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Abstract

Inertial sensors (accelerometers and gyroscopes) and magnetic field sensors are widely used
in a broad variety of applications. High accuracy sensors are nowadays available in chip-form
including all the necessary electronic circuits for the digitization and in many cases the digital
processing of the measurements. This fact enables the wider use of inertial and magnetic field
sensors in several applications, ranging from low-cost commercial products (smartphones, activity
trackers, alarm systems etc.) to high-end industrial and military devices.

This thesis deals with the calibration and the alignment between the sensitivity axes of
inertial and magnetic field sensors. In addition, it presents two applications where inertial and
magnetic field sensors are used for navigation and tracking purposes.

In both the cases of inertial and magnetic field sensors, a calibration procedure is mandatory
for every sensor unit when accuracy is required. This work focuses on low-cost, three-axis inertial
and magnetic field sensors and explores algorithms and methodologies for calibration and axes
alignment.

In the first part, algorithms for the calibration and the alignment of the sensitivity axes
of inertial and magnetic field sensors are presented. The proposed algorithms are based on
optimization techniques and are designed to be computationally efficient while their application
requires no special piece of equipment or external references.

In the second part, the importance of sensors’ calibration is highlighted, and two applications
of inertial and magnetic field sensors are presented. First, an inertial navigation system dedicated
to pedestrian navigation is presented. It combines data from inertial and magnetic field sensors
mounted on the shoe of a walking person and derives a long-term accurate estimation of his
speed, orientation, and position.

Finally, an inertial measurement unit architecture including several three-axis accelerometers
and a single three-axis gyroscope mounted on a rigid body is presented. The proposed, closed-
loop system dynamically compensates for the accelerometers’ measurements error and provides
a high-accuracy, low-noise estimation of the specific force and the angular velocity.

Keywords: accelerometer, magnetometer, gyroscope, inertial sensors, magnetic field sensors,
calibration, axes alignment, navigation, inertial measurement unit
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Περίληψη

Οι αδρανειακοί αισθητήρες (αισθητήρες επιτάχυνσης και γωνιακής ταχύτητας) και οι μαγνητικοί
αισθητήρες χρησιμοποιούνται ευρέως σε μεγάλο πλήθος εφαρμογών οι οποίες εκτείνονται από εμπο-
ρικά προϊόντα χαμηλού κόστους (κινητά τηλέφωνα, συστήματα συναγερμού κ.λπ.) μέχρι εφαρμογές
υψηλής τεχνολογίας σε τομείς όπως η βιομηχανία, η ναυτιλία κ.α. Αισθητήρες υψηλής ακρίβειας είναι
πλέον διαθέσιμοι σε μορφή τσιπ μαζί με τις απαραίτητες ηλεκτρονικές διατάξεις για τη ψηφιοποίηση
και πολλές φορές και τη ψηφιακή επεξεργασία των μετρήσεων κάνοντας εύκολη την ενσωμάτωση
των μαγνητικών αισθητήρων σε μεγαλύτερα συστήματα.

Η παρούσα διατριβή πραγματεύεται τη βαθμονόμηση (calibration) αδρανειακών και μαγνητι-
κών αισθητήρων καθώς και την αξιοποίηση των μετρήσεών τους σε εφαρμογές εντοπισμού θέσης
(tracking) και πλοήγησης (navigation).

Τόσο στην περίπτωση των αδρανειακών αισθητήρων όσο και σε αυτή των μαγνητικών αισθη-
τήρων, κάθε μονάδα αισθητήρα χρειάζεται μια διαδικασία βαθμονόμησης μετά την παραγωγή της
προκειμένου να παράγει μετρήσεις υψηλής ακρίβειας. Η παρούσα εργασία επικεντρώνεται σε αδρα-
νειακούς και μαγνητικούς αισθητήρες τριών αξόνων και χαμηλού κόστους και εξερευνά μεθόδους
και αλγορίθμους για την καλύτερη εκμετάλλευση των δεδομένων τους σε εφαρμογές που απαιτούν
υψηλή ακρίβεια, όπως για παράδειγμα η πλοήγηση.

Στο πρώτο της μέρος παρουσιάζονται μέθοδοι και αλγόριθμοι για την βαθμονόμηση αδρανειακών
και μαγνητικών αισθητήρων καθώς και για την ευθυγράμμιση των αξόνων ευαισθησίας τους χωρίς την
χρήση ειδικού εργαστηριακού εξοπλισμού. Οι προτεινόμενοι αλγόριθμοι στηρίζονται σε μεθόδους
βελτιστοποίησης ενώ η εκτέλεση τους δεν απαιτεί σημαντικούς υπολογιστικούς πόρους.

Στο δεύτερο μέρος, αναδεικνύεται η σημασία της βαθμονόμησης σε εφαρμογές πλοήγησης και
στη συνέχεια παρουσιάζονται δύο χαρακτηρίστηκες εφαρμογές. Συγκεκριμένα, αρχικά, παρουσιάζε-
ται ένα σύστημα αδρανειακής πλοήγησης το οποίο συνδυάζει τα δεδομένα αδρανειακών και μαγνη-
τικών αισθητήρων τοποθετημένων στο παπούτσι ενός πεζού ανθρώπου και παρέχει μακροπρόθεσμα
μια μεγάλης ακρίβειας εκτίμηση της θέσης.

Στη συνέχεια, παρουσιάζεται ένα αδρανειακό σύστημα μέτρησης αποτελούμενο από πολλαπλούς
αισθητήρες επιτάχυνσης σε συνδυασμό ένα αισθητήρα γωνιακής ταχύτητας. Το προτεινόμενο σύ-
στημα κλειστού βρόχου αντισταθμίζει δυναμικά το σφάλμα μέτρησης των αισθητήρων επιτάχυνσης
και προσφέρει μια εκτίμηση της επιτάχυνσης και της γωνιακής ταχύτητας με πολύ χαμηλά επίπεδα
θορύβου.
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Η παρούσα διατριβή πραγματεύεται τη βαθμονόμηση (calibration) αδρανειακών και μαγνητι-
κών αισθητήρων καθώς και την αξιοποίηση των μετρήσεών τους σε εφαρμογές εντοπισμού θέσης
(tracking) και πλοήγησης (navigation).

Οι αδρανειακοί αισθητήρες (αισθητήρες επιτάχυνσης και γωνιακής ταχύτητας) χρησιμοποιούνται
ευρέως τα τελευταία χρόνια σε μεγάλο πλήθος εφαρμογών οι οποίες εκτείνονται από εμπορικά προ-
ϊόντα χαμηλού κόστους (κινητά τηλέφωνα, συστήματα συναγερμού κ.λπ.) μέχρι εφαρμογές υψηλής
τεχνολογίας σε τομείς όπως η βιομηχανία, η ναυτιλία κ.α. Η ανάπτυξη αυτή οφείλεται σε μεγάλο
βαθμό στη ραγδαία ανάπτυξη των τεχνολογιών κατασκευής αδρανειακών αισθητήρων τις τελευταίες
δεκαετίες και κυρίως στην ανάπτυξη της τεχνολογίας MEM (micro-electro-mechanical) αισθητή-
ρων η οποία επιτρέπει την κατασκευή αισθητήρων σε μορφή τσιπ, σε μεγάλη κλίμακα με πολύ μικρό
κόστος. Αντίστοιχα με τους αδρανειακούς αισθητήρες, και οι μαγνητικοί αισθητήρες έχουν γίνει
τα τελευταία χρόνια αναπόσπαστο κομμάτι πολλών συσκευών της καθημερινής ζωής αλλά και προ-
ϊόντων υψηλής τεχνολογίας. Αισθητήρες υψηλής ακρίβειας είναι πλέον διαθέσιμοι σε μορφή τσιπ
μαζί με τις απαραίτητες ηλεκτρονικές διατάξεις για τη ψηφιοποίηση και πολλές φορές και τη ψη-
φιακή επεξεργασία των μετρήσεων κάνοντας εύκολη την ενσωμάτωση των μαγνητικών αισθητήρων
σε μεγαλύτερα συστήματα.

Τόσο στην περίπτωση των αδρανειακών αισθητήρων όσο και σε αυτή των μαγνητικών αισθη-
τήρων, κάθε μονάδα αισθητήρα χρειάζεται μια διαδικασία βαθμονόμησης μετά την παραγωγή της
προκειμένου να παράγει μετρήσεις υψηλής ακρίβειας. Η διαδικασία αυτή μπορεί να γίνει είτε κατά
την κατασκευή του αισθητήρα στο εργοστάσιο, είτε σε μεταγενέστερο χρόνο, πολλές φορές ακόμα
και μετά την ενσωμάτωση του αισθητήρα σε ένα μεγαλύτερο σύστημα.

Ένας βασικός περιορισμός που προκύπτει κατά την χρήση αδρανειακών και μαγνητικών αισθη-
τήρων χαμηλού κόστους, είναι η έλλειψη βαθμονόμησης. Σε αυτή την περίπτωση, το κόστος της
βαθμονόμησης είναι πολλαπλάσιο του κόστους του αισθητήρα και έτσι είναι ευθύνη του σχεδιαστή
του συστήματος να προβλέψει για την βαθμονόμηση του αισθητήρα, όταν αυτή είναι απαραίτητη.
Συγκεκριμένα, στην περίπτωση της πλοήγησης, η έρευνα τα τελευταία χρόνια επικεντρώνεται στην
χρήση αδρανειακών και μαγνητικών αισθητήρων σε συνεργασία με τα δορυφορικά συστήματα πλοή-
γησης (GPS, Glonass, Beidou, Galileo) αλλά και στην ανάπτυξη πλήρως αυτόνομων συστημάτων
αδρανειακής πλοήγησης. Η πλοήγηση με χρήση αποκλειστικά αδρανειακών αισθητήρων αντιμετω-
πίζει μεν τα βασικά προβλήματα των δορυφορικών συστημάτων πλοήγησης (δεν λειτουργούν σε
εσωτερικούς χώρους, είναι ευαίσθητα σε παρεμβολές, έχουν μικρό ρυθμό ανανέωσης) αλλά απαιτεί
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μετρήσεις μεγάλης ακρίβειας και πιστότητας.
Αυτή η εργασία επικεντρώνεται σε αδρανειακούς και μαγνητικούς αισθητήρες τριών αξόνων και

χαμηλού κόστους και εξερευνά μεθόδους και αλγορίθμους για την καλύτερη εκμετάλλευση των
δεδομένων τους σε εφαρμογές που απαιτούν υψηλή ακρίβεια, όπως για παράδειγμα η πλοήγηση.
Στο πρώτο της μέρος παρουσιάζονται μέθοδοι και αλγόριθμοι για την βαθμονόμηση αδρανειακών
και μαγνητικών αισθητήρων χωρίς την χρήση ειδικού εργαστηριακού εξοπλισμού. Στη συνέχεια,
στο δεύτερο μέρος, αναδεικνύεται η σημασία της βαθμονόμησης σε εφαρμογές πλοήγησης και στη
συνέχεια παρουσιάζονται δύο χαρακτηρίστηκες εφαρμογές.

Μέρος Α: Βαθμονόμηση Αδρανειακών και Μαγνητικών Αισθητήρων

Σε κάθε αισθητήρα, η βαθμονόμηση (calibration) είναι μια απαραίτητη διαδικασία ώστε η μέτρηση
του αισθητήρα να ανταποκρίνεται με ακρίβεια στο μετρούμενο μέγεθος. Ο όρος βαθμονόμηση στην
παρούσα εργασία χρησιμοποιείται για να εκφράσει όχι μόνο την αντιστοίχιση της κλίμακας της
εξόδου του αισθητήρα με αυτή του υπό μέτρηση μεγέθους αλλά και την αντιστάθμιση των στατικών
σφαλμάτων του αισθητήρα όπως για παράδειγμα το offset, την μη ορθογωνιότητα των αξόνων κ.α.

Το πρώτο βήμα για την βαθμονόμηση των αδρανειακών και μαγνητικών αισθητήρων είναι η
αναγνώριση και η μοντελοποίηση των στατικών πηγών σφάλματος που επηρεάζουν την έξοδο του
αισθητήρα. Το στατικό σφάλμα των αισθητήρων οφείλεται κυρίως σε ατέλειες κατά την διαδικασία
κατασκευής του αισθητήρα και στις ηλεκτρονικές διατάξεις που χρησιμοποιούνται για την καταγραφή
της εξόδου του και είναι στο μεγαλύτερο του μέρος γραμμικό ως προς την έξοδο του αισθητήρα.
Έτσι, στην παρούσα εργασία, χρησιμοποιείται ένα γραμμικό μοντέλο για κάθε αισθητήρα που συνδέει
την μέτρηση του με το μετρούμενο μέγεθος (επιτάχυνση, γωνιακή ταχύτητα ή μαγνητικό πεδίο) και
συμπεριλαμβάνει όλες τις γραμμικές πηγές σφάλματος.

Ιδιαίτερο ενδιαφέρον παρουσιάζει η περίπτωση των μαγνητικών αισθητήρων η έξοδος των οποίων
μπορεί να επηρεαστεί και από εξωτερικούς παράγοντες όταν ο αισθητήρας ενσωματωθεί σε ένα
μεγαλύτερο σύστημα. Πιο συγκεκριμένα, μαγνητικά υλικά τα οποία μπορεί να υπάρχουν κοντά
στον μαγνητικό αισθητήρα, αλλοιώνουν το τοπικό μαγνητικό πεδίο με αποτέλεσμα μια μόνιμη,
στατική παραμόρφωση στην έξοδο του αισθητήρα. Το φαινόμενο αυτό συμπεριλαμβάνεται στην
μοντελοποίηση και στη συνέχεια αντισταθμίζεται κατά την διαδικασία της βαθμονόμησης. Αφού
έχει γίνει η αναγνώριση των πηγών σφάλματος και η μοντελοποίηση της εξόδου του αισθητήρα, η
διαδικασία της βαθμονόμησης στοχεύει στον υπολογισμό των διάφορων παραμέτρων του μοντέλου.
Δεδομένου ότι η εργασία αυτή στοχεύει κυρίως σε αισθητήρες χαμηλού κόστους, οι αλγόριθμοι
βαθμονόμησης που παρουσιάζονται δεν απαιτούν ειδικό εξοπλισμό για την εφαρμογή τους αφού αυτό
θα αύξανε σημαντικά το κόστος του αισθητήρα. Στη περίπτωση αυτή, ο αλγόριθμος βαθμονόμησης
έχει ακόμα πιο δύσκολο έργο, αφού έκτος από τις παραμέτρους του μοντέλου μέτρησης, άγνωστη
είναι και η πραγματική τιμή του μετρούμενου μεγέθους.
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Βαθμονόμηση Αισθητήρων Επιτάχυνσης και Μαγνητικού Πεδίου

Οι μετρήσεις των αισθητήρων επιτάχυνσης και μαγνητικού πεδίου μπορούν να περιγραφούν από
το ίδιο μαθηματικό μοντέλο. Έτσι, στις περισσότερες περιπτώσεις, οι ίδιοι αλγόριθμοι μπορούν να
χρησιμοποιηθούν για τη βαθμονόμηση και των δύο αισθητήρων. Στην βιβλιογραφία, η βαθμονόμηση
αισθητήρων επιτάχυνσης και μαγνητικού πεδίου συνήθως εκφράζεται ως ένα πρόβλημα βελτιστοποί-
ησης (optimization) ή εκτίμησης (estimation) από την λύση των οποίων προκύπτουν οι απαραίτητες
παράμετροι του μοντέλου μέτρησης. Για την επίλυση του προβλήματος αυτού, όταν δεν χρησιμο-
ποιείται ειδικός εργαστηριακός εξοπλισμός ως αναφορά, χρησιμοποιούνται μια σειρά μετρήσεων της
επιτάχυνσης της βαρύτητας ή του μαγνητικού πεδίου της Γης αντίστοιχα.

Τόσο για τα προβλήματα βελτιστοποίησης όσο και για αυτά της εκτίμησης, στη βιβλιογραφία
προτείνεται η λύση τους με τη χρήση αριθμητικών μεθόδων. Συγκεκριμένα, στην περίπτωση των
προβλημάτων βελτιστοποίησης, η επίλυση τους γίνεται με τη χρήση των μεθόδων κλίσης (gradient
descent και Newton-Raphson) ενώ για τα προβλήματα εκτίμησης, συνήθως χρησιμοποιείται κάποια
παραλλαγή του φίλτρου Kalman. Και στις δύο περιπτώσεις, παρουσιάζονται τα προβλήματα του
αυξημένου υπολογιστικού κόστους αλλά, και της δυσκολίας η και αδυναμίας σύγκλισης των αλ-
γορίθμων. Η δυσκολία στη σύγκλιση οφείλεται σε μεγάλο βαθμό στο γεγονός ότι η επιτυχία των
μεθόδων αυτών στηρίζεται σε μεγάλο βαθμό σε μια αρχική εκτίμηση των αγνώστων παραμέτρων.
Μάλιστα, πολλές εργασίες προτείνουν διαφορετικές μεθόδους για τον υπολογισμό μιας καλής αρ-
χικής εκτίμησης των αγνώστων με μικρό υπολογιστικό κόστος προκειμένου μετά οι αριθμητικές
μέθοδοι να συγκλίνουν με ένα μικρό αριθμό επαναλήψεων.

Στην παρούσα διατριβή χρησιμοποιείται μια διαφορετική προσέγγιση. Το πρόβλημα της βαθ-
μονόμησης διατυπώνεται μεν ως ένα πρόβλημα βελτιστοποίησης, η λύση αυτού όμως δίνεται με
μια επαναληπτική μέθοδο η οποία στηρίζεται σε ένα υπολογιστικά ελαφρύ πρόβλημα ελαχίστων
τετραγώνων. Η προτεινόμενη μέθοδος, έκτος του πλεονεκτήματος που παρουσιάζει σε όρους υπο-
λογιστικού κόστους, δεν απαιτεί κάποια αρχική εκτίμηση των αγνώστων παραμέτρων με αποτέλεσμα
να είναι πιο εύρωστη από αυτές που χρησιμοποιούν τις παραδοσιακές αριθμητικές μεθόδους. Η μεθο-
δολογία συλλογής των απαραίτητων μετρήσεων είναι σημαντικός παράγοντας για την επιτυχία του
αλγορίθμου βαθμονόμησης ο οποίος μάλιστα συχνά παραλείπεται στη βιβλιογραφία. Στην παρούσα
εργασία, οι αλγόριθμοι που παρουσιάζονται πλαισιώνονται με μια βήμα-προς-βήμα μεθοδολογία για
την συλλογή των απαραίτητων μετρήσεων τόσο για την περίπτωση των αισθητήρων επιτάχυνσης
όσο και για αυτή των μαγνητικών αισθητήρων.

Ευθυγράμμιση των Αξόνων Ευαισθησίας Αισθητήρων Επιτάχυνσης και
Μαγνητικού Πεδίου

Σε πολλές εφαρμογές, συμπεριλαμβανομένων και αυτών της πλοήγησης, οι μετρήσεις ενός η περισ-
σότερων αισθητήρων επιτάχυνσης χρησιμοποιούνται σε συνδυασμό με αυτές αντίστοιχων αισθητή-
ρων μαγνητικού πεδίου. Σε αυτές τις περιπτώσεις είναι συνήθως απαραίτητο οι άξονες ευαισθησίας
των δύο αισθητήρων να είναι ευθυγραμμισμένοι.
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Η έλλειψη ευθυγράμμισης μεταξύ των αξόνων ευαισθησίας μπορεί να οφείλεται σε πολλούς
παράγοντες. Αρχικά, όταν δύο η περισσότεροι αισθητήρες που ενσωματώνονται στο ίδιο σύστημα
είναι αναμενόμενο να υπάρξει κάποιο μικρό σφάλμα στην ευθυγράμμιση τους κατά την συναρμο-
λόγηση του συστήματος. Επιπλέον, ακόμα και όταν οι αισθητήρες είναι σε ολοκληρωμένη μορφή
και αποτελούν κομμάτι του ίδιου τσίπ, ατέλειες κατά την διαδικασία παραγωγής προκαλούν ένα
μικρό σφάλμα στην ευθυγράμμιση των αξόνων τους. Τέλος, η χρήση αλγορίθμων βαθμονόμησης οι
οποίοι δεν χρησιμοποιούν ειδικό εργαστηριακό εξοπλισμό και δεν στηρίζονται σε κάποιο απόλυτο
σύστημα αξόνων αναφοράς (όπως και αυτοί που παρουσιάζονται στην παρούσα εργασία) μπορεί να
προκαλέσει περιστροφή των αξόνων ευαισθησίας των δύο αισθητήρων και απώλεια της μεταξύ τους
ευθυγράμμισης.

Η μαγνητική έγκλιση (magnetic dip ή magnetic inclination) χρησιμοποιείται συνήθως ως ανα-
φορά για την ευθυγράμμιση των αξόνων αισθητήρων επιτάχυνσης και μαγνητικού πεδίου χωρίς τη
χρήση ειδικού εργαστηριακού εξοπλισμού. Η μαγνητική έγκλιση ορίζεται ως η γωνία που σχηματί-
ζει το διάνυσμα του μαγνητικού πεδίου της Γης με το οριζόντιο επίπεδο. Στηριζόμενες στον ορισμό
της μαγνητική έγκλισης και χρησιμοποιώντας ένα πλήθος μετρήσεων, πολλές εργασίες σχηματίζουν
ένα πρόβλημα βελτιστοποίησης ή ένα πρόβλημα εκτίμησης παραμέτρων η λύση του οποίου δίνει την
σχετική περιστροφή των αξόνων του αισθητήρα επιτάχυνσης και του μαγνητικού αισθητήρα. Ομοίως
με την περίπτωση της βαθμονόμησης που περιεγράφηκε προηγουμένως, οι αριθμητικές μέθοδοι κλί-
σης ή το φίλτρο Kalman χρησιμοποιούνται για την επίλυση του προβλήματος βελτιστοποίησης και
εκτίμησης παραμέτρων αντίστοιχα.

Στην εργασία αυτή παρουσιάζεται μία νέα μέθοδος για την ευθυγράμμιση των αξόνων ενός
αισθητήρα επιτάχυνσης και ενός αισθητήρα μαγνητικού πεδίου η οποία δίνει μια αναλυτική λύση
στο πρόβλημα και δεν στηρίζεται σε κάποια αριθμητική μέθοδο. Η μέθοδος αυτή στηρίζεται στην
μαγνητική έγκλιση για τον σχηματισμό ενός προβλήματος βελτιστοποίησης του οποίου η λύση
δίνεται σε κλειστή μορφή. Έτσι η προτεινόμενη μέθοδος υπερτερεί της κλασσικής προσέγγισης
τόσο σε όρους υπολογιστικού κόστους όσο και σε ευρωστία.

Βαθμονόμηση Γυροσκοπίου

Η βαθμονόμηση του γυροσκοπίου παρουσιάζει ιδιαίτερο ενδιαφέρον τόσο στη διατύπωση ενός μα-
θηματικού προβλήματος για τον υπολογισμό των απαραίτητων παραμέτρων του μοντέλου μέτρησης
όσο και στην εύρεση κατάλληλης μέτρησης αναφοράς. Μία προφανής λύση στο πρόβλημα αυτό θα
ήταν να χρησιμοποιηθεί η γνωστή ταχύτητα περιστροφής της γης ως αναφορά για τη διατύπωση και
επίλυση ενός προβλήματος βελτιστοποίησης η εκτίμησης παραμέτρων. Ενώ η λύση αυτή μπορεί να
χρησιμοποιηθεί σε γυροσκόπια υψηλής ακρίβειας, στην περίπτωση των ΜΕΜ γυροσκοπίων χαμη-
λού κόστους η ταχύτητα περιστροφής της Γης είναι αδύνατο να μετρηθεί λόγω του υψηλότερου
θορύβου μέτρησης του αισθητήρα.

Η πιο συνήθης λύση που προτείνεται στη βιβλιογραφία για τη βαθμονόμηση του γυροσκοπίου
είναι η χρήση ενός αισθητήρα μαγνητικού πεδίου για τον υπολογισμό μιας τιμής αναφοράς για τη
γωνιακή ταχύτητα. Στη συνέχεια, ένα πλήθος μετρήσεων σε συνδυασμό με τις τιμές αναφοράς που
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έχουν εξαχθεί από τα δεδομένα του μαγνητικού αισθητήρα χρησιμοποιούνται για την επίλυση ενός
προβλήματος εκτίμησης παραμέτρων. Όμοια με την περίπτωση της βαθμονόμησης των αισθητήρων
επιτάχυνσης και μαγνητικού πεδίου, η προσέγγιση αυτή αντιμετωπίζει στην πράξη προβλήματα
σύγκλισης αλλά και χαμηλής ακρίβειας.

Στην παρούσα εργασία προτείνεται μια εντελώς διαφορετική προσέγγιση του προβλήματος. Θε-
ωρώντας ότι όλοι οι αισθητήρες είναι σταθερά τοποθετημένοι σε μία άκαμπτη πλατφόρμα, γίνεται
χρήση του αισθητήρα μαγνητικού πεδίου αλλά και του αισθητήρα επιτάχυνσης για τον υπολογισμό
των γωνιών περιστροφής μεταξύ έξι στατικών θέσεων της πλατφόρμας. Στη συνέχεια, οι γωνίες
αυτές συγκρίνονται με τις αντίστοιχες γωνίες που προκύπτουν από την ολοκλήρωση των μετρή-
σεων γωνιακής ταχύτητας του γυροσκοπίου κατά την διάρκεια της μετάβασης από την μία στατική
θέση στην επόμενη. Οι παράμετροι βαθμονόμησης υπολογίζονται από την επίλυση ενός προβλή-
ματος βελτιστοποίησης το οποίο ελαχιστοποιεί το σφάλμα μεταξύ των γωνιών περιστροφής που
υπολογίζονται από το γυροσκόπιο και των αντίστοιχων που υπολογίζονται από τον συνδυασμό του
μαγνητικού αισθητήρα και του αισθητήρα επιτάχυνσης.

Παρά το γεγονός ότι το πρόβλημα βελτιστοποίησης λύνεται με την μέθοδο της καθόδου (gradient
descent) αλλά και το αυξημένο υπολογιστικό της κόστος λόγω της αριθμητικής ολοκλήρωσης των
μετρήσεων του γυροσκοπίου, η προτεινόμενη μέθοδος υπερτερεί σε ευρωστία αλλά και ακρίβεια.
Αυτό οφείλεται κυρίως στο γεγονός ότι για τον υπολογισμό της τιμής αναφοράς συμπεριλαμβά-
νεται και η μέτρηση του αισθητήρα επιτάχυνσης αυξάνοντας τόσο την αξιοπιστία της μέτρησης
αναφοράς, όσο και την ακρίβειά της.

Βαθμονόμηση και Ευθυγράμμιση Αξόνων Ευαισθησίας Πολλαπλών
Αισθητήρων

Σε πολλές εφαρμογές, περισσότεροι από ένας αδρανειακοί η μαγνητικοί αισθητήρες χρησιμοποιού-
νται σε συνδυασμό. Σε αυτές τις περιπτώσεις είναι απαραίτητη τόσο η βαθμονόμηση του κάθε αισθη-
τήρα χωριστά, όσο και η ευθυγράμμιση των αξόνων μεταξύ των αισθητήρων. Μία λύση σε αυτό το
πρόβλημα είναι η βαθμονόμηση των αισθητήρων, και η ευθυγράμμιση των αξόνων ευαισθησίας τους
να αντιμετωπιστούν σαν δύο διαφορετικές διαδικασίες. Έτσι, θα μπορούσαν να χρησιμοποιηθούν
οι αλγόριθμοι που παρουσιάζονται στην παρούσα εργασία για την βαθμονόμηση κάθε αισθητήρα
και στη συνέχεια να αναπτυχθεί μία μέθοδος για την ευθυγράμμιση των αξόνων ευαισθησίας τους.
Ωστόσο, αυτή η προσέγγιση αυξάνει σημαντικά τόσο το υπολογιστικό κόστος όσο και την πολυ-
πλοκότητα της απαιτούμενης διαδικασίας συλλογής μετρήσεων και βαθμονόμησης.

Στην παρούσα διατριβή παρουσιάζεται μία μέθοδος η οποία αντιμετωπίζει και λύνει το πρόβλημα
της βαθμονόμησης και αυτό της ευθυγράμμισης των αξόνων ευαισθησίας πολλαπλών μαγνητικών η
αδρανειακών αισθητήρων σαν ένα ενιαίο πρόβλημα. Σε αυτό το πλαίσιο, το πρόβλημα βελτιστοποί-
ησης που διατυπώθηκε για την περίπτωση ενός μαγνητικού η αδρανειακού αισθητήρα επεκτείνεται
στην περίπτωση πολλαπλών αισθητήρων ενώ σε αυτό πλέον συμπεριλαμβάνεται και το πρόβλημα
της ευθυγράμμισης των αξόνων ευαισθησίας των αισθητήρων. Η λύση του νέου προβλήματος βελτι-
στοποίησης δίνεται και πάλι με την χρήση μιας επαναληπτικής μεθόδου που στηρίζεται στην επίλυση
ενός υπολογιστικά φθηνού προβλήματος ελαχίστων τετραγώνων.
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Μέρος Β: Εφαρμογές Αδρανειακών και Μαγνητικών Αισθητήρων

Οι αδρανειακοί και οι μαγνητικοί αισθητήρες χρησιμοποιούνται σε ένα μεγάλο εύρος εφαρμογών.
Στην παρούσα διατριβή παρουσιάζονται δύο εφαρμογές στον τομέα της πλοήγησης. Αρχικά πα-
ρουσιάζεται ένας αλγόριθμος για την πλοήγηση ενός πεζού ανθρώπου ο οποίος αξιοποιεί τον μα-
γνητικό αισθητήρα για να διορθώσει το μεγάλο σφάλμα στον προσανατολισμό που εισάγεται από
το γυροσκόπιο. Στη συνέχεια, παρουσιάζεται μια νέα αρχιτεκτονική για την εκτίμηση της γωνια-
κής ταχύτητας σε εφαρμογές πλοήγησης. Η αρχιτεκτονική αυτή χρησιμοποιεί ένα γυροσκόπιο και
πολλαπλούς αισθητήρες επιτάχυνσης και πετυχαίνει εξαιρετικά χαμηλά επίπεδα θορύβου.

Πλοήγηση Με Χρήση Αδρανειακών και Μαγνητικών Αισθητήρων

Η πλοήγηση με χρήση αδρανειακών αισθητήρων χρησιμοποιείται εδώ και πολλές δεκαετίες, ακόμα
και πριν την ανάπτυξη των συστημάτων δορυφορικής πλοήγησης, σε τομείς όπως η ναυτιλία, η αερο-
πλοΐα και η εξερεύνηση του διαστήματος. Ο κλάδος της αδρανειακής πλοήγησης έχει προσελκύσει
έντονο ερευνητικό ενδιαφέρον τα τελευταία χρόνια. Η ανάπτυξη αυτή οφείλεται κυρίως στο πολύ
χαμηλό κόστος και την μαζική παραγωγή των αισθητήρων τεχνολογίας ΜΕΜ, αλλά και στους πε-
ριορισμούς που θέτουν οι τεχνολογίες δορυφορικής πλοήγησης (περιορισμένος ρυθμός ανανέωσης,
δεν λειτουργούν σε εσωτερικούς χώρους, είναι ευαίσθητες σε παρεμβολές). Μία πολύ δημοφιλής
εφαρμογή της αδρανειακής πλοήγησης στην βιβλιογραφία είναι αυτή της πλοήγησης ενός πεζού
ανθρώπου. Στην πιο απλή εκδοχή, χρησιμοποιούνται μόνο ένας αισθητήρας επιτάχυνσης και ένα γυ-
ροσκόπιο τριών αξόνων οι οποίοι τοποθετούνται στο παπούτσι ενός ανθρώπου. Οι μετρήσεις των δύο
αισθητήρων, σε συνδυασμό με τις εξισώσεις της κινηματικής χρησιμοποιούνται για την διατύπωση
ενός προβλήματος εκτίμησης παραμέτρων, το οποίο λύνεται με την χρήση του φίλτρου Kalman και
δίνει ως αποτέλεσμα μια εκτίμηση της ταχύτητας, του προσανατολισμού και της θέσης.

