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Anoaryopeteton 1 avtiypapn, anobixeuon xou Swavour| Tng mapoloas epyaciog, & ONOXNYPoU 1
TUAULOTOC QUTHG, YLt EUmopixd oxond. Emteénetan 1 avatdnwon, anobrixeuor xou diavour| yio oxond
1) XEEOOOXOTUXO, EXTAUBEVTIXNS 1) EPELVNTIXNC PUOTNE, UTO TNV Tpolndleor va avagpépeTtar 1 Ty
TPOENEVOTNC %O VL DLATNEElTOL TO TopdY wivupa. Epwthuata mou agopolyv 0 xenon tng epyaoctiog
Yo XEEOOOXKOTUXO OXOTO TEETEL VoL aneLBivovToL TEOG TO CUYYEAPEA.

Or amdelc o T GUUTERACUATO TTOU TEPLEYOVTOL GE AUTO TO €YYPAUPO EXPEALOUV TO GUYYEPE
xou Oev mEENeL va gpunvevlel OTL avtinpocwneLouy Tig emlonueg Oéoeic Tou Efvixold Metobflou
[HoXuteyvelou.



Abstract

Inertial sensors (accelerometers and gyroscopes) and magnetic field sensors are widely used
in a broad variety of applications. High accuracy sensors are nowadays available in chip-form
including all the necessary electronic circuits for the digitization and in many cases the digital
processing of the measurements. This fact enables the wider use of inertial and magnetic field
sensors in several applications, ranging from low-cost commercial products (smartphones, activity
trackers, alarm systems etc.) to high-end industrial and military devices.

This thesis deals with the calibration and the alignment between the sensitivity axes of
inertial and magnetic field sensors. In addition, it presents two applications where inertial and
magnetic field sensors are used for navigation and tracking purposes.

In both the cases of inertial and magnetic field sensors, a calibration procedure is mandatory
for every sensor unit when accuracy is required. This work focuses on low-cost, three-axis inertial
and magnetic field sensors and explores algorithms and methodologies for calibration and axes
alignment.

In the first part, algorithms for the calibration and the alignment of the sensitivity axes
of inertial and magnetic field sensors are presented. The proposed algorithms are based on
optimization techniques and are designed to be computationally efficient while their application
requires no special piece of equipment or external references.

In the second part, the importance of sensors’ calibration is highlighted, and two applications
of inertial and magnetic field sensors are presented. First, an inertial navigation system dedicated
to pedestrian navigation is presented. It combines data from inertial and magnetic field sensors
mounted on the shoe of a walking person and derives a long-term accurate estimation of his
speed, orientation, and position.

Finally, an inertial measurement unit architecture including several three-axis accelerometers
and a single three-axis gyroscope mounted on a rigid body is presented. The proposed, closed-
loop system dynamically compensates for the accelerometers’ measurements error and provides

a high-accuracy, low-noise estimation of the specific force and the angular velocity.

Keywords: accelerometer, magnetometer, gyroscope, inertial sensors, magnetic field sensors,

calibration, axes alignment, navigation, inertial measurement unit
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ITepixndn

Ou abpaveloxol aobntipes (ouobntiipes emtdyuvong xon ywvioxig TodTNTog) Xon oL hary viTixol
acOnthpes xenoLonolotvTo upéws oe UeydNo TANBOC EpapuoY Y oL omoleg extelvovTal and euno-
EWd TEOTOVTAL YUUNAOU X6 TOUS (XWVNTE TANEPWVOL, CUC THUOTA CUVAYEPUOU X.AT.) UEYPL EQUPUOYES
PN teyxvoroylag ot touels 6mwg 1 Prounyavia, 1 voutinio x.o. AwcOntieec udniic axpifetag eivon
TAéoV Blaldéoiuol ae woppr| Tout pall Ye Tig amopodtnTES MAEXTEOVIXES BlaTdEelg yio TN dngpionoinom
X TOANES QOpEC xan T Yoty enedepyaoion TOV HETENOEMY XAVOVTAS EUXONT TNV EVOWUATOOT)
TWV YAy VNTIXOV aonTtipny oe yeyohiTepa GUC THUTA.

H napovoa St npaypatedeton tn Pabuovounor (calibration) odpavetoxdv xou poryvnti-
%WV ouchnthewv xabode xan v adlomoinomn Tev PeTpoe®y Toug ot eQapuoYéS eviomiouol Béong
(tracking) xou mho¥ynone (navigation).

Téco otny neplntwon TwvV adpaveloxwy achnthpwy 660 xou o AUTH TOV Yoy YNTXWY uobn-
THewyv, x&Pe povdda awotnthiea yeedletan pior Swodaota Bobuovounone Hetd Ty maparywyy NG
TpOXEWEVOL Vo Topdyel peteroels LPNAYg axpeifetag. H napoloa epyacio emxevtphdvetal ot adpa-
VELXOUG Xo Yoty VITiXo0g aucBnThices Telmdy a&o6veov xon youniol xdcTtoug xan eepeuvd uebddoug
xaL aNyoplBuoug yia TV xaAOTERPT EXUETIANEVCT) TWV BESOUEVOY TOUS OE EQUQUOYES TTOU ATAULTOVY
PN\ axelPeta, dmog Yo ToEddELYUA 1) TAOTYNO).

Y10 mpwto g pépog Tapouatdloval uébodol xou akyoplbuot yio Ty Pabuovounon abpaveior iy
X0l Loty VNTLX oy ouointipwy xabog xou yio tny eubuypduion Twv a€ovey svatctnalog toug ywelc Ty
xerion ewxol gpyactnploxol e€omhiopol. Ou mpotewvouevol ahyopduol otnpilovtan oe uebddoug
BeXtiotomoinong eve 1 EXTENEST) TOUS BEV ATAUTEL GNUAVTIXOUE UTONOYLIO TIX0UE TOROUG.

Y10 0e0TEPO UEpOg, avadewvieTon 1) onpacio Tng PBabuovéunong oe egapuoyéc T O YNoNg xou
0 TN CUVEYELDL ToEOoLaLELovTal VO YapaxTNEIC TNXES EQUPUOYES. DUYXEXQLUEVA, dEYIXd, TopoVaLaLe-
Tan €vol 00O TN AdEAVELAXTE TAOYYNONS TO 0Tolo GUVOUALEL Tal BEQOUEVA OBROVELOXEV XOL LAY V-
TV aohnthewy tonofetnuévey oto tanoltol evog neCol avBpmnou xou Tapéyel poxpompdbeoya
pLo weydng oxplPetag extiunomn tng 0éong.

Y11 ouvéyela, TapouctdleTon Eval adpAVELIXO GUC TNUO UETENONE ATOTENOVHUEVO TGO TOANATAOUG
aolnthpeg emitdyuvong o cuvduaoud éva actnthpa ywviaxrg taxdtntag. To npotewvéuevo oi-
ot XA ToU Pedyou avtioTadullel Suvouixd To oAU UETENONE TV auotnThpry emitdyuvong
X0l TEOCQEREL ULl EXTIUNOT TNG ETUTAYXLVONG XAl TNG YOVLOXNE TAXUTNTAS UE TOND XouNn\d eninedo
BoplBou.
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AeZeig KX\ewdiau auchntrpeg emtdyuvong, payvntixol awohntrpes, aobntrpes ywvioxic to-
xotnTog, adpavelol awobntipes, payvntouetpo, yupooxdmo, Pabuovounon, evbuypduuion a&dvov
evarcOnelog, Thorynom, eviomoude Héong



Extetapevn Ilegidndm

H nopoloa datplfr npaypoteveton tn Pabpovéunon (calibration) adpovetoxdv xow yaryvnti-
xwv auobntipnv xabng xar Ty alomolnon Twv PETPNOEMY Toug oE EQuPUOYES EVTOTIoHOL Béorng
(tracking) xou mho¥ynone (navigation).

Ou abpavelaxol aobntipes (awobntipes emtdyuvong xo yoviaxhc T dTNTOS) YENOLOTOLOVVTOL
EVEEWS TA TEAELTALOL YEOVLAL GE UEYINO TAT00C EQapUOY®OY oL oTtoleg exTeElvOVTOL antd EUTOELX TIEO-
TOVTAL YAUNAOU XG0 TOUC (XVNTE TNEQWVAL, GUO THUOTO CUVRYEQUOU X.AT.) WEXEL EPapuoYES UYNAAC
teyvoroylag ot topeic 6mwe 1 Pounyavio,  voutinio x.o. H avdntuén autr ogelieton oe peydho
Babud otn parydodar avaTTUEN TOV TEYVONOYLOY XATACKEUNE ABRAVELUXDY aoONTAoWY Tig TENeUTalES
dexaetiee xou xuplog oty avdntuin e texvoloyioc MEM (micro-electro-mechanical) ouofnth-
PWV 1) OTolol ETUTEETEL TNV XATAOKELT] aloONTAPWV OE Yop@Y| TOLUT, OE UEYANT XN{HoXO UE TOND ULXEO
x6070¢. AvtloTorya ye toug abdpaveiaxols aohntrpes, xou ol poryvntixol aoOntrpeg €xouv yivel
ToL TENEUTALOL (EOVLAL OVOTIOCTIOG TO XOUMATL TONNGY GUOXELGY TNG Xabnueptvic Lwhg oANE xou Tpo-
ovtov vdhn\ic texvoroylac. AwoOnthpes uPMAAC oxplPelag elvar TAéov Blabéoipol oe pwoppr toun
pall ye tig anopaftnTee MAeEXTEOVIXES BlatdEels yior TN dnpronoinon xar TOANES Qopég xan TN -
praxt| eneepyacio TwV UETPROEWY XAVOVTOG EUXONY TNV EVOWUATWOY TV Yoy YNTIXOY oucnthpnv
OE UEYONUTEQX CUG THUATO.

Téco otny neplnTwor TwV adpavelx®y achnthpwy 660 xou G AUTH TOV Yoy YNTIXWY uobn-
THewv, xdBe wovdda ochntipa yeewdleton wio Siadixacio fabuovounong uetd v moporywyn T
TEOXEWWEVOL Vo Topdryel petpnoels udmine axplPetag. H dradixacio autr urnopel va yiver eite xatd
TNV XATAGKELY] TOU aloBnThpa 610 €pY00TACLO, ETE GE UETAYEVEGTERO YEOVO, TONNES PORES AXOUOL
X0l UETE TNV EVOWUATOOT Tou aobnthpa oe éva ueyokiTepo oo Tnua.

‘Evog Baocuxde meploplopds mou TpoxONTeEL XaTd TNV (eHoT AOQUVELOXMY XU Uy VNTIXWY actn-
THewY YaUN\ol x6cToug, elvon 1 EXNewhn Babuovounone. Xe auth v meplnTeon, T0 X60T0¢ TNG
Babuovounone elvon ToXNamAdolo Tou x6GToUS Tou ancBnTApa xau €tol etvon evbBiVY Tou oyYEdACTY
ToU cuoTHUTOS Vo TeoPAEeL yia Ty Pobuovounon tou acshnthipa, 6tay auty elvan amapaitnTy.
Yuyrexpéva, oTnV TERINTOON TNS TAORYNONS, 1) EPELVIL TA TENEUTALX YEOVLAL ETUXEVTROVETUL TNV
XENOM ABEAVELAXEV XAl LAy VITIXADY aucONTApwY oE cuvepyasia Ue To BopUPOEIXE GUGC TAHULATO TAOY-
ynone (GPS, Glonass, Beidou, Galileo) aAXd xat otnv avdntuln TAAews autdvou®y cuUc THUETWY
adpavetaxnc Thofynone. H mhorynon e xeron amoxheic tixd adpaveloxyv aodntipwy avtiyeton-
el pev ta Pooixd mpofAApaTa TV BopLUPOEKOY CUCTNUETOV TIAOTYNoNS (Bev Aertoupyolv oe

£0WTEPXOUC Y WpoUS, elvan evalobnta ot napeufoléc, €xouv uxped pubud avavéwons) AN amatel
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UETENHOELS HEYAANS oxpiPelog xou Mo ToTNTOC.

Avuth 1 epyaoio emixevTpdveToL O aBpavelaxolg xou Loy vnTxolg achntipes TeLdv aovey xou
YOUNA00 x60ToUG X0 eEEpEUVE UeBOBOUEC xan oNyopiBuoug Yot TNV XaADTERN EXUETINNELOT) TWV
0EBOUEVOY TOUC OE EQUPUOYES TOU amanToLV LUPMAT axplBela, OToG Yl TUEddELY YA 1) TNOTYNOT).
Y10 npddto TN pépog mapouctdlovtal uébodol xar aryoplbuol yia Tnv Babuovounon adpoveiaxdv
XL dory vitixav aoBntipwy ywplc v yenon ewdxol epyactneloxol e£onAonol. XTr CUVEXEL,
670 0elTEPO PEPOG, avadeVOETAL 1) onuacio Tng Babuovounong o ePoapuoYEC TNOHYNONG X 0T

ouvéyela TapouctdalovTon 800 YaeaxTNElCTNXES EPUPUOYES.

Meégog A: BaBuovounorn Adpavetaxwy xow Mayvntixodv Awcdntripov

Ye xdbe ouobnthpa, 1 Pabuovéunon (calibration) etvon wio amapaitntn dwdixacia Mote 1 pétenon
Tou awobnThpa var avtamoxpiveton pe axpifela 6o yetpoluevo péyebog. O dpog Pabuovouncn otny
Tapoloa pyYasial XEMOWOTOLELTOL YLol VO EXPEAOEL 0L UOVO TNV avTioTolyion TNg xAlgoxac tng
€£600u Tou uaONTAP Pe aUTH TOU UTO PETENOTN UEYEDOUS ONNG Xai TNV AVTIC TAOULOT TV G TUTIXDY
oaApdTLV Tou achnthea dnwg yia topddelyua to offset, Tnv un opboywvidTnTa TV AgbVEV %.a.

To mpdto PBrua yior v Pobuovouncrn Twv adpavELaXMY xol Loy VNTixwmy aobntipny eivan 1
VLY VERLOT) XAk 1) HOVTENOTIOMNON TWV GTUTLXWY TNYOV CPINUATOE Tou eMNeedlouy TNy €000 Tou
acdntripa. To otatind o@dipa Twv achntipwy ogeteton xuping oe atéleleg xatd TNV dladlxacio
XATAOXEUNGS TOL auoHNTHEA %ot 0TI MAEXTRPOVIXES SLUTAEELS TTOU YENOLLOTOLOVVTOL Lol TNV XAUTOY POUpT|
e €€680L Tou Xou efval 6TO YEYONDOTERO TOU PEROS YRouUiXd WS Tpog TNV €€0d0 Tou achntripa.
‘Etot, otny napoloa epyastia, enoiLonolelton éva ypaixo HoVTENO Lo xdfe aioBntripa Tou cuvdEeL
™V pé€tenom Tou U To YeTpoluevo uéyebog (Emtdyuvon, yoviox Tadtnta ¥ haryvnTixd nedio) xa
CUUTERANOWPAVEL ONEC TIC YRUUUIXES TNYES CPANUOTOC.

ISwaitepo evbiagpépov Tapoualdlel 1) TERITTWAN TWY Yoy VATIXGY actnThpwy 1 é£080¢ Twv onolwy
unopel va emnpeactel xan and e€ntepixols mopdyovies 6tav o achnthipag evowupatwbel o éva
ueyanitepo obotnue. Ilio cuyxexpyéva, poryvntixd UAxd To omolo umopel Vo UTEEYOUV XOVTd
OTOV UoyVNTIXG ouoOnthipa, oANOLWVOLY TO TOTUXO UoyVNTIXO TEDIO UE OMOTENECHUA WULoL LOVIUT),
otaTXy Topopoe@nan oty €€odo tou acbntripa. To @awvouevo autd cuunephoufBdveton GTNV
povteomoinon xau oTn cuvéyela avtioTaduileTton xatd TV dwdactia e Paduovounong. Agol
€xEL YIVEL 1) avary VERLOT) TWV TNYWV CPANULATOS Xol 1) LovTENoTolnoT Tng €€680u Tou aucdnthpa, 7
oaduxacio tng Pabuovéunong cToyedel GTOV UTONOYIOUS TWV BIAPOP®Y TULAUETEMY TOU LOVTENOU.
Aedouévou 6Tl 1 gpyaoia auth aTtoxelel xuping oe aodntipes youn\ol x6GTouE, oL aNyopeLiuoL
Bobuovounone mou nopouctdlovTal SeV AmaToUY EWBLXO EEOTAIGUO YId TNV EPUEUOYT) TOUS ool auTO
Bor abEave onuavTnd To x60T0¢ Tou achnThpa. XN nepintwon auth, o a\yoplduoc Babuovounong
€YEL AXOUA TLO BUOXONO €070, APO EXTOC UG TIC TUPAUUETEOUS TOU HOVTENOUL HETENONS, Ay VOO T

elvon xou 1) TEoryUoTIX| TWH TOU HETPOVMEVOL UeyEboue.
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BoOuovounorn AwcOntripov Enttdyuvong xow Mayvntixol Ilediou

O petprioeig tov aodnthpwy emMTdLYONS XoL Yoy VNTIXo) TEdiOU UTopolY Vo TEpLYpapoly and
70 (010 pabnuoatixd poviého. Erol, 6TI¢ TEPlOCOTEPES TEQITTHOOELS, OL (Blol aNy6pLduol umopolv vo
xenoytonoindolyv yio T Pabuovounon xa twv dVo achntiewv. Xtnv Bifioypapla, n fobuovéunon
aoOnThpwy emitdyuvong xou Yoy vntixol mediov cuvibng exgedletar ng éva TedBAnua Beltio tomol-
none (optimization) ¥ extiynone (estimation) and tnv Aom TV 0Tolwv TEOXVTTOUY OL ATUEAiTNTES
ToEdUETEOL TOU YovTENoU pétenong. [ v enthuon tou mpofAAuatog autol, otay dev xenoulo-
Toteltan EdOC EpYATTNELIXOC EEOTALOUOC WS AVAPOEAL, YENOWLOTOLOUVTAL ULdl GELRE UETEHOEMY TNG
emtdyuvone e Bapdtntoc 1 Tou paryvntixod mediov e I'ng avtioTouya.

Téco v ta tpofAfuata PertioTonolnong 6co xou yia autd e extiunong, otn Boypaplio
mpotelveTon 1 ANOOT Toug PE TN YeNom aelunTixoy Yebodwy. Xuyxexpwéva, oty nepinTwon Twyv
TpoPANudtov Beltiotonoinoneg, N eniluor toug yivetar e TN xprion Twv uebddwv xhione (gradient
descent xou Newton-Raphson) eve yio ta tpoPAfAuota extiunong, cuvhbog yenotponoteiton xdmota
mapadayy Tou gpidteou Kalman. Ko otic 800 mepintddoelg, napouoidlovion tor mpofAfuota Tou
AUENUEVOL LTTONOYIOTIXOU XOGTOUG OANG, XL TG duoxolag 1 xou aduvaplag GOYXNONG TWV OX-
voplBuwv. H duoxoia otn obyxhion ogeileton oe peydro Pabud oto yeyovog 6tL 1 emtuyla Twv
ueb6dwy autedv otneileton oe peydho Pabud oe uio aEyxh EXTUNCT TOV oY VOO TOV TUROUETROV.
Mdhiota, ToNES epyaoieg mpoTelvouy BlapopeTinés HEBOBOUE VLol TOV UTONOYIOUO WG XONAC dp-
YHAC EXTIUNONG TWV YVOOTWV PE ULXPO UTONOYLOTIXO XOCTOS TEOXEWEVOL UETA Ot aplfunTinég
uébodot var cuyXAivouy pe éva uixpd aplbud enavarhdeny.

Yy napoloa dwatelfr) xenotdonoteiton plor SlopopeTiny) tpocéyyion. To npdfinua tne Pab-
HOVOUNONG OLUTUTVETOL PEV WS évar TeoPANUa BeltioTonomong, 1 Aoon autold duwe dlvetan pe
wor emavaanmaxry wébodo n omolo otneileton oe éva UTONOYLOTIXG EXaE) TEOPANU ENaylOTWY
tetparywvov. H npotevouevn uébodog, éxtog tou TAEOVEXTHUATOS TTOU Topouatdlel GE 6pouG LTO-
AOYLOTIXOU XOGTOUG, OEV ATAUTEL XATOLAL aEYIXT) EXTIUNOT TWV oY VIO TWYV TUQUUETEMV UE ATOTENECUA
va efvor o €0pwo TN amd AUTES TTOU XENOLWOTOOLY TIC Topadoctaxés aplfuntixée uebodouc. H pebo-
doroyla GUNNOYTS TV amaEalTNTOY UETENRoEWY Elval ONUAVTIXOS TTaEdyOVTaS Yiol TNV ETTUY o TOU
anyoplBuou Babuovéunone o onolog pdiiota cuyvd toporeiretar ot Bipiioypagia. Xtny napoloa
gpyaota, ol anyoetbuol Tou TapouctdlovTon TAUGCLOVOVTAL UE Wot Bruc-Teog-Briuc uebodoroyio yio
TNV GUANOYN TwV amopafltNTowV UETPNOE®Y TOCO yia TNV TEPINTOoY Tov aonthowy emtdyuvong

600 oL YLl QUTH TV Loy VATIXAOV atcHnThpmv.

Evluypdpuion tov AZoveov EvaicOnoioag Awcdntreov Enttdyuvong xou
Moy vntixot Ilediou

Y& TOANEC EQUPUOYES, CUUTERINOUPOVOUEVHV XAl QUTWOY TNG TAORYNOTG, Ol UETENOEL EVOC 1) TEPLO-
06TEPWY UaONTAPWY EMLTAYUVONC YENOLOTOLUVTOL OE GUVOLAOUS UE AUTES avTioTolywy auoOnTr-
pwv paryvnTixol mediou. Xe autée Ti¢ mepinTioelc elvon cuvhbog anopaitnTo ol d€oveg evancbnolag

Twv 800 achntripwy va elvon euBuypauulouévor.



12 Exverauévn Ieoiinyn

H éX\euwpn evbuypdupione uetald towv afévov evacbnolag umopel vo ogelleton oe morlolg
Topdyovteg. Apxxd, dtav BVo 1 teplocdTEROL ATONTHEES TOL EVOOUATOVOVTOL 6TO (Blo cUG TN
elvol avoEVOUEVO VoL UTAPEEL XATOLO UXed CQAAUa G TNV ELBUYEAUULOT TOUC XOTA TNV CUVIEUO-
Noynomn tou cuctAuatoc. Emmhéoy, axdua xou 6tay oL auchntripes elvon o€ ONOXATROUEVT LORGT
X0 AMOTENOUY XOUMATL Tou (Blou Toln, atélelec xatd TNy dladixaoior TopaywyNS TEOXANOLY €V
uxed opdiua otny subuypduwon twv a&dvey toug. Télog, 1 xeron ahyoplBuwy Babuovounong ol
omnolot Bev YpNolonololV WX epyac TNElaxd eEOTAIOUO ot dev oTnpllovtal oe Xdnolo amdAUTO
oVoTnua aZbévov avapopds (dtwe xou autol tou rapouctdlovion oty Tapoloa epyaoia) UTopel va
TEOXUNECEL TTEPIG TEOYY) TwV a€OVeY evanctnaloc Twy dVo achnThpwy xar andieia TS YeTay Toug
evbuypduuong.

H poryvntid éyxhion (magnetic dip # magnetic inclination) ypnowwonoteiton cuvhfwc o ova-
popd Yy TNV evbuypduuion Tov a€ovey wcbnTiery emTtdyUVoNg xou Yoy vnTixol TEdiov xwelg
xenomn ewdwol epyactnelaxod e€omhiopol. H porywntr éyxhion oplletan og 1 ywvia tou oynuati-
Cel to Sudvuopa Tou paryvntixoL edlou e I'ng ue to opldvtio eninedo. Ltnpldueves GTov 0pIoU6
TNG KAy VITIXT €Y XALOTIG XOU YENOWOTOLWVTAS €va TAKB0C ueETEroEWY, TONNEC epyaoies oynuatilouvy
éva TeoPAnua fertiotonoinong ¥ éva tedPAnua extiunone topauétenmv 1 NOoT Tou omolou divel TNV
OXETT TEPLO TROPN TwV af6VeV Tou acbnthpa emtdyuvong xou Tou paryvnTixol awcbnthpa. Ouolng
ue v nepintwon tng Pabuovounone mou mepleypdPnxE TEOTYOLUEVLCS, OL aptduNnTIXES UEBOBOL XAl-
onc 1 o gtpo Kalman ypnowonowivtal yior Ty enihuor tou npofAfuatog Bextiotonolnong xou
eEXTIUNONG TOEUUETEOV aVTIGTOLYA.

Yy epyaota auth mapovoidleton uio véa pébodog yio Ty eubuypduuion twv aévey evog
aucOnthpo emtdyuvong xou evog auchnthpo woryvntixol medlou 1 omolor Blvel Wiar avaluTLXY) AUon
o7o TEOPANuUa xan dev otnelletan oe xdmola aptbunTixy uébodo. H pébodog auty otneiletoan otny
MOy VT €YXALOT] YLoL TOV OYNUATIONS VO TpofAfuatog Peltiotonolnong tou omolou 1 NUon
olvetan og xAelo T wopyn. 'Etol n mpotewvduevn uéhodog umeptepel TG *NACOXNC TEOGEYYIONG

1600 0E OPOUC UTONOYICTIXOU XOGTOUC OG0 X0l OE EVPKOO TOL.

BoBuovéounon I'vpooxoniov

H Bobuovounomn tou yupooxoniou mapouctdlel WLaltepo eVOLAQEROY TOGO G TN BLUTUTOOT EVOS o
Onuoateol TEOPANAUATOS VLol TOV UTONOYIOUO TOV ATUEUTNTOV TUQUUETEOY TOU UOVTENOU UETENOTG
000 xaL 0TV €VPECT) XATIANNANG YETENoNS avapopds. Mia mpogaviic Aion oto mpdfinua autd Ho
Aty va xenowononbel n yvoo T Tay TNTA TEPLOTEOPHE TNG YNS WS AVAPOEE Yidl TN SLATUTWOY) Xol
eniAuor evog mpoPafuatoc PertiocTonoimong n extiunong nopopétewy. Eved 1 Aborn auth uropel va
yenowonoindel oe yupooxoma LPNNRC axplPelac, oty nepintwon Twv MEM yupooxoniov youn-
NoU x6cToug N Ty TNTA TEploTeoPRc TNe I'ng elvan adlvato vo petendel Noyw Tou udmidTtEpOU
BopiuPou pétenong tou achntriea.

H mo ouvifng XNoon nou mpoteiveton ot Biioypaplo yio ) Padpovéunon tou yupooxomiou
elvan 1 xprion evog awcbnthpa pwaryvnTeol Tedlou YLl TOV UTONOYIOUO WO TWIHAG AVAPORAS Lol TN

YWV TayLTNTOL TN cUVEYELR, éva TAND0C UETEHOEWY OE GUVBUACUOS UE TIC TWES OVAPORUS TTOU
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éxouv eoybel and ta dedopéva Tou poryvnTixol aadnthipa yenoionoldvIoL Yol TNV ETNUGT EVOC
meoPN\uatog extiunone mapauétowy. Ouowa ye v mepintwon g Pabuovounong tov achntiewy
EMTAYLVONG Xou UaryvnTixol Tedlou, 1 meocéyylon auth avTweTonilel otny neddn mpofAruato
SUYUNLONG OANG o YaUnAAC oxp(Betag.

Y1y mapoloa epyacia TEOTEVETOL ULal EVIENNDS BLAPORETIXY) TEOGEYYIOT ToU TEOoBAAUATOS. Ot-
OPOVTAS 6TL OXoL oL auchnthpeg elvon otabepd tomobetnuévol oe plo dxauntn T atpopua, yiveTon
xeYion Tou auchntripa oy vnTeol TEdlou aANS xaL Tou ucONTAPA EMLTAYLYONC VLo TOV UTONOYLIOUO
TWV YOVIOV TEPLOTEOPNE UETOEY €EL OoTATIXWY BE0EWY TNC TAATQOPUIC. LT CUVEYELD, OL YOVIES
aUTEC oUYXEVOVTOL UE TIC AVTIOTOLXEC YWVIEC TOU TEOXUTTOLY ANd TNV ONOXATPOOY TV UETEN-
CEOV YWVIIXAS TAXVTNTAS TOU YUPOGKOTHOU XaTd TNV Oidpxelo TN eTdfoaong and tnv uio ototiny
0éomn oty enduevn. Ou mapdueteol Babuovounong unoloyilovton and v enihuon evég mEoBAr-
uatog Petiotomoinong to omolo eNaxloTOTOEl TO GQANUA PETOED TOV YWVIWV TEQLOTROPHS TOU
unoroy(Covtat and To YUPOOGXOTUO XL TWV oVTIo ToLWY oL LTOAOYILoVToL Amd TOV GUVBUUGHUG TOU
paryviTod auodnthpo xon Tou anobnThipa emTdyLVOTC.

ITopd To yeyovoe 6T To tpdPANue Pertio tonoinone Aovetan pe Ty wébodo tng xabddou (gradient
descent) aANd xou 0 ALENUEVO LTONOYIOTIXG TNE XOGTOC Aoy TNE APBUNTIXAC ONOXNRPWOTE TV
UETPHOEWY TOU YUPOOXOTIOU, 1| TEOTEWVOUEVY, UéBodog uneptepel o cupmaTia OANG xou axpifeta.
Autd ogelletar xuplg 0TO YEYOVOS OTL YLl TOV UTONOYLIOUO TNG THNS avopopds cuUTER o PA-
vetan xou 1N u€tenon tou acbntipa emtdyuvong augdvoviag T6co TNV aflomoTio TN UETENONG

avapopdc, 660 xou TNV axpelfeld tng.

BoOBpovounon xaw EvBuyedpuion AZo6veov EvaicOnoiag ITIoA amAov
AwcOntrpov

Y& TONNEC eQapUoYEC, TeplooOTEROL amd Evag adpavetaxol 1 paryvntixol auchnthices yenolponolol-
VoL G CUVBUAOWO. Xe aUTEC TIG TEPLTTWOELS efvan amapattnTtn 1600 1 Pabuovouncr tou xdbe aichn-
THEA YweloTd, 60 xat 1 euBuyEdUUoN TV AEOVeY HETHED TV aobnthpny. Mia Vo oe autd To
TeoPANua etvon 1 Babuovounon twv achntipny, xou 1 evbuypduuion Tov aévov evochnaioc Toug
VO AVTIHETOTIO TOVY ooy 800 Blagopetixég dadixaoies. Etot, Ba pnopoloav va yenowonomndoiv
oL axyopluol mou mapouvstdlovtar oty mopodoa epyacia yia TV Pobuovouncn xdbe oacOntrpa
xaL oTn ouvéyeta vor oavortuyBel pio pébodoc yia v euBuypduuion Tov a&bvev gvatotnoiog Touc.
Q61600, AUTYH 1 TEOCEYYLON AUEAVEL ONUAVTIXE TOGO TO UTONOYIGTIXO XOGTOS 6CO X0k TNV TONU-
TAOXOTNTA TNG ATMAUTOVUEVNE OLadixaciog cUANOYHC ueTeoewy xou Baduovounong.

