None, None, 32) 128
hMormalization)

max_pooling2d 8 (MaxPooling (Mome, Mone, None, 32% @

20)

dropout_l1@ (Dropout) (Mcne, Mone, None, 32) a
flatten_2 (Flatten) {Nene, Mone) a
dense_4 (Dense) (MNecne, 8) 73992
dropout_11 (Dropout) (Mone, 8) a
dense_S (Dense) (MNecne, 4) El

Total params: 172,328
Tralnable params: 172,484
Hon-trainable params: 424

Yynua 4.4: CNN architecture for classification problem

Also, as mentioned for the Batch Normalization layer, due to the overfitting
problems that appeared in the first few attempts of the model analysed in this section,
I decided to add a two-dimensional Max Pooling layer after each filter in order
to provide to next layer only an abstracted form of the representation. By using
this layer, I managed to reduce the over-fitting as I downsampled the input of the
next layers and provided a basic translation invariance to the internal representation.
After applying this triplet of layers multiple times, I used a dropout after each triplet
to randomly ignore some neurons temporarily. Finally, to ensure that my input will
be entered as one-dimensional to the final dense layers in combination to extra
dropout layers. Before exiting the model, I used a final dense layer with a softmax
activation function as it is used in multinomial cases to normalize the output of the
model.

57

The metrics used in the present model were the categorical cross entropy function
as a loss function, the Adam optimizer and accuracy and precision. In each run, I
monitored validation accuracy and with the use of the Early Stopping callback I
stopped the training after meeting its maximum value during 5 epochs, as I considered
that the model would not improve further. The best results retrieved from this model
with a learning rate [= 0.0001 can be seen in the table below [4.5]:

loss accuracy precision_3 wval loss wval_accuracy val precision_3

0 2496617 0.456500 0.439192 1.486472 0.200000 0.211982
1 1.364678 0.665000 0.646102 1.177607 0.710417 0.699797
2 1.339337 0.683000 0.681728 1.225186 0.718750 0.697395
3 1.258200 0.714932 0.701617 1.228504 0.691667 0.688391
4 1.269119 0.705500 0.703335 1.243383 0.679167 0677618
5 1.276160 0.702300 0.701292 1.269683 0.685417 0.683128
6 1.273295 0.703500 0.703039 1.243559 0.731250 0.726337
7 1232521 0.718500 0.712099 1.245967 0.691667 0.695122
8 1.233191 0.728500 0.725646 1.217297 0.704167 0.704167
9 1.225855 0.740500 0.733760 1.217422 0.729167 0.721992
10 1.238367 0.742500 0.740907 1.217267 0.712500 0.701461
11 1.216776 0.725500 0.723383 1.228390 0.704167 0.707113
12 1194726 0.733000 0.732535 1.233482 0.735417 0.730612
13 1.213123 0.727000 0.721920 1.214403 0.708333 0.713389
14 1.211676 0.738000 0.738048 1.220848 0.654167 0.652807
15 1182723 0.727300 0.725012 1.235777 0.687500 0667243
16 1.211328 0.719500 0.718703 1.222572 0.733333 0.734864
17 1.192584 0.732500 0.732500 1.211921 0.722917 0.721649
18 1.176320 0.747300 0.693736 1.191294 0.718750 0.715164
19 1.227817 0.716500 0.62048%9 1.195041 0.712500 0.723493

ymua 4.5: CNN statistics with 1r=0.0001

The results were obtained with parameters set as batch size = 80, epochs = 20,
neurons=4. The model was executed on a GPU for 113.33 minutes with average
epoch time equal to 7.25 minutes.

As one can observe, with this model we managed to reach the highest training
accuracy of 74.25%, highest precision 74.091% in row 10, but the highest validation
accuracy in row 12, which is equal to 73.54% and validation precision equal to
73.06%. Finally, both the training loss function and validation loss function follow

58

the descending 22 behaviour that they are supposed to do. One can see the visualization
of these numbers below:

Model loss_batch size=80, epochs=20, classes=4

—— Loss
24 Val_Loss
22
20
b
g18
16
14
12 e e————— -
T T T T T T T T
0.0 25 5.0 75 10.0 125 15.0 17.5

Epoch

Yynpa 4.6: Model Loss (batch size=80, 1r=0.0001, epochs=20)

0.7 1

0.6

05 4

Accuracy

041

031

= accuracy
024 ! val_accuracy

00 25 50 75 100 125 150 175
Epoch

Zynua 4.7: Model Accuracy (batch size=80, Ir=0.0001, epochs=20)

Model Precision

Precision

— Pred
Val_Pred

00 25 50 75 100 125 150 175
Epoch

Yymua 4.8: Model Precision (batch size=80, Ir=0.0001, epochs=20)

59

In order to be sure that these results were the best we could achieve with this
specific model architecture, I did a parameter analysis in order to find the optimized
parameters.

Avg Acc. | Avg Val.Acc. | Avg Prec. | Avg Val.Prec.
batch s=40, Ir=0.01 0.720247 | 0.72542 0.703839 | 0.635477
batch s=80, Ir=0.01 0.705395 | 0.68157 0.694795 | 0.679685
batch s=100, 1r=0.01 0.726905 | 0.7267 0.71905 | 0.6789
batch s=100, Ir=0.001 | 0.710743 | 0.69432 0.700125 | 0.693432
batch s=100, 1r=0.0001 | 0.706395 | 0.68157 0.694745 | 0.679685

Thus, we observe from the above results that the optimum parameters are batch
size=100 an learning rate=0.01 and we observe that the model’s performance is
worse better as we increase the batch size. This conclusion comes from the validation
accuracy and validation precision, which are closer to the training value, when we
increase the batch size. Especially, with such big difference between the training
metrics and the validation metrics, we could assume that there is some kind of
underfitting that is happening. Concerning, the dependence of the model’s performance
to the learning rate parameter, we notice that the optimum value is Ir=0.01 as it
achieves the highest performance and it doesn’t cause overfitting. If we increased
the learning rate even more, one could notice great overfitting.

2. Graph Neural Network (GNN)

For the purpose of this chapter we aim to utilise Graph Neural Networks to
make predictions on our dataset, containing information about molecules from the
QM9 database and finally clarify if some of them can be used as components of
antidepressant drugs. To construct this model, I used TensorFlow and PyTorch. In
this specific case, [decided to use a Graph Convolutional Network (GCN). However,
the first task that need to be done is to prepare our input data. The graph data will
be instantiated from the dataset’s column containing the SMILES strings. In order
to transform all SMILES to graph input, I create a ”smiles2graph” function, which
receives a SMILES string as the only argument. To manage this input vectors, I also
utilize the graphs already contained in the QM9 dataset, the adjacency matrix for
each respective bond that pairs atoms in each molecule.

To continue with, I also define a custom function that receives SMILES strings
as the only input argument and outputs the atom features for an individual molecule

60

nodes edges

count 19672.0 19672.0

mean 8.9 21.2
std 0.4 1.2
min 5.0 12.0
25% 9.0 20.0
50% 9.0 22.0
75% 9.0 22.0
max 9.0 22.0

Xynuo 4.9: Graph dataset statistics

in the form of a vector. The dataset used is the same used in the previous chapter
for the CNN model. Now that I have the graphs with features, it’s time to define the
labels. I define the 4 different classes as done before, using the logP coefficient as a
criterion:

» Class 1: logP < —2.84025,
» Class 2: logP € [—2.84025,—0.7715),

» Class 3: logP € [—0.7715,1.29725) and Class 4: logP >= 1.29725

Then I use the One-Hot Encoding method to embed my data. Then I construct a
DGL graph dataset. By printing my dataset, I observe the form that the data have
shape into. Each row of data contains the number of nodes, number of edges and
the respective feature vector with its shape. Next, I define a class that receives as an
argument the DGL dataset and creates the final synthetic dataset that i will use as
input for my Graph Convolutional Network. At this point, [use a Graph data loader
and a random sampler and I also define a class for the GCN model that contains the
forward and backward passings.

As a final step of the data preprocessing stage, I extracted the below statistics
concerning the nodes and edges of the generated graphs in the dataset. Now that I
have gathered all the prerequisites, I define my model with the help of the GCN class
and I use the length of the feature vector and the number of classes. I also utilise
an Adam optimizer and PyTorch’s cross entropy function as a loss function. For the

61

initialization of the model, I used an AtomEncoder combined with a dataloader, 3
convolutional filters and a linear layer on the hidden channels based on the number
of classes in the dataset. For the forward passing, I first obtain the node embeddings,
then I added a global mean pool as a readout layer and finally I use a final classifier.