Στα πλαίσια του φίλτρου Kalman και για την διόρθωση του σφάλματος θέσης που προκύπτει
από το σφάλμα μέτρησης των δύο αισθητήρων χρησιμοποιείται και η τεχνική Zero Velocity Update
(ZUPT). Η συγκεκριμένη τεχνική βασίζεται στο γεγονός ότι τη στιγμή που το παπούτσι είναι
ολόκληρο σε επαφή με το έδαφος έχει μηδενική ταχύτητα. Αρχικά, χρησιμοποιώντας τις μετρήσεις
των δύο αισθητήρων (ή και επιπλέον αισθητήρων) γίνεται μία εκτίμηση των χρονικών στιγμών κατά
τις οποίες το παπούτσι είναι ολόκληρο σε επαφή με το έδαφος. Στη συνέχεια, οι μετρήσεις των
αισθητήρων επιτάχυνσης και γωνιακής ταχύτητας, μαζί με την πληροφορία της μηδενικής ταχύτητας,
δίνονται ως είσοδος στο φίλτρο Kalman το οποίο τις χρησιμοποιεί για να αντισταθμίσει το σφάλμα
στην εκτίμηση της ταχύτητας, της θέσης και του προσανατολισμού.

Πολλές εργασίες προτείνουν διαφορετικούς αλγορίθμους οι οποίοι χρησιμοποιώντας διαφορε-
τικές διατυπώσεις του προβλήματος, διαφορετικούς αλγορίθμους για την υλοποίηση της τεχνικής
ZUPT αλλά και διαφορετικές παραλλαγές του φίλτρου Kalman πετυχαίνουν μεγάλη ακρίβεια στην
εκτίμηση της θέσης. Κοινό μειονέκτημα όλων των αλγορίθμων οι οποίοι χρησιμοποιούν αποκλει-
στικά μετρήσεις αδρανειακών αισθητήρων είναι η σταδιακή μείωση της ακρίβειας τους που μακρο-
πρόθεσμα οδηγεί στην συσσώρευση ενός μεγάλου σφάλματος θέσης. Το σφάλμα αυτό οφείλεται
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κυρίως στο σφάλμα μέτρησης αλλά και την σταδιακή μεταβολή του offset του γυροσκοπίου το οποίο
οδηγεί σε ένα συσσωρευτικό σφάλμα στον προσανατολισμό και μετέπειτα στην θέση.

Στην παρούσα εργασία παρουσιάζεται ένα σύστημα αδρανειακής πλοήγησης το οποίο συνδυάζει
τα δεδομένα αδρανειακών και μαγνητικών αισθητήρων τοποθετημένων στο παπούτσι ενός πεζού
ανθρώπου και παρέχει μακροπρόθεσμα μια μεγάλης ακρίβειας εκτίμηση της θέσης. Το προτεινόμενο
σύστημα χρησιμοποιεί την τεχνική ZUPT στα πλαίσια ενός προβλήματος εκτίμησης παραμέτρων
το οποίο λύνεται με την χρήση του φίλτρου Kalman. Συμπληρωματικά και ανεξάρτητα από την
εκτίμηση του φίλτρου Kalman, γίνεται μία δεύτερη εκτίμηση του προσανατολισμού χρησιμοποιώ-
ντας τον αισθητήρα επιτάχυνσης και τον αισθητήρα μαγνητικού πεδίου. Σε αντίθεση με παρόμοια
συστήματα που προτείνονται στην βιβλιογραφία, η εκτίμηση αυτή δεν απαιτεί την επίλυση κάποιου
υπολογιστικά ακριβού προβλήματος εκτίμησης παραμέτρων ή βελτιστοποίησης. Αντίθετα, γίνεται
χρήση του υπολογιστικά φθηνού αλγόριθμου TRIAD κατά τις χρονικές στιγμές κατά τις οποίες
ανιχνεύεται μηδενική ταχύτητα. Το σφάλμα της εκτίμησης του προσανατολισμού μέσω του αλγο-
ρίθμου TRIAD εξαρτάται μόνο από το στιγμιαίο σφάλμα μέτρησης των αισθητήρων επιτάχυνσης και
μαγνητικού πεδίου και δεν είναι συσσωρευτικό όπως αυτό της εκτίμησης του φίλτρου Kalman μέσω
των μετρήσεων του γυροσκοπίου. Έτσι, κάθε φορά που είναι διαθέσιμη αυτή η δεύτερη εκτίμηση του
προσανατολισμού, χρησιμοποιείται για να αντισταθμίσει το συσσωρευτικό σφάλμα της εκτίμησης
του φίλτρου Kalman με αποτέλεσμα μία μεγάλης ακρίβειας εκτίμηση της θέσης σε βάθος χρόνου.

Βελτίωση της Εκτίμησης της Γωνιακής Ταχύτητας με Χρήση Πολλαπλών
Αισθητήρων Επιτάχυνσης

Το μεγαλύτερο μέρος του σφάλματος στα αδρανειακά συστήματα πλοήγησης οφείλεται στο συσ-
σωρευτικό σφάλμα μέτρησης του γυροσκοπίου. Στην παρούσα διατριβή, προτείνεται ένα σύστημα
κλειστού βρόχου το οποίο χρησιμοποιεί ένα γυροσκόπιο τριών αξόνων και πολλαπλούς αισθητήρες
επιτάχυνσης τριών αξόνων για τον υπολογισμό της γωνιακής ταχύτητας με σημαντικά μειωμένο
θόρυβο σε σύγκριση με τη μέτρηση του γυροσκοπίου.

Το προτεινόμενο σύστημα στηρίζεται στην ήδη υπάρχουσα θεωρία των συστημάτων πλοήγησης
χωρίς χρήση του γυροσκοπίου (gyro-free inertial navigation systems). Η θεωρία αυτή αναπτύχθηκε
κατά τα πρώτα χρόνια της εμπορικής διάθεσης αισθητήρων τύπου MEM κατά τα οποία υπήρχαν
διαθέσιμοι MEM αισθητήρες επιτάχυνσης αλλά όχι ΜΕΜ γυροσκόπια. Τοποθετώντας ένα πλήθος
αισθητήρων επιτάχυνσης σε ένα στερεό σώμα είναι δυνατός ο υπολογισμός της γωνιακής του ταχύ-
τητας μέσω της επίλυσης ενός συστήματος μη γραμμικών διαφορικών εξισώσεων. Πολλές εργασίες
προτείνουν διαφορετικές αρχιτεκτονικές όσον αφορά το πλήθος αλλά και τις θέσεις τοποθέτησης
των αισθητήρων επιτάχυνσης με σκοπό την απλοποίηση του συστήματος διαφορικών εξισώσεων
(μέσω της απαλοιφής των μη γραμμικών όρων).

Ένα μεγάλο πλεονέκτημα των συστημάτων αυτών είναι το γεγονός ότι εάν οι αισθητήρες επι-
τάχυνσης τοποθετηθούν σε μεγάλη απόσταση μεταξύ τους, η εκτίμηση της γωνιακής ταχύτητας
έχει σημαντικά μειωμένο θόρυβο σε σχέση με την μέτρηση του γυροσκοπίου. Παρόλα αυτά, κοινό
μειονέκτημα όλων των προτεινόμενων αρχιτεκτονικών είναι ότι κάθε μικρό σφάλμα τόσο στην μέ-
τρηση των αισθητήρων επιτάχυνσης όσο και στην θέση τοποθέτησης τους πάνω στο στερεό σώμα
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μεταφράζεται σε ένα σφάλμα στην εκτιμώμενη γωνιακή ταχύτητα το οποίο κατά την διαδικασία της
πλοήγησης μεταφράζεται σε ένα συσσωρευτικό σφάλμα στον προσανατολισμό.

Στην παρούσα εργασία γίνεται χρήση πολλαπλών αισθητήρων επιτάχυνσης για τον υπολογισμό
της γωνιακής ταχύτητας, ενώ παράλληλα χρησιμοποιείται και ένα γυροσκόπιο σε ένα σύστημα
κλειστού βρόχου για την αντιστάθμιση των σφαλμάτων που προκύπτουν από το σφάλμα μέτρησης
των αισθητήρων επιτάχυνσης αλλά και του σφάλματος στην τοποθέτησή τους. Με αυτό τον τρόπο, η
έξοδος του προτεινόμενου συστήματος, επηρεάζεται μεν από το σφάλμα μέτρησης του γυροσκοπίου
στις πολύ χαμηλές συχνότητες (κατά κύριο λόγο από το offset του γυροσκοπίου), αλλά, στις
υψηλότερες συχνότητες, ο θόρυβος της γωνιακής ταχύτητας είναι αισθητά χαμηλότερος σε σύγκριση
με αυτόν του γυροσκοπίου προσφέροντας έτσι μια συνολικά πιο ακριβή εκτίμηση της γωνιακής
ταχύτητας.
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1 Introduction

1.1 Motivation and Scope

Inertial sensors (accelerometers and gyroscopes) along with magnetic field sensors are nowadays
used in a great variety electronic devices. Their application span extends from commercial
devices such as smartphones, activity trackers etc. to high-end, industrial, marine, aerospace
and military ones. Some representative applications include, but not limited to, navigation,
attitude estimation, image stabilization, healthcare systems, gaming and entertainment devices,
space exploration and many other industrial and commercial ones.

A very important aspect, especially in high-end applications where measurement accuracy
is of major importance, is the sensors’ calibration. For every measurement instrument or sensor,
calibration ensures that each measurement corresponds to the actual value of the measured
quantity and it is not affected by other static or dynamic parameters. The simplest form of
calibration of a sensor is to properly scale the its output to match the unit system of the measured
quantity. However, when accuracy is important, a calibration procedure must also compensate
for other measurement distortions, mainly caused by imperfections during the manufacturing
procedure of the sensor.

In many high-end applications, expensive, factory calibrated sensors are used in order to
achieve high accuracy. In such cases, very accurate rate tables and magnetic field sources are used
as reference to calibrate inertial and magnetic field sensors respectively. However, in applications
where cost is important, such as commercial electronic devices, low-cost sensors, typically in
integrated form, are preferred. In this case, factory calibration or other calibration services as
well as expensive calibration equipment cannot be used as both would raise the sensor’s cost
significantly.

The main problem when calibration without using special equipment is concerned, is to find
a proper measurement reference. To this end, most existing works use the Earth’s gravity and
magnetic field as reference in order to calibrate inertial and magnetic field vectors respectively
when no special equipment is available. Using several sensors’ measurements they formulate and
solve either an optimization problem or an estimation one to derive the required calibration
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parameters.
In addition to the calibration of a single sensor, in several applications such as navigation

and heading estimation, the data of the three sensors are combined and thus it is required for
their sensitivity axes to be aligned. To this purpose, many works use the magnetic inclination
as reference and given several accelerometer’s and magnetometer’s measurements, they derive
the rotation between the sensitivity axes of the two sensors. In addition, several works propose
calibration algorithms that exploit the Earth’s gravity and local magnetic field in order to
align the sensitivity axes of a gyroscope with the ones of an accelerometer or a magnetometer
respectively.

While there are several works in the literature proposing different algorithms for inertial and
magnetic field sensors’ calibration, most of them come with two great disadvantages: a) they do
not consider the calibration of inertial and magnetic field sensors as a single problem and deal
only with the calibration of a single sensor and b) they use numerical tools to derive the required
calibration parameters resulting in increased computational burden and potential convergence
issues.

Here, it should be noticed that a calibration procedure, in its strict definition, would require
to derive the scale and sensitivity of the sensor, using an absolute reference and a well defined
coordinate frame. Thus a complete calibration of inertial and magnetic field sensors without using
any piece of equipment and an external reference is not possible. However, existing works on the
field use the term calibration to indicate a statistical analysis of the sensors’ measurements that
compensates for the most important measurement errors and leads to high-accuracy differential
measurements. In this work we adopt this, more relaxed, use of the term calibration.

In the first part of this thesis, a complete methodology for calibrating three-axis inertial and
magnetic field sensors is introduced. First an algorithm for calibrating three-axis accelerometers
and three-axis magnetometers is presented. Using several measurements of the gravity acceleration
and the local magnetic field respectively, the calibration parameters are derived as the solution
of an optimization problem. Unlike the existing literature, the solution of this problem is not
derived using the standard descent methods, but instead, a novel iterative algorithm based on
the solution of a computationally cheap least squares problem is introduced.

Then, the problem of aligning the sensitivity axes of the two sensors is examined and
formulated as an optimization problem for deriving a rotation matrix representing the rotation
between the sensitivity axes of the two sensors. Using several measurements of the two sensors,
and exploiting the magnetic inclination phenomenon, the required rotation matrix is derived in
closed-form.

Finally, using the calibrated data of the two sensors, a new approach for calibrating the
gyroscope is introduced. More specifically, assuming that all three sensors are mounted on the
same rigid platform, the rotation of the platform between two still positions calculated using
the accelerometer’s and the magnetometer’s measurements is used as reference to calibrate the
gyroscope. The calibration is expressed as an optimization problem which is solved using the
gradient descent method.
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In the second part, two popular applications of inertial sensors in the field of navigation
are presented. Inertial navigation systems use inertial sensors (accelerometers and gyroscopes)
to calculate the velocity, orientation and position of a moving object. They are widely used
both alone and in combination with satellite-based systems in a wide range of applications
including aircraft navigation, spacecrafts, submarines and ships as they provide accurate position
estimation and require no extra infrastructure.

The most basic inertial navigation system is comprised of a three-axis accelerometer and a
three-axis gyroscope. In theory, using their measurements and applying the standard kinematic
equations one can derive the velocity, orientation and position of a moving object. However, in
practice, the sensors’ measurement errors and noise make inertial navigation a challenging task.
Existing works propose different architectures for fusing the measurements of the two sensors
in an optimal way, most commonly using a Kalman filter in order to eliminate the effects of
the measurement errors and noise. In addition, several works propose architectures including
more sensors such as magnetic field sensors, cameras and others in order to further improve the
navigation accuracy.

In this thesis, a novel system for pedestrian navigation using inertial and magnetic field
sensors is introduced. The proposed system uses a three-axis accelerometer, a three-axis gyroscope
and a three-axis magnetometer in order to compensate for the gyroscope’s bias drift and provide
long-term accurate velocity, orientation and position estimates. To do so, a popular pedestrian
navigation approach using the accelerometer’s and the gyroscope’s measurements in a Kalman
filter estimation problem is exploited. In addition, a more accurate, independent, estimate of
the orientation is derived using the accelerometer and the magnetometer. A long term accurate
orientation estimate is derived by combining the Kalman filter’s orientation estimate with the
one derived using the accelerometer and the magnetometer.

Then, to further reduce the effect of the gyroscope’s noise, an inertial measurement unit
architecture utilizing several three-axis accelerometers and a single three-axis gyroscope is presented.
The proposed architecture is an extension of gyroscope-free inertial measurement units, which
use only accelerometers to measure the linear acceleration and translate it to angular velocity
by solving a system of nonlinear differential equations. More specifically, it exploits the basic
operating principles of the gyroscope-free inertial measurement systems and uses a three-axis
gyroscope to correct the accelerometers’ offset. It requires a minimum of three accelerometers
which can be placed arbitrarily on a rigid object.

1.2 Thesis Outline

This thesis is divided in two parts. In the first part a complete methodology for calibrating
inertial and magnetic field sensors is introduced. Then, in the second part, two applications of
inertial sensors in the field of navigation are presented. More specifically, the rest of this thesis
is organized as follows.

In Chapter 2, a complete methodology for calibrating and aligning the sensitivity axes of
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inertial and magnetic field sensors is introduced. More specifically, the problem of calibrating
a three-axis accelerometer, a three-axis magnetometer and a three-axis gyroscope is examined
and a calibration algorithm for each sensor is presented and analyzed in detail. In addition,
a methodology for aligning the sensitivity axes of an accelerometer and a magnetometer is
introduced.

In Chapter 3, the calibration of three-axis magnetic field sensors is reviewed. Seven representative
algorithms dealing with the in-situ calibration of magnetic field sensors without requiring any
special piece of equipment are reviewed. The algorithms are presented in a user friendly, directly
applicable step-by-step form, and are compared in terms of accuracy, computational efficiency,
and robustness using both real sensors’ data and artificial data with a known sensor measurement
distortion.

In Chapter 4, the presented calibration methodology is extended the case where multiple
accelerometers or magnetometers are used together. More specifically, a computationally efficient
algorithm for simultaneous joint calibration and axes alignment of multiple 3-axis accelerometers
or 3-axis magnetometers is presented.

In Chapter 5, the hardware design of a low-cost inertial measurement unit is presented.
In Chapter 6 the importance of sensor’s calibration when they are used in inertial navigation

systems is explored. First, a bound for the velocity and orientation error as a function of
the accelerometer’s and gyroscope’s calibration parameters is derived. Then, using an inertial
measurement unit and a popular pedestrian navigation algorithm, it is experimentally demonstrated
how the large error characteristics of low-cost sensors significantly affect the navigation’s accuracy.

In Chapter 7, a pedestrian navigation system using inertial and magnetic field sensors is
introduced. The proposed system architecture is presented and analyzed in detail while extensive
experiments prove its long-term accuracy compared to existing works using only inertial sensors.

In Chapter 8 a new inertial measurement unit architecture is introduced which gives an
estimation of the angular velocity with significantly lower noise than the gyroscope’s measurement.
The proposed system is presented and analyzed in detail while a series of simulations are
presented to demonstrate its performance.

Finally, Chapter 9 concludes the thesis with a general summary of its contributions and a
presentation of open problems, paving the way for future work.
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Part 1
Inertial and Magnetic Field Sensors Calibration
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2 Inertial & Magnetic Field
Sensors’ Calibration &Axes Alignment

2.1 Introduction

Inertial sensors, accelerometers and gyroscopes, are combined with magnetometers in a
wide range of applications. For example, in [18] and [31] the three sensors are combined in
pedestrian navigation applications. Two heading estimation algorithms based on their joint data
are presented in [16] and [20]. Many applications where the three sensors are combined can be
found in the literature, from low-cost commercial systems to high-accuracy marine, aerospace
and military systems.

Especially in the case of low-cost systems, micro-electro-mechanical (MEMS) inertial sensors
are usually preferred due to their significantly lower cost and small size. However, a major
disadvantage of MEMS inertial sensors is their large error characteristics [10]. So, in order to use
them in applications where accuracy is important, such as navigation, a calibration procedure
that compensates for the deterministic part of their error is required.

Similarly to the inertial MEMS sensors, low-cost magnetometers also suffer from significant
measurement errors. Apart from the sensor’s manufacturing imperfections, the measured magnetic
field is strongly distorted by nearby magnetic materials. Surrounding electronic components and
the sensor’s enclosure are a common source of such distortions. Getting an accurate magnetic
field measurement requires a calibration procedure to compensate for both sensor’s measurement
error and the distortions caused by nearby objects.

Copyright © IEEE. Chapter 2 is reprinted, with permission, from: a)K. Papafotis, P.P. Sotiriadis,
”MAG.I.C.AL. – A Unified Methodology for Magnetic and Inertial Sensors Calibration and Alignment”, IEEE
Sensors Journal, vol. 19, no. 18, pp. 8241-8251, 15 Sept.15, 2019, b)P.P. Sotiriadis, K. Papafotis, ”Accurate Analytical
Accelerometer–Magnetometer Axes Alignment Guaranteeing Exact Orthogonality,” IEEE Trans. on Instrumentation
and Measurement, vol. 70, pp. 1-7, 2021., c)P.P. Sotiriadis, K. Papafotis, ”A Single-Step Method for Accelerometer
and Magnetometer Axes Alignment”, IEEE Trans. on Instrumentation and Measurement, vol. 70, pp. 1-7, 2021. and
d) K. Papafotis, P.P. Sotiriadis, ”Multiple Accelerometers and Magnetometers Joint Calibration and Alignment”,
IEEE Sensors Letters, Vol. 4, Issue 3, March 2020, pp. 2475-1472. Personal use of this material is permitted, but
republication/redistribution requires IEEE permission.
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In the case of low-cost inertial and magnetic sensors, factory calibration or after-production
calibration using expensive equipment is not an option as it would raise the sensor’s cost
significantly. Thus, a calibration method that is not based on any external equipment is highly
preferred.

For 3-axis accelerometer calibration, most authors take advantage of the fact that the
measured magnitude of the specific force is constant when the sensor is still, independently
of its orientation. The work in [19] proposes an off-line calibration method based on maximum
likelihood estimation. In [2] an algorithm based on least-square method is proposed. In [42]
the authors propose a solution based on the Levenberg-Marquardt algorithm to improve the
calibration accuracy. The authors in [9] use a nonlinear parameter estimator based on the
unscented transformation to calculate the calibration parameters. In [7], calibration parameters
are calculated by solving a nonlinear optimization problem.

Gyroscope calibration is a more complicated problem as no convenient rotation reference is
available. Some authors use special equipment in order to calibrate a gyroscope [34] [22] [41].
In [33], the authors use the earth’s rotation as reference, an approach suffering from the MEMS
gyroscope relatively high noise levels. In [26] the rotation of a calibrated accelerometer is used as
a reference in a least squares problem formulation. Authors in [37] use a calibrated magnetometer
in a Kalman filter estimation problem to calculate the calibration parameters.

For 3-axis magnetometer calibration, the magnetic field of the earth is most commonly used
as reference. In [1] , [38], [14], [13] and [35] the authors derive the calibration parameters by
solving a maximum likelihood estimation problem. A least-squares based iterative algorithm for
magnetometer calibration is proposed in [5]. In [39], the authors formulate the magnetometer
calibration as a state estimation problem which can be solved using Kalman filtering.

In most navigation or heading estimation applications the measurements of the three (accelerometer,
gyroscope, magnetometer) are combined to give a more accurate result. This gives rise to the
need of alignment between the axes of the three sensors. In [12] and [8], magnetometer’s axes
are aligned with those of the accelerometer. The authors in [36] and [39] use a gyroscope to align
magnetometer and inertial sensors. An algorithm for calibration and axes alignment between a
gyroscope and an accelerometer is proposed in [40].

The calibration of inertial and magnetic sensors, and the alignment of their axes is required
in all relevant applications. However, most of the previous works deal only with the calibration
of either a single sensor or the alignment between a pair of them.

This work introduces a complete methodology for unified calibration and joint axes alignment
of 3-axis magnetometer, 3-axis accelerometer and 3-axis gyroscope. The proposed method compensates
for all linear time-invariant distortions such as scale-factor, cross-coupling and offset, including
the soft-iron and hard-iron distortions of the magnetometer. It introduces a new, computationally
efficient, least-squares based, iterative algorithm for the calibration of the magnetometer and the
accelerometer. It solves the axes alignment problem in an analytical while it also introduces a
new way to calibrate the gyroscope based on the sensors’ joint data. Finally, a 15-step calibration
procedure requiring no external piece of equipment and no external attitude references is introduced.
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2.2 Measurement Model of Inertial and Magnetic Field Sensors

Before presenting the calibration algorithms, it is important to introduce the measurement
models of the three sensors on which the algorithms are based. Note that in this work, we only
consider the most important linear, time invariant error sources for all three sensors to derive
the corresponding measurement models.

2.2.1 Accelerometer’s Measurement Model

Accelerometer’s measurement is modeled as [10] [23]

ya = f + Tsff + Tccf + ha + ε, (2.1)

where
ya : 3× 1 measurement vector
f : 3× 1 true specific force vector

Tsf : 3× 3 diagonal matrix representing the scale-factor error
Tcc : 3× 3 matrix representing the cross-coupling error
ha : 3× 1 accelerometer’s bias vector
ε : random error

Defining Ta ≜ I3 + Tsf + Tcc, where I3 is the 3× 3 identity matrix, (2.1) can be written as

ya = Taf + ha + ε (2.2)

2.2.2 Magnetometer’s Measurement Model

A magnetometer measures the strength and the direction of the local magnetic field. The
measured field is a combination of the earth’s magnetic field and an additive field created by
magnetic objects attached to the same reference frame as the sensor. This additive field is called
hard-iron distortion and causes a permanent bias in the sensor’s output.

In addition, magnetometer’s measurement is distorted by nearby materials attached to the
sensor’s frame that influence the magnetic field but don’t generate a magnetic field themselves,
most commonly metals. This type of distortion is called soft-iron distortion, and, along with the
hard-iron distortion are the most important error contributors in the measurements.

Taking into account the hard-iron and soft-iron distortion which are the two dominant sources
of distortion, the sensor’s measurement can be modeled as [35], [12], [38], [21]

ym = TsfTcc (Tsim+ hhi) + hb + ε (2.3)
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where
ym : 3× 1 measurement vector
m : 3× 1 true magnetic field vector
Tsf : 3× 3 diagonal matrix representing the scale-factor error
Tcc : 3× 3 matrix representing the cross-coupling error
Tsi : 3× 3 matrix representing the soft-iron distortion
hb : 3× 1 magnetometer’s bias vector
hhi : 3× 1 bias vector due to hard-iron distortion
ε : random error

Setting Tm ≜ TsfTccTsi and hm ≜ TsfTcchsi + hb, the magnetometer’s measurement model
becomes

ym = Tmm+ hm + ε (2.4)

2.2.3 Gyroscope’s Measurement Model

Gyroscope’s measurement is modeled as [10], [23]

yg = ω + Tsfω + Tccω + hg + ε, (2.5)

where
yg : 3× 1 measurement vector
ω : 3× 1 true angular velocity vector

Tsf : 3× 3 diagonal matrix representing the scale-factor error
Tcc : 3× 3 matrix representing the cross-coupling error
hg : 3× 1 gyroscope’s bias vector
ε : random error

Defining Tg = I3 + Tsf + Tcc, (2.5) can be written as

yg = Tgω + hg + ε (2.6)
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2.3 Magnetometer’s Calibration

The 3-axis magnetometer’s calibration is based on the fact that the measured magnitude of
the magnetic field should be independent of the magnetometer’s orientation. This is formulated
as an optimization problem which is solved using a novel least-squares based iterative algorithm
achieving fast convergence and computational efficiency.

The purpose of the calibration algorithm is to estimate the calibration parameters Tm and
hm in order to minimize the measurement error ∥ε∥ while assuming a constant magnitude
for the measured magnetic field. Thus, given N measurements, the problem of calibrating a
magnetometer can be posed as the following optimization problem

minimize
Tm,hm

mk,k=1,2,..,N

N∑
k=1

∥ymk − Tmmk − hm∥2

subject to ∥mk∥ = 1, k = 1, 2, ..., N

(2.7)

All norms in this paper are two-norms unless it is indicated otherwise. In (2.7), without
loss of generality, we assume the magnitude of the magnetic field is one. A penalty function
corresponding to (2.7) is

J =

N∑
k=1

[
∥ymk − Tmmk − hm∥2 + λ

(
∥mk∥2 − 1

)2 ] (2.8)

where λ is a positive constant. It should be selected to balance the contribution of the two
summands1.

Minimizing (2.8) using gradient descent or Newton-Raphson methods require a good initial
estimate of the unknowns Tm and hm, otherwise they are very slow in convergence, if they
converge at all. Finding an initial estimate is not trivial due to the uncertainty of soft-iron and
hard-iron distortions; the authors in [38] and [12] propose a linear least-squares problem in order
to find one. In [5] a solution to (2.7) by means of iterations of a least-square problem is proposed
which excels in computational efficiency and convergence.

Similarly to [5], we propose an iterative solution to (2.7) based on the solution of a linear
least-squares problem. We start with rewriting (2.4) in matrix form for all measurements

Y = LG+ E (2.9)

where
Y =

[
ym1 ym2 ... ymN

]
, L =

[
Tm hm

]
G =

[
m1 m2 ... mN

1 1 ... 1

]
and E =

[
ε1 ε2 ... εN

]
1Typically it is selected to be in the order of ∥Tm∥.
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The system (2.9) has 3 × N equations. Assuming an initial estimate of a full rank matrix G,
every iteration of the algorithm begins with deriving Tm and hm minimizing the total squared
error ∥ETE∥2F . From least-squares method [32] we have

L = Y GT (GGT )−1 (2.10)

Using the updated values of Tm and hm and (2.4) we define

m̃k = T−1
m (ymk − hm), k = 1, 2, . . . , N (2.11)

where we assume that Tm is invertible. This is a rational assumption as a non-invertible Tm
would imply that not all three axes are expressed in the output of the sensor.

Since the magnitude of the magnetic field is independent of the measurement, and set to one
for convenience, we update mk as

mk =
m̃k

∥m̃k∥
(2.12)

As a metric of convergence we use the value of the penalty function J in (2.8). The magnetometer
calibration algorithm is summarized in Algorithm 1.

Algorithm 1: Magnetometer Calibration Algorithm
Step 1: Initialize mk =

ymk
∥ymk∥

, k = 1, 2, . . . , N

and form matrix G
Step 2: Solve for L using least-squares:

L = Y GT (GGT )−1

Step 3: Extract Tm and hm from L

Step 4: m̃k = T−1
m (ymk − hm), k = 1, 2, . . . , N

Step 5: Update G using mk =
m̃k

∥m̃k∥ , k = 1, 2, . . . , N

Step 6: Calculate J
Step 7: Repeat steps 2-6 until J is sufficiently small
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2.4 Accelerometer’s Calibration

The 3-axis accelerometer’s calibration algorithm exploits the fact that measured magnitude
of the specific force should be constant when the sensor is still, independently of the sensor’s
orientation. A popular calibration approach ([19], [2] and others) uses the fact that the measured
magnitude of the specific force of a still 3-axis accelerometer should be constant. Assuming N
measurements and using (2.2) the calibration problem is equivalent to minimizing (2.13); this is
typically done by employing the gradient descent method.

minimize
Ta,ha

fk,k=1,2,..,N

N∑
k=1

∥yak − Tafk − ha∥2

subject to ∥fk∥ = 1, k = 1, 2, ..., N

(2.13)

A penalty function corresponding to (2.13) is

J =

N∑
k=1

{
∥yak − Tafk − ha∥2 + λ

(
∥fk∥2 − 1

)2} (2.14)

where λ is a positive constant. It should be selected to balance the contribution of the two
summands 2.

In contrast to the magnetometer case, for the accelerometer’s calibration we can find an
initial estimate of the unknowns f, Ta and ha. Under the reasonable assumption of small scale-
factor and cross-coupling errors, an initial estimate of Ta is the 3 × 3 identity matrix 3. In a
similar way, bias vector ha is initialized to the 3× 1 zero vector (03×1).

Using the aforementioned initial estimate, the gradient descent method can minimize (2.14).
However, as seen, optimization problem (2.13) share the same form with (2.7), the optimization
problem derived for magnetometer calibration. Thus, magnetometer’s calibration algorithm can
also be used for accelerometer calibration as shown in Algorithm 2. Algorithm 2 is typically
significantly faster in convergence and better in computational efficiency than the gradient
descent one and this why it is preferred in our proposed calibration methodology here.

2Typically λ is selected to be in the order of ∥Ta∥
3This relates to the fact that we use ∥fk∥ = 1 and the assumption that the accelerometer’s gain has been roughly

pre-adjusted so that the specific force results in almost unit magnitude output.
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Algorithm 2: Accelerometer Calibration
Step 1: Initialize fk = yak

∥yak∥
, k = 1, 2, . . . , N

and form matrix G
Step 2: Solve for L using least-squares:

L = Y GT (GGT )−1

Step 3: Extract Ta and ha from L

Step 4: f̃k = T−1
a (yak − ha), k = 1, 2, . . . , N

Step 5: Update G using fk = f̃k
∥f̃k∥

, k = 1, 2, . . . , N

Step 6: Calculate J
Step 7: Repeat steps 2-6 until J is sufficiently small
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2.5 Performance Evaluation of Accelerometer’s and Magnetometer’s
Calibration Algorithm

To evaluate the performance of the proposed algorithm we used several different datasets
recorded following the calibration procedure presented in [25]. In this Section we first evaluate
the convergence of the proposed algorithm using five different datasets. Next we evaluate the
quality of the resulting calibration parameters and the repeatability of the algorithm’s results.
Finally, we demonstrate the effect of the proposed data on the sensor’s measurements.

2.5.1 Algorithm’s Convergence

The convergence of five different datasets of accelerometer’s data, recorded following the
calibration procedure presented in [25] is shown in Figure 2.1. As seen in Figure 2.1, the cost
function appears to be monotonic and requires only a few iterations of the algorithm to converge.