Yty napovoa SwtelBr) tapovatdleton uia uéhodog 1 onolor avtipeTwileL xou NOVeEL TO TEOPANUA
e Pabpovounone xou owtéd g evbuyEdUoNE TwV A€OVRY gVAoONGCING TONNATNGY Loy VNTLXMY M
adpaveloxwy achntipwy cav éva evialo TeéfAnua. Xe autd to mhaiclo, To TEOPANU BerTio ToToi-
NoNne mou SlaTunwdNxE Yyl TNV TePInTOON evOg Yoy vnTol 1 adpaveloxol actntrpo emextelveton
TNV TERIMTWOY TOANATAGY acOnTApwy eV oe auTd TAéOV cuunephopPdvetor xou To TEOBANU
e evbuypdupiong Tov afovev evacbnoloc Tov actntipwy. H Adorn tou véou npofNiuatoc Pelti-
otomoinomng diveTow xa TENL UE TNV XEHON WL ETAVAANTTIXC weB6BoL Tou otnelleton oTny eniAucy

€VOC UTONOYLO TS PONVO) TEOPAAUNTOC ENayio TV TETEAYDOVWY.
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Meépog B: E@appoyeg Adpavelaxwy xaw Mayvntixoyv Awcdntriewyv

O adpavetaxol xou oL paryvuxol aoOnThpes YeNolonololvTaL o Vol UEYANO EVROC EQPUPUOYOY.
Yy moapoloa Swtelfr nopoucidlovtan 800 epapuovés aTov Topéa TS TAOYYNnong. Apyixd mo-
povaldleton évag anyoetbuoc yior Tnv mhorynon evég telol avbpwnou o omolog aflonolel Tov pa-
YVnTixd ouoOntrpa yio var 5lopBmaoel To UEYINO CQANUA CTOV TEOCUAVATONOUO TOU ELCAYETAL AT
TO YUPOGKOTIO. 2TN) CUVEYELN, TUPOUGLALETAL Lol VEO ORYLTEXTOVIXY YLoL TNV EXTIUNCN TN YwVLd-
e TaOTNTAC OE eQapuoYES o ynong. H apyitextovinr auty| xenowdonotel éva yupooxdTo X

TOANATNOUS auoOnThpeg emTdyuvong xou TETUYLVEL EEapETIXd Yaun\d eninedo BoplPou.

IT\oRynon Me Xprorn Adpavelaxwyv xouw Mayvntixov Awcbntieov

H m\orynon e yerion adpavelaxmv oauchntipny xenowwonolelton e8¢ xon TONNES OEXAETIES, oXOUL
XL TRV TNV VATTUET TV CUC TARATOY BOPLUPORIXAC TAOTYNOTG, OF TOUELS OIS 1) VAUTIN(Y, 1 aepo-
mhola xou 1 e€epetivnon tou dac thuatog. O x\ddog tng abpaveloxiic TAORYNoNg €xeL TPOGEAX)TEL
€VTOVO EPEUVNTIXO EVOLIpEROV Tor TENEUTALa xedvia. H avdmtugn auty| ogeiletar xuplwg 6To TOND
YOUNASG x6GT0C xou TNV paliny) Tapaywy Tewv acdnthewy texvoloyiog MEM, aANd xou otoug me-
ploptopolc mou BETouy oL teyvoloyiec Sopupopniic TAofynone (neplopiopévos pubude avavéwong,
dev AettoupyolV o€ ecwTEpOUS Y wpous, elvan evaiobntec oe mapeuforéc). Mio moN dnuopifc
eQappoyY” TNg adpavelaxhc maorynone otny PiNoypapio eivar auth) TG TNOHYNoNg evog nelol
avBpwnou. XNy mo ankn exdoyr, XeNOoWOTOoLUVTAL HOVO €vag auchnThpos emLTdyuvong xaL éva yu-
POOXOTIO TRV AEOVWYV oL oTolot Totofetolvta 6To tanoltol evog avlpmnou. Ol yetprioelc Twv 600
auchntipwy, e cuVBLUoUO e TG EELCMOELS TNS XWVNHATIXAS YETOWOTOL00VTAL YLt TNV SlatiTmo
evog mpofAAuaTog extiunong tapauéTemy, To omolo Aivetal ue TNV xerion Tou gixteou Kalman xou
olvel w¢ amotéNeopa plo exTiunom tng T dTNTOC, TOU TPOCAUVATONOMOU xou TNne Béomng.

Yto mhaibota Tou @ixteou Kalman xau yia tnv dubpbworn tou cgdiuatog Béong mou mpoxinTel
and To GPANUN PETENONS TV 000 acbnthiewny yenolwonoteitar xou 1 texvixy| Zero Velocity Update
(ZUPT). H ouyxexpwévn texvixf) Booiletar oto yeyovée 6Tt n otiypd Tou to namoltol elvat
ONOXANEO GE ETOPT UE TO €D0aOg €xEl UNdEVIXY) TaybTNToL Apyixd, XENOWOTOWDIVTAS TIC UETPNOELS
TV 800 aohnthpnv (1 xar emnhéov aobntipwy) yiveton plo EXTUNCT TWY XEOVIXMV GTUYUMY XaTd
TI¢ omoleg TO TMUmOUTOL £lval ONOXNNEO OF ETAYPY| UE TO EDUPOC. TN CUVEYELX, Ol PETPHOELS TWV
awoOnThEwY ETTAYLVONG X YwViaxhg TodTNTog, pall ue TNV TANEogoplo TNg UNdEVIXNS Tay TNTAC,
olvovtan wg eloodog oo gidtpo Kalman to omolo Tic xenowwonoiel yio va avtiotabuioel to opdiyo
otnv extiunon g TayvINTag, TS B€oNg XAl ToU TEOGAVATONGUOU.

IToxNéc epyaoieg mpoteivouv dlapopetinols alyoplBuoug oL omolol ¥ENoLOTOLOVTAS Blapope-
TIXEC OLATUTWOELS TOU TROBAAUATOS, SLopopeTixols aryoplBuoug yio Ty ulomoinon e TeXVIXNS
ZUPT aANd xou SopopeTinég mapodharyég tou gixteou Kalman metuyaivouy yeydhn oxplBeia otny
extiunon e Béone. Kowd yeovéxtnua O ov twv aryoplfuwy oL onolol xenollonololy amox\eL-
OTS UETEYOELS AdpAVELAXDY achnTripwy elvon 1 oTtadloxy| uelworn g axpifelag Toug mou paxpo-

Tpobecyo odnyel oTNY cucowpeuon evog PeYINOLU cpdruatos Béonc. To opdiuo autd ogeiieton
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%VplG 0TO QAINUA HETENONG OGS xou TNV o Tadloxt| LetaBorr) Tou offset Tou yupooxoniou to onolo
odnyel o€ €val CUGCWEEVTIXG GPANUN CTOV TEOCAVATONICUO XAl UETENELTA TNV Oéo.

Yny napovoa epyasia TapouctdleTtal évo GUC TN ABEAVELNX S TAOTYNONG TO 0Tolo GLVBUALEL
Tol OEQOUEVA ABPOVELIXMY XAl Yoy VNTIXWY aucdnthewy Tomofetnuévoy oto namoltol evog nelou
avhpdmou xou Tapéyel woxponpdbeoua uia ueyarng axplfetac extiunon e Béone. To npotewvouevo
ocvotnua xenotwonotel Ty texvixry ZUPT ota mhaiowo evog mpofAfuatoc extiunong nopopuétomy
T0 omofo Ndvetow Ye TNV yerion tou ¢ixteou Kalman. Yuuminpwpotixd xan aveldptnto and tnv
extiunon tou gixtpou Kalman, yivetow plo dedtepr extiunon tou mpocavatoNouol xenoLLoTouw-
viog Tov awoOnthpa emitdyuvone xar tov awchntrpa poryvntixol medlou. Xe avtibeorn pe mopduola
cuc ThuaTa Tou Tpoteivovton otny BifNoypapla, 1 extiunon autrh dev anoutel TNV emiluoT xdmolou
unoroyloTxd axplBol mpofAAuatog extiunone noupauéteny 1 Peltictonoimone. Avtifeta, yiveton
xerion Tou unoroyloTxd @invod axyoplbuou TRIAD xatd tig xpovixés oTiypés xotd TiC omoleg
aviyvedeTon undevixy| todtnta. To o@ddua g eXTUNONE TOU TEOCAVATONOUOU HECW TOU ANYO-
etbuouv TRIAD e&optdton povo amd 1o otiyplato opdrua B€Tenons Twv achnTiewy emTdy UVoNg Xou
pary vTon Tedlou xou BEV ElVal GUGCMPEELTIXG OTIWE AUTO TNE exTiunong Tou @ikteou Kalman péow
TWV YETPNoEWY Tou yupooxoTiou. Etot, xdbe @opd mou eivar diabéoiun autn 1 dedtepn extiunomn tou
TEOCAVATONGOMUOY, YENOWOTOLETOL Yidl VoL avTIC THOUIOEL TO CUCCWEEUTIXNG CQANUA TNS EXTIUNOTNG

Tou @ixtpou Kalman pe anotéleoua ula peyding axpifeloag extiunon tne Béong oe Pabog ypdvou.

BeXtiwon tng Extipnong tng F'oviaxnie TaxOtntag we Xenon ITodkaniov
AwcOntrpov Enitdyuvong

To yeyoaAUTERO PEPOSC TOU CPANUATOC GTAL ABPAVELUXA CUC THUATO TNOHYNONS OPEINETOU GTO GUO-
CWEEVTIXO CQANUA UETENONS TOV YUPOoXoTiou. TNy mapoloa dlatelPr, mpotelveton €va b TNU
YXAELoTOU Ppdyou 10 0Tolo YENCULOTOLEL EVal YUPOOXOTIO TELWY AEOVOY Xl TOANATAOUG oucdnThpeg
EMTAYUVONG TELOV A€OVWY YIa TOV UTONOYIOUO TNS YWVIAXNS ToOTNTOC UE ONUAVTIXS UELWUEVO
B6puPo oe clyxploT Ye TN UETENON TOU YUPOOXOTIOU.

To npotewoduevo clotnua otnelleton oty o1 undeyouca Bewpla TwV cucTNUdTWY TAOYYNONC
ywelc xprfion Tou yupooxoriou (gyro-free inertial navigation systems). H Bewpio awth avamtiybnxe
XATE ToL TEAOTA XEOVIL TNG EUTopixfc didbeone auchntripwy toimou MEM xatd to omola umhpyov
owbéowor MEM awcOntripec emitdyyuvone odkd oyt MEM yupooxdma. Tonobetwvtog éva mandog
aolnThpwy emitdyUVoNg O €va 0TEPES COUA Efvol BUVATOS O UTONOYIOUOS TNG YWVIIXNS TOU Tar -
NG HECW NS ETUAUOTS EVOS GUC TAUITOS UT) YRAUUUXGY Blaopixev e€lotoenv. IIoakég epyaotieg
TEOTEIVOLUV BLUPORETINES APYLITEXTOVIXES OGOV apopd To TANBOC adNd xau Tig Béoeic TomobBétnong
TV auohntipny emtdyuvonc e oxond TNV ATAOTOMGT TOU GUCTAUATOS BlapopXdV eELoMCENMY
(H€ow NG AMONOLPAC TWV U1 YEUUULXDY OpWY).

'Eva HeydA0 TAEOVEXTNUO TOV CUCTNUATWY UTMY EVOL TO YEYOVOS OTL €4V Ol auoOnThpeg emi-
Tdyuvone tomobetnboly oe peydin andoTaon PETAED TOUC, 1 EXTIUNCT TNG YOVIOXNG ToyLTNTOG
€xeL onpavTixd yewwuévo B6pufo oe oyxéon pe v pétenomn tou yupooxotiou. Hapdho autd, xowd
UELOVEXTNUA OXNDV TWV TEOTEWVOUEVOV ORYITEXTOVIX®Y Elval OTL %&b Wxpd GPINU TOCO GTNV UE-

TENoN TV wuchnthpny emtdyuvong 6co xou oty Béon Tonodétnong Toug Tdvw GTO GTERES GHUL
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HETaPEACETOL OE EVAL GPANUO GTNV EXTUOUEVT YOVLOXY| TaOTNTA TO 0Ttolo xatd TNy daduxacio Tng
TNOHYNONG UETAPEALETAL GE €VOL GUCCWEEVTIXO GPANUNL GTOV TEOCAUVATONLOUOS.

Xty nopoloa epyacio yiveTon ¥erion TOANATAGY actnThewY ETTAYXLVONG VLo TOV UTONOYIOUO
NG YWV TOYUTNTOC, EVE TORAAANAN XENOWOTOLELTOL o €VaL YUPOOXOTIO GE €va oLGTNUA
XAEW0TO0 Peoyou yiot TNY AVTICTAOULOT TWV CQUAUATOV TOU TEOXUTTOUY OTO TO CQANUA HETENONG
TV aohnThpwy EMTd)UVOTNE AANG XaL TOU GQANUATOS O TNV TotoBétnot Toug. Me autd tov tpodmo, 7
€£000¢ TOU TPOTEWOUEVOU GUGC TAUATOC, EMNEEGLETOL UEV OO TO GPANUO HETENOTS TOU YUPOCXOTIOU
oTIC TOND Yaun\éC ouyvotntes (xatd xVplo Aoyo and to offset tou yupooxomiov), oANd, oTic
uPn\OTEPES CUYVOTNTES, 0 BoELPOC TNS YwVLoxrg T TNToS elvon et xoun\dTepog oe alyxplon
ME QWTOV TOU YLEOOXOTIOU TEOCPEPOVTOSC €TOL Ul GUVOAIXE To oxplBr] extiuncn e ywviaxnic

Tary OTNTOG.
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Introduction

1.1 Motivation and Scope

Inertial sensors (accelerometers and gyroscopes) along with magnetic field sensors are nowadays
used in a great variety electronic devices. Their application span extends from commercial
devices such as smartphones, activity trackers etc. to high-end, industrial, marine, aerospace
and military ones. Some representative applications include, but not limited to, navigation,
attitude estimation, image stabilization, healthcare systems, gaming and entertainment devices,
space exploration and many other industrial and commercial ones.

A very important aspect, especially in high-end applications where measurement accuracy
is of major importance, is the sensors’ calibration. For every measurement instrument or sensor,
calibration ensures that each measurement corresponds to the actual value of the measured
quantity and it is not affected by other static or dynamic parameters. The simplest form of
calibration of a sensor is to properly scale the its output to match the unit system of the measured
quantity. However, when accuracy is important, a calibration procedure must also compensate
for other measurement distortions, mainly caused by imperfections during the manufacturing
procedure of the sensor.

In many high-end applications, expensive, factory calibrated sensors are used in order to
achieve high accuracy. In such cases, very accurate rate tables and magnetic field sources are used
as reference to calibrate inertial and magnetic field sensors respectively. However, in applications
where cost is important, such as commercial electronic devices, low-cost sensors, typically in
integrated form, are preferred. In this case, factory calibration or other calibration services as
well as expensive calibration equipment cannot be used as both would raise the sensor’s cost
significantly.

The main problem when calibration without using special equipment is concerned, is to find
a proper measurement reference. To this end, most existing works use the Earth’s gravity and
magnetic field as reference in order to calibrate inertial and magnetic field vectors respectively
when no special equipment is available. Using several sensors’ measurements they formulate and

solve either an optimization problem or an estimation one to derive the required calibration



34 Chapter 1 - Introduction

parameters.

In addition to the calibration of a single sensor, in several applications such as navigation
and heading estimation, the data of the three sensors are combined and thus it is required for
their sensitivity axes to be aligned. To this purpose, many works use the magnetic inclination
as reference and given several accelerometer’s and magnetometer’s measurements, they derive
the rotation between the sensitivity axes of the two sensors. In addition, several works propose
calibration algorithms that exploit the Earth’s gravity and local magnetic field in order to
align the sensitivity axes of a gyroscope with the ones of an accelerometer or a magnetometer
respectively.

While there are several works in the literature proposing different algorithms for inertial and
magnetic field sensors’ calibration, most of them come with two great disadvantages: a) they do
not consider the calibration of inertial and magnetic field sensors as a single problem and deal
only with the calibration of a single sensor and b) they use numerical tools to derive the required
calibration parameters resulting in increased computational burden and potential convergence
issues.

Here, it should be noticed that a calibration procedure, in its strict definition, would require
to derive the scale and sensitivity of the sensor, using an absolute reference and a well defined
coordinate frame. Thus a complete calibration of inertial and magnetic field sensors without using
any piece of equipment and an external reference is not possible. However, existing works on the
field use the term calibration to indicate a statistical analysis of the sensors’ measurements that
compensates for the most important measurement errors and leads to high-accuracy differential
measurements. In this work we adopt this, more relaxed, use of the term calibration.

In the first part of this thesis, a complete methodology for calibrating three-axis inertial and
magnetic field sensors is introduced. First an algorithm for calibrating three-axis accelerometers
and three-axis magnetometers is presented. Using several measurements of the gravity acceleration
and the local magnetic field respectively, the calibration parameters are derived as the solution
of an optimization problem. Unlike the existing literature, the solution of this problem is not
derived using the standard descent methods, but instead, a novel iterative algorithm based on
the solution of a computationally cheap least squares problem is introduced.

Then, the problem of aligning the sensitivity axes of the two sensors is examined and
formulated as an optimization problem for deriving a rotation matrix representing the rotation
between the sensitivity axes of the two sensors. Using several measurements of the two sensors,
and exploiting the magnetic inclination phenomenon, the required rotation matrix is derived in
closed-form.

Finally, using the calibrated data of the two sensors, a new approach for calibrating the
gyroscope is introduced. More specifically, assuming that all three sensors are mounted on the
same rigid platform, the rotation of the platform between two still positions calculated using
the accelerometer’s and the magnetometer’s measurements is used as reference to calibrate the
gyroscope. The calibration is expressed as an optimization problem which is solved using the

gradient descent method.
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In the second part, two popular applications of inertial sensors in the field of navigation
are presented. Inertial navigation systems use inertial sensors (accelerometers and gyroscopes)
to calculate the velocity, orientation and position of a moving object. They are widely used
both alone and in combination with satellite-based systems in a wide range of applications
including aircraft navigation, spacecrafts, submarines and ships as they provide accurate position
estimation and require no extra infrastructure.

The most basic inertial navigation system is comprised of a three-axis accelerometer and a
three-axis gyroscope. In theory, using their measurements and applying the standard kinematic
equations one can derive the velocity, orientation and position of a moving object. However, in
practice, the sensors’ measurement errors and noise make inertial navigation a challenging task.
Existing works propose different architectures for fusing the measurements of the two sensors
in an optimal way, most commonly using a Kalman filter in order to eliminate the effects of
the measurement errors and noise. In addition, several works propose architectures including
more sensors such as magnetic field sensors, cameras and others in order to further improve the
navigation accuracy.

In this thesis, a novel system for pedestrian navigation using inertial and magnetic field
sensors is introduced. The proposed system uses a three-axis accelerometer, a three-axis gyroscope
and a three-axis magnetometer in order to compensate for the gyroscope’s bias drift and provide
long-term accurate velocity, orientation and position estimates. To do so, a popular pedestrian
navigation approach using the accelerometer’s and the gyroscope’s measurements in a Kalman
filter estimation problem is exploited. In addition, a more accurate, independent, estimate of
the orientation is derived using the accelerometer and the magnetometer. A long term accurate
orientation estimate is derived by combining the Kalman filter’s orientation estimate with the
one derived using the accelerometer and the magnetometer.

Then, to further reduce the effect of the gyroscope’s noise, an inertial measurement unit
architecture utilizing several three-axis accelerometers and a single three-axis gyroscope is presented.
The proposed architecture is an extension of gyroscope-free inertial measurement units, which
use only accelerometers to measure the linear acceleration and translate it to angular velocity
by solving a system of nonlinear differential equations. More specifically, it exploits the basic
operating principles of the gyroscope-free inertial measurement systems and uses a three-axis
gyroscope to correct the accelerometers’ offset. It requires a minimum of three accelerometers

which can be placed arbitrarily on a rigid object.

1.2 Thesis Outline

This thesis is divided in two parts. In the first part a complete methodology for calibrating
inertial and magnetic field sensors is introduced. Then, in the second part, two applications of
inertial sensors in the field of navigation are presented. More specifically, the rest of this thesis
is organized as follows.

In Chapter 2, a complete methodology for calibrating and aligning the sensitivity axes of
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inertial and magnetic field sensors is introduced. More specifically, the problem of calibrating
a three-axis accelerometer, a three-axis magnetometer and a three-axis gyroscope is examined
and a calibration algorithm for each sensor is presented and analyzed in detail. In addition,
a methodology for aligning the sensitivity axes of an accelerometer and a magnetometer is
introduced.

In Chapter 3, the calibration of three-axis magnetic field sensors is reviewed. Seven representative
algorithms dealing with the in-situ calibration of magnetic field sensors without requiring any
special piece of equipment are reviewed. The algorithms are presented in a user friendly, directly
applicable step-by-step form, and are compared in terms of accuracy, computational efficiency,
and robustness using both real sensors’ data and artificial data with a known sensor measurement
distortion.

In Chapter 4, the presented calibration methodology is extended the case where multiple
accelerometers or magnetometers are used together. More specifically, a computationally efficient
algorithm for simultaneous joint calibration and axes alignment of multiple 3-axis accelerometers
or 3-axis magnetometers is presented.

In Chapter 5, the hardware design of a low-cost inertial measurement unit is presented.

In Chapter 6 the importance of sensor’s calibration when they are used in inertial navigation
systems is explored. First, a bound for the velocity and orientation error as a function of
the accelerometer’s and gyroscope’s calibration parameters is derived. Then, using an inertial
measurement unit and a popular pedestrian navigation algorithm, it is experimentally demonstrated
how the large error characteristics of low-cost sensors significantly affect the navigation’s accuracy.

In Chapter 7, a pedestrian navigation system using inertial and magnetic field sensors is
introduced. The proposed system architecture is presented and analyzed in detail while extensive
experiments prove its long-term accuracy compared to existing works using only inertial sensors.

In Chapter 8 a new inertial measurement unit architecture is introduced which gives an
estimation of the angular velocity with significantly lower noise than the gyroscope’s measurement.
The proposed system is presented and analyzed in detail while a series of simulations are
presented to demonstrate its performance.

Finally, Chapter 9 concludes the thesis with a general summary of its contributions and a

presentation of open problems, paving the way for future work.
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Inertial & Magnetic Field

Sensors’ Calibration &
Axes Alignment

2.1 Introduction

Inertial sensors, accelerometers and gyroscopes, are combined with magnetometers in a
wide range of applications. For example, in [L§| and [31] the three sensors are combined in
pedestrian navigation applications. Two heading estimation algorithms based on their joint data
are presented in [16] and [20]. Many applications where the three sensors are combined can be
found in the literature, from low-cost commercial systems to high-accuracy marine, aerospace
and military systems.

Especially in the case of low-cost systems, micro-electro-mechanical (MEMS) inertial sensors
are usually preferred due to their significantly lower cost and small size. However, a major
disadvantage of MEMS inertial sensors is their large error characteristics [L0]. So, in order to use
them in applications where accuracy is important, such as navigation, a calibration procedure
that compensates for the deterministic part of their error is required.

Similarly to the inertial MEMS sensors, low-cost magnetometers also suffer from significant
measurement errors. Apart from the sensor’s manufacturing imperfections, the measured magnetic
field is strongly distorted by nearby magnetic materials. Surrounding electronic components and
the sensor’s enclosure are a common source of such distortions. Getting an accurate magnetic
field measurement requires a calibration procedure to compensate for both sensor’s measurement

error and the distortions caused by nearby objects.

Copyright (© IEEE. Chapter 2 is reprinted, with permission, from: a)K. Papafotis, P.P. Sotiriadis,
"MAG.I.C.AL. — A Unified Methodology for Magnetic and Inertial Sensors Calibration and Alignment”, IEEE
Sensors Journal, vol. 19, no. 18, pp. 8241-8251, 15 Sept.15, 2019, b)P.P. Sotiriadis, K. Papafotis, "Accurate Analytical
Accelerometer-Magnetometer Axes Alignment Guaranteeing Exact Orthogonality,” IEEE Trans. on Instrumentation
and Measurement, vol. 70, pp. 1-7, 2021., ¢)P.P. Sotiriadis, K. Papafotis, A Single-Step Method for Accelerometer
and Magnetometer Axes Alignment”, IEEE Trans. on Instrumentation and Measurement, vol. 70, pp. 1-7, 2021. and
d) K. Papafotis, P.P. Sotiriadis, "Multiple Accelerometers and Magnetometers Joint Calibration and Alignment”,
IEEE Sensors Letters, Vol. 4, Issue 3, March 2020, pp. 2475-1472. Personal use of this material is permitted, but
republication/redistribution requires IEEE permission.
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In the case of low-cost inertial and magnetic sensors, factory calibration or after-production
calibration using expensive equipment is not an option as it would raise the sensor’s cost
significantly. Thus, a calibration method that is not based on any external equipment is highly
preferred.

For 3-axis accelerometer calibration, most authors take advantage of the fact that the
measured magnitude of the specific force is constant when the sensor is still, independently
of its orientation. The work in [19] proposes an off-line calibration method based on maximum
likelihood estimation. In [2] an algorithm based on least-square method is proposed. In [42]
the authors propose a solution based on the Levenberg-Marquardt algorithm to improve the
calibration accuracy. The authors in [J] use a nonlinear parameter estimator based on the
unscented transformation to calculate the calibration parameters. In [[7], calibration parameters
are calculated by solving a nonlinear optimization problem.

Gyroscope calibration is a more complicated problem as no convenient rotation reference is
available. Some authors use special equipment in order to calibrate a gyroscope [34] [22] [41].
In [33], the authors use the earth’s rotation as reference, an approach suffering from the MEMS
gyroscope relatively high noise levels. In [26] the rotation of a calibrated accelerometer is used as
a reference in a least squares problem formulation. Authors in [37] use a calibrated magnetometer
in a Kalman filter estimation problem to calculate the calibration parameters.

For 3-axis magnetometer calibration, the magnetic field of the earth is most commonly used
as reference. In [1] , [38], [14], [L3] and [B5] the authors derive the calibration parameters by
solving a maximum likelihood estimation problem. A least-squares based iterative algorithm for
magnetometer calibration is proposed in [5]. In [39], the authors formulate the magnetometer
calibration as a state estimation problem which can be solved using Kalman filtering.

In most navigation or heading estimation applications the measurements of the three (accelerometer,
gyroscope, magnetometer) are combined to give a more accurate result. This gives rise to the
need of alignment between the axes of the three sensors. In [12] and [§], magnetometer’s axes
are aligned with those of the accelerometer. The authors in [36] and [39] use a gyroscope to align
magnetometer and inertial sensors. An algorithm for calibration and axes alignment between a
gyroscope and an accelerometer is proposed in [40)].

The calibration of inertial and magnetic sensors, and the alignment of their axes is required
in all relevant applications. However, most of the previous works deal only with the calibration
of either a single sensor or the alignment between a pair of them.

This work introduces a complete methodology for unified calibration and joint axes alignment
of 3-axis magnetometer, 3-axis accelerometer and 3-axis gyroscope. The proposed method compensates
for all linear time-invariant distortions such as scale-factor, cross-coupling and offset, including
the soft-iron and hard-iron distortions of the magnetometer. It introduces a new, computationally
efficient, least-squares based, iterative algorithm for the calibration of the magnetometer and the
accelerometer. It solves the axes alignment problem in an analytical while it also introduces a
new way to calibrate the gyroscope based on the sensors’ joint data. Finally, a 15-step calibration

procedure requiring no external piece of equipment and no external attitude references is introduced.
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2.2 Measurement Model of Inertial and Magnetic Field Sensors

Before presenting the calibration algorithms, it is important to introduce the measurement
models of the three sensors on which the algorithms are based. Note that in this work, we only
consider the most important linear, time invariant error sources for all three sensors to derive

the corresponding measurement models.

2.2.1 Accelerometer’s Measurement Model

Accelerometer’s measurement is modeled as [L0] [23]

Ya = f+TSff+chf+ha + ¢, (21)

where
Yo : 3 X 1 measurement vector

f 3 x 1 true specific force vector
Tsr : 3 x 3 diagonal matrix representing the scale-factor error
Tec : 3 X 3 matrix representing the cross-coupling error
heg : 3 X 1 accelerometer’s bias vector

e : random error

Defining T, £ I3 + Tsr + Tic, where I3 is the 3 x 3 identity matrix, (@) can be written as

Yo =Touf + hg+¢ (2.2)

2.2.2 Magnetometer’s Measurement Model

A magnetometer measures the strength and the direction of the local magnetic field. The
measured field is a combination of the earth’s magnetic field and an additive field created by
magnetic objects attached to the same reference frame as the sensor. This additive field is called
hard-iron distortion and causes a permanent bias in the sensor’s output.

In addition, magnetometer’s measurement is distorted by nearby materials attached to the
sensor’s frame that influence the magnetic field but don’t generate a magnetic field themselves,
most commonly metals. This type of distortion is called soft-iron distortion, and, along with the
hard-iron distortion are the most important error contributors in the measurements.

Taking into account the hard-iron and soft-iron distortion which are the two dominant sources

of distortion, the sensor’s measurement can be modeled as [35], [12], [38], [21]

Ym = szcc (Tszm + hhz) + hb +e (23)
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where
Ym : 3 X 1 measurement vector

m : 3 x 1 true magnetic field vector
Tsr : 3 x 3 diagonal matrix representing the scale-factor error
Tee @ 3 X 3 matrix representing the cross-coupling error
Ts; : 3 x 3 matrix representing the soft-iron distortion
hy : 3 X 1 magnetometer’s bias vector
hp; + 3 x 1 bias vector due to hard-iron distortion
€ : random error

Setting T}, 2T, iTeTs; and hyy, £ T, fTechsi + hy, the magnetometer’s measurement model
becomes

Ym = Tyom + hyy + € (2.4)

2.2.3 Gyroscope’s Measurement Model

Gyroscope’s measurement is modeled as [10], [23]

Yg =w + Tspw + Teew + hyg + €, (2.5)
where
Yg 1 3 X 1 measurement vector
w : 3 x 1 true angular velocity vector
Tsr : 3 x 3 diagonal matrix representing the scale-factor error
Tee : 3 X 3 matrix representing the cross-coupling error
hg : 3 x 1 gyroscope’s bias vector

¢ : random error

Defining Ty = I3 + Ty + T, (B-5) can be written as

Yg =Tyw+hg+e¢ (2.6)
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2.3 Magnetometer’s Calibration

The 3-axis magnetometer’s calibration is based on the fact that the measured magnitude of
the magnetic field should be independent of the magnetometer’s orientation. This is formulated
as an optimization problem which is solved using a novel least-squares based iterative algorithm
achieving fast convergence and computational efficiency.