After running the model, we receive an average loss function value equal to
0.114 and an average validation equal to 88.352%, which is a great result. The
general behavior of the accuracy as function of the batch size can be seen below
[4.10]:

0.88425 1

0.88400 4

0.88375 A

0.88350 4

0.88325

0.88300 1

0.88275 -

0.88250 1

T T T T T T T
0 100 200 300 400 500 600 700 BOO

Zynua 4.10: GCN Validation Accuracy vs Batch size

To achieve these results I used a total of 64 hidden layers, a learning rate equal
to 0.01 and dropout equal to 0.5 on the final classifier of the model.

Thus, we can conclude that it is more effective to use a Graph Convolutional
Network instead of a CNN to classify the molecules of this dataset. The great advantage
that a GCN has and it makes it very powerful is that it can receive graphs with
variable size as input, contradicting a Convolutional NN, which can only understand
input with specific size. We would like to construct its quantum analogous to be able
to compare the results and conclude on the quantum advantage, but as mentioned in
literature, Quantum Graph NNs are very complex models and are still not completely
feasible, but we have studied them in a theoretical level. As mentioned in a paper
from CERN, where they implemented a QGNN to predict particle trajectories, it is
has a very high computational cost as 1 epoch had a duration of 1 week.

62

3. Generative Adversarial Network (GAN)

For this chapter, I implement a Generative Adversarial Network and I use the
molecule images as input for my GAN model. The starting size that I import the
images is 600 x 600 pixels. Then after slitting my data to train, test, validation
datasets, I define the new dimensions for our images, which will be 28 x 28 pixels. I
also use a batch size equal to 100, with a training sample of length equal to 800 and
20 training epochs. My dataset has been split to 11829 images for the train dataset,
3944 images for the validation dataset and 1945 images for the test dataset, with
the use of Image Data Generators. Through the appliance of the generators, I also
normalize images to fit [0, 1].

Subsequently, I set a buffer size equal to the size of the training sample and I
shuffle the data. Then I define the generator model, which is a sequential model. As a
first step [use a Dense layer with Batch Normalization and a Leaky ReLLU activation
function. Then I use three layers with a two-dimensional transpose convolutional
filter combined again with Batch Normalization and a Leaky ReL U activation function.
However, in the third layer I use a hyperbolic tangent, tanh, activation function
instead of a Leaky ReLU. All the above can be summarized in the model diagram
[4.11].

63

Model: "sequential"

Layer (type) Output Shape Param #
dense (Dense) (None, 12544) 1254400
batch_normalization (BatchN (None, 12544) 50176
ormalization)

leaky re lu (LeakyReLU) (None, 12544) 0
reshape (Reshape) (None, 7, 7, 256) 0
conv2d_transpose (Conv2DTra (None, 7, 7, 128) 819200
nspose)

batch_normalization_1 (Batc (None, 7, 7, 128) 512
hNormalization)

leaky re lu 1 (LeakyReLU) (None, 7, 7, 128) 0
conv2d_transpose_ 1 (Conv2DT (None, 14, 14, 64) 204800
ranspose)

batch normalization 2 (Batc (None, 14, 14, 64) 256
hNormalization)

leaky_re_lu 2 (LeakyReLU) (None, 14, 14, 64) 0
conv2d_transpose 2 (Conv2DT (None, 28, 28, 1) 1600
ranspose)

Total params: 2,330,944
Trainable params: 2,305,472
Non-trainable params: 25,472

2yMuoa 4.11: Generator Model Summary

Then I add random noise to an image and I feed it into the generator to see the
results [4.12].

64

Zynua 4.12: Noisy Image

In the next step I define the discriminator model, which is also a sequential
model. As a first step, I add two two-dimensional Convolutional filters combined
with a Leaky ReLU activation function with a dropout=0.3. Lastly, I use a Flatten
layer and a Dense layer to conclude this model.

Model: "sequential_ 3"

Layer (type) Output Shape Param #
conv2d_2 (Conv2D) (None, 14, 14, 64) 1664
leaky_re_lu_8 (LeakyReLU) (None, 14, 14, 64) 0
dropout_2 (Dropout) (None, 14, 14, 64) 0
conv2d_3 (Conv2D) (None, 7, 7, 128) 204928
leaky_re_lu_9 (LeakyReLU) (None, 7, 7, 128) 0
dropout_3 (Dropout) (None, 7, 7, 128) 0
flatten_1 (Flatten) (None, 6272) 0
dense 3 (Dense) (None, 1) 6273

Total params: 212,865
Trainable params: 212,865
Non-trainable params: 0

Zynua 4.13: Discriminator Model Summary

Then [use an Adam optimizer and custom loss function for each model. I define

65

the noise’s dimension to 100, epochs to 15 and I train the whole model. Below, 1
display the loss function comparing the generator and discriminator [??].

200

175

150 A

125

100 1

Loss

0.75 1

0.50 1

0.25 4 —— generator
discriminator

0.00

0 200 400 600 800 1000 1200 1400
Batch Number

Yynua 4.14: Loss function of Generator vs the Discriminator as a function of batch
size

The generated images from different running sessions are [] for a generated
image in RGB and the [], where I tried to work with grayscale images.

01

10 A L O

20 1

25 1

0 5 10 15 20 25

Zynua 4.15: RGB Generated Image

66

Time for epoch 9 is 233.37536644935608 sec

Yymua 4.16: Grayscale Generated Image

Both images are very blurry due to the noise and we concluded to the fact
that we ran the algorithm for a little number of epochs. If we continued to run the
algorithm for a great number of epochs we would get a better image.

67

Kepalaro 5

Quantum ML Models - Experimental
Implementation

1. How to Run Quantum Algorithms

The most important question is in which device do we run our quantum algorithms
and test our quantum circuits? If we want to describe the case of Qiskit library, one
can use IBM backends. Most of the time quantum circuits are executed on Qiskit
simulators. How do we compute a quantum circuit on a classical computer? We
need to reconsider what a quantum state and operator really are. As used in previous
chapter, in quantum mechanics, we use the Dirac notation that contains the bra—ket,
| >. In a simple mathematical language, we can translate this state to a vector:

()

Quantum operators can again be translated to matrices. If for example we use the
Hadamard operator, H, we use a matrix of the form:

()

Thus, one can easily understand that computing a quantum circuit is just a matrix
multiplication. The resulting vector denotes the measurement amplitudes, whose
squares are the measurement probabilities. Here is a point that one can more easily
understand a part of the quantum supremacy. As all these operations can be thought
as matrix multiplications, one can easily understand that if the matrix dimensions
are too large, this operation would be very time-wasteful and power-consuming for

68

a classical computer. If we put it in a simple way, quantum computers can multiply
many matrices in a single step.

One of the most popular providers for simulators is the one that provides for
Basic Aer backends. This is a module of Python-based quantum simulators. There
are several implementations. One can use the qasm simulator to retrieve the
measurement counts empirically. This simulator takes into consideration only the
classical bits we use when we measure our qubits. It uses a parameter called ”’shots”
to indicate to the computer how many times to run the circuit and to obtain the
measured result. As we increase the number of shots, we increase our results accuracy.
This simulator may not be the more accurate choice but it provides to the user
the most realistic conditions, such as noise. If someone wants to use a simulator
to calculate the exact state a qubit is in, he would probably have to choose the
statevector simulator. However, one important note before using this simulator is to
remove all measurements in our quantum circuit. As mentioned in a previous chapter
of this thesis, if we measure the state of any qubit in our circuit, this will collapse
the quantum superposition and inevitably result in a definite state the system could
possibly be in. The statevector simulator backend calculates the state of the given
quantum system. Finally, another popular simulator provided by the Basic Aer package
is the unitary simulator. This simulator executes the circuit once and returns the
final transformation matrix of the circuit itself. Running the circuit on an input state
simply is multiplying the transformation matrix with the state vector. The same as
before, when we use this simulator our circuit must not contain any measurements.

Apart from all the simulators, a few quantum computers have been built and
are available for public use, hosted by IBM-Quantum. All calls are executed via the
IBMQ API over the Internet and one has to sign-up in order to obtain an API key
to access his account and execute his code on the remote servers. The first step is to
load your IBMQ account using API key. Once the account has been loaded, you can
retrieve a backend provider to execute your code on a quantum computer. In these
backends, you can find either simulators or real quantum computers. As input they
receive a qobject, which is the Qiskit API serialization format and returns a BaseJob
object. This object allows asynchronous running of jobs for retrieving results from
a backend when the job is completed. While running your quantum circuit, you can
monitor the run status of a job on a quantum computer by using several commands
as shown below.