2 4 6 8 10 12 14 16 18 20
Iteration

10-5

10-4

10-3

10-2

10-1

100

C
os

t 
Fu

nc
ti
on

 V
al

ue

Dataset 1
Dataset 2
Dataset 3
Dataset 4
Dataset 5

Figure 2.1: Convergence of accelerometer calibration algorithm

In Figure 2.2 the convergence of the proposed algorithm when using magnetometer’s measurements
is presented. Although the required iterations and the shape of the cost function are very different
for each dataset, the algorithm converges monotonically for all five dataset.
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Figure 2.2: Convergence of magnetometer calibration algorithm

2.5.2 Measuring Distance Between Calibration Parameter Sets

Applying the calibration methodology to all five datasets, we expect some consistency between
the calibration parameters derived from each dataset. The calibration parameter sets of the
magnetometer and the accelerometer are pairs of a calibration matrix and an offset vector,
(Tm, hm) and (Ta, ha) as shown in (2.4) and (2.2) respectively.

The offset vectors are defined uniquely in the proposed algorithms, in the sense that they are
independent of the true values of the magnetic field, the specific force and the angular velocity
respectively. Therefore, the distance between offset vectors derived using different datasets can
be defined as the norm of their algebraic difference, i.e. d(xi, xj) = ∥xi − xj∥.

The normalized distance d̄ is defined as the ratio of the average distance divided by the
average norm of the vectors, i.e. for N datasets (N = 5 here) there are

(
N
2

)
pairs and d̄ is given

by

d̄(x1, x2, . . . , xN ) =

 ∑
1≤i<j≤N

d(xi, xj)

/(N
2

)
 ∑

1≤i≤N
∥xi∥

/N
.

For the vectors sets hm and ha we calculated the distance d̄ based on five datasets. It is

d̄(hm1, hm2, . . . , hm5) = 0.0208

d̄(ha1, ha2, . . . , ha5) = 0.0393
(2.15)

Defining the distance between calibration matrices derived using different datasets is more
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tricky because the proposed algorithms consider the true values of the magnetic field and the
specific force to be unknowns. They are derived along with the calibration matrices to minimize
the random errors in (2.4) and (2.2) respectively.

Observe for example in (2.4) that if we replace Tm with TmQ and m with QTm, where Q is
an orthogonal 3× 3 matrix, i.e. Q ∈ O(3), the resulting measurement ym is unaltered. The same
is true for (2.2).

Therefore the calibration matrices are derived subject to orthogonal4 multiplication uncertainty.
To this end we define the distance between two calibration matrices (of the accelerometer, the
magnetometer or the gyroscope) derived from different datasets as follows.

The distance between two 3× 3 matrices T1 and T2 can be defined as:

D(T1, T2) =min∥QT1 − T2∥F
Q ∈ O(3)

(2.16)

The minimizing matrix Q can be calculated using the orthogonal Procrustes Theorem [27].
Similarly to the offset vectors, the normalized distance D̄ between a number N of calibration

matrices is defined as

D̄(X1, X2, . . . , XN ) =

 ∑
1≤i<j≤N

D(Xi, Xj)

/(N
2

)
 ∑

1≤i≤N
∥Xi∥F

/N
. (2.17)

For the calibration matrix sets Tm and Ta we calculated the distance D̄ based on five datasets.
It is

D̄(Tm1, Tm2, . . . , Tm5) = 0.0287

D̄(Ta1, Ta2, . . . , Ta5) = 0.0018
(2.18)

Functions d(·, ·) and D(·, ·) represent the distance among the offset vectors and the distance
among the calibration matrices derived from different datasets respectively. Thus, the small
values of the normalized average distances (2.15) and (2.18) indicate good repeatability of
the proposed calibration algorithm i.e. the algorithm return similar calibration parameters for
different dataset inputs.

4Note that the uncertainty is not extended to a larger matrix set as it must preserve the norm of all possible
true values.
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2.5.3 The Effect of Calibration on Sensors’ Measurements

For both accelerometer and magnetometer, the effectiveness of the calibration algorithm
can be deduced from the true values of the specific force f̃ and the magnetic field m̃ having
unit magnitude. In Figures 2.3 and 2.4 the normalized magnitude of both raw and calibrated
accelerometer and magnetometer measurements are presented.
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Figure 2.3: Normalized magnitude of raw and calibrated accelerometer measurements in six still
orientations.
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Figure 2.4: Normalized magnitude of raw and calibrated magnetometer measurements in five
still orientations.
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2.6 Accelerometer’s and Magnetometer’s Axes Alignment

Inertial and magnetic sensors are often used in combination in many applications including,
navigation [6] and attitude estimation [20], healthcare systems [28], gaming and entertainment
devices [4], space exploration and many other industrial and commercial ones. In such cases it
is crucial for their sensitivity axes (coordinate frames) to be aligned.

Assuming that the coordinate frames of the accelerometer and the magnetometer are {xa, ya, za}
and {xm, ym, zm}, respectively, aligning the two coordinate frames comes down to deriving a
rotation matrix RAM ∈ SO(3) such that RAM{xm, ym, zm} = {xa, ya, za} as shown in Figure 2.5.

za zm

ya

ym

xa
xm

za, zm

ya, ym

xa, xm

Ra
m

Figure 2.5: Axes alignment.

Axes alignment algorithms require an accurately known magnetic field to be used as reference
in order to derive RAM . When cost is of no concern, the reference magnetic field is generated
using expensive laboratory equipment. For low-cost sensors however this is impractical due to
incommensurate extra cost.

Several works propose axes alignment methods which require no special piece of equipment
[39, 12, 15, 25, 21, 8, 17, 24]. A standard approach is to exploit the magnetic inclination
phenomenon as reference in order to align the axes of an accelerometer and a magnetometer.
Magnetic inclination (or magnetic dip) is the angle between the horizon and the Earth’s magnetic
field lines as shown in Figure 2.6.

Horizon
Magnetic
Inclinationδ

mg

Figure 2.6: Magnetic inclination.

It varies with location and time and the sine of it is the inner product of the normalized
gravity and the magnetic field vectors.

sδ ≜ sin(δ) =
gTm

∥g∥∥m∥
. (2.19)

Existing axes alignment algorithms, e.g., [25, 24, 12, 8], use (2.19) and accelerometer’s and
magnetometer’s measurements to form an optimization problem for deriving RAM . To do so, some
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of them [25, 24] form a cost-plus-penalty function associated with (2.19) which is then minimized
using gradient descent or Newton-Raphson method.

In this work, we propose a complete analytical solution to the axes alignment problem
guaranteeing the orthogonality of the axes alignment rotation matrix, with best-of-class-accuracy.
This is done by introducing a new formulation of the axes alignment problem which transforms
the original constrained optimization problem to a smooth unconstrained one.

The proposed method derives both the magnetic inclination angle and the axes alignment
rotation matrix in closed-form. Due to its analytical nature, the proposed method gives highly
accurate results, comparable to the best ones achieved by existing iterative methods, requiring
however significantly lower computational resources.

2.6.1 Problem Statement

Consider a 3-axis accelerometer and a 3-axis magnetometer, both fixed on the same rigid
platform, and denote their coordinate frames as {A} and {M} respectively 5.

Now suppose that accelerometer’s measurement gAk and magnetometer’s measurement mM
k

are taken simultaneously, when the rigid platform is still (only gravitational force), for k =

1, 2,…,K with K ≥ 9. Platform’s orientation changes with k and every measured vector is
expressed in the coordinate frame of the corresponding sensor.

Let the gravity vector g and magnetic field m be expressed in a fixed inertial coordinate
frame {I}. For every k = 1, 2, . . . ,K there is a rotation matrix Qk ∈ SO(3) transforming vectors
from the {I}-frame to the {A}-frame. Then the gravity and magnetic field vectors expressed in
the {A}-frame are written as

gAk = Qkg and mA
k = Qkm (2.20)

for k = 1, 2, ...,K, respectively. Solving (2.20) for g and m and replacing them in (2.19),

sin(δ) = (gAk )
TQkQ

T
km

A
k

∥QTk gAk ∥∥QTkmA
k ∥

=
(gAk )

TmA
k

∥gAk ∥∥mA
k ∥

(2.21)

for k = 1, 2, ...,K, where we exploited the orthogonality of Qk and the rotational invariance of
the Euclidean norm.

In (2.21), the accelerometer’s measurement gAk is known. The measured magnetic field mM
k

however is naturally expressed in the {M}-frame and so we need to transform it to the {A}-
frame. To this end, let RAM ∈ SO(3) be the transformation matrix from {M}-frame to {A}-frame,
then

mA
k = RAMm

M
k , k = 1, 2, ...,K (2.22)

Combining (2.21) and (2.22) and using again the rotational invariance of the Euclidean norm,

5Both coordinate frames are considered to be right-handed.
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we get that

sin(δ) = (gAk )
TRAMm

M
k

∥gAk ∥∥mM
k ∥

, k = 1, 2, ...,K (2.23)

In (2.23), gAk and mM
k are the known accelerometer’s and magnetometer’s measurements,

respectively, while both RAM and inclination angle, δ, are unknown. A standard approach to
derive them is to form and solve the optimization problem

minimize
RA

M ,δ

K∑
k=1

(
sin(δ)− (gAk )

TRAMm
M
k

∥gAk ∥∥mM
k ∥

)2

subject to RAM ∈ SO(3)

δ ∈
[
−π
2
,
π

2

] (2.24)

2.6.2 Prior Art and its Limitations

A typical approach to solve (2.24) is to minimize an associated cost-plus-penalty function
using the gradient descent or the Newton-Raphson method. In [25, 24] the authors use the
following cost-plus-penalty function, JCP , associated with (2.24) and incorporating a weighted
penalty term capturing the non-orthogonality of R 6

JCP (R, sδ) =
K∑
k=1

(
sδ − gTk Rmk

)2
+ λ∥RRT − I∥2F . (2.25)

where ∥ · ∥F denotes the Frobenius norm. In using (2.25) in [25, 24], special care should be
given to the selection of the weighting parameter, λ, in order to ensure both the approximate
orthogonality of R and the (fast) converge of the minimization method.

Following the iterative optimization approaches [25, 24] and (2.25), we first consider the case
when both R and sδ are initialized without any prior knowledge, as the identity matrix and
zero respectively. Using the Newton-Raphson method and a set of sensors’ measurements, we
minimize (2.25) for multiple values of λ. To assess the distance from orthogonality of the derived
matrices R, we first define the nearest orthogonal matrix to R as [27]

RO = UV T (2.26)

where U ∈ O(3) and V ∈ O(3) are defined via a singular value decomposition (SVD) of R =

UΣV T . Then the distance of R from orthogonality is defined as

DO(R) ≜ ∥R−RO∥ = ∥R− UV T ∥. (2.27)

6Note that when the initial condition of the Newton-Raphson is far from the final solution, an extra term in
(2.25) is required to force the determinant of R to be equal to one and thus R ∈ SO(3). However, if Newton-Raphson
initial condition is near to the final solution, this term may be omitted.
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The convergence of JCP using the Newton-Raphson for different values of λ is shown in
Figure 2.7.

C
P

λ=1λ=10 λ=100 λ=1000 λ=10000

Figure 2.7: Convergence of Newton-Raphson for different values of the weighting factor, λ
(Fastest convergence corresponds to λ = 10).

The numbers of iterations for Newton-Raphson to converge (JCP to drop below 10−4) and
the distance of the derived matrix R from orthogonality are presented in Figure 2.8 as functions
of λ.

Figure 2.8: Distance of R from orthogonality DO(R) when Newton-Raphson has converged, and,
number of iterations required for convergence, as functions of weighting factor λ.

We observe that larger values of λ result in R closer to orthogonality. However, Newton-
Raphson requires more iterations to converge for larger λ, implying a trade-off between the
orthogonality of R and computational efficiency.

A better trade-off is obtained when the results of the single-step method in [30] are used
to initialize the Newton-Raphson method. As seen in Figures 2.9 and 2.10, Newton-Raphson
converges after only two iterations even when large values of λ are used. However, in this case,
the computational complexity of the single-step method of [30] must be also taken into account.
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Figure 2.9: Convergence of Newton-Raphson for different values of the weighting factor, λ, when
the single-step method in [30] is used for initialization.

Figure 2.10: Distance of R from orthogonality and Newton-Raphson iterations until convergence
for different values of the weighting factor, λ, when the single-step method in [30] is used for
initialization.

2.6.3 The Proposed Algorithm

The proposed method converts the constrained optimization problem (2.24) to an unconstrained
one which is solved using analytical iterations of the Newton-Raphson method. Furthermore,
using a good initial estimate of the point of minimum, as done later in this section, implies that
only one iteration is sufficient to achieve a very accurate result.

To convert the constrained problem (2.24) into an unconstrained one, we first derive the
optimal value of sδ analytically and formulate an equivalent optimization problem with the
single unknown R. To do so, consider the cost function of (2.24)

J(R, sδ) =
K∑
k=1

(
sδ − gTk Rmk

)2 (2.28)
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and note that it is quadratic with respect to sδ. Defining the 9×1 vector VR = vec(R) and using
the identity gTk Rmk = (mk ⊗ gk)Tvec(R) we write

J(R, sδ) = Ksδ
2 − 2sδ1

TAVR + V T
R A

TAVR (2.29)

where ⊗ is the Kronecker’s product [11], 1 is the K×1 vector of ones and the K×9 matrix A is

A =


(m1 ⊗ g1)T

(m2 ⊗ g2)T
...

(mK ⊗ gK)T

 . (2.30)

We define the minimum of J(sδ, R) with respect to sδ, i.e.,

J1(R) ≜ min
|sδ |≤1

J(R, sδ) (2.31)

and observe that the unconstrained point of minimum is

s∗δ =
1

K
1TAVR. (2.32)

Note that (2.32) can also be written as

s∗δ =
1

K

K∑
i=1

(
gTi Rmi

)
. (2.33)

Following our assumption that ∥gi∥ = ∥mi∥ = 1 for all i = 1, 2, . . . ,K and the fact that ∥ · ∥2
norm is rotational invariant, by applying the Cauchy–Schwarz inequality to (2.33) we get |s∗δ | ≤ 1

and so s∗δ is feasible and the global minimum of (2.31).
Replacing (2.32) into (2.29), J1(R) is conveniently written as

J1(R) =
1

2
V T
R BVR (2.34)

where B = 2
(
ATA− 1

KA
T 1 1TA

)
is a 9 × 9 symmetric matrix. Note that by the definition of

J1 we have
min

R∈SO(3),|sδ |≤1
J(R, sδ) = min

R∈SO(3)
J1(R) (2.35)

where the minimum exists since the cost function J1 is continuous and SO(3) is compact.
Let R∗ ∈ SO(3) be a point of global minimum of J1 i.e.

J1(R∗) = min
R∈SO(3)

J1(R) (2.36)

and let R0 ∈ SO(3) be an initial estimate of R∗. An improved estimate can always be expressed
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as R = PR0, for some P ∈ SO(3). Moreover we can write P as a sequence of three Euler
rotations, i.e.,

P = P (x) ≜ Rz(ϕ)Ry(ψ)Rx(θ) (2.37)

where ϕ, ψ and θ are the yaw, pitch and roll rotation angles respectively, x ≜ [ϕ, ψ, θ]T and

Rz(ϕ) =

cos(ϕ) − sin(ϕ) 0

sin(ϕ) cos(ϕ) 0

0 0 1



Ry(ψ) =

cos(ψ) 0 − sin(ψ)
0 1 0

sin(ψ) 0 cos(ψ)



Rx(θ) =

1 0 0

0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)



(2.38)

The function P : [0, 2π)3 → SO(3) is surjective and so R = P (x)R0 can take any matrix value
in SO(3), [10].

The above convert the original optimization problem to the one of deriving x such that
P (x)R0 = R∗. To proceed further, it is convenient to define the cost as a function of x, i.e.,

J2(x) ≜ J1(P (x)R0) =
1

2
VR(x)

TBVR(x). (2.39)

where VR(x) = vec(R(x)) = vec(P (x)R0).

Assume that R0 and R = PR0 are close to R∗ i.e. ∥R0 −R∗∥F and ∥R−R∗∥F are small7.
Then P is close to the identity matrix and so there exists a small x such that P = P (x), [10].
This along with the smoothness of the functions involved motivates the use of minimization
methods based on Taylor expansion like Newton-Raphson.

To minimize J2(x) we have to derive x such that ∂J2/∂x = 0. To do so, we start from x = 0

implying P (x) = I and cost J2(0), apply one iteration (or more) of Newton-Raphson method,
and derive the new value of x as

x = −
(

∂2J2
∂x∂xT

∣∣∣∣
x=0

)−1
∂J2
∂x

∣∣∣∣
x=0

. (2.40)

The cost gradient is
∂J2
∂x

=

[
∂J2
∂ϕ

,
∂J2
∂ψ

,
∂J2
∂θ

]T
(2.41)

7With respect to the Frobenius or any other rotational invariant matrix norm.
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and the Hessian matrix is symmetric and written as

∂2J2
∂x∂xT

=


∂2J2
∂ϕ2

∂2J2
∂ϕ∂ψ

∂2J2
∂ϕ∂θ

∂2J2
∂ϕ∂ψ

∂2J2
∂ψ2

∂2J2
∂ψ∂θ

∂2J2
∂ϕ∂θ

∂2J2
∂ψ∂θ

∂2J2
∂θ2

 (2.42)

because of the continuity of all second derivatives.

We derive the first and second derivatives at x = 0 analytically recalling that BT = B. From
(2.39) and for s, q ∈ {ϕ, ψ, θ} we have that

∂J2
∂q

= V T
R B

∂VR
∂q

(2.43)

and
∂2J2
∂s∂q

=
∂V T

R

∂s
B
∂VR
∂q

+ V T
R B

∂2VR
∂s∂q

(2.44)

From the definition VR = vec(R) we have that

∂VR
∂q

= vec
(
∂R

∂q

)
(2.45)

and
∂2VR
∂s∂q

= vec
(
∂2R

∂s∂q

)
. (2.46)

Moreover, since R(x) = P (x)R0 = Rz(ϕ)Ry(ψ)Rx(θ)R0, from (2.38) it is

∂R

∂q

∣∣∣∣
x=0

= PqR0 (2.47)

for q ∈ {ϕ, ψ, θ}, and,
∂2R

∂s∂q

∣∣∣∣
x=0

= PsPqR0 (2.48)

for the ordered pairs

(s, q) ∈ {(ϕ, ϕ), (ϕ, ψ), (ϕ, θ), (ψ,ψ), (ψ, θ), (θ, θ)}, (2.49)
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where

Pϕ =

0 −1 0

1 0 0

0 0 0



Pψ =

0 0 −1
0 0 0

1 0 0



Pθ =

0 0 0

0 0 −1
0 1 0



. (2.50)

Combining (2.45) with (2.47) and (2.46) with (2.48), respectively gives

∂VR
∂q

∣∣∣∣
x=0

= (I3 ⊗ Pq)VR0 (2.51)

and
∂2VR
∂s∂q

∣∣∣∣
x=0

=
(
I3 ⊗ (PsPq)

)
VR0 (2.52)

where VR0 = vec(R0). Finally, replacing (2.51) into (2.43) gives

∂J2
∂q

∣∣∣∣
x=0

= V T
R0
B(I3 ⊗ Pq)VR0 . (2.53)

Similarly, replacing (2.51) and (2.52) into (2.44) gives

∂2J2
∂s∂q

∣∣∣∣
x=0

= V T
R0

(I3 ⊗ P Ts )B(I3 ⊗ Pq)VR0

+ V T
R0
B
(
I3 ⊗ (PsPq)

)
VR0

(2.54)

Note that (2.54) is valid (only) for the six (s, q) pairs in (2.49).

2.6.4 Finding an Initial Condition

The proper selection of the initial matrix R0 is crucial for achieving (fast) convergence. To
this purpose we recommend using as R0 the approximate closed-form solution of (2.24) derived
in [30]. This is done as follows.

Using identity vec(AXB) = (BT ⊗A)vec(X), [11], where ⊗ is the Kronecker’s product, and
the unit magnitude assumption, from (2.23) we get

sδ =
(
mM
k ⊗ gAk

)T vec(R) (2.55)
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for k = 1, 2, ...,K. Then we express (2.55) in matrix form as

sδ 1 = A vec(R) (2.56)

We assume that the measurements are such that A is of full rank, i.e. rank(A) = 9. This
along with the fact that vec(R) ̸= 0, since R ∈ SO(3), and (2.56) imply that

sδ ̸= 0. (2.57)

We solve (2.56) (in the least squares sense [32]) 8 to derive

vec(R) = sδ(A
TA)−1AT 1, (2.58)

where the equation is approximate when the measurements are real. Next, we split the 9 × 1

vector (ATA)−1AT 1 into three 3× 1 vectors h1, h2 and h3 as

(ATA)−1AT 1 =
[
hT1 h

T
2 h

T
3

]T
. (2.59)

Defining matrix H as
H =

[
h1 h2 h3

]
(2.60)

and using (2.58)-(2.60) we express matrix R as

R = sδH. (2.61)

Note that in (2.61) matrix H is known but sδ is not. To calculate sδ we use the fact that
R ∈ SO(3) and so det (R) = 1 which combined with (2.61) gives det (H) ̸= 0 and

1 = sδ
3 det (H) (2.62)

and so
sδ =

1
3
√
det (H)

, (2.63)

where the cubic root is constrained in the real numbers.

Although (2.63) is a compact expression, it is not as accurate with real data as the one we
derive from the fact that ∥R∥F =

√
3 for R ∈ SO(3), [11]. Combining it with (2.61) implies

|sδ| =
√
3

∥H∥F
(2.64)

8With real measurements (2.55) is approximate and (2.56) is considered as a least squares problem with solution
(2.58) where R is expected to be close to but not necessarily in SO(3).
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and the sign of sδ can be recovered from (2.62) as

sgn(sδ) = sgn (det (H)) . (2.65)

Consider a Singular Value Decomposition (SVD) of matrix H, i.e. H = UΣV T , where U, V ∈
O(3) and Σ is the diagonal matrix Σ = diag(σ1, σ2, σ3), with σ1 ≥ σ2 ≥ σ3 > 0 since det(H) ̸= 0.
It is ∥H∥F =

√
σ21 + σ22 + σ23, [11], which combined with (2.64) and (2.65) gives

sδ = sgn (det (H))

√
3

σ21 + σ22 + σ23
. (2.66)

By substituting (2.66) into (2.61) we get R, which ideally belongs to SO(3). When using
real measurements however, R may be close to but not necessarily in SO(3). Thus, instead of R
we derive and use the nearest special orthogonal matrix R̂ ∈ SO(3) to R = sδH defined as the
solution of the optimization problem

R̂ ≜ argmin
Q∈SO(3)

∥R−Q∥F . (2.67)

Even with real measurements, we expect that det(R) > 0 which guarantees the uniqueness
of the solution of the Orthogonal Procrustes Problem [27] in O(3),

R̄ = argmin
Q∈O(3)

∥R−Q∥F . (2.68)

The solution of (2.68) is R̄ = sgn(sδ)UV T , [27]. It can be derived using the previously calculated
SVD of H leading to an SVD of R =

(
sgn(sδ)U

)(
|sδ|Σ

)
V T via (2.61) .

Also note that sgn(det(H)) = sgn(det(UV T )) which along with (2.61) and (2.66) imply that
det(R̄) = 1 and therefore R̂ = R̄ ∈ SO(3) is the unique solution of (2.67), i.e.

R̂ = sgn(det(H))UV T (2.69)

The complete proposed method using only one analytical iteration of the Newton-Raphson
(which is typically sufficient) is summarized in Algorithm 3.
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Algorithm 3: Proposed Method
1: Use normalized gk and mk to form matrix A in (2.30)
2: Verify that A is of full rank
3: Use (2.59), (2.60) and (2.69) to calculate R0 as in [30]
4: Calculate the gradient vector using (2.41) and (2.53)
5: Calculate the Hessian matrix using (2.42) and (2.54)
6: Calculate x from (2.40)
7: Use x to calculate P (x) using (2.37) and (2.38)
8: Calculate R = P (x)R0 ∈ SO(3).

2.6.5 Evaluation of the Proposed Method

Let RAM ∈ SO(3) be the frame transformation matrix rotating the magnetometer’s coordinate
frame into the accelerometer’s one. To evaluate the accuracy and computational efficiency of the
proposed method we have to compare the derived axes alignment matrix, R, to the actual one,
RAM , which we assume to know accurately in advance.

However, the accuracy with which one can measure RAM using laboratory equipment is orders
of magnitude worse than the expected accuracy of the proposed method. Therefore, we artificially
generated 1000 datasets with pre-selected RAM ∈ SO(3), according to the calibration procedure
introduced in [25]. This included the random errors (noise) of the sensors and the associated
instrumentation, according to typical characteristics of commercial devices.

To generate the 1000 datasets, we first randomly generated 1000 values of RMA = (RAM )T ∈
SO(3). For every one of them we followed the steps: 1) First we generated two random unit
vectors, gA1 and mA

1 representing the gravity and the magnetic field in the accelerometer’s {A}-
frame. 2) We rotated both vectors 11 times according to [25] to generate {gAi }

12
i=2 and {mA

i }
12
i=2.

3) To express the magnetic field vectors {mA
i }

12
i=1 in the magnetometer’s {M}-frame, we rotate

them once more using RMA to get {mM
i }

12
i=1 4) Finally a sequence of band-limited white noise

was added to the dataset following typical sensors’ and measuring procedure’s specifications.
We compare our method’s accuracy and execution time to those of 1) A gradient descent

based method using (2.25), 2) A Newton-Raphson based method using (2.25), 3) A Newton-
Raphson based method using (2.25), initialized using the solution of the single-step method
presented in [30] and 4) The single step method of [30] alone.

Each of the aforementioned methods was run for every one of the 1000 generated datasets. For
the iterative methods, based on the gradient descent and the Newton Raphson, the parameter λ
of the cost function (2.25) was set to λ = 1000, to ensure the orthogonality of the derived matrix
R according to Figures 2.8 and 2.10. We compared the derived matrix R, of each method, with
the true rotation matrix RAM = (RMA )

T used to generate the data. To quantify their difference,
we used the error metric

ε = ∥R−RAM∥ (2.70)
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In the ideal case of perfect axes alignment, i.e., R = RAM , it is ε = 0. The mean value (µε)
and variance (σ2ε) of ε for every method is presented in Table 2.1.

Method µε σ2
ε Time (ms)

GD 7.16 · 10−4 9.90 · 10−8 63.15

NR 7.17 · 10−4 9.95 · 10−8 44.53

NR & [30] 7.15 · 10−4 9.92 · 10−8 1.34

Single-Step [30] 11.60 · 10−4 56.53 · 10−8 0.25

Proposed 7.14 · 10−4 9.94 · 10−8 0.49

Table 2.1: Mean value and variance of the error ε of the proposed method, a gradiend descent
(GD) based method, a Newton-Raphson (NR) based method, a Newton-Raphson based method
initialized using the solution of [30] and the single-step method of [30] alone.

As seen in Table 2.1, the gradient descent and the Newton-Raphson based methods alone
yield in accurate results requiring however significant computational effort. The single-step
method of [30] has much better computational efficiency but it is a little less accurate. The
proposed method excels in both accuracy and computational efficiency. It provides accurate
results, similar to those of the computationally heavy, iterative optimization methods, while it
requires significantly less computational resources.

While artificially generated data are appropriate to evaluate the accuracy and computational
efficiency of the proposed algorithm, they do not incorporate the non-idealities expected in real
world measurements. Although we included random noise in the artificially generated data,
other errors, such as residual calibration errors (of the sensors individually) could degrade the
proposed algorithm’s performance.

To demonstrate the resilience of the proposed algorithm to such effects, we recorded five
different datasets of accelerometer’s and magnetometer’s measurements. To this end, we used
a measurement device based on the LSM9DS1 system-in-package by STMicroelectronics which
includes both a three-axis accelerometer and a three-axis magnetometer. Some important performance
characteristics of the two sensors and the developed measurement device are presented in Table
2.2.

Specification Value
Measurement Range (A) ±16g
Measurement Range (M) ±4Gauss
Sampling Rate (A) 238Hz

Sampling Rate (M) 80Hz

Resolution (A, M) 16Bits

Table 2.2: Performance characteristics of the accelerometer (A) and the magnetometer (M)
included in the designed measurement device.

All datasets were recorded away from magnetic disturbances (the constant earth’s magnetic
field was used as reference) following the calibration procedure introduced in [25]. Specifically, to



64 Chapter 2 - Inertial & Magnetic Field Sensors’ Calibration & Axes Alignment

record each dataset we placed the measurement device by hand in twelve different orientations, as
suggested in [25]. In each orientation we recorded several measurements while the sensor was still
and used averaging to obtain twelve pairs of accelerometer’s and magnetometer’s measurements
corresponding to the twelve orientations.

In this case of real sensors’ data, the true matrix RAM is not known. Thus, in order to evaluate
the accuracy of the proposed algorithm and compare it to the that of the existing ones, we use
the cost-plus-penalty function of (2.25) as a metric of the residual error.

In Table 2.3 we used five different datasets (D1-D5) to compare our method’s residual error
to that of 1) A gradient descent based method using (2.25), 2) A Newton-Raphson based method
using (2.25), 3) A Newton-Raphson based method using (2.25), initialized using the solution of
the single-step method presented in [30] and 4) The single step method of [30].

Again, for the iterative methods, based on the gradient descent and the Newton Raphson,
the parameter λ of the cost function (2.25) was set to λ = 1000, to ensure the orthogonality of
the derived matrix R according to Figures 2.8 and 2.10.

JCP (R, sδ) · 104

Method D1 D2 D3 D4 D5
GD 7.02 7.33 7.12 6.40 7.49

NR 7.02 7.35 7.24 6.38 7.37

NR & [30] 7.01 7.32 7.16 6.39 7.53

Single-Step [30] 9.36 9.21 9.12 8.42 9.68

Proposed 7.01 7.33 7.09 6.37 7.72

Table 2.3: Residual error of the proposed method, a gradiend descent (GD) based method, a
Newton-Raphson (NR) based method, a Newton-Raphson based method initialized using the
solution of [30] and the ”single-step” method of [30] evaluated using five different datasets (D1-
D5) of real sensors’ data.
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2.7 Gyroscope’s Calibration

This Section introduces a new approach to gyroscope calibration and provides the associated
algorithm. It applies to the case where a 3-axis gyroscope, a 3-axis accelerometer and a 3-axis
magnetometer are fixed on the same, rigid platform.

Assuming that the accelerometer and the magnetometer have already been calibrated and
aligned, we use them to calculate the rotation of the platform between two still positions. The
proposed approach is based on the fact that this rotation should be identical to that derived
from the gyroscope, when the last one is also calibrated. Note that using the joint accelerometer
- magnetometer rotation as reference for the gyroscope’s calibration, the algorithm also aligns
the axes of the gyroscope with those of the other two sensors.

Therefore, the new approach is comprised of a) the derivation of the rotation from the
accelerometer and magnetometer data, b) the parametric derivation of the rotation from the
gyroscope data, and, c) the optimization algorithm which equates the two of them.

2.7.1 Rotation From Accelerometer and Magnetometer Data

Assume a rotation of the platform between two still positions. Let fbegin and fend be the 3×1
accelerometer’s measurement vectors before and after the rotation, while the platform is still.
Similarly, let mbegin and mend be the 3× 1 magnetometer’s measurement vectors accordingly.

Assuming that fbegin, fend,mbegin andmend have been derived using calibrated accelerometer
and magnetometer according to the proposed algorithms in Sections 2.4 and 2.3, the angle
between fbegin and mbegin is the same with the angle between fend and mend and all four vectors
are of unit norm. The above allow us to use the TRIAD algorithm [3] [29] to find a rotation
matrix R ∈ SO(3) such that Rfbegin = fend and Rmbegin = mend.

Given the unit vectors fbegin, fend, mbegin and mend, the TRIAD algorithm begins by
constructing two triads of orthonormal column vectors according to

a1 = fbegin, a2 = (fbegin ×mbegin) /∥fbegin ×mbegin∥

a3 = (fbegin × (fbegin ×mbegin)) /∥fbegin ×mbegin∥

and
b1 = fend, b2 = (fend ×mend) /∥fend ×mend∥

b3 = (fend × (fend ×mend)) /∥fend ×mend∥

The matrix R is derived as
R = [b1 b2 b3] [a1 a2 a3]

T

It is convenient to consider the application of the TRIAD algorithm as a function Ram, i.e.