The purpose of the calibration algorithm is to estimate the calibration parameters T}, and
hy in order to minimize the measurement error ||¢|| while assuming a constant magnitude
for the measured magnetic field. Thus, given N measurements, the problem of calibrating a

magnetometer can be posed as the following optimization problem

N
m;nilglize Ymp — Trnme — h?
=1

mRm

my,k=1,2,..,N k

subject to  [|my| =1, k=1,2,..,N

(2.7)

All norms in this paper are two-norms unless it is indicated otherwise. In (@), without
loss of generality, we assume the magnitude of the magnetic field is one. A penalty function

corresponding to (R.7) is

N
=" [y = Tomse = Rl + A (Il = 1) (2.8)
=1

where A is a positive constant. It should be selected to balance the contribution of the two
summandsf.

Minimizing (@) using gradient descent or Newton-Raphson methods require a good initial
estimate of the unknowns 7, and h,,, otherwise they are very slow in convergence, if they
converge at all. Finding an initial estimate is not trivial due to the uncertainty of soft-iron and
hard-iron distortions; the authors in [38] and [L2]| propose a linear least-squares problem in order
to find one. In [5] a solution to (2.7) by means of iterations of a least-square problem is proposed
which excels in computational efficiency and convergence.

Similarly to [5], we propose an iterative solution to (R.7) based on the solution of a linear

least-squares problem. We start with rewriting (@) in matrix form for all measurements

Y=LG+FE (2.9)
where
Y = [yml Ymo - ymN} , L= [Tm hm}
= T;Ll W1L2 mlN] and F = [51 g9 ... EN}

'Typically it is selected to be in the order of | T ]|.
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The system (R.9) has 3 x N equations. Assuming an initial estimate of a full rank matrix G,
every iteration of the algorithm begins with deriving 7;, and h,, minimizing the total squared

error ||ET E||%. From least-squares method [32] we have
L=YGT(Gag")! (2.10)
Using the updated values of T, and h,, and (.4) we define
g =T Ymp — hin), k=1,2,..., N (2.11)

where we assume that 7T, is invertible. This is a rational assumption as a non-invertible 75,
would imply that not all three axes are expressed in the output of the sensor.

Since the magnitude of the magnetic field is independent of the measurement, and set to one
for convenience, we update my as

mi = (2.12)

772
As a metric of convergence we use the value of the penalty function J in (@) The magnetometer

calibration algorithm is summarized in Algorithm [.

Algorithm 1: Magnetometer Calibration Algorithm

Step 1: Initialize my = HZ:ZII’k =12,...,N

and form matrix G

Step 2: Solve for L using least-squares:
L=YGT(GGT)!

Step 3: Extract T, and h,, from L

Step 4: My = Tl (Ymp — hm), k=1,2,... N

Step 5: Update G using my = %,k =1,2,...,N

Step 6: Calculate J

Step 7: Repeat steps 2-6 until J is sufficiently small
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2.4 Accelerometer’s Calibration

The 3-axis accelerometer’s calibration algorithm exploits the fact that measured magnitude
of the specific force should be constant when the sensor is still, independently of the sensor’s
orientation. A popular calibration approach ([19], [2] and others) uses the fact that the measured
magnitude of the specific force of a still 3-axis accelerometer should be constant. Assuming N
measurements and using (2.9) the calibration problem is equivalent to minimizing (2.13); this is
typically done by employing the gradient descent method.

N
migirglize Z Yar, — Tafr — haH2

frok=12. N k=1 (2.13)
subject to [|fxl|=1, k=1,2,.... N

A penalty function corresponding to (2.13) is

J =

M=

{Ilvar = Tute = hal>+ X (157 = 1)* | (2.14)

B
Il

1

where A is a positive constant. It should be selected to balance the contribution of the two

summands E.

In contrast to the magnetometer case, for the accelerometer’s calibration we can find an
initial estimate of the unknowns f, 7T, and h,. Under the reasonable assumption of small scale-
factor and cross-coupling errors, an initial estimate of Tj is the 3 x 3 identity matrix B ma

similar way, bias vector h, is initialized to the 3 x 1 zero vector (03x1).

Using the aforementioned initial estimate, the gradient descent method can minimize (R.14).
However, as seen, optimization problem (R.13) share the same form with (@), the optimization
problem derived for magnetometer calibration. Thus, magnetometer’s calibration algorithm can
also be used for accelerometer calibration as shown in Algorithm E Algorithm E is typically
significantly faster in convergence and better in computational efficiency than the gradient

descent one and this why it is preferred in our proposed calibration methodology here.

*Typically X is selected to be in the order of ||T,]|
3This relates to the fact that we use || fx|| = 1 and the assumption that the accelerometer’s gain has been roughly
pre-adjusted so that the specific force results in almost unit magnitude output.
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Algorithm 2: Accelerometer Calibration

Step 1: Initialize f = ”z‘:ﬁ,k =1,2,...,N

and form matrix G

Step 2: Solve for L using least-squares:
L=YGT(GGT)!

Step 3: Extract T, and h, from L

Step 4: f = T (Yo — ha) k=1,2,...,N

Step 5: Update G using fi = %,k =1,2,...,N

Step 6: Calculate J

Step 7: Repeat steps 2-6 until J is sufficiently small
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2.5 Performance Evaluation of Accelerometer’s and Magnetometer’s
Calibration Algorithm

To evaluate the performance of the proposed algorithm we used several different datasets
recorded following the calibration procedure presented in [25]. In this Section we first evaluate
the convergence of the proposed algorithm using five different datasets. Next we evaluate the
quality of the resulting calibration parameters and the repeatability of the algorithm’s results.

Finally, we demonstrate the effect of the proposed data on the sensor’s measurements.

2.5.1 Algorithm’s Convergence

The convergence of five different datasets of accelerometer’s data, recorded following the
calibration procedure presented in [25] is shown in Figure @ As seen in Figure @, the cost

function appears to be monotonic and requires only a few iterations of the algorithm to converge.
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Figure 2.1: Convergence of accelerometer calibration algorithm

In Figure @ the convergence of the proposed algorithm when using magnetometer’s measurements
is presented. Although the required iterations and the shape of the cost function are very different

for each dataset, the algorithm converges monotonically for all five dataset.
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Figure 2.2: Convergence of magnetometer calibration algorithm

2.5.2 Measuring Distance Between Calibration Parameter Sets

Applying the calibration methodology to all five datasets, we expect some consistency between
the calibration parameters derived from each dataset. The calibration parameter sets of the
magnetometer and the accelerometer are pairs of a calibration matrix and an offset vector,
(Tpn, han) and (Ty, hy) as shown in (2.4) and (R.9) respectively.

The offset vectors are defined uniquely in the proposed algorithms, in the sense that they are
independent of the true values of the magnetic field, the specific force and the angular velocity
respectively. Therefore, the distance between offset vectors derived using different datasets can
be defined as the norm of their algebraic difference, i.e. d(z;, z;) = ||z; — z;]|.

The normalized distance d is defined as the ratio of the average distance divided by the
average norm of the vectors, i.e. for N datasets (N = 5 here) there are (g) pairs and d is given
by

Z d(xia xj) /(g)

_ 1<i<j<N

d(:cl,a:g, e ,l’N) =
S el | /N

1<i<N

For the vectors sets h,, and h, we calculated the distance d based on five datasets. It is

d(hm1s hma, - - hims) = 0.0208

(2.15)
d(hal, hQQ, B ,ha5) = 0.0393

Defining the distance between calibration matrices derived using different datasets is more
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tricky because the proposed algorithms consider the true values of the magnetic field and the
specific force to be unknowns. They are derived along with the calibration matrices to minimize
the random errors in (2.4) and (.9) respectively.

Observe for example in (@) that if we replace T}, with T;,Q and m with QTm, where Q is
an orthogonal 3 x 3 matrix, i.e. @ € O(3), the resulting measurement vy, is unaltered. The same
is true for (2.9).

Therefore the calibration matrices are derived subject to or‘chogonalE multiplication uncertainty.
To this end we define the distance between two calibration matrices (of the accelerometer, the
magnetometer or the gyroscope) derived from different datasets as follows.

The distance between two 3 x 3 matrices T and 715 can be defined as:

D(Tl, Tg) :IIIIDHQTl — T2||F

0coE) (2.16)

The minimizing matrix @ can be calculated using the orthogonal Procrustes Theorem [27].
Similarly to the offset vectors, the normalized distance D between a number N of calibration

matrices is defined as

_ 1<i<j<N
D(X1,Xa,...,XN) = . (2.17)

S Xl | /N

1<i<N

For the calibration matrix sets T}, and T}, we calculated the distance D based on five datasets.
It is

D(Tmla Tm27 ey Tm5) == 00287

(2.18)
D(Tay, Tas, - .., Tag) = 0.0018

Functions d(-,-) and D(-,-) represent the distance among the offset vectors and the distance
among the calibration matrices derived from different datasets respectively. Thus, the small
values of the normalized average distances (R.15) and (R.1§) indicate good repeatability of
the proposed calibration algorithm i.e. the algorithm return similar calibration parameters for

different dataset inputs.

4Note that the uncertainty is not extended to a larger matrix set as it must preserve the norm of all possible
true values.
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2.5.3 The Effect of Calibration on Sensors’ Measurements

For both accelerometer and magnetometer, the effectiveness of the calibration algorithm
can be deduced from the true values of the specific force f and the magnetic field 7 having
unit magnitude. In Figures E and @ the normalized magnitude of both raw and calibrated
accelerometer and magnetometer measurements are presented.
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Figure 2.3: Normalized magnitude of raw and calibrated accelerometer measurements in six still
orientations.
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Figure 2.4: Normalized magnitude of raw and calibrated magnetometer measurements in five
still orientations.
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2.6 Accelerometer’s and Magnetometer’s Axes Alignment

Inertial and magnetic sensors are often used in combination in many applications including,
navigation [6] and attitude estimation [20], healthcare systems [28|, gaming and entertainment
devices [4], space exploration and many other industrial and commercial ones. In such cases it
is crucial for their sensitivity axes (coordinate frames) to be aligned.

Assuming that the coordinate frames of the accelerometer and the magnetometer are {4, yq, 24 }
and {Zm, Ym, 2m }, respectively, aligning the two coordinate frames comes down to deriving a
rotation matrix R4, € SO(3) such that R4 {Zm, Ym,2m} = {Ta,Ya, 2a} as shown in Figure R.5.

Za, Zm
R~
Ya : Ya, Ym

Xa, Xm

Figure 2.5: Axes alignment.

Axes alignment algorithms require an accurately known magnetic field to be used as reference
in order to derive RJ\A/I. When cost is of no concern, the reference magnetic field is generated
using expensive laboratory equipment. For low-cost sensors however this is impractical due to
incommensurate extra cost.

Several works propose axes alignment methods which require no special piece of equipment
89, 12, 15, 25, 21, B, 17, 24]. A standard approach is to exploit the magnetic inclination
phenomenon as reference in order to align the axes of an accelerometer and a magnetometer.
Magnetic inclination (or magnetic dip) is the angle between the horizon and the Earth’s magnetic

field lines as shown in Figure P.6.

Horizon

777777777777777777777777777777777 Magnetic
 ~ Inclination

Figure 2.6: Magnetic inclination.

It varies with location and time and the sine of it is the inner product of the normalized

gravity and the magnetic field vectors.

g'm

AN _
s = stn(0) = el

(2.19)

Existing axes alignment algorithms, e.g., [25, 24, 12, 8|, use (R.19) and accelerometer’s and

magnetometer’s measurements to form an optimization problem for deriving Rﬁ. To do so, some
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of them [25, 24] form a cost-plus-penalty function associated with (2.19) which is then minimized

using gradient descent or Newton-Raphson method.

In this work, we propose a complete analytical solution to the axes alignment problem
guaranteeing the orthogonality of the axes alignment rotation matrix, with best-of-class-accuracy.
This is done by introducing a new formulation of the axes alignment problem which transforms

the original constrained optimization problem to a smooth unconstrained one.

The proposed method derives both the magnetic inclination angle and the axes alignment
rotation matrix in closed-form. Due to its analytical nature, the proposed method gives highly
accurate results, comparable to the best ones achieved by existing iterative methods, requiring

however significantly lower computational resources.

2.6.1 Problem Statement

Consider a 3-axis accelerometer and a 3-axis magnetometer, both fixed on the same rigid

platform, and denote their coordinate frames as {A} and {M} respectively i}

Now suppose that accelerometer’s measurement g,‘? and magnetometer’s measurement mﬂ”
are taken simultaneously, when the rigid platform is still (only gravitational force), for k =
1,2,..., K with K > 9. Platform’s orientation changes with k£ and every measured vector is

expressed in the coordinate frame of the corresponding sensor.

Let the gravity vector g and magnetic field m be expressed in a fixed inertial coordinate
frame {I}. For every k = 1,2,..., K there is a rotation matrix Qx € SO(3) transforming vectors
from the {I}-frame to the {A}-frame. Then the gravity and magnetic field vectors expressed in
the {A}-frame are written as

glg1 = Qrg and m,‘? = Qrm (2.20)

for k =1,2,..., K, respectively. Solving (R.2) for g and m and replacing them in (R.19),

o T QRQImE (g my
sin(6) = — g = oy (2.21)
1Q% g MQrmill lgi [[lmi

for k =1,2,..., K, where we exploited the orthogonality of (J; and the rotational invariance of

the Euclidean norm.

In (), the accelerometer’s measurement g,f is known. The measured magnetic field mﬁ/f
however is naturally expressed in the {M }-frame and so we need to transform it to the {A}-
frame. To this end, let R{; € SO(3) be the transformation matrix from { M }-frame to { A}-frame,
then

mi = R{mM, k=1,2,.. K (2.22)

Combining (R.21)) and (EQE) and using again the rotational invariance of the Euclidean norm,

SBoth coordinate frames are considered to be right-handed.
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we get that
(9i)" Raymy!

sin(d) =
g MR 11

k=1,2,... K (2.23)
In (), g,f and m are the known accelerometer’s and magnetometer’s measurements,
respectively, while both RJ\A4 and inclination angle, §, are unknown. A standard approach to

derive them is to form and solve the optimization problem

K T 2
minimize Z (Sin(5) (gk)RMmk>
Rjyp,0 =1 lgitHllmp!]]
2.24
subject to Ry € SO(3) (2.24)
T
s€|-33)

2.6.2 Prior Art and its Limitations

A typical approach to solve () is to minimize an associated cost-plus-penalty function
using the gradient descent or the Newton-Raphson method. In [25, 24] the authors use the
following cost-plus-penalty function, Jop, associated with () and incorporating a weighted
penalty term capturing the non-orthogonality of R i

K
Jop(R, s5) = (35 — ngRmk)Z + M|RRT — I))%. (2.25)
k=1
where || - || denotes the Frobenius norm. In using (2.25) in [25, 24|, special care should be
given to the selection of the weighting parameter, ), in order to ensure both the approximate
orthogonality of R and the (fast) converge of the minimization method.

Following the iterative optimization approaches [25, 24] and (R.2), we first consider the case
when both R and ss are initialized without any prior knowledge, as the identity matrix and
zero respectively. Using the Newton-Raphson method and a set of sensors’ measurements, we
minimize (R.25) for multiple values of \. To assess the distance from orthogonality of the derived

matrices R, we first define the nearest orthogonal matrix to R as [27]
Ro=UVT (2.26)

where U € O(3) and V € O(3) are defined via a singular value decomposition (SVD) of R =
UXVT. Then the distance of R from orthogonality is defined as

Do(R) £ |R - Ro| = |R-UVT|. (2.27)

®Note that when the initial condition of the Newton-Raphson is far from the final solution, an extra term in
(B.23) is required to force the determinant of R to be equal to one and thus R € SO(3). However, if Newton-Raphson
initial condition is near to the final solution, this term may be omitted.
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The convergence of Jop using the Newton-Raphson for different values of A is shown in

Figure @
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Figure 2.7: Convergence of Newton-Raphson for different values of the weighting factor, A
(Fastest convergence corresponds to A = 10).

The numbers of iterations for Newton-Raphson to converge (Jop to drop below 10~%) and
the distance of the derived matrix R from orthogonality are presented in Figure R.§ as functions
of .
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Figure 2.8: Distance of R from orthogonality Do (R) when Newton-Raphson has converged, and,
number of iterations required for convergence, as functions of weighting factor A.

We observe that larger values of A result in R closer to orthogonality. However, Newton-
Raphson requires more iterations to converge for larger A, implying a trade-off between the
orthogonality of R and computational efficiency.

A better trade-off is obtained when the results of the single-step method in [] are used
to initialize the Newton-Raphson method. As seen in Figures @ and , Newton-Raphson
converges after only two iterations even when large values of A are used. However, in this case,

the computational complexity of the single-step method of [] must be also taken into account.
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Figure 2.9: Convergence of Newton-Raphson for different values of the weighting factor, A, when

the single-step method in [30] is used for initialization.
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Figure 2.10: Distance of R from orthogonality and Newton-Raphson iterations until convergence
for different values of the weighting factor, A, when the single-step method in [] is used for
initialization.

2.6.3 The Proposed Algorithm

The proposed method converts the constrained optimization problem (R.24)) to an unconstrained
one which is solved using analytical iterations of the Newton-Raphson method. Furthermore,
using a good initial estimate of the point of minimum, as done later in this section, implies that
only one iteration is sufficient to achieve a very accurate result.

To convert the constrained problem (2.24) into an unconstrained one, we first derive the
optimal value of s5 analytically and formulate an equivalent optimization problem with the
single unknown R. To do so, consider the cost function of (2.24)

J(R,ss) = Z (55— g,{Rmk)2 (2.28)

K
k=1
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and note that it is quadratic with respect to ss. Defining the 9 x 1 vector Vi = vec(R) and using
the identity g/ Rmy = (my, ® gi)Tvec(R) we write

J(R, s5) = Ks5> — 25517 AVR + VI AT AVR (2.29)

where ® is the Kronecker’s product [L1], 1 is the K x 1 vector of ones and the K x 9 matrix A is

(mi1®g)"
T
ma @ g2
= ( ) ) (2.30)
(mi @ gx)"
We define the minimum of J(ss, R) with respect to ss, i.e.,
Ji(R) £ min J(R, s5) (2.31)
[ss|<1
and observe that the unconstrained point of minimum is
o Lyryy, (2.32)
Sg = K- R- .
Note that (2.39) can also be written as
1K
55 =1 > (gf Rmy) . (2.33)
i=1
Following our assumption that ||g;|| = |[m;|| = 1 for all i = 1,2,..., K and the fact that || - ||2

norm is rotational invariant, by applying the Cauchy—Schwarz inequality to () we get s3] <1
and so sj is feasible and the global minimum of (p.31).

Replacing (2.32) into (2.29), J1(R) is conveniently written as
1 T
Ji(R) = §VR BVg (2.34)

where B = 2 (ATA — %ATl lTA) is a 9 x 9 symmetric matrix. Note that by the definition of

J1 we have
min J(R,s5) = min Ji(R 2.35
RESO(3),|ss|<1 (R, 55) RESO(3) 1(R) (2.35)
where the minimum exists since the cost function Jj is continuous and SO(3) is compact.

Let R. € SO(3) be a point of global minimum of J; i.e.

Ji(Rs) = in Ji(R 2.36
(B = min J(R) (2:36)

and let Ry € SO(3) be an initial estimate of R.. An improved estimate can always be expressed
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as R = PRy, for some P € SO(3). Moreover we can write P as a sequence of three Euler

rotations, i.e.,

P = P(z) £ R.(6)Ry(¢) R.(6) (2.37)

where ¢, 1 and @ are the yaw, pitch and roll rotation angles respectively, = = [¢, 1, H]T and

cos(¢) —sin(¢p) 0
R.(¢) = |sin(¢) cos(¢) O
0 0 1
[cos(v)) 0 —sin(z)
Ry(y)=1 0 1 0 (2.38)
sin() 0 cos(y)
10 0

R,(0) = |0 cos(f) —sin(h)
|0 sin(d)  cos(f)

The function P : [0,27)% — SO(3) is surjective and so R = P(x)Ry can take any matrix value
in SO(3), [L0].

The above convert the original optimization problem to the one of deriving x such that

P(z)Ry = R.. To proceed further, it is convenient to define the cost as a function of z, i.e.,
1
Jo(x) £ Ji(P(x)Ro) = 5 Va(z)" BVi(x). (2.39)

where Vr(z) = vec(R(z)) = vec(P(x)Ry).

Assume that Ry and R = PRy are close to Ry i.e. |Ry — Ry||p and |R — R.||p are smallfl.
Then P is close to the identity matrix and so there exists a small z such that P = P(x), [L0].
This along with the smoothness of the functions involved motivates the use of minimization

methods based on Taylor expansion like Newton-Raphson.

To minimize Jy(x) we have to derive = such that dJ5/9z = 0. To do so, we start from = = 0
implying P(z) = I and cost J2(0), apply one iteration (or more) of Newton-Raphson method,

and derive the new value of = as

0%Jy o
r = — (axaxT m:0> % - . (240)
The cost gradient is
T
0k _ |02 0Jy 02 (2.41)
Oox op’ oY’ 00

"With respect to the Frobenius or any other rotational invariant matrix norm.
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and the Hessian matrix is symmetric and written as

02%Js 02 Js 02 Js

aQJ 02 0P  0pOH
2 | 8% 82 Js 82 Js (2 42)
HrdHxT | 990 o2 00l :

92 Jy 92Jy 9%y
0400  OYdH D62

because of the continuity of all second derivatives.

We derive the first and second derivatives at 2 = 0 analytically recalling that BT = B. From

() and for s,q € {4, v, 0} we have that

&]2 o T aVR
S = Vi, (2.43)
and 0%Jy  oVE oV 0%V,
2 R R T R
= B 2.44
0s0q 0s dq Ve B 0s0q ( )
From the definition Vi = vec(R) we have that
OVr OR
Tq = vec <aq> (245)
and o o2
VR R
9504 vec (858q> . (2.46)
Moreover, since R(x) = P(z)Ro = R.(¢)R,(¢)R.(0) Ry, from (2.38) it is
OR
o —nm (247
for € {6, v, 0}, and,
O’R
e P,P,Ry (2.48)

for the ordered pairs

(s,9) € {(¢, ), (4, 9),(8,0), (¢, 4), (4,0),(0,0)}, (2.49)



Accelerometer’s and Magnetometer’s Axes Alignment 59
where ) }
0 -1 0
Py=1|1 0 0
._0 O -
0 —1]
Py,=10 0 0 (2.50)
1 0 0|
[0 0 0]
Py= |0 -1
01 0]
Combining (R.45) with (2.47) and (R.46) with (.48), respectively gives
aV,
TR = (I3 ® Py) Vg, (2.51)
q x=0
and o
Vr
= ([ PsP,))V; 2.52
858(] o0 ( 3®( Q)) Ro ( )
where Vg, = vec(Rp). Finally, replacing (R.51)) into (R.43) gives
0Js
Bl = Vi B(I3 ® Py)Vg,. (2.53)
Similarly, replacing (2.51) and (2.59) into (R.44) gives
82J2 T T
=Vis (I3® P, )B(I3 ® P,)V,
950, VT FB U BV (2.54)

+ Vi, B(I3 ® (PsPy)) Vi,

Note that (R.54) is valid (only) for the six (s, q) pairs in (R.49).

2.6.4 Finding an Initial Condition

The proper selection of the initial matrix Ry is crucial for achieving (fast) convergence. To

this purpose we recommend using as Ry the approximate closed-form solution of (R.24)) derived

in [B0]. This is done as follows.

Using identity vec(AX B) = (BT ® A)vec(X), [11], where ® is the Kronecker’s product, and

the unit magnitude assumption, from (2.23) we get

55 = (mi @ gft)" vee(R)

(2.55)
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for k =1,2,..., K. Then we express (2.55) in matrix form as

ss 1 = A vec(R) (2.56)

We assume that the measurements are such that A is of full rank, i.e. rank(A) = 9. This
along with the fact that vec(R) # 0, since R € SO(3), and (R.5¢) imply that

ss # 0. (2.57)

We solve (R.56) (in the least squares sense [32]) B to derive
vec(R) = ss(ATA)~1AT], (2.58)

where the equation is approximate when the measurements are real. Next, we split the 9 x 1
vector (AT A)~1AT1 into three 3 x 1 vectors hi, ho and hs as

T
(AT A)~1AT1 = [th KT hgT} . (2.59)
Defining matrix H as
H = [hl hy h3:| (2.60)

and using (R.58)-(R.60) we express matrix R as

R = s3H. (2.61)

Note that in () matrix H is known but s;s is not. To calculate s; we use the fact that
R € SO(3) and so det (R) = 1 which combined with (.61 gives det (H) # 0 and

1 = 552 det (H) (2.62)

and so )

{/det (H)’
where the cubic root is constrained in the real numbers.

Although () is a compact expression, it is not as accurate with real data as the one we
derive from the fact that ||R||r = v/3 for R € SO(3), [11]. Combining it with (2.61)) implies

V3
|s6] = THlr (2.64)

SWith real measurements () is approximate and () is considered as a least squares problem with solution
(2:58) where R is expected to be close to but not necessarily in SO(3).
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and the sign of s5 can be recovered from (2.62) as

sgn(ss) = sgn (det (H)) . (2.65)

Consider a Singular Value Decomposition (SVD) of matrix H,i.e. H = ULV where U,V €
O(3) and ¥ is the diagonal matrix ¥ = diag(o1, 02, 03), with 01 > g9 > 03 > 0 since det(H) # 0.

It is |H||p = /o2 + 03 + 02, [11], which combined with (2.64) and (R.63) gives

/ 3

By substituting (R.6d) into (R.61)) we get R, which ideally belongs to SO(3). When using
real measurements however, R may be close to but not necessarily in SO(3). Thus, instead of R
we derive and use the nearest special orthogonal matrix R € SO(3) to R = ssH defined as the

solution of the optimization problem

R 2 argmin||R — Q||r. (2.67)

Even with real measurements, we expect that det(R) > 0 which guarantees the uniqueness
of the solution of the Orthogonal Procrustes Problem [27] in O(3),

R = argmin||R — Q| . (2.68)
Qe0()
The solution of (.68) is R = sgn(ss)UVT, [27]. It can be derived using the previously calculated
SVD of H leading to an SVD of R = (sgn(ss)U)(|ss|Z) V7 via (p.61) .
Also note that sgn(det(H)) = sgn(det(UV7T)) which along with (.61) and (R.66) imply that
det(R) = 1 and therefore R = R € SO(3) is the unique solution of (2.67), i.e.

R = sgn(det(H)UVT (2.69)

The complete proposed method using only one analytical iteration of the Newton-Raphson

(which is typically sufficient) is summarized in Algorithm E
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Algorithm 3: Proposed Method
1: Use normalized gj, and my, to form matrix A in (2.30)

: Verify that A is of full rank

: Use (2.59), (2.60) and (R.69) to calculate Ry as in [30]
: Calculate the gradient vector using (2.41)) and (R.53)
: Calculate the Hessian matrix using (2.49) and (R.54)

: Calculate x from (R.40)

: Use x to calculate P(x) using (2.37) and (R.38)

: Calculate R = P(z)Ro € SO(3).

0 N O Ut =W N

2.6.5 Evaluation of the Proposed Method

Let Rf/[ € SO(3) be the frame transformation matrix rotating the magnetometer’s coordinate
frame into the accelerometer’s one. To evaluate the accuracy and computational efficiency of the
proposed method we have to compare the derived axes alignment matrix, R, to the actual one,
Rfm which we assume to know accurately in advance.

However, the accuracy with which one can measure Rﬁ using laboratory equipment is orders
of magnitude worse than the expected accuracy of the proposed method. Therefore, we artificially
generated 1000 datasets with pre-selected Rﬁ € SO(3), according to the calibration procedure
introduced in [25]. This included the random errors (noise) of the sensors and the associated
instrumentation, according to typical characteristics of commercial devices.

To generate the 1000 datasets, we first randomly generated 1000 values of R% = (R‘]‘\})T €
SO(3). For every one of them we followed the steps: 1) First we generated two random unit
vectors, gf‘ and m’fl representing the gravity and the magnetic field in the accelerometer’s {A}-
frame. 2) We rotated both vectors 11 times according to [25] to generate {g;-“}?i2 and {mf}lliQ
3) To express the magnetic field vectors {mf}llil in the magnetometer’s { M }-frame, we rotate
them once more using R% to get {mM }Zl 4) Finally a sequence of band-limited white noise
was added to the dataset following typical sensors’ and measuring procedure’s specifications.

We compare our method’s accuracy and execution time to those of 1) A gradient descent
based method using (2.23), 2) A Newton-Raphson based method using (2.25), 3) A Newton-
Raphson based method using (), initialized using the solution of the single-step method
presented in [30] and 4) The single step method of [30] alone.

Each of the aforementioned methods was run for every one of the 1000 generated datasets. For
the iterative methods, based on the gradient descent and the Newton Raphson, the parameter A
of the cost function () was set to A = 1000, to ensure the orthogonality of the derived matrix
R according to Figures @ and . We compared the derived matrix R, of each method, with
the true rotation matrix R%, = (R% )T used to generate the data. To quantify their difference,
we used the error metric

e=|R— Ryl (2.70)
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In the ideal case of perfect axes alignment, i.e., R = R}\“/I, it is € = 0. The mean value (u.)

and variance (02) of ¢ for every method is presented in Table .1.

Method e o? Time (ms)
GD 7.16-107* || 9.90-1078 63.15
NR 7.17-107* | 9.95-1078 44.53
NR & [30] 7.15-107% | 9.92-10°8 1.34
Single-Step [30] || 11.60- 10~ | 56.53 - 1078 0.25
Proposed 7.14-107* 9.94-1078 0.49

Table 2.1: Mean value and variance of the error € of the proposed method, a gradiend descent
(GD) based method, a Newton-Raphson (NR) based method, a Newton-Raphson based method
initialized using the solution of [30] and the single-step method of [30] alone.

As seen in Table @, the gradient descent and the Newton-Raphson based methods alone
yield in accurate results requiring however significant computational effort. The single-step
method of [30] has much better computational efficiency but it is a little less accurate. The
proposed method excels in both accuracy and computational efficiency. It provides accurate
results, similar to those of the computationally heavy, iterative optimization methods, while it
requires significantly less computational resources.

While artificially generated data are appropriate to evaluate the accuracy and computational
efficiency of the proposed algorithm, they do not incorporate the non-idealities expected in real
world measurements. Although we included random noise in the artificially generated data,
other errors, such as residual calibration errors (of the sensors individually) could degrade the
proposed algorithm’s performance.