69

from giskit.tools import job_monitor

backend2 = giskit.BasicAer.get_backend('qgasm_simulator"')

backend2.name ()
backend2.version # 1
backend2.provider() .backends() # | iSimulatorPy simulator')>,

job = giskit.execute(qc, backend2)

job_monitor(job) # Pr em of the running

.result().get_counts()

Yynua 5.1: Job Monitoring

When choosing a real quantum computer one has to be cautious. It is very
important to choose a quantum computer that can provide him the most suitable
architecture for the specific use. One can see all available systems by visiting their
personal accounts.

Name Qubits Status Total pending jobs Processor type
& ibm_y Exploratory 127 6 Onl 78 Eagle r1

& ibmq_brooklyn Expleratory Hummingbird r2
8 ibmq_kolkata

& ibmg_mc

& ibm_
& ibm_;

& ibm_hanoi

£ ibmg_|

& ibm_peeks

Zynpa 5.2: Real Quantum Computers

As displayed in the image above, all specifications are provided including if the
quantum computer is available. Then some architectural information are provided,

70

such as the number of qubits and the Quantum Volume (QV) which is a metric that
measures the capabilities and error rates of a quantum computer. The QV method
quantifies the largest random circuit of equal width and depth that the computer can
successfully implement. To continue with, for every system we have the CLOPS
metric, which stands for Circuit Loop Operations per second. This is a metric correlated
with how fast a quantum processor can execute circuits. More specifically, it measures
the speed the processor can execute layers of a parametrized model circuit of the
same sort used to measure QV. Finally, one can see the jobs that are pending to be
done on the specific system and the type of the processor they run on. Additionally,
on this page one can find more information on each system such as the qubits’
frequencies in GHz and the error rates.

Calibration data 36 minutes ago

Qubit:

Frequency (GHz)

Connection:
CMNOT error

v
1

Zyqua 5.3: ibmq_kolkata error map

In the above image, the information mentioned above are displayed for the IBM
kolkata system along with its error map. As an error map we define the visualization
of the node connections of a gate map, in addition to the error rate expected on the
backend. By using the term gate map we refer to the visualization of the connections
between the nodes on a physical quantum computing device.

Now, if someone uses the Pennylane package combined with Qiskit has to know
that this quantum machine learning library is designed from the ground up to be
hardware and device agnostic, allowing quantum functions to be easily dispatched to
different devices. A single computation can even include multiple quantum devices
from different vendors. Pennylane offers several built-in quantum devices, such
as simple state-vector qubit simulator written in Python or using TensorFlow and

71

supporting classical backpropagation. Other choices include a fast state-vector qubit
simulator written with C++ backend or a mixed-state qubit simulator written in
Python. Several plugins can be installed separately, including integrations with Qiskit,
Amazon Braket, Cirq, Strawberry Fields and more.

2. Comparison of Encoding Methods for Quantum Variational
Classifiers

Before we move on to constructing different types of quantum circuits to transform
the classical models to their quantum analogous. In this section, I aim to study
different techniques on encoding the information provided by my dataset, which
is a subset of the QM9 database. I design a variational quantum circuit for each
encoding and I use the 4 out of the 5 columns of my dataset as the target to implement
a basic binary classification of 0 and 1. The classifiers used are based on the column
containing the logP coefficient data and the column containing the atomic number of
each molecule. I considered to use a layer to design the ansatz that I will use for these
models and I will study in which way the number of layer affects the performance of
our quantum circuit. Thus, all processes shown below can be outlined as the follow
steps:

1. Data pre-processing,
2. Quantum Embedding of the classical data and

3. Training of a layered variational quantum classifier

I begin the study of this chapter by shaping my dataset. I use the initialised
dataset

72

Unnamed: @ SMILES logP

0 Cic2cCicz 0.63610
1 C1C2CC102 0.16200
2 CC12CC(C1)C2 -0.82470
3 CC12CC(C1)02 0.24540
4 CC12CN(C1)C2 0.13978

19667 FC(F)(F)C12CC(C1)02 1.13150
19668 FC(F)F)C12CN(C1)C2 0.07450
19669 FC(F)(F)C1C2CCIC2 -0.06800
19670 FC(FYF)C1C2CC102 0.26280
19671 FC(F)(F)C1C2CN1C2 0.07450

Zynua 5.4: Initial Dataset

and by using this I obtain numerical features for each molecule that are vital to
understand their properties and that define each molecule’s structure. The features
calculated are

» Number of atoms,

» Number of bonds,

» Atomic Number (Z),

» logP coefticient,

» Number of single bonds and
>

Number of double bonds

Finally, the dataset that will be used for all the following techniques is the below:

73

logP atomic_numbers num_atoms Z double_bonds

0 063610 30 5 30 0
1 0.16200 32 5 32 0
2 -0.82470 36 6 36 0
3 024940 38 6 38 0
4 013978 37 6 37 0

Yymua 5.5: Dataset

and by using the pandas library I obtain the below statistics, which characterize
the specific dataset:

logP atomic_numbers num_atoms Z double_bonds

count 19672.000000 19672.000000 19572.000000 19672.000000 19672.000000

mean 0.301025 56.366816 8.870730 56.366816 0.454866
std 0.963120 2.698807 0.380119 2.898807 0.604471
min -4.909700 30.000000 5.000000 30.000000 0.000000
25% -0.304680 56.000000 9.000000 56.000000 0.000000
50% 0.283300 57.000000 9.000000 57.000000 0.000000
T5% 0.936770 58.000000 9.000000 58.000000 1.000000
max 3.366800 65.000000 9.000000 65.000000 3.000000

To better understand our dataset, I provide some additional statistics, such as a
heatmap of the Pearson correlation of features

Pearson Correlation of Features

10

o

poEE |
ol
-06
= -
-04
1 1
0.2

016 0.084 016 1
0.0
1 2 3 4

Yynua 5.6: Pearson Correlation

1

2

0.01

3

and the range of values of the first column

74

0.4

.'IIII \
s L \
é 02 I.'I
00 o - uiii Iiii;_
-2 o 2 4

—4

logP

Xynpo 5.7: Range of logP coefficient

Finally, if someone wants more information describing the dataset, he can look
into the Appendix of this thesis, which contains a pairplot of the dataset.

After all the statistics displayed above, I continue with the preprocessing of the
dataset’s features. I start by normalizing the columns in train and test datasets to fit in
the range [0,1]. After the rescaling, I split test dataframe into the respective feature
set and ground truth labels and I freeze the input training and test data. Finally, I
shift ground the truth labels from 0, 1 to -1, 1 to match the expectation values of the
Pauli Z matrix. In addition, I split my data to train and test sub-sets and shuffle them
and split into train and validation sets.

Amplitude Encoding Technique:

Now, as a first technique I try the Amplitude Encoding method. Since I have 4
features in my dataset, I decide to use 2 qubits and I use the ”default.qubit” device
provided by the pennylane package and I use the default shots=100, on how many
times to repeat the circuits measurements, to provide the final results. First, I define
a layer template as a sequence of trainable gates. This is similar to the layers in a
neural network. This can be achieved by using a single qubit for rotations and a
few controlled NOT gates (CNOT) as entanglers between the pairs of qubits. As
a second step, I initialize the quantum device and prepare the quantum dataset by
using Hadamard gates. After the initialization, I can finally embed my classical data
as a quantum state in the Hilbert space and create my quantum model.

In order to be able to measure the techniques performance, I define a loss
function and specifically a squared loss function and the accuracy for the binary
classification model. On the other hand, I define the quantum Variational Classifier
model and its respective loss function and I train the model. For training, I initialize

75

the parameters, the number of layers as 1, the initial weights and initial bias of the
model.

I also use batch-size=120, epochs=30, learning rate=0.01 for an Adam optimizer.
The ouptut weights that I receive are equal to

<0.02082524 0.00774552 —0.01176826) 5.1)

—0.00760863 —0.00517855 0.00466557

The results though, are displayed below.

0 3 10 15 20 23 30

Zynpa 5.8: Model Accuracy Cost for 1 layer

Confusion Matrix

-2000
1500

-1000

-500

Zynpa 5.9: Confusion Matrix of the single layer model

As it can be observed by the first plot, accuracy stays constant and it is equal
to 38.5%, which is pretty bad and also the loss has a linear descending order instead
of 2% descending behaviour. Thus, we conclude the the model fails to classify the
data.