R = Ram (fbegin, fend,mbegin,mend) (2.71)
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2.7.2 Rotation From Gyroscope Data

Using K sequential gyroscope’s measurements sampled at rate τs, we can calculate the
rotation matrix representing the sensor’s body frame rotation from time t to time t + Kτs.
Let ωk =

[
ωxk ωyk ωzk

]T be the kth sample of the gyroscope’s output. Using the entries of ωk,
we define the skew symmetric matrix function

Ω(ωk) =

 0 −ωzk ωyk
ωzk 0 −ωxk
−ωyk ωxk 0

 . (2.72)

Setting ω̄ = [ω1 ω2 . . . ωK ] ∈ R3×K , the rotation matrix from t to t+Kτs can be approximated
by the outcome of the following function [10] [23]

Rg(ω̄) =
(
I + τsΩ(ω̄e1)

)(
I + τsΩ(ω̄e2)

)
. . .
(
I + τsΩ(ω̄eK)

)
(2.73)

where ek is the kth normal vector in RK .

2.7.3 Calibration Algorithm

Assume that the sensor’s platform rotates N times with a short period of stillness between
them. During every rotation, the gyroscope is regularly sampled every τs seconds and the samples
are recorded. Recording begins from the still position, just before the rotation begins, and ends
at the next still position, just after the rotation ends. We also assume that every one of the three
gyroscope’s axes is rotated significantly in at least one of the rotations.

Let ωnj be the jth gyroscope’s sample measured sample (i.e. yg in (2.6)) during the nth

rotation, n = 1, 2, . . . , N . Using (2.6), we get the calibrated sample

ω̃nj = Hg(ω
n
j − hg)

where Hg = Tg
−1. Here we assume that Tg is invertible. This is a rational assumption as a

non-invertible Tg would imply that not all three axes are expressed in the output of the sensor.
For every rotation, we form the matrix

ω̄n =
[
ω̃n1 ω̃

n
2 . . . ˜ωnMn

]
where Mn is the number of the recorded samples during the nth rotation. Then, using (2.73),
for every rotation, we derive a rotation matrix as a function of the calibration parameters Hg

and hg in (2.6).
Rng = Rg(ω̄n) (2.74)

Calculating the rotations using accelerometer’s and magnetometer’s measurements, as in
Section 2.7.1, requires measurements of both sensors before and after every rotation, while the
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sensors are still. Let fnbegin and fnend be the measured specific force vectors exactly before and
after rotation n, n = 1, 2, . . . , N . Similarly let mn

begin and mn
end be the corresponding vectors of

the magnetic field. To minimize the effect of the sensors’ noise, we prefer to define the above
four vectors as the average of L samples. Then, using (2.71), for every rotation, we derive the
accelerometer-magnetometer rotation matrix

Rnam = Ram(f
n
begin, f

n
end,m

n
begin,m

n
end). (2.75)

To calibrate the gyroscope we minimize the mean square error between the rotation calculated
using gyroscope’s measurementsRng and the corresponding rotation calculated using accelerometer’s
and magnetometer’s measurements Rnam. This is done for all N rotations simultaneously, and
so the calibration procedure can be posed as the minimization of cost function J(x), where

J(x) =

N∑
n=1

{
∥Rnam −Rng ∥

2
}
+ λ∥Hg(ωstill − hg)∥2 (2.76)

and
x =

[
vec(Hg)

T hg
T
]T

The positive constant λ is selected to balance the contribution of the two summands in (2.76)
where the second one is for nulling the sensor’s bias. Note that ωstill is the gyroscope’s output
(yg in (2.6)) when it is still (i.e. ω = 0 in (2.6)), also defined as the average of M measurements
to reduce random noise.

We solve (2.76) using the gradient descent method with the gradient of J(x) be numerically
calculated. Assuming small scale-factor, cross-coupling and bias errors we initialize Hg to the
3× 3 identity matrix and hg to the 3× 1 zero vector. Gyroscope calibration algorithm is shown
in Algorithm 4, where a and b are positive numbers for the line search.

Algorithm 4: Gyroscope Calibration
Step 1: Initialize Hg = I3, hg = 03x1,
Step 2: Initialize t, a and b
Step 3: Calculate the gradient:

∆x=-∇J(x)
Step 4: Choose step size:

while J(x+ t∆x) > J(x) + at∇J(x)T∆x
t := βt

Step 5: Update x = x+∆x
Step 6: Calculate J(x)
Step 7: Repeat steps 3-6 until J(x) is sufficiently small
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2.7.4 Algorithm’s Evaluation

Similar to the case of the accelerometer and the magnetometer, several different datasets were
used to evaluate the performance of the proposed algorithm. In Figure 2.11, the convergence of
the proposed algorithm using five different datasets and the calibration procedure presented in
[25] is shown.
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Figure 2.11: Convergence of gyroscope calibration algorithm

As seen in Figure 2.11 gyroscope calibration algorithm converges after only a few iterations
for all five datasets, while the corresponding cost function appears to be monotonic.

To demonstrate the repeatability of the gyroscope’s calibration algorithm, we use the distances
between the derived offset vectors and calibration matrices using different datasets defined in
Section 2.5.2. The calculated distances are shown below

d̄(hg1, hg2, . . . , hg5) = 0.0480

D̄(Tg1, Tg2, . . . , Tg5) = 0.0222
(2.77)

The small values of the normalized average distances (2.77) indicate good repeatability of
the proposed calibration algorithm i.e. the algorithm return similar calibration parameters for
different dataset inputs.

Finally, to assess the performance of the gyroscope calibration algorithm, we rotated the
device by 90◦, about it’s x-axis five times. The corresponding Euler angle derived from the
measurements for each rotation is presented in table 2.4.
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Rotation Roll Angle
1 90.348◦

2 89.769◦

3 90.216◦

4 90.402◦

5 89.976◦

Table 2.4: Measured roll angle for 90◦ rotation about x-axis.

The measured Euler angles in Table 2.4 are very close to the true rotation angle (90◦)
indicating the good accuracy of the proposed calibration algorithm without using any special
piece of equipment and without any external attitude reference.
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3 Magnetic Field Sensors’
Calibration: Algorithms’

Overview and Comparison

The calibration of three-axis magnetic field sensors is reviewed. Seven representative algorithms
dealing with the in-situ calibration of magnetic field sensors without requiring any special piece of
equipment are reviewed. The algorithms are presented in a user friendly, directly applicable step-
by-step form, and are compared in terms of accuracy, computational efficiency, and robustness
using both real sensors’ data and artificial data with a known sensor measurement distortion.

3.1 Introduction

Magnetic field sensors (magnetometers) are nowadays widely used in a plethora of commercial,
industrial, marine, aerospace and military applications. Their applications include but not limited
to navigation and attitude estimation, geophysical surveys, archaeology, entertainment devices,
consumer electronics and others.

In most applications, sensor’s calibration is essential in order to achieve the desirable accuracy
level. The purpose of magnetic field sensors’ calibration is a twofold. First, as in the case of
every measurement unit, calibration ensures that the measurement of the standalone sensor
corresponds to the actual value of the magnetic field. To do so, calibration must compensate for
all static (manufacturing imperfections etc.) and active (temperature, humidity, etc.) phenomena
effecting the accuracy of the sensor’s measurement. In addition, when a magnetic sensor is
embedded in a larger system, other components of the system may cause disturbances (both
static and active ones) to the local magnetic field. Static disturbances are usually caused by
magnetic and ferromagnetic materials in the vicinity of the sensor; called hard-iron distortion
and soft-iron distortion respectively (more information are given in Section 2). Mechanical or
electronic structures embedded in the system, such as motors and coils could also actively distort
the local magnetic field and cause significant measurement error.

This review paper focuses on algorithms correcting the dominant linear time-invariant (static)
measurement errors, requiring no special piece of equipment for their application. Such algorithms

Copyright © MDPI. Chapter 3 is reprinted, with permission, from K. Papafotis, D. Nikitas, P.P. Sotiriadis,
”Magnetic Field Sensors’ Calibration: Algorithms’ Overview and Comparison”, Sensors 2021, 21, 5288.
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are most commonly used for in-situ calibration of magnetic field sensors which are usually in
chip form and embedded in larger systems. The paper presents seven representative calibration
algorithms for three-axis magnetometers and compares them in terms of accuracy, robustness,
computational efficiency and ease of deployment. The seven algorithms are briefly presented,
to introduce all required mathematical expressions, and are summarized in an easy-to-develop,
step-by-step form. For the details of the algorithms, the reader is referred to the original works.

The selection of the particular algorithms was done based on their popularity and on our
attempt to present as many different calibration approaches as possible. The TWOSTEP [2]
algorithm is one of the first algorithms that addressed the full calibration problem (and probably
the most popular one). At a later time, Elkaim and Vasconcelos [30] proposed a geometric
approach of TWOSTEP which is also very popular. At the same time, Dorveaux et al. [7] offered
a nonlinear formulation of the problem and they treated it in an innovative, strictly iterative
way. In addition, Wu and Shi [31] suggested the most complete formulation of the calibration
problem as an optimal maximum likelihood estimation one. The TWOSTEP algorithm, as well
as the algorithms proposed by Vasconcelos et al. and Wu et al., consist of a first step deriving an
initial solution, and, a second step for improving it. On the other hand, Papafotis and Sotiriadis
[25] recommended an iterative approach based on a twofold minimization, which was shown to be
extremely effective. Furthermore, a real-time approach by Crassidis et al. [5] using the popular
Kalman Filter is discussed. Finally, to represent the recent trends towards Machine Learning,
an AI method applying Particle Swarm Optimization on the estimation problem is explored [1].

Please note that this review focuses on works for in-situ calibration of three-axis magnetic
field sensor without using any special piece of equipment or any other additional sensor. Thus,
several interesting works dealing with magnetometer’s calibration, in combination with inertial
sensors, [24, 18, 32, 19, 21] are not included in this work.

The rest of the paper is organized as follows. First, a standard error model for three-axis
magnetic field sensors is presented in Section 2. In Section 3-9, seven representative algorithms
are discussed in chronological order of publication. In section 10, a method for generating
artificial data is proposed and algorithms are evaluated via extensive Monte Carlo simulation to
identify their performance. In addition, the algorithms are evaluated using several real sensor’s
measurements in order to evaluate their performance under real-world conditions. Finally, section
11 summarizes our findings and provides brief comments for each algorithm. The notation used
along the paper is presented in Table 3.1.

3.2 Magnetic Field Sensor’s Error Sources and Measurement
Model

In this section, the most important linear, time-invariant error sources of three-axis magnetic
field sensors are presented. Based on them, a mathematical model relating the sensor’s measurement
with the actual value of the magnetic field is derived.
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∥.∥ Euclidean Norm
∥.∥F Frobenius Norm
vec (·) Vectorization of Matrix
diag(·) Diagonal Matrix
chol (·) Cholesky Factorization
In×n n× n Identity Matrix
0m×1 m× 1 Zero Vector
N Normal Distribution
U Uniform Distribution
∇ Gradient Vector
∇2 Hessian Matrix
⊗ Kronecker Product
O(3) Orthogonal Group of dimension 3
SO(3) 3D Rotation Group
U(3) Group of 3× 3 Upper Triangular Matrices

Table 3.1: Notation

The total output error of a magnetic sensor is a combination of several error sources related
to the sensing element itself, the instrumentation electronics, manufacturing imperfections and
distortions caused by magnetic and ferromagnetic materials in the vicinity of the sensor. The
linear, time-invariant error sources with the most significant contribution in the total sensor’s
error, are listed below:

• Bias, or offset; all magnetic sensors suffer from bias, which is a constant distortion. In
many cases, it is the most important defect in the sensor’s overall error. A 3 × 1 vector,
hs, is used to model it.

• Scale-factor error represents the input-output gain error of the sensor. It is modeled by
a 3× 3 diagonal matrix, Tsf .

• Cross-coupling or Non-Orthogonality inaccuracies are resulted by the non-ideal alignment
of the sensor’s axes during manufacturing and are modeled by a 3× 3 matrix, Tcc.

• Soft-iron distortion is caused by ferromagnetic materials in the vicinity of the sensor,
attached to the sensor’s coordinate frame. Those materials do not generate their own
magnetic field, but instead alter the existing magnetic field locally, resulting in a measurement
discrepancy. This effect is modeled by a 3× 3 matrix, Tsi.

• Hard-iron distortion is due to magnetic materials attached to the sensor’s coordinate
frame. As a consequence of the persistent magnetic field created by those materials, the
sensor’s output has a constant bias. Hard-iron distortion is modeled by a 3× 1 vector, hhi.
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• Random noise is the stochastic error in the sensor’s output. It is induced by the sensor’s
mechanical and electrical architecture. It is modeled by a 3 × 1 vector, ε, and it is most
commonly assumed to be a sequence of white noise, i.e. ε ∼ N (0, σ2).

Let m be the 3× 1 true magnetic field vector and y be the 3× 1 measurement vector. With
the aforementioned error terms in mind, a widely accepted and well-referenced measurement
model for a three-axis magnetometer is the following [25, 2, 31, 30, 1, 4, 5, 13]

y = TsfTcc (Tsim+ hhi) + hs + ε (3.1)

In most applications, the exact contribution of each error term in (3.1) is of no concern and
thus, instead of (3.1), most calibration algorithms use the following, compact form of (3.1)

y = Tm+ h+ ε (3.2)

where T ≜ TsfTccTsi and h ≜ TsfTcchhi + hs.
This work focuses on algorithms intended to be used with magnetic field senors requiring no

special piece of equipment. In such cases, the calibration is done in the sensor’s (body) coordinate
frame implying that both the measurement vector, y and the true magnetic field vector, m in
(3.2) are expressed in the senor’s coordinate frame.

Note that when expensive laboratory equipment is not available, both the calibration parameters
T and h in (3.2), and the magnetic field vector, m, are unknown. Thus, in most works, multiple
measurements of the local (Earth’s) magnetic field are used to derive T and h. Note that the
Earth’s magnetic field varies with location and time and its value (magnitude and direction)
is only approximately known by magnetic models such as International Geomagnetic Reference
Field model (IGRF) [15]. However it is reasonable to assume that the magnitude of the magnetic
field is (locally) constant during the calibration procedure. Based on this fact, most authors
formulate an optimization or an estimation problem to derive T and h.

3.3 Alonso and Shuster (TWOSTEP) [2]

The TWOSTEP algorithm consists of an analytic centering approach [10, 20] for its first
step, while in the second step the solution is optimized numerically. The authors initially solved
the problem of bias, h, determination when attitude is not known [3] and then extended their
method to determine matrix T as well [2].

It is motivated by the assumption that matrix T should not be far from a pure rotation.
Therefore by applying polar decomposition it can be written as T = (I3×3 + D)−1O where O
is an orthogonal matrix and D is a symmetric 3 × 3 matrix so as (I3×3 + D)−1 to be positive
definite. Matrix O can be integrated into vectorm since it does not alter its norm. The equivalent
measurement model is

y = T̂ m̂+ h+ ε (3.3)
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where

T̂ ≜ (I3×3 +D)−1

m̂ ≜ Om

Therefore, for the full calibration, D and h must be estimated. To this purpose, a set of
N measurements, yk, k = 1, 2, . . . N , is used and the corresponding effective measurements zk,
k = 1, 2, . . . N , are defined as

zk ≜ ∥yk∥2 − ∥m̂k∥2

= ∥yk∥2 − ∥mk∥2.
(3.4)

The last ones can be decomposed into a deterministic part plus an approximately Gaussian noise
term, υk with mean µk and variance σ2k, i.e. υk ∼ N (µk, σ

2
k), given by

µk = −3σ2 (3.5αʹ)
σ2k = 4σ2((I3×3 +D)yk − h)T ((I3×3 +D)yk − h) + 6σ4 (3.5βʹ)

Since D and h are unknown, the variance σ2k is assumed to be similar to measurement’s output
error variance σ2. Hence µk and σ2k can be assumed independent of k.

To estimate D and h, Alonso and Shuster define the auxiliary quantities

E ≜ D2 + 2D (3.6αʹ)
c ≜ (I +D)h (3.6βʹ)

and the estimation vector θ′ which contains the elements of the 3× 1 vector c and the elements
of the 3× 3 symmetric matrix E and is structured as follows

θ′ = [cTE11 E22 E33 E12 E13 E23]
T . (3.7)

TWOSTEP algorithm functions on the estimation vector θ′ and thus on the auxiliary parameters,
E and c and not on the actual calibration parameters, D and h. The transformation from E

and c to D and h is described in (3.15)-(3.17).

3.3.1 Initial Estimate

For every measurement, yk, k = 1, 2, . . . N , a corresponding auxiliary variable is defined

Sk = [y2k,1 y
2
k,2 y

2
k,3 2yk,1yk,2 2yk,1yk,3 2yk,2yk,3] (3.8αʹ)

Lk = [2yTk | −Sk] (3.8βʹ)
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The centering approximation is done using the following weighted averages

z̄ ≜ σ̄2
N∑
k=1

1

σ2k
zk L̄ ≜ σ̄2

N∑
k=1

1

σ2k
Lk µ̄ ≜ σ̄2

N∑
k=1

1

σ2k
µk (3.9)

along with the corresponding centered values

z̃k = zk − z̄ L̃k = Lk − L̄ µ̃k = µk − µ̄ (3.10)

where

σ̄2 ≜
(

N∑
k=1

1

σ2k

)−1

The centered estimation for θ′ is given by

θ̃′ = P̃θ′θ′
N∑
k=1

1

σ2k
(z̃k − µ̃k) L̃Tk (3.11αʹ)

P̃−1
θ′θ′ = F̃θ′θ′ =

N∑
k=1

1

σ2k
L̃Tk L̃k (3.11βʹ)

with P̃θ′θ′ denoting the centered covariance matrix and F̃θ′θ′ denoting the centered Fischer
information matrix.

3.3.2 Solution Improvement Step

The second step improves the previous estimate of vector θ, derived in (3.11), via Gauss-
Newton method using the centered estimate θ̃′ as the initial guess. The estimation is updated
as follows

θ′i+1 = θ′i −
[
F̃θ′θ′ +

1

σ̄2
(
L̄− ϕ(θ′i)

)T (
L̄− ϕ(θ′i)

)]−1

g(θ′i) (3.12)

where

v = (I3×3 + E)−1c (3.13αʹ)
ϕ(θ′) = [2vT − v21 − v22 − v23 − 2v1v2 − 2v1v3 − 2v2v3] (3.13βʹ)

g(θ′) = P̃−1
θ′θ′(θ

′ − θ̃′)− 1

σ̄2
(
z̄ − L̄θ′ + cT v − µ̄

) (
L̄T − ϕ(θ′)

)
(3.13γʹ)

with vj denoting the jth element of vector v. At every iteration the 3 × 3 symmetric matrix E
and the 3× 1 vector c are updated according to the current estimation vector θ′i using (3.7).

Alonso and Shuster define the following quantity in order to establish a stop condition for
the Gauss-Newton method.

ηi ≜
(
θ′i+1 − θ′i

)T [
F̃θ′θ′ +

1

σ̄2
(
L̄− ϕ(θ′i)

)T (
L̄− ϕ(θ′i)

)] (
θ′i+1 − θ′i

)
(3.14)
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The iterations continue until ηi became smaller than a predetermined threshold.
After sufficient iterations, an optimal estimation of matrix E∗ and of vector c∗ is derived

(3.7). The derived solution is then transformed to the quantities D∗ and h∗. By applying SVD
[29] on the symmetric matrix E∗, it is written as

E∗ = USUT (3.15)

where S = diag(s1, s2, s3), U ∈ O(3). Advancing, we find the diagonal matrixW = diag(w1, w2, w3)

that satisfies S = 2W +W 2. Typically, the elements of S are much smaller than unity [2] so
that a solution exists. The diagonal elements of W are given by

wj = −1 +
√
1 + sj (3.16)

for j = 1, 2, 3. The estimates of the matrix D∗ and bias vector h∗ are then given by

D∗ = UWUT (3.17αʹ)
h∗ = (I3×3 +D∗)−1c∗ (3.17βʹ)

and are related to the calibration parameters T and h of the measurement model (3.2) as follows

T = (I3×3 +D∗)−1 and h = h∗ (3.18)

Algorithm 5: Alonso and Shuster (TWOSTEP) [2]
Step 1: Calculate zk, Lk, for k = 1, 2, . . . , N

by using (3.4), (3.8)
Step 2: Calculate the centered values z̃k, L̃k for k = 1, 2, . . . , N (3.9), (3.10)
Step 3: Calculate centered estimate θ̃′ and covariance matrix P̃θ′θ′ (3.11)
Step 4: Extract c and E from θ′ (3.7)
Step 5: Calculate ϕ(θ′) and g(θ′) (3.13)
Step 6: Update θ′ (3.12)
Step 7: Calculate η (3.14)
Step 8: Repeat steps 4-7 until η is sufficiently small

or maximum iterations are met
Step 9: Apply SVD on E∗ (3.15) and define matrix W (3.16)
Step 10: Calculate D∗, h∗ (3.17) and T, h (3.18)
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3.4 Crassidis et al. [5]

The authors of [5] realized that real-time applications demand real-time calibration methods.
To this end, based on TWOSTEP [2], Crassidis et al. formulate a real-time estimation problem
for the derivation of the calibration parameters T and h and solve it using the extended Kalman
Filter approach [6]

Following TWOSTEP, a bias vector h and for symmetric matrix D is desired. The estimation
vector θ contains the elements of h and D and is structured as it follows

θ = [hT D11 D22 D33 D12 D13 D23]
T (3.19)

Because the vector θ is constant, the state model is given by θ̇ = 0. The effective measurement
is given by zk = ∥yk∥2−∥mk∥2 (3.4) while the measurement’s model is given by zk = ϕ(θk)+υk

where
ϕ(θk) = −yTk

(
2Dk +D2

k

)
yk + 2yTk (I3×3 +Dk)hk − ∥hk∥2 (3.20)

and effective measurement’s noise υk ∼ N (µk, σ
2
k) follows (3.5). At each iteration Dk and hk are

extracted from θk according to (3.19). The propagation is as it follows

θk+1 = θk +Kk [zk − ϕ(θk)] (3.21αʹ)
Pk+1 = [I9×9 −KkH(θk)]Pk (3.21βʹ)

Kk = PkH
T (θk)

[
H(θk)PkH

T (θk) + σ2k
]−1 (3.21γʹ)

where Pk is the covariance of the estimated parameters for h and D at step k. The matrix H(θk)

is the linearization matrix of ϕ(θk) and is defined as

H(θk) = [2yTk (I3×3 +Dk)− 2hTk − SkFk + 2Jk] (3.22)

where
Sk = [y2k,1 y2k,2 y2k,3 2yk,1yk,2 2yk,1yk,3 2yk,2yk,3] (3.23αʹ)

Jk = [yk,1hk,1 yk,2hk,2 yk,3hk,3 yk,1hk,2 + yk,2hk,1

yk,1hk,3 + yk,3hk,1 yk,2hk,3 + hk,3hk,2]
(3.23βʹ)

Fk =



∆1 0 0 2Dk,12 2Dk,13 0

0 ∆2 0 2Dk,12 0 2Dk,23

0 0 ∆3 0 2Dk,13 2Dk,23

Dk,12 Dk,12 0 ∆4 Dk,23 Dk,13

Dk,13 0 Dk,13 Dk,23 ∆5 Dk,12

0 Dk,23 Dk,23 Dk,13 Dk,12 ∆6


(3.23γʹ)
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where
∆1 = 2(1 +Dk,11)

∆2 = 2(1 +Dk,22)

∆3 = 2(1 +Dk,33)

∆4 = 2 +Dk,11 +Dk,22

∆5 = 2 +Dk,11 +Dk,33

∆6 = 2 +Dk,22 +Dk,33

(3.24)

The choice of σ2k, again, seems to be unimportant. Thus it can be assumed similar to σ2,
likewise with TWOSTEP. Given a set of N measurements, the EKF will provide an optimal
estimation vector θ∗ = θN from which an optimal vector h∗ = hN and a matrix D∗ = DN can
be extracted according to (3.19). Therefore, the full calibration parameters (3.2) are given below

T = (I3×3 +D∗)−1 and h = h∗ (3.25)

Even though the authors focused on sequential calibration methods, they do not seem to offer
any advantage over batch algorithms for static environments due to the fact that the estimated
variables are slowly varying. The authors verified the robustness of their method via simulations
assuming either white noise or coloured noise, for a long-duration spacecraft’s on-orbit flight.
This method makes use of the concept of effective measurement (3.4) likewise with TWOSTEP.
Therefore, similar assumptions and consumption could be made.

Algorithm 6: Crassidis et al. (Kalman Filter) [5]
Step 1: Initialize θ and k = 0

Step 2: for each measurement do:
Calculate zk (3.4)
Extract Dk and hk from θk (3.19)
Calculate Sk, Jk, Fk (3.23) and H(θk) (3.22)
Calculate Kalman Gain Kk (3.21)
Update estimation: θk ← θk+1

Update covariance matrix: Pk ← Pk+1 (3.21)
k ← k + 1

Step 3: Extract D∗ and h∗ from θ∗ (3.19)
Step 4: Calculate T and h (3.25)

3.5 Dorveaux et al. [7]
An iterative algorithm for the calibration of magnetic field sensors based on iterations of a

least-squares problem is introduced in [7]. In the beginning of the algorithm, the measurements
lie on an ellipsoid according to (3.2). In each iteration, the measurements move from the initial
ellipsoid to the unit sphere, following a cost function minimization algorithm.
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The authors in [7] use the following variation of the measurement model of (3.2)

m = Ay +B (3.26)

where A = T−1, B = −T−1h and the measurement noise, ε, is neglected.

The algorithm begins by considering an initial estimate of the magnetic field vectors, denoted
by m̃k(0) and defined as

m̃k(0) = yk, k = 1, 2, . . . ,K (3.27)

In every iteration, the following cost function is formulated and minimized using the least squares
method.

J(A,B, n) =
K∑
k=1

∥∥∥∥Am̃k(n) +B − m̃k(n)

∥m̃k(n)∥

∥∥∥∥2 (3.28)

where n = 1, 2, . . . , N denotes the nth iteration. Let An and Bn be the resulting matrices from
the minimization of (3.28). Every iteration ends with using An and Bn to update the estimates
of the magnetic field vectors as

m̃k(n+ 1) = Anm̃k(n) +Bn, k = 1, 2, . . . ,K. (3.29)

From (3.29) we can express the magnetic field estimates m̃k(n) using the measurement vectors
yk as

m̃k(n) = Ãnyk + B̃n, k = 1, 2, . . . ,K (3.30)

where Ãn and B̃n are iteratively defined as

Ãn = AnÃn−1 and B̃n = AnB̃n−1 +Bn. (3.31)

To determine when the algorithm has reached an acceptable solution1, we define the following
cost

Jstop(An, Bn) = ∥Bn∥+ ∥An − I3×3∥. (3.32)

The iterations stop when Jstop is sufficiently small and the derived matrices ÃN and B̃N are
related to the calibration parameters T and h of the measurement model (3.2) as follows

T = Ã−1
N and h = −Ã−1

N B̃N . (3.33)

Finally, the estimates m̃k(N), k = 1, 2, . . . ,K, derived at the N th iteration represent the
calibrated measurement vectors.

1The original manuscript does not provide an explicit condition to stop iterations. However it is reasonable to
terminate the algorithm when contribution of the updated An and Bn to the calibration parametersÃn and B̃n is
negligible (see (3.31)).
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Algorithm 7: Dorveaux et al. [7]
Step 1: Initialize m̃k(0) using (3.27).
Step 2: Minimize (3.28) using least squares and derive An and Bn.
Step 3: Use An and Bn to calculate m̃k(n+ 1) from (3.29).
Step 4: Calculate Ãn and B̃n using (3.31).
Step 5: Evaluate the cost function Jstop(An, Bn) from (3.32).
Step 6: Repeat steps 2-5 until Jstop is sufficiently small.
Step 7: Use ÃN and B̃N to calculate T and h using (3.33).

3.6 Vasconcelos et al. [30]

The authors of [30] consider that magnetometers’ measurements lie on a ellipsoid manifold
following the measurement model (3.2). First, they derive an initial estimate of the calibration
parameters T and h by finding the ellipsoid that fits best to the given data. Then, they use the
measurement model of (3.2) to formulate a maximum likelihood estimation problem and derive
an improved estimate of the calibration parameters T and h.

From (3.2), the magnetic field vector is expressed as m = T−1(y−h)−T−1ε. Assuming that
the magnitude of the magnetic field is constant during the calibration procedure we can write
the following unconstrained optimization problem to derive T and h

minimize
T,h

K∑
k=1

(
∥T−1(yk − h)∥ − 1

σk

)2

. (3.34)

Here σk denotes the standard deviation of the measurement noise in the kth measurement,
assuming it is the same for all three axes. Without loss of generality, the magnitude of the
magnetic field is assumed to be equal to one. A possible relaxation of this soft assumption is
provided by Springmann [28] who addresses the problem of time-varying bias. To solve (3.34),
the authors define the following cost function and then minimize it using the Newton’s method

J(x) ≜
K∑
k=1

(
∥T̂ (yk − h)∥ − 1

σk

)2

(3.35)

where T̂ = T−1 and
x =

[
vec(T̂ )T hT

]T
(3.36)

The vector x is updated in every Newton’s iteration as follows

x(+) = x(−) −
[
∇2J(x)

∣∣∣
x=x(−)

]−1
∇J(x)

∣∣∣
x=x(−)

(3.37)

where ∇J(x) is the gradient vector and ∇2J(x) is the Hessian matrix of the cost function. For
both ∇J(x) and ∇2J(x), the authors in [30] provide analytical expressions which are presented
in Appendix 3.12.1.
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3.6.1 Initial Estimate

Solving (3.34) using the Newton’s method requires a good initial estimate of the calibration
parameters, T̂ and h. Vasconcelos et al. use a previous work on nonlinear estimators for strapdown
magnetometers by Foster and Elkaim [9, 11], to derive a good initial estimate by solving the
following pseudo-linear least squares estimation problem.

Ap = b (3.38)

where, by writing each measurement vector as yk =
[
yxk yyk yzk

]T
, k = 1, 2, . . . ,K, it is

A =


yx1

2 yx1y
y
1 yx1y

z
1 yy1

2
yy1y

z
1 yx1 yy1 yz1 1

... ... ... ... ... ... ... ... ...
yxK

2 yxKy
y
K yxKy

z
K yyK

2
yyKy

z
K yxK yyK yzK 1

 (3.39)

and
b =

[
yz1

2 yz2
2 . . . yzK

2
]T

(3.40)

The vector p is derived as

p =
[
A B C D E G H I J

]T
= (ATA)−1AT b (3.41)

The initial estimates of the calibration parameters are derived as

T̂ (0) =


1
α 0 0

− 1
α tan(ρ) −1

b sec(ρ) 0
1
α (tan(ρ) tan(λ) sec(ϕ)− tan(ϕ)) −1

b sec(ρ) tan(λ) sec(ϕ) 1
c sec(λ) sec(ϕ)

 (3.42)

and
h(0) =

1

2α1

[
β1 β2 β3

]T
(3.43)

where
a =

1

2α1

(
−(4D + E2)α2

)1/2
b =

1

2α1

(
−(4A+ C2)α2

)1/2
c =

1

2α1

(
(4DA−B2)α2

)1/2
tan(ρ) = − 1

2α1
(2B + EC)(α1)

−1/2

tan(ϕ) = (BE − 2CD)(α1)
−1/2

tan(λ) = E(−α1α
−1
3 )1/2

(3.44)
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and
β1 = 2BH +BEI − 2CDI − 4DG+ ECH − E2G

β2 = −2AEI + 4AH −BCI − 2BG+ C2H − CEG

β3 = 4DIA− 2DGC + EGB − IB2 − 2EHA+ CBH

(3.45)

The auxiliary variables α1, α2 and α3 are defined as

α1 = −B2 +DC2 + 4DA+AE2 −BEC

α2 = 4AE2J − E2G2 − 4BECJ + 2ECHG+ 2BEIG− 4EHAI − 4DICG− C2H2

+ 4DAI2 + 2CBHI − 4DG2 + 4DC2J + 4BHG− 4AH2 −B2I2 − 4B2J + 16DAJ

α3 = E4A− CBE3 + E2C2D − 2B2E2 + 8DAE2 − 4DB2 + 16D2A

(3.46)

One contribution of Vasconcelos et al., advancing the existing initial step approach suggested
in [9], was the derivation of the aforementioned explicit and non-trivial expressions. In addition,
Vasconcelos et al. state that their proposed algorithm is applicable even when the magnitude
of the magnetic field is not constant during the measurement, similarly to TWOSTEP and
Crassidis et al. algorithm [5].