To demonstrate the resilience of the proposed algorithm to such effects, we recorded five
different datasets of accelerometer’s and magnetometer’s measurements. To this end, we used
a measurement device based on the LSM9DS1 system-in-package by STMicroelectronics which
includes both a three-axis accelerometer and a three-axis magnetometer. Some important performance

characteristics of the two sensors and the developed measurement device are presented in Table
Specification Value

Measurement Range (A) +16g
Measurement Range (M) || £4Gauss

Sampling Rate (A) 238H z
Sampling Rate (M) 80H z
Resolution (A, M) 16Bits

Table 2.2: Performance characteristics of the accelerometer (A) and the magnetometer (M)
included in the designed measurement device.

All datasets were recorded away from magnetic disturbances (the constant earth’s magnetic

field was used as reference) following the calibration procedure introduced in [25]. Specifically, to
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record each dataset we placed the measurement device by hand in twelve different orientations, as
suggested in [25]. In each orientation we recorded several measurements while the sensor was still
and used averaging to obtain twelve pairs of accelerometer’s and magnetometer’s measurements
corresponding to the twelve orientations.

In this case of real sensors’ data, the true matrix Rﬁ is not known. Thus, in order to evaluate
the accuracy of the proposed algorithm and compare it to the that of the existing ones, we use
the cost-plus-penalty function of () as a metric of the residual error.

In Table .3 we used five different datasets (D1-D5) to compare our method’s residual error
to that of 1) A gradient descent based method using (2.25), 2) A Newton-Raphson based method
using (2.29), 3) A Newton-Raphson based method using (R.2), initialized using the solution of
the single-step method presented in [30] and 4) The single step method of [30].

Again, for the iterative methods, based on the gradient descent and the Newton Raphson,
the parameter A of the cost function () was set to A = 1000, to ensure the orthogonality of
the derived matrix R according to Figures @ and .

Jep(R, ss) - 104

Method D1 | D2 | D3 | D4 || D5
GD 7.02 || 7.33 || 7.12 || 6.40 || 7.49
NR 7.02 || 7.35 || 7.24 | 6.38 || 7.37

NR & [B0] 7.01 || 7.32 || 7.16 || 6.39 || 7.53

Single-Step [30] || 9.36 || 9.21 || 9.12 || 8.42 || 9.68
Proposed 7.01 | 7.33 | 7.09 || 6.37 || 7.72

Table 2.3: Residual error of the proposed method, a gradiend descent (GD) based method, a
Newton-Raphson (NR) based method, a Newton-Raphson based method initialized using the
solution of [30] and the "single-step” method of [30] evaluated using five different datasets (D1-
D5) of real sensors’ data.
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2.7 Gyroscope’s Calibration

This Section introduces a new approach to gyroscope calibration and provides the associated
algorithm. It applies to the case where a 3-axis gyroscope, a 3-axis accelerometer and a 3-axis

magnetometer are fixed on the same, rigid platform.

Assuming that the accelerometer and the magnetometer have already been calibrated and
aligned, we use them to calculate the rotation of the platform between two still positions. The
proposed approach is based on the fact that this rotation should be identical to that derived
from the gyroscope, when the last one is also calibrated. Note that using the joint accelerometer
- magnetometer rotation as reference for the gyroscope’s calibration, the algorithm also aligns

the axes of the gyroscope with those of the other two sensors.

Therefore, the new approach is comprised of a) the derivation of the rotation from the
accelerometer and magnetometer data, b) the parametric derivation of the rotation from the

gyroscope data, and, ¢) the optimization algorithm which equates the two of them.

2.7.1 Rotation From Accelerometer and Magnetometer Data

Assume a rotation of the platform between two still positions. Let fyegin and fenq be the 3 x 1
accelerometer’s measurement vectors before and after the rotation, while the platform is still.

Similarly, let mpegin and mepqg be the 3 x 1 magnetometer’s measurement vectors accordingly.

Assuming that fiegin, fend, Mbegin and Mepg have been derived using calibrated accelerometer
and magnetometer according to the proposed algorithms in Sections @ and @, the angle
between fyegin and mpegir, is the same with the angle between f,,q and menq and all four vectors
are of unit norm. The above allow us to use the TRIAD algorithm [3] [29] to find a rotation
matrix R € SO(3) such that Rfyegin = fena and Rmipegin = Mend-

Given the unit vectors fiegin, fends Mbegin and Meypq, the TRIAD algorithm begins by

constructing two triads of orthonormal column vectors according to

a; = fbeginy az = (fbegin X mbegin) /Hfbegin X mbegin”

a3z = (fbegin X (fbegin X mbegin)) /Hfbegm X mbegin”

and
by = fenda by = (fend X mend) /ernd X mend”

b3 = (fend X (fend X mend)) /ernd X mend”

The matrix R is derived as
R = [bl b2 bg] [a1 a9 ag]T

It is convenient to consider the application of the TRIAD algorithm as a function Ram, i.e.

R= Ram (fbeginv fendv Mpegin, mend) (271)
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2.7.2 Rotation From Gyroscope Data

Using K sequential gyroscope’s measurements sampled at rate 75, we can calculate the
rotation matrix representing the sensor’s body frame rotation from time t to time t + Krs.
Let wg = [wzk Wy} wzk]T be the k* sample of the gyroscope’s output. Using the entries of wy,

we define the skew symmetric matrix function

0 —Wap Wy
Qwk) = | way 0 —wep| - (2.72)
—Wy,  Wok 0
Setting @ = [wy wo ... wx] € R¥*X the rotation matrix from ¢ to ¢t 4+ K7, can be approximated

by the outcome of the following function [10] [23]
Ry(@) = (I + 7:Q(we1)) (I + mQ(we2)) ... (I + 7:Q(wek)) (2.73)

where ey, is the k' normal vector in RX.

2.7.3 Calibration Algorithm

Assume that the sensor’s platform rotates IV times with a short period of stillness between
them. During every rotation, the gyroscope is regularly sampled every 7, seconds and the samples
are recorded. Recording begins from the still position, just before the rotation begins, and ends
at the next still position, just after the rotation ends. We also assume that every one of the three
gyroscope’s axes is rotated significantly in at least one of the rotations.

Let w} be the j§t gyroscope’s sample measured sample (i.e. y, in (2.6)) during the n*
rotation, n =1,2,..., N. Using (@), we get the calibrated sample

W = Hy(w — hy)

where H, = Tgfl. Here we assume that Ty is invertible. This is a rational assumption as a
non-invertible Ty would imply that not all three axes are expressed in the output of the sensor.

For every rotation, we form the matrix
m_ [, n, n n
wn = [W1 wy ... an]

where M,, is the number of the recorded samples during the n'" rotation. Then, using (),
for every rotation, we derive a rotation matrix as a function of the calibration parameters H,
and hy in (2.6).

R = Ry(w") (2.74)

Calculating the rotations using accelerometer’s and magnetometer’s measurements, as in

Section R.7.1], requires measurements of both sensors before and after every rotation, while the
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sensors are still. Let fl?egin and f7 , be the measured specific force vectors exactly before and
after rotation n, n = 1,2,..., N. Similarly let mj, gin and m . be the corresponding vectors of
the magnetic field. To minimize the effect of the sensors’ noise, we prefer to define the above
four vectors as the average of L samples. Then, using (), for every rotation, we derive the

accelerometer-magnetometer rotation matrix

Rgm = Ram(ﬁﬁagin? ennd7 m?egin? man)' (275)

To calibrate the gyroscope we minimize the mean square error between the rotation calculated
using gyroscope’s measurements Ry and the corresponding rotation calculated using accelerometer’s
and magnetometer’s measurements R?},,. This is done for all N rotations simultaneously, and

so the calibration procedure can be posed as the minimization of cost function J(x), where

N
J() = 3 {IR = R} + Al Hy st — hy)” (2.76)
n=1
and .
x = [veC(Hg)T hgT}

The positive constant A is selected to balance the contribution of the two summands in (R.76)
where the second one is for nulling the sensor’s bias. Note that wgy; is the gyroscope’s output
(y, in (2.6)) when it is still (i.e. w = 0 in (R.6)), also defined as the average of M measurements
to reduce random noise.

We solve (R.76) using the gradient descent method with the gradient of J(x) be numerically
calculated. Assuming small scale-factor, cross-coupling and bias errors we initialize H, to the
3 x 3 identity matrix and hy to the 3 x 1 zero vector. Gyroscope calibration algorithm is shown

in Algorithm @, where a and b are positive numbers for the line search.

Algorithm 4: Gyroscope Calibration
Step 1: Initialize Hy = I3, hy = 0351,
Step 2: Initialize t,a and b
Step 3: Calculate the gradient:
Ax=-VJ(x)
Step 4: Choose step size:
while J(z +tAz) > J(x) + atVJ(z)T Az
t:= Gt
Step 5: Update x = = + Ax
Step 6: Calculate J(z)
Step 7: Repeat steps 3-6 until J(x) is sufficiently small
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2.7.4 Algorithm’s Evaluation

Similar to the case of the accelerometer and the magnetometer, several different datasets were
used to evaluate the performance of the proposed algorithm. In Figure , the convergence of
the proposed algorithm using five different datasets and the calibration procedure presented in
[25] is shown.

10 —Dataset 1

—Dataset 2

Dataset 3

g —Dataset 4

-E —Dataset 5
>
=
8
-
o
g
-
7]
o
@)

10-3 1 1 1 1 1 1 1 1 1 |

2 4 6 8 10 12 14 16 18 20

Iteration

Figure 2.11: Convergence of gyroscope calibration algorithm

As seen in Figure gyroscope calibration algorithm converges after only a few iterations

for all five datasets, while the corresponding cost function appears to be monotonic.

To demonstrate the repeatability of the gyroscope’s calibration algorithm, we use the distances
between the derived offset vectors and calibration matrices using different datasets defined in
Section . The calculated distances are shown below

d(hgy, hgos - hgs) = 0.0480 2.7
D(Tyy, Tyy, ..., Tys) = 0.0222

The small values of the normalized average distances () indicate good repeatability of
the proposed calibration algorithm i.e. the algorithm return similar calibration parameters for
different dataset inputs.

Finally, to assess the performance of the gyroscope calibration algorithm, we rotated the
device by 90°, about it’s x-axis five times. The corresponding Euler angle derived from the

measurements for each rotation is presented in table @
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Rotation | Roll Angle
1 90.348°
2 89.769°
3 90.216°
4 90.402°
5 89.976°

Table 2.4: Measured roll angle for 90° rotation about x-axis.

The measured Euler angles in Table @ are very close to the true rotation angle (90°)

indicating the good accuracy of the proposed calibration algorithm without using any special

piece of equipment and without any external attitude reference.
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Magnetic Field Sensors’
Calibration: Algorithms’
Overview and Comparison

The calibration of three-axis magnetic field sensors is reviewed. Seven representative algorithms
dealing with the in-situ calibration of magnetic field sensors without requiring any special piece of
equipment are reviewed. The algorithms are presented in a user friendly, directly applicable step-
by-step form, and are compared in terms of accuracy, computational efficiency, and robustness

using both real sensors’ data and artificial data with a known sensor measurement distortion.

3.1 Introduction

Magnetic field sensors (magnetometers) are nowadays widely used in a plethora of commercial,
industrial, marine, aerospace and military applications. Their applications include but not limited
to navigation and attitude estimation, geophysical surveys, archaeology, entertainment devices,
consumer electronics and others.

In most applications, sensor’s calibration is essential in order to achieve the desirable accuracy
level. The purpose of magnetic field sensors’ calibration is a twofold. First, as in the case of
every measurement unit, calibration ensures that the measurement of the standalone sensor
corresponds to the actual value of the magnetic field. To do so, calibration must compensate for
all static (manufacturing imperfections etc.) and active (temperature, humidity, etc.) phenomena
effecting the accuracy of the sensor’s measurement. In addition, when a magnetic sensor is
embedded in a larger system, other components of the system may cause disturbances (both
static and active ones) to the local magnetic field. Static disturbances are usually caused by
magnetic and ferromagnetic materials in the vicinity of the sensor; called hard-iron distortion
and soft-iron distortion respectively (more information are given in Section 2). Mechanical or
electronic structures embedded in the system, such as motors and coils could also actively distort
the local magnetic field and cause significant measurement error.

This review paper focuses on algorithms correcting the dominant linear time-invariant (static)

measurement errors, requiring no special piece of equipment for their application. Such algorithms

Copyright (© MDPI. Chapter 3 is reprinted, with permission, from K. Papafotis, D. Nikitas, P.P. Sotiriadis,
"Magnetic Field Sensors’ Calibration: Algorithms’ Overview and Comparison”, Sensors 2021, 21, 5288.
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are most commonly used for in-situ calibration of magnetic field sensors which are usually in
chip form and embedded in larger systems. The paper presents seven representative calibration
algorithms for three-axis magnetometers and compares them in terms of accuracy, robustness,
computational efficiency and ease of deployment. The seven algorithms are briefly presented,
to introduce all required mathematical expressions, and are summarized in an easy-to-develop,
step-by-step form. For the details of the algorithms, the reader is referred to the original works.

The selection of the particular algorithms was done based on their popularity and on our
attempt to present as many different calibration approaches as possible. The TWOSTEP [2]
algorithm is one of the first algorithms that addressed the full calibration problem (and probably
the most popular one). At a later time, Elkaim and Vasconcelos [30] proposed a geometric
approach of TWOSTEP which is also very popular. At the same time, Dorveaux et al. [7] offered
a nonlinear formulation of the problem and they treated it in an innovative, strictly iterative
way. In addition, Wu and Shi [31] suggested the most complete formulation of the calibration
problem as an optimal maximum likelihood estimation one. The TWOSTEP algorithm, as well
as the algorithms proposed by Vasconcelos et al. and Wu et al., consist of a first step deriving an
initial solution, and, a second step for improving it. On the other hand, Papafotis and Sotiriadis
[25] recommended an iterative approach based on a twofold minimization, which was shown to be
extremely effective. Furthermore, a real-time approach by Crassidis et al. [b] using the popular
Kalman Filter is discussed. Finally, to represent the recent trends towards Machine Learning,
an Al method applying Particle Swarm Optimization on the estimation problem is explored [L].

Please note that this review focuses on works for in-situ calibration of three-axis magnetic
field sensor without using any special piece of equipment or any other additional sensor. Thus,
several interesting works dealing with magnetometer’s calibration, in combination with inertial
sensors, [24, 118, B2, 19, 21| are not included in this work.

The rest of the paper is organized as follows. First, a standard error model for three-axis
magnetic field sensors is presented in Section 2. In Section 3-9, seven representative algorithms
are discussed in chronological order of publication. In section 10, a method for generating
artificial data is proposed and algorithms are evaluated via extensive Monte Carlo simulation to
identify their performance. In addition, the algorithms are evaluated using several real sensor’s
measurements in order to evaluate their performance under real-world conditions. Finally, section
11 summarizes our findings and provides brief comments for each algorithm. The notation used

along the paper is presented in Table @

3.2 Magnetic Field Sensor’s Error Sources and Measurement
Model

In this section, the most important linear, time-invariant error sources of three-axis magnetic
field sensors are presented. Based on them, a mathematical model relating the sensor’s measurement

with the actual value of the magnetic field is derived.
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|7

vec (-)

diag()
chol ()

In><n
0m><1

Euclidean Norm
Frobenius Norm
Vectorization of Matrix
Diagonal Matrix
Cholesky Factorization
n X n Identity Matrix
m X 1 Zero Vector
Normal Distribution
Uniform Distribution
Gradient Vector
Hessian Matrix
Kronecker Product
Orthogonal Group of dimension 3
3D Rotation Group

Group of 3 x 3 Upper Triangular Matrices

Table 3.1: Notation

The total output error of a magnetic sensor is a combination of several error sources related

to the sensing element itself, the instrumentation electronics, manufacturing imperfections and

distortions caused by magnetic and ferromagnetic materials in the vicinity of the sensor. The

linear, time-invariant error sources with the most significant contribution in the total sensor’s

error, are listed below:

e Bias, or offset; all magnetic sensors suffer from bias, which is a constant distortion. In

many cases, it is the most important defect in the sensor’s overall error. A 3 x 1 vector,

hs, is used to model it.

e Scale-factor error represents the input-output gain error of the sensor. It is modeled by

a 3 x 3 diagonal matrix, Tyy.

e Cross-coupling or Non-Orthogonality inaccuracies are resulted by the non-ideal alignment

of the sensor’s axes during manufacturing and are modeled by a 3 x 3 matrix, ..

e Soft-iron distortion is caused by ferromagnetic materials in the vicinity of the sensor,

attached to the sensor’s coordinate frame. Those materials do not generate their own

magnetic field, but instead alter the existing magnetic field locally, resulting in a measurement

discrepancy. This effect is modeled by a 3 x 3 matrix, Tj;.

e Hard-iron distortion is due to magnetic materials attached to the sensor’s coordinate

frame. As a consequence of the persistent magnetic field created by those materials, the

sensor’s output has a constant bias. Hard-iron distortion is modeled by a 3 x 1 vector, hp;.
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¢ Random noise is the stochastic error in the sensor’s output. It is induced by the sensor’s
mechanical and electrical architecture. It is modeled by a 3 x 1 vector, €, and it is most

commonly assumed to be a sequence of white noise, i.e. ¢ ~ N(0, 02).

Let m be the 3 x 1 true magnetic field vector and y be the 3 x 1 measurement vector. With
the aforementioned error terms in mind, a widely accepted and well-referenced measurement

model for a three-axis magnetometer is the following [25, 2, B1, B0, I, 4, b, 13|
Yy = Tszcc (Tsim + hhi) +hs+e¢ (31)

In most applications, the exact contribution of each error term in (@) is of no concern and

thus, instead of (B.1)), most calibration algorithms use the following, compact form of (B.1))
y=Tm+h+e (3.2)

where T' £ Ty T, Ts; and h £ Ty Techp; + hs.

This work focuses on algorithms intended to be used with magnetic field senors requiring no
special piece of equipment. In such cases, the calibration is done in the sensor’s (body) coordinate
frame implying that both the measurement vector, y and the true magnetic field vector, m in
(B.9) are expressed in the senor’s coordinate frame.

Note that when expensive laboratory equipment is not available, both the calibration parameters
T and h in (@), and the magnetic field vector, m, are unknown. Thus, in most works, multiple
measurements of the local (Earth’s) magnetic field are used to derive T and h. Note that the
Earth’s magnetic field varies with location and time and its value (magnitude and direction)
is only approximately known by magnetic models such as International Geomagnetic Reference
Field model (IGRF) [L5]. However it is reasonable to assume that the magnitude of the magnetic
field is (locally) constant during the calibration procedure. Based on this fact, most authors

formulate an optimization or an estimation problem to derive T and h.

3.3 Alonso and Shuster (TWOSTEP) [2]

The TWOSTEP algorithm consists of an analytic centering approach [L0, 20] for its first
step, while in the second step the solution is optimized numerically. The authors initially solved
the problem of bias, h, determination when attitude is not known [3] and then extended their
method to determine matrix 7" as well [2].

It is motivated by the assumption that matrix T" should not be far from a pure rotation.
Therefore by applying polar decomposition it can be written as T = (I3x3 + D)~'O where O
is an orthogonal matrix and D is a symmetric 3 x 3 matrix so as (I3x3 + D)~! to be positive
definite. Matrix O can be integrated into vector m since it does not alter its norm. The equivalent
measurement model is

y=Tim+h+e (3.3)
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where

T2 (I3><3 + D)_l

~ A
m = O0Om

Therefore, for the full calibration, D and h must be estimated. To this purpose, a set of
N measurements, yi, kK = 1,2,... N, is used and the corresponding effective measurements zy,
k=1,2,...N, are defined as

2 ~ 112
zi 2 \lyell” — (17| (3.4)

2 2
= [ywll™ = [lmll”-

The last ones can be decomposed into a deterministic part plus an approximately Gaussian noise

term, vy with mean pi and variance o,%, e vk ~ N (u, a,%), given by

’

pu, = —30°
a,% = 402((I3><3 + D)yr, — h)T((I3><3 + D)yr — h) + 6ot (3.50")

Since D and h are unknown, the variance a,% is assumed to be similar to measurement’s output
error variance 2. Hence j, and ai can be assumed independent of k.

To estimate D and h, Alonso and Shuster define the auxiliary quantities

E42£D*42D (3.60)
c2 (I+D)h (3.6p")

and the estimation vector # which contains the elements of the 3 x 1 vector ¢ and the elements

of the 3 x 3 symmetric matrix £ and is structured as follows
0/ = [¢"E1 By Es3 By Eig E]”. (3.7)

TWOSTEP algorithm functions on the estimation vector #” and thus on the auxiliary parameters,
FE and ¢ and not on the actual calibration parameters, D and h. The transformation from F

and ¢ to D and h is described in (B.15)-(B.17).

3.3.1 Initial Estimate

For every measurement, yx, k = 1,2,... N, a corresponding auxiliary variable is defined

’

Sk = (Vi1 Yi2 Vs 2Yk1Yk2 2Yk1Yk,3 2Uk2Vk,3] (3.8%)
Ly = [2y5; | —Sk] (3.88")
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The centering approximation is done using the following weighted averages

N N 1 N 1
225y L 252 Z—Q Y 2—2 (3.9)
=1 %k i—1 %k

k=1

q\
o T

along with the corresponding centered values

Zr =2z — Z ik:Lk—I_/ be = pr — [ (310)
where
Ny -1
— A
22 ()
k=1 "k
The centered estimation for € is given by
N1
6 = Pg/gl Z (Zk — [ug) LT (3.11a)
o}
k=1
. . Noqoo
Ppy =Fpor = U—’%Lka (3.11p)
k=1

with Pyg denoting the centered covariance matrix and Fyy denoting the centered Fischer
information matrix.
3.3.2 Solution Improvement Step

The second step improves the previous estimate of vector 6, derived in (), via Gauss-

Newton method using the centered estimate ¢ as the initial guess. The estimation is updated

as follows .
L1 =0~ | oo+ 5 (L 00)" (L 0(0)) | o(8) (3.12)
where
v=(Isx3+ E)'c (3.13a)
¢(0') = 207 —vf —vf —v] — 200y — 20103 — 2vg03] (3.13p))
9(0') = Py (0' — 0') — % (z— L&' + cTv — ) (LT — ¢(9)) (3.13)

with v; denoting the §% element of vector v. At every iteration the 3 x 3 symmetric matrix E
and the 3 x 1 vector ¢ are updated according to the current estimation vector ¢, using (@)

Alonso and Shuster define the following quantity in order to establish a stop condition for
the Gauss-Newton method.

w2 (B~ )" | B Ly (L 00" (L~ 0(6)| (8111~ 0) (3.14)
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The iterations continue until n; became smaller than a predetermined threshold.
After sufficient iterations, an optimal estimation of matrix E* and of vector c¢* is derived
(@) The derived solution is then transformed to the quantities D* and h*. By applying SVD

[29] on the symmetric matrix E*, it is written as
E*=USUT (3.15)

where S = diag(s1, 2, 83), U € O(3). Advancing, we find the diagonal matrix W = diag(w1, wa, w3)
that satisfies S = 2W + W2. Typically, the elements of S are much smaller than unity [2] so

that a solution exists. The diagonal elements of W are given by
wj =—1+4/1+s; (3.16)
for j = 1,2,3. The estimates of the matrix D* and bias vector h* are then given by

D*=Uwut (3.17a)
h* = (Isxs+ D*)"'¢* (3.176)

and are related to the calibration parameters T and h of the measurement model (@) as follows

T = (Isx3 + D*)"! and h = h* (3.18)

Algorithm 5: Alonso and Shuster (TWOSTEP) [2]
Step 1: Calculate zg, L, for k=1,2,..., N

by using (B.4), (B.8)

Step 2: Calculate the centered values %, Ly for k=1,2,..., N (B.9), (B.10)
Step 3: Calculate centered estimate 6" and covariance matrix Py ()
Step 4: Extract ¢ and E from ' (B.7)

Step 5: Calculate ¢(6') and g(6) (B.13)

Step 6: Update ¢’ (B.12)

Step 7: Calculate 1 (B.14)

Step 8: Repeat steps 4-7 until n is sufficiently small
or maximum iterations are met

Step 9: Apply SVD on E* (B.15) and define matrix W (B.16)
Step 10: Calculate D*, h* (B.17) and T, h (B.1§)
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3.4 Crassidis et al. [5]

The authors of [5] realized that real-time applications demand real-time calibration methods.
To this end, based on TWOSTEP [2], Crassidis et al. formulate a real-time estimation problem
for the derivation of the calibration parameters 7" and h and solve it using the extended Kalman

Filter approach [6]

Following TWOSTEP, a bias vector h and for symmetric matrix D is desired. The estimation

vector 6 contains the elements of h and D and is structured as it follows
0 = [h" D11 Do D33 D1y Di3 Das]” (3.19)

Because the vector @ is constant, the state model is given by 0 = 0. The effective measurement
is given by z; = |Jyx||* = |lmw]|* (B-4) while the measurement’s model is given by z, = ¢(6) + vy,
where

¢(0k) = —yi (2Dy, + D) yr + 2y} (Isxs + D) hy — || he)? (3.20)

and effective measurement’s noise vy, ~ N (g, o2) follows (B.5). At each iteration Dy and hy, are
extracted from 6, according to (B.19). The propagation is as it follows

9k+1 =0, + K [Zk — ¢(9k)] (3.210(/)
Pk-+1 = [ngg — KkH(Hk)] Pk (321[3/)
Ky, = PHT (0) [H(0:) PLHT (00) + 03] (3:217)

where Py is the covariance of the estimated parameters for h and D at step k. The matrix H (0y)

is the linearization matrix of ¢(6) and is defined as
H(01) = [2yF (Isx3 + D) — 2hE  — SiFy + 2J3] (3.22)
where
Sk = [%31 l/l%,z Z/l%,g 2Ur1Yk2 2Uk1Yk3 2Yk2Uk,3] (3.23)

Tk = Wk1he1 Yeohio Yrshis Yeihio + ye2hi1
[ b b 9 9 b b b b b b (3‘23[3/)
Yk 1Pk 3 + Yk she1 Yk 2his + hishy o]

A 0 0 2Dy 12 2Dy 13 0
0 Ao 0 2Dy, 12 0 2Dy 23

F, = : : (3.237")
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where
A1 =2(1+ Dy 11)

Ay =2(1+ Dy 22)
Az = 2(1+ Dy,33)
Ay =2+ D11+ Dy2o
A5 =2+ Dy 11+ Dy 33
Ag = 2+ Dy, 00 + Dy, 33

(3.24)

The choice of 0,%, again, seems to be unimportant. Thus it can be assumed similar to o2,

likewise with TWOSTEP. Given a set of N measurements, the EKF will provide an optimal
estimation vector * = 6y from which an optimal vector h* = hy and a matrix D* = Dy can
be extracted according to (B.19). Therefore, the full calibration parameters (B.9) are given below

T = (Iz3x3+D*)"! and h = h* (3.25)

Even though the authors focused on sequential calibration methods, they do not seem to offer
any advantage over batch algorithms for static environments due to the fact that the estimated
variables are slowly varying. The authors verified the robustness of their method via simulations
assuming either white noise or coloured noise, for a long-duration spacecraft’s on-orbit flight.
This method makes use of the concept of effective measurement (@) likewise with TWOSTEP.

Therefore, similar assumptions and consumption could be made.

Algorithm 6: Crassidis et al. (Kalman Filter) [b]
Step 1: Initialize # and kK =0

Step 2: for each measurement do:

Calculate z;, (B.4)

Extract Dy and hy from 6 (B.19)

Calculate S, Ji, Fi, (B-23) and H(6},) (B.22)
Calculate Kalman Gain K (B.21))

Update estimation: 0y < 01

Update covariance matrix: Py, + Py, (B.21)
k< k+1

Step 3: Extract D* and h* from 6* (B.19)
Step 4: Calculate T and & (B.23)

3.5 Dorveaux et al. [7]

An iterative algorithm for the calibration of magnetic field sensors based on iterations of a
least-squares problem is introduced in [[7]. In the beginning of the algorithm, the measurements
lie on an ellipsoid according to (B.9). In each iteration, the measurements move from the initial

ellipsoid to the unit sphere, following a cost function minimization algorithm.
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The authors in [{7] use the following variation of the measurement model of (B.2)
m=Ay+ B (3.26)

where A =T7!, B = —T7'h and the measurement noise, ¢, is neglected.

The algorithm begins by considering an initial estimate of the magnetic field vectors, denoted
by my(0) and defined as
me(0) =yg, k=1,2,.... K (3.27)

In every iteration, the following cost function is formulated and minimized using the least squares
method.

N () |*
J(A, B,n) Arng(n S NS (3.28)
— [l (n) |
where n = 1,2,..., N denotes the n'" iteration. Let A, and B, be the resulting matrices from

the minimization of (B.2§). Every iteration ends with using A4, and B, to update the estimates

of the magnetic field vectors as
(4 1) = Aping(n) + Bn, k=1,2,..., K. (3.29)

From (B.29) we can express the magnetic field estimates 7 (n) using the measurement vectors

Yk as
mu(n) = Apyr + Bn, k=1,2,... K (3.30)

where A,, and B, are iteratively defined as
A, =AnA, 1 and B, = A,B,_1 + B,. (3.31)

To determine when the algorithm has reached an acceptable solution, we define the following
cost
JStOP(AmBn) = HBnH + ||An - 13><3H- (3.32)

The iterations stop when Jg,), is sufficiently small and the derived matrices AN and BN are

related to the calibration parameters 7' and h of the measurement model (@) as follows
T =Ay' and h = —Ay'By. (3.33)

Finally, the estimates mg(N), & = 1,2,..., K, derived at the N** iteration represent the

calibrated measurement vectors.

'The original manuscript does not provide an explicit condition to stop iterations. However it is reasonable to
terminate the algorithm when contribution of the updated A,, and B, to the calibration parametersA, and B, is

negligible (see (B.31))).
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Algorithm 7: Dorveaux et al. 7]
Step 1: Initialize 7y (0) using (B.27).
Step 2: Minimize () using least squares and derive A, and B,,.
Step 3: Use A, and B,, to calculate my(n + 1) from (B.29).
Step 4: Calculate A,, and B,, using (B.31)).
Step 5: Evaluate the cost function Jyop(Ap, By) from (B.32).
Step 6: Repeat steps 2-5 until Jg,p is sufficiently small.
Step 7: Use Ay and By to calculate T and h using (B.33).

3.6 Vasconcelos et al. [30]

The authors of [30] consider that magnetometers’ measurements lie on a ellipsoid manifold
following the measurement model (B.9). First, they derive an initial estimate of the calibration
parameters T and h by finding the ellipsoid that fits best to the given data. Then, they use the
measurement model of (B.9) to formulate a maximum likelihood estimation problem and derive
an improved estimate of the calibration parameters 1" and h.