To continue our analysis, I try using batch-size=170, epochs=30, learning rate=0.01
and 2 layers for the same model. This time I received the below results:

76

-0.575

4.2 -
-0.550
4.0-
-0.525
3.8 -
-0.500
+3.6- Z
v
o -0.475
S i
34 - -0.450F
3.2~ -0.425
3.0- - 0.400
-0.375
0 5 10 15 20 25 30
lterations

Zynpa 5.10: Model Accuracy Cost for 2 layers

Confusion Matrix

2000

N 2205 22 1500
1000

— 48 -500

Zynua 5.11: Confusion Matrix of the two-layer model

Here we observe a slight improvement as the model accuracy increased approximately
25% and reached an average value of 57.26%. Also the cost function has better
behavior as it is descending and non linear and it seems that at the last epochs, it
slowly converges.

Lastly, I tried for the same parameters to increase the number of layers to 3.
The results were similar to the previous case, concerning the accuracy, as it reached
56.595% again. However, the cost function becomes smoother and the convergence
of the model is faster and smoother.

77

0
S 8
Test Acc.

0 10 20 30 40 50
lterations

Zynuo 5.12: Model Accuracy Cost for 3 layers

Confusion Matrix

-2000

2227 0
< 1500

1000
N 1486 0 500
-0
0

1

2yMuoa 5.13: Confusion Matrix of the three-layer model

Thus, the general conclusion for this technique is that we cannot reach very
high test accuracy. However, if we used a more complex classifier, it may output
better results. However, we noticed that by increasing the number of layers in the
variational classifier, we manage to speed up the convergence of the model and it
also becomes smoother. The performance of the model is increased. For the specific
optimizer, Adam, with a learning rate of 0.1 we still achieve a faster initial convergence,
however as one can see in the diagrams, the performance is unstable and saturates
quickly. If we decrease the learning rate, the classifier has a slower but smoother
convergence.

Angle Encoding Technique:

In this method I follow the exact same preprocessing flow for the pre-trained
data. The great difference between this technique and the previous one is the number
of qubits that are needed for the implementation. Since there are 4 features in our
dataset, we require 4 qubits to perform the encoding. In Angle encoding, N features
are encoded into the rotation angles of n qubits, where N <= n.

78

I begin with the single-layer model again. The parameters initialized are batch-
size=150, total-iterations=40, learning-rate=0.1. The results that we receive are not
very promising

H/ﬂ_,__ =0.575

2.97 -

F - 0.550
2.96 - - 0.525
2.95- 1 -0.500 U

W

I <

o -0.475 4

O 2.94- 0

@
-0.450
2.93 -
-0.425
2.92 - - 0.400
- 0.375
0 5 10 15 20 25 30 35 40
lterations

Yynpa 5.14: Model Loss Accuracy stats - One layer

Confusion Matrix

- 2000
° 111 - 1500
-1000
— 137 |0
1

Zynua 5.15: Confusion Matrix of single-layer problem

Additionally, I repeat the same process with the same parameters as before,
except the learning rate, which we decreased to 1r=0.01. The results can be seen
below:

79

- 0.550
2.96 - - 0.525
2.95 - -0_5008

g 0.475 o

O 2.94- E

-0.450
2.93 -

- 0.42
2.92 - - 0.400

0 5 10 15 20 25 30 35 40
lterations

Yynupa 5.16: Model Loss Accuracy - single-layer model

Again in this case we see that from the accuracy and the confusion model that
our model fails to classify our data, with an average accuracy of 37%. Instead we
see that loss function becomes smoother and converges, thus we can conclude that
something is not wrong here. The bad performance can be explained as adding layers
in our circuit the training time for each epoch and the model needs to be trained for
more epochs. Thus, we believe that if we train our model for more epochs that the
circuit will reach best accuracy and will outperform the previous circuits that have
less layers. However, this has a great computational cost and we cannot satisfy this
need in this process.

Confusion Matrix

o 263 1915 - 1500
-1000

Yymua 5.17: Confusion Matrix of single-layer problem with lower Ir

80

After that I repeated the first whole step, to obtain better insights and used 2
quantum layers for encoding. The respective results can are displayed in []:

3.02 - m - 0.575
- 0.550
3.00 -
- 0.525
., 2987 - 0.500
8 =T
-0.475*
© 5.06- O
- 0.450
2.94 - - 0.425
5924 - 0.400
0 5 10 15 20 25 30 35 40
lterations

Yynpa 5.18: Model Loss Accuracy - two-layer model

Confusion Matrix

. 728 1472 1250
1000
7
~ 387 1138 20
-500
0 1

Zynpa 5.19: Confusion Matrix of single-layer problem with Ir=0.1

81

3.20 [
r0.55
3.15 1

ro.s0 .
)
3.10 -

@ <
0.45 4
O 3.05 1 u
=

3.00 1 L 10.40

2.951 0.35

0 5 1 15 220 25 30 35 4
[terations

2yuoa 5.20: Model Loss Accuracy - three-layer model

Confusion Matrix

- 2000
o 0 2205 1500
-1000
— 0 -500
-0
0 1

Zynpa 5.21: Confusion Matrix of three-layer problem with 1r=0.1

3. Quantum Convolutional Neural Networks (QCNN)

In this chapter, I tried to implement the quantum analogous of the Convolutional
Neural Network that I created in a previous chapter. As we saw, in the classical
model the optimum parameters were learning rate equal to Ir=0.01 and batch size=100.
Thus, I kept these parameters in order to be able to compare the two problems and

get a conclusion on the question: can we achieve quantum supremacy in the area of
CNN models?

Firstly, the problem that we study in this case, is the same as its classical analogous.

82

We examine the classification of the same molecule dataset, which has been split to
four classes, based on the logP coefficient. In this case, we used an image generator
but we did not perform data augmentation. As observed in the classical case, it
probably will cause overfitting and because we didn’t use it in the classical model,
we want to keep the same conditions for the quantum problem too. All images were
normalized to [0, 1] and we have split our dataset to twelve parts. We have split it to
train, test and validation dataset and each contains the four classes. After the split,
we have 11829 images in the training dataset, 3944 images to use in the validation
dataset and 3945 images in the testing dataset.

The quantum circuit created for this case is displayed below
(0, 0): ®
0,13 I

!
Ly

]
2

Zyfmua 5.22: Quantum circuit for Quantum CNN

As one can see in [5.22], we have applied a Hadamard gate to each qubit as a
first layer of gates and then we have applied a controlled Z gate (CZ) between each
qubit and its previous one. Finally, we apply a controlled Z gate between the first
and the last qubit. The quantum circuit that is displayed has been designed with the
use of the Cirq package, which belongs to Google.

Then I create a circuit enacting a rotation of the Bloch sphere about the X, Y
and Z axis and that depends on the values in ”symbols”. This Cirq circuit will act as
a unitary operator to a single qubit [5.23]. To expand this, I also create a circuit that
will act arbitrarily on two qubits [5.24] and finally I construct a third circuit to do

83

a parameterized ’pooling’ operation, which attempts to reduce entanglement down
from two qubits to just one [5.25].

(0, 0 Hral bt vt M2

ZyMua 5.23: Single Qubit Unitary Operator

] Y10

| 2 ‘

Kl hud xha2 Zuld

{ e k] ‘

yfua 5.24: Two Qubits Unitary Operator

0,0y Eex3 hxd 25 ?

(0,1 (S e 202 x ZMx2) W -xl) HM-x0y

YyMua 5.25: Pooling on Two Qubits: Unitary Operator

All circuits have been implemented on the basis that we use 1 qubit with variant
circuit depth. The final circuit that is displayed below, uses 4 qubits in order to be
able to exploit the capabilities of our operators, defined above on the specific dataset.