Algorithm 8: Vasconcelos et al. [30]
Initial Estimate
Step 1: Use the sensors’ measurements yk, k = 1, 2, . . . ,K and form A and b according
to (3.39) and (3.40) respectively.
Step 2: Calculate p using (3.41)
Step 3: Derive the initial estimates T̂ (0) and h(0) using (3.42) and (3.43) respectively.
Newton’s Method
Step 4: Use the initial estimates T̂ (0) and h(0) to initialize x according to (3.36).
Step 5: Update x using (3.37).
Step 6: Evaluate the cost function J(x) of (3.35).
Step 7: Repeat Steps 5-6 until J(x) becomes sufficiently small.
Step 8: Split x into T̂ and h and calculate T = T̂−1.

3.7 Ali et al. [1]

The authors propose a Particle Swarm Optimization (PSO) [16] - based calibration algorithm
that estimates the bias, the scale and nonorthogonality factors. The main advantage of this
algorithm is its simplicity of implementation since the optimization is heuristic and does not
depend on calculation of gradients, unlike other optimization techniques mentioned in this paper.
It can be classified as an Artificial Intelligence (AI) [17] approach.

The authors in [1] use (3.2) and a set of N sensor’s measurements to form the following
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optimization problem for deriving the calibration parameters T and h

min
T,h

J (3.47)

where J is called the fitness and is defined by

J ≜

√√√√ N∑
k=0

(
∥yk∥2 − ∥mk∥2

)2
. (3.48)

Function J depends on T and h which are conveniently combined into the single vector x ∈ R12,

x =

[
h

vec(T T ).

]
(3.49)

For a swarm of S particles, the position xi ∈ R12 and the velocity vi ∈ R12 of the i-th particle
can be computed using [16]

vki = vk−1
i + c1r

k−1
1i

(
pk−1
i − xk−1

i

)
+ c2r

k−1
2i

(
pk−1
g − xk−1

i

)
(3.50αʹ)

xki = xk−1
i + vki (3.50βʹ)

for i = 1, 2, . . . , S where k denotes the new value while k − 1 the old value. Also pi denotes the
ith’s particle best position, pg denotes the swarm’s best position, c1 and c2 are the acceleration
coefficients, w is the inertial weight factor and r1i, r2i are random numbers uniformly distributed
within the range [0, 1]. Typical values of these quantities are c1 = c2 = 2, w = 1 and the number
of particles S is usually between 20 and 65.

Therefore, at each iteration k, each particle’s fitness value J(xki ) is calculated and quantities
pi and pg are updated accordingly. The authors suggest three different stop criteria. Specifically,
the iterations stop either when the fitness value J of a particle is smaller than a predetermined
threshold, or after a maximum number of iterations, or when the change of J becomes insignificant
with iterations. Upon termination of the algorithm, parameters T and h (3.2) are extracted from
the swarms’s optimal solution pg according to[

h

vec(T T )

]
= pg. (3.51)

Following the general concept of applying AI optimization algorithms, as was introduced in
[1], one can also consider using more modern versions of the standard PSO, e.g. [8, 23, 14]. They
are typically found as built-in functions in computational suites such as MATLAB [22].
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Algorithm 9: Ali et al. (PSO calibration) [1]
Step 1: Initialize xi, vi for i = 1, 2, . . . , S

and set pi = xi

Step 2: Find j = {i|i = 1, 2, . . . , S and J(pi)← min}
Particle i best: J imin ← J(pi)
Global best: pg ← pj and Jmin ← J(pj)

Step 3: for each particle i do
Update xi, vi (3.50)
Calculate J(xi) (3.47)
if J(xi) < J imin
J imin ← J(xi) and pi ← xi
if J(xi) < Jmin
Jmin ← J(xi) and pg ← xi

Step 4: Repeat Step 3 until an exit condition is met
Step 5: Extract T and h from pg (3.51)

3.8 Wu and Shi [31]

The authors of [31], formulate the calibration of a three-axis magnetometer as a maximum
likelihood estimation problem which is solved using the Gauss-Newton method.

Starting from the measurement model of (3.2), Wu and Shi observed that by considering the
QR decomposition T−1 = QR, where Q ∈ O(3) and R ∈ U(3), (3.2) is written as

y = R−1QTm+ h+ ε (3.52)

Defining m̂ ≜ QTm, we observe that ∥m̂∥ = ∥m∥ since Q ∈ O(3). Also setting T̂ ≜ R−1 we have
that

y = T̂ m̂+ h+ ε (3.53)

Using the above transformation, the authors reduce the unknown model parameter variables
from 12 (9 for T and 3 for h) to 9 (6 for R since R is upper triangular and 3 for h). Note that
using (3.53), the calibration procedure now aims at finding the calibration parameters T̂ and h
while the magnetic field vector m̂ is also unknown.

Using a set of K measurements and (3.53), the authors formulate the following maximum
likelihood estimation problem

minimize
T̂ ,h,m̂k

K∑
k=1

∥yk − T̂ m̂k − h∥2

subject to ∥m̂k∥ = 1, k = 1, 2, ...,K.

(3.54)

Without loss of generality, the authors, constrained the magnitude of the magnetic field to be
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equal to one. Based on (3.54), the following Lagrange function is formulated

J(x) =
K∑
k=1

[
∥yk − T̂ m̂k − h∥2 + λk

(
∥m̂k∥2 − 1

) ]
(3.55)

where
x =

[
vec(T̂ )T , hT , m̂T

1 , m̂
T
2 , ..., m̂

T
K , λ1, λ2, ..., λK

]T
(3.56)

and λk, k = 1, 2, . . . ,K are positive Lagrange coefficients for the unit norm constrain. Note that
since T̂ is an upper triangular matrix, the lower triangular elements of T̂ are excluded from x.
The minimization of (3.55) and the estimation of x are done using the Gauss-Newton method
as follows

x(+) = x(−) −
[
∇2J(x)

∣∣∣
x=x(−)

]−1 (
∇J(x)

∣∣∣
x=x(−)

)
(3.57)

where ∇J(x) is the Jacobian vector and ∇2J(x) is the Hessian matrix of the Lagrange function.
For both ∇J(x) and ∇2J(x), the authors provide analytical expressions which are presented in
Appendix 3.12.2.

3.8.1 Initial Estimate

Solving (3.54) using the Gauss-Newton method requires a good initial estimate of the unknowns.
To find one, the authors of [31] use the unit magnitude constrain and the equation 1 =

∥R (yk − h) ∥2 which after some manipulation, is written as

[
yTk ⊗ yTk yTk 1

]vec(A)b

c

 ≜ Ykz = 0, k = 1, 2, ...,K (3.58)

where A = RTR, b = −2RTRh and c = hTRTRh. Defining Y =
[
Y T
1 Y T

2 . . . Y T
K

]T
, from

(3.58) it is
Y z = 0 (3.59)

The authors, solve (3.59) in a least squares sense and denote the solution ze =
[
vec(Ae)T bTe ce

]T
=

min ∥Y z∥2. They derive ze as the eigenvector of Y TY corresponding to its minimum (or zero)
eigenvalue. Using ze, the vector z is derived as z = αze, where α = 4/

(
bTe A

−1
e be − 4ce

)
.

Extracting vec(A), b and c from z, the initial estimates of the unknowns, T̂ (0), h(0), m̂k(0)

and λk(0) are defined as follows:

T̂ (0) = R−1 = chol(A)
h(0) = −A−1b/2

m̂k(0) = T̂ (0)−1(yk − h), k = 1, 2, ...,K

λk(0) = 0, k = 1, 2, ...,K

(3.60)
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where chol(·) is the Cholesky factorization.

Finally, an alternative version of Wu’s and Shi’s algorithm is proposed by Cao et al. in [4],
where a different method for the initial estimate is presented, and the second step is identical.

Algorithm 10: Wu and Shi [31]
Initial Estimate
Step 1: Calculate Yk, k = 1, 2, . . . ,K from (3.58) and form the matrix
Y =

[
Y T
1 Y T

2 . . . Y T
K

]T .
Step 2: Find the eigenvector of Y TY corresponding to its minimum (or zero) eigenvalue
and denote it as ze =

[
vec(Ae)T bTe ce

]T .
Step 3: Calculate z = aze where α = 4/

(
bTe A

−1
e be − 4ce

)
.

Step 4: Extract vec(A), b and c from z.
Step 5: Calculate an initial estimate of the unknowns using (3.60).
Gauss-Newton Method
Step 6: Use the initial estimates to initialize the vector x of (3.56)
Step 7: Update x using (3.57).
Step 8: Evaluate the cost J(x) of (3.55).
Step 9: Repeat steps 7-8 until J(x) becomes sufficiently small.

3.9 Papafotis and Sotiriadis (MAG.I.C.AL.) [25]

The authors in [25] use (3.2) and a set of K sensor’s measurements to form the following
optimization problem for deriving the calibration parameters T and h

minimize
T,h,mk

K∑
k=1

∥yk − Tmk − h∥2

subject to ∥mk∥ = 1, k = 1, 2, ...,K

(3.61)

where, without loss of generality, the magnitude of the magnetic field is constrained to be equal
to one. In order to solve (3.61) they propose an iterative algorithm, based on the solution of a
linear least-squares problem.

The algorithm begins by initializing the magnetic field vectors, mk, as

mk =
yk
∥yk∥

, k = 1, 2, . . . ,K (3.62)

and rewriting (3.2) in a matrix form as follows:

Y = LG+ E (3.63)
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where

Y =
[
y1 y2 ... yK

]
(3.64αʹ)

L =
[
T h

]
(3.64βʹ)

G =

[
m1 m2 ... mK

1 1 ... 1

]
(3.64γʹ)

E =
[
ε1 ε2 ... εK

]
(3.64δʹ)

In every iteration, (3.63) is solved for L using the least squares method, minimizing the total
squared error ∥ETE∥2F

L = Y GT (GGT )−1 (3.65)

From the calculated L, an updated set of calibration parameters T and h is extracted from
(3.64βʹ). Using them, the magnetic field vector is updated as

mk =
m̃k

∥m̃k∥
, k = 1, 2, . . . ,K (3.66)

where
m̃k = T−1(yk − h), k = 1, 2, . . . ,K (3.67)

Every iteration ends by updating the matrix G using the updated vectors mk, k = 1, 2, . . . ,K.
Iterations stop when a small value of the following cost function is achieved

J(T, h) =
K∑
k=1

(
∥m̃k∥2 − 1

)2 (3.68)

Algorithm 11: Papafotis and Sotiriadis (MAG.I.C.AL.) [25]
Step 1: Initialize mk using (3.62).
Step 2: Calculate L using (3.65).
Step 3: Extract T and h from L using (3.64βʹ).
Step 4: Update mk using (3.66) and (3.67) and use it to update G.
Step 5: Evaluate the cost-plus-penalty function J from (3.68).
Step 6: Repeat steps 2-5 until J(T, h) is sufficiently small.
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3.10 Algorithms’ Evaluation and Comparison
In this Section, the performance of the presented algorithms is evaluated in terms of accuracy,

robustness and execution speed. Firstly, we evaluate the performance of the seven algorithms
using multiple sets of synthetic data where the calibration parameters T and h as well as
the measurement noise characteristics are predefined and known. By doing so, we are able to
accurately determine the algorithms’ accuracy and robustness. Then multiple datasets of two
different low-cost magnetic field sensors are used to verify the algorithms’ performance under
real-world conditions.

3.10.1 Synthetic Data Generation

We designed a procedure to generate synthetic data effectively, in order to examine each of
the aforementioned algorithm’s performance across a range of noise variance and measurement
sample size. The authors of TWOSTEP [3] propose a typical scenario of assuming the magnetic
vector spinning with a constant angular velocity. On the other hand, Wu and Shi [31] suggest
a specific sequence of 3D rotations using Euler Angles, applied on a constant known magnetic
vectorm. In the same page, Papafotis and Sotiriadis [25] recommend a sequence of 12 approximate
orientations. Another alternative is to make use of a set of random, yet normalized, vector fields,
which however demands a reasonable amount of samples.

Because none of the described algorithms guarantees that it will function properly under
an arbitrary data set, we propose an efficient method to span SO(3), following [26], so as to
provide the algorithms with substantial, non-redundant information and to compare them fairly.
After extensive simulation, it was observed that the recommended method was very effective in
spanning the 3D rotation space.

Our method’s effectiveness lies on distributing the points on the sphere ∥m∥ = 1, more evenly
by using the canonical Fibonacci Lattice mapping [26, 12]. Generating a Fibonacci sphere is an
extremely fast and effective approximate method to evenly distribute points on a sphere.

This way SO(3) is sufficiently represented even with only a small dataset. An algorithm for
generating K vectors distributed on a Fibonacci sphere is presented in detail in Algorithm 12.
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Considering K vectors, mk, k = 1, 2, . . . ,K distributed on a Fibonacci sphere, we continue
with generating matrix T and vector h, required to calculate the corresponding measurement
vectors yk, mk, k = 1, 2, . . . ,K according to (3.2). Ideally, matrix T would be the 3× 3 identity
matrix while the bias vector h would be the 3× 1 vector of zeros. A realistic model for T and h,
accounting for the sensor’s non-idealities, is derived by using the concept of additive perturbation

T = αI3 + E (3.69αʹ)
h = e (3.69βʹ)

where α accounts for gross scaling errors, E is a 3×3 perturbation matrix with random, typically
small, coefficients and e is 3 × 1 perturbation bias vector with random coefficients. Finally, a
sequence of white noise ε ∼ N (0, σ2) is added to the measurements and the measurement vectors
yk, mk, k = 1, 2, . . . ,K are derived according to (3.2)

y = Tm+ h+ ε (3.70)

Algorithm 12: Generation of Synthetic Data
Step 1:Initialize the number of measurements K and the radius of sphere r
Step 2: Calculate Golden Ratio: φ = 1+

√
5

2

Step 3: for each k = 1, 2, . . . ,K do:
θ = 2πk

φ

ϕ = arccos
(
1− 2(k+0.5)

K

)
mk = [mx,my,mz] = [r cos θ sinϕ, r sin θ sinϕ, r cosϕ]

Step 4: Pick the scaling parameter, α, the perturbation matrix, E
and the perturbation vector, e.

Step 5: Calculate T and h according to (3.69).
Step 6: Generate a sequence of white noise: ε ∼ N (0, σ2)

Step 7: Calculate the measurement vectors: yk = Tmk + h+ εk (3.2)

The two datasets generated using Algorithm 12 are presented in Figure 3.1. Note that for
visualization purposes, the scaling parameter, α, the perturbation matrix, E, and the perturbation
vector, e, used to create each dataset were set to a rather large value.
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Figure 3.1: Two synthetic datasets generated using Algorithm 12 for K = 150 (a) and K = 300
(b) respectively.
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Experiment Setup and Evaluation Criteria

To evaluate the algorithms’ performance, we used synthetic data, generated by Algorithm
12, and we executed a great number Monte Carlo simulations. Each simulation consisted of 250
runs of each algorithm while in each run, the same dataset was used as input in all algorithms.
An uncertainty was introduced in the generation of each dataset by considering a statistical
distribution for the elements, Eij , of the perturbation matrix, E, and the elements, ei, of the
perturbation vector e (see (3.69)). Specifically, for the Monte Carlo simulations we assumed

α ∼ U [0.8, 1.2] (3.71αʹ)
Eij ∼ U [−β, β] (3.71βʹ)
ei ∼ U [−γ, γ] (3.71γʹ)

where β and γ are scalars, the effect of which was tested using multiple Monte Carlo simulations.
Note that we considered the scaling factor, α, to be close to the ideal value of α = 1. That may
not be the case when real-world measurements are used, however, it is trivial, and common,
to properly scale the measurements before the calibration procedure and remove gross scaling
errors. In this way, the algorithms are not burdened, searching for a scaling relationship which
can be easily provided by simple data preprocessing.

A challenging point while setting up the experiments was to determine the number of samples
of each dataset and the value of the sensor’s noise variance, σ2. We considered a dataset of
300 measurements as a solid choice for a simulation environment based on [31, 1] while we
experimentally confirmed that bigger datasets do not improve the performance of any algorithm.
We also examined the performance of the presented algorithms when smaller datasets, consisted
of 150 and 50 measurements, are used. As far as the noise variance, σ2, is concerned, we
considered a nominal value of σ = 0.005, following [30] and [31] while we also simulated the
cases of more noisy (σ = 0.05) and less noisy (σ = 0.0005) sensors.

The evaluation of the algorithm for each Monte Carlo simulation was done in terms of
accuracy, execution speed and robustness. We used the execution speed of each algorithm as
a metric of computational efficiency and is defined as the inverse of the mean execution time.
As a metric of robustness we considered the percentage of datasets for which each algorithm
successfully derived a meaningful solution.

The definition of an accuracy metric is a little more involved. Each algorithm was developed to
take as inputs the measurement vectors yk, k = 1, 2, . . . ,K and output the calibration parameters
T and h. Comparing the output bias vector h with the true one, htrue, which was used in the
data generation procedure, was done by defining the following cost

Jh = ∥htrue − h∥ (3.72)

The calibration matrix T on the other hand is derived under a rotational uncertainty and
comparing it with the true one, Ttrue, is a more challenging task.
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Consider the measurement model of (3.2). Noting that the true magnetic field vector in (3.2)
is also unknown, and derived by the calibration algorithm, we can write:

y = TtrueRR
Tm+ htrue (3.73)

where R is an orthogonal matrix in the O(3) group. Thus, taking into account the rotational
invariance of the Euclidean norm which implies that ∥RTm∥ = ∥m∥, a calibration algorithm
may output any matrix T of the form T = TtrueR. Thus a proper cost function to compare T
and Ttrue is the following

JT = ∥T − TtrueR∥F (3.74)

where, the matrix R is defined as the solution of the following minimization problem

R = argmin
Ω∈O(3)

∥T − TtrueΩ∥F (3.75)

The solution of (3.75) is given by the Orthogonal Procrustes problem [27], and it is

R = UV T (3.76)

where the matrices U and V are derived from the Singular Value Decomposition (SVD) of the
matrix T TtrueT , i.e. T TtrueT = UΣV T , where U, V ∈ O(3) and Σ is a diagonal matrix.

Using (3.72) and (3.74) we define the following cost function as a metric of accuracy.

J = ∥htrue − h∥+ ∥T − TtrueR∥F (3.77)

Based on the above and given the results of a Monte Carlo simulation consisted of N
executions of each algorithm, we define the following metrics of performance:

• Accuracy is defined as the mean value of the cost J , defined in (3.77), across all N
executions with meaningful output.

• Mean Execution Time is defined as the mean value of the execution time of an algorithm.

• Robustness is defined as the percentage of datasets for which each algorithm successfully
derived a meaningful solution.

The robustness criterion can be seen as the frequency in which an algorithm provides a better
solution (T, h) in the sense of the cost function (3.77), than the trivial solution (I3×3, 03×1) which
assumes no bias and non multiplicative errors. Given the cost Jo that corresponds to the trivial
solution,

Jo = ∥htrue − 03×1∥+ ∥I3×3 − TtrueR∥F (3.78)

an execution of an algorithm is considered as successful with meaningful output when

J < δJo (3.79)
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where δ ∈ (0, 1) is a robustness parameter. If δ is close to 1, it means that only little improvement
with respect to Jo is sufficient. As δ gets smaller, better solutions are required. Thus, this
parameter can be tuned with respect to the test’s objective and the application’s specifications.
Given N runs for an algorithm, its robustness is denoted by RB(%) and is defined as

RB(%) =
1

N

N∑
i=1

U(Ji < δJoi) · 100. (3.80)

Here Ji and Joi are the values of J (3.77) and Jo (3.78), respectively, corresponding to the ith

run of the algorithm and U is a boolean function, which is one if its argument is true and zero
otherwise. Let M denote the number of executions meaningful outputs.

Now, the accuracy metric is only applied on the M meaningful outputs according to the
robustness test (3.79), since otherwise the comparison would be unfair for the least stable
algorithms. The accuracy of an algorithm over a dataset is denoted by ρ and it is defined
as

ρ =
1

M

N∑
i=1

U(Ji < δJoi)Ji (3.81)

which is the mean accuracy metric value over the M executions with meaningful outputs.

Similarly, the time-efficiency metric (i.e. Mean Execution Time) is only applied on the M
executions with meaningful outputs according to the robustness test (3.79). Again, this is because
otherwise the comparison would be unfair for the least stable algorithms. The Mean Execution
Time of an algorithm over a dataset, is denoted by τ and is defined as

τ =
1

M

N∑
i=1

U(Ji < δJoi)ti (3.82)

where ti is the time needed for the i run to be completed. The execution speed of an algorithm
is defined as 1/τ .

Baseline Evaluation

To derive a baseline evaluation of the presented algorithms, we run a Monte-Carlo simulation
considering typical values for the sensor’s error and noise parameters. In this simulation we
neglected the effect of hard-iron and soft-iron distortions which are in some cases the dominant
terms of the overall error as well as extreme cases of large manufacturing imperfections. More
specifically, 250 different datasets consisting of 300 measurements each, were generated following
Algorithm 12 and considering the following distributions of the model disturbances and the
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Algorithm Accuracy (1/ρ) Robustness (RB%) Execution Speed (1/τ)
TWOSTEP [2] 35.3 · 100 91.6% 455 s−1

Crassidis et al. [5] 3.31 · 103 100% 47.6 s−1

Dorveaux et al. [7] 2.26 · 105 100% 12.8 s−1

Vasconcelos et al. [30] 2.28 · 105 99.6% 0.089 s−1

Ali et al. [1] 2.27 · 105 98.8% 0.10 s−1

Wu and Shi [31] 2.32 · 105 87.2% 0.24 s−1

MAG.I.C.AL [25] 2.28 · 105 100% 29.4 s−1

Table 3.2: Baseline Evaluation of the presented algorithms.

measurement noise
α ∼ U [0.8, 1.2]

Eij ∼ U [−0.05, 0.05]

ei ∼ U [−0.05, 0.05]

σ = 0.005

(3.83)

The distributions’ ranges in (3.83) are based on our literature review. The selection β = γ =

0.05 corresponds to the typical case of approximately 5% distortion for T and bias h. The
measurement’s noise standard deviation is set to a typical value of σ = 0.005 [31, 30].

The performance of the seven algorithms is presented in Table 3.2.

The effect of the offset perturbation parameter, γ

Under extreme manufacturing imperfections or the effect of hard-iron distortion, the magnitude
of the offset vector, h, can be much larger than that in the typical case. In this Section we examine
how larger values of ∥h∥ affect the performance of the presented algorithms. To do so, we run six
Monte-Carlo simulations, each one comprised of 250 different datasets generated by following
Algorithm 12. The offset vector perturbation parameter ei is simulated with gradually increasing
magnitude by expanding the selection horizon U [−γ, γ]. Afterwards, its corresponding impact
on each algorithm’s robustness and accuracy is investigated. The distributions of the model
disturbances and measurement noise are:

α ∼ U [0.8, 1.2]

Eij ∼ U [0.05, 0.05]

ei ∼ U [−γl, γl]

σ = 0.005

for various γ
γ = {0.05, 0.15, 0.25, 0.5, 0.75, 1}

where l = 1, 2, . . . , 6 is the index of Monte Carlo simulation. The extreme case of γ = 1 addresses
the possibility of bias being clearly comparable and even indistinguishable to the true magnetic
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vector. Therefore, as γ increases, the algorithms were driven to their limits and their functionality
range was identified. All the other parameters were nominal, to ensure a fair comparison. The
results of the six Monte-Carlo simulations are presented in Figure 3.2.

(αʹ) Accuracy (1/ρ) of the presented algorithms for different
values of γ.

(βʹ) Execution Speed (1/τ) of the presented algorithms for
different values of γ.

(γʹ) Robustness (RB(%)) of the presented algorithms for
different values of γ.

Figure 3.2: Performance characteristics of the presented algorithms for different values of γ.
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The MAG.I.C.AL and the PSO methods are the most robust ones since they function almost
always, even for large values of bias, while TWOSTEP and Wu and Shi’s algorithms are a little
less stable. In addition, Dorveaux et al. algorithm and EKF seem to be reliable for small to
moderate values of bias. All algorithms, except TWOSTEP and EKF are extremely precise
when they function properly. No changes in execution speed are noticed, with the exception of
MAG.I.C.AL which probably requires more iterations as the bias increases.

The effect of the calibration matrix perturbation parameter, β

Similar to the case of the offset vector, h, under extreme manufacturing imperfections or
the effect of soft-distortion, matrix T , can also diverge significantly from the typical case of
the identity matrix. In this Section we examine how larger values of perturbation E affect the
performance of the presented algorithms. To do so, we run six Monte-Carlo simulations, each one
based on 250 different datasets generated by following Algorithm 12. The perturbation elements
Eij were simulated with gradually increasing magnitude by expanding the distribution range
U [−β, β]. Afterwards, its corresponding impact on each algorithm’s robustness and accuracy is
investigated. The distributions of the model disturbances and measurement noise are:

α ∼ U [0.8, 1.2]

Eij ∼ U [−βl, βl]

ei ∼ U [−0.05, 0.05]

σ = 0.005

for various β
β = {0.05, 0.15, 0.25, 0.5, 0.75, 1}

where l = 1, 2, . . . , 6 is the index of Monte Carlo simulation. As β increases, the algorithms
were driven to their limits and their functionality range was identified. All the other parameters
were nominal, to ensure a fair comparison. The results of the six Monte-Carlo simulations are
presented in Figure 3.3.
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(αʹ) Accuracy (1/ρ) of the presented algorithms for different
values of β.

(βʹ) Execution Speed (1/τ) of the presented algorithms for
different values of β.

(γʹ) Robustness (RB(%)) of the presented algorithms for
different values of β.

Figure 3.3: Performance characteristics of the presented algorithms for different values of β.

The MAG.I.C.AL algorithm and the algorithm of Dorveaux et al. appear to be the most
robust and effective, with similar accuracy. The algorithm of Vasconcelos et al., the PSO
algorithm and the EKF algorithm succeed only for small to moderate non-orthogonality errors.
Vasconcelos et al. achieves accuracy comparable to that of MAG.I.C.AL. The rest of the algorithms
tend to fail frequently as these errors increase. What is surprising is that Wu and Shi’s algorithm
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provides the most accurate solutions for all β values, but with very low robustness. To conclude,
most algorithms handle bias distortion better than non-orthogonality errors.

The effect of dataset size, K

In this section, we examine how the dataset size, K, affects the algorithms’ performance. In
general, the diversity of the measurement directions is more crucial than the quantity of them.
E.g. a dataset of 50 measurements with directions distributed near uniformly on the unit sphere
is significantly more suitable for the algorithms than one with thousands of measurements all
having approximately the same direction.

According to existing literature [31, 1, 25], an order of 300 measurements with directions
sufficiently covering the unit sphere form an acceptable dataset for the calibration. Here we use
datasets with 50, 150 and 300 measurements to test the algorithms’ limits. To do so, we run
three Monte-Carlo simulations, based on 250 different datasets generated by Algorithm 12. The
distributions of the model disturbances and measurement noise are:

α ∼ U [0.8, 1.2]

Eij ∼ U [−0.05, 0.05]

ei ∼ U [−0.05, 0.05]

σ = 0.005

The dataset size K varied whereas the distributions’ ranges were fixed to nominal to ensure a
fair comparison. The results of the three Monte-Carlo simulations are presented in Figure 3.4.
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(αʹ) Accuracy (1/ρ) of the presented algorithms for datasets of
different size ,K.

(βʹ) Execution Speed (1/τ) of the presented algorithms for
datasets of different size ,K.
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Figure 3.4: Performance characteristics of the presented algorithms for different values of K.

In general, the dataset size, K, does not seem to be important in terms of robustness.
Accuracy is surprisingly high even with only 50 measurements, which is probably an outcome
of the well distributed measurement directions using the Fibonacci lattice. Furthermore, the
algorithms execution time appeared to be linear with K,.
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The effect of the noise variance, σ2

In this section, we examine the influence of measurement’s noise variance σ on algorithms’
robustness and accuracy. The assumption of pure white Gaussian noise in the measurement’s
model was done. We considered a nominal value of σ = 0.005, following [30] and [31] while we
also simulated the cases of more noisy (σ = 0.05) and less noisy (σ = 0.0005) sensors. With
these choices, we represented algorithms’ capabilities under 3 different orders in the magnitude
of the error in the measurement. To do so, we run three Monte-Carlo simulations, each one based
on 250 different datasets generated by following Algorithm 12. The distributions of the model
disturbances and measurement noise are:

α ∼ U [0.8, 1.2]

Eij ∼ U [−0.05, 0.05]

ei ∼ U [−0.05, 0.05]

σ = {0.0005, 0.005, 0.05}

Finally, all parameters except σ were set to their default ones, to ensure a fair comparison. The
results of the three Monte-Carlo simulations are presented in Figure 3.5.
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(αʹ) Accuracy (1/ρ) of the presented algorithms for different
values of the noise variance ,σ2.

(βʹ) Execution Speed (1/τ) of the presented algorithms for
different values of the noise variance ,σ2.

(γʹ) Robustness (RB(%)) of the presented algorithms for
different values of the noise variance ,σ2.

Figure 3.5: Performance characteristics of the presented algorithms for different values of the
noise variance ,σ2.

All algorithms appear to be immune to the change of measurement’s output variance σ.
What is worth mentioning is that an increase of one order in variance resulted to a decrease
of one order in accuracy for most algorithms (i.e. MAG.I.C.AL, Ali et al., Vasconcelos et al.,
Dorveaux et al., Wu and Shi). Low accuracy algorithms, like TWOSTEP and EKF showed a
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BNO055 LSM9DS1TR
Measurement Range ±13 Gauss ±4 Gauss
Sampling Rate 30Hz 80Hz

Measurement Resolution 16 bits 16 bits

Table 3.3: Operation parameters of the two magnetic field sensors.

constant performance.

3.10.2 Algorithms’ Evaluation Using Real Data

In this section, the aforementioned algorithms are tested using real data. Multiple datasets
captured by low-cost magnetic field sensors were used to verify the algorithms’ performance
under real-world conditions. In this case parameters Ttrue and htrue are not known in advance.
Therefore, the accuracy metric (3.77) cannot be used. Since, the measurements took place in a
specific location, a constant magnitude of magnetic vector, ∥m∥ = 1 was considered. As a result,
a proper cost function to evaluate algorithm’s effectiveness is the following

Jr =
1

K

K∑
i=1

(
∥mk∥2 − 1

)2 (3.84)

where K is the number of measurements and k = 1, 2, . . . ,K is the measurement’s index. The
estimated magnetic field vector mk for each k is given by

mk = T−1(yk − h) (3.85)

where T and h are the outputs of a calibration algorithm. Such a cost function is described by
Wu and Shi (3.55), as well as by Papafotis and Sotiriadis (3.68).

To evaluate the performance of the presented algorithms, we used two off-the-shelf, low-
cost magnetic field sensors, which are typically found in commercial electronic devices such
as smartphones, activity trackers, etc. More specifically, we captured a total of 30 datasets
using the LSM9DS1 by STMicroelectronics and the BNO055 by Bosch Sensortec. The operation
parameters of the two sensors during the experiment are presented in Table 3.3. During the
experiment, two sensors were fixed on the same rigid platform which was rotated by hand in
several orientations.

In Figure 3.6αʹ, the mean value of the cost function (3.84) across all the recorded datasets for
every algorithm is presented as a metric of accuracy. The robustness of each algorithm, as defined
in (3.80) is presented in Figure 3.6βʹ. Note that both Figures 3.6αʹ and 3.6βʹ are in agreement
with the results obtained in Section 3.10.1 where synthetic data with typical values for sensor’s
noise and measurement distortion were considered.
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Figure 3.6: Performance characteristics of the presented algorithms using multiple datasets of
real data from two different commercial magnetic field sensors.