From (B.9), the magnetic field vector is expressed as m = T~ !(y — h) — T~ 'e. Assuming that
the magnitude of the magnetic field is constant during the calibration procedure we can write

the following unconstrained optimization problem to derive T" and h

K RV N2
minimize Z(HT (yr = M)l 1>. (3.34)

Jh o
=1 k

Here o}, denotes the standard deviation of the measurement noise in the k' measurement,
assuming it is the same for all three axes. Without loss of generality, the magnitude of the
magnetic field is assumed to be equal to one. A possible relaxation of this soft assumption is
provided by Springmann [28] who addresses the problem of time-varying bias. To solve (B.34),

the authors define the following cost function and then minimize it using the Newton’s method

K . 2
PSS <||T<yk — )| - 1) (3.35)

g
k=1 k

where 7= T~ and .
z = [vee(T)" 17| (3.36)

The vector z is updated in every Newton’s iteration as follows

2 =20 (V@) ] i) (3.37)

17:1‘(_) z:a:(—)

where V.J(z) is the gradient vector and V2.J(z) is the Hessian matrix of the cost function. For

both VJ(z) and V2J(z), the authors in [30] provide analytical expressions which are presented

in Appendix B.12.1.
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3.6.1 Initial Estimate

Solving () using the Newton’s method requires a good initial estimate of the calibration

parameters, T and h. Vasconcelos et al. use a previous work on nonlinear estimators for strapdown

magnetometers by Foster and Elkaim [9, 11], to derive a good initial estimate by solving the
following pseudo-linear least squares estimation problem.

Ap=1b (3.38)
T
where, by writing each measurement vector as y, = [ylf yz y,ﬂ yk=1,2,...,K,itis
vt utul vty oot wlvi uf Wl w1
A= : : : : : : (3.39)
vil uRvk vkvie vk vivk vk vk vk 1
and
z2 z2 z 2 T
b= lyi* v3° ... vk } (3.40)
The vector p is derived as
T T 14T
p=[A B CDEGH I J =T4)"AT (3.41)
The initial estimates of the calibration parameters are derived as
1 0 0
7(0) = —é tan(p) —% sec(p 0 (3.42)
L (tan(p) tan()) sec(¢) — tan(¢)) —¢ sec(p) tan(A) sec(¢) 1 sec())sec(¢)
and
MO = 5[5 B 8] (3.43)
= 9q, Pt P2 P8 .
where )
= — (—(4D + E?)ay)"?
a Sa; ( (4D + )ozg)
1 1/2
b= — (—(4A 4 C?
S, (—(4A + C?)as)
1 1/2
= — ((4DA - B?
€= o0 J2) (3.44)
1
tan(p) = —5—(2B + EC) (o)~ 1/?
1

tan(¢) = (BE — 20D)(ay)~/?
tan(\) = E(—oqozgl)l/2
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and
B, = 2BH + BEI — 2CDI — 4DG + ECH — E*G

By = —2AEI +4AH — BCI — 2BG + C*H — CEG (3.45)
B3 =4DIA — 2DGC + EGB — IB?> —2FEHA + CBH

The auxiliary variables aq, as and ag are defined as

oy = —B?+ DC? + 4DA + AE? — BEC

ap = 4AFE?] — E?G? —4BECJ +2ECHG + 2BEIG — AEHAI —4DICG — C*H? (3.46)
+4DAI?* + 2CBHI — 4DG? +4DC?J + 4BHG — 4AH? — B*I*> — 4B*J + 16DAJ

a3 = F*A - CBE? 4+ E*C®D — 2B?E? + 8SDAE? — 4DB* + 16D*A

One contribution of Vasconcelos et al., advancing the existing initial step approach suggested
in [9], was the derivation of the aforementioned explicit and non-trivial expressions. In addition,
Vasconcelos et al. state that their proposed algorithm is applicable even when the magnitude
of the magnetic field is not constant during the measurement, similarly to TWOSTEP and
Crassidis et al. algorithm [b].

Algorithm 8: Vasconcelos et al. [3(]
Initial Estimate
Step 1: Use the sensors’ measurements yi, k = 1,2,..., K and form A and b according
to (B.39) and (B.40) respectively.

Step 2: Calculate p using (B.41) )
Step 3: Derive the initial estimates 7'(0) and h(0) using (B.49) and (B.43) respectively.

Newton’s Method

Step 4: Use the initial estimates 7°(0) and h(0) to initialize z according to (B.3().
Step 5: Update z using (B.37).

Step 6: Evaluate the cost function J(z) of (B.33).

Step 7: Repeat Steps 5-6 until J(z) becomes sufficiently small.

Step 8: Split z into T and h and calculate T = T,

3.7 Ali et al. [1]

The authors propose a Particle Swarm Optimization (PSO) [16] - based calibration algorithm
that estimates the bias, the scale and nonorthogonality factors. The main advantage of this
algorithm is its simplicity of implementation since the optimization is heuristic and does not
depend on calculation of gradients, unlike other optimization techniques mentioned in this paper.

It can be classified as an Artificial Intelligence (Al) [L7] approach.

The authors in [1] use (B.d) and a set of N sensor’s measurements to form the following
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optimization problem for deriving the calibration parameters T" and h

min J (3.47)
T.h

where J is called the fitness and is defined by

N 2
T2 S (el = ) (3.48)

k=0
Function J depends on T and h which are conveniently combined into the single vector z € R!?,

h

vec(TT). (3.49)

€r=

For a swarm of S particles, the position z; € R'? and the velocity v; € R'? of the i-th particle

can be computed using [16]

oF = vf_l + clrlfi_l (pf_l — x,]f_1> + 027“’2“;1 (p’;*l — x§_1> (3.50a)
af = ot b (3.508)
fori=1,2,...,5 where k denotes the new value while k — 1 the old value. Also p; denotes the

ith’s particle best position, py denotes the swarm’s best position, ¢; and co are the acceleration
coefficients, w is the inertial weight factor and ry;, ro; are random numbers uniformly distributed
within the range [0, 1]. Typical values of these quantities are ¢; = ¢ = 2, w = 1 and the number

of particles S is usually between 20 and 65.

Therefore, at each iteration k, each particle’s fitness value .J (:nf) is calculated and quantities
p; and p, are updated accordingly. The authors suggest three different stop criteria. Specifically,
the iterations stop either when the fitness value J of a particle is smaller than a predetermined
threshold, or after a maximum number of iterations, or when the change of J becomes insignificant
with iterations. Upon termination of the algorithm, parameters 7" and h (@) are extracted from

the swarms’s optimal solution p, according to

h

vee(TT) = pg. (3.51)

Following the general concept of applying Al optimization algorithms, as was introduced in
[L], one can also consider using more modern versions of the standard PSO, e.g. [§, 23, 14]. They

are typically found as built-in functions in computational suites such as MATLAB [22].
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Algorithm 9: Ali et al. (PSO calibration) [1]
Step 1: Initialize x;,v; for i =1,2,...,8
and set p; = x;
Step 2: Find j = {i[i =1,2,...,S and J(p;) « min}
Particle i best: J! . <« J(p;)

Global best: pg < p; and Jpin < J(pj)

Step 3: for each particle ¢ do
Update z;,v; (B.50)
Calculate J(x;) (B.47)
if J(x) < Jb..
anm «— J(z;) and p; < z;
if J(J?Z) < Jmin
Imin < J(x;) and py + x;
Step 4: Repeat Step 3 until an exit condition is met

Step 5: Extract T and h from p, (B.51)

3.8 Wu and Shi [31]

The authors of [31], formulate the calibration of a three-axis magnetometer as a maximum

likelihood estimation problem which is solved using the Gauss-Newton method.

Starting from the measurement model of (B.4), Wu and Shi observed that by considering the
QR decomposition 7! = QR, where Q € O(3) and R € U(3), (B.9) is written as

y=R'Q"Tm+h+e¢ (3.52)

Defining 7 £ Q7'm, we observe that ||/ = ||m|| since Q € O(3). Also setting 7' 2 R~! we have
that

y=Tim+h+e (3.53)

Using the above transformation, the authors reduce the unknown model parameter variables
from 12 (9 for T and 3 for h) to 9 (6 for R since R is upper triangular and 3 for h). Note that
using (), the calibration procedure now aims at finding the calibration parameters T and h

while the magnetic field vector m is also unknown.
Using a set of K measurements and (), the authors formulate the following maximum

likelihood estimation problem

K
minimize ly — Trng, — hl|?
T7h7mk ; (3.54)

subject to [l =1, k=1,2,..., K.

Without loss of generality, the authors, constrained the magnitude of the magnetic field to be
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equal to one. Based on (), the following Lagrange function is formulated

K
J(2) = 3 [y = Tk = bl + e (o2 = 1) | (3.55)
k=1
where .
z = [vec(T)T, WY, Tl o, wk, A, Aay e AK} (3.56)
and A\g, £k =1,2,..., K are positive Lagrange coefficients for the unit norm constrain. Note that

since T is an upper triangular matrix, the lower triangular elements of T are excluded from .
The minimization of (B.55) and the estimation of x are done using the Gauss-Newton method
as follows

) =0 — [V21(x) ]*1 (v ) (3.57)

where V.J(z) is the Jacobian vector and V2J(z) is the Hessian matrix of the Lagrange function.

z=xz(—)

For both V.J(z) and V2J(z), the authors provide analytical expressions which are presented in

Appendix B.12.9.

3.8.1 Initial Estimate

Solving () using the Gauss-Newton method requires a good initial estimate of the unknowns.
To find one, the authors of [B1] use the unit magnitude constrain and the equation 1 =

|R (yx — h) ||* which after some manipulation, is written as

vec(A)
oyl yl 1 b | 2Y2=0, k=12 ..K (3.58)
C
where A = RTR, b = —2RTRh and ¢ = hT RTRh. Defining Y — [YlT Yl .. Ygr, from
(B.59) it is
Yz=0 (3.59)

The authors, solve (B.59) in a least squares sense and denote the solution z, = [vec(Ae)T vl ce} r_
min ||Y z||2. They derive z, as the eigenvector of Y'Y corresponding to its minimum (or zero)
eigenvalue. Using z., the vector z is derived as z = az,, where « = 4/ (beTAglb(3 —406).
Extracting vec(A), b and ¢ from z, the initial estimates of the unknowns, 7(0), h(0), iz (0)
and A\, (0) are defined as follows:

)
)

3.60
) (3.60)
)

L k=1,2,..K
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where chol(+) is the Cholesky factorization.

Finally, an alternative version of Wu’s and Shi’s algorithm is proposed by Cao et al. in [4],

where a different method for the initial estimate is presented, and the second step is identical.

Algorithm 10: Wu and Shi [31]

Initial Estimate

Step 1: Calculate Yy, k =1,2,..., K from (B.58) and form the matrix
y=[ v ... vE"

Step 2: Find the eigenvector of Y'Y corresponding to its minimum (or zero) eigenvalue
and denote it as ze = [vec(Ac)T bI ce]T.

Step 3: Calculate z = az, where a =4/ (bl AZ1b, — 4c.).

Step 4: Extract vec(A), b and ¢ from z.

Step 5: Calculate an initial estimate of the unknowns using (B.60).

Gauss-Newton Method

Step 6: Use the initial estimates to initialize the vector x of (B.56)
Step 7: Update z using (B.57).

Step 8: Evaluate the cost J(z) of (B.57).

Step 9: Repeat steps 7-8 until J(x) becomes sufficiently small.

3.9 Papafotis and Sotiriadis (MAG.I.C.AL.) [25]

The authors in [25] use (B.4) and a set of K sensor’s measurements to form the following

optimization problem for deriving the calibration parameters T and h

K
minimize lyr — Tmy, — hl?
e 2 1

subject to |mgl| =1, k=1,2,.., K
where, without loss of generality, the magnitude of the magnetic field is constrained to be equal

to one. In order to solve () they propose an iterative algorithm, based on the solution of a

linear least-squares problem.

The algorithm begins by initializing the magnetic field vectors, my, as

my =% k=1,2,... K (3.62)

 lll?

and rewriting (B.J) in a matrix form as follows:

Y =LG+E (3.63)
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where
Y = Y1oY2 yK} (3.64a)
L=|r h} (3.648")
mp Mo ... MK
G = 3.64~’
1 1 .. 1 ] ( v)
E=[e o .. ex] (3.64)

In every iteration, (B.63) is solved for L using the least squares method, minimizing the total

squared error |[ETE|%

From the calculated L, an updated set of calibration parameters 17" and h is extracted from
(B.64p]). Using them, the magnetic field vector is updated as

Ck=1,2,... K (3.66)

my =
72|

where

mp =T Y(yp —h), k=1,2,...,K (3.67)

Every iteration ends by updating the matrix G using the updated vectors my, k =1,2,..., K.

Iterations stop when a small value of the following cost function is achieved

K
= (lmwl* - (3.68)
k=1

Algorithm 11: Papafotis and Sotiriadis (MAG.I.C.ALL.) [25]
Step 1: Initialize m;, using (B.62).
Step 2: Calculate L using (B.67).
Step 3: Extract T and h from L using (B.648]).

Step 4: Update my, using (B.66) and (B.67) and use it to update G.
Step 5: Evaluate the cost-plus-penalty function J from (B.68).
Step 6: Repeat steps 2-5 until J(7T', h) is sufficiently small.
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3.10 Algorithms’ Evaluation and Comparison

In this Section, the performance of the presented algorithms is evaluated in terms of accuracy,
robustness and execution speed. Firstly, we evaluate the performance of the seven algorithms
using multiple sets of synthetic data where the calibration parameters 7" and h as well as
the measurement noise characteristics are predefined and known. By doing so, we are able to
accurately determine the algorithms’ accuracy and robustness. Then multiple datasets of two
different low-cost magnetic field sensors are used to verify the algorithms’ performance under

real-world conditions.

3.10.1 Synthetic Data Generation

We designed a procedure to generate synthetic data effectively, in order to examine each of
the aforementioned algorithm’s performance across a range of noise variance and measurement
sample size. The authors of TWOSTEP [3] propose a typical scenario of assuming the magnetic
vector spinning with a constant angular velocity. On the other hand, Wu and Shi [31] suggest
a specific sequence of 3D rotations using Euler Angles, applied on a constant known magnetic
vector m. In the same page, Papafotis and Sotiriadis [25] recommend a sequence of 12 approximate
orientations. Another alternative is to make use of a set of random, yet normalized, vector fields,
which however demands a reasonable amount of samples.

Because none of the described algorithms guarantees that it will function properly under
an arbitrary data set, we propose an efficient method to span SO(3), following [26], so as to
provide the algorithms with substantial, non-redundant information and to compare them fairly.
After extensive simulation, it was observed that the recommended method was very effective in
spanning the 3D rotation space.

Our method’s effectiveness lies on distributing the points on the sphere ||m/|| = 1, more evenly
by using the canonical Fibonacci Lattice mapping [26, 12]. Generating a Fibonacci sphere is an
extremely fast and effective approximate method to evenly distribute points on a sphere.

This way SO(3) is sufficiently represented even with only a small dataset. An algorithm for

generating K vectors distributed on a Fibonacci sphere is presented in detail in Algorithm @
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Considering K vectors, mg, k = 1,2,..., K distributed on a Fibonacci sphere, we continue
with generating matrix 7" and vector h, required to calculate the corresponding measurement
vectors yi, mg, k =1,2,..., K according to (@) Ideally, matrix T" would be the 3 x 3 identity
matrix while the bias vector h would be the 3 x 1 vector of zeros. A realistic model for T and h,

accounting for the sensor’s non-idealities, is derived by using the concept of additive perturbation

T=aol3+F (3.69a)
h=e (3.698")

where « accounts for gross scaling errors, F is a 3 x 3 perturbation matrix with random, typically
small, coefficients and e is 3 x 1 perturbation bias vector with random coefficients. Finally, a
sequence of white noise e ~ N'(0, 02) is added to the measurements and the measurement vectors
Yk, Mg, k=1,2,..., K are derived according to (@)

y=Tm+h+e (3.70)

Algorithm 12: Generation of Synthetic Data
Step l:Initialize the number of measurements K and the radius of sphere r
Step 2: Calculate Golden Ratio: ¢ = 1+T\/5
Step 3: for each £k =1,2,..., K do:

_ 27k
0= @
_ 2(k+0.5)
¢ = arccos (1 — T)
my = [Mg, My, m;] = [r cos @ sin ¢, rsin O sin ¢, r cos @]

Step 4: Pick the scaling parameter, o, the perturbation matrix, £
and the perturbation vector, e.

Step 5: Calculate T and h according to (B.69).
Step 6: Generate a sequence of white noise: ¢ ~ N(0, 02)
Step 7: Calculate the measurement vectors: y, = Tmy + h + 5 (B.2)

The two datasets generated using Algorithm @ are presented in Figure @ Note that for
visualization purposes, the scaling parameter, «, the perturbation matrix, £/, and the perturbation

vector, e, used to create each dataset were set to a rather large value.
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(o) Synthetic dataset generated using Algorithm @ for K = 150.
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(B') Synthetic dataset generated using Algorithm [ for K = 300.

Figure 3.1: Two synthetic datasets generated using Algorithm @ for K =150 (a) and K = 300
(b) respectively.
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Experiment Setup and Evaluation Criteria

To evaluate the algorithms’ performance, we used synthetic data, generated by Algorithm
@, and we executed a great number Monte Carlo simulations. Each simulation consisted of 250
runs of each algorithm while in each run, the same dataset was used as input in all algorithms.
An uncertainty was introduced in the generation of each dataset by considering a statistical
distribution for the elements, E;;, of the perturbation matrix, F, and the elements, e;, of the

perturbation vector e (see ()) Specifically, for the Monte Carlo simulations we assumed

a ~U[0.8,1.2] (3.71o()
Eij ~U[-5, 5] (3.71p)
e; ~U[—7,] (3.717")

where [ and « are scalars, the effect of which was tested using multiple Monte Carlo simulations.
Note that we considered the scaling factor, a, to be close to the ideal value of @ = 1. That may
not be the case when real-world measurements are used, however, it is trivial, and common,
to properly scale the measurements before the calibration procedure and remove gross scaling
errors. In this way, the algorithms are not burdened, searching for a scaling relationship which
can be easily provided by simple data preprocessing.

A challenging point while setting up the experiments was to determine the number of samples
of each dataset and the value of the sensor’s noise variance, o2. We considered a dataset of
300 measurements as a solid choice for a simulation environment based on [31, [l] while we
experimentally confirmed that bigger datasets do not improve the performance of any algorithm.
We also examined the performance of the presented algorithms when smaller datasets, consisted

2 is concerned, we

of 150 and 50 measurements, are used. As far as the noise variance, o
considered a nominal value of o = 0.005, following [30] and [B1] while we also simulated the
cases of more noisy (o = 0.05) and less noisy (o = 0.0005) sensors.

The evaluation of the algorithm for each Monte Carlo simulation was done in terms of
accuracy, execution speed and robustness. We used the execution speed of each algorithm as
a metric of computational efficiency and is defined as the inverse of the mean execution time.
As a metric of robustness we considered the percentage of datasets for which each algorithm
successfully derived a meaningful solution.

The definition of an accuracy metric is a little more involved. Each algorithm was developed to
take as inputs the measurement vectors yx, k = 1,2, ..., K and output the calibration parameters
T and h. Comparing the output bias vector h with the true one, hyye, which was used in the

data generation procedure, was done by defining the following cost
Jh = ||htrue - hH (372)

The calibration matrix 7" on the other hand is derived under a rotational uncertainty and

comparing it with the true one, T}, is a more challenging task.
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Consider the measurement model of (B.9). Noting that the true magnetic field vector in (B.9)

is also unknown, and derived by the calibration algorithm, we can write:
Y = Tirue RRTM + hgrue (3.73)

where R is an orthogonal matrix in the O(3) group. Thus, taking into account the rotational
invariance of the Euclidean norm which implies that ||RTm|| = |m||, a calibration algorithm
may output any matrix 7" of the form T = T}.,.R. Thus a proper cost function to compare T
and Tipqe is the following

Jr =T = Toue Rl (3.74)

where, the matrix R is defined as the solution of the following minimization problem

R = argmin||T — Tyue Q| F (3.75)
Qe0(3)

The solution of (B.75) is given by the Orthogonal Procrustes problem [27], and it is

R=UVT (3.76)

where the matrices U and V are derived from the Singular Value Decomposition (SVD) of the
matrix 7L, T, i.e. TL, . T =USVT, where U,V € O(3) and X is a diagonal matrix.
Using (B.79) and (B.74) we define the following cost function as a metric of accuracy.

J = ”htrue - hH + HT - ,TtrueRHF (377)

Based on the above and given the results of a Monte Carlo simulation consisted of N

executions of each algorithm, we define the following metrics of performance:
e Accuracy is defined as the mean value of the cost J, defined in (), across all NV
executions with meaningful output.
e Mean Execution Time is defined as the mean value of the execution time of an algorithm.
e Robustness is defined as the percentage of datasets for which each algorithm successfully
derived a meaningful solution.

The robustness criterion can be seen as the frequency in which an algorithm provides a better
solution (T, k) in the sense of the cost function (B.77), than the trivial solution (I3x3,03x1) which
assumes no bias and non multiplicative errors. Given the cost .J, that corresponds to the trivial
solution,

Jo = ”htrue - 03><1|| + HIS><3 - ,I;frueRHF (378)

an execution of an algorithm is considered as successful with meaningful output when

J < 4dJ, (3.79)
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where 0 € (0,1) is a robustness parameter. If § is close to 1, it means that only little improvement
with respect to J, is sufficient. As § gets smaller, better solutions are required. Thus, this
parameter can be tuned with respect to the test’s objective and the application’s specifications.

Given N runs for an algorithm, its robustness is denoted by RB(%) and is defined as

N
RB(%) = % > U(J; < 8Joi) - 100. (3.80)
i=1

Here J; and J,; are the values of J (B.77) and J, (B.78), respectively, corresponding to the "
run of the algorithm and U is a boolean function, which is one if its argument is true and zero

otherwise. Let M denote the number of executions meaningful outputs.

Now, the accuracy metric is only applied on the M meaningful outputs according to the
robustness test (B.79), since otherwise the comparison would be unfair for the least stable
algorithms. The accuracy of an algorithm over a dataset is denoted by p and it is defined
as

1N
P=1; ;U(Ji < 0J0i) ;i (3.81)

which is the mean accuracy metric value over the M executions with meaningful outputs.

Similarly, the time-efficiency metric (i.e. Mean Execution Time) is only applied on the M
executions with meaningful outputs according to the robustness test () Again, this is because
otherwise the comparison would be unfair for the least stable algorithms. The Mean Execution

Time of an algorithm over a dataset, is denoted by 7 and is defined as

N
1
T = M ZlU(Jz < 5Jm')t7; (3.82)
1=
where ¢; is the time needed for the ¢ run to be completed. The execution speed of an algorithm
is defined as 1/7.

Baseline Evaluation

To derive a baseline evaluation of the presented algorithms, we run a Monte-Carlo simulation
considering typical values for the sensor’s error and noise parameters. In this simulation we
neglected the effect of hard-iron and soft-iron distortions which are in some cases the dominant
terms of the overall error as well as extreme cases of large manufacturing imperfections. More
specifically, 250 different datasets consisting of 300 measurements each, were generated following

Algorithm @ and considering the following distributions of the model disturbances and the
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H Algorithm Accuracy (1/p) Robustness (RB%) Execution Speed (1/7) H
TWOSTEP [2] 35.3 - 100 91.6% 455 571
Crassidis et al. [5] 3.31-10° 100% 47.6 571
Dorveaux et al. [7] 2.26 - 10° 100% 12.8 571
Vasconcelos et al. [30] 2.28 - 10° 99.6% 0.089 s~ !
Ali et al. [1] 2.27-10° 98.8% 0.10 s~1
Wu and Shi [31] 2.32-10° 87.2% 0.24 571
MAG.I.C.AL [25] 2.28 - 10° 100% 29.4 s71

Table 3.2: Baseline Evaluation of the presented algorithms.

measurement noise
a ~U[0.8,1.2]

E;j ~ U[—0.05,0.05]
e ~ U[—0.05,0.05]
o = 0.005

(3.83)

The distributions’ ranges in () are based on our literature review. The selection § = v =
0.05 corresponds to the typical case of approximately 5% distortion for 7" and bias h. The
measurement’s noise standard deviation is set to a typical value of o = 0.005 [31, BQ].

The performance of the seven algorithms is presented in Table @

The effect of the offset perturbation parameter, v

Under extreme manufacturing imperfections or the effect of hard-iron distortion, the magnitude
of the offset vector, h, can be much larger than that in the typical case. In this Section we examine
how larger values of ||h|| affect the performance of the presented algorithms. To do so, we run six
Monte-Carlo simulations, each one comprised of 250 different datasets generated by following
Algorithm @ The offset vector perturbation parameter e; is simulated with gradually increasing
magnitude by expanding the selection horizon U[—~,~]. Afterwards, its corresponding impact
on each algorithm’s robustness and accuracy is investigated. The distributions of the model

disturbances and measurement noise are:
a ~ U[0.8,1.2]
E;j ~U]0.05,0.05]
[ i, ’Yl]
o = 0.005
for various

~v = {0.05,0.15,0.25,0.5,0.75,1}

where [ =1,2,...,6 is the index of Monte Carlo simulation. The extreme case of v = 1 addresses

the possibility of bias being clearly comparable and even indistinguishable to the true magnetic
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vector. Therefore, as v increases, the algorithms were driven to their limits and their functionality
range was identified. All the other parameters were nominal, to ensure a fair comparison. The

results of the six Monte-Carlo simulations are presented in Figure @
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The MAG.I.C.AL and the PSO methods are the most robust ones since they function almost
always, even for large values of bias, while TWOSTEP and Wu and Shi’s algorithms are a little
less stable. In addition, Dorveaux et al. algorithm and EKF seem to be reliable for small to
moderate values of bias. All algorithms, except TWOSTEP and EKF are extremely precise
when they function properly. No changes in execution speed are noticed, with the exception of

MAG.I.C.AL which probably requires more iterations as the bias increases.

The effect of the calibration matrix perturbation parameter, 3

Similar to the case of the offset vector, h, under extreme manufacturing imperfections or
the effect of soft-distortion, matrix 7', can also diverge significantly from the typical case of
the identity matrix. In this Section we examine how larger values of perturbation E affect the
performance of the presented algorithms. To do so, we run six Monte-Carlo simulations, each one
based on 250 different datasets generated by following Algorithm @ The perturbation elements
E;; were simulated with gradually increasing magnitude by expanding the distribution range
U[-3, B]. Afterwards, its corresponding impact on each algorithm’s robustness and accuracy is

investigated. The distributions of the model disturbances and measurement noise are:

a~U[0.8,1.2]
Eij ~U[-B1, B1]
U[-0.05,0.05]
o = 0.005

for various 3
= {0.05,0.15,0.25,0.5,0.75,1}

where | = 1,2,...,6 is the index of Monte Carlo simulation. As S increases, the algorithms
were driven to their limits and their functionality range was identified. All the other parameters
were nominal, to ensure a fair comparison. The results of the six Monte-Carlo simulations are

presented in Figure B.3.
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Figure 3.3: Performance characteristics of the presented algorithms for different values of 5.

The MAG.I.C.AL algorithm and the algorithm of Dorveaux et al. appear to be the most
robust and effective, with similar accuracy. The algorithm of Vasconcelos et al., the PSO
algorithm and the EKF algorithm succeed only for small to moderate non-orthogonality errors.
Vasconcelos et al. achieves accuracy comparable to that of MAG.I.C.AL. The rest of the algorithms

tend to fail frequently as these errors increase. What is surprising is that Wu and Shi’s algorithm
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provides the most accurate solutions for all 3 values, but with very low robustness. To conclude,

most algorithms handle bias distortion better than non-orthogonality errors.

The effect of dataset size, K

In this section, we examine how the dataset size, K, affects the algorithms’ performance. In
general, the diversity of the measurement directions is more crucial than the quantity of them.
E.g. a dataset of 50 measurements with directions distributed near uniformly on the unit sphere
is significantly more suitable for the algorithms than one with thousands of measurements all
having approximately the same direction.

According to existing literature [31, [L, 25|, an order of 300 measurements with directions
sufficiently covering the unit sphere form an acceptable dataset for the calibration. Here we use
datasets with 50, 150 and 300 measurements to test the algorithms’ limits. To do so, we run
three Monte-Carlo simulations, based on 250 different datasets generated by Algorithm @ The

distributions of the model disturbances and measurement noise are:

a ~U[0.8,1.2]

Eij ~ U[—0.05,0.05]
e ~U[—0.05,0.05]
o = 0.005

The dataset size K varied whereas the distributions’ ranges were fixed to nominal to ensure a

fair comparison. The results of the three Monte-Carlo simulations are presented in Figure @
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Figure 3.4: Performance characteristics of the presented algorithms for different values of K.

In general, the dataset size, K, does not seem to be important in terms of robustness.
Accuracy is surprisingly high even with only 50 measurements, which is probably an outcome
of the well distributed measurement directions using the Fibonacci lattice. Furthermore, the
algorithms execution time appeared to be linear with K.
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The effect of the noise variance, o

In this section, we examine the influence of measurement’s noise variance ¢ on algorithms’
robustness and accuracy. The assumption of pure white Gaussian noise in the measurement’s
model was done. We considered a nominal value of o = 0.005, following [30] and [31] while we
also simulated the cases of more noisy (¢ = 0.05) and less noisy (¢ = 0.0005) sensors. With
these choices, we represented algorithms’ capabilities under 3 different orders in the magnitude
of the error in the measurement. To do so, we run three Monte-Carlo simulations, each one based
on 250 different datasets generated by following Algorithm @ The distributions of the model

disturbances and measurement noise are:

a ~1[0.8,1.2]
Eij ~ U[—-0.05,0.05]
ei ~ U[—0.05,0.05]
o = {0.0005,0.005,0.05}

Finally, all parameters except o were set to their default ones, to ensure a fair comparison. The

results of the three Monte-Carlo simulations are presented in Figure @
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Figure 3.5: Performance characteristics of the presented algorithms for different values of the

noise variance ,o2.

All algorithms appear to be immune to the change of measurement’s output variance o.
What is worth mentioning is that an increase of one order in variance resulted to a decrease
of one order in accuracy for most algorithms (i.e. MAG.I.C.AL, Ali et al., Vasconcelos et al.,

Dorveaux et al., Wu and Shi). Low accuracy algorithms, like TWOSTEP and EKF showed a
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[ BNO055  LSM9DSITR |

Measurement Range +13 Gauss +4 Gauss
Sampling Rate 30Hz 80Hz
Measurement Resolution 16 bits 16 bits

Table 3.3: Operation parameters of the two magnetic field sensors.

constant performance.

3.10.2 Algorithms’ Evaluation Using Real Data

In this section, the aforementioned algorithms are tested using real data. Multiple datasets
captured by low-cost magnetic field sensors were used to verify the algorithms’ performance
under real-world conditions. In this case parameters T}, and hirye are not known in advance.
Therefore, the accuracy metric () cannot be used. Since, the measurements took place in a
specific location, a constant magnitude of magnetic vector, ||m|| = 1 was considered. As a result,

a proper cost function to evaluate algorithm’s effectiveness is the following

1 K
= 2 (Imal* - (3.84)
z:l

where K is the number of measurements and k£ = 1,2,..., K is the measurement’s index. The

estimated magnetic field vector my for each k is given by
my =T (yy — h) (3.85)

where T" and h are the outputs of a calibration algorithm. Such a cost function is described by
Wu and Shi (B.55), as well as by Papafotis and Sotiriadis (B.68).