In order to be able to understand the fundamental case of classification in this
chapter that is still totally unknown to us, I decided to present results for binary
classification. This happens because all data rows though they belong to different
classes, they are transformed to bit representation, in order to be able to transit
to the qubit representation. Arriving to this input, we do a binary classification
on the level of zeros and ones. The final circuit designed for this implementation
includes two almost identical blocks of gate operations including convolutional
layers. Next we continue with the following entangling layers, using controlled Z
gates and Hadamard gates to cause superposition. After applying the first two blocks
of quantum gates, the next layers can be seen below:

84

n_ Xrgeonv3 _I_ Viqeonvd _I_ Zrgeonvs I z I v I XX _ _ Xgeonvi2 I “Yhgeonv13 _I_ Z°geonv14 “ “ X'qeom18 _I_ Yiqeonv19 I Zrqeonv20 _l.l

_ Xrqeomvis I ‘vaconv s I Z*qcomv17 _ [x I

_ ZZ'qeoms I Yy*geon? I XXqeonvs _I_ Xeqeonvd I Yqconv10 I Zrgeonvii _

The below block is applied twice in different level of the quantum register.
85

“ X*qeomvi8 I Yqonv19 _|_ Z*qeomv20 _|'

4, X*guonv1s _I_ ¥*gconv19 _I_ Z*qeonv20 _|.|

O
_ [oe]

._ Z4(-qeonu1T) _I_ V*{-qeonviB) _I_ iaeonts) |
_ Xaeanvis I egeonvis _I_ Z'geonviT “ EI_ Z-qeonviT) I Y{qeonviG) I K+(-qeonvls) W

” Xrqeonvis _I_ Ygeonvis _I_ ZrqeonviT ” ['x Zqeonvi?) || YM(qconvie)

l—H oghueab,z |—| G1AUgAD, A |—| EIRREELEY lf

H

(-1eduor
| 00y
X

H

I (§1AUDaD-) % H (gLAu0ab-) A H (Z1au0dt-)7 }—E
(ks ed
pee

[l bty
XX

| (eI |

(0-1=2hzz

Tz e M= = e = e = s e s s e]

T e

==

Zynua 5.26: Final block of Gates

87

The model that is used has the below form:

Model: "model”

Layer (type) Output Shape Param #
input_1 (InputLayer) [(None,)] a N
add_circuit (AddCircuit) (None,) a

pgc (PQC) (Nones, 1) 7

Total params: 37
Trainable params: 37
MNon-trainable params: @

Zymua 5.27: QCNN Model Summary

The results that we receive from this hybrid quantum-classic model are displayed
below:

accuracy loss val_accuracy val_loss
0 0.738281 0.720991 0.769309 0.471293
1 0.765625 0.462365 0.834350 0.429513
2 0.814453 0.455481 0.769309 0.461561
3 0.796875 0.477502 0.822154 0.446415
4 0.775391 0.483203 0.822154 0.438809

Yymua 5.28: Model Results: QCNN

As one can see from the statistics of the problem, we received a very high
accuracy from the starting point of the process. We managed to reach maximum
training accuracy of 81.445% and maximum validation accuracy of 83.435%. This
hybrid quantum-classical model has been ran on a GPU with a run-time lasting
117.75 minutes with average epoch time being 7.85 minutes. For this case, we ran
the model for 15 epochs, but with way less batch size than the classical case. We
used a batch size equal to 16 with a learning rate, Ir=0.01 on an Adam optimizer. We
chose to train the dataset by splitting it to 80% training dataset and 20% test dataset
and then by sampling a whole of 500 samples.

The first conclusion is that these results are much better than the classical case,
so we reach immediate quantum advantage. This is due to the fact that we used a
quantum circuit with large depth. By depth, we mean the number of layers used in
the circuit with each layer in the quantum circuit substituting the classical multi-
layers with simple quantum gates, which perform operations such as amplitude
variance and rotation of the input vectors on the Bloch sphere. The reason I chose

88

such a "complex” circuit with great depth and various gates, is because as observed
in the simple case of data encoding methods providing input to generic quantum
variational classifiers, the performance of quantum models can be optimized by
increasing the number of layers.

As one can observe in [5.29] the accuracy may not be increasing, but it is a
good sign that the training and validation accuracies follow the same behavior.

0.900
0.875
0.850

0825

//\\,//\\/’//\ \/

Accuracy

0.750

0.725 — accuracy
val_accuracy

0.700 T T T T T T T T
0 2 4 6 8 10 12 14
Epoch

Zynua 5.29: Model Accuracy: QCNN

Secondly, concerning the loss of the hybrid quantum-classical model, we observe
the expected behavior on both the training loss function and test loss function with
only an outlier around 6 epochs.

Model loss

- Loss
070 Val_Loss

0.65

0.60

Loss

0.55
050

045 ’/f\\/N/\ -

0 2 4 6 8 10 12 14
Epoch

Yymua 5.30: Model Loss: QCNN

Due to its performance, we wanted to try an additional implementation for the
case of Quantum Convolutional Neural Networks, as it is an area with various usages
and it is the basis to continue to more complex types of Neural Networks. In this

89

0,0)

.1

(1,0

(1. 1)

R 3 A R B X R R R R N

XXA(xx-0) 7ZMzz-0)
[I
XXA(xx-1) 7ZMzz-1)
XXA(0¢-2) 2702z
[[
—— —
XXA(xx-3) 7ZMzz-3)
I

Zyfua 5.31: Quantum Circuit with smaller depth

case, I choose the same strategy as in the previous quantum CNN model. I use the
same dataset with 4 classes, but I binary encode my data, in order to display them in
the bit representation. After achieving this transformation, we can study the binary
classification problem that occurs. For this instance, we try a different quantum
circuit, designed with different quantum gates and smaller depth. The current quantum
circuit can be seen below: and the corresponding Neural Network, which is combined
with the quantum circuit in order to train our model can be described as a simple
PQC model that includes only 8 parameters [5.32].

Model: "sequential”

Layer (type) Output Shape Param #

pac (PQC) (None, 1) 8

Total params: 8
Trainable params: 8
Non-trainable params: @

Zyua 5.32: PQC model for QCNN

We manage to reach higher accuracy of 1-2% but our model is stationary and
doesn’t continue to learn, as one can see.

90

Epoch 1/15

114/114 [] - 8s 72ms/step - loss: 1.@676
Epoch 2/15
114/114 [] - 9s 76ms/step - loss: ©8.3829
Epoch 3/15
114/114 [] - 8s 71lms/step - loss: 8.2658
Epoch 4/15
114/114 [] - 9s 77ms/step - loss: 9.263@
Epoch 5/15
114/114 [] - 9s 77ms/step - loss: 9.2629
Epoch 6/15
114/114 [] - 9s 75ms/step - loss: 9.2629
Epoch 7/15
114/114 [] - 8s 7dms/step - loss: 9.2629
Epoch 8/15
114/114 [] - 9s 76ms/step - loss: 8.2629
Epoch 9/15
114/114 [] - 95 75ms/step - loss: ©.2629
Epoch 18/15
114/114 [] - 8s 73ms/step - loss: 9.2629
Epoch 11/15
114/114 [] - 8s 72ms/step - loss: 9.2629
Epoch 12/15
114/114 [] - 8s 7@ms/step - loss: ©8.2629
Epoch 13/15
114/114 [] - 9s 82ms/step - loss: ©.2629
Epoch 14/15
114/114 [] - 9s 78ms/step - loss: ©.2629
Epoch 15/15
114/114 [] - 9s 82ms/step - loss: 9.2629

hinge_accuracy:
hinge_accuracy:
hinge_accuracy:
hinge_accuracy:
hinge_ accuracy:
hinge_ accuracy:
hinge_accuracy:
hinge_accuracy:
hinge_accuracy:
hinge_ accuracy:
hinge_accuracy:
hinge_accuracy:
hinge_accuracy:
hinge_accuracy:

hinge_accuracy:

@

.8697

®

.8697

=

. 8654

=

.8697

@

.8654

@

.8697

@

.8697

=]

.8697

@

.8697

@

.8697

@

.8654

=]

.8697

@

.8697

®

.8697

Yynpa 5.33: Smaller QCNN statistics

Model Accuracy

Tain
Eest

0.70 T

Epoch

val_loss:
val_loss:
val loss:
val loss:
val_ loss:
val loss:
val_loss:
val_loss:
val_loss:
val loss:
val_loss:
val_loss:
val_loss:
val_loss:

val loss:

Yynpa 5.34: Smaller QCNN - Model Accuracy

91

.6116

. 2685

L2572

. 2569

.2569

.2569

.2569

.2569

. 2569

.2569

.2569

. 2569

. 2569

. 2569

. 2569

val_hinge_accuracy:
val_hinge_accuracy:
val_hinge accuracy:
val_hinge accuracy:
val_hinge accuracy:
val_hinge accuracy:
val_hinge accuracy:
val_hinge_accuracy:
val_hinge_accuracy:
val_hinge accuracy:
val_hinge accuracy:
val_hinge_accuracy:
val_hinge_accuracy:
val_hinge_accuracy:

val_hinge accuracy:

.8716

.8716

.8716

-8716

-8716

-8716

-8716

-8716

.8716

-8716

-8716

.8716

.8716

.8716

.8716

Model Loss

08 T
\ —— Tain

07 4 \ Test
06
0.5 4 \

04

03

Loss

0.2

01 T T T T T T T T
0 2 4 6 B 10 12 14
Epoch

ynuo 5.35: Smaller QCNN - Model Loss

After evaluating our model we receive an average loss equal to 0.26355 and
an average accuracy equal to 86.905%, which is a pretty good score. However, the
high accuracy isn’t the most unique aspect of this model. As one can observe in 5.33,
our model ran for an average of 8 seconds per epoch and with 15 epochs, we got
our results in just 2.125 minutes. Thus, in this case we may not have increased the
model’s accuracy compared to the previous implementation, however we achieved
the quantum supremacy as our model ran in the 0.0185% of the previous model’s
run-time.