3.11 Conclusion
To summarize, a complete and extensive study on calibration methods for low-cost magnetometers

was carried out by the authors. Seven algorithms were selected for this purpose according to their
popularity and their performance. A standard, unified and complete, linear measurement model
was used here as the reference model for analyzing all calibration methods. After establishing
the full calibration problem, these seven algorithms were discussed and were presented in an
easy-to-implement way.

In order to evaluate fairly the presented algorithms’ performance, we proposed a method
for optimally generating artificial magnetometer data. This method was used for executing a
plethora of Monte Carlo simulations. The evaluation metrics we focused on were the robustness,
the accuracy and the efficiency of the algorithms. We designed several experiments to check the
behavior of the algorithms under different values in bias, different values in non-orthogonality
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errors, different number of measurements and finally under various orders of variance in noise.
Finally, several datasets of real magnetometer’s data, from two different, low-cost, commercial
sensors were used to verify the results obtained using the artificial data.

The following summarizes our findings regarding the studied algorithms and their possible
implementation. Except from the objective criteria that we established in Section 3.10 to evaluate
and compare the presented algorithms (accuracy, robustness, computational efficiency), in Table
3.4 we also evaluate the algorithms in terms of simplicity. Simplicity is used as a (subjective)
metric describing our personal experience developing and testing the algorithms. It is related
both to the algorithmic complexity of the algorithms (which is not an inherent disadvantage)
and the quality of their presentation in the original manuscripts. The algorithms are discussed
in chronological order of publication.

✓ TWOSTEP: Extremely time efficient. Works effectively for small distortions. Has low
accuracy in general. The method can be generalized to on-orbit calibration.

✓ Crassidis et al.: Easy to implement. Extremely time efficient. Works effectively for small
to medium distortions. The method can be generalized to on-orbit calibration. It is the
only algorithm that provides online update. It can be considered as a more accurate and
effective version of TWOSTEP with similar time complexity.

✓ Dorveaux et al.: Easy to implement. Moderately time efficient. Robust and accurate,
but vulnerable to large values of bias.

✓ Vasconcelos et al.: Difficult to implement. Characterized by high time-complexity. Exceptional
accuracy and robustness for small distortions.

✓ Ali et al.: Robust and accurate. Very high computational cost. Some prior knowledge of
the search space is beneficial. At the beginning of the algorithm, the unknown variables
are randomized and thus it is not always ensured that the algorithm will reach an optimal
point. Thus, a couple of repetitions might be needed. Using modern PSO algorithms
which can constrain the search space and handle a few variable inequalities increases the
algorithm’s performance significantly.

✓ Wu and Shi: Difficult to implement. Characterized by high time-complexity. Exceptional
accuracy even with larger distortion. We noticed a 1% failure of finding an initial estimate
due to inadequacy of applying Cholesky decomposition.

✓ MAG.I.C.AL: Easy to implement. Moderately time efficient. Exceptional robustness and
accuracy in both synthetic and real data experiments.

To conclude, in this work, we tried to cover a broad range of realistic cases and test the limits
of the algorithms, noting that in real life the performance requirements differ from application
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Algorithm Simplicity Robustness Accuracy Efficiency
TWOSTEP ✓✓ ✓✓ ✓ ✓✓✓
Crassidis et al. ✓✓✓ ✓✓ ✓ ✓✓✓
Dorveaux et al. ✓✓✓ ✓✓✓ ✓✓✓ ✓✓
Vasconcelos et al. ✓ ✓ ✓✓ ✓

Ali et al. ✓✓ ✓✓✓ ✓✓✓ ✓
Wu and Shi ✓ ✓ ✓✓✓ ✓
MAG.I.C.AL ✓✓✓ ✓✓✓ ✓✓✓ ✓✓

Table 3.4: Algorithms’ Comparison Summary

to another. In some applications computational efficiency may be of major importance while
great accuracy may not be needed, while in others, a very accurate calibration is essential even
if significantly more computation time is required for this. Thus there is no ”perfect” algorithm
appropriate for all applications; different algorithms may be more appropriate for different cases.

3.12 Appendix

3.12.1 Gradient Vector and Hessian Matrix for [30]

This section presents the algebraic expressions for the gradient and Hessian of the likelihood
function (3.37), used in descent optimization methods. Let uk = yk − h, the gradient of the
likelihood function J (3.35) is denoted by ∇J |x =

[
∇J |T̂∇J |h

]
and described by the submatrices

∇J |T̂ =

N∑
k=0

2ck
σ2

uk ⊗ T̂ uk (3.86αʹ)

∇J |h =
N∑
k=0

−2ck
σ2

T̂ T T̂ uk (3.86βʹ)

where ck = 1− ∥T̂ uk∥−1. The Hessian

∇2J |x =

HT̂ ,T̂ HT̂ ,h

HT
T̂ ,b

Hh,h

 (3.87)
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is given by the following submatrices

HT̂ ,T̂ =
N∑
k=1

2

σ2

[
(uku

T
k )⊗ (T̂ uku

T
k T̂

T )

∥T̂ uk∥3
+ ck

[
(uku

T
k )⊗ I3×3

]]
(3.88αʹ)

HT̂ ,h =

N∑
k=1

−2
σ2

[
(uk ⊗ T̂ uk)uTk T̂ T T̂

∥T̂ uk∥3
+ ck

[
uk ⊗ T̂ + I3×3 ⊗ T̂ uk

]]
(3.88βʹ)

Hh,h =

N∑
k=1

2

σ2

[
T̂ T T̂ uku

T
k T̂

T T̂

∥T̂ uk∥3
+ ckT̂

T T̂

]
(3.88γʹ)

These expressions can be found more analytically in the original paper [30], but are presented
here as well since this paper provides a clear path to implementation.

3.12.2 Gradient Vector and Hessian Matrix for [31]

This section presents the algebraic expressions for the gradient and Hessian of the likelihood
function (3.54), used in descent optimization methods. For notational simplicity T̂ and m̂ are
replaced by T andm. Let uk = yk−h, the Jacobian vector and Hessian matrix can be respectively
derived as

∇J |x =

[
JTT JTh JTmk︸︷︷︸

k=1:N

JTλk︸︷︷︸
k=1:N

]T
(3.89)

∇2J |x =



HTT HTh HTmk
. . . 09×1 . . .

HT
Th Hhh Hhmk

. . . 03×1 . . .

HT
Tmk

HT
hmk

Hmkmk
. . . Hmkλk . . .

... ... ... ...
0T9×1 0T3×1 HT

mkλk
. . . 0 . . .

... ... ... ...


(3.90)

where

JT = −2
N∑
k=1

mk ⊗ (uk − Tmk)

Jh = −2
N∑
k=1

(uk − Tmk)

Jmk
= −2T T (uk − Tmk) + 2λkmk

Jλk = ∥mk∥2 − 1

(3.91)
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and

HTT = 2

N∑
k=1

(
mkm

T
k

)
⊗ I

HTh = 2
N∑
k=1

mk ⊗ I

HTmk
= 2 ((mk ⊗ I)T − I ⊗ (uk − Tmk))

Hhh = 2NI

Hhmk
= 2T

Hmkmk
= 2T TT + 2λkI

Hmkλk = 2mk

(3.92)

In [31], the calibration matrix, T , is considered to be an upper triangular matrix. Thus from
both the gradient vector and the Hessian matrix, the rows and columns that correspond to the
lower triangular elements of T must be removed.

These expressions are presented analytically in the original paper [31], but are presented here
as well since this paper provides a clear path to implementation.
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4 Multiple Accelerometers
and Magnetometers Joint

Calibration and Alignment

In this work we introduce a computationally efficient algorithm for simultaneous joint
calibration and axes alignment of multiple 3-axis accelerometers or 3-axis magnetometers. The
proposed algorithm applies to ensembles of sensors of the same type, fixed to the same rigid
platform. It compensates for all linear time-invariant distortions such as scale-factor, cross-
coupling, and offset, including the soft-iron and hard-iron distortions of the magnetometer. It
can be implemented in a simple 12-step sequence and provides fast and accurate calibration
without requiring any special piece of equipment.

4.1 Introduction
Inertial and magnetic sensors are widely used in a broad variety of applications, from low-

cost commercial systems (smartphones, activity trackers, etc) to high-end marine, aerospace
and military ones. Typical application fields include navigation [5], attitude estimation [14],
image stabilization [4] and others. Expensive, calibrated, high accuracy sensors are used in many
industrial and military applications. In commercial systems however, where cost is of ultimate
importance, integrated, minimum-cost inertial and magnetic sensors are preferred.

Inertial sensors in micro-electro-mechanical (MEMS) form have become very popular over
the past decades as they combine very small size with very low-cost. Their main drawback is
their large error characteristics [8] that must be compensated if accuracy is needed. Integrated
magnetic sensors also require calibration; even if their inherent accuracy is satisfactory, when
embedded to a system, the so-called hard-iron and soft-iron distortions must be removed.

Hard-iron distortion is the additive magnetic field created by magnetic objects attached to
the reference frame of the magnetic sensor. Soft-iron distortion is the alteration of the existing
magnetic field caused by ferromagnetic materials attached to the sensor’s frame. Both these
distortions are usually caused by electronic components in the vicinity of the sensor or materials

Copyright © IEEE. Chapter 3 is reprinted, with permission, from K. Papafotis, P.P. Sotiriadis, ”Multiple
Accelerometers and Magnetometers Joint Calibration and Alignment”, IEEE Sensors Letters, Vol. 4, Issue 3, March
2020, pp. 2475-1472. Personal use of this material is permitted, but republication/redistribution requires IEEE
permission.
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used in the sensor’s enclosure.
Note that post-production factory calibration requires using special calibration equipment

and/or services, both of which dramatically raise the final cost of the sensors. Therefore factory
calibration is not typically an option for low-cost systems. Thus when accuracy is important,
a calibration procedure that can be applied without using any special piece of equipment is
required.

As far as 3-axis accelerometers are concerned, most authors exploit the constant magnitude of
the gravity for calibration purposes. More specifically, the calibration parameters are derived by
measuring the sensor’s output when it is placed in several different still positions. The calibration
problem is either posed as a minimization problem [13, 3, 6, 17] or as an estimation one [7].

In a similar way, for 3-axis magnetometer calibration, the magnetic field of the earth is most
commonly used as a reference. Using the fact that the magnitude of the measured magnetic
field should be locally constant (away of magnetic disturbances), the calibration parameters are
calculated by solving a minimization [2, 22, 12, 11, 21, 17] or an estimation [23] problem.

The similarity in the calibration approach of accelerometers and magnetometers, based on
similar physical principles, allows developing and using a single algorithm to calibrate both of
them.

While there are several efficient calibration algorithms for a single accelerometer or magnetometer,
in many applications multiple sensors of the same kind are used to improve the measurement’s
accuracy [19]. In [18], the authors use a platform containing multiple magnetometers for orientation
estimation. Six accelerometers arranged on a cube are used in [1] for a gyroscope-free inertial
navigation application. In such cases, even if the sensors are individually calibrated, an extra
step to align their sensitivity axes is required. This by itself is not a trivial step and requires
multiple measurements and rotation matrices calculation.

In this work we expand the algorithm introduced for a single sensor’s calibration in [17] to
the case of multiple sensors. The proposed algorithm simultaneously addresses the calibration of
multiple sensors and the alignment of their axes. It is based on a low computational cost iteration
of a least squares problem providing fast convergence and accurate calibration. It is applied using
a simple 12-step sequence of platform’s orientations and requires no special piece of equipment.
Simulation and experimental results prove the algorithm’s performance and efficiency.

4.2 Sensors’ Measurement Model and The Problem of Calibration
In this section we introduce the problem of simultaneous joint calibration and axes alignment

of multiple 3-axis accelerometers or multiple 3-axis magnetometers. To do so, we first derive a
general model relating the sensors’ measurements with the true values of the specific force or
the magnetic field respectively.
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4.2.1 Accelerometer’s Measurement Model

The measurement of an accelerometer is modeled as in [8] [16]

ya = f + Tsff + Tccf + ha + ε, (4.1)

where ya is the 3 × 1 measurement vector, f is the 3 × 1 true specific force vector, Tsf is the
3 × 3 diagonal matrix representing the scale-factor error, Tcc is the 3 × 3 matrix representing
the cross-coupling error, ha is the 3× 1 accelerometer’s offset vector and ε represents the 3× 1

random noise vector.
Defining matrix Ta ≜ I3+Tsf+Tcc, where I3 is the 3×3 identity matrix, (4.1) can be written

as
ya = Taf + ha + ε (4.2)

4.2.2 Magnetometer’s Measurement Model

The measurement of a magnetometer is modeled following [22], [21], [10] and [15]

ym = TsfTcc (Tsim+ hhi) + hb + ε (4.3)

where ym is the 3×1 measurement vector, m is the 3×1 true magnetic field vector, Tsf denotes
the 3× 3 diagonal matrix representing the scale-factor error, Tcc is the 3× 3 matrix representing
the cross-coupling error, Tsi is the 3× 3 matrix modeling the soft-iron distortion, hb is the 3× 1

magnetometer’s offset vector, hhi is the 3 × 1 offset vector due to hard-iron distortion and ε
denotes the 3× 1 random noise vector.

Defining matrices Tm ≜ TsfTccTsi and hm ≜ TsfTcchsi+hb, the magnetometer’s measurement
model becomes

ym = Tmm+ hm + ε (4.4)

4.2.3 Calibration as an Optimization Problem

The measurement models of the two sensor share the same form and thus we can use the
general model of (4.5) to formulate both sensors calibration process as the same optimization
problem.

y = Tn+ h+ ε (4.5)

The purpose of the calibration is to estimate the 3 × 3 matrix T and the 3 × 1 vector h in
order to minimize the measured noise ε strength.

The advantage of the proposed calibration method is that no special calibration equipment
is needed, e.g., turn-table for the accelerometer or Gauss magnetic chamber and Maxwell coils
setup for the magnetometer. This implies that the true specific force or the true magnetic field
vectors are unknown.
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Note however that the magnitude of the true specific force and that of the true magnetic
field are fixed when the accelerometer is still and the magnetometer is in static and uniform
magnetic field. Assuming that the calibration measurements were taken under these conditions,
without loss of generality we assume that in (4.5) it is always ∥n∥ = 1. All norms in this paper
are two-norms unless it is indicated otherwise.

Assuming K measurements y1, y2, ..., yK and writing (4.5) as yk = Tnk + h + εk, we define
the cost function J1 capturing the total error

J1 =
K∑
k=1

∥εk∥2 =
K∑
k=1

∥yk − Tnk − h∥2 (4.6)

and we form the optimization problem below whose solution is the calibration pair T , h and the
field vectors nk, k = 1, 2, . . . ,K

minimize
T,h,nk

J1

subject to ∥nk∥ = 1, k = 1, 2, ...,K
(4.7)

Note that when (4.7) is used for a single sensor’s calibration, the calibration matrix T is
derived subject to orthogonal multiplication uncertainty. Specifically, if we replace T with TQ
and n with QTn, where Q ∈ O(3), the resulting measurement y is unaltered. Thus if multiple
sensors are individually calibrated using (4.7), a misalignment between their sensitivity axes is
expected.

To overcome this, we expand the single-sensor calibration algorithm (4.7) to (multiple) L
sensors calibration algorithm incorporating the alignment of the sensors’ axes as well. Let nk,
k = 1, 2, . . . ,K be the kth unit field vector, simultaneously exciting all L sensors, and denote
by yℓ, k and ϵℓ, k the corresponding measurement and error of the ℓth sensor, ℓ = 1, 2., ...L.
Moreover, let Tℓ and hℓ be the ℓth sensor’s calibration matrix and offset vector respectively. We
write (4.5) in the matrix form

Y = TN +H + E (4.8)

where Y is the measurements matrix, E is the errors matrix

Y =


y1,1 y1,2 . . . y1,K

y2,1 y2,2 . . . y2,K
... ... . . . ...

yL,1 yL,2 . . . yL,K

 , E =


ε1,1 ε1,2 . . . ε1,K

ε2,1 ε2,2 . . . ε2,K
... ... . . . ...

εL,1 εL,2 . . . εL,K


T and H are the calibration matrices in block form

T =
[
T T1 T T2 ... T TL

]T
H =

[
hT1 h

T
2 ... h

T
L

]T [
1 1 ... 1

]
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and N is the set of true specific force or magnetic field vectors, common to all sensors

N =
[
n1 n2 ... nK

]
As in the case of a single sensor, the cost function capturing the total error is expressed as

JL =

L∑
ℓ=1

K∑
k=1

∥εℓ,k∥2 = ∥E∥2F = tr(ETE) (4.9)

where the subscript F denotes the Frobenius norm [9]. The corresponding optimization problem
becomes

minimize
T,H,N

JL

subject to ∥nk∥ = 1, k = 1, 2, ...,K
(4.10)

Note that in (4.10), the set of unit-magnitude vectors nk is common for all sensors, resulting
in the alignment of their axes.

4.3 The Proposed Algorithm
A typical way to solve optimization problems like (4.10) is by using the gradient descent or

the Newton-Raphson methods. However, both of them methods depend strongly on a good initial
estimate of the unknowns in order to converge. Especially in the magnetometer’s case, finding
an initial estimate is not trivial due to the uncertainty of soft-iron and hard-iron distortions
reflecting on more challenging structures of T and H. In this work we propose a computationally
efficient, least-squares based, iterative algorithm for solving (4.10) and achieving joint calibration
and axes alignment of multiple sensors.

4.3.1 Algorithm Description

In order to solve (4.10), we form a two-step algorithm. In the first step, we use an estimation
of the calibration matrices T and H in order to solve for matrix N . Then, using the new matrix
N , we improve our estimation of T and H while forcing the magnitude of the true specific force
or magnetic field to be equal to one.

Given a set of K measurements, every iteration begins by calculating N using the estimate of
T and H from the previous one. Assuming T if of full rank, we solve, (4.8) using the least-squares
method [20]

Ñ = (T TT )−1T T (Y −H). (4.11)

To ensure that the true specific force or the true magnetic field vectors nk, k = 1, 2, . . . ,K

are of unit norm, we form the new estimate of N using the column vectors ñk, k = 1, 2, . . . ,K

of Ñ as follows
N =

[
ñ1

∥ñ1∥
ñ2

∥ñ2∥ ...
ñK

∥ñK∥

]
(4.12)
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Using this estimate of N , we rewrite (4.8) as

Y = XG+ E (4.13)

where

X =

[
T T1 T T2 ... T TL
hT1 hT2 ... hTL

]T
, G =

[
N

11×K

]
The updated T andH are derived by solving (4.13) forX in the least-squares sense. Assuming

G is of full rank, we get
X = Y GT (GGT )−1 (4.14)

The proposed algorithm is summarized in Algorithm 13. It is initiated using T1 = T2 = ... =

TL = I3 and h1 = h2 = ... = hL = 03×1.

Algorithm 13: Proposed Algorithm
Step 1: Initialize Tl = I3 and hl = 03×1, l = 1, 2, ..., L

Step 2: Calculate Ñ using (4.11) and form N as in (4.12)
Step 3: Formulate matrices X and G according to (4.13)
Step 4: Calculate X using (4.14)
Step 5: Extract T and H from X

Step 6: Calculate J1, for every sensor according to (4.6)
Step 7: Repeat steps 2-6 until J1 is sufficiently small for

every sensor

The convergence of the algorithm could be evaluated in every iteration by using the cost
function JL. However, JL does not provide any information about the calibration of each
individual sensor. Thus we prefer to use the cost function J1, evaluated for every sensor, as
a metric of convergence.

4.3.2 Measurements Acquisition Procedure

The proposed algorithm jointly calibrates and aligns the axes of multiple accelerometers or
magnetometers when they are all mounted on the same rigid platform. To that purpose we
recommend the 12-step measurement acquisition procedure introduced in [17].
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4.4 Experimental and Simulation Results
The proposed algorithm’s performance is evaluated using both sensors’ measurements, from

two 3-axis magnetometers mounted on the same rigid platform, and simulated data of a large
number of sensors (L=12). Both measured and simulated data follow the measurement acquisition
procedure introduced in [17].

In Figures 4.1 and 4.2 the algorithm’s convergence using measured and simulated data
respectively is presented. In both cases, the algorithm converges to a small value of the cost
function in a way that appears to be monotonic.

In Figure 4.1 the fractional mean magnitude error as a function of the iteration is also
shown as a metric of the algorithm’s accuracy. Note that it becomes significantly small after
a few iterations, even before the cost function converges. This fact, in combination with the
small computational burden of each iteration demonstrate the computational efficiency of the
proposed algorithm.
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Figure 4.1: Algorithm convergence using measured data - Fractional mean magnitude error.

In Figure 4.3 the raw and calibrated magnetometers’ measurements magnitude while the
measurement platform is rotated in five different orientations are presented. As the measurement
took place away from any magnetic disturbance, the measured magnetic field should be of
constant magnitude. As seen in Figure 4.3, the magnitude of the raw measurements changes when
the sensor is rotated while the magnitude of the calibrated data is constant and independent of
the platform’s orientation.
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5 Hardware Design of a
Low-Cost IMU

An inertial measurement unit (IMU) based on low-cost inertial sensors was designed for
experimental purposes. The designed system embeds the STMicroelectronics LSM9DS1 system-
in-package (SiP) which contains a 3-axis accelerometer, a 3-axis gyroscope and a 3-axis magnetometer.
The data are handled by a 32-bit microcontroller (STMicroelectronics STM32F746) and stored
in a flash memory (temporarily) and a SD card (permanently). The system is powered by a
standard 3.7V Li-ion battery. A system-level diagram is shown in Figure 5.1.

Figure 5.1: System-level diagram of the designed IMU.

The basic performance characteristics of the LSM9DS1 are presented in Tables 5.1, 5.2 and
5.3. The operating parameters of the three sensors (output data rate, measurement range etc.)
can be configured via the embedded USB serial port.
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Accelerometer
Measurement Range ±2g −±16g
Output Resolution 16bits

Sensitivity 0.732mg/LSB (±16g )
Output Data Rate (max) 952Hz

Table 5.1: Basic performance characteristics of the LSM9DS1 SiP (Accelerometer).

Gyroscope
Measurement Range ±245dps−±2000dps
Output Resolution 16bits

Sensitivity 70mdps/LSB (±2000dps )
Output Data Rate (max) 952Hz

Table 5.2: Basic performance characteristics of the LSM9DS1 SiP (Gyroscope).

Magnetometer
Measurement Range ±4Gauss−±16Gauss
Output Resolution 16bits

Sensitivity 0.58mGauss/LSB (±16Gauss )
Output Data Rate (max) 80Hz

Table 5.3: Basic performance characteristics of the LSM9DS1 SiP (Magnetometer).

The designed IMU is shown in Figure 5.2. The complete schematics of the designed IMU are
presented in Appendix 10.

Figure 5.2: The designed IMU printed circuit board (up) and enclosure (down).



6 The Importance of
Sensors’ Calibration inInertial Navigation

Systems

In this work, we explore the importance of sensors’ calibration in inertial navigation applications.
We focus on the case of low-cost systems, typically using MEMS inertial sensors, where the extra
calibration cost is a critical parameter. We highlight the importance of calibration by deriving
a bound of the evolution of the attitude and velocity error as a function of the calibration
parameters’ error. Then, we use low-cost 3-axis accelerometer and 3-axis gyroscope along with
a popular pedestrian inertial navigation algorithm to experimentally confirm that raw sensor’s
data can be highly inappropriate for navigation purposes. Finally, we use the MAG.I.C.AL.
methodology for joint calibration and axes alignment of inertial and magnetic sensors to achieve
high accuracy measurements resulting in a reliable inertial navigation system.

6.1 Introduction
Satellite-based systems (GPS, Galileo, GLONASS etc.) are the dominant navigation technology.

Even though they provide sufficiently accurate navigation for most applications, they all come
with the same drawbacks: they have limited refresh rate, they don’t work in indoor environments
and they are susceptible to jamming. To overcome these limitations, several alternative navigation
technologies have been developed during the past decades. The concurrent development of the
micro-electro-mechanical systems (MEMS) led to a significant growth of inertial navigation
systems.

Inertial navigation systems (INS) are based on inertial sensors (accelerometers and gyroscopes)
to calculate the velocity, orientation and position of a moving object. They are commonly used
in a wide range of applications, from low-cost commercial systems, to high-end military, marine
and aerospace applications. Although INS yield accurate short-term navigation, their long-term
performance is degraded, mainly due to the heading error caused by gyroscope’s noise and offset

Copyright © IEEE. Chapter 4 is reprinted, with permission, from K. Papafotis, P.P. Sotiriadis, ”Exploring the
Importance of Sensors’ Calibration in Inertial Navigation Systems ”, IEEE International Symposium on Circuits and
Systems, Seville, Spain, 2020. Personal use of this material is permitted, but republication/redistribution requires
IEEE permission.
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drift [6]. To improve the long-term performance, some authors combine INS with other navigation
technologies (mostly satellite or RF based [12, 10]) while others use additional sensors (usually
a magnetometer [6], [14] ) to correct the estimated heading.

In the case of low-cost systems, MEMS inertial sensors are usually preferred due to their
significantly lower cost and small size. However, a major disadvantage of MEMS inertial sensors is
their large error characteristics [6]. Thus, in order to use them in an INS, a calibration procedure
that compensates for the deterministic part of their error is required. In addition, the combined
use of the accelerometer’s, gyroscope’s and maybe magnetometer’s data gives rise to the need
of alignment between the axes of the three sensors.

Although sensors’ calibration and alignment are of major importance for an accurate INS,
existing works take them for granted and only deal with the development of the navigation
algorithms. Specifically, in [7, 8, 9, 5, 2, 3] expensive, already calibrated, commercially available
sensor modules are used to evaluate the proposed algorithms. The authors in [12, 14, 15, 11] use
custom sensor modules to evaluate the proposed INS but don’t provide any details about the
sensors’ calibration and axes alignment.

Especially when low-cost systems are concerned, sensors’ calibration and alignment could
determine the overall system’s cost. In the case of MEMS sensors, factory calibration is not an
option as it would raise the sensors’ cost significantly. In addition, standard after-production
calibration and alignment techniques require expensive equipment (like a turn-table) that would
also raise the overall system’s cost.

In this work we derive the attitude and velocity error propagation equations as a function
of accelerometer’s and gyroscope’s calibration parameters. Then, we design a low-cost inertial
measurement unit (IMU) consisting of a MEMS 3-axis accelerometer and a MEMS 3-axis
gyroscope. We calibrate the inertial sensors using the recently introduced MAG.I.C.AL. methodology
[13] for joint calibration and axes alignment of inertial and magnetic sensors, and show how the
raw sensors’ data result in large attitude and velocity error. Finally, we use both the raw and
calibrated sensors’ data along with a popular pedestrian navigation algorithm, to experimentally
demonstrate how the large error characteristics of the MEMS sensors affect the navigation
accuracy.
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6.2 Inertial Sensors’ Error Propagation In The Inertial Frame
In this section the propagation of inertial sensors’ error when they are used in navigation

applications is described. In particular, we derive the error propagation equations in the inertial
frame for attitude and velocity as a function of calibration parameters (Ta, ha) and (Tg, hg) of
the accelerometer and gyroscope respectively.

6.2.1 Notation

Several different notations are used in the literature to describe kinematic quantities. In our
analysis we will use the notation of [6]. More specifically, any kinematic quantity x, such as
acceleration, velocity, position or angular velocity, is denoted as follows.

xγβα

where α is the body frame, β is the reference frame and γ is the resolving frame. In addition,
the frame transformation matrix which transforms the resolving frame from α to β is denoted
as Cβα .

Also note that in the rest of this work, the true value of any quantity q is denoted as q̃ while
the measured one is denoted as q.

6.2.2 Attitude Error Propagation

The attitude error in the inertial frame is defined as:

δCib = C̃ibC
b
i (6.1)

where C̃ib is the true attitude while Cib is the attitude measured by the gyroscope. The differentiation
of (6.1) yields

˙δCib =
˙̃
CibC

b
i + C̃ibĊ

b
i (6.2)

The time derivative of a coordinate transformation matrix is

˙
Cβα = CβαΩ

α
βα (6.3)

where Ωαβα is the cross-product matrix of the angular velocity vector ωαβα. Substituting the
derivatives in (6.2), we get

˙δCib = C̃ib δΩ C̃
b
i δC

i
b (6.4)

where δΩ is the difference between the cross-product matrix of the true value of angular velocity
vector Ω̃bib and the one of the measured by the gyroscope angular velocity vector Ωbib.

In our analysis we want to express ˙δCib as a function of the calibration parameters Tg and
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hg. To that purpose, we express δΩ as a function of the gyroscope’s measurement vector ωbib:

δΩ =
[
P1δω P2δω P3δω

]
− diag(δω) (6.5)

where δω = (I3−Tg)ω̃−hg, P1 =
[
e1 e3 −e2

]T
, P2 =

[
−e3 e2 e1

]T
and P3 =

[
e2 −e1 e3

]T
.

Note that ek is the kth normal vector in RK .
The evolution of the attitude error in time is

δCib(t) =

∫ t

0

˙δCib(τ)dτ + δCib(0) (6.6)

Given that δCib(0) = I3 we write

∥δCib(t)− I3∥ ≤
∫ t

0
∥ ˙δCib(τ)∥dτ (6.7)

Taking the Frobenius norm of (6.4) we get

∥ ˙δCib∥F ≤ 15∥δω∥2 (6.8)

Using (6.7) and (6.8), we write

∥δCib(t)− I3∥ ≤ 15t (∥I3 − Tg∥wB + ∥hg∥) (6.9)

where wB is a bound for the angular velocity magnitude and depends on the application.

6.2.3 Velocity Error Propagation

The velocity error is defined as
δV = Ṽ − V (6.10)

The derivative of (6.10) is
˙δV = C̃ibf̃ − δC

i
bC̃

i
b

(
Taf̃ + ha

)
(6.11)

The evolution of the velocity error in time is derived by a similar analysis to that of the attitude
error.

∥δV (t)∥ ≤ t
[
fb
(
∥I3 − Ta∥+ ∥Ta∥∥δCib(t)− I3∥

)
+ ∥ha∥

]
(6.12)

As seen in (6.12), the velocity error depends on both the accelerometer’s and gyroscope’s errors.



Experimental Results 131

6.3 Experimental Results

6.3.1 Pedestrian Inertial Navigation Using Shoe-Mounted Inertial Sensors

A common inertial navigation application is the pedestrian navigation with shoe-mounted
inertial sensors. In this case, a 3-axis accelerometer and a 3-axis gyroscope are mounted on the
shoe of a walking human. Using their data, the velocity, orientation and position are calculated.

In such applications, the zero velocity update (ZUPT) method is typically used [4] [5]. ZUPT
method is based on the fact that during the stance phase of the human walking [2], the velocity
of the shoe is zero. This information is usually used as input to a Kalman filter [4] [5] in order
to correct the error of the velocity, orientation and position estimations.

In this work, we use the pedestrian navigation algorithm proposed in [4] to explore the
effect of sensors’ calibration on the navigation accuracy. The proposed algorithm in [4] provides
accurate navigation using shoe-mounted inertial sensors and zero velocity updates in a Kalman
filter architecture.

6.3.2 Experiment Procedure

Using a low-cost IMU, we recorded accelerometer’s and gyroscope’s measurements of a
walking human. More specifically a 290m walk around the campus football court was recorded
while the IMU was mounted on the shoe. In order to explore the importance of sensors’ calibration,
we reconstructed the walked trajectory using a) uncalibrated inertial sensors, b) calibrated
accelerometer and offset compensated gyroscope and c) fully calibrated accelerometer and gyroscope.

For the inertial sensors’ calibration, we exploited the recently introduced MAG.I.C.AL.
methodology. MAG.I.C.AL. provides unified calibration and joint axes alignment of 3-axis
magnetometer, 3-axis accelerometer and 3-axis gyroscope. MAG.I.C.AL. compensates for all
linear time-invariant distortions such as scale-factor, cross-coupling and offset, including the
soft-iron and hard-iron distortion of the magnetometer. It is applied in a simple 15-step sequence
of approximate placements and rotations of the sensors, made by hand, without requiring any
special piece of equipment.