To evaluate the performance of the presented algorithms, we used two off-the-shelf, low-
cost magnetic field sensors, which are typically found in commercial electronic devices such
as smartphones, activity trackers, etc. More specifically, we captured a total of 30 datasets
using the LSM9DS1 by STMicroelectronics and the BNO055 by Bosch Sensortec. The operation
parameters of the two sensors during the experiment are presented in Table @ During the
experiment, two sensors were fixed on the same rigid platform which was rotated by hand in
several orientations.

In Figure , the mean value of the cost function () across all the recorded datasets for
every algorithm is presented as a metric of accuracy. The robustness of each algorithm, as defined
in (B.80) is presented in Figure B.6]. Note that both Figures and are in agreement
with the results obtained in Section where synthetic data with typical values for sensor’s

noise and measurement distortion were considered.
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Figure 3.6: Performance characteristics of the presented algorithms using multiple datasets of
real data from two different commercial magnetic field sensors.

3.11 Conclusion

To summarize, a complete and extensive study on calibration methods for low-cost magnetometers
was carried out by the authors. Seven algorithms were selected for this purpose according to their
popularity and their performance. A standard, unified and complete, linear measurement model
was used here as the reference model for analyzing all calibration methods. After establishing
the full calibration problem, these seven algorithms were discussed and were presented in an
easy-to-implement way.

In order to evaluate fairly the presented algorithms’ performance, we proposed a method
for optimally generating artificial magnetometer data. This method was used for executing a
plethora of Monte Carlo simulations. The evaluation metrics we focused on were the robustness,
the accuracy and the efficiency of the algorithms. We designed several experiments to check the

behavior of the algorithms under different values in bias, different values in non-orthogonality
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errors, different number of measurements and finally under various orders of variance in noise.
Finally, several datasets of real magnetometer’s data, from two different, low-cost, commercial
sensors were used to verify the results obtained using the artificial data.

The following summarizes our findings regarding the studied algorithms and their possible
implementation. Except from the objective criteria that we established in Section to evaluate
and compare the presented algorithms (accuracy, robustness, computational efficiency), in Table
@ we also evaluate the algorithms in terms of simplicity. Simplicity is used as a (subjective)
metric describing our personal experience developing and testing the algorithms. It is related
both to the algorithmic complexity of the algorithms (which is not an inherent disadvantage)
and the quality of their presentation in the original manuscripts. The algorithms are discussed

in chronological order of publication.

v TWOSTEP: Extremely time efficient. Works effectively for small distortions. Has low

accuracy in general. The method can be generalized to on-orbit calibration.

v' Crassidis et al.: Easy to implement. Extremely time efficient. Works effectively for small
to medium distortions. The method can be generalized to on-orbit calibration. It is the
only algorithm that provides online update. It can be considered as a more accurate and

effective version of TWOSTEP with similar time complexity.

v Dorveaux et al.: Easy to implement. Moderately time efficient. Robust and accurate,

but vulnerable to large values of bias.

v" Vasconcelos et al.: Difficult to implement. Characterized by high time-complexity. Exceptional

accuracy and robustness for small distortions.

v' Ali et al.: Robust and accurate. Very high computational cost. Some prior knowledge of
the search space is beneficial. At the beginning of the algorithm, the unknown variables
are randomized and thus it is not always ensured that the algorithm will reach an optimal
point. Thus, a couple of repetitions might be needed. Using modern PSO algorithms
which can constrain the search space and handle a few variable inequalities increases the

algorithm’s performance significantly.

v" 'Wu and Shi: Difficult to implement. Characterized by high time-complexity. Exceptional
accuracy even with larger distortion. We noticed a 1% failure of finding an initial estimate

due to inadequacy of applying Cholesky decomposition.

v MAG.I.C.AL: Easy to implement. Moderately time efficient. Exceptional robustness and

accuracy in both synthetic and real data experiments.

To conclude, in this work, we tried to cover a broad range of realistic cases and test the limits

of the algorithms, noting that in real life the performance requirements differ from application
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H Algorithm Simplicity Robustness Accuracy Efficiency H
TWOSTEP V4 VE'4 v Vv
Crassidis et al. VY vV v VY
Dorveaux et al. VY VY Vv vV
Vasconcelos et al. v v Va4 v
Ali et al. Ve'4 a4 a4 v
Wu and Shi v v VY v
MAG.I.C.AL VY VY Vv &4

Table 3.4: Algorithms’ Comparison Summary

to another. In some applications computational efficiency may be of major importance while
great accuracy may not be needed, while in others, a very accurate calibration is essential even
if significantly more computation time is required for this. Thus there is no "perfect” algorithm

appropriate for all applications; different algorithms may be more appropriate for different cases.

3.12 Appendix

3.12.1 Gradient Vector and Hessian Matrix for [30]

This section presents the algebraic expressions for the gradient and Hessian of the likelihood
function (B.37), used in descent optimization methods. Let uj, = y, — h, the gradient of the
likelihood function J (B.33) is denoted by V.J|, = [VJ|;VJ|n] and described by the submatrices

N
2 ~
Ve = Fuy @ Tuy, (3.86c)
k=0 g
N2
Vb= 5 T Tu, (3.868)
k=0
where ¢, = 1 — || Tug||~". The Hessian
Hpg Hpp
V3|, = (3.87)

T
i, Hin
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is given by the following submatrices

N T 7 T T
2 | (upuy, ) @ (Tugu, TT)
H: .= — = + ¢ [(upuy, ) ® I3x3 3.88a
T éoﬂ [ HTukH3 k [( k k) X ] ( )
2 | (up, @ Tup)uXTTT . . )
HTh:ZT (ur ® Tug) L o [uk®T+13X3®Tuk] (3.88p")
- 1T ug |
N A ~ A ~
2 | TTTupu TTT o
Hin= 5 |— 7 o +al'T (3.88)
; o2 | Twl?

These expressions can be found more analytically in the original paper [30], but are presented

here as well since this paper provides a clear path to implementation.

3.12.2 Gradient Vector and Hessian Matrix for [31]

This section presents the algebraic expressions for the gradient and Hessian of the likelihood
function (B.54), used in descent optimization methods. For notational simplicity T and 1 are

replaced by T and m. Let u; = yi—h, the Jacobian vector and Hessian matrix can be respectively

derived as .
T T T T
Vil = | Ir T J\";g iﬁf, (3.89)
k=1:N k=1:N
[ Hrr Hprn Hpgyoooo Oger... |
HY,  Hp  Hpmyooo Osxr...
HY HhT Hyemg -+ Higrg - - -
V2|, = Tk o o (3.90)
09><1 03><1 ZT;k:/\k 0..
where N
Jp=-2> myp ® (up, — Tmy)
k=1
Jp=-2> (ugp — Trmy) (3.91)

I, = —o7™ (up, — Tmy) + 2 pmy

J)\k = Hmk||2 -
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and

Hrpr =2 (mkmg) ® I

] =

1

i

Hry, :2ka®l

k=1
Hka =2 ((mk (%9 I) T—-—1® (uk - ka)) (3.92)
Hyj, = 2NT
Hymy, = 2T

Hyppmy, = 2T7T + 20,1

In [31], the calibration matrix, 7', is considered to be an upper triangular matrix. Thus from

both the gradient vector and the Hessian matrix, the rows and columns that correspond to the

lower triangular elements of T" must be removed.

These expressions are presented analytically in the original paper [31], but are presented here

as well since this paper provides a clear path to implementation.
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Multiple Accelerometers
and Magnetometers Joint
Calibration and Alignment

In this work we introduce a computationally efficient algorithm for simultaneous joint
calibration and axes alignment of multiple 3-axis accelerometers or 3-axis magnetometers. The
proposed algorithm applies to ensembles of sensors of the same type, fixed to the same rigid
platform. It compensates for all linear time-invariant distortions such as scale-factor, cross-
coupling, and offset, including the soft-iron and hard-iron distortions of the magnetometer. It
can be implemented in a simple 12-step sequence and provides fast and accurate calibration

without requiring any special piece of equipment.

4.1 Introduction

Inertial and magnetic sensors are widely used in a broad variety of applications, from low-
cost commercial systems (smartphones, activity trackers, etc) to high-end marine, aerospace
and military ones. Typical application fields include navigation [§], attitude estimation [14],
image stabilization [4] and others. Expensive, calibrated, high accuracy sensors are used in many
industrial and military applications. In commercial systems however, where cost is of ultimate
importance, integrated, minimum-cost inertial and magnetic sensors are preferred.

Inertial sensors in micro-electro-mechanical (MEMS) form have become very popular over
the past decades as they combine very small size with very low-cost. Their main drawback is
their large error characteristics [§] that must be compensated if accuracy is needed. Integrated
magnetic sensors also require calibration; even if their inherent accuracy is satisfactory, when
embedded to a system, the so-called hard-iron and soft-iron distortions must be removed.

Hard-iron distortion is the additive magnetic field created by magnetic objects attached to
the reference frame of the magnetic sensor. Soft-iron distortion is the alteration of the existing
magnetic field caused by ferromagnetic materials attached to the sensor’s frame. Both these

distortions are usually caused by electronic components in the vicinity of the sensor or materials

Copyright (© IEEE. Chapter 3 is reprinted, with permission, from K. Papafotis, P.P. Sotiriadis, "Multiple
Accelerometers and Magnetometers Joint Calibration and Alignment”, IEEE Sensors Letters, Vol. 4, Issue 3, March
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permission.
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used in the sensor’s enclosure.

Note that post-production factory calibration requires using special calibration equipment
and/or services, both of which dramatically raise the final cost of the sensors. Therefore factory
calibration is not typically an option for low-cost systems. Thus when accuracy is important,
a calibration procedure that can be applied without using any special piece of equipment is
required.

As far as 3-axis accelerometers are concerned, most authors exploit the constant magnitude of
the gravity for calibration purposes. More specifically, the calibration parameters are derived by
measuring the sensor’s output when it is placed in several different still positions. The calibration
problem is either posed as a minimization problem [13, B, 6, L7] or as an estimation one [[].

In a similar way, for 3-axis magnetometer calibration, the magnetic field of the earth is most
commonly used as a reference. Using the fact that the magnitude of the measured magnetic
field should be locally constant (away of magnetic disturbances), the calibration parameters are
calculated by solving a minimization |2, 22, 12, 11, 21, 17] or an estimation [23] problem.

The similarity in the calibration approach of accelerometers and magnetometers, based on
similar physical principles, allows developing and using a single algorithm to calibrate both of
them.

While there are several efficient calibration algorithms for a single accelerometer or magnetometer,
in many applications multiple sensors of the same kind are used to improve the measurement’s
accuracy [19]. In [18], the authors use a platform containing multiple magnetometers for orientation
estimation. Six accelerometers arranged on a cube are used in [L] for a gyroscope-free inertial
navigation application. In such cases, even if the sensors are individually calibrated, an extra
step to align their sensitivity axes is required. This by itself is not a trivial step and requires
multiple measurements and rotation matrices calculation.

In this work we expand the algorithm introduced for a single sensor’s calibration in [17] to
the case of multiple sensors. The proposed algorithm simultaneously addresses the calibration of
multiple sensors and the alignment of their axes. It is based on a low computational cost iteration
of a least squares problem providing fast convergence and accurate calibration. It is applied using
a simple 12-step sequence of platform’s orientations and requires no special piece of equipment.

Simulation and experimental results prove the algorithm’s performance and efficiency.

4.2 Sensors’ Measurement Model and The Problem of Calibration

In this section we introduce the problem of simultaneous joint calibration and axes alignment
of multiple 3-axis accelerometers or multiple 3-axis magnetometers. To do so, we first derive a
general model relating the sensors’ measurements with the true values of the specific force or

the magnetic field respectively.
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4.2.1 Accelerometer’s Measurement Model

The measurement of an accelerometer is modeled as in [§] [L6]
ya:f+Tsff+chf+ha+5, (41)

where y, is the 3 x 1 measurement vector, f is the 3 x 1 true specific force vector, Ty is the
3 x 3 diagonal matrix representing the scale-factor error, T, is the 3 x 3 matrix representing
the cross-coupling error, h, is the 3 x 1 accelerometer’s offset vector and e represents the 3 x 1
random noise vector.
Defining matrix T, £ I3 +1T #+Tee, where I3 is the 3 x 3 identity matrix, (@) can be written
as
Yo =Tof +he+€ (4.2)

4.2.2 Magnetometer’s Measurement Model

The measurement of a magnetometer is modeled following [22], [21], [10] and [L5]
Ym = szcc (Tszm + hhz) + hy +¢€ (43)

where y,, is the 3 X 1 measurement vector, m is the 3 x 1 true magnetic field vector, Ty denotes
the 3 x 3 diagonal matrix representing the scale-factor error, T, is the 3 x 3 matrix representing
the cross-coupling error, Ty; is the 3 x 3 matrix modeling the soft-iron distortion, Ay is the 3 x 1
magnetometer’s offset vector, hy; is the 3 x 1 offset vector due to hard-iron distortion and &
denotes the 3 x 1 random noise vector.
Defining matrices T}y, = T} TecTs; and hyy, 2T, #Techsi+hy, the magnetometer’s measurement
model becomes
Ym = Tmm + hpyy + € (4.4)

4.2.3 Calibration as an Optimization Problem

The measurement models of the two sensor share the same form and thus we can use the
general model of (f1.5) to formulate both sensors calibration process as the same optimization
problem.

y=Tn+h+e (4.5)

The purpose of the calibration is to estimate the 3 x 3 matrix 7" and the 3 x 1 vector h in
order to minimize the measured noise ¢ strength.

The advantage of the proposed calibration method is that no special calibration equipment
is needed, e.g., turn-table for the accelerometer or Gauss magnetic chamber and Maxwell coils
setup for the magnetometer. This implies that the true specific force or the true magnetic field

vectors are unknown.
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Note however that the magnitude of the true specific force and that of the true magnetic
field are fixed when the accelerometer is still and the magnetometer is in static and uniform
magnetic field. Assuming that the calibration measurements were taken under these conditions,
without loss of generality we assume that in ({.5) it is always ||n|| = 1. All norms in this paper
are two-norms unless it is indicated otherwise.

Assuming K measurements y1, 49, ..., Yy and writing (@) as Yy = Ing + h + €5, we define

the cost function J; capturing the total error

K K
Ju=>llexll* = lye — Tr — h||? (4.6)
P =1

and we form the optimization problem below whose solution is the calibration pair T', h and the
field vectors ng, k=1,2,..., K

minimize Jj
T,h,ny (47)
subject to |nx|l=1, k=1,2,.., K

Note that when (@) is used for a single sensor’s calibration, the calibration matrix 7' is
derived subject to orthogonal multiplication uncertainty. Specifically, if we replace T" with T'Q
and n with Q7n, where Q € O(3), the resulting measurement y is unaltered. Thus if multiple
sensors are individually calibrated using (@), a misalignment between their sensitivity axes is
expected.

To overcome this, we expand the single-sensor calibration algorithm ([.7) to (multiple) L
sensors calibration algorithm incorporating the alignment of the sensors’ axes as well. Let ny,
k=1,2,...,K be the k™ unit field vector, simultaneously exciting all L sensors, and denote
by ys, k and €, k the corresponding measurement and error of the ¢** sensor, £ = 1,2.,...L.
Moreover, let Ty and hy be the ¢" sensor’s calibration matrix and offset vector respectively. We
write ([L.§) in the matrix form

Y=TN+H+FE (4.8)

where Y is the measurements matrix, F is the errors matrix

Yyl Yi2 .- UY1K €11 €12 ... €1K

Y21 Y22 ... YK €21 €22 ... &2K
y=|"" 7 N

Yyr1 Yr2 --- YLK €r1 €rL2 --- ELK

T and H are the calibration matrices in block form
T
T= |17 1§ . Tf]

H = [ 0] .. hﬂT [11.1]
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and N is the set of true specific force or magnetic field vectors, common to all sensors

N = [nl ng ... nK}

As in the case of a single sensor, the cost function capturing the total error is expressed as

= |B|I% = te(ETE) (4.9)

L
=

K
Tu=2 2 llew
=1

1

where the subscript F' denotes the Frobenius norm [9]. The corresponding optimization problem

becomes
minimize Jp,
THN (4.10)
subject to |ni||=1, k=1,2,.., K
Note that in (), the set of unit-magnitude vectors ny is common for all sensors, resulting

in the alignment of their axes.

4.3 The Proposed Algorithm

A typical way to solve optimization problems like () is by using the gradient descent or
the Newton-Raphson methods. However, both of them methods depend strongly on a good initial
estimate of the unknowns in order to converge. Especially in the magnetometer’s case, finding
an initial estimate is not trivial due to the uncertainty of soft-iron and hard-iron distortions
reflecting on more challenging structures of 7" and H. In this work we propose a computationally
efficient, least-squares based, iterative algorithm for solving () and achieving joint calibration

and axes alignment of multiple sensors.

4.3.1 Algorithm Description

In order to solve (4.10), we form a two-step algorithm. In the first step, we use an estimation
of the calibration matrices T' and H in order to solve for matrix IN. Then, using the new matrix
N, we improve our estimation of 7" and H while forcing the magnitude of the true specific force
or magnetic field to be equal to one.

Given a set of K measurements, every iteration begins by calculating N using the estimate of
T and H from the previous one. Assuming 7T if of full rank, we solve, (@) using the least-squares
method [20]

N = (TTT)'17(Yy — H). (4.11)
To ensure that the true specific force or the true magnetic field vectors ng, k =1,2,..., K
are of unit norm, we form the new estimate of N using the column vectors ng, k =1,2,..., K

of N as follows

N = |y oy - (4.12)

Al flnll = linkll
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Using this estimate of N, we rewrite (1.8) as

Y =XG+FE (4.13)
where -
Tl .. Tt N
= 5 G:
XY Lixk

The updated T"and H are derived by solving () for X in the least-squares sense. Assuming
G is of full rank, we get
X =vG"(cag")! (4.14)

The proposed algorithm is summarized in Algorithm B It is initiated using 71 =T = ... =
TL = Ig and h1 = hg = .= hL = 03><1.

Algorithm 13: Proposed Algorithm
Step 1: Initialize T} = I3 and h; = 0341, [ =1,2,..., L
Step 2: Calculate N using ([.11)) and form N as in (.19)
Step 3: Formulate matrices X and G according to ([£.13)
Step 4: Calculate X using ([.14)
Step 5: Extract T and H from X
Step 6: Calculate .Jy, for every sensor according to ([L.6)

Step 7: Repeat steps 2-6 until J; is sufficiently small for
every sensor

The convergence of the algorithm could be evaluated in every iteration by using the cost
function Jr. However, J; does not provide any information about the calibration of each
individual sensor. Thus we prefer to use the cost function .J;, evaluated for every sensor, as

a metric of convergence.

4.3.2 Measurements Acquisition Procedure

The proposed algorithm jointly calibrates and aligns the axes of multiple accelerometers or
magnetometers when they are all mounted on the same rigid platform. To that purpose we

recommend the 12-step measurement acquisition procedure introduced in [L7].
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4.4 Experimental and Simulation Results

The proposed algorithm’s performance is evaluated using both sensors’ measurements, from
two 3-axis magnetometers mounted on the same rigid platform, and simulated data of a large
number of sensors (L =12). Both measured and simulated data follow the measurement acquisition
procedure introduced in [17].

In Figures @ and @ the algorithm’s convergence using measured and simulated data
respectively is presented. In both cases, the algorithm converges to a small value of the cost
function in a way that appears to be monotonic.

In Figure @ the fractional mean magnitude error as a function of the iteration is also
shown as a metric of the algorithm’s accuracy. Note that it becomes significantly small after
a few iterations, even before the cost function converges. This fact, in combination with the
small computational burden of each iteration demonstrate the computational efficiency of the

proposed algorithm.
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Figure 4.1: Algorithm convergence using measured data - Fractional mean magnitude error.

In Figure @ the raw and calibrated magnetometers’ measurements magnitude while the
measurement platform is rotated in five different orientations are presented. As the measurement
took place away from any magnetic disturbance, the measured magnetic field should be of
constant magnitude. As seen in Figure @, the magnitude of the raw measurements changes when
the sensor is rotated while the magnitude of the calibrated data is constant and independent of

the platform’s orientation.
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Hardware Design of a
Low-Cost IMU

An inertial measurement unit (IMU) based on low-cost inertial sensors was designed for
experimental purposes. The designed system embeds the STMicroelectronics LSM9DS1 system-
in-package (SiP) which contains a 3-axis accelerometer, a 3-axis gyroscope and a 3-axis magnetometer.
The data are handled by a 32-bit microcontroller (STMicroelectronics STM32F746) and stored
in a flash memory (temporarily) and a SD card (permanently). The system is powered by a

standard 3.7V Li-ion battery. A system-level diagram is shown in Figure @

(" LSM9DS1 )

3-axis Accelerometer
3-axis Gyroscope
3-axis Magnetometer

¢

STM32F746
32-bit Microcontroller

¢

SD Flash
Card Memory

~N

J

Power
Management

Li-ion
Battery

\_ J

Figure 5.1: System-level diagram of the designed IMU.

The basic performance characteristics of the LSM9DS1 are presented in Tables p.1, f.9 and
@. The operating parameters of the three sensors (output data rate, measurement range etc.)

can be configured via the embedded USB serial port.
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Measurement Range
Output Resolution
Sensitivity
Output Data Rate (max)

Accelerometer
+2g — £16¢g
16bits
0.732mg/LSB (£16g )
952H z

Table 5.1: Basic performance characteristics of the LSM9DS1 SiP (Accelerometer).

Measurement Range
Output Resolution
Sensitivity
Output Data Rate (max)

Gyroscope
+245dps — £2000dps
16bits
70mdps/LSB (£2000dps )
952H =

Table 5.2: Basic performance characteristics of the LSM9DS1 SiP (Gyroscope).

Measurement Range
Output Resolution
Sensitivity
Output Data Rate (max)

Magnetometer
+4Gauss — +16Gauss
16bits

0.58mGauss/LSB (£16Gauss )

80H z

Table 5.3: Basic performance characteristics of the LSM9DS1 SiP (Magnetometer).

The designed IMU is shown in Figure @ The complete schematics of the designed IMU are

presented in Appendix @

{sMoDs1

Figure 5.2: The designed IMU printed circuit board (up) and enclosure (down).



The Importance of

Sensors’ Calibration in
Inertial Navigation

Systems

In this work, we explore the importance of sensors’ calibration in inertial navigation applications.

We focus on the case of low-cost systems, typically using MEMS inertial sensors, where the extra
calibration cost is a critical parameter. We highlight the importance of calibration by deriving
a bound of the evolution of the attitude and velocity error as a function of the calibration
parameters’ error. Then, we use low-cost 3-axis accelerometer and 3-axis gyroscope along with
a popular pedestrian inertial navigation algorithm to experimentally confirm that raw sensor’s
data can be highly inappropriate for navigation purposes. Finally, we use the MAG.I.C.AL.
methodology for joint calibration and axes alignment of inertial and magnetic sensors to achieve

high accuracy measurements resulting in a reliable inertial navigation system.

6.1 Introduction

Satellite-based systems (GPS, Galileo, GLONASS etc.) are the dominant navigation technology.
Even though they provide sufficiently accurate navigation for most applications, they all come
with the same drawbacks: they have limited refresh rate, they don’t work in indoor environments
and they are susceptible to jamming. To overcome these limitations, several alternative navigation
technologies have been developed during the past decades. The concurrent development of the
micro-electro-mechanical systems (MEMS) led to a significant growth of inertial navigation
systems.

Inertial navigation systems (INS) are based on inertial sensors (accelerometers and gyroscopes)
to calculate the velocity, orientation and position of a moving object. They are commonly used
in a wide range of applications, from low-cost commercial systems, to high-end military, marine
and aerospace applications. Although INS yield accurate short-term navigation, their long-term

performance is degraded, mainly due to the heading error caused by gyroscope’s noise and offset

Copyright (© IEEE. Chapter 4 is reprinted, with permission, from K. Papafotis, P.P. Sotiriadis, "Exploring the
Importance of Sensors’ Calibration in Inertial Navigation Systems ”, IEEE International Symposium on Circuits and
Systems, Seville, Spain, 2020. Personal use of this material is permitted, but republication/redistribution requires
IEEE permission.
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drift [G]. To improve the long-term performance, some authors combine INS with other navigation
technologies (mostly satellite or RF based [12, 10]) while others use additional sensors (usually
a magnetometer [0], [14] ) to correct the estimated heading.

In the case of low-cost systems, MEMS inertial sensors are usually preferred due to their
significantly lower cost and small size. However, a major disadvantage of MEMS inertial sensors is
their large error characteristics [6]. Thus, in order to use them in an INS, a calibration procedure
that compensates for the deterministic part of their error is required. In addition, the combined
use of the accelerometer’s, gyroscope’s and maybe magnetometer’s data gives rise to the need
of alignment between the axes of the three sensors.

Although sensors’ calibration and alignment are of major importance for an accurate INS,
existing works take them for granted and only deal with the development of the navigation
algorithms. Specifically, in |7, 8, 9, B, 2, B| expensive, already calibrated, commercially available
sensor modules are used to evaluate the proposed algorithms. The authors in |12, 14, 15, L1] use
custom sensor modules to evaluate the proposed INS but don’t provide any details about the
sensors’ calibration and axes alignment.

Especially when low-cost systems are concerned, sensors’ calibration and alignment could
determine the overall system’s cost. In the case of MEMS sensors, factory calibration is not an
option as it would raise the sensors’ cost significantly. In addition, standard after-production
calibration and alignment techniques require expensive equipment (like a turn-table) that would
also raise the overall system’s cost.

In this work we derive the attitude and velocity error propagation equations as a function
of accelerometer’s and gyroscope’s calibration parameters. Then, we design a low-cost inertial
measurement unit (IMU) consisting of a MEMS 3-axis accelerometer and a MEMS 3-axis
gyroscope. We calibrate the inertial sensors using the recently introduced MAG.I.C.AL. methodology
[13] for joint calibration and axes alignment of inertial and magnetic sensors, and show how the
raw sensors’ data result in large attitude and velocity error. Finally, we use both the raw and
calibrated sensors’ data along with a popular pedestrian navigation algorithm, to experimentally
demonstrate how the large error characteristics of the MEMS sensors affect the navigation

accuracy.
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6.2 Inertial Sensors’ Error Propagation In The Inertial Frame

In this section the propagation of inertial sensors’ error when they are used in navigation
applications is described. In particular, we derive the error propagation equations in the inertial
frame for attitude and velocity as a function of calibration parameters (75, hq) and (Ty, hy) of

the accelerometer and gyroscope respectively.

6.2.1 Notation

Several different notations are used in the literature to describe kinematic quantities. In our
analysis we will use the notation of [6]. More specifically, any kinematic quantity x, such as

acceleration, velocity, position or angular velocity, is denoted as follows.

v
xﬂa

where « is the body frame, § is the reference frame and ~ is the resolving frame. In addition,
the frame transformation matrix which transforms the resolving frame from « to § is denoted
as C’g .

Also note that in the rest of this work, the true value of any quantity ¢ is denoted as ¢ while

the measured one is denoted as gq.

6.2.2 Attitude Error Propagation

The attitude error in the inertial frame is defined as:
5Ci = Cic? (6.1)

where CN% is the true attitude while Cg is the attitude measured by the gyroscope. The differentiation

of (b.1) yields .
§5Ci = Cict + cict (6.2)

The time derivative of a coordinate transformation matrix is
Ca = Chag, (6.3)

where an is the cross-product matrix of the angular velocity vector Wi Substituting the
derivatives in (B.9), we get
5C = CisQChoCy (6.4)

where 612 is the difference between the cross-product matrix of the true value of angular velocity
vector Q?b and the one of the measured by the gyroscope angular velocity vector be.

In our analysis we want to express (5ng as a function of the calibration parameters T, and
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hg. To that purpose, we express €1 as a function of the gyroscope’s measurement vector wfb:

50 = [Pl(sw Pydw P35w] _ diag(6w) (6.5)

T
where dw = (I3—Ty)wo—hg, P1 = |:€1 es3 —62:| , Py = [—63 €9 el}
Note that ey, is the k" normal vector in R¥.

The evolution of the attitude error in time is
. 3 B .
SCI(t) = / 5Ci(r)dr + 5Ci(0) (6.6)
0
Given that 6Cf(0) = I3 we write

‘ t
16CH(t) — Ls]] S/O 16Cy(T)lldT (6.7)
Taking the Frobenius norm of (6.4) we get

16Ci | # < 15]16w]] (6.8)

Using (6.7) and (6.8), we write
18C3(t) — L3l < 15t (|15 — Tyllws + |IAg]l) (6.9)

where wp is a bound for the angular velocity magnitude and depends on the application.

6.2.3 Velocity Error Propagation

The velocity error is defined as
V=V-V (6.10)

The derivative of (.10) is
oV = Cif = 6CiC} (Tuf + ha) (6.11)

The evolution of the velocity error in time is derived by a similar analysis to that of the attitude

error.

16V <t [fo (115 — Tull + | TallllSCH(2) — I3]1) + 1 all] (6.12)

As seen in (), the velocity error depends on both the accelerometer’s and gyroscope’s errors.
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6.3 Experimental Results

6.3.1 Pedestrian Inertial Navigation Using Shoe-Mounted Inertial Sensors

A common inertial navigation application is the pedestrian navigation with shoe-mounted
inertial sensors. In this case, a 3-axis accelerometer and a 3-axis gyroscope are mounted on the
shoe of a walking human. Using their data, the velocity, orientation and position are calculated.

In such applications, the zero velocity update (ZUPT) method is typically used [4] [5]. ZUPT
method is based on the fact that during the stance phase of the human walking [2], the velocity
of the shoe is zero. This information is usually used as input to a Kalman filter [4] [5] in order
to correct the error of the velocity, orientation and position estimations.

In this work, we use the pedestrian navigation algorithm proposed in [4] to explore the
effect of sensors’ calibration on the navigation accuracy. The proposed algorithm in [4] provides
accurate navigation using shoe-mounted inertial sensors and zero velocity updates in a Kalman

filter architecture.

6.3.2 Experiment Procedure

Using a low-cost IMU, we recorded accelerometer’s and gyroscope’s measurements of a
walking human. More specifically a 290m walk around the campus football court was recorded
while the IMU was mounted on the shoe. In order to explore the importance of sensors’ calibration,
we reconstructed the walked trajectory using a) uncalibrated inertial sensors, b) calibrated
accelerometer and offset compensated gyroscope and c) fully calibrated accelerometer and gyroscope.