4. Quantum Generative Neural Networks (QGAN)

For this model I loaded the dataset of antidepressant drugs, which includes 19.5
thousand rows of SMILES strings. Then I exploit the RDKIT package, I convert the
SMILES to molecule images that will be used as input for our quantum GAN. The
images have been split to 4 classes, using the logP coefficient values as a criterion.
I also use a Image Data Generator to enhance my input data and rescale all images,
in order to be normalized to [0,1] space. The target size of images that are used has
(28, 28) dimensions and I use a batch size equal to 64 in the generator. Thus, I get a
set of:

» train images of dimension: (10013, 28, 28, 4),
» train labels of dimension: (10013,4),

» test images of dimension: (3339, 28, 28, 4) and

92

» test labels of dimension: (3339,4).

Then, I flatten the arrays and resize the images to (16,16) and I reshape my dataset
to train images (10000, 256). To continue with, in order to reduce the problems
dimensionality, I use the PCA algorithm with k=4. After this step, I receive as
a result a vector which describes the Variance Ratio and is V.R. = [0.02082756,
0.01983622,0.01914438,0.01784568] and the respective Variance Ratio Cumulative
=0.07765384577214718. Then we obtain the scatter-plot in the vector space [5.36]:

—0.02 4

-0.04 -0.02 0.00 0.02 0.04 0.06

Zynpa 5.36: Resulting Vector Space, after PCA algorithm

and I normalize it to [0,1] range of values:

104

0.8

0.8

044

0.2 4

0.0 4

T T T T T T
0.0 02 04 06 08 10

Yyquo 5.37: Normalized Vector Space, to [0,1]

At this moment, I count the number of real data and is equal to 59 and then I

extract the relevant data from the dataset.

93

Now, to continue with, I construct the quantum circuit using the ”default.qubit”
device provided by the pennylane package. I construct 3 functions with the quantum
gates, one to sample the generated data, the generator and the discriminator of the
GAN model. Thus, in this case we choose to use a full-quantum model instead of
a hybrid. Then I create a function of quantum gates to apply the discriminator on
the real data and a function to apply the discriminator on the generated data. These
are followed by a quantum function that calculates the probability of having real
true results and the probability to receive fake true results. Finally, to conclude our
implementation I construct a loss function for the generator and another one for the
discriminator. In the first one I take as an argument the probability of getting a fake
true result and in the second one I subtract the two probabilities:

disccost = Pr(fake — true) — Pr(real — true)

The equations of these probabilities can be expressed as:

E(SWAPTEST(D,G)) — 0.5
0.5

Proge = abs((5:2)

and
E(SWAPTEST(D, Real)) — 0.5

0.5
These can be used to measure the loss of the discriminator and the generator and can

be used to update the defining parameters of the networks similarly to a classical
GAN.

Prear = abs((5.3)

The real discriminator function can be visualized with the below circuit:

—RY(1.63)—[C—RY(1.43} RY(-0.47) RY(3.08)

c C
—RY(0.34)— x—rcir{\'(e.ze)—[x e Ry(1_42)_[x C

RY(1.04)

—RY(-0.56) bx [c RY(-0.56)—"% [c RY(-8.34)- "%
—RY(1.26) X RY(-1.17) X RY(0.18)

.

—RY(0.30)

—RY(0.47)

—RY(0.46)

[B R e I el =]

—RY(0.38)

— SWAP

—R‘f‘(—l.@l}—[f(—rc—
—RY(©.84) -

—H <Z>

yMua 5.38: Visualization of the real discriminator function

94

The discriminator for the generated data can be visualized in the below quantum
circuit:

a: —RY(-1.93)—[C7RY(-9.64} [c RY(0.78) [(
1: —RY(-0.21)—"X (C RY(8.87)— X (C RY(-1.29)— "X
2: —RY(0.46) bx [c RY(-0.75)— "% [c RY(2.10)—
3: —RY(-2.73) X RY(1.83) X RY(9.63)—
4: —H RY(3.12}—[C RY(-0.03)—RY(0.60) [c RY(-9.02)
5: —H RY(-9.01)— X (€ RY(-8.02)—RY(0.008)— X
6: —H RY(0.01) L [(RY(©.00)—RY(0.00)— X
7: —H RY(0.01) X RY(0.01)—RY(-8.00)
8: —H
—RY(0.18) © SWAP
— RY(8.96)— % (— (SWAP
— [c PY(-9.25)—L)(—[C— ‘ SWAP
X RY(9.12) X— [(SHAP
-SL\JAP—L ‘ ‘
—RY(-0.03) SWAP— _—_
—C RY(-0.01) | Fswap—|
— RY(-6.00) L { tSNAP
—\—'\—\ H— <Z>

Zyua 5.39: Visualization of the discriminator function on generated images

This is one of the few models, in which I didn’t use an Adam optimizer and
instead I used a gradient descent optimizer with learning rate, 1r=0.05. The result
given in each epoch are of the below form:

Step # | Cost

Epoch 0 | Step 1 | -0.0500985666
Step 16 | -0.0501516775
Step 31 | -0.051600991791
Step 46 | -0.051554220037

Pr(Real = True) = 0.648361598057
Pr(Gen = True) = 0.6032677431298

Generator
Epoch 0 | Step 1 | -0.6032677
Step 16 | -0.6032677
Step 31 | -0.6032677
Step 46 | -0.6032677

Discriminator cost = -0.05160991791

95

104

08

0.6

044

0.2 4

0.0 T T T T 1
0o 02 04 06 08 10

2yMua 5.40: Vector space after classification

Thus, for this case we show a cost function for the discriminator and instead
of the common model’s metric, which is accuracy, we compare for each epoch the
probabilities of the discriminator to predict a real true result on the real images and
the probability of the discriminator to predict a fake true on a generated image. In the
diagram [5.40], which is displayed above, we can see the normalized vector space
and the data distribution after the trying to classify them in each epoch. The lines
define the levels of confidentiality for calculating the probability that a point belongs
to the wanted class. The model ran for 32 epochs on a GPU with a run-time of 4.582
minutes with an average of 8.591 seconds for each epoch. With this as a fact, we
quickly understand why this model outperforms its classical analogous model. In the
first part of the table, the discriminator cost function values are displayed and in the
second section of the table, the generator function cost function is being calculated.

The final cumulative diagram of the vector space that the algorithm outcomes,
is the below:

96

104

08

0.6

044

02

0.0 T T T T 7 -
0.0 0.2 04 0.6 08 10

ymua 5.41: Cumulative Vector space after training

And the average stage fidelity that we receive is [0.51914769, 0.48085231].
Below, I display in a grid form some of the generated images from our quantum
model. They are blurry and have a lot of noise. However if we add many steps, they
will become more clear. The problem of lack of time could not let us reach the stage,
in which the images would have crystal-clear display.

97

v) KA] e
rEnEEEREE TS
EEE - EEEE NN
s ESoOEESE B
rEREETYs FE - o
EEE o oEEnE
TS Y EET 7
= r " r e wE - =
o E e T Y=Y OTR T
5 @ =B vy e 7T W v

Zynua 5.42: Grid of Generated Images from our Quantum GAN

In conclusion, I decided to use this type of architecture for my Quantum GAN
running the discriminator and generator purely on quantum hardware and utilizing
swap tests on qubits to calculate the value of loss functions. When using the same
number of parameters, based on literature, this kind of model outperforms not only
the classical GANSs, but it also outperforms other quantum based GANS in the literature
for up to 125% in terms of similarity between generated distributions and original
data-sets. This architecture was based on the general QuGAN Design The architecture
is fed our classical data, which is translated into quantum data. After the transformation,
the parameters and quantum data are being used for the quantum discriminator and
the quantum generator to learn from each other, as well as the quantum data.

SWAP tests are used in general to measure similarities in the quantum space.
A SWAP test is a quantum algorithm that measures the difference between two
quantum states. This algorithm requires the two qubits, whose similarity we will
measure and a third qubit | > to help in the measurement. In our model, the SWAP
test is used to be able to accomplish communication between the two sub-circuits,
the quantum Generator and the quantum Discriminator. The number of amplitudes
that need to be computed are 2", (here n=4 qubits) and matrices describing the
system or transformations reach sizes of 2" x 2". Due to the last fact, the simulation
of quantum circuits can quickly become infeasible and can become too costly to

98

simulate. This is also the reason, we cannot perform with very large number of
epochs to produce better images.