6.3.3 Error Propagation

In Section 6.2 a bound for the evolution of attitude error as a function of accelerometer’s
and gyroscope’s calibration parameters is derived. Using the calibration parameters calculated
using MAG.I.C.AL. methodology and the analysis of Section 6.2 we can explore the effect of
calibration on the attitude and velocity error propagation.

In Figure 6.1 the evolution of attitude error in time is presented. As seen in Figure 6.1 the
attitude error rises significantly after a few seconds when using uncalibrated sensors. Accelerometer’s
calibration and gyroscopes offset compensation improves the error evolution significantly but
eventually large attitude errors are accumulated.
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Figure 6.1: Evolution of attitude error in time.

Figure 6.2: Evolution of velocity error in time.

In Figure 6.2 the evolution of velocity error in time is shown. As in the case of attitude,
the velocity error also rises significantly after a few seconds when using uncalibrated sensors.
Also note that, according to Figure 6.2, the gyroscope’s error is the dominant error factor in the
velocity error.

6.3.4 Trajectory reconstruction

The reconstructed trajectory using raw sensor’s data is depicted in Figure 6.3αʹ. As seen in
Figure 6.3αʹ, raw sensor’s data are highly inappropriate for navigation purposes.

For accelerometer’s calibration, there are several easy-to-apply methods without requiring
any special piece of equipment [1, 13, 16]. In addition, although gyroscope’s calibration is not
trivial without using appropriate equipment, it’s offset is easy to remove as it is just the sensor’s
output while it is still. By doing so, the navigation results are significantly improved as shown
in Figure 6.3βʹ.

In Figure 6.3γʹ the reconstructed trajectory using calibrated inertial sensors is presented.
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The trajectory shown in Figure 6.3γʹ, exhibit a position error of about 5m in a 290m walk.
The resulted navigation performance may not be state-of-the-art but it is actually impressive
considering that we used very low-cost sensors and no special calibration equipment. In addition,
the navigation algorithm used in this work is a basic algorithm using only inertial sensors. More
complicated algorithms as well as the use of extra sensors (such as magnetometer) would provide
even smaller position error.

Note that as seen in both Figures 6.3βʹ and 6.3γʹ the GPS sampling rate is quite low causing
sharp corners in the reconstructed trajectory.
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Figure 6.3: Reconstructed trajectory using a) uncalibrated inertial sensors, b) calibrated
accelerometer and offset compensated gyroscope and c) fully calibrated inertial sensors
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7 MAG.I.NAV.

MAG.I.NAV. is a MAGnetic - Inertial NAVigation algorithm, offering long-term-accurate
attitude, velocity and position estimation in the inertial frame. It is implemented in a dedicated
pedestrian navigation system using a three-axis accelerometer, a three-axis gyroscope and a
three-axis magnetometer mounted on the shoe of a walking person. MAG.I.NAV. compensates for
the accumulated attitude errors caused by the gyroscope’s measurement error. It does so by using
a second attitude estimate derived by combining the accelerometer’s and the magnetometer’s
measurements under zero-velocity and magnetic-disturbance-free conditions. Instead of using a
complicated Attitude Heading Reference System (AHRS), MAG.I.NAV. employs the computationally
efficient TRIAD algorithm along with a zero-velocity detection and a magnetic-disturbance
detection algorithms.

The developed system is tested using commercial, low-cost inertial and magnetic sensors in
an outdoor environment. It achieves high long-term accuracy, yielding a position error smaller
than 0.25% of the total walking distance in a 20-minute, 1.3km long walk.

7.1 Introduction
Satellite-based navigation systems (GPS, Galileo, GLONASS etc.) are the dominant navigation

technology. Different grades of satellite navigation systems provide sufficient accuracy for a
variety of applications, ranging from low-cost commercial ones to high-end industrial and military
ones. However, even when military grade systems are concerned, all satellite navigation systems
have the same inherent disadvantages; they have limited refresh rate, they don’t work in indoor
environments and they are susceptible to jamming. To overcome these limitations, several
alternative navigation technologies have been developed over the past decades.

Inertial navigation systems (INS) use inertial sensors (accelerometers and gyroscopes) to
calculate the attitude, velocity and position of a moving object. They were originally developed
for rocket guidance during the second world war and since then they are widely used. Inertial
navigation systems are nowadays used in many marine, aerospace, military and even commercial
applications.
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Their wider use was enabled by the development of micro-electro-mechanical (MEM) inertial
sensors over the past decades. Due to their miniature size and low cost, MEM inertial sensors
are embedded to many commercial devices such as smartphones, activity trackers and alarm
systems giving rise to the development of inertial navigation applications.

Pedestrian navigation using inertial sensors has gained significant attention over the past
years. Many works use miniature inertial sensors, mounted on a human’s body and propose
different algorithms to estimate the human’s attitude, velocity and position [13, 6, 8, 1, 21, 22,
5, 12, 14, 30, 15, 11, 32, 9, 2]. A crucial design aspect of such systems, which is the main research
topic, is how to compensate for the large error characteristics of the inertial sensors [10, 23].

In most pedestrian inertial navigation systems, shoe-mounted inertial sensors and the zero
velocity update method are used to correct the attitude, velocity and position estimates [30,
5, 21, 1, 8, 13, 6]. Specifically, they use a zero velocity detection algorithm which detects the
stance phase of the human walking, during which the velocity of the shoe is zero. Then, they use
this information to estimate the attitude, velocity and position errors, typically by employing a
Kalman filter.

The zero velocity update method yields in accurate navigation results for short time periods.
However, when low-cost sensors are used, small errors are accumulated with time and in long-
term the navigation accuracy is significantly degraded. The greatest part of the position error is
due to the attitude error introduced by the gyroscope’s noise, offset drift and residual calibration
errors [23].

In applications where cost is of no concern, expensive, factory calibrated gyroscopes are used
to minimize the attitude error. For commercial applications however, where cost is a critical
design aspect, a popular approach is to combine the zero velocity update method with an AHR
algorithm typically using the measurements of a three-axis magnetometer to derive an accurate
attitude estimate in long-term. Many works propose different AHR algorithms [18, 17, 7, 19, 2,
25, 4, 26] based on estimation [19, 4, 26], optimization [17] or filtering [18, 7] techniques. Despite
the fact that existing AHR algorithms provide significant improvement in attitude estimation,
they all impose increased computational burden making them difficult to employ in applications
where the computational power is limited.

This work introduces MAG.I.NAV., a computationally efficient, long-term accurate pedestrian
navigation algorithm using inertial and magnetic field sensors. More specifically, MAG.I.NAV.
uses a three-axis accelerometer, a three-axis gyroscope and a three-axis magnetometer mounted
on the shoe of a walking person to derive the person’s attitude, velocity and position. It is
based on the popular zero velocity update method and introduces a computationally efficient
attitude estimation scheme using the TRIAD algorithm and both the accelerometer’s and the
magnetometer’s measurements.

To evaluate the performance of MAG.I.NAV. algorithm, low-cost MEM inertial and magnetic
field sensors were used. The sensors were calibrated and aligned using MAG.I.CAL. methodology
[24] and no special piece of equipment. The performance of MAG.I.NAV. is evaluated in terms
of accuracy and computational efficiency in a 20-minute, 1.3km walk in a suburban environment
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and compared to the performance of similar algorithms based on two popular and highly cited
AHRS. MAG.I.NAV achieves an extremely small position error, below 0.2% of the total walk
distance.

7.2 The Proposed Inertial Navigation System
In this section, the proposed pedestrian inertial navigation system is introduced and every

functional block is analyzed in detail. The notation used along the paper is first presented.

7.2.1 Notation and Assumptions

Among the different notations used in the literature to describe the basic kinematic quantities
(acceleration, velocity, position etc), we follow that of [10] denoting a kinematic quantity, x, as
xγβα, where α is the object frame, β is the reference frame and γ represents the resolving frame.

When the measurement of an inertial or magnetic sensor is concerned, the object frame and
the reference frame are fixed and correspond to the sensor’s coordinate frame and the inertial
frame respectively. Thus, for notation simplicity, a measurement is denoted as yγ .

The frame transformation matrix, which transforms the resolving frame of a kinematic
quantity from α to β is denoted as Cβα . Furthermore, the frame transformation matrix Cib which
relates the sensors’ coordinate (body) frame, b, to the inertial frame, i, is refereed to as attitude.

Given a vector x =
[
x1 x2 x3

]T
, the Cross Product Matrix [x×] is defined as [27]

[x ×] =

 0 −x3 x2

x3 0 −x1
−x2 x1 0


The notation used in the rest of this work is presented in Table 7.1. In addition, we assume

that the three sensors are fixed on the same rigid platform, which is mounted on the shoe
of a walking person. All three sensors are considered to be individually calibrated and their
sensitivity axes to be aligned. The three sensors are sampled simultaneously with a common,
constant sampling rate, τs. Finally, we assume that when the experiment starts, the sensors’
platform is still and away from magnetic disturbance.
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Coordinate Frames
b sensors’ platform (body) frame
i inertial frame

Kinematic Quantities
fγβα : R→ R3 specific force
ωγβα : R→ R3 angular velocity
uγβα : R→ R3 velocity
pγβα : R→ R3 position
Cib : R→ SO(3) attitude

Sensors’ Measurements
fγ : Z→ R3 accelerometer’s measurement
ωγ : Z→ R3 gyroscope’s measurement
mγ : Z→ R3 magnetometer’s measurement

τs ∈ R sensors’ sampling period

System’s Outputs
u : Z→ R3 velocity output
p : Z→ R3 position output

C : Z→ SO(3) attitude output

Other Notation
In ∈ SO(3) n× n identity matrix
On ∈ R3 n× n matrix of zeros
∥ · ∥ Euclidean norm

Table 7.1: Notation

7.2.2 Top-Level System Architecture

The architecture of the proposed inertial navigation system is presented in Figure 7.1. It uses
the measurements of a three-axis accelerometer, fb, a three-axis gyroscope, ωb, and a three-axis
magnetometer, mb, to estimate the attitude, C, the velocity, v, and the position, p, of a walking
person.

For every sensors’ measurement, the system derives a first estimate of the attitude, CK ,
using the measurement of the gyroscope. In order to correct the long-term accumulated attitude
error, the proposed system uses a second, independent of the first one, estimate of the attitude,
derived using the measurements of the accelerometer and the magnetometer. To do so, when a
zero velocity condition is detected (ZV = 1 in Figure 7.1) and if there is no magnetic disturbance
(D = 1 in Figure 7.1) it applies the TRIAD algorithm to the measurements of the two sensors
to derive the second attitude estimate denoted as CFM and update the attitude estimate CGFM
accordingly as shown in Figure 7.1.

The next step is to derive a first velocity, vK , and position, pK , estimate. This is done by using
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Figure 7.1: Architecture of the proposed pedestrian inertial navigation system.

the corrected attitude, CGFM , along with the accelerometer’s measurement and the kinematic
equations.

The zero velocity update method is finally employed to further improve the attitude, velocity
and position estimates. It is realized using a Kalman filter and it is applied every time a zero
velocity condition is detected (ZV = 1 in Figure 7.1).

7.2.3 Zero Velocity Detection

The zero velocity detection algorithm is an important component of pedestrian navigation
systems using shoe-mounted sensors as part of the widely used zero velocity update method. In
the proposed system, the zero velocity information is used both to implement the zero velocity
update method (see Section 7.2.9) and to derive a long-term accurate attitude estimate using
the magnetometer’s and the accelerometer’s measurements (see Section 7.2.6). Zero velocity
detection algorithms use the inertial sensors’ data along with information about the human
walking pattern to detect the stance phase of the walking [29, 31, 5, 6]. More advanced algorithms
exploit more sensors to improve the zero velocity detection accuracy (e.g. pressure sensors
[1]). Several review papers compare the performance characteristics of existing zero velocity
detection algorithms [29, 6]. In practice, for navigation purposes, different zero velocity detection
algorithms tend to have similar performance [6].

In this work, we use the measurements of the accelerometer, fb, and the gyroscope, ωb, to
detect when the velocity of the sensors’ platform is zero based on the algorithm introduced in
[29]. We begin by calculating the mean value of the accelerometer’s measurements using a rolling
window of size N , as follows

¯fb(k) =
1

N

(k+N−1)∑
k

fb(k) (7.1)
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Then, to decide if a zero velocity condition is present at time k, we calculate the quantity

T (k) =

(k+N−1)∑
k

(
1

σ2a

∥∥∥∥fb(k)− g f̄b(k)

∥f̄b(k)∥

∥∥∥∥2 + 1

σ2g
∥ωb(k)∥2

)
(7.2)

where σ2a and σ2g are the noise variances of the accelerometer and the gyroscope respectively and
g is the gravitational acceleration. According to [29], we define

ZV (k) =

1, T (k) < γz

0, otherwise
(7.3)

where γz is an appropriate threshold parameter. In (7.3), ZV (k) = 1 indicates the existence of
a zero velocity condition.

Special care should be given to the parameterization of the zero velocity detection algorithm.
The algorithm requires knowledge of the accelerometer’s and gyroscope’s error variances. In
many cases, when low cost sensors are used, the error characteristics of the sensors are not
announced by their manufacturer and must be experimentally derived. In addition the threshold
value used by the algorithm to decide about the zero velocity condition must be carefully selected
and fine tuned to achieve high performance.

7.2.4 Magnetic Disturbance Detection

Attitude determination using accelerometer’s and magnetometer’s measurements via the
TRIAD algorithm, requires that the two sensors are still and away from magnetic disturbance.
The stillness condition is ensured during the stance phase of the human walking, when the shoe
is touching the ground. Magnetic disturbances on the other hand are more complex to identify
as they distort the earth’s magnetic field in a non-predictable way.

In this work we use the magnitude of the measured magnetic field to detect magnetic
disturbance. To do so, we exploit the fact that when no magnetic disturbance is present, the
magnitude of the measured magnetic field, mb, is equal to that of the earth’s magnetic field,
mearth. Assuming that at the beginning of the experiment the magnetometer is placed away
from magnetic disturbance, and taking into account the sensor’s noise and errors, we write

∥mearth∥ ≈ ∥mb(0)∥ (7.4)

We consider and use a tolerance parameter mthr to detect whether there is or there is not
magnetic disturbance. To this purpose, we define

D(k) =

0, |∥mearth∥ − ∥mb(k)∥| > mthr

1, otherwise
(7.5)
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When the difference is above the threshold value, mthr, it is D(k) = 0 indicating the existence
of magnetic disturbance. In contrast when no magnetic disturbance is present, it is D(k) = 1.

Note that in some rare cases the magnetic disturbance could rotate the earth’s magnetic
field without altering its magnitude, a case which is not detected by (7.5) due to the rotational
invariance of the Euclidean norm. However, in pedestrian navigation applications, the orientation
is frequently updated and thus a false positive or false negative result of (7.5) does not degrade
the navigation accuracy in long-term.

7.2.5 Attitude Estimation Using Gyroscope’s Measurements

The standard kinematic equations are used to derive a first estimate of the sensors’ platform
attitude. We begin by calculating the attitude at time t, Cib(t) ∈ SO(3). To this end, we write
[10]

Ċib(t) = Cib(t)[ω
b
ib(t) ×] (7.6)

Given (7.6) and assuming that the angular velocity of the platform is constant during the short
time period between consecutive samplings, [t, t+ τs], it is

Cib(t+ τs) = Cib(t)exp
(
[ωbib(t) ×]τs

)
(7.7)

Based on (7.7), the attitude at time kτs using the measurement of the gyroscope, ωb(k), is
approximated by

Cib(kτs) ≈ Cib((k − 1)τs) (I3 + [ωb(k) ×]τs) (7.8)

Equation (7.8) implies that the estimated attitude at time kτs, Cib(kτs), is affected from the
accumulated noise of all the previous gyroscope’s measurements. In the proposed system, we use
the output attitude, C(k− 1), as feedback to reset the accumulated error when a more accurate
attitude estimate is available (either from the zero velocity update method or from the TRIAD
algorithm). Thus, according to (7.8), we define

CK(k) ≜ C(k − 1) (I3 + [ωb(k) ×]τs) (7.9)

To derive (7.9), the power series of the matrix exponent of (7.7) is truncated to the first order.
This approximation may introduce significant error when the sampling period of the gyroscope,
τs, is not sufficiently small. The accuracy of (7.9) can be increased in exchange for computational
resources by using a higher order approximation of (7.7) or a higher gyroscope’s output rate.

7.2.6 Attitude Estimation via TRIAD Algorithm Using Accelerometer’s
and Magnetometer’s Measurements

In inertial navigation systems attitude is typically calculated using gyroscope’s measurements
and equation (7.9) or a higher order approximation of (7.7). This approach however, results in
the accumulation of significant attitude error in long-term caused by the gyroscope’s noise, offset
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drift and residual calibration errors. In this section, we exploit the TRIAD algorithm [3, 28] to
calculate a second estimate of the sensor’s platform attitude using the measurements of the
accelerometer and the magnetometer.

The TRIAD algorithm works as follows. Let a1, a2, b1 and b2 be four 3× 1 unit vectors and
R be a rotation matrix in SO(3) such that a2 = Ra1 and b2 = Rb1. TRIAD takes as inputs
the four vectors and derives R. A detailed description of the TRIAD algorithm is presented in
Appendix ??. It is convenient to consider the TRIAD algorithm as a function of the four vectors,
i.e.

R = TRIAD(a1, b1, a2, b2) (7.10)

Now, consider the the measurements of the accelerometer, fb(kc), and the magnetometer,
fb(kc), at discrete time k = kc > 0. Assume that at time kc the sensors’ platform is still (ZV = 1

in Figure 7.1) and that there is no magnetic disturbance (D = 1 in Figure 7.1). Using the
measurements of the two sensors and the TRIAD algorithm we derive the following attitude
estimate

CFM (kc) = C(0) TRIAD (fb(0),mb(0), fb(kc),mb(kc)) (7.11)

where C(0), fb(0) and mb(0) are captured at the beginning of the experiment, while the sensors’
platform is still and away from magnetic disturbance.

7.2.7 Output Attitude Derivation

The output attitude, C, is derived by combining the attitude estimates CK and CFM , as
well as the attitude correction term, δC which is derived by the zero velocity update method
(see Section 7.2.9). The operation of the proposed system, is divided in three states as shown
in Table 7.2 , according to the outputs of the zero velocity detection algorithm, ZV , and the
magnetic disturbance detection algorithm, D.

D = 0 D = 1
ZV = 0 State 1
ZV = 1 State 2 State 3

Table 7.2: Operation states.

During State 1, the attitude is calculated using the kinematics and equation (7.9). In State
2, the zero velocity update method is used to provide a small attitude correction, compensating
for the gyroscope’s errors. Finally, during State 3, the accelerometer’s and magnetometer’s
measurements are used to derive an accurate attitude estimate via TRIAD algorithm. Summarizing,
the output attitude estimate, C, during each operation state is derived as follows:

C(k) =


CK(k), State1

δC CK(k), State2

CFM , State3

(7.12)
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Figure 7.2: Qualitative representation of the attitude error when using the proposed attitude
estimation scheme. The three operation states are denoted as S1, S2 and S3 respectively.

A qualitative representation of the output attitude error when using the introduced attitude
estimation scheme of (7.12) is presented in Figure 7.2. As seen in Figure 7.2, during State 1, the
attitude error, mainly caused by the gyroscope’s drift, is accumulated and grows exponentially
in time. During State 2, the zero velocity update method (see Section 7.2.9) provides a small
attitude correction and prevents the error from rising. However, this small correction cannot
compensate for the accumulated attitude error which eventually rises significantly over time
(this is also demonstrated using real sensors’ measurements in Section 7.3). The attitude error
during State 3 depends only on the error of the sensors’ measurements at a particular time k
and it is bounded1. Thus, during State 3, an accurate, independent of the previous ones, attitude
estimate is derived. In Figure 7.2, it is demonstrated that if such accurate attitude estimates
are frequently available, the attitude error does not rise significantly over time, leading to a
long-term accurate attitude estimation.

7.2.8 Velocity and Position Estimation Via Kinematic Equations Using
Accelerometer’s Measurements

In order to derive a first estimate of the velocity and the position, we define the intermediate
attitude CGFM following Figure 7.1 as

CGFM (k) =

CFM (k), ZV = 1 and D = 1

CK(k), otherwise
(7.13)

1Here we assume that the attitude error introduced by the measurement error of C(0), fb(0) and mb(0) is small
and thus it is neglected. This is a rational assumption, because multiple measurements and averaging can be used to
accurately determine C(0), fb(0) and mb(0).
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We transform the accelerometer’s measurement (which is naturally expressed in the sensors’
platform frame) to the inertial frame using CGFM (k) as follows

fi(k) = CGFM (k)fb(k) (7.14)

Then, in order to cancel the effect of the gravity acceleration to the accelerometer measurement,
we define

a(k) = fi(k) + gi (7.15)

where gi is the 3 × 1 gravitational acceleration vector expressed in the inertial frame. The
discrete-time velocity and position vectors are updated as

vK(k) = vK(k − 1) + a(k)τs (7.16)

and
pK(k) = pK(k − 1) +

1

2
(vK(k) + vK(k − 1))τs (7.17)

7.2.9 Zero Velocity Update Method

The zero velocity update method is realized by an error-state Kalman filter similar to [10].
The filter uses the measurements of the accelerometer and the gyroscope to estimate the error
of the attitude, the velocity and the position as well as the offset vectors of the two sensors.

The author in [10] uses the following 15× 1 Kalman filter’s state vector

xzv =
[
δψT δvT δpT ba

T bg
T
]T

(7.18)

where δψ is the 3×1 attitude error expressed in Euler angles, δv is the 3×1 velocity error, δr is
the 3×1 position error, ba is the 3×1 accelerometer’s offset vector and bg is the 3×1 gyroscope’s
offset vector. Using the kinematic equations and assuming a small error in the measurements of
the accelerometer and the gyroscope, we derive the following state propagation model for the
Kalman filter similar to [10]

xzv(k + 1) = Φzv(k)xzv(k) + wzv(k) (7.19)

where wzv is assumed to be a white noise sequence and

Φzv(k) =


I3 03 03 03 Cτs(k)

F (k) I3 03 Cτs(k) 03

03 I3τs I3 03 03

03 03 03 I3 03

03 03 03 03 I3

 (7.20)
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where
F (k) = [−fi(k) ×] τs

and
Cτs(k) = CGFM (k)τs

When a zero velocity condition is present, the velocity output of the kinematic equations
(see Section 7.2.8) should be ideally zero. However, due to the sensors’ non-idealities (noise,
residual calibration error, etc.), in practice, this is not the case; kinematic equations give a
small (error) velocity output even when the sensors’ platform is still. This velocity is used as a
measurement of the velocity error, δv, in the Kalman filter, implying the following form of the
filter’s measurement equation

zzv(k) = uK(k) = Hzvxzv(k) + vzv(k) (7.21)

where vzv is a white noise sequence and

Hzv =
[
03 I3 03 03 03

]T
(7.22)

The initialization of the diagonal covariance matrices Qzv and Rzv is crucial to achieve high
performance. Let σ2a and σ2g be the variance of the accelerometer’s and the gyroscope’s noise
respectively 2. Also, let σ2ba and σ2bg be the variances of their offset as it drifts in time. Using
them we form Qzv as follows,

Qzv = diag
([
σ2g11×3 σ2a11×3 01×3 σ2ba11×3 σ2bg11×3

])
τs (7.23)

The measurement covariance matrix, Rzv, is similarly formed by assuming the variance of the
velocity measurement when a zero-velocity condition is present, σ2v

Rzv = σ2vI3 (7.24)

The variances used to form Rzv and Qzv in (7.23) and (7.24) cannot be typically derived
from the sensors’ documentation, especially in the case of low cost, MEM sensors. Thus, both
Rzv and Qzv are usually derived and fine tuned experimentally.

Note that the derived attitude correction term, δψ, is expressed in Euler angles. Using small
angle approximation, the corresponding rotation matrix is defined as

δC = [δψ×] (7.25)
2Here, without loss of generality, we assumed that the three axes of each sensor present similar noise

characteristics.
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7.2.10 System’s Initialization

The proposed system derives the navigation solution in the inertial frame. Thus, the position
vector is initialized as p(0) = [0 0 0]T . Under the assumption that at time t = 0, the sensors’
platform is still, the velocity vector is initialized as v(0) = [0 0 0]T

Deriving the initial attitude, i.e. the rotation between the inertial frame and the sensors’
platform frame at time t = 0, is not a trivial task. However, aligning the z axes between the two
coordinate frames is crucial in order to be able to subtract the gravitational acceleration when
solving the kinematic equations (see equation (7.15)). To do so, we consider the gravitational
acceleration vector in the inertial frame, giib = [0 0 g]T , and the accelerometer’s measurement at
t = 0 while the sensor is still, fb(0).3 Then we use Rodrigues’ rotation formula [20] to derive the
rotation matrix C(0) which aligns the z-axes of the two coordinate frames.

7.2.11 Algorithmic Implementation

The algorithmic implementation of the proposed system including the Kalman filter’s recursive
equations is presented in Algorithm 14.

3Gravitational acceleration, g, depends on the location of the experiment and can be found in relevant models.
However in most cases it is sufficient to assume that it is constant and equal to 9.80665 m/s2.
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Algorithm 14: Proposed Navigation Algorithm.

System’s Initialization
The system initialization is done while the sensors’ platform is still and away from
magnetic disturbances
Step 1: Calculate the initial attitude, C(0), according to Section 7.2.10.
Step 2: Capture the accelerometer’s and magnetomter’s measurements fb(0) and mb(0)
respectively.
Step 3: Initialize velocity and position vectors according to Section 7.2.10.

Kalman Filter’s Initialization

Step 4: Form the noise covariance matrices, Qzv and Rzv according to (7.23) and
(7.24) respectively.
Step 5: Form the measurement matrix Hzv following (7.22).
Step 6: Initialize the error covariance matrix Pzv(0) = O15.

Navigation Equations
The navigation equations (steps 7 - 15) are evaluated for every sensors’ sample,
k = 1, 2, . . . ,K.
Step 7: Calculate CK(k) using (7.9).
Step 8: Calculate ZV (k) and D(k) according to (7.3) and (7.5) respectively.
Step 9: If ZV (k) = 1 and D(k) = 1, calculate CFM (k) according to (7.11).
Step 10: Set CGFM (k) following (7.13).
Step 11: Calculate uK(k) and pK(k) following (7.16) and (7.17).
Step 12: Form the Kalman filter’s state transition matrix, Φzv(k) using (??).
Step 13: Calculate the error covariance matrix
P−
zv(k) = Φzv(k)Pzv(k − 1)Φzv(k)

T +Qzv.
Step 14: If ZV (k) = 1:
14.1) Calculate Kalman gain Kzv(k) = Pzv(k)H

T
zv

(
HzvPzv(k)H

T
zv +Rzv

)−1.
14.2) Calculate xzv(k) = Kzv(k)vK(k).
14.3) Update the error covariance matrix Pzv(k) = (I15 −Kzv(k)Hzv)P

−
zv(k).

14.4) Extract δψ(k), δv(k) and δr(k) from xzv(k)

14.5) Calculate the system’s outputs, C(k) = [δψ(k)×]CGFM (k), v(k) = vK(k)− δv(k)
and p(k) = pK(k)− δp(k).
14.6) Extract ba(k) and bg(k) from xzv(k) and subtract them from the next (k + 1)
measurement of the accelerometer and the gyroscope respectively.
Step 15: If ZV (k) = 0: C(k) = CGFM (k), v(k) = vK(k) and p(k) = pK(k).
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7.3 Experimental Results
In order to evaluate the proposed inertial navigation algorithm, we used an inertial measurement

unit (IMU) based on the low-cost LSM9DS1 system in package (SiP) by STMicroelectronics. It
contains a three-axis accelerometer, a three-axis gyroscope and a three-axis magnetometer, the
most important performance specifications of which are presented Table 7.3.

The proposed algorithm was tested during an 20 minute and about 1.3km long walk around
the campus of the National Technical University of Athens, Greece. The walk path is shown in
Figure 7.3 along with some important landmarks. As seen in in Figure 7.3, along the walk path
there are several sources of magnetic disturbance such as buildings and parking areas.

Specification Value
Measurement Range (A) ±16g
Measurement Range (G) ±2000◦/s
Measurement Range (M) ±4Gauss
Sampling Rate (A, G) 238Hz

Sampling Rate (M) 80Hz

Resolution (A, G, M) 16Bits

Table 7.3: Basic performance characteristics of the accelerometer (A), gyroscope (G) and
magnetometer (M) included in the LSM9DS1 SiP.

Figure 7.3: Walk path inside the campus of the National Technical University of Athens, Greece.

First, we demonstrate the long-term accuracy of the proposed system compared to existing
pedestrian navigation systems using the zero velocity update method alone. To do so, we
reconstructed the walk path using only the accelerometer’s and gyroscope’s measurements and
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the zero velocity update method. As seen in Figure 7.4, the calculated attitude drifts after a few
meters and the reconstructed walk path diverges significantly from the reference one.
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Figure 7.4: Reconstructed walk path using accelerometer’s and gyroscope’s measurements and
the zero velocity update method.

The reconstructed walk path using all three sensors’ measurements and the proposed algorithm
is presented in Figure 7.5. Observe that the reconstructed path in Figure 7.5 successfully tracks
the reference one in long-term.
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Figure 7.5: Reconstructed walk path using the measurements of both inertial and magnetic
sensors, the zero velocity update method and the proposed attitude correction scheme.

In Figure 7.6 some accuracy characteristics along the reconstructed path are highlighted. 1)
The actual path formed a close-loop, i.e. it started and ended at exactly the same point. As
seen in Figure 7.6, the reconstructed path presents an error of 3.08m from start point to end
point. This is a rather impressive performance as the error is below 0.25% of the total walk
distance. 2) The high refresh rate and measurement accuracy of the proposed system allows for
the identification of walking patterns. This is demonstrated in Figure 7.6 where a road crossing
and a zig-zag pattern walking are easily identified. 3) A closer inspection of the reconstructed
trajectory reveals the position correction introduced by both the introduced attitude correction
scheme and zero velocity update method in three consecutive steps.
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Figure 7.6: Reconstructed walk path with highlighted some important accuracy characteristics.

The proposed algorithm is compared to existing pedestrian navigation algorithms in terms of
accuracy and computational efficiency using two popular, highly cited AHR algorithms. The zero-
velocity update method as realized in [10] is combined with the Madgwick’s [17] and Mahony’s
[18] attitude estimation algorithms similar to [16]. The same measurement set along the walking
path of Figure 7.3 is used to reconstruct the walking path using the three algorithms.

In Figure 7.7 the three algorithms are compared in terms of accuracy and long-term stability.
The proposed algorithm outperforms both the Madgwick’s AHRS and Mahony’s AHRS based
ones as it successfully tracks the reference path through the whole walking distance. The
algorithm based on Madgwick’s AHRS accurately tracks the reference path and slightly drifts
only during the last 250m while the Mahony’s AHRS based algorithm seems to be less resilient
to the magnetic disturbances along the walking path.

In Table 7.4 the three algorithms are compared in terms of computational efficiency. The three
algorithms were were executed in MATLAB running on a typical quad-core, 8GB RAM PC. Note
that as all three algorithms are based on the same Kalman filter framework to implement the
zero velocity update method. Thus, the attitude estimation algorithm is their only substantial
difference as far as the computational burden of each algorithm is concerned. To ensure a more
fair comparison, each algorithm was executed five times using the same dataset and the mean
execution time of all algorithms is presented in Table 7.4.
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Figure 7.7: Reconstructed walk path using the measurements of both inertial and magnetic
sensors, the zero velocity update method and the proposed attitude correction scheme.