For the inertial sensors’ calibration, we exploited the recently introduced MAG.I.C.AL.
methodology. MAG.I.C.AL. provides unified calibration and joint axes alignment of 3-axis
magnetometer, 3-axis accelerometer and 3-axis gyroscope. MAG.I.C.AL. compensates for all
linear time-invariant distortions such as scale-factor, cross-coupling and offset, including the
soft-iron and hard-iron distortion of the magnetometer. It is applied in a simple 15-step sequence
of approximate placements and rotations of the sensors, made by hand, without requiring any

special piece of equipment.

6.3.3 Error Propagation

In Section [.4 a bound for the evolution of attitude error as a function of accelerometer’s
and gyroscope’s calibration parameters is derived. Using the calibration parameters calculated
using MAG.I.C.AL. methodology and the analysis of Section @ we can explore the effect of
calibration on the attitude and velocity error propagation.

In Figure @ the evolution of attitude error in time is presented. As seen in Figure @ the
attitude error rises significantly after a few seconds when using uncalibrated sensors. Accelerometer’s
calibration and gyroscopes offset compensation improves the error evolution significantly but

eventually large attitude errors are accumulated.
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Figure 6.2: Evolution of velocity error in time.

In Figure @ the evolution of velocity error in time is shown. As in the case of attitude,
the velocity error also rises significantly after a few seconds when using uncalibrated sensors.
Also note that, according to Figure @, the gyroscope’s error is the dominant error factor in the

velocity error.

6.3.4 Trajectory reconstruction

The reconstructed trajectory using raw sensor’s data is depicted in Figure . As seen in
Figure , raw sensor’s data are highly inappropriate for navigation purposes.

For accelerometer’s calibration, there are several easy-to-apply methods without requiring
any special piece of equipment [1, 13, [16]. In addition, although gyroscope’s calibration is not
trivial without using appropriate equipment, it’s offset is easy to remove as it is just the sensor’s
output while it is still. By doing so, the navigation results are significantly improved as shown

in Figure .

In Figure the reconstructed trajectory using calibrated inertial sensors is presented.
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The trajectory shown in Figure , exhibit a position error of about 5m in a 290m walk.
The resulted navigation performance may not be state-of-the-art but it is actually impressive
considering that we used very low-cost sensors and no special calibration equipment. In addition,
the navigation algorithm used in this work is a basic algorithm using only inertial sensors. More
complicated algorithms as well as the use of extra sensors (such as magnetometer) would provide
even smaller position error.

Note that as seen in both Figures and the GPS sampling rate is quite low causing
sharp corners in the reconstructed trajectory.

1
O+
-1k
/-\-27
E4l
>
-4L
-5F
-6
_7_2
‘ "o Start
40r = End |
201 B
Eol ]
>
-20- 1
—GPS
-40—‘ —Calibrated Accelerometer - Offset Compensated Gyroscope ]
-120 -100 -80 -60 -40 -20 0
X (m)
‘ ‘ "o Start
40 = End
20+ —
E
~ 0L i
>
-20L il
‘7Calibrated Inertial Sensors‘
“40f=GPs ‘ ‘ s s s 1
-120 -100 -80 -60 -40 -20 0
X (m)
(v)

Figure 6.3: Reconstructed trajectory using a) uncalibrated inertial sensors, b) calibrated
accelerometer and offset compensated gyroscope and c) fully calibrated inertial sensors
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MAG.I.NAV.

MAG.I.NAV. is a MAGnetic - Inertial NAVigation algorithm, offering long-term-accurate
attitude, velocity and position estimation in the inertial frame. It is implemented in a dedicated
pedestrian navigation system using a three-axis accelerometer, a three-axis gyroscope and a
three-axis magnetometer mounted on the shoe of a walking person. MAG.I.NAV. compensates for
the accumulated attitude errors caused by the gyroscope’s measurement error. It does so by using
a second attitude estimate derived by combining the accelerometer’s and the magnetometer’s
measurements under zero-velocity and magnetic-disturbance-free conditions. Instead of using a
complicated Attitude Heading Reference System (AHRS), MAG.I.NAV. employs the computationally
efficient TRIAD algorithm along with a zero-velocity detection and a magnetic-disturbance

detection algorithms.

The developed system is tested using commercial, low-cost inertial and magnetic sensors in
an outdoor environment. It achieves high long-term accuracy, yielding a position error smaller

than 0.25% of the total walking distance in a 20-minute, 1.3km long walk.

7.1 Introduction

Satellite-based navigation systems (GPS, Galileo, GLONASS etc.) are the dominant navigation
technology. Different grades of satellite navigation systems provide sufficient accuracy for a
variety of applications, ranging from low-cost commercial ones to high-end industrial and military
ones. However, even when military grade systems are concerned, all satellite navigation systems
have the same inherent disadvantages; they have limited refresh rate, they don’t work in indoor
environments and they are susceptible to jamming. To overcome these limitations, several
alternative navigation technologies have been developed over the past decades.

Inertial navigation systems (INS) use inertial sensors (accelerometers and gyroscopes) to
calculate the attitude, velocity and position of a moving object. They were originally developed
for rocket guidance during the second world war and since then they are widely used. Inertial
navigation systems are nowadays used in many marine, aerospace, military and even commercial

applications.
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Their wider use was enabled by the development of micro-electro-mechanical (MEM) inertial
sensors over the past decades. Due to their miniature size and low cost, MEM inertial sensors
are embedded to many commercial devices such as smartphones, activity trackers and alarm
systems giving rise to the development of inertial navigation applications.

Pedestrian navigation using inertial sensors has gained significant attention over the past
years. Many works use miniature inertial sensors, mounted on a human’s body and propose
different algorithms to estimate the human’s attitude, velocity and position [13, B, 8, I, 21, 22,
5, 12, 14, B0, 15, 11, B2, 9, 2]. A crucial design aspect of such systems, which is the main research
topic, is how to compensate for the large error characteristics of the inertial sensors |10, 23].

In most pedestrian inertial navigation systems, shoe-mounted inertial sensors and the zero
velocity update method are used to correct the attitude, velocity and position estimates [30,
5, 21, I, 8, 13, 6]. Specifically, they use a zero velocity detection algorithm which detects the
stance phase of the human walking, during which the velocity of the shoe is zero. Then, they use
this information to estimate the attitude, velocity and position errors, typically by employing a
Kalman filter.

The zero velocity update method yields in accurate navigation results for short time periods.
However, when low-cost sensors are used, small errors are accumulated with time and in long-
term the navigation accuracy is significantly degraded. The greatest part of the position error is
due to the attitude error introduced by the gyroscope’s noise, offset drift and residual calibration
errors [23].

In applications where cost is of no concern, expensive, factory calibrated gyroscopes are used
to minimize the attitude error. For commercial applications however, where cost is a critical
design aspect, a popular approach is to combine the zero velocity update method with an AHR
algorithm typically using the measurements of a three-axis magnetometer to derive an accurate
attitude estimate in long-term. Many works propose different AHR algorithms [18, L7, 7, 19, 2,
25, 4, 26] based on estimation [19, 4, 26], optimization [17] or filtering [L8, 7] techniques. Despite
the fact that existing AHR algorithms provide significant improvement in attitude estimation,
they all impose increased computational burden making them difficult to employ in applications
where the computational power is limited.

This work introduces MAG.I.NAV., a computationally efficient, long-term accurate pedestrian
navigation algorithm using inertial and magnetic field sensors. More specifically, MAG.I.NAV.
uses a three-axis accelerometer, a three-axis gyroscope and a three-axis magnetometer mounted
on the shoe of a walking person to derive the person’s attitude, velocity and position. It is
based on the popular zero velocity update method and introduces a computationally efficient
attitude estimation scheme using the TRIAD algorithm and both the accelerometer’s and the
magnetometer’s measurements.

To evaluate the performance of MAG.I.NAV. algorithm, low-cost MEM inertial and magnetic
field sensors were used. The sensors were calibrated and aligned using MAG.I.CAL. methodology
[24] and no special piece of equipment. The performance of MAG.I.NAV. is evaluated in terms

of accuracy and computational efficiency in a 20-minute, 1.3km walk in a suburban environment
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and compared to the performance of similar algorithms based on two popular and highly cited
AHRS. MAG.I.LNAV achieves an extremely small position error, below 0.2% of the total walk

distance.

7.2 The Proposed Inertial Navigation System

In this section, the proposed pedestrian inertial navigation system is introduced and every

functional block is analyzed in detail. The notation used along the paper is first presented.

7.2.1 Notation and Assumptions

Among the different notations used in the literature to describe the basic kinematic quantities
(acceleration, velocity, position etc), we follow that of [10] denoting a kinematic quantity, x, as
xg o» Where « is the object frame, 3 is the reference frame and 7 represents the resolving frame.

When the measurement of an inertial or magnetic sensor is concerned, the object frame and
the reference frame are fixed and correspond to the sensor’s coordinate frame and the inertial
frame respectively. Thus, for notation simplicity, a measurement is denoted as y.,.

The frame transformation matrix, which transforms the resolving frame of a kinematic
quantity from a to g is denoted as C’g . Furthermore, the frame transformation matrix Cé which

relates the sensors’ coordinate (body) frame, b, to the inertial frame, 4, is refereed to as attitude.

T
Given a vector x = [ml T2 $3:| , the Cross Product Matrix [z %] is defined as [27)]

0 —x3 T3
[z X] = | 3 0 -z
— X9 I 0

The notation used in the rest of this work is presented in Table @ In addition, we assume
that the three sensors are fized on the same rigid platform, which is mounted on the shoe
of a walking person. All three sensors are considered to be individually calibrated and their
sensitivity axes to be aligned. The three sensors are sampled simultaneously with a common,
constant sampling rate, 7. Finally, we assume that when the experiment starts, the sensors’

platform is still and away from magnetic disturbance.
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Coordinate Frames

b sensors’ platform (body) frame
i inertial frame
Kinematic Quantities
fga R —=R3 | specific force
wg . R—R3 | angular velocity
ug o R— R3 velocity
pga R — R? | position
C;:R — S0O(3) | attitude

Sensors’ Measurements

fy:Z— R3 accelerometer’s measurement
Wy L — R3 gyroscope’s measurement
My 2 L — R3 magnetometer’s measurement
Ts €ER sensors’ sampling period
System’s Outputs
u:Z—R3 velocity output
p:7Z —R3 position output
C:7Z — SO(3) | attitude output
Other Notation
I, € SO(3) n X n identity matrix
0, € R? n X n matrix of zeros

Euclidean norm

Table 7.1: Notation

7.2.2 Top-Level System Architecture

The architecture of the proposed inertial navigation system is presented in Figure @ It uses
the measurements of a three-axis accelerometer, f3, a three-axis gyroscope, wp, and a three-axis
magnetometer, my, to estimate the attitude, C, the velocity, v, and the position, p, of a walking
person.

For every sensors’ measurement, the system derives a first estimate of the attitude, Ck,
using the measurement of the gyroscope. In order to correct the long-term accumulated attitude
error, the proposed system uses a second, independent of the first one, estimate of the attitude,
derived using the measurements of the accelerometer and the magnetometer. To do so, when a
zero velocity condition is detected (ZV = 1 in Figure @) and if there is no magnetic disturbance
(D =1 in Figure @) it applies the TRIAD algorithm to the measurements of the two sensors
to derive the second attitude estimate denoted as C'rp; and update the attitude estimate Cgpas
accordingly as shown in Figure E

The next step is to derive a first velocity, v, and position, px, estimate. This is done by using
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Figure 7.1: Architecture of the proposed pedestrian inertial navigation system.

the corrected attitude, Corps, along with the accelerometer’s measurement and the kinematic
equations.

The zero velocity update method is finally employed to further improve the attitude, velocity
and position estimates. It is realized using a Kalman filter and it is applied every time a zero
velocity condition is detected (ZV =1 in Figure EI)

7.2.3 Zero Velocity Detection

The zero velocity detection algorithm is an important component of pedestrian navigation
systems using shoe-mounted sensors as part of the widely used zero velocity update method. In
the proposed system, the zero velocity information is used both to implement the zero velocity
update method (see Section ) and to derive a long-term accurate attitude estimate using
the magnetometer’s and the accelerometer’s measurements (see Section ) Zero velocity
detection algorithms use the inertial sensors’ data along with information about the human
walking pattern to detect the stance phase of the walking [29, B1, b, 6]. More advanced algorithms
exploit more sensors to improve the zero velocity detection accuracy (e.g. pressure sensors
[L]). Several review papers compare the performance characteristics of existing zero velocity
detection algorithms [29, f]. In practice, for navigation purposes, different zero velocity detection
algorithms tend to have similar performance [6].

In this work, we use the measurements of the accelerometer, f, and the gyroscope, wp, to
detect when the velocity of the sensors’ platform is zero based on the algorithm introduced in
[29]. We begin by calculating the mean value of the accelerometer’s measurements using a rolling

window of size IV, as follows

_ 1 V-
=¥ Xk: (7.1)
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Then, to decide if a zero velocity condition is present at time k, we calculate the quantity

Jo(K)

Wb = 91 E ]

(k+N-1) 1
Tk)y= Y <02

k

2
+ 02||Wb(k)”2> (7.2)

g

where o2 and ag are the noise variances of the accelerometer and the gyroscope respectively and

g is the gravitational acceleration. According to [29|, we define

L, T(k) <.

ZV (k) = (7.3)

0, otherwise

where v, is an appropriate threshold parameter. In (7.3), ZV (k) = 1 indicates the existence of
a zero velocity condition.

Special care should be given to the parameterization of the zero velocity detection algorithm.
The algorithm requires knowledge of the accelerometer’s and gyroscope’s error variances. In
many cases, when low cost sensors are used, the error characteristics of the sensors are not
announced by their manufacturer and must be experimentally derived. In addition the threshold
value used by the algorithm to decide about the zero velocity condition must be carefully selected

and fine tuned to achieve high performance.

7.2.4 Magnetic Disturbance Detection

Attitude determination using accelerometer’s and magnetometer’s measurements via the
TRIAD algorithm, requires that the two sensors are still and away from magnetic disturbance.
The stillness condition is ensured during the stance phase of the human walking, when the shoe
is touching the ground. Magnetic disturbances on the other hand are more complex to identify
as they distort the earth’s magnetic field in a non-predictable way.

In this work we use the magnitude of the measured magnetic field to detect magnetic
disturbance. To do so, we exploit the fact that when no magnetic disturbance is present, the
magnitude of the measured magnetic field, my, is equal to that of the earth’s magnetic field,
Mearth- Assuming that at the beginning of the experiment the magnetometer is placed away

from magnetic disturbance, and taking into account the sensor’s noise and errors, we write
[meartnll = [lmp(0)]] (7.4)

We consider and use a tolerance parameter myp, to detect whether there is or there is not

magnetic disturbance. To this purpose, we define

0, Mear — ||mp(k > Myhyr
oy < 0 el =l @)l > -

1, otherwise
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When the difference is above the threshold value, myp,, it is D(k) = 0 indicating the existence
of magnetic disturbance. In contrast when no magnetic disturbance is present, it is D(k) = 1.
Note that in some rare cases the magnetic disturbance could rotate the earth’s magnetic
field without altering its magnitude, a case which is not detected by (@) due to the rotational
invariance of the Euclidean norm. However, in pedestrian navigation applications, the orientation
is frequently updated and thus a false positive or false negative result of (E) does not degrade

the navigation accuracy in long-term.

7.2.5 Attitude Estimation Using Gyroscope’s Measurements

The standard kinematic equations are used to derive a first estimate of the sensors’ platform
attitude. We begin by calculating the attitude at time ¢, Cj(t) € SO(3). To this end, we write
[10]

Ci(t) = Cy(&)[wip (1) ] (7.6)

Given (@) and assuming that the angular velocity of the platform is constant during the short

time period between consecutive samplings, [t,t 4 7], it is
Cilt + 1) = Ci(yexp ([wh(t) x]7,) (7.7)

Based on ([.7), the attitude at time k7, using the measurement of the gyroscope, wy(k), is
approximated by
Ci(kts) ~ Ch((k — 1)75) (I3 + [wp(k) x]7s) (7.8)

Equation (f7.§) implies that the estimated attitude at time ks, Ci(krs), is affected from the
accumulated noise of all the previous gyroscope’s measurements. In the proposed system, we use
the output attitude, C'(k — 1), as feedback to reset the accumulated error when a more accurate
attitude estimate is available (either from the zero velocity update method or from the TRIAD
algorithm). Thus, according to (7.§), we define

Cx(k) 2 Clk — 1) (Is + [wp (k) x]7s) (7.9)

To derive ([7.9), the power series of the matrix exponent of (7.7) is truncated to the first order.
This approximation may introduce significant error when the sampling period of the gyroscope,
Ts, is not sufficiently small. The accuracy of (@) can be increased in exchange for computational

resources by using a higher order approximation of (@) or a higher gyroscope’s output rate.

7.2.6 Attitude Estimation via TRIAD Algorithm Using Accelerometer’s
and Magnetometer’s Measurements

In inertial navigation systems attitude is typically calculated using gyroscope’s measurements
and equation (f7.9) or a higher order approximation of (7.7). This approach however, results in

the accumulation of significant attitude error in long-term caused by the gyroscope’s noise, offset



144 Chapter 7 - MAG.I.NAV.

drift and residual calibration errors. In this section, we exploit the TRIAD algorithm [3, 28] to
calculate a second estimate of the sensor’s platform attitude using the measurements of the
accelerometer and the magnetometer.

The TRIAD algorithm works as follows. Let a1, as, by and bs be four 3 x 1 unit vectors and
R be a rotation matrix in SO(3) such that aa = Raj and by = Rb;. TRIAD takes as inputs
the four vectors and derives R. A detailed description of the TRIAD algorithm is presented in
Appendix ?7. It is convenient to consider the TRIAD algorithm as a function of the four vectors,
ie.

R = TRIAD(CLl, bl, ag, bg) (7.10)

Now, consider the the measurements of the accelerometer, f;(k.), and the magnetometer,
fo(kc), at discrete time k = k. > 0. Assume that at time k. the sensors’ platform is still (ZV =1
in Figure [.1) and that there is no magnetic disturbance (D = 1 in Figure [.1)). Using the
measurements of the two sensors and the TRIAD algorithm we derive the following attitude
estimate

Crum(ke) = C(0) TRIAD (£5(0),m3(0), fo(ke), ms(ke)) (7.11)

where C(0), f,(0) and m(0) are captured at the beginning of the experiment, while the sensors’

platform is still and away from magnetic disturbance.

7.2.7 Output Attitude Derivation

The output attitude, C, is derived by combining the attitude estimates Cx and Crypy, as
well as the attitude correction term, §C' which is derived by the zero velocity update method
(see Section ) The operation of the proposed system, is divided in three states as shown
in Table @ , according to the outputs of the zero velocity detection algorithm, ZV, and the

magnetic disturbance detection algorithm, D.

D=0 D=1
ZV =0 State 1
ZV =1 | State 2 State 3

Table 7.2: Operation states.

During State 1, the attitude is calculated using the kinematics and equation (@) In State
2, the zero velocity update method is used to provide a small attitude correction, compensating
for the gyroscope’s errors. Finally, during State 3, the accelerometer’s and magnetometer’s
measurements are used to derive an accurate attitude estimate via TRIAD algorithm. Summarizing,

the output attitude estimate, C', during each operation state is derived as follows:

Ck(k), Statel
C(k) =< 6C Ck(k), State2 (7.12)
Crum, State3
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Figure 7.2: Qualitative representation of the attitude error when using the proposed attitude
estimation scheme. The three operation states are denoted as S1, S2 and S3 respectively.

A qualitative representation of the output attitude error when using the introduced attitude
estimation scheme of ([7.12) is presented in Figure . As seen in Figure @, during State 1, the
attitude error, mainly caused by the gyroscope’s drift, is accumulated and grows exponentially
in time. During State 2, the zero velocity update method (see Section ) provides a small
attitude correction and prevents the error from rising. However, this small correction cannot
compensate for the accumulated attitude error which eventually rises significantly over time
(this is also demonstrated using real sensors’ measurements in Section @) The attitude error
during State 3 depends only on the error of the sensors’ measurements at a particular time k
and it is boundedl, Thus, during State 3, an accurate, independent of the previous ones, attitude
estimate is derived. In Figure E, it is demonstrated that if such accurate attitude estimates
are frequently available, the attitude error does not rise significantly over time, leading to a

long-term accurate attitude estimation.

7.2.8 Velocity and Position Estimation Via Kinematic Equations Using
Accelerometer’s Measurements

In order to derive a first estimate of the velocity and the position, we define the intermediate

attitude Cgpps following Figure @ as

Crym(k), ZV=1and D=1
Carm(k) = (7.13)
Ck(k), otherwise

"Here we assume that the attitude error introduced by the measurement error of C(0), f,(0) and m;(0) is small
and thus it is neglected. This is a rational assumption, because multiple measurements and averaging can be used to
accurately determine C(0), f5(0) and my(0).
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We transform the accelerometer’s measurement (which is naturally expressed in the sensors’

platform frame) to the inertial frame using Carar(k) as follows

fi(k) = Carm (k) fo(k) (7.14)

Then, in order to cancel the effect of the gravity acceleration to the accelerometer measurement,

we define
a(k) = fi(k) + gi (7.15)

where ¢; is the 3 x 1 gravitational acceleration vector expressed in the inertial frame. The

discrete-time velocity and position vectors are updated as
v (k) = vk (k —1) + a(k)7s (7.16)

and
prc(k) = picl = 1) + 5 (ose(B) + v (k — 1)y (717)

7.2.9 Zero Velocity Update Method

The zero velocity update method is realized by an error-state Kalman filter similar to [L0].
The filter uses the measurements of the accelerometer and the gyroscope to estimate the error
of the attitude, the velocity and the position as well as the offset vectors of the two sensors.

The author in [10] uses the following 15 x 1 Kalman filter’s state vector
T
2 = |67 T pT bT bgT] (7.18)

where §1 is the 3 x 1 attitude error expressed in Euler angles, dv is the 3 x 1 velocity error, dr is
the 3 x 1 position error, b, is the 3 x 1 accelerometer’s offset vector and b, is the 3 x 1 gyroscope’s
offset vector. Using the kinematic equations and assuming a small error in the measurements of
the accelerometer and the gyroscope, we derive the following state propagation model for the

Kalman filter similar to [L0]
Top(k+1) = @y (k)x 0 (k) + way (k) (7.19)

where w,, is assumed to be a white noise sequence and

I3 03 03 03 Cr(k)
F(k) I3 03 Cr(k) 03

Qo(k)=| 03 Dy Iz 03 03 (7.20)
03 0s O3 I3 O3
03 03 03 O3 I3
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where
F(k) = [ fi(k) x]7s

and

When a zero velocity condition is present, the velocity output of the kinematic equations
(see Section ) should be ideally zero. However, due to the sensors’ non-idealities (noise,
residual calibration error, etc.), in practice, this is not the case; kinematic equations give a
small (error) velocity output even when the sensors’ platform is still. This velocity is used as a
measurement of the velocity error, dv, in the Kalman filter, implying the following form of the

filter’s measurement equation
sz(k) = uK(k) = szxzv(k) + Uzv(k) (7.21)

where v,, is a white noise sequence and
T
Ho=l0s Is 05 03 03] (7.22)

The initialization of the diagonal covariance matrices @),, and R., is crucial to achieve high
performance. Let o2 and 03 be the variance of the accelerometer’s and the gyroscope’s noise
respectively B Also, let O'ga and agg be the variances of their offset as it drifts in time. Using

them we form @, as follows,

Qzv = diag ([0711xs 02l1x3 0143 Oplixs Opglixs]) T (7.23)

The measurement covariance matrix, R,,, is similarly formed by assuming the variance of the

velocity measurement when a zero-velocity condition is present, o2
R, = 0’l3 (7.24)

The variances used to form R., and Q., in (7.23) and (7.24) cannot be typically derived

from the sensors’ documentation, especially in the case of low cost, MEM sensors. Thus, both

R., and @, are usually derived and fine tuned experimentally.
Note that the derived attitude correction term, dv, is expressed in Fuler angles. Using small

angle approximation, the corresponding rotation matrix is defined as

5C = [6x] (7.25)

"Here, without loss of generality, we assumed that the three axes of each sensor present similar noise
characteristics.
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7.2.10 System’s Initialization

The proposed system derives the navigation solution in the inertial frame. Thus, the position
vector is initialized as p(0) = [0 0 0]”. Under the assumption that at time ¢ = 0, the sensors’
platform is still, the velocity vector is initialized as v(0) = [0 0 0]©

Deriving the initial attitude, i.e. the rotation between the inertial frame and the sensors’
platform frame at time ¢ = 0, is not a trivial task. However, aligning the z axes between the two
coordinate frames is crucial in order to be able to subtract the gravitational acceleration when
solving the kinematic equations (see equation (7.15)). To do so, we consider the gravitational
acceleration vector in the inertial frame, g, = [0 0 g]T, and the accelerometer’s measurement at
t = 0 while the sensor is still, £,(0).] Then we use Rodrigues’ rotation formula [20] to derive the

rotation matrix C'(0) which aligns the z-axes of the two coordinate frames.

7.2.11 Algorithmic Implementation

The algorithmic implementation of the proposed system including the Kalman filter’s recursive

equations is presented in Algorithm .

3Gravitational acceleration, g, depends on the location of the experiment and can be found in relevant models.
However in most cases it is sufficient to assume that it is constant and equal to 9.80665 m/s>.
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Algorithm 14: Proposed Navigation Algorithm.

System’s Initialization

The system initialization is done while the sensors’ platform is still and away from
magnetic disturbances

Step 1: Calculate the initial attitude, C'(0), according to Section [7.2.10.

Step 2: Capture the accelerometer’s and magnetomter’s measurements f;(0) and my(0)
respectively.

Step 3: Initialize velocity and position vectors according to Section [7.2.10.

Kalman Filter’s Initialization

Step 4: Form the noise covariance matrices, @, and R, according to ([7.23) and
(7.24) respectively.
Step 5: Form the measurement matrix H, following ([7.29).

Step 6: Initialize the error covariance matrix P,,(0) = Oqs.

Navigation Equations

The navigation equations (steps 7 - 15) are evaluated for every sensors’ sample,
k=12,... K.

Step 7: Calculate Ck (k) using (7.9).

Step 8: Calculate ZV (k) and D(k) according to (7.3) and ([.5) respectively.
Step 9: If ZV (k) = 1 and D(k) = 1, calculate Cgp(k) according to ([7.11)).
Step 10: Set Cg (k) following ([7.13).

Step 11: Calculate ug (k) and pg (k) following (7.16) and ([7.17).

Step 12: Form the Kalman filter’s state transition matrix, @, (k) using (77).

Step 13: Calculate the error covariance matrix

Py(k) = @20(k) Pov(k — D@20 (k)" + Qv

Step 14: If ZV (k) = 1:

14.1) Calculate Kalman gain K., (k) = Puy(k)HZ, (H., Pay(k)HE, + R.,)
14.2) Calculate z,,(k) = K., (k)vi (k).

14.3) Update the error covariance matrix P, (k) = (I15 — K. (k)H,y) Po (k).

14.4) Extract 0¢(k),ov(k) and dr(k) from x,(k)

14.5) Calculate the system’s outputs, C(k) = [0¢(k) x]Cara(k),v(k) = vi (k) — ov(k)
and p(k) = p (k) — op(k).

14.6) Extract b,(k) and by(k) from x.,(k) and subtract them from the next (k + 1)

measurement of the accelerometer and the gyroscope respectively.

Step 15: If ZV (k) = 0: C(k) = Carm(k),v(k) = vk (k) and p(k) = px (k).
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7.3 Experimental Results

In order to evaluate the proposed inertial navigation algorithm, we used an inertial measurement
unit (IMU) based on the low-cost LSM9IDS1 system in package (SiP) by STMicroelectronics. It
contains a three-axis accelerometer, a three-axis gyroscope and a three-axis magnetometer, the
most important performance specifications of which are presented Table @

The proposed algorithm was tested during an 20 minute and about 1.3km long walk around
the campus of the National Technical University of Athens, Greece. The walk path is shown in
Figure @ along with some important landmarks. As seen in in Figure @, along the walk path

there are several sources of magnetic disturbance such as buildings and parking areas.

Specification Value
Measurement Range (A) +16g
Measurement Range (G) || £2000°/s
Measurement Range (M) || £4Gauss

Sampling Rate (A, G) 238Hz
Sampling Rate (M) 80H z
Resolution (A, G, M) 16 Bits

Table 7.3: Basic performance characteristics of the accelerometer (A), gyroscope (G) and
magnetometer (M) included in the LSM9DS1 SiP.

GOITHTIKO!
ZENONEX

9

e \Walk Trajectory Underground Parking Area

Parking Area

9 Begin/End Position Road - Sidewalk Parking

Figure 7.3: Walk path inside the campus of the National Technical University of Athens, Greece.
First, we demonstrate the long-term accuracy of the proposed system compared to existing

pedestrian navigation systems using the zero velocity update method alone. To do so, we

reconstructed the walk path using only the accelerometer’s and gyroscope’s measurements and
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the zero velocity update method. As seen in Figure @, the calculated attitude drifts after a few

meters and the reconstructed walk path diverges significantly from the reference one.
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Figure 7.4: Reconstructed walk path using accelerometer’s and gyroscope’s measurements and
the zero velocity update method.

The reconstructed walk path using all three sensors’ measurements and the proposed algorithm
is presented in Figure @ Observe that the reconstructed path in Figure E successfully tracks
the reference one in long-term.
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Figure 7.5: Reconstructed walk path using the measurements of both inertial and magnetic
sensors, the zero velocity update method and the proposed attitude correction scheme.

In Figure @ some accuracy characteristics along the reconstructed path are highlighted. 1)
The actual path formed a close-loop, i.e. it started and ended at exactly the same point. As
seen in Figure E, the reconstructed path presents an error of 3.08m from start point to end
point. This is a rather impressive performance as the error is below 0.25% of the total walk
distance. 2) The high refresh rate and measurement accuracy of the proposed system allows for
the identification of walking patterns. This is demonstrated in Figure @ where a road crossing
and a zig-zag pattern walking are easily identified. 3) A closer inspection of the reconstructed
trajectory reveals the position correction introduced by both the introduced attitude correction

scheme and zero velocity update method in three consecutive steps.
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Figure 7.6: Reconstructed walk path with highlighted some important accuracy characteristics.

The proposed algorithm is compared to existing pedestrian navigation algorithms in terms of
accuracy and computational efficiency using two popular, highly cited AHR algorithms. The zero-
velocity update method as realized in [[L0] is combined with the Madgwick’s [L7] and Mahony’s
[18] attitude estimation algorithms similar to [16]. The same measurement set along the walking
path of Figure B is used to reconstruct the walking path using the three algorithms.

In Figure @ the three algorithms are compared in terms of accuracy and long-term stability.
The proposed algorithm outperforms both the Madgwick’s AHRS and Mahony’s AHRS based
ones as it successfully tracks the reference path through the whole walking distance. The
algorithm based on Madgwick’s AHRS accurately tracks the reference path and slightly drifts
only during the last 250m while the Mahony’s AHRS based algorithm seems to be less resilient
to the magnetic disturbances along the walking path.