99

Kepalaro 6

Experimental Results - Conclusion

In this thesis, we tried to see in what level we can apply quantum algorithms for
analyzing and predicting molecules from a large database, containing 193 thousand
rows. However, we decided to focus our study to a subset of this dataset and see
how we can classify molecules as compatible for use in the design of antidepressant
drugs. Another case is classifying the antidepressant drugs to 4 classes based on the
octanol-water partition coefficient, logP coefficient, of each molecule. We used a
strategic preprocessing flow to use different inputs to suit better the needs of each
model, in order to reach the best performance for each model. We used matrices,
images, graphs and feature vectors as input spaces for our models. For the classical
computing models we used the for-mentioned inputs to apply study both binary and
multi-class classification in some cases. However, in most of the Quantum Machine
Learning Models we were “forced” to study the binary classification case. This
happened due to the way we formed our input space. During our preprocessing flow,
before training our models, we transformed our data to bit representation to be able
consequently to get transferred to the qubit representation from there. Thus, after
having encoded our data to these specific quantum states we tried to classify our
data using this representation.

Before analysing the rest of the models it is important to mention as a disclaimer
that the different case and the different types of model weren’t approached in the
same way, neither we presented the results in an identical representation. That is
because we wanted to study each case individually first and then compare the results.
It’s case is a different type of problem and thus it need a different strategy to approach
it. As we tried figuring out how to encode our input data to our quantum circuits,
we compared two quantum embedding techniques. Both underperformed for our
dataset and failed as they reached a maximum of 57% accuracy. We believe that

100

this problem could be surpassed with most powerful devices than devices and a
method that could be studied more and that could potentially provide better results
could be the Dense Angle encoding method for this case. This is due to the fact that
we believed that the angle encoding method performed better than the amplitude
encoding method and because it suits better the specific dataset. This is due to the
fact that our data include geometrical parameters and have symmetries that could
match the angle encoding method.

Using as a fact the above bit/qubit representation we see the results of each
model and we concluded to a first level comparison of the models and defining the
quantum advantage achieved in each case. First, I see the results of the Convolutional
Neural Network with two Quantum Convolutional models [6].

Accuracy Runtime
CNN 74.25% | 113.33 minutes

QCNN 1 | 83.435% | 117.75 minutes

QCNN 2 | 86.905% | 2.125 minutes

Thus, we can observe that for both cases there is a quantum advantage, either concerning
the accuracy of the model or the runtime. We see that the difference isn’t very large
between the CNN and the first QCNN model, approximately 10%, but as we see with
the second quantum model, we can construct a quantum CNN that can outperform
the classical model both in accuracy and have the 0.1% of the its runtime duration.

Now concerning the Graph Convolutional model, we managed to study only
the classical computing case, as its quantum analogous is still in a preliminary
theoretical state and it is computationally and timely very costly to more applied
cases. However, we observed that the Graph Convolutional Network outperformed
the CNN model, by reaching an accuracy equal to 88.352% in the same time.

Finally, concerning the Generative Adversarial Networks, there are various
ways to approach this study. However, I chose to approach the Quantum GAN with
SWAP test gates and a fully-quantum model. We could use a hybrid model too,
but we saw that if we encode the input data with the right way, a fully-quantum
circuit performs better and if we have the computational power, it outperforms both
the hybrid and classical computing method. We see that the quantum Gan runs
for 32 epochs in a good runtime of 4.582 minutes. When using the same number
of parameters, based on literature, this kind of model outperforms not only the

101

classical GANSs, but it also outperforms other quantum based GANs in the literature
for up to 125% in terms of similarity between generated distributions and original
data-sets. This quantum advantage was observed in a smaller level in our case by
achieving the probabilities Pr(Real = True) = 0.648361598057 and Pr(Gen = True)
=0.6032677431298.

Thus, we understand that quantum computers is an emerging field that has a
lot to offer. However, the hardware is still underdeveloped and we can partially
exploit the quantum advantage for now. All theoretical and computational studies,
along with this own, show that if we manage to construct the suitable devices, we
will unlock a great potential with Quantum Computing. So this is an encouraging
thought to continue researching this field for a trip to reducing the complexity of
our problems.

102

Kepalaro 7

Bibliography

10.

. ”Convolutional Networks on Graphs for Learning Molecular Fingerprints”,

D. Duvenaud, D. Maclaurin, J.A.I. Bombarelli, T. Hirzel, A.A Guzik, R.P.
Adams, 2015,

. H.L. Molgan. *The generation of a unique machine description for chemical

structure. Journal of Chemistry Documentation, 5(2):107-113, 1965,

. RDKit: Open-Source cheminformatics. www.rdkit.org [11 April 2013],

D.Weininger, SMILES, a chemical language and information system. Journal
of chemical information and computer sciences, 28(1):31-36,1988,

Thomas Unterthiner, Andreas Mayr, G "unter Klambauer, Marvin Steijaert,
Jorg Wenger, Hugo Ceulemans, and Sepp Hochreiter. ”Deep learning as an
opportunity in virtual screening”. Advances in Neural Information Processing
Systems, 2014,

. ”Semi-Supervised Classification with Graph Convolutional Networks.”, T.N.

Kipf, M.Welling, published as a conference paper at ICLR 2017,

. ”Quantum autoencoders for efficient compression of quantum data”, J.Romero,

J.P.Olson, A.A. Guzik., (2017),

”Quantum Variational Autoencoder”, A.Khoshaman, W. Vinci, B.Denis, E.
Andriyash, H. Sadeghi, M.H. Amin,

”Quanvolutional Neural Networks: Powring Image Recognition with Quantum
Circuits, M. Henderson, S. Shakya, S.Pradhan, T.Cook, (2019),

Quantum Graph Neural Networks, G.Verdon, T. McCourt, (2019),

103

I1.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.
25.
26.

”Generative chemistry: drug discovery with deep learning generative models”,
Y.Bian, X. Xie,

”Quantum Generative Models for Small Molecule Drug Discovery”, J. Li, R.
Topaloglou, S. Ghosh, (2021),

”Invited: Drug Discovery Approaches using Quantum Machine Learning”, J.
Li, M. Alam, C. M. Sha, J. W. N. V. Dokholyan, S. Ghosh, (2021),

”Robust data encodings for quantum classifiers”, R. LaRose, B. Coyle, (2020),

”Quantum Machine Learning Algorithms for Drug Discovery Applications”,
K. Batra, K.Z.Zorn, D.H. Foil, E. Minerali, V.O. Gawriljuk, T.R. Lane, S.
Ekins, J. Chem.Inf.Model. 2021, 61, 2641-2647,

”Convolution filter embedded quantum gate autoencoder”, K.Shiba, K. Sakatomo,

K. Yamaguchi, D.B. Mall, T. Sogabe,
G.E. Hinton and R.R. Salakhutdinov,

”Reducing the Dimensionality of Data with Neural Networks, G.E.Hinton,
R.R. Salskhutdinov, Science 313 (5786), pp.504-507, 2006,

”A Comprehensive Survey on Graph Neural Networks, Z. Wu, S.Pan, F. Chen,
G. Long, C. Zhang, P.S. Yu,

”Machine Learning Prediction of Nine Molecular Properties Based on the
SMILES Representation of the QM9 Quantum-Chemistry Dataset”, G. A.
Pinheiro, J. Mucelini, M.D. Soares, R.C. Prati, J. L. F. Da Silva, M. G. Quiles,
J.Phys.Chem. A 2020, 124,47,9854-9866,

Yann LeCun et al., 1998, Gradient-Based Learning Applied to Document
Recognition

Adit Deshpande, 2016, The 9 Deep Learning Papers You Need To Know
About (Understanding CNNs Part 3)

C.-C. Jay Kuo, 2016, Understanding Convolutional Neural Networks with A
Mathematical Model,

Qiskit documentation by IBM, https://qiskit.org/documentation/,
”Quantum Graph Convolutional Neural Networks”, J. Zheng, Q. Gao, Q. Lv,

”Encoding classical data into a quantum computer”, K.J.B. Ghosh, (2021),

104

27.

28.

29.

30.

31.

32.
33.
34.

35.
36.

37.

38.

39.

40.