Algorithm Mean Execution Time
Proposed 10.67s

[10] + Madgwick’s AHRS[17] 19.96s

[10] + Mahony’s AHRS[18] 18.32

Table 7.4: Mean execution time of the proposed algorithm compared to the mean execution time
of the algorithms based on Madgwick’s AHRS and Mahony’s AHRS.
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8 A Class of Low-NoiseInertial MeasurementUnits

An Inertial Measurement Unit (IMU) architecture estimating angular velocity is introduced.
It expands the concept of multi-accelerometers gyroscope-free IMUs (GF-IMUs), taking advantage
of their excellent noise performance and resolving their inability to compensate for accelerometers’
bias and their requirement for specific accelerometers placement, which makes GF-IMUs inappropriate
for real world applications. It does so by embedding the accelerometers in a low-bandwidth
closed-loop configuration with a three-axis gyroscope and by addressing the complete non-
linear dynamics. Extensive theoretical analysis provides a complete framework for designing
low-noise IMUs including sufficient stability criteria for the non-linear system’s dynamics as
well as output noise models. Simulation results support the theoretical analysis and indicate
that even a minimal system using the proposed architecture outperforms the gyroscope in noise
performance providing more than 15dB improvement.

8.1 Introduction
Inertial sensors (accelerometers and gyroscopes) are nowadays embedded in several commercial

devices such as smartphones, activity trackers, alarm systems and others while they are also used
in many high-end, industrial, marine, aerospace and military applications. The fast development
of Micro-Electro-Mechanical (MEM) inertial sensors over the past decades enabled the wider
use of inertial sensors. Their miniature size and extremely low cost make MEM inertial sensors
the ideal choice for a plethora of applications. However, their large error characteristics and
measurement noise [11] forbid their use in applications where measurement accuracy is important.

The greatest part of the measurement error of an inertial sensor is static and caused by
imperfections of the mechanical and electronic structures of the sensor. The static error is most
commonly modeled as a linear combination of different error terms (bias, non-orthogonality,
cross-axis sensitivity etc.) and can be compensated by using a proper calibration techniques [21,
14, 28, 29, 7].

On the other hand, dynamic measurement errors such as bias drift and non-deterministic
noise are more complicated problems which are most commonly dealt with using extra sensors
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or estimation and filtering techniques according to the specific application’s specifications and
needs. In inertial navigation for example, where the gyroscope’s noise causes a significant attitude
error [22] over time, it is common to use a Kalman filter [11, 19] or use additional sensors, such
as a magnetometer [10, 2], to get a more accurate attitude estimation.

A class of IMUs, known as gyroscope-free inertial measurements units (GF-IMUs), use several
accelerometers mounted on a rigid object to provide an estimation of both the specific force and
the angular velocity of the object. When the accelerometers are spread in a great distance
GF-IMUs provide a very accurate, low-noise estimation of the angular velocity compared to a
gyroscope of the same grade.

However, GF-IMUs come with a big disadvantage, which makes them inappropriate for real-
world applications. More specifically, GF-IMUs cannot compensate for the accelerometers’ bias;
even a small bias on the accelerometers’ measurement is translated into a constant drift in the
estimated angular velocity. This is an important restriction for real-world applications as even
if the sensor’s bias is removed using a calibration procedure, a small drift of the bias is expected
over time.

In this work we introduce an IMU architecture which combines several three-axis accelerometers
and a single three-axis gyroscope, in a closed-loop configuration, to effectively reduce the measurement
noise of the estimated angular velocity. The proposed architecture advances the concept of GF-
IMUs and uses the measurements of a single three-axis gyroscope to dynamically compensate
for the accelerometers’ bias. The stability of the proposed system is examined analytically and
closed-form conditions are provided. A model for the angular velocity noise is provided while
simulations reveal the superior noise performance of the proposed system; in the upper frequency
range, it presents more than 30dB less angular velocity noise compared to the gyroscope alone.

The rest of this work is structured as follows. In Section 8.2 the basic operation principles of
the gyroscope-free inertial measurement systems are introduced while their main performance
limitations are highlighted. In Section 8.3, the proposed closed-loop architecture is introduced
and analyzed in detail. Stability conditions and a closed-form model for the system’s noise
are provided. In Section IV, the system’s performance is tested and some important design
considerations are expressed. Finally, conclusions are drawn in Section V.

8.2 Gyroscope-Free Inertial Measurement Units
In this Section, the basic principle of GF-IMUs is introduced and their performance limitations

are highlighted.

8.2.1 Principle of Operation

ConsiderN single-axis accelerometers, placed arbitrary positions, ri, i = 1, 2, . . . , N on a rigid
body and denote their sensitivity axes and measurements as η̂i and fi, respectively. Following
[5], we write the following system of equations for deriving the specific force (f) and the angular
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velocity (ω)
F = Jx+ P (8.1)

where

x =

[
ω̇

f

]
, J =

[
JT1 JT2

]

F =


f1

f2
...
fN

 , P =


η̂1
TΩ2r1

η̂2
TΩ2r2
...

η̂N
TΩ2rN


(8.2)

the auxiliary variables J1 and J2 are

J1 =
[
(r1 × η̂1) (r2 × η̂2) . . . (rN × η̂N )

]
J2 =

[
η̂1 η̂2 . . . η̂N

] (8.3)

and Ω is the cross-product matrix of the vector ω ≜
[
ωx ωy ωz

]T

Ω =

 0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 (8.4)

Given an adequate number of properly placed (single-axis) accelerometers, one can solve
(8.1) in a least squares sense and derive x as

x =
(
JTJ

)−1
JT (F − P ) (8.5)

Further defining J̄ =
(
JTJ

)−1
JT , (8.5) is written in a compact form as

x = J̄F − J̄P (8.6)

and the solution is only valid if JTJ is non-singular.
In this work, we focus on the solution of the system of differential equations for deriving the

angular velocity, ω. Denoting the ith row of J̄ as J̄i, we write

ω̇ = ĴF − ĴP (8.7)

where
Ĵ =

[
J̄T1 J̄T2 J̄T3

]T
(8.8)
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8.2.2 Existing Art and Performance Limitations

Several GF-IMU architectures have been proposed over the years. Many authors have proposed
different configurations using six [5], nine [24, 9, 20], ten [16] or twelve [23, 8] (single-axis)
accelerometers in an effort to provide a feasible solution to (8.7). Moreover, existing works use
very specific geometries for the accelerometers’ placement in an effort simplify the original non-
linear problem (8.7) for estimating the angular velocity. By doing so, the non-linear terms of
(8.7) are eliminated and the derivative of the angular velocity is derived as a linear combination
of the accelerometers’ measurements as follows

ω̇l = ĴF (8.9)

While existing works provide a very simple and computationally light solution to the original
non-linear problem, the analysis is limited to the case of ideal accelerometers and neglects the
effects of noise, bias and other imperfections of a real-world accelerometer. Since the bias is the
largest contributor in the accelerometer’s measurement error [21], we will examine the effect of
a small additive bias, δF on the accelerometers’ measurements. In this case, (8.9) becomes

˙̃ωl = Ĵ(F + δF ) (8.10)

where δF is the N × 1 vectors representing the accelerometers’ bias. Subtracting (8.9) from
(8.10) we get the evolution of the system’s output error in time

˙δωl ≜ ω̇l − ˙̃ωl = ĴδF (8.11)

As seen in (8.11), the output error of the existing systems accumulates over time implying
that even a very small offset in the accelerometers’ measurements causes a cumulative angular
velocity error. This is rather important as even if the static sensors’ offset is removed by a
calibration procedure, a small offset drift is expected over time, even in the case of high-end
sensors.

8.3 The Proposed System
In this Section, the proposed inertial measurement system is introduced and analyzed in

detail. The stability of the proposed system under the effects of the accelerometers’ and gyroscope’s
biases is investigated. Finally, an analytical expression of the output angular velocity noise is
derived.

8.3.1 System Architecture

To alleviate the performance limitations of existing architectures, presented in Section 8.2.2,
the proposed system uses multiple single-axis accelerometers in combination with a single three-
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axis gyroscope in a closed loop configuration. The top-level architecture of the proposed system
is shown in Figure 8.1.

In Figure 8.1, we consider the general case of an arbitrary configuration of N > 6 single-axis
accelerometers and thus, the non-linear feedback term ĴP of (8.6) is also included. A second
feedback-loop, compares the angular velocity calculated using the accelerometers’ measurements
and the GF-IMU theory with the measurement of the gyroscope and forces the lower-frequency
part of the system’s output (ω) to be equal to the gyroscope’s measurement. In higher frequencies,
the feedback signal attenuates and the system outputs the angular velocity estimated using
the acelerometers’ measurements. By doing so, the proposed system, ensures that the constant
accelerometers’ bias does not affect the system’s output while in the upper frequency range
the system outputs the low-noise angular velocity estimation derived using the accelerometers’
measurements.

Linear
System

N Single-Axis
Accelerometers 

+
-

+

-

Three-Axis
Gyroscope 

G

ω

Gyroscope-Free IMU

Non-Linear
System

Figure 8.1: Top-level architecture of the proposed system.

8.3.2 The linear case

Before analyzing the general case, described by (8.7), in which the system is non-linear, it
is helpful to consider the existing GF-IMU architectures. In this particular case, the proposed
system is described by the block diagram of Figure 8.2 and the angular velocity is derived as
the solution of a linear system of differential equations

F
+

-

+

-

ωl1
s

s+p

p ωgωf

ωl
J

g

Gyroscope-Free IMU

Figure 8.2: Block diagram representation of the proposed system for specific accelerometers’
configurations eliminating the non-linear terms of (8.7).

At this point, since both the inputs (F and ωg) and the output (ωl) of the system are vectors,
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it is useful to define the following diagonal matrices related to the modeling of the feedback loop.

G = I3 ⊗ g

Pp = I3 ⊗ p

Ps = I3 ⊗
(

p

s+ p

) (8.12)

where I3 is the 3× 3 identity matrix and ⊗ denotes the Kronecker’s product [25].
According to Figure 8.2, the system’s output is

ω̇l(F, ωg) ≜ ĴF −G ωf (8.13)

Now, we assume non-ideal measurements for both the accelerometer and the gyroscope, and we
define

F = Fi + δF and ωg = ωgi + δωg (8.14)

where Fi ∈ R6 and ωgi ∈ R3 are the ideal measurements of the the accelerometers and the
gyroscope respectively and δF ∈ R6 and δωg ∈ R3 represent a small additive bias. Following the
block diagram of Figure 8.2, the output error of the system is captured by the following system
of differential equations

˙δωl ≜ ω̇l(Fi + δF, ωgi + δωg)− ω̇l(Fi, ωgi)

= ĴδF −Gωf
(8.15)

The feedback signal, ωf , is written as

ωf = Ps(ωl − ωg − δωg)

= Ps(δωl − δωg)
(8.16)

and its time representation is derived as

ω̇f = −Pp ωf + Pp(δωl − δωg) (8.17)

Using (8.15) and (8.17), we write the following state-space system representation[
˙δωl

ω̇f

]
︸ ︷︷ ︸
ẋl

=

[
03×3 −G
Pp −Pp

]
︸ ︷︷ ︸

Al

[
δωl

ωf

]
︸ ︷︷ ︸
xl

+

[
Ĵ 03×3

03×6 −Pp

]
︸ ︷︷ ︸

Bl

[
δF

δωg

]
︸ ︷︷ ︸
ul

(8.18)

The characteristic polynomial of Al is

pAl
(λ) = (λ2 + pλ+ gp)3 (8.19)
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and its roots (which are the eigenvalues of Al) are negative for positive values of g and p. Thus
Al is Hurwitz and the system of (8.18) is BIBO stable. This is an important result as it indicates
that the output error of the proposed system, δωl, is bounded for bounded inputs (δF and δωg).

To quantify the effect of the accelerometers’ and the gyroscope’s biases on the system’s
output error, we assume a small constant bias vector f̄ ∈ R6 for the accelerometers and a small
constant bias vector ω̄ ∈ R3 for the gyroscope. From (8.18) we get

xl(t) = eAltxl(0) +

∫ t

0
eAl(t−s)Bl

[
f̄

ω̄

]
ds

= eAltxl(0) + (eAlt − I6)A−1
l Bl

[
f̄

ω̄

] (8.20)

where I6 is the 6× 6 identity matrix. The steady state response of (8.18) is derived as

lim
t→+∞

x(t) = −A−1B

[
f̄

ω̄

]

=

[
Ĵ f̄
g + ω̄
f̄
g

] (8.21)

and consequently,

δω
∣∣
t→+∞ =

Ĵ f̄

g
+ ω̄ (8.22)

The result of (8.22) is quite interesting as it indicates that in steady-state, the proposed system’s
offset is composed of a small portion of the accelerometers’ bias and the whole gyroscope’s bias.
This comes in agreement with our intuition about the system’s operation; the feedback loop
forces the system’s output to be equal to the gyroscope’s one in low frequencies. Using the
triangle inequality and (8.21), we get the worst case scenario for the steady state value of δω
which is

∥δω∥ ≤
∥∥∥∥ Ĵ f̄g

∥∥∥∥+ ∥ω̄∥ (8.23)

and represents the case when the effect of the accelerometers’ and the gyroscope’s bias is additive.

8.3.3 The General, Non-Linear Case

To expand the results derived in Section 8.3.2 to the general case, when the proposed system
is non-linear, it is useful to write (8.7) in a more convenient form. To do so, we begin by denoting
the nth row of matrix P as Pn, n = 1, 2, . . . , N

Pn = −ω2
xαn − ω2

yβn − ω2
zγn + ωxωyδn + ωxωzϵn + ωyωzζn (8.24)
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where
αn = ηynr

y
n + ηznr

z
n

βn = ηxnr
x
n + ηznr

z
n

γn = ηxnr
x
n + ηynr

y
n

δn = ηxnr
y
n + ηynr

x
n

ϵn = ηxnr
z
n + ηznr

x
n

ζn = ηynr
z
n + ηznr

y
n.

(8.25)

The product ĴP in (8.7) is written as

ĴP =

−− J̄1 −−−− J̄2 −−
−− J̄3 −−



P1

P2

...
PN

 (8.26)

which, by replacing P1, P2, . . . , Pn from (8.24) and after some algebraic manipulation becomes

ĴP =

J̄1A J̄1B J̄1Γ J̄1∆ J̄1E J̄1Z

J̄2A J̄2B J̄2Γ J̄2∆ J̄2E J̄2Z

J̄3A J̄3B J̄3Γ J̄3∆ J̄3E J̄3Z


︸ ︷︷ ︸

M



−ω2
x

−ω2
y

−ω2
z

+ωxωy

+ωxωz

+ωyωz


︸ ︷︷ ︸

L(ω)

(8.27)

where

A =


a1

a2
...
aN

 , B =


β1

β2
...
βN

 ,Γ =


γ1

γ2
...
γN



∆ =


δ1

δ2
...
δN

 , E =


ϵ1

ϵ2
...
ϵN

 , Z =


ζ1

ζ2
...
ζN



. (8.28)

Now, considering the proposed system of Figure 8.1 and replacing (8.27) into (8.7), we write

ω̇ = ĴF −ML(ω)−Gωf (8.29)
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where the filter’s dynamics, similarly to (8.17), are described by

ω̇f = −Pp ωf + Pp(δω − δωg) (8.30)

and the ground truth angular velocity is given by

ω̇gi = ĴF −ML(ωgi) (8.31)

We formulate the output error’s dynamics as in the linear case. Considering δω = ω − ωgi, we
have

˙δω = −M(L(ω)− L(ωgi)) + ĴδF −Gωf (8.32)

By substituting ω = δω + ωgi we get

L(ω)− L(ωgi) = K(ωgi)δω + L(δω)

= K(ωgi)δω +O
(
∥δω∥2

) (8.33)

where

K(ωgi) =



−2ωxgi 0 0

0 −2ωygi 0

0 0 2ωxgi
ωygi ωxgi 0

ωzgi 0 ωxgi
0 ωzgi ωygi


. (8.34)

Neglecting the higher order terms in (8.33), we rewrite (8.32) as

˙δω = −MK(ωgi)δω + ĴδF −Gωf (8.35)

Using (8.35) and (8.17), we write the following state-space system representation for the
proposed system [

˙δω

ω̇f

]
︸ ︷︷ ︸
ẋ

=

[
−MK(ωgi) −G

Pp −Pp

]
︸ ︷︷ ︸

A

[
δω

ωf

]
︸ ︷︷ ︸
x

+

[
Ĵ 03×3

03×6 −Pp

]
︸ ︷︷ ︸

B

[
δF

δωg

]
︸ ︷︷ ︸

u

(8.36)

Comparing (8.36) with (8.18) we notice that the only difference is the the North-West block in
matrix A. This block depends on the actual angular velocity vector ωgi and is of course time-
varying. As a result, we have to further investigate the stability of the autonomous part of the
system (i.e. ẋ = Ax) which is strongly related to BIBO stability [13, 15]. To this end, and since
the system of (8.36) can be seen as quasi-linear, we touch upon on some well-established results
in Linear Parameter Varying (LPV) system’s theory [4, 27, 18].

To start with, we define the time-varying parameters δi ≜ ωigi for i = 1, 2, 3 and so as A is a
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parameter varying matrix (i.e. A ≜ A(δ1, δ2, δ3) ). These parameters appear in an affine way in
A, i.e.

A = A0 +A1δ1 +A2δ2 +A3δ3 (8.37)

Considering that the angular velocity of the object is bounded, the parameters δi, i = 1, 2, 3 are
also considered to be bounded, i.e. |δi| ≤ δmax. Hence, the parameter vector δ = [δ1 δ2 δ3]

⊤ ∈
D = co(δ1, δ2, . . . , δ8), with δj ∈ R3 for j = 1, 2, . . . , 8 where co(·) denotes the convex hull of
vertices δj [3]. In our case,D composes a cube centered at zero with vertices {±δmax,±δmax,±δmax}.
Furthermore, we define the set of vertices Dl = {δ1, δ2, . . . , δ8}.

The parametric varying system ẋ = A(δ)x with δ ∈ D is exponentially stable if [4] ∃ X ∈
R6×6, X ≻ 0 1:

A⊤(δ)X +XA(δ) < 0 ∀δ ∈ D (8.38)

Using (8.38), one can in theory prove the stability of the proposed system by solving an infinite
number of Linear Matrix Inequalities (LMI). In our case however, the stability conditions can
be relaxed and use only a finite amount of LMIs [4, 18]. Considering that Al(δ) is affine on
parameter vector δ, the parametric varying system ẋ = A(δ)x with δ ∈ D is exponentially stable
if ∃ X ∈ R6×6, X ≻ 0:

A⊤(δ)X +XA(δ) < 0 ∀δ ∈ Dl. (8.39)

The origin is an exponentially stable equilibrium point for the nonlinear system (8.32) if it is
an exponentially stable equilibrium point for the linear system ẋ = Ax [13]. Thus exponential
stability for the nonlinear dynamic is also ensured in a local sense.

The stability condition derived in (8.39) implies an arbitrary time-varying parameter δ. If
the rate of variation of δ is bounded, the aforementioned stability test is conservative. In our
system, δ corresponds to the angular velocity of an object, and its rate of change can in most
cases be considered to be bounded.

Similarly, we define δ̇ ≜
[
δ̇1 δ̇2 δ̇3

]⊤
∈ D′ = co(δ̇1, δ̇2, . . . , δ̇8) where δ̇j denotes the vertices

of a cube centered at zero (i.e. δ̇j ∈ {±δ̇max,±δ̇max,±δ̇max}). We consider δ̇ to be bounded, i.e.
|δ̇i| ≤ δ̇max and we define the set of vertices D′

l = {δ̇1, δ̇2, . . . , δ̇8}. The autonomous part of (8.36),
ẋ = Ax, is exponentially stable in the large, if there exist X0, X1, . . . , Xp with ATνXν+XνAν ⪰ 0,
ν = 1, 2, . . . ,m [18] such that

m∑
k=0

Xkδk ≻ 0 (8.40)

and
m∑
k=1

Xkδ̇k +

m∑
ν=0

m∑
µ=0

δνδµ
(
ATνXµ +XµAν

)
≺ 0 (8.41)

∀ δ ∈ Dl and ∀ δ̇ ∈ D′
l and δ0 = 1. In this case, m = 3 (8.37).

The set of LMIs described in (8.39) and (8.40) - (8.41) can be solved using any Semi Definite
1≻ 0 denote a positive-definite matrix.
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Programming Suite (e.g. SeDuMi [26]) in standard computational platforms such as Python (e.g.
cvxpy [6]), Matlab (e.g. Yalmip [17]) etc.

To sum up, in the linear case (8.18) which corresponds to particular configurations of the
accelerometers, the stability of the proposed system is easily ensured (8.19) and only small
attention is required on the design of the feedback’s filter. However, for an arbitrary configurations
of the accelerometers we notice that there is a nonlinear feedback term (8.6) which introduces
a time-varying block as shown in (8.36). This implies that the stability of the system relies on
the sensors’ configuration. On the one hand, there is more freedom for the sensor structure to
be selected but on the other hand one has to be careful to guarantee stability for the custom
configuration.

8.3.4 Output Noise Modeling

To examine the output angular velocity noise, we consider a linearization of the proposed
system around zero. The linearized system is described by the block-diagram of Figure 8.3

F
+
-

+

-

ω1
s

s+p

p ωg

J

g

Figure 8.3: Block diagram representation of the proposed system linearized around ω = 0 rad/s.

Since the system is linear, we use superposition to calculate the output angular velocity
as a function of the two inputs: the accelerometers’ measurements (F ) and the gyroscope’s
measurement (ωg). More specifically, it is:

ω(s) = (I3 ⊗HF (s)) F̂ (s) + (I3 ⊗Hg(s))ωg(s) (8.42)

where
HF (s) =

s+ p

s2 + ps+ gp

Hg(s) =
gp

s2 + ps+ gp

(8.43)

and
F̂ (s) = JF (s) (8.44)

Denote the power spectral density (PSD) of the gyroscope’s measurement as Sg(s) and the
PSD of F̂ as SF̂ (s). Assuming that the output noise of the accelerometers and the gyroscope
are uncorrelated, the PSD of the output angular velocity, Sω, is derived as follows

Sω =
(
I3 ⊗ |HF (s)|2

)
SF̂ (s) +

(
I3 ⊗ |Hg(s)|2

)
Sg(s) (8.45)
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where
|HF (s)|2 =

−s2 + p2

s4 + (2gp− p2)s2 + g2p2

|Hg(s)|2 =
g2p2

s4 + (2gp− p2)s2 + g2p2

(8.46)

The exact characteristics of the accelerometers’ and the gyroscope’s noise depend on the
sensor used and are different even along sensors using the same manufacturing technology.
However, typically, the noise of the accelerometers and the gyroscope is considered to be white
noise. This is a reasonable assumption used in many works to facilitate the mathematical analysis
and in most cases gives accurate results.

We assume that both the inputs F and ωg are excited with white noise, i.e.

F ∼ N (0, CF ) and ωg ∼ N (0, Cω) (8.47)

where CF and Cω denote the covariance of the accelerometers’ and gyroscope’s noise respectively.
The noise of the linear combination of the accelerometers’ measurements, JF , is also white noise
with covariance CJF = JCFJ

T [1] and thus it is

F̂ ∼ N (0, CJF ) (8.48)

In this case, the PSD of the output angular velocity, Sω, is derived as follows

Sω =
(
I3 ⊗ |HF (s)|2

)
(J ◦ J)SF +

(
I3 ⊗ |Hg(s)|2

)
Sg (8.49)

where SF is the PSD of the accelerometers’ noise and ◦ denotes the Hadamard’s product [12].

8.4 Results
In this section we use a simple configuration, shown in Figure 8.4, composed of nine single-axis

accelerometers (grouped in three three-axis ones) and a single three-axis gyroscope to evaluate
the performance of the proposed system. In addition, we highlight the restrictions imposed by the
previously derived stability conditions to the sensors’ placement and the design of the feedback
filter.
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Figure 8.4: IMU configuration composed of nine single-axis accelerometers (grouped in three
three-axis ones) and a single three-axis gyroscope.

8.4.1 Noise Model Accuracy

Before we evaluate the performance of the proposed system, we test the accuracy of the
derived noise model of Section 8.3.4. To do so, we consider the system configuration of Figure
8.4 and assume the sensors’ distance to be equal to l = 1m. The feedback’s gain is set to g = 10

while the cut-off frequency of the low-pass filter is set to p = 6π rads (3 Hz).
Using MATLAB’s Simulink we simulated the described configuration assuming white noise

sequences for both the accelerometers’ and the gyroscope’s inputs. The power spectral density
(PSD) of the output noise for all accelerometers is set to be equal to SA = −50dB/Hz while the
PSD of all gyroscope’s axes is SG = −65dB/Hz. In Figure 8.5, the PSD of the system’s output
resulted from the simulation is compared to the one calculated using the noise model (8.49).
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Figure 8.5: The PSD of the output of the proposed system (x-axis) compared to the PSD
calculated using the noise model of (8.49).
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8.4.2 Noise Performance

To evaluate the noise performance of the proposed system, we used the sensors’ configuration
of Figure 8.4 and excited both the accelerometers and the gyroscope with white noise. The noise
characteristics and the feedback loop design parameters were set similar to Section 8.4.1, i.e.
SG = −65dB/Hz, SA = −50dB/Hz, g = 10 and p = 6π rads.

The PSD of the system’s output is presented in Figure 8.6 and compared to the PSD of the
gyroscope’s noise for two different values of the parameter l in Figure 8.4. As seen in Figure 8.6,
while the distance between the accelerometers gets greater, the output noise of the proposed
system gets significantly lower in the higher frequencies where the output is dominated by the
accelerometers’ measurements.
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Figure 8.6: The PSD of the proposed system’s output noise (X-axis) compared to the PSD of
the gyroscope’s output noise (X-axis) for l = 1m (a) and l = 4m (b).

8.4.3 System Design and Stability Considerations

In Section 8.4.2 we demonstrated that the angular velocity noise of the proposed IMU
becomes lower when the accelerometers are spread over a wider distance. In this Section we
will examine the effect of the feedback filter’s design on the output noise and furthermore we
will demonstrate how improper design of the filter may lead to an unstable system.

We assume the configuration of Figure 8.4 and we consider the sensors’ distance to be equal
to l = 2m. The power of the system’s angular velocity noise in a 100Hz bandwidth is presented
in Tables 8.1-8.4 for different values of the maximum angular velocity (ωmax) and the feedback
filter’s pole (fp = p/2π) and gain (g) parameters. The unstable configurations according to
(8.39) are denoted with ”X” in Tables 8.1-8.4.

In Table 8.1, for ωmax = 1rad/s, the system is stable for every pair (fp, g) and the filter’s
design only affects the output noise power which varies from −61.9dB up to −53.3dB. Note the
lowest noise power of −61.9dB is more than 15dB lower than the output noise of the gyroscope
in the same bandwidth. While the value of ωmax gets higher, the stability of the system depends
more on the design of the feedback’s filter. However, even in the case of ωmax = 10rad/s (Table
8.4), proper design of the feedback filter leads to a stable configuration with only 1.4dB more
noise power (−60.5dB) which is still about 15dB lower than the output noise of the gyroscope
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in the same bandwidth.

g = 5 g = 10 g = 20 g = 50
fp = 0.2Hz -58.0dB -57.4dB -56.1dB -53.3dB
fp = 1Hz -60.9dB -59.8dB -57.6dB -54.1dB
fp = 2Hz -61.4dB -60.2dB -57.9dB -54.2dB
fp = 5Hz -61.9dB -60.5dB -58.0dB -54.3dB
Gyroscope -45.3dB

Table 8.1: Angular velocity noise within [0, 100]Hz for ωmax = 1rad/s and different values of fp
and g.

g = 5 g = 10 g = 20 g = 50
fp = 0.2Hz X X X X
fp = 1Hz -60.9dB -59.8dB -57.6dB -54.1dB
fp = 2Hz -61.4dB -60.2dB -57.9dB -54.2dB
fp = 5Hz -61.9dB -60.5dB -58.0dB -54.3dB
Gyroscope -45.3dB

Table 8.2: Angular velocity noise within [0, 100]Hz for ωmax = 5rad/s and different values of fp
and g.

g = 5 g = 10 g = 20 g = 50
fp = 0.2Hz X X X X
fp = 1Hz X X X -54.1dB
fp = 2Hz X -60.2dB -57.9dB -54.2dB
fp = 5Hz X -60.5dB -58.0dB -54.3dB
Gyroscope -45.3dB

Table 8.3: Angular velocity noise within [0, 100]Hz for ωmax = 7rad/s and different values of fp
and g.
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g = 5 g = 10 g = 20 g = 50
fp = 0.2Hz X X X X
fp = 1Hz X X X X
fp = 2Hz X X -57.9dB -54.2dB
fp = 5Hz X -60.5dB -58.0dB -54.3dB
Gyroscope -45.3dB

Table 8.4: Angular velocity noise within [0, 100]Hz for ωmax = 10rad/s and different values of
fp and g.
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9 Conclusions and FurtherResearch

In the first part of this Thesis, a complete methodology for calibrating and aligning the
sensitivity axes of a 3-axis magnetometer, a 3-axis accelerometer and a 3-axis gyroscope was
introduced. The proposed methodology compensates for the most significant linear, time-invariant
error sources of inertial and magnetic field sensors and requires no special piece of equipment to
apply. Both simulation and experimental results prove that the proposed methodology performs
very well in terms of convergence, repeatability and computational efficiency.

Some interesting research directions stemming from this work are listed below:

• This work only considers the most important linear, time invariant error sources for the
three sensors. The proposed algorithm could be expanded to also compensate for non-linear
error sources (e.g. scale factor non-linearity) or dynamic, time-varying phenomena such as
the temperature dependence of the sensors’ measurements.

• The calibration of inertial and magnetic field sensors without using special calibration
equipment is a very popular research topic. Many works present different algorithms that
successfully calibrate inertial and magnetic field sensors using a set of measurements
in different sensors’ orientations. However, the measurement acquisition methodology is
typically derived experimentally by the authors and different works propose different
methodologies without the related mathematical proof that the acquired measurements
are sufficient to solve the (minimization or estimation) problem of calibration. Thus, a
very interesting research topic is the measurement acquisition procedure for inertial and
magnetic field sensors calibration and the related mathematical analysis.

In the second part of the Thesis, two applications of inertial and magnetic field sensors are
presented. First, a pedestrian navigation algorithm is introduced. Using shoe-mounted inertial
and magnetic field sensors, the proposed algorithm accurately estimates the velocity, position
and orientation of a walking person. It exploits the characteristics of the human walking and uses
the TRIAD algorithm along with the popular zero-velocity update method to ensure the long-
term accuracy of the orientation estimation. Experimental results demonstrated the accuracy
and the long-term stability of the proposed algorithm.
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Based on this work, the following research directions could be explored:

• The proposed algorithm excels in terms of computational efficiency compared to similar
algorithms using complicated heading reference systems. However, using only inertial and
magnetic field sensors, its deployment is limited to outdoor environments with limited
sources of magnetic disturbance. An expansion of the proposed algorithm that would also
exploit information from other sources such as RF beacons, building maps, etc. would
enable its wider deployment in indoor environments.

An IMU architecture using several accelerometers and a single three-axis gyroscope was also
introduced in the second part of the Thesis. The proposed architecture combines the low-noise
characteristic of GF-IMUs and ensures the systems stability and immunity to the accelerometers’
bias by using the gyroscope in a closed-loop configuration. Extensive theoretical analysis as well
as simulation results indicated that the proposed system is capable of providing up to 15dB

less angular velocity noise in its output compared to a gyroscope of the same grade while its
stability can be guaranteed when it is carefully designed. GF-IMUs were extensively studied
over the past years but their inherent disadvantage to compensate for the accelerometers’ bias
made the inappropriate for real-world applications despite their very good noise performance.
The proposed architecture provides a solution to this problem and enables the development of
low-noise, high-performance inertial measurement units.

• In this work, the resilience of the proposed system to the accelerometers’ and gyroscope’s
bias is investigated. The effect of other, common, sensors’ errors such as cross-axis sensitivity
and noise could also be explored. In addition, instead of requiring the sensors’ to be pre-
calibrated, algorithms that could calibrate the sensors after the system’s deployment could
be developed.

• The proposed algorithm uses the sensors’ distance and orientation from a reference coordinate
frame to calculate the object’s angular velocity. An interesting topic of research would be
the effect of the sensors’ placement error on the angular velocity estimation. As a solution to
this problem, smart algorithms that detect the sensors’ placement geometry and eliminate
the need for accurate sensor’s placement could be developed. This would guarantee the
accuracy of the angular velocity estimation while it would also make easier the real-world
deployment of the system.
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