In Table @ the three algorithms are compared in terms of computational efficiency. The three
algorithms were were executed in MATLAB running on a typical quad-core, 8GB RAM PC. Note
that as all three algorithms are based on the same Kalman filter framework to implement the
zero velocity update method. Thus, the attitude estimation algorithm is their only substantial
difference as far as the computational burden of each algorithm is concerned. To ensure a more
fair comparison, each algorithm was executed five times using the same dataset and the mean

execution time of all algorithms is presented in Table [7.4.
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Figure 7.7: Reconstructed walk path using the measurements of both inertial and magnetic
sensors, the zero velocity update method and the proposed attitude correction scheme.

Algorithm Mean Execution Time
Proposed 10.67s
[10] + Madgwick’s AHRS[L7] 19.96s
[10] + Mahony’s AHRS|1§] 18.32

Table 7.4: Mean execution time of the proposed algorithm compared to the mean execution time
of the algorithms based on Madgwick’s AHRS and Mahony’s AHRS.
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A Class of Low-Noise

Inertial Measurement
Units

An Inertial Measurement Unit (IMU) architecture estimating angular velocity is introduced.
It expands the concept of multi-accelerometers gyroscope-free IMUs (GF-IMUs), taking advantage
of their excellent noise performance and resolving their inability to compensate for accelerometers’
bias and their requirement for specific accelerometers placement, which makes GF-IMUs inappropriate
for real world applications. It does so by embedding the accelerometers in a low-bandwidth
closed-loop configuration with a three-axis gyroscope and by addressing the complete non-
linear dynamics. Extensive theoretical analysis provides a complete framework for designing
low-noise IMUs including sufficient stability criteria for the non-linear system’s dynamics as
well as output noise models. Simulation results support the theoretical analysis and indicate
that even a minimal system using the proposed architecture outperforms the gyroscope in noise

performance providing more than 15dB improvement.

8.1 Introduction

Inertial sensors (accelerometers and gyroscopes) are nowadays embedded in several commercial
devices such as smartphones, activity trackers, alarm systems and others while they are also used
in many high-end, industrial, marine, aerospace and military applications. The fast development
of Micro-Electro-Mechanical (MEM) inertial sensors over the past decades enabled the wider
use of inertial sensors. Their miniature size and extremely low cost make MEM inertial sensors
the ideal choice for a plethora of applications. However, their large error characteristics and
measurement noise [L1] forbid their use in applications where measurement accuracy is important.

The greatest part of the measurement error of an inertial sensor is static and caused by
imperfections of the mechanical and electronic structures of the sensor. The static error is most
commonly modeled as a linear combination of different error terms (bias, non-orthogonality,
cross-axis sensitivity etc.) and can be compensated by using a proper calibration techniques |21,
14, 28, 29, 1.

On the other hand, dynamic measurement errors such as bias drift and non-deterministic

noise are more complicated problems which are most commonly dealt with using extra sensors



158 Chapter 8 - A Class of Low-Noise Inertial Measurement Units

or estimation and filtering techniques according to the specific application’s specifications and
needs. In inertial navigation for example, where the gyroscope’s noise causes a significant attitude
error [22] over time, it is common to use a Kalman filter [L1, 19] or use additional sensors, such
as a magnetometer [10, 2], to get a more accurate attitude estimation.

A class of IMUs, known as gyroscope-free inertial measurements units (GF-IMUs), use several
accelerometers mounted on a rigid object to provide an estimation of both the specific force and
the angular velocity of the object. When the accelerometers are spread in a great distance
GF-IMUs provide a very accurate, low-noise estimation of the angular velocity compared to a
gyroscope of the same grade.

However, GF-IMUs come with a big disadvantage, which makes them inappropriate for real-
world applications. More specifically, GF-IMUs cannot compensate for the accelerometers’ bias;
even a small bias on the accelerometers’ measurement is translated into a constant drift in the
estimated angular velocity. This is an important restriction for real-world applications as even
if the sensor’s bias is removed using a calibration procedure, a small drift of the bias is expected
over time.

In this work we introduce an IMU architecture which combines several three-axis accelerometers
and a single three-axis gyroscope, in a closed-loop configuration, to effectively reduce the measurement
noise of the estimated angular velocity. The proposed architecture advances the concept of GF-
IMUs and uses the measurements of a single three-axis gyroscope to dynamically compensate
for the accelerometers’ bias. The stability of the proposed system is examined analytically and
closed-form conditions are provided. A model for the angular velocity noise is provided while
simulations reveal the superior noise performance of the proposed system; in the upper frequency
range, it presents more than 30dB less angular velocity noise compared to the gyroscope alone.

The rest of this work is structured as follows. In Section @ the basic operation principles of
the gyroscope-free inertial measurement systems are introduced while their main performance
limitations are highlighted. In Section @, the proposed closed-loop architecture is introduced
and analyzed in detail. Stability conditions and a closed-form model for the system’s noise
are provided. In Section IV, the system’s performance is tested and some important design

considerations are expressed. Finally, conclusions are drawn in Section V.

8.2 Gyroscope-Free Inertial Measurement Units

In this Section, the basic principle of GF-IMUs is introduced and their performance limitations
are highlighted.

8.2.1 Principle of Operation

Consider N single-axis accelerometers, placed arbitrary positions, r;,¢ = 1,2,..., N on a rigid
body and denote their sensitivity axes and measurements as 7); and f;, respectively. Following

[5], we write the following system of equations for deriving the specific force (f) and the angular
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velocity (w)

F=Jz+ P (8.1)
where _
= O;] T= | JE]
r ~ T2
Q
h T, )
F = s = .
LN v Q%
the auxiliary variables J; and Jy are
Jo=[rexm) (raxm) - (x|
(8.3)
Ja = [ﬁl o ... ?ﬁv}

T
and € is the cross-product matrix of the vector w = [ww Wy wz}

0 —Ww, Wy
Q=1 w, 0 —wy (8.4)
—Wy Wy 0

Given an adequate number of properly placed (single-axis) accelerometers, one can solve

(@) in a least squares sense and derive x as
x=(JT7) " JT(F - P) (8.5)
Further defining J = (J7J )71 JT, (B.5) is written in a compact form as
w=JF—JP (8.6)

and the solution is only valid if J'J is non-singular.
In this work, we focus on the solution of the system of differential equations for deriving the

angular velocity, w. Denoting the i** row of J as .J;, we write
w=JF—JP (8.7)

where

j=[m o o) (8.8)
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8.2.2 Existing Art and Performance Limitations

Several GF-IMU architectures have been proposed over the years. Many authors have proposed
different configurations using six [5], nine [24, 9, 20], ten [16] or twelve [23, 8] (single-axis)
accelerometers in an effort to provide a feasible solution to (@) Moreover, existing works use
very specific geometries for the accelerometers’ placement in an effort simplify the original non-
linear problem (@) for estimating the angular velocity. By doing so, the non-linear terms of
(8.7) are eliminated and the derivative of the angular velocity is derived as a linear combination

of the accelerometers’ measurements as follows

W =JF (8.9)

While existing works provide a very simple and computationally light solution to the original
non-linear problem, the analysis is limited to the case of ideal accelerometers and neglects the
effects of noise, bias and other imperfections of a real-world accelerometer. Since the bias is the
largest contributor in the accelerometer’s measurement error [21], we will examine the effect of

a small additive bias, F' on the accelerometers’ measurements. In this case, (@) becomes

& = J(F 4 6F) (8.10)

where 0F is the N x 1 vectors representing the accelerometers’ bias. Subtracting (@) from

(B.10) we get the evolution of the system’s output error in time
oy 2wy — &y = JOF (8.11)

As seen in (), the output error of the existing systems accumulates over time implying
that even a very small offset in the accelerometers’ measurements causes a cumulative angular
velocity error. This is rather important as even if the static sensors’ offset is removed by a
calibration procedure, a small offset drift is expected over time, even in the case of high-end

Sensors.

8.3 The Proposed System

In this Section, the proposed inertial measurement system is introduced and analyzed in
detail. The stability of the proposed system under the effects of the accelerometers’ and gyroscope’s
biases is investigated. Finally, an analytical expression of the output angular velocity noise is

derived.

8.3.1 System Architecture

To alleviate the performance limitations of existing architectures, presented in Section ,

the proposed system uses multiple single-axis accelerometers in combination with a single three-
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axis gyroscope in a closed loop configuration. The top-level architecture of the proposed system
is shown in Figure .1

In Figure El], we consider the general case of an arbitrary configuration of N > 6 single-axis
accelerometers and thus, the non-linear feedback term JP of (@) is also included. A second
feedback-loop, compares the angular velocity calculated using the accelerometers’ measurements
and the GF-IMU theory with the measurement of the gyroscope and forces the lower-frequency
part of the system’s output (w) to be equal to the gyroscope’s measurement. In higher frequencies,
the feedback signal attenuates and the system outputs the angular velocity estimated using
the acelerometers’ measurements. By doing so, the proposed system, ensures that the constant
accelerometers’ bias does not affect the system’s output while in the upper frequency range

the system outputs the low-noise angular velocity estimation derived using the accelerometers’

measurements.
Three-Axis

~_ Gyroscope
X (<"

I T

| N Single-Axis

| Accelerometers Linear

—_—

| System

j’ w

Non-Linear
| ~————

| System
(Gyroscope-Free MU —— ______ I

Figure 8.1: Top-level architecture of the proposed system.

8.3.2 The linear case

Before analyzing the general case, described by (@), in which the system is non-linear, it
is helpful to consider the existing GF-IMU architectures. In this particular case, the proposed
system is described by the block diagram of Figure @ and the angular velocity is derived as

the solution of a linear system of differential equations

wf
g |«

Figure 8.2: Block diagram representation of the proposed system for specific accelerometers’
configurations eliminating the non-linear terms of (8.7).

At this point, since both the inputs (F and wy) and the output (w;) of the system are vectors,
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it is useful to define the following diagonal matrices related to the modeling of the feedback loop.

G=1L®yg
Pp=Izop (8.12)

p
P =1
S 3®<8—|—p>

where I3 is the 3 x 3 identity matrix and ® denotes the Kronecker’s product [25].

According to Figure @, the system’s output is
Wi(Fywg) 2 JF — G wy (8.13)

Now, we assume non-ideal measurements for both the accelerometer and the gyroscope, and we
define
F =F;+6F and wy = wy; + dwy (8.14)

where F; € RS and wgi € R3 are the ideal measurements of the the accelerometers and the
gyroscope respectively and §F € RS and dw, € R represent a small additive bias. Following the
block diagram of Figure @, the output error of the system is captured by the following system

of differential equations

Swy 2 Oy(Fy + 0F, wyi + 0wy) — wi(Fy,wgi)

. (8.15)
= JOoF — Guy
The feedback signal, wy, is written as
wi = Py(w —wy — 0w
f s 9 9) (8.16)
= Py(dw; — dwy)
and its time representation is derived as
Wr=—P, wr+ Pp(dw; — dwy) (8.17)
Using (B.15) and (B.17), we write the following state-space system representation
8 0 ~G| |6 J 0 oF
C.Ul _ |Y3x3 Wy 3x3 (8.18)
Wy P, —P,| |wy O3x6 —Fp| [dwy
~—— —_——
X A ] By uj

The characteristic polynomial of A; is

pa,(A) = (A + pA + gp)° (8.19)
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and its roots (which are the eigenvalues of A;) are negative for positive values of g and p. Thus
A; is Hurwitz and the system of (8.1§) is BIBO stable. This is an important result as it indicates
that the output error of the proposed system, éw, is bounded for bounded inputs (6 F and dwy).

To quantify the effect of the accelerometers’ and the gyroscope’s biases on the system’s
output error, we assume a small constant bias vector f € RS for the accelerometers and a small
constant bias vector @ € R? for the gyroscope. From () we get

. _
2 (t) = e (0) + / eMt=9) B, Jf ds
0 w
_ (8.20)
= eAltxl(O) + (eAlt - Iﬁ)Al_lBl {
where Ig is the 6 x 6 identity matrix. The steady state response of () is derived as
lim z(t)=-A"'B f
t—+o0 w
. (8.21)
_ e
b
g
and consequently,
Iy
0wl oo = gf + & (8.22)

The result of () is quite interesting as it indicates that in steady-state, the proposed system’s
offset is composed of a small portion of the accelerometers’ bias and the whole gyroscope’s bias.
This comes in agreement with our intuition about the system’s operation; the feedback loop
forces the system’s output to be equal to the gyroscope’s one in low frequencies. Using the
triangle inequality and (), we get the worst case scenario for the steady state value of dw
which is o

5t < | 2] + ha (5.23)

and represents the case when the effect of the accelerometers’ and the gyroscope’s bias is additive.

8.3.3 The General, Non-Linear Case

To expand the results derived in Section to the general case, when the proposed system
is non-linear, it is useful to write (@) in a more convenient form. To do so, we begin by denoting

the n*" row of matrix P as P,, n=1,2,...,N

P, = —wian — wzﬁn — wg'yn + Wy Oy + Wew€n + WywCy (8.24)
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where
— oYY Z,.2

Bn = Mrn + 1Ty

T =TT 0Ty

(8.25)
On = MTh + 14Ty
e = i+
G = 1l i
The product JP in (B.7) is written as
_ Py
el
JP=|——Jy—— ) (8.26)
| |
Py
which, by replacing Py, Ps, ..., P, from (B.24) and after some algebraic manipulation becomes
_ 2 ;
_ _ _ _ - _ —w?
JA B LT 1A L E N Z ;
- _ _ - _ - _ —w
JP = |JA JoB JoI' LA JE JyZ N N (8.27)
, - - = _ _ Waw
JsA J3sB  JsU JsA  JsE  J3Z Y
Fwaw,
M Fwyw,
L _
L(w)
where _ ) )
a B gl
a
A= .2 , B = B.Q = 72
an | | BN YN
(8.28)
o1 | [e1 ks
1) €
N e A .
ON | K3 (N

Now, considering the proposed system of Figure B.1] and replacing (8.27) into (B.7), we write

&= JF - ML(w) — Gwy (8.29)
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where the filter’s dynamics, similarly to (), are described by
Wp=—P, wr+ Pp(dw — dwy) (8.30)
and the ground truth angular velocity is given by
Wgi = JF — ML(wg;) (8.31)

We formulate the output error’s dynamics as in the linear case. Considering dw = w — wgy;, we
have
dw = —M(L(w) — L(wg)) + JOF — Guwy (8.32)

By substituting w = dw + wy; we get

L(w) — L(wgi) = K(wg;)ow + L(éw)

, (8.33)
= K (wg)dw + O (||6w]]?)
where _ -
2w 0 0
0 —Qw;’i 0
0 0 2wr
Kwa)=| | T (8.34)
We; Wei 0
W 0 Wi
[ 0 Wi wy
Neglecting the higher order terms in (8.33), we rewrite (B.39) as
Sw = —MK (wyi)dw + JOF — Guy (8.35)

Using (B.39) and (B.17), we write the following state-space system representation for the

proposed system

8¢ ~MK(wy) —G| |6 J 0 §F
7l = (1) “1+ 93 (8.36)
Wy P, —Py| |wy O3x6 —Fp| [dwy
—~— " —— \_\B,_/\_v_/
x xX u

Comparing (B.36) with (B.1§) we notice that the only difference is the the North-West block in
matrix A. This block depends on the actual angular velocity vector wy; and is of course time-
varying. As a result, we have to further investigate the stability of the autonomous part of the
system (i.e. © = Ax) which is strongly related to BIBO stability [13, 15]. To this end, and since
the system of () can be seen as quasi-linear, we touch upon on some well-established results
in Linear Parameter Varying (LPV) system’s theory [4, 27, 18].

To start with, we define the time-varying parameters §; = w;i fori=1,2,3 and so as A is a
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parameter varying matrix (i.e. A 2 A(6y1,d2,63) ). These parameters appear in an affine way in
A, ie.
A= Ay+ A161 + Ads + Asds (8.37)

Considering that the angular velocity of the object is bounded, the parameters d;, i = 1,2, 3 are
also considered to be bounded, i.e. |6;| < dpnqs. Hence, the parameter vector 6 = [§; o 53]T IS
D = co(6,62,...,6%), with 67 € R3 for j = 1,2,...,8 where co(-) denotes the convex hull of
vertices 87 [3]. In our case, D composes a cube centered at zero with vertices {+6,maz, £0maz, F0maz -
Furthermore, we define the set of vertices D; = {6',42,...,5%}.

The parametric varying system & = A(d)x with § € D is exponentially stable if [4] 3 X €
R6x6 X » 0 I,

AT()X + XA(6) <0 V6eD (8.38)

Using (), one can in theory prove the stability of the proposed system by solving an infinite
number of Linear Matrix Inequalities (LMI). In our case however, the stability conditions can
be relaxed and use only a finite amount of LMIs [4, [L§|. Considering that A;(d) is affine on
parameter vector d, the parametric varying system & = A(d)z with § € D is exponentially stable
if3 X eR6*6 X »0:

AT(5)X + XA(6) <0 V€D, (8.39)

The origin is an exponentially stable equilibrium point for the nonlinear system (8.32) if it is
an exponentially stable equilibrium point for the linear system @ = Az [13]. Thus exponential
stability for the nonlinear dynamic is also ensured in a local sense.

The stability condition derived in (8.39) implies an arbitrary time-varying parameter ¢. If
the rate of variation of § is bounded, the aforementioned stability test is conservative. In our
system, § corresponds to the angular velocity of an object, and its rate of change can in most
cases be considered to be bounded. .

Similarly, we define § £ [51 b2 (53} e D = co(d',62,...,0%) where 87 denotes the vertices
of a cube centered at zero (i.e. 5i € {iSmax, +6maz, j:5max}). We consider § to be bounded, i.e.
10;] < dmaz and we define the set of vertices D) = {41,42,...,%}. The autonomous part of (8.36),
& = Aux, is exponentially stable in the large, if there exist Xo, X1,..., X}, with ATX,+X,A, =0,
v=1,2,...,m [18] such that

> Xl = 0 (8.40)
k=0
and . m
> Xibe+ D> 000, (ALX, + X,A,) <0 (8.41)
k=1 v=0 pu=0

VéeD andV § €D, and dy = 1. In this case, m = 3 (B.37).
The set of LMIs described in (8.39) and (8.40) - (B.41)) can be solved using any Semi Definite

'~ 0 denote a positive-definite matrix.
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Programming Suite (e.g. SeDuMi [26]) in standard computational platforms such as Python (e.g.
cvxpy [6]), Matlab (e.g. Yalmip [17]) etc.

To sum up, in the linear case (8.1§) which corresponds to particular configurations of the
accelerometers, the stability of the proposed system is easily ensured (B.19) and only small
attention is required on the design of the feedback’s filter. However, for an arbitrary configurations
of the accelerometers we notice that there is a nonlinear feedback term (@) which introduces
a time-varying block as shown in (8.36). This implies that the stability of the system relies on
the sensors’ configuration. On the one hand, there is more freedom for the sensor structure to
be selected but on the other hand one has to be careful to guarantee stability for the custom

configuration.

8.3.4 Output Noise Modeling

To examine the output angular velocity noise, we consider a linearization of the proposed

system around zero. The linearized system is described by the block-diagram of Figure @

l—@— : =
s+p
O |

Figure 8.3: Block diagram representation of the proposed system linearized around w = 0 rad/s.

—
YE

Since the system is linear, we use superposition to calculate the output angular velocity
as a function of the two inputs: the accelerometers’ measurements (F') and the gyroscope’s

measurement (wy). More specifically, it is:

w(s) = (I3® Hp(s)) F(s) + (I3 ® Hy(s)) wy(s) (8.42)
where - s+p
Hp(s) = s2+ps+gp
ap (8.43)
Hy(s) = s2+ps+gp
and
F(s) = JF(s) (8.44)

Denote the power spectral density (PSD) of the gyroscope’s measurement as Sy(s) and the
PSD of F as S +(s). Assuming that the output noise of the accelerometers and the gyroscope

are uncorrelated, the PSD of the output angular velocity, S,,, is derived as follows

S = (I [Hp(s)P) Sp(s) + (I @ [Hy(s)[2) Sy (s) (8.45)
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where ) )
—s“+p
Hp(s)]? =
[Hrto) st + (2gp — p?)s* + g?p?
2 (8.46)
|Hy(s)|? = )

st + (2gp — p?)s? + g2p?

The exact characteristics of the accelerometers’ and the gyroscope’s noise depend on the
sensor used and are different even along sensors using the same manufacturing technology.
However, typically, the noise of the accelerometers and the gyroscope is considered to be white
noise. This is a reasonable assumption used in many works to facilitate the mathematical analysis
and in most cases gives accurate results.

We assume that both the inputs I’ and w, are excited with white noise, i.e.
F ~ N(0,Cp) and wy ~ N(0,C,) (8.47)

where Cr and C, denote the covariance of the accelerometers’ and gyroscope’s noise respectively.
The noise of the linear combination of the accelerometers’ measurements, JF, is also white noise
with covariance Cyp = JOpJT [1] and thus it is

F~N(0,Cyr) (8.48)
In this case, the PSD of the output angular velocity, S,,, is derived as follows
Sw= (I3 ® |Hp(s)|?) (J o J)Sp + (I3 ® |Hy(s)|*) S, (8.49)

where Sp is the PSD of the accelerometers’ noise and o denotes the Hadamard’s product [12].

8.4 Results

In this section we use a simple configuration, shown in Figure @, composed of nine single-axis
accelerometers (grouped in three three-axis ones) and a single three-axis gyroscope to evaluate
the performance of the proposed system. In addition, we highlight the restrictions imposed by the
previously derived stability conditions to the sensors’ placement and the design of the feedback
filter.
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-
N

A3}
(0,0,)
XF

Figure 8.4: IMU configuration composed of nine single-axis accelerometers (grouped in three
three-axis ones) and a single three-axis gyroscope.

8.4.1 Noise Model Accuracy

Before we evaluate the performance of the proposed system, we test the accuracy of the
derived noise model of Section . To do so, we consider the system configuration of Figure
@ and assume the sensors’ distance to be equal to I = 1m. The feedback’s gain is set to g = 10
while the cut-off frequency of the low-pass filter is set to p = 67 rads (3 Hz).

Using MATLAB’s Simulink we simulated the described configuration assuming white noise
sequences for both the accelerometers’ and the gyroscope’s inputs. The power spectral density
(PSD) of the output noise for all accelerometers is set to be equal to S4 = —50dB/H z while the
PSD of all gyroscope’s axes is S = —65dB/H z. In Figure @, the PSD of the system’s output

resulted from the simulation is compared to the one calculated using the noise model ()

-50 - -
=Simulation

-60 —Noise Model

-70

-80

dB/Hz

-90

-100

-110

_120 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Frequency(Hz)

Figure 8.5: The PSD of the output of the proposed system (x-axis) compared to the PSD
calculated using the noise model of (B.49).
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8.4.2 Noise Performance

To evaluate the noise performance of the proposed system, we used the sensors’ configuration
of Figure @ and excited both the accelerometers and the gyroscope with white noise. The noise
characteristics and the feedback loop design parameters were set similar to Section , ie.
Sq¢ = —65dB/Hz, Sy = —50dB/Hz, g = 10 and p = 67 rads.

The PSD of the system’s output is presented in Figure B.G and compared to the PSD of the
gyroscope’s noise for two different values of the parameter [ in Figure @ As seen in Figure @,
while the distance between the accelerometers gets greater, the output noise of the proposed
system gets significantly lower in the higher frequencies where the output is dominated by the

accelerometers’ measurements.

50 T -60
—Proposed System|
~Gyroscope
60 - 3 70
xmy A X
-70 | f ' ' ' -80
N N
< T
o -80 o -90
° kS
-90 - -100
100 110 ~Proposed System
t~Gyroscope
110 I I I I I i i i i 120 I I I I I I I i i
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 10C
Frequency (Hz) Frequency (Hz)
(@)1 =1m B)l=4m

Figure 8.6: The PSD of the proposed system’s output noise (X-axis) compared to the PSD of
the gyroscope’s output noise (X-axis) for I = 1m (a) and | = 4m (b).

8.4.3 System Design and Stability Considerations

In Section we demonstrated that the angular velocity noise of the proposed IMU
becomes lower when the accelerometers are spread over a wider distance. In this Section we
will examine the effect of the feedback filter’s design on the output noise and furthermore we
will demonstrate how improper design of the filter may lead to an unstable system.

We assume the configuration of Figure @ and we consider the sensors’ distance to be equal
to | = 2m. The power of the system’s angular velocity noise in a 100H z bandwidth is presented
in Tables @—@ for different values of the maximum angular velocity (wpq.) and the feedback
filter’s pole (f, = p/2m) and gain (g) parameters. The unstable configurations according to
(B.39) are denoted with "X” in Tables B.1-8.4.

In Table @, for wmez = 1rad/s, the system is stable for every pair (f,,g) and the filter’s
design only affects the output noise power which varies from —61.9dB up to —53.3dB. Note the
lowest noise power of —61.9dB is more than 15dB lower than the output noise of the gyroscope
in the same bandwidth. While the value of w4, gets higher, the stability of the system depends
more on the design of the feedback’s filter. However, even in the case of w4, = 10rad/s (Table
@), proper design of the feedback filter leads to a stable configuration with only 1.4dB more
noise power (—60.5dB) which is still about 15dB lower than the output noise of the gyroscope
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in the same bandwidth.

| g=5 |g=10]g=20 | g=50 |
f, =0.2Hz || -58.0dB | -57.4dB | -56.1dB | -53.3dB
f, = 1Hz -60.9dB | -59.8dB | -57.6dB | -54.1dB
f, = 2Hz -61.4dB | -60.2dB | -57.9dB | -54.2dB
f, = 5Hz -61.9dB | -60.5dB | -58.0dB | -54.3dB
Gyroscope H -45.3dB ‘

Table 8.1: Angular velocity noise within [0, 100]Hz for wy,qe. = 1rad/s and different values of f,
and g.

| g=5 |g=10]g=20 | g=50 |

f, = 0.2Hz X X X X

f, = 1Hz -60.9dB | -59.8dB | -57.6dB | -54.1dB
f, = 2Hz -61.4dB | -60.2dB | -57.9dB | -54.2dB
f, = 5Hz -61.9dB | -60.5dB | -58.0dB | -54.3dB
Gyroscope H -45.3dB ‘

Table 8.2: Angular velocity noise within [0, 100] H 2z for wy,q,; = 5rad/s and different values of f,
and g.

lg=5]g=10] g=20| g=50 |
f, =0.2Hz | X X X X
f, = 1Hz X X X | -54.1dB
f, = 2Hz X | -60.2dB | -57.9dB | -54.2dB
f, = 5Hz X | -60.5dB | -58.0dB | -54.3dB
Gyroscope H -45.3dB ‘

Table 8.3: Angular velocity noise within [0, 100]H 2z for wy,q, = 7rad/s and different values of f,
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lg=5]g=10] g=20| g=50 |

f, = 0.2Hz X X X X

f, = 1Hz X X X X

f, = 2Hz X X -57.9dB | -54.2dB
f, = 5Hz X -60.5dB | -58.0dB | -54.3dB
Gyroscope H -45.3dB ‘

Table 8.4: Angular velocity noise within [0, 100]Hz for wy,., = 10rad/s and different values of
fp and g.
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Conclusions and Further
Research

In the first part of this Thesis, a complete methodology for calibrating and aligning the
sensitivity axes of a 3-axis magnetometer, a 3-axis accelerometer and a 3-axis gyroscope was
introduced. The proposed methodology compensates for the most significant linear, time-invariant
error sources of inertial and magnetic field sensors and requires no special piece of equipment to
apply. Both simulation and experimental results prove that the proposed methodology performs
very well in terms of convergence, repeatability and computational efficiency.

Some interesting research directions stemming from this work are listed below:

e This work only considers the most important linear, time invariant error sources for the
three sensors. The proposed algorithm could be expanded to also compensate for non-linear
error sources (e.g. scale factor non-linearity) or dynamic, time-varying phenomena such as

the temperature dependence of the sensors’ measurements.

e The calibration of inertial and magnetic field sensors without using special calibration
equipment is a very popular research topic. Many works present different algorithms that
successfully calibrate inertial and magnetic field sensors using a set of measurements
in different sensors’ orientations. However, the measurement acquisition methodology is
typically derived experimentally by the authors and different works propose different
methodologies without the related mathematical proof that the acquired measurements
are sufficient to solve the (minimization or estimation) problem of calibration. Thus, a
very interesting research topic is the measurement acquisition procedure for inertial and

magnetic field sensors calibration and the related mathematical analysis.

In the second part of the Thesis, two applications of inertial and magnetic field sensors are
presented. First, a pedestrian navigation algorithm is introduced. Using shoe-mounted inertial
and magnetic field sensors, the proposed algorithm accurately estimates the velocity, position
and orientation of a walking person. It exploits the characteristics of the human walking and uses
the TRIAD algorithm along with the popular zero-velocity update method to ensure the long-
term accuracy of the orientation estimation. Experimental results demonstrated the accuracy

and the long-term stability of the proposed algorithm.
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Based on this work, the following research directions could be explored:

e The proposed algorithm excels in terms of computational efficiency compared to similar
algorithms using complicated heading reference systems. However, using only inertial and
magnetic field sensors, its deployment is limited to outdoor environments with limited
sources of magnetic disturbance. An expansion of the proposed algorithm that would also
exploit information from other sources such as RF beacons, building maps, etc. would

enable its wider deployment in indoor environments.

An IMU architecture using several accelerometers and a single three-axis gyroscope was also
introduced in the second part of the Thesis. The proposed architecture combines the low-noise
characteristic of GF-IMUs and ensures the systems stability and immunity to the accelerometers’
bias by using the gyroscope in a closed-loop configuration. Extensive theoretical analysis as well
as simulation results indicated that the proposed system is capable of providing up to 15dB
less angular velocity noise in its output compared to a gyroscope of the same grade while its
stability can be guaranteed when it is carefully designed. GF-IMUs were extensively studied
over the past years but their inherent disadvantage to compensate for the accelerometers’ bias
made the inappropriate for real-world applications despite their very good noise performance.
The proposed architecture provides a solution to this problem and enables the development of

low-noise, high-performance inertial measurement units.

e In this work, the resilience of the proposed system to the accelerometers’ and gyroscope’s
bias is investigated. The effect of other, common, sensors’ errors such as cross-axis sensitivity
and noise could also be explored. In addition, instead of requiring the sensors’ to be pre-
calibrated, algorithms that could calibrate the sensors after the system’s deployment could

be developed.

e The proposed algorithm uses the sensors’ distance and orientation from a reference coordinate
frame to calculate the object’s angular velocity. An interesting topic of research would be
the effect of the sensors’ placement error on the angular velocity estimation. As a solution to
this problem, smart algorithms that detect the sensors’ placement geometry and eliminate
the need for accurate sensor’s placement could be developed. This would guarantee the
accuracy of the angular velocity estimation while it would also make easier the real-world

deployment of the system.
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