”Hybrid quantum classical graph neural networks for particle track reconstruction”,
C.Tuysuz, C. Rieger, K. Novotny, B. Demirkoz, D. Dobos, K. Potamianos,

S. Vallecorsa, J.-R. Vlimant, R. Forster, Quantum Machine Intelligence 3, 29
(2021),

”A Gentle Introduction to Graph Neural Networks”, Sanchez-Lengeling, B.
Reif, E. Pearce, A. Wiltcschlko,

”Neural Message Passing for Quantum Chemisrty”, Gilmer J., Schoenholz
S.S., 2017, Proceedings of the 34th International Conference on Machine
Learning, vol.48, pp..1263-1272,

”Learning Convolutional Neural Networks for Graphs”, Niepert M., Ahmed
M., S.S. Riley, P.F. Vinalys, 2017, Proceedings of the 33rd International Coference
on International Conference on Machine Learning, Vol.48, pp.2014-2023,

”How Powerful are Graph Neural Networks?”, Xu K., Hu W., Leskovec J.,
2017, Advances in Neural Information Processing Systems, Vol 30, pp.1024-
1034, Curran Associates,

https://quantumalgorithms.org/chap-classical-data-quantum-computers.html

https://medium.com/mlearning-ai/quantum-data-and-its-embeddings-1-3b022b2f1245

”Dataset’s chemical diversity limits the generalizability of machine learning
predictions”, M.Glavatskikh, J. Leguy, G.Hunault, T. Cauchy, B. Da Mota,
Journal of Cheminformatics 11, 69, 2019

QM9 documentation,

Supporting Information for ”Physically inspired deep learning of molecular
excitations and photoemission spectra”, J. Westermayr, R.J. Maurer, The Royal
Society of Chemistry, 2021,

”Early phase drug discovery: Cheminformatics and computational techniques
in identifying lead series”, C. Bryan, Z. Lei, H. Decornez, D.B. Kitchen,
Bioorganic Medicinal Chemistry, vol.20, 18,2012, 5324-5342,

”Machine Learning in cheminformatics and drug discovery”, Y.C. Lo, S.E.
Rensi, R.B. Altman

https://pubchem.ncbi.nlm.nih.gov/,

”Autoencoding Undirected Molecular Graphs with Neural Networks”, J.J. W.
Olsen, P.E. Christensen, M.H. Hansen, A.R. Johansen, (2020),

105

41.

42.

Circuit-centic quantum classifiers, M. Schuld, A. Bocharov, K. Svore, N.
Wiebe,

”Classification with Quantum Neural Networks on Near Term Processors”,
E. Fahri, H. Neven.

106

107

Kepalaro 8

Appendix

1. Dataset Pairplot before Encoding

RN

simnenny .
8 an e mIemTees Be BEE 1 concenn weany .
™~ T RO e e .
6 nes mem winm e - [
5 * * I L4 .
@ f i
o i -
’ | Pl
40 : t
L] L]
. : b
3 LU TR Y e - e
PR e susHRISIINeY . . . " sHeNsEINN
-
1 somm s wee e ses s en w IRy . . - . SonsnaEs e
0 SEASSBIS AATHEUSISIENSAT 8 SIS LSSINIEOBSIBISRIINANNNS @ 1008 . . &8 SISIS ORNINISLSISISNINIISE
-50 -25 00 25 30 40 50 60 6 8 30 40 50 60 0 1
0 1 2 3

2yMua 8.1: Dataset from the chapter with the Encoding techniques

a sUEReRiREE

" s e @

2. QCNN - Quantum Circuit

The block used twice in the quantum circuit that is described in the section of
the Quantum Convolutional NN, can be find in the below 6 images.

109

0,0 l_ Xqeonv0 I veqeonv I Zgeom2 “ “ zZ _I_ e I XX I Xgeonvg _I_ Y*qeomv10 I Zogeonvil ,ﬁ
1) “ *oqeonv3 _I_ “rhgconve I Z°geonvs _I_ Na.nia _I_ ,)...n“ii I xxﬁmﬂ.& W W Xrqeonvi2 _I_ Yegeonv13 _I_ Zrqeonv4 W
0.2) ” X*gconv) I Yrgconv I Z*qeonv2 “ z f
0.3) “ Xgeonv3 _I_ Yiqeonvd _I_ Zhgeonvs I 2Z'qeons T

(1,0)

1,1y

1,2y

(1,3)

110

_ zZ I \ad I X I Xrqeonvd _I_ Yhgeonvi0 I Z'qeomv il W
1 T T
I Yhqoonvd _|_ 2*qeomy5 I 27" qeonvE I ¥ qeany? I XX*qeonve W W X*geonv12 I Yracomi13 I 2'qeonv14 “

“ Xqeonvd _I_ racomv1 I Z'qeoni2 v W 2z I v _I_ s _I_ Xqeonvd _I_ YAqeonv10 _v
I 1 I
W X*qeonv3 I YAgeonvd _|_ Z*qeomvs I Zz'qconve I YYrgeonv? _|_ Xxqeonvs _‘

111

vhaeonvl0 Z'qeonvt
_ Xgeomi12 I Yageonv13 I Zhqeonv1d “

“ Xtgeonvd _I_ ‘igeonvt _I_ 2Z\qeom2 _ “ zz _I_ Y _I_ XX _I_ Xrgeonvd _I_ Yigeanv10 _I_ Z7qeonvtt _
I 1

T
_ Xeqeonv3 _I_ rqconvd I Zhqeonvs _|_ Z2*qeonve _|_ YY*qcomT _|_ HXrgeonvd _ “ Keqeonvi2 I Vrqeomv13 _|_ Zhqeonvl4 “

@\l
—
“x,ﬁe;a I “rgeonv _I_ Naoi,ll

I_ Xgeond I ‘rhqeonvt _I_

Zrgcom2 |

= Hor How HeeHreH

p—

I
“ Kiggeonv3 _|_ “Vhoconvd I Z'geonvs _|_ ZZ*qconvé _|_ Yyhqeom? I KXgeonvd ”

“ Xeqeonvi2 _|_ ‘Yrgeonvi3 _|_ Z'qeonvi4 W

Xrgeom) I Yrgeonvt I Zqeonv2

“ Xqeonv3 _|_ vAqeonvd I Zrqeonvs _|_ Zz°qeonve _|_ VY qeonvT —

113

j KX I X*geomvs I Yrgcomvi0 _I_ Z*geonv il v
i I Hxqeonvd W *egeonv12 _|_ Yrgconv13 _|_ Z*qeonv14 _

” X*qeonvl —l_ Y*geonv1 I Z*geonv2 “ ” z I Y —l_ XX I Xhgeonvd —l_ ¥*gconv10 —l_ Z'geonvil _
| I

I
_ Xrgconvd I Vrgeonvd _|_ Z'goonvs I ZZ'qconve I ¥*gconvT _|_ Kiqeonvd _ _ Xqeonvi2 I ‘vqeonvi3 I Zhqeonvid _v

114

H_I_ X I Keacoma _I_ o _I_

Z*geonvll |

T _I_ Kgeonvd

_ Xrqeonvi2 I Viqeanvi3 I Zhgeonvid “

Xrgeond _I_ ‘vqeenvi _I_ Zrqcom2

“ z I <.< _I_ x_x _I_x,ns=a_l_<3§<_o_l_

Zrqconut |

T
_ X*qeomid I gconvd _I_ Z*qoomis I Z7*goonvG I Y¥*qoonT _I_ X¥rgeonvd “

_ X*qeoni2 I Yrqeonvi3 I Z*qeonv14 _y

115

	Abstract
	Drug Discovery methods
	RDKIT package

	Calibration Data-set and Data Exploration
	Neural Network Models for Classical Computing
	Difficulties using GNNs
	Types of Graph Neural Networks
	GNN Algorithm with a focus on Application of Convolutional Networks on Graphs
	Generative Adversarial Networks
	MolGAN model
	Quantum Neural Networks
	Setting the base for the Quantum era
	Data Encoding in QML
	Angle Encoding
	Variational Auto-encoders
	Quantum VAEs
	Quantum Graph Neural Networks
	Quantum GANs

	ML Models of Classical computing - Experimental Implementation
	Convolutional Neural Network (CNN)
	Graph Neural Network (GNN)
	Generative Adversarial Network (GAN)

	Quantum ML Models - Experimental Implementation
	How to Run Quantum Algorithms
	Comparison of Encoding Methods for Quantum Variational Classifiers
	Quantum Convolutional Neural Networks (QCNN)
	Quantum Generative Neural Networks (QGAN)

	Experimental Results - Conclusion
	Bibliography
	Appendix
	Dataset Pairplot before Encoding
	QCNN - Quantum Circuit

